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To Stella, Vesper, Matteo, Roro, Devi, Eddie, and the rest of g3.



Deep and original, but also humble and generous, the physicist Josiah Willard Gibbs spent much of
his life at Yale University. His father was a professor of sacred languages at Yale, and Gibbs received
his bachelor’s and doctorate degrees from the university before teaching there until his death in 1903.
The sculptor Lee Lawrie created the memorial bronze tablet pictured above, which was installed in
Yale’s Sloane Physics Laboratory in 1912. It now resides in the entrance to the J.W. Gibbs
Laboratories, Yale University. His life and work continue to inspire the author as they do everyone
who is familiar with them.
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Preface to the Expanded Edition

Besides the correction of errors, many pointed out by Robert Zuidema,
whom I am pleased to thank here, the biggest change has been the inclusion
of many exercises and answers (but not solutions) at the end of the book. As
always it has been a pleasure to work with Yale University Press, especially
Joseph Calamia and Ann-Marie Imbornoni, and with copy editor Liz Casey
and our LaTeX compositor, Newgen North America. Thanks to MaryEllen
Oliver for an exceptional job of proofreading both volumes of the expanded
edition.



Preface to the First Edition

This is the companion volume to Fundamentals of Physics I: Mechanics,
Relativity, and Thermodynamics. It is the second half of an introductory
course taught at Yale and covers electromagnetism, optics, and quantum
mechanics. Like Volume I, it is based on the lectures given at Yale to a
diverse class. The two volumes could be used for a year-long course in
introductory physics that covers all the major topics. It may also be used for
self-study. Some instructors may prescribe it as a supplement to another
text.

The chapters in the book more or less follow those lectures with a few
minor modifications. The style preserves the classroom atmosphere. Often I
introduce the questions asked by the students or the answers they give when
I believe they will be of value to the reader. The problem sets and exams,
without which one cannot learn or be sure one has learned the physics, may
be found along with their solutions at the Yale website,
http://oyc.yale.edu/physics, free and open to all. The lectures may also be
found at venues YouTube, iTunes (https://itunes.apple.com/us/itunes-
u/physics-video/id341651848?mt=10), and Academic Earth, to name a few.

In the lectures I sometimes refer to my Basic Training in Mathematics,
published by Springer and intended for anyone who wants to master the
undergraduate mathematics needed for the physical sciences.

This book, like its predecessor, owes its existence to many people. Peter
Salovey, now president, then dean of Yale College, persuaded me to be part
of the first batch of Open Yale Courses, funded by the Hewlett Foundation.
Diana E. E. Kleiner, Dunham Professor, History of Art and Classics,
encouraged and guided me in many ways. She was also the one who
persuaded me to write both these books. At Yale University Press, Joe
Calamia has been an invaluable guide, making countless suggestions to
improve the book’s contents. He has also lent his name to many subatomic
particles that appear in this book. Once again Ann-Marie Imbornoni
skillfully shepherded the book through various stages of production. I am
delighted that Liz Casey was once again able to apply her editorial magic to

http://oyc.yale.edu/physics
https://itunes.apple.com/us/itunes-u/physics-video/id341651848?mt=10


the manuscript, greatly improving not only the punctuation, syntax, and
grammar but also the clarity. She made sure my intended sense was
captured by the words used.

I thank Professor Ganpathy Murthy (University of Kentucky) and
Branislav Djordjevic (George Mason University) for thoughtful comments.
My very special thanks go to Phil Nelson of the University of Pennsylvania
for his detailed and insightful comments on many parts of the book.

The writing of this book started a year ago and ended August 2015 at the
Aspen Center for Physics (ACP). I am most grateful for the climate
provided by the ACP where both the scientist and author in me found
intellectual nourishment. The ACP is supported by the National Science
Foundation (NSF) Grant number 1066293.

A large portion of the book was written at the Kavli Institute for
Theoretical Physics (KITP) in Santa Barbara, where I was fortunate to
receive a Simons Distinguished Visiting Scholar award for Fall 2014. The
KITP is supported in part by the National Science Foundation under Grant
number NSF PHY11–25915. I am especially grateful to Professor Lars
Bildsten for making this possible.

The day I find I cannot write books at either of these marvelous places, I
will switch to another line of work.

Barry Bradlyn and Alexey Shkarin were two exceptional graduate
students who proofread the book, caught bugs, and suggested stylistic
changes.

My family, all three generations of it, was very supportive as always. The
final check was provided by Stella, who left many unsolicited notes in the
margins and inside using her crayons. She is responsible for all remaining
errors.



CHAPTER 1

Electrostatics I

We begin the second half of the course with an introduction to a new force:
electromagnetism. Then we will study optics. We will conclude with a
study of quantum mechanics. Now, quantum mechanics is not like a new
force. It’s a whole different ball game. It’s not about what forces are acting
on this or that object that determine its trajectory. The question there is:
should we be even thinking about particles going on any trajectory? The
answer will be negative. You will find out that most of the cherished ideas
from Newtonian mechanics get overthrown. But the good news is that you
need quantum mechanics only to study very small things like atoms or
molecules. Of course, the big question is, where do you draw the line? How
small is small? Some people even ask me, “Do you need quantum
mechanics to describe the human brain?” And the answer is, “Yes, if it is
small enough.” I’ve gone to parties where after a few minutes of talking to a
person I’m thinking, “Okay, this person’s brain needs a full-fledged
quantum mechanical treatment.” But most of the time everything is
macroscopic, and you can describe it with Newtonian mechanics and
classical electrodynamics.

1.1   Review of F = ma
Before we start with electromagnetism, let us recall the interplay between
the ideas of force, mass, acceleration, and F = ma discussed at length in the
prequel to this book, referred to as Volume I. The only thing everyone
knows from the nursery is that a stands for acceleration, and we all know
how to measure it. You find the position now and the position slightly later,
take the difference, divide by the time, and get the velocity. Even though
velocity requires two successive position measurements, we talk of velocity
“right now,” because you can make those two successive measurements
arbitrarily close to each other, and in the limit in which the time difference
between them goes to zero, you can talk about the velocity right now. If the



speedometer in your car points to 60 miles per hour, that’s your velocity
right now. Likewise, find the velocity now, find the velocity a little later,
divide the difference by time, and you get the acceleration. It’s also an
instantaneous quantity. If you step on the gas and feel the seat pushing you,
that reflects your acceleration right now.

Given that we know how to measure acceleration, how should we
determine the mass of anything? First of all you need an arbitrarily chosen
standard of mass. The Bureau of Standards has a block of some material
that defines a kilogram. Using that, can you find the value of another mass?
Surely you know that using a weighing scale is not the correct answer
because that measures the weight of the object due to earth’s gravity, while
the mass of an object is defined anywhere, even far from the earth. Now
you might say, “Well, take a known force and divide by the acceleration it
produces,” but we haven’t talked about how to measure the force either. All
you have is this equation F = ma.

One correct option is to use F = ma itself, as follows. Take a spring,
attach one end to a wall, hook the known 1 kg mass to the other end, pull it
by some amount, release it, and measure a1, the acceleration. Now pick any
object whose mass you want, say an elephant. You detach that 1 kg mass,
attach the elephant, pull the spring by the same amount, and measure aE, the
acceleration of the elephant. Since you pulled the spring by the same
amount, the force is the same in both cases. You don’t know and don’t have
to know what it is, just that it is the same. Therefore we know

which determines mE, the mass of the elephant.
So imagine that the masses of all objects can be determined by this

process. Can we now use F = ma to find the trajectory of bodies? No, we
still need to know what forces will be acting on a body in any given
situation. We need to know the F in F = ma in the given context. Newton
does not tell you that in general. For example, for the spring, you have to
determine what force it exerts when it’s pulled by various amounts. To this
end, you pull it by some amount x, attach it to a known mass, find the
acceleration, and then the product ma gives the force as a function of x,
namely Hooke’s law F = −kx. So this is an example of your finding out the
left-hand side of Newton’s law by measuring the acceleration of known



masses. Newton did, however, give the left-hand side in one famous case,
the law of universal gravity between masses M and m in terms of their
separation r and the gravitational constant G:

Using this law we have been able to do some very impressive celestial
mechanics, right up to the present.

Unlike the spring force, there is no real contact between the earth and the
object that it is pulling, whether it be the apple or the moon. This is an
example of action at a distance. It was a great abstraction to believe that
things can reach out and pull (or push) other things without touching them.
Gravity was the first formally described force of this kind.

Remember the distinction between F =ma and F = −kx. The first is
always true and relates the force on a body to the acceleration it produces,
but does not tell us what force F will act in any given situation. It is our job
to find out every time what forces might be acting on a body. If it’s
connected to a spring, we have to study the spring experimentally to find
out that F = −kx.

So F = ma is good for three things: to define mass, to determine the
forces acting on bodies of known mass by seeing how they accelerate, and
to find the acceleration of bodies given the forces.

Every time a body accelerates, we must be able to relate its acceleration
to the sum of all the forces acting on it. But now and then we will not be
able to do this. We can either abandon F = ma, or, putting our faith in the
correctness of F = ma, provided all forces are included, we can go on to
discover and characterize the new force behind the discrepancy.

1.2   Enter electricity
Now I will describe an experiment that reveals a new force. I take a comb
and vigorously brush my hair and then touch a small piece of paper with the
comb. I find it sticks to the comb and I can lift it. But when I shake the
comb vigorously, the paper falls down. What can we learn from this?

Clearly, the force between the comb and paper is not the force of gravity,
because gravity doesn’t care if you comb your hair or not. We may concede
that there is a new force, but we may conclude it is feeble compared to



gravity because it eventually yields to gravity when we shake the comb. It
would be a mistake to think so. In fact, this new force is roughly 1040 times
stronger than the gravitational force, as determined by a criterion that I will
explain shortly. But first, let us grasp this fact intuitively.

Look at Figure 1.1. You see me holding the comb, which is holding up
the piece of paper. What is trying to pull it down? The entire planet! The
Himalayas are pulling it down, the Pacific Ocean is pulling it down, even
the Loch Ness Monster is pulling it down. Everything is pulling it down. I
am one of these people generally convinced the world is acting against me,
but this time I’m right. Everything is against me and my comb, and yet we
are able to triumph against all of that. And that is how you compare the
electric force with the gravitational force. It takes the entire planet to
compensate whatever force I created between the comb and the piece of
paper. Later we will see how the number 1040 quantifies this fact.

Something has happened to the comb when I rubbed it against my hair,
something that allowed it to attract the paper. We describe that condition of
the comb by saying “The comb is charged.” If the comb is briefly dipped in
water and removed, we find it no longer attracts the piece of paper. We say
the comb is now discharged.

Figure 1.1   The comb is pulling the paper electrostatically, and all of the world is pulling the other
way gravitationally.



Figure 1.2   Top: A negatively charged rod imparts some negative charge to the sphere upon contact
and they repel each other. Second: The negatively charged rod attracts a neutral sphere by polarizing
it without touching it. Third: A charged rod polarizes a dielectric. The light region in the middle is
the overlap of rectangles with positive (dotted boundary) and negative charges (solid boundary). The
light region is neutral and the edges carry the uncanceled charges. Bottom: The charged spheres
attract because they have been charged oppositely.

I am going to describe in detail the microscopic theory that can explain
this experiment and many more, qualitatively and quantitatively. But, first,
let us consider, at a qualitative level, a few more such experiments (depicted
in Figure 1.2) and their explanations in terms of these ideas.

Experiment 1: Wearing silk gloves, take an aluminum rod and rub it
against a passing furry animal, say a Yeti. Briefly touch an uncharged
metallic sphere, isolated from everything else. The rod and sphere will
repel.

Experiment 2: Move the charged rod near an isolated and uncharged
sphere. Before they touch, they will attract each other. The same happens
when the metallic sphere is replaced by a piece of paper.

Experiment 3: Take two more uncharged spheres. Repeat the previous two
experiments after rubbing the rod on a piece of polyester and you will find
the same results.



Experiment 4: Take two uncharged spheres; touch one with the rod that
has been rubbed against Yeti fur and the other with a rod that has been
rubbed against polyester. This time the two spheres will attract each other.

Experiment 5: Connect the spheres with a wire and they no longer attract.

Now we turn to the underlying theory, which is a result of centuries of
investigation. We first consider some qualitative facts.

The most important idea is that everything is made of atoms. The atom
has a nucleus consisting of protons and neutrons. The nucleus is surrounded
by some very light particles called electrons. Normally the number of
electrons and protons in an atom is equal. Two protons will repel each other,
as will two electrons, but the proton and electron will attract each other. A
neutron will not interact with, i.e., attract or repel, another neutron, proton,
or electron. (Here I refer to electrical interactions, not nuclear interactions.
These are much stronger, but significant only at very short distances [≃
10−15 m]. The neutron fully participates in nuclear interactions and the
electron does not.) Objects like electrons and protons that take part in
electrical interactions are said to be charged or to carry a charge, while
neutrons are said to be (electrically) neutral.

Just as mass is the reason particles experience the force of gravity, charge
is the reason they interact electrically. But there are differences. There are
no gravitationally neutral particles—everything has a positive mass.
Second, gravity is always attractive but the electric forces can go either
way. This is described by saying there are two kinds of charge, positive and
negative, which can cancel each other out just like positive and negative
numbers can. By convention the proton has positive charge and the electron
has negative charge. Like charges repel and unlike charges attract. A system
made of an equal amount of positive and negative charges will appear
neutral, at least from a distance, when the internal structure is irrelevant.
There is no such way to neutralize gravity.

An atom with an equal number of protons and electrons is neutral. This is
due to a remarkable fact that the electron and proton have exactly equal and
opposite charges. This equality is quite a mystery since the two particles are
otherwise very dissimilar: the proton is about 1836 times as heavy and
experiences forces that the electron does not.



Here is how we understand Experiments 1 through 5 in terms of the
preceding facts.

Experiment 1: Upon rubbing, electrons flow from the Yeti to the rod,
leaving the rod negative and Yeti positive. The protons stay where they are.
The silk gloves keep the electrons in the rod from jumping on to your body
and then to the ground: silk is an insulator. When the rod touches the
sphere, some electrons migrate to the sphere in order to get away from each
other. The sphere and the rod are both negatively charged and repel each
other.

Experiment 2: When the negatively charged rod goes near the neutral
metallic sphere, the electrons in the sphere are repelled by the extra
electrons in the rod, and they preferentially occupy the far side, leaving a
positive region near the rod. The positive region is attracted to the rod and
the negative one repelled by it, but the attraction wins since the positive part
is closer. Such free motion of electrons can take place in a conductor. If we
replace the metallic sphere by a piece of paper, it too gets attracted, but by a
more complicated mechanism. The paper is a dielectric. The electrons in it
are not free to run off to one end, because paper is also an insulator, but
they can move a little from their orbits centered on the nuclei if coaxed.
Think of a rectangular piece of paper as made of two superposed layers, one
positive (bounded by the dotted line in the figure) and made of the nuclei
and one negative, made of the electrons (bounded by the solid line).
Initially the two layers overlap completely and neutralize each other
everywhere. When the negative rod comes near one edge, the electronic
layer is displaced by a tiny amount (of atomic dimensions) away from the
rod, while the positive nuclei stay put. The bulk of the paper (solid region
of overlap in the middle) is still neutral, but the edge near the rod has a strip
of unbalanced protons and the edge far from it has a strip of unbalanced
electrons. This process, in which the positive and negative charges are
displaced relative to each other by a small amount, is called polarization.
Again, the attraction of the nearby positive strip beats the repulsion of the
distant negative one.

Experiment 3: When the rod is rubbed against polyester, the electrons flow
the other way: from the rod to the polyester, leaving the rod positively



charged. We can repeat the arguments from Experiments 1 and 2, simply
reversing the sign of all charges.

Experiment 4: Now one sphere is positively charged (by polyester) and
one is negatively charged (thanks to Yeti) and they attract.

Experiment 5: The wire, a conductor, allows electrons to flow from the
negative to the positive sphere till both become neutral (assuming they had
equal and opposite charges).

Observe that in all cases, it is only the electrons that do the moving.
Consider in particular Experiment 3, when a positively charged rod touches
the neutral sphere, and both end up positive. The protons do not flow from
the rod to the sphere. Instead, the rod starts out with a deficit of electrons it
lost to the polyester. It is hungry for electrons, some of which it takes from
the sphere when it touches it. The sphere then becomes positive and the rod
slightly less positive. It is as if positive charge had migrated from the rod to
the sphere. Likewise, the electric current in a wire is assigned a direction
conventionally associated with the flow of positive charge, while in reality
it is the electrons that are moving in the opposite direction. We will run into
one exception: within a cell or battery, current is carried by positive and
negative ions (non-neutral atoms with an excess or deficit of electrons).

1.3   Coulomb’s law
We now progress from a qualitative description of charges to a quantitative
one. How do we measure or quantify q, the charge? What precisely is the
force between two static charges q1 and q2 as a function of their positions?
All the answers are contained in one formula called Coulomb’s law, after
Charles-Augustine de Coulomb (1736–1806). Even though only Coulomb’s
name is on it, his work was the culmination of many previous efforts. He
did, however, give the law its final and direct verification, which is why the
unit of charge, denoted by C, is called a coulomb.

Coulomb’s law says that the force between two charges q1 and q2, located
at points r1 and r2 (as shown in Figure 1.3), is



Figure 1.3   The forces between two charges q1 and q2 located at r1 and r2. The force F12 acts on q1
due to q2 and is equal and opposite to F21, similarly defined.

In the formula F21 (= −F12) is the force on charge 2, due to charge 1. The
figure corresponds to the case when the charges are of the same sign and
hence repel. If they are of opposite sign, the forces will be reversed and
describe mutual attraction.

We will spend considerable time unearthing the numerous implications of
this formula.

First, notice that regardless of how q is measured, the formula shows the
charges pushing each other away if they have the same sign and attracting if
they have opposite signs.

Next, the formula defines a charge of one coulomb: if two charges, 1
coulomb each, are separated by 1 meter, the repulsive force between them
will be 9 · 109 N.

That’s an enormous force (the weight of about 10,000,000 adults), and
normally you don’t run into 1 coulomb of unneutralized charge. A coulomb
arises more commonly when we consider currents: an ampere (denoted by
A) is the flow of one coulomb per second and that is not unusual.



(Remember the wire is still neutral: the flowing electrons are neutralized by
a static nuclear background.)

In these units the charge of the proton, denoted by e, is 1.6· 10−19 C and
that of the electron is −e.

1.4   Properties of charge
Now we consider two fundamental facts about charge that are not part of
Coulomb’s law: it is conserved and it is quantized.

As you know, “conserved” is a physics term for saying “does not change
with time.” Electrical charge may migrate from body to body or place to
place, but the total charge is conserved, provided you keep track of the
signs. In a chemical reaction or in particle accelerators where all kinds of
new particles are produced in a collision, the total charge of the final
products always equals the total charge of the incoming products.

Charge is not merely conserved: it is conserved locally. I will illustrate
what I mean by considering a conservation law that is not local. Suppose I
say the number of students in the class is conserved. That means that if you
count them at any time, you will get the same number. But suppose Joe
suddenly disappears from the back of the room and instantaneously
reappears at the front. The number of Joes is conserved. This is, however,
not local conservation because Joe disappears in one part of the world and
appears in another, without following an interpolating trajectory. Such non-
local conservation laws do not seem to exist and do not interest us, since
they cannot survive relativity: the disappearance and reappearance of Joe,
simultaneous in one frame, need not be simultaneous in another frame.
There we could have a period with no Joe anywhere or two Joes. If you
want conservation laws that hold in all frames, they have to be local.

The conservation of electrical charge is local. So charge doesn’t just
disappear at one place and reappear somewhere else; it moves around. As it
moves we can follow this motion continuously. We can employ this notion
to restate the local conservation of charge as follows. Suppose you mark off
a closed region of space and (i) count all the charge inside and (ii) keep
track of all charge entering or leaving the region via the boundary. You will
find that the increase (decrease) of the enclosed charge is precisely
accounted for by the charge flowing in (out) across the boundary. This
would not have been the case with Joe: if you had counted the number of



Joes inside a region in the back of the class and another region in front of
the class, both numbers would have jumped abruptly with no accompanying
flow of Joe at either boundary.

The conservation of charge had been assumed from Coulomb’s time and
played a big part in the explanation of the electrostatic experiments
described earlier.

The second feature of charge is that it is quantized. That means the
electrical charge does not take a continuum of possible values, unlike, say,
the x-coordinate of any object, which can be any number you like. All the
charges we have ever seen are integral (positive or negative) multiples of a
basic unit of charge, e = 1.6 · 10−19 C. (Quarks are an exception, but they
are always trapped inside particles like protons and neutrons. Their charge
is also quantized but as a fraction of e. For example, the proton is made up
of 2 quarks of charge  and one of charge  and a cloud of quark-
antiquark pairs of net charge 0.)

Paul Dirac (1902–1984) has provided a possible explanation of charge
quantization using two ideas I have not discussed yet: magnetic monopoles
and quantum mechanics. I nonetheless digress here to describe Dirac’s work
because by the time I cover these two topics, you may have forgotten the
question we are discussing. Briefly, a magnetic monopole, if it existed,
would possess an attribute called magnetic charge that comes in two signs,
just like electric charge. Monopoles of like charge would repel and
monopoles of unlike charge would attract with an inverse square law. All
the magnetic phenomena we see, like with bar magnets, are associated with
magnetic dipoles, which have net zero magnetic charge and are actually
produced by electric currents. A magnetic monopole will be like a bar
magnet with just the north pole, something we have not seen yet. So far we
have not had direct and reproducible evidence of even a single monopole,
let alone a macroscopic manifestation in the form of a magnet with just one
pole. Some grand unified theories, however, predict magnetic monopoles.
They are expected to be fairly heavy and to interact more strongly than
electric charges. Dirac showed that if quantum theory is to consistently
describe the interaction of electric charges with monopoles, all electric
charges have to be multiples of some basic unit, inversely proportional to
the monopole’s magnetic charge. Thus even a single monopole, anywhere
in the universe, guarantees electric charge quantization. If you believe that



anything that can exist will exist, you can hope that one day these
monopoles will be seen.

Let us briefly consider a few facts you may have known but not
wondered about at any length.

Every electron, anywhere in the universe, is identical to every other one:
it has exactly the same charge and exactly the same mass. Now, you might
say, “Look, that’s a tautology, because if it hadn’t the same charge and the
same mass, you would simply call it something else.” But what makes my
sentence non-empty is that there are many, many, many electrons that are
absolutely identical. This never happens macroscopically. Even identical
twins are not identical, and cars that are supposed to be identical are not.
But at the microscopic level, elementary particles like electrons are
identical to other electrons anywhere in the universe, even if they were
produced in collisions in different parts of the universe. That is a mystery, at
least in classical mechanics, though relativistic quantum field theory gives
an explanation. (Relativistic quantum field theory is a description of fields,
like the electromagnetic field, satisfying the laws of relativity and quantum
mechanics. It forms the basis of all modern particle theory.) The fact that
they are absolutely identical makes our life easy, because if every particle
were different from every other particle, we could not make many useful
predictions. For example, assuming that the hydrogen atom on a receding
galaxy is identical to the hydrogen atom on the earth and observing that the
light from it has a shifted frequency, we deduce the galaxy’s velocity from
the Doppler shift, instead of simply saying the “hydrogen” in the other
galaxy is a different atom. This identity of atoms and molecules is also why
structures like DNA are stable and reproducible.

Why is the charge of the electron exactly equal and opposite to the charge
of the proton, given that they have very different masses and non-electric
interactions? The standard model of strong, weak, and electromagnetic
interaction can explain this based on a consistency condition called
“anomaly cancellation.” This equality of charge is the key to the neutrality
of atoms and the reason behind our existence. It is also why we can detect
gravity despite its relative weakness, a point we will explore in greater
detail shortly.

1.4.1   Superposition principle



We now pass to an application of Coulomb’s law when there are three
charges q1, q2, and q3 at r1, r2, and r3 as shown in Figure 1.4. What will be
the force on q3 due to the other two? Most students answer right away that
it is the vector sum of F31 and F32 in our notation, i.e., the sum of the force
q1 by itself would exert on q3 and what q2 would exert by itself. While this
is indeed correct, it is not simply a consequence of Coulomb’s law. The law
only says what happens when we have just one pair of charges, while the
students’ answer assumes that F31, the force on q3 due to q1, is unaffected
by the presence of q2. This is not a logical necessity or a consequence of
Coulomb’s law, and it is not even true if effects of relativistic quantum
mechanics are included. We then find that when there are three charges
present, certain new forces appear that cannot be described in terms of the
pairwise “two-body” interactions. In other words, studying pairs of particles
in isolation will not tell us everything we need to know when more than one
pair is present. However, in classical electrodynamics, which we focus on
here, we may add the force q1 would have exerted on q3 in the absence of q2
to the force q2 would have exerted on q3 in the absence of q1 to find the
force on q3 when all three are present. This is called the superposition
principle. I repeat: this is not a logical consequence of Coulomb’s law, but
an empirically established feature of classical electrodynamics that
simplifies our life enormously.

Figure 1.4   The force on q3 due to charges q1 and q2 is the sum of the forces each would have
exerted on q3 in the absence of the other. This is the superposition principle.

1.5   Verifying Coulomb’s law



Suppose I give you Coulomb’s law and ask you to verify it. How will you
confirm the dependence of the force on q1, q2, and r = |r1 − r2|? Think about
it, before reading the answers given by my class. An idea my class
generated was that we keep q1 and q2 fixed and vary r, and measure the
mutual force as a function of r. Here are two ideas my students came up
with for measuring the force. One was to connect the charges to the two
ends of a spring and watch how much it expanded (or contracted) to balance
the electrical force. The other was to tie one of the charges down, let the
other accelerate, and use F = ma to find the force (as a function of the
starting separation r).

I should point out that I accepted any procedure that was right in
principle and did not require that they corresponded to what
experimentalists, who are devilishly clever, would employ in practice.

Notice that to confirm the 1/r2 dependence, we don’t have to know what
q1 and q2 are, as long as we keep them fixed. Double (or triple) the r and
see if the force (measured as described above) falls to one fourth (one ninth)
of the initial. Of course, you need to consider a lot of values of r to truly
nail down the r dependence.

Next, you want to verify that the force goes as the first power of q1 and
the first power of q2. Consider the following suggestion: “Take two metal
spheres, put a fixed charge on one (this will be the fixed q1) and vary the
charge on the other (q2), and track the force. For example, if you halve q2,
the force should drop to half the old value.” To halve the charge on sphere
2, you cannot simply say “Halve the number of electrons dumped on it,”
because the existence of electrons was unknown at Coulomb’s time, and
you have to play by the rules of that pre–atomic theory period. After some
discussion the following acceptable strategy was generated.

Take two charged spheres numbered 1 and 2, and find the force between
them. Do not touch number 1. Take sphere number 2 and bring it in contact
with an identical uncharged sphere and separate them. By symmetry, they
should each end up with  Even though we did not know what q2 was, we
know we have halved it in the process. Put 2 at the old location and see if
the force has halved.

We physicists love these symmetry arguments, which transcend physics
and border on philosophy: When two identical spheres are made to share



some charge, there is no reason why nature would not give each exactly half
the total.

Returning to the spheres, by another splitting, you can get a sphere with
charge . By making a sphere with  share its charge with an identical
one carrying  you can get one with  and so on.

That’s how we can verify that the force depends linearly on q2. Of
course, it must then also depend linearly on q1, because it’s up to us to
decide which one we want to call q2.

Here is another challenge. I give you a charged sphere and I want you to
find how much charge it carries, in coulombs. What will you do? When a
student said: “Put it in the vicinity of a reference charge and then measure
the acceleration,” I asked her how to get a known reference charge. Her
answer (correct, but by no means unique) was as follows. Take these two
identical spheres, each with the same unknown charge q (say by making
them share 2q equally), place them at a known separation, say a meter, and
measure the force needed to keep them where they are. Use Coulomb’s law
to extract q2.

If you constantly think about how you would measure anything you work
with, you’ll understand physics more deeply and also find solving problems
a lot easier. If instead you are busy pushing symbols around and chasing
factors of 2π, you will eventually be lost.

1.6   The ratio of gravitational to electric forces
Recall the claim that Fg/Fe, the ratio of gravitational to electric forces, is of
the order 10−40. We have to specify how we got this number. Our task is not
like selling toothpaste where one can glibly say it makes teeth 3.14 times
whiter: that is a different game, not subject to any rules.

We do have to explain how we come up with 10−40. It turns out the
answer does depend slightly on what comparison method we choose. There
will be some variations, but they will be tiny compared to the enormous
ratio, i.e., the number of zeros may range from 37 to 43 depending on the
comparison method.

Consider two particles of mass m1 and m2 and charges q1 and q2, a
distance r apart. We find



Fortunately the ratio does not depend on the separation r we choose for
comparison since both forces fall as 1/r2. It does, however, depend on the
charges and masses. If there were only one kind of particle (and its
antiparticle) in the universe, we could plug in its mass and charge. But there
are of course many. However, we can focus on the two key players out of
which everything we see is made, the proton and electron.

If we take two electrons we get

If we take a proton and an electron, the ratio will be of order 10−40, and if
we take two protons it will be of the order 10−36. Gravity is incredibly
weaker than electricity, no matter how you slice it.

If gravity is so weak, how did anyone discover it? Suppose we knew only
about electricity and didn’t know about gravitation. One way to find out
that there is an extra force is to measure the force between two particles to a
fantastic accuracy and find some discrepancy in the 40th decimal place. But
that’s not how it was done, of course. Everyone seems to know the reason:
the electric force, even though it’s very strong, comes with opposite
charges. Consider the planet Earth. It has lots and lots of atoms and lots of
charges in each atom, but every atom is neutral. The moon too has lots and
lots of atoms, but they’re also neutral. So all the powerful electric forces
amount to nothing, due to internal cancellations. But the mass of the
electron does not cancel the mass of the proton in determining the mass of
the atoms. So mass can never be hidden, whereas charge can be hidden.
That’s the reason why, in spite of the incredible amount of electrical forces
they’re potentially capable of exerting, the earth and moon see each other as
neutral entities. In most cosmological calculations you can forget the
electric force. The remaining (gravitational) force plays a dramatic role in
the structure of the universe.

It is this feature of gravity, that mass cannot be hidden, that allowed us to
infer existence of dark matter. Let us recall how we know of its existence in
our own galaxy. If a star is orbiting the center of our galaxy, just by using



Newtonian gravity, by knowing the velocity of the object as it goes around,
you can calculate how much mass is enclosed by the orbit. In case you
forgot, for a circular orbit, the velocity at radius r is constrained by

where M is the enclosed mass. If you take orbits of bigger and bigger
radius, you will find more and more enclosed mass, until you reach orbits as
big as the visible galaxy. So far so good. But you find that as you consider
bigger orbits, you still keep picking up more mass, out to some great
distance. That is the dark matter halo of our galaxy. Dark matter is made of
hard-to-detect particles, but its gravitational effects cannot be hidden. It
occurs everywhere, even in galaxy clusters. Physicists around the world,
including here at Yale, are trying to find dark matter. The problem is, we
don’t know exactly what particles dark matter is made of. They are not any
of the usual suspects, which would have interacted with other particles and
been detected already. You have to build detectors that will detect that
unknown species. And you’re hoping that one of these dark matter particles
will collide with the stuff in your detector and trigger a reaction. Of course,
there will be lots of reactions due to other particles. That’s called
background. You’ve got to throw the background events out and hope that
whatever is left over is due to dark matter. One diagnostic is that while
normal particles will typically collide multiple times in the detector, we
weep for joy if the dark matter particles collide even once. The particles
that form dark matter are very interesting to astrophysicists and particle
physicists, and there are many candidates.

1.7   Coulomb’s law for continuous charge density
We conclude with one final variant of Coulomb’s law. We have seen how to
use the superposition principle to add up the pairwise forces on any one
charge due to many others. But often we consider problems where the
charges are continuous. (In real life everything is discrete, made of protons
and electrons, but at some macroscopic scale, it will look like charge is
continuous, just as water, which is made of molecules, appears to be a
continuous fluid.) We tackle this variation just as we did the problem of
gravity due to a continuous mass distribution: we replace the sums by
integrals.



As an example, consider a circular wire of radius R with λ coulombs per
meter, lying in the xy-plane with its center at the origin, as shown in Figure
1.5. I want to find the electric force it exerts on a point charge q located at a
height z on the z-axis. I divide the loop into tiny segments of length dl.
Consider the tiny highlighted segment of length dl perpendicular to the yz-
plane, as shown in Figure 1.5. It can be treated as a point charge λ dl. It
exerts a force dF of magnitude

Figure 1.5   The electric force due to a loop in the xy-plane, on a charge located on the z-axis. The
highlighted segment of length dl has charge λdl and exerts a force dF. We keep only the vertical part
along the z-axis since the diametrically opposite segment dl∗ (shown by a dotted curve) will cancel
the horizontal part.

The force vector lies in the yz-plane. We need keep only the vertical part,
pointing up the z-axis, since the horizontal part will be canceled by the
segment dl∗ at the diametrically opposite point, shown as a dotted curve.
The total vertical force has a magnitude given by integration:



where the factor

projects out the vertical part of dF and 2π R is the integral over dl.
Once you’ve done such a calculation you must think of ways to test the

result. Here are two good tests. First, if you set z = 0, i.e., find the force at
the center of the loop, you should get zero since every segment that exerts a
force toward the center is countered by the diametrically opposite one. This
is true of our answer.

The second test is to go very far away from the loop, when it should look
like a point charge λ · 2π R. How far is far? Any one length, say the
diameter of my head, can be made to look impressively large or
depressingly small by choosing the unit of length to be a micron or a light
year. Only ratios of lengths can be described as large or small, and to be
useful, the ratios should be relative to some intrinsic length in the problem.
For my head to appear point-like I should be seen from a distance many
times the size of my head. For the loop to appear point-like, it should be
viewed from a distance z≫R. You may verify that in this limit the formula
indeed reduces to the force between q and a point charge 2π Rλ, separated
by a distance z.



CHAPTER 2

The Electric Field

I begin with a review of a subset of ideas from the last chapter that you will
need going forward.

2.1   Review of key ideas
Several species of particles, such as protons and electrons, have an attribute
called electric charge or simply charge. Others like the neutron do not.
Objects with charge exert forces on other objects with charge. The coulomb
is the unit for measuring charge. It is denoted by C and is defined by
Coulomb’s law, which I repeat for convenience:

In the formula, q1 and q2 are charges of the particles located at r1 and r2,
and F12 (= −F21) is the force on charge 1, due to charge 2.

If two charges, each equal to 1 C, are placed one meter apart, they will
experience a force equal to 9 · 109 N. Once such a reference charge (or a
known fraction of it) is given, any other charge may be measured using
Coulomb’s law. (Here is a way to create a reference charge. We take two
identical uncharged spheres, charge one by an unknown amount q and let it
share its charge with the other. Each then has q/2 and the force between
them at a known separation then determines q2/4.)



Charge can be positive or negative. From Coulomb’s law we see that like
charges repel (i.e., F12 and F21 point away from each other) while opposite
charges attract. The proton and electron have charges e = 1.6 · 10−19 C and
−e respectively. The neutron has no charge. Finally, we need the
superposition principle to go beyond a pair of charges. This principle allows
us to compute the force on any one charge due to many others by adding
their individual contributions. The force between a pair of charges is
indifferent to the presence of other charges.

The total charge of a collection of charges is the algebraic sum of the
charges of the constituents. As a result, an atom with an equal number of
electrons and protons is electrically neutral. This is the reason we can detect
the gravitation force between the earth and the moon: given their electrical
neutrality, only gravity remains and is detectable despite being 1040 times
weaker.

2.2   Digression on nuclear forces
Now for a brief digression. We can understand the atom as resulting from
the attraction between the protons in the nucleus and the electrons. But what
are the protons doing, so close to each other inside a nucleus of size 10−15

m? Why doesn’t the Coulomb repulsion make the nucleus explode? The
answer, which you might already know, is that protons experience another
force, the nuclear or strong force, which is attractive and much stronger
than their Coulomb repulsion. If that is so, how did we manage to detect the
relatively tiny electrical force hiding underneath this nuclear force? The
answer has to do with the fact that the nuclear force Fn has a very different
distance dependence compared to the electrical force Fe. It varies with
distance roughly as

where r0 ≃ 10−15 m is called the range of the nuclear force. The electric
force of course behaves as



where k includes q, ε0, etc. As a result of the different r-dependences, the
ratio Fn/Fe, unlike Fg/Fe, is distance dependent:

Deep inside the nucleus, i.e., and

and the nuclear force dominates because A≫k. As we go to distances r≫r0,
the exponential e−r/r0 completely suppresses the factor and the Coulomb
repulsion wins. Of course, the crossover between the two forces is not
abrupt, but occurs over the rough dimension of the nucleus.

Now for the role of the neutron in the nucleus. What are the neutrons
doing here? Whereas they are nobodies with respect to Coulomb
interactions, the attractive nuclear force between two neutrons or between a
neutron and a proton is as strong as the nuclear force between two protons.
(This is one reason protons and neutrons are collectively called nucleons.)
As the nuclei get bigger, the exponential suppression of the attractive
nuclear force really kicks in, while the Coulomb repulsion between protons
lives on. So additional protons eventually cause instability, while neutrons
contribute to the stability: they bring in nuclear attraction without the
Coulomb repulsion that necessarily accompanies protons and tries to blow
up the nucleus. There are far more neutrons than protons as the nuclei get
heavier. (For example, U has 92 protons and 143 neutrons.) But neutrons
can only do so much: the laws of quantum mechanics force the added
neutrons to have more and more kinetic energy, and beyond some size
nuclei are unstable and decay into stable nuclei, say by emitting α particles,
which are He nuclei, made of two protons and two neutrons.

This ends the brief digression on the complicated subject of nuclear
physics.

2.3   The electric field E



Now for the main business of this chapter: the seminal notion of the electric
field.

Let us rewrite the force on q2 due to q1 as follows:

What we have done is to write the force on q2 due to q1 as a product of q2
and E(r2), which is called the electric field at the location of q2.

Where does this cosmetic factorization of F21 into E(r2) and q2 lead us?
First we will say that the interaction between q1 and q2 is a two-step

process:

Step 1. The charge q1 produces a field E(r2) at the location of q2 given by

Step 2. The charge q2 responds to the field by feeling a force F21 = q2E(r2).

Thus we have split the simple Coulomb interaction into two parts: the
creation of the field by one charge and the response to that field of the other.
Of course, we could just as well factorize F12 as E(r1), the field produced
by q2 at the location of q1, times q1.

It will be a while before you can appreciate the cleverness behind this
factorization. For now, just understand the terminology and the procedure.

Notice two things.

Thing 1: While it takes two charges to feel a force, it takes only one charge
to produce a field. A charge q at the origin produces the following field at
point r:



where er = r/r is a unit vector in the radial direction, from the origin (where
q is) to r where E is being computed.

Thing 2: The field due to q is non-zero everywhere, not just where there is
another charge to feel the field.

We think of E(r) as a condition in space, produced by the presence of q.
Something is different at r when q is around, compared to when it isn’t:
with q present, any charge placed at r will feel a force, while without it, it
will just sit there.

A field is a force waiting to happen: just put a test charge there and you
will see it in action. The field of a charge is felt only by other charges.

If there are many charges, we invoke the superposition principle: the field
at some r due to many charges will be the (vector) sum of the fields due to
each one. You have to perform this possibly very complicated vector sum to
calculate the field there. To measure it is easier: put a known test charge q
at r, equate the force it experiences to qE. If q =1 C, the force and E are
numerically equal but dimensionally different. This is why one says the field
is the force on a unit charge.

Let us get some practice by computing E at the corner (a, a) of a square
with charges q at the other three corners (0, 0), (a, 0), and (0, a) as shown in
Figure 2.1. Once you get this, you can add twists: make the square into a
rectangle, make the charges unequal and of different signs, and so forth.

Figure 2.1   The electric fields E1, E2, and E3 at (a, a) in terms of the unit vectors i and j, due to
three equal charges q located at (0, a), (0, 0), and (a, 0). The total field at (a, a) is the vector sum of
the three pieces.



The figure shows separately the three contributions E1, E2, and E3 at
(a,a) due to three equal charges q located at (0,a), (0, 0), and (a,0):

I hope you can see why the field E2 is half as big as the other two, and
points in the 45◦ direction, i.e., along i +j. The corresponding unit vector is
obtained by dividing i + j by its length, It is easy to add the three pieces
to get the total field at (a,a):

We will soon be doing numerous versions of this problem, computing the
field due to various charge distributions, discrete and continuous. But at the
outset I must warn you that Coulomb’s law, as stated, violates relativity.
Suppose you and I hold two positive charges q1 and q2, and I am one light-
year away from you. You hold your charge in place by pushing against the
repulsive force mine exerts. Now I suddenly move mine away from you by
a bit. You will feel the reduced repulsion right away. I have managed to
send you a signal instantaneously and this faster-than-light signaling is
disallowed.

Does electrodynamics then violate relativity? No, we will see it is
remarkably compatible with it. What happens in the complete theory is that
if I wiggle my charge, the signal will reach you a year later, traveling at the
speed of light. Until such time, the field at your location due to my charge
will remain unaltered.

Of the two parts of the story, the computation of E in terms of the charges
and the response of a test charge q to the field, only the former gets
modified in the complete theory. The field at some spacetime point, say (r =
0, t = 0), will receive contributions from all other charges based not on what



they are doing now, but what they were doing at an earlier time. The
amount by which we have to go back in time is just the time light would
take to go from the source of the field to (r = 0, t = 0). A charge that was a
light-year away a year ago will be contributing to the field at (0, 0). This is
called the retarded interaction. We will discuss this briefly toward the end
of chapter 15.

What is the role of Coulomb’s law then? In principle it is to be used
when none of the charges is moving. In this case, the delay does not matter:
since every charge knows where every other charge is, all the signals have
arrived and are unchanging. In practice we also use Coulomb’s law
provided the charges in question are near each other and moving at and
retardation effects are negligible, as in most electrical circuits.

Remarkably, the second part of the story, the equation giving the
response to the field, F = qE(r) remains unaltered in the final theory of
electrodynamics. It is a local relation between the field at a spacetime point
and the charge at that point. The field at any point could be a very
complicated function of every charge in the history of the universe, but the
response (of test charge q) to it depends only on its current value at the
location of the charge q. It does not care what went into producing E. So the
field concept is essential to making electromagnetic theory compatible with
relativity.

2.4   Visualizing the field
Let us go back now to the simplest problem in the world: the electric field
due to one charge. The formula is very simple. Let’s put that charge q at the
origin. The electric field is

where er is the radial unit vector, r/r. Sometimes you see Eqn. 2.18
rewritten as



If you encounter this version, do not get fooled into thinking the field is
falling as r−3. It’s still r−2 because there’s an extra r at the top.

So here you have this formula. If you’re a person who likes to work with
formulas this is all you need. You manipulate the stuff on paper, and you
add different fields. But people like to visualize this. How do we visualize
this? That’s the real question. Suppose someone asks you, what’s the height
above sea level of a certain part of the United States? You’ve got some
mountains. You’ve got some valleys. Somebody can give you a function
that gives you the height at any point in the United States, but it’s more
revealing for most of us to have some kind of a contour map. Each contour
is a different height. If you go hiking, you want this map, not the
corresponding function. Similarly, you want a pictorial representation of
this electric field. Unlike the height function, which is a scalar, i.e., just a
number at each point, the electric field is a vector E(r) at each point r.

Suppose I want to communicate to you pictorially the information
contained in the function in Eqn. 2.18. I begin with the modest goal of
describing E at just one point, 1, in Figure 2.2.

Like many of the figures I will show you, it is a two-dimensional cross
section of a three-dimensional configuration.

I take that point and draw an arrow there to represent E(1). The length of
the arrow gives the size of the field in some scale, so many centimeters of
length for each newton/coulomb of field. That is the electric field at that
point 1. Then I pick a few points, say eight in all, at the same radius. (The
points lie on a circle in the plane of the paper, while real charges live in
three dimensions. You should think of this as a cross section of what
happens on a sphere of the same radius.) The points are also uniformly
distributed to reflect the isotropy of the electric field. The figure is already
telling you something: the field is radially outward and same in magnitude
at points with the same r. Be very careful about what it is not telling you.
An arrow is not telling you what is happening throughout the length of the
arrow. It’s telling you what’s happening at the starting point, the tail. You
understand the arrow is in your mind. It’s not really sticking out in space.
It’s a property or a condition at that starting point, but we’ve got to draw it
somehow, so we draw it that way. (If E were the velocity of a fluid in a
river, the arrow starting at some point r would be the velocity at r only, even
if the arrow is a foot long and passes over regions where the actual water
velocity is totally different in magnitude and direction.)



Figure 2.2   The electric fields E, at a few representative points on circles of two different radii
around a charge at the origin.

What happens when we go further out in r? If I put a test charge further
away, it is still going to be repelled radially, but less. So I draw a few
arrows at representative points 9–16 and make them shorter, to reflect the
1/r2 nature. I can draw a few more arrows and hope you get the picture from
the few discrete sampling points.

Then someone had this clever idea: join all these arrows as in Figure 2.3.
These are called field lines.

The actual charge and lines should be drawn in three dimensions but
Figure 2.3 shows what happens in a representative plane, which I assume
for illustrative purposes has 8 lines. What have I gained and what have I
lost? Previously I knew the field direction only at the chosen points at some
radii, but now I know it throughout each line. On the other hand, I have lost
information on the magnitude of the field: the arrows, whose lengths
encoded |E| are gone and replaced by the field lines that go on forever. They
merely tell me in which direction E points, but not how big it is. They just
tell me that the charge is pushing every (positive) test charge out radially
and that the force is isotropic.



Figure 2.3   The electric field lines due to a charge at the origin. The actual charge and lines live in
three dimensions, and the figure shows what happens in a representative plane, which I assume has 8
lines.

But, thanks to a miraculous property of the Coulomb force, namely that it
falls like 1/r2, there is information even on the strength of the electric field.
That information is contained in the density of electric field lines. By
density of lines, I mean the number of lines crossing a surface perpendicular
to the lines, divided by the area of that surface.

To grasp this, let us pick some convention, that for every coulomb of
charge, we will draw a certain number of lines emanating from it, say 64. If
we draw a sphere of some radius surrounding the coulomb, 64 lines will
cross that sphere, everywhere perpendicular to the surface and of uniform
density, reflecting the isotropy of the electric field of a point charge. If I
draw a bigger sphere, the same 64 lines will cross that sphere also, but they
will be less dense, with fewer lines per unit area. Since the area of the
sphere grows as r2, the density of lines will fall as 1/r2. This is exactly how
the field strength |E| ≡ E falls with distance.

This wonderful ability of field lines to encode the magnitude and
direction of the field exists only because we are living in three dimensions
(where the sphere surrounding the charge has an area that grows as r2) and
dealing with a field that falls as 1/r2. For example, if a radial field that falls
as 1/r3 is represented by such lines, their direction will faithfully represent
the direction of the field, but their density will not represent the field
strength E.



The lines help you visualize the field strength. Wherever the lines are
dense, the field is strong. Wherever the lines are spread apart, the field is
weak. It is a very precise statement. The only thing not precise is how many
lines you want to draw per coulomb. That is really up to you, but you must
be consistent. Once you choose 64 lines per coulomb, and you are dealing
with a charge of two coulombs, you should draw 128 lines coming out of it
uniformly spread out. As long as you do that, the number of lines crossing
per unit area will be proportional to the field.

Now, no matter how many lines you pick per coulomb, there will be
spaces between the lines. That does not mean the field is zero between the
lines. The field is continuous in space and not concentrated literally on
these lines. You must read between the lines. For example, at a point
midway between two adjacent lines, the field is pointing midway as well,
with an intensity given by the density of the lines at that radius.

Figure 2.4   The electric field due to a dipole. The two vectors shown at point D are the contributions
E+ and E− to E from the two charges. Their vector sum will be horizontal.

Clearly, if we consider the field of a negative charge, the lines will point
inward, reflecting the attraction felt by the test charge.

The notion of field lines extends beyond the field due to just one charge.
Figure 2.4 shows the field due to a pair of charges ±q, called a dipole. The
first thing I want you to notice is that very close to any one charge the lines



point uniformly and radially out or in depending on its sign, no matter how
many other charges there are. This is because as we approach any charge,
the field it produces diverges as 1/r2 and swamps the finite contributions
from the others.

Next consider the field lines labeled A, B, C and D. Look at line A. It is
clear that a (positive) test charge placed anywhere on A (which goes from
the minus charge all the way to infinity) would be attracted to the minus end
of the dipole, which attracts it more than the plus end repels it. The reverse
argument explains the outward pointing line B, on which repulsion wins.
On the line C, pointing from the plus to the minus, both charges apply a
force to the right. Finally, look at the line labeled D. It contains the point D,
which lies on the perpendicular bisector of the line joining the two charges.
Notice the field line at D is horizontal. This directionality follows from a
symmetry argument. The minus charge attracts the test charge on a line
from D to itself; the plus charge repels it along a line joining it to D. Both
forces have the same magnitude (since D is equidistant from them),
canceling vertical components, and additive horizontal components.

The figure also makes it clear that any closed surface enclosing only the
plus (minus) charge will intercept 10 lines going outward (inward). If we
draw any surface enclosing both charges, the net flow in or out will be zero.
This is your qualitative introduction to Gauss’s law, which relates the net
(outgoing minus incoming) number of lines leaving a closed surface to the
net enclosed charge. (If the surface is convoluted a field line may exit,
reenter, and exit again for example. This will count as a net exit of one
line.)

Figure 2.5 shows two identical positive charges. Far from both, it will
look like the field of a point charge of double the strength. The number of
lines crossing a closed surface enclosing both charges is the sum of the lines
emanating from each. The closed surface I have shown is a nice ellipse, but
the lines crossing it will not change if I distort it in any way that does not
exclude either charge (once again an example of Gauss’s law).



Figure 2.5   The electric field due to two positive charges. Far from both, it looks like the field of a
point charge of double the strength. The number of lines crossing a closed surface enclosing both
charges is the sum of the lines emanating from both.

What if we had two opposite but unequal charges, say 10 C and −5C, and
associate 10 and 5 lines with each? You can draw the sketch yourself with
the following features: near each charge you can forget the other, 5 lines
will flow from the 10 C to the −5 C, and the rest will escape to infinity,
becoming radially outward asymptotically, like those of a point charge 10 C
−5 C = 5 C.

Consider finally a case of a continuous charge distribution. Two parallel
metallic plates carry uniform charge densities ±σ (measured in C/m2). This
is called a parallel plate capacitor and is depicted in the top half of Figure
2.6. At the left is the view looking down at an angle and at the right the
view end-on, with the plates coming out of the paper. What do the field
lines look like? We know they must start at the positive charges and end at
the negative charges. The bottom half shows the deflection of a positively
charged particle injected from the left with velocity v0.

If you imagine the plates to be very large in area, the figure shows the
part far from the edges. (At the edges the lines bulge out a bit midway
between the top to the bottom plate.) You should not simply accept even the
qualitative aspects of the preceding picture. Look very near the positive



plate. In the absence of the negative plate, the field lines will be emanating
perpendicularly away from it with equal density above and below by
symmetry. The same goes for the negative plate, but with the lines flowing
into it. If you superpose the two plates, you can see the two plates aid each
other in the region between, with both producing downward pointing fields
there, just like along the line joining the charges in a dipole. But, if you
follow the dipole analogy, and consider points just above the top plate, you
expect the fields from the two plates to oppose, but with the upper plate
winning since it is closer. So some lines must point up just above the upper
plate. Yet the figure shows no lines above the upper plate and has all the
lines coming straight down, as if there is a perfect cancellation of the fields
due to the two plates, despite the different separations. The same goes
below the lower plate, where there are no field lines. The answer to this
mystery will be revealed when we compute the field due to each plate later
and find that the field due to an infinite plate of uniform density does not
weaken at all as we move away from the plate! It is perpendicular to the
plate, and it has the same magnitude no matter how far we go, even though
the contribution from the individual charges on the plate falls as 1/r2.
Consequently, the plates cancel each other completely outside the plates
(above the top plate and below the bottom plate) and aid each other inside.
So, the figure is correct only if it represents a finite section of an infinite
parallel plate capacitor, or far from the edges of a very large capacitor. The
real finite plate problem is far more complicated: doable in principle, but
not easy.

Figure 2.6   The top half shows two views of a parallel plate capacitor and the field inside it. It is
uniform except near the edges, where it bulges out (not shown). The bottom shows the trajectory of a
positively charged particle shot into it from the left.



Given that the field is limited to the space between the plates, questions
still persist. Why is the field uniform between the plates in the infinite
capacitor, unchanging as we move up and down or side to side?

First of all, it must be clear that in the infinite capacitor, the field at a
given plane parallel to the plates, say at a height y = 2 cm above the lower
one, cannot vary as we move parallel to the plates, say in the x-direction.
Every point at some y is like every other point: if we look to the left or
right, from any of these points, we see the two plates running to ±∞.

Here is a more detailed argument, based on cause and effect. Suppose the
field varies with the x coordinate, i.e., has a non-trivial profile with some
features, some ups and downs in strength. If I slide the plates to the right by
2 cm, these features should follow. On the other hand, I can argue that they
should not shift since the cause behind the field, namely the infinite,
charged plates, looks exactly the same before and after I slide them. If the
plates look the same after a horizontal shift, so must the field they produce.

Had the plates been finite, this would no longer have been true. There
would have been a preferred midpoint and edges where the plates end. If
you move this finite system horizontally, it will look different after the shift
and so the field need not be x-independent. Indeed, it is not, with bulges at
the end.

So the field is constant in x. Why is the field independent of the y
coordinate as well? After all, the y dimension is finite and as a result not all
y’s are equivalent. We can tell if we are moving toward or away from either
plate. Well, suppose the field got weaker as we approached the middle. The
lines must spread out, i.e., the spacing between them must increase. But this
is impossible in the infinite case: if you move a line, say second from the
left in Figure 2.6, away from its neighbor on the left, to weaken the field to
the left, you move it closer to the neighbor on the right, increasing the field
between them. Such variations with x are not allowed in the infinite
capacitor, as we have seen. So the lines have no choice but to go straight
down, preserving their density as y varies. Again, variation in x and y is
allowed in a finite capacitor: the lines do get less dense as we move toward
the center, and they bulge out at the two ends.

In any event, if the field is uniform, the force will be uniform, just like
the force of gravity near the surface of the earth. Consequently the particle
we shoot in from the left will follow a parabolic path, as depicted in the
lower half of the figure. More on this later.



2.5   Field of a dipole
We will now buckle down and calculate the precise value of the electric
field due to a dipole. We will write a formula that is good at all points, but
evaluate it only at some select places where the calculation is easier. We
will examine the field at distances large compared to the separation between
the charges. In a later chapter we will find a more efficient way to find the
field using the notion of a potential.

Figure 2.7 shows a charge q at (a,0) and a charge −q at (−a,0). Consider
the field at a generic point (x, y). (Once we have the field in the xy-plane,
we can simply rotate the figure around the x-axis to get the answer in three
dimensions. In other words, the cross section on the xy-plane is identical to
what we will find in any other planar slice through the x-axis. This point
will be fortified soon with symmetry arguments.)

Figure 2.7   Dipole field: E± are due to ±q located at (±a,0).

Recall that the field at the point r due to a single charge q at the origin is

If the charge were not at the origin (as in the application that follows
immediately), r would be the vector from where the charge is to where we
want the field.

The field due to both ±q at a generic point (x, y) is the sum of the
individual contributions E±. These in turn can be evaluated by setting r = r±
in Eqn. 2.20 and adding them as follows:



This general formula may be a bit hard to digest. Here are some simpler
special cases.

At a generic point on the x-axis (y = 0) both E± are horizontal and

(Remember that lim and not .) For a point
like A with x > a, we can drop the absolute value sign and obtain is called
the dipole moment. The dipole moment is the product of q and the vector
2ai going from the negative to the positive charge.

For x≫a, the field becomes

because r, the radial distance from the center of the dipole to (x,y), equals x
when y = 0.



For a point on the axis like E with x < −a you should go back to Eqn.
2.24 and verify that the field is invariant under x → − x and also points
along the positive x-axis.

On the y-axis, at a point D with coordinates (0, y), I leave it to you to
show that

For y≫a, the field becomes

These results with E ∝p, when x → ∞ or y → ∞ are to be expected. If we
set a = 0 in Eqn. 2.23 for the sum of E±, we get E ≡0 as we must: the two
charges sit on top of each other and fully neutralize each other. The total E
as a function of a vanishes when a = 0. The net field is non-zero only
because a ≠ 0 and the non-zero part will start out as the first power of a in a
Taylor series (Chapter 16, Volume I). To keep the dimension of the field E
the same, the extra a must really be , which is what we find in Eqns. 2.29
and 2.31 since p = 2aqi is proportional to a.

Recall that the field of a single charge, which looks like a hedgehog, is
isotropic. If I rigidly rotate the distribution of field lines around any axis
passing through the origin at any angle, they look the same. We may
demand this on the basis of the following symmetry argument. You must
agree the charge is the cause and the field is the effect. The effect cannot
change if the cause does not. Rotating around the origin leaves the point
charge alone: it stays where it is and, being a point, looks the same as well
after the rotation. It follows that the resulting field distribution must be
unaffected by rotation.

On the other hand, even if the dipole looks like a point as we go far away,
E is not isotropic. The field knows that the dipole near the origin has chosen
a direction in space, defined by p, unlike a single charge, which does not do
that. A generic rotation around an arbitrary axis passing through the origin
will change the orientation of the dipole (the cause), and the field (the
effect) will change accordingly. On the other hand, a rotation around the



axis of the dipole will leave it alone and the E configuration it produces
should be unaffected by such a rotation. This is why we were satisfied with
finding E in the xy-plane. The answer in any other plane may be found by a
rigid rotation around the x-axis.

2.5.1   Far field of dipole: general case
Far from the dipole, the general formula Eqn. 2.23 simplifies, though it
takes some more work to extract the part linear in a. Following the details
will enhance your mathematical prowess if you suffer through them. Let us
begin with the exact result

The answer is some function of a (and of course x and y), which vanishes
at a = 0. Near this zero, the function will have a Taylor expansion in a. By
dimensional analysis, the series has to be in a divided by a length and the
only possible candidate is r, the distance from the center of the dipole. We
are content to find just the first correction to zero. It will be proportional to
a or, equally well, the dipole moment p = 2aqi.

Eqn. 2.32 has two parts, each with a numerator divided by the
denominator, or the numerator times the inverse denominator. We can get
the single power of a from either term and the a0 term from the other. If we
get a1 from the numerator we may set a = 0 in the denominator and vice
versa.

Consider the contribution from the positive charge

Here is some explanation. In the last line, the first term comes from keeping
the a0 term, namely r, in the numerator and keeping up to linear terms in



the denominator (and hence dropping the a2 in the expansion of [x − a]2).
The second term comes from keeping the a term in the numerator and
setting a = 0 in the denominator. The terms kept are then

The E− terms are obtained by changing q → −q, a → −a:

to give a total of

E(to order a)

where I have invoked p = 2aqi, p · r = 2axq, and applied (1 + z)n = 1+nz +
. . . , to obtain



2.6   Response to a field
Having seen how to find the field in a variety of situations using Coulomb’s
law, let us now consider the response of charges to the field using F = qE,
starting with the parallel plate capacitor with a uniform field E = −jE0 in
between the plates, as indicated in Figure 2.6. Suppose I shoot a particle of
mass m and charge q from the left, with a velocity v0. What will be its
position and velocity as it exits the plates?

The force on the charge is a constant, F = −qE0j, just like the force of
gravity, which will produce an acceleration

The particle will follow a parabolic path given by

To compute its y coordinate when it exits the capacitor, we need to know for
how long it “falls” at the rate above. That time is clearly t∗ = L/v0 where L
is the width of the capacitor. (Even though the capacitor is of finite width,
we use the constant E field of the infinite capacitor as a simplification.) As
in the case of gravity, the time to go a certain distance horizontally is
determined by the initial horizontal velocity and is unaffected by the
acceleration in the vertical direction. So if you set t = t∗ in r(t), you will
find out where it will end up.

Here is one way in principle to make pictures on television: shoot
electrons from the left into the region between two pairs of plates, one as
shown (perpendicular to the page) and another pair parallel to the page,
with one member of the pair above and one below the page. This will cause



motion up and down and also in and out of the page. Place a fluorescent
screen at the right, perpendicular to the beam. If you apply the right electric
field, the electron will land on the screen and make a little glowing dot just
where you want it. By scanning the screen many times a second, and by
varying the field appropriately and modulating the intensity of the beam,
you create the impression of a steady picture. (Actually, magnetic fields
were used to deflect electrons in old cathode ray tubes.)

Figure 2.8   The forces and torque τ on a dipole p due to a uniform horizontal field E. The torque,
computed with respect to the negative charge, has a magnitude τ = 2aqEsinθ and tends to align it with
the applied field. The vector τ = p ×E vanishes only when p and E are parallel or anti-parallel.

2.6.1   Dipole in a uniform field
What is the force of a uniform electric field on a dipole? Figure 2.8 shows a
dipole made of charges ±q a distance 2a apart in a horizontal uniform
electric field. It is assumed the charges are mounted at the ends of some
rigid structure, like a rod. The force on the two charges is ±qE as shown. So
the dipole as a whole will not feel any net force, because the two parts are
getting pulled by opposite amounts. (If the electric field were not uniform,
say it were stronger at the plus charge, the dipole would accelerate to the
right.) The forces, which add up to nothing, collaborate in producing a
torque. I hope you can see that the torque wants to align the dipole with the
field. Recall that when the total force vanishes, the torque may be computed
with respect to any point. Choosing it to be the location of − q, we find it
has a magnitude (see Figure 2.8)

which turns clockwise. As a vector, the torque is given by the cross product



which points into the page. If you mount this dipole so it can swing in the
plane of the paper, you could use it as an “electrical compass,” which will
point along the local electric field. (We assume the rod supporting the
charges at its ends has a non-zero moment of inertia I and the support has
some friction, so that if it started out non-parallel to E, it will quickly align
with E after some damped oscillations.)

The torque also vanishes when the dipole is anti-parallel to E. This is a
state of unstable equilibrium: if disturbed, it will not return there but end up
parallel to E. We can understand this in terms of energy.

Recall that a conservative force F(x) and the associated potential U(x) are
related as follows:

Next recall the SAT analogy: “Torque is to force as angle is to
displacement.” The torque here is τ = −pEsinθ, where the minus sign
reflects its tendency to rotate the dipole clockwise, in the direction of
decreasing θ. So we may now write

In going from Eqn. 2.52 to 2.53 we have dropped a possible additive
constant in U(θ).

You see in Figure 2.9 that U(θ) is an inverted cosine with a minimum at θ
= 0, which is a point of stable equilibrium, and a maximum at θ = π, which
is a point of unstable equilibrium. The points ±π are one and the same.
When perturbed about θ = 0, the dipole will execute simple harmonic
motion. For small angles, κ, the restoring torque per angular displacement,



and ω, the frequency of oscillations, will be (in terms of the moment of
inertia I)

Figure 2.9   The potential energy of a dipole, U = − pEcosθ, as a function of the angle θ it makes with
a field.



CHAPTER 3

Gauss’s Law I

In the last chapter we learned that we should think in terms of electric fields
and not direct action-at-a-distance between charges according to Coulomb’s
law. In this parlance, we say charges produce fields as per Coulomb’s law,
and the fields in turn act on charges as per F = qE.

The field E(r) is a condition at a point r, even if there is no charge at that
point. This condition is revealed when we place a test charge q there and
find a force qE(r) acting on it. The field due to many charges is the sum of
the fields due to each.

Strictly speaking, Coulomb’s law is to be applied only in a static situation
when the charges do not move, though we do apply it in some situations
where they move slowly compared to c, as in circuits. In this chapter, we
will assume a static distribution of charges and apply Coulomb’s law.

We saw how field lines can depict the state of the electric field: the lines
point along the local field, and their areal density (lines per unit area
perpendicular to the lines) is proportional to the field magnitude. We could
use any number of lines per coulomb, but once we agreed on a convention,
say 64 lines per coulomb, we had to stick to it. We looked at the field lines
of a dipole as well as that of two equal charges.

We considered the dipole field quantitatively. The answer was expressed
in terms of p = q(r+ − r −), the dipole moment of charges ±q located at r±.

We found a general expression for the field due to a dipole. We evaluated
it exactly along the dipolar axis and perpendicular to the dipolar axis. As for
a general direction, we considered the field only for distances r≫a, the
distance between the charges. The main point was that the leading term for
E fell as 1/r3.

We studied how charges responded to a field. We saw what happened to a
charge shot into the space between plates of a capacitor, where the field was
assumed to be uniform and perpendicular to the plates. Finally, we saw that
a dipole moment in a field experiences a torque, p × E, which tries to line it



up with the field. With that torque one can associate a potential energy U =
−p · E.

3.1   Field of an infinite line charge
Here is a standard problem. We have an infinite line of charge parallel to the
x-axis, say a charged wire, of which a finite part is shown in Figure 3.1.
Somebody has sprinkled it with a continuous density of λ coulombs per
meter. If we cut out one meter of this wire, we will find λ coulombs there.
We want to compute the electric field everywhere due to this charge
distribution using Coulomb’s law. (Let us assume λ is positive; if it is
negative, we just have to reverse the field everywhere.)

Consider a point P = (0,a) at a distance a from the wire. What can we say
about the field there without doing the full calculation?

Figure 3.1   The field due to an infinite line charge with linear charge density λ. It is found by adding
the contributions from tiny segments of width dx treated as point charges. The figure shows clearly
that the fields dE1 and dE2 due to segments at x and −x have the same y-components and opposite x-
components.

First of all, it must be intuitively clear that the field will be the same at all
points at the distance a from the wire. Any x-dependence leads to the
following contradiction. Suppose the field had a variation in the x-direction.
If I slide the wire to the right by some amount, this pattern will shift by that
amount and look different. On the other hand, since the wire looks the same
before and after the shift, so must the field it produces. If the cause (the
wire) looks the same after a shift in x, so must be the effect, the field it
produces.

The field may, however, depend on y and it does.
Next we may argue that the field has to point radially away from the

wire; it cannot be tilted to one side or the other since the infinite wire does



not distinguish right from left. Here is another way to say it. Suppose the
field were tilted to the right. Now rotate the wire by π around an axis
perpendicular to it (the y-axis in Figure 3.1) and passing through P. The
field lines will rotate as well and end up tilted to the left. But the rotated
wire looks the same as the unrotated one and so must the field it produces.
The only configuration that is unaffected by this rotation is a field that is
everywhere perpendicular to the wire.

The argument fails if the wire is finite. A finite wire has some distinct
features and special points like the midpoint and end points. It does not look
the same if you slide it parallel to itself and so the field can vary with x. The
field lines may tilt toward the left end if the point P is left of center and
likewise to the right for points to the right of center. This distribution will
still turn into itself under any operation that leaves the wire invariant, such
as the above-mentioned rotation by π about its midpoint.

Returning to the infinite wire, let us find how the perpendicular field
varies with a.

Look at Figure 3.1. Let us take a segment of wire centered at x and of
length dx, which is so small that we can treat it as a point charge. Now the
dx as drawn is not a point, but in the end, we’re going to make it arbitrarily
small. The segment is like a point-charge q = λdx at a distance x from the
origin. The infinitesimal electric field it produces at P has a magnitude

and points along the vector joining (x,0) and the point P. We need only keep
its y component since the ultimate x component has to be zero, either by our
earlier symmetry arguments or by the explicit consideration of the
contribution from the similar segment at −x. Convince yourself by looking
at the figure that when the two contributions are added, the horizontal parts
will cancel and the vertical part will be double that due to either segment.
Let us therefore double the vertical contribution from the segment on the
right but remember to consider only x ≥ 0. Using

to project out the vertical part, we find the total vertical field by integration:



What next? The integral can be done by a clever substitution. What if
that trick does not occur to us? It turns out we can go quite far by
dimensional analysis. Let us express the coordinate x in terms of a, the only
length in the problem, via the dimensionless variable w as

Then the limits for the integral over  are 0 and ∞. Since dx = adw
we have

Thus we have the answer up to an overall multiplicative constant N, which
is independent of λ and a. Even before we evaluate N we see a surprising
thing: the field falls like 1/a and not 1/a2, even though each piece of the
wire makes a contribution that falls like the inverse square of the distance.
This is surprising but also inevitable for dimensional reasons. The answer
now had to be proportional to λ, which is a charge per unit length and not
charge. The presence of the prefactor λ robs the denominator of one power
of the length, leaving behind one power of the only length in the problem,
which is a.

This argument fails if the wire is finite: now we have another length L,
the length of the wire, which can bring in factors like L/a (or any function
of the dimensionless variable L/a) without messing up the dimensionality of



the answer. Indeed, in this case we expect, and find, that if we go to
distances much greater than L, the field will be that of a point charge λL.

Let us now evaluate N by making the substitution

(I call the substitution variable θ rather than some other Greek letter,
because in this case it is actually the θ in the figure: w = tanθ means x =
atanθ.) Observe that the change of variable is such that all possible values
of w can be obtained by some choice of θ because tanθ can go from 0 to ∞.
Had we made the substitution w = cosθ, we could never obtain w > 1 (or x
> a).

Continuing, we find

For future use remember that the field due to an infinite linear charge
density at a distance a from the line and lying in the xy-plane has a
magnitude

and points perpendicularly away from the wire.
While Figure 3.1 is two-dimensional, the wire and the field pattern live in

three dimensions. What we have in the figure is a slice taken through the
xy-plane. The full field configuration will be obtained by rigidly rotating the
configuration shown about the x-axis. We can slice that three-dimensional
configuration through any plane passing through the x-axis and we will get
the same two-dimensional configuration. This is demanded by symmetry or



by the cause-effect relationship. If I rotate the wire around the x-axis by
some angle, it looks the same. Therefore the field configuration it produces
should also be invariant under that rotation. The field pattern in which the
lines radiate uniformly and radially away from the line is the unique
electrostatic configuration meeting this requirement. (The lines could also
point radially inward, but that would correspond to negative λ < 0.) The end
view, with the wire running perpendicular to the page, is shown in Figure
3.2.

Figure 3.2   The field due to an infinite line charge seen end-on, with the wire perpendicular to the
page. The wire and the field distribution it produces are invariant under a rotation of the wire about
itself.

In three dimensions, it is common to denote the distance measured
perpendicular to the wire by ρ (and not a). So we should write

where eρ is a unit vector in the direction perpendicular to the wire. (In the
xy-plane, eρ = ±j.)

3.2   Field of an infinite sheet of charge
Imagine an infinite plane with an areal charge density σ depicted in Figure
3.3. This means that if you cut out a tiny part of it, of area dA, it will have a
charge σ dA. (By convention, λ stands for charge per unit length, σ for



charge per unit area, and ρ for charge per unit volume.) We want to stand at
a point P a distance a from the plane and ask for the field there.

Figure 3.3   The field due to an infinite plane with charge density σ. Shown is one contributing
annulus of radius r and thickness dr. It produces a field dE perpendicular to the plane, as shown by
the long dark arrow. There is no parallel part due to cancellations between parts of the annulus that
are diametrically opposite. Shown are two such contributions, dE1 and dE2, due to the two darkened
parts of the annulus. The sum of such vectors due to all parts of the annulus is dE. The integral of dE
over all annuli will give the final E due to the entire plane.

Once again, before jumping into the calculation, let us see what features
follow from general considerations.

I think we can agree that the electric field at some point a meters in front
of the plane will be independent of the other two coordinates parallel to the
plane. Suppose the field varied as we moved parallel to the plane at fixed a,
with some ups and downs in field strength. If I move the plane to the right
by one inch, the pattern should follow. But the shifted plane looks exactly
like the unshifted one. It has to produce exactly the same field, of the same
magnitude and direction. This can happen only if the field does not vary
under displacements parallel to the plane.

As for the direction, it has to be perpendicular to the plane, again for
symmetry reasons. If you tilt it away from the perpendicular, which way
would you tilt it? The infinite plane defines no unique direction except the
one perpendicular to it. Suppose the field is tilted away from the
perpendicular by an angle of 30 degrees, say in the direction of dE1. If I
now rotate the plane around an axis perpendicular to it and passing through
P, the direction of the tilt will rotate as well (ending up parallel to dE2 after



a rotation by π). But the rotated infinite plane looks the same as the
unrotated one, and so must be the field it produces. The only field
configuration that meets this demand is the one where the field is
everywhere normal to the plane.

We can also argue from symmetry that the magnitudes of the field should
be the same at two points that are on opposite sides of the plane and at the
same distance from it. If the charged sheet lies in the xy-plane we require
that E(z) = E(−z) = E(|z|). The charges on the sheet repel a test charge at a
given distance from the plane with the same intensity whether the test
charge be on one side of the plane or the other. The directions will of course
be opposite, pointing away from the plane. Thus we may assert that

where k is a unit vector along the z-axis.
While this is intuitively obvious, we could provide the cause-effect

argument by demanding that the field configuration should be unaffected if
the charged plane is flipped over like a pancake by a rotation around the x-
axis by π since the plane looks the same before and after. The configuration
written above meets that requirement.

Armed with these anticipations based on general symmetry arguments,
we turn to the calculation that will yield results in agreement with our
expectations. Our strategy is as follows. We will draw a perpendicular to the
plane passing through the point P where we want the field, as shown in
Figure 3.3. We will divide the plane into concentric annuli or rings of radius
r and width dr, find the contribution dE from each ring, and integrate them
over all rings.

The contribution from a given ring may be readily inferred from Eqn.
1.12 for the force on charge q due to a ring carrying a linear density λ, at a
point on its symmetry axis, z meters above it:



The first factor is the q1q2/(4π ε0) appropriate to the test charge and the
loop, the second reflects the inverse square law, and the third is the cosine
factor that projects out the component perpendicular to the plane of the
loop, which alone survives when all contributions from the loop are added.

We may import this result after three modifications:
• Drop the test charge q to get the field from the force.
• Set z = a.
• Relate σ to λ, the charge per unit length of the annulus. A segment of length 1 along the annulus
will have an area 1 · dr and contain 1 · σ dr coulombs. Thus the linear charge density in our
problem is related to the areal charge density by

The resulting field, at a distance a from the plane, is

Since E⊥ in Eqn. 3.20 is the infinitesimal contribution from a ring of
infinitesimal width dr, we rewrite it explicitly as an infinitesimal

and obtain the total field by integration



Once again we may use scaling to figure out the a-dependence as follows.
Setting

we obtain

The integral equals 1, as can be shown by the substitution z = w2.
The preceding result is so important, I will repeat it and suggest you

memorize it:

Field of infinite plane with charge density 

The most striking aspect of the result is that the field does not decrease as
we move away from the plane. It is independent of a, the perpendicular
distance to the plane. Since each part of it makes a contribution that falls
like 1/(a2 + r2), and we are increasing the distance to every segment of the
plane as we increase a, the field should get weaker, right? And yet that does
not happen.

We can understand why this had to be so on dimensional grounds. The
field has dimensions of charge over distance squared. (Forget the ubiquitous
4π ε0, which is a constant.) For a single charge q the distance in question
had to be r, the distance between the charge and the field location. For a



line charge, the answer had to be linear (by the superposition principle) in λ,
which had units of charge over length, leaving room for just one length a,
the distance to the wire, to appear in the denominator. For the plane the
inevitable factor linear in σ, which has units of charge over distance
squared, has used up all the inverse powers of length, leaving no room for a
to appear either in the numerator or denominator. As I mentioned before in
connection with the wire, the argument fails if the plane is of a finite extent,
say a square of side L. In this case the answer is allowed to have factors like
L2/a2 and indeed it will: for a≫L, the field will be that of a point charge q =
σ L2.

To understand the a-independence of E in pictorial terms, consult Figure
3.3. Let us start at some a and reduce it to get closer to the plane. We find
the contributions from individual segments of each of the rings do indeed
go up since a2 + r2 decreases. However, the contributions, which point
along the line joining the segment to the field location, become increasingly
parallel to the plane as we approach it. (Look at dE1 and dE2 in the figure.)
But we have seen that the parallel part gets canceled by symmetry (within
each ring) and only the (tiny) perpendicular part survives. So there are two
opposing factors as we get close to the plane: the contributions from
individual segments of any given ring get bigger, but the useful component
that survives the sum over segments, the perpendicular part, gets smaller.
So you can give arguments why the field should get weaker and arguments
why it should get stronger as a varies. To show that these two tendencies
exactly cancel, you have to bite the bullet and do the calculation.

We can now find the field between the plates of a parallel plate capacitor
(ignoring edge effects) with ±σ. In the region between the plates the fields
due to the two plates add to a total of σ/ε0, pointing from the positive to the
negative plate. In the region outside the plates the field vanishes because the
two fields cancel, being of equal and opposite strength and independent of
distance.

3.3   Spherical charge distribution: Gauss’s law
Now we turn to the more difficult case of a spherical charge distribution.
Rather than attack it frontally, I will introduce you to a powerful idea called
Gauss’s law, which will provide a shortcut.



Imagine a solid ball of charge density ρ (measured in C/m3). We want to
find the field due to this ball.

Now, when we did a similar problem in gravitation, we assumed that
when you’re outside the sphere, the whole sphere acts like a point mass
with the entire mass sitting at the center, and that when you are inside (as in
our analysis of dark matter), the mass inside the chosen radius acts like a
point mass at the center and the mass outside does not contribute.

Since the electrostatic force also obeys the inverse square law, it should
not be surprising that we may replace the word “mass” by the word
“charge” in the preceding paragraph. But now we want to prove all this,
rather than assume it.

This is what took Newton a long time. He knew it was true but he
couldn’t prove it, because for that, he had to first develop integral calculus.
Even today, to find the field due to a sphere using integration is quite
difficult. Think about what you have to do. Look at Figure 3.4. You want
the field at point P at location r. You have to divide the sphere into tiny
little cubes centered at r′, each carrying charge equal to the density ρ(r′)
(which happens to be constant in this case) times the volume of the cube,
d3r′. A typical cube will create a field dE(r) as shown. You have to
integrate the dE(r)’s from every tiny cube in the sphere. But the
contribution from each cube will have a different magnitude and direction.
Adding all these vectors is a tough problem that we are going to finesse by
invoking a very powerful notion called Gauss’s law. As a prelude, we need
to cover some mathematical ideas involving areas and surface integrals.

Figure 3.4   The field due to a spherical charge distribution. Each tiny cube d3r′ located at r′ makes
its contribution dE(r) to E(r) as per Coulomb’s law. These contributions have to be vectorially added
to obtain E(r).



3.4   Digression on the area vector dA
Imagine I am holding up a tiny little planar area, like a postage stamp, in
three dimensions at some location r. I want you to be able to visualize this
area. What can I do to specify it besides telling you it is located at r? The
first thing I can tell you is how big it is. I say it is dA square meters in size. I
then have to tell you in which plane it lies. How do I do that?

Suppose it lies in the xy-plane. Rather than say “lies in xy-plane,” I could
just as well say it lies perpendicular to the z-axis. I could then associate a
vector dA with this area, of magnitude dA and direction along the z-axis.
But there are two ways to draw the perpendicular to the xy-plane: up or
down the z-axis. To further specify the area, to make it an oriented or
signed area, I will draw arrows that run around its perimeter in one of two
possible directions. The area vector dA will point along the thumb of our
right hand if we curl the fingers around the loop in the sense of the arrows.
This is called the right-hand rule. It is illustrated in Figure 3.5 by the two
areas in the xy-plane, given by dA1 = −kdA1 and dA2 = −kdA2. (An area
without the arrows on its perimeter is like a vector without its head and tail
marked.)

Figure 3.5   The figure shows a generic (shaded) area floating in three dimensions. The area vector
dA is given by the right-hand rule applied to the arrows running around the edges. Also shown are
two areas lying in the xy-plane with a common edge. Their sum is an area with the common edge
(shown by a dotted line) deleted. If we use that dotted line as a hinge and rotate the second area out
of the xy-plane (as indicated), their sum is a non-planar area, bounded by the uncanceled edges.

The upper part of the figure shows a generic (shaded) area vector dA,
floating in three dimensions. Its direction is determined by the sense of the
arrows running around the edges as per the right-hand rule.



Only a planar area can be represented as a vector. All infinitesimal areas
can be treated as planar. Finite areas that are non-planar, like a hemisphere
or magic carpet, cannot be represented by a single vector: we cannot
reconstruct an entire macroscopic surface, with all its undulations, given
just a magnitude and a direction.

The use of the right-hand rule in defining areas might remind you of the
cross product and indeed there is such an interpretation of areas. Consider
an area shaped like a parallelogram, whose adjacent edges are defined by
two vectors B and C with angle θ between them. Then A = B × C is the
area of the parallelogram, with magnitude |BC sinθ| and direction given by
the right-hand rule. Infinitesimal areas are bounded by infinitesimal vectors.

Using vectors to describe areas or combining two vectors to get a third by
the cross product is possible only in three dimensions where every plane
has a unique normal, up to a sign. In four dimensions you cannot have a
cross product of two vectors that yields a vector. If you pick two non-planar
vectors, the plane they define will have two orthogonal directions
perpendicular to it.

3.4.1   Composition of areas
Even though infinitesimal areas are given by vectors, the natural rule for
combining them is different from vector addition, unless all the areas lie in
one plane. I introduce the rule through an analogy, with one fewer
dimension; see Figure 3.6.

Suppose we want to construct a curve in two or three dimensions, given
any number of tiny vectors. Each vector has two boundary points: its tip
and its tail, which are assigned opposite signs. To form the curve, we string
these vectors along: the tail of the second vector touches the tip of the first,
the tail of the third the tip of the second, and so on to the last one. The
resulting curve has only two boundary points: the tail of the first and the tip
of the last. All other boundary points have canceled in pairs when we joined
them head-to-tail. Of course, the perfectly smooth curve is realized only in
the limit of an infinite number of infinitesimal vectors.



Figure 3.6   A curve C joining points 1 and 2 in the plane, composed of little vectors added tip-to-tail.
The tip and tail are the boundaries of each arrow. When two arrows are glued, the touching tip and
tail are erased. At the end only the tail of the first vector and the tip of the last vector survive. These
are the boundaries of C. The formation of the curve by gluing arrows is not to be confused with
vector addition, which would give V12. If the points 1 and 2 were also glued, we would have a
closed loop, while the vector sum V12 would vanish.

Do not confuse this composition of the curve with the vector sum, which
would be a straight line going from the tail of the first vector to the tip of
the last. Whereas the vector sum remembers only the bottom line, the curve
remembers every vector that went into its composition. For example, if the
curve is closed, say a circle, the vector sum would simply vanish.

There is a similar rule for combining areas to form two-dimensional
surfaces. Consider the two areas dA1 and dA2 in Figure 3.5. To combine
them, we superpose the right edge of dA1 and the left edge of dA2 with their
opposing arrows. (This is analogous to placing the tail of one vector on the
tip of the previous in forming a curve.) We delete the overlapping parts that
carry opposite arrows. The “sum” of the areas is bounded by the remaining
edges.

Look at the deleted portion shown by a dotted line. If we use that dotted
line as a hinge and rotate the second area out of the xy-plane, their sum,
bounded by the uncanceled edges, is now a non-planar area. In this
manner, a generic surface in three dimensions may be formed by gluing
together little areas or plaquettes and deleting the common edges, as
illustrated in Figure 3.7. The arrows that used to run around the interior
plaquettes have been canceled by the neighboring plaquettes with counter-
propagating arrows. What remains are arrows around the perimeter, which
run along the boundary of their union or sum.



Figure 3.7   A generic surface in three dimensions obtained by gluing together tiny areas or
plaquettes. The arrows that used to run around the interior plaquettes have been canceled by the
neighboring plaquettes with counter-propagating arrows. What remains are arrows around the
perimeter, which define the boundary of the sum. Also shown for later use is one highlighted interior
area dS and the electric field vector E at that point. The orientation of this area is indicated by the
arrow on one edge.

3.4.2   An application of the area vector
Let us put the concept of the area vector to work. Imagine a tube with a
rectangular cross section of height h and width w carrying some fluid
moving with velocity v parallel to its length, as shown in Figure 3.8. What
is the flux Φ, the volume of fluid flowing past any cross section per second?

To find Φ, we pick as a checkpoint the leftmost area A in the figure and
ask how much fluid goes past it in one second. To this end, at some time t =
0 we introduce some tiny beads into the fluid at A. After 1 second, the
beads would have moved a distance v · 1 and will be resident on the middle
area in the figure, which is a shifted duplicate of A. The fluid that has
crossed the checkpoint in one second is contained between these two areas.
It is a parallelepiped of base A = wh and height v · 1 as shown in the figure.
Thus



Figure 3.8   A tube of cross-sectional area A = wh, carrying a fluid with a velocity v parallel to A. To
monitor the flux (volume flow per second) past the area A shown at the left, we sprinkle some beads
into the fluid at t = 0. One second later the beads end up at the middle area. The volume between
these two fronts is the flow per second, Φ = Av = A· v. The rightmost area A′ is bigger than A by a
factor 1/cosθ but intercepts the same amount of flux or flow per second. As shown in the text, Φ′ =
A′ · v = A′vcosθ = Av = A· v = Φ . The inset shows the volume contained between two tilted areas A′
at times t = 0 and t = 1, separated by v . 1 meters.

Because v and A are the magnitudes of the parallel vectors v and A, we
may rewrite the Φ above as their dot product:

Remember that the area, A, if considered as a planar object, lies
perpendicular to the flow but the area vector A, as defined above, is
parallel to v. So the cosθ factor that enters the dot product is simply cos0 =
1.

Invoking dot product in the present case, when it is just the product of the
magnitudes of the parallel vectors A and v, seems like overkill. But it is
introduced to cover a more general case depicted in Figure 3.8. Look at the
rightmost area A′, which also goes from the ceiling to the floor but with its
plane tilted by an angle θ from the vertical. Now



has the same base w as A but a longer side (h/cosθ). Let us compute the flux
through A′. If we wait one second, the points in A′ will move a distance v ·
1 downstream and create a replica of A′ there. The flux Φ′ is the volume
trapped between these two tilted areas. This volume (shown in the inset) is
the product of the width w and the area of the parallelogram of base v, side
h′, and height h. Recall that the area of a parallelogram is base times height.
Thus

which is the same as Φ = v · A = vwh. Thus even though A′ is bigger than A
by a factor 1/cosθ, it intercepts the same flux because it is tilted by θ
relative to v.

A given area can intercept the greatest flux (say of a fluid) by orienting
its plane perpendicular to the flow, or its area vector parallel to the flow.
Likewise, it intercepts no fluid at all if it lies in a plane parallel to the flow,
or if its area vector is perpendicular to the flow. Most importantly, for
intermediate angles, the correct multiplicative factor to use with vA is cosθ.
This appears naturally in the dot product, which therefore seems tailor-
made for computing fluxes.

We shall use the term “flux” to denote the dot product of an area vector
with any other vector V, even if V is not a velocity. In what follows the
vector in question will be E, the electric field.



Figure 3.9   The figure shows the two-dimensional cross section of field lines emanating from a
charge q. Thus the circle S represents a sphere. It is evident that these lines cross any surface
enclosing the charge. Two surfaces, a sphere S and a generic one S′, are shown. Since the number of
lines crossing a surface is proportional to the surface integral of E, it means the latter has the same
value on any surface surrounding q. The side views of tiny areas dS and dS′ on the two surfaces are
shown, along with the local value of the field E and E′. Whereas dS and E are parallel on the sphere
S, dS′ and E′ corresponding to the general case are at an angle θ. The third surface S′′ on the lower
left-hand corner encloses no charge and has no net lines flowing in or out.

3.5   Gauss’s law through pictures
Consider a charge q and the field lines coming out of it. Let us assign k
lines per coulomb, where k is an arbitrary constant. The following
statements should be obvious from Figure 3.9.

• The number of lines passing through a sphere S centered on the charge is independent of its
radius r and equals kq, the number emanating from q.
• The same number of lines pass through any closed surface such as S′ that surrounds the charge.
• If there are several charges qi, i = 1 . . . n inside the closed surface S′, the number of lines
crossing is simply the sum  This may not be so obvious, since when many charges are
present, the lines assume complicated shapes instead of going straight to infinity. So look at the
field lines due to two positive charges in Figure 2.5. The charges emit kq1 and kq2 lines
respectively (which happen to be equal in this example). None of these lines can terminate on the
other charge, since they are both positive. So all the kq1 + kq2 lines have to go out of S′ and
terminate on negative charges outside or escape to infinity. (Again if S′ is very convoluted, a line
may go in and out of it an odd number of times before finally escaping.)

Suppose next q2 is negative, i.e., q2 = −|q2| with |q2| < q1. Now k|q2| lines will terminate on q2
and the rest, kq1 − k|q2| = k(q1 + q2), will terminate on negative charges outside S or escape to
infinity, after possibly going in and out of S a few times. The argument is readily generalized to
any number of charges, of any sign and magnitude. We may assert that if qi are the charges inside
a generic surface S′,



where qenc is the total charge enclosed in S′.

If you understand Eqn. 3.32 based on the pictures, you understand
Gauss’s law, for this is what it essentially is, once we express the number of
lines leaving S′ in terms of the electric field.

We will do that in stages. First consider the special case when S′ is a
sphere S centered on a single charge q and consider the areal density of flux
lines. These lines cross the sphere perpendicularly, or, if you like, are
parallel to the normal to the surface.

But since E(r), the magnitude of the electric field on S, is given by

we may write

Therefore the electric field is proportional to the lines per unit area,
where the area lies in a plane perpendicular to the lines of E or,
equivalently, the area vector is parallel to the lines and to E.



Consider now a tiny area dS sitting on the surface of this sphere. I use dS
instead of dA to signify that this little area is part of a surface S, and I will
follow this notation from now on. Letting dS stand for its magnitude,

Let us now re-express product E(r)dS in terms of the corresponding vectors
E and dS, which are both radial. Thus

This now allows us to reach a very important relationship:

Therefore E · dS, the electric flux coming out of the area dS, is proportional
to the lines crossing the surface. The proportionality constant is ε0k, where
ε0 is a fixed number and k is up to us to choose (once and for all).

If we cover the surface of the sphere with tiny little patches dS and add
the contributions from all of them to the two sides of Eqn. 3.40, make the
patches smaller and smaller, and turn the sum into an integral we obtain:

The integral on the right is called the surface integral of E over S. The
symbol ∮ means the surface is closed.



Since the lines crossing the sphere are independent of the radius, we may
now assert that the surface integral of E over the sphere S is also
independent of its radius r.

Next consider an arbitrary surrounding surface S′ surrounding the charge
q as shown in Figure 3.9. We know the total number of lines crossing it are
again the same, namely kq. How do we express this result in terms of E′? If
we cover this surface with patches, the area vectors dS′ will not generally
be radial. The number of lines these patches intercept will not be the
product kε0E′(r)dS′, but rather kε0E′(r)dS′ cosθ, where θ is the angle
between E′ and dS′. If you think of the lines as the flow of something, from
the fluid flow analogy it is evident that a given area will intercept the most
lines if its area vector is parallel to E′, and that as it rotates off this
direction, their number will diminish by the geometrical factor cosθ. We
have therefore the result that

Since the number of lines crossing a generic surface is independent of its
shape as long as it surrounds the charge, we deduce the corresponding fact
about the surface integral of the electric field over any generic surface:

where we have dropped the prime on E and S, where the latter, from now
on, will refer to the general surface, spherical or not. Eqn. 3.45 is Gauss’s
law for a single charge.

There is no arbitrary constant k in this relation and there should not be.
Whereas the lines we draw to aid our imagination have a density that does



depend on k, the electric field at a point is uniquely defined by the charges
that produce it or the force it exerts on a test charge. Therefore its integral
on a closed surface better not depend on k. The result above is simply a
property of the electric field as given by Coulomb’s law and does not rely
on the notion of field lines. The field lines helped us anticipate the final
answer, which can, however, be derived by explicit computation.

As an illustration, consider the field of a point charge and spherical
surface S centered on it. By direct computation

The steps leading to Eqn. 3.48 need some explanation. There a surface
integral is evaluated by inspection and the answer is simply written down.
What happened to the integration? The answer is that the integrand, 

, is a constant on the sphere. So E(r) may be pulled out of the
integral, like a number 19 can be pulled out. The integral of E(r)dS over the
sphere then reduces to the product of this constant E(r) and the area of the
sphere. (Here is an analogy. If f(x) = f0, a constant, the definite integral over
an interval of length L is the area of a rectangle of height f0 and base L.
More formally, f0 may be pulled out of the integral and the remaining
integral of dx is just L.)

If the surface S is not spherical, it takes more work to show that Eqn.
3.48 still holds by invoking the notion of a solid angle. The pictorial
argument in terms of lines spared us that effort.

We now want to extend Gauss’s law to many charges qi, i = 1 . . . n. Now
we forget all about lines of force, which can be very complicated. Instead
we use superposition of the fields to these charges, each of which obeys
Gauss’s law. Each charge qi produces its own Ei that obeys



for any closed surface S containing the charge. By summing both sides over
i we obtain Gauss’s law in all its generality,

where  is the total electric field and qenc is the total charge enclosed
by S.

The charges qi have to be inside S to contribute to the surface integral of
E, or, equivalently, the lines flowing out of S. Consider for example an
empty surface S′′ in Figure 3.9 with the charge q lying outside. Any field
line emanating from the charge that enters the surface will necessarily also
exit since there is no charge inside for it to terminate. Lines coming in are
counted as negative and those coming out are described as positive, and the
positive and negative contributions will cancel precisely. In terms of the
electric field, E · dS will be negative where lines enter and positive where
they leave, and the integral over S′′ will be zero.

For future use I repeat the algorithm for computing the surface integral of
E over any surface S, closed or not. Consult Figure 3.7.

• Tile the surface with tiny areas or patches dS(ri) located at ri. For a closed surface the area
vectors are defined to point outward.
• On each tiny area compute the flux dΦ(ri) = E(ri) · dS(ri).

• Do the sum 
• Repeat with smaller and smaller patches till the sum converges to some limit. That defines ʃSE ·
dS.

In some special cases like the field of a point charge the integral can be
done analytically, but in all cases it has a well-defined numerical value,
which can be determined as above.

3.5.1   Continuous charge density



Suppose S contains a continuous blob of charge, with charge density ρ(r)
instead of discrete charges qi. To write down Gauss’s law we need the total
charge enclosed. A tiny cube of size d3r = dxdydz at r will enclose ρ(r)d3r
coulombs, and the enclosed charge will be this quantity integrated over the
volume V within the closed surface S.

So the form of Gauss’s law we will find most useful is as follows:

where

In future I will also use
C = ∂S, which means the closed loop S is the

boundary of the surface S. (3.53)



CHAPTER 4

Gauss’s Law II: Applications

In the last chapter we encountered Gauss’s law:

On the left-hand side we have the surface integral of the electric field
over a closed surface S, which is the boundary of a volume V. On the right-
hand side is the total charge enclosed by S divided by ε0. The charge
enclosed is the volume integral of the charge density ρ(r) if continuous, and
the sum over point charges qi if discrete.

The surface S, called the Gaussian surface, is a theoretical construct to
help our calculations. It may be chosen at will, and for every choice of S,
there is a corresponding equality. The Gaussian surface could sometimes
coincide with a real surface (say of a conductor).

As for the left-hand side, recall the algorithm for computing the surface
integral: divide S into little areas or patches dS, add the contributions E · dS
from each area (where E is the electric field on that tiny area), and take the
limit of an infinite number of patches of infinitesimal size. Often the only
way to do this integral is by numerical means, though occasionally an
analytic evaluation may be possible, such as when E is due to a point
charge and S is a surrounding concentric sphere.

As for the right-hand side, the integrals of ρ can be done by inspection in
all the cases we will discuss in this chapter. In general you will have to do a
multiple integral of the charge density ρ over the volume V.

4.1   Applications of Gauss’s law
As a first application, consider the field due to a uniform spherical ball of
charge Q and radius R centered on the origin. Since the sphere of charge



looks the same if we rotate it around any axis passing through the origin,
the field distribution must have this property. The only solution to this
requirement is the hedgehog field, with lines fanning out equally in all
directions, with the same density at all points of a given r. In terms of the
field, the allowed configuration is of the form

We just need to find E(r) and will do so using Gauss’s law.
To find the field outside the charged sphere, we choose as the Gaussian

surface S, a sphere of radius r > R, as depicted in the top left half of Figure
4.1. The calculation proceeds as with a point charge:



Figure 4.1   The use of Gauss’s law to find the field due to a uniform solid ball of charge outside (top
left) and inside (top right) its radius R by using a spherical Gaussian surface S of appropriate radius.
The graph at the bottom shows E(r), the radial field as a function of r. It rises linearly for r≤R and
thereafter falls as 1/r2.

which is the field of a point charge Q at the origin.
Note that Gauss’s law gives just one piece of information about E(r): its

integral over a surface S.
One cannot infer from that a whole function E(r). For example, if I say

that

what can you say about f (x)? It could be f(x) = 7, f(x) = 7 + sinx, etc. But if
I said f(x) is a constant f0 over the region of integration, you could deduce f0
= 7 as follows:

The moral is that if a function is a constant over a region of integration,
its integral equals that constant times the length or area or volume of the



integration region.
This is what happened in Eqn. 4.3: the surface integral was E(r) × 4π r2.

Equating this to Q/ε0, we obtained Eqn. 4.7.
Gauss’s law can be used to deduce the entire field E(r) only when

symmetry arguments can be used to reduce the unknown to just one
number, E(r) on the Gaussian surface. Had S been a sphere, but the charge a
non-sphere with bumps and lumps here and there, the surface integral of E
would still be known to be Q/ε0, but one could not use this to find E(r)
anywhere because it would vary over S. Similarly, had the charge been
spherical but S not spherical, we would again have a result that was true,
but not helpful in finding E(r) anywhere on S.

Next we want to find the field inside the sphere of charge. So we take for
the Gaussian surface a sphere of radius r < R, as shown in the top right half
of Figure 4.1. The calculation proceeds as for r > R but with one change:
the charge enclosed is not all of Q but only qenc, the amount enclosed by the
sphere of radius r. Since the density is uniform, the ratio of the enclosed
charge to the total charge is the ratio of their volumes:

If you do not like this argument, let me rewrite this result as follows:

where the first factor is the charge density and the second factor is the
volume in question.

The surface integral of the field is the same as before and Gauss’s law
takes the form



Thus the field actually grows from zero as we move out, and it reaches a
maximum of Q/(4π ε0R2) at the surface. Thereafter, it falls like 1/r2. The
field, radial in all cases, is as follows for all values of r:

and is depicted in the bottom part of Figure 4.1. The two expressions agree
on the surface of the ball r = R.

Why does E(r) grow (linearly) with r when r < R? Because, as r
increases, the enclosed charge grows as r3 and the field it produces, acting
as a point charge at the origin, falls as 1/r2. Once we go outside the sphere,
for r > R, the field falls like 1/r2, since we do not pick up any extra charge
as we increase r, the radius of the Gaussian surface.

These results may be taken over verbatim for gravity, with the
understanding that the force is always attractive. Consider in particular the
linear force, which points toward the center inside a spherical mass. This
linear (restoring) force implies simple harmonic motion. If the spherical
mass in question is the earth, this has the following interesting consequence.
If you drill a very narrow hole passing through the center of the earth (so
narrow that the mass you scooped out does not affect the preceding answer
for the field) and drop an object into it, it will oscillate back and forth
between where you are and the diametrically opposite point on the globe. I



invite you to show that  (First write down Gauss’s law for
gravity.)

4.2   Field inside a shell
Consider a uniformly charged solid sphere of radius R2 from which a
concentric sphere of radius R1 < R2 has been scooped out. We want the field
due to this hollow shell. By Gauss’s law, for r > R2 this hollow sphere will
act like a point charge centered at the origin. How about inside the hollow
region, for r < R1? By applying Gauss’s law to a Gaussian surface of radius
r < R1, we see that the field inside is zero because the charge enclosed is
zero. This result is equally true for the gravitational force.

Let us try to understand the absence of the field inside a hollow shell
directly in terms of Coulomb’s law. This discussion is optional.

I will only show that the field inside a hollow shell of radius R and
infinitesimal thickness is zero. I am done, because the original shell of finite
thickness R2 − R1 can be built out of concentric, infinitesimally thin shells
of radius ranging from R1 to R2, each of which contributes a zero to the
total.

Consider then a point P inside such a shell of radius R and infinitesimal
thickness, as depicted in Figure 4.2. Assume the shell has a surface charge
density σ. (I invite you to show that σ = ρdr, where ρ is the uniform density
of the charged sphere and dr is the thickness of the shell.)



Figure 4.2   The aim is to show that the field at a generic point P inside a hollow shell is zero. The
figure shows two oppositely pointing cones of identical opening angle that meet at P and intersect the
sphere in two caps, shown as dark ellipses. The same number of field lines emitted by the test charge
at P pierce the two caps. This is shown in the text to imply that the charges on these two caps exert
equal and opposite forces on a test charge at P. It is possible to cover the entire shell using canceling
pairs of cones.

If P is the center of the shell, we can argue by symmetry that the field
there has to vanish: a non-zero E at the center necessarily has to point in
some arbitrary direction, violating the rotational symmetry of the problem.
But we can see more directly that the field has to be zero because for every
tiny patch of charge on the shell pushing a test charge one way, there is a
diametrically opposite patch that exerts an equal and opposite force.

But the result is stronger; it says E(r) = 0 even for a point off-center, like
P in the figure. We would like to show that this too follows from the
cancellation of forces exerted by charges in different segments of the shell.
To this end consider two cones of the same opening angle pointing away
from P in opposite directions and intersecting the shell on two caps. The
opening angle of the cones is infinitesimal, as are the planar areas they
pierce through, denoted by dS1 and dS2.

Instead of showing that (the charges on) the caps exert equal and
opposite forces on a unit test charge at P, we will show the unit test charge
exerts equal and opposite forces on the (charges on) the two caps. We are
then done because action and reaction are equal and opposite in Coulomb’s
law: if the forces the test charge at P exerts on the caps are equal and
opposite, so are the forces the caps exert on the test charge. Since it is



possible to surround the point P with such canceling pairs of cones, we
know the net force of the shell on the charge at P will be zero.

So imagine a unit test charge placed at P and the lines emanating
isotropically from it. Since the cones have the same opening angle, they
contain the same number of field lines and thus the number of lines crossing
the two caps is equal. Now the number of lines crossing the caps is, by Eqn.
3.42, kε0E1 · dS1 and kε0E2 · dS2 where E1 and E2 are the fields produced at
the caps by the test charge at P.

Next we collect some relevant facts.
• The area vectors dS1 and dS2 are radial, being parts of a sphere.

• The electric fields E1 and E2 point outward along the symmetry axis of the two head-to-head
cones.
• The angles between the area vectors and the corresponding field vectors are the same in both
patches, and are denoted by θ. This equality follows from the fact that the angles opposite to the
indicated θ’s lie at the base of an isosceles triangle (whose two equal sides are the radius R and
whose base is the chord connecting dS1 and dS2).

We put all this together and reason as follows:

where σ dSi = dqi is the charge on cap i, i = 1 or 2. The caps will behave as
point charges σ dS1 and σ dS2 when we take the opening angles of the cones
to zero.

Look at Eqn. 4.21. It says dq1 E1, the magnitude of the force the unit test
charge at P exerts on the charges residing in dS1 through the field E1 it
creates there, is equal to dq2 E2, the force the unit test charge at P exerts on
the charges residing in dS2 through the field E2 it creates there. The two
forces of course have opposite directions, pointing away from the test



charge. But if the test charge exerts equal and opposite forces on the caps,
they in turn must exert equal and opposite forces on the test charge, because
in Coulomb’s law action and reaction are equal and opposite. (Recall F12 =
−F21.)

The argument relating the flux lines intercepted by the two caps to the
fields E1 and E2 relies on the inverse square law of the electric force.
Conversely one of the earliest tests of the inverse square law was the
absence of field inside a hollow sphere.

4.3   Field of an infinite charged wire, redux
We have already seen how symmetry demands that the field of an infinite
wire with linear charge density λ is constant if we move parallel to the wire
at a fixed distance ρ, and points radially away from it:

We found that E(ρ) = λ/(2π ε0ρ) by doing an integral along the wire.
Now we will rederive E(ρ) by using Gauss’s law. The trick is to find a

Gaussian surface on which there is a single unknown, E(ρ). A natural
choice is a cylinder of radius ρ coaxial with the wire, as shown in Figure
4.3, since the field is constant in magnitude all over it. However, it is not
enough to take just the curvy sides of the cylinder; we need the two flat
sides at both ends, since the Gaussian surface has to be closed in order for
the law to work, for it to enclose a definite amount of charge.

The radius of the cylinder is clearly ρ since we want E(ρ), but what
should be its length L? Since the Gaussian surface is a figment of our
imagination and not really wrapped around the wire, we can choose any
length we want and then desperately hope that the answer will not depend
on this arbitrary L.

Look at Figure 4.3. The charge enclosed within the cylinder is λ · L, from
the very definition of λ as the charge per unit length. So we begin with



Figure 4.3   By symmetry, the field due to an infinite wire is radial and of constant magnitude at a
fixed distance ρ from the wire. The Gaussian surface is a coaxial cylinder of radius ρ and has an
arbitrary length L. The charge enclosed is simply λL. The two flat faces make no contribution to the
flux since E and dS are perpendicular. The curved face, on which the flux density is constant, makes
a contribution E(ρ) · 2πρL.

The surface breaks up into three parts: the two flat ends and the curved face
parallel to the wire.

We seem to have a problem with the flat faces, since E(ρ) is not a
constant on the entire face because different parts of it are at different
distances from the wire. On the other hand, we have seen that Gauss’s law
is useful only when there is just one constant E on the entire surface.
Luckily we are saved by the fact that the area vectors dS and field E are
perpendicular on these two faces: dS is parallel to the wire while E is
perpendicular to it so the flux through the flat faces is zero. Or if you like,
the field lines run parallel to the flat faces and so none cross it.

We are then left with the curved face on which the area vectors dS are
radial and E(ρ) is a constant and radial. (Remember that for a closed
surface, the area vector is defined as positive if it points outward.) So
Gauss’s law tells us



The arbitrary length L has canceled out, as it must.
We get the answer so easily only because of the high symmetry of the

problem. For example, if the wire had been non-uniformly charged, with λ
= λ(x), we could still equate the flux over the cylinder to the charge
enclosed (the integral of λ(x) over the length L). However, since E varies in
magnitude and direction (not always radial) this will only tell us something
about the integral of E over the surface and not about its value at any one
place. On the other hand, if the line charge is replaced by a uniform
cylindrical distribution, E may be found everywhere using Gauss’s law and
symmetry.

4.4   Field of an infinite plane, redux
Consider an infinite plane, which we take to be the xy-plane. It has a
uniform charge density σ.

Recall what the symmetry arguments tell us. The field is independent of x
or y (but could depend on z) and must point perpendicularly away from the
plane with the same magnitude at z and −z. That is, E must have the form

To find E(|z|) we need a Gaussian surface on whose various parts E is either
constant or perpendicular to the area vector. Such a surface is shown in
Figure 4.4. It is a cylinder of cross section A, with its symmetry axis parallel
to the z-axis and its flat faces at ±z.

The area A is arbitrary and hopefully will drop out of the answer. The
charge enclosed is clearly σ A, where A is the area of the circle the cylinder
encloses as it pierces the plane. In contrast to the infinite wire, this time the
curved side of the cylinder makes no contribution to the surface integral



since the field is parallel to the curved side and the area vector is normal to
it. (The field lines cross the two flat faces but not the curved face.) As for
the flat faces, on the upper face we have kA· kE(|z|) = A · E(|z|). The same
contribution comes from the lower face where both E and the area have
flipped their orientation to yield (−kA) · (−kE(|z|)) = A · E(|z|). Gauss’s law
then tells us

Figure 4.4   Shown is an infinite plane with charge density σ. Symmetry tells us the field is
everywhere normal to the plane and constant in magnitude as we move parallel to the plane. The
Gaussian surface is a cylinder of area A and height 2z, symmetrically located with respect to the
plane. The charge enclosed is σ A. As for the flux, or surface integral of E, the curved side makes no
contribution because the area vector and field are perpendicular, while the two flat faces make equal
contributions of E(|z|)A each, where E(|z|) is the constant value of the field strength a distance |z| from
the charged sheet.

The area has dropped out as it must, and, remarkably, there is no
dependence on z, the coordinate perpendicular to the plane.

4.5   Conductors
Consider a chunk of copper, which is a good conductor. In a good conductor
not all of the electrons in the atoms are tied to the nuclei, but shared



communally. They are free to move around the material but not to leave it.
The conductor is like a swimming pool for the electrons: they can swim
freely inside but cannot scale the walls at the boundary. If they try that, all
the nuclei will exert a force to pull them back. The energy needed to rip an
electron out of the material is called the work function. There are good and
bad conductors, and we will discuss a perfect conductor in which the
charges can move freely in response to the smallest field.

We will now make many predictions about conductors, mainly using
Gauss’s law.

4.5.1   Field inside a perfect conductor is zero
The first property that follows by definition is that in a static situation, the
electric field inside a perfect conductor is zero. Had there been a field, the
charges would have been moving but we have been assured it is an
electrostatic situation. So there can be no field. The no-field rule does not
hold in the non-static case.

For example, it fails if there is a field E in space and I suddenly insert a
chunk of conductor shaped like a rectangular slab into that region, as shown
in the top half of Figure 4.5. Initially there will be a field inside the
conductor. It will start moving the electrons (whose charge is negative) in
the opposite direction. These will pile up on the left face as shown, leaving
behind positive charges on the other face, due to nuclei whose electrons
have drifted away. The pileup will continue until the internally generated
field due to the two layers cancels the applied field E. For an infinite slab,
we know the two faces would produce a field σ/ε0 in the region between
them, opposing the external E. For a finite slab there will be some
complications near the ends but the field inside the conductor will still end
up vanishing.



Figure 4.5   Top: Two conductors placed in an external field E, which gets screened inside by
polarization. In the rectangular slab, the internal field σ/ε0 due to the charges on the two faces
neutralizes E. Bottom left: A conductor with a hole in it and some positive charges deposited on it.
By Gauss’s law, these must be on the outer surface and the charge on the inner surface has to be zero.
If two canceling charges reside on the inner surface, they would produce a field E, which can do
work on a test charge moving from the + to the −. The test charge can then be brought back to the +
for free inside the conductor along the dotted line. The cycle violates energy conservation. Bottom
right: A charge q placed inside the hole. The lines it emits terminate on the inner wall (on the
negative charges from the conductor that piled up there) and the lines are re-emitted by the positive
charges that are on the outer wall.

If a time-dependent electromagnetic field encounters a metal, it will be
screened (and reflected) if the incident frequency is below the plasma
frequency of order 1016Hz. The reciprocal of this frequency, ≃ 10−16s, is
roughly the time it takes the disturbed system to settle down to equilibrium.

In the case of the rectangular conducting slab, we are able to anticipate
the way the charges in the conductor would rearrange themselves to cancel
or screen the external field. What is remarkable is that even if the conductor
has a crazy shape, say like a potato, it will find a way to rearrange its
charges so as to kill the field in the interior. Even for a simple conductor
like the sphere, it takes a lot of work to compute theoretically the final
charge distribution that will exactly annul the external field within the
conductor. Yet the electrons in a metal are able to figure this out for any
shape, almost instantaneously! But you should not be too impressed. They
do this rather mindlessly. First they migrate against the applied field (since
they have negative charge) and soon the new immigrants start discouraging
newer immigrants from joining them, using their Coulomb repulsion.
Eventually this repulsion will balance the force of the external field and the
migration will stop.



4.5.2   The net charge on a conductor will reside at the surface
Suppose we throw some positive charges on a neutral conductor. They will
run as far away from each other as possible. Since they cannot leave the
conductor, you may conjecture that they will end up at the surface. This is
indeed so and we can prove it using Gauss’s law as follows. Take any
closed infinitesimal surface anywhere inside the conductor and apply the
law. Since the field is zero, its surface integral is zero, and so is the
enclosed charge.

Not only is an external field screened by the conductor, but the additional
charges we throw in will also produce zero field inside the conductor. They
have to, for if this were not so, the mobile charges would move till it is so.
If the conductor is a sphere, we know that the charge we dump on to it will
spread uniformly over the surface—this being the configuration that
produces zero field in the interior. But, amazingly, even if the conductor
looks like a potato, the charges will find a way to arrange themselves on the
surface so as to produce zero internal field.

4.5.3   A conductor with a hole inside
Suppose we throw some charge on a conductor with a hole inside, as shown
in the lower half of Figure 4.5. Will all the charges end up on the outer
surface or will there be some on the inner surface? It turns out all charges
will be on the outer surface. To prove this, consider a Gaussian surface that
tightly encloses the inner surface and lies entirely within the conductor, an
infinitesimal distance away from the hole. Since the field on this surface is
zero, so will be the charge enclosed.

Could this zero be made of equal numbers of positive and negative
charges occupying different parts of the inner surface? Even if it starts out
that way, the opposite charges are free to race across the inner surface and
neutralize each other.

This would be obviously true were it not for the charges on the outer
surface. Could they somehow exert a force on these charges to prevent this
reunion? Suppose there were two opposite charges on the inner boundary,
as shown in the bottom left of Figure 4.5. The field lines leaving the
positive charge and ending on the negative charge have to do so within the
cavity. (The lines cannot go into the conductor.) If we release a test charge
near the positive charge, it will be accelerated along the field lines till it gets
to the negative charge. We could suck up its kinetic energy (for use



elsewhere) and bring it back to the positive charge inside the conductor.
This return trip will cost no energy since there is no field inside the
conductor. We could do this cycle ad infinitum and extract an infinite
amount of energy from nowhere, violating the law of conservation of
energy. The only way to avoid this is for the opposite charges to meet and
neutralize each other.

Next, suppose we place a charge q (assumed positive) inside the hole, as
shown in the lower right of Figure 4.5. Will the world outside know about
it? Since no field can enter the conductor, how can it tell the outside world
it is there? Yet a Gaussian surface outside the conductor should yield a
surface integral corresponding to an enclosed charge q. The answer is
shown in the bottom right of the figure. The neutral conductor splits into
positive and negative charges ±q, and the positive charges go to the outer
surface and the negative ones to the inner one. (To be specific, the electrons
will go to the inner surface and leave behind unbalanced protons on the
outer surface.) The field lines leaving the q we placed inside the hole will
terminate on the −q sitting on the inner surface, while the +q sitting on the
outer surface will emit the lines that penetrate our Gaussian surface.

4.5.4   Field on the surface of a conductor
Consider a conductor, not necessarily spherical, on which we have placed
some charge that is now sitting on the surface. While no field can enter the
conductor, what can we say on the surface? The field cannot have a
component parallel to the surface, for this will set charges in motion along
the surface, contrary to the assumed static situation. (Motion of charges
along the boundary is not forbidden by the nuclei; they just won’t let them
escape outside.) So the field has to be normal to the surface. We will now
relate this E⊥ to the local charge density σ.

Figure 4.6 shows a (tilted) Gaussian cylinder of infinitesimal height, of
base dS, its axis normal to the surface, and situated half inside and half
outside the conductor. The charge enclosed is σ dS. The flat face inside the
conductor does not contribute to the flux as E is zero inside. As for the
curvy side, E is either zero on it (if it is inside) or parallel to it (if it is
outside), and in neither case contributes to the flux. The top face contributes
E⊥dS. Gauss’s law tells us



Figure 4.6   The field at the surface of a charged conductor is calculated using a Gaussian cylinder
half inside and half outside with its axis normal to the surface. There is non-zero flux only on the flat
face outside. There is no field inside and no flux on the curved side outside, which runs parallel to the
field. Also shown are the field at a small area dS due to the charges on it (thin arrows, solid outside
and dotted inside) and the charges on the rest of the surface (thick arrows, solid outside and dotted
inside). The two contributions exactly cancel inside and double up outside. The charge density σ and
E⊥ can vary from point to point.

a result worth committing to memory.
We understand this result as follows. Divide the charged surface into a

very tiny patch dS where we are computing E⊥, and the rest with a hole
where the patch is. Arbitrarily close to dS, for distances much smaller than
its linear dimensions, the patch will behave like an infinite plane and
produce a field EdS pointing normally out on the outside and normally in on
the inside with equal strength . This discontinuity between inside and
outside is familiar from the infinite plane and is due to the charge density
that divides the two regions. To this we must add the contribution Erest from
the rest of the surface. This contribution will be continuous across the hole
because the charges in the rest of the surface do not reside in the hole to
cause any discontinuity. This continuous field must be pointing normally
out with strength σ/(2ε0) to kill the normally inward field due to dS, so that



the net field inside the conductor will be zero. However, when we go
outside the conductor, the very same field will reinforce and double that due
to dS.

In short, the field due to dS switches sign at the surface (due to the
surface charge), while that due to the rest of the surface is continuous across
the surface. This is why the two reinforce outside and cancel inside.



CHAPTER 5

The Coulomb Potential

There are two parts to electrodynamics: find the field E(r) produced by all
the charges at the location of a charge q and find its response to the field
using F = qE. This is a very complicated problem because each charge is
playing a dual role: producing the field others respond to and responding to
the field others produce. The fields depend on the past positions of all the
particles due to the retardation demanded by relativity.

So far we have been making life tolerable by dealing with static charges.
Despite the forces between them, we assume some other force is holding
them in fixed positions so we may use Coulomb’s law to find E. But there
is no fun in finding E if none of the charges is free to respond to it. So we
are going to relax things a little bit: all but one charge will be held fixed and
produce a field E given by Coulomb’s law, and the one solitary charge q
will be free to respond to this field. As it moves, the force it exerts on the
other charges will vary, but that does not matter because they are not free to
move in response.

We are going to start with

where E(r) is due to all the fixed charges. Eqn. 5.1 is all we need in
principle. Given this equation, as well as the particle’s initial position r(0)
and velocity v(0), we can determine the subsequent fate of the particle
analytically in some rare cases and numerically in all cases, given a fast
computer. Using the initial velocity, we find the position a short time dt
later as



and given the initial acceleration (decided by the field at its initial position)
we can find the velocity at time dt as

At time dt we can repeat the process and move forward in time in
increments of dt. The errors vanish in the limit dt → 0.

5.1   Conservative forces and potential energy
This is a topic that was covered extensively in Volume I. I present here a
brief review in the interest of continuity.

If a mass m connected to a spring of force constant k is pulled by some
amount A and released, we can find its subsequent position x(t) by solving
the differential equation, and from that we can find v(t) by differentiation.
But we found that certain questions can be answered much more easily,
such as “What will be its velocity when it is at x = x0?” The trick is to
invoke the law of conservation of energy, which tells us in this case

where the subscripts 1 and 2 refer to two points on the mass’s trajectory. If
x1 and v1 are the initial position and velocity, we can find v2 (up to a sign) at
the point x2 by solving for it in Eqn. 5.4.

More generally we would have

where  is the kinetic energy and U1 ≡ U(x1) and U2 ≡ U(x2)
denote the potential energy that depends on the forces acting on the body.



Eqn. 5.5 is easily derived in d = 1 starting with Newton’s law. Here is one
way.

which is the work-energy theorem.
The quantity

is the work done by the force when the body moves by dx and the work-
energy theorem relates the work done to dK, the change in the kinetic
energy of the body. This theorem relies on just F = ma and is valid for all F,
including friction.

Now, the definite integral of any function of one variable may be
expressed as

Combining this with Eqn. 5.9 we find



The following reciprocal relations between F and U are worth
remembering:

They allow us to go from the potential to the force or vice versa.
Where does the derivation fail if there is friction? Eqn. 5.11 does not

apply since the force of friction is not just a function of x; it depends on the
velocity, being always opposed to it in direction. As long as the particle is
moving in one direction, we can pick a sign for the frictional force to find
its impact on K using the work-energy theorem, but we cannot derive a law
of conservation of energy for motion with changes in direction, such as in a
damped oscillation.

Deriving Eqn. 5.5 in two (or higher) dimensions may not be possible,
even if there is no friction. Let us recall the problem and its resolution.

We begin with the natural definition of kinetic energy in higher
dimensions:

and take its time derivative:



So far there is no problem. The change in kinetic energy when the force
pushes the body over a vector distance dr is unambiguous: it is F · dr.

The trouble comes when we string together little dr’s to make a finite
path connecting two points 1 and 2 as shown in Figure 5.1: there are
infinitely many possible paths, two of which are shown.

The line integral in the relation

is generally path-dependent and cannot be written as U1 − U2.

Figure 5.1   Two paths P1 and P2 connecting the same end points 1 and 2. The line integral, which is
the sum over F · dr, will generally depend on the path.

If, however, the line integral is of the form



independent of the path, and a function of only the end points, we may
write

and obtain the law of conservation of energy.
A force for which the line integral is path-independent is called a

conservative force. One may think such forces are a rarity, but there is a
recipe for manufacturing any number of them. Pick any function U(x, y, z)
and define the force by

where ∇U is called the gradient of U and pronounced “grad U.”
Let us see why such a force is conservative. Since



Thus F · dr = dU is the first order change (linear in dx, dy, and dz) in the
function U due to changes in x, y, and z. Consequently

is the total change in U between the end points. This leads to

Thus the function U, which generates F, is also the potential energy in the
formula E = K +U.

In the case of d = 2 it is useful to think of U as a height measured above
the point (x, y). Since F · dr = −∇U · dr = −dU measures (minus) the
change in “height” when we move by dr, the line integral is the height
difference between points 1 and 2 and is clearly independent of whichever
interpolating path we take.

Once again, here are the reciprocal relations between the potential and
the force in higher dimensions:

If F is a conservative force acting on the body and we want to move the
body against it (without accelerating it), we need to apply a force −F that
exactly balances F. The right-hand side is the work we must do to move it
from 1 to 2, and the left-hand side is the gain in potential energy.

This recipe for producing a conservative force is exhaustive: every
conservative force is the gradient of some U.

Thanks to this we can see if a given force is conservative or not as
follows. Consider two dimensions first. If F is conservative, we know its
components have the form



for some U. Consequently

since the order of partial derivatives does not matter.
For example,

In three dimensions we have two more equations like 5.40 obtained by
the cyclic permutations x → y, y → z, z → x.

Instead of saying the line integral of a conservative force is path-
independent we could say the line integral of a conservative force over any
closed loop is zero.

Here is the logic. Consider two different paths P1 and P2 connecting the
same points 1 and 2 in Figure 5.1. Start with what we are given and proceed
as follows:



The passage from Eqn. 5.44 to Eqn. 5.45 uses the fact that when the end
points 1 and 2 are exchanged, the integral changes sign: on the backward
path F is the same at every point, while every dr is reversed.

Eqn. 5.46 states that the integral over any closed loop 1 → 2 → 1 is zero.

5.2   Is the electrostatic field conservative?
You know it must be, given the time I spent reviewing conservative forces.
But here is a more substantial piece of reasoning.

We will say a field E is conservative if it has zero line integral around
every closed loop. Given this, the force F = qE it exerts on a charge q will
also be conservative.

How am I going to show that in every possible electrostatic field, created
by every possible arrangement of static charges, the line integral of E
around every possible loop is zero?

The key step is to use superposition: if I can show that the field due to a
point charge is conservative, the field due to many charges, which is the
sum of such conservative fields, is also conservative.

Consider for example two conservative fields E1 and E2 obeying



where both integrals are over the same (but arbitrary) loop. Now add the
two equations to find

which means that E1 + E2 is also conservative.
In other words, if I add two fields with zero line integral around any

closed loop, I get a field that also has zero line integral around any closed
loop because the integral of a sum of integrands is the sum of the
corresponding integrals.

To show that E due to a point charge is conservative, I will show it is
(minus) the gradient of function V, called the electrical potential or simply
potential:

Here is the potential due to a charge q at the origin:

Let us see if it does what it should, namely, is



Consider first the x-component of −∇V.

It follows that

as desired.
As usual we may add a constant to this potential V without changing E.

The present choice makes V vanish at spatial infinity: V(r = ∞) = 0.
By construction, the reciprocal relation

has to follow.



Figure 5.2   The work done by the electric field E when the particle moves by a tiny amount dr is
either given by E · dr or as a sum of the work done on a radial segment erdr and an angular segment
eθ rdθ that connect the same end points. The angular part does not contribute to the work done.

However, to gain practice, let us derive the above relation anyway by
setting

where an arbitrary infinitesimal step dr between r1 and r2 is written as the
vector sum of a radial part erdr (1 → 3) and an angular part eθ rdθ (3 → 2)
as shown in Figure 5.2. The field is assumed to be a constant E(r) over this
infinitesimal loop 1 → 3 → 2 → 1. Using er · eθ = 0, we find

If we now glue together such infinitesimal segments dr to form a finite
curve, the integral will be the sum of contributions from each one given
above. The result, for arbitrary points 1 and 2, is



The potential at a point r, due to charges q1, q2, . . . qi . . . qN located at
r1, r2 . . . ri . . . rN, is by superposition,

where |r−ri| is the distance between qi and where we want the potential.
(This generalizes Eqn. 5.52 describing just one charge q1 = q at the origin r1
= 0.) The corresponding total electric field E = − ∇V is conservative by
superposition.

Note that there are no vectors involved in Eqn. 5.67: each charge
contributes a scalar and these are simply added to give the total potential.
The power of this approach will be demonstrated shortly when we find the
field due to a dipole.

For a charge q moving in the field produced by any number of fixed
charges, the law of conservation of energy takes the following form in
terms of the V in Eqn. 5.67:



Some closing remarks on the potential: It is called V and not U because −
∇U is the force F = qE while − ∇V = E, the field. Thus the electrical
potential V is related to the potential energy U of a charge q in that field by

In the case of gravitation near the earth where U =mgh, the corresponding V
= gh. Thus V is the potential energy of unit mass in the gravitational case,
and V is the potential energy of unit charge in the electrostatic case. (In
many advanced courses one uses ϕ to denote the potential instead of V.)

The unit for potential, joules per coulomb, is a volt. You should use units
in all of your calculations. Without units an answer like 23 is meaningless.
You must always use units. I may not always use units but then I have
tenure. Once you have tenure you don’t have to use units, pay taxes, show
up for jury duty, or avoid fire hydrants when parking. Life after tenure
resembles that of a deep sea mollusk that permanently attaches itself to a
rock when it reaches adulthood and eats its brain for food.

5.3   Path independence through pictures
Let us understand the path independence of the line integral of E in visual
terms. Figure 5.3 shows two representative paths that go from A to B in the
field of a point charge. One path goes radially out from A to 4 and then at
fixed r to B in the angular direction. The angular part 4 → B does not
contribute since E is radial and dr is tangential. In option A → 1 → 2 → 3
→ B, the angular parts A → 1 and 2 → 3 do not contribute for the same
reason, while the two radial parts 1 → 2 and 3 → B together contribute
what the radial part A → 4 did in the other option.



Figure 5.3   The work done in going from A to B by the field of a point charge is path-independent.
One path goes radially out from A to 4 and then in the angular direction at fixed r to B. The angular
part 4 → B does not contribute since E and dr are orthogonal. In the other path A → 1 → 2 → 3 →
B, the angular parts A →1 and 2 → 3 do not likewise contribute, while the radial parts 1 → 2 and 3
→B together contribute the same as the radial part A → 4 in the other path.

Why are the radial contributions the same? The path from A to 4 receives
contributions of the form E(r) · dr from the radial segments dr=erdr that
constitute it. Now look at the figure. To every segment in this path there is a
corresponding radial segment in either 1 → 2 (for r1 ≤ r ≤ r2) or 3 → B (for
r3 ≤ r ≤ rB) in which E(r) · dr = E(r)dr has the same value. This is because
E and dr on 1 → 2 and 3 → B are simply rigidly rotated versions of E and
dr on A → 4 and the dot product is unaffected by the joint rotation of the
two vectors.

In general one can draw any path joining A and B made up of radial and
angular segments and get the same answer in all of them. The angular
segments will not contribute and the sum of the contributions from all the
radial parts will equal that of the one-shot move from A to 4.

It seems reasonable that by making the grid finer and finer we can
approximate any smooth path by such radial and angular segments. But
there are some subtleties. Even though the smooth path and the jagged one
made of angular and tangential parts may appear indistinguishable to the
naked eye, some properties may be very different. Consider two paths



connecting diagonally opposite points on a unit square. A straight path
along the diagonal will have a length  while a staircase path that moves in
tiny steps parallel to the sides and closely follows the straight line path will
have a length 2. So it is not obvious that the line integral of some vector
field V(r) along the smooth and jagged paths will be equal. Fortunately ∫ E
· dr is indeed the same on the continuous path and the jagged
approximation made of radial and angular segments, as was shown in
discussions accompanying Figure 5.2.

We can also consider paths that leave the plane of the paper or are not
monotonic in r while going from A to B. The angular parts (which now lie
on a sphere of fixed r) will again make no contribution since E is radial,
and the contribution of the radial parts will add up to the contribution of A
→ 4.

Once we understand why the field due to one charge is conservative, we
may use superposition to infer the same of the field due to many charges.
(Pictures will not help in this case because the total E can be very
complicated.)

5.4   Potential and field of a dipole
Recall how we found the field of a dipole by adding the vector
contributions from +q and −q. The fact that the two vectors came with
different magnitudes and directions contributed to the complexity. I urge
you to go over that derivation in Section 2.5 before proceeding.

Figure 5.4   The potential at the point (x, y) is simply the sum of the two scalar contributions from ±q
at (±a, 0).

We will now do it differently, by first computing the potential due to ±q
and then taking the gradient. This will prove to be a lot easier because the
potential is a scalar, no vector addition is required, and taking derivatives is
an act that can not only be done mindlessly, but is better done that way.



Consider Figure 5.4. It is clear that

We want to evaluate this expression for r≫a. When a = 0, we have V ≡ 0
since the charges are on top of each other and r± = r. We want the first non-
zero term in the answer when a > 0, the term proportional to the first power
of a. Anything that goes like a2 or higher will be dropped.

In Eqn. 5.71 the numerator r− − r+ contains at least one power of a (since
it vanishes when a = 0):



Since this expression goes into the numerator of Eqn. 5.71, and it
contains one power of a and we want no more, we may evaluate the
denominator at a = 0, i.e., set r± = r in order to obtain

where

is the dipole moment.
If we write x = r cosθ, where θ is the angle between r and the x-axis, we

see that V falls like 1/r2. When we take its gradient to find E, it will fall as
1/r3. Here are the details.



Similarly

Before we combine Ex and Ey to form the vector E, let’s derive some
results we will need. From Figure 5.4 we see that

Given that the dipole moment p = ip, it follows that



Armed with Eqns. 5.90 and 5.91 we proceed as follows:

in agreement with Eqn. 2.42.



CHAPTER 6

Conductors and Capacitors

Let us begin with the highlights from the last chapter. We focused on the
idea that the electric field E is conservative. This means that its line integral
between points 1 and 2 is independent of the path connecting them, or
equivalently that its line integral around every closed loop is zero.

A necessary and sufficient condition for this to be true was that E be
expressible as the gradient of a scalar function:

where V is called the potential and is measured in volts. When we multiply
both sides of Eqn. 6.1 by q, we obtain the electric force

which is also conservative. For a particle moving in an electrostatic field
this leads to the law of conservation of energy with

as the potential energy:

Just as E is the force on a unit charge, V is the potential energy of a unit
charge. In the gravitational analogy, if h(x) is the height of a mountain at
point x, we may factorize the potential energy as



so that gh(x) essentially encodes the altitude of the mountain and mgh(x) the
work done to lug a particular mass m to that height from sea level.

In electrostatics the voltage V is the electrical height (with respect to
some reference) and qV is the work you need to do to drag a charge q to that
point from the reference point where V = 0.

Given the potential V we obtain the field as a gradient. For example, if in
two dimensions

then

The reciprocal relation to E = − ∇V is

where the line integral may be evaluated along any path with end points 1
and 2.

Eqn. 6.8 equates the gain in potential energy to the work you do when
you precisely balance the electric force and drag a unit charge from 1 to 2.

To prove that E is conservative, I just wrote down the potential

for charge at the origin and verified that (minus) its gradient gave the field:



I also showed how to go backward from E to V integrating E as per Eqn.
6.8.

Formany charges qi located at ri, the potential was, by superposition,

Pictorial arguments were given to explain the path independence of the
line integral. For a single charge we saw how going from A to B on different
paths, made of different radial and angular segments, gave the same answer:
the angular parts never contributed (since E and dr were orthogonal) while
the radial parts always added up to the same number on every path. This
was because E(r)dr, the work done on a segment of radial extent dr on one
path, was also done on the other path as it crossed that range of r. The
vectors E and dr on one path were the rotated versions of their counterparts
on the other path, and the dot products between the field and displacement
were unaffected by this rotation and made the same contribution E(r)dr.

Finally we saw it was easier to find the field due to many charges by
adding their potentials, which were just some scalars, and then taking the
gradient, which was a relatively mindless process, in contrast to adding the
individual vector contributions to E. This was illustrated by computing E
due to a dipole and reproducing results found earlier.

6.1   Cases where computing V from E is easier
There are a few cases where it is easier to find V from E than the other way
around. An example is the problem of a hollow spherical shell of radius R
with some charge Q spread uniformly on its surface.

To find V directly we could slice the hollow shell into rings whose
centers lie on the line joining the origin to the point r where we want the
potential, as shown in Figure 6.1. Since all points on the ring are equidistant
from r, its contribution is just the charge on it divided by the distance from



points on the ring to r (ignoring the 4π ε0 for now). We then need to
integrate over all such rings, the closest one being at a distance r −R (and
zero radius) and the farthest one at r +R (also of zero radius). It can be
done, of course, but this painful calculation is totally avoidable in this case.

The spherical symmetry of the problem allows us to use Gauss’s law to
find E very easily and then integrate it to find V.

For r > R, the sphere produces the field of a point charge Q at the origin,
while inside the sphere the field vanishes:

Figure 6.1   To find V due to a spherical shell carrying charge Q we can slice it into rings and
integrate contributions from them. Details of this complicated integration are not discussed since
there is an easier way using Gauss’s law, and the lower half shows the resulting V(r). The entire
interior of the sphere is at the same potential as the surface, because E = 0 inside. The surface
potential is that of a point charge Q at the origin.

To find V we invoke the formula

For r1 we choose the point at infinity, for r2 the coordinate r of any point
outside the sphere where we want the potential, and for the path (which we
can choose at will due to path independence) a radial line from ∞to radius r.



The potential V(r) will of course only depend on the radial coordinate r by
the spherical symmetry of the charge distribution. We find:

In our convention V(∞) = 0 and so we drop it to obtain

To find the potential inside the sphere we must continue the line integral
into the sphere. But there is no field inside the sphere! This does not mean
V = 0 inside, but rather that the line integral receives no further
contributions as we go inside. Its value everywhere inside equals V(R), the
value at the surface. Figure 6.1 shows a plot of V(r).

6.2   Visualizing V
We have seen how drawing electric field lines gives us a nice way to
visualize the salient features of E(r). Even if we have a formula for it, it
helps to draw pictures. We are going to do the same with the potential V.

Consider the simple case of two infinite parallel plates with charge
density ±σ. We know the field between them is σ/ε0 pointing from the
positive to the negative plate. The upper plate pushes down a unit test
charge with force σ/(2ε0) and the lower one pulls it down equally hard to
produce a total of σ/ε0. In the region outside, that is, above the upper plate
and below the lower one, the fields cancel because the fields due to such
infinite plates do not diminish with distance.

The lower plate, being a conductor, will be at some fixed potential,
because E = 0 in a conductor. We choose this constant potential to be 0.
(The usual choice V(∞)= 0 is not so useful in this context, or in electrical
circuits.) If we lift a unit test charge upward, against the downward pointing



field, the work done is just the constant field E times distance. So the
potential at a height y above the negative plate is

This is just like the gravitational problem where the potential energy of unit
mass at a height y above the ground is gy. Figure 6.2 shows a few lines of
constant V. These are called equipotentials. The figure corresponds to a
case when the upper plate is at a potential 4 volts above the lower one. If a
10 coulomb charge falls from the upper to the lower plate, it will gain a
kinetic energy of 40J. If a proton of charge 1.6 · 10−19C fell, it would gain a
kinetic energy of

where eV stands for electron volt and has the value:

It is the energy a proton gains if it falls down a voltage difference of one
volt. It is still called an electron volt because an electron (which does most
of the falling) that “falls” from the negative to the positive terminal of a 1.5
V battery will gain the same kinetic energy of 1.5eV. This is not crazy: in
the figure, an electron released at the lower plate will “fall” toward the
upper plate. The analogy between voltage and height in a gravitational field
breaks down here because unlike mass, which always falls down along the
gravitational field, a charge can go either way depending upon its sign. Had
there been objects of negative mass, they would be like helium-filled
balloons that have to be tied down to the floor to keep them from rising to
the ceiling.



Figure 6.2   A two-dimensional cross section of the equipotentials (dotted lines) due to the uniform
electric field (solid arrows) between parallel plates (top) and that of point charge (bottom). Note that
the field is always perpendicular to the equipotential surfaces: planes in the first case and concentric
spheres in the second.

An electron volt is a convenient unit of energy not only when discussing
electrons, which do all the charge carrying in our daily life, from lightning
to electrical circuits, but also all atomic scale particles whose charges are
small multiples of the electronic charge. This choice of unit eliminates the
constant use of numbers like 10−19.

For example, the total energy of an electron in the innermost orbit of
hydrogen is − 13.6eV. This means that it can be knocked out of the atom if
this energy or more is furnished, say by radiation. This removal of the
electron is called ionization.

6.3   Equipotentials
Coming back to the parallel plates, note that the lines of constant V, the
equipotentials, are perpendicular to the lines of E. I will now consider one
more case where this is again true and then explain why this is always true.

The example is the point charge q at the origin whose field lines radiate
isotropically. How about the contours of constant V? Since V(r) ∝ 1/r, these



are spheres of fixed radius. The radial field lines are then perpendicular to
the equipotential spheres, a planar cross section of which is shown in Figure
6.2.

Suppose you are asked to bring a coulomb from infinity to the origin,
where there is a charge q. The closer you get to the summit, the harder it is
to climb Mount Coulomb because q is pushing you away with force that
diverges like 1/r2. The contours at fixed V tell you how you are doing.
Sadly, you will never get to the top, which is at an unattainable V = ∞. On
the other hand, if you are carrying a coulomb from the negative plate to the
positive plate, which is higher by 4 V, the equally spaced equipotentials will
mark your steady progress toward the top.

Consider now the electric field of a dipole and its equipotentials. We
know they will be mutually orthogonal very close to either charge, where
we can ignore the finite field due to the other charge compared to its own
divergent 1/r2 contribution and where the field lines and equipotentials will
resemble what you see in the lower half of Figure 6.2. We could establish
their mutual orthogonality everywhere by analyzing the formula for E and
V. Instead, we will establish this orthogonality once and for all for all of
electrostatics.

From the defining relation

If you are at some point r, this equation tells you how much V will
change if you move by an amount dr, which may be in any direction. But
some directions will produce more change than others for a given value of
|dr|, the length of the step you take. This can be quantified if we rewrite the
dot product in its alternate form



where θ is the angle between the field and the displacement. Let us keep the
step length |dr| fixed and study the impact of the angle θ relative to E.

If you move in the direction of E, (θ = 0) you experience the biggest drop
in V. Thus the electric field points in the direction of the greatest rate of
drop in V. If V were really a height of a volcanic mountain and you wanted
to race to the bottom before it blew up, you should compute the gradient at
each point and move against it, or compute the field and move along it. If,
however, you were racing to the top to beat the approaching tsunami, you
should do the opposite.

But suppose you were very happy at your altitude. You could stay where
you were, but you could also move perpendicular to the gradient or E and
maintain the altitude: now cosθ = 0 = dV. In three dimensions the region
perpendicular to E will be a two-dimensional plane. Of course, you can
only go an infinitesimal distance along this plane, because the direction of
E could change as you moved and you would have to find the plane
orthogonal to the field at the new location. By patching together these little
planar areas you will reconstruct the equipotential surface, which will be
everywhere perpendicular to E.

In the simplest case of the oppositely charged parallel (infinite) plates,
where E has a constant downward direction, the equipotential surfaces you
get in this manner will be planes parallel to the charged plates. In the case
of a point charge your little equipotential patches will approximate spheres
and become spheres as the patch sizes go to zero. In the dipolar case they
will be more complicated surfaces that reduce to spheres near the charges.

6.4   Method of images
The notion of equipotentials can be exploited to solve a class of problem
using a trick called the method of images.

Consider the following problem depicted in Figure 6.3. A charge q is
placed at a distance a to the left of an infinite conducting plane
perpendicular to the x-axis. With respect to the origin (0, 0, 0) shown in the
figure, the charge has coordinates (−a,0, 0). The plane is grounded, i.e.,
held at zero potential by the earth, which, given its size, can give or take
charges to hold the plane at its own potential, which is taken to be zero.
What will be the electric field in all of space?



Figure 6.3   The main features of the field due to a point charge q in front of an infinite grounded
conducting plane that passes through the origin and is perpendicular to the x-axis. The figure is a
cross section in the xz plane. The field lines leave the charge radially and approach the conductor
normal to its surface and terminate on the induced negative charges. Also shown is a hemisphere of
infinite radius, which along with the plane forms a closed surface S at V = 0.

We can guess some broad features that are indicated in Figure 6.3. Very
close to the charge the field lines will be isotropic and radial. If the plane
did nothing, the radial field will hit the plane with a component parallel to
the plane and pointing away from (0, 0, 0). But a parallel field at the surface
is not allowed in a conductor in the electrostatic situation since charges will
move in response to it. Indeed, this is what they will do initially. There will
be a current in the direction of this field pointing away from (0, 0, 0). This
flow will lead to an accumulation of unbalanced negative charges until the
parallel field due to q is annulled. In reality, the current is not made of
positive charges (which do not move) but of electrons, which move against
the field of q. They cannot leave the conductor and fall on top of q, so they
will instead be concentrated in front of it, with the maximum surface
density at (0, 0, 0).

The same picture emerges if we think in terms of the potential. The initial
effect of q is to place different parts of the plane at different potentials:
since V ∝q/r, points on the plane closer to q will be at a higher potential
than those further away. This initial situation will be quickly remedied as
electrons flow in (from the ground) to the high potential region to even out
the potential to zero everywhere.



In any event, when things settle down to a static configuration, the field
lines from q will approach the conductor normal to its surface and terminate
on the induced negative charges. These must add up to −q in order to
gobble up the lines emanating from +q. The field will be zero to the right of
the plane since no lines can penetrate a conductor. These features are
sketched in Figure 6.3.

What if the plane was not grounded? When +q is brought in front of it,
the neutral plane will separate or polarize into charges ±q. The charges −q
will place themselves in front of the external +q so as to bring the plane to
an equipotential or equivalently to cancel the parallel field. The charge +q
will spread itself over the plane to keep it an equipotential V0. The finite
charge q spread over an infinite plane will lead to zero charge density σ and
zero field.

Can we go beyond these qualitative aspects and answer some quantitative
questions? What exactly will be the final field configuration to the left of
the plane, where E is non-zero? What will be the distribution of the induced
negative charges on the conducting plane? What will be the force of
attraction between q and the negative charges in the plane?

It turns out we can answer all these questions exactly by employing the
following clever trick.

Forget our problem and look at Figure 6.4, which shows the
equipotentials of a dipole. Focus on the infinite plane that perpendicularly
bisects the line joining the charges. All over this plane V = 0 because points
on it are equidistant from the two opposite charges and get exactly
canceling contributions. The dipole field to the left of the plane x < 0 shares
many features with our problem: the field lines emerge in a spherically
symmetric manner from q and terminate on the plane orthogonally. Does
the similarity end here, or is the dipole field in the region x < 0 the actual
answer to our problem of a charge in front of the conducting plane?

The dipole is the actual answer for x < 0, but the reason is quite subtle. It
is based on the following uniqueness theorem:

The potential V inside a closed surface S is uniquely determined by its
values on S and the distribution of the charges inside.

If these are given, there is a unique answer for V.



Figure 6.4   Equipotentials in a dipole field. Their shape changes from spherical very close to the
charges to the infinite plane at V = 0 that is the perpendicular bisector of the line joining the charges.
The V = 0 plane and the hemisphere at infinite radius form a closed surface S on which V = 0, and
inside which is q.

Postponing the proof of this uniqueness theorem, let us ask how it is to be
applied to our problem. We had a charge q in front of an infinite plane. We
need a closed surface S enclosing the charge if we are to invoke the
theorem. To this end we glue on to the plane an infinite hemisphere that
extends for all x < 0.On this closed surface we have V = 0 and inside it we
have a single charge q at x = −a.

The dipole problem also has a closed surface at V = 0, namely the infinite
equipotential that bisects the dipole moment and the hemisphere of infinite
radius that lives in x ≤ 0. This closed region also contains a charge q at x =
−a. The dipole potential obeys the laws of electrostatics using which it was
constructed.

Since the two problems have the same value of V = 0 on the surrounding
surface (the infinite plane glued to the hemisphere that extends for x < 0)
and the same charge distribution inside (charge q at x = −a) they must have
the same potential and field everywhere inside S.

Thus, to solve the problem of a charge q in front of a grounded infinite
plane, we take the dipole field and potential for x < 0 and throw away the
right half with x > 0.

The right halves are different in the two cases: in the given problem there
is no field or charge there, while in the dipole problem invoked by the trick,



there is a charge −q at x =a and the dipolar field due to both the charges ±q.
The crucial point is that the field in the region of interest, x < 0, can be

produced in two ways: by the charge q in front of the conducting plane and
all the induced negative charges on it, or by the charge q and the charge −q
at x = a and no conducting plane. The charge −q is called the image charge.
The image is a phantom, like your image behind a mirror, and does not exist
in the original problem.

But the phantom is good for computing the force of attraction between q
and the plane. Here is how. The induced negative charges on the plane
attract the charge q through the field they produce in the region x < 0. But
this is the same field the image charge would have produced in that region.
So the charge q will be attracted to the plane with the same force that −q
would exert on it:

We can calculate the induced density σ on the plane as follows. We first
find the normal electric field at any point on the plane by adding the electric
field vectors due to q and the image −q. Then we recall that the normal
electric field at the surface of a conductor equals σ/ε0. For example, at the
point (0, 0, 0)

with equal contributions from q and the image charge −q. The induced
charge density is

You should verify, using an appropriate Gaussian cylinder, that I have my
signs right: E is positive but the area vector is negative on the flat face at x
< 0.



Upon integrating the induced charge density over the plane, we will find
it equals −q. This is to be expected since the lines of force that leave q
terminate on the plane in one description and on the image charge in the
other.

Here is another problem that can be solved by the method of images.
Suppose you place a charge q in front of a grounded (V = 0) conducting
sphere of radius R (rather than the infinite plane) at a distance a from the
center. We know the field will be zero inside the sphere, but what will it be
outside? What will be the force of attraction between q and the induced
charges on the sphere? What will be the distribution of induced charge on
the sphere?

Figure 6.5   The charges q and q′ produce an equipotential V = 0 in the form of a sphere. The field
outside the sphere also corresponds to a problem of a charge q placed in front of a grounded
conducting sphere of radius R.

The answer follows from a solved problem depicted in Figure 6.5. We
see a charge q at x = −a and a charge  at x = −b. This pair produces
an equipotential V = 0 on a sphere of radius  centered at x = 0. Given 

 you can also write  (I urge you to show that V = 0 on
the circle r =R. Then V = 0 on the sphere r =R follows by symmetry.)

To apply the uniqueness theorem we need a closed surface S at the same
potential and enclosing the same charge in both problems.

Start with all of space, a sphere of infinite radius, and scoop out a sphere
of radius R centered at the origin. This volume has two boundaries: the
outer one, a sphere at infinity, and the inner one, a sphere of radius R. That
is our S, which encloses the volume of interest in the original problem.

In the original and the image problem the potential V = 0 on S. The
charge enclosed is +q at x = −a in both cases. So the answer inside S is the
same in both cases.



The field outside the sphere is due to q and its image charge 
sitting at x = −b. Upon computing the (normal) electric field on the surface
of the sphere due to q and q′ we may equate it to the surface charge density
σ/ε0. It will integrate to q′. Try to understand why.

Again the method of images gives the correct field only within the
surface containing the real charge q. In the rest of the universe, where the
image charge is located (inside the sphere of radius R in this case), the
situation is different. In the original problem there is no field inside the
sphere because it screens the field due to q. In the image problem there are
charges and fields in both regions, one containing q and the other q′ but no
conducting sphere.

Suppose the uncharged conducting sphere is not grounded. It cannot
borrow negative charge q′ from the ground to realize the V = 0 equipotential
configuration discussed above. It manages as follows. The sphere, neutral at
each point, now separates or polarizes into charges ±q′. The q′ (which is
negative) will spread itself over the sphere into the σ described in the V(S) =
0 problem we just solved, and the −q′ (which is positive) will spread itself
uniformly over the sphere, making its surface an equipotential at V = −q′/(4π
ε0R). If you send R → ∞, the sphere becomes the infinite plane that we
studied earlier and the potential on it becomes V = −q′/(4π ε0∞) = 0.

6.4.1   Proof of uniqueness (optional section)
The uniqueness theorem of electrostatics states that given

• a closed surface S,
• the distribution of charges inside S, collectively referred to as qin,

• and the value of the potential V(S) on S,

there is only one possible potential V inside S.
First, you will agree that if I specify all the charges in the universe,

referred to collectively as qin inside S, and qout outside S, you can of course
write down a unique V:



once we choose V(∞) = 0. This has been our approach so far: tell us where
every charge is and we can write down V everywhere using superposition
and the choice V(∞) = 0.

But we want something different. We want to pick a part of the universe
bounded by a surface S and just want V inside S. The closed surface S could
be a mathematical surface, like the Gaussian surface, or real surface, like
the boundary of a conductor. We are given qin and nothing about qout. Do
we really need to know where every charge qout in the external universe is
to find V in our sub-universe? It turns out we do not; all we need is V(S), the
value of V on S. In other words, the specification of V(S) is as restrictive as
the specification of all the outside charges qout provided we only want V
inside S.

I repeat: electrostatics allows for only one solution to V inside S given its
value on S and qin, the charge distribution inside.

I will now demonstrate this by showing that if V′ is another solution that
assumes the same value V(S) on S, and corresponds to the same qin, then V
= V′, inside all of S.

If V′ ≠ V, there has to be a reason, and it has to be that qout is now
different because qin is fixed by assumption. So let  be the new
distribution. (In Figure 6.6  differs from qout by a third charge 



Figure 6.6   Top left: A set of charges producing a potential V with a value V(S) on a closed surface S.
Top right: A different set of charges differing only outside S that produce a different potential V′,
which, however, agrees with V on S. Bottom: The difference of the two sets of charges, non-zero
outside S and represented by  produces a difference potential Vd = V − V′, which vanishes on S.
If Vd did not vanish inside, it would change from 0 and lead to a field whose lines must leave S (at 1
in the figure) and reenter S (at 2). These lines imply a potential difference in Vd between 1 and 2,
which are given to be on the equipotential Vd = 0.

Here is what we have:

Subtracting the second line from the first, we find



Let me explain the last step. You know that if you add or superpose two
sets of charges, you can add or superpose the corresponding potentials and
fields. I hope you can see that if you subtract one set of charges (qin, qout)
from another  the resultant “difference” potential Vd = V − V′ and
field will be the corresponding differences. (Instead of subtracting, reverse
the second set of charges and add.)

Let us look at the last equation describing Vd = V − V′. It vanishes
identically on S and is produced by the difference charges  that lie
entirely outside S. (In the figure this is represented by just one charge.) If
Vd, which vanishes on S, did not vanish inside S, it would have to change
from zero to non-zero as we go in. This change will produce a gradient and
a field Ed = −∇Vd. The lines of Ed cannot begin or end inside S since it is
free of charges. So the lines that enter S (at point 1 in the figure) must exit
somewhere (point 2) on S. This leads to a contradiction. The line integral of
Ed from 1 to 2 will yield a non-zero potential difference between them,
whereas every point on S is supposed to be at Vd = 0. The only way to avoid
the contradiction is for Vd, which vanishes on S, to vanish inside all of S.
That is, V = V′ inside all of S.

I have only shown you that V is uniquely specified by V(S) and qin, but
not how this unique solution is to be found. We are used to getting V given
all the q’s but not some of the q’s and its values on a surrounding surface.
This requires more fancy techniques you will learn in advanced courses.

6.4.2   Additional properties of the potential V(r)
I will now show you some properties of V(r), partly for their intrinsic value
and partly because they provide another route to proving the uniqueness
theorem.

Property 1. In a charge-free region V(r) cannot have a maximum or
minimum.



Assume to the contrary that there exists a point r0 at which V is a
minimum. This means V increases as we move away from r0 in every
direction. This means the gradient ∇V is pointing away from r0 or that the
electric field E = −∇V (the restoring force) is pointing toward r0 as we
approach r0 in any direction. The surface integral of such an E over a tiny
surface surrounding r0 will be non-zero (and negative). By Gauss’s law, that
surface must enclose some negative charge, which violates the assumption
the region is charge-free. If r0 is a maximum, we simply reverse the signs of
the field and the enclosed charge in the preceding argument to arrive at a
contradiction.

Property 2. If V(S) = 0 on a surface S enclosing a charge-free region, V(r)
≡ 0 inside S.

Suppose V had some non-zero values inside S. The largest of these values
is a maximum if positive or a minimum if negative, both of which are
forbidden by Property 1. So V ≡ 0 inside a charge-free S if V(S) = 0.

I can now complete the earlier proof of uniqueness in a different way,
starting from the point where I showed that the difference potential Vd = V −
V′ vanishes on S. Because S bounds a charge-free region (the difference
charge vanishes inside it), Property 2 implies that Vd ≡ 0 inside S.

6.5   Capacitors
Suppose you are willing to do some mechanical work that can be stored and
used later. One way is to haul some water up to a tank at some height above
the ground, doing work mgh. When you are ready to cash in, you allow the
water to flow down to the ground along a pipe. The kinetic energy of the
water can be used to turn a turbine blade or to run a mill.

Capacitors are the electrical analogs of this process. They provide a way
of storing electrical potential energy that can be consumed later.

As a simple example consider two parallel conducting plates of area A a
distance d apart. Each plate, being a conductor with no electric field
allowed in its interior, is at some fixed potential. If they are initially neutral
they will both be at the same potential, which we take to be 0. Now we
begin to transfer some charge from the lower plate to the upper plate. As we
continue it will become harder and harder to transfer charge because the



positive charges in the upper plate will repel the newcomers. More
precisely, if Q is the charge on the upper plate (and −Q the charge on the
lower plate) the electric field opposing the charge transfer will be (ignoring
edge effects due to finite size)

The voltage difference between the plates will be the product of this
constant field and the spacing d:

If we define the capacitance of the pair of plates by

we find

for the parallel plate capacitor.
Here is another example. Take two concentric spheres of radii a < b and

transfer Q coulombs from the outer to the inner one. Since in the region
between the spheres the inner sphere will act like a point charge Q centered
at the origin, the potential difference is clearly that a point charge would
produce in this region:



Let us put our result to a test. Consider the case when the spacing between
the spheres d = b − a is negligible compared to a or b. To a tiny creature of
size d, the spheres will appear infinitely large and planar and the formula
should reduce to that of the parallel plate capacitor. Indeed it does. Upon
setting

Eqn. 6.35 reduces to

upon dropping d2 compared to R2 in the numerator and setting 4π R2 =A,
the area of the sphere.

More generally, we can build a capacitor out of any two conducting
objects. Each will be at some definite potential (being a conductor). If they
are initially uncharged we may take their common potential to be V = 0. As
we transfer charge Q from one to the other, a potential difference
proportional to Q will develop and we may define

as the capacitance of this pair. For an arbitrary pair of conductors, it may be
hard or impossible to compute C analytically.



Let us understand why V has to be proportional to Q (and not, say, Q2).
Take some arrangement of charges ±Q on the two conductors that produces
some potential difference V. Suppose you increase the local charge density
at each point by a factor λ. By superposition, the resultant field E and
potential V will also go up by λ. The fact that V → λV when Q → λQ
implies V is linear in Q.

Capacitance is measured in coulombs per volt and is referred to as a
farad, in honor of Michael Faraday (1791–1867). A capacitor with C = 1F
can hold one coulomb when the voltage difference between the two
conductors inside is one volt. A farad is actually quite a big unit and
typically you run into capacitances of order millifarads (mF) or microfarads
(μF).

6.6   Energy stored in a capacitor
Suppose we have moved a charge Qꞌ from the negative to positive
conductor and the voltage difference is V = Qꞌ/C. If we transfer an extra dQꞌ
coulombs against this potential, we have to do work

The total work done when we have transferred a charge Q is

The work done is the energy stored in the capacitor, denoted by U:

Look at Eqn. 6.39. It should remind you of



which is the work we have to do to stretch the spring from x to x + dx. Just
as it gets progressively harder to increase x because the spring resistance
grows linearly with x, it gets progressively harder to transfer dQ′ as Q′
increases because the electric field opposing the transfer grows linearly
with Q′.

The energy stored in the capacitor, Eqn. 6.41, may also be rewritten,
using Q = CV, as

6.7   Energy of a charge distribution
Suppose we want to bring a whole set of charges, q1, q2, . . . qN, which were
infinitely separated from each other to a configuration where the qi are at
some finite locations ri. We take all charges to be positive and if they are
not, we know how to put in the minus signs and change the word
“repulsion” into “attraction” as needed.

When they are infinitely far they don’t even know about each other. They
don’t feel any force. The question is, how much work do we have to do to
bring them to the final configuration? First let’s take charge 1. Let us place
it at r1. This takes no work since there are no other charges at a finite
distance from it to exert a force on it. Then we bring charge 2 from infinity
and put it at r2. The work done is, by definition, q2 times the potential at r2
due to q1:

which is also the stored energy:



This energy will be given back to us if we let q2 (or q1) fly off to infinity. To
prevent the flying off, we assume the two charges are held in place by an
unspecified force.

Then we bring q3 from infinity to r3. How much work should we do? It is
given by q3 times the potential at r3 due to q1 and q2. The total stored
energy is

The first term is the work done to assemble q1 and q2, the second is the
work done to drag in q3 from infinity against the force due to q1, and the
last one is the work done to drag in q3 from infinity against the force due to
q2.

Notice that the final expression for U does not depend on the order in
which the charges were brought in from infinity.

Finally for N such charges the stored energy is

Let us understand this sum. First, it disallows i = j, i.e., the self-
interaction of charge qi, the energy needed to assemble charge qi. We
assume charge qi, say an electron, is given to us by nature. Our job is
simply to bring these preexisting charges close to each other from infinity.
Next is the factor of 1/2 We know from the case of N =3 (Eqn. 6.46) that we
should count each pair only once. The sum counts each pair twice and then
divides by 2. Try this out for small values of N.



Now, let me give another simple example. I want to take a hollow sphere
of radius R and uniformly deposit Q coulombs on its surface. How much
work must I do? As the first couple of charges come in, they don’t run into
any opposition. But as the sphere charges up it starts fighting back. At some
intermediate stage, when the charge on this sphere is Q′ and I want to bring
in a charge dQ′, how much work do I have to do? When the charge is Q′ the
potential of the surface of the sphere is Q′/(4π ε0 R). The whole sphere is at
that potential and I’m trying to bring in a tiny bit more dQ′ from infinity
and smear it on. The work for that will be

If I write the stored energy as Q2/2C, I find

Compare this to the capacitance of two concentric spheres of radii a < b:

If you send the outer radius b → ∞ and set the inner radius a = R, you will
find C = 4π ε0 R. This makes sense because when you charge a single
sphere of radius R, you are bringing charges from infinity, which is
imagined to be an equipotential sphere of infinite radius and V = 0.



CHAPTER 7

Circuits and Currents

Toward the end of the last chapter we learned about capacitors. You can
make a capacitor out of any two conductors. Just move a charge Q from one
to the other. At every stage each conductor will be an equipotential, and
there will exist a well-defined potential difference V, which has to be linear
in Q by superposition. The capacitance is defined by the relation

In general it is not possible to analytically derive a formula for C, though
we succeeded in two simple examples fabricated from parallel plates and
concentric spheres.

At some intermediate stage when charge Q′ has been transferred, the
voltage is V′ = Q′/C and the work done to transfer an extra dQ′ is

We see that charging a capacitor is like stretching a spring: the opposition
grows linearly with the extension x in one case and with the charge Qꞌ in the
other. The work you do is stored in the charges on the two plates: they have
been separated despite their mutual attraction. They want to recombine but
do not have a path connecting the two conductors. When a path is provided,
say in the form of a wire, electrons will run from the negative to the
positive plate gaining kinetic energy. Along the way they can light up a
flashbulb.



7.1   Energy in the electric field
But there is another manifestation of the work done: there is now an electric
field between the conductors while there was none to begin with. For
example, in the parallel plate capacitor there is a constant field E = σ/ε0 =
Q/(Aε0) pointing from the positive to the negative plate. Let us now relate
the field to the energy  through the following steps:

But A · d is the volume between the plates where the field exists (ignoring
fringe effects), which gives us the following formula for uE, the energy
density or energy per unit volume, due to the electric field:

Although we derived the formula in the context of a simple capacitor, the
energy density due to any E(r) is given by

no matter how it was created. Even if E is a time- and space-dependent field
produced by a radio station, this formula for the energy density holds at that



spacetime point. It is like saying that the energy in a spring extended by A is
 no matter what agency (human, Yeti) brought about this extension.

Since it takes energy to establish the electric field, it cannot just
disappear. The law of conservation of energy will require that you account
for it.

7.2   Circuits and conductivity
I’m going to assume you have seen circuits before and I will be brief. Let us
begin with the definition of current in a wire. Imagine the wire as a perfect
cylinder of cross section A. You pick some cross-sectional area and measure
the number of the coulombs that go by per second. That gives the current in
amperes, denoted by A. The ampere was originally defined in macroscopic
terms by the magnetic effects of currents in wires. At that time we did not
know about atoms or electrons.

What is the connection between such a macroscopic electric current and
what’s going on microscopically? We know electrons carry the current
when they move. Now we come to one of the biggest irritants in life.
Because the electron charge is defined to be negative, when you draw a
picture with the current flowing to the right, electrons are actually moving
to the left. We will need to keep an eye on just the direction of the current.
We will imagine that there are objects carrying charge +e moving in the
direction of the current. At any time you can go back to real life by
reversing the velocity and charge of these carriers to find out what the
electrons are doing.

Back to the current in the wire: assume there are n carriers per unit
volume and each has a charge e. From our earlier discussions of flux we
know that in one second the volume that flows past any cross section of
area A is Av, where v is the velocity of the carriers. The number of carriers
in this volume will be Avn and the charge in this volume will be Anve. Thus
the current will be

We may write the current as a product of the area A and the current density
j, which is the current per unit area:



As the area vector A and current density are parallel (pointing along the
wire) we could write I = jA as a dot product of A and the current density
vector j:

(Unfortunately, j is also the symbol we use for the unit vector in the y-
direction. I will try to keep them from both appearing in the same
discussion. Unless stated otherwise, j will be the current density vector.)

If the current density is not uniform across an area we should use the
surface integral of the current density j to find

for the total current. In our discussions we will assume the current density
in wires is uniform. In addition, in steady state, the current I will be
assumed to be a constant along the length of the wire: were it not so, there
would be a charge buildup at some point that would eventually stop the
flow.

Why does current flow in a wire? It is not simply due to electronic
motion. While electrons do indeed move very rapidly in solids, with typical
speeds of order one million meters per second, this motion is random and
varies from electron to electron. The net current due to such motion is zero:
for every electron moving very fast one way there is another moving
equally fast the opposite way. Over time the electrons may swap momenta
but as a population they have this random velocity distribution with zero
average. In fact, you could argue that without an external agency that
singles out a direction, the average of these velocities has to be zero. The
electrons are like a swarm of mosquitoes going nowhere.



Things change if you now apply a field E along the wire. The velocity
acquires a non-zero average, called the drift velocity. The swarm drifts with
this average velocity, which translates into a current. You might say, “I
thought there was no electric field inside a conductor.” Yes, there is no field
inside a perfect conductor in electrostatic equilibrium. The charges in
electrostatic equilibrium are indeed at rest, at the macroscopic level. The
equilibrium in a current-carrying wire that we are discussing is dynamic.
There is a net drift, but the drift has attained a steady value. Instead of the
fixed positions the carriers have in electrostatic equilibrium, they have a
fixed average drift velocity (and the associated steady current) in this
dynamic equilibrium.

How can an electric field produce a steady velocity? Should not the
carriers keep accelerating and should not the current grow indefinitely with
time? This would be the case in a perfect conductor. What happens in a real
conductor like copper is the following, according to classical
electrodynamics. (A modification due to quantum effects will be discussed
later.) Pick a particular carrier at some time. It experiences a force F = eE
and accelerates in response. (I am dropping vector symbols since everything
is one-dimensional and along the wire in this discussion.) In addition to its
random initial velocity, it now picks up a coherent piece, a drift velocity,
along the applied E. It then collides with the nuclei in the solid. In such a
collision, it typically loses some energy (which appears as resistive heat)
and typically loses all memory of its original velocity and emerges from the
collision in a totally random direction. It loses whatever drift velocity it had
built up. Let us now ignore the random motion (which does not contribute
to current) and focus on the drift velocity along the applied E. If I look at an
assembly of such carriers what will I see? For each carrier, the drift velocity
will depend on how long it has been accelerating since its last collision
when its (drift) velocity was reset to zero. If it has been t seconds since the
last collision, the drift velocity along the field will be

The drift velocity averaged over all carriers will be



where τ = t,̄ the mean collision time, is the average time since the last
collision.

Earlier we wrote a formula j =nev assuming all carriers were moving at
one velocity v. We see that the picture is more complicated. Henceforth
when we write j = nev it will be with the understanding that v is really v.̄
Thus the current density in field E will be

We define the conductivity σ of the material as the ratio of the current
density to the field that causes it:

Eqn. 7.17 tells us that in our simple model, attributed to Paul Drude (1863–
1906),

Let us study Eqn. 7.17. Does it make sense? We know why the E is there:
without it pointing the way and producing a coherent drift velocity, the
random motion of electrons will cause no current. That the current is bigger
if you have a bigger density of carriers is obvious. The inverse dependence
on the mass of the carriers just comes from a = F/m. The bigger the τ, the
bigger the response, because the carriers can go for a longer time on
average before colliding, and therefore they have more time to pick up
speed in the direction of the field. The e2 is interesting. One factor of e
comes because the force on the carrier is eE. The second e comes because
the current it carries is itself proportional to e. Notice that the current is



independent of the sign of e. If you make it negative, the carriers accelerate
the other way, but because they have the opposite charge, the current will be
the same. This means that you cannot tell the sign of the current carriers by
measuring the conductivity.

We can rewrite j = σE in a way that will be more familiar. Consider the
situation where the field E is obtained by applying the voltage difference V
between the two ends of a wire of length L. Then V = EL by definition. The
total current in the wire is the current density times area, I = jA. Rather than
saying the current density is driven by the electric field, let’s say the current
is driven by the voltage difference between the two ends of the wire. We
now end up with

is the conductance. Whereas the conductivity σ = ne2τ/m depends only on
the material (copper versus aluminum), the conductance G depends
additionally on the dimensions of the wire. A large conductance could come
from material with small conductivity if the wire had a large cross section
and a small length.

We are more familiar with resistance R than conductance, which appears
when we rewrite Eqn. 7.20

as



Again, resistivity is a property of the material, and the resistance depends
additionally on the dimensions of the wire.

Eqn. 7.22 is the well-known Ohm’s law named after Georg Ohm (1789–
1854). Resistance is denoted by the symbol R and is measured in ohms,
represented by Ω. Thus a 5Ω resistor will allow a current of 2A to flow
when a voltage V = 10 volts is applied.

According to Eqn. 7.23, the bigger the resistivity, the bigger the
resistance, which is to be expected. In addition, if the wire is made twice as
long, say by joining two identical pieces of wire, the resistance will be
twice as big. This is true because each resistor will suffer the same voltage
drop, and it will take double the voltage to drive the same current. If you
double the area, resistance is turned into half its value. This makes sense if
you think of the wider wire as two identical wires, glued side by side, each
responding to the voltage V across it and carrying its own current.

Two caveats are needed here.
First, I will often refer to ideal conducting wires or leads in a circuit that

have no resistance and no voltage drop across them. The current  seems
indeterminate, but only if seen in isolation. The current I through such an
ideal lead is decided by the other circuit elements and batteries. In Figure
7.1 it is decided by C and R and the charge on the capacitor. In reality all
leads have some resistance and some voltage drop across them, but both
these are too small to make a difference and chosen to be zero for
simplicity. An ideal lead is like a massless string that transmits a force
between two massive objects, one of which is being pulled by a force. Both
the force on the string and its mass are zero and its acceleration  seems
indeterminate, but it is not. It is decided by the two non-zero masses and the
applied force. Massless strings are also idealizations introduced to simplify
the calculation and to focus on the objects of significant mass.

Next, when I said that the resistivity was due to the carriers bumping into
the nuclei, I was simplifying things. In a perfect solid, where each nucleus



sits at a precise location on a periodic lattice, the electrons do not bump into
them at all. (The average time since the last collision τ will be infinite.) This
is due to quantum mechanics. The wave theory of electrons (more on this
later in the book) allows them to navigate around these nuclei the way a
blind person can navigate around a room full of furniture placed at
predictable and fixed locations. At zero temperature the nuclei sit at well-
defined positions on a regular lattice and the conductance is infinite. At
non-zero temperature, the nuclei start jiggling around their nominal
positions as part of random thermal fluctuations. This unpredictability leads
to collisions with the electrons and to resistance. There are other sources of
resistance as well, such as impurities, which are foreign atoms that are
embedded in the solid.

The conductivity will generally depend on the temperature, the purity of
the sample, and the strength of interaction between electrons. Even the mass
m is not the mass of the electron in free space; it is modified by the lattice
and electron-electron interactions. Computing σ is a big industry that calls
for a sophisticated quantum mechanical treatment.

7.3   Circuits
Let us begin with a simple circuit depicted in Figure 7.1. I take a capacitor,
charge it up to some amount Q(0), and then connect it to a resistor R via a
switch. What happens when I close that switch at time t = 0? The positive
charges were dying to get over to the negative plate, but they could not
traverse the vacuum between plates. But if you give them a path, in the
form of a wire, they will go through that and come back to the other plate
and neutralize their opposites. The capacitor gets discharged in this process
and the voltage between its plates is diminished.

We want to calculate the currents and voltages in this circuit as a function
of time. We follow two rules due to Gustav Kirchhoff (1824–1887):



Figure 7.1   The RC circuit. If R is removed, charges will build up at points 3 and 4. Their fields
(shown by arrows) kill the field in the leads and reinforce each other in the gap where R is to be
connected.

1. If there is a branch in the circuit at some node, currents entering the node must equal the
currents leaving it. This is to enforce charge conservation and prohibit charge buildup at the nodes,
for this will eventually stop the current.
2. The sum of the changes in voltage as we go around any loop must add up to zero. This is so
because the line integral of the electric field on a loop is 0, or equivalently because the potential at
any point is like an electrical height: if you add all the changes in height as you go around a loop,
you must get zero.

In this circuit there are no branches and just one current I(t).
Next let us add the height changes around the loop, starting at point 1.

When we go up through the capacitor to 2, we go up in electrical height by
an amount  volts. The leads to the resistor have zero resistance and there is
zero voltage drop between 2 and 3. A resistor will not carry current unless
there is a voltage applied to it. Since current flows downhill, we drop by RI
volts when we come from 3 to 4. There is no further drop as we go back to
point 1 along the perfectly conducting leads. Thus we have

A few words are needed on the perfectly conducting leads. We know
there can be no field inside them. Yet we want a field inside the resistor to
drive the current. How does this field suddenly appear just within R? Here



is a very simplified explanation. First remove the resistor and let the two
ends 3 and 4 connected to it dangle. Some tiny positive charge will initially
flow from the positive plate to the tip of the upper wire (point 3) till its own
field blocks the arrival of more positive charges. The field due to this
accumulated charge balances the field in the leads due to charges in the
positive plate. The lead becomes field-free and equipotential. The same
happens at the other lead, which will have some tiny negative charge at its
tip. Notice that the fields due to charges accumulating at points 3 and 4 aid
each other (both pointing down in the figure) where the resistor will be
placed. If we now reinstate the resistor, the accumulated charges will drive
the current in the resistor.

Back to our circuit equation, 7.25. What is the relation between I and Q?
In a time dt the current I, as shown in the figure, carries away a charge

from the upper plate. Thus

Feeding this into Eqn. 7.25 we obtain a differential equation for Q:

Upon integrating both sides of

from the initial time of 0 (when the switch was closed) to time t, we find



which means

The current is

The charge on the capacitor starts out as Q(0) and decays exponentially
once you close the switch. When will it completely discharge? The answer
is “Never!” Why is the capacitor not able to discharge completely? As it
drives current through the resistor, it begins to discharge, the voltage across
it drops, and it is less able to drive current through the resistor. It is trying to
discharge itself, but soon its ability to do that plummets: there is less and
less Q on it to drive any more Q away through the resistor. So Q(t) will
never hit zero and neither will I(t). But in practice, it is essentially all over
after a few times the time-constant

The reason is that when t≫t0 we have e raised to a big negative number,
which is negligible. For example, if we set t = 3RC = 3t0 in Eqn. 7.32, we
find e−3≃1/20. If the time elapsed is large compared to the time-constant t0,
the decay is essentially complete. Here is another way to understand the
time-constant t0. Consider the initial rate of decay of the current as per Eqn.
7.32:



We may rewrite this as

which means that if the current continued to decay at the initial rate, it will
reach zero in time t0. (Of course, this is not what happens—the rate of
decay itself drops as the current drops and the current is non-zero for all
finite t.)

So capacitors can be pretty dangerous. If you open an old amplifier, even
though it’s not plugged in, there could be capacitors inside that are charged
and the R in the diagram could be you. That’s why they always tell you,
“Do not take this amplifier into your bathtub.”

To operate the flashbulb in your camera, you charge up a capacitor, and
when you squeeze the shutter you close the circuit and let it discharge
through the bulb. Here you want the time constant to be very small, because
after a while people will stop smiling.

Before we closed the switch, we had a fully charged capacitor with
energy

At t = ∞ the capacitor is discharged and there is no current flowing. What
happened to the energy? We know it went into heating the resistor, but we
would like to see if the initial stored energy precisely matches the loss over
time.

If a current I flows through a resistor across which is a voltage V, it
means I coulombs are falling down V volts every second for a loss of



(The kinetic energy gained in the fall is transferred via collisions with the
nuclei into heat.) Integrating this power loss over all time we get

which is exactly the initial energy in the capacitor.

7.4   The battery and the emf Ɛ
The trouble with the RC circuit is that after you close the switch, the current
is essentially zero after a few time constants. If you want something more
long-lasting you need a battery or cell, shown in Figure 7.2. I want to share
with you some fine points about batteries in circuits.

Let us begin with what you might know already. Between the positive
and negative terminals of the battery there are some chemicals that
essentially remove electrons from the positive terminal and deposit them on
the negative terminal. Soon this runs into some opposition: the accumulated
charges do not want more of their type to come their way. They set up an
electrostatic field E that opposes the chemical forces. At equilibrium E′, the
chemical force per unit charge balances the electrical force per unit charge,
E. The potential difference associated with the electric field is the nominal
voltage, say 1.5 volts. We are then used to including the battery in the
circuit equation as the source of an upward jump of 1.5 volts when we go
from the negative to positive terminal.



Figure 7.2   Left: The electrical circuit indicating the non-conservative chemical force per unit charge
E′ and the electrostatic field E, which are equal and opposite inside the battery. The battery does
work Ɛq on every charge q that goes uphill from the negative to the positive plate. This work is
returned by the electrostatic field E outside the battery when charges flow downhill from the positive
to negative terminal via the external circuit. Right: The mechanical analogy in which the non-
conservative force FL due to the lift does work mgh per cycle. Because it exactly balances the
gravitational force Fg, i.e., FL = −Fg in the lift area, the work done by FL is also the difference in
gravitational potential energy.

All this seems familiar but there are some subtle issues that I would like
to share with you.

Let us begin with an analogy shown in the right half of the figure. You
are coming down a ski slope, from the top of the lift T, to the chalet C.
Gravity is pulling you down and speeding you up. If there were no trees that
you bump into, you could, in principle, ski right back up the slope to reach
the top at zero speed. This is just the law of conservation of kinetic plus
potential energy in the gravitational field. But say there are many trees and
that you lose all the gained kinetic energy by colliding against them on the
way down to C, and then at the same height, to the bottom of the lift B.
Once you reach the bottom B, gravity is finished with you. It cannot get you
to the top T for the next round. Indeed, gravity, which was with you coming
down, will be against you going back up. That has to be so, given that it is a
conservative force.

Someone observing you for a whole day will find you delivering energy
to the trees every cycle. Something is giving you that energy, or doing that
work on you every cycle. That something cannot be gravity since the work
done by gravity in a full cycle is zero. It has to be a force with a non-zero
line integral over a closed loop. It has to be a non-conservative force.

That force is of course the one due to the ski lift. The lift applies a force
FL that exactly balances Fg, the force of gravity, as it carries you up from
the bottom of the lift B to the top T:



The work done by the lift on the upward trip is

Non-conservative forces are defined by their circulation, which is their line
integral over a closed loop. How shall we define the circulation of FL that is
non-zero only over an open segment B → T inside the lift? We simply add
an extra portion that completes the loop by going back from T to B along
any path outside the lift, say T → C→ B in the figure. You can choose a
different way to close the loop but it will not matter since FL is identically
zero outside the segment B → T. Letting Ɛ denote this loop integral, we
have the result

upon invoking

As Fg is conservative, potential energy difference Ug(T) − Ug (B) can be
traded for kinetic energy along any path connecting T to B. You cannot do
this inside the lift because the floor keeps you from falling. But you can
leave the lift and ski downhill from T → C → B during which ride



which nicely relates Ɛ, the work done by the lift to increase the gravitational
potential energy, to the work done by gravity on the skier.

Eqn. 7.44 equates Ɛ, the line integral of the non-conservative force FL of
the lift around a closed loop, to the gravitational potential energy difference
between the top and bottom of the lift due to the conservative force Fg.
Such a relation exists because

• Ɛ, the integral of FL around any closed loop, is simply its integral within the lift, because FL is
zero everywhere else, and
• FL = −Fg during the climb, so that this integral is also the gravitational potential difference
between top and bottom.

Now return to the left half of the figure with the battery. The analogy
with the ski lift should help you as you go along.

The electrostatic field E is set up by the charges deposited at the
terminals by the chemicals in the battery and points from + to − inside the
battery, just like Fg but with one trivial difference: E is the force on a unit
charge while Fg was the force on the skier, not necessarily of unit mass.
When the circuit is closed, positive charges can flow from the + to the −
terminal through the resistor. (In reality it is the electrons going the other
way.) In the resistor they deliver the excess kinetic energy the electric field
gives them to the nuclei via collisions (that heat up the resistor) and finally
end up at the negative terminal. They cannot go up to the positive terminal
using the electrostatic field, which now opposes this motion inside the
battery. Here is where the non-conservative chemical force Eꞌ of the battery
(the analog of the lift force FL) comes into play. It lifts the charges against
the internal electrostatic field E and deposits them in the positive terminal.
The electromotive force or emf is defined as the closed loop integral of E′,
which is the work done on a unit charge around a closed loop:

The loop is composed of the path from the negative to the positive terminal
inside the battery and an arbitrary path outside that closes it. It does not
matter how we choose this path because the entire contribution to ∮ comes



from inside the battery on the segment going from the negative to the
positive terminal. That is,

Next, because E′ = −E inside the battery (just like Fg = −FL), we deduce

This difference in potential can be converted to kinetic energy on any
path going from the + terminal to the − terminal. Any path inside the
battery is blocked by the chemical forces (the way the lift keeps the skier at
the top from falling to the bottom). But any path outside, provided by the
external circuit, is permitted. This is what happens when the circuit is
closed.

The main point, which you may not have appreciated in earlier
encounters, is that even though the voltage concept is associated with the
conservative electrostatic field E, it is numerically equal to the closed loop
integral of a non-conservative chemical field E′. The non-conservative
chemical force is needed for the battery to do work cycle after cycle, as
charges go around the circuit. The conservative electric field takes energy
from the chemical force inside the battery and gives it to the charges in the
circuit.

If you do not want to look under the hood, you may simply (and
correctly) assume that when you travel across the battery from the negative
to the positive terminal, the electrostatic potential goes up by the emf Ɛ.
Sometimes the voltage across the terminals of the battery is denoted by the
more familiar V rather than Ɛ since they are numerically equal.

Let us write an equation for the circuit in Figure 7.2. As we add the
changes in voltage starting from point 1, we find it goes up by V2 − V1 = Ɛ



for 1 → 2 and by zero for 2 → 3 (perfectly conducting wire with no drop);
it drops by IR during 3 → 4 and by zero for 4 → 1. Thus we have

which is sometimes written as V = IR.

7.5   The RC circuit with a battery
The circuit is shown in Figure 7.3. You have a battery with emf Ɛ, a
capacitor C, a resistor R, and a switch that is initially open. The wire joining
the lower plate of the capacitor and the negative terminal of the battery
ensures that they are both at the same potential, say V = 0. The upper plate
of the capacitor is also at V = 0 since there is no field between the plates to
create a potential difference. The positive terminal of the battery is at V = Ɛ
due to the electric field inside. You might think that some of the charges in
the negative terminal will flow to the lower plate of the capacitor due to
inter-electron repulsion. This does not happen because the negative charges
in the negative terminal are bound to the positive charges in the positive
terminal along with whom they were created by the chemicals. Flowing to
the lower plate of the capacitor would increase their separation from the
positive charges and increase the energy. The positive and negative charges
in the two terminals would love to reunite inside the battery but are
prevented by the chemical forces.

Now let us close the switch. The positive terminal at voltage Ɛ is now
connected to the positive plate of the capacitor. Positive and negative
charges that wanted to reunite inside the cell but were held back by the
chemical forces still cannot reunite, but they can get closer: some positive
charges will begin rushing to the upper plate of the capacitor and an equal
number of negative charges will rush to the lower plate. Because there is a
resistor in the circuit, the current will be finite. As the current flows, the
capacitor will develop a voltage that opposes this current. The current will
stop when the opposing voltage exactly balances the battery. Soon we will
find out when this happens.



Figure 7.3   The circuit with a battery, resistor, capacitor, and switch. Shown are the non-conservative
chemical force per unit charge E′ and the electrostatic field E, which are equal and opposite inside
the battery. Before the switch is closed both plates of the capacitor are uncharged and at the same
potential. When the switch is closed, equal and opposite charges flow to the plates of the capacitor
(as shown), which then begins to oppose the very battery that feeds it.

When some positive and negative charges leave the two terminals, the
electrostatic force inside the battery momentarily becomes weaker than the
chemical force, which immediately deposits opposite charges on the two
terminals to bring the voltage difference back to Ɛ.

Look at what has happened after the switch was closed. Some positive
charges created inside the cell have gone to the positive terminal and
continued onward to the positive plate of the capacitor. Some negative
charges created inside the cell have gone to the negative terminal of the
battery and on to the negative plate of the capacitor. But negative charges
flowing from the negative terminal to the negative plate of the capacitor are
equivalent to positive charges or current flowing from the negative plate of
the capacitor to the negative terminal of the battery. On the whole it is as if
some positive current has flowed around the circuit, even though no charge
has flowed across the gap between the plates in the capacitor.

It is this current we want to describe, qualitatively first and then
quantitatively. Initially the current will be Ɛ/R because the battery is the
only driving force. But as the current flows, it charges up the capacitor, and
if you look at the figure you can see that the capacitor would like to drive a
current in the opposite direction from the battery. It bites the hand that feeds
it. Eventually we expect that the capacitor will exactly counter the battery
and then the current will stop. To know when this will happen we have to
do a calculation after first writing down the circuit equation.

Since there are no branches, we have to deal with just one current I(t).
Starting at a point below the battery, as we move past it, we go up by a

voltage Ɛ and then we drop by an amount IR when we cross the resistor and



another Q/C when we go from the positive to the negative plate and arrive
at the starting point. Setting the sum of all the voltage changes to zero we
find

Convince yourself that the current, which is now responsible for
charging the capacitor (rather than discharging as in the previous example
with just a capacitor and resistor), is related to Q by

Combining the last two equations we arrive at an equation obeyed by the
charge

We could solve this equation easily if it were not for the Ɛ on the right.
Since it is a constant, we shall eliminate it. Define Q̃ as follows:

Eqn. 7.54 now becomes (upon realizing the time derivative of CƐ vanishes):



We have already solved this equation before and the answer is

Since the initial charge on the capacitor Q(0) = 0, we see from Eqn. 7.55
that

and Eqn. 7.55 implies that

using the fact that Q(∞) = CƐ.
We find from Eqn. 7.62 that the voltage on the capacitor, Q(t)/C, always

falls short of Ɛ and reaches that value only asymptotically as t → ∞. Since
the capacitor is fighting the very battery that is charging it, it is nourished
less and less by it as it approaches the battery in stature. But it cannot ever
become its equal.

The current is found by differentiating Q(t):

This simple analysis should give you a feeling for how physics works.
You develop models of the capacitor, resistor, and battery and write down
the circuit (differential) equation that reflects the basic principles like
charge conservation and conservative forces. You solve the equations and



are stuck with what they predict. The mathematics rules after that point.
And whatever it tells you, you rush out to the lab to verify. For example,
you may want your capacitor to attain 80 percent of its maximum charge
and you may like to know, “How long should I wait?” Simply set Q(t)/Q(∞)
= .8 in Eqn. 7.63 and solve for t. (If you want it to hold 100 percent of the
maximum charge, that will never happen.)

A final check on energetics. The work done by the battery, WBatt, is the
integral of the power P. Since the battery lifts I coulombs per second over a
“height” Ɛ volts, the power delivered by it is

and the energy delivered over all time is

I leave it to you to verify that this is the sum of the final energy stored in the
capacitor and the heat dissipated in the resistor, both contributing equally.

7.6   Miscellaneous circuits
The following is a review of DC circuits. The same rules apply in AC
circuits, which we will study later in this course. Look at Figure 7.4.



Figure 7.4   A: Adding resistors in parallel. B: Adding capacitors in parallel. C: Adding resistors in
series. D: Adding capacitors in series. The circuit elements are enclosed in a black box (dotted line)
with just two leads coming out.

Part A shows two resistors R1 and R2 in parallel, hidden in a box, shown
by dotted lines. Just two terminals marked in and out are visible. We have to
find out what effective resistance resides inside. So we hook the terminals
to a battery of known voltage V, measure the current I that flows, and
declare that the resistance inside is

The figure shows the current I entering the box and splitting into two parts
I1 and I2, which must add up to I. We then reason as follows:



This formula says that the final resistance is less than either one. (Check
this.) This too makes sense, as a parallel path to either one implies more
current and less resistance. You may also check that

which states that the current flowing in one branch is proportional to the
resistance of the other. This makes sense: the greater the opposition to
current the other branch offers, the more likely the current is to come your
way.

Now turn to part B with two capacitors in parallel. To find out their
effective capacitance, we will apply a voltage V, find the charge Q that
flows in, and assign a value



to the capacitance inside. The charge that flows divides into Q1 and Q2 and
each capacitor feels the full applied V. Thus

Thus capacitors in parallel add. You can almost see this from the figure. If
you just let the two capacitors touch and become one, the combination has
an area equal to the sum of the areas and the same separation between
plates. From the formula C = ε0A/d we see C = C1 + C2. In general if the
capacitors are totally different in design, we must return to the more basic
notion that capacitance is a measure of how much charge can be held for a
given applied voltage and that when connected in parallel, the holding
capacity is additive.

Part C shows two resistors in series.

Finally, part D shows two capacitors in series. The battery sends in ±Q to
the upper plate of C1 and the lower plate of C2. If the two plates in the
middle do nothing there will be a field between these two plates, with the
corresponding energy per unit volume. However, the energy can be reduced
if the lower plate of C1 borrows −Q from the upper plate of C2. This traps
the field lines between the two plates of each capacitor, causing a reduction
in energy. Given this arrangement of charges, it is evident that



In summary, capacitances in parallel simply add, just like resistances in
series. The inverses of capacitances add in series, just like the inverse of
resistances in parallel.



CHAPTER 8

Magnetism I

Every time you think you’re done with the laws of physics, somebody does
some experiment that doesn’t fit what you know, and you have to make up
new stuff. That takes us to our next topic: magnetism. Don’t believe the
myth that magnetism was discovered in Ancient Greece, when parents
noticed kids were sticking their art work on the refrigerator using some
little black rocks. It is true, however, that magnetic phenomena in lodestone
were discovered before the common era and later used to make compass
needles.

8.1   Experiments pointing to magnetism
I’m going to give you a string of more modern experiments (depicted in
Figure 8.1) that tell you there is something going on that is not described by
anything I’ve described so far in this course, new phenomena that are
inexplicable.

Here’s the simplest one. There are two parallel wires carrying currents I1
and I2 in the same direction. The wires are found to attract each other. This
force cannot be electrostatic since the wires are neutral. You can confirm
this by placing a test charge next to either wire and finding no response.
Next, if you reverse one of the currents the force becomes repulsive. You
might guess a new law: parallel (anti-parallel) currents attract (repel).
However, it is not going to be easy to find a force vector pointing from one
wire to the other by combining the vectors corresponding to the two
colinear currents: their dot product will change sign under current reversal
but will be a scalar rather than a vector, while the cross product of the
colinear current vectors will be zero.



Figure 8.1   Three examples of the magnetic force: parallel currents attracting, anti-parallel currents
repelling, and a moving charge q > 0 attracted to a current in the same direction. Not shown is the
repulsion if the charge moves anti-parallel to the current.

Let us simplify one of the two players in the last discussion and replace
one wire by a charge q >0 as shown in Figure 8.1. When the charge q sits
next to the wire nothing happens. This is expected since the wire is neutral.
The charge then begins to move at speed v parallel to the current. It is now
found to be attracted to the wire. It starts bending in toward the wire. That
also cannot be due to the electrical force, which doesn’t care if the charge is
moving or not. And if the charge reverses its velocity and moves anti-
parallel to the current, the force becomes repulsive. So, this is one class of
phenomena or experiments that eludes description in terms of what I have
covered so far.

Consider next the most familiar case: bar magnets. They seem to have a
north and a south end, and opposite ends attract and like ends repel just like
electric charges. How do you decide which end is north? You can randomly
pick one end of a reference magnet as north; if the end of another magnet is
attracted to it, that is the south end and, if repelled, the north end. This is
how you would decide which charges are positive and which are negative,
as a matter of convention. But the words “north” and “south” have an
independent connotation (Canada is to the north of the United States) that
removes the arbitrariness. If you mount a natural magnet on a pivot so it can
swing and form a compass, it will line up in the north-south direction on
earth. The end that points to the north (arctic) is the north pole N of the
compass needle. This sounds wrong; it should repel the north pole of the
earth, instead of being attracted to it. The explanation is that the giant
magnet inside the earth, which produces the terrestrial field, is actually
upside down—with its magnetic south pole (which will attract the north
pole of the compass needle) in the arctic and its magnetic north pole in the
antarctic, as shown in the leftmost part of Figure 8.2. (This is another
nuisance like the minus sign in the electron charge.) To map out the field of
a bar magnet, place the compass needle at various places, let it settle down



and draw a little vector from its south pole to its north pole, and join the
little arrows to define the lines of the magnetic field. You will end up with
the familiar picture shown in Figure 8.2. The north end of the bar magnet is
where the lines emerge and the south is where they return. If you could go
inside the magnet with your needle, you would find the lines that entered
the south end continue up the magnet and emerge as the lines leaving the
north pole. Magnetic lines form closed loops.

Figure 8.2   The earth, a bar magnet, and an electromagnet. The direction of the field lines is
determined at each point by a compass needle. The end marked N is the north pole of the needle.
While this end points toward the south pole of the bar magnet, it points toward the geographic north
of the earth because the magnetic poles of the earth are aligned opposite to the geographic poles.

Another baffling experimental fact is that you could make a magnet by
driving current through a solenoid as shown in the figure. The compass
needle responds to the field of this electromagnet as it did to that of the bar
magnet. Magnet is reversed if you reverse the current.

All this should be enough to convince you that something beyond
electrostatics is at work. Why didn’t we need this something before, and
why do we need it now? What is new in the phenomena just described to
distinguish them from problems we have been studying so far? What
feature distinguishes these phenomena from electrostatics?

After some discussion my class was able to zero in on the answer: the
charges are now moving. Go back to the charge q that was drawn to the
wire carrying current I. The charge in question is moving and so are the
charges in the current-carrying wire. Stop the charge or the current and the
force goes away. (The bar magnets seem to violate this characterization
since nothing is moving. Actually there are circulating atomic currents
behind the magnetism. More on this later.)

So, magnetism is caused by moving charges and it is felt by moving
charges. We need to figure out how the velocities enter the game in both



parts.
Having impressed you with an array of inexplicable, magnetic

phenomena, I will now give you the fundamental equations of
magnetostatics, equations that summarize everything I’ve described so far.
(The “statics” in magnetostatics may seem inappropriate after just saying
that magnetism involves moving charges. It refers to the fact that the
macroscopic currents involved are constant in time.)

There will be two parts to magnetostatics, just as in electrostatics. The
first part will specify the force felt by a moving charge in a magnetic field.
The second will specify how currents produce a magnetic field B.

The force on a charge is called the Lorentz force in honor of Hendrik
Lorentz (1853–1928). He did not discover this law but made other profound
contributions to electrodynamics. Here it is:

The first term in Eqn. 8.1 is the familiar electric force. As mentioned
before, this part is unaffected by relativity: it simply relates the E at some
spacetime point to the force F it exerts on a charge at that same point. The
fact that there is a delay between cause and effect complicates the
calculation of E in terms of the charges that produce it, but not on what it
does to the charge q, the latter being a local relationship in spacetime.

The second term is the magnetic force. It too is unmodified by relativity,
with the understanding that the force stands for the rate of change of the
correct relativistic momentum  and not its low velocity
limit mv. You can take the Lorentz force law as the summary of years of
experiment.

How will you measure E and B at a point given this formula?
We’ve done it before for E. Take a coulomb and put it at rest where you

want E. Find the force on it, and that’s E. If you placed 5 coulombs, you
divide the force by 5. Finding the electric field is easy because its direction
coincides with the acceleration of the charge.

In the magnetic problem, there are lots of vectors involved, as indicated
in Figure 8.3.



Figure 8.3   The magnetic force on a charge q, moving at velocity v in a field B, is F = qv × B.

There is v the velocity of the charge, B the magnetic field, and finally
magnetic force F given by their cross product. Suppose I ask you, “Which
way is B pointing?” You cannot use a compass needle. That is cheating; I
want you to use just the Lorentz force law. One option (in principle) is to
shoot a few charged particles in different directions and find out how they
bend. The ones with velocity exactly parallel to B won’t bend at all since v
× B vanishes. Once you have figured that out, you have a plane orthogonal
to B to fire one more particle. The force on it will have a magnitude qvB
since sinθ =1 in the cross product of perpendicular vectors, and the sense in
which the particle bends will tell us along which of the two possible
directions normal to the plane B points.

The unit for the magnetic field is the tesla. A one-coulomb charge
moving at one meter per second perpendicular to a one-tesla field will
experience a force of one newton.

Whenever a force acts on a body, you know P = v · F is the power it
delivers, the rate at which it does work. If you compute that for the Lorentz
force you find

The magnetic force makes no contribution because v × B is perpendicular
to v and hence has zero dot product with v:

The magnetic force is always perpendicular to the velocity of the particle.
That means it never does any work. So you may say, “Who cares about such



a thing?” Electric fields do a lot of work. They speed up particles, they slow
them down. By contrast, the kinetic energy of a particle will never change
due to the magnetic field. And yet you will see that it is extremely useful as
an intermediary in transferring energy, as in a generator or motor.

8.2   Examples of the Lorentz force, the cyclotron
We are now going to do some simple problems to acquaint you with the
magnetic force.

In the first problem, depicted in Figure 8.4, I have a beam of particles, all
of which have the same mass m and charge q >0, but going from left to
right with different speeds.

I want to select out those that have a certain speed. I want a velocity
filter. Here is how it is done. I take two parallel plates and charge them up
so there is an electric field as in Figure 8.4. The particles will then bend
downward in this constant downward electric field. Now I introduce a
magnetic field B going into the page. Throughout this book a vector
pointing away from you and into the page is shown by a symbol ⊗ and a
vector coming toward you from the page is shown by ⊙ or simply a dot.
Now what is v × B? It points straight up and has a magnitude qvB, which
varies with v, the particle speed. Particles with a speed v∗ satisfying

will go undeflected and get out at the right end, while the others will either
hit the upper plate (v > v∗) or the lower one (v < v∗) assuming the plates
are long enough. If the particle velocity v > v∗, the magnetic force beats the
electric force and bends the particle upward. If not, the opposite happens.
The device works because the magnetic force cares about the particle
velocity, while the electric force does not.



Figure 8.4   A beam of positively charged particles moving along the x-axis with various velocities
enters a velocity filter, a region of a crossed electric field E (down the y-axis) and magnetic field B
(into the page, in the −z direction). Those moving at a speed v∗ = E/B pass through while faster
(slower) ones hit the top (bottom) plate.

Another standard example of the Lorentz force is shown in the left half of
Figure 8.5.

There is a uniform magnetic field going into the page. I shoot a particle
with q > 0 in the plane of the page as indicated. What will it do? It feels a
force v × B and bends to the left. At the new location it again feels a force
perpendicular to the instantaneous velocity and bends again. It is like
planetary motion. It will go in a circle. It’s not speeding up, because the
force is always perpendicular to velocity. You don’t change the kinetic
energy, but you change the direction of motion. If you want to trap charged
particles, you put them in a magnetic field. They will not go anywhere, just
run around in circles.

These circular orbits have a remarkable property because the magnetic
force, unlike gravity, is velocity-dependent. If the orbit has a radius r, non-
relativistic Newtonian mechanics (assumed to be valid at the velocities in
question) tells us to equate the requisite centripetal force to the available
magnetic force:



Figure 8.5   Left: A particle of mass m and positive charge q enters a magnetic field perpendicular to
the page, which bends it into a counterclockwise circular orbit. A negative charge would orbit
clockwise. The frequency ω depends only on q/m and not the orbit radius or velocity. Right: A
cyclotron exploits this feature of ω. A particle injected near the center goes along a circular arc
within that dee. When it crosses to the other dee it gets a kick due to a voltage drop between the dees.
When it comes around back to the first dee, the polarity is reversed and it gets another kick, still
falling downhill. At the end it is shot out of the machine.

(I didn’t write the cross product, because v is perpendicular to B.)
Canceling one power of v from both sides we find

In a circular orbit the tangential velocity v is related to the angular velocity
ω by

which then implies



The striking feature of this result is that the orbital frequency ω, called
the cyclotron frequency, is independent of the velocity of the particle and
the radius of the orbit. It just depends on q/m, the charge-to-mass ratio of
the particle in a given magnetic field. This means that if you shoot many
such particles into the plane perpendicular to the field at different speeds,
they will form orbits of different radii, but all the orbits—big and small, fast
and slow—will be traversed in the same time.

Ernest Lawrence (1901–1958), who was on the Yale faculty briefly
before going off to Berkeley, made sensational use of this property in
devising the cyclotron, a particle accelerator. But first consider a simpler
accelerator. You take a battery with a voltage V, connect it to two parallel
plates, and set up a field between them. You release a proton from the
positive plate and it accelerates toward the negative plate, gaining kinetic
energy  When it reaches the negative plate, it finds you have
cleverly made a hole that lets it emerge through it with a velocity v = 
That is your particle accelerator. If you want to accelerate it to higher and
higher energies, you can either get batteries with a bigger and bigger
voltage or let a series of accelerators like the one described above accelerate
the particle in sequence. Indeed this is essentially how the one at the
Stanford Linear Accelerator Center (SLAC) works, though it uses a suitable
AC voltage that repeatedly keeps kicking the particle over a two-mile
stretch.

What Lawrence invented had a different design that uses electric and
magnetic fields as follows. Take a closed metallic cylinder with a broad
base and a very small height and slice it into two equal halves along a
diameter. The halves are called “dees” for obvious reasons. Leave a small
gap between the dees as shown in the right half of Figure 8.5. Apply a
magnetic field B perpendicular to the plane of the dees. Connect a battery of
voltage V to the two dees, thereby placing them at different potentials. A
field E and potential difference V will be created in the space between the
dees. Near the center, inject into the positive dee a positively charged
particle at some tangential velocity v. It will bend in the magnetic field into
a circular orbit, emerge after a half-circuit, and enter the other dee. During



the jump, it will gain a kinetic energy qV because of the potential difference
between the dees. After another half circle, as it reenters the original dee, it
will lose the kinetic energy it gained because now the field is opposed to it.
What was a downhill journey in the previous jump is now uphill. This is not
a good accelerator. Suppose that we very cleverly swap the terminals of the
battery just before the second jump so that the particle gets another boost to
its kinetic energy of qV. It now travels on a bigger circle due to its increased
speed. When it arrives at the next jump we repeat the swap. The particle
will keep picking up speed on its spiral path, always going down in
potential, like something out of Escher’s drawings. Eventually the orbital
radius exceeds the dees in size, and the accelerated particle is ejected for the
intended collision.

The flaw with this design is that we need to do the terminal swapping
very fast. But there is compensating good news hidden in what I said
earlier: we need to swap the leads at the same frequency because ω remains
unaffected by the change in speed and radius. You can probably guess that
Lawrence did not swap the polarity of the dees manually or ask his graduate
student to do it: he just applied an AC voltage of the desired ω.

Lawrence’s first cyclotron was about 5 inches in diameter and could give
a proton an energy of 80,000 eV. (This is like connecting a battery with
80,000 volts to our parallel plate accelerator.) Later he used bigger magnets
to reach 16,000,000 eV’s. His idea was this: you do not need a million-volt
battery to impart a million eV of energy to a particle; you just give it a
million small kicks of 1 eV each. Eventually a different design was required
because the non-relativistic kinematics that went into the preceding
derivation no longer applied. The next generation of the accelerators, called
betatrons, were designed to operate at relativistic energies and will be
discussed later.

8.3   Lorentz force on current-carrying wires
The Lorentz formula describes the magnetic force felt by a single charge,
like an electron. This is useful in certain contexts, like in designing a
cathode ray tube or an accelerator. But often the moving charges are part of
a current-carrying wire. Let us derive the force law that applies to
macroscopic currents starting from Lorentz’s microscopic expression.

Consider a wire of cross section A carrying current I assumed to be
uniform along its length. The wire may, however, twist and turn so that the



direction of the current is variable. We want to find the force on a little
segment, which I write as a vector dl. The wire is bathed in a magnetic field
B(r), which may be assumed constant over this tiny segment. There’s going
to be a force on this segment because there are little charged guys moving
in the wire. Each one feels a force ev × B. We must add them all up. If this
segment has a length dl, how many charges are we talking about? It is the
density of carriers, n, times the volume of the segment, which is Adl. Thus
the force on the segment is

Now I’m going to do a little switch here. The force contains the product of
dl, the magnitude of the vector dl and the velocity vector v. Since both v
and dl point along the wire, we can attach the vector symbol to dl and

Figure 8.6   The magnetic force dF on a segment dl of a wire carrying current I is Idl × B. This is
simply the sum of the forces on the individual carries inside dl.

replace v by its magnitude v:

both of which describe a vector of magnitude vdl pointing along the current.
It follows that



But enAv is the current I, and so the force on dl is

a result worth remembering.
Here is an illustrative example. There is a uniform magnetic field B

coming out of the page in the +z direction, and a semicircular wire lying in
the plane of the page (the xy-plane), carrying a counterclockwise current I,
as shown in the left half of Figure 8.7. Let us find the force on its diameter
and semicircular part.

The force on the diameter is easy to figure out since the entire segment
points in one direction. It has a magnitude

and points down the y-axis.
As for the semicircle, the figure shows a segment dl at an angle θ from

the x-axis. Since B and dl are perpendicular, the force, perpendicular to
both, lies in the plane of the page and points radially outward as shown,
with a magnitude dF = IBdl. The figure also shows another segment dl∗ at
angle π − θ, which feels a force dF∗ with the same y component and
opposite x-component. Since only the y-component will survive, we
compute only that

Figure 8.7   Left: Loop in the xy-plane, and the field coming out of the page. Right: Loop and field in
the same xy-plane. In both cases the total force on the loop vanishes.



Be aware that the sinθ above is not the usual factor that gives the
dependence of the cross product on the angle between the two vectors. That
angle is in fact  here, because B (coming out of the page) and dl (in the
plane of the page) are perpendicular. The angle θ here comes from
projecting out the y-component of dF. Since dl = Rdθ, the total force on the
semicircle, pointing up the y-axis, is

which exactly cancels the downward force on the diameter. So the force on
the closed loop is zero.

Suppose B is now parallel to the page and pointing up the y-axis, as
shown in the right half of the figure. The force on the horizontal segment
will be of the same magnitude 2IBR since the current is still perpendicular
to B, but will point out of the page. On the semicircle, dl, the segment
located at angle θ from the x-axis and B are no longer perpendicular but at
angle θ. The force of magnitude dF = IBdl sinθ will be pushing the segment
into the page. This time the sinθ is the factor that enters the cross product.
The integral of dF is once again 2IBR and it cancels the force on the
diameter.

It can be shown that the force on any closed loop in a uniform B is zero:

where I have pulled the constant B out of ∮ and used the fact that the vector
sum of all the little dl’s forming a closed loop vanishes.



8.4   The magnetic dipole
Next consider a rectangular loop of area A = w · l immersed in a uniform
field B pointing along the z-axis as shown in Figure 8.8. The loop carries a
current I in the sense shown 1 → 2 → 3 → 4 → 1. Let us choose the arrows
running around the area to specify its orientation to be in the same sense as
the current. If you curl the fingers of your right hand around the current
(don’t do this at home) your thumb will point along the area vector A.

The field will exert no net force on the loop by symmetry. For every
segment dl pointing one way, there is one in the opposite side of the loop
pointing exactly the opposite way, experiencing the opposite force, because
B is constant.

The field will, however, exert a torque that causes rotation around the
axis OO′. The torque is due to the segments 12 and 34, which experience a
perpendicular force of magnitude BwI pointing away from the loop. (The
other two sides, 23 and 41, which also experience a force pointing out of
the loop, do not contribute to any torque.) The “lever arm” for the torque is
l sinθ where θ is the angle between A and B. This may be clearer in the side
view in the lower left of the figure, looking at the loop along the rotation
axis OO′ straight at the edge 41. So the torque on the loop is

Figure 8.8   A current loop of area A = l ·w in a magnetic field B. The net force on it is zero and the
net torque is τ = μ × B, where the magnetic moment μ = IA. The torque is due to the forces on
segments 12 and 34, which try to rotate it around the axis OO′ in the sense indicated. Forces on 23
and 41 try to stretch out the loop but not turn it. The inset in the corner shows a side view along the
axis OO′ to clarify the torque calculus.



The sinθ tells us clearly that we are dealing with the cross product of two
vectors, B, and the magnetic moment μ, which is parallel to A:

That is,

The torque τ wants to align the moment μ with the field B. Thus a little
loop can be used as a compass: the normal to it will point along B.

We call μ the magnetic moment of the loop because it is analogous to the
electric dipole moment. You might remember that an electric dipole p in a
field E experiences a torque

which also tries to align p with E. So a current loop looks like a magnetic
dipole in a magnetic field. In other words, the loop behaves like a pair of
opposite magnetic charges, separated in the direction of A. If magnetic
charges or monopoles existed, this would be simply a magnetic dipole,
aligning itself with the magnetic field. So far we have not found reliable
and reproducible evidence of magnetic charges, or monopoles, that would
produce a radially outgoing or incoming magnetic field. We have only loops
that behave like dipoles. Just as the electric moment p is the product of the
charge and the separation between them, the magnetic μ is the product of
the current and the area.

Besides responding to a magnetic field the way an electric dipole
responds to an electric field, the loop also produces a magnetic field that



looks like the electric field of the electric dipole at long distances. We will
eventually compute this field, but only for a simple case.

Given the torque, we can integrate it to obtain a potential energy

The potential is minimized (maximized) when the moment is parallel (anti-
parallel) to the field. Unlike in the case of the electrical dipole, this energy
only keeps track of the mechanical work done to turn the loop, but not the
electrical work done to keep the current in the loop constant as it turns.

8.5   The DC motor
Now it turns out I can make some money out of this torque. I can build a
device. The device I’m going to build is an electric motor. I take two bar
magnets and place them north-to-south as shown in the top left of Figure
8.9. In this region of a constant B, I place a current loop fed by a battery.
The loop is free to rotate about an axis parallel to the leads. If the current is
as shown, the loop will rotate till μ aligns itself with B. Assuming its
motion is damped by some little friction, it will stop in that position. That
will be the brief life of my motor. It’s going to turn till the moment lines up
with the field and that’s the end. And if it’s already lined up, it won’t even
do that. This is not going to sell. So what do I have to do?

A very good suggestion that came up in class was to use an AC supply.
But what if I just have a DC source? Switching the poles every half cycle
got a good laugh but no one thought it was a good idea. The actual solution
is very clever. Let us get there in stages.



Figure 8.9   Top left: A view of a current loop in the field of two permanent magnets. The torque on it
will rotate it till μ and B are parallel. If the current is then reversed, it will swing by another 180
degrees and so on. This reversal is done using the commutator shown in the inset (top right). The
dotted line is a spring that holds the brushes in place. Bottom: Side view of the motor.

First, instead of switching the poles, I can switch the leads at the battery
that feeds the rotating loop. Every time the loop thinks it has found
happiness, that it has reached an energy minimum, I say no. I turn the
energy minimum to a maximum just when it gets there by reversing the
current. So it goes another half turn and I do it again. The motor will now
work, but I can never leave this motor and go anywhere, because I have to
stick around to switch the leads. It is high maintenance.

Now for the real answer. If you don’t know the answer, you will be very
impressed, as I was. That is the gap between pure science and applied
science. It makes all the difference. The practical guys invented the
commutator, shown in the insert in Figure 8.9. The two leads from the
spinning loop are connected to two semicircular metallic half-rings, which
rotate with the loop and have a tiny space between them. The battery is not
hard-wired to the loop. Instead it is connected to the half-rings with two
spring-loaded metallic brushes; this allows the half-rings to spin without
breaking the contact. Now you can see what happens from the figure.
Initially the positive terminal is connected to the bottom half-ring, the
negative terminal to the top half-ring, so that the current goes in and comes
out as shown. But half a revolution later, the half-rings switch places, and
the polarity and current are reversed.



CHAPTER 9

Magnetism II: Biot-Savart Law

We have finished the first part of magnetism, which concerns the magnetic
forces and torques on moving charges and current-carrying wires. We now
turn to the second part, which deals with how the magnetic fields are
produced by moving charges and currents.

At the microscopic level the magnetic field is produced by moving
charges, but the formula for that is quite difficult to calculate, because the
charges are moving around producing the magnetic field, and the field at
any one location depends on what they were doing at various times in the
past. This is just like electric fields, which are also difficult to calculate if
charges are moving because relativity forbids instantaneous action-at-a-
distance. In electrostatics, we beat the problem by saying, “Look, none of
these charges ever moved. They’ve been there forever.” Consequently
where they are now is where they were at any time in the past and we could
calculate the field. In the magnetic case we cannot stop the charges, for we
will then stop the current that produces the field. Instead we say that the
currents are steady, time-independent. This is a clever way out for now: the
charges are moving in the wire but the current, which causes the field, is
constant. Electron Joe who is here in the wire now may be replaced by
electron Shmoe a little later, but that makes no difference to the current. It is
steady. So the magnetic field that is produced will also be time-independent.
That is what we mean by magnetostatics.

Do not confuse a steady current with a single particle moving at a steady
velocity. That is not a steady current. You see the difference? With a steady
current, if you sit at any one point in a wire, the current going past you is
always the same. If you have an ammeter that measures the current, its
reading will be steady. By contrast, a single charge at constant velocity
causes a current only at its location. When it moves, the current goes with
it. There is a current only where there is charge. It is like saying that when I
go on the freeway at 40 miles an hour, I do not myself constitute steady
traffic, because there is no traffic where I am not. Once I pay the toll



collector and pass the tollbooth, it is all over for the revenue. On the other
hand, with a steady traffic the money will be pouring in steadily.

So the question is, what is the magnetic field produced by a tiny element,
a tiny piece of current-carrying wire? The magnitude of current in the wire
is I no matter where we slice it, but the wire can twist and turn, and the
element in question is represented by a vector dl. It’s part of a bigger loop,
which feeds it the current and takes it out, but its contribution depends on
its orientation encoded in dl. Let us say it is located at r′. I want the field at
the point r. Every segment of wire will produce a little magnetic field, dB.
The expression for the field is called the Biot-Savart law:

That constant  (like its electric counterpart ) is cooked up so that if I
measure the current in amperes and the distances r and r′ in meters, the
field comes out in tesla.

That is one nasty formula, unlike Coulomb’s law. Whereas the cause of
the electric field is a point charge, the cause of the magnetic field is a vector
dl. That in turn is so because the cause of the magnetic field is charge in
motion, which introduces its own velocity vector.

Because there is no vector associated with a point charge, the field had to
point along the line joining the charge to the point where we want the field,
along the separation vector. There is no way any other vector can get into
the act. The current element, on the other hand, has got its own direction, in
addition to where it is. It describes the way the wire is going at that point. It
is the presence of this extra vector dl that allows the formation of yet
another vector by combining it with the separation vector r − r′ into a cross
product. That is how you get these cross products.

9.1   Practice with Biot-Savart: field of a loop
As the first illustration of the law we will be finding the field of a circular
loop carrying current I of radius R, centered at the origin, and lying in the



xy-plane, as shown in Figure 9.1. We will only consider the field at a point
with coordinates (0, 0, z) or position vector r = kz.

As with a circle of charge, we divide the loop into segments, find the
field due to each, and add up the result. First consider the indicated segment
dl located at a point r′ on the y-axis. It is half in and half out of the page
(just like the loop itself), with the current going in. We take the cross
product of dl and (r − r′) and divide by some scalars. The cross product has
to (i) lie in the plane of the page since dl is normal to it and (ii) be normal to
r − r′, the other vector in the cross product. So dB has to point in the yz-
plane. The magnitude of this vector is

There is no “sinθ” factor in the cross product, the vectors in question being
perpendicular.

Figure 9.1   Field due to current loop (half in and half out of the page) at a point on its symmetry
axis. The vector dB is the contribution from a segment dl that is going into the page and is
perpendicular to the separation vector r − r′. We keep only the z-component since the part parallel to
the xy-plane will be canceled by the diametrically opposite element dl∗.

Only the component of dB pointing up the z-axis,



is going to survive, because the diametrically opposite segment dl∗, coming
out of the page, will make a contribution with the same z-component and
opposite y-component. The final result for the total field is

using dl = 2π R.
At the center of the loop, the origin,

while as z → ∞,

This field is exactly what we found for the electric field of the electric
dipole at long distances, apart from the inevitable substitution ε0 ↔ 1/μ0.

Finding the magnetic field at a point off the symmetry axis is very
complicated because we no longer have all the symmetries. The result,
which I state without proof, is that far from the dipole the field is exactly
like the electric field of the electric dipole, depicted in Figure 9.2.

As claimed earlier, not only do the magnetic dipole and electric dipole
experience similar torques in the corresponding fields, the fields they
produce are also identical at long distances. Things are very different up
close. If you go close to an electric dipole, you find two opposite charges. If



you go close to a magnetic dipole, you’ll find no magnetic charges at the
center, just a current loop. So nature gives us magnetic dipoles, but not
magnetic monopoles.

Figure 9.2   Field due to a current loop at generic off-axis points (schematic). It resembles the electric
field of an electric dipole until you get close to the origin: rather than running into a pair of
oppositely charged monopoles, you run into a current loop.

9.2   Microscopic description of a bar magnet
Now suppose I stack a whole lot of loops coaxially, say by wrapping a wire
around a cardboard cylinder many times into a spiral. Given that a single
loop produces the dipole field, it is plausible that what we get looks like the
field of an electromagnet depicted in Figure 8.2. This field also looks
exactly like that of a bar magnet. As far as a compass needle is concerned, it
behaves the same way around both.

Consider the following. We can have a magnetic field produced by
current-carrying loops. We can also have a permanent magnet with no
currents in sight. This magnet is not connected to anything. So we have an
option. Either we can say that’s a new kind of magnetism produced by God
knows what, or we can say, “We believe that everything is coming from
electric currents.” If we take the second point of view the question is, where
are the currents in a bar magnet? They come from the electrons in the atoms.
Every atom has electrons going around the nucleus, and every moving
electron is a current. (This picture of orbits will be modified by quantum
mechanics, but not the final result.) Imagine nine electrons in the plane of



the paper, all going around their atoms as shown in the left half of Figure
9.3. In the region between the atoms, they go in opposite directions. They
cancel. The only thing that doesn’t cancel is the current along the perimeter
or edge. Thus a single layer of atoms can produce a current at the edge. It
will be permanent since atomic currents are.

Figure 9.3   Left: The uncanceled edge currents of a layer of nine atoms. Right: The surface currents
of a permanent magnet made of many such layers.

Now that is just a two-dimensional current loop due to a single atomic
layer, but you can think of a magnetic solid as made of layers of such
atoms. At the edge of each layer is its current. So a magnetic material can
effectively have a sheet of current on its surface, which will produce a
magnetic field. In the case of the cylindrical magnet shown in Figure 9.3 the
electronic orbits lie in a plane perpendicular to the length of the cylinder
and the edge currents flow along the curved side, producing a field along
the axis, as per the right-hand rule.

Even this crude description of magnetism leaves us with some questions.
Why isn’t everything magnetic? Why not a potato? It has atoms that have
electrons, right? Why aren’t their orbits lined up to produce a magnetic
field? And if they do line up, which direction should they choose for the
north-south axis?

First of all, some materials may not become magnets because the
electrons they contain move in orbits whose net contribution to the
magnetic moment of the atom is zero. For example, there could be two
electrons orbiting in opposite directions. If the atom as a whole does not
have a magnetic moment there is no question of macroscopic magnetism.

Even if every atom has some uncanceled magnetic moment, the moments
from different atoms may point in random directions, adding up to nothing.
The random orientation is a reflection of thermal agitation. Things like to



jiggle when you heat them. If you take a bar magnet on your fridge and put
it on a hotplate for a while, you will find it becomes less magnetic. And if
you heat it above the Curie temperature the jiggling will be so intense that
magnetism will be destroyed. But if you now cool it below the Curie
temperature, magnetism will be restored.

A deep question arises at this point. It is clear how a magnet, with its
north and south poles pointing aligned in some direction, becomes non-
magnetic upon heating. But if as it is cooled below the Curie temperature it
magnetizes, which way will the magnetization point? (Here we assume the
crystal the atoms form does not provide a direction.) How are the little
moments to agree on a common direction to point along in the magnetically
ordered state? The answer is that they need some help in the form of an
external field. The presence of such a magnetic field nudges the moments to
align with it, because they are dipoles in a field. What happens if you turn
off the magnetic field? In some cases the chaos sets in right away and the
magnetization disappears. In ferromagnetic materials below the Curie
temperature, the dipoles remain aligned in that direction even after you turn
off the external field. Why? Because when aligned by the external field, the
dipoles produce their own magnetic field that is strong enough to keep them
aligned even after the external field is removed. It pulls itself up by its own
bootstraps. (It is like helping a kid ride a bike by giving an initial push to
impart a minimum sustainable velocity and then letting the kid take over.)
Thus magnetism is a cooperative effect. It can exist only if the thermal
agitation is not too strong to kill the ordering tendency generated by the
moments themselves.

9.3   Magnetic field of an infinite wire
Now for a classic problem, the magnetic field of an infinite straight wire
carrying current I. Figure 9.4 shows such a wire along the x-axis. We will
find the field at the point r = (0, a) in the xy-plane. As usual we take some
segment of length dx located at r′ = (x, 0) and find its contribution. The
segment dl = idx is along x and the separation vector r − r′ is as shown and
also lies in the xy-plane. Their cross product points out of the page and has
magnitude



Figure 9.4   Left: Contribution from a segment dl = idx, which is at an angle θ relative to the
separation vector r − r′. The resulting dB comes out of the page. (Vectors coming out of the page are
shown by a circle with a dot at the center.) The segment dl∗ at − x makes the same contribution. The
field everywhere is found by translations along the wire and rotations around the x-axis. A charge q
moving parallel to the wire feels an attractive force. Right: View looking into the x-axis, with the
current coming out of the page.

(The segment dl∗ at −x makes the same contribution as dl.)
You may fill in the missing step by showing that

upon making the familiar substitution x = a tan θ. As before, by writing x =
aw and changing variables you can show that the x-integral is a constant (a
dimensionless integral) times 1/a. Even more simply, the integral has
dimensions of inverse length and the only length in town in a.



Symmetry now allows us to get the field everywhere. First, the field will
be the same as we move parallel to the infinite wire. Next, the wire lives in
three dimensions and what we see in the figure is cross section in the xy-
plane.We can obtain the full configuration by rotating what we see around
the x-axis. A view looking into the wire with the current coming out of the
page is shown to the right. In terms of eϕ, a unit vector in the azimuthal
direction, we may write

The right-hand rule is at work here: if your fingers curl along with B, the
thumb points along the current.

Whereas the infinite charged wire seen end-on has electric field lines
coming radially out, the infinite wire has magnetic field lines that encircle
the wire, closing in on themselves. Both fields fall as 1/a even though
individual segments make contributions that fall as inverse distance
squared.

This formula is going to explain a few phenomena that were mentioned
at the outset. Look at Figure 9.4, which shows a charge q > 0 moving with
velocity v parallel to the wire and perpendicular to B. It feels a force of
magnitude

toward the wire. Reversing the velocity v or the current changes attraction
to repulsion.

It follows immediately that if we replace the single charge q by a wire
carrying current I′ in the same direction, it too will be attracted. We can
make life easy by considering both wires to be infinite. However, the force
between them will also be infinite. So we define the force per unit length on
the second wire. Recalling the force due to B on a segment dl carrying
current I′,



we see that the attractive force per unit length (|dl| = 1) on the second wire
due to the first is of magnitude

Changing the direction of either current changes attraction to repulsion. We
also see that the answer is symmetric between I and I′ and hence obeys
Newton’s third law. It is this formula that was used, long before we knew
about atoms and electrons, to define the ampere in macroscopic terms: two
parallel wires carrying one ampere each and one meter apart will exert on
each other a force per unit length = 2 · 10−7 N/m (upon setting μ0 = 4π ·
10−7 N · s2/C2 in Eqn. 9.19).

Earlier we asked “How are we going to construct the vector that gives the
force between current-carrying wires that’s attractive when they are
parallel, and repulsive when they are anti-parallel?” Nothing simple
involving the current vectors would work. The dot product was a scalar and
the cross product vanished. We see that the correct answer is a rather
complicated sequence of two cross products. The first cross product is from
the Biot-Savart law and yields the B due to the first wire as a cross product
of every segment dl, and the separation vector. The second is the cross
product of this B with the current segment dl′ of the second wire. (The same
scenario describes the force between a wire and a moving charge if we
replace dl by v.) Whereas force of attraction between two charges is simply
q1q2/r2, the force of attraction between two wires, even though it is given by
a simple formula, hides an orgy of cross products.



Figure 9.5   Left: Ampère’s law for a circle. Middle: Two segments subtending the same angle. Right:
Arbitrary Ampèrean loop.

9.4   Ampère’s law
Ampère’s law is to magnetostatics what Gauss’s law was to electrostatics.
Recall what we did there. We took the field of a point charge q and
computed its surface integral on a sphere centered on it. We found the
answer was q/ε0 independent of the radius of the sphere because the area of
the sphere went as r2 while the field decreased as 1/r2. We then went on to
show that the surface integral was the same on any closed surface enclosing
the charge. Finally, we used superposition to show that the surface integral
of E on any closed surface was the total charge enclosed divided by ε0.

Now for Ampère. Consider the field B due to an infinite wire carrying
current I. Let us see the wire end-on, as shown in the leftmost part of Figure
9.5, with the current coming out at us and the field lines circulating
counterclockwise.

At the left third of the figure we have a circular path of radius r
encircling the current. Consider the line integral of B around this loop,
called the circulation. Both the line segment and field are in the azimuthal
direction:

which makes the line integral very simple:



The line integral or circulation is independent of the radius of the circle.
This is analogous to the statement that the surface integral of the electric
field is the same for any sphere centered on the charge, independent of its
radius.

Next consider loops made of radial and angular segments. Parts of two
such loops subtending the same angle at the origin are shown in the middle
of the figure. Consider the segment that goes along a circle from 5 → 3 →
4. The contribution of this segment is

Consider another segment that subtends the same angle but along the path 1
→ 2 → 3 → 4. The angular part 1 → 2 gives

the radial part 2 → 3 gives nothing since B is azimuthal, and finally the
angular part 3 → 4 gives

The final result is clearly the same for both paths since it depends only on
the total angle swept in the journey. Consequently the circulation will be the



same on any path that encloses the current and is composed of any number
of radial and angular parts.

The rightmost part of the figure considers an arbitrary loop and a
segment dr that is neither radial nor angular but a little bit of both:

In the line integral only the angular part survives the dot product with the
purely azimuthal magnetic field:

Thus the line integral of B around any closed path equals μ0 times the
current enclosed.

This is analogous to the statement that the surface integral of the electric
field on any surface surrounding the charge equals the enclosed charge
divided by ε0. This is the most general Gauss’s law for a single charge.
From this we can get Gauss’s law for any collection of point charges by
using superposition for the fields they produce. Let us similarly extend
Ampère’s law, from a single current to many.

Suppose there are many currents I1, .  .  . IN enclosed by the contour C
lying in the plane of the page, as shown in Figure 9.6. We may superpose
the corresponding magnetic fields to obtain a result relating the circulation
or the line integral of the total B around a closed contour C to the total
current enclosed, the celebrated Ampère’s law:



Remember the convention. If your fingers are curving along the
counterclockwise contour, your thumb will stick out of the page, and a
current coming out of the page (⊙) is counted as positive. A current going
into the page (⊕) will be counted as negative. The current in the right-hand
side of Eqn. 9.29 has to be counted with this sign. For example, if two one-
amp currents came out and two went in, the line integral of B will vanish. A
current not enclosed by the contour will not contribute to the line integral. If
we repeat the preceding derivation with a contour not encircling the current,
the answer will still be proportional to the angle swept out by the contour,
but this angle will be zero: as we traverse the loop, the angle will first go up
and then go down back to its initial value as we complete the circuit. Draw
a figure to convince yourself if needed.

Figure 9.6   Ampère’s law for a contour C enclosing many currents, some coming out ⊙ and some
going in ⊕. The currents may be written as the surface integrals of the current density j over the
surface S = ∂C bounded by C.

All this is just like Gauss’s law, which equates the surface integral of E
over a closed surface S to the total charge enclosed, paying attention to the
sign of each charge. A charge not enclosed by S will not contribute: any
flux from it that enters the closed surface will also leave it, having nowhere
to terminate in the interior.

But there are some differences.
First of all, Eqn. 9.29 describes a situation in which the currents Ij were

assumed to be carried by infinitely long and straight wires for which the
formula giving B was simple. We want to lift that restriction. Let us first
rewrite the currents enclosed by C as the surface integral of the current
density j over the surface S (shaded in the figure). Ampère’s law takes the
form



(The current density will be non-zero only where the wires cross S. The
integral of j over the cross section of wire n will be In.)

It seems reasonable that this relation between the line integral of B
around C and the surface integral of current densities over a surface S
bounded by C should depend only on the current densities on that surface
and not on whether they were carried by infinite wires (as in our derivation)
or some other set of wires that crossed S with the same currents but
otherwise unrestricted away from S. This reasonable guess is actually
correct and can be proved from the Biot-Savart law using somewhat more
advanced methods. So by Ampère’s law we shall mean Eqn. 9.30 with no
restriction on the currents away from S.

Now for the second difference. I proved Gauss’s law in three dimensions.
The closed surface S lived in 3d and enclosed the charge that was the
integral of the charge density ρ over the volume enclosed by the S. This
volume was uniquely defined. On the other hand, the preceding derivation
of Ampère’s law was done in two dimensions: the contour C lay in a plane
(of the page) perpendicular to the current. The contour enclosed a unique
(planar) surface S and the current in the right-hand side of Ampère’s law
penetrated that surface. But wires live in three dimensions. What happens to
Ampère’s law given that a contour C in 3d can encircle a wire without lying
in a plane and given that one can draw an infinite number of surfaces S for
which the same contour is the boundary C? Make sure you follow this.
Imagine a closed metallic rim that you dip in some soap solution. The soap
film will form some surface with the rim as the boundary. If the loop is not
planar, neither will the surface be. You can apply Ampère’s law to this case,
with the soap film as the surface and the rim as the boundary. Now blow
some air into the film. It will bulge out and define a new surface, but the
rim will still be its boundary. Figure 9.7 illustrates this point. Will Ampère’s
law continue to hold with the same rim and the bulging surface? That is the
question we address.

In Figure 9.7, the contour C is the boundary of both S and S′. If we
integrate B over C, will it equal μ0 times the current crossing both S and S′?



The answer is affirmative because the same current I crosses both. So either
surface can be used in Ampère’s law. (If the current entering S was not the
current leaving S′, there is either non-conservation of charge or a continuous
time-dependent pileup of charge in the volume bounded by S and S′, which
are glued at C.)

Proving Ampère’s law for a non-planar S given its validity on planar S is
quite easy and is illustrated in the lower half of Figure 9.7. First take an
infinitesimal loop, labeled 1, which we can treat as planar. The line integral
of B around that loop, the circulation C1 (in the same sense as the arrows
along its edges specifying its orientation), is equal to (μ0 times) the current
crossing it, j1 · dA1. Now glue to that another planar area, dA2, with one
common edge traversed in the opposite sense, just as when we glued two
infinitesimal areas. This defines a larger area with the common edge
deleted. Although the loops share an edge, they need not and do not lie in
the same plane. The circulation of B around the combined loop C1+2 is the
sum of the circulations around each because the common edge cancels. The
current crossing the combined area is the sum of the currents crossing each.
Proceeding in this manner we can prove Ampère’s law for a non-planar
boundary of an arbitrary non-planar surface in three dimensions:

Figure 9.7   Top: The contour C is the boundary of both S and S′. Since the same current I crosses
both, by charge conservation, either can be used in Ampère’s law. Bottom: Ampère’s law for a
composite non-planar surface made by gluing two planar surfaces with a common edge. The
circulations of the two loops add, as do the currents crossing them. I have suppressed μ0 and shown
the canceled part of the common edge by a dotted line.



9.5   Maxwell’s equations (static case)
We now break for a mathematical interlude. Given the Lorentz formula for
the forces the fields exert on the charges, what we need to conclude the
story is a complete set of rules for computing the fields due to any set of
static charges and time-independent currents. What we have so far is
Gauss’s law for electrostatics, derived from Coulomb’s law, and Ampère’s
law for magnetostatics, derived from the Biot-Savart law. Here they are

where S is a closed surface that bounds the volume V in Gauss’s law and C
is the contour that bounds the open surface S in Ampère’s law.

The preceding equations specify the surface integral (flux) of E and the
line integral (circulation) of B. What about the surface integral (flux) of B
and the line integral (circulation) of E?

We already know that too. First, because E is conservative,

Next, given that magnetic lines never start or end (there being no
monopoles) it follows that the lines entering any closed surface will have to
also leave it. This means there can be no net magnetic flux coming out of a
closed surface



Equations 9.32 to 9.35 are called the integral Maxwell equations for the
static case. (A more common version, fully equivalent, involves derivatives
and emerges when the loops and surfaces become infinitesimal.)

They are the best way to summarize what we have learned so far. This is
so because of the mathematical result that a vector field like E or B is
uniquely determined if it vanishes at infinity and if its circulation around
every loop and the integral over every closed surface are specified. This is
exactly what the Maxwell equations do in terms of charges and currents,
which are assumed to be given. There is also a procedure for finding the
fields given this data. We will not discuss this procedure since it calls for a
lot more mathematical machinery. We will be content with being able to
find the fields in a few problems endowed with a high degree of symmetry.



CHAPTER 10

Ampère II, Faraday, and Lenz

We have just finished learning Ampère’s law. We will now put it to work
for us by using it to compute the magnetic field in certain situations with a
high degree of symmetry. Recall the law:

where S is a surface with boundary C, and Ienc is the sum of all the currents
crossing S, given by the surface integral of j over S. If your right hand
encircles the contour in the sense in which it is traversed, your thumb
defines the positive direction for the currents. For a contour traversed
counterclockwise in the plane of the page, the positive direction is straight
out of the page. Note that C is a specific closed loop but S can be any
surface with C as its boundary.

The right-hand rule is everywhere and you should master and exploit it.
Our ability to use the thumb against the four fingers is what distinguishes us
from the lower primates, who just do not get the right-hand rule. There are
cave drawings of motors and generators that were doomed to failure since
those cave dwellers were curving all five fingers. Then the right-hand rule
was invented. It is an invention that matches the wheel and fire in
significance and after that there was no stopping us.



Figure 10.1   Verification of Ampère’s law on an infinite semicircle.

10.1   Field of an infinite wire, redux
Ampère’s law is like Gauss’s law: it makes a statement about the integral of
the field. It is always true, but only on special occasions can you deduce the
field everywhere from the knowledge of its integral. Recall that Gauss’s law
applies to every charge distribution and every surface surrounding it. This
will not help us find E everywhere. How can you expect to find the
integrand given just the integral? You cannot, except in highly symmetric
situations. In a problem with spherical or cylindrical symmetry, the
integrand was a constant on the entire Gaussian surface, so that the integral
was simply this constant times the region of integration. For example, all
over a Gaussian sphere of radius r surrounding a spherically symmetric
distribution of charge, the field was known to be radial and of constant
magnitude E(r). Thus the surface integral was 4π r2E(r). Relating this to the
charge enclosed in this sphere we could deduce E(r).

So it is with Ampère’s law. Like Gauss’s law, it is always true, but its
efficacy in finding the field relies a lot on symmetry. Here is an example
where we do not have such symmetry. Consider the field of a ring in the xy-
plane, of radius R, centered at the origin and carrying a current I, as shown
in Figure 10.1. Though we computed the field only at points (0, 0, z) lying



on the z-axis, it will suffice for our purposes. Recall that the field points up
the z-axis (from the right-hand rule applied to the current) and has
magnitude

Let us do the line integral of B on an infinite semicircular loop with the z-
axis as its diameter. Thus the loop begins at z = −∞, goes up the z-axis
through the center of the loop to z = ∞, and bends around in a huge
semicircle, which closes the loop at z = −∞. First consider the integral on
the infinite semicircle. We do not know the field off axis in detail, but we do
know that the dipolar field falls like 1/r3. (This is evidently true on the axis
as z → ∞ in the formula above.) An integrand that falls like 1/r3, when
integrated over a curve whose length grows only as r, vanishes as r → ∞.
On the straight path from − ∞ to ∞the contribution is

which is perfect, since the current enclosed is indeed I and goes into the
page, as required by the clockwise contour.

But the point is that we cannot go backward: we cannot deduce Bz(z)
given that the integral on this contour is μ0I, because the integrand Bz(z)
varies along the contour.

Having made this point, I turn to a case where there is enough symmetry
to find B from Ampère’s law: the field of an infinite wire. Look at the wire
shown in Figure 10.2, with its current coming out of the page. What can we
say without doing a calculation? Any field distribution we end up with has
to be invariant under translations along the wire since the current is. It must
be invariant under rotations around the axis of the wire since the current is.
These are very general statements stemming from translational and
rotational symmetry. In the case of the electric field of a charged wire, we
also argued the field at any point cannot be tilted to the right or left along
the axis of the wire, since if we rotated the wire and field pattern by π



around an axis perpendicular to the wire, the line of charge would look the
same but the field would have reversed its tilt. This would constitute a
change in effect without a change in cause. This argument does not hold for
the current-carrying wire: the current distinguishes left from right. So we
peek into the underlying Biot-Savart law, the cross product in which
precludes a component of B parallel to dl segment by segment. So let us
take a slice perpendicular to the wire, with the current coming out of the
page. Since the wire and the current it carries look the same if the wire is
rotated around its own axis, there are only two possible configurations with
this property: the lines go in or out radially or the lines go in circles around
the wire. The radial configuration is ruled out for so many reasons, some of
which I give just to give a feeling for such arguments: radiating lines imply
monopoles that do not exist, the cross product in the Biot-Savart law
prevents a radial field segment by segment, and, finally, when I rotate the
wire by π around a perpendicular axis, the current flips sign but the radial
field does not.

Figure 10.2   Left: The use of Ampère’s law to find the field of an infinite wire. The figure shows the
view staring into the current, which is coming out of the page. The Ampèrean contour lies on a plane
normal to it. The displayed features of the field can be deduced by symmetry. Right: Finding B for a
wire of non-zero thickness and uniform current density. The shaded circle of radius R represents the
current-carrying conductor and the other two circles the Ampèrean loops.

So we can be pretty sure the lines encircle the wire, with the circulation
in the sense determined by the right-hand rule, as shown in the left half of
Figure 10.2. This configuration meets the requirement that if I rotate the
current and field configuration by π about an axis perpendicular to the wire,
both the direction of current and the sense of circulation reverse.

The Ampèrean loop of choice is a concentric circle of radius r. We know
that on this loop



where B(r) is a constant because r is. The circulation is

From Ampère’s law

which is what we got by integrating the Biot-Savart law (Eqn. 9.16).
It is reasonable to object that in the time it took to furnish all the

symmetry arguments we could have done the integral in the Biot-Savart
law. That is perhaps right, but consider the following variation shown in the
right half of Figure 10.2. We replace the infinitely thin wire by one with a
circular cross section of radius R. The current I is uniformly distributed
across the circular cross section. The current density now is

What is the magnetic field? If we try going directly to the Biot-Savart
law we will be looking at a nasty three-dimensional integral due to the non-
zero thickness of the wire. But Ampère’s law applied to a circular contour



allows us to use all the symmetry arguments we invoked for an infinitely
thin wire. We find for r ≤ R

which means

Like the electric field inside a sphere of charge, the field rises linearly with
r inside the wire, peaks at r = R, and drops off like 1/r beyond. The initial
rise is due to the fact that the current enclosed by the Ampèrean circle
inside the wire grows like r2, while its influence drops like 1/r. Outside the
wire, increasing the radius of the contour does not lead to any increase in
enclosed current, while the field due to it drops like 1/r.

Similarly, just as the electric field of a spherical charge outside its radius
is that of a point charge at the center, the magnetic field outside the radius
of a wire carrying a uniform current density is that of a zero-thickness wire
carrying all the current.

The analogy continues. Suppose you scooped out a coaxial cylindrical
region of radius a from the interior of the wire. It is now hollow for 0 ≤ r ≤
a and carries the current only in the region a < r ≤ R. Ampère’s law and
symmetry will tell you that inside the hollow region there will be no
magnetic field.



10.2   Field of a solenoid
Imagine a cardboard tube of cross-sectional radius R around which you
wrap N turns of a wire carrying a current I, as shown in the left half of
Figure 10.3.

We know that the field of a single loop is like that of a tiny magnet with
its north-south ends lined up along the dipole moment μ. The lines go up
inside the loop, and they return outside the loop and join up below the loop.
The solenoid, made of many turns, is like a stack of these dipoles NSNSNS
. . . lined up end to end. We should not be surprised that it should create the
field of a cylindrical bar magnet. On the plane P⊥ that bisects the solenoid,
the field outside will be pointing straight down. As the length of the
solenoid approaches infinity, the curved parts near the end will also get
pushed to infinity and the field lines outside will be pointing straight down
everywhere. In other words, for an infinitely long solenoid, every plane
perpendicular to the axis will look like P⊥. (This is like a parallel plate
capacitor, whose curved field lines near the edges are banished to infinity as
the plates become infinitely large. The electric field lines we will see in the
finite part of the universe will be parallel to each other and perpendicular to
the plates.) We want to use Ampère’s law to find Bin and Bout, the field
strengths inside and outside the infinite coil, pointing up and down
respectively. These fields could depend on the distance from the axis.

You may be tempted to choose a circular Ampèrean loop coaxial with the
solenoid. This will, however, give 0 = 0: no current crosses it (meaning any
surface bounded by it) and the field has no azimuthal component. To get to
the right loop we must slice the solenoid parallel to its axis, bisecting its
cross section, one half of which is shown at the right in Figure 10.3.

First consider Bout and Ampère’s law applied to the contour C′:

The horizontal sides 23 and 41 do not contribute to the line integral because
the field and dr are perpendicular. The oppositely oriented vertical sides 21
and 43 are parallel (anti-parallel) to Bout and contribute +Bout(12)L and −



Bout(34) L respectively. These contributions must cancel each other since no
current is enclosed by C′. This means Bout has the same magnitude on both
these sides: Bout (12) = Bout (34). Now let us widen the loop, sending the
side 12 off to infinity where Bout must vanish. It follows it must vanish on
34 as well. Since we can place 34 anywhere (outside the solenoid) we
conclude Bout ≡ 0. (The B due to an infinite coil will vanish at infinity while
E due to an infinite sheet does not, because the former is infinite in one
dimension, the length of the solenoid, while the latter is infinite in two
dimensions. This can be verified by working out B for longer and longer
solenoids.)

Figure 10.3   Left: A finite solenoid. The field lines go up the solenoid inside and return outside.
Right: The cross section of the infinite solenoid. The field is parallel to the solenoid inside and
outside. C and C′ are two Ampèrean loops.

Next consider Ampère’s law on contour C, partly in and partly out of the
solenoid as shown. The horizontal sides contribute zero individually. The
vertical side outside does not contribute since we have shown that Bout = 0.
The vertical side inside contributes BinL. With the contour traversed as
shown, the current enclosed is positive if going into the page. If there are n
turns per unit length, Ampère’s law tells us

Notice two things. First, the length L cancels out, as it should, since it
characterizes a fictitious Ampèrean loop and cannot be present in the



answer for the field. Second, the current enclosed does not depend on where
the vertical side of the loop is inside the solenoid. It follows that Bin is
constant inside the solenoid. So here is the final answer, assuming the axis
of the solenoid coincides with the z-axis:

This is another result worth memorizing.

Figure 10.4   Left: Front view of toroid. Right: The mentally sliced-up toroid. The Ampèrean loop
shown is the dotted concentric circle of radius a < r < b. A loop that is smaller or larger encloses no
net current and implies zero field.

The infinitely long solenoid is an idealization in which the return flux is
banished to infinity. Any finite solenoid is going to have the return flux as
well as complications at the ends. The lines that leave the north pole have to
return to the south pole so that they may close in on themselves. This makes
it impossible to use Ampère’s law to find the field of a finite solenoid. (In
practice we use the infinite solenoid result for a finite solenoid as long as
we do not go near the ends or too far off axis.)

A toroidal solenoid beats this problem by being finite and yet free of
ends. The trick is to bend the linear solenoid we have been discussing into a
hula hoop, joining the top and bottom. The result looks like a donut, with
the flux trapped inside (where the dough would be in a donut) and closing
on itself. Often the core is filled with iron, which encourages the flux to
stay inside the donut. Figure 10.4 should give you an idea. I have chosen
the cross section of the dough to be rectangular instead of circular for
simplicity. To find the field using Ampère’s law we need to slice the donut
the way we would to butter it. The cross section that emerges is shown in



the right half of the figure. (The slice can bisect the donut along the equator
shown by the line marked B, or lie above or below this. In all cases the
cross section will be the same because of the assumed rectangular cross
section.) The slice is bounded by two concentric circles of radius a < b. The
wires sliced (mentally) that are inside the inner circle have currents coming
out of the page and those outside the outer circle have the currents going in.
The Ampèrean contour is a circle of radius a < r < b shown by the dotted
line. The field is azimuthal and has a magnitude Bϕ(r) at radius r. Note that
the direction of the field agrees with the direction of current flow as
required by the right-hand rule. Ampère’s law tells us

where N is the total number of turns. Thus

The field is not constant within the donut: it is strongest on the inner rim r =
a and gets weaker as we go out to r = b.

The field is clearly zero when r is not between a and b because the total
current enclosed is either trivially zero (r < a) or a zero due to cancellation
of opposite currents (r > b).

We can subject our result to a test. Imagine the inner and outer radii of
the toroid have become astronomical but their difference b − a is finite. In
this limit, any finite section of the toroid will look like a straight tube
because we cannot detect the curvature of such a large circle. The azimuthal
field Bϕ will become a field along the axis of this tube. The variation of
Bϕ(r) within a < r < b can be neglected because the function 1/r hardly
varies in the interval a < r < b for astronomical a and b and fixed b − a. In
this limit the field should approach that inside an infinite linear solenoid
and indeed it does:



where R can be a or b, it does not matter, and we may take either N/2π a or
N/2π b as being equal to n, the number of turns per unit length.

This wraps up our study of electrostatics and magnetostatics. A complete
mathematical characterization of everything we have done is given below:

where S is a closed surface that bounds the volume V in Eqns. 10.23 and
10.26 and any open surface S bounded by the curve C in Ampère’s law
(Eqn. 10.24).

The Lorentz force law tells you what the fields do to the charges and
currents, and the four Maxwell equations tell you how the fields in turn are
determined by the charges and currents.

This would have been the end of the story in a world where charges and
currents did not change with time.



Figure 10.5   The rectangular conducting loop pulled by me to the right at speed v in a magnetic field
B going into the page (shown by a circle with a cross). The carriers move in the wire
(counterclockwise) from 1 to 2 with a speed u. The total velocity of the carriers is V = v + u as
shown in the inset. Work is done by the field along u and by me along v. The lightbulb glows due to
the transfer of mechanical to electrical energy mediated by B, which does no net work.

10.3   Faraday and Lenz
But of course they do change with time! And we have to deal with that. I
am aware of the mental load you have to carry as one new idea after another
is introduced. “Drinking out of the fire hose” was an expression that often
came up in class. But we are not too far from the end of our discussion of
electromagnetism and you will enjoy the way the missing pieces fall into
place. It is one of the finest examples of mathematical physics.

I am now going to lead you through some experiments that force us to
change some of these Maxwell equations of the static case to their final
form.

In the first experiment, depicted in Figure 10.5, there is a uniform
magnetic field B going into the page to the right of some line, say x = 0. It
is zero to the left.

The solenoid ormagnet producing the B is not shown in the figure so we
can focus on the main item, which is a rectangular loop of wire of width w
in the plane of the page. A part of it of length L lies within the field. A
lightbulb is part of the circuit. When the loop is static the bulb does not



glow. Now I begin to drag the loop to the right at some speed v. What do
you think happens?

Everyone in class was able to guess that the bulb would now glow, the
most common reason being that I would not have drawn it otherwise. Let us
see if we can go beyond this type of reasoning that helps you ace the SAT.
Why is the lightbulb glowing? Is there some new physics?

Whenever you see a lightbulb glow, you’re looking for a battery. There is
no battery in the circuit. And yet there must be an emf, because every time a
charge makes one full trip around the loop, it delivers some energy to the
glowing bulb. Who is providing the energy? Who is pushing the charges
around this loop? We defined the emf to be the line integral of the force per
unit charge pushing the charges around the loop. What might the force be?
And why does it kick in only when I move the loop?

The last sentence is usually enough of a clue for the students to figure out
that the force on the unit charge introduced to compute Ɛ is the v × B
Lorentz force.

When studying electricity we defined the emf to be

Now that we know about magnetism we must use a more general definition
of the emf as the line integral of the electromagnetic Lorentz force on a unit
charge:

where dl is a segment of a physical loop moving at velocity v. In our
problem there is no E and the entire emf comes from the v × B term.

If you look at the loop you see that the edge 12 is moving to the right at
speed v in the field B. The unit charges in that segment feel the v × B force
that points from 1 to 2. The force has a magnitude vB and its contribution to
the emf is vBw. The forces on the horizontal sections are perpendicular to
the sections and make no contribution to the emf. Finally, there is no force



on the segment 34 in the field-free region. Thus the emf, computed in the
counterclockwise sense, is

So far so good. We understand this experiment without bringing in any
new stuff. There is just one paradox to be dealt with. We proved at the very
outset that the magnetic field doesn’t do any work. Remember, the original
argument for why it doesn’t do any work was that v · (v × B) = 0. But here,
v × B is along the wire and so is the current. It looks as if there is a
magnetic field pushing these charges along segment 12 and doing net work
every time a charge goes around the circuit. What is happening?

The answer has many parts.
First of all, the actual velocity of the charges in the wire is not just the

loop velocity v along the x-axis, but also the velocity u along the wire due
to the current in the loop. The total velocity (shown in Figure 10.5) is thus

and the total magnetic force per unit charge is

and the power delivered vanishes:



I want to explain the two canceling pieces.
If I want to pull the loop at a steady speed v I have to balance the

leftward component (−Bu) i of V × B. This requires I provide power P =
Buv. How does this power get transmitted to the bulb?

For this we consider the component +Bv j pointing up the y-axis.
It does not accelerate the charges up the wire in the y-direction because it

is precisely balanced by an internal electrostatic field Ec which arises as
follows. Imagine there is no bulb and we have an open circuit with a gap
between points 3 and 4. As I begin to drag the loop, the magnetic force Bv
up the wire will initially pile up positive charges at end 3 and leave an equal
and opposite negative charge at 4. These are the charges which produce the
electrostatic field Ec. Some of its field lines will point straight down the gap
from 3 to 4 and others will enter the wire at 3 and return to 4. The charge
pileup will continue till Ec inside the wire balances Bv in the segment 12.
(So what is disallowed in a perfect conductor is not a net field but a net
force. Here the electric field arises to cancel the magnetic force along the
wire.) Now imagine inserting the bulb and allowing current to flow. The
built-up charges will flow down the filament from 3 to 4, converting their
potential energy to heat. This flow will initially weaken Ec to below Bv,
which will promptly pump in more charges to restore the balance. It is this
electrostatic field Ec against which the y-component Bv pumps the charges,
doing work at a rate P = Bvu. Thus the power (per unit charge) expended by
me in pulling the loop is exactly equal to the work done against the electric
field Ec, in charging the points 3 and 4 and keeping the bulb glowing.

Though the magnetic field does no work, I need it to push the charges
against Ec. I cannot grab them and force them through the bulb with my
bare hands. It is the B field which converts the force I exert to the right to
the upward force on the charges inside, against Ec. It converts macroscopic
power provided by me as I drag the loop, to the microscopic power
delivered to the charges which in turn deposit it inside the bulb. It takes
macroscopic mechanical power from me and turns it into microscopic
power provided to the charges.

Here is an equivalent way to check the balance of energy. The power
delivered to the bulb is Pres = ƐI. Now, we know that once the loop carries a
current, I will have to work against the force Idl × B on each piece of wire
dl carrying current I. The force on segment 12 is F = IBw to the left. The



power I supply dragging the loop at speed v against this force is Pme =
IBwv. But since Bvw = Ɛ (force on a unit charge times the distance over
which it acts), the power I supply is also Pme = ƐI.

In short, the loop is a generator. If I want to light a bulb, one option is to
set up a magnetic field perpendicular to the ground, connect the lightbulb to
a metallic rectangle, grab it, and keep running. As long as I keep running,
the lightbulb will keep glowing. But there is a problem with this besides
having to run non-stop. When the trailing segment 34 crosses into the field,
the current will stop. The clockwise contribution to the emf from that
segment will oppose the counterclockwise contribution from 12. The line
integral of the force on a unit charge will be zero.

Now we fully understand the forces and energies involved in this
experiment in terms of the v × B force. There seems to be no need to
monkey with the Maxwell equations I wrote down earlier. But there is, and
it becomes apparent when I introduce the reasonable assumption that the
principle of relativity applies to the laws of electromagnetism. Here is how.

Return to the loop I was dragging and running with to light up the bulb.
Let us go to the frame where the loop and I are at rest. I am free to assume I
am at rest and the magnet creating the field is moving to the left. Indeed it
could be that I was always at rest and I hired some guys to carry the magnet
and run the other way. I still expect my lightbulb to glow. Lots of things are
relative, but whether a lightbulb glows or not is not relative. A glowing
lightbulb is a glowing lightbulb in any frame of reference. The power it
consumes may vary, but the fact that it glows is undeniable.

So how am I, in the loop rest frame, supposed to understand the glowing
of the lightbulb? It is true someone is now moving the magnet, and B is
time-dependent: if at some time t = 0 it was non-zero to the right of the line
x = 0, then at time t it is non-zero to the right of x = −vt. The field has
changed from zero to non-zero in the region −vt < x <0. But this cannot
produce any v × B force because the loop is at rest and v ≡ 0.

So what force could be pushing the charges around the loop? If we
believe the Lorentz force F = q(E + v × B) is all there is, we are left with
just the electric force, now that v × B is dead. In this case, we can deduce
that if the principle of relativity applies to electromagnetism, there must be
an electric field in the frame of reference where the loop is fixed and the
magnet is moving. Not only that, it must be an electric field whose line
integral around the loop is non-zero: charges in the loop are going round



and round doing work every cycle, lighting up the bulb. The corresponding
emf must be due to this electric field.

All the electric fields we have studied till now were produced by static
charges, determined by Coulomb’s law, and conservative. Now we find that
without the help of any uncompensated charges, we can get an electric field
with non-zero circulation in a changing magnetic field.

Can we say any more about this electric field E besides the fact that it has
a non-zero circulation?

We can, if we apply relativity to a simpler related problem. Go back to
the magnet frame, and replace the loop moving at velocity v with a unit
charge traveling with the same velocity v in the plane of the paper. It will
experience a force v × B (along the y-axis) and begin to accelerate along y
in response. Now we go to the frame at velocity v in which the particle is
instantaneously at rest. Let us work in the low velocity (Newtonian) limit,
when acceleration and force are invariant when we change inertial frames.
The particle should experience the same acceleration or force in its rest
frame. If this acceleration is due to an electric field, it must be given by

Figure 10.6   The situation in the loop frame. The pattern of E (arrows along y) and B (into page
along −z) moves to the left at −v, along with the magnet producing the B field (not shown). The
electric field E = v × B produces an emf in the loop because it makes a non-zero contribution only on
segment 12.



(The exact formula, which we will not derive here, agrees with this in the
limit of small velocities and differs by terms of order v2/c2 and higher. We
do not need the fully relativistic treatment to understand glowing
lightbulbs.) Since the loop rest frame is also the particle rest frame, there
must be a field E = v × B in the loop rest frame. This is shown in Figure
10.6. (Not shown in the figure is the moving magnet that produces the B
field.)

If the loop is partly in and partly out, the Ɛ due to this E is just Ew = vBw
coming from segment 12. There is nothing from 34 as B = 0 and E = 0 there
and finally E is perpendicular to the other two segments.

To summarize, the emf in the loop can be understood in two ways in the
two frames: as the line integral of the v × B force in the lab or magnet frame
or of the electric field E = v × B in the loop frame.

The new physics is that a changing magnetic field can produce an
electric field with non-zero circulation.

Now, it turns out there is a master formula that describes the glowing
lightbulb not only in these two cases (loop fixed or magnet fixed) but
everything in between, where both the loop and field could be changing
with time and the emf could be due to both E and B. It is called Faraday’s
law and it states

On the left we have Ɛ, defined as the line integral of full electromagnetic
Lorentz force on a unit charge on a loop C. The loop C is a real flexible
loop, a conductor carrying charges. It moves and v is the velocity of the
segment dl. On the right is the magnetic flux penetrating any surface S
bounded by the loop C.

The minus sign, associated with Heinrich Lenz (1804–1865), gives the
sense in which Ɛ will drive a current in the loop: the emf will try to fight the
change in flux. For example, if the flux is increasing, it will drive a current



in the loop, the field due to which will oppose the flux. If the flux is
decreasing, it will drive a current that produces a flux in the same sense,
trying to prop it up at its old value. Hence what the emf fights is not flux
itself, but the change in flux.

Lenz’s minus sign often takes us to the final answer much faster than all
the cross products.

Figure 10.7   The current induced in the loop depends only on the rate of change of flux through it,
and not on whether the change is due to the moving loop, the moving electromagnet, or the changing
current in the magnet. The arrows in the loop show the orientation of the magnetic moment of the
loop due to the induced current.

Before applying Faraday’s law Eqn. 10.36 to the general case of a
flexible loop moving in a spacetime-dependent B, let us consider an
illustrative example that made a profound impression on Einstein, who
refers to it in his relativity paper. The leftmost part of Figure 10.7 shows a
loop of wire near the north pole of an electromagnet. If we move the loop
up, away from the magnet, the flux through it decreases and the current due
to Ɛ must flow as shown to fight this decrease. This is also what we would
get from computing v × B for the carriers in the moving loop. The same Ɛ
arises if the magnet is moved down or the current through it reduced, for
they both reduce the flux through the loop. But now Ɛ is attributed to a non-
conservative electric field produced by the changing magnetic field.

The opposite Ɛ arises if the loop is moved toward the magnet or the
current in it increased. Of course, if the loop and the magnet move, the emf,
which still depends only on the rate of change of flux, will be due to both E
and v × B forces.

This tendency of the loop to oppose change can also be understood in
terms of attraction and repulsion of magnetic poles, as shown in Figure
10.7. If you are trying to bring the loop and magnet closer (rightmost part of
figure), the magnetic moment μ in the loop induced by Ɛ will have its north
end pointing toward the north end of the electromagnet (so the poles repel).



The opposite happens (poles attract) if you are trying to increase the
separation (middle part of figure). In both cases the force between the loop
and the magnet opposes you.

Faraday’s law and Lenz’s minus sign explain all cases in one stroke: the
generated Ɛ opposes the change of flux.

Let us now return to the loop and the lightbulb and see how Faraday’s
law explains the emf Ɛ in the lab frame and the loop frame.

First let’s do the easy part, when there’s a fixed magnetic field and I’m
dragging the loop. What is the flux penetrating this loop? It is just the
product of the constant magnetic field, the width of the loop and L, the
length of the loop that is in the field:

Now let’s take minus the time derivative of both sides. On the left is Ɛ.
On the right B is not changing, w is not changing, but L is changing. The
rate of change of L is v, the speed of the loop. This means

Previously we had seen that the Ɛ due to v × B had a magnitude Bvw in
segment 12 and was pushing the charges counterclockwise. The minus sign
in Eqn. 10.38 says exactly that in Lenz’s convention. The magnetic flux was
going into the page. As the loop moved to the right, the flux penetrating the
loop into the page increased. Therefore the current produced by Ɛ had to
flow in such a way as to reduce the flux going into the page. To produce
flux coming out of the page the current had to flow counterclockwise.

If I dragged the loop to the left, the enclosed flux would decrease and the
current generated by Ɛ should try to prop it up, and so it will flow
clockwise. This agrees with the direction of the v × B force in segment 12.

Finally, when the loop is entirely inside the field, there’s going to be no
more emf, because the flux through it is not changing. We have already



seen this in terms of v × B: when the loop is fully in, the contributions to Ɛ’s
in the segments 12 and 34 due to v × B are equal and opposite.

So far there is nothing in Faraday’s law that we could not deduce from
just the v × B force. Is there any new content, and if so, when do we
encounter it?

We encounter it if we go to the loop frame. Faraday’s law tells us that
since the flux through the loop is changing (now because the magnet is
moving the other way) there will be an emf. It is, however, due to an
electric field with non-zero circulation. The law only specifies that the
circulation has to equal −(dΦ/dt), but not what E is. But in the simple loop
experiment we were able to invoke arguments based on relativity to show
that E = v × B and points up in the segment 12, which is in the magnetic
field, and is zero in 34, which is outside the field. It is perpendicular to the
other two sides. The emf due to this electric field comes from just the
segment 12 and equals vBw.

So the new stuff in Faraday’s law is the fact that a changing magnetic
field implies an electric field of specified circulation. Let us try to extract
the precise connection between these two, starting with the definition of Ɛ
as the circulation of the electromagnetic Lorentz force on a unit charge
where C is a loop in space around which Ɛ is to be computed, and is the flux
penetrating S, which is any surface bounded by C. The loop is a real piece
of wire, and v is the velocity of a segment dl. Thus v × B refers to the
magnetic force experienced by the charges in a segment dl of the wire that
have inherited its instantaneous velocity v.

In the right-hand side the rate of change of flux receives contribution
from both the changing magnetic field and the changing loop and surface S
it bounds. I will show later in this chapter that these two contributions can
be nicely separated into two parts that can be identified with the E and v ×
B contributions to Ɛ on the left-hand side. Since this derivation is quite
tricky, I will first extract the relation between the circulation of E and the
changing magnetic field by a shortcut, leaving the complicated derivation as
an option at the end.



The relation between the circulation of E and the changing B field is
deduced by first considering a loop that is not in motion. This is surely
allowed since the answer holds for any state of motion of the loop. Now
there is no v at play and the contour C is fixed. It need not even be
associated with any real conductor. It is simply a closed loop in space used
to compute the circulation of E. We highlight this by writing a segment of C
as dr instead of dl. We find in this case

The derivative d/dt in front of the integral has, in the general case, two
parts: one due to the changing C or S, and the other due to the changing B.
But now that C is assumed to be fixed, we may take the derivative inside
the integral where it can act on B to give us

The partial derivative signifies that we are only computing the rate of
change of B with respect to time and not the spatial coordinates within S.
This relation between the fields E and B, which has no reference to any
conductors and how they may be moving, is one of the final four Maxwell
equations. It replaces

which we had written down before to express the conserving nature of E in
electrostatics. The lesson we have just learned is that in the presence of a
time-dependent B, the electric field has a non-zero circulation given by
Eqn. 10.41.

Let us see what we have so far. We started with



In the right-hand side the time derivative generates two terms: one from the
time-dependence of B and one from the time-dependence of S (because the
loop is moving). In other words

We have just seen that

It must then be true that the second terms match on both sides:

If you want to know how this is demonstrated, you must read the next
optional section where I discuss the case of a changing loop in a changing
field. But in case you skip it, here at least is a brief sketch. Look at Figure
10.8, which depicts a simple case that is somewhat easy to visualize. It
shows a circular loop C1 at time t evolving into a circular loop C2 at time t
+ dt. The obvious surface to use for computing the flux at t + dt is the
planar shaded circular area S2. But we are free to use any other surface with
the same boundary C2. Let us use  which is just S1 plus ⵠS, the
(cylindrical) area swept out by the moving loop. The advantage is that the
contribution to  from the changing surface is the contribution from ⵠS.



From the figure we see that a portion dl of the loop moving at velocity v
sweeps out an area vdt × dl and makes a contribution −B · (vdt × dl) = v ×
B · dl dt to −dΦ. The sum of these contributions around the loop gives

which precisely matches the v × B term in Ɛ. It should be evident that the
result holds even if the initial and final loops are not circular and the
velocity v varies with dl. There are a lot of minus signs and orientation of
areas to watch out for. All this is described in the next section.

10.4   Optional digression on Faraday’s law
Let us return to Faraday’s law

We have used it in bits and pieces. We have extracted from it the Maxwell
equation relating the circulation of E and the changing magnetic flux. We
have explained the emf of the loop-generator in two situations:



Figure 10.8   The conducting loop C1 at time t bounds S1, the lower face of the cylinder. It moves to
C2 at t + dt and bounds S2, which is the top face of the cylinder. We trade S2 for 
where ⵠ S is the curved side of the cylinder. This is allowed because the boundary is still C2: in the
sum the common edges C1 and −C1 (traversed in opposite directions in S1 and ⵠS) get erased,
leaving behind C2. A tiny rectangular part of ⵠS is the cross product vdt × dl, where vdt is the vector
distance traversed by the segment dl in time dt. The area vector points inward and the addition of
these areas gives ⵠS.

• The emf is the integral of E and −dΦ/dt is due to the changing B.
• The emf is the integral of v × B and −dΦ/dt is due to the motion of the loop in a static B.

But the remarkable power of Faraday’s law is its ability to describe the
most general situation, wherein −dΦ/dt corresponds to a flexible loop
moving in a spacetime-dependent magnetic field, and the emf is the line
integral of both electric and magnetic forces. Let us pursue this feature
further.

Let the moving loop bound a surface S1 at time t and S2 at t + dt, as
shown in Figure 10.8. The change in flux is

In general S1 and S2 can have any shape. However, for the visually and
artistically challenged like myself, I limit the discussion to a simple case.
(The arguments are good for the general case.) Imagine a closed hollow
cylinder made of two flat faces and a curved side. The lower face is our S1
and its circumference C1 is the loop of wire at time t. The area vector
associated with S1 points up by the right-hand rule. This also means B



pointing up contributes positive flux. The upper face of the cylinder is S2,
and its circumference C2 is where the loop has ended up at t + dt. The area
vector for S2 also points up.

In this simple case, the loop has moved straight up the curved face of the
cylinder between times t and t + dt, with every segment dl moving with the
same velocity v. The flat faces can be of any size, but the curved face, ⵠS,
which is swept out by the moving loop in time dt, should be thought of as
an infinitesimal of first order in dt.

It is natural to evaluate the flux penetrating C2 at time t + dt on the upper
face S2, since it is the simplest surface bounded by C2. However, the
corresponding integral, the first term in Eqn. 10.48, has two effects in one:
it is an integral of the field at a later time on a later surface. To deal with
these two changes one at a time, we will trade S2 for another surface  with
the same boundary C2. We are allowed to do this because the flux is going
to be the same for any surface with the same boundary. And we want to do
this because we want to separate the effects of the moving loop and the
changing field. What choice of  will do the trick? Imagine that S2 is a
rubber sheet stretched across the circular rim C2 of a cylindrical drum. Now
slowly deform S2 (blow air into it from above) till it becomes the rest of the
cylinder: the curved side, which we call ⵠS, and the flat bottom S1. This is
the surface  Its boundary is still the rim C2.

It is intuitively clear that  is just S1 plus the curved face ⵠS (which is
why we call it ⵠS). But let us verify that the two areas have been added as
per the rules for gluing areas (deleting oppositely oriented edges that
overlap). Consult Figure 10.8.

First observe that ⵠS, the surface swept out by the moving loop in the
time dt, is itself made of tiny rectangular areas swept out by each segment.
Consider a segment dl of C1 that moves at velocity v. The area it sweeps
out in time dt has a magnitude |v| dt|dl|. The area vector is given by the
cross product



and points into the cylinder. This orientation is to be expected. Originally S1
and S2 had area vectors pointing up, by the right-hand rule and by the
convention for counting upward flux as positive. If we began with S2
littered with little upward pointing arrows defining the orientation of the
smaller areas it is composed of, and deformed it continuously to the shape 

 the arrows in the curved side ⵠS would end up pointing inward, while
the arrows on S1 would point up.

(In the general case dl and v need not be perpendicular and v need not be
the same for all segments. The cross product continues to give the correct
area of the parallelogram |v|dt|dl| sinθ swept out.)

When such rectangular areas are glued together to form ⵠS, the
oppositely oriented vertical edges of neighbors will cancel while the top
edges will form C2 and the bottom edges will form −C1 (which is just C1
running backward) respectively. The surface ⵠS thus has two edges, a lower
one −C1, and an upper one, which is C2. When ⵠS is next glued on to S1 to
form  as shown in the figure, the overlapping edges C1 of S1 and −C1 of
ⵠS will get erased and the other edge of ⵠS, namely C2, will become the
boundary of  Since C2 is also the boundary of S2, we may swap S2 for 

So we can trade S2 for  I have argued we should, because it will sort
out the separate contributions from the changing field and changing loop.
This will now be shown.

We begin with



upon using dS = vdt × dl in the middle term on the right-hand side of Eqn.
10.52 to arrive at the last equation.

Let us now group the first and third terms, which involve the same
surface S1 but the field at two different times:

I changed B(t + dt) to B(t) in the second integral since the difference
between them is of order dt and there is already a dt in front (from the size
of ⵠS). Dividing both sides by dt and taking the limit dt → 0 we obtain



I have removed the subscripts 1 and 2 on S and C for there is only one of
each in the limit dt → 0.

So we have in the end

Amazingly, the magnetic parts, which depend on the loop’s motion,
perfectly match on both sides and can be canceled, leaving us with the
Maxwell equation

There is now no reference to the velocity of the segments dl of any real
loop. What we have instead is a relation between the circulation of E
around some contour C and the rate of change of magnetic flux through a



surface bounded by C. To emphasize this I have denoted a segment of this
imaginary contour by dr.

Let me make a subtle point about the derivation. The correct magnetic
force on the charges in the wire used for computing the emf is really V × B
with V = v + u, where v is the velocity of the wire segment dl and u is the
velocity of the carriers along the wire attributed to the current they carry.
(This is just like the two parts of the velocity of charges on the leading edge
12 of the rectangular loop being dragged in a magnetic field.) However, in
computing the emf we find this extra piece in V does not matter:

I could set (u × B) · dl = 0 because both the velocity u and the segment dl
are parallel to the wire.



CHAPTER 11

More Faraday

We have seen that Faraday’s law implies that a changing magnetic field will
lead to an electric field with a non-zero circulation, as specified by the
Maxwell equation:

As in the case of Gauss’s and Ampère’s laws, we cannot deduce the
induced electric field given just its circulation. However, if the problem has
enough symmetry we can. We begin with an example.

11.1   Betatron
The betatron was invented to circumvent the problem with the cyclotron at
relativistic energies. Recall the operation of the cyclotron. It had two
semicircular dees whose diameters were lined up with a tiny space between
them. A perpendicular magnetic field penetrated the dees and bent the
charge injected. The path of a charge injected into the first dee got bent into
a semicircle. As it jumped to the other dee, a downhill voltage was applied
across the gap to give it a kick. It then went around the second dee at a
higher speed and bigger radius. When it jumped back to the first dee, it got
yet another downhill kick, because by this time the polarity of the dees had
been reversed. After many such downhill kicks, it was ejected from the
machine at a high velocity. It was possible to arrange the reversal of the
polarities of the dees despite the changing speed and radius because of the
following remarkable feature of the kinematics.

Newton’s law in the radial direction implies that in a circular orbit



which means the frequency of the orbit remains fixed even as the particle
speeds up and the orbit size increases. Thus the requisite alternating voltage
between the dees could be provided by simply connecting them to any
source of AC voltage of that frequency.

At high velocities the preceding Newtonian kinematics becomes
inapplicable. The correct equation is still

but the momentum is not p = mv but

With this new v dependence of momentum, ωis no longer independent of r.
The betatron does not rely on the constancy of ω or an electrostatic

potential to accelerate the particle. It has a totally different design in which
a spacetime-dependent magnetic field produces a circulating electric field
that accelerates the particle. The same magnetic field also bends the particle
into a circular orbit of fixed radius. Here are the details.

First a kinematic result. Consider a particle of relativistic momentum p
defined in Eqn. 11.5. Imagine it going around in a circle and also picking up
speed. The change in p has two parts, as shown in the right half of Figure
11.1. Ignore the tangential part due to increase in magnitude dp (which will
be produced by a tangential force) and focus on the centripetal part due to
changing direction. From the figure it is clear that the change of momentum
in the radial direction is



Figure 11.1   Left: The electromagnet produces a field B(r, t) pointing down. Its profile at any typical
time is shown as B(r), with an average Bav. (The thickness of the downward arrows also indicates the
decay of the field with r.) As B grows with time an azimuthal Faraday field E(R, t) accelerates the
particle. At each instant the v × B force due to B(R, t) is adjusted to provide the requisite centripetal
force to keep it orbiting in a circle of radius R. Right: Top view of the orbit. At time t the particle is
moving tangentially at θ = 0 and at t + dt it has acquired some increase in magnitude dp and a change
in direction by dθ, and a consequent change in radial momentum dpr = pdθ.

This means the rate of change of momentum in the radial direction is

This result, based on geometry and vectors, is true whether p =mv as in
non-relativistic mechanics or given by Eqn. 11.5. In the non-relativistic case
this leads to the familiar result for the centripetal force:



Now for the betatron. Figure 11.1 shows an electromagnet producing a
downward field B(r, t). At some typical time, it has a profile in r as
indicated by the graph B(r). The field grows steadily with time, starting
from 0 so that, as time goes by, the only change in the profile is a uniform
(same at all r) rescaling of the function B(r). On a circle of radius R
centered on the symmetry axis of the magnet, this field produces an
azimuthal electric field E(R, t) obeying Faraday’s law

where Φ(r < R, t) is the flux enclosed within the circle of radius R at time t.
(Lenz’s minus sign is implicit in the direction of E shown in the figure.)

We shall assume and ensure as we go along that the particle orbits at the
fixed radius r = R even as its speed changes.

Let us define an average r-independent field Bav(t) that will produce the
same flux inside r < R as the actual field:

This azimuthal electric field will change the magnitude of momentum p
as follows:



Integrating this over time assuming p(0) = Bav(0) = 0, we obtain

This will be the magnitude of the momentum of the particle at time t.
Meanwhile the same magnetic field B(R, t) is also required to provide the

requisite centripetal force to keep the particle orbiting at r = R despite its
growing momentum. We have seen (Eqn. 11.7) that the rate of change of
radial momentum is  We equate this to the available centripetal force
qv × B:

using v = ωR. Canceling ω we find

Although all of B(r, t) inside r < R contributes to the changing flux (that
in turn generates E(R, t)), only the field at the orbit B(R, t) applies the
centripetal v × B force.

Look at Eqns. 11.14 and 11.16. The first tells you the momentum p(t) the
particle has acquired in time t due to the acceleration produced by E. The
second tells you what value of p(t) the v × B force at R can handle, i.e.,
manage to bend into a circle. Equating the two expressions to satisfy the
assumption of a circular orbit of radius R, we find the condition for
operation:



For the betatron to work the average field within r < R should be double the
field at r = R at every instant. This is what I have tried to convey in the
figure by plotting B(r) and Bav at one time. If, however, all we do is crank
up the current in the electromagnet and uniformly raise the profile of B(r)
(by the same factor for all r), the condition Bav(t) = 2B(R, t) will hold at all
times if it holds initially.

The magnetic field is playing a dual role. By its time-dependence inside r
< R, it is producing the circulating electric field E (which then accelerates
the particle) and, through its v × B force at the orbital radius R, it is keeping
it in a circle even as the magnitude of p grows.

The betatron beats the relativistic kinematics but it too eventually runs
into problems because charged particles emit radiation when accelerating,
and the loss invalidates the preceding analysis.

11.2   Generators
Now for a practical topic: a power generator. Remember, I told you that one
way to light up a bulb is to take the conducting loop and keep running,
making sure the loop is partly in and partly out of the perpendicular
magnetic field. Another option was to sit still with the loop and pay
someone to run the other way with the magnet. These options for changing
the flux are good material for jokes about how many Yalies it takes to light
a bulb, but not practical. Here is a better way. Look at the top half of Figure
11.2, which shows a generator from an angle. There is a loop, taken for
convenience to be a square of side a. It is free to spin about the axis as
shown by the big curved arrow. It is immersed in a constant magnetic field
B produced by a permanent magnet. The loop’s area vector A is
perpendicular to the plane of the loop and is at an angle θ relative to B. The
flux penetrating this area is



There are two leads coming out. First assume open-circuit conditions, in
which the leads are not connected to anything. Ignore the arrows near the
ends. Suppose I begin to turn the loop in the sense of the curved arrow with
angular frequency ω. That is

Figure 11.2   The generator. The square loop of side a is in the field of a permanent magnet. When it
is rotated, an emf will appear, which is equal to the integral of the v × B force or the rate of change of
flux. In the open circuit, this emf will cause charges to pile up at the leads as shown, until their
internal electrostatic field balances the emf. When the circuit is closed a current will flow and do
work on a bulb, for instance, and work will have to be done by an outside agent to turn the loop.

There is going to be an emf. As before, we can compute it in two ways. We
can integrate the v × B force on each of the four sides of the loop or look at
the rate of change of flux penetrating it.

In the first approach, we note that in the sides 23 and 41 the vector v × B
is perpendicular to the segments dl and hence does not contribute to the
emf. As for section 12, it is better to see the side view in the lower half of
the figure. The segment 12 is rotating counterclockwise at a speed ω · a/2
and the force on a unit charge is (a/2)ωBsinθ pointing from 2 to 1 and its
line integral is (a/2)ωBasinωt. The opposite side 34 makes an equal
contribution (in the same sense) for a total of



It is a lot easier to find Ɛ by differentiating Eqn. 11.19

Now, Ɛ is supposed to be computed around a closed loop and we have an
open circuit with a gap between the leads in the edge 41. In the limit of an
infinitesimal gap, which I assume here, this makes no difference. Or if you
like, you may set v × B = 0 in the gap in computing the emf.

What will this emf due to the v × B force do? It will try to drive a current
that will fight the change in flux. As shown in the figure, the loop is going
to intercept less flux as it turns in the sense indicated. So the current would
begin to flow from 4 → 3 → 2 → 1 to counter it. (You should check this
using the right-hand rule.) However, in the open-circuit condition, the
current cannot flow around the gap between the leads. So ± charges will
pile up at the open leads as shown, until the electric field they create inside
the conductor balances the v × B force. The electric force due to the built-
up charges therefore has a line integral equal in magnitude to Ɛ inside the
generator. But, being conservative, it must have the same integral on any
path joining the terminals outside the generator. This means that in the
outside world there will be a path-independent electrostatic voltage
difference between the terminals equal to Ɛ.

This is exactly what happened in the battery. There a nonconservative
chemical force was piling up positive and negative charges in the two
terminals and this went on till the Coulomb field set up by these charges in
the opposite direction exactly balanced it. The conservative electrostatic
force that balanced the non-conservative chemical force inside the battery
had to have the opposite line integral inside the battery, equal in magnitude
to Ɛ. But being a conservative force, it had to have the same line integral on
any path joining the terminals but lying outside the battery as well. So in
the world outside the battery, there was a potential difference V = Ɛ between
the terminals waiting to be used to light up a bulb or drive a motor.



There is a subtle issue arising from the fact that the emf in the generator
is time-dependent (varies as sinωt). The electric field required to balance it
is therefore not really static. However, as long as ω is not too big, the
retardation effects will be small, and the electric field due to the built-up
charges can continue to balance the changing v × B force at every instant.
We can continue to use the ideas from electrostatics including that of a
potential and voltage.

Back to the battery. Once the battery is connected to a device, the
accumulated charges begin to flow downhill from the plus to the minus
terminal through the device. This will momentarily weaken the electrostatic
field inside the battery, and the chemical forces will briefly win, replenish
the terminals, and quickly restore the balance inside. This response will be
quick enough for the outside world to get a steady voltage between the
terminals if the current drawn is below some limit.

Likewise, once the generator is connected to a device that draws current,
the charge buildup at the leads of the loop will momentarily decrease and
will not fully balance the v × B force. The uncompensated part of the v × B
force will cause some charge accumulation till the Coulomb and v × B
forces are rendered equal and opposite. Usually this will happen so quickly
that we will not see the momentary voltage drop unless we draw too much
current. But if we do, we will see the lights dim for a brief period.

We now face a paradox previously encountered in our discussion of a
conducting loop being dragged in a perpendicular B field. In both cases we
have an electric field inside a perfect conductor. Is this not forbidden by its
very definition? The answer, as before, is that the real constraint in a perfect
conductor that prevents the unlimited acceleration of its free charges is that
of zero net force and not zero electric field. Thus the moment the v × B
force appears due to the rotation of the loop, a compensating electrostatic
force generated by the charge buildup is not only allowed but required.

In the open-circuit configuration, there is a voltage available between the
terminals, which could be connected to the power outlets in your home,
waiting to be used. It does not, however, cost you till you plug in a device
and draw current. It costs no energy to turn the loop because there are no
currents in any of its four segments to experience the Idl × B force.

This changes when we connect the leads to a resistor R and current
begins to flow. The power consumed by the resistor is



where I = Ɛ/R. Who is paying for this? I am, assuming I am turning the
loop. This requires energy because the current-carrying loop experiences a
torque opposing the rotation. The energy is of mechanical origin, provided
by me turning the crank (or the turbine blades rotated by running water).
The mechanical power supplied is torque times angular velocity for
rotations. The torque has a magnitude

and the power supplied by me is

since Ɛ = ωABsinθ as per Eqn. 11.22.
The turbines in the real world have a sizable mass and moment of inertia,

as well as friction. It takes some power to keep them spinning even without
a current load placed by consumers. The minute you plug a toaster into the
socket, you start drawing current, and that current flows right through the
loop in the generator, making it that much harder to rotate. That’s when the
steam turbines really get to work. That’s what you pay for.

11.3   Inductance
Consider the setup depicted in Figure 11.3. I wrap some turns of wire
around a cardboard tube and connect this primary solenoid to some
alternating voltage. Focus on the situation at one instant when the primary
current is flowing as shown. There is going to be some magnetic flux going
through it, pointing down the solenoid. There is a second wire, the
secondary, wrapped around the primary a few times and with its ends
dangling as leads. What will I find at the leads of the secondary solenoid at
this instant?



Figure 11.3   At this instant the current in the primary coil produces a B flux that points down and
links with the secondary. If this current increases, Ɛ and the Faraday field EF in the secondary will
fight it by driving a current that will cause the buildup of ± charges as shown in the open-circuit
configuration. These will set up a Coulomb field EC = −EF since there can be no net field in a
conductor. The magnified view of a piece of the secondary shows this. The conservative field EC
will, however, have the same line integral between the + and − terminals outside the coil as it did
inside, and this will translate into a difference in voltage V(+) − V(−) ≡ V+− = Ɛ.

If the current through the primary changes, so does the flux inside it. That
means the flux through the secondary also changes since both coils wrap
around the same flux. Let the primary current be increasing at this instant.
This means the downward B is increasing. There is going to be an emf Ɛ(t)
in the secondary to counter this increase. This time the emf is not due to the
v × B force, but the induced electric field EF as mandated by Faraday’s law:

The direction of EF will be as indicated in the magnifier, in order that it
may drive a current that will oppose the increase in flux.

For computing Ɛ integrate EF counterclockwise along the following loop
𝓛: Begin at the end of the lead marked −, and then move leftward into the
top of the secondary, through it till you emerge at the lower end, then
rightward to the point marked +, and finally back to point − via the curve



marked EC. (This curve does not correspond to a physical wire; it is a path
used for computing Ɛ.)

The field EF will not succeed in driving the current the way it wants to
because of the open circuit. It will, however, pile up charges, leaving the top
lead with a net negative charge (as the current flows away from it) and the
bottom with a net positive charge (as the current flows into it). These piled
up charges will very quickly set up an electrostatic or Coulomb field EC
that exactly balances the Faraday field EF as indicated in the magnified
view in the figure. Just as in the battery, we have a conservative field
balancing a non-conservative one inside the solenoid. This implies a voltage
V+− between the + and − leads that equals Ɛ, as shown below. However,
unlike in the battery, the emf and voltage V+− are time-dependent.

Here is an equivalent demonstration that a voltage difference V = Ɛ will
appear between the leads of the secondary in the open-circuit configuration
shown.

Once the secondary circuit is closed and current begins to flow through
some device, these ± charges will begin to migrate to the opposite terminals
and disappear. However, as long as the alternating current does not change
too fast, there will always be enough electric charges to ensure that the total



electric field inside the coil (the sum of EC and EF) continues to vanish and
that the voltage difference V+− = Ɛ appears between the leads of the
secondary.

Once again we really should not be using Coulomb’s law or electrostatics
for this problem, since they are applicable only for fixed electric charges.
But as long as the retardation effects are negligible, we can continue to use
the twin notions of an electrostatic Coulomb force that can instantaneously
neutralize a time-dependent Faraday force EF, and the corresponding
potential V+−.

I have devoted considerable time to show you how you may use the
notion of a potential difference between the terminals of a battery,
generator, and solenoid in the world outside, despite the presence of non-
conservative forces inside. There is, however, one difference between the
solenoid and the other two. The v × B of the generator and the chemical
forces of the battery do not preclude the existence of a conservative
electrostatic field and its associated potential V = Ɛ between the terminals.
But the Faraday field EF is a different matter. The time-dependent flux of
the solenoid may not be confined to the solenoid—it can leak to the sides
and indeed has to leave the solenoid during its return from the north end to
the south. If this flux penetrates a circuit, we cannot define a path-
independent potential in its presence because ∮E · dr ≠ 0. So we must either
hope this flux leakage is negligible or find a way to keep it out of the
circuit. An excellent way is to wrap the primary and secondary coils around
a toroidal iron core. Now almost all of its flux will be trapped in the iron
core and not venture into the vacuum outside (due to some energetics that
we cannot discuss here).

The bottom line is that with the preceding caveats, when the secondary
solenoid is part of a circuit, you may demand that the sum of all the voltage
changes is zero if you go around a loop that includes the secondary, with a
jump V+− ≡ V(+) − V(−) = Ɛ as we cross the secondary.

11.4   Mutual inductance
Let us relate the emf in the secondary coil to the alternating current in the
primary. We normally write



for a loop enclosing flux Φ. The emf in the secondary is actually

where N2 is the number of turns in the secondary. The reason for the factor
N2 is that the field EF is to be integrated from one end of the solenoid to the
other to find Ɛ2 and each turn contributes −dΦ/dt. Equivalently, each turn is
like a little battery with Ɛ = −dΦ/dt and N2 of these have essentially been
hooked up in series. So the relevant quantity here is Φ2, the flux linked to
the coil 2:

where Φ is the flux crossing each turn, the flux running through the length
of the primary solenoid. Thus

Let us calculate Φ2. The magnetic field inside the primary is

where n1 = N1/l is the turns per unit length of the primary and I1 is the
current through it. By construction, all the flux inside the primary is linked
to every turn in the secondary. The magnetic flux linking with the
secondary coil of cross section A2 is



where I have defined the quantity

called the mutual inductance of solenoids 1 and 2. The mutual inductance
Φ2/I1 is the flux linking with solenoid 2 due to unit current in solenoid 1.
That Φ2 is linearly proportional to I1 is to be expected based on the
superposition principle. If you double the current in the primary you double
the field it produces because you can think of the doubled current as the
sum of two identical currents flowing in the same wire, each producing its
own field. (This also follows from the Biot-Savart law.)

Putting all this together

Consider the relation

which claims that the flux linking with solenoid 2 due to unit current in
solenoid 1 is the same as the flux linking with solenoid 1 due to unit current
in solenoid 2. It is not obvious because according to Figure 11.3, all the flux
produced by 1 also penetrates 2, but the opposite is not true. The result
would be more obvious if both solenoids were wound around the same
toroid, for then the flux due to either runs through the same toroidal core.
The result, however, is valid even in the non-obvious cases.



In general, we can define and measure the mutual inductance M12 = M21
= M of any two loops (not necessarily wound around the same core) by
driving unit current in either loop and finding how much of its flux links
with the other. Mutual inductance can be very important in designing
circuits. It can be useful when intentionally coupling two loops. However,
at other times, the circuit may have two closed loops in proximity that were
not meant to be coupled, but end up experiencing the unwanted emf’s due
to a changing current in the other.

Inductance is measured in henrys (H) in honor of Joseph Henry (1797–
1878).

Consider two coils with N1 and N2 turns wrapped around the same donut-
shaped core with an alternating current flowing in the primary. Since the
same field penetrates both, the ratio of the flux linkage is simply in the ratio
of the number of turns and this carries over to the ratio of the emf’s upon
taking the time derivative of the flux:

We are evidently talking about a transformer here. You apply an AC
voltage to the primary and a proportional AC voltage appears in the
secondary. It could be higher or lower, depending on the ratio N2/N1—it
could be a step-up or step-down transformer. You can also decide to drive
the current through the secondary to get a voltage on the primary with the
reciprocal ratio of voltages. Although you can step up or step down the
voltage, you cannot create energy this way. You also cannot step up or
down DC voltages using this principle.

11.5   Self-inductance
Now we turn to a very important circuit element, the inductor. It is a single
solenoid and it can be part of a circuit carrying a current I(t). We know that
when the current goes through a resistor there is a voltage drop Vin − Vout
=IR, between where the current comes in and goes out. What will be the
corresponding voltage drop for an inductor?



The wire in the solenoid is a perfect conductor, and therefore it takes no
voltage at all to drive a steady current through it. But when the current
through the inductor is changing, the drop across it will be non-zero by the
Faraday effect, due to the emf generated in the solenoid by its own changing
current.

Time-dependent currents rise naturally in AC circuits and also in a
transient process like the one depicted in Figure 11.4, which we will
initially focus on.

Figure 11.4 shows a battery of terminal voltage V0 connected in series to
an inductor L and resistor R via a switch S.When S is closed, the current that
begins to flow will produce a magnetic flux in the coil. An emf Ɛ will be
generated in the coil to oppose this growth. The emf is the rate of change of
Φsel, flux linking with the coil due to its own current. By the superposition
principle, the field and flux have to be linear in the current. So we may
define the self-inductance denoted by L

as the constant of proportionality. Postponing for a while the computation
of L, we proceed to find Ɛ in terms of it:



Figure 11.4   An LR circuit. When the current flows, the drop across the inductor (as we follow the
current) is LdI/dt. Inside the inductor, the induced field EF is neutralized by the Coulomb field EC
due to built-up charges, as shown in the magnified view of a tiny segment of the coil. The emf Ɛ
receives a non-zero contribution to the line integral of EF only inside the coil from the − to the +
terminal. This in turn equals the line integral of EC from + to − inside, which is also the integral
outside the coil because EC is conservative. This leads to V(+) − V(−) ≡ V+− = Ɛ. The dotted lines do
not correspond to a physical wire.

We will ignore the minus sign and use it instead as a guiding principle
when we consider specific situations and want to know which way a
voltage, field, or current will be directed.

As before if we enclose the inductor in a black box, that is to say, we
assume its changing flux is somehow confined to its interior and does not
link with the rest of the circuit, we can ask what voltage we will measure
between the leads. This is going to be a familiar discussion, and let us do it
one last time with feeling, but with some variations to relieve the monotony.

Suppose the current is coming in to L as shown in Figure 11.4, and is
trying to increase. The Faraday field EF will try to push charges in a way
that opposes the increasing current, causing the + and − charges to pile up
as shown. So it’s the same story again. There can be no net field inside the
coil, which is a perfect conductor. The Faraday field EF is canceled by a
Coulomb field EC. The two will have equal and opposite line integrals
inside the coil. So we may equate Ɛ, line integral of EF from − terminal to
the + terminal, to the voltage difference between the external leads. Just to



reinforce various concepts, I present the previous arguments in a string of
equations:

This means that for people thinking outside the box (that confines the
flux), there is a path-independent potential difference

between the two ends of the inductor. Once again we assume that the notion
of a potential may be extended from the truly static situation to the present
one where it is time-dependent.

The implications for circuit theory are that if we follow the current in a
circuit, there will be a voltage drop of IR when we pass the resistor and a
drop of LdI/dt across the inductor, between the end where the current enters
and the end where it leaves. If the current is increasing, this really will be a
drop. But if the current is decreasing (and still flowing in the indicated
direction) the drop will actually be negative.

Thus unlike in the resistor, the voltage “drop” across the inductor need
not be a drop in the direction of the current. It is decided by its rate of
change. The arrows in circuit diagrams generally show only the direction of
I but not its rate of change. So LdI/dt can have either sign.



Let us return to the LR circuit of Figure 11.4 and ask what happens when
the switch S is closed. Let us impose the condition of zero voltage change
around a closed loop. The loop to use is the following: Start from the
positive terminal of the battery, go along the connecting wire to the +
terminal of the inductance, jump to the − terminal along the dotted curve
marked EC, bypassing the interior of the solenoid with its nasty EF for a
drop LdI/dt, go through the resistor for a drop of IR and onward to the
negative terminal of the battery, and go around the battery against the
dotted curve to the positive terminal for a gain of V0. The sum of all these
changes must be 0, or the magnitude of the gain in voltage must equal the
magnitude of the drop:

So this is the equation to solve. Since the next chapter is all about solving
this and many such equations, let us wrap up the discussion with the
calculation of L, defined as

The flux linking with itself is the product of the number of turns times the
value of B = μ0nI times the cross-sectional area A:

where l is the length of the solenoid.

11.6   Energy in the magnetic field



How much energy is stored in an inductor carrying current I? This is a
meaningful question because when you begin to drive a current through an
inductor, you are doing some work. The changing current is opposing you
with a voltage LdI/dt, and you’re ramming it down in spite of that
opposition. The power needed is

Upon integrating both sides from t = 0 to t = t, and assuming I(0) = 0, we
find the stored energy is

So it takes some energy to build up a current in the inductor just like it takes
some energy to charge up a capacitor.

Feeding in the explicit expression for L shown in Eqn. 11.52,

Since Al is the volume over which the field B = μ0nI exists, the magnetic
energy per unit volume is



For this discussion it is better to consider a toroidal solenoid whose flux is
very well confined. The final formula for uB is exact and can be derived in
many other ways.

Recall that the energy density in the electric field is

So uE and uB are given by very similar formulas. Both are quadratic in
the fields and even the constants behave similarly: μ0, which is normally
upstairs in every formula, comes downstairs here, and ε0, which is always
downstairs in every formula, comes upstairs here.

So let me summarize what you should remember from all of this. The
circuit element called an inductor is just a coil of wire that’s wrapped
around some core. When you change the current through the inductor, it’s
going to fight it. It’s not like a resistor. A resistor fights any current. An
inductor fights only a change in current. All this is summarized in the
circuit equation

Even without solving this equation we can say some things based on
what we know. For example, the current in the circuit infinitesimally after
the switch is closed must be 0.Why not something else, say .2 A? A current
that jumps from zero to something non-zero in zero time would have an
infinite derivative. This is not allowed since LdI/dt cannot ever exceed V0.
So the current in the inductor will never jump. On the other hand, if you
connect a battery to a resistor the current can immediately assume the value
I = V/R.

These restrictions follow from energy considerations. The current in the
inductor implies a stored energy of . If the current jumps
instantaneously, so does the stored energy, implying infinite power in or
out, which is impossible. On the other hand, a resistor stores no energy and
the current through it can jump when a switch is opened or closed.



CHAPTER 12

AC Circuits

By AC I mean “not DC.” The currents and voltages may not be oscillatory
in each case, but in all cases they will be varying with time. The circuits
could contain resistors, inductors, and capacitors.

12.1   Review of inductors
Let me start by reviewing inductors before returning to circuits containing
them.

An inductor is very different from the resistor in circuit theory both in its
energetics and its mathematical treatment. When you connect a resistor to
some voltage V(t), the current is determined by

which is an algebraic equation. This means you can use elementary algebra
to solve for the current: simply divide both sides by R and obtain

You can make the network more complicated—add a few more resistors,
connect some in series and others in parallel, and so forth. No matter what
you do, you can always combine them by the usual rules to find the current
leaving the battery. If you follow that current and you run into a branch,
there are simple rules to tell you in what ratio the current will split among
the branches. You do not need any calculus to deal with this problem.

When you bring in inductors, things are different. If you have a current
going through an inductor, there will necessarily be a voltage drop



in the direction of the current. The “drop” could be negative if the current is
decreasing. The first difference you notice is that the relation between
voltage and current is not an algebraic equation, but a differential equation.
In due course I will tell you how to solve the differential equations.

The second difference between the inductor and resistor is that when a
current flows through a resistor, whatever energy you provide is gone in the
form of heat. It is dissipated. The lightbulb glows and that’s the end. With
an inductor, when you begin to drive a current, you are building a magnetic
field inside the inductor and there’s an energy associated with the magnetic
field. That stored energy will be given back to you later on. So it’s like a
capacitor. It takes work to charge a capacitor, because you’ve got to take
charges from one plate and keep on piling them in the other plate, despite
the opposition you get. But then if you connect the plates to a bulb and
squeeze the trigger in your camera, the discharging capacitor gives back the
energy you put into it.

Let us start with a simple problem, depicted in Figure 12.1. I apply a
fixed voltage V0 to a resistor R and inductor L connected in series through
an open switch S. Ignore for now the part in dotted lines with the large
resistor R′. Or imagine R′ = ∞ so that no current goes there.

When I close the switch how big a current will begin to flow? The circuit
equation is

Because the inductor is a resistance-free wire, you may think a current I =
V0/R will start flowing immediately, but we have seen that that is wrong.
Instead the current will start to climb continuously from zero.

What is the function I(t) that describes the current? Let us begin with
some basic deductions.



Figure 12.1   The LR circuit coupled to a battery via a switch. The dotted part of the circuit connected
to a very large resistor R′ can be ignored for now and will be referred to later.

As the current starts climbing up, the resistor uses up a voltage RI and
only the balance V0 − RI is available to sustain dI/dt. As the current
increases, the propensity to increase decreases. We expect that after a very
long time, it will settle down to some value. We can find it by setting dI/dt =
0 in the circuit equation Eqn. 12.4:

I call this current I(∞) because the current will be seen to reach this value
only at t = ∞. This is reminiscent of a battery trying to charge a capacitor
through a resistor. Initially all of V0 was available for driving the current
through R, but as the capacitor starts charging up, it begins fighting the
battery. The current gets smaller and smaller but never quite stops since the
capacitor can never equal the battery in its opposition. A similar thing
happens when a capacitor discharges through a resistor. It never gets fully
drained for any t < ∞ because as it drains, it has less and less voltage left to
discharge through the resistor. In the present case of the LR circuit, as the
current grows, it becomes its own enemy due to the increasing drop across
R.

However, the current can reach any fraction of I(∞), say .95, in a finite
time. To find the time t∗ when this happens, we need to buckle down and



solve for I(t) starting with

But for the V0 on the right, we could solve this easily. So we eliminate it
as follows. Let us write the current as a sum of the asymptotic value I(∞) =
V0/R and the rest, denoted by Ĩ :

If we substitute this into Eqn. 12.6, we find (noting that I(∞) has zero time
derivative),

which can be solved by inspection:



is the time-constant for the LR circuit and I0 is arbitrary, as in all linear
equations.

To find I0 we impose the initial condition that the full current vanishes at
t = 0:

Armed with this result let us reconstruct the full current I(t):

This result again illustrates the interplay between theory and experiment.
We study things experimentally, define and measure some physical
variables like L, C, R, and I, write down some equations governing them,
and solve the equations. Then we get a very precise prediction for what will
happen under some given conditions, which we run off to verify
experimentally. In the present instance, we don’t have to guess at what time
t∗ the current will come to 95 percent of its maximum value. It is the
solution to



and has a value ≃ 3τ.
As with the capacitor, the time-constant gives us a natural unit of time

appropriate to this problem. We know the current will never reach I(∞) but
we also know that if we wait a long time, it will get really close. It is τ that
tells us what “long time” means—it means many times τ.

Let us say we have waited till t = 1000τ. Now we open the switch. What
will happen? Normally when you try to reduce the current, the inductor will
fight back by driving its own current to prop up the current. But now it is
going to be very frustrated because, with the switch open, it cannot drive
any current! Also, how is it supposed to get rid of its magnetic energy all of
a sudden? The answer is that when you open the switch, the continuing
current will begin to pile up charges of opposite types at the two terminals
of the switch. The plus charges will be at the terminal where the current was
headed before interruption and the minus at the other. Usually this will lead
to very high electric fields and cause a spark to jump the gap. The spark is
the current carried by air molecules that have been ionized—separated into
positive and negative parts—by the strong field.

So it can be very dangerous to interrupt the current in a solenoid. Do you
know how people tackle this problem? They connect a large resistor R′ in
parallel with L as shown in dotted lines in Fig. 12.1. When the switch is in
the closed position, R′ plays hardly any role; when the current comes to the
node where the inductor and R′ are in parallel, it takes one look at the huge
R′ and says, “I’m going the other way.” But when you throw the switch
open, the current is suddenly all for going through R′. It knows it has no
other choice. You have given the inductor a path through R′ to discharge its
energy, and it will take that path even if R′ is large. The current will
continue to flow through L in the same direction as before and then return
counterclockwise through R′ back to L. The resistor will eventually burn up
the stored magnetic energy. Let us compute the rate at which that happens,
starting with the circuit containing just L and R′:



Let me go over the derivation just to hammer home the question of signs.
As we go counterclockwise (the assumed direction of the current) starting at
a point below the resistor, we drop by R′I when we get to the upper end of
R′, and then drop another LdI/dt on crossing the terminals of L. The
equation sets the sum of these “drops” to zero. (The “drop” across L will
end up being a rise because dI/dt < 0.)

Solving this very familiar equation we find the current decays
exponentially

The time-constant L/R′ gives you an idea of how long you have to wait
before the inductor is essentially (but never fully) discharged.

Now for the energy check. In the beginning the inductor had 
This better equal the time-integral of the power P = I2R′ dissipated in the
resistor:



12.2   The LC circuit
Now I’m going to describe a slightly more complicated circuit with an L
and a C hooked up as shown in Figure 12.2.

Assume that at t = 0, the capacitor is charged as shown and there is no
current. The + charges will find their way around L to the other plate and
neutralize the – charges there, and eventually the capacitor will discharge.
Had you connected C to a resistor, the story would have ended with the
discharge of the capacitor. But when it discharges through L, it’s not the end
of the story. Why is that? The inductor would be carrying a current by then,
and it cannot suddenly stop carrying that current. It is in fact not allowed to,
by energy conservation. So it’s going to keep driving the current for a while
till the current is zero. The inductor has no energy now (since I = 0) and is
ready to quit, but the capacitor is fully charged and we are almost back to
where we started with one difference: the capacitor is charged the opposite
way. So you wait another half cycle and you are really back to the
beginning and the oscillations go on forever. The figure shows a few
intermediate configurations and where the energy is stored. The frequency
of this oscillation will shortly be shown to be 

Figure 12.2   The LC circuit at various times. The electric field in the capacitor and the magnetic field
in the inductor oscillate with frequency  The energy alternates between being entirely
magnetic in L due to the current and entirely electric in C due to the built-up charge. When the
current is at a maximum the charge on the capacitor is zero and vice versa. The electric and magnetic
fields in the capacitor and inductance are shown by fat arrows.

We can make these heuristic arguments precise by solving the equation



As we go counterclockwise around the loop, there is a drop LdI/dt at the
inductor and a gain Q/C across the capacitor for the direction of current
shown at time 0+. Since Q is the charge on the + plate, I reduces it if it is
flowing as shown. So

So the equation for Q is

Now, we have seen exactly this equation before, right? Recall the
equation for a mass coupled to a spring

Mathematically, the two equations have essentially the same solution except
for a change in symbols. One may involve electric charges and the other
may involve masses. You don’t care. The equation

where dog is a function of time, has exactly the same solution. What does it
matter what you call the unknown variables? Once you assure me that cow
and elephant are time-independent, just as m,k,L, and C are, I can tell you
the dog will oscillate at a frequency



Since the solution to x(t) was

where A is the amplitude and ϕ is the phase, the answer for Q is

I have set I = −dQ/dt because a positive current in the sense shown depletes
the capacitor, and I denote the frequency of oscillations by ω0, since another
frequency ω will appear shortly.

Let us also choose ϕ = 0, since ϕ is simply a nuisance when we have only
one oscillator. (A non-zero ϕ here means that the oscillator does not reach
its maximum when t = 0. In that case let us reset the clock to coincide with
the maximum. There will be no complaints since no one else is using the
clock. This would not be true if there were two oscillators, since there can
be a fight over who gets to reach the maximum at t = 0. Barring
coincidences, only one [the winner] can have its maximum at t = 0, and the
loser must use a non-zero ϕ.)

Figure 12.2 shows the flow of energy between all electric in C and all
magnetic in L. When the current is maximum the charge is zero, and vice
versa.



We see that the charge does indeed oscillate as anticipated by heuristic
arguments. But we know much more having solved the equation. We know
that the frequency of oscillations is  We know that the time it takes to
complete a cycle is independent of the amount of initial charge on the
capacitor. The analogy with the mechanical oscillator is complete. For
example, starting with the capacitor charged to one coulomb and zero initial
current is equivalent to pulling the mass by 1 meter and releasing it from
rest. Table 12.1 shows a complete dictionary.

Thanks to this table, if you know that an inductor cannot instantaneously
change its current, you may infer that the mass cannot instantaneously
change its velocity. It will be very instructive for you to explore this
analogy further.

Table 12.1 Mechanical and electrical equivalents

12.2.1   Driven LC circuit
Next, we connect L and C in series to an alternating voltage V(t) = V0 cosωt
as shown in Figure 12.3. The circuit equation is

This ω is not the natural frequency of oscillation, ω0. It is some externally
given frequency, like 60 Hz from your wall outlet. What happens now? We
have to again guess the solution. We want a function Q(t) such that when
we take two derivatives and add that second derivative to some multiple of



Q(t), we get some constant times a cosine. It is evidently a cosine. So let us
assume a solution of the form

Figure 12.3   The driven LC circuit.

and stick it into the equation. We find

Since cosωt is not identically zero, we may cancel it and find that our
solution works if the prefactor Q0 is given by

So that finally

Actually we may modify the answer as follows:



where the extra term is the solution to the case V0 = 0, Eqn. 12.33. You
should verify that adding it does not invalidate Eqn. 12.38. For now I
choose A = 0 to simplify the discussion and promise to address the extra
term in depth in the next chapter.

The thing that catches our eye in Eqn. 12.39 is that when

that is, when the driving frequency equals the natural frequency, we have a
resonance with a diverging amplitude Q0. You’d better not drive this circuit
at the resonant frequency. That’s also true of a mechanical oscillator.

Notice that in the LC circuit the voltage goes as cosωt, while the current
(with A = 0) goes as sinωt:

That’s something I want you to think about. The current is not in step with
the voltage, whereas in a resistor circuit, the current follows the voltage. It
has the same profile as the voltage, simply divided by R. But here, V is a
cosine, and I is a sine. When one guy is at a maximum, the other is at a
zero. They are out of phase by 90 degrees.

That means a current as a function of time is not equal to the voltage as a
function of time divided by any time-independent quantity, as it used to be
in a purely resistive circuit. You cannot divide cosωt by any time-
independent quantity and turn it into sinωt. It looks like you have to say
goodbye to Ohm’s law in AC circuits. But there is a way to get some kind
of Ohm’s law even here, and we will derive it shortly.



12.3   The LCR circuit
We are going to solve for the current in the LCR circuit driven by a cosine
voltage, shown in Figure 12.4. The circuit equation is

where Q(t) is the integral of I(t). The equation thus involves the current, its
derivative, and its integral.

12.3.1   Review of complex numbers
Solving this equation is going to require complex numbers, which are
crucial here and in many other situations. For example, we rely heavily on
imaginary numbers when we itemize our tax deductions. I’m assuming you
have seen complex numbers in some course or in Volume I, which treats
them in great detail. Just to be safe, I’ll give you a lightning review.

Figure 12.4   The LCR circuit driven by a cosine voltage. For the direction of current shown, note
that Q increases with time.

I will only tell you the essentials, but having done so I’m going to assume
that you can use them freely and that I can invoke them as often as needed.
It is up to you to get prepared for this, based on your past training and the
following review of complex numbers.

• A complex number z is written in terms of two real numbers x and y and



as

and visualized as a point (x, y) in the xy-plane, as in Figure 12.5. This is the
Cartesian form of the complex number. All you need to know henceforth is
that i2 = −1.

• The complex conjugate of z is

Figure 12.5   The complex plane where z = x + iy is the Cartesian form of z represented by (x, y). The
polar form is represented by |z| and θ = tan−1(y/x). The conjugate z∗ has the opposite imaginary
part.

We call x and y the real and imaginary parts of z. Thus z and z∗ have the
same real parts and opposite imaginary parts.

• The real and imaginary parts of z may be found as follows:



This works for the real and imaginary parts of any function of z. Take, for
example,

In finding f ∗(z) you must complex conjugate not only z but also any
complex constants that enter. For example, if

then

• Two complex numbers are equal if and only if their real and imaginary parts are equal.
• The sum of two complex numbers is

which is just like vector addition. The novelty with complex numbers is that
we can also multiply them.

• Their product is



• The modulus or absolute value of the complex number is

and is simply the length of the line joining the origin to (x, y).
• The phase (see Figure 12.5) is the angle between the position vector and the real or x axis:

• To divide z1 by z2, we bring in the modulus of z2 as follows:

We are done, since we can evaluate the product in the numerator and divide
the real and imaginary parts by the real number |z2|2.

• Euler’s formula (proved in Volume I) is

Using cos(−θ) = cosθ and sin(−θ) = − sinθ

You could also obtain this by complex conjugating both sides of Eqn.
12.58, assuming, as we do, that θ is real and only i has to be conjugated to



−i.
• Thanks to Euler we may write z in polar form

using eiθ e−iθ = e0 = 1.
• To multiply two complex numbers is easy in the polar form:

Thus to multiply one complex number by the second, rescale the modulus
of the first by the modulus of the second and rotate it by the phase of the
second. Notice and remember that the modulus of a product is the product
of the moduli |z1z2| = |z1| · |z2|.

Figure 12.6   The multiplication of z1 by z2 rescales z1 by |z2| and rotates it by θ2. Thus θ3 = θ1 +θ2.

• Division is equally easy (unlike in the Cartesian case):



Thus complex multiplication and division accomplish two things—rescaling and rotation—in one
shot. This is the key feature we will use, and it is illustrated in Figure 12.6.
• Any equation among complex numbers implies another in which both sides are complex
conjugated. This is done by complex conjugating all numbers in each side. That is, the real parts
are left alone and the imaginary parts are reversed. The reason this works is that if two complex
numbers are equal, their real and imaginary parts must separately match. You cannot borrow from
the real part and add it to the imaginary part. They are apples and oranges. So if the real and
imaginary parts match on two sides of a complex relation, they will match if the imaginary parts
are reversed on both sides.

There is an analogy with vectors in two dimensions. Two vectors are equal only if their
components along x and y are separately equal. Thus a vector equation in two dimensions is really
two equations, one for the coefficient of i and the other for the coefficient of j on the two sides. If
two equal vectors are reflected on the x-axis (i.e., their y-components are reversed), the reflected
vectors will be equal.

12.3.2   Solving the LCR equation
Now we will use all this machinery to solve the LCR circuit equation:

The indefinite integral might bother you since it leaves the charge on a
capacitor uncertain by an amount that depends on the lower limit. You will
see that this uncertainty will not prevent us from solving for the current I(t),
because I(t) is the derivative of Q(t).

Guessing the answer will be hard. You are trying to find a function I(t)
such that when you differentiate it and add to it some multiple of itself and
then add some multiple of its integral, you get something proportional to
cosωt. Neither a pure sinωt nor cosωt can do it.



But you can guess the answer if V(t) = V0eαt. In this case you can guess
that the current will itself be some multiple I0eαt of eαt as well. This guess
will work because eαt will remain eαt whether you integrate it, differentiate
it, or leave it alone. So you can cancel out this time-dependent factor in all
the terms in the equation and get a time-independent relation relating I0 to
the voltage amplitude V0 and the circuit parameters R, L, and C.
Unfortunately, no one is interested in this voltage, because it’s growing
exponentially fast, or, if you put a minus sign in the exponent, it’s dying
exponentially.

To solve the problem with a cosωt voltage we are going to use a trick
based on the superposition principle for linear equations.

Consider the following two equations:

Thus Ic and Is are currents driven by the cosine voltage V0 cosωt and sine
voltage V0 sinωt respectively. We do not know what they are at this point.
Now multiply both sides of Eqn. 12.68 by i and add it to the first to obtain

To arrive at the first equation I have simply used the fact that the sum of
two derivatives (or integrals) is the derivative (or integral) of the sum. In



the second equation I have introduced a complex exponential current

which is the response to a complex exponential voltage Ve = V0eiωt.
You may wonder where this is going. Why am I bringing in a complex

voltage, when no one asked me to and when I could not even solve the
problem with the real cosine potential? Here is the reason.

• I can easily find the current Ie that flows in response to the complex exponential voltage Ve =

V0eiωt thanks to the nice properties of the exponential function.

• The current I really want, namely Ic that flows in response to V0 cosωt, is the real part of Ie.

Look at

Let us take one time derivative of both sides to eliminate the indefinite
integral:

We can now guess the form of the solution Ie: it is also a complex
exponential

where the constant I0 could itself be complex. This guess is going to work
because all three terms on the left—the derivatives and the function—will



be the same exponential. Substituting this assumed form into Eqn. 12.74 we
find

Upon canceling iωeiωt from both sides we find

is called the impedance.
The same relation between I0 to V0 and Z is obtained if we start with

and, rather than differentiating it with respect to t as we did, evaluate the
indefinite integral as follows:

Thus we simply drop the time-independent contribution from the lower
limit. This procedure, which gives the same answer as before, makes the
calculations easier in circuit theory because it allows us to assign to the
capacitor a contribution 1/(iωC) to Z. I will resort to it in the future.



The impedance Z has the same units as resistance. For example, if R =
100Ω, C = 100μF,L = .1H,ω = 100π,

Notice the magic of the complex exponential: it has turned an equation
involving integrals and derivatives into an algebraic one, Eqn. 12.78 for I0,
which may be found by simply dividing both sides by Z to obtain

12.3.3   Visualizing Z
Let us visualize Z in the complex plane, as in Figure 12.7. It has a real part
R and an imaginary part (ωL−1/(ωC)).

The magnitude of Z is

and its phase is



Figure 12.7   The impedance in polar and Cartesian forms. At resonance Z = R and ϕ = 0. The
minimum of |Z| occurs at 

So we may write, in future,

For later use remember that

The current that flows in response to the complex exponential voltage is



To find Ic(t), the solution to the cosine voltage that is the real part of the
exponential voltage, we simply take the real part of Ie(t) and obtain

The amplitude of the physical current,  is related to  the
amplitude of the complex current, as follows:

Let us write out Ic explicitly so we may analyze it later in some depth:

12.4   Complex form of Ohm’s law
Let us begin with the fact that when the driving voltage is a (complex)
exponential, so is the current, and its amplitude I0 obeys an algebraic
equation

which is solved by simply dividing both sides by Z:



This is as easy as Ohm’s law, except for the fact that Z, which plays the role
of R in DC circuits, is complex. We can replace the original AC circuit in
Figure 12.4 by a DC-like circuit shown in Figure 12.8 where the
exponential eiωt is removed from the voltage and the current. Only their
amplitudes V0 and I0 appear and the circuit elements are replaced by their
contributions ZR = R, ZL = iωL, and ZC = 1/(iωC) to the impedance. The
voltage equation is

Figure 12.8   The representation of the LCR circuit in DC-like terms where each circuit element is
replaced by its impedance. The common factor eiωt has been removed from the currents and
voltages, whose amplitudes V0 and I0 alone appear. The amplitudes of the complex voltage drops
across R, L, and C are denoted by VR(= RI0), VL(= iωLI0), and  The physical time-

dependent counterparts are obtained by reinstating the eiωt factor and taking the real part.

Once we have solved for the complex current amplitude I0, the real,
physical, time-dependent current can be obtained upon reinstating the eiωt

and taking the real part:



If the physical current Ic is the real part of Ieeiωt, what is the real,
physical, time-dependent voltage V(t) across any circuit element? The
easiest case is the resistor. The drop across it is, from first principles,

Thus, to get VR(t), the physical voltage, we must multiply the complex
time-independent VR by eiωt and take the real part. Only because R was real
could we interchange the two operations of taking the real part and
multiplying by R.

Next consider the inductor. The real, physical, time-dependent voltage
drop across it is

Again, to get VL(t), the physical voltage drop across the inductor, we must
begin with the complex time-independent amplitude VL, multiply by eiωt,
and take the real part. Only because L was real could we interchange taking
the real part of the current and multiplying it by L.



Likewise the real, physical, time-dependent voltage drop across the
capacitor is

Only because 1/C was real could we interchange taking the real part of
the current and multiplying it by 1/C.



CHAPTER 13

LCR Circuits and Displacement Current

The last chapter concluded with an expression for the current in an LCR
circuit driven by a cosine potential. The circuit equation was

This was a differential equation. We managed to turn it into an algebraic
equation by following a strategy that I now restate in slightly different
language.

We decided to solve instead a different problem where V(t) was a
complex exponential and Ie(t) the corresponding current:

Why? Because, if we could somehow solve this problem, the answer to
our original problem would be the real part:

This was due to superposition. The voltage V0eiωt is the sum of a real and
pure imaginary voltage



which must therefore produce the sum of two currents, one real and one
purely imaginary. The complex current Ie flowing in response to the
exponential can always be written as a sum of its real and imaginary parts:

Because R, L, and 1/C are real, a real voltage V0 cosωt can only produce a
real current, which must therefore be Ic, where the subscript c stands for
“cosine.” (The purely imaginary part iV0 sinωt produces the purely
imaginary current iIs. It is the answer to a problem with an oscillating sine
voltage.)

The answer to our problem is then the real part of the current produced
by V0eiωt.

This modified problem with the complex exponential is very easy to
solve by guessing, due to the wonderful property of the exponential that it
remains the same whether you leave it alone, integrate it, or differentiate it.
So we can readily guess the form of the solution Ie: it is also a complex
exponential of the same frequency:

Substitution into the circuit equation gives, upon canceling eiωt everywhere,

Eqn. 13.7 is the algebraic equation analogous to IR = V for a purely
resistive circuit. It is solved by dividing by the impedance Z:



The time-dependent current produced by the exponential voltage V0eiωt is

The current produced by the physical cosine voltage, V0 cosωt = Re
[V0eiωt], is given by the real part of Ie:

The complex amplitude of the complex current  and the amplitude
of the real current  are related as follows:



Since in the end the current was real, you could say, “I don’t want to deal
with complex numbers.” You could take an undetermined mixture of cosωt
and sinωt, put it into the equation, and, after a lot of manipulation, find the
same answer. But the beauty of the complex numbers is that the formulas
relating current and voltage come out in one package and are as easy to use
as Ohm’s law. I will later describe more complicated circuits where an
approach with just real numbers will be intractable.

13.1   Analysis of LCR results
Let us resume our analysis of the salient features of

Figure 13.1   The amplitude of the current as a function of frequency ω in units of ω0 for a typical
circuit. The maximum of Ic0 occurs at 

• Consider first the amplitude of the current Ic0(t). Look at

Unlike in a resistive circuit, the size of the current is frequency-dependent.
Figure 13.1 is the plot of Ic0(ω) as a function of ω for a typical circuit. As ω



varies, so does Ic0. When ω → 0, you’ve got a  in the denominator.
That’s going to beat everything and we find

The current therefore starts out as 0 at ω = 0. This corresponds to the fact
that if the voltage had been a DC source instead of an AC source—that’s
what ω = 0 means—the capacitor would charge till its voltage equaled V0
and then the current would stop. That would be the final answer.

As ω increases, Ic0 will initially grow linearly. It will eventually have to
come down because at very large ω, the ωL term in |Z| will dominate and

Thus Ic0 will fall like 1/ω at very large frequencies. In between these two
extremes, it will reach a maximum. If you’re trying to get the maximum
current, you want to minimize the denominator |Z|. Recall that

There’s nothing you can do about the R2 inside the square root. But you can
play ωL and 1/ωC against each other and find a frequency when they cancel
each other:



This happens when the driving frequency is the natural frequency. At that
resonant frequency, the current amplitude will be simply

It’s as if L and R were not there. They have neutralized each other.
However, off resonance they do turn on and they are responsible for the
sharp resonant peak. Do you know where that comes into play in your daily
life?

The answer I had in mind was the radio. Now younger people are always
carrying some recorded medium. But if you listen to radio, like in the old
days, you run into the following problem. Every room is full of radio
signals. Everyone wants your attention. All the radio stations are sending
signals right now, and you want to pick just one station that you like. So
what happens if your favorite station sends that information at a certain ωf?
If that’s all you want, you go to the store and buy an LCR circuit with L and
C chosen so that ω0 = ωf. You will get a huge response when you get the
signal from that station. Now say there are other stations with different
frequencies. You may not want to listen to them, but you may have to listen
to some of them, if their frequency is anywhere in the resonant peak. Your
radio’s response to that station will not be 0. It will be a lot smaller than at
the peak but not 0 and you can hear it in the background. If R is very, very
small, this response function will be very large at resonance but also very
narrow, and you can keep the stations from interfering by assigning them
non-overlapping frequencies, differing by at least the width of each peak.

What if you changed your mind and wanted to listen to some other
station? What should you do? Buy one radio for this station, one radio for



that station, and so on? You know the answer: you fiddle with the dial.
What do you think it does? It changes the capacitance. How do you think
that is done? Now, don’t rush out and smash open your radio. You will see
nothing that makes any sense. But in the old days, when all the parts were
big, you could look inside and see a variable capacitor. How do you vary
the capacitance? Recall that for the parallel plate capacitor of plate area A
and separation d

So one option is to change the surface area to vary C, but how does turning
the dial do that? The actual geometry is a little different but the idea is this.
Suppose the two plates of the capacitor did not fully overlap. Then the
effective area A in the formula is not the full area A of each plate but a
smaller amount depending on the overlap. Turning the dial changes the
overlap. (In practice there are several overlapping plates and they are
semicircular.) That will give you a range of resonance frequencies, and
that’s the range you can hear.

• Next consider the phase of the current:

At small ω, the capacitor term dominates, tanϕ is negative, and so is ϕ. The
current, which goes as cos(ωt − ϕ), then leads the voltage.

At large ω the inductive term ωL dominates and ϕ is positive and the
current lags behind the voltage. Finally, at ω = ω0 the phase ϕ = 0 and the
current is in step with the voltage.

Consider the case when the voltage is cosωt and the current lags as
cos(ωt − ϕ). You cannot turn the first cosine into the second upon dividing
by any real time-independent function. You cannot get the current from the
voltage by dividing by something like resistance. It seems like a farewell to



Ohm’s law. Yet within complex numbers you can turn exp(iωt) into exp
i(ωt − ϕ) when you divide by eiϕ. This possibility in the world of complex
numbers, of rescaling and rotating the phase of a complex number in one
stroke, by dividing by another complex number, is exactly what the doctor
ordered for turning the voltage amplitude V0 into the current amplitude I0 =
V0/Z. The doctor in question was Dr. Charles Steinmetz (1865–1923), a
mathematician and engineer who worked for General Electric and invented
this approach to AC circuits using complex numbers.

• The instantaneous power delivered by the source is, from first principles,

(Although V(t) and I(t) are the real parts of the respective complex
exponentials, the power P(t) is not the real part of the product of these
complex exponentials because the product of real parts is not the real part of
the product. More on this later.)

For now, notice P(t) oscillates with time. The oscillations reflect the fact
that L and C are either acquiring energy or giving it back. So let us average
P(t) over a full cycle using some trig identities:

The periodic functions all average to zero over a full cycle and we are left
with . Thus the average power is



where cosϕ is called the power factor.

13.1.1   Transients and the complementary solution
Let me alert you to a problem. The solution I wrote down,

has no free parameters in it. You tell me the time, and I tell you the current.
Whatever the voltage is, you take that, shift the phase by ϕ, and divide by
|Z|. But you know that a second order equation in time must have two free
parameters. These must correspond to the charge on the capacitor and the
current at some time, say t = 0. (These are the electrical analogs of the
initial position and velocity of the oscillator.) Where are those free
parameters going to come from? I will give you a clue and let you ruminate
a bit. The clue is this:

If you still don’t have it, here is another clue: superposition.
Anyway, here is the answer. We have seen many times that V1 + V2

drives a current I1 + I2 in obvious notation. It follows that V0cosωt + 0
drives a current I(t) + Icom(t) where Icom is the current flowing when no
voltage is applied. It is called the complementary solution. You might say,



“There is obviously zero current if there is zero voltage,” but I have to
remind you that you can have current without an external voltage if there is
stored energy to begin with. This is like saying that a mass-spring system
can oscillate without any driving force if someone had initially stretched the
spring and let it go or given the mass a kick imparting to it some kinetic
energy. In the electrical case someone could have charged a capacitor and
then connected it to R and L or thrown open the switch on an inductor
carrying current with stored magnetic energy.

So let us look at

We try an exponential solution

and find the constraint

Since A ≠ 0, we get a solution only if α is a root of

The roots, assuming



are given by

The general solution is a sum of the two solutions with arbitrary
coefficients:

If this solution is to be real we need A± to be complex conjugates (this will
ensure 

Figure 13.2   The decay of the transient current or complementary solution Icom.

where χ is arbitrary and A is some real positive number. This leads to



illustrated in Figure 13.2. Consequently the complete answer to the driven
AC circuit is

The constants A and χ may be chosen to match the initial conditions.
However, the complementary function is a transient: it dies exponentially

and if we are only interested in the long-term, we may ignore it. A transient
could burn your circuit, but it doesn’t matter after a long time, if you survive
the early stages. It’s a lot like this course.

13.2   Power of the complex numbers
I will now explain why it does not help to go back to real numbers to do AC
circuit theory. Recall that the answer to the simple LCR circuit was a real
cosine, namely cos(ωt −ϕ), which you could arrive at by substituting a
linear combination of cosωt and sinωt, and using the equation to determine
the coefficients. You may be tempted to avoid complex numbers for this
reason. But consider a more complicated circuit illustrated in the upper half
of Figure 13.3.



Figure 13.3   A complicated circuit where complex numbers are indispensable. At the top are the
actual circuit elements and time-dependent currents and driving voltage. At the bottom is the DC-like
description using complex impedances and the voltage amplitude V0 and current amplitude 
and  The two loops used for the voltage equation are shown by fat arrows.

The circuit has a resistance R1 connected in series to a parallel circuit, in
which one leg has an L2 and a C2 in series and the other leg a resistor R3.
The driving voltage is V0 cosωt. The currents flowing are labeled I1, I2, and
I3.

Our job is to find these oscillatory currents in magnitude and in phase.
Recall the fundamental equations for a circuit. At every branch the
incoming current should be equal to the outgoing current:

This means there are only two independent currents, which will be
determined by two voltage equations. We can take these currents to be I2
and I3. Once we solve for them, I1 will be given by their sum.

Next we have voltage equations demanding that the sum of the voltage
drops be zero in two independent loops. Loop 1 includes the source V(t),
and elements R1, L2, and C2. The smaller loop 2 includes C2, L2, and R3.
Both are traversed in the sense shown.



In the second equation the drops across L2 and C2 come with a minus sign
because the loop is traversed opposite to the direction of the current I2
flowing through them. By comparison the loop 1 is traversed in the same
sense as I1 and I2.

What if you picked a third (outer) loop 3 that included just R1 and R3?
The corresponding equation

can be obtained as a linear combination of the other two equations. In this
case the linear combination is simply the sum. As expected, you can have
only two independent equations to determine two currents.

We have a complicated situation here, and it gets even messier with more
loops. You have the derivative of this current coupled to the integral of that
current and so on. How are we going to solve the equations? Trying to
guess can very quickly become intractable.

But if we use complex numbers, we can reduce the problem to something
that looks like a DC circuit.

First we replace the given voltage by V0eiωt = V0 cosωt + iV0 sinωt. Since
all the equations are linear relations between the voltages and currents, with
real coefficients R, L and 1/C, the real part of the voltage can only produce
the real part of the current. So we will simply take the real part of the
currents at the end.

We assume the complex currents are of the form



(Previously, when there was only one current in the picture, I used a
subscript 0 to denote the current amplitude I0. Now 0 has become a
superscript, the subscript [1, 2, or 3] being used to distinguish the different
currents.) Substituting into the three circuit equations and canceling the
common eiωt we arrive at

These are three linear time-independent equations for three unknowns 
 and  Apart from the fact that the coefficients are complex, this

situation is no worse than a purely resistive circuit. The lower half of the
figure shows how we can replace each element by the corresponding
impedance:



No matter how complicated the circuit, we can keep doing this. We can
combine impedances in series by just adding them and impedances in
parallel by adding reciprocals and then inverting.

For example, let us consider the total impedance seen by the voltage
source. First we compute Zp, the impedance of the parallel branch:

The total impedance seen by V0 is

and the current flowing out of it is

The actual physical current is the real part of 

The time-dependent voltage drop across various elements is computed
from the currents as described at the end of the last chapter.
For example, VR3 (t), the drop across R3, is



The voltage drop across L2 is the real part of the complex voltage drop
across it, which in turn is the product of the complex current and the
complex impedance:

Suppose I knew I1 and wanted to know how it divides into I2 and I3 at the
node. I proceed exactly as in resistive circuits and assign the current to each
branch in proportion to the impedance of the other branch:

The time-dependent current I2(t) will be

The recipe of taking the real part at the end fails when we consider
power, because the power is quadratic in the complex quantities. Let us see
what goes wrong.

The power delivered by the voltage source is, from first principles, just
the product of the instantaneous voltage and current:



The point is that the product of the real parts of two complex numbers is not
the real part of their product:

This power averaged over a cycle has already been derived (see Eqn.
13.28):

We can rewrite the preceding formula as follows:

In a simple LCR circuit,  R since |Z| cosϕ is just R, the real part
of Z. Except for the factor  that comes from time-averaging, this is the
familiar expression for the power consumed by the resistor. The L and C
sometimes consume power and sometimes give it back, with zero average



over a cycle. The factor of  can be eliminated by defining a root-mean-
square or RMS voltage and current in terms of which Pav takes a form
identical to that in DC circuits:

When we say the voltage in our homes is 110 V we are talking RMS
voltage. The maximum magnitude of voltage during a cycle is 

13.3   Displacement current
We are approaching the finish line for electromagnetic theory. We need to
do one last bit of fiddling with the Maxwell equations. So far all the
changes to the equations were mandated by new experiments, as when we
produced a time-dependent magnetic field by moving a magnet near a loop
of wire. But now we are going to consider a change mandated by pure
thought. It is due to Maxwell. Look at a part of a circuit shown in Figure
13.4. We don’t know where it begins or ends, and we don’t care. There’s an
alternating current flowing in the circuit. (Of course no charge is crossing
the gap in the capacitor; it is just sloshing back and forth first in one
direction and then in the other.)

Now here is the problem or paradox that Maxwell noticed and resolved.
Look at Ampère’s law

where C is a loop to the left of the capacitor and Ienc is the current passing
through any surface with that loop as the boundary.



First we consider a flat surface S bounded by C (assumed to be planar for
convenience) with the current I(t) piercing it. Now we say, “That’s not the
only surface with that loop C as the boundary. We should be able to draw
any surface with the loop as the boundary.” So we take another surface S′.
We are still okay, because whatever current passes this S also passes
through S′ so as to avert charge buildup, charge violation, or both. The law
is still good. So giddy with success, we say, why not S′′? That’s our new
surface. It goes all the way around one of the plates of the capacitor. Now
we have a problem because there is no current passing through S′′. If I draw
an even bigger surface that fully encloses the capacitor and goes all the way
around the other plate, we are again okay because now the same current I(t)
passes through it. It is this surface S′′ for which things don’t work.

Figure 13.4   Part of an AC circuit. When we apply Ampère’s law to a loop C we run into a problem
when the surface it bounds goes from S or S′ to S′′ since no current I(t) passes S′′. However, an
electric flux does cross S′′ and it makes the same contribution for S′′ as the current I(t) did for S or S′.

So what would you do if you were Maxwell? You would realize you have
to modify the Ampère equation. Sometimes people modify equations based
on real experiments, and sometimes based on thought experiments. Einstein
loved doing these thought experiments, which are called gedanken
experiments. You don’t really do the experiment, but you say, “If I did this,
what will happen?” If that leads to a problem you have to modify your
theory.

So we have to add something to the right-hand side of Ampère’s
equation. That something should not make any contribution on S or S′, but
on S′′ it should make exactly the same contribution the physical current I(t)
made on S or S′. There are many ways to find that something depending on
how much math you know. Here is an appropriate one.

We all agree that in the region between the plates, we have no current.
But we do have something else between the plates we don’t have in the
wire. You know what that is?



It is the electric field. I am going to relate the current in the wire that
penetrates S to this electric field that penetrates S′′. Here we go:

The term

is called the displacement current and its density is

You might think that equality Eqn. 13.80 allows me to replace μ0Ienc by
μ0Id. Instead I am going to add it. Am I double counting? Let us look at the
modified Maxwell equation



and see how this procedure solves the problem.
If you took a surface like S that slices through the wire (a perfect

conductor), there is no electric field. Only the μ0Ienc term contributes. If you
employed S′′, which goes between the plates, there is no I there, but there’s
the rate of change of electric flux and its contribution is numerically equal
to that of Ienc. Thus the circulation of B around the contour C is independent
of which surface is used.

There was no double counting when we added the contributions from j
and jd because only one or the other was non-zero on the surfaces
considered.

Here are our final equations for electromagnetism:

where S is a closed surface that bounds the volume V in Eqns. 13.85 and
13.88 and any open surface S bounded by the curve C in 13.86 and 13.87.



Consider the symmetry of the equations for E and B. The line integral of
the electric field is proportional to the rate of change of magnetic flux. The
line integral of the magnetic field is proportional to the rate of change of
electric flux but there is another Ampèrean term. The surface integral of E
is given by the charge enclosed while there is no such right-hand side for B
since there are no monopoles. However, in free space or vacuum, where ρ =
j = 0, the equations become symmetric.

In the next chapter we will find that these equations admit
electromagnetic waves as a solution. These waves consist of non-zero
electric and magnetic fields arbitrarily far from any ρ or j. One would not
expect them from Coulomb’s law or the Biot-Savart law. They are possible
because of the term Maxwell added.

This is a very important day in your life, because now you finally know
all of electromagnetism. It is completely described by Eqns. 13.84 to 13.88.
No one knows any more, at least in classical theory. You don’t have to pack
your head with all kinds of results. You can derive everything I have taught
so far given the Lorentz force law and the four Maxwell equations (and an
IQ of 600).



CHAPTER 14

Electromagnetic Waves

Now we’re going to solve Maxwell’s equations and deduce the existence of
electromagnetic waves. No matter how many times I talk about it, I remain
awestruck. Here again are the Maxwell equations:

where S is a closed surface that bounds the volume V in Eqns. 14.1 and 14.2
and any open surface S bounded by the curve C in 14.3 and 14.4.

The first one tells you charges emit or absorb electric field lines or flux
depending on their magnitude and sign. So the net amount of charge in the
volume controls the net flux coming out. The second one tells you that if
you integrate B over any surface, that is, if you count the net number of
field lines coming out, you’re going to get 0. That is true because field lines
begin and end with charges and there are no magnetic charges or
monopoles. Magnetic field lines have neither a beginning nor an end. They
close in on themselves. So if you pick any surface, whatever goes in has to
come out. The third equation, in the static case, used to say the electric field
was conservative. But then we found that a changing magnetic field can
sustain a non-conservative electric field. The last one says a changing



electric field can produce a magnetic field. In addition, a current can also
produce a magnetic field as per Ampère.

For the purpose of studying waves, I’m going to focus on free space,
where ρ = j = 0. They could be non-zero arbitrarily far away. In the static
case this would mean no E or B as per Coulomb or Biot-Savart because
both fields drop off like 1/r2 or faster as we move away from the charges
and currents. But now we will find they can survive on their own,
untethered from charges and currents. The reason electromagnetic waves
can survive in a vacuum far from all charges and currents is that once
you’ve got E and B fields somewhere, they cannot just disappear due to the
energy they contain. It’s like the LC circuit. If your capacitor is charged to
begin with and contains electric field energy, as it discharges it sets up a
current in the inductor with stored magnetic field energy. The current does
not stop when the capacitor is discharged; it keeps going till it charges the
capacitor the opposite way. The current keeps going back and forth. The LC
circuit is an example with just one degree of freedom Q(t), the charge in the
capacitor (or the current in the circuit, which is the derivative). By contrast,
in electrodynamics E(x, y, z) and B(x, y, z) are the corresponding variables,
with one vector each for each point in space.

Without charges and currents the Maxwell equations become very
symmetric between E and B. Neither has a surface integral. The line
integral of one guy is proportional to the rate of change of flux of the other.

Deriving the wave equation from Maxwell’s equations is a dramatic
moment in physics that I am eager to share with you. But if you cannot
recognize the wave equation when it miraculously emerges (to the sound of
trumpets) you are not going to get the thrill. So I will remind you of some
facts, covered in depth in Volume I.

The wave equation in one dimension for a variable ψ(x, t) is

where v is the velocity of the wave.
I would like to show that E and B obey such a differential equation

starting with Maxwell’s equations. But in the form displayed above, the



Maxwell equations involve integrals over arbitrary loops, surfaces, and
volumes. What we need is a version of the Maxwell equations that involves
only derivatives. It is these differential equations that one usually means by
Maxwell’s equations. The (differential) Maxwell equations follow upon
applying the integral version to arbitrary but infinitesimal loops, surfaces,
and volumes. It is then quite easy to manipulate the differential version to
arrive at the wave equation.

First I will derive the differential versions of the Maxwell equations for a
restricted class of E and B that depend only on y and t, and have only one
component each: E along z and B along x:

The resulting pair of equations, obtained by imposing Maxwell’s equations
on these restricted fields, are simple, but I will show how they lead to the
wave equation for E and B. Though not all its solutions have definite
wavelength or frequency (they could describe just localized blips moving at
speed c), I will present sinusoidal solutions of definite wavelength and
frequency. I will derive a formula for the energy in the electromagnetic
waves and discuss their origin.

This will be followed by two optional topics.
The first concerns the derivation of the Maxwell equations for arbitrary

E and B and in the presence of non-zero ρ and j. I express them toward the
end in the language of vector calculus. This option is for those who want to
see Maxwell’s equations in their most general and compact form, having
come this far. For completeness I show that when applied to the restricted E
and B of Eqns. 14.6 and 14.7 and ρ = j = 0, we end up with the same pair of
equations as in the simpler treatment.

Next I ask if the fields that obey the Maxwell equations on infinitesimal
loops, surfaces, and volumes will do so on macroscopic ones. That is, is the
passage from the macroscopic to the microscopic reversible? The answer is
affirmative. You can either take my word for it, or follow the demonstration
of the following fact:



If Maxwell’s equations are obeyed on arbitrary infinitesimal loops,
surfaces, and volumes, they will be obeyed on all macroscopic ones.

14.1   The wave equation
There are many, many waves: water waves, elastic waves, sound waves,
and so on. I am going to discuss waves on a string.

Imagine a string that’s been clamped at two ends (x = 0 and x = L in
Figure 14.1). The thin horizontal line is the x-axis and that is the string’s
position in static equilibrium. Each point on the string is labeled by the
value of x that it will have when the string is in the equilibrium position.
The displacement of the string at the point labeled x at time t is denoted ψ(x,
t), and is our new dynamical variable. It is the one for which we would like
to write the equations of motion.

The string is under some tension T because you have hung some weights
at the ends or tightened it with some screws, as in a violin. Without the
tension, none of what follows would work, as you will see. The other
essential parameter is μ, the mass per unit length. To find it you put the
string on a weighing scale, you find the mass, and you divide by the length.
For example, if you have a ten-meter string and it weighs one-hundredth of
a kilogram, then the mass per unit length is μ = 10−3 kilograms per meter.

Now, I pull or pluck this string in some way, given by the solid curve
ψ(x,0) in the figure, and I want to know what the whole string will do.
Compare this to the mass and spring system, oscillating in the y-direction.
There you pull the mass out to some new location y(0), let it go, and want to
know y(t). There was just one degree of freedom, the location of the mass,
y(t). The answer was y(t) = y(0)cosωt. Here, at every point x between 0 and
L, I have some segment of the string. I emphasize that x here is not a
dynamical variable, but a label for the dynamical variable ψ(x) which gives
the displacement of each segment from equilibrium. I displace all those
infinite degrees of freedom to ψ(x,0) at time 0, and I let them go. I want to
know ψ(x, t). For this we need to find the equation satisfied by ψ(x, t).



Figure 14.1   The string at some generic time, say t = 0. It is under tension T, has mass μ per unit
length, and is fixed at x = 0 and x = L. The highlighted segment has a width dx, with the same tension
T pulling the two ends but at slightly different angles. The displacement ψ and angles θ are
exaggerated for clarity. The derivation is valid only when all these are very small.

What principle will decide the behavior of this string? Newton’s law is
the answer. There are no new laws that I’m going to invoke. I’m not going
to say, “Well, we studied masses and springs before; today it’s time to study
strings and here is the new law of motion.” There’s only one law of motion.
That’s F = ma. My whole purpose is to show you that this law really does
control everything; that’s why it’s a super law.

The string is a long, extended, and complicated object. I isolate a tiny
segment of length dx highlighted in the figure. I am going to calculate the
total force on it and equate it to its mass times acceleration. Gravity is not
necessary for vibrations, and we will neglect its effect.

The figure shows the forces at the ends of the little segment. Both equal
the tension T, which doesn’t change from point to point in magnitude. But
the angle at which the tension acts is not necessarily the same. It is tangent
to the string, and the direction of the tangent (measured from the horizontal)
is changing from θ(x) to θ(x + dx). The string is curving in general;
therefore, the tangents to the string at two ends of the tiny bit are not quite
the same and there is generally a net force on the bit.

So, I’m going to find the vertical component of the two forces and take
the difference. The upward force at x +dx will be T sin(θ(x+dx)) and the
downward force on the left side will be −T sin(θ(x)) yielding a total of T
[sin(θ(x + dx))−sin(θ(x))]. That’s going to be mass times acceleration. The



mass of this little segment is the mass per unit length μ times the length of
the segment, which is dx. Now, what is the acceleration in the language of
calculus? No, it is not  but  because ψ(x, t) is the vertical coordinate
of the string bit. What’s jumping up and down is ψ, so the acceleration is its
second derivative, and I use the partial derivative because ψ(x, t) can vary
with x and t. So F = ma becomes

Now, come to the left-hand side and assume the angles involved are very
small, i.e., that the string does not deviate too much from being horizontal.
If you remember the series

and keep only terms up to order θ, you may then approximate as follows:

Eqn. 14.8 becomes



Dividing both sides by T and dx and letting dx → 0, we finally obtain the
wave equation

This is a partial differential equation. It is usually rewritten as

In summary, when you pull a string up, it comes down because the
tensions at the two ends of the string bit have vertical components that don’t
quite cancel. So, the net force depends on the rate of change of sinθ ≃ 

 i.e., the rate of change of the rate of change, and that’s
whyyou get  on the left-hand side. The second time derivative on the
right is just the acceleration of the string bit.

You should verify that v has dimensions of velocity. It will turn out to be
the velocity of waves on the string. If you pluck the string and make a little
bump and let it go, the bump will move at speed v. One way to deduce this
is to consider the nature of the solutions to this equation. What functions do
you think will enter? Based on the single oscillator you might be thinking
sines and cosines. Such solutions exist, but the class of solutions is much
bigger than that. I’m going to write down for you the most general solution
to the wave equation: ψ can be any function you want of x − vt. I don’t care
what function it is. So if w stands for combination x − vt, then



where f (w) is whatever function you want. If f depends on x and t only
through this combination x − vt, it will satisfy the wave equation. To see
this, use the chain rule: if w = x − vt then f = f (w) and

By the same logic f (x + vt) also satisfies the wave equation.
What does it mean for ψ(x, t) to be a function of just x − vt? It means that

if you change x and change t in such a way that x − vt does not change, the
function does not change.

Consider the bell-shaped function

where x0 is some constant. It obeys the wave equation even though it does
not readily come to your mind when you think of a wave, the way the sine
or cosine does. At t = 0, the bell-shaped curve is peaked at x = 0, where the
exponential is largest. At a later time it is peaked at x = vt because that is
where the exponential is largest. Hence the peak moves at velocity v. What
is true for the peak is also true for any other point, say where x − vt = 6.5. It



too moves at speed v. The entire curve moves to the right without any
distortion at speed v.

This is true for any function f (x − vt), which just slides to the right at
speed v: if you increase t by dt and x by vdt, you find f retains its value
because f (x + vdt − v(t + dt)) = f (x − vt).

The most general solution to the wave equation is any function you like
of x − vt plus any function you like of x + vt. The first will describe waves
going to the right, and the second will describe waves going to the left. You
can superpose them because the wave equation is linear.

14.2   Restricted Maxwell equations in vacuum
As mentioned at the outset, in order to derive the wave equation we need to
extract the differential version of the Maxwell equations from the integral
one. We consider the fields in vacuum with ρ = j = 0. This is now the first
track, in which I derive the restrictions imposed by Maxwell on the
restricted class of functions described in Eqns. 14.6 and 14.7 and repeated
below:

The equations fall into two classes: those that involve infinitesimal cubes
and those that involve infinitesimal loops.

14.2.1   Maxwell equations involving infinitesimal cubes
The equations of interest in the vacuum are

Consider first E, assumed to be of the form



What conditions do the integral Maxwell equations impose on this
function?

The infinitesimal volume we use will be a cube of sides dx,dy, and dz,
with its faces parallel to the principal planes and centered at some generic
point, as shown in Figure 14.2.

We must add E · dS from every face and get 0. That’s the condition
imposed by Maxwell’s equation. There are six faces on this cube. The
figure focuses on faces 1, 2, and 3 that we can see, and not −1,−2, and −3
on the opposite side that we cannot fully see. Let’s look at face 1 and ask
what we get for the surface integral of E. Clearly E · dS is non-zero
because dS1 is parallel to E1. But on surface −1, E is the same since it does
not vary with z, but dS−1 points down, in the direction of the outward
normal. The same electric field is sitting on the opposite faces of the cube
but the area vectors dS are opposite. The net contribution of these two
opposite faces to the surface integral is therefore zero.

We can restate these words in terms of flux lines. The flux is non-zero on
1 and −1 because the lines are perpendicular to the face, but their net
contribution is zero because the lines entering one face leave the opposite
face with the same density.

Figure 14.2   The infinitesimal cube on the surface of which E is integrated. The three visible faces
are labeled 1, 2, and 3 and the ones opposite to them are labeled −1, −2, and −3. Only E on faces 1
and −1 is shown to avoid clutter.



Then there are other faces, like 3 and −3. Neither makes any contribution
to the surface integral because the area vector and field are perpendicular or,
if you like, the field lines run parallel to the faces and no flux penetrates
them. The same thing goes for 2 and −2. So we get a net surface integral or
flux of 0 in the end, either because the field is orthogonal to the area vector,
or, if it’s parallel, it has the same value on opposite faces with opposite area
vectors.

So the surface integral of E vanishes on this tiny cube, given just the
assumed functional form. If you repeat the calculation for B you encounter
pretty much the same logic, except that the lines of B run along x. They are
parallel to the faces 1,−1, 3,−3. The only faces they penetrate are 2 and −2.
They do not individually vanish but cancel each other: the field is the same
on the two faces and the area vectors are opposite.

So our assumed solutions

identically satisfy the Maxwell equations 14.26 and 14.27 for surface
integrals over arbitrary infinitesimal cubes. So no constraint on Ez or Bx
emerges by imposing these integral Maxwell equations on them.

14.2.2   Maxwell equations involving infinitesimal loops
Now for the other two Maxwell equations, involving line integrals:

Whereas there is only one kind of infinitesimal cube, there are really
three kinds of infinitesimal loops, lying in the principal (xy, yz, and zx)
planes. Equations derived from one such loop cannot be derived from the



other two, i.e., the loops generate independent equations. On the other hand
it can be shown that equations coming from additional loops, lying in
arbitrary planes, can be deduced from those coming from the principal
planes.

Figure 14.3   Loops in the three principal planes.

Consider loop I in Figure 14.3 first. The area vector is pointing in the
positive y direction as per the right-hand rule. We have to now look at the
line integral of E around the loop and demand it equals −dΦB/dt. The edges
12 and 34 do not contribute since E is perpendicular to them. The non-zero
contributions from edges 23 and 41 cancel since E is the same on both (as it
is x-independent) but the segments are traversed in opposite directions in
the line integral. Therefore ∮E · dr around this tiny loop is 0. There better
not be any magnetic flux coming out of this loop. This is indeed so: B runs
parallel to the loop and its flux does not penetrate the loop. Equivalently,
the area vector points in the +y direction that is normal to B.

Next we demand that the line integral of B around loop I equals μ0ε0
times the rate of change of electric flux. The magnetic field is perpendicular
to the edges 23 and 41, which therefore make no contributions. It is parallel
to 34 and anti-parallel to 12, and being z-independent, has the same value
on both edges. So the contributions from these two edges cancel. There
better not be any electric flux coming out of this loop. This is indeed so
because E runs parallel to the loop, or equivalently, the area vector that
points in the +y direction is normal to E.

So far we have obtained no restrictions at all on the fields: all equations
reduce to 0 = 0. But we still have loops in the other two planes. Consider



loop II whose area vector is along the +x axis. Let us impose the condition
on the circulation of E:

The right-hand side is easily calculated:

In the left-hand side of Eqn. 14.33 we get nothing from the edges 41 and
23 since they are orthogonal to E. The edges 12 and 34, which are
oppositely oriented, make the contribution

Even though the segments are oppositely directed their contributions do not
cancel since Ez need not be the same on both sides. To first order in dy

which when substituted into Eqn. 14.35 gives

Equating this to minus the rate of change of ΦB given by Eqn. 14.34 we
find



At last we have a condition on the functions Ez(y, t) and Bx(y, t).
The other equation

reduces to 0 = 0. The left-hand side is zero, because B is perpendicular to
the plane of the loop and makes no contribution to the line integral on any
of the edges. The right-hand side vanishes because the lines of E run
parallel to the plane of the loop and do not pierce it, or, if you like, the area
vector (along i) and E (along k) are orthogonal.

We can get one more non-trivial condition by considering loop III. I will
simply give the result since the steps are quite similar:

I urge you to fill in the steps.

14.3   The wave!
Let us begin with the pair of equations our restricted fields must obey to
satisfy Maxwell’s equation:



This simple pair is enough to deduce the existence of electromagnetic
waves.

Take the partial y-derivative of the first equation and add it to the partial
t-derivative of the second equation to obtain

We recognize Eqn. 14.45 as the wave equation for Ez.
By adding μ0ε0 times the t-partial derivative of the first to the y-partial

derivative of the second equation we obtain the wave equation for Bx:

This is the first dramatic moment: to discover that Maxwell’s equations
(including the term Maxwell added) imply electromagnetic waves. What is
oscillating now is not some string or medium. It is just the electric and
magnetic fields varying in vacuum.

The second dramatic moment follows if we compute the velocity v. Since
1/v2 multiplies the second time derivative in the wave equation, we infer
that

Now remember that



which means

which was immediately recognized as the velocity of light. From this
Maxwell conjectured that light was an electromagnetic wave. Now v = c
doesn’t mean that electromagnetic waves are the same as light. For
example, we now know that gravity waves also travel at the speed of light.
But Maxwell had conjectured correctly. It was clearly demonstrated not
long after by Heinrich Hertz (1857–1894) that sparks created in one circuit
were able to generate currents in an antenna placed several feet away. By
forming standing waves Hertz confirmed the wave velocity was c.

So we now have a new understanding of what light is. It is simply made
of electromagnetic waves traveling at speed c. It consists of varying electric
and magnetic fields. What we have seen is an example of a simple wave,
but one can show in general that if you took the most general E and B you
would get the following wave equation in vacuum

where is any component of E or B.
Think about how wonderful all this is. You do experiments with charges,

with currents, and you describe the phenomena as best as you can.
You measure ε0 from electrostatics and μ0 from magnetostatics, throw in
Maxwell’s displacement current for consistency, and out comes the wave,



which turns out to be a description of light! It doesn’t get any better than
that.

14.4   Sinusoidal solution to the wave equation
As mentioned before, the solutions to wave equations just have to move at
speed c; they do not have to be periodic in time or space, i.e., to have a
frequency or wavelength. They could represent a single localized pulse that
moves at speed c.

But there are periodic solutions. Here is a simple example from our
restricted family:

where the amplitudes E0 and B0 are free parameters, as are the angular
frequency ω and wave number k, which are related to the more familiar
time period T and wavelength λ as follows:

This is confirmed when we write the oscillating function in terms of T
and λ:



Changing t by T or y by λ changes the argument of the sine by 2π, which
remains unaffected. Equations 14.53–14.54 describe plane waves: E and B
have the same values on a plane perpendicular to the y-axis.

Applying the Maxwell equations

to the sinusoidal functions above, we find the following constraints:

Upon canceling cos(ωt − ky) from both sides we are left with

Equating the quotient of the left-hand sides to the quotient of the right-
hand sides we find

which tells us the E field is bigger than B by a factor c in this plane wave.



Equating the product of the left-hand sides of Eqn. 14.62 and Eqn. 14.63
to the product of the right-hand sides, we find

which is a result we could also get if we substituted the sine waves into the
wave equation. (Remember, once the two Maxwell equations are satisfied,
the wave equation, which results from combining them, is automatically
satisfied and will yield no additional constraints.) There are two solutions to
this equation

The frequency ω is traditionally treated as positive and the two choices of
k correspond to the two directions of propagation. Indeed we find that if we
set k = ω/c in the sine wave it becomes a function of y −ct:

which is a right-moving wave. The other choice k = −ω/c will yield a
function of y +ct, describing a left-moving wave.

Another way to write ω = kc is

This says the source pushes out f cycles per second, each of length λ so that
the wave front advances by λf meters per second, which is by definition the



wave velocity.
To summarize, the plane waves have two free parameters E0 and ω, while

B0 and k are related to them by the Maxwell equations.
Here is what we have so far for describing a wave going along +y:

Observe that the vector E × B points along +y, the direction of propagation.
Suppose I want a wave going the opposite way. A reasonable guess is

Since it is of the form f (y +ct), the wave is certainly moving along −y
and it will satisfy the wave equation. But it will not satisfy all the Maxwell
equations. The wave equation is obtained by combining two of the Maxwell
equations, and satisfying it does not mean satisfying the two that led to it.
Can you see what is wrong with the “solution” above? It is that E × B does
not point along −y; it still points along +y. So we have to reverse B to
obtain the correct answer

This is the wave depicted in Figure 14.4.
I know this is the correct answer for another reason. Take the wave going

along the −y axis, as shown in Figure 14.4. Rotate the entire configuration
by 180 degrees around the z axis. Can you do that in your head? Rotate the
whole pattern and it’s now going the opposite way, and in the process you
can see this B will change sign, and point along +x in the first half



wavelength. Now, one of the principles of natural laws is that if something
is a solution, the rotated thing is also a solution. This is true because space
in itself does not have a preference for one direction over another. However,
you must rotate all the things that matter. For example, if you have a
grandfather clock and you rotate only the clock so it lies on its side it won’t
work, because the clock is very sensitive to the earth. But if you rotate the
earth and the clock, the clock will run as before. In fact, that’s happening all
the time as the earth spins and goes around the sun. What are the relevant
things that should be rotated along with the electromagnetic wave? Since it
lives in the vacuum, there is nothing else to rotate—we are allowed to rotate
just the pattern around any axis and expect the result to be a possible
solution.

Figure 14.4   A plane wave with Ez = E0 sin(ωt + ky) and Bx = − B0 sin(ωt + ky) at t = 0 moving in
the negative y-direction or along E× B. The wave pattern describes the condition on points lying on
the y axis at t = 0. This field on the axis is the field on the entire xz-plane normal to that point. The
wave is polarized along +z. With time, the pattern will move past the origin at speed c in the −y
direction. The four insets in the bottom show what is happening at the origin (x = y = z = 0) at various
times. At t = 0, both fields vanish. The maxima at y = λ/4 reach the origin at time t = λ/4c = T/4. At t
= T/2, the fields vanish again. At t = 3 T/4, the maximally negative fields reach the origin. At t = T
both fields again vanish.

As another example suppose we rotate the pattern in Figure 14.4 around
the y-axis, the axis of propagation. Both E (i.e., the polarization) and B will
rotate in the same plane, remaining perpendicular to each other. By the time
E in the first half wavelength is rotated to point along +x, B will point along
+z.

Figure 14.4 shows the electric and magnetic fields at one instant in time
(which we choose to be t = 0), for a wave moving in the −y direction. The
vector E always lies in the xz-plane and its direction (along +z in the figure)



is called the polarization of the wave. The field B also lies in the xz-plane
and is parallel to the x-axis. Remember that the vectors in the figure
describe the fields at points on the y-axis. However, because it is a plane
wave, they have the same values on the entire xz-plane passing through that
point.

As time goes by, the wave pattern shown moves past the origin at speed c
in the −y-direction. The four insets in the bottom show what happens at the
origin (x = y = z = 0) as time goes by. At t = 0, the fields vanish at the
origin, as shown in the figure. The maxima in E and B at y = λ/4 get to the
origin with a delay t = λ/(4c) = T/4. At t = T/2, both fields again vanish. At t
= 3T/4, they are maximal again but reversed in sign. At t = T, the cycle is
complete and E and B vanish.

The wave is traveling in a direction perpendicular to E and B, along E ×
B. If it hits an electron the oscillating electric field will make the electron
move up and down. The electron will also feel a v × B force. But because
B0 = E0/c, the ratio of magnetic to electric force will be v/c. For electrons in
circuits v/c 1. So when a radio wave sets the electrons in your antenna in
motion, the electric force dominates. But in astrophysical situations, where
particles travel at velocities close to c, the two forces can become
comparable.

The electromagnetic wave is said to be transverse. This just means the
oscillation is in the plane perpendicular to the direction of propagation. If I
wiggle a taut string tied to a wall, the wiggle will move toward the wall,
with the displacement in a plane normal to propagation. So that too is a
transverse wave. On the other hand, sound waves are longitudinal: the air
molecules set into motion (by my diaphragm) when I speak move back and
forth along the direction of the wave.

The perfectly polarized plane wave is hard to find. The light from the
bulbs in our homes is a chaotic mixture of different polarizations,
frequencies, and phases. Plane waves are also an idealization. The light
from the bulb or any point source goes out spherically. But far from the
center, when this sphere has a huge radius, the wave may appear planar over
small areas.

Let us understand how Polaroid glasses work. The polarizers in the
glasses have a preferred direction, called the polarization axis. They will
allow light to pass completely if it is polarized along this axis and block it
completely if it is polarized in the perpendicular direction. For intermediate



angles θ, the component of E parallel to the polarization axis will be
allowed to pass, and the part perpendicular will be blocked. If the stuff
coming in is randomly polarized, you can cut down about 50 percent of the
light if you use the polarized lens, no matter which way it is oriented.
However, when light reflects off a shiny horizontal surface (like a lake) it
tends to come to your eyes polarized horizontally. Therefore your lenses
should be polarized vertically to be most effective in cutting the glare.

Imagine looking at a light source through two superposed polarized
lenses. No matter what kind of light enters the first lens, it will emerge
polarized along its polarization axis. As the axis of the second lens is
rotated, the amount of light transmitted to your eyes will change and go to
zero when the two axes are perpendicular. No light can make it through
both.

The light that you and I see has a very limited range of the possible
wavelengths, roughly between 400 to 700 nanometers. On the shorter side
are ultraviolet light and X-rays; on the longer side are infrared light and
radio waves. They are all electromagnetic waves differing only in ω or λ =
2π c/ω. The prefixes “ultra” and “infra” therefore refer to frequency. Nature
designed our eyes to respond only to a range of ω’s, probably because those
are the frequencies emitted by our most common enemies. If you had
different enemies you would have different eyesight. Maybe if you had a lot
of enemies you would have eyes all over your head, like some insects.
Since Nature gave us just two, I assume we must be pretty safe.

14.5   Energy in the electromagnetic wave
When there is an electromagnetic wave in any region, there is stored energy
there. By studying capacitors and inductors we have deduced that the
energy per unit volume is



You may wonder if this formula also works for fields generated by some
radio station. It does, because the formulas above are local. They only care
about what the field is at any point and not its origin. For example, it
doesn’t matter if E is produced by static charges or by a changing magnetic
field. It is like saying that the kinetic energy of a soccer ball is  whether
it got that velocity by rolling down a hill or by a kick from you.

Imagine then a wave entering a field-free region. That region now has
energy brought in by the wave. For a sinusoidal plane wave the energy
densities are

implies that the magnetic force v × B is weaker than the electric force by a
factor v/c. You may expect that the magnetic energy density is also smaller.
But the energy densities are actually equal:

because c2 = 1/(μ0ε0). The total energy density is



This energy density is time-dependent and space-dependent. You can sit
at one place and ask, “What is the energy density averaged over a full
cycle?” Because the average value of sin2 θ over a full cycle is  the
average energy density is

You will get the same answer if you average over a wavelength at a fixed
time. The reason is that given the periodicity in space and time, anything
that happens at any one place over a full period will happen at one time
over a full wavelength.

What is the intensity I, defined to be the watts per meter squared brought
in by the wave? If I take a frame one meter by one meter and hold it
perpendicular to the wave, I is the number of joules crossing it per second.
That’s easily calculated from the energy density using familiar reasoning.
The wave that passes my one-square-meter frame in one second occupies a
volume 1 · c m3 and therefore contains an energy uTc. Thus

For the wave in question, this becomes (upon averaging over a cycle)



The Poynting vector (not a typo, but in honor of John Poynting [1852–
1914])

gives not only the direction of propagation, but also Ī, the average intensity
of the wave.

At the surface of the earth sunlight brings in roughly I = 1000W/m2. That
is pretty amazing: over the entire surface of the earth facing the sun, it is
pumping in 1,000 joules per square meter every second! The sun is 93
million miles away emitting power in all directions and we lie on a sphere
of radius 93 million miles and still 1000 W/m2 is our share. You can
imagine the prodigious output from the sun. It is interesting to estimate the
electric field that comes with sunlight given the energy density. It is roughly
1,000 volts per meter. This means that if that field were uniform, there
would be a potential difference of 1,000 volts across one meter. However,
the field is not uniform and varies randomly in space and time.

14.6   Origin of electromagnetic waves
Where are these electromagnetic fields coming from? The answer is that
they are produced by charges and currents. But did I not say you don’t need
the currents or the charges, that these waves can exist in free space,
arbitrarily far from both? So which is right? The answer is this. Static
charges and currents produce fields that die away as 1/r2. However, time-
dependent charges and currents can radiate electromagnetic waves. Waves
are produced by accelerating charges. We will not derive this profound fact
in this course. Oscillating charges are a special case of accelerating charges.
If charges travel at uniform velocity as they do in a straight wire they don’t
produce electromagnetic waves. Suppose you took a capacitor and
connected it to an AC source. The charges and currents will go back and
forth. The electric field between the plates will be time-dependent. When
you have a time-dependent electric field you’ll have a magnetic field going
around it because the line integral of B will have to be proportional to the
rate of change of electric flux. And that induced B will itself be time-
dependent and will produce an electric field going around it. So basically



these fields will wind around each other whenever they’re dependent on
time, and they can then free themselves from the capacitor and take off, the
way a soap bubble floats away from the ring it is initially attached to. All
you need are two plates and an AC source to make electromagnetic waves.
You’ll make them at the frequency of the source, so you may not be able to
see them. Neither will your dog, but some gadget will be able to pick them
up. In the radio station there is a circuit with an oscillating current that
emits the waves. The waves reach your radio and set the electrons in the
antenna in motion, assuming the circuit is tuned properly.

Thus the waves and their sources are really like you and your parents. At
some point you are free from your parents; you are able to manage on your
own, but you had parents somewhere, sometime, right? The
electromagnetic waves can go on their own, but they are not produced on
their own. They are produced by time-varying charges and currents.

14.7   Maxwell equations—the general case (optional)
We now derive the general differential Maxwell equations following from
infinitesimal volumes and surfaces, for arbitrary E and B and in the
presence of ρ and j. (The fields are not the restricted ones from Eqns. 14.6
and 14.7.) These are what one means by the Maxwell equations.

14.7.1   Maxwell equations involving infinitesimal cubes
We will first extract the differential Maxwell equation contained in

by applying it to an infinitesimal cube in Figure 14.5. The three visible
faces are labeled 1, 2, and 3 and the ones opposite to them are labeled −1,
−2,



Figure 14.5   The infinitesimal cube on the surface of which E is integrated. The three visible faces
are labeled 1, 2, and 3 and the ones opposite to them are labeled −1, −2, and −3. Only E on faces 1
and −1 is shown to avoid clutter.

and −3. The flux coming out of faces 1 and −1, with areas

are entirely due to Ez, which pierces them perpendicularly. (The other two
components run parallel to these faces and do not contribute to flux.)

Their net contribution is

The other two pairs of opposite faces make similar contributions for a
total of

According to the integral Maxwell equation this equals



Upon canceling dxdydz we arrive at one of the Maxwell equations in its
final form:

Since there are no magnetic charges the corresponding equation for B is

To summarize, a non-zero flux out of the cube results from the imperfect
cancellation of contributions from opposite faces with oppositely pointing
normals, which is why it is determined by the variation of each component
of E and B along its own direction.

Now for a subtle point. Why don’t we consider the variation of E and B
within a face (taking it to be a constant in computing the flux) but do
consider variations between opposite faces? Consider for definiteness the
integral of Ez on faces 1 and −1. We are trying to match the surface integral
to the enclosed charge, which is proportional to the volume dxdydz. The
area of the faces 1 and −1 uses up a dxdy, leaving us with just a dz that
comes from considering the variation between the two faces 1 and −1
separated by dz.

14.7.2   Maxwell equations involving infinitesimal loops
Let us extract the Maxwell equation coming from



on a loop depicted in Figure 14.6, lying in the xy-plane with area vector

The area vector points in the positive z direction as per the right-hand
rule, coming out of the page. We have to now look at the line integral of E
around the loop and demand it equals −∂ΦB/∂t.

The right-hand side of Eqn. 14.100 is easily calculated:

Figure 14.6   Line integral of E around an infinitesimal loop L in the xy-plane, with contribution from
each side shown. Only variations of Ex along y and Ey along x matter, for only they make
contributions of order dxdy that match the rate of change of flux Bzdxdy.

In the left-hand side, the edges 12 and 34, which are oppositely oriented,
make the net contribution

Even though the segments are oppositely directed their contributions do not
cancel since Ex need not be the same on both sides. To first order in dy



where the minus sign is present because the 12 has a smaller y coordinate
than 34.

When substituted into Eqn. 14.103 the preceding result gives

The edges 23 and 41, which are also oppositely oriented, make the
contribution

Adding the contributions from the four edges gives

Equating this to minus the rate of change of ΦB (Eqn. 14.102) we find

Once again we neglected certain variations, like that of Ex within an edge
parallel to x as we integrate along it. We do this because we are trying to get
a result proportional to dxdy, and a dx is used up in the line integral along
the edge, leaving behind a dy for variations across opposite edges separated
by dy.

In short, the non-zero circulation around a loop comes from the imperfect
cancellation between opposite sides that are traversed in opposite



directions, and hence upon the variation of the components of E and B in
the other orthogonal directions.

By considering loops in the yz and zx planes we will obtain two more
such equations with the cyclic permutation of the indices: x → y → z → x.
Here is the complete set:

It can be shown that no new independent equations emerge by
considering loops not in the principal planes.

The other Maxwell equation

gives three such equations with roles of E and B reversed and the additional
contribution from the current density j:



Together with the two equations relating the derivatives of E and B to
electric and magnetic charges,

we have a total of eight Maxwell equations.
These equations can be displayed more compactly by introducing the

entity

It is not an ordinary vector, because its components are not numbers. It is
called a differential operator; it is an entity waiting to act on functions to its
right. When it does, it will yield numbers, namely the derivatives of the
functions.

We are already familiar with one example, the gradient:

which is a numerical vector for a given function V. Since V is a scalar, ∇V is
a vector field, described by an independent vector at every point in space.

For now treat ∇ as a vector with which we can form dot and cross
products with ordinary vectors like E and B with one restriction: ∇ must
always be to the left of the fields so it may differentiate them.

In this spirit consider the dot product of ∇ with a vector field, say E:



The expression ∇ · E is pronounced “divergence of E” or “div E” where
“div” rhymes with “give.” In this notation we may rewrite Eqns. 14.98 and
14.99 compactly as

Thus the divergence of the electric field is proportional to the charge
density and the divergence of the magnetic field is zero, reflecting the
absence of monopoles. Since ρ is a scalar so must be ∇ · E, and by
extension ∇ ·B.

Next consider the cross product of ∇ with E:

The expression ∇ × E is pronounced “curl E.” This notation allows us to
write the other six Maxwell equations 14.109 to 14.111 and 14.113 to
14.115 compactly as



As the right-hand sides of the last two equations are vectors, so must be
the left-hand sides, ∇ × E and ∇ × B.

There is just one tricky issue:

for the left-hand side is a numerical and the right-hand side is still waiting
to differentiate something.

I am now ready to state all of classical electrodynamics. These are
encoded in the final Maxwell equations in differential and integral form
(labeled I–IV) and the Lorentz force law:



14.7.3   Consequences for the restricted E and B
How do these general Maxwell equations constrain the restricted functions
in vacuum, when ρ = j = 0? Not surprisingly, the constraints will coincide
with the pair of equations we obtained earlier when we derived the Maxwell
equations considering only the restricted functions. For completeness, I
show how that comes about.

Consider the Maxwell equations I and II in vacuum:

They are identically satisfied by the assumed functions in Eqns. 14.6 and
14.7: the only non-zero electric component Ez has no z-derivative and the
only non-zero magnetic component Bx has no x-derivative. No constraint on
Ez or Bx emerges by imposing the Maxwell equations.

Now for the other two Maxwell equations (in vacuum):



In the first equation for ∇ × E, since B in the right-hand side has only an
x component, we consider the same component for the curl on the left-hand
side as well:

This tells us (since Ey = 0)

You may check that the equations for the other two components reduce to 0
= 0.

The second equation for ∇ × B, given the non-zero components of E and
B, leads to just one non-trivial constraint:

The fields Ez and Bx we have introduced have to satisfy just the following
two conditions to obey all the Maxwell equations:



These are just the pair we found on the easier track.

14.8   From microscopic to macroscopic (optional)
We have gone from the integral to the differential version of the Maxwell
equations. Can we go the other way, or is there loss of information in taking
the infinitesimal limit? Yes, we can, just as we can reconstruct a function
given its derivative. Using elementary theorems of vector calculus, one can
show that the differential Maxwell equations in the left half of Eqns. 14.128
to 14.131 imply the corresponding integral Maxwell equations to their right.
In this section I will show you the arguments that lie at the heart of these
theorems. Since the differential Maxwell equations simply encode the
content of integral Maxwell equations applied to infinitesimal loops,
surfaces, and volumes, I just have to prove that if the (integral) Maxwell’s
equations are satisfied for every infinitesimal loop, surface, and volume,
then they will be satisfied for all macroscopic ones.

14.8.1   Maxwell equations involving cubes
We begin with the equations relating the surface integrals of E and B to the
enclosed charges. Consider first E.

By assumption

is valid in every infinitesimal volume V. I’m going to take V to be a cube of
sides dx, dy, and dz and S to be its surface as indicated in Figure 14.7. The
cube contains charge qenc. The surface is made of the six faces of the cube



as shown in the upper left part of Figure 14.7. The area vectors dSi i = ±1,
±2, ±3 for each face point along the outward normal and the field on face i
is Ei. By definition, the surface integral of E is the sum of Ei · dSi over the
six faces. For the reason explained earlier, the value of Ei is taken to be
constant over each face but variations between opposite faces are kept track
of.

All this goes for the second cube V′ that encloses charge q′enc.

Figure 14.7   Two cubes with outward pointing area vectors at the top are glued to form the solid
shown in the bottom. The common faces with oppositely pointing area vectors are deleted in the
process. The visible faces are numbered 1, 2, and 3 and the ones opposite to them are numbered −1,
−2, and −3.

Start with the given fact that Maxwell’s equation holds for each cube:

By adding the two equations we get



Suppose we now glue the two cubes together as shown in the lower half
of the figure to form the rectangular solid V′′. The right-hand side of the
previous equation is the charge enclosed in V′′. If the Maxwell equation
holds for it, the left-hand side must be the surface integral of E over the
surface of V′′. This must be true despite the fact that the V′′ has only 10 of
the 12 faces belonging to the two cubes V and V′. Two faces, one from each
cube, were lost in the gluing process. Fortunately, their absence does not
matter because their contributions cancel each other:

This is true because the same field is integrated on both faces when they
coalesce

while the area vectors (pointing outward from the two cubes) are equal and
opposite:

This allows us to rewrite



where the sum is over the 10 faces of S′′, which encloses the volume V′′ and
charge This is precisely Maxwell’s equation for V′′.

Evidently we can go on to approximate arbitrarily complicated
macroscopic volumes by gluing infinitesimal cubes in this manner, and
Maxwell’s equation will be valid for all of them if it is valid in the little
cubes used to form them. The reason will be the same as when two cubes
were glued: the charge enclosed in the final volume will be the sum of the
charges in the infinitesimal cubes that were glued to form it, and the surface
integral on the final volume will be the sum of the surface integrals on the
constituent infinitesimal cubes because the internal faces shared by cubes
(with opposing area vectors) will make canceling contributions.

The argument works verbatim for B upon making the substitution E → B
and qenc ≡ 0.

14.8.2   Maxwell equations involving loops
We begin with the Maxwell equation relating the line integrals of E to the
rate of change of the flux of B. Similar arguments hold if the roles are
exchanged and the contribution of the current j is included with that of the
changing electric flux.

Figure 14.8 shows two infinitesimal loops L1 and L2 around whose
boundary E is integrated in the sense of the arrows circulating around them.
We are given that Maxwell’s equations hold for L1 and L2



where E1 and E2 are the values of the electric field on the loops 1 and 2 and
B1 and B2 are the values of the magnetic field on the infinitesimal surfaces
or plaquettes enclosed by loops 1 and 2.

Figure 14.8   Two oriented planar areas or plaquettes are glued to form the non-planar area shown in
the bottom. The common edges with oppositely running arrows are deleted.

Suppose we glue the two loops along a common edge to form the loop L1
+ L2. Adding the two previous equations we find

because the flux penetrating the composite loop L1 + L2 is the sum of the
fluxes penetrating the two plaquettes. If this is to be the Maxwell equation
for L1 + L2, the left-hand side must equal the line integral of E around the
perimeter of L1 + L2. Now the perimeter of L1 + L2 has two edges missing
compared to its constituents, the edge from L1 and the edge from L2 that



were glued. Remarkably these missing edges do not matter because their
contributions would have canceled anyway: the same E lives on the edges
when they coalesce but is integrated in opposite directions in the two loops.
It follows that if the Maxwell equation held for the smaller loops it would
hold for the composite one. We can approximate arbitrarily large and
complex loops bounding arbitrary surfaces by gluing smaller ones as above.

Next consider the corresponding Maxwell equation for the magnetic
field:

Except for the current term j, we are simply exchanging the roles of the E
and B fields. The analysis goes through with the current density j because
when we glue two loops, the sum of the currents through them is the current
through the composite loop, just as it was for the flux.

Figure 14.9   A non-planar loop bounding a non-planar surface in three dimensions. It is made by
gluing little plaquettes bounded by oppositely oriented edges. The line integral of any field around
the perimeter of the macroscopic surface is the sum of the line integrals around each little plaquette
that forms it. The contributions from internal edges cancel in pairs leaving behind only the
contributions from the edges around the big surface. The flux or current crossing the big surface is
the sum of the fluxes or currents crossing the little plaquettes. Consequently, if Maxwell’s equation
holds on the constituent plaquettes, it holds on the macroscopic surface.

In three dimensions there is a complication with loops that we do not
have with cubes. Consider the macroscopic surface in Figure 14.9. If
Maxwell’s equation holds on every plaquette used to tile it, it will hold on
the surface because the flux crossing the surface is the sum of the fluxes
crossing each plaquette, and the line integral of any field around the
boundary is the sum of the line integrals around the constituent plaquettes.



The fact that the plaquettes in question do not lie in the principal planes,
whereas the ones for which we established Maxwell’s equation did, is not a
problem because we may approximate any surface using plaquettes in the
principal planes.



CHAPTER 15

Electromagnetism and Relativity

There are many aspects of the interplay between relativity and
electromagnetism. I will reluctantly limit myself to two topics.

The first is a more or less mandatory exercise, which shows that if you
knew about Coulomb’s law for electrostatics and believed in relativity, you
could deduce the existence of the magnetic force, v × B.

The second is a more formal topic: we ask what modifications, if any, are
needed if Maxwell’s equations are to conform to the principle of relativity,
namely that the equations have the same form for all inertial observers. The
answer is that no changes are needed: electrodynamics, as we have
discussed it so far, complies with this principle. However, electrodynamics
does require some cosmetic changes in which certain three-vectors are
grouped with scalars to form four-vectors. Once these four-vectors are
identified and the equations expressed in terms of them, many separate
(vector and scalar) equations collapse into single four-dimensional
equations, the way the conservation of energy and momentum of
Newtonian mechanics became the conservation of the energy-momentum
four-vector P in relativistic mechanics. Most importantly, the four-
dimensional equations have the same form for all inertial observers, i.e.,
invariant under Lorentz transformations.

There is one big difference between mechanics and electromagnetism:
while the expressions for energy and momentum had to be first modified
(e.g.,  before the momentum four-vector could be
assembled, no such changes are needed in electrodynamics. For example,
the Lorentz force law does not receive any corrections to higher orders in
v/c. The force is still F = q(E + v × B), though now it constitutes three
components of a four-force determined by the four-velocity and fields. The
fourth component relates the power to the fields and four-velocity.

15.1   Magnetism from Coulomb’s law and relativity



Relativity unifies electricity and magnetism by showing that they are not
independent unrelated phenomena, which is how it seemed in the static
case. Their dynamics got coupled when they varied with time, as in
Faraday’s law. What I mean by unification is that E and B mix with each
other as we change frames, the way x and t do under Lorentz
transformations. I will now demonstrate one amusing result that illustrates
this: given the Coulomb force, you can deduce the velocity-dependent
magnetic force and even derive its magnitude if you believe in special
relativity.

Consider a positive charge q moving parallel to the current in an infinite
wire. We know the charge will be attracted to the wire. Pretend we only
know Coulomb’s law and are unfamiliar with magnetism. We cannot
explain this attraction, which seems to be due to its velocity v. So we decide
to go to the inertial frame that moves at the same velocity as the charge. In
that frame the charge has come to rest. No new physics beyond
electrostatics must be involved in explaining the behavior of the charge.

You will agree that if the charge was attracted to the wire in the original
frame, it will be attracted in the new frame as well. The transverse
coordinate is not affected by motion parallel to the wire. But now we are
worse off: we see a neutral wire attracting a static charge. How come? It is
true the wire as a whole is now moving backward at velocity −v but it is
still neutral! It is also no use saying the wire has Lorentz contracted: a
contracted but neutral wire still cannot attract a static charge.

The resolution, which is not really obvious, is shown in Figure 15.1.
Replace the neutral wire in its rest frame (lab frame) by two oppositely

charged rods, with charge density of ±λ0 coulombs per unit length. The rods
are initially at rest. There is no current and no charge on the wire. The test
charge, at rest, is unaware of these rods. Now slide the positively charged
rod to the right with some speed V and the negatively charged rod to the left
with the same speed, giving it a velocity −V. Their currents add because the
left-moving negative charges also constitute a current to the right. Due to
length contraction, the charge densities of the rods go up, but by the same
amount, to



Figure 15.1   Top: The situation in lab frame. A neutral wire modeled by two infinitely long rods with
equal and opposite charge densities in their rest frames, moving with equal and opposite velocities
(and suffering equal Lorentz contractions), producing a current to the right. A charge q > 0 moving to
the right is attracted to it. Bottom: The situation in the charge’s rest frame. The positive rod appears
slower and it is less Lorentz contracted; the opposite is true for the negative rod. The wire appears
negatively charged, and the charge is electrostatically attracted to it.

keeping the wire still neutral. A static charge will still feel no force toward
this neutral wire.

What is the current, the number of coulombs crossing any checkpoint? It
is the charge per unit length times the length of rod that slides past the
checkpoint in one second, namely V:



To make my point without too much algebra I am going to consider small
velocities and drop terms of higher order than V2/c2. The current then
becomes

as expanding the denominator of Eqn. 15.4 using the binomial theorem will
produce terms of order V3/c3 or higher.

Now give the charge q some positive velocity v. It is found to be attracted
to the wire by virtue of its motion. We do not understand the physics behind
this. So we move to a frame traveling at v to bring the charge to a halt. In
this rest frame of the charge, the positively charged rod has slowed down
from V to V+, its Lorentz contraction has gone down, and so has its charge
density. (In the limit of low velocities, V+ = V − v.) The negatively charged
rod has sped up (to V− = V + v in the small velocity limit) and its charge
density has gone up due to increased Lorentz contraction. In the rest frame
of the test charge, the wire is negatively charged! No wonder the charge is
attracted to it.

To find the magnitude of this attraction, I will introduce another
simplification: I will assume the particle moves at speed V also. In its rest
frame the positive rod is at rest with density

and the negative rod, moving at velocity −2V (with corrections of order V3/
c3) has density

leading to a net charge density on the two rods of



This charged wire exerts the familiar attractive electric force on a charge q
at distance r,

where the minus sign means the force is toward the wire. In the low
velocity Newtonian limit, force and acceleration are the same in the lab
frame. We therefore expect that in the lab frame a charge q moving at
velocity V a distance r from the wire will experience an attractive force

where I have introduced a new constant μ0 = 1/(ε0c2), at least in this
discussion, where magnetism was never explicitly introduced but c was
there from the beginning in all the relativistic formulas.

We of course encountered this force along a different path. In our initial
study of magnetism μ0 was introduced in the Biot-Savart law as an
independent constant describing a new phenomenon called magnetism. The
force between the moving charge and current-carrying wire came from
calculating B using the Biot-Savart law for an infinite wire and invoking the
Lorentz force. The relation μ0ε0 = 1/c2 emerged only in the last chapter.



You may think the previous demonstration may become invalid if the
assumption v =V that I made for convenience was relaxed. It does not and
you are free to give the charge a different velocity v ≠ V and work to the
same order to obtain Eqn. 15.12.

Meanwhile consider this: the final answer expresses the force in terms of
the current I with no separate reference to the V of the rods or their charge
density. Therefore we expect that if we could change the velocity of the rod
without changing the current, the answer must be the same. This of course
we can do: the same I can be produced by rods with a smaller linear density
and larger velocity or larger density and smaller velocity.

To summarize, given just electrostatics, the existence of the velocity-
dependent magnetic force can be deduced if we believe in Einstein’s
relativity. Conversely, electromagnetic theory, which includes magnetism in
just the right way mandated by relativity, is already consistent with special
relativity.

15.2   Relativistic invariance of electrodynamics
The rest of this chapter is somewhat formal in nature. No new phenomena
are involved and you cannot compute anything new using what follows. We
will discuss certain questions of principle whose resolution reveals the
stunning beauty of the formalism. You will also end up learning that
electrodynamics is a gauge theory, like its cousins, the weak and strong
interactions. Sheldon Glashow, Abdus Salam, and Steven Weinberg
described electromagnetic and weak interactions as gauge theories. David
Gross, Frank Wilczek, and David Politzer showed that only a gauge theory
(quantum chromodynamics, or QCD) could describe the strong interactions
which are known to become weak at short distances and strong at long
distances.

You will find the answer to two common questions. If the magnetic force
depends on the velocity of the charges, it is the velocity according to
whom? When Maxwell’s equations give the velocity of light as c, it is as
measured by whom? The answer: both are velocities as measured by any
inertial observer. Einstein assures you that you can apply the same laws of
physics as if you were not moving, even when another inertial observer says
you are.



15.3   Review of Lorentz transformations
The most familiar example of the Lorentz transformation is of the
spacetime coordinates:

where u denotes the velocity of the primed frame relative to the unprimed
frame along the x-axis. (I use v to denote the velocity of a particle.)

We like to work with four-vectors whose components have the same
dimension. Thus we introduce the position four-vector X:

The Lorentz transformation is now more symmetric:



The two components unaffected by the motion are suppressed. I will do
this often and yet refer to the truncated vector as a four-vector. Four-vectors
will not be in boldface. The boldface is reserved for the spatial parts of
four-vectors, as in

where P is the energy-momentum four-vector.
In general a four-vector V has components (V0, V1, V2, V3) that transform

into linear combinations of each other exactly as (X0, X1, X2, X3) do. For
motion in the 1-direction,

Given this transformation law, it follows that the “dot product” of two
four-vectors V and W is Lorentz invariant. That is, if



The minus signs in the dot products are part of life in spacetime.

15.3.1   Implications for Newtonian mechanics
While the laws of nature must be the same for all inertial observers, these
need not be the laws in use before Einstein. In particular, Newton’s laws are
not invariant in form under Lorentz transformations. The relativistic
equations of dynamics take their place because only they assume the same
form in all inertial frames.

This is why

was replaced by

Here τ is proper time, P is the energy-momentum four-vector



and F is the four-force with components

Equation 15.31 satisfies Einstein’s requirement that it assume the same
form after a Lorentz transformation to another frame. This is true because τ
is an invariant and F, P, and X all transform the same way under a Lorentz
transformation.

Let us make sure we understand this statement. Suppose we know in one
frame that the four-force and four-momentum are related as follows:

Multiply the second equation by −β = −u/c and add it to the first and divide
by  to obtain



where  and  are the components of the four-force F′ four-momentum P′
in the primed frame moving at velocity u. Doing the same thing for  we
conclude that in the primed frame

Essential to this proof is the fact that τ is the same for both observers, the
way t used to be in the Galilean transformation, and that F and P transform
the same way, as four-vectors.

Likewise,

will transform into

because m and τ are invariant.
Having seen the fate of mechanics after Einstein’s revolution, it is time to

ask what happens to the laws of electrodynamics. Of course they too must



be the same in all inertial frames, but should they be the laws discovered
well before Einstein, the laws I have described in the preceding chapters?
Should they be modified as Newton’s laws of mechanics were? Amazingly,
no modifications are needed. The laws of electrodynamics before Einstein
are fully compatible with relativity, though this was not known while they
were being discovered. It turned out that one could simply rewrite the
Maxwell equations 14.128 through 14.131 and the Lorentz force in terms of
two new four-vectors J and A that emerge. The resulting equations have the
same form in all Lorentz frames. The same velocity of light appears in all
the frames.

I cannot show this in all its generality without going too far astray. I will
occasionally have to state a few results without proof. I just want to give
you a feeling for what happens and to prepare and encourage you to pursue
the details on your own.

15.4   Scalar and vector fields
We have seen that vectors and scalars are defined with respect to some
specific transformations like rotations or Lorentz transformations. For
example, a vector V (which could be a particle’s velocity) with two
components (Vx, Vy) in one frame of reference will have two different
components  in a rotated coordinate system. A scalar like V · V will
have the same value in both frames.

But consider now not just one scalar but a scalar field S, which is a scalar
function of the coordinates. At each point in space there is a value for S.
Thus a field is a system with an infinite number of degrees of freedom. At
any given point, the scalar field has the same value in the two coordinate
systems, used by two different observers.

Here we consider the simplest case, a scalar with respect to rotations in d
=2. A scalar S is a number at each point, S(x, y). A good example is the
temperature at the point (x, y). If you change to a new set of coordinates
related by a rotation,



as shown in Figure 15.2, the same temperature distribution will be
described by a different function S′ (x′, y′) such that

In other words, (x, y) and (x′, y′) are two ways to refer to the same point and
the temperature there is the same for both observers. The point may have a
different name for different people but the temperature there has an
objective, coordinate-independent meaning.

For example,

describes a distribution peaked at (x = a, y = 0). In the system rotated by 
 (imagine the figure with  the distribution will be peaked at

The function peaked at (x′ = 0, y′ = −a) is given by



Figure 15.2   The same point P in two dimensions has coordinates (x, y) and (x′, y′) in two systems of
coordinates related by a rotation θ. A scalar like temperature has the same numerical value at P for
both observers. A vector V actually looks different to the two: it has only a y component in the
unprimed frame and a bit of x′ and y′ components in the primed frame. When  only the x′
component of the vector V is non-zero. The coordinates of (x = a, y = 0) become (x′ = 0, y′ = −a).

The function S′(x′, y′) is obtained from S(x, y) by expressing (x, y) in
terms of (x′, y′). Both describe the same physical situation.

Imagine now a vector field V(x, y), like the wind velocity at (x, y).
Whereas a scalar like temperature has the same value at a given point
(labeled differently of course in the two frames) a vector (like velocity) will
appear rotated to a rotated observer. In the rotated frame, the vector at (x′,
y′) will be the rotated version of the vector at the corresponding point (x, y).
In other words,



Figure 15.2 shows a vector V. It is entirely along the y axis. In the frame
rotated by  it is entirely along x′.

The inverse transformation is obtained by sending θ → −θ:

15.5   The derivative operator
Consider next the equation

in the unprimed frame. What will it look like in the primed frame? The
right-hand side will be ρ′(x′, y′)/ε0 since ρ is a scalar. Remember that in the
equation

(x, y) and (x′, y′) refer to the same point in space.
The left-hand side looks like a dot product of ∇ and E, and we expect it

to be invariant. That is, we expect the equation in the primed coordinates to
read

But this expectation needs to be verified because ∇ is not an ordinary
vector, with numerical components. Here is the verification.



Consider the left-hand side of Eqn. 15.55. We want to express all
unprimed quantities in terms of primed ones and see if we get an identical
expression. Let us start by replacing E(x, y) by the rotated E′(x′, y′) as per
Eqns. 15.53 and 15.54:

where it is understood that the primed fields are functions of the primed
coordinates. This is the easy part. Next we need to trade the unprimed
derivatives for primed ones.

In general if F′(x′, y′) is a function of x′ and y′, we can only define its
derivatives with respect to x′ and y′ but not another unrelated pair (x, y). If,
however, the pairs are related by some transformation, like the one we are
considering,

then we can view F′ as a function of (x, y)

and take its derivatives with respect to (x, y) using the chain rule:

From the transformation laws Eqns. 15.59 and 15.60 we have



Since this is true for any F′, one writes

where the equality means the left- and right-hand sides will give the same
result when acting on any F′. If you can overlook the fact that the two sides
contain not numbers, but derivatives, you will notice that



where ↔ means the two transform the same way into primed objects under
rotations. This is what ensures that

is rotationally invariant, like any dot product. Let us verify this explicitly by
going back to Eqn. 15.58 and making the substitution:

We have therefore established that ∇ · E not only looks like a scalar but
also transforms like one. (This was also implied by Eqn. 15.55, which
equated it to a scalar ρ/ε0.) Similarly, ∇ × E looks like and transforms like a
vector under rotations.

15.6   Lorentz scalars and vectors
An analogous procedure exists for defining and manipulating scalars and
vectors when we pass from rotations to Lorentz transformations.

A Lorentz scalar is invariant under the Lorentz transformations.
Examples are X ·X or X · P.

A Lorentz vector, or simply, four-vector V = (V0, V1) transforms as



The inverse transformation is obtained by reversing β:

Applying the chain rule as before, now to functions of (x0, x1) ≡ (ct, x),
yields

By comparing this result to Eqns. 15.76 and 15.77 we see that (∂/∂x0,∂/
∂x1) does not transform like (V0, V1); there are some problematic minus
signs. But if we define



then the components of ∇ transform like a four-vector:

The following operator is therefore Lorentz invariant:

as may be verified from Eqns. 15.81 and 15.82. What this means is that for
any F′(x′0,x′1)

This is generally true no matter what F′ is. If, however, it is a scalar field
obeying

we may rewrite Eqn. 15.85 as the statement of the Lorentz invariance of ∇ ·
∇F:



In more familiar terms ∇ · ∇ = ∇′ · ∇′ stands for

If we bring in all four coordinates, the entity that transforms as a four-
vector is

and

15.7   The four-current J
I have mentioned that electrodynamics can be written in four-vector
notation in terms of two four-vectors J and A. Here is the first.

Consider the charge density ρ and current density j. I will drop the vector
symbol for the current when discussing motion along just x, just as I
replaced (x, y, z, t) = (r, t) by (x, t) to introduce and study the Lorentz
transformations in Volume I. The main point is that the mixture of space
and time is evident with just x and t around, and usually y and z just come
along for the ride.



Consider a tiny lump of charge at rest with density ρ0. The current
associated with it is zero. If we see the lump from a frame in which it
moves at velocity v, we will find an increased density due to length
contraction in the direction of motion, and a non-zero current because the
charge is now moving:

This is identical in form to

where, just to highlight the analogy, I have referred to the invariant mass as
m0 instead of just m.

Thus we have the correspondence between two four-vectors

where the symbol ↔ means that the two objects will transform the same
way under Lorentz transformations.

As usual let us introduce factors of c so that all the components of the
four-vectors have the same dimensionality. This leads to the correspondence
of the transformation laws of the energy momentum four-vector P, the four-
current J, and the position vector in spacetime X:



The components of J are labeled in many equivalent ways:

15.7.1   Charge conservation and the four-current J
The fact that electric charge is conserved can be expressed in the form of
the following equation. Imagine a closed surface S bounding a volume V.
The surface integral of the current density j, which is the charge flowing per
unit area per second, must equal the rate of decrease of charge in V if charge
is neither created nor destroyed. So we may write

Recall that the integral Maxwell equation

implied the following differential Maxwell equation

So the corresponding continuity equation, relating j and ρ, is



Amazingly this is a four-dimensional equation, invariant under Lorentz
transformations because it may be written as a four-dimensional dot
product:

Whereas the components of other four-vectors like J or P or X are the
scalar and vector parts with the same sign, e.g., X = (X0,X1,X2,X3) = (ct,x, y,
z), the components of ∇ have negative signs in front of the spatial
derivatives as part of its definition. As a result, its four-dimensional dot
product with J does not have the usual minus signs found in Lorentz
invariant dot products of typical vectors like X or P.

15.8   The four-potential A
Potentials are introduced into electrodynamics for many reasons, one of
which is to facilitate the solution of Maxwell’s equations.

Let us begin with the Maxwell equations (which cannot be written too
often), in the differential version:



Our goal is to solve for E and B given the charges and currents and then
find the force on charges using the Lorentz force law.

Notice that the middle two equations do not depend on ρ and j. There is a
way to parameterize E and B so that these two equations are identically
satisfied. Here is a simpler example of this strategy before I get to the real
problem. Suppose A(t) and B(t) are two variables that are required to obey

for all times. If we parameterize them by an angle θ(t) as

Eqn. 15.111 will be identically satisfied no matter what θ(t) is. If all we had
was Eqn 15.111, we are done. But we still have Eqn. 15.112, which can
restrict θ(t). We stick our parameterization Eqn. 15.113 into Eqn. 15.112
and we find the constraint



with a solution θ(t) = 6t ± mπ, where m is any integer.
Now for the actual problem. Here is the parameterization for E and B

that makes the middle two Maxwell equations into identities:

The vector potential A generates B as its curl,

very much like the way the scalar potential V gave us the electrostatic field
E as its gradient: −∇V = E. In the time-dependent case we know E is not
conservative and its circulation is controlled by the changing magnetic
field. This is incorporated by the inclusion of  in Eqn. 15.116.

Let us see how the parameterization in terms of V and A renders the
middle Maxwell equations into identities.

First we see that

due to the cancellation of mixed derivatives.



Next plug Eqns. 15.116 and 15.115 into the left-hand side of Maxwell
equation III:

Along the way I have used

Whether or not you followed all this, remember the bottom line: the two
Maxwell equations that do not involve charges and currents are identically
satisfied if we write E and B in terms of the scalar and vector potentials as
follows:



This is the analog of setting  and B(t) =  There we
saw that θ(t) could be anything if all we cared about was A2 + B2 = 5.
Likewise V and A are arbitrary as long as we only care about the middle
two Maxwell equations, unrelated to charges and currents. We now turn to
the other two Maxwell equations (the analog of A2 −B2 = 5 cos12t that
determined θ(t)) to find the equations obeyed by V and A.

Before we substitute Eqns. 15.126 and 15.125 in the Maxwell equations
with charge and current densities in the right-hand side, there is one issue
we have to confront.

15.8.1   Gauge invariance
Whereas I can walk into a room with some test charges and measure E and
B at every point, this is not so for V and A. The reason is that they are not
unique: if a certain V and A lead to an E and B, another pair (Ṽ, Ã),
depending on an arbitrary function χ,

will lead to the same E and B. You should verify this. The change of V and
A by derivatives of χ is called a gauge transformation. The pairs (V, A) and
(Ṽ, Ã) are said to be gauge equivalent or the gauge transforms of each
other. Long ago we learned that the potential V is defined only up to an
additive constant in electrostatics and gravity. Gauge invariance reflects the
even greater latitude of the potentials in the general case of time-dependent
electromagnetism.

Remember how we used the freedom to add a constant to V to suit our
purpose? For celestial problems we chose the constant such that V(r → ∞) =
0. For problems near the earth we chose V to vanish at its surface r = RE:
V(r = RE) = 0.

Likewise we use gauge freedom to simplify some calculations by
choosing from the family of physically equivalent V and A one
representative by imposing an extra condition, called the gauge condition,



on them. For example, we can demand that we trade the original A for a
gauge transform A Ãobeying

This is called the Coulomb gauge. It is true, though I will not prove it, that
any A can be gauge transformed (by a judicious choice of χ) to Ã obeying
the Coulomb gauge condition.

The gauge we want to use in this discussion of relativistic invariance is
the Lorentz gauge

which for use in the near future I will rewrite as follows (dropping the tilde
since this will be the only gauge for A from now on):

With this condition, the Maxwell equations with charges and currents
become wave equations that determine (V,A) in terms of them. I will derive
one of them and leave the rest to you.

15.9   Wave equation for the four-vector A
Start with



and introduce the definition of E in terms of V and A

to obtain

upon using

At this stage, V and A are entangled by Eqn. 15.134. Now remember that

and



Put all this into Eqn. 15.134 and obtain an equation that involves just V:

Similar manipulations with the equation for ∇ × B will yield an equation
involving just A upon imposing the Lorentz gauge condition.

Here is the final set of equations coming from rewriting the equations for
E and B that involve ρ and j in terms of V and A:

These are called the inhomogeneous wave equations or the wave equations
with sources. Their solutions will exhibit the retardation demanded by
relativity: A(t, r) will receive contributions from J(t′, r′) where t′ = t − |r −
r′|/c.

These equations were written down well before Einstein. What was
realized after him was that V and A combine to form the four-potential



and that Eqns. 15.140 and 15.141 could be combined into a single wave
equation relating the four-vector A to the four-vector J.

To verify this
(i) divide the first equation for V by c;
(ii) remember ρc is the 0-th component of J, and V/c is the 0-th component of A; and

(iii) finally, invoke 1/(ε0c2) = μ0.

This will lead to

with A defined as in Eqn. 15.142. We may rewrite this equation as

This equation implies that A = (V,A) is a four-vector. The reason is that
the right-hand side is the four-vector J and the combination of derivatives
on the left-hand side (given by the dot product of ∇ with ∇) is invariant
under Lorentz transformations. So A must transform like J, which is a four-
vector.

The key to Lorentz invariance is the choice of the Lorentz gauge,
introduced earlier in Eqn. 15.130,

because it too may be rewritten in four-dimensional notation as



because

As with ∇ · J, there are no minus signs in the dot product since ∇
contains them in its definition.

Thus all the key equations can be written in terms of four-vectors and all
equations have the same form in all Lorentz frames with the same velocity c
appearing. The key point is that this did not call for changing any of pre-
Einstein electrodynamics, only re-expressing it in terms of four-vectors.

When Maxwell came up with the wave equation a question that arose
was this: “For whom is the wave velocity c?” Generally the velocity of a
wave is with respect to the medium that supports it. Assuming that light
was supported by a medium called ether, it was assumed that the value c
would be measured only by an observer at rest with respect to the ether. It
then seemed obvious, to people thinking in terms of the Galilean
transformation

which implied the velocity transformation law

that the velocity of light would be different from c for any observer moving
relative to the ether. One could hope to find one’s velocity relative to this
ether by measuring the velocity of light and subtracting c.

Of course, the same light velocity c was obtained no matter when or
where or by whom it was measured. This led to some real confusion till



Einstein finally arrived on the scene and banished ether as an unnecessary
concept (which never had to be invoked in deriving the wave equation). If
one used the Lorentz transformation to change spacetime coordinates, the
wave equation would remain invariant and the same value of c would
appear for all inertial observers.

Before Einstein, Hendrik A. Lorentz (1853–1928), Joseph Larmor
(1857–1942), and others had suggested that motion against the ether causes
clocks to slow and rods to shrink in exactly the manner that Einstein later
deduced. Henri Poincaré (1854–1912) even wrote down the Lorentz
transformations in the modern form and showed that it preserved the form
of the wave equation for light. However, in the view of Lorentz and others,
length contraction and time dilatation were real effects caused by absolute
motion with respect to the all-pervasive medium, the ether. It was Einstein
who explained these effects were relative and required by relativistic
invariance.

15.9.1   Why work with V and A?
Why bother with A = (V/c, A), given that they are not unique and need to be
constrained by an arbitrary gauge condition? For one thing, A is a four-
vector and we could cast the Maxwell equations in terms of it to
demonstrate their Lorentz invariance. Why not start with the Maxwell
equations and the Lorentz force law in terms of E and B and show that they
are Lorentz invariant? The reason is that E and B do not become parts of
four-vectors, but parts of a tensor, an idea that may not be familiar to you. If
you do not want to prove Lorentz invariance you are indeed free to avoid V
and A and work with E and B.

When we come to quantum theory the situation changes. We find we
have no choice but to work with V and A. There is no known formalism that
directly works with E and B fields.

An experiment suggested by the work of Yakir Aharanov (1932–) and
David Bohm (1917–1992) provides a dramatic illustration of why we need
to work with A. Imagine particles moving in a plane, say the plane of the
page, pierced perpendicularly by an infinitely long impenetrable solenoid
carrying some magnetic flux. Outside the solenoid B = 0 but A ≠ 0. (In
other words, A is non-zero inside and outside the solenoid, but it has a curl
only inside the solenoid.) As the particles are forbidden from going into the
solenoid, they should not be sensitive to the flux inside. Yet they are!



Without ever entering the solenoid, moving only in an area where B = 0,
they are able to sense the flux inside the solenoid. Understanding this
experiment requires a quantum mechanical treatment that unavoidably
invokes A.

Finally, as I mentioned earlier, the theories of electromagnetic, weak and
strong interactions are all gauge theories. This is one reason I dragged you
through this.

15.10   The electromagnetic tensor Ƒ
Let us return to classical electrodynamics. Suppose you do not want to work
with the four-potential A and prefer E and B fields. How is relativistic
invariance of electrodynamics demonstrated in terms of E and B if they do
not team up with some other scalars to formfour-vectors and instead their
six-components combine to form a tensor? To answer this we have to bite
the bullet and get acquainted with tensors.

15.10.1   Tensors
Recall that a scalar in three dimensions has just one (30) component. A
vector V has 31 = 3 components, denoted as Vx, Vy, Vz or V1, V2, V3. A
second rank tensor T, which is the only tensor I will discuss, has 32 = 9
components.

What are the components of T and how do they transform under
rotations?

As you can guess, the components of T are labeled either T11, T12, . . . T33
or Txx, Txy, .  .  . Tzz. Under a rotation of axes the 9 components of T will
transform into linear combinations of each other, analogous to the way the 3
components of a vector do. What are the transformation rules? One way to
find them is to make up a tensor by gluing together two vectors V = (Vx, Vy,
Vz) and W = (Wx, Wy, Wz) as follows:



The components of the rotated tensor are then found from the components
of the rotated vectors. For example, under a rotation by θ around the z-axis
we know

and similarly for W. Thus we know that



and so on. We now demand that these transformation rules are true for all
second rank tensors, even if they were not obtained by fusing two vectors.
For example,

is true for all tensors for rotations around the z-axis.
Although the nine components rotate into linear combinations of each

other as indicated above, some linear combinations of them may form
smaller sets that rotate into each other. Here is an example you will
recognize. Consider the combination

when T is made out of V and W. You know that this will go into itself under
rotations, i.e.,

because the sums above are just the dot products obeying V ·W = V′ · W′.
But the result holds even if T is not composed of two vectors, because the
answer only depends on the transformation rules for T, which apply to all
tensors. I urge you to verify this from Eqns. 15.158 to 15.164 for the special
case of z-rotations.

We learn another very deep result from the above: if you set two tensor
indices equal and sum over them, the tensor drops down in rank by two.

Thus Tij in general is a second rank tensor but



has rank 2−2 = 0, and is hence a scalar.
From the components of T we can also form the following linear

combinations to produce an antisymmetric tensor A, where components
change sign under exchange of indices

They are generated from Tij as follows:

when A is composed of V and W.
Components like Axx vanish because the candidate Axx = VxWx − WxVx ≡

0. Finally components Ayx,Azy, and Axz are simply negatives of Axy, Ayz, and
Azx and hence not independent.

So an antisymmetric tensor in three dimensions has only three
independent components. But so does a vector in three dimensions! Indeed
we recognize the three combinations Eqns. 15.171 to 15.173 as the
components of the cross product V × W:

Not surprisingly the three components of A transform into linear
combinations of each other under rotations. (After all they are the



components of the vector V × W.)
It is only in three dimensions that we have this luxury of two equivalent

descriptions: use two (necessarily) unequal indices to label the components
an antisymmetric tensor (e.g., Axy) or use the unique third index (z) to label
a vector component (V × W)z.

The torque τ = r × F is an example of an antisymmetric second rank
tensor, which has just the right number of components to be a vector in d =
3. The same goes for the angular momentum L = r × p.

The curl of the vector potential is also an antisymmetric tensor of rank 2
but with a twist: the first factor in the cross product is not an ordinary vector
but a set of derivatives:

Once again, not every antisymmetric tensor has to be formed from two
vectors V and W. It is defined simply by its antisymmetry and
transformation properties.

In three dimensions we can think of the curl either as a vector or an
antisymmetric tensor. But if we are to generalize it to the four dimensions
of spacetime, the curl should be viewed as an antisymmetric tensor, as we
shall see presently.

15.10.2   The electromagnetic field tensor Ƒ
A general four-tensor Tμν will have 16 components. Its response to a
Lorentz transformation follows from the way four-vectors transform.
Consider first the special case where T is composed of two four-vectors V
and W:



In this case

and we know how V′ and W′ are related to V and W. For motion along the 1-
direction,

As with rotations, we demand that all tensors transform this way, whether
or not they were constructed from two vectors.

The antisymmetric tensor

will have 6 independent components, which transform into combinations of
each other. (This is another result I state but do not prove.)

The antisymmetric tensor of interest to us is Ƒ, the electromagnetic field
tensor. In analogy with B = ∇ × A (Eqn. 15.179), Ƒ is defined as the four-
dimensional curl of the four-vector potential A:



Unlike other three-vectors like j or p that combine with scalars like cρ or
E/c to form four-vectors, E and B combine with each other to form the six
independent components of the antisymmetric Lorentz tensor Ƒ. They
transform into combinations of each other under Lorentz transformations.

Here is a trivial example. In one-space and one-time dimension, the only
non-zero component is Ƒ01 = −Ƒ10 = −Ex/c. (There can be no magnetic field
in one-space dimension.) Being the sole component, it has to go into itself
under a Lorentz transformation. Let us verify this using Eqn. 15.185:

using Ƒ01 = −Ƒ10.
Equations 15.116 and 15.115,



which expressed E and B in terms of V and A and ensured that the Maxwell
equations not involving charges and currents are identically satisfied, are
now replaced by a single tensor equation 15.189:

When the other Maxwell equations involving charges and currents are
written in terms of A, they relate it to J in a manner we have already
encountered:

The four-force F on a charge q may be written in terms of Ƒ and the four-
velocity

as follows:

This gives, in one stroke, the Lorentz force and the power for μ = x, y, z and
μ = 0 respectively. I leave the verification to you.

On the left side of Eqn. 15.203 we have a one-index object, a vector, the
four-force F. On the right we have a potentially three-index object: two
indices from Ƒμν and one from Vν. However, the index ν drops out from



both because it is repeated and summed over (with the usual sign difference
between the 0-0 and space-space terms required in any four-dimensional dot
product). Thus the right-hand side also transforms like a vector. A relation
equating two vectors will of course have the same form after a Lorentz
transformation since both sides respond the same way.

Earlier I asked according to which observer is the velocity v in v × B to
be measured. The answer, we see above, is “according to any inertial
observer.” We can rewrite Eqn. 15.203 as

where the dot product is again a sum over a repeated index with the usual
minus signs. If Ƒ had been a vector, the dot product with V would have
yielded a scalar. However, Ƒ is a tensor with two indices and only one of
them is neutralized in the dot product with V, while the other survives and
matches the index of F.

We begin to understand why the Lorentz force does not contain higher
powers of velocity. The only velocity we can use is the four-velocity and its
square is c2. So functions of V ·V that could modify the answer are trivial.
Potential corrections linear in Ƒ and cubic in V, like (V ·Ƒ · V)V (where the
two dot products on either side of Ƒ kill both its indices), vanish identically
because Ƒ is antisymmetric under the exchange μ ↔ ν while VμVν is
symmetric.

Here is all of electrodynamics in a nutshell (in the Lorentz gauge):



Writing Ƒ as the four-dimensional curl of A reduces half the Maxwell
equations to identities. The other two determine A in terms of J via Eqn.
15.205 in the Lorentz gauge.

Remember the procedure for using these equations:
• Given J, solve for A (in the Lorentz gauge) from Eqn. 15.205. (I have not told you how to handle
this purely mathematical problem.)
• Work out Ƒ as the four-dimensional curl of the four-potential A as per Eqn. 15.207.
• Use Ƒ in the Lorentz force law Eqn. 15.208 to find the fate of any charge q.



CHAPTER 16

Optics I: Geometric Optics Revisited

We just finished with Maxwell’s theory of light. We took Ampère’s law,
Faraday’s law, displacement current, and so on and produced the dramatic
result: electromagnetic waves can exist on their own, travel away from
charges and currents, and actually describe light. Light is an oscillatory
phenomenon, but what is oscillating is not a medium like a string or water
on a lake, but electric and magnetic fields. The field is a condition at a
certain point that you can determine with test charges. You sit at that point
and measure it, and you find that sometimes the field points up, sometimes
the field points down, sometimes it is strong, and sometimes it is weak. It’s
that condition in space that travels in an electromagnetic wave.

16.1   Geometric or ray optics
The preceding point of view came near the second half of the nineteenth
century, after many centuries of studying light. What I’m going to do next is
present a simpler version of optics, discovered long before Maxwell. It is
relevant when the wavelength of light is much smaller than the scale of
observation. In daily life, for example, we are thinking in terms of
centimeters and meters, whereas the wavelength of light is of the order 5 ·
10−7 m. In this situation you may forget about Maxwell’s waves and use this
simplified theory called geometric optics, very much the way you can forget
relativistic mechanics and use its Newtonian version for small velocities, v
≪ c. In geometric optics light goes in a straight line from start to finish, say
from the source to your eye, unless it hits something. This is why it is also
called ray optics. If you apply Maxwell’s theory to a situation where the
wavelength is very small you arrive at this ray approximation. (We will not
derive this approximation.) When I say “very small,” you always have to
ask, “Very small compared to what?” Do you understand that? Just saying
that the wavelength is small has no meaning. I can pick units in which the



same wavelength is 1 million or 1 over a million. Small and large can be
changed by change of units.

What you need is another relevant length in play, to serve as the reference
for λ. This is illustrated in Figure 16.1. I take an opaque partition with a
hole. On one side I place a source of light and on the other I place a screen
at a distance L. The light from the source, assumed to be at a distance ≫ d,
goes through the hole and forms an image on the screen. Now I can tell you
what I mean by saying the wavelength λ is small or large: geometric optics
works only if Let us keep L/d fixed so that the condition becomes 

If λ ≪ d we may use geometric or ray optics. In this limit the image on
the screen is found by drawing straight lines, as shown in the upper half of
Figure 16.1. The screen behind the hole is illuminated in a region that has
the same shape and size as the hole.

If λ ≪ d is not satisfied, the light fans out of the hole and illuminates a
region on the screen much bigger than the geometric shadow. The smaller
the hole, the more the light fans out. The degree of brightness does not fall
monotonically as we move off center but oscillates. The oscillatory curve
depicts the intensity I or brightness as we move off center. Though
geometric optics cannot describe all this, it reigned for centuries because its
limitations became apparent only for apertures small comparable to the
wavelength of visible light λ ≃ 5 · 10−7 m.

Figure 16.1   Top: geometric optics. The beam of parallel rays crosses a hole of dimension d ≫ λ and
forms an image of the same shape and size as the hole. (We are keeping L/d fixed.) Bottom: When a
plane wave (whose crests and troughs are shown by solid and broken lines) hits a hole with d ≪ λ, it
fans out to illuminate a region of the screen that is much bigger than the hole. The oscillatory curve
depicts I, the intensity or brightness, as we move off center.



Why did I not start with geometric optics and work my way up,
culminating in the final description of light due to Maxwell, instead of
going back in time to geometric optics? There are many reasons. The first is
that this course is focused on electromagnetic theory and light came out as a
surprise at the end. The next is that I do not plan to simply go over all the
ideas of geometric optics. Instead I am going to show you a single
overarching principle from which all those seemingly unrelated results can
be derived. Finally, Maxwell’s theory isn’t the last word on light either. It
fails when you consider light of very low intensity. If light becomes really
dim you might think that all that will happen is that the magnitudes of E
and B (whose squares measure intensity I) become smaller and smaller. But
something else happens. You find that light energy is not coming in
continuously like it should in a wave, but in discrete packets. These are
called photons. You will not be aware of photons if the light is very intense
because there will be so many of them coming at you, just as you are
unaware that water is made of molecules when you take a shower or when
you look at the ocean and study its waves. You don’t see the molecules and
you don’t need them for describing ocean waves. Likewise, you do not need
to deal with photons unless the light is very feeble. But such is the condition
in the microscopic world, and we will talk about photons at length as part of
quantum mechanics.

In short, having dealt with Maxwell, we will first go back in time to
geometric optics and then forward to the quantum theory of photons.

16.2   Brief history of c
What did people of antiquity know about light? After some false starts, they
figured out that anything bright or shiny emits something called light and
we can see it. It seemed to travel in a straight line, and, for the longest time,
people did not know how fast it traveled. It looked like it traveled
instantaneously from source to sensor, because observers couldn’t measure
its travel time in daily life. This is unlike sound. You know sound travels at
a finite speed, because if you yell at a mountain, it yells back with a delay
you can time even with your pulse. From the delay you can find the velocity
of sound.

Galileo tried to find the velocity of light in a similar manner. He asked
one of his buddies to stand on top of one mountain, while he stood on top of
another mountain a mile away. Each had a lantern with a shutter. First



Galileo would open his shutter, and the instant his friend saw the flash of
light, he would open his shutter to signal back to Galileo, who was timing
the round trip. He soon realized that he was not measuring the time for the
round trip but the sum of their reaction times because he observed the same
delay when his friend was very close. It was clear that to measure the speed
of light, if it were finite, would require a very long distance of travel. Given
the accuracy of time measurement in those days, we can see that even the
distance equal to the circumference of the earth would not have been
enough because light would take only about  of a second to traverse that.

The first successful scheme for measuring the velocity of light came in
1676 from Ole Römer (1644–1710). His brilliant strategy is depicted in
Figure 16.2. You see the earth and Jupiter, initially located at E1 and J1 in
their journey around the sun (S). Jupiter has a moon called Io, which
Newtonian physics assures us will orbit with a definite time period T. Every
time he saw Io go over a certain position (involving an eclipse) relative to
Jupiter, Römer noted the time in his lab book. Let me call this notation a
pulse, as though Io were visible only when it was at this specific location
relative to Jupiter. The first pulse (shown as a solid line in the inset) reaches
the earth when it is in position E1. Let us call that time t = 0. If nothing but
Io moved, the subsequent pulses should arrive at t = T, t = 2T, and so forth,
as shown by more solid lines. But Römer observed that as the earth made its
journey around the sun, the actual pulses were delayed relative to the
expectations. The spacing between the expected and actual pulses, shown
by dotted lines, grew. (The growth is exaggerated in the figure.) Römer
found that when the earth had reached the diametrically opposite point E2
six months later, the delay was about 22 minutes. Let us assume Jupiter
hardly moves during this period, though Römer could easily account for
that motion. He attributed the 22-minute delay to the extra time light takes
to cross the diameter of the earth’s orbit. Using the best estimate for the
diameter (close to 200 million miles) he obtained a velocity of roughly
200,000 km/s, which is 2/3 that of the correct answer of 300,000 km/s. (Had
he used the correct delay of about 16.7 minutes, he would have come a lot
closer.) His theory was initially greeted with disbelief but his stunned
colleagues saw he was right when Io moved according to his predictions.
Nonetheless, it took a while for his result to be generally accepted. Though
Römer was off by some 30 percent in the value of c, his was a spectacular
achievement given that before he came along people had no clue about the



speed of light, not even whether it was finite. After him, people started
doing laboratory experiments to measure the velocity of light, knowing its
approximate value.

Figure 16.2   Römer’s experiment. The first pulse of light from Jupiter’s moon Io (when it assumes a
specific position in its orbit) arrives at earth when it is at E1 and Jupiter is at J1. This pulse is shown
by the very first solid line at t = 0 in the inset at the bottom. The next pulse should arrive after one
time period T, but it is delayed and shown as the dotted line. The delay between the expected and
actual signals, exaggerated for clarity, keeps increasing and reaches a maximum of about 22 minutes
after six months, when the earth is at the diametrically opposite point E2. (The motion of Jupiter to
J2 will be ignored in our discussion.) The delay was correctly attributed by Römer to the extra time
taken to traverse the diameter of the earth’s orbit.

16.3   Some highlights of geometric optics
As mentioned earlier, my intent is not to discuss in depth all the results of
geometric optics, but to introduce you to a principle from which all the
results of geometric or ray optics follow. Though I will give only a few
illustrative examples, you may rest assured that every result of geometric
optics involving mirrors and lenses may be deduced from this single
principle.



Figure 16.3   Geometric optics description of (a) reflection, (b) refraction (Snell’s law), (c) focusing,
and (d) image formation by a mirror.

Here are the results that I will derive to illustrate the point. Look at the
four parts of Figure 16.3.

• (a) When light bounces off a plane mirror, i = r, where i and r are the angles of incidence and
reflection measured from the normal. I will refer to this as the “i = r” law, though the actual angles
may carry other names like α or β.
• (b) When light goes from a medium with refractive index n1 and velocity c/n1 to a medium with
refractive index n2 and velocity c/n2, the angles of incidence and refraction obey Snell’s law:

Thus when light goes from a rare medium (small n) to a dense medium (large n), it will bend
closer to the normal to the interface. If you run the ray backward, from the dense medium to the
rare medium, it will bend further away from the normal. It is understood that in addition to the
refracted ray, there is in general a reflected ray obeying i = r.
• (c) If a parallel beam of light coming from infinity or from far (what does far mean in this
context?) is incident on a parabolic mirror along its symmetry axis, the rays converge at the focal
point F at a distance f measured from the middle of the mirror. Every ray parallel to the axis goes
through the focal point. Your TV dish receives the parallel beam from the satellite and gathers it all
at the focal point, where it is picked up by the receiver. If you reverse the rays, you have a car
headlight with the bulb at F emitting rays that hit the mirror at several angles and emerge as a
parallel beam along the symmetry axis.
• (d) If the source of light, the object, were not the point at infinity, but an upright arrow of height
h0 a finite distance u away, the location v and height hi of the image are found as follows, in the
simplest case. From the tip of the arrow you draw a line parallel to the axis toward the mirror. It
gets reflected and goes through the focal point. Then you draw a line from the tip through the focal
point, and that hits the mirror and comes out parallel to the axis. The crossing point of these two
reflected rays is where the image of the tip of the arrow lies.



The relation of the various distances is

What I call v and u, others may call i and o, for image and object.
• (e) A similar formula holds for lenses. Consider for example a convex lens or focusing lens,
which is a piece of glass with the property that when you shine rays of light parallel to the axis
from one side, they all meet at the focal point a distance f away on the other side (not shown in the
figure because we will revisit it later). If you have an object on one side a distance u from the lens,
the image will be on the other side at a distance v assuming u > f. The image will be upside down
and the various distances will obey the same Eqn. 16.2.

Of course, in more complicated cases some of these lengths, say f or v, could be negative, the
image upright and virtual, etc.

Now for the single unifying principle from which these assorted facts can
all be derived. It is called Fermat’s principle of least time due to none other
than Pierre Fermat (1601–1665), who made the famous conjecture (only
recently proven by Andrew Wiles) about the non-existence of integer-
valued solutions to xn + yn = zn for n > 2. His principle says:

Light will go from start to finish on a path that takes the least amount of
time.

I hope you will share my delight in deriving so many diverse results from
this single principle, in not having to carry all that miscellaneous baggage in
your head. Let us start applying the principle.

16.4   The law of reflection from Fermat’s principle
Let us say I am at B and you are at A in Figure 16.4. You send me a light
signal. What path will it take? What is the path of least time? Everybody
knows it is a straight line. No point going any other way. So that tells you
that light travels in straight lines when there’s no other obstacle because the
straight line is the shortest path between A and B.

Next I want the light to hit the mirror and then come to me. It is like a
race where the racers have to leave A, touch the wall (mirror), and reach B.
Whoever gets to B first wins. Now there are different tactics open to the



racers. Some may meander like crazy as they head for the wall. These are
sure losers. We ignore them for it is obviously best to go on a straight line
to the wall. Even then there remains a question: where to touch the wall?
One person may say, “Look, I was told to touch the wall, so I’m going to
get that out of the way first. I’m going to run straight to the wall, touch the
point right in front of A, and then run straight to B.” Fine, that’s a
possibility. Another person can say, “Let me touch the wall right in front of
B, then run straight to B.” There are infinitely many options open. We must
find from all these possible paths, made of two straight segments, the one of
least time.

So the only question the ray of light (or racer) has to ask is the following:
“Where should I hit that mirror (or wall)?” Let’s call a generic reflection
point X and let x be its horizontal distance from A (measured parallel to the
mirror). Let L be the horizontal distance between A and B and let h1 and h2
be their perpendicular distances from the mirror.

Figure 16.4   The path of least time for the ray to leave A and reach B after reflecting off the mirror at
X is found by minimizing T(x), the sum of the lengths AX and XB as a function of x. The minimum is
attained only at the point where i = r.

I will simply calculate and add the lengths of AX and XB, divide by c to
get the time T(x) as a function of x, and then minimize T(x). By the
Pythagoras theorem

We equate the x derivative to 0 to find the least time:



Thus the optimal x satisfies

which is the desired result. This is the first victory for the principle of least
time.

16.5   Snell’s law from Fermat’s principle
Next I’m going to reproduce Snell’s law, which applies when light changes
mediums. Look at Figure 16.5. The ray has to go from A, which is in the
medium with index n1 at a distance h1 from the interface, to B, which is in
medium 2 of index n2 at distance h2 from the interface. The separation
between A and B (measured parallel to the interface) is L.

Here is the racer analogy. Imagine you are A, a lifeguard on the beach,
and B is a person screaming for help in the ocean. How do you get there in
the least amount of time? One point of view is to say, “Let me go in a
straight line all the way from A to B because I heard somewhere that the
straight route is a winning strategy.” But that may not be so good when you
change mediums, because maybe you want to spend less time in the water,
where you are slower. Another point of view is to say, “Let me go as far as I
can on land, till I am in front of the victim, and then swim perpendicular to
the shore to B.” There are infinitely many options. To find the winning
strategy we will again minimize the travel time, remembering that this is no
longer synonymous with least distance due to the difference in velocities.



Figure 16.5   Using the principle of least time to find Snell’s law for refraction. The problem is
similar to reflection except for the two different velocities in the two segments. The figure assumes
n2 > n1, i.e., that light travels slower in medium 2. The reversed ray going from B to A will bend
away from the normal (θ1 > θ2). The condition  places an upper limit on θ2 for refraction.
Beyond this limit there will be total internal reflection back to medium 2.

We must now divide the distance in each medium by the velocity in that
medium (c/n) to find the time spent there, add the two times, and minimize
the total. The subsequent steps are very similar to reflection. First,

The x for least time satisfies



which is Snell’s law.
Here is some practical advice based on the material discussed above. If

you are a lifeguard, you should keep in readiness the ratio of your running
and swimming speeds, i.e., n1/n2, so that you know where to hit the water
when a victim calls.

Next, if you are at the bottom of a lake and you shine a flashlight to get
help, remember the emergent light rays will bend away from the normal.
This will be the case if you trace the ray backward from B to A in Figure
16.5. Some light will get reflected (with i = r) and the rest transmitted as per
Snell’s law. If, however, the angle θ2 from your side exceeds a certain
value, there will be no acceptable angle for the light to emerge because
Snell’s law will make the impossible requirement sinθ1 > 1. In this case the
beam will suffer total internal reflection and no light will make it out of the
water.

16.6   Reflection off a curved surface by Fermat
We have seen that when a ray reflects off a planar surface, Fermat’s
principle leads to i = r. Imagine now a generalization in which it bounces
off a curved surface. It is intuitively clear that it will still obey i = r,
provided the angles are measured from the local normal. In other words, the
tangent approximates the curved surface by a plane near the point of
incidence, and the local normal lies perpendicular to it.

Reading the proof of this claim is optional but not remembering the
result, which will be invoked here and there.

Consider the situation depicted in Figure 16.6. Whereas the plane mirror
was represented by a straight line in Figure 16.4, the non-planar surface is
now portrayed by a curve r(t), where t is a parameter that labels points on it.
You can pretend r(t) is the path traced out by a particle as a function of time
t. Consider now light that leaves the point r1, hits the mirror at r(t), and
goes to r2. We want to vary t or r(t) and look for a path of least time. The
parameter t has nothing to do with the time taken by light to travel from r1
to r2 after reflection.



Figure 16.6   Ray going from r1 to r2 after bouncing off a non-planar mirror defined by the curve
r(t). The unit vectors e1 and e2 are shown to have opposite projections along the tangent vector 

 on the path of least time. (The path shown is not one.) The normal N(t) is shown by a
dotted line, as is the continuation of the tangent vector T(t) in the opposite direction.

Let us define the unit vectors

and T(t), the local tangent to the mirror at r(t), which is just the velocity
vector of the fictitious particle

The local normal N(t) is shown by dotted lines.
We want to vary t (and through it the point of reflection r(t)) and show

that the path of least time obeys i = r where the angles i and r lie between e1
and N(t) and e2 and N(t) respectively.

Instead of measuring the angles i and r from the normal, let us measure
the angles



from the tangent in the counterclockwise sense, as indicated. What we need
to show is then

since i = r.
The total distance D(t) traveled by the ray is a function of the parameter t,

which determines the point of reflection:

Remember that only r(t) depends on t: r1 and r2 are fixed. The travel time is
D(t)/c.

Now let us rewrite D(t) in terms of dot products and proceed as follows:



where e1(t) and e2(t) are the unit vectors from r(t) to the starting and ending
points r1 and r2. The least-time condition (the minimum of D(t)/c) is

Thus, e1(t) and e2(t) have equal and opposite projections along the tangent
T,

which proves Eqn. 16.18.

16.7   Elliptical mirrors and Fermat’s principle
Light is supposed to take the path of least time. This is exactly what
happened in the case of reflection and refraction (Snell): there was a unique



path of least time and light took it. But what if, in addition to one path of
obviously least time (obeying i = r), there are many more paths that take the
same (least) time between the same two end points? That’s what we’re
going to talk about now.

Take an elliptical room, shown in Figure 16.7 with reflecting walls. You
stand at one of the focal points F1. Your task is to send a laser beam that
hits the wall and goes to a person at the other focal point F2. You know
what you have to do. The tangent to the wall at X is like a horizontal mirror,
as was proved in the last section. It is clear that if you send the ray there, it
will end up at F2 because it will satisfy i = r. (The light ray doesn’t care if
the mirror bends away from the point X. As far as the ray is concerned, it
could be reflecting off the infinite tangent plane.)

While this is a correct answer, it is not the only correct answer. It turns
out that no matter in what direction you send your ray from F1, no matter
what the reflection point P is, it will arrive at F2. In other words, I am
asserting that no matter where P is, the angle of incidence α will equal the
angle of reflection β, both measured from the normal at P.

If you wanted only to use ray optics, one way to verify this claim is to
establish analytically α = β at every point P on the ellipse. You could start
with the equation for the ellipse in terms of its semimajor and semiminor
axes a and b,

compute the normal to the ellipse at a generic point P = (x, y), and verify
that it bisects ∠F1PF2.

I will now show that Fermat’s principle allows us to finesse this tedious
calculation.

My argument rests on the fact that every path from F1 to F2 via any point
P on the ellipse has the same length as F1XF2, itself a path of least time.
Then according to Fermat’s principle, all such paths obey the laws of
geometric optics, in particular α = β.



The fact that all the paths have the same length and hence take the same
time follows from the definition of the ellipse as the locus of points the sum
of whose distances to the two focal points is constant. Remember this is
how an ellipse is drawn. If you drive two thumbtacks into the paper to
anchor the ends of a string, stretch it taut with a pencil, and move the tip
around, it will trace out an ellipse. In the notation of Figure 16.7 this means

Figure 16.7   With elliptical walls, every path F1 PF2 is a path of least time. It is obvious that the
path via X takes the least time and also obeys i = r. Not so obvious but true is that these two features
hold for all the paths going via any point P on the ellipse. This is why all rays leaving F1 focus at F2.
(The tiny vertical barrier at the center excludes the direct path between the focal points.)

Since the time taken by light to go from F1 to F2 is (r1 + r2)/c, every path
takes the same time, no matter what P is. This common time is also the least
time since one of the paths is the symmetric path that goes via X, known to
be a path of least time from the plane mirror example.

Recall that the path of least time is characterized by the fact that if you
change the point of reflection slightly there will be no change in the travel
time (or distance) to first order. Now take any path F1PF2. If you modify it
slightly by changing P a bit, the time taken will not change at all (not just to
first order) because on either side of this path are paths of exactly the same
time.

Now for another practical tip. Imagine that this elliptical wall that reflects
light is replaced by a steel wall that reflects bullets. You have a gun with
just one bullet left. You are at F1 and your mortal enemy is at F2, similarly



armed. In what direction will you fire? One student said, “At your enemy,”
and I had to concede he was right. I was so in love with the complicated
solution I had in mind that I had overlooked the obvious. So I said,
“Imagine there is a small steel partition between you two. Now what will
you do?” Now everyone agreed that they would aim at X. That will
certainly work, but you know now that you can fire in any direction and
still hit the enemy. The strategy works because bullets are like light. They
obey i = r. The bullet bouncing off X obviously obeys i = r. I have just
shown this is true for any point of reflection P. You will thank me if you
ever have to use this rule. While your opponent, who took only Physics
101, is standing at F2 wasting valuable time aiming for the midpoint X, you,
who took Physics 201, will fire immediately from F1 in any old direction
and score a hit. (Obviously you will not aim exactly away from F2 because
on the rebound the bullet will first hit you and then the steel partition.)

The strategy also works for sound of small wavelength and high
frequency (geometric acoustics): if you are at F1, you may summon your
dog at F2 by blowing the whistle in any direction (again assuming a
partition at the center that obstructs direct sound propagation).

The take-away message is this: if there are many paths that take the same
time between two given end points, rays leaving the first in many different
directions will converge at the second upon reflection.

Remember that not only do the rays leaving F1 converge at F2, they take
the same time to do this via every P. (I want you to contrast this with a case
where the rays converge at F2 but after taking different periods of time.)
The equal travel time means that if there were a candle at F1 forming an
image at F2 and you suddenly extinguished it, the image would disappear
abruptly, after the delay (r1+r2)/c, and not gradually as it would if the
different rays took different times. If you emitted a flash, all the radiated
energy would converge at F2 at the same time. But for this, the satellite dish
would not focus the incident energy and your dog at F2 would not hear you.

16.8   Parabolic mirrors
Having seen that focusing becomes possible when there is more than one
path of least time, let us try to understand a focusing mirror shown in Figure



16.8 in these terms. Light comes in parallel rays from some source at
infinity. You want to put a mirror of profile y(x) in the way of the parallel
beam so that every one of these parallel rays will hit the mirror and come to
the focal point F after traveling the same distance.

(The actual mirror will be its surface of revolution of y(x) and reside in
three dimensions. For example, if this curve were a parabola, the actual
mirror would be a parabolic dish, the type used for satellite TV.)

Let us now design the mirror.

Figure 16.8   The parabolic mirror has its focal point at F, a distance f to the right of the center of the
mirror, with coordinates (0, 0). The race begins at line L1 perpendicular to the symmetry axis. The
line L2 is also perpendicular to the axis and is at a distance f to the left of the center, (0, 0). Each ray
hits the mirror at some (x, y) and goes to F. Since the distance from (x, y) to F is the same as the
distance to the line L2 (the defining property of the parabola), every ray travels the same distance L1
− L2. Three such equal distances are shown with one, two, and three vertical bars.

Since the rays begin at the point at infinity, they will all take infinite time
to get to F no matter how they get there. There is no way to pick one or
more of these paths as the ones taking the least time. So let us measure all
distances traveled by the parallel rays from a fixed line L1 normal to the
axis, rather than from the point at infinity, to make a meaningful
comparison of finite distances. Let us first take the ray that goes along the
symmetry axis. It passes through F, goes a distance f, hits the mirror at (0,
0), and comes back a distance f to the point F. This is obviously a path of
least time and obeys i = r = 0. Now draw a line L2 perpendicular to the axis,
but behind the mirror a distance f away. The total distance traveled by this
ray is the distance between the two parallel lines, L1 and L2. This is true
because once the ray hits the mirror, the distance it travels upon reflection



back to F is the same as the distance to the line L2 behind the mirror.
Therefore the time to go from L1 to F after reflection is the time to go from
L1 to L2. Now consider a second parallel ray above the axis that hits the
mirror at some X = (x, y). We want it to travel to F taking the same time as
the first ray. This will happen if the distance from X to F is the same as the
distance from X to the line L2. Make sure you understand this. If there were
no mirror, all rays parallel to the axis would take the same time to go from
L1 to L2. Instead, they go the same distance by first hitting the mirror and
then, rather than going straight on to L2, go to F, which is equidistant. Three
such segments of equal lengths are shown by one, two, and three crossbars.

We now have a condition on the shape of the mirror: it is a curve y(x)
with the property that every point on it is equidistant from a point F and a
line L2. (The distance to the line is the perpendicular or shortest distance.) If
you can find such a curve (or its surface of revolution in three dimensions)
that’s the curve or surface you want to take to your mirror maker.

We know such a curve: it is a parabola, which is the locus of points
equidistant from a given point (F in our problem) and a given line (L2 in our
problem). Let us find the equation for the mirror surface using this property.

With the origin of coordinates (0, 0) at the center of the mirror, let us
label a generic point on the mirror as (x, y). What we want is the expression
for the function y(x). We will derive it simply by imposing the definition of
the parabola.

Equating the distances from the point (x, y) to the focal point F and to the
line L2 we find for the upper ray:

Squaring both sides and simplifying,



which defines a parabola. (You may be more used to a parabola of the form
y = ax2, which rises above the x-axis quadratically, symmetric about the y-
axis. What I have above is a rotated version with x and y interchanged.)



CHAPTER 17

Optics II: More Mirrors and Lenses

It is easy to summarize the last chapter in a sentence: Light obeys Fermat’s
principle of least time. From this principle we derived the laws of
reflection, refraction (Snell’s law), the unusual reflecting properties of the
elliptical mirror, and the equation for the parabolic mirror. We understood
how focusing occurs when there are multiple paths of least time connecting
the object and image.

17.1   Spherical approximations to parabolic mirrors
If you want a mirror that will focus a beam parallel to the axis, no matter
how wide, you need a parabolic mirror. A parabolic mirror is what you
would order for the Hubble telescope. But if you cannot afford a parabola,
there is a cheap alternative: a sphere. Now, a sphere is not quite a parabola,
but I am sure you will appreciate that a slice from the sphere can mimic the
parabola up to some distance, as shown in Figure 17.1. Beyond that of
course it will deviate. But if you consider only beams very near the axis,
then the two are equivalent, except for the cost.

We will often refer to spherical mirrors in this chapter.
Let us begin by asking ourselves the following question: if we take a

hollow sphere of radius R, slice a part of it, and paint the convex side with
silver, what will be the focal length of the concave mirror?

Look at Figure 17.1. We choose as the origin of coordinates the leftmost
point of the circle, because this point will serve as the origin of the
approximate parabola. In these coordinates the equation for the circle of
radius R centered at (R,0) is



Figure 17.1   Part of the sphere of radius R (dotted line) approximates a parabola (solid line) if we do
not go too far off the symmetry axis. The spherical mirror has  in this approximation.

which simplifies to

First let us ignore the x2 on the right and compare the equation to that of
the parabola, y2 = 4xf. We find the focal length of the spherical mirror is

But we’re not done yet, because we just threw away the x2 term. We need
a reason for that. It involves the following notion of big and small lengths.
Whenever we deal with a mirror or a lens, lengths like u, v, f are all going to
be treated as big numbers. Lengths like y that take you off the axis are going
to be considered relatively small numbers. The reason is that if this is not
so, an object of height y will not lead to a well-defined image. (Even a
parabolic mirror, which exactly focuses a parallel beam of any width, will
not produce a sharp image of an object at a finite distance if its height
violates the smallness condition.) Lengths like x that are proportional to y2

are even smaller. So the hierarchy is this: u, v, f are big, y is small, x is small



squared. Now look at the two terms on the right in Eqn. 17.2. One is x times
R, the other is x times x. So x times R beats x times x by a factor x/R. So
we’re going to drop the x2 term and get the parabola as an approximation.
In this approximation we have

This equation is consistent with the notion that x is quadratic in the already
small quantity y or, equivalently, that it is smaller by an additional factor of
y/R:

We know a sphere can mimic a parabola only for small deviations from
the axis. This can be quantified now: if the rays come so far off the axis that
x2 is not negligible comparable to xR, the spherical mirror will neither look
like a parabola nor focus like one.

Whereas the parabolic mirror has only one privileged point, namely F,
the spherical mirror has a second one: the center of the sphere C, at a
distance R = 2f.

17.2   Image formation: geometric optics
We have confirmed that a parabolic mirror and its spherical approximation
can focus parallel light rays coming from infinity starting with just the
principle of least time. Good! But mirrors are expected to do more than just
focus parallel beams emanating from an object at infinity. They are also
supposed to form sharp images of objects of finite height placed at a finite
distance.

In this section I will analyze this problem using ray tracing (for objects
that are not too tall) just to illustrate how it is done. I will derive the relation
between the object location u and size h0 (which we may take as input) and
the image location v and height hi, which we may take as output. In the next
section I will re-derive the same final formulas using Fermat’s principle.



Consider an arrow of height h0 at a distance u from the mirror as shown
in Figure 17.2. We want to know where the image of its tip will be formed.
We find it by drawing two rays whose fate we know from Fermat. The first
travels to the mirror horizontally and upon reflection goes through the focal
point. The second one goes to the mirror through the focal point and
emerges horizontal. We know this because if we run this ray backward, we
see the horizontal ray hit the mirror and go through the focal point. But if
while going backward it is a path of least time connecting the end points,
it’s also a path of least time going forward.

Figure 17.2   A spherical mirror. The solid lines are two rays used to find the relation between u, v,
and f for an object placed a finite distance away. The rays leave (u, h0), hit the mirror at (x0, h0) or
(xi, − hi) and meet at the image (v, − hi). The dotted line is a third ray that hits the mirror at (0, 0) and
meets the other two at the image point.

The two reflected rays meet at a point that defines the tip of the inverted
image of the arrow. Let this occur at a distance v at a height hi. (By
convention if hi is positive the image is at (v, − hi).) We want to determine
hi and v in terms of h0 and u that we may choose at will.

Equating the tangents of the two opposite angles α we find

where xi has been ignored compared to f. Similarly from the two equal β’s
we have



where x0 has been ignored compared to f. Equating the products of the left-
hand sides to the product of the right-hand sides and canceling hih0, we find

which can be rearranged to the familiar form

The ratio of the image size to the object size hi/h0 follows from Eqn.
17.7:

The ratio of the object size to the image size is just the ratio of the object
distance to the image distance.

Equations 17.9 and 17.10 determine hi and v in terms of the parameters
h0 and u that we may choose at will. Of course, we may use these equations
to find any two parameters given the other two. For example, in some
problem we may want the image to be at a given v, in which case the same
formula can be used to find the requisite u.

The magnification M is defined to be

In this case of positive u and v, the minus sign signifies that the image
will be inverted. In some other mirrors, you will find v is negative because
the image is virtual. Then M will be positive, meaning the image is upright.



When you look into the bathroom mirror, your image has the same
orientation as your face, not upside down.

Although we only considered the tip of the object and its image, these
arguments hold for any other point on the object because v, the image
location, is independent of h0, the height of the tip. In other words, the
image of the upright arrow will be an inverted arrow.

17.2.1   A midlife crisis
Some years after learning geometric optics, long after all the exams were
over, I began to ask myself the following. We draw just two rays and claim
their intersection point is the location of the image (of the tip of the arrow).
But any two rays will always meet somewhere unless they are parallel.
(This will happen even if you distort the mirror from its spherical or
parabolic shape.)Why should that point be the image point? What if I draw
another ray? How do I know it too will come to the same spot? In other
words, two rays crossing somewhere is inevitable, but three or more
crossing at one (image) point would be more compelling evidence of image
formation by focusing of rays.

So I considered one more ray (dotted line in Figure 17.2) reflecting off
the center, where the tangent is vertical. We know it must obey i = r, which
imposes an additional constraint on hi, h0, u, and v:

If this constraint is not satisfied it will mean that the third ray cannot obey
the law of reflection and also pass through the intersection point of the first
two rays. Luckily this condition is satisfied; see Eqn. 17.10.

17.3   Image formation by Fermat’s principle
So we have three reflected rays meeting at one point. That is reassuring but
not enough. Maybe it worked out because the third ray hit the mirror at a
special (symmetric) point. If I draw yet another one, hitting the mirror at a



more generic point, how will I know it too will also come to the same
image point?

Using ray optics we can show once and for all that all reflected rays
converge at the image point, regardless of the height y at which they hit the
mirror (provided it is small compared to f or, in the spherical case, R).

But I want to derive the same result using the principle of least time. In
this approach the rays leave the object in many directions, hit the mirror at
various heights y, and meet at the image, after having traveled the same
distance or having taken the same time, which should also be the least time.
I will show this in two stages.

1. I will show that the ray that hits the mirror at y = 0, namely at the origin (0, 0), is a path of least
time (and obeys i = r).
2. I will show that the same time is taken by other rays that hit the mirror at neighboring values of
y. That is to say, the travel time is y-independent for small y.

Before I embark on this I must warn you that the y-independence of
travel time is not exact. It will be valid only when powers of y higher than
y2 are neglected. This is not because the sphere is an approximation to a
parabola; it is true even for the parabola. The latter may perfectly focus a
parallel beam of arbitrary width, but it will not form perfect images of
objects at a finite distance unless y is small.

Here are two results we will need. The first is the equation of the mirror
surface:

The next is the binomial approximation to 

Now look at Figure 17.3, which shows an object of height h0 at u and an
inverted image of height hi at v.



We are free to choose h0 and u at will, and we need a way to determine hi
and v, the image height and location.

Our strategy will be to compute D(y), the path length as a function of y,
and see if it can be made y-independent by judicious choice of hi and v.

Figure 17.3   The path length for the ray that goes from object O to image I via the point X = (x, y) on
the mirror is the sum of the hypotenuses of the two right triangles OX1 and IX2. It is independent of y
to order y2. All paths therefore take the same time, which is also the least time.

The distance traveled by the ray that hits the mirror at height y is the sum
of the hypotenuses of the two right triangles OX1 and IX2:

We are going to keep terms of quadratic order in y and h and linear order in
x since x = y2/ 4f on the mirror surface. In this approximation



Let us write this as

We want the result not to depend on y.
The first line is D(0), the path length for reflection off the vertical tangent

at y = 0. It serves as the reference. The coefficient of the linear term can be
made to vanish if



That is,

If this condition of vanishing first derivative of D(y) at y = 0 is satisfied, it
follows that the path through y = 0 is a path of least time. Not surprisingly,
from the figure we can see that this just says that i = r for reflection off the
vertical tangent. This only determines the fate of a single ray, one that hits y
= 0.

This condition alone does not fix the image location because we can slide
the image along the reflected ray, keeping hi/v or the angle subtended fixed.
This is to be expected because it is not enough that the paths infinitesimally
close to y = 0 all have the same path length. This will be true even if the
mirror were flat. What we are looking for is a mirror that is curved in just
the right way that the path length is constant over a wider region, to
achieve the focusing of rays reflected off a continuum of points near y = 0.

To this end we turn to the quadratic terms. Demanding that they vanish
requires the vanishing of the second derivative:

This means



which is the second of the equations obtained by ray optics.
Any powers of y that survive in a more accurate calculation must be of

order y3 or higher. We cannot do anything about them since we have used
up the two degrees of freedom at our disposal, namely hi and v, to kill the
first two powers. Unless these higher order terms are anomalously large, the
graph of D(y) versus y will be extremely flat near y = 0. The (approximate)
constancy of path length means the constancy of travel time. Since y = 0
corresponds to the path of least time (reflecting off a vertical tangent at the
origin) all are paths of least time.

If h or y gets large enough for the neglected terms to become significant,
the image will be blurred.

To summarize, we have imposed the condition of least time for paths
with a continuous range of y to ensure that rays hitting the mirror not only
at y = 0 but nearby all meet to produce a focused image. This in turn gave
us two equations (the vanishing of the first and second derivatives of D(y)
at y = 0) that determined hi and v as a function of h0 and u. These equations
agreed with those of ray optics.

17.4   Tricky cases
There are countless applications of the equation

for mirrors and lenses. As mentioned earlier, some of these variables can be
negative in complicated cases. For example, in the case of a lens where the
(virtual) image is on the same side as the object, v is negative. A convex
mirror, which spreads out a parallel beam instead of focusing it, has a
negative f. Only u and h0 can always be chosen to be positive by
convention. While the equation above will work in all situations if you pay
attention to the signs, it is interesting to look at one or two cases where the
standard recipe does not work, either in ray optics or least time. Both
examples involve virtual images.



The first involves a convex mirror with negative f, that is to say, the
image of a point at infinity is a virtual focal point.

The second involves a virtual image of an object in front of a concave
mirror with u < f.

We will see how the standard recipe fails in both cases and how it is
modified to give results that agree with Eqn. 17.25.

17.4.1   Fermat’s principle for virtual focal points
Consider a convex mirror shown in Figure 17.4. When a parallel beam
(solid lines) is incident on it from the right, the reflected rays diverge rather
than converge.

It is known in ray optics that the reflected rays will seem to be coming
from a virtual focal point behind the mirror at a distance |f |, that is, they
will meet at F if continued backward, into the mirror.

We want to prove this result using Fermat’s principle. It looks like we
cannot even get started because the rays that come to the mirror from
infinity diverge upon reflection and never really meet again. How are we to
compare their travel times and pick the one of least time if there is no
common end point? This seems to be a result in geometric optics we cannot
derive from the principle of least time. Actually we can, but in two stages.

First assume the mirror is reflective on both sides. Look at the dotted
lines on the concave side of the mirror. We see rays parallel to the axis
come from the left. By Fermat’s principle, applicable on the concave side,
these rays will meet at F and also obey α = β. Now continue the dotted lines
through the mirror to the convex side as solid lines and reverse the arrows
on them. At this stage, these are just some lines and may not correspond to
physical rays. But if we extend the normal through to the convex side, we
see rays coming from the right parallel to the axis and bouncing off the
mirror obeying α = β. This is exactly what a real physical ray bouncing off
a curved surface would do. It then follows that if the outgoing physical ray
on the convex side is continued to the concave side, it will pass through F.
Thus F will be the virtual focal point for the convex mirror.



Figure 17.4   On the concave side we see a parallel beam (dotted rays) incident on a concave mirror.
We know from Fermat (applicable here) that these will focus at F and obey α = β. If we continue the
dotted lines to the convex side as solid lines and reverse the arrows, we see rays come in parallel to
the axis from the right and bounce off the mirror, obeying α = β, as a physical ray would. It follows
that all outgoing physical rays, if continued back into the mirror, would pass through F.

17.4.2   Ray optics for virtual images
Now we consider a problem for which the standard recipe from ray optics
fails. Consider a concave mirror and an object that is at a distance u > 2f.
We are supposed to find the image by drawing two rays, one that goes in
parallel and comes out of F and the other that goes in via F and emerges
parallel. Their intersection will be at a distance v < 2f, as shown in Figure
17.2. As you reduce u, you increase v till you hit u = 2f. Then v = 2 f as
well, and the object and its inverted image are equidistant from the mirror.
Suppose I move the object closer. The image will move out with v > 2f.
When the object is at F, then 1/v = 0, which means v = ∞. This is just the
reverse of an incoming parallel beam converging at F. Now let us push our
luck and let u < f. Where is the image? From

we find that v < 0. But a negative v means the image is behind the mirror!
How can there be an image behind an impenetrable mirror? The answer of
course is that there isn’t an image there but it will look that way. To
understand this we can try some ray tracing, as indicated in Figure 17.5.



First we draw a ray from the tip (T) of the object that hits the mirror parallel
to the axis and then gets reflected through F. This ray, call it ray 1, is
supposed to intersect the ray that first crossed F, hit the mirror, and emerged
parallel. But if you draw a ray from the tip T to F, it points away from the
mirror! It is never going to reflect off the mirror at all. So what we are told
to do is this: draw the second ray, ray 2, from F to T. If you continue it till it
hits the mirror, it will emerge parallel upon reflection. (This is true because
if you reverse the entire ray, you have an incoming parallel ray hitting the
mirror and ending up at F.) So we have successfully drawn two rays
obeying the laws of reflection, but they are moving away from each other
and will not intersect in the right side of the mirror. On the other hand, if
continued backward through the mirror (dotted lines in the figure), the rays
will meet. The meeting point is the virtual image of the tip because the rays
of light will seem to be coming from there.

Figure 17.5   Virtual image formation for concave mirror when the naive construction fails. First, the
ray from the tip T and passing through F does not hit the mirror. So it is continued the other way till it
does and emerges parallel (ray 2). But it does not intersect ray 1 which hits the mirror parallel to the
axis and gets reflected through F. However, if continued to the dark side, rays 1 and 2 appear to come
from the virtual image on the left. The standard equation holds with v = −|v| negative.

A question still remains: will the virtual image location |v| to the left of
the mirror obey Eqn. 17.25? It will, despite the fact that the image is virtual.
Equate the two expressions for tanβ, one from the small right triangle with
vertical side h0 and the other from the larger one with vertical side hi:

Now do the same for angle α:



We have seen this pair before and know that they lead to Eqn. 17.25 and the
magnification formula. For example, equating the quotients of the two sides
we find

because |v| = −v. Equation 17.30 is the same as Eqn. 17.8 for the real image.
The least time approach can also reproduce these results, but only after

we invoke some clever tricks.

17.5   Lenses à la Fermat
Look at the lens in Figure 17.6. I have an object O, which is infinitesimally
tall at the distance u to the left of the center of the lens. I want the lens to
form its image I on the other side, at a distance v, through the convergence
of many rays, all taking the least time. The shortest route goes straight from
object to image a distance u+v, while others that cross the lens at higher
altitudes are longer. They still have a chance to be competitive because least
distance no longer means least time: light travels in the lens at a reduced
velocity of c/n. This means that as far as travel time goes, 1 cm of lens is
equal to n cm of air.

The figure shows one ray going in a straight line through the thickest part
of the lens. Another skips the lens entirely and grazes over the topmost
point P. We will simply equate the times for two extremes. That the times
are equal for intermediate heights (in the usual approximation of dropping
higher powers of small quantities) is harder to show and will not be
attempted here.



Figure 17.6   The focusing lens whose faces are part of spheres of radius R. The time taken to go
from the object (O) to the image (I) is the same along the two indicated paths. The shorter path
straight through the lens takes the same time as the one that grazes the top (P) because light travels at
speed c/n in the lens.

Assuming that each lens surface is part of a sphere of radius R, the old
formula

from our study of spherical mirrors tells us that the distance δ in the figure
is

where h is the height of the lens.
The ray that goes straight travels a distance u − δ to the lens, then a

distance 2δ inside the lens, and finally a distance v − δ on the other side to
the image point. If we divide the distances in air by c and the distances in
the glass by c/n we find the total time is



Multiplying both sides by c we find the part in the lens counts for a distance
2nδ as advertised:

For the path that grazes the topmost point at P,

For the paths to take the same time, we need

We are free to call the combination 2(n−1)/R what we want, but in calling
it  we are implying it is the inverse focal length. And it is. If we set u = ∞,
that is, place the object at infinity, the image location v must equal f. This is
true in Eqn. 17.38.

Notice that there are two ways to find the focal length. One is to do an
experiment with parallel rays and see where they meet. But what we have
here is a calculation of the focal length in terms of R and n. The resulting
formula will tell you what to do if your lens has a focal length that is too big



or too small. You can vary it by varying either n or R. You can take different
materials or you can take different radii of curvature.

17.6   Principle of least action
Fermat’s principle, which describes light, can be generalized to describe
particles. Consider a Newtonian particle that goes from (x1, t1) to (x2, t2).
Generically, there is only one Newtonian trajectory passing through both.
(Two points on a trajectory replace the initial position and velocity at one
point in fixing the trajectory.) It follows a trajectory xN(t) shown in Figure
17.7, determined by solving F = ma. How is that path xN(t) different from
all possible paths x(t) one could draw between those two end points? It is
true that at each point it obeys md2x/dt2 = −dV/dx. But that is a very local
statement. Is there anything global we can say about the trajectory as a
whole?

The answer is that we can: it is the path of least action, where the action
S is defined as

If I give you a path x(t), you can find its action S [x(t)] as a function of the
path by integrating the difference of the kinetic and potential energies on
this path. Thus S is a function of the entire path x(t) under consideration. A
function of a function is called a functional and this one is written S [x(t)].

The claim is that the Newtonian path is the path of least action.



Figure 17.7   The thick line is the actual path taken by the particle on the path of least action. The
thinner line shows a neighboring path that deviates by δx(t) at time t. The total change in action δS
due to this change is required to vanish to first order in δx(t). This yields the Euler-Lagrange
equation, which reduces to F = ma.

In the case of reflection, in looking for the path of least time, we
considered very simple paths. They were made of two straight segments
and specified by just one variable: the value of x where the ray hit the
mirror. If xmin led to the path of least time, it had to be the solution to

Equivalently we could say that since

dT, the change in T to first order in dx, vanishes at xmin. So it should really
be called the path of stationary time and not least time. (Whether or not it is
a minimum is determined by the second derivative, which we did not
examine.) But the name has stuck in optics and mechanics.

The problem of minimizing S in mechanics is more difficult than
minimizing T(x) for reflection. Whereas T(x) is a function of the only
variable at hand, the location x of the point of reflection, the action S
depends on an entire function x(t). The path is not assumed to be made of
straight lines. Given the two end points (x1, t1) and (x2, t2) we need to



consider every conceivable path joining them. We have to select the path of
least action from among these. We may still use the fact that if the path of
least action is altered infinitesimally by an amount δx(t) at time t, as shown
in Figure 17.7, the action should not change to first order in δx(t). This is a
problem in the calculus of variations. The analog of dT/dx = 0 is the Euler-
Lagrange equations. These turn out to be just Newton’s laws. In other
words, to follow the path of least action, the particle need not compute S in
advance for each possible path and then pick the winner; it has only to obey
Newton’s law at each instant.

Why do we bother with the principle of least action if the equations we
get in the end are equivalent to Newtonian mechanics? There are many
advantages that were appreciated even in the years following this
development. You can find them in any book on advanced mechanics or
online. More recently, Richard Feynman (1918–1988) discovered a simple
way to state the laws of quantum mechanics in terms of the action of
classical paths. There is no such route starting with F =ma. All of modern
quantum field theory is stated in this language of action. For example, if
you want to formulate the theory of how quarks and gluons interact, you do
not seek the analog of F = ma, you seek the correct action written in terms
of quark and gluon variables. (The action is not the time-integral of the
difference of kinetic and potential energies except in the simplest problems
of mechanics. For a particle in a magnetic field, the action is cooked up so
that the Euler-Lagrange equations reduce to F = q(E + v × B). Incidentally,
the action can be written only in terms of A and V and not E and B.)

17.7   The eye
The human eye and visual system are very very impressive. You place an
object in front of it and the lens in the eye forms an inverted image on the
retina. The inversion of the image is a well-defined, objective, and
verifiable claim. If I look into your retina as you look at an upright candle,
the image of the candle will be inverted. But this inversion doesn’t seem to
bother us. After all, at what stage do we really see something? It’s not very
clear. Do we see it in the retina or do we see it in the brain? There is simply
a 1:1 correlation between what’s registered in my retina and what I run into
in my real life. I’m walking around, and I bump into the upside-down table.
The fact that it’s upside-down in the retina is not relevant. I know how to
place an upside-down cup of coffee on the upside-down table. The brain has



learned how to translate the image on the retina into what we will
encounter. In fact, the brain’s ability to manipulate images has been
demonstrated in a bizarre experiment, where participants wore glasses that
inverted retinal images one more time. After a few days, those guys were
just fine. So the visual system has a lot of software behind it. I learned that
the hard way when I had an eye operation and the doctor pulled off the
bandage with a flourish. I was in a panic: I could not focus and was seeing
double. My doctor didn’t seem particularly worried. He said, “You’ll be
fine in a few days.” Now I’ve heard that line before and was not comforted.
But slowly, my vision got better and better, not due to any more surgery.
Slowly my brain began to reprogram itself with respect to the new
parameters, to once again correlate the images in the eye with what was
actually out there.

So much for the impressive software. But let us look at the hardware
responsible for the imaging on the retina. We can see a potential problem
there. The retina is at a fixed distance from the lens, equal to the diameter of
the eyeball. That means v is fixed. Even as we vary u, the location of the
object, we want a sharp image on the retina at fixed v. But we know from
the lens equation

that v is determined by u and should vary with it. How does the eye
manage? The answer is that something we have always held constant so far,
the focal length f, changes. That is the amazing thing about the human lens.
It’s made out of some jelly-like stuff, and there are some muscles pulling it.
If the muscles pull it, it will become longer and thinner, and it will have one
focal length. If the muscles relax, it will have another focal length. When I
look at an object far away, the muscles are in the relaxed state. As the object
comes closer, it takes a certain effort to focus on it.

Let us move on to the image so produced on the retina. I will use another
principle from ray optics best suited for this discussion: the ray through the
center of the lens goes straight through. (At the center the opposite faces of
the lens are parallel, if we do not go too far off-axis, and light refracts
coming in and going out as if through a glass slab with parallel faces. In this



case we know it emerges in the same direction and with a lateral
displacement that is negligible in this context.) From the upper half of
Figure 17.8 we see that the apparent size of anything, the size of its image
on the retina, is decided by the angle subtended by the object, θ ≃ tan θ =
h/u. If the object is small, we just bring it closer till h/u is big enough. If we
could do this indefinitely, we would not need a microscope. If we want to
see little bacteria, we just pull the little guys really close to our eye. But this
does not work beyond some point. The eye cannot focus anything that is
closer than the near point, which is roughly N = 25 cm away. The muscles
pulling on the lens cannot deform it any more. For an object of fixed height
h, the best you can do is therefore

Figure 17.8   Top: Without the magnifying lens the biggest subtended angle θ0 is obtained by placing
the object at the near point N. Bottom: With the magnifying lens, the subtended angle is larger
because the object is now closer than N, but the virtual image (with the same opening angle θ) is far
away and easier on the eye.

Suppose you bring it closer anyway. There is good news and bad news.
The good news is that the image on the retina is bigger. The bad news is



that the big image is blurry. Your lens cannot focus the image on the retina
because it is too close. The solution is to view it through a magnifying lens.
As shown in the figure, it produces a virtual image with the same subtended
angle, but at a convenient distance. Usually the preferred v is large. In the v
= ∞ limit we have

i.e., you place the object at the focal point of the lens. The angular size of
the object (now at u = f) is

The magnification is defined as the ratio of subtended angles

Thus a lens with f = 2.5 cm will cause a magnification of 25/2.5 = 10.
It is possible to improve on the magnification beyond N/f a bit if we are

willing to suffer a little. We begin with the formula for the general
placement of the object (not necessarily at F):



Clearly M increases as |v| decreases, but we cannot make it too small: we
require |v| ≥ N for us to see the virtual image clearly. Thus the best
magnification possible, with the virtual image at the near point, is

The price you pay for the extra 1 in magnification is that you have to look
at an image at the limit of your capabilities, which can be very tiring after a
while. You might gladly give up this gain of 1 in magnification for the
comfort of an image at infinity if you were a jeweler or watchmaker.

Can you really see something at infinity? You can, if it is infinitely large.
The idea is that if you make the object bigger and bigger as it recedes,
keeping the angle subtended constant, you will see it no matter how far
away it is. In practice, infinity really means far enough that the rays that
come from it are very nearly parallel.



CHAPTER 18

Wave Theory of Light

We now go forward in time from geometric optics. As always, it was
overthrown by the one authority we all must bow to: experiment.

If your theory doesn’t agree with the experiment it’s over, even if your
first name is Isaac or Albert. And conversely, if you’re an unknown
newcomer who makes predictions that agree with experiment you become a
rock star. Everything is based on experiment. That’s the only way we
change our minds. Now you might say, “Why do you keep doing this to us?
We believe everything you tell us. We write everything down. We do the
problem sets and then you say, ‘Oh, the theory I taught you the other day is
inadequate. Here’s a better theory.’ What’s going on? Are physicists really
wrong so often?” I have to be very careful when I say we are wrong
because the news leaks to the press and the media who will say, “Physicists
think they’re always wrong.” In fact, I’ve gone on record saying, “We’re
always wrong.” What I mean is that no matter how many laws we find, one
day we will find some new experiments that are not explained by these
laws. That’s not really bad news. That’s what keeps us in business. We want
to find something that doesn’t fit anything we know. For example,
Newtonian mechanics is wrong in the sense that it doesn’t work when
velocities approach the speed of light, but it’s not wrong in the sense that
the predictions it made in its proper domain do not work anymore. It was
supposed to work in a limited range of experimental observations. If you
cross the limit, if you build accelerators that send particles at very high
speeds, you may find the particles don’t obey Newtonian mechanics. Then
you need Einstein’s special relativity.



Now if you have a theory like Einstein’s, a new theory that overthrows
the old theory and explains new phenomena, there is still one extra
requirement. Can you guess what that might be? It is that the old
experiments, which were explained by the old theory, must be explained by
the new theory as well. In fact the new theory, when it’s a good one, will
also explain why people fell for the old theory for so many years. Relativity
does just that. It works for all velocities up to the speed of light, but if you
let  you will get back Newtonian mechanics. Similarly, quantum
mechanics is essential for very, very tiny objects at the atomic scale, but if
you apply it to big things you’ll find that the world begins to look
Newtonian. The quantum equations of motion reduce to Newton’s laws for
macroscopic objects.

We now turn to the experiments that signaled the limits of geometrical
optics. I will tell you in due course why we didn’t realize there was
something wrong with it for so long.

Consider the experiment I already mentioned at the beginning of
geometric optics. In it there is an opaque partition with light coming from
one side, going through a hole and illuminating a screen on the other side.
The illuminated region is of the same shape and size as the hole. As you
shrink the hole, the light begins to spread out to bigger and bigger areas. It
no longer forms the geometric image of the aperture. In addition, the
intensity of light oscillates and dies off as we move off the center. These
features are not going to come from geometric optics. Something has to
take its place. A major clue came from the experiment performed in 1801
by Thomas Young (1773–1821). That dramatic experiment really
demolished the ray theory of light. It involves a phenomenon called
interference.

Young’s experiment is depicted in Figure 18.1. We are looking down at a
rectangular experimental region. Light is emitted by a source E on the left
wall. At the right wall is a screen to receive the light. (The screen and the
rest of the apparatus have a dimension perpendicular to the page.) Between
the two walls is an opaque barrier with two slits S1 and S2, which can be
open or closed. The top half of the figure shows the intensity I1(y) as a
function of the coordinate y measured along the back wall, with just S1
open. The pattern for I1(y) is almost flat with a slight peak in front of slit 1.
Not shown is a similar pattern for I2(y) with only slit S2 open.



Figure 18.1   Top: Light from the emitter E at the left passes via one open slit S1 in the opaque
partition and illuminates the screen behind with an intensity pattern I1(y) that is almost flat and
slightly peaked in front of slit 1. A similar pattern I2(y) obtains when only slit S2 is open (not
shown). Bottom: When both slits are open the result is the oscillatory pattern I1+2 instead of I1 + I2,
the sum of the two intensities (shown by a dotted curve). At the point X, there is less light with both
slits open than with one.

What intensity I1+2 do you expect when both slits are open? If this was a
case of sunlight streaming through two windows, your expectation would
be that you will simply get the sum of the intensities. If you sat in a region
illuminated by both windows, you expect to have more light and warmth
than with just one window open. This expectation is shown by a dotted line
labeled I1 +I2 in the lower half of the figure. This expectation would indeed
be realized if you were talking about sunlight streaming through two
windows.

However, this is not what happened in Young’s experiment. He found an
intensity pattern labeled as I1+2, where



In the screen (which extends perpendicular to the page), these oscillations
in I1+2 correspond to vertical stripes of bright and dark.

This is called interference. Here are the main differences between I1+2
and I1 +I2. At a place like M the intensity is four times that with just one slit
open and not twice. Then there are places where you get less light with both
slits open than with just one open, the most dramatic of these being places
like X that got some light when one or the other slit was open, but no light
at all with both slits open.

The oscillatory graph I1+2 does not make any sense in ray optics: it
explains neither the broad regions illuminated when one narrow slit is open
nor why opening a second slit can make it darker at a point like X. But I1+2
is very familiar from experiments with waves, say in water. (Take a peek at
Figure 18.4 if you want. We will return to it later in some detail.) Imagine
that the source of light is replaced by a source of water waves of some
wavelength λ. The opaque partition with slits is replaced by a barrier with
two slits. The screen on which light is incident on the right is replaced by a
line of corks bobbing up and down to measure the wave amplitude. Then
the intensities, which are squares of these amplitudes, will look just like I1,
I2, and I1+2. More importantly, they can be readily explained by wave
theory, as we shall see.

This is why Young’s interference experiment convinced everyone that
light was a wave. He could even find the wavelength λ, though he had no
idea what was waving. That had to await Maxwell.

Why do we not see interference of light when we open a second window?
Does not every place get brighter? If you were warm at X due to the light
coming from window S1 and you told somebody, “Hey, this is good, open
the other window,” you will end up getting more light and warmth. You will
not get less, because the interference pattern as described by the oscillatory
graph I1+2 will be realized only under the following conditions.

1. The light must have definite wavelength. The reason is that the locations of the maxima and
minima vary with λ and these features will get washed out in a mixture. Sunlight, which is a
mixture of many λ’s, does not qualify.



2. The wavelength λ must be comparable to or larger than the size of the slits or the spacing
between them. This is also not true for sunlight entering through two windows.

Figure 18.2   If the oscillations are too rapid, any probe (such as your eyes) would sense the average
of I1+2, the dotted curve I1 + I2.

If monochromatic light (light of definite λ) were coming in from two windows to a certain place,
there could, in principle, be oscillations due to interference, but the spacing between the crests and
troughs would be so small none of your senses would discern them. Your eyes would spatially
average the pattern I1+2 over many cycles and only see the dotted line I1 + I2 shown in Figure
18.2.

18.1   Interference of waves
Let us look at interference in general, for any kind of wave. Let us denote
by ψ whatever is oscillating. It can be the deviation from equilibrium of the
position of a string, air pressure, or the height of water. The inhomogeneous
linear wave equation in one-space dimension is

S(x, t) is called the source term or driving term. This could describe a string
that is responding not only to its internal forces, but also an external force,
say a violin bow.

In higher dimensions, it is



The wave equation is linear. This implies that if

because we can take the derivatives in ∇ ·∇ through A and B. This means
that you can take two solutions, ψ1 and ψ2, which are the responses to S1
and S2, multiply by constants A or B, and add them to get the response to
AS1 + BS2. That’s the principle of superposition. Clearly it holds for the
homogeneous case with no sources S1 = 0 and S2 = 0.

What if someone tried to convince you that the ψ in a linear
homogeneous problem is always positive? How will you refute that
argument? The answer is that if ψ were such a positive solution, then (−1)ψ,
which is always negative, would also have to be a solution.

If ψ can be positive or negative, it cannot stand for things that are always
positive such as the brightness of light or the energy in a wave. The worst
thing you can have is no light. You cannot have negative brightness. That is
why in the electromagnetic theory of light, brightness is not measured by
the electric (or magnetic) field, which can have either sign, but by
something quadratic in the field, which we have seen is the intensity I. The
intensity in general (say of sound) is proportional to the square of whatever
is oscillating. It is the measure of the energy contained in the wave.



Therefore when you have one source producing some light and a second
source producing some light, together they’ll produce a field that is the sum
of the two fields. What you can add or superpose is ψ, which in this case
happen to be E and B. You cannot add the intensities. But there is a definite
rule for total intensity, which follows from its definition. If

In the last equation, the first two terms are positive, but the last can have
either sign. It is the one that causes the oscillations. However, the
oscillations cannot be more negative than the sum of the first two terms
since the total, being a square, must be positive.

So there are two levels at which things happen with waves. There is the
thing that actually oscillates and obeys the wave equation, and then there is
its square, which represents energy or brightness. The superposition
principle applies to the thing that oscillates and not to its square. That’s why
in the experiment when you open a second slit, some places like X can
become darker than they were with just one slit open.

We will shortly begin our study of quantum mechanics. There too we will
encounter a ψ called the wave function. Now that’s a very bizarre object.
Let me just say for now that it is intrinsically complex. Remember the
harmonic oscillator where we viewed the physical variable x =Acosωt as the
real part of x = Aeiωt? We brought in the complex exponential because it
made it easier to solve certain equations. In the end we took just the real
part. But in quantum mechanics all of ψ, its real part and imaginary parts, is
needed. In fact there is an i right in the Schrödinger equation, the analog of
Newton’s law. There is no escaping complex numbers in quantum
mechanics.

Clearly in the quantum case the analog of intensity cannot be ψ2 because
it is not always positive or even real. For example, if ψ = 3+ 4i, then ψ2 = 9



− 16 + 24i. You must know enough about complex numbers to guess the
corresponding intensity:

In general you may take I = |ψ|2, for if ψ happened to be real, you will
simply find |ψ|2 = ψ2.

18.2   Adding waves using real numbers
Let us start our study of interference of waves in the following simple
context. Imagine that you just sit at one point and let two waves come to
you. We are looking not at the wave as a function of x and t (in one
dimension) but as a function of just t at your location. For example, you
could be on a lake and someone could be rocking a boat somewhere and
sending out ripples with a frequency ω. At your location ψ1(t), the water
level relative to the tranquil lake is

Now someone else starts sending a second wave of the same amplitude, at
the same frequency, but out of step, with a phase difference ϕ:

Remember the phase difference between two waves is physically significant
and cannot be eliminated by resetting your clock. We assume that

With both sources sending waves, the height of the water (relative to the
tranquil lake) will be simply the sum of the two heights:



This is not obvious but true. It follows from the linearity of the wave
equation. (Water waves sometimes obey a non-linear equation in which
case the heights will not be additive when both sources are on.) To proceed
further we need a trig identity:

If you have some doubts about the formula you can test special cases. For
example, if α = β, we have 2cosα on the left and 2cos0 × cosα = 2cosα on
the right. If β = 0, we get cosα + 1 on the left and  on the right, which
also matches. Finally both sides are invariant under α ↔ β. While these
successful tests do not mean the formula is right, a failure would
immediately condemn it.

Anyway, this is the right formula, and in our case it gives

The sum therefore is a signal with amplitude  and phase 
Let us check the formula in a couple of special cases. If ϕ = 0, the two

signals are identical. We don’t need any fancy stuff to know the answer is
2Acosωt and indeed this is true for our answer. Another case you can do
very easily in your head is ϕ = π. Since cos(θ + π) = −cosθ, the second



signal is exactly the opposite of the first andmust cancel it at all times. This
agrees with our result since 

This was a special case where the two waves had the same amplitude. If
they had different amplitudes the formula would be messier but the main
features would persist except for some inevitable differences, such as the
impossibility of perfect cancellations.

18.3   Adding waves with complex numbers
I am now going to re-derive Eqn. 18.18 using complex numbers. One of the
reasons is that I want you to get used to complex numbers in readiness for
quantum mechanics.

Recall that a complex number z may be written in two ways as indicated
in Figure 18.3(a). These are the Cartesian and polar forms:

We should know how to express the polar coordinates in terms of the
Cartesian:

and vice versa



Figure 18.3   (a) Polar and Cartesian forms of z. (b) The complex ψ and its real part, the physical ψ.
(c) Adding two complex ψ’s.

A real function ψ = Acosωt may therefore be written as

Let us define a complex ψ

whose real part is our ψ:

as shown in Figure 18.3(b). One can visualize ψ as a rotating complex
number of length A and phase angle θ = ωt, and ψ as its instantaneous real
part. As time goes by, the vector ψ rotates and its projection on the real axis
describes the physical and real variable ψ. If there were a light source
shining down the y-axis, the shadow of ψ on the real axis would be our ψ.

Suppose we want to add two such real waves



Since the sum of the real parts is the real parts of the sum, we may first add
the complex ψ’s and then take the real part:

Adding the complex ψ’s is easy. From Figure 18.3 we can see that the sum
ψ1 + ψ2 is the sum of two planar vectors. That the sum vector bisects the
angle between ψ1 and ψ2 follows from the congruence of the two triangles
that make up the parallelogram. This means the phase of the sum is 
The length of ψ1 + ψ2 follows from vector analysis

In our problem this means

Consequently, the sum in polar form is

and



in agreement with Eqn. 18.18. As  is never negative and
the modulus sign in Eqns. 18.37 and 18.38 may be dropped.

Finally I am going to do the addition ψ1 + ψ2 algebraically, without the
aid of any pictures:

using

Taking the real part of Eqn. 18.41 we obtain Eqn. 18.18 once again.

18.4   Analysis of interference
Let us now analyze the double-slit experiment armed with all these results.
A plane wave comes from the left and hits a partition with two slits and
some of it escapes to the other side where we have placed a screen, as
shown in Figure 18.4. We want to understand the variation of intensity I(y)
as a function of the variable y measured along the screen. If you look at the
partition from where the screen is, you will see two glowing slits. It is
intuitively clear that each acts as a source of light. (This idea was
formalized by Christian Huygens [1629–1695], who used it to propagate the



wave in time by treating each point on the instantaneous wave front as a
point source of light.) The waves from each slit will radiate outward from
that slit. They will be emitted in step because the crests and troughs of the
incoming wave that generate them reach the slits at the same time. The
functions describing the radial waves are

Figure 18.4   A distant emitter of light E produces the incoming plane wave, which in turn sets off
synchronized radial waves from the two slits. The radial waves then reach different points on the
screen labeled by y, with different phase differences. Their sum squared will determine the intensity
there. It is a maximum (constructive interference) at points like M and a minimum (destructive
interference) at points like X.

Unlike a plane wave traveling along y, which behaves as cos(ky − ωt),
these waves go out radially from the slits with a phase that changes with r
as kr, where r is measured from the slits. Whereas the plane wave had the
same phase at a given y (at some fixed time, say t = 0), these radial waves
have the same phase at a given r. I show a couple of crests and troughs of
these radial waves.

The radial waves then reach different points on the screen labeled by y,
with different phase differences. The square of their sum will determine the
intensity there. We want to compute I1+2(x).



Let us think in terms of water waves rather than electromagnetic waves,
since we can visualize them more easily and the ideas are the same.
Looking down at the shallow tank of water shown in Figure 18.4 we see
crests and troughs of the incoming plane wave, shown by solid and dotted
lines. I am sitting at the far right, at a point Y, which is at a distance r1 from
slit S1 and a distance r2 from S2. The water at Y will be bobbing up and
down by an amount equal to what the signal from S1 tells it to do plus what
the signal from S2 tells it to do.

Let us add the two contributions at my location

using Eqn. 18.17 for the addition of cosines. The final answer is unaffected
by the change r1 ↔ r2, because the cosine is an even function. This means
that whatever happens at a certain point above the symmetric point M will
have to happen at the same distance below M.

Equation 18.49 tells us that the signal at point Y has amplitude 
frequency ω, and (an inconsequential) phase 

What we really care about is the intensity at that point, given by the
square of the amplitude:

From now on I will drop the subscript on I1+2 since we will only consider
the case with both slits open.

Let us analyze how I(r1, r2) varies as we move up and down the screen.
Let δ denote the difference in path lengths from the two slits to a generic



point on the screen:

Then what we want to study is the behavior of

First consider a point M symmetrically located, equidistant from the slits.
For this point δ = 0 and

At this point the total ψ1+2 has double the amplitude due to each slit and an
intensity I that is four times as big. This is a point of constructive
interference.

We can understand this in real time as follows. The two slits produce
waves that are synchronized because the crests and troughs of the plane
wave that generate them hit the slits simultaneously. These radial crests and
troughs then travel the same distance to reach M and arrive in sync. Thus
the total signal at every instant is double that due to one slit, the amplitude
is double, and the intensity is quadruple.

As we move off center, δ, the difference in path length, will grow and the
cosine in Eqn. 18.52 will fall. It will hit zero when



At this location the signals from the two slits exactly cancel each other. The
signal from S2 is delayed by half a time period (because it has to travel half
a wavelength more). You can see in the cosine that if you move by half a
period or wavelength, you reverse its sign. Thus when ψ1 tells the water to
go up, ψ2 tells it to go down by the same amount. At every instant the
signals are negatives of each other and the net result is identically zero.

This is a point of destructive interference.
As we move further away from M, the pattern repeats itself. If we go up

in y till r2 − r1 is a full wavelength, it is as if the difference were zero and
we hit another maximum. Above that is the second minimum, where the
path difference is 3λ/2, and so on. What happens at a certain distance above
M also happens at the same distance below M.

The following formula says it all:

Consider the fact that opening a second slit can make a spot like X dark,
whereas it used to be bright with just one slit open. This can happen only
with waves. In ray theory, the rays that come with two slits open will be the
sum of the rays that come from each one. Likewise in Newton’s corpuscular
theory of light, the number of light corpuscles coming to a point on the
screen with two slits open will be the sum of the numbers coming from
each. The contribution from one slit cannot cancel the contribution from
another. It is like mosquitoes: if you have two holes in the mosquito net,
you get twice as many mosquitoes. Had negative mosquitoes been possible,
two holes could have led to fewer mosquitoes than one hole. But it is not
and they do not.

But this can happen with waves. The thing with waves is that what is
additive is ψ, which is not always positive. This leaves room for
cancellations and interference. Young’s experiment with light exhibited
interference. He did not know what light was. He did not know about
electromagnetic waves, but he didn’t need to. If you shine light through two



slits and you get the dark and bright and dark and bright fringes, you (and
everyone else) are convinced you are dealing with a wave.

His experiment also determined the wavelength of light as follows.
Let us begin with the conditions for constructive and destructive

interference, Eqns. 18.56–18.57, expressed in terms of δ = r2 − r1. Let us
trade them for expressions in terms of the parameters more readily
measured, and defined in Figure 18.5A: d, the spacing between slits, and (L,
y), the coordinates of the point in question relative to the origin (0, 0). We
will write down an exact result for the distances first and then approximate
it using the smallness of d/L, keeping only the first power of d (as we did
with the dipole field). The distance y could be of the same order as L and is
not considered small.

Figure 18.5   A: Computation of the exact path difference r2 − r1. B: Approximate computation
assuming the screen is so far away that the rays are parallel.



where θ is the angle of the vector r joining the origin (0, 0), midway
between the slits, to the point (L, y).

The nature of the approximation can be made more transparent by
deriving the same result more quickly in another way. Look at part B of the
figure. It shows r1 and r2 as parallel lines going to a very distant screen.
The extra distance associated with r2 is d sinθ.

In terms of d and θ we may now write Eqns. 18.56 and 18.57 as

where m is an integer. Beyond some m we cannot satisfy the equations.
For example, there will be no maxima with mλ > d, for this would require
sinθ = mλ/d > 1. As you can see from the figure, the longest path difference
is d (for both r1 and r2 pointing straight up or straight down with 

These equations can be used to locate the (angles of the) various maxima
(besides the central maximum) and minima. Conversely, from the measured
angles one can infer λ. One can do this for light, without knowing it is the E
and B that are oscillating.

Now you can see why people in the old days, working with light on a
macroscopic scale, got fooled by geometric optics. If, say, d = 1 mm and λ
≃ 5 · 10−7m, the angular difference between the central maximum and first
minimum is of order 5 · 10−4 radians. If you see this from a distance of 1



cm, the spacing between maxima will be around 5 · 10−4 cm. If the
interference pattern is this dense, the eye only sees an average of I1+2 over
many cycles, in which case it reduces to I1 + I2, the result expected in
geometric optics.

Here is another practical tip from Physics 201. Imagine you have some
oceanfront property and are relaxing on your yacht. There is an oil rig out
there sending waves that rock your boat when you are trying to relax, so
you build a wall to keep the ocean waves out. Then one day there is a
breach in the wall (S1) and the waves start coming in. You have two
options. One is to try to plug the hole, but let’s say you’ve got no bricks, no
mortar, no time, no patience. But you have a sledgehammer. With that you
can make another hole. If these water waves are of a definite wavelength,
you can locate the second hole (S2) so that the sum of the waves cancel at
your yacht location. (They are now twice as big on your neighbor’s yacht,
but that is not your problem: you did not rise to the top of your profession
by worrying too much about your rivals.)

18.5   Diffraction grating
A diffraction grating is a generalization of the double slit: instead of just
two slits, imagine a very large number of equally placed slits, assumed
infinite in the following analysis. Figure 18.6 shows a finite segment of this
grating. One way to make gratings used to involve taking a piece of glass
covered with soot and then drawing evenly spaced lines on it that allow
light to pass when illuminated from one side. Nowadays there are far
superior techiniques.

With two slits we saw that their contributions sometimes add and
sometimes cancel depending on the angle. With an infinite number of such
slits, the only way to get all the slits to contribute constructively is for all
the path differences to be multiples of λ. One such case is simply the
forward direction, when all the emitted waves go an equal distance to the
screen (assumed to be far away) and therefore add in step. (Sometimes they
are focused by a lens to form an image on a nearby screen.) The next
maximum occurs when each path length differs from its neighbor by λ.
From Figure 18.6 you can see that this means d sinθ = λ. More generally the
maxima will occur at angles where the path difference obeys



At any other angle, the path difference between neighboring paths will be
some δ. In terms of the complex ψ (whose real part we will take at the end)
we are trying to add

where the first term is some reference contribution chosen by convention to
have zero phase. Let us rearrange the sum as follows:

Each term in the first bracket is a number of modulus A and phase mkδ.
Imagine adding a string of vectors of length A, which slowly twist in
orientation. Their sum will go round and round and give something of order
A. The same goes for the second bracket and the constant −A. If, however,



Figure 18.6   Part of a diffraction grating. If d sinθ, the path difference between adjacent slits is a
multiple of λ, and the signals from all the slits add constructively.

the arrows will be parallel and add up to a length NA if there are N slits. Of
course the condition

encountered in Eqn. 18.65. Unlike the maximum, the condition for the
minima (which lie between the maxima) is harder to find for N slits.

Suppose you send in white light to a grating. The central maximum,
which corresponds to δ = 0, is a maximum for all colors or all λ’s since all
rays travel the same distance in the forward direction to the screen. The
central maximum (m = 0) will therefore also be white. However, the
secondary maxima, with m = 0, will be at angles determined by λ. What is a
path difference of one wavelength for red will not be one wavelength for
blue. So the colors in the incoming white light will split into different
directions, with the maxima determined by the following condition on the
path difference δ:



where λc is the wavelength of color c. The grating acts like a prism that
splits the colors.

If you look at white light coming from the sun you’ll find some colors
missing, some lines of darkness in a broad band of sunlight split into its
various colors. For example, these could be at the wavelengths emitted by
hydrogen. Now, hydrogen, like all atoms, not only likes to emit light of
certain wavelengths, it also likes to absorb only those wavelengths.
Consequently when white light makes its way out of the sun’s interior, the
hydrogen atoms on the way absorb these colors, leading to the observed
dark lines. These lines in the absorption spectrum are as good a fingerprint
of hydrogen as the lines in the emission spectrum. They tell us the sun
contains hydrogen. That is how people know what elements are present on
different planets or stars. It was not at all clear in the ancient days that stars
and planets were made of the same stuff we see on earth. Now we know
that the same elements as here are out there, because we can identify the
atoms by the missing lines, the colors they gobble up as white light makes
its way out of the interior, or by the colors they emit.

18.6   Single-slit diffraction
We have already seen in the double-slit experiment that when light emerges
from a slit, it fans out radially, with the slit as a point source. So what is
there to study with just one slit? The answer is that the point source
description holds only if the wavelength is much bigger than the slit width.
In the double-slit experiment, I only specified the slit separation d and not
width, which was assumed to be zero.

However, every real slit will have some width, which I will call D to
distinguish it from the slit separation d in the double-slit experiment. The
slit will behave like a point only if its width D is much smaller than λ. Now
consider a case when D is comparable to or bigger than λ, and a fresh
analysis is called for.

When seen from the dark side the slit will be glowing. Let us mentally
divide the single slit into many adjacent mini-slits, each small enough to be



approximated by a point. In the forward direction, all mini-slits will make
contributions in phase. As we move away the contributions will begin to go
out of step and the sum will diminish. We can find the angle θ at which they
will add up to zero. It is given by

This is not a typo. Look at Figure 18.7A. Suppose, for simplicity, that
there are N mini-slits. Number 1 and N are in step if D sinθ = λ. This may
seem wrong for a minimum. But these two are not the only mini-slits we
have to worry about. We have to account for all N. So let me pair them as
follows. The first and the  mini-slit are out of step by λ/2 and
neutralize each other. The same goes for the second and the  mini-slit,
and so on. So when the end-to-end path difference is λ, I can organize the
mini-slits into canceling pairs, with a path difference of λ/2 within each duo.
After that first zero, there are further oscillations, but usually it is pretty
much all over as shown in part B of the figure. The half-width of the central
maximum is

If λ/D ≪ 1, then θ ≃ λ/D, the angular width of the emergent beam, is
negligible and we are in the realm of geometrical optics. As D becomes
smaller and comparable to λ, the emergent beam fans out more and more.
For example, when . Now you definitely need wave optics.



Figure 18.7 A: The condition for N → ∞ mini-slits (square dots) making
up a single slit of width D to cancel is that the path difference between the
first and last is λ. This means each mini-slit can be paired with one with
path difference λ/2, and the duo cancel each other. If the mini-slits are
labeled 1 to N, we pair 1 with  with  etc. B: The resulting
intensity on a screen. Only a few oscillations are shown.

You can now understand the common statement that in order to see an
object of size D clearly you need light of wavelength λ ≪ d. Let the object
be a hole of size D (not necessarily circular, but with some sharp features)
in an opaque screen. We “see” the hole by shining light from one side and
looking at the illuminated part of the screen on the other side. If λ ≪ D, the
diffraction peak is very narrow, geometric optics applies, and the bright
image of the hole is directly in front of it and shows its fine features. As we
lower λ the diffraction peak broadens out and the image starts getting fuzzy.
When λ ≃ D, the beam spreads out by a half-angle of π/2, the light fans out
completely, and we have lost any semblance of a sharp image.

18.7   Understanding reflection and crystal diffraction
Look at a line of atoms shown in Figure 18.8 that form a regular lattice, as
in a crystal. Light is incident on them at an angle θ1 relative to the normal to
the line of atoms. You know the surface will reflect it such that i = r. But
why? If you thought of light as made of particles, and the surface crystal as
continuous, i =r corresponds to just an elastic collision in which momentum
perpendicular to the surface is reversed. But we are committed to waves



after Young’s experiment. And we also know the surface is made up of an
array of atoms and is not a continuum. We have to explain i = r in these
terms.

Figure 18.8   Part of an array of atoms reflecting an incident beam. Atom 1 gets the incident light
before 2, but its emitted light has to travel farther in the reflected direction. (The common delay
between absorption and emission cancels out.)

To this end we need to know how atoms “reflect” light. It turns out they
first absorb it and then re-emit it. An atom that re-emits light does so
isotropically, with no memory of the incoming direction. So how can all
this isotropic emission end up producing a strong signal along just one
direction obeying i = r? It must be that this is the direction in which the
emitted waves add in phase. To see that this is so, we need consider just two
adjacent atoms numbered 1 and 2 in Figure 18.8. You can see that atom 1
gets hit first by the incoming wave fronts and then atom 2 a little later,
because the light has to travel an extra distance, the side d32 in the right
triangle 132. Assume the atoms re-emit instantaneously (the common delay
drops out). In the outgoing direction, the emitted light from 2 has a head
start, a distance d41 in the right triangle 241. So atom 1 gets the incident
light sooner than 2, but its reflected light has to travel a longer distance than
the light emitted by 2. For the final waves to be in step, we need the two
distances to be equal:



and so i = r. (I am assuming λ > 2d, in which case there are no other
solutions. Otherwise, there could be solutions in which the path difference
is a multiple of λ and θ2 ≠ θ1.)

Consider now X-rays incident on a crystal-like diamond, or matter waves
(which you will learn about later) incident on nickel. The crystal has many
layers of atoms, periodically stacked one below the other. All the layers can
receive and re-transmit the waves. Then we need to ask how the reflected
wave from different layers will interfere. This is considered in Figure 18.9.
The upper layer reflects waves obeying i = r for reasons just discussed. The
reflected wave from the second layer lags because it has to travel an extra
distance dA2 + d2B = dsinθ + dsinθ. For this not to make any difference we
require the Bragg condition:

where θ is the angle between the incident beam and the line of atoms, not its
normal. Once this condition for two successive layers to be in phase is
satisfied, all the layers will also scatter in phase because the relevant path
differences will also be multiples of λ.

Whereas reflection by one layer (obeying i = r) will take place for any
angle of incidence, coherent diffraction by all the layers will occur only for
certain values of incident angle θ obeying the Bragg condition. These
special angles can be achieved either by changing the direction of the beam
incident on a fixed crystal or by rotating the crystal illuminated by a fixed
beam.



Figure 18.9   The condition for all layers to reflect waves in phase is that the path difference between
successive layers is a multiple of λ. Note θ is the angle between the incident beam and the line of
atoms and not the normal to the line.

18.8   Light incident on an oil slick
If there is an oil slick on a wet street, you see many colors in the reflected
light. Here is what is happening. We have three regions: air at the top, next
oil of thickness δ, and water below that. The incident light can reflect off
the two interfaces and the sum of the two reflected waves, seen by someone
looking down on the slick, can interfere constructively or destructively.

18.8.1   Normal incidence
First consider the simpler case where white light strikes the air-water
interface along the normal, as shown in Figure 18.10. Some of it gets
reflected and some transmitted. The reflected signal is ψ1 in Figure 18.10.
The transmitted signal hits the oil-water interface and some of it gets
reflected. This reflected light then crosses back to the air as ψ2 and
interferes with ψ1. Their sum is what you see looking down. (I have
displaced ψ1 and ψ2 from the normal for clarity.)

The sum depends on the phase difference between ψ1 and ψ2. Say we
want ψ1 and ψ2 to interfere destructively. The requisite condition depends
on the wavelength. Suppose the color blue is suppressed this way. This
means that looking down on the slick we will see white minus the blue. If
the thickness of oil varies, the color we see will also vary. If ψ1 and ψ2
interfered constructively, the color in question (say blue) would be



enhanced relative to the others in what we see. In any event, the initial ratio
of colors in the incident white light gets altered, with some colors getting
suppressed and some enhanced, leading to multiple colors in what we see.

Figure 18.10   Normal incidence on a thin layer of oil on top of a layer of water. (Rays reflected from
the first and second interface are displaced slightly from the normal and each other for clarity.)

Let us find the condition for constructive and destructive interference for
incident light of wavelength λ. There are two ingredients to consider.

The first, which I do not expect you to know, is that when light reaches
the interface to a denser medium (i.e., greater refractive index n) it will
suffer an extra phase shift of π upon reflection back to the rarer medium. In
our example this phase shift will occur when oil (n0 = 1.5) reflects light
back to air (n = 1) but not at the next interface when the water (nw = 1.33)
reflects it back to oil.

The second ingredient has an obvious part, that ψ2 has to travel an extra
distance of 2δ compared to ψ1, and a non-obvious part, that the
corresponding phase shift is 2π for every wavelength λ0 in oil.

The wavelength λ0 in oil will not be the wavelength λ in air. We may
understand this in terms of two defining relations:

Notice I use the same f in oil and in water but not the same λ. The reason is
that light is generated by some source at some frequency f and this can lead



only to waves of that f even if it crosses from one medium to another. In
Huygens’s approach, the light in the first medium acts as the source for the
light in the second medium and so it will drive it at the same frequency. The
lower velocity will be due to the shorter wavelength.

Or think in terms of water waves. Suppose some mechanical vibrator is
producing waves on water with some f. Let us say the wave velocity
depends on the depth of water and this depth suddenly changes when the
waves enter a second region. The waves in the second region will still rise
and fall at the same frequency as the driving vibrator even if they propagate
more slowly. The reduced velocity will be due to the reduction in λ.

Equations 18.78 and 18.79 tell us that

So an extra distance of 2δ is worth  wavelengths and a phase
delay in wave ψ2 of

Thus the total phase difference between the two waves reaching the
observer (including the extra π from the air-oil interface) is

We want this to be a multiple of 2π for constructive interference



and an odd multiple of π for destructive interference:

If the formulas appear strange, it is due to the extra π coming from the first
reflection.

Here is an example with some numbers. Suppose a film of oil produces
constructive interference for λ = 400nm and destructive interference for λ =
500nm. What is δ? The data given may be written as follows. For
constructive interference of light with λ = 400nm we need

For destructive interference of light with λ = 500nm we need

We see that the first point of agreement, the smallest value of δ for which
both conditions are satisfied, is



which corresponds to

If we go further down the two sequences, we will find a second common
value: 2n0δ = 3000nm, which translates into δ = 1000nm. But δ = 333.33nm
is the smallest.

I leave it to you to construct variations on this theme: change the media
so that a phase change of π occurs at both interfaces or neither.

18.8.2   Oblique incidence
A non-trivial variation occurs when the incoming light strikes the first
interface at an angle θ1 relative to the normal as shown in Figure 18.11. It
then enters the second medium at an angle θ2 determined by Snell’s law,
reflects off the second interface obeying i = r, and finally re-enters the first
medium at an angle θ1 to the normal. The phase shifts of π are the same as
before but the path differences are more complicated.

Figure 18.11   Oblique incidence on a thin layer of oil on top of a layer of denser oil. (There is phase
shift of π at each interface, so we may ignore their combined effect.)

Consider the simple case where there is no uncanceled π. This is true in
Figure 18.11, when the refractive index gets bigger at both interfaces and
there is a shift of π at each interface for a total of 2π, which may be ignored.



Let the refractive index of the middle medium be n. The conditions for
constructive and destructive interference will turn out to be

Here are the details. The wave ψ1 has to travel an extra distance

The wave ψ2 travels an extra optical distance (equivalent distance in air)

The net path difference is

which leads to Eqns. 18.90 and 18.91.



CHAPTER 19

Quantum Mechanics: The Main Experiment

We are going to focus on quantum mechanics from now on till the end. I’ve
got bad news and good news. The bad news is that it is going to be hard for
you to follow the physics intuitively, and the good news is that nobody can.
Richard Feynman, one of the leading physicists of our time, used to say that
no one understands quantum mechanics. Here then is my modest goal.
Right now, I’m the only one who doesn’t understand quantum mechanics.
After these lectures, every one of you will be unable to understand it.

I want you to think about this as a real adventure. Try to think beyond the
exams and grades. It’s one of the greatest and deepest discoveries in physics
and in all of science. It is remarkable how people figured out the underlying
laws from the experiments.

I will not follow the historical route. It is pedagogically not the best way.
You go through all the wrong tracks and false starts. When the dust settles
down, a certain picture emerges and that’s the picture I want to give you
from the beginning. I will describe experiments that were perhaps not done
in the manner (or sequence) in which I describe them, but rest assured that
if they were performed, the results would be as described. The central
experiment is the double-slit experiment, which Feynman has identified as
exhibiting the heart of quantum mechanics. It not only shows in the clearest
possible way the failure of Newtonian mechanics and Maxwell’s wave
theory of light, but it also gives us clues on how to go forward. How can
this experiment, which proved wave theory unambiguously and paved the
way for Maxwell’s triumph, also lead to his theory’s downfall? The answer
is the usual one: because we pushed the experiment to a new range of
parameters.

19.1   Double-slit experiment with light
Recall the highlights of the standard double-slit experiment. There is light
of some wavelength λ coming from the left and incident on an opaque



partition with two slits and emerging on the other side where it is detected.
Assume a photographic plate is used for detection. It is made of tiny little
pixels that change color when light hits them and forms a picture. It is a
detector particularly suited for the variant that follows.

You measure the intensity I1 with slit S1 open, the intensity I2 with just
slit S2 open, and then, with both slits open, the intensity I1+2, which exhibits
interference. A dramatic aspect of interference is that there are points that
are bright when one or the other slit is open but dark when both are. The
reason is that the ψ in this problem, the one which can be superposed, is the
electric or magnetic field. When two slits are open, you add the fields, not
the intensities that are proportional to the square of the total field. The two
fields that add can have any relative sign or phase, and they can even cancel
each other out.

We do not see this kind of interference with sunlight streaming into a
room through two windows because that light is a mixture of many λ’s and
any surviving interference pattern I1+2 oscillates so rapidly that our senses
can only detect its spatial average, which is just I1 + I2. Interference of
waves was a familiar phenomenon before Young came along: just dropping
two rocks into a tranquil lake allows one to see the interference of the two
concentric waves produced. So when Young demonstrated the interference
of light, it was clear to one and all that light was a wave. And then Maxwell
derived his wave equations and that seemed to be the last step in a complete
theory of optics.

19.2   Trouble with Maxwell
The interference pattern looks good for Maxwell’s wave theory till you
implement the following change: You make the source of light dimmer and
dimmer. If you are unable to turn down the brightness enough, you can
always move the source far away.

Imagine you insert a new photographic film, turn on a bright source, and
call it a day. The next morning you find a pattern of light and dark stripes as
shown in Figure 19.1A. When you repeat the experiment with a dimmer
source, you get fainter stripes (not shown). Then you make a drastic
reduction in the source brightness and wait overnight. You find no pattern,
just six pixels that have been exposed, at seemingly random locations, as
shown in Figure 19.1B. If you make the source weak enough, you can have



a situation in which you just get one hit during the whole night. Now all this
is very strange. If light were a wave, no matter how weak, it should
illuminate the entire screen. It cannot hit just certain pixels. So something
else is hitting that screen and it’s not a wave.

Figure 19.1   The figure shows the top view of the wave and the slits and a frontal view of the film.
A: Pattern on film with a strong source. The light is coming from below toward the double-slit. B:
Pattern with dim source, showing six exposed pixels.

You continue the experiment at this low intensity of one hit per night to
probe this further. You make further observations and measure the
momentum imparted to the film on each exposed pixel.

You find that each exposed pixel has received exactly the same amount of
momentum p. By varying λ you establish that the value of this momentum is
related to it as follows:



where

is called Planck’s constant. (In the old days the name was reserved for h =
2π ħ.) In terms of the wave number (phase change per unit length)

Eqn. 19.1 becomes

Next you find that each exposed pixel receives a fixed amount of energy
related to the frequency of the incident light as follows:

The most natural interpretation of these results is that light of frequency ω
or, equivalently, wave number k, is made up of particles, the photons, with
the following energy and momentum:

Since ω =kc it follows that the energy and momentum of the photons are
related as follows:



or E2 = c2p2, which, when compared to

tells us photons are massless particles. The only way they manage to have
momentum without mass, given the formula

is by moving at the speed of light.
If you keep the extremely dim source on for many many days, you find

that the spots, which initially appeared to be random, gradually fill out to
form the stripes of the earlier experiments.

Amazingly then, what the incident beam of low intensity reveals is that
light, which you thought was a continuous wave, is actually made up of
discrete particles. If you turn on a bright light source you miss this aspect
because millions of these photons rush in and form the interference pattern
instantaneously. You see the dark and bright fringes right away, and you
think it’s due to a wave that hits the entire film instantaneously. But if you
look under the hood, you find every pattern is formed by tiny little dots that
appear individually.

Now if all somebody told you was that light was made of particles, that it
was not continuous, that in itself would not be so disturbing. You are used
to that notion. For example, you know that water, which you perceive as
continuous, is actually made of water molecules. Many things that you
think of as continuous are made up of little molecules. That’s not the
surprise. The surprise is that these photons are not and cannot be your
standard classical particles of the type that appear in Newtonian or
Einsteinian mechanics, following continuous trajectories decided by the



applied forces. The reason behind this conclusion is the interference pattern
I1+2. Let us understand why.

Suppose the photon were a classical particle, by which I mean governed
by the laws of Newton or Einstein. What do we expect it to do in the
double-slit experiment? Look at Figure 19.2.

Figure 19.2   Two paths a photon can take, via slits 1 or 2. I try to show that 4 photons come to X, the
zero of the interference pattern I1+2, via one or the other slit, by drawing 4 x’s at a nearby point P.
When both are open I get zero at X instead of 8.

Say only slit S2 is open. The photons will take some path going through
the slit S2 on their way to the pixel on the film. A similar result applies
when only S1 is open. What should happen when both are open? The
answer is that the number arriving at any point has to be the sum of the
numbers that came through each slit. Classical particles on the trajectory
headed for one slit have no idea whether the second slit is open or closed or
that it even exists. So the number arriving at some point with two slits open
must be the sum of the numbers with either one open. In other words I1+2 =
I1 +I2 is a logical necessity for classical particles.

Consider in particular the point X, which is a zero of I1+2. Say on a given
day 4 photons come to X with just S1 open and 4 photons come with just S2
open. (I have shown these 4 photons by x’s at a nearby point P.) We expect



8 to arrive with both open but we know that no photons will arrive at X.
How can you cancel a positive number of particles coming through one slit
with more positive number of particles coming from a second slit? It is
impossible to understand this in terms of classical particles. They cannot
know how many slits are open and they cannot produce a pattern that
depends on the separation between the two slits. The fact that this happens
is proof that photons are not classical particles.

By contrast, a wave has no trouble knowing how many slits are open and
how far apart they are, because it is not localized. The wave comes and hits
both the slits simultaneously and knows their spacing. There is room for
cancellations when two slits are open due to destructive interference. So
maybe we should go back to the view that light is just a wave, as Young
convinced us? But that too is no longer an option in view of what we just
learned: a wave cannot deposit energy and momentum on just one pixel.

So the photon has particle-like and wave-like attributes. We may
summarize the data as follows:

• Light of wave number k and frequency ω = kc is made up of particles (photons) each of which
carries the same energy E = ħω and the same momentum p = ħk. The energy and momentum are
localized in these particles.
• The distribution of a large number of photons in the double-slit experiment is given by the
interference pattern produced by a wave of that k or λ.

There is no point in asking if light is a particle or a wave. These words are
inadequate to describe light. It is what it is as described above. If we send in
a million photons, one at a time, each will land at a definite pixel of the film
and they will collectively produce the interference pattern.

Suppose a million photons have formed an interference pattern of bright
and dark lines on the film, whose form we can predict from a simple
interference calculation with waves of this λ. Now we send in the
1,000,001-th photon. Where will it go?

We do not know for sure. We only know that if we repeat the experiment
a million times, we get this pattern. We cannot anticipate the outcome of a
single trial with just one photon. We just know that the odds are high where
the function I1+2 is large, and the odds are low where the function is small,
and the odds are zero where the function is zero. So the role of the wave is
to determine, via its intensity, the probability P(r) that the photon, a
particle with localized energy and momentum, will be absorbed by a pixel



at r. The probability is computed by adding the waves from the two slits
and then squaring.

19.3   Digression on photons
I want to digress briefly to clarify a historical fact: photons were not really
found by looking at the pixels of a photographic plate. They were first
predicted by Einstein based on fairly complicated thermodynamic
arguments. He showed that radiation of frequency ω behaved as if it were
made of particles, each of energy E = ħω. Einstein dropped the
characterization “as if” and argued for the actual existence of these
particles. He showed in 1905 that he could explain the photoelectric effect
very easily in terms of these photons. We will see how in just a moment.
Later, in 1927, very direct evidence of photons was provided by Arthur
Compton (1892–1962), who showed that the scattering of light of wave
number k and frequency ω by an electron could be described simply as a
relativistic elastic collision between the electron and a massless particle, the
photon, with energy E = ħω and momentum p = ħk. Einstein got the Nobel
Prize for his work on the photon, rather than for either theory of relativity.

19.3.1   Photoelectric effect
Now for the first experiment that is explained by photons, the photoelectric
effect. Recall that in a metal some electrons are communal. Say each atom
donates one electron to the whole metal. They can run all over the metal.
They don’t have to be near their parent nuclei. But they cannot leave the
metal. They are trapped in an electrostatic well, as shown in Figure 19.3A.
It costs a minimum energy W, called the work function, to get them out with
zero kinetic energy. (Imagine a well of depths h, at the bottom of which are
objects of mass m. To pull them out [at rest] you need to supply a minimum
energy W = mgh. If you give more than the minimum, they will come out
with some kinetic energy.)



Figure 19.3   A: Electrons in a metal are in a well of depth W. A photon is able to liberate them if it
has enough energy. B: The plot of the kinetic energy of the ejected electron versus photon energy ħω
(for ħω ≥ W).

There is a natural way to furnish this energy. Since the electron has an
electric charge you can apply an electric field to act on it and rip it out after
doing the requisite work. Since light is nothing but electric and magnetic
fields, you can try shining light at the metal. The electric field should grab
the electron and shake it loose. And once it escapes, it can take off.

You do this and find nothing comes out. Since the force eE on the
electron grows with intensity I ∝ |E|2, you crank up the intensity of light
and still nothing happens. Then you discover that if you increase the
frequency of light, suddenly electrons start coming out. They come out even
if the light at this increased frequency is very feeble. A feeble source of
light leads to fewer electrons coming out, but they do come out now. You
measure K, the kinetic energy of the emergent electrons, and plot K versus
ħω and find the graph in Figure 19.3B. The graph is simplicity itself:



This graph makes no sense within Maxwell theory. How can feeble light
(with a tiny field E) of high frequency liberate electrons while strong light
(with a large E) at low frequencies cannot? But it makes perfect sense in
terms of photons. The low-frequency beam consists of a large number of
photons, each of which carries less energy than it takes to liberate the
electrons. It is like sending a large number of toddlers (working
independently) to lift a suitcase. They just cannot do it. On the other hand,
even a single adult can. This is analogous to what happens when a feeble
high-frequency light composed of high-energy photons is used.

The graph is readily understood as follows. If ħω < W, no electrons come
out. If ħω > W, out of the photon’s energy ħω, a share W goes to pull the
electron out of the well of depth W, and the rest, ħω − W = K, goes to the
kinetic energy of the liberated electron. By 1905 it was known that the
energy of photoelectrons increases with increasing frequency of incident
light and is independent of the intensity of the light. However, the precise
manner of the increase was not experimentally determined until 1914, when
Robert Millikan (1868–1953) showed that Einstein’s prediction was correct.

19.3.2   Compton effect
Now for Compton’s 1927 experiment, which provided very direct evidence
of photons. Imagine shining X-rays, i.e., light of some λ (or wave number k
= 2π/λ) along the x-axis on a free and static electron, as shown in the left
half of Figure 19.4.

(In reality the electron is bound to an atom. However, the incident X-ray
photons have so much energy that the initial electron may be treated as free
and at rest.) The electron scatters the light into some direction and recoils in
some other direction, as shown in the right half of the figure. Forget the
electron and just observe the scattered light. The light scattered in a
direction θ relative to the x-axis is found to have a wavelength λꞌ obeying



Figure 19.4   Left: Light (γ) of wavelength λ or wave number k = 2π/λ (photons of momentum ħk and
energy ħω) is incident in the x-direction on an electron e− at rest. Right: The light (photon) comes
out at a direction θ with a shifted wavelength λꞌ, and the electron recoils conserving energy and
momentum.

where

is called the Compton wavelength of the particle of mass m. This result can
be derived very simply if you do the following:

1. Treat the incoming light as made of photons of energy E = ħω and momentum ħk. The four-
momentum of the photon is K = (ħω, ħk). The initial electron has a four-momentum Pe = (mc, 0).

2. Assume energy and momentum are conserved in the collision and solve for the final photon
four-momentum K ꞌ = (ħωꞌ, ħkꞌ). This was done in Volume I and I will not repeat it here. If you
translate the final kꞌ to λꞌ you get Eqn. 19.12.

Notice how we go back and forth between waves and particles. Light is
characterized by a wavelength and by the corresponding photon momentum



and by the frequency and the corresponding photon energy. When you think
about the particles, you think of the energy and momentum. When you
think about the waves, you think of frequency and wave number. After
Compton’s experiment one could not doubt the reality of the photons.

You may have heard that Einstein was very unhappy with quantum
mechanics and did not join the chorus. There is even an impression that he
had become just another conservative in his old age. This is utterly false. If
you look at the history, you will find he made enormous contributions to
quantum mechanics from the very outset. Even Planck was equivocal about
the reality of the photons that were implied by his own formula. Einstein
took their existence seriously and applied it to the photoelectric effect. He
computed the specific heat of solids using oscillators of quantized energy to
represent lattice vibrations. Schrödinger acknowledges his debt to Einstein
for his wave equation. So when you hear that Einstein didn’t like quantum
mechanics, do not think he couldn’t do the problem sets. It’s that he had
problems with the problem sets. He did not like the probabilistic nature of
quantum mechanics, but he had no trouble divining what was going on.
Indeed he himself ushered in probabilities in his treatment of induced
radiation. If someone says “I don’t like that joke” there can be two reasons:
he or she didn’t get the joke or got it but didn’t think it was funny. It was the
latter for Einstein and quantum mechanics. He certainly understood all the
complexities of quantum mechanics. He has said he had spent far more time
wrestling with quantum mechanics than either the special or the general
theory of relativity. It is true that till the end he didn’t find a formalism that
satisfied him. The formalism I’m giving you certainly works in the sense
that its every prediction has been correct. Until something better comes to
replace it, we will keep using it.

19.4   Matter waves
Now came the French physicist, Louis de Broglie (1892–1987), who argued
as follows in his PhD thesis. If light, which we thought was a wave, is
actually made up of particles, perhaps things that we always thought of as
particles, like electrons, must have a wave associated with them, with a
wavelength related to their momentum as follows



If this is right, we should see interference in the double-slit experiment with
electrons.

Equation 19.14 is of course the same as

for photons with one conceptual difference. For light, λ is a natural quantity
and the photon and its momentum p are the surprises, while for electrons
the momentum p is a natural quantity and the associated wavelength λ is the
surprise.

In the case of the electron or other massive particles like protons or
neutrons,  is called the de Broglie wavelength. The double-slit
experiment for electrons aimed at testing de Broglie’s hypothesis is
designed in pretty much the same way as for photons, but with some
obvious and inevitable differences. First, the source of electrons is different
—it could be some electrode that boils off electrons with negligible kinetic
energy K. These are then accelerated to some fixed momentum p by
allowing them to fall through a potential V such that

Notice that I use the non-relativistic expression for the kinetic energy of the
particle. This will be the case except for photons, which always travel at c
and obey E = pc.

A velocity filter may be used to ensure that all electrons reaching the slits
have the same p and hence the same de Broglie wavelength. All this was
simply accomplished in the case of light by a monochromatic source.



To detect electrons, you replace the photographic film with a row of
electron detectors or a single detector that can slide along the right edge as
in Figure 19.5. These detectors can amplify a single electron that hits them
into an avalanche that leads to a macroscopic current. You generate a
histogram of events triggered by the detected electron as shown by x’s in
Figure 19.5. After several hits, the histogram of the number of electrons
arriving in some fixed time will form the pattern I1 with just S1 open, I2
with just S2 open, and I1+2 with both slits open. The period of the
oscillations will be determined by the de Broglie wavelength λ = 2π ħ/p of
the electrons, confirming its wave-like nature.

Figure 19.5   Top: Electrons go from emitter E to a sliding detector D with just slit S1 open. The
figure shows a possible classical trajectory connecting the two end points. The histogram I1(y) is
generated by recording the arrivals (shown by x’s) over a fixed time period. Not shown is a similar
pattern with S2 open. Bottom: As with photons, an interference pattern I1+2 ≠ I1 + I2 is seen with
both slits open. In particular, no electrons come to a point like X with both slits open, though they did
come with one or the other open.



Now the surprise is not that the electron hits only one detector, depositing
all its charge, energy, and momentum there. It is supposed to do that; it is
after all a particle with localized attributes. What is surprising is that when
two slits are open, you get the interference pattern. At a place like M you
get four times as many electrons as with one slit open, and not double. Even
more dramatic are locations like X where you don’t get any electrons with
both slits open, whereas you used to get some with just one slit open.

This is the end of Newtonian mechanics for particles like electrons. If an
electron were a Newtonian particle it would go from the emitter E to the
detector D via one or the other slit. Opening a second slit would have no
effect on the number going through the first. A particle is aware only of the
space right next to it and cannot sense or respond in any way to another slit
far from the one it is headed for. The number coming with two slits open
had to be the sum of the numbers coming in with either one open. You
cannot explain points like X where no electrons come with both slits open,
while some did with just one.

Now some people may say, “Well, if you have a lot of electrons coming
in, maybe these guys coming out of S1 bumped into those guys coming out
of S2 so that the final intensity was not I1 + I2. Nobody came to X because
these collisions diverted the electrons headed for X to some other
direction.” This is wrong on many counts.

First, it is very unlikely that random collisions of this type can produce a
nice and repeatable interference pattern correlated with the incoming
electron momentum p and the slit separation d.

Second, you can lay the notion of a classical electron to rest by making
the electron source so feeble that, at a given time, there’s only one electron
in the experimental region. We know when it left the emitter E and when it
came to the detector D. It cannot collide with itself. And yet it knows two
slits are open because after many runs, the interference pattern emerges. A
Newtonian particle cannot know that two slits are open. So the electron
must have an associated wave that knows how many slits are open, knows
what their spacing is, and can interfere with itself.

For completeness let me mention that the de Broglie hypothesis was
originally confirmed not with the double-slit but by diffraction off a nickel
crystal in 1927 by Clinton Davisson (1881–1958) and Lester Germer
(1896–1971). If you shine a beam of mono-energetic electrons (which have
been accelerated to a fixed momentum and are hence associated with a



definite de Broglie wavelength λ) at a crystal, you find that the electrons
scatter only for incident angles θ relative to the plane of atoms that satisfy
the Bragg condition 2d sinθ = nλ where d is the spacing between layers of
atoms and n is an integer. This experiment had been presaged by Walter
Elasser in the early 1920s and finally succeeded after some serendipitous
incidents and accidents.

To summarize, light, which we thought was a wave, is made of particles,
and electrons, which we thought were particles, are guided by waves.
Everything exhibits wave-particle duality in the microscopic world.

19.5   Photons versus electrons
In the double-slit experiment described so far, photons have behaved very
much like the electron (which is a stand-in for all other particles like
protons, neutrons, pions, etc.). Let me remind you of the similarities.

1. Both exhibit wave-like interference: the function I1+2(y) ≡ I(y) oscillates on the line of
detection parameterized by a coordinate y.
2. The λ of the underlying wave may be deduced from the spacing between maxima and minima,
the slit separation d, and distance L to detectors or film without knowing what the wave actually
describes. For photons λ would be just the wavelength of the incident electromagnetic wave, while
for electrons it would be the de Broglie wavelength.
3. In both cases I(y) gives the likelihood of a photon or electron triggering a pixel or detector at the
point y.

But as we go forward and develop the quantum theory, the photon ends
up being treated very differently from the electron. This is the case because
the photon is different.

First of all, the photon can never be at rest. Being massless, it has to
travel at c. By contrast an electron can be brought to rest and there is a
regime where non-relativistic kinematics applies. Next, the number of
electrons is conserved (in the non-relativistic regime): an electron never
appears out of nowhere, nor does it disappear into nothing. By contrast, the
number of photons can change, and even does so during this experiment,
increasing by one during emission by the source and decreasing by one
during absorption by the pixel.

This leads to a different interpretation of the intensity I(y) and of the
underlying wave that produces it.

1. The wave underlying the photon is just the electromagnetic wave, described by E and B. The
intensity is I(y) ∝ |E(y)|2 + |B(y)|2, dropping constants like ε0, μ0, and c. (Go back and consult



Eqn. 14.87 and the ones leading to it.) In the case of electrons, the underlying wave, called the
wave function ψ(y), does not correspond to any classical field. It is an entity we are forced to
introduce to explain the double-slit experiment. All we know is that in the experiment with mono-
energetic electrons, it is attributed a wavelength λ = 2π ħ/p. The intensity is taken to be I(y) = |
ψ(y)|2, and not I(y) = ψ2(y), just in case ψ is complex.

2. In the case of the electrons I(y) = |ψ(y)|2 encodes the probability P(y) of finding the electron at y.
Hence we write

This relation between |ψ(y)|2 and the probability of finding an electron at y was proposed by Max
Born (1882–1970); it is one of the pillars of quantum mechanics. If the experiment is repeated
many times, P(y) = |ψ(y)|2 will be proportional to the density of electrons found at y.

In the case of photons we do not identify I(y) ∝ |E(y)|2 +|B(y)|2 as the probability of finding a
photon at y. Instead we identify it with the probability of its being absorbed by an atom or pixel at
y. What is the big difference between the photon being absorbed at y and the photon being found at
y? The answer is that the absorption of the photon has a very precise location, namely of the pixel
that changed color or the atom that absorbed it. This is not so for the location of the photon,
because there is no trace of the photon after detection. If I(y) is the probability of finding the
photon at y, then where is it? It is gone after detection.

By contrast, the detected electron is actually there, rattling around inside the detector as a
distinct entity carrying charge −e and mass m. So we can meaningfully say I(y) is proportional to
the probability of an electron being found at y, of it actually being at y upon detection.

There is a fundamental problem with assigning any probability function P(y) for a photon being
at y. Consider a macroscopic electromagnetic field. Its energy density is proportional to the
product of P(y) (the probability the photon is at y) and the energy ħω of each photon:

dropping all constants. But there is no meaning to λ(y), the “wavelength at y.” It appears that P(y),
the proposed probability of finding the photon at y, depends not just on the values of E(y) and B(y)
at y, but also on the non-local quantity, the wavelength. This can only be inferred from the values
of fields over a distance comparable to the wavelength, which need not be small. So the only
reasonable candidate for P(y), the probability of finding a photon at y, is a non-starter.



The bottom line is that unlike electrons, photons do not have an associated
wave function ψ(y) from which we can obtain P(y) = |ψ(y)|2 following Born.

The rest of this book will deal only with the quantum mechanics of
massive particles like electrons, for which we can define a wave function
ψ(y) and for which P(y) = |ψ(y)|2 is the probability of finding them at y.

I will also limit myself to non-relativistic quantum mechanics, which
means the (kinetic) energy and momentum of the particles are related by the
approximate formula

and not the exact one  The photon will enter here and there
and affect the dynamics of the electron, as in Compton scattering or the
emission and absorption of light by atoms. It can have an energy and
momentum but not its own wave function ψ(y).

19.6   The Heisenberg uncertainty principle
The fact that particles are described by waves that control the probability of
their being somewhere and that a particle in a state of momentum p has an
associated de Broglie wave of wavelength

implies the celebrated Heisenberg uncertainty principle.

19.6.1   There are no states of well-defined position and momentum
There are many ways to state the principle and let us begin with one:



It is impossible to prepare a particle in a state in which its momentum
and position (along one axis) are exactly known. The product of the
uncertainties ⵠx and ⵠp is required to obey

This formula, as written, is applicable only if ⵠx and ⵠp conform to the
precise definition of uncertainties in quantum theory. Postponing this
definition for later, we will instead identify in each context a reasonable
measure of what we could call the uncertainties in position and momentum.
The products of these heuristic uncertainties naturally need not be bounded
below by ħ/2. However, they will always be of the same order:

where factors like 2 or π are not guaranteed to match on both sides, and it is
understood that the ħp that multiplies ⵠx is ⵠpx. The main point is that ħ ≃
10−34 J · s sets the overall scale for these quantum effects and a factor of π
here and there does not change this. (The only 2π I will rigidly retain is in
de Broglie’s formula λ = 2π ħ/p, where all the quantities are precisely
defined.)

Let us now try (in vain) to produce a state of well-defined position and
momentum. There is no problem doing this in classical mechanics: we let a
particle roll down a slope till its momentum reaches a value p0 at some
point r0 and label the state by the pair (r0,p0).

Let us try something similar in the quantum case for motion along the y-
axis. We first accelerate the electron by letting it gain kinetic energy



Figure 19.6   In an attempt to localize the electron’s position and momentum in the y-direction, we
send it along the x-axis through a slit of width D in the y-direction. The emergent electron has
positional uncertainty ⵠy ≃ D and a y-momentum that has angular spread at least as great as that of
the first diffraction peak 2θ ≃ 2λ/D.

using an accelerator of voltage V. We fire it in the x-direction toward a slit
of width D in the y-direction as shown in Figure 19.6. An electron just
emerging on the other side has a position right in front of the slit. We may
reasonably take as the uncertainty in its y-position



A different definition may change this by a factor of order unity, which is
why we use the ≃ symbol. We can make ⵠy as small as we want by
reducing D.

What is its y-momentum? It came in with momentum p0 in the x-
direction and nothing in the y-direction. Classically it would have the same
y-momentum (zero) just after crossing the slit. Since this momentum is
known exactly, it looks like ⵠpy = 0 and ⵠyⵠpy = 0. However, this is not so
in the quantum theory. The incoming electron has an associated wave with

and when such a wave hits a slit, it diverges on the other side due to
diffraction. We have seen that the wave has a significant amplitude not just
in the forward direction, but up to the first zero, which occurs at an angle

The opening angle of this diffraction cone is

A particle capable of landing anywhere in the central maximum must be
endowed with the requisite y-momentum that will take it there from the slit.
Although the wave is significant only within this central maximum, it is not
strictly zero outside. So the y-momentum also has a probability distribution
of angular width no smaller than 2θ, which translates into



Cross multiplying by D, which is just ⵠy, we arrive at

The ħ on the right-hand side is solid, but the 4π is not, since it can be
easily changed by a slight and reasonable redefinition of ⵠpy and ⵠy. (For
example, we could say ⵠpy is larger because the diffraction pattern is not
strictly zero outside the central peak.) This is why we drop the numerical
factors of order unity and write

I emphasize: it is not that we do not know the py of the emergent electron;
it does not have a definite py when it emerges from the slit because there is
a non-zero probability of getting any answer in the diffraction peak. A
particle whose momentum measurement has a probability of giving a range
of answers cannot be said to have a definite momentum.

Do not be fooled by the fact that at various times we may know various
things that seem to contradict the uncertainty principle. At the outset we
knew the momentum exactly: it was p0 in the x-direction and 0 in the y-
direction. We had no idea where it was in the y-direction. Just after it
crossed the slit, we knew its y-location to within an uncertainty ⵠy ≃ D.
But in this state it had an indefinite y-momentum, with a non-zero
probability for pointing anywhere in the central diffraction peak. Later,
when that electron hit a particular detector, we could work backward to find
out what momentum it must have had to arrive at this location starting from
the slit. This retroactive knowledge that we obtain only after it hits the
detector does not describe a property of the electron when it emerged from
the slit.

It is an inescapable property of waves that you cannot confine them
spatially with a slit without forcing them to fan out. The result  was
known well before quantum mechanics in the study of single-slit
diffraction. The new input from quantum theory is that λ now describes a



particle of momentum  and the fanning out translates into an
uncertainty in y-momentum.

The role of probability here is very different from classical mechanics.
Suppose I sprayed a stream of classical particles at an opening and they
came out in a range of angles on the other side and hit a screen. Here too I
can give the odds that particles will arrive at some point on the screen. But
this use of probability is a practical strategy and not mandated by
fundamental principles of classical mechanics, which in fact allow us to
predict where each and every particle would land. On a given trial each
particle that was fired had to go to one particular spot on the screen. In the
quantum case we are talking about just one electron, not a beam. That
single electron is capable of arriving at a range of points on the screen, each
with some probability. This is the sense in which it does not have a definite
momentum when it leaves the slit. In the case of the classical particle, its
measured momentum might have been given by a probability distribution,
but it had a definite momentum, We just did not know it. In the quantum
case the electron coming out of the slit did not have a definite momentum.
Assuming it must have had a definite momentum is like assuming it must
have gone through one particular slit in the double-slit experiment. This
idea will be discussed more as we go along, so do not worry if you cannot
digest it right now.

19.6.2   Heisenberg microscope
We have seen above that given the underlying wave, a state of well-defined
position and momentum simply does not exist. In trying to prepare an
electron with a narrow range of positions, we ended up giving it a spread in
its momentum. This was understood using wave theory, in which diffraction
of a wave is very natural.

We would like to understand this in the particle picture. Let us say an
electron is in a state of definite momentum p and we want to locate it. If we
could do this without altering its momentum in any way, we would have a
state of definite position and momentum. This is forbidden by the following
version of the uncertainty principle:

The act of locating the position of an electron to within ⵠx will introduce
an uncertainty in its momentum ⵠp satisfying



Here we turn to a simple experiment whose sole aim is to find the
position of the electron. The electron lives on the x-axis as shown in Figure
19.7. We hope to locate it by shining light along the x-axis and observing it
from above with a microscope of aperture D, capable of sliding along x.

To proceed, we first need to derive an expression for the resolving power
of a microscope, which is its ability to distinguish nearby objects. Look at
Figure 19.7A. Consider two point-like objects on the x axis a distance ⵠx
apart and at a distance f in front of the aperture (where f is typically but not
necessarily the focal length of the lens used).

In geometric optics the rays through the center of a lens go straight and
form two sharp images separated by an angle 2α where, for small α, 

In wave optics, the images inside the microscope are not point-like but
spread over the angle ±θ where



Figure 19.7   The Heisenberg microscope. Left: Two points a distance ⵠx apart form two images of
width θ (due to diffraction) inside the microscope. For them to be distinguished we require α >θ.
Right: Light from the left illuminates the electron and enters the microscope within a cone of angle ε
≃ D/2f, where D is the aperture. This makes the final photon momentum and hence the final electron
momentum in the x-direction uncertain.

due to diffraction through the aperture. For θ small, this becomes

For the objects to be clearly resolved into two distinct entities we need
the peak separation to exceed the peak width:



or

Now, according to the right half of Figure 19.7, the scattered photon can
enter the microscope in a cone of opening angle 2ε given by

Thus we arrive at the resolving power of the microscope in terms of λ and ε:

a well-known result in classical optics. (A more accurate one is 
There is no lower limit on just ⵠx: at fixed ε we can reduce it arbitrarily by
reducing λ. Since two point-particles cannot be distinguished if they come
closer than ⵠx, we may rightly call ⵠx the uncertainty in their location.

How about the electron’s momentum? Look at Figure 19.7B. Assume the
electron had a well-defined momentum before the position measurement.
(The uncertainty principle does not forbid one variable, in this case p, from
having a well-defined value.) The photon comes in with momentum



in the x-direction, scatters off the electron, and enters the microscope
(assumed to be with the same magnitude of momentum). It can enter it
anywhere in the cone of half-angle ε. So its final x-momentum has an
uncertainty of order

This uncertainty in the photon momentum translates into the same
uncertainty in the electron’s final momentum by the conservation of
momentum.

In summary, we have used the microscope to produce an electron in a
state with uncertainties ⵠx and ⵠpx obeying

With the approximate ⵠpx and ⵠx, and with factors of order unity ignored,
we write

Since it takes at least one photon to detect the electron, the uncertainty
product can only get bigger if more photons are involved.

Here is a point worth repeating: it’s not the fact that the photon came in
with a large momentum or that it transferred a large momentum to the
electron that causes the uncertainty in the final electron momentum; it is the
fact that the photon went into the microscope with an uncertainty in its



angle. This uncertainty in the angle turns into the uncertainty in the x-
component of the photon’s final momentum and hence the electron’s final
momentum. (Remember, when we say the photon or electron has an
uncertainty in its momentum, we are not speaking of our ignorance; we are
saying it does not have a definite momentum.) Once again the argument
requires us to pass deftly between the wave and particle pictures. This
sleight of hand can be avoided once the full theory is mastered. Then it will
be possible to define ⵠx and ⵠp precisely and derive a precise lower bound
for the uncertainty product

19.7   Let there be light
Let us take stock of the double-slit experiment. Consider just one electron.
We know it was emitted when the emitter recoiled. We also know it was
subsequently detected by a detector. These are undeniable facts. Even
quantum mechanics cannot change them. But what happened between these
two observations? We cannot say, because we did not see the electron in
between. It seems reasonable to assume that it followed a specific trajectory
that went from the emitter E to the detector D via one or the other slit. We
may not know which path it took, but surely it must have taken one of the
two paths. This reasonable assumption is flatly contradicted by the
interference pattern. If in each case the electrons followed a definite
trajectory passing through one or the other slit, they cannot be aware of the
other slit, and I1+2 = I1 +I2 would be an inevitable consequence.



Figure 19.8   When a lightbulb is placed near the slits to see which slit the electron took, we find that
the ones that were observed showed no interference while the ones that escaped detection produce
interference oscillations on top of the featureless I1 + I2 (dotted line).

Suppose we do not buy this notion that an electron does not go through a
particular slit. We place a glowing lightbulb right after the two slits as
shown in Figure 19.8. Whenever an electron makes it past the slits, we will
see for ourselves which slit it went through. Then there can be no talk about
not going through a definite slit or not having a definite trajectory. Every
electron that registered a click at a detector is then classified as having
passed through S1 or S2, as having followed a definite trajectory. By sheer
logic we have to add the numbers through each slit to get the total number:
we must have I1+2 = I1 +I2.

Indeed this is what will happen if every electron that was picked up by
the detector was also seen on its way to the detector. But once in a while
some electrons may make it to the detector without being observed near the
slits. So in addition to electrons labeled as coming via S1 or S2, there is a
third species of electrons: those which were not observed, which slipped by.
The reasonable assumption that they too would behave like the others we
saw is wrong. They profoundly alter the distribution. Let us say that of the
electrons that triggered the detectors, 10% escaped undetected by the
lightbulb. They are the ones to which we cannot ascribe a particular slit, a



particular trajectory. We now find that the distribution I1+2 looks like I1 +I2
plus a ≃ 10% wiggle. In other words, the numbers of electrons that we
caught and identified as going through slit 1 or slit 2 add up the way they do
in Newtonian mechanics, but the electrons that slipped by without
detection, which we cannot associate with a specific slit or a specific
trajectory, show the interference pattern. They must know about both slits to
produce an interference pattern that depends on the slit separation d.

Think about this: the ones that were seen near either slit act as if they
followed a definite trajectory (through a specific slit) while the ones that
slipped by act as if they did not follow any specific trajectory, because they
knew about both slits.

It is very surprising that whether or not we see the electron makes such a
difference. When we study an object in Newtonian mechanics, we don’t
care if the object is observed or not at every stage. We shoot two billiard
balls at each other and predict the outcome given the initial data. As they
collide, we may be watching them or may not be watching them. The
outcome is independent of our watching. We believe in an objective reality
described by natural laws; our observing it at intermediate stages is
incidental and does not influence the outcome. Newtonian mechanics
allows for an ideal observer who can observe without affecting the
outcome.

Why then does observation make such a difference to the electrons? To
answer this let us ask how we observe the electron to see which slit it
passed through. Look at Figure 19.9. The slits are a distance d apart in the
y-direction. We need to obtain an image that can resolve distances of order
d. We have seen (Eqn. 19.45) that to locate a particle to a precision ⵠx, we
need to employ photons that will necessarily transfer an indefinite amount



Figure 19.9 The photon used to determine which slit the electron took
produces an uncertainty in its y-momentum of order  and in its
direction of order  which is of the same order as the angular
separation 2θ∗ between two successive minima.
of momentum ⵠpx given by

Although I will keep the factor of 4π in the following discussion, only the ħ
matters.

Let us apply that formula here with some obvious modifications. We
want to know which slit the electron took. So we want to be able to tell an
electron at slit 1 from an electron at slit 2. The slits are a distance d apart in
the y-direction. So we swap x for y in Eqn. 19.48 and let d, the distance
between the slits, play the role of ⵠx. We deduce that determining which slit



the electron took will introduce the following uncertainty in its y-
momentum:

Now, the incoming electron had a momentum p0 in the horizontal (x)
direction and a wavelength λ0 = 2π ħ/p0. The uncertainty ⵠpy introduced by
the position measurement will cause an angular uncertainty in py of size

On the other hand the angular spacing 2θ∗ between successive maxima
and minima (Figure 19.9) is deduced from

to be



The factor of 2 between θ∗ and θ (Eqn. 19.55 for the separation between
minima and Eqn. 19.53 for the angular uncertainty caused by the position
measurement) is not important. What matters is that they are of the same
order, which is enough to wash out the interference pattern.

The act of observation by photons is dramatic and traumatic for the
electron but not for you and me. Right now, I’m getting slammed by
millions of photons, but I’m taking it like a man. But for the electron, it is a
different story. A single collision with a photon can be like getting hit by a
truck. The key is not just the huge momentum of the photon but the fact that
the momentum transfer is unknown by amount of order  Dimming
the light source will not help; it will just reduce the number of photons and
the likelihood of detection but not the punch delivered by the photons that
do collide with the electron.

Why do undetected electrons exhibit interference but not macroscopic
objects like bullets? Suppose the electron gun is replaced by a machine gun
and the opaque barrier by a concrete wall with a hole in it. “They” have tied
you to a post on the other side and are firing bullets at the hole from the left.
In other words, you are the “detector.” You are naturally anxious as you
dodge the bullets coming through the hole and now a “friend” offers to help
you by making a second hole at a location that ensures destructive
interference. You refuse, because in the double-slit experiment with bullets
the second hole will not help. Why does something that works at the atomic
level fail at the macroscopic level? There are two reasons.

The first has to do with the wavelength λ = 2π ħ/p. If in the equation p =
mv you set m = 1 g and v = 103 m/s, you get a λ of order 10−34m. That
means these oscillations at your location, a few meters down the road, will
be also of this order, give or take a few powers of 10. For reference, the size
of a single proton is about 10−15 m and there will be around 1019

oscillations over the size of a proton. No macroscopic sensor (like you, tied
to the back wall) can detect that. Only the spatial average, which looks like
I1+I2, will be perceptible. The probabilities for getting shot will be additive
over the two slits, and life with two slits open will be roughly twice as
much at risk as with just one open.

The second reason interference is hard to see in the macroscopic scale is
that macroscopic systems are being constantly (and often unintentionally)
observed: by ambient light, by air molecules that bump into them, by



cosmic rays, and possibly by dark matter. If you could isolate your system
from all these and could detect oscillations of an absurdly small spatial
period, you would see interference effects even in macroscopic systems.
Starting from the atomic scale, experimentalists have been systematically
trying to get bigger and bigger systems to display such interference,
suspended in limbo between more than one classical state at a given time.

19.8   The wave function ψ
Let us compare the kinematics of quantum mechanics and classical
mechanics. In classical mechanics the state of a particle is specified by its
position r and momentum p.

In quantum theory the particle is described at any one time by the wave
function ψ(r). Remember ψ(r) describes one particle, not a swarm of
particles. Thus we have gone from just two variables (r,p) to a whole
function ψ(r). What does the function tell us about the particle? From the
probabilistic picture that emerged from the double-slit experiment we have
learned that |ψ(r)|2 gives the odds of finding the particle at r.We will
assume this interpretation of ψ holds in all situations. An example is
depicted in Figure 19.10. It describes a particle in one spatial dimension
(described by the coordinate x) unlike the particle in the double-slit
experiment, which was moving in two dimensions, with coordinate r = (x,
y).



Figure 19.10   An example of a generic wave function ψ(x) of a particle confined to the x-axis and the
corresponding probability distribution | ψ(x)|2 over a part of the x-axis.

Here is one more thing we know about wave functions from the
interference pattern in the double-slit experiment: The ψ describing the
incoming particle of momentum p is associated with a definite wavelength

We do not know any more about the actual functional form of ψ.
(Remember that in Young’s experiment it was possible to extract the
wavelength of light from the interference pattern without knowing anything
more about the wave, in particular that it represented oscillating E and B
fields.) For example, it could be that  There is no way
to deduce the functional form of ψ from just the double-slit experiment.

Instead it is given by a postulate:



A particle of momentum p in the x-direction is described by a wave
function

The subscript p reminds us it is a state of momentum p and the constant A
in front will remain undetermined for now.

Observe that this is a complex wave function. It obeys the uncertainty
principle

in the following manner. By definition ⵠp = 0 because this is a state of
definite momentum p. So we need ⵠx = ∞. This is indeed true for this |
ψp(x)|2, which is flat (independent of x) and gives no indication of where the
particle is:

By being complex ψp has managed to meet two seemingly incompatible
demands: it has a wavelength λ associated with it (to encode the particle
momentum) and yet its absolute value (squared) is constant, giving no
information on the position.

The oscillations in ψ(x) ended up being erased when we multiplied it by
ψ∗(x) to compute |ψ(x)|2. Does this mean that any interference pattern
I1+2(y) produced by this complex wave will also be flat and non-oscillatory?

No! When this complex plane wave hits the two slits, the slits will give
rise to two complex interfering radial waves on the other side, of the same



wavelength. (That is, diffraction through the slits preserves p, the magnitude
of p, and all uncertainties refer to its direction.)

where r1 and r2 are the distances from the two slits as displayed in Figure
19.11 and serve as coordinates. This function ψ(r1, r2) will in fact show
oscillations in | ψ(r)|2 where the particle is detected:



Figure 19.11   A single complex plane wave producing two radial waves upon hitting the two slits.
The crests and troughs of wavelength λ correspond to the real part.

exactly as in the Young experiment, Eqn. 18.50.



It’s fair to say that if you did not know complex exponentials, you
wouldn’t have gone beyond this point in the development of quantum
mechanics. The wave function of an electron of definite momentum is a
complex exponential. Complex functions enter quantum mechanics in an
essential way. It’s not that the function ψp(x) is really Acos(px/ħ) and we are
trying to write it as a real part of a complex exponential to simplify some
calculation. We need this complex beast if we want to describe a particle of
definite momentum p and totally unknown location.

I emphasize that I did not derive the result that ψp≃eipx/ħ describes a
particle with momentum p in the x-direction. It is a postulate. Arguments
based on the double-slit experiment were merely espoused to make the final
answer seem reasonable. You cannot derive the postulates of quantum
mechanics by pure logic or mathematics. You have to guess postulates of
the underlying theoretical structure from the data and see how well they
work.

19.9   Collapse of the wave function
Consider a particle with a wave function ψ(x) and the associated probability
P(x) = |ψ(x)|2. Suppose now we catch it at some point, say x = 5. If there is
any reality to this detection, the particle must be found at x = 5 if its
position is measured immediately afterward. This means that right after the
measurement, both ψ(x) and P(x) must collapse to narrow spikes at x = 5.
This collapse of the wave function is postulated to happen and is found to
happen. In the double-slit experiment, the oscillatory I1+2(y) at the detectors
describes the situation before the electron is detected. Once it triggers a
detector, both ψ and P collapse to the detector.

Of course, as time passes the collapsed wave function may evolve and
broaden out. The collapsed function applies only immediately after the
measurement.

19.10   Summary
Here is a summary of what we have discussed so far.

1. At the microscopic level all entities exhibit wave-particle duality.
2. Light, which was believed to be a wave, is actually made of individual particles called photons,
which represent bundles of energy and momentum. Monochromatic light consists of photons all of
which have exactly the same momentum p given by de Broglie’s formula



and the same energy determined by the frequency of light

3. Electrons, protons, and the like, which were known to be particles with localized energy,
momentum, and charge, exhibit wave-like qualities in a double-slit experiment. The de Broglie
relation between momentum and wavelength is the same as for photons:

though I write it with λ on the left-hand side to indicate that λ and not p is the unexpected feature
for a particle.
4. Each (massive) particle is associated with a wave function ψ(r) whose absolute value squared |
ψ(r)|2 gives the likelihood of finding the particle at r. If the particle is detected at r, ψ(r) collapses
to a spike at r just after measurement. An immediate position remeasurement will give the same
answer. It may of course change as time goes by.
5. The possibility of interference implies that the particles referred to above are not classical: they
do not follow a definite trajectory (for example, through a particular slit in the double-slit
experiment) between observations. Assuming they do implies I1+2 = I1 + I2, which contradicts
experiment.
6. The interference pattern is destroyed if the slit the particle took is determined, say by shining
light. This occurs because the photons employed introduce a minimum uncertainty in momentum,
which is enough to wash out the pattern.
7. Macroscopic bodies do not show interference because they are constantly being bombarded by
the environment and because any pattern that survives would exhibit absurdly rapid spatial
oscillations.
8. The wave function associated with a particle of definite momentum p in the x-direction, or
simply, a state of definite momentum p, is



9. In every quantum state, the roughly estimated uncertainties ⵠx and ⵠp have to obey the
Heisenberg uncertainty principle:

(up to factors like 2π etc., and likewise in the y-direction).
If ⵠx and ⵠp are the precisely defined uncertainties, and not the heuristic estimates, we may

write

The uncertainty principle merely reflects the fact that trying to localize a wave in one direction
(say by passing it through a narrow slit) makes it fan out.

You have been exposed to so many new results in this chapter. There is
not much I can do to relieve the information load or to make it appear more
natural, because it is not natural. However, I want to extract from these
results what I consider to be postulates, notions that cannot be deduced by
logic or from other postulates. The list is not rigorous and I will enlarge and
amend it as we go along.

Even though the particles in the double-slit experiment moved in two
dimensions, I want, for pedagogical purposes, to extract postulates for a
particle moving in just one dimension, described by a coordinate x.

Postulate 1. The state of a particle living on the x-axis is completely
specified by a wave function ψ(x) (generally complex) that contains all the
information about it.

Postulate 2. The relative probability of finding the particle at x is given by

P(x) = |ψ(x)|2.

If the particle is detected at x, ψ(x) collapses to a spike at x just after
measurement.

Postulate 3. A particle in a state of momentum p is described by



If we bring ψp(x) to the standard form of a wave written in terms of λ

we see that not only does this postulate subsume the de Broglie formula

relating the wavelength to the momentum p, but it also goes beyond, by
specifying the actual functional form.

What about the uncertainty principle? It is not a postulate; it follows from
combining what is postulated (relating momentum to wavelength) with
results from classical wave theory.



CHAPTER 20

The Wave Function and Its Interpretation

Even though the last chapter ended with a summary, I will go over the facts
again since they are quite bizarre and talking about them often is one
effective way to digest them.

Electrons, photons, protons, neutrons are all particles. I will simply refer
to them collectively as electrons in this discussion. Let there be no doubt
about what I mean by a particle here: if one of them hits your face, you will
feel it in only one tiny region, in just one spot. The electron will dump all
its charge, all its momentum, all its energy to one little part of your face.
There’s nothing extended about the impact, the kind you would expect from
getting hit by a wave front. If it is a particle in all these ways, where is the
problem? The problem appears when you do the double-slit experiment.
That’s what puts the nail in the coffin for Newtonian or classical physics.
Recall the essentials. There is a source, like an electron gun, that emits
electrons on the left, there is a partition with two slits in the middle, and an
array of detectors (or a sliding detector) on the right. The electron gun has
been engineered to send electrons of a definite momentum and energy by
accelerating them down a definite potential. If this gun is far away to the
left, then the only way electrons are going to hit the slits is if they are
essentially moving in the horizontal direction. What do we really know
when we do the experiment? Once in a while the gun will emit an electron
and recoil like a rifle. That’s when we know the electron has left. Then we
don’t know anything for a while, and then one of the counters goes “click.”
That means the electron has arrived there. This is all we really know.
Everything else we say about the electron is conjecture at this point. We
know it was here first, and we know it was there later. The question is, what
was it doing in between? We might say, “We don’t know the trajectory it
followed because we did not track it, but it must have followed some
trajectory, either through slit 1 or through slit 2.” This reasonable
assumption contradicts experiment: it predicts I1+2 = I1 +I2, which is false.
A dramatic illustration is seen at the point that was labeled X, a zero of the



interference pattern. We used to get N electrons per hour with one slit open,
and N electrons per hour with the second slit open, and none with both
open, instead of 2N. This was not the result of electrons from one slit
colliding with electrons from the other and deflecting them away from X,
because the same result is obtained if the experiment is done with just one
electron in the region at any given time.

That is the great mystery. That is the end of Newtonian physics.
It then gets even more mysterious if we try to see which slit the electron

took by placing a glowing lightbulb near the slits. Now we find that the
ones that were detected are additive over the slits, while the ones that
slipped by produce an interference pattern. So the behavior of the electron
is affected by whether we see it or not. This is true because the light used to
see which slit the electron took necessarily transfers to the electron some
momentum whose uncertainty was estimated to be of the order 
where d is the slit separation. This in turn translates into an uncertainty in
the electron direction by an angle comparable to that which separates
successive maxima and minima in the interference pattern. The pattern gets
washed out upon detection.

We do not see such interference patterns on a macroscopic scale because
macroscopic objects are constantly being bombarded, intentionally or
otherwise, and any interference pattern that miraculously survives will be of
an absurdly small wavelength and escape detection. Only the spatial
average, which reduces to I1 +I2, will be detected.

What are we to make of the oscillatory pattern I1+2 in the double-slit
experiment? A trained physicist like you will say, “Hey, this reminds me of
interference, which I have encountered with water waves and sound.
Obviously there is some underlying wave and some wavelength. The
minute you give me the wavelength and a slit separation, I can calculate this
pattern using d sinθ = mλ. Conversely, from the angles at which maxima
occur I can infer λ.” You go on and find that the wavelength is some
number 2π ħ = 2π · 1.05 · 10−34J · s divided by the momentum p of the
incoming electrons:



In other words, you find that if you sent in more energetic electrons, that is,
accelerate them through bigger voltage to increase their p, the wavelength λ
goes down inversely, with 2π ħ as the constant of proportionality.

So you can successfully predict this pattern given the electron
momentum and the wave of corresponding λ, but what does it tell you about
what’s going on? What good is that pattern? The pattern tells you that if you
repeated the experiment with this electron gun a million or a billion times
and plotted the histogram of electrons registering at different counter
locations, the histogram would eventually fill out and take the shape I1+2
produced by wave interference. However, this wave is not associated with a
stream of electrons. The single electron in the experimental region is
controlled by this wave. It’s not a wave of charge or of matter as in water or
a string. It’s a mathematical function, and you are driven to it as the only
way you know to get this wiggly graph I1+2: give the wave a definite
wavelength and let it interfere. And what does it mean for the individual
trial? It gives you the odds of where the electron will land on that screen.

So there seems to be a function whose square at a point r gives you the
probability of finding the electron at r. That function is called the wave
function ψ(r). Given the wave and the relation p = 2π ħ/λ, the uncertainty
principle ⵠxⵠp ≳ ħ follows. One way to arrive at it is to try to engineer a
situation in which the product of the uncertainties in the electron position
and momentum is arbitrarily small. We will find it is possible in classical
mechanics but not quantum mechanics.

First consider classical mechanics. We send a beam of classical particles
of definite momentum p0 in the horizontal or x-direction and let it strike a
partition with a slit of width D in the transverse y-direction. Any particle
emerging from the slit has py = 0 (since it is still moving horizontally), and
a y coordinate with uncertainty ⵠy = D. Since ⵠpy = 0, the uncertainty
product vanishes. Besides, we can make ⵠy as small as we want by
reducing D.

This is of course not true for a quantum particle like the electron. It is
still true that the electron just emerging from the slit has ⵠy ≃ D. However,
its fate is governed by a wave with λ = 2π ħ/p0. The wave fans out by
diffraction to an angle θ given by Dsinθ = λ. The final electron has a non-
zero probability of hitting points on the screen at any angle within the
principal maximum of the diffraction pattern, i.e., within ±θ. To get there it



needs to have a y component of momentum with an uncertainty ⵠpy ≳ 2p0
sinθ = 2p0λ/D = 4π ħ/D, in accord with the uncertainty principle.

The uncertainty principle is valid in the macroscopic scale but irrelevant.
Consider an object of mass 1 kilogram whose location is known to the
accuracy of the size of 1 proton, which is 10−15m. So we have here an
object made of ≃ 1026 protons and we know its location to the width of 1
proton. That is good enough for most imaginable purposes. The
corresponding ⵠp = 10−19kg ·m/s translates into uncertainty in velocity of
10−19m/s. Now how bad is that? Suppose I knew the velocity to this
accuracy, and I let the body travel for one year. Since a year is roughly
107s, that becomes a position uncertainty of 10−12m, which is one-
hundredth the size of an atom. So you see, these uncertainties are not
important in daily life.

What is the incoming wave that produces this interference pattern in the
double-slit experiment conducted with electrons of definite momentum p in
the x-direction? We know the wavelength is λ = 2π ħ/p, but many functions
can oscillate with this λ. The correct answer is the complex exponential

where the constant A is unspecified at this stage. The label p reminds us that
it is not just any old ψ; it is one that describes a particle of momentum p.
Such nomenclature is common and will be employed often in what follows.
This function manages to encode the oscillations of the correct wavelength
in its phase and yet possess an absolute value squared |ψp(x)|2 that is y-
independent. So the particle location is completely unknown and the
probability distribution absolutely flat, which means ⵠx = ∞, as required of
a state of definite momentum.

I emphasize that the preceding ψp with its flat P(r) describes the
incoming wave before it hits the two slits. After passing through them, the
wave emerges as two radial waves that interfere and produce an oscillating
P(y) along the line of detectors.



20.1   Probability in classical and quantum mechanics
Suppose you flip a coin and ask, “Which way will it land?” This calls for a
very difficult calculation. But it can be done in principle, because once
released from your hand, the coin can land in only one way. That is the
determinism of Newtonian mechanics. If you knew the exact initial
position, velocity, linear momentum and angular momentum, the viscosity
of air, and so on, you could predict whether it was going to land heads or
tails. There is no fundamental need to resort to probability. In practice, no
one can do the calculation. What you do in practice is throw the same coin
5,000,000 times, you find out the odds for heads or tails, and you say, “I
predict that when you throw it next time, it will be heads with probability
0.56.” That is how you make statistical predictions. You did not have to use
statistics, but you did so as a practical strategy when faced with an
impractical calculation.

Next, suppose I toss a coin and when it lands on my palm, I close my
palm without looking. When I uncover my palm and look at the coin, it may
be heads or it may be tails. Suppose I got heads. It was heads even before I
opened my hand, right? The measured outcome preexisted inside my hand.
What I saw was what it was doing even before I looked. This is how
probability works in classical mechanics.

I’ll give another example, with a continuum of possible outcomes. Figure
20.1 shows the probability of locating me somewhere. It is peaked near my
home in Cheshire, and near Yale, and has some sizable value on the
infamous Route 10 connecting the two. Somebody has studied me for a
long time and said, “If you look for this guy, here are the odds of finding
him at various locations. Either he’s working at home, working at Yale, or
driving on Route 10.” The first thing to understand is that the spread-out
probability does not mean I am myself spread out, unless I got into a
terrible accident on Route 10. I’m in only one place at any one time. Only
the graph of the odds is extended. Well, suppose you catch me at the point X
on one of your many trials. If you catch me only once, you don’t know if
the prediction for P(x) is any good, so you repeat it. You locate me many
times and plot the histogram and you get the graph that looks like this P(x).
The important thing is, every time you catch me somewhere, I was already
there; you just happened to catch me there. My location was not known to
you, but I had one. I had a definite location because in the macroscopic
world I’m moving in, my location is being constantly measured. You didn’t



ask or you didn’t find out, but I’m plowing through air molecules. I’ve
slammed into them. They remember that. I ran over this ant. The last thing
the ant did was measure my position, at considerable cost to itself.

Figure 20.1   The probability of finding me somewhere during a typical day at home in Cheshire,
along Route 10, or at Yale.

Now let us look at Figure 20.2. It is no longer me that is being described
by P(x), but an electron that is shared by two nuclei, N1 and N2. Whereas in
classical physics there is just a probability function P(x), in quantum theory
there is an underlying wave function ψ(x), which in turn determines P(x) = |
ψ(x)|2. The electron is described by ψ1(x) when it is centered around
nucleus N1, with a corresponding probability P1(x) = | ψ1(x)|2. It does not
have a precise location since it can be found anywhere the function is non-
zero. Let us say we are only going to make crude position measurements
that only tell us near which nucleus the electron is. If the wave function is
ψ1, we know we will find it near nucleus N1, that it belongs to N1. Likewise
ψ2(x) is centered around nucleus N2 with a corresponding probability P2(x)
= |ψ2(x)|2 and describes an electron known to be near N2 and belonging to
N2.



Figure 20.2   Top left: The wave functions ψ1 for an electron centered near nucleus N1 or ψ2
centered around nucleus N2. Top right: Their sum ψ1 + ψ2, which is also a possible wave function.
Bottom: The corresponding probability P1+2(x).

Now quantum theory also allows for another state ψ1+2 = ψ1 + ψ2. It is
peaked near both nuclei, as is P1+2 = | ψ1+2|2. The electron is now in a state
that belongs to neither nucleus. Once again, if you catch the electron, you
will catch all of it in one place, near one or the other nucleus. It is the odds
that are spread out across both nuclei.

All this looks just like the probability of my being at my home, on Route
10, or at Yale. But there is a big difference: if you catch the electron in state
ψ1+2 near nucleus N2, it is wrong to think that it was there before you
located it. So where was it? It was not near either nucleus. It had no
location till you found its location. To assume it was definitely near one
nucleus or the other before locating it is like assuming the electron went
through one or the other slit when you did not detect it using light.
Assuming so leads to consequences at odds with experiment.

I repeat: finding the electron near N1 or N2 is not quite like finding me in
Cheshire or finding me at Yale, because in those cases, on a given day on a



given measurement, you could have only gotten one answer, depending on
where I actually was. Right now if you look for me, you can only find me
here, slaving on this book. You cannot find me anywhere else. But in the
case of the electron, the one and the same electron, on a given trial, at a
given instant, is fully capable of being here or there.

There is one common feature between classical and quantum probability.
Once a particle given by some P(x) is actually caught at some point, say x =
5, we know for sure it will be there at least for an infinitesimal time after
detection. The function P(x) collapses to the point x = 5. In the quantum
case, the underlying wave function also undergoes collapse.

In short, probability enters classical mechanics to make up for our
imperfect knowledge of the state of a particle. In quantum mechanics, even
given the maximal information allowed by the theory, i.e., the wave
function ψ(x), one still needs probabilities in an unavoidable way. The
second crucial difference is that while in both cases there is a non-negative
function P(x), in the quantum case, there is a layer beneath P(x), namely the
wave function, which can be negative or even complex and can be
superposed to produce interference.

Classically we think of measurement as revealing a preexisting property
of the object, like its position. But in quantum theory, it’s not that you don’t
know the particle location, but that it does not have a location. It is not
anywhere. It’s the act of position measurement that confers a definite
location on the electron. Until you detect it, it could have been anywhere
P(x) did not vanish. That state of being, where something can be
simultaneously here or there, in the sense that on that single occasion, it
could be found in either location, has no analog in the classical world. If
anybody tries to give you an example of this phenomenon from daily life,
don’t believe it, because there are no examples in the macroscopic world
that look like this. No analogies should satisfy you, because this has no
analog in the macroscopic world.

How small does an object have to be before it exhibits quantum
mechanical behavior, before it can be doing two things at the same time?
That is an experimental question being probed vigorously these days. We
know that if it’s really small like an electron, it’s always quantum
mechanical. If it is large like a bowling ball, it will seem to have a well-
defined position and momentum at all times. People are trying to build
bigger and bigger systems that can be in this state of limbo. Creating a



situation when an object is capable of being found here and there, or doing
this and doing that simultaneously, requires that you isolate the object from
the outside world. This gets harder as the object gets bigger. Whereas an
electron in an atom is usually in a vacuum, macroscopic objects are under
constant bombardment by the environment. That’s what ruins everything.

This is a major problem in building quantum computers. A quantum
computer, you might know, has qubits. Unlike the classical bits in your
laptop, which are in either one of the classical states traditionally called 0 or
1, a single qubit can be in a state where it can be found in either 0 or 1 on a
given trial. It’s like the electron going through both the slits.

So a quantum bit can explore both classical possibilities at the same time.
If you build a computer with 10 qubits it can be exploring 210 classical
states at the same time, in the sense that a measurement can yield any of the
210 classical answers. And if it has a million bits, it is exploring 21,000,000

classical states at the same time. This allows it to solve certain problems
exponentially faster than what is currently known to be possible on a
classical computer. This means that if the classical computer needs 1017

seconds (rough age of the universe) to solve a problem, the quantum
computer can do so in 17 seconds. However, it first needs to be built and
needs to be programmed to do this. As of now, not only do we not have a
quantum computer with more than a handful of qubits, but very few
problems are known that can be solved exponentially faster on a quantum
computer and for which we have the requisite program. There is one
celebrated program due to Peter Shor that can factorize a huge number into
its two prime factors in a few seconds, while a classical one could take the
age of the universe to do it. This may surprise you. You can multiply a 100-
digit prime number by a 100-digit prime number on your computer almost
instantaneously. But if I gave you the 200-digit product and asked you to
find the two prime factors with a hundred digits each, you won’t find it in
years. That’s why one of the ways to securely send your credit card
information on the internet is to use very large numbers obtained by
multiplying two primes to encrypt them. Decryption requires its prime
factors. These cannot be found even though the large number (the product)
is broadcast openly. But if you have a quantum computer, made up of these
qubits, and used Shor’s algorithm, you can actually factor the number in a
few seconds.



This gives you two options if you have secretly managed to build a
quantum computer. Either you can become famous and win the Nobel Prize
(or even get an NSF grant), or you can go on the biggest shopping spree of
your life, because you can get anyone’s credit card number. When you
come to that fork, you can decide which way you want to go. Maybe you
can take both choices, if you are small enough.

There are many quantum systems that can do one of two things, which
can be in a state that is both this and that. These are all potential qubits. The
problem is that they cannot be in contact with the outside world, because
even a single contact with them can destroy the quantum state of limbo, the
way the photon used to locate the electron in the double-slit experiment can
destroy the interference pattern. So you have to keep your quantum
computer fully isolated. But a computer that is not talking to the outside
world, unfortunately, is also not talking to you. This means you cannot ask
it any questions, and if it knows the answer, it cannot tell you. So
sometimes you want it to talk. Sometimes you don’t want it to talk. What
should you do? You have to build a quantum system with which you
sometimes make contact in a controlled way to give it the problem. Then
you want to leave it alone while it quantum-computes. Finally you make a
measurement to find out the answer.

20.2   Getting to know ψ
Let us continue our study of quantum mechanics. Recall that in classical
mechanics the pair (x, p) is the full story. Given that, I know everything I
need to know at any one instant. The kinetic energy is K = p2/2m, the
angular momentum is (in higher dimensions) r × p, and so on. Everything is
given in terms of the coordinates and momenta. In quantum theory, we
don’t even know where the particle is. We have a wave function ψ(x)
describing the state, and |ψ(x)|2 gives the likelihood of finding the particle at
x.

What are the conditions on the function ψ? The first is that it should be
continuous and single-valued so that at each point it gives a unique P(x).
Another technical requirement is that it should be square-integrable: the
integral of | ψ(x)|2 over all of space must be finite. This is the principle that
allows us to place restrictions on the allowed values of energies in bound-
state problems. These are problems where E, the total energy of the particle,



is less than V(±∞), the potential energy at infinity, and escape to infinity is
classically forbidden. (If the particle escaped to infinity, it would be
required to have negative kinetic energy K(±∞) = E − V < 0.) In the
quantum case, we will find that at generic energies the integral of |ψ|2 blows
up exponentially in L, the size of the universe. These states are simply
dismissed and the allowed energies are identified as those at which the
square integral is bounded.

There are two exceptions to the square integrability and unfortunately
they are rather commonplace. The first are the states of definite momentum
with constant |ψp(x)|2. Their square integral grows linearly with the size L
of the universe. This linear divergence is a borderline case we can handle
using what are called delta functions, to be discussed near the end of the
book. The other exceptions are states of exactly known position, which I
have loosely referred to as “spikes” centered at some point. These are also
described by delta functions. For now you must accept these functions
despite their not having a finite square integral. You can also view them as
limits of functions that are square-integrable.

Apart from these restrictions, ψ can be whatever you like. In particular if
ψ1(x) and ψ2(x) are two allowed wave functions so is the linear combination
Aψ1(x) + Bψ2(x). The linear superposition describes a state in which it can
be found doing what it does in ψ1 (peaked near nucleus N1) or what it does
in ψ2 (peaked near nucleus N2), with relative probabilities |A|2 and |B|2.

I have been saying that |ψ(x)|2 gives the probability of finding the particle
at x. This statement needs to be refined. I’ll tell you why. Consider a
statistical event that has a countable number of outcomes. For example,
when you throw a die, there are 6 possible outcomes. You can measure or
assign P(1), the probability for obtaining 1, P(2) the probability for 2, and
so on. These are the odds for getting any number from 1 to 6. Since some
number has to come up, we require that the probability that some number
will show up equals unity:



This is called the normalization condition. An example of a normalized
probability distribution is depicted in Figure 20.3A:

The same information is contained in the unnormalized relative
probabilities:

Figure 20.3   A: The normalized probability distribution P(i), i = 1 . . . 6 for 6 discrete outcomes. B:
The probability density P(x) for a continuous probability distribution. The shaded area P(x)dx is the
probability of finding the particle between x and x + dx.

From the unnormalized Pꞌ’s I can get the normalized P’s by rescaling:



Now suppose the set of outcomes is not countable as with a die, but
continuous, like the location of an electron. Then you cannot give a finite
probability for any particular x. (In physics we often use “finite” to mean
“not infinitesimal” rather than “not infinite.”) If the probability for any one
point was some finite number, the sum over an infinity of such points will
be infinite and cannot be rescaled to unity, i.e., cannot be normalized. So we
introduce the notion of a probability density P(x) defined as follows:

That means that if you draw a graph of |ψ(x)|2 = P(x) and take a sliver of
width dx at x, the area of the rectangle P(x)dx is the probability of finding
the electron between x and x + dx, as indicated in Figure 20.3B. So you
assign an infinitesimal probability to an infinitesimal region. The statement
that the particle has to be somewhere, namely, that all the probabilities add
up to 1, becomes the normalization condition

Now a ψ that did not obey this condition also contains the same
information: the odds are big where |ψ|2 is big, small where it is small, zero
where it is zero, and so on. So when you multiply ψ(x) by any number, you
don’t change the predictions of the theory, namely the relative odds. It is
just that if your original ψ(x) had a square integral of unity, the new one will
not.

Thus the wave function ψ of quantum mechanics is very different from
other ψ’s you may have encountered elsewhere. For example, if ψ(x) stood
for the displacement of a vibrating string, 2ψ(x) is a totally different



configuration of the string. If you took the electric field and made it twice
as big, that’s a different situation, because the forces on the charges are
doubled and the energy density quadrupled. But in quantum mechanics,
ψ(x) and any multiple of it stand for the same physical state. The only job
of ψ is to give you the relative odds. If you wish, you can rescale it so it is
normalized and gives the absolute probability density.

Here is an analogy. Suppose you are a cop asking a witness which way
the burglar ran, and she wants to say at 45 degrees to the x-axis; she can say
“Along i + j.” She can also say “Along 96i+96j.” What she is trying to
convey is not a vector but a ray or a direction. For this reason one says that
in quantum mechanics the wave function is a ray. Of all the rays obtained
by rescaling a given ψ(x), it is common to pick one that is normalized to
unity.

Look at the simple example depicted in Figure 20.4. Let

This ψ describes an electron that is going to be found with equal probability
anywhere within |x| < a and never outside. This fact will not change if you
replace A by 10A or ψ(x) by 10ψ(x).

(This function is not single-valued at x = ±a where it abruptly plunges
from A to 0. I still use it because it is easy to work with in the following
illustrative calculation. If you wish you can think of it as the limit of a
single-valued function that drops very very rapidly to zero near |x| = a.)

Of this family of physically equivalent functions, we are now going to
pick one that is normalized, i.e., obeys



Figure 20.4   An unnormalized wave function that is non-zero and constant for −a < x < a. Its height
A may be chosen to normalize it.

by a judicious choice of A. Since

we choose

is normalized. (Actually we can still multiply A by a pure phase eiθ without
affecting |A|2. It is common to choose the normalization factor A to be real
whenever possible.)

Another popular example is the bell-shaped Gaussian:



This function starts out with a value A at x = 0 and falls off to negligible
values when x ≫ ⵠ, where ⵠ is called the width of the Gaussian. Because
this ψ is real, normalization requires the integral of ψ2(x) to equal unity:

Setting α = 1/2 in the tabulated integral

we arrive at the following normalized wave function:

20.3   Statistical concepts: mean and uncertainty
Here are some basic ideas from statistics that will be needed in our study of
quantum mechanics.

Suppose there is a variable v that can take on many values vi, [i = 1 . . .
N] that are supposed to occur with normalized probability P(i) according to
some theory or hypothesis. For example, we may be talking about a die,
with the following normalized probabilities P(i) for obtaining one of the six
numbers



To verify this statistical description of the die we must toss it N times or
toss N identical dice once and see if N(i), the number of times a given value
i occurs, obeys

A collection of such identical dice is called an ensemble.
The most complete statistical description of the dice is given by the full

list of P(i). This can be quite tedious if the die has, say, 30,000 faces. Then
one provides, as a first attempt at description, just one number called the
mean, which is the weighted average of the possible values:

(If Pꞌ(i) is an unnormalized distribution, we must divide the weighted
sum by 

For the die the mean is



Now, you can get the same mean with two different P(i)’s, one with a very
narrow spread in the possible values and one with a broad spread. To tell
them apart, we provide a measure of how wide the distribution is using the
standard deviation

So first we take the weighted average of the squares of the deviations. Then
we take the square root to obtain a quantity with the same dimension as v.
(Without the square, the average of the deviations vi − v will be zero. I
invite you to show this.)

For the die

For a continuous variable like x with a normalized probability density P(x)
we make the expected modifications:

In the context of quantum theory P(x) = |ψ(x)|2, x is called the expectation
value and ⵠx the uncertainty. I have mentioned that the precise uncertainty
principle



holds only if ⵠx is the precisely defined uncertainty. Eqn. 20.29 provides
that definition. A similar definition holds for ⵠp in terms of the
probabilities for getting different values for momentum. These probabilities
will be discussed in the next chapter.

Consider as an example the normalized wave function shown in Figure
20.4:

It is visually obvious that the expectation value vanishes by symmetry. This
can be easily confirmed:

The uncertainty can be crudely estimated to be ⵠx ≃ 2a. More precisely,
the uncertainty squared is



and the uncertainty is

To test these predictions we again need an ensemble of a large number of
particles all prepared in the same quantum state ψ(x) with the same
probability density in position P(x). There is one difference between the
classical and quantum ensembles. In the classical ensemble with N identical
particles, roughly N · P(x)dx particles would be between x and x + dx just
before and just after the measurement. In the quantum case each particle
would have been in a state of limbo prior to measurement, in which it could
be caught at any x where P(x) did not vanish. The particles in the ensemble
would acquire a definite position only after the position measurement.



CHAPTER 21

Quantization and Measurement

As usual, let us begin with a quick review of recent material. We have been
studying a particle living in one spatial dimension, described by the
coordinate x. Everything we need to know about that particle at one instant
is contained in the wave function ψ(x), which could be complex. This is
quantum kinematics, the analog of the statement in classical mechanics that
(x, p) describe the state of the particle. Given this pair, all other dynamical
variables like kinetic energy and angular momentum (in higher dimensions)
have fixed values. For example,  (Dynamics is the question
of how this state changes with time and is given by Newton’s laws. Later
we will study the equation that governs the time evolution of ψ.)

Whereas in classical physics two numbers tell you the whole story,
quantum theory requires a whole function ψ(x). We know a function is
really an infinite amount of information because at every point x the
function has a value ψ(x) and we have to specify all those values.

What sort of information does this ψ(x), which is supposed to tell us
everything, contain? How is that information to be extracted? We have seen
that

is the probability density for finding the particle at the point x. By that I
mean P(x)dx is the probability that the particle will be detected between x
and x +dx. We like to impose the requirement that the total probability to
find the particle anywhere add up to 1. That is a convention and not a
fundamental requirement. It’s up to you to define probability. You may tell
your friend that the odds that you will get through this course are 50:50.
These numbers add up to 100 and not 1, but they convey correctly that your
chances of passing and failing are equal. The normalized probabilities are
P(pass) = 50/(50+50) = .5 and P(fail) = 50/(50+50) = .5.



Likewise in quantum theory the wave function you are given need not be
normalized and need only obey instead

If you choose, you can rescale the given ψ by a factor  and obtain a
normalized ψ. We will generally do this. Of course it is understood that N
should be finite so that this rescaling is possible. So we want the wave
function ψ to be normalizable or square-integrable, and not necessarily
normalized. We also require that ψ(x) be single-valued: it must have only
one value at each point x. So jumps are not allowed. (The illustrative
examples at the end of the last chapter that violated this requirement could
be viewed as a limit of an allowed function.) Apart from that you can write
your own ticket.

The ψ of quantum mechanics is not like the ψ’s you have seen before, say
in the vibrating string or water waves. If the displacement ψ(x) of a string or
a body of water is multiplied by 6, it describes a different state. On the other
hand ψ and a multiple of it describe the same physical state and give the
same relative probabilities.

We have seen one particular ψ that describes a particle of definite
momentum p:

Though I gave some arguments in favor of it, this is really a postulate. The
subscript on ψp(x) tells us that this is not any old ψ, but one that describes a
particle with a special attribute: it has definite momentum p. We use such
labels all the time. We don’t go to a party and say, “Hi, I am human.” We
say something like “I am Alexey” or “I am Barry,” because that says a little
more about us than just which species we belong to.



Figure 21.1   Wave function of a particle localized near x = 5.

The probability density in this state of precisely known momentum, (ⵠp
= 0), is independent of x and equals the constant |A|2.We have no idea where
it is and ⵠx = ∞. This is in accord with the uncertainty principle.

Here is another example of a wave function with some characteristic.
Suppose a particle is known to be close to x = 5 as a result of a crude
position measurement (using photons of small momentum) that did not
determine x to arbitrary precision. What function will describe that particle?
You cannot of course come up with the precise form with just the
information I gave, because many functions can be peaked around x = 5.
However, you should not be surprised if the answer is something like the
one in Figure 21.1. Conversely if you were given this wave function, you
should be able to see right away that it describes a particle very likely to be
found near x = 5.

21.1   More on momentum states
Suppose I give you a state



What can you say about the particle? By comparing it with the prototype

you can deduce it has a definite momentum

(Don’t worry about units; they are contained in the “96,” which is really
96m−1.)

Similarly if an electron has been accelerated from rest by a voltage V0, its
momentum is fixed by

and the wave function of the electron coming out of the accelerator (along
the positive x-axis) is

Now we must deal with the pre-factor A, which has remained arbitrary
because its value has no physical significance. It is conventional to choose
A to normalize the wave function, by demanding



There is no choice of A that will work because |A|2 is multiplied by the
size of our universe, which extends from −∞ to +∞. A common way out of
this predicament is to pretend our universe is large but finite and has no
boundaries. (This may even be the case in reality.) In the one-dimensional
case we may take it to be a circle of radius R and circumference

You can form such a circle by taking a line of length L and gluing its two
ends together. If the line is parameterized by a coordinate 0 ≤ x ≤ L the
circle is obtained by joining x = 0 and x = L, as shown in Figure 21.2. In
this closed universe if you throw a rock it will come back and hit you from
behind. You can even see this happen if you wait for the light to come all
the way back to your eyes. But such peculiarities in the cosmic scale will
not matter to the quantum mechanics of a tiny atom or electron. These little
guys don’t care if the universe does not exist beyond this room, any more
than you care in your daily life that the earth is not flat.

While we introduced the circumference of the universe as an artifact to
normalize ψp, there are many present-day experiments in which the electron
actually lives on a ring, not just of finite size, but of radius R on the scale of
a micron (10−6 m).

Figure 21.2   A typical periodic function on the circle, which has been opened out to a line of length
L with the understanding that x = 0 (θ = 0) and x = L (θ = 2π) describe the same point. Note how ψ
joins with itself smoothly when the ends are glued.



In any event, we can finally write down the normalized ψp on this circle:

21.2   Single-valuedness and quantization of momentum
Since the universe is a circle, it could also be parameterized by an angle θ
restricted to 0 ≤ θ ≤ 2π. It is obvious that a point labeled by an angle θ is
identical to the one labeled by θ + 2π. The single-valued condition for ψ
assumes the form

This just means that ψ is a periodic function of θ with period 2π. We are
also free to use a linear coordinate x that runs around the circle

In terms of x, the single-valuedness condition becomes

as illustrated in Figure 21.2.
Let us consider in this universe a normalized state of definite momentum

The probability density P(x) is x-independent:



and is normalized as promised:

So far there has been no restriction on p: it could be any real number.
This changes when the single-valued requirement

imposed on all wave functions on the circle, is imposed on ψp:

This means

As eiθ lies on the unit circle in the complex plane and has period 2π,



In the unlikely event you are shaky about this, here is a second chance.
Starting with

and equating the real and imaginary parts of the two sides, we find two
conditions:

There are infinitely many solutions to this pair:

The allowed values of momentum are



I will often use the symbol pm to denote the momentum associated with
the integer m:

and use m instead of pm as the label for the state. The label m has the nice
feature that it runs over the integers.

Pictorially, these allowed values p = pm ensure that the cosine and sine,
the real and imaginary parts of the wave function, complete an integer
number (m) of full cycles as we go around the circle and join smoothly on
to themselves. For example, the real part of the wave function varies as and
as x grows from 0 to L, the argument of the cosine changes by 2π m and it
completes m full cycles. The same goes for the imaginary part, the sine. The
case of m = 0 is special, because ei0 = 1. This constant wave function is also
periodic but completes zero cycles. (When m = 0, the real part [cosine]
equals 1 and the imaginary part [sine] vanishes.)

21.2.1   Quantization
Now this is a very big moment in your life. Why? Because you have just
encountered the quantization of (the allowed values of) a dynamical
variable, which happens to be the momentum p in this instance. This is the
quantum of quantum mechanics. Classically, a particle living in a circle can
travel with any momentum, but quantum mechanically, only the values
given by pm are allowed. The quantization came from demanding that the
wave function be single-valued. The origin of quantization is often a
mathematical requirement: single-valuedness in this case and
normalizability in some others.

In the limit in which L is very, very large, on the macroscopic scale, the
spacing between the allowed values of p = 2π mħ/L becomes very, very



small, and you may not even realize that p is taking only discrete values.
The difference between two adjacent allowed values of p is

When m changes to m+1, p changes by a number of order 10−34kg · m/s
assuming L is of the order of a meter. At this scale, the quantum world will
appear classical. By contrast, in a quantum ring of radius, say 1μm, the
quantization of p will be a very real effect that needs to be reckoned with.

For a particle moving on a circle, it is natural to rewrite the quantization
of p

in a more appealing way:

as the quantization of angular momentum pR in multiples of ħ, a condition
you may have encountered earlier without proof. Now you see it is a
consequence of demanding single-valuedness.

Let us rewrite the function ψp in terms of m and θ:



The state is the same, whether we refer to it by its momentum and write it
as a function of x, or by its angular momentum, and write it as a function of
θ. I will go back and forth between these two equivalent labels p and m for
the state. Later on m will stand for the mass of the particle, but in this
chapter it will label the allowed values of momentum and angular
momentum.

21.2.2   The integral of ψp(x)

Here is one important result that you should commit to memory: The
integral of every ψp(x) vanishes except for p = 0.

Here is the proof:



because the sine and cosine complete m full cycles. The case p = m = 0 is
special:

Let us re-derive this directly with the complex exponential so you get
used to it. We need the result

which is valid even if α is complex, and in particular purely imaginary. (In
the latter case you may prove it yourself by using Euler’s formula to
convert the exponential to the sines and cosines, integrating them and
rewriting the answer in terms of complex exponentials.) Proceeding, we
find

assuming m = 0. If m = 0, the preceding formula yields the indeterminate
form 0/0. It is then best to go back to the integral and find readily that



21.3   Measurement postulate: momentum
Let us now consider a particle on a ring described by some generic wave
function ψ(x) depicted earlier in Figure 21.2. Of course, ψ(x) meets itself
smoothly when you go around the circle: it is a single-valued function of
period L. But it is not a state of definite momentum or angular momentum
because it is not an oscillating exponential of definite λ.

What can we say about the particle in such a generic state?
The first is old stuff: |ψ(x)|2 = P(x) gives the probability density as a

function of x. That means that if you take a million particles on a million
rings each in exactly this quantum state and make the position
measurements (using a Heisenberg microscope to locate x to arbitrarily high
precision, with no concern for p) the resulting histogram will look like P(x).

But there is more to life than just knowing the answer to “Where is the
particle?” In classical mechanics you can also ask, “What is its
momentum?” The only time we seem to know the answer for sure in
quantum mechanics is if ψ(x) = ψp(x), the complex exponential with a
definite period λ = 2π ħ/p. What about a general single-valued wave
function not of this form? What will we find if we measure momentum?
Will the theory again give the probabilities for the different outcomes? Will
we need to introduce another wave function A(p) that varies with p and
gives the probability for obtaining a value p by the relation P(p) = |A(p)|2?

(Bear in mind that ψp(x) is a function of x labeled by the momentum p
you are guaranteed to get upon measurement, while A(p) is a function of p,
whose mod-square gives the odds for measuring various values of p.)

I do not expect you to answer these questions because they are not
decided by logic or mathematics. We need a postulate like the one that said |
ψ(x)|2 is P(x). The postulate would tell us how to get P(p), the odds for
getting the value p in a momentum measurement.

Let us work toward the general case by first considering a simple
example



where A(p1) and A(p2) are constants independent of x, while  and 
 are two allowed momenta, and ψp1(x) and ψp2(x) the

corresponding normalized wave functions.
This is a superposition of two normalized wave functions ψp1(x) and

ψp2(x) each describing a state of definite momentum (p1 or p2). We only
know that if A(p2) were zero, we would surely get p1 and if A(p1) were zero
we would surely get p2. But suppose neither is zero. Will we get a
momentum that is some weighted average of p1 and p2? What if this
average is not one of the allowed values of p on the circle? What will be the
state right after the measurement? Will it be single-valued on the circle?

The answer is given by the two-part measurement postulate:
• Part 1. The result of a momentum measurement will yield p1 with relative probability Pꞌ(p1) =

|A(p1)|2 and p2 with relative probability Pꞌ(p2) = |A(p2)|2. (We use probability and not probability
density because the allowed values of p are discrete and labeled by the integer m.)
• Part 2. The state right after the measurement will be a state of the momentum that was obtained
in the measurement.

There are many points to note in this postulate.
1. The only values a momentum measurement will yield correspond to the two associated with the
wave functions in the superposition, namely p1 or p2, not some kind of average of the two. The
possible momenta correspond to single-valued wave functions.

2. From the relative probabilities Pꞌ(p1) = |A(p1)|2 and Pꞌ(p2) = |A(p2)|2, we may extract the
absolute probabilities in an obvious way:



3. It is crucial that the functions ψp(x) in Eqn. 21.46 be normalized for Part 1 to be valid. Why do

we suddenly care how ψp(x) is normalized after saying repeatedly that the number A in Aeipx/ħ

does not matter? The answer is that the overall scale of any given wave function is unphysical, but
not the relative scales of two wave functions. Thus we may rescale the ψ(x) on the left-hand side of
Eqn. 21.46, say by a factor of 10, and simultaneously both ψp1(x) and ψp2(x) on the right-hand
side also by 10. (Thus, instead of using normalized ψp(x), you may rescale all of √them by some
common amount. For example, you can drop the  in front of both of them.)

Here is an analogy. In a world of rays, where only directions matter, we can use i or 10i to
indicate east and j or 13j to indicate north. But to indicate northeast, we may use i+j or 10i+10j or
13i+13j but not 10i+13j.

Hereafter every state of definite momentum ψp(x) will be assumed to be normalized to unity.

4. If the measurement yields the value p1, the state ψ, which used to be a sum over ψp1(x) and
ψp2(x), collapses to just one term, namely ψp1(x). A similar result holds if p2 is obtained.

5. If the measurement yields the value p1, an immediate remeasurement will again yield p1. This
has to be true if there is any sense to saying that the particle was found in a state of momentum p1
when momentum was measured. As time goes by the state may change, but the value p1 should
persist at least for an infinitesimal time. The same thing happens in a position measurement: the
wave function collapses to the point where the particle was found right after measurement.
6. These results generalize in an obvious manner when the superposition describing the state
includes an arbitrary number of terms:



where j is a label that runs over all allowed values of momenta.
A natural label for pj is the integer m (the angular momentum in units of ħ) that enters the

quantization condition:

In terms of m, the most general such superposition assumes the form

In this notation |A(pm)|2 gives the relative probability for obtaining pm and the state collapses to
the one particular m that was measured. To find the absolute probability we use

(The label mꞌ being summed over in the denominator is just like m and runs over the same values.)
Equation 21.51 does not mean there is always an infinite number of terms in the superposition.

We can always restrict the sum. For example, we obtain the simple example we began with by
choosing just A(p1) and A(p2) ≠ 0. Even simpler is the case with just one of them, say A(p43) = 0.
This would correspond in our notation to ψp43(x) where



7. (This is an optional topic. Come back to it later if you are feeling overwhelmed.) There is a
different way to get the normalized probabilities. Instead of rescaling the P’s as in Eqn. 21.52 we
could normalize the given ψ(x) to reach the same goal. In other words, if we first normalized the
given ψ(x) and then computed the coefficients A(p) for the normalized ψ(x), these coefficients
would automatically give the normalized probabilities: P(p) = |A(p)|2. I state this without proof and
invite you to check this for the simple case with just two non-zero A(p)’s. If you start with the ψ(x)
in Eqn. 21.46, compute the integral of | ψ(x)|2 and do the appropriate rescaling to normalize ψ, you
will find that the rescaled Ã(p)’s are given in terms of the original A(p) by

and likewise for Ã(p2). This ensures that

So that is the complete answer to the question of what we will get when
we measure momentum for wave functions of the form in Eqn. 21.51. We
have graduated from wave functions of the form ψp(x), which were
guaranteed to yield the value p, to functions that are superpositions of such
functions with coefficients A(p). In this case the measurement postulate tells
us we could get any p that was present in the sum with relative probability
|A(p)|2.

What about functions not of this form? This is a reasonable question.
While it is obvious that every superposition of ψp(x) with coefficients A(p)
is periodic in L (because each term is) and therefore represents an allowed
wave function on the circle, the converse is not obvious. Is every allowed
wave function ψ that obeys ψ(x)=ψ(x+L) such a superposition? If not, what
is the corresponding measurement postulate?

Here is the great news: There are no other allowed wave functions
besides such superpositions! This is a purely mathematical result due to
Joseph Fourier (1768–1830). (In learning quantum mechanics it is
important to distinguish between postulates deduced from experiment and
theorems deduced by mathematical reasoning.)



Fourier’s theorem I. Every allowed wave function ψ(x) obeying ψ(x) = ψ(x
+ L) may be written as a superposition of ψp(x)’s with suitable coefficients
A(p):

Fourier’s theorem II. The coefficients A(p) corresponding to a given ψ(x)
are given by the following integrals:

Consider the first theorem. On the left is a generic wave function ψ(x)
obeying ψ(x) = ψ(x + L). It has a period L. On the right are the functions
describing particles with a definite momentum, ψp(x), where p = 2π mħ/L.
These too are periodic in L, but in addition they also complete mfull
trigonometric cycles within the length L. Fourier’s theorem assures us that
any periodic (single-valued) function on the circle may be written as a
linear superposition of such oscillatory ψp(x) with some coefficients A(pm).

This result may be more familiar to some of you if rewritten in terms of
states of definite angular momentum pR = mħ defined earlier and θ = x/R:

The above postulate now becomes



(You may have encountered Fourier series written in terms of the real and
imaginary parts of eimθ.)

While the first theorem assures us that every legitimate function ψ(x) on
the ring can be written as a sum over ψp(x) with coefficients A(p),

the second tells us how to determine the expansion coefficients A(p) for a
given ψ(x):

Without explicit knowledge of these coefficients, we cannot give the
probabilities for obtaining the different p’s.

For now I ask you to accept Fourier’s theorems. I will say a few things in
a later section that may help you understand them in terms of more familiar
ideas from elementary vector analysis.

21.3.1   An example solvable by inspection
I begin with an example where finding the A(p) ends up being very easy.
The state is



where A is some real constant. This is a legitimate wave function because it
obeys ψ(x) = ψ(x + L). We know from Fourier’s theorem that this function
may be written as a series of the form Eqn. 21.60.

We can always find the A(p) using

but it turns out that in this case we can read off the A(p) by inspection if we
first cast ψ(x) in a suggestive form using Euler’s identity. Here are the
details.

where in the last equation I employ the integer m as a label instead of the
corresponding momentum p = 2π mħ/L.

We have managed to write the given ψ(x) in the form of a Fourier series



By comparing Eqns. 21.68 and 21.69 we can see that the only possible
momenta are

and the coefficients are

It should be obvious that since the two non-zero A(pm)’s are equal, the
normalized probabilities are

If measurement yields a valuem=3, the state will reduce to ψm=3(x).
Let us now re-derive the same A(pm) using Fourier’s theorem of Eqn.

21.61:



Let us now write  and continue

Both exponentials describe states of definite momentum. I have already
shown that their integral is zero unless the momentum vanishes. This
happens in the first term when m = 3 and the exponential becomes e0 = 1
and integrates to L, giving



Likewise the second exponential survives integration when m = −3 and
leads to

If m ≠ ±3, both exponentials complete an integral number of oscillations
and integrate to zero. So A(m ≠ ±3) = 0.

These are just the values we obtained earlier by simply writing the given
ψ (a cosine) in terms of states of momentum with m = ±3 and reading off
the coefficients by inspection.

21.3.2   Using a normalized ψ

I mentioned earlier that if the original ψ is normalized, |A(p)|2 will be
absolute probabilities. Let us verify this for the case where we are given an
unnormalized ψ

We must choose A so that

As x goes from 0 to L, the angle within the cosine changes by 6π. It
completes three full cycles. We have seen many times that the average of
cos2 θ over any number of full cycles is  So we find



To find A(p) we simply rewrite the cosine in terms of exponentials:

Comparison to Eqn. 21.60 tells us they are



The non-vanishing absolute probabilities are given by the squares of these
numbers

and add up to 1 as promised.
The expectation value of p is evidently zero, but here are the steps:

because 
The uncertainty squared is

21.4   Finding A(p) by computation
Now we turn to the example where you actually have to do an integral to
find A(p) (and then square it to get P(p)).

We take the interval of length L to be in the range



The ends x =±L/2 are to be glued to form the circle. The un-normalized
wave function of interest

is depicted in Figure 21.3 for the case A = 1 as a function of αx.

Figure 21.3   An exponential wave function that dies very rapidly as we approach the end points
±L/2, which are glued to form the circle.

It is highest at the origin and falls exponentially at the same rate for
positive and negative x due to the |x| dependence of ψ. How far can we go
from the origin before ψ becomes negligible? That happens when α|x| is



large or when |x| ≫ 1/α. So this is a particle whose position has an
uncertainty of order 1/α:

We can vary the width ⵠx by varying α but it is understood that even if ψ is
broad near the origin it is negligible at the points ±L/2 that are glued to form
the circle. In other words we assume

Let us explore the content of this wave function. The first question I can
ask is, “If I look for its position what will I find?” The probability density is
given by

which is also an exponential but with double the slope as ψ.
Let us now normalize it by demanding

To simplify life, I am going to extend the limits to ∓∞. This is an
insignificant modification because, by assumption, αL is large and ψ2(x) is
dead long before we get to the ends at x = ±L/2 (which are glued). So the
normalization condition is



Before computing A(p), let us pause to find the statistical properties of
this state. By symmetry, x = 0. The uncertainty squared and uncertainty are
(setting L = ∞)

not far from our crude estimate ⵠx ≃ 1/α of Eqn. 21.102.
Now we compute A(p). We cannot get them by inspection, because the ψ

above is not a sum of complex exponentials corresponding to states of
definite momentum. We have to deal with the general recipe



The integral is a little tricky because |x| equals x when x > 0 and −x when
x < 0. So let us break up the integral into two parts, one for x > 0 and one
for x < 0:

The evaluation of I+ is simple and only the lower limit contributes

I leave it to you to show (by changing x to −x in the integral) that



Therefore

Strictly speaking we are interested in this function only at the quantized
values of p. Let us assume here that L is very large and p essentially
continuous. Ignoring overall constants, the function has the form

It is peaked at p = 0 and falls off smoothly on a scale set by αħ. To
characterize its width roughly, we identify the point where it falls to a
fourth of its maximum value because it is easy to locate. This happens at

Thus the uncertainty in p is of the order



which, combined with

gives us

Thus we find that the narrower the function is in x, the bigger the spread
in the possible momenta you can get. So squeezing it in x broadens it out in
p and the opposite is also true. And that is the origin of the uncertainty
principle.

Long before quantum mechanics, it was known in Fourier analysis that a
function that is narrow in x needs many wave numbers k or wavelengths λ
in its expansion. This was stated in the form

with no reference to ħ. Quantum mechanics enters when we associate a
momentum p = ħk with the wave number k. Multiplying both sides by ħ we
arrive at the uncertainty principle.

To apply the precise form of the uncertainty principle,

ⵠx and ⵠp have to be the uncertainties defined in Eqns. 20.26 and 20.29.
We already have found  Computing the uncertainty ⵠp from
P(p) is complicated by the fact that p takes on discrete values p =pm. There
is a simple way to proceed in the limit L → ∞, when the allowed p’s



become very close. In that limit we may replace the sum over p of any
function f (p) by an integral

Here is the logic behind this trick, which is used a lot in many advanced
courses. If you want to skip the details and just use the result above, jump to
Eqn. 21.136.

Remember how the integral of a function f (x) is found. We plot f (x)
vertically at a dense set of points xi separated by dx, and do the sum

In our case, we have functions like P(pm) defined at points  with
a spacing

which vanishes as L → ∞.
Let us verify that our probabilities add up to 1. By definition of the

integral

Therefore the sum over P(pm) that we want, because it lacks the dp to make
it into an integral, is related to the integral as follows (in the limit dp → 0 or
L → ∞):



I invite you to verify the last step by doing the integral. Notice that L drops
out and the sum of all the P(pm) is 1. This is to be expected because ψ(x)
was normalized to 1.

Continuing,

So that finally

not far from our rough estimate of 2αħ of Eqn. 21.127. Continuing,



in accordance with the precise uncertainty principle 

21.5   More on Fourier’s theorems
This is a mathematical digression for those who are not familiar with
Fourier series. Consider an arbitrary vector V in three dimensions. We may
write it in terms of the unit vectors i, j, and k as

Starting from the origin we can get to the tip of any vector V by moving
along x by Vx, along y by Vy, and along z by Vz. No vector can evade this
construction. One refers to the triad i, j, and k as a basis because we can
synthesize any V in terms of them. For our purposes it is better to rename
the three components as V1, V2, and V3 and the three basis vectors as
follows:

and rewrite the expansion in Eqn. 21.145 as



The reason we use numerical subscripts is that it is easy to sum over them
(rather than over x, y, and z) and they do not fail us if we want to sum over
more than 26 values.

Equation 21.149 is the vector analog of

the Fourier series in Eqn. 21.56 or Eqn. 21.59 for periodic functions. In one
case we express a generic vector V in terms of basis vectors ei and in the
other, a generic function ψ(x) in terms of basis functions ψpm(x). The only
difference is that in the latter case we sum over an infinite number of basis
functions labeled by p or m.

Each basis vector ei has unit length and is orthogonal to the other two.
This orthonormality is written as follows:

where

is called the Kronecker delta. Instead of saying all the time “1 if i and j are
equal, 0 if they’re different,” we use the symbol δij. It is a very concise way
to say that each basis vector ei is of unit length perpendicular to the others.

Let us pursue this analogy to find a way to extract the coefficients A(p) of
the Fourier expansion. Suppose you have in mind a specific vector V (an
arrow of definite length and orientation) and want to write it in terms of the



basis vectors. For this you need the coefficients Vi. Suppose you want V2.
Then you take the dot product of both sides of Eqn. 21.149 with e2

(The left-hand side is the length of V times the cosine of the angle it makes
with the unit vector e2 = j.) Only the second term in the sum survives
because

More generally if we have in n-dimensions n vectors that are mutually
orthogonal and of unit length, their orthonormality may be written concisely
in terms of the Kronecker delta as

Every vector in this n-dimensional space may be written as

To find the coefficient Vj, we take the dot product of both sides with ej and
find



Try to remember this result for a while:

I use the freedom to rewrite the dot product with the order of the vectors
reversed so it will closely resemble an expression in Fourier theory that
follows shortly.

Now turn to the Fourier expansion

To find the coefficient A(pꞌ) the way we found Vj we would like the
analog of the orthonormality relation of the basis vectors

for the basis function ψp(x).



Here it is. Given two basis functions ψp(x) and ψpꞌ(x), we define their dot
product to be a certain integral because it equals δppꞌ:

This will allow us to find the coefficients A(p).

Proof of orthonormality of ψp(x):

where in the last step I have invoked a result I asked you to memorize: the
integral of every ψp(x) over the circle is zero unless p = 0, in which case the
integrand is a constant. This result applies here since the integrand in Eqn.
21.167 corresponds to p = 2π(mꞌ − m)ħ/L.

Now I claim the analog of Vj = ej ·V:

Here are the steps in the proof, analogous to Eqns. 21.153 through 21.156.



Table 21.1 Vector versus function expansions

Table 21.1 gives the complete correspondence between vectors and
functions.

Let us take stock of where we are. There is a particle on a ring described
by some ψ(x). We want to know what answers we will get if we measure its
momentum. Single-valuedness dictated that the allowed momenta obey the
quantization rule

The absolute probability P(p) for finding any one of these allowed values
is given by the following recipe:



assuming ψ(x) has been normalized. If not, |A(p)|2 = Pꞌ(p), the relative
probability. If a value p0 is obtained, ψ(x) collapses to ψp0(x) immediately
following the measurement.

21.6   Measurement postulate: general
After the concrete example of momentum, we are ready for a more general
statement of the measurement postulate. Let α denote the set of allowed
values of some dynamical variable A represented in classical mechanics by
some function of x and p. For example, A can be the momentum itself and p
one of its allowed values; A can be angular momentum and mħ one of its
allowed values; A could be the energy and E one of its allowed values
(more on this variable in the following chapters). Let ψα(x) denote a
normalized state in which A is guaranteed to yield a particular value α.
(This is like ψp(x) which is guaranteed to yield the value p formomentum. I
will tell you later how to actually find the functions ψα(x) for each A. For
now assume that for each variable A we know the corresponding ψα(x).)

First we have two purely mathematical results that generalize Fourier
series.

1. We may expand any ψ(x) as a linear combination

2. The coefficients of the expansion are given by

The physics now enters in the form of the measurement postulate: When the
variable A is measured on a particle described by the ψ(x) in Eqn. 21.175,



the probability of obtaining a particular value of α, say α0, is given
byP(α0)= |A(α0)|2. If measurement yields a value α0, the state right after
measurement collapses from the sum over α to just the one term ψα0(x).

This is very general: under measurement, the particle goes from being in
a superposition of states with different possible values for some variable to
the one state in the sum in which it was detected. It could go from being in
many places to being in just the one place where it was detected, from being
in many states of momentum to the one found in the momentum
measurement, from being near either slit to being near the one where the
photons from the lightbulb detected it. This collapse is due to the inevitable
effect of measurement and it is one of the most dramatic postulates.

The measurement postulate gives the answer to a question that comes up
often: How do we ever know what state a particle is in? Here is an answer
that is often applicable: It is in a state corresponding to the value of some
observable that was just measured. Thus, if we measured p and obtained p =
p0, the state right after measurement is ψp0(x). In addition, if we can
compute the time-dependence of a known initial state using the laws of
quantum dynamics (time-dependent Schrödinger equation) we will know
the state at future times as well.

21.7   More than one variable
Let us briefly consider not one variable, but two, say x and p. Classically a
particle can be in a state with definite values (x0, p0) for position and
momentum. I can prepare such a state as follows: I push the particle till it
picks up the desired momentum p0 as it reaches some point x0. At that
instant, I assign to it the pair (x0, p0). If I remeasure position and
momentum immediately, I will get the same pair (x0, p0). A series of rapid
measurements of position and momentum will yield the string (x0, p0, x0,
p0, .  .  . ). In fact I can measure p first and then x or the other way around
and it will not matter.

All this changes in the quantum case. Let us say the particle was in a
state of definite momentum, ψp0(x). I measure momentum and I get p0. I
have no idea where the particle is. So I locate it using the Heisenberg
microscope. Say I find it at x = 5. The wave function right after this position



measurement becomes ψx=5(x), which is peaked at x = 5. But I cannot say
the particle is in a state (x = 5,p = p0) because if I measure p just to make
sure, I will not necessarily get p0. To see what I could get, I must first write
ψx=5(x) as a sum of states of definite momentum

where

I can get any p that is present in the sum, any p for which A(p) = 0. I
could get 2p0. Or I could get −p0 if such a term were present. Since an
immediate remeasurement does not necessarily yield p0, the particle can
never be said to have been in a state (x = 5,p = p0). Suppose the second
momentum measurement gave an answer −p0. Is the particle in a state (x =
5,p = −p0)? No, because in the subsequent position measurement (in this
state of definite momentum −p0) every point on the ring is equally probable,
with no preference for, or memory of, x = 5. A string of rapid x and p
measurements will therefore yield a string of generally unpredictable and
non-repeating numbers as we alternately expand a function narrow in
position in terms of functions of sharp momentum and vice versa. There is
no sense in which the particle can be said to have a well-defined value of
position and momentum.

The pair (x, p) happens to be maximally incompatible. There are other
pairs of variables in quantum theory that can have simultaneously well-
defined values for both, where the same pair of measured values will repeat
upon successive remeasurement and where the order of measurement will
not matter. We will encounter one example in the next chapter.



CHAPTER 22

States of Definite Energy

Let us continue our study of the measurement postulate in its general form.
It has no analog in classical mechanics. There, if we know the state
variables (x,p) (or its generalizations to higher dimensions) we need not
measure any other dynamical variable. For example, the angular momentum
(in three dimensions) is given by L = r × p. We could measure it directly,
but if we knew r and p, we could just compute the cross product.

We saw that in quantum theory ψ(x) describes the state and plays the role
of the pair (x,p). It contains all possible information on the particle at any
given time. While the questions we ask are not too different from classical
mechanics and take the form, “What will I get if I measure A?,” where A is
some variable like position or momentum, the answer is generally
probabilistic in nature. For example, given a generic ψ(x) if we ask for the
result of a position measurement we are told that the outcome x will occur
with a probability density

If the particle is found at x = x0, the wave function ψ(x) will collapse from
whatever it was to ψx0(x), a spike at x0.

The collapse of the probability occurs in classical mechanics as well.
Recall the probability distribution P(x) for finding me somewhere near my
home or my office or en route. If you catch me somewhere, the classical
distribution collapses to where I was caught. The difference is that I was
where I was caught even before you caught me: I was being constantly
observed by a stream of photons or air molecules, for example. At the
quantum level, we have the underlying wave function in addition to P(x).
The spread-out ψ is not like the spread-out P(x): it describes a particle that



really is nowhere in particular. It has no position prior to measurement. This
state of limbo has no classical analog.

Things get much more complicated if we ask the same question of a
momentum measurement. The answer is longer and given in several stages.

1. By postulate, a state of momentum p is described by the wave function

In a finite universe of circumference L, the normalized state is

and the condition of single-valuedness restricts the allowed values of momentum to

From now on I will use n to denote the integer since m will be reserved for the mass. Despite this, I
previously used m as the index for momentum and angular momentum because the angular
momentum associated with rotations around an axis is traditionally written as mħ.
2. Given all this, the measurement postulate tells us that a momentum measurement will yield a
result pn with probability P(pn) = |A(pn)|2 where A(pn) is the coefficient in the expansion

where I use both pn and p to denote one of the allowed momenta. So the sum over n and the sum
over p stand for the same thing, the sum over all allowed momenta.

The expansion coefficient A(p) may either be read off by inspection in some cases or computed
in all cases by evaluating the integral



The coefficient A(p) can be complex just like ψ(x). But P(p) = |A(p)|2 will always be real and non-
negative.
3. If the measurement yields a value pn, the state ψ(x), which used to be a superposition, collapses
to ψpn(x). An immediate remeasurement of p will yield pn. The rest of ψ will get chopped out. It’s
like Polaroid glasses. The electric field E in the incoming light can be polarized in any direction
perpendicular to the direction of propagation, but once it goes through the glasses it will be
polarized along the axis of the lenses. The component of E in the perpendicular direction will be
chopped off. So measurement is like a filtering process. Out of the sum over many terms,
measurement filters the one term that corresponds to the one answer you got.

Let us be clear about the roles of ψ(x) and ψp(x) in Eqn. 22.5. The
function ψ(x) describes the state the particle is in. It is an arbitrary periodic
function on the circle. We want to know the result of a momentum
measurement on this state. The functions ψp(x) are also functions on the
ring, but they are postulated to have a definite momentum p associated with
them. If a particle is in ψp(x), a momentum measurement is guaranteed to
give the value p. The outcome of a momentum measurement on ψ(x) is
more complicated. It is determined by writing the given ψ(x) as a linear
combination of ψp(x) as in Eqn. 22.5. Unlike the case of ψp(x), we can get
any p that appears in the expansions and the probability for this is P(p) =
|A(p)|2. If the state had many p’s in its expansion, it collapses to the one
term that was found upon measurement. Of course one possible special case
is that the sum has only one term, say only A(p3) ≠ 0. Then the outcome is
certain to be p3 and the state is unaffected by the measurement and remains
ψp3(x).

The following analogy may help. We know that any three-dimensional
vector V may be expressed as V = Vxi + Vyj + Vzk. A basis vector like i is
every bit a vector like V; it just happens to be aligned with one of the
coordinate axes.

This recipe generalizes to all dynamical variables A, by which I mean
anything that is a function of x and p in classical mechanics. For example,
the angular momentum L is a dynamical variable given by L = r × p. The



energy of a particle of mass m attached to a spring of force constant k and
undergoing simple harmonic motion is another:

All this is for one variable at a time. Generally you may not have states in
which two (or more) variables have well-defined or guaranteed values. If
you try to prepare a particle with a definite value for one, it may be spread
out in the other, in the sense that measurement of the second variable could
give a range of answers. If you measure the second one and get some
answer, there is no guarantee the first will give the old value with certainty.
This was the case for position and momentum. However, in this chapter we
will meet a pair of variables both of which can be specified simultaneously.

Back to A. Let α denote the set of allowed values of some variable A. Let
ψα(x) denote a state in which the variable is guaranteed to yield a value α.
For example, A can be the momentum, pn = 2π nħ/L one of its allowed
values, and ψpn (x) the corresponding wave function. Mathematics tells us
the following.

1. We may expand any ψ(x) as a linear combination

2. The coefficients of the expansion are given by

Physics then tells us the following: When the variable A is measured on a particle described by
the ψ(x) in Eqn. 22.8, the probability of obtaining a result α is given by P(α) = |A(α)|2. If
measurement yielded a particular value α = α0, the state right after measurement collapses from
the sum over α to just the one term ψα0(x).



This recipe is not as complete as the one for momentum because I have
not given you the wave functions ψα(x) that are states of definite value for
A. Till we have these, we cannot hope to express the given ψ in the form of
Eqn. 22.8.

For this we need another postulate. Pick any observable A and the
postulate will tell you how to find ψα(x). However, the equations
determining ψα will depend on what A is. You change your mind on which
A you want to measure, and you have a new equation to solve. Rather than
deal with this procedure in all its generality, let us consider one case of the
greatest importance, where A is the energy E and ψE(x) the corresponding
wave functions of definite E.

Energy plays a central role in the dynamics, when we ask how an
arbitrary initial wave function ψ(x,0) evolves with time into ψ(x, t). It will
turn out that as long as the potential V is time-independent, the answer is
most easily found by first expressing the initial ψ(x,0) as a linear
combination of ψE(x). A remarkable corollary will be that if a particle is
found to have energy E in a measurement, not only does the state collapse
to ψE(x) and stay that way at least for an infinitesimal amount of time (as it
would for any variable), it will stay that way forever! All this will be
elaborated when we turn to dynamics in the next chapter. For now I just
want you to take my word that of all possible variables, there are excellent
reasons for focusing on the case A = E and the corresponding wave
functions of definite energy ψE(x).

Postulate for ψE(x). The states of definite energy E are the normalizable
single-valued solutions to the time-independent Schrödinger equation

This is the master formula. Do not worry, I will see you through this
equation.

Now you might say, “Why don’t you just give me ψE(x) as you did ψp(x)
and be done with it?” The problem is that the time-independent Schrödinger



equation depends on what V(x) is. Every possible V(x) has its own Eqn.
22.10 and its own family of solutions ψE(x). There will be one family of
functions ψE(x) for V(x)=kx2 and another for V(x) = kꞌx4. (In three
dimensions you can have an electron in the 1/r potential due to the proton
and the corresponding wave function ψE(r) of the hydrogen atom.)

We will often focus on bound states, states in which the energy E is less
than V(±∞), the potential at x = ±∞. This is the case where classically the
particle cannot escape to infinity, for if it did, its kinetic energy K (±∞) = E
− V(±∞) would have to be negative, which is impossible. In such cases we
will find that solutions to the Schrödinger equation are possible only at
some quantized values of energy En labeled by some integer n, with the
corresponding wave functions ψEn (x) ≡ ψn(x). Solving Eqn. 22.10 will tell
us both the allowed energies En and the ψEn (x). Then we can go on and
find A(En) and the probabilities. But first we have to solve the equation.

Why are there bound-state solutions only for some values E = En? We
will see that at other energies the solutions blow up exponentially either as x
→ ∞ or as x → −∞ or both, and hence they are not normalizable. When the
particle is confined to a finite ring, we do not have the problem of blowup
at spatial infinity, but that of single-valuedness. This requirement, which
quantized the momenta, will be seen to quantize the energies on the ring.

22.1   Free particle on a ring
The first problem I want to solve involves a free particle, one for which
V(x)≡0. Let us imagine it lives on a circle of circumference L =2π R. The
Schrödinger equation (Eqn. 22.10) assumes the form



Remember that the E we are looking for is now encoded in k via the
preceding equation.

The solutions to this equation are of the form

where A and B are some constants. Let us verify this. Every time we take a
derivative of eikx we pull down an ik for a total of (ik)2 = −k2. The second
exponential also yields the same factor because (−ik)2 = −k2 as well.
Consequently ψE(x) satisfies

Upon comparison to the prototype



the exponential functions in Eqn. 22.14 are seen to be states of definite
momentum

If we now express k in terms of E using Eqn. 22.13 we find

Thus we may rewrite Eqn. 22.14 in terms of the energy label E as

Look at Eqn. 22.18. It is exactly as in classical mechanics! In other words,
if I told you a free particle of energy E was running around in a circle with
kinetic energy E, you would say that its momentum is determined by

So what is new in the quantum case?
There are two profound differences between classical and quantum

mechanics.
1. The allowed values of p are restricted in the quantum theory to the values



It is convenient in this section to let n only take the values 0,1,2, . . . and define:

with the understanding that for n = 0, ±pn are the allowed momenta.

The allowed values of energy are therefore quantized to

The corresponding wave functions are

2. Whereas a classical particle of energy E can also have one of two momenta  it has
to choose one or the other in any situation. The quantum particle on the other hand can be in a state
of indefinite momentum displayed in Eqn. 22.19, in which it can yield either value with relative
probabilities |A|2 and |B|2.

22.1.1   Analysis of energy levels: degeneracy
Consider the fact that a state of momentum is given by a unique function up
to an overall normalization



while a state of definite energy involves two independent functions

The functions e±ipnx/ħ are independent in the sense that one cannot be
obtained from the other by multiplying by an x-independent constant. Of
the two coefficients A and B we may choose one to be equal to 1 using the
freedom in the overall scale, but a ratio A/B remains a meaningful
parameter that determines the relative odds for pn versus −pn. This extra
parameter in ψE makes the computation of probabilities P(E) a little tricky.
Here is how we handle it.

Let ψ(x) be the state that is given to us, for which we want the
probabilities for various outcomes in an energy measurement. Forget about
ψE(x) and express the given ψ(x) as a linear combination of ψp(x) and group
the terms as shown:

I am not using normalized ψp(x) but that will not matter since scaling them
all by  to normalize them will not affect the relative probabilities. (We
are able to ignore the normalization √requirement only because they are all
off by the amount  This preserves the “ray.”)

In the preceding form, the un-normalized probability for any allowed p is
obvious: P(±pn) = |A(±pn)|2. To find the probability for any energy En we
use the fact that because En is quadratic in the momentum, the probabilities
for both ±pn will contribute to the probability for En. For example, both



The relative probability for this energy to occur is the sum of the
probabilities for the two momentum outcomes that correspond to this
energy:

The absolute probability is

Clearly what is true for n = 3 is true for any other n except n = 0 when there
is just one A(p = 0).

When the energy En is obtained in a measurement, the wave function in
Eqn. 22.30 collapses to the corresponding two terms in the expansion of
ψ(x) with the corresponding momenta:



In this collapse the ratio A(pn)/A(−pn) is preserved.
On the other hand, if momentum was measured and the result pn (or −pn)

was obtained, the state would collapse to or 
Go back to a definite energy state

While any choice of A and B makes it a state of definite energy, two choices
have added attractions. Suppose only A ≠ 0. This is now a state of definite
momentum as well. We could label it by a pair of numbers

The state of opposite momentum could likewise be labeled

Unlike the incompatible pair x and p, for which it is impossible to get a
state with labels (x, p), we can have the pair (E, p). The reason is that when
V(x) ≡ 0,

and one can measure p and compute E from it.
For each E (except 0) there are two momentum states with that energy.

This is called degeneracy. In general an energy level is degenerate if there
are two or more independent wave functions with that energy. This situation
is depicted in Figure 22.1.



Figure 22.1   The energy states of a particle on a ring labeled by the pair (E, p). There are two states
at each allowed energy corresponding to two possible directions of momentum  except at
E = p = 0, which is non-degenerate. The “height” of the levels goes as n2. The vertical arrows on the
sides denote transitions down from n = 2 to n = 1 by the emission of a photon of energy ħω = E2 −
E1 and up from n = 1 to n = 3 by the absorption of a photon of energy ħω = E3 − E1.

I want to emphasize that the state

is not a state of definitemomentum: we can get  with probabilities |A|2

and |B|2 respectively. It is, however, a state of definite energy E because E is



blind to the sign of p. In other words, the state of definite momentum is also
a state of definite energy, but the converse is not true.

If we shine light on this “atom” it can undergo transitions illustrated by
the two vertical arrows on the side: down from n = 2 to n = 1 by the
emission of a photon of energy

and up from n = 1 to n = 3 by the absorption of a photon of energy

Only light of the appropriate frequency can induce such transitions and,
conversely, by looking at the frequencies that induce such transitions, we
can learn about the energy level structure of the “atom.”

Experiments at Yale (and elsewhere) have verified the prediction that if
you take a small enough metallic ring in a magnetic field it will have a
persistent (permanent) current, which is not due to a battery or
superconductivity. The experiments can measure the tiny current due to one
electron. In this context the circumference L, which was an artifact for
normalizing wave functions in free space, is a physically significant
parameter describing the quantum ring on the scale of a micron.

A real atom is more complicated mathematically than a particle in a ring
because the electron is confined by the Coulomb force. But the ideas are the
same: only some energies are allowed and they may be degenerate,
corresponding usually to different values of angular momentum. (Whereas
in a ring the angular momentum can have only two signs, clockwise and
counterclockwise, leading to a twofold degeneracy, in three dimensions we
also havemany possible planes of rotation.) When you studied atoms earlier
maybe you encountered shells with 2 electrons or 8 electrons and so on.
Thesenumbers representdegeneracies. Fromthe frequencies of emittedand
absorbed light we can deduce the energy level structure of the atom.



It is quantum mechanics that rigidly limits the set of allowed energies and
wave functions of bound states, and the corresponding frequencies of
emission and absorption. This is why atoms come in a countable number of
varieties (H, He, and so on), and atoms of any one kind, say He, are also the
same across the universe (given that electrons, protons, and neutrons are the
same across the universe, which is amazing in itself). This reproducibility is
what allows us to deduce what atoms are contained in distant stars and how
fast some galaxies are moving by the Doppler shift of the emitted light.
Here is an example. The hydrogen atom has two levels that are close, and
the wavelength of the light emitted when it jumps down is 21 centimeters.
This is a standard fingerprint of hydrogen anywhere in the universe. If the
observed wavelength is not 21 cm but 22 cm, you may say, “I guess it is not
hydrogen.” Nonetheless, the correct answer is that it is hydrogen, but that
galaxy ismoving away from you, and its light is Doppler shifted into the
red. If the galaxy were coming toward you, the line would be blue shifted.
If you believe that hydrogen atoms all over the universe are the same, and
the frequency shift is only due to the motion of the galaxy, you find two
things: its constitution and its speed of recession. The interpretation of the
observations of Edwin Hubble (1889–1953), which related the red shift of
galaxies to their distance, was used to demonstrate the expansion of the
universe.

Quantization is no less important in biology and the life sciences. It is
what ensures that the molecules that play a central role in molecular biology
and genetics constitute a discrete set of possibilities, which may be reliably
produced over and over again, the way digital music can be copied with no
errors, unlike analog music, which cannot.

22.2   Thinking inside the box
Now for a very standard pedagogical exercise, called the particle in a
quantum well, and a limiting case of the well, the particle in a box. It is
more representative of quantization than the particle on a ring because the
particle is confined by a potential just like the electron is in an atom.

22.2.1   Particle in a well
The particle in the well experiences a potential V(x), two versions of which
are shown in the left half of Figure 22.2 by dotted and solid lines. Both



approach V(x) = V0 for x→ ± ∞. We want to find the allowed states of
definite energy. A potential that changes gradually (dotted lines) is more
realistic and also better suited to analyze various kinds of trajectories as a
function of energy in the classical description. However, in order to
simplify the math in the quantum mechanical treatment, we will use a
square well whose sides abruptly rise from 0 to V0 at x = 0 and x = L, as
depicted by the solid lines.

Figure 22.2   Left: A well of finite depth V0, where the dotted line gives the realistic version and the
solid line the artificial one to facilitate the quantum treatment. Right: A well of infinite depth or a
box.

Let us consider the classical dynamics first. The energy of the particle is
made up of the kinetic term K(x) and the potential term V(x), the total being
an x-independent constant E is shown by a horizontal line. We are interested
mainly in the case E < V0 shown in the figure. The particle is then in a
bound state and can never escape to infinity because the kinetic energy
would then be negative: K(±∞) = E − V(±∞) = E − V0 < 0, which is
impossible.



If the trapped particle moving to the right hurls itself against the
confining potential with some initial velocity, it will climb till it reaches
zero velocity at the turning point xR and then start rolling down into the
well. It will do the same at xL if it is moving the other way. It will rattle
back and forth at constant total energy between the two turning points.

For E > V0 the particle can escape to infinity. If launched from the far
left, it will speed up on descending into the well, slow down on the way out,
and exit with the initial velocity (in this case where V(∞) = V(−∞)). We will
not spend much time on this case of the unbound particle because its energy
is not quantized.

Now for the quantum treatment of the well. To find the allowed energies
and wave functions ψE(x) we go back to the Schrödinger equation:

We were able to solve for the case V ≡ 0 in terms of states of definite
momentum. For special cases like  an analytical solution is
possible. For some arbitrary V(x) there is usually no analytical solution.

Consider the case of constant V = V0. It is just as easy to solve as V = 0
because we can take the V0ψ in the left-hand side of the Schrödinger
equation to the right-hand side, absorb V0 into E, and change E to E −V0:

This is just like the free-particle problem with no V but with E replaced by
E − V0. Unfortunately the V(x) describing the well is not a constant.
However, we can consider a square well in which the potential is piecewise
constant and jumps from V0 to 0 and back to V0 as x increases, as shown by
the solid line. This allows us to tame the problem by the following “divide
and conquer” procedure.



We divide space into regions I, II, and III as in the figure and solve for
ψE(x) in each region. Because V is a constant in each region we can make
the change E →E −V and solve for what will look like the free-particle
wave equation. But then we have to glue the solutions together so that ψ
and  are continuous at the interfaces between regions I and II and
between regions II and III. I have already argued for the continuity of ψ.
The continuity of  follows from the Schrödinger equation itself. If  is
discontinuous at some point,  will blow up there and the equation cannot
be satisfied because the other terms, E ψ and Vψ, are finite.

Let us begin with ψI, the solution in region I. It obeys

I have traded the subscript E (obvious in this context) for I, the region label.
Although we do not know E yet, let us first assume E < V0 and see if

there are any solutions in this range. This is the case in which the particle is
hopelessly trapped in the well in classical mechanics. Since E − V0 is
negative, let us introduce a real positive parameter κ as follows:

In terms of κ, the Schrödinger equation becomes

with the general solution



where A and B are arbitrary at this point. But look at the B term: it blows up
exponentially as x → −∞. This makes ψI non-normalizable. So we choose B
= 0. The remaining A term vanishes exponentially as we move along the
negative x-direction, and it becomes negligible for large and negative κx, or
for

So the wave function dies off more and more rapidly as V0 −E increases.
For future use remember that ψI vanishes in all of region I in the limit V0 →
∞.

By similar reasoning

with the same κ as in region I. Now we must choose C = 0 to kill the
growing exponential. Once again remember that if we let V0 → ∞, the
falling exponential, which is all that is left of ψIII(x), simply vanishes.

A dramatic feature of quantum mechanics is that for finite V0 the particle
has a non-zero probability to be in the classically forbidden regions I and
III. While quantum theory does not totally forbid excursions into this
region, it does curb the excursions exponentially.

This leaves us with region II where V = 0. We have just the free-particle
solutions of the form  With foresight we trade the exponentials for
sines and cosines and write

Of the six possible parameters, two (B and C) were set to zero to avert
blowup at x = ∓∞. The remaining four, A, D, F, and G, seem to be just



what we need to satisfy the four conditions of matching ψ and dψ/dx at the
two interfaces. This is an illusion. Consider for example the interface
between I and II at x = 0, where these conditions become

The overall scale of ψ, i.e., the overall scale of A, D, F, and G, which I
have emphasized has no physical significance, does not help satisfy these
conditions. If we could not match the wave function and its slope at the
interface for some choice of ψ, rescaling it (and its derivative) everywhere
will not help since ψ (and its derivative) appear in both sides of the
matching conditions. To make this transparent, we may choose one of the
coefficients, say A, to be equal to 1, leaving us with just three free
parameters. With four conditions and three genuine parameters, we seem
doomed. But there is one hidden parameter: the energy E, which we took to
be an arbitrary real number. It is found that for special choices of E (the
allowed values) the wave function obeys all the continuity equations and
also dies off at x = ±∞.I refer you to a more advanced text for a graphical
but not totally analytic demonstration of this fact. (However, I will show
you a case wherein energy quantization for bound states can be
demonstrated analytically.)

A typical bound-state solution is shown in Figure 22.3.
This counting of parameters and the existence of normalizable solutions

only at some special energies holds even if we go from the single square
well to a more complicated one, as long as we are talking about abound
state with E < V(±∞). To see this, take the well in Figure 22.3 and add
another segment numbered IV, between II and III, with a different constant
potential  which then reverts to V0 in region III, as shown in Figure 22.4.



Figure 22.3   A bound-state wave function in a well at one of the allowed energies. As the confining
potential V0 → ∞, and the well becomes the box, the exponential tail outside the well (regions I and
III) shrinks to zero width and ψ(x) is non-zero only in region II, the box.

Figure 22.4   A modification of the simple well with an extra segment.

The new region IV introduces two extra parameters. (This is true even if 
 because even the rising exponential is allowed in the finite region



IV.) It also introduces one more interface and two more matching
conditions. Thus adding more and more segments still leaves us one
parameter short. By adding such segments of variable widths and heights
we can approximate any given V(x), such as the one sketched in Figure
22.5. We will always have to tune the energy to get a normalizable solution
that vanishes as x → ±∞.

Figure 22.5   Particle of energy E in a potential V(x) for the case E < V(±∞) when it is not allowed to
go to ±∞. Classically its excursions are limited to the right and left turning points xR and xL, where
its kinetic energy K(x) = E − V(x) vanishes. (If V(x) exceedes E in points between xL and xR, there
will be more turning points and the well will break up into classically disconnected regions.)
Quantum theory allows short forays into the classically forbidden region. At the far left is an “initial”
value of ψE(x0) with some slope (solid line) and its numerical continuation in either direction (dotted
line).

Let us understand in another way how energy quantization for bound
states arises in a generic potential with E < V(±∞). Go back to the
Schrödinger equation

and think of x as “time” and ψ(x) as a coordinate that varies with this “time”
as it goes from −∞ to ∞. The Schrödinger equation determines the evolution



of a coordinate ψE(x) as a function of “time” x in a “time-dependent”
potential V(x), the way Newton’s law relates the second time derivative of
the coordinate to the applied force. Let us begin at some “time” x0 ≪ 0, with
some initial “coordinate” ψ(x0) and (“initial velocity”) (dψ/dx)x0 and solve
or integrate the equation numerically on a computer as a function of “time”
using our Newton’s law, Eqn. 22.55.

Remember how you “solve it on a computer.” You start with some initial
position x(0) and velocity v(0) at time t = 0. You use the initial velocity to
get the position a very small time ⵠt later (x(ⵠt) = x(0) + v(0)ⵠt) and
similarly the initial acceleration (from Newton’s law) to get v(ⵠt) and keep
inching forward in steps of size ⵠt. You can repeat the calculation with a
smaller value of ⵠt to get more accurate results.

Unlike in mechanics, we want the solution for “times” past (x < x0) as
well as future times to make sure it is well behaved for all x. If we try to
implement our “time” evolution on a computer to earlier “times,” we will
find that generically the solution blows up as x → −∞. We saw this
explicitly in the square well, which we could solve analytically. Recall the
solution in Eqn. 22.51 for region I, which had a piece that blew up as x →
−∞:

To avert the blowup as x → −∞ we had to choose B = 0. It turns out that we
can achieve the same end in another way that is applicable to the numerical
solution. This is done by a judicious choice of initial conditions ψ(x0) and
(dψ/dx)x0. Although the overall scale of ψ(x0) and (dψ/dx)x0 is physically
without significance, their ratio is a real degree of freedom. It is in fact the
only freedom we have. To see how choosing this ratio judiciously can have
the effect of setting B = 0, consider the ratio of (dψ/dx) to ψ(x) of the
analytical solution at some point:



Suppose we demand that this ratio equal κ:

This can happen only if B = 0. Thus there is a magic value of the ratio of
(dψ/dx)x0 to ψ(x0) (which happens to be κ in this example, independent of
x0) that corresponds to B = 0 in the analytical solution. This means that if
we try to integrate the square well problem numerically the ratio that
ensures a well-behaved solution for x → −∞ will turn out to be κ for any x0.

This strategy works for the numerical solution in the general case. There
too we will find by trial and error that there is always a particular (x0-
dependent) ratio of (dψ/dx)x0 to ψ(x0) that will kill the growing exponential
for x → −∞. This is reasonable: we are trying to impose one constraint (no
growing exponential as x → −∞) using one free parameter, the ratio of
(dψ/dx)x0 to ψ(x0).

Having made this choice to avert the blowup for x → −∞, we now
integrate the equation toward increasing x. We have to live with what we
get since the only freedom, the ratio of (dψ/dx)x0 to ψ(x0), has been used up.
We will find oscillations inside the well and exponential growth for x ≫ L.
In other words, the exponentially growing term (present in region III for the
square well) will now raise its ugly head for large positive x. If, however,
we keep varying the energy E in the time-independent Schrödinger
equation, we may find that at some special isolated values the growing
exponential will be absent as x → ∞ as well, and ψ(x → ±∞) will die
exponentially. These will be the allowed or quantized values of the bound-
state energies.

Although this problem of generic V(x) cannot be solved in closed form
analytically, I hope the preceding analysis has persuaded you that energy



has to be quantized for bound states. For those who insist on an analytic
example, I will provide one shortly.

But first, a brief comment on the case E > V0. The particle is now free to
escape to infinity with positive kinetic energy. The Schrödinger equation
will allow oscillatory (and hence bounded) solutions in all three regions,
and there will be no need to kill one coefficient in each of the regions I and
III. We will find a two-parameter family of solutions at every energy,
though one parameter may be rescaled to 1 without changing anything. An
example of one such well and (the real part of) its wave function is given in
Figure 22.6. Notice that the wave number k increases inside the well due to
the speeding up of the particle.

Figure 22.6   Real part of a wave function describing an unbound state (E > V0). The particle has a
larger kinetic energy (and smaller λ) inside the well.

22.2.2   The box: an exact solution



Let us pass to the box, which is the limit V0 → ∞ of the well. The
quantization of energy is demonstrated easily in this limit. According to the
formula

the exponential tail on either side of the well (Figure 22.3) shrinks to zero
as V0 → ∞, and consequently ψ(x) is non-zero only inside the box.

Since V = 0 inside, we just do what we did with the free particle earlier. I
repeat it here:

(Note that E is back as a subscript, there being only one region.)
Before you got into quantum mechanics you might have said (based on

the oscillator that satisfies a similar equation with two derivatives in t) that
the solutions are of the form

After entering the quantum world and seeing oscillating exponentials
everywhere you may be tempted to favor

where C and D are some constants. Both choices are equally correct
because we can write the trigonometric functions in terms of complex



exponentials and vice versa. For a given A and B you could get the
corresponding C and D using Euler’s formula.

It turns out better to use Eqn. 22.62 with sines and cosines here. Once
again the first impression that at every E there are two independent
solutions with coefficients A and B is an illusion, because only their ratio is
of physical importance. With this one free parameter, we have to satisfy the
boundary conditions at the edges of the box. Since ψ vanishes identically
outside the box, the ψ inside must vanish at the two ends by continuity or
single-valuedness.

This boundary condition ψ(ends) = 0 is insensitive to the overall scale of
ψ. If a given ψ does not vanish at the ends, neither will a rescaled one.
Therefore we have two conditions and one real parameter, which means
solutions will exist only at special energies. (What about two more
conditions due to matching  at the ends? The answer is that we do not
match the slopes and let  blow up at x = 0 and x =L. This is permitted on
this occasion as V also diverges there.)

Let us see how the boundary conditions restrict A and B and also
determine the allowed energies. At x = 0 we demand

which means B = 0. The cosine has to be killed since it refuses to vanish at
the left end of the box. At the right end we want

If we satisfy this by killing A, we would kill the entire solution. So we
demand

This means k is restricted to be



and the energy is quantized to be

The corresponding wave functions are

Since the average value of sin2 θ over half a period is  the wave function
has an integral

which means the normalized wave function is

Look at the first few energies and wave functions shown in Figure 22.7.
The following features are always true.

• The levels are non-degenerate, unlike on a ring.
• Every ψ has a kink at the ends and so  diverges there. But that is permissible in this case
because V also blows up at the walls. This is why we did not match the slopes at the ends of the
box.
• The solution with label n completes n half cycles over the length of the box. These are exactly
the functions that arise in the solution to the wave equation of a string clamped at the two ends.
These are called its normal modes: If we deform the string to take one of these shapes, i.e., 



 and let it go, every part will go up and down in step at frequency ωn = knv,
where v is the wave velocity:

Figure 22.7   First three energy levels and wave function in a box.



We will encounter a similar result in quantum dynamics: a state that begins as ψE(x) at time zero
will preserve its form and simply pick up a time-dependent phase factor in front.

The fact that the quantization of energies has the same origin as the classical quantization of the
frequencies of a string is the reason why the Schrödinger equation was immediately embraced by
the community when it was announced. One suddenly understood why energy is quantized: by
trying to fit some number of half wavelengths into the box one is fixing the allowed wavelengths
or wave numbers k and that translates into allowed energies.
• The allowed values of n do not include 0 or negative integers, whereas these were allowed for
free particles on a ring. Here is the reason. On the ring we had

If we set n = 0 above we get ψ0 = Aei·0 = A, whereas if we set n = 0 in  the corresponding
ψ0(x) ≡ 0. Likewise when we change n to −n

which is an independent function, whereas under the same change

which is just −1 times  and hence not a second, independent solution.
• You can probe the energy levels by shining light and seeing what frequency of light the particle
absorbs or emits. When you learn more quantum mechanics, you will see that the wave functions
control the rate of absorption and emission.
• The probability density in one of these states is

• The ground state energy is  Why is it not zero? If you were in a prison of size L and
infinitely high walls what would be your lowest energy state? I know I would just sit on the floor



and feel sorry for myself. But such a state of zero momentum and fixed position is not allowed for
the particle by the uncertainty principle. Since the particle’s position is known to be within the box,
its uncertainty is ⵠx ≃ L, and its momentum uncertainty bounded below by  and its energy

should be of order  Indeed the ground state energy is of order ħ2/mL2 (dropping
factors of order unity). Furthermore the wave function sinπ x/L seems to be an admixture of 

 which implies  (I say “seems to be” even though ψ1(x) is clearly a sum of
exp  , because the wave function ψ1(x) has this form only inside the box. It is identically
zero outside. However, such a function can be expressed as a superposition of states of definite
momentum inside and outside the box. These momentum functions, non-zero on the infinite line,
can have a continuous range of allowed p unlike those on a finite ring. Their normalization is very
tricky due to the infinite volume. However, the bottom line is that a suitable superposition of such
momentum functions, non-zero on all of space, will add up to zero outside the box and to ψ1(x)
inside the box. This superposition will contain not just the two momenta  but a continuum of
momenta given by a distribution centered at p = 0 and of “width” ⵠp ≃ ħ/L.)

Such uncertainty principle arguments abound in physics. For example, to estimate the lowest
kinetic energy of a proton in a nucleus whose size is ⵠx ≃ 10−15m we set  and estimate
the ground state kinetic energy to be of order 

The box is the simplest example of quantization of bound-state energies
by boundary conditions. It is the caricature for atoms. An electron remains
bound to an atom by a deep 1/r potential between the electron and the
nucleus. We need to solve the Schrödinger equation in three dimensions,
which is an obvious generalization of the one-dimensional version. But it is
much harder to solve. Even Schrödinger needed help from a mathematician.
The solution gives the energy levels, with the right degeneracies and the
corresponding wave functions ψE(r). The “size” of the wave functions is of
the order of the Bohr radius

where me is the electron mass. The estimated kinetic energy based on the
uncertainty principle (keeping track of just powers of ten) is around 

 Indeed the electron volt is a natural unit of energy for atomic
physics.

Bear in mind that to do the quantum mechanics you need to know the
classical potential energy V(x), which you need to stick into the Schrödinger
equation to find the allowed energies and ψE’s. If the system is an oscillator



you need the force constant. If it is an atom, you should know the Coulomb
potential. If it is a nucleon in the nucleus, you need the nuclear potential,
which is usually of the form  where r0 ≃ 10−15m = 1fermi.

22.3   Energy measurement in the box
It has taken so long to find and analyze the states of definite energy ψE(x) ≡
ψn(x) that you may have forgotten why we did all this. Let me remind you,
just in case. The goal was to find the possible outcomes and their
probabilities when an energy measurement was performed on some
arbitrary state ψ(x). Now we return to the recipe, but this time fully armed
with all its ingredients.

First we expand ψ(x) for a particle in the box, as a superposition

after having determined the A(n) by

The probability for finding the system in a state with label n is



Here is a somewhat artificial example to illustrate this formula. Let us
take the normalized ψ to be

(Notice that the ψ we chose to consider also vanishes outside the box just
like the ψn’s did. The reason is that if it did not, it could not be built out of
ψn’s. I asserted earlier that no matter what variable A we choose, it will be
possible to express any given ψ as a linear superposition of the ψα. Actually
there are some restrictions on the ψ’s for which this is true. One of them is
that they cannot wander into a region where all the ψn vanish. Our ψ
violates this condition at one point x = 0. It should therefore be seen as the
limit of a family of functions that drop more and more precipitously as x →
0 from the right.)

Continuing,



The main features of the result are that P(n) falls with n like 1/n2 and that it
vanishes whenever n is a multiple of 4. (Try to see why by sketching the
first four wave functions on top of ψ(x).)

As a concrete example of Eqn. 22.88 let us compute the probability that
the particle will be found in the ground state n = 1:



CHAPTER 23

Scattering and Dynamics

Consider the following problem in classical mechanics. You fire a particle
of mass m and momentum p0 from the far left on level ground. It then
encounters a potential hill that grows smoothly from 0 to a constant V0 as
shown in Figure 23.1.

What happens depends on the energy  of the particle. If E < V0
(upper part of figure), the particle will climb, losing kinetic energy K(x) and
gaining potential energy V(x), keeping the total constant and equal to E,
shown as a flat line in the figure. It will stop at the turning point xT where E
= V(xT) and roll back to you. This is called reflection. If you crank up the
energy and reach E > V0 (lower half of figure), the projectile will go over
the top and exit with some positive kinetic energy K = E − V0 and you will
never see it again. This is called transmission. Even if the hill is invisible
from where you shoot the projectile, you can determine V0: it is the lowest
launch energy E at which the projectile fails to come back. Scattering is
used in this manner to probe the forces between subatomic particles by
shooting them at each other and seeing how they scatter.

23.1   Quantum scattering
Now let us explore the same scattering process in quantum mechanics. The
proper way to handle this is to employ the time-dependent Schrödinger
equation, which tells us how any initial ψ(x,0) evolves with time into ψ(x,
t). Look at Figure 23.2. The smooth V(x) in the classical discussion has
been replaced by the step of height V0 to facilitate computation. For ψ(x,0)
we choose ψin, a normalized wave function, called a wave packet. It is well
localized in space and made up of states with positive values of p sharply
peaked around some p0, with ⵠx and ⵠp obeying the uncertainty principle.
Then we let the time-dependent Schrödinger equation take over and
compute its fate for large future times. (See this calculation as a black box



and just consider the results.) What happens depends on the average energy
of the incident packet.

Figure 23.1   Classical scattering off a potential that rises smoothly from 0 at x → −∞ to V0 as x →
∞. If E > V0, transmission is guaranteed and if E < V0, reflection is guaranteed.



Figure 23.2   Time-dependent view of scattering for the case E > V0. (The smooth V(x) in the
classical discussion has been replaced by the step to facilitate computation.) A wave packet ψin of
mean momentum p0 and mean energy greater than V0 is incident from the left at t = 0. After a long
time as t → ∞, it turns into two packets: a reflected one ψR with mean momentum −p0 and a
transmitted one ψT with smaller momentum  Assuming the incident packet is normalized to unity,
the square integrals of the reflected and transmitted packets give the reflection and transmission
coefficients R and T.

23.1.1   Scattering for E > V0

I illustrate in Figure 23.3 the case where the average incident energy 
 which is what interests us most. (The constant energy line

with E > V0 is shown.) By the time t → ∞, the incident packet would have
split into the reflected packet ψR(x, t), which moves in region I toward x =
−∞ with average momentum −p0, and the transmitted packet ψT (x, t),
which moves in region II toward x = ∞ with average momentum pꞌ0 = ħkꞌ
where (ħkꞌ)2/2m = E − V0. By the basic postulate on probability density, the
total areas under |ψR(x, t → ∞)|2 and |ψT (x, t → ∞)|2, respectively, give the
probability R that the particle is at the far left asymptotically and thus has
been reflected, and the probability T that it is at the far right and has been
transmitted.

If we send in a very large number of particles all in the same state ψin, a
fraction R will get reflected and a fraction T will get transmitted. This is



what happens when an accelerator shoots out a beam of projectiles at some
target and the scattered particles are picked up by many detectors.

Figure 23.3   Time-independent quantum treatment of a particle that approaches a step potential with
energy  The incident and reflected waves coexist to the left of the barrier as waves of
opposite momenta  and the transmitted wave becomes a wave with momentum 

 Shown are typical values of kinetic energy K(x), potential energy V(x), and total
energy E > V0.

I merely describe this involved computation and skip the details because
we have not yet studied the time-dependent Schrödinger equation and
because the final answer can be found using just the time-independent
Schrödinger equation in a certain limit.

That limit is approached by making the incident packet broader and
broader in x and sharper and sharper around the mean momentum p0 = ħk.
The same broadening happens to the transmitted and reflected packets. At
this point they are no longer packets but extended waves. The incident and
reflected waves coexist to the left of the barrier as waves of opposite
momenta ±p0 and the transmitted wave becomes a wave with momentum 

 The reflection and transmission coefficients R and T are fully
determined by p0 = ħk, the sharply defined initial momentum and V0. In this
limit there is no sense of time, and the values of R and T may be found in



terms of p0 and V0 by solving the time-independent Schrödinger equation
with appropriate boundary conditions.

Here are the details of the time-independent approach to scattering. The
treatment of familiar material will be brief. We just have two regions I and
II and in each of them we may write as before

Note that kꞌ is smaller than k because of the loss of momentum in
climbing up the step.

Since there is no exponential blowup as |x| → ∞, we may keep all four
coefficients, which allow for incoming (toward the step) and outgoing
(away from the step) waves in both regions. However, if we are to describe
the scattering process under discussion, we want an incoming wave only in
region I, producing a reflected wave in region I and a transmitted wave in
region II. So we choose D = 0 to kill the incoming wave in region II.

You may have noticed that the momentum wave functions have not been
normalized by the usual factor  because we are in infinite volume with L
= ∞. We cannot put the system on a ring either because we do not want the
transmitted wave to come back at us from the left! Fortunately we can find
R and T using only the ratios of A, B, and C, leaving the overall
normalization unspecified. It will not enter R and T. (Although in this
example we could finesse the question of normalization in the infinite
volume, you should know that there is a subtle way to normalize
momentum states in infinite volume. It works only because their square
integral diverges linearly with the length L of the universe, as compared to
wave functions whose square integrals diverge exponentially with L. The
latter are simply disallowed.)

Since the overall scale of the wave function is arbitrary, let us choose A =
1. The coefficients B and C must ensure that ψ and  are continuous at
x = 0:



The solution is

How should we define R and T now that there is no sense of time? We
cannot define them in terms of the ratios of areas under these wave
functions since all such areas are infinite. So let us turn to basics and ask
how we would define R and T if we had many projectiles at our disposal.
We would fire a large number, say 10000, at the step, and if 6000 come
back and 4000 get through we would define

(We may have to increase all the numbers till the ratios R and T stabilize.)
Look at the incoming, reflected, and transmitted wave functions with

amplitudes 1, B, and C. If there are a large number of projectiles, all given
by the same wave functions, their number density will be proportional to
the probability density. The particles will have a velocity  in
region I and  in region II. There is a steady stream of particles coming
in and getting reflected or transmitted. So we cannot work with the total
number of particles (infinite) and must deal with the number arriving and
getting scattered or reflected per second. That is, we must work with the
currents.

Recall from our study of electric currents that



where j is the current density, ρ is the particle density, and v is the velocity.
In one dimension the current (particles crossing some checkpoint per
second) is the same as the current density (no area normal to the current to
divide by). So

Similarly

The crucial factor  in the transmitted current ensures that we take
into account not only the density of particles but their velocity in computing
their arrival rate at the far right.

So finally we have

Observe that R + T = 1, expressing the conservation of probability. For a
steady beam of projectiles, this means the number arriving per second



equals the number reflected per second plus the number transmitted per
second.

Had we used the time-dependent Schrödinger equation we would have
arrived at exactly these values of R and T in the limit in which the incident
packet had a sharply defined momentum p0.

Now it is time to analyze the results.
• If V0 = 0, i.e., there is no step, we expect no reflection and we do indeed find R = 0.

• Even when the incident energy exceeds the step height, the particle has a non-zero probability to
bounce back. This happens in quantum theory because the particle is controlled by a wave and
waves undergo reflection when there is a change of medium, or, in this case, a change in potential
from 0 to V0.

• If E → ∞, the potential energy is negligible compared to kinetic energy, kꞌ/k → 1, and T → 1, i.e.,
there is perfect transmission even in quantum theory.

23.1.2   Scattering for E < V0

The wave function that behaves well at spatial infinity is

as indicated in Figure 23.4.



Figure 23.4   Time-independent quantum treatment of a particle that approaches a step potential with
energy  . The incident and reflected waves coexist to the left of the barrier as waves of
opposite momenta  and the transmitted wave is exponentially damped with 

 Shown are typical values of kinetic energy K(x) and potential V(x) energy.

The conditions are

with the solution

The reflected current has a value



Thus when the step is taller than the incident energy, there is complete
reflection of the incident current: R = 1. But if R = 1, what does the non-
zero |C|2 do to the condition R + T = 1? The result |C|2 > 0 only means that
there is an exponential tail of probability in the forbidden region, and does
not imply a transmitted current. (The formula j = P(x)v does not apply here
since the wave function does not describe particles moving with a real
momentum. A more advanced definition of current will yield a vanishing
current in region II and, in fact, whenever ψ is real.)

23.2   Tunneling
Suppose the barrier, instead of going on forever at the value V0, dropped to
0 beyond some point, as in region III of Figure 23.5. In region II both e±κx

are allowed, but the ultimate amplitude for transmission through the barrier
ends up being exponentially small if we match ψ and dψ/dx at the two
interfaces. The wave function will always “leak out” into region III as long
as the height and width of the barrier are finite. Once the particle leaks to
the allowed region, it need not hide; it can go with a real momentum, equal
in fact to the incident momentum (assuming V is the same on either side of
the barrier). There will also be a non-zero current flowing to the right. This
leakage is called barrier penetration. It means that if you send a particle
with an energy not enough to overcome the barrier in classical mechanics,
quantum mechanics gives it a small chance of being found on the other
side.



Figure 23.5   A particle coming in from the left with energy less than the barrier height can manage
to tunnel to the other side because ψ is non-zero in the barrier. Once it gets to the other side the wave
function is once again oscillatory.



Figure 23.6   Inside the potential well created by the other nucleons, the alpha has an oscillating wave
function. It tunnels to r1 (with exponential suppression) and escapes to infinity (again with an
oscillating ψ).

So no barrier is completely safe in quantum theory. Here is a final
survival tip. You are in a prison with walls of finite height and thickness.
What’s your strategy? I say go ram yourself against the walls as often as
you can, because there is a small probability that you will suddenly find
yourself on the other side.

This is what happens in alpha decay. The alpha particle, which is just the
helium nucleus, resides inside a big radioactive nucleus. The attraction
between the alpha and the rest of the nucleons creates an attractive well V(r)
that keeps the alpha inside for energies below the barrier height, as shown
in Figure 23.6. But the barrier tapers off as we move away from the nucleus
and at r1 it falls below the energy E of the alpha. The alpha can then tunnel
and come out as a legitimate free particle beyond r1. The alpha particle does
exactly what I told you to do. It goes rattling back and forth inside the
nucleus and once in a while it manages to penetrate the barrier and come
out. This is the alpha decay of the nucleus.



The alpha pounds on the walls with a very high frequency f, which we
may estimate as follows. The nucleus has a size ⵠ, the momentum of the
alpha is of the order ħ/ⵠ, its velocity is of the order ħ/(mⵠ), and so it
bounces back and forth with a frequency

dropping all factors of order unity. For ħ ≃ 10−34J · s, m ≃ 10−27 kg, and ⵠ
≃ 10−15m we find f ≃ 1023Hz. (A better estimate is 1021 Hz.) That is the
good news. The bad news is that the tunneling probability per attempt is
exponentially small, say ≃ 10−38. It could take about a billion years for a
successful escape. But you do not have to wait that long for your Geiger
counter to click because a very large number of nuclei are simultaneously
trying to decay. By comparison, your prison escape is even less likely to
succeed, but if you have given up on your lawyer or a presidential pardon, it
may be your best bet.

23.3   Quantum dynamics
You want to know the theory of everything? You’re almost there, because
I’m going to reveal to you the law of (non-relativistic) quantum dynamics.
It tells you how things change with time. It is the analog of F = ma. It is
called the time-dependent Schrödinger equation, or simply the Schrödinger
equation. It contains Newton’s laws as part of it, because if you can do the
quantum theory, you can always find hidden in it the classical theory. It
describes an astounding number of phenomena around you on this planet
and in the cosmos. There are of course some phenomena it cannot describe,
but it goes a long long way.

We have seen that the wave function ψ(x) is the analog of (x, p) in
Newtonian mechanics. It contains the maximum possible information about
the particle. Of course, extracting this information is a lot more difficult in
quantum theory than in classical theory. Classically, if you were given (x, p)
and wanted to know what you would get if you measured any dynamical
variable, some function of coordinates and momenta, like the angular
momentum L = r × p, you just entered the values of (x, p) (or its



generalization to three dimensions) in the expression for the variable. The
answer to the corresponding question in quantum mechanics is so long and
tedious you will wish you had not asked: express the given ψ as a sum of
functions ψα(x) with coefficients A(α) and so forth. Even with all this you
just get the probabilities for various outcomes. Let us not go over all that
again.

What we want to do is consider the dynamics. How does ψ change with
time? If it has a value ψ(x,0) at time t = 0, what is ψ(x, t), at a later time t?
What is the analog of F = ma?

I am just going to write it down: the evolution of ψ(x, t) is determined by
the time-dependent Schrödinger equation

We will restrict ourselves to the case of time-independent potentials V(x,
t) = V(x), even though the time-dependent Schrödinger equation is valid for
that case as well.

Before looking at solutions to the equation let us explore some obvious
and striking features.

The first is that  enters the very equation of motion. When we used
complex numbers as an artifact for solving problems in circuits or
oscillations, it was a matter of convenience. The quantity of interest to us
was always real, whether it was the coordinate of an oscillator or the current
in a circuit. But the i here is deeply embedded, right into the equation of
motion. We have already seen that without it we could not write down a
state of definite momentum ψp(x) = Aeipx/ħ.

The second is that unlike Newton’s laws for x(t), this is first order in
time. This means that as our initial condition we need just ψ(x, 0). The
Schrödinger equation will tell us what ∂ψ/∂t is, just like Newton’s law
determines the acceleration in terms of the force.

The ψ(x, t) in Eqn. 23.22 is not anything particular: every ψ(x, t) obeys
this equation just like every classical trajectory x(t) obeys Newton’s second
law.



Do not get confused between this equation and the time-independent
Schrödinger equation you saw in the last chapter:

In the above there is no time and ψE(x) are not generic, but special wave
functions corresponding to states of definite energy. However, this equation
will reenter the discussion very soon.

How can we calculate the future, given the present using this equation?
How do we solve this equation? I’m going to do it at different levels.

1. Just write down a particularly simple solution and verify that it satisfies the equation.
Understand a remarkable property of that solution.
2. Understand how that solution could be derived. This is optional.
3. Show how to find the future wave function ψ(x, t) for any given initial state ψ(x, 0) building on
the simple solution.

23.3.1   A solution of the time-dependent Schrödinger equation
Provided V is time-independent, i.e., V =V(x), the following is a solution to
the time-dependent Schrödinger equation:

On the left-hand side is a particular solution to the time-dependent
Schrödinger equation, which carries the label E because it is built out of the
solution ψE(x) of the time-independent Schrödinger equation. Let us verify
the claim, starting with the left-hand side:



I have drawn on the fact that the partial time derivative acts only on the 
part of ψE(x, t) and does so as the ordinary or total derivative.

Now for the right-hand side:

The partial x-derivative acts only on the ψE(x) part of ψE(x, t) (as a total
derivative) and that along with V(x)ψE(x) gives EψE(x) because ψE(x) is a
solution to the time-independent Schrödinger equation 23.23. From Eqns.
23.28 and 23.31 we see the time-dependent Schrödinger equation is
satisfied.

23.3.2   Derivation of the particular solution ψE(x, t)



Suppose we say, “Look, we don’t know if we can find every possible
solution to the time-dependent Schrödinger equation. So let’s begin with the
modest goal of looking for solutions of the product form

where X(x) is a function only of x and T(t) is a function only of t.” These are
by no means the only types of solutions. (We will see examples that are
not.) But right now we are desperate for any solution, even of the restricted
form, because such a tactic has proven fruitful in previous encounters with
partial differential equations. To see if even this modest goal can be
reached, we take the assumed form and stick it into the equation. Once
again we note that the t-derivative acts only on T(t) and the x-derivative
only on X(x). Consequently the time-dependent Schrödinger equation tells
us that our product form must obey

We now divide both sides by X(x)T(t) to arrive at

Only the total derivatives with respect to t and x appear, because the partial
derivatives act only on functions of the corresponding variable.

Look at Eqn. 23.34. On the left-hand side is a function only of t and on
the right-hand side is a function only of x. (This is why we required that V
have no time-dependence.) Can the left-hand side vary with t? It cannot,
because if it did, the right-hand side, which has no t in it, cannot keep up.
So the left-hand side must be t-independent. The right-hand side cannot



depend on x for the same reason. Both sides must equal a t and x-
independent constant, which I will call E for a good reason:

The original partial differential equation has broken down into two
ordinary differential equations for the product solution:

The solution to the first equation is obviously

and X(x), the solution to the second, is the function we have been calling
ψE(x)! Thus the product solution is

In other words, a product solution exists only if the time-dependent part
T(t) is the exponential  and the x-dependent part X(x) is a solution to the
time-independent Schrödinger equation corresponding to the energy E. The
allowed solutions of the product form will exist only for the allowed
energies E.



This completes the derivation of the product solution.

23.4   Special properties of the product solution
Look at the product solution in Eqn. 23.39. If we set t = 0 on both sides we
find

Thus the product solution begins as ψE(x) and as time goes by, all that
happens is that it picks up a phase factor  and turns into

The x-dependence does not change with time at all! Recall my earlier
analogy to a string. If you pluck a string (clamped at x = 0 and x = L) into
some arbitrary shape ψ(x,0) and let it go, it will wiggle and jiggle in a
complicated fashion into some ψ(x, t) dictated by the wave equation. If,
however, you started it out in the state

it will evolve into

As time goes by, the profile of the string will change only in its overall
scale by the cosine factor. Every part will rise and fall in step.

As in the case of the string, in the product solution of Eqn. 23.41 the ψ at
every x oscillates the same way, as  But unlike in the case of the string



where the cosine factor changes the appearance of the string with time,
nothing measurable changes with time in ψn(x, t). Consider for example the
particle that starts out in state n of the box. It evolves into

The probability density at time t is

Thus the odds of finding the particle at some x does not change with
time! The oscillating complex exponential plays a role in the time-
dependent Schrödinger equation when  acts on it, but drops out of | ψ|2.
It’s very interesting. The wave function depends on time and yet in a
practical sense the physical properties don’t depend on time. This is
analogous to what happens in states of definite momentum: they oscillate as



eipx/ħ (which defines a de Broglie wavelength λ = 2π ħ/p) but the probability
density P(x) is flat.

If a system is found to be in a state ψE(x) after an energy measurement, it
stays that way not just for an infinitesimal time but forever. The phase
factor e−iEt/ħ does not affect P(x, t).

Next consider P(p, t), the probability of finding a momentum p in a state
that starts out as a state of definite energy ψE(x). If at t = 0 we expand

then at a later time

This means that as time evolves each initial A(p) picks up a phase:

and the probability for measuring a value p does not change with time:



The same goes for all observables: the probabilities do not change with
time. For this reason the product states are called stationary states. The
little clouds you see in textbooks describing the electronic states of the atom
correspond to the time-independent distributions Pn(r) in some definite-
energy state of the atom labeled n.

If an electron in such an atomic state does not evolve with time, how
does it jump from one state to another and absorb or emit a photon? The
answer is that if the atom were truly isolated it would remain in the state ψn
forever. If, however, we shine light on it, we are applying new forces on the
electron. The vector and scalar potentials ϕ and A describing the E and B of
the incident electromagnetic wave will enter the time-dependent
Schrödinger equation for as long as the radiation is turned on. During this
time the initial state with a definite n can evolve into a sum over many such
states. At the end, we may be left with the atom in a different state and the
electromagnetic field with one more or one less photon.

Actually even an atom with no externally applied electromagnetic field,
in a vacuum, can jump to a lower level by emitting a photon. This is called
spontaneous emission. You leave an isolated hydrogen atom in the first
excited state, come back a short time later, and find the fellow has come
down to the ground state. And you say, “Look, I didn’t turn on any electric
or magnetic field: E = 0,B = 0. What made the atom come down?” Where is
the field? It turns out that the state E = 0,B = 0 is like a state x = p = 0 of the
oscillator, sitting still at the bottom of the potential well. We know that’s not
allowed in quantum mechanics. You cannot have x = 0,p = 0. It turns out in
the quantum theory of the electromagnetic field, E and B are like x and p.
That means the state of definite E cannot be a state of definite B. In
particular E = 0,B = 0 is impossible. It looks that way in the macroscopic
world, because the fluctuations in E and B are very small. Therefore, just as
the oscillator in its lowest energy state has got some probability to be
jiggling back and forth in x and p, the vacuum has its own vacuum
fluctuations in which we may find E = 0 and B ≠ 0. These fluctuations can
tickle the atom and cause the “spontaneous” emission. There can be no
spontaneous absorption, because the field is in its lowest energy state and
has no energy to give the atom. I promised you the theory of everything, but
that interlude was the theory of nothing, the vacuum.

23.5   General solution for time evolution



The product solutions are very special. In general things do change with
time because the solutions are generally not of the product form X(x)T(t). It
is very easy and instructive to manufacture a non-product solution. If ψ1(x,
t) and ψ2(x, t) are two solutions to the time-dependent Schrödinger
equation, then so is a linear combination

because the time-dependent Schrödinger equation is linear. Since the two
exponentials are different, we cannot pull out a common time-dependent
factor and the solution above is not of the product form X(x)T(t). One
consequence is that measurable quantities like P(x, t) will become time-
dependent.

Let us take as an example the superposition of the two lowest energy
states in the box:

In this state energy measurement can give only two answers, E1 or E2, with
absolute probabilities:



Suppose we had chosen A(1) = 3 and A(2) = 4. Then

It is wiser in this case with just two A’s to get the absolute probabilities
from the relative ones by dividing by |A(1)|2 + |A(2)|2 = 25 instead of
normalizing the initial wave function ψ1+2(x) by computing its square
integral. You might want to verify that, if you did this, the rescaling factor
for ψ1+2(x) would be 

Although the odds for different energies do not change with time, this is
not so for other observables. The probability density for position is



The probability density P(x, t) is evidently time-dependent. For example, if
A(1) = A(2) = 1,

Other densities like P(p, t) also vary with time.
Whereas in a state of definite energy nothing changes with time, in this

state, made of two different energies, P(x, t) changes with time. To see
appreciable change we must wait at least a time ⵠt comparable to the time
period T of the oscillating cosine:



where factors like 2 and π have been dropped and ⵠE = E2 − E1 is the
spread in the energy of the state.

This is a special case of the energy-time uncertainty principle to be
discussed in the next chapter. It states that a system with a spread ⵠE in its
energy needs a minimum time ⵠt ≳ ħ/ⵠE to show appreciable change.

Let us generalize to a sum over all energy states:

which also solves the time-dependent Schrödinger equation by linearity.
What sort of initial state did this evolve from? Setting t = 0 we find

Thus we can predict the future of any initial state that may be written in this
form. This is, however, no restriction, since the general mathematical
theorem alluded to earlier assures us that any function ψ(x,0) may be
expanded in this form with coefficients

(There is no need to conjugate ψn(x) because it is real.)
We have therefore the following recipe for finding the state ψ(x, t) given

the arbitrary initial state ψ(x,0) in any time-independent potential V(x):



1. Express the initial state as

with coefficients

2. The state at later times is obtained by appending a factor  to
every A(E):

While the mathematical theorems assure us that ψ(x,0) may be expanded
in terms of states in which any other observable A has a definite value α,

with the same rule

the coefficients of the state at a later time, A(α, t), will not be simply given
by A(α,0) times some phase factor. One can show that instead each A(α, t)
will generally be some complicated linear combination of all the A(β, t)’s.
This is the reason that one expends so much time in computing the solutions



ψE(x) to the time-independent Schrödinger equation: it holds the key to the
future.

23.5.1   Time evolution: a more complicated example
In the preceding example we were given the initial state as a combination of
box wave functions ψ1(x) and ψ2(x) and had to compute its evolution. We
just had to append the exponentials e−iE1t/ħ and e−iE2t/ħ due to time evolution
to the coefficients A(1) and A(2). Now let us turn to a more complicated
situation where we are given ψ(x,0) as a function of x but not written out as
a linear combination of ψE(x). In this case we first have to find out the
coefficients A(E) of the linear combination and then attach the exponentials
to them.

Consider as an example the following initial state in a box

(This function does not vanish at x =L and is therefore not a function that
can be expanded in terms of box wave functions that do vanish at the ends.
We should therefore see it as the limit of a family of functions that plunge
to zero more and more rapidly as x → L. Equivalently, the sum over box
functions can approximate it arbitrarily well except at x = L, but this will
suffice for illustrative purposes.)

Before doing the time development let us probe the initial state a little
more, starting with the computation of P(n), the absolute probability of
finding the system in energy state n. This is going to be a problem where we
will have many (possibly infinite) non-zero A(n)≡A(En) and normalizing
them after computing them could be hard. On the other hand the initial state
is simple enough to be normalized. So we will do that first, and the A(n) we
compute from it will come out normalized. We require



which means the normalized wave function is

The coefficients are (for E = En)

For example, the probability of finding the system in the ground state of the
box is

Here is a brief aside. Since the initial state is normalized we have an
interesting mathematical result



which may be written as a celebrated result due to Euler:

Back to the time evolution of the state. Our general formula, applied to
this case, gives

Figure 23.7 shows the evolution of P(x, t) for parameters 
and the sum over n truncated at n = 50. The times selected are  I
will explain this choice of times a little later.

One can show analytically that

using properties of the sine and the result

(If n is even, so is n2 and exp [−iπ × even] = +1 = (−1)n, while if n is odd
so is n2 and exp [−iπ × odd] = −1 = (−1)n.) Thus after a time π, the wave



function ψ(x, t) changes sign (we do not see it in P(x, t)) and gets reflected
around , and after another π it comes right back to ψ(x, 0). By
comparison, the 2π periodicity is obvious because the time-dependent factor
e−2πin2 in Eqn. 23.84 equals 1 for any integer n.

Figure 23.7   Time-dependence of P(x, t) for  and  at times 
Note the oscillations at t = 0 near x = L = 1 where the initial wave function plunges to 0 from 1. You
can see the symmetry ψ(x, t) = −ψ(1 − x, t + π). The minus sign is lost in going from ψ(x, t) to P(x, t).

Such simple periodic behavior is uncommon and usually occurs only in
problems that can be solved analytically. The density P(x, t) generally does
not repeat itself. So the only take-away message for you should be that as
time goes by, the initial ψ(x,0) and P(x,0) evolve into ψ(x, t) and P(x, t),
which we can calculate.

Now to explain why I chose the times  and π and not, say, 0, 1, and 2
seconds in Figure 23.7: the times are chosen in natural units arising from
the problem itself. Suppose you wanted to show various states of a
pendulum of length L and mass m. You should display the pendulum at
times comparable to its period so that you can show interesting stages of
one or two oscillations. For example, if it had a time period of 10s, it makes



sense to show its position every second or two and not every nanosecond or
every year. Dimensional analysis gives a way to associate a time
constructed out of L, m, and g. We write

where the equation aims to balance only the units by suitable choice of the
constants a, b, and c. Continuing,

which gives us the following natural unit of time

Notice that T is not the actual time period of the pendulum (a 2π is
missing). In general the motion may not even be periodic. A natural time
unit simply avoids the introduction of very large or very small times in
discussing the problem in question. For example, in studying planetary
motion a year is a natural unit, not a nanosecond.

To find a natural time scale for a quantum problem, we may extract a
frequency ω = E1/ħ from its lowest energy, and a corresponding time using 

 (Using E2 instead will only change the unit by a numerical factor of
order unity.) In our problem, for our choice of parameters, this leads to 

 which leads to the natural time unit T = 2π. I



emphasize that in general such a natural time unit does not imply periodic
behavior with period T, or even periodic behavior, though both happened to
be true in our example.



CHAPTER 24

Summary and Outlook

Now it is time to consolidate everything, to present the subject starting from
its postulates. Whereas one could simply say  and launch you
into a study of mechanics, there is a lot of groundwork that has to be done
in the quantum case. Now that the ground work is behind us, it will be
useful to have in one place all the rules of the quantum cookbook. These
rules or postulates summarize findings from experiments and cannot be
deduced by pure cerebration.

There are many ways to write down the postulates and there can even be
arguments about how many there are. What I present below are the
postulates appropriate to this course, and they are restricted to a single
massive particle in one dimension. Given these, and some mathematical
results, you can do any of the problem sets. Following this, I will dig a little
deeper into the postulates to unify some of them into a single one. That
digression is optional but recommended if you are thinking beyond this
course. The chapter will conclude with the study of more than one particle
and the energy-time uncertainty principle.

24.1   Postulates: first pass
1. Postulate I. The complete information on the state of a particle at any fixed time is given by the
complex, continuous, normalizable wave function ψ(x). States of definite position and momentum
are non-normalizable exceptions that need special treatment.
2. Postulate II. The probability density for finding the particle at x is given by

If a particle is found at some x0, the wave function collapses to a spike at x0. If P(x) is normalized,
then



Normalization is a convenience and not a requirement because rescaling ψ has no physical effect.
3. Postulate III (momentum states). A state guaranteed to yield a momentum p upon
measurement is described by

This function cannot be normalized by any choice of A on the infinite line. If we fold the finite
line into a ring of circumference L, we can choose  The requirement of single-
valuedness, ψ(x) = ψ(x + L), leads to the quantization of momentum to the values

The quantization of p follows by mathematical reasoning given the requirements on ψ. It is not a
postulate.
4. Postulate IV (energy states). A state guaranteed to yield the result E upon energy measurement
is the solution to the time-independent Schrödinger equation

Solving this equation with appropriate boundary conditions will determine the allowed values E
and corresponding functions ψE(x). Notice that V is assumed to depend only on x and not on t.
States of definite energy exist only when V is time-independent. (This is also the condition for a
conserved energy E to exist classically.)

Mathematical interlude: Let A be a dynamical variable, such as momentum or energy, and ψα(x)
a wave function that describes a state guaranteed to yield an answer α (like pn or En) if A is
measured. Mathematical considerations (not discussed here) assure us that any ψ(x) may be written
as a superposition



where the coefficients of the expansion are given by

5. Postulate V (measurement). If A is measured in the state (described by) ψ(x), the only possible
outcomes α are the ones that appear in the superposition Eqn. 24.6 and occur with probability

Right after a measurement yielding the result α0, the state will collapse (from being a sum over α)
to ψα0(x). An immediate remeasurement of A will yield the same value α0.

Complication due to degeneracy: Sometimes there will be two or more independent wave
functions that can correspond to the same value of a variable A. An example is the free particle on
a ring: at energy E there are two states of definite momentum  described by

independent functions e±ipx/ħ. Any linear combination of them is a state of definite energy. To
find P(E) in this case, it is best to express the given ψ(x) in terms of ψp(x), compute the
probabilities for  and add them to obtain  

Complication due to more than one variable: If we are interested in two variables there may not
be a state in which both are guaranteed to have definite values. In the case of position and
momentum there are no such states. On the other hand, for a free particle on a ring it is possible to
have a state with guaranteed E and p.
6. Postulate VI (time evolution). The time evolution of the wave function is governed by the
time-dependent Schrödinger equation:

In this equation V = V(x, t) may depend on time.



It may be verified by substitution that if V = V(x), the following is a
solution:

where E and ψE(x) are the solutions to the time-independent Schrödinger
equation 24.5. It is called a stationary state because none of the
probabilities (P(x),P(p),P(α)) vary with time.

A superposition of such stationary states with arbitrary coefficients A(E),

is also a solution to the time-dependent Schrödinger equation by its
linearity. If we ask what kind of initial state corresponds to such a solution,
we find, upon setting t = 0,

This is no restriction at all on the initial state, since the mathematics assures
us that any function ψ(x,0) may be written as a superposition of ψE(x). Thus
Eqn. 24.11 describes the solution to the most general problem of time
evolution one could pose in a time-independent V.

If Eqn. 24.12 is valid at t = 0, it is valid at time t, provided of course we
choose the coefficients A as a function of time:



Comparing this to Eqn. 24.11 we find

Thus the coefficients of the expansion have a very simple time evolution if
the general state is written in terms of ψE(x). In other words, although
mathematically ψ(x) may be written as a superposition of states ψα(x) that
have well-defined values for any variable A, only the expansion coefficients
in terms of states of definite energy have this simple time-dependence.

Do not look for the uncertainty principle among the postulates: it can be
deduced given that the particle is described by a wave function and that
definite momentum corresponds to definite wavelength.

24.2   Refining the postulates
The postulates as written above would not be found in any book. I gave

them to you as a set of rules that would allow you to handle the material in
this course. Quantum mechanics is one big recipe but even as recipes go the
above list is wanting. There are at least two deficiencies you may have
noticed.

1. For every variable, there seems to be a different prescription for finding wave functions with
definite values for that variable. For example, I simply gave you ψp(x) = Aeipx/ħ as the state of
definite momentum, while I asked you to solve the time-independent Schrödinger equation to
obtain ψE(x). Since one can imagine an infinite number of such variables, corresponding to
arbitrary functions of x and p, there must be an infinite number of such prescriptions. Are there
really an infinite number of such postulates, one for each variable?
2. I treated x differently from any other variable. First, I was evasive about (the wave function for)
a state of definite position x = x0, simply referring to it as a spike at x0. Next, the rule

where



was never applied to the case where A was the position: I never wrote ψ(x) as a linear combination
of states of definite position with some coefficients A(x) and did not relate the mod-squared of the
expansion coefficients to the probability of finding the particle at some x. Instead I gave P(x) = |
ψ(x)|2 as a postulate.

24.2.1   Toward a compact set of postulates
I will now remedy these interrelated defects to the extent that is possible
within the constraints of this course.

Consider first the momentum states. Following some plausibility
arguments based on the double-slit experiment, these were postulated to be

Without changing the substance of this postulate let me rewrite it as
follows:

Postulate III. A state of definite momentum p is a solution to the
differential equation

You can solve this equation in your head and see that the solutions are
indeed the ones in Eqn. 24.17. The arbitrary scale factor A appears because
ψp(x) appears on both sides. Given one solution, you can get another by
rescaling. A common way to choose A is to impose the cosmetic
requirement of normalization.

24.2.2   Eigenvalue problem



The familiar differential equation (24.18) and its solution are a simple
introduction to the fertile realm of the eigenvalue problem. Let us take some
time to explore it. Take some arbitrary function f (x) and differentiate it. It
will turn into a new function. For example,

Let us rewrite these as

which you should take to be a definition of D. One calls D an operator. Just
like a function is a recipe that takes in a variable x and spits out a value f
(x), an operator takes in a function f(x) and spits out another function. The
function f (x) is always placed to the right of the operator, as in D[f (x)] or
simply Df. The thing D does to f (x) is to differentiate it.

The operator D is linear, meaning

which is a familiar property of differentiation. All operators we will
consider here will be linear.

It is natural to define the operator D2 as a D followed by another D and as
having the following effect:



Don’t let the exponent in D2 fool you into thinking it is a non-linear
operator. After all,

You can form operators that are sums of various powers of D each
multiplied by some constant.

In general operators modify the function they operate on and turn them
into other functions. But sometimes an operator may have some privileged
functions, called its eigenfunctions, on which its effect is to simply multiply
them by a constant, called the eigenvalue. Let us consider the eigenvalue
equation for D. Its eigenfunctions must obey

where the constant κ is the eigenvalue. The solution or eigenfunction is
clearly

In other words, although the effect of differentiation by D is usually to
transform a function into something else, there are some functions, the



exponentials, on which the effect of D is to multiply them by a constant. It
is common to label the eigenfunctions by the corresponding eigenvalues as
follows:

At this point, there is no restriction on the eigenvalue κ.
In this language we may say that the states of definite momentum ψp(x)

are eigenfunctions of the operator

called the momentum operator in quantum theory, and therefore the
solutions to

where p is the eigenvalue. In summary,

Postulate III (momentum states). The states of definite momentum p are
eigenfunctions of P:

If the solution ψp(x) lives on a ring of circumference L, the single-valued
requirement restricts the eigenvalues p to 

24.2.3   The Dirac delta function and the operator X



Just one more such operator and we are done. It is called X and this is what
it does to any f (x) placed to its right:

Thus the action of X is to take the given function f (x) and change it into the
new function xf(x). Evidently X2 is an X followed by another X and thus

We can form more complicated operators using X and P, whose action is
quite obvious. For example,

Consider the eigenfunctions of the operator X, remembering that

If it had an eigenfunction fx0(x) with eigenvalue x0, it would have to satisfy



But look! Multiplying by x has a different effect at different x, and yet we
are looking for a function that when multiplied by x becomes a constant x0
times that function! How can any function retain its functional form (up to a
multiplicative constant) when multiplied by x? And yet there is such a
function. It is a little weird as you might expect. It is called a Dirac delta
function or simply the δ-function. It is a limit of any number of smooth
functions, and here is one example. Look at Figure 24.1. It shows three
rectangles of decreasing width w and increasing height 1/w centered at x =
x0. All have unit area. If you take the limit w → 0 you get the Dirac delta
function δ(x − x0), shown by a vertical arrow going to infinity. It is infinitely
tall at x0, zero everywhere else, and still has unit area:

The delta function is even, like the one in Figure 24.1 whose limit it is:

Let us see how the Dirac delta function δ(x − x0) satisfies the eigenvalue
equation

Consider first a point x ≠ x0. Now both sides vanish due to the δ(x − x0). So
it does not matter that the δ-function on one side has an x multiplying it and
on the other side an x0. At x = x0, the x on the left-hand side becomes x0 and
the two sides again agree.



Here is another way to say it. The factor x rescales any f (x) by a variable
amount x, but our eigenfunction lives only at one point x = x0 where it gets
rescaled by x0. So it is correct to say that it gets rescaled everywhere by just
one number, x0.

You can only plot the δ-function before taking the limit w → 0 of the
rectangular spike (see the left half of Figure 24.1) or any function with the
δ-function as the limit. The limiting function itself has the only two values,
zero or infinity. Luckily we never need the function by itself, just some
integral within which it appears. Eqn. 24.42 will then tell us exactly how to
handle it.

Figure 24.1   Left: Three rectangles centered at x = x0, of width w and height 1/w as w → 0. The
height and width of the broadest alone are shown. The limit, shown by the arrow, is the delta function
δ(x − x0). It is even: δ(x − x0) = δ(x0 − x). Right: The integral of g(x) times δ(x − x0) receives a non-
zero contribution only infinitesimally close to x0. Within this interval g(x) ≃ g(x0) is a constant that
can be pulled out of the integral, and the delta function then integrates to 1.

Let g(x) be some smooth function. Consider the integral



just before the limit w → 0 is taken. The integrand vanishes for any x not
infinitesimally close to x0 due to δ(x − x0); see Figure 24.1. So the entire
integral comes from an infinitesimal region around x0. We manipulate it as
follows:

where I could pull out g(x0) from the integral because the smooth function
g(x) is essentially constant within the infinitesimal neighborhood of x = x0.
Thus δ(x − x0) can be used to pull out or sample the value of g(x) at x0:

For example,

and



and

Now back to quantum mechanics. Let g(x) be a wave function ψ(x). Its
value at x0 is sampled by δ(x − x0):

Compare this to a mathematical result for extracting the coefficients of
expansion of a generic ψ(x) in terms of states of definite value for a general
variable A:

The correspondence is obvious:



Thus we see that the wave function ψ(x0) is itself the coefficient in the
expansion of ψ(x), the “amount” of δ(x−x0) we need in the expansion of
ψ(x). By the measurement postulate then

and we see that the rule for x is like that for any other variable such as p or
E. The only difference is that since x0 is a continuous variable, P(x0) is a
probability density whose integral over all x0 is 1, and not a probability
whose sum over all possibilities is 1.

If you are following this closely you will ask, “Where is the analog of

which says any ψ(x) may be expanded in terms of functions of definite A,
which is now position?” Go to

and make the exchange x ↔ x0 to obtain

Comparing this to Eqn. 24.61 we find the correspondence



Thus I have exhibited a generic ψ(x) as an integral (rather than sum) over
states (spikes) of definite position x0 with coefficients ψ(x0).

I mentioned earlier that states of definite position and momentum are
non-normalizable. In the case of momentum |ψp(x)|2 is a constant whose
integral over all of space is infinite. For the case of position we find the
following square-integral

(I have used one of the delta functions to sample the other at x = x0.)
Having seen that the position and momentum can both be analyzed on

the same footing, as eigenvalue problems, let us take a second look at states
of definite energy, which are the solutions to



upon using  and the fact that the action of V(X) on f(x) is to
replace it by V(x)f(x).

Comparing Eqn. 24.72 to the formula from classical mechanics

we see that the states of definite energy are the solutions to the eigenvalue
equation

or more abstractly,

In the left-hand side we take the classical expression for energy E as a
function of x and p and replace every x by X = x, and every p by 
and we let the result act on the ψE(x) sitting to its right.

The combination



is called the Hamiltonian operator or simply Hamiltonian. It depends on the
potential V(x). For example, in the case of the harmonic oscillator it is This
means that the states of definite energy for the quantum oscillator are the
normalizable solutions to

The time-independent Schrödinger equation may be written in terms of H
as

24.3   Postulates: final
We are now ready to combine the postulates into the following set, which

is more compact and free of the defects in the initial set.
1. Postulate I. The complete information on the state of a particle is given by a complex,
continuous wave function ψ(x) which is normalizable except for states of definite x or p.
2. Postulate II. Let A(x,p) be a dynamical variable, such as momentum or position or a function
thereof, like energy. Then its allowed values α, and the corresponding ψα(x), are the normalizable
(except in the case of position and momentum), single-valued solution to



(I use partial derivatives of x in anticipation of additional coordinates y and z.)
Mathematical interlude: A mathematical result assures us that any ψ(x) may be written as

where

3. Postulate III. If A is measured in the state ψ(x), the only possible outcomes are the α’s that
appear in the superposition above and the probability for each α is

The state right after measurement will collapse from the sum over α to the single term
corresponding to the value of α obtained. An immediate remeasurement of A will yield the same
value.
4. Postulate IV. The time evolution of the wave function is governed by the time-dependent
Schrödinger equation:

In this equation the classical potential V =V(x, t) may depend on time.



24.4   Many particles, bosons, and fermions
What does quantum mechanics of more than one particle look like? There
are some obvious consequences like more coordinates and some real
surprises of quantum origin.

First let the two particles be different, say a proton and an electron. Now
each of them has its position, say x1 and x2, and these appear in the two-
particle wave function ψ(x1, x2). The probability density for finding particle
1 at x1 and particle 2 at x2 is

With three particles you will have a ψ(x1,x2,x3) and so on, but I will stop
with two because you can learn some profound things in about fifteen
minutes just by exploring this case.

Imagine both particles are in a box and the electron is in state n = 3 and
the proton is in state n = 5. The corresponding ψ(x1,x2) is
of the product form

The probability density for finding the electron at x = 4 and the proton at
x = 8 is given by



If instead we ask for the probability density for finding the electron at x =
8 and the proton at x = 4, the probability density would be

which is quite different. For example, if the box had a size L = 40, then
P3,5(x1 = 4, x2 = 8) would vanish while P3,5(x1 = 8,x2 = 4) would not.

That’s perfectly okay, because they are two different probabilities for two
different outcomes: finding the electron here and the proton there is not the
same as finding the electron there and the proton here. To verify the
probabilities, I take many many boxes with electrons in the state n = 3 and
protons in the state n = 5 and measure their positions and tally my findings
in the form of a histogram in two dimensions labeled by x1 and x2.
Following each measurement I can unambiguously assign the measured
positions to the electron or the proton. In the end the histogram should
agree with P3,5(x1,x2). If I find the electron at x =8 and the proton at x =4,
that would be consistent with (but not fully confirm) the predictions, but if I
found the electron at x =4 and the proton at x =8 even once that would deal
a fatal blow to the theory because the proton should not be found at x = 8,
which is a zero of its wave function.

24.4.1   Identical versus indistinguishable
Something very dramatic happens if the two particles are identical. The
words “identical particles” have a connotation in quantum mechanics that is
very different from that in classical mechanics. Consider identical twins. I
mean absolutely identical. They are separated at birth and they are moving
around. Even though they look identical in every way, we can still follow
them. We know this is Joe and that is Moe. We can keep track of them
continuously. Consider the following experiment involving these twins,
depicted in Figure 24.2. There are four doors in a room and Joe enters from
door A and Moe enters from door B, and both are headed for the center of
the room. There are now two options. Either they exit via the doors in front
of their entry door (left half of figure) or cross over and Joe exits via door C
and Moe via door D. Now suppose you saw them entering the room in the



beginning, and you left the room briefly and came back in time to see them
leaving the room. You cannot tell whether they crossed or not, because you
just see two identical twins at these doors. But somebody knows what has
happened, somebody who was watching them at all times. So even though
they are identical, they are distinguishable. They cannot swap roles without
someone knowing.

Figure 24.2   Two identical twins Joe and Moe enter doors A and B and exit via doors C and D, along
two possible classical paths. In quantum theory we cannot say which of the two things depicted
happens. Had these been identical macroscopic twins Moe and Joe we could, based on continuous
observation.

But imagine now that these are not classical twins but quantum particles,
like electrons, which do not have a definite trajectory between observations.
You know an electron was emitted at door A and another at door B and they
were eventually detected at doors C and D. You cannot tell who really went
where. Was it this guy or was it that guy? There’s no way to tell. So when
you have identical particles whose trajectories you cannot follow, when you
catch a particle here and a particle there, you cannot say Joe was here and
Moe was there. It’s not allowed, because you’re not following them
continuously. You can only say, “I found a particle here, and I found a
particle there” and not “I found Joe here and Moe there.” Therefore the



theory cannot assign different probabilities for finding particle 1 here and
particle 2 there, and particle 2 there and particle 1 here, because the two
outcomes are indistinguishable. It must give the same odds for two
indistinguishable outcomes:

We saw this was not true for the product function written above for the
electron-proton system. It vanished when the electron was at x = 4 and the
proton was at x = 8 but not the other way around. Product functions cannot
describe two electrons in a box.

However, we can cook up a function that respects the indistinguishability
of the particles by superposing the two alternatives;

In this superposition of two product states, one has particle 1 in state n = 3
and particle 2 in state n = 5 and the other has particles with exchanged
states. The subscript S stands for symmetric, meaning that because we have
added the two possible product states related by particle exchange, the two
particles now play symmetric roles. You can only infer from this wave
function that there is one particle in n = 3 and one in n = 5 and not that
particle 1 is in n = 3 and 2 is in n = 5.

Formally, this means the symmetric wave function is insensitive to the
exchange of particle coordinates:



If we exchange the coordinates x1 and x2, the two terms in the symmetric
wave function exchange roles and their sum is unaffected. The labels 1 and
2 in the quantum wave function no longer refer to the individual particles,
which do not have a specific identity anymore.

The symmetric function is also unaffected if we leave x1 and x2 alone and
swap the state labels:

This is an equivalent way of saying that all we know is that there is a
particle in n = 3 and a particle in n = 5.

In any event, the probability density, which is simply the mod-squared of
ψ, has the requisite symmetry

Figure 24.3 will help you visualize the situation. On the left is the state
with particle 1 in n = 3 and particle 2 in n = 5, and in the middle is the state
with particle 1 in n = 5 and particle 2 in n = 3. These are the two product
states. Both these states are allowed in quantum theory if we are talking
about a proton and an electron in the box, and they are counted as distinct
states. But if they are two identical particles, the labeling makes a
distinction that is meaningless in quantum theory. There is only one allowed
state, the symmetric one depicted on the right. We just see two particles,
one in n = 3 and one in n = 5, with no labels.



Figure 24.3 At the left is a state with particle 1 (Joe) in state n = 3 and particle 2 (Moe) in state n = 5
and in the middle a state with the particles exchanged. These states are permitted in quantum theory
if the particles are different and count as two different possible outcomes. If they are identical, only
the depiction at the right, which carries no labels, is allowed.

More generally for any two quantum states a and b (not just box states n
= 3 and n = 5 as in our example) the allowed wave function is

I can get the symmetric state by adding to the product state, a state in which
x1 and x2 are exchanged keeping a and b fixed or vice versa. Both reflect
the fact that the particles have no identity. The probability density is

In the symmetric wave function we finally seem to have found a way for
describing two electrons, one in n = 3 and one in n = 5, respecting the



requirement of indistinguishabilty. However, this is not true. It works for
two identical pi-mesons or pions but not two electrons. But what else could
we do besides symmetrize the product wave function?

There is another allowed combination called the antisymmetric wave
function where we subtract the product state with the exchanged ordering:

This seems to violate the premise that exchanging identical particles
should not make any difference. However, in quantum theory ψ itself is not
directly observable (remember ψ and −ψ are the same state) and only
quantities quadratic in ψ such as P = |ψ|2 are. Indeed we find that

So in quantum mechanics, there are two options for identical particles.
Either you can take the product function and add to it the product with the



exchanged coordinates to obtain the symmetric wave function ψS, or
subtract the product with the exchanged coordinates to obtain the
antisymmetric wave function ψA. Remarkably every particle in the universe
goes with one camp or the other. Particles called bosons always choose the
symmetric wave functions, and particles called fermions always choose the
antisymmetric wave function. Every particle is either boson or fermion.
Pions are bosons. Electrons are fermions. Quarks are fermions. Photons and
gravitons are bosons. For example, two pions of definite momentum p1 and
p2 will be symmetric under exchange. We cannot say which one has
momentum p1 and which has momentum p2. We can only say there is a pion
with p1 and a pion with p2. If you put two identical bosons in a box, their
symmetric wave function will remain the same when you exchange them. If
you put two identical fermions in a box, their wave function will change
sign if you exchange them. (If you put non-identical particles, say an
electron and a proton, you may use a product wave function. If you
exchange the coordinates, you generally get a different product state, and
not ±1 times the original.)

The previous discussion assumes the states a and b are different. Let us
see what happens if a = b. For bosons we find

where the overall factor of 2 is physically unimportant. So bosons have no
problem being in the same state, and if we consider more bosons we will
find that they love being in the same state as others, a feature exploited in
the laser, and one which we must reluctantly skip.

We are more interested in the dramatic case of two identical fermions.
Can they both be in the same quantum state? If we set a = b in the
antisymmetric function, we find



This is the famous Pauli exclusion principle, which says two identical
fermions cannot be in the same quantum state.

Notice also that even if a ≠ b the two fermions cannot occupy the same
position: if we set x1 = x2 = x we find ψA vanishes:

(This is not for the trivial reason that two particles cannot sit at the same
point. Quantum theory allows two pions to be at the same point.) Since
ψA(x1, x2) vanishes when x1 = x2, by continuity it is also small when x1 and
x2 approach each other. Thus two identical fermions avoid each other, not
due to any repulsive forces between them, but due to the Pauli principle.

What does the Pauli principle say when we have three fermions? If we
demand that the wave function change sign whenever we exchange any two
fermions, we come up with

I invite you to verify that in addition if you set any two coordinates equal or
any two state labels equal, ψa,b,c,A(x1, x2, x3) vanishes. There is a way to
write down such totally antisymmetric wave functions for any number of
identical fermions. If you know determinants, here is the answer for three
particles:



You can rely on the theory of determinants or verify by explicit
computation that this wave function vanishes whenever two of the rows or
columns are equal, that is, when two of the coordinates or state labels
become equal. It also changes sign when two rows or columns are
exchanged. For more particles, you just need a bigger determinant.

We need the symmetric and antisymmetric states only if the particles in
question are identical. Even if there is the slightest difference between two
particles, they will be treated as distinguishable and described by product
wave functions. What makes the formalism worthwhile is that there are in
nature many many particles that are absolutely identical. Every electron is
identical to every other electron. One could have been produced in an
accelerator on the earth and the other in another galaxy. You put those two
guys in a box or an atom and they will obey the Pauli principle. It is
remarkable how nature manages to churn out exactly identical particles in
such widely separated regions of the universe.

24.4.2   Implications for atomic structure
Let us try to work out the structure of atoms based on what we know. First
we have to compute the stationary states of an electron in the field of a
nucleus of charge Ze, where Z is the number of protons.

This means solving the Schrödinger equation in three dimensions with a
potential

From the classical expression for energy



and the final Postulate II, we know ψE(x, y, z) obeys the Schrödinger
equation

The solution, which I will skip, gives the following spectrum. The
allowed energies are

The levels are degenerate: there are n2 levels at a given n. In addition, the
electron has a twofold degree of freedom called spin corresponding to an
internal angular momentum  not connected with motion and not
discussed so far. So the real degeneracy is 2n2, which takes on values 2, 8,
18, .  .  . . The probability densities P(r) for a particle in level n and with
maximum allowed angular momentum, being found in a spherical shell
between r and r +dr, are functions peaked at a radius n2a0 where

is the Bohr radius. For this reason the states at any n are often called shells.
In some books these are depicted as orbits or clouds of that radius.

Given the spectrum of an atom we can predict the frequencies of light it
will emit or absorb when the value of n changes:



We can even compute the rate at which it will absorb or emit light, but this
will require invoking the wave functions ψE.

Combined with the Pauli principle, we can understand a lot of chemistry
by asking what the electrons will be doing in a given atom.

Hydrogen has just one electron, which we may place in the n = 1 state
with spin  or spin  Helium has Z = 2, and its two electrons occupy
the n = 1 level with opposite spins. Lithium has Z =3 and its third electron
has to go to one of the eight n = 2 states. (At this point we may have to
include the fact that the two electrons in the inner states n = 1 may screen
some of the nuclear charge seen by the n = 2 electron.) We keep going till
we hit Neon whose 10 electrons fill the n = 1 and n = 2 shells. If we add one
more electron we need to go to the next level n = 3. This is the case for Na
(sodium), which has 11 electrons. When the 11th electron looks in toward
the nucleus it sees a charge 1e, since the 10 inner electrons screen the rest of
the nuclear charge. Its binding energy is a low 5.1eV. The atom then looks
longingly at F (fluorine), which has 9 electrons. Its seven n =2 electrons
have a huge binding energy of 17.46eV each. There is room for one more
electron in its n =2 shell. If the Na could unload its lone n = 3 electron to
the vacancy in the n = 2 shell of F, the two atoms could lower their
combined energy. This is what they do given a chance. But after this
transfer, the Na atom will be positively charged and the F atom negatively
charged. The two will be electrostatically bound by the ionic bond to form
the NaF molecule.

The pattern is clear. Atoms with filled shells (like He or Ne) will have no
incentive to talk to anyone else. Atoms with a lone electron in the outermost
shell (valance electron) will try to unload it on atoms with a vacancy in
their outermost shell. (The same goes for more than one transferred
electron.) As the shells get filled this behavior will repeat. This explains the
periodic table. Given that maxim “Happiness is a filled shell,” we can
anticipate who will be interested in whom. There are, however, some
surprises and anomalies in the many-electron atoms that we cannot get into
here.



Our belief in our description of the quantum world is based on very
different considerations compared to the classical world. For example, if
Newton says, “I can show using my laws that the planetary orbits are
ellipses,” this can be confirmed by direct observation. (In this case, the
observation had already been done by Kepler before Newton.) For atoms,
on the other hand, all we have are the energy levels and corresponding wave
functions. Using these we can predict the structure of atoms and their
interaction with each other and with the electromagnetic field. It is the
spectacular agreement between theory and experiment that corroborates our
faith in quantum mechanics as the way to describe the atomic world to
which we do not have direct sensory access.

24.5   Energy-time uncertainty principle
We now consider the energy-time uncertainty principle

This inequality presumes a particular definition of ⵠt to be described later
and may have to be replaced by ⵠE ⵠt ≳ ħ or ⵠE ⵠt ≃ ħ. This is because
even if ⵠE is the precisely defined uncertainty (see Eqn. 24.128), there is no
unique definition of ⵠt. This is because time is not a dynamical variable
with a probability distribution; instead it is a parameter on which dynamical
variables like x(t) and ψ(t) depend. We all know exactly what the time is by
looking at a clock and ⵠt is not the uncertainty in time.

What does ⵠt mean? For what definition of ⵠt is Eqn. 24.114 valid?
What do Eqn. 24.114 and its variants signify?

They often reflect the fact that in order for a phenomenon to be ascribed
a well-defined period, it must complete many cycles.

Suppose, upon observing you for some time, I assert that you go from
New Haven to New York City and back once a day. I plot your distance x(t)
from New Haven as a function of time and find you complete a full cycle in
one day. For me to say with absolute confidence that the frequency of your
visits is once a day, I need to have seen you do this for many days. If you
have been doing this just two days in a row, it is not enough, though after
ten days I become more certain. I am never really sure because you may



stop any time. To be absolutely positively sure, I have to wait an infinite
time. But what can I say after a finite period of observation? I would like to
say I know f, the frequency of your visits, with some uncertainty ⵠf, which
should decrease with the observation time ⵠt. But what is ⵠf?

Suppose I have collected data over a time ⵠt (not necessarily small). The
slice of time ⵠt will typically enclose a non-integer number of trips because
you will typically be somewhere in the course of your round trip at the
beginning and at the end of the interval ⵠt. Thus N, the number of trips you
made in this time ⵠt, will be uncertain by an amount of order 1. So the
estimated frequency will be

and the uncertainty in f will be

There is a more technical definition of ⵠf. If I use a Fourier transform to
express your x(t) during the observation period ⵠt as a sum of truly
periodic waves that last for all time, it will be a sum over a continuum of
frequencies, with coefficients peaked at f0 = (24 hrs)−1, and a width of order
1/ⵠt, once again leading to Eqn. 24.117.



Figure 24.4   A series of reeds ordered by resonant frequency and pointing out of the page are shown
end on. The top shows their early response to a frequency f0 equal to that of the central reed. (The
rectangles show the range of motion of each reed as seen end on.) The bottom shows the response
after many periods.

Here is a mechanical example of this phenomenon. Look at Figure 24.4,
which shows a line of reeds arranged according to their resonant
frequencies, with one end fixed, and the other end pointing out of the page
and free to vibrate up and down. If we now stimulate them with a
mechanical vibrator at some f0, we may expect only the reed of that f0 to
respond strongly. But we will find that when we turn on the vibrator with its
dial set at f0, many of the reeds near the one at f0 also respond substantially,
as indicated in the upper half of the figure. The rectangles show the range of
motion of each reed as seen end on.

This occurs because the reeds do not care what the dial on the vibrator
says: they go by what they have experienced up to a time ⵠt, which is a
finite wave train of a periodic stimulus of length ⵠt. However, as time goes



by they will get the message that we are applying a periodic force, and
eventually only the reed at f0 will show any appreciable response, as shown
in the lower half of the figure.

All this has nothing to do with quantum mechanics and merely reflects
the fact that to measure the period (or frequency) of something you need to
wait a few cycles, and that the longer you wait, the better will be your
determination of the frequency.

Now for quantum mechanics. Suppose we have many identical atoms in
their ground states (with energy E0) and we want to find out their higher
levels. To this end we turn on laser light of some frequency f0 and see if it
gets absorbed. If it does, we know there is a state at energy E0 + hf0 ≡ E0 +
ħω0. However, what we will find is that initially the atoms will make
transitions not only to states separated by hf0 = ħω0, but also several states
on either side. Once again the dial on the laser may read f0 or ω0, but the
atoms are going with the data they have over the time ⵠt. They will respond
to the frequencies of waves that make up this finite (in time) train whose
expansion Fourier coefficients are given by a distribution peaked at f0 with
a width ⵠf ≃ 1/ⵠt. Thus the spread in energy of the incoming photons and
of the final atomic states will be

The meaning of ⵠE is not the amount by which energy conservation is
violated. It is the range of possible energies that could be absorbed by the
atom if the energy transfer from the field has been going on for time ⵠt.
However, once the atom absorbs a photon with one of these energies, the
radiation field would have lost an equal amount of energy.

This is analogous to the ⵠp of the photon entering the Heisenberg
microscope. It is not the amount by which momentum conservation is
violated: instead ⵠp gives the range of momenta the photon could have
upon measurement. Once one of these values is measured, you can be sure
that the scattered electron will have just the right momentum to satisfy
momentum conservation. After scattering, the combined photon-electron



system will be in a superposition of product states with photon momentum
p, electron momentum P − p, and total momentum P, shown below in
obvious notation:

We are given that the coefficients A(p) are significant only within a width
ⵠp of the average p0. Even though the photon can be detected with a range
of momenta p, in every case the electron will have the missing momentum
P −p. Measuring the photon momentum collapses the sum over product
states to the one that was observed.

Consider next a system in some stationary state of initial energy Ei. If we
turn on a constant potential V0 at time t = 0, the system will jump to final
states of energy

for a time ⵠt. This is so because the applied potential is not really a
constant, but a step function that jumped from 0 to V0 at t = 0. This process
violates the conservation of the energy of the system by  However,
the energy of the system and the external agency that suddenly imposed the
potential V0 will be conserved.

Next consider an atom that has been sitting in an excited state of energy
En for some time ⵠt before it decays to its ground state. During the time it is
excited its wave function varies with time as e−iEnt/ħ. The Fourier transform
of this function (in existence only for the time ⵠt) will have a width ħ/ⵠt.
Consequently the light emitted by this atom when it relaxes to the ground
state will have a spectrum centered around ωn,0 = (En − E0)/ħ and of width
(called the line width) ⵠE ≃ ħ/ⵠt. Once again this spread ⵠE only means
that the atom and radiation field begin in a superposition of energy states



with the atom having some energy and the field the rest of the conserved
energy. The energy of the atom and the field will always equal a fixed
conserved value, just like the total momentum P in Eqn. 24.119. The
statement that “a system that has been in existence for a finite time cannot
be assigned a definite energy” has to be understood as above and not as a
violation of energy conservation.

There is another way to derive and interpret ⵠEⵠt ≳ ħ. Let us begin with
an analogy. Suppose the grade distribution of a class is some bell-shaped
curve with some average 〈G〉 and width ⵠG. Now some educator comes
along with a scheme to improve the average. If the benefits of the strategy
are to be convincing, the center of the distribution 〈G〉 has to move by at
least the width ⵠG when the changes are implemented.

Now carry this idea to the quantum problem. Consider a wave packet
with mean momentum p0 and an uncertainty ⵠp. Its width in x must be The
center of the packet moves by a detectable amount when it moves by at
least the uncertainty ⵠx. With a mean velocity  the time required is

Now consider ⵠE, the spread in the energy of the particle due to ⵠp, the
spread in the momentum of the wave packet:



This tells us the spread in the energy of the wave packet is

Substituting in Eqn. 24.122 we find 
To summarize, if a particle is in a state with uncertainty ⵠE in energy, the

time it takes to move by ⵠx, the uncertainty in its position, obeys ⵠt ≥ 
We have a precise inequality here because both ⵠE and ⵠt are precisely
defined.

We have already seen one example of this in the last chapter. In a state
made of two box states of energies E1 and E2, the minimum time ⵠt over
which one could see appreciable change in P(x, t) (see Eqns. 23.64 and
23.66) was given by

where ⵠE ≃ E2 − E1.
This argument is very general. Consider a quantum state and a variable A

that is measured. There will be a range of possible outcomes with
probability P(α), expectation value

and uncertainty



In a stationary state of some energy E, neither 〈A〉 nor ⵠA will change
with time because P(α) will not.

Suppose now that the system starts out in a superposition of energy
states. Then P(α) and 〈A〉 can change with time, the way P(x, t) did when
we started off the particle in a box state ψ(x,0)=Ax made of many energy
levels. Let ⵠE be the range of energies in the superposition. Let ⵠt be the
time over which 〈A〉 changes by an amount equal to the uncertainty in A. In
other words ⵠt is given by

From the time-dependent Schrödinger equation one can compute the rate
of change of A and establish a precise inequality

In other words, if a system has an energy uncertainty ⵠE in its wave
function, the minimum time ⵠt it takes a variable A to change by the width
in its probability distribution (precisely defined by its uncertainty ⵠA) is 

 Since a quantity with an intrinsic uncertainty ⵠAin its value has to
change by at least that amount for us to know it has changed, ⵠt is the
minimum time for this change to be detectable. The minimum time depends
on the choice of variable A. The smallest of such times defines the natural
timescale for the system, which is the time it takes to notice any kind of
change in the system with respect to any observable. This minimum time
grows as the energy content of the state becomes sharper and sharper.
Finally, for a state of definite energy, we have to wait forever to witness any
change.



Let us apply this argument to a problem we have already analyzed: an
atom that lives in an excited state for a short time τ and decays to the
ground state. The initial atomic state is clearly not a stationary state because
things change; the atom relaxes to the ground state. So the initial state must
have been a superposition of many energy states. We know from the
preceding argument that the spread ⵠE is related to the time ⵠt over which
something noticeable happens by

Since the atom decays in a time τ, called the lifetime, and since its decay
is certainly a noticeable event, it is fair to assert that ⵠt ≃ τ. This leads to

This is what leads to the statement that a system with a lifetime τ has an
uncertainty in its energy  What this means is that such an unstable
state is a state in a superposition of ψE’s with the values of E spread over a
width ⵠE.

24.6   What next?
The end of this book is just the beginning of your journey into physics.
There is so much to learn on every front. For example, the quantum
mechanics I described here is based on the Schrödinger equation and begins
with the Newtonian expression for kinetic energy

This works if the particles involved have kinetic energies small compared to
the rest energy mc2. When this condition is not met, we need the relativistic



wave equation due to P. A. M. Dirac, who begins with the relativistic
expression

At some point, the Dirac theory too becomes inadequate. For example, two
energy levels of hydrogen that are supposed to be degenerate in the Dirac
theory were found to differ slightly by what is called the Lamb shift. To
explain this we need quantum field theory, which treats matter and radiation
in accordance with the laws of quantum mechanics and relativity. Quantum
field theory has proven to be a powerful way to describe and possibly unify
electromagnetic, weak, and strong interactions into one big gauge theory.
But this too has some problems: there are unwanted infinities at
intermediate stages in the calculation of finite answers. There is a recipe for
fixing these infinities and extracting the finite answers (which agree
exceptionally well with experiment, say in describing the Lamb shift), but
the fix does not work for gravity, which we would want to include.

String theory is a potential solution to all the woes of field theory: no
infinities appear, gravity is seamlessly incorporated, and even the number of
spacetime dimensions, which could be anything in field theory, is fixed to
be 10. All this is very seductive. However, there are some technical
complications at the present time, and, more significantly, the real
differences due to strings appear only at the unimaginably small distance
called the Planck length ≃ 10−35m, which is 10−20 times the proton size.
(For comparison, the radius of the atom is roughly 10−20 times the radius of
the earth’s orbit around the sun.) The energy required to test string physics
would be 1015 times that of the Large Hadron Collider, which operates at
1012eV. So even if string theory is right, it may be hard to verify that it is so,
based on what we can experimentally probe today. But strings should play a
significant role in the very early universe, and that is why people are
looking for remnants of “stringy physics.”

So you have a lot to learn and you better get started!



Exercises

Note to instructor: I have only given a few hints and want the problems to challenge the very best.
Please give additional hints as necessary to suit your class.

PROBLEM SET 1, FOR CHAPTERS 1 AND 2
Exercise 1.1 Sketch the lines of force in the xy-plane when there are charges q and −2q at x =±1,
using 8 lines for q.

Exercise 1.2 Two identical equally charged pith balls of mass m and negligible radius are hanging
from the same point on strings of length L. The strings have an angle θ between them. What is (i) q,
the charge on each, and (ii) Fe, the electric force on each ball? (iii) Do the numbers for L = 1m, m =
4g, θ = 60˚.

Exercise 1.3 An isosceles right triangle has its hypotenuse along the x-axis and the apex at y >0.
There are charges q on the left end and Q on the right end of the hypotenuse respectively. (i) Find the
direction of E at the apex as Q varies in the range −q ≤ Q ≤ q. (ii) For what Q is |E| a minimum, and
what is its direction?

Exercise 1.4 Show that the field along the axis of a uniformly charged ring of radius r is a maximum
at a distance  from the plane of the loop.

Exercise 1.5 (i) Find the force between an electron and a proton in the H atomif their separation is a
Bohr radius, 5.3×10−11m. (ii) What will be the orbital speed in a circular orbit? Is the motion
relativistic? (iii) What is the radial acceleration? (Note: This classical picture is incorrect because the
electron will quickly radiate energy and spiral in to the proton. The exercise is intended to give you
an estimate of the various quantities.)

Exercise 1.6 You are given a sphere charged with 1μC attached to an insulated stick and one more
uncharged identical sphere. You may discharge any sphere by touching it to the ground. (i) How will
you produce a sphere with  (ii) If you cannot ground anything but are given more identical
spheres, how many more will you need to get one with  (iii) How will you get one with 

Exercise 1.7 Electrons are placed at six corners of a hexagon inscribed in a circle of radius r = 1m,
and a proton is placed at the center. (i) What is the force on the proton? (ii) If the electron in the
northeast corner is removed, what is the total force on the proton?

Exercise 1.8 Two spheres of mass m and negligible size are connected to the walls nearest to them by
identical springs of force constant k as shown in Figure E.1. The separation is a. When charged to q
coulombs each, the separation doubles. (i) What is k in terms of q, a, and ε0? (ii) Find k if the
separation goes to  when the charges are ±q. (iii) Suppose in case (i) the charge on the right is held
fixed while that on the left is displaced by a tiny amount x and released. Find the restoring force F =



−kex and the (angular) frequency ω of small oscillations. (I call the effective force constant for
oscillations as ke to distinguish it from the k for the springs.)

Figure E.1   Problem 1.8

Exercise 1.9 Imagine four unit charges nailed to four corners of a square of sides 2m long. The sides
are aligned with the axes and the NE corner is at (x = 1, y = 1). Draw pictures whenever appropriate.
(i) Show that a charge −1 placed at the origin is in equilibrium, i.e., has no net force on it using
symmetry arguments. (ii) Now consider the stability of this equilibrium by lifting the charge slightly
out of the plane by a tiny amount δ. Show that there is a restoring force −kδ and find k. (Use Taylor
series keeping only terms of order δ.) (iii) Find ω, the angular frequency of small oscillations if the
charge has mass m. (iv) With what speed will it cross the origin if released from z =δ? (v) Establish
next the instability under displacements in the plane by choosing δ to be along the x-axis and
showing 

Exercise 1.10 A rod extends from x = −a to x = +a and carries a charge Q uniformly distributed on it.
At the point x =2a is a point charge Q. Where on the x-axis is the field zero?

Exercise 1.11 An electron is on a circular orbit around an infinite rod charged with λ=2μC/m. The
orbit is centered on the rod and in a plane perpendicular to it. What is the electron’s orbital speed?
First use symbols to get the velocity v and then put in numbers.

Exercise 1.12 A semi-infinite rod extending from the origin up the y-axis carries a linear density 
Find the field at the point (x =a, y = 0). How could you have guessed the x-component given the
answer for an infinite wire?

Exercise 1.13 A semicircular wire of radius a with center at the origin and lying in the upper half
plane carries a linear density  Find the field at the center.

Exercise 1.14 A rod has charge density  in the interval −L < x < L. Find the field at a
point x =x0 > L. Examine this result for x0 → ∞ and show that it falls off like a dipole field 

 and find the associated dipole moment p. Hint: Expand in a Taylor series to an order that
yields a non-zero result. Hint for doing integral: x/( . . . ) = (x −a+a)/(..).

Exercise 1.15 Consider E(r, θ), the electric field in the r = (r, θ) plane due to a dipole at the origin
pointing in the x-direction (Eqn. 2.42). By considering E(r)·er and E(r·eθ) show that ϕ, the angle
between E(r, θ) and the position vector r, obeys 



Exercise 1.16 A rod has a uniform linear charge density λ(x)=λ0 in the interval −L < x < L. (i) Find
the field at a point x = x0 > L. (ii) Examine this result for x0 → ∞ and show that it falls off like that
of a point charge. What is that charge?

Exercise 1.17 Charges 2C and −4C are placed at the origin and at x = 6m respectively. (i) Where on
the x-axis should a third charge be placed so it feels no net force? (Draw some pictures showing
forces.) (ii) Why does the answer not depend on the third charge?

Exercise 1.18 Imagine two dipoles on the x-axis and oriented parallel to it. Each is of length a and
carries charges ±q at the ends. The centers of the dipoles are separated by a distance x. (i) Compute
the force between the dipoles in the limit x ≫ a. (ii) Argue that the force on a (tiny) dipole of
moment p in a non-uniform field  Use this and the asymptotic field of the first dipole
(Eqn. 2.29 of the text) to re-derive the force on the second.

Exercise 1.19 Two charges q are placed in the xy-plane at (±a, 0). Where on the y axis is the force on
a test charge the greatest?

Exercise 1.20 A square of side a has charges q placed on two adjacent corners and −q placed on the
other two corners. What is the field at the center of the square?

Exercise 1.21 A ring of radius R centered at the origin has a linear charge density λ=λ0 sinθ. What is
the field at the center? (Try to guess the direction by sketching λ(θ).)

Exercise 1.22 Two identical and tiny metallic spheres 1m apart carry charges −10μC and +20μC. (i)
What is the force they exert on each other? (ii) Repeat if they are allowed to touch and then separated
by 1m again.

Exercise 1.23 Unit charges are placed at four corners of a square of side 2m with edges parallel to the
axes and center at the origin. Show that a unit test charge displaced from the origin by an
infinitesimal amount δ in the x-direction experiences a restoring force  This is a
warm-up problem for Exercise 1.24.

Exercise 1.24 A particle of charge q is at the center of a ring of radius R lying in the xy-plane and
carrying a total charge Q that is uniformly distributed. Show that when it is displaced along the x-axis
by an infinitesimal amount δ, the restoring force to order δ has the form F = −kδ and find k. Hint: Use
Cartesian coordinates to find the force due a segment of the circle and argue that only the part along x
will survive. Next, integrate the force over the circle using polar coordinates. Use Taylor series to
find the part linear in δ.

Exercise 1.25 A dipole with moment p =10−29C · m and of length 10−10m lying in the xy-plane is at
an angle of  with respect to a uniform electric field E =  (i) What is the torque on it? (ii)
What work will it take to align it at an angle π? (iii) If disturbed from the position of stable
equilibrium, what will be the (angular) frequency ω of small oscillations if the dipole has a mass
10−27kg at each end?

Exercise 1.26 Suppose the parallel plates in the lower half of Figure 2.6 are 1m long and 1mm apart,
and an electron enters at the left, just below the upper plate. If the field strength between the plates is 

 pointing up, what is the minimum electron velocity in order for it to emerge without
touching the lower plate?



PROBLEM SET 2, FOR CHAPTERS 3 AND 4
Exercise 2.1 An electric field is given by  At a point with coordinates (2,
1,3) find the local flux per unit area if the local area vector is (i) idS, (ii) jdS, (iii) 

Exercise 2.2 Imagine a cylindrical surface with its axis along the z-axis and no lid at the top or
bottom. Draw a tiny rectangular plaquette (tile) on its curved surface with the area vector pointing
out. Indicate the orientation of the lines along its edges that reflect the direction of the area vector.
Now imagine the entire curved surface tiled with adjacent plaquettes. (i) Canceling the opposing
arrow on the edges of adjacent plaquettes, what will be the orientation of the arrows around the upper
edge of the cylinder as you look down the z-axis? (ii) How about the lower edge? (iii) Suppose you
want to close the cylinder with caps at the top and bottom. Indicate the direction of the arrows along
the edge of the top cap as you look down the z-axis.

Exercise 2.3 Go back to the closed cylinder of Exercise 2.2, assuming its center is at the origin,
where we have placed a charge q. Let the cylinder’s radius be 1 and its height 2. Use cylindrical
coordinates (ρ, ϕ, z) in terms of which dr = eρdρ + eϕρdϕ+kdz. (i) Write an expression for a tiny area
element on the upper flat face. (ii) Repeat for an element along the curved surface. (iii) Compute the
flux coming out of the top and bottom flat faces. (iv) Find the flux coming out of the curved face
using Gauss’s law. Repeat by direct computation.

Exercise 2.4 Consider a hemisphere of radius R with its center at the origin and its surface in z ≥ 0.
What is the flux crossing it due to a field E = E0k? Get the answer by intuitive reasoning first and
then by actually integrating E · dS.

Exercise 2.5 Consider a hollow conducting cylinder parallel to the z-axis and of radius a and charge
λ per unit length surrounded by an outer hollow conducting cylinder of radius b with charge −λ per
unit length. (i) Find the field for all r. (ii) What is σ, the charge per unit area on the inner cylinder?
(iii) Consider the field between two cylinders when (b − a) a is very small and compare the field to
that inside a parallel plate capacitor.

Exercise 2.6 A solid non-conducting sphere of uniform charge density and total charge −Q and
radius r = a is surrounded by a concentric conducting spherical shell of inner radius r = b and outer
radius r = c with c > b > a. The outer shell has charge 2Q. Use Gauss’s law to find the field for all r.
Show with a sketch where the charges reside and some field lines.

Exercise 2.7 A charge of one coulomb is at the center of a unit cube. What is the flux through one of
its faces?

Exercise 2.8 A charge density distribution is given by  Find (i) the total
charge Q and (ii) the field for all, expressed in terms of Q. Hint: Volume integral in spherical
coordinates is ∫ ∫ ∫ r2 sinθ drdθ dϕ f(r, θ, ϕ).

Exercise 2.9 The gravitational field g, defined as force on a unit mass, is very much like the electric
field, with a magnitude  for a point mass M at the origin. Write down Gauss’s law for this
field in terms of the mass density ρm.

Exercise 2.10 A point charge 1μC is at the center of a spherical shell of radius 1m and negligible
thickness carrying −2μC. Find the electric field at r = 0.5m and r = 2m.



Exercise 2.11 A solid sphere of radius R has uniform charge density ρ. A spherical hole of radius 

is scooped out with its center a distance  along the x-axis. Show that the field inside the hole is

uniform and along the x-axis and of magnitude  Hints: Think of the hole as a superposition of
positive and negative charges and recall r = err.

Exercise 2.12 Find the r-dependence of the spherically symmetric charge density ρ(r) such that the
field is r-independent.

Exercise 2.13 Using Gauss’s law, verify that the E(r) corresponding to ρ(r) =

Exercise 2.14 An infinite slab of charge, with its faces parallel to the xy-plane and at z = 0 and z = L
has density  Find E everywhere. (When you consider Gaussian cylinders with axes
perpendicular to the slab, do not assume |E| is the same on the two flat faces unless there is a
symmetry. First argue that |E| is constant outside the slab and find the fields E± above and below.)

Exercise 2.15 A tiny sphere of mass m charge q is hovering over an infinite horizontal plane carrying
a surface charge density σ0 of the same sign. A string of length L keeps it from flying away (like a
balloon) and points straight up the z-axis. What will be the time period of small oscillations if the
sphere is displaced away from the vertical? (Hint: Find κ, the restoring torque per unit angular
displacement from equilibrium.)

Exercise 2.16 A concentric hole of radius a is scooped out of a sphere of radius 2a carrying uniform
charge density ρ. Find the field for all r.

Exercise 2.17 A charge of 1μC is placed on a conducting sphere of radius a. Find the a below which
there will be dielectric breakdown of air (lightning) which requires a field 

Exercise 2.18 (Very instructive.) Imagine two conducting plates of small but non-zero thickness
lying parallel to the xy-plane. The upper and lower plates carry charges q1 and q2 respectively
uniformly distributed over area A. Assuming you may use the formulas for infinite planes, compute
(using superposition) the fields (i) above the upper plate, (ii) between the plates, and (iii) below the
lower plate. Deduce the surface charge densities on the (iv) upper face of upper plate, (v) lower face
of upper plate, (vi) upper face of lower plate, and (vii) lower face of lower plate. Evaluate (iv)–(vii)
for A =10−2m2, q1 = −3μC, q2 = 5μC. Hint: Assume all q’s are positive in the analysis; negative
answers will emerge automatically. Assign to the charges q++,q+−,q−+,q−− (on the upper and lower
faces of the upper and lower plates) half the lines going up to +∞ and half to −∞ to show that the
fields outside the two plates are of equal magnitudes and opposite directions. Use Gauss to find their
values. Given this, find σ++ and σ−− and then charge conservation to find σ+−, σ−+.

PROBLEM SET 3, FOR CHAPTERS 5 AND 6
Exercise 3.1 Verify that the force  is conservative by applying the test and (i) find the
potential U(x, y) by inspection. (ii) What is W = ∫ F · dr between the origin and (x = 2, y = 3)?



Exercise 3.2 A 10V battery stores 1.6 × 103 Joules of energy. How many coulombs flow from one
terminal to the other when it is fully discharged? (Assume the voltage remains the same during the
discharge.) How many electrons is that?

Exercise 3.3 A charge 2μC is placed at the origin and a charge of −3μC is placed at (x = 0.2m, y =
0.5m). How much work is needed to move a 2μC test charge from (1m, 1m) to (2m, 2m)?

Exercise 3.4 Find the force F due to the potential  where a is a constant
length) using 

Exercise 3.5 Repeat Exercises 1.23 and 1.24, starting with the potential and expanding its deviation
from the origin to order δ2. Read off the force constant from 

Exercise 3.6 Two charges q and −2q are located at (a, 0, 0) and (0, 0, 0). Show that the surface V = 0
is a sphere and find its radius and center. Describe an image charge problem you can solve with this
result.

Exercise 3.7 Show that the potential due to a disc of radius R in the xy-plane (centered at the origin)
with charge Q (uniformly distributed) at points on the z-axis is  Show
that the answer has the right limit as (i) |z| → ±∞ and (ii) |z| → ±0. (For the second part you should be
able to guess E as you approach the disc and infer V.)

Exercise 3.8 Given that V(z)=120V and 100V at distances z = 1m and z = 2m in Exercise 3.7, find R
and Q, numerically or graphically. (Note: V stands for volts as well as potential.)

Exercise 3.9 A spherical charge distribution of radius R has a charge Q uniformly distributed over its
volume. Find the potential V(r)∀r, starting with E(r).

Exercise 3.10 Find the work it takes to assemble a sphere of radius R and charge Q by summing over
the work to add a shell of thickness dr on top of a sphere of radius r using any results from previous
problems. Verify that this equals the volume integral of the field energy density 

Exercise 3.11 Consider an infinitely long hollow conducting cylinder of radius a and charge λ per
unit length surrounded by a coaxial hollow conducting cylinder of radius b with charge −λ per unit
length. Find V(r)∀r, where r is the radial distance from the axis. Choose V(r = b) = 0. Hint: First
work out E. What does it say about how V varies in the three regions? Integrate E(r) to find V(r).

Exercise 3.12 Two infinitely long wires parallel to the z-axis penetrate the xy-plane at (x=±L, y = 0)
and carry charge densities  (As nothing depends on z, it is enough to discuss just z = 0.) (i)
From the field strength (Eqn. 4.25 of text) deduce the potential at a distance r from a wire with
charge density λ, choosing the arbitrary constant so that V = 0 at r = a, where a is some fixed length.
(It will drop out soon.) (ii) Write down the potential at a generic point (x, y) by adding the
contributions from the two wires. (This should be independent of a.) (iii) Show that the potential due
to both wires is zero on the y-axis. (By symmetry this becomes the yz-plane in d = 3.) (iv) Show that
the equipotentials are circles centered on the x-axis. (v) Show that the potential has the value V0 on a
circle centered at  with radius  where  (vi) Show that the circles 

 are centered at  and have a radius  (vii)
What is the image problem you can solve using this result?



Exercise 3.13 Two spheres of radius r1 = 10cm and r2 = 20cm carry charges Q1 = 30 × 10−9C and

Q2 = −20 × 10−9C respectively. They are very far apart. (i) What is the potential difference between
them? (ii) If they are connected by a conducting wire, what will be the final potentials and charges on
each? Describe the flow of charge.

Exercise 3.14 An infinite plane has charge density  How far apart are equipotentials
differing by 50V?

Exercise 3.15 Three spheres of radii 1mm, 2mm, 3mm are at the corners of an equilateral triangle of
sides 100m. A charge of 360μC is deposited on the biggest one. They are all then connected by wires
to bring them to the same potential. What will be the charge on each? (Use the large ratio of
separation to the radii to get a quick but reliable approximation.)

Exercise 3.16 An electron goes from the negative to positive plate of a capacitor with parallel plates
2mm apart and a 10V difference. What will be its (i) kinetic energy, (ii) velocity before hitting the
positive plate, and (iii) time of flight?

Exercise 3.17 Charges q sit at the corners of an equilateral triangle of sides a. What is ⵠV, the
potential difference between the centroid and the midpoint of a side?

Exercise 3.18 Find the capacitance of two coaxial cylinders of length L and radii a < b treating them
as infinitely long for the purposes of computing E in the region between them. Compare to a parallel
plate capacitor when b −a = d ≪ a.

Exercise 3.19 A charge 0.123456C is at the center of a cube of sides 3.141592m. What is the
difference in potential between one corner and (i) another corner nearest to it, (ii) the corner furthest
from it?

Exercise 3.20 Charges q1 = q2 = q are a distance d apart on the x-axis, with q2 on the right. (i) What
charges should be placed to the right of q2 at a distance d to make the total potential energy of the
complex vanish? (ii) Repeat if q1 = −q2 = q.

Exercise 3.21 The spacing between the plates of a parallel plate capacitor (not connected to a battery)
is doubled. What happens to (i) the field in between the plates, and (ii) the energy stored? Do part (ii)
in two ways: use either the integral of  or the work done on moving one plate as the other is
held fixed. You may run into a factor of two here. If you do, resolve it!

Exercise 3.22 A disc centered at the origin in the xy-plane has radius b, a concentric hole of radius a,
and a surface charge density σ. What is V at (0, 0, z)? Comment on the limit z → ∞.

Exercise 3.23 A solid sphere of radius a centered at the origin carries charge −q. It is surrounded by a
concentric conducting shell of inner radius b and outer radius c carrying charge 3q. What is the work
done to bring a unit charge from infinity to the surface of the inner sphere? Hint: First use Gauss’s
law to figure out the charges on the inner and outer surfaces of the shell.

Exercise 3.24 A solid sphere of radius 4cm carries a charge 300nC. It is surrounded by a concentric,
infinitesimally thin, conducting shell of radius 20cm, carrying −300nC. (i) What is the potential
difference between the inner sphere and outer shell? (ii) What if the charge on the shell is doubled?



Exercise 3.25 Four widely separated oil drops of radius r and fixed density have a surface potential
V0. If they coalesce to form a single drop, what will be (i) the new radius, (ii) the new potential 
(iii) ⵠU, the change in the stored electrostatic energy in terms of Ui, the initial energy? Consult
Exercise 3.10.

Exercise 3.26 A parallel plate capacitor has a voltage difference V = 3000V between its plates, which
have a separation 2cm. A proton and electron leave opposite plates simultaneously and rush toward
each other. (i) From their relative acceleration figure out where they will cross. First try to estimate
the answer given that the proton is roughly 2000 times as massive as the electron. (ii) What will be
their speeds when they reach the opposite plates? (iii) With what speeds will they cross?

Exercise 3.27 In the image charge problem depicted in Figure 6.4 of the text, compute E⊥ and σ on
the conducting plane at a distance r from the point just opposite the original charge. Integrate σ(r)
and show it equals −q.

Exercise 3.28 In Figure 6.5 of the text what is the force of attraction between the charge q and the
conducting sphere?

Exercise 3.29 A hollow conducting sphere of radius R has Q coulombs of charge. What is the
repulsive force per unit area on a tiny area on its surface due to the rest of the charges? (Recall
section 4.5.4 in the text.)

Exercise 3.30 A hollow conducting sphere of radius R carrying charge Q is surrounded by a
concentric conducting shell of inner radius a and outer radius b. What is the potential of the inner
sphere? (Think about the charge on each surface; superpose!)

Exercise 3.31 A charge −2q at the origin is flanked by charges q at  Compute V(x,0) and

V(0, y). At large distances V has to vanish like 1/r3, as expected of a quadrupole. Find the asymptotic
forms of V along both axes.

Exercise 3.32 Two spheres of radii a and b are separated by a much greater distance c. What is their
capacitance? (Hint: Start with uncharged spheres, move a tiny charge Q from one sphere to the other,
and carefully compute difference in V between the surface of each sphere.)

Exercise 3.33 An 8μF capacitor is charged to 20V. (i) What is its energy U0? Its two plates are then
connected to the plates of an identical but discharged capacitor. (ii) What is the capacitance of the
new system? (iii) What is the new voltage? (iv) What is its energy in terms of U0? (v) Where is the
missing energy?



Figure E.2   Figure for Exercise 3.34

Exercise 3.34 Consider the electrostatic potential V(r) in a region free of charge. Following the hints
show that V,̄ its average value over a sphere of any radius R, equals V(0), its value at the center. (Note
that this sphere is a mathematical surface and lies within the charge-free region.) Hint: Consider the
work done in bringing a sphere of radius R, centered at the origin on whose surface a uniform charge
density  has been painted, to the proximity of a point charge q at the point r that lies
outside the sphere. First imagine fixing the charge q at r and bringing the sphere from infinity to its
final location. Write down the integral of the work done to bring each area element dS from infinity
to its location rꞌ = (R, θ, ϕ) on the sphere. Relate this to the average 

 Next imagine the sphere already in its final location and
the work done to bring q from infinity to r. This is easy because q sees the sphere as a point charge Q
at the origin. Equating the two answers should give the desired result for the field produced by a
single q. Superposition then allows the extension to the sum over fields produced by an arbitrary
number of charges outside the sphere.

Exercise 3.35 Using the result from Exercise 3.34, show that there can be no maximum or minimum
of V inside a charge-free region. Hint: Surround the supposed extremum by a tiny sphere and show
the contradiction.

PROBLEM SET 4, FOR CHAPTER 7
Exercise 4.1 Conductance and resistance. Explore the Drude formula  Eqn. 7.19 of the text.
Consider Cu which has a molar weight  and density  (i) Assuming each Cu
atom contributes one electron, what is n, the number of carriers per unit volume? (ii) Estimate the
mean collision time τ, given σ = 6 × 107/Ω·m. (iii) How long should a copper wire of cross section
10−6m2 have to be to have a resistance of 1Ω? (iv) What is the mean drift velocity if 10V is applied
to the abovementioned wire?

Exercise 4.2 Suppose a wire is pulled to double its length by extrusion and undergoes the
corresponding change in radius to keep the volume constant. What happens to its resistance?



Exercise 4.3 A hollow cylinder of outer radius b and inner radius a has length L. Compute R for
current flowing along its length in terms of the resistivity ρ.

Exercise 4.4 A 2Ω resistor is in series with a parallel combination of a 4Ω and an R Ohm resistor. For
what R will the effective resistance be R?

Exercise 4.5 Find the currents in the legs of Figure E.3(a). Hints: Assign 3 independent currents on
three legs (rest follow from conservation) and consider any 3 loops around which the total change in
voltage is zero.

Figure E.3   (a) Exercise 4.5 (b) Exercise 4.6

Exercise 4.6 (i) Find the effective R between the nodes a and b in Figure E.3(b). Hint: Apply a
voltage between a and b and use symmetry to guess what the current will do. The rest you can do in
your head. (ii) What if the voltage is applied between the nodes c and d?

Exercise 4.7 A current I leaves the + terminal of a 10V battery, goes through a 1Ω resistor, through a
5V battery that opposes the 10V battery, and returns to the − terminal of the 10V battery. What is (i)
the current I, (ii) the power output of the 10V battery and (iii) the 5V battery, and (iv) the power
dissipated in the resistor?

Exercise 4.8 When an electron goes from the positive to negative terminal inside a 1.5V battery, how
much work is done by the electric force and how much by the chemical force?

Exercise 4.9 Given three resistors with R = 1, 2,3 Ω, what are the possible effective resistances when
hooked up in all possible ways?

Exercise 4.10 A real battery not only provides a voltage V, but also has an internal resistance r that
should be included in addition to any other resistors encountered in the circuit. When this battery is



connected to external 1Ω and 2Ω resistors in series, it drives a current 2A, whereas the current is 6A if
the 1Ω and 2Ω are connected in parallel. What are V and r?

Exercise 4.11 A bulb with resistance R is connected to the non-ideal battery of Exercise 4.10. For
what R will it glow the brightest?

Exercise 4.12 A capacitor C with initial charge Q0 is allowed to discharge via a resistor R till the
charge has fallen to 1/e of the initial value. Show that the energy lost in the capacitor is equal to the
energy dissipated in the resistor.

Exercise 4.13 A 2μF capacitor has 8μC of charge. It is connected to an 8μF capacitor with 12μC of
charge, positive plate to positive plate and negative to negative. (i) What are the final charges and
voltages? (ii) Repeat if the plates are connected with opposite polarities.

Exercise 4.14 Given capacitors with C = 1μF, 2μF that can be connected in series or parallel,
followed by two resistors with R = 2kΩ, 4kΩ in series or parallel, how will you get an RC circuit with
t0 = 4×10−3s?

Exercise 4.15 A battery with voltage V is able to charge two capacitors C1 and C2 in series with a
total energy U. What voltage Vꞌ will do the same if the capacitors are in parallel?

Exercise 4.16 Capacitors C1 and C2 are connected in series to a voltage V. They are then
disconnected from the battery (with the charges intact) and connected in parallel, with matching
polarities. (i) Show that the fraction of initial energy lost is  (ii) Repeat if they are
reconnected with opposite polarities. Hint: Find the charges on each plate of each capacitor before
disconnection and compute U0, the initial energy. Repeat after the reconnection.

Exercise 4.17 Show that when a battery fully charges a capacitor through a resistor, half the energy
expended goes to charging the capacitor and the other half is dissipated as heat.

Exercise 4.18 Instructive capacitor problem: In Figure E.4(a), let C1 = 3μF, C2 = 1μF, C3 = 5μF, V
= 8V. What are the charges on the various plates of the capacitors? Here are the steps. (i) What is the
effective capacitance as seen by the battery? (ii) How much charge must then be sucked in by this
combination of capacitors? (iii) On which plates of which capacitors will this charge be stored? (iv)
What is the combined charge on the lower plate of C1 and the upper plates of C2 and C3 together and
why? (v) What will be the charge on the lower plate of C1? (vi) How will the total charge on C2 and
C3 be shared? (vii) What happens to these answers if a 10μF capacitor is connected between points a
and b?



Figure E.4   (a) Exercise 4.18 (b) Exercise 4.19

Exercise 4.19 In Figure E.4(b), let V = 54V, R1 = 4kΩ, R2 = 5kΩ, R3 = 1kΩ, C = 10μF. At t = 0
assume switch S has been closed for a very long time. (i) What is I3, the current flowing through R3?
(ii) What are I1 and I2, the currents flowing through R1 and R2? (iii) What is the voltage across C

and the charge on it? (iv) If at t = 0+ the switch is opened what is I(0+), the current flowing through
R2 and R3? (v) What is I(t)?

Exercise 4.20 Dielectrics. Here we explore the inclusion of a medium between the plates of a parallel
plate capacitor with plate area A, separation d (and hence  and charges ±Q on the plates.
(i) Before introducing any medium between the plates, what is the charge density σ on the plates and
the voltage V? (ii) Suppose a rectangular slab of a perfect conductor is introduced between the plates,
with its faces parallel to the plates, leaving just a gap δ between it and the plates at the top and
bottom. Based on Figure 4.5 of the text, what will be the voltage difference between the plates and
what will be the new capacitance? (iii) Suppose we introduce instead a slab of a dielectric, i.e., a
material whose atoms or molecules either have a dipole moment to begin with or which get one
induced by the field due to the plates. (Let the gap δ = 0.) The dipoles will be aligned opposite the
external field (to minimize p · E). In the bulk the heads and tails of dipoles in adjacent layers will
cancel, the net effect being a layer of uncanceled negative charge density −σꞌ on the face next to the
positive plate and +σꞌ on the face next to the negative plate. Why will the capacitance now be bigger
than without the dielectric?

PROBLEM SET 5, FOR CHAPTERS 8 AND 9
Exercise 5.1 An electron goes from being at rest on a capacitor plate at zero volts and accelerates to
the positive plate at 50kV. It is now fed into a magnetic field 4.80T perpendicular to its velocity.



What is the magnitude of the force on it?

Exercise 5.2 An electron is at a distance a = 1cm from an infinite wire carrying a current I = 20A
coming out of the page, the xy-plane. What is the force on the electron if it is moving at a speed 

 away from the wire in the x-direction, (ii) parallel to the current, (iii) along the
tangent to the circle centered on the wire?

Exercise 5.3 Hall effect. Consider a rectangular conductor of length L along the x-axis, width w
along y, and very small thickness ⵠ. (i) If the volume density of carriers is n, and each carrier has
charge q > 0 and drift velocity ivx, what is Ix, the current along x? (ii) If one turns on a magnetic field
B = kBz perpendicular to the sample, what additional force will each of the charges initially feel? (iii)
What will they do in response to this and what will happen when they reach equilibrium? (iv) Find
the electric field E = jEy due to accumulated charges that balance the magnetic force, so that in
equilibrium the current flows along x. The Hall conductance is defined as the ratio  (v)

Show that  where ñ = nⵠ is the charge per unit area. Find the Hall voltage Vy in a

sample that has n = 6 · 1028 electrons per m3, and thickness ⵠ = 10−4m, for the case Ix = 2A, Bz =
1.6T.

More recently the Hall effect has been studied on a gas of electrons trapped in the two-dimensional
plane. At very low temperatures and strong fields it is found that σxy, instead of varying as 1/Bz, gets

stuck in steps that are quantized at integer and fractional multiples of e2/(2π ħ), where ħ ≃ 10−34J ·
s is Planck’s constant. This is called the Quantum Hall effect.

Exercise 5.4 A Hall sample has a thickness ⵠ, width w, electron density n, current I, and Hall voltage
VH. (i) What is B? (ii) Do the numbers for ⵠ = 3×10−4m,n = 1024m−3, I = .01A,VH = 21μV.

Exercise 5.5 An electron is on a cyclotron orbit of radius 1.3×10−3m at speed  What is
(i) B, the field and (ii) ar, the radial acceleration?

Exercise 5.6 A particle of mass m and charge q moving in the xy-plane up the y-axis encounters a
uniform, perpendicular field B confined to y > 0. It travels on a semicircle and returns to the field-
free region y < 0. How long was it in the magnetic field?

Exercise 5.7 A particle of mass m = 10−8kg and charge q = 1μC is launched at the origin in the xy-
plane at a speed  at an angle θ with respect to the x-axis. There is a field B = −20kT
perpendicular to the plane. (i) Describe the orbit in terms of its center and radius. (ii) For what θ will
it reach the most negative x-coordinate?

Exercise 5.8 (i) Show that when the particle in a cyclotron has an orbit of radius R, its kinetic energy
is K =q2B2R2/(2m). (ii) If a cyclotron is to accelerate protons to a kinetic energy K =4MeV, what
must be its radius if the field is B = 4T? Argue that relativistic corrections to the kinetic energy are
very small at this speed. (One defines K = E − mc2, where 

Exercise 5.9 Mass spectrometer. A parallel plate capacitor has its plates perpendicular to the page.
An electron goes from the lower, grounded plate to one above it at V = 500V. It emerges from a hole
in the upper plate, starts curving in the plane of the page under the action of a magnetic field going



into the page, performs a half revolution in  and slams into the upper plate. Find (i) v,
speed of the electron when it emerges from the hole, (ii) B, the magnetic field given  (iii) R, the
radius of its semicircular orbit by using F = ma. (iv) Show that at fixed v, R depends on the charge q
and mass M only through the ratio q/M. A photographic film placed on the upper plate would then
show spots at various values of R from which the charge-to-mass ratios of any particle can be found,
given v.

Exercise 5.10 Two isotopes of carbon, C12 and C13, have masses 19.93×10−27kg and 21.59 ×

10−27kg. Singly ionized and traveling at  they approach amass spectrometer
(see Exercise 5.9) with B =1.85 T. Find the distance between the spots they make after completing
the semicircle.

Exercise 5.11 A proton exits from a hole in the upper plate of a spectrometer described in Exercise
5.9 at a speed  and starts curving in the perpendicular magnetic field B. What is
the minimum B that will ensure that it does not go more than 23 cm above the opening?

Exercise 5.12 A loop of wire forming a circle of radius R carries a current I and is penetrated by a
uniform magnetic field B perpendicular to its plane. What is the tension T in the wire? Hint: Draw
the free-body diagram of an infinitesimal segment that subtends an angle δθ at the center and balance
the inward force due to T pulling at the ends and the outward force due to B.

Exercise 5.13 A circular loop of radius R with its center at the origin in the xy-plane carries a current
I in the counterclockwise direction. It is in a magnetic

field B pointing up the z-axis and of constant magnitude B0 in the region y ≥ a. Find the force on the
loop.

Exercise 5.14 A power line carrying I =1800A is at an angle θ = 30˚ with respect to the earth’s field
of magnitude 5 × 10−5T. What is the force on 100 meters of the line?

Exercise 5.15 The square loop lying in the xy-plane with sides of length 0.2m oriented parallel to the
x and y axes carries a current I = 3A running anti-clockwise as one looks down the z-axis. The loop is
in a field pointing along the positive z-axis and growing in strength at a rate  in the x-direction.
What is the force acting on it?

Exercise 5.16 The cylindrical rod of length w straddles two parallel rails with spacing w. It carries a
current I and is bathed in a field B perpendicular to the plane of the rod and rails. Assume the
magnetic force is concentrated on the axis of the rod. If it starts at rest and rolls without slipping for a
distance L, show that its velocity will be  (First find the torque on a tiny segment dw of the
rod. Draw a diagram.) Notice that the radius a of the cylinder is not given. This problem requires you
to go back and look up torques and rolling without slipping.

Exercise 5.17 A conductor of negligible mass and length L is supported from the ceiling by two
identical springs with force constant k. If there is a magnetic field B perpendicular to the plane
defined by the conductor and the springs and a current I in the conductor, what will be δ, the
magnitude of deformation of the springs? How about its direction?



Exercise 5.18 Imagine two infinitely long, horizontal wires of negligible radius and mass per unit
length μ. Each is suspended from the same overhead rail by an array of ropes of length L, one every
meter. Initially the ropes are vertical and the wires are touching each other. The ropes then make an
angle ±θ with the vertical when the wires begin to carry currents ±I. What is I? Do the numbers for 

 L = 10cm, θ = 10˚.

Exercise 5.19 A wire carrying current I in the xy-plane comes down the y-axis from y = +∞to y = R,
whereupon it goes a quarter circle counterclockwise in the second quadrant, and continues straight to
x = −∞. What is B at the origin?

Exercise 5.20 A current I1 flows along the entire x-axis. Above it, in the xy-plane is a ⊔-shaped wire
carrying current I2 that comes in from y = ∞ at  makes a left turn (from its perspective) at
y = a, runs parallel to the infinite wire and makes another left turn at  and returns to y = ∞.
What is the force on the ⊔-shaped wire?

Exercise 5.21 Three loops of radius a, each carrying current I, have their centers at the origin and lie
in the xy, yz, and zx planes. What is the magnitude of the B they produce at the origin? Notice the
answer does not depend on the sense in which the currents flow.

Exercise 5.22 Two infinite wires carry currents Ix and Iy along the x and y axes. (i) What is B at a
point (x, y)? (ii) Find the locus of points on which B = 0.

Exercise 5.23 Three infinite coplanar wires, parallel to the z-axis, each carrying current I, cross the
xy-plane at points (0,d), (0, 0), (0, −d). (i) Find the two points in the xy-plane where B = 0. (ii) If the
middle wire is rigidly displaced by an infinitesimal amount δ in the +x-direction, while the other two
are held fixed, compute the restoring force per unit length and from it, T, the period of small
oscillations in terms of m, the mass per unit length of the wire. (iii) Repeat if δ is in the y-direction.

Exercise 5.24 A wire in the xy-plane is in the form of a square of side a and carries a
counterclockwise current I. What is B at the center of the square? Hint: Use Eqns. 3.8 and an
adaptation of 3.12.

Exercise 5.25 A wire carrying current I in the xy-plane comes from x = +∞ at fixed y = a, reaches the
y-axis, makes  counterclockwise circles of radius a around the origin, and goes back to x = +∞at
fixed y = −a. What is B at the center of the circle? Hint: Divide and superpose; feel free to use known
results for simple cases.

Exercise 5.26 Three concentric loops of radius R, 2R, and 3R lie in the xy-plane and produce a net
magnetic field of zero at the center. What is the current in the middle one if the other two carry
clockwise currents I?

Exercise 5.27 A closed loop of wire carrying I amps in the xy-plane starts at (x = a, y = 0), goes
counterclockwise along a quarter circle to (x = 0, y = a), goes up to (x = 0, y = b), goes clockwise on
a quarter circle to (x = b, y = 0), and returns to (x =a, y = 0). What is B at the origin? Do the numbers
for I = 10A,a = 15mm,b = 25mm.

Exercise 5.28 A non-conducting sphere of radius R, spinning at  has a surface charge
density  Find the magnetic field B at the center following these steps. (i) Slice the surface of the
sphere into strips bounded by polar angle θ and θ + dθ. What is dA, the area of each strip, treated as a



rectangle of width Rdθ? (ii) When the sphere spins once, how much charge dQ passes any given
point on the sphere? (iii) What is the current dI due to this strip when the sphere spins at ω? (iv)
Using Eqn. 9.6 for the field due to a loop, find the contribution dB due to this strip along ω and
integrate it over the sphere to find B. Remember: The R in Eqn. 9.6 is R sinθ in our problem. (v) Do
the numbers for  

Exercise 5.29 Show that given a wire of length L, the greatest magnetic moment of a planar circular
coil (for a given current) obtains when the number of turns N = 1. For N = 1, why will a non-circular
coil lead to a smaller moment?

Exercise 5.30 Two loops, one circular and one square, have the same perimeter. What ratio of
currents will lead to the same magnetic moment?

Exercise 5.31 A solenoid has n turns per unit length and carries a current I1. On its axis is placed a
tiny loop of N turns, carrying a current I2 and of area vector A pointing at an angle θ with respect to
the axis of the solenoid. What is the magnitude of the torque on it? Do the numbers for I1 = 7.5A, I2
= 1.5A,n = 1800,N = 5,A = 1.9×10−3m2, 

Exercise 5.32 An infinite wire coincident with the y-axis carries a current I1 in the positive y-
direction. Next to it, in the xy-plane, is a circular loop of radius R, centered at x =X and carrying a
counterclockwise current I2 = I1/(2π). For what ratio X/R will the magnetic field at the center of the
loop vanish?

Exercise 5.33 A flat annular coil carrying current I has inner and outer radii a and b respectively. It
has N turns of wire in the form of a spiral, with radii continuously increasing from a to b with equal
number of turns per unit radial distance. (i) Find B at the center. (ii) Discuss the limit δ = b −a → 0.

Exercise 5.34 A circular coil of wire with N turns (and negligible transverse dimension perpendicular
to the turns) carries a current I. It is in a field B perpendicular to its plane. If it experiences a torque τ,
what is its radius?

Exercise 5.35 A disk of radius R with its center at the origin in the xy-plane is spinning at angular
velocity kω and carries a surface charge density  There is a magnetic field B = iB. Find the
torque on the disk.

Exercise 5.36 A square coil of sides a and N turns lies in the yz-plane with its lower left corner at the
origin and two adjacent sides coinciding with the y and z axes. It carries a current I that runs
counterclockwise as one looks down the x-axis. (i) What is its magnetic moment μ (in terms of i, j,
and k)? (ii) If there is a field B = jB0 along the y-axis, what is τ, the torque on it? (iii) What is τ if B =
iB0 cosϕ + jB0 sinϕ? Do the numbers for B0 = 4T, a = 0.2m, I = 1A,N = 100, 

Exercise 5.37 A current I1 flows up the entire y-axis. To its right, in the xy-plane, is a rectangular
loop with long sides at x = a and x = b > a and shorter sides at y = 0 and y =L. (i) Find the force F
exerted by the infinite wire on the loop, which carries a current I2 that runs counterclockwise as we
look down at the xy-plane. (ii) Do the numbers for I1 = 8A, I2 = 3A, a = 0.25m, b= 0.75m, L=2m. (iii)
Argue that the torque is zero.



Exercise 5.38 Consider two concentric horizontal circular loops of wire of radius R, each carrying
current I in the same sense, with one loop a very short vertical distance δ below the other. What is the
magnitude of the force between them in the limit δ/R → 0? Is it attractive or repulsive? Hint:
Consider a very tiny segment of one loop and ask how it sees the other loop. Or imagine that the
loops are one million miles in radius and spaced 1cm apart.

Exercise 5.39 Consider the electron of charge −e orbiting the nucleus in classical terms. Assuming
some constant speed v and orbital radius r, compute the current as the charge that passes any given
point on the orbit every second. Show that the magnetic moment  where L is the
angular momentum and  is called the gyromagnetic ratio.

Exercise 5.40 In the xy-plane are an infinite wire carrying a current I up the y-axis and an infinite
conducting strip of width w also carrying current I, but distributed uniformly across its width. The
strip has its left edge at x = a. (i) Find the force per unit length between them. (You may assume
Newton’s third law to compute the mutual force in one of two ways.) (ii) Show that this answer has
the correct limit as w → 0.

PROBLEM SET 6, FOR CHAPTER 10
Exercise 6.1 The xy-plane is pierced by infinitely thin, infinitely long wires parallel to the z-axis at
points with integer coordinates (x = n, y = m). The wires carry currents (−1)n+mI0k. Find ∮ B · dl
counterclockwise around the following circles centered at the origin: (i) of radius  (ii) of radius 0.9,
(iii) of radius 1.1.

Exercise 6.2 An infinitely long solid conducting cylinder of radius a has a parallel cylinder of
diameter a gouged out of it, the cross section of which is shown in Figure E.5(a). It carries a current I
coming out of the page, uniformly distributed over the unshaded part of its cross section. Find B at
the center of each cylinder, with x and y axes directed as usual. Hint: Use superposition.

Figure E.5   Cross sections of infinitely long conducting cylinders with smaller cylinders parallel to
the axes gouged out. The current density is uniform in the unshaded portions. For Exercises 6.2 and
6.3.

Exercise 6.3 A solid infinitely long conducting cylinder of radius a has two parallel cylinders of
diameter a gouged out of it as shown in Figure E.5 (b). The conductor carries a current I uniformly
over its cross section. Find the field at a point a distance r from the center and on the axis bisecting
the wire as shown. (Note: I is the current in the portion that is not gouged out.)



Exercise 6.4 An infinite solenoid centered on the z-axis has n turns per unit length and carries a
current I1 that flows counterclockwise as we look down the z-axis. In addition, an infinite wire
carries a current I2 up the axis of the solenoid. Write down B (i) inside and (ii) outside the solenoid in
polar coordinates (ρ, ϕ, z).

Exercise 6.5 An infinite sheet of conductor coincident with the xy-plane carries a current  in the
positive y-direction. (The meter in  is measured along x, perpendicular to the current.) Guess the
direction of B just above and below the sheet by thinking of the current sheet as made of parallel
strips along y and adding their contributions. Next, consider a rectangular Ampèrean loop in the xz-
plane of width L parallel to the x-axis and infinitesimal height δ along z. First let the loop straddle the
xy-plane, with the sides of length L above and below the xy-plane at z = ±δ/2. (i) Show that the 

 for z = ±δ/2. Next move the loop up or down in z so that it lies entirely on one side of
the plane and show that the field strength is |z|-independent. Compare this to the electric field of an
infinite sheet with surface density σ. This is another instance of a formula in which μ0 ↔ 1/ε0 under
B ↔ E. (ii) Now consider a second parallel sheet at z = z0 carrying an equal and opposite current
density. Use Ampère’s law to find B for all z. (iii) Find f, the force per unit area on one sheet due to
the other. Hint: Consider the force due to the field of one sheet on a strip on the other sheet of width
dx and unit length along y. Divide this force by the area of the strip.

Exercise 6.6 An infinite wire carries a current I up the y-axis. To the right, in the xy-plane, is a
rectangular loop with one side of length L parallel to the wire and at a distance a, and the opposite
side at a distance b > a. What is (i) the flux Φ penetrating the loop, and (ii) the emf Ɛ if the current in
the wire changes at a rate  Do the numbers for L = 0.24m,

Exercise 6.7 A toroidal magnet depicted in Figure 10.4 has a square cross section of side a. The
radial distance from the center of the solenoid to the center of the square is R. It has N turns and
carries a current I. (i) Starting with Bϕ(r) =  (Eqn. 10.21), find the flux through the cross section
by integrating the r-dependent B(r). (ii) Find the emf Ɛ if the current varies as I0 cosωt.

Exercise 6.8 An AC generator has a square coil of side a = 6cm, n = 10 turns, and a permanent
magnetic field B = .007T. What is ω, the angular velocity of the coil, if the peak generated voltage is
Ɛ = 10−2V?

Exercise 6.9 A conducting rod that extends from end A = (0, 0) to end B = (0, L) begins to move in
the x-direction at velocity v. There is a magnetic field B = B0k perpendicular to the plane of motion.
(i) What electric field E will be generated inside the rod in equilibrium? (ii) What will be the voltage
difference between the two ends?

Exercise 6.10 A square loop of resistance R, whose diagonals of length  are aligned with the
xy-axes in the plane of this page is dragged with a fixed velocity v in the x-direction. It enters a
magnetic field of magnitude B0 pointing into the page for x > 0. (i) If the loop enters the field region
at t = 0, what is the induced emf Ɛ and current as a function of time? What is the force on the loop?
What is the maximum current and when is it realized? (ii) Consider the same problem with the square
replaced by a circle of radius a and compute just the maximum values of emf, current, and force on
the loop (first decide when this maximum occurs).



Exercise 6.11 A rod of length R spins about one fixed end with a magnetic field B perpendicular to
the plane of rotation. What is the emf Ɛ between the ends?

Exercise 6.12 A circular loop of radius L lying in the plane of the page is made of perfectly
conducting wire with a cut at the 9 o’clock position that prevents current flow past it. A wire of
resistance R joins the center of the circle to the point on the circle at the 6 o’clock position. Making a
counterclockwise angle θ(t) = ωt relative to this R is a perfectly conducting rod of length L
connecting the center to the circle. If the whole system is in a B field coming out of the page, find (i)
the instantaneous current and (ii) torque on the rod with respect to the center of the circle. Do the
numbers for L = 120mm,B = 400mT,  R = 1200Ω.

Exercise 6.13 A coil with N = 100 turns, radius R = 4cm, and resistance 25Ω is in a magnetic field
B(t). What  will drive a 4A current?

Exercise 6.14 A solenoid of radius R = 7.5mm supports a field B(t) along its axis that grows from 0
to 0.4T in t = 1.4s. Find the azimuthal field E(r) during this growth at radial distance (i) r = 5mm and
(ii) r = 10mm.

Exercise 6.15 A coil with N = 1000 turns, area A = 300cm2, and resistance R = 15Ω is in a
perpendicular magnetic field B0 = 0.7 × 10−4T. How much charge flows when the coil is flipped
over? Hint: Integrate the induced current over time. The answer is independent of the time taken to
flip, as long as it is not too short.

Exercise 6.16 A current I flows up the entire y-axis. A rectangular loop lies in the xy-plane, with a
side of size b parallel to the y-axis and at a distance r from the wire. The other two sides of the loop
(parallel to the x-axis) have dimension a. If the loop moves at velocity v = iv, what will be the
induced emf Ɛ at the instantaneous value of r?Which way will it try to drive a current in the loop?

Exercise 6.17 Consider the loop in Figure 10.6 moving with velocity v = iv =  (i) If the
width w = 50cm, and B = 0.8T is going into the page, what will be the induced emf Ɛ, assuming the
loop is only partially in the field as in the figure? (ii) If the bulb has resistance R = 1.5Ω, what will be
F, the force on the loop? (iii) What will be Pa, the power expended by the agency pulling the rod?
What will be Pb, the power consumed by the bulb?

Exercise 6.18 Consider the circuit in Figure E.6(a), which shows a conducting rod of length 20cm
and resistance 2.4Ω sliding along the parallel legs of a ⊔-shaped conductor (with zero resistance) at a
velocity  in a perpendicular magnetic field B = 0.04T going into the page. (i) If V = 0.5V,R
= 3.6Ω, what is I? (ii) What is the force F dragging the loop?

Exercise 6.19 Excellent training on conservative and non-conservative forces in a circuit. Figure
E.6(b) shows a conducting rod of length 10cm sliding along the parallel legs of a ⊔-shaped conductor
at a velocity  in a perpendicular magnetic field B = 0.4T going into the page. The ⊔ and
rod have resistance ρ =  (i) What is the emf Ɛ and current I in the circuit at this instant when the
rod is at a distance L = 15cm from side 23 of the ⊔? (ii) Describe the charge buildup at ends 1 and 4
of the rod. (iii) What will be the sense of the conservative electrostatic field E they produce? (iv)
What will be the potential difference between 1 and 4? (v) Find E in the various segments of the



circuit. Remember that only in a perfect conductor must E cancel v × B. Here the difference drives
the current through the resistor.

Figure E.6   (a) Exercise 6.18 (b) Exercise 6.19

Exercise 6.20 Imagine this page lies in the yz-plane, with gravity pointing down z, and a magnetic
field is coming out of the page (the x-direction) with constant magnitude B0 for z > 0 and zero for z
< 0. A rectangular loop of width a (measured parallel to y), lying in the yz-plane, is falling at a steady
speed v0. The loop, partly inside and partly outside the field, has a mass m and resistance R. Express
v0 in terms of the given parameters and g. Hint: Think about the induced emf and the current it
produces.

Exercise 6.21 Suppose the loop in Figure 10.5 of width w has a length l and is made of a wire with
resistivity ρ and cross sectional radius a. (i) What will be the current in the loop? (ii) Do the numbers
for B = 0.05T,  w = 20cm, l = 60cm,ρ = 1.7×10−8Ω · m,a = 1mm.

Exercise 6.22 A betatron has a magnetic field given by  sinωt. (i) By computing a
spatial average (at any one time) over a disk of radius r show that the orbit should be at radius r = R
to satisfy Eqn. 11.18. (ii) For an orbit with r = R, compute Bav(t). (iii) Suppose the field is turned on
at t = 0 and lasts a quarter period. During this time of changing B the electron goes around thousands
of times and experiences the time-averaged emf Ɛ.̄ What is the time average of cosωt over a quarter
period? (iv) Use this to relate Ɛ ̄over the quarter period and from it deduce B0. Evaluate for R = 1m, 

 Ɛ ̄= 400V. (v) What is the average azimuthal electric field Ē?

Exercise 6.23 Current leaves a DC voltage source, passes through an  inductor, an R =
2000Ω resistor, and finally two inductors L2 = 5H and L3 = 2.5H in parallel, before returning to the
source. (i) What is the time constant τ of this circuit? (ii) What is its impedance when the source is an
AC generator at 

Exercise 6.24 A solenoid with n = 5000 turns per meter and radius r = 3cm has a current changing at
rate  It is surrounded by a secondary coaxial coil with N2 =100 turns and radius a =
3.14cm. What is (i) the mutual inductance M and (ii) the emf Ɛ in the smaller coil?



Exercise 6.25 Two concentric coils lie in the xy-plane, one with N2 = 200 turns and radius r = 1mm
and the other with N1 = 10000 turns and radius R = 1m. (Neglect their dimension perpendicular to the
plane.) (i) What is their mutual inductance? Assume the field on the smaller coil is constant and equal
to its value at the center. (ii) What is the emf in the smaller coil if the current in the larger one
changes at  (iii) What is the emf in the larger coil if the current in the smaller one changes at 

Exercise 6.26 A solenoid of length 2m and radius 0.6m carries a current 91.5A and produces a field
4.6T. (i) What is the stored energy? (ii) How many turns does it have?

Exercise 6.27 An inductor with N = 200 turns, carrying I = 10A, supports a flux =10−3Wb where Wb
stands for Weber, a unit of flux, defined by  What is the stored energy?

Exercise 6.28 A transformer for a domestic appliance has Np = 800 turns in the primary and Ns = 50
turns in the secondary. If the outlets provide V0 = 110V, what is the V provided to the appliance?

PROBLEM SET 7, FOR CHAPTERS 11, 12, AND 13
Exercise 7.1 At t = 0 an L = 2.0mH inductor is connected to a C = 8.0μF capacitor charged to V0 =
40V. (i) Write an expression for the charge Q(t) on the capacitor. (ii) What is the maximum value of
current in the inductor? (iii) What is the corresponding stored magnetic energy? How does it relate to
the initial energy on the capacitor?

Exercise 7.2 An LC circuit resonates at 1780Hz, has a maximum current of 0.1A, and has maximum
energy stored in the capacitor of 10−5J. Find L and C.

Exercise 7.3 A current of 1A flows through inductors L1 = 2mH and L2 = 6mH in series. (i) What is
the stored energy? (ii) Repeat if the same current is fed to the inductors in parallel.

Exercise 7.4 Solve for Q(t) for an LCR circuit with no external voltage, assuming a solution of the
form Q(t) = Aeαt. (Start with the analog of Eqn. 13.31 and end with the analog of Eqn. 13.41.)
Assume  so that ωꞌ ≃ ω0. If after N cycles the charge on the capacitor is Q(t = NT) and
the current I(NT) = 0, show that ln  Find R for a circuit with  L
= 1mH, N = 100.

Exercise 7.5 A solenoid is made of copper wire (ρ = 1.7 × 10−8Ω · m) of radius a = 1mm, wrapped N
= 5000 times around a cardboard cylinder of radius r = 10cm. (i) What is its resistance R? (ii) What is
its inductance L? (Remember the length of the solenoid is not the same as the length of the wire that
goes round and round.) Henceforth view this non-ideal inductor as a resistor R in series with an ideal
inductance L. (iii) What is its impedance Z when carrying a current I(t) = 30 cosωt, with ω = 1200π?
(iv) What is V(t), the drop across it as a function of time? (v)What is Ec, the magnitude of the
Coulomb field in the wire as a function of time? (vi) When is the voltage drop across R zero? When
is the drop across L zero?

Exercise 7.6 In Figure E.7 let Z1 = R1 a resistor, Z2 = R2 a resistor, and Z3 an inductance L3 and
resistor R3 in series. Replace the AC voltage by a battery V0 (which drives the current along the



arrow next to V0 in the figure) and a switch that has been open forever. Determine I1 and I2 (i)
immediately after the switch is closed, (ii) long after the switch is closed, (iii) immediately after the
switch is reopened, (iv) and long after the switch is opened. Do the numbers for V0 = 60V, L3 = 3H,
R1 = 5Ω, R2 = 12Ω, R3 = 20Ω.

Exercise 7.7 In Figure E.7 replace the AC voltage by a battery and let Z1 be an R1 = 2000Ω resistor
in series with an inductor  while Z2 and Z3 are L2 = 5H and L3 = 2.5H inductors. What
is the time constant of this circuit?

Figure E.7   A generic AC circuit. The impedances Z may stand for various combinations of L,C, and
R, as specified in the problem.

Exercise 7.8 In Figure E.7 replace the AC voltage by a 6V battery and a switch that has been closed
for a long time. Let Z1 = R1 = 6Ω, Z2 = R2 = 1Ω, and Z3 an unknown ideal inductor L. The switch is
now thrown open and the current through L drops to 0.5A in 1ms. What is L?

Exercise 7.9 Consider the circuit in Figure E.7. Let V0 = 225V, and ω = 120π; let Z1 stand for C =
2μF in series with an inductor L1 = 1.5H; let Z2 stand for an inductor with L2 = 4H and Z3 for a
resistor R3 = 1000Ω. (i) What is the complex impedance of the entire circuit? (ii) What is the
complex current through Z3? (iii) What is the amplitude  of the current through Z3?

Exercise 7.10 In an RC circuit with R = 19Ω, C = 2.5μF, at what frequency will |Z| = 50Ω?

Exercise 7.11 The impedance of a non-ideal inductor (which behaves like an ideal inductor in series
with a resistor) is 30Ω at 100Hz and 60Ω at 500Hz. What are L, R, and the phase ϕ by which the
current lags the voltage at 100Hz?



Exercise 7.12 (i) When an L and R in series are connected to a 24V battery, a current 1.26A flows in
the steady state. When they are connected to an AC voltage at 60Hz with V0 = 48V, a current with
amplitude I0 = 1.14A flows. What is L? (ii) If in the second case L and R were connected in parallel
across the AC source, what would be the amplitude of the current? (Recall section 13.2.)

Exercise 7.13 Show that in an LCR circuit the voltage across L has a maximum amplitude at 

Exercise 7.14 An LCR circuit has L = 2mH,R = 8Ω, C = 30μF. An AC voltage with V0 = 40V is
applied. Find the complex amplitude I0 (i) at resonance ω = ω0, (ii) at  and (iii) at 

Exercise 7.15 In an LCR circuit R = 3.5Ω,ωL = 53Ω, (1/ωC)=25Ω, what is the average power
consumption when V0 = 150V?

Exercise 7.16 (i) In an LCR circuit how many more C’s identical to the one present will you include
in series to triple the resonant frequency? (ii) Where will you introduce these extra capacitors relative
to the R and L?

Exercise 7.17 Consider an LCR circuit with V0 = 300V, ω=400π,R=66Ω,L= 0.004H,C = 50μF. (i)

What is Z = |Z|eiϕ? (ii) At a time t∗ such that V(t∗) = 0 (say  find the drops VR(t),
VL(t), and VC(t).

Exercise 7.18 Instructive use of complementary function. Consider an LCR circuit with R = 100Ω,C
= 1.2μF,L = 1H. The circuit is totally inert from t = −∞ till t = 0 when the voltage V(t) = 330cos500t
is turned on. (i) What is Z? (ii) Find the complete solution for I(t), including the transient, using Eqn.
13.42. I suggest trading parameterization 2Acos(ωꞌt + χ) for Acosωꞌt + Bsinωꞌt and solving for A and
B using I(0), Iꞌ(0). What can you say about I(0) given the history until t = 0? As for Iꞌ(0), argue that
the entire drop at t = 0+ is on the inductor. Note that the charge on the capacitor (zero in this
example) enters as a boundary condition, just as it would have had we worked with the second order
equation for Q(t) instead of the integro-differential equation (Eqn. 13.1) for I(t).

Exercise 7.19 Show that in an LCR circuit the average power is

Show that the power drops to half the maximum at an ωh that satisfies   Taking
the two square roots of this equation show that of the four solutions the two acceptable ones (with 

 are  Thus the width at half power is 

Exercise 7.20 Consider a circuit in which there are two parallel branches: one with just a C and the
other with an R and L in series. What is Z(ω)? At what non-zero ω does it reduce to a pure
resistance?



Exercise 7.21 Consider the circuit in Figure E.8 where an AC source V0 cosωt and DC voltage V1
drive the current. Let Z2 = R2 and Z3 an R3 in series with a capacitor with  (i) What is
the steady state voltage across R2? (ii) Across R3? (Hint: Superposition.)

Figure E.8   The impedances Zi may stand for various combinations of L, C, and R, as specified in
the problem.

Exercise 7.22 Find the impedance of the circuit with L, C, and R, in parallel. Anticipate with
arguments and verify its values for ω → 0,ω → ∞, ω = ω0.

Exercise 7.23 You are given voltage source at  and a box that contains the following:
R1 = 160Ω,R2 = 320Ω, C1 = 0.625μF,C2 = 62.5μF,L1 = 1.6mH,L2 = 3.2 mH. Pick one resistor, one
capacitor, and one inductor in series to make a circuit with the smallest and largest |Z|. Give the
values of |Z| in both cases.

Exercise 7.24 In an LRC circuit driven by V(t) = 300 cosωt (with ω = 100π), we find, reading from
left to right, a 0.1H inductor L, followed by a resistor R = 50Ω, followed by an unknown capacitor C.
(i) If the amplitude of the AC voltage between the left end of L and the right end of R is half that
between the left end of R and the right end of C (these are overlapping intervals), what is C? (ii)
What is I0, the amplitude of the current?

Exercise 7.25 An AC source V = 30 cos500t is connected to two impedances in series. The first is a
resistor Z1 = R1 = 10Ω and the second, Z2, is made of a 15Ω resistor R2 in series with a 2μF



capacitor. What is the average power loss across Z2?

Exercise 7.26 A circuit with R = 10Ω and C = 20μF is connected to a 100V source at 60Hz. What is
the current in the wires and the displacement current in the capacitor?

Exercise 7.27 A voltage V(t) = 200 cos200π t is applied to a capacitor with two concentric circular
plates of radius a = 2cm spaced a distance d = 4cm apart in the z-direction, with the upper plate
positive at t = 0. (i) Assuming E is restricted to the region between the plates, find B on a plane
halfway between the plates at a distance r from the center for all r. (ii) Evaluate its maximum
amplitude in Tesla.

PROBLEM SET 8, FOR CHAPTERS 14 AND 15
Exercise 8.1 An electromagnetic wave has an electric field E = 1000 sin(20y + ωt)k. (i) What is ω?
(ii) What is the frequency f? (iii) What is the wave number k? (iv) What is B? (v) What is the average
energy density ū and average intensity S̄?

Exercise 8.2 I live r = 10km from a P ̄= 50kW radio station. What are the peak values of E and B in
my house?

Exercise 8.3 The smallest wavelength λ the eye can see is roughly 400nm. What is the frequency?

Exercise 8.4 A plane electromagnetic wave has E = (i+k)E0 sin(ky − ωt). Find B using the example
from the text, superposition, and symmetry.

Exercise 8.5 A laser pointer has an average output P ̄= 10−4W and a beam radius of 0.5mm. Find (i)
the average intensity Ī, (ii) peak electric field E0, and (iii) the peak magnetic field B0.

Exercise 8.6 (i) Estimate the wattage of the sun given that we get roughly  at a distance of 93

million miles. (ii) What is the total wattage on the earth’s surface? (RE = 6.4 × 106m)

Exercise 8.7 Radiation pressure. The electromagnetic plane wave not only carries energy at a (time-
averaged) rate given by the Poynting vector  it also carries momentum per unit area per
second in the beam direction of magnitude  This is evident in the quantum theory of light, which
comes later in this course and asserts that light is made of photons, which are massless particles
obeying E = cp. So the photon’s energy and momentum are in the ratio c. What is true for the single
photon holds for the whole beam. A corollary is that when a charged particle absorbs a photon of
energy E, it also gains a momentum  times that. To establish this ratio classically, consider the beam
described by Eqns. 14.73 and 14.74 interacting with a charge q with velocity v, chosen for simplicity
to lie in the xz-plane at an angle θ relative to E. (i) What is the instantaneous power P, i.e., rate of
change of energy delivered to the charge? (ii) What is  the rate of change of momentum along the
beam due to the Lorentz force? (iii) Now show that  (iv) What is the radiation pressure
exerted by a  laser beam on a totally absorbing medium? (v) What is the total radiation
force on the earth due to sunlight given the result of Exercise 8.6 part (ii)?

Exercise 8.8 If you think in terms of photons it is clear that if the medium reflects the photon, i.e.,
reverses its momentum instead of simply absorbing it, the pressure is doubled. Suppose a medium



absorbs 25% and reflects 75% of the light that is incident normal to its surface. (i) What is the
pressure in terms of S, the magnitude of the Poynting vector? (ii) Repeat if the light beam strikes at
an angle  relative to the normal.

Exercise 8.9 Consider a wire of radius r, carrying a current I along the +z-axis. Let ezE be the
electric field driving the current. (i) What is the magnetic field B at the surface in cylindrical
coordinates (ρ, ϕ, z)? (ii) What is the Poynting vector S on the surface? (Note: The factor of  in Eqn.
14.91, which comes from the time-averaging of the power for sinusoidally oscillating fields, is absent
in the present case of instantaneous power.) (iii) What is the integral of S over a coaxial cylinder that
encloses a length l of wire? Express the answer in terms of I and the voltage V across the length l of
wire. (iv) Relate this to the Ohmic loss in this portion of the wire. Note that the Poynting vector gives
the correct total energy flux but not necessarily its source, which in this case is the battery driving the
current.

Exercise 8.10 A coil parallel to the z-axis of length l, radius r, and n turns per unit length carries a
current I0 cosωt that produces a B field along +z at t = 0. (i) What is B(t) in terms of the unit vectors
eρ, eϕ, and ez ≡ k? (ii) What is E(t) on the curved surface of the coil? (iii) What is the Poynting
vector S(t) on the flat and curved surfaces of an imaginary cylinder enclosing the coil? (iv) In a full
cycle indicate the periods when S points radially outward and radially inward. (v) What is the surface
integral of S over the enclosing cylinder? (vi) What is  the rate of change of stored magnetic
energy in the coil? Show that this equals the answer to part (v). (vii) Notice we neglected the
electrical energy. Show that the ratio of electric to magnetic energy is  which is assumed to
be very small. The condition  where T = 1/f is the time period, means a light signal
can travel across the size of the coil many times within one period. This is what allows us to assume
that the “electrostatic” Coulomb field EC can keep up with and neutralize the changing Faraday field
EF as described in section 11.3 in the text. (viii) Compute this ratio for r = 1cm, 

Exercise 8.11 Consider a parallel plate capacitor of radius R and spacing d (measured along the z-
axis) between the plates. Let E = ezE(t) be the oscillating electric field between the plates. (i) What is
B(t, r = R) in polar coordinates? (ii) What is S(R, t)? (iii) Integrate S over a closed cylinder that
tightly encloses the capacitor and relate it to  the rate of change of electrical energy in the
capacitor. (iv) Estimate κ, the ratio of the neglected magnetic energy to the electric energy for the
case when the fields are oscillating at some ω.

Exercise 8.12 (i) Find the curl of V = −yi+xj. (ii) Find the curl and divergence of V = 2yi + xj + z2k.
(iii) Establish the identity ∇ ·(∇ ×V) ≡ 0 by plugging in the definitions. (iv) Find the divergence of V
= cos xi + sin zj + z2k.

Exercise 8.13 Find the surface integral of x3yi + y2xj + zk over a unit cube centered at the origin and
with its edges parallel to the axes. Do one face at a time, and use symmetries to combine opposite
faces.

Exercise 8.14 Consider the Aharanov-Bohm experiment with a solenoid of zero radius piercing the
page at r = 0 with a flux 0 coming out of the page. The corresponding vector potential is 
Verify that this A corresponds to the magnetic flux 0 in two stages: (1) Compute ∮A · dr around a



circle centered at the origin using dr = rdϕeϕ. (2) Use  (where the line
integral is over an infinitesimal rectangle of sides dx and dy), after extending the result to a finite
loop by gluing infinitesimal loops. Now compute B = ∇ × A in Cartesian coordinates and show that it
vanishes except possibly at r = 0 where it is of the form  It follows that B = ∇ × A must have a

divergent spike at r = 0 that encloses the entire flux. This is described by writing ∇ × A = Φ 0δ(2)

(r−rꞌ) where the Dirac delta function δ(2)(r−rꞌ) is defined by

Exercise 8.15 (i) Find E and B corresponding to  and V = 0. (Find the curl in
Cartesian coordinates.) (ii) Find the gauge function χ(r, t) that will take you from a generic A to the
gauge transform Ā = 0. What is V(̄r, t) in this gauge? Hint: Recall Eqns. 5.52 and 5.53.

Exercise 8.16 Write an expression for χ(r, t) that will take you from a generic A to the gauge
transform Ā with ∇ · Ā = 0. Find the requisite χ by combining the following ingredients: 

Exercise 8.17 Conductivity tensor. In a two-dimensional conductor each of the current densities jx or
jy can receive contributions from both Ex and Ey. That is,  The entries σxx, σxy,
σyx, and σzz form the components of the conductivity tensor. What are the components of σ in the
system with coordinates (xꞌ, yꞌ) defined by Eqns. 15.44–45?

Exercise 8.18 Very instructive. Derive the relation between E and B in frame S and their counterparts
Eꞌ and Bꞌ in a frame Sꞌ moving with a velocity v along the 1 or x-axis. Set c = 1, so that β = v. Begin
with Eqns. 15.187–195 that define Fμν,E, and B in terms of the four-vectors ∇ and A and recall their
common law of transformation (Eqns. 15.81–82). In the (0,1) plane mimic Eqns. 15.183–185 and
recall that components in the y = 2 and z = 3 directions are the same in both frames. (i) After working
out the components of Eꞌ and Bꞌ assemble the results into the compact form below:

where ⊥ and ║ refer to components perpendicular to and parallel to v. (ii) Show that E · B and E · E
− B · B are Lorentz invariant. (Work with the components if you want or note that B⊥ and E⊥,
which lie in the plane perpendicular to v, simply get rigidly rotated by 90˚ and rescaled by v in the
cross products v × B⊥ and v × E⊥.) (iii) In Figure 10.6 show that the fully relativistic answer for the
electric field in the loop frame has an extra γ: that is, Eꞌ = γ v × B. (iv) Return to the discussion
accompanying Figure 15.1 where relativity is invoked to deduce the magnetic force. Show that the
fully relativistic value for the electric field pointing toward the wire in the rest frame of the charge



has a magnitude  where γ =  corrects the approximate result (Eqn. 15.12).
(Remember c =1 = μ0ε0.)

PROBLEM SET 9, FOR CHAPTERS 16, 17, AND 18
Exercise 9.1 Show, using rays, that a mirror of half your height is enough to see your entire
reflection. (i) Assuming your eyes are on top of your head, where will you place the mirror? (ii) What
if your eyes are 6cm lower?

Exercise 9.2 In a two-dimensional world imagine two infinite mirrors along the positive x and y axes
with their reflecting sides facing the first quadrant. (i) Show that any ray of light that reflects off both
mirrors leaves anti-parallel to the incident direction. (ii) Locate all three images of a bulb placed at (x
= 1, y = 2). (Hint: Draw a couple of rays leaving the bulb at slightly different angles, getting reflected
by the mirror, and entering someone’s eye. Retrace the reflected rays backward to see where they
meet on the other side of the mirror to locate the virtual image. One of the images will take two
reflections. This can be viewed as the reflection by the y mirror of the image formed by the x mirror
or vice versa. The two options coincide because the mirrors are at right angles.)

Exercise 9.3 A ray of light in air hits a slab of thickness d and index n at an angle θ1 from the
normal. (i) Show, using Fermat’s principle, that it exits parallel to its original direction. (Generalize
the derivation of Snell’s law in section 16.5 to deal with the two interfaces, define two points x1 and
x2 where the ray bends, etc.) (ii) Using Snell’s law, find δ, the lateral distance between the final ray
and the continuation of the initial ray. (iii) Do the numbers for d = 1mm,n = 1.5, and 

Exercise 9.4 A swimmer at the bottom of a pool of depth 5m is at a distance d to the right of one of
the walls. A beam of light he sends toward the surface hits the water  at an angle θi = 45˚,
gets refracted, and reaches a person’s eyes 2m above ground and 3m to the left of the wall. What is d?
Hint: Find θr, the angle of emergence into air, and compute the horizontal components of the rays
inside and outside the water.

Exercise 9.5 For what incident angle θi in air will the angle of refraction θr in the adjacent medium
of index n obey 

Exercise 9.6 A semi-infinite cylindrical fiber optic cable with n = 1.4 runs parallel to the x-axis from
x = 0 to x = ∞. (i)What is θimin, the minimum angle of incidence of the enclosed light on the wall if
it is to be totally internally reflected? (ii) If light enters the cable through the flat face at x = 0, what is
the maximum angle of incidence θincmax to ensure total internal reflection inside?

Exercise 9.7 An object and a screen are a distance D apart. Show that a lens of focal length f placed
at a distance x to the right of the object will produce an image on the screen if 
(provided D ≥ 4f).

Exercise 9.8 Find the image location v, orientation, and magnification for a mirror with f > 0 and (i)
u = f, (ii) u = 2f, (iii) u > 2f, (iv) f < u < 2f, (v) u < f. Use the formula and draw the rays. (vi)–(x)
Repeat for a focusing lens.

Exercise 9.9 A concave mirror with f = 2m is lying on the ground with its vertex touching the
ground. At t = 0 a ball is dropped from a height of 5m directly above the vertex. (i) Describe the



ball’s image as a function of time till it hits the mirror for the first time assuming  (ii) When
will the ball pass the focal point for the first time? (iii) When will the ball and the image coincide for
the first time? (iv) At what subsequent times will it hit the mirror again?

Exercise 9.10 An object is placed at u = 20cm relative to a diverging lens at the origin with f =
−10cm. Describe the image.

Exercise 9.11 A lens with f = −9cm is located 45cm to the right of a lens with f =18cm. An object is
placed 54cm to the left of the converging lens. Describe the final image in detail. Hint: Combine the
magnifications of the two lenses.

Exercise 9.12 The plane mirror is a spherical mirror with R = 2f = ∞ and thus v = −u. A negative v
means the image is virtual. Imagine next a lens centered at x = 0 focusing a parallel beam from x =
−∞at x = f. A plane mirror (PM) is placed at x = f −δ. (i) Show that a real image of the source at ∞
will be formed a distance δ to the left of the mirror at x = f − 2δ. Hint: Draw rays reflected by the
mirror, use i = r, congruent triangles, etc. To get this result mindlessly treat the image the lens would
have formed as a virtual object at f. The mirror turns the virtual object at u = −δ (u < 0 because object
is on the non-reflecting side of the mirror) and turns it into a real image at v = −u = δ. The notion of
virtual object also applies to lenses that intercept an image. (ii) At 1m to the right of a plane mirror
(PM) at x = 0 is a concave mirror (CM) with f = 60cm. At x = 20cm is a tiny candle. Explain the
sources of the real images at (a) x = 20cm, (b) x = 76cm, (c) x = 9cm. (Only the CM can form real
images.)

Exercise 9.13 Consider two lenses with focal lengths f1 and f2 at x = 0 and x = d > f1 respectively. (i)
At what x will the combination form an image of an object at u = −∞? (ii) Now let d → 0 to deduce
that fe, the effective focal length of the two lenses (of negligible thickness) in juxtaposition is given
by  (iii) Start with d ≡ 0 and compute fe, using the putative image produced by the first lens
as the virtual object for the second. (iv) What happens when a convex lens is glued to a concave lens
of equal and opposite focal length?

Exercise 9.14 At a distance of 15cm to the right of a convex mirror with f = −5cm is a tiny bulb and
5cm to the right of the bulb is a focusing lens with f = 25cm. (i) What is the location of the virtual
image of the bulb formed by the convex mirror? How far is this image from the lens? (ii) Where is
the location of the virtual image of this virtual image as viewed by a person to the right of the lens?

Exercise 9.15 An object is placed 24cm to the left of a diverging lens with f = −12cm. A converging
lens with f =24cm is placed d cm to its right. Find d so that the final image is at infinity.

Exercise 9.16 In a magnifying glass, the most convenient case has the image at ∞and the least
convenient one has the image at the near point (N = 25cm), which is a strain but has a bigger value
for M, as described by Eqns. 17.47 and 17.51. If the bigger M is 1.25 times the smaller M, find f.

Exercise 9.17 Waves. To show the dramatic difference between ray and geometric optics consider a
double-slit experiment (Figure 18.5) with slit spacing d = 0.5mm, and wavelength of light λ = 345nm.
Find L, the distance to the screen, so that the two minima closest to the central maximum fall exactly
in front of the two slits, where ray optics would predict maximum brightness. Approximate 

Exercise 9.18 (i) Calculate λ if the first non-central maximum (m = 1) in the double-slit experiment
occurs at 0.15˚ when the slit spacing d = .35mm. (ii)Where will be the first minimum?



Exercise 9.19 A double-slit experiment with slit separation d = 4 × 10−4 and screen distance L = 2m
is conducted under water (n = 1.33) using 600nm light. How far from the central maximum is the
first non-central maximum?

Exercise 9.20 Light of wavelength λ leaves a source S that is H meters above a horizontal mirror and
reaches a vertical screen D meters to its right, along two paths: one direct and one upon reflection
from the mirror. Determine h, the height of the first dark fringe above the mirror if λ = 500nm, H =
.01m, and D = 2m. Hint: Convert this to a double-slit problem using the image of S, and remember
the π shift. Assume sinθ ≃ tan θ.

Exercise 9.21 In a double-slit experiment done with light of λ = 480nm the 5th maximum goes into
the 2nd minimum if a material of thickness t and n = 1.56 is placed in front of one of the slits. What
is t?

Exercise 9.22 Starting with Eqn. 18.52 show that  where I(y) is the intensity at the
point y defined in Figure 18.5. Assume y L.

Exercise 9.23 Consider the triple-slit experiment with spacing d between slits and light of
wavelength λ. Taking the phase of the light from the middle slit as the reference, argue that the
intensity in a direction with path difference δ betweeen adjacent slits is given by 

 By drawing diagrams in the complex plane or by analyzing the
expression for I argue that I = 0 when  Show that the weak maximum between these two
minima occurs when  (The pattern of two zeros and a weak maximum between strong maxima
is repeated with strong maxima at δ = mλ, m =±1,±2 .  .  . .) (i) What is the relative intensity of the
weak maximum and strong maximum? (ii) What are the smallest positive angles for the two zeros
and weak maximum nearest to θ = 0?

Exercise 9.24 A diffraction grating with 500 lines per millimeter is illuminated with light of
wavelength 400nm and the fringes are seen on a screen 1.5m away. What is the distance between the
two m =1 maxima? Do not assume sinθ =tan θ.

Exercise 9.25 What is the width of a slit that has its first diffraction minimum at 60˚ when
illuminated by light with λ = 666nm?

Exercise 9.26 Find λ if the first minimum of the diffraction pattern of a slit of width d = 0.2mm is
0.5cm from the maximum on a screen 1.5m away.

Exercise 9.27 How many orders of the spectrum (m of Eqn. 18.65) can be observed in a grating with
6000 lines per centimeter if the wavelength of light is 460nm?

Exercise 9.28 X-rays with λ = .3nm produce the first order maximum when the angle measured from
the crystal plane (not the normal) is  What is d, the lattice spacing?

Exercise 9.29 Estimate the spacing between the grooves on a CD that act like a grating for a
λ=650nm beam producing m = ±1 maxima separated by 2.4mm at a distance 6mm.

Exercise 9.30 What is the minimum thickness δ for a soap film (n = 1.41) to strongly reflect green
light with λ = 530nm?



Exercise 9.31 What is the minimum thickness δ for a cryolite film (n =1.35) on a camera lens of
glass (n =1.5) for it to strongly reflect blue light with λ = 450nm and strongly transmit red light with λ
= 900nm? (This is a problem where we can neglect the phase change due to the two reflections.)

Exercise 9.32 A glass wedge (n = 1.54) of opening angle θ = 4×10−3 degrees is illuminated by a
600nm beam incident normal to the bottom face. The waves reflected from the top and bottom
interfere to produce fringes. What is the spacing between successive (i) bright or (ii) dark lines?

Exercise 9.33 Two semi-infinite glass sheets (n=1.54), one on the xy-plane and one at an angle of 3.6
× 10−3 degrees, meet along the y-axis forming a wedge containing air. Light with λ = 600nm is
incident vertically down the z-axis and gets reflected by the two glass sheets. The interference of the
two reflected waves causes fringes parallel to the y-axis. (i) Argue that the vertex, x = 0, is dark.
(ii)What will be the spacing between the dark fringes? (iii) Where will be the first bright fringe?
Hint: What is the extra phase difference between one fringe and the next one of the same type?

Exercise 9.34 In the Newton’s ring experiment the curved face of a plano-convex lens, a slice of a
glass sphere of radius R, is placed on a glass slab. The air gap between the lens and the slab vanishes
at r = 0 and increases quadratically as one moves radially outward. Light of wavelength λ enters
normal to the flat face from above. The interference of the reflected light from the glass-to-air and
then air-to-glass interfaces produces concentric dark and bright rings. (i) Why is r = 0 a dark spot?
(ii) Show that near the origin the air gap is approximately  (iii) Show that at small r, the dark
rings have radius  m = 0, 1,2 . . . . (iv) Show that the exact radius of the m-th bright
ring is rm = 

Exercise 9.35 In a variant of the experiment described in Exercise 9.34 the curved face of a plano-
convex lens of radius R1 rests on top of the curved face of a similar lens with radius R2 with their r =
0 points touching. The flat face of the lower one rests on a flat surface and the flat face of the upper
one is illuminated by normally incident light of wavelength λ. (Draw a picture!) Where will be the m-
th dark ring due to interference of the waves reflected by the two curved faces? Assume r R1,R2.

Exercise 9.36 In Figure 18.11 let the oil of thickness δ have n = 1.5, let θ2 = 60˚, and let λ = 600nm.
Find the minimum δ for (i) constructive and (ii) destructive interference. (iii) and (iv) repeat if θ1 =
60˚.

PROBLEM SET 10, FOR CHAPTERS 19 AND 20
Exercise 10.1 The work function of a certain metal is W = 4eV. (i) What is ω0, the minimum
(angular) frequency of light that can cause photoemission? (ii) At double this frequency what will be
the velocity of the emitted electrons? (iii) What will be their de Broglie wavelength? (iv) If they are
used in a double-slit interference experiment with slit spacing d = 100nm, what will be δ, the width of
the central maximum on a screen L = 10−4m away?

Exercise 10.2 Free electrons at temperature T will have a mean kinetic energy  where k is
Boltzmann’s constant. What is the λ associated with the corresponding momentum? This is called the
thermal wavelength λT. Evaluate this at T = 300K.



Exercise 10.3 A 60W bulb emits photons of λ = 600nm. (i) How many photons are emitted per
second? (ii) How many cross per unit area of a concentric sphere of radius r = 1m every second?

Exercise 10.4 Photons with λ = 3×10−12 m ≡ 3pm Compton-scatter off static electrons and emerge at
an angle θ relative to the original direction. Compute λꞌ for the outgoing photons at (i)  (ii) 

Exercise 10.5 The hydrogen atom has energy levels  n = 1, 2, 3, . . . . (i) What is
the energy of the photon emitted when the atom jumps from n = 2 to n = 1? (ii) What is its
wavelength λ? If this photon enters a double-slit experiment with slit separation d = 100nm and
screen distance L = 10−3m, how far from the central maximum is (iii) y0, the nearest point where
there is no probability of the photon arriving, (iv)  where this number is a quarter of the
maximum, (v)  where the relative probability is half the maximum? You may use the simplified
formula for path difference δ = d sinθ ≃ d · θ.

Exercise 10.6 A beam of electrons with kinetic energy  is aimed at a cubic (nickel) lattice
with interatomic separation d (Figure 18.9). (i) What is λ, the de Broglie wavelength of the electron?
(ii) What is d, the lattice spacing, if the diffraction angle for m = 1 is θ = 65˚?

Exercise 10.7 Look at the Heisenberg microscope of Figure 19.7. Let the distance between the two
points to be resolved be ⵠ x = 10−7m, let f = 10−6m, and D = 10−8m. Using the small angle
approximation everywhere, estimate the following. (Do not worry if our numbers differ by factors of
order unity.) (i) The angle 2α between the rays entering the lens. (ii) The width 2θ of each point
object due to diffraction by the aperture D as a function of λ. (iii) The upper limit for the wavelength
λmax if the peaks are to be distinguished, i.e., α > θ. (iv) Find the corresponding p0, the minimum
incoming photon momentum. (v) Now find (ⵠp)x as p0×2ε where  (vi) Compute ⵠxⵠp and

compare to ħ≃10−34 J·s.

Exercise 10.8 A double-slit experiment (Figure 19.9) is conducted with electrons of momentum 
 and slit separation d = 6μm. (i) Estimate 2θ∗, the width of the central

maximum (in radians). (ii) Using Eqn. 19.49, estimate ⵠpy, the transverse momentum uncertainty
induced by a measurement to see which slit it came through. (iii) Estimate 2θ, the angular uncertainty
in the direction of the electron after its interaction with the photon. (iv) Argue that the measurement
essentially ruins the interference pattern.

Exercise 10.9 (i) What is p, the momentum of an electron moving along the x-axis with a kinetic
energy of 20eV? (ii) Write down any wave function ψ(x) that describes this state.

Exercise 10.10 Wave function boot camp. Consider a particle described by



Sketch this function. (i) What is the probability density of finding the particle at x = 2L? Explain. (ii)
Relate ψ(−x) to ψ(x). (iii) Relate P(−x) to P(x). (This can be done without knowing the A that
normalizes ψ.) (iv) Choose A to normalize ψ(x). (v) What is the (absolute) probability of finding the
particle with x ≥0? (vi) What is the (absolute) probability of finding the particle with  (vii)–
(xii) Repeat with  in Eqn. E.5. Try to avoid doing some integrals by appealing to
symmetry.

Exercise 10.11 Compute (i) P(x), the normalized probability density, (ii) 〈x〉, and (iii) uncertainty ⵠx
for the ψ(x) in Eqn. E.5 given

Exercise 10.12 Plot the function  0 otherwise. (Let ψ(0) = 0.) (i)
Normalize it and compute x and the uncertainty ⵠx. (ii) To estimate ⵠp, approximate ψ(x) by ψapp(x)
= Asinkx, choosing A and k to match the maxima and the two zeros at the ends. Ignore the fact that
unlike ψ(x), ψapp(x) does not vanish for |x| > b. (iii) What are the momenta you can identify in
ψapp(x)? (iv) Approximating ⵠp by the difference of these two possible values (the “spread” in
momentum), compute ⵠxⵠp.

PROBLEM SET 11, FOR CHAPTERS 21 AND 22
Exercise 11.1 A particle is in a ring of length L obtained by joining  Its wave function ψ(x)
has height A for −a < x < 0 and  for 0 < x < a. (i) Plot and normalize it. (ii) What is the
probability that x > 0? (iii) What is the probability that  That  (iv) What is the
probability that a momentum measurement yields p = 0? If p = 0 is obtained in the momentum
measurement, what is (v) ψ(x) and (vi) P(x > 0) immediately after?

Exercise 11.2 A particle on a ring of circumference L has   (i)
Write this out in terms of complex exponentials (states of definite momentum). Do not worry about
the overall  common to all of them for the purpose of computing relative probabilities. (ii) Read
off the allowed momenta. (iii) Find the absolute probability for each outcome. (iv) Compute 〈p〉 and
ⵠp.

Exercise 11.3 A particle on a ring of circumference L has ψ(x) =  0 otherwise. (i)
Find ⵠx. (ii) Find A(p). (iii) Find P(p). (iv) Estimate ⵠpapprox as the distance between the two zeros
of P(p) nearest to p = 0. Compute ⵠxⵠp in this approximation. (v) Evaluate ⵠp precisely in the limit
L → ∞ by using Eqn. 21.140 after understanding the arguments leading to it. Compute the exact
ⵠxⵠp.

Exercise 11.4 A quantum ring in the xy-plane has a radius R = 500nm. An electron in it is traveling at
 (i) In the defintion  what is the integer m, which also equals the angular

momentum Lz in units of ħ? These rings, though not superconducting, can sometimes carry a
persistent current, without any applied voltage. (ii) Estimate the current I due to the abovementioned
electron.



Exercise 11.5 Show that if ψ(x) = ψ∗(x) then A∗(p) = A(−p) and P(p) = P(−p).

Exercise 11.6 Generalized Fourier analysis. The expansion  of a periodic
function on a circle parametrized by  in terms of an orthonormal family 

 obeying  is just one example of using orthonormal
functions. Here is another. Consider functions ψ(z) on a unit sphere that depend only on z = cosθ
(latitude) but not on the azimuthal angle ϕ (longitude). These may be expanded as 

 where the Legendre polynomials Pl(z) are of order l and the coefficients
A(l) may be found using the orthogonality (related to but not synonymous with orthonormality) of
Pl(z), l = 0, 1,2 . . .

(i) Using Rodrigues’ formula  compute the polynomials P0,P1,P2, and P3. (ii)
Verify Eqn. E.6 for these four, exploiting parity (under z → −z) when appropriate to establish
orthogonality. (iii) Express cos 2θ and cos 3θ in terms of Legendre polynomials in two ways:
expanding these cosines in powers of z = cosθ and fitting the result to a linear combination of Pl, and
verifying your result by using Eqn. E.6. Orthogonality relations like Eqn. E.7 generally stem from the
defining differential equation, which in this case is

(iv) Premultiply this equation by Plꞌ (z), subtract it from one with l ↔ lꞌ, and integrate in the interval
−1 ≤ z ≤ 1. Integrating by parts leads to (l(l + 1)−  which proves
orthogonality for l = lꞌ. (v) Alternatively, use Rodrigues’ formula, integrate by parts repeatedly
shifting all derivatives from Plꞌ to Pl, assuming lꞌ > l. Argue that in the end there will be more
derivatives than powers of z available for differentiation.

Exercise 11.7 An electron is in a ring of circumference L = 1μm. (i) Find f, the frequency of the
photon absorbed when it jumps from the lowest energy state to the one just above it of definite energy
and momentum. (See Figure 22.1.) (ii)What are the possible answers if momentum is measured in the
final state? (iii) What is P(x) in each case?

Exercise 11.8 In Figure 22.5 suppose V(x → −∞) < E < V(x → ∞). Assume V(x) crosses the line of
constant E only once, at xR, the right turning point. (i) Describe ψ(x) for all x. (ii) Is E quantized?
How many independent solutions are there at each E?

Exercise 11.9 A particle is in the ground state of a box of length L when the box symmetrically
expands to double its size, leaving ψ(x) undisturbed. Upon energy measurement, what is the
probability of finding the particle in the (i) ground state of the new box, (ii) in the first excited state
of the new box, and (iii) in the state n = 28765897654 of the new box?

Exercise 11.10 Expanding ψ(x) in terms of ψp(x) as in Eqn. 21.49 show that



Notice that if we want just the average 〈p〉, and not the detailed probability distribution P(p), we need
only this one integral involving ψ and not the (possibly infinite number of) coefficients 

 (i) How will you obtain p2 this way? (ii) What happens to p under the
change  (iii) Show from Eqn. E.8 that if 

 (Eqn. E.8 holds even when L → ∞.)

Exercise 11.11 The ground state of the harmonic oscillator of classical frequency ω and mass m is 
 (i) Find A0 that normalizes this given  (ii) Differentiate both

sides with respect to the parameter α to evaluate  (iii) Use this to find ⵠx after first
arguing that 〈x〉 = 0. (iv) Find ⵠp given that the oscillator has the lowest allowed uncertainty product.
(v) Show that ψ0(x) is orthogonal to the unnormalized excited states  and 

PROBLEM SET 12, FOR CHAPTERS 23 AND 24
Exercise 12.1 Electrons of energy E =200eV coming in from x = −∞ approach a barrier of height V0
= 100eV extending from x = 0 to x = ∞. (i) Compute the reflection and transmission amplitudes B and
C in terms of  and  (ii) For V0 = 400eV find B and C
in terms of k and  What is |B|? (iii) At what x > 0 does |ψ| drop to 1/e of the value at x =
0? (iv) What if in part (i) V0 is negative: a potential drop by |V0| at x = 0? (v) In part (i), if 10000
particles per second approach the barrier from the left, how many will get reflected and how many
transmitted per second? (vi) Repeat this for part (ii).

Exercise 12.2 After recalling or reading section 23.2 on tunneling, consider Figure 23.5. Let V0 =

400MeV, E = 300MeV, the barrier (Region II) width ⵠ = 0.8 × 10−14m, and particle mass
4000MeV/c2. (i) Find the ratio r = ψR/ψL of the exponentially falling wave function at the right and
left ends of the barrier. (ii) Find Pt, the probability of tunneling in one attempt. (iii) If region I is

finite, of size L = 10−13m, and bounded on the left by an infinite wall, what is f, the frequency of
attempts at escape? (iv) What is the estimated lifetime τ in the “bound” state?

Exercise 12.3 The relation ⵠEⵠt ≃ ħ means that for a system to show appreciable change in its
properties over a time ⵠt, it must have an energy spread ⵠE, i.e., be a superposition of states with a
range of energies of order ⵠE. (i) Apply this to an energy eigenstate. (ii) Consider transitions from
the ground state of hydrogen to an excited state with a lifetime 1.6 × 10−9s. What will be the range
of photon energies that can induce this transition?

Exercise 12.4 Here is another illustration of ⵠEⵠt ≃ ħ along the lines of Eqns. 24.129–131.
Consider a particle of mass m on a ring  with



As shown after Eqn. E.8, it has 〈p〉 = 0 (because ψ(x) is real) and multiplying ψ(x) by eip0x/ħ yields a

state ψp0(x) with an average momentum p0, but same P(x) = |ψp0 (x)|2 = |ψ(x)|2. (i) Argue that ⵠp is
unaffected by shifting momentum by p0. (ii) Find the time ⵠt it will take this wave packet (with
sharp edges) to go past some point in terms of a, p0, and m. (iii) Starting from  estimate ⵠE
for a state with p = p0 + δp to order δp. (iv) Letting  compute ⵠEⵠt.

Exercise 12.5 An energy measurement of a particle of mass m in a ring of circumference L finds it in
the lowest energy, i.e., ground state. (i) Write down a normalized wave function that describes the
state following the measurement. What is P(x)? (ii) Suppose the particle was found to have the next
higher energy. Write down the unnormalized wave function (with two real, positive, free parameters
A and B) immediately following the measurement. What is the normalized P(x) in terms of the two
free parameters in your ψ(x)? (iii) What if you also knew that the state with positive momentum was
twice as likely as the one with negative momentum? (iv) What is the state after time t? (v) What is
P(x, t)?

Exercise 12.6 At t = 0, a particle of mass m in a box 0 ≤ x ≤ L is in a superposition of its lowest and
first excited states, with the former being twice as likely. (i)Write down a normalized wave function
that describes it. (ii) What is ψ(x, t)?

Exercise 12.7 How will you find the allowed energies and corresponding eigenfunctions of a particle
in a potential V(x) = λx4?

Exercise 12.8 Two identical bosons of mass m are in a potential with allowed energies En = nħω, n =
0, 1,2 .  .  . . (i) In the notation of Figure 24.3 describe the two-particle ground state and give its
energy. (ii) Repeat if they are in the next higher energy state of the two-particle system. Parts (iii) and
(iv): Repeat (i) and (ii) for two identical fermions.

Exercise 12.9 Two identical bosons of mass m are in a box 0 ≤ x ≤ L. (i) In the notation of Figure
24.3 describe their ground state and give the energy. Write down the two-particle wave function. (ii)
Repeat if they are in the next higher energy state of the two-particle system. Parts (iii) and (iv):
Repeat (i) and (ii) for two identical fermions.

Exercise 12.10 There are two identical particles of mass m in a box of length L and their total energy
is  What single-particle energy states are the particles in? Can they be fermions?



Answers to Exercises

Some answers may differ slightly from yours due to rounding.

PROBLEM SET 1, FOR CHAPTERS 1 AND 2
Exercise 1.1

Figure E.9   Answer to Exercise 1.1

Exercise 1.2 (i)  (ii) Fe = q2/(4π ε0)(4L2 sin2(θ/2)), (iii) q =

1.6μC,Fe = 2.26×10−2N.

Exercise 1.3 (i) Rotates from pointing along i to pointing along j. (ii) Minimum at Q = 0, and points
at 45˚ to the x-axis.

Exercise 1.4 Given.

Exercise 1.5 (i) F = 8.2×10−8N, (ii)  not relativistic since  (iii) 



Exercise 1.6 (i) Let the two spheres touch each other so each has  Ground one and then touch
the other that has  and separate so each has  Do this again to get  on each. (ii) Take
three initially discharged spheres. Every time you let the charged sphere touch a discharged sphere,
its charge reduces to half the value. (iii) To get  let the sphere with  touch the sphere with

 (the one that first touched the fully charged sphere) and separate.

Exercise 1.7 (i) Zero, by symmetry, (ii) 2.3 × 10−28N in the southwest direction.

Exercise 1.8 (i)  (ii)  (iii) 

Exercise 1.9 (i) Given. (ii)  (iii)  (v) Given.

Exercise 1.10 

Exercise 1.11 

Exercise 1.12  The part along i is half that of an infinite wire since the missing half
would contribute an equal amount.

Exercise 1.13 

Exercise 1.14 

Exercise 1.15 Given.

Exercise 1.16 (i)  (ii) q = 2λ0L.

Exercise 1.17 (i) x = −14.5m, (ii) because the net field there is zero.

Exercise 1.18 (i) Attractive force of  where p = qa is the dipole moment. (ii) Given.

Exercise 1.19 At 

Exercise 1.20  pointing toward the midpoint of the side with the negative charges.

Exercise 1.21 

Exercise 1.22 (i) 1.8N attractive, (ii) 0.23N repulsive.

Exercise 1.23 Given.

Exercise 1.24 

Exercise 1.25 (i) 2.5×10−30N ·m, (ii) 9.33 × 10−30J, (iii) 

Exercise 1.26 



PROBLEM SET 2, FOR CHAPTERS 3 AND 4
Exercise 2.1 (i) 8, (ii) 1, (iii) 5.58.

Exercise 2.2 (i) clockwise, (ii) anti-clockwise, (iii) anti-clockwise.

Exercise 2.3 (i) dS = dρρdϕk, (ii) dS = ρdϕdzeρ, (iii)  (iv) 

Exercise 2.4 = π R2 E0. (The flux crossing the curved hemispherical surface is also the flux crossing

its flat circular base in the xy-plane. Recall dS = erR
2 sinθ dθ dϕ.)

Exercise 2.5 (i)  (ii)  (iii)
reduces to 

Figure E.10   Exercise 2.6

Exercise 2.6   E(b ≤ r < c) = 0, 

Exercise 2.7 

Exercise 2.8 (i)  (ii)  

Exercise 2.9 

Exercise 2.10 

Exercise 2.11 Given.

Exercise 2.12 

Exercise 2.13 Given.



Exercise 2.14  above/below slab,  inside slab.

Exercise 2.15 

Exercise 2.16 The field is radial, with Er(r < a) = 0,Er (a ≤ r ≤ 2a) = 

Exercise 2.17 5.5cm.

Exercise 2.18 (i)  (ii)  (iii) 
(iv)  (v)  (vi) 

  (vii) 

PROBLEM SET 3, FOR CHAPTERS 5 AND 6
Exercise 3.1 (i)  (ii) W = −U(2,3)+U(0, 0) = 8.

Exercise 3.2 1.6 × 102C = 1021 electrons.

Exercise 3.3 2.15 × 10−2J.

Exercise 3.4 

Exercise 3.5 Given in Exercises 1.23 and 1.24.

Exercise 3.6 The sphere has radius  and is centered at  This gives the field of a charge −2q
at the origin in front of a conducting sphere of radius  and center  as the sum of the fields
due to the original charge and its image charge +q located at (a, 0, 0).

Exercise 3.7 (i)  as that of point charge Q, (ii) 
 We see that  

Exercise 3.8 R = 5.27m, Q = 4.25×10−8C.

Exercise 3.9 

Exercise 3.10  

Exercise 3.11 By Gauss, E(r) = 0 for r > b and r < a. Now find E(r) between r = b and r = a and
integrate, choosing V(b) = 0. Remember

E = 0 does not mean V = 0! Final answer: 

Exercise 3.12 (i)  (ii)  (iii)–(vi) Given. (vii) The field of an
infinite uniformly charged wire at a distance L in front of an infinite grounded conducting plane.



Exercise 3.13 (i) 3.60×103 volts, (ii) V1 = V2 = 3.00×102 volts, 
 will flow from positively charged sphere to the other.)

Exercise 3.14 88.5cm.

Exercise 3.15 In this approximation the potential of each sphere is due to the charge on it. Since V
≃Q/r, they will share the total charge in the ratio of the radii, carrying 60μC, 120μC, and 180μC.

Exercise 3.16 (i) 10eV = 1.6 × 10−18J, (ii)  (iii) 2.13×10−9s.

Exercise 3.17 

Exercise 3.18  when d ≪ a. The latter is the capacitance of a parallel plate capacitor of
plate area 2π aL and spacing d.

Exercise 3.19 (i) and (ii): 0 because all points are equidistant from the center.

Exercise 3.20 (i)  (ii) −2q.

Exercise 3.21 (i) same, (ii) doubled (due to doubled volume). The factor of two discrepancy can be
resolved by computing the force on one plate due to the charges on the other.

Exercise 3.22  Approaches the potential of a point charge π (b2 −

a2)σ when z → ∞.

Exercise 3.23 

Exercise 3.24 (i) 54,000 V. (ii) No difference: field inside a shell is zero. Test charge taken from
outer shell to inner sphere is opposed only by the field of inner sphere.

Exercise 3.25 (i) 41/3r, (ii)  (iii)ⵠU = (42/3 − 1)Ui.

Exercise 3.26 (i) 1.07 × 10−5m from positive plate, roughly 1/2000 of the separation, (ii) 
  (iii) ve = 3.26 ×  

Exercise 3.27 Given.

Exercise 3.28  where 

Exercise 3.29 

Exercise 3.30 

Exercise 3.31  

Exercise 3.32 



Exercise 3.33 (i) U0 = 1.6 × 10−3J, (ii) 16μF, (iii) 10V, (iv)  10−3J, (v) lost as heat.

Exercise 3.34 Given.

Exercise 3.35 Given.

PROBLEM SET 4, FOR CHAPTER 7

Exercise 4.1 (i) n = 8.4 × 1028/m3, (ii) 2.5 × 10−14s, (iii) 60m, (iv) 7.4× 

Exercise 4.2 Quadrupled.

Exercise 4.3 

Exercise 4.4 R = 4Ω.

Exercise 4.5 I = 0 in the leg bc,  flows up from the positive terminal to node a, splits equally
into  along ab and ac, reaching nodes b and c respectively, and then on to node d via the bd and cd
respectively, which combine to form the total  which flows back to the negative terminal.

Exercise 4.6 (i) R. (The current entering a must split equally by symmetry, which means the voltage
difference between c and d must be zero, as must be the current through it. You can then forget it and
are left with 2R in parallel with 2R.) (ii) You now have 2R, R, and 2R in parallel to give

Exercise 4.7 (i) 5A, (ii) 50W, (iii) −25W (it gets charged), (iv) 25W. 

Exercise 4.8 +1.5eV = 2.4 × 10−19J by the chemical force, −1.5eV by the electrical force.

Exercise 4.9 All in series 6Ω; all in parallel  2Ω and 3Ω in parallel, followed by 1Ω in series, 
 1Ω and 3Ω in parallel, followed by 2Ω in series,  2Ω and 1Ω in parallel, followed by 3Ω

in series,  2Ω and 3Ω connected in series with 1Ω in parallel with this pair,  3Ω and 1Ω
connected in series with 2Ω in parallel with this pair,  2Ω and 1Ω connected in series with 3Ω in
parallel with this pair, 

Exercise 4.10 V = 7,

Exercise 4.11 R = r.

Exercise 4.12 Given.

Exercise 4.13 (i) The total of 20μC is shared as 4μC and 16μC to produce a common voltage of 2V.
(ii) The total of 4μC is shared as  and  to produce a common voltage of 

Exercise 4.14 Capacitors in parallel followed by resistors in parallel (PP) or capacitors in series
followed by resistors in series (SS) both work. The other two choices (PS) or (SP) give t0 =

1.8×10−2s and 



Exercise 4.15 

Exercise 4.16 (i) Given. (ii) f = 1, all the energy will be lost because the equal and opposite Q’s on
the connected plate will neutralize each other. (There might be a spark.)

Exercise 4.17 Given.

Exercise 4.18 (i) 2μF, (ii) ±Q = ±CV = ±16μC, (iii) +16μC will go to the upper plate of C1 and
−16μC will go jointly to the lower plates of C2 and C3, these three plates being the only ones in
contact with the battery. (iv) Zero since these plates are isolated. (v) −16μC on the lower plate of C1
to pair with the +16μC on the upper plate because field lines leaving upper plate have to terminate on
the lower plate. (Likewise there will be 16μC between the upper plates of C2 and C3 to pair with the
−16μC on their lower plates.) Remember the lower plate of C1 and upper plates of C2 and C3 are
isolated and uncharged to begin with. (vi) In the ratio C2: C3, so that the voltages across them are

equal, they being connected in parallel. Thus C3 will have × 16μF = 13.3μF. (vii) No change. This
capacitor will draw its own charge ±Q = ±CV = ±80μC.

Exercise 4.19 (i) zero, (ii)  (iii) VC = I2R2 = 30V, QC = 3 × 10−4C, (iv) 

 (v) I(t) = I(0)e−16.6t.

Exercise 4.20 (i)   (ii)  (iii) The field between the plates goes down
because the external charges ±Q are opposed by the surface charges due to the dipoles; this reduces
the potential difference V and increases  Q being the same.

PROBLEM SET 5, FOR CHAPTERS 8 AND 9

Exercise 5.1 1.02×10−10N.

Exercise 5.2 (i) 3.2×10−16N into the page, (ii) 3.2×10−16N repulsed by wire, (iii) 0.

Exercise 5.3 (i) Ix = qnwvxⵠ, (ii) qvxBz along − y, (iii) positive (negative) charges will pile up on the
lower (upper) edge, until the electric field they set up balances the magnetic force, (iv) Ey = vxBz, (v)

Vy = 3.3 × 10−6V.

Exercise 5.4 (i)  (ii) B = 10−1T.

Exercise 5.5 (i) B = 2.6 × 10−2T, (ii) 

Exercise 5.6  which is half the time period of the cyclotron orbit. Notice that the time is
independent of the incoming speed.

Exercise 5.7 (i) circular orbit with radius  and center (−Rsinθ, Rcosθ), (ii) will go
to 



Exercise 5.8 (i) Given. (ii) 7.29cm. Non-relativistic because β = 0.09.

Exercise 5.9 (i)  (ii) B = 1.79 × 10−2T, (iii) R = 4.2mm, (iv) 

Exercise 5.10 ⵠR = 7.5×10−3m.

Exercise 5.11 0.16 T.

Exercise 5.12 BRI.

Exercise 5.13 

Exercise 5.14 4.5N.

Exercise 5.15 2.4×10−2N along the positive x-axis.

Exercise 5.16 Given.

Exercise 5.17  in the direction of I × B, where I is the current vector.

Exercise 5.18 

Exercise 5.19  The straight parts do not contribute.

Exercise 5.20 An attractive force 

Exercise 5.21  The answer is the length of the vector sum of three mutually orthogonal
contributions and therefore insensitive to the sign of the contributions.

Exercise 5.22 (i)  (ii) The line 

Exercise 5.23 (i) x = 0,  (ii)  (iii) unstable. (Negative force constant.)

Exercise 5.24 

Exercise 5.25 

Exercise 5.26  counterclockwise.

Exercise 5.27 

Exercise 5.28 (i) dA = (2π Rsinθ)Rdθ, (ii) dQ = σ dA, (iii)  

(iv)  (v) B = 8.4×10−10T.

Exercise 5.29 The circle encloses the maximum area for a given perimeter.

Exercise 5.30 



Exercise 5.31 τ = μ0nNI1 I2A sinθ = 1.7×10−4N ·m.

Exercise 5.32 X = 2R.

Exercise 5.33 (i)  (ii) 

Exercise 5.34 

Exercise 5.35 

Exercise 5.36 (i) μ = ia2NI, (ii) τ = ka2NIB0, (iii) τ = ka2NIB0 sinϕ = 8kN ·m.

Exercise 5.37 (i)  (ii) F = 2.6 × 10−5N. (iii) The magnetic moment and field are
parallel. Convince yourself that this argument holds even though the field is non-uniform in strength.
(Build this loop by gluing infinitesimally thin rectangular loops with the long sides parallel to y.
Currents along y due to one loop will cancel that of the next loop, leaving only the boundary current.)

Exercise 5.38 F = (μ0I2R/δ), attractive.

Exercise 5.39 Given.

Exercise 5.40 (i)  (ii) 

PROBLEM SET 6, FOR CHAPTER 10
Exercise 6.1 (i) μ0I0, (ii) μ0I0, (iii) −3μ0I0.

Exercise 6.2  at either center.

Exercise 6.3 

Exercise 6.4 (i)  (ii) 

Exercise 6.5 (i) Given. (ii) B = iμ0σ between the sheets and zero outside, (iii) 
repulsive.

Exercise 6.6 (i)  (ii)  counterclockwise.

Exercise 6.7 (i)  (ii)  Remember the induced emf is additive over the
N turns.

Exercise 6.8 

Exercise 6.9 (i) E = vB0j, (ii) VB −VA = vB0L.



Exercise 6.10 (i)  then a linear drop from this maximum of 

with a slope −2B0v2 till it hits 0 at t =  and remains at 0 thereafter. To obtain the current (which
will flow counterclockwise), use  for the force use  All maxima are
reached at  when the diagonal crosses x = 0. (ii) The maxima are reached when the diameter
crosses x = 0 and the area in the field grows at the rate 2av. At this instant  F
= 

Exercise 6.11 

Exercise 6.12 (i)  (ii) 

Exercise 6.13 

Exercise 6.14 (i)  (ii)  

Exercise 6.15 

Exercise 6.16 The emf  it will try to drive a current clockwise, which in turn will
produce flux going into the page. (Note: the flux due to the wire is also pointing down, but is
decreasing. The induced current will oppose this loss.)

Exercise 6.17 (i)  driving a counterclockwise current, (ii) 
 (iii) Pa = Fv = 6W = Pb.

Exercise 6.18 (i) I = 0.11A, (ii) F = 8.8×10−4N.

Exercise 6.19 (i)  (ii) Positive (negative) charges will
pile up at ends 1(4). (iii) E will point from 1 to 4 in the rod and follow ⊔ from 1 → 2 → 3 → 4.
Being conservative it must have the same line-integral over the two paths connecting 1

and 4. (iv) [V(1)−V(4)] (inside rod) = E − ohmic drop in rod = Ɛ − Iwρ = 0.16V =. [V(1)−V(4)]
(outside rod) = Iρ(w +2L) = 0.16V. (v) 
E(inside rod) = 

Exercise 6.20 v0 = mgR/a2B2
0.

Exercise 6.21 (i)  where the loop’s resistance (Eqn. 7.23) is R = 2(w +l)ρ/(π a
2), (ii) I =

4.6A.

Exercise 6.22 (i) Given. (ii)  (iii) average of cos is

 (iv) B0 = Ɛ/(ωR2) = 1.06T, (v) Ē = Ɛ/̄(2π R) = 63.7



Exercise 6.23 (i) τ = 10−3s, (ii) 

Exercise 6.24 (i) M = μ0nπ r2N2, (ii) 

Exercise 6.25 (i) M = μ0N1N2π r2/(2R), (ii) 0.02V, (iii) 0.02 V.

Exercise 6.26 (i) U = 1.9×107J, (ii) 8×104 turns.

Exercise 6.27 

Exercise 6.28 6.9 V.

PROBLEM SET 7, FOR CHAPTERS 11, 12, AND 13

Exercise 7.1 (i) Q(t) = 3.2×10−4 cos 7906t, (ii) Imax = ωQ(0) = 2.52A, (iii) 

Exercise 7.2 L = 2mH, C = 4μF.

Exercise 7.3 (i) 4×10−3J, (ii) 7.5×10−4J.

Exercise 7.4 3.8×10−3Ω.

Exercise 7.5 (i) R = ρ(2π r)N/(π a2) = 17Ω, (ii)  0.099H, (iii) Z = R + iωL = 17 +

372i = 372.5e1.52i, (iv) V(t) = |Z|I0 cos(1200π t + 1.52) = 11,174 cos(1200π t + 1.52), (v) Ec = 
 (vi) The drop across R is 0 when I(t) = 0 (when

sin1200π t = 0), and that across L is 0 when 

Exercise 7.6 (i)  (ii)  4.8A, 
 (iii) I1 = 0, I2 = −1.8A, (iv) I1 =I2 = 0. Notice L3 was essential but not its

value.

Exercise 7.7 1ms.

Exercise 7.8 L = 1.44mH.

Exercise 7.9 (i) Z = 695−300i, (ii)  = (.135+.207i)A, (iii)  = 0.248A.

Exercise 7.10 1.37KHz.

Exercise 7.11 17mH, 28Ω, and 21˚.

Exercise 7.12 (i) L = 0.1H, (ii) 2.82A.

Exercise 7.13 Given.



Exercise 7.14 (i) I0 = 5A, (ii) I0 = 2.73e0.99i, (iii) I0 = 3.81e−0.71i.

Exercise 7.15 49.5W.

Exercise 7.16 (i) 8, (ii) anywhere, as long as they are all in series.

Exercise 7.17 (i) Z = 66 − 10.9i = 66.89e−0.164i, (ii)  0.164)= −48.18V, 
  0.164)= −22.24V.

Exercise 7.18 (i) Z = 100 − 1166.7i = 1170.9e−1.485i, (ii) I(t) = e−50t [−0.024 cos911.5t +0.514 sin
911.5t]+0.282 cos(500t +1.485).

Exercise 7.19 Given.

Exercise 7.20

Z is real when  provided L > CR2.

Exercise 7.21 (i) V1 +V0 cosωt, (ii) 

Exercise 7.22  which vanishes at ω = 0 (shorted by L) and ω = ∞ (shorted by C), and
equals R at resonance.

Exercise 7.23 (R1, C2, L2) give a minimum |Zmin| = 160Ω, while (R2, C1, L1) give rise to the
maximum |Zmax| = 859Ω.

Exercise 7.24 (i) 

Exercise 7.25  The second formula is more direct:
it is the heat loss in R2, which is the only part of Z2 that dissipates energy.

Exercise 7.26 Both equal 0.75 cos(120π t +1.495)A.

Exercise 7.27 (i)  (ii) Bmax = B(a) = 3.49×10−13T.

PROBLEM SET 8, FOR CHAPTERS 14 AND 15

Exercise 8.1 (i)  (ii) f =9.55×108Hz, (iii) k = −20 along the y-axis, (iv) B =

−[3.34×10−6 sin(20y + 6 × 109 t)]i, (v) ū = 4.42 × 

Exercise 8.2  



Exercise 8.3 

Exercise 8.4 

Exercise 8.5 (i)  (ii)  (iii) 

Exercise 8.6 (i) P ≃ 4×1026W, (ii) P = 1.8×1017W.

Exercise 8.7 (i) P = qEv cosθ, (ii)  (iii) Invoking B =  the result follows. (iv)

10−2Pa, (v) F = 6 × 108N.

Exercise 8.8 (i)  (ii) 

Exercise 8.9 (i)  (ii)  (iii)  eρdA = −lEI = −VI. (iv)
This is the Ohmic loss.

Exercise 8.10 (i) B = ezμ0nI0 cosωt, (ii)  (iii) S = 0 on the flat faces
and  on the curved sides. (iv) S points outward (taking out energy) for
the first quarter cycle 0 <  (when the inductor is losing energy) and then alternates in sign
every quarter cycle. (v)  (vi) 

 (vii) Given. (viii) 1.38×10−6. Note that S is defined positive if
outgoing.

Exercise 8.11 (i)  (ii)  (iii) 
 (iv) 

Exercise 8.12 (i) 2k, (ii) ∇ · V = 2z, ∇ × V = −k. (iii) Given. (iv) −sinx+ 2z.

Exercise 8.13 Surface integral equals 1.

Exercise 8.14 Given.

Exercise 8.15 (i)  B = 0. (ii)  

Exercise 8.16 

Exercise 8.17 σxꞌxꞌ =σxx cos2 θ+σyy sin2 θ+σxy cosθ sinθ + σyx sinθ cosθ, σyꞌyꞌ = σxx sin2 θ + σyy
cos2 θ − σxy sinθ cosθ − σyx cosθ sinθ, σxꞌyꞌ = −σxx cosθ sinθ + σxy cos2 θ − σyx sin2 θ + σyy sinθ

cosθ, σyꞌxꞌ = −σxx sinθ cosθ −σxy sin2 θ + σyx cos2 θ + σyy sinθ cosθ.

Exercise 8.18 (i) to (iv): Given.

PROBLEM SET 9, FOR CHAPTERS 16, 17, AND 18



Exercise 9.1 (i) Its upper edge should be lined up with your eyes. (ii) Its upper edge should be
lowered by 3cm.

Exercise 9.2 (i) Given. (ii) (−1,2), (−1,−2), (1,−2).

Exercise 9.3 (i) Given. (ii)  θ2)/cosθ2, where  (Show
the equivalence of the two versions.) (iii) δ = 0.51mm.

Exercise 9.4 

Exercise 9.5  Verify that the two answers are equivalent.

Exercise 9.6 (i) θimin = 45.58˚, (ii) θincmax = 78.46˚.

Exercise 9.7 Given.

Exercise 9.8 (i) v = ∞, (ii) v = 2f, same size inverted, (iii) f < v < 2f, demagnified, inverted, (iv) v >
2f, inverted, magnified, (v) v < 0, virtual, erect, magnified, (vi)–(x) same as (i)–(v).

Exercise 9.9 (i)  (ii)  (iii) when both are at a height 2f = 4 (which is when
u = v), i.e.,  (iv) Once it hits the mirror it will complete an up and down motion every 2s,
taking 1s for each half.

Exercise 9.10  erect, virtual, 

Exercise 9.11 Virtual, inverted,  and located 6cm to the left of the diverging lens.

Exercise 9.12 (i) Given. (ii) (a) Candle reflected by PM to x = −20cm acts as object with u =120cm
for CM, which tries to form image at v =120cm, which gets intercepted by PM to form real image at
x = 20cm; (b) CM tries to form the image of the candle with u = 80cm at v = 240cm,or x = −140cm,
PM reflects this to x = 140cm, i.e., virtual object at u = −40cm for CM, which forms real image at v =
24cm or x = 76cm; (c) PM reflects real image of part (b) to x = −76cm or u = 176cm for CM, leading
to v = 91cm or x = 9cm.

Exercise 9.13 (i)  (ii) Given. (iii) The first lens forms a virtual object at u = −f1 for the
second. (iv) fe = ∞, the combination has no bending effect on incident light.

Exercise 9.14 (i)  to the left of the mirror, at  to the left of the lens, (ii) at v = 475cm
to the left of the lens.

Exercise 9.15 d = 16cm.

Exercise 9.16 

Exercise 9.17 L = d2/λ = .725m.

Exercise 9.18 (i) 916nm, (ii) at half the angle, 0.075˚.



Exercise 9.19 

Exercise 9.20 

Exercise 9.21 2.83 μm.

Exercise 9.22 Given.

Exercise 9.23 (i) 1: 9, (ii) zeros at  weak maximum at 

Exercise 9.24 61.2cm.

Exercise 9.25 769 nm.

Exercise 9.26 667nm.

Exercise 9.27 m = 3 at θ = 55.9˚.

Exercise 9.28 0.3nm.

Exercise 9.29 3314nm.

Exercise 9.30 

Exercise 9.31 

Exercise 9.32 (i) and (ii) 2.8mm.

Exercise 9.33 (i)No path difference, π shift due to reflection at air → glass interface, (ii) 4.8mm, (iii)
0.5 × 4.8mm.

Exercise 9.34 (i) Equal path lengths (zero) but a π phase shift for one, (ii)–(iv) Given.

Exercise 9.35 

Exercise 9.36 (i) 400nm, (ii) 200nm, (iii) 245nm, (iv) 123nm.

PROBLEM SET 10, FOR CHAPTERS 19 AND 20
Exercise 10.1 (i)  (ii)  (iii) 0.61nm, (iv) 610nm.

Exercise 10.2 

Exercise 10.3 (i) 1.82 ×1020s−1, (ii) 

Exercise 10.4 (i) 3.7pm, (ii) 6.6pm.

Exercise 10.5 (i) 10.2eV, (ii) λ = 121nm, (iii) y0 = 606μm, (iv)  404μm, (v) 



Exercise 10.6 (i) λ = 1.67 × 10−10m, (ii) d = 9.2 × 10−11m.

Exercise 10.7 (i)  (ii)  (iii)  5 × 10−10m, (iv) 

 (v)  (vi) ⵠxⵠpx ≃ 1.3×10−33J · s ≃ 12.6ħ.

Exercise 10.8 (i)  (ii)   (iii) 2θ

=ⵠpy/p0 = 0.2 radians. (iv) The result θ ≃ 2θ∗ means the uncertainty introduced in the angle of the
emergent electron exceeds the width of the first maximum, thereby washing out the pattern.

Exercise 10.9 (i)  (ii) ψ(x) = A exp2.3×1010ix, where A is arbitrary and x is in
meters.

Exercise 10.10 (i) 0, because ψ(2L) = 0, (ii) ψ(−x)=ψ(x), (iii) P(−x)= P(x), (iv)  (v)  by
symmetry, (vi)  (vii) 0, (ψ = 0), (viii) ψ(−x)= −ψ(x), (ix) P(−x) = P(x), (x)  (xi) 
(by symmetry), (xii)  (by symmetry).

Exercise 10.11 (i)   0 otherwise, (ii) 〈x〉 = 0 by symmetry (xP(x) is an
odd function or x and −x are equally probable), (iii) 

Exercise 10.12 (i)  normalizes it;  (ii) ψapp(x) = 

 (iii)  (iv)

PROBLEM SET 11, FOR CHAPTERS 21 AND 22
Exercise 11.1 (i)  (ii)  (iii) P(|x|> 

 (iv)  (v)  (vi) 

Exercise 11.2 (i)  (ii) p =  (iii) 
  (iv) 

Exercise 11.3 (i)  (ii)  (iii) P(p) = |A(p)|2, (iv) 

 (v) ∆p = ∞, i.e., P(p)p2dp diverges even though ∫ P(p)dp = 1. The
divergence of ⵠp, which seems artificial, results from the artificial discontinuities of ψ(x) at 

 The result ⵠx ⵠp = ∞ of course still obeys the exact uncertainty principle.

Exercise 11.4 (i)  m ≃ 4330, Lz ≃ 4330ħ, (ii) I ≃ 5.1×10−8A.

Exercise 11.5 Given.



Exercise 11.6 (i) P0(z) = 1, P1(z) = z,   3z). (ii) Given. (iii) 
  (iv) Given. (v) Given.

Exercise 11.7 (i)  (ii)  (iii)  in both
cases.

Exercise 11.8 (i) ψ(x) falls exponentially to the right of xR out to x → ∞, and oscillates to the left of
xL out to x → −∞ the oscillations getting more rapid (less rapid) when E − V(x) increases (decreases).
(ii) E is not quantized: there is one less condition than in a bound state and thus one solution at each
E.

Exercise 11.9 (i)  (ii) and (iii) 0 by symmetry.

Exercise 11.10 (i) Make the replacement  (ii) 〈p〉 → 〈p〉 + p0, (iii) bring in 

Exercise 11.11 (i)  (ii)  (iii) Δx =  (iv)  (v) use parity

for ψ1 and the known 〈x2
〉 for ψ2.

PROBLEM SET 12, FOR CHAPTERS 23 AND 24

Exercise 12.1 (i) k = 7.27 × 1010m−1, kꞌ = 5.14 × 1010m−1,  0.171, 

(ii) k = κ = 7.27 × 1010m−1,   (iii) at  (iv)
Replace V0 by −|V0| in the expression kꞌ in the answer to (i). Note there is non-zero reflection even at
a potential drop. This can happen only with a wave, never a Newtonian particle. (v) 

 9705s−1

transmitted, which add up to 9999s−1 ≃ 10000s−1, the incoming flux, within round-off errors. (vi)
All reflected, none transmitted.

Exercise 12.2 (i) r = e−κⵠ = 1.6 × 10−16, (ii) Pt = r2 = 2.7 × 10−32, (iii) f = 5.8×1020s−1, (iv) τ =

6.4×1010s ≃ 2000yrs.

Exercise 12.3 (i) ⵠE = 0 and nothing ever changes, (ii) ⵠE = 4.1 × 10−7eV.

Exercise 12.4 (i) By its definition A(p) → A(p−p0) and P(p) → P(p−p0). Rigidly shifting the curve

P(p) by p0 does not alter its “width” ⵠp. (ii)  (iii)  (iv) 

Exercise 12.5 (i)   (ii) 

 (iii) up to an overall constant, 



 (iv)  (v) P(x, t) = P(x,0). (In the last two parts we note that

even though ψ is a state of indefinite momentum it is a state of definite energy.)

Exercise 12.6 (i)  (ii) Append factors  and 
 respectively to the two terms in part (i).

Exercise 12.7 Solve Eqn. 23.23 with V(x) = λx4, demanding ψ(±∞) = 0.

Exercise 12.8 (i) Both in n = 0, with E = 0, (ii) one each in n = 0 and n = 1, E = ħω, (iii) one each in
n = 0 and n = 1, E = ħω, (iv) one each in n = 0 and n = 2, E = 2ħω.

Exercise 12.9 (i) Both in n=1,   (ii) one in n = 1 and one
in n = 2, 

 (iii) one in n = 1 and one in n = 2, 
 (iv) one in n = 1 and one in n = 3, 

 ψ(x1, x2) = 

Exercise 12.10 Both are in the ground state with energy  and thus cannot be fermions.



Constants

G = 6.7 · 10−11m3 · kg−1 · s−2 gravitational constant
e = 1.6 · 10−19C proton charge
me = 9.1 · 10−31kg electron mass

mp = 1.7 · 10−27kg proton mass

ħ = 1.05 · 10−34J · s Planck’s constant

Bohr radius
1 Amp = 1 · C/s

Boltzmann’s constant



Index

21 cm line of hydrogen, 507
C = ∂S, 64
D-operator, 556
F = ma, interpretation, 1
P-operator, 557–558
R (reflection coefficient), 526
S = ∂V, 64
T (transmission coefficient), 526
X-operator, 558
α particles, 21
ψ: round two, 451
c, brief history of, 338
c, measurement by Galileo, 339

Absolute value, 233
AC circuits, 220
action, 370
action at a distance, 3
adding waves using real numbers, 383
Aharanov-Bohm experiment, 328
alpha decay, 532, 533
Ampère’s law, 169
amperes, 121
angle of incidence, 341
angle of reflection, 341
antisymmetric tensor, 330
antisymmetric wave function, 571
area vector, 53
areas, composition of, 55
atomic structure, quantum theory of, 574
atomic theory, 6

background, 17
bar magnet, microscopic description of, 162
bar magnets, 143
betatron, 200
Biot-Savart law, 158
Bohr radius, 521, 575
boson, 572
bound states, 500
Bragg, 400

capacitance, 114



capacitor, 113
capacitor: parallel plate, 31
capacitor: spherical, 114
capacitor: stored energy in, 115
Cartesian form, 232
charge conservation, 10
charge conservation, local, 10
charge on conductor, 77
circuits, 121
circulation, 132, 168
circulation of force, 132
collapse of the wave function, 438
commutator, 157
compass, 143
complementary solution, 251
complex numbers, power of, 253
complex numbers: review, 231
Compton effect, 414
Compton wavelength, 415
conductance, 124
conductivity, 121, 124
conductivity tensor, 616
conductor, 7
conductor: surface charge, 79
conductor: surface field, 79
conductors, 75
conductors and capacitors, 97
conservative forces, 82
constants, 585
constructive interference, 390
continuity equation, 319
convex lens, 342
convex mirror, 365
Coulomb gauge, 323
Coulomb potential, 81, 89
Coulomb’s law, 8
Coulomb’s law: continuous charge density, 17
crystal diffraction, 400
Curie temperature, 164
curl, 292
current density, 121
current in wire, 121
cyclic permutations, 87
cyclotron, 149, 200
cyclotron frequency, 149

dark matter, 16
Davisson and Germer: electron waves, 419
de Broglie, 416
de Broglie (matter) waves, 416



de Broglie wavelength, 417
dees, 150
degeneracy, 505
delta function, 451
derivative operator, 312
destructive interference, 391
determinant, 573
determinant wave functions, 573
dielectric, 7
diffraction grating, 394
dipole, 29
dipole moment, 35
dipole: far field, 36
dipole, field of, 33
dipole, potential and field of, 93
Dirac δ function, 559
Dirac theory, 583
discharged, 5
displacement current, 259, 261
divergence, 291
double-slit experiment with light, 407
double-slit for electrons with lightbulb, 430
drift velocity, 123
Drude coductivity formula, 124

eigenfunction, 557
eigenvalue equation, 557
eigenvalue problem, 556
electric field E, 22
electric field inside a shell, 69
electric flux, 61
electrical energy density uE, 120
electromagnet, 144
electromagnetic field tensor, 333
electromagnetic plane wave, 277
electromagnetic tensor F, 328, 332
electromagnetic wave: derivation, 275
electromagnetic wave: energy in, 283
electromagnetic waves, 263
electromagnetic waves, origin of, 285
electromagnetism and relativity, 300
electromotive force, 133
electromotive force, ɛ, emf, 130
electron volt, 101
elliptical mirrors à la Fermat, 349
emf in a moving loop, 186
energy in E, 120
energy of charge distribution, 116
energy-time uncertainty principle, 544, 576
ensemble, 456



equipotentials, 101, 103
ether, 326
Euler’s formula, 234
Euler-Lagrange equation, 372
expectation value, 457
eye, 372

farad, 115
Faraday, 115
Faraday and Lenz, 184
Faraday’s law, 190
Faraday’s law: digression, 195
Fermat, 342
Fermat’s principle, 342
fermi: unit of length, 521
fermions, 572
Feynman and least action, 372
field: infinite line charge, 43
field inside a shell, 69
field lines, 27
field lines, density of, 28
field of infinite charged wire, 72
field of infinite sheet from Gauss’s law, 74
field of infinite wire from Gauss’s law, 72
field of spherical charge: by Gauss’s law, 66
flux, 57
focal point, 341
four-current J, 317
four-current, conservation of, 318
four-potential, 325
Fourier expansion: vector analogy, 486–487
Fourier series, 474
Fractional Quantum Hall effect, 599
functional, 370

gauge condition, 323
gauge equivalent, 323
gauge invariance, 322
gauge theory, 305
gauge transformation, 323
Gauss’s law, 30, 52, 53
Gauss’s law: applications, 66
Gaussian, 455
Gaussian surface, 65
gedanken experiment, 260
general solution to time-dependent SE, 541
generator-moving loop, 187
generators, 205
geometric optics, 336
geometric optics, failure of, 337
geometric optics: highlights, 340



geometric optics: ray tracing for mirrors, 357
gradient, 85
gravitational to electric forces, ratio of, 15
gyromagnetic ratio, 604

Hall conductance, 599
Hamiltonian operator, 564
Heisenberg microscope, 427
Heisenberg uncertainty principle, 422
henry, 213
Henry, Joseph, 213
hollow conductor, 78
Hooke’s law, 3
Huygens’s principle, 388

identical versus indistinguishable particles, 567
image charge, 108
impedence, 238
inductance, 208
inductor, 214
inhomogeneous wave equations, 325
integral of ψp(x), 468
interference, 378, 380
interference, analysis of, 388
interference of light: Young’s experiment, 378
interference of waves, 381
ionic bond, 576
ionization, 103

Kirchhoff’s laws for circuits, 126
Kronecker delta, 488

Lamb shift, 584
Lawrence, E. O., 149
LC circuit, 226
LC circuit: driven, 229
LC circuit: resonance, 230
LCR circuit (driven), 231
LCR circuits using complex numbers, 236
LCR circuits: analysis of current, 246
Legendre polynomials, 625
lenses à la Fermat, 368
Lenz, 190
lifetime, 583
light, wave theory of, 377
line width, 580
Lorentz force, 145
Lorentz force on a wire, 151
Lorentz gauge, 323
Lorentz scalars and vectors, 315
Lorentz transformation: review, 305



LR circuit with battery, 221

magnetic dipole, 154
magnetic dipole, energy of, 155
magnetic energy density uB, 217–218
magnetic field, 145
magnetic field of a loop, 160
magnetic field of infinite wire, 164
magnetic field of infinite wire (Ampère), 176
magnetic field: work done by, 146
magnetic moment τ, 155
magnetic monopole, 11
magnetism, 142
magnetism from relativity, 301
magnetism: key experiments, 142
magnetostatics, 145, 158
magnification, 359
magnification for eye, 375
many-particle quantum mechanics, 566
matter waves, 416
Maxwell equations in integral form, 261
Maxwell equations: general case, 286
Maxwell equations: infinitesimal cubes, 270
Maxwell equations: infinitesimal loops, 272
Maxwell equations: micro to macro, 294
Maxwell equations: restricted fields, 270
Maxwell equations: time-independent case, 172
mean, 456
mean collision time τ, 123
measurement postulate: general, 491
measurement postulate: momentum, 469
method of images, 104
mirror and lens equations, 342
mirror images, à la Fermat, 360
momentum, allowed value of, 466
momentum operator, 558
momentum states on a ring, 462–464
monopoles, 155
motor (DC), 156
mutual inductance, 211, 212

natural units, 548
near point, 374
normal modes, 518
normalization condition, 453
nuclear force, 20
nuclear force, strong force, 20
nucleon, 21

Ohm’s law, 125



Ohm’s law: complex form, 241
oil slick: reflection from, 401
operator, 556
oriented or signed area, 53
orthonormality, 488

parabolic mirrors à la Fermat, 352
parallel plate capacitor, 114
partial differential equation, 268
particle in a box, 507
particle in a box: energy quantization, 517
particle in a box: minimum energy of, 520
particle in a box: wave functions, 518
particle in a well: classical, 507
particle in a well: quantum, 509
Pauli exclusion principle, 573
periodic table, 576
persistent current in quantum rings, 506
phase, of complex number, 234
photoelectric effect, 412
photons, 338, 409
photons versus electrons, 420
Planck length, 584
Planck’s constant, 409
plane waves, 277
plaquettes, 56, 297
plasma frequency, 77
polarization, 7, 281
polarization axis, 282
postulates: final, 565
postulates: first pass, 550
postulates, refinement of, 554
potential, 89, 91, 97
potential from Gauss’s law, 99
potential versus potential energy, 97
potential: visual aids, 101
power factor, 250
power loss in resistor, 130
Poynting vector, 284
primary, 208
principle of least action, 370
principle of least time, 342
probability: classical versus quantum, 446
probability density, 453
product solution to time-dependent SE, 536

quantization, 467
quantization of E in a well, 511
quantum dynamics, 533
quantum field theory, 12, 584
quantum mechanics: main experiments, 406



quantum ring, 624
qubits, 449

radio, 248
ray in quantum mechanics, 454
ray optics, 337
ray optics for virtual images, 366
ray optics: tricky cases, 364
ray: wave function as, 454
RC circuit, 127
RC circuit with battery, 135
reflection, 524
reflection à la Fermat, 343
reflection from curved surface à la Fermat, 346
reflection in wave theory, 398
relativistic invariance of electrodynamics, 305
resistance, 125
resolving power of microscope, 427
resonance, LCR, 248
retarded interaction, 25
right-hand rule, 54
RMS voltage, 258
Rodrigues’ formula, 625
Römer’s measurement of c, 339

scalar and vector fields, 309
scattering and dynamics, 524
scattering E > V0, 526
scattering for E < V0, 530
scattering: classical, 525
scattering: quantum, 524
scattering: time-dependent approach, 524–527
Schrödinger equation, time-independent, 499
second tank tensor, 328
secondary, 209
series and parallel elements, 139
single-slit diffraction, 397
single-slit diffraction of electron, 424
single-valuedness, 464
Snell’s law, 341
Snell’s law à la Fermat, 343
solenoid, field of, 179
spherical mirrors, 355
spin, 575
spontaneous emission, 541
square well, 508, 509
square-integrable, 451
standard deviation, 457
Standard Model, 12
states of definite x and p, 493



states of definite energy, 495
stationary states, 540
statistics: mean and uncertainty, 456
superposition, 451
superposition principle, 13
superposition principle, in electrodynamics, 12
symmetric wave function, 569

tensors, 328
Tesla, 146
thermal wavelength λT, 622
time-constant (LR circuit), 223
time constant t0 for RC circuit, 129
time-dependent Schrödinger equation, 534
time evolution of non-product state, 545
toroid, field of, 182
torque on magnetic dipole, 154
total internal reflection, 346
totally antisymmetric wave functions, 573
transformer, 214
transients, 251
transmission, 524
tunneling, 531

uncertainty, 457
uniqueness theorem, 106
uniqueness theorems for V, 110

vacuum fluctuations, 541
valence electron, 576
variable capacitor, 249
vector field, 291
vector potential, 321
velocity filter, 147
virtual object, 618
volt, 91

wave equation, 268
wave equation for A, 324
wave equation for string, 266
wave function, 383, 420, 435, 444
wave function for state of definite p, 435
wave number, 277
wave packet, 525
wave-particle duality, 419
work, 83
work function, 75, 413
work-energy theorem, 83

Young, Thomas, 378
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