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Preface

In the thirteen years since the appearance of the first edition, my interest in
classical electromagnetism has waxed and waned, but never fallen to zero. The
subject is ever fresh. There are always important new applications and examples.
The present edition reflects two efforts on my part: the refinement and
improvement of material already in the first edition; the addition of new topics
(and the omission of a few).

The major purposes and emphasis are still the same, but there are exten-
sive changes and additions. A major augmentation is the ‘“Introduction and
Survey” at the beginning. Topics such as the present experimental
limits on the mass of the photon and the status of linear superposition are treated
there. The aim is to provide a survey of those basics that are often assumed to be
well known when one writes down the Maxwell equations and begins to solve
specific examples. Other major changes in the first half of the book include a new
treatment of the derivation of the equations of macroscopic electromagnetism
from the microscopic description; a discussion of symmetry properties of
mechanical and electromagnetic quantities; sections on magnetic monopoles and
the quantization condition of Dirac; Stokes’s polarization parameters; a unified
discussion of the frequency dispersion characteristics of dielectrics, conductors,
and plasmas; a discussion of causality and the Kramers-Kronig dispersion
relations; a simplified, but still extensive, version of the classic Sommerfeld-
Brillouin problem of the arrival of a signal in a dispersive medium (recently
verified experimentally); an unusual example of a resonant cavity; the normal-
mode expansion of an arbitrary field in a wave guide; and related discussions of
sources in a guide or cavity and the transmission and reflection coefficients of flat
obstacles in wave guides.

Chapter 9, on simple radiating systems and diffraction, has been enlarged to
include scattering at long wavelengths (the blue sky, for example) and the optical
theorem. The sections on scalar and vectorial diffraction have been
improved.
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viii Preface

Chapters 11 and 12, on special relativity, have been rewritten almost
completely. The old pseudo-Euclidean metric with xs=ict has been replaced by
g (with g*=+1, g"=—1, i=1, 2, 3). The change of metric necessitated a
complete revision and thus permitted substitution of modern experiments
and concerns about the experimental basis of the special theory for
the time-honored aberration of starlight and the Michelson-Morley experiment.
Other aspects have been modernized, too. The extensive treatment of relativistic
kinematics of the first edition has been relegated to the problems. In its stead
is a discussion of the Lagrangian for the electromagnetic fields, the canonical and
symmetric stress-energy tensor, and the Proca Lagrangian for massive photons.

Significant alterations in the remaining chapters include a new section on
transition radiation, a completely revised (and much more satisfactory) semiclas-
sical treatment of radiation emitted in collisions that stresses momentum transfer
instead of impact parameter, and a better derivation of the coupling of multipole
fields to their sources. The collection of formulas and page references to special
functions on the front and back flyleaves is a much requested addition. Of the
278 problems, 117 (more than 40 per cent) are new.

The one area that remains almost completely unchanged is the chapter on
magnetohydrodynamics and plasma physics. I regret this. But the book obvi-
ously has grown tremendously, and there are available many books devoted
exclusively to the subject of plasmas or magnetohydrodynamics.

Of minor note is the change from Maxwell’s equations and a Green’s function
to the Maxwell equations and a Green function. The latter boggles some minds,
but is in conformity with other usage (Bessel function, for example). It is still
Green’s theorem, however, because that’s whose theorem it is.

Work on this edition began in earnest during the first half of 1970 on the
occasion of a sabbatical leave spent at Clare Hall and the Cavendish Laboratory
in Cambridge. I am grateful to the University of California for the leave and
indebted to N. F. Mott for welcoming me as a visitor to the Cavendish
Laboratory and to R. J. Eden and A. B. Pippard for my appointment as a
Visiting Fellow of Clare Hall. Tangible and intangible evidence at the Cavendish
of Maxwell, Rayleigh and Thomson provided inspiration for my task; the
stimulation of everyday activities there provided necessary diversion.

This new edition has benefited from questions, suggestions, comments and
criticism from many students, colleagues, and strangers. Among those to whom I
owe some specific debt of gratitude are A. M. Bincer, L. S. Brown, R. W. Brown,
E. U. Condon, H. H. Denman, S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern,
A. Hobson, J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg, A. B.
Pippard, A. M. Portis, R. K. Sachs, W. M. Saslow, R. Schleif, V. L. Telegdi, T.
Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful
were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr., K. Gottfried, C. K.
Graham, E. M. Purcell, and E. H. Wichmann. I send my thanks and fraternal
greetings to all of these people, to the other readers who have written to me, and









Preface to the
First Edition

Classical electromagnetic theory, together with classical and quantum
mechanics, forms the core of present-day theoretical training for undergraduate
and graduate physicists. A thorough grounding these subjects is a requirement
for more advanced or specialized training.

Typically the undergraduate program in electricity and magnetism involves
two or perhaps three semesters beyond elementary physics, with the emphasis
on the fundamental laws, laboratory verification and elaboration of their
consequences, circuit analysis, simple wave phenomena, and radiation. The
mathematical tools utilized include vector calculus, ordinary differential equa-
tions with constant coefficients, Fourier series, and perhaps Fourier or Laplace
transforms, partial differential equations, Legendre polynomials, and Bessel
functions.

As a general rule a two-semester course in electromagnetic theory is given to
beginning graduate students. It is for such a course that my book is designed. My
aim in teaching a graduate course in electromagnetism is at least threefold. The
first aim is to present the basic subject matter as a coherent whole, with emphasis
on the unity of electric and magnetic phenomena, both in their physical basis and
in the mode of mathematical description. The second, concurrent aim is to
develop and utilize a number of topics in mathematical physics which are useful
in both electromagnetic theory and wave mechanics. These include Green’s
theorems and Green’s functions, orthonormal expansions, spherical harmonics,
cylindrical and spherical Bessel functions. A third and perhaps most important
purpose is the presentation of new material, especially on the interaction of
relativistic charged particles with electromagnetic fields. In this last area
personal preferences and prejudices enter strongly. My choice of topics is
governed by what I feel is important and useful for students interested in
theoretical physics, experimental nuclear and high-energy physics, and that as
yet ill-defined field of plasma physics.

The book begins in the traditional manner with electrostatics. The first si»
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xii Preface to the First Edition

chapters are devoted to the development of Maxwell’s theory of electromagnet-
ism. Much of the necessary mathematical apparatus is constructed along the
way, especially in Chapters 2 and 3, where boundary-value problems are
discussed thoroughly. The treatment is initially in terms of the electric field E
and the magnetic induction B, with the derived macroscopic quantities, D and
H, introduced by suitable averaging over ensembles of atoms or molecules. In
the discussion of dielectrics, simple classical models for atomic polarizability are
described, but for magnetic materials no such attempt is made. Partly this
omission was a question of space, but truly classical models of magnetic
susceptibility are not possible Furthermore, elucidation of the interesting
phenomenon of ferromagnetism needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic phenomena,
mostly of a macroscopic sort. Plane waves in different media, including plasmas
as well as dispersion and the propagation of pulses, are treated in Chapter 7. The
discussion of wave guides and cavities in Chapter 8 is developed for systems of
arbitrary cross section, and the problems of attenuation in guides and the Q of a
cavity are handled in a very general way which emphasizes the physical processes
involved. The elementary theory of multipole radiation from a localized source
and diffraction occupy Chapter 9. Since the simple scalar theory of diffraction is
covered in many optics textbooks, as well as undergraduate books on electricity
and magnetism, I have presented an improved, although still approximate,
theory of diffraction based on vector rather than scalar Green’s theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly
more attention from physicists and astrophysicists. Chapter 10 represents a
survey of this complex field with an introduction to the main physical ideas
involved.

The first nine or ten chapters constitute the basic material of classical
electricity and magnetism. A graduate student in physics may be expected to
have been exposed to much of this material, perhaps at a somewhat lower level,
as an undergraduate. But ie obtains a more mature view of it, understands it
more deeply, and gains a considerable technical ability in analytic methods of
solution when he studies the subject at the level of this book. He is then
prepared to go on to more advanced topics. The advanced topics presented here
are predominantly those involving the interaction of charged particles with each
other and with electromagnetic fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamics still impresses and
delights as a beautiful example of the covariance of physical laws under Lorentz
transformations. The special theory of relativity is discussed in Chapter 11,
where all the necessary formal apparatus is developed, various kinematic
consequences are explored, and the covariance of electrodynamics is estab-
lished. The next chapter is devoted to relativistic particle kinematics and
dynamics. Although the dynamics of charged particles in electromagnetic fields



Preface to the First Edition xiii

can properly be considered electrodynamics, the reader may wonder whether
such things as kinematic transformations of collision problems can. My reply is
that these examples occur naturally once one has established the four-vector
character of a particle’s momentum and energy, that they serve as useful practice
in manipulating Lorentz transformations, and that the end results are valuable
and often hard to find elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy loss
and scattering and develops concepts of use in later chapters. Here for the first
time in the book I use semiclassical arguments based on the uncertainty principle
to obtain approximate quantum-mechanical expressions for energy loss, etc.,
from the classical results. This approach, so fruitful in the hands of Niels Bohr
and E. J. Williams, allows one to see clearly how and when quantum-mechanical
effects enter to modify classical considerations.

The important subject of emission of radiation by accelerated point charges is
discussed in detail in Chapters 14 and 15. Relativistic effects are stressed, and
expressions for the frequency and angular dependence of the emitted radiation
are developed in sufficient generality for all applications. The examples treated
range from synchrotron radiation to bremsstrahlung and radiative beta proc-
esses. Cherenkov radiation and the Weizsacker- Williams method of virtual quanta
are also discussed. In the atomic and nuclear collision processes semiclassical
arguments are again employed to obtain approximate quantum-mechanical
results. I lay considerable stress on this point because I feel that it is important
for the student to see that radiative effects such as bremsstrahlung are almost
entirely classical in nature, even though involving small-scale collisions. A
student who meets bremsstrahlung for the first time as an example of a
calculation in quantum field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion of
scalar and vector fields in spherical waves is developed from first principles with
no restrictions as to the relative dimensions of source and wavelength. Then the
properties of electric and magnetic multipole radiation fields are considered.
Once the connection to the multipole moments of the source has been made,
examples of atomic and nuclear multipole radiation are discussed, as well as a
macroscopic source whose dimensions are comparable to a wavelength. The
scattering of a plane electromagnetic wave by a spherical object is treated in
some detail in order to illustrate a boundary-value problem with vector spherical
waves.

In the last chapter the difficult problem of radiative reaction is discussed. The
treatment is physical, rather than mathematical, with the emphasis on delimiting
the areas where approximate radiative corrections are adequate and on finding
where and why existing theories fail. The original Abraham-Lorentz theory of
the self-force is presented, as well as more recent classical considerations.

The book ends with an appendix on units and dimensions and a bibliography.
In the appendix I have attempted to show the logical steps involved in setting up
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a system of units, without haranguing the reader as to the obvious virtues of my
choice of units. I have provided two tables which I hope will be useful, one for
converting equations and symbols and the other for converting a given quantity
of something from so many Gaussian units to so many mks units, and vice versa.
The bibliography lists books which I think the reader may find pertinent and
useful for reference or additional study. These books are referred to by author’s
name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electrodynamics
which I have taught off and on over the past eleven years, at both the University
of Illinois and McGill University. I wish to thank my colleagues and students at
both institutions for countless helpful remarks and discussions. Special mention
must be made of Professor P. R. Wallace of McGill, who gave me the
opportunity and encouragement to teach what was then a rather unorthodox
course' in electromagnetism, and Professors H. W. Wyld and G. Ascoli of
Illinois, who have been particularly free with many helpful suggestions on the
treatment of various topics. My thanks are also extended to Dr. A. N. Kaufman
for reading and commenting on a preliminary version of the manuscript, and
to Mr. G. L. Kane for his zealous help in preparing the index.

J. D. JAcCksoN

Urbana, Illinois
January, 1962
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Introduction and Survey

Although amber and lodestone were known to the ancient Greeks, elec-
trodynamics developed as a quantitative subject in less than a hundred years.
Cavendish’s remarkable experiments in electrostatics were done from 1771 to
1773. Coulomb’s monumental researches began to be published in 1785. This
marked the beginning of quantitative research in electricity and magnetism on a
worldwide scale. Fifty years later Faraday was studying the effects of time-
varying currents and magnetic fields. By 1864 Maxwell had published his famous
paper on a dynamical theory of the electromagnetic field.

The story of the development of our understanding of electricity and
magnetism and of light is, of course, much longer and richer than the mention of
a few names from one century would indicate. For a detailed account of the
fascinating history, the reader should consult the authoritative volumes by
Whittaker.* A briefer account, with emphasis on optical phenomena, appears at
the beginning of Born and Wolf.

This book is self-contained in that, though some mathematical background
(vector calculus, differential equations) is assumed, the subject of elec-
trodynamics is developed from its beginnings in electrostatics. Most readers are
not coming to the subject for the first time, however. The purpose of this
introduction is therefore not to set the stage for a discussion of Coulomb’s law
and other basics, but rather to present a review and a survey of classical
electromagnetism. Questions such as the current accuracy of the inverse square
law of force (mass of the photon), the limits of validity of the principle of linear
superposition, the effects of discreteness of charge and of energy differences are
discussed. “Bread and butter’” topics such as the boundary conditions for
macroscopic fields at surfaces between different media and at conductors are
also treated. The aim is to set classical electromagnetism in context, to indicate

*Italicized surnames are used to denote books that are cited fully in the
Bibliography.
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its domain of validity, and to elucidate some of the idealizations that it contains.
Some results from later in the book and some nonclassical ideas are used in the
course of the discussion. Certainly a reader beginning electromagnetism for the
first time will not follow all the arguments or see their significance. It is intended,
however, that for others this introduction will serve as a springboard into the
later parts of the book, beyond Chapter S, as well as a reminder of how the
subject stands as an experimental science.

I.1 Maxwell Equations in Vacuum, Fields, and Sources

The equations governing electromagnetic phenomena are the Maxwell equa-
tions, which for sources in vacuum are

V-E=4mp
vxp-L2E_dm,
coat ¢
@)
vxE+128-¢
c ot
V-B=0

Implicit in the Maxwell equations is the continuity equation for charge density
and current density,

a_p . =

8t+v J=0 (1.2)
This follows from combining the time derivative of the first equation in (I.1) with

the divergence of the second equation. Also essential for consideration of
charged particle motion is the Lorentz force equation,

F=q(E+§x B) (1.3)

that gives the force acting on a point charge q in the presence of electromagnetic
fields.

These equations have been written in Gaussian units, the system of elec-
tromagnetic units used in this book. (Units and dimensions are discussed in the
Appendix.) The Maxwell equations are displayed in the commoner systems of
units in Table 2 of the Appendix. Apart from the fields E and B and the sources
p and J, the equations involve a parameter c. This quantity has the dimensions of
velocity and is the speed of light in vacuum. It is fundamental to all elec-
tromagnetic and relativistic phenomena. Based on our units of length and time,
presently defined separately in terms of two different atomic transitions, as
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discussed in the Appendix, this parameter has the empirical value
¢=299,792,456.2+1.1 meters/second*®

This result comes from an experiment using a highly stabilized helium-neon laser
in which both the frequency and the wavelength were measured (3.39 um
methane-stabilized line). In passing we note that the precision here is such that
the present definition of the meter is likely to be replaced by one using ¢ and the
second. Other evidence [see Section 11.2(c)] indicates that to high accuracy the
speed of light in vacuum is independent of frequency from very low frequencies
to at least v=10%" Hz (4 GeV photons). For most practical purposes we can
approximate ¢=3X10°m/sec or to be considerably more accurate, c=
2.998% 10° m/sec.

The electric and magnetic fields E and B in (I.1) were originally introduced by
means of the force equation (I.3). In Coulomb’s experiments forces acting
between localized distributions of charge were observed. There it is found useful
(see Section 1.2) to introduce the electric field E as the force per unit charge.
Similarly, in Ampére’s experiments the mutual forces of current-carrying loops
were studied (see Section 5.2). With the identification of NAqv as a current in a
conductor of cross-sectional area A with N charge carriers per unit volume
moving at velocity v, we see that B in (I.3) is defined in magnitude as a force per
unit current. Although E and B thus first appear just as convenient replacements
for forces produced by distributions of charge and current, they have other
important aspects. First, their introduction decouples conceptually the sources
from the test bodies experiencing electromagnetic forces. If the fields E and B
from two source distributions are the same at a given point in space, the force
acting on a test charge or current at that point will be the same, regardless of how
different the source distributions are. This gives E and B in (I.3) meaning in their
own right, independent of the sources. Second, electromagnetic fields can exist
in regions of space where there are no sources. They can carry energy,
momentum, and angular momentum and so have an existence totally independ-
ent of charges and currents. In fact, though there are recurring attempts to
eliminate explicit reference to the fields in favor of action-at-a-distance descrip-
tions of the interaction of charged particles, the concept of the electromagnetic
field is one of the most fruitful ideas of physics, both classically and quantum
mechanically.

The concept of E and B as ordinary fields is a classical notion. It can be
thought of as the classical limit (limit of large quantum numbers) of a quantum
mechanical description in terms of real or virtual photons. In the domain of
macroscopic phenomena and even some atomic phenomena the discrete photon
aspect of the electromagnetic field can usually be ignored or at least glossed
over. For example, 1 meter from a 100 watt light bulb, the root mean square

*K. Evenson et al., Phys. Rev. Letters 29, 1346 (1972).
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electric field is of the order of 0.5 volts/cm and there are of the order of 10"
visible photons/cm®xsec. Similarly, an isotropic FM antenna with a power of
100 watts at 10° Hz produces a r.m.s. electric field of only 5 microvolts/cm at a
distance of 100 kilometers, but this still corresponds to a flux of 10"
photons/cm®Xsec, or about 10° photons in a volume of 1 wavelength cubed
(27 m®) at that distance. Ordinarily an apparatus will not be sensible to the
individual photons; the cumulative effect of many photons emitted or absorbed
will appear as a continuous, macroscopically observable response. Then a
completely classical description in terms of the Maxwell equations is permitted
and is appropriate.

How is one to decide a priori when a classical description of the electromag-
netic fields is adequate? Some sophistication is occasionally needed, but the
following is usually a sufficient criterion: When the number of photons involved
can be taken as large but the momentum carried by an individual photon is small
compared to the momentum of the material system, then the response of the
material system can be determined adequately from a classical description of the
electromagnetic fields. For example, each 10° Hz photon emitted by our FM
antenna gives it an impulse of only 2.2X107** newton-seconds. A classical
treatment is surely adequate. Again, the scattering of light by a free electron is
governed by the classical Thomson formula (Section 14.7) at low frequencies,
but by the laws of the Compton effect as the momentum #w/c of the incident
photon becomes significant compared to mc. The photoelectric effect is nonclas-
sical for the matter system, since the quasi-free electrons in the metal change
their individual energies by amounts equal to those of the absorbed photons, but
the photoelectric current can be calculated quantum mechanically for the
electrons using a classical description of the electromagnetic fields.

The quantum nature of the electromagnetic fields must, on the other hand, be
taken into account in spontaneous emission of radiation by atoms, or by any
other system where there are no photons present initially and only a small
number of photons present finally. The average behavior may still be describable
in essentially classical terms, basically because of conservation of energy and
momentum. An example is the classical treatment (Section 17.2) of the
cascading of a charged particle down through the orbits of an attractive
potential. At high particle quantum numbers a classical description of particle
motion is adequate, and the secular changes in energy and angular momentum
can be calculated classically from the radiation reaction because the energies of
the successive photons emitted are small compared to the kinetic or potential
energy of the orbiting particle.

The sources in (I.1) are p(x, t), the electric charge density, and J(x, ), the
electric current density. In classical electromagnetism they are assumed to be
continuous distributions in x, although we consider from time to time localized
distributions that can be approximated by points. The magnitudes of these point
charges are assumed to be completely arbitrary, but are known to be restricted in
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reality to discrete values. The basic unit of charge is the magnitude of the charge
on the electron,

|g.|=4.803250(21)x 107™° esu
=1.6021917(70)x 10"° coulomb

where the errors in the last two decimal places are shown in parentheses. The
charges on the proton and on all presently known particles or systems of
particles are integral multiples of this basic unit. The experimental accuracy with
which it is known that the multiples are exactly integers is phenomenal (better
than 1 part in 10°°). The experiments are discussed in Section 11.9 where the
question of the Lorentz invariance of charge is also treated.

The discreteness of electric charge does not need to be considered in most
macroscopic applications. A 1 microfarad capacitor at a potential of 150 volts,
for example, has a total of 10"° elementary charges on each electrode. A few
thousand electrons more or less would not be noticed. A current of 1
microampere corresponds to 6.2 10'? elementary charges/second. There are, of
course, some delicate macroscopic or almost macroscopic experiments in which
the discreteness of charge enters. Millikan’s famous oil drop experiment is one.
His droplets were typically 10~ cm in radius and had a few or few tens of
elementary charges on them.

There is a lack of symmetry in the appearance of the source terms in Maxwell
equations (I.1). The first two equations have sources; the second two do not.
This reflects the experimental absence of magnetic charges and currents.
Actually, as is shown in Section 6.12, particles could have magnetic as well as
electric charge. If all particles in nature had the same ratio of magnetic to electric
charge, the fields and sources could be redefined in such a way that the usual
Maxwell equations (I.1) emerge. In this sense it is somewhat a matter of
convention to say that no magnetic charges or currents exist. Throughout most
of this book it is assumed that only electric charges and currents act in the
Maxwell equations, but some consequences of the existence of a particle with a
different magnetic to electric charge ratio, for example, a magnetic monopole,
are described in Chapter 6.

I.2 The Inverse Square Law or the Mass of the Photon

The distance dependence of the electrostatic law of force was shown quantita-
tively by Cavendish and Coulomb to be an inverse square law. Through Gauss’s
law and the divergence theorem (see Sections 1.3 and 1.4) this leads to the first
of the Maxwell equations (I.1). The original experiments had an accuracy of only
a few percent and, furthermore, were at a laboratory length scale. Experiments
at higher precision and involving different regimes of size have been performed
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over the years. It is now customary to quote the tests of the inverse square law in
one of two ways:

(a) Assume that the force varies as 1/r"* and quote a value-or limit for e.

(b) Assume that the electrostatic potential has the ‘“Yukawa’ form (see
Section 12.9), r''e™ and quote a value or limit for w or w™'. Since
w=m,c/h, where m, is the assumed mass of the photon, the test of the
inverse square law is sometimes phrased in terms of an upper limit on m,,.
Laboratory experiments usually give € and perhaps w or m,; geomagnetic
experiments give g Or m,.

The original experiment with concentric spheres by Cavendish™ in 1772 gave
an upper limit on € of |¢|=0.02. His apparatus is shown in Fig. I.1. About 100
years later Maxwell performed a very similar experiment at Cambridgef and set
an upper limit of |€/=5X107°. Two other noteworthy laboratory experiments
based on Gauss’s law are those of Plimpton and Lawton,} which gave |e|<
2x107°, and the recent one of Williams, Faller, and Hill.§ A schematic drawing
of the apparatus of the latter experiment is shown in Fig. I.2. Though not a static
experiment (v=4X 10° Hz), the basic idea is almost the same as Cavendish’s. He
looked for a charge on the inner sphere after it had been brought into electrical
contact with the charged outer sphere and then disconnected; he found none.
Williams, Faller, and Hill looked for a voltage difference between two concentric
shells when the outer one was subjected to an alternating voltage of £10 kV with
respect to ground. Their sensitivity was such that a voltage difference of less than
107"? V could have been detected. Their null result, when interpreted by means
of the Proca equations (Section 12.9), gives a limit of e=(2.7+3.1)x107"°.

Measurements of the earth’s magnetic field, both on the surface and out from
the surface by satellite observation, permit the best limits to be set on € or
equivalently the photon mass m,. The geophysical and also the laboratory
observations are discussed in the reviews by Kobzarev and Okun’ and by
Goldhaber and Nieto, listed at the end of this introduction. The surface
measurements of the earth’s magnetic field give slightly the best value (see
Problem 12.14), namely,

2+e

m,<4x10™* gm
or
®'>10"cm

For comparison, the electron mass is m.=9.1x 107** gm. The laboratory experi-
ment of Williams, Faller, and Hill can be interpreted as setting a limit
my<1.6x10"*" gm, only a factor of 4 poorer than the geomagnetic limit.

* H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University
Press (1879), pp. 104-113.

t Ibid., see note 19.

$S. J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936).

§ E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Letters 26, 721 (1971).



Fig. 1.1 Cavendish’s apparatus for establishing the inverse square law of electrostatics.
Top, facsimile of Cavendish’s own sketch; bottom, line drawing by a draughtsman. The
inner globe is 12.1 inches in diameter, the hollow pasteboard hemispheres slightly larger.
Both globe and hemispheres were covered with tinfoil ‘“to make them the more perfect

conductors of electricity.” (Figures reproduced by permission of the Cambridge Univer-
sity Press.)
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A rough limit on the photon mass can be set quite easily by noting the
existence of very low frequency modes in the earth-ionosphere resonant cavity
(Schumann resonances, discussed in Section 8.9). The double Einstein relation,
hv=m,c’, suggests that the photon mass must satisfy an inequality, m, <hw/c?,
where v, is any electromagnetic resonant frequency. The lowest Schumann
resonance has v,=8 Hz. From this we calculate m,<6x 10" gm, a very small
value only one order of magnitude above the best limit. While this argument has
crude validity, more careful consideration (see -Section 12.9 and the references
given there) shows that the limit is roughly (R/H)"?=10 times larger, R=
6400 km being the radius of the earth, and H=60 km being the height of the
ionosphere.* In spite of this dilution factor the limit of 107*° gm set by the mere
existence of Schumann resonances is quite respectable.

The laboratory and geophysical tests show that on length scales of order 1 to
10°cm, the inverse square law holds with extreme precision. At smaller
distances we must turn to less direct evidence often involving additional
assumptions. For example, Rutherford’s historical analysis of the scattering of
alpha particles by thin foils substantiates the Coulomb law of force down to
distances of the order of 107" cm provided the alpha particle and the nucleus
can be treated as classical point charges interacting statically and the charge
cloud of the electrons can be ignored. All of these assumptions can be, and have
been, tested, of course, but only within the framework of the validity of quantum
mechanics, linear superposition (see below), and other (very reasonable) as-
sumptions. At still smaller distances, relativistic quantum mechanics is neces-
sary, and strong interaction effects enter to obscure the questions as well as the
answers. Nevertheless, elastic scattering experiments with positive and negative
electrons at center of mass energies of up to 5 GeV have shown that quantum
electrodynamics (the relativistic theory of point electrons interacting with
massless photons) holds to distances of the order of 10™"° cm. We conclude that
the photon mass can be taken to be zero (the inverse square force law holds)
over the whole classical range of distances and deep into the quantum domain as
well. The inverse square law is known to hold over at least 24 orders of
magnitude in the length scale!

* The basic point is that, to the extent that H/R is negligible, the ELF propagation
is the same as in a parallel plate transmission line in the fundamental TEM mode. This
propagation is unaffected by a finite photon mass, except through changes in the static
capacitance and inductance per unit length. Explicit photon mass effects occur in order
(H/R)p>.

meters in diameter and contain shell 1 inside. The voltage difference between shells 1 and
2 (if any) appears across the inductor indicated at about 8 o’clock in shell 1. The amplifier
and optics system are necessary to extract the voltage information to the outside world.
They are equivalent to Cavendish’s system of strings that automatically opened the
hinged hemispheres and brought up the pith balls to test for charge on the inner sphere.
(Figurereproduced with permission of the authors.)
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1.3 Linear Superposition

The Maxwell equations in vacuum are linear in the fields E and B. This linearity
is exploited so often, for example, with hundreds of different telephone
conversations on a single microwave link, that it is taken for granted. There are,
of course, circumstances where nonlinear effecis occur—in magnetic materials,
in crystals responding to intense laser beams, even in the devices used to put
those telephone conversations on and off the microwave beam. But here we are
concerned with fields in vacuum or the microscopic fields inside atoms and
nuclei.

What evidence do we have to support the idea of linear superposition? At the
macroscopic level, all sorts of experiments test linear superposition at the level
of 0.1% accuracy—groups of charges and currents produce electric and mag-
netic forces calculable by linear superposition, transformers perform as expected,
standing waves are observed on transmission lines—the reader can make a list.
In optics, slit systems show diffraction patterns; X-ray diffraction tells us about
crystal structure; white light is refracted by a prism into the colors of the rainbow
and recombined into white light again. At the macroscopic and even at the
atomic level, linear superposition is remarkably valid.

It is in the subatomic domain that departures from linear superposition can be
legitimately sought. As charged particles approach each other very closely,
electric field strengths become enormous. If we think of a charged particle as a
localized distribution of charge, we see that its electromagnetic energy grows
larger and larger as the charge is localized more and more. It is natural, in order
to avoid infinite self-energies of point particles, to speculate that some sort of
saturation occurs, that fields strengths have some upper bound. Such classical
nonlinear theories have been studied in the past. One well-known example is the
theory of Born and Infeld.* The vacuum is given electric and magnetic
permeabilities,

1 1 '2 5 —1/2
e=—=[l+—2(B —E)] (1.4)
w b
where b is a maximum field strength. Equation (I.4) is actually a simplified form
proposed earlier by Born alone. It suffices to illustrate the general idea. Fields
are obviously modified at short distances; all electromagnetic energies are finite.
But such theories suffer from arbitrariness in the manner of how the nonlinearity
occurs and also from grave problems with a transition to a quantum theory.
Furthermore, there is no evidence of this kind of classical nonlinearity. The
quantum mechanics of many-electron atoms is described to high precision by
normal quantum theory with the interactions between nucleus and electrons and
between electrons and electrons given by a linear superposition of pairwise
potentials (or retarded relativistic interactions for fine effects). Field strengths of

*M. Born and L. Infeld, Proc. Roy. Soc. A144, 425 (1934). See M. Born, Atomic
Physics, Blackie, London, Appendix VI, for an elementary discussion.
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k;

Fig. 1.3 The scattering of light by light. Schematic diagram of the process by which
photon-photon scattering occurs.

the order of 10°-10"° volts/cm exist at the orbits of electrons in atoms, while the
electric field at the edge of a heavy nucleus is of the order of 10" volts/cm.
Energy level differences in light atoms like helium, calculated on the basis of
linear superposition of electromagnetic interactions, are in agreement with
experiment to accuracies that approach 1 part in 10°. And Coulomb energies of
heavy nuclei are consistent with linear superposition of electromagnetic effects.
It is possible, of course, that for field strengths greater than 10" volts/cm
nonlinear effects could occur. One place to look for such effects is in superheavy
nuclei (Z>110), both in the atomic energy levels and in the nuclear Coulomb
energy.* At the present time there is no evidence for any classical nonlinear
behavior of vacuum fields at short distances.

There is a quantum-mechanical nonlinearity of electromagnetic fields that
arises because the uncertainty principle permits the momentary creation of an
electron-positron pair by two photons and the subsequent disappearance of the
pair with the emission of two different photons, as indicated schematically in Fig.
I.3. This process is called the scattering of light by light.T The two incident plane
waves e 71" and e™2*7"2* do not merely add coherently, as expected with linear
superposition, but interact and (with small probability) transform into two
different plane waves with wave vectors k; and ks. This nonlinear feature of
quantum electrodynamics can be expressed, at least for slowly varying fields, in

* An investigation of the effect of a Born-Infeld type of nonlinearity on the atomic
energy levels in superheavy elements has been made by J. Rafelski, W. Greiner, and L. P.
Fulcher, Nuovo Cimento 13B, 135 (1973).

T When two of the photons in Fig. 1.3 are virtual photons representing interaction
to second order with a static nuclear Coulomb field, the process is known as Delbriick
scattering. See Section 15.8 of J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons, Addison-Wesley, Reading, Mass. (1955).
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terms of electric and magnetic permeability tensors of the vacuum:
D= Z € Ex, B;= Z pacHi
k k

where
4
f
eik=sik+z—5£7n—;(7[2(Ez—Bz)aik+7Bin]+~ ..

e'h

it = 8uc t5emie [2(B’~E*)8y+7EE]+- - -

(I.5)

Here e and m are the charge and mass of the electron. These results were first
obtained by Euler and Kockel in 1935.* We observe that in the classical limit
(h—0), these nonlinear effects go to zero. Comparison with the classical
Born-Infeld expression (I.4) shows that for small nonlinearities, the quantum-

mechanical field strength
| V457 [e’ e e
bq_ 2 %7()5—0.51 r02

plays a role analogous to the Born-Infeld parameter b. Here ro=e’/mc’=
2.8% 107" cm is the classical electron radius and e/r,"= 1.8 10'® volts/cm is the
electric field at the surface of such a classical electron. Two comments in passing:
(a) the ex and pa in (I.5) are approximations that fail for field strengths
approaching b, or when the fields vary too rapidly in space or time (#/mc setting
the critical scale of length and #/mc®> of time); (b) the chance numerical
coincidence of b, and e/2r,” is suggestive, but probably not significant since b,
involves Planck’s constant #.

In analogy with the polarization P=(D—E)/4w, we speak of the field-
dependent terms in (I.5) as vacuum polarization effects. In addition to the
scattering of light by light or Delbriick scattering, vacuum polarization causes
very small shifts in atomic energy levels. The dominant contribution involves a
virtual electron-positron pair, just as in Fig. 1.3, but with only two photon lines
instead of four. If the photons are real, the process contributes to the mass of the
photon and is decreed to vanish. If the photons are virtual, however, as in the
electromagnetic interaction between a nucleus and an orbiting electron, or
indeed for any externally applied field, the creation and annihilation of a virtual
electron-positron pair from time to time causes observable effects. The first
effect is a reduction in the observed charge of the nucleus from its value in the
absence of interaction. This renormalization of the bare charge can be under-
stood in simple electrostatic terms. The electron of the pair is attracted and the
positron repelled by the positive charge of the nucleus. This vacuum polarization
effect causes the nuclear charge to be screened and to appear less in magnitude
than before. Since charged particles are always surrounded by this cloud of
virtual electron-positron pairs, their observed charges must be interpreted as

*H. Euler and B. Kockel, Naturwiss. 23, 246 (1935).
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their renormalized charges. Beyond the unobservable renormalization of charge,
the vacuum polarization induces a charge density within distances of the order of
h/2mc or less that causes the electrostatic potential energy between two charges
to be greater in magnitude than the Coulomb potential energy. This causes a
very small shift in atomic energy levels in the direction of increased binding. The
lowest order added potential is proportional to aq.., where a=e’*/hic=1/137
and g... is the charge producing the external field. It is thus linear in the external
field and produces a small linear modification of the Maxwell equations. It is
nonlinear in the sense that the strength of the effect depends on the fine structure
constant times the external field and so involves the third power of charge in the
added potential. Higher order effects, such as Fig. 1.3 with three of the photons
corresponding to the third power of the external field, give totally nonlinear
vacuum polarization effects.

In electronic atoms the vacuum polarization effects are a small part of the total
radiative correction, but are still observable. In mu-mesic atoms, the effects are
relatively larger because the atomic orbits are mainly inside the region where the
potential is modified. Then vacuum polarization effects are important in their
own right.

The final conclusion about linear superposition of fields in vacuum is that in
the classical domain of sizes and attainable field strengths there is abundant
evidence for the validity of linear superposition and no evidence against it. In the
atomic and subatomic domain there are small quantum-mechanical nonlinear
effects whose origins are in the coupling between charged particles and the
electromagnetic field. They modify the interactions between charged particles
and cause interactions between electromagnetic fields even if physical particles
are absent.

I.4 The Maxwell Equations in Macroscopic Media

So far we have considered electromagnetic fields and sources in vacuum. The
Maxwell equations (I.1) for the electric and magnetic fields E and B can be
thought of as equations giving the fields everywhere in space, provided all the
sources p and J are specified. For a small number of definite sources, determina-
tion of the fields is a tractable problem, but for macroscopic aggregates of matter
the solution of the equations is almost impossible. There are two aspects here.
One is that the number of individual sources, the charged particles in every atom
and nucleus, is prohibitively large. The other aspect is that for macroscopic
observations the detailed behavior of the fields, with their drastic variations in
space over atomic distances, is not relevant. What is relevant is the average of a
field or a source over a volume large compared to the volume occupied by a
single atom or molecule. We call such averaged quantities the macroscopic fields
and macroscopic sources. It is shown in detail in Section 6.7 that the macroscopic
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Maxwell equations are

V-D=4mp )
vxH-LD_dmy

cat ¢

s (1.6)
VXE+=—=0

@, @i

V‘B=O 4

where E and B are the averaged E and B of the microscopic or vacuum Maxwell
equations (I.1). The two new field quantities D and H, usually called the electric
displacement and magnetic field (B is then called the magnetic induction), have
components given by

DQ=E,,+41T<P¢,—Z &+---)
= O L7

Ho=B.—4m(M.+- - ) '
The quantities P, M, Q.g, and similar higher order objects, represent the
macroscopically averaged electric dipole, magnetic dipole, and electric quad-
rupole, and higher moment densities of the material medium in the presence of
applied fields. Similarly, the charge and current densities p and J are macro-
scopic averages of the ‘““free”” charge and current densities in the medium. The
bound charges and currents appear in the equations via P, M, and Qle.

The macroscopic Maxwell equations (I.6) are a set of eight equations involving
the components of the four fields E, B, D, and H. The four homogeneous
equations can be solved formally by expressing E and B in terms of the scalar
potential ® and the vector potential A, but the inhomogeneous equations cannot
be solved until the derived fields D and H are known in terms of E and B. These
connections, which are implicit in (I.7), are known as constitutive relations,

D=D[E, B]
1.8)
H=HI[E, B]
In addition, for conducting media there is the generalized Ohm’s law,
J=J[E, B] (1.8")

The square brackets are intended to signify that the connections are not
necessarily simple and may depend on past history (hysteresis), may be
nonlinear, etc.

In most materials the electric quadrupole and higher terms in (I.7) are
completely negligible. Only the electric and magnetic polarizations P and M are
significant. This does not mean, however, that the constitutive relations are then
simple. There is a tremendous diversity in the electric and magnetic properties of
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matter, especially in crystalline solids, with ferroelectric and ferromagnetic
materials having nonzero P or M in the absence of applied fields, as well as more
ordinary dielectric, diamagnetic, and paramagnetic substances. The study of
these properties is one of the provinces of solid-state physics. In this book we
touch only very briefly and superficially on some more elementary aspects.
Solid-state books such as Kittel should be consulted for a more systematic and
extensive treatment of the electromagnetic properties of bulk matter.

In substances other than ferroelectrics or ferromagnets, for weak enough
fields the presence of an applied electric or magnetic field induces an electric or
magnetic polarization proportional to the magnitude of the applied field. We
then say that the response of the medium is linear and write the Cartesian
components of D and H in the form,*

Du = Z eﬂBEB
¢ (1.9)
I8l Ze: papBg

The tensors e,; and ptp are called the electric permittivity or dielectric tensor
and the inverse magnetic permeability tensor. They summarize the linear
response of the medium and are dependent on the molecular and perhaps
crystalline structure of the material, as well as bulk properties like density and
temperature. For simple materials the linear response is often isotropic in space.
Then e.s and uis are diagonal with all three elements equal, and D=¢E,
H=u'B.

To be generally correct Egs. (I.9) should be understood as holding for the Fourier
transforms in space and time of the field quantities. This is because the basic linear
connection between D and E (or H and B) can be nonlocal. Thus

D.(x,)=), Jd’x’Jdt’ €X', t)Eg(x—X', t—1') (1.10)
]

where €.,(x’, t) may be localized around x’=0, t'=0, but is nonvanishing for some range
away from the origin. If we introduce the Fourier transforms D,(k, w), Es;(k, »), and
€.s(k, w) through

fk, w)= J’dst‘ dt f(x, )e~*="=

Eq. (I.9) can be written in terms of the Fourier transforms as
D,(k, 0) =, €.(k, ®)Es(k, ®) (I.11)
B
A similar equation can be written H,(k, ) in terms of B,(k, ). The permeability tensors
are therefore functions of frequency and wave vector in general. For visible light or

* Precedent would require writing B, = p.sH,, but this reverses the natural roles
g

of B as the basic magnetic field and H as the derived quantity. In Chapter 5 we revert to
the traditional usage.
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electromagnetic radiation of longer wavelength it is often permissible to neglect the
nonlocality in space. Then €., and p., are functions only of frequency. This is the situation
discussed in Chapter 7 where a simplified treatment of the high frequency properties of
matter is given and the consequences of causality explored. For conductors and
superconductors long-range effects can be important. For example, when the electronic
collisional mean free path in a conductor becomes large compared to the skin depth, a
spatially local form of Ohm’s law is no longer adequate. Then the dependence on wave
vector also enters. In the understanding of a number of properties of solids the concept of
a dielectric constant as a function of wave vector and frequency is fruitful. Some
exemplary references are given in the suggested reading at the end of this introduction.

For orientation we mention that at low frequencies (v=<10°Hz) where all
charges, regardless of their inertia, respond to applied fields, solids have
dielectric constants typically in the range of €..~2-20, with larger values not
uncommon. Systems with permanent molecular dipole moments can have much
larger and temperature sensitive dielectric constants. Distilled water, for ex-
ample, has a static dielectric constant of e=88 at 0°C and e=56 at 100°C. At
optical frequencies only the electrons can respond significantly. The dielectric
constants are in the range, €..~1.7-10, with €..=2-3 for most solids. Water has
€=1.77-1.80 over the visible range, essentially independent of temperature
from 0 to 100°C.

The type of response of materials to an applied magnetic field depends on the
properties of the individual atoms or molecules and also on their interactions.
Diamagnetic substances consist of atoms or molecules with no net angular
momentum. The response to an applied magnetic field is the creation of
circulating atomic currents that produce a very small bulk magnetization
opposing the applied field. With the definition of w’s in (I.9) and the form of
(1.7), this means uh.>1. Bismuth, the most diamagnetic substance known, has
(ia—1)=1.8%x107". Thus diamagnetism is a very small effect. If the basic atomic
unit of the material has a net angular momentum from unpaired electrons, the
substance is paramagnetic. The magnetic moment of the odd electron is aligned
parallel to the applied field. Hence pt.<1. Typical values are in the range
(1- pha)=107°~10"" at room temperature, but decreasing at higher temperatures
because of the randomizing effect of thermal excitations.

Ferromagnetic materials are paramagnetic but, because of interactions be-
tween atoms, show drastically different behavior. Below the Curie temperature
(1040°K for Fe, 630°K for Ni), ferromagnetic substances show spontaneous
magnetization, that is, all the magnetic moments in a microscopically large
region called a domain are aligned. The application of an external field tends to
cause the domains to change and the moments in different domains to line up
together, leading to the saturation of the bulk magnetization. Removal of the
field leaves a considerable fraction of the moments still aligned, giving a -
permanent magnetization that can be as large as B,=47M,>10" gauss.

For data on the dielectric and magnetic properties of materials the reader can
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consult some of the basic physics handbooks™* from which he or she will be led to
more specific and detailed compilations.

Materials that show a linear response to weak fields eventually show nonlinear
behavior at high enough field strengths as the electronic or ionic oscillators are
driven to large amplitudes. The linear relations (I.9) are modified to, for
example,

Do=) €SEs+ ) €3,EE,+- - - (1.12)
B By s

For static fields the consequences are not particularly dramatic, but for time-
varying fields it is another matter. A large amplitude wave of two frequencies w;
and w, generates waves in the medium with frequencies 0, 2w;, 2w;, w1+ w2,
w1— s, as well as the original w; and w,. From cubic and higher nonlinear terms
an even richer spectrum of frequencies can be generated. With the development
of lasers, nonlinear behavior of this sort has become a research area of its own,
called nonlinear optics, and also a laboratory tool. At present, lasers are capable
of generating light pulses with peak electric fields approaching 10" or even 10"
volts/cm. The static electric field experienced by the electron in its orbit in a
hydrogen atom is e/a,’=5x10° volts/cm. Such laser fields are thus seen to be
capable of driving atomic oscillators well into their nonlinear regime, capable
indeed of destroying the sample under study! References to some of the
literature of this specialized field are given in the suggested reading at the end of
this introduction. The reader of this book will have to be content with basically
linear phenomena.

I.5 Boundary Conditions at Interfaces between Different Media

The Maxwell equations (I.6) are differential equations applying locally at each
point in space-time (x, t). By means of the divergence theorem and Stokes’s
theorem, they can be cast in integral form. Let V be a finite volume in space, S
the closed surface (or surfaces) bounding it, da an element of area on the
surface, and n a unit normal to the surface at da pointing outward from the
enclosed volume. Then the divergence theorem applied to the first and last
equations of (I.6) yields the integral statements

§ D-nda=4ﬂj p d’x (1.13)
S \'%4

§ B:-nda=0 (I.14)
S

* Handbook of Chemistry and Physics, ed. R. C. Weast, Chemical Rubber
Publishing House, Cleveland, Ohio.
American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hill, New York, 3rd
edition (1972), Sects. 5.d and 5.f.
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The first relation is just Gauss’s law that the total flux of D out through the
surface is proportional to the charge contained inside. The second is the
magnetic analog, with no net flux of B through a closed surface because of
the nonexistence of magnetic charges.

Similarly, let C be a closed contour in space, S’ an open surface spanning the
contour, dl a line element on the contour, da an element of area on S’, and n’ a
unit normal at da pointing in the direction given by the right-hand rule from the
sense of integration around the contour. Then applying Stokes’s theorem to the
middle two equations in (I.6) gives the integral statements

_( [4m, . 1D]

iH-dl—L [_c J+c_at] n' da (I.15)
_—l a—. !

iE-dl— E L o " da (1.16)

Equation (I.15) is the Ampere-Maxwell law of magnetic fields and (I.16) is
Faraday’s law of electromagnetic induction.

These familiar integral equivalents of the Maxwell equations can be used
directly to deduce the relationship of various normal and tangential components
of the fields on either side of a surface between different media, perhaps with a
surface charge or current density at the interface. An appropriate geometrical
arrangement is shown in Fig. I.4. An infinitesimal Gaussian pillbox straddles the
boundary surface between two media with different electromagnetic properties.

Fig. I,4 Schematic diagram of boundary surface (heavy line) between different media.
The boundary region is assumed to carry idealized surface charge and current densities o
and K. The volume V is a small pillbox, half in one medium and half in the other, with the
normal n to its top pointing from medium 1 into medium 2. The rectangular contour C is
partly in one medium and partly in the other and is oriented with its plane perpendicular
to the surface so that its normal t is tangent to the surface.
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Similarly, the infinitesimal contour C has its long arms on either side of the
boundary and is oriented so that the normal to its spanning surface is tangent to
the interface. We first apply the integral statements (I.13) and (1.14) to the
volume of the pillbox. In the limit of a very shallow pillbox, the side surface does
not contribute to the integrals on the left in (I.13) and (1.14). Only the top and
bottom contribute. If the top and bottom are parallel, tangent to the surface, and
of area Aa, then the left-hand integral in (I.13) is

§ D -nda=(D,—D,;)-nAa
S

and similarly for (I.14). If the charge density p is singular at the interface so as to
produce an idealized surface charge density o, then the integral on the right in
(1.13) is

47TJ pd’x=4nc Aa
v

Thus the normal components of D and B on either side of the boundary surface
are related according to

(Dz_Dl) ‘n=47wo (117)
(Bz-Bl) ‘a=0 (118)

In words, we say that the normal component of B is continuous and the
discontinuity of the normal component of D at any point is equal to 4 times the
surface charge density at that point.

In an analogous manner the infinitesimal Stokesian loop can be used to
determine the discontinuities of the tangential components of E and H. If the
short arms of the contour C in Fig. [.4 are of negligible length and the long arms
are each parallel to the surface and of length Al, then the left-hand integral of
(I.16) is

35 E - di=(txn) - (E;—E,) Al

and similarly for the left-hand side of (I.15). The right-hand side of (I1.16)
vanishes because dB/ot is finite at the surface and the area of the loop is zero as
the length of the short sides goes to zero. The right-hand side of (I.15) does not
vanish, however, if there is an idealized surface current density K flowing exactly
on the boundary surface. In such circumstances the integral on the right of (I.15)
is

J [4—”J+1@]~:da=4—"x-mz
s’ C @ @

The second term in the integral vanishes by the same argument that was just
given. The tangential components of E and H on either side of the boundary are
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Fig. .5 Moving boundary between two media. The pillbox and loop are as in Fig. 1.4
and are stationary in the laboratory. The dashed lines show the interface a moment before
and after the instant shown.

therefore related by
nX(Ez—E1)=0 (119)

n><(Hz—Hl)=4T1T K (1.20)

In Eq. (I.20) it is understood that the surface current K has only components
parallel to the surface at every point. The tangential component of E across an
interface is continuous, while the tangential component of H is discontinuous by
an amount whose magnitude is equal to 477/c times the magnitude of the surface
current density and whose direction is parallel to KXn.

The discontinuity equations (I.17)-(I1.20) are useful in solving the Maxwell
equations in different regions and then connecting the solutions to obtain the
fields throughout all space.

The discontinuity formulas presented above hold in the common circumstance that the
interface between the two media is fixed as a function of time. In some applications it may
be useful to have the discontinuities for a moving boundary.™ The results for a boundary
surface moving with velocity v=cB can be obtained in essentially the same way as
previously, provided a little care is taken. The moving boundary surface between the two
media is shown schematically in Fig. 1.5, along with the infinitesimal Gaussian pillbox and
Stokesian loop. The pillbox and loop are fixed in the laboratory. The boundary surface
sweeps past them with velocity v. If we now consider the derivation of the discontinuity
formulas (I.17) and (I.18) for D and B, we see that the same arguments starting from

*P. D. Noerdlinger, Am. J. Physics 39, 191 (1971).
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(1.13) and (I.14) are valid without change, provided o is interpreted as the surface charge
density on the moving surface as observed in the laboratory. Therefore the discontinuity
formulas for D and B, (1.17) and (1.18), hold without modification for a moving interface.

The discontinuity formulas (I.19) and (I.20) for E and H are modified, however. This
comes about because the time derivative terms on the right-hand sides of (I1.15) and (I.16)
no longer vanish. The sweeping of the interface past the stationary loop C gives a
contribution. To determine its value, consider the surface integral of the time derivative
of D/c over the open surface identical in shape to C, but moving with the interface at
velocity v and instantaneously coincident with C in Fig. I.5. The integral is

I= Jc i (x(1), t) -t da

We have indicated the implicit time dependence of the coordinate x to emphasize that the
integration is over a moving surface. In the limit that the area of the open surface vanishes
as the short arms of the rectangular loop C become vanishingly small, the integral I

vanishes. (From the viewpoint of special relativity, an observer in an inertial frame
moving with velocity v sees the interface at rest, and observes Lorentz-transformed fields
that are not smgular at the interface.) The integral I can, however, be related to the
integral appearing in (I.15) through the convective derivative expansion:

0=I= j (x(t) t)-tda
—J'%‘%) £t 1l +I[(B-V)D]-tda

Using a vector identity the second term can be transformed and the required integral

becomes
J’ 19D

o0 ‘tda= I[Vx(BxD)—BV-D]-tda

The first term on the right can be transformed by Stokes’s theorem into a loop integral
and the second can be expressed in terms of the charge density p. We therefore have as
the application of (I.15) to the loop C in Fig. I.5 the expression

§> [H—pr]-d1=4c—"J[J-pv]-:da

By the same steps as above (1.19) and (I.20), we obtain from this relation the discontinuity
formula,

4
t -{nx[H,—H,—BX(Dz—D,)]}=Tw(K—av) .t
where all quantities are evaluated in the laboratory frame. Some vector manipulation and

use of (I.17) leads to
t-[nx(H,—H,)+n - B(DZ-DI)]=4T‘"K A 1.21)

A completely similar derivation from (1.16) yields
t - [nx(E,—E,)—n - B(B.~B,)]=0 (1.22)

as the discontinuity formula for the tangential components of E (and B). Equations (I.21)
and (I.22) represent the generalizations of (I.19) and (1.20) to the circumstance of a
moving interface between two media.
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In the simplified situation where D=E and H=B in both media (or these hold in one
medium and the other medium is an excellent conductor with all fields essentially zero
inside), the relation involving the surface current simplifies considerably. Equation (1.22)
can be written (without approximation) as

(E:—E,)u,=—(n - B)nx(B,—B,) (1.23)
Then with H—B and D—E in (I1.21), Eq. (I1.23) can be substituted to give

[1-( - By Inx(B,-B) =27 K 1.24)

The motion of the interface between the media introduces only an overall multiplicative
factor into (I.20), a correction of relative order v?/c?.

1.6 Some Remarks on Idealizations in Electromagnetism

In the previous section we made use of the idea of surface distributions of charge
and current. These are obviously mathematical idealizations that do not exist in
the physical world. There are other abstractions that occur throughout elec-
tromagnetism. In electrostatics, for example, we speak of holding objects at a
fixed potential with respect to some zero of potential usually called “‘ground.”
The relation of such idealizations to the real world is perhaps worthy of a little
discussion, even though to the experienced hand most will seem obvious.
First we consider the question of maintaining some conducting object at a
fixed electrostatic potential with respect to some reference value. Implicit is the
idea that the means does not significantly disturb the desired configuration of
charges and fields. To maintain an object at fixed potential it is necessa