FRED S. ROBERTS AND PATRICK SUPPES

SOME PROBLEMS IN THE GEOMETRY OF
VISUAL PERCEPTION

1. A GENERAL MODEL

In view of the long history of discussion about the nature of perception,
both by philosophers and psychologists, it may seem foolhardy to propose
to begin afresh with a general discussion. However, as we hope to show
in this paper, many of the most fundamental problems about perception
have not as yet been clearly settled and are just now receiving careful
formulation. We believe that from a scientific standpoint the problems
of perception are difficult, and we want to say at once that we do not
propose to solve may of them here. Our purpose is mainly to set up a
general model which we may use as a framework for discussion. In these
general terms, we shall try to surimarize a class of empirical observations
about perception, organize some of the fundamental problems into
sharply defined classes, and suggest one or two possible explanations.

1.1, Physical Space vs. Perceptual Space

We shall, as our title suggests, limit ourselves to a discussion of visual
perception, and also to those visual phenomena involving perception of
geometrical characteristics as opposed to such things as color, texture, and
the like, although many of our remarks are more generally applicable.
Our discussion for the most part will deal with binocular vision, although
several of our explanations, notably those in terms of eye movements,
will be monocular in nature. To begin with, we shall distinguish between
physical space and perceptual space, the space from which we draw our
‘conscious’ perceptions. For the latter we shall also use the phrases
visual space or subjective visual space. It seems sensible to take as physical
space ordinary three-dimensional Euclidean space. This space we denote
by E,, or simply by E. (It is possible fo argue about this choice of physical
space.)

For perceptual space, we propose no a priori structure of a general
nature. Indeed, we shall try to study how one might infer the geometric
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certain hyperbolic curves. Moreover, light arranged in physically straight
lines is not always seen as straight by the observer. If a subject is asked to
align two rows of lights in ‘parallel straight lines’ (parallel alleys), and
then alternatively into ‘lines with corresponding points equidistant’
(distance alleys), the two resulting configurations are different, whereas in
a Euclidean geometry they would be the same. If L and R denote the
idealized centers of rotation of the left and right eyes respectively, then
Figure 1 shows some of the configurations in the horizontal plane at eye
level which are judged aligned. Figure 2 shows the parallel and distance
alleys in the same plane.

Fig. 1.
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Fig, 2.
Helmholtz [10] obtained similar results by the use of after-images.
Fixate at the center of a horizontal straight line at eye level in the frontal
plane in physical space, and then shift your gaze rapidly to the center of

a parallel line below it. The after-image of the first line does not coincide
with the second, but instead, the first line continues to appear straight
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

while the new line appears concave up. Conversely, the after-image
coincides with a physical hyperbola, concave down. Similar results hold
if we move our gaze upwards or deal with vertical lines. Thus the physical
curves ‘seen as straight’ appear to be hyperbolas that are convex toward
the primary point of fixation.2 (This includes the original horizontal
line.) The curves seen as straight are at least qualitatively like those of
Figure 3 below. :

Such results indicate that the primitive visual geometry differs from
the physical geometry. Presumably the role of learning is to help us
overcome this difference. Thus in the case of straightness, for example,
we have to learn to see physically straight lines as straight.

2.2. The Eye-Movement Explanation

There are two approaches to the study of primitive visual geometry.
One is to try to describe precisely the properties of this geometry, and the -
other is to try to explain why our primitive geometry is as it is. -

The latter type of explanations, presumably, are physiological. In
our present kinematical situation, it is natural to try to use eye movement
as a basis for understanding primitive visual space. Such an approach
goes back to Helmholtz [9, 10), and it is of interest to follow his presen-
tation, concentrating on straightness. The idealized eyeball may for
our purposes be considered a rigid body which rotates about a fixed
point O. If we fix our gaze at any point P in ‘external space’, then OP
will be called the visual axis. In particular, the point of fixation 4 when we
are looking straight ahead toward the horizon will be called the primary
point. It is natural to assume that the position E(P) of the eyeball when
the fixation point is P is completely determined by the primary position
E(A) and the visual axis OP.% This fundamental law of eye movement is
known as Donders’ Law. Thus, under Donders’ Law, no matter how much
we move our eyes, if we return to looking at the same point in external
space, the eyeball returns to the same position. It is implicitly assumed that
the correspondence P— E(P) is not trivial (i.e., not a constant map) and
also continuous. Finally, the discussion is really limited to points within
a reasonable angular distance of the primary point. Donders’ Law, which
postulates the existence of a correspondence P—FE (P), should be dis-
tinguished from any particular law of eye position, which specifies for
each point P the corresponding position E(P).
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We would like to give, independent of any particular law of eye
position, an eye-movement definition of our primitive perception of
straightness. Using the notion of alignment as motivation, we say with
Helmholtz that a curve C in physical space is ‘seen as straight’ (in the
primitive sense) provided that as we move our fixation point along C
(scan C), successive portions of the curve are imaged on exactly the
same elements of the central portion of the retina. )

Using this definition, Horace Lamb [12] proves the following striking
theorem: :

TueorReM: Under Donders’ Law, it is not possible for every physically
straight line (segment) to be “seen as straight’. ( More precisely, under any
particular law of eye position, the class of those physical curves seen as
straight does not include all straight line segments.)

This theorem is a strong argument for the view that our primitive
visual geometry, for physiological reasons, cannot be Euclidean, and
so learning must enter. Thus, it seems likely we cannot perceive Euclidean
straightness at birth. Because we think this theorem is very important,
because it does not seem to be a well-known result, and because Lamb’s
proof is not particularly rigorous, we sketch a proof in an appendix.

It might be objected that the Helmholtz definition of primitive straight-
ness corresponds more to constant curvature than to straightness.
However, we would argue that there does not seem to be any distinction
on the primitive level between these two concepts. And, even if the
objection is well taken, Lamb’s theorem (with the words “udged
as aligned’ replacing the words ‘seen as straight’) remains just as
startling,

Accepting the Helmholtz definition, and given the negative result of
Lamb, it becomes of interest to calculate exactly what curves in physical
space are seen as straight. To do this, we need a specific law of eye
position. It is sufficient to describe how to find position E(P) from point
P and the primary position E(A4). Since the same visual axis corresponds
to many points of external space, we may limit ourselves to points P on
the surface S of a sphere about O surrounding the eyeball. We shall call
S the spherical field. In particular, we may assume A4 lies on S.

Probably the simplest law of eye position is Listing’s Law, which says
that E(P) may be obtained from E(A) by a rotation of the entire eyeball
corresponding to the great circle arc AP on the spherical field.4 (That is,
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

in moving our eyes in a haphazard path from fixation point A4 to fixation
point P, the end result is ‘as if* we just rotated the eye directly.)

Helmholtz proved the following:

TaroreM: Under Listing’s Law, those curves in external space which
are seen as straight are exactly those corresponding under projection from
the point O to arcs of circles on the spherical field which pass through the
point B diametrically opposite to the primary point A.

In particular, in the plane perpendicular to the line 04, all of the
curves shown in Figure 3 are seen as straight. This result agrees with the
experimental data mentioned.

R

Fig, 3.

It should be remarked, as a final comment here, that our judgments of
straightness in ‘real-life’ situations can be made without eye movement.
We can even recognize straight lines which are flashed on a tachistoscope
so fast that no eye movements can be made. How then can eye movements
be used to account for the perception of straightness if the perception of
straightness can be accomplished without eye movements? The answer
here is that it is only our learned concept of straightness which can be
perceived without scanning. Before learning, we require eye movements
to perceive alignment (cf. Hebb [8]). These observations indicate then,
not that our eye-movement definition of primitive straightness is mis-
guided, but rather that learning plays a crucial role. For it seems that we
can see a certain familiar configuration on the retina and immediately
infer that it is straight without scanning at all (cf. Platt [15]). We describe
a specific mechanism for such inferences in Section 3.3.
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2.3. Recovering the Primitive Visual Geometry

The other approach fo primitive visual space is to try to recover ifs geo-
metry from certain observables. We are interested in studying what
structures are compatible with our primitive visual perceptions, what rela-
tions are meaningful in our primitive visual space, etc. Hence we are using
the word ‘geometry” in a very general sense. The problems involved here
are what observables to choose and what properties to study and derive.

For example, one whole collection of observables are our judgments of
comparative distance, alignment or betweenness, parallelism, etc. We
shall limit our discussion to these with the remark that choice of appropri-
ate observables for the study of primitive visual space is very much an
open question. These particular concepts all make sense in an abstract
metric space. Blank [3], following Luneburg [13]; has investigated to
what extent primitive visual space is a metric space. He starts with ob-
served relations O* and B*, the comparative distance and betweenness
relations; i.e., Q* consists of all quadruples (x, y, «, v) of points of visual
space so that the distance between x and y is observed to be smaller than
the distance between u and v; and B* consists of all triples (x, y, z) so that
x, ¥, and z are observed to lie on a line, with y between x and z. It should
be noted that O* and B* do not necessarily agree with the corresponding
Euclidean relations.

Given a metric d, we may speak of its comparative distance and
betweenness relations, Q, and B;, defined respectively as {(x, y, u, v):

-d(x, y)<d(u, v)} and {(x, y, z}: d(x, y)+ d(y, 2)=d(x, z)}.

Blank proves a representation theorem of the following form:

THEOREM: Under a set of axioms A on the relations Q% and B¥, there
exists a metric d on primitive visual space such that Q*=Q, and B*=B,.
Moreover, such a metric is unigue up to a similarity transformation.

We quote this theorem, but without a detailed list of the axioms,
because we feel that it is an example of the zype of consideration involved
here. Namely, it is an attempt to recover the geometry of visual space
from certain observed relations. We are not asserting that a subject
consciously makes judgments of numerical distance. The numerical
measure is, in the words of Blank, “something superimposed upon his
visual experience”. It might, on the other hand, be a reasonable approach
merely to describe the primitive visual space by describing the various
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observed relations, without trying to give numerical representations.

The specific Blank axiomatization has several serious drawbacks of
which Blank is aware. For example, the observed relation xy <uv defined
by O*(x, y, u, v) is probably not transitive on ‘pairs’ as it must be if Q*
comes from a metric. Such difficulties stem in large part from what hap-
pens near the threshold of discrimination. This is typical, then, of the
difficulty in studying primitive visual geometry: local geometric and topo-
logical properties are obscured.

Beals, Krantz, and Tversky {2] list a set of axioms based on the
relation Q* alone, which may be compared with Blank’s, although the
axioms do not refer specifically to visual space. Their representation
theorem is also essentially the same. These axioms encounter the same
difficulty as do Blank’s.

To go a step further, a good description of primitive visual space might
be some sorf of coordinatization, together with a set of functions relating
the physical and psychological coordinates. Blank obtains a coordi-
natization by adding several powerful axioms, allowing him to prove:

THEOREM: Primitive visual space is a Riemannian space of constant
negative curvature, i.e., a hyperbolic space.

The result of this theorem is actually the starting point of the Luneburg
theory. Usingthe extremely specific geometry implied by the theorem, Blank
and Luneburg coordinatize visual space, write down an explicit metric in
terms of these coordinates, and investigate experimentally the relation
between psychological and physical coordinates. We feel, once again, that
these results are more significant for their approach to the study of primi-
tive visual space than for their detailed accuracy as a description of it,
although it should be added in all fairness that the hyperbolic geometry
explains several of the experimental results described earlier.

As a final comment, it should be noted that one of the advantages
of both'the Blank and the Beals, Krantz and Tversky axiomatizations
discussed above is that they allow for a simple algorithm to recover
the metric from the observables. This is not true of the additional
Blank axioms required for the representation as a hyperbolic space,
and hence of his metric based on the explicit psychological coordinates,
without knowing the non-explicit relation between physica' and psycho-
logical coordinates. We feel in general that such representations should
be constructive in nature, allowing us to approximate the primitive visual
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geometry by simple algorithmic procedures from the observed data.

3., LEARNING

We would like to turn next to an investigation of how our primitive
visual space becomes modified through learning. We assume that a prima-
ry role of learning is to overcome the difference between primitive visual
space and physical space. (It is immediately clear that it is not possible to
completely overcome this difference. To a large extent, for example, we
cannot avoid restrictions on our visual acuity and hence the existence of
thresholds in our visual space.) |

It should be noted that perception after learning involves both learned
and primitive factors. By learned perceptual behavior, we mean perceptual
behavior after learning, thus including the invariant primitive factors.
An investigation of learning in perception should, we feel, be divided into
two problems. First is the problem of giving a precise description or
definition of the learned perceptual behavior. And second is that of
suggesting how we develop a mechanism for exhibiting this behavior.
We have been disappointed not to be able to find many mathematically
oriented papers that discuss these problems.

3.1. Perception of Constancy

We shall restrict ourselves to discussion of the so-called ‘perceptual
constancies’. The fact of perceptual invariance has been commented upon
by philosophers and psychologists for a long time, and for good reason.
The phenomena of size constancy and shape constancy are basic to our
very ability to move around in the world, to relate to our environment,
and so forth. It is almost inconceivable to imagine what would happen if
we could not identify an object seen in different positions or orientations,
under different conditions, and transformed in various ways. It seems
correct to claim that to a very large extent, these constancies are learned,
but the precise sense in which they are learned needs to be formulated with
care. Proceeding with our twofold approach, we would like to start by
giving a precise definition of ‘constancy’ and ‘perception of constancy’.
Our discussion should be viewed not so much as a definite proposal but
rather as a hopefully fruitful framework for discussion. _

Any description of the phenomenon of constancy leads to the idea that
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

there is a certain group® G of fransformations of the physical space
under which figural identity is preserved.® Namely, if S and S’ are subsets
of physical space E, then S and S’ are identified if and only if there is a
transformation ¢ in G so that S=¢|S’. (The notation 7|S’ means the
restriction of 7 to S’. By abuse of notation, we shall hereafter write
S=1¢(8")). We might prefer to think of G as a group of transformations on
a selected collection F of subsets of E, called the ‘relevant configurations’.
The idea of ‘squareness’ might then be looked at in the following platonic
way: we have in mind an ‘ideal’ square in a standard position in physical
space. Given a configuration in physical space, we identify it as a square
if and only if it can by a series of allowable transformations be super-
imposed on or made fo coincide with this ideal square. Similar remarks
might be made for ‘right angle’, ‘circularity’, etc.

For every group of transformations we have a different type of constan-
cy. ‘Size constancy’, for example, might correspond to taking the group of
congruence {or distance-preserving) transformations of Euclidean three-
space.” A certain type of shape constancy arises by taking G to be the
group of rotations of E. We view it as an empirical problem to identify the
relevant groups G for different types of significant constancies, and prefer
to speak in this generality here.

The group G determines an equivalence relation =, on the subsets of
E, defined by: S =, S’ if and only if there is a transformation ¢ in G so
that S=¢(S"). We think of this equivalence relation as the constancy and
we shall refer to = ; as the ‘constancy of type G’. Then our ‘perception of
constancy’ is the identification of two figures equivalent with respect to G.

Pitts and McCulloch [14] suggest a mechanism for perception of
constancy which is of some interest, though we choose not to pursue it
in detail here. Generalizing their ideas, we might suppose, as’in Section 2,
that the image eventually becomes stabilized. Then, if is reasonable to
assume that corresponding to each physical stimulus S there is a sensory
image ¢(S). This might be thought of as a retinal image or a firing
pattern on the neurons in ‘area 17’ of the cortex. If @ denotes the class of
all ¢(S), then, we suggest, there is induced on the space ¢ an equivalence
relation =4 corresponding to =,. And the constancy in question is
‘computed in the brain’ by means of a functional F with the property that
F(p)=F(¢") if and only if ¢~ g¢’. Pitts and McCulloch give a phys-
iological interpretation of F.
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3.2. Elementary Properties and Concepts

Our definition of constancy is actually independent of whether the per-
ception of constancy is a learned or innate process. But it is clear our
constancies are to a large part learned, and so we would like to turn to
an explanation of how such learning might come about.

We begin by distinguishing two types of equivalence classes under a
given constancy. One is the class of ‘elementary properties’ and the other
is the class of ‘concepts’. We shall propose that a constancy is acquired
through the learning of numerous elementary properties and concepts
which are invariant under it.

We cannot be extremely precise here, but what we have in mind for
the elementary properties are such things as straightness, parallelism,
perpendicularity, and roundness. On the other hand, a concept may be
thought of as a collection of elementary properties, in a sense to be
formalized in Section 3.4. For example, ‘squareness’, ‘consists’ of the
elementary properties ‘two pairs of parallel lines’, ‘four right angles’,
‘four equal line segments’, etc.

We feel that a precise determination of the elementary properties will
have to be to a large part experimental in nature. (It should be noted,
by the way, that a determination of the elementary properties depends on
the constancy. Thus, if the underlying constancy group G is the group of
all rotations, then any two Euclidean straight lines are equivalent under
G and the property of being a straight line is a candidate for an elementary
property — it corresponds to one equivalence class. Similarly, if G consists
of just parallel displacements of E into itself, then the property of being
a horizontal straight line is a candidate for an elementary property).

Experimental determination of elementary properties should center
around what basic properties we use to organize our perceptions. Any
study of visual perception must come to grips with the vast information-
processing problems involved in organizing our perceptions. How do we
pass from a mass of perceptualinput to an organized conscious perception?
How do we arrange our percepts into meaningful parts? How do we
select what aspects of the stimulus are consciously perceived?

Our organization of figures seems to be greatly influenced by our
learning, although there are probably some innate or primitive factors
involved here too. We propose to identify the elementary properties with
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

the meaningful units into which complex percepts are arranged. There is
a particularly fruitful and relatively new source of data in the light of
which we can be a little more specific in our ideas here. This source is the
collection of experiments in which even involuntary eye movements are
eliminated. By various means, the image is stabilized on the retina.’
If this happens, the conscious perception soon fades. After a time,
however, the image alternately reappears and fades out in various ‘mean-
ingful’ units. Pritchard [16] describes some of these phenomena in detail.
From a geometric standpoint, some of the organizing factors appear
to be straightness, parallelism, and similarity, all in the Euclidean sense.
That is, straight lines, parallel lines and planes, and similar figures,
usually appear and disappear together. Also, contiguity, symmetry,
convexity, boundary or ‘closedness’, and angle, among other factors,
appear to play a role. Adjacent curves and closed figures, for example,
appear as wholes. These are the types of concepts Gestaltists often use.

To give some examples, given an array consisting of rows of squares,
the parts reappearing together are usually horizontal, vertical, and
diagonal rows. A Necker cube breaks up into single lines, parallel lines,
a pair of parallel planes or a pair of adjacent lines or planes. Finally,
given a triangle and a circle, either these appear singly or alternatively
adjacent boundaries appear together. Summarizing, in some sense ‘simpler’
figures act as units. (Simplicity also seems to play a role in length of
reappearance time.)

These data indicate that our elementary properties should be divided
into two classes, primitive and learned. Those such as Euclidean straight-
ness, parallelism and the like are learned, while such factors as contiguity,
boundary and closedness are probably primitive. A second observation
here, and one that we made earlier, is that our perception of the elementary
properties can be accomplished even without eye movements. Experiments
in which the stimulus is flashed on a tachistoscope bear out this obser-
vation. We may recognize Euclidean (or learned) straightness without
scanning. This is in direct opposition to our perception of primitive
straightness, which, as we saw in Section 2, is crucially tied to eye move-
ment. Any theory of learning in perception will have to account for these
facts. ‘

The observation that the elementary properties correspond in some
sense to the ‘simpler’ figures leads to one theoretical attempt at defining
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the elementary properties. Attneave [1] suggests that simplicity has some-
thing to do with regularity or redundancy, in particular “predictability of
the whole from a part”. Thus, for example, a Euclidean straight line is so
simple because we only need to know two points on it to know all others.
And, two parallel lines are so simple because two points on one line and
one on the second determine the pair. If a subject is shown a closed curve
and is asked to represent it from memory, by, say, ten points, then the
points he chooses are those points where regularity is interrupted
corners, sudden bends, and changes in convexity. The reader is referred to
the paper by Attneave and to Hochberg [11] for a more detailed discussion.

An alternative theoretical attempt at defining the elementary properties
is considerably different from this one. It involves a study of the neural
configurations or firing patterns in the cortex, and aims to describe the
elementary properties as those corresponding to neural patterns satisfying
certain criteria. This neural theory at the same time provides a mechanism
for perception of these elementary properties.

Zeeman [18] provides a model of the brain which is particularly useful
for the points we shall make. His model of the brain is a triple (C, y, p),
where C'is the set of nerve cells in the cortex; y is the binary relation on C
consisting of all pairs of cells (g, b) such that g can fire b; and pis a
function p: y—[0, 1] which represents the strength of the connection.?
We may alternatively think of p(a, b) as the probability that if & fires,
then b will fire.

The cortex C consists of three distinct classes of cells: S, 7, and R.
The cells in S receive sensory inputs; those in 7" may be fired by other
cells in C; and those in R are the ‘self-firers’. S and T are disjoint, for
otherwise we would confuse sense data and imaginings. A ‘thought’ or
‘perceptual image’ is then a ‘firing pattern’ on C, or more precisely a
function #: C—[0, 1], where #(c) represents the ‘rate of firing” of ceC.

Zeeman introduces a measure of the ‘sharpness of an image’, and
suggests that straight lines, parallel lines, boundaries, and so forth, produce
sharp images. His definition of sharpness s(¢) of an image ¢ is:

INUCHE
S(t) = ceC

2t

ceC

Note that s(¢) is between 0 and 1, and a sharp image occurs if the cortex
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is divided into two parts, one firing rapidly and the other slowly. This,
as Zeeman says, is a crude measure. But it is, we feel, on the right track,
and at least exemplifies how the notion of elementary property might be
explicated by the equation ‘elementary property = sharp image’.

3.3. Learning Elementary Properties

We propose as suggested above that a constancy is in part innate and in
part acquired through the learning of numerous elementary properties
and concepts that are invariant under it. In our idealized model, a concept
cannot be learned until various relevant elementary properties are learned,
and so we shall divide our discussion of learning into two parts, first
dealing with elementary properties and then with concepts in Section 3.4.

A mechanism for perception of elementary properties is easy to describe:
each elementary figure (or instance of an elementary property, e.g., a
straight line) corresponds to a particular firing pattern in the sensory
input cortex S (to use the notation of Zeeman’s model). Suppose that
after learning, each steady sensory input coming from a fixed elementary
figure always gives rise to the same firing pattern or image ¢ not only on
S but after stabilization, on all of C. Then, each elementary property
corresponds to one or more such images.

To discuss the mechanism in more detail, let us concentrate on straight-
ness. Thus, for example, a horizontal line at a particular location in E
will produce a certain familiar image which becomes conditioned to the
phrase ‘straight line’. Now, although there are infinitely many different
horizontal straight lines in physical space, physiological data indicate
that there is a relatively small number of corresponding excitation patterns
in S, only about 10 or 15 (Hebb [8]). If corresponding to each such pattern
there is after stabilization only one image, then, cortically we can dis-
tinguish only a small number of horizontal lines. Similarly, we probably
can distinguish only a small number of different slopes of lines, and for
each slope only a small number of lines of that slope. Thus, we must
condition to the words ‘straight line’ only a small number of firing
patterns. In this way, we have a mechanism for perceiving straight lines,
or alternatively horizontal lines, and similarly other elementary figures.

The major problem we face with such a model is in justifying the
supposition that a certain steady sense input, and hence, a fixed firing
pattern on S, always gives rise, under the influence of learning, to the
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same image ¢ on C. This is especially doubtful considering all the ran-
domness built into our model. The first thing to do is to modify our
demands. It is certainly unreasonable to require that a given steady
sensory input coming from an elementary figure always give rise to the
exact same image. Instead, we would be happy to have, using the ter-
minology of Zeeman [18], a tolerance relation on the class of all per-
ceptual images, so that such an input always gives rise to two images that
are ‘close’ or within tolerance.

Hebb [8] suggests a method by which this can come about, and this
method is easily understood in the framework of Zeeman’s model of the
brain. Recall that for Zeeman the brain is a triple (C, y, p), where C
and y are essentially unchanging physiological constants. Thus, our
learning must involve change of p. This change occurs, both Zeeman and
Hebb suggest, through the process of facilitation: if cell a fires cell b,
then in the future it is slightly easier for « to fire .10 The physiological
process of facilitation has been observed, and appears to be basically
chemical in nature. It is easy enough to suggest a neural model for
facilitation which might be compared with physiological data.

Suppose for simplicity that firing patterns over a course of f{ime are
governed by a distribution so that for every pair of neurons ¢ and b at
each unit time ¢,, the probability that ¢ and b both fire is u, the probability
that only one of the two fires is v, and the probability that neither fires is
1—u—v. Suppose that p,(a, b)=p, represents the ‘strength’ of connection
at time ¢,, and that

1if @ and b both fire between time ¢, and time ¢, .,
r,(a, b)=r,= <0 if only one fires in this time interval,
p, if neither fires in this time interval.

Finally, if 0 is a constant between 0 and 1, one possible learning procedure
is to modify p, according to the equation

Pur1 =1 —=6)p, + 0r,.
A simple computation shows that lim E(p,)=u/(u+v). If now v is small,

n=rw
i.e., if, frequently, when one of these neurons fires, then so does the
other one; and if « is not too small, then u/(u+v)= 1. Hence, the expected
value of the strength of connection between a and b, or of the probability
that if a fires then b does, approaches one as time passes. This is inde-
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pendent of the original strength of connection. (More complicated models
may be developed for more complicated distributions.)

Hebb’s suggestion may now be formulated in this framework. There
are in the cortex certain neurons arranged in loops or cycles, i.e., groups
ay, Ay, ..., 4, such that (a,, a,)ey, (a,, as)€y, ..., (@,-1, a,)€y, (a,, a))Ey.
Let 4,, 4, ..., A, be sensory input neurons so that 4; can fire ¢; and so
that the connections 4; to ¢; are strong in the sense that p(4;, @;) is close
to 1. If we indicate the relation x can fire y by an arrow, the picture is as
shown in Figure 4.

Suppose now that 4, 4,, ..., 4, correspond to the sensory input in
the cortex when, say, a given straight line (or other elementary figure) is
perceived. Then, 4,, ..., 4, are often stimulated, and hence fired, together;
or more importantly, usually when one fires, then all fire. It follows that
in general, since the connections A;—a; are strong, that some time later
the neurons q,, 4,, ..., a, will all fire. Thus, the elementary figure or in
particular the straight line in question, after learning, almost always
gives rise to an image within tolerance of the image ¢ such that #(a)=1,
for all i=1,2,...,n and r=0 otherwise. Such images then become
conditioned to the phrase ‘straight line’.

To test this model, let us return to the observation that elementary
properties, once learned, can be perceived without eye movement or
scanning. Does the model have sufficient structure to account for this
phenomenon? The answer is affirmative. Suppose the elementary figure
gives rise to firing of the neurons A4, ..., 4, as above. Now, because
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a, ..., a, often fire together, the connections p(a;, @;+,) become strong
through facilitation. Thus, after learning, if the single sensory neuron 4;
or any subclass of the class 4, ..., 4, is fired by a sensory input, it follows
that all the neurons 4, ..., @, are likely to fire. Hence, without waiting
for more ‘input’, we immediately ‘reach the same conclusion’ or ‘have the
same image’ ¢, as if A4y, ..., 4, all had fired. Without any scanning, we
instantaneously infer ‘straight line’.

3.4. Learning Concepts

We turn now to the problem of providing mechanisms that will account
for the learning of concepts that are the invariants of a given group of
transformations. This problem is formidable, and we do not pretend to
offer a detailed theory here. We would like to sketch at least one approach
that seems promising enough to be outlined. This approach builds on the
ideas of stimulus-response learning theories, particularly stimulus-
sampling theory. The psychological processes of stimulus sampling and
conditioning are central to the theory, but some additional aspects are
needed to account for the phenomena at hand.

Let us begin by considering a concrete problem — that of recognizing
regular polygons under rotation. A square is visually a square, no matter
what angle its base forms with the horizontal. How do we recognize it
in different positions of orientation? We may think of the stimulus elements
here as the elementary properties of squares whose bases are horizontal.
Typical properties are these: four sides (), a horizontal segment (%),
a vertical segment (v), parallel sides (p), interior angles that are right
angles (r), no curves but only segments (¢), all segments of equal length
(7), intersections only at end points of segments (¢), and so forth. We are
not trying to give an exhaustive list. We may describe the set enumerated
as {f,hv,p,r, ¢ 1 i}. It is perhaps important to point out that the
step from the firing of individual neurons or the activation of individual
receptor cells to recognition of these elementary properties is a large one
conceptually. We are assuming only that it has been made already,
hopefully along the lines suggested in Section 3.3. ,

Presented with a square whose base is horizontal, the individual can
sample all the elementary properties listed and condition them to the
concept of a square, or, to be more concrete, to the word square. He is
now asked to pick out squares from a number of plane figures presented
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

to him. For simplicity, let us assume that the individual stores an ordered
list of elementary properties, all of which are highly salient. He thus
converts the unordered set {f, 4, v,p,r, ¢ 1, i} into the ordered set
(f, b v, p, v, &1, i), Presented with a figure he then checks off the ap-
propriate presence or absence of an elementary property. Asked if a
triangle is a square, he can say ‘no’ immediately because the triangle has
property f, the negation of f.

Suppose the subject in our hypothetical experiment is now presented
with a square whose base is at a 45° angle to the horizontal. Our subject
will respond that this figure is not a square, because it has elementary
properties ~ and 7. He is corrected and told that it is a square. At this
point learning and conditioning enter. With probability ¢ he eliminates
each elementary property that has varied, i.e., that is not an invariant. To
eliminate here means, in the formal representation, to replace % or v by o,
to indicate neutrality, not to replace % by %, of course, or v by 5. Thus
with probability €, # and v are eliminated, with probability e(1—e)
only /4 is, again with probability e(l —e), only v is, and with probability
(1—e)? neither is. More realistically we would probably want to introduce
a different elimination parameter e for each elementary property with the
intention that e varies directly with the saliency of the property. Once
both %z and v are eliminated, the tilted square will be recognized as a square.

What we have just described is the approach to using positive instances
of the concept to obtain information about the concept. If figures are
presented on a randomized schedule and the subject has no choice of
what is the next figure, then little information can be obtained from negative
instances, at least little information at the elementary level. Indeed, if
only certain elementary inference mechanisms are assumed it is easy to
show that under randomized presentation schedules negative instances add
no information whatsoever. It is true that more complicated hypotheses
can be settled by inspection of negative instances, but in the present

-account we shall limit ourselves to the use of elementary steps of inference

to pass from elementary properties to concepts and so learning will
apply only to positive instances.

We now make the theoretical approach just sketched more precise and
detailed. We let the set S be the set of elementary properties or stimulus
elements. There are various ways of talking about these elementary
properties. Here we shall simply treat the properties extensionally, so
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that each elementary property s; is a finite partition of F, where Fis the set
of geometric figures whose invariance under the group G of transforma-
tions is being learned. We assume that F is closed under G, i.e., if feF
and TeG, then Tf eF, where Tf is the figure that results from applying
T to f. We also assume that the set S is finite, and enumerate its elements
in the order sy, ..., sy. Thus, the basic situation facing an organism is
described in the present theory by a triple (S, F, G). In the psychological
literature it is also common to call what we have termed properties,
dimensions, and then to talk about the values of the dimensions, correspon-
ding to the elements in the partition. For property s; we shall use the nota-
tions;; to refer to the j#h value (jth partition element) of the dimension or
property. The simplest case would be a two-element partition, e.g., §,; = at
least one line segment (in the figure), 5;, =§; = no line segment. A slightly
more complicated example would be: 5;; = exactly one segment, s5;, =
exactly two segments, s,; = more than two segments, §,, = no segment.

Following another terminology, which is increasingly used in the
literature of concept learning, we may say that a concept is then formally
represented by a template which is an N-tuple (¢,, ..., #y) such that each
t; is some s;; or the whole set F. The meaning of the last alternative is
that no restriction is placed with respect to property s; on the figures
exemplifying the concept. :

It is clear that the number of concepts that can be defined in terms of
S is large, even for an § of modest size. For example, if we restrict
ourselves to five elementary properties each of which has five values,
then the number of extensionally different concepts, given that each
value of each property is exemplified in the set F, is 5°. (The exponent is
6 rather than 5 because we include the possible value F.)

A concept C immediately defines a two-element partition of F, namely,
the partition of F into those figures that possess the property defined by
the concept and those that do not. With a slight abuse of language we
shall say that figures are elements or members of C, even though C is
an N-tuple and not a subset of F. The meaning is clear: for every fin F,
if C=(t,, ..., ty), then feC if and only if for 1<i<N, fet,.

Following standard lines, we shall say that a concept C is invariant
with respect to a group G if for every figure fin F and every transformation
T in G, feC if and only if TfeC. We shall restrict ourselves for the
following discussion to concepts invariant under a given G.
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PROBLEMS IN THE GEOMETRY OF VISUAL PERCEPTION

For the present context, assumptions about sampling or observing
elementary properties will be highly simplified by assuming that all
elementary properties are observed or sampled whenever a figure is
presented. Almost certainly this assumption will not be satisfied in actual
experiments, but the use of it here affects only slightly the central ideas.
Each figure f in F presented possesses some degree or value s;; of each
elementary property s;. Thus each figure fmay be described by an ordered
N-tuple (uy, ..., uy) where for 1<i<N, u; is always s;; for some j. This
N-tuple will be called the elementary pattern of the figure £ Again, for
the sake of conceptual simplicity, we are assuming that no perceptual
errors occur in deciding whether a figure has property s;;.

We now assume that learning a concept C involves learning the appro-
priate template T=(%;, ..., #y). This is accomplished gradually. On each
trialz, the subject has a template T, =(#; ,, ..., &y, ,) associated with the con-
cept C. Through conditioning, 7, is modified until it eventually becomes 7.

Prior to stating any specific axioms we need to define the notion of
the elementary pattern of a figure matching the template of a concept.

DermiTION: Let U=(uy, ..., uy) be the elementary pattern of figure f
in F, and let T,=(ty ,» ..., ty,n) be the template of concept C on trial n.
Then U matches T, if and only if for every 1 <i<n, u;ct; . |

Following familiar treatments of stimulus-sampling theory, we now
state axioms divided into the three categories of sampling axioms,
response axioms, and conditioning axioms. (For such a treatment of
stimulus-sampling theory see Suppes and Atkinson [17].)

Sar.pling Axiom

S1. On every trial the elementary pattern (uy, ..., ty) of the presented
figure fin F is completely sampled.

Response Axioms

R1. Until a positive instance of the concept is presented, the subject
does not have a template of the concept, and each response is made in terms
of a fixed guessing probability p.

R2. On trial n, if the subject has a template T, for C, then figure fin F
is classified as an instance of C if the elementary pattern of f matches the
template, otherwise not.
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Conditioning Axioms

Cl. On every trial, the subject has at most one template for the concept.

C2. The initial template is the elementary pattern of the first positive
instance of the concept.

C3. Let (uy, ..., uy) be the elementaty pattern of the figure f presented on
trial n.

(i) If feC, then for each i such that WSl b,yv1 becomes F on trial
n+1 with probability e, and remains t1 « With probability 1—e.

(it If feC and u;ct; ,, then t; 44 remains t; ,

(i) If f¢C, then t; ,.1=1t; , for all 1<i<N.

It is easy to prove that if the probability e of conditioning is not zero,

“then for a wide range of presentation schedules of figures, a concept C

definable in terms of elements of S and invariant under a group G will be
learned with probability 1. We hasten to add that somewhat more compli-
cated axioms are needed to give an empirically realistic account of
classification responses in the early trials of learning. The most unrealistic
aspect of the present axioms is that they predict only one kind of error
after the first positive instance of the concept appears, namely, misclassi-
fication of positive instances, with classification of negative instances
always being correct. Secondly, it is unrealistic to build a completely
specific template on the basis oi the first positive instance of the concept,
as called for in Axiom C2. A closely related, but more complicated
scheme calls for the probabilistic construction of a complete template,
in terms of noticing or sampling all the elementary properties, over a
number of trials. The modifications required also naturally lead to the
prediction of errors in classifying negative instances.

Other shortcomings of the theory formulated in the axioms just given
are not hard to find, but we shall not pursue the analysis further here.
All that we have intended is to illustrate the kind of theory that seems
promising for giving an account of learning perceptual invariants. More
detailed theoretical developments and the consideration of quantitative
empirical data we leave to another time and place.
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APPENDIX: PROOF OF LAMB’S THEOREM

We shall attempt to define the terminology, explicitly state the assumptions,
and then sketch the arguments needed for a proof of Lamb’s Theorem, thus
explicating his intuitive presentation.

1. Let us begin by assuming a fixed coordinate system in Euclidean 3-space
and letting O denote the origin. Let the eyeball (in primary position, say) be
denoted by E. As in Section 2.2 we make the following assumption:
Assumption 1: E is a rigid body centered at O.

Let T be a sphere centered at O and containing E. We describe the movement
of E by the movement of 7. We shall mean by ‘external space’ that collection
of points in our fixed 3-space which is external to T and within a fixed angular
distance of the primary point 4. We shall in general denote points of external
space by upper-case letters and points of T by lower-case letters, except that the
point O lies in both.

For each point P of external space, there is by Donders’ Law a corresponding
position T(P) of 7" Let us identify 7" with T(4) and then think of T(P) as the
image of T in our fixed 3-space which results from mapping each point 5in T
into the point 5(P) occupied by the point » when T is in the position T(). In
this way we may describe the movements of the sphere 7.

2. It is probably reasonable to assume that there is an idealized center of the
retina, say a point ceE < T. Moreover, there is a point f e E < T which is the
focal point of the visual system. To carefully explicate Lamb’s argument, we
make the following additional assumptions:

Assumption 2; If P is the point of fixation in external space, then the point
P is imaged in the point ¢ of the retina.

Assumption 3: The retinal image of a point Q lies on the line determined by
fand Q. ‘

Assumption 4. The points ¢, f and O are collinear.

Note that by Assumptions 2 and 3, the points ¢, f and P are collinear when P
is the point of fixation, Hence, Assumption 4 is equivalent to the assumption
that the point f always lies on (the extension of) the visual axis.

For convenience, we introduce the point @ € Twhich is the point of intersection
of the surface of the sphere T with the visual axis 04 in this primary position
(see Figure 5). Summarizing all of the above remarks, we have

LEMMA 1: If the point P in external space is the point of fixation, then the
points ¢, f, a, O and P are collinear. To use alternative notation, the points ¢(P),

f(P), a(P), O and P are always collinear (see Figure 6).

Remark: To determine new position T(P) from point P and primary position
T'(A), note that the new position of axis Og is completely determined: it must
coincide with the line OP. Thus, by Assumption 1, the only new degree of
freedom is a rotation about the axis OP. This will be crucial in the proof of
Lamb’s Theorem.

Lemma 2: If the point of fixation P lies on the line segment MN in external
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space, then the image on the retina of line segment MN in this situation lies in
the plane O, M, N.

SURFACEOF T

-8
=]

SURFACE OF T(P) SURFACE OF T

Fig. 6.

Proof: Since f(P), O and P are collinear by Lemma 1, f(P) lies in the plane
O, M, N, Thus, for every point R on MN, the line determined by R and f(P)
also lies in this plane. Finally, by Assumption 3, so does the image of R (see
Figure 7). Q.E.D. :

o N
p
<)
R
c{P)Y®
F M
Fig. 7.

3. Let us introduce, as in Section 2.2, a spherical surface S centered at O
and completely surrounding T. As before, each point of external space corre-
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sponds to one point of S under projection from O. A given line segment MN
in external space corresponds to a great circle arc M“N’ on the spherical surface
S (see Figure 8). The crucial result in the proof of Lamb’s theorem may now

N

SURFACE OF T

Fig. 8.

be formulated as follows: :

LemMa 3: If a straight line segment MN in external space is seen as straight,
then as the fixation point moves from M to N along MN, the eye rotates along
the corresponding great circle arc M'N’. (More precisely, if R and R’ are any
two points on MN then the position T(R') is reached from the position T(R) by a
rotation T about an axis perpendicular to plane O, M, N, and through an angle
ROR’ as shown in Figure 9).

s N

R"=¢(R)

' R

Fig. 9.

It is this lemma which Lamb sloughs over in one line and which is at the
very heart of his result.

Proof: Suppose R and R’ are two points on the line segment MN. As the

~ point of fixation moves from R to R’ along MN, Lemma 1 implies that the

axis Oa rotates in the plane O, M, N as shown in Figure 10. Let B be the point
of intersection of the surface of sphere T(R) with a line in the plane O, M, N
perpendicular to line Oa(R) (see Figure 11). Suppose B = b{R) for some point
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ir N
R'= T{R)
alR'}=T{alR))
alR)
| R
cL M

Fig. 10.

b in T. (Thus, the lines Ob and Oa are perpendicular in 7.) Using the remark
after Lemma 1, the new position T(R’) may be found from 7'(R) by describing
the angle 6 between the lines O - 7(6(R)) and Ob(R") (see Figure 12),

» N
B=b(R}
. a{R)
r R
* M
Fig. 11.

By Lemma 2, if the point of fixation is R, then the image of a portion of line
segment MN centered at R will lie in plane O, M, N = plane O, b(R), a(R) =
plane O, b, a of T. If the point of fixation is moved to R’, the image of a portion
of line segment MN centered at R’ will by Lemma 2 again lie in plane O, M, N.
But since line MN is seen as straight, it follows by definition that the image will
again hit the same elements of the retina and so lie again in plane O, b, a of T.
Thus plane O, 7(b(R)), t(a(R)) = plane 0, M, N = plane O, b(R), a(R) =
plane O, b, @ of T = plane O, b(R"), a(R") and hence the angle & must be O,
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o N
- b(R")
T(b(R) -7
' R
a(R)=r{a(R))
3 L M

Fig. 12,

Thus, the position T(R") is reached from T(R) by a rotation = along the great
circle arc corresponding to RR’. Q.E.D.

It should be noted that we have not used anywhere near the full strength of
the seen-as-straight assumption in this proof. This is why Lamb can say that
the proof is really independent of the shape of the retina.

4. The rest of the argument is simple but ingenious. Here, we follow Lamb
closely. Since a straight line in external space corresponds to a great circle arc on
S, a triangle PQR in external space corresponds to a spherical triangle P'O’R’".
By Donders’ Law, as we scan the perimeter of the triangle starting with point P
(and eyeballin position E(P) or T(P)) and eventually return to P, the eye returns
to its original position T'(P). Suppose now that each straight line in external
space is seen as straight. Then by Lemma 3, as the eye scans the perimeter of the
triangle starting with point P, the eyeball rotates in order along the great circle
arcs P'Q’, Q'R’, R'P’. But by a classical theorem of Hamilton [7], the resultant
motion of the eye is a rotation about the line OP’ through an angle equal to the
spherical excessof the triangle P'Q’ R’. Thisin generalis not the same as returning
to the original position. We conclude that not every straight line in external
space can be seen as straight. Q.E.D.

Stanford University
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1 'This is an assumption which should be studied more closely- if the kinematic re-
strictions are weakened.

2 This notion is more precisely defined below,

3 Some such assumption is necessary if we are to make any sense out of our visual
sensations. For, if the eye can fixate on the same scene in different positions, then differ-
ent retinal images resuli.

4 1t should be noted that the relation between E(P) and E((Q), which can be derived
from Listing’s Law, it not quite so simple if Q# A,

5 We are using ‘group’ in the technical algebraic sense. It might be more reasonable
to think of a small set of allowable transformations and G as the group generated by
them.

¢ Cf., for example, the discussion in Pitts & McCulloch [14].

7 This is probably a litfle too simple-minded, for size constancy is observed only out
to a reasonable distance from the observer. '
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etric 8 For example, the target may be fitted directly to the eye by means of a contact lens
ty of mounted with a tiny projector. See Pritchard [16].

9 [0, 1] is the set of all real numbers x with 0<x<1.

al of 10 For simplicity we shall in the following discussion disregard rates of firing and
identify firing with firing at (or near) full strength. If this simplification is dropped, the
964) discussion is easily modified.
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