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Deep and original, but also humble and generous, the physicist Josiah Willard Gibbs spent much of
his life at Yale University. His father was a professor of sacred languages at Yale, and Gibbs received
his bachelor’s and doctorate degrees from the university before teaching there until his death in 1903.
The sculptor Lee Lawrie created the memorial bronze tablet pictured above, which was installed in
Yale’s Sloane Physics Laboratory in 1912. It now resides in the entrance to the J. W. Gibbs
Laboratories, Yale University.
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Preface to the Expanded Edition

Besides the correction of typos, the most important change is the inclusion
of over 300 exercises to go with these 24 chapters. Answers are given to all
exercises, but not the solutions. They were chosen to test the material
covered in this book. This was done in response to calls from students and
instructors. A similar inclusion will be made in the next edition of the
companion volume, Fundamentals of Physics II.
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Preface to the First Edition

Given that the size of textbooks has nearly tripled during my own career,
without a corresponding increase in the cranial dimensions of my students, I
have always found it necessary, like my colleagues elsewhere, to cull the
essentials into a manageable size. I did that in the course Fundamentals of
Physics I taught at Yale, and this book preserves that feature. It covers the
fundamental ideas of Newtonian mechanics, relativity, fluids, waves,
oscillations, and thermodynamics without compromise. It requires only the
basic notions of differentiation and integration, which I often review as part
of the lectures. It is aimed at college students in physics, chemistry, and
engineering as well as advanced high school students and independent self-
taught learners at various stages in life, in various careers.

The chapters in the book more or less follow my 24 lectures, with a few
minor modifications. The style preserves the classroom atmosphere. Often I
introduce the questions asked by the students or the answers they give when
I believe they will be of value to the reader. The simple figures serve to
communicate the point without driving up the price. The equations have
been typeset and are a lot easier to read than in the videos. The problem sets
and exams, without which one cannot learn or be sure one has learned the
physics, may be found along with their solutions at the Yale website,
http://oyc.yale.edu/physics, free and open to all. The lectures may also be
found at venues such as YouTube, iTunes
(https://itunes.apple.com/us/itunes-u/physics-video/id341651848?mt=10),
and Academic Earth, to name a few.

The book, along with the material available at the Yale website, may be
used as a stand-alone resource for a course or self-study, though some
instructors may prescribe it as a supplement to another one adapted for the
class, so as to provide a wider choice of problems or more worked
examples.

To my online viewers I say, “You have seen the movie; now read the
book!” The advantage of having the printed version is that you can read it
during take-off and landing.


http://oyc.yale.edu/physics
https://itunes.apple.com/us/itunes-u/physics-video/id341651848?mt=10

In the lectures I sometimes refer to my Basic Training in Mathematics,
published by Springer and intended for anyone who wants to master the
undergraduate mathematics needed for the physical sciences.

This book owes its existence to many people. It all began when Peter
Salovey, now President, then Dean of Yale College, asked me if I minded
having cameras in my Physics 200 lectures to make them part of the first
batch of Open Yale Courses, funded by the Hewlett Foundation. Since my
answer was that I had yet to meet a camera I did not like, the taping began.
The key person hereafter was Diana E. E. Kleiner, Dunham Professor,
History of Art and Classics, who encouraged and guided me in many ways.
She was also the one who persuaded me to write this book. Initially
reluctant, I soon found myself thoroughly enjoying proselytizing my
favorite subject in this new format. At Yale University Press, Joe Calamia
was my friend, philosopher, and guide. Liz Casey did some very skilled
editing. Besides correcting errors in style (such as a long sentence that
began in first person past tense and ended in third person future tense) and
matters of grammar and punctuation (which I sprinkle pretty much
randomly), she also made sure my intent was clear in every sentence.

Barry Bradlyn and Alexey Shkarin were two graduate students and Qiwei
Claire Xue and Dennis Mou were two undergraduates who proofread earlier
versions.

My family, from my wife, Uma, down to little Stella, have encouraged
me in various ways.

I take this opportunity to acknowledge my debt to the students at Yale
who, over nearly four decades, have been the reason I jump out of bed on
two or three days a week. I am grateful for their friendship and curiosity. In
recent years, they were often non-majors, willing to be persuaded that
physics was a fascinating subject. This I never got tired of doing, thanks to
the nature of the subject and the students.
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CHAPTER 1
The Structure of Mechanics

1.1 Introduction and some useful tips

This book is based on the first half of a year-long course that introduces you
to all the major ideas in physics, starting from Galileo and Newton, right up
to the big revolutions of the twentieth century: relativity and quantum
mechanics. The target audience for this course and book is really very
broad. In fact, I have always been surprised by the breadth of interests of
my students. I don’t know what you are going to do later in life, so I have
picked the topics that all of us in physics find fascinating. Some may not be
useful, but you just don’t know. Some of you are probably going to be
doctors, and you don’t know why I’m going to cover special relativity or
quantum mechanics. Well, if you’re a doctor and you have a patient who’s
running away from you at the speed of light, you’ll know what to do. Or, if
you’re a pediatrician, you will understand why your patient will not sit still:
the laws of quantum mechanics don’t allow a very small object to have a
definite position and momentum. Whether or not you become a physicist,
you should certainly learn about these great strides in the human attempt to
understand the physical world.

Most textbooks are about 1,200 pages long, but when I learned physics
they were around 400 pages long. When I look around, I don’t see any
student whose head is three times as big as mine, so I know that you cannot
digest everything the books have. I take what I think are the really essential
parts and cover them in these lectures. So you need the lectures to find out
what’s in the syllabus and what’s not. If you don’t do that, there’s a danger
you will learn something you don’t have to, and we don’t want that, right?

To learn physics well, you have to do the problems. If you watch me
online doing things on the blackboard or working through derivations in the
book, it all looks very reasonable. It looks like you can do it yourself and
that you understand what is going on, but the only way you’re going to find
out is by actually doing problems. A fair number are available, with their



solutions, at http://oyc.yale.edu/physics/phys-200, and over 300 (with
answers but not solutions) in the exercises and answers sections at the back
of this book. You don’t have to do them by yourself. That’s not how physics
is done. I am now writing a paper with two other people. My experimental
colleagues write papers with four hundred or even a thousand other people
when engaged in the big collider experiments like the ones in Geneva or
Fermilab. It’s perfectly okay to be part of a collaboration, but you have to
make sure that you’re pulling your weight, that everybody makes
contributions to finding the solution and understands it.

This calculus-based course assumes you know the rudiments of
differential and integral calculus, such as functions, derivatives, derivatives
of elementary functions, elementary integrals, changing variables in
integrals, and so on. Later, I will deal with functions of more than one
variable, which I will briefly introduce to you, because that is not a
prerequisite. You have to know your trigonometry, to know what’s a sine
and what’s a cosine and some simple identities. You cannot say, “I will look
it up.” Your birthday and social security number are things you look up;
trigonometric functions and identities are what you know all the time.

1.2 Kinematics and dynamics

We are going to be studying Newtonian mechanics. Standing on the
shoulders of his predecessors, notably Galileo, Isaac Newton placed us on
the road to understanding all the mechanical phenomena for centuries until
the laws of electromagnetism were discovered, culminating in Maxwell’s
equations. Our concern here is mechanics, which is the motion of billiard
balls and trucks and marbles and whatnot. You will find out that the laws of
physics for this entire semester can be written down on the back of an
envelope. A central purpose of this course is to show you repeatedly that
starting with those few laws, you can deduce everything. I would encourage
you to think the way physicists do, even if you don’t plan to be a physicist.
The easiest way to master this subject is to follow the reasoning I give you.
That way, you don’t have to store too many things in your head. Early on,
when there are four or five formulas, you can memorize all of them and you
can try every one of them until something works, but, after a couple of
weeks, you will have hundreds of formulas, and you cannot memorize all of
them. You cannot resort to trial and error. You have to know the logic.


http://oyc.yale.edu/physics/phys-200

The goal of physics is to predict the future given the present. We will
pick some part of the universe that we want to study and call it “the
system,” and we will ask, “What information do we need to know about
that system at the initial time, like right now, in order to be able to predict
its future evolution?” If I throw a piece of candy at you and you catch it,
that’s an example of Newtonian mechanics at work. What did I do? I threw
a piece of candy from my hand, and the initial conditions are where I
released it and with what velocity. That’s what you see with your eyes. You
know it’s going to go up, it’s going to follow some kind of parabola, and
your hands get to the right place at the right time to receive it. That is an
example of Newtonian mechanics at work, and your brain performed the
necessary calculations effortlessly.

You only have to know the candy’s initial location and the initial velocity.
The fact that it was blue or red is not relevant. If I threw a gorilla at you, its
color and mood would not matter. These are things that do not affect the
physics. If a guy jumps off a tall building, we want to know when, and with
what speed, he will land. We don’t ask why this guy is ending it all today;
that is a question for the psych department. So we don’t answer everything.
We ask very limited questions about inanimate objects, and we brag about
how accurately we can predict the future.

The Newtonian procedure for predicting the future, given the present, has
two parts, kinematics and dynamics. Kinematics is a complete description
of the present. It’s a list of what you have to know about a system right
now. For example, if you’re talking about a piece of chalk, you will want to
know where it is and how fast it’s moving. Dynamics then tells you why the
chalk goes up, why it goes down, and so on. It comes down due to the force
of gravity. In kinematics, you don’t ask for the reason behind anything. You
simply want to describe things the way they are, and then dynamics tells
you how and why that description changes with time.

I’m going to illustrate the idea of kinematics by following my preferred
approach: starting with the simplest possible example and slowly adding
bells and whistles to make it more and more complicated. In the initial
stages, some of you might say, “Well, I have seen this before, so maybe
there is nothing new here.” That may well be true. I don’t know how much
you have seen, but it is likely that the way you learned physics in high
school is different from the way professional physicists think about it. Our
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priorities, and the things that we get excited about, are often different; and
the problems will be more difficult.

1.3 Average and instantaneous quantities

We are going to study an object that is a mathematical point. It has no size.
If you rotate it, it will look the same, unlike a potato, which will look
different upon rotation. It is not enough to just say where the potato is; you
have to say which way its nose is pointing. The study of such extended
bodies comes later. Right now, we want to study an entity that has no spatial
extent, a dot. It can move around all over space. We’re going to simplify
that too. We’re going to take an entity that moves only along the x-axis. So
you can imagine a bead with a straight wire going through it, which allows
it to only slide back and forth. This is about the simplest thing. I cannot
reduce the number of dimensions. I cannot make the object simpler than a
mathematical point.

To describe what the point is doing, we pick an origin, call it x = 0, and
put some markers along the x-axis to measure distance. Then we will say
this guy is sitting at x = 5. Now, of course, we have to have units and the
unit for length is going to be the meter. The unit for time will be a second.
Sometimes I might not write the units, but I have earned the right to do that
and you haven’t. Everything has got to be in the right units. If you don’t
have the units, and if you say the answer is 42, then we don’t know if you
are right or wrong.

Back to the object. At a given instant, it’s got a location. We would like
to describe the object’s motion by plotting a graph of space versus time. A
typical graph would be something like Figure 1.1. Even though the plot is
going up and down, the object is moving horizontally, back and forth along
the spatial x-axis. When it is at A, it’s crossing the origin from the left and
going to the right. Later, at B, it is crossing back to the left. In the language
of calculus, x is a function of time, x = x(t), and the graph corresponds to
some generic function that doesn’t have a name. We will also encounter
functions that do have a name, like x(¢) = t, x(t) = t?, x(t) = sint, cost, and so
on.
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Figure 1.1 Trajectory of a particle. The position, x(t), is measured vertically and the time, ¢, is
measured horizontally.

Consider #, the average velocity of an object, given by

1_f:x(lfz)—%(fl) (L)
h—h

where t, > t; are two times between which we have chosen to average the
velocity. In the example in Figure 1.1, ¥ < O for the indicated choice of t;
and ¢, since the final x(t,) is less than the initial x(t,).

The average velocity may not tell you the whole story. For example, if
you started at x(t;) and at time t; ended up at point C with the same

coordinate, the average velocity would be zero, which is the average you
would get if the particle had never moved!
The average acceleration, a, involves a similar difference of velocities:

v(ty) —v(t)
h—t

a= (1.2)

Now for an important concept, the velocity at a given time or
instantaneous velocity, v(t). Figure 1.1 shows some particle moving a

distance Ax between times t and ¢ + At. The average velocity in that interval

is i-% What you want is the velocity at time t. We all have an intuitive



notion of velocity right now. When you’re driving your car, if the needle
says 60 miles per hour, that’s your velocity at that instant. Though velocity
seems to involve two different times in its very definition—the initial time
and the final time—we want to talk about the velocity right now. That is
obtained by examining the position now and the position slightly later, and
taking the ratio of the change in position to the time elapsed between the
two events, while bringing the two points closer and closer in time. We see
in the figure that when we do this, both Ax — 0 and At — 0, but their ratio
becomes the tangent of the angle 8, shown in Figure 1.1. Thus the velocity
at the instant ¢t is:

o Ax  dx
0= fim, 3= 1)

Once you take one derivative, you can take any number of derivatives.
The derivative of the velocity is the acceleration, and we write it as the
second derivative of position:

dv  d*x
=—. (1.4)

de dt

You are supposed to know the derivatives of simple functions like x(t) =

t" {% = nt""1), as well as derivatives of sines, cosines, logarithms, and

exponentials. If you don’t know them, you should fix that weakness before
proceeding.

1.4 Motion at constant acceleration

We are now going to focus on problems in which the acceleration a(t) is just
a constant denoted by a, with no time argument. This is not the most
general motion, but a very relevant one. When things fall near the surface of

the earth, they all have the same acceleration, a = -9.8 ms™ = —g. If I tell
you that a particle has a constant acceleration a, can you tell me what the
position x(t) is? Your job is to guess a function x(t) whose second derivative
is a. This is called integration, which is the opposite of differentiation.
Integration is not an algorithmic process like differentiation, though it is
governed by many rules that allow us to map a given problem into others
with a known solution. If I give you a function, you know how to take the



derivative: change the independent variable, find the change in the function,
divide by the change in the independent variable, take the ratio as all
changes approach zero. The opposite has to be done here. The way we do
that is we guess, and such guessing has been going on for three hundred
years, and we have become very good at it. The successful guesses are
published as the Table of Integrals. I have a copy of such a table at home, at
work, and even in my car in case there is a breakdown.

So, let me guess aloud. I want to find a function that reduces to the
number a when I take two derivatives. I know that each time I take a
derivative, I lose a power of t. In the end, I don’t want any powers of t. It’s

clear I have to start with a function that looks like t>. Well, unfortunately,

we know t? is not the right answer, because the second derivative is 2, while
I want to get a. So I multiply the original guess by 1a and I know x(1) = ar®
will have a second derivative a.

This certainly describes a particle with an acceleration a. But is this the
most general answer? You all know that it is just one of many: for example,
I can add to this answer some number, say 96, and the answer will still have
the property that if you take two derivatives, you get the same acceleration.
Now 96 is a typical constant, so I’'m going to give the name c to that
constant. We know from basic calculus that in finding a function with a
given derivative, you can always add a constant to any one answer to get
another answer. But if you only fix the second derivative, you can also add
anything with one power of t in it, because the extra part will get wiped out
when you take two derivatives. If you fixed only the third derivative of the
function, you can also add something quadratic in ¢t without changing the
outcome.

So the most general expression for the position of a particle with constant
acceleration a is

1
x(t) = Ear2+br+c (1.5)

where b, like c, is a constant that can be anything.

Remember that x(t) in the figure describes a particle going from side to
side. I can also describe a particle going up and down. If I do that, I would
like to call the vertical coordinate y(t). You have to realize that in calculus,



the symbols that you call x and y are arbitrary. If you know the second
derivative of y to be a, then the answer is

1
y(t) = Eat2+bt+c. (1.6)

Let me go back now to Eqgn. 1.5. It is true, mathematically, you can add bt +
c as we did, but you have to ask yourself, “What am I doing as a physicist
when I add these two terms?” What am I supposed to do with b and c?
What value should I pick? Simply knowing that the particle has an
acceleration a is not enough to tell you where the particle will be. Take the
case of a particle falling under gravity with acceleration —g. Then

1
y(t) = —Egrz + bt +c. (1.7)

The formula describes every object falling under gravity, and each has its
own history. What’s different between one object and another object is the
initial height, y(0)=y,, and the initial velocity v(0)=v,. That’s what these
numbers b and c are going to tell us. To find c in Eqn. 1.7 put time t = 0 on
the right and the initial height of y, on the left:

Y=0+0+c (1.8)

which tells us c is just the initial coordinate. Feeding this into Eqn. 1.7 we
obtain

1
y(t):—agt2+bt—|—y0. (1.9)

To use the information on the initial velocity, let us first find the velocity
associated with this trajectory:

d
v(r):d—};:—gt—l—b (1.10)

and compare both sides at t = 0



vo = b. (1.11)

Thus b is the initial velocity. Trading b and c for v, and y,, which makes
their physical significance more transparent, we now write

1
J/(t)=—5gr2—|—v0t—|—yg. (1.12)

Likewise for the trajectory x(t) when the acceleration is some constant a,
the answer with specific initial position x, and initial velocity v is

1
x(t)=5at2—|—v0r+xg. (1.13)

In every situation where the body has an acceleration a, the location has
to have this form. So when I throw a candy and you catch it, you are
mentally estimating the initial position and velocity and computing the
trajectory and intercepting it with your hands. (The candy moves in three
spatial dimensions, but the idea is the same.)

Now, there is one other celebrated formula that relates v(t), the final
velocity at some time, to the initial velocity v, and the distance traveled,

with no reference to time. The trick is to eliminate time from Eqn. 1.13. Let
us rewrite it as

1
x(t)—xO:Eat2+v0t. (1.14)
Upon taking the time-derivative of both sides we get
v(t) = at+ (1.15)

which may be solved for t:

B v(t) —
=——

t (1.16)

Feeding this into Eqn. 1.14 we find



2
x(r)—x{):la[m} + [M] (1.17)

=—- 0 (1.18)

which is usually written as

vz—v§=2a(x—xg) (1.19)
where v and x are assumed to be the values at some common generic time t.

1.5 Sample problem

We will work through one standard problem to convince ourselves that we
know how to apply these formulas and predict the future given the present.
Figure 1.2 shows a building of height y, = 15m.

I am going to throw a rock with an initial velocity vy = 10m/s from the

top. Notice I am measuring y from the ground. The rock is going to go up to
point T and come down as shown in Figure 1.2. You can ask me any
question you want about this rock, and I can give the answer. You can ask
me where it will be 9 seconds from now, how fast will it be moving 8
seconds from now, and so on. All I need are the two initial conditions y,

and v, that are given. To make life simple, I will use a = —g = ~10ms~2. The
position y(t) is known for all future times:

y =15+ 10t — 5¢°. (1.20)

Of course, you must be a little careful when you use this result. Say you put
t equal to 10,000 years. What are you going to get? You’re going to find y is
some huge negative number. That reasoning is flawed because you cannot
use the formula once the rock hits the ground and the fundamental premise

that a = —10ms ™2 becomes invalid. Now, if you had dug a hole of depth d
where the rock was going to land, y could go down to —d. The moral is that
when applying a formula, you must bear in mind the terms under which it
was derived.
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Figure 1.2 From the top of a building of height yj = 15m, I throw a rock with an initial upward
velocity of vy = 10m/s. The dotted line represents the trajectory continued back to earlier times.

If you want to know the velocity at any time ¢, just take the derivative of
Eqgn. 1.20:

v(t) =10 — 10t. (1.21)

Let me pick a few more trivial questions. What is the height y,. . of the
turning point T in the figure? Eqn. 1.20 tells you y if you know t, but we

don’t know the time t* when it turns around. So you have to put in
something else that you know, which is that the highest point occurs when

it’s neither going up nor coming down. So at the highest point v(t*) = 0.
From Eqn. 1.21

0=10—10t* which means " =1s. (1.22)

So we know that it will go up for one second and then turn around and
come back. Now we can find y,,.:

Ymax = y(*) = y(1) =154+ 10 — 5 = 20m. (1.23)

When does it hit the ground? That is the same as asking when y = 0,
which is our origin. When y = 0,

0=154+ 10t — 5¢°. (1.24)



The solutions to this quadratic equation are

t=3s or t=—1s. (1.25)

Why is it giving me a second solution? Can t be negative? First of all,
negative times should not bother anybody; t = 0 is when I set the clock to
zero, and I measured time forward, but yesterday would be t = —1 day,
right? So we don’t have any trouble with negative time; it is like the year
300 BC. The point is that this equation does not know that I went to a
building and launched a rock or anything. What does it know? It knows that
this particle had a height of y = 15 m and velocity v = 10 m/s at time t = 0,

and it is falling under gravity with an acceleration of —10 ms~2.That’s all it
knows. If that’s all it knows, then in that scenario there is no building or
anything else; it continues a trajectory both forward in time and backward
in time, and it says that one second before I set my clock to 0, this particle
would have been on the ground. What it means is that if you had released a
rock at y = 0 one second before I did with a certain speed that we can
calculate (v(—1) = 20m/s from Eqgn. 1.21), your rock would have ended up at
the top of the building when I began my experiment, with the same height y
= 15m, and velocity vy = 10 m/s. So sometimes the extra solution is very

interesting, and you should always listen to the mathematics when you get
extra solutions.

When Paul Dirac was looking for the energy of a particle in relativistic
quantum mechanics, he found the energy E was connected to its momentum
p, mass m, and velocity of light, c, by

E* =p*ct +m*c, (1.26)

in accord with a relation we will encounter in relativity. Now, this quadratic
equation has two solutions:

E::I:\/cszerzc“. (1.27)

You may be tempted to keep the plus sign because you know energy is
not going to be negative. The particle’s moving, it’s got some energy and
that’s it. This is correct in classical mechanics, but in quantum mechanics
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solution in quantum theory; the mathematics tells you it is there.” It turns

out the second solution, with negative energy, was telling us that if there are
particles, then there must be anti-particles, and the negative energy
particles, when properly interpreted, describe anti-particles of positive
energy.

So the equations are very smart. When you find some laws in
mathematical form, you have to follow the mathematical consequences; you
have no choice. Here was Dirac, who was not looking for anti-particles.

(as the first one./In trying to accommodate and interpret it, Dirac was led to
the positron, the electron’s anti-particle.
Returning to our problem, if you were only asking for the maximum

height y,..., and not the time t* when it got there, there is a shortcut using

V2 = v} +2a(y — n). (1.28)
Using v =10, vy = 10m/s, and a = —~10ms ™2 we find
Ymax — Yo = dm (1.29)

—that is, the rock reached a maximum height of 20m from the ground.
You can find the speed when it hits the ground (y = 0) using

v =10 +2-(—10)(0 — 15) = 400 which means v = +20m/s.
(1.30)

The root we should take for when it hits the ground is of course —20m/s. As
mentioned earlier, the other root +20m/s is the speed with which it should
have been launched upward, from y = 0 at t = -1, to follow the dotted
trajectory in the figure.

1.6 Deriving v? — v = 2a(x - x,) using calculus

2 2

I want to derive Eqn. 1.19, v* — v = 2a(x — xp), in another way that
illustrates the judicious use of calculus.
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Start with

dv

— = 1.31
= (1.31)

and multiply both sides by v and write y = % in the right-hand side:

dr

dav dx

V—=a—. 1.32
dt dt ( )
Now I’m going to do something that is viewed with suspicion, which is just
to cancel the dt on both sides. Although I agree that you’re not supposed to

cancel that d in ‘-‘;%, canceling the dt on both sides gives valid results if

interpreted carefully. Doing so here gives us

vdv = adx. (1.33)

This equation tells us that in an infinitesimal time interval [t, t + dt], the
variables v and x change by dv and dx, and these changes are related as
above in the limit dx, dv, dt — 0. Now the limit of dx — 0 or dv — 0 (as
compared to their ratio) is of course trivial, and Eqn. 1.33 reduces to 0 = 0.
However, the way we interpret and use Eqn. 1.33 is as follows. Suppose in
the finite time interval [t;, t,], the variable v changes from v, to v,, and x

changes from x; to x,. Let us divide the interval [t;, t,] into a very large

number N of equal sub-intervals of width dt, and let dx and dv be the
changes in x and v in the interval [t, t + dt]. The relation between these
changes is given in Eqn. 1.33. If we sum up the N changes on both sides of
Eqgn. 1.33 as N — oo, the sums converge to nontrivial limits, namely the
corresponding integrals:

fuvdv:afudx (1.34)
V] X]

1, 1,5
—v5 —=v; = alx — xp). 1.35
5 S (x2 —x1) (1.35)

Thus it must be understood that the two sides of a relation like Eqn. 1.33
are to be ultimately integrated between some limits to obtain a useful
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equality.
Eqn. 1.19 follows upon setting

V2 =V, V1 = W, X2 = X, X1 = X0. (1.36)
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CHAPTER 2
Motion in Higher Dimensions

2.1 Review

In the last chapter we took the simplest case, of a point particle moving
along the x-axis with a constant acceleration a. What is the fate of this
particle? The answer is that at any time ¢, the location of the particle is
given by

1
x(t) = xo + vt + Eatz, (2.1)

where x; and v, are its initial position and velocity. If you took the
derivative of this, you would get

v(t) = w + at. (2.2)

You can easily check, by taking one more derivative, that this particle does
indeed have a constant acceleration a. This equation, which gives the
velocity of the object at time t, in terms of its initial velocity and
acceleration can be inverted to give t in terms of v:

V=M1

t = . (2.3)
a

Feeding this into Eqn. 2.1 we obtain the result that makes no reference to
time:

v = v§+2a(x—xg). (2.4)

It is understood v and x correspond to some common time.
I showed you in the end how we can use calculus to derive this result. It
is important to brush up on your calculus. When a student says, “I know



calculus,” sometimes that means the student knows it, and sometimes that
means he or she once met someone who did. One solution for that is to get a
copy of a textbook I wrote called Basic Training in Mathematics. This is a
little awkward; I don’t want to foist my book on you. On the other hand, I
don’t want to withhold relevant information. If you’re going into any
science that uses mathematics—chemistry, engineering, or even economics
—you should find the contents of that book useful. Don’t wait for the
movie: it is not coming.

2.2 Vectorsind =2

The next difficult thing is to consider motion in higher dimensions.
Everything moves around in d = 3. However, I’'m going to use only two
dimensions for most of the time. Whereas the difference between one
dimension and two is very great, that between two and higher dimensions is
not. Later we will encounter a few concepts that make sense in d = 3 but not
d < 3. String theorists will tell you that actually we need 9 spatial
dimensions plus time to describe superstrings, which will be discussed in
depth in Chapter 3,498 of this book.

Picture some particle that’s traveling in the x —y plane as shown in Figure
2.1. This is not an x versus t plot or a y versus t plot. It’s the actual path the
particle traces out on the x — y plane. You might say “Where is time?” One
way to mark time is to imagine the particle carries a clock with it, and put
markers every second. Four representative markers at t = 1, 2, 33, and 34
are shown. It obviously is going much slower between 33 and 34 than
between 1 and 2.

The kinematics of this particle requires a pair of numbers x and y. It’s
more convenient to lump these into a single entity, called a vector. The
simplest context in which one can motivate a vector and the rules for
dealing with vectors is to look at movements in the plane. Let’s imagine
that when I went camping I walked for 5 km from the base camp on the first
day and another 5 km on the second day. How far am I from the base camp?
You cannot answer that, even if I promised to move only along the x-axis.
It’s not enough to say I went 5 km. I have to tell you whether I went to the
right or to the left. So I could be 10 km, 0 km, or —10 km from base. If I say
not just that I walked 5 km, but specified whether it was +5 km, that takes
care of all ambiguity in one dimension.
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Figure 2.1 Path of a particle in d = 2. Equal intervals in time are indicated by markers on the path
numbered 1, 2, .. ., 33, and 34.

But in d = 2 the options are not just left and right, but an infinity of
possible directions. For example, on the first day I could leave the base
camp at the origin and move along the arrow labeled A to arrive at the point
labeled 1 in Figure 2.2(a). The second hike is described by the arrow B,
which starts where A ended and brings me to 2. These two arrows are
examples of vectors and I use them here for describing displacement, or
changes in position. Vectors can be used to describe many other physical
quantities, as we will see.

(a) (b)

Figure 2.2 Adding vectors. Part (a) shows how to add vectors and that A + B = B + A. Part (b)
illustrates the meaning of multiplying a vector by a number (2 in this example) and the null vector 0.



A vector is an arrow that has got a beginning and an end. This is why one
says a vector has a magnitude and a direction. The magnitude is how long it
is, and direction is its angle relative to some fixed direction, usually the x-
axis. When you refer to a vector A in your notes, you’re supposed to put a
little arrow on top like this: A. In textbooks, vectors are in boldface: A. If
you don’t put an arrow on top or do not use boldface, you’re talking about
just a number A. When applied to a vector A, A stands for its length.

From Figure 2.2(a), we see that there is a very natural quantity that you
can call A + B. One day I moved by A and on the next by B. If I want to do
it all in one shot, what is the equivalent step I should take from the start?
It’s obvious that the bottom line of my two-day trip is this object C. We will
call that A + B. It does represent the sum, in the same sense that if I gave
you 4 bucks and then I gave you 5 bucks, you have the equivalent of a
single payment of 9 bucks. Here, we are not talking about a single number,
but a displacement in the plane, and C indeed represents an effective
displacement due to A and B.

So here is the rule for adding two vectors that comes from a study of
displacements: you draw the first one and at the end of that first one, you
begin the second one, and their sum starts at the beginning of the first and
ends at the end of the second.

You can verify, as illustrated in the figure, that A + B is the same as B +
A where you first draw B and from where B ends you draw A. You will end
up with the same point, 2, as shown by the sum of the dotted arrows.

The next thing I want to do is to define the vector that plays the role of
the number 0, which has the property that when you add it to any number, it
gives the same number. The vector 0 that I want to call the zero or null
vector should have the property that when I add it to any vector, 1 should
get the same vector. So you can guess who it is: a vector of no length. I
cannot show you the 0. If you can see it, I’'m doing something wrong.

Look at part (b) of Figure 2.2. What if I draw A, then I add to it another
A to get A + A. You have to agree that if there’s any vector that deserves to
be called 2A, it is this guy, A, stretched to twice its length. Now we have
discovered a notion of multiplying a vector by a number. If you multiply it
by 2, you get a vector twice as long and in the same direction. Then we’re
able to generalize that and say, if you multiply it by 2.6, you get a vector 2.6
times as long. So multiplying a vector by a positive number means to
stretch it (or shrink it) by that factor.



Let us keep going. I want to think of a vector that I can call —A. What do
I expect of —A? I expect that if I add —A to A, I should get 0, which plays
the role of 0 among vectors. What should I add to A so I get the null vector?
It’s clear that you want to add a vector that looks like —A in part (b) of
Figure 2.2, because, if you go from the start of A to the finish of —A, you
end up where you started and you get this invisible 0 vector. So the minus
vector is the same vector flipped over, pointing the opposite way. That’s
like —1 times a vector. Once you have got that, you can do —7.3 times a
vector: just take the vector, rescale it by 7.3 and flip it over. Multiplying a
vector by a number is called scalar multiplication, and ordinary numbers
are called scalars. You can do more complicated things. You can take one
vector, multiply it by one scalar, take another vector, multiply that by
another scalar, and add the two of them. We know what all those operations
mean now. You don’t have to memorize the rules for all this. The only rule
is: “Do what comes naturally.” Do what you normally do with ordinary
numbers.

2.3 Unit vectors

Let us go back to the same x — y plane. I’'m going to introduce two very
special vectors. They are the unit vectors: 1 and j, pointing along the x and y
axes and of unit length, as shown in Figure 2.3. If I had a third axis
perpendicular to the page, I would draw a k, but we don’t need that yet. I
claim I can write any vector you give me as a number A, times 1, plus a

number A, times j. There’s nothing you can throw at me that lies in the

plane that I cannot describe as some multiple of i plus some multiple of j.
It’s intuitively clear, but I will just prove it beyond any doubt. Here is some
vector A. It is clear from the figure that it is the sum of the dotted horizontal
vector and the dotted vertical vector, by the rules of vector addition. The
horizontal part, parallel to i, has to be a multiple of i. We know that because
we can stretch i by whatever factor we like. Call that factor A,, which

happens to be positive in this example. It is called the x-component of A or
the projection of A along i or along the x-axis. The vertical part is likewise
JA, where A, is the y-component of A, or the projection of A 