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PREFACE TO THE THIRD EDITION

SINCE the appearance of the first edition, ten years ago, the
study of transients has been greatly extended and the term
‘“transient’’ has become fully established in electrical literature.
As the result of the increasing importance of the subject and our
increasing knowledge, a large part of this book had practically
to be rewritten, with the addition of much new material, espe-
cially in Sections III and IV.

In Section III, the chapters on “Final Velocity of the Electric
Field” and on ‘ High-frequency Conductors’” have been re-
written and extended.

As Section V, an entirely new section has been added, com-
prising six new chapters.

The effect of the finite velocity of the electric field, that is,
the electric radiation in creating energy components of inductance
and of capacity and thereby effective series and shunt resistances
is more fully discussed. These components may assume formid-
able values at such high frequencies as are not infrequent in
transmission circuits, and thereby dominate the phenomena.
These energy components and the equations of the unequal
current distribution in the conductor are then applied to a fuller
discussion of high-frequency conduction.

In Section IV, a chapter has been added discussing the relation
of the common types of currents: direct current, alternating
current, etc., to the general equations of the electric circuit.
A discussion is also given of the interesting case of a direct current
with distributed leakage, as such gives phenomena analogous to
wave propagation, such as reflection, etc., which are usually
familiar only with alternating or oscillating currents.

A new chapter is devoted to impulse currents, as a class
of non-periodic but transient currents reciprocal to the periodic
but permanent alternating currents.

Hitherto in theoretical investigations of transients, the circuit
constants r L C and g have been assumed as constant. This,
however, disagrees with experience at very high frequencies
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viii PREFACE

or steep wave fronts, thereby limiting the usefulness of the
theoretical investigation, and makes the calculation of many im-
portant phenomena, such as the determination of the danger
zone of steep wave fronts, the conditions of circuit design limit-
ing the danger zone, etc., impossible. The study of these
phenomena has been undertaken and four additional chapters
devoted to the change of circuit constants with the frequency,
the increase of attenuation constant resulting therefrom, and
the degeneration, that is rounding off of complex waves, the
flattening of wave fronts with the time and distance of travel,
etc., added.

The method of symbolic representation has been changed from
the time diagram to the crank diagram, in accordance with the
international convention, and in conformity with the other
books; numerous errors of the previous edition corrected, etc.

CHARLES P. STEINMETZ.
Jan., 1920.




PREFACE TO THE FIRST EDITION

THE following work owes its origin to a course of instruction
given during the last few years to the senior class in electrical
engineering at Union University and represents the work of a
number of years. It comprises the investigation of phenomena
which heretofore have rarely been dealt with in text-books but
have now become of such importance that a knowledge of them
is essential for every electrical engineer, as they include some of
the most important problems which electrical engineering will
have to solve in the near future to maintain its thus far unbroken
progress.

A few of these transient phenomena were observed and experi-
mentally investigated in the early days of electrical engineering,
for instance, the building up of the voltage of direct-current
generators from the remanent magnetism. Others, such as the
investigation of the rapidity of the response of a compound
generator or a booster to a change of load, have become of impor-
tance with the stricter requirements now made on electric systems.
Transient phenomena which were of such short duration and
small magnitude as to be negligible with the small apparatus of
former days have become of serious importance in the huge
generators and high power systems of to-day, as the discharge of
generator fields, the starting currents of transformers, the short-
circuit currents of alternators, etc. Especially is this the case
with two classes of phenomena closely related to each other: the
phenomena of distributed capacity and those of high frequency
currents. Formerly high frequency currents were only a subject
for brilliant lecture experiments; now, however, in the wireless
telegraphy they have found an important industrial use. Teleph-
ony has advanced from the art of designing elaborate switch-
boards to an engineering science, due to the work of M. L. Pupin
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and others, dealing with the fairly high frequency of sound
waves. Especially lightning and all the kindred high voltage
and high frequency phenomena in electric systems have become
of great and still rapidly increasing importance, due to the
great increase in extent and in power of the modern electric
systems, to the interdependence of all the electric power users in
a large territory, and to the destructive capabilities resulting
from such disturbances. Where hundreds of miles of high and
medium potential circuits, overhead lines and underground
cables, are interconnected, the phenomena of distributed capacity,
the effects of charging currents of lines and cables, have become
such as to require careful study. Thus phenomena which once
were of scientific interest only, as the unequal current distribu-
tion in conductors carrying alternating currents, the finite velocity
of propagation of the electric field, etc., now require careful study
by the electrical engineer, who meets them in the rail return of
the single-phase railway, in the effective impedance interposed
to the lightning discharge on which the safety of the entire
system depends, etc.

The characteristic of all these phenomena is that they are
transient functions of the independent variable, time or distance,
that is,decrease with increasing value of the independent variable,
gradually or in an oscillatory manner, to zero at infinity, while
the functions representing the steady flow of electric energy are
constants or periodic functions.

While thus the phenomena of alternating currents are repre-
sented by the periodic function, the sine wave and its higher
harmonics or overtones, most of the transient phenomena lead
to a function which is the product of exponential and trigono-
metric terms, and may be called an oscillating function, and its
overtones or higher harmonics.

A second variable, distance, also enters into many of these
phenomena; and while the theory of alternating-current appara-
tus and phenomena usually has to deal only with functions of
one independent variable, time, which variable is eliminated by
the introduction of the complex quantity, in this volume we
have frequently to deal with functions of time and of distance.
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We thus have to consider alternating functions and transient
functions of time and of distance.

The theory of alternating functions of time is given in “Theory
and Calculation of Alternating Current Phenomena.” Transient
functions of time are studied in the first section of the present
work, and in the second section are given periodic transient
phenomena, which have become of industrial importance, for
instance, in rectifiers, for circuit control, etc. The third section
gives the theory of phenomena which are alternating in time and
transient in distance, and the fourth and last section gives
phenomena transient in time and in distance.

To some extent this volume can thus be considered as a con-
tinuation of “Theory and Calculation of Alternating Current
Phenomena.”

In editing this work, I have been greatly assisted by Prof. O.
Ferguson, of Union University, who has carefully revised the
manuscript, the equations and the numerical examples and
checked the proofs, so that it is hoped that the errors in the
work are reduced to a minimum. ,

Great credit is due to the publishers and their technical staff
for their valuable assistance in editing the manuscript and for
the representative form of the publication they have produced.

CHARLES P. STEINMETZ.
ScHENECTADY, December, 1908.



. PREFACE TO THE SECOND EDITION

DuE to the relatively short time which has elapsed since
the appearance of the first edition, no material changes or
additions were needed in the preparation of the second edition.
The work has been carefully perused and typographical and
other errors, which had passed into the first edition, were
eliminated. In this, thanks are due to those readers who
have drawn my attention to errors.

Since the appearance of the first edition, the industrial
importance of transients has materially increased, and con-
siderable attention has thus been devoted to them by engineers.
The term ‘“transient” has thereby found an introduction, as
noun, into the technical language, instead of the more cumber-
some expression “transient phenomenon,” and the former term
is therefore used to some extent in the revised edition.

As appendix have been added tables of the velocity functions
of the electric field, sil z and col z, and similar functions,
together with explanation of their mathematical relations, as
tables of these functions are necessary in calculations of wave
propagation, but are otherwise difficult to get. These tables
were derived from tables of related functions published by
J. W. L. Glaisher, Philosophical Transactions of the Royal
Society of London, 1870, Vol. 160.
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TRANSIENTS IN TIME

CHAPTER L

THE CONSTANTS OF THE ELECTRIC CIRCUIT,

1. To transmit electric energy from one place where it is
generated to another place where it is used, an electric cir-
cuit is required, consisting of conductors which connect the
point of generation with the point of utilization.

When electric energy flows through a circuit, phenomena
take place inside of the conductor as well as in the space out-
side of the conductor.

In the conductor, during the flow of electric energy through
the circuit, electric energy is consumed continuously by being
converted into heat. Along the circuit, from the generator
to the receiver circuit, the flow of energy steadily decreases
by the amount consumed in the conductor, and a power gradi-
ent exists in the circuit along or parallel with the conductor.’

(Thus, while the voltage may decrease from generator to
receiver circuit, as is usually the case, or may increase, as in
an alternating-current circuit with leading current, and while
the current may remain constant throughout the circuit, or
decrease, as in a transmission line of considerable capacity
with a leading or non-inductive receiver circuit, the flow of
energy always decreases from generating to receiving circuit,
and the power gradient therefore is characteristic of the direc-
tion of the flow of energy.)

In the space outside of the conductor, during the flow of
energy through the circuit, a condition of stress exists which
is called the electric field of the conductor. That is, the
surrounding space is not uniform, but has different electric
and magnetic properties in different directions.

No power is required to maintain the electric field, but energy

3



4 TRANSIENT PHENOMENA

is required to produce the electric field, and this energy is
returned, more or less completely, when the electric field dis-
appears by the stoppage of the flow of energy.

Thus, in starting the flow of electric energy, before a perma-
nent condition is reached, a finite time must elapse during
which the energy of the electric field is stored, and the generator
therefore gives more power than consumed in the conductor
and delivered at the receiving end; again, the flow of electric
energy cannot be stopped instantly, but first the energy stored
in the electric field has to be expended. As result hereof,
where the flow of electric energy pulsates, as in an alternating-
current circuit, continuously electric energy is stored in the
field during a rise of the power, and returned to the circuit
again during a decrease of the power.

The electric field of the conductor exerts magnetic and elec-
trostatic actions.

The magnetic action is & maximum in the direction concen-
tric, or approximately so, to the conductor. That is, a needle-
shaped magnetizable body, as an iron needle, tends to set itself
in a direction concentric to the conductor.

The electrostatic action has a maximum in a dlrectlon radial,
or approximately so, to the conductor. That is, a light needle-
shaped conducting body, if the electrostatic component of the
field is powerful enough, tends to set itself in a direction radial
to the conductor, and light bodies are attracted or repelled
radially to the conductor.

Thus, the electric field of a circuit over which energy flows
has three main axes which are at right angles with each other:

The electromagnetic axis, concentric with the conductor.

The electrostatic axis, radial to the conductor.

The power gradient, parallel to the conductor.

This is frequently expressed pictorially by saying that the
lines of magnetic force of the circuit are concentric, the lines
of electrostatic force radial to the conductor.

Where, as is usually the case, the electric circuit consists of
several conductors, the electric fields of the conductors super-
impose upon each other, and the resultant lines of magnetic
and of electrostatic forces are not concentric and radial respec-
tively, except approximately in the immediate neighborhood
of the conductor.
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In the electric field between parallel conductors the magnetic
and the electrostatic lines of force are conjugate pencils of circles.

2. Neither the power consumption in the conductor, nor
the electromagnetic field, nor the electrostatic field, are pro-
portional to the flow of energy through the circuit.

The product, however, of the intensity of the magnetic field,
®, and the intensity of the electrostatic field, ¥, is proportional
to the flow of energy or the power, P, and the power P is there-
fore resolved into a product of two components, 7 and e, which
are chosen proportional respectively to the intensity of the
magnetic field ® and of the electrostatic field .

That is, putting

P =1 1)

we have
® = Li = the intensity of the electromagnetic field. 2)
V¥ = Ce = the intensity of the electrostatic field. 3)

The component %, called the current, is defined as that factor
of the electric power P which is proportional to the magnetic
field, and the other component e, called the voltage, is defined
as that factor of the electric power P which is proportional to
the electrostatic field.

Current ¢ and voltage e, therefore, are mathematical fictions,
factors of the power P, introduced to represent respectively the
magnetic and the electrostatic or “ dielectric ” phenomena.

The current < is measured by the magnetic action of a circuit,
as in the ammeter; the voltage e, by the electrostatic action of
a circuit, as in the electrostatic voltmeter, or by producing a
current ¢ by the voltage e and measuring this current ¢ by its
magnetic action, in the usual voltmeter.

The coefficients L and C, which are the proportionality factors
of the magnetic and of the dielectric component of the electric
field, are called the inductance and the capacity of the circuit,
respectively.

As electric power P is resolved into the product of current ¢
and voltage e, the power loss in the conductor, P,, therefore can
also be resolved into a product of current ¢ and voltage ¢
which is consumed in the conductor. That is,

P‘ =18
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It is found that the voltage consumed in the conductor, e;, is

“proportional to the factor ¢ of the power P, that is,

& =n, (4)
where r is the proportionality factor of the voltage consumed by
the loss of power in the conductor, or by the power gradient,
and is called the resistance of the circuit.

Any electric circuit therefore must have three constants, r, L,
and C, where '

r = circuit constant representing the power gradient, or the loss
of power in the conductor, called resistance.

L = circuit constant representing the intensity of the electro-
magnetic component of the electric field of the circuit,
called tnductance.

C = circuit constant representing the intensity of the electro-
static component of the electric field of the circuit, called
capacity.

In most circuits, there is no current consumed in the conductor,
5, and proportional to the voltage factor e of the power P, that is:
i = ge
where g i8 the proportionality factor of the current consumed
by the loss of power in the conductor, which depends on the volt-
age, such as dielectric losses, etc. Where such exist, a fourth
circuit constant appears, the conductance g, regarding which see

sections III and IV.

3. A change of the magnetic field of the conductor, that is,
¥ the number of lines of magnetic force ® surrounding the con-

ductor, generates an e.m.f.

dd
/ -_— —
¢ =" ()
in the conductor and thus absorbs a power
P =i = i% (6)
or, by equation (2): & = L7 by definition, thus:
d _di op i
a —Ldt, and: P -—L’tdtr )

and the total energy absorbed by the magnetic field during the
rise of current from zero to 7 is

Wy = fP’dt 8)

= L | idi,
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that is,
_ 2L
Wy = 5 9

A change of the dielectric field of the conductor, ¥, absorbs
a current proportional to the change of the dielectric field:

v=2, (10)
and absorbs the power )
P =il =, (1)
or, by equation (3),
P = ce%, (12)

and the total energy absorbed by the dielectric field during a
rise of voltage from 0 to e is

Wg = fP”dt (13)
[
that is
Wk = g;g- (14)
The power consumed in the conductor by its resistance r is
P, = i¢, (15)
and thus, by equation (4),
P, = i, (16)
That is, when the electric power
P=e (1)

exists in a circuit, it is
P, = i% = power lost in the conductor, (16)
" .
W= 1—2!'— = energy stored in the magnetic field of the circuit, (9)
2

Wk = —5 = energy stored in the dielectric field of the cir-

cuit, (14)
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and the three circuit constants r, L, C' therefore appear as the
components of the energy conversion into heat, magnetism, and
electric stress, respectively, in the circuit.

4. The circuit constant, resistance r, depends only on the
size and material of the conductor but not on the position of
the conductor in space, nor on the material filling the space
surrounding the conductor, nor on the shape of the conductor
section.

The circuit constants, inductance L and capacity C, almost
entirely depend on the position of the conductor in space, on
the material filling the space surrounding the conductor, and
on the shape of the conductor section, but do not depend on
the material of the conductor, except to that small extent as
represented by the electric field inside of the conductor section.

6. The resistance r is proportional to the length and inversely
proportional to the section of the conductor,

l
r=pg an

where p is a constant of the material, called the resistivity or
specific resistance.

For different materials, p varies probably over a far greater
range than almost any other physical quantity. Given in ohms
per centimeter cube* it is, approximately, at ordinary tem-
peratures:

Metals: Cu...coovviviiinninnann 1.6 x 10~*
Al .o 2.8x 10"
Fe...oooooo i 10 x 10~
Hg.....ooo i 94 X 10—*
Gray castiron.............. up to 100 X 10~*
High-resistance alloys. . .. ... up to 150 X 10~*
Electrolytes: NOH.............down to 1.3 at 30 per cent
KOH............. down to 1.9 at 25 per cent
NaCl..............down to 4.7 at 25 per cent

up to
Pureriverwater . ....................... 10¢

and over alcohols, oils, etc., to practically infinity.

* Meaning a conductor of one centimeter length and one square centimeter
section.
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So-called ““2nsulators”:

Fiber..... ... ... ... . about 10%
Paraffinoil.................. .. .ol about 10®
Paraffin..............., i about 10" to 10
Mica. ... i about 10"
Glass. . ...t e about 10" to 10°
Rubber............... ... ... il about 10'°
Air. ..o practically o

In the wide gap between the highest resistivity of metal
alloys, about p = 150 X 107, and the lowest resistivity of
electrolytes, about p = 1, are

Carbon: metallic. ............... down to 100 x 10~°
amorphous (dense).......... 0.04 and higher
anthracite........................ very high

Silicon and Silicon Alloys:

Castsilicon.............covvvnne..n. 1down to 0.04

Ferrosilicon................ 0.04 down to 50 x 10™*

The resistivity of arcs and of Getssler tube discharges is of about
the same magnitude as electrolytic resistivity.

The resistivity, p, is usually a function of the temperature,
rising slightly with increase of temperature in metallic conduct-
ors and decreasing in electrolytic conductors. Only with few
materials, as silicon, the temperature variation of p is so enor-
mous that p can no longer be considered as even approximately
constant for all currents 7 which give a considerable tempera-
ture rise in the conductor. Such materials are commonly
called pyroelectrolytes.

6. The inductance L is proportional to the section and
inversely proportional to the length of the magnetic circuit
surrounding the conductor, and so can be represented by

= 'u—lA—, (18)
where p is a constant of the material filling the space surround-
ing the conductor, which is called the magnetic permeability.

As in general neither section nor length is constant in differ-
ent parts of the magnetic circuit surrounding an electric con-

* See ‘‘ Theory and Calculation of Electric Circuits.”
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ductor, the magnetic circuit has as a rule to be calculated
piecemeal, or by integration over the space occupied by it.

The permeability, g, is constant and equals unity or very
closely u = 1 for all substances, with the exception of a few
materials which are called the magnetic materials, as iron,
cobalt, nickel, etc., in which it is very much higher, reaching
sometimes and under certain conditions in iron values as high
as u = 6000 and even as high as u = 30,000.

In these magnetic materials the permeability x is not con-
stant but varies with the magnetic flux density, or number of
lines of magnetic force per unit section, ®, decreasing rapidly
for high values of ®.

In such materials the use of the term g is therefore incon-
venient, and the inductance, L, is calculated by the relation
between the magnetizing force as given in ampere-turns per
unit length of magnetic circuit, or by “field intensity,” and
magnetic induction ®.

The magnetic induction ® in magnetic materials is the sum
of the “space induction” 3¢, corresponding to unit permeability,
plus the “metallic induction” ®’, which latter reaches a finite
limiting value. That is,

® =3 + ®. (19)
The limiting values, or so-called “saturation values,” of ®’

are approximately, in lines of magnetic force per square centi-
meter:

Iron....... ... 21,000
Cobalt......... ..o 12,000
Nickel.......ooo i 6,000
Magnetite. ... 5,000
Manganese alloys . .................... .up to 5,000

The inductance, L, therefore is a constant of the circuit if
the space surrounding the conductor contains no magnetic
material, and is more or less variable with the current, ¢, if
magnetic material exists in the space surrounding the conductor.
In the latter case, with increasing current, 7, the inductance, L,
first slightly increases, reaches a maximum, and then decreases,
approaching as limiting value the value which it would have in
the absence of the magnetic material.
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7. The capacity, C, is proportional to the section and inversely
proportional to the length of the electrostatic field of the con-
ductor:

«A
=

l

where « is a constant of the material filling the space surround-
ing the conductor, which is called the “dielectric constant,” or
the “specific capacity,” or * permittivity.”

Usually the section and the length of the different parts of
the electrostatic circuit are different, and the capacity therefore
has to be calculated piecemeal, or by integration.

The dielectric constant « of different materials varies over a
relative narrow range only. It is approximately:

(20)

« = 1in the vacuum, in air and in other gases,
x = 2 to 3 in oils, paraffins, fiber, etc.,

x = 3 to 4 in rubber and gutta-percha,

x = 3 to 5 in glass, mica, etc.,

reaching values as high as 7 to 8 in organic compounds of heavy
metals, as lead stearate, and about 12 in sulphur.
The dielectric constant, , is practically constant for all voltages
e, up to that voltage at which the electrostatic field intensity,
or the electrostatic gradient, that is, the “volts per centimeter,”
exceeds a certain value 8, which depends upon the material and
which is called the “dielectric strength”’ or “disruptive strength”
of the material. At this potential gradient the medium breaks
down mechanically, by puncture, and ceases to insulate, but
electricity passes and so equalizes the potential gradient.
The disruptive strength, d, given in volts per centimeter is
approximately:
Air: 30,000.
Oils: 250,000 to 1,000,000.
Mica: up to 4,000,000.

The capacity, C, of a circuit therefore is constant up to the
voltage e, at which at some place of the electrostatic field the
dielectric strength is exceeded, disruption takes place, and a
part of the surrounding space therefore is made conducting, and
by this increase of the effective size of the conductor the capacity
C is increased.
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8. Of the amount of energy consumed in creating the electric
field of the circuit not all is returned at the disappearance of
the electric field, but a part is consumed by conversion into heat
in producing or in any other way changing the electric field.
That is, the conversion of electric energy into and from the
electromagnetic and electrostatic stress is not complete, but a
loss of energy occurs, especially with the magnetic field in the
so-called magnetic materials, and with the electrostatic field in
unhomogeneous dielectrics.

The energy loss in the production and reconversion of the
magnetic component of the field can be represented by an
effective resistance  which adds itself to the resistance r, of
the conductor and more or less increases it.

The energy loss in the electrostatic field can be represented
by an effective resistance 7, shunting across the circuit, and
consuming an energy current 7"/, in addition to the current ¢ in
the conductor. Usually, instead of an effective resistance r”,
its reciprocal is used, that is, the energy loss in the electro-
static field represented by a shunted conductance g.

In its most general form the electric circuit therefore contains
the constants:

2

1. Inductance L, storing the energy, 1'—22,

2. Capacity C, storing the energy, %C—,

3. Resistance r = r, + 1/, consuming the power, *r = ?r + 77,
4. Conductance g, consuming the power, é’g,

where 7, is the resistance of the conductor, 7 the effective resist-
ance representing the power loss in the magnetic field L, and ¢
represents the power loss in the electrostatic field C.

9. If of the three components of the electric field, the electro-
magnetic stress, electrostatic stress, and the power gradient, one
equals zero, a second one must equal zero also. That is, either
all of the three components exist or only one exists.

Electric systems in which the magnetic component of the
field is absent, while the electrostatic component may be consider-
able, are represented for instance by an electric generator or
a battery on open circuit, or by the electrostatic machine. In
such systems the disruptive effects due to high voltage, there-
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fore, are most pronounced, while the power is negligible, and
phenomena of this character are usually called “static.”

Electric systems in which the electrostatic component of the
field is absent, while the electromagnetic component is consider-
able, are represented for instance by the short-circuited secondary
coil of a transformer, in which no potential difference and, there-
fore, no electrostatic field exists, since the generated e.m.f. is
consumed at the place of generation. Practically negligible also
is the electrostatic component in all low-voltage circuits.

The effect of the resistance on the flow of electric energy in
industrial applications is restricted to fairly narrow limits: as
the resistance of the circuit consumes power and thus lowers the
efficiency of the electric transmission, it is uneconomical to
permit too high a resistance. As lower resistance requires a
larger expenditure of conductor material, it is usually uneco-
nomical to lower the resistance of the circuit below that which
gives a reasonable efficiency.

As result hereof, practically always the relative resistance,
that is, the ratio of the power lost in the resistance to the tota.l
power, lies between 2 per cent and 20 per cent.

It is different with the inductance L and the capacity C. Of

23

the two forms of stored energy, the magnetic %I—' and electro-

static 62—20— » usually one is so small that it can be neglected com-
pared with the other, and the electric circuit with sufficient
approximation treated as containing resistance and inductance,
or resistance and capacity only.

In the so-called electrostatic machine and its applications,
frequently only capacity and resistance come into consideration.

In all lighting and power distribution circuits, direct current
or alternating current, as the 110- and 220-volt lighting circuits,
the 500-volt railway circuits, the 2000-volt primary distribution
circuits, due to the relatively low voltage, the electrostatic

energy ‘%' is still so very small compared with the electro-

magnetic energy, that the capacity C can for most purposes be
neglected and the circuit treated as containing resistance and
inductance only.
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of appronmately equal magnitude is the electromagnetic
energy —- vL and the electrostatic energy e’;] in the high-potential

long-dlsta.nce transmission circuit, in the telephone circuit, and
in the condenser discharge, and so in most of the phenomena
resulting from lightning or other disturbances. In these cases
all three circuit constants, r, L, and C, are of essential impor-
tance.

10. In an electric circuit of negligible inductance L and
negligible capacity C, no energy is stored, and a change in the
circuit thus can be brought about instantly without any disturb-
ance or intermediary transient condition.

In a circuit containing only resistance and capacity, as a
static machine, or only resistance and inductance, as a low or
medium voltage power circuit, electric energy is stored essentially
in one form only, and a change of the circuit, as an opening of
the circuit, thus cannot be brought about instantly, but occurs
more or less gradually, as the energy first has to be stored or
discharged.

In a circuit containing resistance, inductance, and capacity,
and therefore capable of storing energy in two different forms,
the mechanical change of circuit conditions, as the opening of a
circuit, can be brought about instantly, the internal energy of
the circuit adjusting itself to the changed circuit conditions by
a transfer of energy between static and magnetic and inversely,
that is, after the circuit conditions have been changed, a transient
phenomenon, usually of oscillatory nature, occurs in the circuit
by the readjustment of the stored energy.

These transient phenomena of the readjustment of stored
electric energy with a change of circuit conditions require careful
study wherever the amount of stored energy is sufficiently large
to cause serious damage. This is analogous to the phenomena
of the readjustment of the stored energy of mechanical motion:
while it may be harmless to instantly stop a slowly moving light
carriage, the instant stoppage, as by collision, of a fast railway
train leads to the usual disastrous result. So also, in electric
systems of small stored energy, a sudden change of circuit con-
ditions may be safe, while in a high-potential power system of
very great stored electric energy any change of circuit conditions
requiring a sudden change of energy is liable to be destructive.
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Where electric energy is stored in one form only, usually little
danger exists, since the circuit protects itself against sudden
change by the energy adjustment retarding the change, and
only where energy is stored electrostatically and magnetically,
the mechanical change of the circuit conditions, as the opening
of the circuit, can be brought about instantly, and the stored
energy then surges between electrostatic and magnetic energy.

In the following, first the phenomena will be considered which
result from the stored energy and its readjustment in circuits
storing energy in one form only, which usually is as electro-
magnetic energy, and then the general problem of a circuit
storing energy electromagnetically and electrostatically will be
considered.



CHAPTER II.

INTRODUCTION.

11. In the investigation of electrical phenomena, currents
and potential differences, whether continuous or alternating,
are usually treated as stationary phenomena. That is, the
assumption is made that after establishing the circuit a sufficient
time has elapsed for the currents and potential differences to
reach their final or permanent values, that is, become constant,
with continuous current, or constant periodic functions of time,
with alternating current. In the first moment, however, after
establishing the circuit, the currents and potential differences
in the circuit have not yet reached their permanent values,
that is, the electrical conditions of the circuit are not yet the
normal or permanent ones, but a certain time elapses while the
electrical conditions adjust themselves.

12. For instance, a continuous e.m.f., e, impressed upon a
circuit of resistance r, produces and maintains in the circuit a
current,

. g

Ty = —-
In the moment of closing the circuit of e.m.f. e, on resistance r,
the current in the circuit is zero. Hence, after closing the circuit
the current ¢ has to rise from zero to its final value 72,. If the
circuit contained only resistance but no inductance, this would
take place instantly, that is, there would be no transition period.
Every circuit, however, contains some inductance. The induc-
tance L of the circuit means L interlinkages of the circuit with
lines of magnetic force produced by unit current in the circuit,
or iL interlinkages by current ©. That is, in establishing current
1, in the circuit, the magnetic flux 7,L must be produced. A
change of the magnetic flux ¢L surrounding a circuit generates
in the circuit an e.m.f.,

d .
€= (iL).
16
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This opposes the impressed e.m.f. e, and therefore lowers the
e.m.f. available to produce the current, and thereby the current,
which then cannot instantly assume its final value, but rises
thereto gradually, and so between the starting of the circuit
and the establishment of permanent condition a transition
period appears. In the same manner and for the same reasons,
if the impressed e.m.f. ¢, is withdrawn, but the circuit left closed,
the current ¢ does not instantly disappear but gradually dies
out, as shown in Fig. 1, which gives the rise and the decay of a

W o 18
A 16 \ €ol=340 yolts
7 o I AV R o
3112
/ Al
bl \
: X
/ ) N
2 ~
D 2 4 [ 0 2 ] 4
Beconds

Fig. 1. Rise and decay of continuous current in an inductive circuit.

continuous current in an inductive circuit: the exciting current
of an alternator field, or a circuit having the constants r = 12
ohms; L = 6 henrys, and e, = 240 volts; the abscissas being
seconds of time.

13. If an electrostatic condenser of capacity C is connected
to a continuous e.m.f. e, no current exists, in stationary con-
dition, in this direct-current circuit (except that a very small
current may leak through the insulation or the dielectric of the
condenser), but the condenser is charged to the potential dif-
ference e,, or contains the electrostatic charge

Q = Ce,.

In the moment of closing the circuit of e.m.f. e, upon the
capacity C, the condenser contains no charge, that is, zero
potential difference exists at the condenser terminals. If there
were no resistance and no inductance in the circuit in the
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moment of closing the circuit, an infinite current would exist
charging the condenser instantly to the potential difference e,.
If r is the resistance of the direct-current circuit containing the
condenser, and this circuit contains no inductance, the current

starts at the value ¢ = %', that is, in the first moment after

closing the circuit all the impressed e.m.f. is consumed by the
current in the resistance, since no charge and therefore no
potential difference exists at the condenser. With increasing
charge of the condenser, and therefore increasing potential
difference at the condenser terminals, less and less em.f. is
available for the resistance, and the current decreases, and
ultimately becomes zero, when the condenser is fully charged.

If the circuit also contains inductance L, then the current
cannot rise instantly but only gradually: in the moment after
closing the circuit the potential difference at the condenser is
still zero, and rises at such a rate that the increase of magnetic
flux <L in the inductance produces an e.m.f. Ldi/df, which
consumes the impressed e.m.f. Gradually the potential differ-
ence at the condenser increases with its increasing charge, and
the current and thereby the e.m.f. consumed by the resistance
increases, and so less e.m.f. being available for consumption by
the inductance, the current increases more slowly, until ulti-
mately it ceases to rise, has reached a maximum, the inductance
consumes no e.m.f., but all the impressed e.m.f. is consumed by
the current in the resistance and by the potential difference at
the condenser. The potential difference at the condenser con-
tinues to rise with its increasing charge; hence less e.m.f. is
available for the resistance, that is, the current decreases again,
and ultimately becomes zero, when the condenser is fully
charged. During the decrease of current the decreasing mag-
netic flux <L in the inductance produces an e.m.f., which assists
the impressed e.m.f., and so retards somewhat the decrease of
current.

Fig. 2 shows the charging current of a condenser through an
inductive circuit, as ¢, and the potential difference at the con-
denser terminals, as e, with a continuous impressed e.m.f. e,
for the circuit constants r = 250 ohms; L = 100 mh.; C =
10 mf., and e, = 1000 volts.

If the resistance is very small, the current immediately after
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closing the circuit rises very rapidly, quickly charges the con-
denser, but at the moment where the condenser is fully charged
to the impressed e.m.f. e, current still exists. This current
cannot instantly stop, since the decrease of current and there-
with the decrease of its magnetic flux 7L generates an e.m.f.,
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Fig. 2. Charging a condenser through a circuit having resistance and
inductance. Constant potential. Logarithmic charge: high resistance.

which maintains the current, or retards its decrease. Hence
electricity still continues to flow into the condenser for some
time after it is fully charged, and when the current ultimately
stops, the condenser is overcharged, that is, the potential dif-
ference at the condenser terminals is higher than the impressed
e.n.f. e, and as result the condenser has partly to discharge
again, that is, electricity begins to flow in the opposite direction,
or out of the condenser. In the same manner this reverse
current, due to the inductance of the circuit, overreaches and
discharges the condenser farther than down to the impressed
e.m.f. e,, so that after the discharge current stops again a charg-
ing current — now less than the initial charging current —
starts, and so by a series of oscillations, overcharges and under-
charges, the condenser gradually charges itself, and ultimately
the current dies out.

Fig. 3 shows the oscillating charge of a condenser through an
inductive circuit, by a continuous impressed e.m.f. e, The
current is represented by ¢, the potential difference at the con-
denser terminals by e, with the time as abscissas. The con-
stants of the circuit are: r = 40 ohms; L = 100 mh.; C =
10 mf., and e, = 1000 volts.

In such a continuous-current circuit, containing resistance,
inductance, and capacity in series to each other, the current at
the moment of closing the circuit as well as the final current
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is zero, but a current exists immediately after closing the
circuit, as a transient phenomenon; a temporary current,
steadily increasing and then decreasing again to zero, or con-
sisting of a number of alternations of successively decreasing
amplitude: an oscillating current.

If the circuit contains no resistance and inductance, the cur-
rent into the condenser would theoretically be infinite. That
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Fig. 3. Charging a condenser through a circuit having resistance and
inductance. Constant potential. Oscillating charge: low resistance.

is, with low resistance and low inductance, the charging current

of a condenser may be enormous, and therefore, although only

transient, requires very serious consideration and investigation.

If the resistance is very low and the inductance appreciable,

the overcharge of the condenser may raise its voltage above

the impressed e.m.f., ¢, sufficiently to cause disruptive effects.
14. If an alternating e.m.f.,

e = FEcosd,

is impressed upon a circuit of such constants that the current
lags 45°, that is, the current is

1 = I cos (0 — 45°),

and the circuit is closed at the moment 6 = 45° at this
moment the current should be at its maximum value. It is,
however, zero, and since in a circuit containing inductance (that
is, in practically any circuit) the current cannot change instantly,
it follows that in this case the current gradually rises from zero
as initial value to the permanent value of the sine wave <.

This approach of the current from the initial value, in the .
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present case zero, to the final value of the curve 7, can either
be gradual, as shown by the curve ¢, of Fig. 4, or by a series
of oscillations of gradually decreasing amplitude, as shown by
curve 7, of Fig. 4.

16. The general solution of an electric current problem there-
fore includes besides the permanent term, constant or periodic,
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Fig. 4. Starting of an alternating-current circuit having inductance.

a transient term, which disappears after a time depending upon
the circuit conditions, from an extremely small fraction of a
second to a number of seconds.

These transient terms appear in closing the circuit, opening
the circuit, or in any other way changing the circuit conditions,
as by a change of load, a change of impedance, etc.

In general, in a circuit containing resistance and inductance
only, but no capacity, the transient terms of current and volt-
age are not sufficiently large and of long duration to cause
harmful nor even appreciable effects, and it is mainly in circuits
containing capacity that excessive values of current and poten-
tial difference may be reached by the transient term, and there-
with serious results occur. The investigation of transient terms
therefore is largely an investigation of the effects of electro-
static capacity.

16. No transient terms result from the resistance, but only
those circuit constants which represent storage of energy, mag-
netically by the inductance L, electrostatically by the capacity
C, give rise to transient phenomena, and the more the resist-
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ance predominates, the less is therefore the severity and dura-
tion of the transient term.

When closing a circuit containing inductance or capacity
or both, the energy stored in the inductance and the capacity
has first to be supplied by the impressed e.m.f. before the
circuit conditions can become stationary. That is, in the first
moment after closing an electric circuit, or in general changing
the circuit conditions, ine impressed e.m.f., or rather the source
producing the impressed e.m.f., has, in addition to the power
consumed in maintaining the circuit, to supply the power which
stores energy in inductance and capacity, and so a transient
term appears immediately after any change of circuit condi-
tion. If the circuit contains only one energy-storing constant,
as either inductance or capacity, the transient term, which
connects the initial with the stationary condition of the circuit,
necessarily can be a steady logarithmic term only, or a gradual
approach. An oscillation can occur only with the existence of
two energy-storing constants, as capacity and inductance, which
permit a surge of energy from the one to the other, and there-
with an overreaching.

17. Transient terms may occur periodically and in rapid suc-
cession, as when rectifying an alternating current by synchro-
nously reversing the connections of the alternating impressed
e.m.f. with the receiver circuit (as can be done mechanically
or without moving apparatus by unidirectional conductors, as
arcs). At every half wave the circuit reversal starts a tran-
sient term, and usually this transient term has not yet disap-
peared, frequently not even greatly decreased, when the next
reversal again starts a transient term. These transient terms
may predominate to such an extent that the current essentially
consists of a series of successive transient terms.

18. If a condenser is charged through an inductance, and the
condenser shunted by a spark gap set for a lower voltage than
the impressed, then the spark gap discharges as soon as the
condenser charge has reached a certain value, and so starts a
transient term; the condenser charges again, and discharges,
and so by the successive charges and discharges of the condenser
a series of transient terms is produced, recurring at a frequency
depending upon the circuit constants and upon the ratio of the
disruptive voltage of the spark gap to the impressed e.m.f.
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Such a phenomenon for instance occurs when on a high-
potential alternating-current system a weak spot appears in the
cable insulation and permits a spark discharge to pass to the
ground, that is, in shunt to the condenser formed by the cable
conductor and the cable armor or ground.

19. In most cases the transient phenomena occurring in elec-
tric circuits immediately after a change of circuit conditions are
of no importance, due to their short duration. They require
serious consideration, however,—

(a) In those cases where they reach excessive values. Thus
in connecting a large transformer to an alternator the large
initial value of current may do damage. In short-circuiting a
large alternator, while the permanent or stationary short-circuit
current is not excessive and represents little power, the very
much larger momentary short-circuit current may be beyond
the capacity of automatic circuit-opening devices and cause
damage by its high power. In high-potential transmissions the
potential differences produced by these transient terms may
reach values so high above the normal voltage as to cause dis-
ruptive effects. Or the frequency or steepness of wave front of
these transients may be so great as to cause destructive voltages
across inductive parts of the circuits, as reactors, end turns of
transformers and generators, etc.

(b) Lightning, high-potential surges, etc., are in their nature
essentially transient phenomena, usually of oscillating character.

(¢) The periodical production of transient terms of oscillating
character is one of the foremost means of generating electric cur-
rents of very high frequency as used in wireless telegraphy, etc.

(d) In alternating-current rectifying apparatus, by which the
direction of current in a part of the circuit is reversed every half
wave, and the current so made unidirectional, the stationary
condition of the current in the alternating part of the circuit is
usually never reached, and the transient term is frequently of
primary importance.

(¢) In telegraphy the current in the receiving apparatus essen-
tially depends on the transient terms, and in long-distance cable
telegraphy the stationary condition of current is never ap-
proached, and the speed of telegraphy depends on the duration
of the transient terms.

(f) Phenomena of the same character, but with space instead
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of time as independent variable, are the distribution of voltage
and current in a long-distance transmission line; the phenomena
occurring in multigap lightning arresters; the transmission of
current impulses in telephony; the distribution of alternating
current in a conductor, as the rail return of a single-phase rail-
way; the distribution of alternating magnetic flux in solid mag-
netic material, ete.

Some of the simpler forms of transient terms are investigated
and discussed in the following pages.




CHAPTER III.

INDUCTANCE AND RESISTANCE IN CONTINUOUS-
CURRENT CIRCUITS.

20. In continuous-current circuits the inductance does not
enter the equations of stationary condition, but, if e, = impressed
e.m.f., r = resistance, L = inductance, the permanent value of
current is 7, = ;‘-’ .

Therefore less care is taken in direct-current circuits to reduce
the inductance than in alternating-current circuits, where the
inductance usually causes a drop of voltage, and direct-current
circuits as a rule have higher inductance, especially if the circuit
is used for producing magnetic flux, as in solenoids, electro-
magnets, machine-fields.

Any change of the condition of a continuous-current circuit,
as a change of e.m.f., of resistance, etc., which leads to a change
of current from one value 7, to another value 7,, results in the
appearance of a transient term connecting the current values
t, and 7, and into the equation of the transient term enters the
inductance.

Count the time ¢ from the moment when the change in the
continuous-current circuit starts, and denote the impressed
e.m.f. by e, the resistance by r, and the inductance by L.

. e . . -
1,= 7‘.’ = current in permanent or stationary condition after

the change of circuit condition.

Denoting by ¢, the current in circuit before the change, and
therefore at the moment ¢ = 0, by ¢ the current during the
change, the e.m.f. consumed by resistance r is

i,
and the e.m.f. consumed by inductance L is
dv
L a-t’

where ¢ = current in the circuit.
26
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. - i
Hence, e, =1 + L i, ‘ 1)
or, substituting e, = 7,r, and transposing,
r dv
— = )
1—1,

This equation is integrated by

_r
L

where — log c is the integration constant, or, -

.. -T

t—t,=c L. { bo/(
. v

However, fort = 0,1 = 7. ,\?(

Substituting this, gives /

t =log (v —,) — logec,

;,'g 'l:o - 1:1/ = C,
hence, =i+ G, —i)e E, &)
the equation of current in the circuit.

The counter e.m.f. of self-inductance is

di . . -t
e,=—La=r(1o—zl)e L @
hence a maximum for ¢ = 0, thus:
e’ =1, —1). (5)

The e.m.f. of self-inductance e, is proportional to the change
of current (7, — 1,), and to the resistance r of the circuit after
the change, hence would be « for r = «, or when opening the
circuit. Thatis, an inductive circuit cannot be opened instantly,
but the arc following the break maintains the circuit for some

time, and the voltage generated in opening an inductive circuit’

is the higher the quicker the break. Hence in a highly inductive
circuit, as an electromagnet or a machine field, the insulation
may be punctured by excessive generated e.m.f. when quickly
opening the circuit.

As example, some typical circuits may be considered.
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21. Starting of a continuous-current lighting circuit, or non-in-

ductive load.

Let e, = 125 volts = impressed e.m.f. of the circuit, and
t, = 1000 amperes = current in the circuit under stationary
condition; then the effective resistance of the circuit is

r = % _ 0.125 ohm.
1'1

Assuming 10 per cent drop in feeders and mains, or 12.5 volts,
gives a resistance, r, = 0.0125 ohm of the supply conductors.
In such large conductor the inductance may be estimated as
10 mh. per ohm; hence, L = 0.125 mh. = 0.000125 henry.

The current at the moment of startingis ¢, = 0, and the general
equation of the current in the circuit therefore is, by substitution

in (3), i = 1000 (1 — e~towt), ©)

The time during which this current reaches half value, or
t = 500 amperes, is given by substitution in (6)
500 = 1000 (1 — eof),
hence g0t — ()5,
¢t = 0.00069 seconds.

The time during which the current reaches 90 per cent of its
full value, or * = 900 amperes, is ¢ = 0.0023 seconds, that is,
the current is established in the circuit in a practically inappre-
ciable time, a fraction of a hundredth of a second.

22. Ezcitation of a motor field.

Let, in a continuous-current shunt motor, e, = 250 volts =
impressed e.m.f., and the number of poles = 8.

Assuming the magnetic flux per pole, ¥, = 12.5 megalines, and
the ampere-turns per pole required to produce this magnetic
flux as § = 9000.

Assuming 1000 watts used for the excitation of the motor
field gives an exciting current

and herefrom the resistance of the total motor field circuit as

r= 3’ = 62.5 ohms.
%
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To produce ¥ = 9000 ampere-turns, with ¢, = 4 amperes,
requires ? = 2250 turns per field spool, or a total of n= 18,000

1
turns.

n = 18,000 turns interlinked with ®, = 12.5 megalines gives
a total number of interlinkages for 7, = 4 amperes of n®, =
225 X 10°, or 562.5 X 10° interlinkages per unit current, or
10 amperes, that is, an inductance of the motor field circuit
L = 562.5 henrys.

The constants of the circuit thus are e, = 250 volts; r = 62.5
ohms; L = 562.5 henrys, and 7, = 0 = current at time ¢ = 0.

Hence, substituting in (3) gives the equation of the exciting
current of the motor field as

i = 4 (1 — e—o-llllt) (7)

Half excitation of the field is reached after the time ¢ = 6.23
seconds;

90 per cent of full excitation, or ¢ = 3.6 amperes, after the
time ¢ = 20.8 seconds.

That is, such a motor field takes a very appreciable time
after closing the circuit before it has reached approximately
full value and the armature circuit may safely be closed.

Assume now the motor field redesigned, or reconnected so
as to consume only a part, for instance half, of the impressed
e.n.f., the rest being consumed in non-inductive resistance.
This may be done by connecting the field spools by two in
multiple.

In this case the resistance and the inductance of the motor
field are reduced to one-quarter, but the same amount of
external resistance has to be added to consume the impressed
e.m.f., and the constants of the circuit then are: e, = 250
volts; r = 31.25 ohms; L = 140.6 henrys, and ¢, = 0.

The equation of the exciting current (3) then is

= 81— ¢ o), ®

that is, the current rises far more rapidly. It reaches 0.5
value after ¢t = 3.11 seconds, 0.9 value after ¢ = 10.4 seconds.
An inductive circuit, as a motor field circuit, may be made
to respond to circuit changes more rapidly by inserting non-
inductive resistance in series with it and increasing the im-
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pressed e.m.f., that is, the larger the part of the impressed
e.m.f. consumed by non-inductive resistance, the quicker is the
change.

Disconnecting the motor field winding from the impressed
e.m.f. and short-circuiting it upon itself, as by leaving it con-
nected in shunt with the armature (the armature winding
resistance and inductance being negligible compared with that
of the field winding), causes the field current and thereby the
field magnetism to decrease at the same rate as it increased in
(7) and (8), provided the armature instantly comes to a stand-
still, that is, its e.m.f. of rotation disappears. This, however,
is usually not the case, but the motor armature slows down
gradually, its momentum being consumed by friction and other
losses, and while still revolving an e.m.f. of gradually decreas-
ing intensity is generated in the armature winding; this e.m.f.
is impressed upon the field.

The discharge of a motor field winding through the armature
winding, after shutting off the power, therefore leads to the
case of an inductive circuit with a varying impressed e.m.f.

23. Discharge of a motor field uinding.

Assume that in the continuous-current shunt motor dis-
cussed under 22, the armature comes to rest ¢, = 40 seconds
after the energy supply has been shut off by disconnecting the
motor from the source of impressed e.m.f., while leaving the
motor field winding still in shunt with the motor armature
winding.

The resisting torque, which brings the motor to rest, may be
assumed as approximately constant, and therefore the deceler-
ation of the motor armature as constant, that is, the motor
speed decreasing proportionally to the time.

If then S = full motor speed, S (1 - i—) is the speed of the
1

motor at the time ¢ after disconnecting the motor from the
source of energy.

Assume the magnetic flux ® of the motor as approximately
proportional to the exciting current at exciting current ¢ the

magnetic flux of the motor is = - <I>o, where &= 12.5 mega-

lines is the flux corresponding to full excitation 7, = 4 amperes.
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The e.m.f. generated in the motor armature winding and
thereby impressed upon the field winding is proportional to
the magnetic flux of the field, ®, and to the speed S (1 - ;:),
and since full speed S and full flux &, generate an e.m.f. ¢, =
250 volts, the e.m.f. generated by the flux P and speed S (l - :—):

1
that is, at time ¢ is

1 t
e=¢, —|1— —) 9
[} 1"( tl ’ ( )
and since
eo
=T,
1'1
we have 1
e = ir (1 =) (10)
tl
or for r = 62.5 ohms, and ¢, = 40 seconds, we have
e = 6257 (1 — 0.025¢). (11)

Substituting this equation (10) of the impressed e.m.f. into
the differential equation (1) gives the equation of current 7
during the field discharge,

. t . di
zr(l—t—l)-tr-{-L o 12)
hence, nd di 3
t,L 1’
integrated by P
~ oL log ct,
where the integration constant c¢ is found by
t=0, i=1, logei, =0, ¢ =1,
1
hence, .
rf )
Ql‘, 2

i=1ie 29, (15)
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This is the equation of the field current during the time in
which the motor armature gradually comes to rest.

At the moment when the motor armature stops, or for

t=1t,

it is m
i, =1e 25 (16)

This is the same value which the current would have with
the armature permanently at rest, that is, without the assistance

of the e.m.f. generated by rotation, at the time ¢ = 52! .

The rotation of the motor armature therefore reduces the
decrease of field current so as to require twice the time to reach
value 7,, that it would without rotation.

These equations cease to apply for ¢ > ¢,, that is, after the
armature has come to rest, since they are based on the speed

equation S (l - f—), and this equation applies only up to
t=t, but for ¢ >ltl the speed is zero, and not negative, as
given by s(1 - 5_)

That is, at the moment ¢ = ¢, a break occurs in the field

discharge curve, and after this time the current 7 decreases in
accordance with equation (3), that is,

)

T =1, a7

or, substituting (16),
~I(-4
T=1e i 7, (18)
Substituting numerical values in these equations gives:

fort <t,

1 =4¢ oooousst’; (19)
fort = t, = 40,

1 = 0.4306; (20)
fort > ¢,

1 = 4 ¢ 0t — 20 (21)
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Hence, the field has decreased to half its initial value after
the time t = 22.15 seconds, and to one tenth of its initial
value after ¢t = 40.73 seconds.

4.0
N ]
Iy —
b \ o —H\«lu
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\ \\ a || 40 d
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~~ A

5 10 1 20 2 N % 0 & 60 55 60
B8econds

Fig. 5. Field discharge current.

Fig. 5 shows as curve I the field discharge current, by equations
(19), (20), (21), and as curve II the current calculated by the
equation

1 =4¢ o-mu,

that is, the discharge of the field with the armature at rest, or
when short-circuited upon itself and so not assisted by the
e.m.f. of rotation of the armature.

The same Fig. 5 shows as curve III the beginning of the field
discharge current for L = 4200, that is, the case that the field
circuit has a much higher inductance, as given by the equation

1 = 4 g 00001858

As seen in the last case, the decrease of field current is very siow,
the field decreasing to half value in 47.5 seconds.

24. Self-excitation of direct-current generator.

In the preceding, the inductance L of the machine has been
assumed as constant, that is, the magnetic flux ® as proportional
to the exciting current <. For higher values of ®, this is not
even approximately the case. The self-excitation of the direct~
current generator, shunt or series wound, that is, the feature
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that the voltage of the machine after the start gradually builds
up from the value given by the residual magnetism to its full
value, depends upon the disproportionality of the magnetic flux
with the magnetizing current. When considering this phenom-
enon, the inductance cannot therefore be assumed as constant.

When investigating circuits in which the inductance L is not
constant but varies'with the current, it is preferable not to use
the term “inductance ” at all, but to introduce the magnetic
flux ®.

The magnetic flux ® varies with the magnetizing current © by
an empirical curve, the magnetic characteristic or saturation
curve of the machine. This can approximately, within the range
considered here, be represented by a hyperbohc curve, as was
first shown by Frohlich in 1882:

__#
I+’ @)

where ¢ = magnetic flux per ampere, in megalines, at low
density.

%— = magnetic saturation value, or maximum magnetic flux,

in megalines, and
i 1+W
R =

can be considered as the magnetic exciting reluctance of the
machine field circuit, which here appears as linear function of
the exciting current <.

Considering the same shunt-wound commutating machine as
in (12) and (13), having the constants r = 62.5 ohms = field
resistance; ®, = 12.5 megalines = magnetic flux per pole at
normal m.m.f.; § = 9000 ampere-turns = normal m.m.f. per
pole; n = 18,000 turns = total field turns (field turns per pole
= 18’300 = 2250), and %, =4 amperes = current for full

excitation, or flux, ®, = 12.5 megalines.
Assuming that at full excitation, ®,, the magnetic reluctance
has already increased by 50 per cent above its initial value, that
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is, that the ratio w,
magnetic flux
lines and 7 = 7, = 4 amperes, is 50 per cent higher than at low
excitation, it follows that
1+ b, = 1.5,
or (4)
b = 0.125.

or %, at d= &, = 12.5 mega-

Since 7 =1, = 4 produces & = &, = 12.5, it follows, from

(22) and (24)
¢ = 4.69.

That is, the magnetic characteristic (22) of the machine is
approximated by
4.691

T1+.1254 (25)

Let now e, = e.m.f. generated by the rotation of the arma-
ture per megaline of field flux.

This e.m.f. ¢, is proportional to the speed, and depends upon
the constants of the machine. At the speed assumed in (12)
and (13), , = 12.5 megalines, e, = 250 volts, that is,

e
e, =2

c =% = 20 volts.

Then, in the field circuit of the machine, the impressed e.m.f.,
or e.m.f. generated in the armature by its rotation through the

magnetic field is,
e =¢d =200,

the e.m.f. consumed by the field resistance r is
ir =62.51;

the e.m.f. consumed by the field inductance, that is, generated
in the field coils by the rise of magnetic flux ¥, is

b, db
no 107 = 1807

(P being given in megafines, ¢, in volts.)
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The differential equation of the field circuit therefore is (1)

n dd
ed =ir + 100 & (26)

Since this equation contains the differential quotient of @, it
is more convenient to make ¢ and not © the dependent variable;
then substitute for ¢ from equation (22),

. d
= é— bd’ 27
which gives
&r n db
“*=iwtiwa’ @8)
or, transposed,
10d (¢ — bd)dd

n d){(gbec—r) —bectb} (29)

This equation is integrated by resolving into partial fraction
by the identity

¢— bd A B .
G -N-b69) & go-r—tee
resolved, this gives
¢ —bP =A(de, — 1) — (Abe, & — B P);
__ 9
hence, A= o — o~
(31)
B = br )
¢ec—r
and
100 dt ¢dd® brdd® 32)

= + .
n (¢ec - r)q) (¢ec - 7‘) (¢ec -T - bec (I))
This integrates by the logarithmic functions

——IOOt- ¢ log ® —

n pe,—r o 10g (pe.—r—be, &) +C. (33)

c(¢ec 7)
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The integration constant C is calculated from the residual
magnetic flux of the machine, that is, the remanent magnetism
of the field poles at the moment of start.

Assume, at the time, ¢ = 0, & = ®, = 0.5 megalines = residual
magnetism and substituting in (33),

0=

p
Pt U e P 2

and herefrom calculate C.
C substituted in (33) gives

100¢ ¢ b r pe. — r — be.d
n T ge—7 88, o ge =1 ®ge — r—bes, Y

lOg (¢ec - T - becd)r)’*' C;

or,
n (i )] pe. — r — bed .
t = 0o Go=r z¢eclog$'-- rlog de—7T—bed, (35)
substituting
e =¢ed
and
bm = ec(bry

where e, = e.m.f. generated in the armature by the rotation in
the residual magnetic field,

n de: — r — be
t = m qSec lOgc f]Og F 2 (36)

This, then, is the relation between e and ¢, or the equation
of the building up of a continuous-current generator from its
residual magnetism, its speed being constant.

Substituting the numerical values » = 18,000 turns; ¢
4.69 megalines; b = 0.125; e, = 20 volts; r = 62.5 ohms; ¢
0.5 megaline, and e,, = 10 volts, we have

t = 26.8log ® — 17.9log (31.25 — 2.5®) + 79.6  (37)

o

and
t =26.8loge — 17.9log (31.25 — 0.125¢) — 0.98. (38)
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Fig. 6 shows the e.m.f. ¢ as function of the time ¢. As seen,
under the conditions assumed here, it takes several minutes
before the e.m.f. of the machine builds up to approximately
full value.

[BIRD
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©
—
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20 40 60 8 100 120 140 160 180 200 Bec.

Fig. 6. Building-up curve of a shunt generator.

The phenomenon of self-excitation of shunt generators there-
fore is a transient phenomenon which may be of very long

duration.
From equations (35) and (36) it follows that

¢ = % = T _ 250 volts (39)
is the e.m.f. to which the machine builds up at ¢ = «, that is,

in stationary condition.
To make the machine self-exciting, the condition

de.—1r >0 (40)
must obtain, that is, the field winding resistance must be
r < ¢e, l
or, (41)
r < 93.8 ohms, |
or, inversely, e., which is proportional to the speed, must be
e.> T
LD T
¢ (42)

or,
e, > 13.3 volts.
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The time required by the machine to build up decreases with
increasing e,, that is, increasing speed; and increases with
increasing r, that is, increasing field resistance.

26. Self-excitation of direct-current series machine.

Of interest is the phenomenon of self-excitation in a series
machine, as a railway motor, since when using the railway motor
as brake, by closing its circuit upon a resistance, its usefulness
depends upon the rapidity of building up as generator.

Assuming a 4-polar railway motor, designed for e,= 600 volts
and 7, = 200 amperes, let, at current ¢ = 7, = 200 amperes, the
magnetic flux per pole of the motor be ®,= 10 megalines, and
8000 ampere-turns per field pole be required to produce this
flux. This gives 40 exciting turns per pole, or a total of n =
160 turns.

Estimating 8 per cent loss in the conductors of field and
armature at 200 amperes, this gives a resistance of the motor
circuit r,= 0.24 ohms.

To limit the current to the full load value of 7, = 200 amperes,
with the machine generating e,= 600 volts, requires a total
resistance of the circuit, internal plus external, of

r = 3 ohms,
or an external resistance of 2.76 ohms.
600 volts generated by 10 megalines gives
e.= 60 volts per megaline per field pole.

Since in railway motors at heavy load the magnetic flux is
carried up to high values of saturation, at ¢, = 200 amperes the
magnetic reluctance of the motor field may be assumed as three
times the value which it has at low density, that is, in equation

(22), 1+ bi, =3,
or, b = 0.01,
and since for ¢ = 200, ® = 10, we have in (22)
¢ = 0.15,
0.157
hence, T1+ 0013 43)

represents the magnetic characteristic of the machine.
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Assuming a residual magnetism of 10 per cent, or ®, =
1 megaline, hence e, = e, ®,= 60 volts, and substituting in
equation (36) gives n = 160 turns; ¢ = 0.15 megaline; b =
0.01; e,= 60 volts; r = 3 ohms; ®,= 1 megaline, and e, =
60 volts, ~.

t—00410ge—001333log(600—e)—008 (44)

This gives for e = 300, or 0.5 excitation, ¢ = 0.072 seconds,
and for e = 540, or 0.9 excitation, ¢ = 0.117 seconds; that is,
such a motor excites itself as series generator practically instantly,
or in a small fraction of a second.

The lowest value of e. at which self-excitation still takes place
is given by equation (42) as

e, =— =20,

.-l

that is, at one-third of full speed.

If this series motor, with field and armature windings connected
in generator position,—that is, reverse position,—short-circuits
upon itself,

r = 0.24 ohms,

we have
t = 0.0274 log e — 0.00073 log (876 — ¢) — 0.1075,  (45)
that is, self-excitation is practically instantaneous:

e = 300 volts is reached after ¢ = 0.044 seconds.

Since for e = 300 volts, the current 7 = ; = 1250 amperes,

the power is p = et = 375 kw., that is, a series motor short-
circuited in generator position instantly stops.
Short-circuited upon itself, r = 0.24, this series motor still

builds up at e, =<% = 1.6, and since at full load speed e, = 60,

= 1.6 is 2.67 per cent of full load speed, that is, the motor
acts as brake down to 2.67 per cent of full speed.

It must be considered, however, that the parabolic equation
(22) is only an approximation of the magnetic characteristic,
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and the results based on this equation therefore are approximate
only.

One of the most important transient phenomena of direct-
current circuits is the reversal of current in the armature coil
short-circuited by the commutator brush in the commutating
machine. Regarding this, see “ Theoretical Elements of Elec-
trical Engineering,” Part II, Section B.



CHAPTER 1V.

INDUCTANCE AND RESISTANCE IN ALTERNATING-
CURRENT CIRCUITS.

26. In alternating-current circuits, the inductance L, or, as
it is usually employed, the reactance z = 2 =fL, where f = fre-
quency, enters the expression of the transient as well as the
permanent term.

At the moment 6 = 0, let the e.m.f. e = E cos (0 — 6,) be
impressed upon a circuit of resistance r and inductance L, thus
inductive reactance z = 2 nfL; let the time 6 = 2 =ft be counted
from the moment of closing the circuit, and 6, be the phase of
the impressed e.m.f. at this moment.

In this case the e.m.f. consumed by the resistance = 1r,
where ¢ = instantaneous value of current.

The e.m.f. consumed by the inductance L is proportional

to L and to the rate of change of the current, %, thus, is L j—:,
or, by substituting 6 = 2 zft, £ = 2=fL, the e.m.f. consumed
by inductance is xj—z .
Since e = E cos (0 — 0,) = impressed e.m.f.,
. di
Ecos(0—00)=zr+xd—0 1)

is the differential equation of the problem.
This equation is integrated by the function

1 =1cos (0 — 9) + A=, 2)

where ¢ = basis of natural logarithms = 2.7183.
Substituting (2) in (1),

E cos (0 —6,) = Ir cos (0 — 9) +Are=* — Iz sin (/ — 0) — Aaxe~,
or, rearranged:
(E cos 8, — Ir cos 8 — Izsin d) cos @ + (Esinf, — Irsind

+ Iz cosd)sind — Ae=* (axz — 1) = 0.
41
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Since this equation must be fulfilled for any value of 6, if (2)
is the integral of (1), the coefficients of cos 6, sin 6, ¢e~* must
vanish separately.

That is,
Ecosf,— Ircosd — Izsind = 0,
Esin6, — Irsind + Iz cosd = 0, 3)
and ar—r=0.
Herefrom it follows that
r
a= ;: . (4)
Substituting in (3),
tan 0, = ‘rf
and ®)
z=Vr + 2,
where 0, = lag angle and z = impedance of circuit, we have
Ecosf,— Izcos (3 —6,) =0
and
Esinf, — Izsin (6 — 6,) =0,
and herefrom
-2
and ©)
3=10,+0,

Thus, by substituting (4) and (6) in (2), the integral equation
becomes
)

i=§cos @—0,—0)+ Ae , @

where A is still indefinite, and is determined by the initial con-
ditions of the circuit, as follows:
for =0, t = 0;

hence, substituting in (7).

E
0 = cos 0, +6,)+ A,
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or,
E
A = — - cos @, +n), ®
and, substituted in (7),

r

i=§zcos(0—0°—0,)—e * cos(0o+0‘)$ 9)

is the general expression of the current in the circuit.
If at the starting moment 6 = 0 the current is not zero
but = 7,, we have, substituted in (7),

. E
i, = - cos 0, +90,)+ A,
A =1,— gcos @, + 0,
. E 7,2\ -Ze
z=—z-3cos (0—00—01)—(cos @, + 6,)— %)e § (10)

27. The equation of current (9) contains a permanent term
E cos (0 — 6, — 8,), which usually is the only term considered,
and a transient term % ¢ *cos (6, + 01)

The greater the rwstance r and smaller the reactance z, the
_Te

z

more rapidly the term g e © cos (0, + 6,) disappears.

This transient term is & maximum if the circuit is closed at
the moment 6, = — 4, that is, at the moment when the

permanent value of current, g cos (8 — 6, — 6,), should be a

maximum, and is then

The transient term disappears if the circuit is closed at the
moment 6, = 90° — 6,, or when the stationary term of current
passes the zero value.
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As example is shown, in Fig. 7, the starting of the current
under the conditions of maximum transient term, or 6, = — 6,,

in a circuit of the following constants: -% = (0.1, corresponding

approximately to a lighting circuit, where the permanent value

8 T <<
4 1" JN /V'q\
: ‘ HA Los ™
2 2 wi| AT
T P
| Degrees
0 0 | B0 < 0
-1 ]
Q P
-2 % <IN
3 N
-4 PN

*Fig. 7. Starting current of an inductive circuit.

of current is reached in a small fraction of a half wave; -1; = (.5,
corresponding to the starting of an induction motor with rheo-
stat in the secondary circuit; —: = 1.5, corresponding to an
unloaded transformer, or to the starting of an induction motor
with short-circuited secondary, and f— = 10, corresponding to a

reactive coil.
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Fig. 8. Starting current of an inductive circuit.

z . .
Of the last case, <= 10, a series of successive waves are

plotted in Fig. 8, showing the very gradual approach to perma-
nent condition.
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Fig. 9 shows, for the circuit :i= 1.5, the current when closing

the circuit 0°, 30°, 60°, 90°, 120°, 150° respectively behind the
zero value of permanent current.
The permanent value of current is shown in Fig. 7 in dotted

line.
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Fig. 9. Starting current of an inductive circuit.

28. Instead of considering, in Fig. 9, the current wave as
consisting of the superposition of the permanent term
r

~Te
I cos (6—6,) and the transient term — Ie * cos 6, the current
wave can directly be represented by the permanent term

N,

/]
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ﬁ\ \“\‘
/ ~— N T

fr— .

© ki N B

)
<
1
~N

/

V

1
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(]
L

Fig. 10. Current wave represented directly.
Icos (8 — 6,) by considering the zero line of the diagram as

r
-Te
x

deflected exponentially to the curve Ie cos 4, in Fig. 10.
That is, the instantaneous values of current are the vertical



46 TRANSIENT PHENOMENA

distances of the sine wave I cos (¢ — 0,) from the exponential
curve Ir * cos 6,, starting at the initial value of perma-
nent current.

In polar coordinates, in this case I cos (§ — 6,) is the circle,

_Te

I¢ * cos 6, the exponential or loxodromic spiral.

As a rule, the transient term in alternating-current circuits
containing resistance and inductance is of importance only in
circuits containing iron, where hysteresis and magnetic saturation
complicate the phenomenon, or in circuits where unidirectional
or periodically recurring changes take place, as in rectifiers,
and some such cases are considered in the following chapters.



CHAPTER V.

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES,
CONDENSER CHARGE AND DISCHARGE.

29. If a continuous e.m.f. e is impressed upon a circuit contain-
ing resistance, inductance, and capacity in series, the stationary
condition of the circuit is zero current, 7 = o, and the poten-
tial difference at the condenser equals the impressed e.m.f.,
e, = ¢, no permanent current exists, but only the transient
current of charge or discharge of the condenser.

The capacity C of a condenser is defined by the equation

. de
@—C&t—’

that is, the current into a condenser is proportional to the rate
of increase of its e.m.f. and to the capacity.

It is therefore
1
c

- f

is the potential difference at the terminals of a condenser of
capacity C with current ¢ in the circuit to the condenser.

Let then, in a circuit containing resistance, inductance, and
capacity in series, ¢ = impressed e.m.f., whether continuous,
alternating, pulsating, etc.; ¢ = current in the circuit at time ¢;
r = resistance; L = inductance, and C = capacity; then the
e.m.f. consumed by resistance r is

de = - dt,

and

r;
the e.m.f. consumed by inductance L is
di
L Ft ’
47
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and the e.m.f. consumed by capacity C is

el=é—,fidt;

hence, the impressed e.m.f. is

e=ri+ L% 1T i, - ®
and herefrom the potential difference at the condenser terminals
- is
dt
e, Cfult—e——n L% @)

Equation (2) differentiated and rearranged gives

d= dv 1. de
Ld—t;'f'rg-t'f"a’b—at— (4)
as the general differential equation of a circuit containing resist-
ance, inductance, and capacity in series.
80. If the impressed e.m.f. is constant,

e = constant,

then =0,

dt
and equation (4) assumes the form, for continuous-current
circuits,
s i 1.

Ld—t—,+ra+5z—0. (5)
This equation is a linear relation between the dependent vari-
able, 7, and its differential quotients, and as such is integrated
by an exponential function of the general form

§=Ae ©)

(This exponential function also includes the trigonometric
functions sine and cosine, which are exponential functions with
imaginary exponent a.)
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Substituting (6) in (5) gives
(a’L —ar+ -(1;-,)‘4:““= 0;

this must be an identity, irrespective of the value of ¢, to make
(6) the integral of (5). That is,

a’L-ar+-é,-=0. ' )

A is still indefinite, and therefore determined by the terminal
conditions of the problem.

From (7) follows
4L
rEVr-F Ry g- L
6=——"p7— L [a0v" 1.8)
hence the two roots,
r—s
%=L
and ©
s
a,= 2L ’
where 8 = \/r’ - 46[—' . (10)

Since there are two roots, @, and a,, either of the two expres-
ions (6), e~ and ¢~ %%, and therefore also any combination of
these two expressions, satisfies the differential equation (5).

That is, the general integral equation, or solution of differential
equation (5), is .

r—s

-y
t=Ag * +Ag

r+s
-2t

(11)

Substituting (11) and (9) in equation (3) gives the potential
difference at the condenser terminals as

+
r—s -t——"z

e,=e—§—é—A,e_ﬁ'+ (12)

Reny
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31. Equations (11) and (12) contain two indeterminate con-
stants, A, and A,, which are the integration constants of the
differential equation of second order, (5), and determined by
the terminal conditions, the current and the potential differ-
ence at the condenser at the moment ¢ = 0.

Inversely, since in a circuit containing inductance and capac-
ity two electric quantities must be given at the moment of
start of the phenomenon, the current and the condenser poten-
tial — representing the values of energy stored at the moment
t = 0 as electromagnetic and as electrostatic energy, respec-
tively — the equations must lead to two integration constants,
that is, to a differential equation of second order.

Let ¢ =1, = current and e, = ¢, = potential difference at
condenser terminals at the moment ¢ = 0; substituting in (11)
and (12),

t,=4,+ 4,
and eo=e—r;sAl—r_2-8A,; '
hence,
r—s. )
e—e+ 5 %
A =—
s
_ and q (13)
e,,—e+1$i0
2=t ]

and therefore, substituting in (11) and (12), the current is

r+s. r—s.
eo—e-i-—z—?,o _rts, eo—c+—'-z° r—s
. 3L 2 -3zt
1= ———¢ - € ’ (14)
s 8

the condenser potential is

r+s. r—s,
eo—e+—2—zo_,+,‘ e—et+——1% r
e,=e——|(r—s)
1 2 (
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For no condenser charge, or i, = 0, e, = 0, we have

and

substituting in (11) and (12), we get the charging current as

—8 r+s

i=§§[ﬁ‘-e'ﬁ‘ % (16)

The condenser potential as

e, —egl—%[(r+s)e o —(r—9)e r;:l]g' a7

For a condenser discharge or i, = 0, e = ¢, we have

4,--2

and
e
A’=+;o=—A';

hence, the discharging current is

_roa, _rha
i=—%§e i, “'g- (18)
The condenser potential is
{ =k -5z
e, = —9- (r+s)e —(r—29)e g, 19)

that is, in condenser discharge and in condenser charge the
currents are the same, but opposite in direction, and the con-
denser potential rises in one case in the same way as it falls in
the other.

32. As example is shown, in Fig. 11, the charge of a con-
denser of C = 10 mf. capacity by an impressed e.m.f. of
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= 1000 volts through a circuit of r = 250 ohms resistance
and L = 100 mh. inductance; hence, s = 150 ohms, and the
charging current is

T = 6.667 {e=%°f — ¢3!} amperes.

The condenser potential is
= 1000 {1 — 1.333 ™% 4 0.333 =2} volts.

200 T —
e ]
4—80 T —TVo\v “’10'”1“2 ts
4 h
3 Ll s N L ] 10mt.
a 8 —
g2>w A B s
1— 30 lf?“"' =
—o I i

4 8 12 18 20 % W .2 6
Fig. 11. Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Logarithmic charge.

83. The equations (14) to (19) contain the square root,

VaTiE

hence, they apply in their present form only when

4L
Tz>—é‘

Ifr= these equations become indeterminate, or = 8—,

4L

C ’
. 4L . . . .

and if 2 < o S 1s imaginary, and the equations assume a

complex imaginary form. In either case they have to be
rearranged to assume a form suitable for application.
Three cases have thus to be distinguished :

(@) P > 4—011’ in which the equations of the circuit can be

used in their present form. Since the functions are exponen-
tial or logarithmic, this is called the logarithmic case.



CONDENSER CHARGE AND DISCHARGE 58

®) P = 4L is called the critical case, marking the transi-

Cc
tion between (a) and (c), but belonging to neither.
() P < % In this case trigonometric functions appear; it

is called the trigonometric case, or oscillation.
34. In the logarithmic case,
4L

1‘">'F

4L < CP,

that is, with high resistance, or high capacity, or low induc-
tance, equatlons (14) to (19) apply

or,

r+c
The term ¢ T is always greater than e “2L'  gince the
former has a lower coefficient in the exponent, and the differ-
ence of these terms, in the equations of condenser charge and
discharge, is always positive. That is, the current rises from
zero at ¢t = 0, reaches a maximum and then falls again to
zero at ¢ = o, but it never reverses. The maximum of the

current isl%sthza,ni=‘i

The exponential term in equations (17) and (19) also never

reverses. That is, the condenser potential gradually changes,
without ever reversing or exceeding the impressed e.m.f. in the
charge or the starting potential in the discharge.
CL’ no abnormal voltage is pro-
duced in the circuit, and the transient term is of short duration,
so that a condenser charge or discharge under these conditions
is relatively harmless.

In charging or discharging a condenser, or in general a circuit
containing capacity, the insertion of a resistance in series in the

Hence, in the case ¥ >

circuit of such value that >% therefore eliminates the

danger from abnormal electrostatic or electromagnetic stresses.

In general, the higher the resistance of a circuit, compared
with inductance and capacity, the more the transient term is
suppressed.
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36. In a circuit containing resistance and capacity but no
inductance, L = 0, we have, substituting in (5),

i 1
r E- + 5 1= 0, (20)
or, transposing, & dt
T T’
which is integrated by _t
i=c 'S 21

where ¢ = integration constant.

Equation (21) gives for t = 0, © = c; that is, the current at
the moment of closing the circuit must have a finite value, or
must jump instantly from zero to ¢. This is not possible, but
80 also it is not possible to produce a circuit without any induec-
tance whatever.

Therefore equation (21) does not apply for very small values
of time, ¢, but for very small ¢ the inductance, L, of the clrcmt
however small determines the current.

The potentlal difference at the condenser terminals from (3) is
, e, =e—ri

hence ¢

e, =e—rce (22)
The integration constant ¢ cannot be determined from equation
(21) at t = 0, since the current ¢ makes a jump at this moment.
But from (22) it follows that if at the moment ¢t = 0, e, = e,
e, = € — rc,
e—e,
T

hence, c = ’
and herefrom the equations of the non-inductive condenser
circuit,
-t
_ (e — eo)e © (23)
T r
and -L
e, =¢— (e —e)e . (24)

As seen, these equations do not depend upon the current 7, in
the circuit at the moment before ¢ = 0.
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86. These equations do not apply for very small values of ¢,
but in this case the inductance, L, has to be considered, that is,
equations (14) to (19) used.

For L = 0 the second term in (14) becomes indefinite, as it
[

contains ¢ ° ‘ , and therefore has to be evaluated as follows:
For L = 0, we have

s =r,
r+s
2 "
and .
r—3s8
2 =0

" and, developed by the binomial theorem, dropping all but the

first term,
r—s=r§l—\/1—£‘§
rC
‘ 2L

.

rC
and
. r—s 1
3L T
r+s r
2L L

Substituting these values in equations (14) and (15) gives the
current as

- - —e —71, —T¢
§ =0T, e _ €76 Th "L (25)
r r
- and the potential difference at the condenser as
-4
e, =e—(e—e)e ™; (26)
that is, in the equation of the current, the term

. _:‘
_e_eo_”o€ L

r
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has to be added to equation (23). This term makes the transition
from the circuit conditions before ¢t = 0 to those after t=20,
and is of extremely short duration.

For instance, choosing the same constants as in § 32, namely:
e = 1000 volts; r = 250 ohms; C = 10 mf., but choosing the
inductance as low as possible, L = 5 mh., gives the equations
of condenser charge, i.e., forz, = 0 and ¢, = 0,

T =4 e — ¢~ Soomt}

and
= 1000 {1 — &'},

The second term in the equation of the current, e~%‘ has
decreased already to 1 per cent after ¢ = 17.3 X 10~° seconds,
while the first term, e~ “°, has during this time decreased only
by 0.7 per cent, that is, it has not yet appreciably decreased.

37. In the critical case,

and s=0,
a‘=a’=§:f,'
e —e — 1
A, =—-A4,= : 2°

Tt
2L

= €

Ly 2t
8 _ % 3L, — 2L
io(ezL +e >+(e—co—§io)°—;—)'(27)

The last term of this equation,
r=Y_ ‘«__ﬁt — 29,
D 8 0
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that is, becomes indeterminate for s = 0, and therefore is
evaluated by differentiation,

t

F= =Z'

(28)

ISR

Substituting (28) in (27) gives the equation of current,

~T :
1= [ig+2<8—v60——;io):|é L. (29)
The condenser potential is found, by substituting in (15), to be

~L 2 -2t
e;=e—%e 2L { (e —e)(e L 4 ¢ )-

The last term of this equation is, for s = 0:

. ., _t, .
5 (e — e — ?)(eﬂ‘ —¢ >= %(e — € —%) (31)

This gives the condenser potential as:

r
-

en=e¢—e¢ L {(e-—eo)+§rtz<e—eo—r—;q)} (32)

Herefrom it follows that for the condenser charge, 7, = 0 and
¢ =0, '

and
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for the condenser discharge, 7, = 0 and e = 0,

¢ T
1= — — e sz’

L
and

rt -5zt
= (1 +‘2_L)C°E 2L,
38. As an example are shown, in Fig. 12, the charging current
and the potential difference at the terminals of the condenser,

55— 1000 {———
«—ao—1- QT
—t
/, I ¢ == 1000 volts
35 L/ L= 100 mh. (—
A - N C = ’%T -
1—w ~ R
< 4“&9
—0 d L
/ » 10000¢ -
11

4 8 12 1B W M B B N ®

Fig. 12. Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Critical charge.

in a circuit having the constants, e = 1000 volts; C = 10 mf.;
L = 100 mh., and such resistance as to give the critical start,
that is,

r= % = 200 ohms.
In this case,
1 = 10,000 e~ 20wt
and

e, = 1000 {1 — (1 + 1000 f) ¢~ 1t}
39. In the trigonometric or oscillating case,

4L
r< "C——'

The term under the square root (10) is negative, that is, the
square root, s, is imaginary, and a, and a, are complex imaginary
quantities, so that the equations (11) and (12) appear in imagi-
nary form. They obviously can be reduced to real terms,
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since the phenomenon is real. Since an exponential function
with imaginary exponents is a trigonometric function, and
inversely, the solution of the equation thus leads to trigono-
metric functions, that is, the phenomenon is periodic or oscil-
lating.

Substituting s = jq, we have

q= F—r’ (33)
and
_r—iq
1
r+7 (34)
o, = 21q,

Substituting (34) in (11) and (12), and rearranging,
S VL (35)

r

-t 1 +12, — 9 - e,
e, =e—c¢ 2t gr_;]the 2L +r—2]qA,e 2L g (36)

Between the exponential function and the tﬁgonometﬁc
functions exist the relations

et = cosv + jsinv
and @7)
e = cosv — jsinwv.
Substituting (37) in (35), and rearranging, gives
1=c¢ g(A +A,)cos2Lt+;1(Al A,) sin + 2L ;
Substituting the two new integration constants,
B, =4, + A,
and (38)
B,=j4,-4)

gives

. -{—L"g g g g
1 =c Blcosth+B sin Lt (39)
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In the same manner, substituting (37) in (36), rearranging,
and substituting (38), gives
rB,— ¢B,

rBl+qB 2 t+ sin

1
G=e—¢ 3 2 Sl T T2 2L§

(40)
B, and B, are now the two integration constants, determined
by the terminal conditions. That is, fort = 0, let ¢ = 7, = cur-

rent and e, = e, = potential difference at condenser terminals,
and substituting these values in (39) and (40) gives

=B 1 ‘
and :
e — ¢ Bt 4B,
A
hence,
B, =<,
and .
2(e—e) — i, (41)
B, = ———>——".
q
Substituting (41) in (39) and (40) gives the general equations
of condenser oscillation:
the current is
._—ﬁtg q 2(e—e) — e, q g
1=t zcosZLt+———————q SmZL , 42)
and the potential difference at condenser terminals is
, r(e—e,) — _+_q_’
e,—e—¢ 2L'](e—e,) cos iI—t+ 2 smj—
1 [1] q 2 L
(43)

Herefrom follow the equations of condenser charge and dis-
charge, as special case:
For condenser charge, i, = 0; e, = 0, we have

T
i=3q-e-e 2! Gy 9 44)



CONDENSER CHARGE AND DISCHARGE 61

r

= —e 2L 9 i)? 4
e, egl € (costh+qsm2L §’ 45)

and for condenser discharge, 1, = 0, e = 0, we have

and

. 2e, _#4 q
=200, 2 2 46
1 . € sxn2L (46)
and
mee 2 $os L g ; 47
€, = esf gcosth+qsm2L @47

40. As an example is shown the oscillation of condenser
charge in a circuit having the constants, e = 1000 volts; L =
100 mh., and C = 10 mf.

e // ‘:ac.
5—1000
— /
¢ %m ¢ =1000 volts
> / 1" = 100]ohms
= L7 100{mh
!’_‘wll \ O [0m
— \
1— 200 9D \ (+10Y8de. [ ]
N 4 [ 8 [120 [ 200 ) | 280 | a20 [ 360 &=
v W0 T2 [ (o] N | Jso] [Tl | @
1 | | Sl |

Fig. 13. Charging a condenser through a circuit having resistance and induc-
tance, Constant potential. Oscillating charge.
(a) In Fig. 13, r = 100 ohms, hence, ¢ = 173 and the current is
1 = 11.55 ¢ % ¢ sin 866 ¢;
the condenser potential is
e, = 1000{1 — e~ *®!(cos 866 ¢t + 0577sm866t)}
. () In Fig. 14, r = 40 ohms, hence, ¢ = 196 and the current
) = 10.2 ¢~ 2 sin 980 ¢;
the condenser potential is
= 1000 {1 — ™ (cos 980 ¢ + 0.21 sin 980 4 }.
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41. Since the equations of current and potential difference
(42) to (47) contain trigonometric functions, the phenomena
are periodic or waves, similar to alternating currents. They

—=T¢
differ from the latter by containing an exponential factor ¢ 2%,
which steadily decreases with increase of ¢. That is, the suc-

bl P 1000 Yoits L--@mh
T G nf.,
¢ 40 ohms e L
c—é-sm \ \\ a4 =
1—uoll L
g 8|~ [Dowrsen| ¥ |

= L) (40 \oa0 [ 040|720

4

Fig. 14, Charging a condenser through a circuit having resistance and induc-
tance. Constant potential. Oscillating charge.

cessive half waves of current and of condenser potential pro-
gressively decrease in amplitude. Such alternating waves of
progressively decreasing amplitude are called oscillating waves.

Since equations (42) to (47) are periodic, the time ¢ can be
represented by an angle 6, so that one complete period is denoted
by 2 = or one complete revolution,

6 = 2i = 2 xft. | “8)
9
25 =5
hence, the frequency of oscillation is
_ 9
f= ypu A “9)

or, substituting
\ /4L

gives the frequency of oscillation as

FVEG) e
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This frequency decreasw with increasing resistance 7, and

r 2
becomes zero t'or(2 L) o’

case, where the phenomenon ceases to be oscillating.
If the resistance is small, so that the second term in equa-
tion (50) can be neglected, the frequency of oscillation is

that is, ¥ = ?L, or the ecritical

1
= . 51
/ 2zVIC L
Substituting 0 for ¢ by equation (48)
t=2Lg
q
in equations (42) and (43) gives the general equations,
T,
_re (e—e,) — = %,
e gi,cos0+ T sin0§r (52)
B re—e)—"t Ly
e, =e—c¢ ¢ |(e—e)cosf+ 7 sin 4 [,(53)
0 =2=xft (48)
and
1 1 r\?
=175V 1e (50 - (50)

42. If the resistance r can be neglected, that is, if #* is small

compared with CL’ the following equations are approximately
exact: ¢ = g 54)
and 1
= 272 vVIC
or, (55)
2nf = ‘_1:
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Introducing now z = 2 zfL = inductive reactance and

1 o ey
= TAC = capacity reactance, and substituting (55), we
have
s - VL
AR
and
\/Z
= c’
hence, ¥ =z,

that is, the frequency of oscillation of a circuit containing
inductance and capacity, but negligible resistance, is that

frequency f which makes the condensive reactance 2’ = 1

2 =fC

equal the inductive reactance z = 2 =fL:
\/Z
x’ =T = 6 . (56)

q=2z, (7

Then (54),

and the general equations (52) and (53) are

T .
_t, (e—eo)—ézo
1=c¢c 22 iocosa+Tsin0 ; (58)

r(e—e,)—2 2%,

H . (5
o smﬂg,(oQ)

e, =e—e_§7°§(e —e,) cos 0 +

z =\/g (56)

and by (48) and (55):
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-L
43. Due to the factore 2% | successive half waves of oscilla-
tion decrease the more in amplitude, the greater the resistance r.
The ratio of the amplitude of successive half waves, or the

r

e s © Tarh .
decrement of the oscillation, is A = ¢ 2* ", where ¢, = duration

of one half wave or one half cycle, = 2%,
A
10 11
08 \\ -
r)\?
\ A == ‘/ _') -1
0.6 \\
04 \\
v N
0 2 I~

0 01 03 08 04 05 0.6 07 08 09 10
Fig. 15. Decrement of Oscillation.

Hence, from (50),

. T
tl = \/T:rz’
7 (31)
and __
iL_,
A = C—‘ = ¢ ri¢ . (60)
Denoting the critical resistance as
TI’ = 4-CTL) (61)
we have
- A
‘/ ny_,
A=c?%=¢ (") ,
or,

f (62)
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that is, the decrement of the oscillating wave, or the decay of
the oscillation, is a function only of the ratio of the resistance
of the circuit to its critical resistance, that is, the minimum
resistance which makes the phenomenon non-oscillatory.

In Fig. 15 are shown the numerical values of the decrement A,

for different ratios of actual to critical mista.nce:;-
1
As seen, for r > 0.21 r,, or a resistance of the circuit of more

than 21 per cent of its critical resistance, the decrement A is
below 50 per cent, or the second half wave less than half the first
one, etc.; that is, very little oscillation is left.

Where resistance is inserted into a circuit to eliminate the
danger from oscillations, one-fifth of the critical resistance, or

r =04 \/%" seems sufficient to practically dampen out the

oscillation.



CHAPTER VL

OSCILLATING CURRENTS,

44. The charge and discharge of a condenser through an
inductive circuit produces periodic currents of a frequency
depending upon the circuit constants.

The range of frequencies which can be produced by electro-
dynamic machinery is rather limited: synchronous machines
or ordinary alternators can give economically and in units of
larger size frequencies from 10 to 125 cycles. Frequencies
below 10 cycles are available by commutating machines with
low frequency excitation. Above 125 cycles the difficulties
rapidly increase, due to the great number of poles, high periph-
eral speed, high power required for field excitation, poor regu-
lation due to the massing of the conductors, which is required
because of the small pitch per pole of the machine, etc., so that
1000 cycles probably is the limit of generation of constant
potential alternating currents of appreciable power and at fair
efficiency. For smaller powers, by using capacity for excitation,
inductor alternators have been built and are in commercial
service for wireless telegraphy and telephony, for frequencies up
to 100,000 and even 200,000 cycles per second.

Still, even going to the limits of peripheral speed, and sacri-
ficing everything for high frequency, a limit is reached in the
frequency available by electrodynamic generation.

It becomes of importance, therefore, to investigate whether
by the use of the condenser discharge the range of frequencies
can be extended.

Since the oscillating current approaches the effect of an
alternating current only if the damping is small, that is, the
resistance low, the condenser discharge can be used as high
frequency generator only by making the circuit of as low resist-
ance as possible.

67
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This, however, means limited power. When generating oscillat-
ing currents by condenser discharge, the load put on the circuit,
that is, the power consumed in the oscillating-current circuit,
represents an effective resistance, which increases the rapidity
of the decay of the oscillation, and thus limits the power, and,
when approaching the critical value, also lowers the frequency.
This is obvious, since the oscillating current is the dissipation
of the energy stored electrostatically in the condenser, and the
higher the resistance of the circuit, the more rapidly is this
energy dissipated, that is, the faster the oscillation dies out.

With a resistance of the circuit sufficiently low to give a fairly
well sustained oscillation, the frequency is, with sufficient
approximation,

1
f 27 VLC

45. The constants, capacity, C, inductance, L, and resistance, r,
have no relation to the size or bulk of the apparatus. For
instance, a condenser of 1 mf., built to stand continuously a
potential of 10,000 volts, is far larger than a 200-volt condenser
of 100 mf. capacity. The energy which the former is able to

store isCTe’ = 50 joules, while the latter stores only 2 joules,

and therefore the former is 25 times as large.

A reactive coil of 0.1 henry inductance, designed to carry
continuously 100 amperes, stor%%— = 500 joules; a reactive
coil of 1000 times the inductance, 100 henrys, but of a current-
carrying capacity of 1 ampere, stores 5 joules only, therefore is
only about one-hundredth the size of the former.

A resistor of 1 ohm, carrying continuously 1000 amperes, is a
ponderous mass, dissipating 1000 kw.; a resistor having a
resistance a million times as large, of one megohm, may be a lead
pencil scratch on a piece of porcelain.

Therefore the size or bulk of condensers and reactors depends
not only on C and L but also on the voltage and current which
can be applied continuously, that is, it is approximately pro-

Y]

portional to the energy stored, C_‘Zf and % , or since in electrical
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engineering energy is a quantity less frequently used than
power, condensers and reactors are usually characterized by
the power or rather apparent power which can be impressed
upon them continuously by referring to a standard frequency,
for which 60 cycles is generally used.

That means that reactors, condensers, and resistors are rated
in kilowatts or kilovolt-amperes, just as other electrical appa-
ratus, and this rating characterizes their size within the limits
of design, while a statement like “a condenser of 10 mf.” or
“a reactor of 100 mh.” no more characterizes the size than a
statement like “an alternator of 100 amperes capacity’ or “a
transformer of 1000 volts.”

A bulk of 1 cu. ft. in condenser can give about 5 to 10
kv-amp. at 60 cycles. Hence, 100 kv-amp. constitutes a very
large size of condenser.

In the oscillating condenser discharge, the frequency of oscil-
lation is such that the inductive reactance equals the condensive
reactance. The same current is in both at the same terminal
voltage. That means that the volt-amperes consumed by the
inductance equal the volt-amperes consumed by the capacity.

The kilovolt-amperes of a condenser as well as of a reactor
are proportional to the frequency. With increasing frequency,
at constant voltage impressed upon the condenser, the current
varies proportionally with the frequency; at constant alter-
nating current through the reactor, the voltage varies propor-
tionally with the frequency.

If then at the frequency of oscillation, reactor and con-
denser have the same kv-amp., they also have the same at
60 cycles.

A 100-kv-amp. condenser requires a 100-kv-amp. reactive
coil for generating oscillating currents. A 100-kv-amp. react-
ive coil has approximately the same size as a 50-kw. trans-
former and can indeed be made from such a transformer, of
ratio 1 : 1, by connecting the two coils in series and inserting
into the magnetic circuit an air gap of such length as to give
the rated magnetic density at the rated current.

A very large oscillating-current generator, therefore, would
consist of 100-kv-amp. condenser and 100-kv-amp. reactor.

46. Assuming the condenser to be designed for 10,000 volts
alternating impressed e.m.f. at 60 cycles, the 100 kv-amp. con-
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denser consumes 10 amperes: its condensive reactance is
E 1
== e— = 1 , = = . f.
=7 1000 ohms, and the capacity C Tz, 2.65 m

Designing the reactor for different currents, and therewith
different voltages, gives different values of inductance L, and
therefore of frequency of oscillation f.

From the equations of the instantaneous values of the con-
denser discharge, (46) and (47), follow their effective values, or

vV mean square,

€ —5-t
e, = —¢ 2L
VD)
and (63)
__eo‘\/§ _T‘__ei\/-gs_ﬁ'
2 AL ’
and thus the power,
. el JC -F¢
p|=e11'=_§ Z‘ £ ’ (64)

Herefrom would follow that the energy of each discharge is

"‘fpxdt = 5= (65)

Therefore, for 10,000 volts effective at 60 cycles at the con-
denser terminals, the e.m.f. is

e, = 10,000 V2,

and the condenser voltage is

r

-
e, = 10,000 %,

Designing now the 100-kv-amp. reactive coil for different
voltages and currents gives for an oscillation of 10,000 volts:
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Frequency
React- Oscillati Oscillati
Reactive Coil. PPy Inductance. Oscilfuftion. Current 8| power 8
Amp. Volts, % _» Zo_ _, -1 Amp., Kv-amp.,
o €. i 2afo 2eV LT i. P
1| 100,000 108 26856 (] 1 10
10 10,000 10° 2.856 60 10 100
100 1,000 10 2.65x10—? 600 100 1,000
1,000 100 10! 2.65x 10—+ 6,000 1,000 10,000
10,000 10 10-3 2.65x 10— 60,000 10,000 100,000
100,000 1 10—-3 2.65x 10—* | 600,000 | 100,000 (1,000,000
r r
xe 7L'| x¢ L'

As seen, with the same kilovolt-ampere capacity of con-
denser and of reactive coil, practically any frequency of oscil-
lation can be produced, from low commercial frequencies up to
hundred thousands of cycles.

At frequencies between 500 and 2000 cycles, the use of iron in
the reactive coil has to be restricted to an inner core, and at
frequencies above this iron cannot be used, since hysteresis
and eddy currents would cause excessive damping of the oscil-
lation. The reactive coil then becomes larger in size.

47. Assuming 96 per cent efficiency of the reactive coil and
99 per cent of the condenser,

r = 0.05z,
gives
r= 0.05\/751)
since
z = 2xfL,
1
f= 2r \/L—C’

and the energy of the discharge, by (65), is

W = glr VLC = 10 ¢;? C volt-ampere-seconds;

thus the power factor is
cos 8, = 0.05.



72 TRANSIENT PHENOMENA

Since the energy stored in the capacity is

3
W, = e°2C joules,
the critical resistance is
r, =2 \/(—I—;;
hence, .
T~ 0.025,
rl

and the decrement of the oscillation is
A =092,

that is, the decay of the wave is very slow at no load.
Assuming, however, as load an external effective resistance

equal to three times the internal resistance, that is, an elec-

trical efficiency of 75 per cent, gives the total resistance as

r+7 =02z
hence,
rl
T oy,
rl
and the decrement is
A =0.73;

hence a fairly rapid decay of the wave.

At high frequencies, electrostatic, inductive, and radiation
losses greatly increase the resistance, thus giving lower effi-
ciency and more rapid decay of the wave.

48. The frequency of oscillation does not directly depend
upon the size of apparatus, that is, the kilovolt-ampere capacity
of condenser and reactor. Assuming, for instance, the size, in

kilovolt-amperes, reduced to %, then, if designed for the same

voltage, condenser and reactor, each takes :—a the current, that
is, the condensive reactance is n times as great, and therefore

the capacity of the condenser, C,reduced to :7 , the inductance, L,
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is increased n-fold, so that the product CL, and thereby the
frequency, remains the same; the power output, however, of the

1 e . 1
oscillating currents is reduced to;.

The limit of frequency is given by the mechanical dimensions.

With a bulk of condenser of 10 to 20 cu. ft., the minimum
length of the discharge circuit cannot well be less than 10 ft.;
10 ft. of conductor of large size have an inductance of at least
0.002 mh. = 2 X 10~°, and the frequency of oscillation would
therefore be limited to about 60,000 cycles per second, even
without any reactive coil, in a straight discharge path.

The highest frequency which can be reached may be estimated
about as follows:

The minimum length of discharge circuit xs the gap between
the condenser plates. .

The minimum condenser capacity is given by two spheres,
since small plates give a larger capacity, due to the edges.

The minimum diameter of the spheres is 1.5 times their
distance, since a smaller sphere diameter does not give a clean
spark discharge, but a brush discharge precedes the spark.

With ¢, = 10,000 V2, the spark gap length between spheres
ise= 0.3 in., and the diameter of the spheres therefore 0.45 in.
The osclllatmg circuit then consists of two spheres of 0.45 in.,
separated by a gap of 0.3 in.

This gives an approximate length of oscillating circuit of

-3

0.5in., or an inductance L = %— =0.125 X 1077 henry.
The capacity of the spheres ,against each other may be
estimated as C = 50 X 10~® mf.; this gives the frequency of

oscillation -as
f=

or, 2 billion cycles.
At e, = 10,000 V2 volts,

=2 X 10°
27:\/ ’

_Ts
e, = 10,000 2* volts,

—e
i=283¢ 2L amp.,

and p, = 283 ¢z kv-amp.
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Reducing the size and spacing of the spheres proportionally,
and proportionally lowering the voltage, or increasing the dielec-
tric strength of the gap by increasing the air pressure, gives still
higher frequencies.

As seen, however, the power of the oscillation decreases with
increasing frequency, due to the decrease of size and therewith
of storage ability, of capacity, and of inductance.

With a frequency of billions of cycles per second, the effective
resistance must be very large, and therefore the damping rapid.

Such an oscillating system of two spheres separated by a gap
would have to be charged by induction, or the spheres charged
separately and then brought near each other, or the spheres
may be made a part of a series of spheres separated by gaps and
connected across a high potential circuit, as in some forms of
lightning arresters.

Herefrom it appears that the highest frequency of oscillation
of appreciable power which can be produced by a condenser
discharge reaches billions of cycles per second, thus is enormously
higher than the highest frequencies which can be produced by
electrodynamic machinery.

At five billion cycles per second, the wave length is about
6 cm., that is, the frequency only a few octaves lower than
the lowest frequencies observed as heat radiation or ultra red
light.

The average wave length of visible light, 55 X 10~® cm
corresponding to a frequency of 5.5 X 10 cycles, would require
spheres 10~ cm. in diameter, that is, approaching molecular
dimensions.

OSCILLATING-CURRENT GENERATOR.

49. A system of constant impressed e.m.f., e, charging a con-
denser C through a circuit of inductance L and resistance r, with
a discharge circuit of the condenser, C, comprising an air gap
in series with a reactor of inductance L,and a resistor of resist-
ance r,, is a generator of oscillating current if the air gap is set
for such a voltage e, that it discharges before the voltage of the
condenser C has reached the maximum, and if the resistance r,
is such as to make the condenser discharge oscillatory, that is,

2L,
1'., C
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In such a system, as shown diagrammatically in Fig. 16, as
soon, during the charge of the condenser, as the terminal voltage
at C and thereby at the spark gap has reached the value e,, the
condenser C discharges over this spark gap, its potential dif-
ference falls to zero, then it charges again up to potential differ-
ence e,, discharges, etc. Thus a series of oscillating discharges

:Go

o=

%ﬁ

D -

Fig. 16. Oscillating-current generator.

occur in the circuit, L,, ,, at intervals equal to the time required
to charge condenser C over reactor L and resistor r, up to the
potential difference e,, with an impressed e.m.f. e.

The resistance, r, obviously should be as low as possible, to
get good efficiency of transformation; the inductance, L, must
be so large that the time required to charge condenser C to
potential e, is sufficient for the discharge over L,, r, to die out
and also the spark gap e, to open, that is, the conducting products
of the spark in the gap e, to dissipate. This latter takes a con-
siderable time, and an air blast directed against the spark gap e,,
by carrying away the products of the discharge, permits a more
rapid recurrence of the discharge. The velocity of the air blast
(and therefore the pressure of the air) must be such as to carry
the ionized air or the metal vapors which the discharge forms
in the gap e, out of the discharge path faster than the con-
denser recharges.

Assuming, for instance, the spark gap, e,, set for 20,000 volts,
or about 0.75 in., the motion of the air blast during successive
discharges then should be large compared with 0.75 in., hence
at least 3 to 6 in. With 1000 discharges per second, this would
require an air velocity of v = 250 to 500 feet per second, with
5000 discharges per second an air velocity of v = 1250 to 2500
feet per second, corresponding to an air pressure of approximately
p=147{(1 +21*10~7)>* — 1} Ib. per sq. in., or 0.66 to 2.75
Ib. in the first, 23 to 230 lb. in the second case.
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While the condenser charge may be oscillatory or logarithmic,
efficiency requires a low value of r, that is, an oscillatory charge.

With a frequency of discharge in L,, r, very high compared
with the frequency of charge, the duration of the discharge is
short compared with the duration of the charge, that is, the
oscillating currents consist of a series of oscillations separated
by relatively long periods of rest. Thus the current in L does
not appreciably change during the time of the discharge, and at
the end of the condenser charge the current in the reactor, L,
is the same as the current in L, with which the next condenser
charge starts. The charging current of the condenser, C, in L
thus changes from 7, at the beginning of the charge, or con-
denser e.m.f., e, = 0, to the same value 7, at the end of the
charge, or condenser e.m.f., e, = e,.

60. Counting, therefore, the time, ¢, from the moment when
the condenser charge begins, we have the terminal conditions:

t=0,7= wo, e, = 0 at the beginning of the condenser charge.
t=t, ©=1, e =e, attheend of the condenser charge.

In the condenser discharge, through circuit L, r, counting
the time ¢ from the moment when the condenser discharge
begins, thatis, ¢ =t — ¢,, we have

=0 t¢=0, e =e,the terminal condition.

e, thus, is that value of the voltage e, at which discharge
takes place across the spark gap, and ¢, is the time elapsing
between e, = 0 and e, = e, or the time required to build up
the voltage e, sufficiently to break down the spark gap.

Under the assumption that the period of oscillation of the
condenser charge through L, r, is large compared with the
period of oscillation of the condenser discharge through L, r,
the equations are:

(A) Condenser discharge:

. 2eo Yo 4 q
§="20 T35 gin o v, 66
9 2L, (%)
o p q ,
e, = eg 2ho §COS2I‘: v+ -2 q., =t ; 67)
h -
where iL -
(68)
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(B) Condenser charge:

i=c~2_‘“2i.cos%t+2—e——sm——t§ (69)

Lk o
r 0
e, =e—¢ 3L ecos—q—t-}-———z— sin Lt , (70)

2L q 2L
where R
4L

Substituting in (69) and (70) the above discussed terminal
conditions,
t=t°) i=ior €, = 6,
gives
q
2L

t + sm— [ ; (72)

-
o=1¢ 2L gincos

and

,e__i'_‘l_’io
-r 2
— p — 2L" 1 - = 0§ l .
=¢e—¢ ecos t,+ . smth, (73)

Denoting, for convenience,

r
CYA th=s,
T4, =4, (74)
2L
and
r
-— = a’
q
and resolving (72) for 1,, gives
. 2e ~*sin
T, = — : ¢ @75)

q 1—c"cosgp +ac'sing
and substituting (75) in (73) and rearranging,
— -2 —2s
e — ¢ 1-2¢ cos¢+e. . (76)

° 1—¢"cos¢p + ac™*sin ¢
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The two equations (75), (76) permit the calculation of two of
the three quantities 7, e,, ¢,: the time, t,, of condenser charge
appears in the exponential functlon in s, and in the tngonometnc
functlon, in ¢.

Since in an oscillating-current generator of fa.lr efficiency,
that is, when r is as small as possible, s is a small quantity,
e* can be resolved into the series

e"’=1—s+;—z—+.... @
Substituting (77) in (75), and dropping all terms higher than
&, gives
£\ .
2¢ (l—s-i-—)squ
7’0

&
7, —cos¢+scos¢——cos¢ + asin¢ — assin ¢

Multiplying numerator and denominator by (l %), and
rearranging, gives

: _2e sin ¢ )
° g2+s
2 —
' (78)
2e sin ¢
g 2—2_—83+2sin’¢+asm¢

Substituting (77) in (76), dropping terms higher than s* and

as, multiplying numerator and denominator by (l + %), and
rearranging, gives

¢
2 2
sin 2

e, =2e T ¢ . (79)
2T+ 2smz +asm¢
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Substituting ¢, in (78) and (79) gives

in L
. 2e sm2Lt,,
%:7 2rt q q (80)
4L Tt +2 m4—Lt +qSl 2—Lt°
and
., q 2
2sin’ T bt g
e, =2e 77 7 7 (81)
LT =
il +2s 1n4Lt +qsm2Lt

as approximate equations giving ¢, and e, as functions of ¢,, or the
time of condenser charge.

61. The time, ¢,, during which the condenser charges, increases
with increasing e,, that is, increasing length of the spark gap in
the discharge circuit, at first almost proportionally, then, as
e, approaches 2 e, more slowly.

As long as e, is appreciably below 2 e, that is, about e, < 1.75 ¢,
t, is relatively short, and the charging current 7, which increases
from 7, to a maximum, and then decreases again to 7,, does not
vary much, but is approximately constant, with an average
value very little above 7,, so that the power supplied by the
impressed e.m.f., e, to the charging circuit can approximately
be assumed as

Po = €l (82)

The condenser discharge is intermittent, consisting of a series
of oscillations, with a period of rest between the oscillations,
which is long compared with the duration of the oscillation,
and during which the condenser charges again.

The discharge current of the condenser is, (66),

2 . B

= q—j"e 21" smz—I—Jt in amp.,
and since such an oscillation recurs at intervals of ¢, seconds,
the effective value, or square root of mean square of the dis-

charge current, is
i/ ["za 3
tyJo
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Long before ¢ = ¢,, ¢ is practically zero, and as upper limit of
the integral can therefore be chosen « instead of ¢,.

Substituting (66) in (83), and taking the constant terms out
of the square root, gives the effective value of discharge cur-
rent as

. 2eo\/l j’”J. q
1, = —V=-] ¢ Lo gp2_d0
1= g Vi o sin 2L,tdt

_2¢,/ 1 gj"z-. j‘:-£= % ;
“ \/2t° ° d-J, cosLotdt ; (84)

however,

and by fractional integration,

Q—E‘
f Lo q_o
o‘ cosLotdt

hence, substituting in (84),
. / 2L
1, =6\ ——"0 . (85)
' ° tro (e + ¢57)

4L
q’=?'_r':

Since

we have, substituting in (85),

i, = eo\/z—ﬂ_ (86)

toro ’
and, denoting by

1
Ji= g
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the frequency of condenser charge, or the number of complete
trains of discharge oscillations per second,

1:‘ =€, \/;-;jér (87)

that is, the effective value of the discharge current is propor-
tional to the condenser potential, e,, proportional to the square
root of the capacity, C, and the frequency of charge, f,, and
inversely proportional to the square root of the resistance, r,
of the discharge circuit; but it does not depend upon the induc-
tance L, of the discharge circuit, and therefore does not depend
on the frequency of the discharge oscillation.
The power of the discharge is

. eC
Py = 11’7'0 = fl '05‘ y (88)

Since &C is the energy stored in the condenser of capacity C

2
at potential e, and f, the frequency or number of discharges
of this energy per second, equation (88) is obvious.
Inversely therefore, from equation (88), that is, the total
energy stored in the condenser and discharging per second,
the effective value of discharge current can be directly calcu-

lated as
/P _ ‘/C_fl_.
2‘—\/:,‘ % 27,

The ratio of effective discharge current, 7,, to mean charging
current, 7,, is

Ty _ € Cfl
T, B 2 r (89)
and substituting (80) and (81) in (89),

£t

2
i o7, 2" I tsL
== g . (90)
* SO
2L
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The magnitude of this quantity can be approximated by
neglecting r compared with %I:, that is, substituting g = {/ %

and replacing the sine-function by the arcs. This gives
i, 1
W VIO
that is, the ratio of currents is inversely proportional to the
square root of the resistance of the discharge circuit, of the
capacity, and of the frequency of charge.

62. Example: Assume an oscillating-current generator, feed-
ing a Tesla transformer for operating X-ray tubes, or directly
supplying an iron arc (that is, a condenser discharge between
iron electrodes) for the production of ultraviolet light.

The constants of the charging circuit are: the impressed
ean.f., e = 15,000 volts; the resistance, r = 10,000 ohms; the
inductance, L = 250 henrys, and the capacity, C=2 X 10~*
farads = 0.02 mf.

The constants of the discharge circuit are: (a) operating
Tesla transformer, the estimated resistance, r, = 20 ohms
(effective) and the estimated inductance, L, = 60X 10~*
henry = 0.06 mh.; (b) operating ultraviolet arc, the esti-
mated resistance, r, = 5 ohms (effective) and the estimated
inductance, L, = 4 X 10~® henry = 0.004 mh.

Therefore in the charging circuit,

(91)

g = 223,400 ohms, £= 0.0448,
9 _ L
S = 463, 57 =2,
—Ij = 0.025;
r
then . \
i = 0.1344 - sin 446.8 ¢, '
T+ 2sin223.4 4,4 0.04485in 446,81,
Tl
and ., L (92)
: 200 ¢,2
e, = 30,000 ; 2sin*223.4 ¢, + 200 ¢, .
b + 2sin" 223.41,+ 0.0M8sin 4681,
T b
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Fig. 17 shows 7, and e, as ordinates, with the time of charge
t, as abscissas.

03 \\ [ ] Ildl
.1 T
%06 il l;%iﬁ
3 o m nt, e e | LT+
>°m—,o.:.
x 18-
s 1-Fa4 < ool
14 L ~ <M.
P S
log 0.3 -
" s—os i1
21— SS .
0.1
0=02 04 06 08 10 12 14 16 18 20X10"2Bec.

Fig. 17. Oscillating-current generator charge.

The frequency of the charging oscillation is

-2 _ :
f= il 71.2 cycles per sec.;
for
1, = 0.365 amp.,

substituting in equations (69) and (70) we have

1=¢72 {0.365 cos 446.8 t+0.118 sin 446.8 ¢}, in amp.,

and (93)
€,=15,000{1—&~2" [cos 446.8 t—2.67 sin 446.8 (]}, in volts,

the equations of condenser charge.

From these equations the values of 7 and e, are plotted in
Fig. 18, with the time ¢ as abscissas.

As seen, the value ¢ =4, = 0.365 amp., is reached again
at the time ¢, = 0.0012, that is, after 30.6 time-degrees or about
% of a period. At this moment the condenser e.m.f. is e, =
e, = 22,300 volts; that is, by setting the spark gap for 22,300
volts the duration of the condenser charge is 0.0012 second,
or in other words, every 0.0012 second, or 833 times per second,
discharge oscillations are produced.

With this spark gap, the charging current at the beginning
and at the end of the condenser charge is 0.365 amp., and the



84 TRANSIENT PHENOMENA

average charging current is 0.3735 amp. at 15,000 volts, con-
suming 5.6 kva.

Assume that the e.m.f. at the condenser terminals at the end
of the charge is e, = 22,300 volts; then consider two cases,
namely: (a) the condenser discharges into a Tesla transformer,
and (b) the condenser discharges into an iron arc.

8B
f'- volts /V/
03 0.
" e‘,’- volts /
16
u
;
12
g /
v /
8 / 4.03;
— P— u
. /
/
= /
lf
i

t=02 04 06 08 10 12X10"%Bec.
Fig. 18. Oscillating-current generator condenser charge.

(@) The Tesla transformer, that is, an oscillating-current
transformer, has no iron, but a primary coil of very few turns
(20) and a secondary coil of a larger number of turns (360),
both immersed in oil.

While the actual ohmic resistance of the discharge circuit is
only 0.1 ohm, the load on the secondary of the Tesla trans-
former, the dissipation of energy into space by brush discharge,
etc., and the increase of resistance by unequal current distribu-
tion in the conductor, increase the effective resistance to many
times the ohmic resistance. We can, therefore, assign the
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following estimated values: r,= 20 ohms; L,= 60 X 10~° henry,
and C = 2 X 10~ farad.

Then
g, = 108 ohms, L_ 0.186,
9
Lo _ 0,398 x 10° To_ _ 0.1667 X 10°
2 L, ' 2 L, ’
which give
1 =415 g-o10e7x1¢° gin (0,898 X 10° ¢, amp.
and
e, =22,300 e~ 0140719 { 05 (.898 X 10° ¢+ 0.186 sin 0.898 X 10° t},
volts. .
(94)
The frequency of oscillation is
(]
fo = Q&Z%& = 143,000 cycles per sec. (95)

Fig. 19 shows the current ¢ and the condenser potential e,
during the discharge, with the time ¢ as abscissas. As seen,
the discharge frequency is very high compared with the fre-

ro'ﬂ”%?"mb
% ml IL]=0.06 mh.
20 \i C |=0.02
5 \ &"“—mvclu
37 N
g s8I aY
e \ e
i-‘ 0 X ~
R /] //
-“ -m 1. 1 o i 1 1
1.5 3 45 [} .5 9 105 12 185
x10°* Beo.

Fig. 19. Oscillating-current generator condenser discharge.

quency of charge, the duration of discharge very short, and
the damping very great; a decrement of 0.55, so that the oscil- -
lation dies out very rapidly. The oscillating current, however,
is enormous compared with the charging current; with a mean
charging current of 0.3735 amp., and a maximum charging
current of 0.378 amp. the maximum discharge current is 315
amp.,or 813 times as large as the charging current.
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The effective value of the discharge current, from equation
(87), is ¢, = 14.4 amp., or nearly 40 times the charging current.

63. (b) When discharging the condenser directly, through
an ultraviolet or iron arc, in a straight path, and estimating
r, = 5 ohms and L, = 4 X 10~° henry, we have

g, = 27.84 ohms, ;—l’ = 0.1795,
0

ro
2L

2o _ 348x% 10",

- 3 o.
3L, 0.625 X 10°%

o

then,
1=1600 ¢ >#25x1%° 5in 3.48 X 10°¢, in amp.,
and
€,=22,300 e~ ©®5x19* {05 3.48 X 10° £ +0.1795 sin 3.48 X 10° ¢},
in volts,
(96)
and the frequency of oscillation is

f, = 562,000 cycles per sec.; 97)

that is, the frequency is still higher, over half a million
cycles; the maximum discharge current over 1000 amperes;
however, the duration of the discharge is still shorter, the
oscillations dying out more rapidly.

The effective value of the discharge current, from (87), is
1, = 28.88 amp., or 77 times the charging current. A hot
wire ammeter in the discharge circuit in this case showed
29 amp.

As seen, with a very small current supply, of 0.3735 amp.,
at e = 15,000 volts, in the discharge circuit a maximum voltage
of 22,300, or nearly 50 per cent higher than the impressed
voltage, is found, and a very large current, of an effective value
very many times larger than the supply current.

As a rule, instead of a constant impressed e.m.f., e, a low
frequency alternating e.m.f. is used, since it is more conven-
iently generated by a step-up transformer. In this case the
condenser discharges occur not at constant intervals of ¢, sec-
onds, but only during that part of each half wave when the
e.m.f. is sufficient to jump the gap e,, and at intervals which
are shorter at the maximum of the e.m.f. wave than at its
beginning and end.
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For instance, using & step-up transformer giving 17,400 volts
effective (by the ratio of turns 1:150, with 118 volts im-
pressed at 60 cycles), or a maximum of 24,700 volts, then
during each half wave the first discharge occurs as soon as the
voltage has reached 22,300, sufficient to jump the spark gap,
and then a series of discharges occurs, at intervals decreasing
with the increase of the impressed e.m.f., up to its maximum,
and then with increasing intervals, until on the decreasing
wave the e.m.f. has fallen below that which, during the charg-
ing oscillation, can jump the gap e,, that is, about 13,000 volts.
Then the oscillating discharges stop, and start again during the
next half wave.

Hence the phenomenon is of the same character as investi-
gated above for constant impressed e.m.f., except that it is
intermittent, with gaps during the zero period of impressed
voltage and unequal time intervals ¢, between the successive
discharges.

64. An underground cable system can act as an oscillating-
current generator, with the capacity of the cables as condenser,
the internal inductance of the generators as reactor, and a short-
circuiting arc as discharge circuit.

In a cable system where this phenomenon was observed
the constants were approximately as follows: capacity of the
cable system, C = 102 mf.; inductance of 30,000-kw. in gen-
erators, L =6.4 mh.; resistance of generators and circuit up to
the short-circuiting arc, r = 0.1 ohm and r = 1.0 ohm respec-
tively; impressed e.m.f., 11,000 volts effective, and the fre-
quency 25 cycles per second.

The frequency of charging oscillation in this case is

f= ﬁ = 197 cycles per sec.

q=\/‘%-L—r’=15.80hms.

Substituting these values in the preceding equations, and
estimating the constants of the discharge circuit, gives enor-
mous values of discharge current and e.m.f.

since



CHAPTER VIL

RESISTANCE, INDUCTANCE, AND CAPACITY IN SERIES IN
ALTERNATING-CURRENT CIRCUIT.

66. Let, at time ¢t = 0 or § = 0, the e.m.f.,
e=FEcos(d—4,), : 1)

be impressed upon a circuit containing in series the resistance, r,
the inductance, L, and the capacity, C.

The inductive reactance is  z =2 =fL ‘

. . 1 @)
and the condensive reactance is z, = m’
where f = frequency and 6 = 2 =ft. ®)
Then the e.m.f. consumed by resistance is rz;
the e.m.f. consumed by inductance is
di i
L d—t = z@;
and the e.m.f. consumed by capacity is
1 pr. ; . »
o =g fia=z fim, @
where ¢ = instantaneous value of the current.
Hence, e=ri+ :cj—; + z, fi do, 5)
. dv .
or, Ecos(0—00)=n+xd—0+:cc 140, (6)

and hence, the difference of potential at the condenser terminals
s

; . di
el=a:cf1d0=Ecos(0—0o)—n—xd_o. @)

88
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Equation (6) differentiated gives

. ax di
Esxn(o—_ﬂ,,) +xd—?+rd—0

+ z1 = 0. (8)
The integral of this equation (8) is of the general form

1 =A™ + Becos (0 — o). 9)
Substituting (9) in (8), and rearranging, gives

Ae**{a’z—ar+z.} +sin 0 {E cos 0,—rB cos o— B (z—z,) sin o}
—cos0{Esinf, — rBsino + B (z — z.) cos o} = 0,

and, since this must be an identity,
@z —ar+z, =0,
Ecosf,— rBecosa — B (z — z,)sine = 0, (10)

Esin6, — rBsino + B (z — z,) cosa = 0.

Substituting
s =VP —4dzz,
z,=V7P + (z — z.)}, ' a11)
tany = Z— %,

REX
T2z
: E
B =z—°, (12)
co=0,+v
and A = indefinite,

and the equation of current, (9), thus is

r+s

'=-§cos @-0, -7 + Ale—{;.-i- A,e_-2_‘.’ (13)
o
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and, substituting (12) in (7), and rearranging, the potential
difference at the condenser terminals is

r—s — _r+s
r+8Al£—W.—r28A,e 72 ¢, (14)

Ex. .
e, =z—xsm(0—0°—'7)—
o

The two integration constants A, and A4, are given by the
terminal conditions of the problem.
Let, at the moment of start,

6 =0,
t = 7, = instantaneous value of current and

e, = ¢, = instantaneous value of condenser potential s
difference.

Substituting in (13) and (14),

1 =

E

5 cos O, +v+A,+A4,
0
and

r+s r—s
2

Er, .
e, = — z‘sm(0°+'y)-
0

Therefore
. FE
A +A,=1,— z—cos @, + )
(1]
and (16)

o +2 E .
A,—Az=—”"_: e°+:s;—“{rcos(0.,+'7)—2:ccsm(0.,+'7)},
or,

r—s, te

2l g, _
A,—-—————S +—§%cos(0°+'y)—xcsm(0°+7);

[1)

and 1mn

r+s.

—1,+te

2 7 FE(r+s .
A,=+ — Tw chos (0°+7)—:ccsm(00+'y)§.
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Substituting (17) in (13) and (14) gives the integral equations
of the problem
The current is

? - v

_";‘. _ .
1= Ecos O0—=0,—)+ E ;e 2z [r—‘—scos @,+7)—z.sin (0°+'7)]
z, sz, 2
I'4

—e 2% [tg—scos(ﬂo-i-')‘)—xc sin (00+7)]§

1 2sr;f ] ‘Z“Lif ]; 18
-<)¢ 2z+e 2z+e (18)

and the potential difference at the condenser terminals is

Er. .
e‘=7xsm @—0,—1)
[

-e[r—s .
—2Eog(r+s)e 2z [—2-cos(0o+'7)—.tcsm(00+'y)]
r+s

—(r—s)e 2% ! [r_;_s cos (0, +7) — z, sin (0°+‘Y)]§

T TN R S o |
+2s§(r+s)e [ 2 z°+e] (r— s)e 2 1,+e,
19)
where
2y = \/T’ + (I - xc)zy

tany =%, 11)
r
and
s=AP_4zrz,.

The expressions of ¢ and e, consist of three terms each:

(1) The permanent term, which is the only one remaining
after some time;

(2) A transient term depending upon the constants of the
circuit, 7, 8, z., z,, Z, the impressed e.m.f., E, and its phase 0, at
the moment of starting, but independent of the conditions
existing in the circuit before the start; and
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(3) A term depending, besides upon the constants of the
circuit, upon the instantaneous values of current and potential
difference, 7, and e,, at the moment of starting the circuit, and
thereby upon the electrical conditions of the circuit before
impressing the e.m.f., e. This term disappears if the circuit is
dead before the start.

Equations (18) and (19) contain the term s=vr —4zxz,

\/1J ; hence apply only when 7*> 4 z z,, but become

mdetenmnate if #=4 zz,, and imaginary if < 4z z,; in the
latter cases they have to be rearranged so as to appear in real
form, in manner similar to that in Chapter V.

56. In the critical case, ¥ = 4 zz, and s = 0, equatlon @18),
rearranged, assumes the form

r

== os(0—0-'7)+§e—2'

3'_'
2 -2
—oo(lT . JE_ T .
— e TSl e [ —

However, developing in a series, and canceling all but the
first term as infinitely small, we have

J"GJ

008 (0, V)= 2.5in Oyt |° — cos (0,+)]

| e
[

hence the current is
. E E -
1 :=;-COS (0 - 00—7) + Z—G 2z

[ 0

g[% cos (0, + ) — z_sin (0, + 'Y)]g — cos (6 + 1) §

R T S ] .
[} 20 Ox’ ()
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and in the same manner the potential difference al condenser
terminals is

r

Ze 2z

e, = sin(ﬁ-ﬂo—'y)—%os

g[gcos (0 + ) — zrsin (6, +’Y)]§ — 2z,8in 0+ '7)2

1 - T . /]
R L R IX 2 (21)

Here again three terms exist, namely: a permanent term, a
transient term depending only on E and 6, and a transient
term depending on ¢, and e,.

67. In the trigonometric or osctllatory case, ¥ < 4z z,, 8 be-
comes imaginary, and equations (18) and (19) therefore contain
complex imaginary exponents, which have to be eliminated,
since the complex imaginary form of the equation obviously
is only apparent, the phenomenon being real.

Substituting

g=Vizr,—1r =js (22)

in equations (13) and (14), and also substituting the trigono-
metric expressions

L 3
+izt g .. g
; —cos2—x0+33m230
and (23)
-igse q .. g
€ =COS§—I0—]SH12—£0,

and separating the imaginary and the real terms, gives

. E -5
z=z—cos(0—0°—'7)+e 2

(]

g(A, + A,) cos %ﬂ—j(A,—A,)sinz—qJ—;ag
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and

r
-0
B in 0= 0,— 9) — ¢ =

e, =
0

A+A[ q . _q_] A —A

-1 2 —_

g ) rcoszzﬂ qsmzxﬂ +1] 2
X in 4 ]g

[qcoszx0+ rsxnzxo ;

then substituting herein the equations (16) and (22) the imagi-
nary disappears, and we have the current,
. E E -3
2 =Zcos 0—-0,— 'r)—;o-e

{ 9 [2%- _T ] q ;
(cos(0°+'7)cos2£0+ . sm§0°+'7) qcos(0,+'v) sm2z0

+e 2% giocos—z%:ﬁ-&%‘t—"sin%cﬁg’ 24)

and the potential difference at the condenser terminals,

T
Excsin (0_00_7)+Ez£96 2z

e, =

) o LI L _2z ] g
3s1n (0o+'y)cos2x0+[qsm(0°+ry) p cos(0,+7) 81021:02

r

o 2re, + 4z, .
+e 2% e, Cos - " TTco

q q
50+ oF sin o~ 6 (25)

Here the three component terms are seen also.

68. As examples are shown in Figs. 20 and 21, the starting
of the current 7, its permanent term ¢/, and the two transient
terms ¢, and ,, and their difference, for the constants £ = 1000
volts = maximum value of impressed e.m.f.; r = 200 ohms
=resistance; z = 75 ohms = inductive reactance, and z, = 75
ohms = condensive reactance. We have

4zz, = 22,500

and 7 = 40,000;
therefore
” >4zrzx.,
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that is, the start is logarithmic, and 2z, = 200, s = 132, and
=0

0 T
PN L olonion
N Z 1= [7lohins
N LA ohius
’ L) y U £
& t,\ ~
[—
B0 ~ =
< LT3 \ AN
\\
2 N
N
‘ N
- ~ %

0 20 40 6 8 100 120 140 180 180 200
Degrees

Fig. 20. Starting of an alternating-current circuit, having capacity, inductance
and resistance in series. Logarithmic start.

In Fig. 20 the circuit is closed at the moment 8, = 0, that
is, at the maximum value of the impressed e.m.f., giving from
the equations (18) and (19), since ¢, = 0, ¢, = 0,

t=05{cos 0 — 1.26 722 + 0.26 e—4%2¢ }
and
e, = 375 {sin 0 + 0.57 (=20 — ¢=04810)}

‘ v A E =100 olte
1 | it~ N L z 1 huhs
n rs 0¥
NIz WNREH
a —] = o
-
‘ .’ I T4
so 1~ N
™
-, N
N
-4

0 20 40 6 8 100 120 240 160 10 200
Degrees

Fig. 21. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Logarithmic start.

In Fig. 21 the circuit is closed at the moment 6, = 90°, that
is, at the zero value of the impressed e.m.f., giving the equa-
tions

t=>5{sinf + 0.57 (c73%* — gm0esz0)}
and
e, = — 375 {cos 0 + 0.26 e~22* — 1.26 c"°"‘")}.



96 TRANSIENT PHENOMENA

There exists no value of 6, which does not give rise to a
transient term.

I TEEE
N z L .:gy
i3 N oL o
: i o
e S,
AT
-2 is |~
4
A= -
W 40 60 80 100 120 140 10 30 300 20

Degrees
Fig. 23. S8tarting of an alternating-current circuit having capacity, inductance
~ and resistance in series. Critical start.

In Fig. 22 the start of a circuit is shown, with the inductive
reactance increased so as to give the critical condition,

P =4zz,

but otherwise the constants are the same as in Figs. 20 and 21,
that is, E = 1000 volts; r = 200 ohms; z = 133.3 ohms, and
z, = 75 ohms;

therefore 2, = 208.3,

58.3
tany = 200 0.2915, or v = 16°,
assuming that the circuit is started at the moment 6, = 0, or
at the maximum value of impressed e.m.f.
Then (20) and (21) give

1=4.78cos (f — 16°) + ¢ *™°(2.70 — 4.6)
and
= 358sin (0 — 16°) — ¢~ °™* (4106 — 99).

Here also no value of 8, exists at which the transient term
disappears.

69. The most 1mportant is the oscillating case, ©* < 4zz,
since it is the most common in electrical circuits, as underground
cable systems and overhead high potential circuits, and also is
practically the only one in which excessive currents or excessive
voltages, and thereby dangerous phenomena, may occur.
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If the condensive reactance z, is high compared with the
resistance r and the inductive reactance z, the equations of
start for the circuit from dead condition, that is, 7, = 0 and
¢, = 0, are found by substitution into the general equations
(24) and (25), which give the current as ‘

. Eq . 4
t=——-§sm @—0)+e ** [smﬂocos L0
e z

z VL
—\/= /) \/: g
\/; cos 6, sin p 0] (26)
and the potential difference at the condenser terminals as

g
e,=E’%cos(0—0°)-e 2z

e T T . x l
\/: 7] \/: 0) i \/:C 27
[cosﬂocos 10+(2\/ ccos ot xcsm o) Sin 1:0 , @7

where q=2vVzz1,2%=1,and ¥ = — 90° (28)

In this case an oscillating term always exists whatever the
value of 0,, that is, the point of the wave, where the circuit is
started.

The frequency of oscillation therefore is
_9._ z. r
R AL
or, approximately, (29)

5o VES

where f = fundamental frequency.

s 1
Substituting z = 2 zfL and r, = T AT we have
1 2
fo=5:V g1~ 17
or, approximately, (30)

1
fo =27t\/C_Z_.
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60. The oscillating start, or, in general, change of circuit
conditions, is the most important, since in circuits containing
capacity the transient effect is almost always oscillating.

The most common examples of capacity are distributed
capacity in transmission lines, cables, etc., and capacity in the
form of electrostatic condensers for neutralizing lagging currents,
for constant potential-constant current transformation, etc.

(a) In transmission lines or cables the charging current is a
fraction of full-load current ¢, and the e.m.f. of self-inductance
consumed by the line reactance is a fraction of the impressed
e.m.f. e, Since, however, the charging current is (approximately)

e . .
== and the e.m.f. of self-inductance = zv,, we have
c
e . .
.‘C_ < 1y Ty < €5
c

hence, multiplying,

z
—<landz < z..

The resistance r is of the same magnitude as z; thus
dzz. >1.

For instance, with 10 per cent resistance drop, 30 per cent
reactance voltage, and 20 per cent charging current in the line,
assuming half the resistance and reactance as in series with the
capacity (that is, representing the distributed capacity of the
line by one condenser shunted across its center) and denoting

=%
p= io 4
where ¢, = impressed voltage, 7, = full-load current, we have
= -ﬂ' =
%= 92" 0P

£=05X%X03p=0.15p,
r=0.5x%0.1p = 0.05 p,

and

r+-z+z,=1+3-+ 100,
and

4zz, + 77 =1200 + 1.
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In this case, to make the start non-oscillating, we must have

z < —4—;6r, or z < 0.000125 p, which is not possible; or r > 2V'3,

which can be done only by starting the circuit through a very
large non-inductive resistance (of such size as to cut the starting

current down to less than\—;?? of full-load current). Even in

this case, however, oscillations would appear by a change of
load, etc., after the start of the circuit.

(b) When using electrostatic condensers for producing watt-
less leading currents, the resistance in series with the condensers
is made as low as possible, for reasons of efficiency.

Even with the extreme value of 10 per cent resistance, or

r + . = 1 + 10, the non-oscillating condition is z < 1 r, or

40
0.25 per cent, which is not feasible.
In general, if
Z consumes........ 1 2 4 9 16 per cent of the con-
denser potential
difference,

r must consume > 20 28.3 40 60 80 per cent of the con-
denser potential
difference.

That is, a very high non-inductive resistance is required to
avoid oscillations.

The frequency of oscillation is approximately f, = \/% f

that is, is lower than the impressed frequency if z. < z (or the
permanent current lags), and higher than the impressed fre-
quency if z, > z (or the permanent current leads). In trans-

mission lines and cables the latter is always the case.
Since in a transmission linexBis approximately the charging

current, as fraction of full-load current, and f) half the line

e.n.f. of self-inductance, or reactance voltage, as fraction of
impressed voltage, the following is approximately true:
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The frequency of oscillation of a transmission line is the
impressed frequency divided by the square root of the product
of charging current and of half the reactance voltage of the line,
given respectively as fractions of full-load current and of im-
pressed voltage. For instance, 10 per cent charging current,
20 per cent reactance voltage, gives an oscillation frequency

fo= L =101

V0.1 X 0.1
MY E -
TR LA Y
0 ' ' ‘ I =

-t

/ A/

Avs v
rli],ﬁ; volta| |Z. 1= 1000 ohrus
= [ 10ohms [0 |

I~

L1
=
_—
L1
e
1L

-400

BE

Fig. 23. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start of transmission line.

61. In Figs. 23 and 24 is given as example the start
of current in a circuit having the constants, E = 35,000
cos (9 — 0,); r = 5 ohms; z = 10 ohms, and z, = 1000 ohms.

In Fig. 23 for 6,= 0° or approximately maximum oscilla-
tion,

1= —235{singd — 10 °¥*gin 10 0}

and
e, = 35,000 {cos @ — ¢~ °*°[cos 10 6 + 0.025 sin 10 6]}.

In Fig. 24 for 6, = 90°, or approximately minimum oscilla-
tion,
t =35 {cosf — e °*?cos 100}

and
e, = 35,000 {sin 0 + 0.1 ¢ °* *sin 10 6}.

As seen, the frequency is 10 times the fundamental, and in
starting the potential difference nearly doubles.
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As further example, Fig. 25 shows the start of a circuit of a
frequency of oscillation of the same magnitude as the funda-
mental, in resonance condition, £ = z,, and of high resistance.

E=-W'elu
/i z L | 100
sH e
wl/ ~AT A o
p VAEAS'SAY
s X
0 -0 " N / N\
-60 lh A\ 4 Y
© \V
“ s
: Sai )
-20 i
o
@ 7é~|' N/

Fig. 24. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start of transmission line.

The circuit constants are E = 1500 volts; r = 30 ohms;
z =20 ohms; z,=20 ohms, and 0, = — 7v; which give
q=2646; 2z, =30; ¥y =0,and 6, = 0.

5 L1800 Jolts

30-0h
= 120 ohm:
™ 22 bhms

/
5
=

4
RGE]
=

-

-]
.
53)

.
4

A /
4

-40 \;\\ et
NS

Fig. 25. Starting of an alternating-current circuit having capacity, inductance
and resistance in series. Oscillating start. High resistance.

Substituting in equations (24) and (25) gives

1 =50 {cos 0 — ¢~ *™?[cos 0.661 0 — 1.14 sin 0.661 4]}
and

e, = 1000 {sin & — 1.51 &~ *™ ¢ sin 0.661 6}.
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either towards a local, very high frequency oscillation, or travel-
ing wave, of very limited power, in a part of the cables, or a low
frequency high power surge, frequently of destructive magnitude,
of the joint capacity of the cables, against the inductance of the
generating system.

63. The physical meaning of the transient terms can best be
understood by reviewing their origin.

In a circuit containing resistance and inductance only, but a
single transient term appears of exponential nature. In such a
circuit at any moment, and thus at the moment of start, the
current should have a certain definite value, depending on
the constants of the circuit. In the moment of start,however,the
current may have a different value, depending on the preceding
condition, as for instance the value zero if the circuit has been
open before. The current thus adjusts itself from the initial
value to the permanent value on an exponential curve, which
disappears if the initial value happens to coincide with the final
value, as for instance if the circuit is closed at the moment of
the e.m.f. wave, when the permanent current should be zero.
The approach of current to the permanent value is retarded by
the inductance, accelerated by the resistance of the circuit.

In a circuit containing inductance and capacity, at any
moment the current has a certain value and the condenser a
certain charge, that is, potential difference. In the moment of
start, current intensity and condenser charge have definite
values, depending on the previous condition, as zero, if the
circuit was open, and thus two transient terms must appear,
depending upon the adjustment of current and of condenser
e.m.f. to their permanent values.

Since at the moment when the current is zero the condenser
e.m.f. is maximum, and inversely, in a circuit containing induc-
tance and capacity, the starting of a circuit always results in the .
appearance of a transient term.

If the circuit is closed at the moment when the condenser
e.m.f. should be zero, that is, about the maximum value of cur-
rent, the transient term of current cannot exceed in amplitude its
final value, since its maximum or initial value equals the value
which the current should have at this moment. If, however,
the circuit is closed at the moment where the current should be
zero and the condenser e.m.f. maximum, the condenser being
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without charge acts in the first moment like a short circuit, that
is, the current begins at a value corresponding to the impressed
e.m.f. divided by the line impedance. Thus if we neglect the
resistance and if the condenser reactance equals n? times line
reactance, the current starts at n? times its final rate; thus it
would, in a half wave, give n* times the full charge of the con-

denser, or in other words, charge the condenser in;l-z of the time
of a half wave. That is, the period of the starting current is
}land the amplitude n times that of the ﬁnallcurrent. How-
ever, as soon as the condenser is charged, in - of a period of

the impressed e.m.f., the magnetic field of the charging current
produces a return current dlschargmg the condenser again at
the same rate.

Thus the normal condltlon of start is an oscillation of such a
frequency as to give the full condenser charge at a rate which
when continued up to full frequency would give an amplitude
equal to the impressed e.m.f. divided by the line reactance.
The effect of the line resistance is to consume e.m.f. and thus
dampen the oscillation, until the resistance consumes during the
condenser charge as much energy as the magnetic field would
store up, and then the oscillation disappears and the start becomes
exponential.

Analytically the double transient term appears as the result
of the two roots of a quadratic equation, as seen above.



CHAPTER VIIIL.

LOW FREQUENCY SURGES IN HIGH POTENTIAL SYSTEMS.

64. In electric circuits of considerable capacity, that is, in
extended high potential systems, as long distance transmission
lines and underground cable systems, occasionally destructive
high potential low frequency surges occur; that is, oscillations
of the whole system, of the same character as in the case of
localized capacity and inductance discussed in the preceding
chapter.

While a system of distributed capacity has an infinite number
of frequencies, which usually are the odd multiples of a funda-
mental frequency of oscillation, in those cases where the
fundamental frequency predominates and the effect of the
higher frequencies is negligible, the oscillation can be approxi-
mated by the equations of oscillation given in Chapters V and
VII, which are far simpler than the equations of an oscillation
of a system of distributed capacity.

Such low frequency surges take in the total system, not only
the transmission lines but also the step-up transformers, gen-
erators, etc., and in an underground cable system in such an
oscillation the capacity and inductance are indeed localized to
a certain extent, the one in the cables, the other in the generating
system. In an underground cable system, therefore, of the
infinite series of frequencies of oscillations which theoretically
exist, only the fundamental frequency and those very high
harmonics which represent local oscillations of sections of
cables can be pronounced, and the first higher harmonics of the
fundamental frequency must be practically absent. That is,
oscillations of an underground cable system are either

(@) Low frequency high power surges of the whole system,
of a frequency of a few hundred cycles, frequently of destructive
character, or,

(b) Very high frequency low power oscillations, local in
character, so called “static,” probably of frequencies of hundred

106
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thousands of cycles, rarely directly destructive, but indirectly
harmful in their weakening action on the insulation and the
possibility of their starting a low frequency surge.

The former ones only are considered in the present chapter.
Their causes may be manifold, — changes of circuit conditions, as
starting, opening a short circuit, existence of a flaring arc on the
system, etc.

In the circuit from the generating system to the capacity of
the transmission line or the underground cables, we have always

r’<C,

equations (24) and (25), Chapter VII, apply, and for the current
we have

that is, the phenomenon is always oscillatory, and

. E -Lo([. E q
z=z—cos(0—0o_vy)+¢ 2z 3[¢°—Zcos(0°+7)]cos§;

_[23°;"°+qE(2x sin (0,+y) —rcos (0, +7))]Sin%0}, 1)

and for the condenser potential we have

- Er, .
—y)+e 2= g[e‘,+z—o s1n(0°+1)]coszi15

e,=

-i-[2 T +4I:” fj: (rsm(ﬂ +y)—2 z cos (0, +1))]sm——0§

)

66. These equations (1) and (2) can be essentially simplified
by neglecting terms of secondary magnitude.

z, is in high potential transmission lines or cables always very
large compared with r and z.

The full-load resistance and reactance voltage may vary
from less than 5 per cent to about 20 per cent of the impressed
e.n.f., the charging current of the line from 5 per cent to
about 20 per cent of full-load current, at normal voltage and
frequency.

In this case, z, is from 25 to more than 400 times as large as r
or z, and r and z thus negligible compared with z,.
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It is then, in close approximation:

zo xc)

q=2\/xxcr (
T

v=— 5= —90° J

107

®)

Substituting these values in equations (1) and (2) gives the
current as

. E . 8. E. \/;3:
i= —x-—csm 0-0,) +e723° ;[z,,— ;csm Bo]cos ;0

_[2e0+1'io_
2Vzz

and the potential difference at the condenser as

e,=Ecos (0 —0) +¢ 2 g[eo — E cos 6,] cos \/2-‘0

+ [2 re, +4zxd, _E
4Vzz, 4Vzz,

(2rcos 0, + 4 z sin 0,,)-'sin \/%0% .
These equations consist of three terms:

1=17 + o + ,L'III’ }

®)
el — ell + ex” + ellii;
/) = — —sin (0 — 0,),
7 xcs ( o) ©)
e/ =Ecos (0 —0,;

E r . . \/z—c
— =0
- 2vx_£(2cosﬁo+zc51n00)]s1n z g, 4

)
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. E - Lo . z z, ]
V== —¢ 2 %sxnﬂ,cos —'0—[ —cos 0,
Ze T z
+ _r_sinﬂ]sin\/g‘ﬂ
2Vzzr, ° z §’

r
e/ = — Ee 23’ 300500005\/%0 +(2 \;__cos a,
z T,

'z . .z,
+\/Zsm()o>sm\/20§;

or, by dropping terms of secondary order,

E - \/17
" 2z 3
V= € cos 0, sin\/—<0,
Vzz, &
©)
—-Le z
e/ = — Ee 2= cosoocos\/%();

7

and:

. -, z, 2¢,+ 1, .  J/z
,tl//= I3 2z %1’0 cos\/-_-c.o _#Sln _.coi,
z 2Vzzx, z

, . — 9
e"=¢ 2z’ ;eo cos \/5—:04-—"——2 rey + 4 210 \/E(ig ;
z 4Vzz, z
or, by dropping terms of secondary order,
Ay x, e Z,
V" =¢ 2z )q cos\/zﬂ e sin\/_—zog
t° T Vzrz, z Y
"o T z 10)
e =¢ 2z ;eo cos \/;—:0 + 1, Vzr, sin\/:%ﬁg.
Thus the total current is approximately
) E . -39 . T, )
=—Zsm 0—-06,)+¢ ** gzocos\/;-l?
e, — Ecosd, . \/:'c: %
- ——— %sin\/=0¢
Vzz, z
and the difference of potential at the condenser is > (11)

—Loe —
e,=Ecos(0—0,)+ ¢ ** g(eo—E’cos(?o)cos\/%o

+ iox/z_:x—csin\/%0§°
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Of the three terms: 7/, ¢,’; 7, ¢,”/; ", e,'”, the first obviously
represents the stationary condmon of chargmg current and con-
denser potential, since the two other terms disappear for ¢ = .

The second term, 7", e,”, represents that component of oscilla-
tion which depends upon the phase of impressed e.m.f., or the
point of the impressed e.m.f. wave, at which the oscillation
begins, while the third term, ", e,”””, represents the component
of oscillation which depends upon the instantaneous values of
current and e.m.f. respectively, at the moment at which the

r

——0
oscillation begins. ¢ ?* is the decrement of the oscillation.
66. The frequency of oscillation is

Vs

where f is the impressed frequency. That is, the frequency of
oscillation equals the impressed frequency times the square root
of the ratio of condensive reactance and inductive reactance of
the circuit, or is the impressed frequency divided by the square
root of inductance voltage and capacity current, as fraction of
impressed voltage and full-load current.

Since
Z =5 fC and r = 2=fL,
the frequency of oscillation is
fomte;
* 22vCL’

that is, is independent of the frequency of the impressed e.m.f.
Substituting

1
0= 2‘:Tft, z, = -2—7.'/6 a.nd xzr = 27.'fL

in equations (8), (10), and (11), we have

ST p g !
—\/;Ee cosoosm\/C_L;
, (12)

-
e/ =— Ee¢ ** cosd,cos

t
vCL’
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L
" _ 2L

'3 g’l, COS —— ¢
vCL °\L §

e =¢ A geocos __+ \/é:, \/tC )

+ (13)

¢ ]
VCL

i=—2nfCEsin(0— 6)+¢ L' giocos

C ¢
- (eo-Ecosoo)\/—sm\/ L§

r

e,=Ecos(0—0)+¢ 2% g(eo— E cos 0,) cos

> (14)

t
VCL

+i\/Zsm f ;
*YC AL

The oscillating terms of these equations are independent of
the impressed frequency. That is, the oscillating currents and
potential differences, caused by a change of circuit conditions
(as starting, change of load, or opening circuit), are independent
of the impressed frequency, and thus also of the wave shape of
the impressed e.m.f., or its higher harmonics (except as regards
terms of secondary order).

The first component of oscillation, equation (12), depends
not only upon the line constants and the impressed e.m.f., but
principally upon the phase, or the point of the impressed e.m.f.
wave, at which the oscillation starts; however, it does not
depend upon the previous condition of the circuit. Therefore
this component of oscillation is the same as the oscillation
produced in starting the transmission line, that is, connecting
it, unexcited, to the generator terminals.

There exists no point of the impressed e.m.f. wave where no
oscillation occurs (while, when starting a circuit containing
resistance and inductance only, at the point of the impressed
e.m.f. wave where the final current passes zero the stationary
condition is instantly reached).

With capacity in circuit, any change of circuit conditions
involves an electric oscillation.

J




HIGH POTENTIAL SYSTEMS 111

The maximum intensities of the starting oscillation occur
near the value 6, = 0, and are
e B e—;—‘f sin \/Teg
Vzz, z
and (15)

r —
—_— I
e/ = —E¢ ™ cos \/jo.

Since

. E .
1,'=—;C—sm(0—0o)

is the stationary value of charging current, it follows that the
maximum intensity which the oscillating current, produced in

starting a transmission line, may reach is \/z‘f times the sta-

tionary charging current, or the initial current bears to the
stationary value the same ratio as the frequency of oscillation
to the impressed frequency.

The maximum oscillating e.m.f. generated in starting a trans-
mission line is of the same value as the impressed e.m.f. Thus
the maximum value of potential difference occurring in a trans-
mission line at starting is less than twice the impressed e.m.f.
and no excessive voltages can be generated in starting a circuit.

The minimum values of the starting oscillation occur near
0, = 90°, and are, from equations (7),

E -3¢ I
= — Z¢ 2T cos\/g
z, z

and (16)
—_0
e/ = — \/E-E e 2 sin/ Zp,
T, z

that is, the oscillating current is of the same intensity as the
charging current, and the maximum rush of current thus is
less than twice the stationary value. The potential difference
in the circuit rises only little above the impressed e.m.f.

The second component of the oscillation, equation (13), does
not depend upon the point of the impressed e.m.f. wave at
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which the oscillation starts, 6, nor upon the impressed e.m.f. as
a whole, E, but, besides upon the constants of the circuit, it
depends only upon the instantaneous values of current and of
potential difference in the circuit at the moment when the
oscillation starts, 7, and e,.

Thus, if 7, =0, ¢, = 0, or in starting a transmission line,
unexcited, by connecting it to the impressed e.m.f., this term
disappears. It is this component which may cause excessive
potential differences. Two cases shall more fully be discussed,
namely:

(@) Opening the circuit of a transmission line under load, and
(b) rupturing a short-circuit on the transmission line.

67. (a) If 7, is the instantaneous value of full-load current,
e, the instantaneous value of difference of potential at the
condenser, i, is small compared with e, and Vz z_ %, is of the
same magnitude as e,.

Writing
eo

ioV.‘CI

c

tand =

and substituting in equations (10), we have

3 _T,
" =Vi? + fo_ g% oo (\/':—_’0 + é‘)

Tz,
and a7

— —‘LO z
elnr = \/eoz ¥ ’&021:12‘,6 2z sin (\/; 0 + 3);

3
that is, the amplitude of oscillation is\/1;* + ;—;forthecurrent,

and ve* 1 7 ’zz, for the e.n.f. Thus the generated e.m.f.
can be larger than the impressed e.m.f., but is, as a rule, still of
the same magnitude, except when z, is very large.

In the expressions of the total current and potential difference
at condenser, in equations (11), (¢, — E cos §,) is the difference
between the potential difference at the condenser and the
impressed e.m.f., at the instant of starting of the oscillation, or
the voltage consumed by the line impedance, and this is small
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if the current is not excessive. Thus, neglecting the terms with
(e, — E cos 8,), equations (11) assume the form

| = — gsin @—-6,) + ioe_ﬂ‘cos \/ivg
z, T
and (18)

T o v
e,=Ecos(0—0)+1i,Vzze ** sin\/ﬂﬂ;
T

c

that is, the oscillation of current is of the amplitude of full-load
current, and the oscillation of condenser potential difference is
of the amplitude 1,V'z z,-

z z, is the ratio of inductance voltage to condenser current, in
fractions of full-load voltage and current. We have, therefore,

i - iy

Thus in circuits of very high inductance L and relatively low
capacity C, 1,z z, may be much higher than the impressed
e.m.f., and a serious rise of potential occur when opening the
circuit under load, while in low inductance cables of high capacity
1,z z, is moderate; that is, the inductance, by tending to
maintain the current, generates an e.m.f., producing a rise in
potential, while capacity exerts a cushioning effect. Low
inductance and high capacity thus are of advantage when
breaking full-load current in a circuit.

68. (b) If a transmission line containing resistance, induc-
tance, and capacity is short-circuited, and the short-circuit
suddenly opened at time ¢ = 0, we have, for ¢ < 0,

e, =0
and i=€cos 6 —06,—vy),
- (19)
where z2=VP + 2
x.
and tan y =
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thus, at time ¢ = 0,

@

1, = ; cos (6, + 7). (20)

Substituting these values of ¢, and 7, in equations (9) gives

sin \/5_: 0%
Vzrz, z

z’”—gcos(ﬂ +‘)‘)e gcos\/_o-
and

" E - 2—: ¢ — . z
e = — cos 0, + v)e Vzz, sin =0,
or, neglecting terms of secondary magnitude,

) E -5 T,
7 = ¢ 2" cos (0,4 ) cos\/;o
and @
EvVzr

— T 13—
e = .__z__" e 2 cos (6, +7) sm\/-f 0;

that is, 7"/ is of the magnitude of short-circuit current, and
e, of higher magnitude than the impressed e.m.f., since z is
small compared with V'zz,.

The total values of current and condenser potential difference,
from equation (11), are

3

i--Zgno—0y+ B gw)
z, z
cg 4 C980 o \/— %
\/ +\/x.t sin o
and . (22)

-3 z,
=FE cos (0 — 0,) — Ee cos d, cos -;0

Vv [/
_YI% cosz( o F y)sinéﬁg,
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or approximately, since all terms are negligible compared with

i”’ md el’I,’
. E -3 )
i=e 2% cos (0, + 1) cos\/-o

and - (23)
e, = E "e_n'cos ©6,+ 1 sin\/él?.
z z )

These values are a maximum, if the circuit is openedvat the
moment 6, = — 7, that is, at the maximum value of the short-
circuit current, and are then

- A
1= Ee 2 ‘.cos \/i:o
z z
and - (24)
z/ -l
% Be % sin\/ = 0.
z z
The amplitude of oscillation of the condenser potential dif-

ference is
Vzz, B
2 2

€ =

L

or, neglecting the line resistance, as rough approximation,

=2z,
L,
z

that is, the potential difference at the condenser is increased
above the impressed e.m.f. in the proportion of the square root
of the ratio of condensive reactance to inductive reactance, or
inversely proportional to the square root of inductance voltage
times capacity current, as fraction of the impressed voltage and
the full-load current. Thus, in this case, the rise of voltage is
excessive.

The minimum intensity of the oscillation due to rupturing
short-circuit occurs if the circuit is broken at the moment
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0, =90° — r, that is, at the zero value of the short-circuit current.
Then we have

. E ~Ts ., . z
= —_ — [/} 2z (4
1= xccos( +7+ ce smrsm\/xa

and (25)

e=Esin(0 +y) - Ee %'gin 7 cos %0;

that is, the potential difference at the condenser is less than twice
the impressed e.m.f.; therefore is moderate. Hence, a short-
circuit can be opened safely only at or near the zero value of the
short-circuit current.

The phenomenon ceases to be oscillating, and becomes an

ordinary logarithmic discharge, if V©*— 4 zz, is real, or
r>2vVazr,.

Some examples may illustrate the phenomena discussed in the
preceding paragraphs.

69. Let, in a transmission line carrying 100 amperes at full
load, under an impressed e.m.f. of 20,000 volts, the resistance
drop = 8 per cent, the inductance voltage = 15 per cent of the
impressed voltage, and the charging current =8 per cent of full-
load current. Assuming 1 per cent resistance drop in the
step-up transformers, and a reactance voltage of 2} per cent,
the resistance drop between the constant potential generator
terminals and the middle of the transmission line is then 5 per
cent, or r = 10 ohms, and the inductance voltage is 10 per
cent, or z = 20 ohms. The charging current of the line is 8
amperes, thus the condensive reactance z, = 2500 ohms.

Then, assuming a sine wave of impressed e.m.f., we have

E = 20,000 V2 = 28,280 volts;
/) =— 11.3sin (6 — 0,);
e/ = 28,280 cos (0 — 4,);
7" =— 11.3 ¢ **°[sin §, cos 11.2 6 — 11.2 cos 0, sin 11.2 6],
and e’ = —28,280 ¢**%[cos 0, cos 11.2 6 + (0.0222 cos 6,
+0.0283 sin 0,)sin 11.2 6]
=~ —28,280 ¢** cos §, cos 11.2 0.
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Therefore the oscillations produced in starting the trans-
mission line are ,
= —113[sin (0 — 60,) + ¢ ***(sin 6, cos 11.2 4
— 11.2 cos 4, sin 11.2 6)]
and ¢ = 28,280 {cos (6 — 0,) —e~*>*’[cos f,c0811.2 9

+(0.0222 cos 8, + 0.0283 sin 6,) sin 11.2 6]}
= 28 280 [cos (6 — 6,) — e~ cos 0, cos 11.2 6).

120 I'd E==28,230 volts Ze = 2500 obms
00— 60 A 5 #:==10.chm 05 0°
i/ d \‘l ’ ‘\ Z =i 20 ghm:
80— v 7 ) A
1 A 4 =Y
o—nk = v : T !
I
o-snl /A r r—) "' + AN .
s I ) ! \ L N !
035 + ¥ . :
g o—%—g A b4 v Y L
O T W74 AR WO o
»—-» . ! i ! | IV
-0—-2 L { ! i v
) ] 1
] \ -
- 80—-3 t 4 + H - T
4 H \ NI
-8 ; 7 —
30 \ K ~ ;'l ==
-m0 “aLs
0 0 20 0 © 60 0 Ly 80 %0 100
Fig. 27. Starting of a transmission line.
=
/.——
E - 7 E = 28,280 volts
Poy 20 P y_»s 10 bh:
',: Y /9 - Z =720 phms
»—a5|- S A Ly ohns
= i 4 L~ 4 ) 9, =+ 909
o R St Py e 74 / \ 0
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i 7 A i e )
2 : : i \, )i N\ 17-F~+4< N
‘\- .t/ N 17T-A
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w Sk o
10 0 %0 LY 80 60 0 0 90 100

Fig. 28. Starting of a transmission line.
Hence the maximum values for 6, = 0, are
1 = —11.3 (sing — 11.2 £**° sin 11.29)

and e, = 28,280 [cos § — ¢~**? (cos 11.2 6 +0.0222 sin 11.2 6)]
= 28,280 (cos 0 — ¢~>*fcos 11.2 §),
and the minimum values, for 6, = 90°, are
t =113 (cos 8 — "’ cos'11.2 0)
and e, = 28,280 (sin 6 —0.0283 ¢~*** sin 11.2 0)
= 28,280 sin 0
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These values are plotted in Figs. 27 and 28, with the current, ¢,
in dotted and the potential difference, e,, in drawn line. The
stationary values are plotted also, in thin lines, 7 and ¢/, respec-
tively.

(a) Opening the circuit under full load, we have
i =—11.3sin (0 — 0,) + 5,¢*? cos 11.20
and e, = 28,280 cos (0 — 0,) + 224 i,e ***sin 11.2 6.

\ ig=1414 ajnp.] [T < 30 ohms
\ y ! -
120 'aN ~ E n:i:» oty —es ..?m hm
0 100 ) . ’, 1 - ) ms . 0.
40 80 / \ 1 \ ‘, l\ -
(] \ / /" \ / \ N\
] 60 4+—q L \- ll ‘\ \ N ll by
0— H '*HL-;- \ ! /1 )\ )
o T — \
ozl il TN T A1 AN 3
33 INRYV/ER ! T \
0-0—0 - g el
= ! 1T -"-l- AP G . . \.-L.-Jb.
-0—H-20 ' 1 1 1
1 , ‘| \ \ )
20— -4 \ 1 \ e
-0—-0 t \ { k !
\ / \ /
-80 'y 2
\ 1 vl vloA
-: A S \ ] N
- '\h,' -
[] 10 0 0 [ 50 0 (] 80 0 100
Degrees

Fig. 20. Opening a loaded transmission line.

These values are maximum for 6, = 0 and non-inductive
circuit, or 7, = 141.4, and are

) =—11.3sin 0 + 141.4 e **%cos 11.26
and e, = 28,280 cosfd + 31,600 % sin 11.26.

These values are plotted, in Fig. 29, in the same manner as
Figs. 27 and 28.

(b) Rupturing the line under short-circuit, we have
=224
and 1, = 1265 cos (0, + 7);
and therefore

1 =—113sin (6 — 0,) + 1265 ¢ >**[cos (6, + 1)
cos 11.20 + 0.1 cos 6,sin 11.26]
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and e, = 28,280 {cos (6 — 6,) — ¢ ***[cos 6, cos 11.2 4
— 10 cos (0, + 7) sin 11.2 6]§.

These values are a maximum for §, = — y = — 63°, thus

1 =— 11.3sin (8 + 63°) + 1265 ¢ ***(cos 11.2 6
+ 0.044 sin 11.2 6)
e, = 28,280 cos (0 + 63°)— 282,800 ¢~ **? (0.044 cos 11.2 4
— §in11.26);

that is, the potential difference rises about tenfold, to 282,800
volts. These values are plotted in Fig. 30.

and

" i ~ Lo B axlp. [ [z 70 hend

2300 260 |\ = p
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/3 1\ \ 1y /
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\ |
/
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1
]
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\
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=
/
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N~

\\‘

=
/|
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\
\
- 800——-300 Y
\“ \ A

(] 0 20 0 © 80 0 0 80 90 00
Degrees

Fig. 30. Opening a short-circuited transmission line.

70. On an experimental 10,000-volt, 40-cycle line, when a
destructive e.m.f. was produced by a short-circuiting are, the
author observed a drop in generator e.m.f. to about 5000 volts,

due to the limited machine capacity. The resistance of the

system was very low, about r = 1 ohm, while the inductive

reactance may be estimated as z = 10 ohms, and the condensive
reactance as z, = 20,000 ohms. Therefore tan y = 10, or

approximately, y = 90°.
Herefrom it follows that

T =707 e *"%%cos 44.7 0

and
e, = 316,000 e **’sin 44.7 9;
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that is, the oscillation has a frequency of about 1800 cycles per
second and a maximum e.m.f. of nearly one-third million volts,
which fully accounts for its disruptive effects.

71. As conclusion, it follows herefrom:

1. A most important source of destructive high voltage
phenomena in high potential circuits containing inductance and
capacity are the electric oscillations produced by a change of
circuit conditions, as starting, opening circuit, etec.

2. These phenomena are essentially independent -of the fre-
quency and the wave shape of the impressed e.m.f., but de-
pend upon the conditions under which the circuit is changed,
as the manner of change and the point of the impressed e.m.f.
and current wave at which the change occurs.

3. The electric oscillations occurring in connecting & trans-
mission line to the generator are not of dangerous potential, but
the oscillations produced by opening the transmission circuit
under load may reach destructive voltages, and the oscillations
caused by interrupting a short-circuit are liable to reach voltages
far beyond the strength of any insulation. Thus special pre-
cautions should be taken in opening a high potential circuit
under load. But the most dangerous phenomenon is a low
resistance short-circuit in open space.

4. The voltages produced by the oscillations in open-circuiting
a transmission line under load or under short-circuit are mod-
erate if the opening of the circuit occurs at a certain point of
the e.m.f. wave. This point approximately coincides with the
moment of zero current.



CHAPTER IX.

DIVIDED CIRCUIT.

T2. A circuit consisting of two branches or multiple circuits
1 and 2 may be supplied, over a line or circuit 3, with an impressed
e.mn.f., e,

Let, in such a circuit, shown diagrammatically in Fig 31,
r, L,, C, and r,, L,, C, = resistance, inductance, and capacity,
respectively, of the two branch circuits 1 and 2; r,, L, C,=

A*A /55\“ r'll i
" 2
L

[

c', L, .
Oy

C,

4 : i
Fig. 81. Divided circuit.

resistance, inductance, and capacity of the undivided part of the
circuit, 3. Furthermore let ¢ = potential difference at terminals
of branch circuits 1 and 2, 7, and 1, respectively = currents in
branch circuits 1 and 2, and 7, = current in undivided part of
circuit, 3.

Then Ty =1 +1, (1)
and e.m.f. at the terminals of circuit 1 is
dv 1
e=ri+ Lo+ [ia @)
171 1 dt Cl 1
of circuit 2 is
. di 1 .
e=r,, + L,Ett—’ + 5 | 7,4t @

2
121
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and of circuit 3 is

. di .
eo=e+r°t,+Lo£+Cl,ft,dt. €)]
[

Instead of the inductances, L, and capacities, C, it is usually
preferable, even in direct-current circuits, to introduce the

1
THC = con-
densive reactance, referred to a standard frequency, such as
S = 60 cycles per second. Instead of the time ¢, then, an angle

0 =2n=ft (6))

reactances, r = 2 nfL, = inductive reactance, z, =

is introduced, and then we have

Lﬂ. T dd) d
dt  2xfdidt do
and
. 6)
1 . 1 . (
5fzdt-2zf§cf@dﬂ—xcfzd0,
dt
since
g=2nf.

Hereby resistance, inductance, and capacity are expressed in
the same units, ohms.

Time is expressed by an angle @ so that 360 degrees correspond
to &% of a second, and the time effects thus are directly com-
parable with the phenomena on a 60-cycle circuit.

A better conception of the size or magnitude of inductance
and capacity is secured. Since inductance and capacity are
mostly observed and of importance in alternating-current cir-
cuits, a reactor having an inductive reactance of z ohms and
1 amperes conveys to the engineer a more definite meaning as
regards size: it has a volt-ampere capacity of 1z, that is, the

approximate size of a transformer of half this capacity, or of a
2

%’-watt transformer. A reactor having an inductance of L

henrys and ¢ amperes, however, conveys very little meaning to
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the engineer who is mainly familiar with the effect of inductance
in alternating-current circuits.

Substituting therefore (5) and (6) in equations (2), (3), (4),
gives the e.m.f. in circuit 1 as

. dv
e=r‘zl+zld0'+zf das; )
in circuit 2 as
. dv .
e=r4i,+ x,ﬁ + x,.ft,dﬁ; ®
in circuit 3 as
. di .
eo=e+ro"a+xod_10"+xeof%do; ©
hence, the potential differences at the condenser terminals are
e, = xqfi‘ df =e—ra, — z, %‘: (10)
e,= xt,fi,dﬂ =e— 10, — x,%, (1)
. . d,
and e,= zqu,d0=eo—e—roz,—-xoa7)- 12)

Differentiating equations (7), (8), and (9), to eliminate the
integral, gives as differential equations of the divided circuit:

s dv; . de
z,#+ T‘E%I-'- T = 25 (13)
d*, di de
:c,dﬂa+r,d%+xz =% (14)
de, . de, de
and z°d0’+r°d0+x‘°1’—7d5_d—0° (15)

Subtracting (14) from (13) gives

d*, di d* di
(z‘d0’+ d0‘+x1) (z,dﬂ,’+r,—’+:tz) 0. (16)
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Multiplying (15) by 2, and adding thereto (13) and (14), gives,
by %ubstituting 1), i3 =1, + i,,

(21=°+:c) +(.-r +r,)—‘+(2x + z.)i, +

(21:,+:t,)——+(2 +r,) z+(2:o:-{~ )L—2 . (17

These two differential equations (16) and (17) are mtegrated
by the functions
t, =1/ + A
and (18)
=1 + A,e_“‘,
where ¢,” and 7, are the permanent values of current, and
1,/ = A~ and 1,” = A, are the transient current terms.
Substituting (18) in (16) and (17) gives
&) di/ ax;) di)
(s a1y +2l) = (G + 1G5 + )
+ A% (@, —ar +1.)— A " (@r,—ar,+2.)=0 (19

and
@z, + 2,

a4 .
d;‘ + 2r, + r,) + @x, + 2. )i, + Ae~¥{@*2z,+1)
—a@r,+ 1)+ (2 T, +z)} + A {@* 2z, + z,)
de,
do
73. For 6 = «, the exponential terms eliminate, and there

remain the differential equations of the permanent terms
1/ and i,’ , thus

l)—+ Cr, +z 0+ 2z,+1,)

—a@ry+r)+ 2r, + . }—2 (20)

di/ ai)/ di, ) o
( ra o & +xf"‘) ( v T gy T ) =0 G
and
2z, +:c) +(..r +r)—- + @z, +1z)i/+2x,+ 1)
2r, +r)m~+(2x +z.) 1) _2de (22)

dﬁ’ a0
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The solution of these equations (21) and (‘72) is the usual
equation of electrical engmeermg, gmng 1, and 7, a,s sine waves
if the e.m.f,, e, is a sine wave; giving ¢, and ¢, as constant
quantities 1f e, is constant and r, and elther z,, or z. or both
vanish, and giving i, and ¢/ =0 'if either z,, or both z, and
z,, differ from zero.

Subtracting (21) and (22) from (19) and (20) leaves as dif-
ferential equations of the transient terms ¢,”” and 1,”,

e {4, (a2, —ar, +1z,)— A, (@x,—ar, + 1)} =0 (23)
and

e {A @2z, +2z)—ar,+71)+ 2z, + 1)+ A4,
[ 2z, +2,)—a@r,+71)+ 22, +2,)]} = 0. (24)

Introducing a new constant B, these equations give, from (23),

A =B(@z,—ar, + z.)
and (25)
A, = B (a’x, — ar, + z,);

then substituting (25) in (24) gives

(@z, —ar, + z,)[@*2z, +2,) —a2ry+ 1) + 22, + 7,)]
+ (@’z, —ar, + 2, )[@*2z, +2,) —a2r,+7,)+ 27z,
+z,)] =0, (26)

while B remains indeterminate as integration constant.

Quartic equation (26) gives four values of a, which may be all
real, or two real and two conjugate imaginary, or two pairs of
conjugate imaginary roots.

Rearranged, equation (26) gives
@ (z,2, + 2,2, + z,x,) — & {r, (z, + z,) + 7, (z, + 7,)

+ r) (IO + xl)} + a’ {(rorl + rorz + rlrz) + I"o (Il + Iz)

+ 2, @+ )+ 2, (5t 2)} - a {r,(r+ 1)+ 2, (ot 1)

+z, o+ 1)} + (T2, + 2.2, + 2.2.)=0. @7

Let a,, a,, a,, a, be the four roots of this quartic equation (27);



126 TRANSIENT PHENOMENA

then
t,=1'+B, (a’z,—ar,+7z,)e " +B, (azr,—ay,+z,)
+ B, (a’z,— ay,+ z.) ¢~ + B, (alz,— ag,+ z,) e =% (28)
and
t,=1'+B, (a’r,—ar,+z.) e~ +B, (az,—a,yr, +z,) e
+ B, (a’z,—ay,+ z.) e~ **+ B, (a’z,— ay,+ z,) e~ (29)
where the integration constants B,, B,, B, and B, are deter-
mined by the terminal conditions: the currents and condenser
potentials at zero time, § = 0.
The quartic equation (27) usually has to be solved by approxi-
mation.
74. Special Cases: Continuous-current divided circuit, with
resistance and inductance but no capacity, e,= constant.

s L,

Fig. 82. Divided continuous-current circuit without capacity.

In such a circuit, shown diagrammatically in Fig. 32, equations
(7), (8), and (9) are greatly simplified by the absence of the
integral, and we have

e=rz2 + z‘%: (30)

e=r3, + 2, %; 31)

and e, =¢e+ri,+ x,,:?} 32)
(30) and (31) combined give

To, — Ty, + xl% —x,% =0. (33)
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Substituting (1), ¢, = ¢, + 7,, in (32), multiplying it by 2 and
adding thereto (30) and (31), gives
2e,= (27,+ rl) 1,+ (2 r,,+ ) 1+ 2 z,+ x,)

(34)
+ 2z, + x,)

Equations (33) and (34) are integrated by
t,=t/+Ae*
and (35)
Y —a#
1, =1, + A%
Substituting (35) in (33) and (34) gives
(rg) — i) + e ¥{A (r,— az,) — A,(r, — az){=0
and
2e,=2r,+r)1/ +2ry+r) i) +e7*{4,[@r, + 1)
—a6@2z,+2z)]+ 4,[2r,+71)— a2z + z,)].

These equations resolve into the equations of permanent
state, thus

T T, 0
and @Rro+r)e/ +@2r, + 1)1, =2e,
Hence i) = e,
4 1 orz
(36)
. r
and 1, = eo;,!,
where P=rr+rr,+rr, 37)

and the transient equations having the coefficients
A (r,—az)—A,(r,—az,) =0
and
A4,[Cry+71)—a@z, +2)] + 4,[@Cr, + 1)
-a@z,+ 1,)]=0.
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Herefrom it follows that

A =B (r, — az,)
and (39)
A,=B(r, —az),
and
@ (z,z, + z,2, +z,2,) —a[r, (x, + z,) + 1, (2, + z,)
t+r, (120 + xl)] + (rorx + 17, t+ rxrz) =0, (39)
B = indefinite. (40)

Substituting the abbreviations,
Tr, + T, + X, =T,
Ty T, 1, = v,
and (41)
T, (z, + x,) + 1, (x, + xz) + 7, (7, + 131) =T, (rx +r,)
+z,(r+r) +a,(r+r1) =9,

gives (39)
@ — ag + 1 = 0, 42
hence two roots,
'
Y
and (43)
&+
o=
where ¢ =V — 4728 49

The two roots of equation (42), a, and a,, are always real, since
in ¢
st > 4708,
as seen by substituting (41) therein.
The final integral equations thus are
. T, -g=dy -ridy,
il +(r,—ax,) Be 2% 4(r,—agx,)Bye 2%+
and 45)
T, i i) g+,
€ +(r,—a,xz)Be 2 +(r,—a,r) Be 2= .

)
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B, and B, are determined by the terminal conditions, as the
currents 7, and 1, at the start, 6 = 0.
Let, at zero time, or 6 = 0,
= ilo
and (46)
1, = 1,7

then, substituting in (45), we have

‘igo = e, 4 + (r, — a’xxz) Bl + (T, - a’z‘tz) BZ
and @

%'*' (rn - axxx) Bn + (rx - a,x,) Bz;
and herefrom calculate B, and B,.

76. For instance, in a continuous-current circuit, let the
impressed e.m.f., e, = 120 volts; the resistance of the undivided
part of the circuit, 7, = 20 ohms; the reactance, z, = 20 ohms;
the resistance of one of the branches, r, = 20 ohms; the reactance,
z, = 40 ohms, and the resistance of the other branch, r, =
5 ohms, the reactance, z, = 200 ohms.

Thus one of the branches is of low resistance and high react-
ance, the other of high resistance and moderate reactance.

The permanent values of the currents, (* = 600), are

1/ = 1 amp.
and
1, = 4 amp.

y 0
1y =€

(a) Assuming now the resistance r, suddenly decreased from
r, = 20 ohms to r, = 15 ohms, we have the permanent values
of current as

1,/ = 1.265 amp.
and

1,/ = 5.06 amp.

The previous values of currents, and thus the values of currents
at the moment of start, 6 = 0, are

1, = 1 amp.
and

1, = 4 amp.
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therefrom follow the equations of currents, by substitution in
the preceding,

i, = 1.265 + 0.455 ¢ %0 — (.720 ¢~ ***
and
, = 5.06 — 1.038 ¢ ™0 — 0,022 ¢ *5%¢,

(b) Assuming now the resistance r, suddenly raised again
from r, = 15 ohms to r, = 20 ohms, leaving everything else
the same, we have

1,° = 1.265 amp.
and
1, = 5.06 amp.;
and then
1, =1 — 0.528 ¢ """ 4 (.793 ¢~ *"*
and }

1, = 4 + 1.018 000 L 0.042 M

(c) Assuming now the resistance r, suddenly raised from
r, = 20 ohms to r, = 25 ohms, gives

1, = 0.828 — 0.374 ¢ > + 0.546 ¢ ™
and }
1, = 3.312 + 0.649 ¢ *"°° 4 0.039 ¢~ %™,

(d) Assuming now the resistance r, lowered again from r, =
25 ohms to r, = 20 ohms, gives

=1+ 0.342 %7 — 0.514 "
and
1" =4 — 0.660 e—o.mn_ 0.028 e—o.mo.

76. In Fig. 33 are shown the variations of currents 7, and 1,,
resultant from a sudden variation of the resistance r, from 20
to 15, back to 20, to 25, and back again to 20 ohms. As seen,
the readjustment of current 7,, that is, the current in the induc-
tive branch of the circuit, to its permanent condition, is very
slow and gradual. Current 7,, however, not only changes very
rapidly with a change of r, but overreaches greatly; that is, a
decrease of r, causes ¢, to increase rapidly to a temporary value
far in excess of the permanent increase, and then gradually 7,
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falls back to its normal, and inversely with an increase of r,.
Hence, any change of the main current is greatly exaggerated
in the temporary component of current ¢,; & permanent change
of about 20 per cent in the total current results in a practically
instantaneous change of the branch current ¢,, by about 50 per
cent in the present instance.

Thus, where any effect should be produced by a change of
current, or of voltage, as a control of the circuit effected thereby,
the action is made far more sensitive and quicker by shunting
the operating circuit ¢,, of as low inductance as possible, across

7'/ =|20; 15, 20, 25, 20 ohms
‘ ol 2o =[20'ohms
-t B S i'
s Branch: |1y =6 CI'IEEE’,__’__
: T == 200 ohms
l i S
" 0
!
-
L5 - |
N~
Lo 1= o
05 Resistive Branch: [7)|=|20/ohms
o Z1|==|40 0hms

6=0 20 © 0 220 440 0 20 440 0 20 4«

Fig. 83, Current in divided continuous-current circuit resulting from sudden
variations in resistance.

a high inductance of as low resistance as possible. The sudden
and temporary excess of the change of current 7, takes care of
the increased friction of rest in setting the operating mechanism
in motion, and gives a quicker reaction than a mechanism
operated directly by the main current.

This arrangement has been proposed for the operation of arc
lamps of high arc voltage from constant potential circuits.
The operating magnet, being in the circuit ¢,, more or less
anticipates the change of arc resistance by temporarily over-
reaching.

Tl. The temporary increase of the voltage, e, across the
branch circuit, 7,, corresponding to the temporary excess current
of this circuit, may, however, result in harmful effects, as de-
struction of measuring instruments by the temporary excess

voltage.



132 TRANSIENT PHENOMENA

Let, for instance, in a circuit of impressed continuous e.m.f.,
¢ = 600 volts, as an electric railway circuit, the resistance of
‘the circuit equal 25 ohms, the inductive reactance 44 ohms.
This gives a permanent current of v = 24 amperes.

Let now a small part of the circuit, of resistance r, = 1 ohm,
but including most of the reactance r, = 40 ohms — as a motor
series field winding — be shunted by a voltmeter, and r, = 1000
ohms = resistance, z, = 40 ohms = reactance of the volt-
meter circuit.

In permanent condition the voltmeter reads g X 600 = 24
volts, but any change of circuit condition, as a sudden decrease
or increase of supply voltage e,, results in the appearance of a
temporary term which may greatly increase the voltage impressed
upon the voltmeter.

In this divided circuit, the constants are: undivided part of
the circuit, r, = 24 ohms; z, = 4 ohms; first branch, voltmeter
(practically non-inductive), r, = 1000 ohms, z, = 40 ohms;
second branch, motor field, highly inductive, r, = 1 ohm, z, =
40 ohms. \

(a) Assuming now the impressed e.m.f., e,, suddenly dropped
from e, = 600 volts to e, = 540 volts, that is, by 10 per cent,
gives the equations

1, = 0.0216 — 0.0806 ¢~°*2° + 0.0830 ¢~
and
i, = 21.6 + 2407 52— 0,007 2,

(b) Assuming now the voltage, e, suddenly raised again from
e, = 540 volts to e, = 600 volts, gives the equations

i, = 0.024 + 0.0806 ¢~***? — 0.0830 ¢ *
and
1, = 24 — 2407 %% 4+ 0.007 219,

The voltage, e, across the voltmeter, or on circuit 1, is
. di .
e =1, +1,—2 = 10005, F 77.9 "™ 4 §.2 B0

. r
where 1) = e;; .
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Hence, in case (a), drop of impressed voltage, e,, by 10 per cent,
e =216 — 7790 4 62819,
and in (b), rise of impressed voltage,
e =240+ 7797950 _ 627218,

This voltage, e, in the two cases, is plotted in Fig. 34. As
seen, during the transition of the voltmeter reading from 21.6
to 24.0 volts, the voltage momentarily rises to 95.7 volts, or

I T Tl (1]
% \
L]
> N
5 olts d from 600/to| N
© N
3%
S on
&2 1 Volts raised from 540/to 600
10 L~
0 Z
:2 / (Totall Circuit:”o|==26 ohms, [Toi44 ohms,
-2 lggnl e Ap ‘F:r, 1ol T = 4 ohmis.
-0 Volt r}: 7{=1000 chmis.| Z ==40oh
-50 | 1 1
0~ 1 2 8 4 5 0 1 2 8 4 &

Fig. 34. Voltage across inductive apparatus in series with circuit of high
resistance.

four times its permanent value, and during the decrease of
permanent voltage from 24.0 to 21.6 volts the voltmeter momen-
tarily reverses, going to 50.1 volts in reverse direction.

In a high voltage direct-current circuit, a volimeter shunted
across a low resistance, if this resistance is highly inductive, is in
danger of destruction by any sudden change of voltage or current
in the circuit, even if the permanent value of the voltage is well
within the safe range of the voltmeter.

CAPACITY SHUNTING A PART OF A CONTINUOUS-CURRENT
CIRCUIT.

78. A circuit of resistance r, and inductive reactance r, is
shunted by the condensive reactance r,, and supplied over the
resistance r, and the inductive reactance z, by a continuous
impressed e.m.f., €, as shcwn diagrammatically in Fig. 35.
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In the undivided circuit,

di, d
€ = ¢+, (i, +z,)+x(d’0+d;) 48)
In the inductive branch,
. di -
e=ri+z, : 49)
In the condenser branch,
e=1z, f 1, db. (50)

Fig. 35. Suppression of pulsations in direct-current circuits by series induc-
tance and shunted capacity.

Eliminating e gives, from (48) and (49),
=, +r)1, + (z, + x,) '+ 1o, + x,‘; (51)
and from (49) and (50),
f1d0=rz +:c:iw (52)
Differentiating (52), to eliminate the integral,
di, a*,

T, =1, —+2z

"y -d_0 daz (53)
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Substituting (53) in (51), and rea.rra.ngit_lg,

o1 di
€, = (ro+r:)1’1+;'g(rorn + zz, + z.z,) E;’
c

a% a* :
© o bt Gt g (54)
a differential equation of third order.
This resolves into the permanent term
€, = '(1'0 + rx) il”
., _ &
hence, 3/ = . (55)
and a transient term
. 1, = Ae™; (56)
that is,
=1+ A:"% = + Ae™. (67)

To + T,

Equation (57) substituted in (54" gives as equation of a,

I, Mo+ 1) = 6 (g, + 22, + 22) + 0 (g, + 1,3) — a'z,z, = 0,

or

¢ —a (I to(fop 2y 5) 20tn)_ o g
ol To Ty LoTy

while A remains mdeﬁmte as integration constant.

Equation (58) has three roots, a,, a,, and a,, which either are
all three real, when the phenomenon is logarithmic, or, one
real and two imaginary, when the phenomenon is oscillating.

The integral equation for the current in branch 1 is

i, = ; + + A + A @+ A, (59)
0 l

the current in branch 2 is by (53)

. 1( dr, d=
1, =— (dﬂ+ dﬂl)

1
- {—a,(r,—az)Ae " —a,(r,—az,) A,

—a, (r, — az) Ag~>°%}, (601
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and the potential difference at the condenser is

e = .'n:,:~/‘z',dt‘)=rlil + x,%

re B
- T, ;'ofg + (ry—a.z) Ax‘-al’ + (r, —6.7,) Ag *e

+ (r, —agz,) Ag~™". (61)

In the case of an oscillatory change, equations (59), (60), and
(61) appear in complex imaginary form, and therefore have to
be reduced to trigonometric functions.

The three integration constants, 4,, 4,, and A4,, are deter-
mined by the three terminal conditions, at 6 =0, , = 2,°,
1, =1 ¢e=¢.

79. As numerical example may be considered a circuit having
the constants, e, = 110 volts; r, =1 ohm; z, = 10 ohms;
r, = 10 ohms; z, = 100 ohms, and z, = 10 ohms.

In other words, a continuous e.m.f. of 110 volts supplies,
over a line of r, = 1 ohm resistance, a circuit of r, = 10 ohms
resistance. An inductive reactance z, = 10 ohms is inserted
into the line, and an inductive reactance z, = 100 ohms in the
load circuit, and the latter shunted by a condensive reactance of
z, = 10 ohms.

Then, substituting in equation (58),

@@ —-02a+ 111a- 011 =0.

This cubic equation gives by approximation one root, a, = 0.1,

and, divided by (@ — 0.1), leaves the quadratic equation

@ —0la+11=0,
which gives the complex imaginary roots a, = 0.05 — 1.047 j
and a, = 0.05 + 1.047 §; then from the equation of current,
by substituting trigonometric functions for the exponential

functions with imaginary exponent, we get the equation for the
load current as

T, =1/ + A" + "% (B, cos 1.047 6 + B, sin 1.047 ),
the condenser potential as

e=101/ + ¢ >%*{(5B, + 104.7 B,) cos 1.047 6 — (104.7 B,
— 5 B,) sin 1.047 6},
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and the condenser current as
7, = 10.9 ¢7%* {B, cos 1.047 6 + B, sin 1.047 6}.

At e, = 110 volts impressed, the permanent current is ¢,” = 10
amp., the permanent condenser potential is ¢ = 100 volts, and
the permanent condenser current is 7,’ = 0.

Assuming now the voltage, e,, suddenly dropped by 10 per
cent, from e, = 110 volts to e, = 99 volts, gives the permanent
current as 7/ = 9 amp. At the moment of drop of voltage,
6 = 0, we have, however, 7, =1° =10 amp.; e = ¢ = 100
volts, and 7, = 0; hence, substituting these numerical values
into the above equations of 7,, e, 7,, gives the three integration
constants:

A, =1; B, =0, and B, = 0.0955;
therefore the load current is
T, =9+ ™ 4+ 0.0955 £ **? sin 1.047 6,
the condenser current is
1, = 1.05°%* sin 1.047 6,
and the condenser, or load, voltage is
e =90 + ¢ *%° (10 cos 1.047 6 + 0.48 sin 1.047 6).
Without the condenser, the equation of current would be
1=9+ ™0,
In this combination of circuits with shunted condensive

reactance z,, at the moment of the voltage drop, or § = 0, the
- rate of change of the load current is, approximately,

% =[— 0.1 + 0.0955 X 1.047*%* cos 1.047 4], = 0,
while without the condenser it would be

% =[- 01, = — 0.1.

80. By shunting the circuit with capacity, the current in the
circuit does not instantly begin to change with a change or
fluctuation of impressed e.m.f.
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In Fig. 36 is plotted, with 6 as abscissas, the change of the
current, 4,, in per cent, resulting from an instantaneous change
of impressed e.m.f., e, of 10 per cent, with condenser in shunt
to the load circuit, and without condenser.

As seen, at = 172° = 3.0 radians, both currents, 7, with the
condenser and ¢ without condenser, have dropped by the same

6 v le ’
g e 11
4 o= ohm i
23 X)) < oh /)
Load end series Inductance d /
2.0 ]') == ] /
sk ) 4 100 oh! /
o un apacity’ ln
1.6 Zeds ]j ohins A
E14 ’
- <)
Eu %‘f )/
1.0 ,{ Ld &
0.8 /* -3
W A,
0.6 //
0.4 "
0.2
//

0
0 =04 0.8 12 1.6 2.0 24 2.8

Fig. 86. Suppression of pulsations in direct-current circuits by series induc-
tance and shunted capacity. Effect of 10 per cent drop of voltage.

amount, 2.6 per cent. But at 6 = 57.3° = 1.0 radian, ¢, has
dropped only % per cent., and 7 nearly 1 per cent, and at § = 24°,
11 has not yet dropped at all, while ¢ has dropped by 0.38 per cent.

That is, without condenser, all pulsations of the impressed
e.m.f,, e, appear in the load circuit as pulsations of the current,
1, of a magnitude reduced the more the shorter the duration of
the pulsation. After 6 = 60°, or t = 0.00275 seconds, the
pulsation of the current has reached 10 per cent of the pulsation
of impressed e.m.f.

With a condenser in shunt to the load circuit, the pulsation
of current in the load circuit is still zero after 8 = 24°, or after
0.001 seconds, and reaches 1.25 per cent of the pulsation of
impressed e.m.f., e,, after 6 = 60°, or ¢ = 0.00275 seconds.

A pulsation of the impressed e.m.f., e, of a frequency higher
than 250 cycles, practically cannot penetrate to the load circuit,
that is, does not appear at all in the load current %, regardless
of how much a pulsation of the impressed e.m.f., e, it is, and a
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pulsation of impressed e.m.f., ¢, of a frequency of 120 cycles re-
appears in the load current ¢,, reduced to 1 per cent of its value.

In cases where from a source of e.m.f., e,, which contains a
slight high frequency pulsation — as the pulsation corresponding
to the commutator segments of a commutating machine— a
current is desired showing no pulsation whatever, as for instance
for the operation of a telephone exchange, a very high inductive
reactance in series with the circuit, and a condensive reactance
in shunt therewith, entirely eliminates all high frequency pulsa-
tions from the current, passing only harmless low frequency
pulsations at a greatly reduced amplitude.

‘81. As a further example is shown in Fig. 37 the pulsation
of a non-inductive circuit, z, = 0, of the resistance r, = 4 ohms,
shunted by a condensive reactance z, = 10 ohms, and supplied
over a line of resistance r, = 1 ohm and inductive reactance
z, = 10 ohms, by an impressed e.m.f., e, = 110 volts.

Due to z, = 0 equation (58) reduces to

a - a(£9+$’)+ &(1 +-T—°) =0;

rl xﬂ rl
or, substituting numeri.cal values,
a—-26a+125=0
and a, = 0.637, a, = 1.963;

that is, both roots are real, or the phenomenon is logarithmic.
We now have
it = 1:" + Ale—o.u + Aze—l.mo,
iy = — 0.255 A, "7 — 0785 4,71,
and e=ri, =4 G + A0 4 A1),
The load current is
1,/ = 22 amp.

A reduction of the impressed e.m.f., e,, by 10 per cent, or from
110 to 99 volts, gives the integration constants A, = 3.26 and
A, = — 1.06; hence,

i, = 19.8 + 3.26 £ "% — 1.06 ¢,
i, = — (.83 (e—o.mo +s—l.9)’

and e=41,.
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Without a condenser, the equation of current would be
=19.8 + 2.2 ¢**°.

In Fig. 37 is shown, with 6 as. abscissas, the drop of current
7, and ¢, in per cent.

Although here the change is logarithmic, while in the former
paragraph it was trigonometric, the result is the same—a very
great reduction, by the condenser, of the drop of current imme-
diately after the change of e.m.f. However, in the present case

9 Supply ﬁo H'IEO iol(s

7o
5 Lo k= io_i{n L] P
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Fig. 87. Suppression of pulsations in non-inductive direct-current circuits by
series inductance and shunted capacity. Effect of 10 per cent drop of
voltage.

the change of the circuit is far more rapid than in the preceding
case, due to the far lower inductive reactance of the present case.
For instance, after § = 0.1, the drop of current, with condenser,
is 0.045 per cent, without condenser, 0.5 per cent. At 6 = 0.2,
the drop of current is 0.23 and 0.95 per cent respectively. For
longer times or larger values of 6, the difference produced by the
condenser becomes less and less.

This effect of a condenser across a direct-current circuit, of
suppressmg high frequency pulsatlons from reaching the circuit,
requires a very large capacity.




CHAPTER X.

MUTUAL INDUCTANCE.

82. In the preceding chapters, circuits have been considered
containing resistance, self-inductance, and capacity, but no
mutual inductance; that is, the phenomena which take place
in the circuit have been assumed as depending upon the impressed
e.m.f. and the constants of the circuit, but not upon the
phenomena taking place in any other circuit.

Of the magnetic flux produced by the current in a circuit
and interlinked with this circuit, a part may be interlinked with
a second circuit also, and so by its change generate an e.m.f. in
the second circuit, and part of the magnetic flux produced by

AN )

r Ly

= .
=2

L, T

W A

Fig. 38. Mutual inductance between circuits.

the current in a second circuit and interlinked with the second
circuit may be interlinked also with the first circuit, and a
change of current in the second circuit, that is, a change of
magnetic flux produced by the current in the second circuit,
then generates an e.m.f. in the first circuit.

Diagrammatically the mutual inductance between two circuits
can be sketched as shown by M in Fig. 38, by two coazial coils,
while the self-inductance is shown by a single coil L, and the
resistance by a zigzag line.

141
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The presence of mutual inductance, with a second circuit,
introduces into the equation of the circuit a term depending
upon the current in the secon