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ABSTRACT. The Lorentz transformations and special relativity are unable to provide a 
realistic physical explanation of the behavior of matter and light. We will show that all these 
phenomena can be explained using Newton's physics and mass-energy conservation, 
without space contraction or time dilation. We have seen previously that the principle of 
mass-energy conservation requires that clocks run at a slower rate in a moving frame, and 
physical bodies become longer because of the increase of the Bohr radius. These results 
allow us to answer the question: With respect to what does light travel? For example, when we 
move away at velocity v from a source emitting light at velocity c, the relative motion of the 
radiation is observed from the Doppler shift. How can we explain logically that these 
photons appear to reach us at velocity c and not (c-v)? The conventional explanation relies 
on special relativity, but it implies an esoteric space-time distortion, which is not compatible 
with logic. This paper gives a physical explanation how the velocity of light is really (c-v) 
with respect to the observer, even if the observer's tools always measure a velocity 
represented by the number c. We explain how this problem is crucial in the Global 
Positioning System (GPS) and in clock synchronization. The Lorentz' transformations 
become quite useless. This apparent constant velocity of light with respect to a moving 
frame is the most fascinating illusion in science. 
Key words: special relativity, Lorentz transformations, light velocity, clock synchronization, GPS. 

RESUMO. O GPS e a velocidade constante da luz. As transformações de Lorentz e a 
relatividade especial são incapazes de fornecer uma explicação física realística do 
comportamento da matéria e da luz. Mostraremos aqui que todos esses fenômenos podem 
ser explicados usando-se a física de Newton e a conservação da massa-energia, sem apelar 
para a contração espacial ou a dilatação do tempo. Sabemos que o princípio de conservação 
da massa-energia requer que os relógios funcionem mais devagar em um referencial móvel, 
e que os corpos físicos tornam-se maiores devido ao acréscimo do raio de Bohr. Estes 
resultados nos permitem levantar a seguinte questão: A luz viaja com respeito a quê? Por 
exemplo, quando nos distanciamos a uma velocidade v de uma fonte emissora de luz, que, 
por sua vez, se desloca com velocidade c, o movimento relativo da radiação é dado por um 
deslocamento Doppler. Como podemos explicar logicamente que estes fótons parecem 
chegar até nós a uma velocidade c e não a uma velocidade (c – v)? A explicação convencional 
remete à relatividade especial, mas isto implica em uma esotérica distorção espaço-temporal, 
que não é compatível com a lógica. Este artigo fornece uma explicação física de como a 
velocidade da luz é realmente (c – v) com respeito ao observador, mesmo se as ferramentas 
do observador sempre meçam a velocidade representada pelo número c. Explicamos como 
este problema é crucial no Global Positioning System (GPS – Sistema de Posicionamento 
Global) e na sincronização dos relógios. As transformações de Lorentz tornam-se 
desnecessárias. Esta aparente constância da velocidade da luz com respeito a um referencial 
móvel é a mais fascinante ilusão na ciência. 
Palavras-chave:  relatividade especial, transformações de Lorentz, velocidade da luz, sincronização de 

relógios, GPS. 

Many experiments, like the Michelson-Morley 
and Sagnac experiments and others, are testing the 
fundamental nature of light. It is conflicting to 
observe that the velocity of photons is measured as a 

constant, when the observer moves away from that 
light source. Photons, just as any other particle, 
possess an independent existence and are not created 
by a physicist's thought, as claimed in quantum 
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mechanics. Since all other particles are measured 
with additive velocities (V±v) with respect to a 
moving frame, why can photons not obey that same 
rule? Since Newton's mechanics has shown that all 
relative velocities produce a Doppler frequency 
shift, we must expect logically that some special 
phenomena prevent us from detecting the real 
change of relative velocity. It is quite incorrect to 
believe that this phenomenon cannot be explained 
using physical reality and Newton physics.  

As required by the principle of mass-energy 
conservation (Marmet, 1997), the atoms (nucleus 
and electrons) forming a local standard reference 
meter and a moving clock acquire some extra mass 
due to the materialization of kinetic energy. 
Quantum mechanics shows that this increase of 
energy changes the de Broglie electron wavelength 
and consequently, the Bohr radius and the clock 
rate. It is surprising to find new hypotheses like 
space-time distortion, and even more, the suggestion 
of “new logic” to explain these observations, while it 
is not taken into account that the rate of the moving 
clock is naturally modified due to the increase of 
mass (following the absorption of kinetic energy). 
The simple application of the principle of mass-
energy conservation explains naturally all these 
experiments.  

We must add that there is only one Real Logic. 
An assumed Superior Logic, applicable to modern 
physics is not compatible with Real Logic. We must 
recall that an empirical equation used to predict the 
outcome of a physical system is not an explanation. 
When there is no physics underneath these 
mathematical equations, they give empirical 
predictions of what will happen to the system. 
Mathematical equations generally deal with time 
symbols, but they never explain “why”. A real 
explanation must answer the question of causality, 
which is asked by why? An equation is never the 
“cause” of a phenomenon.  

Switching between frames 

Let us consider the frame of reference of a small 
star cluster, with stars having all the same velocity, as 
illustrated in Figure 1. One of those stars is our Sun, 
which is surrounded by the Earth moving around it. 
In this star frame, an observer measures that the 
photons are emitted at velocity c with respect to the 
star system. That light (hν, on Figure 1) travels 
toward the Earth, but the Earth moves away at 
velocity vE with respect to the star system as 
illustrated on Figure 1.  

 
Figure 1. Earth motion in an absolute frame 

Photons are some sort of electromagnetic wave 
packets which travel at velocity c with respect to the 
star cluster. Consequently, those photons must 
logically travel at a velocity (c-v) with respect to the 
Earth that moves at velocity v (see Figure 1). As 
demonstrated previously, the strict application of the 
principle of mass-energy conservation leads to the 
slowing down of clocks and the increase of the Bohr 
radius, which produces an increase of the physical 
length of matter. More far-reaching applications 
have been presented previously (Marmet, 1997), but 
in the present paper, we need to use solely, the 
increase of length of matter and the slowing down of 
clocks. Using classical physics with these two 
natural consequences of mass-energy conservation is 
totally sufficient to explain all the problems related 
to special relativity. The Lorentz equations become 
useless. A previous reading of the book (Marmet, 
1997), would be extremely helpful, even if the main 
explanations and relationships are briefly recalled 
here.  

Let us now simplify Figure 1. On the right hand 
side of Figure 2, the Earth moving at velocity [v] is 
now substituted by a train moving at velocity v with 
respect to the station frame [s]. An image of the 
moving train appears on the upper left of Figure 2, 
at a previous time. The physical length of the 
moving train is established here as Lv, which is the 
distance between clocks α and β. Below, we see the 
train at rest at the station [s] before it started to 
move. Light emitted from the star system is now 
represented by the light emitted at location A on the 
station frame [s]. In Figure 2, the length of the 
station is the distance Lv between clocks A and B. 
That same distance is equal to the length of the train 
“in motion”. Of course, the length of the train Ls at 
rest is shorter before it started to move.  

As explained previously (Marmet, 1997), the 
relative length Lv of the train in motion with respect 
to the train at rest Ls, is: 
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γ==
restatLength

motioninLength
L
L

s

v      (1) 

The parameter γ is equal to 1/(1-(v2/c2))(1/2). 
Capital letters are used to describe physical lengths. 
The sub index gives the location of the physical 
body. To be coherent, the physical length Ls and Lv 
must be compared with the same standard unit of 
length in the same frame. We have seen (Marmet, 
1997), that when we carry a standard unit of length 
from a rest frame to a moving frame, that standard 
length of reference also becomes γ times longer. For 
example, the relationships between the lengths Lv 
and Ls in equation (1) can be verified experimentally 
if, at one instant, clocks α and β on the moving train 
leave some marks on the station frame that can be 
measured with the station meter.  

 

 
Figure 2. Clock synchronization in a moving frame 

However, since we deal with observers 
measuring lengths and recording clock displays 
using their proper units, we need to determine the 
number of local units in other frames. Of course, 
when the standard meter used to make 
measurements is moved to another frame, its 
physical length is also changed. Therefore when the 
moving observer determines the length of a moving 
body, he is now doing it with respect to the local 
standard meter (which is different). The number “” 
represents the number of times the designated 
standard units of length have been counted when 
measuring L. The number of times a (moving) 
particular length is longer than the standard length 
located on the station [s], is represented by v[s]. 
The quantity inside the square parenthesis [s] or 
[v], indicates the information about which the 
standard unit is used (either at rest or moving). The 
sub indexes “s” or “v” (in s, v) give the location (or 
sometimes the frame) of the measured body. We see 
that the same rod, at different locations, can be 
designated by four numbers s[s], s[v], v[s] or 
v[v].  

We take the example when the observer on the 
train uses his local meter to measure the length of 
the moving train. He finds that this number v[v] is 

identical to the number of units on the station s[s] 
before the train started to move, even if it is not the 
same physical length (Lv>Ls). However, when the 
same physical rod, in the same frame (constant Lv) is 
measured using different standard units [v] or [s], 
the number measured with respect to each standard 
lengths units [v] or [s] follows the relationship: 

γ=
]v[
]s[

v

v



          (2) 

Since the moving observer uses his local moving 
standard units, he might believe that the length does 
not increase when his own velocity increases. He 
does not realize that his train is physically longer, 
but this is not measurable because his local standard 
meter has increased in the same proportion. In 
doing local mathematical calculations, he will 
normally use the number v[v] to calculate the 
length, which is identical to the number s[s]. In 
fact, equation (2) also implies that the real physical 
length Lv is equal to γ times Ls. In order to apply 
physics correctly, the moving observer must 
compensate for the fact that he does not possess the 
same standard unit of length as when he is located 
on the station frame. Therefore he must apply a 
correction due to the change of length of his 
measuring local standard meter as given in equation 
(2).  

We have seen that, due to mass-energy 
conservation, it is impossible to switch matter 
between frames without changing the physical 
length of the standard measuring meter. For the 
same reason, it is impossible to switch a standard 
clock to a new frame without altering its clock rate. 
At the same time matter passes from a station frame 
to a moving frame, we have seen (Marmet, 1997), 
that atomic clocks change their rate, because the 
fundamental particles (electrons, etc.) of the atoms 
have acquired energy-equivalent mass. We have seen 
that the rate of the moving clocks α and β (on a 
moving frame) is γ times slower than the rate of 
clocks A or B located on the rest frame. 
Consequently, when one local second [v] is 
measured on the moving train, the moving observer 
must realize that in fact a longer time interval has 
elapsed, because that local moving clock is slow. 
During exactly the same time interval, the slower 
clock rate of the moving clock produces a smaller 
difference of clock display ∆CDv than the display 
observed on the rest clock ∆CDs. The relative 
Difference of Clock Displays between these frames 
is given by the relationship:  
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γ
=

∆
∆

=
∆
∆ 1

StationCD
TrainCD

CD
CD

s

v      (3) 

The train observer must take into account in his 
calculation that his moving clock is slow. Just as 
when he was measuring lengths, he knows that the 
two clocks A and α, located on different frames will 
show a different difference of display (apparent 
time) during the same real time interval. Using a 
similar method as for length (equation (2)), during 
the same time interval, the moving observer must 
use equation (3) to compensate for his slow local 
clock according to the relationship: 

γ
=

∆
∆ 1

]s[CD
]v[CD           (4) 

In this paper, we do not need to consider directly 
the internal change of mass of electrons and nuclei. 
This has been considered previously (1, 2). Here, 
there is no change of gravitational potential. Such a 
change of gravitational potential has been calculated 
for the advance of the perihelion of Mercury 
(Marmet, 1999). Here we deal only with clock rates 
and physical lengths which corresponds to special 
relativity. Consequently, the problem is much 
simpler. There exists neither space contraction nor 
time dilation; just a change of length of physical 
bodies and a change of clock rate. However, since 
we deal with velocities, we have seen (Marmet, 
1997), previously that all velocities are represented 
by identical units (V[s] = V[v]) whether we use the 
star units or the Earth units, because local lengths 
and local clock rates vary in the same proportion 
when switching between frames. Our aim is now to 
calculate the velocity of light emitted from source A, 
when measured inside the moving train observer, 
using the local train clocks and the local moving 
standard meter.  

These calculations imply quantities having a very 
large variation in size. In order to avoid lengthy 
calculations involving different physical phenomena, 
we will sometimes limit the calculation to the first 
order (power) of v/c. Since these calculations are 
verified by the GPS and the Sagnac effect, we will 
neglect all higher power of v/c because they modify 
the result by a quantity as small as 0.000001 of the 
relevant calculated Sagnac effect. Further 
investigation involving a higher power of v/c will be 
considered later.  

Einstein's clock synchronization technique 

On the station frame, an observer calculates the 
velocity of light, using his proper units [s] and the 
standard method used by Einstein. A pulse of light is 
emitted from location A toward B (see Figure 2). 

The station observer measures the velocity of light, 
calculating the quotient of the length LV, divided by 
the difference of local time between light emitted 
from A and received at B (see Figure 2). Since the 
train is in motion, for the station observer the 
distance Lv between A and B is represented by V[s] 
and not S[s], because the train is really longer when 
in motion. Measuring the “time interval” means 
only that the station observer records the displays 
shown respectively on both clocks at the instant 
light is at location A (CDA) and later B (CDB). This 
experiment gives c.  

c
]s[CD]s[CD

]s[

AB

v =
−

        (5) 

We notice that clocks A, B, α and β have not 
been synchronized yet. Let us apply the Einstein's 
synchronization method to the moving frame. A 
pulse of light is emitted from location A on the 
station (see Figure 2). Later, at the moment some 
photons pass through location α, the Clock Display 
(CDα[v]) on clock α is recorded. Also, when light 
reaches location β, the Clock Display on β (CDβ[v]) 
is recorded. As seen by the train observer, the 
velocity of light on the moving train is given by the 
following quotient. --- The distance v[v] (between 
α and β) divided by: “the Difference of Clock 
Display between clock β, (when light arrives)” 
minus “the display on clock α (when light passed in 
α)”.  

Before calculating correctly the velocity of light 
on the train, we must synchronize clocks α and β on 
the moving frame. As suggested by Einstein, we 
synchronize clock α with clock β (inside the moving 
frame) in the usual way. It is a two-way velocity 
clock synchronization. The Einstein's 
synchronization technique used by the moving 
observer is the following: a pulse of light is sent 
between the two clocks α and β. The difference of 
Clock Displays (∆CDα-β-α[v]) on clocks α (or β) is 
recorded during a return trip of light between α and 
β. In a second part of the experiment, at the moment 
light from α is received at clock β, the Clock Display 
on clock β is set to the same value as the initial 
Clock Display on clock α (when light was emitted), 
plus one half the difference of Clock Display 
{(1/2)(∆CDα-β-α[v]} measured previously (light 
making a two-way trip between α to β). The local 
“apparent time” means what is displayed on the 
moving clock. One must recall that this 
measurement must be done using all local moving 
frame units [v] as displayed directly on α and β. 
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The GPS and the constant velocity of light 1273 

This is utterly important as explained in more details 
(Marmet, 1997). 

In the case of clocks A and B on the station, this 
synchronization method is identical as above, using 
clocks A and B and the station length V[s]. Finally, 
the synchronization must be done between clocks A 
and α. The most reliable way is to synchronize them 
at the same value (same display), when clock α 
passes just besides clock A (see left hand side of 
Figure 2).  

It is important to add that it is also demonstrated 
that another well-known procedure leads to a 
perfectly identical synchronization between two 
clocks. This is used by several authors. We refer to it 
(Marmet, 1997), as method #2. It consists in 
carrying a third clock µ, at an infinitely slow velocity 
on the moving frame between α and β. This leads to 
a synchronization of β with respect to α, identical to 
the Einstein's synchronization method explained 
above. Of course, this method is also applied 
successfully between A and B. The reader must refer 
to chapter 9 of the book (Marmet, 1997) to see that 
the two methods lead to an identical 
synchronization of clocks, when used either on the 
rest or on the moving frame.  

Synchronization of moving clocks α and β, with a 
third clock µ 

We have seen above that there are two perfectly 
equivalent methods to synchronize clocks. Method 
#1 uses a two-way reflected beam of light on a 
mirror, while method #2 is carrying a third clock µ 
on the moving frame between α and β. Due to their 
kinetic energies, both clocks α and β on the train 
run at a slower rate. As a consequence of that slower 
clock rate, we show that when all three clocks A and 
B and α are all synchronized at zero, at the same 
instant, the fourth clock β cannot show a Clock 
Display equal to zero, due to the Einstein's 
synchronization technique described above. This 
phenomenon does not seem to have been noticed 
directly previously. However, we will see that it is 
the “cause” of the Sagnac effect. This deficient 
synchronization of clock β with respect to the others 
has been demonstrated in a previous paper (Marmet, 
1997). We use here method #2, which is 
mathematically equivalent. The result is the same.  

We consider that clock µ starts moving from 
clock α to clock β, at the moment clock α passes 
besides clock A (see left hand side of Figure 2). 
Since clock µ moves at the additional velocity ε[s] 
(with respect to v[s]), the Difference of Clock 
Displays (∆CD[s]) is recorded on clock A, while clock 

µ travels across distance v with respect to the moving frame. 
This corresponds to L2 on the rest frame. This gives:  

]s[
}L]{s[CD]s[ v

2A ε
=∆=τ∆


   (6) 

The difference of Clock Display (in units [s]) 
corresponds to an apparent time interval called 
∆τ[s]. In equation (6) ∆CD[s] is the apparent time 
interval during which clock µ moves across the 
moving distance v. We have already seen that when 
we calculate velocities, the number (of units of 
velocity) representing a velocity is the same, in both 
frames (ε[s]=ε[v]). In equation (6) the symbol in { 
} adds some information about the distance traveled 
in the stationary frame.  

However, the moving train observer uses his 
own standard units to find the corresponding 
number of local units in his frame. Since the moving 
clock runs at a slower rate, during the same “time 
interval” the moving clock CDα[v] will show a 
smaller ∆CD than CDA[s], as given in equation (4). 
Equation (4) in (6) gives: 

εγ
=∆

α
α

v
2}L]{v[CD 

      (7) 

where ∆CDα[v] is the difference of Clock Displays 
(apparent time) on clock α on the moving train 
during the period when α is traveling across the 
distance L2. Let us consider clock µ.  Similarly to 
clock α, clock µ travels during the same time 
interval, but at velocity (v+ε). Therefore the 
∆CDµ [v] observed on clock µ during the same time 
interval will differ only because of the difference of 
velocity between v and (v+ε). Since γ is velocity 
dependent, we just have to switch the velocity from 
γα to γµ. The parameter γµ, is the value of γ 
corresponding to the velocity (v+ε) of clock µ. 
Similar to equation (7), the Difference of Clock 
Display on clock µ while clock α travels distance L2 
is: 

εγ
=∆

µ
µ

v]v[CD 
        (8) 

We have seen that clock β is synchronized with 
the slow moving clock µ, when µ reaches β. After 
the synchronization of clock β with the arriving 
clock µ, the difference of clock displays between 
clock α and β (given by clock µ), as given by 
equations (7) and (8) is: 












γ
−

γε
=∆−∆

µα
βα

11]v[CD]v[CD v   (9) 

By definition, we have 

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight



1274 Marmet 

2

2

2 c
v11

−=
γα

         (10) 

Since v is very much smaller than c, we can use 
the series expansion of equation (10). We get: 

...
c8
v3

c2
v11

4

4

2

2
−−=

γα
      (11) 

Since vµ = vα +ε, we also have: 

...
c2

)v(11
2

2ε+
−=

γµ
      (12) 

Equations (11) and (12) in (9) give: 

2v
c
v}L){CDCD( +=∆−∆ βα    (13) 

Using Einstein's synchronization method, 
equation (13) gives the Difference of Displays, at the 
same instant, between clocks α and β. This difference 
is constant in time. The original Einstein's clock 
synchronization method was perceived as an attempt 
to set up an identical display on two remote clocks 
(α and β) on the same frame at the same time. 
However unexpectedly, in a moving frame this 
synchronization method does not give that expected 
result (as obtained on the station frame). Equation 
(13) shows that the Display on clock β gives an 
“apparent time” which is earlier than the Display on 
clock α. This is a fact coming out inevitably from 
the principle of mass-energy conservation and 
Einstein's synchronization method. This deficient 
synchronization of clock β is responsible for the 
Sagnac effect that will be explained below. This 
difference in clock synchronization is normally 
undetectable and even appears quite natural for an 
observer traveling inside the moving train.  

From the above calculation, we also see that 
when clock µ returns in the opposite direction 
(from β to α), at its arrival, the Clock Display on µ is 
then again exactly the same as the Clock Display 
carried by the returning clock α. The phenomenon 
is reversible. Consequently, equation (13) is 
identical to equation 9.37 (Marmet, 1997).  

Table of clock synchronization 

We have shown above that the synchronization 
of clocks on a moving frame is such that clocks α 
and β must necessarily be synchronized with a 
different display “at the same instant”. This is 
required even if both clocks α and β are located on 
the same frame. However, both clocks (A and B) at 
each extremity of the station frame show the same 

display at the same instant. An observer on the 
station frame could observe that clocks α and β do 
not show an identical display at the same instant. 
However, the observer on the train could not detect 
any difference when synchronizing his local clocks, 
because both methods of synchronization using 
light, or carrying clock µ, agree with the above 
Einstein's discordant synchronization, between α 
and β. Since this phenomenon has not been 
discussed previously (except in Marmet, 1997), and 
in order to give a non-ambiguous description, we 
present a table of Clock Displays appearing 
simultaneously on the four clocks A, B, α and β as a 
function of the apparent time on clock A, for each 
successive second [s] as given in equation (13).  

Table 1. Respective clock displays on each clock at the same 
instant 

Clock A  Second [s] Clock B Second [s] Clock α Second [v] Clock β Second [v] 

0 0 0 -v/c
2 

1 1 1/γ (1/γ)-(v/c
2) 

2 2 2/γ (2/γ)-(v/c
2) 

3 3 3/γ (3/γ)-(v/c
2) 

----- ----- ----- ----- 

Velocity of light in a moving frame 

Let us calculate the distance “L2” (see Figure 2) 
traveled by a beam of light emitted at velocity c, 
from location A, at rest on the station, during the 
time light passes from α to β located in the moving 
frame. Using Galilean coordinates we calculate the 
velocity of the photons moving at velocity (c-v) with 
respect to the moving train. The photons must 
travel across the moving distance Lv[s] when we 
consider the relative velocity (c-v) before passing 
from α to β. Consequently, the time TL2[s] (or 
∆CDv[s] taken to pass from α to β, at the relative 
velocity c-v, is equal to: 

]s[L)vc(]s[T v2L =−×      (14) 

We have l v[s] is the number of rest meters in 
length Lv[s]. From equation (14) the time for light 
to travel across L2, can be written: 

vc
)to(]s[CD v

v −
=βα∆


     (15) 

Multiplying both numerator and denominator 
on the right hand side of equation (15) by (c+v) and 
using the definition of γ, equation (15) becomes:  

2

2
v

2
v

v
c

v
c

)to(]s[CD γ
+

γ
=βα∆ 


 (16) 

Using equation (4) in (16) we get: 
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2v
v

v
c

v
c

)to(]v[CD γ
+

γ
=βα∆ 


  (17) 

We have seen above that in equation 17 the 
length v is given using rest frame units. However, 
the moving observer uses the moving units which is 
a number γ times smaller because the moving 
standard meter is longer. Substituting equation (2) 
in (17), we get: 

2v
v

v
c
v

c
)to(]v[CD 


+=βα∆   (18) 

If we repeat a calculation similar to the equations 
above, when light is emitted from a source at rest 
but moving in the opposite direction, Equation (18) 
becomes: 

2v
v

v
c
v

c
)to(]v[CD 


−=αβ∆   (19) 

Equations (18) and (19) show that the time 
interval for light to travel from α to β is the sum of 
two quantities. The first term (V/c) corresponds to a 
time interval expected assuming the velocity of light. 
The second term must be explained by another 
phenomenon.  

In order to measure the velocity of light in the 
moving frame, the observer takes the display on 
clock α when light passes in α. Later, when light 
reaches location β, he records the display on clock β. 
We have seen in equation 13 that clock β is late with 
respect to α. Consequently, the difference of display 
between clock α and β after the travel time between 
the two clocks is given by equation 18 minus 
equation 13. This gives: 

c
)to()CDCD( v=βα∆−∆ αβ    (20) 

When light moves in the opposite direction from 
β to α, since  

clock β is late with respect to α, we see that 
equation 13 must be added to equation 19 in order 
to get the difference of clock display between clock 
β and clock α after light traveled between the two 
locations. Therefore, the difference of clock display 
between β and α given by equation 13 plus equation 
19 gives: 

c
)to()CDCD( v=αβ∆−∆ βα    (21) 

Equations 20 and 21 explain why the velocity of 
light appears to be c in the moving frame. However, 
it is an illusion because the real velocity is c±v. The 
error is due to Einstein's clock synchronization 
method which gives a wrong synchronization. It is 
very important to notice that this error in clock 

synchronization is enormously more important than 
the usual relativistic correction. For example, in a 
frame moving at the velocity of rotation of the 
Earth, (which is about 0.000 001c), this correcting 
term (V v/c2) is one million times larger than the 
usual correction γ for the change of clock rate (and 
length) used in relativity. It is surprising that this 
term has not been considered previously, while the 
relativistic term γ, which is much less important 
(about only one part in 1012), is taken into account. 
This paper deals with this relatively large term (10-6). 
A detailed study of the other much smaller (10-12) 
term will be fully explained in a future paper.  

Experimental confirmation of the discordant 
Einstein's synchronization method with the GPS 

There are direct measurements proving that the 
velocity of light in one direction is c±v with respect 
to the moving observer. This discordant 
synchronization given in equation (13) has been 
measured in the world system of clock 
synchronization with the Global Positioning 
System. It is then observed experimentally that the 
Einstein's method of synchronization using the “half 
time interval” taken by a reflected beam of light is 
inadequate to determine the correct time. A 
correction (which is the Sagnac effect) has to be 
added.  

As an example, let us assume that clock α (from 
Figure 2) is in New York (N.Y.), and clock β is in 
San Francisco (S.F.) as illustrated on Figure 3. The 
velocity v is the velocity of rotation of the Earth 
around the pole axis, at the location where the 
experiment is done. The distance  is the distance 
between New York and San Francisco (dotted line 
on Figure 3).  

After the initial synchronization of clock α with a 
mobile atomic clock called µ, that clock is moved 
from New York to San Francisco at a constant 
altitude and slow velocity ε (see Figure 3). The 
constant altitude (at sea level) avoids other 
corrections due to the change of gravitational 
energy, which are irrelevant in this paper. The 
equivalent of such an experiment has been done by 
Sadeh et al., 1968, using a truck containing a number 
of accurate atomic clocks, previously synchronized 
with a primary standard of time. In the truck, 
moving clocks were sent down across USA. This 
experiment is reported in Science (Straumann, 
1991). Using the GPS correction (which is 
mathematically identical to equation (13), the 
correct time is set up between clock α in New York 
and clock β in San Francisco. 
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Figure 3. Clock synchronization on the rotating Earth 

The reader must be aware of the fundamental 
principles of physics involved in the GPS. The 
standards for the synchronization of clocks stations 
used by the Global Positioning System have been 
published in 1990 by the International Radio 
Consultative Committee: International 
Telecommunication Union CCIR, 1990, which 
uses similar rules as the 1980 publication of the 
CCDS (Comité Consultatif pour la définition de la 
Seconde: Bureau International des Poids et 
Mesures) (CCDS, 1980).  

The Global Positioning System (GPS) 
determines that after clock µ moves away from clock 
α in New York, toward clock β in San Francisco, its 
display accumulates an extra 14 ns (approximately) 
with respect to clock β. We know that due to the 
Earth rotation, between N.Y. and S.F. clock µ moves 
at velocity (v-ε), which is the velocity of rotation of 
the Earth “v” minus the velocity of the truck “ε“. 
Therefore 14 ns are subtracted to its display at its 
arrival in order to give a correct synchronization of 
time on clock β in S.F. This correction is identical to 
equation (13). This correction is the same as the one 
programmed automatically in the GPS.  

Experimentally, an equivalent experiment has 
also been done carrying a clock between Washington 
and Tokyo by Saburi et al., 1976. It is then an 
experimental fact that the two clocks (α and β) are 
not naturally synchronized at the same value, as a 
result of the discordant Einstein's synchronization 
method as explained above.  

There is another well-known way to synchronize 
the clocks between these two stations (α and β). It is 
done sending radio signals transmitted 
simultaneously (east-west and west-east) between 
these two cities. Again, it is observed that a 

simultaneous transmission of radio signals between 
New York and San Francisco does not give 
“directly” the same correct clock display (time) in 
both cities. There is a difference of about 14 ns that 
must be subtracted to the clock in San Francisco in 
order to get the correct GPS time. This correction is 
identical to the one when we are carrying clocks. 
This correction corresponds to a change of velocity 
c±v between stations.  

GPS synchronization has been verified in 
numerous experiments. It is identical to the 
calculations presented in this paper and also to the 
Sagnac's effect (which is included in the GPS). 
Among the GPS list of corrections, there is a 
correction involving a parameter taking into account 
how many Earth meridians are crossed by light or by 
the moving clock µ, between the two locations. 
Kelly, 1996, explains that the correction used by the 
GPS is: 

2E
c

A2)correction(GPS ω
=      (22) 

where ω is the angular velocity of rotation of the 
Earth, AE is the projected area on the Earth equator 
plane of the path used by light (or by a slowly 
moving clock) between the two stations. We define  
as the distance between the two stations, both 
moving at velocity v. The circumference of the 
Earth is called “circ”. Therefore the area AE is  

2
E r

circ
A π=

          (23) 

The angular velocity ω is equal to v/r. The 
circumference of the Earth is 2πr. Equation (23) in 
equation (22) gives: 

2c
v)correction(GPS =       (24) 

We see that the GPS correction of clocks (24) is 
identical to the Sagnac effect, but also perfectly 
identical to equation (13). When a clock moves 
eastward, we understand that the velocity of the 
clock is added to the Earth velocity so that the term γ 
becomes larger (for the moving mass µ), than for 
masses α and β which do not possess that extra 
velocity. Consequently, the clock moving eastward 
runs at a slower rate. Consequently, the “Einstein's 
Clock Synchronization Method” is not compatible with 
the time given by the GPS and the Sagnac effect 
must be added. We finally conclude that the 
difference of clock synchronization given by 
equation (13) is an experimental fact that has been 
observed when setting up the Global Positioning 
System. We must conclude that the velocity of light 
is equal to c with respect to the non-rotating frame.  
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Synchronizing clocks with the GPS 

Other experiments can be realized to test the 
difference of synchronization (time) between clocks. 
Experiments with north-south displacements of 
clocks have also been verified experimentally. 
Instead of directly exchanging the radio signals or 
moving clocks between New York (N.Y.) and San 
Francisco (S.F), as illustrated in Figure 3, let us 
assume that a radio signal is sent from New York to 
a station at the North Pole (N.P.) of the Earth 
before being reflected (or re-emitted) toward San 
Francisco. This can be done using a satellite located 
above the North Pole. In this case, in agreement 
with the GPS, we observe that the simultaneous 
exchange of radio synchronization between α and β 
does not show the difference of 14 ns, since light 
never travels across meridians, as illustrated on 
Figure 3. Then, light never has to move directly 
against the Earth velocity of rotation. The projection 
of the light path on the area A, defined above 
[equation (23)] is zero, because light travels along 
the meridians, via the North Pole. Of course, there 
is a higher order correction related to the transverse 
velocity of light with v that can be considered 
elsewhere, but this is clearly not observable 
experimentally.  

A similar result is obtained when we carry an 
atomic clock µ, at constant geodesic altitude in the 
north-south direction from New York to the North 
Pole (N.P.). In that case, clock µ might increase its 
rate because of the decrease of tangential velocity of 
Earth rotation at higher latitudes. However, it has 
been demonstrated that the flatness of the Earth is 
such that the gravitational potential at the pole 
compensates exactly for the loss of rotational 
velocity v. Since no meridians are crossed, the GPS 
correctly calculates a zero correction on clock µ at its 
arrival at the North Pole. For the same reason, a null 
correction is also calculated on clock µ by the GPS 
when it is moved from the North Pole (N.P) to San 
Francisco (S.F).  

Either using simultaneous light transmission or 
carrying a clock µ, it is remarkable that both 
methods of synchronization of clocks between New 
York and San Francisco, across the North Pole, give 
an identical zero correction. However, when the 
radio signal or the moving clock crosses the 
meridians, the correction of 14 ns, as calculated by 
equation (13), appears in both methods.  

Measurement of the velocity of light as c±v 

Knowing that the Sagnac effect, the GPS, all the 
related experiments described above and also using 

Newton physics lead to identical results, we can rely 
on the GPS data. Consequently, the GPS is a 
reliable tool to measure directly the one-way 
velocity of light.  

Let us start our experiment with an atomic clock 
at the North Pole of the Earth. At this location, 
there is evidently no problem about the Earth 
rotation (which is absent). From the North Pole (N. 
P.), let us initiate an independent synchronization 
with the two clocks α and β located respectively in 
New York and in San Francisco. Since both 
methods (transmission of simultaneous radio signals 
or carrying an atomic clock) lead to the same result, 
we can use the synchronization method of our 
preference. From the North Pole, and moving along 
the meridians, the projection of the path on the 
Earth equator AE is zero. Consequently, in that case, 
synchronizations of the clocks in N.Y. and S.F. with 
the one at the North Pole do not need any 
correction (AE = 0 in equation (22)).  

Two clocks in San Francisco and in New York 
are in perfect synchronization. Using this 
synchronization, let us measure the velocity of light 
between N.Y to S.F. and also between S.F. and N.Y. 
Let the observer in New York send a radio signal 
(across the meridians) to San Francisco at the same 
time as another radio signal travels in the opposite 
direction. This simultaneous exchange of radio 
signals can be done using the refraction of the 
ionosphere or via a satellite at a low altitude above 
the same meridian. Since the two clocks have been 
previously accurately synchronized in the paragraph 
above, the absolute time of emission and reception 
can be measured directly on each local clocks (α and 
β). If the path length of the radio signal is not much 
longer than the shortest path (passing across the 
meridians), the average time interval measured 
simultaneously in both directions is about 15 000 
microseconds.  

However, an accurate measurement of the time 
interval given by the GPS shows that light takes an 
extra 0.014 microsecond for light to travel eastward 
(from S.F. to N.Y.). Also light arrives at the western 
station (from N.Y. to S.F.) 0.014 microsecond 
before the average 15000 microseconds interval 
needed to travel a distance of about 4500 km. Since 
there is a difference of 0.014 microsecond in each 
direction, this shows that light moves at a different 
velocity eastward than westward. We calculate that 
the velocity “v” of rotation of the Earth at the 
latitude of those cities is about one millionth of the 
velocity of light. From the above data, the time 
interval for light from New York toward the 
approaching San Francisco is also about one 
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millionth shorter. Also the time interval for light to 
move from San Francisco to New York (which 
moves away) is about one millionth longer. Clearly, 
the velocity of light, with respect to an observer 
resting on the Earth surface, is c+v between N.Y. 
and S.F. and c-v between S.F. and N.Y. Therefore 
the velocity of light is c only with respect to the non-
rotating frame.  

Absolute frame of reference 

One must conclude that the GPS and all the 
related experiments give a striking proof that the 
velocity of light is not constant with respect to an 
observer, contrary to Einstein's hypotheses. The 
measured velocity of light is c-v in one direction and 
c+v in the other. The velocity of light is equal to c 
with respect to an absolute frame in space. This is 
now an experimental fact. Finally, we have seen how 
it is apparently constant in all frames using proper 
values due to the synchronization used in physics.  

We have considered here the velocity of light 
with respect to a group of stars around the Sun. 
However, there is nothing that indicates that the star 
cluster is at an absolute rest. It probably moves 
around our galaxy which, in its turn, moves around 
the local cluster of galaxies. From what we have 
analyzed, we see that the star cluster mentioned 
above is just another moving frame in which, once 
more, we have an apparent velocity of light equal to 
c in all directions, because we do not know yet how 
to get an absolute synchronization of clocks.  

There does not seem to exist a simple way to use 
light in the above experiments, to determine the 
absolute velocity with respect to the fundamental 
frame in the universe. We have mentioned in a 
previous paper (Marmet, 1995), that there seems to 
be an absolute frame of reference related to the 3K-
radiation dipole in space. However, other than using 
the 3K radiation, light seems to be inadequate to 
verify our absolute velocity with respect to an 
absolute frame. There is another solution to locate 
that absolute frame, but this is beyond the scope of 
this paper.  

Most physicists believe that the velocity of light 
is constant with respect to all frames. As explained 
above, this is wrong. Let us go back to the question: 
The velocity of light is “c” with respect to what? The 
principle of mass-energy conservation implies that 
light moves at a constant velocity with respect to an 
absolute frame. Furthermore in all other frames, the 
velocity of light is measured to be constant (equal to 
c) with respect to that moving frame. However, this 
is an “illusion” due to Einstein's discordant clock 
synchronization.  

Some scientists suggest the existence of an 
“aether” to carry light. A rudimentary “aether” 
hypothesis leads to an observation of the velocity of 
light that could be measured “directly” as c±v with 
respect to the observer. It is not that simple. One 
extremely important point is that there is no 
observational justification (Marmet, 1999) to assume 
that an aether can possess its own energy that can be 
borrowed when needed. On the contrary, all the 
physical phenomena are explained naturally without 
having to borrow any energy nor momentum from 
an assumed medium. For the moment, the sole 
property of that assumed aether is to establish an 
absolute origin to the velocity frame of light and 
physical matter because this frame of reference is 
absolutely needed to comply with the principle of 
energy and momentum conservation.  

One must conclude that there exists no space-
time distortion of any kind. It is no longer necessary 
to fascinate people with the magic of relativity. 
Unless we accept the absurd solution that the 
distance between N.Y. to S.F. is smaller than the 
distance between S.F. and N.Y., we have to accept 
that the velocity of light is different in each 
direction. As mentioned above, this difference is 
even programmed in the GPS computer in order to 
get the correct Global Positioning. This proves that 
the experimental velocity of light with respect to a moving 
observer is c±v.  
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