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Preface

THE WORK of the Education Research Center at M.I.T. (formerly
the Science Teaching Center) is concerned with curriculum im-
provement, with the process of instruction and aids thereto, and
with the learning process itself, primarily with respect to students
at the college or university undergraduate level. The Center was
established by M.LT. in 1960, with the late Professor Francis L.
Friedman as its Director. Since 1961 the Center has been sup-
ported mainly by the National Science Foundation; generous
support has also been received from the Kettering Foundation,
the Shell Companies Foundation, the Victoria Foundation, the
W. T. Grant Foundation, and the Bing Foundation.

The M.LT. Introductory Physics Series, a direct outgrowth
of the Center’s work, is designed to be a set of short books which,
taken collectively, span the main areas of basic physics. The
series seeks to emphasize the interaction of experiment and in-
tuition in generating physical theories. The books in the series
are intended to provide a variety of possible bases for introductory
courses, ranging from those which chiefly emphasize classical
physics to those which embody a considerable amount of atomic
and quantum physics. The various volumes are intended to be
compatible in level and style of treatment but are not conceived
as a tightly knit package; on the contrary, each book is designed
to be reasonably self-contained and usable as an individual com-
ponent in many different course structures.

ix



The present volume is written as an introduction to special
relativity for students who have a modest background in New-
tonian mechanics and an acquaintance with the rudiments of
optics and electricity. The approach is traditional (for this
particular level) in that it does not rest heavily on electromagnetic
theory but concentrates on the problems of kinematics and
dynamics. The last chapter, however, deals with some of the
insights that relativity can provide with regard to the relationship
between electricity and magnetism. The main substance of this
book has been used successfully with both first- and second-year
students at M.L.T. as part of a general introductory physics
course; the extent and coverage are, however, such that the book
may also be found suitable as a self-contained introduction to
relativity for more advanced students.

This book, like the others in the series, owes much to the
thoughts, criticisms, and suggestions of many different people,
both students and instructors. In the latter category, the detailed
comments of Prof. M. W. Friedlander (Washington University),
Prof. A. W. K. Metzner (San Diego State College), and Prof.
Rainer Weiss (M.1.T.) have been particularly helpful.

A special acknowledgment is due to Prof. Jack R. Tessman
(Tufts University), who was deeply involved with our earliest
work on the introductory physics series and has contributed in
an especially important way to this relativity text. With the
present author, he taught the first trial version of the material
at ML.L.T. during 1963-1964. The subsequent writing and re-
writing was discussed with him in detail and embodies many of
his suggestions. In particular, the final chapter, on relativity
and electricity, is based largely on a much more far-reaching
analysis by Prof. Tessman, in which the main results of electro-
magnetism, including the acceleration fields, are developed [see
Am. J. Phys., 34, 1048-1055 (1966), and Am. J. Phys., 35, 523-527
(1967)].

Thanks are also due to Prof. M. K. Smith and Dr. James
A. Ross for valuable assistance in the preparation of this volume.

A. P, FRENCH
Cambridge, Massachusetts
February 1968
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In experimental philosophy we are to look upon propositions
obtained by general induction from phenomena as accurately
or very nearly true . . . till such time as other phenomena
occur, by which they may either be made more accurate,
or liable to exceptions.

SIR ISAAC NEWTON, Principia (1686)

The relativity theory arose from necessity, from serious and
deep contradictions in the old theory from which there seemed
no escape. The strength of the new theory lies in the
consistency and simplicity with which it solves all these
difficulties, using only a few very convincing assumptions . . .
The old mechanics is valid for small velocities and forms the
limiting case of the new one.
A. EINSTEIN AND L. INFELD,
The Evolution of Physics (1938)



|
Departures from

Newtonian
dynamics

WHAT IS IT that you first think of when you see or hear the word
relativity? Very likely there will come to your mind the name of
Albert Einstein, or the equation E = mc?, or a vision of space
travelers returning youthful from trips of many years’ duration.
This is a well-deserved tribute to the enormous intellectual im-
pact—still effective, more than 60 years after the event—of what
Einstein called his special theory of relativity. And the develop-
ment of this theory by Einstein and others in the years around
1900 is rightly regarded as one of the greatest strides ever made
in our way of describing and interpreting the physical world.
Yet the basic concept of relativity is as old as the mechanics of
Galileo and Newton. It is, crudely speaking, just the assertion
that the laws of physics appear the same in many different
reference frames. What, then, did Einstein do to make his name
almost synonymous with the title of this book? The answer is
that he led us to apply the notions of relativity to all our physical
experience and not merely to a restricted range of phenomena,
In particular, he asserted that processes involving very rapid
motions—specifically, motions at speeds of the order of the
speed of light—are not to be placed in a separate category. But
the unification that he proposed brought with it some remark-



able implications. There were consequences that seemed opposed
to our intuitions and our common sense, in a way that classical
theories were not—the increase of inertia with speed, for ex-
ample, or the so-called twin paradox. It was such things as this
that made Einstein’s formulation of relativity so striking and
which conferred on it a glamour and a popular interest probably
never equaled in the whole history of physics.

We have said that the idea of relativity existed before
Einstein and was embodied in Newton’s mechanics. But it came
to be recognized, about 200 years after Newton, that certain
observed effects—quite small and subtle ones, for the most part—
could simply not be accounted for if one tried to hold on to all
the basic features of Newtonian mechanics. Historically the
recalcitrant facts, demanding a revision of ideas, made their ap-
pearance in electromagnetic phenomena, especially in the prop-
agation of light. It quickly became clear, however, primarily
through Einstein’s own work, that all of dynamics, and not
merely the specialized field known as electrodynamics, was
affected.

It was typical of Einstein, and a sign of his greatness, that
he drew conclusions of the most profound and far-reaching kind
from a bare minimum of data. Lesser men often attempt the
same thing, of course, but differ from the Einsteins of this world
in that their grand conclusions or generalizations are usually
false. In essence, Einstein constructed the special theory of
relativity out of a single proposition, that in every observation of
the passage of light from one point to another through empty
space the time taken is simply the relative separation of the
points divided by a universal velocity c; it depends in no way on
any velocity that one’s laboratory may appear to have through
space. The development of relativity from this result is not
difficult (once Einstein has shown the way) and is logically clear
and compelling, and we shall present it in due course. It is a
development that begins with optics, proceeds to a revised kine-
matics, and shows us how we must rewrite the dynamics of
particles. But today we can appeal to an immense amount of
direct evidence concerning the dynamics of particles traveling at
extremely high speeds. This evidence makes it clear from the
outset that we must look for a modification of the Newtonian
scheme if we are to have an acceptable dynamical description of
familiar particles, such as electrons, at all speeds. And in this
beginning chapter we shall proceed as quickly as possible to

Departures from Newtonian dynamics



NEWTON

develop some of this revised dynamics. It is only a preview, in
a way, and it is admittedly short on rigor. But there may be some
interest and value in seeing how a few of the key results can be at
least suggested without recourse to most of the formalism of
relativity theory.

Our very first task, however, will be to give a reminder of
what it is that we are going to modify, for without this the rela-
tion between the old dynamics and the new—the amount they
have in common, as well as their divergences—cannot be fully
appreciated and understood.

Newton’s mechanics concerns itself with the motions of particles
under the action of forces. A particle is regarded as a material
point; its motion is described by the position of that point in
space as a function of time. It is assumed that the separate con-
cepts of space and time are well understood, even though they
defy adequate definition. Newton believed in an absolute space,
but he also recognized that one cannot chart the motion of a
body through this space. Instead, we define the position of one
body with respect to another: “And so,” as he wrote in the
Principia, “instead of absolute places and motions, we use rela-
tive ones.”!

But despite the relativity of position and velocity, we do
encounter an apparently absolute or fundamental quantity in the
acceleration. And Newtonian dynamics seizes upon the ac-
celeration, a, and relates this to the force, F, supplied by a par-
ticle’s environment. This is an immensely fruitful procedure,
because it is found that a single, constant property of the par-
ticle—its inertial mass, m-—serves to connect the acceleration of
the particle with the force, through F = ma. If the value of F
is given by an explicit law of force—as in the case of universal
gravitation—classical mechanics acquires the status of a physical
theory, and Newton’s law becomes much more than a definition
of F in terms of m and a.2
1See Sir I. Newton, Mathematical Principles of Natural Philosophy and His

System of the World (Principia), translated by A. Motte, revised by F. Cajori,
Univ. California Press, Berkeley, 1962.

2See A. Einstein, “Physics and Reality,” J. Franklin Inst., 221, 349-382
(1936); reprinted in Einstein’s Ideas and Opinions, Crown, New York, 1954.
See also N. Austern, Am. J. Phys., 29, 617 (1961).
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Even if the law of force is not explicitly given or known, we
still have one of the key statements of Newtonian mechanics—
the conservation of linear momentum. Taking the inertial mass
as a constant property of a body, one can verify (and this was
one of the experimental foundation stones of mechanics) that the
sum of the momenta mv for two or more interacting bodies is a
constant, provided the effect of any forces of external origin can
be ignored. If, for convenience, the momentum is denoted by the
single vector p, we know that in classical mechanics the ratio
p/v for a given particle represents a single invariable quantity.

Finally, going beyond the strict confines of the Newtonian
scheme, we have the principle of conservation of energy. Given
any particular law of force, we find that the work done on any
particle is reflected in a corresponding change of its kinetic
energy:

[ F-de = pmtod” — os%) a-1

Furthermore, energy that has been conferred on a particle in this
way may be recovered in a different form, as, for example, by
bringing the particle to rest in a medium, with the liberation of
thermal energy (i.e., heat). Our faith in the conservation of
energy is so great (because of a vast body of internally consistent
evidence) that we would not hesitate, in the example just men-
tioned, to regard the measurement of the heating as being tanta-
mount to a measurement of the particle’s kinetic energy prior to
impact—provided, of course, we had reason to ignore the possi-
bility of significant energy losses through radiation, sound, me-
chanical deformation, and so on.

These concepts, then, of space and time, of force, acceleration
and inertial mass, of momentum and energy, comprise the
foundations of classical mechanics. Now let us look at some of
the cracks that have become manifest in that structure after about
200 years of apparently flawless existence. Most of them (but
not all) appear in connection with the motion of particles at
extremely high speeds.

“THE ULTIMATE SPEED"

According to the equations of Newtonian mechanics, there is in
principle no upper limit to the velocity that may be given to an
object. Imagine, for example, that a body is acted on continually

6 Departures from Newtonian dynamics



by a constant force equal in magnitude to the force of gravity at
the earth’s surface. Its acceleration would always have the value
9.8 m/sec?. After 1 year, starting from rest, its speed would be
about 3 X 108 m/sec (i.e., equal to the speed of light in vacuum);
after 2 years it would be 6 X 10® m/sec, and so on. (Take a
moment to verify these numbers for yourself.) If the object were
small, one could readily envisage a force that was many times
larger than mg, bringing about these increases of velocity much
more quickly—perhaps in a matter of minutes or seconds. Even
if the force were not constant, one would be able to calculate the
total amount of work, equal to the gain of kinetic energy KX,
required to cause a body of mass m to travel with any specified
speed v: v = (2K/m)'/2, But when the attempt is made to ac-
celerate particles to speeds as large as those mentioned above,
a drastic departure from the predictions of Newtonian mechanics
is observed. We shall take this phenomenon as our first clear
example of the fact that classical mechanics is not adequate for
all dynamical situations.

Because of its very small mass in relation to its charge, the
electron is readily accelerated to very high speeds—higher by
many orders of magnitude than anything in our normal ex-
perience. Thus, for example, an electron traveling from cathode
to anode of a vacuum tube, with a mere 100 volts between these
electrodes, would (if it started from rest) arrive at the anode with
a speed of about 6000 km/sec (and its acceleration, if the elec-
trodes were spaced by a few millimeters, would be about 10! 5g).
Even under these conditions the Newtonian mechanics meets the
situation quite well. But if the acceleration is through millions of
volts, instead of hundreds, the need for a revised dynamics be-
comes glaringly obvious. This has been demonstrated in a filmed
experiment that explores the relation between speed and kinetic
energy for electrons of kinetic energies up to 15 MeV.!

The experimental arrangement is shown schematically in
Fig. 1-1. The experiment consists in making direct measurements
of the time of flight for electrons traveling through a linear ac-
celerator (linac, for short). The electrons can be given energies
up to 1.5 MeV by the purely electrostatic action of a Van de
Graaff generator that acts as an injector for the linac; they then
enter the series of drift tubes of the linear accelerator proper and
are timed over the flight path AB. Higher energies (up to about

1Film, The Ultimate Speed, by W. Bertozzi, Education Development Center,
Newton, Mass., 1962. For a full description, see W. Bertozzi, Am. J. Phys.,
32, 551555 (1964).
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Fig. I-1 Schematic diagram of apparatus to measure
time of flight of energetic electrons. (The “ultimate
speed” experiment, by W. Bertozzi.)

15 MeV) can be obtained by operating the radiofrequency system
of the linear accelerator; in the main part of the film use is made
of this for one observation only to give electrons an energy of
4.5MeV by operating just the first section of the linac (the
section immediately following the point 4). Even in this latter
situation, however, the electrons travel the whole distance 4B
with almost constant speed, as we shall see in a moment.

The electrons are released in short bursts (of about
3 X 10~ 9sec duration) from the electron-gun system in the
negative high-voltage terminal of the Van de Graaff accelerator.
Insulated electrodes at 4 and B pick up electric signals as the
burst passes by. These impulses are carried to a cathode-ray

8 Departures from Newtonian dynamics



TABLE 1-1

Kinetic energy Flight time Electron speed
K, MeV t, X 107 8sec v, X 108 m/sec  v2, X 1016 m2/sec?
0.5 3.23 2.60 6.8
1.0 3.08 2.73 1.5
1.5 292 2.88 8.3
45 2.84 2.96 8.8
15 2.80 3.00 9.0

Fig. I-2 Oscillo-
scope trace showing
pulses due to a burst
of electrons of

0.5 MeV at the
beginning and end of
an 8.4-m flight path.
(Reproduced from the
film, “The Ultimate
Speed.”)

9

oscilloscope by cables that are made equal in length. The electric
signals then take equal times to reach the oscilloscope from the
electrodes, so that the two pulses displayed on the oscilloscope
(Fig. 1-2) provide a true measure of the time taken by the elec-
tron burst to travel from 4 to B. In Fig. 1-2, for example, this
time (1) is about 3.3 X 10~ %sec (one main division of the
horizontal scale ~ 10~8 sec). The flight path (/) between 4 and
B is measured to be 8.4 m. Thus from the basic definition of
speed v we have

v = éz ﬁa_—s ~ 2.5 X 10° m/sec
This measurement was for electrons accelerated through 0.5 MV
(500,000 volts) by the Van de Graaff machine.

In Table 1-1 we summarize the results of the complete
experiment. The most cursory inspection of these results shows
that they are not at all what one would have if Newtonian me-
chanics were applicable. Over-all, the kinetic energy is raised by
a factor of 30, so one might have looked for a factor of 5.5 in the
speed (since v ~ KV?2 according to classical mechanics). In-
stead, there is an increase of only about 159,. The increase of v
between 1.5 and 4.5 MeV is barely detectable within the accuracy
of the experiment. One might therefore question whether the

The ultimate speed



Fig. 1-3 Results of
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JSunction of kinetic
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showing asymptotic
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electrons are in fact being given the energy calculated from the
value of gV (charge times accelerating voltage), which success-
fully describes the kinetic energy gained when V is only of the
order of 100 volts. In the film this question is answered by mak-
ing a direct calorimetric measurement of the energy of the elec-
trons at the point B. There is no doubt about it; the energy is
there.

In Fig. 1-3 we show a comparison of the experimental re-
sults with the classical predictions. It is a graph of v? against K.
Classically, we should have

o2 = 2K (1-22)
m
Numerically, this gives us
v? (m2/sec?) = 3.5 X 1017K (MeV) (1-2b)

We know that this works very well for electron energies of about
1 keV or less, but we see that even at the lowest energy of the
linac experiment (0.5 MeV) the value of v? predicted by Eq. (1-2)
is too high by a factor of about 2. For higher energies the dis-
crepancy becomes even more serious. Rather than increasing in
proportion to K, the values of v2 show all the signs of asymp-
totically approaching a limit, especially when one recalls the
measurement at 15 MeV, not shown on the graph in Fig. 1-3.
The value of v corresponding to this asymptote is 3.0 X 108 m/sec.

Departures from Newtonian dynamics



PHOTONS
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These results are consistent with the proposition that (to quote
the last sentence of the film): “There is a speed limit for any
object, and this limit is the speed of light.”

The above result is very remarkable indeed. Why should one
not be able to give a particle an arbitrarily high speed, if one is
able to give it as much energy as one wishes? To appreciate in
another way how startling this result is, suppose that electrons
are being continuously accelerated in a long evacuated tube,
reaching a final energy of several MeV. After the first 0.5 MeV of
acceleration, the electrons have a speed of about 2.6 X 10% m/sec
(cf. Table 1-1), i.e.,, about 859, of the speed of light. Now
imagine oneself in a frame of reference moving at this speed in
the same direction. In this frame the electrons at this stage of
their acceleration appear to be at rest. Granted the possibility
of continued acceleration, one can readily conceive of the elec-
trons picking up energy and speed until they have the equivalent
of 0.5MeV of kinetic energy and a speed of 2.6 X 108 m/sec
with respect to this new frame. But should not this mean that,
as observed in the laboratory, the electrons at this stage have a
speed of 5.2 X 108 m/sec, or about 1.7 times ¢? That is what
our ordinary rules of velocity addition would suggest, but it does
not happen, as the ultimate-speed experiment shows. The be-
havior of the electrons, as studied via measurements made
throughout in the laboratory frame, demands a fundamental
revision of the rules for combining velocities, i.e., the rules by
which a given motion is described from the standpoint of dif-
ferent reference frames. We must find a new version of kine-
matics to deal with this. You may wish to pursue this question
immediately. If so, proceed at once to Chapter 2. In the re-
mainder of this present chapter, however, we shall explore further
some of the dynamical questions raised by the ultimate-speed
experiment. In particular, since the limiting speed of electrons is
equal to the speed of light, we shall take a close look at the
dynamics of what one may call the particles of light, i.e., photons.

The speed of light, ¢, has long been recognized as one of the
fundamental constants of nature. But it acquires a new interest
when we have a photon picture of radiation. Is it really true
that these photons—particles characterized by the radiation

Photons



TABLE 1-2:

SPEED OF PHOTONS

Frequency, sec—1

Photon energy, eV Wavelength, m  Speed (with error), X 108m/sec

4,7 X 107
1.7 X 108
3.0 X 108
3.0 X 10°
2.4 X 1010
7.2 X 1010
54 X 1014
1.2 X 1020
4.1 X 1022

1.9 X 107 6.4 29978 =+ 0.0003
7.0 X 1077 1.8 299795 =+ 0.00003
1.2 X 106 1.0 299792 =+ 0.00002
1.2 X 1073 1.0 X 107! 2.99792 =+ 0.00009
1.0 X 10— 1.2 X 102 2.997928 -+ 0.000003
3.0 X 10~ 4.2 X 103 2.997925 =+ 0.000001
2.2 5.6 X 1077 2.997931 =+ 0.000003
5.1 X 105 2.5 X 10712 2983 =+ 0.015
1.7 X 108 7.3 X 10718 297 + 0.03

12

frequency v—all have exactly the same speed ¢, although their
energies Ay may vary over a colossal range? The answer, as far
as all our experience goes, is yes. Table 1-2 collects some results
whose total span represents almost a factor of 10! in the photon
energy.! It may be seen that the accuracies of the results for
different photon energies differ widely. The most accurate deter-
minations are for visible light and for microwaves of about 1 cm
wavelength; the photon energies differ by a factor of 10* but the
speeds are the same to 1 part in 10%.2 And from the first and
the last entries, we see that television transmission photons of
about 107 eV and gamma rays of about 100 MeV have the
same speed to an accuracy of 19, despite the energy factor of
10'%. This is clearly a result of the first importance, and stands
in contrast to the systematic increase of speed with energy for
such particles as electrons. We may note, however, that the
results of the ultimate-speed experiment make the contrast less
abrupt, for it suggests (and a great body of other experience
confirms) that an electron with a kinetic energy of a few MeV
has a speed within 19, of the speed of light, ¢, and that no in-
1For references, and excellent accounts of experiments, see J. F. Mulligan
and D. F. McDonald, Am. J. Phys., 25, 180 (1957); J. H. Sanders, The

Fundamental Atomic Constants, Oxford Univ. Press, New York, 1961; and
J. H. Sanders, The Velocity of Light, Pergamon Press, Oxford, 1965.

2An even more precise direct comparison of the speeds for widely different
wavelengths has been obtained from the study of flares (sudden outbursts)
occurring in stars several light-years away. It has been found that radio
waves with A = 1.2 m arrive at the earth at the same time as visible light
with A = 5.4 X 10" m. The accuracy (a few parts in 107) of this com-
parison is limited chiefly by uncertainty about the mechanism of flare pro-
duction. See B. Lovell, F. L. Whipple, and L. H. Solomon, Nature, 202,
377 (1964).

Departures from Newtonian dynamics



crease of energy, even by many orders of magnitude, can do more
than to narrow down the slight deficiency.

THE ENERGY-MOMENTUM RELATION FOR PHOTONS
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Let us turn now to an important dynamical property of photons—
the relation between energy and momentum. If a photon has
energy E (= hv) it has an associated linear momentum of mag-
nitude p such that

E=c¢p (1-3)

The best (or certainly the most extensive) experimental support
for this result is in a sense indirect. It is provided by the enormous
body of data in nuclear and elementary-particle physics, where
the analysis of collisions between individual photons and other
particles is made by assuming Eq. (1-3) to hold.! Any incon-
sistency for that range of photon energies—from MeV to GeV2—
would certainly have become apparent. The only experiments
deliberately designed to test the energy-momentum relation have
been made not with individual photons but with continuous
beams of light, in studies of the radiation-pressure phenomenon.
Such experiments involve the incidence of huge numbers of
photons (for example, 1 watt of visible light represents a flow of
about 3 X 10!® photons/sec) and can be adequately described
and analyzed in terms of a steady flow of radiant energy, with-
out reference to the photonic structure of the radiation. Indeed,
the fact is that Eq. (1-3), as a general statement of the connection
between energy and momentum for radiation in free space, was
widely accepted long before the discovery of quantum behavior,
because it was a necessary consequence of Maxwell’s electro-
magnetic theory—the same theory that extracted the correct
value of the speed of light from the physics of basic electric and
magnetic phenomena. The radiation-pressure experiments were
regarded primarily as a verification of Maxwell’s theory. How-
ever, given a photon picture, they also imply that Eq. (1-3) holds
for individual photons.

All radiation-pressure experiments are basically alike. They

1We shall consider such collisions in Chapter 6.

2] GeV = 10?eV. This internationally adopted abbreviation (short for
giga electron volt) is replacing BeV, which can cause ambiguity, because the
European billion is 1012, not 10°.

The energy-momentum relation for photons
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consist in measuring the force F exerted on a surface by a known
flux (measured by the incident power W) of radiant energy. The
surface in question is a thin metal vane suspended on a delicate
torsion fiber; the energy flux is measured by its heating effect.
Account must be taken of the fraction p of the incident radiation
that is reflected by the foil, because the reflected light contributes
to the radiation force. (A perfectly reflecting surface would
experience twice the force of a perfectly absorbing one for the
same incident flux of radiation.)

The experiments almost always referred to in connection
with radiation pressure are those of Nichols and Hull.! Cer-
tainly their measurements were very carefully and skillfully made,
and their results verified Eq. (1-3) to better than 19}. But their
work was done before the availability of high vacua in the
laboratory, and they had to resort to special procedures to
separate the true radiation pressure from a spurious radiometer
effect. This is the phenomenon that an absorbing surface, be-
coming warmed by incident radiation, experiences a slight push
from the gas adjoining it. The effect is very pronounced unless
the vacuum is made extremely good—or, alternatively, quite bad!
It can easily swamp the true radiation pressure and is the driving
agency in the toy radiometers on sale in drugstores. Such radiom-
eters always turn the wrong way, in fact, compared to what
one would expect from true radiation forces. (Check this through
your own observations if you have a chance to do so.) The very
first quantitative experiment on radiation pressure (by a Russian,
P. Lebedef, in 1901) was in fact done in a fairly good vacuum, but
radiometer effects were nevertheless appreciable. The first really
clean measurement of radiation pressure appears to have been
achieved in a little-known investigation made in 1923 by Gerlach
and Golsen.? Working with vacua better than 10~ torr,?
they rendered the radiometer effect inappreciable. The experi-
ment can be regarded as a test of the following relation, arising
from Eq. (1-3):

)

= (1-4)

using the quantities already defined. The right side of this equa-

1E. Nichols and G. F. Hull, Phys. Rev., 13, 307-320 (1901); 17, 26-50,
91-104 (1903). Also G. F. Hull, Phys. Rev., 20, 292-299 (1905).

2W. Gerlach and A. Golsen, Z. Physik. (Leipzig), 15, 1-7 (1923); A. Golsen,
Ann. Phys., 73, 624-642 (1924).
3] torr = 1 mm of mercury at 0°C.
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TABLE 1-3: RADIATION-PRESSURE EXPERIMENT

Material
of vane

Reflection

Incident power Measured force

coefficient p W, X 10~2watt F, X 10~10 newron W(1 + p)/F, X 108 m/sec

Pt
Pt
Ni
Al
Al

0.60
0.60
0.43
0.81
0.81

6.07 3.14 3.09
2.80 1.44 31
6.39 3.23 2.83
6.39 3.91 2.96
2.78 1.74 2.89

Av. 298
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tion is made up of the quantities that were directly measured in
the radiation-pressure experiment. W is, of course, the rate of
arrival of energy and F is the rate of change of momentum of
the radiation. It can then be tested whether this combination of
W, p, and F is indeed equal to the speed of light. Table 1-3
shows the results of analyzing Golsen’s data in this way. Thus
the correctness of Eq. (1-3) is experimentally confirmed with an
accuracy of about 29%,.

The relation E = ¢p for photons may be compared with the
relation connecting kinetic energy, speed, and momentum for a
particle in Newtonian mechanics. In the latter case we have
K = 3vp. Since the energy of a photon is all kinetic (for photons
simply cease to exist when we try to stop them in an absorber),
we might have been tempted to propose the relation E = jcp
(wrong!) for photons. This discrepancy might prompt one to
ask what happens to the relation between kinetic energy and
momentum for electrons as their speed is increased from rela-
tively low values (< 0.1¢, say) up to values about equal to c.
The answer is that at low energies (K < 1 keV) the relation-
ship is fairly accurately Newtonian,! but that at high energies
(K > 0.1 MeV) the momentum becomes significantly less than
one would calculate from the value of 2K/v, and at very high
energies (K > 50 MeV) is given by K/c¢ with an accuracy of
better than 19,. (The evidence for this is to be found in a study
of atomic collisions involving energetic electrons; we shall say
more about such processes later.) Thus, just as with the relation
between kinetic energy and speed, one sees a smooth but un-
mistakable departure from Newtonian behavior when sufficiently
high energies, and speeds approaching that of light, are involved.

1See the film, Momentum of Electrons, by J. G. King, Education Development
Center, Newton, Mass., 1963.

The energy-momentum relation for photons



This serves to reinforce our belief that the dynamics of photons
and of other particles can be brought, for some purposes at least,
within the same descriptive framework. Our next step will be to
suggest what that framework might be. Our argument will
appeal to one’s sense of what is plausible; it will not be logically
inescapable. But as the old saying goes, “‘the proof of the pudding
is in the eating,” and we shall see how beautifully one can de-
scribe the transition from Newtonian to non-Newtonian behavior
on the basis of our conclusions (which are indeed precisely those
of special relativity).

MATTER AND RADIATION: THE INERTIA OF ENERGY
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Are not gross Bodies and Light convertible into one another, and
may not Bodies receive much of their Activity from the Particles
of Light which enter their Composition?

Newton, Opticks (4th ed., 1730)

It would be quite wrong to suggest that Newton had really
anticipated 20th-century physics to the extent that the above
quotation might imply, but his provocative query is superbly
appropriate as an introduction to the discussion that we shall
now undertake. For we shall consider the intimate connection
between the inertia of ordinary matter and the energy of radiation,
and in so doing we shall develop some dynamical results that
apply equally to photons and “gross bodies.” We shall obtain,
as one of the consequences, a full account of the relation between
speed and kinetic energy for the electrons in the ultimate-speed
experiment.

Our starting point will be a gedanken experiment (literally a
“thought experiment,” i.e., a fictitious, not really feasible ex-
periment) which was invented by Einstein himself in 1906.' The
purpose of it is to suggest that energy must have associated with
it a certain inertial mass equivalent.2 We suppose that an amount
E of radiant energy (a burst of photons) is emitted from one end
of a box of mass M and length L that is isolated from its surround-
ings and is initially stationary [Fig. 1-4(a)]. The radiation
carries momentum E/c¢. Since the total momentum of the system
remains equal to zero, the box must acquire a momentum equal

1A. Einstein, Ann. Phys., 20, 627-633 (1906).
2By inertial mass we mean the ratio of linear momentum to velocity.
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Fig. I-4  Einstein’s box—a

@) hypothetical experiment in
which a box recoils from its
L ! initial position (a) to a final
. position (b) as a result of a
b) m burst of radiant energy

traveling from one end of the

_—I L Av box to the other.

to —E/c. Hence the box recoils with a speed v, given by
V= — — 1-5)

After traveling freely for a time At (= L/c very nearly, provided
v K ¢), the radiation hits the other end of the box and conveys
an impulse, equal and opposite to the one it gave initially, which
brings the box to rest again.! Thus the result of this process is to
move the box through a distance Ax:

Ax = VAl = — — (1-6)

But this being an isolated system, we are reluctant to believe that
the center of mass of the box plus its contents has moved. We
therefore postulate that the radiation has carried with it the
equivalent of a mass m, such that

mL + MAx = 0 -7
Putting the last two equations together, we have

m = c£2 or E = mc® (1-8)

For the man on the street, Einstein and relativity are prob-
ably epitomized by this result. For the physicist, its importance
is not lessened by its becoming hackneyed; it asserts a funda-
mental inertia of energy. Although the calculation as we have
presented it (which differs somewhat from Einstein’s original
version) points in the first instance to the mass associated with
radiant energy, one quickly recognizes that the implications are
much wider than this. When the radiation is emitted from one
end of Einstein’s box, that end must surely suffer a decrease, by
If you feel that more careful account should be taken of the recoil of the

box and its effect on the time and distance of transit of the radiation, see
Problem 1-13.

17 Matter and radiation: the inertia of energy
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the amount E/c?, in its inertial mass. Likewise, the absorption
of the radiation at the other end means an addition to the mass
of that portion. Once the energy has been absorbed, it loses its
identification as the energy of photons and ultimately becomes
just an addition to the thermal energy. And we are quickly led
to the idea that energy in any form has the mass equivalent
defined by Eq. (1-8)—a general principle of the inertia of energy.!

The prime example of the mass-energy equivalence, to which
we owe our continuing existence, is provided by thermonuclear
reactions occurring in stars such as the sun. Observation tells
us that radiant energy is reaching us from the sun at the rate of
1.35 X 10% watts/m2. Given this figure and Eq. (1-8), we can
infer that the mass of the sun is decreasing at the rate of about
4.5 X 10° tons/sec—an impressively rapid loss, even though it is
only about 1 part in 10!2 of the sun’s mass per year. This comes
about through chains of nuclear reactions, chief among which is
the sequence by which hydrogen ('H) is converted to helium
(*He). One must, of course, have four hydrogen atoms to end
up with one helium atom, and the process takes place in several
separate steps. One of these steps is particularly worth men-
tioning here, because it is a simple and remarkably direct ex-
ample of the equivalence of the mass of ordinary matter and the
energy of photons. It is this:

p+ D — %He +7 (1-9)

A proton fuses with a deuteron D (the nucleus of hydrogen-2,
containing one proton and one neutron), making a system of two
protons and one neutron, which is the nuclear composition of
SHe. But, as mass-spectrometer measurements show us, the
mass of this combination is greater than the mass of ®He in its
normal state. Here are the approximate values:

Proton 1.6724 X 10~27 kg
Deuteron 3.3432

p+D 5.0156

3He nucleus 5.0058

Mass excess 9.8 X 10—30kg

This amount of mass is carried off by a photon (a ¥ ray) as in-
dicated by Eq. (1-9). The energy of that photon is given by

'For a fine discussion of this question, see M. von Laue’s article “Inertia
and Energy” in Albert Einstein: Philosopher-Scientist, Vol. 11, (P. A. Schilpp,
ed.), Harper Torchbook, Harper and Row, New York, 1959.

Departures from Newtonian dynamics
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Eq. (1-8):

9.8 X 1030 x 9,0 x 1016
8.8 X 10~13 joule
= 5.5 MeV

E = mc?

This process has been studied in the laboratory, and v rays of
the expected energy have been observed.’ It should perhaps be
added that such reactions, when they occur as thermonuclear
reactions in the sun, require temperatures of the order of 107 °K
and thus take place only in the inner regions. Gamma rays, such
as those just considered, are completely absorbed before reaching
the sun’s surface, and their energy finally escapes in photons with
individual energies of the order of only 1 eV—infrared, visible,
and ultraviolet—that constitute the familiar solar spectrum.

The equation E = mc? has (at least in popular accounts)
been so exclusively linked to nuclear transformations as to divert
attention from its universality. But the message of Einstein’s
equation is that any change AE in the energy of a body implies
a corresponding change Am in its inertial mass:

AE = c2Am (1-10)

A golf ball in motion has more mass than the same golf ball at
rest. The heated filament of a lamp has more mass than the same
filament when cold. A charged capacitor has more mass than the
same capacitor uncharged. And so on. Because, in terms of
familiar magnitudes, the mass associated with a given amount of
energy is exceedingly small (e.g., the energy used per day for
domestic purposes in a city of a million people has a mass equiv-
alent of only about 1 g), this intimate connection between the
two was long unrecognized. Einstein regarded the discovery of
this connection as being extremely important. To quote his
own words?:

The most important result of a general character to which the
special theory has led is concerned with the conception of mass.
Before the advent of relativity, physics recognized two con-
servation laws of fundamental importance, namely, the law of
the conservation of energy and the law of the conservation of
mass; these two fundamental laws appeared to be quite inde-

1W. A. Fowler, C. C. Lauritsen, and A. V. Tollestrup, Phys. Ret., 76, 1767
(1949).
2A. Einstein, Relativity, Crown, New York, 1961.

Matter and radiation: the inertia of energy



pendent of each other. By means of the theory of relativity they
have been united into one law.

Perhaps one of the best ways to appreciate the pervasive
character of the mass-energy equivalence is to consider a single,
neutral atom in a piece of ordinary matter. From one point of
view it is just one of a collection of what Newton called “solid,
massy, hard, impenetrable, movable Particles.”' The question
of any inner structure does not arise, and it seems almost obvious
that the atom’s inertial property should be described by a single
quantity that we call the mass. But now consider this same atom
from the standpoint of present-day knowledge. It is a complicated
assembly of electrons, neutrons, and protons (and if we want to
probe more deeply, there is finer structure yet). The mass of
the atom as a whole contains positive contributions from the
kinetic energies of its swiftly moving constituents, and contri-
butions of both signs (predominantly negative) from the po-
tential energy of their electrical and nuclear interactions. (Note
that a force of attraction between two particles automatically
represents a negative contribution to the total mass of the sys-
tem.2) Any change in the internal state of the atom is accom-
panied by a flow of energy into or out of it, with an associated
increase or decrease in its mass. The ability of the constituents
to cohere depends on the fact that their total energy in this con-
figuration is less than if they were all separated from one another.
In these terms, then, the mass of an atom is the result of a re-
markable and subtle synthesis. Yet it serves to characterize the
whole atom in every dynamical context—including gravitation—
in which it moves as a single unit.

ENERGY, MOMENTUM, AND MASS

20

Let us now try to put together some of the results we have dis-
cussed. For photons we have

E=c¢cp (1-3)
and

m=

E
= (1-8)

1Sir I. Newton, Opticks, 4th ed., 1730; reprinted in revised form by G. Bell,
London, 1931; Bell edition reprinted by Dover, New York, 1952.

2Provided the strength of the attractive force gets less with increasing separa-
tion, which is true of all such forces between elementary particles in atoms.
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(the first experimental, the second based on Einstein’s box).
Combining these, we have

4

m = z‘ (1—11)
In Newtonian mechanics, however, we have
m=2 (1-12)

v

It looks as though we might regard Eq. (I-11) as a particular
case of Eq. (1-12), for v = ¢. If, further, we suppose that Eq.
(1-8) describes a universal equivalence of energy and inertial
mass, we can combine Egs. (1-8) and (1-12) into a single state-
ment:

2
E= 50—” (1-13)

Now in classical mechanics we are never concerned with
absolute energies but only with energy differences, and with the
transformation between one form of energy and another. A
particle suffers a change of potential energy, for example, and its
kinetic energy undergoes a corresponding change, so that the
total energy remains constant. The basis for analyzing all such
situations is Newton’s law. The increment of kinetic energy
corresponds to the work done by external forces,! and we have

dE = Fdx = d—pdx
dt

ie.,
dE = vdp (1-14)

If we accept Eqgs. (1-13) and (1-14) we can obtain from them a
relationship, now proposed as a general one, between energy
and momentum for a particle. We do this by multiplying to-
gether the left and right sides of the two equations, and in-
tegrating:

EdE = c2pdp
Therefore,
E? = ¢2p? 4 Ey2 (1-15)

where E,? is a constant of integration, written explicitly as the
square of some constant energy.

1The ultimate-speed film presents evidence that, even under conditions where
some of the features of Newtonian mechanics have broken down, the in-

crease of energy (kinetic energy) of an electron is still equal to the work
calculated from the electrostatic force multiplied by the distance traveled.

Energy, momentum, and mass
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From here it is possible to proceed in several ways. For
example, we can substitute in Eq. (1-15) the relation ¢p = Ev/c
from Eq. (1-13). This leads at once to the following result:

E,

E@) = 1 = v2/c2)i72

(1-16)
For v < ¢ we can approximate this exact result by the binomial
expansion, neglecting terms of higher order than v2/c2,

[Approximate result (v < ¢)] E(@) =~ Eo + % (f;i’> v® (1-17)
If Eq. (1-17) is to harmonize with Newtonian mechanics at low
velocities, we must identify Eo/c? with the classical inertial mass
of a particle: Let us denote this by mgy. Then Egs. (1-8) and
(1-16) together lead to an explicit variation of inertial mass with
speed:
mo

A = v2/c2)1/2 (-18)

m@) =
The quantity m,, which in Newtonian mechanics would be the
inertial mass of a body, now assumes a new role as the rest mass
of the body for v = 0; at any other speed the inertial mass is
greater.!

An increase of inertial mass with speed is of course implied
as soon as one embraces a general principle of the inertia of
energy. The particular form of variation expressed by Eq. (1-18)
is shown graphically in Fig. 1-5, together with some experi-
mental results based on the electric and magnetic deflection of
energetic electrons.

Equations (1-15) and (1-18) are two of the central results
of the new dynamics; the first of them—the relation between
energy and momentum—will prove to be of special importance
and applicability. But the kinetic energy of a particle, so valuable
a quantity in classical dynamics, now takes on a secondary status.
It is merely the difference between the total energy E and the
rest energy Ey:

K = moc2 [m - 1] (1’—19)

Of course K remains a quantity of practical importance, because
it is the measure of the extra energy conferred on a particle

1And the quantity E¢ (= moc?) is the rest energy. Thus for electrons (for
example) we have mg = 9.11 X 1031 kg, Eo = 8.2 X 10714 joule =
0.51 MeV.
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Fig. I-5 Variation
of inertial mass with
speed for electrons.
Based on data of
Kaufmann (1910),
Bucherer (1909), and
Guye and Lavanchy
(1915). (After R. S.
Shankland, Atomic
and Nuclear Physics,
Macmillan, New
York, 1961.)
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through the work done by external forces. Note that X is not
obtained by substituting into the expression 1muv? the value of m
calculated from Eq. (1-18)—a frequently made error, because
the temptation to cling to the Newtonian form of the kinetic
energy is very strong.

At the risk of seeming repetitious, let us reemphasize the
significance of m(v) as defined by Eq. (1-18). It describes the
inertial property of a body moving with velocity v, so that the
momentum p is given by the equation

p = m@)v (1-20)

It also describes the total energy content of the body, so that

E = m@)c? (1-21)

Now it is the quantities p and E, rather than m(v) by itself, that
figure in any actual dynamical situation. In this sense the vari-
able mass m(v) is just a convenient construct which, for example,
allows us to preserve the form of the Newtonian statement that
momentum is mass times velocity. Many physicists prefer to
reserve the word mass to describe the rest mass mg, a uniquely
defined property of a given particle, But this is essentially a
matter of taste.! Whatever words one elects to use, there is no
disagreement on the fact that Eqs. (1-20) and (1-21) describe
the momentum and total energy of a particle, where m(v) is
given by Eq. (1-18). '

1And one cannot escape the fact that, for almost any particle, even the rest

mass involves contributions associated with the motions and kinetic energies
of its constituents.
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The denominator (1 — v2/c%)/2% appears so often in special
relativity, and is so awkward to write, that nearly all discussions
of relativity make use of a single symbol, v, defined as follows.

Put
1
0) = T (1-22)
Then we have
m = Ymo (1-23)
P = Ymov (1-24)
E = Ymoc? (1-25)

where in using Egs. (1-23) to (1-25) we must remember that ¥
depends on the speed v according to Eq. (1-22).

IS THE NEW DYNAMICS CORRECT?

It is important to ask whether Eq. (1-19) does indeed provide a
correct account of the relation between speed and kinetic energy
as observed, for example, in the linac experiment. Rearranging
the result, we have

1 + K/moc2 = (1 — v2/c?)—1/2
Therefore,

1 — v2/c?

(1 + K/moc?)—2

or
2

v 21 — (1 + K/moc?®)™2) (1-26)

Clearly the rest energy moc? provides a natural unit in which to
measure the extra energy K that is added to a particle by means
of an acceleration process. We can, in fact, draw up a table
showing how the speed would depend on K for any particle
whatsoever (Table 1-4).

Given that, for electrons, mgcZ = 0.51 MeV, we can readily
plot a curve of v? inm2/sec? against K in MeV. This curve has been
drawn in on the graph of the data in the ultimate-speed experi-
ment (Fig. 1-3). It may be seen that the agreement between
theory and experiment is very good, and speaks strongly for the
correctness of the revised dynamics, as does the measured varia-
tion of mass with speed, shown in Fig. 1-5.

If we wanted to plot a curve of v? versus X for protons, all
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TABLE 1-4: SPEED VERSUS KINETIC ENERGY FOR PARTICLES

K/moc2 (1 + K/moc?)—2 v2/c? v/e v2, X 1016 ;2 /sec2
0.1 0.8264 0.1736 0.417 1.56
0.2 0.6944 0.3056 0.553 2.75
0.3 0.5917 0.4083 0.639 3.67
0.5 0.4444 0.5556 0.745 5.00
1.0 0.2500 0.7500 0.866 6.75
20 0.1111 0.8889 0.943 8.00
5.0 0.0278 0.9722 0.986 8.87
10.0 0.0083 0.9917 0.996 8.93
30.0 0.0010 0.9990 0.999 8.99
we would need to do would be to put mg = 1.672 X 1027 kg,
which gives mgcZ = 0.938 GeV (or 938 MeV), and Table 14
would provide the rest of the information needed. The fact that
this does indeed give correct results for protons is amply attested
in the operation of big nuclear accelerators, and there is plenty
of evidence that Eq. (1-26) holds for particles of all kinds.
Among the various features of these modified laws of motion,
the phenomenon of the limiting speed ¢ is perhaps the most
noteworthy. It means that energy (and mass) can be piled onto
atomic particles without increasing their speed appreciably. To
see in detail how this works, it is convenient to rewrite Eq. (1-16)
as follows:
(l — 02/02)1/2 = Eo/E
Therefore,
v2/c? = 1 — (Eo/E)? (1-27a)
and
v/c = [1 — (Eo/E)*)"?
For E >> E,, we then have, approximately,
v/c =~ 1 — 3(Eo/E)? (1-27b)
For example, the Harvard-M.LT. electron accelerator has as its
injector a linear accelerator (like the one used in the ultimate-
speed film) that gives the electrons 15 MeV energy. The main
accelerator brings the electrons up to about 5 GeV (= 5000 MeV).
25 T1s the new dynamics correct ?



Using these values, one finds

Injection from linac (15 MeV) — v/c = 0.9995
Final energy (5 GeV) — v/e = 0.99999995

Thus the change of v/c after the preliminary acceleration is only
about 5 parts in 10%. These big nuclear machines might ap-
propriately be called “ponderators”! rather than accelerators,
for to an excellent approximation they do just add mass to the
particles injected into them, with no significant increase in the
speed as such.

MOTION UNDER A CONSTANT FORCE

26

The simplest dynamical problem in classical mechanics is the
motion of a body under a constant force. Let us see how this
problem is modified in the new dynamics. Suppose a force F
acts on a body for a time ¢ (we assume one-dimensional motion);
the body is assumed to be initially at rest, and ends up with a
speed v. Then

mov

Ft = mv = 0T = 2/ (1-28)
Therefore,
1 — v%/c® = (mov/Fr)°
¢ = V[l + (moc/Fr)]
and
e(f) = < (1-29)

[1 + (moc/Ft)2]'/2

This is a rather complex-looking result. Let us consider two
extreme cases:

(@) Fr < moc:
(moc/Fn)? > 1

Therefore,

c F

O = Groc/FD = ma

!

(b) Fr> moc:
(moc/Ft)? = 0

'This name was first proposed around 1945 by Prof. A. G. Hill of M. I. T.
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Therefore,

t() = ¢

Case (a) corresponds to ordinary Newtonian mechanics.
Case (b) displays the now-familiar property of a limiting constant
speed ¢ for motion under any force, no matter how large it is or
for how long it is applied.

“EINSTEIN’'S BOX UNHINGED"
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According to our present beliefs as expressed by special rela-
tivity, the speed of light in free space represents an upper limit,
not only to the speed of material particles such as electrons, but
also to the speed with which an interaction of any kind can be
propagated—gravitational, nuclear, electric, etc. Were this not
so, it would be possible (as we shall discuss later) to arrive at a
paradox involving the interchange of the roles of cause and
effect, according to one’s point of view (see the discussion of
causality near the end of Chapter 4).

One particular consequence of the physical speed limit
equal to c is that the classical concept of an ideal rigid body finds
no place in special relativity. (And strictly speaking, it cannot
be justified in classical mechanics either.) For by a rigid body we
mean an object along which physical information can be trans-
mitted in an arbitrarily short time, so that the object is set in
motion instantaneously, as a single unit, when a force is applied
to any point in it. For any ordinary box the information that
one end has been struck is transmitted as an elastic wave, which
we know is many orders of magnitude slower than a light signal.
Thus the Einstein box argument in its original form cannot be
maintained. At the receiving end of the box, the first intimation
that anything had happened at the other end would be the
arrival of the radiation itself. We can, however, rehabilitate the
argument as follows.

Ignore completely any connection between the ends of the
box, and regard it as two separate masses, m, and m. (Fig. 1-6).
Just suppose that one end, of initial mass m,, emits energy E at
t = 0 and suffers a mass change to m,’. It acquires a velocity
v; given by

—E/c

vy =
my’

Einstein’s box unhinged
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If m, were originally at x = O, its position at any later time is
thus given by
E

xi() = — ml’ct (1-30)

When the energy arrives at mg (at 1 = L/c) it causes a recoil
and a change of mass so that we have, for the position of my,,

E

s (¢t —L/c) 1-31)

x2(f) = L +

Let the total mass be M, and let the position of the center of
mass be X before the radiation was emitted from m, and X’ after
it was absorbed in m,. Then

M% =m0+ mg-L (1-32)
and
—E E
M3 = my (m t) + mo’ [L + o (e L/C)]
ie.,
Mx' = —Et+m2’L+Et—‘—§L (1-33)
c c [

Hence, if ¥ = X,

Amo' = mo' — mg = ZEz' = —Amy’ (1-34)

Thus the principle of inertia of energy finds a sounder theoretical
basis, but by this stage we have seen its real vindication in the
experimentally observed behavior of particles.

SOME COMMENTS

In this chapter we have presented evidence to show that the
behavior of particles at very high speed simply does not conform
to Newtonian dynamics. By analyzing this behavior, and by
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PROBLEMS
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following Einstein in the assumption that the center of mass of
an isolated system does not spontaneously shift, we have de-
veloped some relations (which appear experimentally to be valid
for all attainable speeds) connecting energy, momentum, and
mass. This has allowed us to arrive rather quickly at some
important dynamical results. On the other hand, it is clear that
the arguments we have used involve a good deal of conjecture;
they are suggestive but by no means irresistible. Furthermore,
one may well ask what all this has to do with the things one
normally thinks of when relativity is mentioned—such things as
the Lorentz contraction, frames of reference, space-time, the
Michelson-Morley experiment. The answer is that the connection
is very, very close. But apart from one small hint in our discussion
of the results of the ultimate-speed experiment, we have so far
not tried to deal with these very fundamental aspects of rela-
tivity. There is a good reason for that; each of the experiments
that we cited was conducted within a single frame of reference—
the experimenter’s laboratory. But the concepts of distance, time,
and velocity were involved at every turn; without them it is
impossible to formulate or discuss dynamics.

It was in the attempt to explain optical phenomena that the
need for some drastic revision of our ideas about space and time
finally became overwhelming. The development of this problem,
culminating in the Michelson-Morley experiment, is the subject
of Chapter 2. And then we shall see how Einstein, through his
insistence on a fundamental reexamination of the bases of dy-
namical measurement, made it possible to fit everything together
within a single dynamical scheme. The same concepts of space
and time are found to be appropriate to the facts of optics and
electromagnetism and to the non-Newtonian dynamical behavior
that we have been discussing in this chapter. Our program, then,
will be to describe the predicament engendered by the facts of
optics, to show how Einstein eliminated the apparent conflict
between optics and Newtonian mechanics, and then to illustrate
some of the applications of Einstein’s formulation of the prin-
ciple of relativity.

1-1 A burst of 1014 electrons accelerated to an energy of 15 MeV per
electron is stopped in a copper target block of mass 100 g. If the block
is thermally insulated, what is its temperature rise? The specific heat
of copper is 0.09 cal/g-°K.
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1-2 The intensity of the sun’s radiation just outside the earth’s atmo-
sphere is approximately 8 X 10% joules/m?2-min,

(a) Approximately what force does this radiation exert on the
Echo 1I reflecting satellite balloon? Echo II is a spherical shell of
radius 20.4 m. Its skin consists of a layer of Mylar plastic, 9 X 10~%m
thick, between two layers of aluminum, each 4.5 X 10~%m thick.
The density of Mylar is 103 kg/m3; of aluminum 2.7 X 103 kg/m3.

(b) Compare this force with the sun’s gravitational force on the
balloon.

1-3 (a) Radiant energy from the sun is received at the earth at the
rate of about 2 cal/cm? - min on a surface perpendicular to the sun’s
rays. What total force would be exerted on the whole earth by solar
radiation if it were all absorbed? How does this compare with the
sun’s gravitational force on the earth?

(b) What radius would a particle of dust in space have to have
to be in equilibrium under the combined effects of the sun’s gravita-
tional attraction and radiational repulsion?

1-4 A rectangular vane of aluminum foil, 10 cm long and of total
mass 100 mg, hangs vertically in vacuum on a thin fiber (see the figure).
The period of torsional oscillation is 40 sec. What is the static de-
flection of each end of the vane if 1 watt of radiant energy falls on a
spot 4 cm off center? Assume that 609, of the radiation is reflected.
The moment of inertia, about an axis through its center, of a rod of
mass M and length L is ML2/12.

1-5 1t has been said that a fully opened umbrella catches about enough
radiant energy per second on a clear day to run a washing machine.
Use this statement as a basis for calculating the approximate rate of
loss of mass by the sun.

1-6 If all the light used in New York City in 1 hour of the evening
could be captured and put in a box, approximately how much heavier
would the box become?

1-7 A battery connected to a flashlight bulb is exactly counterpoised
on the pan of a balance. The battery maintains an average current of
0.1 amp at an average voltage of 1 volt for 3 hours. Assuming all this
energy is radiated away, what must be the order of magnitude of the
sensitivity AM /M of the balance if a deflection is Lo be detected?

1-8 (a) Sir Arthur Eddington once remarked that if 1 g of electrons
could be confined in a sphere of 10 cm radius, the mass associated
with their electric potential energy would be of the order of 10 million
tons. Check this assertion for yourself, assuming that the electrons
form a ball of charge of uniform density. (The electrostatic potential
energy of a sphere of charge g and radius r is 3kg2/5r, where g is the
charge in coulombs, r the radius in meters, and k—the constant in
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the inverse-square law F = kgigz/r?—is equal to 9 X 10° newton-
m?/coulomb?.)

(b) The calculation in (a) may sound pretty outlandish. But now
calculate the mass of all the electrons in a sphere of water of 10 cm
radius. If it were not for the positively charged nuclei, we should be
faced with almost exactly such a situation as Eddington describes.

1-9 An eccentric billionaire decides to sterilize his 108-liter swimming
pool by boiling the water in it. For heating purposes he uses the
fusion reaction

'H + 3H — *He + radiant energy

Assuming the heating system is 209, efficient, how much does he pay
for the tritium (3H) to raise the pool temperature from 20 to 100°C?
It takes 4.2 joules to raise 1 g of water through 1°C. Tritium costs
about $5 per cm3 of gas at STP.

Atomic masses: 1H 1.0081 amu
SH 3.0170 amu
4He 4.0039 amu

1-10 A spherical nuclear reactor of mass 1032 kg in interstellar space
is completely surrounded by a thin, nonrigid spherical shell of matter
with a mass of 1026 kg (see the figure). The reactor loses 1010 kg /sec
of its mass by the emission of electromagnetic radiation. (If this
sounds like the description of a star, it’s no accident!) This radiation
is completely absorbed by the surrounding shell of matter. What
must be the radius of the spherical shell if the repulsion exerted on it
by the radiation is just great enough to balance the gravitational
attraction exerted on it by the reactor? (Consider the forces exerted
on a small portion of the shell.)

1-11 (a) The heat of formation of CO from C and O is about
20 kcal/mole. If this heat is allowed to escape, by what fraction is the
carbon monoxide lighter than its parent elements?

(b) If the nuclei of the abundant isotopes of C and O (12C and
160) could be combined to produce 28Si in its normal state, with the
escape of all surplus energy, by what fraction would the silicon nucleus
be lighter than its parent nuclei?

(c) Process (b) would not be very probable unless the reacting
nuclei could be forced to within about 10—14 m against their electric
repulsion. What kind of temperature would be needed in a mixture
of C and O before this became at all likely? In the Coulomb force law
(F = kqigqz/r?) the value of k is 9 X 109 newton':m2/coulomb?,

1-12 (@) A body of mass m; + Am is connected to a body of mass
mg — Am by a spring of spring constant k£ and negligible mass (see

Problems



m,+Am  my—AOm

32

the figure). The system is at rest on a frictionless table. A burst of
radiation is emitted by the first body and absorbed by the second,
changing the masses to m| and m2 and setting the system into oscil-
lations. If the time of transit of the radiation is negligibly small com-
pared to the period of oscillation, show that the maximum extension
of the spring is given by

1/2
= cAm (ﬁ:tﬂ)

mimok

(b) Consider qualitatively what would happen if the spring could
be made stronger and stronger, without limit.

1-13 The discussion of Einstein’s box in the text assumes that the
transit time of the radiant energy is L/c (where L is the length of the
box), a result obtained by neglecting the distance of recoil of the box.
The text also ignores the decrease in the mass of the box resulting
from the emission of the radiant energy. Show that if both these
features are properly taken into account, the result m = E/c? is still
obtained.

1-14 Having obtained the relation m = E/c? for the inertial mass of
radiant energy, Einstein in 1911 speculated whether this same value of
m, substituted in the universal gravitation formula, would describe the
deflection by the sun of light rays from a distant star, thereby causing
the apparent direction of the star to be slightly displaced. (A German
astronomer, J. Soldner, treating light simply as Newtonian particles
traveling at speed ¢, had—unknown to Einstein—carried out es-
sentially this same calculation back in 1801!)

Calculate the deflection « for a photon that just grazes the edge
of the sun, by assuming that to a first approximation it shoots by along
a straight-line path always traveling at speed c, but that the component
of the gravitational force perpendicular to the path (Fcos ), in-

Approximation

Actual situation
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tegrated over the complete path, ends up by giving the photon a trans-
verse momentum component

Ap = [Fcos@dt

so that the deflection « is equal to Ap/p, where p = E/c (see the figure).
Let x be the distance measured along the path. Taking the origin of x
at the point where the ray grazes the sun, the limits of x are &=« and
we also have dt = dx/c, and CP?2 = x2 4 R2.

The result is @ = 2GM/c2R. After verifying this formula, put in
numbers to obtain a numerical value of « in seconds of arc. (N.B.: It
is believed that this answer is wrong in principle. Einstein’s general
theory of relativity brings in a further factor of 2 in the theoretical
deflection.)

1-15 A particle is given a kinetic energy equal to » times its rest energy
moc2. What are

(a) Its speed?

(b) Its momentum?
1-16 (a) Through what voltage would an electron have to be ac-

celerated from rest so as to increase its mass by 0.49,?
(b) What would be its speed under these conditions ?
1-17 A proton is accelerated through the equivalent of 500 million
volts by a synchrotron.
(a) What is its mass, expressed as a multiple of the rest mass?
(b) What fraction is its speed of the speed of light?

1-18 What is the velocity of the center of mass of a system consisting
of a photon of energy hA» and a stationary atom of rest mass mg?
How would your answer change if the atom were in an excited state?
Does this seem reasonable nonrelativistically ?

1-19 (a) The ratio v/c is very often denoted by the single symbol 3.
Show that if 8 << 1, the following are valid through terms of order 82:
E = moc? + mov?/2 = moc2(1 + 82/2)
K = mgv2/2 = moc?p2/2
pc = movec = moc2B
Y =1+8%2/2

(b) Show that if ¥ = ¢! >> 1, the following are valid through
terms of order €2:

B=1—¢/2
E = ¢ moc?
K/E=1—¢

pc/E=1— ¢2/2
K/pc =1 — ¢+ €2/2
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1-20 (a) The refractive index of air for visible light is about 1.000277.
What would be the kinetic energy of an electron whose speed through
an evacuated tube would be sufficient to keep it neck-and-neck with a
light signal traveling through the air?

(b) What force would a stream of such electrons, equivalent to a
current of 16 mA, exert on a block of material in which they were
stopped ?

1-21 (a) What fractional error does one make in using $Muv?2 for the
kinetic energy of a body if its speed is

(1) 3m/sec

(2) 300 m/sec (the speed of sound in air)

(3) 104 m/sec (the speed a body needs to escape from the
earth)

@) 0.1c

(5) 0.9¢

(b) If the experimental error in a measurement of v is 19, (ap-
proximately), how large must v be before relativistic corrections be-
come significant ?

1-22 An electron moving with a speed 0.5¢ in the x direction enters
a region of space in which there is a uniform electric field in the y
direction. Show that the x component of the velocity of the particle
must decrease. (After E. M. Purcell, Electricity and Magnetism,
McGraw-Hill, New York, 1963.)

1-23 A particle of rest mass m, charge ¢, and initial velocity vo enters
a region of space containing a uniform electric field & perpendicular
to vo. Find the subsequent trajectory of the particle, and show that
the path is a parabola as long as the speed of the particle is much
less than ¢. (After H. Goldstein, Classical Mechanics, Addison-Wesley,
Reading, Mass., 1950.)

1-24 A uniform rod of mass M and length 2L spins with angular
frequency w << ¢/L about its center. Its angular momentum and
kinetic energy are given by

2 2,2

3

2 2 2.2
K=MLw 1+Bw_L_+...
6 c2

What are the values of 4 and B?

1-25 The “classical radius” of the electron, ro, is a combination
of physical constants, numerically equal to 2.818 X 10~ m, The
electron is also known to have an intrinsic angular momentum, or
spin, equal to #/2 = 5.272 X 1035 joule-sec. If the electron is
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assumed to be a uniform sphere of radius r¢ spinning with angular
frequency w, find the numerical value of w. (Use a nonrelativistic
analysis.) Do you think this is a reasonable model? Why not? The
moment of inertia of a uniform sphere is 2MR2/5.

1-26 Calculate the relativistic increase of mass (in %)) associated
with the kinetic energy of an electron moving in the first Bohr orbit of
(a) hydrogen (Z = 1), (b) uranium (Z = 92). The orbit is defined
by F = mv?/r and by mor = 5 = 1.05 X 10~34 joule'sec. The
force F is given by F = kqiqg2/r?, where g1 = Ze, g2 = e = 1.6 X
1012 coulomb, and k = 9 X 10° newton'-m?2/coulomb?.
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Is there any point to which you would wish to draw my
attention?
To the curious incident of the dog in the night-time.
The dog did nothing in the night-time.
That was the curious incident, remarked Sherlock
Holmes.
THE MEMOIRS OF SHERLOCK HOLMES (1893)

The interpretation of these results is that there is no
displacement of the interference bands.
A. A. MICHELSON (1881)



2
Perplexities in
the propagation
of light

THE EVIDENCE that we assembled in Chapter 1 leaves us in no
doubt that a velocity equal to the velocity of light in vacuum has
a deep significance in physics. Yet when we try to couple this
fact with the classical dynamical scheme we seem to run into
serious trouble. For at first glance a universal velocity is a con-
tradiction in terms. We know that the velocity of a given motion
has different measures in different frames of reference. How,
then, is it possible to incorporate a unique velocity into the equa-
tions of dynamics? What justification do we have for speaking
of the velocity of light, without reference to any particular frame
of observation? (When we say, for example, that the speed of
sound has a certain value, we know that this has meaning only
as a statement of the speed of a wave with respect to the medium
itself.) As we shall see in Chapter 3, it was Einstein’s clear reso-
lution of these questions, where others had made only tentative
or partial attempts, that marked him as the true creator of special
relativity. And a key factor in his success was his power to
recognize (in the kind of way that Conan Doyle portrays Holmes
as recognizing) the full significance of the things that did not
happen. The most famous of all such phenomena is embodied
in the results of what is universally known as the Michelson-



Morley experiment, but many other optical phenomena, some of
them known long before the Michelson-Morley experiment was
performed, contained clues to the solution of the problem. And
in this chapter we shall review some of the important evidence
relating to the propagation of light, both in empty space and in
transparent material media.

THE NATURE OF LIGHT

38

The propagation of light involves the transport of energy away
from a source. The simplest picture of this process is in terms
of a stream of particles emitted from the source; Pythagoras,
back in the 6th century B.C., proposed this mechanism. It ac-
counts, very directly, for the propagation of light in straight lines
(as evidenced by the sharpness of shadows) and for the fact that
light can travel with complete ease through a vacuum. In 1667
there appeared the first clear exposition of a different theory—
that light is a vibration communicated through a medium of
some kind. This was propounded by Robert Hooke in his famous
book Micrographia. At about this time were observed some of
the phenomena that could not easily be related to a particle
theory of light—the brilliant colors of thin air films between glass
surfaces, and the encroachment of light upon the region of the
geometrical shadow. Huygens, in his Treatise on Light,' devel-
oped the wave theory explicitly, and showed how it could account
for reflection and refraction.

The particle theory and the wave theory have been the only
clearly defined models by which to describe light and its propaga-
tion. For a long time—until the 20th century in fact—the two
theories were taken to be mutually exclusive; it seemed obvious
that acceptance of the one must imply rejection of the other.
From the vantage point of today, we see that both photon and
wave aspects of the behavior of light must be accepted—that the
facts cannot all be forced into the mold of one or other of the
two theories. We have learned also (thanks largely to Einstein)
that we should focus on the bare facts of observation, and should
not, through our adherence to a particular theory, read more
into them than is there. To be specific, the wave properties of
light are undeniable—diffraction, interference, polarization, etc.
IC. Huygens, Treatise on Light (written in 1678, published in 1690), una-

bridged republication of the original English edition of 1912 translated and
introduced by S. P. Thompson, Dover, New York.
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But the waves of ordinary experience require a medium. What
more natural, therefore, than to build up a detailed specification
of the medium that carries waves of light, and then to seek to
detect it? Yet it was a quest that led only to frustration. Einstein
showed that the search for the medium—the Juminiferous ether—
was sterile and unnecessary. The ether was a red herring—some-
thing that diverted physicists into following a false scent. Per-
haps in this present discussion we should not introduce the ether
at all, knowing that we are going to bury it again in the end. Yet
one cannot fully appreciate the emergence of special relativity
without some feeling for the importance and the appearance of
reality that the ether once enjoyed. In the next section, therefore,
we shall briefly discuss this background.

THE LUMINIFEROUS ETHER

The story of 19th-century physics was, in large part, the story of
the triumph of the wave theory of light. At the beginning of the
century (1801-1804) Thomas Young made his quantitative
studies of interference phenomena. Beginning in 1818, Fresnel
published calculations that were able to account in detail for the
facts of interference, diffraction, and polarization. Since, as
Huygens had shown, a wave theory was as competent as a par-
ticle theory to describe the ray properties of light—rectilinear
propagation and the laws of reflection and refraction—the pic-
ture of light as a vibration in a medium, analogous to transverse
waves on a string, seemed unassailable. But what could one say
about the properties of the medium—which came to be called
the luminiferous ether—in which these vibrations were presumed
to take place?

Until about 1850 the propagation of light was envisaged in
purely mechanical terms. This, however, posed very considerable
difficulties, because it was hard to understand how the speed of
light could be so very great. (The first quantitative measurement
was due to the Danish astronomer Roemer in 1675. He noted
systematic variations in the times, as recorded by clocks on earth,
at which the moons of Jupiter moved into the planet’s shadow,
and was astute enough to recognize that these variations were
linked to the position of the earth in its orbit and to the as-
sociated transit time of the light over a variable distance.) A
wave speed of more than a hundred thousand miles per second
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was many orders of magnitude greater than the speed of any other
mechanical disturbance, and demanded a medium which, al-
though so tenuous that the planets could travel through it year
after year with no detectable loss of speed, must nevertheless
develop very strong restoring forces when displaced from equi-
librium—since the speed of propagation of a wave depends on
this restorative property of the medium. It was unsatisfying, too,
that the only clue to the properties of the medium was the mea-
sured value of ¢ itself; nothing was known a priori.

The situation was transformed when James Clerk Maxwell,
in 1861, produced his electromagnetic theory of light. It now
became possible to predict the numerical value of the speed of
light for any given medium, in terms of measurable electric and
magnetic properties of the medium. There was no longer such
a gulf between ether and ordinary matter, although the in-
tangibility of the ether might still seem mysterious. The wave
theory seemed to have achieved its ultimate justification, and the
ether a reality that could not be gainsaid.

Granted the existence of the ether, it was of course quite
clear what was meant by “the speed of light.”” Any wave has a
definite velocity with respect to the medium through which it
moves. The magnitude of this velocity may be a function of
wavelength (the phenomenon of dispersion) but is otherwise
uniquely defined, at least for an isotropic medium (i.e., one con-
taining no preferred directions). In particular, the speed of light
through a medium should be quite independent of any motion
of the source, in direct contrast to a particle-emission mechanism,
in which one would expect the speed relative to the source to be
the unique quantity. Acceptance of the wave theory did not wait
upon an experimental proof that the measured value of ¢ is in-
deed independent of the source velocity. If this had been known
to Huygens, he would no doubt have used it as one more proof
that a particle model of light was inadmissible. In fact, however,
the wave theory appeared to be adequately supported by other
lines of evidence, and the effect of source motion was not ex-
plored until the wave theory, in its turn, had run into severe
difficulties. In Chapters 3 and 5 we shall have more to say about
experiments on radiation from moving sources; for the present
we shall merely state the result—that the velocity of a source of
light is not communicated to the radiation it emits.

Let us, then, put ourselves in the position of a physicist of,
say, 1900, and look at some striking optical phenomena from the
standpoint of a wave theory.
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STELLAR ABERRATION

In 1725 the British astronomer James Bradley tried to measure
the distances of some stars by looking for an apparent change in
their positions as the earth moved around the sun. He hoped
to use the diameter of the earth’s orbit as a base line, and to
determine stellar distances in essentially the same way as a sur-
veyor measures distances by triangulation. He did observe an
effect, but he discovered that it was not parallax; it depended
not on the earth’s position, but on its motion at a given point in
the orbit. (The true parallax effect is unobservably small for
most stars.)

Consider Fig. 2-1, which depicts the orbit of the earth
around the sun, and a star viewed from four positions of the
earth, at 3-month intervals. The true altitude of the star with
respect to the plane of the earth’s orbit (the ecliptic) is the angle
6¢. Because of the earth’s changes of position, one would expect
the altitude to be greatest when the earth is at position 2 and

Star
*

Fig. 2-1 Stellar

aberration. (a) A

distant star is viewed

Jfrom the succession (a)

of positions 1-2-3-4

as the earth moves

around the sun. 3 D)

(b) In a coordinate %/ eEarth

system attached to

the earth (but with /
the direction of the (- Sun '1 \
axes fixed in space), /
the apparent position N g

of the star follows /

the elliptical path

a-b-c-d. The effect

depends on the

changes in the

direction of the (b)
earth’s velocity, not

on the changes in its

position as such.
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Fig. 2-2 Basis of stellar aberration. (a) A stationary
telescope aligned on a star. (b) A moting telescope
aligned on the same star.

least when it is at position 4. Instead, Bradley found that the
altitude was greatest at position 3 and least at position 1.

The phenomenon can be understood in terms of Fig. 2-2.
A telescope on a stationary earth (a) would have to be pointed
at the true altitude 8, in order that the rays of light from the star
should travel along the axis of the instrument and form an image
at the center of the field of view. But on a moving earth (b) the
telescope would have to be tilted at a slightly different angle, 6.
The difference of angles is the aberration, . We can observe a
comparable phenomenon when it rains. If raindrops are falling
vertically at speed w, but we are in a vehicle moving at speed v,
we see the drops moving along straight lines inclined to the
vertical at an angle tan™! (v/w).

The aberration effect would never be detectable if the earth
moved always with the same velocity, but the changes in the di-
rection of motion during the year lead to a systematic change in
the apparent position. This can be analyzed quantitatively with
the help of Fig. 2-1. At positions 1 and 3 the earth’s velocity
vector and the line from sun to star make an angle 6, with one
another. At positions 2 and 4 the earth’s velocity is at right angles
to the line from sun to star; the aberration angle has its greatest
possible values (Zv/c) at these positions. At positions 1 and 3 we
have a situation like that depicted in Fig. 2-2, in which the
aberration angle is only of magnitude vsin 6y/c. Thus in the
course of a year the star appears to describe an elliptical path
which has a major axis (measured as an angle 28) equal to 2v/c
and a minor axis of 28sin §y. The length of the major axis
should be the same for all stars; the length of the minor axis
depends on the altitude 6, of a star with respect to the plane of
the earth’s orbit.

What Bradley observed corresponded exactly to the above
description. Figure 2-3 is a graph of some of his observations on
the star ¥ Draconis; it shows how the apparent position of the
star varied in the north-south direction over a 12-month period.*

1Data taken from J. Bradley, Phil. Trans. Roy. Soc., 35, 637 (1729). For an

interesting account of Bradley’s work, with many details, see A. Stewart,
“The Discovery of Stellar Aberration,” Sci. Am. 210(3), 100 (1964).
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The east-west component of the aberration was not recorded.
(You should consider the practical difficulties of measuring this
component.) Thus Bradley’s data span the minor axis of the
aberration path.

Now the orbital speed of the earth is 30 km/sec, so that the
value of 2v/c is 2 X 10~% rad, or about 41 seconds of arc. A
typical aberration path would resemble the outline of a football
viewed from a distance of about 1 mile. The data shown in
Fig. 2-3 span the minor axis of an aberration path for which
6o = 75°, giving a calculated variation of 39.6"” between maxi-
mum and minimum altitudes, with a sinusoidal variation (why?)
between these extremes. The observed range of variation cor-
responds extremely closely to this theoretical value. Actually,
Bradley himself could not make a quantitative theoretical check
of his result, because the speed of light was not well enough
known. Instead, being sure that the basic interpretation of the
phenomenon was correct, he used the observed aberration angles
to obtain an improved value of ¢, the earth’s orbital speed being
at that time quite well known.

When we come to analyze the aberration phenomenon in
terms of a theory of light, it is clear that a particle model provides
a very ready explanation; it is just like the falling-rain analogy.
However, one can also account for the effect in terms of waves

Fig. 2-3 Bradley's data on the north-south component
of the aberration of v-Draconis (1727-1728).
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traveling through the ether, provided the ether remains completely
undisturbed by the earth’s motion. If, on the other hand, the
ether near the earth were carried along with it, the aberration
would not take place.! The notion of an ether completely un-
disturbed by the passage of the earth must have seemed a rather
strained one to many physicists, but with the wave theory stand-
ing supreme it appeared unavoidable. And then it was natural
to ask: Can one make any measurements that will disclose the
magnitude of the velocity of the earth through the ether? We
shall next describe some experiments bearing on this question.

A MODIFIED ABERRATION EXPERIMENT

Suppose that a telescope has been aimed at a star whose true
direction is at 90° to the plane of the earth’s orbit. Let the un-
known aberration angle be « [Fig. 2-4(a)] and let the unknown
speed of the earth through the ether be v. Now imagine that the
whole tube of the telescope is filled with water, of refractive index
n. Since light travels more slowly in water than in air or vacuum,
the time for the light to travel down the length of the telescope
tube will be lengthened—by the factor n. One might expect,
therefore, that to keep the star’s image in the center of the field
of view one would have to tilt the telescope further, to some new
aberration angle 8, and that the amount of this adjustment could
be used to find the speed v. At first glance one might think that
the angle 8 would be just nv/c, but in analyzing this experiment
one must remember that, because the objective lens of the
telescope now has air on one side and water on the other, the
light rays entering the telescope are bent toward the axis of the
instrument, as indicated in Fig. 2-4(b). Inside the telescope we
would expect the rays to travel at an angle 6 to the axis such that

8
5

W

sin
in

=

n =

|

w
(=2}

Since the light is traveling downward with speed ¢/n, and the
telescope is moving sideways at speed v, the condition for center-
ing the star’s image in the telescope is

v nv
bx = @-1)

1Actually, this conclusion is not inescapable, but one must postulate quite
outlandish conditions to have “convected ether” and aberration.

44 Perplexities in the propagation of light



Fig. 2-4 Principle of Airy’s
experiment designed to reveal
motion of the earth through
the ether by sighting on a star
with (a) a normal telescope;
(b) the same telescope filled
with water.

(Remember that the angles are grossly exaggerated in Fig. 2-4.)
Now we do not know the true values of «, 8, and &, but we can
surely measure the change of telescope direction, and we have

2

nv v
B = né= - a = z

Therefore,
B—a= (n2 - 1v/c 2-2)

Everything is directly measurable except v, the value of which we
should therefore be able to discover. This very experiment was
carried out by Sir George Airy in 1871. The result? There was
absolutely no change in the apparent position of the star!

How can we explain this null result? As a matter of fact, it
had been predicted by the brilliant J. A. Fresnel, who had sug-
gested this experiment many years earlier. Fresnel’s expectations
were based, however, not on the fundamental impossibility of
detecting absolute motion, but on the assumption of a partial
drag of the light by the medium. He had postulated this in 1818,
after his fellow-countryman Arago had found that the refraction
of starlight through glass appeared to take place just as though
the earth were at rest in the ether.

Sir George Airy’s experiment can be easily analyzed in these
terms. For suppose that the water drags the light sideways with
a fraction f of its own velocity v. The experiment has shown that
the angle 8 is equal to the original aberration angle o (= v/c)
and hence that the angle 8 is equal to /n. Let the length of the
telescope be /; then the time ¢ for the light to pass down it when

45 A modified aberration experiment



water-filled is #l/c. In time ¢ the telescope moves through the
distance vt; if the light is to emerge at the center of the eyepiece,
its sideways displacement must be equal to this. But, as measured
from the position of the eyepiece when the light enters the top
of the telescope, the displacement of the light is the sum of /s,
due to refraction, and fot, due to dragging by the water. Hence
we have

vt = 16 + fut
But

I =ct/n and 8 = a/n =v/nc

Therefore,

whence
f=1-—1/n? (2-3)

The quantity f is known as Fresnel’s drag coefficient.

It may seem curious indeed that nature should provide a
drag coefficient of just such a size that Airy’s experiment, and
others like it, should yield just the same result as if the earth
were motionless with respect to the ether. Is there some way of
exhibiting this drag as a positive effect, rather than as a null
phenomenon? H. L. Fizeau had answered this in the affirmative
in a famous experiment he performed in 1851.

FIZEAU’'S MEASUREMENT OF THE DRAG COEFFICIENT

Fizeau set up the apparatus shown diagrammatically in Fig. 2-5.
A beam of light from a source S falls on an inclined glass plate P
that has a semitransparent metal coating such that the beam is
split into two parts. One part travels straight on until it strikes
a mirror M. The other part is reflected through 90° and strikes
M3, With a third mirror M, in place, the two beams travel
around the same rectangular path but in opposite directions.
When they arrive back at P, part of the first beam is reflected
and part of the second is transmitted, and the light thus emerging
from the system enters a telescope 7.

This arrangement constitutes a type of optical interferom-
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Fig. 2-5 Schematic
diagram of Fizeau’'s
“ether-drag”
apparatus.
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eter. 1f monochromatic or nearly monochromatic light is used,
interference fringes are seen when one looks through the telescope.
A particular fringe represents a particular optical path difference
between the two interfering beams. (By optical path we mean the
distance in vacuum equivalent to any actual path. A distance d
through a medium of refractive index n represents an optical
path nd; it is this that defines the number of wavelengths of the
light that can be fitted into the distance.) The view through the
telescope is like that shown in Fig. 2-6.

To provide a dragging effect, water is made to flow through
two tubes with flat glass end plates as shown, so that one beam
of light always travels with the water and the other beam always
against it. Outside the water tubes the conditions are the same
for both beams; thus to compute the optical path difference we
need only consider what goes on inside the tubes. We can cal-
culate this difference in terms of the difference of times for the
two beams. If each tube is of length / and the speed of the water
is v (with drag coefficient f), we have

Water out

2/ 21

Ar = (c/n) — fo - (c/n) + fv

which gives

_An’fel

At w2

24
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Fig. 2-6 Inter-
ference fringes in
apparatus of the
Fizeau type. (Photo
courtesy of G. C.
Babcock, Michelson
Laboratory China
Lake, Calif)
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This implies an optical path difference ¢ Az. The change of
optical path, expressed as a multiple (5) of the wavelength A of
the light, is thus given by c At/\:

Al

8 Ac

(2-5)

In Fizeau’s experiment the approximate values were

I=15m

v = 7Tm/sec

A=53X10""m

n = 1.33 (refractive index of water)
& = 0.23 fringe

Substituting these values in Eq. (2-5) gives the observed value

of f:
fobs =~ 0.48

The value of f calculated from Eq. (2-3) is
Seale = 043

This could be taken as confirmation of the drag hypothesis. The
experiment was, however, repeated with greater precision by
Michelson and Morley in 1886, and still later became the subject
of a series of beautiful investigations by P. Zeeman and his
associates in Holland during the years 1914-1922.

The result of Fizeau’s experiment could be taken as rein-
forcing the observations on stellar aberration. Both could be
interpreted by supposing that a moving object does not com-
municate any of its motion to the ether, either outside or inside
it. Inside a moving transparent material (according to this view)
the light is carried partly by the material and partly by the ether
that permeates it. Since the ether remains at rest, the light be-
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haves as if only a fraction of the velocity of the material were
added to the light. The question therefore remained: Could the
motion of the earth through the ether somehow be detected?

PRELUDE TO THE MICHELSON-MORLEY EXPERIMENT

In 1879 Clerk Maxwell, in England, wrote an acknowledgment
of some astronomical tables he had received from D. P. Todd of
the U.S. Nautical Almanac Office in Washington