The Cosmological Woes
of Newtonian Gravitation Theory

John D. Norton

sche Nachrichten a short article pointing out that Newton’s law of gravita-

tion could not be applied without modification to an infinite universe with a
roughly uniform matter distribution. The problem Seeliger described was exceed-
ingly simple. As we shall see in Section 1 below, it could be developed with just
a few moments thought. Thus it is no surprise that Seeliger was not the first to
notice this problem. But he was the first to lay it out with sufficient vigor that the
need for a solution of some sort could not be avoided. Over the decades to follow,
the problem lurked quietly in the corners of gravitational and cosmological theory,
with proposals for its resolution reflecting whatever were the then current trends
in physical theory.

The simplest solution—possibly that of Newton himself—was just to deny that
Seeliger’s argument was valid. This untenable ‘no-solution-needed’ solution was
in the minority of those views expressed in the historical record. The majority
felt that the problem revealed that one or other of the.commitments of Newtonian
cosmology required modification. These commitments can be collected into three
groups:

Cosmological. Space is infinite, Euclidean and filled with a (near)
uniform mass distribution.

Gravitational. All bodies attract one another according to Newton’s
inverse square law of gravitation.

Kinematical. Newton's three laws of motion.

I N NOVEMBER 1894, THE ASTRONOMER HUGO SEELIGER sent the journal Astronomi-

The earliest escapes were sought in minute adjustments of Newton’s inverse square
law of gravitational attraction. Seeliger and Neumann proposed augmenting the
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law with a tiny correction term whose effect would only become apparent at cosmic
distances. More diverse escapes were also sought. Kelvin proposed that ethereal
matter may not gravitate, allowing at least this form of matter to be spread uniformly
through space. August Foppl suggested that there may be negative gravitational
masses. Charlier, Selety and others proposed that the distribution of matter in the
universe may have a hierarchical structure that allowed a vanishing mean matter
density yet without concentrating all matter in a central island. Soon virtually
every supposition buried in the ‘cosmological’ or ‘gravitational’ groups had been
weighed and its modification proposed. Lense even explored the possibility of an
escape through an alternative geometry for space.

The problem achieved its moment of greatest glory when Einstein (1917a) thrust
itintohis first attempts at arelativistic cosmology. Agreeing with Seeliger, Einstein
saw the problem as revealing a need for adjustment of Newton'’s inviolable law
of gravitation. He used the adjustment as a foil to motivate the introduction
of a cosmological term in the gravitational field equations of general relativity.
However he also used the paradox to pose a dilemma for Newtonian cosmology:
either the universe was homogeneous and gravitationally paradoxical or its matter
was concentrated in a physically untenable island universe. Selety soon showed,
however, that this was a false dilemma. The work on hierarchical cosmologies
had already shown an escape between the horns of the dilemma.

This work in the 1920s marked the end of the first phase of the problem posed
by Seeliger; my purpose in this paper is to review the course of this first phase.’
In a sequel I will review the later phase initiated by the discovery of the expansion
of the universe and the advent of dynamical cosmologies. There it is found that
the most satisfying escape from the problem lies not in modification of either
‘cosmological’ or ‘gravitational’ assumptions of Newtonian cosmology. Rather it
lay in a modification of its kinematical core. The resolution depends on a hitherto
obscured sense of relativity of acceleration in Newtonian cosmology and finds its
fullest expression in the connection between gravitation and space-time curvature
in Newtonian space-time theory.

1. The non-convergence of gravitational force in Newtonian cosmology

In order to fix our topic, it will be helpful to give a brief and simple derivation
of the problem that exercised Seeliger. In a Newtonian universe, the gravitational
force exerted on a test body of unit mass is the resultant of the forces exerted by
all the masses of the universe, which we shall assume to be distributed uniformly
in space with mass density p. This force is computed by an integration over all
these masses. This integral fails to converge. It can take on any value according
to how we approach the limit of integration over all space.

To see this lack of convergence, picture the uniform matter density p as dis-
tributed in concentric spherical shells of very small thickness Ar all centered on

Ty gratefuily acknowledge the assistance of the many before me who have mapped out various parts
of the story in greater and lesser detail, especially Jaki (1979), Jammer (1961: 127-29), North (1965:
16-23, 180-185) Oppenheim (1920: 86-87), Sklar (1976) and Zenneck (1901: 51-53).
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Figure 1. Non-convergence of force on a test mass in Newtonian cosmology.

the unit test mass at O, as shown in Figure 1. Choose some arbitrary axis AA’
and divide all the spherical shells into hemispherical shells by passing a plane B
through O and perpendicular to AA’. Each hemispherical shell exerts a force on
the test mass in direction AA’ and its magnitude is independent of the radius r of
the shell. To see the independence from r, consider how much matter in a shell at
radius r is subtended by some small solid angle €2 at O. That amount of matter
increases with r2, but the gravitational force it exerts on the test mass decreases
with 1/r%. So, overall, this force will be independent of r. This holds for each
element in the shell, so we conclude that the net force exerted by the entire shell
is a constant, independent of its radius r. The direct calculation reveals that the
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value of the constant is Gmp Ar.? Thus the net force F on the test mass along an
arbitrarily chosen axis AA’ is given by an infinite series, each term representing
the forze due to one hemispherical shell

F=GrapAr—GrpAr +GapAr —Grp Ar +Grp Ar — ...

The series has alternating signs since shells on alternating sides exert a force
in alternating direction. This alternating series is well known not to converge.
According to how one %roups and reduces the terms in the series, the sum can have
many different values.” Each corresponds to a different way of approaching the
limit of infinitely many masses in the associated integration.

2. Seeliger’s formulations of the problem

Seeliger’s papers, especially his (1895a), contain the most detailed and general
development of the problem. The price is that his exposition is the most cumber-
some of all expositions; he alone resorts to infinite series expansions in Legendre
polynomials and includes tidal forces in the analysis. Virtually all later commen-
tators managed to reduce the exposition of the core difficulty to one or two lines
of formulae.

Seeliger initiated his discussion in his Seeliger 1895a (p. 129) by asking whether
Newton's law of gravitation holds exactly for masses separated by “immeasurably
great distances” [unermesslich grofie Entfernung]. While observational astronomy
gives the strongest reasons to believe the law within our planetary system, we
have no similar foundation in experience for the law on the larger, cosmic scale.
Nonetheless, he urged, the matter can be decided by applying the law to “simple
and obvious examples™ [einfachen und naheliegenden Beispielen] on the cosmic
scale. It turns out that “thoroughly possible and conceivable assumptions lead to
quite impossible or unthinkable conclusions” so that

2 The total mass in a ring with an angular position 6 and an angular thickness of d6 in the shell is
or df 2 r sin @ Ar. Therefore the total force exerted by the hemisphere at r is

72
2 Gp Ar / sin@ cos@df = Gmp Ar.
0

3 For example

(Grnp Ar — Grp Ar) + (Grp Ar — Grp Ar)y + (Gap Ar — Grp Ar) + ...

=0+0+0+...
=0
and
GrnpAr — (Gnp Ar — Grp Ar) — (Grp Ar — Grp Ar) — ...
=GrnpAr—-0-0—...
= Gnp Ar.
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Newton’s law, applied to the immeasurably extended universe, leads to
insuperable difficulties and irresolvable contradictions lf one regards the
matter distributed through the universe as infinitely great. (Seehger 1895a:
132)

To arrive at these difficulties, Seeliger asked after the gravitational effect of the
masses of the universe at a point O in space. To compute these effects, he laid
out a spherical coordinate system (r, 6, y) centered on O. He represented the
discontinuously distributed masses of the universe by an equivalent continuous
distribution with density p. He found the gravitational effect of the masses between
radial coordinate values r = Rgandr = R, to be

2r b4 R,

(1a) (0=—G/// BdV:—G/ / [ prsiny drdy d6,

space T 0 0 JRy
(1b) Fr=—+= / / / psinycosydrdy do,

Ro
m 30052)/ -1

1 2y =——=2G —d ———dy db,
(1¢) dx2 / / /R rs 5 dy

where ¢ is the gravitational potential at O and 4V a volume element of space.
F; is the gravitational force in the direction of the x coordinate axis, which aligns
with angular coordinate y = 0. Z,, called “strain” [Zerrung] by Seeliger, is the
tidal gravitational force acting in the x direction on neighboring masses located
on the x axis. It is defined as the difference in gravitational force acting between
two such bodies per unit distance of separation. For further details, including a
synopsis of Seeliger’s derivation, see Appendix A.

The integrals (1b) and (1¢), remain well defined as long as R, is finite. However,
Seeliger observed, if they are applied to an infinite matter filled universe, they cease
to be well defined:

If p is a finite magnitude for infinitely large regions, then, in general, F,
and Z, are completely undetermined, as long as one makes no definite
assumption on the way in which the finite values of R; become infinitely
great. Therefore both quantities can equally well become infinite or remain
finite. (Seeliger 1895a: 131)

Seeliger’s claim is that integrals of (1b) and (1c) give no definite resuits in the limit
as R} goes to infinity; they vary according to the path taken to the limit.

To make good on this claim, Seeliger applied the formulae to the case of a
universe filled with a homogeneous matter distribution of everywhere constant

4 “durchaus mogliche und vorstellbare Annahmen zu ganz unméglichen oden undenkbaren Conse-
quenzen fiihren . .. das Newton’sche Gesetz auf das unermesslich ausgedehte Universum angewandt
auf uniiberwindtliche Schwierigkeiten und unldsbare Widerspruche fithrt, wenn man die im Weltall
verstreute Materie als unendlich gro8 ansieht.”

5 “Wenn dann [p] eine endliche GroBe fiir unendlich groBe Bezirke ist, dann werden im Allgemein
[Fx)und [Z,] vollig unbestimmt, so lange man tiber die Art, wie man von endlichen Werthen R; zu den
unendlich groBen gelangt, keine bestimmte Voraussetzung macht. Beide GriBen konnen ebensogut
unendlich werden, wie endlich beliben.”



276  John Norton

density p. To approach the limit, he took the region of integration bounded by R,
to be a sphere, centered on an arbitrary point other than O, and the sphere was
then allowed to grow infinitely large, as shown in Figure 2. If r is the distance of
the point O from the center of the sphere, Seeliger reported that the force®

F, is proportional to r p, (1b)
and is directed towards the center of the sphere. The tidal force
Z, is proportional to p. (1ch

Since the location of the center of the sphere is arbitrary, the gravitational force is
also arbitrary, taking any desired value, according to where one locates the center
of the sphere.

Unit
test mass

Figure 2. Seeliger’s spheres.

6 If r is the radius vector from the center of the sphere, one quickly sees that Seeliger’s result is given
more fully by the force F = —(4/3)Gnpr (as Seeliger pointed out in effect in his later Seeliger 1896:
379). To see this, note that once Seeliger's sphere has grown so that it touches the test mass, any extra
matter added will exert no net gravitational force on the test mass. All extra matter will be added in
spherical shells and a well-known theorem of Newtonian gravitation theory tells us that such shells
exert no net force. Another familiar theorem helps us find the force exerted by the matter in the sphere
that has just grown 1o touch the test mass. That force is the same force that would be exerted if all the
matter in the sphere were concentrated at its center. That would be a mass (4/3)rr3p at a distance
r from the test mass. It exerts a force on the unit test mass of magnitude (4/3)Gnpr towards the
center of the sphere which gives the vector result F = —(4/3)Gnpor. From this result, we can also
derive an expression for the tidal force. If we imagine that the result defines a force field through
space, then the differential force on two unit test masses separated by small distance Ar is given as
AF = —(4/3)GrpAr. From this, we read off the tidal force as Z, = —(4/3)Gnp and see that the
result is the same along all axes. For a simple ‘lines of force’ development of this argument, see Norton
1993a.
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Seeliger’s analysis could well have ended there were it not for the nuisance that
the tidal force (1¢’) does not turn out to be indeterminate, in apparent contradiction
with Seeliger’s claim; its value is independent of the disposition of the spheres used
in the integration. This is probably the reason Seeliger proceeded to his second
example, a different infinite matter distribution. He considered the gravitational
and tidal forces at the apex of a double cone of very small solid angle w and
constant mass density p, as shown in Figure 3.

Solid
angle ®

Figure 3. Seeliger’s double cones.

The gravitational force due to each individual cone is infinite. Thus, he noted,
the gravitational force exerted by both cones at the apex is of the form “o0 — o0”
and is indeterminate. The tidal force due to one cone acting in the direction of the
cone’s axis follows directly from substitution into (1c) with y = 0. It is given by7

R 0
Z, =2wG —dr (1c”)
Ry, T

and becomes infinite in the limit of infinite R;. Since both cones produce the same
tidal force—an expansion along the axis of the cone—the effect of both cones is
double that of a single cone, so that the tidal force at the apex of the double cone
is infinite.

This example of the double cone completed Seeliger’s first analysis. It was
unsatisfactory in so far as Seeliger had only shown non-convergence of tidal force
in a rather contrived example of an infinite matter distribution, the infinite double
cone. He had still not shown that there was a problem with tidal forces in a universe
homogeneously filled with matter. This deficiency was remedied when Seeliger
(1896) returned to review his results. There he showed that there was a way of
approaching the limits in the integrals (1b) and (1c) for such a universe so that the
gravitational force F; vanished, but the tidal force became infinite. In concept the
method was simple. Seeliger’s double cones had yielded an infinite tidal force,

7 More directly, the volume element at distance r to r + dr from the apex contains mass p wr? dr
and it exerts a gravitational force F; = Gp w r? dr/(r — x)* on masses at coordinate position x on its
axis. The tidal force is (42 Fy /dx2)|,=0 = 2Gp wdr/r. Integration over one cone yields (1c”).
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but they did not correspond to a matter distribution filling all space. All Seeliger
needed was a shape similar to the double cone that would fill all space as it grew
to infinite size. If this shape were well chosen, the tidal force integral (1c) would
diverge along this path to the infinite limit, demonstrating that tidal forces were
also ill-behaved, converging or diverging according to the way the limit in the
integration is taken. Seeliger had no trouble in finding such a shape. It is given by

R
log —R' =am + mP,(cosy), 2)
0

where Rg and R are the limits of integration of the radial coordinate r, Py(cosy) =
(1/2)(3cos® y — 1) is the second Legendre polynomial in cos y, a is some constant
greater8 than 1/2 and m is a parameter which becomes infinite as the shape grows
to infinite size. This expression corresponds to the shape shown in Figure 4.
For convenience I will call the shape ‘Seeliger’s peanut.’ As the shape grows, it
becomes more clongated so that the tidal force at the center of the peanut grows

without limit. However the peanut also grows in width so that in the limit it fills
all of space.

‘;1
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Figure 4. Seeliger’s peanut.

The family of shapes specified in (2) is not the only one that has the property
Seeliger sought. It does have the fortunate property, however, that the integrations
of (1b) and (1c) become especially easy. The Legendre polynomial introduced
in (2) combines with that already in (Ic) to enable easy evaluation of the integral
from known integrals. The force F, is obviously zero from the symmetry of the
shapes. For some fixed m, the tidal force is given by substitution of (2) into (1c)

& The need for this restriction on the value of a becomes apparent if the expression in (2) is rewritten
asam + mPa{cosy) = m(a — 1/2 + (3/2) cos? y).
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yielding

2 4 Rl ] 8
Z, =2Gp logR—Pz(cosy)smydy dé = -Gmrpm,
0 0 0 5

where the y = 0 axis is aligned with the axis of rotational symmetry of the peanut.
It diverges in the limit of infinite m.

Seeliger (1896: 380-382) completed his discussion with a qualitatively different
type of demonstration of the problems faced by gravitation theory in a universe
containing an infinite matter distribution. The argument will reappear often enough
for it to be worth us labeling it the ‘flux argument.’ Seeliger considered some
closed surface F in space which enclosed n masses m;, m,, ..., m,. Through
an application of Green’s theorem, he arrived at the result for the gravitational
potential ¢

a
/—(pds =—4nG(m; + ...+ my,),

an
where the integration extends over the entire surface of F and n is an inward
pointing, unit, normal vector.” Seeliger then imagined the masses m, m,, ..., m,

distributed uniformly within the volume enclosed by F with constant density p.
He rewrote his result in the form

A R
M|—]=—-4nGp—, . 3
<3n> mops 3

where S is the surface area of F, R is its volume and the operator M returns
the value of d¢/dn averaged over the surface area of F. By selection of a large
surface F enclosing sufficiently many masses, the right hand side of (3) can be
made arbitrarily large. Therefore the average value of 3¢ /dn can also be made
arbitrarily large. Thus individual values of 3¢ /dn can be made arbitrarily large as
well. This already yields an undesirable result since it corresponds to arbitrarily
large field strengths. Seeliger elaborated on its undesirability:

It follows from potential theory that there must be in the universe unlimited
(infinitely) great accelerations and indeed with every conceivable mass dis-
tribution. Therefore there are motions that begin with finite speed and lead
to infinitely great speeds in finite time. This in itself already contains some-
thing absolutcl(}' inadmissible, if one does not want to call all of mechanics
into question.l (Seeliger 1896: 382; emphasis in original)

? As in Appendix Al, [ have replaced Seeliger’s potential V by the now standard —¢ (note sign
change) and restored G which Seeliger had set to one. Similarly, below, I replace Neumann's ¢ by
—p.

10 “Nach der Potentialtheorie miissen demzufolge im Universum unbegrenzt (unendlich) grofie Be-
schleunigungen vorkommen und zwar bei jeder denkbaren Massenverteilung. Das sind also Be-
wegungen, die mit endlicher Geschwindigkeit beginnend in endlicher Zeit zu undendlich groBen
Geschwindigkeiten fiihren, was an sich schon eine absolute Unzulassigkeit enthdlt, wenn man nicht
die ganze Mechanik in Frage stellen will.”” Here as elsewhere Seeliger slides rather too hastily from the
conclusion that the field strength can be set without upper bound to the conclusion that it is actually
infinite.
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3. The puzzle of Neumann’s elusive priority claim

Shortly after Seeliger had published his first note, he was answered with a cry from
Carl Neumnann that he had already seen the problem some twenty years before.
Neumann’s 1896 book is a lengthy treatise in electrical field theory, published
after Seeliger’s first communication. Its focus was the notion of electrostatic
equilibrium, such as arises for electric charges in a conductor, if the forces between
the charges are given by a Coulomb potential, which Neumann wrote as ¢(r) =
—1/r. The existence of such equilibrium was elevated (Neumann 1896: viii) to
the “principle” (Princip) or “axiom” (Axiom) at the basis of the treatise and its
project became the investigation of alternative forms for the potential function
@(r) compatible with his axiom of equilibrium. To motivate his occupation with
alternative forms of the potential, Neumann sought to cast doubt on what he called
the “Newtonian potential function (Newton 'sche Potentialfunction) ¢(r) = —1/r"
or somctimes “Newton’s Law” (Newton'sche Gesetz). In the first chapter, he
briefly reviewed objections to it, including one based in gravitation theory whose
potential also conformed to “Newton’s law.” After mentioning the possibility that
the Newton’s law may require modification in the domain of very small distances,
he proceeded:

However a modification of Newton’s law might also be called for not only
in the very small but also in the very large, at least in case one entertains the
usual representation that all of universal space is filled with stars to infinity in
roughly uniform distribution. For then the universe would be looked upon in
the relevant aspect as an infinitely great sphere of roughly constant density.
And this infinitely great homogeneous sphere, representing the universe in
all its entirety, would obviously, on the foundation of Newton’s law, strive
to draw in the individual heavenly bodies, such as fTor] ex[ample] the Sun,
Mercury, Venus, Earth, Mars, etc., towards its center. Further, the intensity
of the corresponding forces would be proportional to the displacements of
the individual heavenly bodies from that center.

Now, however, the surface of the universal sphere under discussion lies
fully in the infinite. Therefore its center has a completely undetermined
position. And so those forces, exerted by this universal sphere on the in-
dividual heavenly bodies, would be likewise completely undetermined in
their direction and strength—which obviously would be absurd."' (Neu-
mann 1896: 1-2; emphasis in original)

Neumann here has recapitulated one of the arguments that Seeliger gave for the in-

' “Aber nicht nur fiir sehr kleine, sondern auch fiir sehr groBe Entfernungen diirfte eine Modification

des Newton’schen Gesetzes geboten sein, wenigstens, fails man der gewohnlichen Vorstellung sich
hingiebt, daB der ganze Weltraum ins unendliche hin, in einigermassen gleichformiger Vertheilung,
von Sternen erfiillt sei. Denn als dann wiirde das Universum der Hauptsache nach anzusehen sein als
eine unendlich groBe Kuge! von einigermassen constanter Dichtigkeit. Und diese das Universums im
GrofBen und Ganzen reprisentierende unendlich groBe homogene Kugel wiirde offenbar, bei Zugrunde-
legung des Newton'schen Gesetzes, die einzelnen Himmelskorper, wie z.B. Sonne, Mercur, Venus,
Erde, Mars u.s.w., nach ihrem Centrum hinzuziehen bestrebt sein. Auch wiirden die Intensitdt der
betreffenden Krifte proportional sein mit den Abstinden der einzelnen Himmelskorper von jenem
Centrum.

Nun liegt aber die Oberfliche der in Rede stehenden Universalkugel iberall im Unendlichen. Folg-
lich hat ihr Centrumeine vollig unbestimmte Lage. Und es wiirden daher jene von dieser Universalkugel
auf die einzelnen Himmelskorper ausgeiibten Krifte, ihrer Richtung und Stirke nach, ebenfalls v&llig
unbestimmt sein;—was offenbar absurd wire.”
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determinacy of gravitational force in a universe filled homogeneously with matter.
In Seeliger’s hands, the result arose from using a sphere that grows to infinity to
evaluate the integral (1b), recovering (1b'). Neumann’s treatment was far briefer.
But it really did not need to be any more elaborate. Neumann was merely calling
to mind quite standard results: A test body within a homogeneous sphere is drawn
to its center by a gravitational force of magnitude proportional to the distance from
the center. Allowing the sphere to grow by adding layers to it does not alter the
result, presumably even if the sphere is allowed to grow infinitely large.

Aside from this brief application, the cosmological problems of Newton's theory
of gravitation played no role in Neumann’s 292 page tome. A footnote to the last
sentence of the passage quoted above contained mention of Seeliger’s work and
Neumann's claim of priority:

Already a long time ago these matters were remarked on by me in the
Abhandl[ungen] der K[0niglichen] Scichs[ischen] Ges[ellschaft] df er] Wis-
s{enschaften], 1874, page 97, 98. Otherwise something similar has also
been remarked on by the astronomer Seeliger (in Munich) in Astronfo-
mische] Nachrichten, 1894, Vol. 137, page 3272."% (Neumann 1896: 2n)

This priority claim produced an effusive and apologetic response from Seeliger:

Since [publication of Seeliger 1895a] it has become known to me that
Carl Neumann' had remarked already on difficulties of a similar kind
that may be represented as special cases of the arguments advanced by
me. With agreement with such an outstanding researcher and also the
circumstance that the considerations advanced by me were indeed also
expressed in another form, but in doing so without changing their essential
content, it might appear superfluous to return to this subject. On the other
hand ... " (Secliger 1896: 373)

Neumann’s priority and the citation Neumann himself gives have been routinely
repeated in historical survc:ys.15 But Seeliger need not have been so effusive. The
work Neumann cites proves rather hard to find. It is usually taken to be Neumann
1873, whose title page is dated 1873 but which appeared in a volume assembled
in 1874. The first problem is that the pages Neumann cites—pages 97-98—are
not within the pagination of Neumann 1873, which occupies pages 417-524 of

12 “Schon vor langer Zeit is von mir auf diese Dinge aufmerksam gemacht worden, in den Abhandl.
der K. Sdchs. Ges. d. Wiss., 1874, Seite 97, 98. Uebrigens ist Aehnliches neuerdings auch von dem
Astronomen Seeliger (in Miinchen) bemerkt worden, in den Astron. Nachrichten, 1894, Bd. 137, Seite
32727

13 Seeliger’s footnote at this point reads “Comp(are] (Vergl) Carl Neumann, Allgemeine Unter-
suchungen iiber das Newton’sche Princip etc. Leipzig 1896, S. 1" which is Neumann (1896: 1).

14 “Seitdem ist mir bekannt geworden, daB Carl Neumann schon friiher auf Schwierigkeiten dhlicher
Art aufmerksam gemacht hat, die sich als specielle Fille der von mir vorgebrachten Argumente
darstellen diirften. Die Zustimmung eines so herrvorragenden Forschers und auch der Umstand,
daB sich die von mir angestellten Ueberlegungen zwar auch in anderer Form aussprechen lassen, da8
hierdurch aber ihr wesentlicher Inhalt nicht sich éindert, konnte es iberflissig erscheinen lassen, auf
diesen Gegenstand zuriickzukommen. Andererseits ... ”

15 For example Zenneck’s (1901: 51) authoritative Teubner encyclopedia article allows that Neumann
had “first hinted” (hat wohl zuerst darauf hingewiesen) at an undetermination of the gravitational force
in his work of 1874. Mention of independent discovery is given also by Oppenheim (1920: 86) in his
Teubner encyclopedia article. Jammer (1961: 127) gives Neumann credit as “the first to call attention
to such difficulties [of Newton’s law of gravitation applied to the universe as a whole].”
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the relevant volume. (Pages 97-98 of the same volume are filled with the work
of another author.) The second is that it is by no means obvious where in the
paper Neumann addresses gravitational problems of cosmology. I cannot say that
the discussion is not there, buried somewhere in the paper’s lengthy and technical
discussion of electrodynamic forces. But I can say that I could not find it and that,
if it is there, it is not given any prominence whatever.

Thus Neumann's claim presents something of a puzzle. Did Neumann really lay
out the problem decisively in the 1870s? Perhaps the incorrect pagination 97-98
stems from Neumann citing his own work from a separatum. The pagination of
separata used not to match that of the journal printing. Each article in separatum
would start at page 1. Since Neumann 1873 exceeded 100 pages in length, a
separatum may well include pages 97-98. This is a kind construal, however,
especially since nothing pertaining to the gravitation problem seems to appear on
the pages of the article that would correspond to pages 97-98 of a separatum. More
plausible is that Neumann just gave an incorrect citation. In the same footnote in
which he cited his own work of 1874, he also cited Seeliger 1895a. As the reader
can see from the above quote, the citation is incorrect. Neumann gives the year
of publication as 1894. The article was signed ‘‘Miinchen 1894 November” but
appeared in Volume 137 of 1895. Similarly his citation isto page (Seite) 3272. The
correct pagination is pages 129-136. The article appears in issue number 3273—
even the issue number is off by one! This is strong evidence that Neumann’s
citations are inaccurate.

If Neumann'’s citation is incorrect, should we look elsewhere, perhaps more
widely in the 1874 volume of Abhandlungen der mathematisch-physischen Classe
der Konigl. Sdchsichen Gesellschaft der Wissenschaften cited? That volume
contains nine articles submitted and printed in the period 1871-1874. Only one is
by Neumann and is Neumann 1873. We cannot rule out the possibility of another
of Neumann'’s publications containing the work claimed. If that other work exists,
however, later reviewers and historians have given no hint of it. Zenneck (1901:
51) cites the relevant work as “Leipz. Abh. 1874”, Oppenheim (1920: 86) gives
it as “Leipzig. Ber. 26 (1874), p. 97" and Tolman (1934: 322) as “Abh. d. Kgl.
Sdchs. Ges. d. Wiss. zu Leipzig, math.-nat Kl. 26, 97 (1874)” suggesting none
looked further than Neumann’s own (1896: 1) citation (although Oppenheim and
Tolman’s “26” is a mystery). Jammer (1961: 127) cites Neumann 1873 directly.
And Seeliger (1896: 1) himself does not cite any work of Neumann from the
1870s; he merely cites Neumann (1896: 1) and we may wonder what subtlety is
masked by Seeliger’s ** ... also expressed in another form. ... ”

While I cannot resolve the issue of Neumann’s priority, we can at least be fairly
confident that he deserved far less than Seeliger conceded. At best in his work
of the 1870s he may have noticed that the relevant integral for gravitational force
fails to converge. But this is not to say that he recognized that failure to amount to
a very significant theoretical problem, one that deserved detailed and prominent
investigation in its own right and one that ought to be brought with vigor to much
wider notice. It was Seeliger who did that. Indeed the inclusion of the problem
in the introductory pages of Neumann’s later work is something of an oddity
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since that work has nothing to do with gravitation and cosmology. It reads like
an overreaching attempt to secure priority for a result that Neumann may never
quite have published—but certainly wished that he had. As it turns out, the bulk
of citation to the problem in the decades following Seeliger’s work attribute the
result to Seeliger, either explicitly or implicitly and without mention of priority in
Neumann’s work of the 1870s."

One final irony remains. While Seeliger’s development of the problem involved
some detailed calculation, its existence, as Neumann showed, can be made appar-
ent through quite simple reflection. Thus it would be surprising if Seeliger and
Neumann were the only ones to see it. We may expect that anyone who reflects
seriously on the gravitational properties of an infinite matter distribution would
run into one or other form of the problem. And we know that this happened in at
least two cases. As we shall see below, forms of the problem were hit upon by
both Richard Bentley (who put them to Newton in their famous correspondence)
and Kelvin in the context of his ether theory. For different reasons, neither saw in
the problem a serious challenge for Newton’s theory of gravitation. Presumably
many more researchers found and dismissed the result in similar ways—but they
remain unknown to us since they did not publish or, if they did, in such an obscure
way that it remains hidden to us now. The Neumann of the 1870s would surely fall
into this class were it not for his own efforts of 1896 to draw attention to his work.
What Neumann seems not have had is a sense of the importance of his result in the
1870s—or surely he would then have drawn more attention to it. It was Seeliger
who had the courage to insist on the importance of the problem. Here Seeliger
seems to be alone.’

4. Kelvin finds the flux argument

Lord Kelvin (William Thomson) also hit upon the cosmological problems of New-
tonian gravitation theory independently, it seems, of Seeliger and Neumann—or at
least he acknowledges no debt to them. Moreover we can see in the development
of his work a line of thought that would take him directly to the problem. In the fall
of 1884, Kelvin delivered twenty lectures at Johns Hopkins University on wave
theory and molecular dynamics. In the original lectures (recorded stenographically
now reproduced in Kargon and Achinstein 1987), in Lecture XVI (p. 162), Kelvin
addressed the question of whether the luminiferous ether was imponderable, that
is, has no weight.

16 Charlier (1908: 3) wrote “It is Seeliger (Astr. Nachr. No. 3273, 1895) who first drew attention
[to the cosmological difficulties of Newton's law].” (“Es ist Seeliger, der zuerst hierauf aufmerksam
gemacht hat (Astr. Nachr. No. 3273, 1895) ... ") Einstein (1954: chap. XXX) wrote of a “fun-
damental difficulty ..., which, to the best of my knowledge, was first discussed in detail by the
astronomer Seeliger”” (“eine ... prinzipielle Schwierigkeit ... , welche meines Wissens zuerst von
dem Astronomen Seeliger ausfiihrlich diskutiert wurde.”) See also Foppl 1897: 93, Arrhenius 1909:
223, Charlier 1922: 3, Selety 1922: 282, Findlay-Freundlich 1951: .

17 This is one of the outcomes of Jaki (1979) who surveyed the awareness of the problem from the
time of Newton to Seeliger. Many stood on the problem’s threshold in one form or another. None gave
it the uncompromising formulation of Seeliger.
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We are accustomed to call [the ether] imponderable. How do we know it
is imponderable? If we had never deal with air except by our senses, air
would be imponderable to us. But we can show that the weight of a column
of air is sufficient to cause a difference of pressure on the two sides of a
glass receiver. We have not the slightest reason to believe the luminiferous
aether to be imponderable; it is just as likely to be attracted to the sun as air
is. T do not like to make too many statements of thatkind. At all events, the
onus of proof rests with those who assert that it is imponderable. 1 think
we shall have to modify our ideas of what gravitation is if we have a mass
spreading through space with mutual gravitations between its parts without
being attracted by other bodies.

This image of the ether as a mass with gravitational attraction between its parts
and spreading through infinite space takes Kelvin directly to the cosmological
problem. For he need only ask how strong might these gravitational forces be to
arrive directly at the problem. At that was just the sort of question Kelvin would
ask. His ether was no mysterious medium beyond normal physical considerations.
The paragraph immediately following his pronouncement that the ether has weight
contains a computation of the pressure exerted by a column of ether of infinite
height on the surface of the sun.

Kelvin edited his Baltimore Lectures for subsequent publication. The edited
Lecture XVI appeared in Philosophical Magazine as Kelvin 1901 and then in the
final edition, Kelvin 1904. From parenthetical inserts we know that Kelvin had
completely changed his mind by 1899 on the question of whether the ether is
ponderable. One insert after the sentence “We have not the slightest reason ... "
read (1901: 166; 1904: 266)

Nov. 17, 1899. I now see that we have the strongest possible reason to
believe that the aether is imponderable.

An insert with the same date at the end of the paragraph gave Kelvin's reasoning.
Gravitational attraction between parts of the infinite ether would lead to infinitely
great pressures in the ether, so that it would collapse unless capable of infinite
resistance. His argument for these infinite pressures ran as follows:

Suppose that aether is given uniformly spread through space to infinite
distances in all directions. Any large enough spherical portion of it, if
held with its surface absolutely fixed, would by the mutual gravitation of
its parts become heterogeneous; and this tendency could certainly not be
counteracted by doing away with the supposed rigidity of its boundary and
by the attraction of aether extending to infinity outside it. The pressure
at the center of a spherical portion of homogeneous gravitational matter is
proportional to the square of the radius, and therefore, by taking the globe
large enough, may be made as large as we please, whatever be the density.
In fact, if there were mutual gravitation between its parts, homogeneous
aether extending through all space would be essentially unstable, unless
infinitely resistant against compressing or dilating forces.

Kelvin’s argument depended on a result—that the gravitationally induced pressure
at the center of a sphere of matter grew in proportion to the radius. This result in
turn depended on Kelvin's version of Seeliger’s flux argument, which Kelvin laid
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out several paragraphs later (1901: 168-169; 1904; 267-268).'®

Let V be any volume of space bounded by a closed surface, S, outside of
which and within which there are ponderable bodies; M the sum of the
masses of all these bodies within §; and p the mean density of the whole
matter in the volume V. We have

M =pV.

Let Q denote the mean value of the normal component of the gravitational
force at all points of §. We have

QS =4nM =4pV (]

by a general theorem discovered by Green seventy-three years ago regarding
force at a surface of any shape, due to matter (gravitational, or ideal electric,
or ideal magnetic) acting according to the Newtonian law of the inverse
square law of the distance. ... If the surface is wholely convex, the normal
component force must be everywhere inwards.

Let now the surface be spherical of radius r. We have

S=dnr, V=@/3nr =(1/3)rS
Hence, for a spherical surface, [(4)] gives
Q0 =/3mrp=M/r (s

This shows that the average normal component force over the surface S is
infinitely great, if p is finite and r infinitely great, which suffices to prove
[the earlier claim of infinite force on bodies in a universe filled with a
non-zero density of ponderable matter].

5. Einstein’s assault on Newtonian cosmology

The flaws of the old regime are never clearer than after it has fallen and a new
power has taken its place. These flaws become all the more incontestable when
that new power undertakes to explain just how debased was its predecessor. And
the explanation is often so oversimplified that it fails closer scrutiny. Such was the
fate of Newtonian cosmology at the hands of Einstein in 1917 when he reported
his efforts to apply general relativity, his new theory of gravitation, to cosmology.
And we shall see below how Einstein dangerously oversimplified in his expla-
nation. Where Seeliger had seen an arcane technical complication that required
a modest technical solution, Einstein saw a symptom of a deeper and fatal ail-
ment. Inintroducing Newtonian cosmology in his celebrated 1917 “Cosmological
Considerations on the General Theory of Relativity,” he observed that a uniform
matter distribution extending to spatial infinity is incompatible with Newtonian

gravitation theory as it is usually applied:

18 The result Kelvin needs is that the gravitational force per unit mass at radial position r in a sphere of
matter density p is (4/3)Grpr, Kelvin's result (5). If we now assume that this force is counterbalanced
by an isotropic pressure P(r), we derive its dependence on r as foliows. Consider a small volume of
radial thickness Ar and unit area normal to the radius. It exerts a gravitational force of (4/3)Gmpr-p Ar
onthe matter below it. Therefore the pressure P (r) diminishes according tod P (r)/dr = ~(4/3) Gp*r,
with increasing r. Integration, assuming that the pressure P drops to zero at r = R, gives the pressure
P(r) = (2/3)G7-rp2 (R? = r?). Atthe center r = 0, the pressure is (2/3)Gﬂp2 R? which exhibits the
dependence on the square of radius R invoked by Kelvin.
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It is well known that Newton’s limiting condition of the constant limit
for [gravitational potential] ¢ at spatial infinity leads to the view that the
density of matter becomes zero at infinity. For we imagine that there may
be a place in universal space round about which the gravitational field
of matter, viewed on a large scale, posesses spherical symmetry. It then
follows from Poisson's equation [V2p = 47 Gp] that, in order that ¢ may
tend to a limit at infinity, the mean density p must decrease towards zero
more rapidly that 1/r? as the distance r from the center increases.'® In this
sense, therefore, the universe accordinzﬁ to Newton is finite, although it may
possess an infinitely great total mass.” (Einstein 1917a: 177-178)

This was the same problem Seeliger had identified, as Einstein made clear in his
parallel treatment of the same issue in his popularization of relativity theory. He
wrote of a “fundamental difficulty attending classical celestial mechanics, which,
to the best of my knowledge, was first discussed in detail by the astronomer See-
liger.” He considered the possibility of a roughly uniform matter density throughout
infinite space. However:

This view is not in harmony with the theory of Newton. The latter theory
rather requires that the universe should have a kind of center in which the
density of the stars is a maximum, and that as we proceed outwards from
this center the group-density of the stars should diminish, until finally, at
great distances, it is succeeded by an infinite region of emptiness. The
stellar universe ought to be a finite island in the infinite ocean of space.
(Einstein 1917b: 105)

A footnote to the last sentence described the result Einstein had in mind:

Proof According 1o the theory of Newton, the number of ‘lines of force’
which come from infinity and terminate in a mass m is proportional to the
mass m. If, on the average, the mass density pyp is constant throughout the
universe, then a sphere of volume V will enclose the average mass pp V.
Thus the number of lines of force passing through the surface F of the
sphere into its interior is proportional to oo V. For unit area of the surface
of the sphere the number of lines of force which enters the sphere is thus
proportional to poV/F or to pyR. Hence the intensity of the field at the
surface would ultimately become infinite with increasing radius R of the

19 Einstein's footnote here reads: “p is the density of matter, calculated for a region which is large
as compared with the distance between neighboring fixed stars, but small in comparison with the
dimensions of the whole stellar system.” (“p ist die mittlere Dichte der Materie, gebildet fiir einen Raum,
der groB ist gegeniiber der Distanz benachbarter Fixtemne, aber klein gegeniiber den Abmessungen des
ganzen Sternsystems.”)

20 “Egist wohlbekannt, daB die Newtonsche Grenzbedingung des konstanten Limes fiir ¢ im rdumlich
Unendlichen zu der Auffassung hinfiihrt, da8 die Dichte der Materie im Unendlichen zu null wird. Wir
denken uns namlich, es lasse sich ein Ort im Weltraum finden, um den herum das Gravitationsfeld der
Materie, im groBen betrachtet, Kugelsymmetrie besitzt (Mittelpunkt). Dann folgt aus der Poissonschen
Gleichung, daB die mittlere Dichte p rascher als 1/r% mit wachsender Entfernung » vom Mittelpunkt
zu null herabsinken muB, damit ¢ im Unendlichen einem Limes zustrebe*. In diesem Sinne ist also
die Welt nach Newton endlich, wenn sie auch unendlich groBe GesamtmabBe besitzen kann.”

2! “hafret der klassischen Himmelsmechanik . .. eine . .. prinzipielle Schwierigkeit an, welche mei-
nes Wissens zuerst von dem Astronomen Seeliger ausfiihrlich diskutiert wurde. ... Diese Auffassung
ist mit der Newtonschen Theorie unvereinbar. Letztere verlangt vielmehr, daB die Welt eine Art Mitte
habe, in welcher die Dichte der Sterne eine maximale ist, und daB die Sterndichte von dieser Mitte
mach auBen abnehme, um weit auBen einer unendlichen Leere Platz zu machen. Die Sternwelt miisste
eine endliche Insel im unendlichen Ozean des Raumes bilden.”

MMM R
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sphere, which is impossible.22

Einstein here gives his version of Seeliger’s and Kelvin’s flux argument. Seeliger's
equation (3) and Kelvin’s (4) captures the same result as Einstein. But, where
Seeliger and Kelvin used the technical machinery of Green’s theorem, Einstein
used the equivalent but more vivid image of lines of force.

Einstein now administered the coup de grice. Newtonian theory allows an island
of stars only for our cosmology. But not even this is satisfactory. Such an island
loses radiation to infinite space. Likewise, as energy of motion is distributed
statistically among the stars of the island, some, we may suspect, will acquire
enough velocity to escape the island’s gravitational pull. Over time, would not
all the stars eventually use this mechanism of escape, so that an island universe
provides no stable system of stars? To answer, Einstein, master of statistical
physics, could simply call to mind Boltzmann’s analysis of the statistical physics
of gas molecules in a gravitational field. Its results, Einstein could see, would hold
equally for a gas of molecules or a cluster of stars. The equilibrium distribution
required a finite ratiq of densities at the gravitational center and at infinity, so
that a vanishing density at infinity entailed a vanishing density at the center. In
short, Einstein could conclude that an island universe of stars would evaporate, in
apparent contradiction with the static character he presumed (notoriously in error)
for the stars on the largest scale.

How was Einstein’s analysis oversimplified? We shall soon see that the choice
he sought to force between an evaporating island universe and an ill-behaved
infinite matter distribution was a false dilemma.

Seeliger, Neumann and Einstein posed a problem that had to be solved. In the
remaining Sections of the paper, I will review the various escapes entertained in
the decades following, prior to 1930. We shall see that, at one time or another,
virtually every facet of every assumption in the cosmological and gravitational
commitments listed above were held up for scrutiny and it was urged that the
rejection of each provided the escape from the problem.

6. The no-solution solution

The simplest of all responses to the problem was just to deny that there was a prob-
lem. Somehow the bad behavior of gravitational force in Newtonian cosmology
was an illusion that would be dispelled by closer thought. Symmetry consider-
ations, it would seem, must override all else: the only force distribution that is
compatible with the homogeneity and isotropy of the Newtonian cosmology is a
vanishing force. The problem Seeliger identified is at best a mathematical odd-
ity that deserves little attention in the world of physics. This symmetry based

n “Begriindung. Nach der Newtonschen Theorie enden in einer Masse m eine Anzahl ‘Kraftlinien,’
welche aus den Unendlichen kommen, und deren Zahl der Masse m proportional sind. Ist die Dichte pg
der Masse in der Welt im Mittel konstant, so umschlieBt eine Kugel vom Volumen V im Durchschnitt
die Masse ppV. Die Zahl der durch die Oberfliche F ins Innere der Kugel eintretenden Kraftlinien
ist also proportional pgV. Durch die Oberflicheneinheit der Kugel treten also Kraftlinien ein, deren
Zahl pyV/ F oder pg R proportional ist. Die Feldstirke an der Oberflache wiirde also mit wachsendem
Kugelradius R ins Unendliche wachsen, was unméglich ist.”
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‘no-solution solution’ appears very infrequently in published discussions. This
infrequency of publication, however, cannot be used to establish that the view
is unpopular. For if one holds to this escape, one is less likely to seek publica-
tion; infrequency of publication is compatible with both a popularity and lack of
popularity of the no-solution solution.

At worst, this no-solution solution is simply a blunder. As long as one holds
that the gravitational force on a test body is the sum of forces exerted by all
other masses, then the indeterminacy of the sum is a serious problem. It does
not evaporate just because one happens to like one of the possible values over
all others; one cannot wish the others away. At best, the no-solution solution is
an unfulfilled promise. Since symmetry considerations do dictate one particular
value for the sum, it would seem that there must be some fallacy that allows the
sum to take other values. The no-solution solution, in effect, directs one to find the
fallacy. However the solution can hardly be satisfactory without clearer indication
of where the fallacy lies.

With the infallible wisdom of hindsight, this symmetry driven solution looks
even less satisfactory. For in 1934, in the hands of Milne (1934) and Milne and
McCrea (1934), Newtonian cosmology was reborn as a cosmology that mimics
the expanding universe cosmologies of general relativity. This neo-Newtonian
cosmology is predicated on the assumption that the gravitational force field in
a homogeneous, infinite matter distribution is not homogeneous after all. Its
inhomogeneity turns out to be what gives the cosmology is interesting properties.

6.1. NEWTON STUMBLES

Isaac Newton himself is the best known proponent of the no-solution solution. In
1692, Newton entered into a correspondence with the theologian, Richard Bentley.
The latter had undertaken to inaugurate the Boyle Lectures. These would be a
series of eight lecture-sermons, defending Christian religion and refuting atheism.
Bentley wrote to Newton for assistance in determining how much comfort he might
find in Newton’s work.” Bentley's queries turned to the infinitude of the universe.
In response, Newton gave us a portrait of how he envisaged the accommodation
of an infinite distribution of masses in his system. His second letter began by
considering the gravitational collapse of matter initially scattered through a finite
portion of space. In such collapse, he agreed with Bentley, that it is enormously
unlikely to suppose that there would be one central mass so perfectly placed that it
maintained equal forces of attraction on all sides and remain at rest “a supposition
fully as hard as to make the sharpest needle stand upright on its point upon a
looking-glass.”24 Newton then turned to describe a cosmology with an infinite,
homogeneous matter distribution. Such a distribution is possible, he asserted, but
it would be (in modern language) pseudostable:

And much harder it is to suppose all the particles in an infinite space should
be so accurately poised one among another, as to stand still in perfect

23 See Koyré 1965: chap. 4; 1957: chap. 7.

24 These letters are reprinted as Bentley 1756.

The Cosmological Woes of Newtonian Gravitation Theory 289

equilibrium. For I reckon this as hard as to make, not one needle only, but
an infinite number of them (so many as there are particles in an infinite
space) stand accurately poised upon their points. Yet I grant it possible, at
least by a divine power; and if they were once to be placed, [ agree with
you that they would continue in that posture without motion for ever, unless
put into new motion by the same power. When, therefore, [ said that matter
evenly spread through all space would convene by its gravity into one or
more great masses, | understood it of matter not resting in an accurate poise.
(Bentley 1756: 208)

While denial of such a static, pseudostable cosmology would become the basis
of the neo-Newtonian cosmology of Milne and McCrea, Newton here described
the cosmology expected by everyone to arise from Newtonian theory through
to the 1920s—including Seeliger and Einstein.”* Newton then turned directly to
Bentley’s formulation of the problem Seeliger later identified.

But you argue, in the next paragraph of your letter, that every particle of
matter in an infinite space has an infinite quantity of matter on all sides, and,
by consequence, an infinite attraction every way, and therefore must rest in
equilibrio, because all infinites are equal. Yet you suspect a paralogism in
this argument; and I conceive the paralogism lies in the position, that all
infinites are equal. The generality of mankind consider infinites no other
ways than indefinitely; and in this sense they say all infinites are equal;
though they would speak more truly if they should say, they are neither equal
nor unequal, nor have any certain difference or proportion one to another.
In this sense, therefore, no conclusions can be drawn from them about the
equality, proportions, or differences of things; and they that attempt to do
it usually fall into paralogisms. So, when men argue against the infinite
divisibility of magnitude, by saying, that if an inch may be divided into an
infinite number of parts, the sum of those parts will be an inch; and if a foot
may be divided into an infinite number of parts, the sum of those parts must
be a foot; and therefore, since all infinites are equal, those sums must be
equal, that is, an inch equal to a foot.

The falseness of the conclusion shews an error in the premises; and
the error lies in the position, that all infinities are equal. (Bentley 1756:
208-209)

The difficulty Bentley imagined is instantiated by the argument for the non-
convergence of gravitational force given in Section 1 above. The shells to the
left and right of the mass at O exert an infinite force to the left and again to the

% However we have Newton’s admission later, in the fourth letter, that he had not thought much about
this cosmology:

The hypothesis of deriving the frame of the world by mechanical principles from
matter evenly spread through the heavens, being inconsistent with my system, I had
considered it very little before your letters put me upon it ... (Bentley 1756: 215)

Here he informs Bentley that he had not devoted much attention to the possibility of our planetary
system arising through gravitational collapse from a homogeneous matter distribution. In his Prin-

cipia, he had already given a slightly more robust explanation of the stability of the fixed stars than
pseudostability:

And lest the system of the fixed stars should, by their gravity, fall on each other, he

[God] hath placed those systems at immense distances from one another. (Newton
1687: 544)
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right. Presumably Bentley wished to conclude that these two forces are equal so
that the mass at O remains in equilibrium—but he was loath to do so, fearing
that the comparison of competing infinite forces cannot be made without fallacy
(“paralogism”). Newton affirmed Bentley’s worry. The “generality of mankind”
are unable to compare infinites without disastrous consequences. To make his
point, he recalled a classic paradox of measure, which, Newton urges, depends on
the incorrect assumption that all infinites are equal.

While Newton could not agree with the argument that the two infinite forces
balance, he did wish to retain the conclusion that the mass they act on remains
in equilibrium. To assure Bentley of this conclusion, he indicated that there are
consistent ways of comparing infinites:

There is, therefore, another way of considering infinites used by mathemati-
cians, and that is, under certain definite restrictions and linﬂtadoqs, whereby
infinites are determined to have certain differences or proportions to one
another. Thus Dr. Wallis considers them in his Arithmetica Infinitorum,
where, by the various proportions of infinite sums, he gathers the various
proportions of infinite magnitudes: which way of arguing is gencrall)f .al-
lowed by mathematicians, and yet would not be good were all inﬁmtlgs
equal. According to the same way of considering infinites, a mat_hcm‘au‘
cian would tell you, that though there be an infinite number of infinite little
parts in an inch, yet there is twelve times that number of such parts in a
foot; that is, the infinite number of those parts in a foot is not equal to, but
twelve times bigger than the infinite number of them in an inch. (Bentley
1756: 209)

Newton recalled the work of Wallis’ Arithmetica Infinitorum of 1655. In order
1o solve problems of quadrature, Wallis needed to sum infinite series. For example,
to find the area under a cubic, Wallis needed to employ the infinite sum 0% + 1° +
23 4+ 3% 4 .. .. While this sum is infinite, Wallis noticed that the ratio of this sum
to other infinite sums was well behaved and finite.”® Thus he found

O+17 1 1 O+ 1342343 1 1

—_ = - — —.__—_—-—-=_+

13413 4+4 3433433438 40 12
C+1P+20 1 1 C+1P+22+34+4 1 1
P+25+2 ats BrB+B+83+4 416

etc. As the number of terms grew without limit, the ratio of the two series ap-
proaches 1/4. This example illustrates Newton’s claim that infinites can be com-
pared (by mathematicians!) and were compared by Wallis and that they can come
out to be unequal. The infinite sums of the numerator and denominator prove to
have the ratio of 1 : 4—the infinite numerator is only one fourth the size of the
infinite denominator. And this is the whole result, for, in Wallis’ hands, it becomes
(in later notation) fol X dx =1/4. ‘
So far Newton's analysis of Bentley's paralogismis impeccable. He then fellinto
error. Having recalled for us that there are perfectly good methods of comparing

26 This example is given in the fragment from Wallis’ Arithmetica Infinitorum in Struik 1986: 244—
245.
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infinites by means of limits, Newton seemed not to have applied them himself to
the problem at hand. For, had he done so, he would surely have noticed that there
was no determinate way of balancing the infinites. In the example of Section 1, he
would need to find a value for the non-convergent series. Instead, apparently, he
presumed the result: the net force on a body in an infinite, homogeneous matter
distribution is zero. He then proceeded to consider how the equilibrium of the
body might be disturbed by the addition of inore masses:

And so a mathematician will tell you, that if a body stood in equilibrio
between any two equal and contrary attracting infinite forces, and if to
cither of these forces you add any new finite attractive force, that new force,
how little soever, will destroy their equilibrium, and put the body into the
same motion into which it would put it were those two contrary equal forces
but finite, or even none at all: so that in this case the two equal infinities,
by the addition of a finite to either of them, become unequal in our ways of
reckoning; and after these ways we must reckon, if from the considerations
of infinites we would always draw true conclusions. (Bentley 1756: 209)

Itis hard to understand how Newton could make such a mistake. His mathematical
and geometric powers are legendary. Perhaps Newton was so sure of his incorrect
result from the symmetry considerations that he did not deem it worthwhile the
few moment’s reflection needed to see through to a final result.?’

6.2 ... ARRHENIUS TOO

Arrhenius 1909 is a gentle survey of the problem of the infinity of the universe
with some effort to shield the reader from technicalities. In addition to extensive
discussion of Charlier’s hierarchic universe (see Section 9 below), Arrhenius di-
rectly addressed the problem for an infinite universe which had been pointed out
by Seeliger and which played a role in Charlier’s postulation of the hierarchical
universe. Arrhenius was unable to see that Seeliger had identified a real prob-

lem. He could not see any difficulty in the infinite gravitational potential Seeliger
foresaw:

Why may the potential (¢] not become infinite? The answer is: since then
the speed of a star coming in ‘from the outside’ would be infinite at the
point in question, and we observe no excessively high speeds among the
stars. . .. Butif one assumes with the ancient philosophers a roughly infinite
distribution of stars, then there is no ‘outside’ in relation to the world of stars
and there exists no danger of infinite speeds.n (Arrhenius 1909: 224-225)

He then gave a brief synopsis of Seeliger’s discussion of the indeterminacy of
gravitational force in Newtonian cosmology, including the derivation of (1b") by

27 Newton could expect no saving correction from Bentley, who, presumably, falls into the mathe-
matically ignorant “generality of mankind.” Certainly, in his Boyle Lectures, Bentley (1756: 171) was
quite happy to affirm for an infinite matter distribution that “An infinite attraction on all sides of all
matter is just equal to no attraction at all. ... "

% “Warum darf das Potential {] nicht unendlich werden? Die Antwort ist: weil dann die Geschwin-
digkeit eines ‘von AuBen’ gekommenen Sterns an dem betreffenden Punkt unendlich wiire, und wir
beobachten keine ibermiBig hohe geschindigkeiten bei den Sternen. ... Wenn man aber mit den alten
Philosophen eine ungefihr gleichmiBige Verteilung der Steme im unendlichen Raum annimt, so giebt

es kein ‘AuBen’ in Bezug auf die Stemenwelt und die Gefahr der unendlichen Geschwindigkeiten
existiert nicht.”
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means of a sphere allowed to grow infinitely large. Arrhenius then laid out a
clear statement of the ‘no-solution solution,” with its foundation in a symmetry
argument:

Accordingly, it is very much understandable that Seeliger’s argumentation
is frequently construed as conflicting with the infinity of the world. This,
however, is not true. The difficulty lies in that the attraction of a body sur-
rounded by infinitely many bodies is undetermined according to Seeliger’s
way of calculation and can take on all possible values. This, however, only
proves that one cannot carry out the calculation by this method. Also,
how can one think of an infinitely great sphere, containing the stars, as sur-
rounded by an infinitely great empty space? If a body is in an infinite space,
in which other bodies are roughly uniformly distributed, then, if one ignores
nearby bodies, its attraction is equally great in all directions, as is easy to
see for reasons of symmetry. Consequently, these attractions cancel one an-
other; and the body behaves just as if it were under the influence of nearby
bodies or collections of bodies and the distant bodies were not present at
all; therefore [it would be] exactly as if an absorption of gravitational force
took place.

So there really is no valid reason for why the world would not be sown
roughly uniformly with stars.”” (Arrhenius 1909: 226, my emphasis)

6.3 BACH'S NO-SOLUTION NON-SOLUTION

Bach’s (1918) response to the problem can be conveniently mentioned here al-
though it is not properly a no-solution solution. Bach believed that the problem
could be escaped by allowing for random non-uniformities in the cosmic matter dis-
tribution t