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It is well known that no fringe shifts are expected when an interferometer 

at rest in the laboratory is rotated. We propose an experiment where fringe 

shifts can be observed when a ‘one-way interferometer’ at rest in the 

laboratory is rotated. Since the predicted results obviously contradict the 

postulates of the Special Theory of Relativity, these can be considered as a 

new test to the validity of the STR. The laboratory is assumed in inertial 

motion relative to a preferred reference frame where light’s speed is 

isotropic and equal to ‘c’. Fringe shifts are shown to be proportional to the 

speed of the laboratory relative to the preferred frame, as well as to the 

divergence of the source and the misalignment of the beams that interfere. 

Introduction 

The Special Theory of Relativity has been one of the most successful theories of the last century. There 

has been a tremendous effort during the past decades to test the validity of Lorentz Invariance [1]. The 

vast number of experimental results should make clear to the reader that such a violation has not been 

detected. It is generally accepted that the STR is fully verified experimentally [2]. More than one 

hundred years after Michelson and Morley’s famous experiment, articles are still being published on the 

matter. The anisotropy 
c

c

∆
 has been reduced in the last five years from 

1410− [3] to 
1710− [4] using 

optical resonators. Many of these results use the two-way speed of light, leaving questions on the 

constancy of the speed of light in one direction [5]. Also recently, authors have claimed that substituting 

the vacuum in these resonating cavities with a dielectric gaseous media should increase the limit 

imposed on 
c

c

∆
 by several orders of magnitude [6], although other authors have performed similar  

experiments still reporting null results [2]. Others defend a “special system of reference experimentally 

inaccessible” as a non contradiction to STR postulates. Clearly, Einstein’s ideas still promote an active 

debate [7] among the modern physicists’ community. 
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It is argued that the reason for choosing STR over other rival theories is its elegance and relative 

simplicity rather that its better agreement with experimental results [2]. Mostly, classical theories differ 

from STR fundamentally in the interpretation of experimental results, rather than in their outcomes. 

We propose a new test to the existence of a preferred reference frame where light’s speed is isotropic 

and equal to ‘c’.  

In what follows, we first show that although there is no phase change when an interferometer at rest in 

the laboratory is rotated, if a one-way interferometer is used then fringe shifts should be observed. This 

is because the time it takes light to travel the distance between the source and the observer in one 

orientation differs to the time it takes light to travel the distance between the source and the observer 

in other orientation; in general, this difference in travel times when the interferometer is rotated cause 

the observer to perceive fringe shifts if the laboratory is in motion relative to the preferred frame. We 

emphasize that these observed fringe shifts are not due to a phase change, but to the effect of relative 

motion between the observer and light, or equivalently between the observer and the preferred frame. 

Finally, we show that the magnitude of the fringe shifts is proportional to the divergence of the source 

of light used and the misalignment of the interferometer, as well as to the velocity of the laboratory 

relative to a preferred reference frame. 

Theory 

It will be shown that fringe shifts can be observed when a one-way interferometer is rotated. Classical 

pre-relativistic concepts such as the Lorentz-Fitzgerald contraction of bodies in the direction of motion 

are used in order to preserve two-way Lorentz Invariance and Michelson and Morley’s reported null 

result. Velocities are considered relative to a preferred referential frame where the speed of light is 

isotropic and has a constant value of ‘c’. 
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Figure 1 Interferometer by which calculations are made. Thin dotted lines represent the path light travels when the 

interferometer at rest (v=0), thick solid lines represent the path light travels when the interferometer moves with v>0, the 

dashed line help visualize a right triangle of sides vtB’C’ and L2 and hypotenuse c tB’C’. 

Consider an interferometer as the one shown schematically in Figure 1, with arms of length 1L  and 2L . 

Dotted lines represent the path traveled by light when the interferometer is at rest. At rest, light 

emitted by the source located at L  reaches beam splitter located at A . One beam travels the optical 

path between points ABCD , while the other travels AD . Both beams recombine at D , and the 

interference pattern can be seen on the screen S .   

When the interferometer travels at a speed v  with respect to the preferred frame (solid dark lines in 

Figure 1), while the beam of light travels from A to B , the mirror at B  moves to position 'B . In this 

fashion, one beam travels the distances between points ' ' 'AB C D  . For both beams to recombine at 

'D  at the same time so that an interference can be seen, the second beam must travel the path ' 'A D . 

For the sake of simplicity and without loss of generality, for all purposes it can be considered the screen 

S  as located at 'D , and the source of light as located adjacent of the first beam splitter, thus no extra 

distance is traveled by the beams other than between points ' ' 'AB C D  and ' 'A D . 

In order to obtain the time taken by each beam to reach 'D , we consider Lorentz-Fitzgerald contraction 

of bodies in the direction of their motion. This consideration ensures that we preserve Michelson & 

Morley’s and most modern experimental results. We express this factor with the parameter

2

2
1 1

v

c
α = − < , where c  is the speed of light, and v  is the speed of the interferometer, both relative 

to the preferred frame. 

L1

v

L

AB

C C' D D'

B' A'

L2

' 'B Cvt

' 'B Cct

S
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We will analyze the interferometer in two different orientations. For all subsequent formulations, the 

superscript 1,2i =  denotes the first and second orientation (0º and 90º relative to v ), respectively; the 

subscript 1,2j =  denotes the paths ' ' 'AB C D  and ' 'A D , respectively. 

For the first orientation, we can find the value of the time 
1

' 'B Ct  that takes light to travel the distance 

between points 'B  y 'C   using Pythagoras’s theorem with the relation  

 ( ) ( ) ( )2 221 1

' ' 2 ' 'B C B Cvt L ct+ =  (1) 

We obtain, 

 
1 2 2
' '

2 2
B C

L L
t

cc v α
= =

−
 (2) 

We also have that 

 
1 1 1 1 1 1

' ' ' 2 2

2 2
AB C D

L L cL L
t t

c v c v c v c

α α α
α

+ = + = =
− + −

 (3) 

From equations (1), (2), (3), and using the fact that 
1 1

' ' ' 'B C A Dt t=
 
, we have that the time taken by light to 

travel paths ' ' 'AB C D   and ' 'A D   is given by: 

 
1 1 2
1

2L L
t

c cα α
= +  (4) 

 
1 2
2

L
t

cα
=  (5) 

 
1 1 2t t t∆ = −  (6) 
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Figure 2 Second orientation of the same interferometer, after a 90º rotation. 

Using Figure 2, when the interferometer is rotated 90º (second orientation), we have that for the travel 

times: 

 

 
2 1 2
1

2L L
t

c c v

α
α

= +
−

 (7) 

 
2 2
2

L
t

c v

α
=

−
 (8) 

 
2 2

2 1 2t t t∆ = −  (9) 

 

From equations (6) and (9), we find that 

v

A

B'

A'

C'

D'

S
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2 1( ) 0t t t∆ = ∆ − ∆ =  (10) 

The result obtained in equation (10) is the expected one, and is a direct consequence of considering 

Lorentz-Fitzgerald contraction α . This result means that, at 'D  , there is no phase change as a 

consequence of rotating the interferometer. 

However, it is important to notice that, although 0t∆ = , 

 
2 1

1 1t t>  (11) 

And that 

 
2 1

2 2t t>  (12) 

That is, the time taken by light to travel the distance between points ' ' 'AB C D  (or ' 'A D ) in the first 

orientation is smaller than the time taken to travel the same paths in the second orientation of the 

interferometer. 

Given that the distance r  traveled by light can be calculated as r ct= , we have from equations (11) 

and (12) that the distance traveled by light in the first orientation is smaller than the distance traveled in 

the second orientation of the interferometer. 

It is important to emphasize that the results obtained in equations (11) and (12) are not obtained if a 

M&M type interferometer is used, because light travels each arm of the interferometer in a two-way 

fashion, thus obtaining 
2 1

1 1t t=  and 
2 1

2 2t t= . 

The results of equations (11) and (12) enables us to explain why the proposed interferometer is sensible 

to anisotropies in the speed of light when it is rotated. Although equation (10) states the fact that there 

is no phase change in the interference pattern that forms in 'D ,  the equations  (11) and  (12) say that 

the distance traveled by light from the source to 'D  (the observer) is different in each orientation of 

the interferometer. 

The change S∆ in this distance is, 
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 ( ) ( )2 1 2 1

2 2 1 1 2

1
S c t t c t t cL

c v c

α
α

 ∆ = − = − = − − 
 (13) 

For the proposed interferometer, it can be verified that S∆  is identically equal to zero just in the case 

when 0v = . For a M&M interferometer 0S∆ =  for all v  because 
2 1

2 2t t=  and 
2 1

1 1t t= : the distance 

traveled by light from the source to 'D  remains constant when the interferometer is rotated. 

As it was already said, for both beams to arrive simultaneously at 'D , we have to consider that one 

beams traverses A  and that the other is reflected at 'A  when the beam splitter initially located at A  

has moved to 'A . 

We can see that 1
2

'
L

AA v
cα

=  has the same value in both orientations. This expression means that the 

interferometer has moved with velocity v  during the time 1
2L

cα
. 

For an observer at 'D , the interference pattern is produced by the interference of two beams: one 

beam transmitted at A  and another one reflected at 'A , both arriving simultaneously at 'D . The 

difference of the distance traveled by light is 1
2 1

2i i L
r r

α
− = . 
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Figure 3 In each orientation, the interference pattern is formed by two beams: one that is transmitted at A, and another that 

reflects at A’, arriving both beams simultaneously at D’. The difference between the distances traveled by light is greater 

than zero and of constant value in both orientations. In the second orientation, both beams have to travel an additional 

distance ∆∆∆∆S to arrive to D’. 

In reference to Figure 3, 
1P  and 

2P  represent a fixed distance from the origin 0  in the visualization 

screen ( 'D ). They represent the position of the observer with respect to the source of light for each 

orientation. The distances 
i i

j jr ct=  correspond to the perpendicular distances from the source to the 

beam splitter 'D , for each orientation. The 
i

jd
���

 represents the distance traveled by light from the 

source to the observer in each orientation. 

It is a known fact that the phase 
iΦ  in a point 

iP  on 'iD  can be calculated as 

 ( )1 2

i i ik d dΦ = −
����

���

 (14) 

where 
2

k
π
λ

=  is the wave number, and λ  is the wavelength of the light used. 
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1
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2
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2
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0

0

2
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2
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1d
1

2d

1
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2
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Because in the second orientation the beams have to travel an additional distance S∆  to reach the 

observer, it should be clear that 
2 1

j jd d> .   

We define 

 
2 1∆Φ = Φ −Φ  (15) 

As can be verified, in general, 0∆Φ ≠ , the value depending greatly on the divergence of the beam.  

We see then that, in general, from the point of view of the observer there is a fringe shift. The observed 

fringe shift is not due to a change in the difference of travel times (phase change), but to a change in the 

total distance that light travels from the source to the observer when the interferometer is rotated. 

This doesn’t contradict the result obtained in equation (10), which states that the relative phase 

between the beams that form the interference pattern is the same in both orientations. That is, that the 

interference pattern doesn’t change. 

We shall notice that for an ideal perfectly aligned interferometer as shown in Figure 3, if ideal perfectly 

plane waves are used ∆Φ is equal to zero all over 'D . 
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Figure 4 Schematic behavior of the interference pattern formed by the two beams. The points P1 y P2 represent the position 

of the observer in each orientation. In this figure, we consider also a misalignment, represented by the lateral (vectorial) 

distance a=a1-a2 between the beams. 

Figure 1, Figure 2 and Figure 3 represent a perfectly aligned interferometer.  In practice, in order to 

observe interference fringes, the interferometer must be slightly unaligned. That is, the angles of the 

mirrors and beam splitter don’t have exact 45º inclinations and the beams that interfere at 'D  are not 

parallel. Figure 4 show an interferometer slightly unaligned. The misalignment is represented in the 

figure with the lateral distance between beams 1 2a a a= −
��� �� ���

. The distances ja
���

 correspond to the 

modulus of the projection of 
i

id
���

over a
���

. 

The points 
iP  correspond to the fixed position of the observer with respect to the origin 0 . 

The distances 
i

jd
���

 from the source of light to the observation point are equal to 
2 2

i i

j j j
d r a= +

��
���

, 

where 
i i

j jr ct=
��

. 

1

1r

1

2r

2
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2

2r
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1
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The phase change that an observer measures when the interferometer is rotated (and thus passing from 

1P  to 
2P ) is given by 

 ( ) ( )2 2 1 1

1 2 1 2
k d d d d∆Φ = − − −
��� ��� ��� ���

 (16) 

Where λ  is the wavelength of light. This is equivalent to a number of fringes 
2

N
π
∆Φ

= . 

From equation (16) it can be seen that the more unaligned the interferometer or the more divergent the 

source of light, the greater fringe shift must be measured. 

The effect described in this paper can be visualized in the next figure: 

 

Figure 5 Unaligned interferometric setup. This figure represents a snapshot of spheres of light propagating away from a point 

like source. The two beams that form the interference pattern are one transmitted at A and the other reflected at A’. When 

the interferometer is rotated the observer measures the pattern at different distances from the source of light (points P
1
 and 

P
2
), thus measuring a fringe shift. In this figure, the observer measures N≅≅≅≅1,5. 

Figure 5 represents a snapshot of spheres of light propagating away from a point like source (the two 

sources that are seen in the figure correspond to the beams reflected and refracted at 'A  and A , 
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respectively). When the interferometer is rotated, the observer measures the interference pattern at 

different distances from the source of light (points 
1P  and 

2P ), thus measuring a fringe shift. 

In the case of an M&M type interferometer, in Figure 5 the distance between 
1P  and 

2P is equal to 

zero. 

  

Conclusions 

It has been described and analyzed an interferometer sensitive to motion relative to the preferred  

reference frame (PRF) where the speed of light is isotropic and equal to ‘c’. That is, the proposed 

interferometer can be used to determine if motion relative to the PRF is possible or not. As it has been 

explained, since we take into account Lorentz-Fitzgerald contraction of bodies in the direction of 

motion, there is no contradiction with the classical M&M type results nor with all equivalent modern 

refinements. 

The most important difference between the proposed interferometer and a M&M type interferometer 

is that light travels the distances between ' 'A D  and ' 'B C in a one way fashion. Assuming the 

possibility of motion relative to the PRF, when the interferometer is rotated (Figure 1 to Figure 2), the 

distance traveled by the beams of light between the source and the observer increases. Fringe shifts are 

observed without any phase change occurring. The interference pattern remains constant while the 

interferometer is rotated. 

Because in a M&M type interferometer light travels each arm in a two way fashion, the distance 

between the source of light and observer remains constant when the interferometer is rotated, as does 

the relative phase between the beams of light, thus no fringe shifts are seen. 

In this paper we have considered a rotation of the interferometer from the first to a second orientation 

(0º to 90º). However, it can be verified that the maximum fringe shift occurs during a rotation from the 

second orientation to the “fourth” (90º to 270º). 

Since there is no relative motion between parts of the interferometer, according to the Special Theory of 

Relativity (STR) no fringe shifts are expected when the interferometer is rotated. However, it is shown 

that although there is no relative motion between parts of the interferometer, inertial motion relative  

to the PRF can be detected. 
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