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Vector Formulas
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Theorems from Vector Calculus

In the following </>, and A are well-behaved scalar or vector functions, V is a

three-dimensional volume with volume element d*x, S is a closed two-

dimensional surface bounding V, with area element da and unit outward normal

n at da.
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In the following S is an open surface and C is the contour bounding it, with line

element dl. The normal n to S is defined by the right-hand side rule in relation to

the sense of the line integral around C.

j* (VxA) • n da = <j> A • d\ (Stokes's theorem)

j" nxViff da = ^ \\t d\
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Preface

In the thirteen years since the appearance of the first edition, my interest in

classical electromagnetism has waxed and waned, but never fallen to zero. The

subject is ever fresh. There are always important new applications and examples.

The present edition reflects two efforts on my part: the refinement and

improvement of material already in the first edition; the addition of new topics

(and the omission of a few).

The major purposes and emphasis are still the same, but there are exten-

sive changes and additions. A major augmentation is the "Introduction and

Survey" at the beginning. Topics such as the present experimental

limits on the mass of the photon and the status of linear superposition are treated

there. The aim is to provide a survey of those basics that are often assumed to be

well known when one writes down the Maxwell equations and begins to solve

specific examples. Other major changes in the first half of the book include a new
treatment of the derivation of the equations of macroscopic electromagnetism

from the microscopic description; a discussion of symmetry properties of

mechanical and electromagnetic quantities; sections on magnetic monopoles and

the quantization condition of Dirac; Stokes's polarization parameters; a unified

discussion of the frequency dispersion characteristics of dielectrics, conductors,

and plasmas; a discussion of causality and the Kramers-Kronig dispersion

relations; a simplified, but still extensive, version of the classic Sommerfeld-

Brillouin problem of the arrival of a signal in a dispersive medium (recently

verified experimentally); an unusual example of a resonant cavity; the normal-

mode expansion of an arbitrary field in a wave guide; and related discussions of

sources in a guide or cavity and the transmission and reflection coefficients of flat

obstacles in wave guides.

Chapter 9, on simple radiating systems and diffraction, has been enlarged to

include scattering at long wavelengths (the blue sky, for example) and the optical

theorem. The sections on scalar and vectorial diffraction have been

improved.
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viii Preface

Chapters 11 and 12, on special relativity, have been rewritten almost

completely. The old pseudo-Euclidean metric with x4 = ict has been replaced by
g^" (with g

00= + l, g
u=-l, i=l, 2, 3). The change of metric necessitated a

complete revision and thus permitted substitution of modern experiments

and concerns about the experimental basis of the special theory for

the time-honored aberration of starlight and the Michelson-Morley experiment.

Other aspects have been modernized, too. The extensive treatment of relativistic

kinematics of the first edition has been relegated to the problems. In its stead

is a discussion of the Lagrangian for the electromagnetic fields, the canonical and

symmetric stress-energy tensor, and the Proca Lagrangian for massive photons.

Significant alterations in the remaining chapters include a new section on
transition radiation, a completely revised (and much more satisfactory) semiclas-

sical treatment of radiation emitted in collisions that stresses momentum transfer

instead of impact parameter, and a better derivation of the coupling of multipole

fields to their sources. The collection of formulas and page references to special

functions on the front and back flyleaves is a much requested addition. Of the

278 problems, 117 (more than 40 per cent) are new.

The one area that remains almost completely unchanged is the chapter on

magnetohydrodynamics and plasma physics. I regret this. But the book obvi-

ously has grown tremendously, and there are available many books devoted

exclusively to the subject of plasmas or magnetohydrodynamics.

Of minor note is the change from Maxwell's equations and a Green's function

to the Maxwell equations and a Green function. The latter boggles some minds,

but is in conformity with other usage (Bessel function, for example). It is still

Green's theorem, however, because that's whose theorem it is.

Work on this edition began in earnest during the first half of 1970 on the

occasion of a sabbatical leave spent at Clare Hall and the Cavendish Laboratory

in Cambridge. I am grateful to the University of California for the leave and

indebted to N. F. Mott for welcoming me as a visitor to the Cavendish

Laboratory and to R. J. Eden and A. B. Pippard for my appointment as a

Visiting Fellow of Clare Hall. Tangible and intangible evidence at the Cavendish

of Maxwell, Rayleigh and Thomson provided inspiration for my task; the

stimulation of everyday activities there provided necessary diversion.

This new edition has benefited from questions, suggestions, comments and

criticism from many students, colleagues, and strangers. Among those to whom I

owe some specific debt of gratitude are A. M. Bincer, L. S. Brown, R. W. Brown,

E. U. Condon, H. H. Denman, S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern,

A. Hobson, J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg, A. B.

Pippard, A. M. Portis, R. K. Sachs, W. M. Saslow, R. Schleif, V. L. Telegdi, T.

Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful

were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr., K. Gottfried, C. K.

Graham, E. M. Purcell, and E. H. Wichmann. I send my thanks and fraternal

greetings to all of these people, to the other readers who have written to me, and



Preface ix

the countless students who have struggled with the problems (and sometimes

written asking for solutions to be dispatched before some deadline!). To my
mind, the book is better than ever. May each reader benefit and enjoy!

Berkeley, California, 1974 J. D. Jackson





Preface to the

First Edition

Classical electromagnetic theory, together with classical and quantum

mechanics, forms the core of present-day theoretical training for undergraduate

and graduate physicists. A thorough grounding these subjects is a requirement

for more advanced or specialized training.

Typically the undergraduate program in electricity and magnetism involves

two or perhaps three semesters beyond elementary physics, with the emphasis

on the fundamental laws, laboratory verification and elaboration of their

consequences, circuit analysis, simple wave phenomena, and radiation. The

mathematical tools utilized include vector calculus, ordinary differential equa-

tions with constant coefficients, Fourier series, and perhaps Fourier or Laplace

transforms, partial differential equations, Legendre polynomials, and Bessel

functions.

As a general rule a two-semester course in electromagnetic theory is given to

beginning graduate students. It is for such a course that my book is designed. My
aim in teaching a graduate course in electromagnetism is at least threefold. The
first aim is to present the basic subject matter as a coherent whole, with emphasis

on the unity of electric and magnetic phenomena, both in their physical basis and

in the mode of mathematical description. The second, concurrent aim is to

develop and utilize a number of topics in mathematical physics which are useful

in both electromagnetic theory and wave mechanics. These include Green's

theorems and Green's functions, orthonormal expansions, spherical harmonics,

cylindrical and spherical Bessel functions. A third and perhaps most important

purpose is the presentation of new material, especially on the interaction of

relativistic charged particles with electromagnetic fields. In this last area

personal preferences and prejudices enter strongly. My choice of topics is

governed by what I feel is important and useful for students interested in

theoretical physics, experimental nuclear and high-energy physics, and that as

yet ill-defined field of plasma physics.

The book begins in the traditional manner with electrostatics. The first sb
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xii Preface to the First Edition

chapters are devoted to the development of Maxwell's theory of electromagnet-

ism. Much of the necessary mathematical apparatus is constructed along the

way, especially in Chapters 2 and 3, where boundary-value problems are

discussed thoroughly. The treatment is initially in terms of the electric field E
and the magnetic induction B, with the derived macroscopic quantities, D and

H, introduced by suitable averaging over ensembles of atoms or molecules. In

the discussion of dielectrics, simple classical models for atomic polarizability are

described, but for magnetic materials no such attempt is made. Partly this

omission was a question of space, but truly classical models of magnetic

susceptibility are not possible Furthermore, elucidation of the interesting

phenomenon of ferromagnetism needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic phenomena,

mostly of a macroscopic sort. Plane waves in different media, including plasmas

as well as dispersion and the propagation of pulses, are treated in Chapter 7. The
discussion of wave guides and cavities in Chapter 8 is developed for systems of

arbitrary cross section, and the problems of attenuation in guides and the Q of a

cavity are handled in a very general way which emphasizes the physical processes

involved. The elementary theory of multipole radiation from a localized source

and diffraction occupy Chapter 9. Since the simple scalar theory of diffraction is

covered in many optics textbooks, as well as undergraduate books on electricity

and magnetism, I have presented an improved, although still approximate,

theory of diffraction based on vector rather than scalar Green's theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly

more attention from physicists and astrophysicists. Chapter 10 represents a

survey of this complex field with an introduction to the main physical ideas

involved.

The first nine or ten chapters constitute the basic material of classical

electricity and magnetism. A graduate student in physics may be expected to

have been exposed to much of this material, perhaps at a somewhat lower level,

as an undergraduate. But he obtains a more mature view of it, understands it

more deeply, and gains a considerable technical ability in analytic methods of

solution when he studies the subject at the level of this book. He is then

prepared to go on to more advanced topics. The advanced topics presented here

are predominantly those involving the interaction of charged particles with each

other and with electromagnetic fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.

And even after almost 60 years, classical electrodynamics still impresses and

delights as a beautiful example of the covariance of physical laws under Lorentz

transformations. The special theory of relativity is discussed in Chapter 11,

where all the necessary formal apparatus is developed, various kinematic

consequences are explored, and the covariance of electrodynamics is estab-

lished. The next chapter is devoted to relativistic particle kinematics and

dynamics. Although the dynamics of charged particles in electromagnetic fields
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can properly be considered electrodynamics, the reader may wonder whether

such things as kinematic transformations of collision problems can. My reply is

that these examples occur naturally once one has established the four-vector

character of a particle's momentum and energy, that they serve as useful practice

in manipulating Lorentz transformations, and that the end results are valuable

and often hard to find elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy loss

and scattering and develops concepts of use in later chapters. Here for the first

time in the book I use semiclassical arguments based on the uncertainty principle

to obtain approximate quantum-mechanical expressions for energy loss, etc.,

from the classical results. This approach, so fruitful in the hands of Niels Bohr
and E. J. Williams, allows one to see clearly how and when quantum-mechanical

effects enter to modify classical considerations.

The important subject of emission of radiation by accelerated point charges is

discussed in detail in Chapters 14 and 15. Relativistic effects are stressed, and

expressions for the frequency and angular dependence of the emitted radiation

are developed in sufficient generality for all applications. The examples treated

range from synchrotron radiation to bremsstrahlung and radiative beta proc-

esses. Cherenkov radiation and the Weizsacker-Williams method of virtual quanta

are also discussed. In the atomic and nuclear collision processes semiclassical

arguments are again employed to obtain approximate quantum-mechanical

results. I lay considerable stress on this point because I feel that it is important

for the student to see that radiative effects such as bremsstrahlung are almost

entirely classical in nature, even though involving small-scale collisions. A
student who meets bremsstrahlung for the first time as an example of a

calculation in quantum field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion of

scalar and vector fields in spherical waves is developed from first principles with

no restrictions as to the relative dimensions of source and wavelength. Then the

properties of electric and magnetic multipole radiation fields are considered.

Once the connection to the multipole moments of the source has been made,

examples of atomic and nuclear multipole radiation are discussed, as well as a

macroscopic source whose dimensions are comparable to a wavelength. The
scattering of a plane electromagnetic wave by a spherical object is treated in

some detail in order to illustrate a boundary-value problem with vector spherical

waves.

In the last chapter the difficult problem of radiative reaction is discussed. The
treatment is physical, rather than mathematical, with the emphasis on delimiting

the areas where approximate radiative corrections are adequate and on finding

where and why existing theories fail. The original Abraham-Lorentz theory of

the self-force is presented, as well as more recent classical considerations.

The book ends with an appendix on units and dimensions and a bibliography.

In the appendix I have attempted to show the logical steps involved in setting up
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a system of units, without haranguing the reader as to the obvious virtues of my
choice of units. I have provided two tables which I hope will be useful, one for

converting equations and symbols and the other for converting a given quantity

of something from so many Gaussian units to so many mks units, and vice versa.

The bibliography lists books which I think the reader may find pertinent and

useful for reference or additional study. These books are referred to by author's

name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electrodynamics

which I have taught off and on over the past eleven years, at both the University

of Illinois and McGill University. I wish to thank my colleagues and students at

both institutions for countless helpful remarks and discussions. Special mention

must be made of Professor P. R. Wallace of McGill, who gave me the

opportunity and encouragement to teach what was then a rather unorthodox

course in electromagnetism, and Professors H. W. Wyld and G. Ascoli of

Illinois, who have been particularly free with many helpful suggestions on the

treatment of various topics. My thanks are also extended to Dr. A. N. Kaufman
for reading and commenting on a preliminary version of the manuscript, and

to Mr. G. L. Kane for his zealous help in preparing the index.

J. D. Jackson
Urbana, Illinois

January, 1962
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Introduction and Survey

Although amber and lodestone were known to the ancient Greeks, elec-

trodynamics developed as a quantitative subject in less than a hundred years.

Cavendish's remarkable experiments in electrostatics were done from 1771 to

1773. Coulomb's monumental researches began to be published in 1785. This

marked the beginning of quantitative research in electricity and magnetism on a

worldwide scale. Fifty years later Faraday was studying the effects of time-

varying currents and magnetic fields. By 1864 Maxwell had published his famous

paper on a dynamical theory of the electromagnetic field.

The story of the development of our understanding of electricity and

magnetism and of light is, of course, much longer and richer than the mention of

a few names from one century would indicate. For a detailed account of the

fascinating history, the reader should consult the authoritative volumes by

Whittaker* A briefer account, with emphasis on optical phenomena, appears at

the beginning of Born and Wolf.

This book is self-contained in that, though some mathematical background

(vector calculus, differential equations) is assumed, the subject of elec-

trodynamics is developed from its beginnings in electrostatics. Most readers are

not coming to the subject for the first time, however. The purpose of this

introduction is therefore not to set the stage for a discussion of Coulomb's law

and other basics, but rather to present a review and a survey of classical

electromagnetism. Questions such as the current accuracy of the inverse square

law of force (mass of the photon), the limits of validity of the principle of linear

superposition, the effects of discreteness of charge and of energy differences are

discussed. "Bread and butter" topics such as the boundary conditions for

macroscopic fields at surfaces between different media and at conductors are

also treated. The aim is to set classical electromagnetism in context, to indicate

* Italicized surnames are used to denote books that are cited fully in the
Bibliography.
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2 Classical Electrodynamics Sect. 1.1

its domain of validity, and to elucidate some of the idealizations that it contains.

Some results from later in the book and some nonclassical ideas are used in the

course of the discussion. Certainly a reader beginning electromagnetism for the

first time will not follow all the arguments or see their significance. It is intended,

however, that for others this introduction will serve as a springboard into the

later parts of the book, beyond Chapter 5, as well as a reminder of how the

subject stands as an experimental science.

1.1 Maxwell Equations in Vacuum, Fields, and Sources

The equations governing electromagnetic phenomena are the Maxwell equa-

tions, which for sources in vacuum are

V • E = 47rp

C dt C

(1.1)

VxE+i^ =
C dt

VB =

Implicit in the Maxwell equations is the continuity equation for charge density

and current density,

^+V-J = (1.2)
dt

v
'

This follows from combining the time derivative of the first equation in (1 . 1) with

the divergence of the second equation. Also essential for consideration of

charged particle motion is the Lorentz force equation,

F=q(E+^xB) (1.3)

that gives the force acting on a point charge q in the presence of electromagnetic

fields.

These equations have been written in Gaussian units, the system of elec-

tromagnetic units used in this book. (Units and dimensions are discussed in the

Appendix.) The Maxwell equations are displayed in the commoner systems of

units in Table 2 of the Appendix. Apart from the fields E and B and the sources

p and J, the equations involve a parameter c. This quantity has the dimensions of

velocity and is the speed of light in vacuum. It is fundamental to all elec-

tromagnetic and relativistic phenomena. Based on our units of length and time,

presently defined separately in terms of two different atomic transitions, as
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discussed in the Appendix, this parameter has the empirical value

c = 299,792,456.2± 1 . 1 meters/second*

This result comes from an experiment using a highly stabilized helium-neon laser

in which both the frequency and the wavelength were measured (3.39 fxm

methane-stabilized line). In passing we note that the precision here is such that

the present definition of the meter is likely to be replaced by one using c and the

second. Other evidence [see Section 11.2(c)] indicates that to high accuracy the

speed of light in vacuum is independent of frequency from very low frequencies

to at least i^ 10
24 Hz (4GeV photons). For most practical purposes we can

approximate c — 3xl0 8
m/sec or to be considerably more accurate, c =

2.998 x10 s
m/sec.

The electric and magnetic fields E and B in (1.1) were originally introduced by

means of the force equation (1.3). In Coulomb's experiments forces acting

between localized distributions of charge were observed. There it is found useful

(see Section 1.2) to introduce the electric field E as the force per unit charge.

Similarly, in Ampere's experiments the mutual forces of current-carrying loops

were studied (see Section 5.2). With the identification of NAqv as a current in a

conductor of cross-sectional area A with N charge carriers per unit volume

moving at velocity v, we see that B in (1.3) is defined in magnitude as a force per

unit current. Although E and B thus first appear just as convenient replacements

for forces produced by distributions of charge and current, they have other

important aspects. First, their introduction decouples conceptually the sources

from the test bodies experiencing electromagnetic forces. If the fields E and B
from two source distributions are the same at a given point in space, the force

acting on a test charge or current at that point will be the same, regardless of how
different the source distributions are. This gives E and B in (1.3) meaning in their

own right, independent of the sources. Second, electromagnetic fields can exist

in regions of space where there are no sources. They can carry energy,

momentum, and angular momentum and so have an existence totally independ-

ent of charges and currents. In fact, though there are recurring attempts to

eliminate explicit reference to the fields in favor of action-at-a-distance descrip-

tions of the interaction of charged particles, the concept of the electromagnetic

field is one of the most fruitful ideas of physics, both classically and quantum
mechanically.

The concept of E and B as ordinary fields is a classical notion. It can be

thought of as the classical limit (limit of large quantum numbers) of a quantum
mechanical description in terms of real or virtual photons. In the domain of

macroscopic phenomena and even some atomic phenomena the discrete photon

aspect of the electromagnetic field can usually be ignored or at least glossed

over. For example, 1 meter from a 100 watt light bulb, the root mean square

*K. Evenson et al., Phys. Rev. Letters 29, 1346 (1972).
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electric field is of the order of 0.5 volts/cm and there are of the order of 10
15

visible photons/cm
2 x sec. Similarly, an isotropic FM antenna with a power of

100 watts at 10
8 Hz produces a r.m.s. electric field of only 5 microvolts/cm at a

distance of 100 kilometers, but this still corresponds to a flux of 10
12

photons/cm
2 x sec, or about 10

9
photons in a volume of 1 wavelength cubed

(27 m3
) at that distance. Ordinarily an apparatus will not be sensible to the

individual photons; the cumulative effect of many photons emitted or absorbed

will appear as a continuous, macroscopically observable response. Then a

completely classical description in terms of the Maxwell equations is permitted

and is appropriate.

How is one to decide a priori when a classical description of the electromag-

netic fields is adequate? Some sophistication is occasionally needed, but the

following is usually a sufficient criterion: When the number of photons involved

can be taken as large but the momentum carried by an individual photon is small

compared to the momentum of the material system, then the response of the

material system can be determined adequately from a classical description of the

electromagnetic fields. For example, each 10
8 Hz photon emitted by our FM

antenna gives it an impulse of only 2.2xl0~34
newton-seconds. A classical

treatment is surely adequate. Again, the scattering of light by a free electron is

governed by the classical Thomson formula (Section 14.7) at low frequencies,

but by the laws of the Compton effect as the momentum hoj/c of the incident

photon becomes significant compared to mc. The photoelectric effect is nonclas-

sical for the matter system, since the quasi-free electrons in the metal change

their individual energies by amounts equal to those of the absorbed photons, but

the photoelectric current can be calculated quantum mechanically for the

electrons using a classical description of the electromagnetic fields.

The quantum nature of the electromagnetic fields must, on the other hand, be

taken into account in spontaneous emission of radiation by atoms, or by any

other system where there are no photons present initially and only a small

number of photons present finally. The average behavior may still be describable

in essentially classical terms, basically because of conservation of energy and

momentum. An example is the classical treatment (Section 17.2) of the

cascading of a charged particle down through the orbits of an attractive

potential. At high particle quantum numbers a classical description of particle

motion is adequate, and the secular changes in energy and angular momentum
can be calculated classically from the radiation reaction because the energies of

the successive photons emitted are small compared to the kinetic or potential

energy of the orbiting particle.

The sources in (1.1) are p(x, t), the electric charge density, and J(x, t), the

electric current density. In classical electromagnetism they are assumed to be

continuous distributions in x, although we consider from time to time localized

distributions that can be approximated by points. The magnitudes of these point

charges are assumed to be completely arbitrary, but are known to be restricted in
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reality to discrete values. The basic unit of charge is the magnitude of the charge

on the electron,

|qe |

= 4.803250(21) x 10" 10
esu

= 1.6021917(70)x 10
-19

coulomb

where the errors in the last two decimal places are shown in parentheses. The
charges on the proton and on all presently known particles or systems of

particles are integral multiples of this basic unit. The experimental accuracy with

which it is known that the multiples are exactly integers is phenomenal (better

than 1 part in 10
20

). The experiments are discussed in Section 11.9 where the

question of the Lorentz invariance of charge is also treated.

The discreteness of electric charge does not need to be considered in most

macroscopic applications. A 1 microfarad capacitor at a potential of 150 volts,

for example, has a total of 10
15

elementary charges on each electrode. A few

thousand electrons more or less would not be noticed. A current of 1

microampere corresponds to 6.2 x 10
12
elementary charges/second. There are, of

course, some delicate macroscopic or almost macroscopic experiments in which

the discreteness of charge enters. Millikan's famous oil drop experiment is one.

His droplets were typically 10"4 cm in radius and had a few or few tens of

elementary charges on them.

There is a lack of symmetry in the appearance of the source terms in Maxwell

equations (1.1). The first two equations have sources; the second two do not.

This reflects the experimental absence of magnetic charges and currents.

Actually, as is shown in Section 6.12, particles could have magnetic as well as

electric charge. If all particles in nature had the same ratio of magnetic to electric

charge, the fields and sources could be redefined in such a way that the usual

Maxwell equations (1.1) emerge. In this sense it is somewhat a matter of

convention to say that no magnetic charges or currents exist. Throughout most

of this book it is assumed that only electric charges and currents act in the

Maxwell equations, but some consequences of the existence of a particle with a

different magnetic to electric charge ratio, for example, a magnetic monopole,

are described in Chapter 6.

1.2 The Inverse Square Law or the Mass of the Photon

The distance dependence of the electrostatic law of force was shown quantita-

tively by Cavendish and Coulomb to be an inverse square law. Through Gauss's

law and the divergence theorem (see Sections 1.3 and 1.4) this leads to the first

of the Maxwell equations (1.1). The original experiments had an accuracy of only

a few percent and, furthermore, were at a laboratory length scale. Experiments

at higher precision and involving different regimes of size have been performed
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over the years. It is now customary to quote the tests of the inverse square law in

one of two ways:

(a) Assume that the force varies as l/r
2+£

and quote a value or limit for e.

(b) Assume that the electrostatic potential has the "Yukawa" form (see

Section 12.9), r
_1

e
_tir and quote a value or limit for fx or /m"

1
. Since

lJL = myC/h, where my is the assumed mass of the photon, the test of the

inverse square law is sometimes phrased in terms of an upper limit on tru,.

Laboratory experiments usually give e and perhaps fx or m7 ;
geomagnetic

experiments give jut or m7 .

The original experiment with concentric spheres by Cavendish* in 1772 gave

an upper limit on e of |e|<0.02. His apparatus is shown in Fig. 1.1. About 100

years later Maxwell performed a very similar experiment at Cambridget and set

an upper limit of |e|<5xl0~ 5
. Two other noteworthy laboratory experiments

based on Gauss's law are those of Plimpton and Lawton,$ which gave |e|<

2x 10~9
, and the recent one of Williams, Faller, and Hill.§ A schematic drawing

of the apparatus of the latter experiment is shown in Fig. 1.2. Though not a static

experiment (v—4x 10
6
Hz), the basic idea is almost the same as Cavendish's. He

looked for a charge on the inner sphere after it had been brought into electrical

contact with the charged outer sphere and then disconnected; he found none.

Williams, Faller, and Hill looked for a voltage difference between two concentric

shells when the outer one was subjected to an alternating voltage of ±10 kV with

respect to ground. Their sensitivity was such that a voltage difference of less than
10" 12 V could have been detected. Their null result, when interpreted by means

of the Proca equations (Section 12.9), gives a limit of e = (2.7±3.1)x 10~ 16
.

Measurements of the earth's magnetic field, both on the surface and out from

the surface by satellite observation, permit the best limits to be set on e or

equivalently the photon mass m7 . The geophysical and also the laboratory

observations are discussed in the reviews by Kobzarev and Okun' and by

Goldhaber and Nieto, listed at the end of this introduction. The surface

measurements of the earth's magnetic field give slightly the best value (see

Problem 12.14), namely,

m7 <4xl0
-48 gm

or

/x-^10 10 cm

For comparison, the electron mass is me = 9.1x 10"28 gm. The laboratory experi-

ment of Williams, Faller, and Hill can be interpreted as setting a limit

m-y<1.6x 10
-47

gm, only a factor of 4 poorer than the geomagnetic limit.

* H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University

Press (1879), pp. 104-113.

t Ibid., see note 19.

$S. J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936).

§ E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Letters 26, 721 (1971).



c
Fig. 1.1 Cavendish's apparatus for establishing the inverse square law of electrostatics.

Top, facsimile of Cavendish's own sketch; bottom, line drawing by a draughtsman. The
inner globe is 12.1 inches in diameter, the hollow pasteboard hemispheres slightly larger.

Both globe and hemispheres were covered with tinfoil "to make them the more perfect

conductors of electricity." (Figures reproduced by permission of the Cambridge Univer-

sity Press.)

7



Fig. 1.2 Schematic diagram of the "Cavendish" experiment of Williams, Faller, and
Hill. The concentric icosahedrons are conducting shells. A 4 MHz voltage of 10 kV peak
is applied between shells 5 and 4. Shell 4 and its contiguous shells 2 and 3 are roughly 1.5

8
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A rough limit on the photon mass can be set quite easily by noting the

existence of very low frequency modes in the earth-ionosphere resonant cavity

(Schumann resonances, discussed in Section 8.9). The double Einstein relation,

hv= rriyC
2

,
suggests that the photon mass must satisfy an inequality, m-,<hiVc

2

,

where v is any electromagnetic resonant frequency. The lowest Schumann
resonance has v —SHz. From this we calculate m7<6x 10"47

gm, a very small

value only one order of magnitude above the best limit. While this argument has

crude validity, more careful consideration (see Section 12.9 and the references

given there) shows that the limit is roughly (R/H)m— 10 times larger, R —
6400 km being the radius of the earth, and H— 60 km being the height of the

ionosphere.* In spite of this dilution factor the limit of 10~45 gm set by the mere

existence of Schumann resonances is quite respectable.

The laboratory and geophysical tests show that on length scales of order 1 to

10
9
cm, the inverse square law holds with extreme precision. At smaller

distances we must turn to less direct evidence often involving additional

assumptions. For example, Rutherford's historical analysis of the scattering of

alpha particles by thin foils substantiates the Coulomb law of force down to

distances of the order of 10~n cm provided the alpha particle and the nucleus

can be treated as classical point charges interacting statically and the charge

cloud of the electrons can be ignored. All of these assumptions can be, and have

been, tested, of course, but only within the framework of the validity of quantum
mechanics, linear superposition (see below), and other (very reasonable) as-

sumptions. At still smaller distances, relativistic quantum mechanics is neces-

sary, and strong interaction effects enter to obscure the questions as well as the

answers. Nevertheless, elastic scattering experiments with positive and negative

electrons at center of mass energies of up to 5 GeV have shown that quantum
electrodynamics (the relativistic theory of point electrons interacting with

massless photons) holds to distances of the order of 10~ 15
cm. We conclude that

the photon mass can be taken to be zero (the inverse square force law holds)

over the whole classical range of distances and deep into the quantum domain as

well. The inverse square law is known to hold over at least 24 orders of

magnitude in the length scale!

* The basic point is that, to the extent that H/R is negligible, the ELF propagation

is the same as in a parallel plate transmission line in the fundamental TEM mode. This

propagation is unaffected by a finite photon mass, except through changes in the static

capacitance and inductance per unit length. Explicit photon mass effects occur in order

(H/R)/ul
2

.

meters in diameter and contain shell 1 inside. The voltage difference between shells 1 and
2 (if any) appears across the inductor indicated at about 8 o'clock in shell 1. The amplifier

and optics system are necessary to extract the voltage information to the outside world.

They are equivalent to Cavendish's system of strings that automatically opened the

hinged hemispheres and brought up the pith balls to test for charge on the inner sphere.

(Figure reproduced with permission of the authors.)
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1.3 Linear Superposition

The Maxwell equations in vacuum are linear in the fields E and B. This linearity

is exploited so often, for example, with hundreds of different telephone

conversations on a single microwave link, that it is taken for granted. There are,

of course, circumstances where nonlinear effects occur—in magnetic materials,

in crystals responding to intense laser beams, even in the devices used to put

those telephone conversations on and off the microwave beam. But here we are

concerned with fields in vacuum or the microscopic fields inside atoms and

nuclei.

What evidence do we have to support the idea of linear superposition? At the

macroscopic level, all sorts of experiments test linear superposition at the level

of 0.1% accuracy—groups of charges and currents produce electric and mag-

netic forces calculable by linear superposition, transformers perform as expected,

standing waves are observed on transmission lines—the reader can make a list.

In optics, slit systems show diffraction patterns; X-ray diffraction tells us about

crystal structure; white light is refracted by a prism into the colors of the rainbow

and recombined into white light again. At the macroscopic and even at the

atomic level, linear superposition is remarkably valid.

It is in the subatomic domain that departures from linear superposition can be

legitimately sought. As charged particles approach each other very closely,

electric field strengths become enormous. If we think of a charged particle as a

localized distribution of charge, we see that its electromagnetic energy grows

larger and larger as the charge is localized more and more. It is natural, in order

to avoid infinite self-energies of point particles, to speculate that some sort of

saturation occurs, that fields strengths have some upper bound. Such classical

nonlinear theories have been studied in the past. One well-known example is the

theory of Born and Infeld.* The vacuum is given electric and magnetic

permeabilities,

e=H i+F (B2- E2)r (l4)

where b is a maximum field strength. Equation (1.4) is actually a simplified form

proposed earlier by Born alone. It suffices to illustrate the general idea. Fields

are obviously modified at short distances; all electromagnetic energies are finite.

But such theories suffer from arbitrariness in the manner of how the nonlinearity

occurs and also from grave problems with a transition to a quantum theory.

Furthermore, there is no evidence of this kind of classical nonlinearity. The
quantum mechanics of many-electron atoms is described to high precision by

normal quantum theory with the interactions between nucleus and electrons and

between electrons and electrons given by a linear superposition of pairwise

potentials (or retarded relativistic interactions for fine effects). Field strengths of

* M. Born and L. Infeld, Proc. Roy. Soc. A144, 425 (1934). See M. Born, Atomic
Physics, Blackie, London, Appendix VI, for an elementary discussion.
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k4

Fig. 1.3 The scattering of light by light. Schematic diagram of the process by which

photon-photon scattering occurs.

the order of 10
9-10 15

volts/cm exist at the orbits of electrons in atoms, while the

electric field at the edge of a heavy nucleus is of the order of 10
19

volts/cm.

Energy level differences in light atoms like helium, calculated on the basis of

linear superposition of electromagnetic interactions, are in agreement with

experiment to accuracies that approach 1 part in 10
6

. And Coulomb energies of

heavy nuclei are consistent with linear superposition of electromagnetic effects.

It is possible, of course, that for field strengths greater than 10
19

volts/cm

nonlinear effects could occur. One place to look for such effects is in superheavy

nuclei (Z>110), both in the atomic energy levels and in the nuclear Coulomb
energy.* At the present time there is no evidence for any classical nonlinear

behavior of vacuum fields at short distances.

There is a quantum-mechanical nonlinearity of electromagnetic fields that

arises because the uncertainty principle permits the momentary creation of an

electron-positron pair by two photons and the subsequent disappearance of the

pair with the emission of two different photons, as indicated schematically in Fig.

1.3. This process is called the scattering of light by light. t The two incident plane

waves e
ikl'*~k°1< and e*2 x~ i0i2t do not merely add coherently, as expected with linear

superposition, but interact and (with small probability) transform into two
different plane waves with wave vectors k3 and k4 . This nonlinear feature of

quantum electrodynamics can be expressed, at least for slowly varying fields, in

* An investigation of the effect of a Born-Infeld type of nonlinearity on the atomic
energy levels in superheavy elements has been made by J. Rafelski, W. Greiner, and L. P.

Fulcher, Nuovo Cimento 13B, 135 (1973).

t When two of the photons in Fig. 1.3 are virtual photons representing interaction

to second order with a static nuclear Coulomb field, the process is known as Delbriick

scattering. See Section 15.8 of J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons, Addison-Wesley, Reading, Mass. (1955).
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terms of electric and magnetic permeability tensors of the vacuum:

Di = X €ikEk , Bi = X j^ikHk
k k

where

eik = 5ik + A
-
g4ft

4 7 [2(E
2-

B

2
)fi»k+ 7B tBk]+ • •

•

u,k = Sik +
e h

4 7 [2(B
2-£ 2

)§ik+ 7£ i£k]+- • •

4J 71?n c

Here e and m are the charge and mass of the electron. These results were first

obtained by Euler and Kockel in 1935.* We observe that in the classical limit

(h—>0), these nonlinear effects go to zero. Comparison with the classical

Born-Infeld expression (1.4) shows that for small nonlinearities, the quantum-

mechanical field strength

plays a role analogous to the Born-Infeld parameter b. Here r = e
2
/mc 2—

2.8 x 10~ 13 cm is the classical electron radius and e/r
2 = 1.8x 10

18
volts/cm is the

electric field at the surface of such a classical electron. Two comments in passing:

(a) the eik and /mik in (1.5) are approximations that fail for field strengths

approaching bq or when the fields vary too rapidly in space or time (h/mc setting

the critical scale of length and fi/mc
2

of time); (b) the chance numerical

coincidence of bq and e/2r
2

is suggestive, but probably not significant since bq

involves Planck's constant h.

In analogy with the polarization P = (D-E)/47T, we speak of the field-

dependent terms in (1.5) as vacuum polarization effects. In addition to the

scattering of light by light or Delbriick scattering, vacuum polarization causes

very small shifts in atomic energy levels. The dominant contribution involves a

virtual electron-positron pair, just as in Fig. 1.3, but with only two photon lines

instead of four. If the photons are real, the process contributes to the mass of the

photon and is decreed to vanish. If the photons are virtual, however, as in the

electromagnetic interaction between a nucleus and an orbiting electron, or

indeed for any externally applied field, the creation and annihilation of a virtual

electron-positron pair from time to time causes observable effects. The first

effect is a reduction in the observed charge of the nucleus from its value in the

absence of interaction. This renormalization of the bare charge can be under-

stood in simple electrostatic terms. The electron of the pair is attracted and the

positron repelled by the positive charge of the nucleus. This vacuum polarization

effect causes the nuclear charge to be screened and to appear less in magnitude

than before. Since charged particles are always surrounded by this cloud of

virtual electron-positron pairs, their observed charges must be interpreted as

*H. Euler and B. Kockel, Naturwiss. 23, 246 (1935).



Sect. 1.4 Introduction and Survey 13

their renormalized charges. Beyond the unobservable renormalization of charge,

the vacuum polarization induces a charge density within distances of the order of

h/2mc or less that causes the electrostatic potential energy between two charges

to be greater in magnitude than the Coulomb potential energy. This causes a

very small shift in atomic energy levels in the direction of increased binding. The
lowest order added potential is proportional to aqext , where a = e

2/hc= 1/137

and qext is the charge producing the external field. It is thus linear in the external

field and produces a small linear modification of the Maxwell equations. It is

nonlinear in the sense that the strength of the effect depends on the fine structure

constant times the external field and so involves the third power of charge in the

added potential. Higher order effects, such as Fig. 1.3 with three of the photons

corresponding to the third power of the external field, give totally nonlinear

vacuum polarization effects.

In electronic atoms the vacuum polarization effects are a small part of the total

radiative correction, but are still observable. In mu-mesic atoms, the effects are

relatively larger because the atomic orbits are mainly inside the region where the

potential is modified. Then vacuum polarization effects are important in their

own right.

The final conclusion about linear superposition of fields in vacuum is that in

the classical domain of sizes and attainable field strengths there is abundant

evidence for the validity of linear superposition and no evidence against it. In the

atomic and subatomic domain there are small quantum-mechanical nonlinear

effects whose origins are in the coupling between charged particles and the

electromagnetic field. They modify the interactions between charged particles

and cause interactions between electromagnetic fields even if physical particles

are absent.

1.4 The Maxwell Equations in Macroscopic Media

So far we have considered electromagnetic fields and sources in vacuum. The
Maxwell equations (1.1) for the electric and magnetic fields E and B can be

thought of as equations giving the fields everywhere in space, provided all the

sources p and J are specified. For a small number of definite sources, determina-

tion of the fields is a tractable problem, but for macroscopic aggregates of matter

the solution of the equations is almost impossible. There are two aspects here.

One is that the number of individual sources, the charged particles in every atom
and nucleus, is prohibitively large. The other aspect is that for macroscopic

observations the detailed behavior of the fields, with their drastic variations in

space over atomic distances, is not relevant. What is relevant is the average of a

field or a source over a volume large compared to the volume occupied by a

single atom or molecule. We call such averaged quantities the macroscopic fields

and macroscopic sources. It is shown in detail in Section 6.7 that the macroscopic
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Maxwell equations are

V-D = 4ttp
'

c dt c

VxE+±^=
c dt

VB =

(1.6)

where E and B are the averaged E and B of the microscopic or vacuum Maxwell

equations (1.1). The two new field quantities D and H, usually called the electric

displacement and magnetic field (B is then called the magnetic induction), have

components given by

V , a* /

Hu = Bc< -4t7(Mq +- • •)

The quantities P, M, Q'^, and similar higher order objects, represent the

macroscopically averaged electric dipole, magnetic dipole, and electric quad-

rupole, and higher moment densities of the material medium in the presence of

applied fields. Similarly, the charge and current densities p and J are macro-

scopic averages of the "free" charge and current densities in the medium. The
bound charges and currents appear in the equations via P, M, and Qap.

The macroscopic Maxwell equations (1.6) are a set of eight equations involving

the components of the four fields E, B, D, and H. The four homogeneous
equations can be solved formally by expressing E and B in terms of the scalar

potential and the vector potential A, but the inhomogeneous equations cannot

be solved until the derived fields D and H are known in terms of E and B. These

connections, which are implicit in (1.7), are known as constitutive relations,

D = D[E, B]
(1.8)

H = H[E, B]

In addition, for conducting media there is the generalized Ohm's law,

J = J[E,B] (1.8')

The square brackets are intended to signify that the connections are not

necessarily simple and may depend on past history (hysteresis), may be

nonlinear, etc.

In most materials the electric quadrupole and higher terms in (1.7) are

completely negligible. Only the electric and magnetic polarizations P and M are

significant. This does not mean, however, that the constitutive relations are then

simple. There is a tremendous diversity in the electric and magnetic properties of
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matter, especially in crystalline solids, with ferroelectric and ferromagnetic

materials having nonzero P or M in the absence of applied fields, as well as more

ordinary dielectric, diamagnetic, and paramagnetic substances. The study of

these properties is one of the provinces of solid-state physics. In this book we
touch only very briefly and superficially on some more elementary aspects.

Solid-state books such as Kittel should be consulted for a more systematic and

extensive treatment of the electromagnetic properties of bulk matter.

In substances other than ferroelectrics or ferromagnets, for weak enough

fields the presence of an applied electric or magnetic field induces an electric or

magnetic polarization proportional to the magnitude of the applied field. We
then say that the response of the medium is linear and write the Cartesian

components of D and H in the form,*

The tensors €aP and iA'af} are called the electric permittivity or dielectric tensor

and the inverse magnetic permeability tensor. They summarize the linear

response of the medium and are dependent on the molecular and perhaps

crystalline structure of the material, as well as bulk properties like density and

temperature. For simple materials the linear response is often isotropic in space.

Then €a3 and /ll^ are diagonal with all three elements equal, and D = eE,

H=fx'B.

To be generally correct Eqs. (1.9) should be understood as holding for the Fourier

transforms in space and time of the field quantities. This is because the basic linear

connection between D and E (or H and B) can be nonlocal. Thus

Da (x, = Z Jdvjdt'e^x', t')E,(x-x', t-t') (1.10)

where €qP (x', t') may be localized around x' = 0, t' = 0, but is nonvanishing for some range

away from the origin. If we introduce the Fourier transforms Da (k, to), Ep (k, to), and
€a0 (k, a>) through

/(k, a>) = Jd
3
xjdt/(x, Oe-—

Eq. (1.9) can be written in terms of the Fourier transforms as

Da (k, to) = £ ea3 (k, <o)Ep (k, to) (1. 11)

A similar equation can be written Ha (k, to) in terms of B3 (k, co). The permeability tensors

are therefore functions of frequency and wave vector in general. For visible light or

* Precedent would require writing Ba = £ M-apHp, but this reverses the natural roles

of B as the basic magnetic field and H as the derived quantity. In Chapter 5 we revert to

the traditional usage.
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electromagnetic radiation of longer wavelength it is often permissible to neglect the

nonlocality in space. Then ea3 and u-^ are functions only of frequency. This is the situation

discussed in Chapter 7 where a simplified treatment of the high frequency properties of

matter is given and the consequences of causality explored. For conductors and

superconductors long-range effects can be important. For example, when the electronic

collisional mean free path in a conductor becomes large compared to the skin depth, a

spatially local form of Ohm's law is no longer adequate. Then the dependence on wave
vector also enters. In the understanding of a number of properties of solids the concept of

a dielectric constant as a function of wave vector and frequency is fruitful. Some
exemplary references are given in the suggested reading at the end of this introduction.

For orientation we mention that at low frequencies (i^106
Hz) where all

charges, regardless of their inertia, respond to applied fields, solids have

dielectric constants typically in the range of €<*<*— 2-20, with larger values not

uncommon. Systems with permanent molecular dipole moments can have much
larger and temperature sensitive dielectric constants. Distilled water, for ex-

ample, has a static dielectric constant of e = 88 at 0°C and e = 56 at 100°C. At
optical frequencies only the electrons can respond significantly. The dielectric

constants are in the range, eaa~ 1.7-10, with eaa — 2-3 for most solids. Water has

€=1.77-1.80 over the visible range, essentially independent of temperature

from to 100°C.

The type of response of materials to an applied magnetic field depends on the

properties of the individual atoms or molecules and also on their interactions.

Diamagnetic substances consist of atoms or molecules with no net angular

momentum. The response to an applied magnetic field is the creation of

circulating atomic currents that produce a very small bulk magnetization

opposing the applied field. With the definition of /utLp in (1.9) and the form of

(1.7), this means /m«a >l. Bismuth, the most diamagnetic substance known, has

(/Xaa— 1)— 1.8x 10~4
. Thus diamagnetism is a very small effect. If the basic atomic

unit of the material has a net angular momentum from unpaired electrons, the

substance is paramagnetic. The magnetic moment of the odd electron is aligned

parallel to the applied field. Hence jLtaa <l. Typical values are in the range

(1 - |Wa«)— 10
-2-10~ 5

at room temperature, but decreasing at higher temperatures

because of the randomizing effect of thermal excitations.

Ferromagnetic materials are paramagnetic but, because of interactions be-

tween atoms, show drastically different behavior. Below the Curie temperature

(1040°K for Fe, 630°K for Ni), ferromagnetic substances show spontaneous

magnetization, that is, all the magnetic moments in a microscopically large

region called a domain are aligned. The application of an external field tends to

cause the domains to change and the moments in different domains to line up

together, leading to the saturation of the bulk magnetization. Removal of the

field leaves a considerable fraction of the moments still aligned, giving a

permanent magnetization that can be as large as B r
= 47rMr^ 10

4
gauss.

For data on the dielectric and magnetic properties of materials the reader can
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consult some of the basic physics handbooks* from which he or she will be led to

more specific and detailed compilations.

Materials that show a linear response to weak fields eventually show nonlinear

behavior at high enough field strengths as the electronic or ionic oscillators are

driven to large amplitudes. The linear relations (1.9) are modified to, for

example,

Da = X eSEp+XeSrE(3E7 + - • • (1.12)

For static fields the consequences are not particularly dramatic, but for time-

varying fields it is another matter. A large amplitude wave of two frequencies coi

and (i)2 generates waves in the medium with frequencies 0, 2a>i, 2o>2 , o>i + co2 ,

coi-o)2 , as well as the original co, and w2 . From cubic and higher nonlinear terms

an even richer spectrum of frequencies can be generated. With the development

of lasers, nonlinear behavior of this sort has become a research area of its own,

called nonlinear optics, and also a laboratory tool. At present, lasers are capable

of generating light pulses with peak electric fields approaching 10
10

or even 10
11

volts/cm. The static electric field experienced by the electron in its orbit in a

hydrogen atom is e/a
2— 5xl0 9

volts/cm. Such laser fields are thus seen to be

capable of driving atomic oscillators well into their nonlinear regime, capable

indeed of destroying the sample under study! References to some of the

literature of this specialized field are given in the suggested reading at the end of

this introduction. The reader of this book will have to be content with basically

linear phenomena.

1.5 Boundary Conditions at Interfaces between Different Media

The Maxwell equations (1.6) are differential equations applying locally at each

point in space-time (x, t). By means of the divergence theorem and Stokes's

theorem, they can be cast in integral form. Let V be a finite volume in space, S

the closed surface (or surfaces) bounding it, da an element of area on the

surface, and n a unit normal to the surface at da pointing outward from the

enclosed volume. Then the divergence theorem applied to the first and last

equations of (1.6) yields the integral statements

(j> D-nda = 47r| pd 3
x (1.13)

(j>B-nda = (1.14)

* Handbook of Chemistry and Physics, ed. R. C. Weast, Chemical Rubber
Publishing House, Cleveland, Ohio.

American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hill, New York, 3rd
edition (1972), Sects. 5.d and 5.f.
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The first relation is just Gauss's law that the total flux of D out through the

surface is proportional to the charge contained inside. The second is the

magnetic analog, with no net flux of B through a closed surface because of

the nonexistence of magnetic charges.

Similarly, let C be a closed contour in space, S' an open surface spanning the

contour, d\ a line element on the contour, da an element of area on S', and n' a

unit normal at da pointing in the direction given by the right-hand rule from the

sense of integration around the contour. Then applying Stokes's theorem to the

middle two equations in (1.6) gives the integral statements

Equation (1.15) is the Ampere-Maxwell law of magnetic fields and (1.16) is

Faraday's law of electromagnetic induction.

These familiar integral equivalents of the Maxwell equations can be used

directly to deduce the relationship of various normal and tangential components

of the fields on either side of a surface between different media, perhaps with a

surface charge or current density at the interface. An appropriate geometrical

arrangement is shown in Fig. 1.4. An infinitesimal Gaussian pillbox straddles the

boundary surface between two media with different electromagnetic properties

Fig. 1,4 Schematic diagram of boundary surface (heavy line) between different media.

The boundary region is assumed to carry idealized surface charge and current densities cr

and K. The volume V is a small pillbox, half in one medium and half in the other, with the

normal n to its top pointing from medium 1 into medium 2. The rectangular contour C is

partly in one medium and partly in the other and is oriented with its plane perpendicular

to the surface so that its normal t is tangent to the surface.
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Similarly, the infinitesimal contour C has its long arms on either side of the

boundary and is oriented so that the normal to its spanning surface is tangent to

the interface. We first apply the integral statements (1.13) and (1.14) to the

volume of the pillbox. In the limit of a very shallow pillbox, the side surface does

not contribute to the integrals on the left in (1.13) and (1.14). Only the top and

bottom contribute. If the top and bottom are parallel, tangent to the surface, and

of area Aa, then the left-hand integral in (1.13) is

(j> D-nda = (D2-Di)-nAa

and similarly for (1.14). If the charge density p is singular at the interface so as to

produce an idealized surface charge density cr, then the integral on the right in

(1.13) is

47r| pd3
x = 47rcrAa

Thus the normal components of D and B on either side of the boundary surface

are related according to

(02-00-0 = 4770- (1.17)

(B2-Bi)-n = (1.18)

In words, we say that the normal component of B is continuous and the

discontinuity of the normal component of D at any point is equal to 477 times the

surface charge density at that point.

In an analogous manner the infinitesimal Stokesian loop can be used to

determine the discontinuities of the tangential components of E and H. If the

short arms of the contour C in Fig. 1.4 are of negligible length and the long arms

are each parallel to the surface and of length A/, then the left-hand integral of

(1.16) is

<J>

E-dI=(tXn)-(E2-Ei)AJ

and similarly for the left-hand side of (1.15). The right-hand side of (1.16)

vanishes because dB/dt is finite at the surface and the area of the loop is zero as

the length of the short sides goes to zero. The right-hand side of (1.15) does not

vanish, however, if there is an idealized surface current density K flowing exactly

on the boundary surface. In such circumstances the integral on the right of (1.15)

r \^ s+im. tda=^ K . tAl
Js lC C dt J C

The second term in the integral vanishes by the same argument that was just

given. The tangential components of E and H on either side of the boundary are
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\
\

Fig. 1.5 Moving boundary between two media. The pillbox and loop are as in Fig. 1.4

and are stationary in the laboratory. The dashed lines show the interface a moment before

and after the instant shown.

therefore related by

nx(E2-E!) = (1.19)

nx(H2-Hi) = (1.20)

In Eq. (1.20) it is understood that the surface current K has only components

parallel to the surface at every point. The tangential component of E across an

interface is continuous, while the tangential component of H is discontinuous by

an amount whose magnitude is equal to 47r/c times the magnitude of the surface

current density and whose direction is parallel to Kxn.
The discontinuity equations (I.17)-(1.20) are useful in solving the Maxwell

equations in different regions and then connecting the solutions to obtain the

fields throughout all space.

The discontinuity formulas presented above hold in the common circumstance that the

interface between the two media is fixed as a function of time. In some applications it may
be useful to have the discontinuities for a moving boundary.* The results for a boundary
surface moving with velocity v = cJJ can be obtained in essentially the same way as

previously, provided a little care is taken. The moving boundary surface between the two
media is shown schematically in Fig. 1.5, along with the infinitesimal Gaussian pillbox and
Stokesian loop. The pillbox and loop are fixed in the laboratory. The boundary surface

sweeps past them with velocity v. If we now consider the derivation of the discontinuity

formulas (1.17) and (1.18) for D and B, we see that the same arguments starting from

*P. D. Noerdlinger, Am. J. Physics 39, 191 (1971).
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(1.13) and (1.14) are valid without change, provided cr is interpreted as the surface charge

density on the moving surface as observed in the laboratory. Therefore the discontinuity

formulas for D and B, (1.17) and (1.18), hold without modification for a moving interface.

The discontinuity formulas (1.19) and (1.20) for E and H are modified, however. This

comes about because the time derivative terms on the right-hand sides of (1.15) and (1.16)

no longer vanish. The sweeping of the interface past the stationary loop C gives a

contribution. To determine its value, consider the surface integral of the time derivative

of D/c over the open surface identical in shape to C, but moving with the interface at

velocity v and instantaneously coincident with C in Fig. 1.5. The integral is

I = \-
c
^Wt),t)-tda

We have indicated the implicit time dependence of the coordinate x to emphasize that the

integration is over a moving surface. In the limit that the area of the open surface vanishes

as the short arms of the rectangular loop C become vanishingly small, the integral I

vanishes. (From the viewpoint of special relativity, an observer in an inertial frame

moving with velocity v sees the interface at rest, and observes Lorentz-transformed fields

that are not singular at the interface.) The integral I can, however, be related to the

integral appearing in (1.15) through the convective derivative expansion:

=I=J^(x(0, 0-tda

= j^'tda+J[(p.V)D].tda

Using a vector identity the second term can be transformed and the required integral

becomes

J
±25 . t da = J[Vx(pxD)-pV • D] • t da

The first term on the right can be transformed by Stokes's theorem into a loop integral

and the second can be expressed in terms of the charge density p. We therefore have as

the application of (1.15) to the loop C in Fig. 1.5 the expression

<j> [H-pxD]-dI = ^j"[J-pv]-tda

By the same steps as above (1.19) and (1.20), we obtain from this relation the discontinuity

formula,

t • {nx[H2-H 1
-px(D2-D 1)]} =^

1 (K-crv) • t

where all quantities are evaluated in the laboratory frame. Some vector manipulation and
use of (1.17) leads to

t • [nx(H2-H x)+n • P(D2-D0]= K • t (1.21)

A completely similar derivation from (1.16) yields

t • [nx(E2-E0-n • P(B 2-B 1 )] = (1.22)

as the discontinuity formula for the tangential components of E (and B). Equations (1.21)

and (1.22) represent the generalizations of (1.19) and (1.20) to the circumstance of a

moving interface between two media.
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In the simplified situation where D—E and H— B in both media (or these hold in one
medium and the other medium is an excellent conductor with all fields essentially zero

inside), the relation involving the surface current simplifies considerably. Equation (1.22)

can be written (without approximation) as

(E2-E 1 )tan = -(n • P)nx(B2 -B,) (1.23)

Then with H-^B and D^E in (1.21), Eq. (1.23) can be substituted to give

[l-(n • p)
2]nx(B2-B 1)=^I K (1.24)

The motion of the interface between the media introduces only an overall multiplicative

factor into (1.20), a correction of relative order v
2
/c

2
.

1.6 Some Remarks on Idealizations in Electromagnetism

In the previous section we made use of the idea of surface distributions of charge

and current. These are obviously mathematical idealizations that do not exist in

the physical world. There are other abstractions that occur throughout elec-

tromagnetism. In electrostatics, for example, we speak of holding objects at a

fixed potential with respect to some zero of potential usually called "ground."

The relation of such idealizations to the real world is perhaps worthy of a little

discussion, even though to the experienced hand most will seem obvious.

First we consider the question of maintaining some conducting object at a

fixed electrostatic potential with respect to some reference value. Implicit is the

idea that the means does not significantly disturb the desired configuration of

charges and fields. To maintain an object at fixed potential it is necessary, at least

from time to time, to have a conducting path or its equivalent from the object to

a source of charge far away ("at infinity") so that as other charged or uncharged

objects are brought in the vicinity charge can flow to or from the object, always

maintaining its potential at the desired value. Although more sophisticated

means are possible, metallic wires are commonly used to make the conducting

path. Intuitively we expect small wires to be less perturbing than large ones. The
reason is as follows. "Since the quantity of electricity on any given portion of a

wire at a given potential diminishes indefinitely when the diameter of the wire is

indefinitely diminished, the distribution of electricity on bodies of considerable

dimensions will not be sensibly affected by the introduction of very fine metallic

wires into the field, such as are used to form electrical connexions between these

bodies and the earth, an electrical machine, or an electrometer."* The electric

field in the immediate neighborhood of the thin wire is very large, of course.

However, at distances away of the order of the size of the "bodies of

considerable dimensions" the effects can be made small. An important historical

* J. C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York, 1954
reprint of the 3rd edition (1891), Vol. 1, p. 96.
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illustration of Maxwell's words is given by the work of Henry Cavendish 200

years ago. By experiments done in a converted stable of his father's house, using

Leyden jars as his sources of charge, thin wires as conductors, and suspending

the objects in the room, Cavendish measured the amounts of charge on

cylinders, discs, etc., held at fixed potential and compared them to the charge on

a sphere (the same sphere shown in Fig. 1.1) at the same potential. His values of

capacitance, so measured, are accurate to a few per cent. For example, he found

the ratio of the capacitance of a sphere to that of a thin circular disc of the same

radius was 1.57. The theoretical value is it/2.

There is a practical limit to the use of finer and finer wires. The charge per unit

length decreases only logarithmically (as the reciprocal of In (d/a), where a is the

mean radius of the wire and d is a typical distance of the wire from some

conducting surface). To minimize the perturbation of the system below some

level, it is necessary to resort to other means to maintain potentials, comparison

methods using beams of charged particles intermittently, for example.

When a conducting object is said to be grounded, it is assumed to be connected

by a very fine conducting filament to a remote reservoir of charge that serves as

the common zero of potential. Objects held at fixed potentials are similarly

connected to one side of a voltage source, such as a battery, the other side of

which is connected to the common "ground." Then, when initially electrified

objects are moved relative to one another in such a way that their distributions

of electricity are altered, but their potentials remain fixed, the appropriate

amounts of charge flow from or to the remote reservoir, assumed to have an

inexhaustible supply. The idea of grounding something is a well-defined concept

in electrostatics where time is not a factor, but for oscillating fields the finite

speed of propagation blurs the concept. In other words, stray inductive and

capacitive effects can enter significantly. Great care is then necessary to ensure a

"good ground."

Another idealization in macroscopic electromagnetism is the idea of a surface

charge density or a surface current density. The physical reality is that the charge

or current is confined to the immediate neighborhood of the surface. If this

region has thickness small compared to the length scale of interest, we may
approximate the reality by the idealization of a region of infinitesimal thickness

and speak of a surface distribution. Two different limits need to be distinguished.

One is the limit in which the "surface" distribution is confined to a region near

the surface that is macroscopically small, but microscopically large. An example is

the penetration of time-varying fields into a very good, but not perfect,

conductor, described in Section 8.1. It is found that the fields are confined to a

thickness 5, called the skin depth, and that for high enough frequencies and good

enough conductivities 8 can be macroscopically very small. It is then appropriate

to integrate the current density J over the direction perpendicular to the surface

to obtain an effective surface current density Keff .

The other limit is truly microscopic and is set by quantum-mechanical effects in
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Fig. 1.6 Distribution of excess charge at the surface of a conductor and of the normal
component of the electric field. The ions of the solid are confined to x<0 and are

approximated by a constant continuous charge distribution through which the electrons

move. The bulk of the excess charge is confined to within ±2 angstroms of the "surface."

the atomic structure of materials. Consider, for instance, the distribution of

excess charge of a conducting body in electrostatics. It is well known that this

charge lies entirely on the surface of a conductor. We then speak of a surface

charge density cr. There is no electric field inside the conductor, but there is, in

accord with (1.17), a normal component of electric field just outside the surface.

At the microscopic level the charge is not exactly at the surface and the field does

not change discontinuously. The most elementary considerations would indicate

that the transition region is a few atomic diameters in extent. The ions in a metal

can be thought of as relatively immobile and localized to 1 angstrom or better;

the lighter electrons are less constrained. The results of model calculations* are

shown in Fig. 1.6. They come from a solution of the quantum-mechanical

many-electron problem in which the ions of the conductor are approximated by

a continuous constant charge density for x<0. The electron density (rs = 5) is

roughly appropriate to copper and the heavier alkali metals. The excess

* N. D. Lang and W. Kohn, Phys. Rev. Bl, 4555 (1970); B3, 1215 (1971); V. E.

Kenner, R. E. Allen, and W. M. Saslow, Phys. Letters 38A, 255 (1972).
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electronic charge is seen to be confined to a region within ±2 angstroms of the

"surface" of the ionic distribution. The electric field rises smoothly over this

region to its value of 4ircr "outside" the conductor. For macroscopic situations

where 10~ 7 cm is a negligible distance, we can idealize the charge density and

electric field behavior as p(x) = cr8(x) and En(x) = 47rcr0(x), corresponding to a

truly surface density and a step-function jump of the field.

We see that the theoretical treatment of classical electromagnetism involves

several idealizations, some of them technical and some physical. The subject of

electrostatics, discussed in the first chapters of the book, developed as an

experimental science of macroscopic electrical phenomena, as did virtually all

other aspects of electromagnetism. The extension of these macroscopic laws,

even for charges and currents in vacuum, to the microscopic domain was for the

most part an unjustified extrapolation. Earlier in this introduction we have

discussed some of the limits to this extrapolation. The point to be made here is

the following. With hindsight we know that many aspects of the laws of classical

electromagnetism apply well into the atomic domain provided the sources are

treated quantum mechanically, that the averaging of electromagnetic quantities

over volumes containing large numbers of molecules so smooths the rapid

fluctuations that static applied fields induce static average responses in matter,

that excess charge is on the surface of a conductor in a macroscopic sense. Thus
Coulomb's and Ampere's macroscopic observations and our mathematical

abstractions from them have a wider applicability than might be supposed by a

supercautious physicist. The absence for air of significant electric or magnetic

susceptibility certainly simplified matters!
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1
Introduction to

Electrostatics

We begin our discussion of electrodynamics with the subject of electrostatics—
phenomena involving time-independent distributions of charge and fields. For

most readers this material is in the nature of a review. In this chapter especially

we do not elaborate significantly. We introduce concepts and definitions that are

important for later discussion and present some essential mathematical ap-

paratus. In subsequent chapters the mathematical techniques are developed and

applied.

One point of physics should be mentioned. Historically, electrostatics de-

veloped as a science of macroscopic phenomena. As indicated at the end of the

Introduction, such idealizations as point charges or electric fields at a point must

be viewed as mathematical constructs that permit a description of the

phenomena at the macroscopic level, but that may fail to have meaning

microscopically.

1.1 Coulomb's Law

All of electrostatics stems from the quantitative statement of Coulomb's law

concerning the force acting between charged bodies at rest with respect to each

other. Coulomb, in an impressive series of experiments, showed experimentally

that the force between two small charged bodies separated in air a distance large

compared to their dimensions

(1) varied directly as the magnitude of each charge,

(2) varied inversely as the square of the distance between them,

(3) was directed along the line joining the charges,

(4) was attractive if the bodies were oppositely charged and repulsive if the

bodies had the same type of charge.

Furthermore it was shown experimentally that the total force produced on one
small charged body by a number of the other small charged bodies placed

27
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around it was the vector sum of the individual two-body forces of Coulomb.

Strictly speaking, Coulomb's conclusions apply to charges in vacuum or in media

of negligible susceptibility. We defer consideration of charges in dielectrics to

Chapter 4.

1.2 Electric Field

Although the thing that eventually gets measured is a force, it is useful to

introduce a concept one step removed from the forces, the concept of an electric

field due to some array of charged bodies. At the moment, the electric field can

be defined as the force per unit charge acting at a given point. It is a vector

function of position, denoted by E. One must be careful in its definition,

however. It is not necessarily the force that one would observe by placing one

unit of charge on a pith ball and placing it in position. The reason is that one unit

of charge may be so large that its presence alters appreciably the field

configuration of the array. Consequently one must use a limiting process

whereby the ratio of the force on the small test body to the charge on it is

measured for smaller and smaller amounts of charge.* Experimentally, this ratio

and the direction of the force will become constant as the amount of test charge

is made smaller and smaller. These limiting values of magnitude and direction

define the magnitude and direction of the electric field E at the point in question.

In symbols we may write

where F is the force, E the electric field, and q the charge. In this equation it is

assumed that the charge q is located at a point, and the force and the electric

field are evaulated at that point.

Coulomb's law can be written down similarly. If F is the force on a point

charge qi, located at Xi, due to another point charge q2 , located at x2 , then

Coulomb's law is

Note that qi and q2 are algebraic quantities which can be positive or negative.

The constant of proportionality k depends on the system of units used.

The electric field at the point x due to a point charge qi at the point Xi can be

obtained directly:

F=qE (1.1)

F=kq!q2 (1.2)

E(x) = kq! (1.3)

* The discreteness of electric charge (see Section 1.1) means that this mathemati-

cal limit is impossible to realize physically. This is an example of a mathematical

idealization in macroscopic electrostatics.
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Fig. 1.1

as indicated in Fig. 1.1. The constant k is determined by the unit of charge

chosen. In electrostatic units (esu), unit charge is chosen as that charge which

exerts a force of one dyne on an equal charge located one centimeter away.

Thus, with cgs units, k = 1 and the unit of charge is called the "stat-coulomb." In

the MKSA system, k = (4ir€ y\ where e (= 8.854 x 10~ 12
farad/meter) is the

permittivity of free space. We will use esu.*

The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of point

charges qh located at x<, i= 1, 2, . .
. ,

n, as the vector sum:

If the charges are so small and so numerous that they can be described by a

charge density p(x') [if Aq is the charge in a small volume Ax Ay Az at the point

x', then Aq = p(x') Ax Ay Az], the sum is replaced by an integral:

E(x) = Jp(x')^^<f*' (L5)

where d
3
x'=dx' dy' dz' is a three-dimensional volume element at x'.

At this point it is worth while to introduce the Dirac delta function. In one dimension,

the delta function, written S(x-a), is a mathematically improper function having the

properties:

(1) 8(x-a) = for x*a, and

(2) j" 8(x-a) dx = 1 if the region of integration includes x = a, and is zero otherwise.

The delta function can be given, an intuitive, but nonrigorous, meaning as the limit of a

peaked curve such as a Gaussian which becomes narrower and narrower, but higher and
higher, in such a way that the area under the curve is always constant. L. Schwartz's

theory of distributions is a comprehensive rigorous mathematical approach to delta

functions and their manipulations.!

From the definitions above it is evident that, for an arbitrary function /(x),

(3) J/(x)8(x-a)dx = /(a).

The integral of f(x) times the derivative of a delta function is simply understood if the

delta function is thought of as a well-behaved, but sharply peaked, function. Thus the

* The question of units is discussed in detail in the Appendix.

t A useful, rigorous account of the Dirac delta function is given by Lighthill. See
also Dennery and Krzywicki, Sect. III. 13. (Full references for items cited in the text or

footnotes by italicized author only will be found in the Bibliography.)
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definition is

(4) U(x)8'(x-a)dx = -f(a)
where a prime denotes differentiation with respect to the argument.

If the delta function has as argument a function /(x) of the independent variable x, it

can be transformed according to the rule,

(5) 8(/(x))=Ir^ rS(x-x,)
1 — (x

)

| dx
w

I

where f(x) is assumed to have only simple zeros, located at x = X;.

In more than one dimension, we merely take products of delta functions in each

dimension. In three dimensions, for example, with Cartesian coordinates,

(6) S(x-X) = S(x 1-X 1 ) 8(x2-X2) 8(x3-X3)

is a function which vanishes everywhere except at x = X, and is such that

if AV contains x = X
if AV does not not contain x =X(7)(

v
8(x-X)^x =

{;

Note that a delta function has the dimensions of an inverse volume in whatever number of

dimensions the space has.

A discrete set of point charges can be described with a charge density by means of delta

functions. For example,

p(x) =Iqi
S(x-x

i ) (1.6)
i=l

represents a distribution of n point charges qh located at the points x
;
. Substitution of this

charge density (1.6) into (1.5) and integration, using the properties of the delta function,

yields the discrete sum (1.4).

1.3 Gauss's Law

The integral (1.5) is not the most suitable form for the evaluation of electric

fields. There is another integral result, called Gauss's law, which is sometimes

more useful and which furthermore leads to a differential equation for E(x). To
obtain Gauss's law we first consider a point charge q and a closed surface S, as

shown in Fig. 1.2. Let r be the distance from the charge to a point on the surface,

n be the outwardly directed unit normal to the surface at that point, da be an

element of surface area. If the electric field E at the point on the surface due to

the charge q makes an angle 6 with the unit normal, then the normal component

of E times the area element is:

E * n da = q
°°2 ^

da (1.7)

Since E is directed along the line from the surface element to the charge q,

cos 6 da=r2
dft, where dCl is the element of solid angle subtended by da at the

position of the charge. Therefore

En da = qdQ, (1.8)
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If we now integrate the normal component of E over the whole surface, it is easy

to see that

<j> E • n da=l^
7TC

*
if q lies inside S

,
.

Js lO if q lies outside S ^ '
'

This result is Gauss's law for a single point charge. For a discrete set of charges,

it is immediately apparent that

(j> E-nda = 47rXqi (1.10)

where the sum is over only those charges inside the surface S. For a continuous

charge density p(x), Gauss's law becomes:

<j> E • n da = 47r
J"

p(x) d
3
x (1.11)

where V is the volume enclosed by S.

Equation (1.11) is one of the basic equations of electrostatics. Note that it

depends upon

(1) the inverse square law for the force between charges,

(2) the central nature of the force,

(3) the linear superposition of the effects of different charges.

Clearly, then, Gauss's law holds for Newtonian gravitational force fields, with

matter density replacing charge density.

It is interesting to note that, even before the experiments of Cavendish and

Coulomb, Priestley, taking up an observation of Franklin that charge seemed to

reside on the outside, but not the inside, of a metal cup, reasoned by analogy

with Newton's law of universal gravitation that the electrostatic force must obey

an inverse square law with distance. The present status of the inverse square law

is discussed in Section 1.2.

1.4 Differential Form of Gauss's Law

Gauss's law can be thought of as being an integral formulation of the law of

electrostatics. We can obtain a differential form (i.e., a differential equation) by

using the divergence theorem. The divergence theorem states that for any

well-behaved vector field A(x) defined within a volume V surrounded by the

closed surface S the relation

<j> A-nda^J V • A d
3
x

holds between the volume integral of the divergence of A and the surface

integral of the outwardly directed normal component of A. The equation in fact

can be used as the definition of the divergence (see Stratton, p. 4).
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To apply the divergence theorem we consider the integral relation expressed

in Gauss's theorem:

£ E • n da = 47rj p(x) d
3
x

Now the divergence theorem allows us to write this as:

J
(V-E-47rp)d 3

x = (1.12)

for an arbitrary volume V. We can, in the usual way, put the integrand equal to

zero to obtain

V-E=4ttp (1.13)

which is the differential form of Gauss's law of electrostatics. This equation can

itself be used to solve problems in electrostatics. However, it is often simpler to

deal with scalar rather than vector functions of position, and then to derive the

vector quantities at the end if necessary (see below).

1.5 Another Equation of Electrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three

components of the electric field E(x). Perhaps some readers know that a vector

field can be specified almost* completely if its divergence and curl are given

everywhere in space. Thus we look for an equation specifying curl E as a

function of position. Such an equation, namely,

VxE = (1.14)

follows directly from our generalized Coulomb's law (1.5):

E(x) = Jp(x')j^dV

The vector factor in the integrand, viewed as a function of x, is the negative

gradient of the scalar l/|x-x'|:

Since the gradient operation involves x, but not the integration variable x', it can

be taken outside the integral sign. Then the field can be written

E(x)=-v[j£^jdV (1.15)

* Up to the gradient of a scalar function that satisfies the Laplace equation. See
Section 1.9 on uniqueness.
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Since the curl of the gradient of any well-behaved scalar function of position

vanishes (VxVi// = 0, for all (1.14) follows immediately from (1.15).

Note that VxE = depends on the central nature of the force between

charges, and on the fact that the force is a function of relative distances only, but

does not depend on the inverse square nature.

In (1.15) the electric field (a vector) is derived from a scalar by the gradient

operation. Since one function of position is easier to deal with than three, it is

worth while concentrating on the scalar function and giving it a name. Conse-

quently we define the scalar potential <£(x) by the equation:

E = -VcJ> (1.16)

Then (1.15) shows that the scalar potential is given in terms of the charge density

by

*(x) =
lbS|

dV (L17)

where the integration is over all charges in the universe, and <E> is arbitrary only

to the extent that a constant can be added to the right side of (1.17).

The scalar potential has a physical interpretation when we consider the work

done on a test charge q in transporting it from one point (A) to another point (B)

in the presence of an electric field E(x), as shown in Fig. 1.3. The force acting on

the charge at any point is

F=qE

so that the work done in moving the charge from A to B is

W=-j F-dl=-qj"
B

E-dl (1.18)

The minus sign appears because we are calculating the work done on the charge

against the action of the field. With definition (1.16) the work can be written

W=q^V® • d\ = q
J"

*
d<D = q(<DB - <*>A ) (1.19)

which shows that q<& can be interpreted as the potential energy of the test charge

in the electrostatic field.

Fig. 1.3
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From (1.18) and (1.19) it can be seen that the line integral of the electric field

between two points is independent of the path and is the negative of the

potential difference between the points:

£

B

E-dl=-(4>B -4>A) (1.20)

This follows directly, of course, from definition (1.16). If the path is closed, the

line integral is zero,

E-dl=0 (1.21)

a result that can also be obtained directly from Coulomb's law. Then application

of Stokes's theorem [if A(x) is a well-behaved vector field, S is an arbitrary open

surface, and C is the closed curve bounding S,

<j> A-dl=J (VxA)-nda

where d\ is a line element of C, n is the normal to S, and the path C is traversed

in a right-hand screw sense relative to n] leads immediately back to Vx E = 0.

1.6 Surface Distributions of Charges and Dipoles and Discontinuities

in the Electric Field and Potential

One of the common problems in electrostatics is the determination of electric

field or potential due to a given surface distribution of charges. Gauss's law

(1.11) allows us to write down a partial result directly. If a surface S, with a unit

normal n directed from side 1 to side 2 of the surface, has a surface-charge

density of o-(x) (measured in statcoulombs per square centimeter) and electric

fields Ei and E2 on either side of the surface, as shown in Fig. 1.4, then Gauss's

Fig. 1.4 Discontinuity in the normal component of electric field across a surface layer of
charge.
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law tells us immediately that

(E2-Ei) -n = 47ro- (1.22)

This does not determine Ei and E 2 unless there are no other sources of field and
the geometry and form a are especially simple. All that (1.22) says is that there is

a discontinuity of Attct in the normal component of electric field in crossing a

surface with a surface-charge density o\ the crossing being made in the direction

of n.

The tangential component of electric field can be shown to be continuous

across a boundary surface by using (1.21) for the line integral of E around a

closed path. It is only necessary to take a rectangular path with negligible ends

and one side on either side of the boundary.

An expression for the potential (and hence the field, by differentiation) at any

point in space (not just at the surface) can be obtained from (1.17) by replacing

p d
3
x by a da :

For volume or surface distributions of charge the potential is everywhere

continuous, even within the charge distribution. This can be shown from (1.23)

or from the fact that E is bounded, even though discontinuous across a surface

distribution of charge. With point or line charges, or dipole layers, the potential

is no longer continuous, as will be seen immediately.

Another problem of interest is the potential due to a dipole-layer distribution

on a surface S. A dipole layer can be imagined as being formed by letting the

surface S have a surface-charge density o-(x) on it, and another surface S', lying

close to S, have an equal and opposite surface-charge density on it at neighbor-

ing points, as shown in Fig. 1.5. The dipole-layer distribution of strength D(x) is

formed by letting S' approach infinitesimally close to S while the surface-charge

density cr(x) becomes infinite in such a manner that the product of cr(x) and the

local separation d(x) of S and S' approaches the limit D(x):

(1.23)

lim o-(x) d(x) = D(x)
d(x)->-0

S

s
S'

Fig. 1.5 Limiting process involved in creating a dipole layer.
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Fig. 1.6 Dipole-layer geometry.

The direction of the dipole moment of the layer is normal to the surface S and in

the direction going from negative to positive charge.

To find the potential due to a dipole layer we can consider a single dipole and

then superpose a surface density of them, or we can obtain the same result by

performing mathematically the limiting process described in words above on the

surface-density expression (1.23). The first way is perhaps simpler, but the

second gives useful practice in vector calculus. Consequently we proceed with

the limiting process. With n, the unit normal to the surface S, directed away from

S', as shown in Fig. 1.6, the potential due to the two close surfaces is

4>(x)=[ j^rda'-f
,

°$2
Js x-x' JS ' x-x'+ndx'+nd|

For small d we can expand |x-x'+nd|
_1

. Consider the general expression

|x+a|
-1

, where |a|«|x|. We write a Taylor series expansion in three dimensions:

1

|x+a| x

In this way we find that as d^O the potential becomes

(1.24)

In passing we note that the integrand in Eq. (1.24) is the potential of a point

dipole with dipole moment p=n D da' . The potential at x caused by a dipole pat
x' is

<D(x) <D(x)
P-(x-x')

x—

X

(1-25)

Equation (1.24) has a simple geometrical interpretation. We note that

_,/ 1 \ , , cos 6 da' ,~

where dO is the element of solid angle subtended at the observation point by the

area element da', as indicated in Fig. 1.7. Note that dCl has a positive sign if 6 is

an acute angle, i.e., when the observation point views the "inner" side of the
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S

Fig. 1.7 The potential at P due to the dipole layer D on the area element da' is just the

negative product of D and the solid angle element dtl subtended by da' at P.

dipole layer. The potential can be written:

For a constant surface-dipole-moment density D, the potential is just the

product of the moment and the solid angle subtended at the observation point by

the surface, regardless of its shape.

There is a discontinuity in potential in crossing a double layer. This can be

seen by letting the observation point come infinitesimally close to the double

layer. The double layer is now imagined to consist of two parts, one being a small

disc directly under the observation point. The disc is sufficiently small that it is

sensibly flat and has constant surface-dipole-moment density D. Evidently the

total potential can be obtained by linear superposition of the potential of the disc

and that of the remainder. From (1.26) it is clear that the potential of the disc

alone has a discontinuity of 4ttD in crossing from the inner to the outer side,

being —2rrD on the inner side and +2itD on the outer. The potential of the

remainder alone, with its hole where the disc fits in, is continuous across the

plane of the hole. Consequently the total potential jump in crossing the surface

is:

This result is analogous to (1.22) for the discontinuity of electric field in crossing

a surface-charge density. Equation (1.27) can be interpreted "physically" as a

potential drop occurring "inside" the dipole layer, and can be calculated as the

product of the field between the two layers of surface charge times the

separation before the limit is taken.

1.7 Poisson and Laplace Equations

In Sections 1.4 and 1.5 it was shown that the behavior of an electrostatic field

can be described by the two differential equations:

(1.26)

4>2-4>i = 4ttD (1.27)

V • E = 4irp (1.13)
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and

VxE = (1.14)

the latter equation being equivalent to the statement that E is the gradient of a

scalar function, the scalar potential 4>:

E = -V4) (1.16)

Equations (1.13) and (1.16) can be combined into one partial differential

equation for the single function 4>(x):

V2
4> = -4ttp (1.28)

This equation is called the Poisson equation. In regions of space where there is no

charge density, the scalar potential satisfies the Laplace equation:

V2
<D = (1.29)

We already have a solution for the scalar potential in expression (1.17):

•»-JjSf^ (L17)

To verify directly that this does indeed satisfy the Poisson equation (1.28) we
operate with the Laplacian on both sides. Because it turns out that the resulting

integrand is singular, we invoke a limiting procedure. Define the "^-potential"

<*>a(x) by

J V(x-x') 2
+<2

2V(x-x') 2+a :

The actual potential (1.17) is then the limit of the "a-potential" as<z ->0. Taking

the Laplacian of the "^-potential" gives

V^(x)=}p(x^(
7
=L=)^'

=-M(^] dV (l30)

where r=
\

x-x'
\

. The square-bracketed expression is the negative Laplacian of

l/Vr 2 + a 2
. It is well-behaved everywhere for nonvanishing a, but as a tends to

zero it becomes infinite at r=0 and vanishes for r^O. It has a volume integral

equal to 47r for arbitrary a. For the purposes of integration divide space into two

regions by a sphere of fixed radius R centered on x. Choose R such thatp(x')

changes little over the interior of the sphere, and imagine a much smaller than R
and tending towards zero. If p(x') is such that (1.17) exists, the contribution to

the integral from the exterior of the sphere will vanish like a 2 as**—^-0. We thus

need consider only the contribution from inside the sphere. With a Taylor series

expansion of the well-behaved p(x') around x'=x, one finds

V^.OO = -4n f 2

3fl2
r p(x)-^p + • •• lr

2dr+ 0(a>)
Jo (r +a ) L o J
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Direct integration yields

V 24>
fl (x) = -4ttp(x) (l + 0(a 2lR 2

)) + 0(a\

a

2\og a) V 2p + ...

In the limit a^O, we obtain the Poisson equation (1.28).

The singular nature of the Laplacian of 1/r can be exhibited formally in terms

of a Dirac delta function. Since V2
(l/r) = for r^O and its volume integral is

-4tt, we can write the formal equation, V2
(l/r) = -4ir 8(x) or, more generally,

1.8 Green's Theorem

If electrostatic problems always involved localized discrete or continuous

distributions of charge with no boundary surfaces, the general solution (1.17)

would be the most convenient and straightforward solution to any problem.

There would be no need of the Poisson or Laplace equation. In actual fact, of

course, many, if not most, of the problems of electrostatics involve finite regions

of space, with or without charge inside, and with prescribed boundary conditions

on the bounding surfaces. These boundary conditions may be simulated by an

appropriate distribution of charges outside the region of interest (perhaps at

infinity), but (1.17) becomes inconvenient as a means of calculating the

potential, except in simple cases (e.g., method of images).

To handle the boundary conditions it is necessary to develop some new
mathematical tools, namely, the identities or theorems due to George Green

(1824). These follow as simple applications of the divergence theorem. The
divergence theorem:

applies to any well-behaved vector field A defined in the volume V bounded by

the closed surface S. Let A=</> Vi//, where <f>
and ijj are arbitrary scalar fields.

Now

(1.31)

V •
(<f> Vifr) = <f>

V2
i//+ V<j) • Vi|/ (1.32)

and

dip

dn
(1.33)

where d/dn is the normal derivative at the surface S (directed outwards from

inside the volume V). When (1.32) and (1.33) are substituted into the divergence
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theorem, there results Green's first identity:

f ((/>V
2
i//+V4>- Vi//)d

3
x = <j> <t>^da (1.34)

Jv Js dn

If we write down (1.34) again with <#> and i// interchanged, and then subtract it

from (1.34), the V<j> • Vi// terms cancel, and we obtain Green's second identity or

Green's theorem:

fv
(*V*-*^)d'x =j[[*|*-*U]da (1.35)

The Poisson differential equation for the potential can be converted into an

integral equation if we choose a particular \p, namely l/R= l/|x— x'|, where x is

the observation point and x' is the integration variable. Further, we put =

the scalar potential, and make use of V2 = -47rp. From (1.31) we know that

V2
(1/R) = -4tt8(x-x'), so that (1.35) becomes

L *<-{ [*£(*Hi?]
If the point x lies within the volume V, we obtain:

If x lies outside the surface S, the left-hand side of (1.36) is zero.* [Note that this

is consistent with the interpretation of the surface integral as being the potential

due to a surface-charge density cr= (l/47r)(d<I>/dn') and a dipole layer D =

-(1/4tt)<&. The discontinuities in electric field and potential (1.22) and (1.27)

across the surface then lead to zero field and zero potential outside the volume

v.]

Two remarks are in order about result (1.36). First, if the surface S goes to

infinity and the electric field on S falls off faster than R~\ then the surface

integral vanishes and (1.36) reduces to the familiar result (1.17). Second, for a

charge-free volume the potential anywhere inside the volume (a solution of the

Laplace equation) is expressed in (1.36) in terms of the potential and its normal

derivative only on the surface of the volume. This rather surprising result is not a

solution to a boundary-value problem, but only an integral statement, since the

arbitrary specification of both 4> and d<&/dn (Cauchy boundary conditions) is an

overspecification of the problem. This will be discussed in detail in the next

sections, where techniques yielding solutions for appropriate boundary condi-

tions will be developed using Green's theorem (1.35).

*The reader may complain that (1.36) has been obtained in an illegal fashion

since l/|x-x'| is not well-behaved inside the volume V. Rigor can be restored by using a

limiting process, as in the previous section, or by excluding a small sphere around the

offending point, x=x'. The result is still (1.36).
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1.9 Uniqueness of the Solution with Dirichlet or

Neumann Boundary Conditions

The question arises as to what are the boundary conditions appropriate for the

Poission (or Laplace) equation in order that a unique and well-behaved (i.e.,

physically reasonable) solution exist inside the bounded region. Physical experi-

ence leads us to believe that specification of the potential on a closed surface

(e.g., a system of conductors held at different potentials) defines a unique

potential problem. This is called a Dirichlet problem, or Dirichlet boundary

conditions. Similarly it is plausible that specification of the electric field (normal

derivative of the potential) everywhere on the surface (corresponding to a given

surface-charge density) also defines a unique problem. Specification of the

normal derivative is known as the Neumann boundary condition. We now
proceed to prove these expectations by means of Green's first identity (1.34).

We want to show the uniqueness of the solution of the Poisson equation,

V2
<£ = —477p, inside a volume V subject to either Dirichlet or Neumann

boundary conditions on the closed bounding surface S. We suppose, to the

contrary, that there exist two solutions <I>i and <J> 2 satisfying the same boundary

conditions. Let

Then V2U= inside V, and 17=0 or dU/dn = on S for Dirichlet and Neumann
boundary conditions, respectively. From Green's first identity (1.34), with

4>= ifj=U, we find

With the specified properties of 17, this reduces (for both types of boundary

conditions) to:

which implies VU= 0. Consequently, inside V, U is constant. For Dirichlet

boundary conditions, U= on S so that, inside V, 4>i=<J>2 and the solution is

unique. Similarly, for Neumann boundary conditions, the solution is unique,

apart from an unimportant arbitrary additive constant.

From the right-hand side of (1.38) it is evident that there is also a unique

solution to a problem with mixed boundary conditions (i.e., Dirichlet over part

of the surface S, and Neumann over the remaining part).

It should be clear that a solution to the Poisson equation with both and

d<t>/dn specified arbitrarily on a closed boundary (Cauchy boundary conditions)

does not exist, since there are unique solutions for Dirichlet and Neumann
conditions separately and these will in general not be consistent. This can be

verified with (1.36). With arbitrary values of 3> and d<t>/dn inserted on the

U= <!>2-<S>i (1.37)

(1.38)
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right-hand side, it can be shown that the values of 4>(x) and VO(x) as x

approaches the surface are in general inconsistent with the assumed boundary

values. The question of whether Cauchy boundary conditions on an open surface

define a unique electrostatic problem requires more discussion than is warranted

here. The reader may refer to Morse and Feshbach, Section 6.2, pp. 692-706, or

to Sommerfeld, Partial Differential Equations in Physics, Chapter II, for a

detailed discussion of these questions. The conclusion is that electrostatic

problems are specified only by Dirichlet or Neumann boundary conditions on a

closed surface (part or all of which may be at infinity, of course).

1.10 Formal Solution of Electrostatic Boundary-Value

Problem with Green Function

The solution of the Poisson or Laplace equation in a finite volume V with either

Dirichlet or Neumann boundary conditions on the bounding surface S can be

obtained by means of Green's theorem (1.35) and so-called "Green functions."

In obtaining result (1.36)—not a solution—we chose the function i// to be

l/|x-x'|, it being the potential of a unit point charge, satisfying the equation:

V'
2(^) = -4tt8(x-x') (1.31)

The function l/|x-x'| is only one of a class of functions depending on the

variables x and x', and called Green functions, which satisfy (1.31). In general,

V'
2
G(x, x') = -4tt8(x-x') (1.39)

where

G(x,x') =j^+F(x,x') (1.40)

with the function F satisfying the Laplace equation inside the volume V:

V'
2
F(x,x') = (1.41)

In facing the problem of satisfying the prescribed boundary conditions on <I> or

d<£/dn, we can find the key by considering result (1.36). As has been pointed out

already, this is not a solution satisfying the correct type of boundary conditions

because both and d<E>/dn appear in the surface integral. It is at best an integral

relation for <£. With the generalized concept of a Green function and its

additional freedom [via the function F(x, x')], there arises the possibility that we
can use Green's theorem with i//= G(x, x') and choose F(x, x') to eliminate one or

the other of the two surface integrals, obtaining a result which involves only

Dirichlet or Neumann boundary conditions. Of course, if the necessary G(x, x')

depended in detail on the exact form of the boundary conditions, the method
would have little generality. As will be seen immediately, this is not required,

and G(x, x') satisfies rather simple boundary conditions on S.
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With Green's theorem (1.35), = i(r= G(x, x'), and the specified properties

of G (1.39), it is simple to obtain the generalization of (1.36):

d>(x) =
Jv
p(x')G(x,x')dV+^^ [G(x,x')g-<D(x')^^]da' (1.42)

The freedom available in the definition of G (1.40) means that we can make the

surface integral depend only on the chosen type of boundary conditions. Thus,

for Dirichlet boundary conditions we demand:

GD (x,x') = for x' on S (1.43)

Then the first term in the surface integral in (1.42) vanishes and the solution is

*(x)=
Jv

p(x')GD (x, x') d
3x'~ j>

<fc(x')^ da' (1.44)

For Neumann boundary conditions we must be more careful. The obvious

choice of boundary condition on G(x, x') seems to be

dG——r (x, x') = for x' on S
an

since that makes the second term in the surface integral in (1.42) vanish, as

desired. But an application of Gauss's theorem to (1.39) shows that

iS' da
' =-^

Consequently the simplest allowable boundary condition on GN is

(x, *') =~ for x! on S (1.45)
an b

where S is the total area of the boundary surface. Then the solution is

<D(x) = <<D)s+ f p(x')GN (x,x') dV+-^-(j> ^7 GN da' (1.46)
Jv 477 Js on

where (<J>)S is the average value of the potential over the whole surface. The
customary Neumann problem is the so-called "exterior problem" in which the

volume V is bounded by two surfaces, one closed and finite, the other at infinity.

Then the surface area S is infinite; the boundary condition (1.45) becomes

homogeneous; the average value (<J>)S vanishes.

We note that the Green functions satisfy simple boundary conditions (1.43) or

(1.45) which do not depend on the detailed form of the Dirichlet (or Neumann)
boundary values. Even so, it is often rather involved (if not impossible) to

determine G(x, x') because of its dependence on the shape of the surface S. We
will encounter such problems in Chapter 2 and 3.

The mathematical symmetry property G(x, x') = G(x', x) can be proved for the



Sect. 1.11 Introduction to Electrostatics 45

Green functions satisfying the Dirichlet boundary condition (1.43) by means of

Green's theorem with </>=G(x, y) and i//=G(x', y), where y is the integration

variable. Since the Green function, as a function of one of its variables, is a

potential due to a unit point charge, the symmetry merely represents the physical

interchangeability of the source and the observation points. For Neumann
boundary conditions the symmetry is not automatic, but can be imposed as a

separate requirement.

As a final, important remark we note the physical meaning of F(x, x'). It is a

solution of the Laplace equation inside V and so represents the potential of a

system of charges external to the volume V. It can be thought of as the potential

due to an external distribution of charges so chosen as to satisfy the homogene-

ous boundary conditions of zero potential (or zero normal derivative) on the

surface S when combined with the potential of a point charge at the source point

x'. Since the potential at a point x on the surface due to the point charge depends

on the position of the source point, the external distribution of charge F(x, x')

must also depend on the "parameter" x\ From this point of view, we see that the

method of images (to be discussed in Chapter 2) is a physical equivalent of the

determination of the appropriate F(x, x') to satisfy the boundary conditions (1.43)

or (1.45). For the Dirichlet problem with conductors, F(x, x') can also be

interpreted as the potential due to the surface-charge distribution induced on the

conductors by the presence of a point charge at the source point x'.

1.11 Electrostatic Potential Energy and Energy Density, Capacitance

In Section 1.5 it was shown that the product of the scalar potential and the

charge of a point object could be interpreted as potential energy. More precisely,

if a point charge q { is brought from infinity to a point x< in a region of localized

electric fields described by the scalar potential (which vanishes at infinity), the

work done on the charge (and hence its potential energy) is given by

W^qM*) (1.47)

The potential <I> can be viewed as produced by an array of (n-1) charges

q,(j= 1,2,..., n— 1) at positions x,. Then

*(Xi)="^i^i (L48)
j=l |Xj Xj|

so that the potential energy of the charge q ; is

Wi = qi ZrjLi (1-49)
/-i |xi— x,|

The total potential energy of all the charges due to all the forces acting between
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them is:

i = l j<i |Xj X,
I

as can be seen most easily by adding each charge in succession. A more
symmetric form can be written by summing over i and / unrestricted, and then

dividing by 2:

It is understood that i = j terms (infinite "self-energy" terms) are omitted in the

double sum.

For a continuous charge distribution [or, in general, using the Dirac delta

functions (1.6)] the potential energy takes the form:

W

Another expression, equivalent to (1.52), can be obtained by noting that one of

the integrals in (1.52) is just the scalar potential (1.17). Therefore

W=|Jp(x)<I>(x)<fx (1.53)

Equations (1.51), (1.52), and (1.53) express the electrostatic potential energy

in terms of the positions of the charges and so emphasize the interactions

between charges via Coulomb forces. An alternative, and very fruitful, approach

is to emphasize the electric field and to interpret the energy as being stored in the

electric field surrounding the charges. To obtain this latter form, we make use of

the Poisson equation to eliminate the charge density from (1.53):

I J(DV
2
<D

Integration by parts leads to the result:

W=± J|V<D|
2
d

3
x =± J|E|

2
d

3
x (1.54)

where the integration is over all space. In (1.54) all explicit reference to charges

has gone, and the energy is expressed as an integral of the square of the electric

field over all space. This leads naturally to the identification of the integrand as

an energy density w:

w =^|E| 2
(1.55)

This expression for energy density is intuitively reasonable, since regions of high

fields "must" contain considerable energy.
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Fig. 1.8

There is perhaps one puzzling thing about (1.55). The energy density is

positive definite. Consequently its volume integral is necessarily nonnegative.

This seems to contradict our impression from (1.51) that the potential energy of

two charges of opposite sign is negative. The reason for this apparent contradic-

tion is that (1.54) and (1.55) contain "self-energy" contributions to the energy

density, whereas the double sum in (1.51) does not. To illustrate this, consider

two point charges qi and q2 located at x x and x2 , as in Fig. 1.8. The electric field at

the point P with coordinate x is

term gives the proper result for the interaction potential energy we integrate

over all space:

where n is a unit vector in the direction (xi~x2). Using the fact that (p+n)/

|p+n|
3 = -Vp (l/|p+n|), the dimensionless integral can easily be shown to have the

value 47r, so that the interaction energy reduces to the expected value.

Forces acting between charged bodies can be obtained by calculating the

change in the total electrostatic energy of the system under small virtual

displacements. Examples of this are discussed in the problems. Care must be

taken to exhibit the energy in a form showing clearly those factors which vary

with a change in configuration and those which are kept constant.

As a simple illustration we calculate the force per unit area on the surface of a

conductor with a surface-charge density cr(x). In the immediate neighborhood of

(1.57)

A change of integration variable to p = (x-Xi)/|xi-x2
|

yields

(1.58)
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the surface the energy density is

w = ^-|E| 2 = 27ra
2

(1.59)

If we now imagine a small outward displacement Ax of an elemental area Aa of

the conducting surface, the electrostatic energy decreases by an amount which is

the product of energy density w and the excluded volume Ax Aa:

AW=-27Ta2 AaAx (1.60)

This means that there is an outward force per unit area equal to 2ttgt
2 = w at the

surface of the conductor. This result is normally derived by taking the product of

the surface-charge density and the electric field, with care taken to eliminate the

electric field due to the element of surface-charge density itself.

For a system of n conductors, each with potential Vi and total charge Q*

(i = 1, 2, . .
. ,

n) in otherwise empty space, the electrostatic potential energy can

be expressed in terms of the potentials alone and certain geometrical quantities

called coefficients of capacity. For a given configuration of the conductors, the

linear functional dependence of the potential on the charge density implies that

the potential of the ith conductor can be written as

Vi=IpyQ (i=l,2,...,n)

where the p iy depend on the geometry of the conductors. These n equations can

be inverted to yield the charge on the ith conductor in terms of all the potentials:

Qi = tciiVi 0=1,2,. ..,n) (1.61)

The coefficients Cu are called capacities or capacitances while the Cih i^j, are

called coefficients of induction. The capacitance of a conductor is therefore the

total charge on the conductor when it is maintained at unit potential, all other

conductors being held at zero potential. Sometimes the capacitance of a system of

conductors is also defined. For example, the capacitance of two conductors

carrying equal and opposite charges in the presence of other grounded conduc-

tors is defined as the ratio of the charge on one conductor to the potential

difference between them. The equations (1.61) can be used to express this

capacitance in terms of the coefficients Q.
The potential energy (1.53) for the system of conductors is

W=i I QV.-4 t t QV.V, (1.62)
Z ,= 1 Z i=i ,

= i

The expression of the energy in terms of the potentials Vi and the G„ or in terms

of the charges Qi and the coefficients pih permits the application of variational

methods to obtain approximate values of capacitances. It can be shown (see
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Problems 1.17 and 1.18) that there are variational principles giving upper and

lower bounds on Gi. The principles permit estimation with known error of the

capacitances of relatively involved configurations of conductors. High-speed

computational techniques permit the use of elaborate trial functions involving

several parameters. It must be remarked, however, that the need for a Green

function satisfying Dirichlet boundary conditions in the lower bound makes the

error estimate nontrivial. Further consideration of this technique for calculating

capacitances is left to the problems at the end of this and subsequent chapters.
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PROBLEMS

1.1 Use Gauss's theorem (and Eq. (1.21) if necessary) to prove the following:

(a) Any excess charge placed on a conductor must lie entirely on its surface. (A
conductor by definition contains charges capable of moving freely under the action of

applied electric fields.)

(b) A closed, hollow conductor shields its interior from fields due to charges outside,

but does not shield its exterior from the fields due to charges placed inside it.
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(c) The electric field at the surface of a conductor is normal to the surface and has a

magnitude 4tt<j, where a is the charge density per unit area on the surface.

1.2 The Dirac delta function in three dimensions can be taken as the improper limit as

a—() of the Gaussian function

• D(a;x,y,z) = (277)-
3/2
a-

3 exp[-^(x 2 + y
2 + 2

2

)]

Consider a general orthogonal coordinate system specified by the surfaces, u =

constant, inconstant, w= constant, with length elements du/ U, dv/ V, dw/ W in the

three perpendicular directions. Show that

8(x-x') = 5(u-u') S(u-u') S(w-w') • UVW
by considering the limit of the above Gaussian. Note that as a—»0 only the

infinitesimal length element need be used for the distance between the points in the

exponent.

1.3 Using Dirac delta functions in the appropriate coordinates, express the following

charge distributions as three-dimensional charge densities p(x).

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical shell of

radius R.

(b) In cylindrical coordinates, a charge A per unit length uniformly distributed over a

cylindrical surface of radius b.

(c) In cylindrical coordinates, a charge Q spread uniformly over a flat circular disc of

negligible thickness and radius R.

(d) The same as (c), but using spherical coordinates.

1.4 Each of three charged spheres of radius a, one conducting, one having a uniform

charge density within its volume, and one having a spherically symmetric charge

density which varies radially as r" (n>-3), has a total charge Q. Use Gauss's theorem
to obtain the electric fields both inside and outside each sphere. Sketch the behavior of

the fields as a function of radius for the first two spheres, and for the third with n =
-2, +2.

1.5 The time-average potential of a neutral hydrogen atom is given by

where q is the magnitude of the electronic charge, and a'
1 = a /2, cio being the Bohr

radius. Find the distribution of charge (both continuous and discrete) which will give

this potential and interpret your result physically.

1.6 A simple capacitor is a device formed by two insulated conductors adjacent to each

other. If equal and opposite charges are placed on the conductors, there will be a

certain difference of potential between them. The ratio of the magnitude of the charge

on one conductor to the magnitude of the potential difference is called the capacitance

(in electrostatic units it is measured in centimeters). Using Gauss's law, calculate the

capacitance of

(a) two large, flat, conducting sheets of area A, separated by a small distance d;

(b) two concentric conducting spheres with radii a, b (b>a);
(c) two concentric conducting cylinders of length L, large compared to their radii a, b

(b>a).

(d) What is the inner diameter of the outer conductor in an air-filled coaxial cable



Prob. 1 Introduction to Electrostatics 51

whose center conductor is a cylindrical wire of diameter 1 mm and whose capacitance

is 0.5 micromicrofarad/cm? 0.05 micromicrofarad/cm?

1.7 Two long, cylindrical conductors of radii a, and a2 are parallel and separated by a

distance d which is large compared with either radius. Show that the capacitance per

unit length is given approximately by

where a is the geometrical mean of the two radii.

Approximately what gauge wire (state diameter in millimeters) would be necessary

to make a two-wire transmission line with a capacitance of 0.1 fi/xf/cm if the

separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm?

1.8 (a) For the three capacitor geometries in Problem 1.6 calculate the total electro-

static energy and express it alternatively in terms of the equal and opposite charges Q
and -Q placed on the conductors and the potential difference between them.

(b) Sketch the energy density of the electrostatic field in each case as a function of the

appropriate linear coordinate.

1.9 Calculate the attractive force between conductors in the parallel plate capacitor

(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for

(a) fixed charges on each conductor;

(b) fixed potential difference between conductors.

1.10 Prove the mean value theorem: For change-free space the value of the electrostatic

potential at any point is equal to the average of the potential over the surface of any
sphere centered on that point.

1.11 Use Gauss's theorem to prove that at the surface of a curved charged conductor

the normal derivative of the electric field is given by

where Ri and R 2 are the principal radii of curvature of the surface.

1.12 Prove Green's reciprocation theorem: If 3> is the potential due to a volume-charge

density p within a volume V and a surface-charge density cr on the conducting surface

S bounding the volume V, while <£' is the potential due to another charge distribution

p' and a', then

1.13 Two infinite grounded parallel conducting planes are separated by a distance d. A
point charge q is placed between the planes. Use the reciprocation theorem of Green
to prove that the total induced charge on one of the planes is equal to (-q) times the

fractional perpendicular distance of the point charge from the other plane. (Hint:

Choose as your comparison electrostatic problem with the same surfaces one whose
charge densities and potential are known and simple.)

1.14 A volume V is bounded by a surface S consisting of several separate surfaces

(conductors) Si, one perhaps at infinity, each held at potential V
(

. Let ^ (x) be a

well-behaved function in V and on 5, with a value equal to V, on each surface Si, but

otherwise arbitrary for the present. Define the energylike quantity, otherwise arbitr-
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ary for the present. Define the energylike quantity,

Prove the following theorem:

W[^], which is nonnegative by definition, is stationary and an absolute minimum if

and only if ^ satisfies the Laplace equation inside V and takes on the specified values

V; on the surfaces S(
.

1.15 Prove Thomson's theorem: If a number of surfaces are fixed in position and a given

total charge is placed on each surface, then the electrostatic energy in the region

bounded by the surfaces is an absolute minimum when the charges are placed so that

every surface is an equipotential, as happens when they are conductors.

1.16 Prove the following theorem: If a number of conducting surfaces are fixed in

position with a given total charge on each, the introduction of an uncharged, insulated

conductor into the region bounded by the surfaces lowers the electrostatic energy.

1.17 Consider a configuration of conductors as in problem 1.14 with one conductor held

at unit potential and all the other conductors at zero potential.

(a) Show that the capacitance of the one conductor is given by

where <I>(x) is the solution for the potential.

(b) Use the theorem of Problem 1 . 14 to show that the true capacitance C is always less

than or equal to the quantity

where ^ is any trial function satisfying the boundary conditions on the conductors.

This is a variational principle for the capacitance that yields an upper bound.

1.18 Consider the configuration of conductors of Problem 1.17, with all conductors

except Si held at zero potential.

(a) Show that the potential 4>(x) anywhere in the volume V and on any of the surfaces

S, can be written

where o-i(x') is the surface charge density on Si and G(x, x') is the Green function

potential for a point charge in the presence of all the surfaces that are held at zero

potential (but with Si absent). Show also that the electrostatic energy is

where the integrals are only over the surface Si.

(b) Show that the variational expression
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with an arbitrary integrable function cr(x) defined on Si, is stationary for small

variations of cr away from cr,. Use Thomson's theorem to prove that the reciprocal of

C_1
[cr] gives a lower bound to the true capacitance of the conductor S,.

1.19 For the cylindrical capacitor of Problem 1.6(c), evaluate the variational upper

bound of Problem 1.17(b) with the naive trial function, ^ ,(p) = (b- p)/(b- a) . Compare
the variational result with the exact result for b/a= 1.5, 2, 3. Explain the trend of your

results in terms of the functional form of An improved trial function is treated by

Collin, pp. 151-152.

1.20 In estimating the capacitance of a given configuration of conductors, comparison

with known capacitances is often helpful. Consider two configurations of n conductors

in which the (n-1) conductors held at zero potential are the same, but the one
conductor whose capacitance we wish to know is different. In particular, let the

conductor in one configuration have a closed surface Si and in the other configuration

have surface S[, with S[ totally inside Si.

(a) Use the theorem of Problem 1.14 and the variational principle of Problem 1.17 to

prove that the capacitance C of the conductor with surface S[ is less than or equal to

the capacitance C of the conductor with surface Si that encloses SJ.

(b) Set upper and lower limits for the capacitance of a conducting cube of side a.

Compare your limits and also their average with the numerical value, C— 0.655a.



2
Boundary-Value Problems

in Electrostatics: I

Many problems in electrostatics involve boundary surfaces on which either the

potential or the surface-charge density is specified. The formal solution of such

problems was presented in Section 1.10, using the method of Green functions. In

practical situations (or even rather idealized approximations to practical situa-

tions) the discovery of the correct Green function is sometimes easy and

sometimes not. Consequently a number of approaches to electrostatic boundary-

value problems have been developed, some of which are only remotely

connected to the Green function method. In this chapter we will examine two of

these special techniques: (1) the method of images, which is closely related to the

use of Green functions; (2) expansion in orthogonal functions, an approach

directly through the differential equation and rather remote from the direct

construction of a Green function. A major omission is the use of complex-

variable techniques, including conformal mapping, for the treatment of two-

dimensional problems. The topic is important, but lack of space and the

existence of self-contained discussions elsewhere accounts for its absence. The
interested reader may consult the references cited at the end of the chapter.

2.1 Method of Images

The method of images concerns itself with the problem of one or more point

charges in the presence of boundary surfaces, for example, conductors either

grounded or held at fixed potentials. Under favorable conditions it is possible to

infer from the geometry of the situation that a small number of suitably placed

charges of appropriate magnitudes, external to the region of interest, can

simulate the required boundary conditions. These charges are called image

charges, and the replacement of the actual problem with boundaries by an

enlarged region with image charges but not boundaries is called the method of

images. The image charges must be external to the volume of interest, since their

54
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Fig. 2.1 Solution by method of images. The original potential problem is on the left, the

equivalent-image problem on the right.

potentials must be solutions of the Laplace equation inside the volume; the

"particular integral" (i.e., solution of the Poisson equation) is provided by the

sum of the potentials of the charges inside the volume.

A simple example is a point charge located in front of an infinite plane

conductor at zero potential, as shown in Fig. 2.1. It is clear that this is equivalent

to the problem of the original charge and an equal and opposite charge located

at the mirror-image point behind the plane defined by the position of the

conductor.

2.2 Point Charge in the Presence of a Grounded Conducting Sphere

As an illustration of the method of images we consider the problem illustrated in

Fig. 2.2 of a point charge q located at y relative to the origin around which is

centered a grounded conducting sphere of radius a. We seek the potential <$(x)

such that 4>(|x| = a) = 0. By symmetry it is evident that the image charge q'

Fig. 2.2 Conducting sphere of radius a, with charge q and image charge q'.
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(assuming that only one image is needed) will lie on the ray from the origin to the

charge q. If we consider the charge q outside the sphere, the image position y' will

lie inside the sphere. The potential due to the charges q and q[ is:

^(x) =rfl-
1+rfl^ (2.1)

We now must try to choose q' and |y'| such that this potential vanishes at |x| = a. If

n is a unit vector in the direction x, and n' a unit vector in the direction y, then

<S>(x)=i
3—H-h,

—

^Vtt (2.2)
\xn— yn\ |xn— y n|

If x is factored out of the first term and y' out of the second, the potential at x = a

becomes:

3>(x=a)=
i

q
..

+
i

q
: .

(2.3)
, a

n—; n
y

From the form of (2.3) it will be seen that the choices:

a y" ay'

make <£(x = a) = 0, for all possible values of n«n'. Hence the magnitude and

position of the image charge are

,
a , a

2

A \q'=--% y=- (2.4)

We note that, as the charge q is brought closer to the sphere, the image charge

grows in magnitude and moves out from the center of the sphere. When q is just

outside the surface of the sphere, the image charge is equal and opposite in

magnitude and lies just beneath the surface.

Now that the image charge has been found, we can return to the original

problem of a charge q outside a grounded conducting sphere and consider

various effects. The actual charge density induced on the surface of the sphere

can be calculated from the normal derivative of <I> at the surface:

cr=
J_cKP I q /a\ \ y

4tt dx x=a Aira
1H—2- 2 -cos 7

y y

where 7 is the angle between x and y. This charge density in units of -q/4ira
2
is

shown plotted in Fig. 2.3 as a function of 7 for two values of y/a. The
concentration of charge in the direction of the point charge q is evident,

especially for y/a = 2. It is easy to show by direct integration that the total
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Fig. 2.3 Surface-charge density cr induced on the grounded sphere of radius a due to the

presence of a point charge q located a distance y away from the center of the sphere, cr is

plotted in units of -q/4ira
2
as function of the angular position 7 away from the radius to

the charge for y = 2a, 4a.

induced charge on the sphere is equal to the magnitude of the image charge, as it

must according to Gauss's law.

The force acting on the charge q can be calculated in different ways. One (the

easiest) way is to write down immediately the force between the charge q and the

image charge q'. The distance between them is y - y' = y(l - a
2

/y
2
). Hence

the attractive force, according to Coulomb's law, is:

For large separations the force is an inverse cube law, but close to the sphere it is

proportional to the inverse square of the distance away from the surface of the

sphere.

The alternative method for obtaining the force is to calculate the total force

acting on the surface of the sphere. The force on each element of area da is

27Tcr
2
da, where cr is given by (2.5), as indicated in Fig. 2.4. But from symmetry it

is clear that only the component parallel to the radius vector from the center of
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dF = 27ra2 da

Fig. 2.4

the sphere to q contributes to the total force. Hence the total force acting on the

sphere (equal and opposite to the force acting on q) is given by the integral:

Integration immediately yields (2.6).

The whole discussion has been based on the understanding that the point

charge q is outside the sphere. Actually, the results apply equally for the charge q
inside the sphere. The only change necessary is in the surface-charge density

(2.5), where the normal derivative out of the conductor is now radially inwards,

implying a change in sign. The reader may transcribe all the formulas, remem-
bering that now y < a. The angular distributions of surface charge are similar to

those of Fig. 2.3, but the total induced surface charge is evidently equal to -q,

independent of y.

2.3 Point Charge in the Presence of a Charged, Insulated,

Conducting Sphere

In the previous section we considered the problem of a point charge q near a

grounded sphere and saw that a surface-charge density was induced on the

sphere. This charge was of total amount q' — —aq/y, and was distributed over the

surface in such a way as to be in equilibrium under all forces acting.

If we wish to consider the problem of an insulated conducting sphere with

total charge Q in the presence of a point charge q, we can build up the solution

for the potential by linear superposition. In an operational sense, we can imagine

that we start with the grounded conducting sphere (with its charge q' distributed

over its surface). We then disconnect the ground wire and add to the sphere an

amount of charge (Q-q'). This brings the total charge on the sphere up to Q. To
find the potential we merely note that the added charge (Q-q') will distribute

itself uniformly over the surface, since the electrostatic forces due to the point

charge q are already balanced by the charge q'. Hence the potential due to the

added charge (Q— q') will be the same as if a point charge of that magnitude were

at the origin, at least for points outside the sphere.

(2.7)
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The potential is the superposition of (2.1) and the potential of a point charge

(Q-q') at the origin:

Q+^q
<D(x) =rL,-

|x-y|
SSL
a

(2.8)

The force acting on the charge q can be written down directly from Coulomb's

law. It is directed along the radius vector to q and has the magnitude:

yi
U

y(f-a
2

f J
(2.9)

In the limit of y »a, the force reduces to the usual Coulomb's law for two small

charged bodies. But close to the sphere the force is modified because of the

induced charge distribution on the surface of the sphere. Figure 2.5 shows the

force as a function of distance for various ratios of Q/q. The force is expressed in

Fy 2
1

q2

-1

-2

-3

-4

-5

Q/q = 3

1

1

11 /
/ 1 / i

3

1

4 y/a

1 1 1

5
5

|

-1

Fig. 2.5 The force on a point charge q due to an insulated, conducting sphere of radius a
carrying a total charge Q. Positive values mean a repulsion, negative an attraction. The
asymptotic dependence of the force has been divided out. Fy 2

/q
2
is plotted versus y/a for

Q/q = -l, 0, 1, 3. Regardless of the value of Q, the force is always attractive at close

distances because of the induced surface charge.
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units of q
2

/y
2

;
positive (negative) values correspond to a repulsion (attraction). If

the sphere is charged oppositely to q, or is uncharged, the force is attractive at all

distances. Even if the charge Q is the same sign as q, however, the force becomes

attractive at very close distances. In the limit of 0»q, the point of zero force

(unstable equilibrium point) is very close to the sphere, namely, at y —
a(l + 2>/q/Q). Note that the asymptotic value of the force is attained as soon as

the charge q is more than a few radii away from the sphere.

This example exhibits a general property which explains why an excess of

charge on the surface does not immediately leave the surface because of mutual

repulsion of the individual charges. As soon as an element of charge is removed

from the surface, the image force tends to attract it back. If sufficient work is

done, of course, charge can be removed from the surface to infinity. The work

function of a metal is in large part just the work done against the attractive image

force in order to remove an electron from the surface.

2.4 Point Charge Near a Conducting Sphere at Fixed Potential

Another problem which can be discussed easily is that of a point charge near a

conducting sphere held at a fixed potential V. The potential is the same as for the

charged sphere, except that the charge (Q-q') at the center is replaced by a

charge (Va). This can be seen from (2.8), since at |x| = a the first two terms

cancel and the last term will be equal to V as required. Thus the potential is

The force on the charge q due to the sphere at fixed potential is

For corresponding values of Va/q and Q/q this force is very similar to that of the

charged sphere, shown in Fig. 2.5, although the approach to the asymptotic

value (Vaq/y
2
) is more gradual. For Va »q, the unstable equilibrium point has

the equivalent location y— a(l+Wq/Va).

2.5 Conducting Sphere in a Uniform Electric Field by Method of Images

As a final example of the method of images we consider a conducting sphere of

radius a in a uniform electric field E . A uniform field can be thought of as being

produced by appropriate positive and negative charges at infinity. For example,

if there are two charges ±Q, located at positions z = =FR, as shown in Fig. 2.6a,
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+Q
/ aQ R S
~ R JC \ V -Q

z= -R
2 R \ a \

z = R

(b)

Fig. 2.6 Conducting sphere in a uniform electric field by the method of images.

then in a region near the origin whose dimensions are very small compared to R
there is an approximately constant electric field E — 2Q/R 2

parallel to the z axis.

In the limit as R, Q— with Q/R 2
constant, this approximation becomes exact.

If now a conducting sphere of radius a is placed at the origin, the potential will

be that due to the charges ±Q at and their images =FQa/R at z = IFa
2
/R:

Q
(r

2+R 2+2rRcos 6)
1/2

(r
2+R2-2rRcos 0)

m

aQ aQ
1/2 (2.12)

where 3> has been expressed in terms of the spherical coordinates of the

observation point. In the first two terms R is much larger than r by assumption.

Hence we can expand the radicals after factoring out R 2
. Similarly, in the third

and fourth terms, we can factor out r
2
and then expand. The result is:

r4cos •
•<D=[-f rcosO+f ^cose]

where the omitted terms vanish in the limit R— In that limit 2Q/R 2 becomes
the applied uniform field, so that the potential is

4> = -E (r-^-) cose (2.14)
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The first term (~E z) is, of course, just the potential of a uniform field E which

could have been written down directly instead of the first two terms in (2.12).

The second is the potential due to the induced surface charge density or,

equivalently, the image charges. Note that the image charges form a dipole of

strength D=Qa/Rx2a 2/R = E a
3

. The induced surface-charge density is

1 a4> I 3
<r=-T-ir\ =T-Eocos6 (2.15)

4tt dr
\ r= a 4tt

We note that the surface integral of this charge density vanishes, so that there is

no difference between a grounded and an insulated sphere.

2.6 Green Function for the Sphere, General Solution for the Potential

In preceding sections the problem of a conducting sphere in the presence of a

point charge has been discussed by the method of images. As was mentioned in

Section 1.10, the potential due to a unit charge and its image (or images), chosen

to satisfy homogeneous boundary conditions, is just the Green function (1.43 or

1.45) appropriate for Dirichlet or Neumann boundary conditions. In G(x, x') the

variable x' refers to the location P' of the unit charge, while the variable x is the

point P at which the potential is being evaluated. These coordinates and

the sphere are shown in Fig. 2.7. For Dirichlet boundary conditions on the

sphere of radius a the potential due to a unit charge and its image is given by

(2.1) with q = 1 and relations (2.4). Transforming variables appropriately, we

z

Fig. 2.7
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obtain the Green function:

g<»'*'> =rV ,i Vti (216)

In terms of spherical coordinates this can be written:

G(x,x') = ,2^, 2 ^ ,_„u/2- 7-2-72 TT72 (2.17)
(x

2
+x'

2
-2xx'cos 7 )

1/2
(x

2
x'\ 2 - , V—\-a -2xx cos 7 1

where 7 is the angle between x and x\ The symmetry in the variables x and x' is

obvious in the form (2.17), as is the condition that G = if either x or x' is on the

surface of the sphere.

For solution (1.44) of the Poisson equation we need not only G, but also

dG/dri. Remembering that n' is the unit normal outwards from the volume of

interest, i.e., inwards along x' toward the origin, we have

dG I (x
2-a 2

) n 1

dn'U~ a(x
2+a2-2axcos 7)

3/2 ( }

[Note that this is essentially the induced surface-charge density (2.5).] Hence the

solution of the Laplace equation outside a sphere with the potential specified on

its surface is, according to (1.44),

fe«
*' *> (^J-tfL yr dn ' (219)

where dCl' is the element of solid angle at the point (a, 0',
<f>') and cos 7 =

cos cos 0'+sin sin 0' cos (</>-</>')• For the interior problem, the normal deriva-

tive is radially outwards, so that the sign of dG/dri is opposite to (2.18). This is

equivalent to replacing the factor (x
2-a2

) by (a
2-x 2

) in (2.19). For a problem

with a charge distribution, we must add to (2.19) the appropriate integral in

(1.44), with the Green function (2.17).

2.7 Conducting Sphere with Hemispheres at Different Potentials

As an example of the solution (2.19) for the potential outside a sphere with

prescribed values of potential on its surface, we consider the conducting sphere

of radius a made up of two hemispheres separated by a small insulating ring. The
hemispheres are kept at different potentials. It will suffice to consider the

potentials as ±V, since arbitrary potentials can be handled by superposition of

the solution for a sphere at fixed potential over its whole surface. The insulating

ring lies in the z = plane, as shown in Fig. 2.8, with the upper (lower)

hemisphere at potential +V(-V).
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x

Fig. 2.8

From (2.19) the solution for 4>(x, 0, <f>) is given by the integral:

<D(x, 0, = f
f
d(cos 0')"

f°
d(cos 0')l FTJ(X

9

2" a
2g ^ (2.20)

47r Jo I Jo J-i J(a +3C — 2ax cos 7)

By a suitable change of variables in the second integral ($'—»7r— 0', (/>'—»<(>'+ 77),

this can be cast in the form:

<D(x, 0, <)>) =
Va(*

2"^
f'Wf ^cos 0')[(a

2+x2-2ax cos 7)" 3/2

477 Jo Jo

-(a 2+x 2+2axcos7)- 3/2

] (2.21)

Because of the complicated dependence of cos 7 on the angles (0', <#>') and (0, <f>),

equation (2.21) cannot in general be integrated in closed form.

As a special case we consider the potential on the positive z axis. Then
cos 7 = cos 0' since = 0. The integration is elementary, and the potential can be

shown to be

<j>(2)=v[i-i^^l (2.22)
L zvz +a J

At z = a, this reduces to <I> = V as required, while at large distances it goes

asymptotically as <E>— 3 Va2
/2z

2
.

In the absence of a closed expression for the integrals in (2.21), we can expand

the denominator in power series and integrate term by term. Factoring out

(a
2+x 2

) from each denominator, we obtain

0, & =Zf/+aY2F d</>

jo
d(C°S ')[(1_2a cos T)"

3/2-(l + 2a cos yy
3/2

]

(2.23)

where a = ax/(a
2+x2

). We observe that in the expansion of the radicals only odd

powers of a cos 7 will appear:

[(l-2a cos 7)- 3/2-(l + 2a cos 7)" 3/2
] = 6a cos 7+35a 3

cos
3 7+. . • (2.24)
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rvr
Jo Jo

(2.25)

It is now necessary to integrate odd powers of cos y over d<f>' d(cos 0'):

d(cOS 0') COS 7 = 7T cos

J
dp

J
d(cos 0') cos

3
7 =^ cos 0(3- cos

2
0)

If (2.24) and (2.25) are inserted into (2.23), the potential becomes

^/ m\ 3VaVx 3
(x

2-a 2

)\ J 1x 35 aV „ 2 ... 1 „ -~
(I>(x,0,*) =^(R^^jcos0[l +^^TO7 (3-cos e)+-..J (2.26)

We note that only odd powers of cos appear, as required by the symmetry of

the problem. If the expansion parameter is (a
2
/x

2

), rather than a 2
, the series

takes on the form:

<D(x, 0, <f>)
=^^[cos (§ cos

3 0-1 cos 0)+ - •

•] (2.27)

For large values of x/a this expansion converges rapidly and so is a useful

representation for the potential. Even for x/a=5, the second term in the series is

only of the order of 2 per cent. It is easily verified that, for cos 0=1, expression

(2.27) agrees with the expansion of (2.22) for the potential on the axis. [The

particular choice of angular factors in (2.27) is dictated by the definitions of the

Legendre polynomials. The two factors are, in fact, Pi (cos 0) and P3(cos 0), and

the expansion of the potential is one in Legendre polynomials of odd order. We
shall establish this in a systematic fashion in Section 3.3.]

2.8 Orthogonal Functions and Expansions

The representation of solutions of potential problems (or any mathematical

physics problem) by expansions in orthogonal functions forms a powerful

technique that can be used in a large class of problems. The particular

orthogonal set chosen depends on the symmetries or near symmetries involved.

To recall the general properties of orthogonal functions and expansions in terms

of them, we consider an interval (a, b) in a variable £ with a set of real or

complex functions l/n (£), n= 1, 2, . .
. ,

square integrable and orthogonal on the

interval (a, b). The orthogonality condition on the functions (/„(£) is expressed

by

J
Ut(t)Um(Z)dt = 0, m*n (2.28)

If n = m, the integral is nonzero. We assume that the functions are normalized

so that the integral is unity. Then the functions are said to be orthonormal, and

they satisfy

fV^)1/^)^=8™ (2.29)
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An arbitrary function /(£), square integrable on the interval (a, b), can be

expanded in a series of the orthonormal functions U„(£). If the number of terms

in the series is finite (say N),

f(&**t<lnUn(& . (2.30)
n= 1

then we can ask for the "best" choice of coefficients a„ so that we get the "best"

representation of the function /(£). If "best" is defined as minimizing the mean
square error MN :

Mn= f I f{&- 1 "nUn(Z) \(% (2.31)
Ja \ n=l

|

it is easy to show that the coefficients are given by

an=J
a

b

U!(€)f(©de (2.32)

where the orthonormality condition (2.29) has been used. This is the standard

result for the coefficients in an orthonormal function expansion.

If the number of terms N in series (2.30) is taken larger and larger, we
intuitively expect that our series representation of /(£) is "better" and "better."

Our intuition will be correct provided the set of orthonormal functions is

complete, completeness being defined by the requirement that there exist a finite

number N such that for N>N the mean square error MN can be made smaller

than any arbitrarily small positive quantity. Then the series representation

n= 1

with an given by (2.32) is said to converge in the mean to /(£). Physicists generally

leave the difficult job of proving completeness of a given set of functions to the

mathematicians. All orthonormal sets of functions normally occurring in

mathematical physics have been proved to be complete.

Series (2.33) can be rewritten with the explicit form (2.32) for the coefficients

a„:

«f)=f{i^(?)Un(&}m de (2.34)

Since this represents any function /(£) on the interval (a, b), it is clear that the

sum of bilinear terms Ut(ff)Un(& must exist only in the neighborhood of = £
In fact, it must be true that

Iu!(?)U»(€) = 8(r-{) (2.35)
n=l

This is the so-called completeness or closure relation. It is analogous to the
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orthonormality condition (2.29), except that the roles of the continuous variable

£ and the discrete index n have been interchanged.

The most famous orthogonal functions are the sines and cosines, an expansion

in terms of them being a Fourier series. If the interval in x is (-a/2, a/2), the

orthonormal functions are

[2 . (2irmx\ [2 (2imxx\

Va S,nl^> Va COS l^-)
where m is an integer and for m = the cosine function is 1/Va. The series

equivalent to (2.33) is customarily written in the form:

where

/(x) =Uo+| [Aw cos (^P)+Bm sin (^p)] (2.36)

_ 2
(

a/2

, . (2irmx\ .

(2.37)

If the interval spanned by the orthonormal set has more than one dimension,

formulas (2.28)-(2.33) have obvious generalizations. Suppose that the space is

two dimensional, and that the variable £ ranges over the interval (a, b) while the

variable -n has the interval (c, d). The orthonormal functions in each dimension

are U„(£) and Vm(r)). Then the expansion of an arbitrary function /(£, -n) is

f(fc t|) = L Z anmUn(£)Vm(r]) (2.38)

where

anm =jNfdT,U?(€)^(T,)/(& T]) (2 -39)

If the interval (a, b) becomes infinite, the set of orthogonal functions Un(&
may become a continuum of functions, rather than a denumerable set. Then the

Kronecker delta symbol in (2.29) becomes a Dirac delta function. An important

example is the Fourier integral. Start with the orthonormal set of complex

exponentials,

Um (x) = -^e i(2™x/a)
(2.40)

va

m = 0, ±1, ±2, . .
.

, on the interval (-a/2, a/2), with the expansion:

f(*)=4= t Ame
i(2™x/a)

(2.41)
va m =-=c

where
a/2

f(x') dx' (2.42)
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Then let the interval become infinite (a-»o°), at the same time transforming

2irm

[ dm =-— f dk >

m J-oo Z7T J oc

A(k)

The resulting expansion, equivalent to (2.41), is the Fourier integral,

/(x)=
vfef

Mk)eikxdk

where

A(k) =
^=J°°

e"
ik7W dx

The orthogonality condition is

^- P e
i(k- k)x

dx = 8(k-k')
Z7T J-oo

while the completeness relation is

-M e
ik(x~x)

dk = 8(x-x')
Z7T J-oo

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

These last integrals serve as convenient representations of a delta function. We
note in (2.44)-(2.47) the complete equivalence of the two continuous variables x

and k.

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates

The partial differential equations of mathematical physics are often solved

conveniently by a method called separation of variables. In the process, one often

generates orthogonal sets of functions which are useful in their own right.

Equations involving the three-dimensional Laplacian operator are known to be

separable in eleven different coordinate systems (see Morse and Feshbach, pp.

509, 655). We will discuss only three of these in any detail—rectangular,

spherical, and cylindrical—and will begin with the simplest, rectangular coordi-

nates.

The Laplace equation in rectangular coordinates is
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A solution of this partial differential equation can be found in terms of three

ordinary differential equations, all of the same form, by the assumption that the

potential can be represented by a product of three functions, one for each

coordinate:

d>(x,y,z) = X(x)Y(y)Z(z) (2.49)

Substitution into (2.48) and division of the result by (2.49) yields

_L<q+ 1 ^ 1
£Z_

(2.50)
X(x) dx

2
Y(y) dy

2
Z(z) dz'

where total derivatives have replaced partial derivatives, since each term

involves a function of one variable only. If (2.50) is to hold for arbitrary values of

the independent coordinates, each of the three terms must be separately

constant:

2 a
2=~OL

1 d
2X 2

X dx

l^=-fl 2

Ydy 2 *

7
2IcfZ

Z dz
2=7

where

(2.51)

a 2
+ p

2 = 7
2

If we arbitrarily choose a 2 and |3
2
to be positive, then the solutions of the three

ordinary differential equations (2.51) are exp(±iax), exp(±i/3y),

exp (±Va 2
+|3

2
z). The potential (2.49) can thus be built up from the product

solutions:

<S> = c
*toe**V

,/=J*IIz
(2.52)

At this stage a and |3 are completely arbitrary. Consequently (2.52), by linear

superposition, represents a very large class of solutions to the Laplace equation.

To determine a and |3 it is necessary to impose specific boundary conditions

on the potential. As an example, consider a rectangular box, located as shown in

Fig. 2.9, with dimensions (a, b, c) in the (x, y, z) directions. All surfaces of the

box are kept at zero potential, except the surface z = c, which is at a potential

V(x, y). It is required to find the potential everywhere inside the box. Starting

with the requirement that <I> = for x = 0, y = 0, z = 0, it is easy to see that the

required forms of X, Y, Z are

X=sin ax

Y=sin (3y

Z = sinh (Va
2+02

z)
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$ = o-

f = V(x,y)

f =

= 6

v# =

Fig. 2.9 Hollow, rectangular box with five sides at zero potential, while the sixth (z = c)

has the specified potential <J>= V(x, y).

In order that 4> = at x = a and y = b, it is necessary that aa = nir and |3b = mix.

With the definitions,

M77
Oin =

0~ =T
2+

b
2

(2.54)

we can write the partial potential Onm ,
satisfying all the boundary conditions

except one,

3>nm = sin (anx) sin (0my) sinh (ynmz) (2.55)

The potential can be expanded in terms of these <£>nm with initially arbitrary

coefficients (to be chosen to satisfy the final boundary condition):

<£(x, y, z) = £ A«m sin («**) sin (Pmy) sinh (7nmZ)
n,m=l

There remains only the boundary condition <$= V(x, y) at z = c:

V(x, y) = X A«m sin (a„x) sin (|3my) sinh (y„mc)

(2.56)

(2.57)

This is just a double Fourier series for the function V(x, y). Consequently the

coefficients Anm are given by:

ab sinh (ynmc)
j^dxj^dy V(x, y) sin (anx) sin (/^y) (2.58)
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If the rectangular box has potentials different from zero on all six sides, the

required solution for the potential inside the box can be obtained by a linear

superposition of six solutions, one for each side, equivalent to (2.56) and (2.58).

The problem of the solution of the Poisson equation, that is, the potential inside

the box with a charge distribution inside, as well as prescribed boundary

conditions on the surface, requires the construction of the appropriate Green

function, according to (1.43) and (1.44). Discussion of this topic will be deferred

until we have treated the Laplace equation in spherical and cylindrical coordi-

nates. For the moment, we merely note that solution (2.56) and (2.58) is

equivalent to the surface integral in the Green function solution (1.44).

2.10 A Two-Dimensional Potential Problem, Summation
of a Fourier Series

We now consider briefly the solution by separation of variables of the two-

dimensional Laplace equation in Cartesian coordinates. By two-dimensional

problems we mean those in which the potential can be assumed to be

independent of one of the coordinates, say, z. This is usually only an approxima-

tion, but may hold true to high accuracy, as in a long uniform transmission line.

If the potential is independent of z, the basic solutions of the previous section

reduce to the products

where a is any real or complex constant. The imposition of boundary conditions

on the potential will determine what values of a are permitted and the form of

the linear superposition of different solutions required.

A simple problem that can be used to demonstrate the separation of variables

technique and also establish connection with the use of complex variables is

indicated in Fig. 2.10. The potential in the region, 0<x<a, y^O, is desired,

subject to the boundary conditions that 3> = at x = and x = a, while <!>= V at

y = 0for0<x<a and <£—»0 for large y. Inspection of the basic solutions shows

that a is real and that, in order to have the potential vanish at x = and x = a for

all y and as y— the proper linear combinations are e~
ay

sin (ax) with a = mr/a.

The linear combination of solutions satisfying the boundary conditions on three

of the four boundary surfaces is thus

The coefficients A„ are determined by the requirement that 3> = V for y = 0,

0<x<a. As discussed in Section 2.8, the Fourier coefficients are

e

y) = Z A* exP (-niry/a) sin (mrx/a) (2.59)
n=l

(2.60)
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<t> =

* = $ = o-

y/a = 0.5

;v/a = 0.1

3.

Fig. 2.10 Two-dimensional potential problem.

With 4>(x, 0)= V, one finds

A=4Vfl for n odd

7rnl0 for n even

The potential <I>(x, y) is therefore determined to be

4V v 1
®(x>y) =— h — exp (-mry/a) sin (mrx/a) (2.61)

77 noddH

For small values of y many terms in the series are necessary to give an accurate

approximation, but for y>alir it is evident that only the first few terms are

appreciable. The potential rapidly approaches its asymptotic form given by the

first term,

4V
<£(x, y)—>— exp (-Try/a) sin (-rrx/a) (2.62)

Paranthetically, we remark that this general behavior is characteristic of all

boundary-value problems of this type, independently of whether <I>(x, 0) is a

constant or not, provided the first term in the series is nonvanishing. The
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coefficient Ai (2.60) will be different, but the smooth behavior in x of the

asymptotic solution sets in for yS:a, regardless of the complexities of <I>(x, 0).

This is shown quantitatively for the present example in Fig. 2.11 where the

potential along the two dashed lines, y/a = 0.1, 0.5, of Fig. 2.10 is plotted. The
solid curves are the exact potential, the dotted, the first term (2.62). Close to

the boundary (y/a = 0.1) the curves differ appreciably, but for y/a = 0.5 the

asymptotic form is already an excellent approximation.

There are many Fourier series that can be summed to give an answer in closed

form. The series in (2.61) is one of them. We proceed as follows. Observing that

sin = lm (e
ie

), where Im stands for the imaginary part, we see that (2.61) can be

written as

x/a

Fig. 2.11 Potentials at y/a = 0.1, 0.5 (along the dashed lines of Fig. 2.10) as functions of

x/a. The solid curves are the exact solution; the dashed curves are the first term in the

series solution (2.61).
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With the definition,

Z = e
(m/a)U+,y)

(2.63)

this can be put in the suggestive form,

<D(x,y) =— Iml —
TT nodd 1

At this point we can perhaps recall the expansion,*

In (l + Z) = Z-|Z2+!Z3-iZ4+- • •

Evidently,

nTdd n 2 \1—Z/
and

*(x,y)=^Im[ln(i±|)] (2.64)

Since the imaginary part of a logarithm is equal to the phase of its argument, we
consider

l +Z^ (l + Z)(l-Z*) ^ l-|Z|
2+2nmZ

1-Z |1-Z|
2

|1-Z|
2

The phase of the argument of the logarithm is thus tan
-1

[2 Im Z/(l — |Z|
2
)]. With

the explicit form (2.63) of Z substituted, it is found that the potential becomes

sin—
=— tan-

1/——\
77

sinh—
a

The branch of the tangent curve corresponds to the angle lying between and

it12. The infinite series (2.61) has been transformed into the explicit closed form

(2.65). The reader may verify that the boundary conditions are satisfied and that

the asymptotic form (2.62) emerges in a simple manner.

The potential (2.64) with Z given by (2.63) is obviously related to functions of

a complex variable. This connection is a direct consequence of the fact that the

real or the imaginary part of an analytic function satisfies the Laplace equation in

two dimensions as a result of the Cauchy-Riemann equations. As already

mentioned at the beginning of the chapter, we omit discussion of the complex-

variable technique, not because it is unimportant but for lack of space and

because completely adequate discussions exist elsewhere. Some of these sources

are listed at the end of the chapter. The methods of summation of Fourier series,

with many examples, are described in Collin, Appendix A. 6.

* Alternatively, we observe that {dldZ){ Ĵ
{Z n

ln)
S

j= f]Z
n = 1/(1- Z). Integration

then gives £ (Zn
/n) = -In (1-Z).



Sect. 2.11 Boundary-Value Problems in Electrostatics: I 75

2.11 Fields and Charge Densities in Two-Dimensional
Corners and Along Edges

In many practical situations conducting surfaces come together in a way that can

be approximated, on the small scale at least, as the intersection of two planes.

The edges of the box shown in Fig. 2.9 are one example, the corners at x = 0,

y = and x = a, y = in Fig. 2.10 another. It is useful therefore to have an

understanding of how the potential, the fields, and the surface charge densities

behave in the neighborhood of such sharp "corners" or edges. We shall assume

that they are infinitely sharp so that we can look at them closely enough that the

behavior of the fields is determined in functional form solely by the properties of

the "corner" being considered and not by the details of the overall configuration.

The general situation in two dimensions is shown in Fig. 2.12. Two conducting

planes intersect at an angle j3. The planes are assumed to be held at potential V.

Remote from the origin and not shown in the figure are other conductors or

possibly configurations of charges that specify the potential problem uniquely.

Since we are interested in the functional behavior of the fields, etc. near the

origin, but not in the absolute magnitudes, we leave the "far away" behavior

unspecified as much as possible.

The geometry of Fig. 2.12 suggests use of polar rather than Cartesian

coordinates. In terms of the polar coordinates (p, <(>), the Laplace equation in two

dimensions is

(2.66)

Using the separation of variables approach, we substitute

<D(p, </>) = R(pW<f>)

y

o

• p

x

Fig. 2.12 Intersection of two conducting planes defining a corner in two dimensions
with opening angle |3.
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This leads, upon multiplication by p
2
/<I>, to

p d( dR\ 1 d
2V n

Since the two terms are separately functions of p and c/>, respectively, they each

must be constant:

p d( dR\ 2 ld2^ 2

The solutions to these equations are

R(p) = ap
v+bp- v

=A cos (W>)+B sin (ixf>)

For the special circumstance of v = 0, the solutions are

R(p) = a +bo In p

^(<f>) = Ao+B (/>

(2.69)

(2.70)

These are the building blocks with which we construct the potential by linear

superposition.

Although not central to our present purpose, we note the general solution of

the Laplace equation in two dimensions when the full azimuthal range is

permitted as, for example, for the potential between two cylindrical surfaces,

p= a and p= b, on which the potential is given as a function of
<J>.

If there is no

restriction on <f>, it is necessary that v be a positive or negative integer or zero in

order that the potential be single-valued. Furthermore, for v=0, the constant B
in (2.70) must vanish for the same reason. The general solution is therefore of

the form,

<I>(p, <f>)
= ao+bb In p+ X anp" sin (n4>+an)+ £ b„p~

n
sin (n<J>+0n ) (2.71)

n=l n=

1

If the origin is included in the volume in which there is no charge, all the bn are

zero. Only a constant and positive powers of p appear. If the origin is excluded,

the bn can be different from zero. In particular, the logarithmic term is equivalent

to a line charge on the axis with charge density per unit length A= — bo/2, as is

well known.

For the situation of Fig. 2.12 the azimuthal angle is restricted to the range,

0<<f><|3. The boundary conditions are that <I>= V for all p>0 when <f>=0 and

<f>=0- This requires that bo = Bo = in (2.70) and b = and A = in (2.69).

Furthermore, it requires that v be chosen to make sin(y/3) = 0. Hence
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and the general solution becomes

4>(p, <« = V+ t «mp
miT/p

sin (m7r<f>/0) (2.72)
m = l

The still undetermined coefficients am depend on the potential remote from the

corner at p = 0. Since the series involves positive powers of p
w/p

, for small enough

p only the first term in the series will be important.* Thus, near p = 0, the

potential is approximately

<D(p,</>)- V + aip
w/p

sin (<jr<f>/0) (2.73)

The electric field components are

EP (p, +) = p'"'6'- 1
sin (wf/p)

E*(p
' *> - ~l JjT

p<
"8>" COS (lrW)l

(2.74)

The surface charge densities at </>= and <f>= |3 are equal and are approximately

<r(p) =
E4^0)^_^ p(ww_ I

(275)

The components of the field and the surface charge density near p = all vary

with distance as p
(lT/p)-1

. This dependence on p is shown for some special cases in

Fig. 2.13 Variation of the surface charge density (and the electric field) with distance p
from the "corner" or edge for opening angles |3 = 7r/4, it/2, it, 3tt/2, and 2tt.

Fig. 2.13. For a very deep corner (small 0) the power of p becomes very large.

Essentially no charge accumulates in such a corner. For /3 = tt (a flat surface), the

field quantities become independent of p, as is intuitively obvious. When /3>7r,

the two-dimensional corner becomes an edge and the field and the surface

* Here we make a necessary assumption about the remote boundary conditions,

namely, that they are such that the coefficient a x is not zero. Ordinarily this is no concern,

but special symmetries might make a x or even a2 , etc. vanish. These unusual examples
must be treated separately.



78 Classical Electrodynamics Refs. 2

charge density become singular as p—»0. For P = 2tt (the edge of a thin sheet) the

singularity is as p~ 1/2
. This is still integrable so that the charge within a finite

distance from the edge is finite, but it implies that field strengths become very

large at the edges of conducting sheets (or, in fact, for any configuration where

/3>77).

The above two-dimensional electrostatic considerations apply to many three-

dimensional situations, even with time-varying fields. If the edge is a sharp edge

of finite length, as the edge of a cube away from a corner, then sufficiently close

to the edge the variation of the potential along the edge can be ignored. The
two-dimensional considerations apply, although the coefficient ai in (2.75) may
vary with distance along the edge. Similarly, the electrostatic arguments are valid

even for time-varying fields. The point here is that with time dependence

another length enters, namely, the wavelength. Provided one is concerned with

distances away from the edge that are small compared to a wavelength, as well as

other relevant distances, the behavior of the fields reduces to electrostatic or

magnetostatic behavior. In the diffraction of microwaves by a hole in a thin

conducting sheet, for example, the fields are singular as p~m as p—»0, where p is

the distance from the boundary of the hole, and this fact must be taken into

account in any exact solution of the diffraction problem.

The singular behavior of the fields near sharp edges is the reason for the

effectiveness of lightning rods. In the idealized situation discussed here the field

strength increases without limit as p—»0, but for a thin sheet of thickness d with a

smoothly rounded edge it can be inferred that the field strength at the surface

will be proportional to d~
m

. For small enough d this can be very large. In

absolute vacuum such field strengths are possible, but in air electrical breakdown

and a discharge will occur if the field strength exceeds a certain value (depending

on the exact shape of the electrode, its proximity to the other electrodes, etc.,

but greater than about 2.5 x 10
4
volts/cm for air at N.T.P., sometimes by a factor

of four). In thunderstorms, with large potential differences between the ground

and the thunderclouds, a grounded sharp conducting edge, or better, a point (see

Section 3.4), will have breakdown occur around it first and will then provide one

end of the jagged conducting path through the air along which the lightning

discharge travels.
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PROBLEMS

2.1 A point charge q is brought to a position a distance d away from an infinite plane

conductor held at zero potential. Using the method of images, find:

(a) the surface-charge density induced on the plane, and plot it;

(b) the force between the plane and the charge by using Coulomb's law for the force

between the charge and its image;

(c) the total force acting on the plane by integrating 27rcr
2 over the whole plane;

(d) the work necessary to remove the charge q from its position to infinity;

(e) the potential energy between the charge q and its image [compare the answer to

(d) and discuss].

(/) Find answer (d) in electron volts for an electron originally one angstrom from the

surface.

2.2 Using the method of images, discuss the problem of a point charge q inside a

hollow, grounded, conducting sphere of inner radius a. Find

(a) the potential inside the sphere;

(b) the induced surface-charge density;

(c) the magnitude and direction of the force acting on q.

Is there any change in the solution if the sphere is kept at a fixed potential V? If the

sphere has a total charge Q on its inner and outer surfaces?

2.3 Consider a potential problem in the half-space defined by z^O, with Dirichlet

boundary conditions on the plane z = (and at infinity).
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(a) Write down the appropriate Green function G(x, x').

(b) If the potential on the plane z = is specified to be 3> = V inside a circle of radius a
centered at the origin, and <I> = outside that circle, find an integral expression for the

potential at the point P specified in terms of cylindrical coordinates (p, <j>, z).

(c) Show that, along the axis of the circle (p = 0), the potential is given by

<D=v(l--J=)

(d) Show that at large distances (p
2+z 2 »a 2

) the potential can be expanded in a power
series in (p

2+z 2

)

-1
, and that the leading terms are

Va 2
z [ 3a 2

5(3p
2
a

2+a 4

)

2 (p
2+z 2

)

3/2
L 4(p

2+z 2

) 8(p
2+z 2

)

2 '

Verify that the results of (c) and (d) are consistent with each other in their common
range of validity.

2.4 A two-dimensional potential problem is defined by two straight parallel line

charges separated by a distance R with equal and opposite linear charge densities A

and -A.

(a) Show by direct construction that the surface of constant potential V is a circular

cylinder (circle in the transverse dimensions) and find the coordinates of the axis of the

cylinder and its radius in terms of R, A, and V.

(b) Use the results of (a) to show that the capacitance per unit length C of two
right-circular cylindrical conductors, with radii a and b, separated by a distance

d>a+b, is

1

2 cosh (
d

2-a 2-b2
\

\ lab )

(c) Verify that the result for C agrees with the answer in Problem 1.7 in the

appropriate limit and determine the next nonvanishing order correction in powers of

aid and bid.

(d) Repeat the calculation of the capacitance per unit length for two cylinders inside

each other (d<\b-a\). Check the result for concentric cylinders (d = 0).

2.5 An insulated, spherical, conducting shell of radius a is in a uniform electric field

Eo. If the sphere is cut into two hemispheres by a plane perpendicular to the field, find

the force required to prevent the hemispheres from separating

(a) if the shell is uncharged;

(b) if the total charge on the shell is Q.

2.6 A large parallel plate capacitor is made up of two plane conducting sheets, one of

which has a small hemispherical boss of radius a on its inner surface. The conductor

with the boss is kept at zero potential, and the other conductor is at a potential such

that far from the boss the electric field between the plates is E .

(a) Calculate the surface-charge densities at an arbitrary point on the plane and on
the boss, and sketch their behavior as a function of distance (or angle).

(b) Show that the total charge on the boss has the magnitude 3E a
2
/4.

(c) If, instead of the other conducting sheet at a different potential, a point charge q is

placed directly above the hemispherical boss at a distance d from its center, show that
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the charge induced on the boss is

d
2-a 2

1

ds/d
2 + a

2
\

2.7 A line charge with linear charge density t is placed parallel to, and a distance R
away from, the axis of a conducting cylinder of radius b held at fixed voltage such that

the potential vanishes at infinity. Find

(a) the magnitude and position of the image charge(s);

(b) The potential at any point (expressed in polar coordinates with the origin at the

axis of the cylinder and the direction from the origin to the line charge as the x axis),

including the asymptotic form far from the cylinder;

(c) the induced surface-charge density, and plot it as a function of angle for R/b = 2, 4

in units of r/lirb;

(d) the force on the charge.

2.8 Starting with the series solution (2.71) for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, evaluate the

coefficients formally, substitute them into the series, and sum it to obtain the potential

inside the cylinder in the form of Poisson's integral:

What modification is necessary if the potential is desired in the region of space

bounded by the cylinder and infinity?

2.9 (a) Two halves of a long hollow conducting cylinder of inner radius b are separated

by small lengthwise gaps on each side, and are kept at different potentials V\ and V2 .

Show that the potential inside is given by

where
<f> is measured from a plane perpendicular to the plane through the gap.

(b) Calculate the surface-charge density on each half of the cylinder.

2.10 A variant of the previous two-dimensional problem is a long hollow conducting
cylinder of radius b that is divided into equal quarters, alternate segments being held at

potential +V and -V.
(a) Solve by means of the series solution (2.71) and show that the potential inside the
cylinder is

b
2+ p

2-2bp cos - 4>)

d<j>'

(b) Sum the series and show that

(c) Sketch the field lines and equipotentials.
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2.11 (a) Use the method of images to show that the two-dimensional Dirichlet Green
function for the exterior problem of a cylinder of radius b is

[ b [p + p — 2pp cos (<t>— 4> )] j

L b
2

|p— p'|
2

J

where p and p' are coordinate vectors in the plane.

(b) Use this Green function to verify the result of Problem 1.7.

(c) What modifications, if any, are needed for the interior problem?

2.12 (a) Use the Green function of Problem 2.1 1 and the solution (1.44) to obtain the

Poisson integral form of the solution (Problem 2.8) for the Dirichlet problem in a

circle.

(b) Use Cauchy's theorem to derive the Poisson integral solution. Cauchy's theorem
states that if F(z) is analytic in a region R bounded by a closed curve C, then

1 IM^= Wz) if2is
ins.de

Z7ri Jc z — z 10 outside

Hint : You may wish to add an integral that vanishes (associated with the image point)

to the integral for the point inside the circle.

2.13 A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and

x = a, y — a, z = a. The walls z = and z = a are held at a constant potential V. The
other four sides are at zero potential.

(a) Find the potential <I>(x, y, z) at any point inside the cube.

(b) Evaluate the potential at the center of the cube numerically, accurate to three

significant figures. How many terms in the series is it necessary to keep in order to

attain this accuracy? Compare your numerical result with the average value of the

potential on the walls. See Problem 2.16.

(c) Find the surface-charge density on the surface z = a.

2.14 The two-dimensional region, p>a, 0<(f>< 0, is bounded by conducting surfaces at

4>— 0, p = a, and <f>= |3 held at zero potential, as indicated in the sketch. At large p the

potential is determined by some configuration of charges and/or conductors at fixed

potentials.

Problem 2.14
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(a) Write down a solution for the potential <t>(p, <f>) that satisfies the boundary
conditions for finite p.

(b) Keeping only the lowest nonvanishing terms, calculate the electric field compo-
nents Ep and and also the surface charge densities cr(p, 0), cr(p, |3), and cr(a, (/>) on
the three boundary surfaces.

(c) Consider |3 = 7r (a plane conductor with a half-cylinder of radius a on it). Show that

far from the half-cylinder the lowest order terms of (b) give a uniform electric field

normal to the plane. Sketch the charge density on and in the neighborhood of the

half-cylinder. For fixed electric field strength far from the plane, show that the total

charge on the half-cylinder (actually charge per unit length in the z direction) is twice

as large as would reside on a strip of width 2a in its absence. Show that the extra

portion is drawn from regions of the plane nearby, so that the total charge on a strip of

width large compared to a is the same whether the half-cylinder is there or not.

2.15 Consider the two-dimensional wedge-shaped region of Problem 2. 14, with = 2tt.

This corresponds to a semiinfinite thin sheet of conductor on the positive x axis from x = a

to infinity with a conducting cylinder of radius a fastened to its edge.

(a) Sketch the surface charge densities on the cylinder and on the top and bottom of

the sheet, using the lowest order solution.

(b) Calculate the total charge on the cylinder and compare with the total deficiency of

charge on the sheet near the cylinder, that is, the total difference in charge for a finite

compared with a = 0, assuming that the charge density far from the cylinder is the

same.

2.16 A closed volume is bounded by conducting surfaces that are the n sides of a regular

polyhedron (n = 4, 6, 8, 12, 20). The n surfaces are at different potentials V
t ,

i = 1, 2, . .
.

, n. Prove in the simplest way you can that the potential at the center of the

polyhedron is the average of the potential on the n sides. This problem bears on
Problem 2.13(b), and has an interesting similarity to the result of Problem 1.10.



3
Boundary-Value Problems
in Electrostatics: II

In this chapter the discussion of boundary-value problems is continued. Spheri-

cal and cylindrical geometries are first considered, and solutions of the Laplace

equation are represented by expansions in series of the appropriate orthonormal

functions. Only an outline is given of the solution of the various ordinary

differential equations obtained from the Laplace equation by separation of

variables, but an adequate summary of the properties of the different functions is

presented.

The problem of construction of Green functions in terms of orthonormal

functions arises naturally in the attempt to solve the Poisson equation in the

various geometries. Explicit examples of Green functions are obtained and

applied to specific problems, and the equivalence of the various approaches to

potential problems is discussed.

3.1 Laplace Equation in Spherical Coordinates

In spherical coordinates (r, 0, <(>), shown in Fig. 3.1, the Laplace equation can be

written in the form:

If a product form for the potential is assumed, then it can be written:

0=Mr)p(6)0((W (3>2)

When this is substituted into (3.1), there results the equation:

n^d
2 U, UQ d(. n dP\, UP d

2Q nP0
-dS+TlhTe Te\

sm 6
derrWeW=

84
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Fig. 3.1

If we multiply by r
2
sin

2 0/UPQ, we obtain:

2 . 2 Jld 2UJ_
1 d(. a dP\]^ld

2

ft
r sm ^__+_^_^sin0 __jj +___= o (3.3)

The
<f>

dependence of the equation has now been isolated in the last term.

Consequently that term must be a constant which we call (-m2
):

1 d
2Q

This has solutions
O d<f>

:
-m (3.4)

(3.5)

In order that Q be single valued, m must be an integer if the full azimuthal range

is allowed. By similar considerations we find separate equations for P(0) and

U(r):

sin dO(-•SM
d

2U 1(1+1)

P=0

L/=0

(3.6)

(3.7)
dr

z
r
z

where ((i+1) is another real constant.

From the form of the radial equation it is apparent that a single power of r

(rather than a power series) will satisfy it. The solution is found to be:

U=Arl+1+ Br~
l

(3.8)

but / is as yet undetermined.

3.2 Legendre Equation and Legendre Polynomials

The 6 equation for P(0) is customarily expressed in terms of x = cos 0, instead of

itself. Then it takes the form:

d_

dx
(3.9)
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This equation is called the generalized Legendre equation, and its solutions are

the associated Legendre functions. Before considering (3.9) we will outline the

solution by power series of the ordinary Legendre differential equation with

m 2 = 0;

A
dx

[(l-x 2)g]+/(J+l)P=0 (3.10)

We assume that the whole range of cos 0, including the north and south poles, is

in the region of interest. The desired solution should then be single valued, finite,

and continuous on the interval —1<x<1 in order that it represents a physical

potential. The solution will be assumed to be represented by a power series of

the form:

P(x) = x~ft
a

i
x i

(3.11)
j=0

where a is a parameter to be determined. When this is substituted into (3.10),

there results the series:

Z{(«+j)(a+J^ (3.12)

In this expansion the coefficient of each power of x must vanish separately. For

/ = 0, 1 we find that

if a *0, then <*(a-l) =
if ai#0, then a(a+l) =

(3.13)

while for a general / value

n
_r(a+j)(q+j+l)-K^l)

l n , A ,

a,+2 = —
/ ,

- iiw ,
—

\

a
i

(3.14)
L (a+ j + l)(o:+ j + 2) J

A moment's thought shows that the two relations (3.13) are equivalent and that

is is sufficient to choose either a or a x different from zero, but not both. Making
the former choice, we have oc = or a=\. From (3.14) we see that the power

series has only even powers of x (a = 0) or only odd powers of x (a=l).

For either of the series a = or a = 1 it is possible to prove the following

properties:

(a) the series converges for x
2 <l, regardless of the value of /;

(b) the series diverges at x= ±l, unless it terminates.

Since we want a solution that is finite at x = ±1, as well as for x
2< 1, we demand

that the series terminate. Since a and j are positive integers or zero, the

recurrence relation (3.14) will terminate only if / is zero or a positive integer. Even

then only one of the two series converges at x = ±1. If / is even (odd), then only
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the a = (a= 1) series terminates.* The polynomials in each case have x' as their

highest power of x, the next highest being x'
-2

, and so on, down to x°(x) for I

even (odd). By convention these polynomials are normalized to have the value

unity at x = + 1 and are called the Legendre polynomials of order /, Pi(x). The first

few Legendre polynomials are:

Po(x) = l

Pi(x) = x

P2(x) = K3x
2-l)

P3(x)=K5x
3-3x)

P4(x) =K35x
4-30x 2

+3)J

By manipulation of the power series solutions (3.11) and (3.14) it is possible to

obtain a compact representation of the Legendre polynomials, known as

Rodrigues' formula:

P1(x) = 2^^,(x 2
-l)' (3.16)

[This can be obtained by other, more elegant means, or by direct f-fold

integration of the differential equation (3.10).]

The Legendre polynomials form a complete orthogonal set of functions on the

interval -1<x<1. To prove the orthogonality we can appeal directly to the

differential equation (3.10). We write down the differential equation for P( (x),

multiply by Pi (x), and then integrate over the interval:

r1

pi(xH^[ (i " x2) S] +/a+i)pi(x)
i
dx= ° (3 - i7)

Integrating the first term by parts, we obtain

li [(^
2- 1)^^+ K/+l)PKx)PI(x)]dx = (3.18)

If we now write down (3.18) with I and V interchanged and subtract it from

(3.18), the result is the orthogonality condition:

[IO+lJ-W+l)]]^ Pr(x)P( (x) dx = (3.19)

*For example, if 1 = the a=l series has a general coefficient a, = Oo//+ l for

j = 0, 2, 4, .... Thus the series is a (x+\x 3+\x 5+ - - •). This is just the power series

expansion of a function Q (x) = ^ln ^3*;^, which clearly diverges at x = ±l. For each /

value there is a similar function Q,(x) with logarithms in it as the partner to the

well-behaved polynomial solution. See Magnus and Oberhettinger, p. 59 ff or Magnus,
Oberhettinger and Soni, pp. 151 ff. Whittaker and Watson, Chapter XV, give a treatment

using analytic functions.
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For the integral must vanish. For 1=1', the integral is finite. To determine

its value it is necessary to use an explicit representation of the Legendre

polynomials, e.g., Rodrigues' formula. Then the integral is explicitly:

N'4' wwr d*=2w£ |*(*
2-i) ,

!t(*
2-i>,

*<

Integration by parts / times yields the result:

The differentiation of (x
2— 1)' 21 times yields the constant (2/)!, so that

N,=S5£ (i" x2),dx

The remaining integral can be done by brute force, but also by induction. We
write the integrand as

o-xy=(i-x 2)(i-xT'=(i-x 2y- J

+fl

£(i-x 2

y

Thus we have

Integration by parts in the last integral yields

or

(2/+l)NI
= (2/-l)Nl

_ 1 (3.20)

This shows that (2i+l)Ni is independent of I. For / = 0, with P (x)= 1, we have

N -2. Thus Ni = 2/(21+1) and the orthogonality condition can be written:

J

1

Pr(x)PKx)dx =^j8n (3.21)

and the orthonormal functions in the sense of Section 2.8 are

Ui(x)=yp!±±Pi(x) (3.22)

Since the Legendre polynomials form a complete set of orthogonal functions,

any function f(x) on the interval -1<x<1 can be expanded in terms of them.

The Legendre series representation is:

f(x)=t A,P,(x) (3.23)
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+1

1

-1

1

!

1 1

x > '

-1

where

Fig. 3.2

21+lf 1

x)Pi{x) dx (3.24)

As an example, consider the function shown in Fig. 3.2:

Then

/(x) = +l for x>0
= -1 for x<0

Ai =^[Jo PlW dx ~\\ Pl(x) dx
]

Since Pi(x) is odd (even) about x = if I is odd (even), only the odd I

coefficients are different from zero. Thus, for I odd,

= (2I+l)['p,(
Jo

x) dx (3.25)

By means of Rodrigues' formula the integral can be evaluated, yielding

A, =H)l\(i-D/2
(2/+l)(i-2)!!

(3.26)

where (2n+ 1)! ! =(2n+ l)(2n- l)(2n- 3) • • • x 5 x 3 x 1. Thus the series for f(x) is:

fix) =iPM-!P3(x) +iiP5 (x) (3.27)

Certain recurrence relations among Legendre polynomials of different order

are useful in evaluating integrals, generating higher-order polynomials from

lower-order ones, etc. From Rodrigues' formula it is a straightforward matter to

show that

dPl+1 dP,-!
-(2Z+1)P, = (3.28)

dx dx

This result, combined with differential equation (3.10), can be made to yield
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various recurrence formulas, some of which are:

(/+l)Pl+1 -(2i+l)xPJ +iP.- 1 =

dPi+i dPi . nn ~___ x__ (i+1)P,

= o

Sect. 3.3

ax

(3.29)

As an illustration of the use of these recurrence formulas consider the evaluation

of the integral:

i
=
J i

xP,(x)Pr(x) dx (3.30)

From the first of the recurrence formulas (3.29) we obtain an expression for

xPi(x). Therefore (3.30) becomes

L =
27+T j i

p,(x)[( '+ l)^Vi(x)+BViW]

The orthogonality integral (3.21) can now be employed to show that the integral

vanishes unless l' = l±l, and that, for those values,

i;

2(1+1)

xP,(x)P,<(x) dx =
(2f+l)(2I+3)'

21

(2f-l)(2I+l)'
/'=/-!

(3.31)

These are really the same result with the roles of / and /' interchanged. In a

similar manner it is easy to show that

x
2
P,(x)Pr(x) dx

2(1+1X1+2)
(2J+l)(2l+3)(21+5)'

2{2l
2+2l-\)

(2I-l)(2/+l)(2i+3)'

i'=I+2

(3.32)

where it is assumed that V>1

3.3 Boundary-Value Problems with Azimuthal Symmetry

From the form of the solution of the Laplace equation in spherical coordinates

(3.2) it will be seen that, for a problem possessing azimuthal symmetry, m = in

(3.5). This means that the general solution for such a problem is:

<&(r, e)= X [A,r'+ B,r-
(I+1)

]P,(cos 6)
1 =

(3.33)
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The coefficients A x and B x can be determined from the boundary conditions.

Suppose that the potential is specified to be V(0) on the surface of a sphere of

radius a, and it is required to find the potential inside the sphere. If there are no

charges at the origin, the potential must be finite there. Consequently B
(
= for

all I The coefficients Ai are found by evaluating (3.33) on the surface of the

sphere:

V(0) = X A (a'P,(cos 0) (3.34)
1=0

This is just a Legendre series of the form (3.23), so that the coefficients A x are:

2f+lf 7

\

2a
l

f V(0)P,(cos 0) sin dS (3.35)
Jo

If, for example, V(0) is that of Section 2.7, with two hemispheres at equal and

opposite potentials,

then the coefficients are proportional to those in (3.27). Thus the potential inside

the sphere is:

<D(r, 0)= v[|^P1(cos0)-|(^yP3(cos0)+||(^
5

p5(cos0)
j

(3.36)

To find the potential outside the sphere we merely replace (r/a)
1

by (a/r)
l+1

. The
resulting potential can be seen to be the same as (2.27), obtained by another

means.

Series (3.33), with its coefficients determined by the boundary conditions, is a

unique expansion of the potential. This uniqueness provides a means of

obtaining the solution of potential problems from a knowledge of the potential

in a limited domain, namely on the symmetry axis. On the symmetry axis (3.33)

becomes (with z = r):

<&(z = r)= Z[A,r'+ B,r-
<,+1)

] (3.37)
1=

valid for positive z. For negative z each term must be multiplied by (— 1)'.

Suppose that, by some means, we can evaluate the potential <£(z) at an arbitrary

point z on the symmetry axis. If this potential function can be expanded in a

power series in z = r of the form (3.37), with known coefficients, then the

solution for the potential at any point in space is obtained by multiplying each

power of r
l

and r~
(l+1)

by Pi(cos 0).

At the risk of boring the reader we return to the problem of the hemispheres

at equal and opposite potentials. We have already obtained the series solution in
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two different ways, (2.27) and (3.36). The method just stated gives a third way.

For a point on the axis we have found the closed form (2.22):

3>(z= r)= v[l—t=]
L rVr

2+a2
J

This can be expanded in powers of a
2
/r

2
:

V7T, = i j!

Comparison with expansion (3.37) shows that only odd / values (l=2j— 1) enter.

The solution, valid for all points outside the sphere, is consequently:

<|.(r,e)=^t(-ir^?t^p)V.(cose)
V7r J= i j! V/

This is the same solution as already obtained, (2.27) and (3.36).

An important expansion is that of the potential at x due to a unit point charge

at x':

1

x—

x

ri
= Z 7?r Pi(cos 7)

i=o re* i

(3.38)

where r< (r>) is the smaller (larger) of |x| and |x'|, and 7 is the angle between x and

x', as shown in Fig. 3.3. This can be proved by rotating axes so that x' lies along

the 2 axis. Then the potential satisfies the Laplace equation, possesses azimuthal

symmetry, and can be expanded according to (3.33), except at the point x = x':

1

x—

x

I(Ar'+ Bir-
(,+1)

)P,(cos 7)

If the point x is on the z axis, the right-hand side reduces to (3.37), while the

left-hand side becomes:

1 1 1

x-x' (r
2
+r'

2
-2rr'cos7)

1/2 r-r

Fig. 3.3
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Fig. 3.4 Ring of charge of radius a and total charge q located on the z axis with center at

Expanding, we find, for x on axis,

-x'l r>,? (r>)

For points off the axis it is only necessary, according to (3.33) and (3.37), to

multiply each term by P{(cos y). This proves the general result (3.38).

Another example is the potential due to a total charge q uniformly distributed

around a circular ring of radius a, located as shown in Fig. 3.4, with its axis the z

axis and its center at z = b. The potential at a point P on the axis of symmetry

with z = r is just q divided by the distance AP:

<D(z = r)
(r

2+c -2cr cos a)

where c
2=a2+b2 and a = tan

1

{alb). The inverse distance AP can be expanded

using (3.38). Thus, for r>c,

c'
^(z=r)=qXinPi(cos a)

1=0 r

For r<c, the corresponding form is:

d>(z = r) = q X -m Pi(cos a)
1=0 c

The potential at any point in space is now obtained by multiplying each member
of these series by P((cos 6):

®(r, B)= q X -ttt P«(cos a)P«(cos 0)
1=0 T>

where r< (r>) is the smaller (larger) of r and c.
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3.4 Behavior of Fields in a Conical Hole or near a Sharp Point

Before turning to more complicated boundary value problems, we consider one

with azimuthal symmetry, but with only a limited range of 6. This is a

three-dimensional analog of the situation discussed in Section 2.11. Suppose

that the limited angular region, O<0<|3, 0<<(><27r, is bounded by a conical

conducting surface, as indicated in Fig. 3.5. For /3<7r/2, the region can be

thought of as a deep conical hole bored in a conductor. For j3>ir/2, the region of

space is that surrounding a pointed conical conductor.

The treatment of Section 3.2 for the Legendre differential equation needs

modification. With the assumption of azimuth symmetry, (3.10) is still applica-

ble, but we now seek solutions finite and single-valued on the range of x = cos

of cos p^ x< 1 . Furthermore, since the conducting surface 6 = /3 is at fixed

potential, which we can take to be zero, the solution in cos 6 must vanish at 6 = |3

to satisfy the boundary conditions. Since we demand regularity at x = 1 it is

convenient to make a series expansion around x = 1 instead of x = 0, as was done

with (3.11). With the introduction of the variable,

e-xi-x)

the Legendre equation (3.10) becomes

(3.39)

Fig. 3.5
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where / has been replaced by v to avoid confusion. The corresponding radial

solutions for U(r)/r in (3.2) are r
v
and r~

v ~\ With a power series solution,

substituted into (3.39), the vanishing of the coefficient of the lowest power of £

requires a = 0. The recursion relation between successive coefficients in the

series is then

a,
'

(/+1)
2 (3 -4U)

Choosing a = 1 to normalize the solution to unity at £ = (cos = 1), we have the

series representation,

We first observe that if v is zero or a positive integer the series terminates. The
reader can verify that for v= 1 = 0, 1, 2, . .

.
, the series (3.41) is exactly the

Legendre polynomials (3.15). For v not equal to an integer, (3.41) represents a

generalization and is called a Legendre function of the first kind and order v. The
series (3.41) is an example of a hypergeometric function 2Fi(a, b; c; z) whose

series expansion is

u \ 1
ah z q(q+i)fr(fr+i) z

2

,

Comparison with (3.41) shows that the Legendre function can be written

Pv{x) = 2F,(-v, v+1; 1;^) (3.42)

Here we have returned to our customary variable x = cos 6. The properties of the

hypergeometric functions are well known (see Morse and Feshbach, Chapter 5,

Dennery and Krzywicki, Sections IV. 16-18, Whittaker and Watson, Chapter

XIV). The Legendre function Pv (x) is regular at x=l and for |x|<l, but is

singular at x = - 1 unless v is an integer. Depending upon the value of v it has a

certain number of zeros on the range |x|<l. Since the polynomial Pi(x) has I

zeros for |x| < 1, we anticipate that for real v more and more zeros occur as v gets

larger and larger. Furthermore, the zeros are distributed more or less uniformly

on the interval. In particular, the first zero moves closer and closer to x = 1 as v

increases.

The basic solution to the Laplace boundary-value problem of Fig. 3.5 is

ArvPv(cos 0)

where i>>0 is required for a finite potential at the origin. Since the potential
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must vanish at = /3 for all r, it is necessary that

P„(cos/3) = (3.43)

This is an eigenvalue condition on v. From what was just stated about the zeros

of Pv it is evident that (3.43) has an infinite number of solutions, v=vk

(k=l, 2, . . .), which we arrange in order of increasing magnitude. For v=vu
x = cos |3 is the first zero of PVl (x )- F°r v=v2,x = cos |3 is the second zero of P„2(x),

and so on. The complete solution for the azimuthally symmetric potential in the

region O<0<0 is*

<*>(r, 0) = £ Ak r
v
*PVk (cos 0) (3.44)

k = l

In the spirit of Section 2.11 we are interested in the general behavior of the

potential and fields in the neighborhood of r= and not in the full solution with

specific boundary conditions imposed at large r. Thus we approximate the

behavior of the potential near r= by the first term in (3.44) and write

<D(r, 0)-ArvPv(cos0) (3.45)

where now v is the smallest root of (3.43). The components of electric field and

the surface charge density on the conical conductor are

d<t>Er
=———-vArv PJcos 0)

dr

1 d<PEe = --~^Ar 1'- 1

sin 0PI,(cos 0)
r da

(3.46)

Here the prime on P„ denotes differential with respect to its argument. The fields

and charge density all vary as r
v_1

as r—>0.

The order v for the first zero of Pv(cos 0) is plotted as a function of /3 in Fig.

3.6. Obviously for |3« 1, v»l. An approximate expression for v in this domain

can be obtained from the Bessel function approximation^

Pv(cos 0)-Jo((2r+l) sin|) (3.47)

valid for large v and 0<1. The first zero of J (x) is at x = 2.405. This gives

2.405 1 AQ .

£ (3.48a)

* The orthogonality of the functions P„
k
(cos 6) on the interval cos |3<x< 1 can be

shown in the same way as for P,(cos 0)—see (3.17)-(3.19). Completeness can also be

shown.
t Bessel functions are discussed in Section 3.7.



Fig. 3.6 The order parameter v for the first zero of Pv(cos j3) versus |3 in degrees. The
range 0<|3<90o corresponds to a conical hole, while 90o<{3<180° represents a conical

point. Near r= the fields and surface charge density are proportional to r
v l

. The dotted

curves are the approximate expressions, (3.48a) and (3.48b).

Since |E| and cr vary as r
v_1

there are evidently very small fields and very little

charge deep in a conical hole as |3—»0. For |3 = 7r/2, the conical conductor

becomes a plane. There v= 1 and a <x 1, as expected. For |3>7r/2, the geometry is

that of a conical point. Then v< \ and the field is singular at r= 0. For |3->7r,

v-»0, but rather slowly. An approximation for (77— /3) small is

-[21n(^)P (3.48b)

This shows that for (t7-|3)-10o
, and even for (tt-/3)-1°, In any

event, for a narrow conical point the fields near the point vary as r
_1+e where

e«l. Very high fields exist around the point. The efficacy of such points in

lightning rods is discussed in Section 2.11.
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An extended discussion of potential problems of this general kind is given by

R. N. Hall, J. Appl. Phys. 20, 925 (1949). He has graphs for a number of the

roots vk of (3.43) as functions of |3.

3.5 Associated Legendre Functions and the Spherical Harmonics Y(m (0, <f>)

So far we have dealt with potential problems possessing azimuthal symmetry

with solutions of the form (3.33). Unless the range in is restricted, as in Section

3.4, these involve only ordinary Legendre polynomials. The general potential

problem can, however, have azimuthal variations so that m^O in (3.5) and (3.9).

Then we need the generalization of Pi(cos 0), namely, the solution of (3.9) with

I and m both arbitrary. In essentially the same manner as for the ordinary

Legendre functions it can be shown that in order to have finite solutions on the

interval —l<x< 1 the parameter I must be zero or a positive integer and that the

integer m can take on only the values —(Z— 1), . .
. , 0, . .

. , (Z-l), J. The
solution having these properties is called an associated Legendre function P?(x).

For positive m it is defined by the formula:*

Jm

Prix) = (- l)
m
(l - x

2)""2 P,(x) (3.49)

If Rodrigues' formula is used to represent Pi(x), a definition valid for both

positive and negative m is obtained:

/ 1 \m j!+m
p,m(x)

=

~w~ t 1
-* 2^72

<*
2
- v

l

(3 -5°)

Pf
m
(x) and P;

m
(x) are proportional, since differential equation (3.9) depends

only on m2
and m is an integer. It can be shown that

pr(x)=(-ir^^pr(x) 0.5d

For fixed m the functions Pi
m
(x) form an orthogonal set in the index I on the

interval — 1<x<1. By the same means as for the Legendre functions the

orthogonality relation can be obtained:

{V(x)Pr(x)dx =^^gs,, (3.52)

The solution of the Laplace equation was decomposed into a product of

factors for the three variables r, 6, and cf). It is convenient to combine the angular

* The choice of phase for P,
m
(x) is that of Magnus and Oberhettinger, and of E. U.

Condon and G. H. Shortley in Theory of Atomic Spectra, Cambridge University Press

(1953). For explicit expressions and recursion formulas, see Magnus and Oberhettinger,

p. 54.
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factors and construct orthonormal functions over the unit sphere. We will call

these functions spherical harmonics, although this terminology is often reserved

for solutions of the generalized Legendre equation (3.9). Our spherical har-

monics are sometimes called "tesseral harmonics" in older books. The functions

Qm (</>) = e
im4> form a complete set of orthogonal functions in the index m on the

interval 0<</><27j\ The functions Pi
m
(cos 0) form a similar set in the index I for

each m value on the interval -l<cos 0<1. Therefore their product Pi
mQm will

form a complete orthogonal set on the surface of the unit sphere in the two

indices I, m. From the normalization condition (3.52) it is clear that the suitably

normalized functions, denoted by YJm(0, cf>), are:

21+1 (I-m)!
P,
m
(cos 6)e

ir

4tt (I+m)!

From (3.51) it can be seen that

Yu-m(e, <f>)
= (-l)

mYfm(0, <f>)

The normalization and orthogonality conditions are

[ d<f> f sin d0Y?m-(0, <f>) Yun(6, <f>)
= SnSm <m

Jo Jo

The completeness relation, equivalent to (2.35), is

Z Z Y?m(e',<t>')Ylm(0, (/)) = 8((/>-c^>')5(cose-cos0
,

)

(3.53)

(3.54)

(3.55)

(3.56)

For a few small I values and m>0 the table shows the explicit form of the

Yim(0, <f)). For negative m values (3.54) can be used.

1=0

1=1

Spherical harmonics Yim (0, <f>)

1

Yn = -\/g^;sin 6e

Yio= \H—cos
4 71

1 = 2 Y2 i
= - \/^— sin 6 cos 6e

l

07T

Y2o=\l^(lcos
2
6-k)
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1 = 3

x/4^sin2
0cos 6e

2i*1 MQ5
4 V 2tt

[21Y3 i
= -| y^sin 0(5 cos

2 0- l)e*

7
.— (I cos

3
0-f cos 0)

47T

Note that, for m = 0.

YIO(0, <t>)
= PKcos 0) (3.57)

An arbitrary function g(0, <£>) can be expanded in spherical harmonics:

g(0,<M = Z t AJmYlm(0, c» (3.58)

where the coefficients are

Alm = Jdn Yfm(0, </>)g(0, </>)

A point of interest to us in the next section is the form of the expansion for = 0.

With definition (3.57), we find:

[g(0,<M]e=o=Z V^A,
1=0 ' 477

where

Aio= V^rjdn Pi(cos e) z{6 > +>

(3.59)

(3.60)

All terms in the series with m^0 vanish at = 0.

The general solution for a boundary-value problem in spherical coordinates

can be written in terms of spherical harmonics and powers of r in a generaliza-

tion of (3.33):

<&(r, 0, <f>)
= I Z [Almr'+BImr (l+1)]Ylm(0, cf>) (3.61)

1= m = -I

If the potential is specified on a spherical surface, the coefficients can be

determined by evaluating (3.61) on the surface and using (3.58).

3.6 Addition Theorem for Spherical Harmonics

A mathematical result of considerable interest and use is called the addition

theorem for spherical harmonics. Two coordinate vectors x and x', with spherical

coordinates (r, 0, </>) and (r', 0', $'), respectively, have an angle 7 between them,



Sect. 3.6 Boundary-Value Problems in Electrostatics: II 101

x'

y

Fig. 3.7

as shown in Fig. 3.7. The addition theorem expresses a Legendre polynomial of

order I in the angle 7 in terms of products of the spherical harmonics of the

angles 0, (f>
and 0', cf>':

P'(cOS7) =2^ m?- 1

Y*
m(e '' *'> Yb»< e

' *> (3 '62>

where cos y = cos cos 0'+ sin sin 0' cos (<£-((>'). To prove this theorem we
consider the vector x' as fixed in space. Then P((cos 7) is a function of the angles

0, 4>, with the angles 0',
<f>' as parameters, It may be expanded in a series (3.58):

P«(cos7)=S t Ar»(e',<MYr*(0,<» (3.63)
l'=0 m = -l'

Comparison with (3.62) shows that only terms with f = / appear. To see why this

is so, note that, if coordinate axes are chosen so that x' is on the z axis, then 7
becomes the usual polar angle and Pi(cos 7) satisfies the equation:

V'
2
P,(cos 7)+^p-^ JMcos 7) = (3.64)

where V'
2
is the Laplacian referred to these new axes. If the axes are now rotated

to the position shown in Fig. 3.7, V'
2 = V2

and r is unchanged.* Consequently

P((cos 7) still satisfies an equation of the form (3.64); i.e., it is a spherical

harmonic of order I. This means that it is a linear combination of Yim 's of that

order only:

P,(cos y)= t Am (e\ <t>')YUe, <M (3.65)
m = -l

The coefficients Am (0', <£>') are given by:

Am (0', <f>')
=
J
YL(B, ^)P«(cos 7) dCl (3.66)

*The proof that V'
2 = V2 under rotations follows most easily from noting that

V2
i// =V • Vt// is an operator scalar product, and that all scalar products are invariant under

rotations.
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To evaluate this coefficient we note that it may be viewed, according to (3.60), as

the m' = coefficient in an expansion of the function V47r/(2i+l) Yfm(d f </>) in a

series of Yim (y, j8) referred to the primed axis of (3.64). From (3.59) it is then

found that, since only one I value is present, coefficient (3.66) is

Am (e\ <i>') =^{Yfm[e(y, 0), <My, P)]}7 = (3.67)

In the limit 7—»0, the angles (0, c/>), as functions of (7, /3), go over into (0\ <£>').

Thus addition theorem (3.62) is proved. Sometimes the theorem is written in

terms of Pi
m
(cos 0) rather than Yim . Then it has the form:

P,(cos 7) = P,(cos 0)P,(cos 0')

+2X ^^P«m
(cose)P,

m
(coseO cos [m(<f>- <(>')] (3.68)

If the angle 7 goes to zero, there results a "sum rule" for the squares of Yim 's:

t\YUe,<t>)\
2 =^ (3.69)

m = -I 47T

The addition theorem can be used to put expansion (3.38) of the potential at x

due to a unit charge at x' into its most general form. Substituting (3.62) for

Pi(cos 7) into (3.38) we obtain

nr^t t ^^Ytm(e\<t>')Ylm(6,<t>) (3.70)
|x—x

1
1=0 m =-i zt+ 1 r>

Equation (3.70) gives the potential in a completely factorized form in the

coordinates x and x'. This is useful in any integrations over charge densities, etc.,

where one variable is the variable of integration and the other is the coordinate

of the observation point. The price paid is that there is a double sum involved,

rather than a single term.

3.7 Laplace Equation in Cylindrical Coordinates, Bessel Functions

In cylindrical coordinates (p,</>,z), as shown in Fig. 3.8, the Laplace equation takes

the form:

dp
2

p dp p
2

d<f> dz
2

The separation of variables is accomplished by the substitution:

*(ft <hz) = R(p)Q(<f>)Z(z) (3.72)
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Fig. 3.8

In the usual way this leads to the three ordinary differential equations:

dz
i-k 2Z =

d<b
2 + v

2Q =

The solutions of the first two equations are elementary:

Z(z) = e*
kz

Q(6) = e*
iv*

(3.73)

(3.74)

(3.75)

(3.76)

In order that the potential be single valued when the full azimuth is allowed, v must

be an integer. But barring some boundary-condition requirement in the z direction,

the parameter k is arbitrary. For the present we will assume that k is real and posi-

tive.

The radial equation can be put in a standard form by the change of variable

x — kp. Then it becomes

(3.77)

This is the Bessel equation, and the solutions are called Bessel functions of order

v. If a power series solution of the form:

R(x) = x
a
fJ

a
}
x !

is assumed, then it is found that

a = ±v

(3.78)

(3.79)
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and

for / = 1, 2, 3, . . . . All odd powers of x' have vanishing coefficients. The
recursion formula can be iterated to obtain

n _ (-!)'!>+ 1)
a2, "2 27!r(/+a+l)

a
° (3 ' 81)

It is conventional to choose the constant a = [2
<T(a+ 1)]

_1
. Then the two

solutions are

J^)"im^M' (3 -82)

J-«=(fr?oyn^i)©
2

'

<3 -83 >

These solutions are called Bessel functions of the first kind of order ±v. The
series converge for all finite values of x. If v is not an integer, these two solutions

i±v(x) form a pair of linearly independent solutions to the second-order Bessel

equation. However, if v is an integer, it is well known that the solutions are

linearly dependent. In fact, for v=m, an integer, it can be seen from the series

representation that

J-m (x) = (-l)
m
Jm (x) (3.84)

Consequently it is necessary to find another linearly independent solution when
m is an integer. It is customary, even if v is not an integer, to replace the pair

J± v(x) by Jv(x) and Nv(x), the Neumann function (or Bessel function of the

second kind):

Ux)cosw-J-4x)
sin VTT

For v not an integer, Nv(x) is clearly linearly independent of Jv{x). In the limit

v—> integer, it can be shown that Nv(x) is still linearly independent of Jv(x). As
expected, it involves log x. Its series representation is given in the reference

books.

The Bessel functions of the third kind, called Hankel functions, are defined as

linear combinations of J„(x) and Nv(x):

W\x) = Jv(x)+ iNv(x)

W{x) = Jv{x)-iNv(x)
(3.86)

The Hankel functions form a fundamental set of solutions to the Bessel

equation, just as do Jv(x) and JV„(x).
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The functions J„, N„, H?\ H(

„
2)

all satisfy the recursion formulas:

ftv-i(x)+av+i(x)=— flv(x) (3.87)

O-iW-Mx) = 2 (3.88)

where H„(x) is any one of the cylinder functions of order v. These may be

verified directly from the series representation (3.82).

For reference purposes, the limiting forms of the various kinds of Bessel

functions will be given for small and large values of their argument. Only the

leading terms will be given for simplicity:

x«l /.W-r^g)" . (3.89)

f[in (§)+0.5772. •], ,=0

In these formulas v is assumed to be rea 1 and nonnegative.

x»l, v Jv(x)^yJ^cos
(
x
~"y~f)

Nv(x)^Vl sin
(
x-f-f).

r^/?V (3 ' 90)

i^O

(3.91)

The transition from the small x behavior to the large x asymptotic form occurs in

the region of x~k
From the asymptotic forms (3.91) it is clear that each Bessel function has an

infinite number of roots. We will be chiefly concerned with the roots of Jv(x):

Jv(xvn ) = 0, n=l,2,3,... (3.92)

Xvn is the nth root of Jv(x). For the first few integer values of v, the first three

roots are:

v=0, Xon = 2.405, 5.520, 8.654,...

v=l, x lM = 3.832, 7.016, 10.173,...

v=2, x2n = 5.136, 8.417, 11.620,...

For higher roots, the asymptotic formula

xvn ^nir+ {v-2)
2
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gives adequate accuracy (to at least three figures). Tables of roots are given in

Jahnke, Emde and Losch, p. 194 and Abramowitz and Stegun, p. 409.

Having found the solution of the radial part of the Laplace equation in terms

of Bessel functions, we can now ask in what sense the Bessel functions form an

orthogonal, complete set of functions. We will consider only Bessel functions of

the first kind, and will show that Vp Jv(xvnp/a), for fixed i>>0, n= 1, 2, . .
.

, form

an orthogonal set on the interval 0<p<a. The demonstration starts with the

differential equation satisfied by Jv(xvnp/a):

If we multiply the equation by pJv(xvn p/a) and integrate from to a, we obtain

Integration by parts, combined with the vanishing of (pJJl) at p = (for v>0)
and p = a, leads to the result:

If we now write down the same expression, with n and n' interchanged, and

subtract, we obtain the orthogonality condition:

(xvn
2-x 2

vn)^ pJv(xvn ^(xvn
^) dp = (3.94)

By means of the recursion formulas (3.87) and (3.88) and the differential

equation, the normalization integral can be found to be:

J
pJv(^xvn ^Jv^xvn^dp =^[Jv+ i(xvn)fdnn (3.95)

Assuming that the set of Bessel functions is complete, we can expand an

arbitrary function of p on the interval 0<p<a in a Fourier-Bessel series:

where

f(p)=t^nJv(xvn ^) (3.96)
n=i \ a/

Our derivation of (3.96) involved the restriction i>>0. Actually it can be proved

to hold for all v>-\.
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Expansion (3.96) and (3.97) is the conventional Fourier-Bessel series and is

particularly appropriate to functions which vanish at p = a (e.g., homogeneous

Dirichlet boundary conditions on a cylinder; see the following section). But it

will be noted that an alternative expansion is possible in a series of functions

Vp Jv(yvnp/a) where yvn is the nth root of the equation [dJv(x)]/dx = 0. The reason

is that, in proving the orthogonality of the functions, all that is demanded is that

the quantity [pJv(\p)(d/dp)Jv(\'p)] vanish at the end points p = and p = a. The
requirement is met by either A = xvn/a or \ = y^/a, where Jv(xvn ) = and Jl(yvn )

=

0. The expansion in terms of the set \fp Jv(y vnp/a) is especially useful for

functions with vanishing slope at p=a. (See Problem 3.10.)

A Fourier-Bessel series is only one type of expansion involving Bessel

functions. Neumann series
£ £ ajv+n {z)

J,

Kapteyn series £ CLnJv+n{{v+n)z)
J,

and Schlomilch series ^XanJ„(nx)J are some of the other possibilities. The

reader may refer to Watson, Chapters XVI-XIX, for a detailed discussion of the

properties of these series. Kapteyn series occur in the discussion of the Kepler

motion of planets and of radiation by rapidly moving charges (see Problems 14.7

and 14.8).

Before leaving the properties of Bessel functions it should be noted that if, in

the separation of the Laplace equation, the separation constant k
2
in (3.73) had

been taken as -k2
, then Z(z) would have been sin kz or cos kz and the equation

for R(p) would have been:

With kp = x, this becomes

d2R.
dx
2+ ~

f-(1+?)* = ° <3-">

The solutions of this equation are called modified Bessel functions. It is evident

that they are just Bessel functions of pure imaginary argument. The usual

choices of linearly independent solutions are denoted by L(x) and Kv(x). They
are defined by

L(x) = i-
v
Jv(ix) (3.100)

Kv{x)=^i
v+lW(ix) (3.101)

and are real functions for real x and v. Their limiting forms for small and large x
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are, assuming real i>>0:

x« 1 L(x)-

5772

K„(x)-

>+l)\2)

-[.n(|)+ 0.

x>>hv ^vfe e
l
1+0©l

Mx)->^e-[l+0g)]

v=0

v*0

Sect. 3.8

(3.102)

(3.103)

(3.104)

3.8 Boundary-Value Problems in Cylindrical Coordinates

The solution of the Laplace equation in cylindrical coordinates is 3> =

R(p)Q(<f>)Z(z), where the separate factors are given in the previous section.

Consider now the specific boundary-value problem shown in Fig. 3.9. The
cylinder has a radius a and a height L, the top and bottom surfaces being at z = L
and z = 0. The potential on the side and the bottom of the cylinder is zero, while

the top has a potential <£= V(p, <£). We want to find the potential at any point

inside the cylinder. In order that <I> be single valued and vanish at z = 0,

Q(</>) =A sin mc/>+B cos m4>

Z(z) = sinh kz
(3.105)

# = o-

L
i> = V(p,<t>)

$ =

x

Fig. 3.9
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where v= m is an integer and k is a constant to be determined. The radial factor

is

R(p) = CJm(kp) +DNm(kp) (3.106)

If the potential is finite at p = 0, D = 0. The requirement that the potential vanish

at p = a means that k can take on only those special values:

mn n=l,2, 3, ... (3.107)

where xmn are the roots of Jm(xm„) = 0.

Combining all these conditions, we find that the general form of the solution is

<£(p, <f>, z) = £ £ Jm (km„p) sinh (km„z)(Amn sin m</>+Bmn cos m</>) (3.108)
m=0 n=l

At z = L, we are given the potential as V(p, cf>). Therefore we have

V(p, </>) = X sinh (kmnL)Jm(kmnp)(Amn sin m<f>+Bmn cos mc/>)
m,n

This is a Fourier series in
<f>
and a Fourier-Bessel series in p. The coefficients are,

from (2.37) and (3.97),

2 cosech (kmnL)

7ra
2
Ji

-h(k L) f f
a

/,

mn
/ d<f> dp pV(p, <t>)Jm (kmnp) sin mc(>

+ivK;m„a /> jo Jo

and

B r

.osech (kmnL) f ^ f ^ py( p? <f>)Jm(kmnp) cos m</>
Jm+lVKmnttj Jo Jo7ra

(3.109)

with the proviso that, for m = 0, we use iB n in the series.

The particular form of expansion (3.108) is dictated by the requirement that

the potential vanish at z = for arbitrary p and at p=a for arbitrary z. For

different boundary conditions the expansion would take a different form. An
example where the potential is zero on the end faces and equal to V(<f>, z) on the

side surface is left as Problem 3.8 for the reader.

The Fourier-Bessel series (3.108) is appropriate for a finite interval in p,

0<p<a. If a-»o°, the series goes over into an integral in a manner entirely

analogous to the transition from a trigonometric Fourier series to a Fourier

integral. Thus, for example, if the potential in charge-free space is finite for z ^0
and vanishes for z-»°°, the general form of the solution for z>0 must be

^(p, <k z)
m = JO

dk e-
kz
Jm(kp)[Am (k) sin m<f>+Bm (k) cos m<f>] (3.110)

If the potential is specified over the whole plane z = to be V(p, <f>) the

coefficients are determined by

V(p, </>) = f) f dk Jm(kp)[Am(k) sin m<J>+Bm(k) cos m</>]
m = Jo
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The variation in </> is just a Fourier series. Consequently the coefficients Am(k)

and Bm (k) are separately specified by the integral relations:

These radial integral equations of the first kind can be easily solved, since they

are Hankel transforms. For our purposes, the integral relation,

I
xJm(kx)Jm(k'x) dx = ^8(k'-k) (3.112)

can be exploited to invert equations (3.111). Multiplying both sides by pJm(kp)

and integrating over p, we find with the help of (3.112) that the coefficients are

determined by integrals over the whole area of the plane z = 0:

As usual, for m = 0, we must use iB (Jc) in series (3.110).

3.9 Expansion of Green Functions in Spherical Coordinates

In order to handle problems involving distributions of charge as well as

boundary values for the potential (i.e., solutions of the Poisson equation) it is

necessary to determine the Green function G(x, x') which satisfies the appro-

priate boundary conditions. Often these boundary conditions are specified on

surfaces of some separable coordinate system, e.g., spherical or cylindrical

boundaries. Then it is convenient to express the Green function as a series of

products of the functions appropriate to the coordinates in question. We first

illustrate the type of expansion involved by considering spherical coordinates.

For the case of no boundary surfaces, except at infinity, we already have the

expansion of the Green function, namely (3.70):

17^=4^1 t =j5rr4Y£(e',<MYh.(«,<»
|x—X

| i=o m=-i zt-r i r>

Suppose that we wish to obtain a similar expansion for the Green function

appropriate for the "exterior" problem with a spherical boundary at r=a. The
result is readily found from the image form of the Green function (2.16). Using

expansion (3.70) for both terms in (2.16), we obtain:

G(x,xO =47rI^[^r-i(^y
+1

]Yrm(e', c/>')Ylm(0, <M (3.114)

To see clearly the structure of (3.114) and to verify that it satisfies the boundary
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conditions, we exhibit the radial factors separately for r<r' and for r>r':

(3.115)rA_I/«!V
+1

l-J r
''+1

[

rl

""I'
r<r

r>r'

First of all, we note that for either r or r' equal to a the radial factor vanishes, as

required. Similarly, as r or r'—»o°, the radial factor vanishes. It is symmetric in r

and r'. Viewed as a function of r, for fixed r', the radial factor is just a linear

combination of the solutions r
1 and r~

(I+1)
of the radial part (3.7) of the Laplace

equation. It is admittedly a different linear combination for r<r' and for r>r'.

The reason for this will become apparent below, and is connected with the fact

that the Green function is a solution of the Poisson equation with a delta

function inhomogeneity.

Now that we have seen the general structure of the expansion of a Green

function in separable coordinates we turn to the systematic construction of such

expansions from first principles. A Green function for a potential problem

satisfies the equation

Vx
2
G(x, x') = -47r5(x-x') (3.116)

subject to the boundary conditions G(x, x') = for either x or x' on the boundary

surface S. For spherical boundary surfaces we desire an expansion of the general

form (3.114). Accordingly we exploit the fact that the delta function can be

written*

8(x-x')=p8(r-r') 8(<(>-<(>') 8(cos 0-cos 6')

and that the completeness relation (3.56) can be used to represent the angular

delta functions:

8(x-x') =A 8(r-r') £ £ Yt(B\ <t>')YUd, <f>) (3.117)

i

L
T 1= m = -I

Then the Green function, considered as a function of x, can be expanded as

G(x,x') = £ £ Alm (r\ r\ 0', </>')Y«m(0, <f>) (3.118)

*To express 8(x-x') = S(xi-x'1)S(x2 -X2)8(x3 -X3) in terms of the coordinates

(&» related to (xH x2 , x3) via the Jacobian J(Xj, £), we note that the meaningful

quantity is 8(x-x') d3
x. Hence

8(»-xO =
|

J(^ 6)|
S«i-fi) 8(&-£) 8(&-r3)

See Problem 1.2.
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Substitution of (3.117) and (3.118) into (3.116) leads to the results

Alm (r\ r', 0', 4>') = g.(r, r')Yfm(0', <f>') (3.119)

with

7^(rg.(r, r'))-
l-^&(r, r') = -^?5(r-r') (3.120)

The radial Green function is seen to satisfy the homogeneous radial equation

(3.7) for r^r'. Thus it can be written as:

&(r,r)-|AV+ B/r
_ (l+1)

for r<r'

for r>r'

The coefficients A, B, A', B' are functions of r' to be determined by the

boundary conditions, the requirement implied by S(r-r') in (3.120), and the

symmetry of gi(r, r') in r and r'. Suppose that the boundary surfaces are

concentric spheres at r= a and r= b. The vanishing of G(x, x') for x on the surface

implies the vanishing of g( (r, r') for r= a and r=b. Consequently g( (r, r') becomes

«(r,r')=^ \ , j

r<r'

7 1
'

r' \
(3J21)

The symmetry in r and r' requires that the coefficients A(r') and B'(r') be such

that gi(r, r') can be written

g t (r, O^C^-^)^-^) (3.122)

where r< (r>) is the smaller (larger) or r and r'. To determine the constant C we
must consider the effect of the delta function in (3.120). If we multiply both sides

of (3.120) by r and integrate over the interval from r= r'-e to r= r'+e, where e is

very small, we obtain

(|[^( r'^),+.-{l
[r8,(r

'
r

'

)]
l,-.

= -7r (3123)

Thus there is a discontinuity in slope at r=r', as indicated in Fig. 3.10.

For r=r'+e, r>=r, r< = r . Hence

=-f['-(ri"«+<r
Similarly
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\

\

r r

Fig. 3.10 Discontinuity in slope of the radial Green function.

Substituting these derivatives into (3.123), we find:

(3.124)

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion of the

Green function for a spherical shell bounded by r=a and r=b:

G(x,x')=4.I £ XUeup^U_^\n^\ (3 . 125)

For the special cases a—»0, b—»o° ?
and b—»o°, we recover the previous expansions

(3.70) and (3.114), respectively. For the "interior" problem with a sphere of

radius b we merely let a—»0. Whereas the expansion for a single sphere is most

easily obtained from the image solution, the general result (3.125) for a spherical

shell is rather difficult to obtain by the method of images, since it involves an

infinite set of images.

3.10 Solution of Potential Problems with the Spherical Green
Function Expansion

The general solution to the Poisson equation with specified values of the

potential on the boundary surface is (see Section 1.10):

For purposes of illustration let us consider the potential inside a sphere of radius

b. First we will establish the equivalence of the surface integral in (3.126) to the

previous method of Section 3.5, equations (3.61) and (3.58). With a = in

(3.126)



114 Classical Electrodynamics Sect. 3.10

(3.125), the normal derivative, evaluated at r'=b, is:

dG= SG
dri dr' r'=b

(3.127)

Consequently the solution of the Laplace equation inside r=b with <£= V(0', <f>')

on the surface is, according to (3.126):

For the case considered, this is the same form of solution as (3.61) with (3.58).

There is a third form of solution for the sphere, the so-called Poisson integral

(2.19). The equivalence of this solution to the Green function expansion solution

is implied by the fact that both were derived from the general expression (3.126)

and the image Green function. The explicit demonstration of the equivalence of

(2.19) and the series solution (3.61) will be left to the problems.

We now turn to the solution of problems with charge distributed in the

volume, so that the volume integral in (3.126) is involved. It is sufficient to

consider problems in which the potential vanishes on the boundary surfaces. By
linear superposition of a solution of the Laplace equation the general situation

can be obtained. The first illustration is that of a hollow grounded sphere of

radius b with a concentric ring of charge of radius a and total charge Q. The ring

of charge is located in the x-y plane, as shown in Fig. 3.11. The charge density of

the ring can be written with the help of delta functions in angle and radius as

In the volume integral over the Green function only terms in (3.125) with m =

(3.128)

p(x')=^-2 8(r'-a) 8(cos 0') (3.129)

z

x

Fig. 3.11 Ring of charge of radius a and total charge Q inside a grounded, conducting

sphere of radius b.
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will survive because of azimuthal symmetry. Then, using (3.57) and remember-

ing that a—>0 in (3.125), we find

$(x)=Jp(x')G(x, x') dV

= Q t PiiOy^-^y^cos 6) (3.130)

where now r< (r>) is the smaller (larger) of r and a. Using the fact that

P2n+ i(0) = and P2n(0)-
(
~ 1)n^~ 1)!!

, (3.130) can be written as:

<*>«= ol (
~ 1)B

ffi~
1)!!M^-^)P^cos ) (3 - 131 )

n=o 2 n! \r> o /

In the limit b—>o°, it will be seen that (3.130) or (3.131) reduces to the expression

at the end of Section 3.3 for a ring of charge in free space. The present result can

be obtained alternatively by using that result and the images for a sphere.

A second example of charge densities, illustrated in Fig. 3.12, is that of a

hollow grounded sphere with a uniform line charge of total charge Q located on

the z axis between the north and south poles of the sphere. Again with the help

of delta functions the volume-charge density can be written:

p(x')=^ ^-71 [S(cos 0'- 1) + S(cos 6'+ 1)] (3.132)

The two delta functions in cos correspond to the two halves of the line charge,

above and below the x-y plane. The factor lirr'
2
in the denominator assures that

the charge density has a constant linear density Q/2b. With this density in

Fig. 3.12 Uniform line charge of length 2b and total charge Q inside a grounded,

conducting sphere of radius b.
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(3.126) we obtain

*«=^ t [P.(l>+P«(-l)]Pi(cos ^J/^^-p^) & (3-133)

The integral must be broken up into the intervals 0< r'< r and r< r'< b. Then we
find

For J = this result is indeterminate. Applying L'Hospital's rule, we have, for

1=0 only,

r

b

=Hm%ii)J =Iini r_| e.M^i. ln
m

Jo _d
(h

«-o L dl J \r/
(3.135)

This can be verified by direct integration in (3.133) for [ = 0. Using the fact that

Pi(-1) = (-1)', the potential (3.133) can be put in the form:

The presence of the logarithm for J = reminds us that the potential diverges

along the z axis. This is borne out by the series in (3.136), which diverges for

cos0 = ±l, except at r=b exactly.

The surface-charge density on the grounded sphere is readily obtained from

(3.136) by differentiation:

The leading term shows that the total charge induced on the sphere is -Q, the

other terms integrating to zero over the surface of the sphere.

3.11 Expansion of Green Functions in Cylindrical Coordinates

The expansion of the potential of a unit point charge in cylindrical coordinates

affords another useful example of Green function expansions. We will present

the initial steps in general enough fashion that the procedure can be readily

adapted to finding Green functions for potential problems with cylindrical

boundary surfaces. The starting point is the equation for the Green function:

Vx
2
G(x, x') =-— 8(p-p') 8(<t>

- </>') 8(z - z') (3.138)
P
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Where the delta function has been expressed in cylindrical coordinates. The </>

and z delta functions can be written in terms of orthonormal functions:

6(z-z')=t- f dkc ik(z-z) =- fdk cos [k(z-z')]
ZlT J~oo 77 Jo

Z77 m= -oo

We expand the Green function in similar fashion:

G(x, x')=^ I fdk e
imi+-+" cos [k(z-z')]gm(k,p, p') (3.140)

^TT m =-« Jo

Then substitution into (3.138) leads to an equation for the radial Green function

\i(>t)<e4V--?«-* (3 - l4l)

For p' this is just equation (3.98) for the modified Bessel functions, Im(kp) and

Km(kp). Suppose that i|/i(kp) is some linear combination of Im and Km which

satisfies the correct boundary conditions for p<p', and that i|/2(kp) is a linearly

independent combination which satisfies the proper boundary conditions for

p>p'. Then the symmetry of the Green function in p and p' requires that

gm(k,p, p') = iMkp<)i//2(kp>) (3.142)

The normalization of the product i//i^2 is determined by the discontinuity in

slope implied by the delta function in (3.141):

dgm dgm
dp + dp

(3.143)

where |± means evaluated at p = p'±e. From (3.142) it is evident that

| +
~ dp |_]

=k(^^-^) = kW[^,« (3.144)

where primes mean differentiation with respect to the argument, and W[i//i, i//2]

is the Wronskian of and i|/2 . Equation (3.141) is of the Sturm-Liouville type

f[p(x)g]+g(x)y = (3.145)

and it is well known that the Wronskian of two linearly independent solutions of

such an equation is proportional to [l/p(x)]. Hence the possibility of satisfying

(3.143) for all values of p' is assured. Clearly we must demand that the

normalization of the product i//ii|/2 is such that the Wronskian has the value:

W[Wx),Wx)]=-y (3.146)
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If there are no boundary surfaces, the requirement is thatgm(k,p,p')be finite at

p = and vanish at p—>«>. Consequently i//i(kp) = AIm (kp) and i//2(kp) = Km(kp).
The constant A is to be determined from the Wronskian condition (3.146). Since

the Wronskian is proportional to (1/x) for all values of x, it does not matter

where we evaluate it. Using the limiting forms (3.102) and (3.103)> for small x [or

(3.104) for large x], we find

W[Im(x),Km(x)]=-i (3.147)

so that A = 477. The expansion of l/|x-x'| therefore becomes:

r^-r\=- t \ e^-^ cos [k(2-z')]Im(kp<)Km(kp>) (3.148)
|X—X

I

TT m = -oo Jo

This can also be written entirely in terms of real functions as:

=
J [dk cos [k(z-z')]

x jil (kp<)K (kp>)+ Xcos[m(</>-(/)')]Im(kp<)Km(kp>)] (3.149)

A number of useful mathematical results can be obtained from this expansion.

If we let x'—»0, only the m = term survives, and we obtain the integral

representation:

, = =-
f
cos kz Ko(kp) dk (3.150)

V p + Z TT J

If we replace p
2
in (3.150) by R 2 = p

2 +p'2 -2pp' cos (<f>-<f>'), then we have on the

left-hand side the inverse distance |x-x'|
_1

with z' = 0, i.e., just (3.149) with

z' = 0. Then comparison of the right-hand sides of (3.149) and (3.150) (which

must hold for all values of z) leads to the identification:

K (kVp2+p'2-2pp' cos (<j>- </>'))

= I (kp<)K (kp>) + 2 X cos[m(</)-</)')]Im(kp<)Km(kp>) (3.151)
m=l

In this last result we can take the limit k—>0 and obtain an expansion for the

Green function for (two-dimensional) polar coordinates:

In ( , , ,

1
) = ln (—)+ X -(^Ycos[m(<t>- </>')] (3.152)

\Vp2+ p'
2- 2ppVcos (</>-</>')/ V>/ m%m\p>/

This representation can be verified by a systematic construction of the two-

dimensional Green function for the Poisson equation along the lines leading to

(3.148).
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3.12 Eigenfunction Expansions for Green Functions

Another technique for obtaining expansions of Green functions is the use of

eigenfunctions for some related problem. This approach is intimately connected

with the methods of Sections 3.9 and 3.11.

To specify what we mean by eigenfunctions, we consider an elliptic differential

equation of the form:

V>(x)+ [/(x)+ A]iMx) = (3.153)

If the solutions i//(x) are required to satisfy homogeneous boundary conditions on the

surface S of the volume of interest V, then (3.153) will not in general have

well-behaved (e.g., finite and continuous) solutions, except for certain values of

A. These values of A, denoted by An , are called eigenvalues (or characteristic

values) and the solutions <frn(x) are called eigenfunctions* The eigenvalue

differential equation is written:

V2
i//n(x)+[/(x)+ A„]i//n(x) = (3.154)

By methods similar to those used to prove the orthogonality of the Legendre or

Bessel functions it can be shown that the eigenfunctions are orthogonal:

£ i//S(x)i//n(x) d
3
x = Smri (3.155)

where the eigenfunctions are assumed normalized. The spectrum of eigenvalues

A„ may be a discrete set, or a continuum, or both. It will be assumed that the

totality of eigenfunctions forms a complete set.

Suppose now that we wish to find the Green function for the equation:

Vx
2
G(x, x')+[/(x)+ A]G(x, x') = -4tt8(x-x') (3.156)

where A is not equal to one of the eigenvalues A„ of (3.154). Furthermore,

suppose that the Green function is to have the same boundary conditions as the

eigenfunctions of (3.154). Then the Green function can be expanded in a series

of the eigenfunctions of the form:

G(x,x') =Zan(x')Wx) (3.157)

Substitution into the differential equation for the Green function leads to the

result:

X om(x')(A-Aw)i//m (x) = -47r8(x-x') (3.158)
m

* The reader familiar with wave mechanics will recognize (3.153) as equivalent to

the Schrodinger equation for a particle in a potential.
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If we multiply both sides by i//J(x) and integrate over the volume V, the

orthogonality condition (3.155) reduces the left-hand side to one term, and we
find:

a„(x') =477^^ (3.159)

Consequently the eigenfunction expansion of the Green function is:

G(x,x') =4^I^X'yx)
(3.160)

n An A

For a continuous spectrum the sum is replaced by an integral.

Specializing the above considerations to the Poisson equation, we place

/(x) = and A = in (3.156). As a first, essentially trivial, illustration we let

(3.154) be the wave equation over all space:

(V
2+k2

)iMx) = (3.161)

with the continuum of eigenvalues, k
2

, and the eigenfunctions:

Wx) =(2^
eikX

(3 ' 162)

These eigenfunctions have delta function normalization:

f i//£(x)i//k(x) d
3
x = 8(k-k') (3.163)

Then, according to (3.160), the infinite space Green function has the expansion:

ik-(*-x0
1 1 f p

*<*-^

This is just the three-dimensional Fourier integral representation of l/|x-x'|.

As a second example, consider the Green function for a Dirichlet problem

inside a rectangular box defined by the six planes, x = 0, y = 0, z = 0, x = a, y = b,

z = c. The expansion is to be made in terms of eigenfunctions of the wave

equation:

(V
2+kf^Ux,y,z) = (3.165)

where the eigenfunctions which vanish on all the boundary surfaces are

y ' z)

=

V3z sin (?) sin
Pf*)

sin
i^f)

) (3.166)

kHn -7r y-2+-p-+-p)
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The expansion of the Green function is therefore:

32
G(x,x')=

irabc
. (Ittx\ .. /Ittx'\ . /m7ry\ . /m-nVX . (mrz\ . (mrz'\

w y 7)
(3.167)

To relate expansion (3.167) to the type of expansions obtained in Sections 3.9

and 3.11, namely, (3.125) for spherical coordinates and (3.148) for cylindrical

coordinates, we write down the analogous expansion for the rectangular box. If

the x and y coordinates are treated in the manner of (0, </>) or (<(>, z) in those

cases, while the z coordinate is singled out for special treatment, we obtain the

Green function:

<*> (?) si» (?)^ (T)^ fTO
x

fsinh (K[mz<) sinh (K,m(c-z>)) "| ^168)
[ Klm sinh (Kimc) J

If m2
\
m

where Klm = 7rl^2+ "^2" ) • ^ (3.167) and (3.168) are to be equal, it must be that

the sum over n in (3.167) is just the Fourier series representation on the interval

(0, c) of the one-dimensional Green function in z in (3.168):

sinh (Klmz<) sinh (Klm(c-z>)) ^ 2 y \ c / . ( nirz\
(

.

Kkn sinh (Klmc) c A
Kj 2+ ^mrj

Sm
\ c )

^' LW)

The verification that (3.169) is the correct Fourier representation is left as an

exercise for the reader.

Further illustrations of this technique will be found in the problems at the end

of the chapter.

(mrz'\

3.13 Mixed Boundary Conditions, Conducting Plane with a Circular Hole

The potential problems discussed so far in this chapter have been of the

orthodox kind in which the boundary conditions are of one type (usually

Dirichlet) over the whole boundary surface. In the uniqueness proof for

solutions of the Laplace or Poisson equation (Section 1.9) it was pointed out,

however, that mixed boundary conditions, where the potential is specified over

part of the boundary and its normal derivative is specified over the remainder,
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I

I

Ei

Fig. 3.13

also lead to well-defined, unique, boundary-value problems. There is a tendency

in existing textbooks to mention the possibility of mixed boundary conditions

when making the uniqueness proof and to ignore such problems in subsequent

discussion. The reason, as we shall see, is that mixed boundary conditions are

much more difficult to handle than the normal type.

To illustrate the difficulties encountered with mixed boundary conditions, we
consider the problem of an infinitely thin, grounded, conducting plane with a

circular hole of radius a cut in it, and with the electric field far from the hole

being normal to the plane, constant in magnitude, and having different values on

either side of the plane. The geometry is sketched in Fig. 3.13. The plane is at

z = 0; the hole is centered on the origin of coordinates; the nonvanishing
asymptotic electric field components are tLz

— tio for z>0 and Ez = -Ei for

z<0. The problem may seem contrived, but with Eo = or Ei~0 it has

application for radiation from small holes in the walls of wave guides, where

"small" is defined as small compared to a wavelength so that electrostatic

considerations can apply (see Section 9.5).

Since the electric field is specified far from the hole, we write the potential as

E z+<D (1)

Eiz-Kl>
(,)

U>o)i
(z<0)J

(3.170)

If the hole were not there, <I>
(1) would be zero. The top surface of the sheet would
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have a uniform surface charge density -E /4tt and the bottom surface a charge

density Ei/4ir. The potential <t>
(1) can thus be thought of as resulting from a

rearrangement of surface charge in the neighborhood of the hole. Since this

charge density is located on the plane z = 0, the potential <I>
(1) can be represented

as

9 (x' y' z)
JV(x-x?+(y-y') 2+z2

This shows that <I>
(1)

is even in z, so that and E (

y

l)
are even in z, but E[1}

is odd.

We note that E (

x
1} and E (

y

l)
are the x and y components of the total electric field,

but that, because of (3.170), E (

t

l)

is not the total z component. Thus, even though

it is odd in z, it does not vanish at z = 0. Rather, it is discontinuous there. Since

the total z component of electric field must be continuous across z = in the hole,

we must have

—

E

+E (

2

1)

|z=o
+=: —Ei+E (

z\=q-

Because Ez
1}

is odd in z, this relation determines the normal component of the

electric field to be

•Ez^lz =o+ = —E (z\ =o~
= \(Eo— E\)

provided (x, y) lie inside the opening (0<p<a). For points on the conducting

surface (a<p<<»), the electric field is not known, but the potential is zero by

hypothesis. From (3.170) this means that <I>
(1) = there. Note that in the opening

we do not know the potential. We therefore have an electrostatic boundary-

value problem with the following mixed boundary conditions:

(i)

KEo-JBi) for 0<p<a
(3.171)

dz

and

$u,
|
z =o = for a<p<oo

>

Because of the azimuthal symmetry of the geometry, the potential 4>
(1) can be

written in terms of cylindrical coordinates [from (3.110)] as

<*>
(1)

(p, z) = ^dkA(k)e- klzlJ (kp) (3.172)

Before proceeding to see how A(k) is determined by the boundary conditions,

we relate A(k) and its derivatives at k = to the asymptotic behavior of the

potential. For large p or |z| the rapid oscillations of J (kp) or the rapid decrease

of e~
k|z|

imply that the integral in (3.172) receives its important contributions

from the region around k = 0. The asymptotic behavior of <I>
(1)

is therefore

related to the behavior of A(fc) at small k. We assume that A(k) can be
expanded in a Taylor series around Jc = 0:
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With this series inserted into (3.172), the potential <I>
(1) becomes

& 1\p,z)=t^(0)B l(p,z) (3.173)

where

,(p, z)=| ^dk k
l

e-
klz%(kp) (3.174)

The integral (3.174) can evidently be written

B^{-w\il?ke^Mkp)

Using a result from Problem 3.14(c), we find that Bi is

*4(^)'Wr?)
The reader should not be surprised to find that explicit calculation yields

(3.176)

where cos 6 = z/r and r= Vp2+z 2
. The asymptotic expansion (3.173) is thus an

expansion of the spherical harmonic form (3.33):

*(»=I^(0)-^^ (3.177)

As is discussed in the next chapter, this expansion in powers of r
_1

is called a

multipole expansion. The / = coefficient, A(0), is the total charge. The 1=1

coefficient, dA(0)/dk, is the dipole moment in the z-direction, and so on. Once
the function A(k) is known these quantities that describe the asymptotic

behavior of the potential can be evaluated without explicit construction of the

potential itself.

We are now ready to discuss the mixed boundary value problem. With the

assumed form (3.172) for 4>
(1)

the boundary conditions (3.171) become a pair of

integral equations of the first kind for A(k):

dk kA(k)Jo(kp) = l

2(E -E l )

dkA(k)J (kp) =
(3.178)

Such pairs of integral equations, with one of the pair holding over one part of the

range of the independent variable and the other over the other part of the range,

are known as dual integral equations. The general theory of such integral
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equations is complicated and not highly developed.* Just over a hundred years

ago H. Weber solved the closely related problem of the potential of a charged

circular disc by means of certain discontinuous integrals involving Bessel

functions. We shall appeal to a generalization of Weber's formulas. Consider the

dual integral equations,

j dyyg(y)J„(yx) = x
n forO<x<l

(3.179)

I dy g(y)Jn(yx) = for l<x«x>

Examination of the formula of Sonine and Schafheitlin for the integral of

JyL(at)Jv(bt)C
K
[see Watson pp. 398 ff, or Magnus and Oberhettinger, p. 35, Eqs.

(Si) and (S3)] shows that the solution for g(y) is

nM - . / \ _ r(n+l) J„+j(y) n - Rm
g(y)-7,T?^^ l(y)

-r(.+i)(2y)-
(3 - 180)

In this relation jn (y) is the spherical Bessel function of order n (see Section 16.1).

For our pair of equations (3.178) we have n = 0, x = p/a, y = ka. Therefore

A(k) is

A/J v (Eo--Ei)a
2

. n s (Eo-EOfsin ka acoskal rt1Q1 v

A(k)=—-

—

hm-—
:rnn? (3 - 18l)

The expansion of A(k) for small k takes the form,

.2r /i,~\3 ~\

A(k)J^-El)a
\ka-

(hay

10

This means that total charge associated with <I>
(1)

is zero and the leading term in

the asymptotic potential (3.177) is the 1=1 contribution,

rJM^ • H (3.182)
J 77 r

falling off with distance as r~
2
and having an effective electric dipole moment,

(Eo-E,)a
3

(zgQ)

The reversal of the effective dipole moment depending on whether the observa-

tion point is above or below the plane is a consequence of the fact that a true

dipole potential is odd in z, whereas (3. 182) is even. The idea that a small hole in

a plane conducting sheet is equivalent far from the opening to a dipole normal to

* One recent monograph, I. N. Sneddon, Mixed Boundary Value Problems in

Potential Theory, North-Holland, Amsterdam and Wiley-Interscience, New York (1966),
is devoted to our subject. See also Tranter, p. 50 and Chapter VIII.
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the surface is important in discussing the consequences of such openings in the

walls of wave guides and cavities. Figure 9.4 shows in pictorial form the origin of

the dipole-like field as a consequence of the penetration of the field lines through

the hole to terminate on the side with the smaller constant field. The picture is

given quantitative meaning through (3.182) and (3.183).

The added potential <I>
(1)

in the neighborhood of the opening must be

calculated from the exact expression,

d><»(p, z)=
(£o-Ei)

a2 rdkjl(ka)e
-^Mko) (3 . 184)

77 Jo

We content ourselves with some special cases. The added potential on the axis

(p = 0) is*

For |z| »a this reduces to (3.182) with r=\z\, while for |z|—»0 it is approximated

by the first term. In the plane of the opening (z = 0) the potential <£
(1)

is

*">(p,o)=^^V?V
IT

for 0<p<a (and zero, of course, for p>a). The tangential electric field in the

opening is a radial field,

EM,(p,0)=
(Eo~E')

. f , (3.185)
tt va -p

The normal component of electric field in the opening is, from the first equation

in (3.171), just the average of the uniform fields above and below the plane, that

is,

E2 (p,0) = -KEo+Ei) (3.186)

We note that the magnitude of the electric field has a square root singularity at

the edge of the opening, in agreement with the considerations of Section 2.11.

The surface charge densities on the upper and lower sides of the conducting

plane in the neighborhood of the hole can be evaluated in a straightforward

manner. The explicit calculation is left to the problems.

Equipotential contours near the circular hole for the full potential (3.170) are

shown in Fig. 3. 14 for the situation where Ei = 0. At distances more than two or

three times the radius away from the hole its presence is hardly discernible.

The classic problem of a charged conducting disc is discussed in detail by

Sneddon (op. cit.). The mixed boundary conditions for the disc or hole can be

* For integrals of the kind encountered here, see Watson, Chapter 13, Gradshteyn

and Ryzhik, Magnus, Oberhettinger, and Soni, or the Bateman Manuscript Project.
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Fig. 3.14 Equipotential contours near a circular hole in a conducting plane with a

normal electric field E far from the hole on one side and no field asymptotically on the

other (Ei = 0). The numbers are the values of the potential <t> in units of aE . The
distribution is rotationally symmetric about the vertical dashed line through the center of

the hole.

avoided by separating the Laplace equation in elliptic coordinates. The disc (or

hole) is then taken to be the limiting form of an oblate spheroidal surface. For

this approach, see, for example, Smythe, pp. 124, 171, or Jeans, p. 244.
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Smythe, Chapter V,
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PROBLEMS

3.1 Two concentric spheres have radii a, b (b>a) and are each divided into two
hemispheres by the same horizontal plane. The upper hemisphere of the inner sphere

and the lower hemisphere of the outer sphere are maintained at potential V. The other

hemispheres are at zero potential

Determine the potential in the region a^r<b as a series in Legendre polynomials.

Include terms at least up to 1 = 4. Check your solution against known results in the

limiting cases b—»o°, and a—»0.

3.2 A spherical surface of radius R has charge uniformly distributed over its surface

with a density Q/4irR 2

,
except for a spherical cap at the north pole, defined by the

cone 6 = a.

(a) Show that the potential inside the spherical surface can be expressed as

where, for 1 = 0, P[-i(cos a)= — 1. What is the potential outside?

(b) Find the magnitude and the direction of the electric field at the origin.

(c) Discuss the limiting forms of the potential (a) and electric field (b) as the

spherical cap becomes (1) very small, and (2) so large that the area with charge on it

becomes a very small cap at the south pole.

3.3 A thin, flat, conducting, circular disc of radius R is located in the x-y plane with its

center at the origin, and is maintained at a fixed potential V. With the information that

the charge density on a disc at fixed potential is proportional to (R2-p2)~ 1/2
, where p is

the distance out from the center of the disc,

(a) show that for r>R the potential is

(b) find the potential for r<R.
(c) What is the capacitance of the disc?

3.4 The surface of a hollow conducting sphere of inner radius a is divided into an even

number of equal segments by a set of planes whose common line of intersection is the z

axis and which are distributed uniformly in the angle
<f>.

(The segments are like the skin
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on wedges of an apple, or the earth's surface between successive meridians of

longitude.) The segments are kept at fixed potentials ±V, alternately.

(a) Set up a series representation for the potential inside the sphere for the general

case of 2n segments, and carry the calculation of the coefficients in the series far

enough to determine exactly which coefficients are different from zero. For the

nonvanishing terms, exhibit the coefficients as an integral over cos 0.

(b) For the special case of n = 1 (two hemispheres) determine explicitly the potential

up to and including all terms with J = 3. By a coordinate transformation verify that this

reduces to result (3.36) of Section 3.3.

3.5 A hollow sphere of inner radius a has the potential specified on its surface to be
<!>= V(0, 4>). Prove the equivalence of the two forms of solution for the potential inside

the sphere:

where AIm =J dO' Y* (0', <f>')V(0\ <*>')•

3.6 Two point charges q and -q are located on the z axis at z = +a and z = -a,

respectively.

(a) Find the electrostatic potential as an expansion in spherical harmonics and powers
of r for both r>a and r<a.

(b) Keeping the product qa=p/2 constant, take the limit of a—»0 and find the

potential for r^O. This is by definition a dipole along the z axis and its potential.

(c) Suppose now that the dipole of part (b) is surrounded by a grounded spherical shell

of radius b concentric with the origin. By linear superposition find the potential

everywhere inside the shell.

3.7 Three point charges (q, -2q, q) are located in a straight line with separation a and
with the middle charge (~2q) at the origin of a grounded conducting spherical shell of

radius b, as indicated in the sketch.

where cos 7 = cos cos 0'+sin sin 0' cos (</>-<£>').

(b)

z

X

y

Problem 3.7
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(a) Write down the potential of the three charges in the absence of the grounded
sphere. Find the limiting form of the potential as a—»0, but the product qa2 = Q
remains finite. Write this latter answer in spherical coordinates.

(b) The presence of the grounded sphere of radius b alters the potential for r<b. The
added potential can be viewed as caused by the surface charge density induced on the

inner surface at r= b or by image charges located at r>b. Use linear superposition to

satisfy the boundary conditions and find the potential everywhere inside the sphere for

r<a and r>a. Show that in the limit a—»0,

4>(r,0, c/>)^^(l-p)p2(cos d)

3.8 A hollow right circular cylinder of radius b has its axis coincident with the z axis

and its ends at z = and z = L. The potential on the end faces is zero, while the

potential on the cylindrical surface is given as V(<f>, z). Using the appropriate

separation of variables in cylindrical coordinates, find a series solution for the potential

anywhere inside the cylinder.

3.9 For the cylinder in Problem 3.8 the cylindrical surface is made of two equal

half-cylinders, one at potential V and the other at potential -V, so that

( V for -f«f.<|

(a) Find the potential inside the cylinder.

(b) Assuming L»b, consider the potential at z = L/2 as a function of p and <j> and

compare it with two-dimensional Problem 2.9.

3.10 Show that an arbitrary function f(x) can be expanded on the interval O^x^a in a

modified Fourier-Bessel series

where y vn is the nth root
^v

}^ = 0, and the coefficients A„ are given by

\j(
x)xJ"(y™~) dx

dx

3.11 An infinite, thin, plane sheet of conducting material has a circular hole of radius a
cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the

plane, filling the hole, but separated from the sheet by a very narrow insulating ring.

The disc is maintained at a fixed potential V, while the infinite sheet is kept at zero

potential.

(a) Using appropriate cylindrical coordinates, find an integral expression involving

Bessel functions for the potential at any point above the plane.

(b) Show that the potential a perpendicular distance z above the center of the disc is

<J> (z)=VI
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(c) Show that the potential a perpendicular distance z above the edge of the disc is

where k = 2a/(z
2 + 4a 2

)
1/2

, and K(k) is the complete elliptic integral of the first kind.

3.12 Solve for the potential in Problem 3.1, using the appropriate Green function

obtained in the text, and verify that the answer obtained in this way agrees with the

direct solution from the differential equation.

3.13 A line charge of length 2d with a total charge Q has a linear charge density varying

as (d
2-z 2

), where z is the distance from the midpoint. A grounded, conducting,

spherical shell of inner radius b>d is centered at the midpoint of the line charge.

(a) Find the potential everywhere inside the spherical shell as an expansion in

Legendre polynomials.

(b) Calculate the surface-charge density induced on the shell.

(c) Discuss your answers to (a) and (b) in the limit that d« b.

3.14 (a) Starting from the Bessel differential equation, verify Eq. (3. 1 12) or equivalently

that

P

(b) Obtain the following expansion:

-8(p-p')= \~kJm(kp)Jm(kp') dk
p Jo

r
i

7?
= £ [dke^+'Ukp^ikp^e-^

-< }

|X X
I

m = -°° JO

(c) By appropriate limiting procedures prove the following expansions:

7== = \~e-
k]z%(kp) dk

y/p
2+ Z

2
J

J (k>/p2 + p
,2 -2pp' cos <f>)

= £ e
im
*Jm(kp)Jm(kp')

e
,kpco**= X i

m
e
im
*Jm (kp)

(d) From the last result obtain an integral representation of the Bessel function:

•Ux) =^ f

2> cos *-im
*d<|>

Z77I Jo

Compare the standard integral representations.

3.15 The Dirichlet Green function for the unbounded space between the planes at z =
and z = L allows discussion of a point charge or a distribution of charge between
parallel conducting planes held at zero potential.

(a) Using cylindrical coordinates show that one form of the Green function is
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(b) Show that an alternative form of the Green function is

sinh (kz<) sinh [k(L-z>)]

sinh (fcL)

3.16 The configuration of Problem 3.11 is modified by placing a conducting plane held

at zero potential parallel to and a distance L away from the plane with the disc insert in

it. For definiteness put the grounded plane at z = and the other plane with the

center of the disc on the z-axis at z = L.

(a) Show that the potential between the planes can be written in cylindrical

coordinates (z, p, <f>) as

(b) Show that in the limit a-»<» with z, p, L fixed the solution of part (a) reduces to the

expected result. Viewing your result as the lowest order answer in an expansion in

powers of a
1

, consider the question of corrections to the lowest order expression if a
is iarge compared to p and L, but not infinite. Are there difficulties? Can you obtain an

explicit estimate of the corrections?

(c) Consider the limit of L—<» with (L-z), a and p fixed and show that the results of

Problem 3.11 are recovered. What about corrections for L»a, but not L—»°°?

3.17 Consider a point charge q between two infinite parallel conducting planes held at

zero potential. Let the planes be located at z = and z = L in a cylindrical coordinate

system, with the charge on the z axis at z = z , 0<z <L. Use Green's reciprocation

theorem of Problem 1.12 with Problem 3.16 as the comparison problem,

(a) Show that the amount of induced charge on the plate at z = L inside a circle of

radius a whose center is on the z axis is given by

where <J>(z , 0) is the potential of Problem 3.16 evaluated at z = z , p = 0. Find the total

charge induced on the upper plate. Compare with the solution (in method and answer)

of Problem 1.13.

(b) Show that the induced charge density on the upper plate can be written as

This integral can be expressed (see, for example, Gradshteyn and Ryzhik, p. 728,

formula 6.666) as an infinite series involving the modified Bessel functions K (mrp/L),

showing that at large radial distances the induced charge density falls off as (p)"
1/2
e~

wp/L
.

3.18 (a) From the results of Problem 3.15 or from first principles show that the

potential of a point charge q between two infinite parallel conducting planes held at

zero potential can be written as

where the planes are at z = and z = L and the charge is on the z axis at the point

z = z .

QL(a)=-^<S>(zo,0)
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(b) Calculate the induced surface charge densities cr (p) and crL(p) on the lower and

upper plates. The result for crL(p) is

Discuss the connection of this expression with that of Problem 3.17(b).

(c) From the answer in (b) calculate the total charge QL on the plate at z = L. By
summing the Fourier series or by other means of comparison, check your answer

against the known expression of Problem 1.13. [C. Y. Fong and C. Kittel, Am. J. Phys.

35, 1091 (1967).]

3.19 (a) By using the Green function of Problem 3.15(b) in the limit L—»o°, show that

the capacitance of a flat, thin, circular, conducting disc of radius R located parallel to,

and a distance d above, a grounded conducting plane is given by

where cr(p) is the charge density on the disc.

(b) Use the expression in part (a) as a variational or stationary principle for C" 1

with

the approximation that <r(p) = constant. Show explicitly that you obtain the correct

limiting value for C" 1

as d« R. Determine an approximate value of C" 1

for an isolated

disc (d»R) and evaluate the ratio of it to the exact result, C 1 = {tt/2)R~\

(c) As a better trial form for o-(p) consider a linear combination of a constant and
(R 2-p2

)
in

, the latter being the correct form for an isolated disc.

For part (b) the following integrals may be of use:

3.20 The geometry of a two-dimensional potential problem is defined in polar

coordinates by the surfaces </> = 0, (f>=/3, and p = a, as indicated in the sketch.

Problem 3.20
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Using separation of variables in polar coordinates, show that the Green function can
be written as

G(p, * Pm - i ±pr^-^) sin (=*) sin (*=*)

3.21 A unit point charge is located at the point (p\ <f>', z') inside a grounded cylindrical

box defined by the surfaces z = 0, z = L, p = a. Show that the potential inside the box

can be expressed in the following alternative forms:

d>(x , x') = i X Xa— xTnX + ,(xmn)sinh(^)

x sinh z<
]
sinh (L - z>)

]

^x^ijje—sin(^)s^)^

SEX

Discuss the relation of the last expansion (with its extra summation) to the other two.

3.22 The walls of the conducting cylindrical box of Problem 3.21 are all at zero

potential, except for a disc in the upper end, defined by p = b<a, at potential V.

(a) Using the various forms of the Green function obtained in Problem 3.21, find

three expansions for the potential inside the cylinder.

(b) For each series, calculate numerically the ratio of the potential at p = 0, z = L/2 to

the potential of the disc, assuming b = L/4 = a/2. Try to obtain at least two-significant-

figure accuracy. Is one series less rapidly convergent than the others? Why?
(Jahnke, Emde and Losch have tables of J and Ju I and I„ (2/ir)K and (I/tt)^.

Watson also has numerous tables.)

3.23 Consider the surface charge densities for the problem of Section 3.13 of the

conducting plane with a circular hole of radius a.

(a) Show that the surface charge densities on the top and bottom of the plane for p>a
are

0--(p) = TZ+Ao"(P)
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where

Aa(p)=
_(^zE0r a _

s
.

n
.,/aNl

4tt
2 LVT^ Vp/J

How does Ao-(p) behave for large p? Is Aa(p), defined in terms of <£ (1)
, zero for p<a?

Explain.

(b) Show by direct integration that

Hm[27r| "dp p(a+ + a_)+ 27rJ

R

dpp(^^1

)]
=

Interpret.



4
Multipoles, Electrostatics

of Macroscopic Media,
Dielectrics

This chapter is first concerned with the potential due to localized charge

distributions and its expansion in multipoles. The development is made in terms

of spherical harmonics, but contact is established with the rectangular compo-
nents for the first few multipoles. The energy of a multipole in an external field is

then discussed. An elementary derivation of the macroscopic equations of

electrostatics is sketched, but a careful treatment is deferred to Chapter 6.

Dielectrics and the appropriate boundary conditions are then described, and

some typical boundary-value problems with dielectrics are solved. Simple

classical models are used to illustrate the main features of atomic polarizability

and susceptibility. Finally the question of electrostatic energy and forces in the

presence of dielectrics is discussed.

4.1 Multipole Expansion

A localized distribution of charge is described by the charge density p(x'), which

is nonvanishing only inside a sphere of radius R* around some origin. The
potential outside the sphere can be written as an expansion in spherical

harmonics:

*(*)=! I wh^^f^1 (4-D
i=o m=-i ^I'T- 1 r

where the particular choice of constant coefficients is made for later conven-

ience. Equation (4.1) is called a multipole expansion; the / = term is called the

monopole term, 1=1 are the dipole terms, etc. The reason for these names

* The sphere of radius R is an arbitrary conceptual device employed merely to

divide space into regions with and without charge. If the charge density falls off with

distance faster than any power, the expansion in multipoles is valid at large enough

distances.

136
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becomes clear below. The problem to be solved is the determination of the

constants qim in terms of the properties of the charge density p(x'). The solution is

very easily obtained from the integral (1.17) for the potential:

<Kx)
J x-x

with expansion (3.70) for l/|x-x'|. Since we are interested at the moment in the

potential outside the charge distribution, r< = r' and r> = r. Then we find:

*(x)=4lT £ HTllf
Yt(e '« *')r"p(x,)dVp=M (4.2)

Consequently the coefficients in (4.1) are:

qim =
J
Yfm(0', <f>Vp(x') d

3
x' (4.3)

These coefficients are called multipole moments. To see the physical interpreta-

tion of them we exhibit the first few explicitly in terms of cartesian coordinates:

qoo

qn

qio

q22 =

q 2 i

= fp(x') d
3
x' =-^q

477 J V4tt

^ j* (x'- iy ')p(x') dV = - (px - ipy )

Jz'P(x')dV=7Jp2

(4.4)

(4.5)

3

477

£ J
z'(x'- iy ')p(x') dV = -| y£ (Q 13- iQ23) (4.6)

Only the moments with m>0 have been given, since (3.54) shows that for a real

charge density the moments with m<0 are related through

(-D
m
qi (4.7)

In equations (4.4)-(4.6), q is the total charge, or monopole moment, p is the

electric dipole moment:

Jx'p(x') dV (4.8)



138 Classical Electrodynamics

and Ou is the traceless quadrupole moment tensor:

Qii
= J(3xU;-r

,2
5li)p(x!) dV

Sect. 4.1

(4.9)

We see that the Ith multipole coefficients [(2/4-1) in number] are linear

combinations of the corresponding multipoles expressed in rectangular coordi-

nates. The expansion of <£>(x) in rectangular coordinates:

4,(x)=3+E^4 ZQijM+ ...
r r 2 tf r

(4.10)

by direct Taylor series expansion of l/|x— x'| will be left as an exercise for the

reader. It becomes increasingly cumbersome to continue the expansion in (4.10)

beyond the quadrupole terms.

The electric field components for a given multipole can be expressed most

easily in terms of spherical coordinates. The negative gradient of a term in (4.1)

with definite /, m has spherical components:

c _4tt0+1) Y,m(0, cf>)

JEe =

2/4-1

477 1 d , ,v

'2iri
qim r^2 de YlM *'

477
qim

tm YIm(0, (/>)

(4.11)

dYim/dO and Yim/sin can be expressed as linear combinations of other Yim 's, but

the expressions are not particularly illuminating and so will be omitted. The
proper way to describe a vector multipole field is by vector spherical harmonics,

discussed in Chapter 16.

For a dipole p along the z axis, the fields in (4.1 1) reduce to the familiar form:

_ _ 2p cos

Ee

Es

p sin (4.12)

These dipole fields can be written in vector form by recombining (4.12) or by

directly operating with the gradient on the dipole term in (4.10). The result for

the field at a point x due to a dipole p at the point x is:

E(x)
3n(pn)-p

|x-x
|

where n is a unit vector directed from x to x.

(4.13)
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There are two important remarks to be made. The first concerns the

relationship of the Cartesian multipole moments like (4.8) to the spherical

multipole moments (4.3). The former are (l+l)(I+2)/2 in number and for 1>1

are more numerous than the (2J+1) spherical components. There is no con-

tradiction here. The root of the differences lies in the different rotational

transformation properties of the two types of multipole moments—see Problem

4.3. Note that for 1 = 2 we have recognized the difference by defining a traceless

Cartesian quadrupole moment (4.9).

The second remark is that in general the multipole moment coefficients in the

expansion (4.1) depend upon the choice of origin. As a blatant example,

consider a point charge e located at Xo = (r
, Bo, <j) ). It has a multipole expansion

of the form (4.1) with multipole moments,

qim = er
lYTm(6o, </>o)

These are nonvanishing for all I, m in general. Only the J = multipole

qoo = e/V47r is independent of the location of the point charge. For two point

charges +e and — e at x and Xi, respectively, the multipole moments are

qlm = e[ro'yfm(e , cM-ri'YkWi, <M]

Now the / = multipole moment of the system vanishes, and the I = 1 moments
are

( ^qio= y-r-e(Zo-Zi)
> 477

/~3~

These moments are independent of the location of the origin, depending only on

the relative position of the two charges, but all higher moments depend on the

location of the origin as well. These simple examples are special cases of general

theorem (see Problem 4.4). The values of qim for the lowest nonvanishing

multipole moment of any charge distribution are independent of the choice of

origin of the coordinates, but all higher multipole moments do in general depend

on the location of the origin.

Before leaving the general formulation of multipoles, we consider a result that

is useful in elucidating the basic difference between electric and magnetic dipoles

(see Section 5.6) as well as in other contexts. Consider a localized charge

distribution p(x) that gives rise to an electric field E(x) throughout space. We
wish to calculate the integral of E over the volume of a sphere of radius R. We
begin by examining the problem in general, but then specialize to the two

extremes shown in Fig. 4.1, one in which the sphere contains all of the charge

and the other in which the charge lies external to the sphere. Choosing the origin

of coordinates at the center of the sphere, we have the volume integral of the
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Fig. 4.1 Two configurations of charge density and the spheres within which the volume
integral of electric field is to be calculated.

electric field,

f E(x)d3
x = -f Vd>d 3

x (4.14)
Jr<R Jr<R

This can be converted to an integral over the surface of the sphere:

f E(x)d3
x = -f R 2 dn<D(x)n (4.15)

Jr<R Jr=R

where n is the outwardly directed normal (n = x/JR). Substitution of (1.17) for the

potential leads to

f
E(x)d3

x = -R 2 fdVp(x')f dttT-^-n (4.16)
Jr<R J Jr=R |X~X

|

To perform the angular integration we first observe that n can be written in

terms of the spherical angles (0, <f>) as

n = i sin 6 cos <f>+j sin 6 sin </>+k cos 6

Evidently the different components of n are linear combinations of Yim for Z = 1

only. When (3.38) or (3.70) is inserted into (4.16), orthogonality of the Y(m will

eliminate all but the Z = 1 term in the series. Thus we have

f dClr-^-r^ 1^ fdttncosT (4.16')
J r=R |x— x

I

r> J

where cos 7 = cos 6 cos O'+sin 6 sin 6' cos (</> -</>'). The angular integral is equal
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to 47rn'/3, where n' = r'/r'. Thus the integral (4.16) is

E(x) d
3
x = -^f- f

dV—2 n'p(x') (4.17)
Jr<R J J r>

where (r<, r>) = (r\ R) or (R, r') depending on which of r' and R is larger.

If the sphere of radius R completely encloses the charge density, as indicated

in Fig. 4.1a, then r< = r' and r> = R in (4.17). The volume integral of the electric

field over the sphere then becomes

f E(x)d3x=-^p (4.18)
Jr<R -J

where p is the electric dipole moment (4.8) of the charge distribution with respect to

the center of the sphere. Note that this volume integral is independent of the size of

the spherical region of integration provided all the charge is inside.

If, on the other hand, the situation is as depicted in Fig. 4.1b, with the charge

all exterior to the sphere of interest, r< = R and r> = r' in (4.17). Then we have

^R
E(x)d 3x=-^j>x'^p(x')

From Coulomb's law (1.5) the integral can be recognized to be the negative of

the electric field at the center of the sphere. Thus the volume integral of E is

f
E(x)d3

x =^R 3
E(0) (4.19)

Jr<R J

In other words, the average value of the electric field over a spherical volume

containing no charge is the value of the field at the center of the sphere.

The result (4.18) implies modification of (4.13) for the electric field of a

dipole. In order to be consistent with (4.18) the dipole field must be written as

E(x) =
3

"|x-5
rP~T pS(x- x°) (4 '20)

The added delta function does not contribute to the field away from the site of

the dipole. Its purpose is to yield the required volume integral (4.18), with the

convention that the volume integral of the first term is zero (from angular

integration), the singularity at x = x causing an otherwise ambiguous result.

Equation (4.20) and its magnetic dipole counterpart (5.64), when handled

carefully, can be employed as if the dipoles were idealized point dipoles, the

delta function terms carrying the essential information about the actually finite

distributions of charge and current.
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4.2 Multipole Expansion of the Energy of a Charge Distribution in an

External Field

If a localized charge distribution described by p(x) is placed in an external

potential <I>(x), the electrostatic energy of the system is:

W=Jp(x)<D(x)d
3
x (4.21)

If the potential <t> is slowly varying over the region where p(x) is nonnegligible,

then it can be expanded in a Taylor series around a suitably chosen origin:

4>(x) = O(0)+x- Vd>(0)+il £ j&XjT^f- (())+• • • (4.22)
Z i j dXi oXj

Utilizing the definition of the electric field E = -V<£, the last two terms can be

rewritten. Then (4.22) becomes:

4>(x) = *(0)-x • E(0)-|I I x,x
jg(0)+- •

•

Since V • E = for the external field, we can subtract

y2v • e(o)

from the last term to obtain finally the expansion:

<t>(x) = <D(0)-x • E(0)-±I I (3x1xj
-r2S„)^(0)+- • • (4.23)

O i , dXi

When this is inserted into (4.21) and the definitions of total charge, dipole

moment (4.8) and quadrupole moment (4.9), are employed, the energy takes the

form:

W=q$(0)-p.E(0)-JlXeg (0)+- • • (4.24)

This expansion shows the characteristic way in which the various multipoles

interact with an external field—the charge with the potential, the dipole with the

electric field, the quadrupole with the field gradient, and so on.

In nuclear physics the quadrupole interaction is of particular interest. Atomic
nuclei can possess electric quadrupole moments, and their magnitudes and signs

reflect the nature of the forces between neutrons and protons, as well as the

shapes of the nuclei themselves. The energy levels or states of a nucleus are

described by the quantum numbers of total angular momentum J and its

projection M along the z axis, as well as others which we will denote by a general

index a. A given nuclear state has associated with it a quantum-mechanical

charge density* pjM«(x), which depends on the quantum numbers (J, M, a), but

* See Blatt and Weisskopf, pp. 23 ff., for an elementary discussion of the quantum
aspects of the problem.
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which is cylindrically symmetric about the z axis. Thus the only nonvanishing

quadrupole moment is q20 in (4.6), or Q33 in (4.9).* The quadrupole moment of a

nuclear state is defined as the value of (1/c) Q33 with the charge density pJMa(x),

where e is the protonic charge:

The dimensions of Ojm« are consequently (length)
2

. Unless the circumstances are

exceptional (e.g., nuclei in atoms with completely closed electronic shells), nuclei

are subjected to electric fields which possess field gradients in the neighborhood

of the nuclei. Consequently, according to (4.24), the energy of the nuclei will

have a contribution from the quadrupole interaction. The states of different M
value for the same J will have different quadrupole moments QJMa , and so a

degeneracy in M value which may have existed will be removed by the

quadrupole coupling to the "external" (crystal lattice, or molecular) electric

field. Detection of these small energy differences by radiofrequency techniques

allows the determination of the quadrupole moment of the nucleus.

t

The interaction energy between two dipoles pi and p2 can be obtained directly

from (4.24) by using the dipole field (4.20). Thus, the mutual potential energy is

where n is a unit vector in the direction (xi—

x

2) and it is assumed that Xi ^ x2 . The
dipole-dipole interaction is attractive or repulsive, depending on the orientation

of the dipoles. For fixed orientation and separation of the dipoles, the value of

the interaction, averaged over the relative positions of the dipoles, is zero. If the

moments are generally parallel, attraction (repulsion) occurs when the moments
are oriented more or less parallel (perpendicular) to the line joining their

centers. For antiparallel moments the reverse is true. The extreme values of the

potential energy are equal in magnitude.

4.3 Elementary Treatment of Electrostatics with Ponderable Media

In Chapters 1, 2, and 3 we considered electrostatic potentials and fields in the

presence of charges and conductors, but no other ponderable media. We
therefore made no distinction between microscopic fields and macroscopic fields,

although our treatment of conductors in an idealized fashion with surface charge

densities implied a macroscopic description. Air is sufficiently tenuous that the

* Actually Q„ and Q22 are different from zero, but are not independent of Q33 ,

being given by Q„ = Q22 = -iQ33 .

t "The quadrupole moment of a nucleus," denoted by Q, is defined as the value of

QJM« in the state M=J. See Blatt and Weisskopf, loc. cit.

(4.25)

W12 =
Pi ; p2-3(n

;
pQ(n - p2)

|

Xl -x2
|

3 (4.26)
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neglect of its dielectric properties causes no great error; our results so far are

applicable there. But much of electrostatics concerns itself with charges and

fields in ponderable media whose electric response must be taken into account.

In the Introduction we indicated the need for averaging over macroscopically

small, but microscopically large, regions in order to obtain the Maxwell

equations appropriate for macroscopic phenomena. This is done in a careful

fashion in Chapter 6, after the Maxwell equations with time variation have been

discussed. For the present we merely remind the reader of the outlines of the

elementary discussion of polarization in a fashion that glosses over difficult and

sometimes subtle aspects of the averaging procedure and the introduction of the

macroscopic quantities.

The first observation is that when an averaging is made of the homogeneous
equation, VxEmiCro = 0, the same equation, namely,

VxE = (4.27)

holds for the averaged, that is, the macroscopic, electric field E. This means that

the electric field is still derivable from a potential O(x) in electrostatics.

If an electric field is applied to a medium made up of a large number of atoms

or molecules, the charges bound in each molecule will respond to the applied

field and will execute perturbed motions. The molecular charge density will be

distorted. The multipole moments of each molecule will be different from what

they were in the absence of the field. In simple substances, when there is no

applied field the multipole moments are all zero, at least when averaged over

many molecules. The dominant molecular multipole with the applied field is the

dipole. There is thus produced in the medium an electric polarization P (dipole

moment per unit volume) given by

P(x) = lN,<p,> (4.28)
i

where p t is the dipole moment of the ith type of molecule in the medium, the

average is taken over a small volume centered at x and N* is the average number
per unit volume of the ith type of molecule at the point x. If the molecules have a

net charge c; and, in addition, there is macroscopic excess or free charge, the

charge density at the macroscopic level will be

p(x) =XNi<ei>+ Pexcess (4.29)
i

Usually the average molecular charge is zero. Then the charge density is the

excess or free charge (suitably averaged).

If we now look at the medium from a macroscopic point of view, we can build

up the potential or field by linear superposition of the contributions from each

macroscopically small volume element AV at the variable point x\ Thus the

charge of AV is p(x') AV and the dipole moment of AV is P(x') AV. If there are

no higher macroscopic multipole moment densities, the potential A4>(x, x')
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caused by the configuration of moments in AV can be seen from (4.10) to be

given without approximation by

A*(S,^) =^AV+?^AV (4.30)

provided x is outside A V. We now treat AV as (macroscopically) infinitesimal,

put it equal to dV, and integrate over all space to obtain the potential

(4.31)

The second term is analogous to the dipole layer potential (1.25), but is for a

volume distribution of dipoles. An integration by parts transforms the potential

into

<D(x) = JdV nrjf[pW-V * POO] (4-32)

This is just the customary expression for the potential caused by a charge

distribution (p—V • P). With E = —V<X>, the first Maxwell equation therefore

reads

V-E = 4tt[p-V-P] (4.33)

The presence of the divergence of P in the effective charge density can be

understood qualitatively. If the polarization is nonuniform there can be a net

increase or decrease of charge within any small volume, as indicated schemati-

cally in Fig. 4.2.

With the definition of the electric displacement D,

D = E+4ttP (4.34)

(4.33) becomes the familiar

V • D = 4ttp (4.35)

Equations (4.27) and (4.35) are the macroscopic counterparts of (1.13) and

(1.14) of Chapter 1.

Fig. 4.2 Origin of polarization-charge density. Because of spatial variation of polariza-

tion more molecular charge may leave a given small volume than enters it. Only
molecules near the boundary are shown.
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As discussed in the Introduction, a constitutive relation connecting D and E is

necessary before a solution for the electrostatic potential or fields can be

obtained. In the subsequent sections of this chapter we assume that the response

of the system to an applied field is linear. This excludes ferroelectricity from
discussion, but otherwise is no real restriction provided the field strengths do not

become extremely large. As a further simplification we suppose that the medium
is isotropic. Then the induced polarization P is parallel to E with a coefficient of

proportionality that is independent of direction:

V = XeE (4.36)

The constant \e is called the electric susceptibility of the medium. The displace-

ment D is therefore proportional to E,

D = eE (4.37)

where

€=l+47TXe (4.38)

is called the dielectric constant or relative electric permittivity.

If the dielectric is not only isotropic, but also uniform, then € is independent of

position. The divergence equations (4.35) can then be written

V-E = 47r(^ (4.39)

All problems in that medium are reduced to those of previous chapters, except

that the electric fields produced by given charges are reduced by a factor 1/e. The
reduction can be understood in terms of a polarization of the atoms that produce

fields in opposition to that of the given charge. One immediate consequence is

that the capacitance of a capacitor is increased by a factor of e if the empty space

between the electrodes is filled with a dielectric with dielectric constant e (true

only to the extent that fringing fields can be neglected).

If the uniform medium does not fill all of the space where there are electric

fields or, more generally, if there are different media juxtaposed, not necessarily

linear in their responses, we must consider the question of boundary conditions

on D and E at the interfaces between media. These boundary conditions are

derived from the full set of Maxwell equations in Section 1.5. The results are that

the normal components of D and the tangential components of E on either side

of an interface satisfy the boundary conditions, valid for time-varying as well as

static fields,

(D2-Di) -021 = 4770"

(E2-E!)xn21 =

where n2 i is a unit normal to the surface, directed from region 1 to region 2, and

or is the macroscopic surface charge density on the boundary surface (not

including the polarization charge).

(4.40)
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4.4 Boundary-Value Problems with Dielectrics

The methods of previous chapters for the solution of electrostatic boundary-

value problems can readily be extended to handle the presence of dielectrics. In

this section we treat a few examples of the various techniques applied to

dielectric media.

To illustrate the method of images for dielectrics we consider a point charge q

embedded in a semi-infinite dielectric ei a distance d away from a plane interface

which separates the first medium from another semi-infinite dielectric e2 . The
surface may be taken as the plane z = 0, as shown in Fig. 4.3. We must find the

appropriate solution to the equations:

€iV

e2V

4irp,

0,

z>0

z<0
and

Vx E = 0, everywhere

subject to the boundary conditions at z = 0:

(4.41)

(4.42)

Since Vx E = everywhere, E is derivable in the usual way from a potential <I>. In

attempting to use the image method it is natural to locate an image charge q' at

the symmetrical position A' shown in Fig. 4.4. Then for z>0 the potential at a

point P described by cylindrical coordinates (p, c/>, z) will be

z>0 (4.43)

where Ri = vp2+(d— z)
2

, R2 = vp
2+(d+z) 2

. So far the procedure is completely

analogous to the problem with a conducting material in place of the dielectric e2

for z<0. But we now must specify the potential for z<0. Since there are no
charges in the region z<0, it must be a solution of the Laplace equation without

singularities in that region. Clearly the simplest assumption is that for z<0 the

Fig. 4.3
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«2

P

\
1

< d =h
I

Fig. 4.4

potential is equivalent to that of a charge q" at the position A of the actual

charge q:

e2 Ri
z<0 (4.44)

Since

while

R,/| 2 . az\R 2/|z-o (p
2+ 2\3/2

<i
2

)

aP \R,Ri)L=o 3p(ri)L-o (p
2+d2

)

3'2

the boundary conditions (4.42) lead to the requirements:

q-q' = q"

f(q+q')
=fq"€l €2

These can be solved to yield the image charges q' and q":

(4.45)

For the two cases e2 >ei and e 2 <ei the lines of force (actually lines of D) are

shown qualitatively in Fig. 4.5.

The polarization-charge density is given by —V • P. Inside either dielectric,

P = XeE, so that -V • P = ~XeV • E = 0, except at the point charge q. At the

surface, however, \e takes a discontinuous jump, A^e = (l/47r)(ei — e2) as z passes

through z = 0. This implies that there is a polarization surface-charge density on

the plane z = 0:

o-poi=-(P2-Pi)-il2i (4.46)

where n2i is the unit normal from dielectric 1 to dielectric 2, and P* is the
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€2 >€l €2<€l

Fig. 4.5 Lines of electric displacement for a point charge embedded in a dielectric e,

near a semi-infinite slab of dielectric e2 .

polarization in the dielectric i at z = 0. Since

it is a simple matter to show that the polarization-charge density is

O"pol
q (g2-€i)

27re 1 (e2+ e 1 ) (p
2+ d

2

)

:
(4.47)

In the limit e2 »ei the dielectric e2 behaves much like a conductor in that the

electric field inside it becomes very small and the surface-charge density (4.47)

approaches the value appropriate to a conducting surface.

The second illustration of electrostatic problems involving dielectrics is that of

a dielectric sphere of radius a with dielectric constant e placed in an initially

uniform electric field which at large distances from the sphere is directed along

the z axis and has magnitude E , as indicated in Fig. 4.6. Both inside and outside

the sphere there are no free charges. Consequently the problem is one of solving

Fig. 4.6
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the Laplace equation with the proper boundary conditions at r=a. From the

axial symmetry of the geometry we can take the solution to be of the form:

inside: <J>in=Z A,r'P,(cos 0)
1 =

outside: <Dou«= X [Bir'+ Gr^^Pitcos 0)

(4.48)

(4.49)

From the boundary condition at infinity (<£—»-E z = -E r cos 0) we find that the

only nonvanishing B ( is Bi = —E . The other coefficients are determined from the

boundary conditions at r—a\

TANGENTIAL E\

NORMAL D:

1 d<I>in l a<i>out

a dS r= a a 86 r

aOoU t
"e

dr dr r=a

(4.50)

When the series (4.48) and (4.49) are substituted, there result two series of

Legendre polynomials equal to zero. Since these must vanish for all 0, the

coefficient of each Legendre polynomial must vanish separately. For the first

boundary condition this leads to the relations:

Ay

Ar

a
(4.51)

for 1*1

while the second gives:

eAr E —2 —

j

a
(4.52)

€IA, = -(I+1)-^t
a

for 1*1

The second equations in (4.51) and (4.52) can be satisfied simultaneously only

with Ai = G = for all 1*1. The remaining coefficients are given in terms of the

applied electric field E :

The potential is therefore

3>i„ = -(^^jE r cos 6

3>ou t = -E r cos + ^-|^Eo ^2 cos

(4.53)

(4.54)
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E E

Fig. 4.7 Dielectric sphere in a uniform field E
,
showing the polarization on the left and

the polarization charge with its associated, opposing, electric field on the right.

The potential inside the sphere describes a constant electric field parallel to

the applied field with magnitude

Ein =
I+2

Eo<Eo if € > 1 (4,55)

Outside the sphere the potential is equivalent to the applied field E plus the

field of an electric dipole at the origin with dipole moment:

p=
(frl)

a3jEo (4.56)

oriented in the direction of the applied field. The dipole moment can be

interpreted as the volume integral of the polarization P. The polarization is

(4.57)

It is constant throughout the volume of the sphere and has a volume integral

given by (4.56). The polarization surface-charge density is, according to (4.46),

o-Poi
= (P • r)/r:

ap° l

=
4~(f^)

E° cos (4.58)

This can be thought of as producing an internal field directed oppositely to the

applied field, so reducing the field inside the sphere to its value (4.55), as

sketched in Fig. 4.7.

The problem of a spherical cavity of radius a in a dielectric medium with

dielectric constant e and with an applied electric field E parallel to the z axis,

as shown in Fig. 4.8, can be handled in exactly the same way as the dielectric

Fig. 4.8 Spherical cavity in a dielectric with a uniform field applied.
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sphere. In fact, inspection of boundary conditions (4.50) shows that the results

for the cavity can be obtained from those of the sphere by the replacement

€->(l/c). Thus, for example, the field inside the cavity is uniform, parallel to E
,

and of magnitude:

Ein=d+r Eo>Eo if 6 > 1 (4 '59)

Similarly, the field outside is the applied field plus that of a dipole at the origin

oriented oppositely to the applied field and with dipole moment:

(4.60)

4.5 Molecular Polarizability and Electric Susceptibility

In this section and the next we consider the relation between molecular

properties and the macroscopically defined parameter, the electric susceptibility

Xe. Our discussion is in terms of simple classical models of the molecular

properties, although a proper treatment necessarily would involve quantum-

mechanical considerations. Fortunately, the simpler properties of dielectrics are

amenable to classical analysis.

Before examining how the detailed properties of the molecules are related to

the susceptibility we must make a distinction between the fields acting on the

molecules in the medium and the applied field. The susceptibility is defined

through the relation P = XeE, where E is the macroscopic electric field. In

rarefied media where molecular separations are large there is little difference

between the macroscopic field and that acting on any molecule or group of

molecules. But in dense media with closely packed molecules the polarization of

neighboring molecules gives rise to an internal field E s at any given molecule in

addition to the average macroscopic field E, so that the total field at the molecule

is E+ Ej. The internal field E t can be written as the difference of two terms,

E^Enear-Ep (4.61)

where Enear is the actual contribution of the molecules close to the given

molecule and EP is the contribution from those molecules treated in an average

continuum approximation described by the polarization P. What we are doing

here is saying that close to the molecule in question we must take care to

recognize the specific atomic configuration and locations of the nearby

molecules. Inside some macroscopically small, but microscopically large, volume
V we therefore subtract out the smoothed macroscopic equivalent of the nearby

molecular contributions (EP ) and replace it with the correctly evaluated con-

tribution (Enear). This difference is the extra internal field E s .

The result (4.18) for the integral of the electric field inside a spherical volume
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of radius R containing a charge distribution can be used to calculate EP . If the

volume V is chosen to be a sphere of radius R containing many molecules, the

total dipole moment inside is

4ttR*

provided V is small enough that P is essentially constant throughout the volume.

Then (4.18) shows that the average electric field inside the sphere (just what is

desired for EP ) is

Ed'x=-^P~P
4 1TR 3

j r<R

The internal field can therefore be written

Ej = P+ Enear

(4.62)

(4.63)

The field due to the molecules near by is more difficult to determine. Lorentz

(p. 138) showed that for atoms in a simple cubic lattice Enear vanishes at any

lattice site. The argument depends on the symmetry of the problem, as can be

seen as follows. Suppose that inside the sphere we have a cubic array of dipoles

such as are shown in Fig. 4.9, with all their moments constant in magnitude and

oriented along the same direction (remember that the sphere is macroscopically

small even though it contains very many molecules). The positions of the dipoles

are given by the coordinates xijk with the components along the coordinate axes

(ia, ja, ka), where a is the lattice spacing, and i, j, k each take on positive and

negative integer values. The field at the origin due to all the dipoles is, according

to (4.13),

v _ £ 3(p • Xjjk )xijic — XijkP

Xijk
(4.64)

Fig. 4.9 Calculation of the internal field—contribution from nearby molecules in a
simple cubic lattice.
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The x component of the field can be written in the form:

y 3 (

t

2
pi + ijp2+ ikp3)

-
( i

2+
j

2+

k

2

)p t

?(i
2
+/

2+k 2r (4 -65)

Since the indices run equally over positive and negative values, the cross terms

involving {ijpi+ikpi) vanish. By symmetry the sums:

i

2

y f y k
2

ft (i
2+f+kY2 'k(i2

+i
2+k 2r2 ~k(i2

+i
2+kT2

are all equal. Consequently

v [3i
2
-(i

2+f+k 2

)] PlE,_
£ a

3
(i

2+f+kT2 ~° (4 '66)

Similar arguments show that the y and z components vanish also. Hence Enear=

for a simple cubic lattice.

If Enear = for a highly symmetric situation, it seems plausible that Enear
= also

for completely random situations. Hence we expect amorphous substances to

have no internal field due to nearby molecules. For lattices other than simple

cubic, the components of Enear are related to the components of P through a

traceless tensor saP that has the symmetry properties of the lattice. Nevertheless,

it is a good working assumption that Enear— for most materials.

The polarization vector P was defined in (4.28) as

P = N<pmol>

where <praoi> is the average dipole moment of the molecules. This dipole moment
is approximately proportional to the electric field acting on the molecule. To
exhibit this dependence on electric field we define the molecular polarizability

7moi as the ratio of the average molecular dipole moment to the applied field at

the molecule. Taking account of the internal field (4.63), this gives:

(pmoi>= 7moi(E+Ei) (4.67)

ymoi is, in principle, a function of the electric field, but for a wide range of field

strengths is a constant which characterizes the response of the molecules to an

applied field. Equation (4.67) can be combined with (4.28) and (4.63) to yield:

P =N7mol(E+^p) (4.68)

where we have assumed Enear=0. Solving for P in terms of E and using the fact

that P = XeE defines the electric susceptibility of a substance, we find
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as the relation between susceptibility (the macroscopic parameter) and molecu-

lar polarizability (the microscopic parameter). Since the dielectric constant is

€=l+47TXe, it can be expressed in terms of Ymoi, or alternatively the molecular

polarizability can be expressed in terms of the dielectric constant:

^MtA) (4 -70)

This is called the Clausius-Mossotti equation, since Mossotti (in 1850) and

Clausius independently (in 1879) established that for any given substance

(e-l)/(e + 2) should be proportional to the density of the substance.* The
relation holds best for dilute substances such as gases. For liquids and solids,

(4.70) is only approximately valid, especially if the dielectric constant is large.

The interested reader can refer to the books by Bottcher, Debye, and Frohlich

for further details.

4.6 Models for the Molecular Polarizability

The polarization of a collection of atoms or molecules can arise in two ways:

(a) the applied field distorts the charge distributions and so produces an

induced dipole moment in each molecule;

(b) the applied field tends to line up the initially randomly oriented perma-

nent dipole moments of the molecules.

To estimate the induced moments we consider a simple model of harmoni-

cally bound charges (electrons and ions). Each charge e is bound under the

action of a restoring force

F=-mco 2
x (4.71)

where m is the mass of the charge, and co the frequency of oscillation about

equilibrium. Under the action of an electric field E the charge is displaced from

its equilibrium by an amount x given by

mco
2
x = eE

Consequently the induced dipole moment is

pmoi=ex = 5 E (4.72)

This means that the polarizability is Y = e
2
/mco

2
. If there are a set of charges e,

with masses m, and oscillation frequencies a>, in each molecule then the

* At optical frequencies, e = n\ where n is the index of refraction. With n 2

replacing e in (4.70), the equation is sometimes called the Lorentz-Lorenz equation

(1880).
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molecular polarizability is

To get a feeling for the order of magnitude of 7 we can make two different

estimates. Since 7 has the dimensions of a volume, its magnitude must be of the

order of molecular dimensions or less, namely 7ei^ 10"23 cm3
. Alternatively, we

note that the binding frequencies of electrons in atoms must be of the order of

light frequencies. Taking a typical wavelength of light as 3000 angstroms, we
find a>— 6x 10

15
sec

-1
. Then the electronic contribution to 7 is 7ei~(e

2
/mco

2)~
6x 10

-24 cm3
, consistent with the molecular volume estimate. For gases at NTP

the number of molecules per cubic centimeter is N= 2.7xl0 19
, so that their

susceptibilities should be of the order of Xe~i0

~

4
. This means dielectric

constants differing from unity by a few parts in 10
3

, or less. Experimentally,

typical values of dielectric constant are 1.00054 for air, 1.0072 for ammonia
vapor, 1.0057 for methyl alcohol, 1.000068 for helium. For solid or liquid

dielectrics, N~1022— 10
23

molecules/cm
3

. Consequently, the susceptibility can

be of the order of unity (to within a factor 10* 1

) as is observed.*

The possibility that thermal agitation of the molecules could modify the result

(4.73) for the induced dipole polarizability needs consideration. In statistical

mechanics the probability distribution of particles in phase space (p, q space) is

some function f(H) of the Hamiltonian. For classical systems,

is the Boltzmann factor. For the simple problem of the harmonically bound
charge with an applied field in the z direction, the Hamiltonian is

where here p is the momentum of the charged particle. The average value of the

dipole moment in the z direction is

f(H)=e
-H/kT

(4.74)

TT 1 2 . ™ 2 2H= -— p +— coo x -eEz
2m 2

(4.75)

(4.76)

If we introduce a displaced coordinate x' = x-eEk/ma> 2
then

(4.77)

* See Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., or

American Institute of Physics Handbook, ed. D. E. Gray, 3rd edition, McGraw-Hill, New
York, (1972), for tables of dielectric constants of various substances.
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and

fd
3pfdV(ez'+^)/(H)

\Pmoi)- 7 p (4.78)

jd3

pj dV/(H)

Since H is even in z' the first integral vanishes. Thus, independent of the form of

/(H), we obtain

(Pmol)
—

2 -E

just as was found in (4.12), ignoring thermal motion.

The second type of polarizability is that caused by the partial orientation of

otherwise random permanent dipole moments. This orientation polarization is

important in "polar*' substances such as HC1 and H2 and was first discussed by

Debye (1912). All molecules are assumed to possess a permanent dipole

moment p which can be oriented in any direction in space. In the absence of a

field thermal agitation keeps the molecules randomly oriented so that there is no

net dipole moment. With an applied field there is a tendency to line up along the

field in the configuration of lowest energy. Consequently there will be an average

dipole moment. To calculate this we note that the Hamiltonian of the molecule is

given by

H = Ho-p -E (4.79)

where H is a function of only the "internal" coordinates of the molecule. Using

the Boltzmann factor (4.74), we can write the average dipole moment as:

I dO p cos exp l
r — 1

J
dfteXPl kT")

where we have chosen E along the z axis, integrated out all the irrelevant

variables, and noted that only the component of (p ) parallel to the field is

different from zero. In general, (p E/kT) is very small compared to unity, except

at low temperatures. Hence we can expand the exponentials and obtain the

result:

<pmo,>-|^E (4.81)

The orientation polarization depends inversely on the temperature, as might be

expected of an effect in which the applied field must overcome the opposition of

thermal agitation.

In general both types of polarization, induced (electronic and ionic) and
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1/T >-

Fig. 4.10 Variation of molecular polarizability 7mo , with temperature for polar and
nonpolar substances. 7mo , is plotted versus T"

1

.

orientation, are present, and the general form of the molecular polarization is

This shows a temperature dependence of the form (a+b/T) so that the two types

of polarization can be separated experimentally, as indicated in Fig. 4.10. For

"polar" molecules, such as HC1 and H20, the observed permanent dipole

moments are of the order of an electronic charge times 10" 8
cm, in accordance

with molecular dimensions.

4.7 Electrostatic Energy in Dielectric Media

In Section 1.11 we discussed the energy of a system of charges in free space. The
result obtained there,

for the energy due to a charge density p(x) and a potential <I>(x) cannot in general

be taken over as it stands in our macroscopic description of dielectric media. The
reason becomes clear when we recall how (4.83) was obtained. We thought of

the final configuration of charge as being created by assembling bit by bit the

elemental charges, bringing each one in from infinitely far away against the

action of the then existing electric field. The total work done was given by (4.83).

With dielectric media work is done not only to bring real (macroscopic) charge

into position, but also to produce a certain state of polarization in the medium. If

p and <t> in (4.83) represent macroscopic variables, it is certainly not evident that

(4.83) represents the total work, including that done on the dielectric.

In order to be general in our description of dielectrics we will not initially

7moi ~y* 2 fox
(4.82)

(4.83)
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make any assumptions about linearity, uniformity, etc., of the response of a

dielectric to an applied field. Rather, let us consider a small change in the energy

8W due to some sort of change Sp in the macroscopic charge density p existing in

all space. The work done to accomplish this change is

8W=Jsp(x)<D(x)d
3
x (4.84)

where <£(x) is the potential due to the charge density p(x) already present. Since

V • D = 4ttp, we can relate the change 8p to a change in the displacement of 8D:

Sp =^-V.(SD) (4.85)

Then the energy change 8W can be cast into the form:

^j*E-SDd 3
x (4.86)8W

4tt

where we have used E = —V4> and have assumed that p(x) was a localized charge

distribution. The total electrostatic energy can now be written down formally, at

least, by allowing D to be brought from an initial value D = to its final value D:

W ^jd^jVsD (4.87)

If the medium is linear, then

E • 8D=|8(E • D) (4.88)

and the total electrostatic energy is

VV =^-(*E-Dd3
x (4.89)

This last result can be transformed into (4.83) by using E = —VO and V • D =

4ttp, or by going back to (4.84) and assuming that p and are connected

linearly. Thus we see that (4.83) is valid macroscopically only if the behavior is

linear. Otherwise the energy of a final configuration must be calculated from

(4.87) and might conceivably depend on the past history of the system (hysteresis

effects).

A problem of considerable interest is the change in energy when a dielectric

object with a linear response is placed in an electric field whose sources are fixed.

Suppose that initially the electric field E due to a certain distribution of charges

p (x) exists in a medium of dielectric constant e which may be a function of

position. The initial electrostatic energy is

W =^; Jeo-Do d
:
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where Do = e E . Then with the sources fixed in position a dielectric object of

volume Vi is introduced into the field, changing the field from E to E. The
presence of the object can be described by a dielectric constant e(x), which has

the value d inside Vi and e outside Vi. To avoid mathematical difficulties we
can imagine e(x) to be a smoothly varying function of position which falls rapidly

but continuously from ei to e at the edge of the volume Vi. The energy now has

the value

where D = eE. The difference in the energy can be written:

W=^- f(E-D-Eo-Do) d
3
x

OTT J

=^ |(E • Do-D • Eo) d
3x+^ J(E+E ) (D-D ) d

3
x (4.90)

The second integral can be shown to vanish by the following argument. Since

Vx(E+E ) = 0, we can write

E+E = -V<I>

Then the second integral becomes:

fv4> . (D-Do) d
3
x

Integration by parts transforms this into

1=-^ J$V • (D-D ) d
3
x =

since V • (D—

D

) = because the source charge density p (x) is assumed un-

altered by the insertion of the dielectric object. Consequently the energy

change is

J- f(E-Do-D.E )d 3
x (4.91)

077 J

w

The integration appears to be over all space, but is actually only over the volume

Vi of the object, since, outside Vi, D = e E. Therefore we can write

W=~ £ (e 1 -e )E • Eo d
3
x (4.92)

If the medium surrounding the dielectric body is free space, then e =l. Using

the definition of polarization P, (4.92) can then be expressed in the form:

W= ~Jv F ' Eod3x (4 '93)
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where P is the polarization of the dielectric. This shows that the energy density

of a dielectric placed in a field E whose sources are fixed is given by

w = -JP-E (4.94)

This result is analogous to the dipole term in the energy (4.24) of a charge

distribution in an external field. The factor \ is due to the fact that (4.94)

represents the energy density of a polarizable dielectric in an external field,

rather than a permanent dipole. It is the same factor \ which appears in (4.88).

Equations (4.92) and (4.93) show that a dielectric body will tend to move
towards regions of increasing field E provided €i>e . To calculate the force

acting we can imagine a small generalized displacement of the body 8£. Then
there will be a change in the energy 8W. Since the charges are held fixed, there is

no external source of energy and the change in field energy can be interpreted as

a change in the potential energy of the body. This means that there is a force

acting on the body:

r.=-(f)„

where the subscript Q has been placed on the partial derivative to indicate that

the sources of the field are kept fixed.

In practical situations involving the motion of dielectrics the electric fields are

often produced by a configuration of electrodes held at fixed potentials by

connection to an external source such as a battery. As the distribution of

dielectric varies, charge will flow to or from the battery to the electrodes in order

to maintain the potentials constant. This means that energy is being supplied

from the external source, and it is of interest to compare the energy supplied in

that way with the energy change found above for fixed sources of the field. We
will treat only linear media so that (4.83) is valid. It is sufficient to consider small

changes in an already existing configuration. From (4.83) it is evident that the

change in energy accompanying the changes 8p(x) and 5<I>(x) in charge density

and potential is

8W=|
J(p

M>+<D Sp) d
3
x (4.96)

Comparison with (4.84) shows that, if the dielectric properties are not changed,

the two terms in (4.96) are equal. If, however, the dielectric properties are

altered,

e(x)-*e(x) + 8e(x) (4.97)

the contributions in (4.96) are not necessarily the same. In fact, we have just

calculated the change in energy brought about by introducing a dielectric body

into an electric field whose sources were fixed (8p =0). Equal contributions in

(4.96) would imply 8W=0, but (4.91) or (4.92) are not zero in general. The
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reason for this difference is the existence of the polarization charge. The change

in dielectric properties implied by (4.97) can be thought of as a change in the

polarization-charge density. If then (4.96) is interpreted as an integral over both

free and polarization-charge densities (i.e., a microscopic equation), the two

contributions are always equal. However, it is often convenient to deal with

macroscopic quantities. Then the equality holds only if the dielectric properties

are unchanged.

The process of altering the dielectric properties in some way (by moving the

dielectric bodies, by changing their susceptibilities, etc.) in the presence of

electrodes at fixed potentials can be viewed as taking place in two steps. In the

first step the electrodes are disconnected from the batteries and the charges on

them held fixed (8p = 0). With the change (4.97) in dielectric properties, the

energy change is

SW1=|jp8#id3
x (4.98)

where 83>i is the change in potential produced. This can be shown to yield the

result (4.92). In the second step the batteries are connected again to the

electrodes to restore their potentials to the original values. There will be a flow

of charge 8p2 from the batteries accompanying the change in potential*

8<t> 2 = — 8<E>i. Therefore the energy change in the second step is

8W2 = i
J(p

8<D 2+<D 8p2) d
3
x = -2 8Wx (4.99)

since the two contributions are equal. In the second step we find the external

sources changing the energy in the opposite sense and by twice the amount of the

initial step. Consequently the net change is

8W=-i JpScDxd
3
* (4.100)

Symbolically

8Wv=-8WQ (4.101)

where the subscript denotes the quantity held fixed. If a dielectric with e>l
moves into a region of greater field strength, the energy increases instead of

decreases. For a generalized displacement &i the mechanical force acting is now

F-+©v <
4 - 102>

* Note that it is necessary merely to know that S<£ 2 = -hQ x on the electrodes, since

that is the only place where free charge resides.
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PROBLEMS

4.1 Calculate the multipole moments q,m of the charge distributions shown below. Try
to obtain results for the nonvanishing moments valid for all I, but in each case find the

first two sets of nonvanishing moments at the very least.

z z

(c) For the charge distribution (b) write down the multipole expansion for the

potential. Keeping only the lowest-order term in the expansion, plot the potential in

the x-y plane as a function of distance from the origin for distances greater than a.

(d) Calculate directly from Coulomb's law the exact potential for (b) in the x-y plane.

Plot it as a function of distance and compare with the result found in (c).

Divide out the asymptotic form in parts (c) and (d) in order to see the behavior at

large distances more clearly.
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4.2 A point dipole with dipole moment p is located at the point Xo. From the properties

of the derivative of a Dirac delta function show that for calculation of the potential 4>

or the energy of a dipole in an external field, the dipole can be described by an
effective charge density

peff(x) = -p • VS(x-Xo)

4.3 The Ith term in the multipole expansion (4.1) of the potential is specified by the

(2/+ 1) multipole moments q,m . On the other hand, the Cartesian multipole moments,

with a, |3, 7 nonnegative integers subject to the constraint, a+ (3+ y = l, are

(I+l)(i+2)/2 in number. Thus, for i>l there are more Cartesian multipole moments
than seem necessary to describe the term in the potential whose radial dependence is

rr-\

Show that, while the q,m transform under rotations as spherical tensors of rank /, the

Cartesian multipole moments correspond to spherical tensors of ranks /, 1—2,

1—4, . .
. , Imin , where Ln = or 1 for J even or odd, respectively. Check that the number

of different tensorial components adds up to the total number of Cartesian tensors.

Why are only the q,m needed in the expansion (4.1)?

4.4 (a) Prove the following theorem:

For an arbitrary charge distribution p(x) the values of the (21+1) moments of the

first nonvanishing multipole are independent of the origin of the coordinate axes, but

the values of all higher multipole moments do in general depend on the choice of

origin. (The different moments qlm for fixed I depend, of course, on the orientation of

the axes.)

(b) A charge distribution has multipole moments q, p, Qih .

.

. with respect to one set

of coordinate axes, and moments q', p', Q[j, . . . with respect to another set whose axes

are parallel to the first, but whose origin is located at the point R= (X, Y, Z) relative to

the first. Determine explicitly the connections between the monopole, dipole, and
quadrupole moments in the two coordinate frames.

(c) If q can R be found so that p' = 0? If q^O, p^O, or at least p^O, can R be
found so that Q:f

= 0?

4.5 A localized charge density p(x, y, z) is placed in an external electrostatic field

described by a potential <!>
<0)

(x, y, z). The external potential varies slowly in space over

the region where the charge density is different from zero.

(a) From first principles calculate the total force acting on the charge distribution as an

expansion in multipole moments times derivatives of the electric field, up to and
including the quadrupole moments. Show that the force is

Compare this to the expansion (4.24) of the energy W. Note that (4.24) is a number—it

is not a function of x that can be differentiated! What is its connection to F?

(b) Repeat the calculation of (a) for the total torque. For simplicity, evaluate only one

Cartesian component of the torque, say N t . Show that this component is

F= qE(0)(0)+{V[p E<»Bo+{v[il
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4.6 A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric

electric field with a gradient (dEJdz) along the z axis at the position of the nucleus.

(a) Show that the energy of quadrupole interaction is

4 \dz Jo

(b) If it is known that Q = 2x 10~ 24 cm 2 and that W/h is 10 MHz, where h is Planck's

constant, calculate (dEJdz) in units of e/a \ where a = h2/me 2 = 0.529 x 10~ 8 cm is the

Bohr radius in hydrogen.

(c) Nuclear charge distributions can be approximated by a constant charge density

throughout a spheroidal volume of semimajor axis a and semiminor axis b. Calculate

the quadrupole moment of such a nucleus, assuming that the total charge is Ze. Given

that Eu 153 (Z = 63) has a quadrupole moment Q = 2.5 x 10"24 cm2 and a mean radius

R = (a+b)/2 = 7xl0- 13 cm

determine the fractional difference in radius {a-b)/R.

4.7 A localized distribution of- charge has a charge density

p(r)=
oi^

rVr sin20

(a) Make a multipole expansion of the potential due to this charge density and
determine all the nonvanishing multipole moments. Write down the potential at large

distances as a finite expansion in Legendre polynomials.

(b) Determine the potential explicitly at any point in space, and show that near the

origin, correct to r
2
inclusive,

*(r)4-il) p'(cose)

(c) If there exists at the origin a nucleus with a quadrupole moment Q= 10
24 cm2

,

determine the magnitude of the interaction energy, assuming that the unit of charge in

p(r) above is the electronic charge and the unit of length is the hydrogen Bohr radius

ao = ft
2/me 2 = 0.529x 10" 8

cm. Express your answer as a frequency by dividing by
Planck's constant h.

The charge density in this problem is that for the m = ±l states of the 2p level in

hydrogen, while the quadrupole interaction is of the same order as found in molecules.

4.8 A very long, right circular, cylindrical shell of dielectric constant € and inner and
outer radii a and b, respectively, is placed in a previously uniform electric field E with

its axis perpendicular to the field. The medium inside and outside the cylinder has a

dielectric constant of unity.

(a) Determine the potential and electric field in the three regions, neglecting end
effects.

(b) Sketch the lines of force for a typical case of b— 2a.

(c) Discuss the limiting forms of your solution appropriate for a solid dielectric

cylinder in a uniform field, and a cylindrical cavity in a uniform dielectric.

4.9 A point charge q is located in free space a distance d from the center of a dielectric

sphere of radius a (a<d) and dielectric constant e.

(a) Find the potential at all points in space as an expansion in spherical harmonics.

(b) Calculate the rectangular components of the electric field near the center of the

sphere.
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(c) Verify that, in the limit e—»o°, your result is the same as that for the conducting
sphere.

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively,

carry charges ±Q. The empty space between the spheres is half-filled by a hemispheri-

cal shell of dielectric (of dielectric constant e), as shown in the figure.

Problem 4.10

(a) Find the electric field everywhere between the spheres.

(b) Calculate the surface-charge distribution on the inner sphere.

(c) Calculate the polarization-charge density induced on the surface of the dielectric

at r= a.

4.11 The following data on the variation of dielectric constant with pressure are taken

from the Smithsonian Physical Tables, 9th ed., p. 424:

Air at 292°K

Pressure (atm) e

20 1.0108 Relative density of

40 1.0218 air as a function of

60 1.0333 pressure is given in

80 1.0439 AIP Handbook, 3rd

100 1.0548 ed., 1972, p. 4-165.

Pentane (C5H 12) at 303°K

Pressure (atm) Density (gm/cm3
) e

1 0.613 1.82

10
3 0.701 1.96

4xl0 3
0.796 2.12

8xl0 3
0.865 2.24

12xl03 0.907 2.33

Test the Clausius-Mossotti relation between dielectric constant and density for air

and pentane in the ranges tabulated. Does it hold exactly? Approximately? If

approximately, discuss fractional variations in density and (e— 1). For pentane,

compare the Clausius-Mossotti relation to the cruder relation, (e-1) « density.

4.12 Water vapor is a polar gas whose dielectric constant exhibits an appreciable

temperature dependence. The following table gives experimental data on this effect.

Assuming that water vapor obeys the ideal gas law, calculate the molecular polariza-

bility as a function of inverse temperature and plot it. From the slope of the curve,
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deduce a value for the permanent dipole moment of the H 2 molecule (express the

dipole moment in esu—stat-coulomb-centimeters).

T(°K) Pressure (cm Hg) (e-l)xlO5

393 56.49 400.2

423 60.93 371.7

453 65.34 348.8

483 69.75 328.7

4.13 Two long, coaxial, cylindrical conducting surfaces of radii a and b are lowered

vertically into a liquid dielectric. If the liquid rises a distance h between the electrodes

when a potential difference V is established between them, show that the susceptibility

of the liquid is

_ (b
2 -a 2

) pgh In (bla)
Xe y2

where p is the density of the liquid, g is the acceleration due to gravity, and the
susceptibility of air is neglected.



5
Magnetostatics

5.1 Introduction and Definitions

In the preceding chapters various aspects of electrostatics (i.e., the fields and

interactions of stationary charges and boundaries) have been studied. We now
turn to steady-state magnetic phenomena. From an historical point of view,

magnetic phenomena have been known and studied for at least as long as electric

phenomena. Lodestones were known in ancient times; the mariner's compass is

a very old invention; Gilbert's researches on the earth as a giant magnet date

from before 1600. In contrast to electrostatics, the basic laws of magnetic fields

did not follow straightforwardly from man's earliest contact with magnetic

materials. The reasons are several, but they all stem from the radical difference

between magnetostatics and electrostatics: there are no free magnetic charges.

This means that magnetic phenomena are quite different from electric

phenomena and that for a long time no connection was established between

them. The basic entity in magnetic studies was what we now know as a magnetic

dipole. In the presence of magnetic materials the dipole tends to align itself in a

certain direction. That direction is by definition the direction of the magnetic-

flux density, denoted by B, provided the dipole is sufficiently small and weak that

it does not perturb the existing field. The magnitude of the flux density can be

defined by the mechanical torque N exerted on the magnetic dipole:

N = p,xB (5.1)

where |x is the magnetic moment of the dipole, defined in some suitable set of

units.

Already, in the definition of the magnetic-flux density B (sometimes called the

magnetic induction), we have a more complicated situation than for the electric

field. Further quantitative elucidation of magnetic phenomena did not occur

until the connection between currents and magnetic fields was established. A

168
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current corresponds to charges in motion and is described by a current density J,

measured in units of positive charge crossing unit area per unit time, the

direction of motion of the charges defining the direction of J. In electrostatic

units, current density is measured in statcoulombs per square centimeter-second,

and is sometimes called statamperes per square centimeter, while in MKSA
units it is measured in coulombs per square meter-second or amperes per square

meter. If the current density is confined to wires of small cross section, we usually

integrate over the cross-sectional area and speak of a current of so many
statamperes or amperes flowing along the wire.

Conservation of charge demands that the charge density at any point in space

be related to the current density in that neighborhood by a continuity equation:

This expresses the physical fact that a decrease in charge inside a small volume

with time must correspond to a flow of charge out through the surface of the

small volume, since the total amount of charge must be conserved. Steady-state

magnetic phenomena are characterized by no change in the net charge density

anywhere in space. Consequently in magnetostatics

We now proceed to discuss the experimental connection between current and

magnetic-flux density and to establish the basic laws of magnetostatics.

5.2 Biot and Savart Law

In 1819 Oersted observed that wires carrying electric currents produced

deflections of permanent magnetic dipoles placed in their neighborhood. Thus
the currents were sources of magnetic-flux density. Biot and Savart (1820), first,

and Ampere (1820-1825), in much more elaborate and thorough experiments,

established the basic experimental laws relating the magnetic induction B to the

currents and established the law of force between one current and another.

Although not in the form in which Ampere deduced it, the basic relation is the

following. If d\ is an element of length (pointing in the direction of current flow)

of a filamentary wire which carries a current I and x is the coordinate vector from

the element of length to an observation point P, as shown in Fig. 5.1, then the

elemental flux density dB at the point P is given in magnitude and direction by

(5.2)

V- J = (5.3)

dB = kI
(dlxx)

W 3 (5.4)

It should be noted that (5.4) is an inverse square law, just as is Coulomb's law of

electrostatics. However, the vector character is very different.
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P

Fig. 5.1 Elemental magnetic induction dB due to current element I dl.

A word of caution about (5.4). There is a temptation to think of (5.4) as the

magnetic equivalent of the electric field (1.3) of a point charge and to identify I dl

as the analog of q. Strictly speaking this is incorrect. Equation (5.4) has meaning

only as one element of a sum over a continuous set, the sum representing the

magnetic induction of a current loop or circuit. Obviously the continuity equation

(5.3) is not satisfied for the current element ld\ standing alone—the current

comes from nowhere and disappears after traversing the length dl! One apparent

way out of this difficulty is to realize that current is actually charge in motion and to

replace I dl by q\ where q is the charge and v its velocity. The flux density for such

a charge in motion would be

in close correspondence with (5.4). But this expression is time-dependent and

furthermore is valid only for charges whose velocities are small compared to that

of light and whose accelerations can be neglected. Since we are considering

steady-state magnetic fields in this chapter we stick with (5.4) and integrate over

circuits to obtain physical results.*

In (5.4) and (5.5) the constant k depends on the system of units used, as

discussed in detail in the Appendix. If current is measured in esu, but the flux

density is measured in emu, the constant is k = 1/c, where c is found experiment-

ally to be equal to the velocity of light in vacuo (c = 2.998 x 10
10
cm/sec). This

system of units is called the Gaussian system. To insert the velocity of light into

our equations at this stage seems a little artificial, but not if we consider

electromagnetism from the point of view of special relativity. As is discussed in

* There is an apparent inconsistency here. Currents are, after all, charges in motion.

How can (5.4), integrated, yield exact results yet (5.5) be only approximate? The answer is

that (5.5) applies to only one charge. If a system of many charges moves in such a way that as

the unit of charge goes to zero and the number of charges goes to infinity it produces a

steady current flow, then the sum of the exact relativistic fields, including acceleration

effects, gives a magnetostatic field equal to the field obtained by integrating (5.4) over the

current. This rather subtle result is discussed for some special situations in Problems 14.12

and 14.13.

B=kq vxx
(5.5)
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detail in Chapter 11, E and B must be considered as different elements of the

field-strength tensor FaP . A charge at rest in one frame has only an electrostatic

field in that frame, but in a moving frame it is associated with a magnetic flux

density (5.5), with k= 1/c in the customary usage. The ratio u/c appears naturally

in relativistic considerations. The choice of k = 1/c also has the related advantage

of measuring charge and current in a consistent set of units so that the continuity

equation (5.2) retains its simple form, without factors of c. We will adopt the

Gaussian system here.

We can linearly superpose the basic magnetic flux elements (5.4) by integration

to determine the magnetic-flux density due to various configurations of current-

carrying wires. For example, the magnetic induction B of the long straight wire

shown in Fig. 5.2 carrying a current I can be seen to be directed along the normal

to the plane containing the wire and the observation point, so that the lines of

magnetic induction are concentric circles around the wire. The magnitude of B is

given by

where R is the distance from the observation point to the wire. This is the

experimental result first found by Biot and Savart and is known as the

Biot-Savart law. Note that the magnitude of the induction B varies with R in the

same way as the electric field due to a long line charge of uniform linear-charge

density. This analogy shows that in some circumstances there may be a

correspondence between electrostatic and magnetostatic problems, even though

the vector character of the fields is different. We shall see more of that in later

sections.

Ampere's experiments did not deal directly with the determination of the

relation between currents and magnetic induction, but were concerned rather

with the force that one current-carrying wire experiences in the presence of

another. Since we have already introduced the idea that a current element

(5.6)

B

d\

Fig. 5.2
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produces a magnetic induction, we phrase the force law as the force experienced

by a current element h dli in the presence of a magnetic induction B. The
elemental force is

dF=^(dhxB) (5.7)

Ii is the current in the element (measured in esu), B is the flux density (in emu),

and c is the velocity of light. If the external field B is due to a closed current loop

#2 with current I2 , then the total force which a closed current loop #1 with

current L experiences is [from (5.4) and (5.7)]:

III

c

;dliX(dl2 xx12)

Xi 2

The line integrals are taken around the two loops; x i2 is the vector distance from

line element dl2 to dli, as shown in Fig. 5.3. This is the mathematical statement

of Ampere's observations about forces between current-carrying loops. By
manipulating the integrand it can be put in a form which is symmetric in dli and

dl2 and which explicitly satisfies Newton's third law. Thus

dliX(dl2 xxi 2)

|xi 2 |

3
= _(dll . dl2)^+dl2(^) _

(5 .9)

The second term involves a perfect differential in the integral over dli.

Consequently it gives no contribution to the integral (5.8), provided the paths

are closed or extend to infinity. Then Ampere's law of force between current

loops becomes

showing symmetry in the integration, apart from the necessary vectorial

dependence on x i2 .

Each of two long, parallel, straight wires a distance d apart, carrying currents

Ji and I2 ,
experiences a force per unit length directed perpendicularly towards

Fig. 5.3 Two Amperian current loops.
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the other wire and of magnitude,

dF = 2hh
dl c

2
d

(5.11)

The force is attractive (repulsive) if the currents flow in the same (opposite)

directions. The forces which exist between current-carrying wires can be used to

define magnetic-flux density in a way that is independent of permanent magnetic

dipoles.* We will see later that the torque expression (5.1) and the force result

(5.7) are intimately related.

If a current density J(x) is in an external magnetic-flux density B(x), the

elementary force law implies that the total force on the current distribution is

F= i j*J(x)xB(x)d
3
x (5.12)

Similarly the total torque is

N = i J*xx(JxB)d
3
x (5.13)

These general results will be applied to localized current distributions in Section

5.7.

5.3 The Differential Equations of Magnetostatics and Ampere's Law

The basic law (5.4) for the magnetic induction can be written down in general

form for a current density J(x):

B(x) =ijj(x')x^^dV (5.14)

This expression for B(x) is the magnetic analog of electric field in terms of the

charge density:

E(x) = Jp(x')^^dV (5.15)

Just as this result for E was not as convenient in some situations as differential

equations, so (5.14) is not the most useful form for magnetostatics, even though

it contains in principle a description of all the phenomena.
In order to obtain the differential equations equivalent to (5.14) we use the

* In fact, (5.11) is the basis of the internationally accepted standard of current

(actually I/c here). See the Appendix.
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relation just above (1.15) to transform (5.14) into the form:

**>4MI§i dV (516)

From (5.16) it follows immediately that the divergence of B vanishes:

VB = (5.17)

This is the first equation of magnetostatics and corresponds to VxE = in

electrostatics. By analogy with electrostatics we now calculate the curl of B:

VxB=- VxVx
c

With the identity Vx(VxA)=V(V • A)-V2A for an arbitrary vector field A,

expression (5.18) can be transformed into

VxB4v}JW .T(^) dv4}l(^(^)dV (5.19)

Using the fact that

'(ix-x'l)
V
'(lx-x'|)

and

the integrals in (5.19) can be written:

VxB =~ vjj(x') • V'(|^^7[) dV+^J(x) (5.20)

Integration by parts yields

VxB=^ J+I V fVW(xO d
3
x , (521)

c c J |x-x|

But for steady-state magnetic phenomena V • J = 0, so that we obtain

VxB =— J (5.22)
c

This is the second equation of magnetostatics, corresponding to V • E = 47rp in

electrostatics.

In electrostatics Gauss's law (1.11) is the integral form of the equation

V-E = 47rp. The integral equivalent of (5.22) is called Ampere's law. It is

obtained by applying Stokes's theorem to the integral of the normal component

of (5.22) over an open surface S bounded by a closed curve C, as shown in Fig.
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Since the surface integral of the current density is the total current I passing

through the closed curve C, Ampere's law can be written in the form:

B-dl =— I (5.25)
c

Just as Gauss's law can be used for calculation of the electric field in highly

symmetric situations, so Ampere's law can be employed in analogous cir-

cumstances.

5.4 Vector Potential

The basic differential laws of magnetostatics are

VxB=^J
c

VB =
(5.26)

The problem is how to solve them. If the current density is zero in the region of

interest, VxB = permits the expression of the vector magnetic induction B as

the gradient of a magnetic scalar potential, B = -V4>M . Then (5.26) reduces to the

Laplace equation for Om , and all our techniques for handling electrostatic

problems can be brought to bear. There are a large number of problems which

fall into this class, but we will defer discussion of them until later in the chapter.

The reason is that the boundary conditions are different from those encountered
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in electrostatics, and the problems usually involve macroscopic media with

magnetic properties different from free space with charges and currents.

A general method of attack is to exploit the second equation in (5.26). If

V • B = everywhere, B must be the curl of some vector field A(x), called the

vector potential,

B(x) = VxA(x) (5.27)

We have, in fact, already written B in this form (5.16). Evidently, from (5.16),

the general form of A is

A(x) = i dV+V*(x) (5.28)

The added gradient of an arbitrary scalar function ¥ shows that, for a given

magnetic induction B, the vector potential can be freely transformed according

to

A-*A+V¥ (5.29)

This transformation is called a gauge transformation. Such transformations on A
are possible because (5.27) specifies only the curl of A. The freedom of gauge

transformations allows us to make V • A have any convenient functional form we
wish.

If (5.27) is substituted into the first equation in (5.26), we find

Vx(VxA)=yJ

or

V(V- A)-V2A=^J

If we now exploit the freedom implied by (5.29), we can make the convenient

choice of gauge,* V*A = 0. Then each rectangular component of the vector

potential satisfies the Poisson equation,

V2A=-— J (5.31)
c

From our discussions of electrostatics it is clear that the solution for A in

unbounded space is (5.28) with y¥ = constant:

A«4l|Si dV (5 -32)

The condition ^ = constant can be understood as follows. Our choice of gauge,

V • A = 0, reduces to V2^ = 0, since the first term in (5.28) has zero divergence

*The choice is called the Coulomb gauge, for a reason which will become
apparent only in Section 6.5.
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because of V • J = 0. If V2^ = holds in all space, ^ must be at most a constant

provided there are no sources at infinity.

5.5 Vector Potential and Magnetic Induction for a Circular

Current Loop

As an illustration of the calculation of magnetic fields from given current

distributions we consider the problem of a circular loop of radius a, lying in the

x-y plane, centered at the origin, and carrying a current I, as shown in Fig. 5.5.

The current density J has only a component in the </> direction,

J* = I sin 0' 8(cos 0')
6(r ~ a)

(5.33)

The delta functions restrict current flow to a ring of radius a. The vectorial

current density J can be written

J= —J* sin </>' i + J* cos <f>' j (5.34)

Since the geometry is cylindrically symmetric, we may choose the observation

point in the x-z plane (cf> = 0) for purposes of calculation. Since the azimuthal

integration in (5.32) is symmetric about <£' = 0, the x component of the current

does not contribute. This leaves only the y component, which is A*. Thus

A*(r, 0)=± |> dr' dfl
,
sin e'cos4>'8(coseW-a)

(5 35)
ca J |x-x

|

where |x-x'| = [r
2
+r'

2
-2rr'(cos 6 cos 0'+sin sin 6' cos (f>')]

1/2
.

We first consider the straightforward evaluation of (5.35). Integration over the

delta functions leaves the result

(5.36)

X

Fig. 5.5
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This integral can be expressed in terms of the complete elliptic integrals K and
E:

41a

iin

(2-k 2)K(k)-2E(k)l

cV'

a

2+ r
2+ 2ar sin

where the argument of the elliptic integrals is

4ar sin

(5.37)

k
z =

a
2+r2+2ar sin

The components of magnetic induction,

1 d
B r
=

Be =

r sin 86

l a

(sin OA*)

r dr

B*=

(5.38)

can also be expressed in terms of elliptic integrals. But the results are not

particularly illuminating (useful, however, for computation).

For small k
2

,
corresponding to a»r, a« r, or 0« 1, the square bracket in (5.37)

reduces to (77k
2
/ 16). Then the vector potential becomes approximately

A»(r, 0) =

The corresponding fields are

Iira
:

r sin

c (a
2+r2

+2arsin0)-

D lira
2

_ (2a
2+2r2

+arsin 0)B r
=- cos , 2 2 . -. s/2

c (a +r +2ar sin 0)
7

d l7T<j2 • „ (2a
2-

r

2+ar sin 0)
Be ~

c
Sm6

(a
2+r2

+2arsin 0)
5/2

(5.39)

(5.40)

These can easily be specialized to the three regions, near the axis (0« 1), near the

center of the loop (r«a), and far from the loop (r»a).

Of particular interest are the fields far from the loop:

(5.41)

Comparison with the electrostatic dipole fields (4.12) shows that the magnetic

fields far away from a circular current loop are dipole in character. By analogy

with electrostatics we define the magnetic dipole moment of the loop to be

7rla
:

m (5.42)
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We will see in the next section that this is a special case of a general

result—localized current distributions give dipole fields at large distances; the

magnetic moment of a plane current loop is the product of the area of the loop

times lie.

Although we have obtained a complete solution to the problem in terms of

elliptic integrals, we now illustrate the use of a spherical harmonic expansion to

point out similarities and differences between the magnetostatic and electrostatic

problems. Thus we return to (5.35) and substitute the spherical expansion (3.70)

for Ix-xt
1

:

A>=— Re Z
Y
;
m

,

(^ Q)
f r

'2
dr' dft' 8(cos Q')b(r'- a)e«4 Yfm(0', <f>') (5.43)

The presence of e
l4> means that only m = + 1 will contribute to the sum. Hence

1 877
2
Ia y Ytl(e,0) r

l

< |~v (it _\1
f
- AA .

^—L^ii^mMi'Vl (5 -44)

where now r< (r>) is the smaller (larger) of a and r. The square-bracketed

quantity is a number depending on /:

0, for I even

for i = 2n+l
[ NiSV*

Then A* can be written

/
2I+1 r(-irT(n+j) i

\4irl(l+l)L r(n+i)r@) J'

(5.45)

a — (-l)
w
(2n-l)!! r?T

1

pl ,^
""T „4 2"(n+l)! TP1 P2n+l(C°S 0) (5 *46)

where (2n-l)!! = (2n-l)(2n-3)(- • -)><5x3xl, and the n = coefiicient in the

sum is unity by definition. To evaluate the radial component of B from (5.38) we
need

^ [vT-x5 Pl

1

(x)] = 1(1+ l)P,(x) (5.47)

Then we find

n 27rlaf (-l)
n
(2n+l)!! r

2n+1
„ , ,cBr =-—- 1 ——7^2 P2n+l(COS 0) (5.48)

cr n=o z hi r>

The 6 component of B is similarly

R irla
2

v (-l)
n
(2n+l)!! j~ (^n+l)?(a)B°

= ~ L 1' nt < 1 /.on >P2n+l(COS0) (5.49)
c n̂ o 2

n
(n+l)!
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The upper line holds for r<a, and the lower line for r>a. For r»a, only the

n = term in the series is important. Then, since Pi^cos 9) = —sin 0, (5.48) and

(5.49) reduce to (5.41). For r« a, the leading term is again n = 0. The fields are

then equivalent to a magnetic induction IttIIclc in the z direction, a result that

can be found by elementary means.

We note a characteristic difference between this problem and a corresponding

cylindrically symmetric electrostatic problem. Associated Legendre polynomials

appear, as well as ordinary Legendre polynomials. This can be traced to the

vector character of the current and vector potential, as opposed to the scalar

properties of charge and electrostatic potential.

Another mode of attack on the problem of the planar loop is to employ an

expansion in cylindrical waves. Instead of (3.70) as a representation of |x— x'|
_1

we may use the cylindrical form (3.148) or (3.149) or that of Problem 3.14(b).

The application of this technique to the circular loop will be left to the problems.

5.6 Magnetic Fields of a Localized Current Distribution,

Magnetic Moment

We now consider the properties of a general current distribution which is

localized in a small region of space, "small" being relative to the scale of length

of interest to the observer. A complete treatment of this problem, in analogy

with the electrostatic multipole expansion, can be made using vector spherical

harmonics.* These are presented in Chapter 16 in connection with multipole

radiation. We will be content here with only the lowest order of approximation.

Assuming |x| »|x'|, we expand the denominator of (5.32) in powers of x'

measured relative to a suitable origin in the localized current distribution, shown

schematically in Fig. 5.6:

Fig. 5.6 Localized current density J(x') gives rise to a magnetic induction at the point P
with coordinate x.

* This is not the only way. Scalar potentials can be used. See J. B. Bronzan, Am. J.

Phys. 39, 1357 (1971).

(5.50)
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Then a given component of the vector potential will have the expansion,

Mx) =^\u*l d
3x'+^jux')x' d*x'+' • • (5.51)

The fact that J is a localized, divergenceless current distribution permits

simplification and transformation of the expansion (5.51). Let f(x') and g(x') be

well-behaved functions of x' to be chosen below. Then, if J(x') is localized and

has zero divergence, we have

j(/J-V'g+ gJ.V7)dV = (5.52)

This can be established by an integration by parts on the second term, followed

by expansion of /V- (gj). With f=l and g = x{, (5.52) establishes that

Jj^x') dV =

The first term in (5.51), corresponding to the monopole term in the electrostatic

expansion, is therefore absent. With f=x' and g = x,- (5.52) yields

JWj+xJJi) dV =

The integral in the second term of (5.51) can therefore be written

x-Jx'JdV^X x^'JidV

= -| Z XjJ
(x'iJj-x'jJi) dV

= ~\ Z eykXjjVx J) k dV

= -^xxj(x'xj) dV

It is customary to define the magnetic moment density or magnetization as

^(x) = ^[xxj(x)] (5.53)

and its integral as the magnetic moment m:

m =Yc Jx'xJ(x')dV (5.54)

Then the vector potential from the second term in (5.51) is the magnetic dipole
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vector potential,

A(x) =
mxx

(5.55)

This is the lowest nonvanishing term in the expansion of A for a localized

steady-state current distribution. The magnetic induction B outside the localized

source can be calculated directly by evaluating the curl of (5.55):

Here n is a unit vector in the direction x. The magnetic induction (5.56) has

exactly the form (4.13) of the field of a dipole. This is the generalization of the

result found for the circular loop in the last section. Far away from any localized

current distribution the magnetic induction is that of a magnetic dipole of dipole

moment given by (5.54).

If the current is confined to a plane, but otherwise arbitrary, loop, the

magnetic moment can be expressed in a simple form. If the current I flows in a

closed circuit whose line element is dl, (5.54) becomes

For a plane loop such as that in Fig. 5.7, the magnetic moment is perpendicular

to the plane of the loop. Since \ |xx dl| = da, where da is the triangular element

of the area defined by the two ends of dl and the origin, the loop integral gives

the total area of the loop. Hence the magnetic moment has magnitude,

regardless of the shape of the circuit.

If the current distribution is provided by a number of charged particles with

charges q{ and masses Mi in motion with velocities v4 , the magnetic moment can

B(x) = (5.56)

|m|=-x(Area) (5.57)

Fig. 5.7
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be expressed in terms of the orbital angular momentum of the particles. The
current density is

J = Z qiVi8(x-Xi)
i

where x< is the position of the ith particle. Then the magnetic moment (5.54)

becomes

m=5~X qi(XiXVi)

The vector product (x { XVi) is proportional to the ith particle's orbital angular

momentum, L i
=Mi (x i

x\
i ). Thus the moment becomes

m=I^L, (5.58)

If all the particles in motion have the same charge to mass ratio (qJMi = e/M), the

magnetic moment can be written in terms of the total orbital angular momentum
L:

e „ em IL^^-L (5.59)2McV 2Mc

This is the well-known classical connection between angular momentum and

magnetic moment which holds for orbital motion even on the atomic scale. But

this classical connection fails for the intrinsic moment of electrons and other

elementary particles. For electrons, the intrinsic moment is slightly more than

twice as large as implied by (5.59), with the spin angular momentum S replacing

L. Thus we speak of the electron having a g factor of 2(1.00116). The departure

of the magnetic moment from its classical value has its origins in relativistic and

quantum-mechanical effects which we cannot consider here.

Before leaving the topic of the fields of a localized current distribution, we
consider the spherical volume integral of the magnetic induction B. Just as in the

electrostatic case discussed at the end of Section 4.1, there are two limits of

interest, one in which the sphere of radius R contains all of the current and the

other where the current is completely external to the spherical volume. The
volume integral of B is

f
B(x)d3x=f VxAd 3

x (5.60)
Jr<R Jr<R

The volume integral of the curl of A can be integrated to give a surface integral.

Thus

| Bd 3
x = R 2j*dflnxA

where n is the outwardly directed normal. Substitution of (5.32) for A and an
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interchange of the orders of integration permits this to be written as

f Bd3x=-- fdVJ(x')x faa,-^
Jr<R C J J |X-X'|

The angular integral is the same one as occurred in the electrostatic situation.

Making use of (4.16') we therefore find for the integral of B over a spherical

volume,

L Bd3x=Sl(7r)x
' x,(x')dV (56i)

where (r<, r>) are the smaller and larger of r' and R. If all the current density is

contained within the sphere, r< = r' and r> = R. Then

f Bd3
x =Ym (5.62)

Jr<R J

where m is the total magnetic moment (5.54). For the opposite extreme of the

current all external to the sphere, we have, by virtue of (5.14),

f Bd3x=^B(0) (5.63)
Jr<R 3

The results (5.62) and (5.63) can be compared with their electrostatic counter-

parts (4.18) and (4.19). The difference between (5.62) and (4.18) is attributable

to the difference in the origins of the fields, one from charges and the other from

circulating currents. If we wish to include the information of (5.62) in the

magnetic dipole field (5.56), we must add a delta function contribution

n/ v 3n(n • m)—m 877 0/ . /rB(x)=-
|

x
|

3
+— m8(x) (5.64)

The delta function term enters the expression for the hyperfine structure of

atomic s states (see the next section).

5.7 Force and Torque on and Energy of a Localized Current Distribution

in an External Magnetic Induction

If a localized distribution of current is placed in an external magnetic induction

B(x), it experiences forces and torques according to Ampere's laws. The general

expressions for the total force and torque are given by (5.12) and (5.13). If the

external magnetic induction varies slowly over the region of current, a Taylor

series expansion can be utilized to find the dominant terms in the force and

torque. A component of B can be expanded around a suitable origin,

B k (x) = B k(0)+x-VBk (0) + - (5.65)
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Then the ith component of the force (5.12) becomes

Here €iJk is the completely antisymmetric unit tensor (ei,k = 1 for i = 1, j = 2,

k = 3, and any cyclic permutation, = — 1 for other permutations, and eijk =
for two or more indices equal). The volume integral of J vanishes for steady

currents; the lowest order contribution to the force comes from the second

term in (5.66). The result above (5.53) can be used (with x —» VBk (0)) to yield

After differentiation of B k (x), x is to be put to zero. This can be written

vectorially as

Since V • B = generally, the lowest order force on a localized current distribu-

tion in an external magnetic field B is

This result holds even for time-varying external fields. For steady-state fields,

VxB = 0. Then the force can be expressed alternatively as F=(m- V)B.

A localized current distribution in a nonuniform magnetic induction experi-

ences a force proportional to its magnetic moment m and given by (5.69). One
simple application of this result is the time-average force on a charged particle

spiraling in a nonuniform magnetic field. As is well known, a charged particle in

a uniform magnetic induction moves in a circle at right angles to the field and

with constant velocity parallel to the field, tracing out a helical path. The circular

motion is, on the time average, equivalent to a circular loop of current which will

have a magnetic moment given by (5.57). If the field is not uniform but has a

small gradient (so that in one turn around the helix the particle does not feel

significantly different field strengths), then the motion of the particle can be

discussed in terms of the force on the equivalent magnetic moment. Considera-

tion of the signs of the moment and the force shows that charged particles tend

to be repelled by regions of high flux density, independent of the sign of their

charge. This is the basis of the so-called "magnetic mirrors" discussed in Section

12.6 from another point of view.

The total torque on the localized current distribution is found in a similar way
by inserting expansion (5.65) into (5.13). Here the zeroth-order term in the

expansion contributes. Keeping only this leading term, we have

Fi
= Xeijk(mxV),Bk (x) (5.67)

F= (mxV)xB =V(m • B)-m(V • B) (5.68)

F=V(mB) (5.69)

(5.70)
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Writing out the triple vector product, we get

N = i j"[(x'-B)J-(x'. J)B] dV

The first integral has the same form as the one considered in (5.66). Hence we
can write down its value immediately. The second integral vanishes for a

localized steady-state current distribution, as can be seen from (5.52) with

f-g=r'. The leading term in the torque is therefore

This is the familiar expression for the torque on a dipole, discussed in Section 5.1

as one of the ways of defining the magnitude and direction of the magnetic

induction.

The potential energy of a permanent magnetic moment (or dipole) in an

external magnetic field can be obtained from either the force (5.69) or the torque

(5.71). If we interpret the force as the negative gradient of a potential energy U,

we find

For a magnetic moment in a uniform field the torque (5.71) can be interpreted as

the negative derivative of U with respect to the angle between B and m. This

well-known result for the potential energy of a dipole shows that the dipole

tends to orient itself parallel to the field in the position of lowest potential

energy.

We remark in passing that (5.72) is not the total energy of the magnetic

moment in the external field. In bringing the dipole m into its final position in

the field, work must be done to keep the current J which produces m constant.

Even though the final situation is a steady-state, there is a transient period

initially in which the relevant fields are time dependent. This lies outside our

present considerations. Consequently we will leave the discussion of the energy

of magnetic fields to Section 6.2, after having treated Faraday's law of induction.

The energy expression (5.72) can be employed in the treatment of magnetic

effects on atomic energy levels, as in the Zeeman effect or for the fine and

hyperfine structure. The fine structure can be viewed as coming from differences

in energy of an electron's intrinsic magnetic moment |xe in the magnetic field

seen in its rest frame. Fine structure, with the subtle complication of Thomas
precession, is discussed briefly in Chapter 11. The hyperfine interaction is that of

the magnetic moment |xN of the nucleus with the magnetic field produced by the

electron. The interaction Hamiltonian is (5.72) with m=(jLN and B equal to the

magnetic field of the electron, evaluated at the position of the nucleus (x = 0).

This field has two parts; one is the dipole field (5.64) and the other is the

magnetic field produced by the orbital motion of the electron's charge. The latter

is given nonrelativistically by (5.5) and can be expressed as Borbitai(0) = eL/mcr
3

,

N = mxB(0) (5.71)

U=-mB (5.72)
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where L = xXmv is the orbital angular momentum of the electron about the

nucleus. The hyperfine Hamiltonian is therefore

8tt

3
|Xe * |JLn8(x)+— JJLe * |XN-3 ~ L • JJLN (5.73)

The expectation values of this Hamiltonian in the various atomic (and nuclear

spin) states yield the hyperfine energy shifts. For spherically symmetric s states

the second term in (5.73) gives a zero expectation value. The hyperfine energy

comes solely from the first term:

AE = -^|^(0)|
2 <^-|xN > (5.74)

For 1^0, the hyperfine energy comes entirely from the second term in (5.73)

because the wave functions for 1^0 vanish at the origin. These expressions are

due to Fermi who obtained them from the Dirac equation (1930). In applying

(5.73) and (5.74) it should be remembered that the charge e is negative and that

|jLe points in the opposite direction to the electron's spin. The energy difference

(5.74) between the singlet and triplet states of the Is state of atomic hydrogen is

the source of the famous astrophysical 21 cm line.

5.8 Macroscopic Equations, Boundary Conditions on B and H

So far we have dealt with the basic laws (5.26) of steady-state magnetic fields as

microscopic equations in the sense of the Introduction and Chapter 4. We have

assumed that the current density J was a completely known function of position. In

macroscopic problems this is often not true. The atoms in matter have electrons

that give rise to effective atomic currents the current density of which is a rapidly

fluctuating quantity. Only its average over a macroscopic volume is known or

pertinent. Furthermore, the atomic electrons possess intrinsic magnetic mo-
ments that cannot be expressed in terms of a classical current density. These

moments can give rise to dipole fields that vary appreciably on the atomic scale

of dimensions.

The process of averaging the microscopic equations to obtain a macroscopic

description of magnetic fields in ponderable media is discussed in detail in

Chapter 6. Here, just as in Chapter 4, we give only a sketch of the elementary

derivation. The first step is to observe that the averaging of the equation,

V • Bmicro = 0, leads to the same equation,

VB = (5.75)

for the macroscopic magnetic induction. Thus we can still use the concept of a

vector potential A(x) whose curl gives B. The large number of molecules or

atoms per unit volume, each with its molecular magnetic moment nit, give rise to
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an average macroscopic magnetization or magnetic moment density,

M(x)=lNl<mi> (5.76)

where Ni is the average number per unit volume of molecules of type i and
where (m*) is the average molecular moment in a small volume at the point x. In

addition to the bulk magnetization, we suppose that there is a macroscopic

current density J(x) from the flow of free charge in the medium. Then the vector

potential from a small volume AV at the point x' will be

AAW =MAV+MWx(x-xl AV
c |x-x

I

|x—x
I

This is the magnetic analog of (4.30). The second term is the dipole vector

potential (5.55). Letting AV become the macroscopically infinitesimal d
3
x', the

total vector potential at x can be written as the integral over all space,

A(X) =IfW +
cM(x-)x(x-x-)

j^ (5 7?)
c J L|x-x'| |x-x'| J

The magnetization term can be rewritten as follows:

fM(x')x(x-x')

Ix-x?

Now an integration by parts casts the gradient operator over on to the

magnetization and also gives a surface integral. If M(x') is well-behaved and

localized, the surface integral vanishes. The vector potential (5.77) then becomes

A(x)=
lf [J(x-)+cVxM(x-)]

d
3
x , (5 .?8)

|x—X
_

The magnetization is seen to contribute an effective current density,

Jm = cVxM (5.79)

The macroscopic equivalent of the microscopic equation, VxBmicro 47rJmicro/Cj

can be read off from (5.78). If the equations (5.26) have (5.32) as a solution, then

(5.78) implies that J+JM plays the role of the current in the macroscopic

equivalent, that is:

VxB=— J+47tVxM (5.80)
c

The VxM term can be combined with B to define a new macroscopic field H,

called the magnetic field,

H = B-47rM (5.81)
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Then the macroscopic equations, replacing (5.26), are

(5.82)

The introduction of H as a macroscopic field is completely analogous to the

introduction of D for the electrostatic field. The macroscopic equations (5.82)

have their electrostatic counterparts,

We emphasize that the fundamental fields are E and B. They satisfy the

homogeneous equations in (5.82) and (5.83). The derived fields, D and H, are

introduced as a matter of convenience in order to take into account in an average

way the contributions to p and J of the atomic charges and currents.

To complete the description of macroscopic magnetostatics, there must be a

constitutive relation between H and B. As discussed in the Introduction, for

isotropic diamagnetic and paramagnetic substances the simple linear relation,

holds, /x being a constant characteristic of the medium and called the magnetic

permeability. Typically /x differs from unity by only a few parts in 10
5

(/ul > 1 for

paramagnetic substances and jm<l for diamagnetic). For the ferromagnetic

substances, (5.84) must be replaced by a nonlinear functional relationship,

The phenomenon of hysteresis, shown schematically in Fig. 5.8, implies that B is

(5.83)

B = fiH (5.84)

B = F(H) (5.85)

B

H

Fig. 5.8 Hysteresis loop giving B in a ferromagnetic material as a function of H.
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not a single-valued function of H. In fact, the function F(H) depends on the

history of preparation of the material. The incremental permeability of /x(H) is

defined as the derivative of B with respect to H, assuming that B and H are

parallel. For high-permeability substances, |ul(H) can be as high as 10
6

. Most
untreated ferromagnetic materials have a linear relation (5.84) between B and H
for very small fields. Typical values of initial permeability range from 10 to 10

4
.

The complicated relationship between B and H in ferromagnetic materials

makes analysis of magnetic boundary-value problems inherently more difficult

than that of similar electrostatic problems. But the very large values of

permeability sometimes allow simplifying assumptions on the boundary condi-

tions.

The boundary conditions for B and H at an interface between two media are

derived in Section 1.5. There it is shown that the normal components of B and

the tangential components of H on either side of the boundary are related

according to

(B2-Bi)-n = (5.86)

nx(H2-Hi) =^K (5.87)

where n is a unit normal pointing from region 1 into region 2 and K is the

idealized surface current density. For media satisfying linear relations of the

form (5.84) the boundary conditions can be expressed alternatively as

B2 n

or

H2 n

If jULi»fx2 , the normal component of H2 is much larger than the normal

component of Hi, as shown in Fig. 5.9. In the limit (jxi/fj^)— the magnetic

field H2 is normal to the boundary surface, independent of the direction of Hi
(barring the exceptional case of Hi exactly parallel to the interface). The

= Bi n, B2xn=^BiXn
fti

fX2
Hi-n, H2xn =HiXn

(5.88)

(5.89)

Fig. 5.9
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boundary condition on H at the surface of a very high-permeability material is

thus the same as for the electric field at the surface of a conductor. We may
therefore use electrostatic potential theory for the magnetic field. The surfaces

of the high-permeability material are approximately "equipotentials," and the

lines of H are normal to these equipotentials. This analogy is exploited in many
magnet-design problems. The type of field is decided upon, and the pole faces

are shaped to be equipotential surfaces.

5.9 Methods of Solving Boundary-Value Problems in Magnetostatics

The basic equations of magnetostatics are

V B = 0, VxH =yJ (5.90)

with some constitutive relation between B and H. The variety of situations that

can occur in practice is such that a survey of different techniques for solving

boundary-value problems in magnetostatics is worthwhile.

A. Generally Applicable Method of the Vector Potential

Because of the first equation in (5.90) we can always introduce a vector

potential A(x) such that

B =VxA

If we have an explicit constitutive relation, H = H[B], then the second equation

in (5.90) can be written

VxH[VxA]=yJ

This is, in general, a very complicated differential equation, even if the current

distribution is simple, unless H and B are simply related. For linear media with

B = jmH, the equation becomes

VxQ-Vxa) =^J (5.91)

If u- is constant over a finite region of space, then in that region (5.91) can be

written

V(V • A) -V2A =^ J (5 .92)

With the choice of the Coulomb gauge (V • A = 0), this Decomes (5.31) with a

modified current density, /llJ. The situation closely parallels the treatment of

uniform isotropic dielectric media where the effective charge density in the
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Poisson equation is pie. Solutions of (5.92) in different linear media must be

matched across the boundary surfaces using the boundary conditions (5.88) or

(5.89).

B. J = 0; Magnetic Scalar Potential

If the current density vanishes in some finite region of space, the second

equation in (5.90) becomes VxH = 0. This implies that we can introduce a

magnetic scalar potential <t>M such that

H = -V<Dm (5.93)

just as E = —V<I> in electrostatics. With an explicit constitutive relation, this time

of B = B[H], the V • B = equation can be written

V-B[-V4>M]=0

Again, this is a very complicated differential equation unless the medium is

linear, in which case the equation becomes

V-(fxV4>M) = (5.94)

If jut is at least piecewise constant, in each region the magnetic scalar potential

satisfies the Laplace equation,

V2
d>M =

The solutions in the different regions are connected via the boundary conditions

(5.89). Note that in this last circumstance of piecewise constancy of pu, we can

also write B = -V^M with V2^M = 0. With this alternative scalar potential the

boundary conditions (5.88) are appropriate.

The concept of a magnetic scalar potential can be used fruitfully for closed

loops of current. It can be shown that <J>M is proportional to the solid angle

subtended by the boundary of the loop at the observation point. See Problem

5.1. Such a potential is evidently multiple-valued.

C. Hard Ferromagnets (M given and J = 0)

A common practical situation concerns "hard" ferromagnets, having a mag-

netization that is essentially independent of applied fields for moderate field

strengths. Such materials can be treated as if they had a fixed, specified

magnetization M(x).

(a) Scalar Potential

Since J = 0, the magnetic scalar potential <J>M can be employed. The first

equation in (5.90) is written as

V-B = V-(H+4ttM) =
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Then with (5.93) it becomes a magnetostatic Poisson equation,

V2
<Dm = -47tPm (5.95)

with the effective magnetic charge density,

Pm = -V-M (5.96)

The solution for the potential <£M if there are no boundary surfaces is

*M(x) =-{^«dV (5.97)

If M is well-behaved and localized an integration by parts may be performed to

yield

4>„(x) = Jm(x')-V'(^_) dV
Then

V'(|^)
= "V(li|)

may be used to give

<DM(x) =-V.J^jdV (5.98)

In passing we observe that far from the region of nonvanishing magnetization

the potential may be approximated by

<*>m(x)—v(i) -JW') dV

m • x
"

r
3

where m=
JM d

3
x is the total magnetic moment. This is the scalar potential of a

dipole, as can be seen from the electrostatic (4.10). Thus an arbitrary localized

distribution of magnetization asymptotically has a dipole field with strength

given by the total magnetic moment of the distribution.

While physical distributions of magnetization are mathematically well-

behaved and without discontinuities, it is sometimes convenient to idealize the

reality and treat M(x) as if it were discontinuous. Thus, if a "hard" ferromagnet

has a volume V and surface S, we specify M(x) inside V and assume that it falls

suddenly to zero at the surface S. Application of the divergence theorem to pM
(5.96) in a Gaussian pillbox straddling the surface shows that there is an effective

magnetic surface charge density,

aM =n-M (5.99)

where n is the outwardly directed normal. Then instead of (5.97) the potential
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is given by

Om(x)= -
V • M(x')

|x-x'|
(5.100)

An important special case is that of uniform magnetization throughout the

volume V. Then the first term vanishes; only the surface integral over crM
contributes.

It is important to note that (5.98) is generally applicable, even for the limit of

discontinuous distributions of M, because we can introduce a limiting procedure

after transforming (5.97) into (5.98) in order to discuss discontinuities in M.
Never combine the surface integral of crM with {5.98)1

(b) Vector Potential

If we choose to write B =VxA in order to satisfy V • B = automatically, then

we write the second equation of (5.90) as

VxH = Vx(B-47rM) =

This leads to the Poisson equation for A in the Coulomb gauge,

where JM is the effective magnetic current density (5.79). The solution for the

vector potential in the absence of boundary surfaces is

as was already shown in (5.78). An alternative form is given by the magnetiza-

tion term in (5.77).

If the distribution of magnetization is discontinuous, it is necessary to add a

surface integral to (5.102). Starting from (5.77) it can be shown that for M
discontinuously falling to zero at the surface S bounding the volume V, the

generalization of (5.102) is

The effective surface current c(Mxn) can also be understood by expressing the

boundary condition (5.87) for tangential H in terms of B and M. Again, if M is

constant throughout the volume, only the surface integral survives.

5.10 Uniformly Magnetized Sphere

To illustrate the different methods possible for the solution of a boundary-value

problem in magnetostatics, we consider in Fig. 5.10 the simple problem of a

c
(5.101)

(5.102)

(5.103)



sphere of radius a, with a uniform permanent magnetization M of magnitude M
and parallel to the z axis, embedded in a nonpermeable medium.

The simplest method of solution is that of part C(a) of the previous section,

via the magnetic scalar potential in spherical coordinates and a surface magnetic

charge density crM (0). With M =M €3 and crM = n • M =M cos 0, the solution

(5.100) for the potential is

<DM(r,e) =M a
2 fdn'£^
J |x-x|

With the expansion (3.38) or (3.70) for the inverse distance, only the 1= 1 term

survives. The potential is

M (r, 6) =~ Mod2 Y4 cos (5 .104)
3 r>

where (r<, r>) are the smaller and larger of (r, a). Inside the sphere, r< = r and

r> = a. Then <J>M = (47r/3)M r cos 6 = (47r/3)M z. The magnetic field and magnetic

induction inside the sphere are therefore

Hin=-^M, Bin^M (5.105)

We note that B in is parallel to M, while Hin is antiparallel. Outside the sphere,

r< = a and r> = r. The potential is thus

, 4tt . , 3 cos 6 , c „^m =~yM a
3 —p- (5.106)

This is the potential of a dipole with dipole moment,

m=^^M (5.107)

For the sphere with uniform magnetization, the fields are not only dipole in

character asymptotically, but also close to the sphere. For this special geometry

(and this only) there are no higher multipoles.
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The lines of B and H are shown in Fig. 5.11. The lines of B are continuous

closed paths, but those of H terminate on the surface because there is an

effective surface charge density crM .

Brief mention should be made of employing (5.98) instead of (5.100). With

M =M €3 inside the sphere, (5.98) gives

<DM (r, 0) = -Mo^[r,2 dr^dn'^^ (5.108)

Now only the 1 = term in expansion of the inverse separation survives the

angular integration and the integral is a function only of r. With dr/dz = cos 0, the

potential is

<Mr, 0) = -4ttMo cos f f
" ^—

^

Br Jo r>

Integration over r' leads directly to the expression (5.104) for <£M .

An alternative solution can be accomplished by means of the vector potential

and (5.103). Because M is uniform inside the sphere the volume current density

JM vanishes, but there is a surface contribution. With M=M €3 , we have

Mxn' =M sin d'e*

=M sin 0'(-sin $'€i+cos (/>'€2)

Because of the azimuthal symmetry of the problem we can choose the

B H

Fig. 5.11 Lines of B and lines of H for a uniformly magnetized sphere. The lines of B
are closed curves, but the lines of H originate on the surface of the sphere where the

effective surface magnetic "charge," <rM , resides.
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observation point in the x-z plane (4> = 0), just as in Section 5.5. Then only the

y-component of Mxn'survives integration over the azimuth, giving an azimuthal

component of the vector potential,

A,(x) = Moa2
\d(l'

S^^ (5.109)

where x' has coordinates (a, 0', <j)'). The angular factor can be written

sin 6' cos <f>'
= -yJ^RdiYUe', <f>')] (5.110)

Thus with expansion (3.70) for |x-x'| only the 1=1, m=l term will survive.

Consequently

Ao(x)=^M a(^j sinO (5.111)

where r< (r>) is the smaller (larger) of r and a. With only a </> component of A, the

components of the magnetic induction B are given by (5.38). Equation (5.111)

evidently gives the uniform B inside and the dipole field outside, as found

before.

5.11 Magnetized Sphere in an External Field, Permanent Magnets

In Section 5.10 we discussed the fields of a uniformly magnetized sphere.

Because of the linearity of the field equations we can superpose a uniform

magnetic induction B =H throughout all space. Then we have the problem of a

uniformly magnetized sphere in an external field. From (5.105) we find that the

magnetic induction and field inside the sphere are now

Bin =B +^M
]

r
(5112)

Hin =Bo-^M
J

We now imagine that the sphere is not a permanently magnetized object, but

rather a paramagnetic or diamagnetic substance of permeability jn. Then the

magnetization M is a result of the application of the external field. To find the

magnitude of M we use (5.84):

Bin = ,xHin (5.113)

Thus

Bo+^M^Bo-^m) (5.114)
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H

Fig. 5.12

This gives a magnetization,

4tA|U,+ 2/
(5.115)

We note that this is completely analogous to the polarization P of a dielectric

sphere in a uniform electric field (4.57).

For a ferromagnetic substance the arguments of the last paragraph fail.

Equation (5.115) implies that the magnetization vanishes when the external field

vanishes. The existence of permanent magnets contradicts this result. The
nonlinear relation (5.85) and the phenomenon of hysteresis allow the creation of

permanent magnets. We can solve equations (5.112) for one relation between

Hin and B in by eliminating M:

The hysteresis curve provides the other relation between Bin and Hin , so that

specific values can be found for any external field. Equation (5.116) corresponds

to a line with slope —2 on the hysteresis diagram with intercept 3B on the y

axis, as in Fig. 5.12. Suppose, for example, that the external field is increased

until the ferromagnetic sphere becomes saturated and then decreased to zero. The
internal B and H will then be given by the point marked P in Fig. 5.12. The

magnetization can be found from (5.112) with B = 0.

The relation (5.116) between Bin and Hin is specific to the sphere. For other

geometries other relations pertain. The problem of the ellipsoid can be solved

exactly and shows that the slope of the lines (5.116) range from zero for a flat

disc to —oo for a long needle-like object. Thus a larger internal magnetic

induction can be obtained with a rod geometry than with spherical or oblate

spheroidal shapes.

Bin+2Hin — 3B (5.116)
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5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a

Uniform Field

Suppose that a certain magnetic induction B exists in a region of empty space

initially. A permeable body is now placed in the region. The lines of magnetic

induction are modified. From our remarks at the end of Section 5.8 concerning

media of very high permeability we would expect that the field lines would tend

to be normal to the surface of the body. Carrying the analogy with conductors

further, if the body is hollow, we would expect that the field in the cavity would

be smaller than the external field, vanishing in the limit jm^o°. Such a reduction

in field is said to be due to the magnetic shielding provided by the permeable

material. It is of considerable practical importance, since essentially field-free

regions are often necessary or desirable for experimental purposes or for the

reliable working of electronic devices.

As an example of the phenomenon of magnetic shielding we consider a

spherical shell of inner (outer) radius a (b), made of material of permeability fx,

and placed in a formerly uniform constant magnetic induction B , as shown in

Fig. 5.13. We wish to find the fields B and H everywhere in space, but most

particularly in the cavity (r<a), as functions of jut. Since there are no currents

present, the magnetic field H is derivable from a scalar potential, H = -VOM .

Furthermore, since B = |lxH, the divergence equation V • B = becomes V • H =
in the various regions. Thus the potential 4>M satisfies the Laplace equation

everywhere. The problem reduces to finding the proper solutions in the different

regions to satisfy the boundary conditions (5.89) at r=a and r=b.

For r>b, the potential must be of the form,

4>M = -B r cos + £ -£rr Pi(cos 0) (5.117)
i=o T

in order to give the uniform field, H = B = B , at large distances. For the inner

Bo

-> >

Fig. 5.13
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regions, the potential must be

a<r<b 0)M=Z (ftr'+Ti-^Wcosfl)
1 = \ XI

Om=Z S/P^cos 6)

(5.118)

r<a

The boundary conditions at r= a and r = b are that He and B r be continuous. In

terms of the potential 3>M these conditions become

ao

ar

dO

/i x a<J>M
(*>-)

a<J>M , v a^M , ,^(a+ )— (a_)

(5.119)

ar ar

The notation b± means the limit r—»b approached from b, and similarly for a±.

These four conditions, which hold for all angles 0, are sufficient to determine the

unknown constants in (5.117) and (5.118). All coefficients with li& 1 vanish. The
I = 1 coefficients satisfy the four simultaneous equations

oti— b
3

0i- 71

2a i + /Xb
3
p i
— 2 juiyi = -b3B

a
3

fr + 7l-a 3
5i = f

a
3
8i-2|UL7i-a

3
8i = J

(5.120)

/uta |3i-2fX7i

The solutions for «i and Si are

(2fi+ -1)
«1

r (2n + l)(u-1

[(2^ + l)(|Li+2)-2p
(b

3-a 3
)B

8x =

(2,x + l)(
f
x+2)-2p(

j
Li-l)

:

Bo

(5.121)

The potential outside the spherical shell corresponds to a uniform field B plus a

dipole field (5.41) with dipole moment «i oriented parallel to B . Inside the

cavity, there is a uniform magnetic field parallel to B and equal in magnitude to

— 8i. For fjt»l, the dipole moment <*i and the inner field —Si become

ai-*b
3
Bo

Bo (5.122)
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Fig. 5.14 Shielding effect of a shell of highly permeable material.

We see that the inner field is proportional to jut

-1
.
Consequently a shield made of

high-permeability material with /x—10 3
to 10

6
causes a great reduction in the

field inside it, even with a relatively thin shell. Figure 5.14 shows the behavior of

the lines of B. The lines tend to pass through the permeable medium if possible.

' 5.13 Effect of a Circular Hole in a Perfectly Conducting Plane with

an Asymptotically Uniform Tangential Magnetic Field on One Side

In Section 3.13 the electrostatic problem of a circular hole in a conducting plane

with an asymptotically uniform normal electric field was discussed. Its magnetic

counterpart has a uniform tangential magnetic field asymptotically. The two

examples are useful in the treatment of small holes in wave guides and resonant

cavities (see Section 9.5).

Before sketching the solution of the magnetostatic boundary-value problem,

we must discuss what we mean by a perfect conductor. Static magnetic fields

penetrate conductors, even excellent ones. The conductor modifies the fields

only because of its magnetic properties, not its conductivity, unless of course

there is current flow inside. With time-varying fields it is often otherwise. It is

shown in Section 8.1 that at tjie interface between conductor and nonconductor-

fields with harmonic time dependence penetrate only a distance of the order of

8 = (c
2
/27ra>o-)

l/2
into the conductor, where co is the frequency and a the



202 Classical Electrodynamics

z

Sect. 5.13

3> y

X

Fig. 5.15

conductivity. For any nonvanishing co, therefore, the skin depth 8—»0 as cr—>oo.

Oscillating electric and magnetic fields do not exist inside a perfect conductor.

We define magnetostatic problems with perfect conductors as the limit of

harmonically varying fields as o>—>0, provided that at the same time cocr—

Then the magnetic field can exist outside and up to the surface of the conductor,

but not inside. The boundary conditions (5.86) and (5.87) show that B '11 = 0,

nxH = 47rK/c at the surface. These boundary conditions are the magnetostatic

counterparts of the electrostatic boundary conditions, Etan = 0, D • n = Attct, at the

surface of a conductor, where in this last relation a is the surface charge density,

not the conductivity!

We consider a perfectly conducting plane at z = with a hole of radius a

centered at the origin, as shown in Fig. 5.15. For simplicity we assume that the

medium surrounding the plane is uniform, isotropic and linear and that there is a

uniform tangential magnetic field H in the y direction in the region z>0 far

from the hole, and zero field asymptotically for z<0. Other possibilities can be

obtained by linear superposition. Because there are no currents present except

on the surface z = 0, we can use H = —V<J>M , with the magnetic scalar potential

4>M(x) satisfying the Laplace equation with suitable mixed boundary conditions.

Then we can parallel the solution of Section 3.13.

The potential is written as

The reversal of sign for the added potential <$>
(1) below the plane is a consequence

of the symmetry properties of the added fields—Hi
1} and Hy1}

are odd in z, while

HV* and 4>
(1)

are even in z. This can be inferred from (5.14) with the realization

that the effective current is only on the surface z = 0, as is the effective mag-

netic charge density that determines the scalar potential <I>
(1)

.

for z>0
for z<0

(5.123)
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From (3.1 10) the added potential can be written in cylindrical coordinates as

<&
(,)

(x) = j" dk AWe ^Mkp) sin
<f> (5.124)

Only m = 1 enters because the hole is cylindrically symmetric and the asymptotic

field varies as y = p sin </>. From the boundary conditions on normal B and

tangential H we find that the boundary conditions on the full potential <J>M are

(a) <E>M continuous across z = for 0<p<a

(b) —^0 at z-0 for a<p«x>

These requirements imply the dual integral equations,

I

dk A(k)Mkp) =H p/2 for0<p<a
Jo

f dk kA(k)J1 (kp) = for a<p<oo
(5.125)

These are closely related to, but different from, the electrostatic set (3.178) or

(3.179). The necessary pair here are

I

dy g(y )Jn(yx) = x
n

, for < x< 1
Jo

(5-126)

dy yg(y)Jn(yx) = 0, for Kx<co
Jo

with solution,

, v 2r(n+l).,, T(n+1)/2\ 1/2

T , . _
g(y)= ^V"(y)=:r^~7Tvr) J"+1/z(y) (5 - 127)

V7rr(n+2) T(n+5) v
y

/

In (5.125) we have g = 2A(k)/H a
2

,
n=l, x = p/a, and y = ka. Hence

A(k) =?^j 1 (ka) (5.128)
77

The added potential is therefore

(i)(
x) =

2flU!f
dkjl (ka) e

-M Z
|ji(kp)sin(/) (5.129)

77 Jo

By methods similar to those of Section 3.13 it can be shown that far from the

opening the added potential has the asymptotic form

r

3

377
d>a>(x)

^2|U .1

This is the potential of a dipole aligned in the y direction, the direction of H .

Because of the signs in (5.123), the circular hole is equivalent at large distances
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to a magnetic dipole with moment

m=±^-Ho for z^O (5.131)

where H is the tangential magnetic field on the z = +
side of the plane in the

absence of the hole. Figure 9.4 shows qualitatively how the magnetic field lines

distort to give rise to the dipole field. In the opening itself (z = 0, 0<p<a) the

tangential and normal components of the magnetic field are

Htan — iHr

Th (5 ' 132)

H2 (p, )=^-=£=sin<J>
\la —p

Comparison with the corresponding electrostatic problem in Section 3.13

shows similarities and differences. Roughly speaking, the roles of tangential and

normal components of fields have been interchanged. The effective dipoles point

in the directions of the asymptotic fields, but the magnetic moment (5.131) is a

factor of two larger than the electrostatic moment (3.183) for the same field

strengths. For arbitrarily shaped holes the far field in the electrostatic case is still

that of a dipole normal to the plane, while the magnetic case has its effective

dipole in the plane, but now the direction of the magnetic dipole depends on both

the field direction and the orientation of the hole (the hole has an anisotropic

magnetic susceptibility).
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R. M. Bozorth, Ferromagnetism, Van Nostrand, New York, (1951).

PROBLEMS

5.1 Starting with the differential expression

dB=I drx^c |x-x|

for the magnetic induction at the point P with coordinate x produced by an increment

of current IdX at x', show explicitly that for a closed loop carrying a current I the

magnetic induction at P is

B =-VH
c

where SI is the solid angle subtended by the loop at the point P. This corresponds to a

magnetic scalar potential, 4>M = -ISl/c. The sign convention for the solid angle is that SI

is positive if the point P views the "inner" side of the surface spanning the loop, that is,

if a unit normal n to the surface is defined by the direction of current flow via the

right-hand rule, SI is positive if n points away from the point P, and negative

otherwise. This is the same convention as in Section 1.6 for the electric dipole layer.

5.2 (a) For a solenoid wound with N turns per unit length and carrying a current I,

show that the magnetic-flux density on the axis is given for N^oo by

c

where the angles are defined in the figure.

i i

(a)

Problem 5.2

(b) For a long solenoid of length L and radius a show that near the axis and near the

center of the solenoid the magnetic induction is mainly parallel to the axis, but has a

small radial component

D 96TrNI/a 2
zp\

correct to order a
2

IV, and for z«L, p«a. The coordinate z is measured from the

center point of the axis, with the ends of the solenoid at z =±L/2.
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(c) Show that at the end of a long solenoid the magnetic induction near the axis has

components

C c \a/

5.3 A cylindrical conductor of radius a has a hole of radius b bored parallel to, and
centered a distance d from, the cylinder axis (d+ b<a). The current density is uniform
throughout the remaining metal of the cylinder and is parallel to the axis. Use
Ampere's law and principle of linear superposition to find the magnitude and the

direction of the magnetic-flux density in the hole.

5.4 A circular current loop of radius a carrying a current I lies in the x-y plane with its

center at the origin.

(a) Show that the only nonvanishing component of the vector potential is

A*(p, z)=— [ dk cos kzUkpJK^kpJ
C Jo

where p< (p>) is the smaller (larger) of a and p.

(b) Show that an alternative expression for A* is

A^p, z)=^^ [ dk e-^UkaWkp)
C Jo

(c) Write down integral expressions for the components of magnetic induction, using

the expressions of (a) and (b). Evaluate explicitly the components of B on the z axis

by performing the necessary integrations.

5.5 A circular loop of wire carrying a current I is located with its center at the origin of

coordinates and the normal to its plane having spherical angles O , <h>. There is an

applied magnetic field, Bx = B (l + |3y) and By
= B (l + j3x).

(a) Calculate the force acting on the loop without making any approximations.

Compare your result with the approximate result (5.69). Comment.
(b) Calculate the torque in lowest order. Can you deduce anything about the higher

order contributions? Do they vanish for the circular loop? What about for other

shapes?

5.6 Two concentric circular loops of radii a, b and currents I, V, respectively (b<a),

have an angle a between their planes. Show that the torque on one of the loops is

about the line of intersection of the two planes containing the loops and has the

magnitude:
i^iW f (n+p r r(n+i) i'/fcy

(cosa)N
ac

2 „4-„(2n+l)|r(n+2)r®J U F2"'(cosa)

where P^cos a) is an associated Legendre polynomial. Determine the sense of the

torque for a an acute angle and the currents in the same (opposite) directions.

5.7 A sphere of radius a carries a uniform surface charge distribution o\ The
sphere is rotated about a diameter with constant angular velocity o>. Find the vector

potential and magnetic-flux density both inside and outside the sphere.

5.8 A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative

permeability ji, is placed in a region of initially uniform magnetic-flux density B at

right angles to the field. Find the flux density at all points in space, and sketch the

logarithm of the ratio of the magnitudes of B on the cylinder axis to B as a function of

log10 jUL for a 2
/b

2 = 0.5, 0.1. Neglect end effects.
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5.9 A current distribution J(x) exists in a medium of unit permeability adjacent to a

semi-infinite slab of material having permeability u- and filling the half-space, z<0.
(a) Show that for z>0 the magnetic induction can be calculated by replacing the

medium of permeability /x by an image current distribution, J*, with components,

(b) Show that for z<0 the magnetic induction appears to be due to a current

5.10 A circular loop of wire having a radius a and carrying a current I is located in

vacuum with its center a distance d away from a semi-infinite slab of permeability jx.

Find the force acting on the loop when
(a) the plane of the loop is parallel to the face of the slab,

(b) the plane of the loop is perpendicular to the face of the slab.

(c) Determine the limiting form of your answers to (a) and (b) when d»a. Can you
obtain these limiting values in some simple and direct way?

5.11 A magnetically "hard" material is in the shape of a right circular cylinder of length

L and radius a. The cylinder has a permanent magnetization M , uniform throughout

its volume and parallel to its axis.

(a) Determine the magnetic field H and magnetic induction B at all points on the axis

of the cylinder, both inside and outside.

(b) Plot the ratios B/4ttM and H/4ttMo on the axis as functions of z for L/a = 5.

5.12 (a) Starting from the force equation (5.12) and the fact that a magnetization M
inside a volume V bounded by a surface S is equivalent to a volume current density

JM = c(VxM) and a surface current density c(Mxn), show that in the absence of

macroscopic conduction currents the total magnetic force on the body can be written

where B e is the applied magnetic induction (not including that of the body in question).

The force is now expressed in terms of the effective charge densities pM and <xM . If the

distribution of magnetization is not discontinuous, the surface can be at infinity and the

force given by just the volume integral.

(b) A sphere of radius R with uniform magnetization has its center at the origin of

coordinates and its direction of magnetization making spherical angles O , </>o- If the

external magnetic field is the same as in Problem 5.5, use the expression of part (a) to

evaluate the components of the force acting on the sphere.

5.13 A magnetostatic field is due entirely to a localized distribution of permanent
magnetization.

(a) Show that
r

provided the integral is taken over all space.

(b) From the potential energy (5.72) of a dipole in an external field show that for a

continuous distribution of permanent magnetization the magnetostatic energy can be

written

distribution |J in a medium of unit permeability.
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apart from an additive constant which is independent of the orientation or position of

the various constituent magnetized bodies.

5.14 Show that in general a long, straight bar of uniform cross-sectional area A with

uniform lengthwise magnetization M, when placed with its flat end against an infinitely

permeable flat surface, adheres with a force given approximately by

F-27TAM2

Relate your discussion to the electrostatic considerations in Section 1.11.

5.15 A right circular cylinder of length L and radius a has a uniform lengthwise

magnetization M.
(a) Show that, when it is placed with its flat end against an infinitely permeable plane

surface, it adheres with a force

F=8^rjgj0zgw- K(k.)-E(fc,)

where

k =
2a

k = a

V4a 2+L2 ' sfa^+U

(b) Find the limiting form for the force if L»a.

5.16 (a) For the perfectly conducting plane of Section 5.13 with the circular hole in it

and the asymptotically uniform tangential magnetic field H on one side, calculate the

added tangential magnetic field H(1) on the side of the plane with H . Show that its

components for p>a are

n(i) = 2H q
3

xy
4vV-o^

(b) Sketch the lines of surface current flow in the neighborhood of the hole on both

sides of the plane.



6
Time-Varying Fields,

Maxwell Equations,
Conservation Laws

In the previous chapters we have dealt with steady-state problems in electricity

and in magnetism. Similar mathematical techniques were employed, but electric

and magnetic phenomena were treated as independent. The only link between

them was the fact that currents which produce magnetic fields are basically

electrical in character, being charges in motion. The almost independent nature

of electric and magnetic phenomena disappears when we consider time-

dependent problems. Time-varying magnetic fields give rise to electric fields and

vice-versa. We then must speak of electromagnetic fields, rather than electric or

magnetic fields. The full import of the interconnection between electric and

magnetic fields and their essential sameness becomes clear only within the

framework of special relativity (Chapter 11). For the present we content

ourselves with examining the basic phenomena and deducing the set of

equations known as the Maxwell equations, which describe the behavior of

electromagnetic fields. Vector and scalar potentials, gauge transformations, and

Green functions for the wave equation are next discussed. There follows a

proper derivation of the macroscopic equations of electromagnetism. Conserva-

tion laws for energy and momentum and transformation properties of elec-

tromagnetic quantities are treated, as well as the interesting topic of magnetic

monopoles.

In our desire to proceed to other things, we leave out a number of topics

which, while of interest in themselves, can be studied elsewhere. Some of these

are quasi-stationary fields, circuit theory, apart from the field definitions of

impedance and admittance in Section 6.10, inductance calculations, eddy

currents, and induction heating. None of these subjects involves new concepts

beyond what are developed in this chapter and previous ones. The interested

reader will find references at the end of the chapter.

209
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6.1 Faraday's Law of Induction

The first quantitative observations relating time-dependent electric and mag-

netic fields were made by Faraday (1831) in experiments on the behavior of

currents in circuits placed in time-varying magnetic fields. It was observed by

Faraday that a transient current is induced in a circuit if (a) the steady current

flowing in an adjacent circuit is turned on or off, (b) the adjacent circuit with a

steady current flowing is moved relative to the first circuit, (c) a permanent

magnet is thrust into or out of the circuit. No current flows unless either the

adjacent current changes or there is relative motion. Faraday interpreted the

transient current flow as being due to a changing magnetic flux linked by the

circuit. The changing flux induces an electric field around the circuit, the line

integral of which is called the electromotive force, %. The electromotive force

causes a current flow, according to Ohm's law.

We now express Faraday's observations in quantitative mathematical terms.

Let the circuit C be bounded by an open surface S with unit normal n, as in Fig.

6.1. The magnetic induction in the neighborhood of the circuit is B. The
magnetic flux linking the circuit is defined by

where E' is the electric field at the element d\ of the circuit C. Faraday's

observations are summed up in the mathematical law,

(6.1)

The electromotive force around the circuit is

(6.2)

(6.3)

Fig. 6.1
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The induced electromotive force around the circuit is proportional to the time

rate of change of magnetic flux linking the circuit. The sign is specified by Lenz's

law, which states that the induced current (and accompanying magnetic flux) is in

such a direction as to oppose the change of flux through the circuit.

The constant of proportionality k depends on the choice of units for the

electric and magnetic field quantities. It is not, as might at first be supposed, an

independent empirical constant to be determined from experiment. As we will

see immediately, once the units and dimensions in Ampere's law have been

chosen, the magnitude and dimensions of k follow from the assumption of

Galilean invariance for Faraday's law. For Gaussian units, k = c
_1

, where c is the

velocity of light.

Before the development of special relativity (and even afterwards, when
dealing with relative speeds small compared with the velocity of light), it was

understood, although not often explicitly stated, by all physicists that physical

laws should be invariant under Galilean transformations. That is, physical

phenomena are the same when viewed by two observers moving with a constant

velocity v relative to one another, provided the coordinates in space and time are

related by the Galilean transformation, x' = x+vf, t'-t. In particular, consider

Faraday's observations. It is expected and experimentally verified that the same

current is induced in a secondary circuit whether it is moved while the primary

circuit through which current is flowing is stationary or it is held fixed while the

primary circuit is moved in the same relative manner.

Let us now consider Faraday's law for a moving circuit and see the conse-

quences of Galilean invariance. Expressing (6.3) in terms of the integrals over

E' and B, we have

The induced electromotive force is proportional to the total time derivative of

the flux—the flux can be changed by changing the magnetic induction or by

changing the shape or orientation or position of the circuit. In form (6.4) we have

a far-reaching generalization of Faraday's law. The circuit'C can be thought of as

any closed geometrical path in space, not necessarily coincident with an electric

circuit. Then (6.4) becomes a relation between the fields themselves. It is

important to note, however, that the electric field, E' is the electric field at d\ in

the coordinate system or medium in which d\ is at rest, since it is that field which

causes current to flow if a circuit is actually present.

If the circuit C is moving with a velocity v in some direction, as shown in Fig.

6.2, the total time derivative in (6.4) must take into account this motion. The flux

through the circuit may change because (a) the flux changes with time at a point,

or (b) the translation of the circuit changes the location of the boundary. It is

easy to show that the result for the total time derivative of flux through the

(6.4)
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Fig. 6.2

moving circuit is*

jtL
B ' nda=Lf- nda+i{Bxy) ' di (65)

Equation (6.4) can now be written in the form,

<£ [E'-k(vxB)]-dI=-k[ ^-nda (6.6)
Jc Js of

This is an equivalent statement of Faraday's law applied to the moving circuit C.

But we can choose to interpret it differently. We can think of the circuit C and

surface S as instantaneously at a certain position in space in the laboratory.

Applying Faraday's law (6.4) to that fixed circuit, we find

E-d\=-k[ (6.7)
c Js dt

where E is now the electric field in the laboratory. The assumption of Galilean

invariance implies that the left-hand sides of (6.6) and (6.7) must be equal. This

means that the electric field E' in the moving coordinate system of the circuit is

E' = E+k(vxB) (6.8)

To determine the constant k we merely observe the significance of E\ A charged

particle (e.g., one of the conduction electrons) essentially at rest in a moving

circuit will experience a force qE'. When viewed from the laboratory, the charge

represents a current J = q\8(x-x ). From the magnetic force law (5.7) or (5.12) it

is evident that this current experiences a force in agreement with (6.8) provided

the constant k is equal to c~\

* For a general vector field there is an added term, Js (V • B)v • n da, which gives

the contribution of the sources of the vector field swept over by the moving circuit. The
general result follows most easily from the use of the convective derivative,

—=—+v • V
dt dt

Thus

"dT
=

ai"
+(v ' v)B=f+Vx(Bxv)+v(V . B)

where v is treated as a fixed vector in the differentiation. Use of Stokes's theorem on the

second term yields (6.5).
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Thus we see that, with our choice of units for charge and current, Galilean

covariance requires that the present constant k be equal to the constant

appearing in the definition of the magnetic field (5.4). Faraday's law (6.4)

therefore reads

<t E'-d\=--4- [ B nda (6.9)
Jc c at Js

where E' is the electric field at d\ in its rest frame of coordinates. The time

derivative on the right is a total time derivative (6.5). As a by-product we have

found that the electric field E' in a coordinate frame moving with a velocity v

relative to the laboratory is

E' = E+-(vxB) (6.10)
c

Because we considered a Galilean transformation, the result (6.10) is an

approximation only valid for speeds small compared to the speed of light. (The

relativistic expressions are derived in Section 11.10.) Faraday's law is no

approximation, however. The Galilean transformation was used merely to

evaluate the constant k in (6.3), a task for which it was completely adequate.

Faraday's law (6.9) can be put in differential form by use of Stokes's theorem,

provided the circuit is held fixed in the chosen reference frame (in order to have

E and B defined in the same frame). The transformation of the electromotive

force integral into a surface integral leads to

Since the circuit C and bounding surface S are arbitrary, the integrand must

vanish at all points in space.

Thus the differential form of Faraday's law is

VxE+i^= (6.11)
c dt

v 7

We note that this is the time-dependent generalization of the statement,

VxE = 0, for electrostatic fields.

6.2 Energy in the Magnetic Field

In discussing steady-state magnetic fields in Chapter 5 we avoided the

question of field energy and energy density. The reason was that the creation of a

steady-state configuration of currents and associated magnetic fields involves an

initial transient period during which the currents and fields are brought from

zero to the final values. For such time-varying fields there are induced

electromotive forces which cause the sources of current to do work. Since the

energy in the field is by definition the total work done to establish it, we must

consider these contributions.
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Suppose for a moment that we have only a single circuit with a constant

current I flowing in it. If the flux through the circuit changes, an electromotive

force % is induced around it. In order to keep the current constant, the sources of

current must do work. To determine the rate we note that the time rate of change

of energy of a particle with velocity v acted on by a force F is dE/dt = v • F. With a

changing flux the added field E' on each conduction electron of charge q and drift

velocity v gives rise to a change in energy per unit time of q\ • E' per electron.

Summing over all the electrons in the circuit, we find that the sources do work to

maintain the current at the rate,

dt c dt

the negative sign following from Lenz's law. This is in addition to ohmic losses in

the circuit which are not to be included in the magnetic-energy content. Thus, if

the flux change through a circuit carrying a current I is 5F, the work done by the

sources is

8W=-I8F
c

Now we consider the problem of the work done in establishing a general

steady-state distribution of currents and fields. We can imagine that the build-up

process occurs at an infinitesimal rate so that V*J = holds to any desired

degree of accuracy. Then the current distribution can be broken up into a

network of elementary current loops, the typical one of which is an elemental

tube of current of cross-sectional area Act following a closed path C and spanned

by a surface S with normal n, as shown in Fig. 6.3.

We can express the increment of work done against the induced emf in terms

of the change in magnetic induction through the loop:

A(SW) =— [ n-SBda
C Js

where the extra A comes from the fact that we are considering only one

Fig. 6.3 Distribution of current density broken up into elemental current loops.
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elemental circuit. If we express B in terms of the vector potential A, then we
have

(V
C Js

A(6W)= :L^i (VxSA)-ncia

With application of Stokes's theorem this can be written

C Jc

But J Act d\ is equal to J d
3
x, by definition, since d\ is parallel to J. Evidently the

sum over all such elemental loops will be the volume integral. Hence the total

increment of work done by the external sources due to a change 5A(x) in the

vector potential is

SW=i j*SA- Jd 3
x (6.12)

An expression involving the magnetic fields rather than J and 8A can be

obtained by using Ampere's law:

_ 4 it ,VxH =—

J

c

Then

8W=
^h

\

8A ' (VxH) d
'
x (6 ' 13)

The vector identity,

V • (PxQ) = Q • (VxP)-P • (VxQ)

can be used to transform (6.13):

8W=
4^ j'-

H ' <Vx6A)+V ' (Hx8A)] d
3
x (6.14)

If the field distribution is assumed to be localized, the second integral vanishes.

With the definition of B in terms of A, the energy increment can be written:

SW-^ Jh • SB d
3
x (6.15)

This relation is the magnetic equivalent of the electrostatic equation (4.86). In its

present form it is applicable to all magnetic media, including ferromagnetic

substances. If we assume that the medium is para- or diamagnetic, so that a

linear relation exists between H and B, then

H-8B = ^8(H-B)

If we now bring the fields up from zero to their final values, the total magnetic
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energy will be

W=^ j*H-Bd 3
x (6.16)

This is the magnetic analog of (4.89).

The magnetic equivalent of (4.83) where the electrostatic energy is expressed

in terms of charge density and potential, can be obtained from (6.12) by

assuming a linear relation between J and A. Then we find the magnetic energy to

be

w=
Tc\*'

Ad '
x (6,17)

The magnetic problem of the change in energy when an object of permeability

/xi is placed in a magnetic field whose current sources are fixed can be treated in

close analogy with the electrostatic discussion of Section 4.7. The role of E is

taken by B, that of D by H. The original medium has permeability jm and

existing magnetic induction B . After the object is in place the fields are B and

H. It is left as an exercise for the reader to verify that for fixed sources of the field

the change in energy is

W=^-[ (B-Ho-H-B )d 3
x (6.18)

where the integration is over the volume of the object. This can be written in the

alternative forms:

W=1T- f (j*i-^o)H.H d
3
x =^ f (—-—)fi-Bod 3

x (6.19)
07T Jvn 07T Jvx \j^0 jU-l/

Both /xi and /ul can be functions of position, but they are assumed independent

of field strength.

If the object is in otherwise free space (/x = 1), the change in energy can be

expressed in terms of the magnetization as

W=i f MB d
3
x (6.20)

It should be noted that (6.20) is equivalent to the electrostatic result (4.93),

except for sign. This sign change arises because the energy W consists of the total

energy change occurring when the permeable body is introduced in the field,

including the work done by the sources against the induced electromotive forces.

In this respect the magnetic problem with fixed currents is analogous to the

electrostatic problem with fixed potentials on the surfaces which determine the

fields. By an analysis equivalent to that at the end of Section 4.7 we can show

that for a small displacement the work done against the induced emf's is twice as

large as, and of the opposite sign to, the potential-energy change of the body.
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Thus, to find the force acting on the body, we consider a generalized displace-

ment £ and calculate the positive derivative of W with respect to the displace-

ment:

(6.21)

The subscript J implies fixed source currents.

The difference between (6.20) and the potential energy (5.72) for a permanent

magnetic moment in an external field (apart from the factor §, which is traced to

the linear relation assumed between M and B) comes from the fact that (6.20) is

the total energy required to produce the configuration, whereas (5.72) includes

only the work done in establishing the permanent magnetic moment in the field,

not the work done in creating the magnetic moment and keeping it permanent.

6.3 Maxwell's Displacement Current, Maxwell Equations

The basic laws of electricity and magnetism which we have discussed so far can

be summarized in differential form by these four (not yet Maxwell) equations:

Coulomb's law: V • D = 4-rrp

Ampere's law (V • J=0)
: ^x H_!lTj

c

Faraday's law: VxE+I^?=
C dt

Absence of free magnetic poles: V • B =

> (6-22)

These equations are written in macroscopic form and in Gaussian units. Let us

recall that all but Faraday's law were derived from steady-state observations.

Consequently, from a logical point of view there is no a priori reason to expect

that the static equations hold unchanged for time-dependent fields. In fact, the

equations in set (6.22) are inconsistent as they stand.

It required the genius of J. C. Maxwell, spurred on by Faraday's observations,

to see the inconsistency in equations (6.22) and to modify them into a consistent

set which implied new physical phenomena, at that time unknown but subse-

quently verified in all details by experiment. For this brilliant stroke in 1865, the

modified set of equations is justly known as the Maxwell equations.

The faulty equation is Ampere's law. It was derived for steady-state current

phenomena with V • J = 0. This requirement on the divergence of J is contained

right in Ampere's law, as can be seen by taking the divergence of both sides:

—V-J=V-(VxH)=0
c

(6.23)
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While V • J = is valid for steady-state problems, the complete relation is given

by the continuity equation for charge and current:

V-J+^=0 (6.24)

What Maxwell saw was that the continuity equation could be converted into a

vanishing divergence by using Coulomb's law (6.22). Thus

Then Maxwell replaced J in Ampere's law by its generalization,

^J+£f <6 -26>

for time-dependent fields. Thus Ampere's law became

VXH=^,+I*P (6.27)
C C dt

still the same, experimentally verified, law for steady-state phenomena, but now
mathematically consistent with the continuity equation (6.24) for time-

dependent fields. Maxwell called the added term in (6.26) the displacement

current. This necessary addition to Ampere's law is of crucial importance for

rapidly fluctuating fields. Without it there would be no electromagnetic radia-

tion, and the greatest part of the remainder of this book would have to be

omitted. It was Maxwell's prediction that light was an electromagnetic wave

phenomenon, and that electromagnetic waves of all frequencies could be

produced, which drew the attention of all physicists and stimulated so much
theoretical and experimental research into electromagnetism during the last part

of the nineteenth century.

The set of four equations,

r
c c dt

V B = VxE+-^ =
c dt

(6.28)

known as the Maxwell equations, forms the basis of all classical electromagnetic

phenomena. When combined with the Lorentz force equation and Newton's

second law of motion, these equations provide a complete description of the

classical dynamics of interacting charged particles and electromagnetic fields (see

Section 6.8 and Chapters 10, 12, and 17). The range of validity of the Maxwell

equations is discussed in the Introduction, as are questions of boundary

conditions for the normal and tangential components of fields at interfaces

between different media. Constitutive relations connecting E and B with D and
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H have been touched on in the Introduction and treated for static phenomena in

Chapters 4 and 5. More will be said later in this chapter and in Chapter 7.

The units employed in writing the Maxwell equations (6.28) are those of the

previous chapters, namely, Gaussian. For the reader more at home in other

units, such as MKSA, Table 2 of the Appendix summarizes essential equations in

the commoner systems. Table 3 of the Appendix allows the conversion of any

equation from Gaussian to MKSA units, while Table 4 gives the corresponding

conversions for given amounts of any variable.

6.4 Vector and Scalar Potentials

The Maxwell equations consist of a set of coupled first-order partial differential

equations relating the various components of electric and magnetic fields. They

can be solved as they stand in simple situations. But it is often convenient to

introduce potentials, obtaining a smaller number of second-order equations,

while satisfying some of the Maxwell equations identically. We are already

familiar with this concept in electrostatics and magnetostatics, where we used the

scalar potential <I> and the vector potential A.

Since V • B = still holds, we can define B in terms of a vector potential:

B =VxA (6.29)

Then the other homogeneous equation in (6.28), Faraday's law, can be written

Vx
(
E4f)=0

<
6 -30>

This means that the quantity with vanishing curl in (6.30) can be written as the

gradient of some scalar function, namely, a scalar potential <I>:

Pl iaAE+-—=-V4>
C dt

or

E = -V<D
l aA
c dt

(6.31)

The definition of B and E in terms of the potentials A and <& according to (6.29)

and (6.31) satisfies identically the two homogeneous Maxwell equations. The
dynamic behavior of A and <1> will be determined by the two inhomogeneous
equations in (6.28).

At this stage it is convenient to restrict our considerations to the vacuum
form of the Maxwell equations. Then the inhomogeneous equations in (6.28) can



220 Classical Electrodynamics Sect. 6.5

be written in terms of the potentials as

V2<P+-f (V - A) = -4ttP (6.32)
C at

VA_1§_WT . A+i^)= -—J (6.33)
c at V c dt / c

v 7

We have now reduced the set of four Maxwell equations to two equations. But

they are still coupled equations. The uncoupling can be accomplished by

exploiting the arbitrariness involved in the definition of the potentials. Since B is

defined through (6.29) in terms of A, the vector potential is arbitrary to the

extent that the gradient of some scalar function A can be added. Thus B is left

unchanged by the transformation,

A^A' = A+VA (6.34)

In order that the electric field (6.31) be unchanged as well, the scalar potential

must be simultaneously transformed,

<D_*<D' = <D-i^ (6.35)
C at

The freedom implied by (6.34) and (6.35) means that we can choose a set of

potentials (A, <£) such that

V-A+i? = (6.36)
C of

This will uncouple the pair of equations (6.32) and (6.33) and leave two

inhomogeneous wave equations, one for <t> and one for A:

V20"A^f =-4t7P (6.37)
C at

Equations (6.37) and (6.38), plus (6.36), form a set of equations equivalent in all

respects to the Maxwell equations.

6.5 Gauge Transformations, Lorentz Gauge, Coulomb Gauge

The transformation (6.34) and (6.35) is called a gauge transformation, and the

invariance of the fields under such transformations is called gauge invariance.

The relation (6.36) between A and <t> is called the Lorentz condition. To see that

potentials can always be found to satisfy the Lorentz condition, suppose that the

potentials A, which satisfy (6.32) and (6.33) do not satisfy (6.36). Then let us
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make a gauge transformation to potentials A', <!>' and demand that A', 4>' satisfy

the Lorentz condition:

V. A,lCo=V.A+i?+VV^ (6.39)
C dt C dt C at

Thus, provided a gauge function A can be found to satisfy

vA-^-('-4f)
the new potentials A', <!>' will satisfy the Lorentz condition and the wave

equations (6.37) and (6.38).

Even for potentials which satisfy the Lorentz condition (6.36) there is

arbitrariness. Evidently the restricted gauge transformation,

A^A+VA
, . 1 dA—

c dt

(6.41)

where

V*A-^= (6.42)

preserves the Lorentz condition, provided A, satisfy it initially. All potentials

in this restricted class are said to belong to the Lorentz gauge. The Lorentz gauge

is commonly used, first because it leads to the wave equations (6.37) and (6.38)

which treat 4> and A on equivalent footings, and second because it is a concept

which is independent of the coordinate system chosen and so fits naturally into

the considerations of special relativity (see Section 11.9).

Another useful gauge for the potentials is the so-called Coulomb, radiation or

transverse gauge. This is the gauge in which

V-A = (6.43)

From (6.32) we see that the scalar potential satisfies the Poisson equation,

V2
4> = -4ttP (6.44)

with solution,

^(x,0=J^4dV (6.45)

The scalar potential is just the instantaneous Coulomb potential due to the

charge density p(x, t). This is the origin of the name "Coulomb gauge."

The vector potential satisfies the inhomogeneous wave equation,

The term involving the scalar potential can, in principle, be calculated from
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(6.45). Since it involves the gradient operator it is a term that is irrotational, that

is, has vanishing curl. This suggests that it may cancel a corresponding piece of

the current density. The current density (or any vector field) can be written as the

sum of two terms,

J = J,+J, (6.47)

where Ji is called the longitudinal or irrotational current and has Vxj, = 0, while

J, is called the transverse or solenoidal current and has V • J, = 0. Starting from

the vector identity,

V x (Vx J) = V(V • J) -V2
J (6.48)

together with V2
(l/|x— x'|) = —4tt8(x— x'), it can be shown that J (

and J t can be

constructed explicitly from J as follows:

Ji=-^vfr^4dV (6.49)
477 J |X-X

|

4 77 J |X-X
|

With the help of the continuity equation and (6.45) it is seen that

(6.50)

V^ = 4t7J, (6.51)
at

Therefore the source for the wave equation for A can be expressed entirely in

terms of the transverse current (6.50):

This, of course, is the origin of the name "transverse gauge." The name
"radiation gauge" stems from the fact that transverse radiation fields are given

by the vector potential alone, the instantaneous Coulomb potential contributing

only to the near fields. This gauge is particularly useful in quantum elec-

trodynamics. A quantum-mechanical description of photons necessitates

quantization of only the vector potential.

The Coulomb or transverse gauge is often used when no sources are present.

Then O = 0, and A satisfies the homogeneous wave equation. The fields are given

by

(6.53)

In passing we note a peculiarity of the Coulomb gauge. It is well known that

electromagnetic disturbances propagate with finite speed. Yet (6.45) indicates
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that the scalar potential "propagates" instantaneously everywhere in space. The

vector potential, on the other hand, satisfies the wave equation (6.52), with its

implied finite speed of propagation c. At first glance it is puzzling to see how this

obviously unphysical behavior is avoided. A preliminary remark is that it is the

fields, not the potentials, that concern us. A further observation is that the

transverse current (6.50) extends over all space, even if J is localized.*

6.6 Green Functions for the Wave Equation

The wave equations (6.37), (6.38), and (6.52) all have the basic structure,

1 d
2V

c
2

de
=-4^*>» (6.54)

where /(x, t) is a known source distribution. The factor c is the velocity of

propagation in the medium, assumed here to be without dispersion.

To solve (6.54) it is useful to find a Green function, just as in electrostatics. We
consider the simple situation of no boundary surfaces and proceed to remove the

explicit time dependence by introducing a Fourier transform with respect to

frequency. We suppose that ^(x, t) and /(x, t) have the Fourier integral

representations,

¥(x,*)=T- f *V(x, a))e
_i<ot

dco
2 77 J-oo

with the inverse transformations,

^(x,co) =
J

^(x,t)e
iwt

dt

/(x, <*) = \j(x, t)e^ dt

(6.55)

(6.56)

When the representations (6.55) are inserted into (6.54) it is found that the

Fourier transform "*F(x, o>) satisfies the inhomogeneous Helmholtz waue equation

(V
2
+Jc

2Wx, co) = -4tt/(x, a>) (6.57)

for each value of co. Here k = co/c is the wave number associated with frequency

o>. In this form, the restriction of no dispersion is unnecessary. A priori, any

connection between k and a> is allowed, although causality imposes some restric-

tions (see Section 7.10).

* See O. L. Brill and B. Goodman, Am. J. Phys. 35, 832 (1967) for a detailed

discussion of causality in the Coulomb gauge. See also Problem 6.19.
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Equation (6.57) is an elliptic partial differential equation similar to the Poisson

equation to which it reduces for k = 0. The Green function G(x, x') appropriate

to (6.57) satisfies the inhomogeneous equation,

(V
2+ k

2)Gk (x, x') = -4tt8(x-x') (6.58)

If there are no boundary surfaces, the Green function can only depend on
R = x-x', and must in fact be spherically symmetric, that is, depend only on

R = |R|. From the form of the Laplacian operator in spherical coordinates [see

(3.1)], it is evident that Gk (R) satisfies

^ -£-2 (RGk )+ k
2Gk = -4tt5(R) (6.59)

Everywhere except R

with solution,

RGk (R) = AeikR + Be ikR

Furthermore, the delta function in (6.59) only has influence at R—»0. In that

limit the equation reduces to the Poisson equation since kR« 1. We therefore

know from electrostatics that the correct normalization is

The general solution for the Green function is thus

Gk(R) =AGk
+)(R)+BG(

k XR) (6.61)

where
±ikR

G^R^^- (6.62)

with A +B = 1. With the convention of (6.55) for the time dependence, the first

term in (6.61) represents a diverging spherical wave propagating from the origin,

while the second represents a converging spherical wave.

The choice of A and B in (6.61) depends on the boundary conditions in time

that specify the physical problem. It is intuitively obvious that, if a source is

quiescent until some time t = and then begins to function, the appropriate

Green function is the first term in (6.61), corresponding to waves radiated

outwards from the source after it begins to work. Such a description is certainly

correct and also convenient, but is not unique or necessary. By suitable

specification of the wave amplitude at boundary times it is possible to employ the

second term in (6.61), not the first, to describe the action of the source.

To understand the different time behaviors associated with G{+) and G (

k

_) we

= 0, RGk (R) satisfies the homogeneous equation

dR
(RGk ) + k

z(RGk ) =
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need to construct the corresponding time-dependent Green functions that satisfy

(v x
2

-p^)G (±)
(x, t; x', = -4tt 8(x - x') 8(t - t') (6.63)

Using (6.56) we see that the source term for (6.57) is

The solutions are therefore Gi?
)(R)e

uot
'. From (6.55) the time-dependent Green

functions are

G(±)
(R, ^) =^r J ^V" e

""T dw (6 -64)

where r=t— t' is the relative time appearing in (6.63). The infinite-space Green

function is thus a function of only the relative distance R and the relative time t

between source and observation point. For a nondispersive medium where

k = <o/c, the integral in (6.64) is a delta function. The Green functions are

G'^R, t) =-|s(tT*) (6.65)

or, more explicitly,

G(±)
(x, r; x', =

|

x_ x ,|

C J
(6.66)

The Green function G(+)
is called the retarded Green function because it exhibits

the causal behavior associated with a wave disturbance. The argument of the

delta function shows that an effect observed at the point x at time t is caused by

the action of a source a distance R away at an earlier or retarded time,

t'=t—R/c. The time difference R/c is just the time of propagation of the

disturbance from one point to the other. Similarly, G(_)
is called the advanced

Green function.

Particular integrals of the inhomogeneous wave equation (6.54) are

*(±)
(x, t) =

J"

j*G
(±)

(x, t; x; t')f(x\ t') dV dt'

To either of these may be added solutions of the homogeneous equation in order

to specify a definite physical problem. We consider a source distribution f(\\ t')

that is localized in time and space. It is different from zero only for a finite

interval of time around t' = 0. Two limiting situations are envisioned. In the first

it is assumed that at time t -* —« there exists a wave ^ in(x, t) that satisfies the

homogeneous wave equation. This wave propagates in time and space; the

source turns on and generates waves of its own. The complete solution for this
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situation at all times is evidently

f) =¥in (x,
+ JJg

(+)
(x, r; x', t')f(x', t') dV dt' (6.67)

The presence of G (+)
guarantees that at remotely early times, f, before the source

has been activated, there is no contribution from the integral. Only the specified

wave ^ in exists. The second situation is that at remotely late times (t—»+<») the

wave is given as ^out(x, t), a known solution of the homogeneous wave equation.

Then the complete solution for all times is

¥(x, = ^out(x, 0+JJg^x, t; x\ t')f(x', dV dt' (6.68)

Now the advanced Green function assures that no signal from the source shall

exist explicitly after the source shuts off (all such signals are by assumption

included in ^out).

The commonest physical situation is described by (6.67) with ^in = 0. It is

sometimes written with the Green function (6.66) inserted explicitly:

_f [/(»', Q]=
J

¥(x,t) = LT ,i
*' (6.69)

x—

X

The square bracket [ ] ret means that the time t' is to be evaluated at the retarded

time, t'=t— |x—x'|/c.

The initial or final value problem at finite times has been extensively studied in

one, two, and three dimensions. The reader may refer to Morse and Feshbach,

pp. 843-847, and also to the more mathematical treatment of Hadamard.

6.7 Derivation of the Equations of Macroscopic Electromagnetism

The discussion of electromagnetism in the preceding chapters has been based on

the macroscopic Maxwell equations,

V B = VxE+i^ =
C dt

(6.70)
_ _ A _ „ laD 4tt ¥V • D = 4ttp VxH — =—

J

c dt c

where E and B are the macroscopic electric and magnetic field quantities, D and

H are corresponding derived fields, related to E and B through the polarization

P and the magnetization M of the material medium by

D = E+4ttP, H = B-4ttM (6.71)

Similarly, p and J are the macroscopic (free) charge density and current density,

respectively. Although these equations are familiar and totally acceptable, we
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have yet to present a serious derivation of them from a microscopic starting

point. This deficiency is remedied in the present section. The derivation remains

within a classical framework even though atoms must be described quantum

mechanically. The excuse for this apparent inadequacy is that the quantum-

mechanical discussion closely parallels the classical one, with quantum-

mechanical expectation values replacing the classical quantities in the formulas

given below. The reader can examine the statistical mechanical treatments in the

literature cited at the end of the chapter.

We consider a microscopic world made up of electrons and nuclei. For

dimensions large compared to 10~ 12
cm, the nuclei can be treated as point

systems, as can the electrons. We assume that the equations governing elec-

tromagnetic phenomena for these point charges are the microscopic Maxwell

equations,

where e and b are the microscopic electric and magnetic fields and tj and j are

the microscopic charge and current densities. There are no corresponding fields

d and h because all of the charges are included in tj and j. A macroscopic amount

of matter at rest contains of the order of 10
23±5

electrons and nuclei, all in

incessant motion because of thermal agitation, zero point vibration, or orbital

motion. The microscopic electromagnetic fields produced by these charges vary

extremely rapidly in space and in time. The spatial variations occur over

distances of the order of 10~ 8 cm or less, and the temporal fluctuations occur

with periods ranging from 10~ 13
sec for nuclear vibrations to 10~ 17

sec for

electronic orbital motion. Macroscopic measuring devices generally average

over intervals in space and time much larger than these. All the microscopic

fluctuations are therefore averaged out, giving relatively smooth and slowly

varying macroscopic quantities, such as appear in the macroscopic Maxwell

equations.

The question of what type of averaging is appropriate must be examined with

some care. At first glance one might think that averages over both space and

time are necessary. But this is not true. Only a spatial averaging is necessary.

(Parenthetically, we note that a time averaging alone would certainly not be

sufficient, as can be seen by considering an ionic crystal whose ions have small

zero point vibrations around well defined and separated lattice sites.) To delimit

the domain where we expect a macroscopic description of electromagnetic

phenomena to work, we observe that the reflection and refraction of visible light

is adequately described by the Maxwell equations with a continuous dielectric

constant, whereas X-ray diffraction clearly exposes the atomistic nature of

matter. It is plausible therefore to take the length L = 1(T
6 cm= 10

2 A as the

V-b = 0,

(6.72)

V • e = 47TT),
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absolute lower limit to the macroscopic domain. The period of oscillation

associated with light of this wavelength is L /c —3x 10~ 17
sec. In a volume of

L 3 = 10~ 18 cm3
there are, in ordinary matter, still of the order of 10

6
nuclei and

electrons. Thus in any region of macroscopic interest with L»L there are so

many nuclei and electrons that the fluctuations will be completely washed out by

a spatial averaging. On the other hand, because the time scale associated with L
is actually in the range of atomic and molecular motions, a time-averaging would

not be appropriate. There is, nevertheless, no evidence after the spatial

averaging of the microscopic time fluctuations of the medium. This is so because,

in the absence of special preparation and the establishment of ordering over

macroscopic distances, the time variations of the microscopic fields are uncorre-

cted over distances of order L. All that survive are the frequency components

corresponding to oscillators driven at the external, applied frequencies.

The spatial average of a function F(x, t) with respect to a test function /(x) is

defined as

where /(x) is real, nonzero in some neighborhood of x = 0, and normalized to

unity over all space. It is simplest, though not necessary, to imagine /(x) to be

nonnegative. In order to preserve without bias directional characteristics of

averaged physical properties, we make /(x) isotropic in space. Two examples are

The first example, a spherical averaging volume of radius R, is a common one in

the literature. It has the advantage of conceptual simplicity, but the disadvantage

of an abrupt discontinuity at r=R. This leads to a fine-scale jitter on the

averaged quantities as a single molecule or group of molecules moves in or out of

the averaging volume. A smooth test function, exemplified by the Gaussian,

eliminates such difficulties provided its scale is large compared to atomic

dimensions. Fortunately, the test function /(x) does not need to be specified in

detail; all that are needed are general continuity and smoothness properties that

permit a rapidly converging Taylor series expansion of /(x) over distances of

atomic dimensions, as indicated schematically in Fig. 6.4. This is a great virtue.*

Since space and time derivatives enter the Maxwell equations, we must

consider these operations with respect to averaging according to (6.73).

* We are here following the development of G. Russakoff, Am. J. Physics 38,

1188 (1970).

(6.73)

r>R

r<R

/(X) = (7TRT3/V' :
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f

Fig. 6.4 Schematic diagram of test function /(x) used in the spatial averaging procedure.

The extent L of the plateau region, and also the extent AL of the region where / falls to

zero, are both large compared to the molecular dimension a.

Evidently, we have

_d_

dXi

and (6.74)

<F(x,r)>={dV/M g(x-*^ =
(g)

The operations of space and time differentiation thus commute with the

averaging operation.

We can now consider the averaging of the microscopic Maxwell equations

(6.72). The macroscopic electric and magnetic field quantities E and B are

defined as the averages of the microscopic fields e and b:

E(x,0 = <e(x,0)

B(x, t) = <b(x, t)>

Then the averages of the two homogeneous equations in (6.72) become the

corresponding macroscopic equations,

(V -b> = 0-> V • B =

C dt

(6.76)

The averaged inhomogeneous equations from (6.72) become

V-E = 4ir<T,(x,f)>

VxB-if=4f«0M)>
(6.77)

Comparison with the inhomogeneous pair of macroscopic equations in (6.70)

indicates the already known fact that the derived fields D and H are introduced



230 Classical Electrodynamics Sect. 6.7

by the extraction from (tj) and (j) of certain contributions that can be identified

with the bulk properties of the medium. The examination of (tj) and (j) is

therefore the next task.

We consider a medium made up of molecules composed of nuclei and

electrons and, in addition, "free" charges that are not localized around any

particular molecule. The microscopic charge density can be written as

r|(x,t)=Iqi
8[x-x

l(0] (6.78)
i

where x,-(r) is the position of the point charge To distinguish the bound charges

from the free ones, we decompose tj as

T] = T]£ree + Abound (6.79)

and write

T)free= £ <Ji
8 (X ~ X

J<)

j(free)

T)bound= X ^"(X?
n

(molecules)

where r) n is the charge density of the nth molecule,

T)n(x, = Zq, 8(x-x
j ) (6.80)

j(n)

In these and subsequent equations we suppress the explicit time dependence

since the averaging is done at one instant of time. We proceed by averaging the

charge density of the nth molecule and then summing up the contributions of all

molecules. It is appropriate to express the coordinates of the charges in the nth

molecule with respect to an origin at rest in the molecule. Let the coordinate of

that fixed point in the molecule (usually chosen as the center of mass) be xn (t),

and the coordinate of the jth charge in the molecule be x,-n (r) relative to that

origin, as indicated in Fig. 6.5. The average of the charge density of the nth

molecule is

<T,„(X, t)>=Jd
3
x7(x') TK(X-X', t)

= I <bifd
3
x' /(x') 8 (x- x' - xjn - xn )

j(n) J

= Sq,/(x-x„-x)n ) (6.81)
J'(n)

Since x,„ is of order atomic dimensions, the terms in the sum have arguments

differing only slightly from (x-x„) on the scale over which f(x) changes

appreciably. It is therefore appropriate to make a Taylor series expansion

around (x— x„) for each term. This gives

<t)„(x, t)>=Z qJ
{/(x-xn)-xJ

„ • V/(x-xn)+^X (x,n) a (xjn ) p— /(x-x„)+ - •

j
j(n) L £ ap OXa OXp J
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J
Fig. 6.5 Coordinates for the nth molecule. The origin O' is fixed in the molecule

(usually it is chosen at the center of mass). The jth charge has coordinate xjn relative to O',

while the molecule is located relative to the fixed (laboratory) axes by the coordinate x„.

The various sums over the charges in the molecule are just molecular multipole

moments:
Molecular charge <?n=£q, (6.82)

j(n)

Molecular dipole moment p„ = £ xm
10*)

Molecular quadrupole „ , v t x

moment

(6.83)

(6.84)

In terms of these multipole moments the averaged charge density of the nth

molecule is

<t)„(x, t)> = qn/(x-xn)-p„ • V/(x-x n)+| I (Q;U
a

^
X
^" ) + - • • (6.85)

If we attempt to view this equation as the direct result of the definition (6.73) of

the spatial averaging, we see that the first term can be thought of as the

averaging of a point charge density at x = x„, the second as the divergence of the



232 Classical Electrodynamics Sect. 6.7

average of a point dipole density at x = x„, and so on. Explicitly,

1 d
2

<t)„(x, 0> = <qnS(x-x„)>-V-(p„8(x-xB)>+^X^^<(QyaP8(x-xB)>+ - •
•

(6.86)

We thus find that, as far as the result of the averaging process is concerned, we
can view the molecule as a collection of point multipoles located at one fixed point

in the molecule. The detailed extent of the molecular charge distribution is

important at the microscopic level, of course, but is replaced in its effect by a sum
of multipoles for macroscopic phenomena.

The total microscopic charge density (6.79) consists of the free and bound
charges. Summing up over all the molecules (which may be of different species)

and combining with the free charges, we find the averaged microscopic charge

density to be

<t,(x, 0> = p(x, r)-V • P(x, QWx, t)+- '
' (6-87)

where p is the macroscopic charge density,

p(x,t) = ( Z q]
8(x-x

/)+ I qnS(x-xn)) (6.88)
\j(free) n /

(molecules)

P is the macroscopic polarization,

P(x,0=( Z pn8(x-x„)\ (6.89)

Vmolecules) /

and Qap is the macroscopic quadrupole density,

Q'
a(i(x,t)=U Z (CX)«P8(x-x„)\ (6.90)

Vmolecules) /

When (6.87) is inserted in the first equation of (6.77), it gives

Ea + 4TiPa-47rZr-OaP+
e oXr

Airp (6.91)

From (6.70) this means that the macroscopic displacement vector D is defined to

have components,

Da = Ea + 47rPa -47r Z^+ '

'
• (6.92)

The first two terms are the familiar result (6.71). The third and higher terms are

present in principle, but are almost invariably negligible.

To complete the discussion we must consider (j). Because of its vector nature

and the presence of velocities the derivation is considerably more complicated
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than the previous treatment of (tj), even though involving no new principles. We
present only the results, leaving the gory details to a problem for those readers

who enjoy such challenges. We begin with the microscopic current density,

j(x,0 = Lq,v,S(x- Xj (0) (6.93)
i

where v, = dxj/dt is the velocity of the jth charge. Again the sum is divided into

one over the free charges and one over the molecules. The current density of

the nth molecule can be averaged just as in (6.81) to give

(jn(x, t)>=S qi (vjn + vn)f(x-xn -xin ) (6.94)
j(n)

Here we have assumed nonrelativistic motion by writing the velocity of the jth

charge as the sum of an internal relative velocity vjn and the velocity v„ = dxjdt

of the origin O' in the molecule. From this point on the development entails

Taylor series expansions and vector manipulations. A portion of the current

involves the molecular magnetic moment,

m« = I (6.95)
j(n)

The final result for a component of the averaged microscopic current density is

(ja (x, f)>=J«(x, 0+j-^[E>«(x, t)-Ea (x, 0]+c£ ea37 -^-M7 (x,
477 Ot p7 dXp

X [(Pn)a(Vn) P
- (Pn)P (v„)a]8(x-X„)^

Z [(Q'„)aP (v„) 7 -(Qy7P (vB )a]S(x-x„)) +• •
•

6 7 dXp dx7

(6.96)

The so-far undefined quantities in this rather formidable equation are the

macroscopic current density,

J(x, 0= ( S qJ
v

j
5(x-x

i)+ X qnV„S(x-xn)\ (6.97)

\(free) (molecules) /

and the macroscopic magnetization,

M(x,t)=/ £ m„S(x-xn)\ (6.98)

\(molecules) /

If the free "charges" also possess intrinsic magnetic moments, these can be

included in the definition of M in an obvious way. The last terms in (6.96)

involve the electric molecular moments and molecular velocities and cannot be

given an easy interpretation, except in special cases (see below).
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When (j) is inserted in the second equation of (6.77), there results the

macroscopic Ampere-Maxwell equation of (6.70) with the derived magnetic

field quantity H given in terms of B and the properties of the medium as

^(B-H) a = MQ +^ I (p n x^)o(x-x,^

X (Q'*W^S(x-x„)\+--- (6.

lecules) /

Mmolecules)

99)

The first term of the right-hand side of (6.99) is the familiar result, (6.71). The
other terms are generally extremely small, first, because the molecular velocities

\n are small, typically thermal velocities in a gas or lattice vibrational velocities in

a solid and, second, because the velocities fluctuate and tend to average to zero

macroscopically. An exception to this is when the medium undergoes bulk

motion. For simplicity, suppose that the medium as a whole has a translational

velocity v. Neglecting any other motion of the molecules, we put v„ = v for all n.

Then (6.99) becomes, after a little manipulation,

B-H = 4ttM+(D-E)x- (6.100)
c

where D is given by (6.92). This shows that for a medium in motion the electric

polarization P (and quadrupole density Qaa) enter the effective magnetization.

Equation (6.100) is the nonrelativistic limit of one of the equations of Min-

kowski's electrodynamics of moving media (see Pauli, p. 105).

The reader may consult the book by de Groot for a discussion of the relativistic

corrections, as well as for a statistical mechanical treatment of the averaging.

From the standpoint of logic and consistency there remains one loose end. In

defining the molecular quadrupole moment (Qn)«e by (6.84) we departed from

our convention of Chapter 4, Eq. (4.9), and left (Qn)afi with a nonvanishing trace.

Since we made a point in Chapter 4 of relating the five independent components

of the traceless quadrupole moment tensor to the (2/+ 1) spherical harmonics for

1 = 2, we need to explain why six components enter the macroscopic Maxwell

equations. If we define a traceless molecular quadrupole moment (Q„)ap by

means of (4.9), then we have

(Q'n)« P = (Qn)„ P + Z q,(x)n )

2
5„ e (6.101)

l(n)

Introducing a mean square charge radius rn
2
of the molecular charge distribution

by

ern
2

=Y, qi(x,n)
2
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where e is some convenient unit of charge, for example, that of a proton, we can

write (6.101) as

(Qn)«p = (Q«)«3 + ern
2
8afi

The macroscopic quadrupole density (6.90) thus becomes

Vmoleci

ern 8Qp5(x— x„)

)

(molecules) /

where QaP is defined in terms of (Q„)«p just as in (6.90). The net result is that in

the averaged microscopic charge density (6.87) the traceless quadrupole density

Qap replaces the density QLp and the charge density p is augmented by an

additional term,

p->pfree+( X q„8(x- xn )
) +^V2

( £ ern
28(x-xn )\ (6.102)

The trace of the tensor Qa3 is exhibited with the charge density because it is an

1 = contribution in terms of the multipole expansion. The molecular charge and

mean square radius terms together actually represent the first two terms in an

expansion of the / = molecular multipole as we go beyond the static limit. In the

Fourier transformed wave number space, they correspond to the first two terms

in the expansion of the charge form factor in powers of k
2

. This can be seen from

the definition of the form factor F(k
2
) for a charge density p(x):

F(k
2
) = Jd

3
x p(xXe

ik
-%opart

f ,3 t \ sin kr

With the correspondence k <-> -iV, the general equivalence of the form factor

expansion and (6.102) is established.

In an interesting monograph, Robinson gives a discussion of the connection

between the microscopic equations and the macroscopic equations similar to

ours. However, he makes a distinction between the spatial averaging (6.73) with

the test function /(x), called "truncation" (of the wave number spectrum) by him,

and the statistical-mechanical averaging over various sorts of ensembles. Robin-

son holds that each macroscopic problem has its own appropriate lower limit of

relevant lengths and that this sets the size of the test function to be used, before

any considerations of statistical averaging are made.
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6.8 Poynting's Theorem and Conservation of Energy and Momentum for

a System of Charged Particles and Electromagnetic Fields

The forms of the laws of conservation of energy and momentum are important

results to establish for the electromagnetic field. We begin by considering

conservation of energy, often called Poynting's theorem (1884). For a single

charge q the rate of doing work by external electromagnetic fields E and B is

qy • E, where v is the velocity of the charge. The magnetic field does no work,

since the magnetic force is perpendicular to the velocity. If there exists a

continuous distribution of charge and current, the total rate of doing work by the

fields in a finite volume V is

J
J«Ed3

x (6.103)

This power represents a conversion of electromagnetic energy into mechanical

or thermal energy. It must be balanced by a corresponding rate of decrease of

energy in the electromagnetic field within the volume V. In order to exhibit this

conservation law explicitly, we use the Maxwell equations to express (6.103) in

other terms. Thus we use the Ampere-Maxwell law to eliminate J:

J> E I [

cE
* (V *H>-E

*f ]
<6 - 104>

If we now employ the vector identity,

V (ExH) =H • (VxE)-E • (VxH)

and use Faraday's law, the right side of (6.104) becomes

\ J-E<fx =^f [cV.(ExH) +E~+H— ]tfx (6.105)
Jv 47T JV L dt dt J

To proceed further we make two assumptions. We assume that the macroscopic

medium involved is linear in its electric and magnetic properties. Then the two

time derivatives in (6.105) can be interpreted, according to equations (4.89) and

(6.16), as the time derivatives of the electrostatic and magnetic energy densities.

We now make our second assumption, namely, that the sum of (4.89) and (6.16)

represents the total electromagnetic energy, even for time-varying fields. Then if

the total energy density is denoted by

u =^-(ED+BH) (6.106)

(6.105) can be written

-l
, - Ed3X=

lv[f
+^ V - (EXH)

]

d3X (610?)

Since the volume V is arbitrary, this can be cast into the form of a differential
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continuity equation or conservation law,

|y+V-S=-J-E (6.108)

The vector S, representing energy flow, is called the Poynting vector. It is given by

S =-r(ExH) (6.109)
477

and has the dimensions of (energy/area x time). Since only its divergence appears

in the conservation law, the Poynting vector is arbitrary to the extent that the curl

of any vector field can be added to it. Such an added term can, however, have no

physical consequences. Hence it is customary to make the specific choice

(6.109).

The physical meaning of the integral or differential form (6.107) or (6.108) is

that the time rate of change of electromagnetic energy within a certain volume,

plus the energy flowing out through the boundary surfaces of the volume per unit

time, is equal to the negative of the total work done by the fields on the sources

within the volume. This is the statement of conservation of energy. If dissipative

effects, such as hysteresis in ferromagnetic materials, are envisioned, the simple

law (6.108) is no longer valid, but must be supplemented by terms giving the

hysteresis power loss.

The emphasis so far has been on the energy of the electromagnetic fields. The
work done per unit time per unit volume by the fields (J • E) is a conversion of

electromagnetic into mechanical or heat energy. Since matter is ultimately

composed of charged particles (electrons and atomic nuclei), we can think of this

rate of conversion as a rate of increase of energy of the charged particles per unit

volume. Then we can interpret Poynting's theorem for the microscopic fields

(E, B) as a statement of conservation of energy of the combined system of

particles and fields. If we denote the total energy of the particles within the

volume V as EmeCh and assume that no particles move out of the volume, we
have

dEmech

dt
J-Ed 3

x (6.110)

Then Poynting's theorem expresses the conservation of energy for the combined
system as

dE d

it
(Emech +Efield) =

-<J>
n • S da (6.111)

where the total field energy within V is

f

(E
2 + B 2)d 3

x (6.112)
V
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The conservation of linear momentum can be similarly considered. The total

electromagnetic force on a charged particle is

= q
(
E^x B

)
(6.113)

If the sum of all the momenta of all the particles in the volume V is denoted by

Pmech, we can write, from Newton's second law,

dt
[(pE+IjxB^; (6.114)

where we have converted the sum over particles to an integral over charge and

current densities for convenience in manipulation. In the same manner as for

Poynting's theorem, we use the Maxwell equations to eliminate p and J from

(6.114):

1 _ „ _ c /_ _ 1 dE\
p =— V-E, J =— VxB —
p

4tt 4it\ c dt J
(6.115)

With (6.115) substituted into (6.114) the integrand becomes

1 1pE+-JxB = -±-
^ C 4 77

E(V • E)+-^Bx^-Bx(VxB)

Then writing

and adding B(V • B) = to the square bracket, we obtain

pE+^ JxB =^ [E(V - E)+B(V • B)-Ex(VxE)-Bx(VxB)]-^~ (ExB)

The rate of change of mechanical momentum (6.114) can now be written

^P^+X [
-p— (ExB) d

3
x

dt dt Jv 4t7C
v '

f [E(V-E)-Ex(VxE)+B(V-B)-Bx(VxB)]d 3
x (6.116)

We may tentatively identify the volume integral on the left as the total

electromagnetic momentum Pfieid in the volume V:

4ttC Jv
d

3
x (6.117)

The integrand can be interpreted as a density of electromagnetic momentum.
We note that this momentum density is proportional to the energy-flux density

S, with proportionality constant c
-2

.
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To complete the identification of the volume integral of

8=4^ (EXB) (6.118)

as electromagnetic momentum, and to establish (6.116) as the conservation law

for momentum, we must convert the volume integral on the right into a surface

integral of the normal component of something which can be identified as

momentum flow. Let the Cartesian coordinates be denoted by xa , a = 1, 2, 3. The

a = 1 component of the electric part of the integrand in (6.116) is given explicitly

[L,.E,-Ex (V, E)] , = E,(f
+f+f)-E,(f-g) +E,g-f

f )

-& (E '
l+s (E '&)*s (E'E-4s;<E

'"+E-'+&*>

This means that we can write the ath component as

[E(V • E) -E x (V x E)]a = X T~ (EaE,-iE • ESaS ) (6.119)

and have the form of a divergence of a second rank tensor on the right-hand

side. With the definition of the Maxwell stress tensor Ta8 as

T«p=^-[E„Ep+BaBp-KE • E+B • B)Safi ] (6.120)

Eq. (6.116) can therefore be written in component form as

4(Pmech+Pfie,d)a=X f -T-T^d'x (6.121)
at p jv dXp

Application of the divergence theorem to the volume integral gives

-^(Pmech+ Pfield)a = X TafiYlfi da (6.122)
at js p

where n is the outward normal to the closed surface S. Evidently, if (6.122)

represents a statement of conservation of momentum, X is the ath

component of the flow per unit area of momentum across the surface S into the

volume V. In other words, it is the force per unit area transmitted across the

surface S and acting on the combined system of particles and fields inside V.

Equation (6.122) can therefore be used to calculate the forces acting on material

objects in electromagnetic fields by enclosing the objects with a boundary

surface S and adding up the total electromagnetic force according to the

right-hand side of (6.122).

The conservation of angular momentum of the combined system of particles
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and fields can be treated in the same way as we have handled energy and linear

momentum. This is left as a problem for the student (see Problem 6.11).

6.9 Conservation Laws for Macroscopic Media

In the previous section Poynting's theorem was derived using the macroscopic

Maxwell equations, but the conservation of momentum and the Maxwell stress

tensor were discussed only for the microscopic equations. For bulk matter

considerable care must be exercised in defining the electromagnetic energy

density u, energy flow S, momentum flow g, and stress tensor Ta3 because what is

considered electromagnetic and what mechanical is to some extent arbitrary.

This question has occupied many workers over the years. Historical accounts can

be found in Pauli and de Groot. We will content ourselves with a few

observations.

If one makes a straightforward application of the macroscopic Maxwell

equations to the conservation of momentum as well as energy, one obtains what

are generally called the Minkowski (1908) results, even though some were

proposed earlier by others. These are the previously obtained expressions

(6.106) for u and (6.109) for S, but with the momentum density and stress tensor

given by

8
=
4^ (DXB) (6123)

and

Tap = -p- [EaDp +HaB,3

-

i(E • D+B • H)8Q(3 ] (6.124)

The medium is assumed to be linear, but not necessarily isotropic, in its

response. Note that the stress tensor is not symmetric for anisotropic media. This

lack of symmetry has disturbed many physicists, Hertz and Abraham being

among the first to replace (6.124) with a symmetrized form. Experimental tests

are not as easy to come by as one might first imagine. Brevik* discusses the

various versions of Ta(3 in detail and concludes by favoring the unsymmetrical

Minkowski form.

The Minkowski expression (6.123) for g is generally viewed as unacceptable as

the electromagnetic momentum density. All workers agree on the definition

g =^(ExH) =is (6.125)

This result emerges from a statistical mechanical treatment of the system of

matter plus fields in which the electromagnetic quantities are defined as the

* I. Brevik, Dankse Videns. Sels. Mat.-fys. Mcdd. 37, No. 11 and No. 13 (1970).
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difference between the quantities for the combined system and those for the matter

system at the same equilibrium temperature T and density p, but with zero fields.

With this definition, the momentum and energy flow densities are given by

(6.125) and (6.109), while, for a medium that is linear and isotropic with D = eE
and B = /mH, the electromagnetic part of the internal energy is*

while the electromagnetic stress tensor is

ToB=^{ £E^ +^Hp-^[^(£ -p(g)T
)
+H^-pg)

T)]}
(6.127)

These reduce to the Minkowski expressions for u and Tap only for the unphysical

situation in which e and /ul are independent of temperature and density.

The subject of energy and momentum balance for bulk matter in elec-

tromagnetic fields is evidently complicated. We refer the reader to Landau and

Lifshitz (loc. cit.) and also to Stratton, Chapter 2, for further discussion.

6.10 Pointing's Theorem for Harmonic Fields, Field

Definitions of Impedance and Admittancef

Lumped circuit concepts such as the resistance and reactance of a two-terminal

linear network occur in many applications, even in circumstances where the size

of the system is comparable to the free space wavelength, for example, for a

resonant antenna. It is useful therefore to have a general definition based on

field concepts. This follows from consideration of Poynting's theorem for

harmonic time variation of the fields. We assume that all fields and sources have

a time dependence e~
lwt

, so that we write

E(x, t) = Re ^(x)e~
Uat
]^i[E(x)e~

iat +E*(x)e ia
"] (6.128)

The field E(x) is in general complex, with a magnitude and phase that change

with position. For product forms, such as J(x, t) • E(x, t), we have

J(x, t) • E(x, 0=i[J(x)e-
ia,t

+J*(x)e
iwt

] - [E(x)e-^ +E*(x)e
la
"]

=i Re [J*(x) - E(x)+J(x) • E(x)e-
2iwt

] (6.129)

* See de Groot, Section 13, or Landau and Lifshitz, Electrodynamics of Continuous
Media, Sections 10, 15, 30, 34.

t The treatment of this section parallels that of Fano, Chu, and Adler, Sections 8.2

and 8.3. The reader can find in this book considerable further discussion of the

connection between lumped circuit and field concepts, examples of stray capacitances in

inductors, etc. See also the first two chapters of Adler, Chu, and Fano.
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For time-averages of products the convention is therefore to take one-half of the

real part of the product of one complex quantity with the complex conjugate of

the other.

For harmonic fields the Maxwell equations become

VB = 0, VxE-i-B =

(6.130)

V-D = 4irp, VxH+i-D =—

J

c c

where all the quantities are complex functions of x, according to the right-hand

side of (6.128). Instead of (6.103) we consider the volume integral

H j*- Ed -

whose real part gives the time-average rate of work done by the fields in the

volume V. In a development strictly paralleling the steps from (6.103) to (6.107)

we have

\ f J*«Ed3
x =f f E • [vxH*-i — D*l d

3
x

2 Jv 877 Jv L c

=
8^1 [-V, (ExH*)-^(E * D*-B * H*)] d3x (6.131)

We now define the complex Poynting vector,

S =^(ExH*) (6.132)

and the harmonic electric and magnetic energy densities,

we = T-|-(E.D*), wm = T^-(B-H*) (6.133)

Then (6.131) can be written as

H J*-Ed 3
x+ 2ia>f (we-wm)d

3
x + (j> S-nda = (6.134)

^ Jv Jv Js

This is the analog of (6.107) for harmonic fields. It is a complex equation whose

real part gives the conservation of energy for the time-averaged quantities and

whose imaginary part relates to the reactive or stored energy and its alternating

flow. If the energy densities we and wm have real volume integrals, as occurs for

systems with lossless dielectrics and perfect conductors, the real part of (6.134) is

J
|Re(J*-E)d 3

x+ <j> Re(S-n)da =
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showing that the steady-state time-average rate of doing work on the sources in

V by the fields is equal to the average flow of power into the volume V through

the boundary surface S, as calculated from the normal component of Re S. This

is just what would be calculated from the earlier form of Poynting's theorem

(6.107) if we assume that the energy density u has a steady part and a

harmonically fluctuating part. With losses in the components of the system, the

second term in (6.134) has a real part that accounts for this dissipation.

The complex Poynting theorem (6.134) can be used to define the input

impedance of a general, two-terminal, linear, passive electromagnetic system.

We imagine the system in the volume V surrounded by the boundary surface S,

with only its input terminals protruding, as shown in Fig. 6.6. If the complex

harmonic input current and voltage are Ii and V*, the complex power input is

2-PVi. This can be written in terms of the Poynting vector by using (6.134)

applied to all of space on the outside of S as

ilfVi=-<) S-nda (6.135)
JSi

where the unit normal n is outwardly directed, as shown in Fig. 6.6, and we have

\
\

\

\

Fig. 6.6 Schematic diagrams of arbitrary, two-terminal, linear, passive electromagnetic

systems. The surface S completely surrounds the system; only the input terminals

protrude. At these terminals, the harmonic input current and voltage are I; and VI, with
the input impedance Z defined by V; = 71

x
. The upper diagram applies at low frequencies

where radiation losses are negligible, while the lower one with its coaxial-line input

permits discussion of radiation resistance.
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assumed that the input power flow is confined to the area S; (the cross-section of

the coaxial line in the lower diagram of Fig. 6.6). By now considering (6.134) for

the volume V surrounded by the closed surface S, the right-hand side of (6.135)

can be written in terms of integrals over the fields inside the volume V:

H*Vi=^ f J*-Ed 3
x+ 2ia>[ (we-wm)d

3
x+ l S-nda (6.136)

Jv Jv JS-Si

The surface integral here represents power flow out of the volume V through the

surface S, except for the input surface &. If the surface (S-SO is taken to infinity,

this integral is real and represents escaping radiation (see Chapter 9). At low

frequencies it is generally negligible. Then no distinction need be made between

Si and S; the upper diagram in Fig. 6.6 applies.

The input impedance Z = R-iX (electrical engineers please read as Z =
R+jX!) follows from (6.136) with its definition, Vx

= 21x . Its real and imaginary

parts are

R = |^p|ReJ J*-Ed 3
x+

2(J)
S-nda+ 4a>ImJ (wm -we)d

3
xj (6.137)

X=j^p|4a>ReJ* (wm - w«) d
3x-Imj* J* • E d

3
x| (6.138)

In writing (6.137) and (6.138) we have assumed that the power flow out through

S is real. The second term in (6.137) is thus the "radiation resistance," important

at high frequencies. At low frequencies, in systems where Ohmic losses are the

only appreciable source of dissipation, these expressions simplify to

R^4r2 f o-|E|
2
d

3
x (6.139)

|ii| Jv

X~jj£ £(wm-we)d
3
x (6.140)

Here cr is the real conductivity, and the energy densities wm and wc (6.133) are

also real over essentially the whole volume. The resistance is clearly the value

expected from consideration of Ohmic heat loss in the circuit. Similarly, the

reactance has a plausible form: If magnetic stored energy dominates, as for a

lumped inductance, the reactance is positive, etc. The different frequency

dependences of the low frequency reactance for inductances (X=a>L) and

capacitances (X= — l/o>C) can be traced to the definition of L in terms of current

and voltage (V=LdI/dt) on the one hand, and of C in terms of charge and

voltage (V= QIC) on the other. The treatment of some simple examples is left to

the problems at the end of the chapter, as is the derivation of results equivalent

to (6.139) and (6.140) for the conductance and susceptance of the complex

admittance Y.
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6.11 Transformation Properties of Electromagnetic Fields and Sources

under Rotations, Spatial Reflections, and Time Reversal

The fact that related physical quantities have compatible transformation proper-

ties under certain types of coordinate transformations is so taken for granted

that the significance of such requirements and the limitations that can be thereby

placed on the form of the relations is sometimes overlooked. It is useful

therefore to discuss explicitly the relatively obvious properties of electromag-

netic quantities under rotations, spatial inversions, and time reversal. The notions

have direct application for limiting phenomenological constitutive relations, and

are applied in the next section where the question of magnetic monopoles is

discussed.

It is assumed that the idea of space and time coordinate transformations and

their relation to the general conservation laws is familiar to the reader from

classical mechanics (see Goldstein, for example). Only a summary of the main

results is given here.

Rotations

A rotation in three dimensions is a linear transformation of the coordinates of

a point such that the sum of the squares of the coordinates remains invariant.

Such a transformation is called an orthogonal transformation. The transformed

coordinates x« are given in terms of the original coordinates xp by

xL=Yj a«3*P (6.141)
3

The requirement that (x')
2 = (x)

2
restricts the real transformation coefficients aa&

to be orthogonal,

X fl«pfla7 == <5P7 (6.142)
a

The inverse transformation has (a
_1

)aP = aPa and the square of the determinant of

the matrix (a) is equal to unity. The value det (a) = + l corresponds to a proper

rotation, obtainable from the original configuration by a sequence of infinitesi-

mal steps, whereas det (a) = -1 represents an improper rotation, a reflection plus

a rotation.

Physical quantities are classed as rotational tensors of various ranks depending

on how they transform under rotations. Coordinates x t , velocities vi? momenta p*

have components that transform according to the basic transformation law

(6.141) and are tensors of rank one, or vectors. Scalar products of vectors, such

as Xi • x2 or Vi • p2 , are invariant under rotations and so are tensors of rank zero,

or scalars. Groups of quantities that transform according to

BLP = X aayaB6By8 (6.143)
7,8
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are called second rank tensors or, commonly, tensors. The Maxwell stress tensor

is one such group of quantities. Higher rank tensor transformations follow

obviously.

In considering electromagnetic fields and other physical quantities, we deal

with one or more functions of coordinates and perhaps other kinematic

variables. There then arises the choice of an "active" or a "passive" view of the

rotation. We adopt the active view—the coordinate axes are considered fixed

and the physical system is imagined to undergo a rotation. Thus, for example,

two charged particles with initial coordinates Xi and x2 form a system that under

a rotation is transformed so that the coordinates of the particles are now xl and

X2, as shown in Fig. 6.7. The components of each coordinate vector transform

according to (6.141), but electrostatic potential is unchanged because it is a

function only of the distance between the two points, R = |xi—

x

2 |, and R 2
is a sum

of scalar products of vectors and so is invariant under the rotation. The
electrostatic potential is one example of a scalar under rotations. In general, if a

physical quantity </>, which is a function of various coordinates denoted collec-

tively by Xi (possibly including coordinates such as velocities and momenta), is

such that, when the physical system is rotated with Xi—»xi, the quantity remains

unchanged,

<f>'(xD = <f>(Xi) (6.144)

then
(f>

is a scalar function under rotations. Similarly, if a set of three physical

Fig. 6.7 Active rotation of a system of two charges.
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quantities V«(Xi) (a= 1, 2, 3) transform under rotation of the system according to

Vi(x|) = IaaPVp(x i ) (6.145)
P

then the Va form the components of a vector, and so on for higher rank tensors.

Differential vector operations have definite transformation properties under

rotations. For example, the gradient of a scalar, V<j>, transforms as a vector, the

divergence of a vector, V • V, is a scalar, and the Laplacian operator V 2
is a scalar

operator in the sense that its application to a function or set of functions does not

alter their rotational transformation properties.

Special mention must be made of the cross product of two vectors:

A = BxC (6.146)

In component form this vector shorthand reads

where eaP7 = + 1 for a = 1 , |3 = 2, 7 = 3 and cyclic permutations, eaPy = - 1 for other

permutations, and vanishes for two or more indices equal. -Because of the

presence of two vectors on the right-hand side, the cross product has some attri-

butes of a traceless antisymmetric second rank tensor. Since such a tensor has

only three independent components, we treat it as a vector. This has justifica-

tion, of course, only in so far as it transforms under rotations according to

(6.141). In actual fact, the transformation law for the cross product (6.146) is

AL = det(a) £ aa3Ap (6.147)
p

For proper rotations, the only kind that we have considered so far, det (a) = + l;

thus (6.147) is in agreement with the basic coordinate transformation (6.141).

Under proper rotations, the cross product transforms as a vector.

Spatial Reflection or Inversion

Spatial reflection in a plane corresponds to changing the signs of the normal

components of the coordinate vectors of all points and to leaving the compo-
nents parallel to the plane unchanged. Thus, for reflection in the x-y plane,

Xi = (Xi, yi? Zi)—>x| = (Xi, yi9
— Zt). Space inversion corresponds to reflection of all

three components of every coordinate vector through the origin, x*—»x^ = — x<.

Spatial inversion or reflection is a discrete transformation that, for more than

two coordinates, cannot in general be accomplished by proper rotations. It

corresponds to det(a) = — 1, and for the straightforward inversion operation is

given by (6.141) with aaft = -8a3 . It follows that vectors change sign under spatial

inversion, but cross products, which behave according to (6.147), do not. We are
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thus forced to distinguish two kinds of vectors (under general rotations):

Polar vectors (or just vectors) that transform according to (6.145) and for

Xi-^>x[ = -Xi behave as

V-»V'=-V

Axial or Pseudovectors that transform according to (6.147) and for Xi^x| = -x t

behave as

A-*A' = A

Similar distinctions must be made for scalars under rotations. We speak of

scalars or pseudoscalars, depending on whether the quantities do not or do

change sign under spatial inversion. The triple scalar product a*(bxc) is an

example of a pseudoscalar quantity, provided a, b, c are all polar vectors. (We
see here in passing a dangerous aspect of our usual notation. The writing of a

vector as a does not tell us whether it is a polar or an axial vector.) The
transformation properties of higher rank tensors under spatial inversion can be

deduced directly if they are built up by taking products of components of polar

or axial vectors. If a tensor of rank N transforms under spatial inversion with a

factor (-1)
N

, we call it a true tensor or just a tensor, while if the factor is (-1)
N+1

we call it a pseudotensor of rank N.

Time Reversal

The basic laws of physics are invariant (at least at the classical level) to the

sense of direction of time. This does not mean that the equations are even in r,

but that, under the time reversal transformation t—>t'= — t, the related physical

quantities transform in a consistent fashion so that the form of the equation is the

same as before. Thus, for a particle of momentum p and position x moving in an

external potential U(x), Newton's equation of motion,

is invariant under time reversal provided x—»x' = x and p^p' = —p. The sign

change for the momentum is, of course, intuitively obvious from its relation to

the velocity, \ = dx/dt. The consequence of the invariance of Newton's laws

under time reversal is that, if a certain initial configuration of a system of

particles evolves under the action of various forces into some final configuration,

a possible state of motion of the system is that the time-reversed final

configuration (all positions the same, but all velocities reversed) will evolve over

the reversed path to the time-reversed initial configuration.

The transformation properties of various mechanical quantities under rota-

tions, spatial inversion, and time reversal are summarized in the first part of Table

6.1.
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Table 6.1

Transformation Properties of Various Physical Quantities under Rotations, Spatial

Inversion and Time Reversal
3

Rotation

(Rank of Space Inversion

Physical Quantity Tensor) (Name) Time Reversal

I. Mechanical
Coordinate X 1 Odd (vector) Even
Velocity V 1 Odd (vector) Odd
Momentum p 1 Odd (vector) Odd
Angular momentum L = x x p 1 Even (pseudovector) Odd
Force F 1 Odd (vector) Even
Torque N = xxF Even (pseudovector) Even
Kinetic energy p

2/2m Even (scalar) Even
Potential energy U(x) Even (scalar) Even

Electromagnetic

Charge density P Even (scalar) Even
Current density J 1 Odd (vector) Odd
Electric field

Polarization 1 Odd (vector) Even
Displacement dJ
Magnetic induction B

lMagnetization M> 1 Even (pseudovector) Odd
Magnetic field hJ

Poynting vector S =4^EXH> 1 Odd (vector) Odd

Maxwell stress tensor T„p 2 Even (tensor) Even

a For quantities that are functions of x and t, it is necessary to be very clear what is

meant by evenness or oddness under space inversion or time reversal. For example, the

magnetic induction is such that under space inversion, B(x, r)—»B r (x, r) = +B(-x, t), while

under time reversal, B(x, r)—»BT(x, r) = -B(x, -t).

Electromagnetic Quantities

Just as with the laws of mechanics, it is true (i.e., consistent with all known
experimental facts) that the forms of the equations governing electromagnetic

phenomena are invariant under rotations, space inversion, and time reversal.

This implies that the different electromagnetic quantities have well-defined

transformation properties under these operations. It is an experimental fact that

electric charge is invariant under Galilean and Lorentz transformations and is a

scalar under rotations. It is natural, convenient, and permissible to assume that

charge is also a scalar under spatial inversion and even under time reversal. The
point here is that physically measurable quantities like force involve the product

of charge and field. The transformation properties attributed to fields like E and

B thus depend on the convention chosen for the charge.
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With charge a true scalar under all three transformations, charge density p is

also a true scalar. From the fact that the electric field is force per unit charge we
see that E is a polar vector, even under time reversal This also follows from the

Maxwell equation, V-E = 47rp, since both sides must transform in the same

manner under the transformations.

The first term in the Maxwell equation representing Faraday's law,

transforms as a pseudovector under rotations and spatial inversion, and is even

under time reversal. To preserve the invariance of form it is therefore necessary

that the magnetic induction B be a pseudovector, odd under time reversal. The
left-hand side of the Ampere-Maxwell equation,

can be seen to transform as a polar vector, odd under time reversal. This implies

that the current density J is a polar vector, odd under time reversal, as expected

from its definition in terms of charge times velocity.

We have just seen that the microscopic fields and sources have well-defined

transformation properties under rotations, spatial inversion, and time reversal.

From the derivation of the macroscopic Maxwell equations in Section 6.7 and

the definitions of P, M, etc., it can be seen that E, P, D all transform in the same

way, as do B, M, H. The various transformation properties for electromagnetic

quantities are summarized in the second part of Table 6.1.

To illustrate the usefulness of arguments on the symmetry properties listed in

Table 6.1, we consider the phenomenological structure of a spatially local

constitutive relation specifying the polarization P for an isotropic, linear,

nondissipative medium in a uniform, constant, external magnetic induction B .

The relation is first order in the electric field E, by assumption, but we require an

expansion in powers of B up to second order. Since P is a polar vector, and even

under time reversal, the various terms to be multiplied by scalar coefficients must

transform in the same way. To zeroth order in B
,
only E is available. To first

order in B
,
possible terms involving E linearly are

All of these are permitted by rotational and spatial inversion grounds, but only

those involving odd time derivatives transform properly under time reversal. For

the second order in B , the possibilities are

C dt

VxB ldE = 4ir

C dt C

ExB,

(Bo • Bo)E, (E B )B
(>o,
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Here only the terms with zero or even time derivatives of E satisfy all the

requirements. The most general spatially local expression for the polarization,

correct to second order in the constant magnetic field B , is thus

P = XoE+XiffxBo+X2(Bo-B )E+X3(E-Bo)Bo+- • (6.148)

where the are real coefficients and higher time derivatives of E can occur, odd

for the terms linear in B and even for the zeroth and second powers of B . At

low frequencies, the response of essentially all material systems is via electric

forces. This means that at zero frequency there should be no dependence of P on

Bo, and a more realistic form is

P = XoE + Xl^ x Bo + xKBo ' Bo)^ + X3 ' B )b (6. 149)

where we have exhibited only the lowest order time derivatives for each power

of B . At optical frequencies this equation permits an understanding of the

gyrotropic behavior of waves in an isotropic medium in a constant magnetic

field.*

Another example, the Hall effect, is left to the problems. It, as well as

thermogalvanomagnetic effects and the existence of magnetic structure in solids,

are discussed in Landau and Lifshitz (op. cit).

6.12 On the Question of Magnetic Monopoles

At the present time (1975) there is no experimental evidence for the existence of

magnetic charges or monopoles, but chiefly because of an early, brilliant

theoretical argument of Dirac,t the search for monopoles is renewed whenever a

new energy region is opened up in high energy physics or a new source of matter,

such as rocks from the moon, becomes available. Dirac's argument, outlined

below, is that the mere existence of one magnetic monopole in the universe

would offer an explanation of the discrete nature of electric charge. Since the

quantization of charge is one of the most profound mysteries of the physical

world, Dirac's idea has great appeal. The history of the theoretical ideas and

experimental searches up to 1968 are described in a review article by Amaldi.t

Some references to more recent literature appear at the end of the chapter.

* See Landau and Lifshitz, Electrodynamics of Continuous Media, p. 334, Problem

3, p. 337.

t P. A. M. Dirac, Proc. Roy. Soc. A133, 60 (1931); Phys. Rev. 74, 817 (1948).

t E. Amaldi, "On the Dirac Magnetic Poles," in Old and New Problems in

Elementary Particles, ed., G. Puppi, Academic Press, New York (1968). See also the

briefer reviews by P. G: H. Sandars, Contemporary Physics 7, 419 (1966) and R. H.
Carrigan, Nuovo Cimento 38, 638 (1965).
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There are some necessary preliminaries before examining Dirac's argument.

One question that arises is whether or not it is possible to tell that particles have

magnetic as well as electric charge. Let us suppose that there exist magnetic

charge and current densities, pm and Jm , in addition to the electric densities, pe

and Je . The Maxwell equations would then be

V .D = 47rpe , VxH =i^+^J,
c dt c

(6.150)

V -VxE =-^+— Jm
c dt c

The magnetic densities are assumed to satisfy the same form of the continuity

equation as the electric densities. It appears from these equations that the

existence of magnetic charge and current would have observable electromag-

netic consequences. Consider, however, the following duality transformation:

E = E' cos £+ H' sin £, D = D' cos £+B' sin £6 S
* (6.151)

H = -E' sin £+H' cos £, B = -D' sin £+B' cos £

For a real angle £, such a transformation leaves quadratic forms such as ExH,
(E • D+B • H), and the components of the Maxwell stress tensor Ta(3 invariant. If

the sources are transformed in the same way,

pe = p'
e COS £+ Pm SHI §, Jc = Je COS £+ J'm SHI £

(6.152)
Pm = -p'e sin £+pw cos £, Jm = -JeSin £+J'm cos £

then it is straightforward algebra to show that the generalized Maxwell equations

(6.150) are invariant, that is, the equations for the primed fields (E', D', B', H')

are the same as (6.150) with the primed sources present.

The invariance of the equations of electrodynamics under duality transforma-

tions shows that it is a matter of convention to speak of a particle possessing an

electric charge, but not magnetic charge. The only meaningful question is

whether or not all particles have the same ratio of magnetic to electric charge. If

they do, then we can make a duality transformation, choosing the angle £ so that

pm = 0, Jm = 0. We then have the Maxwell equations as they are usually known.

If, by convention, we choose the electric and magnetic charges of an electron

to be qe = -e, qm = 0, then it is known that for a proton, qe = +e (with the present

limits of error being |qe (electron) + qe(proton)|/e~ 10~20
) and |qw (nucleon)|<

2xl0"24
e.

This extremely small limit on the magnetic charge of a proton or neutron

follows directly from knowing that the average magnetic field at the surface of

the earth is not more than 1 gauss. The conclusion, to a very high degree of

precision, is that the particles of ordinary matter possess only electric charge or,

equivalently, they all have the same ratio of magnetic to electric charge. For
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other, unstable, particles the question of magnetic charge is more open, but no

positive evidence exists.

The transformation properties of pm and Jm under rotations, spatial inversion,

and time reversal are important. From the known behavior of E and B in the

usual formulation we deduce from the second line in (6.150) that

Pm is a pseudoscalar density, odd under time reversal

and Jm is a pseudovector density, even under time reversal.

Since the symmetries of pm under both spatial inversion and time reversal are

opposite to those of pe , it is a necessary consequence of the existence of a particle

with both electric and magnetic charges that space inversion and time reversal

are no longer valid symmetries of the laws of physics. It is a fact, of course, that

these symmetry principles are not exactly valid in the realm of elementary

particle physics, but present evidence is that their violation is extremely small

and associated somehow with the weak interactions. Future developments may
link electromagnetic, weak, and perhaps strong, interactions and utilize particles

carrying magnetic charge as the vehicle for violation of space inversion and time

reversal symmetries. With no evidence for monopoles, this remains speculation.

In spite of the negative evidence for the existence of magnetic monopoles, let

us turn to Dirac's ingenious proposal. By considering the quantum mechanics of

an electron in the presence of a magnetic monopole, he showed that consistency

required the quantization condition,

where e is the electronic charge, h is Planck's constant over 2tt, and g is the

magnetic charge of the monopole. The discrete nature of electric charge thus

follows from the existence of a monopole. The magnitude of e is not determined,

except in terms of the magnetic charge g. The argument can be reversed. With

the known value of the fine structure constant e
2
/hc = ih, we infer the existence

of magnetic monopoles with charges g whose magnetic "fine structure" constant

is

Such monopoles are known as Dirac monopoles. Their coupling strength is

enormous, making their extraction from matter with d.c. magnetic fields and

their subsequent detection very simple in principle. For instance, the energy loss

in matter by a relativistic Dirac monopole is approximately the same as that of a

relativistic heavy nucleus with Z=137n/2. It can presumably be distinguished

from such a nucleus if it is brought to rest because it will not show an increase in

ionization at the end of its range (see Problem 13.8).

ge = n

he 2' n = 0, ±1, ±2, . .

.

(6.153)
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6.13 Discussion of the Dirac Quantization Condition

Semiclassical considerations can illuminate the Dirac quantization condition

(6.153). First, we consider the deflection at large impact parameters of a particle

of charge e and mass m by the field of a stationary magnetic monopole of

magnetic charge g. At sufficiently large impact parameter, the change in the state

of motion of the charged particle can be determined by computing the impulse of

the force, assuming the particle is undeflected. The geometry is shown in Fig.

6.8. The particle is incident parallel to the z axis with an impact parameter b and

a speed v and is acted on by the radially directed magnetic field of the monopole,

B = gr/r
3

,
according to the Lorentz force (6.113). In the approximation that the

particle is undeflected, the only force acting throughout the collision is a y

component,

ev
Fy
— Bx

— eg vb

c (b
2+uY)2.2\3/2 (6.154)

The impulse transmitted by this force is

« egvb f

00

dt _2eg

T2 ~
cb

(6.155)

Since the impulse is in the y direction, the particle is deflected out of the plane of

Fig. 6.8, that is, in the azimuthal direction. Evidently the particle's angular

momentum is changed by the collision, a result that is not surprising in the light

of the noncentral nature of the force. The magnitude of the change in angular

momentum is somewhat surprising, however. There is no z component of L

Fig. 6.8 Charged particle passing a magnetic monopole at large impact parameter.
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initially, but there is finally. The change in Lz is

AL2 = b Apy=^ (6.156)

The change in the z component of angular momentum of the particle is

independent of the impact parameter b and the speed v of the charged particle.

It only depends on the product eg and the velocity of light, and is a universal

value for a charged particle passing a stationary monopole, no matter how far

away. If we assume that any change of angular momentum must occur in integral

multiples of h, we are led immediately to the Dirac quantization condition

(6.153).*

The peculiarly universal character of the change in the angular momentum
(6.156) of a charged particle in passing a magnetic monopole can be understood

by considering the angular momentum contained in the fields of a point electric

charge in the presence of a point magnetic monopole. If the monopole g is at

x = Rm and the charge e is at x = Re , the magnetic and electric fields in all of space

are

The angular momentum Lew is given by the volume integral of xxg, where g is

the electromagnetic momentum density (6.118). Thus

Lem=^ Jxx(ExB) d
3
x (6.158)

It is physically plausible and mathematically verifiable that the total momentum
of the fields (volume integral of g) vanishes. This means that Lcm is independent

of the choice of origin. It is then convenient to choose coordinates so that the

magnetic and electric charges are located symmetrically about the origin on the z

axis, as shown in Fig. 6.9. With a choice of cylindrical coordinates for the

integration, the angular momentum is given explicitly by

j P , f~ , f

2"
A , [p

2
e3 -pz(cos (frd + sin cfreQ]

where the separation of the two charges is 2a. Upon integration Cv^er azimuth,

the x and y components vanish, leaving

Lefn " C3
c L dZ

l [(p
2+z 2+a 2

)

2-4a2
z

2

]

:

*This argument is essentially due to A. S. Goldhaber, Phys. Rev. 140, B1407

213/2

(1965).
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With the introduction of dimensionless variables s = p/a, t=z/a, this becomes

The electromagnetic angular momentum is thus independent of the distance of

separation of the magnetic and electric charges. Its magnitude is a pure number
times eg/c. The double integral can be evaluated in a straightforward manner; its

value is unity. The field angular momentum is therefore*

It is directed along the line from the electric to the magnetic charge and has

magnitude equal to the product of the charges (in Gaussian units) divided by the

velocity of light. If we now think of the collision process of Fig. 6.8 and the total

angular momentum of the system, that is, the sum of the particle's and the

electromagnetic field's, we see that the total angular momentum is conserved.

The change (6.156) in the angular momentum of the particle is just balanced by

the change in the electromagnetic angular momentum (6.159) caused by the

*This result was first stated by J. J. Thomson, Elements of the Mathematical

Theory of Electricity and Magnetism, Cambridge University Press, Section 284 of the

third (1904) and subsequent editions. The argument of Section 284 is exactly the

converse of ours. From the conservation of angular momentum Thomson deduces the

magnetic part e(vxB)/c of the Lorentz force.

(6.159)
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reversal of the direction R. A systematic discussion of the classical and

quantum-mechanical scattering problem, including the electromagnetic angular

momentum, is given by Goldhaber (loc. cit.).

The Thomson result (6.159) was used by Saha* and independently by Wilsont

to derive the Dirac condition (6.153) by semiclassical means. In order to get n/2

instead of n when only the field angular momentum is considered, it is necessary

to postulate half-integral quantization of Lem , a somewhat undesirable

hypothesis for the electromagnetic field.

Finally, we present a simplified discussion of Dirac's original (1931) argument

leading to (6.153). In discussing the quantum mechanics of an electron in the

presence of a magnetic monopole it is desirable to change as little as possible of

the formalism of electromagnetic interactions, and keep, for example, the

interaction Hamiltonian in the standard form,

where <I> and A are the scalar and vector potentials of the external sources. To do

this with a magnetic charge it is necessary to employ an artifice. The magnetic

charge g is imagined to be the end of a line of dipoles or a tightly wound solenoid

that stretches off to infinity, as shown in Fig. 6.10. The monopole and its

Fig. 6.10 Two representations of a magnetic monopole g, one as the termination of a
line of dipoles and the other as the end of a tightly wound solenoid, both "strings"
stretching off to infinity.

Hint = e<I> p • A
mc

2

P

*M. N. Saha, Ind. J. Phys. 10, 141 (1936); Phys. Rev. 75, 1968 (1949).

tH. A. Wilson, Phys. Rev. 75, 309 (1949).
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attached string, as the line of dipoles or solenoid is called, can then be treated

more or less normally within the framework of conventional electromagnetic

interactions where B = Vx A, etc. From (5.55) we see that the elemental vector

potential d\ for a magnetic dipole element dm at x' is

Thus for a string of dipoles or solenoid whose location is given by the string L the

vector potential is

For all points except on the string, this vector potential has a curl that is directed

radially outwards from the end of the string, varies inversely with distance

squared, with total outward flux 47rg, as expected for the B field of monopole g.

On the string itself the vector potential is singular. This singular behavior is

equivalent to an intense field B' inside the solenoid and bringing a return

contribution of flux (-47rg) in along the string to cancel the pole's outward flow.

So far we have just described a long thin solenoid. To exhibit the field of the

monopole alone we write

where B' exists only on the string (inside the solenoid). Dirac now argued that in

order to describe the interaction of the electron with a magnetic monopole,

rather than with a long thin solenoid, it is mandatory that the electron never

"see" the singular field B'. He thus required the electronic wave function to

vanish along the string. This arbitrary postulate has been criticized, but

discussion of such aspects leads us too far afield and is not central to our limited

purpose. Dirac's later work (1948) treats the question of the unobservability of

the strings in detail.

If (6.161) for AL (x) is accepted as the appropriate vector potential for a

monopole and its string L, there remains the problem of the arbitrariness of the

location of the string. Clearly, the physical observables should not depend on

where the string is. We now show that a choice of different string positions is

equivalent to different choices of gauge for the vector potential. Indeed, the

requirements of gauge invariance of the Schrodinger equation and single-

valuedness of the wave function lead to the Dirac quantization condition

(6.153). Consider two different strings L and L', as shown in Fig. 6.11. The

difference of the two vector potentials is given by (6.161) with the integral taken

along the closed path C = L'-L around the area S. By Problem 5.1, p. 205, this

(6.160)

(6.161)

B'monopole = VxA-B'
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8

X

Fig. 6.11 Two different strings L and L' give monopole vector potentials differing by a

gauge transformation involving the gradient of the solid angle nc (x) subtended at the

observation point P by the surface S spanning the contour C = L'-L.

can be written

AL<x) =AL (x) + g Vnc (x) (6.1 62)

where Hc is the solid angle subtended by the contour C at the observation point

x. Comparison with the gauge transformation equations, A-*A' = A+Vx,
<t>^><3>' = <$>-(l/c)(dx/dt), shows that a change in string from L to L' is equivalent

to a gauge transformation, x = g^c
It is well known in quantum mechanics* that a change in the gauge of the

electromagnetic potentials leaves the form of the Schrodinger equation invariant

provided that the wave function is transformed according to

i(,-»<j,'=,jre
te*/*c

where e is the charge of the particle and x is the gauge function. A change in the

location of the string from L to L' must therefore be accompanied by a

modification of the phase of the wave function of the electron,

^tf=tf***»
ac (6.163)

Since Clc changes suddenly by 4tt as the electron crosses the surface S, the wave

* The demonstration is very easy. See, for example, H. A. Kramers, Quantum
Mechanics, North-Holland, Amsterdam, (1957), Dover reprint (1964), Section 62.
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function will be multiple-valued unless we require

|£ • 47r = 27rn, n = 0, ±1, ±2, . .

.

nc

This is the Dirac quantization condition (6.153). It follows from the general

requirements of gauge invariance and single-valuedness of the wave function,

independent of the location of the monopole's string.

The above discussion of magnetic monopoles presents only the most basic

concepts. An extensive literature exists on modifications of the quantization

condition, attempts at a quantum electrodynamics with magnetic monopoles and

electric charges, and other aspects. The interested reader can pursue the subject

through the article by Amaldi (op. cit.) and the references at the end of the

chapter.
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Some experimental searches are described in

Hart et al., Phys. Rev. 184, 1393 (1969),

Fleischer, Price and Woods, Phys. Rev. 184, 1398 (1969),

Alvarez et al., Science 167, 701 (1970).

The mathematical topics in this chapter center around the wave equation. The initial-

value problem in one, two, three, and more dimensions is discussed by
Morse and Feshbach, pp. 843-847,

and, in more mathematical detail, by
Hadamard.

PROBLEMS

6.1 (a) Show that for a system of current-carrying elements in empty space the total

energy in the magnetic field is

where J(x) is the current density.

(b) If the current configuration consists of n circuits carrying currents Iu I2 ,
. .

. , Ir

show that the energy can be expressed as

Exhibit integral expressions for the self-inductances (U) and the mutual inductances

6.2 A two-wire transmission line consists of a pair of nonpermeable parallel wires of

radii a and b separated by a distance d > a+ b. A current flows down one wire and back

by

;=i i=i j>ii=i ,->i

(Mi).
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the other. It is uniformly distributed over the cross section of each wire. Show thatthe

self-inductance per unit length is

c2L=i+2in (S
6.3 A circuit consists of a long thin conducting shell of radius a and a parallel return wire

of radius b on axis inside. If the current is assumed distributed uniformly throughout the

cross section of the wire, calculate the self-inductance per unit length. What is the

self-inductance if the inner conductor is a thin hollow tube?

6.4 Show that the mutual inductance of two circular coaxial loops in a homogeneous
medium of permeability |ul is

M12 =^ Jab[ (|- k)K(k)~ E(k)
]

where

k 2 = lob
(a+ b)

2+d 2

and a, b are the radii of the loops, d is the distance between their centers, and K
and E are the complete elliptic integrals.

Find the limiting value when d«a, b and a— b.

6.5 A transmission line consists of two, parallel perfect conductors of arbitrary, but

constant, cross section. Current flows down one conductor and returns via the other.

Problem 6.5

Show that the product of the inductance per unit length L and the capacitance per

unit length C is

where jli and e are the permeability and the dielectric constant of the medium
surrounding the conductors, while c is the velocity of light in vacuo. (See the discussion

about magnetic fields near perfect conductors at the beginning of Section 5.13.)

6.6 Consider two current loops (as in Fig. 5.3, p. 172) whose orientation in space is

fixed, but whose relative separation can be changed. Let 0! and 2 be origins in the two

loops, fixed relative to each loop, and Xi and x2 be coordinates of elements dl t and d\2 ,

respectively, of the loops referred to the respective origins. Let R be the relative

coordinate of the origins, directed from loop #2 to loop #1.
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(a) Starting from the expression (5.10) for the force between the loops, show that it

can be written

F12 = IJ2VRM12(R)

where M12 is the mutual inductance of the loops,

and it is assumed that the orientation of the loops does not change with R.

(b) Show that the mutual inductance, viewed as a function of R, is a solution of the

Laplace equation,

VR
2M12(R) =

The importance of this result is that the uniqueness of solutions of the Laplace

equation allows the exploitation of the properties of such solutions, provided a

solution can be found for a particular value of R.

6.7 Two identical circular loops of radius a are initially located a distance R apart on a

common axis perpendicular to their planes.

(a) From the expression W, 2 = (1/c) J d
3
x J, • A2 and the result for A* from Problem

5.4(b), show that the mutual inductance of the loops is

Mi2 =
±»rVf-

dk e
-,
RJi

2
(ka)

C Jo

(b) Show that for R>2a, M12 has the expansion,

(fMS>'+¥ft)--]
(c) Use the techniques of Section 3.3 for solutions of the Laplace equation to show
that the mutual inductance for two coplanar identical circular loops of radius a whose
centers are separated by a distance R>2a is

(d) Calculate the forces between the loops in the common axis and coplanar

configurations. Relate the answers to those of Problem 5.10.

6.8 The microscopic current j(x, t) can be written as

j(x, = Zq j

v
j
5(x-x

J (0)

where the point charge q, is located at the point x,(f) and has velocity v, =dx
l

(t)/dt

Just as for the charge density, this current can be broken up into a "free" (conduction)

electron contribution and a bound (molecular) current contribution.

.Following the averaging procedures of Section 6.7 and assuming nonrelativistic

addition of velocities, consider the averaged current, <j(x, t)).

(a) Show that the averaged current can be written in the form of (6.96) with the

definitions (6.92), (6.97), and (6.98).

2rr
2
a
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(b) Show that for a medium whose internal molecular velocities can be neglected, but

which is in bulk motion (i.e., vn = v for all n),

B-H = 4ttM+ (D-E)x-
c

This shows that a moving polarization (P) produces an effective magnetization density.

Hints for (a): Consider quantities like (dpjdt), (dQ'^/dt) and see what they look like.

Also note that

^(x-xn (r)) = -vn -V/(x-x n (0)

6.9 A dielectric sphere of dielectric constant e and radius a is located at the origin.

There is a uniform applied electric field E in the x direction. The sphere rotates with

an angular velocity co about the z axis. Show that there is a magnetic field H = —V4>M ,

where

where r> is the larger of r and a. The motion is nonrelativistic.

You may use the results of Section 4.4 for the dielectric sphere in an applied field.

6.10 Discuss the conservation of energy and linear momentum for a macroscopic system

of sources and electromagnetic fields in a uniform, isotropic medium described by a

dielectric constant € and a permeability /x. Show that in a straightforward calculation

the energy density, Poynting vector, field-momentum density, and Maxwell stress

tensor are given by the Minkowski expressions,

u = ^-(eE 2 + ^H2

)
OTT

S =f(ExH)
4lT

T =-J-[eE
1
E

J

+
J
uLH

1
H

)

-^
1I
(eE

2 + /xH
2

)]
477

What modifications arise if e and /x are functions of position?

6.11 With the same assumptions as in Problem 6.10 discuss the conservation of angular

momentum. Show that the differential and integral forms of the conservation law are

|-( m̂cch+^eU1)+V.M=
of

and

(^ h +^cM)d'x + ^n-Mda =

where the field angular-momentum density is

^e,u= xXg=-^xX(ExH)
477C
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and the flux of angular momentum is described by the tensor

M = f xx

Note: Here we have used the dyadic notation for M„ and^T,,. The double-headed

arrow conveys a fairly obvious meaning. For example, n • M is a vector whose jth

component is £ n,M„- The second-rank M can be written as a third-rank tensor,

M, lk
= T

t
,xk -Tlk xr But in the indices j and k it is antisymmetric and so has only three

independent elements. Including the index i, Mijk therefore has nine components and
can be written as a pseudo tensor of the second rank, as above.

6.12 A transverse plane wave is incident normally in vacuum on a perfectly absorbing

flat screen.

(a) From the law of conservation of linear momentum show that the pressure (called

radiation pressure) exerted on the screen is equal to the field energy per unit volume in

the wave.

(b) In the neighborhood of the earth the flux of electromagnetic energy from the sun is

approximately 0.14 watt/cm2
. If an interplanetary "sailplane" had a sail of mass

10" 4 gm/cm2
of area and negligible other weight, what would be its maximum

acceleration in centimeters per second squared due to the solar radiation pressure?

How does this compare with the acceleration due to the solar "wind" (corpuscular

radiation)?

6.13 Consider the definition of the admittance Y=G—iB of a two-terminal linear

passive network in terms of field quantities by means of the complex Poynting theorem

of Section 6.10.

(a) By considering the complex conjugate of (6.134) obtain general expressions for

the conductance G and susceptance B for the general case including radiation loss.

(b) Show that at low frequencies the expressions equivalent to (6. 139) and (6. 140) are

6.14 A parallel plate capacitor is formed of two flat rectangular perfectly conducting

sheets of dimensions a and b separated by a distance d small compared to a or b.

Current is fed in and taken out uniformly along the adjacent edges of length b. With
the input current and voltage defined at this end of the capacitor, calculate the input

impedance or admittance using the field concepts of Section 6.10.

(a) Calculate the electric and magnetic fields in the capacitor correct to second order

in powers of the frequency, but neglecting fringing fields.

(b) Show that the expansion of the reactance (6.140) in powers of the frequency to an

appropriate order is the same as that obtained for a lumped circuit consisting of a

capacitance C=ablA-nd in series with an inductance L = 4irad/3bc
2

, where c is the

velocity of light.

6.15 An ideal circular parallel plate capacitor of radius a and plate separation d«a is

connected to a current source by axial leads, as shown in the sketch. The current in the

wire is I(t)= I cos(Dt.
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Problem 6.15

(a) Calculate the electric and magnetic fields between the plates to second order in

powers of the frequency (or wave number), neglecting the effects of fringing fields.

(b) Calculate the volume integrals of w£ and wm that enter the definition of the

reactance X, (6.140), to second order in w. Show that in terms of the input current I„

defined by I, = — iwQ, where Q is the total charge on one plate, these energies are

d
3
x

:

2 V \2c
2
)8c

2
V 12c

2

(c) Show that the equivalent series circuit has C^a 2
/4d, L^d/2c 2

, and that an

estimate for the resonant frequency of the system is o> res
— 2v^2 c/a. Compare with the

first root of J (x).

6.16 If a conductor or semiconductor has current flowing in it because of an applied

electric field, and a transverse magnetic field is applied, there develops a component of

electric field in the direction orthogonal to both the applied electric field (direction of

current flow) and the magnetic field, resulting in a voltage difference between the sides

of the conductor. This phenomenon is known as the Hall effect.

(a) Use the known properties of electromagnetic fields under rotations and spatial

reflections and the assumption of Taylor series expansions around zero magnetic field

strength to show that for an isotropic medium the generalization of Ohm's law, correct

to second order in the magnetic field, must have the form,

E = p J+R(HxJ) + (3 1H2
J+j32(H • J)H

where p is the resistivity in the absence of the magnetic field and R is called the Hall

coefficient.

(b) What about the requirements of time-reversal invariance?

6.17 (a) Calculate the force in dynes acting on a Dirac monopole of the minimum
magnetic charge located a distance 0.5 angstroms from and in the median plane of a

magnetic dipole with dipole moment equal to one nuclear magneton (eh/2m
pc).

(b) Compare the force in (a) with atomic forces such as the direct electrostatic force

between charges (at the same separation), the spin-orbit force, the hyperfine interac-

tion. Comment on the question of binding of magnetic monopoles to nuclei with

magnetic moments. Assume that the monopole mass is at least that of a proton.

Ref: D. Sivers, Phys. Rev. D2, 2048 (1970).
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6.18 Consider the Dirac expression

A/ , f
d\'x(x-x'

for the vector potential of a magnetic monopole and its associated string L. Suppose

for definiteness that the monopole is located at the origin and the string along the

negative z axis.

(a) Calculate A explicitly and show that in spherical coordinates it has components

Ar
= 0, Ae

= g(i-cos e)

' r sin

0, and

(g/r) tan (0/2)

(b) Verify that B =VxA is the Coulomb-like field of a point charge, except perhaps at

= 77.

(c) With the B determined in part (b), evaluate the total magnetic flux passing through

the circular loop of radius R sin shown in the figure below. Consider 0<tt/2 and
0>tt/2 separately, but always calculate the upwards flux.

(d) From § A • d\ around the loop, determine the total magnetic flux through the loop.

Compare the result with that found in part (c). Show that they are equal for O<0<tt/2,
but have a constant difference for 7j72<0<tt. Interpret this difference.

a

-> y

Problem 6.18

6.19 An example of the preservation of causality and finite speed of propagation in spite

of the use of the Coulomb gauge is afforded by a dipole source that is flashed on and
off at t= 0. The effective charge and current densities are

p(x, t) = 8(x)8(y)8'(z)8(t)

Jz (x, t) = -8(x)8(y)8(z)8'(t)

where a prime means differentiation with respect to the argument. This dipole is of

unit strength and it points in the negative z-direction.
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(a) Show that the instantaneous Coulomb potential (6.45) is

<D(x, t) = -8(t)f3

(b) Show that the transverse current J, is

J t (x, f) = - 5'(r) [!€38(x)-^+^ n(c3 • n)
j

where the factor of 2/ 3 multiplying the delta function comes from treating the gradient of

z/r
3
according to Eq. (4.20).

(c) Show that the electric and magnetic fields are causal and that the electric field

components are

Ex (x, 0=^[-8"('— cr)+2 5'( r
- ct)_2 8(r-ct)

j
sin cos cos

<f>

E
y

is the same as Ex , with cos </> replaced by sin <l>,
and

E,(x, ()^[sin' f>8"(r-ct)+(3 cos
! 9-1) •

(^TzcO.^ZfO)]

Hint: While the answer in (b) displays the transverse current explicitly, the less explicit

form,

j,(x,o=-8'( t)[cj8(x) +5LvA(i)]

can be used with Eq. (6.69) to calculate the vector potential and the fields for part (c).

An alternative method is to use the Fourier transforms in time of J t and A, the Green

function (6.62) and its spherical wave expansion from Chapter 16.



7
Plane Electromagnetic
Waves and Wave
Propagation

This chapter is concerned with plane waves in unbounded, or perhaps semiinfi-

nite, media. The basic properties of plane electromagnetic waves in nonconduct-

ing media—their transverse nature, linear and circular polarization states—are

treated first. Then the important Fresnel formulas for reflection and refraction at

a plane interface are derived and applied. This is followed by a survey of the

high-frequency dispersion properties of dielectrics, conductors, and plasmas.

The richness of nature is illustrated with a panoramic view (Fig. 7.9) of the index

of refraction and absorption coefficient of liquid water over 20 decades of

frequency. Then comes a simplified discussion of propagation in the ionosphere,

and of waves in a conducting or dissipative medium. The ideas of phase and

group velocities and the spreading of a pulse or wave packet as it propagates in a

dispersive medium come next. The important subject of causality and its

consequences for the dispersive properties of a medium are discussed in some
detail, including the Kramers-Kronig dispersion relations and various sum
rules derived from them. The chapter concludes with a treatment of the classic

problem of the arrival of a signal in a dispersive medium, first discussed by

Sommerfeld and Brillouin (1914) but only recently subjected to experimental

test.

7.1 Plane Waves in a Nonconducting Medium

A basic feature of the Maxwell equations for the electromagnetic field is the

existence of traveling wave solutions which represent the transport of energy from

one point to another. The simplest and most fundamental electromagnetic waves

are transverse, plane waves. We proceed to see how such solutions can be

obtained in simple nonconducting media described by spatially constant permea-

bility and susceptibility. In the absence of sources, the Maxwell equations in an

269
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infinite medium are:

Sect. 7.1

V-E = VxE+-^ =
c dt

V B = VxB-^- =
c dt

(7.1)

where the medium is characterized by the parameters jul, e, assumed for the

moment to be independent of frequency. By combining the two curl equations

and making use of the vanishing divergences, we find easily that each cartesian

component of E and B satisfies the wave equation:

where

»—jf= (7.3)
VfX€

is a constant of the dimensions of velocity characteristic of the medium. The
wave equation (7.2) has the well-known plane-wave solutions:

u = e
ikx- i" t

(7.4)

where the frequency co and the magnitude of the wave vector k are related by

(i) , CO

k=-=V^i- (7.5)
v c

If we consider waves propagating in only one direction, say, the x direction, the

fundamental solution is

u(x, r) = Aeikx-to,+Be-|kx-tot
(7.6)

Using (7.5), this can be written

uk (x, t) = Ae ik(x- vt)+Be- ik(x+vt)

If v is not a function of k (i.e., a nondispersive medium, with y^e independent of

frequency), we know by the Fourier integral theorem (2.44) and (2.45) that by

linear superposition we can construct from uk (x, t) a general solution of the form:

u(x, = /0c-uf) + g(x+ uf) (7.7)

where f(z) and g(z) are arbitrary functions. It is easy to verify directly that this is

a solution of the wave equation (7.2). Equation (7.7) represents waves traveling

to the right and to the left with velocities of propagation equal to u, which is

called the phase velocity of the wave.

If the medium is dispersive, that is, if the product jme is a function of frequency,

some parts of the above discussion need modification. By making a Fourier
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integral expansion in o> before combining the equations in (7.1), one is led to the

Helmholtz wave equation,

V2
u + jm€p-u = (7.8)

Thus k is still given by (7.5). This means that for each frequency component the

plane-wave solutions are (7.4). Only when we reconstitute the wave as a function

of x and t, does the dispersion produce modifications. Equation (7.7) no longer

holds. The wave changes shape as it propagates (see Sections 7.8, 7.9, and 7.11).

The basic plane wave (7.4) and (7.5) satisfies the scalar-wave equation (7.8).

But we still must consider the vector nature of the electromagnetic fields and the

requirement of satisfying the Maxwell equations. With the convention that the

physical electric and magnetic fields are obtained by taking the real parts of

complex quantities, we assume that the plane-wave fields are of the form,

E(x, t) = £e ikn'*- iolt

(7.9)
B(x, t) = &e lkn x- ltot

where $, and n are vectors that are constant in time and space. Each
component of E and B satisfies the wave equation (7.8) provided

fc n • n = jLte-p-

To recover (7.5) it is necessary to assume that n is a vector such that n • n= 1.

With the wave equation satisfied, there only remains the fixing of the vectorial

properties so that (7.1) are valid. The divergence equations in (7.1) demand that

n-<f=0 and n-^ = (7.10)

This means that E and B are both perpendicular to the direction of propagation

n. Such a wave is called a transverse wave. The curl equations provide a further

restriction, namely

® = 4^kvi*$ (7.11)

If n is real, (7.11) implies that $ and 31 have the same phase. It is then useful

to introduce a set of real mutually orthogonal unit vectors (ci, €2 ,
n), as shown in

Fig. 7.1. In terms of these unit vectors the field strengths & and are

<T = €iE , ^ = €2\/jIeEo (7.12)

or

^=€2E , & = -*
1>fceEl> (7.12')

where E and Eo are constants, possibly complex. The wave described by (7.9)

and (7.12) or (7.12') is a transverse wave propagating in the direction n. It



y

Fig. 7.1 Propagation vector k and two orthogonal polarization vectors d and €2 .

represents a time-averaged flux of energy given by the real part of the complex

Poynting vector:

S =i-^ExH*
2 4tt

The energy flow (energy per unit area per unit time) is

The time-averaged density u is correspondingly

u =-j-(eE-E*+-B.B*)
167T\ |UL /

This gives

u =^|E»| 2
(7.14)

The ratio of the magnitude of (7.13) to (7.14) shows that the speed of energy

flow is v = c/yfjjL€, as expected from (7.3).

In the discussion below (7.11) we assumed that n was a real unit vector. This

does not yield the most general possible solution for a plane wave. Suppose that

n is complex, and written as n = nR + in r . Then the exponential in (7.9) becomes

e
«kn-x-io>t _ g-kn^x

e
iknR -x-io>t

The wave possesses exponential growth or decay in some directions. It is then

called an inhomogeneous plane wave. The surfaces of constant amplitude and

constant phase are still planes, but they are no longer parallel. The relations

(7.10) and (7.11) still hold. The requirement B-n=l has real and imaginary
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parts,*

nR
2
-Hr

2 =l
(7.15)

nR • n, =

The second of these conditions shows that nR and ni are orthogonal. The

coordinate axes can be oriented so that nR is in the x direction and ni in the y

direction. The first equation in (7.15) can be satisfied generally by writing

where 6 is a real constant and d and e2 are real unit vectors in the x and y

directions (not to be confused with Ci and e2 !). The most general vector $
satisfying n • $ = is then

where A and A' are complex constants. For ¥ 0, $ in general has components

in the direction(s) of n. It is easily verified that for = 0, the solutions (7.12)

and (7.12') are recovered.

We encounter simple examples of inhomogeneous plane waves in the discus-

sion of total internal reflection and refraction in a conducting medium later in

the chapter, although in the latter case the inhomogeneous nature arises from a

complex wave number, not a complex unit vector n. Inhomogeneous plane

waves form a general basis for the treatment of boundary-value problems for

waves and are especially useful in the solution of diffraction in two dimensions.

The interested reader can refer to the book by Clemmow for an extensive

treatment with examples.

7.2 Linear and Circular Polarization, Stokes Parameters

The plane wave (7.9) and (7.12) is a wave with its electric field vector always in

the direction €i. Such a wave is said to be linearly polarized with polarization

vector €i. Evidently the wave described by (7.12') is linearly polarized with

polarization vector e2 and is linearly independent of the first. Thus the two
waves,

n = e x cosh + ie2 sinh (7.16)

S = (ie x sinh 0-e2 cosh 0)A + e3A' (7.17)

Ei = €iEie'

E2 = €2E2 e'

with > (7.18)

kxE,

k
/-1.2

* Note that if n is complex it does not have unit magnitude, that is, n • n = 1 does
not imply |n|

2 = 1.
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can be combined to give the most general homogeneous plane wave propagating

in the direction k=kn,

E(x, O^iEi+e^y"^ (7.19)

The amplitudes Ei and E2 are complex numbers in order to allow the possibility

of a phase difference between waves of different polarization.

If Ei and E2 have the same phase, (7.19) represents a linearly polarized wave,

with its polarization vector making an angle = tan
-1
(E2/E 1 ) with €i and a

magnitude E = VEi 2+E2
2

, as shown in Fig. 7.2.

If Ei and E2 have different phases, the wave (7.19) is elliptically polarized. To
understand what this means let us consider the simplest case, circular polariz-

ation. Then E l and E2 have the same magnitude, but differ in phase by 90°. The
wave (7.19) becomes:

E(x, = E (€i ± i€2)e
ik -x-^

(7.20)

with E the common real amplitude. We imagine axes chosen so that the wave is

propagating in the positive z direction, while d and e2 are in the x and y

directions, respectively. Then the components of the actual electric field,

obtained by taking the real part of (7.20), are

Ex (x, = Eo cos (kz-o)t)

Ey (x, t) = zfE sin (kz-(x)t)

At a fixed point in space, the fields (7.21) are such that the electric vector is

constant in magnitude, but sweeps around in a circle at a frequency co, as shown

in Fig. 7.3. For the upper sign (€i + ie2), the rotation is counter-clockwise when
the observer is facing into the oncoming wave. This wave is called left circularly

polarized in optics. In the terminology of modern physics, however, such a wave

is said to have positive helicity. The latter description seems more appropriate

because such a wave has a positive projection of angular momentum on the z

axis (see Problem 7.21). For the lower sign (€i-ie2), the rotation of E is

clockwise when looking into the wave; the wave is right circularly polarized

(optics); it has negative helicity.

The two circularly polarized waves (7.20) form an equally acceptable set of

basic fields for description of a general state of polarization. We introduce the

ei Ei

Fig. 7.2 Electric field of a linearly polarized wave.

(7.21)
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y

E(x,t) = E (*i + i<2)e
ik ' x - io3t

Fig. 7.3 Electric field of a circularly polarized wave.

complex orthogonal unit vectors:

€* = J|(€i±i€2)

with properties

€? -€3 = I

€i. €± =i

)

Then a general representation, equivalent to (7.19), is

E(x, ^) = (E+€+ + E-€-)e
ik •x- iw,

(7.24)

where E+ and E_ are complex amplitudes. If E+ and E_ have different

magnitudes, but the same phase, (7.24) represents an elliptically polarized wave

with principal axes of the ellipse in the directions of d and e2 . The ratio of

semimajor to semiminor axis is |(l + r)/(l — r)|, where E-/E+ = r. If the amplitudes

have a phase difference between them, E-/E+ = re"\ then it is easy to show that

the ellipse traced out by the E vector has its axes rotated by an angle (a/2).

Figure 7.4 shows the general case of elliptical polarization and the ellipses traced

out by both E and B at a given point in space.

For r=±l we get back a linearly polarized wave.

The polarization content of a plane electromagnetic wave is known if it can be

written in the form of either (7.19) or (7.24) with known coefficients (Ei, E2) or

(E+, E_). In practice, the converse problem arises. Given that the wave is of the

form (7.9), how can we determine from observations on the beam the state of

polarization in all its particulars? A useful vehicle for this are the four Stokes

parameters, proposed by G. G. Stokes in 1852. These parameters are quadratic

in the field strength and can be determined through intensity measurements

only, in conjunction with a linear polarizer and a quarter-wave plate or

(7.22)

(7.23)
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Fig. 7.4 Electric field and magnetic induction for an ellipticaliy polarized wave.

equivalents. Their measurement determines completely the state of polarization

of the wave.

The Stokes parameters can be motivated by observing that for a wave

propagating in the z direction, the scalar products,

€i-E, €2 -E, eJ-E, €?-E (7.25)

are the amplitudes of radiation, respectively, with linear polarization in the x

direction, linear polarization in the y direction, positive helicity and negative

helicity. Note that for circular polarization the complex conjugate of the

appropriate polarization vector must be used, in accord with (7.23). The squares

of these amplitudes give a measure of the intensity of each type of polarization.

Phase information is also needed; this is obtained from cross products. We give

definitions of the Stokes parameters with respect to both the linear polarization

and the circular polarization bases, in terms of the projected amplitudes (7.25)

and also explicitly in terms of the magnitudes and relative phases of the

components. For the latter purpose we define each of the scalar coefficients in

(7.19) and (7.24) as a magnitude times a phase factor:

E l = a 1 e
i8

\ E2 = a2e
i&2

E+ = a+ e
l8

% E- = a-e
lS~

In terms of the linear polarization basis (ci, €2), the Stokes parameters are*

So = |€ 1 -E|
2
+|€2 .E|

2 =a 1

2+a2
2

s l = \* 1 -E\
2
-\€2 -E\

2 =a 1

2-a2
2

s2 = 2 Re [(€i • E)*(e2 • E)] = 2aia2 cos (82 -8i)

s3 = 2 Im [(ci • E)*(c2 • E)] = 2aia2 sin (52- 8i)

(7.27)

*The notation for the Stokes parameters is unfortunately not uniform. Stokes

himself used (A, B, C, D); other labelings are (I, Q, U, V) and (I, M, C, S). Our notation

is that of Born and Wolf.
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If the circular polarization basis (e+, €_) is used instead, the definitions read

So = |€*.E|
2
+|€*-E|

2 = a
2
+ + a

2
_

si = 2 Re [(€? • E)*(e* • E)] = 2a+ a_ cos (S_-8+ )

• ^ * (7.28)
s2 = 2 Im [(et E)*(e* • E)] = 2a+a_ sin (8_-5+ )

S3 = |eJ-E|
2 -|€

3,

:-E|
2 = ai-a 2

The expressions (7.27) and (7.28) show an interesting rearrangement of roles of

the Stokes parameters with respect to the two bases. The parameter s measures

the relative intensity of the wave in either case. The parameter Si gives the

preponderance of x-linear polarization over y-linear polarization, while s2 and s3

in the linear basis give phase information. We see from (7.28) that s3 has the

interpretation of the difference in relative intensity of positive and negative

helicity, while in this basis Si and s2 concern the phases. The four Stokes

parameters are not independent since they depend on only three quantities, ai,

a2 , and 82— 8i. They satisfy the relation

So
2
=S!

2
+S2

2+s3

2
(7.29)

Discussion of the operational steps needed to measure the Stokes parameters

and so determine the state of polarization of a plane wave would take us too far

afield. We refer the reader to Section 13.13 of Stone for details. Also neglected,

except for the barest mention, is the important problem of quasi-monochromatic

radiation. Beams of radiation, even if monochromatic enough for the purposes

at hand, actually consist of a superposition of finite wave trains. By Fourier's

theorem they thus contain a range of frequencies and are not completely

monochromatic. One way of viewing this is to say that the magnitudes and

phases (ah 8i) in (7.26) vary slowly in time, slowly, that is, when compared to the

frequency co. The observable Stokes parameters then become averages over a

relatively long time interval, and are written as

s2 = 2(aia2 cos (82- 8i)>

for example, where the brackets indicate the macroscopic time average. One
consequence of the averaging process is that the Stokes parameters for a

quasi-monochromatic beam satisfy an inequality,

S
2
>Si

2+S2
2+ S3

2

rather than the equality, (7.29). "Natural light," even if monochromatic to a high

degree, has Si = s2 = s3 = 0. Further discussion of quasi-monochromatic light and

partial coherence can be found in Born and Wolf, Chapter 10.

An astrophysical example of the use of Stokes parameters to describe the state

of polarization is afforded by the study of optical and radio-frequency radiation

from the pulsar in the Crab nebula. The optical light shows some small amount
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of linear polarization,* while the radio emission at a>— 2.5x 10
9
sec

-1
has a high

degree of linear polarization. t At neither frequency is there evidence for circular

polarization. Information of this type obviously helps to elucidate the mechan-

ism of radiation from these fascinating objects.

7.3 Reflection and Refraction of Electromagnetic Waves at a Plane

Interface between Dielectrics

The reflection and refraction of light at a plane surface between two media of

different dielectric properties are familiar phenomena. The various aspects of

the phenomena divide themselves into two classes.

(1) Kinematic properties:

(a) Angle of reflection equals angle of incidence.

refraction, while n, n' are the corresponding indices of refraction.

(2) Dynamic properties:

(a) Intensities of reflected and refracted radiation.

(b) Phase changes and polarization.

The kinematic properties follow immediately from the wave nature of the

phenomena and the fact that there are boundary conditions to be satisfied. But

they do not depend on the detailed nature of the waves or the boundary

conditions. On the other hand, the dynamic properties depend entirely on the

specific nature of electromagnetic fields and their boundary conditions.

The coordinate system and symbols appropriate to the problem are shown in

Fig. 7.5. The media below and above the plane z = have permeabilities and

dielectric constants /x, € and u/, e', respectively. The indices of refraction,

defined through (7.5) as ck/o), are n = \fjjLe and n' = V/xV. A plane wave with

wave vector k and frequency o> is incident from medium /ll, €. The refracted and

reflected waves have wave vectors k' and k", respectively, and n is a unit normal

directed from medium /x, e into medium u,', e'.

According to (7.18), the three waves are

(b) Snell's law:
sin i=— , where i, r are the angles of incidence and
sin r

INCIDENT

(7.30)

* E. J. Wampler, J. D. Scargle, and J. S. Miller, Astrophys. J. Lett. 157 LI (1969).

t D. A. Graham, A. G. Lyne, and F. G. Smith, Nature 225, 526 (7 February

1970), D. B. Campbell, C. Heiles, and J. M. Rankin, Nature 225, 527 (7 February 1970).
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z

X

Fig. 7.5 Incident wave k strikes plane interface between different media, giving rise to a

reflected wave k" and a refracted wave k\

REFRACTED

, k'xE? (7 -31 )

REFLECTED

E"=Eoe ik""" ia,t

,— k'xE
B" =V^—

^

The wave numbers have the magnitudes

II
c

The existence of boundary conditions at z = 0, which boundary conditions

must be satisfied at all points on the plane at all times, implies that the spatial

(and time) variation of all fields must be the same at z = 0. Consequently, we
must have the phase factors all equal at z = 0,

(k - x) z=0 = (k' • x)2=0 = (k" - x)2=0 (7.34)

independent of the nature of the boundary conditions. Equation (7.34) contains

the kinematic aspects of reflection and refraction. We see immediately that all

three wave vectors must lie in a plane. Furthermore, in the notation of Fig. 7.5,

k sin i = k' sin r= k" sin r' (7.35)
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Since k"=k, we find i = r'; the angle of incidence equals the angle of reflection.

Snell's law is

The dynamic properties are contained in the boundary conditions—normal

components of D and B are continuous; tangential components of E and H are

continuous. In terms of fields (7.30)-(7.32) these boundary conditions at z =

are:

In applying these boundary conditions it is convenient to consider two

separate situations, one in which the incident plane wave is linearly polarized

with its polarization vector perpendicular to the plane of incidence (the plane

defined by k and n), and the other in which the polarization vector is parallel to

the plane of incidence. The general case of arbitrary elliptic polarization can be

obtained by appropriate linear combinations of the two results, following the

methods of Section 7.2.

We first consider the electric field perpendicular to the plane of incidence, as

shown in Fig. 7.6. All the electric fields are shown directed away from the

viewer. The orientations of the B vectors are chosen to give a positive flow of

energy in the direction of the wave vectors. Since the electric fields are all

parallel to the surface, the first boundary condition in (7.37) yields nothing. The

(7.36)

[€(Eo+ ES)-e'Ey -11 = 0^

[kxEo+k"xEg-k'xEa -n =

(Eo+ES-Eyxn = " (7.37)

B

k"

k'

Fig. 7.6 Reflection and refraction with polarization perpendicular to the plane of

incidence.
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Fig. 7.7 Reflection and refraction with polarization parallel to the plane of incidence,

third and fourth equations in (7.37) give

Eo+Eo-Eo = 0]

[ (7.38)

Eo cos r=0\
ti y fx

6
(Eq-Eq) cos i-

\

E cosr =

while the second, using Snell's law, duplicates the third. The relative amplitudes

of the refracted and reflected waves can be found from (7.38). These are:

E PERPENDICULAR TO PLANE OF INCIDENCE

Eo 2n cos i

Eo
n cos i+- y/n

,2-n2
sin

2
i

_.„ n cos i ——, Vn'
2-n 2

sin
2

i

n cos i+-^7 yfn' n
2
sin

2
i

(7.39)

The square root in these expressions is n' cos r, but Snell's law has been used to

express it in terms of the angle of incidence. For optical frequencies it is usually

permitted to put h/ia'=1. Equations (7.39) and (7.41) and (7.42) below, are

most often employed in optical contexts with real n and n', but they are also

valid for complex dielectric constants.

If the electric field is parallel to the plane of incidence, as shown in Fig. 7.7,

the boundary conditions involved are normal D, tangential E, and tangential H
[the first, third, and fourth equations in (7.37)]. The tangential E and H
continuous demand that

cos i (Eo - Eo) - cos r E =

(7.40)
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Normal D continuous, plus SnelPs law, merely duplicates the second of these

equations. The relative amplitudes of refracted and reflected fields are therefore

E PARALLEL TO PLANE OF INCIDENCE

2nn' cos i

~ /2 • . I i2

2

• 2'— n cos i + nv n - n sin i

,_.„ —, n'
2
cos i - nVn'

2-n2
sin

2

Bo ti< >2 •
, r~72 2 r_ 2~-

-^7 n cos i + nvn — n sin i

For normal incidence (i = 0), both (7.39) and (7.41) reduce to

(7.41)

Eo

Eo

2n

JiaL + 1
n'+n

n'-n

+ 1
n'+n

(7.42)

where the results on the right hold for jut' = /x. For the reflected wave the sign

convention is that for polarization parallel to the plane of incidence. This means

that if n'>n there is a phase reversal for the reflected wave.

7.4 Polarization by Reflection and Total Internal Reflection

Two aspects of the dynamical relations on reflection and refraction are worthy of

mention. The first is that for polarization parallel to the plane of incidence there

is an angle of incidence, called Brewster's angle, for which there is no reflected

wave. With /x'= fx for simplicity, we find that the amplitude of the reflected wave
in (7.41) vanishes when the angle of incidence is equal to Brewster's angle,

iB = tan-
1

(7.43)

For a typical ratio (n'/n)= 1.5, iB — 56°. If a plane wave of mixed polarization is

incident on a plane interface at the Brewster angle, the reflected radiation is

completely plane polarized with polarization vector perpendicular to the plane of

incidence. This behavior can be utilized to produce beams of plane-polarized

light, but is not as efficient as other means employing anisotropic properties of

some dielectric media. Even if the unpolarized wave is reflected at angles other
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than the Brewster angle, there is a tendency for the reflected wave to be

predominantly polarized perpendicular to the plane of incidence. The success of

dark glasses which selectively transmit only one direction of polarization

depends on this fact. In the domain of radiofrequencies, receiving antennas can

be so oriented as to discriminate against surface-reflected waves (and also waves

reflected from the ionosphere) in favor of the directly transmitted wave.

The second phenomenon is called total internal reflection. The word internal

implies that the incident and reflected waves are in a medium of larger index of

refraction than the refracted wave (n> n'). Snell's law (7.36) shows that, if n>n',

then r>i. Consequently, r=ir/2 when i = i , where

in-
(£) (7.44)to = sin

For waves incident at i = io, the refracted wave is propagated parallel to the

surface. There can be no energy flow across the surface. Hence at that angle of

incidence there must be total reflection. What happens if i>i ? To answer this

we first note that, for i>i , sin r> 1. This means that r is a complex angle with a

purely imaginary cosine.

cosr= iJ7^AY~[ (7 .45 )
V Vsin to/

The meaning of these complex quantities becomes clear when we consider the

propagation factor for the refracted wave:

gik'-x _ g«k'(x sin r+z cos r) _ ^-k'[(sin i/sin i )
2-l] 1 '2Zgik'(sin i/sin iQ)x ^-j

This shows that, for i>i , the refracted wave is propagated only parallel to the

surface and is attenuated exponentially beyond the interface. The attenuation

occurs within a very few wavelengths of the boundary, except for i — i .

Even though fields exist on the other side of the surface there is no energy flow

through the surface. Hence total internal reflection occurs for i>i . The lack of

energy flow can be verified by calculating the time-averaged normal component
of the Poynting vector just inside the surface:

S • n =~- Re [n • (E' x H'*)] (7.47)
OTT

With H'=-r-(k,

xE'), we find
fX CO

S-n =g^? Re[(n-k')|Ei|
2

] (7.48)

But n • k'= k' cos r is purely imaginary, so that S • n = 0.

The purely imaginary value (7.45) of cos r, times n', is the appropriate quan-

tity to replace the square root appearing in the Fresnel formula, (7.39) and
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(7.41). Inspection shows that the ratios E"/E are now of modulus unity, as is

expected physically for total internal reflection. The reflected wave does, how-

ever, suffer a phase change that is different for the two kinds of incidence and

depends on the angle of incidence and on (n/n'). These phase changes can be

utilized to convert one kind of polarization into another. Fresnel's rhombus is

one such device, whereby linearly polarized light with equal amplitudes in the

plane of incidence and perpendicular to it is converted by two successive internal

reflections, each involving a relative phase change of 45°, into circularly

polarized light (see Born and Wolf, p. 50).

The phenomenon of total internal reflection is exploited in many applications

where it is required to transmit light without loss in intensity. In nuclear and

particle physics plastic "light pipes" are used to carry light emitted from a

scintillation crystal because of the passage of an ionizing particle to a photomul-

tiplier tube, where it is converted into a useful electric signal. The photomulti-

plier must often be some distance away from the scintillation crystal because of

space limitations or magnetic fields which disturb its performance. If the light

pipe is large in cross section compared to a wavelength of the radiation involved,

the considerations presented here for a plane interface have approximate

validity. When the dielectric medium has cross-sectional dimensions of the order

of a wavelength, however, the precise geometry must be taken into account.

Then the propagation is that of a dielectric wave guide (see Section 8.10).

7.5 Frequency Dispersion Characteristics of Dielectrics, Conductors, and

Plasmas

In Section 7.1 the permeability and susceptibility were assumed independent of

frequency. This absence of dispersion had as its consequence the propagation of

wave trains undistorted, as implied by the general solution (7.8). In reality all

media show some dispersion. Only over a limited range of frequencies, or in

vacuum, can the velocity of propagation be treated as constant in frequency. Of
course, all the results of the previous sections that involve a single frequency

component are valid in the presence of dispersion. The values of /ul and e need

only be interpreted as those appropriate to the frequency being considered.

Where a superposition of a range of frequencies occurs, however, new effects

arise as a result of the frequency dependence of e and /x. In order to examine

some of these consequences we need to develop at least a simple model of

dispersion.

(a) Simple Model for e(a>)

Almost all of the physics of dispersion is illustrated by an extension to

time-varying fields of the classical model described in Section 4.6. For simplicity

we will neglect the difference between the applied electric field and the local
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field. The model is therefore appropriate only for substances of relatively low

density. [This deficiency can be removed by use of (4.69), if desired.] The

permeability will be taken equal to unity. The equation of motion for an

electron of charge-e bound by a harmonic force (4.71) and acted on by an electric

field E(x, t) is

m[x+yx+a> 2
x] = -eE(x, (7.49)

where 7 measures the phenomenological damping force. Magnetic force effects

are neglected in (7.49). We make the additional approximation that the

amplitude of oscillation is small enough that the electric field can be evaluated at

the average position of the electron. If the field varies harmonically in time with

frequency oj as e"
ia
", the dipole moment contributed by one electron is

p=-ex = ^(coo2
-a>

2
-i(Dyy

1E (7.50)

If we suppose that there are N molecules per unit volume with Z electrons per

molecule, and that, instead of a single binding frequency for all, there are
/,

electrons per molecule with binding frequency <Oj and damping constant y„ then

the dielectric constant, e=l + 47TXe, is given by

€(<o) =1+1^ £ ffa'S-UHfl-' (7.51)

where the oscillator strengths f, satisfy the sum rule,

1f, = Z (7.52)
J

With suitable quantum-mechanical definitions of
ft, y„ and a),, (7.51) is an

accurate description of the atomic contribution to the dielectric constant.

(b) Anomolous Dispersion and Resonant Absorption

The damping constants jj are generally small compared with the binding or

resonant frequencies o>j. This means that e((o) is approximately real for most

frequencies. The factor (a>,
2— co

2

)

-1
is positive for a><a), and negative for a>>a>,.

Thus, at low frequencies, below the smallest to,-, all the terms in the sum in (7.51)

contribute with the same positive sign and e(co) is greater than unity. As
successive co, values are passed, more and more negative terms occur in the sum,

until finally the whole sum is negative and e(<o) is less than one. In the

neighborhood of any a)h of course, there is rather violent behavior. The real part

of the denominator in (7.51) vanishes for that term at w = o)j and the term is large

and purely imaginary. The general features of the real and imaginary parts of

e(cu) around two successive resonant frequencies are shown in Fig. 7.8. Normal
dispersion is associated with an increase in Re e(o>) with a>, anomalous
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CO

Fig. 7.8 Real and imaginary parts of the dielectric constant e(a>) in the neighborhood of

two resonances. The region of anomalous dispersion is also the frequency interval where
absorption occurs.

dispersion with the reverse. Normal dispersion is seen to occur everywhere

except in the neighborhood of a resonant frequency. And only where there is

anomalous dispersion is the imaginary part of e appreciable. Since a positive

imaginary part to e represents dissipation of energy from the electromagnetic

wave into the medium, the regions where Im e is large are called regions of

resonant absorption*

The attenuation of a plane wave is most directly expressed in terms of the real

and imaginary parts of the wave number k. If the wave number is written as

k = + i| (7.53)

then the parameter a is known as the attenuation constant or absorption

coefficient. The intensity of the wave falls off as e~
az

. Equation (7.5) yields the

* If Im €<0, energy is given to the wave by the medium; amplification occurs, as

in a maser or laser. See M. Borenstein and W. E. Lamb, Phys. Rev. A5, 1298 (1972).
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connection between (a, |3) and (Re e, Im e):

e €

(7.54)

K 4 c

2

|3a = -^2 Im €

If a« |3, as occurs unless the absorption is very strong or Re e is negative, the

attenuation constant a can be written approximately as

Ime(fa)) , .

a^Re^W P (7 '55)

where /3 = VRee co/c. The fractional decrease in intensity per wavelength divided

by 2tt is thus given by the ratio, Im e/Re e.

(c) Low Frequency Behavior, Electric Conductivity

In the limit <o—»0 there is a qualitative difference in the response of the

medium depending on whether the lowest resonant frequency is zero or

nonzero. For insulators the lowest resonant frequency is different from zero.

Then at o> = the molecular polarizability is given by (4.73), corresponding to

the limit o> = in (7.51). The elementary aspects of dielectrics in the static limit

have been discussed in Section 4.6.

If some fraction / of the electrons per molecule are "free" in the sense of

having o> = 0, the dielectric constant is singular at o> = 0. If the contribution of

the free electrons is exhibited separately, (7.51) becomes

€(<o) = e + l 7 . r (7.56)
m(x){y —i<a)

where e is the contribution of all the other dipoles. The singular behavior can be

understood if we examine the Maxwell-Ampere equation,

_ „ 4tt , ,
1 dDVxH =— J+--T-

c c at

and assume that the medium obeys Ohm's law, J=o-E and has a "normal"

dielectric constant e . With harmonic time dependence the equation becomes

VxH -
l

-c\
ea+l—

)
E (7 -57)

If, on the other hand, we did not insert Ohm's law explicitly but attributed

instead all the properties of the medium to the dielectric constant, we would

identify the quantity in brackets on the right-hand side of (7.57) with e(co).

Comparison with (7.56) yields an expression for the conductivity:
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This is essentially the model of Drude (1900) for the electrical conductivity, with

f N being the number of free electrons per unit volume in the medium. The
damping constant y /fo can be determined empirically from experimental data

on the conductivity. For copper, N— 8x 10
22 atoms/cm 3

and at normal tempera-

tures the low frequency conductivity is cr— 5 x 10
17
sec

-1
. This gives 70//0—

3 x 10° sec
-1

. Assuming that f ~ 1, this shows that up to frequencies well beyond

the microwave region (<o:slO
n
sec

-1
) conductivities of metals are essentially real

(i.e., current in phase with the field) and independent of frequency. At higher

frequencies (in the infrared and beyond) the conductivity is complex and varies

with frequency in a way described qualitatively by the simple result (7.58). The
problem of electrical conductivity is really a quantum-mechanical one in which

the Pauli principle plays an important role. The free electrons are actually

valence electrons of the isolated atoms that become quasi-free and move
relatively unimpeded through the lattice (provided their energies lie in certain

intervals or bands) when the atoms are brought together to form a solid. The
damping effects come from collisions involving appreciable momentum transfer

between the electrons and lattice vibrations, lattice imperfections, and im-

purities.*

The above considerations show that the distinction between dielectrics and

conductors is an artificial one, at least away from o> = 0. If the medium possess

free electrons it is a conductor at low frequencies; otherwise, an insulator.! But

at nonzero frequencies the "conductivity" contribution to e(o>) (7.51) merely

appears as a resonant amplitude like the rest. The dispersive properties of the

medium can be attributed as well to a complex dielectric constant as to a

frequency-dependent conductivity and a dielectric constant.

(d) High-Frequency Limit, Plasma Frequency

At frequencies far above the highest resonant frequency the dielectric

constant (7.51) takes on the simple form

The frequency u)p , which depends only on the total number NZ of electrons per

* See A. H. Wilson, Theory of Metals, 2nd edition, Cambridge University Press

(1953), or W. R. Beam, Electronics of Solids, McGraw-Hill, New York (1965).

t In terms of the quantum-mechanical band structure of the solid, the conductor

has some electrons in a partially filled band, while the insulator has its bands filled to the

full extent permitted by the Pauli principle. A "free" electron must have nearby

energy-conserving quantum states to which it can move. In a partially filled band there

are such states, but a filled band has, by definition, no such states available.

(7.59)

where

AirNZe
2

(7.60)m
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unit volume, is called the plasma frequency of the medium. The wave number is

given in the limit by

dc = Va)
2
-a>p

2
(7.61)

Sometimes (7.61) is expressed as o)
2 = a>p

2+c2
k

2
, and is called a dispersion

relation or equation for a> = a>(k). In dielectric media, (7.59) only applies for

o)
2
»(x)p

2
. The dielectric constant is then close to unity, although slightly less, and

increases with frequency somewhat as the highest frequency part of the curve

shown in Fig. 7.8. The wave number is real and varies with frequency as for a

mode in a wave guide with cut-off frequency o>p . (See Fig. 8.4.)

In certain situations, such as in the ionosphere or in a tenuous electronic

plasma in the laboratory, the electrons are free and the damping is negligible.

Then (7.59) holds over a wide range of frequencies, including co<o>p . For

frequencies lower than the plasma frequency the wave number (7.61) is purely

imaginary. Such waves incident on a plasma are reflected and the fields inside

fall off exponentially with distance from the surface. At co = the attenuation

constant is

a plasma— (7.62)

On the laboratory scale, plasma densities are of the order of 10
12-10 16

electrons/cm
3

. This means o)p
— 6x 10

10-6x 10
12

sec
-1

, so that typically attenua-

tion lengths (a
-1

) are of the order of 0.2 cm-2x 10~ 3 cm for static or low

frequency fields. The expulsion of fields from within a plasma is a well-known

effect in controlled thermonuclear processes and is exploited in attempts at

confinement of hot plasma (see Section 10.5).

The reflectivity of metals at optical and higher frequencies is caused by

essentially the same behavior as for the tenuous plasma. The dielectric constant

of a metal is given by (7.56). At high frequencies (o>»y ) this takes the

approximate form,

2

e((x))=^e (o))-^%

where cop
2 = 47rne

2/m* is the plasma frequency of the conduction electrons, given

an effective mass m* to include partially the effects of binding. For co«ojp the

behavior of light incident on the metal is approximately the same as for the

plasma described by (7.59). The light penetrates only a very short distance into

the metal and is almost entirely reflected. But when the frequency is increased

into the domain where e(co)>0, the metal suddenly can transmit light and its

reflectivity changes drastically. This occurs typically in the ultraviolet and leads

to the terminology, ultraviolet transparency of metals. Determination of the
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critical frequency gives information on the density or the effective mass of the

conduction electrons.*

(e) Index of Refraction and Absorption Coefficient of Liquid Water as a

Function of Frequency

As an example of the overall frequency behavior of the real part of the index

of refraction and the absorption coefficient of a real medium, we take the

ubiquitous substance, water. Our intent is to give a broad view and to indicate

the tremendous variations that are possible, rather than to discuss specific

details. Accordingly, we show in Fig. 7.9, on a log-log plot with 20 decades in

frequency and 1 1 decades in absorption, a compilation of the gross features of

n(o>) = Re V/xe and a((o) = 2 Im V/xe o>/c for liquid water at N.T.P. The upper

part of the graph shows the interesting, but not spectacular, behavior of n(o>). At
very low frequencies, n(co) — 9, a value arising from the partial orientation of the

permanent dipole moments of the water molecules. Above 10
10 Hz the curve

falls relatively smoothly to the structure in the infrared. In the visible region,

shown by the vertical dashed lines, n(a>) — 1.34, with little variation. Then in the

ultraviolet there is more structure. Above 6 x 10
15 Hz (hv — 25 eV) there are no

data on the real part of the index of refraction. The asymptotic approach to unity

shown in the figure assumes (7.59).

Much more dramatic is the behavior of the absorption coefficient a. At
frequencies below 10

8 Hz the absorption coefficient is extremely small. The data

seem unreliable (two different sets are shown), probably because of variations in

sample purity. As the frequency increases toward 10
11
Hz, the absorption

coefficient increases rapidly to a— 10
2 cm_1

,
corresponding to an attenuation

length of 100 microns in liquid water. This is the well-known microwave

absorption by water. It is the phenomenon (in moist air) that terminated the

trend during World War II toward better and better resolution in radar by going

to shorter and shorter wavelengths.

In the infrared region absorption bands associated with vibrational modes of

the molecule and possibly oscillations of a molecule in the field of its neighbors

cause the absorption to reach peak values of a — 10
4 cm" 1

. Then the absorption

coefficient falls precipitously over 7i decades to a value of a<3x 10
-3 cm-1

in a

narrow frequency range between 4x 10
14 Hz and 8x 10

14
Hz. It then rises again

by more than 8 decades by 2x 10
15
Hz. This is a dramatic absorption window in

what we call the visible region. The extreme transparency of water here has its

origins in the basic energy level structure of the atoms and molecules. The reader

may meditate on the fundamental question of biological evolution on this

water-soaked planet, of why animal eyes see the spectrum from red to violet and

of why the grass is green. Mother Nature has certainly exploited her window! In

* See Chapter 4 of D. Pines, Elementary Excitations in Solids, W. A. Benjamin,

New York (1963) for a discussion of these and other dielectric properties of metals in the

optical and ultraviolet region.
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Fig. 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid

water as a function of linear frequency. Also shown as abscissas are an energy scale

(arrows) and a wavelength scale (vertical lines). The visible region of the frequency
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the very far ultraviolet the absorption has a peak value of a — 1.1 x 10
6 cm-1

at

v^5x 10
15 Hz (21 eV). This is exactly at the plasmon energy fto>p ,

corresponding

to a collective excitation of all the electrons in the molecule. The attenuation is

given in order of magnitude by (7.62). At higher frequencies data are absent

until the photoelectric effect, and then Compton scattering and other high-

energy processes take over. There the nuclear physicists have studied the

absorption in detail. The behavior is basically governed by the atomic properties

and the density, not by the fact that the substance is water.

At the low frequency end of the graph in Fig. 7.9 we have indicated the

absorption coefficient of sea water. At low frequencies, sea water has an

electrical conductivity cr— 4x 10
10

sec
-1

(4.4 mhos/meter). From (7.57) we find

that below about 10
8 Hz a — (87rcoo7c

2

)

1/2
. The absorption coefficient is thus

proportional to \fco and becomes very small at low frequencies. The line shown is

a (cm
_1

) = 8.4x 10"5
Vv(Hz). At 10

2
Hz, the attenuation length in sea water is

a'
1 =10 meters. This means that 1 percent of the intensity at the surface will

survive at 50 meters below the surface. If one had a large fleet of submarines

scattered throughout the oceans of the world and one wished to be able to send

messages to them from a land base while they remained submerged, one would

be led to consider extremely low frequency (ELF) communications. The
existence of prominent resonances of the earth-ionosphere cavity in the range

from 8 Hz to a few hundred Hz (see Section 8.9) makes that region of the

frequency spectrum specially attractive, as does the reduced attenuation. With

wavelengths of the order of 5xl03 km, very large antennas are needed (still

small compared to a wavelength!). Speculations and more along these lines can

be traced from time to time in the daily press.*

7.6 Simplified Model of Propagation in the Ionosphere and Magnetosphere

The propagation of electromagnetic waves in the ionosphere is described in

zeroth approximation by the dielectric constant (7.59), but the presence of the

earth's magnetic field modifies the behavior significantly. The influence of a

static external magnetic field is also present for many laboratory plasmas. To
illustrate the influence of an external magnetic field, we consider the simple

problem of a tenuous electronic plasma of uniform density with a strong, static,

uniform, magnetic induction B and transverse waves propagating parallel to the

direction of B . (The more general problem of an arbitrary direction of

propagation is contained in Problem 10.7.) If the amplitude of electronic motion

is small and collisions are neglected, the equation of motion is approximately

mx-- Bo x x = -eEe~ iwt
(7.63)

c

* New York Times, October 14, 1969, p. 49, column 1; August 19, 1973, p. 8,

column 1.



Sect. 7.6 Plane Electromagnetic Waves and Wave Propagation 293

where the influence of the B field of the transverse wave has been neglected

compared to the static induction B and the electronic charge has been written as

—
e. It is convenient to consider the transverse waves as circularly polarized. Thus

we write

E = (€!±i€2)E (7.64)

and a similar expression for x. Since the direction of B is taken orthogonal to £i

and €2 , the cross product in (7.63) has components only in the directions d and

e2 and the transverse components decouple. The steady-state solution of (7.63)

is

(7.65)
mcu(a> zFa)B )

where a>B is the frequency of precession of a charged particle in a magnetic field,

o)B=^ (7.66)
mc

The frequency dependence of (7.65) can be understood by the transformation of

(7.63) to a coordinate system precessing with frequency (oB about the direction

of Bo. The static magnetic field is eliminated; the rate of change of momentum
there is caused by a rotating electric field of effective frequency (o)±(oB ), de-

pending on the sign of the circular polarization.

The amplitude of oscillation (7.65) gives a dipole moment for each electron

and yields, for a bulk sample, the dielectric constant

(7.67)

The upper sign corresponds to a positive helicity wave (left-handed circular

polarization in the optics terminology), while the lower is for negative helicity.

For propagation antiparallel to the magnetic field B , the signs are reversed. This

is the extension of (7.59) to include a static magnetic induction. It is not

completely general, since it applies only to waves propagating along the static

field direction. But even in this simple example we see the essential characteristic

that waves of right-handed and left-handed circular polarizations propagate

differently. The ionosphere is birefringent. For propagation in directions other

than parallel to the static field B it is straightforward to show that, if terms of the

order of a>B
2
are neglected compared to w 2

and okob , the dielectric constant is still

given by (7.67). But the precession frequency (7.66) is now to be interpreted as

that due to only the component of B parallel to the direction of propagation.

This means that o>B in (7.67) is a function of angle—the medium is not only

birefringent, but also anisotropic (see Problem 10.7).

For the ionosphere a typical maximum density of free electrons is 10
4-106



294 Classical Electrodynamics Sect. 7.6

Fig. 7.10 Dielectric constants as functions of frequency for model of the ionosphere

(tenuous electronic plasma in a static, uniform magnetic induction). e±((o) apply to right

and left circularly polarized waves propagating parallel to the magnetic field. o>B is the

gyration frequency: o>p is the plasma frequency. The two sets of curves correspond to

co
p
/coB = 2.0, 0.5.

electrons/cm
3

,
corresponding to a plasma frequency of the order of o>p = 6xl0

6-

6xl07
sec

_1
. If we take a value of 0.3 gauss as representative of the earth's

magnetic field, the precession frequency is coB — 6x 10
6
sec

-1
.

Figure 7.10 shows e± as a function of frequency for two values of the ratio of

(cop/ton). In both examples there are wide intervals of frequency where one of e+

or €_ is positive while the other is negative. At such frequencies one state of

circular polarization cannot propagate in the plasma. Consequently a wave of

that polarization incident on the plasma will be totally reflected. The other state

of polarization will be partially transmitted. Thus, when a linearly polarized

wave is incident on a plasma, the reflected wave will be elliptically polarized,

with its major axis generally rotated away from the direction of the polarization

of the incident wave.

The behavior of radio waves reflected from the ionosphere is explicable in

terms of these ideas, but the presence of several layers of plasma with densities

and relative positions varying with height and time makes the problem consider-

ably more complicated than our simple example. The electron densities at

various heights can be inferred by studying the reflection of pulses of radiation

transmitted vertically upwards. The number n of free electrons per unit volume

increases slowly with height in a given layer of the ionosphere, as shown in Fig.
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7.11, reaches a maximum, and then falls abruptly with further increase in height.

A pulse of a given frequency wi enters the layer without reflection because of the

slow change in n . When the density n is large enough, however, wp (hi) — wi.

Then the dielectric constants (7.67) vanish and the pulse is reflected. The actual

density n where the reflection occurs is given by the roots of the right-hand side

of (7.67). By observing the time interval between the initial transmission and

reception of the reflected signal the height Hi corresponding to that density can

be found. By varying the frequency o>i and studying the change in time intervals

the electron density as a function of height can be determined. If the frequency

o>i is too high, the index of refraction does not vanish and very little reflection

occurs. The frequency above which reflections disappear determines the max-

imum electron density in a given layer. A somewhat more quantitative treatment

using the WKB approximation is sketched in Problem 7.9.

The behavior of €_(o>) at low frequencies is responsible for a peculiar

magnetospheric propagation phenomenon called "whistlers." As a>-»0, e-(<o) tends

to positive infinity as e- — (op
2
/co(oB . Propagation occurs, but with a wave number

(7.5),

0>B

This corresponds to a highly dispersive medium. Energy transport is governed by

the group velocity (7.86)—see Section 7.8—which is

l v o / \ o V (x)B CO
Ug(co) — 2vp {(D)

— 2c
(x)p

Pulses of radiation at different frequencies travel at different speeds: the lower

the frequency the slower the speed. A thunderstorm in one hemisphere

generates a wide spectrum of radiation, some of which propagates more or less

Fig. 7.11 Electron density as a function of height in a layer of the ionosphere
(schematic).
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along the dipole field lines of the earth's magnetic field in a fashion described

approximately by (7.67). The higher frequency components reach the antipodal

point first, the lower frequency ones later. This gives rise at 10
s Hz and below to

whistlers, so named because the signal, as detected in an audio receiver, is a

whistlelike sound beginning at high audio frequencies and falling rapidly through

the audible range. With the estimates given above for <op and coB and distances of

the order of 10
4 km, the reader can verify that the time scale for the whistlers is

measured in seconds. Further discussion on whistlers can be found in the reading

suggestions at the end of the chapter and in the problems.

7.7 Waves in a Conducting or Dissipative Medium

We have seen in Section 7.5 that the dielectric constant of a medium is generally

complex, whether the material is an insulator or conductor. For insulators the

imaginary part of e can be neglected for many purposes, but for conductors this

is far from true. The behavior of waves in conducting media is of such practical

importance that we consider it separately here, even though the essentials have

already been presented in Sections 7.5(a) and (c). It is customary to separate the

complex dielectric constant of the conducting medium formally into two parts, a

real "dielectric constant" e, and a real "conductivity" o\ This separation can be

viewed as merely a convenient way of exhibiting explicitly the real and imaginary

parts of the dielectric constant, but it has a more intuitive basis in that the

conductivity so defined is usually independent of frequency, at least for

microwave and lower frequencies as already discussed.

If the fields in the conductor vary in space and time as e
lk x_uot

, the wave

number k is given, according to (7.56), (7.57), and (7.5), by the complex

expression

The first term corresponds to the displacement-current and the second to the

conduction-current contribution. In taking the square root to find k the branch is

chosen to give the familiar results when cr=0. Then one finds, assuming that a,

jui, and e are real,

(7.68)

where

(7.69)
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(477(7 \-^-« 1 I we find approximately

a ,— (o 2tt fjl
k = 3 + i—— v ll€—Hi— \/— <j

2 c c V e
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(7.70)

correct to first order in (a/we). In this limit Re k»Im k and the attenuation of

the wave (Im k) is independent of frequency, aside from the possible frequency

variation of the dielectric constant and conductivity. For a good conductor

on the other hand, - and |3 are approximately equal:

k-(l + i)

V2 770)/LLO"
(7.71)

where only the lowest-order terms in (aye/a) have been kept.

The waves propagating as exp (ik • x— icot) are damped, transverse waves.

The fields can be written as

E = E

H = Hoe[ e"
fnx

c
ipnx- ia>t

J

(7.72)

where n is a unit vector in the direction of k. The divergence equation for E
shows that E 'ii = 0, while Faraday's law gives

H =— (j8 + if)nxEc (7.73)

This shows that H and E are out of phase in a conductor. With the magnitude

and phase of k defined as

|
k,=V^=V^[1+ (^r)

\ 0)6 /

we can write (7.73) in the form:

2 Hl/4

<(>
= tan

2^
=
2
tan

(7.74)

e^nxEo (7.75)

The interpretation of (7.75) is that H lags E in time by the phase angle </> and has

a relative amplitude:

Ho|_ le\ (4tt*\

Eo| VjllL V 0>€ /
(7.76)
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In very good conductors we see that the magnetic field is very large compared to

the electric field and lags in phase by almost 45°. The field energy is almost

entirely magnetic in nature.

The waves given by (7.72) show an exponential damping with distance. This

means that an electromagnetic wave entering a conductor is damped to

l/e = 0.369 of its initial amplitude in a distance:

§ =-=7^=^ (7.77)

the last form being the approximation for good conductors. The distance 8 is

called the skin depth or the penetration depth* For a conductor like copper,

5— 0.85 cm for frequencies of 60 cps, and 8 — 0.7 1 x 10" 3 cm for 100 Mc/sec. This

rapid attenuation of waves means that in high-frequency circuits current flows

only on the surface of the conductors. One simple consequence is that the

high-frequency inductance of circuit elements is somewhat smaller than the

low-frequency inductance because of the expulsion of flux from the interior of

the conductors.

The problem of reflection and refraction at an interface between conducting

media is rather complicated in detail and will not be treated here. The interested

reader may refer to Stratton, pp. 500 ff. for a discussion of this point. We only

observe that, in the notation of Section 7.3, the refracted wave has spatial

variation,

where the x direction is parallel to the surface and the z direction is normal to it.

Using Snell's law this can be written

gik'-x gi(k sin i)x+iVk'2—

k

2 sin2 iz

In a dissipative medium k'
2
is complex [given by (7.68)] and so the coefficient of

z is complex. The wave is attenuated in the z direction. For a good conductor,

where (7.71) holds, |k'
2|»k 2

and the exponential is given approximately by

e
ik'.x^

e
- 2/S

e
i[(ksin0x+ 2/6]

(7/7g)

Equation (7.78) represents an inhomogeneous plane wave, alluded to at the end

of Section 7.1, with the surfaces of constant amplitude parallel to the surface of

the conductor and the surfaces of constant phase inclined only slightly away from

this, at an angle (k8 sin i) to the surface. In Section 8.1 this problem is examined

again in more detail.

* For reference, the skin depth (7.77) appears in MKSA units as 8 = (2//xo>o-)
1/2

.
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7.8 Superposition of Waves in One Dimension, Group Velocity

In the previous sections plane-wave solutions to the Maxwell equations were

found and their properties discussed. Only monochromatic waves, those with a

definite frequency and wave number, were treated. In actual circumstances such

idealized solutions do not arise. Even in the most monochromatic light source or

the most sharply tuned radio transmitter or receiver, one deals with a finite

(although perhaps small) spread of frequencies or wavelengths. This spread may
originate in the finite duration of a pulse, in inherent broadening in the source,

or in many other ways. Since the basic equations are linear, it is in principle an

elementary matter to make the appropriate linear superposition of solutions

with different frequencies. In general, however, there are several new features

which arise.

1. If the medium is dispersive (i.e., the dielectric constant is a function of the

frequency of the fields), the phase velocity is not the same for each

frequency component of the wave. Consequently different components of

the wave travel with different speeds and tend to change phase with respect

to one another.

2. In a dispersive medium the velocity of energy flow may differ greatly from

the phase velocity, or may even lack precise meaning.

3. In a dissipative medium, a pulse of radiation will be attenuated as it travels

with or without distortion, depending on whether the dissipative effects are

or are not sensitive functions of frequency.

The essentials of these dispersive and dissipative effects are implicit in the

ideas of Fourier series and integrals (Section 2.8). For simplicity, we consider

scalar waves in only one dimension. The scalar amplitude u(x, t) can be thought

of as one of the components of the electromagnetic field. The basic solution to

the wave equation (7.2) has been exhibited in (7.6). The relationship between

frequency a> and wave number k is given by (7.5) for the electromagnetic field.

Either w or k can be viewed as the independent variable when one considers

making a linear superposition. Initially we will find it most convenient to use k as

an independent variable. To allow for the possibility of dispersion we will

consider <o as a general function of k:

o) = co(k) (7.79)

Since the dispersive properties cannot depend on whether the wave travels to the

left or to the right, <o must be an even function of k, a>(— k) = co(k). For most

wavelengths co is a smoothly varying function of k. But, as we have seen in

Section 7.5, at certain frequencies there are regions of "anomalous dispersion"

where to varies rapidly over a narrow interval of wavelengths. With the general

form (7.79), our subsequent discussion can apply equally well to electromagnetic

waves, sound waves, de Broglie matter waves, etc. For the present we assume

that k and w(k) are real, and so exclude dissipative effects.
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From the basic solutions (7.6) we can build up a general solution of the form

u(x,t) =-J=\ A(Jc)e
ikx- ia,(k),

dk (7.80)
V2-7T J-oo

The factor 1/V2u has been inserted to conform with the Fourier integral

notation of (2.44) and (2.45). The amplitude A(k) describes the properties of the

linear superposition of the different waves. It is given by the transform of the

spatial amplitude u(x, t), evaluated at t = 0:*

A(k)=-L=\ u(x,0)e~
ikx

dx (7.81)

If u(x, 0) represents a harmonic wave e
lk°x for all x, the orthogonality relation

(2.46) shows that A(k) = 42tt S(k —

k

), corresponding to a monochromatic

traveling wave u(x, t) = e
lk

°x
~ l<o(ko)t

, as required. If, however, at t= 0, u(x, 0)

represents a finite wave train with a length of order Ax, as shown in Fig. 7.12,

then the amplitude A(k) is not a delta function. Rather, it is a peaked function

with a breadth of the order of Ak, centered around a wave number k which is

the dominant wave number in the modulated wave u(x, 0). If Ax and Ak are

defined as the rms deviations from the average values of x and k [defined in

-6 Ax >

A(k)

< Ak ^

k—r-

Fig. 7.12 A harmonic wave train of finite extent and its Fourier spectrum in wave
number.

*The following discussion slights somewhat the initial-value problem. For a

second-order differential equation we must specify not only u(x, 0) but also du(x, 0)/dt.

This omission is of no consequence for the rest of the material in this section. It is

remedied in the following section.
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terms of the intensities |u(x, 0)|
2
and |A(k)j

2
], it is possible to draw the general

conclusion:

AxAk>| (7.82)

The reader may readily verify that, for most reasonable pulses or wave packets

which do not cut off too violently, Ax times Ak lies near the lower limiting value

in (7.82). This means that short wave trains with only a few wavelengths present

have a very wide distribution of wave numbers of monochromatic waves, and

conversely that long sinusoidal wave trains are almost monochromatic. Relation

(7.82) applies equally well to distributions in time and in frequency.

The next question is the behavior of a pulse or finite wave train in time. The
pulse shown at t = in Fig. 7.12 begins to move as time goes on. The different

frequency or wave-number components in it move at different phase velocities.

Consequently there is a tendency for the original coherence to be lost and for the

pulse to become distorted in shape. At the very least, we might expect it to

propagate with a rather different velocity from, say, the average phase velocity

of its component waves. The general case of a highly dispersive medium or a

very sharp pulse with a great spread of wave numbers present is difficult to treat.

But the propagation of a pulse which is not too broad in its wave-number

spectrum, or a pulse in a medium for which the frequency depends weakly on

wave number, can be handled in the following approximate way. The wave at

time t is given by (7.80). If the distribution A(k) is fairly sharply peaked around

some value k , then the frequency co(k) can be expanded around that value of k:

(k-k )+ --- (7.83)a)(k) = co +^j-

and the integral performed. Thus

i[k (d»/dk)| - W()]t i—

u(x, f)«- t= A(k)e ICx-(<Wdk)l°,]k dk (7.84)
V277 J-oc

From (7.81) and its inverse it is apparent that the integral in (7.84) is just u(x', 0),

where x' = x-(daj/dk)\ t:

u(x, t)^u{x~ t,
oy^/dMo-^ (7.85)

This shows that, apart from an overall phase factor, the pulse travels along

undistorted in shape with a velocity, called the group velocity:

dcx)
V
* = dk

(7.86)

If an energy density is associated with the magnitude of the wave (or its absolute

square), it is clear that in this approximation the transport of energy occurs with

the group velocity, since that is the rate at which the pulse travels along.
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For light waves the relation between oj and k is given by

-W-jjgj (7-87)

where c is the velocity of light in vacuum, and n(k) is the index of refraction

expressed as a function of k. The phase velocity is

_ w(k) _ c ,

Vp-nr-m (7 - 88)

and is greater or smaller than c depending on whether n(k) is smaller or larger

than unity. For most optical wavelengths n(k) is greater than unity in almost all

substances. The group velocity (7.86) is

Vg =
[n(co) + co(dn/dco)]

(7 *89)

In this equation it is more convenient to think of n as a function of (o than of k.

For normal dispersion (dn/da))>0, and also n>l; then the velocity of energy

flow is less than the phase velocity and also less than c. In regions of anomalous

dispersion, however, dn/da) can become large and negative as can be inferred

from Fig. 7.8. Then the group velocity differs greatly from the phase velocity,

often becoming larger than c* The behavior of group and phase velocities as a

Fig. 7.13 Index of refraction n(o>) as a function of frequency o> at a region of anomalous
dispersion; phase velocity vp

and group velocity ug
as functions of co.

* There is no cause for alarm that our ideas of special relativity are violated; group

velocity is just not a useful concept here. A large value of dn/da) is equivalent to a rapid

variation of co as a function of k. Consequently the approximations made in (7.83) ff. are

no longer valid. The behavior of the pulse is much more involved.
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function of frequency in the neighborhood of a region of anomalous dispersion

is shown in Fig. 7.13.

7.9 Illustration of the Spreading of a Pulse as It Propagates

in a Dispersive Medium

To illustrate the ideas of the previous section and to show the validity of the

concept of group velocity we will now consider a specific model for the

dependence of frequency on wave number and will calculate without approxima-

tions the propagation of a pulse in this model medium. Before specifying the

particular model it is necessary to state the initial-value problem in more detail

than was done in (7.80) and (7.81). As noted there, the proper specification of an

initial-value problem for the wave equation demands the initial values of both

function u(x, 0) and time derivative du(x, 0)/df. If we agree to take the real part

of (7.80) to obtain u(x, t),

u(x, t) =--^=\ A(k)e
ikx-iw(k)t

dk+c.c. (7.90)

then it is easy to show that A(k) is given in terms of the initial values by:

Mk)=M u(x, 0)+-^(x, 0)
o>(k) dt

dx (7.91)

We will take a Gaussian modulated oscillation

u(x,0) = e-
x2/2L2 cosk x (7.92)

as the initial shape of the pulse. For simplicity, we will assume that

f(x,0) = (7.93)

This means that at times immediately before t = the wave consisted of two

pulses, both moving towards the origin, such that at t = they coalesced into the

shape given by (7.92). Clearly at later times we expect each pulse to re-emerge

on the other side of the origin. Consequently the initial distribution (7.92) may
be expected to split into two identical packets, one moving to the left and one to

the right. The Fourier amplitude A(k) for the pulse described by (7.92) and

(7.93) is:

Mk)=M e
ikx

e
x2/2L2

cos k x dx

-h |-e
-(L 2/2)(k-k )2+ e

_(L2/2)(k+k
)2-| (7.94)

2
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The symmetry A(-k) = A(k) is a reflection of the presence of two pulses

traveling away from the origin, as will be seen below.

In order to calculate the wave form at later times we must specify o> = <o(k). As
a model allowing exact calculation and showing the essential dispersive effects,

we assume

a>(k) = *(l+^) (7.95)

where v is a constant frequency, and a is a constant length which is a typical

wavelength where dispersive effects become important. Equation (7.95) is an

approximation to the dispersion equation of the tenuous plasma, (7.59) or

(7.61). Since the pulse (7.92) is a modulated wave of wave number k = k , the

approximate arguments of the preceding section imply that the two pulses will

travel with the group velocity

'
g
= -^ (k )= va k (7.96)

and will be essentially unaltered in shape provided the pulse is not too narrow in

space.

The exact behavior of the wave as a function of time is given by (7.90), with

(7.94) for A(k):

u(x, t) Re
* —CO

-(L2/2)(k-kn)
2

+ e
-(L2/2)(k+k )2j e

ikx-ivt[l+(a2k2/2)] ^ (7.97)

The integrals can be performed by appropriately completing the squares in the

exponents. The result is

(x-va 2
k t)

2

1

u(x, t) =iRe
2.L ^l -

'

-

) r /
o,

2
k

2
\ 1

|
—,—

ia2„t
y/2

exp [ik x-iv(l+^-JrJ+ (ko^-ko)l/2

(7.98)

Equation (7.98) represents two pulses traveling in opposite directions. The peak

amplitude of each pulse travels with the group velocity (7.96), while the

modulation envelope remains Gaussian in shape. The width of the Gaussian is

not constant, however, but increases with time. The width of the envelope is

L(t)

2T1/2

(7.99)

Thus the dispersive effects on the pulse are greater (for a given elapsed time), the
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sharper the envelope. The criterion for a small change in shape is that L»a. Of
course, at long times the width of the Gaussian increases linearly with time

but the time of attainment of this asymptotic form depends on the ratio (LI a). A
measure of how rapidly the pulse spreads is provided by a comparison of L(t)

given by (7.99), with vzt=va
2
k t. Figure 7.14 shows two examples of curves of

the position of peak amplitude (ug r) and the positions vgt±L(t), which indicate

the spread of the pulse, as functions of time. On the left the pulse is not too

narrow compared to the wavelength k
_1
and so does not spread too rapidly. The

pulse on the right, however, is so narrow initially that it is very rapidly spread out

and scarcely represents a pulse after a short time.

Although the above results have been derived for a special choice (7.92) of

initial pulse shape and dispersion relation (7.95), their implications are of a more
general nature. We have seen in Section 7.8 that the average velocity of a pulse

is the group velocity ug
= d(oldk = a/. The spreading of the pulse can be

accounted for by noting that a pulse with an initial spatial width Ax must have

inherent in it a spread of wave numbers Ak~(l/Ax ). This means that the group

velocity, when evaluated for various k values within the pulse, has a spread in it

of the order

At a time t this implies a spread in position of the order of Aug t. If we combine

the uncertainties in position by taking the square root of the sum of squares, we

L(t)
a

2
vt

L (7.100)

(7.101)

£oL»l koL< 1

Fig. 7.14 Change in shape of a wave packet as it travels along. The broad packet,

containing many wavelengths (koL»l), is distorted comparatively little, while the narrow
packet (k L ^ 1) broadens rapidly.
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obtain the width Ax(f) at time t:

Ax(t)-^(Axo)2+g)
2

(7.102)

We note that (7.102) agrees exactly with (7.99) if we put Ax = L. The expression

(7.102) for Ax(t) shows the general result that, if wVO, a narrow pulse spreads

rapidly because of its broad spectrum of wave numbers, and vice versa. All these

ideas carry over immediately into wave mechanics. They form the basis of the

Heisenberg uncertainty principle. In wave mechanics, the frequency is identified

with energy divided by Planck's constant, while wave number is momentum
divided by Planck's constant.

The problem of wave packets in a dissipative, as well as dispersive, medium is

rather complicated. Certain aspects can be discussed analytically, but the

analytical expressions are not readily interpreted physically. Wave packets are

attenuated and distorted appreciably as they propagate. The reader may refer to

Stratton pp. 301-309, for a discussion of the problem, including numerical

examples.

7.10 Causality in the Connection Between D and E, Kramers -Kronig

Relations

(a) Nonlocality in Time

Another consequence of the frequency dependence of e(w) is a temporally

nonlocal connection between the displacement D(x, t) and the electric field

E(x, t). If the monochromatic components of frequency co are related by

D(x,ft)) = €(o))E(x,o)) (7.103)

the dependence on time can be constructed by Fourier superposition. Treating

the spatial coordinate as a parameter, the Fourier integrals in time and

frequency can be written

D(x,0=-=L
f

D(x, co)c-^ d(o
V277 -Loo

and (7.104)

D(x, a>) =-L= f D(x, t') e
i(0t

'

dt'

with corresponding equations for E. The substitution of (7.103) for D(x, a>) gives

D(x, t) =-F= f e(co)E(x, o>)e"
ia,t do

V 277 J-oo
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We now insert the Fourier representation of E(x, a>) into the integral and obtain

D(x, 0=^- f d(o e(a))e-^ f dt' e
iwt
'E(x, t')

Ztt J-oo J-oo

With the assumption that the orders of integration can be interchanged, the last

expression can be written as

D(x, t) = E(x, + j G(t)E(x, 1-t) dT (7.105)

where G(t) is the Fourier transform of 47rXe = e(o))-l:

G(t)=^- f [e((o)-l]e-^
T dm (7.106)

ZTT J-oo

Equation (7.105) and (7.106) give a nonlocal connection between D and E, in

which D at time t depends on the electric field at times other than t* If e(co) is

independent of co for all co, (7.106) yields G(t)°c5(t) and the instantaneous

connection is obtained, but if e(o)) varies with co, G(t) is nonvanishing for some
values of r different from zero.

(b) Simple Model for G(t), Limitations

To illustrate the character of the connection implied by (7.105) and (7.106) we
consider a one-resonance version of the index of refraction (7.51):

e(a>) - 1 = cop
2
(a>o

2- (o
2- iyo))-

1

(7. 107)

The susceptibility kernel G(t) for this model of e(co) is

2 r °= — uot

G(r) =^ 22. (7.108)
2 77 J-oo O) — ft) — 17C0

The integral can be evaluated by contour integration. The integrand has poles in

the lower half <o plane at

ft)i,2=-^±Vo, where v
2 = (o

2-^ (7.109)

* Equations (7.103) and (7.105) are recognizable as an example of the faltung

theorem of Fourier integrals: if A(t), B(t), C(t) and a(o>), b((o), c((o) are two sets of

functions related in pairs by the Fourier inversion formulas (7.104), and

c(oj) = a(o))b((x))

then, under suitable restrictions concerning integrability,

0(0=^=1" A(t')B(t-t') dt'
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For t<0 the contour can be closed in the upper half plane without affecting the

value of the integral. Since the integrand is regular inside the closed contour the

integral vanishes. For t>0, the contour is closed in the lower half-plane and the

integral is given by -2iri times the residues at the two poles. The kernel (7.108)

is therefore

G(T) = <oPV-/2
6(t) (7.110)

where 0(t) is the step function [0(t) = O for t<0; 0(t) = 1 for t>0]. For the

dielectric constant (7.51) the kernel G(t) is just a linear superposition of terms

like (7.110). The kernel G(t) is oscillatory with the characteristic frequency of

the medium and damped in time with the damping constant of the electronic

oscillators. The nonlocality in time of the connection between D and E is thus

confined to times of the order of y~\ Since y is the width in frequency of spectral

lines and these are typically 10
7-109

sec
-1

, the departure from simultaneity is of

the order of 10
~7-10-9

sec. For frequencies above the microwave region many
cycles of the electric field oscillations contribute an average weighed by G(t) to

the displacement D at a given instant of time.

Equation (7.105) is nonlocal in time, but not in space. This approximation is

valid provided the spatial variation of the applied fields has a scale that is large

compared with the dimensions involved in the creation of the atomic or

molecular polarization. For bound charges the latter scale is of the order of

atomic dimensions or less, and so the concept of a dielectric constant that is a

function only of a> can be expected to hold for frequencies well beyond the

visible range. For conductors, however, the presence of free charges with

macroscopic mean free paths makes the assumption of a simple e(o>) or cr(a>)

break down at much lower frequencies. For a good conductor like copper we
have seen that the damping constant (corresponding to a collision frequency) is

of the order of y ~3x 10
13

sec
-1

at room temperature. At liquid helium

temperatures, the damping constant may be 10~ 3
times the room temperature

value. Taking the Bohr velocity in hydrogen (c/137) as typical of electron

velocities in metals, we find mean free paths of the order of L~c/(137yo)~
10~2 cm at liquid helium temperatures. On the other hand, the conventional skin

depth 8 (7.77) can be much smaller, of the order of 10
-5

or 10~ 6 cm at microwave

frequencies. In such circumstances, Ohm's law must be replaced by a nonlocal

expression. The conductivity becomes a tensorial quantity depending on wave

number k and frequency a>. The associated departures from the standard

behavior are known collectively as the anomalous skin effect. They can be

utilized to map out the Fermi surfaces in metals.* Similar nonlocal effects occur

* A. B. Pippard, in Reports on Progress in Physics 33, 176 (1960), and the article

entitled "The Dynamics of Conduction Electrons," by the same author in Low-
Temperature Physics, Les Houches 1961, eds., C. de Witt, B. Dreyfus, and P. G. de

Gennes, Gordon and Breach, New York (1962). The latter article has been issued

separately by the same publisher.
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in superconductors where the electromagnetic properties involve a coherence

length of the order of 10"4
cm.* With this brief mention of the limitations of

(7.105) and the areas where generalizations have been fruitful we return to the

discussion of the physical content of (7.105).

(c) Causality and Analyticity Domain of e(co)

The most obvious and fundamental feature of the kernel (7.110) is that it

vanishes for t<0. This means that at time t only values of the electric field prior to

that time enter in determining the displacement, in accord with our fundamental

ideas of causality in physical phenomena. Equation (7.105) can thus be written

This is, in fact, the most general spatially local, linear, and causal relation that

can be written between D and E in a uniform isotropic medium. Its validity

transcends any specific model of e(o>). From (7.106) the dielectric constant can

be expressed in terms of G(t) as

This relation has several interesting consequences. From the reality of D, E, and

therefore G(t) in (7.111) we can deduce from (7.112) that for complex cu,

Furthermore, if (7.112) is viewed as a representation of e(o>) in the complex co

plane, it shows that e((o) is an analytic function of <o in the upper half plane,

provided G(r) is finite for all t. On the real axis it is necessary to invoke the

"physically reasonable" requirement that G(t)-*0 as t-^o° to assure that e(o>) is

also analytic there. This is true for dielectrics, but not for conductors, where

G(t)^47to- as t^>o° and e(co) has a simple pole at o> = (e-^iAira/aj as co—>0).

Apart, then, from a possible pole at w = 0, the dielectric constant e(cu) is analytic

in (o for Im w>0 as a direct result of the causal relation (7.111) between D and

E. These properties can be verified, of course, for the models discussed in

Sections 7.5(a) and 7.5(c).

The behavior of e(co)-l for large o> can be related to the behavior of G(t) at

small times. A Taylor series expansion of G in (7.112) leads to the asymptotic

series,

(7.111)

€(w) = l+ G(r)e
ia,T

dT (7.112)
Jo

e(-a>) =€*(«>*) (7.113)

e(«)-l
iG(0) G'(0),

2 "
* *

"

* See, for example, the article "Superconductivity," by M. Tinkham in the book,
Low Temperature Physics, cited above.
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where the argument of G and its derivatives is t = +
. It is unphysical to have

G(0~) = 0, but G(0
+
)^0. Thus the first term in the series is absent, and €(<o)-l

falls off at high frequencies as aT 2

, just as was found in (7.59) for the oscillator

model. The asymptotic series shows, in fact, that the real and imaginary parts of

e(<x>) - 1 behave for large real a> as

These asymptotic forms depend only upon the possibility of a Taylor series

expansion of G(t) around t =
+

.

(d) Kramers -Kronig Relations

The analyticity of e(o>) in the upper half to plane permits the use of Cauchy's

theorem to relate the real and imaginary part of e(co) on the real axis. For any

point z inside a closed contour C in the upper half o> plane, Cauchy's theorem

gives

The contour C is now chosen to consist of the real cu axis and a great semicircle

at infinity in the upper half plane. From the asymptotic expansion just discussed

or the specific results of Section 7.5(d), we see that e— 1 vanishes sufficiently

rapidly at infinity so that there is no contribution to the integral from the great

semicircle. Thus the Cauchy integral can be written

where z is now any point in the upper half plane and the integral is taken along

the real axis. Taking the limit as the complex frequency approaches the real axis

from above, we write z = a>+i€ in (7.115):

For real co the presence of the ie in the denominator is a mnemonic for the

distortion of the contour along the real axis by giving it a infinitesimal

semicircular detour below the point o/ = <o. The denominator can be written

formally as

(7.114)

(7.115)

(7.116)

(7.117)

where P means principal part. The delta function serves to pick up the

contribution from the small semicircle going in a positive sense halfway around
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the pole at co' = co. Use of (7. 117) and a simple rearrangement turns (7.116) into

eW=1+i Pr[!MJ^ (7 . 118)
7TI J-oo CD (0

The real and imaginary parts of this equation are

r» ( \ 1 ,
1 r>r Im e(co') , ,

Ree(co) = l+— P —j-*—- da)
IT J-oo CD — CO

(7.119)

CD -co

These relations, or the ones recorded immediately below, are called Kramers-

Kronig relations or dispersion relations. They were first derived by H. A.

Kramers (1927) and R. de L. Kronig (1926) independently. The symmetry

property (7.113) shows that Re e(co) is even in co, while Im e(co) is odd. The
integrals in (7.119) can thus be transformed to span only positive frequencies:

r» t \ 1 .
2 D f co Ime(co) , ,

Ree(co) = H— P s—V^- aco
77 Jo co — co

t / x
2co D P[Re e(co

/

)
- l] , ,

Ime(co) = P jf
———- da)

IT Jo CO —CO

(7.120)

In writing (7.119) and (7.120) we have tacitly assumed that e(co) was regular at

co = 0. For conductors the simple pole at co = can be exhibited separately with

little further complication.

The Kramer-Kronig relations are of very general validity, following from little

more than the assumption of the causal connection (7.111) between the

polarization and the electric field. Empirical knowledge of Im e(co) from

absorption studies allows the calculation of Re e(co) from the first equation in

(7.120). The connection between absorption and anomalous dispersion, shown
in Fig. 7.8, is contained in the relations. The presence of a very narrow

absorption line or band at co = co can be approximated by taking

ttK
Im e(aj')—-— 8(co'-coo) + - •

•

2 (Do

where K is a constant and the dots indicated the other (smoothly varying)

contributions to Im e. The first equation in (7.120) then yields

Re e(coHe+ 2

K
2 (7.121)

(Do — CO

for the behavior of Re e(co) near, but not exactly at, co = co . The term €

represents the slowly varying part of Re e resulting from the more remote

contributions to Im e. The approximation (7.121) exhibits the rapid variation of

Re e(co) in the neighborhood of an absorption line, shown in Fig. 7.8 for lines of
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finite width. A more realistic description for Im e would lead to an expression for

Re € in complete accord with the behavior shown in Fig. 7.8. The demonstration

of this is left to the problems at the end of the chapter.

Relations of the general type (7.119) or (7.120) connecting the dispersive and

absorptive aspects of a process are extremely useful in all areas of physics. Their

widespread application stems from the very small number of physically well-

founded assumptions necessary for their derivation. References to their applica-

tion in particle physics, as well as solid-state physics, are given at the end of the

chapter. We end with mention of two sum rules obtainable from (7.120). It was

shown in Section 7.5(d), within the context of a specific model, that the dielectric

constant is given at high frequencies by (7.59). The form of (7.59) is, in fact,

quite general, as was shown at the end of part (c). The plasma frequency can

therefore be defined by means of (7.59) as

Provided the falloff of Im e(w) at high frequencies is given by (7.114), the first

Kramers-Kronig relation yields a sum rule for cop
2

:

This relation is sometimes known as the sum rule for oscillator strengths. It can

be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is

obviously more general.

The second sum rule concerns the integral over the real part of e(w) and

follows from the second relation (7.120). With the assumption that [Re e(a>')-

1] = -a>p

2
/a>'

2
+0(l/a/

4
) for all o>'> N, it is straightforward to show that for co>N

It was shown in part (c) that, excluding conductors and barring the unphysical

happening that G(0 +
) 5* 0, Im e(co) behaves at large frequencies as o>~

3
. It there-

fore follows that the expression in curly brackets must vanish. We are thus led to

a second sum rule,

which, for N —» 00, states that the average value of Ree(w) over all frequencies is

equal to unity. For conductors, the plasma frequency sum rule (7.122) still holds,

but the second sum rule (sometimes called a superconvergence relation) has an

added term -27r
2
cr(0)/N, on the right hand side (see Problem 7.15). These

optical sum rules and several others are discussed by Altarelli et al.*

(7.122)

(7.123)

* M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B6,

4502 (1972).
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7.11 Arrival of a Signal After Propagation Through a Dispersive Medium

Some of the effects of dispersion have been considered in the previous sections.

There remains one important aspect, the actual arrival at a remote point of a

wave train that initially has a well-defined beginning. How does the signal build

up? If the phase velocity or group velocity is greater than the velocity of light in

vacuum for important frequency components, does the signal propagate faster

than allowed by causality and relativity? Can the arrival time of the disturbance

be given an unambiguous definition? These questions were examined authorita-

tively by Sommerfeld and Brillouin in papers published in Annalen der Physik in

1914.* The original papers, plus subsequent work by Brillouin, are contained in

English translation in the book, Wave Propagation and Group Velocity, by

Brillouin. A briefer account is given in Sommerfeld's Optics, Chapter III. A
complete discussion is lengthy and technically complicated. We treat the

qualitative features and the main points. The reader can obtain more detail in

the cited literature.

For definiteness we consider a plane wave train normally incident from

vacuum on a semi-infinite uniform medium of index of refraction n(<o) filling the

region x>0. From the Fresnel equations (7.42) and Problem 7.12 the amplitude

of the electric field of the wave for x>0 is given by

u(x, t)=£ [TT^)]
A(a>)e,k(<

° )x""
d(° (7 - 124)

where

A(a))=J-
f iii(0, Oe*' dt (7.125)

is the Fourier transform of the real incident electric field U;(x, evaluated just

outside the medium, at x = 0". The wave number k(o)) is

k(co) = "n(w) (7.126)

and is generally complex, with positive imaginary part corresponding to absorp-

tion of energy during propagation. Many media are sufficiently transparent that

the wave number can be treated as real for most purposes, but there is always

some damping present. [Parenthetically we observe that in (7.124) frequency,

not wave number, is used as the independent variable. The change from the

practice of the previous Sections 7.8 and 7.9 is dictated by the present emphasis

on the time development of the wave at a fixed point in space.]

* A Sommerfeld, Ann. Phys. 44, 177 (1914). L. Brillouin, Ann. Phys. 44, 203
(1914).
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(a) General Properties of A(co)

In order to discuss general aspects of the propagation we must know a little

about A(a>) as a function of complex o>. Suppose that the incident wave has a

well-defined front edge that reaches x = at ( = 0. Then it is true that

1^(0,0 = 0, forf<0 (7.127)

This condition, together with certain mathematical requirements that are

physically reasonable, is both necessary and sufficient to assure that A(a>) is

analytic in the upper half of the <d plane. The argument is entirely similar to the

proof that the representation (7.112) implies analyticity of e(a>) in the upper half

a) plane. In the lower half w plane A(o>) will have singularities determined by the

exact form of Ui(0, t). The behavior for |ft)|—»oo is governed by the way in which

Ui(0, t) varies at very short times. For example, if

Mi(0,t)->^, for t-*0
ml

then (7.128)

A(co)->^-(- ) , for |o>|—>oo
277X0)/

(b) General Properties of n(w) in the Complex o> Plane

The characteristics of the propagation obviously depend on the index of

refraction n(o>) and detailed results require specification of a definite model.

Some features follow, however, from general properties of n(o>)—its domain of

analyticity and its behavior as |co|—»oo. For simplicity we discuss the simple

classical model for n 2
(co) described in Section 7.5, with only one resonant

frequency. The dielectric constant e(o>) = n
2
(o)) is thus of the form,

n
2
(co) = l+ 2

°*
2

. (7.129)
o) — ft) -ia>7

where o) is the resonant frequency, 7 is the damping constant (7^0), and o)p is

the plasma frequency (7.60) of the medium. The singularity structure of n(o)) is

determined by the location of the poles and zeros of n
2
(co) in the o) plane. The

zeros of n
2
(o)) are given by

17 17 • 222
ft)a= ft)i

_
2 5 ft)b = — o)i— 2> with ft)i =ft) +ft)P

—

The poles of n
2
(co) are located at

*Y *Y u 2 2 7
2

ft)c = ft)2—y 1 ft)d= —ft)2~ 2 > where o)2 = co —^~

The index of refraction can thus be written as

.Mi/2

(7.130)f
, [ (ft)-ft)q)(ft)-n(w)= h 77

L(ft)-ft)c)(ft)- ft)d)
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Fig. 7.15 Branch cuts defining the singularities of the simple one-resonance model

(7.129) for the index of refraction n(o>). For transparent media the branch cuts lie much
closer to (but still below) the real axis than shown here. More realistic models for n((o)

have more complicated cut structures, all in the lower half w plane. The crosses

mark the possible locations of singularities of A(o>).

The branches of the square roots are defined so that n(o>)—»+l for |co|— the

branch cuts are shown in Fig. 7.15. The index of refraction and also the wave

number k(co) are seen to be analytic in the upper half co plane.*

Inspection of (7.129) shows that for large frequencies the index of refraction

goes as

n(o))^l-|4, for|a>H>°c (7.131)

This result holds more generally than the model would indicate, as has been

discussed in connection with (7.59).

(c) Upper Limit for the Speed of Propagation of Light in Matter

Proof that no signal can propagate faster than the speed of light in vacuum,

whatever the detailed properties of the medium, is now straightforward. We
formally evaluate the amplitude (7.124) by contour integration. Since rt(a>)—»1

for |a>|—>o°
?
the argument of the exponential in (7.124) becomes i(o(x-ct)/c for

large co, and the closing of the contour can be done in the upper half plane for

x>ct and the lower half plane for x<ct. With n(co) and A(a>) analytic in the

upper half to plane the whole integrand in (7.124) is analytic there, and Cauchy's

* The branch cuts are chosen so that Re n(io)>0 on the real axis. Note that n(o>) as

well as e(a>) satisfies the Kramers-Kronig relations (7.120).
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theorem shows that the integral vanishes. We have thus proved that

u(x, = 0, for(x-cr)>0 (7.132)

provided A(o>) and n(a)) are analytic for Im a>>0 and n(w)—»1 for |co|—»«>. The
specific model for n(a)) does not enter. Equation (7.132), together with (7.127),

establishes that no signal propagates with a velocity greater than c, whatever the

medium.

(d) Method of Stationary Phase

In order to go beyond the proof of causality, it is necessary to have some way
of estimating the amplitude (7.124) at various times t>x/c. Sommerfeld and

Brillouin used the method of steepest descent* to evaluate (7.124) in various

regimes. We will use the less rigorous and less accurate method of stationary

phase to gain a qualitative understanding. In the book cited earlier, Brillouin

compares the two approaches.

The method of stationary phase addresses itself to the problem of evaluating

approximately integrals of the general type,

(7.133)

where F(co) is a function that varies relatively slowly with <o and (j>(a>) is a phase

that is generally large and rapidly varying. Both F(w) and c/>(w) may depend on

parameters that are held constant during the integration. The rapid oscillations

of e
l4>

over most of the range of integration mean that the integrand averages to

almost zero. Exceptions to this cancellation occur only when <f>(o>) is "station-

ary," that is, when <f>(a)) has an extremum. The integral can therefore be

estimated by finding the places where </>((d) has a vanishing derivative, evaluating

approximately the integral in the neighborhood of each of these points, and

summing the contributions.

Let 4>((o) have a vanishing first derivative at o) = o)s . In the neighborhood of this

point, c/)(o>) can be expanded in a Taylor series,

(f>(a>) = <l>s +iW(a)-a>s)
2+- • (7.134)

Here the subscript s is used to indicate
<f>

or its second derivative evaluated at

o) = (i)s . Since F(co) is slowly varying, the contribution to the integral from this

stationary phase point is approximately

The remaining integral can be recognized as a Fresnel integral (see Magnus and

* See Jeffreys and Jeffreys, Section 17.04, or Born and Wolf, Appendix III, for a

discussion of this method, originally developed by P. Debye.
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Oberhettinger, p. 96). The result is

h^^0
,2

FMe^ (7.135)

where o>s is defined by (dc/>/dto) = at o> = a>s . If there is more than one point of

stationary phase on the range of integration, the integral is approximated by a

sum of terms like (7.135).

The stationary phase approximation (7.135) agrees with the leading term of

the method of steepest descent provided c/>(a>) is real. If c/> is complex, however,

the stationary phase method can yield erroneous results. In the present problem

4> involves the index of refraction n(co), which is generally complex. Neverthe-

less, we will use the method of stationary phase to gain a qualitative understand-

ing of the development of the signal. The more careful considerations of

Brillouin give an a posteriori justification to our somewhat cavalier approach.

(e) Qualitative Discussion

The amplitude (7.124) can be viewed as having the form (7.133) with a phase,

(f)(0))
= k(o))x-(ot (7.136)

with k(o>) given by (7.126). The points of stationary phase defined by d</>/dto =

satisfy the condition,

^= -, for ct>x (7.137)
da) x

Figure 7.16 shows the left-hand side of (7.137) as a function of frequency for the

simple one-resonance model (7.129) with 7 = 0. The left-hand side of (7.137) is

c/ttg, where vg is the group velocity at frequency co. With 7 = the group velocity

is less than c for all co, except for co < <x> < V to
2+ wp

2
, where it is purely imaginary.

For 7^0 the behavior in this region is more involved, as is shown in Fig. 7.13,

but we ignore this complication here. Also shown in Fig. 7.16 is ck/o) = c/vp .

The frequency region that contributes to the amplitude at time t is determined

graphically by finding the intersection of a horizontal line with ordinate (ct/x)> 1

with the solid curve in Fig. 7.16. For times immediately after t = x/c the point of

stationary phase is seen to be at a>—»oo. With the approximation (7.131) for the

behavior of n(co) for large co we find the point of stationary phase given by

•"^V^FftS (7 ' 138)

and its negative, of course. The stationary phase approximation (7.135) gives

M(x
'°^(f) (V/ e^^^^^^+cc. (7.139)
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Fig. 7.16 The functions c dk/d(o = c/v% and n(a)) = ck/(*) = c/v
p
versus frequency for a

simple one-resonance model (7.129) without damping for the index of refraction. The
behavior far from resonance is physically reasonable, but not in the interval, ajo<o><

Va>o
2
+a>

p

2
(this is the interval between o>2 and a> x in Fig. 7.15). Points of stationary phase

are given by the intersection of the horizontal line (ct/x) with the solid curve c dk/dto. For

each point of stationary phase co = a)s there is also one at co = -a>s since the plotted

functions are even in cu.

where

^ =^1=^0 (7140)

In writing (7.139) we have made use of the specific behavior (7.128) for A(co) at

large to. We reserve detailed comment on (7.139) until the next section where a

more accurate result is derived. It suffices to note that the initial amplitude is

very small, and oscillates with a (usually very high) frequency that depends only

on the gross properties of the medium (wp ) and the distance traveled (x = ct ).

This part of the signal is called the first or Sommerfeld precursor and is the earliest

arrival.

At later times, as the horizontal line ct/x in Fig. 7.16 rises, the point of

stationary phase moves to lower frequencies, into the region where the detailed
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behavior of n(a>) and the location of its poles and branch cuts needs to be

considered for an accurate description of the amplitude. In general the amp-

litude remains very small, however. Only when the elapsed time reaches

tl
= k'(0)x =

?@)x
(7.141)

c

is there a qualitative change. This time marks the arrival of the second or

Brillouin precursor. The reason for the qualitative change can be seen from Fig.

7.16. At t= U the lower region of the dk/dw curve is intersected for the first time

and a> = becomes a point of stationary phase. This by itself would cause a

qualitative change, making the amplitude oscillate with a considerably longer

period than at earlier times. The most important aspect, however, is the

vanishing of the second derivative of k(o>) at co = 0.* This means that </>" = 0. The
stationary phase result (7.135) gives an infinite answer in such circumstances.

The amplitude is not infinite, of course, but can be supposed to be much larger

than before and of relatively long period at t — U. In order to obtain even an

approximate result for the second precursor, it is necessary to go beyond the

quadratic expansion (7.134). We examine this briefly below.

After the arrival of the second precursor there are, in our simple model, two

points of stationary phase so that the amplitude becomes more complicated. Of
more importance is the fact that A(co) begins to dominate the behavior of the

integral (7.124). It becomes inappropriate to use the method of stationary phase.

The signal has arrived; the amplitude behaves in time as if it were the initial

wave propagating with the appropriate phase velocity, as is shown below.

The qualitative features of the propagation of a signal are now clear. Some
minute part of the wave propagates with the velocity of light in vacuum. This

initial signal, called the first or Sommerfeld precursor, is very small and oscillates

rapidly. At a later time U (7. 141) there is a sudden change when co = becomes a

point of stationary phase. The second or Brillouin precursor, of greater

amplitude and longer period, arrives. At later times, depending on the details of

n(cj) and the incident wave, the signal settles down to the expected steady-state

behavior. It is evident that the exact build up of the signal is a complicated

matter, that causality and relativity are obeyed regardless of the detailed

dispersive properties of the medium, and that the arrival of the signal cannot be

given an unambiguous definition. The general usage is to take the group velocity

of the dominant frequency component as the signal velocity and velocity of

energy transport. This suffices in most circumstances, but with sensitive enough

detectors the signal velocity can evidently be pushed close to the velocity of light

in vacuum, independent of the medium.

* For more elaborate models of the index of refraction the vanishing of d
2
k/du)

2
at

a point of stationary phase may occur for a)^ 0. The discussion can be modified to handle

such cases, but we will not bother to do so here. The reader is given the opportunity in

Problem 7.17.
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(/) First Precursor

A more accurate expression than (7.139) for the amplitude at early times can

be obtained following Sommerfeld. We have seen that the amplitude at times

soon after t= to is determined by the behavior of the integrand in (7.124) at large

frequencies. It is thus plausible to distort the path of integration in (7.124) into a

semicircle of large radius R in the upper half co plane. On this contour the

leading behavior (7.128) and (7.131) for A(co) and n(w) can be used to write

(7.124) in the approximate form,

ai
u(x, t)~ 4>-^r e-u-v*" (7.142)

Z77I J 0)

where the contour is taken in a positive (counterclockwise) sense around the

whole circle of radius R. The extra piece added by extending the contour to the

full circle is seen to be vanishingly small for large enough R, provided (t-t )>0.

A change of variable w = -i(t— t )o>, transforms (7.142) into

U(X, t)-^ (t- to)'

^W -w-[€(t-t )/w]

w

The integral is identifiable as proportional to an integral representation of a

Bessel function if m is an integer. The specific form is

where the contour is around the origin. The amplitude (7.142) is therefore

(t—to\ m/2

—J Jm[2V?(P^)] (7.144)

Comparison of this expression with the approximation (7.139) of the method of

stationary phase shows agreement provided we substitute the asymptotic form

(3.91) for the Bessel function in (7.144). Equation (7.144) gives a description

right down to t=t . The method of stationary phase breaks down very close to

t= to because the point of stationary phase moves to infinity and the steps from

(7.133) are then not valid.

Before examining the behavior of the first precursor in detail, we remark on

why (7.144) is only approximate. The reader's faith in Cauchy's theorem may be

so great that he imagines that no approximation has been made. All we did was

distort the contour and consider the integrand in a limit appropriate to that

contour! But there lies the flaw. The exponential in (7.142) becomes very large

in the upper half plane for large (t-t ) or large radius R. This means that

nonleading terms in A(co) and n(co) make contributions that cannot be neglected.

For example, the next term in the expansion of Ui(0, t) in (7.128) might go as
jm+i wou j (j gjve a contribution to A(a>) varying as (l/o>)

m+2 and lead to a

term like (7.144) with m replaced by m + 1. Evidently (7.144) describes the
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amplitude only for times (r-fo) small compared to the dominant period present

in the incident wave.

As remarked already, the first precursor is small and very rapidly oscillating,

with a frequency that depends only on the gross properties of the medium and

the distance traveled, and not at all on the frequency of the incident wave. The
frequency of the oscillations of the precursor decreases with time because of the

square root argument of the Bessel function. If the local frequency coi(t) is

defined in terms of a half period between successive zeros of Bessel function, one

finds o>i(0 — Vf/(t-tb), with the initial value, o>i(0) — £. The amplitude grows very

slowly in time, going as (t—

1

)

1/4
for m = 1. The frequency parameter £, given by

(7.140), depends on the plasma frequency of the medium. If all the electrons in

each atom are assumed to contribute, the square of the plasma frequency is

2 4irNZe2

(oP
=

m

where Z is the atomic number and N is the number of atoms per unit volume. In

terms of the density p in gm/cm3
, atomic number Z and atomic weight A,

Wp = 4.38>^xl0 16
sec"

1

or

ftcop = 28.8^/^eV

Some representative values are:

Air at N.T.P., cop - 1 . 1 x 10
15

sec"
1

(ha>p - 0.73 eV)

Graphite, cop -3.9x 10
16

sec
-1

(ftwp -25.0 eV)

Water, a>p
- 3.3 x 10

16
sec"

1

(ha)p -21.0 eV)

With a typical value of cop — 10
16
sec"

1

and a distance of 1 mm (corresponding to

2000 wavelengths of visible light), £ is of the order of 1.7x 10
20

sec
-1

. This

corresponds to a wavelength of 10"9
cm, a tenth the linear dimension of atoms.

Since our treatment is based on a continuum description of the medium, the

rapid oscillations contained in (7.144) cannot be expected to be quantitatively

reliable. As time goes on the frequency decreases in a square root fashion. In

spite of this decrease in frequency, it is evident that, for our example at least,

there are very many cycles of the precursor before any sizable fraction of a

period of the incident wave has elapsed, only provided that its wavelength is in

the optical range or longer.

(g) Second Precursor

The second or Brillouin precursor occurs when the elapsed time lies in the

neighborhood of U (7.141). As can be seen from Fig. 7.16, this is the time at
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which, in the method of stationary phase, the integral receives its dominant

contribution from around co^O.* Since a> = is a point where (/>", as well as <f>',

vanishes, the simple result (7.135) is inadequate. To improve on this we expand

(/>(co), (7.136), around o> = 0, keeping terms up to cj
3

:

*( <tt )
saew (f 1-t)+|@)y (7.145)

For the simple model (7.129) of the index of refraction the third derivative of

k(o>) is

(
d3
k \ 3o)p

2

VdcoVo cn(0)w
4

The amplitude (7.124) is therefore given approximately by

U ( Y A— 2A(0) f M« 1
-t)+i(^W3k/A.3)a»» jMU,U

l + n(0)J-
C

By a change of variable this can be written as

w(x, t)-
4A(0)

l + n(0)

3z
1/3 r- r , v

* v

Jo

cos [iz(T±«j

where

_ 2v/2]t-t 1
|

3/2

V d(x)
2
)

(7.146)

(7.147)

and the positive (negative) sign in the integrand is to be taken for t<U (t>ti).

The integral in (7.146) is an Airy integral, first considered by G. B. Airy (1838)

in his studies of the intensity of light in the neighborhood of a caustic (relevant

Fig. 7.17 The approximate behavior of the second or Brillouin precursor as a function

of time. The amplitude is given by (7.146). The neglected contribution from the point of

stationary phase at <o>\/a>o
2 + <Op

2
in Fig. 7.16 will superpose a high frequency ripple on

the Airy integral behavior shown here.

* There is also a point of stationary phase above o> , but the contribution from that

region is much smaller than from o> — and will be neglected.
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for the rainbow). It can be expressed in terms of Bessel functions of order |, as

follows:

From the properties of the Bessel functions in (7.148) the second precursor can

be seen to have decaying exponential character for times earlier than t=U [(ti~ t)

increasing], and an oscillatory nature for (t-ti) positive.* The amplitude in the

neighborhood of t=U is plotted in Fig. 7.17. The behavior is like that of a

quantum-mechanical wave function at a classical turning point of the motion.

The mathematics is, in fact, essentially the same even though the physics is

different.

From the position of the first zero of the amplitude at t>U the beginning

frequency of the second precursor can be estimated as o)n(0) ~ 7r(9xk"')~
1/3

. Using

the simple one-resonance model with co — cop
— 10

lb
sec

1

and x=l mm we find

ton(0)~ 10
14

sec
-1

. This value is extremely crude and also specific to the model

and parameters chosen, but it does illustrate that the second precursor is of much
lower frequency than the first. Since the dependence on distance of the

frequency of the first and second precursor is as x and x
-1/3

,
respectively, the

qualitative difference is magnified at large distances of travel in the medium.

(h) Steady-State Signal

After the arrival of the precursors the amplitude ultimately settles into a

steady state related directly to the incident wave. To understand how this

happens, consider the singularity structure shown in Fig. 7.15, and imagine the

path of integration in (7.124) deformed, so that it is wrapped around the

singularities of A(co) (the crosses in Fig. 7.15) and the branch cuts of n(o>). The
integrand in (7.124) contains a factor e

,ol(t~ to\ The contributions from the contour

integrals around the branch cuts of n(o>) will thus contain a factor

*The particular results, (7.146) and (7.148) depend on A(0)^0. If A(0) = 0, the

expressions are modified in detail, but are qualitatively the same. Specifically, if A'(0)^0,
A(0) in (7.146) is replaced by iA'(O), the factor (3z/xk"') is raised to the § power instead of

the 3 power, and the integral is replaced by

The behavior of this amplitude on either side of t = U is similar to that shown in Fig. 7.17.

(7.148)
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If the singularities of A(a>) are all closer to the real axis than the cuts of n(co)

(corresponding to one or more almost monochromatic waves incident), the

singularities of A(ca) will ultimately dominate in the integral over those of n(o>).

The amplitude will then be given accurately by an integration only over the

contours wrapped around the singularities of A(w).

For example, we consider an incident wave of the form

Ui(0, t) = 0(t)e~
et

sin (0- vt) (7. 149)

where 0(f) is the step function, ($ and v are constants and e is assumed

infinitesimal. The Fourier transform (7.125) of this incident wave is

A(6>)=-r-(— r-^~) (7 - 15 °)

with simple poles at a) = ±v—ie. The contribution of these two poles to the

integral (7.124) yields the amplitude,

i[k(v)x-vt+$-(ir/2)j

u(x, t)
=

Y+rty)
+CX

-
(7 ' 151)

This wave corresponds to an incident monochromatic wave of frequency v being

reduced in amplitude by the refraction at the surface of the medium and then

propagating with its phase velocity vp = v/k(v). If absorption occurs the amp-

litude is diminished as it travels, according to the complex nature of n(v).

(i) Experimental Observations on Precursors

The approximate results for the first precursor (7.144) and the second

precursor (7.146) and also the arrival of the main signal have been verified by

accurate numerical calculations for typical situations with a sinusoidal incident

wave, and the simple one-resonance model for e(o>), with some small amount of

damping.* At very early times the initial signal is given quite precisely by

Sommerfeld's Bessel function approximation (7.144). The amplitude is very

small and of high frequency. The Brillouin precursor, when it arrives at time U

(7.141), is of the form (7.146), but with a high frequency ripple superposed as

expected. The incident signal, that is, something resembling the wave form at

x = 0, begins to be distinguishable at a time given by t = x/ug , where vg is the

group velocity associated with the incident frequency, and is fully visible soon

after.

More interesting is the experimental observation of the Sommerfeld and

Brillouin precursors reported by Pleshko and Palocz.f A coaxial transmission

line filled with a longitudinally magnetized ferrimagnetic material has, for its

TEM mode, a dispersion characteristic that is almost the same as that shown in

* R. N. Cahn, private communication.

tP. Pleshko and I. Palocz, Phys. Rev. Letters 22, 1201 (1969); IBM Research

Division report RC 2488 (May 27, 1969).
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Fig. 7.16, provided the ''vacuum" speed c is scaled to c' = c/\fer , er being the

dielectric constant in the absence of magnetization. The resonant and plasma

frequencies are given in terms of the internal magnetic field Hi and saturation

magnetization Ms as co
2 = Y

2(Hi+47rMs)Hi and a)p

2 = (47rMs/Hi)<o
2

, where 7 is

the gyromagnetic ratio. Variation of the applied magnetic field can thus be used

to change the dispersion properties of the system. The material employed was

aluminum-doped yttrium garnet. In one series of experiments a sinusoidal wave

train with frequency v/2ir (in the notation of (7.149)) of 0.625 GHz and a rise

time of approximately 1 nsec was incident. The results for three different

appplied magnetic fields are shown in Fig. 7.18. At 20 gauss the frequency v lies

between co and y/a>
2
+(op

2
and therefore the main signal does not propagate. But

the Sommerfeld and Brillouin precursors are visible in Fig. 7.18a. At 100 gauss,

200 Gauss

(c)

Fig. 7.18 Experimental results on Sommerfeld and Brillouin precursors in dispersive

media. A sinusoidal signal with a very short rise time is applied to a garnet-filled coaxial

transmission line whose dispersion is similar to that of Fig. 7.16. The frequencies tu and
<o

p depend upon the applied magnetic field, (a) First and second precursors visible, but
sinusoidal signal cut off. (b) Second precursor (compare Fig. 7.17), main signal still cut

off. (c) Second precursor followed by propagating signal. (Figure courtesy of P. Pleshko
and I. Palocz.)
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the main signal still does not propagate; conditions are such that, while the first

precursor is lost in the noise, the second is clearly visible and looks satisfyingly

similar to the wave form of Fig. 7.17. The arrival times agree with the time U
within errors. At 200 gauss, where o> — <op , the applied frequency v lies below

o) . In Fig. 7.18c, the Brillouin precursor is seen, followed immediately by

the propagating main signal.

While there is little reason to question the fundamental basis of the

Sommerfeld-Brillouin treatment of signal propagation in a dispersive medium, it

is nonetheless satisfying to see experimental evidence that the approximate

methods of solution (stationary phase or steepest descent) preserve the essen-

tials of the physics and mathematics. The application of the theory to the arrival

of "whistlers," with their unusual dispersion characteristic (Fig. 7.10), is left to

the problems.
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PROBLEMS

7.1 For each set of Stokes parameters given below deduce the amplitude of the electric

field, up to an overall phase, in both linear polarization and circular polarization bases

and make an accurate drawing similar to Fig. 7.4 showing the lengths of the axes of

one of the ellipses and its orientation.

(a) So = 3, s 1
= -l, s2 = 2, s3 = -2

(b) s = 25, s,= 0, s2 = 24, s3 = 7

7.2 A plane wave is incident on a layered interface as shown in the figure below. The
indices of refraction of the three nonpermeable media are nu n2 , n3 . The thickness of

the intermediate layer is d. The other media are each semi-infinite.

(a) Calculate the transmission and reflection coefficients (ratios of transmitted and
reflected Poynting's flux to the incident flu;:), and sketch their behavior as a function of

frequency for n x
= 1, ^ = 2, n3 = 3; n x

= 3, n2 = 2, n3 =l; and n x
= 2, n^ = A, n3 =l.

(b) The medium n x is part of an optical system (e.g., a lens); medium n 3 is air (n3 = 1).

It is desired to put an optical coating (medium n2 ) on the surface so that there is no
reflected wave for a frequency a> . What thickness d and index of refraction n2 are

necessary?

7.3 Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable,
lossless dielectric with index of refraction n are parallel and separated by an air gap
(n= 1) of width d. A plane electromagnetic wave of frequency o> is incident on the gap
from one of the slabs with angle of incidence i. For linear polarization both parallel to

and perpendicular to the plane of incidence.

Problem 7.2
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(a) calculate the ratio of power transmitted into the second slab to the incident power
and the ratio of reflected to incident power;

(b) for i greater than the critical angle for total internal reflection, sketch the ratio of

transmitted power to incident power as a function of d measured in units of

wavelength in the gap.

7.4 A plane polarized electromagnetic wave of frequency o> in free space is incident

normally on the flat surface of a nonpermeable medium of conductivity a and
dielectric constant e.

(a) Calculate the amplitude and phase of the reflected wave relative to the incident

wave for arbitrary a and e.

(b) Discuss the limiting cases of a very poor and a very good conductor, and show that

for a good conductor the reflection coefficient (ratio of reflected to incident intensity) is

approximately

c

where 8 is the skin depth.

7.5 A plane polarized electromagnetic wave E = E
i
e

il"'~ ia" is incident normally on a flat

uniform sheet of an excellent conductor (a»a>) having a thickness D. Assuming that in

space and in the conducting sheet jm = €= 1, discuss the reflection and transmission of

the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, correct to the

first order in (<o/o-)
1/2

, are:

Er= -(l-e- 2x
)

E
;

(l-e-
2K

) + y(l + e-
2y

)

Et= 2ye~
x

Et
(l-e-) + 7(l + e-

2x
)

where

A = (l-i)D/8

and 8 = c/V^ttokt is the penetration depth.

(b) Verify that for zero thickness and infinite thickness you obtain the proper limiting

results.

(c) Show that, except for sheets of very small thickness, the transmission coefficient is

8(Re 7)V 2D/8

l-2e" 2D/8 cos(2D/8) + <f

Sketch log T as a function of (D/8), assuming Re 7= 10
2

.

Define "very small thickness."

7.6 A plane wave of frequency co is incident normally from vacuum on a semi-infinite

slab of material with a complex index of refraction n(o>) [n
2
(o>) = €(o>)].

(a) Show that the ratio of reflected power to incident power is

l-n(a)) 2

l + n(o>)
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while the ratio of power transmitted into the medium to the incident power is

4 Re n(o>)

|l + n(a))|
2

(b) Evaluate Re [ia>(E • D* - B • H*)/8tt] as a function of (x, y, z). Show that this rate

of change of energy per unit volume accounts for the relative transmitted power T.

(c) For a conductor, with n
2 = l + i(47ro7a>), cr real, write out the results of (a) and (b)

in the limit a>«o\ Express your answer in terms of 5 as much as possible. Calculate

s Re (J* • E) and compare with the result of (b). Do both enter the complex form of

Poynting's theorem?

7.7 The time dependence of electrical disturbances in good conductors is governed by
the frequency-dependent conductivity (7.58). Consider longitudinal electric fields in a

conductor, using Ohm's law, the continuity equation, and the differential form of

Coulomb's law.

(a) Show that the time-Fourier-transformed charge density satisfies the equation

[4rra((o) - iw]p(x, co) =

(b) Using the representation o-(co) = o- /(l - iarr), where a = (o
p

2
t/4tt and t is a damping

time, show that in the approximation o)
pt»1 any initial disturbance will oscillate with

the plasma frequency and decay in amplitude with a decay constant A = 1/2t. Note that

if you use (j(a>) — o-(0) = o- in part (a), you will find no oscillations and extremely rapid

damping with the (wrong) decay constant Aw = 47ro- .

[W. M. Saslow and G. Wilkinson, Am. J. Phys. 39, 1244 (1971)].

7.8 A stylized model of the ionosphere is a medium described by the dielectric

constant (7.59). Consider the earth with such a medium beginning suddenly at a

height h and extending to infinity. For waves with polarization both perpendicular to

the plane of incidence (from a horizontal antenna) and in the plane of incidence (from

a vertical antenna),

(a) Show from Fresnel's equations for reflection and refraction that for co>o)
p
there is

a range of angles of incidence for which reflection is not total, but for larger angles

there is total reflection back toward the earth.

(b) A radio amateur operating at a wavelength of 2 1 meters in the early evening finds that

she can receive distant stations located more than 1000 km away, but none closer.

Assuming that the signals are being reflected from the F layer of the ionosphere at an

effective height of 300 km, calculate the electron density. Compare with the known
maximum and minimum F layer densities of ~ 2 x 10

6 cm 3

in the daytime and
~ (2-4) x 10

5

cm"
3

at night.

7.9 A simple model of propagation of radio waves in the earth's atmosphere or

ionosphere consists of a flat earth at z = and a nonuniform medium with e = e(z) for

z>0. Consider the Maxwell equations under the assumption that the fields are

independent of y and can be written as functions of z times e
i(kx~M)

.

(a) Show that the wave equation governing the propagation for z>0 is

d 2F^WU)F=0
where

q
2
(z) = ^e(z)-k 2
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and F=Ey
for horizontal polarization, and

2 , , o>
2

. , 1 d 2
e 3 /de\ 2

. 2

q
2(z)=^e(z) +-^-^(-)-k 2

with F=VeEz for uerticaJ polarization.

(b) Use the WKB approximation to treat the propagation of waves directed vertically

into the ionosphere (k = 0), assuming that the dielectric constant is given by (7.59) with

a plasma frequency oj
p (z) governed by an electron density like that shown in Fig. 7.11.

Verify that the qualitative arguments in Section 7.6 hold, with departures in detail only

for o)~<o p>max .

(c) Using the WKB results of (b) and the concepts of the propagation of a pulse from
Section 7.8, define an effective height of the ionosphere h'((o) by calculating the time T
for a pulse of dominant frequency <o to travel up and be reflected back (h'= cT/2). [The

WKB approximation is discussed in most books on quantum mechanics.]

7.10 Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielec-

tric. The dielectric is characterized by a tensor e^, but if coordinate axes are chosen as

the principal axes the components of displacement along these axes are related to the

electric-field components by D
i
= e

i
Ei (i= 1, 2, 3), where €

t
are the eigenvalues of the

matrix €iy .

(a) Show that plane waves with frequency w and wave vector k must satisfy

kx(kxE)+^D =

(b) Show that for a given wave vector k = kn there are two distinct modes of

propagation with different phase velocities v = <o/k which satisfy the Fresnel equation,

3 M 2

kv 2-v?
U

where v{
= c/Ve^ is called a principal velocity, and n

t
is the component of n along the ith

principal axis.

(c) Show that DQ • D b = 0, where Da ,
Db are the displacements associated with the two

modes of propagation.

7.11 An approximately monochromatic plane wave packet in one dimension has the

instantaneous form, u(x, 0) = /(x)e
ik

°
x

, with f(x) the modulation envelope. For each of

the forms f(x) below, calculate the wave-number spectrum |A(k)|
2
of the packet,

sketch \u(x, 0)|
2 and |A(k)|

2
, evaluate explicitly the rms deviations from the means, Ax

and Ak (defined in terms of the intensities \u(x, 0)|
2 and |A(k)|

2

), and test inequality

(7.82).

(a) f(x) = Ne-alxln

(b) f(x) = Ne-M*

(c) /(x) =
{

N(1 " a|x|) f<*«M <:l

for a |x|>l

(d) f(x) = \
N for |x|<aW JKX>
10 for \x\>afor \x\>a

7.12 A homogeneous, isotropic, nonpermeable dielectric is characterized by an index of

refraction n(co) which is in general complex in order to describe absorptive processes.
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(a) Show that the general solution for plane waves in one dimension can be written

u(x, =^== J
du> e-

i<- ,

[A(a))e
iWc)n(u)x

+B(<o)e-
i(w/c)n(")x

]

where u(x, t) is a component of E or B.

(b) If u(x, t) is real, show that n(-to) = n*(to).

(c) Show that, if u(0, t) and du(0, 0/dx are the boundary values of u and its derivative

at x = 0, the coefficients A(to) and B(to) are

(AMI i i r dte.4 M(Oj0T^_^ (o
,

l

lB(o))i 2>/2^J_. L ft>ri(a>)dx J

7.13 Consider the nonlocal (in time) connection between D and E,

D(x, t) = E(x, t)+ Jdr G(t)E(x, t-r)

with the G(t) appropriate for the single-resonance model,

e(to) = l + o)p
2
(a>o

2— o>
2— 17a))

-1

(a) Convert the nonlocal connection between D and E into an instantaneous relation

involving derivatives of E with respect to time by expanding the electric field in the

integral in a Taylor series in t. Evaluate the integrals over G(t) explicitly up to at least

d
2
E/dt

2
.

(b) Show that the series obtained in (a) can be obtained formally by converting the

frequency-representation relation, D(x, to) = e((o)E(x, to) into a space-time relation,

D(x, = e(i|)E(x, t)

where the variable to in e(to) is replaced by to—»i(d/d0-

7.14 Use the Kramers-Kronig relation (7.120) to calculate the real part of e(to), given the

imaginary part of e(to) for positive to as

(a) Im € = A[0(to-to 1)-0(to-to2)], co2 >co 1 >0

(b) Im e = z 2 ~t£t7 2 2
(to -to ) +7 to

In each case sketch the behavior of Im e(to) and the result for Re e(to) as functions of

to. Comment on the reasons for similarities or differences of your results as compared
with the curves in Fig. 7.8. The step function is 6 (x)=0, x<0 and 6 (x)= 1, x>0.

7.15 Discuss the extension of the Kramers-Kronig relations (7. 120) for a medium with a

static electrical conductivity tr. Show that the first equation in (7.120) is unchanged,
but that the second is changed into

. , , Attct 2o>„f"[Re€(o)')-l] . ,Im e(to)= PI jj
——

2
—

- da)
tO 77 Jo (x) —(x)

[Hint: Consider e(to)-47rt7i/to as analytic for lmto>0.]
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7.16 (a) Use the relation (7.113) and the analyticity of e(ai) for Im co>0 to prove that

on the positive imaginary axis e(co) is real and monotonically decreasing away from the

origin toward unity as a)-+ioo, provided Ime^O for real positive frequencies.

(b) With the assumption that Im e vanishes for finite real (o only at a) = 0, show that

e(a>) has no zeros in the upper half to plane.

(c) Write down a Kramers- Kronig relation for l/e(a>) and deduce a sum rule similar to

(7.122), but as an integral over Im[l/e(co)].

(d) With the one-resonance model (7.107) for e(o>) determine Im e(<o) and Im [l/e(o>)]

and verify explicitly that the sum rules (7.122) and (c) are satisfied.

7.17 Equation (7.67) is an expression for the square of the index of refraction for waves
propagating along field lines through a plasma in a uniform external magnetic field.

Using this as a model for propagation in the magnetosphere, consider the arrival of a

whistler signal (actually the Brillouin precursor and subsequently of Section 7.11).

(a) Make a reasonably careful sketch of c dk/da), where k = wn(w)/c, for the positive

helicity wave, assuming o)
p
/a>B 2:l. Indicate the interval where cdk/do) is imaginary,

but do not try to sketch it there!

(b) Show that on the interval, 0<a><coB , the minimum of c dk/dw occurs at co/a>B
—

provided to
p
/coB >l. Find approximate expressions for c dk/da) for o> near zero and for

co near o>B .

(c) By means of the method of stationary phase and the general structure of the

solution to Problem 7.12(a), show that the arrival of a whistler is signaled by a rising

and falling frequency as a function of time, the falling frequency component being the

source of the name.
(d) (Optional) Consider the form of the signal in the Brillouin precursor. Show that it

consists of a modulated waveform whose envelope is the Airy integral shape found by
Brillouin and whose high frequency is o> — <oB/4. This then evolves into a signal beating

with the two frequencies of part (c).

7.18 A charged particle (charge Ze) moves at constant velocity v through a medium
described by a dielectric function e(q, <o) or, equivalently, by a conductivity function

a(q, o>) = (ia>/4'7r)[l-€(q, a>)]. It is desired to calculate the energy loss per unit time by

the moving particle in terms of the dielectric function e(q, <o) in the approximation that

the electric field is the negative gradient of the potential and current flow obeys Ohm's
law, J(q, co) = o-(q, w)E(q, to).

(a) Show that with suitable normalization, the Fourier transform of the particle's

charge density is

(c) Starting from dW/dt = j" J - E d
3
x show that the energy loss per unit time can be

written as

p(q, o))=j^—-i8((i)-q • v)

(b) Show that the Fourier components of the electrostatic potential are

dW= Z
2
e
2 fd 3qr

dt 7T
2

J q
2 I

da) (i) Im
-€(q, o))

1
8(a>-q • v)

[This shows that Im [e(q, to)]
1

is related to energy loss and provides, by studying

characteristic energy losses in thin foils, information on e(q, co) for solids.]
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7.19 The angular momentum of a distribution of electromagnetic fields in vacuum is

given by

=
4^|d3xXX(EXB)

where the integration is over all space.

(a) For fields produced a finite time in the past (and so localized to a finite region of

space) show that, provided the magnetic field is eliminated in favor of the vector

potential A, the angular momentum can be written in the form

Jd
3xjExA+XE,(xxV)A,

j

The first term is sometimes identified with the "spin" of the photon and the second

with its "orbital" angular momentum because of the presence of the angular

momentum operator Lop=— i(xxV).

(b) Consider an expansion of the vector potential in the radiation gauge in terms of

plane waves:

A(x, = 1 J^[€x(k)ax(k)e"+c.c.]

The polarization vectors €x (k) are conveniently chosen as the positive and negative

helicity vectors €± = (1/V2)(€ X ± i€2) where €x and €2 are real orthogonal vectors in the

x-y plane whose positive normal is in the direction of k.

Show that the time average of the first (spin) term of L can be written as

Can the term "spin" angular momentum be justified from this expression? Calculate

the energy of the field in terms of the plane wave expansion of A and compare.

7.20 A circularly polarized plane wave moving in the z direction has a finite extent in

the x and y directions. Assuming that the amplitude modulation is slowly varying (the

wave is many wavelengths broad), show that the electric and magnetic fields are given

approximately by

E(x, y, z, 0- [Eo(x, y)(e1± ie2)+^(^±i^)e3

5y

where eu e2 , e3 are unit vectors in the x, y, z directions.

7.21 For the circularly polarized wave of Problem 7.20 calculate the time-averaged

component of angular momentum parallel to the direction of propagation. Show that

the ratio of this component of angular momentum to the energy of the wave is

-=±0)

Interpret this result in terms of quanta of radiation (photons). Show that for a

cylindrically symmetric, finite plane wave the transverse components of angular

momentum vanish.



8
Wave Guides
and Resonant Cavities

Electromagnetic fields in the presence of metallic boundaries form a practical

aspect of the subject of considerable importance. At high frequencies where the

wavelengths are of the order of meters or less the only practical way of

generating and transmitting electromagnetic radiation involves metallic struc-

tures with dimensions comparable to the wavelengths involved. In this chapter

we consider first the fields in the neighborhood of a conductor and discuss their

penetration into the surface and the accompanying resistive losses. Then the

problems of waves guided in hollow metal pipes and of resonant cavities are

treated from a fairly general viewpoint, with specific illustrations included along

the way. Attenuation in wave guides and Q values of cavities are discussed from

two different points of view. The earth-ionosphere system as a novel resonant

cavity is treated next, followed by a brief discussion of dielectric wave guides.

The normal mode expansion for an arbitrary field in a wave guide is presented

* In this chapter certain formulas, denoted by an asterisk on the equation number,

are written so that they can be read as formulas in MKSA units provided the first factor in

square brackets is omitted. For example, (8.12) is

The corresponding equation in MKSA form is

where all symbols are to be interpreted as MKSA symbols, perhaps with entirely different

magnitudes and dimensions from those of the corresponding Gaussian symbols.

If an asterisk appears and there is no square bracket, the formula can be interpreted

equally in Gaussian or MKSA symbols.

General rules for conversion of any equation into its corresponding MKSA form are

given in Table 3 of the Appendix.

334
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and applied to the fields generated by a localized source. The chapter ends with

further application of the normal mode expansion to the treatment of obstacles

in wave guides by variational methods.

8.1 Fields at the Surface of and within a Conductor

As was mentioned at the end of Section 7.7, the problem of reflection and

refraction of waves at an interface of two conducting media is somewhat

complicated. The most important and useful features of the phenomenon can,

however, be obtained with an approximate treatment valid if one medium is a

good conductor. Furthermore, the method, within its range of validity, is

applicable to situations more general than incident plane waves.

First consider a surface with unit normal n directed outward from a perfect

conductor on one side into a nonconducting medium on the other side. Then,

just as in the static case, there is no electric field inside the conductors. The
charges inside a perfect conductor are assumed to be so mobile that they move
instantly in response to changes in the fields, no matter how rapid, and always

produce the correct surface-charge density 2 (capital 2 is used to avoid

confusion with the conductivity <x):

n-D = [47r]2 (8.1)*

in order to give zero electric field inside the perfect conductor. Similarly, for

time-varying magnetic fields, the surface charges move in response to the

tangential magnetic field to produce always the correct surface current K:

nxH 4tt

L c
K (8.2)

:

in order to have zero magnetic field inside the perfect conductor. The other two

boundary conditions are on normal B and tangential E:

n(B-Bc ) =

nx(E-Ec ) =
(8.3)

:

where the subscript c refers to the conductor. From these boundary conditions

we see that just outside the surface of a perfect conductor only normal E and

tangential H fields can exist, and that the fields drop abruptly to zero inside the

perfect conductor. This behavior is indicated schematically in Fig. 8.1.

For a good, but not perfect, conductor the fields in the neighborhood of its

surface must behave approximately the same as for a perfect conductor. In

Section 7.7 we have seen that inside a conductor the fields are attenuated

exponentially in a characteristic length 8, called the skin depth. For good
conductors and moderate frequencies, 8 is a small fraction of a centimeter.
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E E±

n E
H

£ =

(a) (b)

Fig. 8.1 Fields near the surface of a perfect conductor.

Consequently, boundary conditions (8.1) and (8.2) are approximately true for a

good conductor, aside from a thin transitional layer at the surface.

If we wish to examine that thin transitional region, however, care must be

taken. First of all, Ohm's law J = o-E shows that with a finite conductivity

there cannot actually be a surface layer of current, as implied in (8.2). Instead,

the boundary condition on the magnetic field is

To explore the changes produced by a finite, rather than an infinite, conductivity

we employ a successive approximation scheme. First we assume that just outside

the conductor there exists only a normal electric field Ex and a tangential

magnetic field Hy, as for a perfect conductor. The values of these fields are

assumed to have been obtained from the solution of an appropriate boundary-

value problem. Then we use the boundary conditions and the Maxwell equations

in the conductor to find the fields within the transition layer and small

corrections to the fields outside. In solving the Maxwell equations within the

conductor we make use of the fact that the spatial variation of the fields normal

to the surface is much more rapid than the variations parallel to the surface. This

means that we can safely neglect all derivatives with respect to coordinates

parallel to the surface compared to the normal derivative.

If there exists a tangential Hy outside the surface, boundary condition (8.4)

implies the same Hy inside the surface. With the neglect of the displacement

current in the conductor, the Maxwell curl equations become

where a harmonic variation e
iwt

has been assumed. If n is the unit normal

outward from the conductor and £ is the normal coordinate inward into the

nx(H-Hc ) = (8.4)*

(8.5)
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conductor, then the gradient operator can be written

a

neglecting the other derivatives when operating on the fields within the

conductor. With this approximation (8.5) become:

These can be combined to yield

^(nxHc)+|l(nxHc)-0

and

n-Hc -0

where 8 is the skin depth defined previously:

(8.6)

(8.7)

8 =
'47rl\fJLcO)cr

The second equation in (8.7) shows that inside the conductor H is parallel

to the surface, consistent with our boundary conditions. The solution for Hc

Hc = Hue^y€/8
(8.9)

where Hy is the tangential magnetic field outside the surface. From (8.6) the

electric field in the conductor is approximately:

V87TO-
(l-iXnxHi^V^6

(8.10)

These solutions for H and E inside the conductor exhibit the properties

discussed in Section 7.7: (a) rapid exponential decay, (b) phase difference, (c)

magnetic field much larger than the electric field. Furthermore, they show

that, for a good conductor, the fields in the conductor are parallel to the

surfacef and propagate normal to it, with magnitudes which depend only on

the tangential magnetic field Hy which exists just outside the surface.

t From the continuity of the tangential component of H and the equation

connecting E to VxH on either side of the surface, one can show that there exists in

the conductor a small normal component of electric field, E c
• n— (ia>e/47rcr)F± , but this

is of the next order in small quantities compared with (8.10). Note that our discussion

here presupposes a tangential component of H. In situations in which the lowest order

approximation is essentially electrostatic, the present treatment is inapplicable. Differ-

ent approximations must be employed. See T. H. Boyer, Phys. Rev. A9, 68 (1974).
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From the boundary condition on tangential E (8.3) we find that just outside

the surface there exists a small tangential electric field given by (8.10),

evaluated at £ = 0:

E
H
- J^(l-0(nxH„) (8.11)

> 0770"

In this approximation there is also a small normal component of B just

outside the surface. This can be obtained from Faraday's law of induction and

gives Bx of the same order of magnitude as Ey. The amplitudes of the fields

both inside and outside the conductor are indicated schematically in Fig. 8.2.

The existence of a small tangential component of E outside the surface, in

addition to the normal E and tangential H, means that there is a power flow

into the conductor. The time-average power absorbed per unit area is

^=-^Re[n.ExH*]=[^]i±f«W (8.12)*

This result can be given a simple interpretation as ohmic losses in the body of the

conductor. According to Ohm's law, there exists a current density J near the

Fig. 8.2 Fields near the surface of a good, but not perfect, conductor. For £>0, the

dashed curves show the envelope of the damped oscillations of Hc (8.9).
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surface of the conductor:

J = aEe =
N
/^(l-i)(nxH

l
)e-"

1-'>''
(8.13)

The time-average rate of dissipation of energy per unit volume in ohmic

losses is |J • E* = (l/2cr) |J|
2

, so that the total rate of energy dissipation in the

conductor for the volume lying beneath an area element AA is

^- AA I""d|J • J* = AA£2 |H,,|
2

fV24" d£ = AA^ |H,|
2

ZCT Jo 07T Jo 107T

This is the same rate of energy dissipation as given by the Poynting vector

result (8.12).

The current density J is confined to such a small thickness just below the

surface of the conductor that it is equivalent to an effective surface current

Keflf-

Keff

=Jo
Jd{=[^]nxH| (8.14)

!

Comparison with (8.2) shows that a good conductor behaves effectively like a

perfect conductor, with the idealized surface current replaced by an equival-

ent surface current which is actually distributed throughout a very small, but

finite, thickness at the surface. The power loss can be written in terms of the

effective surface current:

This shows that 1/o-S plays the role of a surface resistance of the conductor.t

Equation (8.15), with Keff given by (8.14), or (8.12) will allow us to calculate

approximately the resistive losses for practical cavities, transmission lines, and

wave guides, provided we have solved for the fields in the idealized problem

of infinite conductivity.

8.2 Cylindrical Cavities and Wave Guides

A practical situation of great importance is the propagation or excitation of

electromagnetic waves in hollow metallic cylinders. If the cylinder has end

surfaces, it is called a cavity; otherwise, a wave guide. In our discussion of

this problem the boundary surfaces will be assumed to be perfect conductors.

t The coefficient of proportionality linking Ey and Keff is called the surface

impedance Zs . For a good conductor (8.11) yields Zs
= (l-i)/cr8, but the concept of

surface impedance obviously has wider applicability.



340 Classical Electrodynamics Sect. 8.2

Fig. 8.3 Hollow, cylindrical wave guide of arbitrary cross-sectional shape.

The losses occurring in practice can be accounted for adequately by the

methods of Section 8.1. A cylindrical surface S of general cross-sectional

contour is shown in Fig. 8.3. For simplicity, the cross-sectional size and shape

are assumed constant along the cylinder axis. With a sinusoidal time depend-

ence e~
i<M

for the fields inside the cylinder, the Maxwell equations take the

form:

VxE=i-B
c

VxB = (Op
ijute — E

V B =

V-E =
(8.16)

where it is assumed that the cylinder is filled with a uniform nondissipative

medium having dielectric constant e and permeability /x. It follows that both

E and B satisfy

(8.17)

Because of the cylindrical geometry it is useful to single out the spatial

variation of the fields in the z direction and to assume

E(x, y, z, 01 JE(x, y)e

B(x, y, z, t)hffix, y)e~-
(8.18)

Appropriate linear combinations can be formed to give traveling or standing

waves in the z direction. The wave number k is, at present, an unknown
parameter which may be real or complex. With this assumed z dependence of

the fields the wave equation reduces to the two-dimensional form:

where V t

2
is the transverse part of the Laplacian operator:

(8.19)

(8.20)

It is useful to separate the fields into components parallel to and transverse

to the z axis:

E = E Z + E, (8.21)
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where

Ez = e3E2

(8.22)
E t
= (e3 xE)xe3

and e3 is a unit vector in the z direction. Similar definitions hold for the

magnetic field B. The Maxwell equations (8.16) can be written out in terms of

transverse and parallel components as

^+i-e3xB t
= V tE2 , e3 • (V t

x

E

t ) = i - B z (8.23)
dz c c

i^e - e3 x E, = V tBz , e3 • (V t
xB

( ) = - i/ute - Ez (8.24)
dz c c

Vt -Et=-^, V t
'*<=~ (8.25)

It is evident from the first equations in (8.23) and (8.24) that if Ez and B z are

known the transverse components of E and B are determined, assuming the z

dependence is given by (8.18).

Before considering the kinds of fields that can exist inside a hollow

cylinder, we take note of a degenerate or special type of solution, called the

transverse electromagnetic (TEM) wave. This solution has only field compo-

nents transverse to the direction of propagation. From the second equation in

(8.23) and the first in (8.25) it is seen that Ez = and B z = imply that

E t
= ETEM satisfies

V t
x Etem = 0, V t

• ETEM = (8.26)

This means that ETEm is a solution of an electrostatic problem in two

dimensions. There are three main consequences. The first is that the axial

wave number is given by the infinite-medium value,

k = k = [^jwVfle (8.27)*

as can be seen from (8.19). The second consequence is that the magnetic

field, deduced from the first equation in (8.24), is

Btem = ±Vfxe e3 X Etem (8.28)

for waves propagating as e
±lkz

. The connection between BTem and ETem is just

the same as for plane waves in an infinite medium. The final consequence is

that the TEM mode cannot exist inside a single, hollow, cylindrical conductor

of infinite conductivity. The surface is an equipotential; the electric field

therefore vanishes inside. It is necessary to have two or more cylindrical

surfaces in order to support the TEM mode. The familiar coaxial cable and

the parallel-wire transmission line are structures for Wnich this is the
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dominant mode. (See Problems 8.1 and 8.2.) An important property of the

TEM mode is the absence of a cut-off frequency. The wave number (8.27) is

real for all co. This is not true for the modes occurring in hollow cylinders (see

below).

In hollow cylinders (and on transmission lines at high frequencies) there

occur two types of field configurations. Their existence can be seen from

considering the wave equations (8.19) satisfied by the longitudinal compo-
nents, Ez and B z , and the boundary conditions to be satisfied. For a perfectly

conducting cylinder the boundary conditions are

nxE = 0, n • B =

where n is a unit normal at the surface S. It is evident that the boundary

condition on Ez is

Ez
\

s = (8.29)

From the component of the first equation in (8.24) parallel to n it can be inferred

that the corresponding boundary condition on B z is

dBz

dn
= (8.30)

where d/dn is the normal derivative at a point on the surface. The two-

dimensional wave equations (8.19) for Ez and B 2 ,
together with the boundary

conditions (8.29) and (8.30), specify eigenvalue problems of the usual sort.

For a given frequency co, only certain values of wave number k can occur

(typical wave-guide situation), or, for a given k, only certain o> values are

allowed (typical resonant cavity situation). Since the boundary conditions on

Ez and B z are different, the eigenvalues will in general be different. The fields

thus naturally divide themselves into two distinct categories:

TRANSVERSE MAGNETIC (TM) WAVES

B z = everywhere; boundary condition, E2
|
s =

TRANSVERSE ELECTRIC (TE) WAVES

=dBEz = everywhere; boundary condition,

The designations "Electric (or E) Waves" and "Magnetic (or H) Waves" are

sometimes used instead of TM and TE waves, respectively, corresponding to

a specification of the axial component of the fields. The various TM and TE
waves, plus the TEM wave if it can exist, constitute a complete set of fields to

describe an arbitrary electromagnetic disturbance in a wave guide or cavity.
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8.3 Wave Guides

For the propagation of waves inside a hollow wave guide of uniform

cross-section, it is found from the curl equations (8.23) and (8.24) that the

transverse magnetic and electric fields for both TM and TE waves are related

by

H t
=^e3 xE f (8.31)

where Z is called the wave impedance and is given by

(TM)

Z={ eo> ky* (8.32)*

f=£V* (TE)

where k is given by (8.27). The plus (minus) sign in (8.31) goes with z

dependence, e
lkz

(e~
lkz

). The transverse fields are determined by the longitudi-

nal fields, according to

ikTM waves: E t
= ±— v>

1 (8.33)

TE waves: H t
= ±4 V t i//

y

where i//e
±ikz

is EZ(HZ ) for TM (TE) wavest and y
2

is defined below.The scalar

function i|/ satisfies the two-dimensional wave equation (8.19),

(V t

2+ 7
2
)iJ/ = (8.34)

where

y
2 =^e°^-k 2

(8.35)

subject to the boundary condition,

*|S = 0, org = (8.36)

for TM (TE) waves.

Equation (8.34) for t//, together with boundary condition (8.36), specifies an

eigenvalue problem. It is easy to see that the constant y
2
must be nonnega-

tive. Roughly speaking, it is because i// must be oscillatory in order to satisfy

boundary condition (8.36) on opposite sides of the cylinder. There will be a

t We have changed from E and B to E and H as our basic fields to eliminate

factors of fx when using the wave impedances. (Like ordinary impedance, wave
impedance involves voltage and current and so E and H.)
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spectrum of eigenvalues yK
2 and corresponding solutions t//x ,

X=l, 2, 3,...,

which form an orthogonal set. These different solutions are called the modes

of the guide. For a given frequency co, the wave number k is determined for

each value of A:

kx
2 = jme^- 7x

2
(8.37)

If we define a cutoff frequency o>x,

a* = (8.38)*
v jute

then the wave number can be written:

kx = ^jy^V(u2
-o)x

2
(8.39)*

We note that, for co>o>x , the wave number kx is real; waves of the A mode
can propagate in the guide. For frequencies less than the cutoff frequency, kx

is imaginary; such modes cannot propagate and are called cutoff modes or

evanescent modes. The behavior of the axial wave number as a function of

frequency is shown qualitatively in Fig. 8.4. We see that at any given

frequency only a finite number of modes can propagate. It is often convenient

to choose the dimensions of the guide so that at the operating frequency only

the lowest mode can occur. This is shown by the vertical arrow on the figure.

Since the wave number kx is always less than the free-space value Vjixew/c,

the wavelength in the guide is always greater than the free-space wavelength.

In turn, the phase velocity vp is larger than the infinite space value:

(8.40)

The phase velocity becomes infinite exactly at cutoff.

Fig. 8.4 Wave number kx versus frequency a) for various modes A. a>x is the cutoff

frequency.
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8.4 Modes in a Rectangular Wave Guide

As an important illustration of the general features described in Section 8.3

we consider the propagation of TE waves in a rectangular wave guide with

inner dimensions a, b, as shown in Fig. 8.5. The wave equation for i// =Hz is

with boundary conditions dt///dn = at x = 0, a and y = 0, b. The solution for i//

is consequently

Mx, V)
= Ho cos cos (222) (8.42)

where

7mn
2 = 7T

2
(8.43)

The single index A specifying the modes previously is now replaced by the

two positive integers m, n. In order that there be nontrivial solutions, m and

n cannot both be zero. The cutoff frequency aw is given by

*.-[e]-M^T (8.44)*

If a>b, the lowest cutoff frequency, that of the dominant TE mode, occurs

.for m = 1, n = 0:

o)1>0=-7^- (8.45)
jute a

This corresponds to one-half of a free-space wavelength across the guide. The

y

X

a >|

Fig. 8.5
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explicit fields for this mode, denoted by TEi >0 , are:

Hz =H cos (™)e*'~im

Hx =~ Ho sin (8.46)

Ey
=i^ Ho sin

where k = ki, is given by (8.39) with a)x = a>i )0 . The presence of a factor i in Hx

(and Ey ) means that there is a spatial (or temporal) phase difference of 90°

between Hx (and Ey ) and Hz in the propagation direction. It happens that the

TEi.o mode has the lowest cutoff frequency of both TE and TM modes,t and

so is the one used in most practical situations. For a typical choice a = 2b the

ratio of cutoff frequencies aw for the next few modes to coi are as follows:

n—

»

1 2 3

2.00 4.00 6.00

l 1.00 2.24 4.13

m 2 2.00 2.84 4.48

4 3 3.00 3.61 5.00

4 4.00 4.48 5.66

5 5.00 5.39

6 6.00

There is a frequency range from cutoff to twice cutoff or to {alb) times cutoff,

whichever is smaller, where the TEi, mode is the only propagating mode.

Beyond that frequency other modes rapidly begin to enter. The field

configurations of the TEi, mode and other modes are shown in many books,

for example, American Institute of Physics Handbook, ed. D. E. Gray, 3rd

edition, McGraw-Hill, New York (1972), p. 5-54.

8.5 Energy Flow and Attenuation in Wave Guides

The general discussion of Section 8.3 for a cylindrical wave guide of arbitrary

cross-sectional shape can be extended to include the flow of energy along the

t This is evident if we note that for the TM modes Ez is of the form

_ _ . (m7rx\ . fri7ry\

while y
2

is still given by (8.43). The lowest mode has m = n= 1. Its cutoff frequency is

/ a
2
\
m

greater than that of the TE 10 mode by the factor (I+tj) •
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guide and the attenuation of the waves due to losses in the walls having finite

conductivity. The treatment will be restricted to one mode at a time;

degenerate modes will be mentioned only briefly. The flow of energy is

described by the complex Poynting vector:

§(ExH*) (8.47)
:

whose real part gives the time-averaged flux of energy. For the two types of

field we find, using (8.31) and (8.33):

2

(ok

8iry
A

(e3 \V4\' + 1-7-1// V t i|/

5

(8.48)

where the upper (lower) line is for TM (TE) modes. Since 1// is generally

real,t we see that the transverse component of S represents reactive energy

flow and does not contribute to the time-average flux of energy. On the other

hand, the axial component of S gives the time-averaged flow of energy along

the guide. To evaluate the total power flow P we integrate the axial

component of S over the cross-sectional area A:

[
S • e3 da 8^4

{/!}L
(Vti«* • (V.<fr) da (8.49)

By means of Green's first identity (1.34) applied to two dimensions, (8.49)

can be written:

where the first integral is around the curve C which defines the boundary

surface of the cylinder. This integral vanishes for both types of fields because

of boundary conditions (8.36). By means of the wave equation (8.34) the

second integral may be reduced to the normalization integral for 1//. Conse-

quently the transmitted power is

p=[-^l^-Wfi-^V
/2

l
€
] (8.51)

!

where the upper (lower) line is for TM (TE) modes, and we have exhibited all

the frequency dependence explicitly.

t It is possible to excite a guide in such a manner that a given mode or linear

combination of modes has a complex 1//. Then a time-averaged transverse energy flow

can occur. Since it is a circulatory flow, however, it really only represents stored

energy and is not of great practical importance.
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It is straightforward to calculate the field energy per unit length of the

guide in the same way as the power flow. The result is

Comparison with the power flow P shows that P and U are proportional. The
constant of proportionality has the dimensions of velocity (velocity of energy

flow) and is just the group velocity:

P k c
2

c~Jl-K=vg (8.53)U (o jute v /xe V a)

as can be verified by a direct calculation of vg
= do)ldk from (8.39), assuming

that the dielectric filling the guide is nondispersive. We note that vg is always

less than the velocity of waves in an infinite medium and falls to zero at

cutoff. The product of phase velocity (8.40) and group velocity is constant:

vPvg =-f (8.54)
fie

an immediate consequence of the fact that co Aco k Ak.

Our considerations so far have applied to wave guides with perfectly

conducting walls. The axial wave number kK was either real or purely

imaginary. If the walls have a finite conductivity, there will be ohmic losses

and the power flow along the guide will be attenuated. For walls with large

conductivity the wave number will have small additional real and imaginary

parts:

kx-ki0)
+c*x + i/3x (8.55)*

where k (

x
0)

is the value for perfectly conducting walls. The change ctK in the

real part of the wave number is generally unimportant except near cutoff

when k (

x
0)—»0. The attenuation constant j3x can be found either by solving the

boundary-value problem over again with boundary conditions appropriate for

finite conductivity, or by calculating the ohmic losses by the methods of

Section 8.1 and using conservation of energy. We will first use the latter

technique. The power flow along the guide will be given by

P(z) = P e-
2^ z

(8.56)*

Thus the attenuation constant is given by

where —dP/dz is the power dissipated in ohmic losses per unit length of the
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guide. According to the results of Section 8.1, this power loss is

where the integral is around the boundary of the guide. With fields (8.31) and

(8.33) it is easy to show that for a given mode:

dP
dz' 327T (tSVcox/ Jc

2 2
fX (Ok

2

d± 2

dn

(l-^)|nxV^| 2+^|^
dl (8.59)

where again the upper (lower) line applies to TM (TE) modes.

Since the transverse derivatives of i|/ are determined entirely by the size

and shape of the wave guide, the frequency dependence of the power loss is

explicitly exhibited in (8.59). In fact, the integrals in (8.59) may be simply

estimated from the fact that for each mode:

(8.60)

This means that, in some average sense, and barring exceptional cir-

cumstances, the transverse derivatives of i// must be of the order of magnitude

of V/bLe(o)x/c)i//:

(isr)~
<|nxv^ |2>~^^w) (8.61)

Consequently the line integrals in (8.59) can be related to the normalization

integral of \ij/\

2
over the area. For example,

2
difr

2

44
Jc Ct)x dn

dl = £xfA€ da (8.62)

where C is the circumference and A is the area of cross section, while £x is a

dimensionless number of the order of unity. Without further knowledge of

the shape of the guide we can obtain the order of magnitude of the

attenuation constant /3X and exhibit completely its frequency dependence.

Thus, using (8.59) with (8.62) and (8.51), plus the frequency dependence of

the skin depth (8.8), we find

(-)'"

(8.63)
5

where o- is the conductivity (assumed independent of frequency), 8X is the skin

depth at the cutoff frequency, and £x , t)a are dimensionless numbers of the

order of unity. For TM modes, t)x = 0.
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12 3 4

w/wA

Fig. 8.6 Attenuation constant |3X as a function of frequency for typical TE and TM
modes. For TM modes the minimum attenuation occurs at o)/cjk = V3, regardless of

cross-sectional shape.

For a given cross-sectional geometry it is a straightforward matter to

calculate the dimensionless parameters £x and tjx in (8.63). For the TE modes
with n = in a rectangular guide, the values are £m ,

= a/(a+b) and T|m ,

=
2b/(a+ b). For reasonable relative dimensions, these parameters are of order

unity, as expected.

The general behavior of /3X as a function of frequency is shown in Fig. 8.6.

Minimum attenuation occurs at a frequency well above cutoff. For TE modes
the relative magnitudes of £x and r/x depend on the shape of the guide and on

A. Consequently no general statement can be made about the exact frequency

for minimum attenuation. But for TM modes the minimum always occurs at

a)min = V3cox. At high frequencies the attenuation increases as cu
1/2

. In the

microwave region typical attenuation constants for copper guides are of the

order |3X ~ 10~4
cox/c, giving 1/e distances of 200-400 meters.

The approximations employed in obtaining (8.63) break down close to

cutoff. Evidence for this is the physically impossible, infinite value of (8.63) at

(0= (Ox.

8.6 Perturbation of Boundary Conditions

The use of energy conservation to determine the attenuation constant /3X is

direct and has intuitive appeal, but gives physically meaningless results at

cutoff and fails to yield a value for ax , the change in the real part of the wave

number. Both of these defects can be remedied by use of the technique called

perturbation of boundary conditions. This method is capable, at least in

principle, of obtaining answers to any desired degree of accuracy, although we
shall apply it only to the lowest order. It also permits the treatment of
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attenuation for degenerate modes, mentioned briefly at the end of this

section.

For definiteness we consider a single TM mode with no other mode (TE or

TM) degenerate or nearly degenerate with it. The argument for an isolated

TE mode is similar. To reduce the number of sub- and superscripts we denote

the (unperturbed) solution for perfectly conducting walls by a subscript zero

and the (perturbed) solution for walls of finite conductivity by no sub- or

superscript. Thus the unperturbed problem has a longitudinal electric field

E2 = i// , where

(V t

2+ To
2
)iJ/o = 0, i//o |s = (8.64)

and 70
2

is real. For finite, but large, conductivity, Ez = ijj is not zero on the

walls, but is given by (8.11). To lowest order, the right-hand side of (8.11) is

approximated by the unperturbed fields. By use of the first equation in (8.23)

and (8.33), the perturbed boundary condition on i// can be expressed as

(8.65)
s

where the small complex parameter / ist

(8.66)

Here ju,c and /x are the magnetic permeabilities of the conducting walls and

the medium in the guide, respectively, 8 is the skin depth (8.8), and co is the

cutoff frequency of the unperturbed mode. The perturbed problem, equival-

ent to (8.64), is thus

(8.67)
s

If only the eigenvalue y
2

is desired, Green's theorem (1.35) in two

dimensions can be employed:

where the right-hand side has an inwardly directed normal [out of the

conductor, in conformity with (8.11) and (8.65)]. With the identifications,

i|f=i// and </> = i//J, and use of the wave equations (8.64) and (8.67), and their

boundary conditions, the statement of Green's theorem becomes

(7o
2-y2

)f ^Uda = fi
Ja Jc

t More generally, / can be expressed in terms of the surface impedance Z, as

f=[c
2
/4TT](i(i)/ix(x)

2
)Z„ where the initial square bracket is omitted in MKSA units.

dn

(V,
2+72

)* = 0, tfs-f^

dn
dl (8.68)
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Since / is assumed to be a small parameter, it is normally consistent to

approximate i|/ in the integral on the left by its unperturbed value t// . This

leads to the final result,

Yo
2-72 =k 2-k (°)2-/

difro
2

dn

1 W
dl

(8.69)

da

From Eqs. (8.51) and (8.59) of the previous section one finds that the ratio of

integrals on the right-hand side of (8.69) enters

Zix Wo/
dn

2^W -da

dl

- (8.70)

where /3
(0)

is defined by (8.57) and (8.63). This means that (8.69) can be

written as

a result that holds for both TM and TE modes, with the appropriate $
m from

the previous section. For k
(0)

»|3
(0)

, (8.71) reduces to the former expression

(8.55) with a = fi. At cutoff and below, however, where the previous results

failed, (8.71) yields sensible results since the combination k
(0)

|3
(0)

is finite and

well-behaved in the neighborhood of Jc
(o) = 0. The transition from a propagat-

ing mode to a cutoff mode is evidently not a sharp one if the walls are less

than perfect conductors, but the attenuation is sufficiently large immediately

above and below the cutoff frequency that little error is made in assuming a

sharp cutoff.

The discussion of attenuation here and in the previous section is restricted

to one mode at a time. For nondegenerate modes with not too great losses

this approximation is adequate. If, however, it happens that a TM and a TE
mode are degenerate (as occurs in the rectangular wave guide for n^O,

m 7^0), then any perturbation, no matter how small, can cause sizable mixing

of the two modes. The methods used so far fail in such circumstances. The

breakdown of the present method occurs in the perturbed boundary condition

(8.65), where there is now on the right-hand side a term involving the

tangential derivative of the unperturbed Hz , as well as the normal derivative

of Ez . And there is, of course, a corresponding perturbed boundary condition

for Hz involving both unperturbed longitudinal fields. The problem is one of

degenerate-state perturbation theory, most familiar in the context of quantum

mechanics. The perturbed modes are orthogonal linear combinations of the

unperturbed TM and TE modes, and the attenuation constants for the two
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modes have the characteristic expression,

= §(|3™+ /3te) ±W(0tm-/3te)
2+4|K| 2

(8.72)

where /3Tm and /3Te are the values found above, and K is a coupling

parameter.

The treatment of attenuation for degenerate modes using perturbation of

boundary conditions has been given by a number of authors. t The discussion

of Papadopoulos is presented in the book by Collin, Section 5.3.

8.7 Resonant Cavities

Although an electromagnetic cavity resonator can be of any shape what-

soever, an important class of cavities is produced by placing end faces on a

length of cylindrical wave guide. We will assume that the end surfaces are

plane and perpendicular to the axis of the cylinder. As usual, the walls of the

cavity are taken to have infinite conductivity, while the cavity is filled with a

lossless dielectric with constants \x, e. Because of reflections at the end

surfaces the z dependence of the fields will be that appropriate to standing

waves:

A sin kz +B cos kz

If the plane boundary surfaces are at z = and z = d, the boundary conditions

can be satisfied at each surface only if

k=pj, p= 0,l,2,... (8.73)

For TM fields the vanishing of E, at z = and z = d requires

Ez = <Jr(x, y) cos (E^p),
p = 0, 1, 2, . . . (8.74)

Similarly for TE fields, the vanishing of Hz at z = and z = d requires

Hz = iKx, y) sin (Ep),
p = 1, 2, 3, . . . (8.75)

t G. Goubau, Electromagnetic Waveguides and Cavities, Pergamon Press,

London (1961),Section 25.

V. M. Papadopoulos, Quart. J. Mech. and Appl. Math. 7, 325 (1954).
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Then from (8.31) and (8.33) we find the transverse fields:

TM FIELDS

(8.76)

tea)
H, =—5 cos

cy

TE FIELDS

sin (^xT^
cy

2

(8.77)

constant 7
2

is:

7
2
=fl€

The boundary conditions at the ends of the cavity are now explicitly satisfied.

There remains the eigenvalue problem (8.34)-(8.36), as before. But now the

For each value of p the eigenvalue yx
2
determines an eigenfrequency wXp :

and the corresponding fields of that resonant mode. The resonance frequen-

cies form a discrete set which can be determined graphically on the figure of

axial wave number k versus frequency in a wave guide (see p. 344) by

demanding that k = piT/d. It is usually expedient to choose the various

dimensions of the cavity so that the resonant frequency of operation lies well

separated from other resonant frequencies. Then the cavity will be relatively

stable in operation and insensitive to perturbing effects associated with

frequency drifts, changes in loading, etc.

An important practical resonant cavity is the right circular cylinder, perhaps

with a piston to allow tuning by varying the height. The cylinder is shown in

Fig. 8.7, with inner radius R and length d. For a TM mode the transverse

wave equation for ij/ = Ez , subject to the boundary condition Ez = at p = K,

has the solution:

i//(p,</>) = E Jm (7mnp)e
±im<,>

(8.80)

where

Ymn = R
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< >

c I

)

Fig. 8.7

xmn is the nth root of the equation, Jm (x) = 0. These roots are given on page

105, below equation (3.92). The integers m and n take on the values

m = 0, 1, 2, . .
.

, and n=l, 2, 3, The resonance frequencies are given by

[C] IXmn
,

pV
/mnp y V

VjLte * R
(8.81)

:

The lowest TM mode has m = 0, n=l, p = 0, and so is designated TM0> i, .

Its resonance frequency is

tooio
2.405 c

sfjle R

The explicit expressions for the fields are

c c T /2.405p\Ez = E J
y
—^—- )e

(8.82)

The resonant frequency for this mode is independent of d. Consequently

simple tuning is impossible.

For TE modes, the basic solution (8.80) still applies, but the boundary

condition on Hz =0^ makes
\dp

| R /

R

where x'mn is the nth root of Jm(x) = 0. These roots, for a few values of m and
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n, are tabulated below (for 1, x=0 is a trivial root):

Roots of J'm(x) =

m = 0: x£)„ = 3.832, 7.016, 10.173, . . .

m=l: x'i„= 1.841, 5.331, 8.536,...

m = 2: x'2n = 3.054, 6.706, 9.970,...

m = 3: x'3ri = 4.201, 8.015, 11.336, . . .

The resonance frequencies are given by

(8.83)*

where m = 0, 1, 2, . .
.

, but n, p = 1, 2, 3, ... . The lowest TE mode has m =

n = p = 1, and is denoted TEi.i.i. Its resonance frequency is

by means of (8.77). For d large enough (d>2.03R), the resonance frequency

win is smaller than that for the lowest TM mode. Then the TEi,i,i mode is

the fundamental oscillation of the cavity. Because the frequency depends on

the ratio d/R it is possible to provide easy tuning by making the separation of

the end faces adjustable.

8.8 Power Losses in a Cavity; Q of a Cavity

In the preceding section it was found that resonant cavities had discrete

frequencies of oscillation with a definite field configuration for each resonance

frequency. This implies that, if one were attempting to excite a particular

mode of oscillation in a cavity by some means, no fields of the right sort

could be built up unless the exciting frequency were exactly equal to the

chosen resonance frequency. In actual fact there will not be a delta function

singularity, but rather a narrow band of frequencies around the eigenfre-

quency over which appreciable excitation can occur. An important source of

this smearing out of the sharp frequency of oscillation is the dissipation of

energy in the cavity walls and perhaps in the dielectric filling the cavity. A
measure of the sharpness of response of the cavity to external excitation is the

O of the cavity, defined as 27r times the ratio of the time-averaged energy

(8.84)

while the fields are derivable from

(8.85)
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stored in the cavity to the energy loss per cycle:

Stored energy *

Power loss

Here a> is the resonance frequency, assuming no losses. By conservation of

energy the power dissipated in ohmic losses is the negative of the time rate of

change of stored energy U. Thus from (8.86) we can write an equation for the

behavior of U as a function of time:

dU_ cop
T

.

dt
" O

with solution

U(t)=U e-^

(8.87)

If an initial amount of energy U is stored in the cavity, it decays away

exponentially with a decay constant inversely proportional to Q. The time

dependence in (8.87) implies that the oscillations of the fields in the cavity are

damped as follows:

E(t) = Eoe-^
t,2Q

e-
i(oio+M

(8.88)

where we have allowed for a shift Ao> of the resonant frequency as well as the

damping. A damped oscillation such as this has not a pure frequency, but a

superposition of frequencies around oj = u) +Aa). Thus,

E(a))e-
lwt

da)

where

E(<o)=-pL=
(
E e

V27T Jn

(8.89)

The integral in (8.89) is elementary and leads to a frequency distribution for

the energy in the cavity having a resonant line shape:

'
£(») '

2

^-a>,-Ac^W2Q)- (8 '90)

The resonance shape (8.90), shown in Fig. 8.8, has a full width T at

half-maximum (confusingly called the half-width) equal to oVQ. For a

constant input voltage, the energy of oscillation in the cavity as a function of

frequency will follow the resonance curve in the neighborhood of a particular

resonant frequency. Thus, the frequency separation 8o> between half-power

points determines the width T and the Q of cavity is
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coq + Aco

Fig. 8.8 Resonance line shape. The full width T at half-maximum (of the power) is equal

to the unperturbed frequency w divided by the Q of the cavity.

O values of several hundreds or thousands are common for microwave

cavities.

To determine the Q of a cavity we can calculate the time-averaged energy

stored in it and then determine the power loss in the walls. The computations

are very similar to those done in Section 8.5 for attenuation in wave guides.

We will consider here only the cylindrical cavities of Section 8.7, assuming no

degeneracies. The energy stored in the cavity for the mode A, p is, according

to (8.74)-(8.77):

(8.92)*

where the upper (lower) line applies to TM (TE) modes. For the TM modes

with p = the result must be multiplied by 2.

The power loss can be calculated by a modification of (8.58):

r c
2

]
1

[{[i6tt
2
\ 2o-S

dz |nxH| s

2
ldes+2 da InxHlLis

For TM modes with p^O it is easy to show that

1 +&
Cd\
4AA W da

(8.93)
:

(8.94)*

where the dimensionless number £x is the same one that appears in (8.62), C
is the circumference of the cavity, and A is its cross-sectional area. For p = 0,

£x must be replaced by 2&. Combining (8.92) and (8.94) according to (8.86),

and using definition (8.8) for the skin depth 5, we find the Q of the cavity:

1

* 8
2(l +6^

(8.95)
:

4A/

where /ulc is the permeability of the metal walls of the cavity. For p = modes,

(8.95) must be multiplied by 2 and £x replaced by 2£x . This expression for Q
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has an intuitive physical interpretation when written in the form:

= -^(^)x(Geometrical factor) (8.96)*
fxc \So/

where V is the volume of the cavity, and S its total surface area. The O of a

cavity is evidently, apart from a geometrical factor, the ratio of the volume

occupied by the fields to the volume of the conductor into which the fields

penetrate because of the finite conductivity. For TM modes in cylindrical

cavities the geometrical factor is

ML

Kg)

(8.97)

for p^O, and is

(8.98)

for p = modes. For TE modes in the cylindrical cavity the geometrical factor

is somewhat more complicated, but of the same order of magnitude. For the

TMo.i.0 mode in a circular cylindrical cavity with fields (8.82), £x=l (true for

all TM modes), so that the geometrical factor is 2 and Q is:

(8.99)
:

For the TEi,w mode calculation yields a geometrical factor*

. (1+0.344 £)—
d d>\

(8100)
V R/

(l +0.209|+0.242|,)

and a Q:
,!

2

1 + 0.344

7 ~(ih
"

A

R
j3 \ (8.101)*

2"« V8;
(l+0.2091+0.242^)

Expression (8.96) for Q applies not only to cylindrical cavities but also to

cavities of arbitrary shape, with an appropriate geometrical factor of the order

of unity.

* Note that this factor varies from unity for d/R = to a maximum of 2.13 at

d/R = 1.91 and then decreases to 1.42 as d/R -> 00.
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The use of conservation of energy to discuss losses in a cavity has the same
advantages and disadvantages as for wave guides. The Q values can be

calculated but possible shifts in frequency lie outside the scope of the method.

The technique of perturbation of boundary conditions, described in Section

8.6, again removes these deficiencies. In fact the analogy is so close to the

wave guide situation that the answers can be deduced without performing the

calculation explicitly. The unperturbed problem of the resonant frequencies of

a cavity with perfectly conducting walls is specified by (8.64) or its equivalent

for TE modes. Similarly, the perturbed problem involves solution of (8.67) or

equivalent. A result equivalent to (8.69) evidently emerges. The difference

(Yo
2-y2

) is proportional to (co
2
-o>

2
) where now o> is the unperturbed

resonant frequency rather than the cutoff frequency of the wave guide and o>

is the perturbed resonant frequency. Thus the analog of (8.69) takes the form,

co
2
-co

2 -(l + i)I ' (8.102)

where I is the ratio of appropriate integrals. In the limit of I—»0, the

imaginary part of to is —il/2(o . From (8.88) this is to be identified with

— ico /2Q, and therefore I=o> 2
/Q. Equation (8.102) can thus be written

2_ 2
(X) —0)0

where Q is the quantity defined by (8.86) and (8.92), (8.93). Damping is seen

to cause equal modifications to the real and imaginary parts of o>
2

. For large

O values, the change in the resonant frequency, rather than its square, is

AT wo

The resonant frequency is always lowered by the presence of resistive losses.

The near equality of the real and imaginary parts of the change in co
2

is a

consequence of the boundary condition (8.11) appropriate for relatively good

conductors. For very lossy systems or boundaries with different surface

impedances, the relative magnitude of the real and imaginary parts of the

change in a>
2
can be different from that given by (8.103).

In this section, as in Section 8.6, the discussion has been confined to

nondegenerate modes. References are given at the end of Section 8.6 for

treatments that remedy this defect.

8.9 Earth and Ionosphere as Resonant Cavity: Schumann Resonances

A somewhat unusual example of a resonant cavity is provided by the earth

itself as one boundary surface and the ionosphere as the other. The lowest

resonant modes of such a system are evidently of very low frequency since
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the characteristic wavelength must be of the order of magnitude of the earth's

radius. In such circumstances the ionosphere and the earth both appear as

conductors with real conductivities. Sea water has a conductivity of o-~

10
9
sec"\ while the ionosphere has o-~ 10

3-106
sec

-1
. The walls of the cavity

are thus far from perfectly conducting, especially the outer one. Nevertheless,

we idealize the physical reality and consider as a model two perfectly

conducting, concentric spheres with radii a and b=a+h, where a is the radius

of the earth (a — 6400 km) and h is the height of the ionosphere above the

earth (h~100km). Furthermore, if we are concerned with only the lowest

frequencies, we can focus our attention on the TM modes, with only tangential

magnetic fields. t The reason for this is that the TM modes, with a radially

directed electric field, can satisfy the boundary condition of vanishing tangen-

tial electric field at r=a and r=b without appreciable radial variation of the

fields. On the other hand, the TE modes, with only tangential electric fields,

must have a radial variation of approximately half a wavelength between r=a
and r=b. The lowest frequencies for the TE modes, are therefore of the

order of coxE— Tic/h, whereas for the lowest TM modes o>Tm ~c/a.

The general problem of modes in a spherical geometry is involved enough

that we leave it to Chapter 16. Here we consider only TM modes and

assume that the fields are independent of the azimuthal angle The last is

no real restriction; it is known from consideration of spherical harmonics that

the relevant quantity is I, not m. If the radial component of B vanishes and

the other components do not depend on <j>, the vanishing of the divergence of

B requires that only is nonvanishing if the fields are finite at = 0.

Faraday's law then requires E
<i>
= 0. Thus the homogeneous Maxwell equations

specify that TM modes with no cf> dependence involve only Er ,
Ee , and

The two curl equations of Maxwell can be combined, after assuming a

time-dependence e~
lo>

\ into

where the permeabilities of the medium between the spheres are taken as unity.

The
(f>
component of (8.104) is

(8.104)

(sin S rB*) = (8.105)

The angular part of (8.105) can be transformed into

s r i d l d

sin 86
sin 6

djrB*)

dd sin
2
6

t For a spherical geometry the notation TE (TM) indicates the absence of

radial electric (magnetic) field components.
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showing, upon comparison with (3.6) or (3.9), that the dependence is given by

the associated Legendre polynomials Pi
m
(cos 0) with m = ±l. It is natural

therefore to write a product solution,

B«(r, 0)=^P,1
(cos 0) (8.106)

Substitution into (8.105) yields as the differential equation for u ( (r),

d
2
w,(r)

,
|V Ki+Dl

Mi(r)= mo7)
2
u,(r) [co

2
1(1+

cir
2 +

Lc
2

r
2

with 1= 1, 2, . . . defining the angular dependence of the modes.

The characteristic frequencies emerge from (8.107) when the boundary

conditions appropriate for perfectly conducting walls at r=a and r=b are

imposed. The radial and tangential electric fields are

ET =—^—^ (sin 6B+) = -— /(i+ 1)— Pi(cos 0)
cor sin 80 cor r

„ ic d , D v ic dui(r) nl/ .= — (rBtt,)
= Pi (cos 0)

cor dr (or dr

The vanishing of Ee at r= a and r= b implies that the boundary condition for u t (r)

is

M^ = o for r=a and r=b (8.108)
ar

The solutions of (8.107) are r times the spherical Bessel functions (see Section

16.1). The boundary conditions (8.108) lead to transcendental equations for the

characteristic frequencies. An example will be left as a problem, but for our

present purposes a limiting case will suffice. The height h of the ionosphere is

sufficiently small compared to the radius a that the limit h/a« 1 can be assumed.

The l(l+l)/r
2
terms in (8.107) can be approximated by its value at r=a. The

solutions of (8.107) are then sin (qr) and cos (qr), where q
2
is given by the square

bracket in (8.107) evaluated at r=a. With the boundary conditions (8.108), the

solution is

Ui(r) —A cos [q(r- a)]

where qh = mr, n = 0, 1, 2, For n= 1, 2, . . . the frequencies of the modes are

evidently larger than co = mrc/h and are in the domain of frequencies of the TE
modes. Only for n = are there very low frequency modes. The condition q = is

equivalent to u (
(r) = constant and

a
(8.109)
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where the equality is exact in the limit hia-* 0. The exact solution shows that to

first order in hia the correct result has a replaced by (a+hh). The fields are

Ee = 0, r
2Er

* P,(cos 0), rB* oc P/(cos 0).

The resonant frequencies (8.109) are called Schumann resonances.t They are

extremely low frequencies: with a = 6400 km, the first five resonant frequencies

are <di/2tt = 10.6, 18.3, 25.8, 33.4, 40.9 Hz. Schumann resonances manifest

themselves as peaks in the noise power spectrum of extremely low frequencies

propagating around the earth. Lightning bolts, containing a wide spectrum of

frequencies, act as sources of radial electric fields. The frequency components

near the Schumann resonances are propagated preferentially because they are

normal modes of the earth-ionosphere cavity. The first definitive observations of

these peaks in the noise power spectrum were made in 1960,$ although there is

evidence that Nikola Tesla may have observed them before 1900.§ A typical

noise power spectrum is shown in Fig. 8.9. The resonances are clearly visible.

They shift slightly and change shape from day to day, but have average linear

frequencies of 8, 14, 20, 26, 32, 37, and 43 Hz for the first seven peaks. These

frequencies are given quite closely by 5.8V/(J+ 1) Hz, the coefficient being 0.78

times c/27ra(= 7.46 Hz). The lack of precise agreement is not surprising, since,

as already noted, the assumption of perfectly conducting walls is rather far from

the truth. The Q values are estimated to be of the order of 4 to 10 for the first

few resonances, corresponding to rather heavy damping. The effect of the

damping on a resonant frequency is in the right direction to account for the

differences between the observed values and (8.109), but the simple shift implied

by (8.103) is only about half of what is observed. The Vi(J + 1) variation of the

resonant frequencies is, however, quite striking.

The simple picture of a resonant cavity with well-defined, but lossy, walls

accounts for the main features of the Schumann resonances, although failing in

some quantitative aspects. More realistic and detailed models and discussion of

the observations can be found in a review by Galejs,
||
as well as her monograph,

Galejs. The use of wave guide and resonant cavity concepts in the treatment of

propagation of electromagnetic waves around the earth is discussed in the books

by Budden and Wait listed at the end of this chapter. One curiosity may be

tW. O. Schumann, Z. Naturforschung 72, 149, 250 (1952).

$M. Balser and C. A. Wagner, Nature 188, 638 (1960).

§ In U.S. patent No. 787,412 (April 18, 1905), reprinted in Nikola Tesla, Lectures

and Patents and Articles, Nikola Tesla Museum, Beograd, Yugoslavia, (1956), this

remarkable genius clearly outlines the idea of the earth as a resonating circuit (he did not

know of the ionosphere), estimates the lowest resonant frequency as 6 Hz (close to the

6.6 Hz for a perfectly conducting sphere), and describes generation and detection of these

low frequency waves. I thank V. L. Fitch for this fascinating piece of history.

||
J. Galejs, J. Res. Nat. Bur. Standards 69D, 1043 (1965). See also T. Madden

and W. Thompson, Rev. Geophys. 3, 211 (1965) and F. W. Chapman, D. L. Jones, J. D.
W. Todd, and R. A. Challinor, Radio Sci. 1, 1273 (1966).
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10 20 30 40
Frequency (Hz)

Fig. 8.9 Typical noise power spectrum at low frequencies (integrated over 30 sec),

observed at Lavangsdalen, Norway on June 19, 1965. The prominent Schumann
resonances at 8, 14, 20, and 26 Hz, plus peaks at 32, 37, and 43 Hz as well as smaller

structure are visible [after A. Egeland and T. R. Larsen, Physica Norvegica 2, 85 (1967)].

permitted here. On July 9, 1962 a nuclear explosion was detonated at high

altitude over Johnston Island in the Pacific. One consequence of this test was to

create observable alterations in the ionosphere and radiation belts on a

worldwide scale. Sudden decreases of from 3-5% in Schumann resonant

frequencies were observed in France and at other stations immediately after the

explosion, the changes decaying away over a period of several hours. This is

documented in Fig. 17 of the paper by Galejs.

8.10 Dielectric Wave Guides

In Section 8.2-8.6 we considered wave guides made of hollow metal cylinders

with fields only inside the hollow. Other guiding structures are possible. The
parallel-wire transmission line is an example. The general requirement for a

guide of electromagnetic waves is that there be a flow of energy only along the

guiding structure and not perpendicular to it. This means that the fields will be

appreciable only in the immediate neighborhood of the guiding structure. For
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hollow wave guides these requirements are satisfied in a trivial way. But for an

open structure like the parallel-wire line the fields extend somewhat away from

the conductors, falling off like p~ 2
for the TEM mode, and exponentially for

higher modes.

A dielectric cylinder, such as shown in Fig. 8.10, can serve as a wave guide,

with some properties very similar to those of a hollow metal guide if its dielectric

constant is large enough. There are, however, characteristic differences which

arise because of the very different boundary conditions to be satisfied at the

surface of the cylinder. The general considerations of Section 8.2 still apply,

except that the transverse behavior of the fields is governed by two equations

like (8.19), one for inside the cylinder and one for outside:

INSIDE

OUTSIDE

(8.110)

(8.111)

Both dielectric (u-i, d) and surrounding medium (jlx
, €o) are assumed to be

uniform and isotropic in their properties. The axial propagation constant k must

be the same inside and outside the cylinder in order to satisfy boundary

conditions at all points on the surface at all times.

In the usual way, inside the dielectric cylinder the transverse Laplacian of the

fields must be negative so that the constant

(8.112)

is positive. Outside the cylinder, however, the requirement of no transverse flow

of energy demands that the fields fall off exponentially. (There is no TEM mode

MO^O

Fig. 8.10 Section of dielectric wave guide.
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for a dielectric guide.) Consequently, the quantity in (8.111) equivalent to y
2

must be negative. Therefore we define a quantity |3
2

:

and demand that acceptable wave guide solutions have
2
positive (|3 real).

The oscillatory solutions (inside) must be matched to the exponential solutions

(outside) at the boundary of the dielectric cylinder. The boundary conditions are

continuity of normal B and D and tangential E and H, rather than the vanishing

of normal B and tangential E appropriate for hollow conductors. Because of the

more involved boundary conditions the types of fields do not separate into TE
and TM modes, except in special circumstances such as azimuthal symmetry in

circular cylinders, to be discussed below. In general, axial components of both E
and B exist. Such waves are sometimes designated as HE modes.

To illustrate some of the features of the dielectric wave guide we consider a

circular cylinder of radius a consisting of nonpermeable dielectric with dielectric

constant ei in an external nonpermeable medium with dielectric constant e . As a

simplifying assumption we take the fields to have no azimuthal variation. Then in

cylindrical coordinates the radial equations for Ez or B z are Bessel's equations:

The solution, satisfying the requirements of finiteness at the origin and at

infinity, is found from Section 3.7 to be:

The other components of E and B can be found from (8.23) and (8.24) when the

relative amounts of Ez and B z are known. With no 4> dependence the fields

reduce to

|3 =k -jULoeo-p- (8.113)

(8.114)

(8.115)

INSIDE

E*~ Ck

(8.116)

and similar expressions for p>a. The fact that the fields arrange themselves in

two groups, (Bp, E+) depending on B z , and (B<j>, Ep ) depending on Ez ,
suggests

that we attempt to obtain solutions of the TE or TM type, as for the metal wave
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guides. For the TE modes, the fields are explicitly

B z = Myp)

and

BP =-^J,(7P )

E* = ^Ji(yp)

B, = AK„(pP )

Bp
=-^K,(Pp)

p < a (8.117)

p >a (8.118)

These fields must satisfy the standard boundary conditions at p = a. This leads to

the two conditions,

AK (pa) = Jo(ya)

_A
Ki(pa)=

J^ (8.119)

Upon elimination of the constant A we obtain the determining equations for 7,

|3, and therefore k:

Uya) Ki(pq) ^_

yJo(ya) /3K (/3a)

and, from (8.112) and (8.113),

CO

7*+|3* = (€l
-€

)
c
2

(8.120)

The two parts of the first equation in (8.120) are plotted in Fig. 8.11, with the

two curves superposed according to the second equation in (8.120). The
frequency is assumed to be high enough that two modes, marked by the circles at

the intersections of the two curves, exist. The vertical asymptotes are given by

the roots of Jo(x) = 0. If the maximum value of ya is smaller than the first root

(xoi = 2.405), there can be no intersection of the two curves for real |3. Hence the

lowest "cutoff" frequency for TE
,n waves is given by

0)01

2.405c

e a
(8.121)

At this frequency |8
2 = 0, but the axial wave number k is still real and equal to its

free-space value Ve^co/c. Immediately below this "cutoff" frequency, the system

no longer acts as a guide but as an antenna, with energy being radiated radially.
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Fig. 8.11 Graphical determination of the axial propagation constant for a dielectric

wave guide.

For frequencies well above cutoff, /3 and k are of the same order of magnitude

and are large compared to y provided ei and e are not nearly equal.

For TM modes, the first equation in (8.120) is replaced by

Mya) €o gi(ga)

yMya) €l <3K (j3a)
(8.122)

It is evident that all the qualitative features shown in Fig. 8.11 are retained for

the TM waves. The lowest "cutoff" frequency for TM
,n waves is clearly the same

as for TE ,„ waves. For d »e
, (8.122) and Fig. 8.11 show that, except perhaps

for the mode with the largest 7 (smallest 0), the propagation constants are

determined by Ji(ya) — 0. This is just the determining equation for TE waves

in a metallic wave guide. The reason for the equivalence of the TM modes
in a dielectric guide and the TE modes in a hollow metallic guide can be traced

to the symmetry of the Maxwell equations under the interchange of E and B
(with appropriate sign changes and factors of V/He), plus the correspondence

between the vanishing of normal B at the metallic surface and the almost

vanishing of normal E at the dielectric surface (because of continuity of

normal D with €1 »e ).



Sect. 8.11 Wave Guides and Resonant Cavities 369

B,

E

P

Fig. 8.12 Radial variation of fields of TE0>1 mode in dielectric guide. For e!»€ , the

fields are confined mostly inside the dielectric.

If ei»€o, then from (8.112) and (8.113) it is clear that the outside decay

constant is much larger than 7, except near cutoff. This means that the fields do

not extend appreciably outside the dielectric cylinder. Figure 8.12 shows

qualitatively the behavior of the fields for the TE0) i mode. The other modes
behave similarly. As mentioned earlier, modes with azimuthal dependence to

the fields have longitudinal components of both E and B. Although the

mathematics is somewhat more involved (see Problem 8.8), the qualitative

features of propagation—short wavelength along the cylinder, rapid decrease of

fields outside the cylinder, etc.—are the same as for the circularly symmetric

modes.

Dielectric wave guides have not been used for microwave propagation, except

for special applications. One reason is that it is difficult to obtain suitable

dielectrics with sufficiently low losses at microwave frequencies. In some

applications at optical frequencies very fine dielectric filaments, each coated with

a thin layer of material of much lower index of refraction, are closely bundled

together to form image-transfer devices. t The filaments are sufficiently small in

diameter (~ 10 microns) that wave-guide concepts are useful, even though the

propagation is usually a mixture of several modes.

8.11 Expansion in Normal Modes, Fields Generated by a Localized

Source in Guide

For a given wave guide cross section and frequency a> the electromagnetic fields

in a hollow guide are described by an infinite set of characteristic or normal

modes consisting of TE and TM waves, each with its characteristic cutoff

frequency. For any given finite frequency only a finite number of the modes can

f See B. O'Brien, Physics Today, 13, 52 (1960) for an early qualitative discussion

and N. S. Kapany and J. J. Burke, Optical Waveguides, Academic, New York (1972) for

analytic and practical treatments.
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propagate; the rest are cutoff or evanescent modes. Far away from any source,

obstacle or aperture in the guide the fields are relatively simple, with only the

propagating modes (often just one) present with appreciable amplitude. Near a

source or obstacle, however, many modes, both propagating and evanescent,

must be superposed in order to describe the fields correctly. The cutoff modes
have sizable amplitudes only in the neighborhood of the source or obstacle; their

effects decay away over distances measured by the reciprocal of the imaginary

part of their wave number. A typical practical problem concerning a source,

obstacle, or aperture in a wave guide thus involves as accurate a solution as is

possible for the fields in the vicinity of the source, etc., the expansion of those

fields in terms of all the normal modes of the guide, and a determination of the

amplitudes for the one or more propagating modes that will describe the fields

far away.

(a) Orthonormal Modes
To facilitate the handling of the expansion of fields in the normal modes, it is

useful to standardize the notation for the fields of a given mode, treating TE and

TM modes on an equal footing and introducing a convenient normalization. Let

the subscript A or fx denote a given mode. One may think of A = 1, 2, 3, . .

.

indicating the modes arranged in some arbitrary order, of increasing cutoff

frequency, for example. The subscript A also conveys whether the mode is a TE
or TM wave. The fields for the A mode propagating in the positive z direction are

written

Ex
+)
(x, y, z) = [Ex(x, y)+E,x(x, y)]e

ik^

Hx
+)
(x, y, z) = [Hx (x, y)+HzX (x, y)]e

ik^

where Ex , Hx are the transverse fields given by (8.31) and (8.33) and EzX , HzX are

the longitudinal fields. The wave number kx is given by (8.37) and is taken to be

real and positive for propagating modes in lossless guides (and purely imaginary,

kk=i<pk, for cutoff modes). A time dependence e~
lb)t

is, of course, understood.

For a wave propagating in the negative z direction the fields are

Ei
_) = [Ex-EzXle~^

z

, lk
(8-124)

Hx

-
) -[-Hx +HzX]e-

1^ 2

The pattern of signs in (8.124) compared to (8.123) can be understood from the

need to satisfy V • E = V • H = for each direction of propagation and the

requirement of positive power flow in the direction of propagation. The overall

phase of the fields in (8.124) relative to (8.123) is arbitrary. The choice taken

here makes the transverse electric field at z = the same for both directions of

propagation, just as is done for the voltage waves on transmission lines.

A convenient normalization for the fields in (8.123) and (8.124) is afforded by
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taking the transverse electric fields Ex (x, y) to be real, and requiring that

J
Ex 'E»da = 8KtL (8.125)

where the integral is over the cross-sectional area of the guide. [The orthogonal-

ity of the different modes is taken for granted here. The proof is left as a problem

(Problem 8.9), as is the derivation of the other normalization integrals listed

below.] From the relation (8.31) between electric and magnetic fields it is

evident that (8.125) implies

Hx -H.da = ^8x. ($.126)

and that the time-averaged power flow in the Ath mode is

c

877 J
(Ex x HJ • e3 da = 8^ (8.127)

It can also be shown that if (8.125) holds the longitudinal components are

normalized according to

TM waves: fEzKEz^ da = 8Xfi

(8.128)

TE waves:
j
HzXH2(i da = 8K»

As an explicit example of these normalized fields we list the transverse electric

fields and also Hz and Ez of the TE and TM modes in a rectangular guide. The
mode index a is actually two indices (m, n). The normalized fields are

r 2irm ( miTX\ . ( nrry\TM waves: Exmn = 7= cos I I sin I
—- I

ymna\/ab \ a ' V b >

„ lirn . (rmrx\ (niryX
Eymn = ~J== SlU I I COS I

—JL

ymnb\lab \ a ' V b I

Ezmn = j= sin I I sin I
—

-

(8.129)

2™ lmirx\ . /n7ry\—1= cos I I sin I
—- 1

7m„bvab \ a / V b
'

TE waves: Exmn = =cos( J sin

„ lirm . lmirx\ I niry\ /010mEymn = = sin I I cos I
—

- ) (8.130)
ym„avab V a / V /

„ ~2iymn j mirx\ I niry\Hzmn = £

t== cos I I cos I
—

-

)
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with ym„ given by (8.43). The transverse magnetic field components can be

obtained by means of (8.31). For TM modes, the lowest value of m and n is

unity, but for TE modes, m = or n = is allowed. If m = or n = 0, the

normalization must be amended by multiplication of the right-hand sides of

(8.130) by l/v/2.

(b) Expansion of Arbitrary Fields

An arbitrary electromagnetic field with time dependence e
-
""' can be ex-

panded in terms of the normal mode fields (8.123) and (8.124).f It is useful to

keep track explicitly of the total fields propagating in the two directions. Thus

the arbitrary fields are written in the form

E = E(+) +E(-)
, H = H() +H()

(8.131)

where

E(±) = I A^Et* H(±) = X A?>H^ (8.132)
X X

Specification of the expansion coefficients A (

x
+) and Ai-)

determines the fields

everywhere in the guide. These may be found from boundary or source condi-

tions in a variety of ways. Here is a useful theorem:

The fields everywhere in the guide are determined uniquely by specification

of the transverse components of E and H in a plane, z = constant.

Proof: There is no loss in generality in choosing the plane at z = 0. Then from

(8.131) , (8.132), and (8.123), (8.124), the transverse fields are

E t = X(A?> + Ax- )

)Ex-

(8.133)

Ht
= Z(Alt>-AxT>)Hx<

X'

If the scalar product of both sides of the first equation is formed with Ex and an

integration over the cross section of the guide is performed, the orthogonality

condition (8.125) implies

A^+Ai-^jEx -Et da

Similarly the second equation, with (8.126), yields

A{+)-AV = Z,
2^H, -H t da

t We pass over the mathematical problem of the completeness of the set of normal

modes, and also only remark that more general time dependences can be handled by

Fourier superposition.
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The coefficients A x
±)

are therefore given by

A^ = |j(Ex -E t ±Zx
2
Hx -H f)da (8.134)

This shows that if E, and H t are given at z = 0, the coefficients in the expansion

(8.131) and (8.132) are determined. The completeness of the normal mode
expansion assures the uniqueness of the representation for all z.

(c) Fields Generated by a Localized Source

The fields in a wave guide may be generated by a localized source, as shown
schematically in Fig. 8.13. The current density J(x, t) is assumed to vary in time

as e
_uo

'. Because of the oscillating current, fields propagate to the left and to the

right. Outside the source, at and to the right of the surface S+, say, there will be

only fields varying as e
lkkZ and the electric field can be expressed as

E = E(+) = X A^E?> (8.135)
X'

with a corresponding expression for H. On and to the left of the surface S- the

fields all vary as e~
lkxZ and the electric field is

E=E<
-

)=£ AJPeP (8.136)
X'

To determine the coefficients Ax±}
in terms of J, we consider a form of the

energy flow equation of Poynting's theorem. The identity,

V • (ExHSP-E?*xH)=J • Ei
±}

(8.137)

follows from the sourcefree Maxwell equations for Ex* , Hi*', and the Maxwell
equations with source satisfied by E and H. Integration of (8.137) over a volume

Fig. 8.13 Schematic representation of a localized source in a wave guide. The walls of

the guide, together with the planes S + and S_, define the volume containing the source.
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V bounded by a closed surface S leads, via the divergence theorem, to the result,

(ExHf )-E?:) xH).nda= [ J • Ex* d
3
x (8.138)

4ttIs

where n is an outwardly directed normal. The volume V is now chosen to be the

volume bounded by the inner walls of the guide and two surfaces S+ and S- of

Fig. 8.13. With the assumption of perfectly conducting walls containing no

sources or apertures in them, the part of the surface integral over the walls

vanishes. Only the integrals over S+ and S- contribute. For definiteness, we
choose the lower sign in (8.138) and substitute from (8.135) for the integral over

_c

4'
-[ ^fl^l e3 .(E?

) xHi- )-Ei- )xHfVa
7T Js+ 47T \' Js+

With the fields (8.123) and (8.124) and the normalization (8.127), this becomes

lr~2k A" (8 - 139)
c

4ir

The part of the surface integral in (8.138) from S- is

c

4 IT JS- 477 x' Js_

which can easily be shown to vanish. For the choice of the lower sign in (8.138),

therefore, only the surface S+ gives a contribution to the left-hand side.

Similarly, for the upper sign, only the integral over S- contributes. It yields

(8.139), but with Ai^ instead of Ai+)
. With (8.139) for the left-hand side of

(8.138), the coefficients Ax are determined to be

C Jv

where the field Ef }

of the normal mode A is normalized according to (8.125).

Note that the amplitude for propagation in the positive z direction comes from

integration of the scalar product of the current with the mode field describing

propagation in the negative z direction, and vice versa.

It is a simple matter to allow for the presence of apertures (acting as sources or

sinks) in the walls of the guide between the two planes S+ and S-. Inspection of

(8.138) shows that in such circumstances (8.140) is modified to read

A^ =^ f (ExHD • n [ J • Ef> d
3
x (8.141)

^ Japertures C Jv

where E is the exact tangential electric field in the apertures and n is outwardly

directed.

The application of (8.140) to examples of the excitation of waves in guides is
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left to the problems at the end of the chapter. In the next chapter (Section 9.5)

the question of a source that is small compared to a wavelength is considered,

and the approximation of (8.140) by the coupling of the electric and magnetic

dipole moments of the source to the electric and magnetic fields of the Ath mode
is derived. The coupling of wave guides by small apertures is also discussed in

Section 9.5. The subject of sources and excitation of oscillations in wave guides

and cavities is of considerable practical importance in microwave engineering.

There is a voluminous literature on the topic. One of the best recent references is

the book by Collin, Chapters 5 and 7.

8.12 Reflection and Transmission by Plane Diaphragms,

Variational Approximation

Discontinuities in the form of obstacles, dielectric slabs, diaphragms and

apertures in the walls occur in the practical use of wave guides as carriers of

electromagnetic energy and phase information in microwave systems. The great

research effort put into radar during the Second World War led to the

development of sophisticated mathematical techniques for the solution of many
of these complicated boundary-value problems. We illustrate here one of the

simpler, although still important, classes of discontinuities, plane diaphragms or

windows of negligible thickness oriented transverse to the axis of the guide. The
exact solution of such problems is generally possible only by resort to numerical

computation. Approximation methods, notably the variational technique de-

veloped by Julian Schwinger,f can, however, yield reliable answers with modest

effort.

The United States radar research during 1940-45 is documented in the

Massachusetts Institute of Technology Radiation Laboratory Series, published

by McGraw-Hill Book Company, Inc., New York. The general physical prin-

ciples of microwave circuits are covered in the book by Montgomery, Dicke,

and Purcell, while a compendium of results on discontinuities in wave guides

is provided by the volume by Marcuvitz. These and other references are listed

at the end of the chapter.

The special type of discontinuity to be considered is shown in Fig. 8.14. The
somewhat fanciful set of openings in the diaphragm serve to remind that the

argument is general, within the framework of a plane transverse window of

negligible thickness. If the wave guide is operated at a frequency such that only

the lowest modes can propagate, it is sufficient to consider, far away from the

t As has occurred with other seminal work by Schwinger, the wartime treatment
of wave guides existed for a long period only in the form of unpublished, and generally

unavailable, lecture notes. This has been remedied in part after a delay of nearly a quarter

of a century, by the publication in book form of the notes from lectures at the M.I.T.

Radiation Laboratory, listed in the references at the end of this chapter.
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1 5^2 1 > X

Fig. 8.14 Discontinuity in the form of a plane transverse diaphragm of negligible

thickness. Side view on the left and plan view on the right.

discontinuity, only the incident, reflected and transmitted fields of that lowest

mode. The description of the effects of the discontinuity can be made in the

language of transmission line theory, with the diaphragm being equivalent to a

frequency-dependent shunt impedance. Near the diaphragm it is of course

necessary to include the effects of the evanescent modes in order to satisfy the

boundary conditions at the diaphragm.

With the assumption that only the lowest mode (A = 1) can propagate and that

there is incident from the left a wave of unit amplitude (in the sense of the

previous section) in the lowest mode, the electric field for z<0 can be written

E = Ei
+)+RE (

r
)+ X APE? (8.142)

A = 2

with a similar expression for the magnetic field H. The mode fields (8.123) and

(8.124) have been separated explicitly into the propagating and cutoff parts. The
fields E(

i

±)
vary in z as e

±ikz
, while the fields E(

x
_)
with A>2 vary as e

KxZ and so are

appreciable only near z = 0. For z>0, only waves moving in the positive z

direction can occur. The electric field for z>0 is thus

E= TEi+)+ X A[+)E[
+)

(8.143)
X = 2

The coefficients R and T are the amplitudes of the reflected and transmitted

waves in the lowest mode. If the walls of the guide and the surfaces of the

diaphragm are perfectly conducting, there are no losses in the system. This

means that 1 +R= T. Verification of this result comes from formally evaluating

the coefficients in (8.142) and (8.143). Scalar multiplication of both sides of

(8.142) with the transverse mode field Ex and integration over the cross-

sectional area of the guide at z = 0~ gives

1 +R= [ E-Exda
Jz = 0~

Ai
_) = [ E-Exda (A>1)
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because of the orthogonality relation (8.125). Similarly (8.143) yields

T= f E • Ei da
Jz = +

Ai
T) =

|
E-Exda (A>1)

Jz = +

If the diaphragm surfaces are perfectly conducting, the tangential electric field

vanishes except in the apertures and the above integrals extend only over the

area of those apertures. Because of the continuity of the tangential electric field

in the apertures at z = 0, there is no difference between an integral at z = +
and

one at z = 0~. As a consequence the coefficients are given by

1 + R = T=[ E- Ei da (8.144)
Japertures

A^=AV=\ E-Exda (8.145)
Japertures

If the exact electric field in the aperture, or some reasonable approximation to

it, can be found, (8.144) can be used to determine the amplitudes of the reflected

and transmitted waves. In some circumstances static fields and conformal

mapping techniques can be utilized. Any of the approximation schemes are

enhanced when combined with the stationary or variational expressions of

Schwinger. These expressions replace the direct form (8.144) by a more

complicated result involving a sum over all the evanescent modes, but stationary

with respect to variations of the fields away from their true values, and so

suitable for use with relatively poor trial values of the fields. As with many
worthwhile things, the derivation is not immediately obvious to the uninitiated.

We begin by considering the explicit form of the boundary conditions on the

tangential electric and magnetic fields in the apertures. Tangential E and H are

continuous there. With the mode fields (8.123) and (8.124) and the expansions

(8.142) and (8.143), the continuity of the transverse electric field appears as

(l + R)Ei+ X AI
_)Ex = TEi+ X Ax+)EX (8.146)

\=2 \=2

In view of (8.144) and (8.145) this is an obvious equality, as should be expected.

It is written out to contrast it with the corresponding equation for the

transverse magnetic field:

GO 00

(l-R)Hi- £ Ax~
)Hx = THi+ I Ai+)

Hx (8.147)
\=2 X=2

Equation (8.146) holds over the whole cross-sectional area of the guide because

the expansion coefficients (8.144) and (8.145) assure that the tangential field

vanishes on the surface of the diaphragm, but (8.147) holds only in the
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apertures. On either surface of the diaphragm surface currents flow, and there is

no requirement of continuity for tangential H.

From (8.31), the transverse mode field Hx can be written as

Hx =Yxe3 xE„ (8.148)

where YK-Zx

~ l

is the waue admittance and is given by the reciprocal of (8.32)

with k = kx . The statement of continuity of tangential H in the apertures,

(8.147), can thus be written in terms of the electric fields:

(l-RJYiEx-I YxAl-
)

Ex = TY1E 1 +|; YxAi
+)Ex

A = 2 X = 2

Use of the relation T— 1 +R and (8.145) allows this to be cast into the form,

-2RY1E 1 = 2X YxExf E • Ex da (8.149)
A = 2 ./apertures

The variational result follows in two steps. The first is scalar multiplication of

both sides of (8.149) with the exact field E and integration over the apertures.

With (8.144) this yields

-2R(l+R)Yi=2l YxFf daE-ExT
X = 2 L Japertures J

The second, and not so obvious, step is to divide both sides of this equation by

Yi(l + R) 2

,
using the right side of (8.144) in the denominator on the right. The

result is

2£Yx[[ E-Exda]
2

X = 2 L Japertures J /O 1 CA\d~ F7 p VO-J^Uj

Yi E • Ei da
L Japertures J

where

is the relative shunt admittance of the diaphragm, in the language of transmis-

sion lines. t Equation (8.150) can be shown to be stationary with respect to first

order variations of the electric field E away from its true value. It is also

homogeneous in E and so independent of normalization of the trial function. In

general the extremum is not a maximum or a minimum. The reason is that the

terms in the sum over the cutoff modes do not generally have only one sign. It

can be seen from (8.32) that, since fcx = ikx , where kx is real and positive, for the

t The reader who is unfamiliar with transmission line theory would do well to

establish the connection between reflection and transmission amplitudes and an admit-

tance or impedance across a transmission line. See, for example, Chapters 1 and 11 of

Ramo, Whinnery, and Van Duzer.
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cutoff modes, the phase of the wave admittance depends on the type of mode:

-i|Vx| (TM)

+ i|Vx| (TE)

If the incident wave and the geometry of the diaphragm are such that only one

type of mode is excited, the sum in (8.150) consists of elements all having the

same relative sign and the result for Yd with a trial function for E will be a true

upper (or lower) bound on the magnitude of the admittance. Otherwise, the

result is not a bound, and an improved trial function for E may yield a smaller or

larger magnitude. If the contributions of the TM modes dominate in the sum, Yd

will be negative imaginary. The impedance Zd is thus positive imaginary, and is

recognized as capacitive when our use of e~
l0>

\ not e
,0>

\ is remembered. If the TE
modes dominate, Yd is positive imaginary ; the diaphragm is an inductive obstacle.

For some purposes it is useful to cast (8.150) into a somewhat different form

involving a dyadic Green function defined by

G(xy
|

x'y') = 2 £ Y*E*(x, y)Ex(x', y') (8.152)

The arrows over the mode fields on the right indicate the permitted directions

for vector operations. With this Green function (8.150) can be written

\dx dy \dx' dy' E(x, y) G(xy
|

x'y') • E(x\ y')

Yd
=- F7 p (8.153)

Yi[\dx dy E(x, y)-Ei(x, y)j

In certain problems the sum over the modes in (8.152) or an equivalent form can

be performed, at least approximately, and the integration in (8.153) is all that

need be done, numerically if necessary. Space does not permit extended

discussion of the details. The reader may refer to Chapter 8 in Collin and other

references cited at the end of the chapter for the working out of specific examples.

One or two simple situations are treated in the problems.

In the derivation of the variational principle (8.150) the magnetic field was

eliminated from the boundary condition (8.147) in favor of the electric field. An
alternative procedure is to eliminate Ex in favor of Hx in (8.146). Expressions

analogous to (8.144) and (8.145) can be written for (1-K) and ASt
}

as integrals

over the magnetic fields at z = 0" (from the left side of (8. 147)), and for T and A[+)

as integrals at z = +
. Then a development entirely parallel to the former one

leads to a variational expression for the shunt impedance Zd=Yd

~ 1

of the

diaphragm:

\ t zj [K -Ex daT
Zd =

lK = 2 U -yi (8.154)

Zi JK-Ei da
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where

K = -j- e3 x [H(z =
+
) - H(z = 0")] (8.155)

is the total surface current density on the diaphragm. The integrations in (8.154)

are evidently only over the surface of the diaphragm and are thus complemen-

tary to those in (8.150). A combination of the variational principles for Yd and

Zd can put close limits on the exact value of Yd ,
although rapid convergence of

the sum over A in one expression may mean slow convergence in the other.

8.13 Impedance of a Flat Strip Parallel to the Electric Field in a

Rectangular Wave Guide

As a simple example of the use of the variational methods of the previous

section, we consider the reflections caused by a thin flat perfectly conducting

transverse strip shown in Fig. 8.15. The strip is of width d and is oriented in the

x-y plane parallel to the electric field of the propagating TEi, mode with its

center at x = x . The geometry is such that only TEW ,
modes are excited. The

mode fields are therefore given by (8.130) with n = 0; only Ey , Hz and Hx are

nonvanishing. The calculation is done in terms of the impedance expression

(8.154). Taking advantage of the homogeneous character of (8.154) to clear the

numerator and denominator of unnecessary factors, we obtain

• 00 / 2 '

Ag m = 2 V (01

where A g
= 2Tr/ki is the wavelength in the guide at frequency co, coi = 7rc/a is the

cutoff frequency of the TEi, mode, and K(x) is the surface current (in the y

direction) on the strip. The factor — i indicates, with our conventions, that the

y

b

Fig. 8.15 Flat inductive strip parallel to the electric field in a rectangular wave guide.

I
dx K(x) sin \

-
j

\dx K(x) sin {^j

(8.156)
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strip acts as an inductive shunt impedance. [Electrical engineers should substitute

—j for i in all formulas.]

Any relatively reasonable form for the surface current K(x) will yield an

approximation for Zd that is generally accurate to 10 or 20 per cent. With a

moderate amount of care considerably better results can be obtained. The
simplest assumption is that K(x) is constant over the strip. This calculation is left

to the problems at the end of the chapter. A much better approximation is

obtained if some recognition is taken of the behavior of K(x) at the edge of the

strip. It was shown in Section 2.11 that the fields at the edge of a thin sheet are

singular as (x)~
1/2

, where x is the distance from the edge. If this behavior is

incorporated into the trial form for K(x), it can be anticipated that the

approximation for Zd will improve. For simplicity we consider x = a/2. For such

a centered strip K(x) is symmetric about the midpoint and only m=l, 3, 5, . .

.

enter (8.156). The typical integral in (8.156) is then

T . / miT\
Im = 2 sin y—-

j
K(x') cos (p

2^-) dx' (8.157)

where x' = x — a/2. To incorporate the proper behavior at the edges of the strip,

we write

K(x')= (8.158)

where K is finite at x'=±d/2 and is an even function of x'. With a change of

variable, x' = (d/2) cos 0, (8.157) becomes

L = 2 sin (?f)^
2

K(Q) cos cos o) de

The simplest approximation is K= 1. Then the integral is, apart from a constant,

Poisson's formula for the zeroth order Bessel function. Thus

An N-parameter variational trial function for K(6) is afforded by a finite

polynomial expansion in powers of sin
2
6 [equivalent to an expansion in powers

of (d
2/4-x 2

)]:

N

I
k =

with b =l. For this trial function Im is given by

K(0)=£ Msin2
0)

k
(8.160)
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This expression can be inserted in (8.156) and the result minimized with respect

to variations of the coefficients bk . Here we consider only the simple expres-

sion (8.159) based on the first term in (8.160). The impedance of the

discontinuity is then approximated by

Zd
-- ia 1

2 /mird\
Jo

\~2a~)

7m
CO

(8.162)

From the asymptotic form (3.91) for the Bessel function it can be seen that the

mth term in the series goes as m -2
for large m, and so the series converges fairly

rapidly, except for very small d/a. Numerical evaluation of (8.162) for a typical

value, d/a = 0.25, yields (iAg ZJa) = 0.259 for o>/g>i=1 and 0.306 for o>/o>i = 2.

For comparison, the corresponding values from Fig. 5.2.8 of Marcuvitz are

0.254 and 0.288, respectively. The trial function (8.158) with K=l thus

overestimates the impedance by only 2 per cent at cutoff and 6 per cent at

o)/o)i = 2. In contrast, the assumption of constant K (Problem 8.12) gives values

15 and 24 per cent too large at d/a = 0.25. Use of the series (8.160) in a truly

variational calculation can improve the estimates still further.

For small values of d/a the series in (8.156) converges slowly. It is advantage-

ous to sum the series before integration and so obtain an expression like (8.153)

involving a Green function. The series cannot be summed in closed form for

arbitrary co, but the impedance can be written as two terms, the static value

(o) = 0) plus a very rapidly convergent series as a correction term:

where

f'A e

and

Zd = Z?+kZd

\dxidx' K(x)G(x, x')K(x')
£(0) _ J J

[\dxK(x) sin
(f)J

Jdx K(x)

(8.163)

(8.164)

/ 2 O)
2

. / mTTX\

Jdx K(x) sin

(8.165)

The coefficient in (8.165) approaches o)
2
/2o)i

2m 3
for large m and so gives a very

rapidly convergent series in which typically only three or four terms need be

kept. The Green function in the static impedance (8.164) is

G(x, x')
( mirx\ . / rnirx

sin sin -

i m \ a I \

nrx' \

a I
(8.166)
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The series can be summed in closed formt to yield

G(x, x') = i\n

IT
sin— (x+ x')

la

sin— (x-x')

(8.167)

To lowest order in d/a the numerator in the logarithm can be treated as constant,

with x = x' = x . The static impedance (8.164) is thus approximately

iAg (o) i 2 / irx \ ,
/2a . ttx \ 1—5 Zd— 5 cosec In —j sin -1

a \ a ) \Trd a /

+ cosec'
fir)

Jdxjdx'K(x)K(x') In
d

x — x'

2[Jk(x) dx
2 (8.168)

with corrections of order d
2
/a

2
. The leading logarithmic behavior is independent

of the form of K(x). Only the small correction terms that contributes a constant

depends on K(x). With K — 1 the coefficient of cosec
2
(irxo/a) in the last term in

(8.168) is equal to |, while for the form (8.158) with K= 1 it is In 2 = 0.693. With

this latter value the static impedance is

To the same accuracy in powers of d/a, the correction term (8.165) for finite

frequencies is

AZ,— cosec
2

Ag
v a ' m =2

1

I 2 &
A/m 2

sin
2 /m77X \

(8.170)

Equations (8.169) and (8.170) are the expressions quoted by Marcuvitz, p. 264.

The added contribution of AZd is small. For the centered strip (x = a/2), for

example, the summation in (8.170) is estimated to be 0.026cd
2
/<o 1

2
. These last

results are reasonably accurate for d/a< 0.1.

The two approaches described above, the direct series expansion represented

by (8.162) and the use of the Green function in closed form, (8.167), illustrate

some of the techniques employed in calculating the reflection coefficients for

obstacles in wave guides. Many clever and ingenious methods are discussed in

the specialized literature, to which the interested reader may refer.

t Appendix A.6 of Collin discusses several methods of summing series like

(8.166). The example in our own Section 2.10 can be adapted to yield (8.167).
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The mathematical tools for the treatment of these boundary-value problems are

presented by
Morse and Feshbach, especially Chapter 13.
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Numerical values of special functions, as well as formulas, are given by

Abramowitz and Stegun,

Jahnke, Emde and Losch.

Two books dealing with propagation of electromagnetic waves around the earth and in
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the ionosphere from the point of view of wave guides and normal modes are

K. G. Budden, The Wave-guide Mode Theory of Wave Propagation, Logos Press

and Academic Press, London, 1961.

Wait.

See also

Galejs.

PROBLEMS

8.1 A transmission line consisting of two concentric circular cylinders of metal with

conductivity cr and skin depth 8, as shown below, is filled with a uniform lossless

dielectric (/x, e). A TEM mode is propagated along this line,

(a) Show that the time-averaged power flow along the line is

where H is the peak value of the azimuthal magnetic field at the surface of the inner

conductor.

Problem 8.1

(b) Show that the transmitted power is attenuated along the line as

P(z) = PQe-
2^

where

= r_c_]J_ e X a b>

L4<7rj2o-8 (b\-©
(c) The characteristic impedance Z of the line is defined as the ratio of the voltage

between the cylinders to the axial current flowing in one of them at any position z.

Show that for this line
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(d) Show that the series resistance and inductance per unit length of the line are

«i*}s&$ (4)-

'-»(!)*£(H)S «
where fi c is the permeability of the conductor. The correction to the inductance

comes from the penetration of the flux into the conductors by a distance of order 8.

8.2 A transmission line consists of two identical thin strips of metal, shown in cross

section below. Assuming that b » a, discuss the propagation of a TEM mode on this

line, repeating the derivations of Problem 8.1. Show that

Problem 8.2

where the symbols have the same meanings as in Problem 8.1.

8.3 Transverse electric and magnetic waves are propagated along a hollow, right

circular cylinder of brass with inner radius R.

(a) Find the cutoff frequencies of the various TE and TM modes. Determine

numerically the lowest cutoff frequency (the dominant mode) in terms of the tube

radius and the ratio of cutoff frequencies of the next four higher modes to that of the

dominant mode. For this part assume that the conductivity of brass is infinite.
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(b) Calculate the attenuation constant of the wave guide as a function of frequency for

the lowest two modes and plot it as a function of frequency.

8.4 A wave guide is constructed so that the cross section of the guide forms a right

triangle with sides of length a, a, \/2a, as shown below. The medium inside has

fX = €= 1.

(a) Assuming infinite conductivity for the walls, determine the possible modes of

propagation and their cutoff frequencies.

Problem 8.4

(b) For the lowest modes of each type calculate the attenuation constant, assuming

that the walls have large, but finite, conductivity. Compare the result with that for a

square guide of side a made from the same material.

8.5 A resonant cavity of copper consists of a hollow, right circular cylinder of inner

radius R and length L, with flat end faces.

(a) Determine the resonant frequencies of the cavity for all types of waves. With
(c/Vjuti R) as a unit of frequency, plot the lowest four resonant frequencies of each type

as a function of R/L for 0<R/L<2. Does the same mode have the lowest frequency

for all R/L?
(b) If R = 2 cm, L = 3 cm, and the cavity is made of pure copper, what is the numerical

value of Q for the lowest resonant mode?

8.6 A resonant cavity consists of the empty space between two perfectly conducting,

concentric spherical shells, the smaller having an outer radius a and the larger an inner

radius b. As shown in Section 8.9, the azimuthal magnetic field has a radial

dependence given by spherical Bessel functions, j',(kr) and n,(kr), where k = <o/c.

(a) Write down the transcendental equation for the characteristic frequencies of the

cavity for arbitrary I.

(b) For 1 = 1 use the explicit forms of the spherical Bessel functions to show that the

characteristic frequencies are given by

tan kh

where h = b-a.
(c) For h/a« 1, verify that the result of (b) yields the frequency found in Section 8.9,

and find the first order correction in h/a.

[The result of part (b) seems to have been derived first by J. J. Thomson and published

in his book, Recent Researches in Electricity and Magnetism, Oxford Clarendon Press,

1893, pp. 373 ff.]
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8.7 For the Schumann resonances of Section 8.9 calculate the Q values on the

assumption that the earth has a conductivity cre and the ionosphere has a conductivity

cr„ with corresponding skin depths 8e and Si.

(a) Show that to lowest order in hia the Q value is given by Q = Nh/(8e + 8i) and
determine the numerical factor N for all I.

(b) For the lowest Schumann resonance evaluate the Q value assuming ov = 10
9
sec

-1
,

oi=105 «c"1
, h= 10

2 km.
(c) Discuss the validity of the approximations used in (a) for the range of parameters

used in (b).

8.8 A right circular cylinder of nonpermeable dielectric with dielectric constant e and
radius a serves as a dielectric wave guide in vacuum.

(a) Discuss the propagation of waves along such a guide, assuming that the azimuthal

variation of the fields is e
im4>

.

(b) For m = ±l, determine the mode with the lowest cutoff frequency and discuss the

properties of its fields (cutoff frequency, spatial variation, etc.), assuming that e»l.

8.9 (a) From the use of Green's theorem in two dimensions show that the TM and TE
modes in a wave guide defined by the boundary-value problems (8.34) and (8.36) are

orthogonal in the sense that

|
EzKEzllda = for A # jut

for TM modes, and a corresponding relation for Hz for TE modes,

(b) Prove that the relations (8.125)-(8.128) form a consistent set of normalization

conditions for the fields, including the circumstance when A is a TM mode and jui is a

TE mode.

8.10 An infinitely long rectangular wave guide has the center conductor of a coaxial line

extending vertically a distance h into its interior at 2 = 0, as shown in the cross-

sectional view. The current along the probe oscillates sinusoidally in time with

frequency a>, and its variation in space can be approximated as I(y) =

I sin [(o>/c)(h-y)]. The thickness of the probe can be neglected. The frequency is such

that only the TE10 mode can propagate in the guide.

< a >

)

\

r

\

b

v

< X >

Problem 8.10

(a) Calculate the amplitudes for excitation of both TE and TM modes for all (m, n)

and show how the amplitudes depend on m and n for m, n » 1 for a fixed frequency to.

(b) For the propagating mode show that the power radiated in the positive z direction

is

_ 47TjxIo
2

. 2 /ttX\ . Ja>h\
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with an equal amount in the opposite direction. Here k is the wave number for the

TE1.0 mode.
(c) Discuss the modifications that occur if the guide, instead of running off to infinity

in both directions, is terminated with a perfectly conducting surface at z = L. What
values of L will maximize the power flow for a fixed current I ? What is the radiation

resistance of the probe (defined as the ratio of power flow to one-half the square of

the current at the base of the probe) at maximum?

8.11 An infinitely long rectangular wave guide has a coaxial line terminating in the short

side of the guide with the thin central conductor forming a semicircular loop of radius

R whose center is a height h above the floor of the guide, as shown in the

accompanying cross-sectional view. The half-loop is in the plane z = and its radius R
is sufficiently small that the current can be taken as having a constant value I„

everywhere on the loop.

(a) Prove that, to the extent that the current is constant around the half-loop the TM
modes are not excited. Give a physical explanation of this lack of excitation,

excitation.

(b) Determine the amplitude for the lowest TE mode in the guide and show that its

value is independent of the height h.

(c) Show that the power radiated in either direction in the lowest TE mode is

where Z is the wave impedance of the TEi.o mode. Here assume R« a, b.

8.12 Discuss the reflection by a flat strip of width d, centered at x = x , in a rectangular

guide, as shown in Fig. 8.15.

(a) Use the approximation of K(x) = 1 in (8.156) to show that the shunt impedance is

approximated by

(b) For a centered strip (x = a/2) evaluate the sum in (a) numerically for d/a = 0.3 and
(xil(ji x = 1.0, and compare with the accurate result (read from Fig. 5.2.8 of Marcuvitz),

ik
tZJa = 0.186.

8.13 Consider reflection of the TE 1>0 mode in a rectangular wave guide with an aperture

that is the complement of the strip shown in Fig. 8. 1 5, as indicated in the sketch below.

a

Problem 8.11
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Problem 8.13

(a) Show that the shunt admittance can be written

m~

U m = 2 m

|dxftWcos(2^)'

|dx Hz (x) cos (~)

where Hz (x) is the longitudinal magnetic field in the aperture.

(b) Show that the static Green function defined in analogy with (8.166) is

G(x, x') = -4ln
[2

I

cos (^)-cos
(^)| ]

(c) Show that, if Hz (x) is approximated by the lowest order polynomial in x consistent

with the symmetry of the fields, a narrow, centered aperture has a static admittance,

with corrections of order (d/a)
2
relative to the leading term. The correct answer in the

limit of d/a«l is 8/9 times this value.



In Chapters 7 and 8 we have discussed the properties of electromagnetic waves

and their propagation in both bounded and unbounded geometries. But very

little has been said about the generation of such waves. In the present chapter we
turn to this question and discuss the emission of radiation by localized oscillating

systems of charge and current density. The treatment is straightforward, without

elaborate formalism. By its nature it is restricted to rather simple radiating

systems. The systematic approach, with vector multipole fields for arbitrary I, is

deferred to Chapter 16. Here we discuss only the electric and magnetic dipoles

and the electric quadrupole, as well as some simple configurations of currents on

conductors. The simple multipole expansion for a source in a wave guide is also

treated, and the effective multipole moments of apertures.

The second, larger part of the chapter concerns scattering and diffraction. First

scattering at long wavelengths, including Rayleigh's explanation of the blue sky

and related topics, are explained. Then scalar and vector diffraction theory are

discussed, with some examples. Scattering at short wavelengths and the impor-

tant optical theorem end the chapter.

9.1 Fields and Radiation of a Localized Oscillating Source

For a system of charges and currents varying in time we can make a Fourier

analysis of the time dependence and handle each Fourier component separately.

We therefore lose no generality by considering the potentials, fields, and

radiation from a localized system of charges and currents which vary sinusoidally

in time:

(9.1)

391
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As usual, the real part of such expressions is to be taken to obtain physical

quantities.* The electromagnetic potentials and fields are assumed to have the

same time dependence.

It was shown in Chapter 6 that the solution for the vector potential A(x, t) in

the Lorentz gauge is

A(*,04jdVj^ 8
(

(

<+^- (
)

(9.2)

provided no boundary surfaces are present. The Dirac delta function assures the

causal behavior of the fields. With the sinusoidal time dependence (9.1), the

solution for A becomes

where k = o>/c is the wave number, and a sinusoidal time dependence is

understood. The magnetic induction is given by

B =VxA (9.4)

while, outside the source, the electric field is

E =~VxB (9.5)

Given a current distribution J(x'), the fields can, in principle at least, be

determined by calculating the integral in (9.3). We will consider one or two

examples of direct integration of the source integral in Section 9.4. But at

present we wish to establish certain simple, but general, properties of the fields

in the limit that the source of current is confined to a small region, very small in

fact compared to a wavelength. If the source dimensions are of order d and the

wavelength is A = 27rc/a>, and if d«A, then there are three spatial regions of

interest:

The near (static) zone: d«r«k

The intermediate (induction) zone: d«r~A

The far (radiation) zone: d« A« r

We will see that the fields have very different properties in the different zones. In

the near zone the fields have the character of static fields with radial components

and variation with distance which depends in detail on the properties of the

source. In the far zone, on the other hand, the fields are transverse to the radius

vector and fall off as r"
1

,
typical of radiation fields.

* See Problem 9.1 for some of the subtleties that can arise over factors of 2. There

are also factors of 2 in the correspondence between classical and quantum-mechanical

quantities. For example, in a one-electron atom our classical dipole moment p is replaced

by 2e(f\ r \i) for a transition from state i to state /.
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For the near zone where r«A (or kr« 1) the exponential in (9.3) can be

replaced by unity. Then the vector potential is of the form already considered in

Chapter 5. The inverse distance can be expanded using (3.70), with the result,

lim A(x)=i X fl(xVYt(0', <*>WV (9.6)
kr—o Ci, m ziti r J

This shows that the near fields are quasi-stationary, oscillating harmonically as

e"
ia,

\ but otherwise static in character.

In the far zone (fcr»l) the exponential in (9.3) oscillates rapidly and

determines the behavior of the vector potential. In this region it is sufficient to

approximate*

|x-x'|-r-n-x' (9.7)

where n is a unit vector in the direction of x. Furthermore, if only the leading

term in kr is desired, the inverse distance in (9.3) can be replaced by r. Then the

vector potential is

lim A(x)=— [j(x')e-
ikas '

dV (9.8)
kr—°o cr J

This demonstrates that in the far zone the vector potential behaves as an

outgoing spherical wave with an angular dependent coefficient. It is easy to show

that the fields calculated from (9.4) and (9.5) are transverse to the radius vector

and fall off as r
_1

. They thus correspond to radiation fields. If the source

dimensions are small compared to a wavelength it is appropriate to expand the

integral in (9.8) in powers of k:

lim A(x) =£' I [j(x')(n • x')
n
dV (9.9)

The magnitude of the nth term is given by

^Jj(x')(kn.xTdV (9.10)

Since the order of magnitude of x' is d and kd is small compared to unity by

assumption, the successive terms in the expansion of A evidently fall off rapidly

with n. Consequently the radiation emitted from the source will come mainly

from the first nonvanishing term in the expansion (9.9). We will examine the first

few of these in the following sections.

In the intermediate or induction zone the two alternative approximations

leading to (9.6) and (9.8) cannot be made; all powers of kr must be retained.

* Actually (9.7) is valid for r»d, independent of the value of kr. It is therefore an
adequate approximation even in the near zone.
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Without marshalling the full apparatus of vector multipole fields, described in

Chapter 16, we can abstract enough for our immediate purpose. The key result is

the exact expansion (16.22) for the Green function appearing in (9.3). For

points outside the source (9.3) then becomes

A(x) =— Z h\
l)

(kr)Ylm(e, <f>) fJ(xOji(kr')Y?m (0', <f>') dV (9.11)

If the source dimensions are small compared to a wavelength, ji(kr') can be

approximated by (16.12). Then the result for the vector potential is of the form

of (9.6), but with the replacement,

^^f^(l + a 1 (ikr) + a 2 (ikr)
2 +- + a l

(ikr)
1

) (9.12)

The numerical coefficients a, come from the explicit expressions for the spherical

Hankel functions. The right hand side of (9.12) shows the transition from the

static-zone result (9.6) for kr« 1 to the radiation-zone form (9.9) for kr»l.

Before discussing electric dipole and other types of radiation we examine the

question of electric monopole fields when the sources vary in time. The analogue

of (9.2) for the scalar potential is

The electric monopole contribution is obtained by replacing |x— x'|—» |x| = r

under the integral. The result is

d> (x t
, q(t'=t-r/c)

where q(t) is the total charge of the source. Since charge is conserved and a

localized source is by definition one that does not have charge flowing into or

away from it, the total charge q is independent of time. Thus the electric

monopole part of the potential (and fields) of a localized source is of necessity

static. The fields with harmonic time dependence e~
lw

\ cj^O, have no monopole

terms.

We now turn to the lowest order multipole fields for w^O. Because these

fields can be calculated from the vector potential alone via (9.4) and (9.5), we
omit explicit reference to the scalar potential in what follows.

9.2 Electric Dipole Fields and Radiation

If only the first term in (9.9) is kept, the vector potential is

A(x) = ^- jj(x')dV (9.13)
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Examination of (9.11) and (9.12) shows that (9.13) is the 1 = part of the series

and that it is valid everywhere outside the source, not just in the far zone. The

integral can be put in more familiar terms by an integration by parts:

Jj
dV = - jx'(V • J) d

3
x' = -icoJx'p(x') d

3
x' (9.14)

since from the continuity equation,

i<op = V-J (9.15)

Thus the vector potential is

ikr

A(x) = -ikp^- (9.16)

where -

p= Jx'p(x')dV (9<17)

is the electric dipole moment, as defined in electrostatics by (4.8).

The electric dipole fields from (9.4) and (9.5) are

B-fc^xp^l-i)

E= k
2(nxp)xn^+[3n(ii •

p)-p](p-f

}

(9.18)

We note that the magnetic induction is transverse to the radius vector at all

distances, but that the electric field has components parallel and perpendicular

to n.

In the radiation zone the fields take on the limiting forms,

B = k
2(nxp)M

(919)
E=Bxn J

showing the typical behavior of radiation fields.

In the near zone, on the other hand, the fields approach

B=ik(nxp)p

E = [3n(n.p)-p]i
(9.20)

The electric field, apart from its oscillations in time, is just the static electric

dipole field (4.13). The magnetic induction is a factor (kr) smaller than the

electric field in the region where kr« 1. Thus the fields in the near zone are

dominantly electric in nature. The magnetic induction vanishes, of course, in the

static limit k—»0. Then the near zone extends to infinity.

The time-averaged power radiated per unit solid angle by the oscillating
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dipole moment p is

g=£Re[r>n.ExB*] (9.21)

where E and B are given by (9.19). Thus we find

HP r
|£=^n(„xp)x„f (9.22)

The state of polarization of the radiation is given by the vector inside the

absolute value signs (See the footnote on p. 659). If the components of p all have

the same phase, the angular distribution is a typical dipole pattern,

m?£?W*t0 (9.23)

where the angle is measured from the direction of p. The total power radiated,

independent of the relative phases of the components of p, is

P=3^|p| 2
(9.24)

A simple example of an electric dipole radiator is a centerfed, linear antenna

whose length d is small compared to a wavelength. The antenna is assumed to be

oriented along the z axis, extending from z = (d/2) to z = -(d/2) with a narrow

gap at the center for purposes of excitation, as shown in Fig. 9.1. The current is

in the same direction in each half of the antenna, having a value I at the gap and

falling approximately linearly to zero at the ends:

(9.25)

From the continuity equation (9.15) the linear-charge density p' (charge per unit

z

Fig. 9.1 Short, center-fed, linear antenna.
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length) is constant along each arm of the antenna, with the value,

p'(z) = ±^f (9.26)
did

the upper (lower) sign being appropriate for positive (negative) values of z. The

dipole moment (9.17) is parallel to the z axis and has the magnitude

(d/2)
| J"

A

zo\z)dz =-^ (9.27)
-(d/2)

The angular distribution of radiated power is

dP Io
2

da 32ttc

while the total power radiated is

{kdf sin
2
6 (9.28)

Io
2
(kdY

12c
(9.29)

We see that for a fixed input current the power radiated increases as the square

of the frequency, at least in the long-wavelength domain where kd«l.
The coefficient of I

2
/2 in (9.29) has the dimensions of a resistance and is called

the radiation resistance Rrad of the antenna. It corresponds to the second term in

(6.137) and is the total resistance of the antenna if the conductivity is perfect.

The value of the radiation resistance in ohms is obtained by multiplying the

coefficient of I
2
/2 by 30c. Thus for this short center-fed antenna R rad—

5(kd)
2
ohms. In principle the input reactance for the antenna can be calculated

by applying Eq. (6.138) or (6.140) of Section 6.10. Unfortunately the calculation

depends crucially on the strong fields near the gap and thus is sensitive to the

exact shape and method of excitation. Since the system is an electric dipole and

the electrostatic dipole field dominates near the antenna, we can nevertheless

say with certainty that the reactance is negative (capacitive) for small kd.

9.3 Magnetic Dipole and Electric Quadrupole Fields

The next term in expansion (9.9) leads to a vector potential,

A(x) =^r(~ ik) j* J(x')(n . x') dV (9.30)

where we have included the correct terms from (9.12) in order to make (9.30)

valid everywhere outside the source. This vector potential can be written as the

sum of two terms, one of which gives a transverse magnetic induction and the

other of which gives a transverse electric field. These physically distinct

contributions can be separated by writing the integrand in (9.30) as the sum of a
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part symmetric in J and x' and a part that is antisymmetric. Thus

-
c
(n • *W=Yc [(n

' x ')J+ (n ' JM+
2^ (x

' x J) x « (9-31)

The second, antisymmetric part is recognizable as the magnetization due to the

current J:

^ = ^(xxj) (9.32)

The first, symmetric term will be shown to be related to the electric quadrupole

moment density.

Considering only the magnetization term, we have the vector potential,

A(x) = ik(nxm)^(l-i) (9.33)

where m is the magnetic dipole moment,

m= ^Jtd*x=Y
c
j(xxj) d

3
x (9.34)

The fields can be determined by noting that the vector potential (9.33) is

proportional to the magnetic induction (9.18) for an electric dipole. This means

that the magnetic induction for the present magnetic dipole source will be equal

to the electric field for the electric dipole, with the substitution p—»m. Thus we
find

B-k>xm)xny+[3n(n-m)-m](p-^e ikr

(9.35)

Similarly, the electric field for a magnetic dipole source is the negative of the

magnetic field for an electric dipole:

E=-k>xm)y(l-^) (9.36)

All the arguments concerning the behavior of the fields in the near and far

zones are the same as for the electric dipole source, with the interchanges E —> B,

-E, p-> m. Similarly the radiation pattern and total power radiated are the

same for the two kinds of dipole. The only difference in the radiation fields is in

the polarization. For an electric dipole the electric vector lies in the plane

defined by n and p, while for a magnetic dipole it is perpendicular to the plane

defined by n and m.

The integral of the symmetric term in (9.31) can be transformed by an

integration by parts and some rearrangement:

j-
c J[(n

• x')J+(n • J)X '] d
3
x'=~ jx'(n - x')p(x') d

3
x' (9.37)
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The continuity equation (9.15) has been used to replace V • J by iwp. Since the

integral involves second moments of the charge density, this symmetric part

corresponds to an electric quadrupole source. The vector potential is

A(x)= -y ^-'(l-i)Jx'(n • x')p(x') dV (9.38)

The complete fields are somewhat complicated to write down. We will content

ourselves with the fields in the radiation zone. Then it is easy to see that

B = iknxA

E=ik(nxA)xn

Consequently the magnetic induction is

B = ~TT"
r

j
(l,Xx

'

)(n
'
x

'

)p(x,) dV (9 '40)

With definition (4.9) for the quadrupole moment tensor,

Q«P = J(3xaxp -r
2
8aP)p(x) d

3
x (9.41)

the integral in (9.40) can be written

nx Jx'(n -x')p(x') d
3
x' = inxQ(n) (9.42)

The vector Q(n) is defined as having components,

0« = lQ^nP (9.43)
3

We note that it depends in magnitude and direction on the direction of

observation as well as on the properties of the source. With these definitions we
have the magnetic induction,

ik
3
e

ikr

B=-^-nxQ(n) (9.44)
o r

and the time-averaged power radiated per unit solid angle,

S=28^ k6 |[" XQ(n)]Xn
l

2
(9 -45)

where again the direction of the radiated electric field is given by the vector

inside the absolute value signs.

The general angular distribution is complicated. But the total power radiated

can be calculated in a straightforward way. With the definition of Q(n) we can

(9.39)
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write the angular dependence as

|[nxQ(n)]xn|
2 =Q*.Q-|n.Q| 2

= Z Q%Qayn^ny - £ Q%Qysnan^nyn8 (9.46)

The necessary angular integrals over products of the rectangular components of

n are readily found to be

4 77
na npn7n8 dCl =— (Sap878 + 8a7538 + 8asSP7 )

(9.47)

Then we find

f
|[nxQ(n)]xn|

2 dO= 4ir(i £ |Q<o|
2

-A[Z OL I Q„+ 2 I |a,s |

2

])

(9.48)

Since Qa(3 is a tensor whose main diagonal sum is zero, the first term in the

square brackets vanishes identically. Thus we obtain the final result for the total

power radiated by a quadrupole source:

P=fgl|0«|
2

(9.49)

The radiated power varies as the sixth power of the frequency for fixed

quadrupole moments, compared to the fourth power for dipole radiation.

A simple example of a radiating quadrupole source is an oscillating spheroidal

distribution of charge. The off-diagonal elements of QaP vanish. The diagonal

elements may be written

Q33 =Qo, Qii = Q22 = -5Qo (9.50)

Then the angular distribution of radiated power is

jk^i^-Qo'sm'ecos'e (9.51)
ail 1Z07T

This is a four-lobed pattern, as shown in Fig. 9.2, with maxima at = 7r/4 and

37r/4. The total power radiated by this quadrupole is

ck
6Q 2

,q .

r
24Q

^oz,

The labor involved in manipulating higher terms in expansion (9.9) of the

vector potential (9.8) becomes increasingly prohibitive as the expansion is

extended beyond the electric quadrupole terms. Another disadvantage of the

present approach is that physically distinct fields such as those of the magnetic
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2

Fig. 9.2 Quadrupole radiation pattern.

dipole and the electric quadrupole must be disentangled from the separate terms

in (9.9). Finally, the present technique is useful only in the long-wavelength

limit. A systematic development of multipole radiation is given in Chapter 16. It

involves a fairly elaborate mathematical apparatus, but the price paid is worth

while. The treatment allows all multipole orders to be handled in the same way;

the results are valid for all wavelengths; the physically different electric and

magnetic multipoles are clearly separated from the beginning.

9.4 Center-fed Linear Antenna

(a) Approximation of Sinusoidal Current

For certain radiating systems the geometry of current flow is sufficiently simple

that integral (9.3) for the vector potential can be found in relatively simple,

closed form if the form of the current is assumed known. As an example of such

a system we consider a thin, linear antenna of length d which is excited across a

small gap at its midpoint. The antenna is assumed to be oriented along the z axis

with its gap at the origin, as indicated in Fig. 9.3. If damping due to the emission

of radiation is neglected and the antenna is thin enough, the current along the

antenna can be taken as sinusoidal in time and space with wave number k = co/c,

and is symmetric on the two arms of the antenna. The current vanishes at the

ends of the antenna. Hence the current density can be written

(9.53)
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Fig. 9.3 Center-fed, linear antenna.

for |z|<(d/2). The delta functions assure that the current flows only along the z

axis. I is the peak value of the current if kd>ir. The current at the gap is

I = Isin(kd/2).

With the current density (9.53) the vector potential is in the z direction and in

the radiation zone has the form [from (9.8)]:

The result of straightforward integration is

dz (9.54)

A(X) = €:
2Ie

lkr

ckr

cos (^cose)-cos
(f)

sin' 6
(9.55)

Since the magnetic induction in the radiation zone is given by B = iknxA, its

magnitude is |B| = k sin 6 |A 3 |. Thus the time-averaged power radiated per unit

solid angle is

dP
da

I
2

2ttc

cos (^cose)-cos
(f)
kd

sin 6
(9.56)

The electric vector is in the direction of the component of A perpendicular to n.

Consequently the polarization of the radiation lies in the plane containing the

antenna and the radius vector to the observation point.

The angular distribution (9.56) depends on the value of kd. In the long-

wavelength limit (kd« 1) it is easy to show that it reduces to the dipole result

(9.28). For the special values /cd = 7r(2-n-), corresponding to a half (two halves) of

a wavelength of current oscillation along the antenna, the angular distributions
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are

COS
2

( cos

sin
2 Jed = 77

dP = I
2

t

da 2irc
* (9.57)

4 cos'

sin
2 kd = 2lT

These angular distributions are shown in Chapter 16 in Fig. 16.4, where they are

compared to multipole expansions. The half-wave antenna distribution is seen to

be quite similar to a simple dipole pattern, but the full-wave antenna has a

considerably sharper distribution.

The full-wave antenna distribution can be thought of as due to the coherent

superposition of the fields of two half-wave antennas, one above the other,

excited in phase. The intensity at Q = tt/2, where the waves add algebraically, is 4

times that of a half-wave antenna. At angles away from = tt/2 the amplitudes

tend to interfere, giving the narrower pattern. By suitable arrangement of a set

of basic antennas, such as the half-wave antenna, with the phasing of the

currents appropriately chosen, arbitrary radiation patterns can be formed by

coherent superposition. The interested reader should refer to the electrical

engineering literature for detailed treatments of antenna arrays.

(b) The Antenna as a Boundary-Value Problem

The assumption that the current is sinusoidal, or indeed any other known
form, along the antenna is unjustified, except for infinitely thin conductors. A
finite sized antenna with a given type of excitation is actually a complicated

boundary-value problem. Without attempting solution of such problems, we
give some preliminary considerations on setting up the boundary-value problem

for a straight antenna with circular cross section of radius a and length d, of

which the center-fed antenna of Fig. 9.3 is one example. We assume that the

conductor is perfectly conducting and has a small enough radius compared to

both a wavelength and the length that current flow on the surface has only a

longitudinal (z) component, and that the fields have azimuthal symmetry. Then
the vector potential A will have only a z component. With harmonic time

dependence of frequency co and in the Lorentz gauge, the scalar potential and

the electric field are given in terms of A by

4>(x)=y V- A

E(x) = £[V(V- A) + k
2A]

(9.58)
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Since A = €3A2 (x), the z-component of electric field is

E2(x)=£(^+k 2)A2 (x)

But on the surface of the perfectly conducting antenna the tangential component
of E vanishes. We thus establish the important fact that the vector potential Az

(and also the scalar potential) on the surface of the antenna are strictly sinusoidal;

(£5+k2 )
Az(p=a ' 2) = (9 * 59)

This is an exact statement, in contrast to the much rougher assumption that the

current is sinusoidal.

An integral equation tor the current can be found from (9.3). If the total

current flow in the z direction is f(z), then (9.3) gives for A2 on the surface of the

antenna,

Mp = a, z) =i
f'

0+
"
I(z')K(z-z') dz'

C Jzq

where

1 C* _ikv(z-z')2+4a 2 sin2 3

K(z-z') =-\ j
= =

— dp (9.60)
77 J V(z-z')

2+4a2
sin

2
/3

H

is the azimuthal average of the Green function e
lkR

/R. The condition (9.59) leads

to the integro-differential equation,

= k')
I

Z°+dl
(2 ')K(z " 2 ') dz ' (9 -6

This can be regarded as a differential equation for the integral, or equivalently

one can integrate (9.59) and equate it to Az(p=a, z). The result is the integral

equation,

f
2°+d

ai cos kz + a2 sin kz = I(z')K(z- z') dz'

The constants ai and a2 are determined by the method of excitation and by the

boundary conditions that the current vanishes at the ends of the antenna.

The solution of the integral equation is not easy. From the form of (9.60) it is

clear that when z'—z care must be taken and the finite radius is important. For

a —> 0, the current can be shown to be sinusoidal, but the expansion parameter

for corrections turns out to be the reciprocal of In (d/a). This means that even for

d/a = 10
3
there can be corrections of the order of 10 to 15 per cent. When there

is a current node near the place of excitation, such corrections can change the

antenna's input impedance drastically. Various approximate methods of solution

of (9.61) are described by Jones. A detailed discussion of his version of the
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theory and the results of numerical calculations for the current, resistance, and

reactance of a linear center-fed antenna are given by Hallen. Other references

are cited in the suggested reading at the end of the chapter.

9.5 Multipole Expansion for Localized Source or Aperture in Wave Guide

If a source in the form of a probe or loop or aperture in a wave guide is

sufficiently small in dimensions compared to the distances over which the fields

vary appreciably, it can be usefully approximated by its lowest order multipole

moments, usually electric and magnetic dipoles. Different sources possessing the

same lowest order multipole moments will produce sensibly the same excitations

in the wave guide. Often the electric dipole or magnetic dipole moments can be

calculated from static fields, or even estimated geometrically. Even if the source

is not truly small, the multipole expansion gives a qualitative, and often

semiquantitative, understanding of its properties.

(a) Current Source Inside Guide

In Section 8.11 it was shown that the amplitudes A* for excitation of the Ath

mode are proportional to the integral,

f J • £? d*x

where the integral is extended over the region where J is different from zero. If

the mode fields Ex do not vary appreciably over the source, they can be

expanded in Taylor series around some suitably chosen origin. The integral is

thus written, dropping the sub- and superscripts on ET\

J E d
3
x (9.62)

(9.63)

d
3x= t k(x)k(0)+ix3 ^(0) + -

a=l J L (3=1 OX3

From (9.14) and (9.17) we see that the first term is

E(0)- j*J(x) d
3
x = -icop-E(0)

where p is the electric dipole moment of the source:

p =- [j(x) d
3
x

CO J

This can be transformed into the more familiar form (9.17) by the means of the

steps in (9.14), provided the surface integral at the walls of the wave guide can be

dropped. This necessitates choosing the origin for the multipole expansion such

that J«xp vanishes at the walls. This remark applies to all the multipole moments.

The use of the forms involving the electric and magnetic charge densities p and

pM requires that {xaJB ±xBJa )Xy • xv vanish at the walls of the guide. The above
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form for the electric dipole and the usual expression (9.34) for the magnetic

dipole are correct as they stand, without concern about choice of origin.

The second term in (9.62) is of the same general form as (9.30) and is handled

the same way. The product Jaxp is written as the sum of symmetric and

antisymmetric terms, just as in (9.31):

+^Ito+J(x.)^(0) (9.64)

The first (antisymmetric) part has been written so that the magnetic moment
density and the curl of the electric field are clearly visible. With the help of

Faraday's law VxE=i<oB/c, the antisymmetric contribution to the right side of

(9.62) can be written

f[l J«xp ^(0)l d
3
x = icom-B(0) (9.65)

J L a,p 0X3 Jantisym

where m is the magnetic dipole moment (9.34) of the source. Equations (9.63)

and (9.65) give the leading order multipole moment contributions to the source

integral (9.62).

Other terms in the expansion in (9.62) give rise to higher order multipoles.

The symmetric part of (9.64) can be shown, just as in Section 9.3, to involve the

traceless electric quadrupole moment (9.41). The first step is to note that if the

surface integrals vanish (see above),

j"(JaX3 +

J

pXa) d
3
x = -ia>j*XaXpp(x) d

3
x

Then the second double sum in (9.64), integrated over the volume of the current

distribution, takes the form

"T ^ af^^ XaXli d
*
x

The value of the double sum is unchanged by the replacement xaxp —

»

(xaXp-3r
2
8ap) because V • E = 0. Thus the symmetric part of the second term in

(9.62) is

f[lJ.*!r(0>l d^= JT^O^(0) (9.66)
J La.p aXp Jsym o a ,0 aXp

Similarly an antisymmetric part of the next terms in (9.62), involving xpXy, gives a

contribution

1

I J-**r (0) ^ =tZ Q.P
m^ (0) (9.67)

antisym O a ,|3 0X3
in (o,P)

2 a,p>y
y
dXp dXy
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where Qa&
M

is the magnetic quadrupole moment of the source, given by (9.41)

with the electric charge density p(x) replaced by the magnetic charge density,

p
M
(x) = -V • Ji = -~ V • (xxj) (9.68)

If the various contributions are combined, the expression (8.140) for the

amplitude A* has as its multipole expansion,

A <±)= . 2tt^Z*

J
p

m E? )

(0)
_m . Bw(0)

+i5[^^<^M^H+-} (9 -69)

It should be remembered that here the mode fields E[±}
are normalized according

to (8.125). The expansion is most useful if the source is such that the series

converges rapidly and is adequately approximated by its first terms. The
positioning and orientation of probes or antennas in order to excite preferen-

tially certain modes can be accomplished simply by considering the directions of

the electric and magnetic dipole (or higher) moments of the source and the

normal mode fields. For example, the excitation of TE modes, with their axial

magnetic fields, can be produced by a magnetic dipole antenna whose dipole

moment is parallel to the axis of the guide. TM modes cannot be excited by such

an antenna, except via higher multipole moments.

(b) Aperture in Side Walls of Guide

Apertures in the walls of a wave guide can be considered as sources (or sinks)

of energy. In Section 8.11 it was noted that if the guide walls have openings in

the volume considered to contain the sources, the amplitudes Ax° are given by

(8.141) instead of (8.140). With the assumption that there is only one aperture,

and no actual current density, the amplitude for excitation of the A
th mode is

A^=~ [ n -(ExHD da (9.70)
Japerture

where n is an inwardly directed normal and the integral is over the aperture in

the walls of the guide. If the aperture is small compared to a wavelength or other

scale of variation of the fields, the mode field Hx can be expanded just as

before. The lowest order term, with HT } treated as constant over the aperture,

evidently leads to a coupling of the magnetic dipole type. The next terms, with

linear variation of the mode field, gives rise to electric dipole and magnetic

quadrupole couplings, exactly as for (9.64)-(9.66), but with the roles of electric

and magnetic interactions interchanged. The result is an expansion of (9.70) like

(9.69):

A(
,)= .

7r^Zx
[peK b Er >

(0)
_

meff . Bw( )+ . .
.] (9.71)
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where the effective electric and magnetic dipole moments are

Peff= |^ J
(X • Etan) da

nieff =
2^1^ \ (nxE«an) da

(9.72)

In these expressions the integration is over the aperture, the electric field Etan is

the exact tangential field in the opening, and in (9.71) the mode fields are

evaluated at (the center of) the aperture. The effective moments (9.72) are the

equivalent dipoles whose fields (9.18) and (9.35)-(9.36) represent the radiation

fields of a small aperture in a flat, perfectly conducting screen (See Problem

9.15.). Comparison of (9.71) and (9.69) shows that the dipole moments (9.72)

are only half as effective in producing a given amplitude as are the real dipole

moments of a source located inside the guide. This can be pictured as because

the effective dipoles of an aperture are in some sense half in and half out of the

guide.

(c) Small Aperture in a Transverse Diaphragm

The subject of reflection and transmission by apertures in a transverse

diaphragm has been discussed in Sections 8.12 and 8.13. For a small opening,

however, it is useful to have a description in terms of effective multipole

moments of the aperture, just as for openings in the side walls. For a transverse

diaphragm the reflection and transmission coefficients are given by (8.144) and

(8.145). With the use of (8.31), (8.145), which can also represent (8.144) when
A = 1, becomes

A[+) =AV = Zx | (e3 x E^) • Hx da (9.73)

In the same spirit as above, the transverse magnetic field Hx is expanded in a

Taylor series about a suitable origin in the small aperture. The structure of (9.73)

is identical with (9.70) and the various terms in the expansion are the same. The

lowest order multipoles give contributions

A (+) =A j_)= .
2t^Zx

[pS? . Er >

(0)
_m(S . Rf>(0j+. •

•] (9.74)

For A=l, this gives the transmission amplitude, T=l + R. Equation (9.74) is

exactly the same in form as (9.69), which applies to a localized current source

within the guide. The effective dipole moments pia and miff are given by (9.72)

with n= ±e 3 , and the integration is taken over the aperture with z constant. The

choice of superscripts in (9.74) is unimportant as long as a consistent set is

chosen. The superscripts (±) on the effective dipole moments corresponds to

viewing the aperture from z^O, as is discussed below.
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(d) Effective Dipole Moments of Apertures

On first encounter the effective dipole moments (9.72) are somewhat mysteri-

ous. As already mentioned, they have a precise meaning in terms of the electric

and magnetic dipole parts of the multipole expansion of the fields radiated

through an aperture in a flat perfectly conducting screen (Problem 9.15). For

small apertures they can also be related to the solutions of appropriate static or

quasi-static boundary-value problems. Such problems have already been dis-

cussed (Sections 3.13 and 5.13), and the results will be appropriated below.

If an aperture is very small compared to the distance over which the fields

change appreciably, the boundary-value problem can be approximated by one in

which the fields "far from the aperture" (measured in units of the aperture

dimension) are those that would exist if the aperture were absent. Except for

very elongated apertures, it will be sufficiently accurate to take the surface to be

flat and the "asymptotic" fields to be the same in all directions away from the

aperture. For an opening in a perfectly conducting surface, then, the boundary-

value problem is specified by the normal electric field E and the tangential

magnetic field B that would exist in the absence of the opening. The fields E
and B are themselves the result of some boundary-value problem, of propaga-

tion in a wave guide or reflection of a plane wave from a screen, for example. But

for the purpose at hand, they are treated as given. To lowest order their time

dependence can be ignored, provided the effective electric dipole moment is

related to E and the magnetic moment to B . (See, however, Problem 9.9.)

The exact form of the fields around the opening depends on its shape, but

some qualitative observations can be made by merely examining the general

behavior of the lines of force. Outside a sphere enclosing the aperture the fields

may be represented by a multipole expansion. The leading terms will be dipole

fields. Figure 9.4 shows the qualitative behavior. The loop of magnetic field

protruding above the plane on the left has the appearance of a line of force from

a magnetic dipole whose moment is directed oppositely to B , as indicated by the

direction of the moment m(+) shown below. The magnetic field below the plane

can be viewed as the unperturbed B
,
plus an opposing dipole field (shown

dotted in the figure) whose moment is oriented parallel to B (denoted by m(_)

below). Similarly, the electric field lines above the plane appear to originate from

a vertical dipole moment p
(+)

directed along E , while below the plane the field

has the appearance of the unperturbed normal field E
, plus the field from a

dipole p
(_)

, directed oppositely to E . The use of effective dipole fields is of

course restricted to regions some distance from the aperture. Right in the

aperture the fields bear no resemblance to dipole fields. Nevertheless, the dipole

approximation is useful qualitatively everywhere, and the effective moments are

all that are needed to evaluate the couplings of small apertures.

The preceding qualitative discussion has one serious deficiency. While it is

correct that the electric dipole moment is always directed parallel or antiparallel

to E and so is normal to the aperture, the magnetic dipole moment is not
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Fig. 9.4 Distortion of the tangential magnetic field (on the left) and normal electric field

(on the right) by a small aperture in a perfectly conducting surface. The effective dipole

moments, as viewed from above and below the surface, are indicated beneath.

necessarily parallel or antiparallel to B . There are two directions in the tangent

plane, and the relative orientation of the aperture and the direction of B are

relevant in determining the direction of me ff . Since the effective moments are

obviously proportional to the field strength, it is appropriate to speak of the

electric and magnetic polarizabilities of the aperture. The dipole moments can be

written

Peff=7
EE

(nieff)

(9.75)

Z W"(B ) f

where y
E

is the scalar electric polarizability and yaP
M

is the 2x2 magnetic

polarizability tensor. The magnetic tensor can be diagonalized by choosing

principal axes for the aperture. There are thus three polarizabilities (one electric

and two magnetic) to characterize an arbitrary small aperture. It should be

remembered that the signs of the y's in (9.75) depend on the side of the surface

from which the dipole is viewed, as shown in Figure 9.4. If there are fields on

both sides of the surface, the expressions in (9.75) must be modified. For

example, if there is a vertically directed electric field Ei above the surface on the

right in Fig. 9.4, as well as E below, then E in (9.75) is replaced by (E — Ei).

Other possibilities can be worked out from (9.75) by linear superposition.

The polarizabilities y
E
and 7„P

M
have the dimensions of length cubed. If a

typical dimension of the aperture is d, then it can be expected that the

polarizabilities will be d
3
times numerical coefficients of the order of unity, or

smaller. The expression (9.72) for pe ff can be seen to be of the form to yield such

a result, since Etan is proportional to E , and the two-dimensional integral will
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give E times the cube of a length that is characteristic of the aperture.

Furthermore, the vectorial properties of pe ff in (9.72) corresponds to (9.75). On
the other hand, the expression in (9.72) for me ff is less transparently of the proper

form, even though dimensionally correct. Some integrations by parts and use of

the Maxwell equations puts it into the equivalent and more satisfying form:

(9.76)

where n • B is the exact normal component of B in the aperture and the

integration is over the plane of the aperture. It is now evident that the

connection between B and me ff is of the general form shown in (9.75). For a

circular opening of radius R the effective dipole moments can be taken from the

static solutions of Sections 3.13 and 5.13. The results are

jR
3 2R 3

peff=-^—

E

, meff=^^B (9.77)
J IT J 77

where the signs are appropriate for the apertures viewed from the side of the

surface where E and B are nonvanishing, as can be checked from Fig. 9.4. The
electric and magnetic polarizabilities are thus

(9.78)

The use of effective dipole moments to describe the electromagnetic proper-

ties of small holes can be traced back to Lord Rayleigh.* The general theory was

developed by H. A. Bethef and has been applied fruitfully to wave guide and

diffraction problems. Of significance in practical applications is the fact that the

effective dipole moments of arbitrary apertures can be determined experiment-

ally by electrolytic tank measurements. $

Examples of the use of multipoles to describe excitation and scattering in wave
guides and diffraction are left to several problems at the end of the chapter.

Other material can be found in the list of suggested reading.

9.6 Scattering at Long Wavelengths

(a) Scattering by Dipoles Induced in Small Scatterers

The scattering of electromagnetic waves by systems whose individual dimen-

sions are small compared with a wavelength is a common and important

* Lord Rayleigh, Phil Mag. XLIV, 28, (1897), reprinted in his Scientific Papers,

Vol. IV, p. 305.

tH. A. Bethe, Phys. Rev. 66, 163 (1944).

tS. B. Cohn, Proc. I.R.E. 39, 1416 (1951); 40, 1069 (1952).
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occurrence. In such interactions it is convenient to think of the incident

(radiation) fields as inducing electric and magnetic multipoles that oscillate in

definite phase relationship with the incident wave and radiate energy in

directions other than the direction of incidence. The exact form of the angular

distribution of radiated energy is governed by the coherent superposition of

multipoles induced by the incident fields, and will in general depend on the state

of polarization of the incident wave. If the wavelength of the radiation is long

compared to the size of the scatterer, only the lowest multipoles, usually electric

and magnetic dipoles, are important. Furthermore, in these circumstances the

induced dipoles can be calculated from static or quasi-static boundary-value

problems, just as for the small apertures of the previous section.

The customary basic situation is for a plane monochromatic wave to be

incident on a scatterer. For simplicity the surrounding medium is taken to have

fx = e=l. If the incident direction is defined by the unit vector n , and the

incident polarization vector is e , the incident fields are

Einc = € E e
ikn°- x

(9.79)
Bine — Ilo X Einc

where k = o)/c and a time-dependence e~
lo>t

is understood. These fields induce

dipole moments p and m in the small scatterer and these dipoles radiate energy

in all directions, as described in Sections 9.2 and 9.3. Far away from the

scatterer, the scattered (radiated) fields are found from (9.19) and (9.36) to be

e
ikr

Esc =k 2— [(nxp)xn-nxm]
T

(9.80)

Bsc — n x Esc

where n is a unit vector in the direction of observation and r is the distance away

from scatterer. The power radiated in the direction n with polarization €, per

unit solid angle, per unit incident flux (power per unit area) in the direction n

with polarization e , is a quantity with dimensions of area per unit solid angle. It

is called the differential scattering cross section:*

r
2 ^|€*-Esc

|

2

!£(n,€;no, £„)=-^ (9.81)

g^|€?-E,„c
|

2

The complex conjugation of the polarization vectors in (9.81) is important for

the correct handling of circular polarization, as has been mentioned in Section

* In the engineering literature the term bistatic cross section is used for

4tt (da/da).
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7.2. With (9.80) and (9.79), the differential cross section can be written

^(n,€;n ,€ )=~2|€* -p+(nX€*) • mf (9.82)

The dependence of the cross section on n and € is implicitly contained in the

dipole moments p and m. The variation of the differential (and total) scattering

cross section with wave number as k
4
(or in wavelength as A

-4
) is an almost

universal characteristic of the scattering of long wavelength radiation by any

finite system. This dependence on frequency is known as Rayleigh's law. Only if

both static dipole moments vanish does the scattering fail to obey Rayleigh's

law; the scattering is then via quadrupole or higher multipoles (or frequency-

dependent dipole moments) and varies as o>
6
or higher. Sometimes the dipole

scattering is known as Rayleigh scattering but this term is usually reserved for

the incoherent scattering by a collection of dipole scatterers.

(b) Scattering by a Small Dielectric Sphere

As a first, very simple example of dipole scattering we consider a small

dielectric sphere of radius a with fx = 1 and a uniform isotropic dielectric

constant €(a>). From Section 4.4, in particular (4.56), the electric dipole moment
is found to be

(9.83)

There is no magnetic dipole moment. The differential scattering cross section is

da
da

= kV €-1

€+ 2
k*-€ |

2
(9.84)

The polarization dependence of (9.84) is typical of purely electric dipole

scattering. The scattered radiation is linearly polarized in the plane defined by

the dipole moment direction (€ ) and the unit vector n.

Typically the incident radiation is unpolarized. It is then of interest to ask for

the angular distribution of scattered radiation of a definite state of linear

polarization. The cross section (9.84) is averaged over initial polarization €o for a

fixed choice of €. Figure 9.5 shows a possible set of polarization vectors. The
scattering plane is defined by the vectors n and n. The polarization vectors Co

1 *

and €
(1)

are in this plane, while €o
2) = €

(2)
is perpendicular to it. The differential

cross sections for scattering with polarizations €(1) and €
(2)

,
averaged over initial

polarizations, are easily shown to be

dm k
4
a

6 e-1
da 2 €+ 2

do~± k
4
a
6 €-1

da~ 2 €+ 2

cos
2

(9.85)
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Fig. 9.5 Polarization and propagation vectors for the incident and scattered radiation.

where the subscripts
||
and _L indicate polarization parallel to and perpendicular

to the scattering plane, respectively. The polarization 11(6) of the scattered

radiation is defined by
dcr± do~\\

da da

From (9.85) we find for the (electric dipole) scattering by a small dielectric

sphere,

n(0)=
sin

2

l + cos
z

The differential cross section, summed over scattered polarization, is

e-1
e+ 2

Kl+cos2
0)

and the total scattering cross section is

^ AC\ 87T
, 4 6

da
m=T ka

€-1

(9.87)

(9.88)

(9.89)

The differential cross section (9.88) and the polarization of the scattered

radiation (9.87) are shown as functions of cos in Fig. 9.6. The polarization

11(0) has its maximum at = tt/2. At this angle the scattered radiation is 100 per

cent linearly polarized perpendicular to the scattering plane, and for an

appreciable range of angles on either side of = 7r/2 is quite significantly

polarized. The polarization characteristics of the blue sky are an illustration of

this phenomenon, and are, in fact, the motivation that led Rayleigh first to
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consider the problem. The reader can verify the general behavior on a sunny day

with a sheet of linear polarizer or suitable sun glasses.

(c) Scattering by a Small Perfectly Conducting Sphere

An example with interesting aspects involving coherence between different

multipoles is the scattering by a small perfectly conducting sphere of radius a.

The electric dipole moment of such a sphere was shown in Section 2.5 to be

p=a 3Einc (9.90)

The sphere also possesses a magnetic dipole moment. For a perfectly conducting

sphere the boundary condition on the magnetic field is that the normal

component of B vanishes at r=a. Either by analogy with the dielectric sphere in

a uniform electric field (Section 4.4) with e = 0, or from the magnetically

permeable sphere (Section 5.11) with /m = 0, or by a simple direct calculation, it is

found that the magnetic moment of the small sphere is

m=-yBinc (9.91)

For a linearly polarized incident wave the two dipoles are at right angles to each

other and to the incident direction.

The differential cross section (9.82) is

^ (n, e; n
,
e ) = k

4
a

6
|e* • €o-§(nX€*) • (n X€

)|

2
(9.92)

1
1 1 1

1

1 1 1 1

< cos0

Fig. 9.6 Differential scattering cross section (9.88) and the polarization of scattered

radiation (9.87) for a small dielectric sphere (dipole approximation).
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The polarization properties and the angular distribution of scattered radiation

are more complicated than for the dielectric sphere. The cross sections analog-

ous to (9.85), for polarization of the scattered radiation parallel to and

perpendicular to the plane of scattering, with unpolarized radiation incident, are

dd\\ k
4
q

6

1
1|2^^IcoseH

(9.93)
dcr± k

4
a

-T7T = -^-U-5COSe|

The differential cross section summed over both states of scattered polarization

can be written

^ = kV[§( 1 + cos
2
6) - cos 6] (9.94)

while the polarization (9.86) is

n(e)=
3 sin

2

5(l + cos
2 0)-8cos0 (9.95)

The cross section and polarization are plotted versus cos 6 in Fig. 9.7. The
cross section has a strong backward peaking caused by electric dipole-magnetic

dipole interference. The polarization reaches n = +1 at 6 = 60° and is positive

through the whole angular range. The polarization thus tends to be similar to

that for a small dielectric sphere, as shown in Fig. 9.6, even though the

cos^

Fig. 9.7 Differential scattering cross section (9.94) and polarization of scattered radia-

tion (9.95) for a small perfectly conducting sphere (electric and magnetic dipole

approximation).
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angular distributions are quite different. The total scattering cross section is

cr= 107r/c
4
a

6
/3, of the same order of magnitude as for the dielectric sphere (9.89)

if (e- 1) is not small.

Dipole scattering with its <o
4
dependence on frequency can be viewed as the

lowest order approximation in an expansion in kd, where d is a length typical of

the dimensions of the scatterer. In the domain kd~l, more than the lowest

order multipoles must be considered. Then the discussion is best accomplished

by use of a systematic expansion in spherical multipole fields. These are treated

in Chapter 16, where the scattering by a conducting sphere is examined from this

point of view. When kd»l, approximation methods of a different sort can be

employed, as is illustrated in Section 13 of this chapter. Whole books are devoted

to the scattering of light by spherical particles possessing arbitrary /x, e, a. Some
references to this literature are given at the end of the chapter.

(d) Collection of Scatterers

As a final remark we note that if the scattering system consists of a number of

small scatterers with fixed spatial separations, each scatterer generates an

amplitude of the form (9.80). The scattering cross section results from a coherent

superposition of the individual amplitudes. Because the induced dipoles are

proportional to the incident fields, evaluated at the position x
j
of the ;*th scatterer,

its moments will possess a phase factor, e'
kn

° '\ Furthermore, if the observation

point is far from the whole scattering system, (9.7) shows that the fields (9.80) for

the jth scatterer will have a phase factor e~
ikn '\ The generalization of (9.82) for

such a system is

da
dO Eo

2 Z[€*. Pj + (nX€*).in,]6' (9.96)

where q= kn -kn is the vectorial change in wave vector during the scattering.

The presence of the phase factors e
iq

'*> in (9.96) means that, apart from the

forward direction where q = 0, the scattering depends sensitively on the exact

distribution of the scatterers in space. The general behavior can be illustrated by
assuming that all the scatterers are identical. Then the cross section is the

product of the cross section for one scatterer times a structure factor,*

*(q) I*
1

(9.97)

Written out as a factor times its complex conjugate, ^(q) is

^(q) = IIe iq " (vV

* We do not consider here the effects of multiple scattering, that is, we assume that

the mean free path for scattering is large compared to the dimensions of the scattering

array.
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If the scatterers are randomly distributed, the terms with jVj' can be shown to

give a negligible contribution. Only the terms with j = j' are significant. Then

^(q) = N, the total number of scatterers, and the scattering is said to be an

incoherent superposition of individual contributions. If, on the other hand, the

scatterers are very numerous and have a regular distribution in space, the

structure factor effectively vanishes everywhere except in the forward direction.

There is therefore no scattering by a very large regular array of scatterers, of

which single crystals of transparent solids like rock salt or quartz are examples.

What small amount of scattering does occur is caused by thermal vibrations away
from the perfect lattice, or by impurities, etc. An explicit illustration, also

providing evidence for a restriction of the above remarks to the long wavelength

regime, is that of a simple cubic array of scattering centers. The structure factor

is well known to be

where a is the lattice spacing, Nu N2 , N3 are the numbers of lattice sites along

the three axes of the array, N=NiN2N3 is the total number of scatterers and q u

q 2 , cfc are the components of q along the axes. At short wavelengths (ka>7r),

(9.98) has peaks when the Bragg scattering condition, qia = 0, 2ir, 4tt, . . . , is

obeyed. This is the situation familiar in X-ray diffraction. But at long

wavelengths only the peak at q,a = is relevant because (qia)max = 2ka« 1. In this

limit ^(q) is product of three factors of the form [(sin Xi)/Xi]
2
with Xi = Ni^a/2.

The scattering is thus confined to the region q^lirlNia, corresponding to angles

smaller than A/L, where A. is the wavelength and L a typical overall dimension of

the scattering array.

9.7 Perturbation Theory of Scattering, Rayleigh's Explanation of the Blue

Sky,* Scattering by Gases and Liquids

(a) General Theory

If the medium through which an electromagnetic wave is passing is uniform in its

properties, the wave propagates undisturbed and undeflected. If, however, there

* Although Rayleigh's name should undoubtedly be associated with the quantita-

tive explanation of the blue sky, it is of some historical interest that Leonardo da Vinci

understood the basic phenomenon around 1500. In particular, his experiments with the

scattering of sunlight by wood smoke observed against a dark background (quoted as

items 300-302, pp. 237 ff, in Vol. I of Jean Paul Richter, The Literary Works of Leonardo

da Vinci, 3rd edition, Phaidon, London 1970) (also a Dover reprint entitled The
Notebooks of Leonardo da Vinci, Vol. 1, pp. 161 ff.) anticipate by 350 years Tyndall's

remarkably similar observations [J. Tyndall, Phil. Trans. Roy. Soc. 160, 333 (1870)].

^(q) - N2
(9.98)
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are spatial (or temporal) variations in the electromagnetic properties, the wave is

scattered. Some of the energy is deviated from its original course. If the

variations in the properties are small in magnitude, the scattering is slight and

perturbative methods can be employed. We imagine a comparison situation

corresponding to a uniform isotropic medium with dielectric constant e and

permeability ijl . For the present e and jm are assumed independent of

frequency, although when harmonic time dependence is assumed this restriction

can be removed in the obvious way. Through the action of some perturbing

agent, the medium is supposed to have small changes in its response to applied

fields, so that D^e E, /ll H, over certain regions of space. These departures

may be functions of time and space variables. Beginning with the Maxwell

equations in the absence of sources,

V-B-O, TXE-If
(9.99)

V.D = 0, VxH-if

it is a straightforward matter to arrive at a wave equation for D,

v2D
_^^D = _VxVx(D_ €oE) +€ol Vx(B_^H) (91Q0)

C ot C at

This equation is without approximation as yet, although later the right-hand side

will be treated as small in some sense.*

If the right-hand side of (9.100) is taken as known, the equation is of the form

of (6.54) with the retarded solution (6.69). In general, of course, the right-hand

side is unknown and (6.69) must be regarded as an integral relation, rather than

a solution. Nevertheless, such an integral formulation of the problem forms a

fruitful starting point for approximations. It is convenient to specialize to

harmonic time variation with frequency cu for the unperturbed fields and to

assume that the departures (D-e E) and (B-/ul H) also have this time variation.

This puts certain limitations on the kind of perturbed problem that can be

described by the formalism, but prevents the discussion from becoming too

involved. With a time dependence e~
lwt

understood, (9.100) becomes

(V
2+ k

2)D = -VxVx(D-

e

E) V x (B - |XoH) (9.101)

where k
2 = juL e aj

2
/c

2
, and jut and e can be values specific to the frequency co. The

solution of the unperturbed problem, with the right-hand side of (9.101) set

* If prescribed sources p(x, t), 3(x,t) are present, (9.100) is modified by the

addition to the left-hand side of

-477
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equal to zero, will be denoted by D(0)
(x). A formal solution of (9.101) can be

obtained from (6.67), if the right-hand side is taken as known. Thus

t , (
V'xV'x(D-eoE)

)

D = D<*+- JdVj^j
j + v. x(B_^oH)}

(9.102)

If the physical situation is one of scattering, with the integrand in (9.102)

confined to some finite region of space and D(0)
describing a wave incident in

some direction, the field far away from the scattering region can be written as

D-*D(0)+A«^ (9.103)

where the scattering amplitude Asc is

f
V'xV'x(D-eoE)

)

Asc =-JdVe---'J+^ v ,x(B_^H)}
(9.104)

The steps from (9.102) to (9.104) are the same as from (9.3) to (9.8) for the

radiation fields. Some integrations by parts in (9.104) allows the scattering

amplitude to be expressed as

2 ([nx(D-e E)]xn
)

Asc=^j^e---j_^ nx(B_^H)
J

(9.105)

The vectorial structure of the integrand can be compared with the scattered

dipole field (9.80). The polarization dependence of the contribution from

(D—

€

E) is that of an electric dipole, from (B— jx H) a magnetic dipole. In

correspondence with (9.82) the differential scattering cross section is

da [€*• Asc
|

2

da |d(0)

|

2 (y - 1Uf))

where € is the polarization vector of the scattered radiation.

Equations (9.102), (9.105), and (9.106) provide a formal solution to the

scattering problem posed at the beginning of the section. The scattering

amplitude Asc is not known, of course, until the fields are known at least

approximately. But from (9.102) a systematic scheme of successive approxima-

tions can be developed in the same way as the Born approximation series of

quantum-mechanical scattering. If the integrand in (9.102) can be approximated

to first order, then (9.102) provides a first approximation for D, beyond D (0)
.

This approximation to D can be used to give a second approximation for the

integrand, and an improved D can be determined, and so on. Questions of

convergence of the series, etc. have been much studied in the quantum-

mechanical context. The series is not very useful unless the first few iterations

converge rapidly.
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(b) Born Approximation

We will be content with the lowest order approximation for the scattering

amplitude. This is called the first Born approximation or just the Born approxi-

mation in quantum theory and was actually developed in the present context by

Lord Rayleigh in 1881. Furthermore, we shall restrict our subsequent discussion

to the simple example of spatial variations in the linear response of the medium.

Thus we assume that the connections between D and E and B and H are

D(x) = [e +oe(x)]E(x)
9.107)

B(x)=[^o+Sfi(x)]H(x)

where Se(x) and 6/x(x) are small in magnitude compared with € and u- . The
differences appearing in (9.102) and (9.105) are proportional to Se and Sjx. To
lowest order then, the fields in these differences can be approximated by the

unperturbed fields:

D-eoE-^D(0)
(x)

(9.108)

B-MI-M B (0)

(X)

If the unperturbed fields are those of a plane wave propagating in a direction n
,

so that D(0) and B (0)
are

D(0)
(x) = €oPoe

ik,,°- x

B(0)(x)^Pn xD,0,
(x)

Co

the scalar product of the scattering amplitude (9.105) and €*, divided by D , is

(1) K2

Do 4tt

^ 8e(x)

\d
3xe""\

60
. \ (9.109)

where q=k(n -n) is the difference of the incident and scattered wave vectors.

The absolute square of (9.109) gives the differential scattering cross section

(9.106).

If the wavelength is large compared with the spatial extent of 5e and Su., the

exponential in (9.109) can be set equal to unity. The amplitude is then a dipole

approximation analogous to the previous section, with the dipole frequency

dependence and angular distribution. To establish contact with the results

already obtained, suppose that the scattering region is a uniform dielectric

sphere of radius a in vacuum. Then e = 1 and 6e is constant inside a spherical

volume of radius a and vanishes outside. The integral in (9.109) can be
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performed for arbitrary |q|, with the result,

sin qa-qa cos qa

In the limit q-*0 the square bracket approaches a
3
/3. Thus, at very low

frequencies or in the forward direction at all frequencies, the Born approxima-

tion to the differential cross section for scattering by a dielectric sphere of radius

a is

|e*-€
|

2
(9.110)

Comparison with (9.84) shows that the Born approximation and the exact low

frequency result have the expected relationship.

(c) Blue Sky—Elementary Argument

The scattering of light by gases, first treated quantitatively by Lord Rayleigh in

his celebrated work on the sunset and blue sky,* can be discussed in the present

framework. Since the magnetic moments of most gas molecules are negligible

compared to the electric dipole moments, the scattering is purely electric dipole

in character. In the previous section we have discussed the angular distribution

and polarization of the individual scatterings (see Figure 9.6). We therefore

confine our attention to the total scattering cross section and the attenuation of

the incident beam. The treatment is in two parts. The first, elementary argument

is adequate for a dilute ideal gas, where the molecules are truly randomly

distributed in space relative to each other. The second, based on density

fluctuations in the gas, is of more general validity.

If the individual molecules, located at xh are assumed to possess dipole

moments pj = YmoiE(x,), the effective variation in dielectric constant 8e(x) in

(9.109) can be written as

8€(x) = 47rS twS(x-x,) (9.111)
i

The differential scattering cross section obtained from (9.109) and (9.106) is

^=k 4

|7mo,M€*.e„|^(q)

where 5F(q) is given by (9.97). For a random distribution of scattering centers the

structure factor reduces to an incoherent sum, and the cross section is just that

for one molecule, times the number of molecules. For a dilute gas the molecular

*Lord Rayleigh, Phil. Mag. XLI, 107, 274, (1871); Ibid XLVII, 375 (1899);

reprinted in his Scientific Papers, Vol. I, p. 87, and Vol. 4, p. 397. Rayleigh's papers are

well worth reading as examples of a masterful physicist at work.

^
T
~i =k 2

8e(e*-e„)

lim(
q—0 V Uii/Born
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polarizability is related to the dielectric constant by e— l + 4irNymo i, where N is

the number of molecules per unit volume. The total scattering cross section per

molecule of the gas is thus

where the last form is written in terms of the index of refraction n, assuming

|n-l|« 1. The cross section (9.112) represents the power scattered per molecule

for a unit incident energy flux. In traversing a thickness dx of the gas, the

fractional loss of flux is Ncr dx. The incident beam thus has an intensity

I(x) = I e~
ax

, where a is the absorption or attenuation coefficient (also called the

extinction coefficient) of (7.53) and is given by

a = N*^f^\n-l\ 2
(9.113)

These results, (9.112) and (9.113), describe what is known as Rayleigh scat-

tering, the incoherent scattering by gas molecules or other randomly distributed

dipole scatterers, each scattering according to Rayleigh's o>
4
law.

Rayleigh's derivation of (9.113) was in the context of scattering of light by the

atmosphere. Evidently the k
4
dependence means that in the visible spectrum the

red is scattered least and the violet most. Light received away from the direction

of the incident beam is more heavily weighted in high frequency (blue)

components than the spectral distribution of the incident beam, while the

transmitted beam becomes increasingly red in its spectral composition, as well as

diminishing in overall intensity. The blueness of the sky, the redness of the

sunset, the waneness of the winter sun, and the ease of sunburning at midday in

summer are all consequences of Rayleigh scattering in the atmosphere. The
index of refraction of air in the visible region (4100-6500 A) and at N.T.P. is

(n-l)-2.78xl0-4
. With N=2.69xl0 19

molecules/cm
3

,
typical values of the

attenuation length A = a
_1

are A = 30, 77, 188 km for violet (4100 A), green

(5200 A), red (6500 A) light, respectively. With an isothermal model of the

atmosphere in which the density varies exponentially with height, the following

intensities at the earth's surface relative to those incident on the top of the

atmosphere at each wavelength can be estimated for the sun at zenith and

sunrise-sunset:

Color Zenith Sunrise- Sunset

Red (6500 A) 0.96 0.21

Green (5200 A) 0.90 0.024

Violet (4100 A) 0.76 0.000065

These numbers show strikingly the shift to the red of the surviving sunlight at

sunrise and sunset.
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Fig. 9.8 Power spectrum of solar radiation (in watts per square meter per electron volt)

as a function of photon energy (in electron volts). Curve A is the incident spectrum above
the atmosphere. Curve B is a typical sea-level spectrum with the sun at the zenith. The
absorption bands below 2 eV are chiefly from water vapor and vary from site to site and
day to day. The dashed curves give the expected sea-level spectrum at zenith and at

sunrise-sunset if the only attenuation is from Rayleigh scattering by a dry, clean

atmosphere.

The actual situation is illustrated in Fig. 9.8. The curve A shows the power

spectrum of solar radiation incident on the earth from outside as a function of

photon energy. Curve B is a typical spectrum at sea level with the sun directly

overhead.* The upper dashed curve is the result expected from curve A if the

only attenuation is Rayleigh scattering by a dry, clean, isothermal, exponential

atmosphere. In reality the attenuation is greater, mainly because of the presence

of water vapor, which has strong absorption bands in the infrared, and ozone,

* The data in Fig. 9.8 were derived from W. E. Forsythe, Smithsonian Physical

Tables 9th revised edition, Smithsonian Institution, Washington, D.C. (1954), Tables 813
and 815, and from K. Ya. Kondratyev, Radiation in the Atmosphere, Academic, New
York (1969), Chapter 5.
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which causes absorption of the ultraviolet, as well as other molecular species and

dust. The lower dashed curve indicates roughly the sunrise-sunset spectrum at

sea level. Astronauts orbiting the earth see even redder sunsets because the

atmospheric path length is doubled.

Detailed observations on the polarization of the scattered light from the sky

have been reported.* Just as with the attenuation, the reality departs somewhat

from the ideal of a dry, clean atmosphere of low density. At 90° the polarization

is a function of wavelength and reaches a maximum of approximately 75 per cent

at 5500 A. It is estimated to be less than 100 per cent because of multiple

scattering (6%), molecular anisotropy (6%), ground reflection (5%, and espe-

cially important in the green when green vegetation is present), and aerosols

(8%).

The formula (9.113) for the extinction coefficient is remarkable in its

possession of the factor N' 1

as well as macroscopic quantities such as the index

of refraction. If there were no atomicity (N—> <»), there would be no attenuation.

Conversely, the observed attenuation can be used to determine N. This point

was urged particularly on Rayleigh by Maxwell in private correspondence. If the

properties of the atmosphere are assumed to be well enough known, the relative

intensity of the light from a definite star as a function of altitude can be used to

determine N. Early estimates were made in this way and agree with the results of

more conventional methods.

(d) Density Fluctuations, Critical Opalescence

An alternative and more general approach to the scattering and attenuation of

light in gases and liquids is to consider fluctuations in the density and so the

index of refraction. The volume V of fluid is imagined to be divided into cells

small compared to a wavelength, but each containing very many molecules. Each
cell has volume v with an average number Nv = vN of molecules inside. The
actual number of molecules fluctuates around Nv in a manner that depends on

the properties of the gas or liquid. Let the departure from the mean of the

number of molecules in the jth cell be ANj. The variation in index of refraction 5e

for the jth cell is

From the Clausius-Mossotti relation (4.70), this can be written

With this expression for Se for the /th cell, the integral (9.109), now a sum over

*T. Gehrels, J. Opt. Soc. Am. 52, 1164 (1962).
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cells, becomes

In forming the absolute square of (9.115) a structure factor similar to (9.97) will

occur. If it is assumed that the correlation of fluctuations in different cells

(caused indirectly by the intermolecular forces) only extends over a distance

small compared to a wavelength, the exponential in (9.115) can be put equal to

unity. Then the extinction coefficient a, given by

1 f
[

€*-A^
a =

v) \-dT da

is

(co/c)
4
|(e-l)(e + 2)

a ~
6ttN 3 ffi (9-116)

where ANv2
is the mean square number fluctuation in the volume V, defined by

ANV2 = X AN* ANr
ii'

the sum being over all the cells in the volume V. With the use of statistical

mechanics the quantity ANV2 can be expressed in terms of the isothermal

compressibility |3T of the medium:

The attenuation coefficient (9.116) then becomes

This particular expression, first obtained by Einstein in 1910, is called the

Einstein-Smoluchowski formula. For a dilute ideal gas, with \e
— 1|«1 and

NkT(3T = 1, it reduces to the Rayleigh result (9.113). As the critical point is

approached, /3T becomes very large (infinite exactly at the critical point). The
scattering and attenuation thus becomes large there. This is the phenomenon
known as critical opalescence. The large scattering is directly related to the large

fluctuations in density near the critical point, as stressed originally by

Smoluchowski (1904). Very near the critical point our treatment fails because

the correlation length for the density fluctuations becomes greater than a

wavelength, as first pointed out by Ornstein and Zernicke (1914). The correct

treatment involves the Fourier transform of the radial distribution function of

density. References to the early literature can be found in the book by

Fabelinskii who discusses in detail the application of light scattering to the study
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of critical point phenomena and second order phase transitions. A nice

discussion of the occurrence of the radial density distribution is given in Chapter

V, Section 6 of Rosenfeld.

9.8 Scalar Diffraction Theory

Although scattering and diffraction are not logically separate, the treatments

tend to be separated, with diffraction being associated with departures from

geometrical optics caused by the finite wavelength of the waves. Thus diffraction

traditionally involves apertures or obstacles whose dimensions are large com-

pared to a wavelength. To lowest approximation the interaction of elec-

tromagnetic waves is described by ray tracing (geometrical optics). The next

approximation involves the diffraction of the waves around the obstacles or

through the apertures with a consequent spreading of the waves. Simple

arguments based on Fourier transforms show that the angles of deflection of the

waves are confined to the region 0^A/d where A is the wavelength and d is a

linear dimension of the aperture or obstacle. The various approximations to be

discussed below all work best for A/d«l, and fail badly for A~d or A>d.
The earliest work on diffraction is associated with the names of Huygens,

Young, and Fresnel. The first systematic attempt to derive the Fresnel theory

from first principles was made by G. Kirchhoff (1882). Kirchhoff's theory,

despite its mathematical inconsistency and its physical deficiencies, works

remarkably well in the optical domain and has been the basis of most of the work
on diffraction. We first derive the basic Kirchhoff integral and its operative

approximations, then comment on its mathematical difficulties, and finally

describe the modifications of Rayleigh and Sommerfeld that remove the

mathematical inconsistencies.

The customary geometry in diffraction involves two spatial regions I and II,

separated by a boundary surface Si, as shown in Fig. 9.9. The surface S2 is

Sources

Fig. 9.9 Possible diffraction geometries. Region I contains the sources of radiation.

Region II is the diffraction region, where the fields satisfy the radiation condition. The
right-hand figure is also indicative of scattering, with a finite scatterer in region I instead

of an active source, and the surface Si an arbitrary mathematical surface enclosing the
scatterer rather than a material screen with apertures.
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generally taken to be "at infinity," that is, remote from the region of interest.

Sources in region I generate fields that propagate outwards. The surface Si is

supposed to be made up of "opaque" portions (the boundary conditions are

discussed below) and apertures. The surface Si interacts with the fields generated

in region I, reflecting some of the energy, absorbing some of it, and allowing

some of the fields, modified by their interaction, to pass into region II. The
angular distribution of the fields in region II, the diffraction region, is called the

diffraction pattern. It is the diffracted fields in region II that we wish to express in

terms of the fields of the sources and their interaction with the screen and

apertures on Si, or more precisely, in terms of the fields on the surface Si. It

should be obvious that the geometry and mode of description is equally

applicable to scattering, with the sources in region I replaced by a scatterer

(thought of as a source being driven by the incident wave).

Kirchhoff's method uses Green's theorem (1.35) to express a scalar field (a

component of E or B) inside a closed volume V in terms of the values of the field

and its normal derivative on the boundary surface S. Let the scalar field be

i|/(x, 0, and let it have harmonic time dependence, e~
1
"'. The field i// is assumed to

satisfy the scalar Helmholtz wave equation,

(V
2+k 2

)i//(x) = (9.119)

inside V. We introduce a Green function for the Helmholtz wave equation

G(x, x'), defined by

(V
2
+ k

2
)G(x, x') = -S(x-x') (9.120)

In Green's theorem (1.35), we put
<f>
= G, t// = i//, make use of the wave equations

(9.119) and (9.120), and obtain, in analogy to (1.36) on p. 41,

i//(x) = cf [iKx')n' • V'G(x, x')-G(x, x')n' • V>(x')] da' (9.121)
Js

where n' is an inwardly directed normal to the surface S. Equation (9.121) holds

if x is inside V; if it is not, the left-hand side vanishes.

The Kirchhoff diffraction integral is obtained from (9.121) by taking G to be

the infinite space Green function describing outgoing waves,

G(x > x
')=i£ (9 - 122)

where R = x-x'. With this Green function, (9.121) becomes

? n'-[v>+ik
(
1+kk)i^a ' (9 - 123)

This is almost the Kirchhoff integral. To adapt the mathematics to the diffraction

context we consider the volume V to be that of region II in Fig. 9.9 and the

surface S to consist of Si + S2 . The integral over S is thus divided into two parts,
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one over the screen and its apertures (Si), the other over a surface "at infinity"

(S2). Since the fields in region II are assumed to be transmitted through Si, they

are outgoing waves in the neighborhood of S2 . The fields and hence i//(x) will

satisfy a radiation condition,

if-H) (9 - i24)

With this condition on i// at S2 it is easily seen that the contribution from S2 in

(9.123) vanishes at least as the inverse of the radius of the hemisphere or sphere

as the radius goes to infinity. There remains the integral over Si. The Kirchhoff

integral formula reads

«— ?»'-[v>+ik
(
1+kk)H da ' <9 - 125 >

with the integration only over the surface Si of the diffracting "screen."

In order to apply (9.125) it is necessary to know the values of t|/ and di|//dn on

the surface Si. Unless the problem has been solved by other means, these values

are not known. Kirchhoff's approach was to approximate the values of i// and

dty/dn on Si in order to calculate an approximation to the diffracted wave. The

Kirchhoff approximation consists of the assumptions:

1. i// and dijj/dn vanish everywhere on Si except in the openings.

2. The values of i// and dijj/dn in the openings are equal to the values of the

incident wave in the absence of any screen or obstacles.

The standard diffraction calculations of classical optics are all based on the

Kirchhoff approximation. It is obvious that the recipe can have only limited

validity. There is, in fact, a serious mathematical inconsistency in the assump-

tions of Kirchhoff. It can be shown for the Helmholtz wave equation (9.119), as

well as for the Laplace equation, that if i// and di///dn are both zero on any finite

surface, then if/
= everywhere. Thus the only mathematically correct conse-

quence of the first Kirchhoff assumption is that the diffracted field vanishes

everywhere. This is, of course, inconsistent with the second assumption.

Furthermore, (9.125) does not yield on Si the assumed values of if/ and dty/dn.

The mathematical inconsistencies in the Kirchhoff approximation can be

removed by the choice of a proper Green function in (9.121). Just as in Section

1.10, a Green function appropriate to Dirichlet or Neumann boundary condi-

tions can be constructed. If \p is known or approximated on the surface Si, a

Dirichlet Green function GD (x, x'), satisfying

GD(x, x')= forx'onS (9.126)

is required. Then a generalized Kirchhoff integral, equivalent to (9.125), is

=
£ <Kx')^(x,x')da' (9.127)
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• P

i

Fig. 9.10 Diffraction geometry for a point source at P', a plane screen with apertures,

and an observation point at P. The distances from the element of area da' in the aperture

to the points P and P' are r and r', respectively. The angles 6 and 6' are those between r

and n, and r' and — n, respectively.

and a consistent approximation is that i//=0 on Si except in the openings and

\\t is equal to the incident wave in the openings. If the normal derivative of i|/ is to

be approximated, a Neumann Green function GN (x, x'), satisfying

^r(x, x') = forx'onS
dn

(9.128)

is employed. Then the generalized Kirchhoff integral for Neumann boundary

conditions reads

f^(x')GN (x, x') da'
dn

(9.129)

Again a consistent approximation scheme can be formulated.

For the important special circumstance in which the surface Si is an infinite

plane screen at 2 = 0, as shown in Fig. 9.10, the method of images can be used

to give the Dirichlet and Neumann Green functions explicit form:

n , 1 (e
ikR

e
ikR '\

GD ,N(x,x)=-(—

J

(9.130)

where R = x-x', and R' = x-x", x" being the mirror image of x'. Explicitly we
have

R = [(x-x')
2+ (y-y')

2+ (z-2T]"
2

R'=[(x-x')
2
+(y-y')

2
+(z + z')

2]" 2

The generalized Kirchhoff integral (9.127) (i// approximated on Si) then takes
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the form,

^>^Lx(1+kk)nr^'> da ' (9 - 131)

An analogous expression can be written for (9.129), both results attributable to

the ubiquitous Rayleigh.*

Comparison of (9.131) with (9.125) shows that (9.131) can be obtained from

(9.125) by omitting the first term in the square brackets and doubling the second

term. The Neumann result (9.129) specialized to a plane screen is equivalent, on

the other hand, to doubling the first term and omitting the second. It might thus

appear that the three approximate formulas for the diffracted field are quite

different and will lead to very different results. In the domain where they have

any reasonable validity they yield, in fact, very similar results. This can be

understood by specializing the diffraction problem to a point source at position P'

on one side of a plane screen and an observation point P on the other side,

as shown in Fig. 9.10. The amplitude of the point source is taken to be

spherically symmetric and equal to e
lkr

'/r'. Both P and P'are assumed to be many
wavelengths away from the screen. With the Kirchhoff approximation in (9.125)

and equivalent assumptions in (9.131) and its Neumann boundary condition

counterpart, the diffracted fields for all three approximations can be written in

the common form,

i|/(P)=:rM — ^i- €(0, 6') da' (9.132)
Z77I ./Apertures ' >

where the obliquity factor 0(6, 6') is the only point of difference. These factors

are

6(0, 0')

cos 6 (i// approximated on Si)

cos 0' approximated on

Kcos 0+cos 0') (Kirchhoff approximation)

where the angles are defined in Fig. 9.10. For apertures whose dimensions are

large compared to a wavelength the diffracted intensity is confined to a narrow

range of angles and is governed almost entirely by the interferences between the

two exponential factors in (9.132). If the source point P' and the observation

point P are far from the screen in terms of the aperture dimensions, the obliquity

factor in (9.132) can be treated as a constant. Then the relative amplitudes of the

different diffracted fields will be the same. For normal incidence all obliquity

* Equation (9.131) was also used by Sommerfeld in his early discussions of

diffraction. See Sommerfeld, Optics, p. 197 ff.



432 Classical Electrodynamics Sect. 9.9

factors are approximately unity where there is appreciable diffracted intensity.

In this case even the absolute magnitudes are the same.

The above discussion explains to some extent why the mathematically

inconsistent Kirchhoff approximation has any success at all. The use of Dirichlet

or Neumann Green functions gives a better logical structure, but provides little

practical improvement without further elaboration of the physics. An important

deficiency of the discussion so far is its scalar nature. Electromagnetic fields have

vector character. This must be incorporated into any realistic treatment, even if

approximate. In the next section we proceed with the task of obtaining the

vector equivalent of the Kirchhoff or generalized Kirchhoff integral for a plane

screen.

9.9 Vector Equivalents of Kirchhoff Integral

The Kirchhoff integral formula (9.125) is an exact formal relation expressing the

scattered or diffracted scalar field i//(x) in region II of Fig. 9.9 in terms of an

integral of t// and di///dn over the finite surface Si. Corresponding vectorial

relations, expressing E and B in terms of surface integrals, are useful as a basis

for a vectorial Kirchhoff approximation for diffraction (Section 9.10) and

scattering (Section 9.13), and also for formal developments such as the proof of

the optical theorem (Section 9.14).

To derive a Kirchhoff integral for the electric field, we begin with (9.121) for

each rectangular component of E and write the obvious vectorial equivalent,

provided the point x is inside the volume V bounded b.y the surface S. Here, as in

(9.121), the unit normal n' is directed into the volume V. Eventually we will

specify G to be the infinite-space Green function, (9.122), but for the present we
leave it as any solution of (9.120). Because we wish to use certain theorems of

vector calculus that apply to well-behaved functions, while G is singular at x' = x,

we must exercise some care. We imagine that the surface S consists of an outer

surface S' and a infinitesimally small inner surface S" surrounding the point

x' = x. Then, from Green's theorem, the left-hand side of (9.133) vanishes. Of
course, evaluation of the integral over the inner surface S", in the limit as it

shrinks to zero around x' = x, gives -E(x). Thus (9.133) is restored in practice,

but by excluding the point x' = x from the volume V the necessary good

mathematical behavior is assured. With this understanding concerning the

surface S, we rewrite (9.133) in the form,

E(x) = <> [E(n'- V'G)-G(n'- V')E] da' (9.133)
Js
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The divergence theorem can be used to convert the second term into a volume

integral, thus yielding

=
<j>

2E(n' • V'G) da'+
J

V'
2(GE)

With the use of V 2A = V(V • A)-Vx(VxA) for any vector field A, and the vector

calculus theorems,

|
V</> d\ = j> n<f>da

J
VxAd 3

x = (j> (nxA)da

(9.134)

where <f>
and A are any well-behaved scalar and vector functions (and n is the

outward normal), we can express the volume integral again as a surface integral.

We thus obtain

=
(j>

[2E(n' • V'G)-n'(V . (GE))+n'x(V'x(GE))] da'

Carrying out the indicated differentiation of the product GE, and making use of

the Maxwell equations, V'«E = 0, VxE=ikB, we find

= <j> [ik(n'xB)G+2E(n' • V'G)-n'(E • V'G)+n'x(V'GxE)] da'
Js

Expansion of the triple cross product and a rearrangement of terms yields the

final result,

E(x) = <j)
[ik(n'xB)G+(n'xE)xV'G+ (n' • E)V'G] da' (9.135)

where now the volume V bounded by the surface S contains the point \' = \. An
analogous expression for B can be obtained from (9.135) by means of the

substitutions, E-»B and B—»-E.
Equation (9.135) is the vectorial equivalent of the scalar formula (9.121). To

obtain the analogue of the Kirchhoff integral (9.125), we consider the geometry

of Fig. 9.9 and let the surface S be made up of a finite surface Si surrounding the

sources or scatterer and a surface S2 "at infinity." There is no loss of generality in

taking S2 to be a spherical shell of radius r — The integral in (9.135) can be

written as the sum of two integrals, one over Si and one over S2 . On the surface

S2 the Green function (9.122) is given, for large enough r
, by

ikr'

4-nT

and its gradient by

V'G^-ikn'G
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Then the contribution from S2 to (9.135) is

<) =iko [n'xB-(n'xE)xn'-n'(n'"E)]Gda'
Js2 Js 2

or

o =iko [(n'xB)-E]Gda'
Js2 Js2

The fields in region II are diffracted or scattered fields and so satisfy the condition

of outgoing waves in the neighborhood of S2 . In particular, the fields E and B are

mutually perpendicular and transverse to the radius vector. Thus, on S2 ,

E = n'xB + 0(l/ro
2
). This shows that

and the contribution from the integral over S2 vanishes as r ^°°. For the

geometry of Fig. 9.9, then, with S2 at infinity, the electric field in region II

satisfies the vector Kirchhoff integral relation,

where G is given by (9.122) and the integral is only over the finite surface Si.

It is useful to specialize (9.136) to a scattering situation and to exhibit a formal

expression for the scattering amplitude as an integral of the scattered fields over

Si. The geometry is shown in Fig. 9.11. On both sides of (9.136) the fields are

taken to be the scattered fields (E s ,
B s ), that is, the total fields (E, B) minus the

incident wave (E f ,
B ( ). If the observation point P is far from the scatterer, then

the Green function and the scattered electric field take on their asymptotic

forms,

where k is the wave vector in the direction of observation, k is the incident wave

vector, and F(k, k ) is the (unnormalized) vectorial scattering amplitude. In this

limit, VG = — ikG. Thus (9.136) can be written as an integral expression for the

scattering amplitude F(k, k ):

E(x) = o [i7c(n'xB)G + (n'xE)xV'G+ (n'-E)V'G]da' (9.136)

Es(x)-^F(k, k )

F(k,k ) = -7-o e-
,k - x

'[k(n'xB s)+kx(n'xE s)-k(n'-E s )]da' (9.137)
IT JSl

Note carefully how F(k, k ) depends explicitly on the outgoing direction of k.

The dependence on the incident direction specified by k is implicit in the
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Incident wave

(E„ B,)
Scattered wave

(E s , Bs )

Fig. 9.11 Scattering geometry. An incident plane wave with wave vector k and fields

(E„ Bj) is scattered by an obstacle (the scatterer), giving rise to scattered fields (E„ B s ) that

propagate as spherically diverging waves at large distances. The surface S, completely

encloses the scatterer.

scattered fields E s and B s . Since we know that k • F = 0, it must be true that in

(9.137) the component parallel to k of the first integral cancels the third integral.

It is therefore convenient to resolve the integrand in (9.137) into components

parallel and perpendicular to k, and to exhibit the transversality of F explicitly:

F(k, k ) = -r^kX
4tti

kx(n'xB s ) n'xEs da' (9.138)

Alternatively, we can ask for the amplitude of scattered radiation with wave

vector k and polarization €. This is given by

e* • F(k, k ) = -r- 4> 6
_lk x

'[k€* • (n'xB s ) + e* • (kx(n'xE s ))] da'
477

(9.139)

The terms in square brackets can be interpreted as effective electric and magnetic

surface currents on Si acting as sources for the scattered fields. The various

equivalent forms (9. 1 37)—(9. 1 39) are valuable as starting points for the discussion of

the scattering of short-wavelength radiation (Section 9. 13) and in the derivation of

the optical theorem (Section 9.14).

9.10 Vectorial Diffraction Theory

The vectorial Kirchhoff integral (9.136) can be used as the basis of an

approximate theory of diffraction in exactly the same manner as described below

(9.125) for the scalar theory. Unfortunately, the inconsistencies of the scalar

Kirchhoff approximation persist.

For the special case of a thin, perfectly conducting, plane screen with
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apertures, however, it is possible to obtain vectorial relations, akin to the

generalized Kirchhoff integral (9.127) or (9.131), in which the boundary

conditions are satisfied and which are amenable to consistent approximations.

The plane screen is taken at z = 0, with the sources supposed to be in the region

z<0, and the diffracted fields to be observed in the region z>0. It is convenient

to divide the fields into two parts,

E = E(0,+ E', B = B (0)+B' (9.140)

where E(0)
, B (0)

are the fields produced by the sources in the absence of any

screen or obstacle (defined for both z<0 and z>0), and E' and B' are the fields

caused by the presence of the plane screen. For z>0, E', B' are the diffracted

fields, while for z<0, they are the reflected fields. We will call E', B' the

scattered fields when considering both z <0 and z >0. The scattered fields can be

considered as having their origin in the surface current density and surface

charge density that are necessarily produced on the screen in order to satisfy the

boundary conditions. Certain reflection properties in z of the scattered fields

follow from the fact that the surface current and charge densities are confined to

the z = plane. A vector potential A' and a scalar potential <£' can be used to

construct E' and B'. Since the surface current flow has no z-component, A'z = 0.

Furthermore, A'x , A'y , and <£' are evidently even functions of z. The relation of

the fields to the potentials shows that the scattered fields have the reflection

symmetries,

Ex, EL B'z are even in z
(9.141)

Ez, B'x ,
B'y are odd in z

The fields that are odd in z are not necessarily zero over the whole plane z = 0.

Where the conducting surface exists, E'z # implies an associated surface charge

density, equal on the two sides of the surface. Similarly, nonvanishing tangential

components of B imply a surface current density, equal in magnitude and

direction on both sides of the screen. Only in the aperture does continuity

require that E'Z9 B x ,
B'y vanish. This leads to the statement that in the apertures of

a perfectly conducting plane screen the normal component of E and the

tangential components of B are the same as in the absence of the screen.

The generalized Kirchhoff integral (9.129) for Neumann boundary conditions

can be applied to the components of the vector potential A'. The normal

derivatives on the right can be expressed in terms of components of B'. The
result, written vectorially is

A'(x)=i
f

(nxB')^da' (9.142)
ZTT Jscreen i<

In view of the preceeding remarks about the surface current and the tangential

components of B', (9.142) could perhaps have been written down directly. The
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scattered magnetic field can be obtained by taking the curl of (9.142):

B'(x)=J-Vx[ (nxB')^da' (9.143)
Jscreen K

In (9.142) and (9.143) the integrand can be evaluated on either side of the screen

with n being normal to the surface. For definiteness, we specify that n is a unit

normal in the positive z direction and the integrand is to be evaluated at z = +
.

The integration extends over the metallic part of the screen; B,'an = in the

apertures. The electric field E' can be calculated from E' = (i/k)VxB'.

Equation (9.143) can be used for approximations in a consistent way. It is

most useful when the diffracting obstacles consist of one or more finite flat

segments at z = 0, for example, a circular disc. Then the surface current on the

obstacles can be approximated in some way, for instance, by using the incident

field B (0)
in the integrand. We then have a vectorial version of the generalized

Kirchhoff's approximation of the previous section.

It is useful to construct an expression equivalent to (9.143) for the electric

field. From the symmetry of the source-free Maxwell equations with respect to

E and B it is evident that the electric field E' can be expressed by analogy with

(9.143) , as

E'(x) = ±T-Vxf (nxE')^da' (9.144)

where it is assumed that E' is known on the whole surface Si at z = +
. The upper

(lower) sign applies for z >0 (z <0). It can be verified that (9.144) satisfies the

Maxwell equations and yields consistent boundary values at z = 0. The reason for

the difference in sign for z^O, as compared to (9.143) for B', is the opposite

reflection properties of E' compared to B' [see (9.141)].

There is a practical difficulty with (9.144) as it stands. The integration in

(9.144) is over the whole plane at z = 0. We cannot exploit the vanishing of the

tangential components of the electric field on the metallic portions of the screen

because it is the total electric field whose tangential components vanish, not

those of E\ The difficulty can be removed by use of linear superposition. We add

fields (E(1)

,
B (1)

) possessing the symmetry under reflections of (9.141). They can

thus be considered as arising from currents on the surface at z = 0. In the region

z>0 we choose

E(«= _E(o)

>
B(1) = -B (0)

(9.145)

The added fields thus cancel the unperturbed fields produced by the source and

make E', B' the total fields for z>0. The symmetry (9.141) under reflection

shows that for z<0 the components of E (1) and B (1)
are

E<
1}
(z) = -E;o)

(-z), B^(z) = +B< 0)
(-z)

E?\z) = -E<0)
(-z), B?\z) = +Bj0)

(-z) (9. 146)

E< 1}
(z) = +E< 0)

(-z), B^(z) = -B< 0)
(-z)
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It is understood that x, y are the same on both sides of each equation. In this

region of z<0 the superposition (E(0)+E(1)

,
B(0)+B (1)

) is just the field configura-

tion that is produced by a source generating primary fields (E(0)

,
B (0)

) that are

reflected by a perfectly conducting surface filling the entire plane at z = 0.

We have now arrived at an alternative specification of diffraction by a

perfectly conducting plane screen with certain apertures in it. Let E(0)
, B (0) be

the fields generated by the sources in the region z<0. Let E(1)
, B (1) be the

reflected fields in z<0, assuming that the screen at z = has no apertures in it

[the fields E(1) and B (1)
are given by (9.146)]. Define the diffracted electric field E"

by

1 f e
ikR

E"(x) =y- V x (nxE) da' (9. 147)
jApertures

where the integration is only over the apertures in the screen and E in the

integrand is the total tangential electric field in the apertures. Then in the

diffraction region (z>0) the total electric field is

E(x) = E"(x) (9.148)

In the illuminated region (z<0) the total electric field is

E(x) = E(0)
(x) +E(1)

(x) - E"(x) (9. 149)

where for both regions E"(x) is given by (9.147). This form of solution in terms of

tangential electric field in the apertures of a perfectly conducting plane screen

was first obtained by Smythe.* It can serve as the basis of a consistent scheme of

approximation with the approximate solutions for E" satisfying the required

boundary conditions at z = and at infinity. In a later section and in the

problems some examples are discussed.

9.11 Babinet's Principle of Complementary Screens

Before discussing examples of diffraction we wish to establish a useful relation

called Babinefs principle. Babinet's principle relates the diffraction fields of one

diffracting screen to those of the complementary screen. We first discuss the

principle in the scalar Kirchhoff approximation. The diffracting screen is

assumed to lie in some surface S which divides space into regions I and II in the

sense of Section 9.8. The screen occupies all of the surface S except for certain

apertures. The complementary screen is that diffracting screen which is obtained

by replacing the apertures by screen and the screen by apertures. If the surface

of the original screen is Sa and that of the complementary screen is Sb , then

Sa + Sb = S, as shown schematically in Fig. 9.12.

*W. R. Smythe, Phys. Rev. 72, 1066 (1947). See also Smythe, Section 12.18.
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Fig. 9.12 A diffraction screen Sa and its complementary diffraction screen Sb .

If there are sources inside S (in region I) which give rise to a field i|/(x), then in

the absence of either screen the field i//(x) in region II is given by the Kirchhoff

integral (9.125) where the surface integral is over the entire surface S. With the

screen Sa in position, the field i|/a (x) in region II is given in the Kirchhoff

approximation by (9.125) with the source field t// in the integrand and the surface

integral only over Sb (the apertures). Similarly, for the complementary screen

Sb, the field i|/b(x) is given in the same appioximation by a surface integral over

Sa . Evidently, then, we have the following relation between the diffraction fields

\\fa and i//b :

i//a + iK = i// (9.150)

This is Babinet's principle as usually formulated in optics. If i// represents an

incident plane wave, for example, Babinet's principle says that the diffraction

patterns away from the incident direction are the same for the original screen

and its complement.

The result (9.150) also follows from the generalized Kirchhoff integrals

(9.127) or (9.129) if the amplitude or its normal derivative is taken equal to that

of the incident wave in the apertures and zero elsewhere, in the spirit of the

Kirchhoff approximation. All these formulations of Babinet's principle are

unsatisfactory in two respects: they are statements about scalar fields, and they

are based on a Kirchhoff approximation.

A rigorous statement of Babinet's principle for electromagnetic fields can be

made for a thin, perfectly conducting plane screen and its complement. The
result follows from the two alternative formulations of this diffraction problem

given in the previous section. The original diffraction problem and its com-

plementary problem are defined by the source fields and screens as follows:

Original

Complement
(9.151)
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The complementary situation has a screen that is the complement of the original

and has source fields with opposite polarization characteristics. For the original

screen Sa the electric field for z>0 is, according to (9.147) and (9.148),

E(x) =~-Vxf (nxE)^da' (9.152)

For the complementary screen Sb we choose to use (9.143) instead of (9.147) to

express the complementary scattered magnetic field Be for z>0 as

B[(x) =f Vx
f
(nxBJ^da' (9.153)

In both (9.152) and (9.153) the integration is over the screen Sb because of the

boundary conditions on E and Bc in the two cases. Mathematically, (9.152) and

(9.153) are of the same form. From the linearity of the Maxwell equations and

the relation between the original and complementary source fields, it follows

that in the region z>0 the total electric field for the screen Sa is numerically

equal to the scattered magnetic field for the complementary screen Sb :

E(x) = Bc(x)

The other fields are related by

B(x) = -E c(x)

where the minus sign is a consequence of the requirement of outgoing radiation

flux at infinity, just as for the source fields. If use is made of (9.140) for the

complementary problem in order to obtain relations between the total fields in

the region z>0, Babinet's principle for a plane, perfectly conducting thin screen

and its complement states that the original fields (E, B) and the complementary

fields (Ec ,
Bc ) are related according to

E-BC = E(0)

B+E, = B<°>
(9 - 154)

for z>0, provided the complementary diffraction problems are defined by

(9.151). These relations are the vectorial analogs of (9.150); they are exact, not

approximate, statements for the idealized problem of a perfectly conducting

plane screen. For practical situations (finite, but large, conductivity; curved

screens whose radii of curvature are large compared to aperture dimensions,

etc.), the vectorial Babinet's principle can be expected to hold approximately. It

says that the diffracted intensity in directions other than that of the incident field

is the same for a screen and its complement. The polarization characteristics are

rotated, but this conforms with the altered polarization of the complementary

source fields (9.151).

The rigorous vector formulation of Babinet's principle is very useful in



Sect. 9.12 Simple Radiating Systems, Scattering, and Diffraction 441

E

Fig. 9.13 Equivalent radiators according to Babinet's principle.

microwave problems. For example, consider a narrow slot cut in an infinite,

plane, conducting sheet and illuminated with fields that have the magnetic

induction along the slot and the electric field perpendicular to it, as shown in Fig.

9.13. The radiation pattern from the slot will be the same as that of a thin linear

antenna with its driving electric field along the antenna, as considered in Sections

9.2 and 9.4. The polarization of the radiation will be opposite for the two

systems. Elaboration of these ideas makes it possible to design antenna arrays by

cutting suitable slots in the sides of wave guides.*

9.12 Diffraction by a Circular Aperture, Remarks on Small Apertures

The subject of diffraction has been extensively studied since Kirchhoff's original

work, both in optics, where the scalar theory based on (9.125) generally suffices,

and in microwave generation and transmission, where more accurate solutions

are needed. There exist specialized treatises devoted entirely to the subject of

diffraction and scattering. We will content ourselves with a few examples to

illustrate the use of the scalar and vector theorems (9.125), (9.131) and (9.147)

and to compare the accuracy of the approximation schemes.

Historically, diffraction patterns were classed as Fresnel or Fraunhofer

diffraction, depending on the relative geometry involved. There are three length

scales to consider, the size d of the diffracting system, the distance r from the system

to the observation point, and the wavelength A. A diffraction pattern only becomes

manifest for r>d. Then in expressions like (9. 132) or (9. 147) slowly varying factors

in the integrands can be treated as constants.Only the phase factor kR in e
,kR

needs to

be handled with some care. With r>d, it can be expanded as

where n=x/r is a unit vector in the direction of observation. The successive terms

are of order (kr), (kd), (kd){d/r), .... The term Fraunhofer diffraction applies if the

* See, for example, Silver, Chapter 9.
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third and higher terms are negligible compared to unity. For small diffracting

systems this always holds since kd<\, and we have supposed d/r<\. But for

systems that are large compared to a wavelength, (kd
2

/r) may be of order unity or

larger even though d/r<\. Then the term Fresnel diffraction applies. In most

practical applications the simpler Fraunhofer limit is appropriate. Far enough from

any diffracting system it always holds. We consider only the Fraunhofer limit here

(except for Problem 9.16).

If the observation point is far from the diffracting system, expansion (9.7) can

be used for R = |x-x'|. Keeping only lowest-order terms in (l/kr), the scalar

Kirchhoff expression (9.125) becomes

if/(x) = --f— [ e-
lk
"'[n- V'iHx') + ik-niKx')]da' (9.155)

47rr Js,

where x' is the coordinate of the element of surface area da', r is the length of the

vector x from the origin O to the observation point P, and k= k(x/r) is the wave
vector in the direction of observation, as indicated in Fig. 9.14. For a plane

surface we can use the vector expression (9.147) which reduces in this limit to

E(x) =^-kxf nxE(x')e-
ik
-"'da' (9.156)

Ztty JSl

As an example of diffraction we consider a plane wave incident at an angle a

on a thin, perfectly conducting screen with a circular hole of radius a in it. The
polarization vector of the incident wave lies in the plane of incidence. Figure

9.15 shows an appropriate system of coordinates. The screen lies in the x-y

plane with the opening centered at the origin. The wave is incident from below,

so that the domain z>0 is the region of diffraction fields. The plane of incidence

is taken to be the x-z plane. The incident wave's electric field, written out

explicitly in rectangular components, is

Ei = Eo(€! cos a-€3 sin a)e
,k,cosaz+s,nax)

(9.157)

In calculating the diffraction field with (9.155) or (9.156) we will make the

customary approximation that the exact field in the surface integral may be

replaced by the incident field. For the vector relation (9.156) we need

(nxE
i ) z =o = Eo€2 cos a e

lksinax
'

(9.158)

n

Fig. 9.14



Sect. 9.12 Simple Radiating Systems, Scattering, and Diffraction 443

Fig. 9.15 Diffraction by a circular hole of radius a.

Then, introducing plane polar coordinates for the integration over the opening,

we have

E(x) =
ie*-E cos«

(kx€2)
r

dp
f-

,

Z7rr Jo Jo

sin a cos 0— sin 6 cos(<f> — 0)]
(9.159)

where 0, </> are the spherical angles of k. If we define the angular function,

£ = (sin
2
0+sin

2
a -2 sin sin a cos <f>)

1/2
(9.160)

the angular integral can be transformed into

1 f
27r

Then the radial integral in (9.159) can be done directly. The resulting electric

field in the vector Smythe-Kirchhoff approximation is

E(x) = a Eo cos a(kX€2) )
b

The time-averaged diffracted power per unit solid angle is

2Ji(kag)= Pi cos a
k

(cos
2 + cos

2
c/> sin

2
0)

ail 4tt ka£

where

-(© 7ra cos a

(9.161)

(9.162)

(9.163)

is the total power normally incident on the aperture. If the opening is large

compared to a wavelength (ka» 1), the factor [2Ji(ka£)/ka£]
2 peaks sharply to a

value of unity at £ = and falls rapidly to zero (with small secondary maxima)

within a region A£~(l/ka) away from £ = 0. This means that the main part of the

wave passes through the opening in the manner of geometrical optics; only slight
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diffraction effects occur.* For ka~l the Bessel-function varies comparatively

slowly in angle; the transmitted wave is distributed in directions very different

from the incident direction. For ka« 1, the angular distribution is entirely

determined by the factor (kxe2) in (9.161). But in this limit the assumption of an

unperturbed field in the aperture breaks down badly.

The total transmitted power can be obtained by integrating (9.162) over all

angles in the forward hemisphere. The ratio of transmitted power to incident

power is called the transmission coefficient T:

T=
cosa

(cos
2 + cos

2
(/>sin

2

TT Jo Jo

e)
Ji(kog)

sine dO (9.164)

In the two extreme limits ka»l and ka« 1, the transmission coefficient

approaches the values,

!cos a,

|(fca)
2
cos a,

ka»l

ka« 1

The long-wavelength limit (ka« 1) is suspect because of our approximations, but

it shows that the transmission is small for very small holes. For normal incidence

(a = 0) the transmission coefficient (9.164) can be written

T =
J"

'

J,\ka sin ~ sin
O^J

dd

With the help of the integral relations,

r'% 2, . do
Jn (z sin 0)

—
sin 6 Jo t

(t)
dt

p/2 ^ rlz

Jn
2
(z sin 0) sin d0 =T- J2„(r) dt

Jo IZ Jo

(9.165)

and the recurrence formulas (3.87) and (3.88), the transmission coefficient can

be put in the alternative forms,

1~ Z J2m+i(2ka)

T=
I 1 C

2ka

}-2Fai Mt)dt

4> = 0:

To see this explicitly we expand £ around the geometrical optics direction 6 = a,

£ = V(e-a) 2 + sin
2 a (f>

For ka » 1 it is evident that ka£ » 1 as soon as 6 departs appreciably from a, or
<f>

from

zero, or both.
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The transmission coefficient increases more or less monotonically as ka in-

creases, with small oscillations superposed. For ka»l, the second form can be

used to obtain an asymptotic expression,

sin(2Jca--j + - • • (9.166)
1 1

2ka 2sPn{kaY

which exhibits the small oscillations explicitly. These approximate expressions

for T give the general behavior as a function of ka, but are not very accurate.

Exact calculations, as well as more accurate approximate ones, have been made
for the circular opening. These are compared with each other in the book by

King and Wn (Fig. 41, p. 126). The correct asymptotic expression does not

contain the l/2ka term in (9.166), and the coefficient of the term in (ka)
_3/2

is

twice as large.

We now wish to compare our results of the vector Smythe-Kirchhoff approxi-

mation with the usual scalar theory based on (9.125). For a wave not normally

incident the question immediately arises as to what to choose for the scalar

function i|/(x). Perhaps the most consistent assumption is to take the magnitude

of the electric or magnetic field. Then the diffracted intensity is treated

consistently as proportional to the absolute square of (9.125). If a component of

E or B is chosen for i//, we must then decide whether to keep or throw away

radial components of the diffracted field in calculating the diffracted power.

Choosing the magnitude of E for i//, we have, by straightforward calculation with

(9.155),

, / \ -1 e'
kr

2t- /cos a + cos 0\Ji(ka£)m = -ik-yaE [
-

ka£

as the scalar equivalent of (9.161). The power radiated per unit solid angle in the

scalar Kirchhoff approximation is

da 1

4tt

/cos a + cos 0\
cos a —=

\ 2 cos a J

2Uka£)
ka£

(9.167)

where P; is given by (9.163). If the alternative scalar formula (9.131) is used, the

obliquity factor (cos a + cos 0)/2 in (9.167) is replaced by cos 0.

If we compare the vector Smythe-Kirchhoff result (9.162) with (9.167), we see

similarities and differences. Both formulas contain the same "diffraction"

distribution factor [Ji(ka^)/kaff and the same dependence on wave number.

But the scalar result has no azimuthal dependence (apart from that contained in

£), whereas the vector expression does. The azimuthal variation comes from the

polarization properties of the field, and must be absent in a scalar approxima-

tion. For normal incidence (a = 0) and ka»l the polarization dependence is

unimportant. The diffraction is confined to very small angles in the forward

direction. Then all scalar and vector approximations reduce to the common
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(a) (b)

Fig. 9;16 Fraunhofer diffraction pattern for a circular opening one wavelength in

diameter in a thin, plane, conducting sheet. The plane wave is incident on the screen at

45°. The solid curves are the vector Smythe-Kirchhoff approximation, while the dotted

curves are the scalar approximation, (a) The intensity distribution in the plane of

incidence (E plane), (b) The intensity distribution (enlarged 2.5 times) perpendicular to

the plane of incidence (H plane).

expression.

dP_
p (kaf

an 1

77

Ji(ka sin 0)

ka sin
(9.168)

The vector and scalar approximations are compared in Fig. 9.16 for the angle

of incidence equal to 45° and for an aperture one wavelength in diameter

(ka= it). The angular distribution is shown in the plane of incidence (containing

the electric field vector of the incident wave) and a plane perpendicular to it. The
solid (dotted) curve gives the vector (scalar) approximation in each case. We see

that for ka = 7T there is a considerable disagreement between the two approxima-

tions. There is reason to believe that the Smythe-Kirchhoff result is close to the

correct one, even though the approximation breaks down seriously for ka^l.
The vector approximation and exact calculations for a rectangular opening yield

results in surprisingly good agreement, even down to ka~l.*

The diffraction by apertures or obstacles whose dimensions are small com-

pared to a wavelength requires methods different from the Kirchhoff or

* See J. A. Stratton and L. J. Chu. Phys. Rev., 56, 99 (1939), for a series of figures

comparing the vector Smythe-Kirchhoff approximation with exact calculations by P. M.
Morse and P. J. Rubenstein, Phys. Rev., 54, 895 (1938). The alert reader may be puzzled

by the apparent discrepancy in the dates of Smythe's publication (loc. cit.) and of Stratton

and Chu. The two calculations yield the same result, though quite different in appearance

and detail of derivation, the earlier one involving a line integral around the boundary of

the aperture as well as a surface integral over it.
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Kirchhoff-like approximation. The exact formula (9.147) for a plane screen can

be used as a starting point. If the radiation fields of (9.147) are expanded in

multipoles, as in Sections 9.2-9.3, effective multipole moments (9.72) and (9.76)

can be identified in terms of integrals of the exact electric field in the aperture.

The derivation of these effective moments is left as Problem 9.15. Once the

dipole moments of an aperture are known, the diffraction can be calculated

merely by using the dipole fields of Sections 9.2 and 9.3. The example of a

circular aperture with effective moments (9.77) is left to the problems. The

whole discussion of the physical picture parallels that of Section 9.5(d) and will

not be repeated here.

9.13 Scattering in the Short-Wavelength Limit

Scattering in the long-wavelength limit has been discussed in Sections 9.6 and

9.7. The opposite limit, similar to the Kirchhoff domain of diffraction, is a

scattering by obstacles large compared to a wavelength. Just as for diffraction by

a screen, the zeroth approximation is given by classical ray theory. The wave

aspects of the fields give corrections to this, with the scattering confined to

angular regions only slightly away from the paths of geometrical optics. For a

thin, flat obstacle, the techniques of Section 9.10, perhaps with Babinet's

principle, can be used. But for other obstacles we base the calculation on the

integral expression (9.139) for the scattering amplitude in terms of the scattered

fields E s , B s on a surface Si just outside the scatterer.

In the absence of knowledge about the correct fields E s and B s on the surface,

we must make some approximations. If the wavelength is short compared to the

dimensions of the obstacle, the surface can be divided approximately into an

illuminated region and a shadow region.* The boundary between these regions is

sharp only in the limit of geometrical optics. The transition region can be shown
to have a width of the order of (2/kR)

1/3
R, where R is a typical radius of

curvature of the surface. Since R is of the order of magnitude of the dimensions

of the obstacle, the short-wavelength limit will approximately satisfy the

geometrical condition. In the shadow region the scattered fields on the surface

must be very nearly equal and opposite to the incident fields, regardless of the

nature of the scatterer, provided it is "opaque." In the illuminated region, on the

other hand, the scattered fields at the surface will depend on the properties of

the obstacle. If the wavelength is short compared to the minimum radius of

curvature, the Fresnel equations of Section 7.3 can be utilized, treating the

surface as locally flat. Eventually we will specialize to a perfectly conducting

obstacle, for which the tangential E s and the normal B s must be equal and

* For a very similar treatment of the scattering of a scalar wave by a sphere, see

Morse and Feshbach, pp. 1551-1555.
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opposite to the corresponding incident fields, while the tangential B, and normal

E s will be approximately equal to the incident values [see (9.146)].

Because of the generality of the contribution from the shadow region, it is

desirable to consider it separately. We write

€*-F=€*-Fsh+€*-FiU (9.169)

If the incident wave is a plane wave with wave vector k and polarization €
,

Ei= Eo€oeiV
*

(9.170)
B^koXEi/fc

the shadow contribution, from (9.139) with E s
— -E„ B s — -B t , is

• [n
,

x(koX€o)+kx(n'X€o)]e
l(k°- k) -

,t
' da' (9.171)

4th Jsh

where the integration is only over the part of Si in shadow. A rearrangement of

the vector products allows (9.171) to be written

k f €* • [(k+k )x(n'xe ) + (n' • Co^e 1^** da'
m Jsh

Ms

(9.172)

In the short wavelength limit the magnitudes of k • x' and k • x' are large

compared to unity. The exponential factor in (9.172) will oscillate rapidly and

cause the integrand to have a very small average value except in the forward

direction where k—

k

. In that forward region, 0^1/kR, the second term in the

square bracket is negligible compared to the first because (e* • k )/k is of the

order of sin 0« 1 (remember e* • k= and k — k). Thus (9.172) can be approxi-

mated by

*sh—^— € €
I IT

" (k • n') da'

The integral over the shadowed side of the obstacle has, in this approximation,

the remarkable property of depending only upon the projected area normal to the

incident direction and not at all on the detailed shape of the obstacle. This can be

seen from the fact that (k • n') da' = k dx' dy'= k d
2
x± is just k times the

projected element of area and (k -k) • x'= k(l-cos 0)z'-kx • \± — -k x • xx . Here

we have chosen k„ along the z axis, introduced two-dimensional vectors,

\± = x'd + y'e2 , kx = kx ei + ky e2 in the plane perpendicular to k and have approxi-

mated to small angles. The final form of the shadow contribution to the

scattering when kJR»l and d« 1 is therefore

€*-Fsh-^E (€*-€o)[ e~
l^^d 2

x± (9.173)
ZTT Jsh

In this limit all scatterers of the same projected area give the same shadow
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scattering contribution. The polarization character of the scattered radiation is

given by the factor e* • e . Since the scattering is at small angles, the dominant

contribution has the same polarization as the incident wave. In quantum-

mechanical language we say that the shadow scattering involves no spin flip.

For example, consider a scatterer whose projected area is a circular disc of

radius a. Then

d
2
xx =2W J

l
kasi" 9)

(9.174)
ka sin

and the shadow scattering amplitude is

e* • Fsh -ika
2E (€* 6 )

J
;[

kaSin^ (9.175)
(fca sin 6)

The scattering from the illuminated side of the obstacle cannot be calculated

without specifying the shape and nature of the surface. We assume, for purposes

of illustration, that the illuminated surface is perfectly conducting. In utilizing

(9.139) we must know the tangential components of E s and B s on S:. As
mentioned in the introductory paragraphs of this section, in the short wavelength

limit these are approximately opposite and equal, respectively, to the corre-

sponding components of the incident fields. Thus the contributions from the

illuminated side is

Fni_
47n

[ e* •[-n'x(k X€o)+kx(n'X€o)]e i(ko" ,t) x
'da' (9.176)

Jm

Comparison with the shadow contribution (9.171) at the same stage shows a sign

difference in the first term. This is crucial in giving very different angular

behaviors of the two amplitudes. The counterpart of (9.172) is

Fui"SL [(k-k )x(n'X€ )-(n' • € )k ]e
i(k°-k) x

' da' (9.177)

For kR»l, the exponential oscillates rapidly as before, but now, in the forward

direction, where we anticipate the major contribution to the integral, the other

factor in the integrand goes to zero. This can be traced to the presence of (k-k )

in the first term, rather than the (k+k ) of the shadow amplitude (9.172). The
illuminated side of the scatterer thus gives only a modest contribution to the

scattering at small angles. This makes perfect sense if we think of the limit of

geometrical optics. The illuminated side must give the reflected wave, and the

reflection is mainly at angles other than forward.

To proceed further we must specify the shape of the illuminated portion of the

scatterer, as well as its electromagnetic properties. We assume that the surface is

spherical of radius a. Since the contribution is not dominantly forward, we must

consider arbitrary scattering angles. The integrand in (9.177) consists of a

relatively slowly varying vector function of angles times a rapidly varying
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exponential. As discussed in Section 7.11(d), the dominant contribution to such

an integral comes from the region of integration where the phase of the

exponential is stationary. If (0, (f>) are the angular coordinates of k and (a, |3)

those of n', relative to k , the phase factor is

f(a, |3) = (k -k) • x'= ka[(l-cos 0) cos a -sin sin a cos (0 -(/>)]

(9.178)

The stationary point is easily shown to be at angles a
, j3 , where

2 2 1 (9.179)

Po= <f> J

These angles are evidently just those appropriate for reflection from the sphere

according to geometrical optics. At this point the unit vector n' points in the

direction of (k—

k

). If we expand the phase factor around a = a
, /3 = j3 , we

obtain

/(a, |3) = -2ka sin ^1 -i^x
2 + cos•b: (9.180)

where x = a-a
, y = 0-/3 o . Then integral (9.177) can be approximated by

evaluating the square bracket there at a — a
, |3 = /3 :

€* . F n
— ^a ^°

sin ^g- 2ikasin(e/2)
e* . e f dx e

iika sin (6/ 2

J
dye l[k£

(9.181)

4-n-i

where e r is a unit polarization vector defined by

e r = -e + 2(n r * € )n r

n r being a unit vector in the direction Of (k—

k

). The vector e r is just the

polarization expected for reflection, having a component perpendicular to the

surface equal to the corresponding component of € and a component parallel to

the surface opposite in sign, as shown in Fig. 9.17. The x and y integrals in

(9.181) can be approximated using (7.135) provided 2ka sin0/2>l, giving

e* • Fu,-E | e
- 2ikasin(e/2)

e* • e r (9.182)

For 2ka sin0/ 2 large, the reflected contribution is constant in magnitude as a

function of angle, but it has a rapidly varying phase; as 6— 0, it vanishes as 6
2

.

Comparison of the shadow amplitude (9.175) with the reflected amplitude

(9.182) shows that in the very forward direction the shadow contribution

dominates in magnitude over the reflected amplitude by a factor of ka» 1, while
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Fig. 9.17 Polarization of the reflected wave relative to the incident polarization. nr is

normal to the surface at the point appropriate for reflection according to geometrical

optics. To avoid complexity in the figure, the wave vectors k and k are not shown, but

they are perpendicular to e and c, respectively, and so oriented as to make their

difference parallel to n r .

at angles where ka sin 0»1, the ratio of the magnitudes is of the order of

l/(ka sin
3
6)
m

. Thus, the differential scattering cross section (9.81), summed
over the outgoing and averaged over the initial polarization states, is given in the

two regions by

The scattering in the forward direction is a typical diffraction pattern with a

central maximum and smaller secondary maxima, while at larger angles it is

isotropic. At intermediate angles there is some interference between the two

amplitudes (9.175) and (9.182), causing the cross section to deviate from the

sum of the two terms shown in (9.183). Actually, in the present approximation

this interference is very small for ka» 1. There is more interference in the exact

solution, as shown in Fig. 9.18, where the dips below unity are indicative of

destructive interference.*

The total scattering cross section is obtained by integrating over all angles.

Neglecting the interference terms, we find from (9.183) that the shadow

diffraction peak gives a contribution of 7ra
2

, and so does the isotropic part. The
total scattering cross section is thus lira

2
, one factor of the geometrical projected

area coming from direct reflection and the other from the diffraction scattering

that must accompany the formation of a shadow behind the obstacle. The latter

* For a linearly polarized wave incident, the amount of interference depends on
the orientation of the incident polarization vector relative to the plane of observation

containing k and k . For € in this plane the interference is much greater than for €

perpendicular to it. See King and Wu, Appendix, or Bowman, Senior and Uslenghi, pp,
402-405, for numerous graphs with different values of ka.

(9.183)
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20 40 60 80 100 120 140 160 180
6

Fig. 9.18 Semilogarithmic plot of the scattering cross section for a perfectly conducting

sphere as a function of scattering angle, with an unpolarized plane wave incident and
ka= 10. The solid curve is the exact result (King and Wu). The dashed curve is the

approximation based on the sum of the amplitudes (9.175) and (9.182).

part of the total cross section can be shown to be independent of the detailed

shape of the scatterer in the short-wavelength limit (Problem 9.21). Similarly,

for a general scatterer that is "opaque," the reflected or absorbed part of the

total cross section will also be equal to the projected area, although without

specifying the properties of the illuminated surface we cannot say how it is

divided between scattering and absorption.
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9.14 Optical Theorem and Related Matters

A fundamental relation, called the optical theorem, connects the total cross

section of a scatterer to the imaginary part of the forward scattering amplitude.

The theorem follows from very general considerations of the conservation of

energy and power flow, and has its counterpart in the quantum-mechanical

scattering of particles through the conservation of probability.

To establish the theorem we consider the scattering geometry shown in Fig.

9.11. A plane wave with wave vector k and fields (E t ,
B t ) is incident in vacuum

on a finite scatterer that lies inside the surface Si. The scattered fields (E s ,
B s )

propagate out from the scatterer and are observed far away in the direction of k.

The total fields at all points in space are, by definition,

The scatterer is, in general, dissipative and absorbs energy from the incident

wave. The absorbed power can be calculated by integrating the inward-going

component of the Poynting vector of the total fields over the surface Si:

The scattered power is normally calculated by considering the asymptotic form

of the Poynting vector for the scattered fields in the region where these are

simple transverse fields falling off as 1/r. But since there are no sources between

Si and infinity, the scattered power can equally well be evaluated as an integral

over Si of the outwardly directed component of the scattered Poynting vector:

The total power P taken from the incident wave, either by scattering or

absorption, is the sum of (9.184) and (9.185). With some obvious substitutions

and rearrangements, the total power can be written

E = Ei +E ;
B = Bi +B s

(9.184)

Pscatt=/-C) Re(E s xBt)-n'da' (9.185)
7T JSl

With the incident wave written explicitly as

E i
= E € e

ik°- x

Bi = 7- ko x Ei
k

(9.186)

the total power takes the form,

k x(n'xE s )

k
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Comparison with (9.139) for the scattering amplitude shows that the total power

is related to the forward (k = k , € = e ) scattering amplitude according to

P= j^ Im [EJ cS • F(k = k )] (9.187)

This is the basic result of the optical theorem, although it is customary to express

it in a form that is independent of the magnitude of the incident flux. The total

cross section crt (sometimes called the extinction cross section in optics) is defined

as the ratio of the total power P to the incident power per unit area, c \E
\

2
/8tt.

Similarly, the normalized scattering amplitude i is defined relative to the

amplitude of the incident wave at the origin as

f(k, k ) =
F(l
h

ko)
(9.188)

In terms of cr, and f the optical theorem reads

o"i =~ Im [cS • f(k = k )] (9. 1 89)

The notation in (9.189) corresponds to the standard quantum-mechanical

conventions. For particles with spin the relevant forward scattering amplitude is

the one in which none of the particles change their spin state. For electromag-

netic radiation (photons) this is indicated by the presence of the amplitude e* • f

for scattered radiation with the same polarization finally as it was initially.

The optical theorem relates different aspects of the scattering and absorption

of electromagnetic waves for a single scatterer. It is also possible to connect the

forward scattering amplitude for a single scatterer to the macroscopic elec-

tromagnetic properties, namely the dielectric constant, of a medium composed

of a large number of scatterers. We will content ourselves with a brief

elementary discussion and refer the reader to the literature for more detailed

and rigorous treatments.* Consider a plane wave (9.186) incident normally from

the left on a thin slab of uniform material composed of N identical scattering

centers per unit volume, as shown in Fig. 9.19. The incident wave impinges on

the scattering centers, causing each to generate a scattered wave. The coherent

sum of the incident wave and of all the scattered waves gives a modified wave to

the right of the slab. Comparison of this modified wave at the observation point

O with that expected for a wave transmitted through a slab described by a

macroscopic dielectric constant e(w) then leads to a relation between e and the

scattering amplitude f.

The thickness and the density of the slab are assumed to be small enough so

* See, for example, the very readable review by M. A. Lax, Reviews of Modern
Physics 23, 287 (1951), or M. L. Goldberger and K. M. Watson, Collision Theory, Wiley,

New York, (1964), Chapter 11, especially pp. 766-775.
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E„ B,

Fig. 9.19 A plane wave incident normally on a slab of dielectric of thickness d. The
scatterers in the slab give rise to a scattered wave that adds coherently to the incident

wave to give a modified wave at the observation point O behind the slab.

that only single scatterings in the slab need be considered and, as a consequence,

that the effective exciting field at each scatterer is just the incident field itself.

The scattered field produced at the observation point O with cylindrical

coordinates (0, 0, z ) by the N d
2
x scatterers in the infinitesimal volume element

d
3
x at the point x(p, <£, z) in the slab is, in this approximation,

dE s R
f(k, 0, «£ e'

v,N(j 3
x

where we have written the scattering amplitude in terms of the scattering angles

and with sin 9 = p/R, and have assumed that the observation point is many
wavelengths from the slab. The distance from the volume element to O is

R = [p
: + (z -z)

2

]

1/2
. The presence of the phase factor of the incident wave is

necessary to account for the location of the scatterers at x, rather than at the

origin of coordinates. The total scattered field is obtained by integration over the

volume of the slab:

NE dcj>[

d

dze lkz

\ pdp^ri(Ke,(t>) (9.190)
Jo Jo Jo K

Since p dp = R dR, this expression can be written

d<M dze ikz

\
dR e

lkR
f(k, 0, <M (9.191)

Jo J\zo-z\

where cos = (z„- z)/R. We now treat e
ikR dR as a differential and integrate by
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parts to obtain for the R-integration.

dR e
,kR

f(k, 0, </>)

Sect. 9.14

+
R = |zo-z|

Provided the indicated derivative of f is well-behaved, the remaining integral is

of the order of l/(k |z — z|) times the original. Since we have assumed that the

observation point is many wavelengths from the slab, this integral can be

neglected. Neglecting the oscillating contribution at the upper limit R— (this

can be made to vanish somewhat more plausibly by assuming that the number N
of scattering centers per unit volume falls to zero at very large p), we have the

result

lzo-z|

dR e
ikR

f(k, 0, 6)
:±^\z -z\

f(k, 0)

The scattered field at O is therefore

E s
~~ NE f(k, 0)£ dz e

iktz+|zo" z|]

Since z >z by assumption, we have finally

NE i(k, 0)e
,k2

° d (9.192)

The total electric field at the observation point O is

E = Eoe-o[€o+^f(k,0) (9.193)

correct to first order in the slab thickness d. The amplitude at O for a wave with

the same polarization state as the incident wave is

eS-E = E e
ik2

° 1+- ,0)] (9.194)

Suppose that we now consider the slab macroscopically, with its elec-

tromagnetic properties specified by a dielectric constant e(cu) appropriate to

describe the propagation of the wave of frequency to = ck and polarization € . A
simple calculation using the formulas of Chapter 7 shows that the transmitted

wave at z = z is given by

e? •E(macroscopic) = E e
ikz
°[l + ik(e-l)^j (9.195)

correct to first order in d, but with no approximation concerning the smallness of

1
6 - 1|. Comparison of (9.194) and (9.195) shows that the dielectric constant can
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be written in terms of the forward scattering amplitude as

4ttN
e(o) = l+~~€$-f(k,0) (9.196)

A number of observations are in order. It is obvious that our derivation has been

merely indicative, with a number of simplifying assumptions and the notion of a

macroscopic description assumed rather than derived. More careful considera-

tions show that the scattering amplitude in (9.196) should be evaluated at the

wave number k' in the medium, not at the free-space wave number k, and that

there is a multiplier to the second term that gives a measure of the effective

exciting field at a scatterer relative to the total coherent field in the medium. The
reader can consult the literature cited above for these and other details. Suffice it

to say that (9.196) is a reasonable approximation for not too dense substances

and provided correlations among neighboring scatterers are not important. It is

worthwhile to illustrate (9.196) with the simple electronic oscillator model used

in Chapter 7 to describe the dielectric constant. The dipole moment of the atom

is given by (7.50), summed over the various oscillators:

P m X ffaf-^-iuy^Eoeo (9.197)

From (9.80) we infer that the atomic scattering amplitude is

f(k)=— ZM^ 2-^ 2 -iw7
ir

1 (kX€o)xk (9.198)m
j

The scalar product of €* with the forward scattering amplitude is then

e* f(k = k ) =— X /K^-o^-io)?,)"
1

Substitution into (9.196) yields the index of refraction

eM=1+4^Y,fi(^ 2
-<>>

2
-i<oy,y

l

(9.199)m

in agreement with (7.51).

Contact can be established between (9.196) and the optical theorem (9.189)

by recalling that the attenuation coefficient a is related to the total cross section

of a single scatterer through a = Ncr, and to the imaginary part of the wave

number in the medium through a = 2Im(k'). From (9.196) and the relations

(7.54) for the real and imaginary parts of k' in term of e(co) we find

a = Nat
= Im [€J • f(Re (k'), 0)] (9.200)
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where I have improved (9.196) by evaluating f at the wave number in the

medium, as described above. Equation (9.200) indicates that, if we consider

scattering by a single scatterer imbedded in a medium, the optical theorem and

other relations will appear as before, provided we describe the "kinematics"

correctly by using the local wave number k' in the medium. The same situation

holds in the scattering of electrons in a solid, for example, where the effective

mass or other approximation is used to take into account propagation through

the lattice.

As a final comment on the optical theorem we note the problem of

approximations for £. The optical theorem is an exact relation. If an approximate

expression for f is employed, a manifestly wrong result for the total cross section

may be obtained. For example, in the long wavelength limit we find from (9.80)

and (9.83) that the scattering amplitude for a dielectric sphere of radius a is

f=(^)a 3(kxe )xk

The forward amplitude is

€? .f(k= ko) = k
2
a

3(^i) (9.201)

For a lossless dielectric, this amplitude is real; the optical theorem (9.189) then

yields o-, = 0. On the other hand, we know that the total cross section is in this

case equal to the scattering cross section (9.89):

e-1
e+ 2

(9.202)

Even with a lossy dielectric (Ime^O), the optical theorem yields a total cross

section,

at=
|e+ 2|

2 (9 '203)

while the scattering cross section remains (9.202). These seeming contradictions

are reflections of the necessity of different orders of approximation required to

obtain consistency between the two sides of the optical theorem. In the long

wavelength limit it is necessary to evaluate the forward scattering amplitude to

higher order in powers of &> to find the scattering cross section contribution in

the total cross section by means of the optical theorem. For lossless or nearly

lossless scatterers it is therefore simplest to determine the total cross section

directly by integration of the differential scattering cross section over angles. For

dissipative scatterers, on the other hand, the optical theorem yields a nonzero

answer that has a different (usually a lower power) dependence on co and other

parameters from that of the scattering cross section. This contribution is, of

course, the absorption cross section to lowest explicit order in o>. It can be
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calculated from first principles with (9.184), but the optical theorem provides an

elegant and convenient method. Examples of these considerations are given in

the problems at the end of the chapter. An analogous situation occurs in

quantum-mechanical scattering by a real potential where the first Born approxi-

mation yields a real scattering amplitude. The second Born approximation has

an imaginary part in the forward direction that gives, via the optical theorem, a

total cross section in agreement with the integrated scattering cross section of the

first Born approximation.
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PROBLEMS

9.1 A common textbook example of a radiating system (see Problem 9.2) is a

configuration of charges fixed relative to each other but in rotation. The charge density

is obviously a function of time, but it is not in the form of (9.1).

(a) Show that for rotating charges one alternative is to calculate real time-

dependent multipole moments using p(\,t) directly and then compute the multipole
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moments for a given harmonic frequency with the convention of (9.1) by inspection or

Fourier decomposition of the time-dependent moments. Note that care must be taken

when calculating qim (r) to form linear combinations that are real before making the

connection.

(b) Consider a charge density p(x, t) that is periodic in time with period T = 27r/o> . By
making a Fourier series expansion, show that it can be written as

p(x, = p (x)+ £ Re [2Pn (x)e-
in^]

n= 1

where

pn (x) =^|
T

p(x, t)e-°' dt

This shows explicitly how to establish connection with (9.1).

(c) For a single charge q rotating about the origin in the x-y plane in a circle of radius

R at constant angular speed co , calculate the / = and / = 1 multipole moments by the

two methods, (a) and (b), and compare. In method (b) express the charge density p„(x)

in cylindrical coordinates. Are there higher multipoles, for example, quadrupole? At
what frequencies?

9.2 A radiating quadrupole consists of a square of side a with charges ±q at alternate

corners. The square rotates with angular velocity o> about an axis normal to the plane

of the square and through its center. Calculate the quadrupole moments, the radiation

fields, the angular distribution of radiation, and the total radiated power, all in the

long-wavelength approximation.

9.3 Two halves of a spherical metallic shell of radius R and infinite conductivity are

separated by a very small insulating gap. An alternating potential is applied between
the two halves of the sphere so that the potentials are ±Vcoso>t. In the long-

wavelength limit, find the radiation fields, the angular distribution of radiated power,

and the total radiated power from the sphere.

9.4 The transitional charge density for the radiative transition from the m = 2p state

in hydrogen to the Is ground state is, in the notation of (9.1),

p(r, 6, <f>, t) =^ Oo-
4

• re-
3 '/2aoY00Yloe-^

where Oo = ft
2/me 2

is the Bohr radius and (o = 3e
2
/Shoo is the frequency difference of

the levels.

(a) Evaluate all the radiation multipoles for this charge density in the long wavelength
limit.

(b) In the electric dipole approximation calculate the total time-averaged power
radiated. Express your answer in units of (fno ) (a

4
c/ao), where a = e

2
/hc is the

fine-structure constant.

(c) Interpreting the classically calculated power as the photon energy (fto> ) times the

transition probability, evaluate numerically the transition probability in units of sec
-1

.

(d) If, instead of the semiclassical charge density used above, the electron in the 2p
state was described by a circular Bohr orbit of radius 2ao, rotating with the transitional

frequency co , what would the radiated power be? Express your answer in the same
units as in (b) and evaluate the ratio of the two powers numerically.
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9.5 A thin linear antenna of length d is excited in such a way that the sinusoidal current

makes a full wavelength of oscillation as shown in the figure.

Problem 9.5

(a) Calculate exactly the power radiated per unit solid angle and plot the angular

distribution of radiation.

(b) Determine the total power radiated and find a numerical value for the radiation

resistance.

9.6 Treat the linear antenna of Problem 9.5 by the long-wavelength multipole

expansion method.

(a) Calculate the multipole moments (electric dipole, magnetic dipole, and electric

quadrupole).

(b) Compare the shape of the angular distribution of radiated power for the lowest

nonvanishing multipole with the exact distribution of Problem 9.5.

(c) Determine the total power radiated for the lowest multipole and the corresponding

radiation resistance. Compare with 9.5(b). Is there a paradox here?

9.7 A qualitative understanding of the result for the reactance of a short antenna

whose radiation fields are described by the electric dipole fields of Section 9.2 can be

achieved by considering the idealized dipole fields (9.18).

(a) Show that the integral over all angles at fixed distance r of |E|
2
-|B|

2
is

J[|E|
2
-|B|

2]dn =8^
(b) Using (6.140) for the reactance, show that the contribution Xa to the reactance

from fields at distances r>a is

Aa
3 \l\

2
a

3

where l, is the input current.

(c) For the short center-fed antenna of Section 9.2 show that Xa = —d
2
/6o>a\

corresponding to an effective capacitance 6a 3
Id

2
. With a = d/2, Xa gives only a small

fraction of the total negative reactance of a short antenna. The fields close to the

antenna, obviously not dipole in character, contribute heavily. For calculations of

reactances of short antennas, see the book by Schelkunoff and Friis.

9.8 Consider the excitation of a wave guide in Problem 8.10 from the point of view of

multipole moments of the source.

(a) For the linear probe antenna calculate the multipole moment components of p, m,

Qa , QaP
M

that enter (9.69).

(b) Calculate the amplitudes for excitation of the TE,, mode and evaluate the power
flow. Compare the multipole expansion result with the answer given in Problem

8.10(b). Discuss the reasons for agreement or disagreement. What about the

comparison for excitation of other modes?
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9.9 (a) Verify by direct calculation that the static tangential electric field (3.185) in a

circular opening in a flat conducting plane, when inserted into the defining equation

(9.72) for the electric dipole moment peff , leads to the expression (9.77).

(b) Determine the value of iain^Jc given by (9.72) with the static electric field in (a).

(c) Use the siatic normal magnetic field (5.132) for the corresponding magnetic

boundary problem with a circular opening to compute via (9.76) the magnetic dipole

moment m,.,, and compare with (9.77).

(d) Comment on the differences between the results of (b) and (c) and the use of the

definitions (9.72) in a consistent fashion. [See Section 9 of the article, Diffraction

Theory, by C. J. B. Bouwkamp in Reports on Progress in Physics, Vol. 17, ed. A. C.

Stickland, The Physical Society, London, 1954.]

9.10 An ideal rectangular wave guide of dimensions (a, b), (a>b), and having /x = e= 1

in its interior, has an obstacle in the form of a perfectly conducting flat plate of

negligible thickness at z = 0, with a small circular hole of radius R whose center has

coordinates (x , y ).A wave of the lowest mode (TE10)is incident on the obstacle from

the region z<0. Show that the transmitted wave of the lowest mode has a relative

amplitude given approximately by

_ . 16 kR 3
. 2 /7TX \T^ iT^ sin hr]

where k is the wave number of the TE 1>0 mode in the guide. What is the equivalent

relative shunt impedance (Z/Z ) of this obstacle? Is it inductive or capacitive?

9.11 The rectangular wave guide of the previous problem, instead of having a transverse

plate at z = 0, has a small circular hole of radius R cut in its narrow (side) wall. Show
that the effective relative shunt admittance [defined by (8.151)] of the hole to the

transmission of the TE10 mode is approximately

Yd ~ l

3kba 3

9.12 A rectangular wave guide of dimensions a, b (a>b) has a small circular hole of

radius R cut in the center of its top (broad) wall at x = a/2, y = b, z = 0. The frequency is

such that only the TE10 mode can propagate. A wave is incident from z = -«>,

propagating towards z = +oo. The medium inside the guide has fx = e=l.
(a) Show that, as seen from inside the guide, the hole acts as a superposition of electric

and magnetic dipoles with nonvanishing components,

R 3 _ 2R 3 _

where Z is the wave impedance of the TE 1>0 mode and E
y
its electric field evaluated at

the hole (Ey
= (2/ab)

m
for a wave of unit amplitude in the convention of Section 8.11).

(b) Calculate the reflection and transmission coefficients for the incident wave. If

possible, find an operating frequency such that there is no reflected wave or no
additional transmitted wave.

9.13 The wave guide of Problem 9.12 is coupled to another identical guide with a

similar centered hole in it by placing the guides on top of each other with the holes

coincident, but the axes of the guides make an angle with each other as shown in the

figure. Again a wave of unit amplitude is incident from the left in the bottom guide.

Wall thickness can be neglected.
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Incident

wave

Problem 9.13

(a) Show that the amplitudes of the waves propagating in the positive and negative

directions in the top guide are proportional to

where a>, = 7rc/a is the cutoff frequency of the guide. Determine which sign goes with

which amplitude.

(b) Determine the proportionality constant by which to multiply the expression in (a)

to obtain the amplitudes in the top guide. For a wave guide with b - all, a> = y/2(ou and

the angle 6 chosen to suppress completely the transmission in one direction (which

direction?), calculate the value of R/a such that the coupling factor is 20 db (i.e., one

per cent of the power incident in the lower guide is transmitted in the upper guide). Is

the approximation R/a« 1 a good one for this magnitude of coupling?

The coupling device of this problem is called the Bethe hole directional coupler,

after H. A. Bethe who developed its principles in 1943.

9.14 In the scattering of light by a gas very near the critical point the scattered light is

observed to be "whiter," that is, its spectrum is less predominantly peaked toward the

blue, than far from the critical point. Show that this can be understood by the fact the

volumes of the density fluctuations become large enough that Rayleigh's law fails to

hold. In particular, consider the lowest order approximation to the scattering by a

uniform dielectric sphere of radius a whose dielectric constant e differs only slightly

from unity.

(a) Show that for ka » 1, the differential cross section is sharply peaked in the forward

direction and the total scattering cross section is approximately

with a k
2

, rather than k
4

,
dependence on frequency.

(b) Show that for arbitrary ka the total cross section to lowest order in (e-1) is the

a-|(ka) 2
|€-l|

2
a
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expression given in (a), multiplied by the function,

F(z)= l + 5z Mz- 4
(l-cos 2z)-z-

,

sin 2z-4( Z
- 2 -z^T dt

Jo I

where z = 2ka. [This result is due to Lord Rayleigh, 1914.]

9.15 The aperture or apertures in a perfectly conducting plane screen can be viewed as

the location of effective sources that produce radiation (the diffracted fields). An
aperture whose dimensions are small compared with a wavelength acts as a source of

dipole radiation with the contributions of other multipoles being negligible.

(a) Beginning with (9.147) show that the effective electric and magnetic dipole

moments can be expressed in terms of integrals of the tangential electric field in the

aperture as follows:

P =Hj(x.E tan)da

c f
(9 ' 72)

m =—— (nxEJ da

where Etan is the exact tangential electric field in the aperture, n is the normal to the

plane screen, directed into the region of interest, and the integration is over the area of

the openings.

(b) Show that the expression for the magnetic moment can be transformed into

m =^— f x(n-B) da (9.76)
Z7TfA J

Be careful about possible contributions from the edge of the aperture where some
components of the fields are singular if the screen is infinitesimally thick.

9.16 A perfectly conducting flat screen occupies one-half of the x-y plane (i.e., x<0). A
plane wave of intensity I and wave number k is incident along the z axis from the

region z<0. Discuss the values of the diffracted fields in the plane parallel to the x-y

plane defined by z = Z>0. Let the coordinates of the observation point be (X, 0, Z).

(a) Show that, for the usual scalar Kirchhoff approximation and in the limit Z »X and

V/cZ» 1, the diffracted field is

i«X, 0, Z,t)~U"e^-'(^)^^ e"
2

dt

where £ = (k/2Z)
1/2
X.

(b) Show that the intensity can be written

/=k|
2 = |[(C(^)+i)

2

+ (S(6+l)
2

]

where C(£) and S(£) are the so-called Fresnel integrals. Determine the asymptotic
behavior of I for £ large and positive (illuminated region) and £ large and negative

(shadow region). What is the value of I at X = 0? Make a sketch of J as a function of X
for fixed Z.

(c) Use the vector formula (9.147) to obtain a result equivalent to that of part (a).

Compare the two expressions.

9.17 A linearly polarized plane wave of amplitude £ and wave number k is incident on
a circular opening of radius a in an otherwise perfectly conducting flat screen. The
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incident wave vector makes an angle a with the normal to the screen. The polarization

vector is perpendicular to the plane of incidence.

(a) Calculate the diffracted fields and the power per unit solid angle transmitted

through the opening, using the vector Smythe-Kirchhoff formula (9.147) with the

assumption that the tangential electric field in the opening is the unperturbed incident

(b) Compare your result in part (a) with the standard scalar Kirchhoff approximation
and with the result in Section 9.12 for the polarization vector in the plane of incidence.

9.18 Discuss the diffraction of a plane wave by a circular hole of radius a, following

Section 9.12, but using a vector Kirchhoff approximation based on (9.136) instead of

the Smythe formula (9.147).

(a) Show that the diffracted electric field in this approximation differs from (9.159) in

two ways, first, that cos a is replaced by (cos 0+cos a)12, and second, by the addition

of a term proportional to (kxe 3). Compare with the obliquity factors 6 of the scalar

theory.

(b) Evaluate the ratio of the scattered power for this vector Kirchhoff approximation

to that of (9.162) for the conditions shown in Fig. 9.16. Sketch the two angular

distributions.

9.19 A rectangular opening with sides of length a and b>a defined by x = ±(a/2),

y = ±(b/2) exists in a flat, perfectly conducting plane sheet filling the x-y plane. A plane

wave is normally incident with its polarization vector, making an angle with the long

edges of the opening.

(a) Calculate the diffracted fields and power per unit solid angle with the vector

Smythe-Kirchhoff relation (9.156), assuming that the tangential electric field in the

opening is the incident unperturbed field.

(b) Calculate the corresponding result of the scalar Kirchhoff approximation.

(c) For b = a, = 45°, ka = 4ir, compute the vector and scalar approximations to the

diffracted power per unit solid angle as a function of the angle 6 for <j> = 0. Plot a graph

showing a comparison between the two results.

9.20 A cylindrical coaxial transmission line of inner radius a and outer radius b has its

axis along the negative z axis. Both inner and outer conductors end at z = 0, and the

outer one is connected to an infinite plane copper flange occupying the whole x-y

plane (except for the annulus of inner radius a and outer radius b around the origin).

The transmission line is excited at frequency <o in its dominant TEM mode, with the

peak voltage between the cylinders being V. Use the vector Smythe-Kirchhoff approx-

imation to discuss the radiated fields, the angular distribution of radiation, and the

total power radiated.

9.21 (a) Show from (9.173) that the integral of the shadow scattering differential cross

section, summed over outgoing polarizations, can be written in the short-wavelength

and therefore that crsh is equal to the projected area of the scatterer, independent of its

detailed shape.

(b) Apply the optical theorem to the "shadow" amplitude (9.173) to obtain the total

cross section under the assumption that in the forward direction the contribution from

the illuminated side of the scatterer is negligible in comparison.

field.

limit as
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9.22 (a) Using the approximate amplitudes of Section 9.13, show that, for a linearly

polarized plane wave of wave number k incident on a perfectly conducting sphere of

radius a in the limit of large ka, the differential scattering cross section in the E-plane

(e , ko, and k coplanar) is

^ (E-plane) = [4 cot
2
e J,

2
(ka sin 0)+ 1 -4 cot 0J,(ka sin 0) sin (2 ka sin

|)

and in the H-plane (e perpendicular to k and k) is

^(H-plane) =
^j- 1^4 cosec

2 QJ x

2
(ka sin 0) + 1 + 4 cosec0 J : (ka sin 0) sin^2 ka sm

|)j

(The dashed curve in Fig. 9.18 is the average of these two expressions.)

(b) Look up the exact calculations in King and Wu, Appendix, or Bowman, Senior,

and Uslenghi, pp. 402-405. Are the qualitative aspects of the interference between the

diffractive and reflective amplitudes exhibited in part (a) in agreement with the exact

results? What about quantitative agreement?

9.23 Discuss the diffraction due to a small, circular hole of radius a in a flat, perfectly

conducting sheet, assuming that ka«l.
(a) If the fields near the screen on the incident side are normal Eoe"'"' and tangential

B e"
lu
", show that the diffracted electric field in the Fraunhofer zone is

k „ k / k\

where k is the wave vector in the direction of observation.

(b) Determine the angular distribution of the diffracted radiation and show that the

total power transmitted through the hole is

P =^kV(4B 2+E 2

)

9.24 Specialize the discussion of Problem 9.23 to the diffraction of a plane wave by the

small, circular hole. Treat the general case of oblique incidence at an angle a to the

normal, with polarization in and perpendicular to the plane of incidence.

(a) Calculate the angular distributions of the diffracted radiation and compare them to

the vector Smythe-Kirchhoff approximation results of Section 9.12 and Problem 9.17
in the limit ka« 1.

(b) For the conditions of Fig. 9.16 (but for ka« 1) compute the diffraction intensity in

the plane of incidence and compare the relative values with the solid curve in Fig. 9.16.

(Use a protractor and a ruler to read off the values from Fig. 9.16 at several angles.)

(c) Show that the transmission coefficient [defined above (9.164)] for the two states of

polarization are

_ 64
, 4 /4 + sin

2 a\
T

{l

=^r—2 (ka)
—

" 27tt V 4 cos a J

rp 64
Tx = =—i{ka) cos a

Z / 77

Note that these transmission coefficients are a factor (ka)
2
smaller than those given by

the vector Smythe-Kirchhoff approximation in the same limit.

E =
377r

kV
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9.25 A solid uniform sphere of radius R and conductivity cr acts as a scatterer of

radiation of frequency cd. The wavelength A is much larger than R and the conductivity

is large enough that the skin depth 8 at this frequency is small compared to JR. An
unpolarized beam of radiation is incident on the sphere.

(a) Calculate the absorption cross section of the sphere, denned as the total power
absorbed by the sphere compared to the incident power per unit area. Show that it

varies as (co)
1/2

provided the conductivity is independent of frequency.

(b) Compare the absorption cross section of (a) with the scattering cross section,

calculated to zeroth order in 8/R. Show that the ratio is

9.26 An unpolarized plane wave of frequency (o = ck is scattered by a slightly lossy

uniform isotropic dielectric sphere of radius R much smaller than a wavelength. The
sphere is characterized by an ordinary real dielectric constant € and a real conductivity

cr. The parameters are such that the skin depth 8 is very large compared to the radius

R.

(a) Calculate the differential and total scattering cross sections.

(b) Show that the absorption cross section is

(e+ 2)
2+ (4w/a))

3

(c) From part (a) write down the forward scattering amplitude and use the optical

theorem to evaluate the total cross section. Compare your answer with the sum of the

scattering and absorption cross sections from (a) and (b). Comment.

9.27 The scattering by the dielectric sphere of Problem 9.26 was treated as purely

electric dipole scattering. This is adequate unless it happens that the real dielectric

constant e is very large. In these circumstances it is possible that a magnetic dipole

contribution, even though higher order in kR, can be important.

(a) Show that the changing magnetic flux of the incident wave induces an azimuthal

current flow in the sphere and produces a magnetic dipole moment,

(b) Show that application of the optical theorem to the coherent sum of the electric

and magnetic dipole contributions leads to a total cross section,

(compare Landau and Lifshitz, Electrodynamics of Continuous Media, p. 304).
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Magnetohydrodynamics
and Plasma Physics

10.1 Introduction and Definitions

Magnetohydrodynamics and plasma physics both deal with the behavior of the

combined system of electromagnetic fields and a conducting liquid or gas.

Conduction occurs when there are free or quasi-free electrons which can move
under the action of applied fields. In a solid conductor, the electrons are actually

bound, but can move considerable distances on the atomic scale within the

crystal lattice before making collisions. Dynamical effects such as conduction

and Hall effect are observed when fields are applied to the solid conductor, but

mass motion does not in general occur. The effects of the applied fields on the

atoms themselves are taken up as stresses in the lattice structure. For a fluid, on

the other hand, the fields act on both electrons and ionized atoms to produce

dynamical effects, including bulk motion of the medium itself. This mass motion

in turn produces modifications in the electromagnetic fields. Consequently we
must deal with a complicated coupled system of matter and fields.

The distinction between magnetohydrodynamics and the physics of plasmas is

not a sharp one. Nevertheless there are clearly separated domains in which the

ideas and concepts of only one or the other are applicable. One way of seeing the

distinction is to look at the way in which the relation J = o-E is established for a

conducting substance. In the simple model of Drude the electrons are imagined

to be accelerated by the applied fields, but to be altered in direction by collisions,

so that their motion in the direction of the field is opposed by an effective

frictional force vmv, where v is an effective collision frequency. Ohm's law just

represents a balance between the applied force and the frictional drag. When the

frequency of the applied fields is comparable to v, the electrons have time to

accelerate and decelerate between collisions. Then inertial effects enter and the

conductivity becomes complex. Unfortunately at these same frequencies the

469
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description of collisions in terms of a frictional force tends to lose its validity.

The whole process becomes more complicated. At frequencies well above the

collision frequency another thing happens. The electrons and ions are acceler-

ated in opposite directions by electric fields and tend to separate. Strong

electrostatic restoring forces are set up by this charge separation. Oscillations

occur in the charge density. These oscillations are called plasma oscillations and

are to be distinguished from lower-frequency oscillations which involve motion

of the fluid, but no charge separation. The low-frequency oscillations are called

magnetohydrodynamic waves.

In conducting liquids or dense ionized gases the collision frequency is

sufficiently high even for very good conductors that there is a wide frequency

range where Ohm's law in its simple form is valid. Under the action of applied

fields the electrons and ions move in such a way that, apart from a high-

frequency jitter, there is no separation of charge. Electric fields arise from

motion of the fluid which causes a current flow, or as a result of time-varying

magnetic fields or charge distributions external to the fluid. The mechanical

motion of the system can then be described in terms of a single conducting fluid

with the usual hydrodynamic variables of density, velocity, and pressure. At low

frequencies it is customary to neglect the displacement current in Ampere's law.

This is then the approximation that is called magnetohydrodynamics.

In less dense ionized gases the collision frequency is smaller. There may still

be a low-frequency domain where the magnetohydrodynamic equations are

applicable to quasi-stationary processes. Frequently astrophysical applications

fall in this category. At higher frequencies, however, the neglect of charge

separation and of the displacement current is not allowable. The separate

inertial effects of the electrons and ions must be included in the description of

the motion. This is the domain which we call plasma physics. There is here a

range of physical conditions where a two-fluid model of electrons and ions gives

an approximately correct description of various phenomena. But for high

temperatures and low densities, the finite velocity spreads of the particles about

their mean values must be included. Then the description is made in terms of the

Boltzmann equation, with or without short-range correlations. We will not

attempt to go into such details here. At still higher temperatures and lower

densities, the electrostatic restoring forces become so weak that the length scale

of charge separation becomes large compared to the size of the volume being

considered. Then the collective behavior implicit in a fluid model is gone

completely. We have left a few rapidly moving charged particles interacting via

Coulomb collisions. A plasma is, by definition, an ionized gas in which the length

that divides the small-scale individual-particle behavior from the large-scale

collective behavior is small compared to the characteristic lengths of interest.

This length, called the Debye screening radius, will be discussed in Section 10.9.

It is numerically equal to 7.91 (T/n)
1/2

cm, where T is the absolute temperature

in degrees Kelvin and n is the number of electrons per cubic centimeter. For all

but the hottest or most tenuous plasmas it is small compared to 1 cm.
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10.2 Magnetohydrodynamic Equations

We first consider the behavior of an electrically neutral, conducting fluid in

electromagnetic fields. For simplicity, we assume the fluid to be nonpermeable.

It is described by a matter density p(x, t), a velocity v(x, t), a pressure p(x, t)

(taken to be a scalar), and a real conductivity a. The hydrodynamic equations are

the continuity equation

f+V-(pv) = (10.1)

and the force equation:

P^ = -Vp+i(JxB)+F, + pg (10.2)

In addition to the pressure and magnetic-force terms we have included viscous

and gravitational forces. For an incompressible fluid the viscous force can be

written

F„ = <nV
2
v (10.3)

where t) is the coefficient of viscosity. It should be emphasized that the time

derivative of the velocity on the left side of (10.2) is the convective derivative,

|=A+V .v (10.4)

which gives the total time rate of change of a quantity moving instantaneously

with the velocity v.

With the neglect of the displacement current, the electromagnetic fields in the

fluid are described by

VXE+I^ =
C dt

VxB=^Tj|
c

(10.5)

The condition V-J = 0, equivalent to the neglect of displacement currents,

follows from the second equation in (10.5). The two divergence equations have

been omitted in (10.5). It follows from Faraday's law that (d/dt) V • B = 0, and the

requirement V • B = can be imposed as an initial condition. With the neglect of

the displacement current, it is appropriate to ignore Coulomb's law as well. The
reason is that the electric field is completely determined by the curl equations

and Ohm's law (see below). If the displacement current is retained in Ampere's
law and V • E = 47rpe is taken into account, corrections of only the order of (v

2
/c

2

)

result. For normal magnetohydrodynamic problems these are completely negli-

gible.
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To complete the specification of dynamical equations we must specify the

relation between the current density J and the fields E and B. For a simple

conducting medium of conductivity o\ Ohm's law applies, and the current

density is

J' = (tE' (10.6)

where J' and E' are measured in the rest frame of the medium. For a medium
moving with velocity v relative to the laboratory, we must transform both the

current density and the electric field appropriately. The nonrelativistic transfor-

mation of the field is given by equation (6.10). The current density in the

laboratory is similarly

J = J'+pev (10.7)

where pe is the electrical charge density. For a one-component conducting fluid,

pe = 0. Consequently, Ohm's law assumes the form,

J = (t(e+^xb) (10.8)

Sometimes it is possible to assume that the conductivity of the fluid is

effectively infinite. Then under the action of fields E and B the fluid flows in such

a way that

E+i(vxB) = (10.9)

is satisfied.

Equations (10.1), (10.2), (10.5), and (10.8), supplemented by an equation of

state for the fluid, form the equations of magnetohydrodynamics. In the next

section we will consider some of the simpler aspects of them and will elaborate

the basic concepts involved.

10.3 Magnetic Diffusion, Viscosity, and Pressure

The behavior of a fluid in the presence of electromagnetic fields is governed to a

large extent by the magnitude of the conductivity. The effects are both

electromagnetic and mechanical. We first consider the electromagnetic effects.

We will see that, depending on the conductivity, quite different behaviors of the

fields occur. The time dependence of the magnetic field can be written, using

(10.8) to eliminate E, in the form:

— = Vx(vxB)+-r^— V2B (10.10)

Here it is assumed that a is constant in space. For a fluid at rest (10.10) reduces
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to the diffusion equation

^ =-^-V 2B (10.11)

This means that an initial configuration of magnetic field will decay away in a

diffusion time

r=^£ (10.12)

where L is a length characteristic of the spatial variation of B. The time t is of

the order of 1 sec for a copper sphere of 1 cm radius, of the order of 10
4
years for

the molten core of the earth, and of the order of 10
10
years for a typical magnetic

field in the sun.

For times short compared to the diffusion time t (or, in other words, when the

conductivity is so large that the second term in (10.10) can be neglected) the

temporal behavior of the magnetic field is given by

^=Vx(vxB) (10.13)

From (6.5) and its accompanying footnote it can be seen that this is equivalent to

the statement that the magnetic flux through any loop moving with the local fluid

velocity is constant in time. We say that the lines of force are frozen into the fluid

and are carried along with it. Since the conductivity is effectively infinite, (10.9)

applies. The component of v perpendicular to B can be identified as the velocity

w of the lines of magnetic force:

(Bxv)xB ExB
y*=-—

—

= C~W~ (1(U4)

This so-called "ExB drift" of both fluid and lines of force can be understood in

terms of individual particle orbits of the electrons and ions in crossed electric and

magnetic fields (see Section 12.4).

A useful parameter to distinguish between situations in which diffusion of the

field lines relative to the fluid occurs and those in which the lines of force are

frozen in is the magnetic Reynolds number RM . If V is a velocity typical of the

problem and L is a corresponding length, then the magnetic Reynolds number is

defined as

Rm =^ (10.15)

where r is the diffusion time (10.12). Transport of the lines of force with the fluid

dominates over diffusion if RM »1. For liquids like mercury or sodium in the

laboratory JRM <1, except for very high velocities. But in geophysical and

astrophysical applications RM can be very large compared to unity.
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The mechanical behavior of the system can be studied with the force equation

(10.2). Substituting for J from (10.8), we find

P^ = F-^(v,-w) (10.16)

where F is the sum of all the nonelectromagnetic forces, and vx is the component
of velocity perpendicular to B. From (10.16) it is apparent that flow parallel to B
is governed by the nonelectromagnetic forces alone. The velocity of flow of the

fluid perpendicular to B, on the other hand, decays from some initially arbitrary

value in a time of the order of

T & (10.17)

to a value

Vx =w+^F± (10.18)

In the limit of infinite conductivity this result reduces to that of (10.14), as

expected. The term proportional to B 2
in (10.16) is an effective viscous or

frictional force which tends to prevent flow of the fluid perpendicular to the lines

of magnetic force. Sometimes it is described as a magnetic viscosity. If ordinary

viscosity, here lumped into F, is comparable to the magnetic viscosity, then the

decay time t is shortened by an obvious factor involving the ratio of the two

viscosities.

The above considerations have shown that if the conductivity is large the lines

of force are frozen into the fluid and move along with it. Any departure from

that state decays rapidly away. In considering the mechanical or electromagnetic

effects we treated the opposite quantities as given, but the equations are, of

course, coupled. In the limit of very large conductivity it is convenient to relate

the current density J in the force equation to the magnetic induction B via

Ampere's law and to use the infinite conductivity expression (10.9) to eliminate

E from Faraday's law to yield (10.13). The magnetic force term in (10.2) can

now be written

^(JxB) = -^;Bx(VxB) (10.19)

With the vector identity

iV(B • B) = (B • V)B+Bx(VxB) (10.20)

Equation (10.19) can be transformed into

f<
,xB>=-v

(fi)
+i<B

- v>B (10 -21)

This equation shows that the magnetic force is equivalent to a magnetic
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hydrostatic pressure,

pM = f- (10.22)
77

plus a term which can be thought of as an additional tension along the lines of

force. The result (10.21) can also be derived from the Maxwell stress tensor

(see Section 6.8).

If we neglect viscous effects and assume that the gravitational force is

derivable from a potential g = — Vt//, the force equation (10.2) takes the form

P^= -V(p+ PM + p^)+^
7

:
(B • V)B (10.23)

In some simple geometrical situations, such as B having only one component, the

additional tension vanishes. Then the static properties of the fluid are described

by

P+Pm+p^ = constant (10.24)

This shows that, apart from gravitational effects, any change in mechanical

pressure must be balanced by an opposite change in magnetic pressure. If the

fluid is to be confined within a certain region so that p falls rapidly to zero

outside that region, the magnetic pressure must rise equally rapidly in order to

confine the fluid. This is the principle of the pinch effect discussed in Section

10.5.

10.4 Magnetohydrodynamic Flow between Boundaries with Crossed

Electric and Magnetic Fields

To illustrate the competition between freezing in of lines of force and diffusion

through them and between the ExB drift and behavior imposed by boundary

conditions, we consider the simple example of an incompressible, but viscous,

conducting fluid flowing in the x direction between two nonconducting boundary

surfaces at z = and z = a, as shown in Fig. 10.1. The surfaces move with

velocities Vi and V2 ,
respectively, in the x direction. A uniform magnetic field B

acts in the z direction. The system is infinite in the x and y directions. We will

look for a steady-state solution for flow in the x direction in which the various

quantities depend only upon z.

If the fields do not vary in time, it is clear from the Maxwell equations (10.5)

that any electric field present must be an electrostatic field derivable from a

potential and determined solely by the boundary conditions, i.e. an arbitrary

external field. Expression (10.14) for the velocity of the lines of force when a is

infinite implies that there is an electric field in the y direction. If we assume that

to be the only component of E, then it must be a constant, E . Because the
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a

B

Fig. 10.1 Flow of viscous conducting fluid in a magnetic field between two plane surfaces

moving with different velocities.

moving fluid will tend to carry the lines of force with it, we expect an x

component Bx (z) of magnetic induction, as well as the z component B .

The continuity equation (10.1) reduces to V • v = for an incompressible fluid.

This is satisfied identically by a velocity in the x direction which depends only on

z. The force equation, neglecting gravity, has the steady-state form:

Vp = i(JxB) + nV2
v

The only component of J that is nonvanishing is Jy (z):

Jy (z) = a^E -~ B v(z)

(10.25)

(10.26)

where v is the x component of velocity. When we write out the three component

equations in (10.25), we find

d£ = crBo/ Bo(jz Bo \ d'v

f=0
ay

dp= o-Bx

dZ C
(»-*.)

(10.27)

The magnetic force in the z direction is just balanced by the pressure gradient. If

we assume no pressure gradient in the x direction, the first of these equations can

be written:

dz
:
- — v=-\—

2 cEg

Bo
(10.28)
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where

M= (^?)"
2

(10 29)

is called the Hartmann number. From (10.17) M2
can be seen to be the ratio of

magnetic to normal viscosity. The solution to (10.28), subject to the boundary

conditions u(0) = Vi and v(a) = V2 , is readily found to be

M-s£i-HT)]*ilM-(T)

Bo I sinhM J

(10.30)

In the limit Bo ^»0, M—»0, we obtain the standard laminar-flow result

u(z)=V1+-(V2-Vi) (10.31)
a

In the other limit of M» 1 we expect the magnetic viscosity to dominate and the

flow to be determined almost entirely by the ExB drift. If we approximate v(z)

for z«a and M»l, we obtain

„(2)=^+(vi-<g!)e-
M4'* (10.32)

This shows that, while v(z)= Vi exactly at the surface, there is a rapid transition

in a distance of order (a/M) to the ExB drift value (cE /B ). Near z = a, (10.32)

is changed by replacing Vi by V2 and z by (a— z). The velocity profile in the two

limits (10.31) and (10.32) is shown in Fig. 10.2.

The magnetic field Bx (z) is determined by the equation

dBx_4u j _ 4nrcr

dz~ c
y ~

c
(E ~B vj (10.33)

The boundary conditions on Bx at z = and z = a are indeterminate unless we
know the detailed history of how the steady state was created or can use some
symmetry argument. All we know is that the difference in Bx is related to the

total current flowing in the y direction per unit length in the x direction:

Bx(a)-Bx (0) =— T Jy (z) dz (10.34)
C Jo

This indeterminacy stems from the one-dimensional nature of the problem. For

simplicity we will calculate the magnetic field only for the case when the total

current in the y direction is zero.* Then we can assume that Bx vanishes at z =

*This requirement means that cE /B = K

V

x + V2).
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Fig. 10.2 Velocity profiles for large and small Hartmann numbers M. For M—»0,

laminar flow occurs. For M » 1, the flow is given by the E x B drift velocity, except in the

immediate neighborhood of the boundaries.

and z = a. Using (10.30) for the velocity in (10.33), it is easy to show that then

Bx (z) = B
2a

, M (M Mz\
. cosh— - cosh —

H—2-—y—^>
M sinh—

The dimensionless coefficient in square brackets in (10.35) may be identified as

the magnetic Reynolds number (10.15), since (V2-Vi)/2 is a typical velocity in

the problem and a is a typical length. In the two limits M« 1 and M» 1, (10.35)

reduces to

Bx (z) — .Rm-Bo

l-±-[l-(c^+ e
-Mt(o-z)/a]

)],

for M« 1

for M»l
(10.36)

Figure 10.3 shows the behavior of the lines of force in the two limiting cases.

Only for large RM is there appreciable transport of the lines of force. And for a

given RM, the transport is less the larger the Hartmann number.

For liquid mercury at room temperature the relevant physical constants are

o-=9.4xl0 15
sec

-1

T| = 1.5xl0~ 2
poise

p= 13.5 gm/cm3

The diffusion time (10.12) is t= 1.31 x 10~4
[L (cm)]

2
sec. The Hartmann number
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--»• V2 > Vj

Fig. 10.3 (a) Axial component of magnetic induction between the boundary surfaces

for large and small Hartmann numbers, (b) Transport of lines of magnetic induction in

direction of flow.

(10.29) is M = 2.64 x 10~2B (gauss) a(cm). With L=^a^ lcm, this gives a

magnetic Reynolds number RM~ 10~4
V. Consequently unless the flow velocity is

very large, there is no significant transport of lines of force for laboratory

experiments with mercury. On the other hand, if the magnetic induction B is of

the order of 10
4
gauss, then M—250 and the velocity flow is almost completely

specified by the ExB drift (10.14). In geomagnetic problems with the earth's

core and in astrophysical problems the parameters (e.g., the length scale) are

such that RM » 1 occurs often and transport of the lines of force becomes very

important.

10.5 Pinch Effect

The confinement of a plasma or conducting fluid by self-magnetic fields is of

considerable interest in thermonuclear research, as well as in other applications.

To illustrate the principles we consider an infinite cylinder of conducting fluid

with an axial current density Jz = J(r) and a resulting azimuthal magnetic

induction B <()
= B(r). For simplicity, the current density, magnetic field, pressure,

etc., are assumed to depend only on the distance r from the cylinder axis, and

viscous and gravitational effects are neglected. We first ask whether a steady-

state condition can exist in which the material is mainly confined within a certain

radius r=R by the action of its own magnetic induction. For a steady state with

d\/dt = the equation of motion (10.23) of the fluid reduces to

0=-f^(f)-f (10.37)

Ampere's law in integral form relates B(r) to the current enclosed:

B(r)=— f rJ(r)dr (10.38)
CT Jo
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A number of results can be obtained without specifying the form of J(r), aside

from physical limitations of finiteness, etc. From Ampere's law it is evident that,

if the fluid lies almost entirely inside r=R, then the magnetic induction outside

the fluid is

where

[ 27rrJ(r)dr
Jo

is the total current flowing in the cylinder. Equation (10.37) can be written as

dp= 1 d

dr g^dr^ (1 °-40)

with the solution:

Here p is the pressure of the fluid at r= 0. If the matter is confined to r<R, the

pressure drops to zero at r= R. Consequently the axial pressure p is given by

The upper limit of integration can be replaced by infinity, since the integrand

vanishes for r>R, as can be seen from (10.39). With this expression (10.42) for

p , (10.41) can be written as

2
dr

(r
2B 2

) dr (10.43)

The average pressure inside the cylinder can be related to the total current I

and radius R without specifying the detailed radial behavior. Thus

<p>=5pf rp(r)dr (10 -44)

Integration by parts and use of (10.40) gives

<p>=ii (10 -45)

as the relation between average pressure, total current, and radius of the

cylinder of fluid or plasma confined by its own magnetic field. Note that the

average pressure of the matter is equal to the magnetic pressure (B
2
/8tt) at the

surface of the cylinder. In thermonuclear work, hot plasmas with temperatures

of the order of 108oK (kT~10keV) and densities of the order of 10
15
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r

Fig. 10.4. Variation of azimuthal magnetic induction and pressure with radius in a

cylindrical plasma column with a uniform current density J.

particles/cm
3

are envisioned. These conditions correspond to a pressure of

approximately 10
15 x 10

8
/c — 1.4x 10

7
dynes/cm

2
, or 14 atmospheres. A magnetic

induction of approximately 19 kilogauss at the surface, corresponding to a

current of 9x 10
4R (cm) amperes, is necessary for confinement. This shows that

extremely high currents are needed to confine very hot plasmas.

So far the radial behavior of the system has not been discussed. Two simple

examples will serve to illustrate the possibilities. One is that the current density

J(r) is constant for r<R. Then B(r) = (2Jr/cR
2
) for r<R. Equation (10.43) then

yields a parabolic dependence for pressure versus radius:

The axial pressure p is then twice the average pressure (p). The radial

dependences of the various quantities are sketched in Fig. 10.4.

The other model has the current density confined to a very thin layer on the

surface, as is appropriate for a highly conducting fluid or plasma. The magnetic

R r ^
Fig. 10.5 Variation of azimuthal magnetic induction and pressure in a cylindrical

plasma column with a surface current density.

(10.46)

J

PO
p
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induction is given by (10.39) for r>R, but vanishes inside the cylinder. Then the

pressure p is constant inside the cylinder and equal to the value (10.45). This is

sketched in Fig. 10.5.

10.6 Instabilities in a Pinched Plasma Column

The steady-state situation of the previous section is an ideal that cannot be

achieved in the laboratory without topologies of fields and currents considerably

more complicated than the simple cylindrical geometry discussed there. The
reason is that a self-pinched plasma is subject to numerous instabilities. There

are magnetohydrodynamic instabilities that can be understood in terms of

magnetic pressures and stresses and there are instabilities associated with

particle motion. We consider only the first kind here and restrict the discussion

to qualitative aspects of two of the simpler varieties of instability. We take as the

starting point a uniform cylindrical column of plasma with a surrounding

magnetic field and ask what happens when there are departures in shape from

the cylindrical cylinder of constant radius.

The first instability is the kink instability, shown in Fig. 10.6a. The lines of

azimuthal magnetic induction near the column are bunched together above, and

separated below, the column by the distortion downwards. Thus the magnetic

pressure changes are in such a direction as to increase the distortion. The

distortion is unstable.

The second type of distortion is called a sausage or neck instability, shown in

Fig. 10.6b. In the neighborhood of the constriction the azimuthal induction

(a)

(b)

Fig. 10.6 (a) Kink instability, (b) Sausage or neck instability.
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Fig. 10.7 Hindering neck instability with outward pressure of trapped axial magnetic

fields.

increases, causing a greater inwards pressure at the neck than elsewhere. This

serves to enhance the existing distortion.

Both types of instability are hindered by axial magnetic fields within the

plasma column. For the sausage distortion the lines of axial induction
t
are

compressed by the constriction, causing an increased pressure inside to oppose

the increased pressure of the azimuthal field, as indicated schematically in Fig.

10.7. It is easy to show that the fractional changes in the two magnetic

pressures, assuming a sharp boundary to the plasma, are

the column is stable against sausage distortions.

For kinks the axial magnetic field lines are stretched, rather than compressed

laterally together. But the result is the same; namely the increased tension in the

field lines inside opposes the external forces and tends to stabilize the column. It

is evident from Fig. 10.8 that a short-wavelength kink of a given lateral

displacement will cause the lines of force to stretch relatively more than a

long-wavelength kink. Consequently, for a given ratio of internal axial field to

external azimuthal field, there will be a tendency to stabilize short-wavelength

kinks, but not very long-wavelength ones. If the fields are approximately equal,

Ap± _2x Apz _ 4x
(10.47)

where x is the small inwards displacement. Consequently, if

B2

2 >§B,2
(10.48)

x

Fig. 10.8 Hindering kink instability with tension of trapped axial fields.
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Fig. 10.9 Stabilization of long-wavelength kinks with outer conductor.

analysis shows that if the wavelength of the kink \<14R the disturbance is

stabilized.

For longer-wavelength kinks stabilization can be achieved by the action of an

outer conductor, provided the plasma radius is not too small compared to the

radius of the conductor. The azimuthal field lines are trapped between the

conductor and the plasma boundary, as shown in Fig. 10.9. If the plasma column

moves too close to the walls, the lines of force are crowded together between it

and the walls, causing an increased magnetic pressure and restoring force.

It is clear qualitatively that it must be possible, by a combination of trapped

axial field and conducting walls, to create a stable configuration, at least in the

approximation of a highly conducting plasma with a sharp boundary. Detailed

analysis* confirms this qualitative conclusion and sets limits on the quantities

involved. It is important to have as little axial field outside the plasma as possible

and to keep the plasma radius of the order of one-half or one-third of the

cylinder radius. If the axial field outside the plasma is too large, the combined B z

and cause helical instabilities that are troublesome in toroidal geometries. If,

however, the axial field outside the plasma is made very large, the pitch of the

helix becomes so great that there is much less than one turn of the helix in a

plasma column of finite length. Then it turns out that there is the possibility of

stability again. Stabilization by means of a strong axial field produced by currents

external to the plasma is the basis of some fusion devices, for example the

Stellarator.

The idealized situation of a sharp plasma boundary is difficult to create

experimentally, and even when created is destroyed by diffusion of the plasma

through the lines of force in times of the order of 4tt(tR
2
/c

2
(see Section 10.3). For

a hydrogen plasma of 1 eV energy per particle this time is of the order of 10"4
sec

for R ~ 10 cm, while for a 10 keV plasma it is of the order of 10
2
sec. Clearly the

thermonuclear experimenter must try to create initially as hot a plasma as

possible in order to make the initial diffusion time long enough to allow further

heating.

* V. D. Shafranov, Atomnaya Energ. I, 5, 38 (1956); R. J. Tayler, Proc. Phys. Soc.

(London), B70, 1049 (1957); M. Rosenbluth, Los Alamos Report LA-2030 (1956). See

also Proceedings of the Second International Conference on Peaceful Uses of Atomic

Energy, Vol. 31 (1958), papers by Braginsky and Shafranov (p. 43) and Tayler (p. 160).
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10.7 Magnetohydrodynamic Waves

In ordinary hydrodynamics, apart from surface waves the only small-amplitude

waves possible are longitudinal, compressional (sound) waves. These propagate

with a velocity s related to the derivative of pressure with respect to density at

constant entropy:

\dpJo
(10.49)

If the adiabatic law p = Kp is assumed, s = ypo/po, where 7 is the ratio of specific

heats. In magnetohydrodynamics another type of wave motion is possible. It is

associated with the transverse motion of lines of magnetic induction. The tension

in the lines of force tends to restore them to straight-line form, thereby causing a

transverse oscillation. By analogy with ordinary sound waves whose velocity

squared is of the order of the hydrostatic pressure divided by the density, we
expect that these magnetohydrodynamic waves, called Alfven waves, will have a

velocity

\877Po/
(10.50)

where B 2
/8tt is the magnetic pressure.

To examine the wave motion of a conducting fluid in the presence of a

magnetic field, we consider a compressible, nonviscous, perfectly conducting

fluid in a magnetic field in the absence of gravitational forces. The appropriate

equations governing its behavior are:

|e+v-(pv)=o

p
f£+ p(v . V)v = -Vp-j- B x (V x B)
at 47T

f = Vx(vxB)

> (10.51)

These must be supplemented by an equation of state relating the pressure to the

density. We assume that the equilibrium velocity is zero, but that there exists a

spatially uniform, static, magnetic induction B throughout the uniform fluid of

constant density p . Then we imagine small-amplitude departures from the

equilibrium values:

B = B + B!(x, t)\

p = Po+ Pi(x,t) }

v=vi(x,
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If equations (10.51) are linearized in the small quantities, they then become:

^+PoV-v t =
of

Po^+s2VPl+^x(VxB1) =

^i-Vx(Vl xBo) =
of

(10.53)

where s
2

is the square of the sound velocity (10.49). These equations can be

combined to yield an equation for Vi alone:

^r-

s

2V(V • Vl )+

v

A xVx [V x (Vl x

v

A )] = (10.54)
ot

where we have introduced a vectorial Alfven velocity:

= (10.55)

The wave equation (10.54) for Vi is somewhat involved, but it allows simple

solutions for waves propagating parallel or perpendicular to the magnetic field

direction.* With Vi(x, r) a plane wave with wave vector k and frequency o>:

v 1 (x,t) = v 1 c
ikx- ia,t

(10.56)

equation (10.54) becomes:

-cu
2
Vl + (s

2
+t;A

2
)(k • Vl)k+vA • k[(vA • k)Vl -(vA - vi)k-(k • Vi)vA]=0 (10.57)

If k is perpendicular to vA the last term vanishes. Then the solution for Vi is a

longitudinal magnetosonic wave with a phase velocity:

u,ong = Vs2+uA2
(10.58)

Note that this wave propagates with a velocity which depends on the sum of

hydrostatic and magnetic pressures, apart from factors of the order of unity. If k

is parallel to vA , (10.57) reduces to

(k
2
t)A

2-«2)vi+(^l)k2
(vA -v1)vA= (10.59)

There are two types of wave motion possible in this case. There is an ordinary

longitudinal wave (Vi parallel to k and vA ) with phase velocity equal to the sound

velocity s. But there is also a transverse wave (vi • vA = 0) with a phase velocity

* The determination of the characteristics of the waves for arbitrary direction of

propagation is left to Problem 10.3.
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equal to the Alfven velocity uA . This Alfven wave is a purely magnetohy-

drodynamic phenomenon which depends only on the magnetic field (tension)

and the density (inertia).

For mercury at room temperature the Alfven velocity is [B (gauss)/ 13.1]

cm/sec, compared with sound speed of 1.45 x 10
5
cm/sec. At all laboratory field

strengths the Alfven velocity is much less than the speed of sound. In

astrophysical problems, on the other hand, the Alfven velocity can become very

large because of the much smaller densities. In the sun's photosphere, for

example, the density is of the order of 10
_7
gm/cm3 (~6xl0 16

hydrogen

atoms/cm
3
) so that vA =* 10

3 B cm/sec. Solar magnetic fields appear to be of the

order of 1 or 2 gauss at the surface, with much larger values around sunspots.

For comparison, the velocity of sound is of the order of 10
6
cm/sec in both the

photosphere and the chromosphere.

The magnetic fields of these different waves can be found from the third

equation in (10.53):

r u

for k ± Bo

for the longitudinal k
||
B (10.60)

B Vi for the transverse k
||
B

The magnetosonic wave moving perpendicular to B causes compressions and

rarefactions in the lines of force without changing their direction, as indicated in

Fig. 10.10a. The Alfven wave parallel to B causes the lines of force to oscillate

back and forth laterally (Fig. 10.10b). In either case the lines of force are "frozen

in" and move with the fluid.

If the conductivity of the fluid is not infinite or viscous effects are present, we
anticipate dissipative losses and a consequent damping of oscillations. The
second and third equations in (10.53) are modified by additional terms:

P°S = Vf>1"fe
X (V X Bl) + VVV

^Vx^xBoH^B,
(10.61)

where r\ is the viscosity* and cr is the conductivity. Since both additions cause

dispersion in the phase velocity, their effects are most easily seen when a plane

wave solution is being sought. For plane waves it is evident that these equations

* Use of the simple viscous force (10.3) is not really allowed for a compressible
fluid. But it can be expected to give the correct qualitative behavior.
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AA

Aa

(a) (b)

Fig. 10.10 Magnetohydrodynamic waves.

are equivalent to

aBi

at

\ PoCO/poco

1
Vx(viXBo)

(10.62)

Consequently equation (10.57) relating k and co is modified by (a) multiplying s
2

and a)
2
by the factor

^
1 + i

—
j, and (b) multiplying co

2
by the factor

\ PoW/
For the important case of the Alfven wave parallel to the field, the relation

between co and k becomes

kW=(0,( 1+i /kl)( 1+i^)
\ 47T(J(x)/ \ pow/

(10.63)

If the resistive and viscous correction terms are small, the wave number is

approximately

(10.64)
I

Ct)
,

. CO
k— hi

vA 2va \47Tcr po/

This shows that the attenuation increases rapidly with frequency (or wave

number), but decreases with increasing magnetic field strength. In terms of the

diffusion time t of Section 10.3, the imaginary part of the wave number shows

that, apart from viscosity effects, the wave travels for a time t before falling to

lie of its original intensity, where the length parameter in t (10.12) is the

wavelength of oscillation. For the opposite extreme in which the resistive and/or

viscous terms dominate, the wave number is given by the vanishing of the two
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factors on the right-hand side of (10.63). Thus k has equal real and imaginary

parts and the wave is damped out rapidly, independent of the magnitude of the

magnetic field.

The considerations of magnetohydrodynamic waves given above are valid

only at comparatively low frequencies, since the displacement current was

ignored in Ampere's law. It is evident that, if the frequency is high enough, the

behavior of the fields must go over into the "ionospheric" behavior described in

Section 7.6, where charge-separation effects play an important role. But even

when charge-separation effects are neglected in the magnetohydrodynamic

description, the displacement current modifies the propagation of the Alfven

and magnetosonic waves. The form of Ampere's law, including the displacement

current, is:

VxB =^J-p|(vxB) (10.65)

where we have used the infinite conductivity approximation (10.9) in eliminating

the electric field E. Thus the current to be inserted into the force equation for

fluid motion is now

4 77
VxB+Af>xB)

C of
(10.66)

In the linearized set of equations (10.53) the second one is then generalized to

read:

p4^+? vax (5xva
)]
= "s2Vpi"Sx(vxBi) (io -67)

This means that the wave equation for vi is altered to the form:

dt
2 [v 1(l+^-^(vA -v 1)]-s

2 V(V.v 1)+vA xVxVx(v 1 xvA ) = (10.68)

Inspection shows that for vi parallel to vA (i.e., B ) there is no change from

before. But for transverse Vi (either magnetosonic with k perpendicular to B or

Alfven waves with k parallel to B ) the square of the frequency is multiplied by

a factor [1 + (uA
2
/c

2
)]. Thus the phase velocity of Alfven waves becomes

"a= r^—2
(10.69)

Vc 2 + uA

In the usual limit where vA «c, the velocity is approximately equal to uA ; the

displacement current is unimportant. But, if uA »c, then the phase velocity is

equal to the velocity of light. From the point of view of electromagnetic waves,

the transverse Alfven wave can be thought of as a wave in a medium with an

index of refraction given by

uA = ^ (10.70)
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Thus

n
47Tp C

2

Bo
2 (10.71)

Caution must be urged in using this index of refraction for the propagation of

electromagnetic waves in a plasma. It is valid only at frequencies where

charge-separation effects are unimportant.

10.8 Plasma Oscillations

The magnetohydrodynamic approximation considered in the previous sections is

based on the concept of a single-component, electrically neutral fluid with a

scalar conductivity a to describe its interaction with the electromagnetic field. As
discussed in the introduction to this chapter a conducting fluid or plasma is,

however, a multicomponent fluid with electrons and one or more types of ions

present. At low frequencies or long wavelengths the description in terms of a

single fluid is valid because the collision frequency v is large enough (and the

mean free path short enough) that the electrons and ions always maintain local

electrical neutrality, while on the average drifting in opposite directions accord-

ing to Ohm's law under the action of electric fields. At higher frequencies the

single-fluid model breaks down. The electrons and ions tend to move independ-

ently, and charge separations occur. These charge separations produce strong

restoring forces. Consequently oscillations of an electrostatic nature are set up.

If a magnetic field is present, other effects occur.The electrons and ions tend to

move in circular or helical orbits in the magnetic field with orbital frequencies

given by

When the fields are strong enough or the densities low enough that the orbital

frequencies are comparable to the collision frequency, the concept of a scalar

conductivity breaks down and the current flow exhibits a marked directional

dependence relative to the magnetic field (see Problem 10.5). At still higher

frequencies the greater inertia of the ions implies that they will be unable to

follow the rapid fluctuation of the fields. Only the electrons partake in the

motion. The ions merely provide a uniform background of positive charge to

give electrical neutrality on the average. The idea of a uniform background of

charge, and indeed the concept of an electron fluid, is valid only when we are

considering a scale of length which is at least large compared to interparticle

spacings (J»no
1/3

). In fact, there is another limit, the Debye screening length,

which for plasmas at reasonable temperatures is greater than no
1/3

, and which

forms the actual dividing line between small-scale individual-particle motion and

collective fluid motion (see the following section).

eB
(10.72)
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To avoid undue complications we consider only the high-frequency behavior

of a plasma, ignoring the dynamical effects of the ions. We also ignore the effects

of collisions. The electrons of charge e and mass m are described by a density

n(\, t) and an average velocity v(x, t). The equilibrium charge density of ions and

electrons is ^en . The dynamical equations for the electron fluid are

dn

dt
+V-(nv) =

^-+(v • V)v=-(e+-xb)—-Vp
dt ' m\ c ) mn *\

(10.73)

where the effects of the thermal kinetic energy of the electrons are described by

the electron pressure p (here assumed a scalar). The charge and current densities

are:

pc = e(n-n
)|

J = en\ J

(10.74)

Thus the Maxwell equations can be written

V • E = 47re(n-n„)

V • B =

VxE+±^ =
c dt

VxB_laE = 4^en y
C dt C

(10.75)

We now assume that the static situation is the electron fluid at rest with n=n
and no fields present, and consider the small departures from that state due to

some initial disturbance. The linearized equations of motion are

dn

dt
+ n V- v =

dt m mn \dn
) Vn =
/o

V • E-47ren =

VxB_iaE_4™no v = ()

c dt c

(10.76)

plus the two homogeneous Maxwell equations. Here n(x, t) and v(x, t) represent

departures from equilibrium. If an external magnetic field B is present a

[(v/c)xB ] term must be kept in the force equation (see Problem 10.7), but the

fluctuation field B is of first order in small quantities so that (vxB) is second
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order. The continuity equation is actually not an independent equation, but may
be derived by combining the last two equations in (10.76).

Since the force equation in (10.76) is independent of magnetic field, we
suspect that there exist solutions of a purely electrostatic nature, with B = 0. The
continuity and force equations can be combined to yield a wave equation for the

density fluctuations:

§+ (4^)„_l(|E) v2n = (10.77)
dt \ m I m\dn/o

On the other hand, the time derivative of Ampere's law and the force equation

can be combined to give an equation for the fields:

g+ (l-!no)E_lg£) v(v . E)=cVx^ (10 .78)
dt \ m / m\dn/o dt

The structures of the left-hand sides of these two equations are essentially

identical. Consequently no inconsistency arises if we put dB/dt = 0. Having

excluded static fields already, we conclude that B = is a possibility. If dB/df = 0,

then Faraday's law implies VxE = 0. Hence E is a longitudinal field derivable

from a scalar potential. It is immediately evident that each component of E
satisfies the same equation (10.77) as the density fluctuations. If the pressure

term in (10.77) is neglected, we find that the density, velocity, and electric field

all oscillate with the plasma frequency o>p :

47m e
:

m (10.79)

If the pressure term is included, we obtain a dispersion relation for the

frequency:

The determination of the coefficient of k
2
takes some care. The adiabatic law

p = po(n/n y can be assumed, but the customary acoustical value y = § for a gas of

particles with 3 external, but no internal, degrees of freedom is not valid. The
reason is that the frequency of the present density oscillations is much higher

than the collision frequency, contrary to the acoustical limit. Consequently the

one-dimensional nature of the density oscillations is maintained. A value of 7
appropriate to 1 translational degree of freedom must be used. Since 7 =

(m + 2)/m, where m is the number of degrees of freedom, we have in this case

7 = 3. Then

1(§2) =3 J*L (10.81)
m\dn/o mn
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If we use p =n KT and define the rms velocity component in one direction

(parallel to the electric field),

m(u 2
) = KT =^

no

then the dispersion equation can be written

co
2 = cop

2+ 3<u
2
>fc

2

(10.82)

(10.83)

This relation is an approximate one, valid for long wavelengths, and is actually

just the first two terms in an expansion involving higher and higher moments of

the velocity distribution of the electrons (see Problem 10.6). In form (10.83) the

dispersion equation has a validity beyond the ideal gas law which was used in the

derivation. For example, it applies to plasma oscillations in a degenerate Fermi

gas of electrons in which all cells in velocity space are filled inside a sphere of

radius equal to the Fermi velocity VF . Then the average value of the square of a

component of velocity is

<u
2MvF

2

(10.84)

Quantum effects appear explicitly in the dispersion equation only in higher-

order terms in the expansion in powers of k
2

.

The oscillations described above are longitudinal electrostatic oscillations in

which the oscillating magnetic field vanishes identically. This means that they

cannot give rise to radiation in an unbounded plasma. There are, however,

modes of oscillation in a plasma which are transverse electromagnetic waves. To
see the various possibilities of plasma oscillations we assume that all variables

vary as exp (ik • x—ia)t) and look for a defining relationship between co and k, as

we did for the magnetohydrodynamic waves in Section 10.7. With this assump-

tion the linearized equations (10.76) and the two homogeneous Maxwell

equations can be written:

n =
kj_y

CO
Ho

ieE
,

3(u
2
> n .

v = 1
—-

—

-— k
mo) co no

k • E = -iAiren

k-B =

c c

kxE=^B
c

(10.85)

The Maxwell equations can be solved for v in terms of k and E:

v= (—)—2 [(co
2-c 2

k
2
)E+ c

2
(k • E)k]

\mco/con
(10.86)
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Then the force equation and the divergence of E can be used to eliminate v

in order to obtain an equation for E alone:

(co
2
-o>p

2-c 2
k

2)E+(c2-3<u2
>)(k • E)k = (10.87)

If we write E in terms of components parallel and perpendicular to k:

E = E,|+EX

where
Ei

then (10.87) can be written as two equations:

(co
2
-o)p

2 -3(u 2
>k

2
)E,| = o]

(co
2
-(op

2-c 2
k

2
)E± = 0\

(10.88)

(10.89)

The first of these results shows that the longitudinal waves satisfy the dispersion

relation (10.83) already discussed, while the second shows that there are two

transverse waves (two states of polarization) which have the dispersion relation:

<o
2 = a>p

2+c 2
k

2
(10.90)

Equation (10.90) is just the dispersion equation for the transverse electromag-

netic waves described in Section 7.5(d) from another point of view. In the absence

of external fields the electrostatic oscillations and the transverse electromagnetic

oscillations are not coupled together. But in the presence of an external

magnetic induction, for example, the force equation has an added term involving

the magnetic field and the oscillations are coupled (see Problem 10.7).

10.9 Short-Wavelength Limit for Plasma Oscillations and the

Debye Screening Distance

In the discussion of plasma oscillations so far no mention has been made of the

range of wave numbers over which the description in terms of collective

oscillations applies. Certainly nj
/3

is one upper bound on the wave-number scale.

A clue to a more relevant upper bound can be obtained by examining the

dispersion relation (10.83) for the longitudinal oscillations. For long wavelengths

the frequency of oscillation is very closely o> = cop . It is only for wave numbers

comparable to the Debye wave number kD ,

that appreciable departures of the frequency from a)p occur.

For wave numbers k«kD , the phase and group velocities of the longitudinal
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plasma oscillations are:

wp

~~k

Up

From the definition of kD we see that for such wave numbers the phase velocity is

much larger than, and the group velocity much smaller than, the rms thermal

velocity <u
2

)

1/2
. As the wave number increases towards kD , the phase velocity

decreases from large values down towards (u
2

)

m
. Consequently for wave

numbers of the order of kD the wave travels with a small enough velocity that

there are appreciable numbers of electrons traveling somewhat faster than, or

slower than, or at about the same speed as, the wave. The phase velocity lies in

the tail of the thermal distribution. The circumstance that the wave's velocity is

comparable with the electronic thermal velocities is the source of an energy-

transfer mechanism which causes the destruction of the oscillation. The mecha-

nism is the trapping of particles by the moving wave with a resultant transfer of

energy out of the wave motion into the particles. The consequent damping of the

wave is called Landau damping.

A detailed calculation of Landau damping is out of place here. But we can

describe qualitatively the physical mechanism. Figure 10.11 shows a distribution

of electron velocities with a certain rms spread and a Maxwellian tail out to

higher velocities. For small k the phase velocity lies far out on the tail and

negligible damping occurs. But as k —> kD the phase velocity lies within the tail,

as shown in Fig. 10.11, with a significant number of electrons having thermal

speeds comparable to vp . There is then a velocity band Au around v = vp where

electrons are moving sufficiently slowly relative to the wave that they can be

trapped in the potential troughs and carried along at velocity vp by the wave. If

there are more particles in Au moving initially slower than vp than there are

particles moving faster (as shown in the figure), the trapping process will cause a
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net increase in the energy of the particles at the expense of the wave. This is the

mechanism of Landau damping. Detailed calculations show that the damping
can be expressed in terms of an imaginary part of the frequency given by

provided k«kD . To obtain (10.93) a Maxwellian distribution of velocities was

assumed. For ks:kD the damping constant is larger than given by (10.93) and

rapidly becomes much larger than the real part of the frequency, as given by

The Landau formula (10.93) shows that for k«kD the longitudinal plasma

oscillations are virtually undamped. But the damping becomes important as soon

as k~kD (even for k = 0.5kD , Im co — —0.7cop ). For wave numbers larger than the

Debye wave number the damping is so great that it is meaningless to speak of

organized oscillations.

Another, rather different consideration leads to the same limiting Debye wave

number as the boundary of collective oscillatory effects. We know that an

electronic plasma is a collection of electrons with a uniform background of

positive charge. On a very small scale of length we must describe the behavior in

terms of a succession of very many two-body Coulomb collisions. But on a larger

scale the electrons tend to cooperate. If a local surplus of positive charge appears

anywhere, the electrons rush over to neutralize it. This collective response to

charge fluctuations is what gives rise to large-scale plasma oscillations. But in

addition to, or, better, because of, the collective oscillations the cooperative

response of the electrons also tends to reduce the long-range nature of the

Columb interaction between particles. An individual electron is, after all, a local

fluctuation in the charge density. The surrounding electrons are repelled in such

a way that they tend to screen out the Coulomb field of the chosen electron,

turning it into a short-range interaction. That something like this must occur is

obvious when one realizes that the only source of electrostatic interaction is the

Coulomb force between the particles. If some of it is effectively taken away to

cause long-wavelength collective plasma oscillations, the residue must be a sum
of short-range interactions between particles.

A nonrigorous derivation of the screening effect described above was first

given by Debye and Hiickel in their theory of electrolytes. The basic argument is

as follows. Suppose that we have a plasma with a distribution of electrons in

thermal equilibrium in an electrostatic potential <£. Then they are distributed

according to the Boltzmann factor e~
H/KT

where H is the electronic Hamiltonian.

The spatial density of electrons is therefore

(10.93)

(10.83).

n(x) = n e
— (e<t>/KT)

(10.94)

Now we imagine a test charge Ze placed at the origin in this distribution of
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electrons with its uniform background of positive ions (charge density —en ). The

resulting potential 4> will be determined by the Poisson equation

V2
<D = -47rZeS(x)-477en [e-

(e<I>/KT)
-l] (10.95)

If (e<t>/KT) is assumed small, the equation can be linearized:

V2<D-kD
2
d>--47rZe8(x)

where

, 2 _ 47rHoe
2

kD -
KT

is an alternative way of writing (10.91). Equation (10.96) has the spherically

symmetric solution:

<D(r) =Ze^ (10.98)

showing that the electrons move in such a way as to screen out the Coulomb field

of a test charge in a distance of the order of kD
_1

. The balance between

thermal kinetic energy and electrostatic energy determines the magnitude

of the screening radius. Numerically

kD
- 1 = 6.9l(^y

2

cm (10.99)

where T is in degrees Kelvin, and n is the number of electrons per cubic

centimeter. For a typical hot plasma with T = 10
6 °K and n = 10

15 cm-3
, we find

kD
_1= 2.2xlO" 4

cm.

For the degenerate electron gas at low temperatures the Debye wave number
fcD is replaced by a Fermi wave number kF :

fcF~|£ (10.100)
Vf

where VF is the velocity at the surface of the Fermi sphere. This magnitude of

screening radius can be deduced from a Fermi-Thomas generalization of the

Debye-Hiickel approach. It fits in naturally with the dispersion relation (10.83)

and the mean square velocity (10.84).

The Debye-Hiickel screening distance provides a natural dividing line be-

tween the small-scale collisions of pairs of particles and the large-scale collective

effects such as plasma oscillations. It is a happy and not fortuitous happening

that plasma oscillations of shorter wavelengths can independently be shown not

to exist because of severe damping.
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can be found variously in

Alfven and Falthammar, «

Hess,

Rossi and Olbert.

Controlled thermonuclear reactions are discussed, as of 1960, in

Glasstone and Lovberg,

Rose and Clark.

A more recent brief account is
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PROBLEMS

10.1 An infinitely long, solid, right circular, metallic cylinder has radius (R/2) and
conductivity o\ It is tightly surrounded by, but insulated from, a hollow cylinder of the

same material of inner radius (R/2) and outer radius R. Equal and opposite total

currents, distributed uniformly over the cross-sectional areas, flow in the inner

cylinder and in the hollow outer one. At t = the applied voltages are short-circuited.

(a) Find the distribution of magnetic induction inside the cylinders before t = 0.

(b) Find the distribution as a function of time after t = 0, neglecting the displacement

current.

(c) What is the behavior of the magnetic induction as a function of time for long

times? Define what you mean by long times.
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10.2 A comparatively stable self-pinched column of plasma can be produced by

trapping an axial magnetic induction inside the plasma before the pinch begins.

Suppose that the plasma column initially fills a conducting tube of radius Ro and that a

uniform axial magnetic induction Bz0 is present in the tube. Then a voltage is applied

along the tube so that the axial currents flow and an azimuthal magnetic induction is

built up.

(a) Show that, if quasi-equilibrium conditions apply, the pressure-balance relation can

be written:

(b) If the plasma has a sharp boundary and such a large conductivity that currents flow

only in a thin layer on the surface, show that for a quasi-static situation the radius R(t)

of the plasma column is given by the equation

f in (fKJ>)d'

where

__ Bz0JRo
to " cE

and E f(t) is the applied electric field.

(c) If the initial axial field is 100 gauss, and the applied electric field has an initial value

of 1 volt/cm and falls almost linearly to zero in 1 millisecond, determine the final

radius if the initial radius is 50 cm. These conditions are of the same order of

magnitude as those appropriate for the British toroidal apparatus (Zeta), but external

inductive effects limit the pinching effect to less than the value found here. See E. P.

Butt et al, Proceedings of the Second International Conference on Peaceful Uses of

Atomic Energy, Vol. 32, p. 42 (1958).

10.3 Magnetohydrodynamic waves can occur in a compressible, nonviscous, perfectly

conducting fluid in a uniform static magnetic induction B . If the propagation direction

is not parallel or perpendicular to B , the waves are not separated into purely

longitudinal (magnetosonic) or transverse (Alfven) waves. Let the angle between the

propagation direction k and the field B be 0.

(a) Show that there are three different waves with phase velocities given by

Wi
2 = (uA cos 0)

2

ul3 = Ks
2+vA

2

)±K(s
2+vA

2

)

2-4s 2
vA

2
cos

2
e]

1/2

where s is the sound velocity in the fluid, and uA = (B
2
/47rp )

1/2
is the Alfven velocity.

(b) Find the velocity eigenvectors for the three different waves, and prove that the first

(Alfven) wave is always transverse, while the other two are neither longitudinal nor

transverse.

(c) Evaluate the phase velocities and eigenvectors of the mixed waves in the

approximation that vA »s. Show that for one wave the only appreciable component of

velocity is parallel to the magnetic field, while for the other the only component is

perpendicular to the field and in the plane containing k and B .

10.4 An incompressible, nonviscous, perfectly conducting fluid with constant density p
is acted upon by a gravitational potential i// and a uniform, static magnetic induction

Bo

(a) Show that magnetohydrodynamic waves of arbitrary amplitude and form Bj(x, t),
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v(x, t) can exist, described by the equations

, dBi
(B -V)B1 -±V4irpo—

at

Bx= ±V47Tp V

,
(Bo+BO 2

p+

p

if/ H 3 = constant

(b) Suppose that at t = a certain disturbance Bi(x, 0) exists in the fluid such that it

satisfies the above equations with the upper sign. What is the behavior of the

disturbance at later times?

10.5 The force equation for an electronic plasma, including a phenomenological

collision term, but neglecting the hydrostatic pressure (zero temperature approxima-

tion) is

+(v V)v=—(e+-xbY
m\ c /

where v is the collision frequency.

(a) Show that in the presence of static, uniform, external, electric and magnetic fields,

the linearized steady-state expression for Ohm's law becomes

i

where the conductivity tensor is

/' V

1

;

and o>p (a)B ) is the electronic plasma (precession) frequency. The direction of B is

chosen as the z axis.

(b) Suppose that at t = an external electric field E is suddenly applied in the x

direction, there being a magnetic induction B in the z direction. The current is zero at

t = 0. Find expressions for the components of the current at all times, including the

transient behavior.

10.6 The effects of finite temperature on a plasma can be described approximately by

means of the correlationless Boltzmann (Vlasov) equation. Let /(x, v, t) be the

distribution function for electrons of charge e and mass m in a one-component plasma.

The Vlasov equation is

^^+ v .Vx/+a-Vuf=0
dt dt

J J

where V x and V„ are gradients with respect to coordinate and velocity, and a is the

acceleration of a particle. For electrostatic oscillations of the plasma a = eE/m, where
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E is the macroscopic electric field satisfying

V E = 4ireQ /(x, v, t) d'v-rio

If /o(v) is the normalized equilibrium distribution of electrons

noj/ (v) d
3
u=rioj

(a) show that the dispersion relation for small-amplitude longitudinal plasma oscilla-

tions is

a>p J k • v — co

(b) assuming that the phase velocity of the wave is large compared to thermal

velocities, show that the dispersion relation gives

4=1+2 2lh>+3<*^>+ ...
(Op (0(0

where < > means averaged over the equilibrium distribution / (v). Relate this result to

that obtained in the text with the electronic fluid model.

(c) What is the meaning of the singularity in the dispersion relation when k • v = (o?

10.7 Consider the problem of waves in an electronic plasma when an external magnetic

field B is present. Use the fluid model, neglecting the pressure term as well as

collisions.

(a) Write down the linearized equations of motion and Maxwell equations, assuming

all variables vary as exp (ik • x-i(or).

(b) Show that the dispersion relation for the frequencies of the different modes in

terms of the wave number can be written

0*\u 2
-0Jp

2
)(w

2
-G>p

2-k 2Cy = (OB\(D
2-k 2

C
2)[^^

where b is a unit vector in the direction of B
;
co

p
and (oB are the plasma and precession

frequencies, respectively.

(c) Show that for propagation parallel to B the dielectric constant (7.67) is recovered.

(d) Assuming (oB «(op , solve approximately for the various roots for the cases (i) k
parallel to b, (ii) k perpendicular to b. Sketch your results for (o

2
versus k

2
in the two

cases.

10.8 The dipole magnetic field of the earth is distorted by the "solar wind," a streaming

interplanetary plasma consisting mostly of protons from the sun. At the earth's orbit

the solar wind has a density of roughly 10 protons/cm 3

, with particle velocities of the

order of 400 km/sec and an associated magnetic field of magnitude (3-7) x 10
s
gauss,

these values being typical of a quiet sun.

(a) Calculate the kinetic particle pressure of the solar wind and find the distance

(measured in earth radii) from the center of the earth in the magnetic equatorial plane

at which the magnetic pressure of the earth's field is equal to the particle pressure.

Assume that at the surface of the earth the equatorial magnetic field is 0.31 gauss. The
distance where the pressures are equal marks the region where the solar wind contains

and deflects the earth's magnetic field lines. Is the solar wind's own magnetic pressure

important?



502 Classical Electrodynamics Prob. 10

(b) Estimate the speed of sound (10.49) and the Alfven speed (10.55) at the critical

radius of part (a) using the earth's magnetic field there. If the particle speeds are of the

order of or greater than these speeds, something like a shock phenomenon occurs at

the interface. This is the cause of the "bow shock" front that is the boundary of the

magnetosphere on the day side of the earth. [For details consult the papers of a

symposium in Reviews of Geophysics, 7, Nos. 1 and 2, (1969)].



11
Special Theory of
Relativity

The special theory of relativity has, since its publication by Einstein in 1905,

become a commonplace in physics, as taken for granted as Newton's laws of

classical mechanics, the Maxwell equations of electromagnetism, or the

Schrodinger equation of quantum mechanics. Daily it is employed by scientists

in their consideration of precise atomic phenomena, in nuclear physics, and

above all in high-energy physics.

The origins of the special theory of relativity lie in electromagnetism. In fact,

one can say that the development of the Maxwell equations with the unification

of electricity and magnetism and optics forced special relativity on us. Lorentz

above all laid the groundwork with his studies of electrodynamics from 1890

onwards. Poincare made important contributions, but it fell to Einstein to make
the crucial generalization to all physical phenomena, not just electrodynamics,

and to stress the far-reaching consequences of the second postulate. The special

theory of relativity is now believed to apply to all forms of interaction except

large-scale gravitational phenomena. It serves as a touchstone in modern physics

for the possible forms of interaction between fundamental particles. Only

theories consistent with special relativity need be considered. This often severely

limits the possibilities.

The experimental basis and the historical development of the special theory of

relativity, as well as many of its elementary consequences, are discussed in many
places. A list of books and articles is given at the end of the chapter. We content

ourselves with a summary of the key points and some examples of recent and

definitive experimental confirmations. Then the basic kinematic results are

summarized, including coordinate transformations, proper time and time dilata-

tion, the relativistic Doppler shift, and the addition of velocities. The relativistic

energy and momentum of a particle are derived from general principles,

independent of the force equation. Then the idea of the Lorentz group and its

mathematical description is presented and a specific representation in terms of

4x4 matrices is given. The important phenomenon of Thomas precession is then

503
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discussed. The experimental basis for the invariance of electric charge, the

covariance of electrodynamics, and the explicit transformation properties of

electric and magnetic fields follow. The chapter concludes with a treatment of

the relativistic equations of motion for spin and a remark on the notation and

conventions of relativistic kinematics.

11.1 The Situation before 1900, Einstein's Two Postulates

In the 40 years before 1900 electromagnetism and optics were correlated and

explained in triumphal fashion by the wave theory based on the Maxwell

equations. Since previous experience with wave motion had always involved a

medium for the propagation of waves, it was natural for physicists to assume that

light needed a medium through which to propagate. In view of the known facts

about light, it was necessary to assume that this medium, called the ether,

permeated all space, was of negligible density, and had negligible interaction

with matter. It existed solely as a vehicle for the propagation of electromagnetic

waves.

The hypothesis of an ether set electromagnetic phenomena apart from the rest

of physics. For a long time it had been known that the laws of mechanics were

the same in different coordinate systems moving uniformly relative to one

another. We say that the laws of mechanics are invariant under Galilean

transformations. To emphasize the distinction between classical mechanics and

electromagnetism let us consider explicitly the question of Galilean relativity for

each. For two reference frames K and K' with coordinates (x, y, z, t) and

(x\ y', z', i'), respectively, and moving with relative velocity v, the space and time

coordinates in the two frames are related according to Galilean relativity by

x' = x-vt
(11.1)

t =t

provided the origins in space and time are chosen suitably. As an example of a

mechanical system, consider a group of particles interacting via two-body central

potentials. In an obvious notation the equation of motion of the ith particle in

the reference frame K' is

m.Jr=-V;S VM(|x!-xJ|) (11.2)

From the connections (11.1) between the coordinates in K and K' it is evident

that v[ = Vi-v, V' = Vi, dyjdt' = d\Jdt, and x(-xJ = Xi-x,-. Thus (11.2) can be

transformed into

m^=-V,I ViXIxi-x,!) (11.3)

namely Newton's equation of motion in the reference frame K.
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The preservation of the form of the equations of classical mechanics under the

transformation (11.1) is in contrast to the change in form of the equations

governing wave phenomena. Suppose that a field i|/(x', t') satisfies the wave

equation,

in the reference frame K'. By straightforward use of (11.1) it is found that in

terms of the coordinates in the reference frame K the wave equation (11.4)

becomes

(V
2-^^-^v V^-^v • Vv - v)«^ = (11.5)

\ C dt C dt C I

The form of the wave equation is not invariant under Galilean transformations.

Furthermore, no kinematic transformation of ifj can restore to (11.5) the

appearance of (11.4).* For sound waves the lack of invariance under Galilean

transformations is quite acceptable. The wind throws our voices. Sound waves

are compressions and rarefactions in the air or in other materials, and the

preferred reference frame K' in which (11.4) is valid is obviously the frame in

which the transmitting medium is at rest.

So it also appeared for electromagnet^sm. The vital difference is this. Sound

waves and similar wave phenomena are consequences of Galilean classical

mechanics. The existence of preferred reference frames where the phenomena
are simple is well understood in terms of the bulk motions of the media of

propagation. For electromagnetic disturbances, on the other hand, the medium
seemed truly ethereal with no manifestation or purpose other than to support

the propagation.

When Einstein began to think about these matters there existed several

possibilities:

1. The Maxwell equations were incorrect. The proper theory of electromag-

netism was invariant under Galilean transformations.

2. Galilean relativity applied to classical mechanics, but electromagnetism

had a preferred reference frame, the frame in which the luminiferous ether

was at rest.

* The reader might wish to ponder the differences between the wave equation and
the Schrodinger equation under Galilean transformations. If in K' the Schrodinger

equation reads

2m dt

then in K the equation has the same form for the wave function \\t provided V is a

Galilean invariant and ip = ,j,'e
t(m/*)T'*~i(m,,2/2*)t

. The Schrodinger equation is invariant under
Galilean transformations.



506 Classical Electrodynamics Sect. 11.1

3. There existed a relativity principle for both classical mechanics and

electromagnetism, but it was not Galilean relativity. This would imply that

the laws of mechanics were in need of modification.

The first possibility was hardly viable. The amazing successes of the Maxwell

theory at the hands of Hertz, Lorentz, and others made it doubtful that the

equations of electromagnetism were in serious error. The second alternative was

accepted by most physicists of the time. Efforts to observe motion of the earth

and its laboratories relative to the rest frame of the ether, for example, the

Michelson-Morley experiment, had failed. But for this important experiment at

least, the null result could be explained by the FitzGerald-Lorentz contraction

hypothesis (1892) whereby objects moving at a velocity v through the ether are

contracted in the direction of motion according to the formula,

This rather unusual hypothesis apparently lies outside electromagnetism since it

applies to bulk matter, but Lorentz later argued that it was rooted in elec-

trodynamics. He and Poincare showed that the Maxwell equations are invariant

in form under what are known as Lorentz transformations (see Section 11.9) and

that the contraction (11.6) held for moving charge densities, etc. in elec-

trodynamics. With the idea that matter is electromagnetic in nature (the

discovery of the electron encouraged this hypothesis) it is plausible to assume

that (11.6) holds for macroscopic aggregates of electrons and atoms. Lorentz

thus saved the ether hypothesis from contradiction with the Michelson-Morley

experiment.

Other experiments caused embarrassment to the ether idea. Fizeau's famous

experiments (1851, 1853) and later similar experiments by Michelson and

Morley (1886) on the velocity of light in moving fluids could be understood only

if one supposed that the ether was dragged along partially by the moving fluid,

with the effectiveness of the medium in dragging the ether related to its index of

refraction!

For Einstein it apparently was the implausibility of the explanation of the

Fizeau observations, more than anything else, that convinced him of the

unacceptability of the hypothesis of an ether. He chose the third alternative

above and sought principles of relativity that would encompass classical

mechanics, electrodynamics, and indeed all natural phenomena. Einstein's

special theory of relativity is based on two postulates:

1. POSTULATE OF RELATIVITY
The laws of nature and the results of all experiments performed in a given

frame of reference are independent of the translational motion of the

system as a whole. More precisely, there exists a triply infinite set of

(11.6)

alan
Underline
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equivalent Euclidean reference frames moving with constant velocities in

rectilinear paths relative to one another in which all physical phenomena

occur in an identical manner.

For brevity these equivalent coordinate systems are called inertial reference

frames. The postulate of relativity, phrased here more or less as by Poincare, is

consistent with all our experience in mechanics where only relative motion

between bodies is relevant, and has been an explicit hypothesis in mechanics

since the days of Copernicus, if not before. It is also consistent with the

Michelson-Morley experiment and makes meaningless the question of detecting

motion relative to the ether.

2. POSTULATE OF THE CONSTANCY OF THE
SPEED OF LIGHT
The speed of light is independent of the motion of its source.

This postulate, untested when Einstein proposed it (and only verified decisively

in recent years), is simplicity itself. Yet it forces on us such a radical rethinking of

our ideas about space and time that it was resisted for many years.

The history of the special theory of relativity and its gradual establishment

through experiments is dealt with in an extensive literature. Some references are

given at the end of the chapter. Of particular note is the "Resource Letter on

Relativity" published in the American Journal of Physics, Vol. 30, p. 462 (1962).

This article contains references to books and journal articles on the history,

experimental verification, and laboratory demonstrations on all aspects of

special relativity.

In passing we remark that Einstein's postulates require modification of the

laws of mechanics for high-speed motions. There was no evidence at the time

indicating a failure of Galilean relativity for mechanics. This is basically because

relativistic particles and their dynamics were unknown until the discovery of beta

rays around 1900. Poincare had speculated that the speed of light might be a

limiting speed for material particles, but Einstein's special theory of relativity

originated from his desire to treat all physical phenomena in the same way rather

than from any need to "fix up" classical mechanics. The consequences of the

special theory for mechanical concepts like momentum and energy are discussed

in Section 11.5.

11.2 Some Recent Experiments

Although we appeal to the reader's prior knowledge and the existence of many
books on the special theory of relativity in order to omit discussion of the

standard material, there are two experiments worthy of note. One concerns the
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first postulate, namely the search for an "ether drift" (evidence of motion of the

laboratory relative to the ether) and the other the second postulate.

(a) Ether Drift

The null result of the Michelson-Morley experiment (1887) established that

the velocity of the earth through the presumed ether was less than one-third of

its orbital speed of approximately 3xl04
m/sec. The experiment has been

repeated many times with various modifications, always with no firm evidence of

motion relative to the ether. A summary of all available evidence has been given

by Shankland et al., Rev. Mod. Phys. 27, 167 (1955).

As already noted, these null results can be explained without abandoning the

concept of an ether by the hypothesis of the FitzGerald-Lorentz contraction. The
discovery by Mossbauer (1958) of "recoilless" emission or absorption of gamma
rays (called the Mossbauer effect) allows comparison of frequencies to astound-

ing precision and gives the possibility of very accurate ether drift experiments

based on the Doppler shift. In the Mossbauer effect the recoil momentum from

the emission or absorption of a gamma ray is taken up by the whole solid rather

than by the emitting or absorbing nucleus. This means that the energy of recoil is

totally negligible. A gamma ray is emitted with the full energy E of the nuclear

transition, not the reduced energy E—E —E 2l2Mc 2
, where M is the mass of the

recoiling nucleus, resulting from the recoil. Furthermore, with such recoilless

transitions there are no thermal Doppler shifts. The gamma ray line thus

approaches its natural shape with no broadening or shift in frequency. By
employing an absorber containing the same material as the emitter, nuclear

resonance absorption can be studied or used as an instrument for the study of

extremely small changes of frequency.

To understand the principle of an ether drift experiment based on the

Mossbauer effect, we need to recall the classic results of the Doppler shift. The

phase of a plane wave is an invariant quantity, the same in all coordinate frames.

This is because the elapsed phase of a wave is proportional to the number of

wave crests that have passed the observer. Since this is merely a counting

operation, it must be independent of coordinate frame. If there is a plane

electromagnetic wave in vacuum its phase as observed in the inertial frames K
and K', connected by the Galilean coordinate transformation (11.1), is

If t and x are expressed in terms of t' and x' from (11.1), we obtain

f ,( A n • v\ n-x'l ,/ . n' • x'\

)-—H(<-—

)

Since this equality must hold for all t' and x' it is necessary that the coefficients of
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t\ x[, X2, X3 on both sides be separately equal. We therefore find

n = n' -\

o/=a>(l-^)j (11.8)

c' = c — n v J

These are the standard Doppler shift formulas of Galilean relativity.

The unit wave normal n is seen from (11.8) to be an invariant, the same in all

inertial frames. The direction of energy flow changes, however, from frame to

frame. To see this consider the segments of a plane wave sketched in Fig. 11.1.

The segments can be thought of as schematic representations of wave packets.

At t=t' = the center of the segment is at the point A in both K and K'. If

inertial frame K is the preferred reference frame (ether at rest) the wave packet

moves in the direction n, arriving after one unit of time at the point B in frame

K

K'

Fig. 11.1
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K. The distance AB is equal to c. In frame K' the center of the wave packet

arrives at the point B' after one unit of time. Because of the Galilean

transformation of coordinates (11.1) the point B' differs from 6 by a vectorial

amount -v, as indicated in the bottom half of Fig. 11.1. The direction of motion

of the wave packet, assumed to be the direction of energy flow, is thus not

parallel to n in K', but along a unit vector m shown in Fig. 11.1 and specified by

Since the experiments involve photon propagation in the laboratory, it is

convenient to have the Doppler formulas (11.8) expressed in terms of the m
appropriate to the laboratory rather than n. It is sufficient to have n in terms of m
correct to first order in vie. From (11.9) we find

where v is the velocity of the laboratory relative to the ether rest frame.

Consider now a plane wave whose frequency is o> in the ether rest frame, a> in

the laboratory, and wi in an inertial frame Ki moving with a velocity Vi = Ui+v
relative to the ether rest frame. From (11.8) the observed frequencies are

If wi is expressed in terms of the laboratory frequency cu and the wave normal n

is eliminated by means of (11.10), the result, correct to order v
2
/c

2
, is easily

shown to be

where Ui is the velocity of the frame Ki relative to the laboratory, m is the

direction of energy propagation in the laboratory, co is the frequency of the

wave in the laboratory, and v is the velocity of the laboratory with respect to the

ether.

Equation (11.11) forms the basis of the analysis of the Mossbauer ether drift

experiments. It is a consequence of the validity of the wave equation in the ether

rest frame and Galilean relativity to transform to other inertial frames. Since it

involves v , it obviously predicts an ether drift effect. Consider two Mossbauer

systems, one an emitter and the other an absorber, moving with velocities Ui and

u2 in the laboratory. From (11.11) the difference in frequency between emitter

and absorber is

(11.10)

(11.11)
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Fig. 11.2

If the emitter and absorber are located on the opposite ends of a rod of length

2R that is rotated about its center with angular velocity ft, as indicated in Fig.

11.2, then (u2— Ui) -ni = and the fractional frequency difference is

^^ = ^sinftf|(vo)x| (11.12)
(t)o C

where (v )± is the component of v perpendicular to the axis of rotation.

A resonant absorption experiment of this type was performed in 1963 in

Birmingham.* The Mossbauer line was the 14.4 keV gamma ray in
57
Fe,

following the
+
decay of

57
Co. The isotope

57Fe is stable and occurs with a

natural abundance of 2.2 per cent; the absorber was made with iron enriched to

52 per cent in
57
Fe. The cobalt source was emplanted in

56
Fe. The emitter and

absorber foils were located as in Fig. 11.2 with R^4 cm. The observed fractional

width of the Mossbauer line was Aw/w- 2x 1CT
12

. Counters fixed in the

laboratory and located symmetrically along a diameter of the circle in the plane

of the source and absorber recorded the gamma rays transmitted through the

absorber. Two rotational speeds, ftL = 1257 sec
-1

and ftH = 7728 sec
-1

, were

alternated during each four-hour cycle that data were taken and a diurnal effect

connected to the earth's rotation was sought. From (11.12) it can be seen that

with ft— 6000 sec
-1

and R=4cm, an ether drift velocity of 200 m/sec would

produce a total change of frequency of the magnitude of the Mossbauer line

width. The data showed no diurnal change in transmission to an accuracy of one

or two per cent. The authors conclude that the magnitude of the component of v

past the earth in a plane perpendicular to the earth's axis of rotation is

|(v )jl| = 1.6±2.8 m/sec, a null result. An improved experiment along the same

lines in 1970 gave a limit of 5 cm/sec (see Isaak, op. cit).

* D. C. Champeney, G. R. Isaak, and A. M. Khan, Phys. Letters 7, 241 (1963).

See also G. R. Isaak, Phys. Bull 21, 255 (1970).
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A conceptually similar experiment was performed in 1958 using ammonia
masers.* The ammonia molecules have a well-defined direction and nonzero

speeds when they enter the maser cavity. According to (11.11) there is therefore

a shift in the frequency. If the frequencies of two masers whose ammonia
molecules travel in opposite directions are compared, there should be an

observable beat frequency. Furthermore, if the two masers are rotated together

through 180°, the beat frequency should change by Aco/w = 4 |umo i
• v |/c

2
. The

null result of this experiment set the component of ether drift velocity at less

than 30 m/sec.

These two Doppler shift experiments set observable ether drift speed limits

6000 and 1000 times smaller than the speed of the earth in its orbit and make it

quite implausible that we can ever detect any motion relative to some
"absolute" reference frame.

(b) Speed of Light from a Moving Source

The second postulate of Einstein, that the speed of light is independent of the

motion of the source, destroys the concept of time as a universal variable

independent of the spatial coordinates. Because this was a revolutionary and

unpalatable idea, many attempts were made to invent theories that would

explain all the observed facts without this assumption. The most notable and

resilient scheme was Ritz's version of electrodynamics (1908-1911). Ritz kept

the two homogeneous Maxwell equations intact, but modified the equations

involving the sources in such a way that the speed of light was equal to c only

when measured relative to the source. The Ritz theory is in accord with

observation for the aberration of star positions, the Fizeau experiments, and the

original Michelson-Morley experiment. It is customary, however, to cite

Michelson-Morley experiments performed with extraterrestrial light sources

(sun or star light) and light from binary stars as establishing the second postulate

and ruling out Ritz's theory.

It seems clear that most of the early evidence for the second postulate is

invalid because of the interaction of the radiation with the matter through which

it passes before detection. t The phenomenon is encapsuled mathematically in

the extinction theorem of Ewald (1912) and Oseen (1915). The theorem (see

Born and Wolf, pp. 100 ff or Rosenfeld, pp. 105 ff) states that if an incident

electromagnetic wave traveling with a speed c appropriate to vacuum enters a

dispersive medium, its fields are cancelled by part of the fields of the induced

* C. J. Cedarholm, G. F. Bland, B. L. Havens, and C. H. Townes, Phys. Rev.

Letters 1, 342 (1958). See also T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, Phys.

Rev. 133, A1221 (1964).

t See the papers of criticism by J. G. Fox, Am. J. Phys. 30, 297 (1962), Am. J.

Phys. 33, 1 (1965), J. Opt. Soc. 57, 967 (1967). The second paper cited is a detailed

discussion of Ritz's emission theory and a critique of the various arguments against it. See

also T. Alvager, A. Nilsson, and J. Kjellman, Arkiv f. Fys. 26, 209 (1963).
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dipoles (macroscopically by the polarization P) and replaced by another wave

propagating with a phase velocity characteristic of the medium. The incident

wave is extinguished by interference and replaced by another. The mathematical

analysis shows that for harmonic time dependence the cancellation of the incident

vacuum fields inside the medium is caused by the dipoles on the boundary of the

medium. For the physical circumstance of a wave train arriving at the boundary

and beginning to propagate in the medium it is plausible that the extinction of

the incident wave and its replacement by a wave appropriate to the medium
occurs over a finite distance X. Furthermore, X must be of the order of the

distance required for the vacuum wave and the medium wave to get significantly

out of phase because of their different phase velocities. Since the phase

difference at frequency o> is A<f) = o)(n- l)x/c, where n is the index of refraction,

we define the extinction theorem distance X to be

where A is the free-space wavelength. The reader should note carefully that X is

not the extinction or attenuation coefficient (or its reciprocal) of (9.113). Here

we are concerned with phase, not absorption.

For orientation, we note that for glasses (n— 1.5) and visible light (A —
6000 A), X-2xl0" 5

cm. For air at N T.P. (n- l = 2.8x 10"4
) and the same

wavelength, X— 0.04 cm. For more energetic photons (from above the K-shell

binding energy to several MeV gammas) the index of refraction can be

approximated by

2tt Ne 2

k
2

' mc :
n—\— rr

where N is the total number of electrons per unit volume. With this approxima-

tion for n, the extinction distance is

X-(AroN)- 1

where r = e
2
/mc

2 = 2.82 x 10~ 13 cm is the classical electron radius [and the

negative of the forward (Thomson) scattering amplitude]. With a 1 MeV gamma
ray in air at N.T.P., for example, we find X— 73 cm. Of relevance for astronomi-

cal situations is the estimate X— 0.06N" 1

light years for visible light. Studies of

the dispersion of pulsar radiation indicate that in interstellar space (N)—
0.03 cm-3

and, hence the conclusion that for the propagation of visible light

through the galaxy X~2 light years.

From the various estimates of X it can be seen that whatever the speed of light

as it leaves its source an intervening medium can easily replace it with a

disturbance of the same frequency but moving with a phase velocity characteris-

tic of the medium at rest. Observers at rest relative to the medium will then

measure a speed of light equal to c, after corrections for the optical properties of
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the medium. The motion of the source and the speed of light relative to it are

irrelevant. As discussed in detail by Fox (op. cit.), essentially all of the older

evidence and many recent experiments concerning the second postulate are

vitiated by the consequences of the extinction theorem.

There are, however, some recent experiments that do not suffer from the

criticism of Fox. The most definitive is a beautiful experiment performed at

CERN, Geneva, Switzerland in 1964.* The speed of 6 GeV photons produced in

the decay of very energetic neutral pions was measured by time of flight over

paths up to 80 meters. The pions were produced by bombardment of a beryllium

target by 19.2 GeV protons and had speeds (inferred from measured speeds of

charged pions produced in the same bombardment) of 0.99975c. The timing was

done by utilizing the r-f structure of the beam. Within experimental error it was

found that the speed of the photons emitted by the extremely rapidly moving

source was equal to c. If the observed speed is written as c' = c+ ku, where v is

the speed of the source, the experiment showed k = (0±1.3)x 10"4
. The appro-

priate value of X for 6 GeV photons is not totally clear, but it is obviously

considerably larger than 100 meters (the simple formula given above yields

X=5xl0 3
meters).

The CERN experiment establishes conclusively and on a laboratory scale the

validity of the second postulate of the special theory of relativity.

(c) Frequency Dependence of the Speed of Light in Vacuum
The speed of light is known to an accuracy of a few parts in 10

9
from

measurements at infrared frequencies and lesser accuracy at higher frequencies.

One can ask whether there is any evidence for a frequency dependence of the

speed of electromagnetic waves in vacuum. One possible source of variation is

attributable to a photon mass. The group velocity in this case is

where the photon rest energy is ha) . As discussed in the Introduction, the mere

existence of normal modes in the earth-ionosphere resonant cavity sets a limit of

o) <10c/R where R is the radius of the earth. From radio frequencies (o>~

10
8
sec

-1
) to (x> — the change in velocity of propagation from a photon mass is

therefore less than Ac/c— 10
-10

.

Another source of frequency variation in the speed of light is dispersion of the

vacuum, a concept lying outside special relativity but occurring in models with a

discrete space-time. The discovery of pulsars make it possible to test this idea

with high precision. Pulsar observations cover at least 13 decades of frequency,

with any one observing apparatus having a certain "window" in the frequency

* T. Alvager, J. M. Bailey, F. J. M. Farley, J. Kjellman, and I. Wallin, Phys. Letters

12, 260 (1964) and Arkiv f. Fys. 31, 145 (1965).
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spectrum. The quite small time duration of the pulse from some pulsars permits

a simple estimate for the upper limit of variation on the speed of light for two

frequencies a>i and o>2 inside the frequency window of each apparatus:

C((i)i)-C((D2)

c

c At

D

where At is the pulse duration and D is the distance from the source to observer.

For the Crab pulsar Np 0532, At^3x 10
3
sec and D==6x 10

3
light years so that

(c At/D)=*1.7x 10" 14
. Various overlapping observations from ~4xl0 8 Hz

through the optical region and up to photon energies of 1 MeV indicate

constancy of the speed at the level of Ac/c < 10
14
by this simple estimation.* For

higher energies, a recent experiment at the Stanford Linear Accelerator!

compared the speed of 7 GeV photons with that of visible light and found

Ac/c< 10"5
. Up to very high energies, then, there is no evidence for dispersion of

the vacuum. The speed of light is a universal constant, independent of frequency.

11.3 Lorentz Transformations and Basic Kinematic Results

of Special Relativity

As is well known, the constancy of the velocity of light, independent of the

motion of the source, gives rise to the relations between space and time

coordinates in different inertial reference frames known as Lorentz transforma-

tions. We derive these results in a more formal manner in Section 11.7, but for

the present summarize the elementary derivation and important consequences,

omitting the details that can be found in the many textbooks on relativity. The
reader who wishes more than a reminder can consult the books listed at the end

of the chapter.

(a) Simple Lorentz Transformation of Coordinates

Consider two inertial reference frames K and K' with a relative velocity v

between them. The time and space coordinates of a point are (t, x, y, z) and

(t', x', y', z') in the frames K and K', respectively. The coordinate axes in the two

frames are parallel and oriented so that the frame K' is moving in the positive z

direction with speed u, as viewed from K. For simplicity, let the origins of the

coordinates in K and K' be coincident at t=t'=0. If a light source at rest at the

origin in K (and so moving with a speed v in the negativez direction, as seen from

K') is flashed on and off rapidly at t=t' = 0, Einstein's second postulate implies

that observers in both, K and K' will see a spherical shell of radiation expanding

outwards from the respective origins with speed c. The wave front reaches a

*J. M. Rawls, Phys. Rev. D5, 487 (1972).

tB. C. Brown et al., Phys. Rev. Letters 30, 763 (1973).
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point (x, y, z) in the frame K at a time t given by the equation,

c¥-(x 2
+y 2+z 2

) = (11.14)

Similarly, in the frame K' the wave front is specified by

cY2
-0c'

2 +y'2+ z'
2

) = (11.14*)

With the assumption that space-time is homogeneous and isotropic, as implied

by the first postulate, the connection between the two sets of coordinates is

linear. The quadratic forms (11.14) and (11.14
1

) are then related by

cY2- (x'
2+ y'

2+ z'
2
) = \

2[c¥- (x
2+ y

2+

z

2

)] (11.15)

where A = A(v) is a possible change of scale between frames. With the choice of

orientation of axes and considerations of the inverse transformation from K' to

K it is straightforward to show that A(u) = 1 for all u and that the time and space

coordinates in K' are related to those in K by the Lorentz transformation

(11.16)

where we have introduced the suggestive notation x = cf, Xi = z, x2 = x, x3 = y and

also the convenient symbols,

p= = lPl
(11.17)

Y = (1-/3T"
2

The inverse Lorentz transformation is

xo = y(xo+0x[)

X2 = X2

X3 = X3

(11.18)

It can be found from (11.16) by direct calculation, but we know from the first

postulate that it must result from (11.16) by interchange of primed and

unprimed variables along with a change in the sign of 0. According to (11.16) or

(11.18) the coordinates perpendicular to the direction of relative motion are

unchanged while the parallel coordinate and the time are transformed. This can

be contrasted with the Galilean transformation (11.1).

Equations (11.16) and (11.17) describe the special circumstance of a Lorentz

transformation from one frame to another moving with velocity v parallel to the
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Xi axis. If the axes in K and K' remain parallel, but the velocity v of the frame K'

in frame K is in an arbitrary direction, the generalization of (11.16) is

Xo=y(x -p • x)

x' =x+^^(0.x)p- 7p

The first equation here follows almost trivially from the first equation in (11.16).

The second appears somewhat complicated, but is really only the sorting out of

components of x and x' parallel and perpendicular to v for separate treatment in

accord with (11.16).

The connection between |8 and 7 given in (11.17) and the ranges 0<|3<1,
1<7<oo allow the alternative parametrization,

|3 = tanh £

and so

7 = cosh £

70 = sinh £

where £ is known as the boost parameter or rapidity. In terms of £ the first two

equations of (11.16) become

Xo = x cosh £— Xi sinh £
(11.21)

x[ = — Xo sinh £+Xi cosh £

The structure of these equations is reminiscent of a rotation of coordinates, but

with hyperbolic functions instead of circular, basically because of the relative

negative sign between the space and time terms in (11.14) [see Section 11.7 and

(11.95)].

(b) Four- Vectors

The Lorentz transformation (11.16), or more generally (11.19), describes the

transformation of the coordinates of a point from one inertial frame to another.

Just as for rotations in three dimensions, the basic transformation law is defined

in terms of the coordinates of a point. In three dimensions we call x a vector and

speak of Xi, x2 , x3 as the components of a vector. We designate by the same name
any three physical quantities that transform under rotations in the same way as

the components of x. It is natural therefore to anticipate that there are numerous
physical quantities that transform under Lorentz transformations in the same
manner as the time and space coordinates of a point. By analogy we speak of

4-vectors. The coordinate 4-vector is (x
, Xi, x2 ,

x3); we designate the compo-
nents of an arbitrary 4-vector similarly as (A

, Ai, A2 ,
A3),* where Ai, A 2 , A 3

* Because we are deferring the explicit algebraic treatment of the Lorentz group
to Section 11.7, we do not write a single symbol for this 4-vector. As written, they are the

components of the contravariant 4-vector A a
.

(11.19)
Xo

(11.20)
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are the components of a 3-vector A. The Lorentz transformation law equivalent

to (11.16) for an arbitrary 4-vector is

A£=7(Ao-p- AS

A{ = y(A||-0Ao) > (11.22)

where the parallel and perpendicular signs indicate components relative to the

velocity v=c(J. The invariance from one inertial frame to another embodied
through the second postulate in (11.15) has its counterpart for any 4-vector in

the invariance,

A&2
-|Af = A 2

-|A|
2

(11.23)

where the components (Ao, A') and (A , A) refer to any two inertial reference

frames. For two 4-vectors (A
,
Au A2 ,

A3) and (B
, Bu B 2 ,

B 3) the "scalar

product" is an invariant, that is,

A'oB'o- A' • B' = AoBo-A • B (11.24)

This result can be verified by explicit construction of the left-hand side, using

(11.22) for the primed components, or using (11.23) for the sum of two

4-vectors. It is the Lorentz transformation analogue of the invariance of A • B
under rotations in three dimensions.

(c) Light Cone, Proper Time, and Time Dilatation

A fruitful concept in special relativity is the idea of the light cone and

"space-like" and "time-like" separations between two events. Consider Fig.

11.3, in which the time axis (actually ct) is vertical and the space axes are

perpendicular to it. For simplicity only one space dimension is shown. At t = a

physical system, say a particle, is at the origin. Because the velocity of light is an

upper bound on all velocities, the space-time domain can be divided into three

regions by a "cone," called the light cone, whose surface is specified by

x
2+ y

2+ z
2 = c

2
t

2
. Light signals emitted at t = from the origin would travel out

the 45° lines in the figure. But any material system has a velocity less than c.

Consequently as time goes on it would trace out a path, called its world line,

inside the upper half-cone, for example, the curve OB. Since the path of the

system lies inside the upper half-cone for times t>0, that region is called the

future. Similarly the lower half-cone is called the past. The system may have

reached O by a path such as AO lying inside the lower half-cone. The shaded

region outside the light cone is called elsewhere. A system at O can never reach

or come from a point in space-time in elsewhere.

The division of space-time into the past-future region (inside the light cone)

and elsewhere (outside the light cone) can be emphasized by considering the

invariant separation or interval s i2 between two events Pi(h, xO and P2 (t2 ,
x2) in
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ct

X

Fig. 11.3 World line of a system and the light cone. The unshaded interior of the cone

represents the past and the future, while the shaded region outside the cone is called

"elsewhere." A point inside (outside) the light cone is said to have a timelike (spacelike)

separation from the origin.

space-time (we are reverting to t and x temporarily to avoid proliferation of

subscripts). The square of the invariant interval is

For any two events Pi and P2 there are three possibilities: (1) Si 2
2
>0, (2) Si 2

2
<0,

(3) Si2
2 = 0. If Si2

2
>0, the events are said to have a timelike separation. It is always

possible to find a Lorentz transformation* to a new coordinate frame K' such

that xI = X2. Then

In the frame K' the two events occur at the same space point, but are separated

in time. Referring to Fig. 11.3, one point can be located at the origin and the

other lies in the past or future. If Si2
2
<0, the events are said to have a spacelike

separation. Now it is possible to find an inertial frame K" where t"=t2. Then

In K" the two events occur at different space points at the same instant of time.

In terms of Fig. 11.3, one event is at the origin, while the other lies in the

elsewhere region. The final possibility, Si 2
2 = 0, implies a lightlike separation. The

events lie on the light cone with respect to each other and can be connected only

by light signals.

The division of the separation of two events in space-time into two classes

—

spacelike separations or timelike separations with the light cone as the boundary
surface between—is a Lorentz invariant one. Two events with a spacelike

* By considering equations (11.16), the reader can verify that there exists a

Lorentz transformation with |3<1 provided s 12
2>0. Explicitly, |p| = |x t —

x

2 |/c |ti—

si2
2 = c

2
((i-r2)

2
-|xi-x2

|

2
(11.25)

s 12
2 = c

2W-t2)
2>0

si2
2 = -|x'1'-x2f<0
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separation in one coordinate system have a spacelike separation in all coordinate

systems. This means that two such events cannot be causally connected. Since

physical interactions propagate from one point to another with velocities no

greater than that of light, only events with timelike separations can be causally

related. An event at the origin in Fig. 11.3 can be influenced causally only by the

events that occur in the past region of the light cone.

Another useful concept is proper time. Consider a system, which for definite-

ness we will think of as a particle, moving with an instantaneous velocity u(r)

relative to some inertial system K. In a time interval dt its position changes by

d\ = udt. From (11.25) the square of the corresponding infinitesimal invariant

interval ds is

where here /3 = u/c. In the coordinate system K' where the system is instantane-

ously at rest the space-time increments are dt'= dr, d\' = 0. Thus the invariant

interval is ds = c dr. The increment of time dr in the instantaneous rest frame of

the system is thus a Lorentz invariant quantity that takes the form,

The time t is called the proper time of the particle or system. It is the time as seen

in the rest frame of the system. From (11.26) it follows that a certain proper time

interval t2— ti will be seen in the frame K as a time interval,

Equation (11.27) or (11.26) expresses the phenomenon known as time

dilatation. A moving clock runs more slowly than a stationary clock. For equal

time intervals in the clock's rest frame, the time intervals observed in the frame

K are greater by a factor y>l. This paradoxical result is verified daily in

high-energy physics laboratories where beams of unstable particles of known
lifetimes t are transported before decay over distances many many times the

upper limit on the Galilean decay distance of ct . For example, at the Fermi

National Accelerator Laboratory charged pions with energies of 200 GeV are

produced and transported 300 meters with less than 3 per cent loss because of

decay. With a lifetime of t = 2.56 x 10" 8
sec, the Galilean decay distance is

CT = 7.7 meters. Without time dilatation, only e
~300n 1 ^ 10~ 17

of the pions would

survive. But at 200 GeV, 7 — 1400 and the mean free path for pion decay is

actually ycro— 11 km!

A careful test of time dilatation under controlled laboratory conditions is

afforded by the study of the decay of mu-mesons orbiting at nearly constant

speed in a magnetic field. Such a test, incidental to another experiment, confirms

ds
2 = c

2
dt

2
-\dx\

2 = c
2
dt

2(l-p 2

)

dr = dtVl z p
2
(t) =-r7 (11.26)

(11.27)
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fully the formula (11.27). [See the review by Bailey and Picasso cited at the end

of Section 11.11.]

A totally different and entertaining experiment on time dilatation has been

performed with macroscopic clocks of the type used as official time standards.*

The motion of the clocks was relative to the earth in commercial aircraft, the

very high precision of the cesium beam atomic clocks compensating for the

relatively small speeds of the jet aircraft. The four clocks were flown around the

world twice, once in an eastward and once in a westward sense. During the

journeys logs were kept of the aircrafts' location and ground speed so that the

integral in (11.27) could be calculated. Before and after each journey the clocks

were compared with identical clocks at the U.S. Naval Observatory. With

allowance for the earth's rotation and the gravitational "red shift" of general

relativity, the average observed and calculated time differences in nanoseconds

are -59±10 and -40±23 for the eastward trip and 273±7 and 275±21 for the

westward. The kinematic effect of special relativity is comparable to the general

relativistic effect. The agreement between observation and calculation estab-

lishes that people who continually fly eastward on jet aircraft age less rapidly

than those of us who stay home, but not by much!

(d) Relativistic Doppler Shift

As has already been remarked in Section 11.2(a), the phase of a wave is an

invariant quantity because the phase can be identified with the mere counting of

wave crests in a wave train, an operation that must be the same in all inertial

frames. In Section 11.2 the Galilean transformation of coordinates (11.1) was

used to obtain the Galilean (nonrelativistic) Doppler shift formulas (11.8). Here

we use the Lorentz transformation of coordinates (11.16) to obtain the

relativistic Doppler shift. Consider a plane wave of frequency o> and wave vector

k in the inertial frame K. In the moving frame K' this wave will have, in general,

a different frequency a/ and wave vector k', but the phase of the wave is an

invariant:

[Parenthetically we remark that because the equations of (11.16) are linear the

plane wave in K with phase
(f>

indeed remains a plane wave in frame K'.] Using

(11.16) and the same arguments as we did in going from (11.7) to (11.8), we find

that the frequency u>' = ck' and wave vector k' are given in terms of o> = ck and k

(/) = (ot— k • x = a)'t' — k' • x' (11.28)

by

ki=7(ko-p-k]>

ki = 7(k„-pk )

kl = k x

> (11.29)

*J. C. Hafele and R. E. Keating, Science 177, 166, 168 (1972).
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The Lorentz transformation of (k
,
k) has exactly the same form as for (x , x).

The frequency and wave number of any plane wave thus form a 4-vector. The
invariance (11.28) of the phase is the invariance of the "scalar product" of two

4-vectors (11.24). This correspondence is, in fact, an alternate path from (11.28)

to the transformation law (11.29).

For light waves, |k| = k
,

|k'| = ko. Then the results (11.29) can be expressed in

the more familiar form of the Doppler shift formulas

w' = 70)(l-8 cos 0)
(11.30)

sin
tan 0'=—; —rr

y(cos 0-0)

where and 0' are the angles of k and k' relative to the direction of v. The
inverse equations are obtained by interchanging primed and unprimed quantities

and reversing the sign of |3.

The first equation in (11.30) is the customary Doppler shift, modified by the

factor of y. Its presence shows that there is a transverse Doppler shift, even when
= tt/2. This relativistic transverse Doppler shift has been observed spectroscop-

ically with atoms in motion (Ives-Stilwell experiment, 1938). It also has been

observed using a precise resonance-absorption Mossbauer experiment, with a

nuclear gamma-ray source on the axis of a rapidly rotating cylinder and the

absorber attached to the circumference of the cylinder.*

11.4 Addition of Velocities, Four-Velocity

The Lorentz transformation (11.16) or (11.18) for coordinates can be used to

obtain the law for addition of velocities. Suppose that there is a moving point P
whose velocity vector u' has spherical coordinates (u', 0', </>') in the inertial frame

K', as shown in Fig. 11.4. The frame K' is moving with velocity v = c0 in the

positive Xi direction with respect to the inertial frame K. We wish to know the

components of the velocity u of the point P as seen from K. From (11.18) the

differential expressions for dx
,
dxu dx2 , dx3 are

dx = yv(dxo+(3 dx[)

dxi = yv(dx'i+pdxd)

dx2 = dx'2

dxi = dx'3

where we have put a subscript on 7 in order to distinguish it below from

yu = (l — u
2
/c

2)~ 1/2 and 7u'=(l ~ u
u
lc

2)~ 1/2
. The velocity components in each frame

* H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev. Letters

4, 165 (1960). See also T. E. Cranshaw in Proceedings of the International School of

Physics, Varenna, Course XX, 1961, Academic Press, New York (1962), p. 208.
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*2

Fig. 11.4 Addition of velocities.

are u\ = c dx'Jdxo and u ;
= c dxjdxo. This means that the components of velocity

transform according to

c
(11.31)

The notation U\\ and ux refers to components of velocity parallel and perpendicu-

lar, respectively, to v. The magnitude of u and its polar angles 0, <$> in the frame K
are easily found. Since U2/U2 = 1*3/1(3, the azimuthal angles in the two frames are

equal. Furthermore,

tan
u' sin 0'

yv (u' cos 0'+ u)

and

l*i 2
, o , Q ,

(u'v sin0'Y
y u +u +2u u cos - ^

J

l+^cos0'
(11.32)

The inverse results for u' in terms of u can be found, as usual, from (11.31) and
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(11.32), by interchanging primed and unprimed quantities and changing the sign

of v.

For speeds u' and v both small compared to c, the velocity addition law

(11.31) reduces to the Galilean result, u = u'+v, but if either speed is comparable

to c modifications appear. It is impossible to obtain a speed greater than that of

light by adding two velocities, even if each is very close to c. For the simple case

of parallel velocities the addition law is

If u' = c, then u = c also. This is an explicit example of Einstein's second

postulate. The reader can check from the second equation in (11.32) that u' = c

implies u = c for nonparallel velocities as well.

The formula for the addition of velocities is in accord with such observational

tests as the Fizeau experiments on the speed of light in moving liquids and the

aberration of star positions from the motion of the earth in orbit.

The structure of (11.31) makes it obvious that the law of transformation of

velocities is not that of 4-vectors, as given by (11.22) and of which (11.16) and

(11.29) are examples. There is, however, a 4-vector closely related to ordinary

velocity. To exhibit this 4-vector we rewrite (11.31). From the second equation

in (H.32) it can be shown directly that the factor (1+v • u'/c
2
) can be expressed

alternatively through

where yv , yu , yu - are the gammas defined by (11.17) for v, u and u', respectively.

When (11.34) is substituted into (11.31) those equations become

Comparison of (11.34) and (11.35) with the inverse of (11.22) suggests that the

jour quantities (yuc, yu ii) transform in the same way as (x
,
x) and so form a

4-vector under Lorentz transformations. These four quantities are called the

time and space components of the 4-velocity (L/ , U).

An alternative approach to the 4-velocity is through the concept of proper

time t. Ordinary velocity u is defined as the time derivative of the coordinate

x(f). The addition law (11.31) for velocities is not a 4-vector transformation law

because time is not invariant under Lorentz transformations. But we have seen

that the proper time r is a Lorentz invariant. We can thus construct a 4-vector

"velocity" by differentiation of the 4-vector (x
,
x) with respect to t instead of t.

(11.34)

JuU\\ = yv(yu >u[\ + vyu)

7"«x = Y«'Ui

(11.35)
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Using (11.26) we have

y j dx dx dt

_ T dx dx dtV
^dT

=
HtdT

= ^n

(11.36)

We show in the next section that the components of 4-velocity of a particle are

proportional to its total energy and momentum.

11.5 Relativistic Momentum and Energy of a Particle

We next consider the relativistic generalizations of the momentum and kinetic

energy of a particle. These can be obtained for charged particles from the

Lorentz force equation and the transformation properties of electromagnetic

fields already established by Lorentz before 1900, but it is useful to give a more

general derivation based only on the laws of conservation of energy and

momentum and on the kinematics of Lorentz transformations. This approach

shows clearly the universality of the relationships, independent of the existence

of electromagnetic interactions for the particle in question.

For a particle with speed small compared to the speed of light its momentum
and energy are known to be

p= mu
, , (11.37)

E = E(Q)+\mu2

where m is the mass of the particle, u is its velocity, and E(0) is a constant

identified as the rest energy of the particle. In nonrelativistic considerations the

rest energies can be ignored; they contribute the same additive constant to both

sides of an energy balance equation. In special relativity, however, the rest

energy cannot be ignored. We will see below that it is the total energy (the sum
of rest energy plus kinetic energy) of a particle that is significant.

We wish to find expressions for the momentum and energy of a particle

consistent with the Lorentz transformation law (11.31) of velocities and reducing

to (11.37) for nonrelativistic motion. The only possible generalizations consist-

ent with the first postulate are

n = M(u)u
(11.38)

E = %{u)

where M(u) and <£(u) are functions of the magnitude of the velocity u.

Comparison with (11.37) yields the limiting values,

M(0) = m

2lm\-m (1L39)

du
2 (U) "2
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We make the reasonable assumption that M(u) and %{u) are well-behaved

monotonic functions of their arguments.

To determine the forms of M(u) and %(u) we consider the elastic collision of

two identical particles and require that conservation of momentum and energy

hold in all equivalent inertial frames, as implied by the first postulate. In

particular, we consider the collision in two frames K and K' connected by a

Lorentz transformation parallel to the z axis. A certain amount of algebra is

unavoidable. To keep it to a minimum, two approaches are open. One is to set

up the velocities and directions of the particles in such a clever way that the

algebra shakes down quickly into an elegant and transparent result. The other is

to pick a straightforward kinematic situation and proceed judiciously. The first

approach lacks motivation. We adopt the second.

Let the inertial frame K' be the "center of mass" frame with the two identical

particles having initial velocities u« = v, u£ = -v along the z axis. The particles

collide and scatter, emerging with final velocities, Uc = v', u'd= \". The various

velocities are indicated in Fig. 11.5. In K' the conservation equations for

momentum and energy read

or, with the forms (11.38),

M(v)v-M(v)\ = M(v')\'+M(v")\"
(11.40)

%{v) + %{v) = %{v') + %{v")

Because the particles are identical it is necessary that %{v') = %(v") and, with the

hypothesis of monotonic behavior of <£(u), that v' = v". The second equation in

(11.40) then demands v' = v"=v. The first equation requires v"= —v\ All four

velocities have the same magnitude with the final velocities equal and opposite,

just as are the initial velocities. This rather obvious state of affairs is shown in the

right-hand diagram of Fig. 11.6 where the scattering angle in K' is denoted by 9'.

We now consider the collision in another inertial frame K moving with a

velocity —v in the z direction with respect to K'. From the transformation

equations (11.31) for velocity it can be seen that particle b is at rest in K while

Fig. 11.5 Initial and final velocity vectors in the frame K' for the collision of two

identical particles.
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K K'

Fig. 11.6 Initial and final velocity vectors in frames K and K' for the collision of two
identical particles. The lengths and angles of the solid lines representing the velocities

correspond to 0' = 3O° and /3
2 = i The dashed lines in K are the results of a Galilean

transformation from K' to K.

particle a is incident along the z axis with a velocity

2v _ 2cp
(11-4D

i.^ 1 + P
c
2

where (J = v/c. The velocity components of the final velocities uc and ud in K are

similarly

, . c|3 sin 6'
, v = c|3(l + cos 0')

{Uc)x
T(l + /3

2
cos0')' l + p

2
cos0'

, v c/3 sin 0'
. . _ c/3(l — cos 0Q

(Ud)x "
7(1-P

2 cos0r
(Ud)z ~ l-/3

2
cos0'

(11.42)

with 7 = (1-/3T
1/2

.

The equations of conservation of momentum and energy in the inertial frame

K read

M(ua)ua +M(ub)ub = M(uc)Uc+M(ud)ud

%{Ua ) + %(uh )
= %{uc ) + %{ud )

(ll-43 )

It is apparent from (11.41) and (11.42) or the left-hand diagram of Fig. 11.6 that

while particle b is at rest the other three velocities are all different in general.

Thus the determination of M{u) and %{u) from (11.43) seems obscure. We can,

however, consider the limiting situation of a glancing collision in which 6' is very

small. Then in the frame K ud will be nonrelativistic and u c will differ only slightly

from u a . We can therefore make appropriate Taylor series expansions around
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0' = O and obtain equations involving M(u), ^(u), and perhaps their first

derivatives. Explicitly, the x component of the momentum conservation equa-

tion in (11.43) is

n 4U v c/3 sin 6'
. c0 sin 0'

= M(UC )
—7 . q2 -TK-M{ud ) ( q2 T77 .

7(1 + /3 cos0) 7(l-j3 cos0)

Cancelling common factors and rearranging terms, we have

This relation is valid for all 0' and in particular for O' = 0. Inspection of (11.42)

shows that in that limit uc = iia , ud = 0. Thus we obtain

Mua)=(j^)M(0) (11.44)

From (11.41) it is easy to demonstrate that

1 + /3
2

1 ._
v—Ti =—r=^^Ta (11.45)

With the value M(0) = m from (11.39) we thus have

M(ua ) = yam

or equivalently that the momentum of a particle of mass m and velocity u is

p = ymu = (11.46)

Determining the functional form of %{u) requires more than the straightfor-

ward evaluation of the conservation of energy equation at 0' = O. We must

examine the equation for small 0'. From (11.43) we have

%{ua ) + %(0) = %(uc ) + %(uA ) (11.47)

where uc and ud are functions of 0'. From (11.42) or (11.32) we find, correct to

order 0'2 inclusive,

uc

2 =ua
2-^3 + 0(T]

2

)

ud
2 = r) + 0(<r)

2

)

where ya is given by (11.45) and tj = c
2
|3

2 0'2/(1-/3
2
) is a convenient expansion

parameter. We now expand both sides of (11.47) in Taylor series and equate
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coefficients of different powers of r\:

The zeroth order terms give an identity, but the first order terms yield

Q= 1 d%{ua )
|

/d%(ud ) \

Ja dUa \ dUd /ud =

With the known nonrelativistic value of the second term from (11.39), we find

ua ) m 2 m
2 — ^ Ja — . 2 x 3/2dua
z

2 (>-»
Integration yields the expression,

mc
%{u)=- 2xl/2 +[^(0)-mc

2

] (11.48)

for the energy of a particle of mass m and velocity u, up to an arbitary constant

of integration. Parenthetically we remark that in an elastic scattering process the

conservation of energy condition can be expressed in terms of kinetic energies

alone. Thus the undetermined constant in (11.48) is necessary and is not, as the

reader might have conjectured, the result of our Taylor series expansions. Note

that the kinetic energy T(u) is given unambiguously by

T(u) = %(u)-%(0) = mc :
1

-i2\ 1/2 (11.49)

Equations (11.46) and (11.48) are the necessary relativistic generalizations for

the momentum and energy of a particle, consistent with the conservation laws

and the postulates of special relativity. The only remaining question is the value

of the rest energy <£(0). We can appeal directly to experiment or we can examine

the theoretical framework. First, experiment. Although <£(0) cannot be deter-

mined from elastic scattering, it can be found from inelastic processes in which

one type of particle is transformed into another or others of different masses.

Decay processes are particularly transparent. Consider, for example, the decay

of a neutral K-meson into two photons, K°—^77. In the rest frame of the

K-meson conservation of energy requires that the sum of the energies of the two

photons be equal to <£K (0). For another decay mode of a neutral K-meson, into

two pions, the kinetic energy of each pion in the K-meson's rest frame must be

T^&(0)-t(0)

Measurement of the pion kinetic energy (11.49) and knowledge of <£K (0) allows

determination of <M0). In these examples and every other case it is found that
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the rest energy of a particle (or more complicated system) of mass m is given by

the famous Einstein mass-energy relation,

%{0) = mc 2
(11.50)

Thus the second, square-bracketed, term in (11.48) is absent. The total energy of

a particle of mass m and velocity u is

E = ymS =-^L= (11.51)

A second path to the results (11.50) and (11.51) is theoretical. Although the

expressions (11.46) and (11.48) for the momentum and energy of a particle were

found by applying the principles, of special relativity to the conservation of

energy and momentum, the properties of p and E under Lorentz transforma-

tions are not yet explicit. The conservation equations are a set of four equations

assumed to be valid in all equivalent inertial frames. Momentum conservation

consists of three equations relating the spatial components of vectors. Within the

framework of special relativity it is natural to attempt to identify the four

equations of conservation as relations among 4-vectors. We observe that the

momentum (11.46) is proportional to the spatial components of the 4-velocity

(Uo, U) defined in (11.36), that is, p= mU. The time component of this 4-vector

is p = mUo = myuc. Comparison with (11.48) shows that the energy of a particle

differs from cp by an additive constant [<£(0) — mc 2
]. This means that the four

equations of energy and momentum conservation for an arbitrary collision

process can be written as

X (Po)a- Z(Po)b = A
a b

initial final

(11.52)

I Pa-Ipb = A

where (A
,
A) is a 4-vector with A = and

cA =I[gb(0)-mbc
2
]- £ [ga(0)-mac

2

]
b a

final initial

From the first postulate, (11.52) must be valid in all equivalent inertial frames.

But if A = in all inertial frames it can be seen from (11.22) that it is necessary

that Ao= 0; the 4-vector (A
,
A) is a null vector. If different types or numbers of

particles can occur in the initial and final states of some process, the condition

A = can only be met by requiring that (11.50) hold for each particle separately.

We are thus led to (11.51) as the correct form of the total energy.

The velocity of the particle can evidently be expressed in terms of its
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momentum and energy from (11.46) and (11.51) as

(11.53)

The invariant "length" of the energy-momentum 4-vector (p = E/c, p) is

We see that the invariant property that characterizes a particle's momentum and

energy is its mass, m, sometimes called its rest mass.* Equation (11.54),

combined with the conservation equations, form a powerful and elegant means

of treating relativistic kinematics in collision and decay processes (see the

problems at the end of the chapter). Note that (1 1.54) permits the energy E to be

expressed in terms of the momentum as

The relations (11.46), (1 1.51), (11.53) for momentum, energy, and velocity of

a particle are so universally accepted that it seems superfluous to speak of

experimental tests. It is perhaps worthwhile, nevertheless, to cite some labora-

tory demonstrations. One is the connection between the kinetic energy (1 1.49) of

a particle and its speed. t The speeds of electrons of known kinetic energies from

0.5 to 15 MeV (accelerated through a known voltage in a Van de Graaff

generator, verified at the beam catcher by calorimetry) are measured by having

bursts of electrons (Ar= 3x 10"9
sec) travel a flight path of 8.4 meters. As the

energy increases the transit time falls toward a limiting value of 2.8 x 1CT
8
sec in

good agreement with (11.49). Verification of c as a limiting speed for material

particles has been carried out for 11 GeV electrons (7— 2x 10
7
) in the Stanford

experiment cited at the end of Section 11.2, where it was found that the

electrons' speed differed fractionally from c by less than 5xlCT 6
. An under-

graduate experiment to verify the relation (11.55) between momentum and

energy employs a simple magnet with roughly 10 cm radius of curvature for the

momentum measurement and a Nal crystal for the energy measurement on beta

rays.$

The specification of the kinematic properties of a particle (velocity, momen-
tum, energy) in any inertial frame can be accomplished by giving its mass and

either its velocity u or its momentum p in that frame. A Lorentz transformation

(11.22) of (p , p) gives the results in any other frame. It is sometimes convenient

to use the two components of p perpendicular to the z-axis and a rapidity £

(11.20) as kinematic variables. Suppose that a particle has momentum p in frame

K, with transverse momentum p± and a z component py. There is a unique

* Some authors define the mass of a particle to be E/c 2

,
designating it as m or m(u)

and reserving the symbol m for the rest mass. We always use the word mass for the

Lorentz invariant quantity whose square appears in (11.54).

tW. Bertozzi, Am. J. Phys. 32, 551 (1964).

tS. Parker, Am. J. Phys. 40, 241 (1972).

p
2-p * p = (mc)

2
(11.54)

E = s/c
2

p
2+m 2

c
4

(11.55)
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Lorentz transformation in the z direction to a frame K' where the particle has no

z component of momentum. In K' the particle has momentum and energy,

E'
p' = px, — = n = Vp±

2+m 2
c
2

(11.56)

Let the rapidity parameter associated with the Lorentz transformation from K to

K' be £. Then from the inverse of (11.21) the momentum components and

energy of the particle in the original frame K can be written

px , pn
= ftsinh£, —= flcosh£ (11.57)

with fl = Vpx
2+m 2

c
2

. The quantity H/c is sometimes called the transverse mass

(because it depends on p± ) or the longitudinal mass (because it is involved in a

longitudinal boost). If the particle is at rest in K', that is, p± = 0, then the

expressions (11.57) become

p=mcsinh£, E = mc 2
cosh £ (11.58)

alternatives to (11.46) and (11.51).

One convenience of p
(
j° and as kinematic variables is that a Lorentz

transformation in the z direction shifts all rapidities by a constant amount,

£
(i) —> - Z, where Z is the rapidity parameter of the transformation. With

these variables the configuration of particles in a collision process viewed in the

laboratory frame differs only by a trivial shift of the origin of rapidity from the

same process viewed in the center of mass frame.

11.6 Mathematical Properties of the Space-Time of Special Relativity

The kinematics of special relativity presented in the preceding sections can be

discussed in a more profound and elegant manner that simultaneously simplifies

and illuminates the theory. Three-dimensional rotations in classical and quan-

tum mechanics can be discussed in terms of the group of transformations of the

coordinates that leave the norm of the vector x invariant. In the special theory of

relativity, Lorentz transformations of the four-dimensional coordinates (x
,
x)

follow from the invariance of

s
2 = x

2-x l

2-x2
2
-x,

2
(11.59)

We can therefore rephrase the kinematics of special relativity as the considera-

tion of the group of all transformations that leave s
2
invariant. Technically, this

group is called the homogeneous Lorentz group. It contains ordinary rotations as

well as the Lorentz transformations of Section 11.3. The group of transforma-

tions that leave invariant

s
2
(x, y ) = (x - y )

2- (xi - y i)

2- (x2- y2)

2- (x3- y3)

2
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is called the inhomogeneous Lorentz group or the Poincare group. It contains

translations and reflections in both space and time, as well as the transformations

of the homogeneous Lorentz group. We shall restrict our discussion to the

homogeneous transformations and subsequently omit the word homogeneous

when referring to the Lorentz group.

From the first postulate it follows that the mathematical equations expressing

the laws of nature must be covariant, that is, invariant in form, under the

transformations of the Lorentz group. They must therefore be relations among
Lorentz scalars, 4-vectors, 4-tensors, etc. defined by their transformation

properties under the Lorentz group in ways analogous to the familiar specifica-

tion of tensors of a given rank under three-dimensional rotations. We are thus

led to consider briefly the mathematical structure of a space-time whose norm is

defined by (11.59).

We begin by summarizing the elements of tensor analysis in a non-Euclidean

vector space. The space-time continuum is defined in terms of a four-

dimensional space with coordinates x°, x
1

, x
2

, x
3

. We suppose that there is a

well-defined transformation that yields new coordinates x'°, x'
1

,
x'

2

,
x'

3
, accord-

ing to some rule,

x'
a = x'"(x°,x

1
,x

2
,x

3
), a = 0, 1,2,3 (11.60)

For the moment the transformation law is not specified.

Tensors of rank k associated with the space-time point x are defined by their

transformation properties under the transformation x—»x'. A scalar (tensor of

rank zero) is a single quantity whose value is not changed by the transformation.

The interval s
2
(11.59) is obviously a Lorentz scalar. For tensors of rank one,

called vectors, two kinds must be distinguished. The first is called a contravariant

vector Aa
with four components A

, A 1

, A 2
, A 3

that are transformed according

to the rule,

A'a =fVAp
(11.61)

ox

In this equation the derivative is computed from (11.60) and the repeated index

/3 implies a summation over = 0, 1, 2, 3. Thus explicitly we have

A"=^A'+^ A'+^ A 2+^ A 3

ax ax ax ax

We will henceforth employ this summation convention for repeated indices. A
covariant vector or tensor of rank one Ba is defined by the rule,

B^I^Be (11.62)

or, explicitly by

B '* =
^r Ba+

dt°
Bl+I^ Bl+^ Bl
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The partial derivative in (11.62) is to be calculated from the inverse of (11.60)

with x p expressed as a function of x'°, x'
1

,
x'

2

, x'
3

.

Note that contravariant vectors have superscripts and covariant vectors have

subscripts, corresponding to the presence of dx'
a
/dx

3 and its inverse in the rule of

transformation. It can be verified from (11.61) that if the law of transformation

(11.60) is linear then the coordinates x°, x
1

, x
2

, x
3
form the components of a

contravariant vector.

A contravariant tensor of rank two Fap
consists of 16 quantities that transform

according to

^^dSS?^
8

(1L63)

A covariant tensor of rank two GaP transforms as

and the mixed second rank tensor H° p transforms as

The generalization to contravariant, covariant, or mixed tensors of arbitrary

rank should be obvious from these examples.

The inner or scalar product of two vectors is defined as the product of the

components of a covariant and a contravariant vector,

B A = BaA a
(11.66)

With this definition the scalar product is an invariant or scalar under the

transformation (11.60). This is established by considering the scalar product

B' • A' and employing (11.61) and (11.62):

B' • A' =g£ |£ B,A* =|p B»A* = 8* B„A' = B • A

The inner product or contraction with respect to any pair of indices, either on the

same tensor or one on one tensor and the other on another, is defined in analogy

with (11.66). One index is contravariant and the other covariant always.

The above results or definitions are general. The specific geometry of the

space-time of special relativity is defined by the invariant interval s
2

, (11.59). In

differential form, the infinitesimal interval ds that defines the norm of our space

is

(ds)
2 = (dx°)

2 -(dx l

)

2-(dx 2

)

2 -(dx 3

)

2
( 1 1 .67)

Here we have used superscripts on the coordinates because of our present

conventions. This norm or metric is a special case of the general differential

length element,

(ds)
2 =gafi dx

a
dx* (11.68)
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where gaP = gp« is called the metric tensor. For the flat space-time of special

relativity (in distinction to the curved space-time of general relativity) the metric

tensor is diagonal, with elements

gOO=l, gll = g22=g33=-l (11.69)

The contravariant metric tensor g
ap

is defined as the normalized co- factor of

gap. For flat space-time it is the same:

g
aP = g« P (11.70)

Note that the contraction of the contravariant and covariant metric tensors gives

the Kronecker delta in four dimensions:

gayg
y" = Oa " (11.71)

where 5«
p = for cx^j3 and 8a

a =l for a = 0, 1, 2, 3.

Comparison of the invariant length element (ds)
2
in (11.68) with the similarly

invariant scalar product (11.66) suggests that the- covariant coordinate 4-vector

xa can be obtained from the contravariant x p by contraction with ga(3 , that is,

xa = ga(3x
p

(11.72)
and its inverse,

x
a = g

a
"x, (11.73)

In fact, contraction with gaP or g
ap

is the procedure for changing an index on any

tensor from being contravariant to covariant, and vice versa. Thus

F;
a =g«p

F;;p

and (11.74)

G a = gapG:;:
p

With the metric tensor (11.69) it follows that if a contravariant 4-vector has

components, A
,
A 1

,
A 2

,
A 3

, its covariant partner has components, A = A°,

A 1
= -A I

, A 2 = -A 2

, A 3 = -A 3
. We write this concisely as

A a = (A°,A), Aa = (A ,
-A) (11.75)

where the 3-vector A has components A 1

,
A 2

, A 3
. The scalar product (11.66) of

two 4-vectors is

B - A = BaA a = B°A° — B • A
in agreement with (11.24).

Consider now the partial derivative operators with respect to x
a
and x«. The

transformation properties of these operators can be established directly by using

the rules of implicit differentiation. For example, we have

d = dx p
a

dx'
a
~dx'

a
dx p

Comparison with (11.62) shows that differentiation with respect to a contravariant

component of the coordinate vector transforms as the component of a covariant
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vector operator. From (11.72) it follows that differentiation with respect to a

covariant component gives a contravariant vector operator. We therefore

employ the notation,

(11.76)

The 4-divergence of a 4-vector A is the invariant,

d
aAa = daAa =^r+V • A (11.77)

an equation familiar in form from continuity of charge and current density, the

Lorentz condition on the scalar and vector potentials, etc. These examples give a

first inkling of how the covariance of a physical law emerges provided suitable

Lorentz transformation properties are attributed to the quantities entering the

equation.

The four-dimensional Laplacian operator is defined to be the invariant

contraction,

B^dad
a = ^o~2-V

2
(11.78)

ox

This is, of course, just the operator of the wave equation in vacuum.

11.7 Matrix Representation of Lorentz Transformations,

Infinitesimal Generators

We now turn to the consideration of the Lorentz group of transformations. To
make the manipulations explicit and less abstract, it is convenient to use a matrix

representation with the components of a contravariant 4-vector forming the

elements of a column vector. The coordinates x°, x\ x
2

, x
3

thus define a

coordinate vector whose representative is

(11.79)

Matrix scalar products of 4-vectors (a, b) are defined in the usual way by

summing over the products of the elements of a and b, or equivalently by matrix

multiplication of the transpose of a on b:

(a, b) = ab (11.80)
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The metric tensor gaf3 has as its representative the square 4x4 matrix

-1
-1

-1

(11.81)

with g
z = I, the 4x4 unit matrix. The covariant coordinate vector is

gx= |~*M (11.82)

obtained by matrix multiplication of g (11.81) on x (11.79). Note that in the

present notation the scalar product (11.66) of two 4-vectors reads

a-b = (a,gb) = (ga,b) = agb (11.83)

On the basis of arguments already presented in Section 11.3 we seek a group

of linear transformations on the coordinates,

x' = Ax (11.84)

where A is a square 4x4 matrix, such that the norm (x, gx) is left invariant:

x'gx' = xgx (11.85)

Substitution of (11.84) into the left-hand side yields the equality,

xAgAx = xgx

Since this must hold for all coordinate vectors x, A must satisfy the matrix

equation,

AgA = g (11.86)

Certain properties of the transformation matrix A can be deduced im-

mediately from (11.86). The first concerns the determinant of A. Taking the

determinant of both sides of (11.86) gives us

det (AgA) = det g (det A) 2 = det g

Since det g = -15*0, we obtain

det A = ±l

There are two classes of transformations, proper Lorentz transformations, con-

tinuous with the identity transformation and so necessarily having det A = +l,

and improper Lorentz transformations. For improper transformations it is suffi-

cient, but not necessary, to have det A = -l. The fact that det A = ±l does not

sort out unambiguously the two classes is a consequence of the indefinite metric

of space-time. Two examples of improper transformations, A = g (space inver-

sion) with det A = -l and A = -I (space and time inversion) with det A = + l,

illustrate this point.
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The second property of A is the number of parameters needed to specify

completely a transformation of the group. Since A and g are 4x4 matrices,

(11.86) represents 16 equations for the 4
2 = 16 elements of A. But they are not

all independent because of symmetry under transposition. There are thus

16— (1 + 2+ 3)= 10 linearly independent equations for the 16 elements of A. This

means that there are six free parameters—the Lorentz group is a six-parameter

group. The six parameters can be conveniently thought of as (a) three param-

eters (e.g., Euler angles) to specify the relative orientation of the coordinate axes

and (b) three parameters (e.g., components of (J) to specify the relative velocity

of the two inertial frames. Parenthetically we remark that for every six-

parameter A giving a proper Lorentz transformation, there is an improper one

represented by —A. From now on we consider only proper Lorentz transforma-

tions.

The explicit construction of A can proceed as follows. We make the ansatz

A = e
L

(11.87)

where L is a 4x4 matrix. The determinant of A is*

det A = det(e
L

) = e
TrL

If L is a real matrix, det A = — 1 is excluded. Furthermore, if L is traceless, then

det A = + l. Thus, for proper Lorentz transformations, L is a real, traceless 4x4
matrix. Equation (11.86) can be written

gAg = A- x

(11.88)

From the definition (11.87) and the fact that g
2 = I we have

A = e
£

,
gAg = e

g£g
, A_1 = e"

L

Therefore (11.88) is equivalent to

gLg = -L
or

gL = -gL (11.89)

The matrix gL is thus antisymmetric. From the properties of g (11.81) it is

evident that the general form of L is

' Loi L02 L()3

Loi L 12 L 13

Lo2 -L 12 L23

k
Lo3 -L 13 -L23

(11.90)

* To prove this, note first that the value of the determinant or the trace of a matrix

is unchanged by a similarity transformation. Then make such a transformation to put L in

diagonal form. The matrix A will then be diagonal with elements that are the

exponentials of the corresponding elements of L. The result follows immediately.
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The dashed lines are inserted to set off the 3x3 antisymmetric spatial matrix

corresponding to the familiar rotations in a fixed inertial frame from the

symmetric space-time part of the matrix corresponding to Lorentz transforma-

tions or boosts from one inertial frame to another.

The matrix (11.90), with its six parameters is an explicit construction (through

(11.87)) of the transformation matrix A. It is customary, however, to systematize

L and its six parameters by introducing a set of six fundamental matrices defined

by

'0
:

:

o i

o i l

'0
:

o :

o i

o :
-1

N

-1

1

o o
,

(11.91)

The matrices Si evidently generate rotations in three dimensions, while the

matrices K; produce boosts. For reference, we note that the squares of these six

matrices are all diagonal and of the form,

'0 \ /0

S,
2 =

(11.92)
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Furthermore, it can be shown that (c • S)
3 = -e • S and (e' • K) 3 = e' • K where €

and e' are any real unit 3-vectors. Thus any power of one of the matrices can be

expressed as a multiple of the matrix or its square.

The general result (11.90) for L can now be written alternatively as

L = -«o-S-£-K]
and (11.93)

A-eTM* J

where <o and £ are constant 3-vectors. The three components each of to and £

correspond to the six parameters of the transformation. To establish contact with

previous results such as (11.16) or (11.21), we consider first a simple situation in

which co=0 and £=f€i. Then L = -(Ki and with the help of (11.92) and K^Ki
we find

A = e
L = (I- Ki

2
)
- Ki sinh £+ K,

2
cosh ( (1 1 .94)

Explicitly,

a= • „ * : ; (H.95)

This matrix corresponds exactly to the transformation (11.21).* If { = and

cx) = co€3 , the transformation is similarly found to be

cos (a sin

sin a) cos co
(11.96)

corresponding to a rotation of the coordinate axes in a clockwise sense around

the 3-axis.

For a boost (without rotation) in an arbitrary direction,

A = e-£
-K

The boost vector £ can be written in terms of the relative velocity P as

^ptanlT 1

where (J is a unit vector in the direction of the relative velocity of the two inertial

frames. The pure boost is then

A boost(p) = e-*-
Ktanh-lp

(11.97)

*The reader is reminded that in Sections 11.3, 11.4, and 11.5 no distinction is

made between subscripts and superscripts. All components of vectors there are to be

interpreted as contravariant components, in accordance with (11.75).
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It is left as an exercise to verify that this transformation gives the explicit matrix:

The equation x' = A b0ost(P)x is a matrix statement of the four equations of

(11.19).

The six matrices (11.91) are a representation of the infinitesimal generators of

the Lorentz group. Straightforward calculation shows that they satisfy the

following commutation relations,

[Si, S,] = €i;kSk

[Ki, Kj] = — CijicSk

where the commutator notation is [A, B]=AB — BA. The first relation corre-

sponds to the commutation relations for angular momentum, the second relation

merely shows that K transforms as a vector under rotations, and the final

relation shows that boosts do not in general commute. The commutation

relations (11.99), with the characteristic minus sign in the last commutator,

specify the algebraic structure of the Lorentz group to be SL(2, C) or 0(3, 1).

11.8 Thomas Precession

The description of Lorentz transformations in terms of noncommuting matrices

demonstrates that in general the result of successive Lorentz transformations

depends upon the order in which they are performed. The commutation relations

(11.99) imply that two successive Lorentz transformations are equivalent to a

single Lorentz transformation plus a three-dimensional rotation. An example of

the kinematic consequences of the noncommutativity of Lorentz transforma-

tions is the phenomenon known as Thomas precession* To motivate the

discussion we first describe the physical context.

In 1926, Uhlenbeck and Goudsmit introduced the idea of electron spin and

showed that, if the electron had a g factor of 2, the anomalous Zeeman effect

could be explained, as well as the existence of multiplet splittings. There was a

*L. T. Thomas, Phil. Mag. 3, 1 (1927).
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difficulty, however, in that the observed fine-structure intervals were only

one-half the theoretically expected values. If a g factor of unity were chosen, the

fine-structure intervals were given correctly, but the Zeeman effect was then the

normal one. The complete explanation of spin, including correctly the g factor

and the proper fine-structure interaction, came only with the relativistic electron

theory of Dirac. But within the framework of an empirical spin angular

momentum and a g factor of 2, Thomas showed in 1927 that the origin of the

discrepancy was a relativistic kinematic effect which, when included properly,

gave both the anomalous Zeeman effect and the correct fine-structure splittings.

The Thomas precession, as it is called, also gives a qualitative explanation for a

spin-orbit interaction in atomic nuclei and shows why the doublets are "in-

verted" in nuclei.

The Uhlenbeck-Goudsmit hypothesis was that an electron possessed a spin

angular momentum s (which could take on quantized values of ±h/2 along any

axis) and a magnetic moment |x related to s by

»x =^-s (11.100)
2mc

where the g factor had the value g = 2. Suppose that an electron moves with a

velocity v in external fields E and B. Then the equation of motion for its angular

momentum in its rest frame is

(ds

\dt

h
)

= jjixB (11.101)
/ rest frame

where B' is the magnetic induction in that frame. We will show in Section 11.10

that in a coordinate system moving with the electron the magnetic induction is

B'-(b-xe) (11.102)

where we have neglected terms of the order of (v
2
/c

2
). Then (11.101) becomes

(^) =|ix(b--xe) (11.103)
\ut / rest frame \ C /

Equation (11.103) is equivalent to an energy of interaction of the electron spin:

U' = -jji-(b~xe) (11.104)

In an atom the electric force eE can be approximated as the negative gradient of

a spherically symmetric average potential energy V(r). For one-electron atoms

this is, of course, exact. Thus

(11.105)
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Then the spin-interaction energy can be written

U'= s . (s • L) -^ (11.106)
2mc 2m c r dr

where L=m(rxv) is the electron's orbital angular momentum. This interaction

energy gives the anomalous Zeeman effect correctly, but has a spin-orbit

interaction that is twice too large.

The error in (11.106) can be traced to the incorrectness of (11.101) as an

equation of motion for the electron spin. The left-hand side of (11.101) gives the

rate of change of spin in the rest frame of the electron. If, as Thomas first pointed

out, that coordinate system rotates, then the total time rate of change of the spin,

or more generally, any vector G is given by the well known result,*

(#) -(3r) +<^xG (11 - 107)
\ Ql / nonrot V ' rest frame

where coT is the angular velocity of rotation found by Thomas. When applied to

the electron spin, (11.107) gives an equation of motion:

The corresponding energy of interaction is

U=U'+s- wT (11.109)

where U' is the electromagnetic spin interaction (11.104) or (11.106).

The origin of the Thomas precessional frequency wT is the acceleration

experienced by the electron as it moves under the action of external forces.

Consider an electron moving with velocity v(r) with respect to a laboratory

inertial frame. The electron's rest frame of coordinates is defined as a co-moving

sequence of inertial frames whose successive origins move at each instant with

the velocity of the electron. Let the velocity of the rest frame with respect to the

laboratory at laboratory time t be v(r) = cp, and at laboratory time t+8t be

v(f+Sr) = c(p+Sp). The connection between the coordinates in the electron's

rest frame at time t and the coordinates in the laboratory frame is

x' = A boost(P)x (11.110)

At time t+8t the connection is

x" = A boost(P+ Sp)x (11.111)

It is important to note that these transformations of coordinate from the

laboratory to the rest frame are defined here in terms of pure Lorentz boosts

without rotations. We are interested in the behavior of the coordinate axes of the

* See, for example, Goldstein, p. 133.
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electron's rest frame as a function of time. Thus we want the connection between

the two sets of rest frame coordinates, x' at time t and x" at time t+8t. This

relation is

x" =ATx'

where

At = A boost(p+ 8p)Aboost(P) =A boost(p+ 5p)Aboost(-p) (11.112)

For purposes of calculating AT a suitable choice of axes in the laboratory frame

is shown in Fig. 11.7. The velocity vector p at time t is parallel to the 1 axis and

the increment of velocity 8p lies in the 1-2 plane. From (11.98) it follows that

7 7|3 0'

<-w= rH
o i o i <1Lll3 >

70 7

10
1

Similarly we obtain from (11.98), keeping only first order terms in 8p,

y+ 7
3
0Sj3i -(7/3 + 7

3
80i)

~(yj3 + 7
3

«P0 7+ 7
3
/3S/3i

fy-l\
y8(l 2 \p) 8^

Straightforward matrix multiplication according to (11.112) yields

-72
8j3! -7 8j3 2

1 (^)s, 2

AT =| >P
' (11.115)

1

1

This represents an infinitesimal Lorentz transformation that can be written in

terms of the matrices S and K as

AT = I- (^)(PX8P) • S-(7
2

3p„+ 7 SpJ ' K (11.116)

where 8pu and 8p ± are the components of Sp parallel and perpendicular to P,

respectively. To first order in 8p, (11.116) is equivalent to

AT = Aboost(Ap)R(Aa) = R(Aft)Ab0ost(Ap) (11.117)
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2

3

Fig. 11.7

where

Ab00st(Ap) = I-Ap-K

R(Aft) = I-Aft -S

are commuting infinitesimal boosts and rotations, with velocity,

AP = 7
2

SPii+ ySp^

and angle of rotation,

Thus the pure Lorentz boost (11.111) to the frame with velocity c(P+Sp) is

equivalent to a boost (11.110) to a frame moving with velocity cP, followed by

an infinitesimal Lorentz transformation consisting of a boost with velocity c Ap
and a rotation Aft.

In terms of the interpretation of the moving frames as successive rest frames of

the electron we do not want rotations as well as boosts. Nonrelativistic equations

of motion like (11.101) can be expected to hold provided the evolution of the

rest frame is described by infinitesimal boosts without rotations. We are thus led

to consider the rest frame coordinates at time t+8t that are given from those at

time t by the boost Ab0ost(Ap) instead of AT . Denoting these coordinates by x'",

we have

x"' = Aboost(Ap)x'

Using (11.117), (11.112), and (11.110) we can express x'" in terms of the

laboratory coordinates as

x'" = R(-Aft)Ab0ost(p+ 8p)x (11.118)

The rest system of coordinates defined by x'" is rotated by -Aft relative to the

boosted laboratory axes (x"). If a physical vector G has a (proper) time rate of
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change (dG/dr) in the rest frame, the precession of the rest frame axes with

respect to the laboratory makes the vector have a total time rate of change with

respect to the laboratory axes of (11.107), with

.. Aft y
2 axv /n nn\

toT = -lim—=-£T7—— (11.119)
si-o 8t 7+1 c

where a is the acceleration in the laboratory frame and, to be precise,

(dG/dt) rest frame 7 (dG/dT)rest frame.

The Thomas precession is purely kinematical in origin. If a component of

acceleration exists perpendicular to v, for whatever reason, then there is a

Thomas precession, independent of other effects such as precession of the

magnetic moment in a magnetic field.

For electrons in atoms the acceleration is caused by the screened Coulomb
field (11.105). Thus the Thomas angular velocity is

-lrXvldV -1 . ldV M1 lom(Or^ri =
o—r^L--r" (11.120)

2c m r dr 2m c r dr

It is evident from (11.109) and (11.106) that the extra contribution to the energy

from the Thomas precession reduces the spin-orbit coupling, yielding

Lr=-^s-B+^-^s-L-^- (11.121)
2mc 2m c r dr

With g = 2 the spin-orbit interaction of (11.106) is reduced by § (sometimes called

the Thomas factor), as required for the correct spin-orbit interaction energy of

an atomic electron.

In atomic nuclei the nucleons experience strong accelerations because of the

specifically nuclear forces. The electromagnetic forces are comparatively weak.

In an approximate way one can treat the nucleons as moving separately in a

short-range, spherically symmetric, attractive, potential well, VN(r). Then each

nucleon will experience in addition a spin-orbit interaction given by (11.109)

with the negligible electromagnetic contribution U' omitted:

Un-s-cot (11.122)

where the acceleration in ojt is determined by VN(r). The form of coT is the same

as (11.120) with V replaced by VN . Thus the nuclear spin-orbit interaction is

approximately

In comparing (11.123) with atomic formula (11.121) we note that both V and VN
are attractive (although VN is much larger), so that the signs of the spin-orbit

energies are opposite. This means that in nuclei the single particle levels form
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"inverted" doublets. With a reasonable form for VN , (11.123) is in qualitative

agreement with the observed spin-orbit splittings in nuclei.*

The phenomenon of Thomas precession is presented from a more sophisti-

cated point of view in Section 11.11 where the BMT equation is discussed.

11.9 Invariance of Electric Charge, Covariance of Electrodynamics

The invariance in form of the equations of electrodynamics under Lorentz

transformations was shown by Lorentz and Poincare before the formulation of

the special theory of relativity. This invariance of form or covariance of the

Maxwell and Lorentz force equations implies that the various quantities p, J, E,

B that enter these equations transform in well-defined ways under Lorentz

transformations. Then the terms in the equations can have consistent behavior

under Lorentz transformations.

Consider first the Lorentz force equation for a particle of charge q,

We know that p transforms as the space part of the 4-vector of energy and

momentum,

p
a = (po,p) = m(l/ ,U)

where p = E/c and Ua
is the 4-velocity (11.36). If we use the proper time t

(11.26) instead of t for differentiation, (11.124) can be written

^ = 5 ((7oE+UxB) (11.125)
(XT C

The left-hand side is the space part of a 4-vector. The corresponding time

component equation is the rate of change of energy of the particle (6.110):

^^U-E (1L126)
ar c

If the force and energy change equations are to be Lorentz covariant, the

right-hand sides must form the components of a 4-vector. They involve products

of three factors, the charge q, the 4-velocity, and the electromagnetic fields. If

the transformation properties of two of the three factors are known and Lorentz

covariance is demanded, then the transformation properties of the third factor

can be established.

Electric charge is absolutely conserved, as far as we know. Furthermore, the

magnitudes of the charges of elementary particles (and therefore of any system

of charges) are integral multiples of the charge of the proton. In the published

* See, for example, Section. 2.4c of A. Bohr and B. R. Mottelson, Nuclear
Structure, Vol. 1, W. A. Benjamin, New York (1969).
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literature,* it is experimentally established that the fractional difference be-

tween the magnitude of the electron's charge and the proton's charge is

less than 10
-19

, and unpublished results of King push this limit almost two

orders of magnitude further.! The results of these experiments can be

used to support the invariance of electric charge under Lorentz transfor-

mations or, more concretely, the independence of the observed charge of

a particle on its speed. In King's experiments a search was made for

a residual charge remaining in a container as hydrogen or helium gas

is allowed to escape. No effect was observed and a limit of less than

10
_19

e was established for the net charge per molecule for both H2 and He.

Since the electrons in He move at speeds twice as fast as in H2 , the charge

of the electron cannot depend significantly on its speed, at least for speeds

of the order of (0.01-0.02)c. In the experiment of Fraser, Carlson, and

Hughes an atomic beam apparatus was used in an attempt to observe electro-

static deflection of beams of "neutral" cesium and potassium atoms. Again, no

effect was observed, and a limit of less than 3.5 x 10~ 19 was set on the fractional

difference between the charges of the proton and electron. Cesium and

potassium have Z = 55 and 19, respectively. Thus the K-shell electrons in cesium

at least move with speeds of order 0.4c. The observed neutrality of the cesium

atom at the level of 10~ 18-10-19
is strong evidence for the invariance of electric

charge. $

The experimental invariance of electric charge and the requirement of Lorentz

covariance of the Lorentz force equation (11.125) and (11.126) determines the

Lorentz transformation properties of the electromagnetic field. For example, the

requirement from (11.126) that U • E be the time component of a 4-vector

establishes that the components of E are the time-space parts of a second rank

tensor FaP
, that is, E • U = Fop

l/p . Although the explicit form of the field strength

tensor Fap
can be found along these lines, we now proceed to examine the

Maxwell equations themselves.

For simplicity, we consider the microscopic Maxwell equations, without D and

H. We begin with the charge density p(x, t) and current density J(x, t) and the

continuity equation,

* J. G. King, Phys. Rev. Letters 5, 562 (1960); L. J. Fraser, E. R. Carlson, and V.

W. Hughes, Bull Am. Phys. Soc. 13, 636 (1968).

t The present limits on the measured charge per molecule in units of the electronic

charge for H 2 ,
He, and SF6 are 1.8±5.4, -0.7±4.7, 0±4.3, respectively, all times 10~ 21

.

Private communication from J. G. King.

t Mentioning only the electrons is somewhat misleading. The protons and

neutrons inside nuclei move with speeds of the order (0.2-0.3)c. Thus the helium results

of King already test the invariance of charge at appreciable speeds. Of course, if one is

content with invariance at the level of 10" 10
for v/c ~ 10" 3

the observed electrical neutral-

ity of bulk matter when heated or cooled will suffice.

(11.127)
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From the discussion at the end of Section 11.6 and especially (11.77) it is natural

to postulate that p and J together form a 4-vector J
a

:

J
a = (cp,S) (11.128)

Then the continuity equation (11.127) takes the obviously covariant form,

dja = (11.129)

where the covariant differential operator d„ is given by (11.76). That J
a

is a

legitimate 4-vector follows from the invariance of electric charge: The charge in

a small volume element d
3
x is p d

3
x. Since this is an experimental invariant, it is

true that p' dV=pd3
x. But the /our-dimensional volume element d

4
x = dx d

3
x

is a Lorentz invariant:

Mr' y' 1 y'2 y'3\

d
4
x' = \, o i 2 3x d

4
x = det A d

4
x = d

4
x

d(X , X , X , X )

The equality p' d
3
x' = pd 3

x then implies that cp transforms like x°, namely, the

time component of the 4-vector (11.128).

In the Lorentz family of gauges the wave equations for the vector potential A
and the scalar potential <I> are

c
2

dt
2 V A

c
J

1 3
2
<D _2 . .

(11.130)

with the Lorentz condition,

if+V-A = (11.131)

The differential operator form in (11.130) is the invariant four-dimensional

Laplacian (11.78), while the right-hand sides are the components of a 4-vector.

Obviously, Lorentz covariance requires that the potentials <I> and A form a

4-vector potential,

Aa = (<D,A) (11.132)

Then the wave equations and the Lorentz condition take on the manifestly

covariant forms,

Aa=— r
c

and

daAa =

(11.133)
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The fields E and B are expressed in terms of the potentials as

E--
c dt (11.134)

B =VxA

The x components of E and B are explicitly

C dt dx

Bx~-^=-(d2A 3 -d3A 2

)
dy dz

(11.135)

where the second forms follow from (11.132) and d
a = (d/dxo, -V). These

equations imply that the electric and magnetic fields, six components in all, are

the elements of a second- rank, antisymmetric field- strength tensor,

F-e=a«Ap-o*A° (11.136)

Explicitly, the field-strength tensor is, in matrix form,

/0 -Ex -Ey -EA

Hi I T -k) <11137 >

\EZ -By Bx /

For reference, we record the field-strength tensor with two covariant indices,

/ Ex Ey Ez \

FaP = g?7JP8
g«p = o ~f

B
o (H-138)

Ex Ey

-Ex -B2 By

-Ey B z -Bx
-E2 -By Bx ,

The elements of Fa(3 are obtained from F0lP by putting E^-—E. Another useful

quantity is the dwa/ field- strength tensor We first define the totally

antisymmetric fourth rank tensor e
aP7S

:

for a = 0, 0=1, 7 = 2, 5 = 3, and

any even permutation
(11139)

for any odd permutation

if any two indices are equal

Note that the nonvanishing elements all have one time and three (different)

space indices and that e a(37S = -eaP7S
. The tensor e

aP7S
is a pseudotensor under

spatial inversions. This can be seen by contracting it with four different 4-vectors
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and examining the space inversion properties of the resultant rotationally in-

variant quantity. The dual field-strength tensor is defined by

&aP = i€
aPybFyi = „

x
" T -7

y
I (11.140)

The elements of the dual tensor ^ap
are obtained from FaP

by putting E-^B and

B-*-E in (11.137). This is a special case of the duality transformation (6.151).

To complete the demonstration of the covariance of electrodynamics we must

vrite the Maxwell equations themselves in an explicitly covariant form. The

inhomogeneous equations are

V • E = 47rp

_ „ IdE 4tt ¥VxB——=— J
c dt c

In terms of FaP and the 4-current J
a
these take on the covariant form,

a,F
aP=— f (n.141)

c

Similarly, the homogeneous Maxwell equations,

VB = 0, VxE+i^ =
c dt

can be written in terms of the dual field-strength tensor as

da^aP = (11.142)

In terms of FaP
, rather than 2F

afi
, these homogeneous equations are the four

equations,

a°FP7 +

a

pFYQ + a^FQP = o ( 1 1 . 1 43)

where a, 0, y are any three of the integers 0, 1, 2, 3.

With the definitions of J
a
(11.128), A a

(11.132), and F° p
(11.136), together

with the wave equations (11.133) or the Maxwell equations (11.141) and

(11.142), the covariance of the equations of electromagnetism is established. To
complete the discussion we put the Lorentz force and rate of change of energy

equations (11.125) and (11.126) in manifestly covariant form,

df=m^a F^ Ue (11 . 144)
clt ar c

The covariant description of the conservation laws of a combined system of

electromagnetic fields and charged particles and a covariant solution for the

fields of a moving charge are deferred to Chapter 12 where a Lagrangian

formulation is presented.
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For the macroscopic Maxwell equations it is necessary to distinguish two field

strength tensors, FaP = (E,B) and Gap = (D, H), where Fap
is given by (11.137)

and GaP
is obtained from (11.137) by substituting E-^D and B^H. The

covariant form of the Maxwell equations is then

9«GaP=— J* da^aP = (11.145)

It is clear that with the fields (E, B) and (D, H) transforming as antisymmetric

second rank tensors the polarization P and the negative magnetization —M form

a similar second rank tensor. With these quantities given meaning as macro-

scopic averages of atomic properties in the rest frame of the medium, the elec-

trodynamics of macroscopic matter in motion is specified. This is the basis of the

electrodynamics of Minkowski and others. For further information on this rather

large and important subject the reader can consult the literature cited at the end

of the chapter.

11.10 Transformation of Electromagnetic Fields

Since the fields E and B are the elements of a second rank tensor F*p
, their

values in one inertial frame K' can be expressed in terms of the values in another

inertial frame K according to

F'-^fvfVF* (11.146)
OX oX

In the matrix notation of Section 11.7 this can be written

F' = AFA (11.147)

where F and F' are 4x4 matrices (11.137) and A is the Lorentz transformation

matrix of (11.93). For the specific Lorentz transformation (11.95), correspond-

ing to a boost along the Xi axis with speed c/3 from the unprimed frame to the

primed frame, the explicit equations of transformation are

Ei — Fi B ]
— B]

E 2 = y(E2-^B 3) B£= 7(B2+/3JE3) (11.148)

E 3 = y(E3+ 0B 2) B3 = y(B 3- ^E2)

Here and below the subscripts 1, 2, 3 indicate ordinary Cartesian spatial

components and are not covariant indices. The inverse of (11.148) is found, as

usual, by interchanging primed and unprimed quantities and putting |3—»— 13. For

a general Lorentz transformation from K to a system K' moving with velocity v

relative to K, the transformation of the fields can be written

E' = 7(E + 0xB)--^p(p-E)]

\
(11.149)

B' = 7(B-pxE)-^I p(p-B)J
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*2 X2

Pi

V

Fig. 11.8 Particle of charge q moving at constant velocity v passes an observation point

P at impact parameter b.

These are the analogues for the fields of (11.19) for the coordinates. Transfor-

mation (11.149) shows that E and B have no independent existence. A purely

electric or magnetic field in one coordinate system will appear as a mixture of

electric and magnetic fields in another coordinate frame. Of course certain

restrictions apply (see Problem 11.12) so that, for example, a purely electrostatic

field in one coordinate system cannot be transformed into a purely magnetostatic

field in another. But the fields are completely interrelated, and one should

properly speak of the electromagnetic field F aP
, rather than E or B separately.

As an example of the transformation of the electromagnetic fields, we
consider the fields seen by an observer in the system K when a point charge q

moves by in a straightline path with a velocity v. The charge is at rest in the

system K', and the transformation of the fields is given by the inverse of (11.148)

or (11.149). We suppose that the charge moves in the positive Xi direction and

that its closest distance of approach to the observer is b. Figure 11.8 shows a

suitably chosen set of axes. The observer is at the point P. At t= t' = the origins

of the two coordinate systems coincide and the charge q is at its closest distance

to the observer. In the frame K' the observer's point P, where the fields are to be

evaluated, has coordinates x [ = -vt', x'2 = b, x'3 = 0, and is a distance r' = Vb 2 + (t>0
2

away from q. We will need to express r' in terms of the coordinates in K. The
only coordinate needing transformation is the time t' = y[t-(v/c

2
)x 1 ] = yt, since

Xi = for the point P in the frame K. In the rest frame K' of the charge the

electric and magnetic fields at the observation point are

In terms of the coordinates of K the nonvanishing field components are

(11.150)

E[=-
(b

2 + y
2
v

2
t
2

)

qyvt
E'2 = /r2 . 2„ 2.2\.

(o +7 v t )

(11.151)
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Then, using the inverse of (11.148), we find the transformed fields in the system

K:

qyvt
Ei= E[ =

E2 = yE'2

(b
2+ 7Vr2

)

3/2

(b
2+ 7Vt2

)

;

B 3 = ypE 2 = ($E2

(11.152)

with the other components vanishing.

Fields (11.152) exhibit interesting behavior when the velocity of the charge

approaches that of light. First of all there is observed a magnetic induction in the

x 3 direction. This magnetic field becomes almost equal to the transverse electric

field E2 as 0—>1. Even at nonrelativistic velocities where y— 1, this magnetic

induction is equivalent to

c r

which is just the Ampere-Biot-Savart expression for the magnetic field of a

moving charge. This can evidently be obtained directly from the inverse of

(11.149). At high speeds when y»l we see that the peak transverse electric field

E2 (t = 0) becomes equal to y times its nonrelativistic value. In the same limit,

however, the duration of appreciable field strengths at the point P is decreased.

A measure of the time interval over which the fields are appreciable is evidently

At-— (11.153)
yv

As y increases, the peak fields increase in proportion, but their duration goes in

inverse proportion. The time integral of the fields times v is independent of

velocity. Figure 11.9a shows this behavior of the transverse electric and

magnetic fields and the longitudinal electric field. For /3
—> 1 the observer at P

sees nearly equal transverse and mutually perpendicular electric and magnetic

fields. These are indistinguishable from the fields of a pulse of plane polarized

radiation propagating in the Xi direction. The extra longitudinal electric field

varies rapidly from positive to negative and has zero time integral. If the

observer's detecting apparatus has any significant inertia, it will not respond to

this longitudinal field. Consequently for practical purposes he will see only the

transverse fields. This equivalence of the fields of a relativistic charged particle

and those of a pulse of electromagnetic radiation will be exploited in

Chapter 15.

The fields (11.152) and the curves of Fig. 11.9a emphasize the time

dependence of the fields at a fixed observation point. An alternative description

can be given in terms of the spatial variation of the fields relative to the
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vt ^
(a)

(b)

Fig. 11.9 Fields of a uniformly moving charged particle, (a) Fields at the observation

point P in Fig. 11.8 as a function of time, (b) Lines of electric force for a particle at rest

and in motion (7 = 3).

instantaneous present position of the charge in the laboratory. From (11.152) we
see that E 1/E2 = -vt/b. Reference to Fig. 11.8 shows that the electric field is thus

directed along n, a unit radial vector from the charge's present position to the

observation point, just as for a static Coulomb field. By expressing the

denominator in (11.152) in terms of r, the radial distance from the present

position to the observer, and the angle \p = cos~
l

(n • v) shown in Fig. 11.8, we
obtain the electric field in terms of the charge's present position:

E=
ry(i-£W" <

1L154)

The field is radial, but the lines of force are isotropically distributed only for
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/3 = 0. Along the direction of motion (i// = 0, it), the field strength is down by a

factor of y~ 2
relative to isotropy, while in the transverse directions (i|/= tt/2) it is

larger by a factor of 7. This whiskbroom pattern of lines of force, shown in Fig.

11.9b, is the spatial "snapshot" equivalent of the temporal behavior sketched in

part (a) of that figure. The compression of the lines of force in the transverse

direction can be viewed as a consequence of the FitzGerald-Lorentz contraction.

11.11 Relativistic Equation of Motion for Spin in Uniform

or Slowly Varying External Fields

The effects of a particle's motion on the precession of its spin have already been

discussed in Section 11.8 on Thomas precession. Here we exploit the ideas of

Lorentz covariance to give an alternative, more elegant discussion leading to

what is known as the BMT equation of motion for the spin.* With the magnetic

moment given by (11.100), the rest frame equation of motion for the spin,

(11.101), is

I=2^ SXB' <n - 155>

where primes denote quantities defined in the rest frame and s is the spin in that

frame. This equation applies to a particle of mass m, charge e, spin s and a

magnetic dipole moment with Lande g factor of g. It is a classical equation, but is

the same as the quantum-mechanical Heisenberg equation of motion for the spin

operator or, equivalently, the equation of motion for the polarization vector of

the system.

(a) Covariant Equation of Motion

To obtain a relativistic generalization of (11.155) it is first necessary to

generalize the spin s from a 3-vector in the particle's rest frame. There are two

avenues open. One is to recall from the end of Section 11.9 that P and -M form

an antisymmetric second rank tensor. Thus |x and hence s can be generalized to a

second rank tensor S
ap

. A simpler alternative is to define an axial 4-vector S
a
in

such a manner that it has only three independent components and reduces to the

spin s in the particle's rest frame. t If S
a
denotes the components of the spin

4-vector in the inertial frame K, the time-component in the rest frame K' is,

* Named, not after one of the New York City subway lines, but for V. Bargmann,
L. Michel, and V. L. Telegdi, Phys. Rev. Letters 2, 435 (1959). The equation actually has

much earlier origins; Thomas published an equivalent in 1927 (op. cit.); Frenkel discussed

similar equations contemporaneously; Kramers considered the g = 2 equation in the

1930s.

tThe spin 4-vector S
a

is the dual of the tensor S
ap

in the sense that S
a =

(l/2c)€
a^fiU3S,8 , where Ua

is the particle's 4-velocity.
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according to (11.22),

S
f0 = y(S°-P'S)=^UaS

a

where Ua
is the particle's 4-velocity. We see that the vanishing of the

time-component in the rest frame is imposed by the covariant constraint,

UaS
a = (11.156)

In an inertial frame where the particle's velocity is cP the time component of

spin is therefore not independent, but is

So = 0-S (11.157)

It is useful to display the explicit connection between S
a
and the rest-frame spin

s. Use of (11.19) or (11.22) and (11.157) yields

s = S-^-(p.S)P (11.158)

and the inverse expressions

S =s+^T (p-s)p|
7+1 H H

V (11.159)

So = yP'S J

Specification of the rest-frame 3-vector spin s determines the components of the

4-vector spin S
a

in any inertial frame.

The obvious generalization of the left-hand side of (11.155) is dSa
jdr, where t

is the particle's proper time. The right-hand side must therefore be expressible

as a 4-vector. We assume that the equation is linear in the spin S
a and the

external fields FaP
. It can also involve Ua and dUa

/dr, the latter being linear in

FaP
itself. Higher time derivatives are assumed absent. And of course the

equation must reduce to (11.155) in the rest frame. With the building blocks S
a

,

Fap
, Ua

, dUa
ldr and the requirement of linearity in S

a
and Fap

, we can construct

the 4-vectors,

dU^
u°

Other possibilities, such as Fa
" l/p(SxU

x

), (lAF^UJS , (SxF^UJ dlT/dr, etc.

either vanish, are higher order in Fap
, or reduce to multiples of the above three.

The equation of motion must therefore be of the form,

^ = AlFa%+^(SxFx,iL;jUa+^(s3^)ua
(11.160)

where Ai, A2 , A3 are constants. The constraint equation (11.156) must hold at
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all times. This requires

and hence

-^(UaS
a
) = S

a^+U«^ =
dr dr dr

(A 1-A2)UaFap
Sp + (l +A3)Sp^r = (11.161)

If nonelectromagnetic or field gradient forces are allowed, at least in principle, it

is necessary that Ai =A2 and A3 = -l. Reduction to the rest frame and

comparison with (11.155) gives Ai = ge/2mc. Thus (11.160) becomes

f=^[^+?™^>B uis^) (iii62)

If the electromagnetic fields are uniform in space, or if gradient force terms like

V(jx • B), (5.69), can be neglected, and there are no other appreciable forces on

the particle, its translational motion is described by (11.144):

^=— FaP
l/p (11.163)

dr mc p

Then (11.162) becomes the BMT equation:

f^li^Kt^^M (ni64)

(b) Connection to the Thomas Precession

The covariant equation (11.162), or its special case (11.164), contain the

Thomas precession of the spin. It occurs in the final term in (11.162), the term

that was specified by the requirement (11.156) that the spin 4-vector be

orthogonal to the 4-velocity. To exhibit the Thomas precession explicitly, we
consider the equation of motion for the rest-frame spin s. Using the result

(11 - 165>

and (11.158) for s in terms of S, we find that the equations,

and

§=w(s.§)
can be combined to give, after some simplification

ds

dr
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In these equations (F
,
F) stand for the time and space components of the terms

with coefficient (ge/2mc) in (11.162). Since (F
,
F) form a 4-vector, with F =

P • F, the first two terms in (11.166) can be recognized as the torque F' evaluated

in the rest frame. Dividing both sides by 7 and using the definition (11.119) for

the Thomas precession frequency, we find that (11.166) becomes

^ = -F'+<*T xs (11.167)
dt 7

Since F' is given by the right-hand side of (11.155), this is just (11.107) of

Section 11.8.

For motion in electromagnetic fields where (11.163) holds,

^=^[E+pxB-p(p-E)] (11.168)

We also have, from the transformation properties (11.149) of B,

i
F=2^ sx

[
B-^ (p

- B)p-pxE
]

(11169)

When these expressions are inserted into (11.167), it becomes

f=7^
sx

[(I-
1 +

^)
B- (I" O^TI (P •

B)P- (I-^Ti)P
xE

]
(11170)

This form of the equation of motion of the spin vector is Thomas's equation

(4.121) (op. cit).

(c) Rate of Change of Longitudinal Polarization

As an example of the use of (11.170) we consider the rate of change of the

component of spin s parallel to the velocity. This is the longitudinal polarization

or net helicity of the particle. If (S is a unit vector in the direction of p, the

longitudinal polarization is p • s. It changes in time because s changes and also p
changes. Explicitly, we have

|(P . 8)^.f+
i [s-(P . 8)P] .f

Using (11.168) and (11.170), this can be written, after some algebra, as

|(P-^-^-[(f-l>xB+ (f-I)E ]
(11,71)

where sx is the component of s perpendicular to the velocity.

Equation (11.171) demonstrates a remarkable property of a particle with

g = 2. In a purely magnetic field, the spin precesses in such a manner that the

longitudinal polarization remains constant, whatever the motion of the particle.

If the particle is relativistic (|3—» 1), even the presence of an electric field causes
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the longitudinal polarization to change only very slowly, at a rate proportional

to y~ 2
times the electric field component perpendicular to v.

The electron and the muon have g-factors differing from the Dirac value of

2 by radiative corrections of order alir- 0.00232. Because (g-2) is so small, the

longitudinal polarization of a beam of electrons or muons orbiting in a magnetic

field changes relatively slowly. This phenomenon permits very precise measure-

ments of the quantity a= (g—2)/2, called the anomaly or the anomalous

magnetic moment. The values of a provide accurate tests of the validity of

quantum electrodynamics. For muons, 100 per cent longitudinally polarized at

birth, the change in polarization is detected by means of the characteristically

asymmetric angular distribution of the decay electron from the muon relative to

the direction of muon polarization. For electrons from beta decay the initial

longitudinal polarization is ±/3. Its change with time is detected by changes in the

asymmetry of Mott scattering (e~) or the angular distribution of the annihilation

photons from positronium formed in an intense magnetic field (e
+
). The

precision attainable by these techniques is indicated by the most recent data:*

a(O = (115,965.77±0.35)xl0"8

a(e
+
) = (1 16,030± 120) x 10

-8

a(/uL
±
) = (116,616±31)xlO

-8

These results are in good agreement with the predictions of quantum elec-

trodynamics, as discussed in detail in the review by Bailey and Picasso.

Further elaboration of spin precession is left to the problems at the end of

Chapter 12.

11.12 Note on Notation and Units in Relativistic Kinematics

In dealing with Lorentz transformations and relativistic kinematics, it is conven-

ient to adopt a consistent, simple notation and set of units. We have seen that

various powers of the velocity of light c appear in the formulas of special

relativity. These tend to make the formulas cumbersome, although their

presence facilitates extracting nonrelativistic limits (by letting c—»°°). In doing

relativistic kinematics, it is customary to suppress all factors of c by suitable

choice of units. We adopt the convention that all momenta, energies, and masses

are measured in energy units, while velocities are measured in units of the

*c :J. C. Wesley and A. Rich, Phys. Rev. A4, 1341 (1971).

e
+
:J. R. Gilleland and A. Rich, Phys. Rev. A5, 38 (1972).

jx'iJ. Bailey et al., Phys. Letters 28B, 287 (1968).

See also the review by J. Bailey and E. Picasso, Progress in Nuclear Physics, Vol. 12, Part

1, eds. D. M. Brink and J. H. Mulvey Pergamon, Oxford, (1970), pp. 43-75.
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velocity of light. In particle kinematics the symbols,

P

E

m

v
.

Thus the connection between

E 2 = p
2+m2

, a particle's velocity is v=p/E, and so on. As energy units, the eV
(electron volt), the MeV (million electron volt), and the GeV (10

9
eV) are

convenient. One electron volt is the energy gained by a particle with electronic

charge when it falls through a potential difference of one volt (1 eV=1.602x
1(T

12
ergs= 1.602X 1(T

19
joules).

In addition to eliminating powers of c, it is customary to denote scalar

products of 4-vectors by a centered dot between italicized symbols, with scalar

products of 3-vectors denoted by a dot between boldface symbols, as usual. Thus

we have
a • b= aa b

a = a() bo
— a • b

Four-vectors may be written with or without an index. Thus conservation of

energy and momentum may appear as

P= p+q
or
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M. L. Boas, Am. J. Phys. 29, 283 (1961),

G. D. Scott and H. J. Van Driel, Am. J. Phys. 38, 971 (1970).

For the reader who wishes a more elementary or leisurely introduction to special

relativity, there are a host of undergraduate texts, among them
Bohm,
Feynman, Vol. 1, Chapters 15, 16, 17,

French,

Kacser,

Rosser,

Sard,

Smith,

Taylor and Wheeler.

Sard's book is specially recommended. It is at an intermediate level and has a thorough

discussion of Thomas precession and the motion of spin. Hagedorn also discusses the

BMT equation in detail.

Further references on specific topics can be found in the AAPT Resource Letter on

Special Relativity SRT-1, Am. J. Phys. 30, 462 (1962).

PROBLEMS

11.1 A possible clock is shown in the figure. It consists of a flashtube F and a photocell

P shielded so that each views only the mirror M, located a distance d away, and
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mounted rigidly with respect to the flashtube-photocell assembly. The electronic

innards of the box are such that, when the photocell responds to a light flash from the

mirror, the flashtube is triggered with a negligible delay and emits a short flash towards

the mirror. The clock thus "ticks" once every {Idle) seconds when at rest.

Problem 11.1

(a) Suppose that the clock moves with a uniform velocity v, perpendicular to the line

from PF to M, relative to an observer. Using the second postulate of relativity, show
by explicit geometrical or algebraic construction that the observer sees the relativistic

time dilatation as the clock moves by.

(b) Suppose that the clock moves with a velocity v parallel to the line from PF to M.
Verify that here, too, the clock is observed to tick more slowly, by the same time

dilatation factor.

11.2 Show explicitly that two successive Lorentz transformations in the same direction

are equivalent to a single Lorentz transformation with a velocity

_ Vi + v2

V
~l+(viv2/c

2
)

This is an alternative way to derive the parallel-velocity addition law.

11.3 A coordinate system K' moves with a velocity v relative to another system K. In

K' a particle has a velocity u' and an acceleration a'. Find the Lorentz transformation

law for accelerations, and show that in the system K the components of acceleration

parallel and perpendicular to v are

(,-sr

,
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11.4 Assume that a rocket ship leaves the earth in the year 2000. One of a set of

twins born in 1980 remains on earth; the other rides in the rocket. The rocket ship is so

constructed that it has an acceleration g in its own rest frame (this makes the occupants

feel at home). It accelerates in a straight-line path for 5 years (by its own clocks),

decelerates at the same rate for 5 more years, turns around, accelerates for 5 years,

decelerates for 5 years, and lands on earth. The twin in the rocket is 40 years old.

(a) What year is it on earth?

(b) How far away from the earth did the rocket ship travel?

11.5 In the reference frame K two very evenly matched sprinters are lined up a

distance d apart on the y axis for a race parallel to the x axis. Two starters, one beside

each man, will fire their starting pistols at slightly different times, giving a handicap to

the better of the two runners. The time difference in K is T.

(a) For what range of time differences will there be a reference frame K' in which
there is no handicap, and for what range of time differences is there a frame K' in

which there is a true (not apparent) handicap?

(b) Determine explicitly the Lorentz transformation to the frame K' appropriate for

each of the two possibilities in (a), finding the velocity of K' relative to K and the

space-time positions of each sprinter in K'.

11.6 (a) Use the relativistic velocity addition law and the invariance of phase to discuss

the Fizeau experiments on the velocity of propagation of light in moving liquids. Show
that for liquid flow at a speed t; parallel or antiparallel to the path of the light the speed of

the light, as observed in the laboratory, is given to first order in v by

where co is the frequency of the light in the laboratory (in the liquid and outside it), n((o) is

the index of refraction of the liquid. Because of the extinction theorem, it is assumed that

the light travels with speed u'=c/n(cu') relative to the moving liquid,

(b) Consult the paper of W. M. Macek, J. R. Schneider, and R. M. Salamon, J. Appl.

Phys. 35, 2556 (1964) and discuss the status of the Fizeau experiments.

11.7 An infinitesimal Lorentz transformation and its inverse can be written as

where e
ap and e'

a$
are infinitesimal.

(a) Show from the definition of the inverse that €
,aP = -eaP

.

(b) Show from the preservation of the norm that e
a$ = -€ 3a

.

(c) By writing the transformation in terms of contravariant components on both sides

of the equation, show that €
aP

is equivalent to the matrix L (11.93).

11.8 (a) For the Lorentz boost and rotation matrices K and S show that

X'
a = (g"* + €

0P
)XP

X
a = (g

a'+€'a$
)x',

e-<**= I-p . K sinh £+(£ • K) 2
[cosh £-1]
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11.9 Two Lorentz transformations differ by an infinitesimal amount. In the notation of

Section 11.7 they are represented by A, = e
L

, A 2 = e
L+8L

. Without using explicit matrix

representations show that to first order in 8L the Lorentz transformation A = A 2A 1

~
]

can be written as

A =I+8L+± [L, 8L]+^ [L, [L, 5L]]+^[L, [L, [L, 8L]]] + • •
•

Hint: The early terms can be found by brute force, but alternatively consider the Taylor

series expansion in A of the operator/4(A)= e
Mi+6L)

c~
KL and then put \= 1.

11.10 Apply the result of the previous problem to a purely algebraic derivation of

(11.116) on Thomas precession.

(a) With
T _ p-K(tanh-fl)

L I 5L= (P+ SPii+SP^-KCtanh-
1

p')

where j3' = V(0 + 5Pi,)
2+ (5pj

2

, show that

8^-^ 8p,-K-8p
-- K(

;

anh
''

P)

(b) Using the commutation relations for K and S, show that

C, = [L, 8L] = -(^y^)
2

(P x 8p x) - S

C2 = [L, C1]= (tanh"
1

|3)
2 8L±

C3 = [L, GMtanh'p^C,
C4 = [L, C3 ] = (tanh-' /3)

4 SLX

where 8L± is the term in 8L involving 8p x .

(c) Sum the series of terms for AT =A2Ar 1

to obtain

AT = I-(y2

8p„+ 7 8pJ • K--^j (Px8pj • S

correct to first order in 80. [See D. Shelupsky, Am. J. Phys. 35, 650 (1967).]

11.11 An infinitely long straight wire of negligible cross-sectional area is at rest and has

a uniform linear charge density q in the inertial frame K'. The frame K' (and the wire)

move with a velocity v parallel to the direction of the wire with respect to the

laboratory frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest

frame of the wire. Using the Lorentz transformation properties of the fields, find the

components of the electric and magnetic fields in the laboratory.

(b) What are the charge and current densities associated with the wire in its rest

frame? In the laboratory?

(c) From the laboratory charge and current densities, calculate directly the electric

and magnetic fields in the laboratory. Compare with the results of (a).

11.12 (a) Express the Lorentz scalars Fa0FaP ,
^apFap, and &a$&aft in terms of E and B.

Are there any other invariants quadratic in the field strengths E and B?
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(b) Is it possible to have an electromagnetic field that appears as a purely electric field

in one inertial frame and as a purely magnetic field in some other inertial frame? What
are the criteria imposed on E and B such that there is an inertial frame in which there

is no electric field?

(c) For macroscopic media, E, B form the field tensor FaP and D, H the tensor Gae
.

What further invariants can be formed? What are their explicit expressions in terms of

the 3-vector fields?

11.13 In a certain reference frame a static, uniform, electric field E is parallel to the x

axis, and a static, uniform, magnetic induction B = 2E lies in the x-y plane, making an

angle 6 with the x axis. Determine the relative velocity of a reference frame in which
the electric and magnetic fields are parallel. What are the fields in that frame for 0« 1

and 0^(77-/2)?

11.14 In the rest frame of a conducting medium the current density satisfies Ohm's law,

J' = crE', where a is the conductivity and primes denote quantities in the rest frame.

(a) Taking into account the possibility of convection current as well as conduction

current, show that the covariant generalization of Ohm's law is

where Ua
is the 4-velocity of the medium.

(b) Show that if the medium has a velocity v = c|J with respect to some inertial frame

that the 3-vector current in that frame is

where p is the charge density observed in that frame.

(c) If the medium is uncharged in its rest frame (p' = 0), what is the charge density and

the expression for J in the frame of part (b)? This is the relativistic generalization of

11.15 The electric and magnetic fields (11.152) of a charge in uniform motion can be

obtained from Coulomb's law in the charge's rest frame and the fact that the field

strength F" p
is an antisymmetric tensor of rank two without considering explicitly the

Lorentz transformation. The idea is the following. For a charge in uniform motion the

only relevant variables are the charge's 4-velocity U" and the relative coordinate

Xa = x
p

a -x
q

a
, where xp

a and xq

a
are the 4-vector coordinates of the observation point

and the charge, respectively. The only antisymmetric tensor that can be formed is

(XaUp-X3Ua
). Thus the electromagnetic field FaP must be this tensor multiplied by

some scalar function of the possible scalar products, XaXa
, XvU", UaUa

.

(a) For the geometry of Fig. 11.8 the coordinates of P and q at a common time in K
can be written xp

a = (ct, b), x
q

a = (ct, \t), with b • v = 0. By considering the general form
of Fa(i

in the rest frame of the charge, show that

Verify that this yields the expressions (11.152) in the inertial frame K.

(b) Repeat the calculation, using as the starting point the common-time coordinates in

the rest frame, x'
p

a = (ct', b-vt') and x'q
a = (ct', 0). Show that

J
a -j-2 (U,r)U

a =^Fa
"U,

J = YO-[E4-pxB-(i(P • E)]+ pv

(10.8).

q (Xa
LTp-Xp LT)

q(Ya U"-Y"Ua
)

c (-Ya Y-)
3/2
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where Y'
a = Xp'-x^. Verify that the fields are the same as in part (a). Note that to

obtain the results of ( 1 1 . 1 52) it is necessary to use the time t of the observation point P
in K as the time parameter.

(c) Finally, consider the coordinate x
p

a = (ct, b) and the "retarded-time" coordinate

xq
° = [ct-R, p(cf-R)] where R is the distance between P and q at the retarded time.

Define the difference as Za = [R, b-p(cf-R)]. Show that in terms of Za and 17° the

field is

q (Z
a U*-Z»Ua

)

'•

11.16 A particle of mass M and 4-momentum P decays into two particles of masses mi

and m 2 .

(a) Use the conservation of energy and momentum in the form, p2 = P—pu and the

invariance of scalar products of 4-vectors to show that the total energy of the first

particle in the rest frame of the decaying particle is

_M2+m 1

2-m2
2

hl ~ 2M

and that E2 is obtained by interchanging m, and m2 .

(b) Show that the kinetic energy T, of the ith particle in the same frame is

T.-AM(l-S-fg)
V M 2M/

Where AM =M- m,-m2 is the mass excess or Q value of the process.

(c) The charged pi-meson (M= 139.6 MeV) decays into a mu-meson (mi =
105.7 MeV) and a neutrino (m2 = 0). Calculate the kinetic energies of the mu-meson
and the neutrino in the pi-meson's rest frame. The unique kinetic energy of the muon
is the signature of a two-body decay. It entered importantly in the discovery of the

pi-meson in photographic emulsions by Powell and co-workers in 1947.

11.17 The lambda particle (A) is a neutral baryon of mass M= 1115 MeV that decays

with a lifetime of t= 2.9 x 10" 10
sec into a nucleon of mass 939 MeV and a

pi-meson of mass m2
— 140 MeV. It was first observed in flight by its charged decay

mode A -» p -I- tt~ in cloud chambers. The charged tracks originate from a single point and
have the appearance of an inverted vee or lambda. The particles' identities and
momenta can be inferred from their ranges and curvature in the magnetic field of the

chamber.

(a) Using conservation of momentum and energy and the invariance of scalar

products of 4-vectors show that, if the opening angle 6 between the two tracks is

measured, the mass of the decaying particle can be found from the formula

M*= m
1

2 + m2

2 + 2E
1
E 2 -2p,p2 cos 6

where here p, and p2 are the magnitudes of the 3-momenta.
(b) A lambda particle is created with a total energy of 10 GeV in a collision in the top

plate of a cloud chamber. How far on the average will it travel in the chamber before

decaying? What range of opening angles will occur for a 10 GeV lambda if the decay is

more or less isotropic in the lambda's rest frame?

11.18 If a system of mass M decays or transforms at rest into a number of particles, the

sum of whose masses is less than M by an amount AM,
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(a) show that the maximum kinetic energy of the ith particle (mass is

(b) determine the maximum kinetic energies in MeV and also the ratios to AM for

each of the particles in the following decays or transformations of particles at rest:

11.19 The presence in the universe of an apparently uniform "sea" of black-body

radiation at a temperature of roughly 3°K gives one mechanism for an upper limit on
the energies of photons that have traveled an appreciable distance since their creation.

Photon-photon collisions can result in the creation of a charged particle and its

antiparticle ("pair creation") if there is sufficient energy in the center of "mass" of the

two photons. The lowest threshold and also the largest cross section occurs for a

negaton-positon pair.

(a) Taking the energy of a typical 3°K photon to be E = 2.5x 10
-4
eV, calculate the

energy for an incident photon such that there is energy just sufficient to make a

negaton-positon pair. For photons with energies larger than this threshold value the

cross section increases to a maximum of the order of (e
2/mc 2

)
2 and then decreases

slowly at higher energies. This interaction is one mechanism for the disappearance of

such photons as they travel cosmological distances.

(b) There is some evidence for a diffuse X-ray background with photons having

energies of several hundred eV or more. Beyond 1 keV the spectrum falls as E" with

n— 1.5. Repeat the calculation of the threshold incident energy, assuming that the

energy of the photon in the "sea" is 500 eV.

11.20 In a collision process a particle of mass m2 , at rest in the laboratory, is struck by a

particle of mass m l5 momentum pUAB and total energy ELAB . In the collision the two
initial particles are transformed into two others of mass m3 and m4 . The configurations

of the momentum vectors in the center of momentum (cm) frame (traditionally called

the center of mass frame) and the laboratory frame are shown in the figure.

K± -*e±+ir°+v

p+ p-> 27r
++ 2'7r"+ 7r

p+p->K++K-+ 37T°

P4

Laboratory frame cm frame

Problem 11.20

(a) Use invariant scalar products to show that the total energy W in the cm frame has

its square given by

W2=m 1

2+m2
2+2m2£LAB
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and that the cms 3-momentum p' is

(b) Show that the Lorentz transformation parameters pcms and 7^ describing the

velocity of the cms in the laboratory are

q Plab Wh. "t~ -Elab
Pcms~m2+ELAB '

7cms " W
(c) Show that the results of (a) and (b) reduce in the nonrelativistic limit to the

familiar expressions,

\m 1
+m2/2mi

\m 1 +m2 /m, +m2 / m, +m2

11.21 The threshold kinetic energy in the laboratory for a given reaction is the

kinetic energy of the incident particle on a stationary target just sufficient to make the

center of mass energy W equal to the sum of the rest energies of the particles in the

final state. Calculate the threshold kinetic energies for the following processes.

Express your answers in MeV or GeV and also in units of the rest energy of the

incident particle (unless it is a massless particle).

(a) Pi-meson photoproduction, 7p—»TT p

(mp = 938.5 MeV, mj =135.0 MeV)

(b) Nucleon-antinucleon pair production in nucleon-nucleon collisions, for example,

pp-*pppp.
(c) Nucleon-antinucleon pair production in electron-electron collisions, e e —>e e pp
and e

+
e ^pp (me

= 0.511 MeV).

11.22 In colliding beam machines like the Intersecting Storage Ring (ISR) at CERN or

the numerous e
+
e~ storage rings, counter-rotating relativistic beams of particles are

stored and made to collide more or less head on in one or more interaction regions.

Let the particles in the two beams have masses m x and rrh and momenta p x and p2 ,

respectively, and let them intersect with an angle between the two beams.
(a) Show that, to order (m/p)

2
inclusive, the square of the total energy in the center of

mass is

W> = 4plP2 cos
2

%+(p,+P2)(—+—)
£ \ P\ P2 /

(b) Show that the center of mass inertial frame has a velocity in the laboratory given

by

= (pi + p2 ) sin 6/2
Pcms

(Ex +E2) sin a
where

6

tfi-pz/
""2

The angle a is defined in the figure below.

(c) Check that the results of (b) agree with part (b) of Problem 11.20.

tan a =
(

Pl + P2
) tan r

VP1-P2/
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(d) If the crossing angle is = 20° and p l
= p2 = 30 GeV/c, is the laboratory frame a

reasonable approximation to the cms? Consider, for example, a proton-proton inelastic

collision involving pion production and examine the collinearity of two pions produced

with equal and opposite momenta of I GeV/c in the cms.

^cms

Problem 11.22

11.23 In an elastic scattering process the incident particle imparts energy to the

stationary target. The energy AE lost by the incident particle appears as recoil kinetic

energy of the target. In the notation of Problem 11.20, m3 = m x and m4 = m2, while

AE = T4 = E4 —m4 .

(a) Show that AE can be expressed in the following different ways,

AE =^pLB(l-cos 0')

2m2pLAB cos
2

4

W2+pLB sin
2

4

AE = -

—

2m 2

where Q 2 = —(pl
—p3 )

2 = (p 1
— p3 )

2 — (E l
—E3 )

2
is the Lorentz invariant momentum trans-

fer (squared).

(b) Show that for charged particles other than electrons incident on stationary

electrons (m,»m 2 ) the maximum energy loss is approximately

AEmax -27 2 2me

where 7 and |3 are characteristic of the incident particle and y«(mjme ). Give this

result a simple interpretation by considering the relevant collision in the rest frame of

the incident particle and then transforming back to the laboratory.

(c) For electron-electron collisions show that the maximum energy transfer is

\E (± = (y-l)me



12
Dynamics of Relativistic

Particles and Electromagnetic
Fields

The kinematics of the special theory of relativity was developed in Chapter 11.

We now turn to the question of dynamics. In the first part of the chapter we
discuss the dynamics of charged particle motion in external electromagnetic

fields. The Lagrangian approach to the equations of motion is presented mainly

to introduce the concept of a Lorentz invariant action from which covariant

dynamical equations can be derived. The transition to a Hamiltonian, with the

definition of the canonical momentum, is then discussed. There follows a

perhaps pedantic, or at least pedagogical, section on the Lorentz transformation

properties of force and the dangers of pulling oneself up by Coulomb's

bootstraps to the Maxwell equations. Then several sections are devoted to the

motion of a charged particle in electric and magnetic fields. Motion in a uniform

static magnetic field is followed by consideration of motion in a combination of

electric and magnetic fields. Then the secular changes (drifts) of a particle's orbit

caused by nonuniform magnetic fields and the adiabatic invariance of the linked

flux are discussed. The problem of a relativistic Lagrangian for a system of

interacting charged particles is addressed, and it is shown that to order v
2
/c

2
it is

possible to eliminate retardation effects and write a Lagrangian (the Darwin
Lagrangian) in terms of the instantaneous positions and velocities of the

particles.

In the last four sections of the chapter the emphasis is on fields. First, the

Maxwell equations are derived from a suitable Lagrangian. Then, ;. modified

Lagrangian describing a "photon" with mass is presented and its consequences

in resonant circuits, transmission lines, and cavities described. A covariant

generalization of the Hamiltonian for fields is next discussed, along with the

conservation laws of energy, momentum, and angular momentum for fields, both

sourcefree and in interaction with charged particles. The chapter ends with a

derivation of the invariant Green functions that form the basis of the solution of

the wave equation with a given 4-vector current density as source.

571
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12.1 Lagrangian and Hamiltonian for a Relativistic Charged

Particle in External Electromagnetic Fields

The equations of motion,

dt L c
(12.1)

for a particle of charge e in external fields E and B can be written in the covariant

form (11.144):

where m is the mass, t is the proper time, and Ua = (yc, yu) = p
a/m is the

4-velocity of the particle.

Although the equations of motion (12.1) are sufficient to describe the general

motion of a charged particle in external electromagnetic fields (neglecting the

emission of radiation), it is useful to consider the formulation of the dynamics

from the viewpoint of Lagrangian and Hamiltonian mechanics. The Lagrangian

treatment of mechanics is based on the principle of least action or Hamilton's

principle. In nonrelativistic mechanics the system is described by generalized

coordinates qi(t) and velocities qi(t). The Lagrangian L is a functional of qt and q 4

and perhaps the time explicitly and the action A is defined as the time integral of L
along a possible path of the system. The principle of least action states that the

motion of a mechanical system is such that in going from a configuration a at time

U to a configuration b at time t2 , the action

is an extremum. By considering small variations of the coordinates and velocities

away from the actual path and requiring SA = 0, one obtains (see Goldstein,

Chapter 2) the Euler-Lagrange equations of motion,

We wish to extend the formalism to relativistic particle motion in a manner

consistent with the special theory of relativity and leading for charged particles

in external fields to (12.1) or (12.2). There are several levels of sophistication

possible. The least sophisticated and most familiar treatment continues with

ordinary coordinates, velocities, and time and generalizes from the nonrelativis-

tic domain in a straightforward way. More sophisticated is a manifestly covariant

discussion. We first present the elementary approach and then indicate the

manifestly covariant treatment.

(12.3)

(12.4)
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(a) Elementary Approach to a Relativistic Lagrangian

To obtain a relativistic Lagrangian for a particle in external fields we first

consider the question of the Lorentz transformation properties of the Lagran-

gian. From the first postulate of special relativity the action integral must be a

Lorentz scalar because the equations of motion are determined by the extremum

condition, 8A = 0. If we introduce the particle's proper time t into (12.3)

through dt = ydr, the action integral becomes

A=J%LdT (12.5)

Since proper time is invariant the condition that A also be invariant requires that

yL be Lorentz invariant.

The Lagrangian for a free particle can be a function of the velocity of the

particle and its mass, but cannot depend on its position. The only Lorentz

invariant function of the velocity available is U«Ua = c
2

. Thus we conclude that

the Lagrangian for a free particle is proportional to y
-1 = Vl-/3 2

. It is easily seen

that

(12.6)

is the proper multiple of 7
1

to yield, through (12.4), the free-particle equation

of motion,

|(7mu)=0

The action (12.5) is proportional to the integral of the proper time over the

path from the initial proper time Ti to the final proper time t2 . This integral is

Lorentz invariant, but depends on the path taken. For purposes of calculation,

consider a reference frame in which the particle is initially at rest. From
definition (11.26) of proper time it is clear that, if the particle stays at rest in that

frame, the integral over proper time will be larger than if it moves with a nonzero

velocity along its path. Consequently we see that a straight world line joining the

initial and final points of the path gives the maximum integral over proper time

or, with the negative sign in (12.6), a minimum for the action integral. This

motion at constant velocity is, of course, the solution of the free-particle

equation of motion.

The general requirement that yL be Lorentz invariant allows us to determine

the Lagrangian for a relativistic charged particle in external electromagnetic

fields, provided we know something about the Lagrangian (or equations of

motion) for nonrelativistic motion in static fields. A slowly moving charged

particle is influenced predominantly by the electric field that is derivable from

the scalar potential 4>. The potential energy of interaction is V=e<£>. Since the

nonrelativistic Lagrangian is (T- V), the interaction part Lint of the relativistic
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Lagrangian must reduce in the nonrelativistic limit to

Ut-^Lff—e* (12.7)

Our problem thus becomes that of finding a Lorentz invariant expression for

yLint that reduces to (12.7) for nonrelativistic velocities. Since <I> is the time

component of the 4-vector potential Aa
, we anticipate that yLint will involve the

scalar product of Aa
with some 4-vector. The only other 4-vectors available are

the momentum and position vectors of the particle. Since gamma times the

Lagrangian must be translationally invariant as well as Lorentz invariant, it

cannot involve the coordinates explicitly. Hence the interaction Lagrangian must

be*

Lint UaA
yc

or

Lint = -e<I>+^ii • i

The combination of (12.6) and (12.8) yields the complete relativistic Lagrangian

for a charged particle:

L = -mc 2 Vl-^+-u- A-e<D (12.9)
V c c

Verification that (12.9) does indeed lead to the Lorentz force equation will be

left as an exercise for the reader. Use must be made of the convective derivative

[d/dt = (d/dt)+u • V] and the standard definitions of the fields in terms of the

potentials.

The canonical momentum P conjugate to the position coordinate x is obtained

by the definition,

Pi^^=ymui+-A (12.10)
oUi C

Thus the conjugate momentum is

P =p+-A (12.11)
c

where p = ymu is the ordinary kinetic momentum. The Hamiltonian H is a

function of the coordinate x and its conjugate momentum P and is a constant of

* Without appealing to the nonrelativistic limit this form of Lint can be written

down by demanding that yLint be a Lorentz invariant that is (1) linear in the charge of the

particle, (2) linear in the electromagnetic potentials, (3) translationally invariant, and (4) a

function of no higher than the first time derivative of the particle coordinates. The reader

may consider the possibility of an interaction Lagrangian satisfying these conditions, but

linear in the field strengths Fap
, rather than the potentials A".
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the motion if the Lagrangian is not an explicit function of time. The Hamiltonian

is defined in terms of the Lagrangian as

H-P-u-L (12.12)

The velocity u must be eliminated from (12.12) in favor of P and x. From (12.10)

or (12.11) we find that

cP-eA

v('-?y

(12.13)

When this is substituted into (12.12) and into L (12.9), the Hamiltonian takes on

the form:

H = V(cP-eA) 2 + mV+e<l> (12.14)

Again the reader may verify that Hamilton's equations of motion can be

combined to yield the Lorentz force equation. Equation (12.14) is an expression

for the total energy W of the particle. It differs from the free-particle energy by

the addition of the potential energy e<3> and by the replacement p-^ [P-(e/c)A].

These two modifications are actually only one 4-vector change. This can be seen

by transposing e<& in (12.14) and squaring both sides. Then

(W-e<t>)
2-(cF-eA) 2 = (mc

2

)

2
(12.15)

This is just the 4-vector scalar product,

pap
a = (mc)

2
(12.16)

where

p- = (f,p)=g(W- e*),P-fA) (12.17)

We see that the total energy W/c acts as the time component of a canonically

conjugate 4-momentum Pa
of which P given by (12.11) is the space part. A

manifestly covariant approach, discussed in the following paragraphs and also in

Problem 12.1 leads naturally to this 4-momentum.
In passing we remark on the question of gauge transformations. Obviously the

equations of motion (12.1) are invariant under a gauge transformation of the

potentials. Since the Lagrangian (12.8) involves the potentials explicitly, it is not

invariant. In spite of this lack of invariance of L under gauge transformations it

can be shown (Problem 12.2) that the change in the Lagrangian is of such a form

(a total time derivative) that it does not alter the action integral or the equations

of motion.

(b) Manifestly Covariant Treatment of the Relativistic Lagrangian

To make a manifestly covariant description the customary variables x and u

are replaced by the 4-vectors x
a and Ua

. The free-particle Lagrangian (12.6) can
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be written in terms of Ua
as

Uee=-—JUJr (12.18)
7

Then the action integral (12.5) would be

A = -mc [

2

\fUJJ" di (12.19)

This manifestly invariant form might be thought to provide the starting point for

a variational calculation leading to the equation of motion, dUa
/dr :=0. There is,

however, the equation of constraint,

UaUa = c
2

(12.20a)

or the equivalent constraint,

dUa

Ua^=0 (12.20b)

on the equations of motion. This can be incorporated by the Lagrange multiplier

technique, but we pursue a different, equivalent procedure. The integrand in

(12.19) is

y/UaUa dj— -J~^ ^p- dr = V

g

aP dxa dxfdr dr

that is, the infinitesimal length element in 4-space. This suggests that the action

integral (12.19) be replaced by

A =-™f V«"
Sff * (12-21)

where the 4-vector coordinate of the particle is x
a
(s), with s a parameter that is a

monotonically increasing function of t, but otherwise arbitrary. The action

integral is an integral along the world line of the particle, and the principle of

least action is the statement that the actual path is the longest path, namely the

geodesic* The Lagrangian variables are now x
a
and "the velocity" dx

a
/ds, but s

is considered as arbitrary. Only after the calculus of variations has been

completed do we identify

and so impose the constraint (12.20). A straightforward variational calculation

with (12.21) yields the Euler-Lagrange equations,

d r dx
a
/ds

mc
ds

V
dxp dx p

ds ds

* The geodesic is the longest path or longest proper time for timelike separation of

events. See Rohrlich, pp. 277-278.
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m

as expected for free-particle motion.

For a charged particle in an external field the form of the Lagrangian (12.8)

suggests that the manifestly covariant form of the action integral is

e dx,

c ds
° A"(x) ds

Hamilton's principle yields the Euler-Lagrange equations,

dL
dsifdx,

d
aL =

where the Lagrangian is

L=- 4>mcvg
dxa dx*

,
e dxc

A"(x)

(12.23)

(12.24)

(12.25)
ds ds c ds

Explicitly, (12.24), upon division by the square root and use of (12.22), becomes

d
2
x
a

e dAa
(x) e dxpm

dT
2 +

c di c dr
d
a
A^(x) =

Since dAa
/dT = (dx^dr) d

pAa
, this equation can be written as

m
d

2
x

c

dT c dr
(12.26)

which is the covariant equation of motion (12.2) in different notation.

The transition to the conjugate momenta and a Hamiltonian is simple enough,

but has problems of interpretation. The conjugate momentum 4-vector is

defined by

P° = ^-=mUa+-Aa

dxa \ c

(S)

(12.27)

The minus sign is introduced so that (12.27) conforms with (12.11); its origin can

be traced to the properties of the Lorentz space-time. A Hamiltonian can be

defined by

H= \{PaUa + L)

Elimination of Ua
by means of (12.27) leads to the expression.

(12.28)

(12.29)
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Hamilton's equations are

dx
a

= dH = 1

dr dPa m (
p
"-f

A°)

and (12.30)

dPa

dr dxa mc
a
aA p

This can be immediately shown to be equivalent to the Euler-Lagrange equation

While the above Hamiltonian is formally satisfactory, it has several problems.

The first is that it is by definition a Lorentz scalar, not an energylike quantity.

Second, use of (12.20a) and (12.27) shows that H = 0. Clearly, such a

Hamiltonian formulation differs considerably from the familiar nonrelativistic

version. The reader can refer to Barut, pp. 68 ff, for a discussion of this and other

alternative Hamiltonians.

12.2 On the Question of Obtaining the Magnetic Field,

Magnetic Force, and the Maxwell Equations from

Coulomb's Law and Special Relativity

At present it is popular in undergraduate texts and elsewhere* to attempt to

derive magnetic fields and even the Maxwell equations from Coulomb's law of

electrostatics and the kinematics of special relativity. It should be immediately

apparent that without additional assumptions this is impossible. An obvious

counter-example is gravitation. In the nonrelativistic limit the force law has the

same space-time properties as Coulomb's law, yet the relativistic theory of

gravitation involves potentials that transform second rank tensors, not 4-vectors.

The confusion arises chiefly because the Lorentz transformation properties of

force are such that a magnetic -like force term appears when the force in one

inertial frame is expressed in terms of the force in another frame. It is tempting

to give this extra force term an independent existence and so identify the

magnetic field as a separate entity. But such a step is unwarranted without

additional assumptions. Consider the motion of a particle under the action of an

external force whose nature is unspecified, except that it is a proper force in

special relativity. In the inertial frame K' the equation of motion is

(12.26).

dt'
(12.31)

* See, for example, Chapter 6 of P. Lorrain and D. R. Corson, Electromagnetic

Fields and Waves, 2nd edition, W. H. Freeman, San Francisco (1970) and A. Bergstrom,

Nuovo Cimento 14B, 235 (1973).
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Fig. 12.1

where the particle's velocity is u' = dx'/dt' and its momentum is p' = yu mu'. If we
now consider the equation of motion of the particle in the inertial frame K, as

shown in Fig. 12.1, we find by direct calculation using the known Lorentz

transformation properties of momentum [either via dp
a
/dr or directly from p

a

and the relation t' = yv(t—\ • x/c
2
)] that the time rate of change of momentum in

K can be expressed in terms of the force in K' as

Here u is the velocity of the particle in K, while v and y„ are associated with the

Lorentz transformation from K to K'. Equations (12.32) are written deliberately

with d\>'/dt' on the right-hand side instead of F' to emphasize the kinematic

nature of the equations and of the second, velocity-dependent term.

The common, erroneous path is to say that in K' the particle is moving

nonrelativistically and hence experiences an electrostatic force, F' = qE', where q
is its charge and E' is the electric field in that frame. Then, depending upon

whether one is neglecting terms of order v
2
/c

2
or not, one defines the magnetic

field in the frame K as

and apparently arrives from the second term in (12.32) at the magnetic term of

the Lorentz force,

(12.32)

(12.33)

c

The reader may think that this seems quite reasonable, especially when he notes

from (11.149) that (12.33) is the correct expression for the magnetic field in K if
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there is a purely electric field E' in K\ But what if there had been a magnetic

field B' in K'? The force F' would still be F' = qE' provided u'= 0, but (12.33)

would no longer be the correct magnetic field in K.*

The fact is that it is impossible from (12.32) alone to deduce the existence of

the magnetic field B and the magnetic force q(uxB)/c. Other assumptions are

necessary. One key assumption or experimental fact is that in a frame K where

all the source charges producing an electric field E are at rest, the force on a

charge q is given by F=qE, independent of the velocity u of the charge in that

frame. A reasonably good treatment of the derivation of the Maxwell equations

using special relativity with all the assumptions visible is given by Frisch and

Wilets.t

An explicit counter-example that also illustrates the techniques of the preced-

ing section is the interaction of a particle with a Lorentz scalar potential </>(x).

The Lagrangians L or £ are

L = -mc 2^l-Je8*(x)/mc2

(12.34)

where g is a coupling constant analogous to the electric charge. The covariant

equations of motion following from (12.24) with the Lagrangian (12.34) are

dlT

dT
-= g(d>-p LT

a
UpdP

4>) (12.35)

while the explicit space-time equations are

<*E= _JL v</>-J^+u . Vd>) (12.36)
dt yu mc 2

\dt V v '

and dE/dt = u • dp/dt. For nonrelativistic motion, (12.36) has the appearance of

the Coulomb force law or Newton's law of gravitation with
<f> as the potential.

But for relativistic motion, the force is not the Lorentz force law; it involves the

4-vector d
a

<j>, not the second-rank field strength tensor Fap
. Note, too, that even

in a frame where the "sources" are at rest and hence <$> is independent of time,

the force on the particle is velocity-dependent, another difference from the

Lorentz force.

*This means that the second terms in (12.32) do not give the whole of the

magnetic force in K. Some of the q(uxB)/c comes from the first terms. It is, of course,

true that the Lorentz force law is consistent with (12.32). The reader should verify

that F = q(E' + u'xB7c) in K' leads via (12.32) to F = q(E + uxB/c) in K.

t D. H. Frisch and L. Wilets, Am. J. Phys. 24, 574 (1956). See also J. R. Tessman,
Am. J. Phys. 34, 1048 (1966). An informal and heuristic discussion, but with all the

empirical facts and assumptions clearly laid out, can be found in Chapter 3 of M. Schwartz,

Principles of Electrodynamics, McGraw-Hill, New York (1972).
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In spite of the differences from electromagnetism this Lorentz scalar potential

example conforms to the requirements of (12.32). In the frame K there is an

apparent magnetic-like force. But there is no independent entity B. The force in

any frame is given in terms of the four components of d
a

<f>, not the six

components of Fap
. Further consideration of this example is left to Problem

12.3.

12.3 Motion in a Uniform, Static, Magnetic Field

As a first important example of the dynamics of charged particles in elec-

tromagnetic fields we consider the motion in a uniform, static, magnetic

induction B. The equations of motion (12.1) are

where here the particle's velocity is denoted by v. Since the energy is constant in

time, the magnitude of the velocity is constant and so is 7. Then the first equation

can be written

where

^ = vx Wb (12.38)

eB ecB
f

.

coB
= =-=r (12.39)
ymc E

is the gyration or precession frequency. The motion described by (12.38) is a

circular motion perpendicular to B and a uniform translation parallel to B. The
solution for the velocity is easily shown to be

v(t) = U||€3 + a>Ba(ei - ie2) e~
io)Bt

( 1 2.40)

where €3 is a unit vector parallel to the field, €1 and e2 are the other orthogonal

unit vectors, v\\ is the velocity component along the field, and a is the gyration

radius. The convention is that the real part of the equation is to be taken. Then
one can see that (12.40) represents a counterclockwise rotation (for positive

charge e) when viewed in the direction of B. Another integration yields the

displacement of the particle,

x(t) =X + oil*+ ia(€i - taje"
1"* (12.41)

The path is a helix of radius a and pitch angle a = tan
_1

(v\\/(DB a). The magnitude

of the gyration radius a depends on the magnetic induction B and the transverse

momentum p± of the particle. From (12.39) and (12.40) it is evident that

cp± = eBa
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This form is convenient for the determination of particle momenta. The radius of

curvature of the path of a charged particle in a known B allows the determina-

tion of its momentum. For particles with charge the same in magnitude as the

electronic charge, the momentum can be written numerically as

p JL(MeV/c) = 3.00xlO"4Ba (gauss-cm) (12.42)

12.4 Motion in Combined, Uniform, Static Electric and Magnetic Fields

We now consider a charged particle moving in a combination of electric and

magnetic fields E and B, both uniform and static, but in general not parallel. As
an important special case, perpendicular fields will be treated first. The force

equation (12.1) shows that the particle's energy is not constant in time.

Consequently we cannot obtain a simple equation for the velocity, as was done

for a static magnetic field. But an appropriate Lorentz transformation simplifies

the equations of motion. Consider a Lorentz transformation to a coordinate

frame K' moving with a velocity u with respect to the original frame. Then the

Lorentz force equation for the particle in K' is

where the primed variables are referred to the system K'. The fields E' and B' are

given by relations (1 1.149) with v replaced by u. Let us first suppose that |E| < |B|.

If u is now chosen perpendicular to the orthogonal vectors E and B,

u=c^> (12 .43)

we find the fields in K' to be

Ej=0,

B||= 0,

where
||
and 1 refer to the direction of u. In the frame K' the only field

acting is a static magnetic field B' which points in the same direction as B,

but is weaker than B by a factor y" 1

. Thus the motion in K' is the same as

that considered in the previous section, namely a spiraling around the

lines of force. As viewed from the original coordinate system, this gyration

is accompanied by a uniform "drift" u perpendicular to E and B given

by (12.43). This drift is sometimes called the ExB drift. It has already been

considered for a conducting fluid in another context in Section 10.3. The drift

can be understood qualitatively by noting that a particle which starts gyrating

ei = y(e+"xb)=o
(12.44)
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E

— e

Fig. 12.2 E x B drift of charged particles in crossed fields.

u

around B is accelerated by the electric field, gains energy, and so moves in a path

with a larger radius for roughly half of its cycle. On the other half, the electric

field decelerates it, causing it to lose energy and so move in a tighter arc. The

combination of arcs produces a translation perpendicular to E and B as shown in

Fig. 12.2. The direction of drift is independent of the sign of the charge of the

particle.

The drift velocity u (12.43) has physical meaning only if it is less than the

velocity of light, i.e., only if |E|<|B|. If |E|>|B|, the electric field is so strong that

the particle is continually accelerated in the direction of E and its average energy

continues to increase with time. To see this we consider a Lorentz transforma-

tion from the original frame to a system K" moving with a velocity

relative to the first. In this frame the electric and magnetic fields are

Thus in the system K" the particle is acted on by a purely electrostatic field which

causes hyperbolic motion with ever-increasing velocity (see Problem 12.4).

The fact that a particle can move through crossed E and B fields with the

uniform velocity u = cE/B provides the possibility of selecting charged particles

according to velocity. If a beam of particles having a spread in velocities is

normally incident on a region containing uniform crossed electric and magnetic

fields, only those particles with velocities equal to cE/B will travel without

deflection. Suitable entrance and exit slits will then allow only a very narrow

band of velocities around cE/B to be transmitted, the resolution depending on

the geometry, the velocities desired, and the field strengths. When combined
with momentum selectors, such as a deflecting magnet, these ExB velocity

u
(ExB)" C
E 2 (12.45)

(12.46)



584 Classical Electrodynamics Sect. 12.5

selectors can separate a very pure and monoenergetic beam of particles of a

definite mass from a mixed beam of particles with different masses and

momenta. Large-scale devices of this sort are commonly used to provide

experimental beams of particles produced in very high-energy accelerators.

If E has a component parallel to B, the behavior of the particle cannot be

understood in such simple terms as above. The scalar product E • B is a Lorentz

invariant quantity (see Problem 11.12), as is (B
2-E2

). When the fields were

perpendicular (E • B = 0), it was possible to find a Lorentz frame where E = if

|B|>|E|, or B = if |E|>|B|. In those coordinate frames the motion was relatively

simple. If E • Bt^O, electric and magnetic fields will exist simultaneously in all

Lorentz frames, the angle between the fields remaining acute or obtuse

depending on its value in the original coordinate frame. Consequently motion in

combined fields must be considered. When the fields are static and uniform, it is

a straightforward matter to obtain a solution for the motion in cartesian

components. This will be left for Problem 12.7.

12.5 Particle Drifts in Nonuniform, Static Magnetic Fields

In astrophysical and thermonuclear applications it is of considerable interest to

know how particles behave in magnetic fields which vary in space. Often the

variations are gentle enough that a perturbation solution to the motion, first

given by Alfven, is an adequate approximation. "Gentle enough" generally

means that the distance over which B changes appreciably in magnitude or

direction is large compared to the gyration radius a of the particle. Then the

lowest-order approximation to the motion is a spiraling around the lines of force

at a frequency given by the local value of the magnetic induction. In the next

approximation, slow changes occur in the orbit which can be described as a

drifting of the guiding center.

The first type of spatial variation of the field to be considered is a gradient

perpendicular to the direction of B. Let the gradient at the point of interest be in

the direction of the unit vector n, with n • B = 0. Then, to first order, the gyration

frequency can be written

In (12.47) £ is the coordinate in the direction n, and the expansion is about the

origin of coordinates where coB = a) . Since the direction of B is unchanged, the

motion parallel to B remains a uniform translation. Consequently we consider

only modifications in the transverse motion. Writing Vj.=Vo+Vi, where v is the

uniform-field transverse velocity and vi is a small correction term, we can

substitute (12.47) into the force equation

(12.47)

-t- = vx Xcob (x) (12.48)
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and, keeping only first-order terms, obtain the approximate result,

xcoo (12.49)
dt

Vl+Vo(n.*)i(f|)
o

From (12.40) and (12.41) it is easy to see that for a uniform field the

transverse velocity v and coordinate x are related by

v = -w x (x -X)l

1 > (12.50)
(xo-X)=—5 (WoXVo)

too )

where X is the center of gyration of the unperturbed circular motion (X =

here). If (w xv ) is eliminated in (12.49) in favor of x , we obtain

dt
xwo (12.51)

This shows that, apart from oscillatory terms, Vi has a nonzero average value,

Vo " <Vi)=
i;(af )

w° x<w^n •*<>)> ( 12 -52)

To determine the average value of (x )±(n • x ), it is necessary only to observe

that the rectangular components of (xc)x oscillate sinusoidally with peak

amplitude a and a phase difference of 90°. Hence only the component of (x )±

parallel to n contributes to the average, and

<(xoMn.x )> =yn (12.53)

Thus the gradient drift velocity is given by

^i(W^ xn) (12 -54)

An alternative form, independent of coordinates, is

vG a

cos d 2B 5 (BxVxB) (12.55)

From (12.55) it is evident that, if the gradient of the field is such that a

\VB/B\« 1, the drift velocity is small compared to the orbital velocity (o)B a). The
particle spirals rapidly while its center of rotation moves slowly perpendicular to

both B and VB. The sense of the drift for positive particles is given by (12.55).

For negatively charged particles the sign of the drift velocity is opposite; the sign

change comes from the definition of coB . The gradient drift can be understood

qualitatively from consideration of the variation of gyration radius as the particle

moves in and out of regions of larger than average and smaller than average field

strength. Figure 12.3 shows this qualitative behavior for both signs of charge.
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+e

Fig. 12.3 Drift of charged particles due to transverse gradient of magnetic field.

Another type of field variation which causes a drifting of the particle's guiding

center is curvature of the lines of force. Consider the two-dimensional field

shown in Fig. 12.4. It is locally independent of z. On the left-hand side of the

figure is a constant, uniform magnetic induction B
,
parallel to the x axis. A

particle spirals around the field lines with a gyration radius a and a velocity coB a,

while moving with a uniform velocity U|| along the lines of force. We wish to treat

that motion as a zero-order approximation to the motion of the particle in the

field shown on the right-hand side of the figure, where the lines of force are

curved with a local radius of curvature R which is large compared to a.

The first-order motion can be understood as follows. The particle tends to

spiral around a field line, but the field line curves off to the side. As far as the

motion of the guiding center is concerned, this is equivalent to a centrifugal

acceleration of magnitude t)||

2
/R. This acceleration can be viewed as arising from

an effective electric field,

Eeff—
ym R 2

y

(12.56)

(a) (b)

Fig. 12.4 (a) Particle moving in helical path along lines of uniform, constant magnetic

induction, (b) Curvature of lines of magnetic induction will cause drift perpendicular to

the (x, y) plane.
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in addition to the magnetic induction B . From (12.43) we see that the combined

effective electric field and the magnetic induction cause a curvature drift velocity,

Vc^ cV u
" rW (12 '57)

With the definition of o>B = eB /ymc, the curvature drift can be written

The direction of drift is specified by the vector product, in which R is the radius

vector from the effective center of curvature to the position of the charge. The
sign in (12.58) is appropriate for positive charges and is independent of the sign

of up. For negative particles the opposite sign arises from cuB .

A more straightforward, although pedestrian, derivation of (12.58) can be

given by solving the Lorentz force equation directly. If we use cylindrical

coordinates (p, </>, z) appropriate to Fig. 12.4b with origin at the center of

curvature, the magnetic induction has only a c/> component, B«^ = B . Then the

force equation can be easily shown to give the three equations,

p— p<f>

2 = — coB z

P(£+2p4> = (12.59)

Z = (JL>BP

If the zero-order trajectory is a helix with radius a small compared to the radius

of curvature R, then, to lowest order, <j)— v\\/R, while p— R. Thus the first

equation of (12.59) yields an approximate result for z:

(12 -60)

This is just the curvature drift given by (12.58).

For regions of space in which there are no currents the gradient drift vG

(12.55) and the curvature drift vc (12.58) can be combined into one simple

form. This follows from the fact that for a two-dimensional field such as shown in

Fig. 12.4b VxB = implies

VJ3= __R
B R 2

Evidently then, for a two-dimensional field, the sum of vG and vc is a total drift

velocity,

VD=^W)(5g5) (12.61)

where v± = ojBa is the transverse velocity of gyration. For singly charged

nonrelativistic particles in thermal equilibrium, the magnitude of the drift
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velocity is

, , , U2.T(°K)
uD(cm/sec) = , , D /

—'—- (12.62)
R(m) B (gauss)

'

The particle drifts implied by (12.61) are troublesome in certain types of

thermonuclear machines designed to contain hot plasma. A possible configura-

tion is a toroidal tube with a strong axial field supplied by solenoidal windings

around the torus. With typical parameters of JR=1 meter, B = 10
3

gauss,

particles in a 1-eV plasma (T— 10
4oK) will have drift velocities vD ~

1.8 x 10
3
cm/sec. This means that they will drift out to the walls in a small fraction

of a second. For hotter plasmas the drift rate is correspondingly greater. One
way to prevent this first-order drift in toroidal geometries is to twist the torus

into a figure eight. Since the particles generally make many circuits around the

closed path before drifting across the tube, they feel no net curvature or gradient

of the field. Consequently they experience no net drift, at least to first order in

1/R. This method of eliminating drifts due to spatial variations of the magnetic

field is used in the Stellarator type of thermonuclear machine, in which

containment is attempted with a strong, externally produced, axial magnetic

field.

12.6 Adiabatic Invariance of Flux through Orbit of Particle

The various motions discussed in the previous sections have been perpendicular

to the lines of magnetic force. These motions, caused by electric fields or by the

gradient or curvature of the magnetic field, arise because of the peculiarities of

the magnetic-force term in the Lorentz force equation. To complete our general

survey of particle motion in magnetic fields we must consider motion parallel to

the lines of force. It turns out that for slowly varying fields a powerful tool is the

concept of adiabatic invariants. In celestial mechanics and in the old quantum
theory adiabatic invariants were useful in discussing perturbations on the one

hand, and in deciding what quantities were to be quantized on the other. Our
discussion will resemble most closely the celestial mechanical problem, since we
are interested in the behavior of a charged particle in slowly varying fields which

can be viewed as small departures from the simple, uniform, static field

considered in Section 12.3.

The concept of adiabatic invariance is introduced by considering the action

integrals of a mechanical system. If q ; and p* are the generalized canonical

coordinates and momenta, then, for each coordinate which is periodic, the action

integral Ji is defined by

Ji = <\>Pidqi (12.63)

The integration is over a complete cycle of the coordinate q ; . For a given
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mechanical system with specified initial conditions the action integrals J{ are

constants. If now the properties of the system are changed in some way (e.g., a

change in spring constant or mass of some particle), the question arises as to how
the action integrals change. It can be proved* that, if the change in property is

slow compared to the relevant periods of motion and is not related to the periods

(such a change is called an adiabatic change), the action integrals are invariant.

This means that, if we have a certain mechanical system in some state of motion

and we make an adiabatic change in some property so that after a long time we
end up with a different mechanical system, the final motion of that different

system will be such that the action integrals have the same values as in the initial

system. Clearly this provides a powerful tool in examining the effects of small

changes in properties.

For a charged particle in a uniform, static, magnetic induction B the transverse

motion is periodic. The action integral for this transverse motion is

J=OV± -d\ (12.64)

where P± is the transverse component of the canonical momentum (12.11) and

d\ is a directed line element along the circular path of the particle. From (12.11)

we find that

J= o 7mvi • d\+-
c
O A • d\ (12.65)

Since \± is parallel to d\, we find

J=o ym(x)Ba
2 dd+^ o A • d\ (12.66)

Applying Stokes's theorem to the second integral and integrating over in the

first integral, we obtain

J=27ryma>Ba
2+-

I B • n da (12.67)
c Js

Since the line element d\ in (12.64) is in a counterclockwise sense relative to B,

the unit vector n is antiparallel to B. Hence the integral over the circular orbit

subtracts from the first term. This gives

J=ym(x)B 7Ta
2 = ~(B7ra

2

) (12.68)

making use of o>B = eB/ymc. The quantity Bira
2

is the flux through the particle's

orbit.

If the particle moves through regions where the magnetic field strength

}s
B-„

* See, for example, M. Born, The Mechanics of the Atom, Bell, London (1927).
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varies slowly in space or time, the adiabatic invariance of J means that the flux

linked by the particle's orbit remains constant. If B increases, the radius a will

decrease so that Brra
2
remains unchanged. This constancy of flux linked can be

phrased in several ways involving the particle's orbit radius, its transverse

momentum, its magnetic moment. These different statements take the forms:

Ba 2

p±
2
/B ^ are adiabatic invariants (12.69)

y\x

where jut = (eo>Ba
2
/2c) is the magnetic moment of the current loop of the particle

in orbit. If there are only static magnetic fields present, the speed of the particle

is constant and its total energy does not change. Then the magnetic moment /m is

itself an adiabatic invariant. In time-varying fields or with static electric fields, /u,

is an adiabatic invariant only in the nonrelativistic limit.

Let us now consider a simple situation in which a static magnetic field B acts

mainly in the z direction, but has a small positive gradient in that direction.

Figure 12.5 shows the general behavior of the lines of force. In addition to the z

component of field there is a small radial component due to the curvature of the

lines of force. For simplicity we assume cylindrical symmetry. Suppose that a

particle is spiraling around the z axis in an orbit of small radius with a transverse

velocity vx0 and a component of velocity uyo parallel to B at z = 0, where the axial

field strength is B . The speed of the particle is constant so that any position

along the z axis

u,i

2W = Uo
2

(12.70)

where v
2 = u±

2
+U||o

2
is the square of the speed at z = 0. If we assume that the flux

linked is a constant of the motion, then (12.69) allows us to write

B~
=
B~ (12 -71)

where B is the axial magnetic induction. Then we find the parallel velocity at any

Fig. 12.5
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X

z -= ZQ

Fig. 12.6 Reflection of charged particle out of region of high field strength,

position along the z axis given by

(12.72)
2 2 2 B(z)

V\\ =V -V±o

Equation (12.72) for the velocity of the particle in the z direction is equivalent to

the first integral of Newton's equation of motion for a particle in a one-

dimensional potential*

If B(z) increases enough, eventually the right-hand side of (12.72) will vanish at

some point z = z . This means that the particle spirals in an ever-tighter orbit

along the lines of force, converting more and more translational energy into

energy of rotation, until its axial velocity vanishes. Then it turns around, still

spiraling in the same sense, and moves back in the negative z direction. The
particle is reflected by the magnetic field, as is shown schematically in Fig. 12.6.

Equation (12.72) is a consequence of the assumption that p±
2
/B is invariant.

To show that at least to first order this invariance follows directly from the

Lorentz force equation, we consider an explicit solution of the equations of

motion. If the magnetic induction along the axis is B(z), there will be a radial

component of the field near the axis given by the divergence equation as

r (n Tw i dB(z)
BP (p, z)^-ip

dz
(12.73)

where p is the radius out from the axis. The z component of the force equation is

(12.74)
e

/ Id \ e 2±dB(z)
z = (-p</>Bp )

«—— p
2
</>

ymc 27mc r T
dz

where 4> is the angular velocity around the z axis. This can be written, correct to

* Note, however, that our discussion is fully relativistic. The analogy with

one-dimensional nonrelativistic mechanics is only a formal one.
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first order in the small variation of B(z), as

Uxo
2
dB(z)

2B dz
z — - (12.75)

where we have used p
2
(£> — -(a

2
o>B )o = ~(v±o

2
/(oB o). Equation (12.75) has as its

first integral (12.72), showing that to first order in small quantities the

constancy of flux linking the orbit follows directly from the equations of motion.

The adiabatic invariance of the flux linking an orbit is useful in discussing

particle motions in all types of spatially varying magnetic fields. The simple

example described above illustrates the principle of the "magnetic mirror":

charged particles are reflected by regions of strong magnetic field. This mirror

property formed the basis of a theory of Fermi for the acceleration of cosmic-ray

particles to very high energies in interstellar space by collisions with moving

magnetic clouds. The mirror principle can be applied to the containment of a hot

plasma for thermonuclear energy production. A magnetic bottle can be con-

structed with an axial field produced by solenoidal windings over some region of

space, and additional coils at each end to provide a much higher field toward the

ends. The lines of force might appear as shown in Fig. 12.7. Particles created or

injected into the field in the central region will spiral along the axis, but will be

reflected by the magnetic mirrors at each end. If the ratio of maximum field Bm
in the mirror to the field B in the central region is very large, only particles with a

very large component of velocity parallel to the axis can penetrate through the

ends. From (12.72) is it evident that the criterion for trapping is

(t-) (12.76)

If the particles are injected into the apparatus, it is easy to satisfy requirement

(12.76). Then the escape of particles is governed by the rate at which they are

scattered by residual gas atoms, etc., in such a way that their velocity compo-

nents violate (12.76).

Fig. 12.7 Schematic diagram of "mirror" machine for the containment of a hot plasma.
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Another area of application of these principles is to terrestrial and stellar

magnetic fields. The motion of charged particles in the magnetic dipole fields of

the sun or earth can be understood in terms of the adiabatic invariant discussed

here and the drift velocities of Section 12.5. Some aspects of this topic are left to

Problems 12.8 and 12.9 on the trapped particles around the earth (the Van
Allen belts).

12.7 Lowest-Order Relativistic Corrections to the Lagrangian for

Interacting Charged Particles, the Darwin Lagrangian

In Section 12.1 we discussed the general Lagrangian formalism for a relativistic

particle in external electromagnetic fields described by the vector and scalar

potentials, A and O. The appropriate interaction Lagrangian was given by (12.8).

If we now consider the problem of a conventional Lagrangian description of the

interaction of two or more charged particles with each other, we see that it is

possible only at nonrelativistic velocities. The Lagrangian is supposed to be a

function of the instantaneous velocities and coordinates of all the particles.

When the finite velocity of propagation of electromagnetic fields is taken into

account, this is no longer possible, since the values of the potentials at one

particle due to the other particles depend on their state of motion at "retarded"

times. Only when retardation effects can be neglected is a Lagrangian descrip-

tion in terms of instantaneous positions and velocities possible. In view of this

one might think that a Lagrangian could be formulated only in the static limit,

i.e., to zeroth order in (vie). We will now show, however, that lowest-order

relativistic corrections can be included, giving an approximate Lagrangian for

interacting particles, correct to the order of {vie)
2
inclusive.

It is sufficient to consider two interacting particles with charges qi and q2 ,

masses mi and m2 , and coordinates xi and x 2 . The relative separation is r = Xi—

x

2 .

The interaction Lagrangian in the static limit is just the negative of the

electrostatic potential energy,

C-^ (12.77)

If attention is directed to the first particle, this can be viewed as the negative of

the product of qi and the scalar potential <& 12 due to the second particle at the

position of the first. This is of the same form as (12.7). If we wish to generalize

beyond the static limit, we must, according to (12.8), determine both <J> J2 and

A12, at least to some degree of approximation. In general there will be relativistic

corrections to both <I>i 2 and Ai 2 . But in the Coulomb gauge, the scalar potential is

given correctly to all orders in v/c by the instantaneous Coulomb potential.

Thus, if we calculate in that gauge, the scalar-potential contribution <t> 12 is

already known. All that needs to be considered is the vector potential A i2 .
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If only the lowest-order relativistic corrections are desired, retardation effects

can be neglected in computing A ]2 . The reason is that the vector potential enters

the Lagrangian (12.8) in the combination q i (\ l /c) • Ai 2 . Since Ai 2 itself is of the

order of v2/c, greater accuracy in calculating Ai 2 is unnecessary. Consequently,

we have the magnetostatic expression,

(12.78)
c J Xi-X

where J, is the transverse part of the current due to the second particle, as

discussed in Section 6.5. From equations (6.46)-(6.50) it can be shown that the

transverse current is

J t (x') = q2v2 §(x--x2)-^V-(
V2

|x^3
2)

)
(12.79)

When this is inserted in (12.78), the first term can be integrated immediately.

Thus

<^
[

i
v-(

v

v,
(x'72))^'

cr Attc J |x -xi| \ |x -x2
|

/

By changing variables to y = x'-x2 and integrating by parts, the integral can be

put in the form,

* q2V2 q2 _ f v2 -y 1 , 3A i2
— - -P— v r

—
1

d y
cr 4ttc J y

3
|y-r|

The integral can now be done in a straightforward manner to yield

The differentiation of the second term leads to the final result

Ai 2— -

—

2cr
V2+ £(yj_ii)|

r

With expression (12.80) for the vector potential due to the second particle at

the position of the first, the interaction Lagrangian for two charged particles,

including lowest-order relativistic effects, is

, L^^f {-l+2?[vi • **+
(Yl

'

'f
2

' r)

]}
(12.81)

This interaction form was first obtained by Darwin in 1920. It is of importance in

a quantum-mechanical discussion of relativistic corrections in two-electron

atoms. In the quantum-mechanical problem the velocity vectors are replaced by

their corresponding quantum-mechanical operators (Dirac a's). Then the in-

teraction is known as the Breit interaction (1930).*

* See H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and

Two-Electron Atoms, Springer-Verlag, Berlin, Academic, New York, 1957, pp. 170 ff.
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For a system of interacting charged particles the complete Darwin Lagrangian,

correct to order 1/c
2

inclusive, can be written down by expanding the free-

particle Lagrangian (12.6) for each particle and summing up all the interaction

terms of the form (12.81). The result is

where rg = |j&— x,|, ft, is a unit vector in the direction Xi— Xj, and the prime on the

double summation indicates the omission of the (self-energy) terms, i = j.

Although the Darwin Lagrangian has had its most celebrated application in the

quantum-mechanical context of the Breit interaction, it has uses in the purely

classical domain. Two examples are cited in the suggested reading at the end of

the chapter. See also the problems.

12.8 Lagrangian for the Electromagnetic Field

In Section 12.1 we considered the Lagrangian formulation of the equations of

motion of a charged particle in an external electromagnetic field. We now
examine a Lagrangian description of the electromagnetic field in interaction with

specified external sources of charge and current. The Lagrangian approach to

continuous fields closely parallels the techniques used for discrete point par-

ticles.* The finite number of coordinates q £ (t) and qi(t), i = 1,2, .. .,n, are replaced

by an infinite number of degrees of freedom. Each point in space-time x
a

corresponds to a finite number of values of the discrete index i. The generalized

coordinate q* is replaced by a continuous field <Mx), with a discrete index

(k= 1, 2, . .
. , n) and a continuous index (x

a
). The generalized velocity q* is

replaced by the 4-vector gradient, d
p

</>k . The Euler-Lagrange equations follow

from the stationary property of the action integral with respect to variations 6</>k

and 8(d
p
</>k) around the physical values. We thus have the following correspond-

ences:

i-^x
a

, k

q, <t>k (x)

qi^da
<Mx)

(12.83)

* For more detail and or background than given in our abbreviated account, see

Goldstein, Chapter 11 and Wentzel, Chapter 1, or other references cited at the end of the

chapter.
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where i£ is a Lagrangian density, corresponding to a definite point in space-time

and equivalent to the individual terms in a discrete particle Lagrangian like

(12.82). For the electromagnetic field the "coordinates" and "velocities" are A Q

and a
pA".

The action integral takes the form,

$d*xdt = Xd*x (12.84)

The Lorentz-invariant nature of the action is preserved provided the Lagrangian

density SB is a Lorentz scalar (because the 4-dimensional volume element is

invariant). In analogy with the situation with discrete particles we expect the

free-field Lagrangian at least to be quadratic in the velocities, that is, d
pA a

or

Fap
. The only Lorentz invariant quadratic forms are Fa(3FaP and FQ3^ap

(see

Problem 11.12). The latter is a scalar under proper Lorentz transformations, but

a pseudoscalar under inversion. If we demand a scalar S£ under inversions as well

as proper Lorentz transformations, we must have S£fTee as some multiple of FaPFap
.

The interaction term in S£ involves the source densities. These are described by

the current density 4-vector, J
a
(x). From the form of the electrostatic and

magnetostatic energies, or from the charged-particle interaction Lagrangian

(12.8), we anticipate that S£lM is a multiple of JaA a
. With this motivation we

postulate the electromagnetic Lagrangian density:

S£ = ~~T2~~ FaPF
aP -- JaA a

(12.85)
lOTT C

The coefficient and sign of the interaction terms is chosen to agree with (12.8);

the sign and scale of the free Lagrangian is set by the definitions of the field

strengths and the Maxwell equations.

In order to use the Euler-Lagrange equation in the form given in (12.83), we
substitute the definition of the fields and write

S£= -,4— gAKg-^Vr-dVrXa^V-dV^)-- JaAa
(12.86)

1 DTT C

In calculating dS£/d(d^A
a

) care must be taken to pick up all the terms. There are

four different terms, as can be seen from the following explicit calculation:

dS£ 1 f h£hfFKv-h£h»F v
\

a(a
pA a

) 16tt
§VM+VSa^-vs/F^J

Because of the symmetry of gaP and the antisymmetry of Fa<3

, all four terms are

equal and the derivative becomes
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The other part of the Euler-Lagrange equation is

3= ~\ 3
°

(i2 - 88)

Thus the equations of motion of the electromagnetic field are

^-d"FPa = -Ja (12.89)
477 C

These are recognized as a covariant form of the inhomogeneous Maxwell

equations (11.141).

The Lagrangian (12.85) yields the inhomogeneous Maxwell equations, but not

the homogeneous ones. This is because the definition of the field strength tensor

FaP
in terms of the 4-vector potential A x

was chosen so that the homogeneous

equations were satisfied automatically (see Section 6.4). To see this in our

present 4-tensor notation, consider the left-hand side of the homogeneous

equations (11.142):

= e
a^dad,A.

But the differential operator da dx is symmetric in a and A (assuming is

well-behaved), while e
afik* is antisymmetric in a and A. Thus the contraction on a

and A vanishes. The homogenous Maxwell equations are satisfied trivially.

The conservation of the source current density can be obtained from (12.89)

by taking the 4-divergence of both sides:

-^-d
ad"F^=-da

Ja
4 77

P
C

The left-hand side has a differential operator that is symmetric in a and /3, while

FPa is antisymmetric. Again the contraction vanishes and we have

d
a
Ja = (12.90)

12.9 Proca Lagrangian, Photon Mass Effects

The conventional Maxwell equations and the Lagrangian (12.85) are based on

the hypothesis that the photon has zero mass. As discussed in the Introduction, it

can always be asked what evidence there is for the masslessness of the photon or

equivalently for the inverse square law of the Coulomb force and what

consequences would stem from a nonvanishing mass. A systematic technique for

such considerations is the Lagrangian formulation. We modify the Lagrangian

density (12.85) by adding a "mass" term. The resulting Lagrangian is known as
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the Proca Lagrangian, Proca having been the first to consider it (1930,1936).

The Proca Lagrangian is

^Proca = 7~7 F«3FaP+^ AaA"-- JaA° (12.91)
1077 87T C

The parameter /x has dimensions of inverse length and is the reciprocal Compton
wavelength of the photon (/x = myc/h). Instead of (12.89), the Proca equations of

motion are

d
fiFfia+ iJi

2Aa =— Ja (12.92)

We observe that in the Proca equations the potentials as well as the fields enter.

In contrast to the Maxwell equations, the potentials acquire real physical

(observable) significance through the mass term. In the Lorentz gauge, now
required by current conservation, Eq. (12.92) can be written

Aa + /x
2A« =^Ja (12.93)

and in the static limit takes the form,

V2Aa
-

l
x
2Aa =-—Ja

c

If the source is a point charge q at rest at the origin, only the time-component

A = O is nonvanishing. It takes the spherically symmetric Yukawa form,

®(x) = q*-^ (12.94)

This shows the characteristic feature of the photon mass. There is an exponential

fall-off of the static potentials and fields, with the 1/e distance equal to /ul

-1
. As

discussed in the Introduction and also in Problem 12.14, the exponential factor

alters the character of the earth's magnetic field sufficiently that we can set quite

stringent limits on the photon mass from geomagnetic data. It was at one time

suggested* that relatively simple laboratory experiments using lumped LC
circuits could improve on even these limits, but the idea was conceptually flawed.

There is enough subtlety involved that the subject is worth a brief discussion.

t

The starting point of the argument is (12.93) in the absence of sources. If we
assume harmonic time and space variation, the constraint equation on the

*P. A. Franken and G. W. Ampulski, Phys. Rev. Letters 26, 115 (1971).

t Shortly after the idea was proposed, several analyses based on the Proca

equations appeared. Some of these are A. S. Goldhaber and M. M. Nieto, Phys. Rev.

Letters 26, 1390 (1971); D. Park and E. R. Williams, Phys. Rev. Letters 26, 1393 (1971);

N. M. Kroll, Phys. Rev. Letters 26, 1395 (1971); D. G. Boulware, Phys. Rev. Letters 27,

55 (1971): N. M. Kroll, Phys. Rev. Letters 27, 340 (1971).
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frequency and wave number is

a)
2 = c

2
k

2 + vL
2
c
2

(12.95)

This is the standard expression for the square of the energy (divided by h) for a

particle of momentum hk and mass ^h/c. Now consider some resonant system

(cavity or lumped circuit). Suppose that when jj, = its resonant frequency is o>
,

while for jx^O the resonant frequency is <x>. From the structure of (12.95) it is

tempting to write the relation,

<o
2 = a>

2 + /x
2
c
2

(12.96)

Evidently, the smaller the frequency, the larger the fractional difference between

a) and o) for a given photon mass. This suggests an experiment with lumped LC
circuits. The scheme would be to measure the resonant frequencies of a

sequence of circuits whose o)
2
values are in known ratios. If the observed

resonant frequencies are not in the same proportion, evidence for /m^O in

(12.96) would be found. Franken and Ampulski compared two circuits, one with

a certain inductance L and a capacitance C and hence with a>o
2 = (LC)

_1
, and

another with the same inductor, but two capacitances C in parallel. The squares

of the observed frequencies, corrected for resistive effects, were in the ratio 2 :

1

within errors. They thus inferred an upper limit on the photon mass, pointing out

that in principle improvement of the accuracy by several orders of magnitude

was possible if the idea was sound.

What is wrong with the idea? The first observation is that lumped circuits are

by definition incapable of setting any limit on the photon mass.* The lumped

circuit concept of a capacitance is a two-terminal box with the property that the

current flow I at one terminal and the voltage V between the terminals are

related by 1= C dV/dt. Similarly a lumped inductance is a two-terminal box with

the governing equation, V=—L dl/dt. When two such boxes are connected

together, the currents and voltages are necessarily equal and the combined

system is described by the equation, V+LC d
2
V/dt

2 = 0. The resonant frequency

of a lumped LC circuit is co = (LC)" 1/2

,
period.

It is true, of course, that a given set of conducting surfaces or a given coil of

wire will have different static properties of capacitance or inductance depending

on whether fx = or not. The potentials and fields are all modified by exponential

factors of the general form of (12.94). The question then arises as to whether one

can set a meaningful limit on /ul by means of a "table-top" experiment, that is, an

experiment not with lumped circuit elements but with ones whose sizes are

modest. The reader can verify, for example, that for a solid conducting sphere of

radius a at the center of a hollow conducting shell of inner radius b held at zero

* I am indebted to E. M. Purcell for emphasizing that this is the point almost

universally missed or at least glossed over in discussions of the Franken-Ampulski
proposal.
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potential, the capitance is increased by an amount nab/3, provided /j.b<^\. It then

turns out that instead of the fractional difference,

^=£4 (12.97)

that follows from (12.96) with o)
2 = (LC)~\ the actual effect of the finite photon

mass is

— = 0(|u
2
d

2

) (12.98)

where d is a dimension characteristic of the circuit and co is the resonant

frequency for ja = 0. This makes a "table-top" experiment possible in principle,

but very insensitive in practice to a possible photon mass.

Although the estimate (12.98) says it all, it is of interest to consider the effect

of a finite photon mass for transmission lines, wave guides, or resonant cavities.

For transmission lines, the effect of the photon mass is the same as for static

lumped circuit parameters. We recall from Chapter 8 that for ^ = the TEM
modes of a transmission line are degenerate modes, with propagation at a phase

velocity equal to the velocity of light. The situation does not alter if /ul# 0. The
only difference is that the transverse behavior of the fields is governed by

(V,
2 - yu

2
)\\f = instead of the Laplace equation. The capacitance and inductance

per unit length of the transmission line are altered by fractional amounts of

order /m
2
d

2
, but nothing else. (The result of Problem 6.5 still holds.)

For TE and TM modes in a wave guide the situation is more complicated. The

boundary conditions on fields and potentials must be considered with care.

Analysis shows (see Kroll, op. cit.) that TM modes have propagation governed by

the naive equation (12.96), but that TE modes generally propagate differently.

In any event, since the cutoff frequency of a guide is determined by its lateral

dimensions, the generally incorrect estimate (12.97) becomes the same as the

proper estimate (12.98).

For resonant cavities a rigorous solution is complicated, but for small mass

some simple results emerge. For example, for a rectangular cavity, (12.96) holds

to a good approximation for modes with /, m, n all different from zero, but fails if

any mode number is zero. This is because the fields behave in the direction

associated with vanishing /, m, or n as static fields and the arguments already

made apply. The low frequency modes (Schumann resonances) of the earth-

ionosphere cavity, discussed in Section 8.9, are of particular interest. These

modes have a radial electric field and to the zeroth order in h/JR, where h is the

height of the ionosphere and R 'the radius of the earth, are TEM modes in a

parallel plate geometry. Thus their propagation and hence resonant frequencies

are unaltered from their /ul = values. To first order in h/R there is a mass-

dependent change in resonant frequency. The result (see Kroll's second paper

cited above) is that (12.97) is modified on its right-hand side by a multiplicative
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factor g=-0.44 h/R for the lowest Schumann mode. With h^70 km, g^5x 10"3
.

This means that the resonant frequency of o) — 50 sec
-1

is a factor of (l/g)
1/2— 14

less effective in setting a limit on the photon mass than naive considerations

imply.

12.10 Canonical and Symmetric Stress Tensors, Conservation Laws

(a) Generalization of the Hamiltonian: Canonical Stress Tensor

In particle mechanics the transition to the Hamiltonian formulation and

conservation of energy is made by first defining the canonical momentum
variables,

Pi=^ (12.99)

and then introducing the Hamiltonian,

H=£p4-L (12.100)

It can then be shown that dH/dt = provided dL/dt = 0. For fields we anticipate

having a Hamiltonian density whose volume integral over three-dimensional

space is the Hamiltonian. The Lorentz transformation properties of can be

guessed as follows. Since the energy of a particle is the time component of a

4-vector, the Hamiltonian should transform in the same way. Since H = J W d
3
x,

and the invariant 4-volume element is d
4
x = d

3
x dx , it is necessary that the

Hamiltonian density %C transform as the time-time component of a second rank

tensor. If the Lagrangian density for some fields is a function of the field

variables <f>k{x), d
a

<f>k (x), k = l, 2, . .
. ,

n, the Hamiltonian density is defined in

analogy with (12.100) as

k a o<pk\ dt

The first factor in the sum is the field momentum canonically conjugate to <f>k(x)

and d<f>Jdt is equivalent to the velocity q s . The inferred Lorentz transformation

properties of W suggest that the covariant generalization of the Hamiltonian

density is the canonical stress tensor:

T°e=?ra a^- g^ (12 - 102)

For the free electromagnetic field Lagrangian,

^em =-TZ-F^ (12.103)
1077
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the canonical stress tensor is

1
"d(aaA x

)

dA g *em

where a summation over A is implied by the repeated index. With the help of

(12.87) (but notice the placing of the indices!) we find

Tafi =~ g
a^d"A K -ga^em (12.104)

To elucidate the meaning of the tensor we exhibit some components. With

^=(E2-B2
)/8tt and (11.138) we find

•00_ 1 /-it' 2 , n 2\ .
1

T00=^- (E
2+B2)+-^- V • (<DE)

T0i=^(ExB)i+^V.(AE) (12.105)

In writing the second terms here we have made use of the free-field equations

V-E = and VxB-dE/ax = 0. If we suppose that the fields are localized in

some finite region of space (and, because of the finite velocity of propagation,

they always are), the integrals over all 3-space at fixed time in some inertial

frame of the components T00 and T°
l

can be interpreted, as in Chapter 6, as the

total energy and c times the total momentum of the electromagnetic fields in that

frame:

[ T
00
d

3
x =^-\ (E

2+B2
) d

3
x = Efield

(12.106)

J
T0i

d
3
x =^ (ExB)i d

3
x = cPL<i

These are the usual expressions for the total energy and momentum of the fields,

discussed in Section 6.8. We note that the components T00 and T°
l

themselves

differ from the standard definitions of energy density and momentum density by

added divergences. Upon integration over all space, however, the added terms

give no contribution, being transformed into surface integrals at infinity where

all the fields and potentials are identically zero.

The connection of the time-time and time-space components of TaP
with the

field energy and momentum densities suggests that there is a covariant generali-

zation of the differential conservation law (6.108) of Poynting's theorem. This

differential conservation statement is

aaT^ = (12.107)
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In proving (12.107) we treat the general situation described by the tensor

(12.102) and the Euler-Lagrange equations (12.83). Consider

By means of the equations of motion (12.83) the first term can be transformed so

that

Since ££= i£(</>k ,
d
a

<f>k ), the square bracket, summed, is the expression for an

implicit differentiation (chain rule). Hence

aaTaP = a
p
^(</)k ,

d
a

<}>k)-d
fi <£=o

The conservation law or continuity equation (12.107) yields the conservation

of total energy and momentum upon integration over all of 3-space at fixed time.

Explicitly, we have

=
J

daTafi
d

3
x = d j" Top

d
3
x +

J
diT* d

3
x

If the fields are localized the second integral (a divergence) gives no contribu-

tion. Then with the identifications (12.106) we find

^Efie.d = 0, ^P«eid = (12.108)

In this derivation of the conservation of energy (Poynting's theorem) and

momentum and in the definitions (12.106) we have not exhibited manifest

covariance. The results are valid for an observer at rest in the frame in which the

fields are specified. But the question of transforming from one frame to another

has not been addressed. With a covariant differential conservation law, daTafi = 0,

one expects that a covariant integral statement is also possible. The integrals in

(12.106) do not appear to have the transformation properties of the components

of a 4-vector. For sourcefree fields they do in fact transform properly (see

Problem 12.15 and Rohrlich, Appendix Al-5), but in general do not. To avoid

having electromagnetic energy and momentum defined separately in each

inertial frame, without the customary connection between frames, it is necessary

to construct explicitly covariant integral expressions for the electromagnetic

energy and momentum, of which the forms (12.106) are special cases, valid in

only one reference frame. This is discussed further in Chapter 17 in the context
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of the classical electromagnetic self-energy problem. See Rohrlich, Section 4-9,

for an explicitly covariant treatment of the conservation laws in integral form.

(b) Symmetric Stress Tensor

The canonical stress tensor Tap
, while adequate so far, has a certain number of

deficiencies. We have already seen that T00
and T°' differ from the usual

expressions for energy and momentum densities. Another drawback is its lack of

symmetry—see T ' and T° in (12.105). The question of symmetry arises when
we consider the angular momentum of the field,

Lfie id = -r— I
xx (Ex B) d

3
x

The angular momentum density has a covariant generalization in terms of the

third-rank tensor,

MaP7 = TaV-TaV (12.109)

Then, just as (12.107) implies (12.108), so the vanishing of the 4-divergence,

daMaPy = (12.110)

implies conservation of the total angular momentum of the field. Direct

calculation of (12.110) gives

= (daTafi
)x

y + Ty&- (aQTa7
)x

p - TP7

With (12.107) eliminating the first and third terms, we see that conservation of

angular momentum requires that TaP be symmetric. Two final criticisms of Tap
,

(12.104), are that it involves the potentials explicitly and so is not gauge-

invariant, and that its trace (Ta
a
) is not zero, as required for zero-mass photons.

There is a general procedure for constructing a symmetric, traceless, gauge-

invariant stress tensor ® aP from the canonical stress tensor Ta(i
(see the

references at the end of the chapter). For the electromagnetic TaP
of (12.104) we

proceed directly. We substitute d
pA x = -Fxp + d

xA p and obtain

^ =^[^^+1 g
aPF-F"]"4^ d

KA" (12.111)

The first terms in (12.111) are symmetric in a and and gauge invariant. With

the help of the sourcefree Maxwell equations, the last term can be written

=^-dK (F
Ka
A") (12.112)
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The tensor TDaP has the following easily verified properties:

(i)

(ii)

daTDnfi =

TDop d3
x =

Thus the differential conservation law (12.107) will hold for the difference

(TaP-TDaP) if it holds for TaP
. Furthermore, the integral relations (12.106) for

the total energy and momentum of the fields will also be valid in terms of the

difference tensor. We are therefore free to define the symmetric stress tensor
ap

:

aP = T°

or

(12.113)

Explicit calculation gives the following components,

oo=^-(E2+B 2

)

Oi =-p- (ExB)i
4tt

(12.114)

EiEi+Bft—^Et+B 2

)

The indices i and j refer to Cartesian components in 3-space. The tensor
ap

can

be written in schematic matrix form as

0"P =
' u : eg

'

,cg i
_J-(M)

(12.115)

In (12.115) the time-time and time-space components are expressed as the

energy and momentum densities (6.106) and (6.118), while the space-space

components (12.114) are seen to be just the negative of the Maxwell stress

tensor (6.120), denoted here by TS,
M)

to avoid confusion with the canonical tensor

Tap
. The various other, covariant and mixed, forms of the stress tensor are

ea,=
u -eg

eg
j.(M)

0c

eg

eg
i

T(M)
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The differential conservation law,

dQea
" = (12.116)

embodies Poynting's theorem and conservation of momentum for free fields. For

example, with /3 = we have

o=aa0«°=±(^+v.s)
C\dt }

where S = c
2

g is the Poynting vector. This is the sourcefree form of (6.108).

Similarly, for /3 = i,

a result equivalent to (6.121) in the absence of sources. The conservation of field

angular momentum, defined through the tensor,

Mnfiy = ©aV -OaV (12.117)

is assured by (12.116) and the symmetry of ®aP
, as already discussed. There are

evidently other conserved quantities in addition to energy, momentum, and

angular momentum. The tensor M°P7 has three time-space components in

addition to the space-space components that give the angular momentum
density. These three components are a necessary adjunct of the covariant

generalization of angular momentum. Their conservation is a statement on the

center of mass motion (see Problem 12.16).

(c) Conservation Laws for Electromagnetic Fields Interacting with Charged

Particles

In the presence of external sources the Lagrangian for the Maxwell equations

is (12.85). The symmetric stress tensor for the electromagnetic field retains its

form (12.113), but the coupling to the source current makes its divergence

nonvanishing. The calculation of the divergence is straightforward:

=^[(^F.X)F
XP + F.x d"F

xp

+| F.x a
pF^

x

]

The first term can be transformed by means of the inhomogeneous Maxwell

equations (12.89). Transferring this term to the left-hand side, we have

a„eaP +- jF*
x
Jx =-J- F.x (a*F

xp + a*Fxp +dpF*
x

)
C 077

The reason for the peculiar grouping of terms is that the underlined sum can be

replaced, by virtue of the homogeneous Maxwell equation (d^F
xp + d

fiF,Lk
4-
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d
KF^ = 0), by -d

KF fi» = +dK
F» fi

. Thus we obtain

aaeaP +- fpx
jx =J-f^f^ + d

KF^)
C 07T

But the right-hand side is now the contraction (in jut and A.) of one symmetric and

one antisymmetric factor. The result is therefore zero. The divergence of the

stress tensor is thus

da
aP=— FPXJX (12.118)

c

The time and space components of this equation are

KS*y* s)—!**" (12 - 119)

and

ft h Tr= -[ pEi+-
c
(,xB)i

]
(12 - 120)

These are just the conservation of energy and momentum equations of Chapter

6 for electromagnetic fields interacting with sources described by J
a = (cp, J). The

4-vector on the right-hand side of (12.118) is called the Lorentz force density,

f=- Fpx
Jx = (- J • E, pE+i Jxb) (12.121)

c \c c )

If the sources are a number of charged particles, the volume integral of f leads

through the Lorentz force equation (12.1) to the time rate of change of the sum
of the energies or the momenta of all the particles:

f wp3
I i3 ur particles

J
1 d X

'dt

With the qualification expressed at the end of subsection (a) concerning

covariance, the integral over 3-space at fixed time of the left-hand side of

(12.118) is the time rate of change of the total energy or momentum of the field.

We therefore have the conservation of 4-momentum for the combined system of

particles and fields:

j
d

3xOtt
0-P +f)=^(Pfield+ PpPartic.es) = (12.122)

The above discussion has focused on the electromagnetic field, with charged

particles only mentioned as the sources of the 4-current density. A more
equitable treatment of a combined system of particles and fields involves a

Lagrangian having three terms, a free-field Lagrangian, a free-particle Lagran-

gian, and an interaction Lagrangian that involves both field and particle degrees

of freedom. Variation of the action integral with respect to the particle
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coordinates leads to the Lorentz force equation, just as in Section 12.1, while

variation of the field "coordinates" gives the Maxwell equations, as in Section

12.8. However, when self-energy and radiation reaction effects are included, the

treatment is not quite so straightforward. References to these aspects are given

at the end of the chapter.

Mention should also be made of the action-at-a-distance approach associated

with the names of Schwarzschild, Tetrode, and Fokker. The emphasis is on the

charged particles and an invariant action principle is postulated with the

interaction term involving integrals over the world lines of all the particles. The
idea of electromagnetic fields and the Maxwell equations is secondary. This

approach is the basis of the Wheeler-Feynman absorber theory of radiation.*

12.11 Solution of the Wave Equation in Covariant

Form, Invariant Green Functions

The electromagnetic fields FaP
arising from an external source J

a
(x) satisfy the

inhomogeneous Maxwell equations

c

With the definition of the fields in terms of the potentials this becomes

A 3 -dp
(daAa)=^Jp

If the potentials satisfy the Lorentz condition, daAa = 0, they are then solutions

of the four-dimensional wave equation,

A p=^Jp
(x) (12.123)

The solution of (12.123) can be accomplished by finding a Green function

D(x, x') for the equation,

,D(x, x') = S
(4)
(x-x') (12.124)

where S
(4)
(x-x') = S(x -Xo) S(x-x') is a four-dimensional delta function. In the

absence of boundary surfaces, the Green function can depend only on the

4-vector difference z
a = x

a
-x'

a
. Thus D(x, x') = D(x-x') = D(z) and (12.124)

becomes

zD(z) = 8
(4)

(z)

We use Fourier integrals to transform from coordinate to wave number space.

* J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).



Sect. 12.11 Dynamics of Relativistic Particles and Electromagnetic Fields 609

The Fourier transform D(k) of the Green function is defined by

D(z)=j^-y^ d
4
kD(k)e-

ikz
(12.125)

where k • z = k z -k«z. With the representation of the delta function being

8
(4)(z)=^ Jd

4
ke-

ik z

(12.126)

one finds that the k space Green function is

D(k)=-^ (12.127)

The Green function D(z) is therefore

D(2) = (2^1
d4fcfi ' (12128)

Because the integrand in (12.128) is singular, the expression as it stands is

ambiguous and is given definite meaning only by the handling of the sing-

ularities. We proceed by performing the integration over dk first. Thus

D(z) = -—^
f
d

3
k af- f dk A^i (12.129)

\LTT) J J-oc Ko ~~ K

where we have introduced the notation, k = |k|. The k integral is given meaning

by considering k as a complex variable and treating the integral as a contour

integral in the k plane. The integrand has two simple poles, at k = ±K as shown

in Fig. 12.8. Green functions with differing behavior are obtained by choosing

different contours of integration relative to the poles. Two possible contours are

labeled r and a in Fig. 12.8. These open contours may be closed at infinity with a

semicircle in the upper or lower half plane, depending upon the sign of z in the

exponential. For z >0, the exponential, e
_ik° 2

°, increases without limit in the

upper half plane. In order to use the residue theorem, we must therefore close

the contour in the lower half plane. The opposite holds for z <0.

|*0

— K K

Fig. 12.8
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Consider now the contour r. For z <0, the resulting integral vanishes because

the contour is closed in the upper half plane and encircles no singularities. For

z >0, the integral over k is

r e
- ikozo / e

- ik
ozo \

•— sin (kZo)

The Green function (12.129) is then

(27T) J K

The integration over the angles of k leads to

Dr(z)=^%^ [ dK sin (kR) sin (kz ) (12.130)
Z7T K Jo

where jR = |z| = |x-x'| is the spatial distance between x
a
and x'

a
. Using some

simple trigonometry and a change of variable (12.130) can be written

The remaining integrals are just Dirac delta functions. Because z >0 and R>0
the second integral is always zero. The Green function for contour r is therefore

Drix-x')
^* '*^

- S(xo-Xo-R) (12.131)

Here we have reintroduced the original variables x and x'. This Green function is

called the retarded or causal Green function because the source-point time x' is

always earlier than the observation-point time x . Equation (12.131), or its

Fourier transform with respect to x , (4irR)
_1

e
itoR/c

, is the familiar Green

function of outgoing waves of Chapter 6.

With the choice of the contour a in Fig. 12.8, an exactly parallel calculation

yields the advanced Green junction,

Da(x-xO =
e[~ (/°~ X")]

8(xo-x +R) (12.132)

These Green functions can be put in covariant form by use of the following

identity,

8[(x-x')
2
] = 8[(xo-x )

2
-|x-x'|

2

]

= 8[(x - x'o- R)(x - x'o+ R)]

=^[8(xo-x -R)+ 8(xo-Xo+R)]
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Then, since the theta functions select one or the other of the two terms, we have

DT(x-x')=~ 0(xo-xO S[(x-x')
2

]

(12.133)

Da(x-x')=^~ Q{x' - x ) 6[(x- x')
2

]

The theta functions, apparently noninvariant, when constrained by the delta

functions, are actually invariant under proper Lorentz transformations. Thus

(12.1 33) gives the Green functions an explicitly invariant expression. The theta and

delta functions in (12.133) show that the retarded (advanced) Green function is

different from zero only on the forward (backward) light cone of the source point.

The solution of the wave equation (12.123) can now be written down in terms

of the Green functions:

Aa
(x) = Arn(x)+^

J
d
4x'Dr(x-x')J

a
(x') (12.134)

or

Aa
(x) =AaM)+^r

J
d
4
x'Da(x-xVa

0O (12.135)

where A?n and AoUt are solutions of the homogeneous wave equation. In (12.134)

the retarded Green function is used. In the limit x —» —°°, the integral over the

sources vanishes, assuming the sources are localized in space and time, because

of the retarded nature of the Green function. We see that the free-field

potential ATn(x) has the interpretation of the "incident" or "incoming"

potential, specified at x —> — °°. Similarly, in (12.135) with the advanced Green

function, the homogeneous solution AoUt(x) is the asymptotic "outgoing"

potential, specified at x —> +°°. The radiation fields are defined as the difference

between the "outgoing" and the "incoming" fields. Their 4-vector potential is

A?ad (x) = A^ut-Arn =^f J
d
4
x' D(x-x')Ja (x') (12.136)

where

D(z) =Dr(z)-Da (z) (12.137)

is the difference between the retarded and advanced Green functions.

The fields of a charged particle moving in a prescribed path will be of interest

in Chapter 14. If the particle is a point charge e whose position in the inertial

frame K is r(t), its charge density and current density in that frame are

p(x, t) = e8[x-r(t)]

J(x, = e v(t) 8[x-r(t)]

where \(t) = dr(t)/dt is the charge's velocity in K. The charge and current

(12.138)
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densities can be written as a 4-vector current in manifestly covariant form by

introducing the charge's 4-vector coordinate r
a
(r) as a function of the charge's

proper time t and integrating over the proper time with an appropriate

additional delta function. Thus

where Ua
is the charge's 4-velocity. In the inertial frame K, r

a = [ct, r(t)] and

Ua = (y c, yv). The use of (12.139) in (12.134) to yield the potentials and fields of

a moving charge is presented in Section 14.1.
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PROBLEMS

12.1 (a) Show that the Lorentz invariant Lagrangian,

L = -±mUaUa--UaAa

c

gives the correct relativistic equations of motion for a particle of mass m and charge q
interacting with an external field described by the 4-vector potential Aa

(x).

(b) Define the canonical momenta and write out the effective Hamiltonian in both
covariant and space-time form. The effective Hamiltonian is a Lorentz invariant. What
is its value?

12.2 (a) Show from Hamilton's principle that Lagrangians which differ only by a total

time derivative of some function of the coordinates and time are equivalent in the

sense that they yield the same Euler-Lagrange equations of motion.

(b) Show explicitly that the gauge transformation A a -> A a +daA of the potentials in

the charged-particle Lagrangian (12.9) merely generates another equivalent Lagran-
gian.

12.3 A particle interacts with an external Lorentz scalar potential.

(a) Use the Lorentz invariance of the action and the standard assumptions of

translational and rotational invariance to show that the relativistic Lagrangian L must
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be of the form (12.34), namely the free-particle Lagrangian times a Lorentz scalar

function of x.

(b) Show that if the particle moves nonrelativistically in the frame K' the force in that

frame is approximately F' = gE'eff where E'efi = -V<f>, and show that in the frame K there

is thus a pseudomagnetic force, g(uxBeH)/c, where Be„= (7 /c)vxEef( .

(c) Show, however, by explicit substitution and transformation of d
a
<j>(x) that the force

equation (12.36) evaluated in K' leads via the transformation equations (12.32) for

force to the same equation (12.36) in the frame K.

12.4 A particle with mass m and charge e moves in a uniform, static, electric field E .

(a) Solve for the velocity and position of the particle as explicit functions of time,

assuming that the initial velocity v was perpendicular to the electric field.

(b) Eliminate the time to obtain the trajectory of the particle in space. Discuss the

shape of the path for short and long times (define "short" and "long" times).

12.5 It is desired to make an ExB velocity selector with uniform, static, crossed,

electric and magnetic fields over a length L. If the entrance and exit slit widths are Ax,

discuss the interval Au of velocities, around the mean value u = cE/B, that is

transmitted by the device as a function of tne mass, the momentum or energy of the

incident particles, the field strengths, the length of the selector, and any other relevant

variables. Neglect fringing effects at the ends. Base your discussion on the practical

facts that L~few meters, Emax~3x 10
4
volts/cm, Ax—10" 1

to 10
2 cm, u~0.5 to

0.995c. (It is instructive to consider the equation of motion in a frame moving at the

mean speed u along the beam direction, as well as in the laboratory.) References: C.

A. Coombes et al., Phys. Rev. 112, 1303 (1958); P. Eberhard, M. L. Good, and H. K.

Ticho, Rev. Sci. Inst. 31, 1054 (1960).

12.6 A particle of mass m and charge e moves in the laboratory in crossed, static,

uniform, electric and magnetic fields. E is parallel to the x axis; B is parallel to the y
axis.

(a) For |E|<|B| make the necessary Lorentz transformation described in Section 12.4

to obtain explicitly parametric equations for the particle's trajectory.

(b) Repeat the calculation of (a) for |E|>|B|.

12.7 Static, uniform electric and magnetic fields, E and B, make an angle of with

respect to each other.

(a) By a suitable choice of axes, solve the force equation for the motion of a particle of

charge e and mass m in rectangular coordinates.

(b) For E and B parallel, show that with appropriate constants of integration, etc., the

parametric solution can be written

x = ARsin<f>, y =AR cos <f>, z=— Vl+A 2
cosh (p<j>)

ct=— Vl +A 2
sinh (p<j>)

P

where R = (mc 2
/eB) f p = (E/B), A is an arbitrary constant, and <j> is the parameter

[actually c/R times the proper time].

12.8 The magnetic field of the earth can be represented approximately by a magnetic

dipole of magnetic moment M= 8.1 x 10
25 gauss-cm3

. Consider the motion of energetic

electrons in the neighborhood of the earth under the action of this dipole field (Van

Allen electron belts). [Note that M points south.]
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(a) Show that the equation for a line of magnetic force is r=r sin
2

0, where is the

usual polar angle (colatitude) measured from the axis of the dipole, and find an

expression for the magnitude of B along any line of force as a function of 0.

(b) A positively charged particle circles around a line of force in the equatorial plane

with a gyration radius a and a mean radius R (a « R). Show that the particle's azimuthal

position (east longitude) changes approximately linearly in time according to

<M0 = 4>o-|(^) <oB (t-t )

where a)B is the frequency of gyration at radius R.

(c) If, in addition to its circular motion of (b), the particle has a small component of

velocity parallel to the lines of force, show that it undergoes small oscillations in

around = 7r/2 with a frequency D, = (3/V2)(a/R)o>B . Find the change in longitude per

cycle of oscillation in latitude.

(d) For an electron of 10 MeV kinetic energy at a mean radius R = 3x 10
9
cm, find <oB

and a, and so determine how long it takes to drift once around the earth and how long

it takes to execute one cycle of oscillation in latitude. Calculate these same quantities

for an electron of 10 keV at the same radius.

12.9 A charged particle finds itself instantaneously in the equatorial plane of the

earth's magnetic field (assumed to be a dipole field) at a distance R from the center of

the earth. Its velocity vector at that instant makes an angle a with the equatorial plane

(uy/Ux = tan a). Assuming that the particle spirals along the lines of force with a

gyration radius a« R, and that the flux linked by the orbit is a constant of the motion,

find an equation for the maximum magnetic latitude A. reached by the particle as a

function of the angle a. Plot a graph (not a sketch) of A versus a. Mark parametrically

along the curve the values of a for which a particle at radius R in the equatorial plane

will hit the earth (radius R ) for R/R = 1.2, 1.5, 2.0, 2.5, 3, 4, 5.

12.10 Consider the precession of the spin of a muon, initially longitudinally polarized,

as the muon moves in a circular orbit in a plane perpendicular to a uniform magnetic

field B.

(a) Show that the difference O of the spin precession frequency and the orbital

gyration frequency is

independent of the muon's energy, where a = (g-2)/2 is the magnetic moment
anomaly. (Find equations of motion for the components of spin along the mutually

perpendicular directions defined by the particle's velocity, the radius vector from the

center of the circle to the particle, and the magnetic field.)

(b) For the CERN Muon Storage Ring [referred to in Section 1 1.1(c)], the orbit radius

is R = 2.5 meters and B = 17 x 10
3
gauss. What is the momentum of the muon? What is

the time dilatation factor 7? How many periods of precession T=2ir/fl occur per

observed laboratory mean lifetime of the muons? [m,, = 105.66 MeV, t = 2.2x
10~ 6

sec, a=*a/2ir].

(c) Express the difference frequency Cl in units of the orbital rotation frequency and

compute how many precessional periods (at the difference frequency) occur per

rotation for a 300 MeV muon, a 300 MeV electron, a 5 GeV electron (this last typical

of e
+
e storage rings at Stanford and Hamburg).

12.11 In Section 11.11 the BMT equation of motion for the spin of a particle of charge e

and a magnetic moment with an arbitrary g factor was obtained.
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(a) Verify that (11.171) is the correct equation for the time derivative of the

longitudinal component of the rest-frame spin vector s.

(b) Let n be a unit 3-vector perpendicular to p and coplanar with and s (n is

generally time-dependent). Let be the angle between p and s. Show that the time

rate of change of can be written as

where E and B are the fields in the laboratory and c(J = cj3(J is the particle's

instantaneous velocity in the laboratory.

(c) For a particle moving undeflected through an ExB velocity selector and with

(nxp) • B = B, find d6/dt in terms of the gyration frequency eB/ymc.

(d) By defining the two 4-vectors, La = (yp, yjj) and Na = (0, n), show that dO/dr can

be written in the quasi-covariant form,

dr mcl2 v J

where Ua
is the particle's 4-velocity.

12.12 (a) Specialize the Darwin Lagrangian (12.82) to the interaction of two charged

particles (mi, q t ) and (nh, q2). Introduce reduced particle coordinates, r= Xj-x2 ,

v = Vi-v2 and also center of mass coordinates. Write out the Lagrangian in the

reference frame in which the velocity of the center of mass vanishes and evaluate the

canonical momentum components, px = dL/dvx , etc.

(b) Calculate the Hamiltonian to first order in 1/c
2 and show that it is

n _ P
2 /i

|

i\ qig2 P
4 /i

,

iv frfr /p
2+(ptT \

2 \m1 m2 ) r 8c
2
\m!

3 m2V 2mim2C 2
\ r /

Compare with the various terms in (42.1) on p. 193 of Bethe and Salpeter (op. cit).

Discuss the agreements and disagreements.

12.13 An alternative Lagrangian density for the electromagnetic field is

£= -J- daA, d
aA"-- JaAa

Sir c

(a) Derive the Euler-Lagrange equations of motion. Are they the Maxwell equations?

Under what assumptions?

(b) Show explicitly, and with what assumptions, that this Lagrangian density differs

from (12.85) by a 4-divergence. Does this added 4-divergence affect the action or the

equations of motion?

12.14 Consider the Proca equations for a localized steady state distribution of current

that has only a static magnetic moment. This model can be used to study the

observable effects of a finite photon mass on the earth's magnetic field. Note that if the

magnetization is the current density can be written as J=c(TxJ^).
(a) Show that ifM =m/(x), where m is a fixed vector and /(x) is a localized scalar

function, the vector potential is

A(x) = -m xV
[
/(x') y^5t d

3
x'
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(b) If the magnetic dipole is a point dipole at the origin show that the magnetic field is

B(x) = [3f(f • m) - m] ( 1 +^r+^)^-§ yi
2m^

(c) The result of (b) shows that at fixed r = R (on the surface of the earth), the earth's

magnetic field will appear as a dipole angular distribution, plus an added constant

magnetic field (an apparently external field) antiparallel to m. Satellite and surface

observations lead to the conclusion that this "external" field is less than 4x 10" 3
times

the dipole field at the magnetic equator. Estimate a lower limit on /jl'

1

in earth radii and an

upper limit on the photon mass in grams from this datum.

This method of estimating \i is due to E. Schrodinger, Proc. Roy. Irish Acad. A49,
135 (1943). See A. S. Goldhaber and M. M. Nieto, Phys. Rev. Letters 21, 567 (1968).

12.15 Prove, by means of the divergence theorem in four dimensions or otherwise, that

for sourcefree electromagnetic fields confined to a finite region of space the 3-space

integrals of @ 00 and @ ' transform as the components of a 4-vector, as implied by

(12.106).

12.16 Sourcefree electromagnetic fields exist in a localized region of space. Consider

the various conservation laws that are contained in the integral of daMafiy — over all

space, where Maf3" is defined by (12.117).

(a) Show that when and y are both space indices conservation of the total field

angular momentum follows.

(b) Show that when = the conservation law is

dX c
2Pem

where X is the coordinate of the center of mass of the electromagnetic fields, defined

by

xj ud 3
x = Jxud

3
x

where u is the electromagnetic energy density and Eem and Pem are the total energy and
momentum of the fields.



13
Collisions between
Charged Particles,

Energy Loss,

and Scattering

In this chapter collisions between swiftly moving, charged particles are con-

sidered, with special emphasis on the exchange of energy between collision

partners and on the accompanying deflections from the incident direction. A fast

charged particle incident on matter makes collisions with the atomic electrons

and nuclei. If the particle is heavier than an electron (mu or pi meson, K meson,

proton, etc.), the collisions with electrons and with nuclei have different

consequences. The light electrons can take up appreciable amounts of energy

from the incident particle without causing significant deflections, whereas the

massive nuclei absorb very little energy but because of their greater charge cause

scattering of the incident particle. Thus loss of energy by the incident particle

occurs almost entirely in collisions with electrons. The deflection of the particle

from its incident direction results, on the other hand, from essentially elastic

collisions with the atomic nuclei. The scattering is confined to rather small

angles, so that a heavy particle keeps a more or less straight-line path while

losing energy until it nears the end of its range. For incident electrons both

energy loss and scattering occur in collisions with the atomic electrons. Conse-

quently the path is much less straight. After a short distance, electrons tend to

diffuse into the material, rather than go in a rectilinear path.

The subject of energy loss and scattering is an important one and is discussed

in several books* where numerical tables and graphs are presented. Conse-

quently our discussion will emphasize the physical ideas involved, rather than

the exact numerical formulas. Indeed, a full quantum-mechanical treatment is

needed to obtain exact results, even though all the essential features are classical

or semiclassical in origin. The order of magnitude of the quantum effects are all

easily derivable from the uncertainty principle, as will be seen in what follows.

We will begin by considering the simple problem of energy transfer to a free

electron by a fast heavy particle. Then the effects of a binding force on the

* See references at the end of the chapter.

618
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electron are explored, and the classical Bohr formula for energy loss is obtained.

Quantum modifications and the effect of the polarization of the medium are

described, followed by a discussion of the closely related phenomenon of

Cherenkov radiation in transparent materials. The energy loss in an electronic

plasma is considered briefly. Finally the elastic scattering of incident particles by

nuclei and multiple scattering are presented.

13.1 Energy Transfer in a Coulomb Collision

A swift particle of charge ze and mass M collides with an electron in an atom. If

the particle moves rapidly compared to the characteristic velocity of the electron

in its orbit, during the collision the electron can be treated as free and initially at

rest. As further approximations we will assume that the momentum transfer Ap
is sufficiently small that the incident particle is essentially undeflected from its

straight-line path, and that the recoiling electron does not move appreciably

during the collision. Then to find the energy transfer during the collision we need

only calculate the momentum impulse caused by the electric field of the incident

particle at the position of the electron. The particle's magnetic field is of

negligible importance if the electron is essentially at rest.

Figure 13.1 shows the geometry of the collision. The incident particle has a

velocity v and an energy E = yMc 2
. It passes the electron of charge — e and mass

m«M at an impact parameter b. At the position of the electron the fields of the

incident particle are given by (11.152) with q = ze. Only the transverse electric

field E2 has a nonvanishing time integral. Consequently the momentum impulse

Ap is in the transverse direction and has the magnitude

It should be noted that Ap is independent of 7, as discussed at the end of Section

11.10. The energy transferred to the electron is

The angular deflection of the incident particle is given by 6— Ap/p, provided

(13.1)

(13.2)

ze, M v

Fig. 13.1
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Ap« p. Thus, for small deflections,

2ze
2

This result can be compared with the well-known exact expression for the

Rutherford scattering of a nonrelativistic particle of charge ze by a Coulomb
force field of charge z'e:

. Izz'e
2

. .

2tanr^r (13 -4)

We see that for small angles the two expressions agree.*

The energy transfer AE(b) given by (13.2) has several interesting features. It

depends only on the charge and velocity of the incident particle, not on its mass.

It varies inversely as the square of the impact parameter so that close collisions

involve very large energy transfers. There is, of course, an upper limit on the

energy transfer, corresponding to a head-on collision. Our method of calculation

is really valid only for large values of b. We can obtain a lower limit bmin on the

impact parameter for which our approximate calculation is valid by equating

(13.2) to the maximum allowable energy transfer [see Problem 11.23(b)]:

AE(bmin) = AEmax-2m7V (13.5)

This yields the lower bound,

ze
2

bm.n = 2 (13.6)
ymv

below which our approximate result (13.2) must be replaced by a more exact

expression which tends to (13.5) as b—»0. It can be shown (Problem 13.1) that a

proper treatment gives the more accurate result,

AE(b)=^(rr^rp) (13.7)

Equation (13.7) exhibits the proper limiting behavior as b—»0 and reduces to

(13.2) for b»bmin .

The lower limit on b can be obtained by another argument. Equation (13.2)

was derived under the assumption that the electron did not move appreciably

during the collision. As long as the distance d it actually moves is small

compared to b, we may expect that (13.2) will be correct. An estimate of d can

be obtained by saying that Ap/2m is an average velocity of the electron during

* Actually there is a question of reference frames in comparing (13.3) and (13.4).

Since (13.4) holds for a fixed center of force (or the cm system), we should compare it with

the result for the deflection of the light electron in the frame where the heavy incident

particle is at rest. Then (13.3) holds with p— ymv as the electron momentum in that

frame. The reader may verify that (13.3) and (13.4) are also consistent in the frame in

which the electron is at rest by transforming angles from the cm system to the laboratory.
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the collision, and that the time of collision is given by (11.153), At-b/yv. Hence

the distance traveled during the collision is of the order of

d~^xAt =^-
2 = bmin (13.8)

2m ymv

As long as b»d, (13.2) should hold. This is exactly the condition implied by

(13.7).

At the other extreme of very distant collisions the approximate result (13.2)

for AE(b) is in error because of the binding of the atomic electrons. We assumed

that the electrons were free, whereas they are actually bound in atoms. As long as

the collision time (11.153) is short compared to the orbital period of motion, it

may be expected that the collision will be sudden enough that the electron may
be treated as free. If, on the other hand, the collision time is very long compared

to the orbital period, the electron will make many cycles of motion as the

incident particle passes slowly by and will be influenced adiabatically by the

fields with no net transfer of energy. The dividing point comes at impact

parameter bmax , where the collision time (11.153) and the orbital period are

comparable. If o> is a characteristic atomic frequency of motion, this condition is

1
>

Ar(bmax)

—

0)

or
} (13.9)

b =^
(X)

For impact parameters greater than bmax it can be expected that the energy

transfer falls below (13.2), going rapidly to zero for b»bmax.

The general behavior of AE(b) as a function of b is shown in Fig. 13.2. The
dotted curve represents the approximate form (13.2), while the solid curve is a

representation of the correct result. In the interval bmin<b<bmax the energy

transfer is given approximately by (13.2). But for impact parameters outside that

interval, the energy transfer is considerably less.

A fast particle passing through matter "sees" electrons at various distances

from its path. If there are N atoms per unit volume with Z electrons per atom,

the number of electrons located at impact parameters between b and (b+ db) in a

thickness dx of matter is

dn = NZ2irbdbdx (13.10)

To find the energy lost per unit distance by the incident particle we multiply

(13.10) by the energy transfer AE(b) and integrate over all impact parameters.

Thus the energy loss is

j^=2irNZ^AE(b)bdb (13.11)

In view of the behavior of AE(b) shown in Fig. 13.2 we may use approximation
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'mm
log b

Fig. 13.2 Energy transfer as a function of impact parameter.

(13.2) and integrate between b,

dE

and fwx. Then we find the result

AttNZ—2ax mv2
Jbmi„

or

where

dE A XT_z e .—^4itNZ 5 In B
ax mu

B 7
2mu 3

ze
2
a)

(13.12)

(13.13)

(13.14)

This approximate expression for the energy loss exhibits all the essential features

of the classical result due to Bohr (1915). The method of handling the lower limit

of integration (13.12) is completely equivalent to using (13.7) for AE(b). The
cutoff at b = fw is only approximate. Consequently B is uncertain by a factor of

the order of unity. Because B appears in the logarithm, this factor is of negligible
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importance numerically. In any event, a proper treatment of binding effects is

given in the next section. Discussion of (13.13) as a function of energy and its

comparison with experiment will be deferred until Section 13.3.

13.2 Energy Transfer to a Harmonically Bound Charge

In order to justify the plausible value iwx (13.9) of the impact parameter which

divides the Coulomb collisions for b<bmax with the free-energy transfer (13.2)

and essentially adiabatic collisions for b>bmsix with negligible energy transfer, we
consider the problem of the energy lost by a massive charged particle with

charge ze and velocity v passing a harmonically bound charge of mass m and

charge — e. This will serve as a simplified model for energy loss of particles passing

through matter. As before, we will assume that the massive particle is deflected

only slightly in the encounter so that its path can be approximated by a straight

line. It passes by the bound particle at an impact parameter b, measured from the

origin O of the binding force, as shown in Fig. 13.3. Since we are primarily

interested in large impact parameters where binding effects are important, we
may assume that the energy transfer is not large, that the motion of the bound

particle is nonrelativistic throughout the collision, and that its initial and final

amplitudes of oscillation about the origin O are small compared to b. Then only

the electric field of the incident particle need be included in the force equation.

Furthermore, its variation over the position of the bound particle may be

neglected, and its effective value can be taken as that at the origin O. This is

sometimes called the dipole approximation, by analogy with the corresponding

problem of absorption of radiation.

With these approximations the force equation for the harmonically bound

charge can be written as

x+rx+co 2x=-— E(t) (13.15)m
where E(t) is the electric field at O due to the charge ze, its components being

given by (11.152), cu is the characteristic frequency of the binding, and T is a

small damping constant. The damping factor is not essential, but it is present to

at least some degree in actual physical systems and serves to remove certain

ambiguities which would arise in its absence. To solve (13.15) we Fourier-

analyze both E(0 and x(t):

VZtt J-oo

Since both x(0 and E(t) are real, the positive and negative frequency parts of

their transforms are related by

(13.16)

(13.17)

x(-cd) = x*(o))

E(-o>) = E*(o>)
(13.18)



624 Classical Electrodynamics

ze, M v

Sect. 13.2

When the Fourier integral forms are substituted into the force equation, we find

e E(o>)
x(o>) = -

m (t) — i(i)T—(D'
(13.19)

With the known form of E(r) the Fourier amplitude E(o>) can be determined.

Then x(f) can be found from (13.16), using (13.19). The problem is solved,

provided one can do the integrals.

The quantity of immediate interest is not the detailed motion of the bound
particle, but the energy transfer in the collision. This can be found by considering

the work done by the incident particle on the bound one. The rate of doing work

is given by

(13.20)

Thus the total work done by the particle passing by is

AE =
J

dtjVx'E-J (13.21)

The current density is J = -e\ 8[\'-\(t)] for the bound charge. Consequently

AE = -ej wEdt (13.22)

where v = x, and in the dipole approximation E is the field of the incident particle

at the origin O. Using the Fourier representations (13.16) and (13.17), as well as

that for a delta function (2.46), and the reality conditions (13.18), the energy

transfer can be written

AE = 2e Re [ i<ox(a>) • E*(a>) do*
Jo

If now the result (13.19) for x(a>) is inserted, this becomes

2<o
2r— |E(0))|

2
7 2 ~~2\2, 2^2 d(t)m Jo (coo - a> ) + a) T

(13.23)

(13.24)
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For small T the integrand peaks sharply around <o = o> in an approximately

Lorentzian line shape. Consequently the factor involving the electric field can

be approximated by its value at a) = (o . Then (13.24) becomes

V

)

= |E(<o
)|

2
[" 2

X d*
(13.25)m Jo (WO

^.2 \ +Y 2

The integral has the value 7r/2, independent of o) /r. Thus the energy transfer is

AE =^|E(o) )|

2
(13.26)

Equation (13.26) is a very general result for energy transfer to a nonrelativistic

oscillator by an external electromagnetic field. In the present application the

field is produced by a passing charged particle. But a pulse of radiation or any

combination of external fields will serve as well.

For a particle with charge ze passing by the origin O at an impact parameter b

with a velocity t>, the electromagnetic fields at the origin are given by (11.152)

with q = ze. To illustrate the determination of the Fourier transform (13.17) we
consider E2 (t). Its transform E2 (co) is defined to be

k ( \
zeby (" e

iolt

dtE2(a>)=-?=±\ — t-t^t; (13.27)
V^r-L (b

2+ 7Vt2

)

3/2

By changing integration variable to x = yvt/b, (13.27) can be written as

2g f°° „ioibx/yv

E2((o)=
~

, , f, (13.28)
>/2^bu J- (l + x

2

)

3/

From a table of Fourier transforms* we find that the integral is proportional to a

modified Bessel function of order unity [see (3.101)]. Thus

Similarly E x (t) given by (11.152) has the Fourier transform:

*<»>--<S(!)1?W*)]
The energy transfer (13.26) to the harmonically bound charge can now be

evaluated explicitly. Using (13.29) and (13.30), we find

*E(b)=^(±)[eKAe+\eK 2

(&] (13.31)

* See, for example, Magnus and Oberhettinger, Chapter VIII, or Bateman
Manuscript Project, Tables of Integral Transforms, Vol. I, Chapters I—III.
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where

(13.32)
yv

The factor multiplying the square bracket is just the approximate result (13.2).

For small and large £, the limiting forms (3.103) and (3.104) show that the

square bracket in (13.31) has the limiting values:

fl, for£«l

Since £ = b/bmax, we see that for b«bm3LX the energy transfer is essentially the

approximate result (13.2), while for bmax it falls off exponentially to zero. This

justifies the qualitative arguments of the previous section on the upper limit bmax .

13.3 Classical and Quantum-Mechanical Energy-Loss Formulas

The energy transfer (13.31) to a harmonically bound charge can be used to

calculate a classical energy loss per unit length for a fast, heavy particle passing

through matter. We suppose that there are N atoms per unit volume with Z
electrons per atom. The Z electrons can be divided into groups specified by the

index j, with f electrons having the same harmonic binding frequency to,. The
number f is called the oscillator strength of the jth oscillator. The oscillator

strengths satisfy the obvious sum rule, X.fi = Z. By a trivial extension of the

arguments leading to (13.11) and (13.12) we find the energy loss to be

^= 2wN I/iJf &Ei(b)bdb (13.34)

where AEj(b) is given by (13.31) with € = (x)jb/yv, and a lower limit of bmin is

specified, consistent with (13.7). No upper limit is necessary, since (13.31) falls

rapidly to zero for large b. The integral over the modified Bessel functions can be

done in closed form, leading to the result,

dE 4irNz
2
e

dx mv X ^^min^i(^min)Xo(^min)— ^min(^l
2
(^min)

—
1^0

2
(^min))

j
(13.35)

where ^min = a>jbmiJyv. In general, £min«l. This means that the limiting forms

(3.103) may be used to simplify (13.35). This final expression for classical energy

loss is

dEc

dx
= 47rNZ^[ln Bc-^1 (13.36)

mv l 2c J
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where the argument of the logarithm is

p _ 1.1237u _ 1.1237Wdc ——. rr — 27 v ^IJ.J

The average frequency (co) appearing in Bc is a geometric mean defined by

The result (13.36)-(13.38) is that obtained by Bohr in his classic paper on energy

loss (1915). Our approximate expression (13.13) is in agreement with (13.36) in

all its essentials, since the added -v 2
/2c

2
is a small correction even at high

velocities.

Bohr's formula (13.36) gives a reasonable description of the energy loss of

relatively slow alpha particles and heavier nuclei. But for electrons, mesons,

protons, and even fast alphas, it overestimates the energy loss considerably. The

reason is that for the lighter particles quantum-mechanical modifications cause a

breakdown of the classical result. The important quantum effects are (1)

discreteness of the possible energy transfers, and (2) limitations due to the wave

nature of the particles and the uncertainty principle.

The problem of the discrete nature of the energy transfer can be illustrated by

calculating the classical energy transfer (13.2) at b— bmax . This is roughly the

smallest energy transfer that is of importance in the energy-loss process.

Assuming only one binding frequency <o for simplicity, we find

where u = c/137 is the orbital velocity of an electron in the ground state of

hydrogen and IH = me
4
/2h

2 = 13.6 eV is the ionization potential in hydrogen.

Since ha) is of the order of the ionization potential of the atom, that is, of the

order of IH , we see that for a fast particle (v»v ) the classical energy transfer

(13.39) is very small compared to the ionization potential, or even to the

smallest excitation energy in the atom. But we know that energy must be

transferred in definite quantum jumps. A tiny amount of energy like (13.39)

simply cannot be absorbed by the atom. We might argue that only if our classical

formula (13.2) gives an energy transfer large compared to typical atomic

excitation energies would we expect it to be correct. This would set quite a

different upper limit on the impact parameters. Fortunately the classical result

can be applied in a statistical sense if we reinterpret its meaning. Quantum
considerations show that the classical result of the transfer of a small amount of

energy in every collision is incorrect. But if we consider a large number of

collisions, we find that on the average a small amount of energy is transferred. It

is not transferred in every collision, however. In most collisions no energy is

transferred. But in a few collisions an appreciable excitation occurs, yielding a

Z In (a)) =X /j In co, (13.38)

(13.39)
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small average value over many collisions. In this statistical sense the quantum
mechanism for discrete energy transfers and the classical process with a

continuum of possible energy transfers can be reconciled. The detailed numeri-

cal agreement for the averages (but not for the individual amounts) stems from

the quantum-mechanical definitions of the oscillator strengths
fa
and resonant

frequencies o>j.

The other important quantum modification arises from the wave nature of the

particles. The uncertainty principle sets certain limits on the range of validity of

classical orbit considerations. If we try to construct wave packets to give

approximate meaning to a classical trajectory, we know that the path can be

defined only to within an uncertainty Ax^h/p. For impact parameters b less than

this uncertainty, classical concepts fail. Since the wave nature of the particles

implies a smearing out in some sense over distances of the order of Ax, we
anticipate that the correct quantum-mechanical energy loss will correspond to

much smaller energy transfers than given by (13.2) for b<Ax. Thus Ax~ft/p is a

quantum analog of the minimum impact parameter (13.6). In the collision of two

particles each one has a wave nature. For a given relative velocity the limiting

uncertainty will come from the lighter of the two. For a heavy incident particle

colliding with an electron, the momentum of the electron in the coordinate

frame where the incident particle is at rest (almost the cm frame) is p' = ymv,

where m is the mass of the electron. Therefore the quantum-mechanical

minimum impact parameter is

b&=— (13.40)
ymv

For electrons incident on electrons we must take more care and consider the cm
momentum for equal masses. Then for electrons we obtain the minimum impact

parameter,

[bSL]electrons=^ (13.41)

In a given situation the larger of the two minimum impact parameters (13.6)

and (13.40) must be used to define argument B (13.14) of the logarithm in

dE/dx. The ratio of the classical to quantum value of bmin is

n=£ (13-42)

If t]>1, the classical Bohr formula must be used. We see that this occurs for

slow, highly charged, incident particles, in accord with observation. If n<l, the

quantum minimum impact parameter is larger than the classical one. Then
quantum modifications appear in the energy-loss formula. The argument of the

logarithm in (13.13) becomes

Vh-*-S (13 -43)
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Equation (13.13) with the quantum-mechanical Bq (13.43) in the logarithm is a

good approximation to a quantum-theoretical result of Bethe (1930). Bethe's

formula, including the effects of close collisions, is

Apart from the small correction term -v 2
/c

2 and a factor of 2 in the argument of

the logarithm, this is just our approximate expression.

For electrons the quantum effects embodied in (13.41) lead to a modified

quantum-mechanical argument for the logarithm r

where the last expression is valid at high energies. Even though there are other

quantum effects for electrons, such as spin and exchange effects, the dominant

modifications are included in (13.45).

The general behavior of both the classical and quantum-mechanical energy-

loss formulas is shown in Fig. 13.4. At low energies, the main energy variation is

as tT
2

, since the logarithm changes slowly. But at high energies where v-*c the

variation is upwards again, going as In 7 for y»l. Bethe's formula is in good

agreement with experiment for all fast particles with tj<1, provided the energy

is not too high (see the next section).

It is worth while to note the physical origins of the two powers of 7 which

appear in Bc (13.37) and Bq (13.43). One power of 7 comes from the increase of

the maximum energy (13.5) which can be transferred in a head-on collision,

making bmin * y~ l

in (13.6) or (13.40). The other power comes from the

(13.44)

(13.45)

0.01 0.1 1 10 10 2
10

3
10

4

Fig. 13.4 Energy loss as a function of kinetic energy.
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relativistic change in shape of the electromagnetic fields (11.152) of a fast

particle with the consequent shortening of the collision time (11.153) and

increase of bmax (13.9). The fields are effective in transferring energy at larger

distances for a relativistic particle than for a nonrelativistic one.

Sometimes it is of interest to know the energy loss per unit distance due to

collisions in which less than some definite amount e of energy is transferred per

collision. In photographic emulsions, for example, ejected electrons of more
than about 10 keV energy have a range greater than the average linear

dimensions of the silver bromide grains. Consequently the energy dissipated in

blackening of the grains corresponds to collisions where the energy transfer is

less than about 10 keV. Classically, the desired energy-loss formula can be

obtained from the Bohr formula (13.35) with a minimum impact parameter

bmin(e) chosen so that (13.2) is equal to e. Thus

u ( \
2zel

Omin(€)
v(2meY

This leads to a formula of the form of (13.36), but with an argument in the

logarithm,

1.1237t;

2
(2me)

1/2

2ze
2
{(o)

Bc(e)-

Since quantum-mechanical energy-loss formulas are obtained from classical

ones by the replacement [see (13.43)],

_ze 2

Bq
— 7)BC — -

y
— Bc

nv

we expect that the quantum-mechanical formula for energy-loss per unit

distance due to collisions with energy transfer less than e will be

where

fW-4^f£[ta-a.M-£] (13-46)

B,(€) =A**gp (13.47)

The constant A is a numerical factor of the order of unity that cannot be

determined without detailed quantum-mechanical calculations. Bethe's calcula-

tions (1930) give the value X==l. The quantum-mechanical Bq (e) can be written

as

b
(

«Ue)
Bq(e)=r£r73 ( 13 -48 >

where bmax is given by (13.9), and the minimum impact parameter is
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The implication of this formula is that the classical trajectory must be ill defined

by an amount at least as great as (13.49) in order that the uncertainty in

transverse momentum Ap be less than the momentum transfer in the collision.

Otherwise we would be unable to be certain that an energy transfer of less than e

had actually occurred. Hence (13.49) forms a natural quantum-mechanical

lower limit on the classical orbit picture in this case.

The expressions for dE/dx obtained so far represent the average energy loss

per unit distance by a particle traversing matter. Since the number of collisions

per unit distance is finite, even if large, and the spectrum of possible energy

losses in individual collisions is wide, there will be fluctuations around the

average. These fluctuations produce straggling in energy or range for a particle

traversing a certain thickness of matter. If the number of collisions is large

enough and the energy loss not too great, the final energy of the particle will be

distributed in a Gaussian fashion about the mean. The width of the Gaussian can

be estimated as follows. In analogy with (13.11) we define the mean square

energy loss per unit distance as

^= 2<rrNZ^
m

"[AE(b)Tb db

with AE(b) given by (13.2). Provided bmin«bmax, this becomes

The term — /3
2
/2 has been added by hand to make the expression correct

relativistically. The collisions contributing most importantly to dE 2
/dx are close

collisions. For such collisions, involving large deflections of the electron in the

rest frame of the incident particle, there is a spin-dependent relativistic

correction that modifies the result into the form stated.

For a particle of initial energy E that traverses a thickness x of absorber and

emerges with a mean energy JE, it can be shown (see, for example, Bohr, Section

2.3) that the mean square deviation in energy is

dF 2

H2 =x^ (13.51)

where it is assumed that (E -E)/E is small so that it is sufficient to evaluate

(13.50) at E = E . The distribution in energy will then be approximately

P(E
,
E, x)--t=L- e-

{B-*)2l2Sl2
(13.52)

V27r{l

This result holds provided fl«E and Q,«(E -E), and also ft»AEmax- 2y
2mv 2

.

For very relativistic particles the last condition will ultimately fail. Then the

distribution of energies is not Gaussian, but is described by the Landau curve.

The interested reader can consult the references given at the end of the chapter

for further details.
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13.4 Density Effect in Collision Energy Loss

For particles which are not too relativistic the observed energy loss is given

accurately by (13.44) [or by (13.36) if tj> 1] for all kinds of particles in all types

of media. For ultrarelativistic particles, however, the observed energy loss is less

than predicted by (13.44), especially for dense substances. In terms of Fig. 13.4

of (dE/dx), the observed energy loss increases beyond the minimum with a slope

of roughly one-half that of the theoretical curve, corresponding to only one

power of 7 in the argument of the logarithm in (13.44) instead of two. In

photographic emulsions the energy loss, as measured from grain densities, barely

increases above the minimum to a plateau extending to the highest known
energies. This again corresponds to a reduction of one power of 7, this time in

Bq(e) (13.47).

This reduction in energy loss, known as the density effect, was first treated

theoretically by Fermi (1940). In our discussion so far we have tacitly made one

assumption that is not valid in dense substances. We have assumed that it is

legitimate to calculate the effect of the incident particle's fields on one electron

in one atom at a time, and then sum up incoherently the energy transfers to all

the electrons in all the atoms with bmin< b< bmax . Now bmax is very large compared

to atomic dimensions, especially for large 7. Consequently in dense media there

are many atoms lying between the incident particle's trajectory and the typical

atom in question if b is comparable to bmax . These atoms, influenced themselves

by the fast particle's fields, will produce perturbing fields at the chosen atom's

position, modifying its response to the fields of the fast particle. Said in another

way, in dense media the dielectric polarization of the material alters the

particle's fields from their free-space values to those characteristic of macro-

scopic fields in a dielectric. This modification of the fields due to polarization of

the medium must be taken into account in calculating the energy transferred in

distant collisions. For close collisions the incident particle interacts with only one

atom at a time. Then the free-particle calculation without polarization effects

will apply. The dividing impact parameter between close and distant collisions is

of the order of atomic dimensions. Since the joining of two logarithms is

involved in calculating the sum, the dividing value of b need not be specified with

great precision.

We will determine the energy loss in distant collisions (b>a), assuming that

the fields in the medium can be calculated in the continuum approximation of a

macroscopic dielectric constant e(o>). If a is of the order of atomic dimensions,

this approximation will not be good for the closest of the distant collisions, but

will be valid for the great bulk of the collisions.

The problem of finding the electric field in the medium due to the incident fast

particle moving with constant velocity can be solved most readily by Fourier

transforms. If the potentials A^(jc) and source density J^(x) are transformed in
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space and time according to the general rule,

F(x, =
(2^5

\d 3
k^dco F(k, a>)e

ik x-^

then the transformed wave equations become

633

(13.53)

<I>(k, w)=4^p(k,

k
2~ c(o))

|
A(k, o>)=— J(k, a>)

C

(13.54)

The dielectric constant e(o>) appears characteristically in positions dictated by

the presence of D in the Maxwell equations. The Fourier transforms of

and

are readily found to be

p(x, i) = ze 5(x— vr)

J(x, = vp(x,

(13.55)

ze
p(k, o))=— 5(co-k-v)

Z7T

J(k, (o) =vp(k, (o)

From (13.54) we see that the Fourier transforms of the potentials are

2ze 8(o>—k • v)

(13.56)

<Kk, o>)
e(co) , 2

c

and

A(k, cu) = e(a>) - 3>(k, cu)

(13.57)

From the definitions of the electromagnetic fields in terms of the potentials we
obtain their Fourier transforms:

Efc«)-i[iS^2-k]«fc«)

B(k, a)) = ie(w)kx^<I)(k, to)

i

(13.58)

In calculating the energy loss it is apparent from (13.23) that we want the

Fourier transform in time of the electromagnetic fields at a perpendicular

distance b from the path of the particle moving along the x axis. Thus the

required electric field is

E(g>)
(2i

3/2
l
d

3
k E(k, u))e

ibk2
(13.59)
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where the observation point has coordinates (0, b, 0). To illustrate the determi-

nation of E(a>) we consider the calculation of Ei(g>), the component of E parallel

to v. Inserting the explicit forms from (13.57) and (13.58), we obtain

RM-j*?J™ fdW^-k,] (13.60)

C

The integral over dki can be done immediately. Then

where

A
2=^-^ £(o,)=^[l-p2

€(a»)] (13.61)

The integral over dk3 has the value 7r/(A
2+k2

2

)

1/2
, so that Ei(a>) can be written

El ( (o) = --^-\— 2lf dk2 (13.62)VWU(o) P
JJ_oo (A

2+k2
2
)

1/2

The remaining integral is of the same general structure as (13.28). The result is

E^=-^(lYUj-f]^K
f

(i3 -63)

where the square root of (13.62) is chosen so that A lies in the fourth quadrant. A
similar calculation yields the other fields:

E2((*)=-(-X
/2

-±TK1 (\b)
v \ttJ e(o>)

B3 (a>) = fc-(G>)0E2 (a>)

(13.64)

In the limit e(a>)—»1 it is easily seen that fields (13.63) and (13.64) reduce to the

earlier results (13.30) and (13.29).

To find the energy transferred to the atom at impact parameter b we merely

write down the generalization of (13.23):

AE(b) = 2e£/
j
Re icox,(co) • E*(o>) da)

I Jo

where x,(o>) is the amplitude of the jth type of electron in the atom. Rather than

use (13.19) for x,(a>) we express the sum of dipole moments in terms of the

molecular polarizability and so the dielectric constant:

-eI/jXj(a))=^[6(a))-l]E(a))

where N is the number of atoms per unit volume. Then the energy transfer can
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be written

AE(b) =^r-
T
Re [ -i(oe(u>) |E(o))|

2
do> (13.65)

ZttIS Jo

The energy loss per unit distance in collisions with impact parameter b > a is

evidently

{^j =2ttn[ &E(b)bdb (13.66)

If fields (13.63) and (13.64) are inserted into (13.65) and (13.66), we find, after

some calculation, the expression due to Fermi,

/dE\ =l(^! Re [

°

ia)A
*aKl (A

*a)Ko(Xa) /
1

da) (13 6?)
\dx/ b>a -n- u Jo \e(a>) /

where A is given by (13.61). This result can be obtained more elegantly by

calculating the electromagnetic energy flow through a cylinder of radius a

around the path of the incident particle. By conservation of energy this is the

energy lost per unit time by the incident particle. Thus

(fL4f=-4^L 2iraB3Eidx

The integral over dx at one instant of time is equivalent to an integral at one

point on the cylinder over all time. Using dx =vdt, we have

In the standard way this can be converted into a frequency integral,

(^) = -ca Re [ B?(o>)E 1 (o>) do) (13.68)
\ax/b>a JO

With fields (13.63) and (13.64) this gives the Fermi result (13.67).

The Fermi expression (13.67) bears little resemblance to our previous results

for energy loss, such as (13.35). But under conditions where polarization effects

are unimportant it yields the same results as before. For example, for non-

relativistic particles (|3« 1) it is clear from (13.61) that A — (o/v, independent of

e(a>). Then in (13.67) the modified Bessel functions are real. Only the imaginary

part of l/e(o>) contributes to the integral. If we neglect the polarization

correction of Section 4.5 to the internal field at an atom, the dielectric constant

can be written

e(a>), 1+f2*fc!S , \ . (13.69)m
i

cji -a) -i(t)Ti
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where we have used the dipole moment expression (13.19). Assuming that the

second term is small, the imaginary part of l/e(a>) can be readily calculated and

substituted into (13.67). Then the integral over da) can be performed in the same

approximation as used in (13.24)-(13.26) to yield the nonrelativistic form of

(13.35). If the departure of A from oj/yv is neglected, but no other approxima-

tions are made, then (13.67) yields precisely the Bohr result (13.35).

The density effect evidently comes from the presence of complex arguments in

the modified Bessel functions, corresponding to taking into account e(o>) in

(13.61). Since e(o>) there is multiplied by |3
2

, it is clear that the density effect can

be really important only at high energies. The detailed calculations for all

energies with some explicit expression such as (13.69) for e(o)) are quite

complicated and not particularly informative. We will content ourselves with the

extreme relativistic limit (/3 — 1). Furthermore, since the important frequencies in

the integral over da> are optical frequencies and the radius a is of the order of

atomic dimensions, |Aa|~(a>a/c)« 1. Consequently we can approximate the

Bessel functions by their small argument limits (3.103). Then in the relativistic

limit the Fermi expression (13.67) is

(13.70)

It is worth while right here to point out that the argument of the second

logarithm is actually [l-j3
2
e(a>)]. In the limit e= 1, this log term gives a factor 7

in the combined logarithm, corresponding to the old result (13.36). Provided

€(o))t^ 1, we can write this factor as [l-e(co)], thereby removing one power of 7
from the logarithm, in agreement with experiment.

The integral in (13.70) with e((o) given by (13.69) can be performed most

easily by using Cauchy's theorem to change the integral over positive real w to

one over positive imaginary 0), minus one over a quarter circle at infinity. The

integral along the imaginary axis gives no contribution. Provided the T, in

(13.69) are assumed constant, the result of the integration over the quarter circle

can be written in the simple form:

MEN = (ze)V ln
/L123cX

\dx/ b>a c \ a(Dp J

where o>p is the electronic plasma frequency

v=±ENZe! (13J2)m

The corresponding relativistic expression without the density effect is, from

(13.36)
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We see that the density effect produces a simplification in that the asymptotic

energy loss no longer depends on the details of atomic structure through (o>>

(13.38), but only on the number of electrons per unit volume through &>p . Two
substances having very different atomic structures will produce the same energy

loss for ultrarelativistic particles provided their densities are such that the

density of electrons is the same in each.

Since there are numerous calculated curves of energy loss based on Bethe's

formula (13.44), it is often convenient to tabulate the decrease in energy loss due

to the density effect. This is just the difference between (13.73) and (13.71):

For photographic emulsions, the relevant energy loss is given by (13.46) and

(13.47) with e— lOkeV. With the density correction applied, this becomes

constant at high energies with the value,

dm^{^l
x

(2m^l\
(13 75)

ax 2c \n (x)p /

For silver bromide, h(op — 48 eV. Then for singly charged particles (13.75),

divided by the density, has the value of approximately 1.02 MeV-cm2
/gm. This

energy loss is in good agreement with experiment, and corresponds to an

increase above the minimum value of less than 10 per cent. Figure 13.5 shows

total energy loss and loss from transfers of less than lOkeV for a typical

substance. The dotted curve is the Bethe curve for total energy loss without

correction for density effect.

0.1 1 10 102 103 104

(7 - 1)

Fig. 13.5 Energy loss, including the density effect. The dotted curve is the total energy
loss without density correction. The solid curves have the density effect incorporated, the

upper one being the total energy loss and the lower one the energy loss due to individual

energy transfers of less than 10 keV.
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13.5 Cherenkov Radiation

The density effect in energy loss is intimately connected to the coherent response

of a medium to the passage of a relativistic particle that causes the emission of

Cherenkov radiation. They are, in fact, the same phenomenon in different

limiting circumstances. The expression (13.67), or better, (13.68), represents the

energy lost by the particle into regions a distance greater than b = a away from its

path. By varying a we can examine how the energy is deposited throughout the

medium. In (13.70) we have considered a to be atomic dimensions and assumed

|Aa|« 1. Now we take the opposite limit. If \ka\ » 1, the modified Bessel functions

can be approximated by their asymptotic forms. Then the fields (13.63) and

(13.64) become

EAco, b)—»i—— 1— H=
c
2

L
2
e(a>)JVIb

B3(o>, b)-+0e(a>)E2(a), b)

The integrand in (13.68) in this limit is

(13.76)

(- -caBfEO-^(-^)c,[l-^]e-- (13.77)

The real part of this expression, integrated over frequencies, gives the energy

deposited far from the path of the particle. If A has a positive real part, as is

generally true, the exponential factor in (13.77) will cause the expression to

vanish rapidly at large distances. All the energy is deposited near the path. The

only occasion when this is not true is when A is purely imaginary. Then the

exponential is unity; the expression is independent of a; some of the energy

escapes to infinity as radiation. From (13.61) it can be seen that A can be purely

imaginary if e(a>) is real (no absorption) and /3
2
e(a))>l. Actually, mild absorp-

tion can be allowed for, but in the interests of simplicity we will assume that e(a>)

is essentially real from now on. The condition |3
2
e(a))>l can be written in the

more transparent form,

v>-f= (13 -78>

V€(0))

This shows that it is necessary for the speed of the particle to be larger than the

phase velocity of the electromagnetic fields at frequency o> in order to have

emission of Cherenkov radiation of that frequency.

Consideration of the phase of A as j3
2
e changes from less than unity to greater

than unity, assuming that e(a>) has an infinitesimal positive imaginary part when
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co>0, shows that

A= -i|A|, forp 2e>l

This means that (A*/A)
1/2 = i and (13.77) is real and independent of a. Equation

(13.68) then represents the energy radiated as Cherenkov radiation per unit

distance along the path of the particle:

) =^rf Jl--zA-r)d<o (13.79)

The integrand obviously gives the differential spectrum in frequency. This is the

Frank-Tamm result, first published in 1937 in an explanation of the radiation

observed by Cherenkov in 1934. The radiation is evidently not emitted

uniformly in frequency. It tends to be emitted in bands situated somewhat below

regions of anomalous dispersion, where e(a>)>|3
_2

, as indicated in Fig. 13.6. Of

course, if /3 — 1 the regions where e(a>)>/3~
2 may be quite extensive.

Another characteristic feature of Cherenkov radiation is its angle of emission.

At large distances from the path the fields become transverse radiation fields.

The direction of propagation is given by ExB. As shown in Fig. 13.7, the angle

6c of emission of Cherenkov radiation relative to the velocity of the particle is

given by

tan 0c=- f1 (13.80)

From the far fields (13.76) we find

cos 0c = * (13.81)

The criterion |3
2e> 1 can now be rephrased as the requirement that the emission

angle 6C be a physical angle with cosine less than unity. In passing we note from

Fig. 13.7 that Cherenkov radiation is completely linearly polarized in the plane

containing the direction of observation and the path of the particle.

Fig. 13.6 Cherenkov band. Radiation is emitted only in shaded frequency range where

€M>0- 2
.
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y

2

x

Fig. 13.7

The emission angle C can be interpreted qualitatively in terms of a "shock"

wave front akin to the bow shock of a boat in water or the shock front

accompanying supersonic flight. In Fig. 13.8 are sketched two sets of successive

spherical wavelets moving out with speed c/Ve from successive instantaneous

positions of a particle moving with constant velocity v. On the left v is assumed

to be less than, and on the right greater than, c/Ve. For u>c/Ve the wavelets

interfere so as to produce a "shock" front or wake behind the particle, the angle

of which is readily seen to be the complement of C . An observer at rest sees a

wave front moving in the direction of C .

The qualitative behavior shown in Fig. 13.8 can be given quantitative

treatment by examining the potentials <£(x, t) or A(x, t) constructed from (13.57)

with (13.53). For example, the vector potential takes the form,

A(x, t)=^pj<i'k
k/(l-^e) + k/

where e = e(kiu), while p and kx are transverse coordinates. With the unrealistic,

but tractable, approximation that e is a constant the integral can be done in

closed form. In the Cherenkov regime (/3
2e>l) the denominator has poles on

the path of integration. Choosing the contour for the k x integration so that the

potential vanishes for points ahead of the particle (x— ut>0), the result is found

to be

A(x, = P-— 2zc
(13.82)

V(x-u0 2
-(|3

2e-l)p
2

inside the Cherenkov cone and zero outside. Note that A is singular along the

shock front, as suggested by the wavelets in Fig. 13.8. The expression (13.82)

can only be taken as indicative. The dielectric constant does vary with (o = kiV.

This functional dependence will remove the mathematical singularity in (13.82).

The properties of Cherenkov radiation can be utilized to measure velocities of

fast particles. If the particles of a given velocity pass through a medium of known
dielectric constant e, the light is emitted at the Cherenkov angle (13.81). Thus a
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v<c/ ye v > c/ yi"

Fig. 13.8 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less

than and greater than, the velocity of light in the medium. For u>c/Ve, an electromag-

netic "shock" wave appears, moving in the direction given by the Cherenkov angle dc .

measurement of the angle allows determination of the velocity. Since the

dielectric constant of a medium in general varies with frequency, light of

different colors is emitted at somewhat different angles. Narrow band filters may
be employed to select a small interval of frequency and so improve the precision

of velocity measurement. For very fast particles (0^1) a gas may be used to

provide a dielectric constant differing only slightly from unity and having (e-1)

variable over wide limits by varying the gas pressure. Counting devices using

Cherenkov radiation are employed extensively in high-energy physics, as

instruments for velocity measurements, as mass analyzers when combined with

momentum analysis, and as discriminators against unwanted slow particles.

13.6 Energy Loss in an Electronic Plasma

The loss of energy by a nonrelativistic particle passing through a plasma can be

treated in a manner similar to the density effect for a relativistic particle. As was

discussed in Section 10.9, the length scale in a plasma is divided into two regions.

For dimensions large compared to the Debye screening distance feD
-1

(10.91),

the plasma acts as a continuous medium in which the charged particles

participate in collective behavior such as plasma oscillations. For dimensions

small compared to kD~\ individual-particle behavior dominates and the particles

interact by the two-body screened potential (10.98). This means that in
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calculating energy loss the Debye screening distance plays the same role here as

the atomic dimension a played in the density-effect calculation. For close

collisions collective effects can be ignored, and the two-body screened potential

can be used to evaluate this contribution to the energy loss. This is left as an

exercise for the reader (Problem 13.3). For the distant collisions at impact

parameters bkD > 1 the collective effects can be calculated by utilizing Fermi's

formula (13.67) with an appropriate dielectric constant for a plasma. The loss in

distant collisions corresponds to the excitation of plasma oscillations in the

medium.

For a nonrelativistic particle (13.67) yields the following expression for the

energy loss to distances b>kD
~ l

:

if) a (^! Re r io. r o>_ K / « w / » \i
do} (13 83)

\dx/ kDb>1 tt v Jo e((o)lkDv \kDv/ \kDv/]

Since the important frequencies in the integral turn out to be to~ o>p , the relevant

argument of the Bessel function is

^=<^ (13.84)
kDv v

For particles incident with velocities v less than thermal velocities this argument

is large compared to unity. Because of the exponential fall-off of the Bessel

functions for large argument, the energy loss in exciting plasma oscillations by

such particles is negligible. Whatever energy is lost is in close binary collisions. If

the velocity is comparable with or greater than thermal speeds, then the particle

can lose appreciable amounts of energy in exciting collective oscillations. It is

evident that this energy of oscillation is deposited in the neighborhood of the

path of the particle, out to distances of the order of (v/{u
2

)
m
)kD~\

For a particle moving rapidly compared to thermal speeds we may use the

familiar small argument forms for the modified Bessel functions. Then (13.83)

becomes

If) .2(z^r
Re
/^,U (U^N^

\dx/ kDb>l tt v Jo \e(a>)/ V o) /

We shall take the simple dielectric constant (7.59), augmented by some

damping:

€(<o) = l-^-p (13.86)
(x) +l(Ol

The damping constant T will be assumed small compared to o>p . The necessary

combination,



Sect. 13.7 Collisions between Charged Particles 643

has the standard resonant character seen in (13.24), for example. In the limit

r«o>p the integral in (13.85) leads to the simple result,

J$%.h(ySU (13.87)

This can be combined with the results of Problem 13.3 to give an expression for

the total energy loss of a particle passing through a plasma:

dE
dx

= (-)

(ze)
2

,,_/ At)

^ t£) (13 - 88)™ V<o,b

where A is a number of order unity and bmxn is given by the larger of (13.6) and

(13.40). The presence of a>p in the logarithm suggests that the energy losses occur

in quantum jumps of hay?, in the same way as the mean frequency (to) in (13.44)

is indicative of the typical quantum jumps in atoms. Electrons passing through

thin metal foils show this discreteness in their energy loss. The phenomenon can

be used to determine the effective plasma frequency in metals.*

13.7 Elastic Scattering of Fast Particles by Atoms

In the preceding sections we have been concerned with the energy loss of

particles passing through matter. In these considerations it was assumed that the

trajectory of the particle was a straight line. Actually this approximation is not

rigorously true. As was discussed in Section 13.1, any momentum transfer

between collision partners leads to a deflection in angle. In the introductory

remarks at the beginning of the chapter it was pointed out that collisions with

electrons determine the energy loss, whereas collisions with atoms determine the

scattering. If the screening of the nuclear Coulomb field by the atomic electrons

is neglected, a fast particle of momentum p = yMv and charge ze, passing a heavy

nucleus of charge Ze at impact parameter b, will suffer an angular deflection,

2zZe2

according to (13.3).

The differential scattering cross section dcr/dCl (with dimensions of area per

unit solid angle per atom) is defined by the relation,

nbdbd<i> = nj^ sin 6 d6 d</> (13.90)

* See H. Raether, Springer Tracts in Modern Physics, Vol. 38, ed. G. Hohler,
Springer-Verlag, Berlin, (1965), pp. 84-157.
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where n is the number of particles incident on the atom per unit area per unit

time. The left-hand side of (13.90) is the number of particles per unit time

incident at azimuthal angles between </> and (</>+ d<£) and impact parameters

between b and {b+db). The right-hand side is the number of scattered particles

per unit time emerging at polar angles (0, </>) in the element of solid angle

dCl = sin Q d6 d(/>. Equation (13.90) is merely a statement of conservation of

particles, since b and are functionally related. The classical differential

scattering cross section can therefore be written.

da
d£l sin

db

dd
(13.91)

The absolute value sign is put on, since db and dO can in general have opposite

signs, but the cross section is by definition positive definite. If b is a multiple-

valued function of 0, then the different contributions must be added in (13.91).

With relation (13.89) between b and we find the small-angle nuclear

Rutherford scattering cross section per atom,

We note that the Z electrons in each atom give a contribution Z" 1

times the

nuclear one. Hence the electrons can be ignored, except for their screening

action. The small-angle Rutherford law (13.92) for nuclear scattering is found to

be true quantum mechanically, independent of the spin nature of the incident

particles. At wide angles spin effects enter, but for nonrelativistic particles the

classical Rutherford formula,

which follows from (13.4), holds quantum mechanically as well.

Since most of the scattering occurs for 0«1, and even at 6 = ir/2 the

small-angle result (13.92) is within 30 per cent of the Rutherford expression, it is

sufficiently accurate to employ (13.92) at all angles for which the unscreened

point Coulomb-field description is valid.

Departures from the point Coulomb-field approximation come at large and

small angles, corresponding to small and large impact parameters. At large b the

screening effects of the atomic electrons cause the potential to fall off more

rapidly than (1/r). In the Fermi-Thomas model the potential can be approxi-

mated roughly by the form:

V( r)^^! exp {-rla) (13.94)

where the atomic radius a is

a-1.4a Z" 1/3
(13.95)
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The length a = h
2/me 2

is the hydrogenic Bohr radius. For impact parameters of

the order of, or greater than, a the rapid decrease of the potential (13.94) will

cause the scattering angle to vanish much more rapidly with increasing b than is

given by (13.89). This implies that the scattering cross section will flatten off at

small angles to a finite value at = 0, rather than increasing as 0~ 4
. A simple

calculation with a cutoff Coulomb potential shows that the cross section has the

general form:

dn~ \~pxT) (F+eI~F
(13 - 96)

where min is a cutoff angle. The minimum angle min below which the cross

section departs appreciably from the simple result (13.92) can be determined

either classically or quantum mechanically. As with bmin in the energy-loss

calculations, the larger of the two angles is the correct one to employ. Classically

min can be estimated by putting b = a in (13.89). This gives

02-~—
2

(13.97)
pva

Quantum mechanically, the finite size of the scatterer implies that the approxi-

mately classical trajectory must be localized to within Ax<a; the incident

particle must have a minimum uncertainty in transverse momentum Ap5:ft/a.

For collisions in which the momentum transfer (13.1) is large compared to hia

the classical Rutherford formula will apply. But for smaller momentum transfers

we expect the quantum-mechanical smearing out to flatten off the cross section.

This leads to a quantum mechanical min :

0&~— (13.98)
pa

We note that the ratio of the classical to quantum-mechanical angles min is

Zze 2
/hv in agreement with the ratio (13.42) of the classical and quantum values

of bmin . For fast particles in all but the highest Z substances (Zze
2
/hv) is less than

unity. Then the quantum value (13.98) will be used for mi n. With value (13.95)

for the screening radius a, (13.98) becomes

«-^(y) (13-99)

where p is the incident momentum (p = yMv), and m is the electronic mass.

At comparatively large angles the cross section departs from (13.92) because

of the finite size of the nucleus. For electrons and mu mesons the influence of

nuclear size is a purely electromagnetic effect, but for pi mesons, protons, etc.,

there are specific effects of a nuclear-force nature as well. Since the gross overall

effect is to lower the cross section below that predicted by (13.92) for whatever

reason, we will consider only the electromagnetic aspect. The charge distribution
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of the atomic nucleus can be crudely approximated by a uniform volume

distribution inside a sphere of radius R, falling rapidly to zero outside R. This

means that the electrostatic potential inside the nucleus is not 1/r, but rather

parabolic in shape with a finite value at r=0:

(1-3^2), for r<R
(13.100)

for r>R

It is a peculiarity of the point-charge Coulomb field that the quantum-

mechanical cross section is the classical Rutherford formula. Thus for a point

nucleus there is no need to consider a division of the angular region into angles

corresponding to impact parameters less than, or greater than, the quantum-

mechanical impact parameter b^L (13.40). For a nucleus of finite size, however,

the de Broglie wavelength of the incident particle does enter. When we consider

wave packets incident on the relatively constant (inside r=R) potential (13.100),

there will be appreciable departures from the simple formula (13.92). The
situation is quite analogous to the diffraction of waves by a spherical object,

considered in Chapter 9. The scattering is all confined to angles less than

~(A/R), where A is the wavelength (divided by 2tt) of the waves involved. For

wider angles the wavelets from different parts of the scatterer interfere, causing

a rapid decrease in the scattering or perhaps subsidiary maxima and minima.

Since the particle wavelength is A = ft/p, the maximum scattering angle, beyond

which the scattering cross section falls significantly below the 0~4
law, is

(13.101)
pK

Using the simple estimate R^i(e2/mc 2)A 1/3 = 1.4

A

1/3 x 10" 13
cm, this has the

numerical value,

°™~7$(f)
(13 ' 102)

We note that, for all values of Z and A, 0max»0min . If the incident momentum is

so small that max^ I, the nuclear size has no appreciable effect on the scattering.

For an aluminum target max=l when p~50MeV/c, corresponding to

—50 MeV, 12 MeV, and 1.3 MeV kinetic energies for electrons, mu mesons, and

protons, respectively. Only at higher energies than these are nuclear-size effects

important in the scattering. At this momentum value 0min~ 10"4
radian.

The general behavior of the cross section is shown in Fig. 13.9. The dotted

curve is the small-angle Rutherford approximation (13.92), while the solid curve

shows the qualitative behavior of the cross section, including screening and finite

nuclear size. The total scattering cross section can be obtained by integrating
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(13.96) over all solid angle:

This yields

(2zZe
2

\
2

1 2 /2zZe
2

\
2

1fvn
'A^)ei- =7ra \-^r) (13 - 104)

pv

where the final form is obtained by using (13.98). It shows that at high

velocities the total cross section can be far smaller than the classical value of

geometrical area ira
2

.

13.8 Mean Square Angle of Scattering and the Angular Distribution of

Multiple Scattering

Rutherford scattering is confined to very small angles even for a point Coulomb
field, and for fast particles max is small compared to unity. Thus there is a very

large probability for small-angle scattering. A particle traversing a finite

thickness of matter will undergo very many small-angle deflections and will

generally emerge at a small angle which is the cumulative statistical superposi-

tion of a large number of deflections. Only rarely will the particle be deflected

through a large angle; since these events are infrequent, such a particle will

have made only one such collision. This circumstance allows us to divide the

angular range into two regions—one region at comparatively large angles which

contains only the single scatterings, and one region at very small angles which
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contains the multiple or compound scatterings. The complete distribution in

angle can be approximated by considering the two regions separately. The
intermediate region of so-called plural scattering must allow a smooth transition

from small to large angles.

The important quantity in the multiple-scattering region, where there is a

large succession of small-angle deflections symmetrically distributed about the

incident direction, is the mean square angle for a single scattering. This is defined

by

(9
2
>=

J

f
f (13.105)

With the approximations of Section 13.7 we obtain

<0
2
> = 20

2
nin ln(f^) (13.106)

\ "min /

If the quantum value (13.99) of min is used along with max (13.102), then

with A — 2Z, (13.106) has the numerical form:

<0
2
>-40L, In (204Z" 1/3

) (13.107)

If nuclear size is unimportant (generally only of interest for electrons, and perhaps

other particles at very low energies), max should be put equal to unity in

/192 p \
1/2

(13.106). Then the argument of the logarithm in (13.107) becomes ( -=173
-tL-

1
,

instead of (204Z^
1/3

).

mC/

It is often desirable to use the projected angle of scattering 0', the projection

being made on some convenient plane such as the plane of a photographic

emulsion or a bubble chamber, as shown in Fig. 13.10. For small angles it is easy

to show that

<0'
2
> =K0

2

> (13.108)

In each collision the angular deflections obey the Rutherford formula (13.92)

suitably cut off at min and max , with average value zero (when viewed relative to

the forward direction, or as a projected angle) and mean square angle (0
2

) given

by (13.106). Since the successive collisions are independent events, the central-

limit theorem of statistics can be used to show that for a large number n of such

collisions the distribution in angle will be approximately Gaussian around the

forward direction with a mean square angle (@
2)=n(02

). The number of

collisions occurring as the particle traverses a thickness t of material containing

N atoms per unit volume is

n=Not- ttn(^^-)
2

J- (13.109)
\ PV I 0min
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2

Fig. 13.10

This means that the mean square angle of the Gaussian is

<0^2.N(^!)
2

.„(|-) t

Or, using (13.107) for <0
2

>,

<e
2>-47rN(^^Vln (204Z- 173

) f

\ pv )

(13.110)

(13.111)

The mean square angle increases linearly with the thickness t. But for reasonable

thicknesses such that the particle does not lose appreciable energy, the Gaussian

will still be peaked at very small forward angles.

The multiple-scattering distribution for the projected angle of scattering is

PM(e
')de ' =

^p> exp(-S de
' (13 - 112)

where both positive and negative values of 0' are considered. The small-angle

Rutherford formula (13.92) can be expressed in terms of the projected angle as

da = 7T/2zZe
2 "

dO' 2\ pv ) 0'3

This gives a single-scattering distribution for the projected angle:

P,<««=»£«.-=fN,(2f^

(13.113)

(13.114)

The single-scattering distribution is valid only for angles large compared to

(0
2

)

1/2
, and contributes a tail to the Gaussian distribution.
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If we express angles in terms of the relative projected angle,

tt=
(02)1/2 (13.115)

the multiple- and single-scattering distribution can be written

PM(a) da =-j= e~
a2 da

(13.116)

Ps(a) d« =
sln(2l4Z

- l/3)^
where (13.111) has been used for (S

2
). We note that the relative amounts of

multiple and single scatterings are independent of thickness in these units, and

depend only on Z. Even this Z dependence is not marked. The factor

8 In (204Z" 1/3
) has the value 36 for Z = 13 (aluminum) and the value 31 for

Z = 82 (lead). Figure 13.11 shows the general behavior of the scattering

l

io- 1

-10-2

IO" 3

10" 4

1 2 3 4 5 6 7

Fig. 13.11 Multiple and single scattering distributions of projected angle. In the region

of plural scattering (a— 2-3) the dotted curve indicates the smooth transition from the

small-angle multiple scattering (approximately Gaussian in shape) to the wide-angle

single scattering (proportional to a
-3

).
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distributions as a function of a. The transition from multiple to single scattering

occurs in the neighborhood of a — 2.5. At this point the Gaussian has a value of

1/600 times its peak value. Thus the single-scattering distribution gives only a

very small tail on the multiple-scattering curve.

There are two things which cause departures from the simple behavior shown

in Fig. 13.11. The Gaussian shape is the limiting form of the angular distributon

for very large n. If the thickness t is such that n (13.109) is not very large (i.e.,

n^lOO), the distribution follows the single-scattering curve to smaller angles

than a — 2.5, and is somewhat more sharply peaked at zero angle than a

Gaussian. On the other hand, if the thickness is great enough, the mean square

angle (@
2
) becomes comparable with the angle max (13.102) which limits the

angular width of the single-scattering distribution. For greater thicknesses the

multiple-scattering curve extends in angle beyond the single-scattering region,

so that there is no single-scattering tail on the distribution (see Problem 13.5).

REFERENCES AND SUGGESTED READING
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For current applications, however, the reader must turn to journals such as Nuclear
Instruments and Methods.

PROBLEMS

13.1 A heavy particle of charge ze, mass M, and nonrelativistic velocity v collides with a

free electron of charge —e and mass m initially at rest. With no approximations, other
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than that of nonrelativistic motion and M»m, show that the energy transferred to the

electron in this Coulomb collision, as a function* of the impact parameter b, is

AE(b) =*2e2)2 1

riv
2

b
2 +(ze 2/mv 2

)

2

13.2 (a) Taking h(a))= 12Z eV in the quantum-mechanical energy-loss formula, calcu-

late the rate of energy loss (in MeV/cm) in air at N.T.P., aluminum, copper, lead for a

proton and a mu meson, each with kinetic energies of 10, 100, 1000 MeV.
(b) Convert your results to energy loss in units of MeV-cm2/gm and compare the

values obtained in different materials. Explain why all the energy losses in MeV-
cm 2/gm are within a factor of 2 of each other, whereas the values in MeV/cm differ

greatly.

13.3 Consider the energy loss by close collisions of a fast, but nonrelativistic, heavy
particle of charge ze passing through an electronic plasma. Assume that the screened

Coulomb interaction (10.98) acts between the electrons and the incident particle.

(a) Show that the energy transfer in a collision at impact parameter b is given

approximately by

^E{b)=^m̂ kD
2K 2

{kD b)

where m is the electron mass, v is the velocity of the incident particle, and kD is the

Debye wave number (10.99).

(b) Determine the energy loss per unit distance traveled for collisions with impact

parameter greater than bmin . Assuming kDbmin«l, show that

\dx/ knb<1 v
2 p \1.47kDbmin /

where bmin is given by the larger of (13.6) and (13.40).

13.4 With the same approximations as were used to discuss multiple scattering, show
that the projected transverse displacement y (see Fig. 13.10) of an incident particle is

described approximately by a Gaussian distribution,

P(y) dy = Aexp [^i] dy
L2<y

2

>.

where the mean square displacement is (y
2
) = (x

2
/6)(©

2

), x being the thickness of the

material traversed and (S 2
) the mean square angle of scattering.

13.5 If the finite size of the nucleus is taken into account in the "single-scattering" tail

of the multiple-scattering distribution, there is a critical thickness xc beyond which the

single-scattering tail is absent.

(a) Define xc in a reasonable way and calculate its value (in cm) for aluminum and
lead, assuming that the incident particle is relativistic.

(b) For these thicknesses calculate the number of collisions which occur and deter-

mine whether the Gaussian approximation is valid.

13.6 Assuming that Plexiglas or Lucite has an index of refraction of 1.50 in the visible

region, compute the angle of emission of visible Cherenkov radiation for electrons and

protons as a function of their kinetic energies in MeV. Determine how many quanta

with wavelengths between 4000 and 6000 angstroms are emitted per centimeter of

path in Lucite by a 1-MeV electron, a 500-MeV proton, a 5-GeV proton.
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13.7 A particle of charge ze moves along the z axis with constant speed v, passing z =
at t = 0. The medium through which the particle moves is described by a dielectric

constant e(o>).

(a) Beginning with the potential <I>(k, <o) of (13.57), show that the potential of

frequency a) is given as a function of spatial coordinate x by

<J>(a>, x)=-^- J? K (^£ VT^)e-'»
ve{(o) V 7r \ v I

where z and p = Vx
2+ y

2
are the cylindrical coordinates of the observation point.

(b) Assuming that e is independent of frequency and that /3
2€<1, take the Fourier

transform with respect to <o of the expression in (a) and obtain 4>(x, t). Calculate the

electric and magnetic fields and compare them to the vacuum fields (11.152). Show
that, among other things, the vacuum factor y is replaced by F = (l — 13

2€)~ 1/2
.

(c) Repeat the calculations of (a) and (b) with
2€>1. Show that now

for co^O. Calculate the remaining Fourier transform to obtain <I>(x, 0- Relate your

answer to the result given in Section 13.5 for A(x, r).

13.8 A magnetic monopole with magnetic charge g passes through matter and loses

energy by collisions with electrons, just as does a particle with electric charge ze.

(a) In the same approximation as presented in Sections 13.1-13.3, show that the

energy loss per unit distance is given approximately by (13.44), but with ze—»/3g,
yielding

If) ,4wNzlV ln
/22WN

\ CiX /magnetic THC \ h((t)) /
monopole

(b) With the Dirac quantization condition (6.153) determining the magnetic charge,

what z value is necessary for an ordinary charged particle in order that it lose energy at

relativistic speeds at the same rate as a monopole? Sketch for the magnetic monopole a

curve of dE/dx equivalent to Fig. 13.4 and comment on the differences.



Radiation By
Moving Charges

It is well known that accelerated charges emit electromagnetic radiation. In

Chapter 9 we discussed examples of radiation by macroscopic time-varying

charge and current densities, which are fundamentally charges in motion. We
will return to such problems in Chapter 16 where multipole radiation is treated

in a systematic way. But there is a class of radiation phenomena where the

source is a moving point charge or a small number of such charges. In these

problems it is useful to develop the formalism in such a way that the radiation

intensity and polarization are related directly to properties of the charge's

trajectory and motion. Of particular interest are the total radiation emitted, the

angular distribution of radiation, and its frequency spectrum. For nonrelativistic

motion the radiation is described by the well-known Larmor result (see Section

14.2). But for relativistic particles a number of unusual and interesting effects

appear. It is these relativistic aspects which we wish to emphasize. In the present

chapter a number of general results are derived and applied to examples of

charges undergoing prescribed motions, especially in external force fields. The
one exception is a discussion of transition radiation, the cooperative phenome-

non that occurs when a particle crosses an interface between two media of

different dielectric properties. Chapter 15 deals with radiation emitted in atomic

or nuclear collisions.

14.1 Lienard-Wiechert Potentials and Fields

for a Point Charge

In Section 12.11 it was shown that if there are no incoming fields the 4-vector

potential caused by a charged particle in motion is

(14.1)

654
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where Dr(x-x') is the retarded Green function (12.133) and

J
a
(x') = ecj drVa

(r) S
(4)
[x'-r(r)] (14.2)

is the charge's 4-vector current, Va
(T) its 4-velocity and r

a
(r) its position.

Insertion of the Green function and the current into (14.1) gives, upon

integration over d
4
x',

A a
(x) = 2ej* drV^Wetxo-roWlSitx-KT)]

2

} (14.3)

The remaining integral over the charge's proper time gives a contribution only at

t = t , where t is denned by the light-cone condition,

[x-r(T„)]
2 = (14.4)

and the retardation requirement x > r (T ). The significance of these conditions is

shown diagrammatically in Fig. 14.1. The Green function is different from zero

only on the backward light cone of the observation point. The world line of the

particle r(r) intersects the light cone at only two points, one earlier and one later

than x . The earlier point, r
a
(T ), is the only part of the path that contributes to

the fields at x
a

. To evaluate (14.3) we use the rule,

\dx/ x = Xi

where the points x = xt are the zeros of /(x), assumed to be linear. We need

A [x _ r(T)]2 = _2[x_ r(T)]pV3 (T) (14>5)

Fig. 14.1



656 Classical Electrodynamics Sect. 14.1

evaluated at the one point, t= t . The 4-vector potential is therefore

cV"(t)
A"(%)= (14.6)V[x-r(T)]

where to is defined by (14.4) and the retardation requirement.

The potentials (14.6) are known as the Lienard-Wiechert potentials. They are

often written in noncovariant, but perhaps more familiar, form as follows. The
light-cone constraint (14.4) implies x -r (To) = |x-r(To)| = R. Then

y .
(x -r) = Vo[x -r (To)]-V - [x-r(r )]

= ycR— yy • nR

= 7cR(l-0-n) (14.7)

where n is a unit vector in the direction of x-r(r) and p = v(r)/c. The potentials

(14.6) can thus be written

^*-bqF5kL a(x
'
,)= [(T^okL (14 -8)

The square brackets with subscript "ret" mean that the quantity in the brackets

is to be evaluated at the retarded time. r (To) = x -R. It is evident that for

nonrelativistic motion the potentials reduce to the well-known results.

The electromagnetic fields Fa(i
(x) can be calculated directly from (14.6) or

(14.8), but it is simpler to return to the integral over dr, (14.3). In computing FaP

the differentiation with respect to the observation point x will act on the theta

and delta functions. Differentiation of the theta function will give 8[x —

r

(r)]

and so constrain the delta function to be S(—

R

2
). There will be no contribution

from this differentiation except at R = 0. Excluding R = from consideration, the

derivative d
aA p

is

3
aA p = 2eJ dT\^(T)e[xo-ro(T)]d

a
8{[x-r(r)f} (14.9)

The partial derivative can be written

d°8[n=d°f-f
f
s[n=d°f-£

f £T 8[f]

where /=[x-r(x)]
2

. The indicated differentiation gives

When this is inserted into (14.9) and an integration by parts performed, the

result is

3"Ap = 2eJ dT^[
(*7

(

r

J_^ ]
0[x -r„(T)]5{[x-r(T)]

2
} (14.10)
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In the integration by parts the differentiation of the theta function gives no

contribution, as already indicated. The form of (14.10) is the same as (14.3), with

V™(t) replaced by the derivative term. The result can thus be read off by

substitution from (14.6). The field strength tensor is

^ e d r(x-rrvMx-r)»V»l (u n)
V-(x-r)dT-L V-(x-r) J

Here r
a and V* are functions of t. After differentiation the whole expression is to

be evaluated at the retarded proper time t .

The field strength tensor Fati
(14.11) is manifestly covariant, but not overly

explicit. It is sometimes useful to have the fields E and B exhibited as explicit

functions of the charge's velocity and acceleration. Some of the ingredients

needed to carry out the differentiation in (14.11) are

(x-rr = (R,Rn), V" = (7c, 7cP)

^ = [c7
4
p-p, c7

2
p+ c7

4

p(P p)]

£lV-(x-r)] = -c>Hx-r)a <^

(14.12)

where p = dp/df is the ordinary acceleration, divided by c. When these and

(14.7) are employed the fields (14.11) can be written in the inelegant, but

perhaps more intuitive, forms,

B = [nxE]ret (14.13)

Fields (14.13) and (14.14) divide themselves naturally into "velocity fields,"

which are independent of acceleration, and "acceleration fields," which depend

linearly on p. The velocity fields are essentially static fields falling off as R~ 2

,

whereas the acceleration fields are typical radiation fields, both E and B being

transverse to the radius vector and varying as R~ l

.

For the special circumstance of a particle in uniform motion the second term

in (14.14) is absent. The first term, the velocity field, must be the same as that

obtained in Section 11.10 by means of a Lorentz transformation of the static

Coulomb field. One way to establish this is to note from (14.11) for F ali
that if V"

is constant, the field is

[V-(x-r)J
[(x-ryvMx-ryV] (14.15)

in agreement with the third covariant form in Problem 11.15. It may be

worthwhile, nevertheless, to make a transformation of the charge's coordinates

from its present position (used in Section 11.10) to the retarded position used

here in order to demonstrate explicitly how the different appearing expressions,
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' \

\

\

b

\ J2^\ /
1— —

U sfi *U vt

M

Fig. 14.2 Present and retarded positions of a charge in uniform motion.

(11.152) and (14.14), are actually the same. The two positions of the charge are

shown in Fig. 14.2 as the points P and P', while O is the observation point. The
distance P'Q is 0R cos 6 = p • nR. Therefore the distance OQ is (1-p • n)R. But

from the triangles OPQ and PP'Q we have [(1-p • n)R]
2 = r

2-(PQ) 2 =

r
2

-fi
2R 2

sin
2
6. Then from the triangle OMP' we have R sin = b, so that

[(l-p-n)R]2 =b2+ u
2
f

2-p 2
b
2 =A(b 2+7Vr2

) (14.16)
7

The transverse component E2 from (11.152),

eyb

(b
2+ y

2
v

2
t
z

y
£2 =^2,1^ (14.17a)

can thus be written in terms of the retarded position as

bE2 = e
L T

2(l-p-n) 3R 3
j

(14.17b)

This is just the transverse component of the velocity field in (14.14). The other

components of E and B come out similarly.

14.2 Total Power Radiated by an Accelerated Charge—Larmor's

Formula and Its Relativistic Generalization

If a charge is accelerated but is observed in a reference frame where its velocity

is small compared to that of light, then in that coordinate frame the acceleration

field in (14.14) reduces to

E fl
= -

c .

nx(nxp)
R (14.18)
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V

n

Fig. 14.3

The instantaneous energy flux is given by the Poynting vector.

c c |2
S =^ExB=^|E.|'n 04.19)

This means that the power radiated per unit solid angle is*

I=£iRE-i

2=£iBX(nx p>i
2

(14 -20)

If © is the angle between the acceleration v and n, as shown in Fig. 14.3, then the

power radiated can be written

dP e
2

dCl Aire
vfsin

2 © (14.21)

This exhibits the characteristic sin
2 S angular dependence which is a well-known

result. We note from (14.18) that the radiation is polarized in the plane

containing v and n. The total instantaneous power radiated is obtained by

integrating (14.21) over all solid angle. Thus

P=|pW 2
(14.22)

This is the familiar Larmor result for a nonrelativistic, accelerated charge.

Larmor's formula (14.22) can be generalized by arguments about covariance

under Lorentz transformations to yield a result which is valid for arbitrary

velocities of the charge. Radiated electromagnetic energy behaves under

Lorentz transformation like the fourth component of a 4-vector (see Problem

* In writing angular distributions of radiation we will always exhibit the polariza-

tion explicitly by writing the absolute square of a vector which is proportional to the

electric field. If the angular distribution for some particular polarization is desired, it can
then be obtained by taking the scalar product of the vector with the appropriate

polarization vector before squaring.
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12. 15) This can be used (see Rohr/ich, p. 109ff) to show that the power P is a Lorentz

invariant. If we can find a Lorentz invariant which reduces to the Larmor formula

(14.22) for 0« 1, then we have the desired generalization. There are, of course,

many Lorentz invariants which reduce to the desired form when /3
—> 0. But from

(14.14) it is evident that the general result must involve only p and p. With this

restriction on the order of derivatives which can appear the result is unique. To
find the appropriate generalization we write Larmor's formula in the suggestive

form:

P = 5 (f-i) <i4 -23>3m 2
c
3
\dt dt

where m is the mass of the charged particle, and p its momentum. The Lorentz

invariant generalization is

where dr = dtly is the proper time element, and is the charged particle's

momentum-energy 4-vector.* To check that (14.24) reduces properly to (14.23)

as p—»0 we evaluate the 4-vector scalar product,

If (14.24) is expressed in terms of the velocity and acceleration by means of

E = ymc 2
and p = ymv, we obtain the Lienard result (1898):

P=|| 7
6

[(P)
2
-(Pxp)

2

] (14.26)

One area of application of the relativistic expression for radiated power is that

of charged-particle accelerators. Radiation losses are sometimes the limiting

factor in the maximum practical energy attainable. For a given applied force

(i.e., a given rate of change of momentum) the radiated power (14.24) depends

inversely on the square of the mass of the particle involved. Consequently these

radiative effects are largest for electrons.

In a linear accelerator the motion is one dimensional. From (14.25) it is

evident that in that case the radiated power is

3 m c \dt/

* That (14.24) is unique can be seen by noting that a Lorentz invariant is formed

by taking scalar products of 4-vectors or higher-rank tensors. The available 4-vectors are

p
1* and dp^ldr. Only form (14.24) reduces to the Larmor formula for /3

—> 0. Contraction

of higher-rank tensors such as p*(dp
v
/dT) can be shown to vanish, or to give results

proportional to (14.24) or m 2
.
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The rate of change of momentum is equal to the change in energy of the particle

per unit distance. Consequently

Hi(f)"
showing that for linear motion the power radiated depends only on the external

forces which determine the rate of change of particle energy with distance, not

on the actual energy or momentum of the particle. The ratio of power radiated

to power supplied by the external sources is

P = 2 e
2 IdE 2 (e

2/mc 2

) dE
(dE/dt) 3m2

c
3 vdx 3 mc2

dx U^*J

where the last form holds for relativistic particles (|3— Equation (14.29)

shows that the radiation loss in an electron linear accelerator will be unimportant

unless the gain in energy is of the order of mc2 = 0.5 11 MeV in a distance of

e
2/mc 2 = 2.82 xl(T 13

cm, or of the order of 2x 10
14 MeV/meter! Typical energy

gains are less than 10 MeV/meter. Radiation losses are completely negligible in

linear accelerators, whether for electrons or heavier particles.

Circumstances change drastically in circular accelerators like the synchrotron

or betatron. In such machines the momentum p changes rapidly in direction as

the particle rotates, but the change in energy per revolution is small. This means
that

dp

dr 7o,|p|»ig (14.30)

Then the radiated power (14.24) can be written approximately

where we have used w = (c|3/p), p being the orbit radius. This result was first

obtained by Lienard in 1898. The radiative-energy loss per revolution is

ffi_2sBP_4«!pY (1432)

For high-energy electrons (|3 — 1) this has the numerical value,

8E(MeV) = 8.85 x 10~ 2

^^^J (14.33)

In the first electron synchrotrons, p^l meter, Emax^0.3GeV. Hence 8Emax^
1 keV per revolution. This was less than, but not negligible compared to, the

energy gain of a few kilovolts per turn. At higher energies the limitation on
available radiofrequency power to overcome the radiation loss becomes a

dominant consideration. In the 10 GeV Cornell electron synchrotron, for
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example, the orbit radius is p~100 meters, the maximum magnetic field is

— 3.3 kG, and the r-f voltage per turn is 10.5 MV at 10 GeV. According to

(14.33) the loss per turn is 8.85 MeV. These same general considerations apply

to electron-positron storage rings, where r-f power must be supplied just to

maintain the beams at a constant energy as they circulate.

The power radiated in circular electron accelerators can be expressed numeri-

cally as

where J is the circulating beam current. This equation is valid if the emission of

radiation from the different electrons in the circulating beam is incoherent. In

the largest electron synchrotons the radiated power amounts to ^ 1 watt per

microampere of beam. Although this power dissipation is very small the radiated

energy is readily detected and has some interesting properties which will be

discussed in Section 14.6.

14.3 Angular Distribution of Radiation Emitted by an

Accelerated Charge

For an accelerated charge in nonrelativistic motion the angular distribution shows

a simple sin
2 © behavior, as given by (14.21), where @ is measured relative to the

direction of acceleration. For relativistic motion the acceleration fields depend

on the velocity as well as the acceleration. Consequently the angular distribution

is more complicated. From (14.14) the radial component of Poynting's vector

can be calculated to be

It is evident that there are two types of relativistic effect present. One is the

effect of the specific spatial relationship between p and p, which will determine

the detailed angular distribution. The other is a general, relativistic effect arising

from the transformation from the rest frame of the particle to the observer's

frame and manifesting itself by the presence of the factors (1-p-n) in the

denominator of (14.35). For ultrarelativistic particles the latter effect dominates

the whole angular distribution.

In (14.35) S • n is the energy per unit area per unit time detected at an

observation point at time t of radiation emitted by the charge at time t'

=

t—R(t')/c. If we wanted to calculate the energy radiated during a finite period of

acceleration, say from t'=Ti to t'=T2 , we would write

P (watts) = 10
6 8E (MeV) J (amp) (14.34)

(14.35)

(14.36)
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Thus we see that the useful and meaningful quantity is (S • n) (dt/dt'), the power

radiated per unit area in terms of the charge's own time. We therefore define the

power radiated per unit solid angle to be

^gp = R 2
(S • n)^ = R 2

S • n(l - p • n) (14.37)

If we imagine the charge to be accelerated only for a short time during which p
and p are essentially constant in direction and magnitude, and we observe the

radiation far enough away from the charge that n and R change negligibly during

the acceleration interval, then (14.37) is proportional to the angular distribution

of the energy radiated. With (14.35) for the Poynting's vector, the angular

distribution is

dP(t')_ e
2

|nx{(n-p)xp}l
2

dfl ~4ttc (1-n.p) 5 (14 'J * )

The simplest example of (14.38) is linear motion in which p and p are parallel.

If is the angle of observation measured from the common direction of P and p,

then (14.38) reduces to

dP(t') = e
2
v

2
sin

2

dCL 4ttc
3
(1-/3 cosO)

5 v-d*)

For 0« 1, this is the Larmor result (14.21). But as -> 1, the angular distribution

is tipped forward more and more and increases in magnitude, as indicated

schematically in Fig. 14.4. The angle max for which the intensity is a maximum is

0max = COS" 3^(VTTT5^-1)]^ (14.40)

where the last form is the limiting value for /3
—> 1 . In this same limit the peak

intensity is proportional to y
8

. Even for /3 = 0.5, corresponding to electrons of

— 80 keV kinetic energy, max = 38.2°. For relativistic particles, max is very small,

being of the order of the ratio of the rest energy of the particle to its total energy.

Thus the angular distribution is confined to a very narrow cone in the direction

Fig. 14.4 Radiation pattern for charge accelerated in its direction of motion. The two
patterns are not to scale, the relativistic one (appropriate for 7 ~ 2) having been reduced
by a factor ~10 2

for the same acceleration.
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dP
da

Fig. 14.5 Angular distribution of radiation for relativistic particle.

of motion. For such small angles the angular distribution (14.39) can be written

approximately

dPifj 8 e
2
i>

2

. (yd)
2

^f-^~ y (i+ 7
2
e
2
)

5 (14 '41)

The natural angular unit is evidently y'1
. The angular distribution is shown in

Fig. 14.5 with angles measured in these units. The peak occurs at yQ=h, and the

half-power points at 70 = 0.23 and 70 = 0.91. The root mean square angle of

emission of radiation in the relativistic limit is

<0
2
>
1/2^i=^ (14.42)

This is typical of the relativistic radiation patterns, regardless of the vectorial

relation between p and (j. The total power radiated can be obtained by

integrating (14.39) over all angles. Thus

P(0=|^t)V (14.43)

in agreement with (14.26) and (14.27).

Another example of angular distribution of radiation is that for a charge in

instantaneously circular motion with its acceleration (5 perpendicular to its

velocity p. We choose a coordinate system such that instantaneously p is in the z

direction and (J is in the x direction. With the customary polar angles 0, </>

defining the direction of observation, as shown in Fig. 14.6, the general formula

(14.38) reduces to

dP(t')_ e
III! [i sin

2
flcos

2
<fr 1

(
,

47rc
3 (l-0cos0) 3

L 7
2(l-0cos0) 2

J
K

'

We note that, although the detailed angular distribution is different from the

linear acceleration case, the same characteristic relativistic peaking at forward

angles is present. In the relativistic limit (7»1), the angular distribution can be
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z

X

n

y

Fig. 14.6

written approximately

dP(Q
=_2 e

2

dCl 77 c
3 (14.45)

The root mean square angle of emission in this approximation is given by

(14.42), just as for one-dimensional motion. The total power radiated can be

found by integrating (14.44) over all angles or from (14.26):

It is instructive to compare the power radiated for acceleration parallel to the

velocity (14.43) or (14.27) with the power radiated for acceleration perpendicu-

lar to the velocity (14.46) for the same magnitude of applied force. For circular

motion, the magnitude of the rate of change of momentum (which is equal to the

applied force) is ymv. Consequently, (14.46) can be written

When this is compared to the corresponding result (14.27) for rectilinear

motion, we find that for a given magnitude of applied force the radiation emitted

with a transverse acceleration is a factor of y
2

larger than with a parallel

acceleration.

14.4 Radiation Emitted by a Charge in Arbitrary,

Extremely Relativistic Motion

For a charged particle undergoing arbitrary, extremely relativistic motion the

radiation emitted at any instant can be thought of as a coherent superposition of

contributions coming from the components of acceleration parallel to and

P(0= (14.46)

(14.47)



666 Classical Electrodynamics Sect. 14.4

perpendicular to the velocity. But we have just seen that for comparable parallel

and perpendicular forces the radiation from the parallel component is negligible

(of order I/7
2

) compared to that from the perpendicular component. Conse-

quently we may neglect the parallel component of acceleration and approximate

the radiation intensity by that from the perpendicular component alone. In other

words, the radiation emitted by a charged particle in arbitrary, extreme

relativistic motion is approximately the same as that emitted by a particle

moving instantaneously along the arc of a circular path whose radius of

curvature p is given by

v
2

c
2

p=— (14.48)
v± v±

where v± is the perpendicular component of acceleration. The form of the

angular distribution of radiation is (14.44) or (14.45). It corresponds to a narrow

cone or searchlight beam of radiation directed along the instantaneous velocity

vector of the charge.

For an observer with a frequency-sensitive detector the confinement of the

radiation to a narrow pencil parallel to the velocity has important consequences.

The radiation will be visible only when the particle's velocity is directed towards

the observer. For a particle in arbitrary motion the observer will detect a pulse or

burst of radiation of very short time duration (or a succession of such bursts if the

particle is in periodic motion), as sketched in Fig. 14.7. Since the angular width

of the beam is of the order of y
_1

, the particle will travel only a distance of the

order of

d = £
y

corresponding to a time,

yv

while illuminating the observer. To make the argument conceptually simple

neglect the curvature of the path during this time and suppose that a sharp

rectangular pulse of radiation is emitted. In the time At the front edge of the

pulse travels a distance,

D = cAt =-^
7/3

Since the particle is moving in the same direction with speed v and moves a

distance d in the time At, the rear edge of the pulse will be only a distance

L = D-d = (i-l)£^ (14.49)

behind the front edge as the pulse moves off. The pulse length is thus L in space,
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P(t)

Fig. 14.7 A relativistic particle in periodic motion emits a spiral radiation pattern that

an observer at the point A detects as short bursts of radiation of time duration T=L/c,
occurring at regular intervals T = L /c. The pulse length is given by (14.49), while the

interval T = 2irp/v — lirp/c. For beautiful diagrams of field lines of radiating particles, see

R. Y. Tsien, Am. J. Phys. 40, 46 (1972).

or L/c in time. From general arguments about the Fourier decomposition of

finite wave trains this implies that the spectrum of the radiation will contain

appreciable frequency components up to a critical frequency,

t~(p) (14.50)

For circular motion c/p is the angular frequency of rotation w and even for

arbitrary motion it plays the role of a fundamental frequency. Equation (14.50)

shows that a relativistic particle emits a broad spectrum of frequencies, up to 7
3
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times the fundamental frequency. In a 200 MeV synchrotron, ymax— 400, while

coo— 3x 10
8
sec

-1
. The frequency spectrum of emitted radiation extends up to

~2x 10
16
sec

-1
, or down to a wavelength of 1000 angstroms, even though the

fundamental frequency is in the 100 MHz range. For the lOGeV machine at

Cornell, Ymax^2xl0
4
and o> ^3xl06

sec
-1

. This means that o>c ^2.4xl0
19

sec
-1

,

corresponding to 16 keV X-rays. In Section 14.6 we discuss in detail the angular

distribution of the different frequency components, as well as the total energy

radiated as a function of frequency.

14.5 Distribution in Frequency and Angle of Energy

Radiated by Accelerated Charges

The qualitative arguments of the previous section show that for relativistic

motion the radiated energy is spread over a wide range of frequencies.The range

of the frequency spectrum was estimated by appealing to properties of Fourier

integrals. The argument can be made precise and quantitative by the use of

Parseval's theorem of Fourier analysis.

The general form of the power radiated per unit solid angle is

^=|A(t)| 2
(14.51)

where

A(0=(^)
1/2

[RE]ret (14.52)

E being the electric field (14.14). In (14.51) the instantaneous power is

expressed in the observer's time (contrary to the definition in Section 14.3), since

we wish to consider a frequency spectrum in terms of the observer's frequencies.

For definiteness we think of the acceleration occurring for some finite interval of

time, or at least falling off for remote past and future times, so that the total

energy radiated is finite. Furthermore, the observation point is considered far

enough away from the charge that the spatial region spanned by the charge while

accelerated subtends a small solid angle element at the observation point.

The total energy radiated per unit solid angle is the time integral of (14.51):

dW
da

=£ \A(t)\
2
dt (14.53)

This can be expressed alternatively as an integral over a frequency spectrum by

use of Fourier transforms. We introduce the Fourier transform A(a>) of A(t),

A(cu) =-L= f A(t)e
i<ot

dt (14.54)
V2tt .Loo
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and its inverse,

A(t)=-p= f A((a)e-
tart

dco (14.55)

Then (14.53) can be written

^=J^\ dtj do>J da)' A*(a/) • A(cu)e
i(a,_a' )

' (14.56)

Interchanging the orders of time and frequency integration, we see that the time

integral is just a Fourier representation of the delta function 6(o>'-o>). Conse-

quently the energy radiated per unit solid angle becomes

dW
da'

j* |A(o>)|
2
da) (14.57)

The equality of (14.57) and (14.53), with suitable mathematical restrictions on

the function A(r), is a special case of Parseval's theorem. It is customary to

integrate only over positive frequencies, since the sign of the frequency has no

physical meaning. Then the relation,

dW_ r d
2
I(a>, n)

da "I ~d^m d0} (14 -58)

defines a quantity which is the energy radiated per unit solid angle per unit

frequency interval:

|A(a>)|
2
+|A(-co)|

2
(14.59)

da) dCl

If A(r) is real, from (14.55) it is evident that A(-a>) = A*(a>). Then

d
2
I

do) dCl
2 \A((o)\

2
(14.60)

This result relates in a quantitative way the behavior of the power radiated as a

function of time to the frequency spectrum of the energy radiated.

By using (14.14) for the electric field of an accelerated charge we can obtain a

general expression for the energy radiated per unit solid angle per unit frequency

interval in terms of an integral over the trajectory of the particle. We must

calculate the Fourier transform (14.54) of A(r) given by (14.52). Using (14.14),

we find

MifelH^L* <»•«>

where ret means evaluated at f'+ [jR(f')/c] = t. We change the variable of
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integration from t to t', thereby obtaining the result:

AW - Wc] L 6
(1-p n)

2 * (14 '62)

Since the observation point is assumed to be far away from the region of space

where the acceleration occurs, the unit vector n is sensibly constant in time.

Furthermore the distance R(r') can be approximated as

R(0-x-n-r(t') (14.63)

where x is the distance from an origin O to the observation point P, and r(t') is

the position of the particle relative to O, as shown in Fig. 14.8. Then, apart from

an overall phase factor, (14.62) becomes

^HsfcfL ^•^"avy4 * (l4 -64)

The primes on the time variable have been omitted for brevity. The energy

radiated per unit solid angle per unit frequency interval (14.60) is accordingly

nx[(n-p)xp]

d
2
I e

do) d£l 4tt c

nx[(n-p)xp]

(1-Pn) 2

giaHt-n - T(t)/c) ^ (14.65)

For a specified motion r(t) is known, P(t) and p(0 can be computed, and the

integral can be evaluated as a function of co and the direction of n. If accelerated

motion of more than one charge is involved, a coherent sum of amplitudes A,(a>),

one for each charge, must replace the single amplitude in (14.65) (see Problems

14.12, 15.3-15.6).

Even though (14.65) has the virtue that the time interval of integration is

explicitly shown to be confined to times for which the acceleration is different

from zero, a simpler expression for some purposes can be obtained by an

integration by parts in (14.64). It is easy to demonstrate that the integrand in

(14.64), excluding the exponential, is a perfect differential:

nx[(n-p)xp] _ dfnx(nxp)
] (^A^\

(1-p-n) 2
"dtL 1-p-n J

U4 ' b()j

Fig. 14.8
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Then an integration by parts leads to the intensity distribution:

d
2
I

2 2
e (o

da) dQ 4tt
2
c

nx(nxp)e io>(t-n • r(t)/c)
dt (14.67)

The reader may rightly ask whether (14.67) is correct in all circumstances as it

stands. Suppose that the acceleration is different from zero only for Ti<r<T2 .

Why then is the integration in (14.67) over all time? The precise answer is that

(14.67) can be shown, by adding and subtracting the integrals over the times

when the velocity is constant, to follow from (14.65) provided ambiguities at

(= ±oo are resolved by inserting a convergence factor e"
e|t|

in the integrand and

taking the limit e-> after evaluating the integral. In processes like beta decay

where the classical description involves the almost instantaneous halting or

setting in motion of charges, extra care must be taken to specify each particle's

velocity as a physically sensible function of time.

It should be observed that in (14.67) and (14.65) the polarization of the

emitted radiation is specified by the direction of the vector integral in each. The

intensity of radiation of a certain fixed polarization can be obtained by taking

the scalar product of the appropriate unit polarization vector with the vector

integral before forming the absolute square.

For a number of charges e, in accelerated motion the integrand in (14.67)

involves the replacement,

epg-Kwo-*)^ £ e
jpj

e-
i<Wc)"'''(t)

(14.68)

In the limit of a continuous distribution of charge in motion the sum over j

becomes an integral over the current density J(x, t):

e$e
-i(a>/c)n • r(t) -

c
j" d'x J(x, t)e

Then the intensity distribution becomes

d
2
I

do) dCl Air c
5

J

j* drj* d
3
x n x [n x J(x, r)]<

ia>[t-(n • x)/c]

(14.69)

(14.70)

a result which can be obtained from the direct solution of the inhomogeneous

wave equation for the vector potential.

Of some interest is the radiation from a moving magnetic moment. We recall

from Chapter 5 that a magnetization density *rft(x, r) is equivalent to a current

JM - cVx^. This current can be substituted into (14.70), but there is another

contribution. In Chapter 11 we found that a moving magnetization has an

associated electric polarization. From the Ampere-Maxwell equation it is evi-

dent that the effective source current for a moving magnetic moment is therefore

dt
(14.71)
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where ^» is the associated electric polarization density. Substitution into (14.70)

and integrations by parts yield

,2ri

(14.72)
ia>(t—n • x/c)

For a point magnetic moment jji(0 at the point r(t), the magnetization is

Ji{x, t) = |x(t) 5[x-r(0] (14.73a)

From (11.149) and the correspondences B— E-»^, we infer that a

particle with only a magnetic moment in its rest frame K' will appear in frame K
where its velocity is cp as possessing a magnetic moment and an electric dipole

moment,

p^pxfjt (14.73b)

where jjl is the magnetic moment as observed in K. The electric polarization

density in (14.72) is thus given by

&(x, t) = p(t) x |i,(t) S[x-r(r)] (14.73c)

With (14.73a) and (14.73c) substituted, (14.72) gives the energy radiated per

unit solid angle per unit frequency interval by a moving magnetic moment as

d
2V

dcjdfl 4tt c
1

1 dt n x [jjl + n x (p x ^)] e
io>(t-n • r(t)/c)

(14.74)

We note that there is a characteristic difference of a factor cu
2 between the

radiated intensity from a magnetic dipole and an accelerated charge, apart from

the frequency dependence of the integrals.

The general formulas developed in this section, especially (14.65) and (14.67),

will be applied in this chapter and subsequent ones to various problems involving

the emission of radiation. The magnetic-moment formula (14.74) will be applied

to the problem of radiation emitted in orbital-electron capture by nuclei in

Chapter 15.

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic

Charged Particle in Instantaneously Circular Motion

In Section 14.4 we saw that the radiation emitted by an extremely relativistic

particle subject to arbitrary accelerations is equivalent to that emitted by a

particle moving instantaneously at constant speed on an appropriate circular

path. The radiation is beamed in a narrow cone in the direction of the velocity

vector, and is seen by the observer as a short pulse of radiation as the searchlight

beam sweeps across the observation point.
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To find the distribution of energy in frequency and angle it is necessary to

calculate the integral in (14.67). Because the duration of the pulse is very short,

it is necessary to know the velocity p and position r(t) over only a small arc of the

trajectory whose tangent points in the general direction of the observation point.

Figure 14.9 shows an appropriate coordinate system. The segment of trajectory

lies in the x-y plane with instantaneous radius of curvature p. Since an integral

will be taken over the path, the unit vector n can be chosen without loss of

generality to lie in the x-z plane, making an angle (the latitude) with the x axis.

Only for very small 6 will there be appreciable radiation intensity. The origin of

time is chosen so that at t = the particle is at the origin of coordinates.

The vector part of the integrand in (14.67) can be written

nx(nxp) = p[-€u sin
(^)

+ €x cos ) sin fl] (14.75)

where €j|=€2 is a unit vector in the y direction, corresponding to polarization in

the plane of the orbit; €i = nxe2 is the orthogonal polarization vector corre-

sponding approximately to polarization perpendicular to the orbit plane (for 6

small). The argument of the exponential is

„( t
_"^a)_.[

t_£^g) cosfl] (14.76)

Since we are concerned with small angles 6 and comparatively short times

around t = 0, we can expand both trigonometric functions in (14.76) to obtain

where /3 has been put equal to unity wherever possible. Using the time estimate

p/c7 for t and the estimate (S
2

)

1 '2
(14.42) for 0, it is easy to see that neglected

terms in (14.77) are of the order of y~2
times those kept.



674 Classical Electrodynamics Sect. 14.6

With the same type of approximations in (14.75) as led to (14.77), the

radiated energy distribution (14.67) can be written

d
2
I eW

where the amplitudes are*

-€flA||(ft>)+€xAx(ft>) (14.78)

Ax<»)«e£ exp
{

i

f[(7
+ °

2

)
t+
0]} df

(14.79)

A change of variable to x = j^cl^A+fl
2

^ j
and introduction of the parameter

(14.80)

allows us to transform the integrals in An(co) and A± (co) into the form:

A||(o)) (HI x exp [i§£(x+ix
3

)] dx

A±(a>)=£ 0(A+0
2

)

1/2

J
exp Kf(x+ix*i] dx

(14.81)

The integrals in (14.81) are identifiable as Airy integrals, or alternatively as

modified Bessel functions:

xsin g{(x+ix
3
)] dx=J=K2/3(£)

cos [§€(x+§x
3
)] dx = -j=Km (Z)

(14.82)

Consequently the energy radiated per unit frequency interval per unit solid angle

is

d
2
I

cUo dfl 3 it c(f)\v+ei[Kl'^)+N7^**M (14 '83)

*The fact that the limits of integration in (14.79) are t = ±°o may seem to

contradict the approximations made in going from (14.76) to (14.77). The point is that for

most frequencies the phase of the integrands in (14.79) oscillates very rapidly and makes
the integrands effectively zero for times much smaller than those necessary to maintain

the validity of (14.77). Hence the upper and lower limits on the integrals can be taken as

infinite without error. Only for frequencies of the order of o)~(c/p)~o) does the

approximation fail. But we have seen in Section 14.4 that for relativistic particles

essentially all the frequency spectrum is at much higher frequencies.
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The first term in the square bracket corresponds to radiation polarized in the

plane of the orbit, and the second to radiation polarized perpendicular to that

plane.

We now proceed to examine this somewhat complex result. First we integrate

over all frequencies and find that the distribution of energy in angle is

dl _ r d
2
I _ 1 e

2
1 [ 5

2
1 maqa\

da" I da> dn
d(°~

16 P

Jj_
+02y4 7(i/7

2)+e2
J

U4 ' 84)

This shows the characteristic behavior seen in Section 14.3. Equation (14.84)

can be obtained directly, of course, by integrating a slight generalization of the

circular-motion power formula (14.44) over all times. As in (14.83), the first

term in (14.84) corresponds to polarization parallel to the orbital plane, and the

second to perpendicular polarization. Integrating over all angles, we find that

seven times as much energy is radiated with parallel polarization as with

perpendicular polarization. The radiation from a relativistically moving charge is

very strongly, but not completely, polarized in the plane of motion.

The properties of the modified Bessel functions summarized in (3.103) and

(3.104) show that the intensity of radiation is negligible for |»1. From (14.80)

we see that this will occur at large angles; the greater the frequency, the smaller

the critical angle beyond which there will be negligible radiation. This shows that

the radiation is largely confined to the plane containing the motion, as shown by

(14.84), being more so confined the higher the frequency relative to c/p. If co gets

too large, however, we see that £ will be large at all angles. Then there will be

negligible total energy emitted at that frequency. The critical frequency o>c

beyond which there is negligible radiation at any angle can be defined by £=1
for = 0. Then we find

-^©- 3
(s?)'?

(14 -85)

This critical frequency is seen to agree with our qualitative estimate (14.50) of

Section 14.4. If the motion of the charge is truly circular, then c/p is the

fundamental frequency of rotation, oj . Then we can define a critical harmonic

frequency a)c = nca>o, with harmonic number,

nc =3(^)
3

(14.86)

Since the radiation is predominantly in the orbital plane for y»l, it is

instructive to evaluate the angular distribution (14.83) at = 0. For frequencies

well below the critical frequency (o)«o)c ), we find

d
2
I

dco dfl
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For the opposite limit of o)»o)c , the result is

d
2
I

dco dCl V-/-'"1*' (14.88)
e=o 27T C (t)c

These limiting forms show that the spectrum at = increases with frequency

roughly as co
2/3

well below the critical frequency, reaches a maximum in the

neighborhood of o>c , and then drops exponentially to zero above that frequency.

The spread in angle at a fixed frequency can be estimated by determining the

angle C at which £(0C ) — £(0)+ l. In the low-frequency range (co« o)c ), £(0) is very

small, so that £(0C )— 1. This gives

ec=(3£)
W
=I(-f (14.89)

Vcop/ y\(x)/

We note that the low-frequency components are emitted at much wider angles

than the average, (0
2

)

1/2~y_1
. In the high-frequency limit (a>>wc ), £(0) is large

compared to unity. Then the intensity falls off in angle approximately as

. e
-3»7*e*K (14.90)

dco dCl do)dfl\t

Thus the critical angle, defined by the 1/e point, is

1/2

7x3(0/
(14.91)

This shows that the high-frequency components are confined to an angular range

much smaller than average. Figure 14.10 shows qualitatively the angular

distribution for frequencies small compared with, of the order of, and much
larger than coc . The natural unit of angle yS is used.

The frequency distribution of the total energy emitted as the particle passes by

can be found by integrating (14.83) over angles:

T^irP* T^-7^cos0d0-27rf -j^r dB (14.92)
daj J-ir,2 dco dil J-oo dco dil

(remember that 6 is the latitude). We can estimate the integral for the

low-frequency range by using the value of the angular distribution (14.87) at

= and the critical angle C (14.89). Then we obtain

dl . : d
2
I e

2

2770c
dco dco dCl (ff (14.93)

showing that the spectrum increases as w 1/3
for &>«a)c . This gives a very broad,

flat spectrum at frequencies below o>c . For the high-frequency limit where (o»(oc
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1

yd ^
2

Fig. 14.10 Differential frequency spectrum as a function of angle. For frequencies

comparable to the critical frequency a>c , the radiation is confined to angles of the order of

Y"
1

. For much smaller (larger) frequencies, the angular spread is larger (smaller).

we can integrate (14.90) over angles to obtain the reasonably accurate result,

In the limit <o«coc this reduces to the form (14.93) with a numerical coefficient

3.25, while for o>»a>c it is equal to (14.94). The behavior of dl/dw as a function

of frequency is shown in Fig. 14.11. The peak intensity is of the order of e
2
y/c,

and the total energy is of the order of e
2
yo)Jc = 3e

2

y
4
/p. This is in agreement with

the value of 47re
2

7
4
/3p for the radiative loss per revolution (14.32) in circular

accelerators.

The radiation represented by (14.83) and (14.95) is called synchrotron

radiation because it was first observed in electron synchrotrons (1948). The
theoretical results are much older, however, having been obtained for circular

motion by Schott (1912) although their expression in the present amenable form

is due to Schwinger (op. cit). For periodic circular motion the spectrum is

actually discrete, being composed of frequencies which are integral multiples of

* This result and the differential distribution (14.83) are derived in a somewhat
different way by J. Schwinger, Phys. Rev. 75, 1912 (1949). Schwinger later showed that

the first order quantum mechanical corrections to the classical results involve the replace-

ment of a) -» to(l + h<o/E) in o>
1

d
2
I/do) dCl or to"

1

dl/da) [Proc. Nat. Acad. Sci. 40, 132

(1954)] and are thus negligible provided ha)c « E, or equivalently, y«{pmc/h)m .

(14.94)

A proper integration of (14.83) over angles yields the expression,*

(14.95)
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Fig. 14.11 Synchrotron radiation spectrum (energy radiated per unit frequency interval)

as a function of frequency. The intensity is measured in units of ye
2
/c, while the frequency

is expressed in units of coc (14.85).

the fundamental frequency o> = c/p. Since the charged particle repeats its mo-
tion at a rate of c/2ttp revolutions per second, it is convenient to talk about the

angular distribution of power radiated into the nth multiple of co instead of the

energy radiated per unit frequency interval per passage of the particle. To obtain

the harmonic power expressions we merely multiply dl/day (14.95) or d
2
I/da) dCl

(14.83) by the repetition rate c/27rp to convert energy to power, and by o> = c/p

to convert per unit frequency interval to per harmonic. Thus

These results have been compared with experiment at various energy synchro-

trons.* The angular, polarization, and frequency distributions are all in good

agreement with theory. Because of the broad frequency distribution shown in

Fig. 14.11, covering the visible, ultraviolet, and X-ray regions, synchrotron

radiation is a useful tool for the study of the optical properties of solids. Several

synchrotron light facilities exist as parasitic installations attached to high-energy

synchrotrons or storage rings whose main purpose is the study of fundamental

particles. The article by Godwint details synchrotron radiation from this point

of view.

* F. R. Elder, R. V. Langmuir, and H. C. Pollock, Phys. Rev., 74, 52 (1948); D. H.

Tomboulain and P. L. Hartman, Phys. Rev., 102, 1423 (1956); G. Bathow, E. Freytag,

and R. Haensel, J. Appl. Phys., 37, 3449 (1966).

tR. P. Godwin, in Springer Tracts in Modern Physics, Vol. 51, ed. G. Hohler,

Springer-Verlag, Berlin (1969), pp. 1-73.

(14.96)
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Synchrotron radiation has been observed in the astronomical realm associated

with sunspots, the Crab nebula, and from the particle radiation belts of Jupiter.

For the Crab nebula the radiation spectrum extends over a frequency range from

radiofrequencies into the extreme ultraviolet, and shows very strong polarization.

From detailed observations it can be concluded that electrons with energies

ranging up to 10
12 eV are emitting synchrotron radiation while moving in circu-

lar or helical orbits in a magnetic induction of the order of 10~3
gauss (see

Problem 14.15). The radio emission at ~10 3 MHz from Jupiter comes from

energetic electrons trapped in Van Allen belts at distances from a few to 30-100

radii (Rj) from Jupiter's surface. Data from a space vehicle (Pioneer 10, De-

cember 4, 1973 encounter with Jupiter) passing within 2.8R; showed a roughly

dipole magnetic field with a dipole moment of 4Rj3
gauss. Appreciable fluxes of

trapped electrons with energies greater than 3 MeV and a few percent with

energies greater than 50 MeV were observed. Taking 1 gauss as a typical field

and 5 MeV as a typical energy, Eqs. (12.42) and (14.85) show that the spiraling

radius is of the order of 100-200 meters, o> ~ 2 x 10
6
sec

-1
, and that about 10

3

significant harmonics are radiated.

14.7 Thomson Scattering of Radiation

If a plane wave of monochromatic electromagnetic radiation is incident on a free

particle of charge e and mass m, the particle will be accelerated and so emit

radiation. This radiation will be emitted in directions other than that of the

incident plane wave, but for nonrelativistic motion of the particle it will have the

same frequency as the incident radiation. The whole process may be described as

scattering of the incident radiation.

According to (14.20) the instantaneous power radiated into polarization state

e by a particle of charge e in nonrelativistic motion is

dP e
2

dn 4ttc
3
€* -vr (14.97)

The acceleration is provided by the incident plane wave. If its propagation vector

is k , and its polarization vector € , the electric field can be written

E(x, t) = €oEoe
iko "-UH

(14.98)

Then, from the force equation for nonrelativistic motion, we have the accelera-

tion,

v(t)=€o— Eoe*
**-1*" (14.99)

If we assume that the charge moves a negligible part of a wavelength during one
cycle of oscillation, the time average of |v|

2
is |Re (v • v*). Then the average
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power per unit solid angle can be expressed as

|€*-€o|
2

Sect. 14.7

(14.100)

Since the process is most simply viewed as a scattering, it is convenient to

introduce a scattering cross section, as in Chapter 9 defined by

da _ Energy radiated/unit time/unit solid angle

dfl Incident energy flux in energy/unit area/unit time
(14.101)

The incident energy flux is just the time-averaged Poynting vector for the plane

wave, namely, c \E
\

2
/8tt. Thus from (14.100) we obtain the differential scatter-

ing cross section,

'•*r (14 - 102)

The scattering geometry with a choice of polarization vectors for the outgoing

wave is shown in Fig. 14.12. The polarization vector €i is in the plane containing

n and k ; €2 is perpendicular to it. In terms of unit vectors parallel to the

coordinate axes, 6i and e2 are

€i = cos 0(ex cos </> + ey sin </>)—

e

2 sin

€2 = —

e

x sin
<f>
+ ey cos <f>

For an incident linearly polarized wave with polarization parallel to the x axis, the

angular distribution summed over final polarizations is (cos
2
6 cos

2
</>+sin

2

<f>),

while for polarization parallel to the y axis it is (cos
2

sin
2

</>+ cos
2

</>). For

unpolarized incident radiation the scattering cross section is therefore

(14.103)

Fig. 14.12
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Fig. 14.13 Differential scattering cross section of unpolarized radiation by a point

charged particle initially at rest in the laboratory. The solid curve is the classical Thomson
result. The dashed curves are the quantum-mechanical results for a spinless particle, with

the numbers giving the values of hco/mc
2

. For ftw/mc
2 = 0.25, 1.0 the dotted curves show

the results for spin \ point particles (electrons).

This is called the Thomson formula for scattering of radiation by a free charge,

and is appropriate for the scattering of X-rays by electrons or gamma rays by

protons. The angular distribution is as shown in Fig. 14.13 by the solid curve.

The total scattering cross section, called the Thomson cross section, is

The Thomson cross section is equal to 0.665 x 10~24 cm2
for electrons. The unit

of length, e
2
/mc

2 = 2.82 x 10" 13
cm, is called the classical electron radius, since a

classical distribution of charge totaling the electronic charge must have a radius

of this order if its electrostatic self-energy is to equal the electron mass.

The classical Thomson formula is valid only at low frequencies where the

momentum of the incident photon can be ignored. When the photon's momen-
tum hu/c becomes comparable to or larger than mc, modifications occur. These

can be called quantum-mechanical effects since the concept of photons as

massless particles with momentum and energy is certainly quantum mechanical

(pace, Newton!), but granting that, most of the modifications are purely

kinematical. The most important change is the one observed experimentally by

Compton. The energy or momentum of the scattered photon is less than the

(14.104)
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incident energy because the charged particle recoils during the collision.

Applying two-body relativistic kinematics to the process, we find that the ratio of

the outgoing to the incident wave number is given by the Compton formula,

k'_ 1

1+—2 (1-cos 0)
mc

where 6 is the scattering angle in the laboratory (the rest frame of the target). A
quantum-mechanical calculation of the scattering of photons by spinless point

particles of charge e and mass m yields the cross section,

(14-105)

to be compared with the classical expression (14.102). In the radiation gauge the

quantum-mechanical matrix element is the same as the classical amplitude. The
factor (k'/k)

2 comes entirely from the phase space. Its presence causes the

differential cross section to decrease relative to the Thomson result at large

angles, as shown by the dashed curves in Fig. 14.13. Also shown in the figure by

the dotted curves are the quantum-mechanical results for photon-electron

scattering, that is, the scattering by a point spin \ particle described by the Dirac

equation. The curves are generally similar to those for spinless particles, but are

somewhat larger at large angles because of scattering by the electron's magnetic

moment.* The integral over angles of (14.105) is elementary but slightly

involved. We quote only the limiting forms for h(x)«mc
2 and h(x)»mc

2
:

* ~ hoj . 21-2—2+-*, ho)«mc
mc

(14.106)
°r

1 3 mc 2

, 2- -=
, fid) » HtC

4 ha)

For scattering by electrons the low frequency limit is the same, but at high

frequencies there is an additional multiplicative factor, \\+\ In (2ho)/mc
2
)].

For protons the departures from the Thomson formula occur at photon

energies above about 100 MeV. This is far below the critical energy hco— Mc 2—
1 GeV which would be expected in analogy with the electron Compton effect.

The reason is that a proton is not a point particle like the electron with nothing

but electromagnetic interactions, but is a complex entity having a spread-out

charge distribution with a radius of the order of 0.8 x 10" 13 cm caused by strong

* For electrons the cross-section equivalent to (14.105) has |e* • €
|

2
replaced by

|€ €o|+
4kk'

It is known as the Klein-Nishina formula for Compton scattering.
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interactions with pi mesons. The departure (a rapid increase in cross section)

from Thomson scattering occurs at photon energies of the order of the rest

energy of the pi meson (140 MeV).

14.8 Scattering of Radiation by Quasi-Free Charges,

Coherent and Incoherent Scattering

In the scattering of X-rays by atoms the angular distribution (14.103) is observed

at wide angles, at least in light elements. But in the forward direction the

scattering per electron increases rapidly to quite large values compared to the

Thomson cross section. The reason is a coherent addition of the amplitudes from

all electrons. From (14.18) it can be seen that the radiation field from a number

of free nonrelativistic charged particles will be

With (14.99) for the acceleration of the typical particle, we find

ik • Xj -io^t-^JE ... ^e,-
2exp

2 nx(nxeo) S -1

(14.107)

(14.108)

In calculating the radiation it is sufficient to approximate R, in the exponent by

the form (14.63). Then, in complete analogy with the steps from (14.97) to

(14.102), we find the scattering cross section,

da

where

m,c

(JL> .

q = - n- k
^ c

k*-e
|

2
(14.109)

(14.110)

is the vectorial change in wave number in the scattering.

Equation (14.109) applies to free charged particles instantaneously at posi-

tions x,. Electrons in atoms, for example, are not free. But if the frequency of the

incident radiation is large compared to the characteristic frequencies of binding,

the particles can be treated as free while being accelerated by a pulse of finite

duration. Thus (14.109) can be applied to the scattering of high-frequency

(compared to binding frequencies) radiation by bound charged particles. The
only thing that remains before comparison with experiment is to average

(14.109) over the positions of all the particles in the bound system. Thus the

observable cross section for scattering is

da
da m,c

|€*-€o| (14.111)

where the symbol { ) means average over all possible values of x,.
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The cross section (14.111) shows very different behavior, depending on the

value of |q|. The coordinates Xj have magnitudes of the order of the linear

dimensions of the bound system. If we call this dimension a, then the behavior of

the cross section is very different in the two regions, qa« 1 and qa»l. If the

scattering angle is 0, the magnitude of q is 2k sin (6/2). Thus the dividing line

between the two domains occurs for angles such that

2kasin|~l (14.112)

If the frequency is low enough so that ka« 1, then the limit qa« 1 will apply at

all angles. But for frequencies where ka»l, there will be a region of forward

angles less than

9
<~lTa

(14 - 113)

where the limit qa« 1 holds, and a region of wider angles where the limit qa» 1

applies.

For qa«l, the arguments of exponents in (14.111) are all so small that the

exponential factors can be approximated by unity. Then the differential cross

section becomes

da
hm -jtz

Y m,c
2 e

|

2 = Z2

(^)
2

|e*.e
|

2
(14.114)

where the last form is appropriate for electrons in an atom of atomic number Z.

This shows the coherent effect of all the particles, giving an intensity correspond-

ing to the square of the number of particles times the intensity for a single

particle.

In the opposite limit of qa » 1 the arguments of the exponents are large and

widely different in value. Consequently the cross terms in the square of the sum
will average to zero. Only the absolute squared terms will survive. Then the cross

section takes the form:

Km ^=lf^i)V-€o| 2 = z(^)V-€o| 2
(14.115)

qa-*- dil j \rrijC I
1 1 \mc I

where again the final form is for electrons in an atom. This result corresponds to

the incoherent superposition of scattering from the individual particles.

For the scattering of X-rays by atoms the critical angle (14.113) can be

estimated, using (13.95) as the atomic radius. Then one finds the numerical

value,

yl/3

n~\n (14.116)
nco(kev)

For angles less than 6C the cross section rises rapidly to a value of the order of

(14.114), while at wide angles it is given by (14.115), Z times the Thomson
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result, or for high-frequency X-rays or gamma rays by the Klein-Nishina for-

mula, shown in Fig. 14.13.

14.9 Transition Radiation

A charged particle in uniform motion in a straight line in free space does not

radiate. It was shown in Section 13.5, however, that a particle moving at

constant velocity can radiate if it is in a material medium and is moving with a

speed greater than the phase velocity of light in that medium. This radiation,

with its characteristic angle of emission, c = sec
-1

(/3e
1/2

), is Cherenkov radia-

tion. There is another type of radiation, transition radiation, first noted by

Ginsburg and Frank in 1946, that is emitted whenever a charged particle passes

suddenly from one medium into another. Far from the boundary in the first

medium the particle has certain fields characteristic of its motion and of that

medium. Later, when it is deep in the second medium, it has fields appropriate to

its motion and that medium. Even if the motion is uniform throughout, the initial

and final fields will be different if the two media have different electromagnetic

properties. Evidently the fields must reorganize themselves as the particle

approaches and passes through the interface. In this process of reorganization

some pieces of the fields are shaken off as transition radiation.

Important features of transition radiation can be understood without elabo-

rate calculation.* We consider a relativistic particle with charge ze and speed

u = |3c normally incident along the z axis from vacuum (z<0) on a uniform

semi-infinite medium (z >0) with index of refraction n(co), as indicated in Fig.

14.14. The moving fields of the charged particle induce a time-dependent

polarization P(x', t) in the medium. The polarization emits radiation. The
radiated fields from different points in space combine coherently in the

neighborhood of the path and for a certain depth in the medium, giving rise to

transition radiation with a characteristic angular distribution and intensity.

The angular distribution and the formation length D are a direct consequence

of the requirement of coherence for appreciable radiated intensity. The exciting

fields of the incident particle are given by (11.152). The dependence at a point

x' = (z', p', </>') on inverse powers of [p'
2+y2

(z'-vt)
2

] implies that a Fourier

component of frequency co will (a) move in the z direction with velocity v and so

have an amplitude proportional to e
la>2/u

, and (b) have significant magnitude

radially from the path only out to distances of the order of pLax— yv/a). On the

other hand, the time-dependent polarization at x' generates a wave whose

form in the radiation zone is

C
^
^-ik(z' cos 6+p' sin cos <(>')

r

* The need for a qualitative discussion has been impressed on me by numerous
questions from colleagues near and far and by V. F. Weisskopf on the occasion of a

seminar by him where he presented a similar discussion.
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Sect. 14.9

E2

ze

Fig. 14.14 A charged particle of charge ze and velocity v is normally incident along the

z axis on a uniform semi-infinite dielectric medium occupying the half-space z>0. The
transition radiation is observed at angle 6 with respect to the direction of motion of the

particle, as specified by the wave vector k and associated polarization vectors ea and eb .

where A is proportional to the driving field of the incident particle, k = n(co)o>/c

and it is assumed that the radiation is observed in the x-z plane and in the

forward hemisphere. Appreciable coherent superposition from different points

in the medium will occur provided the product of the driving fields of the particle

and the generated wave does not change its phase significantly over the region.

The relevant factor in the amplitude is

g
i(Wt))2'^-i(4d/c)n(to) cos 8z'g-i(Wc)n(a>)p' sin 6 cos <(>' _ ^i(co/c)(l/3-n(a>) cos e)2'^-i(Wc)n(a))p' sin 6 cos <f>'

In the radial direction coherence will be maintained only if the phase involving p'

is unity or less in the region CXp'^pmax where the exciting field is appreciable.

Thus radiation will not be appreciable unless

-n(o))^sin0^1
C O)

or

n(a>)70<l (14.117)
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for 7»1. The angular distribution is therefore confined to the forward cone,

yS^l\ as in all relativistic emission processes.

The z'-dependent factor in the amplitude is

gi(<u/c)(l/p-n(oj) cos 6)z'

The depth d(co) up to which coherence is maintained is therefore

~{^~ n (w ) cos 0) — 1

We approximate n(o>) — l-(a>p

2
/2a)

2
) for frequencies above the optical region

where Cherenkov radiation does not occur, /3

1 — l + l/2y
2

for a relativistic

particle, and cos 0—1, to obtain

i{v)j^ (14 . 118)

where we have introduced a dimensionless frequency variable,

v =— (14.119)
ycop

We define the formation length D as the largest value of d(v) as a function of v.

D = d(l)=^ (14.120)
(Sip

For substances with densities of order of unity the plasma frequency is

top— 3xl0 16
sec

-1
,
corresponding to an energy h(x)p

— 20 eV. Thus c/a>p — 10"6 cm
and even for y^lO3

the formation length D is only tens of microns. In air at

N.T.P. it is a factor of 30 larger because of the reduced density.

The coherence volume adjacent to the particle's path and the surface from

which transition radiation of frequency o> comes is evidently

This volume decreases in size rapidly for v> 1. We can therefore expect that in

the absence of compensating factors the spectrum of transition radiation will

extend up to, but not appreciably beyond, v— 1.

We have obtained some insight into the mechanism of transition radiation and

its main features. It is confined to small angles in the forward direction (y0<l).

It is produced by coherent radiation of the time-varying polarization in a small

volume adjacent to the particle's path and at depths into the medium up to the

formation length D. Its spectrum extends up to frequencies of the order of

co~yo)p. It is possible to continue these qualitative arguments and obtain an

estimate of the total energy radiated, but the exercise begins to have the

appearance of virtuosity based on hindsight. Instead, we turn to an actual

calculation of the phenomenon.
An exact calculation of transition radiation is complicated. Some references

are given at the end of the chapter. We content ourselves with an approximate
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calculation that is adequate for most applications and is physically transparent. It

is based on the observation that for frequencies above the optical resonance

region the index of refraction is not far from unity. The incident particle's fields

at such frequencies are not significantly different in the medium from in vacuum.

This means that the Fourier component of the induced polarization P(x', <o) can

be evaluated approximately by

P(x', mI^I
6^" 1

]^', <») (14.121)

where Ej is the Fourier transform of the electric field of the incident particle in

vacuum. The propagation of the wave radiated by the polarization must be

described properly, however, with the wave number k = (on(cj)/c appropriate to

the medium. This is because phase differences are important, as already seen in

the qualitative discussion.

The dipole radiation field from the polarization P(x',o>) d
3
x' in the volume

element d
3
x' at x' is, according to (9.18),

ikR

dErad =V(kxP) xkd3*'

ti.

where k is the wave vector in the direction of observation and R — r—k • x\ With

the substitution of (14.121) and an integration over the half-space z'>0, the

total radiated field at frequency cu is

Erad =^[i^l]k 2

J2 Q

(kxEOxke^-'dV

With the approximation,

e(co)-l-^r (14.122)
(t)

the radiated field for <o»(op becomes

Erad"T"(w)l o
(txEi )

xte_,k
" dV (14.123)

From (14.52) and (14.60) this means that the energy radiated has the differential

spectrum in an angle and energy,

d
2
I

dcodCl 32tt
3
\c

(14.124)

Note that the driving fields E* are defined by the Fourier transform (14.54) of the

fields of Section 11.10, already used in Section 13.2. In our approximation it is

not necessary to use the more elaborate fields of Section 13.4. In the notation of

Fig. 14.14 the incident fields are

Ep(x,<o)=J^e'-»K,(^)V tt 71) \yv/

(14.125)

E,(x, «>) = -«M^e"^KoM
V tt y v \yv/
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The integral in (14.124) can be evaluated as follows. We first exploit the fact that

the z-dependence of E s is only via the factor e
la>z/

\ and write

f [kxE,(x,a))]xke""
,[

d
3
x

Jz>0

=
J
j"dx dy[kxEi]z« X ke~

iksinex
j* dze

i(<o/v- kcos6)z

= - !
( 1 - e

i("lv - k cos e)z
) fdx f dy [k x E,]2 =0 x ke~

ik s,n ex

g-kco..) J J

The upper limit Z on the z integration is a formal device to show that the

contributions from different z values add constructively and cause the amplitude

to grow until Z^D. Beyond the depth D the rapidly rotating phase prevents

further enhancement. For effectively semi-infinite media (slabs of thickness large

compared with D) we drop the oscillating exponential in Z on physical grounds*

and obtain, for a single interface,

J
Jdx dye-

|kBtoex
[kxEi]z= xk

g-fccos*)

The electric field transverse to k can be expressed in terms of the components Ep ,

Ez and the polarization vectors €a and €b shown in Fig. 14.14 as

[k x Ei] x k = (Ep cos cos <j>
-Ez sin 0)€a +Ep sin <f>e b

where 6 is the polar angle of k and the prime has been dropped from the

azimuthal angle of integration. The component parallel to €b integrates to zero

because it is odd in y. Thus, substituting from (14.125), we have

f
\dx dy<T

iksinex
[cos ,

*
EP -sin 6EZ ]

J J L Vx +v Jz=o
g-kcose)

_ I6q

g-kcose) ,1T ^"

f
cos -=f= K, + i^ K„(^ VFT?)1

The first term can be transformed by an integration by parts in x, using

-j==
2
K, (— Vx^+y1

)
= — K (— VF+y

2

)Vx +y Vyu / oj dx \yu /

* A less cavalier treatment of the dependence on thickness is necessary for foils

that are not thick compared to D, or when a stack of foils is employed. See Problems
14.18 and 14.19.
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1 r

Fig. 14.15 Angular distributions of transition radiation at v=0.1, v= 1 and v»l. The
solid curves are the normalized angular distributions, that is, the ratio of (14.129) to

(14.132). The dashed curve is v
4
times that ratio in the limit v—>a>.

so that

F = e4\
2 ze sin

((*) , n
v\— K COS 6
\v

(
k cos e~^) \\

dx dye-^K ( v̂
VPT?)

The remaining integral can be evaluated from the cosine transform,

f Kp(pVF+7) cos (az) dz - , 7 expHtlvV + p
2

) (14.126)
Jo 2Va 2 +G 2

The result for F is

F = €<

2V2tt ze sin fl^k cos e~T^J

uS- kcos0
)(7?

+k2sin2e
)

(14.127)

In the approximation of relativistic motion (7»1), small angles (0« 1) and high
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frequencies (o>»a>p ), this becomes

c Vcup/ v
(i+Vt))(1 + t,)

(14.128)

where v is the dimensionless frequency variable (14.119) and r) — (yO)
2

is an

appropriate angular variable. With dCl = d<j> d(cos 0) — d(j> dr)/2y
2

, the energy

distribution in v and r\ is

d
2
I

dv dr\

rr
-2-ya>P

-

2 2
z e yo)p

TTC

d
2
I

da) d£l

^(l+V^d + T))
2

]

(14.129)

Angular distributions for fixed v values are shown in Fig. 14.15. At low

frequencies the spectrum peaks at t) — 1 and then falls relatively slowly as tj"
1

until the value -n = v~
2
is reached. Then it falls off as t)~

3
. For v^ 1, the spectrum

peaks at t] ^5 and falls at t)~
3
for r\ » 1. At r\ = the denominator in (14.129)

is (1 + v
2

)

2

,
showing that for v»l there is negligible intensity at any angle

[compare the coherence volume V(a>), above].

The energy spectrum, integrated over the angular variable -n, is

dl

dv

z
2
e
2
ya)p

TTC
|^(l + 2v2

) In (l+^-2j (14.130)

It has the small and large v limits,

dl z
2
e
2
y(x)p

dv TTC

2 In (1/ev),

1

6v
4 '

v« 1

v»l
(14.131)

The energy spectrum is shown on a log-log plot in Fig. 14.16. The spectrum

diverges logarithmically at low frequencies, where our approximate treatment

fails in any event, but it has a finite integral. The total energy emitted in

transition radiation per interface is

r dl

Jo dv
dv

2 2
z e y<x)p

3c 3(137)
yh(op (14.132)

From Fig. 14.16 we can estimate that about half of the energy is emitted in the

range 0.1^i><1. In quantum language, we say that an appreciable fraction of

the energy appears as comparatively energetic photons. For example, with

7= 10
3
and h(x)p

= 20 eV, these quanta are in the soft X-ray region of 2 to 20 keV.

The presence of the factor of y in (14.132) makes transition radiation

attractive as a mechanism for the identification of particles, and perhaps even
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v = o)/7C0p

Fig. 14.16 Normalized frequency distribution (l/l)(dl/dv) of transition radiation as a

function of v= a)/ya)
p

. The dashed curves are the two approximate expressions in

(14.131).

measurement of their energies, at very high energies where other means are

unavailable. The presence of the numerical factor 1/(3x137) means that the

probability of energetic photon emission per transit of an interface is very small.

It is necessary to utilize a stack of many foils with gaps between. The foils can be

quite thin, needing only to be thick compared to a formation length D (14.120).

Then a particle traversing each foil will emit twice (14.132) in transition

radiation (see Problem 14.18). A typical set-up might involve 200 Mylar foils of

thickness (l-5)x 10~ 3
cm, with spacings from 2x 10~ 2 cm to 0.4 cm. The coherent

superposition of the fields from the different interfaces, two for each foil, causes

a modulation of the energy and angular distributions (see Problem 14.19).

Problems of tolerances, absorption of the soft X-rays in the stack, and their

reliable detection in the presence of backgrounds make difficult the construction
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of a useful instrument. Considerable research and development, begun in the

U.S.S.R., has been done and continues.*
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694 Classical Electrodynamics Prob. 14

PROBLEMS

14.1 Verify by explicit calculation that the Lienard-Wiechert expressions for all

components of E and B for a particle moving with constant velocity agree with the

ones obtained in the text by means of a Lorentz transformation. Follow the general

method at the end of Section 14.1.

14.2 Using the Lienard-Wiechert fields, discuss the time-average power radiated per

unit solid angle in nonrelativistic motion of a particle with charge e, moving
(a) along the z axis with instantaneous position z(t) = a cos (o t,

(b) in a circle of radius R in the x-y plane with constant angular frequency o> .

Sketch the angular distribution of the radiation and determine the total power
radiated in each case.

14.3 A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a

head-on collision with a fixed central force field of finite range. The interaction is

repulsive and described by a potential V(r), which becomes greater than E at close

distances.

(a) Show that the total energy radiated is given by

dr

VV(rmin)-V(r)

where rmin is the closest distance of approach in the collision.

(b) If the interaction is a Coulomb potential V(r) = zZe 2
/r, show that the total energy

radiated is

45 Zc 3

AW = 4 zV m '

3 mV V 2 J dr

where v is the velocity of the charge at infinity.

14.4 A particle of mass m, charge q, moves in a plane perpendicular to a uniform,

static, magnetic induction B.

(a) Calculate the total energy radiated per unit time, expressing it in terms of the

constants already defined and the ratio y of the particle's total energy to its rest

energy.

(b) If at time t = the particle has a total energy E = y mc 2

, show that it will have

energy E = ymc 2<E at a time t, where

^3mV /l j_\
1

2q
4B 2

\y y )

provided y»l.
(c) If the particle is initially nonrelativistic and has a kinetic energy e at t = 0, what is

its kinetic energy at time tl

(d) If the particle is actually trapped in the magnetic dipole field of the earth and is

spiraling back and forth along a line of force, does it radiate more energy while near

the equator, or while near its turning points? Why? Make quantitative statements if

you can.

14.5 As in Problem 14.2a a charge e moves in simple harmonic motion along the z

axis, z(t') = a cos (a> (,0-
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(a) Show that the instantaneous power radiated per unit solid angle is:

dP(t') _ e
2

c<3
4

sin
2

cos
2

(cdJ')

dfl 4ira
2

(1 + cos sin ioj'Y

where /3 - aw„/c.

(b) By performing a time averaging, show that the average power per unit solid angle

is:

dP _ e
2

c/3'

dft 32ira

4 + 2

cos
2

.(l-0 2

cos
2 ey 3 j

sin
2

(c) Make rough sketches of the angular distribution for nonrelativistic and relativistic

motion.

14.6 Show explicitly by use of the Poisson sum formula or other means that, if the

motion of a radiating particle repeats itself with periodicity T, the continuous

frequency spectrum becomes a discrete spectrum containing frequencies that are

integral multiples of the fundamental. Show that a general expression for the time-

average power radiated per unit solid angle in each multiple m of the fundamental

frequency om)—27t/ T is:

dPm = e

da (2

2w 4m 2

I f
2 "'""

, . |~. / n • x(t)\w 1 «»««p[»»«.('--H dt

14.7 (a) Show that for the simple harmonic motion of a charge discussed in Problem
14.5 the average power radiated per unit solid angle in the mth harmonic is:

dP e
2
cB

2

-377 = -
7 m tan" 6J„

2

(m(i cos 0)
dil 2ira

(b) Show that in the nonrelativistic limit the total power radiated is all in the

fundamental and has the value:

where a
2

is the mean square amplitude of oscillation.

14.8 A particle of charge e moves in a circular path of radius R in the x-y plane with a

constant angular velocity o> .

(a) Show that the exact expression for the angular distribution of power radiated into

the mth multiple of a>„ is:

dPm eWR 2

JfdjUmg sine) I
2

,

cot
2

r v .

\
-J77

—— m
\

—77

—

„ . A , + . Jm (m^ sin 0) \dCl 2ttc [I d(m(i sin 0) J |3' J

where /3 = a> R/c, and Jm (x) is the Bessel function of order m.

(b) Assume nonrelativistic motion and obtain an approximate result for dPJdfl.
Show that the results of Problem 14.2b are obtained in this limit.

(c) Assume extreme relativistic motion and obtain the results found in the text for a

relativistic particle in instantaneously circular motion. (Watson, pp. 79, 249, may be of

assistance to you.)

14.9 A particle of charge e and mass m moves relativistically in a helical path in a

uniform magnetic field B. The pitch angle of the helix is a (a = corresponds to

circular motion).
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(a) By arguments similar to those of Section 14.4 show that an observer far from the

helix would detect radiation with a fundamental frequency

<*>B

Wo= —
cos a

and that the spectrum would extend up to frequencies of the order of

o>f
= y

y
coB cos a

where a) H = eB/ymc. (Take care in determining the radius of curvature p of the helical

path.)

(b) From part (a) and the results of Section 14.6 show that the power radiated per unit

solid angle and per unit circular frequency interval is

6tt c cos a\(x)c / L I + 71// J

d
2P

da) dCl 6tt
3
c cos

2 a Vcoc /
v " 1 * ' L"

2/JV^ '

l + 7

where cuB and coc are defined above, £ = (co/3cot )(l+7
2

iJ/

2

)

3 2

, and \\i is the angle of

observation measured relative to the particle's velocity vector, as in Fig. 14.9.

14.10 Bohr's correspondence principle states that in the limit of large quantum numbers
the classical power radiated in the fundamental is equal to the product of the quantum
energy (h(o ) and the reciprocal mean lifetime of the transition from principal quantum
number n to (n-1).

(a) Using nonrelativistic approximations, show that in a hydrogen-like atom the

transition probability (reciprocal mean lifetime) for a transition from a circular orbit of

principal quantum number n to (n-1) is given classically by

1 = 2 e
2 /Ze 2Ymc 2

1

t 3hc\hc) h n
5

(b) For hydrogen compare the classical value from (a) with the correct

quantum-mechanical results for the transitions 2p—>ls (1.6xl0~ 9
sec), 4/—»3d

(7.3xl0 8
sec), 6h-^5g (6.1xl(T 7

sec).

14.11 Periodic motion of charges gives rise to a discrete frequency spectrum in

multiples of the basic frequency of the motion. Appreciable radiation in multiples of

the fundamental can occur because of relativistic effects (Problems 14.7 and 14.8)

even though the components of velocity are truly sinusoidal, or it can occur if the

components of velocity are not sinusoidal, even though periodic. An example of this

latter motion is an electron undergoing nonrelativistic elliptic motion in a hydrogen

atom.

The orbit can be specified by the parametric equations

x = a(cos u-e)

y = aVl —

e

2
sin u

where

a> r= u~e sin u

a is the semimajor axis, e is the eccentricity, o> is the orbital frequency, and u is an

angle related to the polar angle 6 of the particle by tan (u/2) = V(l-e)/(l + €) tan (0/2).

In terms of the binding energy B and the angular momentum L, the various constants are

<r L 2BV , 8B 3

2B' ^V 1
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(a) Show that the power radiated in the kth multiple of co is

Pk = (ka> )v{p[(Jl(ke)Y+ (i=^)jk

2
(k€)]

}

where Jk (x) is a Bessel function of order k.

(b) Verify that for circular orbits the general result (a) agrees with part (a) of Problem

14.10.

14.12 Instead of a single charge e moving with constant velocity oj in a circular path of

radius R, as in Problem 14.8, a set of N such charge moves with fixed relative positions

around the same circle.

(a) Show that the power radiated into the mth multiple of co is

dPm(N)_dPm (l) Fm (N)da dCL

where dPm (l)/dfl is the result of part (a) in Problem 14.8, and

Fm(N)= Y e'
m8

'

2

(
being the angular position of the jth charge at t = to.

(b) Show that, if the charges are uniformly spaced around the circle, energy is radiated

only into multiples of Nco , but with an intensity N2
times that for a single charge. Give

a qualitative explanation of these facts.

(c) Without detailed calculations show that for nonrelativistic motion the dependence

on N of the total power radiated is dominantly as |3
2N

, so that in the limit N—»o° no
radiation is emitted.

(d) By arguments like those of (c) show that for relativistic particles the radiated

power varies with N mainly as exp (—2N/3y 3

) for N»y 3

, so that again in the limit

N—»oo no radiation is emitted.

(e) What relevance have the results of (c) and (d) to the radiation properties of a

steady current in a loop?

14.13 As an idealization of steady-state currents flowing in a circuit, consider a system

of N identical charges q moving with constant speed v (but subject to accelerations) in

an arbitrary closed path. Successive charges are separated by a constant small

interval

Starting with the Lienard-Wiechert fields for each particle, and making no
assumptions concerning the speed v relative to the velocity of light show that, in the

limit N—>oo
?
q—»0, and A—»0, but Nq = constant and q/A = constant, no radiation is

emitted by the system and the electric and magnetic fields of the system are the usual

static values.

(Note that for a real circuit the stationary positive ions in the conductors will pro-

duce an electric field which just cancels that due to the moving charges.)

14.14 Assume that the instantaneous power spectrum radiated by an electron in a

synchrotron is given by

77 p \(x)c I

where toc = 3a> Y
3
(t).

(a) If the electrons increase their energy approximately linearly during one cycle of
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operation, show that the power spectrum, averaged over one cycle of operation, is

3tt p

maxwhere x = 2to/o>c ,

(b) Determine limiting forms for the spectrum when x« 1 and x»l.
(c) By finding tables of the integral (it is an incomplete gamma function) or by
graphical integration for x = 0.1, 0.5, 1.0, 1.5, determine numerically the spectrum,

plot it as a function of log [a)/cocmax], and compare it with the curves given by Elder,

Langmuir, and Pollock, Phys. Rev., 74, 52 (1948), Fig. 1.

14.15 (a) Within the framework of approximations of Section 14.6, show that, for a

relativistic particle moving in a path with instantaneous radius of curvature p, the

frequency-angle spectra of radiations with positive and negative helicity are

d
2L

dco dfl-A(?)'(M

(b) From the formulas of Section 14.6 and (a) above, discuss the polarization of the

total radiation emitted as a function of frequency and angle. In particular, determine

the state of polarization at (1) high frequencies (cu>coc ) for all angles, (2) intermediate

and low frequencies (to<coc ) for large angles, (3) intermediate and low frequencies at

very small angles.

(c) See the paper by P. Joos, Phys. Rev. Letters, 4, 558 (1960), for experimental

comparison.

14.16 Consider the synchrotron radiation from the Crab nebula. Electrons with

energies up to 10
13 eV move in a magnetic field of the order of 10~4

gauss.

(a) For E = 10
13 eV, B = 3x 10"4

gauss, calculate the orbit radius p, the fundamental

frequency co = c/p, and the critical frequency coc . What is the energy ha>c in keV?
(b) Show that for a relativistic electron of energy E in a constant magnetic field the

power spectrum of synchrotron radiation can be written

P(E,.) = co„st(f,)"VQ

where f(x) is a cutoff function having the value unity at x = and vanishing rapidly for

x»l [e.g., /^exp (-2o)/3o>c ), as in Problem 14.14], and coc
= (eB/mc)(E/mc 2

)

2
cos 0,

where is the pitch angle of the helical path. Cf. Prob. 14.9(a).

(c) If electrons are distributed in energy according to the spectrum N(E) dE~E~" dE,

show that the synchrotron radiation has the power spectrum

<P(o))) da> ~ to
a
dbi

where a = (n-l)/2.

(d) Observations on the radiofrequency and optical continuous spectrum from the

Crab nebula show that on the frequency interval from o>~ 10
8
sec

-1
to a)~6x 10

1S
sec

1

the constant a — 0.35. At frequencies above 10
18
sec

_1
the spectrum of radiation falls

steeply with as: 1.5. Determine the index n for the electron-energy spectrum, as well

as an upper cutoff for that spectrum. Is this cutoff consistent with the numbers of part

(a)?

(e) The half-life of a particle emitting synchrotron radiation is defined as the time

taken for it to lose one half of its initial energy. From the result of Problem 14.4(b) find
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a formula for the half-life of an electron in years when B is given in milligauss and E fn

GeV. What is the half-life using the numbers from part (a)? How does this compare
with the known lifetime of the Crab nebula? Must the energetic electrons be

continually replenished? From what source?

14.17 A relativistic particle of charge ze moves along the z axis with a constant speed

|3c. The half-space z<0 is filled with a uniform isotropic dielectric medium with

plasma frequency o>,, and the space z>0 with a similar medium whose plasma

frequency is co 2 . Discuss the emission of transition radiation as the particle traverses

the interface, using the approximation of Section 14.9.

(a) Show that the radiation intensity per unit circular frequency interval and per unit

solid angle is given approximately by

d 2
I ^zVO

2

d(x) dCl tt
2
c

where 6 is the angle of emission relative to the velocity of the particle and

7 =(i-0
2

r
1/2

.

(b) Show that the total energy radiated is

zV (ft^-a);)
2

3c '(a) 1 + a>2
)" 1

' 7

14.18 Consider the transition radiation emitted by a relativistic particle traversing a

dielectric foil of thickness a perpendicular to its path. Assuming that |[n(co)-

l]/[n(o)) + 1]| is very small so that reflections can be ignored, show that the differential

angular and frequency spectrum is given by the single-interface result (14.129) times

the factor,

3^=4 sin
2 ©, with = v

(
1+^+r\)^

7 Oi y a)

HereD = 7c/o>p is the formation length, v = o)/y(x)
p , and -n = (70)

2
. Provided a»D,

the factor & oscillates extremely rapidly in angle or frequency, averaging to (&') = 2.

For such foils the smoothed intensity distribution is just twice that for a single

interface. Frequency distribution for different values of V= 2D la are displayed in Fig. 1

of G. B. Yodh, X. Artru, and R. Ramaty, Astrophys. J. 181, 725 (1973).

14.19 Transition radiation is emitted by a relativistic particle traversing normally a

uniform array of N dielectric foils, each of thickress a, separated by air gaps

(effectively vacuum), each of length b. Assume that multiple reflections can be

neglected for the whole stack. This requires

n(o>)-l

n(to) + l 4o>
2<< N

(a) Show that if the dielectric constant of the medium varies in the z direction as

€(w, z) = l-(o)
p

2
/a)

2
)p(z), the differential spectrum of transition radiation is given

approximately by the single-interface result (14.129) times

9~ LJ dzp(z)e ,a,z/u

exp(-icoseJ k(z') dz'^j
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where p(0)=l by convention, k(z) = (<*)/c) Ve(o>, z), and jUL = o>/u-k(0) cos 6.

(b) Show that for the stack of N foils

sin
2 [©+¥]

where 6 is defined in Problem 14.18 and ¥ = v(l + -n)(b/4D). Compare G. M.
Garibyan, Zh. Eksp. Tcor. Fiz. 60, 39 (1970) [transl. Sov. Phys. JETP 33, 23

(1971)].

The practical theory of multilayered transition radiation detectors is treated in great

detail by X. Artru, G. B. Yodh, and G. Mennessier, Phys. Rev. D 12, 1289 (1975).



15
Bremsstrahlung,
Method of Virtual Quanta,
Radiative Beta Processes

In Chapter 14 radiation by accelerated charges was discussed in a general way,

formulas were derived for frequency and angular distributions, and examples of

radiation by both nonrelativistic and relativistic charged particles in external

fields were treated. The present chapter is devoted to problems of emission of

electromagnetic radiation by charged particles in atomic and nuclear processes.

Particles passing through matter are scattered and lose energy by collisions, as

described in detail in Chapter 13. In these collisions the particles undergo

acceleration; hence they emit electromagnetic radiation. The radiation emitted

during atomic collisions is customarily called bremsstrahlung (braking radiation)

because it was first observed when high-energy electrons were stopped in a thick

metallic target. For nonrelativistic particles the loss of energy by radiation is

negligible compared with the collisional energy loss, but for ultrarelativistic

particles radiation can be the dominant mode of energy loss.

Our discussion begins with consideration of the radiation spectrum at very low

frequencies where a general expression can be derived, valid quantum mechani-

cally as well as classically. The angular distribution, the polarization, and the

integrated intensity of radiation emitted in collisions of a general sort are treated

before turning to the specific phenomenon of bremsstrahlung in Coulomb
collisions. When appropriate, quantum-mechanical modifications are incorpo-

rated by treating the kinematics correctly (including the energy and momentum
of the photon). All important quantum effects are included in this way,

sometimes leading to the exact quantum-mechanical result. Relativistic effects,

which can cause significant changes in the results, are discussed in detail.

The creation or annihilation of charged particles is another process in which

radiation is emitted. Such processes are purely quantum mechanical in origin.

There can be no attempt at a classical explanation of the basic phenomena. But

given that the process does occur, we may legitimately ask about the spectrum

and intensity of electromagnetic radiation accompanying it. The sudden creation

701
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of a fast electron in nuclear beta decay, for example, can be viewed for our

purposes as the violent acceleration of a charged particle initially at rest to some
final velocity in a very short time interval, or, alternatively, as the sudden

switching on of the charge of the moving particle in the same short interval. We
discuss nuclear beta decay and orbital-electron capture in these terms in

Sections 15.6 and 15.7.

In some radiative processes like bremsstrahlung it is possible to account for

the major quantum-mechanical effects merely by treating the conservation of

energy and momentum properly in determining the maximum and minimum
effective momentum transfers. In other processes like radiative beta decay the

quantum effects are more serious. Phase space modifications occur that have no

classical basis. Radiation is emitted in ways that are obscure and not easily

related to the acceleration of a charge. Generally, our results are limited to the

region of "soft" photons, that is, photons whose energies are small compared to

the total energy available. At the upper end of the frequency spectrum our

semiclassical expressions can be expected to have only qualitative validity.

15.1 Radiation Emitted during Collisions

If a charged particle makes a collision, it undergoes acceleration and emits

radiation. If its collision partner is also a charged particle, they both emit

radiation and a coherent superposition of the radiation fields must be made.

Since the amplitude of the radiation fields depends on the charge times the

acceleration, the lighter particle will radiate more, provided the charges are not

too dissimilar. In many applications the mass of one collision partner is much
greater than the mass of the other. Then for the emission of radiation it is

sufficient to treat the collision as the interaction of the lighter of the two particles

with a fixed field of force. We will consider only this situation, and will leave

more involved cases to the problems at the end of the chapter.

(a) Low Frequency Limit

From (14.65) and (14.66) we see that the intensity of radiation emitted by a

particle of charge ze during the collision can be expressed as

Let us suppose that the collision has a duration t during which significant

acceleration occurs and that the collision changes the particle's velocity from an

initial value c(J to a final value cp'. The spectrum of radiation at finite

frequencies will depend on the details of the collision, but its form at low

frequencies depends only on the initial and final velocities. In the limit cu—>0 the

(15.1)
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exponential factor in (15.1) is equal to unity. Then the integrand is a perfect

differential. The spectrum of radiation with polarization e is therefore

d
2
I

«-5o da) da
zV
4tt

2
c

(-V MU-n-p' 1-n-p/ (15.2)

The result (15.2) is very general and holds quantum mechanically as well as

classically. To establish the connection to the quantum-mechanical form, we first

convert (15.2) into a spectrum of photons. The energy of a photon of frequency

a) is ha). By dividing (15.2) by n
2
co we therefore obtain the differential number

spectrum per unit energy interval and per unit solid angle of "soft" photons

(no)-»0) of polarization €:

d
2N

feS) d(ha)) dCly 4Tr
2
h(o

* .
(-V e_\
U-n-p' 1-n-p/ (15.3)

where a = e
2/hc— 1/137 is the fine structure constant if e is the proton's charge.

The subscript 7 on the solid angle element serves to remind that it is the solid

angle into which the photon goes. The spectrum (15.3) is to be interpreted as

follows. Suppose that the collision is caused by an external potential or other

interaction. Let the cross section for scattering that causes a change in velocity

cp—»cp' be denoted by do-/dflp , where p stands for particle. Then the cross

section for scattering and at the same time for producing a soft photon of energy

ha), per unit energy interval and per unit solid angle, is

dap d(nco) da.
Um

d
2N

h<o^o d(h(o) dCl^

da
dflp

(15.4)

The expression (15.3) can be made to appear more relativistically covariant by

introducing the energy-momentum 4-vector of the photon, = (h/c)((o, con),

and of the particle, = Mc(y, yP). It is also valuable to make use of the Lorentz

invariant phase space d
3
k/k to write a manifestly invariant expression,*

ci
3N d

2N d
2
I

(<f k/ko) ha) d(ha>) dQ,y n(nco)
2

cico da.

Then we find from (15.3),

lim
d

3N z
2
a

a—o(d J
k/ko) 4tt k • p' k • p

(15.5)

(15.6)

where the various scalar products are 4-vector scalar products (in the radiation

gauge, e^ = (0, e)). That (15.6) emerges from a quantum-mechanical calculation

can be made plausible by considering the diagrams of Fig. 15.1. The upper

diagram indicates the scattering process without emission of radiation. The

* The fact that to
2
times d

2
I/da> da is a Lorentz invariant is not restricted to the

limit of co —> 0. We shall find this result useful in some of our later discussions.
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XXX
Fig. 15.1 Quantum-mechanical diagrams describing the scattering of a particle without

photon emission (top) and with the emission of a photon (bottom).

lower three diagrams have scattering and also photon emission. Their contribu-

tions add coherently. The two diagrams on the left have the photon emitted by

the external lines, that is, before or after the collision. They both involve

propagators for the particle between the scattering vertex and the photon vertex

of the form,

1 1_
(p±k)

2-M2 ±2p-k

In the limit co—»0 these propagators make the contributions from these two

diagrams singular and provide the (no>)
_1

in (15.3). On the other hand, the

diagram on the right has the photon emitted from the interior of the scattering

vertex. Its contribution is finite as co^O and so is negligible compared to the first

two. The explicit calculation yields (15.4) with (15.6) in the limit that the energy

and the momentum of the photon can be neglected in the kinematics. Soft

photon emission occurs only from the external lines in any process and is given

by the classical result.

(b) Polarization and Spectrum Integrated over Angles

Some limiting forms of (15.2) are of interest. If the particle moves non-

relativistically before and after the collision, then the factors in the denominators

can be put equal to unity. The radiated intensity becomes

lim/^ =T^I€*° A P|
2

<
15 - 7)—o do) d£l 4ir c

1

where A(J = p'-p is the change in velocity in the collision. This is just a dipole

radiation pattern and gives, when summed over polarizations, and integrated
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over angles, the total energy radiated per unit frequency interval per non-

relativistic collision,

For relativistic motion in which the change in velocity Ap is small, (15.2) can be

approximated to lowest order in Ap as

where cp is the initial (or average) velocity.

We now consider the explicit forms of the angular distribution of radiation

emitted with a definite state of polarization. In collision problems it is usual that

the direction of the incident particle is known and the direction of the radiation

is known, but the deflected particle's direction, and consequently that of Ap, are

not known. Consequently the plane containing the incident beam direction and

the direction of the radiation is a natural one with respect to which one specifies

the state of polarization of the radiation.

For simplicity we consider a small angle deflection so that Ap is approximately

perpendicular to the incident direction. Figure 15.2 shows the vectorial relation-

ships. Without loss of generality n, the observation direction, is chosen in the x-z

plane, making an angle 6 with the incident beam. The change in velocity Ap lies

in the x-y plane, making an angle </> with the x axis. Since the direction of the

scattered particle is not observed, we will average over <f>. The unit vectors €n and

€± are polarization vectors parallel and perpendicular to the plane containing p
and n.

A little algebra leads from (15.9) to the expressions (averaged over <j>)

for the low-frequency limits for the two states of linear polarization. These

angular distributions are valid for all types of small angle collisions. The polari-

zation P(0), defined as {d
2
l± - d

2
I\M(d

2
I± + d

2
In), vanishes at = 0, has a max-

imum value of +1 at cos 6 = |3, and decreases monotonically for larger angles.

For it has the form, P(Q) — 2y
2
6

2
/(l + y

4
6
4
). This qualitative behavior is

observed experimentally,* but departures from the w -> limit are significant

even for co/comax = 0.1.

* Recent data for electron bremsstrahlung are given by W. Lichtenberg, A.
Przybylski, and M. Scheer, Phys. Rev. A 11, 480 (1975).

• |AP|
2

(15.8)

(15.9)

(15.10)
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The sum of the two terms in (15.10) gives the angular distribution of soft

radiation emitted in an arbitrary small-angle collision (Ap small in magnitude

and perpendicular to the incident direction). For relativistic motion the distribu-

tion is strongly peaked in the forward direction in the by now familiar fashion,

with a mean angle of emission of the order of y~ l = Mc 2
/E. Explicitly, in the limit

7»1 we have

d
2
I ^ z

2ey|Apl 2
(l + 7

4 4

)

»™da)d(l ir
2
c (l + 7

2 2

)

4 (15.11)

The total intensity per unit frequency interval for arbitrary velocity is found by

elementary integration from (15.10) to be

lim# =^-—

7

2
|Ap|

2

"^0 da> 3lT c
1 1

For nonrelativistic motion this reduces to (15.8). Since the particle's momentum
is p=yMc(J, this result can be written as

dl = 2 zV
<^o day 377 M 2

c
(15.12)

where Q = |p'— p| is the magnitude of the momentum transfer in the collision.

Equations (15.10) and (15.12) are valid relativistically, as well as nonrelativis-

tically, provided the change in velocity is not too large. For relativistic motion

the criterion is

2
|AP|<- or Q<2Mc (15.13)

This can be seen from (15.2). If the two velocities P and P' have an angle |Ap|//3
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between them of more than 2/7, the two terms in the amplitude will not

interfere. When the direction of emission n is such that one of them is large, the

other is negligible. The angular distribution will be two searchlight beams, one

centered along p and the other along p', each given by the absolute square of

one term. The radiated intensity integrated over angles is then approximately

hm -3—— In 7 (15.14)
<»^o d(x) TTC
Q>2Mc

For Q>2Mc the radiated intensity of soft photons is independent of Q 2
, in

contrast to the linear increase with Q 2 shown by (15.12) for smaller momentum
transfers. For nonrelativistic motion the momentum transfers are always less

than the limit of (15.13). The intensity is therefore given by (15.12) for all

momentum transfers.

(c) Qualitative Behavior at Finite Frequencies

So far we have concentrated on the very low frequency limit of (15.1). It is

time to consider the qualitative behavior of the spectrum at finite frequencies.

The phase factor in (15.1) controls the behavior at finite frequencies. Appreci-

able radiation occurs only when the phase changes relatively little during the

collision. If the coordinate r(0 of the particle is written as

r(0 = r(0)+ £cp(O dt'

then, apart from a constant, the phase of the integrand in (15.1) is

<D(t) = co(t-n-J p(0 dt'^j

If we imagine that the collision occurs during a time t and that p changes

relatively smoothly from its initial to final value, the criterion for appreciable

radiation is

a>T(l-n-<p»<l (15.15)

where (P)
= ~j* P(0 dt is the average value of p during the collision. For

nonrelativistic collisions this reduces to

(OT< 1

At low frequencies the radiated intensity given by (15.7), but for o>t>1 the

oscillating phase factor will cause the integral to be much smaller than when
a) = 0. The intensity will thus fall rapidly to zero for o)>1/t. For relativistic

motion the situation is more complex. For small |Ap| but with 7» 1 the criterion
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(15.15) is approximately

2y
Wi+ 7

2
e
2)<i (15.16)

Now there is angular dependence. For cot< 1, there is significant radiation at all

angles that matter. For o>t on the range, 1<<ot<72
, there is appreciable

radiation only out to angles of the order of max , where GLx= 1/cot. For cdt>y 2

,

(15.16) is not satisfied at any angle. Hence the spectrum of radiation in

relativistic collisions is given approximately by (15.11) and (15.12) provided

o)t« y
2

, but modifications occur in the angular distribution as o>t approaches y
2

,

and the intensity at all angles decreases rapidly for o)^y2
/T.

15.2 Bremsstrahlung in Coulomb Collisions

The most common situation in which a continuum of radiation is emitted is in the

collision of a fast particle with an atom. Because of its greater charge the nucleus

is more effective at producing deflections of the incident particle than the

electrons. Consequently we ignore the effects of the electrons for the present and

consider the radiation emitted in the collision of a particle of charge ze, mass M,
and initial velocity c($ with the Coulomb field of a fixed point charge Ze.

The elastic scattering of a charged particle by a static Coulomb field is given by

the Rutherford formula (see Section 13.6):

where 6' is the scattering angle of the particle. This cross section is correct

nonrelativistically at all angles, and is true quantum-mechanically for the

relativistic small-angle scattering of any particle. It is convenient to express

(15.17) as a cross section for scattering per unit interval in momentum transfer

Q. For elastic scattering,

With dCl' = d<j)' d cos 6' = -Q d<t>' dQ/p
2

,
integration over azimuth of (15.17)

gives

In a Coulomb collision with momentum transfer Q the incident particle is

accelerated and emits radiation. From the previous section we know that the

angular distribution is given by (15.10), at least for small deflections, and the

integrated intensity by (15.12). Since the angular distributions have already been

discussed, we focus on the frequency spectrum, integrated over angles. In

(15.17)

Q2 = 4p
2
sin

2
672 = 2p

2
(l - cos 0') (15.18)

(15.19)
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analogy with (15.4) we define the differential radiation cross section,

d
:

x dI(oj,Q) da,

do) dQ doj dO (Q) (15.20)

where dl((x>, Q)/da) is the energy radiated per unit frequency interval in a

collision with momentum transfer Q. The differential radiation cross section has

dimensions of (area x energy/frequency x momentum). The cross section for

photon emission per unit energy interval is obtained by dividing by h
2
a).

The low-frequency radiation spectrum is given by (15.12), provided Q is not

too large. Inserting both (15.12) and (15.19) into (15.20) we obtain

dcodQ 3 c \Mc2
) p

2 Q
{l *- Zl)

This result is valid at low enough frequencies and momentum transfers so that

the criteria of the previous section are satisfied. The radiation cross section

integrated over momentum transfers is

dX ^_l6Z
2
e
2
(z

2
e
2
\
2

_1_ f°
m" dQ

d(o 3 c \Mc 2
)

'

|3
2
J0m , n O

or

In summing over momentum transfers we have incorporated the limitations on

the range of validity of (15.21) by means of maximum and minimum values of Q.

At any given frequency (15.21) describes approximately the differential radia-

tion cross section for only a limited range of Q. Outside that range the cross

section falls below the estimate (15.21) because one or the other of the factors in

(15.20) is much smaller than (15.12) or (15.19) (or zero). This effectively limits

the range of Q and leads to (15.22). Determination of the values of Qmax and

Omin for different physical circumstances is our next task.

(a) Classical Bremsstrahlung

In our discussion of energy loss in Chapter 13 we saw that classical

considerations were applicable provided

zZe 2

T) =-t; > 1
nv

For particles of modest charges this means |3« 1. In this nonrelativistic limit the

maximum effective momentum transfer is not restricted by failure of (15.12).

The only limit is kinematic. From (15.18) we see that

Qmax = 2p=2Mu (15.23)
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The lower limit on Q is determined classically by the relation between frequency

and collision time that must be satisfied if there is to be significant radiation.

From Sections 11.10 and 13.1 we have

2zZe :

bv

so that the condition o><1/t can be written in terms of Q as

Q>Qi,(c)min (15.24)

The classical radiation cross section is therefore

dxc_ 16 ZV/zV\ 2

J_ / AMu 3
\

da> 3 c \Mc 2
)

'

p
2

' [n
\zZe 2

a>)
(15.25)

where A is a number of order unity that takes into account our ignorance of

exactly how the intensity falls to zero around o>t=1. This cross section is

meaningful only provided the argument of the logarithm is greater than unity.

There is thus an upper limit WmL on the frequency spectrum. Phrased in terms of

a photon energy it is

(15.26)

Fig. 15.3 Radiation cross section (energy x area/unit frequency) for nonrelativistic

Coulomb collisions as a function of frequency in units of the maximum frequency (E/h).

The classical spectrum is confined to very low frequencies. The curve marked "Bethe-

Heitler" is the quantum-mechanical Born approximation result, i.e., (15.29) with A' = 1.
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Since r\ is large compared to unity in this classical situation, we find that the

range of photon energies is limited to very soft quanta whose energies are all

very small compared to the kinetic energy of the incident particle. For r\ = 10 the

classical spectrum is shown in Fig. 15.3, with A = 2 (chosen so that for tj = 1 and

o> = the classical and quantum-mechanical cross sections agree).

(b) Nonrelativistic Bremsstrahlung

In the classical limit the energy and the momentum of the photon were not

considered. A posteriori such neglect was justified because (15.26) shows that

the spectrum is confined to very low energy photons. But for fast, though still

nonrelativistic, particles with tj<1, it is necessary to consider conservation of

energy and momentum including the photon. For scattering by a fixed (or

massive) center of force, the conservation requirements are

E = E'+h(»
(15.27)

Q 2 = (p-p-k)2 -(p-p')2

where E = p
2/2M and E' = p

,2/2M are the kinetic energies of the particle before

and after the collision, hco and k = h(on/c are the energy and momentum of the

photon, and Q is the momentum transfered to the scattering center, as before.

The reader can verify that the neglect of the photon's momentum k in the second

expression for Q 2
is justified independently of the directions of the momenta

provided the particles are nonrelativistic.

The maximum momentum transfer effective for radiation is again that allowed

by the kinematics. Similarly the minimum effective Q is determined by the

kinematics and not by the collision time.* From the second equation in (15.27)

we obtain

Vmax

Qmin p-p' h(D

The second form is obtained by using conservation of energy. The radiation

cross section (15.22) is therefore

where again A' is a number expected to be of order unity. Actually, with A'= 1,

(15.29) is exactly the quantum-mechanical result in the Born approximation,

* For soft photons Qm ,n
= p-p' can be approximated by Qmin— 2ha)/v, while the

classical expression (15.24) is QnL = 2r)h(o/v. With t]<1, the quantum-mechanical Qrain is

larger than the classical and so governs the lower cutoff in Q. For more energetic photons
(p-p') is even larger. In relativistic collisions Q^n is y~ 3

times its nonrelativistic value and
so is much smaller than (15.33).
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first calculated by Bethe and Heitler (1934). The shape of the radiation cross

section as a function of frequency is shown in Fig. 15.3.

The fact that we have obtained the correct quantum-mechanical Born

approximation cross section by seiniclassical arguments in which the quantum

aspects were only included in the kinematics can be understood from the

considerations of Section 15.1, especially Fig. 15.1. In the Born approximation

the scattering vertex, drawn as a blob there to indicate complicated things going

on, reduces to a point vertex like the photon-particle vertices. The third diagram

at the bottom is absent. Only the external lines radiate; the amplitude is given by

(15.6); the exact kinematics and phase space conspire to yield (15.29).

The radiation cross section dx/dcj depends on the properties of the particles

involved in the collision as Z2
z
4/M2

,
showing that the emission of radiation is

most important for electrons in materials of high atomic number. The total

energy lost in radiation by a particle traversing unit thickness of matter

containing N fixed charges Ze (atomic nuclei) per unit volume is

ax Jo aw

Using (15.29) for dx/do) and converting to the variable of integration (ftco/E),

we can write the radiative energy loss as

The dimensionless integral has the value unity. For comparison we write the

ratio of radiative energy loss to collision energy loss (13.13) or (13.44):

dE rad ^ 4 2 Z m fv\
2

1 MSTH
dECo.i 3tt

Z
137MW lnBq

For nonrelativistic particles (v«c) the radiative loss is completely negligible

compared to the collision loss. The fine structure constant (e
2
/hc = 1/137) enters

characteristically whenever there is emission of radiation as an additional step

beyond the basic process (here the deflection of the particle in the nuclear

Coulomb field). The factor m/M appears because the radiative loss involves the

acceleration of the incident particle, while the collision loss involves the

acceleration of an electron.

(c) Relativistic Bremsstrahlung

For relativistic particles the limits obtained from conservation of energy must

be modified. The changes are of two sorts. The first is that the maximum
effective Q value is no longer determined by kinematics. It was shown in Section

15.1 that (15.12) is valid only for Q<2Mc. For larger Q the radiated intensity is

constant in Q and given by (15.14). Because of the Q 3
behavior of (15.19) this
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means that Qmax in (15.22) is

Qmax -2Mc (15.32)

The second modification is that the photon's momentum can no longer be

ignored in determining the minimum momentum transfer from (15.27). The

minimum clearly occurs when all three momenta are parallel:

Qmin = p-p'-fc

For relativistic motion of the particle both initially and finally (even though the

photon may carry off appreciable energy) we can approximate cp — E-
M 2

c
4
/2E, cp' — E'-M 2

c
4
/2E', where now E and E' are the total energies. Then

we obtain

Qm,„=^gg£ (15.33)

With (15.32) and (15.33), the radiation cross section (15.22) becomes

with the customary k" of order unity. This result is the same as is obtained

quantum mechanically in the relativistic limit, provided the photon energy

satisfies hcj«E. In the limit of E, E'»Mc 2

, the quantum formula is

.2„2 N 2
(dxR\ 16 ZV/zVW hoy 3h

2
co

2

\\ I 2EE' \ 1

Uo)/Born 3 c \Mc 2)V E 4E 2

/[ \Mc 2
h(x)) 2

(15.35)

We note in passing that since Omax -2Mc, the small change in velocity Ap
always lies in the plane perpendicular to the incident direction in a relativistic

collision. The angular distribution of the radiation is thus given by (15.11). The
doubly differential radiation cross section for energy radiated per unit frequency

interval and per unit solid angle for ha)«E is then

d
2

XR _ r 3 2 (i+ YV) i n - .

dcodn y ~[27T
y

(1 + 7
2 2

)

4

J daj

where 6 is the angle of emission of the photon and d^/dco is given by (15.34).

The smallness of Qmax/p justifies the use of the relativistic Rutherford formula

(15.19) without quantum-mechanical corrections for spin.

(d) Relativistic Bremsstrahlung by a Lorentz Transformation

It is instructive to consider the calculation of relativistic bremsstrahlung from a

somewhat different point of view. Suppose that instead of using the laboratory

frame where the force center is at rest we view the process as taking place in the

rest frame K' of the initial particle. The emission process as it appears in the two

frames is indicated schematically in Fig. 15.4. A small-angle deflection in the

laboratory corresponds to nonrelativistic motion during the whole collision in
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Ze

Laboratory Coordinate

system system K'

Fig. 15.4 Radiation emitted during relativistic collisions viewed from the laboratory

(nucleus at rest) and the frame K' (incident particle essentially at rest).

the frame K'. The differential radiated intensity in K' is thus given by the sum of

the two terms in (15.10) with j3 = 0:

a 1 z e

dt*' dft' 8ttc
|Apf(l + cos

2
6')

Primes are used to denote quantities evaluated in the frame K'. The change in

velocity can be written for nonrelativistic motion as A(J' = Ap7Mc, where Ap' is

the change of momentum in K'. For a small deflection in the laboratory, Ap' is

perpendicular to the direction of motion and so is the same in the laboratory as

in K'. Its magnitude is the momentum transfer Q. The radiated energy spectrum

can therefore be written as

I— 1 (1 + cos 0)
day' dCl' Sir

2c\Mc/

The triply differential radiation cross section for emission of radiation per unit

frequency interval, per unit solid angle, and per unit interval in momentum
transfer is, in analogy to (15.20),

da)

d
3

x' zV / Q \
2

d(Ts M , 2 flK /1CMx

This is the cross section in frame K' . No primes appear on dcrJdQ or on Q 2

because to the extent that Q is transverse, these quantities are obviously

invariant under Lorentz transformations.*

The emission of radiation in the frame K' appears as simple dipole radiation in

(15.37). To obtain the cross section in the laboratory we must make a Lorentz

transformation. In Section 15.1 we saw that (15.5) is a Lorentz invariant

* Actually, we can use the manifestly invariant 4-momentum transfer whose
square is given by Q 2 = -(p l

-p2 )

2 = (p,-p 2 )

2-(Ei-E2)

2
/c

2
. For elastic scattering by a

massive center of force, E, = E2 , and for small angles and very high energies the energy

difference term can be neglected even for inelastic collisions.
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quantity. With what has just been said about das/dQ, it is clear that the equation

relating the differential cross sections in the two frames is

1 d\ = 1 d\'
(o

2
day dd dQ a/

2
do*' dft' dQ 1 j

Thus the triply differential cross section in the laboratory is

The quantities in the square brackets must, of course, be expressed in terms of

(unprimed) laboratory quantities. The relativistic Doppler shift formulas are

o) = yay'(l + (3 cos 6')

and
(x)'= ya)(l- (B cos 0)

Combining the two equations we obtain

(o 1 2y
o>'~y(1-0cos d)~l + y

2
d

2

and

,_ cose-p _ i-y2
e

2

cos0
i-pcose~i+ 7

2 2

The approximations on the right are appropriate for small angles around the

incident direction in the laboratory. With these approximate forms, the square

bracketed quantity in (15.39) becomes

which is exactly the normalized expression in (15.36). [Use of the exact forms

from (15.40) leads to the sum of the two terms in (15. JO).] With the Rutherford

cross section (15.19), or some other collision cross section for das/dQ, if

appropriate, we obtain from (15.39) the relativistic bremsstrahlung results as

before.

The Doppler shift formulas illustrate an important point. Photons of energies

hoj' in K', emitted at essentially any angle in that frame, appear in the laboratory

within the forward cone and with energies of the order of tuo — yha)'. Thus
energetic photons in the laboratory energy range Mc 2«ha)«yMc 2 come from

soft quanta with W«Mc 2
in the rest frame of the incident particle.

15.3 Screening Effects; Relativistic Radiative Energy Loss

In the treatment of bremsstrahlung so far we have ignored the effects of the

atomic electrons. As direct contributors to the acceleration of the incident



716 Classical Electrodynamics Sect. 15.3

particle they can be safely ignored, since their contribution per atom is of the

order of Z 1

times the nuclear one. But they have an indirect effect through their

screening of the nuclear charge. The potential energy of the incident particle in

the field of the atom can be approximated by the form (13.94). The scattering is

modified from the Rutherford formula at small angles. Instead of (15.17) the

scattering cross section is (13.96) with min given by (13.98) and (13.99). In terms

of momentum transfer (15.19) is replaced by

where

Os = p02!„ =^-y— mc (15.42)

is the momentum transfer associated with the screening radius a. Note that m is

the electronic mass.

The calculation of bremsstrahlung proceeds as at the beginning of Section

15.2, but with the replacement in (15.22),

r-dQ f
Q- Q 3 dQ

JQm .n Q~*.L„ (Q
2+Qs

2

)

2

With the assumption that Qmax is very large compared with both Qmin and Qs , we
find that the logarithm in (15.22) is replaced by

In f^Wln ( ,

Qmax
=) ^ (15.43)

VQmin / VQl^+Q?/ 2(Q min+Qs

2

)

For Qmin»Qs the effects of screening are unimportant and the results of the

previous section are unaffected. But for Qmin^Qs, important modifications

occur.

From (15.23), (15.28), and (15.32) we see that Omax can be written in all

circumstances as

Qmax-2Mu ' (15.44)

while from (15.28) and (15.33) we find Qmin values,

2hcj

(R) _ hex) h
(15.45)

lyy'c 2y c

The approximations on the right are applicable for soft photons. (Note that, up

to factors of two in the logarithms, a universal formula for Qmin for soft photons

is Qm in — ha)/y
2
v.) Since both Qmin are proportional to co for soft photons, it is

clear that there will always be a frequency below which screening effects are

important. With Qs given by (15.42), the ratio of Qmin to Qs for nonrelativistic
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bremsstrahlung is

)|11R) ^384 hco = 1 92MJ3 h«)

Q s "Z 1/3
' muc mZ"3

' (tuo) m

where (h(x)) max = Mv 2
/2. Except for extremely slow speeds the frequency at which

OlT^Os is a tiny fraction of the maximum. For example, with 100 keV
electrons on a gold target (Z=79), only for <o/a)max<0.04 is screening important.

For particles heavier than electrons the factor M/m makes screening totally

insignificant in nonrelativistic bremsstrahlung.

For relativistic bremsstrahlung, however, screening effects can be important.

The ratio of O to Qs is now

OSi 96hu 96M ho

Qs yy'mc 2Zm y'mZm (ho,)max

where (ho)) max = yMc 2
. The presence of the factor y' in the denominator implies

that at sufficiently high energies Q^i can be less than Qs for essentially the whole

range of frequencies (if (o/(omax = x, then 7' = (1-x)y). Then the screening is said

to be complete. The incident energies for complete screening are defined as

E»ES , where the critical energy Es is

For energies large compared to Es , Qm in can be neglected compared to Qs in

(15.43) at all frequencies except the very tip of the spectrum. The radiation cross

section in the complete screening limit is thus the constant value,

dx^l6Z 2
e
2
(z

2
e

:

dw 3

The numerical coefficient in the logarithm is subject to some uncertainty, of

course. Bethe and Heitler found a result with 183 instead of 233 in the logarithm

and with the polynomial (l-h(o/E + 3h2
(D

2/4E 2

) of (15.35) multiplying it.

For electrons, Es
— 42 MeV in aluminum (Z=13) and 23 MeV in lead

(Z=82). The corresponding values for mu mesons are 2xl0 6 MeV and

10
6 MeV. Because of the factor M/m, screening is important only for electrons.

When E>ES , the radiation cross section is given by the constant value (15.47)

for all frequencies. Figure 15.5 shows the radiation cross section (15.47) in the

limit of complete screening, as well as the corresponding Bethe-Heitler result.

Their proper quantum treatment involves the slowly varying polynomial which

changes from unity at w = to 0.75 at <o = comax. For cosmic-ray electrons and for

electrons from most high-energy electron accelerators, the bremsstrahlung is in

the complete screening limit. Thus the photon spectrum shows a typical (ho))
1

behavior.

The radiative energy loss was considered in the nonrelativistic limit in Section
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Fig. 15.5 Radiation cross section in the complete screening limit. The constant value is

the semi-classical result. The curve marked "Bethe-Heitler" is the quantum-mechanical

Born approximation.

15.2(b) and was found to be negligible compared to the energy loss by collisions.

For ultrarelativistic particles, especially electrons, this is no longer true. The
radiative energy loss is given approximately in the limit y»1 by

dEtad^ 16 NZV/ZV\
2 PMC2M

ln
/ Qmax \

d(j)

dx 3 c We 2
/ !

n
WQLn+ Qs

2
/

For negligible screening we find approximately

tlErad 16 ..zv/zvy. ,. , :=T N^rlM?j ln(^Mc
dx

For higher energies where complete screening occurs this is modified to

dEiad [16 ..ZV/zVy. /233M\l. /f2 nc aq\" LT
n
^c-[m?)

ln Iz^j

>

Mc (15 -48)
'rad

dx

showing that eventually the radiative loss is proportional to the particle's energy.

The comparison of radiative loss to collision loss now becomes

mdErad ^ 4 /Zz
2
\

ciEco., 37rU37/M ln Bq

The value of 7 for which this ratio is unity depends on the particle and on Z. For

electrons it is 7 — 200 for air and 7— 20 for lead. At higher energies, the radiative

energy loss is larger than the collision loss and for ultrarelativistic particles is the

dominant loss mechanism.

At energies where the radiative energy loss is dominant the complete

screening result (15.48) holds. Then it is useful to introduce a unit of length X
,

called the radiation length, which is the distance a particle travels while its energy

falls to e
_1

of its initial value. By conservation of energy, we may rewrite (15.48)
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as

dE
dx

_E

Xo

with solution,

E(x) = E e

where the radiation length X is

(15.49)

For electrons, some representative values of X are 32 gm/cm 2

(270 meters) in

air at N.T.P., 19 gm/cm 2
(7.2 cm) in aluminum, and 4.4 gm/cm 2

(0.39 cm) in

lead.* In studying the passage of cosmic-ray or man-made high-energy particles

through matter, the radiation length X is a convenient unit to employ, since not

only the radiative energy loss is governed by it, but also the production of

negaton-positon pairs by the radiated photons, and so the whole development of

the electronic cascade shower.

15.4 Weizsacker-Williams Method of Virtual Quanta

The emission of bremsstrahlung and other processes involving the elec-

tromagnetic interaction of relativistic particles can be viewed in a way that is

very helpful in providing physical insight into the processes. This point of view is

called the method of virtual quanta. It exploits the similarity between the fields of

a rapidly moving charged particle and the fields of a pulse of radiation (see

Section 11.10) and correlates the effects of the collision of the relativistic

charged particle with some system with the corresponding effects produced by

the interaction of radiation (the virtual quanta) with the same system. The
method was developed independently by C. F. Weizsacker and E. J. Williams in

1934. Ten years earlier Enrico Fermi had used essentially the same idea to relate

the energy loss by ionization to the absorption of X-rays by atoms (see Problem

In any given collision we define an "incident particle" and a "struck system."

The perturbing fields of the incident particle are replaced by an equivalent pulse

of radiation which is analyzed into a frequency spectrum of virtual quanta. Then
the effects of the quanta (either scattering or absorption) on the struck system

are calculated. In this way the charged-particle interaction is correlated with the

photon interaction. The table lists a few typical correspondences and specifies

* These numerical values differ by —20-30 per cent from those given by Rossi,

p. 55, because he uses a more accurate coefficient of 4 instead of " and Z(Z+1)
instead of Z2

in (15.49).

15.10).
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Correspondences between charged particle interactions and photon interactions

Incident Struck

Particle Process Particle System Radiative Process bm , n

Bremsstrahlung in

electron (light

particle)-nucleus

collision

Collisional ioniza-

tion of atoms (in

distant collisions)

Electron disintegra-

tion of nuclei

Production of pions

in electron-nuclear

collisions

Nucleus

Incident

particle

Electron

(light

particle)

Atom

Electron Nucleus

Electron Nucleus

Scattering of virtual

photons of nuclear

Coulomb field by the

electron (light particle)

Photoejection of atomic

electrons by virtual

quanta

Photodisintegration

of nuclei by virtual

quanta

Photoproduction of

pions by virtual

quanta interactions

with nucleus

h/2Mv

Larger

of

h/ymv
and

R

the incident particle and struck system. From the table we see that the struck

system is not always the target in the laboratory. For bremsstrahlung the struck

system is the lighter of the two collision partners, since its radiation scattering

power is greater. For bremsstrahlung in electron-electron collision it is necessary

from symmetry to take the sum of two contributions where each electron in turn

is the struck system at rest initially in some reference frame.

The chief assumption in the method of virtual quanta is that the effects of the

various frequency components of equivalent radiation add incoherently. This

will be true provided the perturbing effect of the fields is small, and is consistent

with our assumption in Section 15.2(d) that the motion of the particle in the

frame K' was nonrelativistic throughout the collision.

It is convenient in the discussion of the Weizsacker-Williams method to use

the language of impact parameters rather than momentum transfers in order to

make use of results on the Fourier transforms of fields obtained in previous

chapters. The connection between the two approaches is via the uncertainty

principle relation,

With the expression (15.44) for Qmax in bremsstrahlung, we see that the

minimum impact parameter effective in producing radiation is

&in-7T--^- (15.50)
Qm ax 2Mv

as listed in the table above. The maximum impact parameters corresponding to



Sect. 15.4 Bremsstrahlung, Method of Virtual Quanta 721

the Omin values of (15.45) do not need to be itemized. The spectrum of virtual

quanta automatically incorporates the cutoff equivalent to Qm .n .

The spectrum of equivalent radiation for an incident particle of charge q,

velocity v — c, passing a struck system S at impact parameter b, can be found

from the fields of Section 11.10:

yb
E2(t) = q

(b
2+ y

2
v

2
t
2

)

y2

B3(t) = pE2(t)

yvt
El{t) = ~q

(b
2+ y

2
v

2
t
2

Y'
2

For |3 — 1 the fields E 2 (t) and B 3 (r) are completely equivalent to a pulse of plane

polarized radiation Pi incident on S in the Xi direction, as shown in Fig. 15.6.

There is no magnetic field to accompany Ei(t) and so form a proper pulse of

radiation P2 incident along the x2 direction, as shown. Nevertheless, if the

motion of the charged particles in S is nonrelativistic in this coordinate frame, we
can add the necessary magnetic field to create the pulse P2 without affecting the

physical problem because the particles in S respond only to electric forces. Even
if the particles in S are influenced by magnetic forces, the additional magnetic

field implied by replacing Ei{t) by the radiation pulse P2 is not important, since

the pulse P2 will be seen to be of minor importance anyway.

From the discussion Section 14.5, especially equations (14.51), (14.52), and

(14.60), it is evident that the equivalent pulse Pi has a frequency spectrum

(energy per unit area per unit frequency interval) dli(a>, b)/da> given by

^-(w,b) =^\E2 (o>)\
2

(15.51a)
U(x) LIT

where E 2 ((o) is the Fourier transform (14.54) of E 2 (t). Similarly the pulse P2 has

Fig. 15.6 Relativistic charged particle passing the struck system S and the equivalent

pulses of radiation.
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the frequency spectrum,

(15.51b)

The Fourier integrals have already been calculated in Chapter 13 and are given

by (13.29) and (13.30). The two frequency spectra are

We note that the intensity of the pulse P2 involves a factor y~ 2
and so is of little

importance for ultrarelativistic particles. The shapes of these spectra are shown

qualitatively in Fig. 15.7. The behavior is easily understood if one recalls that the

fields of pulse Pi are bell-shaped in time with a width kt~b/yv. Thus the

frequency spectrum will contain all frequencies up to a maximum of order

o)max~ 1/Ar. On the other hand, the fields of pulse P2 are similar to one cycle of a

sine wave of frequency a)~yv/b. Consequently its spectrum will contain only a

modest range of frequencies centered around yv/b.

In collision problems we must sum the frequency spectra (15.52) over the

various possible impact parameters. This gives the energy per unit frequency

interval present in the equivalent radiation field. As always in such problems we
must specify a minimum impact parameter bmin . The method of virtual quanta

will be useful only if bmin can be so chosen that for impact parameters greater

than bm in the effects of the incident particle's fields can be represented accurately

by the effects of equivalent pulses of radiation, while for small impact parame-

ters the effects of the particle's fields can be neglected or taken into account by

other means. Setting aside for the moment how we choose the proper value of

bmin in general [(15.50) is valid for bremsstrahlung], we can write down the

frequency spectrum integrated over possible impact parameters,

(15.52)

(15.53)

h
_r _ ^VV2 1

2

3

Fig. 15.7 Frequency spectra of the two equivalent pulses of radiation.
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where we have combined the contributions of pulses Pi and P2 . This integral has

already been done in Section 13.3, equation (13.35). The result is

^M =^(^)
2

{xKo(x)K,W-^p xWM-Ko2
W]j (15.54)

where
d)b,

yv
(15.55)

For low frequencies (co« yv/bmm) the energy per unit frequency interval reduces

whereas for high frequencies (to »yiVbmin) the spectrum falls off exponentially as

Figure 15.8 shows an accurate plot of 1(a)) (15.54) for v — c, as well as the

low-frequency approximation (15.56). We see that the energy spectrum consists

(CO)

q
2
/irc

1
-

Fig. 15.8 Frequency spectrum of virtual quanta for a relativistic particle, with the

energy per unit frequency dI((o)/da) in units of q
2
/irc and the frequency in units of yv/bmin .

The number of virtual quanta per unit energy interval is obtained by dividing by h
2
co.
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predominantly of low-frequency quanta with a tail extending up to frequencies

of the order of 2yv/bmin .

The number spectrum of virtual quanta N(hcj) is obtained by using the

relation.

Thus the number of virtual quanta per unit energy interval in the low-frequency

limit is

The choice of minimum impact parameter f>min must be considered. In

bremsstrahlung, bmin = h/2Mv, where M is the mass of the lighter particle, as

already discussed. For collisional ionization of atoms, bmin— a, the atomic radius,

closer impacts being treated as collisions between the incident particle and free

electrons. In electron disintegration of nuclei or electron production of mesons

from nuclei, the wave nature of the particle whose fields provide the virtual

quanta sets the effective minimum impact parameter. In these circumstances,

bm in = h/yMv or bmin — R, the nuclear radius, whichever is larger. The values are

summarized in the table on p. 720.

15.5 Bremsstrahlung as the Scattering of Virtual Quanta

The emission of bremsstrahlung in a collision between an incident relativistic

particle of charge ze and mass M and an atomic nucleus of charge Ze can be

viewed as the scattering of the virtual quanta in the nuclear Coulomb field by the

incident particle in the coordinate system K', where the incident particle is at

rest. The spectrum of virtual quanta dl\u)')ldo}' is given by (15.54) with q = Ze.

The minimum impact parameter is h/2Mv, so that the frequency spectrum

extends up to <x)'~yMc
2
/h.

The virtual quanta are scattered by the incident particle (the struck system in

K') according to the Thomson cross section (14.103) at low frequencies. Thus, in

the frame K' and for frequencies small compared to Mc 2
/h, the differential

radiation cross section is approximately

Since the spectrum of virtual quanta extends up to yMc 2
/h, the approximation

(15.56) can be used for dr((o')/dto' in the region o)'«Mc 2
/h. Thus the radiation

cross section in K' becomes

-j- ((o) do) = h<x>N(h(x)) d(h(o) (15.58)

(15.59)

day' dCL' it c

W 1 ZV(g)a +co,.„n(^) (15.60)
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The cross section in the laboratory can be obtained in the same fashion as in

Section 15.2(d). Using (15.38) and the Doppler formulas (15.40) we find

dX ^ 16 ZV/zVX 2
/ 2\y

2Mc 2
\ r 37

2
(l + 7

4
fl

4

)

day da 3 c \Mc 2
) \ha>(l + y

2
e

2
))

'

|_277(1 + 7
2 2

)

4
J

(15.61)

This is essentially the same cross section as (15.36). Upon integration over

angles of emission it yields an expression equal to the soft-photon limit of

(15.34).

Equations (15.60) and (15.61) are based on the Thomson scattering cross

section and so are restricted to a)'<Mc 2
/h in the rest frame K'. Of course, as has

already been observed in Section 15.2(d), such soft photons transform into

energetic photons in the laboratory. But the spectrum of virtual quanta contains

frequencies up to (o'^yMc 2
/h. For such frequencies the scattering of radiation is

not given by the Thomson cross section, but rather by (14.105) for spinless

struck particles or the Klein-Nishina formula for particles of spin §. The angular

distribution of scattering of such photons is altered from the dipole form of

(15.60), as is shown in Fig. 14.13. More important is the fact that the total cross

section for scattering decreases rapidly for frequencies larger than Mc 2
/h, as can

be seen from (14.106). This shows that in the frame KK
the bremsstrahlung

quanta are confined to a frequency range 0<(o'^Mc 2
/h, even though the

spectrum of virtual quanta in the nuclear Coulomb field extends to much higher

frequencies. The restricted spectrum in K' is required physically by conservation

of energy, since in the laboratory system where oj — yw' the frequency spectrum

is limited to 0<(x)<(yMc 2
/h). A detailed treatment using the angular distribution

of scattering from the Klein-Nishina formula yields a bremsstrahlung cross

section in complete agreement with the Bethe-Heitler formulas (Weizsacker,

1934).

The effects of screening on the bremsstrahlung spectrum can be discussed in

terms of the Weizsacker-Williams method. For a screened Coulomb potential

the spectrum of virtual quanta is modified from (15.56). The argument of the

logarithm is changed to a constant, as was discussed in Section 15.3.

Further applications of the method of virtual quanta to such problems as

collisional ionization of atoms and electron distintegration of nuclei are deferred

to the problems at the end of the chapter.

15.6 Radiation Emitted During Beta Decay

In the process of beta decay an unstable nucleus with atomic number Z
transforms spontaneously into another nucleus of atomic number (Z±l) while

emitting an electron (=Fe) and a neutrino. The process is written symbolically as

Z-*(Z±l) + e
T + v (15.62)
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The energy released in the decay is shared almost entirely by the electron and

the neutrino, with the recoiling nucleus getting a completely negligible share

because of its very large mass. Even without knowledge of why or how beta

decay takes place, we can anticipate that the sudden creation of a rapidly moving

charged particle will be accompanied by the emission of radiation. As mentioned

in the introduction, either we can think of the electron initially at rest and being

accelerated violently during a short time interval to its final velocity, or we can

imagine that its charge is suddenly turned on in the same short time interval. The
heavy nucleus receives a negligible acceleration and so does not contribute to the

radiation.

For purposes of calculation we can assume that at t = an electron is created at

the origin with a constant velocity v = cp. Then from (15.1) or (15.2) the

intensity distribution of radiation is given by

dl e
2 €*p

dw d£l 477 c l-n(5 (15.63)

This is the low-frequency limit of the energy spectrum. The intensity will

decrease from this value at frequencies that violate the condition (15.15).

Although it is difficult to be precise about the value of (P) that appears there, if

the formation process is imagined to involve a velocity versus time curve, such as

is sketched in Fig. 15.9, the value of (|3) should not be greater than §. In that

case, the criterion (15.15) is equivalent to <ot<1. The formation time t can be

estimated from the uncertainty principle to be

(15.64)

since in the act of beta decay an electron of total energy E is suddenly created.

This estimate of t implies the frequencies for appreciable radiation are limited to

(o<E/h. This is just the limit imposed by conservation of energy. The radiation is

seen from (15.63) to be linearly polarized in the plane containing the velocity

vector of the electron and the direction of observation. The differential
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distribution in spherical coordinates is

^ p2 Si"
2

(15>65)
d(x)dVl 4tt

2c^ (1-0 cos 0)

while the total intensity per unit frequency interval is

For |3«1, (15.66) reduces to dl/doj — 2e
2

(5

2
/3irc, showing that for low-energy

beta particles the radiated intensity is negligible.

The intensity distribution (15.66) is a typical bremsstrahlung spectrum with

number of photons per unit energy range given by

It sometimes bears the name inner bremsstrahlung to distinguish it from

bremmstrahlung emitted by the same beta particle in passing through matter.

The total energy radiated is approximately

"£w-r-»B ,B ^S)- 2> (1568)

For very fast beta particles, the ratio of energy going into radiation to the

particle energy is

This shows that the radiated energy is a very small fraction of the total energy

released in beta decay, even for the most energetic beta processes (Emax~
30mc 2

). Nevertheless, the radiation can be observed, and provides useful

information for nuclear physicists.

In the actual beta process the energy release is shared by the electron and the

neutrino so that the electron has a whole spectrum of energies up to some
maximum. Then the radiation spectrum (15.66) must be averaged over the

energy distribution of the beta particles. Furthermore, a quantum-mechanical

treatment leads to modifications near the upper end of the photon spectrum.

These are important details for quantitative comparison with experiment. But

the origins of the radiation and its semiquantitative description are given

adequately by our classical calculation.

15.7 Radiation Emitted During Orbital-Electron Capture—Disappearance of

Charge and Magnetic Moment

In beta emission the sudden creation of a fast electron gives rise to radiation. In

orbital-electron capture the sudden disappearance of an electron does likewise.
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Orbital-electron capture is the process whereby an orbital electron around an

unstable nucleus of atomic number Z is captured by the nucleus, transforming it

into another nucleus with atomic number (Z- 1), with the simultaneous emission

of a neutrino which carries off the excess energy. The process can be written

symbolically as

Z+e~-»(Z-l)+v (15.70)

Since a virtually undetectable neutrino carries away the decay energy if there is

no radiation, the spectrum of photons accompanying orbital electron capture is

of great importance in yielding information about the energy release.

As a simplified model we consider an electron moving in a circular atomic

orbit of radius a with a constant angular velocity o) . The orbit lies in the x-y

plane, as shown in Fig. 15.10, with the nucleus at the center. The observation

direction n is defined by the polar angle 6 and lies in the x-z plane. The velocity

of the electron is

\(t) = —€iw a sin (ft)ot+a)+€2 a> a cos ((o t+a) (15.71)

where a is an arbitrary phase angle. If the electron vanishes at t = 0, the

frequency spectrum of emitted radiation (14.67) is approximately*

d
2
I = eW

day dCl 4ttV

where we have assumed that (o>a/c)« 1 (dipole approximation) and put the

retardation factor equal to unity. The integral in (15.72) can be written

f dt = -w a(€xli+€||cos 0I2) (15.73)

nx[nxv(0]r' dt (15.72)

*To conform to the admonition below (14.67) we should multiply the velocity

(15.71) by a factor such as (l-e'
/T

)0(-O in order to bring the velocity to zero continuously

in a short time t near t = 0. The reader may verify that in the limit co t« 1 and o>t« 1 the

results given below emerge.
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where
r

cos(co f4a)<r' dt

I2 = sin (a> (,f+ a)e'
to

' df
J—oo

v

(15.74)

and €_l, €n are unit polarization vectors perpendicular and parallel to the plane

containing n and the z axis. The integrals are elementary and lead to an intensity

distribution,

d2j
„2 2 2 2

1 e co o)o a r/ 2 2 2 2

z [(co cos a + a>o
2
sin

2
a) + cos

2
0(co

2
sin

2
a + co

2
cos

2
a)]

aco ail 47? c (co — co )

(15.75)

Since the electron can be captured from any position around the orbit, we
average over the phase angle a. Then the intensity distribution is

d
2
I e

2
/(x) a\

2
co

2
(co

2 + co
2

) V1 2 .

,
, ia 2~( ~~

) 2T2-'2(l + cos 0) (15.76)
aco ail 477 c\ c / (to — co )

The total energy radiated per unit frequency interval is

aco 377 c\c/L(w— coo) J

while the number of photons per unit energy interval is

For co»coo the square-bracketed quantity approaches unity. Then the spectrum

is a typical bremsstrahlung spectrum. But for co — co the intensity is very large

(infinite in our approximation). The behavior of the photon spectrum is shown in

Fig. 15.11. The singularity at co = co may seem alarming, but it is really quite

natural and expected. If the electron were to keep orbiting forever, the radiation

spectrum would be a sharp line at co = co . The sudden termination of the periodic

motion produces a broadening of the spectrum in the neighborhood of the

characteristic frequency.

Quantum mechanically the radiation arises when an /=1 electron (mainly

from the 2p orbit) makes a virtual radiative transition to an / = state, from

which it can be absorbed by the nucleus. Thus the frequency co must be

identified with the frequency of the characteristic 2p^ls X-ray, ftco —
(3Z2

e
2
/8a ). Similarly the orbit radius is actually a transitional dipole moment.

With the estimate a — a /Z, where a is the Bohr radius, the photon spectrum

(15.78) is

xt / »• v 3 72 le
2

\ 1 r co
2
(co

2 + coo
2

) ]Nihco^—Z
(¥c )

-^7
-
I
—
?r J

(15.79)
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i

N0Uo)

^coo

Jioo >
Fig. 15.11 Spectrum of photons emitted in orbital electron capture because of dis-

appearance of the charge of the electron.

The essential characteristics of this spectrum are its strong peaking at the X-ray

energy and its dependence on atomic number as Z2
.

So far we have considered the radiation which accompanies the disappearance

of the charge of an orbital electron in the electron-capture process. An electron

possesses a magnetic moment as well as a charge. The disappearance of the

magnetic moment also gives rise to radiation, but with a spectrum of quite

different character. The intensity distribution in angle and frequency for a point

magnetic moment in motion is given by (14.74). The electronic magnetic

moment can be treated as a constant vector in space until its disappearance at

( = 0. Then, in the dipole approximation and with |3«1, the appropriate

intensity distribution is

d
2
I a)

4

diodCl 4ttV
This gives

d
2
I

da> dCl 4

where @ is the angle between |x and the observation direction n.

In a semiclassical sense the electronic magnetic moment can be thought of as

having a magnitude fji
= y/3(eh/2mc), but being observed only through its

projection fx2 = ±(eh/2mc) on an arbitrary axis. The moment can be thought of as

precessing around the axis at an angle a = tan
_1

V2, so that on the average only

the component of the moment along the axis survives. It is easy to show that on

averaging over this precession sin
2 © in (15.81) becomes equal to its average

value of 1, independent of observation direction. Thus the angular and frequency

j" nxpe^dt

%T3 V? sin
2 ©

rV

(15.80)

(15.81)
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spectrum becomes

d
2
l

da) dCl
=«4-(-HV (15.82)

Sit c\mc J

The total energy radiated per unit frequency interval is

while the corresponding number of photons per unit energy interval is

N(M =
o
e
l ,

H% (15.84)
2irnc {mc )

These spectra are very different in their frequency dependence from a

bremsstrahlung spectrum. They increase with increasing frequency, apparently

without limit. Of course, we have been forewarned that our classical results are

valid only in the low-frequency limit. We can imagine that some sort of

uncertainty-principle argument such as was used in Section 15.6 for radiative

beta decay holds here and that conservation of energy, at least, is guaranteed.

Actually, modifications arise because a neutrino is always emitted in the

electron-capture process. The probability of emission of the neutrino can be

shown to depend on the square of its energy Ev . When no photon is emitted, the

neutrino has the full decay energy Ev — E . But when a photon of energy h(o

accompanies it, the neutrino's energy is reduced to E'v=E -h(x). Then the

probability of neutrino emission is reduced by a factor,

(fr-(>-0
This means that our classical spectra (15.83) and (15.84) must be corrected by

multiplication with (15.85) to take into account the kinematics of the neutrino

emission. The modified classical photon spectrum is

lirhc (mc ) \ E /

This is essentially the correct quantum-mechanical result. A comparison of the

corrected distribution (15.86) and the classical one (15.84) is shown in Fig.

15.12. Evidently the neutrino-emission probability is crucial in obtaining the

proper behavior of the photon energy spectrum. For the customary brems-

strahlung spectra such correction factors are less important because the bulk of

the radiation is emitted in photons with energies much smaller than the

maximum allowable value.

The total radiation emitted in orbital electron capture is the sum of the

contributions from the disappearance of the electric charge and of the magnetic

moment. From the different behaviors of (15.79) and (15.86) we see that the
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upper end of the spectrum will be dominated by the magnetic-moment contribu-

tion, unless the energy release is very small, whereas the lower end of the

spectrum will be dominated by the electric-charge term, especially for high Z.

Figure 15.13 shows a typical combined spectrum for Z~ 20-30. Observations on

a number of nuclei confirm the general features of the spectra and allow

determination of the energy release E .

N(Ho))

hoio e
Jia) 5-

Fig. 15.13 Typical photon spectrum for radiative orbital electron capture with energy
release E,„ showing the contributions from the disappearance of the electronic charge and
magnetic moment.
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15.1 A nonrelativistic particle of charge e and mass m collides with a fixed, smooth,
hard sphere of radius R. Assuming that the collision is elastic, show that in the dipole

approximation (neglecting retardation effects) the classical differential cross section for

the emission of photons per unit solid angle per unit energy interval is

where 6 is measured relative to the incident direction. Sketch the angular distribution.

Integrate over angles to get the total bremsstrahlung cross section. Qualitatively what

factor (or factors) govern the upper limit to the frequency spectrum?

15.2 Treat the previous problem without the assumption of nonrelativistic motion,

using (15.2) and assuming the elastic impact is of negligible duration. Show that the

PROBLEMS
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cross section for photon emission is now

d
2a _R 2

e
2

<3
2

dCl d(h(o) 4tt he ha)

f sin
2

1 /l+g\ 2]
L(i-pcose) 2V U-0/ 2

J

15.3 A group of charged particles with charges c
y
and coordinates r,(t) undergo

interactions and are accelerated only during a time —r/2<t<r/2, during which their

velocities change from eft to c$'r

(a) Show that for o)t« 1 the intensity of radiation emitted with polarization € per unit

solid angle and unit frequency interval is

dn 1
|e*.E|>

da) dfl 47T c

where

E = y e /—PI &_L--
^ 'U-n-p; l-n-p,f

(b) An o>° meson of mass 784 MeV decays into it
+
tt~ and e

+
e~ with branching ratios of

1.3xl(T 2 and 8xl0" 5

,
respectively. Show that for both decay modes the frequency

spectrum of radiated energy at low frequencies is

do)

where M„ is the mass of the o>° meson and m is the mass of one of the decay products.

Evaluate approximately the total energy radiated in each decay by integrating the

spectrum up to the maximum frequency allowed kinematically. What fraction of the

rest energy of the o>° is it in each decay?

15.4 A situation closely related to that of Problem 15.3(b) is the emission of radiation

caused by the disappearance of charges and magnetic moments in the annihilation of

electrons and positrons to form hadrons in high-energy storage ring experiments. If

the differential cross section for the process e
+e~—» hadrons is da , without the

emission of photons, calculate the cross section for the same process accompanied by a

soft photon (h(o-+0) in the energy interval d(h(o) around ho). Compare your results

with the quantum-mechanical expressions:

d
2

<r a dao(s') s'
2-4m 2

s' I s'+2m 2
ro(s') ls'

2 -

hio V s
2 -

— jp
2
sin

2 e+
hW

(l-/3
4
cos

4
e)lV L s'+2m 2

J

dnd(ha>) 7T
2

h(o V s
2-4m 2

s (1-/3
2
cos

2
0)

2

da

d(ha>)

_4a do- (s')
/
s-

2-4mV firi + p
2 + 1 hW \1 +

-T-^rVs 2-4m 2
s i2L^"

ln
lT^j

_1
J

+?T2^U ln li^r 1
]]

where s = (p, + p2)\ s' = (p 1 + p2-k)
2

, p = electron vie in cm. frame. Neglect the

emission of radiation by any of the hadrons, all assumed to be much heavier than the

electrons.

The factors proportional to o>
2

in the numerators of these expressions can be
attributed to the disappearance of the magnetic moments. If you have not already

included such contributions in your semiclassical calculation, you may consider doing
it.

15.5 Two particles with charges q, and q2 and masses m, and m2 collide under the
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action of electromagnetic (and perhaps other) forces. Consider the angular and

frequency distributions of the radiation emitted in the collision,

(a) Show that for nonrelativistic motion the energy radiated per unit solid angle per

unit frequency interval in the center of mass coordinate system is given by

d
2
I(a>,n) = fx

2

da) dCl 4irV !_m, m 2 J

dt

where x = (x,-x2 ) is the relative coordinate, n is a unit vector in the direction of

observation, and = m 1m 2/(mi +m2 ) is the reduced mass.

(b) By expanding the retardation factors show that, if the two particles have the same

charge to mass ratio (e.g., a deuteron and an alpha particle), the leading (dipole) term

vanishes and the next-order term gives

d(s)dCl 4<n-
2
c

5 \m 1

2 m2

2

/ | J

(c) Relate result (b) to the multipole expansion of Sections 9.1-9.3.

15.6 Two identical point particles of charge q and mass m interact by means of a

short-range repulsive interaction which is equivalent to a hard sphere of radius R in

their relative separation. Neglecting the electromagnetic interaction between the two
particles, determine the radiation cross section in the center of mass system for a

collision between these identical particles to the lowest nonvanishing approximation.

Show that the differential cross section for emission of photons per unit solid angle per

unit energy interval is

d
2
cr

d(h(o) dD,

where is measured relative to the incident direction. Compare this result with that of

Problem 15.1 as to frequency dependence, relative magnitude, etc.

15.7 A particle of charge ze, mass m, and nonrelativistic velocity v deflected in a

screened Coulomb field, V(r) = Zze 2
e~

ar
/r, and consequently emits radiation. Discuss

the radiation with the approximation that the particle moves in an almost

straight-line trajectory past the force center.

(a) Show that, if the impact parameter is b, the energy radiated per unit frequency

interval is

dl / IS 8 Z2
edl, , v 8 ZY/zVV/cV 2lir2/— (w, b) = -

5 I (-)a 2K 2
(ab)

do) 3tt c \mc l \v/

for aj«v/b, and negligible for a>»u/b.

(b) Show that the radiation cross section is

where x, = abmin , x 2
= abmax .

(c) With bmin = h/mv, bmax = u/co, and a 1 = 1.4ooZ"'
/3

, determine the radiation cross

section in the two limits, x 2« 1 and x2 » 1. Compare your results with the "screening"

and "no screening" limits of the text.

15.8 A particle of charge ze, mass m, and velocity v is deflected in a hyperbolic path by
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a fixed repulsive Coulomb potential, V(r) = Zze'/r. In the nonrelativistic dipole

approximation (but with no further approximations),

(a) show that the energy radiated per unit frequency interval by the particle when
initially incident at impact parameter b is:

— i(a>, b) = -
j— e

(b) show that the radiation cross section is:

<LxM 3 e -

(c) Prove that the radiation cross section reduces to that obtained in the text for

classical bremsstrahlung for co«o) . What is the limiting form for w»o) ?

(d) What modifications occur for an attractive Coulomb interaction?

The hyperbolic path may be described by

x = a(e + cosh £), y = -bsinh£, <o r = (£+e sinh £)

where a = Zze 2/mv 2

, e = vl + (b/a)
2

,
<o = u/a.

15.9 Using the method of virtual quanta, discuss the relationship between the cross

section for photodisintegration of a nucleus and electrodisintegration of a nucleus,

(a) Show that, for electrons of energy E = ymc 2 » mc 2

, the electrondisintegration cross

section is approximately:

ky2mc 2
\d(Dm . 2 e

2
f

E/ft

, (ky
2mc 2

\

a)

where hcoT is the threshold energy for the process.

(b) Assuming that orphoto (o>) has the resonance shape:

/ x A e
2 T

o-photo(w)
27rMc(o)-a) )

2+ (r/2)
:

where the width Y is small compared to (w -ct>T ), sketch the behavior of creI(E) as a

function of E and show that for E»ha)
,

^ 2/e2 \Ae2 1 ^ / kE 2
\

el

7T\hc) Mc oj \mc 2
h(x) )

(c) Discuss the experimental comparison between activities produced by brems-
strahlung spectra and monoenergetic electrons as presented by Brown and Wilson,
Phys. Rev., 93, 443 (1954), and show that the quantity defined as Fexp(Z, E) has the

approximate value 8ir/3 at high energies if the Weizsacker-Williams spectrum is used
to describe both processes and the photodisintegration cross section has a resonance
shape.

15.10 A fast particle of charge ze, mass M, velocity v, collides with a hydrogen-like
atom with one electron of charge -e, mass m, bound to a nuclear center of charge Ze.
The collisions can be divided into two kinds: close collisions where the particle passes
through the atom (b<d), and distant collisions where the particle passes by outside the
atom (b>d). The atomic "radius" d can be taken as a„/Z. For the close collisions the
interaction of the incident particle and the electron can be treated as a two-body
collision and the energy transfer calculated from the Rutherford cross section. For the
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distant collisions the excitation and ionization of the atom can be considered the result

of the photoelectric effect by the virtual quanta of the incident particle's fields.

For simplicity assume that for photon energies Q greater than the ionization

potential / the photoelectric cross section is

(This obeys the empirical Z4
A

3
law for X-ray absorption and has a coefficient adjusted

to satisfy the dipole sum rule, j ay (Q) dQ = 2Tr
2
e

2
h/mc.)

(a) Calculate the differential cross sections da/dQ for energy transfer Q for close and
distant collisions (write them as functions of Q/I as far as possible and in units of

27rz
2
e

4!mv 2
P). Plot the two distributions for Q/I>1 for nonrelativistic motion of the

incident particle and |mi;
2 =10 3

J.

(b) Show that the number of distant collisions measured by the integrated cross

section is much larger than the number of close collisions, but that the energy transfer

per collision is much smaller. Show that the energy loss is divided approximately

equally between the two kinds of collisions, and verify that your total energy loss is in

essential agreement with Bethe's result (13.44).

15.11 In the decay of a pi meson at rest a mu meson and a neutrino are created. The
total kinetic energy available is (m,-m

(1
)c

2 = 34MeV. The mu meson has a kinetic

energy of 4.1 MeV. Determine the number of quanta emitted per unit energy interval

because of the sudden creation of the moving mu meson. Assuming that the photons

are emitted perpendicular to the direction of motion of the mu meson (actually it is a

sin
2
6 distribution), show that the maximum photon energy is 17 MeV. Find how many

quanta are emitted with energies greater than one-tenth of the maximum, and

compare your result with the observed ratio of radiative pi-mu decays. [W. F. Fry,

Phys. Rev., 86, 418 (1952); H. Primakoff, Phys. Rev., 84, 1255 (1951).]

15.12 In internal conversion, the nucleus makes a transition from one state to another

and an orbital electron is ejected. The electron has a kinetic energy equal to the

transition energy minus its binding energy. For a conversion line of 1 MeV determine

the number of quanta emitted per unit energy because of the sudden ejection of the

electron. What fraction of the electrons will have energies less than 99 per cent of the

total energy? Will this low-energy tail on the conversion line be experimentally

observable?

15.13 One of the decay modes of a K + meson is the three-pion decay, K+ ^> tt
+
tt

+
tt~.

The energy release is 75 MeV, small enough that the pions can be treated nonrelativis-

tically in rough approximation.

(a) Show that the differential spectrum of radiated intensity at low frequencies in the

K meson rest frame is approximately

where T_ is the kinetic energy of the negative pion and 6 is the angle of emission of the

photon relative to the momentum of the negative pion.

(b) Estimate the branching ratio for emission of a photon of energy greater than A
relative to the nonradiative three-pion decay. What is its numerical value for

A=l MeV? 10 MeV?

15.14 One of the decay modes of the charged K meson (MK = 493.7 MeV) is K* -» 7r
+
7r°

d
2
I Jle

2
T-

j • sin
2
6

da) dSl tt
2
c m^c
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(A!,- = 139.6 MeV, Mw» = 135.0 MeV). Inner bremsstrahlung is emitted by the creation

of the positive pion. A study of this radiative decay mode has been made by Edwards
et al., Phys. Rev. D5, 2720 (1972).

(a) Calculate the classical distribution in angle and frequency of soft photons and

compare with the data of Fig. 6 of Edwards et al. Compute the classical distribution

also for /3 = 0.71, corresponding to a charged pion of kinetic energy 58 MeV, and
compare.

(b) Estimate the number of radiative decays for charged pion kinetic energies on the

interval, 58 MeV<Tw<90 MeV, as a fraction of all K+
decays (the 7r

+
7r° decay mode is

2 1 per cent of all decays). You can treat the kinematics, including the photon, correctly

or can approximate reality with an idealization that has the neutral pion always with

the same momentum and the photon and the charged pion with parallel momenta [see

part (a) for justification of this assumption]. This idealization permits you to correlate

directly the limits on the charged pion's kinetic energy with the photon's. Compare
your estimate with the experimental value for the branching ratio for 77

+
7r°7 (with the

limited range of ir
+
energies) of (2.4±0.8)x 10~ 4

.



16
Multipole Fields

In Chapters 3 and 4 on electrostatics the spherical harmonic expansion of the

scalar potential was used extensively for problems possessing some symmetry

property with respect to an origin of coordinates. Not only was it useful in

handling boundary-value problems in spherical coordinates, but with a source

present it provided a systematic way of expanding the potential in terms of

multipole moments of the charge density. For time-varying electromagnetic

fields the scalar spherical harmonic expansion can be generalized to an expan-

sion in vector spherical waves. These vector spherical waves are convenient for

electromagnetic boundary-value problems possessing spherical symmetry prop-

erties and for the discussion of multipole radiation from a localized source

distribution. In Chapter 9 we have already considered the simplest radiating

multipole systems. In the present chapter we give a systematic development.

16.1 Basic Spherical Wave Solutions of the Scalar Wave Equation

As a prelude to the vector spherical wave problem, we consider the scalar wave

equation. A scalar field i//(x, t) satisfying the source-free wave equation,

with each Fourier component satisfying the Helmholtz wave equation,

(16.1)

can be Fourier-analyzed in time as

(16.2)

(V
2+k 2

)«Mx, ft)) = (16.3)

739
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with k
2 = u)

2
/c

2
. For problems possessing symmetry properties about some origin

it is convenient to have fundamental solutions appropriate to spherical coordi-

nates. The representation of the Laplacian operator in spherical coordinates is

given in equation (3.1). The separation of the angular and radial variables

follows the well-known expansion,

*(*,«) = I /.-WYUO,*) (16.4)
l,m

where the spherical harmonics Ylm are defined by (3.53). The radial functions

fim (r) satisfy the radial equation, independent of m,

With the substitution,

/i(r)=^T72Mi(r)

equation (16.5) is transformed into

(16.5)

(16.6)

(16.7)

This equation is just the Bessel equation (3.75) with v = l^rj. Thus the solutions

for fim (r) are

fi(r)=^Ji +m(kr)+^ Ni+m(kr) (16.8)

It is customary to define spherical Bessel and Hankel functions, denoted by

j'i(x), n ( (x), h!
1,2)

(x), as follows:

M*)=(^) -WW
(IT V /2

N,+ i /2(x)

h™ =
(^)

1/2

W + i/2(x)±iNI+1/2(x)]
^

(16.9)

For real x, h!
2)
(x) is the complex conjugate of h^Xx). From the series expansions

(3.82) and (3.83) one can show that

(16.10)
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For the first few values of / the explicit forms are:

sin x / \ cos x , (1)
jo(x) = rto(x) TO

sin x cos x
n,(x)

IX

cos x sin x

''2(x)= fcH) sisin x n2(x) = -^p-^ cos x-3
3 cos x sin x

ha.(x)=^(1+3!_3\
x V xx)

COS XMX)= (¥-?) sinx-(7-I)

»,(x) =-g-J)cosx-(f-i)sin

/ 6i_15_15i\

v x x
2

x
3
/

hycx)-

(16.11)

From the series (3.82), (3.83), and the definition (3.85) it is possible to calculate

the small argument limits to be

x« 1, i

/.(*)
(21+1)»('- 2(21+3)

+
)

, , (21-1)!!
(16.12)

•+•
2(1-2/)

where (2!+l)!! = (2/+l)(2/-l)(2/-3) • • • (5) • (3) • (1). Similarly the large argu-

ment limits are

x»/

/i(x) -* ^ sin
(«-f)

n,(x)-^ ~~ cos — > (16.13)

W1)

(x)->(-o
i+1

y
The spherical Bessel functions satisfy the recursion formulas,

21+ 1
2i(x) = Zi-i(x) + 2i + i(x)

zl(x) =
1

(16.14)

2/+1
[Izi-i(x)-(I+l)z« + i(x)]
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where Zi(x) is any one of the functions ;'i(x), n f (x), hi
u
(x), hi

2)
(x). The Wronskians

of the various pairs are

W(ji, n,)=j W(jh h\") = -W(nh M 1}

) =p (16.15)

The general solution of (16.3) in spherical coordinates can be written

*W = I [Am^ty +Afth^krKYUe, <f>) (16.16)
Cm

where the coefficients Aim and A2 will be determined by the boundary

conditions.

For reference purposes we present the spherical wave expansion for the

outgoing wave Green function G(x, x'), which is appropriate to the equation,

(V
2+ Jc

2
)G(x, x') = -S(x-x') (16.17)

in the infinite domain. This Green function, as was shown in Chapter 6, is

ik|x-x'|

G(x,x')=-rn n (16.18)
4tt |x-x

I

'

The spherical wave expansion for G(x, x') can be obtained in exactly the same

way as was done in Section 3.9 for the Poisson equation [see especially equation

(3.117) and below]. An expansion of the form,

G(x,x') = I g( (r, r')Yfm(0', <f>')Ylm(d, <f>) (16.19)

substituted into (16.17) leads to an equation for gi(r, r')\

The solution which satisfies the boundary conditions of finiteness at the origin

and outgoing waves at infinity is

gl (r,r') = Ajl(kr<)h\
1)
(kr> ) (16.21)

The correct discontinuity in slope is assured if A = ik. Thus the expansion of the

Green function is

ik\x-*\ co I

. -tt= ik I hikr^ikr^ X Yfm(0', </>') Y,m(0, (16.22)
47T |X— X

|
i
= o m = _(

Our emphasis so far has been on the radial functions appropriate to the scalar

wave equation. We now re-examine the angular functions in order to introduce

some concepts of use in considering the vector wave equation. The basic angular

functions are the spherical harmonics Ylm(0, <f>) (3.53), which are solutions of the
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LsinOaOV 80/ sin 6 d<f> J

As is well known in quantum mechanics, this equation can be written in the

form:
L2Ylm = l(l+l)Ylm (16.24)

The differential operator L2 = L 2+ Ly
2+

L

2

, where

L-y(rxV) (16.25)

is h
1

times the orbital angular-momentum operator of wave mechanics.

The components of L can be written conveniently in the combinations,

L+ = Lx + i

L- = L -iLy = e
i4>

(-
86
+ i cot (16.26)

We note that L operates only on angular variables and is independent of r. From
definition (16.25) it is evident that

r-L = (16.27)

holds as an operator equation. From the explicit forms (16.26) it is easy to verify

that L2
is equal to the operator on the left side of (16.23).

From the explicit forms (16.26) and recursion relations for Y{m the following

useful relations can be established:

JUYIm = V(/-m)(/+m + l) Y,,m+]

L-Ylm = V0+m)(/-m + l) Ytm_, f (16.28)

LzYlm = mYu

Finally we note the following operator equations concerning the commutation

properties of L, L2
, and V 2

:

L2L = LL2

]

LxL= iL > (16.29)

L,V
2 = V2

L,

where

(16.30)
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16.2 Multipole Expansion of the Electromagnetic Fields

With the assumption of a time dependence e"
la" the Maxwell equations in a

soureefree region of empty space are

VxE=ikB, VxB = -ikE
(16.31)

V-E=0 VB =

where k = cj/c. If E is eliminated by combining the two curl equations, we obtain

for B,

(V
2 + k

2
)B = 0, V B =

with E given by [> (16.32)

E=^VxB

Alternatively, B can be eliminated to yield

(V
2+k 2

)E = 0, V-E =

with B given by \, (16.33)

B= ~VxE

Either (16.32) or (16.33) is a set of three equations that is equivalent to the

Maxwell equations (16.31).

We wish to find multipole solutions for E and B. From (16.32) and (16.33) it is

evident that each Cartesian component of B and E satisfies the Helmholtz wave

equation (16.3). Hence each such component can be written as an expansion of

the general form (16.16). There remains, however, the problem of orchestrating

the different components in order to satisfy V • B = and V • E = and to give a

pure multipole field of order (I, m). We follow a different and somewhat easier

path suggested by Bouwkamp and Casimir.* Consider the scalar quantity r • A,

where A is a well-behaved vector field. It is straightforward to verify that the

Laplacian operator acting on this scalar gives

V 2
(r • A) = r • (V

2
A) + 2V • A (16.34)

From (16.32) and (16.33) it therefore follows that the scalars, r-E and r • B,

both satisfy the Helmholtz wave equation:

(V
2
+ k

2
)(r • E) = 0, (V

2
+ k

2
)(r • B) = (16.35)

The general solution for r • E is given by (16.16), and similarly for r • B.

*C. J. Bouwkamp and H. B. G. Casimir, Physica 20, 539 (1954). This paper

discusses the relationship among a number of different, but equivalent, approaches to

multipole radiation.
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We now define a magnetic multipole field of order (I, m) by the conditions,

r.Br^g,(MY,(^)
j (i6 36)

where

gl
(kr) = A\

l)

h\
l)

(kr) + A\ 2)
h\

2
\kr) (16.37)

The presence of the factor of l(l+l)/k is for later convenience. Using the curl

equation in (16.33) we can relate r • B to the electric field:

k r • B = | r • (VxE) = y (rxV) E = L E (16.38)

where L is given by (16.25). With r • B given by (16.36), the electric field of the

magnetic multipole must satisfy

L • E8?(r, 0, <f>)
= 1(1+ l) gl(kr)Ylm(0, <f>) (16.39)

and r • Eim
) = 0. To determine the purely transverse electric field from (16.39),

we first observe that the operator L acts only on the angular variables (6, (j)). This

means that the radial dependence of El^ must be given by gi(kr). Second, the

operator L acting on Y!m transforms the m value according to (16.28), but does

not change the / value. Thus the components of Eff can be at most linear

combinations of Y(m 's with different m values and a common /, equal to the /

value on the right-hand side of (16.39). A moment's thought shows that in order

for L • Eim
}

to yield a single Y(m , it is necessary to prepare the components of

beforehand to compensate for whatever raising or lowering of m values is done

by L. Thus, in the term L E+, for example, it must be that E + is proportional to

L+Yim . What this amounts to is that the electric field should be

E!U
) =g,(kr)LY,m(e,*)

Together with (16.40)

B (m —

j

(16.40) specifies the electromagnetic fields of a magnetic multipole of order

(/, m). Because the electric field (16.40) is transverse to the radius vector, these

multipole fields are sometimes called transverse electric (TE) rather than

magnetic.

The fields of an electric or transverse magnetic (TM) multipole of order (I, m)
are specified similarly by the conditions,

E\*)=- l

-y^fl(kr)Ylm(e, 4>)
(16.41)



746 Classical Electrodynamics Sect. 16.2

Then the electric multipole fields are

B^ = /,(kr)LY(m(0, <f>)

eS2
)=tVxbE )

(16.42)

The radial function /(
(kr) is given by an expression like (16.37).

The fields (16.40) and (16.42) are the spherical wave analogues of the TE and

TM cylindrical modes of Chapter 8. Just as in the cylindrical waveguide, the two

sets of multipole fields (16.40) and (16.42) can be shown to form a complete set

of vector solutions to the Maxwell equations in a sourcefree region. The

terminology electric and magnetic multipole fields will be used, rather than TM
and TE, since the sources of each type of field will be seen to be the

electric-charge density and the magnetic-moment density, respectively. Since

the vector spherical harmonic, LY(m ,
plays an important role, it is convenient to

introduce the normalized form,*

X,m(0, <t>)
= -

7==LYlm(0, cf>) (16.43)
v i(t+ 1)

with the orthogonality properties,

>Xlm dn = 8l,8mm . (16.44)j*X*m '

and
r

xL'-(rxXIm)da = (16.45)

for all /, I', m, m\
By combining the two types of fields we can write the general solution to

the Maxwell equations (16.31):

B = I [aE (J, m)/t(kr)XIm -^ aM (l, m)Vx gl(kr)Xlm
j

E=Z MI, m)Vx/,(kr)Xlm + aM(/, m)g,(kr)XIm
j

(16.46)

where the coefficients aE (/, m) and aM (J, m) specify the amounts of electric (/, m)
multipole and magnetic (/, m) multipole fields. The radial functions /i(kr) and

gi(kr) are of the form (16.37). The coefficients aE (l, m) and aM (l, m), as well as

the relative proportions in (16.37), are determined by the sources and boundary

conditions. To make this explicit, we note that the scalars r • B and r • E are

* X lm is defined to be identically zero for Z = 0. Spherically symmetric solutions to

the sourcefree Maxwell's equations exist only in the static limit k 0. See Section 9.1.
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sufficient to determine the unknowns in (16.46) according to

k
aM (l, m)gi(kr)

aE (l, m)fl (kr) =

VJ(i+l)

k
jYfmr-EdH

J

(16.47)

V/(T+T)

Knowledge of r • B and r • E at two different radii, r x and r2 , in a sourcefree

region will therefore permit a complete specification of the fields, including

determination of the relative proportions of K}
1) and h!

2)
in /(

and g ( . The use of

the scalars r • B and r • E permits the connection between the sources p, J and the

multipole coefficients aE (l, m) and aM (l m) to be established with relative ease

(see Section 16.5).

16.3 Properties of Multipole Fields, Energy and Angular Momentum
of Multipole Radiation

Before considering the connection between the general solution (16.46) and a

localized source distribution, we examine the properties of the individual

multipole fields (16.40) and (16.42). In the near zone (kr« 1) the radial function

fi(kr) is proportional to nh given by (16.12), unless its coefficient vanishes

identically. Excluding this possibility, the limiting behavior of the magnetic

induction for an electric (I, m) multipole is

B^->-yL^ (16.48)

where the proportionality coefficient is chosen for later convenience. To find

the electric field we must take the curl of the right-hand side. A useful operator

identity is

iVxL = rV
2-v(l + r|;) (16.49)

The electric field (16.42) is

EE^y'VxL^) (16.50)

Since (Yim/r
1 * 1

) is a solution of the Laplace equation, the first term in (16.49)

vanishes. Consequently the electric field at close distances for an electric

(I, m) multipole is

Eg^-V^S) (16.51)

This is exactly the electrostatic multipole field of Section 4.1. We note that the

magnetic induction B2? is smaller in magnitude than E\„ by a factor kr. Hence,

in the near zone, the magnetic induction of an electric multipole is always much
smaller than the electric field. For the magnetic multipole fields (16.40) evidently
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the roles of E and B are interchanged according to the transformation,

E(E) -> -B(M)
, B(E) -* E(M)

(16.52)

In the far or radiation zone (kr»l) the multipole fields depend on the

boundary conditions imposed. For definiteness we consider the example of

outgoing waves, appropriate to radiation by a localized source. Then the radial

function ft
(kr) is proportional to the spherical Hankel function h\

l

\kr). From the

asymptotic form (16.13) we see that in the radiation zone the magnetic induction

for an electric (/, m) multipole goes as

p
ikr

BE^(-i) l+1^LYlm (16.53)

Then the electric field can be written

EE)=^[v
(^)

xLY,m+£r VxLY,m
]

(16 -54)

Since we have already used the asymptotic form of the spherical Hankel

function, we are not justified in keeping higher powers in (1/r) than the first.

With this restriction and use of the identity (16.49) we find

E£) = -(-i)
,+1 0nxLY,m-|(rV2--V)Ybn

]
(16.55)

where n=(r/r) is a unit vector in the radial direction. The second term is

evidently 1/kr times some dimensionless function of angles and can be omitted in

the limit kr»l. Then we find that the electric field in the radiation zone is

Eff-Bffx* (16.56)

where B{
E)

is given by (16.53). These fields are typical radiation fields, transverse

to the radius vector and falling off as r
_1

. For magnetic multipoles we merely

make the interchanges (16.52).

The multipole fields of a radiating source can be used to calculate the energy

and angular momentum carried off by the radiation. For definiteness we consider

a linear superposition of electric (/, m) multipoles with different m values, but all

having the same I, and, following (16.46), write the fields as

B, =£aE (I, m)Xlm h!
1)
(kr)e^'

m

E^VxB,
k

For harmonically varying fields the time-averaged energy density is

u = t^-(E-E*+ B-B*) (16.58)
107T

In the radiation zone the two terms are equal. Consequently the energy in a

(16.57)
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spherical shell between r and (r+dr) (for kr»l) is

dU=^I
r2 X a*E (l, m')aE (l, m) IxL • XIm dO (16.59)

07TK m ,m - J

where the asymptotic form (16.13) of the spherical Hankel function has been

used. With the orthogonality integral (16.44) this becomes

f-^lMtm? (16.60)

independent of the radius. For a general superposition of electric and magnetic

multipoles the sum over m becomes a sum over / and m and |aE
|

2 becomes

|aE
|

2
+|aM

|

2
. The total energy is a spherical shell in the radiation zone is thus an

incoherent sum over all multipoles.

The time-averaged angular-momentum density is

m = ^-Re[rx(ExB*)] (16.61)
7TC

The triple cross product can be expanded and the electric field (16.57)

substituted to yield, for a superposition of electric multipoles,

m=^- Re [B*(L • B)] (16.62)
OTTCl)

Then the angular momentum in a spherical shell between r and (r+dr) in the

radiation zone is

dM =v^L[-2 Re X aUl m')aE (l, m) f(L • X(m«)*X(m dtl (16.63)

With the explicit form (16.43) for X(m , (16.63) can be written

Re £ aUl m')aE (l, m)\rLLYlm dtt (16.64).
'(i)K m,m' J

dM
dr SttcjI

From the properties of LY,m listed in (16.28) and the orthogonality of the

spherical harmonics we obtain the following expressions for the Cartesian

components of dM/dr:

dMx 1

ReX[V(/-m)(Z+m+l)a?(Z, m +i)
m

W(/+m)(/-m+l) aJU m- l)]aE (/, m) (16.65)

dMy 1 _ . ^

~dr~
=

16TT(ok
2 lm ^ tx/ ( /

" m )(i+m + 1
)
a*(l m + 1)

-V(/+m)(/-m+l) a E (/, m-l)]aE (/, m) (16.66)

^ =^XiZ^l^am)| 2
(16.67)
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These equations show that for a general /th order electric multipole that consists

of a superposition of different m values only the z component of angular

momentum is relatively simple.

For a multipole with a single m value, Mx and My vanish, while a comparison

of (16.67) and (16.60) shows that

independent of r. This has the obvious quantum interpretation that the radiation

from a multipole of order (i, m) carries off mh units of z component of angular

momentum per photon of energy h(o. Even with a superposition of different m
values, the same interpretation of (16.67) holds, with each multipole of definite

m contributing incoherently its share of the z component of angular momentum.
Now, however, the x and y components are in general nonvanishing, with

multipoles of adjacent m values contributing in a weighted coherent sum. The
behavior contained in (16.64) and exhibited explicitly in (16.65)-(16.67) is

familiar in the quantum mechanics of a vector operator and its representation

with respect to basis states of J
2
and Jz

* The angular momentum of multipole

fields affords a classical example of this behavior, with the z component being

diagonal in the (/, m) multipole basis and the x and y components not.

The characteristics of the angular momentum just presented hold true

generally, even though our example (16.57) was somewhat specialized. For a

superposition of both electric and magnetic multipoles of various (I, m) values,

the angular momentum expression (16.63) is generalized to

HaUl\m')aM(l,m)-aUl\rn')aE (l,m)]\ (L • XIW)nxXIm (16.69)

The first term in (16.69) is of the same form as (16.63) and represents the sum of

the electric and magnetic multipoles separately. The second term is an interfer-

ence between electric and magnetic multipoles. Examination of the structure of

its angular integral shows that the interference is between electric and magnetic

multipoles whose / values differ by unity. This is a necessary consequence of the

parity properties of the multipole fields (see below). Apart from this complica-

tion of interference, the properties of dM/dr are as before.

The quantum-mechanical interpretation of (16.68) concerned the z compo-
nent of angular momentum carried off by each photon. In further analogy with

quantum mechanics we would expect the ratio of the square of the angular

dMz= mdU
dr a) dr

(16.68)

dM = 1_
dr SiTOjk

,
m

* See, for example, E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra, Cambridge University Press, (1953), p. 63.
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momentum to the square of the energy to have the value,

M<q)2 (Mx
2+My

2+Mz

2

)q l(I+D
(16.70)U2 U2

a,
2

But from (16.60) and (16.65)-(16.67) the classical result for a pure (/, m)
multipole is

M<c)2 |M2
|

2 m 2

U2 U7 (16.71)

The reason for this difference lies in the quantum nature of the electromagnetic

fields for a single photon. If the z component of angular momentum of a single

photon is known precisely, the uncertainty principle requires that the other

components be uncertain, with mean square values such that (16.70) holds. On
the other hand, for a state of the radiation field containing many photons (the

classical limit) the mean square values of the transverse components of angular

momentum can be made negligible compared to the square of the z component.

Then the classical limit (16.71) applies. For a (I, m) multipole field containing N
photons it can be shown* that

[M<qXN)T =N
2m 2+Nl(l+l)-m

[U(N)]
2 ~ N2

co
(16.72)

This contains (16.70) and (16.71) as limiting cases.

The quantum-mechanical interpretation of the radiated angular momentum
per photon for multipole fields contains the selection rules for multipole

transitions between quantum states. A multipole transition of order (/, m) will

connect an initial quantum state specified by total angular momentum J and z

component M to a final quantum state with f in the range |J-/|< J'< J-H and

M' = M-m. Or, alternatively, with two states (J, M) and (J
7

,
M'), possible

multipole transitions have (/, m) such that \J- J'|< /< J+f and m — M-M'.
To complete the quantum-mechanical specification of a multipole transition it

is necessary to state whether the parities of the initial and final states are the

same or different. The parity of the initial state is equal to the product of the

parities of the final state and the multipole field. To determine the parity of a

multipole field we merely examine the behavior of the magnetic induction Bim

under the parity transformation of inversion through the origin (r—>—r). One
way of seeing that Bim specifies the parity of a multipole field is to recall that the

interaction of a charged particle and the electromagnetic field is proportional to

(v • A). If B,m has a certain parity (even or odd) for a multipole transition, then

* C. Morette De Witt and J. H. D. Jensen, Z. Naturforsch., 8a, 267 (1953). Their

treatment parallels ours closely, with our classical multipole coefficients aE (l, m) and

aM (l, m) becoming quantum-mechanical photon annihilation operators (the complex
conjugates, at and at, become hermitean conjugate creation operators).
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the corresponding A (m will have the opposite parity, since the curl operation

changes parity. Then, because v is a polar vector with odd parity, the states

connected by the interaction operator (v • A) will differ in parity by the parity of

the magnetic induction Bim .

For electric multipoles the magnetic induction is given by (16.57). The parity

transformation (r—> -r) is equivalent to (r—» r, 0—» tt-6, (f>
-> (/> + it) in spherical

coordinates. The operator L is invariant under inversion. Consequently the

parity properties of B im for electric multipoles are specified by the transforma-

tion of Yim (0, 4>). From (3.53) and (3.50) it is evident that the parity of Y(m is

(-1)'. Thus we see that the parity of fields of an electric multipole of order (I, m) is

(-1)'. Specifically, the magnetic induction B im has parity (-1)', while the electric

field Elm has parity since Elm = iVx

B

[m/k.

For a magnetic multipole of order (I, m) the parity is (— In this case the

electric field E (m is of the same form as B im for electric multipoles. Hence the

parities of the fields are just opposite to those of an electric multipole of the

same order.

Correlating the parity changes and angular-momentum changes in quantum

transitions, we see that only certain combinations of multipole transitions can

occur. For example, if the states have J=i and J' = i, the allowed multipole

orders are I— 1, 2. If the parities of the two states are the same, we see that parity

conservation restricts the possibilities, so that only magnetic dipole and electric

quadruple transitions occur. If the states differ in parity, then electric dipole and

magnetic quadrupole radiation can be emitted or absorbed.

16.4 Angular Distribution of Multipole Radiation

For a general localized source distribution the fields in the radiation zone are

given by the superposition,

B^ e

kr
,

E^Bxn

Z (-i)
l+1

[aE (l m)X!m + aM (/, m)nxXlm ]

(16.73)

The coefficients aE (Z, m) and aM (l, m) will be related to the properties of the

source in the next section. The time-averaged power radiated per unit solid

angle is

dP
d£l Sirk'

Z (-i)
l+1

[aE (h m)X,m Xn+aM (/, m)X,m ] (16.74)

Within the absolute value signs the polarization of the radiation is specified by
the directions of the vectors. We note that electric and magnetic multipoles of a

given (/, m) have the same angular dependence, but have polarizations at right
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angles to one another. Thus the multipole order can be determined by

measurement of the angular distribution of radiated power, but the character of

the radiation (electric or magnetic) can be determined only by a polarization

measurement.

For a pure multipole of order(/,m)the angular distribution (16.74) reduces to a

single term,

t^i^^i^i2
(16 - 75)

From definition (16.43) of XIm and properties (16.28), this can be transformed

into the explicit form:

dP(l, m) = cjoq m)[
2

f Kf-mXJ+m + l) |Y,,m+1
|

2

da 87rk
2
/(/+ 1)1+ 1(1+ m)(l- m + 1) |

Y1 ,m - 1
|

2+ m 2
1 Y,J2

}
(16.76)

The table lists some of the simpler angular distributions.

|Xlm (0, <f>)|

2

I

m

±1 ±2

1

Dipole
T^-d + cos

2

0)

2

Quadrupole
sin

2
cos

2

OTT

t|- (1-3 cos
2

1 OTT

+ 4 cos
4
0)

t|-(1-cos4

0)
loir

The dipole distributions are seen to be those of a dipole oscillating parallel to the

z axis (m = 0) and of two dipoles, one along the x axis and one along the y axis,

90° out of phase (m = ±l). The dipole and quadrupole angular distributions are

plotted as polar intensity diagrams in Fig. 16.1. These are representative of Z= 1

and 1 = 2 multipole angular distributions, although a general multipole distribu-

tion of order Z will involve a coherent superposition of the (2/+ 1) amplitudes for

different m, as shown in (16.74).

It can be shown by means of (3.69) that the absolute squares of the vector

spherical harmonics obey the sum rule,

2f+l
I |xIm (e,4>)|

2 =
4tt

(16.77)

Hence the radiation distribution will be isotropic from a source which consists of

a set of multipoles of order I, with coefficients a(l, m) independent of m,

superposed incoherently. This situation usually prevails in atomic and nuclear

radiative transitions unless the initial state has been prepared in a special way.

The total power radiated by a pure multipole of order (I, m) fir given by the



Fig. 16.1 Dipole and quadrupole radiation patterns for pure (I, m) multipoles.

754
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integral of (16.75) over all angles. Since the X(m are normalized to unity, the

power radiated is

P(/,m) =
g^F |a(i,m)|

2
(16.78)

For a general source the angular distribution is given by the coherent sum

(16.74). On integration over angles it is easy to show that the interference terms

do not contribute. Hence the total power radiated is just an incoherent sum of

contributions from the different multipoles:

16.5 Sources of Multipole Radiation, Multipole Moments

Having discussed the properties of multipole fields, the radiation patterns, and

the angular momentum and energy carried off, we now turn to the connection of

the fields with the sources that generate them. We assume that there exist

localized well-behaved distributions of charge p(x, t), current J(x, t), and intrinsic

magnetization *tf(x, t). Furthermore, we assume that the time dependence can

be analyzed into its Fourier components, and we consider only harmonically

varying sources,

p(x)e
-iwt

, J(x)e-
i<ot

, Jltoe** (16.80)

where it is understood that we take the real part of such complex quantities. A
more general time dependence can be obtained by linear superposition (see also

Problem 9.1).

The Maxwell equations for E and B are

VB = 0, VxE-ikB =

V • E = 4ttp, VxB+ikE =^(J+cVx^)

with the continuity equation,

ia>p = V-J (16.82)

(16.81)

It is convenient to deal with divergenceless fields. Accordingly, we use as field

variables, B and

E' =E+— J (16.83)
Ct)

In the region outside the sources, E' reduces to E. In terms of these fields the
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Maxwell equations read

V • B = 0, VxE'-ikB =— VxJ
v (16.84)

V • E' = 0, VxB+ikE' = 4irVx.4T

The curl equations can be combined to give the inhomogeneous Helmholtz wave

equations,

(V
2+

k

2
)B = V x (J+ cV x^)

and (16.85)

(V
2 + k

2
)E' = -477ikVx (jf+^Vxj)

These wave equations, together with V • B = 0, V • E' = 0, and the curl equations

giving E' in terms of B or vice versa, are the counterparts of (16.32) and (16.33)

when sources are present.

Since the multipole coefficients in (16.46) are determined according to (16.47)

from the scalars r • B and r • E', it is sufficient to consider wave equations for

them, rather than the vector fields E' and B. From (16.34), (16.85) and the

vector relation, r • (Vx A) = (rxV) • A = -iL • A for any vector field A, we find

the inhomogeneous wave equations,

(V
2+k 2

)r -B=-~L- (J+cVx^)

(V
2+k 2

)r • E'-47rkL • VxJ
)

(16.86)

The solutions of these scalar wave equations follow directly from the develop-

ment in Section 6.6. With the boundary condition of outgoing waves at infinity,

we have

i f e
lk|x-x'|

• B(x)=^
j
j^Tj L' • [J(x') + cV'x UT(x')] d

3
x'

E'(x) =-kJj^^L' • [^(x')+-p V'xj(x')] d
3
x'r

(16.87)

To evaluate the multipole coefficients by means of (16.47), we first observe that

the requirement of outgoing waves at infinity makes Ai
2) = in (16.37). Thus we

choose /i(kr) = gi(kr) = h\
l)

(kr) in (16.46) as the representation of E and B outside

the sources. Next we consider the spherical wave representation (16.22) for the

Green function in (16.87) and assume that the point x is outside a spherical

surface completely enclosing the sources. Then in the integrations in (16.87),

r< = r', r> = r. The spherical wave projection needed for (16.47) is

jdft Yfm (0, ^)j^T^ = 47rik H{
1
Xkr)/i(ky)Y?m(e', <f>') (16.88)
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By means of this projection we see that aM (l, m) and aE (l, m) are given in terms

of the integrands in (16.87) by

a„(l, m)=^== \j,(kr)YLL-(l+VxJt)d 3
x

V l{l+ 1) J vc '

(16.89)

The expressions in (16.89) give the strengths of the various multipole fields

outside the source in terms of integrals over the source densities J and M. They

can be transformed into more useful forms by means of the following identities:

Let A(x) be any well-behaved vector field. Then

L • A = iV • (rx A)
(16.90)

L • (Vx A) = iV
2
(r • A)--f (r

2V • A)
r oT

These follow from the definition (16.25) of L and simple vector identities. With

X =M in the first equation and A = J in the second, the integral for aE (l, m) in

(16.89) becomes

aE(J,m)=-^= [j I(kr)YfJv.(rX^r)+^1 V2
(r-J) -f

±A (r
2
p)l d

3
x

1) J L ck k r dr J

where we have used ( 1 6.82) to express V • J in terms of p. Use of Green's theorem on

the second term replaces V 2
by -fc

2
, while a radial integration by parts on the

third term casts the radial derivative over onto the spherical Bessel function. The
result for the electric multipole coefficient is

aE (l, m)
47rk

2
f^Tp^W(kr)]+*(r.J)i(kr/

iVi(/+l) J '"I .._
, „WI ,L -ikV • {txj()]i(kr) J

d
3
x (16.91)

The analogous manipulation with the second equation in (16.89) leads to the

magnetic multipole coefficient,

aM(i> m)=^L [yJ* • f?)Kb>+* • ^JWWl] d
3
x 92)

These results are exact expressions, valid for arbitrary frequency and source size.

For many applications in atomic and nuclear physics the source dimensions

are very small compared to a wavelength (fcrmax« 1). Then the multipole

coefficients can be simplified considerably. The small argument limit (16.12) can

be used for the spherical Bessel functions. Keeping only the lowest powers in kr

for terms involving p or J and M, we find the approximate electric multipole
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coefficient,

aE (l m) —
47rk

l+2 //+1\ 1/2

(^j (Qbn + Qf™) (16.93)
i(2/+l)!!

where the multipole moments are

and

Qim = ^r
lYLpd 3

x

[r'Yfm V.(rX^) d
3
x

(16.94)

The moment Qim is seen to be the same in form as the electrostatic multipole

moment q(m (4.3). The moment QL is an induced electric multipole moment due

to the magnetization. It is generally at least a factor kr smaller than the normal

moment Qim . For the magnetic multipole coefficient aM (l, m) the corresponding

long-wavelength approximation is

In contrast to the electric multipole moments Q(m and QL, for a system with

intrinsic magnetization the magnetic moments MXm and Mfm are generally of the

same order of magnitude.

In the long-wavelength limit we see clearly the fact that electric multipole

fields are related to the electric-charge density p, while the magnetic multipole

fields are determined by the magnetic-moment densities, (rx J)/2c and M.

16.6 Multipole Radiation in Atomic and Nuclear Systems

Although a full discussion involves a proper quantum-mechanical treatment of

the states involved,* the essential features of multipole radiation in atoms and

* See Blatt and Weisskopf, pp. 597-599, for the quantum-mechanical definitions

of the multipole moments. Beware of factors of 2 between our moments and theirs, due to

their definitions, (3.1) and (3.2) on p. 590, of the source densities, as compared to our

(16.80). See Problem 9.1 concerning the connection between the factorized forms in

(16.80) and classical sources p(x, t), etc.

(16.95)

where the magnetic multipole moments are

and (16.96)
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nuclei can be presented with simple arguments. From (16.78) and the multipole

coefficients (16.93) and (16.95), the total power radiated by a multipole of order

(/, m) is

Aft m )
=

[(2^T)!!]
2
(

1

7
1
)
k2
" 2 l^+OJ

Pm(I, ^)-
[(2 f+T)!!]

2
(

!

T
1
)
k2

'+2
l

M- +M^!
2

(16.97)

In quantum-mechanical terms we are interested in the transition probability

(reciprocal mean life), defined as the power divided by the energy of a photon:

1 P
- = T~ (16.98)
t nu)

Since we are concerned only with order-of-magnitude estimates, we make the

following schematic model of the source. The oscillating charge density is

assumed to be

pwJ?^ '^' r<a
(16.99)

10, r>a

Then an estimate of the electric multipole moment Qim is

Qim^j^ea 1

(16.100)

independent of m. Similarly for the divergences of the magnetizations we assume

the schematic form:

V . V .m\^p*A *)(£), r<a
(16 101)

lO, r>a

where g is the effective g factor for the magnetic moments of the particles in the

atomic or nuclear system, and eh/mc is twice the Bohr magneton for those

particles. Then an estimate of the sum of magnetic multipole moments is

Mim+ML- ea
l(-&-) (16.102)

1+2 \mcaj

From the definition of QL (16.94) we see that

OL-g(^p)olm (16.103)

Since the energies of radiative transitions in atoms and nuclei are always very

small compared to the rest energies of the particles involved, QL is always

completely negligible compared to Qim .
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For electric multipole transitions of order J, estimate (16.100) leads to a

transition probability (16.98):

^SfefW^)(iT3)W- (16104)

Apart from factors of the order of unity, the transition probability for magnetic

multipoles is, according to (16.102),

-Tn^f—V-7n (16.105)

The presence of the factor (ka)
2

' in the transition probability (16.104) means

that in the long-wavelength limit (ka« 1) the transition rate falls off rapidly with

increasing multipole order, for a fixed frequency. Consequently in an atomic or

nuclear transition the lowest nonvanishing multipole will generally be the only

one of importance. The ratio of transition probabilities for successive orders of

either electric or magnetic multipoles of the same frequency is

[t(1 + 1)]-' (ka)
2

T^ijr

—

w (16106)

where we have omitted numerical factors of relative order (I/O-

In atomic systems the electrons are the particles involved in the radiation

process. The dimensions of the source can be taken as a — (a /Zeff), where a is

the Bohr radius and Ze« is an effective nuclear charge (Zeff— 1 for transitions by

valence electrons; Zeff^Z for X-ray transitions). To estimate ka we note that the

atomic transition energy is generally of the order

ftco5=Ze

2
ff
— (16.107)
do

so that

ka&j^L (16.108)

From (16.106) we see that successive multipoles will be in the ratio (Zeff/137)
2

.

The ratio of magnetic to electric multipole transition rates can be estimated from

(16.105). The g factor is of the order of unity for electrons. With a— a /Zeff
=

137(ft/mcZeff), we see that the magnetic Ith multipole rate is a factor (Zeff/137)
2

smaller than the corresponding electric multipole rate. We conclude that in

atoms electric dipole transitions will be most intense, with electric quadrupole

and magnetic dipole transitions a factor (Zeff/137)
2
weaker. Only for X-ray

transitions in heavy elements is there the possibility of competition from other

than the lowest-order electric multipole.

We now turn to the question of radiative transitions in atomic nuclei. Because

nuclear radiative transition energies vary greatly (from —10 keV to several

MeV), the values of ka cover a wide range. This means that for a given multipole



Sect. 16.6 Multipole Fields 761

order the transition probabilities (or mean lifetimes) will range over many
powers of 10, depending on the energy release, overlapping the multipoles on

either side. In spite of this, rough estimates (16.104) and (16.105) are useful in

cataloging nuclear multipole transitions, because for a fixed energy release the

estimates for different multipoles differ greatly.

Figure 16.2 shows a log-log plot of estimate (16.104) for lifetimes of electric

multipole transitions, using e as the protonic charge and a — 5.6 x 10~ 13
cm. This

is a nuclear radius appropriate to mass number A — 100. We see that, although

the curves tend to converge at high energies, the lifetimes for different

multipoles at the same energy differ by factors typically of order 10
5

. This means

that the actual multipole moments in individual transitions can deviate widely

Fig. 16.2 Estimated lifetimes of excited nuclear states against emission of electric

multipole radiation as a function of the photon energy for 1=1, 2, 3, 4.
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from our simple estimates without vitiating the usefulness of those estimates as a

guide in assigning multipole orders. Experimentally,* the lifetime-energy diagram

shows broad, but well-defined, bands lying in the vicinity of the straight lines in

Fig. 16.2. There is a general tendency for estimate (16.104) to serve as a lower

bound on the lifetime, corresponding to (16.100) being an upper bound on the

multipole moment, but for certain so-called "enhanced" electric quadrupole

transitions the lifetimes can be as much as 100 times shorter than shown in Fig.

16.2.

Magnetic and electric multipoles of the same order can be compared using

(16.105). For nucleons the effective g factor is typically of the order of g~3
because of their anomalous magnetic moments. Then, with the source size

estimate a=-R= 1.2A 1/3 x 10~ 13
cm, we find

1
°-

3 1
(16.109)

tm(0 A 2/3
te(0

The numerical factor ranges from 4x 10" 2
to 0.8 x 10" 2

for 20< A<250. We thus

anticipate that for a given multipole order electric transitions will be 25-120

times as intense as magnetic transitions. For most multipoles this is generally

true. But for 1=1 there are special circumstances in nuclei (strongly attractive,

charge-independent forces) which inhibit electric dipole transitions (at least at

low energies). Then estimate (16.109) fails; magnetic dipole transitions are far

commoner and just as intense as electric dipole transitions.

In Section 16.3 the parity and angular-momentum selection rules were

discussed, and it was pointed out that in a transition between two quantum states

a mixture of multipoles, such as magnetic /, (1+2), . . . pole and electric (i+1),

(Z+3), . . . pole, could occur. In the long-wavelength limit we need consider only

the lowest multipole of each type. Ratios (16.105) and (16.106) can be combined

to yield the relative transition rates of electric (i+1) pole to magnetic / pole

(most commonly used for /=1),

[teQ+I)]-
1

. ,/A
1/3E\ 2

[tm(I)]-
1

~,V200rJ
(16 ' 110)

where E is the photon energy in MeV. For energetic transitions in heavy

elements the electric quadrupole amplitude is ~5 per cent of the magnetic dipole

amplitude. If, as actually occurs in the rare earth and transuranic nuclei, there

is an enhancement of the effective quadrupole moment by a factor of 10, the

electric quadrupole transition competes favorably with the magnetic dipole

transition.

For a mixture of magnetic (/+ 1) pole and electric / pole, the ratio of transition

* See Figures 1 and 2 of the article by M. Goldhaber and J. Weneser, Annual
Review of Nuclear Science, Vol. 5, ed., J. G. Beckerley, Annual Reviews, Stanford
(1955), p. 1-24.
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rates is

[tm(1+D]
i-i

600/
(16.111)

Even for energetic transitions, a magnetic (L+l) pole never comes close to

competing with an electric / pole.

16.7 Radiation from a Linear, Center-Fed Antenna

As an illustration of the use of a multipole expansion for a source whose

dimensions are comparable to a wavelength, we consider the radiation from a

thin, linear, center-fed antenna, as shown in Fig. 16.3. We have already given in

Chapter 9 a direct solution for the fields when the current distribution is taken to

be sinusoidal. This will serve as a basis of comparison to test the convergence of

the multipole expansion. We assume the antenna to lie along the z axis from

-(d/2)<z<(d/2), and to have a small gap at its center so that it can be suitably

excited. The current along the antenna vanishes at the end points and is an even

function of z. For the moment we will not specify it more than to write

Since the current flows radially, (rxj) = 0. Furthermore there is no intrinsic

magnetization. Consequently all magnetic multipole coefficients aM(l m) vanish.

(16.112)

z

z =

Fig. 16.3 Linear, center-fed antenna.
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To calculate the electric multipole coefficient aE (l, m) (16.91) we need expres-

sions for the charge and current densities. The current density J is a radial

current, confined to the z axis. In spherical coordinates this can be written for

r<(d/2)

J(x) = € r^ [S(cos - 1) - 8(cos + 1)] (16.113)

where the delta functions cause the current to flow only upwards (or downwards)

along the z axis. From the continuity equation (16.82) we find the charge

density,

p(x) =i.^)rg(cose-l)-6(cos e+ l) l

K
ico dr L 2ttt J

These expressions for J and p can be inserted into (16.91) to give

aE (l, m) =^f= rdrf-*(fcr)I(r)-i J^-[i*(kr)]}
V/(J+1)J odrdv J

x
J
da Yfm[8(cos 6-1)- S(cos 0+1)] (16.115)

The integral over angles is

da = 277om , [ Y,o(0) - YioM] (16.116)

showing that only m = multipoles occur. This is obvious from the cylindrical

symmetry of the antenna. The Legendre polynomials are even (odd) about

= 7r/2 for Z even (odd). Hence, the only nonvanishing multipoles have / odd.

Then the angular integral has the value,

dn = V4ir(2I+i), I odd, m = () (16.117)

With slight manipulation (16.115) can be written

•*«-¥t^rn-a*«fi+*w^")]* «« i8 »

To evaluate (16.118) we must specify the current I(z) along the antenna. If no

radiation occurred, the sinusoidal variation in time at frequency <o would imply a

sinusoidal variation in space with wave number k = w/c. But as has been

discussed in Section 9.4(b), the emission of radiation modifies the current

distribution unless the antenna is infinitely thin. The correct current I(z) can only

be found by solving a complicated boundary-value problem. Since our purpose

here is to compare a multipole expansion with a closed form of solution for a

known current distribution, we make the same assumption about I(z) as in

Section 9.4(a), namely,

I(z) = Isin(y-k|z|) (16.119)
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where I is the peak current, and the phase is so chosen that the current vanishes

at the ends of the antenna. With a sinusoidal current the second part of the

integrand in (16.118) vanishes. The first part is a perfect differential. Conse-

quently we immediately obtain, with I(z) from (16.119),

Since we wish to test the multipole expansion when the source dimensions are

comparable to a wavelength, we consider the special cases of a half-wave

antenna (kd = tt) and a full-wave antenna (kd = 277). For these two values of kd

the / = 1 coefficient is tabulated, along with the relative values for / = 3, 5. From
the table it is evident that (a) the coefficients decrease rapidly in magnitude as I

increases, and (b) higher / coefficients are more important the larger the source

dimensions. But even for the full-wave antenna it is probably adequate to keep

only 1 = 1 and / = 3 in the angular distribution and certainly adequate for the total

power (which involves the squares of the coefficients).

kd aE(l,0) aE (3,0)/aE (l,0) aE (5,0)/aE (l,0)

TT

. I
4V67T—

:

cd
4.95 xlO" 2 1.02X10"3

2ir
r— I

4ttv 6tt—

:

cd
0.325 3.09X10" 2

With only dipole and octupole terms in the angular distribution we find that

the power radiated per unit solid angle (16.74) is

dP = c Ml, 0)|

dCl 167rk
2

2

TV aE (3, 0)
- LI i,o 7=

v
/6aE (l,0)

The various factors in the absolute square are

l

Lyi.o|

2 =^sin2

LY3 ,

|LY3 ,
|

63

16n
sin

2
0(5 cos

2
0-l) :

(LY,, )* • (LY3 ,o) =^^sin 2

6(5 cos
2 0-1)

With these angular factors (16.121) becomes

dP
da

. 12I
2
/ 3 . 2 A 1 /7 aE (3,0) /r 2a %

.

= A—t- — sin d) 1- Vo—7TT^(5cos
77 c V877 / V 8 aE (l, 0)

(16.121)

(16.122)

(16.123)
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where the factor A is equal to 1 for the half-wave antenna and (tt
2
/4) for the full

wave. The coefficient of (5 cos
2 0-1) in (16.123) is 0.0463 and 0.304 for the

half-wave and full-wave antenna, respectively.

From Chapter 9 the exact angular distributions (for sinusoidal driving

currents) are

dP
da

i
2

lire

cos (fee.)

sin"
kd 77

ds
4

COS 0^

(16.124)

sin
2 kd = 2ir

A numerical comparison of the exact and approximate angular distributions is

shown in Fig. 16.4. The solid curves are the exact results, the dashed curves the

(a) kd = it (b) kd = 2tt

Fig. 16.4 Comparison of exact radiation patterns (solid curves) for half-wave (kd = 7r)

and full-wave (kd = 2tt) center-fed antennas with two-term multipole expansions (dashed
curves). For the half-wave pattern, the dipole approximation (dotted curve) is also shown.
The agreement between the exact and two-term multipole results is excellent, especially

foi kd = TT.
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two-term multipole expansions. For the half-wave case (Fig. 16.4a) the simple

dipole result [first term in (16.123)] is also shown as a dotted curve. The

two-term multipole expansion is almost indistinguishable from the exact result

for kd = ir. Even the lowest-order approximation is not very far off in this case.

For the full-wave antenna (Fig. 16.4b) the dipole approximation is evidently

quite poor. But the two-term multipole expansion is reasonably good, differing

by less than 5 per cent in the region of appreciable radiation.

The total power radiated is, according to (16.79),

P= -dr2 I Mi, 0)|
2

(16.125)
07TK iodd

For the half-wave antenna the coefficients in the table on p. 765 show that the

power radiated is a factor 1.00245 times larger than the simple dipole result,

(12I
2
/tt

2
c). For the full-wave antenna, the power is a factor 1.114 times larger

than the dipole form (3I
2
/c).

16.8 Spherical Wave Expansion of a Vector Plane Wave

In discussing the scattering or absorption of electromagnetic radiation by

spherical objects, or localized systems in general, it is useful to have an

expansion of a plane electromagnetic wave in spherical waves.

For a scalar field ij/(x) satisfying the wave equation the necessary expansion

can be obtained by using the orthogonality properties of the basic spherical

solutions ji(kr)Yim(0, </>). An alternative derivation makes use of the spherical

wave expansion (16.22) of the Green function (e
lkR

/4irR). We let |x'|^>o° on

both sides of (16.22). Then we can put |x-x'| — r'-n «x on the left-hand side,

where n is a unit vector in the direction of x'. On the right side r> = r' and

r< = r. Furthermore we can use the asymptotic form (16.13) for h!
1)
(kr'). Then

we find

f^p
e-

kn-= ik^ g (-i)
l+1

h(kr) Yfm(0', tfYUe, <t>) (16.126)

Canceling the factor e
lkr

'/r' on either side and taking the complex conjugate, we
have the expansion of a plane wave,

e
ik x = 47r t i

l

h(kr) £ Yfm(0, <J>) Y,m(0\ *') (16.127)
1 = m = -(

where k is the wave vector with spherical coordinates Jc, 6', </>'. The addition

theorem (3.62) can be used to put this in a more compact form,

e
,k x=I i'(2/+l)j,(kr)Pi(cos 7)

1=0
(16.128)
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where 7 is the angle between k and x. With (3.57) for Pi cos (7), this can also be

written as

c
ik"=X iV47r(2I+l)j,(kr)Y,, (7) (16.129)

We now wish to make an equivalent expansion for a circularly polarized plane

wave with helicity ± incident along the z axis,

E(x)

B(x)

c)= (€l ±i€2)e
ik2

I

= €3xE = =FiE J

(16.130)

Since the plane wave is finite everywhere, we can write its multipole expansion

(16.46) involving only the regular radial functions ji(kr):

E(x) = £ [a± (/, m)/I(kr)Xlm+~ b± (l, m)Vx j,(kr)Xlm
j

B(x) = Z f^feft m)Vxj,(kr)X,m + MI, m)/,(kr)X,

(16.131)

(16.132)

To determine the coefficients a±(l, m) and b±(l, m) we utilize the orthogonality

properties of the vector spherical harmonics Xim . For reference purposes we
summarize the basic relation (16.44), as well as some other useful relations:

j[/«(r)Xlw]* • [g,(r)X,m ] da = ff gl Su Smrr

jUMXvmT • [vx gl(r)xlm ] da=o

In these relations /(
(r) and g ( (r) are linear combinations of spherical Bessel

functions, satisfying (16.5). The second and third relations can be proved using

the operator identity (16.49), the representation

_ r <9 i

V =----rxL
r dr r

for the gradient operator, and the radial differential equation (16.5).

To determine the coefficients a ± (l, m) and b±(Z, w) we take the scalar product

of both sides of (16.131) with X*m and integrate over angles. Then with the first

and second orthogonality relations in (16.132) we obtain

a ± (l m)ji(kr) = jXfm • E(x) da (16.133)
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and

Mi, m)/,(kr) = |xfm • B(x) dH (16.134)

With (16.130) tor the electric field, (16.133) becomes

a±(I, m)h(kr) = j*%= e
fa^ (16-135)

where the operators L± are defined by (16.26), and the results of their operating

by (16.28). Thus we obtain

ai(U)i(b) =»^f^, e-dfi (16.136)
Vt(t +1) J

If expansion (16.129) for e
ikz

is inserted, the orthogonality of the Y,m 's evidently

leads to the result,

a± (Z, m) = iV4-n-(2f+l) Sm>±1 (16.137)

From (16.134) and (16.130) it is clear that

b±(l m) = Tia± (l, m) (16.138)

Then the multipole expansion of the plane wave (16.130) is

E(x)= X iV47r(2/+l)[MMX 1 ,±1 ±ivxj,(kr)X i ,±1
j

B(x) = £ iV47r(2/+l) [yVx

j

( (kr)X,, ±1 =F i^k^X^]

(16.139)

For such a circularly polarized wave the m values of m = ±l have the obvious

interpretation of ±1 unit of angular momentum per photon parallel to the

propagation direction. This has already been established in Problems 7.20 and

7.21.

16.9 Scattering of Electromagnetic Waves by a Sphere

If a plane wave of electromagnetic radiation is incident on a spherical obstacle,

as indicated schematically in Fig. 16.5, it is scattered, so that far away from the

scatterer the fields are represented by a plane wave plus outgoing spherical

waves. There may be absorption by the obstacle as well as scattering. Then the

total energy flow away from the obstacle will be less than the total energy flow

towards it, the difference being absorbed. We will ultimately consider the simple

example of scattering by a sphere of radius a and infinite conductivity, but will

for a time keep the problem more general.
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Incident
wave

Fig. 16.5 Scattering of radiation by a localized object.

The fields outside the sphere can be written as a sum of incident and scattered

waves:

E(x) = Einc+Escl

B(x) = Binc+Bsc J

(16.140)

where E inc and Binc are given by (16.139). Since the scattered fields are outgoing

waves at infinity, their expansions must be of the form,

1 0*(Q
Esc = ^ X iV4ir(2l+ l)[a±(0hP(kr)XUi± Vxhf 1)

(kr)X ( , :

(16.141)

1 ^ ,
/ [-ict±(l)

L i=i

xh! 1)
(kr)X,,±1 =Fip ±(OH!

1)
(kr)Xl)±1

j

The coefficients a±(0 and p±(0 will be determined by the boundary conditions

on the surface of the scatterer. A priori, it is necessary to keep a full sum over m
as well as I in (16.141), but for the restricted class of spherically symmetric

problems considered here only m = ±l occurs.

Formal expressions for the total scattered and absorbed power in terms of the

coefficients of a(l) and /3(i) can be derived from the scattered and total fields on

the surface of a sphere of radius a surrounding the scatterer, as expressed by

(9.184) and (9.185). These can be written

ca

Sir
Re|Esc -(nxB*) dCl

Pabs =^RefE-(nxB*) <M
OTT J

(16.142)

(16.143)

Here n is a radially directed outward normal, Esc and B sc are given by (16.141),

while E and B are the sum of the plane wave fields (16.139) and the scattered

fields (16.141). Only the transverse parts of the fields enter these equations. We
already know that X,m is transverse. The other type of term in (16.139) and
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(16.141) is

Vx/,(r)X,m =
m>" ( '

+ 1}
f,(r) Y,m+-f [r/,(r)]nxX,m (16.144)

r r or

where /( is any spherical Bessel function of order / satisfying (16.5). When the

multipole expansions of the fields are inserted in (16.142) and (16.143), there

results a double sum over / and V of various scalar products of the form

XL • Xiw, Xtn • (nxXiw) and (nxXfm) • (nxX
I m ). On integration over angles, the

orthogonality relations (16.132) reduce the double sum to a single sum. Each

term in the sum involves products of spherical Bessel functions and derivatives

of spherical Bessel functions. Use of the Wronskians (16.15) permits the

elimination of all the Bessel functions and yields the following expressions for

the total scattering and absorption cross sections (the power scattered or

absorbed divided by the incident flux, c/47r):

^c = 2pI(2/+l)[|a(0|
2

+|P(0|
2
] (16.144)

^bs =2pZ(2I+l)[2-|a(0 + l|
2

-|P(0 + l|
2

] (16.145)

The total or extinction cross section is the sum of o-sc and ow

<*= "p I (21+ 1) Re [a(D + 3(D] (16.146)

Not surprisingly, these expressions for the cross sections resemble closely the

partial wave expansions of quantum-mechanical scattering.*

The differential scattering cross section is obtained by calculating the power

radiated into a given solid angle element dfl or, equivalently, by taking the

absolute square of the normalized scattering amplitude f, (9.188). Using the

result of Problem 16.11(a), we find the scattering cross section for incident

polarization (€i±i€2) to be

£ V2I+1 [a±(0X,,±1 ±ip±(0nxX,,±1 ]
dft 2k'

(16.147)

The scattered radiation is in general elliptically polarized. Only if a ± (l) = |3 ±(0 for

all / would it be circularly polarized. This means that if the incident radiation is

linearly polarized, the scattered radiation will be elliptically polarized; if the

* Our results are not completely general. If the sum over m had been included in

(16.141), the scattering cross section would have a sum over / and m with the absolute

squares of a(l, m) and 0(J, m). The total cross section would stay as it is, with

a(i) —»<*(!, m= ±|) and /3(J)—»/3(f, m= ±|), depending on the state of polarization of the

incident wave (16.130). The absorption cross section can be deduced from faking the

difference of <r, and
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incident radiation is unpolarized, the scattered radiation will exhibit partial

polarization depending upon the angle of observation. Examples of this in the

long-wavelength limit were described in Chapter 9 (see Figs. 9.6 and 9.7).

The coefficients a ±(0 and /3 ± (/) in (16.141) are determined by the boundary

conditions on the fields at r= a. Normally this would involve the solution of the

Maxwell equations inside the sphere and appropriate matching of solutions

across r=a. If, however, the scatterer is a sphere of radius a whose

electromagnetic properties can be described by a surface impedance Zs (for this

the radial variation of the fields just inside the sphere must be rapid compared to

the radius), then the boundary conditions take the relatively simple form,

4tt
ZnxB (16.148)

where E and B are evaluated just outside the sphere. From (16.139), (16.141).

and (16.144) we have

Etan = I iV47r(2I+l)
[

h^jx,,*,

and

nx»-?"^lisK^")]
•]nxX,

where x = ka and all the spherical Bessel functions have argument x. The
boundary condition (16.148) requires that, for each I value and for each term X(m

and nxXim separately, the coefficients of Etan and nxB be proportional,

according to

(16.149)

By means of the relation 2ji = h,+Ji
written

}

the coefficients a±(l) and j3 ±(0 can be

a,(D + l = - (16.150)

with f} ± (l) having the same form, but with cZJAtt replaced by its reciprocal. We
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note that with the surface impedance boundary condition the coefficients are the

same for both states of circular polarization.

For a given Zs , all the multipole coefficients are determined and the scattering

is known in principle. All that remains is to put in numbers. Before proceeding

to a specific limit, we make some observations. First, if Zs is purely imaginary (no

dissipation) or if Zs
= or Zs

-> °°, [a ±(/)+l] and [fi±(l) + l] are numbers of

modulus unity. This means that a ± (l) and /3 ± (Z) can be written as

a ± (/) = (e
2,6
'-l), p ±(0 = (e

2,8i -l) (16.151)

where the phase angles 8 t and 8[ are called scattering phase shifts. Specifically

tan 5i = ji(ka) /

n

( (ka)

tan 8\ =
Tx

(xh(x))

Ldx
(xni(x))

(16.152)

if Zs = (perfectly conducting sphere) and Si <-» 8\ for Zs
—

The second observation is that (16.150) can be simplified in the low and high

frequency limits. For ka« I, the spherical Bessel functions can be approximated

according to (16.12). Then we obtain the long-wavelength approximation,

2i(ka)
:

(2/+l)[(2/-l)!!]
:

x-i(J+l)
cZs

A IT

x + il-—
4tt

(16.153)

and the same form for ($±(l), with (cZJAtt) replaced by its inverse. For ka» I, we
use (16.13) and obtain

M0~
cZs

cZs

4 IT
+ 1

,2i[(l+l)(-rr/2)-ka]
(16.154)

with ^±(0 = -a ±(I) via the usual substitution. In the long wavelength limit,

independent of the actual value of Zs , the scattering coefficients a ± (l), /3 ± (Z)

become small very rapidly as / increases. Usually, only the lowest term (1=1)

need be retained for each multipole series. In the opposite limit of ka»l,

(16.154) shows that for l«ka, the successive coefficients have comparable

magnitudes, but phases that fluctuate widely. For l~Lax = ka, there is a

transition region and for /»/max, (16.153) holds. The use of a partial wave or

multipole expansion for such a large number of terms is a delicate matter,

necessitating the use of digital computers or approximation schemes of the type

discussed in Section 9.13.
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We specialize now to the long-wavelength limit (ka« 1) for a perfectly

conducting sphere (Zs
= 0), and leave examples of slightly more complexity to

the problems. Only the 1= 1 terms in (16.147) are important. From (16.153) we

find

a ±(D=yWD-f (,Cfl)3

In this limit the scattering cross section is

^-^a 2
(ka)

4
|X1)±1 =F2inxX1>±1

|

2
(16.155)

From the table on p. 753 we obtain the absolute squared terms,

|nxX 1 ,
±1

|

2 = |X 1)±1
|

2 = T|-(l + cos
2
e) (16.156)

J.07T

The cross terms can be easily worked out:

[±i(nxXll±i)* X 1>±1 ] =^ cos 6 (16.157)

Thus the long-wavelength limit of the differential scattering cross section is

-^-a 2
(ka)

4
[f(l + cos

2
0)-cos 0] (16.158)

ail

independent of the state of polarization of the incident radiation. The angular

Fig. 16.6 Angular distribution of radiation scattered by a perfectly conducting sphere in

the long-wavelength limit (ka« 1).
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distribution of scattered radiation is shown in Fig. 16.6, a polar diagram

equivalent to Fig. 9.7. The scattering is predominantly backwards, the marked

asymmetry about 90° being caused by the electric dipole-magnetic dipole

interference term.

The total cross section in the long-wavelength limit is

<T =iyV(ka) 4
(16.159)

This is a well-known result, first obtained by Mie and Debye (1908-1909), and

already discussed from a different point of view in Section 9.6(c).

The general problem of the scattering of electromagnetic waves by spheres of

arbitrary electric and magnetic properties when ka is not small is complicated. It

was first systematically attacked by Mie and Debye in 1908-1909. By now,

hundreds of papers have been published on the subject. Details of the many
aspects of this important problem can be found in the books by Kerker, King

and Wu, Bowman, Senior, and Uslenghi and other sources cited at the end of the

chapter. The book by Bowman, Senior, and Uslenghi discusses scattering by

other regular shapes besides the sphere.

For scatterers other than spheres, cylinders, etc. there is very little in the way

of formal theory. Recently there has been some interesting progress in the

development of an approximation scheme by Purcell and Pennypacker in which

a scatterer of arbitrary shape and electromagnetic properties is replaced by a

coarse-grained lattice array of elementary dipole scatterers whose properties

reproduce those of the scatterer. A self-consistent solution to the fields inside

and outside the "scatterer" is the sought by numerical means with a high-speed

digital computer. This work is cited in the suggested reading at the end of

Chapter 9.

16.10 Boundary-Value Problems with Multipole Fields

The scattering of radiation by a conducting sphere is an example of a

boundary-value problem with multipole fields. Other examples are the free

oscillations of a conducting sphere, the spherical resonant cavity, and scattering

by a dielectric sphere. The possibility of resistive losses in conductors adds

problems such as Q values of cavities and absorption cross sections, already

touched upon, to the list. The general techniques for handling these problems

are the same ones as have been met in Section 16.9 and in Chapter 8. The
necessary mathematical apparatus has been developed in the present chapter.

We will leave the discussion of these examples to the problems at the end of the

chapter.
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The theory of vector spherical harmonics and multipole vector fields is discussed

thoroughly by

Blatt and Weisskopf, Appendix B,

Morse and Feshbach, Section 13.3.

Applications to nuclear multipole radiation are given in

Blatt and Weisskopf, Chapter XII,

Siegbahn, Chapter XIII by S. A. Moszkowski and Chapter XVI (II) by M.
Goldhaber and A. W. Sunyar.

A number of books on antennas as well as scattering were cited at the end of Chapter 9.

None of them discusses multipole expansions in a rigorous way, however.

The scattering of radiation by a perfectly conducting sphere is treated briefly by

Morse and Feshbach, pp. 1882-1886,

Panofsky and Phillips, Section 12.9.

Much more elaborate discussions, with arbitrary dielectric and conductive properties for

the sphere, are given by

. Born and Wolf, Section 13.5,

Stratton, Section 9.25.

Mathematical information on spherical Bessel functions, etc., will be found in

Morse and Feshbach, pp. 1573-6.

Other references on scattering have already been cited at the end of Section 16.9.

PROBLEMS

16.1 Three charges are located along the z axis, a charge +2q at the origin and charges

-q at z = ±a cos cot. Determine the lowest nonvanishing multipole moments, the

angular distribution of radiation, and the total power radiated. Assume that ka« 1.

16.2 An almost spherical surface defined by

R(6) = R [l + pP2(cos 0)]

has inside of it a uniform volume distribution of charge totaling Q. The small

parameter /3 varies harmonically in time at frequency o>. This corresponds to surface

waves on a sphere. Keeping only lowest-order terms in |3 and making the

long-wavelength approximation, calculate the nonvanishing multipole moments, the

angular distribution of radiation, and the total power radiated.

16.3 The uniform charge density of Problem 16.2 is replaced by a uniform density of

intrinsic magnetization parallel to the z axis and having total magnetic moment M.
With the same approximations as above calculate the nonvanishing radiation

multipole moments, the angular distribution of radiation, and the total power radiated.

16.4 An antenna consists of a circular loop of wire of radius a located in the x-y plane

with its center at the origin. The current in the wire is

I=I„cos cat = Re I e~
iu"

(a) Find the expressions for E, B in the radiation zone without approximations as to

the magnitude of ka. Determine the power radiated per unit solid angle.
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(b) What is the lowest nonvanishing multipole moment (Q,.m or M,,m )? Evaluate this

moment in the limit ka« 1.

16.5 Two fixed electric dipoles of dipole moment p are located in a plane a distance 2a
apart, their axes parallel and perpendicular to the plane, but their moments directed

oppositely. The dipoles rotate with constant angular velocity w about a parallel axis

located halfway between them (a>«c/a).

(a) Calculate the components of the quadrupole moment.
(b) Show that the angular distribution of radiation is proportional to (1-3 cos

2 +
4 cos

4

0), and that the total power radiated is

2cp
2
a

2
(a)

5

16.6 In the long-wavelength limit evaluate all the nonvanishing electric multipole

moments for the charge distribution:

p = Cr'e
5r/6

Y,,(0, (/>)

Y

2 .o(0, ^e^'

and determine the angular distribution and total power radiated for each multipole.

This charge distribution is appropriate to a transition between the states n = 3,

1 = 2 (3d) and n = 2, i=l(2p) in a hydrogen atom.

16.7 The fields representing a transverse magnetic wave propagating in a cylindrical

wave guide of radius R are:

Jm (7r)e'
m<fr

e
ipz - ia

", H2
=

_-m(3E z k
Ai>— 2 ~

» ft — Cr*

E'

-
7^7' H.--E

where m is the index specifying the angular dependence, /3 is the propagation

constant, y
2 = k

2 —
13

2
(k = <o/c), where 7 is such that Jm (7_R) = 0. Calculate the ratio of

the z component of the e' ?ctromagnetic angular momentum to the energy in the field.

It may be advantageous to perform some integrations by parts, and to use the

differential equation satisfied by E z , in order to simplify your calculations.

16.8 A spherical hole of radius a in a conducting medium can serve as an

electromagnetic resonant cavity.

(a) Assuming infinite conductivity, determine the transcendental equations for the

characteristic frequencies w,m of the cavity for TE and TM modes.

(b) Calculate numerical values for the wavelength A,m in units of the radius a for the

four lowest modes for TE and TM waves.

(c) Calculate explicitly the electric and magnetic fields inside the cavity for the lowest

TE and lowest TM mode.

16.9 The spherical resonant cavity of Problem 16.8 has nonpermeable walls of large,

but finite, conductivity. In the approximation that the skin depth 8 is small compared
to the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is

given by

= 7, for all TE modes
o
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and

o =f
for™ modes

where x,m =(a/c)o>,m for TM modes.

16.10 Discuss the normal modes of oscillation of a perfectly conducting solid sphere of

radius a in free space. (This problem was solved by J. J. Thomson in the 1880's.)

(a) Determine the characteristic equations for the eigenfrequencies for TE and TM
modes of oscillation. Show that the roots for to always have a negative imaginary part,

assuming a time dependence of e
-
"*".

(b) Calculate the eigenfrequencies for the /= 1 and 1 = 2 TE and TM modes. Tabulate

the wavelength (defined in terms of the real part of the frequency) in units of the radius

a and the decay time (defined as the time taken for the energy to fall to e
_l

of its initial

value) in units of the transit time {ale) for each of the modes.

16.11 (a) Show that for the scattered wave (16.141) the normalized scattering

amplitude (9.188) is

f =
~k Vf ? [a ±(OX, ±1 ±i0 ±(Z)nxX, ±1 ]

where the polarization vector of the incident wave is

(b) Deduce an expression for the total cross section of cr, from the optical theorem

(9.189) and the above expression for f.

16.12 A circularly polarized plane wave of radiation of frequency to = ck is incident on a

nonpermeable, conducting sphere of radius a.

(a) Assuming that the conductivity of the sphere is infinite, write down explicit

expressions for the electric and magnetic fields near and at the surface of the sphere in

the long-wavelength limit, ka«l.
(b) Using the techniques of Chapter 8, calculate the power absorbed by the sphere

from the incident wave, assuming that the conductivity is large but finite. Express your

result as an absorption cross section in terms of the wave number k, the radius a, and
the skin depth 8. Assume ka«l.

16.13 Discuss the scattering of a plane wave of electromagnetic radiation by a

nonpermeable, dielectric sphere of radius a and dielectric constant e.

(a) By finding the fields inside the sphere and matching to the incident plus scattered

wave outside the sphere, determine the multipole coefficients in the scattered wave.

Define suitable phase shifts for the problem.

(b) Consider the long-wavelength limit (ka« 1) and determine explicitly the differen-

tial and total scattering cross sections. Compare your results with those of Section

9.6(b).

(c) In the limit e—»oo compare your results to those for the perfectly conducting

sphere.

16.14 Consider the scattering of a plane wave by a nonpermeable sphere of radius a and
very good, but not perfect, conductivity. Assume that ka« 1 and that the skin depth
8<a.
(a) Show from the analysis of Section 8.1 that

cZs k8 *

4tt 2
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(b) In the long-wavelength limit, show that for /= 1 the coefficients oc ± (l) and /3 ± (J) in

(16.149) are

(c) Write out explicitly the differential scattering cross section, correct to first order in

8/a and lowest order in ka.

(d) Using (16.145), evaluate the absorption cross section. Show that to first order in 8

it is o-abs ^37r(k8)a
2

. How different is the value if 8 = a?



Radiation Damping,
Self-Fields of a Particle,

Scattering and Absorption
of Radiation by a

Bound System

17.1 Introductory Considerations

In the preceding chapters the problems of electrodynamics have been divided

into two classes, one in which the sources of charge and current are specified and

the resulting electromagnetic fields are calculated, and the other in which the

external electromagnetic fields are specified and the motions of charged particles

or currents are calculated. Wave guides, cavities, and radiation from prescribed

multipole sources are examples of the first type of problem, while motion of

charges in electric and magnetic fields and energy-loss phenomena are examples

of the second type. Occasionally, as in the discussion of bremsstrahlung, the two

problems are combined. But the treatment is a stepwise one—first the motion of

the charged particle in an external field is determined, neglecting the emission of

radiation; then the radiation is calculated from the trajectory as a given source

distribution.

It is evident that this manner of handling problems in electrodynamics can be

of only approximate validity. The motion of charged particles in external force

fields necessarily involves the emission of radiation whenever the charges are

accelerated. The emitted radiation carries off energy, momentum, and angular

momentum and so must influence the subsequent motion of the charged

particles. Consequently the motion of the sources of radiation is determined, in

part, by the manner of emission of the radiation. A correct treatment must

include the reaction of the radiation on the motion of the sources.

Why is it that we have taken so long in our discussion of electrodynamics to

face this fact? Why is it that many answers calculated in an apparently erroneous

way agree so well with experiment? A partial answer to the first question lies in

the second. There are very many problems in electrodynamics which can be put

780
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with negligible error into one of the two categories described in the first

paragraph. Hence it is worth while discussing them without the added and

unnecessary complication of including reaction effects. The remaining answer to

the first question is that a completely satisfactory treatment of the reactive

effects of radiation does not exist. The difficulties presented by this problem

touch one of the most fundamental aspects of physics, the nature of an

elementary particle. Although partial solutions, workable within limited areas,

can be given, the basic problem remains unsolved. One might hope that the

transition from classical to quantum-mechanical treatments would remove the

difficulties. While there is still hope that this may eventually occur, the present

quantum-mechanical discussions are beset with even more elaborate troubles

than the classical ones. It is one of the triumphs of comparatively recent years

(—1948-1950) that the concepts of Lorentz covariance and gauge invariance

were exploited sufficiently cleverly to circumvent these difficulties in quantum

electrodynamics and so allow the calculation of very small radiative effects to

extremely high precision, in full agreement with experiment. From a fundamen-

tal point of view, however, the difficulties still remain. In this chapter we will

consider only the classical aspects, but will indicate some of the quantum-

mechanical analogs along the way.

The question as to why many problems can apparently be handled neglecting

reactive effects of the radiation has the obvious answer that such effects must be

of negligible importance. To see qualitatively when this is so, and to obtain

semiquantitative estimates of the ranges of parameters where radiative effects

are or are not important, we need a simple criterion. One such criterion can be

obtained from energy considerations. If an external force field causes a particle

of charge e to have an acceleration of typical magnitude a for a period of time T.

the energy radiated is of the order of

_ 2e
2
a

2T /ni vErad ^p— (17.1)

from the Larmor formula (14.22). If this energy lost in radiation is negligible

compared to the relevant energy E of the problem, we can expect that radiative

effects will be unimportant. But if Erad ^Eo, the effects of radiation reaction will

be appreciable. The criterion for the regime where radiative effects are unim-
portant can thus be expressed by

Erad«E (17.2)

The specification of the relevant energy E demands a little care. We will

distinguish two apparently different situations, one in which the particle is

initially at rest and is acted on by the applied force only for the finite interval T,

and one where the particle undergoes continual acceleration, e.g., in

quasiperiodic motion at some characteristic frequency co . For the particle at rest

initially a typical energy is evidently its kinetic energy after the period of
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acceleration. Thus
Eo-m(aT) 2

The criterion (17.2) for the unimportance of radiative effects then becomes

2 e
2
a

2T
;2ja

3 c
3 « ma

or
2_f_

3 mc

It is useful to define the characteristic time in this relation as

2 e
2

r =i—3 (17.3)
3 mc

Then the conclusion is that for time T long compared to t radiative effects are

unimportant. Only when the force is applied so suddenly and for such a short

time that T~t will radiative effects modify the motion appreciably. It is useful to

note that the longest characteristic time t for charged particles is for electrons

and that its value is t = 6.26x 10~24
sec. This is of the order of the time taken for

light to travel 10~ 13
cm. Only for phenomena involving such distances or times

will we expect radiative effects to play a crucial role.

If the motion of the charged particle is quasi-periodic with a typical amplitude

d and characteristic frequency o) , the mechanical energy of motion can be

identified with E and is of the order of

E ~ma>o
2
<2

2

The accelerations are typically a~o> 2
d, and the time interval T~(l/o> ).

Consequently criterion (17.2) is

O „ 2 4i2
2e (x) a 2 j2

3 « mojo a
3c coo

or
0)ot«1 (17.4)

where t is given by (17.3). Since wo"
1

is a time appropriate to the mechanical

motion, again we see that, if the relevant mechanical time interval is long

compared to the characteristic time t (17.3), radiative reaction effects on the

motion will be unimportant.

The examples of the last two paragraphs show that the reactive effects of

radiation on the motion of a charged particle can be expected to be important if

the external forces are such that the motion changes appreciably in times of the

order of t or over distances of the order of ct. This is a general criterion within

the framework of classical electrodynamics. For motions less violent, the

reactive effects are sufficiently small that they have a negligible effect on the

short-term motion. Their long-term, cumulative effects can be taken into

account in an approximate way, as we will see immediately.
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17.2 Radiative Reaction Force from Conservation of Energy

The question now arises as to how to include the reactive effects of radiation in

the equations of motion for a charged particle. We begin with a simple

plausibility argument based on conservation of energy for a nonrelativistic

charged particle. A more fundamental derivation and the incorporation of

relativistic effects will be deferred to later sections.

If the emission of radiation is neglected, a charged particle of mass m and

charge e acted on by an external force Fext moves according to the Newton
equation of motion:

mv = Fext (17.5)

Since the particle is accelerated, it emits radiation at a rate given by the

Larmor power formula (14.22),

P(t) = |p(v) 2
(17.6)

To account for this radiative energy loss and its effect on the motion of the

particle we modify the Newton equation (17.5) by adding a radiative reaction

force Frad :

mv = Fext+Frad (17.7)

While Frad is not determined at this stage, we can see some of the requirements it

"must" satisfy:

Frad "must" (1) vanish if v = 0, since then there is no radiation;

(2) be proportional to e
2

, since (a) the radiated power is

proportional to e
2

, and (b) the sign of the charge cannot enter

in radiative effects;

(3) in fact involve the characteristic time x (17.3), since that is

apparently the only parameter of significance available.

We will determine the form of Frad by demanding that the work done by this

force on the particle in the time interval U<t<t2 be equal to the negative of the

energy radiated in that time. Then energy will be conserved, at least over the

interval (tu t2). With the Larmor result (17.6), this requirement is

f

'

2
f'

2 2 e
2

The second integral can be integrated by parts to yield

f

'

2 2 e
2

f'
2 2 e

2

1,
F"d

- vd '
=
3?J„

v-ydt-3 ? (v.y)
(

If the motion is periodic or such that (v • v)= at X— U and t = t2 , we may write
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Then it is permissible to identify the radiative reaction force as

Frad = ~ — v = miv (17.8)

The modified equation of motion then reads

m(v-Tv) = Feext (17.9)

Equation (17.9) is sometimes called the Abraham-Lorentz equation of motion.

It can be considered as an equation which includes in some approximate and

time-average way the reactive effects of the emission of radiation. The equation

can be criticized on the grounds that it is second order in time, rather than first,

and therefore runs counter to the well-known requirements for a dynamical

equation of motion. This difficulty manifests itself immediately in the so-called

"runaway" solutions. If the external force is zero, it is obvious that (17.9) has

two possible solutions,

where a is the acceleration at t = 0. Only the first solution is reasonable. The
method of derivation shows that the second solution is unacceptable, since

(v • v)?*0 at U and r2 . It is clear that the equation is useful only in the domain

where the reactive term is a small correction. Then the radiative reaction can be

treated as a perturbation producing slow or small changes in the state of motion

of the particle. The problem of the "runaway" solutions can be avoided by

replacing (17.9) by an integrodifferential equation (see Section 17.6).

To illustrate the use of (17.9) to account for small radiative effects we consider

a particle moving in an attractive, conservative, central force field. In the

absence of radiation reaction, the particle's energy and angular momentum are

conserved and determine the motion. The emission of radiation causes changes

in these quantities. Provided the accelerations are not too violent, the energy

and angular momentum will change appreciably only in a time interval long

compared to the characteristic period of the motion. Thus the motion will

instantaneously be essentially the same as in the absence of radiative reaction.

The long-term changes can be described by averages over the particle's

unperturbed orbit.

If the conservative central force field is described by a potential V(r), the

acceleration, neglecting reactive effects, is

(17.10)

(17.11)

By conservation of energy the rate of change of the particle's total energy is
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given by the negative of the Larmor power:

dE__2e^ rV _ 2e
2 (dVY

dt~ 3caW ~ 3m 2Adr)

While the definition of t (17.3) this can be written

f-s(f)"
Since the change in energy is assumed to be small in one cycle of the orbit, the

right-hand side may be replaced by its time-averaged value in terms of the

Newtonian orbit. Then we obtain

Hf)
The secular change in angular momentum can be found by considering the

vector product of (17.9) with the radius vector r. Since the angular momentum is

L= mrx v, we find

^ = rxFext+mTrxv (17.14)
at

Since the external force is central, the applied torque vanishes. But the radiative

torque term can be expressed as

-^r-mvxvj (17.15)

The angular momentum is assumed to change slowly in time, certainly when
time is measured in units of t. Consequently it is consistent to omit in (17.15) the

second derivative of L with respect to t and to substitute v from the unperturbed

equation of motion (17.11). Then the rate of change of angular momentum can

be written as

§=_wi^\L (17 . 16)
dt m\r dr /

v 7

where a time average over the instantaneous orbit has been performed, as in

(17.13).

Equations (17.13) and (17.16) determine how the particle orbit changes as a

function of time because of radiative reaction. Although the detailed behavior

depends on the specific law of force, some qualitative statements can be made. If

the characteristic frequency of motion is o> , the average value in (17.16) can be

written
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with some dimensionless numerical coefficient of the order of unity. This shows

that the characteristic time over which the angular momentum changes is of the

order of 1/(o>ot)g>o. This time is very long compared to the orbital period 27r/o)
,

provided o> t« 1 . Similar arguments can be made with the energy equations.

These equations including radiative effects can be used to discuss practical

problems such as the moderation time of a mu or pi meson in cascading from an

orbit of very large quantum number around a nucleus down to the low-lying

orbits. Over most of the time interval the quantum numbers are sufficiently large

that the classical description of continuous motion is an adequate approxima-

tion. Discussion of examples of this kind will be left to the problems.

17.3 Abraham-Lorentz Evaluation of the Self-Force

The derivation of the radiation reaction force in the previous section, while

plausible, is certainly not rigorous or fundamental. The problem is to give a

satisfactory account of the reaction back on the charged particle of its own
radiation fields. Thus any systematic discussion must consider the charge

structure of the particle and its self-fields. Abraham (1903) and Lorentz (1904)

made the first attempt at such a treatment by trying to make a purely

electromagnetic model of a charged particle. Our discussion is patterned after

that given by Lorentz in his book, Theory of Electrons, Note 18, p. 252.

Let us consider a single charged particle of total charge e with a sharply

localized charge density p(x) in the particle's rest frame. The particle is in

external electromagnetic fields, Eext(x, f), Bext(x, t). We have seen in Sections 6.8

and 12.10 that the rate of change of mechanical momentum plus electromagne-

tic momentum in a given volume vanishes, provided there is no flow of

momentum out of or into the volume. Abraham and Lorentz proposed that the

apparently mechanical momentum of a charged particle is actually elec-

tromagnetic in origin. Then the momentum-conservation law can be phrased,

or equivalently in terms of the Lorentz force density (12.121),

In this equation the fields are the total fields, and the integration is over the

volume of the particle.

In order that (17.17) take on the form of the Newton equation of motion

(17.17)
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we decompose the total fields into the external fields and the self-fields E„ B s

due to the particle's own charge and current densities, p and J:

E — Eext+E s

B = Bext+B s

(17.18)

Then (17.17) can be written as the Newton equations of motion, with the

external force as

Fex.= J(pEext+ijxBext)d
3
x (17.19)

and the rate of change of momentum of the particle as

^ = -J(pE s
+ijxB

s)d 3
x (17.20)

Provided the external fields vary only slightly over the extent of the particle, the

external force (17.19) becomes just the ordinary Lorentz force on a particle of

charge e and velocity v.

To calculate the self-force [the integral on the right side of (17.20)] it is

necessary to have a model of the charged particle. We will assume for simplicity

that:

(a) the particle is instantaneously at rest;

(b) the charge distribution is rigid and spherically symmetric.

Our results will then necessarily be restricted to nonrelativistic motions and will

lack the proper Lorentz transformation properties. These deficiences can be

remedied later.

For a particle instantaneously at rest (17.20) becomes

^=-Jp(x,0E s(x,0<fx (17.21)

The self-field can be expressed in terms of the self-potentials, A and <£>, so that

4j =
J

p(x, t)[v<D(x, t)+\^ (x, t)] d
3
x (17.22)

The potentials are given by A a = (<£, A):

A a
(x

y
t) = - f [

ja
(x^')k<

dv (17 .23)
C J K.

with J
a = (cp, J) and R = x - x'.

In (17.23) the 4-current must be evaluated at the retarded time t'. This differs

from the time t by a time of the order of Af~(a/c), where a is the dimension of

the particle. For a highly localized charge distribution this time interval is

extremely short. During such a short time the motion of the particle can be

assumed to change only slightly. Consequently it is natural to make a Taylor
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series expansion in (17.23) around the time t'= t. Since [ ]re , means evaluated at

t'=t-(R/c), any retarded quantity has the expansion,

With this expansion for the retarded 4-current in (17.23), expression (17.22)

becomes

Consider the n = and n = 1 terms in the scalar potential part (the first term in

the square bracket) of the right-hand side. For n = the term is proportional to

j>xj" dVP(x, Op(x\ t)v(JL)

This is just the electrostatic self-force. For spherically symmetric charge

distributions it vanishes. The n = 1 term is identically zero, since it involves

VR"
_1

. Thus the first nonvanishing contribution from the scalar potential part

comes from n = 2. This means that we can change the summation indices so that

the sum now reads

where

dt
K

'
; (n+l)(n+2)R'{ }=J(K-,t)+2K(»',t).

(17.25)

With the continuity equation for charge and current densities, the curly

bracket in (17.25) can be written

{ } = J(x',t)-^V'-J(x\ ()

In the integral over d
3
x' we can integrate the second term by parts. We then have

-j dVRn"^r - ,= +^2j dV (J
- V ')R ""'R

=^2l dVR"1,+ <"- 1)^ R
)

This means that the curly bracket in (17.25) is effectively equal to

For a rigid charge distribution the current is

J(x', () = p(x\ t)v(t)
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If the charge distribution is spherically symmetric, the only relevant direction in

the problem is that of v(0- Consequently in the integration over d
3
x and dV

only the component of (17.26) along the direction of \(t) survives. Hence (17.26)

is equivalent to

i / / \ / Jn+l n-l/R • vY

Furthermore all directions of R are equally probable. This means that the

second term above can be replaced by its average value of J. This leads to the

final simple form of our curly bracket in (17.25):

{ } = §p(x',t)v(0 (17.27)

With (17.27) in (17.25) the self-force becomes, apart from neglected nonlinear

terms in time derivatives of v (which appear for n>4),

(17.28)

To understand the meaning of (17.28) we consider the first few terms in the

expansion:

p(x)p(x')

R(4).-£*Wt
(^)

|

= 3P*jd
3

xJ dVp(x)p(x')

/dp\ e
2

(»+« „_,Wr^" v a

2e
2

3c
3 (17.29)

In the third expression a is a length characteristic of the extension of the charge

distribution of the particle. We note that for n>2 the terms in the expansion

vanish in the limit of a point particle (a^O). Thus for very localized charge

distributions we need only consider the n = and n = 1 contributions. The n= 1

term is just the radiative reaction force already found in (17.9). It is independent

of the structure of the particle, depending only on its total charge. Our present

derivation can be considered as placing it on a much more fundamental footing

than the treatment of Section 17.2.

The n = term in (17.29) deserves special attention. The double integral is

proportional to the electrostatic self-energy U of the charge distribution,

Consequently the n = term can be expressed as

(dp) 4 U
3 c

2

(17.30)

(17.31)
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This has the general form required of a rate of change of momentum. The

electrostatic self-energy divided by c
2
can be identified with the electromagnetic

mass of the particle:

me =p (17.32)

Then the Newton equation of motion for the Abraham-Lorentz model takes

the form,

(!me)v-|pv = Fext (17.33)

provided higher terms in expansion (17.28) are neglected. This is the same as

(17.9), apart from the strange factor of f multiplying the electromagnetic mass.

17.4 Difficulties with the Abraham-Lorentz Model

Although the Abraham-Lorentz approach is a significant step towards a

fundamental description of a charged particle, it is deficient in several respects.

1. One obvious deficiency is the nonrelativistic nature of the model. For the

reactive force term alone a relativistic generalization can be made easily

(see Problem 17.4), but that in itself is not sufficient.

2. The electromagnetic mass enters with an incorrect coefficient in (17.33).

This is a symptom of improper Lorentz covariance properties inherent in

the model, as will become clearer in the following section.

3. If we wish to be able to ignore the higher terms in the self-force expansion,

we must take a-* 0. But the electromagnetic mass is of the order (e
2
/c

2
a).

Hence, in the limit a—> 0, the mass becomes infinite. If we wish to keep the

mass of the order of the observed mass m of the particle, the extent of the

charge distribution must be a~r , where

For electrons this distance, called the classical electron radius, is 2.82

x

10" 13
cm. Although this is very small, motions can be envisioned as

sufficiently violent that for such a finite extent the higher terms in the

expansion would become significant.* Thus, if the particle has a finite

extent, the truncated theory must be considered as only an approximate

description.

* Successive terms in the expansion are in the ratio (~ ^dt"^/ dt"
means

that the motion must change appreciably in a time interval {ale). With a~e 2/mc 2

, this

time interval is just t, given by (17.3). We thus return to the same criterion as before.
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4. The localized charge distribution must have forces of nonelectromagnetic

character holding it stable. Thus the idea of a purely electromagnetic

model for matter must be abandoned within the framework of the Maxwell

equations and special relativity. We know of strong, nonelectromagnetic

forces in nature. These interactions give the particles that partake in them,

called hadrons, finite extensions in space. The distribution of charge and

magnetization can be probed by the scattering of electrons and mu-
mesons, under the assumption that these probes are point charges and that

the laws of electrodynamics hold at close distances. For neutrons and

protons in detail, and in more fragmentary form for other hadrons, it is

found that the extensions of charge and magnetization are of the order of

(0.5-1.0)x 10~ 13
cm. This is somewhat smaller than the classical electron

radius r , but of the same order of magnitude. There may be some deep

significance to this occurrence, but at our present level of understanding a

much more relevant fact is that the Compton wavelength of the pi-meson,

the lightest quantum of the nuclear force field, is h/m^c— 1.4 x 1CT
13
cm.

Presumably it and other similar hadronic lengths govern the extensions

seen in electron scattering experiments.

The charged leptons (electrons and mu-mesons) seem to have only elec-

tromagnetic and weak interactions. They are thus candidates for a quantum-

mechanical generalization of the Abraham-Lorentz model. As mentioned in the

Introduction, experiments on electrons at least show no evidence of structure or

finite extension at the level of 1(T
15
cm. This fact is totally inexplicable in the

classical context of an extended distribution of charge. We know, of course, that

quantum effects enter at distances of the order of h/mc= 137r . A purely

classical electromagnetic model therefore has little relevance to the real world.

Nonelectromagnetic forces imply a contribution m to the mass of a particle

from such forces. Within the framework of the Abraham-Lorentz model as

discussed so far, this additional mass merely appears as an added coefficient of

the acceleration in (17.33).

17.5 Covariant Definitions of Electromagnetic

Energy and Momentum

A major problem in the Abraham-Lorentz model is the lack of proper

covariance of the electromagnetic self-energy and self-momentum, as man-
ifested by the anomalous factor of f in the inertia, first found by J. J. Thomson
(1881). The root of this difficulty can be traced to the use of the familiar energy

and momentum densities,

u = ^-(E2+B 2

), g =-^(ExB)6
47TC

V
'

(17.34)
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in an uncritical fashion. It is customary (see Section 6.8) to define the total

electromagnetic energy and momentum as the three-dimensional volume

integrals of these densities at fixed time. This is allowable in the discussion of the

Poynting theorem for an observer at rest in the inertial frame in which the fields

are defined, but is not defensible in general if the total electromagnetic

4-momentum in different inertial frames is to be considered. The densities

(17.34) are elements of the symmetric electromagnetic stress tensor 0"p
,

(12.115). As has already been mentioned in Section 12.10(a), the 3-space

integral of @ 00
and @ ' at fixed time do not transform as the components of a

4-vector unless the tensor satisfies d«©aP = 0, that is, for sourcefree fields. For a

classical extended charged particle with a nonvanishing charge and current

density the electromagnetic stress tensor ©aP
is not divergenceless [see (12.118)].

Consequently the usual 3-space integrals of u and g cannot represent the

electromagnetic energy and momentum of a charged particle consistently in all

inertial frames.

In 1906 Poincare gave a solution to the problem of the covariance of the

energy and momentum of the Abraham-Lorentz particle and also its stability by

side-stepping the question of the transformation properties of the electromagne-

tic energy and momentum separately. Poincare remarked that a purely

electromagnetic charged particle was impossible (classically) because the electric

charge distribution by itself is unstable. Nonelectric forces are necessary to hold

the charge in place. Poincare then postulated a nonelectromagnetic stress tensor

PaP
that should be added to ®aP

to give the total self-stress tensor S
aP

:

The particle's total 4-momentum was then defined to be

cP« =
J
s
a0

d
3
x (17.35)

where the integral is over all of 3-space at a fixed time. It can be shown that

(17.35) transforms as a 4-vector provided that in the rest frame of the particle

(P=0),

Js
<o)ii d3

x
(o)= (17.36)

where i, j=l, 2, 3 and the superscript (0) indicates the rest frame. This

requirement is that the total self-stress (in the three-dimensional sense) vanish,

just the condition for mechanical stability. The vanishing of the total self-stress

in the rest frame can be related to the differential requirement,

a«s
aP = o

We are thus led back to the same situation as for sourcefree radiation. If the

Lorentz covariant stress tensor has a vanishing 4-divergence, then spatial
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integrals at fixed time of the form (17.35) can represent properly the conserved

energy-momentum 4-vector.

Poincare's solution has some virtues, but it has deficiencies, too. It requires

unknown Poincare stresses in order to provide stability. It avoids the question of

the transformation properties of the electromagnetic part of the energy and

momentum of any system.

The correct 4-vector character for electromagnetic energy and momentum,
even in the presence of sources, can be assured by some care. The expressions,

Ee =^ j"(E'
2+ B'

2

) d
3

:

V'e=-^- |*E'xB'd
3
x'

4-77C J

(17.37)

can be considered to define the energy and momentum in some particular

inertial frame K'. The integrands in (17.37) are elements of the second-rank

tensor ® a(3
. Evidently we must contract one of the tensor indices with a 4-vector,

and the 4-vector must be such as to reduce to d
3
x' in the inertial frame K'. We

define the timelike 4-vector,

dcr
p = n p d

3
o- (17.38)

where dV is an invariant element of three-dimensional "area" on a spacelike

hyperplane in four dimensions. The normal to the hyperplane has

components (1, 0, 0, 0) in K' . The invariant d
3
cr is evidently d

3
cr= np da

p = d
3
x'.

If the inertial frame K' moves with velocity cp with respect to an inertial frame

K, then in K the 4-vector n p
is

n p = (7,YP) (17-39)

The general definition of the electromagnetic 4-momentum in any frame is

therefore

cPe

a = jV p da, =
J©

aP
nP dV (17.40)

In K', np has only a time component. With dV=d 3
x', this covariant expression

reduces to (17.37). But in the frame K, n3 = (7, -7P) and the covariant definition

has time and space components,

cP«° = 7j(u-vg) dV

cPe

, = 7j(cg
, + Tr/3 ,)dV

(17.41)

where Tif° is the 3x3 Maxwell stress tensor (6.120). If desired, the invariant

volume element dV= d
3
x' can be suppressed in favor of the volume element d

3
x

in the frame K by means of dV = 7 d
3
x (integration at fixed time t).
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The definitions (17.40) or (17.41) of the electromagnetic 4-momentum afford

a covariant definition starting from the naive expressions (17.37) in any frame

K'. Different choices of the frame K' lead to different 4-vectors, of course, but

that is no cause for alarm.* There is a natural choice of the frame K' if the

electromagnetic mass of the fields is nonvanishing, namely, the rest frame in

which

We denote this frame where the total electromagnetic momentum F'e is zero as

K(0) and attach superscripts zero on quantities in that frame to make it clear that

it is a special choice of the frame K'. According to (17.37) the electromagnetic

rest energy is then

In the frame K the electromagnetic energy and momentum are given by (17.41)

where now v is the velocity of the rest frame K(0)
in K.

For electromagnetic configurations in which all the charges are at rest in some
frame (the Abraham-Lorentz model of a charged particle is one example), the

general formulas can be reduced to more attractive and transparent forms.

Clearly the frame where all the charges are at rest is K (0)
since there all is

electrostatic and the magnetic field vanishes everywhere in 3-space. For such

electrostatic configurations, the magnetic field is given without approximation in

the frame K by

This can be verified from (11.149). The integrand in the first equation of (17.41)

is thus

(17.42)

(17.43)

B = pxE (17.44)

a Lorentz invariant. Thus the energy in K is given by

(17.45)

* One possible choice for K' is the "laboratory" where the observer is at rest. The
discussion of the conservation laws in Chapter 6 may be interpreted in this way.
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Similarly, the second equation in (17.41) becomes

With the invariant integrand (E
2-B 2

) it is clear that we have a 4-vector

Pe

a = (yme c, yme \), where the electromagnetic mass is

in agreement with (17.43) and also (17.30) and (17.32).

The equation (17.45) for the energy has been used by Butler* to discuss the

Trouton-Noble experiment, a test of special relativity involving the question of a

torque on a charged suspended capacitor moving with respect to the ether.

It is perhaps instructive to examine the terms in the expression for Pe to see

the factor i and its removal. Writing the first term of the momentum in (17.41),

cP^-yj cgdV (17.47)

we find

cPi
1^/- [ [E

2p-(p • E)E] dV (17.48)
477 J

In the nonrelativistic limit, E changes from its value in the rest frame only by

terms of the order of |3

2

. Assuming that the field is spherically symmetric in the

rest frame, the second term averages to | of the first on integrating over angles.

One then has a numerical coefficient (§)/47r = (i)/87t, or P (

e

l)— 4me v/3. The
contribution from the Maxwell stress tensor in (17.41) can be written

cP?=:r- f [(P • E)E-KE 2 + B 2

)p] d
3
<r (17.49)

4tt J

In the nonrelativistic limit and with the assumption of spherical symmetry in the

rest frame, Pi
2) — -mev/3, giving the proper sum. Much more significant,

however, is the fact that without any assumptions or approximations Pl
n+ Pi

2)
add

to give (17.46), the correct 3-vector momentum to go with the energy (17.45) to

form an energy-momentum 4-vector for electrostatic rest-frame fields.

The lack of covariance of the Abraham-Lorentz model has been overcome by

means of the properly covariant expression (17.40) for the electromagnetic

4-momentum. This seems to have first been done by Kwalt and later by

Rohrlicht who gives a thorough discussion in his book cited in the bibliography.

A closely related relativistic discussion of the incorrect factor of i in the

*J. W. Butler, Am. J. Phys. 36, 936 (1968).

t B. Kwal, J. phys. radium 10, 103 (1949).

t F. Rohrlich, Am. J. Phys. 28, 639 (1960). See also F. Rohrlich, Am. J. Phys. 38,

1310 (1970).
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Abraham-Lorentz force equation was given by Fermi* in 1922 when he

demonstrated that a covariant application of Hamilton's principle leads to an

appropriate modification of the self-force (17.20) so that a factor of unity is

obtained, instead of i. A treatment similar in some respects to that given here is

presented by Wilson.

t

17.6 Integrodifferential Equation of Motion, Including

Radiation Damping

In Section 17.2 the Abraham-Lorentz equation (17.9) was discussed qualita-

tively. It was pointed out that, if the radiative effects were considered as small in

some sense, a scheme of successive approximations could be used to describe the

motion. Nevertheless, the equation in its differential form contains unphysical

behavior [e.g., solution (17.10)] because it is higher order in time differentiation

than a mechanical equation of motion should be. It is desirable to have an

equivalent equation of motion which is of the correct order, has no grossly

unphysical solutions, and exhibits the successive approximations aspect in a

natural manner. The discussion will be limited to nonrelativistic motion,

although the generalization to fully relativistic motion is not difficult.

The guiding principle in converting (17.9) into an equivalent equation of

motion is that the new equation should have solutions which evolve continuously

into those for a neutral particle in the limit as the charge of the particle tends to

zero. The smaller the particle's charge, the smaller the self-fields, and the smaller

the radiative effects, other things being equal.

If the external force is thought of as a given function of time, (17.9) can be

integrated once with respect to time by use of an integrating factor. We put

v(t) = e
t/T

u(0

Then we find from (17.9) that

mu = --e- th
F(t)

T

The first integral is therefore

mv(0=^J%~
t7W) dt' (17.50)

The minus sign of the preceding line has been absorbed by making the lower

limit of the integral the indefinite one. The constant of integration C is to be

determined on physical grounds.

* E. Fermi, Z. Physik 24, 340 (1922), or Am accad. nazl. Lincei Rend. 31, 184,

306 (1922).

tW. Wilson, Proc. Phys. Soc. (London) A48, 376 (1936).
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The integrodifferential equation of motion (17.50) differs from customary

mechanical equations of motion in that the acceleration of the particle at any

time depends, not on the instantaneous value of the force acting, but on a

weighted time average of the force. The presence of the factor e~
u '~ t)h means that

only a small time interval of order t is involved. Since T<*e
2

, that time interval

becomes vanishingly small as e
2 —»0. Then we demand that the equation of

motion become the Newton equation, m\(t) = ¥(t). This is accomplished by

choosing the upper limit on the integral in (17.50) as infinity. To see the behavior

in detail, we introduce a new variable of integration,

S =i(f-t)

Then (17.50) can be written

mv(t) =
J

e~
s

F(f+rs) ds (17.51)

If the force is slowly varying in time (measured in units of t), a Taylor series

expansion around s = can be expected to converge rapidly. Thus we write

i<f^ (17-52)

On substitution into (17.51) this gives

mv(0=i^ (17.53)
n= dl

In the limit t—>0 only the n = term in the series survives. Then one has the

ordinary equation of motion of an uncharged particle. The higher terms

represent radiative corrections for a charged particle, terms which are important

only if the force varies in time sufficiently rapidly.

The integrodifferential equation (17.51) can be regarded as a physically

reasonable replacement for the Abraham-Lorentz equation of motion (17.9).

All solutions of (17.51) satisfy (17.9). But unphysical "runaway" solutions, such

as (17.10), do not occur. Equation (17.51) still has certain peculiarities. The
chief of these is its violation of the traditional concept of causality. It is evident

from (17.51) that the acceleration at time t depends on the force acting at times

later than t. This is contrary to out ideas of cause and effect. Figure 17.1 shows a

typical example of such acausal behavior. A constant force is applied to the

particle for times r>0. The equation of motion predicts "preacceleration"

before the force is "actually" applied.

To understand whether such effects are in contradiction to known facts we
must consider the time scale involved. The acausal effects are limited to time

intervals of the order of t ~ e
2/mc 3 ~ 10

24
sec. This is the time it takes light to

travel a distance of the order of the "size" of elementary particles. Such a short
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Fig. 17.1 "Preacceleration" of charged particle.

time interval is impossible to detect by macroscopic means. Forces, for example,

cannot be turned on and off at a particle with the rapidity indicated in the figure.

Hence the lack of causality inherent in (17.51) cannot be observed in the

laboratory. We describe this state of affairs by saying that, while (17.51) implies

lack of microscopic causality, the model satisfies the requirements of macro-

scopic causality. Another important point is that the model is a classical one

which surely fails at distances and times much greater than e
2/mc 2

and t. As a

consequence of the uncertainty principle the turning on of an external force in a

time interval At is accompanied by uncertainties in energy of the order of

AE~ ft/At. If these energy uncertainties are of the order of the rest energy mc 2
of

the particle, the behavior will be far from classical. This sets a quantum-

mechanical limit on the time intervals, Tq
~ h/mc 2~ 137t. Since Tq »r, we reach

the conclusion that in the domain where the classical equation is expected to

hold the motions are sufficiently gentle that (1) acausal effects are of very minor

importance, and (2) radiative reaction causes only small corrections to the

motion.

If the applied force F is given as a function of position rather than time, the

solution of the integrodifferential equation becomes somewhat more involved,

although no different in principle.

17.7 Line Breadth and Level Shift of an Oscillator

The effects of radiative reaction are of great importance in the detailed behavior

of atomic systems. Although a complete discussion involves the rather elaborate

formalism of quantum electrodynamics, the qualitative features are apparent

from a classical treatment. As a typical example we consider a charged particle

bound by a one-dimensional linear restoring force with force constant k = mw 2
.

In the absence of radiation damping the particle oscillates with constant

amplitude at the characteristic frequency a> . When the reactive effects are
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included, the amplitude of oscillation gradually decreases, since energy of

motion is being converted into radiant energy. This is the classical analogue of

spontaneous emission in which an atom makes a transition from an excited state

to a state of lower energy by emission of a photon.

If the displacement of the charged particle from equilibrium is x(0, the

equation of motion (17.51) for this problem is

x(t) + o)
2

[ e
s

x(t+Ts) ds = (17.54)
Jo

Since the solution when t=0 is x(r)~e~ laV
, it is natural to assume a solution of

the form,

x(0 = xoe-
a

' (17.55)

We anticipate on physical grounds that the imaginary part of a will be closely

equal to o> , at least for o) t«1, but that a will have a positive real part to

describe the dissipative effect of the emission of radiation. When (17.55) is

substituted into (17.54) it becomes

x e
at
[a

2+ wo
2

J
e~

(1+aT)s
<is] =

The existence of the integral requires Re(l + ax)>0. With that proviso, we
have a determined by a cubic equation,

ra+a 2+ (o
2 = (17.56)

This is the same cubic that emerges from (17.9), but we have the condition

Re(l + c*T)>0 to eliminate the "runaway" solution (a — -(1 + o>
2
t

2
)/t). The

two physically meaningful roots can be exhibited in closed form for arbitrary t

and o) , but the formula is sufficiently involved that it is of little value except

for numerical computation. We are interested in the range of parameters

where co t« 1. Then it is a simple matter to show directly from (17.56) that,

correct to order (o) t)
2
inclusive, a is given by

a = ^±i(a> +A(o)
j

where „ 2 > (17.57)
1 =O) T

Ao) = -|(0(,
3
t

2

J

The constant Y is known as the decay constant, while A<o is called the level shift*

* The reader is invited to pause at this point and consider the decay constant T
from various points of view. One is to use the Larmor power formula (17.6) and
conservation of energy directly to relate the time-average radiated power P(t) to the total

energy of the oscillator E(t)._Another is to ask for the initial energy and amplitude x of

the oscillator such that r = P/nw
,
corresponding to the emission of a single photon of

energy hw . These can then be compared to the values for a quantum-mechanical
oscillator in its nth quantum state.
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The energy of the oscillator decays exponentially as e"
n
because of radiation

damping. This means that the emitted radiation appears as a wave train with

effective length of the order of c/T. Such a finite pulse of radiation is not exactly

monochromatic but has a frequency spectrum covering an interval of order F.

The exact shape of the frequency spectrum is given by the square of the Fourier

transform of the electric field or the acceleration. Neglecting an initial transient

(of duration t), the amplitude of the spectrum is thus proportional to

EM* f
1

a — la)

The energy radiated per unit frequency interval is therefore

r idIM
do)

Io
27r(o)-a)o-Aa))

2+ (r/2)
: (17.58)

where Io is the total energy radiated. This spectral distribution is called a

resonant line shape. The width of the distribution at half-maximum intensity is

called the half-width or line breadth and is equal to T. Shown in Fig. 17.2 is such

a spectral line. Because of the reactive effects of radiation the line is broadened

and shifted in frequency.

The classical line breadth for electronic oscillators is a universal constant when
expressed in terms of wavelength:

AA = 2tt—2 T = 2ttct = 1.2x 10"4 A
O)

Quantum mechanically the natural widths of spectral lines vary. In order to

establish a connection with the classical treatment, the quantum-mechanical line

width is sometimes written as

iW„r

Fig. 17.2 Broadening and shifting of spectral line because of radiative reaction. The
resonant line shape has width T. The level shift is Ato.
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where % is the "oscillator strength" of the transition (i—» /). Oscillator strengths

vary considerably, sometimes being nearly unity for strong single-electron

transitions and sometimes much smaller.

The classical level shift Acu is smaller than the line width T by a factor co ()t« 1.

Quantum mechanically (and experimentally) this is not so. The reason is that in

the quantum theory there is a different mechanism for the level shift, although

still involving the electromagnetic field. Even in the absence of photons, the

quantized radiation field has nonvanishing expectation values of the squares of

the electromagnetic field strengths (vacuum fluctuations). These fluctuating

fields (along with vacuum fluctuations in the negaton-positon field) act on the

charged particle to cause a shift in its energy. The quantum-mechanical level

shift for an oscillator is of the order of

as compared to the classical shift due to emission of radiation,

^~(a>„T)>

The quantum-mechanical level shift is seen to be comparable to, or greater than,

the line width. The small radiative shift of energy levels of atoms was first

observed by Lamb in 1947* and is called the Lamb shift in his honor. A readable

account of the quantum-theoretical aspects of the problem, requiring only a

rudimentary knowledge of quantum field theory, has been given by Weisskopf.t

17.8 Scattering and Absorption of Radiation by an Oscillator

The scattering of radiation by free charged particles has been discussed in

Sections 14.7 and 14.8. We now wish to consider the scattering and absorption

of radiation by bound charges. The first example chosen is the scattering of

radiation of frequency o> by a single nonrelativistic particle of mass m and charge

e bound by a spherically symmetric, linear, restoring force mo>
2
x. Because we

will be dealing with steady-state oscillations, it is allowable to employ the

Abraham-Lorentz equation (17.9), rather than the integrodifferential form

(17.51). Then the equation of motion is

m(x-TX+ (oo
2
x) = F(0

If we wish to allow for other dissipative processes (corresponding quantum-
mechanically to other modes of decay besides photon re-emission), we can add a

resistive term (mT'x) to the left-hand side, V being a decay constant with

*W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).

tV. F. Weisskopf, Revs. Modern Phys., 21, 305 (1949).
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dimensions of frequency. The incident electromagnetic field provides the driving

force. In the dipole approximation the equation of motion then becomes

x+rx-TX + a>
2
x =— eEoe'^ (17.59)m

where E is the electric field at the center of force, and e is the incident

polarization vector. The steady-state solution is

where

x =- ?

E°e
r\ r € (17.60)m Wo — co —10)1

,

rt(o))=r+(—Vr (n.6i)
Wo/

is called the total decay constant or total width. The radiative decay constant is

r = o)
2
T.

The accelerated motion described by (17.60) gives rise to radiation fields.

From (14.18) the radiation electric field is

e 1
E rad = p-[nx(nxx)]re ,

Consequently the radiation field with polarization e' is given by

2 7-7 — itot ikr /
e 2 -Eoe

• l^rad
—

2 <*>

mc (x)q -o,
2
-io,r, l

-
^) (17 -62)

From definition (14.101) of differential scattering cross section we find that the

cross section for scattered radiation of frequency co and polarization e' is

do-(fa), €
;

)

da
re'* • E rail

E (-^Yl€'*-€|
2

[ . 1 2r J (17.63)
Vmc / L(wo — co ) +o) T, J

The factor multiplying the square bracket is just the Thomson cross section for

scattering by a free particle.

For frequencies very small compared to the binding frequency (a>«a) ) the

cross section reduces to

(17 -64)

The scattering at long wavelengths is thus inversely proportional to the fourth

power of the wavelength. This is the Rayleigh law of scattering, already seen in

Chapters 9 and 16 for scattering at long wavelengths.

For frequencies near the binding frequency to the scattering becomes very

great, showing a typical resonance behavior. In the neighborhood of the

resonance the cross section can be approximated by

f?%^=4*°2
7 feFT^I*'*-*!

2
(17-65)

ail 16 (co — coo) +(l f/2)
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where ft<> = (c/a> ) is the wavelength (divided by 2tt) at resonance, r = a>
2
T is the

radiative decay constant, and r,— r+T'. If a sum is taken over scattered

polarizations and an integration is made over all angles, there results a total

scattering cross section,

owfa)=y *o2
(w-ajC (T./2)

2 (17 '66)

This exhibits the typical resonant line shape with half-width given by T, and peak

cross section,

ffSc(o)o) =6W|)
2

(17.67)

At high frequencies ((o»a> ) the cross section (17.63) approaches the Thomson
free-particle value, apart from a factor (l + coV)" 1

due to radiation damping. In

the classical domain this factor can be taken as unity: o>t~1 corresponds to

photons of energies fta>~137mc
2

. Quantum effects become important when
ftco—mc

2
, as discussed in Sections 14.7 and 17.6.

Figure 17.3 shows the scattering cross section over the whole classical range of

frequencies.

The sharply resonant scattering at co = a> is called resonance fluorescence.

Quantum mechanically it corresponds to the absorption of radiation by an atom,

molecule, or nucleus in a transition from Us ground state to an excited state with

the subsequent re-emission of the radiation in other directions in the process of

de-excitation. The factor 6irko
2
in the peak cross section is replaced quantum

mechanically by the statistical factor,

67riCo
2 —> 4 77

A

2 (2Jex+l)

2(2Jg +l)

where Jg and Jex are the angular momenta of the ground and excited states, and

AttKo
2

is the maximum allowable scattering for any single quantum state. The

Fig. 17.3 Total cross section for the scattering of radiation by an oscillator as a function

of frequency, ovis the Thomson free-particle scattering cross section.
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remaining factors represent a sum over all final magnetic substates and an

average over initial ones, the factor 2 being the statistical weight associated with

the incident radiation's polarizations. The classical result corresponds to Jg
=

and Jex = 1

.

The absorption of radiation, as distinct from scattering, has already been

discussed for an oscillator in Section 13.2. The driving fields there were those of

a swift, charged particle, but the treatment [from equation (13.15) to (13.24)]

was general enough to allow direct transcription. The only differences are that

the T of Section 13.2 is to be replaced by T t (17.61), and the incident electric

field is to be taken as essentially monochromatic. From (13.24) we find that in

the dipole approximation the energy absorbed per unit frequency interval is

jg=g|Eo(o))|
2

7 2

2
"T: 2T 2 (17.68)

da) m (co — co ) + co 1 1

This energy is removed from the incident beam and converted into mechanical

motion of the oscillator. Some of it is re-emitted. This is the scattering that we
have just discussed. Some of it is dissipated in other ways, described schemati-

cally by the frictional term in (17.59). The latter is true absorption in the sense

that we have used it in Section 16.9 and in Chapter 9. Since (17.68) represents

the total of the scattering and nonradiative dissipation, it is appropriate to define

the total cross section as the energy (17.68) absorbed per unit frequency interval

divided by the incident energy per unit area per unit frequency. The incident flux

is (c/2tt) |E (co)|
2

.
Consequently the total cross section is

or
t (co) = 47r—

,
2 2p2 (17.69)mc (coo -co ) +co r,

Using the definition of Y = q)
2
t, this can be written

crt (co) =6W 2 2 2 (17.70)
(COo

—
CO ) +0) 1 i

In the three regions, co«co
,
co~co

,
co»co , the cross section can be approxi-

mated as

OTtXo —
, CO«COo

COo

(Tt(co)— < ^T*°
2
7 ^ /r /0 x 2 ,

co^coo (17.71)
2 (coo-co) +(r t/2)

IT,
6ttXo

2—
2 5 CO » COo

We see that near the resonant frequency co the total cross section has the

same resonant shape as the scattering cross section, but is larger by a factor TJT.

At high frequencies T t
—> co

2
t, so that the total cross section approaches the

constant Thomson value (we have again ignored cor compared to unity).
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The difference between the total cross section and the scattering cross section

is the absorption cross section, sometimes called the reaction cross section ov(a>).

All three cross sections can be written in a suggestive form based on (17.70):

The resonant denominator is the same for all three cross sections. The radiative

process is proportional to (o)
2
/w

2
)r = co

2
T. The other dissipative processes

(reactions) are proportional to P. The common factor (oj
2
/o)

2
)r represents the

incident radiation. For scattering a second factor (a)
2
/coo

2
)r appears, while for

reactions a factor V appears. The total cross section involves the total width T t .

This characteristic product of decay constants or widths appropriate to the initial

and final states of the process also occurs quantum mechanically in the theory of

resonance reactions.

The integral over all frequencies of the total cross section yields a relation

called the dipole sum rule. Radiation damping effects are neglected. This is

necessary if we are to have causal behavior. The unphysical root of the cubic

equation (17.56) has its counterpart here in a pole of (17.62) in the complex o>

plane far from the origin in the upper half plane at co — i/r. In an integral over

all frequencies this unphysical pole contributes importantly and erroneously.

Neglect of radiative reaction effects is equivalent to the assumption that the

width T t in (17.70) is a constant, independent of frequency. The integral of crt (o))

over all frequencies in this approximation is then easily shown to be

We note that the sum rule depends on the charge and mass of the particle, but

not on other detailed properties, such as co and P. It is equivalent to expression

(13.26) for the total energy absorbed by the system from the passing fields. It is

also equivalent to the Kramers-Kronig sum rule (7.122) for the plasma

frequency (a> Im e(a>) = cNcrt ).

As can be inferred from its connection to the Kramers-Kronig dispersion

relations, the dipole sum rule is a general statement that is true both classically

and quantum mechanically, no matter how complicated the response of the

system to the incident radiation as a function of frequency. It depends only on

the three physical requirements that (a) the dipole approximation applies, (b)

the normal modes of oscillation of the system must decay in time (even if very

slowly) because of ever-present resistive losses, and (c) at high frequencies

binding effects are unimportant and the particle responds as if it were free (see

Problem 17.8).

(17.72)

(17.73)
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For a system of independent particles with charges and masses m, bound to a

fixed center the sum rule has an obvious generalization,

f"oi(«)<to~Z-^ (17.74)
Jo C j ra,

If the particles are bound together by mutual interactions, the center of mass

motion must be removed It is easy to show that this is accomplished by

subtracting from the sum in (17.74) a term (Q
2
/M), where Q is the total charge

of the system of particles and M the total mass. For a nucleus with Z protons and

N ( = A-Z) neutrons, the sum rule then becomes

where e is the protonic charge, and m is the mass of one nucleon.*
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PROBLEMS

17.1 A nonrelativistic particle of charge e and mass m is bound by a linear, isotropic,

restoring force with force constant mo)
2

.

Using (17.13) and (17.16) of Section 17.2, show that the energy and angular

momentum of the particle both decrease exponentially from their initial values as e~",

where V = (d
2
t.

17.2 A nonrelativistic electron of charge —e and mass m bound in an attractive

Coulomb potential (-Ze 2

/r) moves in a circular orbit in the absence of radiation

reaction.

(a) Show that both the energy and angular-momentum equations (17.13) and (17.16)

lead to the solution for the slowly changing orbit radius,

r
3

(0 = ro
3 -9Z(cr) 3 -

T

where r is the value of r(r) at t = 0.

(b) For circular orbits in a Bohr atom the orbit radius and the principal quantum
number n are related by r=n 2

a /Z. If the transition probability for transitions from
n—»(n-l) is defined as -dn/dt, show that the result of (a) agrees with that found in

Problem 14.10.

(c) From (a) calculate the numerical value of the times taken for a mu meson of mass

m = 207

m

e to fall from a circular orbit with principal quantum number n x
= 10 to one

with n2 = 4, and n 2
= 1. These are reasonable estimates of the time taken for a mu

meson to cascade down to its lowest orbit after capture by an isolated atom.

17.3 An electron moving in an attractive Coulomb field (—Ze 2
/r) with binding energy e

and angular momentum L has an elliptic orbit,

The eccentricity £ of the ellipse is given by the square root multiplying the cosine.

(a) By performing the appropriate time averages over the orbit show that the secular

changes in energy and angular momentum are

dt 3 c
3 V\ Z2e*m)

dL^ 2
5/2 Ze 4

e
3/2

dt 3 m 1/2
c

3 V

(b) If the initial values of e and L are e and Lo, show that

Calculate the eccentricity of the ellipse, and show that it decreases from its initial value

as (L/L )

3/2

,
showing that the orbit tends to become circular as time goes on.

(c) Compare your results here to the special case of a circular orbit of Problem 17.2.

Hint: In performing the time averages make use of Kepler's law of equal areas

(dt= mr 2
d6/L) to convert time integrals to angular integrals.
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17.4 The Dirac (1938) relativistic theory of classical point electrons has as its equation

of motion,

dr
14 »

where p., is the particle's 4-momentum, t is the particle's proper time, and F*d
is the

covariant generalization of the radiative reaction force (17.8).

Using the requirement that any force must satisfy F
VL
p* = 0, show that

d= 2e
2
fd

2

p. p. (dpv dp
v\~

» 3mc 3 ldr2 mVVdr dr/_

17.5 (a) Show that for relativistic motion in one dimension the equation of motion of

Problem 17.4 can be written in the form,

where p is the momentum in the direction of motion, a dot means differentiation

with respect to proper time, and /(r) is the ordinary Newtonian force as a function of

proper time.

(b) Show that the substitution of p = mc sinh y reduces the relativistic equation to the

Abraham-Lorentz form (17.9) in y and t. Write down the general solution for p(r),

with the initial condition that

p(t) = p at t =

17.6 A nonrelativistic particle of charge e and mass m is accelerated in one-dimensional

motion across a gap of width d by a constant electric field. The mathematical

idealization is that the particle has applied to it an external force ma while its

coordinates lies in the internal (0, d). Without radiation damping the particle, having
initial velocity v , is accelerated uniformly for a time T= (-v /a) + V(u()

2

/«
2

) + (2d/a),

emerging at x = d with a final velocity v 1
= >Jv

2 + 2ad.

With radiation damping the motion is altered so that the particle takes a time V to

cross the gap and emerges with a velocity v[.

(a) Solve the integrodifferential equation of motion, including damping, assuming T
and V large compared to t. Sketch a velocity versus time diagram for the motion with

and without damping.

(b) Show that to lowest order in t,

(c) Verify that the sum of the energy radiated and the change in the particle's

kinetic energy is equal to the work done by the applied field.

17.7 A classical model for the description of collision broadening of spectral lines is that

the oscillator is interrupted by a collision after oscillating for a time T so that the

coherence of the wave train is lost.

(a) Taking the oscillator used in Section 17.7 and assuming that the probability that a

collision will occur between time T and (T+dT) is (ye"T dT), where v is the mean



Prob. 17 Radiation Damping 809

collision frequency, show that the averaged spectral distribution is:

dI(a)) = /„ r + 2v

so that the breadth of the line is (2v+T).

(b) For the sodium doublet at 5893 A the oscillator strength is /= 0.975, so that the

natural width is essentially the classical value, AA = 1.2x 10
4
A. Estimate the Doppler

width of the line, assuming the sodium atoms are in thermal equilibrium at a

temperature of 500°K, and compare it with the natural width. Assuming a collision

cross section of 10
16 cm 2

, determine the collision breadth of the sodium doublet as a

function of the pressure of the sodium vapor. For what pressure is the collision breadth

equal to the natural breadth? The Doppler breadth?

17.8 A single particle oscillator under the action of an applied electric field E„e has a

dipole moment given by

p = a(a>)E„e

(a) Show that the total dipole cross section can be written as

2 77
a,(oj) =— [-ia>a(o>) + c.c.]

c

(b) Using only the facts that all the normal modes of oscillation must have some
damping and that the polarizability a(o>) must approach the free-particle value

(-c
2
/mo>

2
) at high frequencies, show that the cross section satisfies the dipole sum

rule,

(The discussion of Kramers-Kronig dispersion relations in Chapter 7 is clearly

relevant.)





Appendix on Units

and Dimensions

The question of units and dimensions in electricity and magnetism has exercised

a great number of physicists and engineers over the years. This situation is in

marked contrast with the almost universal agreement on the basic units of length

(centimeter or meter), mass (gram or kilogram), and time (mean solar second).

The reason perhaps is that the mechanical units were defined when the idea of

"absolute" standards was a novel concept (just before 1800), and they were

urged on the professional and commercial world by a group of scientific giants

(Borda, Laplace, and others). By the time the problem of electromagnetic units

arose there were (and still are) many experts. The purpose of this appendix is to

add as little heat and as much light as possible without belaboring the issue.

1 Units and Dimensions, Basic Units and Derived Units

The arbitrariness in the number of fundamental units and in the dimensions of

any physical quantity in terms of those units has been emphasized by Abraham,
Planck, Bridgman,* Birge,t and others. The reader interested in units as such

will do well to familiarize himself with the excellent series of articles by Birge.

The desirable features of a system of units in any field are convenience and

clarity. For example, theoretical physicists active in relativistic quantum field

theory and the theory of elementary particles find it convenient to choose the

universal constants such as Planck's quantum of action and the velocity of light

in vacuum to be dimensionless and of unit magnitude. The resulting system of

units (called "natural" units) has only one basic unit, customarily chosen to be

length. All quantities, whether length or time or force or energy, etc., are

* P. W. Bridgman, Dimensional Analysis, Yale University Press (1931).

t R. T. Birge, Am. Phys. Teacher (now Am. J. Phys.), 2, 41 (1934); 3, 102, 171

(1935).
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expressed in terms of this one unit and have dimensions which are powers of its

dimension. There is nothing contrived or less fundamental about such a system

than one involving the meter, the kilogram* and the second as basic units. It

is merely a matter of convenience.*

A word needs to be said about basic units or standards, considered as

independent quantities, and derived units or standards, which are defined in

both magnitude and dimension through theory and experiment in terms of the

basic units. Tradition requires that mass (m), length (I), and time (t) be treated as

basic. But for electrical quantities there has been no compelling tradition.

Consider, for example, the unit of current. The "international" ampere (for a

long period the accepted practical unit of current) is defined in terms of the mass

of silver deposited per unit time by electrolysis in a standard silver voltameter.

Such a unit of current is properly considered a basic unit, independent of the

mass, length and time units, since the amount of current serving as the unit is

found from a supposedly reproducible experiment in electrolysis.

On the other hand, the presently accepted standard of current, the "absolute"

ampere, is defined as that current which when flowing in each of two infinitely

long, parallel wires of negligible cross-sectional area, separated by a distance of

1 meter in vacuum, causes a transverse force per unit length of 2x 10~7

newton/meter to act between the wires. This means that the "absolute" ampere

is a derived unit, since its definition is in terms of the mechanical force between

two wires through equation (A.4) below. t The "absolute" ampere is, by this

definition, exactly one-tenth of the em unit of current, the abampere. Since 1948

the internationally accepted system of electromagnetic standards has been based

on the meter, the kilogram, the second, and the above definition of the

"absolute" ampere plus other derived units for resistance, voltage, etc. This

seems to be a desirable state of affairs. It avoids such difficulties as arose when, in

1894, by Act of Congress (based on recommendations of an international

commission of engineers and scientists), independent basic units of current,

voltage, and resistance were defined in terms of three independent experiments

(silver voltameter, Clark standard cell, specified column of mercury).$ Soon

* In quantum field theory, powers of the coupling constant play the role of other

basic units in doing dimensional analysis.

t The proportionality constant k 2 in (A.4) is thereby given the magnitude k 2 = 1(T
7

in the MKSA system. The dimensions of the "absolute" ampere, as distinct from its

magnitude, depend on the dimensions assigned k2 . In the conventional MKSA system of

electromagnetic units, electric current (I) is arbitrarily chosen as a fourth basic dimension.

Consequently charge has dimensions It, and k 2 has dimensions of mll
2
t

2
. If k2 is taken to

be dimensionless, then current has the dimensions m l/2
V

/2
t'

1

. The question of whether a

fourth basic dimension like current is introduced or whether electromagnetic quantities

have dimensions given by powers (sometimes fractional) of the three basic mechanical

dimensions is a purely subjective matter and has no fundamental significance.

$ See, for example, F. A. Laws, Electrical Measurements, McGraw-Hill, New
York (1917), pp. 705-706.
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afterwards, because of systematic errors in the experiments outside the claimed

accuracy, Ohm's law was no longer valid, by Act of Congress!

At the present time the Systeme International (SI) has mass defined in terms

of the standard kilogram kept in Paris, length in terms of the meter as a certain

number of wavelengths in vacuo of a certain atomic transition in the
86Kr atom,

and time in terms of the second being a certain integer number of periods of a

hyperfine transition in
133

Cs. Because of the extremely high precision with which

the velocity of light can be measured with stabilized lasers (actually the

measurement of both the frequency and the wavelength of the same spectral

line), it is likely that soon the definition of the meter will be in terms of the unit

of time (

133
Cs) and a defined value for the speed of light in vacuo (see the

Introduction for the latest value of c).*

2 Electromagnetic Units and Equations

In discussing the units and dimensions of electromagnetism we will take as our

starting point the traditional choice of length (/), mass (m), and time (t) as

independent, basic dimensions. Furthermore, we will make the commonly

accepted definition of current as the time rate of change of charge (I=dq/dt).

This means that the dimension of the ratio of charge and current is that of time.t

The continuity equation for charge and current densities then takes the form:

To simplify matters we will initially consider only electromagnetic phenomena in

free space, apart from the presence of charges and currents.

The basic physical law governing electrostatics is Coulomb's law on the force

between two point charges q and q', separated by a distance r. In symbols this

law is

The constant k, is a proportionality constant whose magnitude and dimensions

either are determined by the equation if the magnitude and dimensions of the

unit of charge have been specified independently or are chosen arbitrarily in

* For a discussion of the use of quantum phenomena to define standards, see the

article on Quantum Metrology by B. W. Petley in J. Thewlis, ed., Encyclopaedic

Dictionary of Physics, Supplementary Volume 4, pp. 354 ff, Pergamon, Oxford (1971).

t From the point of view of special relativity it would be more natural to give

current the dimensions of charge divided by length. Then current density J and charge

density p would have the same dimensions and would form a "natural" 4-vector. This is

the choice made in a modified Gaussian system (see the footnote (p. 820) for Table 4).

(A.l)

r
(A.2)
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order to define the unit of charge. Within our present framework all that is

determined at the moment is that the product (kiqq') has the dimensions (m/V 2
).

The electric field E is a derived quantity, customarily defined to be the force

per unit charge. A more general definition would be that the electric field be

numerically proportional to the force per unit charge, with a proportionality

constant which is a universal constant perhaps having dimensions such that the

electric field is dimensionally different from force per unit charge. There is,

however, nothing to be gained by this extra freedom in the definition of E, since

E is the first derived field quantity to be defined. Only when we define other field

quantities may it be convenient to insert dimensional proportionality constants

in the definitions in order to adjust the dimensions and magnitude of these fields

relative to the electric field. Consequently, with no significant loss of generality

the electric field of a point charge q may be defined from (A. 2) as the force per

unit charge,

E = kA2 (A.3)

All systems of units known to the author use this definition of electric field.

For steady-state magnetic phenomena Ampere's observations form a basis for

specifying the interaction and defining the magnetic induction. According to

Ampere, the force per unit length between two infinitely long, parallel wires

separated by a distance d and carrying currents I and V is,

The constant k2 is a proportionality constant akin to k x in (A. 2). The dimension-

less number 2 is inserted in (A.4) for later convenience in specifying k2 .. Because

of our choice of the dimensions of current and charge embodied in (A.l) the

dimensions" of k 2 relative to ki are determined. From (A. 2) and (A.4) it is easily

found that the ratio ki/k2 has the dimension of a velocity squared (l
2
t~

2
).

Furthermore, by comparison of the magnitude of the two mechanical forces

(A. 2) and (A.4) for known charges and currents, the magnitude of the ratio ki/k2

in free space can be found. The numerical value is closely given by the square of

the velocity of light in vacuum. Therefore in symbols we can write

^=c 2
(A.5)

k2

where c stands for the velocity of light in magnitude and dimension.

The magnetic induction B is derived from the force laws of Ampere as being

numerically proportional to the force per unit current with a proportionality

constant a that may have certain dimensions chosen for convenience. Thus for

a long straight wire carrying a current I, the magnetic induction B at a distance d



Sect. 2 Appendix on Units and Dimensions 815

has the magnitude (and dimensions)

B = 2k 2a^ (A. 6)

The dimensions of the ratio of electric field to magnetic induction can be found

from (A.l), (A. 3), (A. 5), and (A. 6). The result is that (JE/B) has the dimensions

(l/ta).

The third and final relation in the specification of electromagnetic units and

dimensions is Faraday's law of induction, which connects electric and magnetic

phenomena. The observed law that the electromotive force induced around a

circuit is proportional to the rate of change of magnetic flux through it takes on

the differential form,

VxE+k 3 ^=0 (A.7)
dt

where k 3 is a constant of proportionality. Since the dimensions of E relative to B
are established, the dimensions of k 3 can be expressed in terms of previously

defined quantities merely by demanding that both terms in (A.7) have the same

dimensions. Then it is found that k 3 has the dimensions of a
-1

. Actually, k3 is

equal to a
1

. This is established on the basis of Galilean invariance in Section

6.1. But the easiest way to prove the equality is to write all the Maxwell

equations in terms of the fields defined here:

V • E = 47rkip

VxB = 4uk2aJ+^f
ki dt

VxE+k 3

d̂t

(A.8)

V B =

Then for source-free regions the two curl equations can be combined into the

wave equation,

V>B-(c 3^5=0 (A.9)
Ki dt

The velocity of propagation of the waves described by (A.9) is related to the

combination of constants appearing there. Since this velocity is known to be that

of light, we may write

c
2

(A.10)
k3 k 2a

Combining (A. 5) with (A. 10), we find

k 3 = - (A.ll)
a

and equality holding for both magnitude and dimensions.
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3 Various Systems of Electromagnetic Units

The various systems of electromagnetic units differ in their choices of the

magnitudes and dimensions of the various constants above. Because of relations

(A. 5) and (A.l 1) there are only two constants (e.g., ku k3) that can (and must) be

chosen arbitrarily. It is convenient, however, to tabulate all four constants (ki,

k 2 , a, k3 ) for the commoner systems of units. These are given in Table 1. We note

that, apart from dimensions, the em units and MKSA units are very similar,

differing only in various powers of 10 in their mechanical and electromagnetic

units. The Gaussian and Heaviside-Lorentz systems differ only by factors of 4ir.

Only in the Gaussian (and Heaviside-Lorentz) system does k 3 have dimensions.

It is evident from (A. 7) that, with k3 having dimensions of a reciprocal velocity,

E and B have the same dimensions. Furthermore, with k3 = c
_1

,
(A. 7) shows that

for electromagnetic waves in free space E and B are equal in magnitude as well.

Only electromagnetic fields in free space have been discussed so far. Conse-

quently only the two fundamental fields E and B have appeared. There remains

the task of defining the macroscopic field variables D and H. If the averaged

electromagnetic properties of a material medium are described by a macroscopic

polarization P and a magnetization M, the general form of the definitions of D
and H are

where e
,

ju,
,
A, A' are proportionality constants. Nothing is gained by making D

and P or H and M have different dimensions. Consequently A and A' are chosen

as pure numbers (A = A'= 1 in rationalized systems, A = A' = 47r in unrationalized

systems). But there is the choice as to whether D and P will differ in dimensions

from E, and H and M differ from B. This choice is made for convenience and

simplicity, usually in order to make the macroscopic Maxwell equations have a

relatively simple, neat form. Before tabulating the choices made for different

systems, we note that for linear, isotropic media the constitutive relations are

always written

Thus in (A.12) the constants e and jx are the vacuum values of e and /x. The
relative permittivity of a substance (often called the dielectric constant) is defined

as the dimensionless ratio (e/eo), while the relative permeability (often called the

permeability) is defined as (/ul//ul ).

Table 2 displays the values of e and /x , the defining equations for D and H,

the macroscopic forms of the Maxwell equations, and the Lorentz force equation

(A.12)

(A.13)
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Table 1

Magnitudes and Dimensions of the Electromagnetic Constants for Various

Systems of Units

The dimensions are given after the numerical values. The symbol c stands

for the velocity of light in vacuum (c = 2.998 x 10
10
cm/sec = 2.998 x 10* m/sec).

The first four systems of units use the centimeter, gram, and second as their

fundamental units of length, mass, and time (/, m, t). The MKSA system uses

the meter, kilogram, and second, plus current (I) as a fourth dimension, with

the ampere as unit.

System k 2 a k 3

Electrostatic

(esu) 1 c'
2
(t

2
l~

2

) 1 1

Electromagnetic

(emu) c
2

(/
2r 2

) 1 1 1

Gaussian l c'
2
(t

2
l'

2

) c-\tn

Heaviside-Lorentz j_ cun c-'(tr')

Rationalized Ti-=10-
7
c
2

i i
47T€

MKSA (m/
3r 4r 2

) (mir 2r 2

)

in the five common systems of units of Table 1. For each system of units the

continuity equation for charge and current is given by (A.l), as can be verified

from the first pair of the Maxwell equations in the table in each case.* Similarly,

in all systems the statement of Ohm's law is J= crE, where a is the conductivity.

4 Conversion of Equations and Amounts between

Gaussian Units and MKSA Units

The two systems of electromagnetic units in most common use today are the

Gaussian and jationalized MKSA systems. The MKSA system has the virtue of

overall convenience in practical, large-scale phenomena, especially in engineer-

ing applications. The Gaussian system is more suitable for microscopic problems

involving the electrodynamics of individual charged particles, etc. Since micro-

scopic, relativistic problems are important in this book, it has been found most

convenient to use Gaussian units throughout. In Chapter 8 on wave guides and

cavities an attempt has been made to placate the engineer by writing each key

* Some workers employ a modified Gaussian system of units in which current is

defined by I = (l/c)(dq/dt). Then the current density J in the table must be replaced by cJ,

and the continuity equation is V • J+(l/c)(dp/dt) = 0. See also the footnote below Table 4.
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Table 3

Conversion Table for Symbols and Formulas

The symbols for mass, length, time, force, and other not specifically

electromagnetic quantities are unchanged. To convert any equation

in Gaussian variables to the corresponding equation in MKSA
quantities, on both sides of the equation replace the relevant symbols

listed below under "Gaussian" by the corresponding "MKSA"
symbols listed on the right. The reverse transformation is also

allowed. Since the length and time symbols are unchanged, quantities

which differ dimensionally from one another only by powers of length

and/or time are grouped together where possible.

Quantity Gaussian MKSA

Velocity of light c (no€„r
i/2

Electric field

(potential, voltage)

E(<D, V) V47T€„ E(4>, V)

Displacement D

Charge density

(charge, current density,

current, polarization)

p(q, J, I P) -7=p(q,J,I,P)
\4tt€

Magnetic induction B

Magnetic field H V477jUL H

Magnetization M
V 4<7T

Conductivity a
(7

4tT€

Dielectric constant e
e

e

Permeability
M>

JL

Resistance (impedance) R(Z) 47re R(Z)

Inductance L 4tt€ L

Capacitance C
477€o
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Table 4

Conversion Table for Given Amounts of a Physical Quantity

The table is arranged so that a given amount of some physical quantity, expressed as

so many MKSA or Gaussian units of that quantity, can be expressed as an equivalent

number of units in the other system. Thus the entries in each row stand for the same
amount, expressed in different units. All factors of 3 (apart from exponents) should, for

accurate work, be replaced by (2.99792456), arising from the numerical value of the

velocity of light. For example, in the row for displacement (D), the entry (12ttX 10
5

) is

actually (2.99792x4ttX 10
5
). Where a name for a unit has been agreed on or is in

common usage, that name is given. Otherwise, one merely reads so many Gaussian

units, or MKSA or SI units.

Physical Quantity Symbol Rationalized MKSA Gaussian

Length / 1 meter (m) 10
2

centimeters

(cm)

Mass m 1 kilogram (kg) 10
3 grams (gm)

Time t 1 second (sec) 1 second (sec)
l^1 _Frequency V 1 hertz (Hz) 1 hertz (Hz)

Force rrr 1 newton 1 n5
ID dynes

Work
Energy

U/lW (

T T l

1 joule 10
7

ergs

Power p 1 watt 10
7

ergs sec"
1

Charge <\ 1 coulomb 3X 10 statcoulombs

Charge density p 1 coul m 3
statcoul cm 3

^urreni J1 i ampere ^ainpj

1 amp m
statamperes
statamp cm" 2Current density J 3xl0 5

Electric field tL 1 volt m 5X iu statvolt cm 1

Potential O, V 1 volt 300 statvolt

Polarization P 1 coul m" 2 3xl0 5
dipole

moment
cm" 3

Displacement D 1 coul m 2 12ttx10 5
statvolt cm-1

(statcoul

cm" 2

)

Conductivity C7 1 mho m ' 9xl0 9
sec

1

Resistance R 1 ohm ixlO" 11
sec cm 1

Capacitance C 1 farad 9xlO n cm
Magnetic flux <t>,F 1 weber 10

8
gauss cm 2

or

maxwells

Magnetic induction B 1 tesla 10
4

gauss

Magnetic field H 1 ampere-turn m" 1

oersted

Magnetization M 1 ampere m 1

magnetic

moment cm-3

*Inductance L 1 henry IxlO"
11

* There is some confusion prevalent about the unit of inductance in Gaussian

units. This stems from the use by some authors of a modified system of Gaussian units in

which current is measured in electromagnetic units, so that the connection between
charge and current is Im = (l/c)(dqldt). Since inductance is defined through the induced

voltage V= L(dl/dt) or the energy U = \LV, the choice of current defined in Section 2

820



Sect. 4 Appendix on Units and Dimensions 821

formula in such a way that omission of the factor in square brackets in the

equation will yield the equivalent MKSA equation (provided all symbols are

reinterpreted as MKSA variables).

Tables 3 and 4 are designed for general use in conversion from one system to

the other. Table 3 is a conversion scheme for symbols and equations which allows

the reader to convert any equation from the Gaussian system to the MKSA
system and vice versa. Simpler schemes are available for conversion only from

the MKSA system to the Gaussian system, and other general schemes are

possible. But by keeping all mechanical quantities unchanged, the recipe in

Table 3 allows the straightforward conversion of quantities which arise from an

interplay of electromagnetic and mechanical forces (e.g., the fine structure

constant e
2
/hc and the plasma frequency b)p

2 = Airne
2
1m) without additional

considerations. Table 4 is a conversion table for units to allow the reader to

express a given amount of any physical entity as a certain number of MKSA
units or cgs-Gaussian units.

means that our Gaussian unit of inductance is equal in magnitude and dimensions (t
2
l~

l

)

to the electrostatic unit of inductance. The electromagnetic current Im is related to our

Gaussian current J by the relation Im = (l/c)I. From the energy definition of inductance we
see that the electromagnetic inductance Lm is related to our Gaussian inductance L
through Lm = c

2

L. Thus Lm has the dimensions of length. The modified Gaussian system

generally uses the electromagnetic unit of inductance, as well as current. Then the voltage

relation reads V = (LJc)(dIJdt). The numerical connection between units of inductance

is

1 henry = ^x 10
11
Gaussian (es) unit=10 9 emu
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Index

Abraham-Lorentz equation of motion, 784

Dirac's relativistic generalization of, 808

Abraham-Lorentz model of electron, 786f

difficulties with, 790-1

Absorption, resonant, 286

of radiation, by earth's atmosphere, 424

by oscillator, 804

Absorption coefficient, definition, 286

of ideal gas, 423

of liquid water as a function of frequency,

291

of sea water at low frequencies, 291

Acceleration, relativistic transformation of, 563

Acceleration fields of charge in arbitrary

motion, 657

Action, Lorentz invariance of, 573

Addition of velocities, relativistic, 523

Addition theorem for spherical harmonics, 101

Adiabatic invariance, of flux through particle's

orbit, 588f

of magnetic moment of particle, 590

Admittance, field definition of, 265

relative shunt, of obstacle in wave guide,

variational expression for, 378

Advanced Green function for wave equation,

225

invariant expression for, 610-1

Airy integrals, in terms of Bessel functions,

323,674

Alfve"n velocity, 486

Alfve'n waves, 485

displacement current modifications of, 489

effective index of refraction for, 490

Ampere's law, 174

Angles of incidence, reflection and

refraction, 278

Angular distribution of radiation, from

oscillating dipole, 396, 754

from oscillating quadrupole, 400, 754

from relativistic accelerated charge, 664-5,

675

see also Bremsstrahlung; Multipole radiation;

and Radiation

Angular momentum, electromagnetic, expansion

of in plane waves, 333

electromagnetic, of electric charge and

magnetic monopole, 255

of bound particle, slow change caused by

radiation damping, 785

of multipole fields, 749-51

Angular momentum density of the electro-

magnetic field, covariant form of the

conservation law for, 604, 606

Angular momentum operator, L, 743

commutation relations for, 743

and other vector differential operators,

identities involving, 743, 747, 757, 768

and vector spherical harmonics, 746

Anomalous dispersion, 285

Anomaly, of magnetic moment of electron

and muon, 560

Antenna, as a boundary-value problem, 403

center-fed, linear, 401f

linear, radiation from in terms of multipoles,

763f

radiation resistance of, 397

short, linear, 396

in wave guide, 388-9

Aperture in wave guide or cavity, effective

dipole moments of, 409f

829
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Arrival of a signal in a dispersive medium,

313f

Associated Legendre functions, 98

Attenuation, in resonant cavities, 356f

of magnetohydrodynamic waves, 488

of plasma oscillations, 496

treatment by perturbation of boundary

conditions, 351, 360

in wave guides, 346f

of waves in a conducting medium, 296f

Attenuation coefficient, see Absorption

coefficient

Attenuation length, for visible light in the

atmosphere, 423

Averaging procedure, to define macroscopic

fields, 228

Axial vector, definition of, 248

Azimutha! symmetry, potential problems with,

90

Babinet's principle, 438f

Bessel equation, 103

Bessel functions, 104f

connection with Airy integrals, 323, 674

contour integral representation of, 320

dual integral equations involving, 125, 203

expansions involving, 106, 109, 118, 131,

132,695,697
of first kind,J„, 104

Fourier-Bessel series, 106, 130

Fourier transforms ofK andK
l , 625

integral relations involving, 110, 118, 125,

131, 133,203,444
integral representation of, 131

Kapteyn series of, 107, 501

leading behavior for large and small

arguments, 105, 108, 741

modified, Iv,Kv, 107

Neumann series of, 107

orthogonality, on finite interval, 106, 130

on infinite interval, 110, 131

recursion formulas, 105, 741

Schlomilch series of, 107

of second kind, N^, 104

series for J„, 104

spherical, 740-1

limiting forms, 74

1

Wronskians, 742

of third kind.Hj/^rV2
), 104

zeros of Jm (x), 105

zeros of Jm (x), 356

Beta decay, emission of radiation during, 725f

Bethe-Heitler formula for bremsstrahlung, 71

1

Bethe hole directional coupler, 464

Bibliography, 822

Biot and Savart law, 171

Birefringence of the ionosphere, 293

Bistatic cross section, definition of, 412
Blue sky, Rayleigh's explanation of, 422
BMT equation for spin, 558

Boost parameter, relativistic, 517

Born approximation, in scattering, 421

Boundary conditions, at interface between

media, 17f, 146, 190

Cauchy, Dirichlet, and Neumann, 41-2

for dielectric wave guide, 365

inconsistency in Kirchhoffs approximation

for diffraction, 429

mixed, example of, 121, 203

perturbation of, 35 Of

at surface of, good conductor, 335f

scatterer, in terms of surface impedance,

772

for TE and TM waves in wave guide, 342

Boundary-value problems, Green function

method of solution, 43f

in cylindrical coordinates, 102f

in dielectrics, 147f

image method of solution, 54f

in magnetostatics, methods of solving, 19 If

with multipole fields, 775

in rectangular coordinates, 68f

in spherical coordinates, 84f

in two dimensions, 7 If

see also Diffraction; Resonant cavity; and

Wave guide

Breit interaction, 594

Bremsstrahlung, 702f

angular distribution of, 705-6

as scattering of virtual quanta, 724-5

Bethe-Heitler formula for, 711

classical, 710

frequency spectrum, 710, 711, 717

at low frequencies, 705

in Coulomb collisions, 708f

inner, 727

maximum effective momentum transfer in,

706

nonrelativistic, 711

polarization of, 705

relativistic, 713-5

screening effects in, 716-7

Brewster's angle, 282

Canonical stress tensor, 601

for electromagnetic fields, 602
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Capacitance, definition of, 48

of a circular disc, Cavendish's value for, 23

variational principles for, 52

Cauchy boundary conditions, 41

Causal connection between D and E, 309

Causal Green function, 610

Causality, 225, 306f

consequences in dispersion, 31 Of

in Coulomb gauge, 223, 267

lack of, with radiation reaction, 798

in special relativity, 520

Cavendish's apparatus for inverse square law, 7

Cavity, resonant, see Resonant cavity

Center of mass, of electromagnetic energy, 617

relativistic kinematics of, 568

Characteristic time, in radiation damping, 782

Charge, discreteness of, 5

electric, 28

invariance of, 547-8

quantization of, according to Dirac, 253,

254f

radiation emitted by sudden creation or

disappearance of, in beta processes, 725-6,

727f

in uniform motion in vacuum, fields of, 554

Charge conservation, 169

Charge density, and current density as 4-vector,

549

and current density of charged particle,

covariant expression for, 612

effective magnetic, 193

induced by point charge near conducting

sphere, 56

at sharp corners, edges, and points, 77, 96

at surface of conductor, quantum-mechanical,

24

Charged particle, dynamics, 572f

Lorentz force on, 2, 238, 572

motion, in nonuniform magnetic fields, 584f

in uniform static magnetic field, 581

self-energy of, 789, 793

Cherenkov angle, 639

Cherenkov radiation, 638f

Circular current loop, fields of, 177

Classical electron radius, 681, 790

Classical limit, of angular momentum in

multipole fields, 751

of electromagnetic fields, 3

Clausius-Mossotti relation, 155

Closure, see Completeness

Coherence, of forward scattering of radiation

by quasi-free charges, 684

of scattering by collection of

scattering centers, 417

Coherence volume in transition radiation, 687

Collisions, Coulomb, energy loss in, 619f

radiation emitted during, 702f

Collision time, for fields of relativistic particle,

554

Commutation relations, for infinitesimal

Lorentz transformation generators, 541

of angular momentum operator, L, 743

Complementary screen, definition of, 438

Completeness, of set of orthogonal functions,

66

Completeness relation, 66

for Bessel functions on infinite interval, 131

for complex exponentials, 68, 117

for spherical harmonics, 99

Compton effect, modification of Thomson
scattering by, 682

Conduction in a moving medium, 472, 566

Conductivity, effect of, on fields, 296f

fluid motion with infinite, 472

relation to complex dielectric constant, 287

tensor, in plasma, 500

Conductor, attenuation in, 297

boundary conditions at, 335f

definition of, 49

fields at surface of, 335f

fields inside, 297, 337-8

penetration or skin depth in, 298, 337

surface impedance of, 339

Conical hole or point, fields near, 94f

Conservation, of angular momentum of

particles and fields, 264

of charge and current, 2, 169

of electromagnetic angular momentum, in

covariant form, 604

of energy of particles and fields, 237, 607

of field energy and momentum, in covariant

form, 602

of momentum of particles and fields, 239, 607

Conservation laws for macroscopic media, 240

Constitutive relations, 14

Continuity, at interface, of tangential E and

normal B, 19-20

Continuity equation, for charge and current,

2, 169

in covariant form, 549, 606

for electromagnetic energy flow, 237

for fluid, 471, 491

Contraction of length, see FitzGerald-Lorentz

contraction

Contravariant vector, definition of, 533

Convective derivative, in Faraday's law, 212
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in fluid flow, 471

Conversion table, for equations in Gaussian

and MKSA units, 819

for given amounts in Gaussian and MKSA
units, 820

Correspondance principle of Bohr, 696

Coulomb gauge, definition of, 221

and causality, 223, 267

Coulomb's law, 27

Covariance, of electrodynamics under Lorentz

transformations, 547f

of physical laws under Lorentz transforma-

tions, 533

Covariant expressions, for electromagnetic

energy and momentum, 79 If

for equation of motion for spin, 558

for Lorentz force equation, 551, 572

for Maxwell equations, 551

for radiative reaction force, 808

Covariant vector, definition of, 533

Critical frequency, as upper limit of frequency

spectrum of radiation emitted by

rclativistic particle, 667

Critical opalescence, 425f

Cross section, Bethc-Heitler, for brems-

strahlung, 71

1

classical, for bremsstrahlung, 710

classical particle scattering, relation to

impact parameter, 644

definition of, for scattering of electro-

magnetic waves, 412, 680

dipole sum rule for, 805-6

Rutherford, 644, 708

for scattering, and absorption of radiation by

harmonically bound charge, 803-5

by large conducting sphere, 451

by small conducting sphere, 416, 774

by small dielectric sphere, 413

for small-angle particle scattering, in screened

Coulomb field, 645, 716

Thomson, 681

total, for scattering of fast particles by atoms,

647

see also Bremsstrahlung; Scattering

Current, absolute and international units of,

812,814 .

Current density, continuity equation for, 2,

169

force on, in a magnetic field, 173

magnetization caused by, 181

Current flow, in a plasma column, 479f

near surface in good conductor, 339
Current loop, circular, vector potential

and fields of, 177f

force between two, 172

Curvature of magnetic field lines, and associated

particle drift velocity, 587

Cutoff frequency, in wave guide, definition of,

344

Cutoff modes in wave guide, 344, 370

Cylinder functions, see Bessel functions

Cylindrical coordinates, boundary-value

problems in, 102f

delta function in, 116

Green function in, 118, 131

Laplace equation in, 102

separation of variables in, 103

waves in, 339f

Damping, of magnetohydrodynamic waves,

488

of oscillations in cavity, 357

of plasma oscillations, 495

radiative, of oscillator, 800

see also Radiative reaction

Darwin Lagrangian, 593f

Debye screening distance, 494f

in energy loss in plasma, 642

Debye wave number, 494

Decay, of particle, relativistic kinematics of,

examples, 567

of pi mesons, time dilatation in, 520

Delta function, 29-30

in arbitrary coordinates, 50, 111

charge densities in terms of, 30, 1 14, 115

current densities in terms of, 177, 183, 401,

764

integral representation for, 68, 110, 117,

120, 131

relation to Laplacian of 1/r, 40

three-dimensional, in cylindrical coordinates,

116

in spherical coordinates, 1 1

1

Density effect in energy loss, 632f

Density fluctuations, as cause of scattering,

425f

Diamagnetism, definition of, 16

Diaphragm, in wave guide, 375f

Dielectric constant, for Alfve'n waves, 490
analytic properties of, 309f

of conductor, 287

definition of, 146

dispersion relations for, 311

high-frequency limit of, 288

of ionosphere, 293

model for, 285

f
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of plasma, 288

relation to forward scattering amplitude, 457

and signal propagation, 3 1 3f

Dielectrics, 143f

anisotropic, waves in, 330

boundary conditions, 147f

boundary-value problems with, 147f

electrostatic energy in, 158

method of images in, 147-9

Dielectric wave guide, 364f

Diffraction, Babinet's principle in, 438-9

by circular aperture, 442f

comparison of scalar and vector approxima-

tions, 446

Fresnel and Fraunhofer, 441

by half plane, 465

Kirchhoff approximation, 429

obliquity factor in, 431

Rayleigh-Sommerfeld approximation, 431

scalar Huygens-Kirchhoff theory of, 427f

by small apertures, 446-7, 465, 467

Smythe's vector theorem for, 438

Smythe-Kirchhoff approximation, for

circular aperture, 442

by sphere, in short wavelength limit, 447f

vectorial theory of, 435f

Diffusion of magnetic fields in magnetohydro-

dynamics, 473

Dilatation of time, 520

Dimensions, and magnitudes, of electro-

magnetic quantities, 817

of physical quantities, arbitrariness of, 811-2

Dipole approximation, in energy loss calcula-

tion, 623

Dipole fields,

of conducting sphere in uniform field, 6

1

of dielectric sphere in uniform field, 150-1

electrostatic, 138, 141

of electrostatic dipole layer, 36-8

of magnetized body, 193, 195

magnetostatic, 182, 184

oscillating electric, 395

oscillating magnetic, 398

scattered, by small scatterer, 412

Dipole moment, approximation for coupling

of source to modes in guide, 407

effective, of aperture, 408, 4 1

1

electrostatic, 137

energy of, in external field, 142, 186

induced, 144, 285

interaction energy of two, 143

magnetostatic, 181

force on, 185

of current loop, 178, 182

relation of, to particle's angular momentum,
183

torque on, 186

oscillating electric, 395

oscillating magnetic, 398

use of induced static, in scattering at long

wavelengths, 41 If

Dipole sum rule, for total radiative cross

section, 805, 809

Dirac delta function, see Delta function

Dirac magnetic monopole, 253

Dirac quantization condition for electric

charge, 253

Dirac relativistic equation of motion with

radiative reaction, 808

Dirichlet boundary conditions, definition of,

42

Discontinuity, at interface, of normal D and

tangential H, 19-20, 36

formulas for moving interface, 21

of potential, across dipole layer, 38

in wave guide, 376f

Discreteness, of charge, 5

of number of photons, 4

Dispersion, and causality, 307f

anomalous, 285

in dielectrics, 284f

in ionosphere, 295

in plasmas, 289, 494

and propagation of pulse, 299f

in water, 290-1

Dispersion relations, Kramers-Kronig, 311

Displacement, electric, D, 145

Displacement current, 218

Dissipative effects, see Absorption; Attenua-

tion; and Damping

Divergence, in four dimensions, 536

Divergence theorem, 32

Doppler shift, Galilean, 509

relativistic, 521-2

transverse, 522

Drift, E X B, of particle in crossed electric and

magnetic fields, 582

of guiding center, for particle in nonuniform

magnetic fields, 584f

Drift velocity, gradient, 585

curvature, 587

Dual field strength tensor, 550

Dual integral equations, involving Bessel

functions, 124, 203

Duality transformation of fields and sources,

252
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Dyadic Green function, for obstacles in wave

guides, 379

Dyadic notation, 265

Dynamics of relativistic charged particles in

external fields, 572f

of spin of relativistic particle in external

fields, 556f

Earth-ionosphere system as resonant cavity,

360f

Eigenfrequency, of resonant cavity, 354

Eigenfunctions, 119

in cylindrical cavity, 353f

expansion of Green function in terms of,

120

for fields in wave guides, 343

in rectangular guide, 346, 371

for wave equation in a rectangular box, 120

in wave guide, orthonormal expansion of,

370

Einstein's postulates of relativity, 506-7

Einstein-Smoluchowski formula, 426

Elastic scattering, of fast particles by atoms,

643f

Electric charge, discreteness of, 5

invariance of, 547-8

Electric dipole, see Dipole fields, Dipole

moment
Electric displacement, definition of, 14, 145,

816

Electric field, E, definition of, 28, 814

derivable from potentials, 39, 219

near corners and edges, 77

relativistic transformation of, 552

Electric multipole fields, see Multipole fields

Electric permittivity tensor, 15, 146

Electric polarization, 14, 144

Electric susceptibility, definition of, 146

"Electric" waves, 342, 745

Electromagnetic energy and momentum,
covariant expression for, 793-5

Electromagnetic energy density, 236, 241

Electromagnetic fields, explicit Lorentz

transformation of, 552

of localized oscillating source, general

properties of, 39 If

multipole expansion of, 746

in wave guide, orthonormal expansion of, 372

Electromagnetic field-strength tensor, 550
Electromagnetic momentum, 238

Electromagnetic momentum density, 239

in macroscopic media, 240

Electromotive force, 210

Electron, charge of, 5

classical model of, 786f

difficulties with, 790-1

radius of, classical, 681, 790

Electron capture by nuclei, radiation emitted

during, 727f

Electrostatic potential, definition of, 34

Electrostatic potential energy, 45

Elliptic integrals, use of, 131, 178, 208

Energy, electromagnetic, covariant expression

for, 793-5

of bound particle, slow change of, caused by

radiation damping, 785

of charge distribution in external electric

field, 142

of current distribution in external magnetic

field, 186

of dipoles in external fields, 142, 186

electromagnetic field, 237

in macroscopic media, 241

electrostatic, in dielectric media, 158

electrostatic potential, 45

hyperfine interaction, 187

magnetic, 215-6

of magnetically permeable body, 216

relativistic, of a particle, 530

self-, 47, 789

Energy conservation between particles and

fields, 236f, 606-7

Energy density, electromagnetic, 236

electromagnetic, as (0,0) element of

symmetric stress tensor, 605

electrostatic, 46

Energy flow, 237

in macroscopic media, 240

velocity of, 299, 301

in wave guide, 346f

Energy-level shift due to radiative reaction, 799f

Energy loss, Bethe's quantum-mechanical

formula for, 629

Bohr's classical formula for, 622, 626

density effect in, 63 2f

in electronic plasma, 64 If

fluctuations in, 631

by magnetic monopole, 653

radiative, in collisions, nonrelativistic, 712

in collisions, relativistic, 718

per revolution in circular orbit, 661

Energy-momentum 4-vector, 531

Energy radiated, by accelerated charge, angular

and frequency distribution of, 670-1

by accelerated magnetic moment, angular

and frequency distribution of, 672
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Energy transfer, in Coulomb collision, 619f

to harmonically bound charge, 623

reconciliation of classical and quantum, 627

Equations of motion with radiative reaction,

784, 785, 796, 808

Ether, 504

Ether drift experiments, 511-2

Evanescent modes in wave guide, 344

Excitation of waves in wave guide, by localized

source, 375

Expansion, of arbitrary fields in wave guide

in normal modes, 372

of circularly polarized vector plane wave in

multipole fields, 76 7f

of Green function, e^^/R, in spherical waves,

742

|x - x' |" 1

, in cylindrical coordinates, 118,

131

of |x - x' I"
1

, in plane waves, 1 20

in spherical coordinates, 92, 102

of scalar plane wave, in spherical harmonics,

767-8

Expansions, see Orthonormal expansions

Extinction coefficient, see Absorption

coefficient

Extinction theorem of Ewald and Oseen, 512

Faltung theorem of Fourier integrals, 307

Faraday's law of induction, 210

in differential form, 213

for moving circuit, 212

Ferromagnetism, definition of, 16

Field, electric, see Electric field

magnetic, see Magnetic field

Fields, of charge in arbitrary motion, 657

of charge moving uniformly, in dielectric,

Fourier transforms of, 634

in vacuum, 554

in vacuum, Fourier transforms of, 625, 688

of relativistic charge, equivalence of, to

pulse of radiation, 554, 719f

Field-strength tensors, 550

FitzGerald-Lorentz contraction hypothesis,

506

Fizeau's experiment, 506, 564

Flow of viscous conducting fluid between

parallel plates in crossed fields, 475f

Fluctuations, in density of fluid, and scattering,

425-6

in energy loss, 631

Fluid flow, in magnetohydrodynamics, 475f

Force, between charge and image charge, 57,

60, 79

on charged surface of conductor, 48

Coulomb's law of, 27

between current-carrying circuits, 172

on current distribution in magnetic field,

184f

on dielectric body, 161

Lorentz, 2, 238, 572

Lorentz transformation properties of, 579

on magnetically permeable body, 217

on magnetic dipole in nonuniform field, 185

magnetic-like, from Lorentz transformation,

578

on permanent magnets, 207-8

between point charge and sphere, 57, 59, 60

radiative reaction, 784, 789

between two parallel wires, 173, 814

Force density, 607

Force equation, Abraham-Lorentz, 784

in covariant form, 551, 572

for fluid, 471, 475

with radiative reaction, Dirac's, 808

integrodifferential, 796f

Forward scattering amplitude, relation of, to

the total cross section, 454

relation to dielectric constant, 457

4-current, 549

4-divergence, 536

4-Laplacian, 536

4-tensors of rank k, 533-4

4-vector, contravariant and covariant,

definitions of, 533

4-vector potential, 549

4-velocity, of particle, 524

Fourier integrals, 68, 223, 306

Fourier series, 67

summation of, 73

Fourier-Bessel series, 106, 130

Fourier transform, of exponentially damped

wave, 357, 800

of fields of charge in uniform motion, in

dielectric, 634

in vacuum, 625, 688

of wave packet, 300, 303, 313

Fraunhofer diffraction, definition of, 441.

See also Diffraction

Freezing in of lines of force, 473, 478-9

Frequency distribution of radiation, emitted by

electron in classical equivalent of

hydrogen atom, 696-7

emitted by extremely relativistic charge,

qualitative aspects of, 666-7

emitted by relativistic charge in instantaneously

circular motion, 677-8
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explicit formulas for, 670-2

Frequency shift, Aw, in resonant cavity, 360

of resonant line of oscillator with radiation

damping, 799

Frequency spectrum of transition radiation,

691-2

Fresnel diffraction, definition of, 441. See

also Diffraction

Fresnel formula for speed of light in moving

media, 564

Fresnel formulas for reflection and refraction,

281-2

Fresnel's rhombus, 284

Galilean invariance, 504

and Faraday's law, 211

of phase of wave, 508

Galilean relativity, 504-5

Galilean transformation of time and space

coordinates, 504

Gauge, Coulomb, 221

Coulomb and causality, 223, 267

Lorentz, 221

radiation or transverse, 221

Gauge invariance, 220

Gauge transformation, 176, 220

and particle Lagrangian, 575

and Schrodinger equation, 259

Gaussian pillbox, 18

Gaussian units, basic electrodynamic equations

in, 818. See also Units

Gauss's law, 30-32

differential form of, 33

g-factor, of electron, 542

Gradient, contravariant and covariant in

special relativity, 535-6

of electric field, and quadrupole interaction,

142-3

of magnetic induction, and associated

particle drift velocity, 585

and force on dipole, 185

in rectangular, cylindrical, and spherical

coordinates, end papers

in spherical form with L, 768

Green function, definition of, in electro-

statics, 43

eikR/R spherical wave expansion of, 742
for Helmholtz wave equation, 224

invariant, for wave equation, 608f

retarded and advanced, 225, 610-1

for scalar diffraction by plane screen, 430
symmetry of, 44

for time-dependent wave equation, 224

Green function in electrostatics, 43

for concentric spheres, 113

for cylindrical box, 134

examples of use of, 63, 113f, 132, 134

expansion of, in cylindrical coordinates, 116f

in Legendre polynomials, 92

in eigenfunctions, 119

in spherical coordinates, 11 Of

for rectangular box, 121

for sphere, 62

for two-dimensional problems, 82, 118, 133

for two parallel grounded planes, 131

Green function in wave guide, for calculating

effects of obstacles, 379, 383

Green's first identity, 41

Green's reciprocation theorem, 51

Green's theorem, 41

use of, in diffraction, 428

vector equivalent of, 432f

Ground, concept of, 23

Group velocity, 301

in electronic plasma, 495

and phase velocity, 302

in wave guide, 348

Guides, see Wave guide

Gyration frequency, of particle in magnetic

field, 293, 581

Gyration radius, 581

Gyrotropic media, phenomenological expres-

sion for polarization in, 251

Half-width, of resonant line shape, 800

relation to Q value of resonant cavity, 357

Hall effect, phenomenological expression for,

266

Hamiltonian, of charged particle in external

fields, 575

Hamiltonian density for fields, as (0,0)

component of canonical stress tensor,

601

Hankel function of order v, 104. See also

Bessel function

Hankel transform, 110

Hartmann number, 477

Helical path of particle in magnetic field, 581

synchrotron radiation associated with, 695-6

Helicity, connection to circular polarization,

274

Hemispheres, at different potentials, 63f, 91

High-frequency behavior of dielectric constant,

289

Hole, circular, in conducting plane, electric

fields near, 126
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effective dipole moments of, 125, 204,

409-11

magnetic fields near, 204

Hydrodynamics, see Magnetohydrodynamics

Hyperfine interaction energy, 187

Hysteresis, magnetic, 189

Idealizations in electromagnetism, 22-5

Image charges, see Images

Images, method of, 54f

for conducting sphere in uniform field,

60-2

for dielectrics, 147f

for magnetically permeable media, 207

for point charge near conducting sphere,

55-6

Impact parameter, and scattering angle, 620

maximum effective, in Coulomb collisions,

621

minimum effective, in Coulomb collisions,

620

in method of virtual quanta, 720, 724

quantum-mechanical, 628

Impedance, field definition of, 24 If

relative shunt, of diaphragm in wave guide,

variational principle for, 379

surface, 339, 772

of transverse flat strip in wave guide, 380f

wave, in wave guide, 343

Incoherent scattering from collection of

scatterers, 418

Index of refraction, 278

analytic properties of, 314-5

dispersion relations for, 315

effective, for Alfvdn waves, 490

and phase and group velocities, 302

relation to forward scattering amplitude, 457

of water, as function of frequency, 290-2

see also Dielectric constant

Inductance, 261

high-frequency compared to low-frequency,

298

and magnetic energy, 261

mutual, of two current loops, 263

self, of transmission lines, 262

units of, 820

Induction, Faraday's law of, 21 Of

Infinitesimal generators of the Lorentz group,

541

Inhomogeneous plane wave, 272, 298

Inner bremsstrahlung, 727

Instabilities of a pinched plasma column, 482f

Integral equations of the first kind, dual, 124

Interaction energy, see Energy

Interface between two media, boundary

conditions at, 17f

Internal field, at position of molecule in

dielectric, 152

Invariance, see Adiabatic invariance, Relativistic

invariance

Inverse distance between two points, expansion

in Bessel function, 118

expansion, in Legendre polynomials, 93

in spherical harmonics, 102

Fourier integral representation of, 120

Inverse square law, precise verification of, 5f

Inversion, see Spatial inversion

Ionosphere, propagation of waves in, 292f

Irrotational vector, definition of, 222

Jacobian, in Lorentz transformation of 4-

dimensional volume element, 549

in transformation of coordinates for delta

function, 111

Kinematics, relativistic, examples of, 567f

notation for, 560

Kirchhoff diffraction, see Diffraction

Kirchhoff's integral, 429

vector equivalents of, 432, 434

Klein-Nishina formula, 682

effects of, in method of virtual quanta, 725

Kramers-Kronig relations, 311-2, 331-2

Lagrangian, Darwin, for charged particle

interactions, 595

for electromagnetic fields, 595f

Proca, for massive photons, 597f

for relativistic charged particle in external

fields, 574

Lagrangian density, for continuous fields, 596

Lamb shift, 801

Landau damping, 495

Laplace equation, 39

boundary conditions for, 42

in cylindrical coordinates, 102f

general solution of, in cylindrical coordinates,

109-10

in rectangular coordinates, 70

in spherical coordinates, 100

in two-dimensional coordinates, 76, 81

in rectangular coordinates, 68f

in spherical coordinates, 84

in two-dimensions, Cartesian coordinates, 71

in two-dimensions, polar coordinates, 75

uniqueness of solution of, 42
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Laplacian operator, and angular momentum
operator, 743

in four dimensions, 536

Larmor formula for radiated power, 659

relativistic generalization of, 660

Legendre differential equation, 85

Legendre functions, associated, 98

asymptotic form for large v, 96

of order i\ 95

Legendre polynomials, 87

expansion of inverse distance in, 92

explicit forms of, 87

integrals of products of, with powers of

cos0, 90

orthogonality of, 87

recurrence relations for, 90

Rodrigues's formula, 87

see also Spherical harmonics

Lenz's law, 211

Level shift, of oscillator frequency, from

radiation damping, 798f

Lie'nard's generalization of Larmor power

formula, 660

Lie'nard-Wiechert potentials, 654f

Lifetime, of multipole transitions, 759f

of pi mesons in relativistic motion, 520

Light, velocity of, 3

Light cone, 518

Linear superposition, of electric fields, 27-$

of plane waves, 270, 299f

of potentials, example of, 59

validity of, 10

Line breadth, of oscillator with radiation

damping, 798f

Lines of force, freezing in of, magnetic, 473

Localized source, in wave guide, 405f. See

also Dipole; Multipole; and Multipole

moment
Longitudinal oscillations in a plasma, 492-3

Longitudinal vector, definition of, 222

Lorentz condition, 220

in covaiiant form, 549

Lorentz force, 2, 238, 572

in covariant form, 551

density, 607

Lorentz gauge, 221

Lorentz group, 532

infinitesimal generators of, 541

Lorentz invariance, of electric charge, experi-

mental evidence for, 548

of radiated power, 660
see also Relativistic invariance

Lorentz invariant differential photon

spectrum, 703, 715

Lorentz-Lorenz relation, 155

Lorentz transformation, 516

of electric and magnetic fields, 552

explicit matrix form of, 540-1

of 4-vector, 518

generators of, S and K, 539

matrix representation of, 536f

noncommutativity of, 541

proper and improper, definitions of, 537

of time and space coordinates, 516-7

see also Relativistic transformation

Loss, see Power loss

Macroscopic averages, 227-9

Macroscopic electromagnetic quantities, 232-3

Macroscopic equations, derivation of, for

electrostatics, 143f

for magnetostatics, 187f

Macroscopic fields, 13, 229, 232, 234

Macroscopic Maxwell equations, 13, 218

derivation of, 226f.

Magnet, permanent, 16, 168

energy of, in external field, 186

method of treating magnetostatic boundary-

value problems involving, 192

Magnetic dipole, see Dipole fields; Dipole

moment
Magnetic charge and current densities, 252

transformation properties of, 253

Magnetic diffusion, 473

Magnetic field, H, boundary conditions on,

20, 190

definition of, 14, 188, 234

see also Magnetic induction

Magnetic flux density, see Magnetic induction

Magnetic induction, B, boundary conditions

on, 19, 190

of circular loop, 177f

of current element, 169

definition of, 168, 173

inadequacy of derivation from Coulomb's

law and special relativity only, 578f

of long straight wire, 171

of magnetized sphere, 195

of nonrelativistic moving charge, 170, 554

relativistic transformation of, 552

Magnetic mirror, 185,519-2

Magnetic moment, adiabatic invariance of, 588f

anomalous, of the electron and muon, 560

density, 181

of electron, 542

force on, in nonuniform magnetic field, 185
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radiation emitted, in disappearance of, 730-1

when in motion, 672

radiation from time-varying, 397f, 75 8f

scattering by induced, 412,415

torque on, 168, 186

see also Dipole moment
Magnetic monopole, 25 If

and quantization of electric charge, 254f

vector potential of, 258, 267

Magnetic multipole fields, see Multipoles,

Multipole fields

Magnetic permeability, 15, 189

Magnetic polarization, 14

Magnetic pressure, 475

Magnetic scalar potential, 175, 192

Magnetic shielding, 199f

Magnetic tension, 475

Magnetic viscosity, 474

"Magnetic" waves, 342, 745

Magnetization, definition of macroscopic, 188,

233

of current density distribution, 181

divergence of, as effective magnetic charge

density, 193

effective current density of, 188

radiation by time-varying, 671-2, 755f

Magnetized sphere, 195f

in external field, 197f

Magnetohydrodynamics, 470

basic equations of, 471-2

fluid flow in, 475f

Magnetohydrodynamic waves, 485f

effect of finite conductivity and viscosity,

488

with displacement current, 489

Magnetosonic waves, 486

Magnetostatics, basic equations of, 175

methods of solving boundary-value problems

in, 191f

Mass of photon, consideration of, using Proca

Lagrangian, 597f

impossibility of measuring, using lumped

circuits, 599

limits on, 5-6

modification of the earth's dipole field by,

617

Maximum and minimum impact parameters,

see Impact parameters

Maximum and minimum scattering angles, in

elastic scattering by atoms, 645-6

Maxwell equations, 2, 218

in covariant form, 551

derived from a Lagrangian, 597

in different systems of units, 818

macroscopic, 14, 218

plane wave solutions of, 269f

spherical wave solutions of, 744f

Maxwell stress tensor, 239

in macroscopic media, 241

Mean-square angle of scattering, 648

Mean-value theorem, for electric field, 141

for electrostatic potential, 51

for magnetic field, 184

Metals, actual distribution of charge at surface

of, 24

ultraviolet transparency of, 289

Method of Images, see Images

Metric tensor of special relativity, 534

Michelson-Morley experiment, 506

modern successors to, for detection of ether

drift, 508f

Microwaves, see Diffraction; Resonant cavity;

and Wave guide

Mirror, magnetic, 592

Mixed boundary conditions, 42, 121, 203

MKSA units, see Units

Modes, in cylindrical cavity, 35 3f

HE, in dielectric wave guide, 366

normal, in wave guide, 369f

propagating and cutoff or evanescent, 344

TE and TM, in wave guide, 342

in spherical geometry, definition of, 361

in wave guide, 344

Molecular multipole moments, 231, 233

Molecular polarizability, 154

models for, 155f

Momentum, canonical, for particle in external

fields, 574

conservation of, between particles and

fields, 239, 607

electromagnetic, covariant expression for,

793-5

relativistic, of particle, 528

Momentum density, electromagnetic, 239

electromagnetic, as part of covariant

symmetric stress tensor, 605

in macroscopic media, 240

Momentum transfer, in Coulomb collision, 619

maximum effective, in bremsstrahlung, 706

minimum effective, in bremsstrahlung, 713,

716

Monopole radiation fields, absence of, 394

Mossbauer effect, use in ether drift experi-

ments, 508

use to detect transverse Doppler shift, 522

Motion, of charged particle in uniform static
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magnetic field, 581. See also Particle

motion.

Moving charge, fields of, 554, 657

Moving circuits and law of induction, 211-2

Multiple scattering of particles by atoms,

647f

Multipole, electrostatic, 137

electrostatic, Cartesian, 137-8

spherical, 137

magnetostatic, 180f

radiating, general aspects of, 39 If

time-varying, 39 If, 755f

see also Dipole moment; Magnetic moment;

and Multipole moment
Multipole expansion, of electromagnetic

fields, 744f

of electrostatic potential, 136f

of Green function for wave equation, 742

of interaction energy, 142

of localized source in wave guide, 405f

of radiation by linear antenna, 763f

of scalar plane wave, 767

of vector plane wave, 767f

Multipole fields, 744f

angular momentum of, 749-51

boundary-value problems using, 775

connection to sources, 755f

electric and magnetic, 745

energy of, 749

expansion of arbitrary source-free fields in,

746

near-zone properties of, 747

parity properties of, 752

radiation-zone properties, 748

use of, in description of scattering, 769f

Multipole moment, electrostatic, 137-8

estimates of, for radiating atoms and nuclei,

759

of linear center-fed antenna, 765

magnetostatic, 180f

of oscillating source, exact expressions for,

757

long-wavelength approximations for, 758

see also Dipole moment; Magnetic moment;

and Quadrupole moment
Multipole radiation, angular distributions of,

752f

by atoms and nuclei, 758f

by linear center-fed antenna, 763f

lowest order, elementary discussion of, 394f

quantum-mechanical selection rules for, 751

sources of, 755f

total power radiated in, 755

Neumann boundary conditions, definition of,

42

use of, in generalized Kirchhoff diffraction

theory, 430

Neumann function, 104. See also Bessel

functions

Nonlinear electrodynamic effects, 10-1

Nonlinear optics, 17

Nonlocality, in time, in connection between

D and E, 306

in time and space, 15, 308

Normalization of fields in wave guide, 371

Normal mode expansion of fields in wave

guide, 369f

Nuclear quadrupole moment, 143

interaction energy of, 142, 164, 165

Nuclei, estimates of multipole transition rates

in, 760f

Obliquity factor in diffraction, 431

Obstacles in wave guides, 375f

Ohm's law, 14, 287, 339

covariant generalization of, 566

generalization of, for plasma in magnetic

field, 500

in moving medium, 472

nonlocality of, in conductors at high

frequencies, 308

validity of, in magnetohydrodynamics and

plasma physics, 469

Operator relations, see Gradient; Laplacian

Optical theorem, proof of, 45 3f

Orthogonal functions and expansions, 65

Orthogonality, of Bessel functions on finite

interval, 106, 130

of Bessel functions on infinite interval, 110

of complex exponentials on infinite interval,

68

of Legendre polynomials, 87

of sines and cosines, 67

of spherical harmonics, 99

of vector spherical harmonics, 746

Orthogonal transformations, 245

Orthonormal, definition of, 65

Orthonormal expansions, 65

Fourier, on finite interval, 67

on infinite interval, 68

Fourier-Bessel, 106, 130

on infinite interval, 110

Legendre, 88

spherical harmonic, 100

vector, for fields in wave guide, 370-1

Oscillations, see Plasma oscillations;
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Radiation; and Waves

Oscillator, absorption of energy by, 625

in model for dielectric constant, 155, 285

with radiation damping, 798

scattering and absorption of radiation by,

801f

Oscillator strength, 285, 626

Paramagnetism, definition of, 16

Parity, of multipole fields, 752. See also

Spatial Inversion

Parseval's theorem, example of, 668-9

Particle motion, in crossed E and B, 582f

in dipole field of earth, 615

in external fields, 581f

in inhomogeneous B, 584f, 588f

with radiation reaction, 783f, 796f

in uniform static B, 581

Penetration depth, see Skin depth

Perfect conductor, definition of, for magnetic

fields, 201

Permanent magnetization, 16

Permeability, incremental, 190

magnetic, 15, 189

Permittivity, electric, 15

Perturbation of boundary conditions, method

of, 350f

Phase difference, and elliptic polarization, 274

between E and B in conductor, 297, 337

Phase of plane wave, relativistic invariance of,

508,521

Phase shift for scattering by sphere, 773

Phase velocity, and group velocity, 301-2

of Alfven waves, 486, 489

and group velocity, in wave guide, 348

of whistlers, 295

of plane waves, 270

of plasma oscillations, 495

in wave guide, 344

Photon, angular momentum of multipole, 751

Photon mass, limits on, 5-6

treatment of, using Proca Lagrangian, 597f

Photon spectrum, emitted during collisions,

703

Lorentz-invariant expression for, 703

see also Bremsstrahlung; Radiation

Pinch effect, 479f

instabilities in, 482f

Plane wave, electromagnetic, 269f

in conducting medium, 296f

inhomogeneous, 272, 298

magnetohydrodynamic, 486

in plasma, 493-4

reflection and refraction of, 278f

scalar, propagation in dispersive medium,

299, 303

expansion of, in spherical harmonics, 767

vector, expansion of, in spherical harmonics,

769

Plasma, confinement of, by external fields, 484

by magnetic mirrors, 592

by self-fields, 479f

definition of, 470

dielectric constant of, 642

energy loss in, 641-3

instabilities in column of, 482f

longitudinal waves in, 492

transverse waves in, 289, 493

Plasma frequency, and first precursor, 321

of dielectric medium, 288, 321

of electronic plasma, 492

sum rule for, 312

Plasma oscillations, 490f

and Boltzmann equation, 500-1

in external magnetic field, 292f, 501

Landau damping of, 496

longitudinal, 492

transverse, 493

Poincare" stresses, 792-3

Poisson equation, 39

equivalent integral equation, 41

examples of solution of, 114, 115

formal solution with Green function, 43f

uniqueness of solution of, 42

see also Green function in electrostatics

Polarizability, electronic, 156, 286

effective, of aperture in conducting plane,

410

models of, 155f

molecular, 155f

orientation, 157

Polarization, charge density, 145, 148

current density from time-varying, 671

macroscopic, electric, 14, 144, 232

magnetic, 14, 188, 233

magnetic, effective charge density of, 193

surface-charge density, 148, 151

transition radiation from, 685

of vacuum, 12-13

see also Magnetization

Polarization effects in energy loss, 632f

Polarization of radiation, by reflection, 282

from accelerated charges, 659, 671

in bremsstrahlung, 705

Cherenkov, 639

circular, elliptical, linear, 273-4
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left- and right-handed, definition of, 274

from multipoles, 396, 398, 752

scattered by atmosphere, 425

scattered by small conducting sphere, 416

scattered by small dielectric sphere, 414

Stokes parameters for description of state

of, 275-7

from synchrotron, 675, 698

in Thomson scattering, 680

X-ray, 705

Polarization vectors, 273, 275

Polar substances, 157

Polar vector, definition of, 248

Potential, electrostatic, 34

of dipole layer, 37

expansion, in Bessel functions, 109, 110

in Legendre polynomials, 90

in spherical harmonics, 100

of line charge in cylindrical coordinates, 118

near small hole in conducting plane, 127

of point charge, between grounded planes,

131-3

in cylindrical box, 134

expansion in cylindrical coordinates, 118

expansion in spherical coordinates, 92, 102

Fourier integral representation of, 1 20

in rectangular box, 120-1

in rectangular box, 70

scalar and vector, for time-varying fields, 219

in two dimensions, 71f

vector, see Vector potential

Potential energy, see Energy

Power, instantaneous radiated, by accelerated

charge, 659

radiated by, charge in arbitrary periodic

motion, 695

charged particles in linear and circular

accelerators, 661

linear antenna, angular distributions of,

402-3,766

(/, m) multipole, 755

oscillating dipole, 396, 754

oscillating quadrupole, 399400, 754

Power flow, see Energy flow

Power loss, because of finite conductivity, 339

in resonant cavity, 356f

in wave guide, 346f

per unit area, at surface of conductor, 339

see also Attentuation

Poynting's theorem, 236

covariant generalization of, 602-3

for harmonic fields, 24 If

Poynting vector, 237

for plane wave, 272

in wave guide, 347

Precession, of spin, Thomas, 54 If, 559

Precession frequency, of particle in magnetic

field, 293,581

Precursor, Brillouin (second), 319, 322

experimental observation of, 325

Sommerfeld (first), 318, 320

Pressure, magnetic, 475

ordinary kinetic, in fluid dynamics, 471

radiation, 265

Proca lagrangian, 598

Propagation, in anisotropic dielectric, 330

in conducting medium, 296f

in dispersive medium, 299f, 303f

in ionosphere, 292f, 329-30

of signal incident on dispersive medium, 3 1 3f

see also Signal propagation

Proper time, 520

Pseudoscalar, -tensor, -vector, definitions of,

248

Q, of resonant cavity, definition of, 357

physical interpretation of, 359

of right circular cylindrical cavity, 359

of Schumann resonances, 363, 388

of spherical cavity, 777-8

Quadrupole moment, electrostatic, 138

interaction of, with field gradient, 142, 164

nuclear, 143

of oscillating source, 399

see also Multipole moment
Quantization of charge, Dirac's argument for,

254f

Quantum-mechanical modifications, in

bremsstrahlung, 711

in elastic scattering, 645

in energy loss, 628

Radiated electromagnetic energy, Lorentz

transformation properties of, 617

Radiation, by accelerated charge, angular

distribution of, 665-5

Larmor formula for power, 659-60

angular distribution of, for relativistic

particles, 66 2f

angular and frequency distribution of, for

charge in periodic motion, 695

for charge in arbitrary motion, 670-1

for moving magnetic moment, 672

for relativistic charge, qualitative aspects

of, 666-7

emitted in, beta decay, 725f
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collisions, 702f . See also Bremsstrahlung

orbital electron capture, 727f

from electric dipole, 396

from electric quadrupole, 399-400

from linear antenna, 40 If, 763f

from localized source, 391f, 755f

from magnetic dipole, 398

multipole, see Multipole radiation

by relativistic charge in instantaneously

circular orbit, 672f

from short antenna, 396-7

synchrotron, 677

transition, see Transition radiation

Radiation condition for asymptotic fields, 429

Radiation cross section, definition of, 709

for classical bremsstrahlung, 710

in complete screening limit, 717

for nonrelativistic bremsstrahlung, 711

for relativistic bremsstrahlung, 713

Radiation damping, see Radiative reaction

Radiation fields, 393

of charge in arbitrary motion, 657

of (/, m) multipole, 748

Radiation length, 719

Radiation pressure, 265

Radiation resistance, 244

of short linear antenna, 397

Radiation zone, 392

in diffraction, 441

Radiative energy loss, in accelerators, 661

in collisions, nonrelativistic, 712

relativistic, 718

Radiative reaction, 780f

characteristic time t of, 782

effective force of, 783f

equation of motion including, Dirac's, 808

integrodifferential equation of motion

including, 796f

and line breadth, 799

and shift of oscillator frequency, 799

simple equation of motion including, 784,

790

slow changes of energy and angular momenti
from, 785, 807

Radius, classical, of electron, 681, 790
gyration, of particle in magnetic field, 581

Rapidity, definition of, 517

use of, in relativistic kinematics, 532

Rayleigh's, approximation in diffraction, 431

approximation in scattering, 421

explanation of blue sky, 418f

law of scattering, 413

Rayleigh scattering, 423

Reactance, definition of, in terms of fields, 244

Reaction cross section, definition of, 805

Reciprocation theorem of Green, 51

Reflection, from sphere, in diffraction, 450

of charged particle from region of high

magnetic field, 591

of plane wave at interface, 278f

polarization by, 282

of radio waves by ionosphere, 294

total internal, 283

Reflection coefficient of obstacle in wave

guide, 376

Refraction, of plane wave at interface, 278f.

See also Index of refraction

Relativistic addition of velocities, 523

Relativistic effects in angular and frequency

distributions of radiation, 663-5, 667,

675f, 681-2, 695f

Relativistic covariance, of electrodynamics,

547f

of physical laws under Lorentz transforma-

tions, 533

Relativistic invariance, of action integral, 573

of electric charge, 548

of 4-dimensional Laplacian, 536

of 4-dimensional volume element, 549

of 4-vector scalar products, 518, 534

use of, in kinematics, 567

of phase of plane wave, 521

of photon differential spectrum, 703

of radiated power, 660

of radiation cross section, 715

of speed of light, experiment on, 5 14

Relativistic kinematics, notation and units for,

560-1

Relativistic transformation, and Thomas preces-

sion, 543f

of acceleration, 563

of charge and current densities, 549

from cm system to laboratory, 568-9

of coordinates, 516-7

of electromagnetic fields, 552, 582-3

of charge in uniform motion, 553f, 566

of 4-vectors and tensors, 518, 533-4

of 4-velocity, 525

of momentum and energy, 525f

of potentials, 549

of spin vector, 556-7

of velocities, 523

of wave vector and frequency, 521

see also Lorentz transformation

Relativity, special theory of, 503f

experiments testing, 507f



844 Index

mathematical structure of, 532f

postulates of, 506

Resistance, definition of, in terms of fields,

244. See also Conductivity; Ohm's law;

Radiation resistance; and Surface

resistance

Resonance fluorescence, 803

Resonance, in cavity, 358

Schumann, 363

width r of, definition of, 357

Resonant absorption, 286, 804

and anomalous dispersion, 286, 311

Resonant cavity, 353f

earth and ionosphere as, 360f

energy stored in, 357-8

modes of oscillation in circular cylinder,

355-6

power losses in walls of, 358

Q of, 358-9, 777

resonant frequencies of, 354

spherical, 777

spherical concentric shell, 387

Resonant frequency, in cavity, shift of,

because of power loss, 360

of atomic oscillator, 155, 285, 315, 623,

626, 798

shift of, by radiative reaction, 799-801

Resonant line shape, 358, 800

Retarded Green function, 225, 610-1

Retarded time, 225, 656

Reynolds number, magnetic, 473

Rodrigues's formula for Legendre poly-

nomials, 87

Rotations, 245f

as Lorentz transformations, 539-40

transformation properties of physical

quantities under, 249

Rutherford scattering, connection between

angle and impact parameter in, 620

cross section, 644

in terms of momentum transfer, 708

Scalar, under Lorentz transformations, 533

under ordinary rotations, 246

Scalar potential, 34

connection to work done, 34

in magnetostatics, 192

for time-varying fields, 219

see also Potential, electrostatic

Scalar product of two 4-vectors, 518, 534

Scattering amplitude, forward, relation to

total cross section, 454

forward, relation to index of refraction, 457

integral expression for, 434

multipole expansion of, 778

Scattering cross section, for particles, classical,

definition of, in terms of impact para-

meter, 644

for radiation, definition of, 412, 680

see also Scattering of particles; Scattering of

radiation

Scattering of particles, by atoms, 643f

effects of, electronic screening on, 645

finite nuclear size on, 646

mean square angle of, 648

multiple, 647f

Rutherford, 644

single, tail on multiple scattering distribu-

tion, 649

total atomic cross section for, 647

Scattering of radiation, at long wavelengths,

411f

coherent and incoherent, 417-8, 683-4

Compton, and Klein-Nishina formula, 682

Delbriick, 11

by density fluctuations of fluid, 425f

of light by light, 1

1

multipole description of, 769f

by oscillator with radiative reaction, 80 If

perturbation treatment of, 419f

by point charge, 679f

quantum-mechanical modifications of, 682

by quasi-free charges, 683f

Rayleigh, and the blue sky, 423

resonant, 803-5

shadow, 448-9

at short wavelengths, by sphere, 447f

by small conducting sphere, 415, 774-5

by small dielectric sphere, 413

Thomson, 679f

Scattering phase shift, 773

Schumann resonances, 363

Screening by atomic electrons, effect of, on

bremsstrahlung, 715f

effect of, on small angle elastic scattering, 645

Sea water, attenuation constant of, 292

Selection rules for multipole transitions, 751-2

Self-energy, classical electrostatic, 789

Self-energy and momentum, 791f

covariant definition of, 793-5

Self-force, Abraham-Lorentz evaluation of,

786f

Self-stresses and Poincare
1

stresses, 792

Separation of variables, 68

in cylindrical coordinates, 102

in rectangular coordinates, 69
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in spherical coordinates, 84

Shielding, magnetic, with permeable shell, 199f

Signal propagation in a dispersive media, 3 1 3f

Brillouin percursor in, 319, 322

experimental study of, 324f

qualitative discussion of, 317-9

Sommerfeld precursor in, 318, 320

steady-state signal in, 323

Signal velocity, ambiguity in definition of, 319

upper limit on, 315

Skin depth, 298, 337

and Q of cavity, 358

and surface resistance, 339

in plasma, 289

Smythe-Kirchhoff integral for diffraction of

vector fields, 438

approximation for diffraction by circular

opening, 443

Snell's law, 278

Soft photon emission, 703

equality of classical and quantum-mechanical

expressions for, 703-4

Solenoid, 205

Solenoidal vector, definition of, 222

Source, localized, in wave guide, 373f

of multipole radiation, 755f

Space-like separation of two points in space-

time, 519

Space-time, in special relativity, mathematical

description of, 532f

Spatial inversion, 247

opposite behavior of electric and magnetic

charge densities under, 253

transformation properties of physical

quantities under, 249

Special theory of relativity, see Relativity

Speed of light, experimental constancy,

independent of frequency, 514

experimental constancy, independent of

motion of source, 514

numerical value of, 3

Sphere, conducting, and point charge, 55, 58,

60

electrostatic Green function for, 62

general solution for potential in, 62-3, 1 1 3f

with hemispheres at different potentials, 63f

scattering of radiation by, 413,415, 447f,

769f

in uniform electric field, 60f, 149f

uniformly magnetized, 194f

in external field, 197f

Spherical Bessel functions, see Bessel functions

Spherical coordinates, 84

delta function in, 1 1

1

Laplace equation in, 84

Spherical harmonics, Y/m , 99f

addition theorem for, lOOf

and angular momentum, 743

completeness relation for, 99

explicit forms of, 99-100

orthogonality of, 99

raising and lowering operators for, 743

sum rule for, 102

vector, see Vector spherical harmonic

Spherical wave, scalar, 739f

vector, 744f

Spherical wave expansion, of, electromagnetic

fields, 746

of Green function, eikR /R, 742

of scalar plane wave, 767

of vector plane wave, 769

Spin, -orbit interaction, 546

relativistic equation of motion for, 556f

Thomas precession of, 54 If, 559

Thomas's relativistic equation of motion

for, 559

Stabilization of plasma column, 4S3A
Standards, units and, 812-3

Standing waves in resonant cavity, 353

Stationary phase, method of, 316

Step function, d(t), definition of, 308

Stokes parameters, 276

Stokes's theorem, 35

Stress tensor, and conservation laws, 602, 606,

607

canonical, in 4 dimensions, 602

Maxwell, 239

in macroscopic media, 241

self, of classical electron, 792

symmetric, in 4 dimensions, 605

Structure factor, for scattering by collection of

scatterers, 417

Sturm-Liouville equation, 117

Sum rule, dipole, for radiative total cross

section, 805-6, 809

for oscillator strengths, 285

for plasma frequency, 312

Summation convention, for repeated indices,

533

Superconvergence relation for dielectric

constant, 312

Superposition principle, see Linear super-

position

Surface-charge density, and discontinuity

of normal E and D, 19, 36, 146

on conducting sphere, 56, 62
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effective magnetic, 193

and force on surface of conductor, 48

near circular hole in conducting plane, 134-5

near conical hole or point, 96

near edge or corner in two dimensions, 77

polarization, 149, 151

potential of, 36

on sphere with line charge inside, 116

Surface current, and discontinuity ofH, 20,

190, 335

effective, 339

effective magnetic, 194

Surface distribution, of charge, 35-6

of electric dipole moment, 37-8

Surface impedance, definition of, 339

use of as boundary condition in scattering,

772

Surface of conductor, charge density at, 24

Surface resistance, of good conductor, 339

Susceptibility, electric, 146, 152f

Synchrotron radiation, 672f

angular and frequency distribution of, 674,

676,678

astrophysical examples of, 679

by charge in helical path, 696

polarization of, 675, 698

Systeme International (SI) standards of mass,

length and time, 813

Tension along lines of magnetic field, 475, 483

Tensor, electromagnetic angular momentum,
264,604,606

electromagnetic field-strength, 550

dual, 550-1

Lorentz transformation properties of, 534

Maxwell stress, 239

rotational definition of, 245

stress, in 4-dimensions, see Stress tensor

Theorems from vector calculus, end papers

Thermonuclear plasmas, see Plasma

Thomas factor, 546

Thomas precession, 54 If, 558-9

Thomas's relativistic equation for motion of

spin, 559

Thomson cross section, 681

Thomson scattering, 679f

Thomson's theorem, 52

Time dilatation, 520

experimental verification of, 520-1

Time-like and space-like separation, 519

Time reversal, 248

transformation of physical quantities under,

249

Torque, on current distribution, 173

on magnetic dipole, 168, 186

on spin, 54 2f

on spin, relativistic equation for, 556f

Total cross section and optical theorem, 454

Transformation, see Galilean transformation,

Lorentz transformation, Relativistic

transformation

Transformation properties of physical quantities

under rotations, spatial reflections, and

time reversal, 24 5

f

table of, 249

Transition probability, 759

estimates of, in atoms and nuclei, 75 9f

in hydrogen-like atoms, 696, 807

Transition radiation, 685f

angular and frequency distribution of, 691

effects of foil thickness and multiple foils

on, 699

formation length for, 687

qualitative considerations of, 685-7

Transmission coefficient, for diffraction by

circular aperture, 444

of obstacle in wave guide, 376

Transmission line, dominant mode in, 341

examples of, 385-6

relation between L and C for, 262

Transparency, of water in the visible region,

290

ultraviolet, of metals, 289

Transverse Doppler shift, 522

Transverse electric (TE) waves, attenuation of,

in wave guide, 349

connection of, with multipole moments, 757-8

cylindrical, in wave guide, 342

in dielectric wave guide, 367

in rectangular wave guide, 346, 371

spherical, 745

in concentric sphere cavity, 361

Transverse electromagnetic (TEM) waves, 341

absence of in hollow wave guides, 341-2

Transverse magnetic (TM) waves, attenuation

of, in wave guide, 349

connection of, with multipole moments,

757-8

cylindrical, in wave guide, 342

in cylindrical cavity, 355

in dielectric wave guide, 368

in rectangular wave guide, 371

spherical, 745

in earth-ionosphere cavity, 361

Transverse vector field, definition of, 222

Transverse waves, in conducting medium, 296f
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in magnetohydrodynamics, 486, 489

in plasma, 4934
plane, 271

in homogeneous, 272-3

Traveling wave solutions, 270, 300, 303, 331

for signal propagation in dispersive

medium, 313f, 324

in wave guide, 340

Two-dimensional corners and edges, fields

and surface charge densities near, 75

Two-dimensional potentials, 7 If

Uncertainty principle, 301, 306

use of, in collision problems to obtain

quantum-mechanical modifications of,

628,630, 645,646, 720

Uniqueness theorem, for solutions of Poisson

or Laplace equation, 42

use of, with Legendre polynomial expansion,

91,93, 263

Units, and relative dimensions of electro-

magnetic quantities, 81 3f

appendix on, 81 If

basic versus derived, 812

conversion between Gaussian and MKSA, 820

Maxwell and other equations, in different

systems of, 818

table for conversion of, 819, 820

variant of electromagnetic system of, 817,

820

Vacuum polarization, 12

Van Allen belts, of Jupiter, synchrotron

radiation from, 679

problems illustrating principles of, 614-5

Variational principle, for capacitance, 52

for effective shunt admittance of diaphragm

in wave guide, 378

for effective shunt impedance of diaphragm

in wave guide, 379

Vector, under rotations, definition of, 247

Vector field, decomposition of, into longitudinal

and transverse parts, 222

Vector Green's theorem, 433

Vector plane wave, spherical wave expansion

of, 769

Vector potential, for time-varying fields, 219

of localized oscillating source, 392f

of magnetic dipole, 182

of magnetic monopole, 258, 267

in magnetostatics, 176, 191

of oscillating electric dipole, 395

of oscillating electric quadrupole, 399

of oscillating magnetic dipole, 398

on surface of linear antenna, boundary

condition for, 404

Vector spherical harmonics, absolute square of,

table, 753

definition of, 746

orthogonality properties of, 746, 768

sum rule for, 753

Vector theorem, divergence, 32

Green's, 433

Stokes's, 35

involving surface and volume integrals, 433

involving vector spherical harmonics, 768

see end papers

Velocity, addition of, in special relativity, 522f

ExB drift, 582

4-vector, 525

of light, see Speed of light

relativistic transformation law of, 523

Velocity fields, of charge in arbitrary motion,

657

Velocity selector, 584, 614

Virtual quanta, method of, 719f

spectrum of, for point charge, 723-4

treatment of relativistic bremsstrahlung, 724f

use of, examples in atomic and nuclear

collisions, 736-7

Viscosity, coefficient of, 471

effect of, on magnetohydrodynamic flow,

475f, 487-8

magnetic, 474

Visible region, of frequency spectrum, reason

for, 290

Water, index of refraction and absorption

coefficient of, 291

Wave equation, 220, 223

covariant form of, 549, 608

Green functions for, 223f

Helmholtz, 428

for photons with mass, 598

solutions of, in covariant form, 611

spherical wave solutions of, 739f

transverse two-dimensional, in wave guide,

340, 343

Wave guide, 339f

attenuation in, 346f, 352

boundary conditions in, 342

cutoff frequency in, 344, 346

dielectric, 364f

modes, propagating and evanescent, 344

in rectangular, 345, 371

orthonormal fields in rectangular, 371
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reflection and transmission by obstacles in,

375f, 380f

sources in, 369f

TE and TM modes in, 342

variational methods in, 375

Wavelength in wave guide, 344

Wave number, and frequency, as 4-vector, 522

connection of, with frequency, as 4-vector,

270, 279,289,295,304,493
Debye, 494

imaginary part of, because of losses, 286,

296,348,352

spread of, in wave packets, 300-1

in wave guide, 344, 348, 352

Wave packets in one dimension, 299f, 331

propagation in dispersive medium, 299f

spreading of, in time, 303f

Waves, Alfven, 485f

Alfven, with displacement current, 489

in conducting medium, 297

in ionosphere, 292f

magnetohydrodynamic, 485

f

magnetosonic, 486

see also Plane waves; Spherical waves; and

Transverse waves

Weizsacker-Williams method, see Method of

virtual quanta

Whistler, 295

Work, relation to potential energy, 34

Work function of metal and image charges, 60

World line, 518

Wronskian, definition of, 117

of Bessel functions, 118

of spherical Bessel functions, 742

Width, finite, of frequency spectrum of cavity

with losses, 357

finite, of frequency spectrum of oscillator

with damping, 800

X-rays, polarization of, 705

scattering of, by atoms, 683f

Yukawa potential, for scalar potential if photon

has mass, 598











f











Where to Find Key Material

on Special Functions

SPHERICAL

Legendre polynomials Pi(x) 87-90

Associated Legendre functions Pi
m
(x) 98

Spherical harmonics Y«m (0, <f>)
99-100

CYLINDRICAL

Bessel functions J„(x), N„(x) 104-5

Modified Bessel functions L(x), Kv (x) 107-8

Spherical Bessel functions jY(x), n,(x), h\
ia)

(x) 740-1

Roots of Jm (x) = . 105

Roots of J'm(x) = 356

Identities involving Bessel functions 118, 125, 131,203

Airy integrals, connection to Bessel functions 323, 674

ORTHOGONAL FUNCTION EXPANSIONS

Bessel function (finite interval in p) 106, 130

Bessel function (infinite interval in p) 109-10

Eigenfunction, of Green function 119-20

Fourier series 67

Fourier integral 67-8

Legendre polynomial 88-9

Spherical harmonic 100



Explicit Forms of Vector Operations

Let d, e 2 , e 3 be orthogonal unit vectors associated with the coordinate directions

specified in the headings on the left, and Ai, A 2 , A 3 be the corresponding

components of A. Then
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