zotero/storage/DWL3G6YD/.zotero-ft-cache

1053 lines
121 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Diffraction,
Refraction
and
Reflection
of
Radio Waves
V.A. Fock
Published for the
National Aeronautics and Space Administration
1975
Translation of "Osvoyenlye Kosmicheskogo
Prostranstva v SSSR, 1957-1967," Moscow,
"Nauka" Press, 1971,
TRANSLATED FROM RUSSIAN
Thirteen Papers
AFCRC-TN-SM02 A4TIA DOCUMENT NO. AOIWJ74
DIFFRACTION, REFRACTION, AND REFLECTION OF RADIO WAVES
THIRTEEN PAPERS BY V. A. FOCK
INTRODUCTION BY V. L SMIRNOV APPENDIX BY M. A. 1EONTOVICH
EOHOB, N. A. IMAM ASSOCIATE EDITOR, P. MACKSMITH. JR.
ANTENNA IABORATORY HICTRONICS RESEARCH DIRECTORATE
Requests (or additional copies by A^r.-.cies of ibe Dtpertrr.est of Defense, tbeir connectors, end other
AHMf'DSERVICES TECHNICAL INFORMATION AGENCY DOCUMENT SERVICE CENTER, DAYTON 2, OHIO
Deportaeol ot DefeoM contractor* oast be eetablished lot ASTIA services, or bare tbeir 'aeed-to-laow* certi fied bp the cogaissst nllitarp egesep of theii project
All other persoos sod argeaizniinaa shotId epplr to the:
U. S. DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES, WASHINGTON 2$, D. C.
EDITORS' NOR
The S osiet p h y sic ist V.A. Took 1* w ell known ty p h y sicist* fo r hi* work l a quanton nechaniee, p a rtic u la rly In eonnwtloB w ith the B artreoPoek thaory o f ealf-co o e lo ta n t f ie ld s . The purpoie o f th ia eo lleo tlo n i t to »equaint th e reader w ith Peak'* nore recent work on the p ro p o r tio n , r e fra c tio n , and d iffr* o tlo o of radlowavaa. Pock's e a r l/ papare on tM i subject (th e f l r e t f i r e papers in th is c o llec tio n ) appeared la B igllah alnoat a doeado ago. Boweror, a l l of h ie aore recant work haa been pabllehed in Russian and le r e la tiv e ly unknown ontelde the S o riet
The tren e la tio n a In th ia co llec tio n bare been baacl upon tra n s la tio n s obtained fro n e e reral aoureea. H r. Barman V. Cottony o f the Rational Bureau o f Standards and K iss A. P in ta il of th e Raral Reeseroh Laboratory, ree p eo tire ly , aada the o rig in a l tren e la tio n a o f Chapters VX and XX o f th ia e o llo etio n . The tr a n s la to r o f Chapter P IU ia unkn o n to tha e d lto re . The r m e l n il lT ig ahaptsrs ware tra n s la te d ty K orria D, Prlednan. Chapters T ill , XX, and X ware nade ty Itor r l e D. Prlednan, Xno., Kew tonrllla, Kassaohuaette. Chaptars XXX and XXIX wars aada in oooparation w ith Llnooln Laboratory.
According to tha L ibrary o f Congress aohonc f o r the tr a n s lite ra tio n o f the Buseian alphabet, Pook'e nans appears aa Pok. Howerer, because o f the aore general use In s c ie n tific lit e r a t u r e o f tho fo ra Pock th e ed ito rs have reta in e d th is fo n t In th is c o lle c tio n .
:3.IESiS
JHTKOXTICN: V.*. FOQC'S CCMEB'.'TTCKS TO DIFFRACTICS TKE3SI ( 7 Ia iiji.tr AIsitsa n d w ic h Fok. 17-32, P rin tin g Rouee o f the Acedesr Science, Katcow, 1956). 1
I . m METHODS IN DIFFRACTION THECST (Philosophical Haraslne 2 ° , 2AM.35, 1946). 1
n . THE DUTHIE7E OK CF CHWfllTS EIDUCBB BI A FLANZ WATE CB THE SURFACE CF A CONDUCTOR (Journal s i Thesis». USSR. 1,0, 130-136, 1946). 13
r u . m p m cT ioK of radio wire? around the earth' s surface (Jou rn al o f Physics. USSR, o , 2 5 W 6 6 , 1945). 31
1 . Stateaeu t of the Problas and i t s Solution lr. th e Fora of S e ries 32 2 . The S-jnoatlon Foraula 35 3 . The E rol'jaU ca of th e H erts Function f o r th e lliircia aied Region 41 4 . Asymptotic- E x p ressio n fo r the Henkel Function 46 5. The Expression? o f th e Herts Function Valid In th e Pemmbra Region 51 6 . Discussion or th e Expression f e r the Hertc Function 55
17. SOL'jTIW OF THE ROEi iM OF ISf-FACAT.'W OF ELECTROMAGNETIC WAVES AlOW.- THE KARTj"S SJRrACE ffi THE METHOD OF PARABCUC EQUATION (sJc'^M k =£ 13-36, 1946).65
1 . Tr.« Csse of a Flar* E arth 2. The Cate of s Spaerioal Earth Table 1
7 . THE FIELD CF A PLANE WAVE HPtR THE SURFACE CP A CONDUCTING BODf (Jou rn al £ Physics. USSR. 39*-409, 1946).
1 . The Geometrical Aspect o f the Problem 2 . Sim plified Maxwell's Equations 3 . Sim plified Bcur.-jary Conditions 4 . D sterttinetloc of th e F ield Ccopanent
V OTIC
5S§s 3 sa s
C o n o rs (cant'd)
5, D etiralnation of tha Ccxsponool H. aad the Othor Mold Cooponents 116 6, The Plaid In the IU u a ln a tad Region 120 7, Conelualea 124
n PROPAGATION CP TUB DIRECT NAYS AROUND THE BARTH WITH DOB a c c o m fo r d iffra ctio n akd r e fra c tic h Ciffi. ( s jr . Q | . ) , & 81- 97, - 1948) . 127
1. D if fe re n tla l Equations and th a Boundary Conditions of tha P ro b lm 129 2. Tranafar to Dlaanslonleae Q uantities 135 3. Solution of Equations 139 4. Inv estig atio n of tha So lu tio n fo r tha Region of O lraot V is ib ility 146 5. Inv estig atio n of tha Solution fo r tha Raglan of th a Psntasbra (F ln lta X and I ) 1£L
m , THEOfll OP RADI0WA7E PROPAGATION I I AH UWCMOGBiBOCS ATMOSPHERE POB A RAISH) SOURCE (UK (Se£. & * .) , JA, 70-94, 1930) . 159
1. Pundasental Equations aad M a ttin g Conditions 160 2. Approximate Porn of th a Equations 164 3. Analogy with tha Unsteady P roblm of Q u an ta Xeehanlea 167 4. Trenefomatlon to N ondlmnslanal Q uantltloa 175 5. Properties of Partloular Solutions of ths D lffsra n tla l Equations 178
6. Construction of th s S olution as a Contour In te g ra l or S e ria l 184 7. A pplication of tha Saneral Theory to the Superrafraotlon Case (Schematic Kxanple) 191 8. Appradmata Fomulaa f o r la m s with low A ttenuation 198
7I U . THE FIELD FRCH A VSiTICAL AHD A HORIZONTAL DIPOLE, RAIS3 ) ABOVE THS EARTH'S SURFACE C z m . 916-929, 1949) . 30?
1. V ertic al H&lsed Olpola. Solution In S e ria l Pom 207 2. Appradaate Series Sum st ld o fo r tha Harts Function 209 3. The Attenuation Paotor 212 4. R aflaction Pomnla 215 5. H o rlw a ta l E la o trlo al D ipole. PrimaryP laid 221 6. S e ries f o r tha Total P la id 224 7. A ppradaate Expressions fo r th a P laid 228
Corral13 (oo n t'd ) H . FRESNO. DIFFRACTION FROt CONVEX BODIES
3 . Computation o f the I n te g r a l $ 4 . Evaluation of the Integral 5 . The A ttenuation Factor In th e Region of the Shadow-Cone
Z. FRESNEL REFLECTION LAWS AND DIFFRACTION LANS (SEES* & 30S-319, 194«).
1 . F resn el R eflection Lave 2. Cross-Section o f a Bean of Refleoted Bars 3 . Klectroiaagnstlo F ield o f the Refleoted Wave 4 . D lffreo tio n Laws In the Penuabra Region 5. Investigation of the Expressions for the F ield s In the Dobra and D ire c t-V isib ility Regions 6 . Comparison o f th e D lffreo tio n F o w l* w ith th e F resn el F o w l s f o r the Lino-of-S ig h t Region
U . QENERALIZATIGN OF THE REFLECTION FORMULAS TO THE CASE OP REFLECTION OF AN ARBIIRAKI NAVE FROM A SURFACE OF ARBITRARI FORK (ZSTF. 2£, 961-978, 1950).
1 . Fresn el Formula* 2 . D iffe re n tia l Oecnetiy of th e Reflecting Surfaeo 3 . Croes-Seotlon of th e Bundle of Reflected Rays 4 . C alcu latio n of th e Determinant 5 . D iffe re n tia l Geometry of th e Nave Surface 6. Reflection F o w l* 7 . R e flec tio n o f th e Spherical Hava from the Surface of a Sphere
H I . APPROXIMATE FORMULA FOR DISTANCE OF THE HORIZON IN THE PRESENCE OF SUPERREFRACTICB (BadloteRh. 1 Elafctr. i , 560-574, 1956).
1. Introduotlon 2. In itia l Fow l** 3 . H o w l Refraction Case 4 . Asymptotic In teg ra tio n o f a D if fe re n tia l Equation with a C o efficien t Having a Mini 5. Investigation of the Attenuation Footer 6 . F o w l* fo r the Distance
(UFR. *1, 587-599, 1951).
1, Fonmlaa for the Attenuation Factor 2 . Reformulation of the A ttoiuatlIoonn FFaacctor
233
d
S S b S S 8 2 g * 8 2 ? 4$ g 5 S £ m
CONTEXTS (c o a t'd )
n n . OR RAITOWAVB propagation near the horizcx with SUFQQUTRACTIOH (R adlofkh. 1 B * t £ . i , 575-592, 1956).
1. Introduction 2 . On tb* Horlooa Conoa£t l a tb« Prosene* of a Tropospheric Wsreguid* Hoar th« Earth 3 . Fundamental Fom alaa 4 . R eflection Formula 5. Nuaarloal Result* l a Nondlaanalonal Coordinate! 6 . Attenuation Factor l a Deep Shad*. Raaldua Sariaa 7. A a a rlo a l Reault* f o r a Concrete Caaa
APPEDDIZl APPR0X1XATE BOUNDAKT CCNDITICHS FOR S I KUCTRCKAGNSTIC FIELD CM THE SURFACE CP A GOOD CCNDOCTGR
(InvMjl|a&}0g | {ft BadlowaT* Proaa«atlon. P a rt I I . 5-1 2 ^P riatin g b a a * o t tha Aoadsqf o /S cia n ca a,
Abbreviations f o r Soviet Journal*
IAS (Ser. F i t. ) . Isra a tu a Akadcall Rank S3SR 3 * rrla Plilc h ask a la (B o lla tla o f th e Aeada
S a rrlaT falch o ak al* (B o lla tla o f th e Acadsay of Solaneaa of OSSR - Physics Sa riaa ).
Zfauraal E kiparlm entalcol 1 Theoreticheskol Ltlki (Journal o f Experimental and Theoretioal Physios).
Radiotekh. £ K lsk tr. . ( R a d lo an g ln e ar la g
Radlotalchnlka 1 Elolctronlk* and E lectronics)
**m \
7 . A, FOCI'S COHTRIBOTICSS TO DIFFBACTiai THBORT
1 . DITBODOCTICa
7.A. Foek became in te re ste d In d iffra c tio n problem* cim peratively rec en tly . Within a abort tin e he succeeded in obtaining nueeroue re su lts whioh e re very la p o rten t both In th e o re tic a l end In p ra c tic a l aspects. By fo re ca stin g the paths of fu rth e r In v estig atio n s In th is f ie ld , they undoubtedly a re epochal In d iffra o tlo n theory. The solutio n of the problems of aleotronagnetlc w*ve d if f ra c tio n c onsists of fin d in g so lu tio n s of th e Xaxwell equations su b ject to specific i n i t i a l and boundary conditions on th e d iffra c tin g surface and rad ia tio n c onditions a t I n f i n ity . The I n i t i a l conditions a re often re placed by the requlrenent th a t the solution be sinusoidal in tin s . Foek devoted h la e e lf to an an aly sis of problems of the la s t k ind. P rio r to the Foek In v estig atio n s In th s theory o f electromagnetic wave d if fra c tio n , only so lu tio n s f o r a small masher o f prob i n s f o r o b stacles of a sp e cific shape were know , such se t th e In fin ite wedge, cylinders c irc u la r, e ll i p t l e and parabolic - and a lso fo r the sphere. In addi tio n , the problem of d iffra o tlo n from a paraboloid of rev o lu tio n , solved by Foek b ia se lf in 1944, should bo added to th s above l i s t .
The previous so lutions o f th s problems mentioned aboys, which wars represented by s e rie s o r by I n te g ra ls, ware not eery u sefu l In th s Important p ra c tic a l cass tdian the wavelength Is small In comparison to the dimensions o f th e o b sta cle, and thay should be considered as only the f i r s t step In solving the problTM , The next step must bo ths de riva tion o f form ulas fr<a which q u a lita tiv e physical consequences can be obtained and which a re . In ad d itio n , su itab le fo r p ra c tic a l computational Hence, one of th s p ossible d irec tio n s o f work in d if f ra ctio n theory was th e development of a method of is o la tin g th s p rin c ip al pa rts out o f th e complex form ulas idiiofa c o n stitu te the exact solution of th e probing. The Pock In v estig atio n s ware mads In th is d ire c tio n whan solving th s problems of d if f ra e tlo n from a conducting sphere a s w sll as from a paraboloid o f rev o lu tio n , n a tu ra lly , the method c ite d la a p p licab le only in those few oases idian an axact solu tio n can be constructed su c cessfu lly . Consequently, an u rgent need existed f o r th e c re atio n o f an approximate method of solving d if f ra c tio n problems tA ieh, w hile being g e n eral, would lead to r e la tiv e ly simple form ulae. The fundamental works of Pock on d iffra o tio n a re devoted to the construction of auoh an approximate method and to th e so lu tio n of a rnanber of p r a c tic a l important problems by using th is method. Pock developed and used th e parabolic equation method propoeod by Lacntovioh. Thla permitted him to give not only new sim p lified d e riv a tio n s of re su lts he had obtained e a r lie r by o th er
11
but also to goneralleo
than 1a various d irec tio n s (to take the f in ite conductivity o f the tody in to account) to dotem in* th e f ie l d oloee to th e aurface aa v e il as on th e surface I ts e lf j to take ataospherle ln h c ao g w e ltle s Into aooount in the p r o b l« of d iffra c tio n of ra d io w res around the e arth s surface). As i s every approximate msthod of solving boundary value prob i n e , the Fock method Is based on the smallness of c e r ta in parameters en countered in th e problem, th e q u a n titie s which a re u su ally small In the problems of radiowave d iffra c tio n a re i -jA. and -^r-, th e re t; m £ * 1 i s th e aduplex d le le o trlo constant of th s d lffra o tln g body) Jl. i s th s wavelength of th o in c id en t wave) 1 i s a q u an tity of tho order o f th s rad iu s of curvature o f th s surfaoo o f tho body. I f |7^j ■ « (p erfe o t conductor), than th e f ie l d w ithin the oonduoto r i s te ro , l . e . . I t i s known In advance. T his c lrc u n ta n c * permits the d if f ra c tio n problem to bo form ulated only f o r th e space outalde th e body, which lead s to su b sta n tia l sim p lifica tio n . The situ atio n In th e Imperfect conductor oate Is sim ilar I f the In eq u a lities | y/1 ■>> 1 and
In th is eaae, the f ie l d w ithin the conductor appears to be van ish in g ly small everywhere except In a surface la y er o f thickness of order where th e lnfluenoe o f th is la y e r can bo taken in to account by using boundary conditions f o r th s ex tern al f ia ld
"V7 - »A> V1* n.*V >ett
in
(i)
idler* Jg, Jy, *re the components of th e ourra n t d en sity ; n^, n^, a re tbe u n it v ector components normal to the body aurfaoe. le ad . N.A, Lsontovioh f i r s t suggested tbe aforementioned conditions In a ra th e r different fora. Consequently, tbe approxim ate f em u latio n o f the d iffra c tio n problem I s thereby reduced to a problem Involving the f ie ld s e x terio r to th e body. A fu rth e r e s s e n tia l sim p lifica tio n in problene of rad io wave d lf f ra e tlo n fro * bodies of a rb itra ry shape r e s u lts fro * the p rin c ip le of tb e f ie ld being lo c a l in tbe half-shadow region. I f tbe eleotrcnagnetlo f ie l d n ear th e surface o f a conducting body were to be determined su c cessfu lly , and, th e re fo re , th e current d istrib u tio n in the surface lay er, than the solution of the diffraction problocs would be a tta in e d bjr simple well-known formulae f o r the vector p o te n tia l. Tbe f ie l d in th e illum inated region near th e body i s subject, with a high degree of accuracy, to the Fresnel lava of r e f le c tio n , and, th e re fo re , can be determined e a s ily ; the f ie l d decreases rap id ly to sero In the shadow region. Consequently, th e u n attain ab le lin k In th e approximate so lu tio n of th e d if f ra c tio n problems I s the tr a n s itio n region (half-shadow) located near th e geometric shadow boundary and with the shape of a band o f width
la the rad iu s o f curvature of a normal eaotloc o f the body In the Inoldent plans. Pock succeeded in showing th a t th e electromagnetic f ie l d in the half-shadow region i s , to the accuracy of qu an tities of the order of It
of lo c al c h arac ter, 1 ,* ,, i t depemfeonly on the values
of the incident w n f ie l d In tho neighborhood o f the g i f t s p o in t, on tho geometric thtpo of th # body near th is p o in t, and on the a la c trlo properties of tilt conductor. After tho p rin cip le o f tho lo c a l f ie l d had bean estab lish ed , there* remained only to find th e so lu tio n o f th e d if f ra c tio n problem fo r a convex body o f su ffic ie n tly general shape, and to d e rlfe the approxi mate formulae f o r the f ie l d on I ts su rfa ce . I t la convenient to take the paraboloid of rev o lu tio n aa euoh a body, l a solving the problem of plane wave d lffre o tlo n from a paraboloid, V.A, Pock usod separation of varlablaa In parabolic coo rd ln atae, Ha constructed th e exact so lu tio n In the font o f in te g rals and performed th a approximate calc u latio n of theae In tegrale under tho assumption th a t ka » 1 , where k la the wave number and a la a parameter o f th e paraboloid of rev olution: x2 ♦ y2 - 2a» - a2 - 0 . Tha c h arac terla tlc d ire o tlo u o f tho woric on d iffra etlo i. explained above le su ffic ie n t to In d ica te the Important p rln eip lao of th a methods developed. B asically, th e se methods reduce to th e follow ingi Pock Indicated an a ffe c tiv e method o f approxim ately evaluating in ln lt e aerlea and In teg ra ls (containing a la rg e parameter) which rep re sent the exact solutions o f c ertain problems o f electromagnetic wave d iffra c tio n . This method perm itted him to develop, f o r example, e rigorous theory on radlowavo d lffre o tlo n around th e e a r th 's surface surrounded by e homogeneous atmosphere '('D iffra c tio n of Badlowavee
Around the Earth*» Surface", 1946)1. Ha w i a lso th a f l r a t to a atab llah tha vary Important p rln cip la of tha lo c a l charactar of tha electro®*gn atlo f ie l d l a tha h a lfshadow reg io n ,, u tir^ widely th a Laontovich condition*2 la th a approximate form ulatlon o f radlo-«av* d iffra c tio n problem*. This work afforded him tha opportunity to conatruet an approxim ate, but y e t a u ff lc la n tly accurate fo r p ra c tic a l needs, theory o f radlowave d if f ra c tio n from conductor* of a rb itra ry abape aa m i l aa * theory of radlowave propagation around the e arth taking lahcmogeneltiee of tha atmosphere In to account. Tha explanation of th la theory la given In "Theory of Radlowave Propagation In an Xnhcnogeneous Atmosphere f o r a Raised Source", (1950)3 . These works on d if f ra c tio n have played a very im portant p a rt in the h is to iy of th la question and, a t tha present tin e e ra among th a c le a re st attainm ent* In d iffre o tlo n theory and i t a a p plication*. Let ua tu rn to a mere d e ta ile d explanation of some of those works. The problem o f radlowave d if f ra c tio n In a vacuum r e la tiv e to a oor>dueting sphere la solved in "D iffreo tlo n of Radiowaves Around th e E a rth 's Surface"^, Let the sphere be of rad iu s a and be c haracterized by th e d i e le c tr ic constant C , th a conductivity <T end the magnetic perm eability u n ity , Let th e sp h e rica l coordinate* ( r , 6 , f ) be introduced end l e t t v e rtic a l e le c tr ic d ipole be pieced a t th a point r - b , 0 • 0, where b > a . Tha e leotronagnetie f ie ld ax o lted by suoh a d ip o le oan be ex pressed by mean* of the Hart* funotlon 0 ( r ,9 ,f ) which s a tis f ie s the equation vl
A u♦ A - o
Bane*, 1® o ri« r to determine the value of the f ie l d on th o sp h e re 'i surface, I t la w ffle lo n t to W w tho quantitiaa:
(3) 0 . - U (» ,e ,f) and o ; - J M L I . vr I
In 190ft, Mia obtalnod an a n a ly tic a l roproaontatlon f o r th e function 0 as an I n fin ite a eries o f apherloal fu n ctio n s, The a x tr n e ly poor convergence of the a a rlss prevented q u a lita tiv e physical consequences from being obtained and prevented p ra c tic a l use o f the aforaaentloned exact solution o f th e problmt. A major step toward a p ra c tic a l use of these s e rie s was made by Watson In 191S. But th e transfom ed fo ra of th e solution was s t i l l u n sa tisfac to ry , both because of i t s complexity and because i t was only applicable in th e geometric shadow region ( l . e . , f a r from the h o rizo n ). Only In 1945 d id Foek suoeeed in obtain ing an expression fo r th e Herts funotlon su itab le fo r a l l cases. Foek transforms th e se rie s f o r Ua and O' in to ocoplex I n te g ra ls, But, In c ontrast to the preceding authors who tended to reduce the In teg ra ls to a sum of resid u es, Foek Iso la ted from the In te g ra ls a p rin cip al term which y ie ld s s u f fic ie n tly exact v alues fo r th e functions Investigated. I t was shown in th is work th a t I f waves passing through the th ic k ness of the earth and waves olroumsorlblng the e a rth because of d if fra c tio n a re negleoted beoause of th e ir n a lln a s s , then th e value of Da be r e p r e s s e d by the follow ing In te g ra l v ii
(2)
wke<“o
ft) UA
(5) 9TM
C ^ a y - i Xr . ^ ) f r J K d .) '
(*) X n ^ = J ^ i2 L ; * « I t O - i * th* w tv.lnjgth) *,<P> ' *
(9) . T)*e*£*-■£.}
a) 1* th* hrp*rgean*trlo function; tb« oontour C 1* * lin * ln ta r* a cting th* p o sltlr* p *rt o f th* r**l axlo going downward (to th* l o f t of th* pol*a o f {f(r))» A a ln ila r In teg ra l i s obtained fo r 0^. Tb* * * s* n tlal fo ata ro of th l* aothod of approach 1* th a t th* Integral* obtain*d oan bo oalomlatod • t a l l y and w ith gro at aoouraoy f o r a iy rain * o f 9 . Till
lb s o h a iae tn rletlo pnraantnr o f th« aforaom tlonad in te g ra ls 1* tii* qua ntity p oos y where y 1* tbo angl* between th a v e rtica l a t tbo observation point tad tbo Mors* dlreotlon, I f p>> 1 wA tbo oboorror la In tbo lin o of sight region (nor* aoeoratelyi I f kb cosT> > 1 , i t e r s h la th # h eig h t o f tbo I sure a above tbo e arth ), than tbo a - 'o a tlo n of tbo in te g r a l a loads to tb o wall-known "roflootlo n forn u la", This evaluation o f tbo In teg ra ls loads to tbo Wofl-^ran dor Pol fonnila v a lid f o r p o in ts a t la rg o dlotanoos fro * tbo oouro* but s t i l l w ell w ith in Um lin * - o f -e ig h t. th e half-shadow r*glsn ( i t e r s p « l ) , fo r whloh appraxlnato values of tb o f l* ld worn not know ) i s o f g rootost ln to r o r t. A nstbod Is lndioatod In t h is aork of evaluating tbo Intogrolo fo r th is oaoo and th s following fo ro n li la obtained
In which w^(t) I s tbo complex Alrey funotlon re la te d to the Hanke l function of one th ir d order ty tbo r e la tio n
The contour J 1 goes fro n l o to 0 and fro a 0 to |
(10)
lx
The formula f o r tho half-shadow region I s tho main r e s u lt of th is work. I t 1* applicable In a l l cases of p r a c tic a l in ta re a t. I t tran s forms Into tbe Weyl-ran dor Pol formula f a r from geometric shadow In th e lln e -o f-» ig h t roglon. T his fo n aila can b# reduced to a rap id ly converging s e rie s whan the tr a n s itio n I s nade In to th e shadow region idlers ( - p)> > 1 . I n the work "Solution of th e Problwa o f Propagation o f K le ctrcwagnatle Wave* Along the E a rth 's Surface h r th e Method of Parabolic Equations" (w ritten jo in tly w ith M.A. L eontorlch)*, a prohlma i s analysad which le alad la r to th o problma In th e paper mentioned abore but the method la e sse n tia lly d if f e r e n t. The Influence o f tho o a rth 'a surface le taken In to account by the Leontorlch approximate boundary conditions and ta rn s In th e f ie l d equa tio n s a re neglected which a re m a ll and a re o f th e order o f o ^ and . As a r e s u lt, the "approxlnate" form ulation of tho problem f o r
th e sp h e rica l a arth ease la sim p lified s u b sta n tia lly and la reduced to th e problem o f solving the parabolic equation
In the region e x terio r to tho earth and subject to the additional eondltlona
J t la d iffic u lt to estimate th« error Introduced ty discarding the • j ^ l l " terms vhsa using th le method. To do th la the vell-knom Pte«M l " re fle c tio n 0 formula n u t a lso be considered. The e sse n tia l advantage of the parabollo equation nethod i s l t a g rea t sim plicity as s e l l as the p o s s ib ility of solving oor* cocgilsx problems (fo r example, save d iffra c tio n from bodies of a rb itra ry shape). In th la work th e f i r s t oase considered I s th a t in which the earth la assumed to bo p la n ar. Than th e apherloal earth case Is con sidered and the sane formulas are obtained ty using th e parabolic equation nethod as bad been previously obtained ty approximately n m ln g the se rie s idiloh y ie ld the exact so lutio n of th e proMsm. The agreement between r e s u lts obtained ty these two methods provides a Ju s tific a tio n f o r th e use o f the parabolic equation method In problsns of radiowave d if f ra c tio n from good conductors. Pock used th is msthod widely In l a t e r works on d if f ra c tio n . In the work "Propagation of the D irec t Wave Around the Earth with Due Account fo r D iffractio n and R ofraotion",^ the problom Is solved undsr the assumption th a t the surface o f th e e arth i s homogeneous as wall aa th at the d ie lec tric oonstant of the a ir la a function £ ^(h) only of the height b ■ r - a of p otato above th e h o tiaan . A v e rtic a l dipole performing harmonic o o c illa tlo iis defined ty the fa c to r e”i4>* la placad on the surface of th e e arth a t th a p oint r - a , 0 ■ 0 . A rap id ly varying f a c to r la Iso la te d from the H erts function 0 ■ad a nsw "slowly* varying fu nction U2 I s Introduced ty moans o f th e
fo rm ula
■*%
^0 (h )r f a i n 6
tdiors a • a9 la the l tf g th o f are on th e te r r e s t r i a l sphere from the p o in t idler* th a dipole la to the p o in t above tha earth a t iddeh tha
obaeirar le eitoated,
/ 2V
the author neglecte quantities o f order r r ^ j In the equation obtained f o r Bj. A fter In troduetlon o f th e noodlnenalonal v aria b le s x and f ty naans o f the formula*
(
16)
vhor* “ ^ j ' ( o ) 1* th e equivalent radlue of th e T * IH o J
e a r th s su rface, and a fte r Introducing the new function ty means of tho formula
a
H' ~ W '
th e p re h lw i s reduoed to determining th e fu netion w^Cz*r) from th a aquation ,
(W ) ♦ 1 ♦ 7 (1 ♦ «)wx - 0 (y > 0) 3r
tinder th* condition*
end the n a tu ra l ra d ia tio n eoodltlon f o r h >> 1 . Tha q u a n tltla a q • a t g, e ntering l a tha fonsulae raduead abore, hare tha following T*lU8»
( » ) q - g - _ ^ « qW - . 4 < 2 ) . ^ {o) ] .
Zmrastlgatlon of th e aquation fo r *j_ above th a t I f g - 0 and I f tha radlna a la replaced ty tha equivalent radlue of tha earth a*, than tha n a th ao a tlc al prdhlan la reduced to exactly th a aana fo ra aa whan tha atmosphere la absent. In th a general case, g can be eoneldered aa a fu n ctio n o f tha product f i y , Wiere /3 ■ — la
a small parameter. Tha so lu tio n of tha probloa I s su c cessfu lly repre sented fay the contour In teg ra l:
*d»ere f ( y , t ) la aa e n tire transcendental function w ith a d e fin ite be havior a t in f in ity and sa tisfy in g th a aquations
(22) [ r - t ♦ y g ( £ y )J f - 0 |
s ill
A
The contour r 1* in f in it e and encloses th s f i r s t quadrant of the t plans. Investig atio n o f the so lu tio n of th e p ro b lai constructed shows th a t the lavs o f geometric o p tic s are co rrec t In th e lln e -o f-e ig h t region f a r from th e h o rlio n . Ths following in e q u ality i s th e condition
for this y2 kh2 (23) ----- ---------» 1 . 2s
The solution transform s In to th s K eyl-ran d sr Pol forsrula f o r a s l l values of x and y end f o r la rg e values of p ■ cos J - ,
Ths Investigatio n o f th s so lu tio n In the half-shadow region permits th e conclusion th a t the wave reaches th e horizon w ith an amplitude uid phase corresponding to th s laws o f geometric o p tlo s f o r an unbounded Bsdlun and undergoes d if f ra c tio n according to th e law of the fo ca l H eld in th s half-shadow region a t th e horizon. This r e s u lt agrees completely with the id eas o f L .I . H andel'shtan th at the properties of the s o il are essen tial not along the W ide ray tra je c to ry In ndiowave propagation along the e a r th 's surface but only In th a t region where the tran s m itte r o r rec eiv e rs are lo cated . Let us tu rn to the work In which th e problem d if f ra c tio n from an a rb itra ry convex surface i s analyzsd. An electromagnetic wave In cid en t on a conductor e x cite s surface currents Wilch, in tu rn , a re sources o f sc a ttered waves. Consequently,
xiv
ib e sse n tia l step in th e solution of the plane wave d lf f re e tlc a probfrom a eonductor o f a rb itra ry shape Is to fin d th e ourrents excited OO i t s surface. In th e work, "The D istrib u tio n o f Currents Induced by a Plans Ware M the Surface of a Conductor", the cu rren t d istrib u tio n ex cited by a plane wave on the surface o f a convex, p e rfec tly conducting, s u f f i c iw itly smooth body o f a rb itra ry shape i s analyzed under th e c o ndition th a t the length o f th e aleotrcnegnetlc wavs i s very n a i l in comparison with the body dIran alone and the r a d ii of curvature of i t s surface. A fundamental r e s u lt o f th e work i s the proof th a t the f ie ld has lo e a l character near th e g ecnatrlo shadow boundaries. I t ia show in th e work th a t when the in cid en t wave la polarized with the e le c tr ic v e cto r in the plane of incidence the c u rren t d i s t r i bution nasr the boundaries c ited i s expressed through a u n iv ersal (Id e n tic al f o r a l l bodies) function 0 ( f) of the argument f “ - j - , where / ia the d istan ce fro a th e g scaetric shadow boundaries meas ured in th e Incident plane and d I s the width of the half-shadow region. An an aly tlo expression i s derived fo r tho fu n ctio n 0 ( f ) and detailed tables are given. The solution o f th e problaa of th e cu rran t d is trib u tio n i s based e sse n tia lly on the study o f th e so lu tio n of th e In te g ra l equation fo r the c u rrent d en sity ? on th e surface of the p e rfe c t conductor. I f th e aonochrmeatle electromagnetic wave H ■ H** f a l l s on the eonductor and I f th e following n o tatio n is introduced
(24) ' - (1 - T - x H « ]
then the follow ing In teg ra l equation le obtained fo r th e su rfa ce cur rent density
(25)
idlers le the u n it v e cto r nonssl to the conductor su rface; "? and r*7a re radius v ecto rs o f fixed p o in ts o f the surface and of p o in ts with the surface element d37 and R “ | ? - "?'] . As an In v estig atio n of th e In te g ra l equation In the case o f very large values of k ( i . e . , sn a il wavelengths A ) shows. I t can be con sidered, with enough accuracy, th a t X “ 2J** on th e illum inated p a rt o f the surface (tdilch corresponds to Fresnel r e fle c tio n theory and J • 0 In the shadow p a rt. In tha neighborhood o f the geom etrical shadow boundaries, th e In te g ra l equation shows th a t In a bandwidth o f
(26) d - R* ,
sdiere Bg i s th e rad iu s o f curvature o f a sectio n of th e body surface by the Inciden t plane, the c u rren t d en sity and, th e re fo re , th e f ie l d has an approxim ate value dependent only on th e value o f th e ex tern al f ie l d H** In the p o in t under In v estig atio n , the geometric character^ is t lo s of th e eurfaoe element and on the e le c tr ic p ro p ertie s of the conductor. Such a r e s u lt means th a t u n iv e rsal fo n m las f o r th e cu rren t xvl
density on the surface o f • p e rfec t aonduotor in the half-shadow r e fl«B can bo obtained from the so lu tio n of th e d iffre c tio n problen f o r ^ p a rticu la r o im of • oonveac surfaoe, The u n iv ersal formulas h b tlenod oro obUlnod by considering tho probloo of piano wave d if f ra c tion fro* a paraboloid of rorelution. Tho roo u lt la
___ »iC f aK t
(27) t - r w ) - ^ w ~ ) « ,
rfioro * ( t) la tho oonplax Alrey fimotion and T la a contour In tho o o ^ lex plana going fro * in f in ity to Mro along tho lin o arg » y IT
and from taro to in f in ity along tho p o sitiv e p a rt of tho r a a l a x is. An investigation of tho asynptotle values of G(f) fo r largo p o sitiv e and Dogatlvo values o f £ shows th a t tho c u rran t d e n sity 3* transforms continuously whan tho tra n s itio n i s made from the half-shadow in to tho lin e -o f-slg h t or in to the shadow regions, in to tho values £3SX and J - 0, respectively. Detailed tables ara constructed for tho function
0(f). Tho r e s u lt of tho preceding work i s generalized in "Field of a Plane Wave Hoar the Surfaoe of a Conducting Body" in th a t, f i r s t , the fie ld i s determined not only on the body surfaoe i t s e l f but also in a certain surface la y e r with thickness —i l l in comparison with th e r a d ii of curvaturej second, the body is considered to bo not a p o rfa et, b at ® ly a good conductor in tho sense th a t th e )M « teentovioh conditions hold f o r tho ta n g en tial f ia l d component* on i t s su rface. Furtheim ore, x rii
the p o la risa tio n o f the Inc id ant wave nay be such th a t the e le c tr ic ▼actor Ile a In or la perp* d lo u lar to the plana of Incidence. Let ua dlecuaa the Fock work, "Fresnel D iffrac tio n f rtn Convex Bodies", (1951)7. Considered In th is work la the d if f re e tio n from a sphere, h e r e in re fra o tlo n of the etnoaphere la n o t taken Into account. I t la con sidered th a t the source and the observer a re above th e surfaoe o f th e e arth , where h^ la the source height and h j la the height of th e observation p o in t. The f i e l d I s expressed through th e two so lu tio n s IT and w of the equation A u ♦ k^V - 0. The follow ing notations a re Introduced In a ddition to those used previously:
(aa) r x - ( - ^ ) ' Tich1 , y 2 - 1*2 ,
(29) q - ( - I f f (? ♦ U * l j qt - (?) - l / 1 .
The following fornulas bold noar th e su rfsea of th e sphere:
#lka0 (30) D * T y r m v (l< 7 l' 72*q ) *
and the atten u a tio n fa c to r 7 Is expressed b j a c e rta in contour in te g ra l containing two Airey fu n ctio n s. A ll these r e s u lts a re contained In the work " F ield fro n a V ertic al and H orizontal Dipole, Raised S lig h tly Above mu
th t Bartli1* Surface*, (1949)® and In th a 1951 work, an approxiante «*preoalon la ji^ n i fo r T In th a region af th a ehadow oona. Henoe, i t la ooneid r red th a t tha paraneter defined >7 th a fo rm ic
y^ v7
0 .)
la la rg e and tha q u a n tity £ ■ x - ~ la f in ite or m a ll. Two funetione are lntrodaoad
(33)
(34)
1
f(aO - a - 1* 2- 1 ^ ^ j ,K ^ dee |
2^,-1
ppraxlmate expres aIon T(x^y^f y ^ .q ) la th a follow ing fo r tha ahadow oona
- - • UA p H ft.Q - g(f) ♦ —i - g '( ^ ) l ,
W* L J
Me do not c ite tha axprwaalon f o r 4>o . Tha p rin c ip a l ta n s la /* f(£ )> proportional to tha freenel Integral. I t la indepandmt of tha n o ta ria l of tha d if f ra c tin g body. Superlnpoeed 00 th e d iffra c tio n ploture (Praanal d if f ra c tio n ) datamdned h f th ia to m la th e background depandmt on tha function g ( () varleo »lowly in comparison with tha p rin cip al ta rn . Thia background deponda on tha s a te r i a l o f the d if fra c tin g body.
UPBBESCS
1 . A tra n s la tio n o f T.A. Pock, ■D iffrac tio n o f RadloiAToa around tha B arth 'a Sorfaea*, la a v alla U o th r o n g Morria D. Priadman, In c.] M ovtooriilo, Kaaaaotraaatt*. 2 . So# Appendix t o tb le e o lleo tlcn o f Pock paper*. 3 . See Chapter VQ o f t h is c o lle c tio n . k . So* Chapter I? o f th is c o lle c tio n . 5. See Chapter ? I o f tbit c o llec tio n . 6. See Chapter I I o f th is o o lle ctlo n . 7. See Chapter IX o f th la c o llec tio n . 8. See Chapter m i o f th la oo lle ctio o .
I . NEW METHODS IN DIFFRACTION THEORY
V. A. Foclc
The g e n e ra l problem o f th e th e o ry o f d i f f r a c t i o n o f e l e c t r o magnetic waves o o n a lata In f in d in g a s o lu tio n o f M axw ell'a equations, having p resc rib ed s in g u la r itie s ( fie ld so u rces) and s a tis f y in g p re s c rib e d boundary c o n d itio n s and c o n d itio n s at In fin ity . The s o lu tio n o f th i s problem p r e s e n ts s e rio u s m athe m atical d i f f i c u l t i e s , which a r is e c h ie f ly from th e n e c e s s ity o f talcing In to account th e g e o m etric al shape o f th e o b s ta c le s on w hich th e wave i s f a l l i n g . The p ro b lem I s somewhat s im p lifie d I f only m onochrom atic waves o f g iv e n frequency are considered, b u t the d if f ic u lt ie s are s t i l l so g re a t, th a t th e p roblem h a s n o t y e t b e e n s o lv e d , e x c e p t i n c a s e s when th e o b s ta c l e I s o f a p a r t i c u l a r l y sim p le fo rm . The b e s t known o f these are the cases of a p e rfe c tly re fle c tin g h a lf-p la n e o r a wedge, th e c ase s o f a sp h ere and a c irc u la r c y lin d e r. The c a se s o f an e l l i p t i c and a p a ra b o lic c y lin d e r have • I s o been c o n s id e re d , and th e f i e l d o f a p la n e wave In c id e n t on a p e rfe c tly r e f le c tin g p a ra b o lo id of re v o lu tio n (oblique Incidence) has re c e n tly been o b tain ed by the a u th o r. In the f *w c a a c s e n u m e ra te d a r i g o r o u s s o l u t i o n o f th e p ro b le m I n th e /°* » of an In fin ite s e rie s of In te g ra ls has been o b tained.
{'-)
2
The aim of a theory la to give a p ic tu re reproducing a l l th e q u a lita tiv e and q u a n tita tiv e fe a tu re e o f th a phenomenon c o n sid e re d . This aim i s not a tta in e d u n t i l the s o lu tio n obtained is of a su ffic ie n tly simple form. I f the rigorous so lu tio n has a com plicated a n a ly tic a l form, i t c o n s titu te s only th e f i r s t s te p ; a second s te p must be made - the d e riv a tio n o f form ulas s u ita b le fo r numerical c alcu latio n s. T his second s te p may be a s d i f f i c u l t as th e f i r s t one. To giv e an example, we may mention th a t th e problem o f d if f r a c tio n o f ele c tro -m a g n e tic waves around a sphere was BOlved rig o ro u sly some 40 y e ars ago (M ie). This problem in clu d es th a t o f the propagation of radio-waves along the surface of the e a rth . Owing to th e slow convergence o f the s e r ie s Involved, th e g en eral s o lu tio n could, however, not be ap p lied to the l a t t e r problem u n t i l 1918, when a tra n sfo rm a tio n o f the o r ig in a l s e r ie s in to an o th e r r a p id ly converging s e r ie s was found (W atson). But th e improved form o f tho s o lu tio n was B t i l l u n s a tis fa c to ry In sornt- re s p e c ts , being very com plicated and a p p lic a b le only In th e re g io n o f the g eom etrical shadow ( f a r beyond th e lin e of h o r iz o n ) . A f a r more s a tis f a c to r y form o f the s o lu tio n , ap plicable in a ll cases of p ra c tic a l importance, has been re c e n tly found by th e a u th o r .1 <mus, the way from the rig o ro u s th e o re tic a l so lu tio n to the approximate p ra c tic a l one took about 40 y e a rs o f re s e a rc h .
(2)
5
To fin d f i r s t a rig o ro u s s o lu tio n o f a d if f r a c ti o n problem and th e n to tran sfo rm I t in to a n o th e r form s u ita b le f o r num erical c a lc u la tio n s - th is s tra ig h tfo rw a rd method I s , how ever, o f a very lim ite d a p p lic a tio n . I t can only be a p p lie d to th e few problem s, a d m itting a rig o ro u s s o lu tio n In form o f s e rie s of I n te g r a ls . In o th e r o a se s ( e s p e c i a lly when th e d i f f r a c t i n g o b s ta c le l a o f a r b i t r a r y s h a p e ) a tte m p ts h a v e b e en made t o re d u c e th e problem to In te g ra l e q u a tio n s . These attem p ts have proved
su c ce ssfu l from th e th e o re tic a l p o in t o f view ; b u t w ith th e p
e x ce p tio n o f a p a p e r by th e a u th o r, no use h as been made o f the In te g ra l eq u atio n s fo r th e p ra c tic a l so lu tio n o f the problem , th e g en eral th e o ry o f In te g ra l e q u atio n s b ein g q u ite useless fo r purposes of num erical c a lc u la tio n . An a p p ro x im a te m e th o d , s u f f i c i e n t l y g e n e r a l and le a d in g to s u f fic ie n tly sim ple form ulas i s thus u rg en tly needed. In th e f o llo w in g we s h a l l o u t l i n e th e p r i n c i p a l I d e a s o f su c h a m ethod, proposed and developed by th e a u th o r. E very a p p ro x im a te m ethod I s b a s e d o n th e s m a lln e s s o f some p a ra m e te r s I n v o lv e d I n th e p ro b le m . Ne h a v e t o c o n s id e r w hloh o f th e p a ra m e te r s o f o u r p ro b le m may be r e g a rd e d a s s m a ll. We a re u s u a l l y c o n c e rn e d w ith th e p r o p a g a tio n o f w aves I n a i r , l . e . , I n a medium w ith p r o p e r t i e s w id e ly d i f f e r e n t fro m those o f th e s c a tte r in g b o d ie s ( o b s ta c le s ) . The e le c tr ic a l p r o p e rtie s o f th e se b o d ie s a re c h a ra c te riz e d by means o f th e complex d ie le c tr ic p e rm e a b ility
(3)
(1 )
4
(6 denote# a# usu al th e d i e l e c t r i c c o n s ta n t, -r - th e co n d u ctiv ity o f th e medium, <o - the freq u en cy }. Now i t 1b e s s e n tia l th a t in moat c&Bes |ij) » 1 . Thus we may choose as one o f th e email
Next, the w ave-length X in vacuo i s u su a lly very much smaller than the ra d ii of curvature of the scatterin g bodies. We thus have an o th er sm all p aram eter - th e q u o tie n t >.:R, where R is the radius of curvature of the o bstacle. I t is convenient to take .netead the quantity
In a d d itio n to the two sm all param eters defined above, th e re may be o th e rs , depending on the p o s itio n of th e p o in t of observation. For instance, in the problem of the propaga tio n of ra d io waves along the e a r th s u rfa c e th e angle of In c lin a tio n o f th e ray to th e h o rizo n may be regarded as sm all. Let us co n sid e r the consequences o f the fa c t th a t the p aram eters 1 :. 4 h and l:m are s m a ll. In th e lim itin g case | i ) |« a o (perfect conductor) a great sim p lificatio n a rises from th e f a c t th a t th e f i e l d i s known beforehand in s id e the conductor ( t h i s f i e l d being equal to z e r o ). Ve can confine ourselves to the space outside th e conductor by prescrib in g
p aram eters of the problem tu e in v erse v a lu e o f |q | o r the qu an tity 1:
(2)
(4)
5
proper boundary conditions to the fie ld In a ir (the tangential components o f the e l e c t r i c a l v e c to r should vanish a t the su r face). A sim ilar situ a tio n a flse s If - T u T Is very large. The f i e l d In sid e the body Is In t h i s case very small except In a th in surface la y e r (sk in -e ffe c t), and the Influence of th is la y e r may be accounted f o r by s ta tin g boundary conditions f o r th e e x te rn a l f i e l d . These are o f the form
? Jx “ ^ < Ex * nxEn> = V z ' nzHy ' e t c - < )
where ( J x , Jy , J z ) I s th e su rfa c e c u rre n t d e n s ity v e c to r, (nx» riy, n^) th e u n it v e c to r of th e normal to the su rface, Ejj th e normal component o f th e e l e c t r i c f i e l d , th e meaning o f th e o th e r symbols being e v id e n t. These co n d itio n s, f i r s t
e q u a lity sig n ifie s th a t the thickness o f the skin layer should be sm all as compared w ith th e ra d iu s of cu rv atu re of the o b s ta c le . C onditions (3) may be e a s ily g en eralized fo r a r b i t r a r y v alues o f the m agnetic permea b i l i t y m. C onsequently th e sm allness o f 1: J h i perm its us to confin e our a t te n tio n to the f i e l d o u tsid e and on the body, which c o n s titu te s an Im portant s im p lif ic a tio n o f the problem. We now proceed to examine the Influence o f the sm allness
s ta te d by Leontovlch^ In a somewhat d iffe re n t form, apply I f The l a t t e r ln
(5)
of the wave-length.
6
As w ell known. In th e lim itin g case o f sm all w ave-lengths th e laws of g eom etrical o p tic s become v a lid . P a r tic u la r ly , the boundary of the shadow on th e su rfa c e o f th e body becomes sharp and well d e fin e d . On th e onp sid e of th e boundary — In the illum inated region — the fie ld obeys very nearly F renenel's laws o f r e f le c tio n , and on th e dark sid e the f i e l d ra p id ly decreases to zero. The approxim ation given by the geo m etrical o p tic s I s , however, not s u f f i c i e n t f o r o u r purp o ses. The p o in t o f I n te r e s t f o r us I s the d if f r a c t i o n phenomenon In I t s s t r i c t sense, l . e . , th e bending o f the ra y around th e o b s ta c le . This phenomenon cannot be tr e a te d by th e means of g eo m etrical o p tic s , end to g ive a th eo ry o f th i s phenomenon a more a c c u ra te s o lu tio n o f the fie ld equations Is required. The au th o r succeeded In fin d in g t h i s s o lu tio n by means o f a new p r in c ip le which may be c a lle d "The P rin c ip le o f the Local F ie ld In th e Penumbra Region". This p r in c ip le c o n s is ts In the fo llow ing: - The tr a n s itio n from li g h t to shadow on th e s u rfa c e o f the body tak es p lace In a narrow s t r i p along the boundary o f the g eo m etrical shadow. The w idth o f t h i s s t r i p I s o f th e o rd e r
where R0 I s th e ra d iu s o f cu rv a tu re o f th e normal s e c tio n of th e body by th e plane o f In c id e n c e . . I t may be proved th a t.
(6)
7
with neglect of email q u a n titie s of the order fie ld In th le s tr ip has a local, character: I t depends only on th e value o f the f i e l d of the In c id e n t wave In the neighbor hood o f th e p o in t c o n sid ered , on th e geom etrical shape o f the body near th e p o in t and on th e e l e c t r i c a l p ro p e rtie s o f the m a terial of th e body. The f i e l d n e a r a given po in t on the s t r i p does not depend cn I t s v alu es a t d is ta n t p o in ts and can be c a lc u la te d s e p a ra te ly . To e s ta b lis h th e p r in c ip le o f th e lo cal f i e l d and to deriv e e x p lic it form ulas f o r t h i s f i e l d we have used two d if f e r e n t methods. One o f th e se (2) a p p lie s to th e case of an ab so lu te con d u cto r and g iv es the v alues o f the f i e l d on I t s su rfa c e . We s ta r t with the In teg ral equation fo r the surface current density J. This i s o f th e form
The v e c to r Jex (e x te rn a l c u rre n t d e n s ity ) Is defined by the ex p ressio n ( 3 ), where H i s rep la c e d by Hex, the magnetic vector of the external fie ld j z is the r a d iu B vector of the point of observation, z ' th at of the point of Integration;
(5) where f - (1 - lKR)e1KB ( 6)
R o | z - z ' | Is the le n g th o f th e chord between z and z ';
(7)
I s th e valu e o f th e u n it v e c to r of the normal, a t z. A q u a lita tiv e study of the In te g ra l equation perm its us to e sta b lish the p rin c ip le of the lo c a l f ie ld . This p rin c ip le once e sta b lish e d , we have to fin d a s o lu tio n o f th e d if f r a c t io n problem f o r a con vex body o f a p a r t i c u l a r shape and to d e riv e approximate formulas fo r th e f i e l d on I t s s u rfa c e . In v ir tu e o f th e p r in c ip le o f the lo cal f ie ld , these formulas hold fo r any o th er convex body having a t th e p o in t consid ered th e same v alu es o f the p r in c ip a l r a d ii of c u rv a tu re . (The p a r t i c u l a r body must o f course be s u f f ic ie n tly general to possess points with any prescribed values of p rin cip al r a d ii of curv atu re ; a c tu a lly a paraboloid of re volution has been u s e d ). Proceeding In t h i s way we a r r iv e a t a gen eral formula fo r th e s u rfa c e valu es o f th e ta n g e n tia l components of the m agnetic f i e l d o r, which amounts to th e same, fo r the su rfa c e c u rre n t d e n s ity v e c to r. T his formula I s o f the form
I being th e d is ta n c e f r a n th e boundary o f the geom etrical shadow, measured along the ray ( l . e . , along the lin e of In te rse c tio n of the plane o f Incidence with the surface of the body) and taken p o s itiv e In th e d ir e c tio n o f th e shadow and n eg ativ e in th e o p p o site d i r e c t i o n . The fu n c tio n 0 (« , 0) Is d efin ed by th e In te g ra l
J - Jex a (e , 0) (7)
where th e argument ■ In G d enotes the q u a n tity
(8)
(8 )
(9)
a ( t 0) ^ V ( c r
where C i s a contour in th e complex t-p la n e running from I n f in ity to zero along th e l in e are t • and from zero to in fin ity along the p o sitiv e real a x is. The fu n ctio n <o(t) may be c a lle d th e complex A irys ' fu n ctio n ; i t i s defin ed by th e d i f f e r e n tia l equation
u>"(t) - Uo(t) ( 10)
and by th e asym ptotic beh av io r f o r la rg e n egative values of t
*o(t) - e 1 * ( - t ) 1/4 • exp [ l | ( * t) 3/ 2] . ( 11)
The fu n c tio n 0 (« ,0 ) tends to the lim it 0 - 2 fo r larg e neg ativ e v alues of c , w hile I t s modulus decreases ex p o n en tially fo r la rg e p o s itiv e v alues o f «. Formula (7) reproduces thus the g radual d ecrease o f th e f i e l d am plitude when p assin g from l i g h t to shadow. The same r e s u l t s may be o btained by an other method** which allow s us to g e n e ra liz e them in two r e s p e c ts . F i r s t l y , th e body need no t be a p e r f e c t conduotor, but nay have a f in ite conductivity. I f only the boundary condltipns (7 ) are a p p lic a b le . Secondly, the f ie ld Is obtained not only on the surface of the body, but also near the aurfaoe ( a t distances th a t a re small a s compared w ith the r a d i i of c u rv a tu re ). The method c o n s is ts In s im p lify in g Maxwelli'e q u a tio n s and boundary
(9)
10
c o n d itio n s by n e g le c tin g q u a n titie s of the o rd e r o f the square o f th e sm all param eters 1- J m and 1 : m. The wave equation f o r th e am plitude I s thereb y re p laced by a p ara b o lic equation of S c h ro d ln g e r's ty p e . The sim p lifie d e q u ations are v a lid In a lim ite d re g io n n ear a p o in t on the penumbra s t r i p . The s o lu tio n of th e se eq u atio n s may be performed by means o f th e s e p a ra tio n o f v a ria b le s and y ie ld s the f i e l d In the region co n sid ered and e s p e c ia lly In th e penumbra s t r i p on th e body. In tro d u cin g the complex q u a n tity
*A~
(th e modulus I q f i s thus th e q u o tie n t o f the two small m e te rs ), we may w rite In ste a d o f (7 )
(12)
para
j ex 0 (6 , q) , (13)
where
0 ( 6. q) - e f i - r c t r - v f t ) * (14)
th e c o n to u r C being th e same as In (9 ) . These form ulas give th u s th e d i s t r i b u t i o n o f c u rre n ts on th e penumbra s t r i p on the ' body and g e n e ra liz e our prev io u s form ulas (7) and (9$. The form ulas f o r th e f i e l d n ear the s u rfa c e are more complicated and w ill not be w ritte n h ere. I t I s to be noted th a t In th e outward p o rtio n o f the s t r i p , where th e Illu m in a te d re g io n b e g in s, approxim ate expressions can be derived from our formulas th a t coincide w ith expressions fo r
( 10)
11
the f ie ld obtained by superposing the In cid en t and the re fle c te d wave and u sing F re s n e l's c o e f f ic ie n ts o f r e f le c tio n . On the other hand, In the opposite portion of the s trip the fie ld Is p r a c tic a lly zero. Thus our form ulas c o n s titu te the m issing lin k Join in g the two regions where th e laws o f geom etrical o p tic s may be a p p lie d . Together w ith F r e s n e l's form ulas they allow us to compute th e f ie ld near and on the whole su rface of the d iffra c tin g body. • In some problems t h i s I s a l l th a t 1b re q u ire d . In the problem of p ropagation of waves around the e a r t h 's su rfa c e , fo r In sta n c e , we a re only concerned w ith th e f i e l d on h eig h ts not exceeding ten k ilo m e te rs—a q u a n tity th a t Is sm all as com pared w ith the e a r t h 's ra d iu s ( 6380km .). In th is Instance our form ulas, I f m odified so as to Include the case when the source I s near o r on the s u rfa c e , give the req u ired so lu tio n . In o th er problems, however, the fie ld a t large distances from the s c a tte r in g body I s needed. In s p ite of the f a c t th a t our formulas are v alid only in the region near the surface, they provide a means to c a lc u la te th e f i e l d a t la rg e d ista n c e s a ls o . Indeed, the f i e l d of th e s c a tte r e d wave Is generated by the c u rre n ts Induced on the su rface (In the sk in -la y e r) by the In c id e n t wave. These c u rre n ts a re given by our form ulas. Thus, by applying well-known theorems on th e v ecto r p o te n tia l due to a given c u rre n t d i s t r i b u t i o n , we may, in p r in c ip le , c a lc u la te th e f ie ld fo r a r b itr a r y d is ta n c e s from the r e f l e c t in g body.
(11)
12
The p r in c ip le o f th e lo c a l f i e l d In th e penumbra region provided thus a b a s is f o r the approxim ate so lu tio n of the problem o f d if f r a c ti o n In th e g eneral case o f a convex body o f a r b itr a r y shape.
1. V. POCK, Jo u rn al o f P h y sics. ix ;.2 5 5 , 1945. 2 . V. POCK, Jo u rn al o f P h y sics, x :130, 1946.
3. M. LEONTOVITCH, B u ll. Academy S cien ces. U .S .S.R ., s e r l e physique, l x ; l 6, 1944, (In R u ssian ), alBO H. LEONTOVITCH and V. POCK, Jo u rn al of P hysics. x:13, 1946. 4. V. POCK, B u ll. Academy S cien ces. U .S .S .R ., e e rie physique, &:171f 1946, (In R u ssian ).
(12)
13
TT THE DISTRIBUTION OP CURRENTS INDUCED BY A PLANE WAVE
ON THE SURFACE OF A CONDUCTOR
V. Fock
The d is tr ib u tio n of c u r r e n ts . Induced on the
su rface o f an p e r f e c tly conducting body by an In cid en t plane wave Is con sid ered . The body Is supposed to be
convex and to have a contin u o u sly varying c u rv atu re.
The wave length X o f th e I n c id e n t wave la supposed to be small as compared w ith th e dimensions o f the body and w ith the r a d ii o f c u rv a tu re o f I t s s u rfa c e . I t
is shown th a t the c u rre n t d i s t r i b u t io n In the v ic in ity
o f the geom etrical shadow I s e x p re ssib le In terms of
an u n iv e rsa l fu n c tio n 0(%) (th e same fo r a l l b o d ie s),
depending on the argument £ » I / d , where I I s th e d istan c e from the boundary o f the g eom etrical Bhadow, measured In the plane o f Incidence, and d Is the width
o f th e penumbra region (d 16 the rad iu s of
c u rv atu re of the normal s e c tio n o f the body by the plane of IncidenceJ . For the function OU) an an a ly tic a l e x p ressio n Is derived and ta b le s a re computed.
Let us co n sid er a p e r f e c tly conducting body on the su rface o f which a plane electrom agnetic wave I s In c id e n t. The su rface o f th e conductor Is supposed to be convex, w ith a continuously vary in g c u rv a tu re . The In c id e n t wave Induces on the conductor e l e c t r i c a l c u rre n ts , which In t h e i r tu rn become a source o f the s c a tte r e d wave. I f the c u rre n t d i s t r i b u tio n on the conductor Is determined, then the c a lcu latio n of the fie ld of the sc a tte r e d wave may be performed by apply in g th e well-known formulas f o r the v e c to r - p o te n tia l. Hence th e e s s e n tia l ste p In so lv in g th e problem of d if f r a c tio n o f a p lan e wave by a p e rfe c t con ductor Is to find the c u rren ts Induced on I ts su rface.
(1)
1*
The p re se n t paper la a p relim in ary re p o rt on our work ooncam lng the approxim ate s o lu tio n o f th ia problem,
1. Let ub denote by J th e su rfa c e c u rre n t d e n s ity on the con d u cto r. The v eo to r J la d efin ed f o r every p o in t on the s u r fa c e and la d ire c te d alo n g th e tan g en t to th e au rfao e. I t ie com pletely determ ined by I t s two ta n g e n tia l components, th e th i r d component (normal to th e s u rfa c e ) being equal to a ero . I t may be shown t h a t th e v e c to r j s a t i s f i e s the follow ing In teg ral equationt
j - 2J« +J d8, (1<01)
with f - (1 - lkR)elkR . ( 1 . 02)
In t h i s equ atio n R I s th ele n g th of th echord Joining the two p o in ts of th e s u r f a c tt th e fix e d p o in t r ( x ,y , z ) , fo r which the In te g r a l I s e v alu ated , and the v a ria b le po in t r 'f x '. y 'j Z 1) , whose co o rd in a te s are fu n c tio n s o f th e I n te g ra tio n v a ria b le s , n is a u n it vector of the normal to the surface a t the point r , dS1 la th e eurfao e elem ent a t r* and k la the ab so lu te value o f th e wave v e c to r. The q u a n tity Jex i s an " e x te rn a l" c u rre n t d en sity defined by th e formula
["*«“ ] • <!•»>
where H** i s the value o f th e magnetio f ie ld o f the In cid en t wave on the aurfao e (" e x te rn a l" f i e l d ) .
I f the dependence o f th e e x te rn a l f i e l d upon the co o rd in ates i s giv en by the f a o to r
(a)
,lk(ax+ 0y+-y2 )
15
(1 .01)
then the c u rre n t d e n s ity may tje sought In the form o f a product 0f a sim ila r fa c to r w ith a slow ly v arying fu n c tio n o f coordina t e s . The I n te g r a l ( l .O l ) a f t e r d iv id in g by (1.04) tak es the form
i » J elk [R ^ (* , - x ) ^ ( » ,-y)+7 (* , -*)j gag. , (1.05)
where $ I s a slow ly vary in g fu n c tio n . I f the wave len g th la s u f f ic ie n tly sm all as compared w ith th e dimensions o f the body, the value o f th e in te g r a l w ill be approxim ately
I * ^ « , (1 . 06)
:< cos 0
where th e p o in t x 1 y ' z ' Is connected with the p o in t x y 2 as i t is shown In P ig s. 1 and 2, and 0 I s the angle of Incidence of the ray.
Pig. 1 Fig. 2
The a n a ly tic a l con n ectio n between the p o in ts x 1 y ' 2 ' and x y 2 Is given by th e fo llo w in g form ulas. Let n denote the u n it v ecto r o f the normal a t the p oint x ' y z ' and l e t
(3 )
16
a + 2 n ' cob 6
0 + 2n^ cos fl
y + Zn'x coe 6
where
(1.07)
cob ■ (<m'x + 0n^ + yn^ ) . ( l -06)
The q u a n titie s o ', 0 ', y 1 are th e d ir e c tio n eoalnea o f th e ray reflected a t the point x 1 y 1 z '. With th e s e n o ta tio n s , we have e i t h e r :
or
x - x1 ft
z
R = y (1 . 09)
RRR
th e form ulas ( 1 . 09) being v a lid , i f th e p o in t x ' y ' z ' is s itu a te d on th e illu m in a te d p a r t o f th e su rfa c e (F ig. 1 ), w hile (1 .1 0 ) a re v a lid , i f t h i s p o in t i s s itu a te d on the shadow p a r t o f th e s u rfa c e . In th e l a t t e r case th e " re fle c te d " ray is fictitio u s. With th e same degree o f approxim ation as in form ula (1.06) the In teg ral equation (1,01) allows the follow ing so lu tio n :
i = 2Jex on th e illu m in a te d p a r t , J = a 0 on the shadow p a r t .
Near th e boundary o f th e geo m etrical shadow (where cos I t f O ) , form ula ( 1 . 06) c e ases to be v a lid and ex p ressio n ( l .11) does no t give a grad u al t r a n s i t i o n from l i g h t to shadow.
(4)
17
2. In order to obtain for the currents an expression valid in the tra n sitio n region also , i t is necessary to use a sore exact solu tio n . I t is rath er d iffic u lt to derive it d ir e c tly from the i n te g r a l e q u a tio n , but we have succeeded to ob tain 1* in an i n d ir e c t way, on th e b a sis o f the follow ing c o n s id e ra tio n s . F ir s t o f a l l , i t is seen from F ig s. 1 and 2 th a t i f the p o in t x y z l i e s n ear th e geom etrical boundary o f the shadow, th e p o in t x 1 y ' z ' l i e s a ls o n ear th i s boundary and near the point x y z. T herefore, the value of the in te g ra l (1.01) is determ ined by the v alues o f th e in te g ra n d in th e neighborhood of the p o in t f o r which th e i n te g r a l i s ev alu ated . Thus, in th e region of the penumbra (n e a r th e geom etrical boundary of the shadow) th e f i e l d has a lo c a l c h a ra c te r. Secondly, the investigation of the in te g ra l equation (carried out under the assumption t h a t the chord can be re p la c ed by i t s p ro jectio n on the tangent p lan e) shows t h a t th e width o f the penumbra region ia of the order of
where RQ i s th e r a d iu s o f cu rv a tu re o f th e se c tio n o f the body su rfa ce by the plane o f in c id e n c e . But in a region of width d and in a c e r ta in more extended reg io n the nucleus of the in te g r a l e q uatio n depends e s s e n t i a l l y only on the curvature o f th e su rfa c e in the neighborhood o f a given p o in t ( l . e . on th e second but n o t on th e h ig h e r d e r iv a tiv e s o f th e surface equation with respect to co o rd in ates). Hence i t fo llo w s, th a t a l l b odies w ith a smoothly vary ing c u rv atu re have th e same c u rre n t d i s tr ib u tio n in the penumbra re g io n , i f only th e c u rv a tu re s and th e in c id e n t wave are the same n ear th e p o in t under c o n s id e ra tio n .
(2 .01)
(5)
18
The r e s u lt s s ta te d perm it us to I n f e r t h a t . I f we solve | th e problem f o r any p a r t i c u l a r c a se , we oan o b ta in u n iv ersal t formulas fo r the fie ld on the surface of a p e rfe c t conductor. I These formulas Immediately apply to the region of the penumbra, j but th e f i e l d may be co nsidered a s known everywhere on the su r- ! f a c e , sin ce f o r th e Illu m in ated re g io n and fo r th e remote shaded re g io n th e e x p ressio n s (X. 11) a re v a lid . j 3 . The d e riv a tio n o f th e s e u n iv e rs a l form ulas Is too complicated to be given In any d e ta ile d fo ra In a sh o rt paper. We c o n fin e o u rse lv e s to some I n d ic a tio n s as to th e method, and to th e statem ent o f the r e s u l t , which may be done In q u ite a sim ple way. The co n sid e ra tio n s developed above show, th a t fo r the d e riv a tio n o f th e gen eral form ulas we can s t a r t from an exact s o lu tio n o f th e problem o f d i f f r a c t i o n o f a plane wave by some convex body w ith a smoothly v ary in g c u rv a tu re . The s u r face o f the body m ust, o f co u rse , be s u f f i c i e n t l y g e n e ra l, l . e . must p o ssess p o in ts w ith given v a lu es o f th e p rin c ip a l r a d ii of curvature. There are two cases In which e x a c t s o lu tio n s o f th e problem a re known, namely, th e case o f a sp here and the ease o f a c ir c u l a r c y lin d e r (In th e l a s t case th e Incid ence o f the wave Is supposed to be norm al). These bodies a re , however, not s u ffic ie n tly g e n e ra lt f o r a sp here the two r a d i i o f c u rv a tu re a re e q u al, and f o r a c y lin d e r one o f th e r a d i i I s I n f i n i t e . The sim p le st of the bodies having a rb itra ry values o f th e curvature r a d ii are: the e llip s o id and the paraboloid o f re v o lu tio n . For these bodies only th e gen eral form of the s o lu tio n o f th e s c a la r wave equation I s known; th e complete s o lu tio n o f M axw ell's eq u atio n fo r the given p h y sic a l problem appears to be unknow ■>.
In o u r work we have obtain ed th e re q u ire d s o lu tio n f o r th e paraboloid of revolution (p a rtic u la rly the values of the tangential
(6 )
19
components o f th e magnetic f i e l d on I t s surface) and have used th is solution to derive the approximate formulas. Let the e q u atio n o f th e p arab o lo id have the form
x2 + y2 - 2az - a2 - 0 . ( J . 01)
If the parabolic coordinates;
u - k ( r ♦ z) ; « « k ( r - a) ; (3.04) ♦ - arc t* JC
(7)
(3.05)
20
with
are Intro d u ced , th e eq u atio n of th e p arab o lo id becomes
« * oQ - ka . (3 .06)
For th e g e n e ra liz e d (c o v a ria n t) ta n g e n tia l components o f the e x te rn a l m agnetic f i e l d we have th e ex p ressio n st
21u H*x + H*x = ^ _Juo e in * , (3.07)
- 21u H®x + H*x «= J u o e ltl ' 10 . (5 . 08) 9k
In the new co o rd in a te s th e ex p ressio n f o r (1 hue the form
0 = i (u - S') cos 6 + J uo s in 4 cos d . (3.09)
For the same componentso f the t o t a l f i e l d ex p ressions In form o f Fourier series with respect to the angle t are obtained. The c o e f f ic ie n ts o f s in s$ and cos s$ In th e se s e r ie s are d e fin ite In teg rals with respect to the parameter t. Involving some com plicated fu n c tio n s o f u, o, 4, s , t . These s e rie s and I n te g r a ls can be transform ed In to double In te g ra ls of th e form
21u H + H = - ° u * 2ir k s in (3 . 10) where the function g ( s ,t ) la defined In the follow ing way. D 5 ( o ,a ,t) be an In teg ral of the d iffe re n tia l equation
(8)
21
0 4 + * i + ( 1 . • ! « .1\ c . de dp ^ 4 ' 4p 2y
having a t tj-»ooan asym ptotic expressio n
JL t \ s± l « i ^ I t , o
Tf t -1 ir -* + y 1 j
C (» ,s ,t) • . 01 - s - I t
where F2Q I s an asym ptotic s e r ie s o f the form
1 + a - It . l \ 2 ' "V ip to tlc s e r ie s o f the
(Vs. 0 .1 +f&2 +i«2^_&i6±Ui5+...
N (s,t) = | e C ( t / B , - t - l ) + * ( s 2+ t Z) C2 ( 0 , 8 , - t + l ) (3.14) where p I s con sid ered to be th e q u a n tity (3 -06).
g ( s , t ) « e 2 ? (u ,s + l,t) ? ( c , s - l , t ) ( s - lt) N ( s ,t ) . (3 -15)
With g ( s ,t ) having t h i s v a lu e , th e expression (3.10) I s v a lid , I f - it/2 < $ < w/2. In the cases tt/2 < $ < jir/2 and - 3ir/ 2 < ♦ < -w/2 we have to take fo r g ( s ,t ) a somewhat d if f e r e n t e x p re ssio n , which we s h a ll not (9)
22
w rite down h e re . The In te g r a tio n In (3 .1C) w ith re sp e c t to the v a ria b le t I s to be made along th e r e a l a x is from - oo to + oo and w ith r e s p e o t to s a.ong th e Im aginary a x is from - 1 ooto + 1 oo. The valu e o f -21u I s o btained from (3 .1 0 ), I f we re p la c e d by -d. The double In te g ra l can be e v alu ated approxim ately under th e assum ption, th a t th e value o f u « lea I s very la rg e . Let us Introduce the quantity Ju o sin A cos d - o cos 0 > '( » « ) ] w (.In . ) W ' (5-l6)
T t is easy to v e r if y t h a t on th e g eom etrical boundary of the shadow t « 0 j bu t In g en eral I w ill be la r g e , o f th e o rd e r of o1^ . T h erefo re, when e v a lu a tin g th e I n te g ra ls we s h a ll con s id e r o to be very la rg e and { to be a r b itr a r y (in g e n e ra l, f i n i t e ) . I t can be shown, th a t under th ese assum ptions the following approximate e x p lo sio n s fo r the in te g ra ls are valid with a re la tiv e e rro r of the order of
Hu + H^ * ^ - T " eUl + 10 0 ( 4) * (?-17)
- 2iu H + H. » — r S . “ - W 0 ({) , (3 . 18) vk
where
0(4) - e1 3 —1= J e l t ---dI (3.19)
4 * J w' (t) rl th e symbol denoting a oontour running from in f i n i t y to the
o rig in along th e ray arc z - 2 /3 it and from th e o r ig in to I n f i n i t y along the ray arc * » 0 (the p o sitive real a x is). (1 0 )
23
The f u n c ti o n w(t ) whose d e r i v a t i v e i s in v o lv e d in th e in te g r a n d h a s 'b e e n s t u d i e d i n o u r p r e v io u s p a p e r * . w( t ) s a tis f ie s the d if f e r e n tia l equation
w" ( t ) « tw (1 ) , ( 3 .2 0 )
and can be w ritte n in th e form o f an in te g r a l
where th e co n to u r denoted by r g runs from I n f i n ity to th e o r i g i n a lo n g th e a rc z « - 2 /3 if and from th e o r ig in to in f in ity along th e p o sitiv e re a l a x is . Com parison o f (3 .1 7 ) and (3 .1 8 ) w ith (3 .0 7 ) and (3 .0 8 ) g iv e s
% “ Ht g 0 ( i ) • (3 -2 2 )
Thus th e ta n g e n tia l components o f th e t o t a l m agnetic f i e l d a re eq u al to th e ta n g e n tia l components o f th e e x te rn a l f ie l d m u ltip lie d by a c e r ta in complex fu n c tio n o f a s in g le v a ria b le £. A B lm lla r r e la tio n e x is ts between th e to t a l and th e " e x te rn a l" c u rr e n t d e n s ity , namely
J = JCX 0 ( t) . (3.23)
Let us examine th e g eom etrical meaning o f th e v a ria b le ( in more d e t a i l . C onsider th e se c tio n o f th e paraboloid su rface by the plane of incidence passing through the given point ,(F lg . 4 ) . We denote by f the d ista n c e o f th e given p o in t from
* Jo u m . o f P hys., 1945.
(1 1 )
24
th e geom etrical boundary o f the shadow, considered p o s itiv e In th e d ir e c tio n o f th e shadow and n e g a tiv e In th e d ire c tio n o f the l i g h t . The d is ta n c e I I s measured In the plan e o f In cidence. Let R be th e ra d iu s o f c u rv a tu re o f th e su rface s e c tio n and k « & r /\ th e ab so lu te value o f th e wave v e c to r. Then th e q u a n tity
£ where d I s th e w idth (2 . 01) o f th e penumbra re g io n J la e a s ily seen to coincide with the quantity (3 . 16) defined fo r a paraboloid o f r e v o lu tio n . Since we know beforehand th a t formulae (3-22) and (3 .23) a re q u ite g e n e ra l, we conclude th a t th ey a re v a lid fo r a l l bodies with a given cu rv atu re. I f $ la given by (3.2 4 ).
(12)
25
These formulae give the transition from the shadow to the
light
Por large positive values of % the function 0(£) is approxi mately equal to
1 (*~ + bl
dU ) = ce \ 3 / e-b* , (3.25)
where a , b, c a re known numbers; namely
a - 0.5094 ; b « 0.8823 ; c « 1.8325 . (3.26)
Owing to the factor e'b^ the function 0 ( 0 decreased rapidly. This corresponds to the decrease of the amplitude In the Bhadow region.
For large negative values of 6 the function G (0 admits an asym ptotic expansion of th e form
0 ( 0 =■ 2 + + • • • (3 -2 7 ) 20
and tends to a lim it which I s equal to 2. This lim itin g value corresponds to form ulas (1.11) f o r the Illu m in ated reg io n . The d isco n tin u o u s fu n ctio n (1 . 11) i s thus replaced In our more e x act s o lu tio n by th e continuous fu n c tio n (3 .2 3 ). This en ables us to c a lc u la te the d is tr ib u tio n o f c u rre n ts on the su rface o f a con d u ctin g body w ith s u f f i c i e n t accuracy. In th e Appendix are given ta b le s o f th e fu n c tio n 0 defined by (3 .19) snd of the function g re la te d to 0 by the equation
0 <«) * • «<x) ( 3 . 88)
and e x p re s s ib le in form o f th e In te g ra l
(1 3 )
(3.29)
26
8(x)=q r
The fu n c tio n O(x) I s ta b u la te d f o r valu es of x from x - 4.5 to x =1 w ith I n te r v a l 0 . 1, and th e fu n c tio n g(x) Is ta b u la te d fo r a range o f values o f x from x» - 1 to x = 4.5 w ith the same In te rv a l, Por v alues o f x le s s than x » - 4 .5 e x p ression (3.27) may be used, and f o r v alues o f x g r e a te r than x - 4 . 5 form ula (3 . 25) becomes applicable.
APPENDIX
Table o f the function d(x). g(x)
X Re 0 Im a 1 ° 1 arc G
- 4.5 1.'998 -0.0055 1.9990 9 -30" - 4.4 1.9997 -0.0059 1-9997 10' 10" * 1.9997 -0.0063 1.9997 10' 50"
- 4.2 1.9996 -0.0067 1.9997 11'40" - 4.1 1.9996 -0.0073 1.9996 12' 30" - 4.0 1.9995 -0.0070 1.9995 1 3 '20" - 3 .9 1.9994 -0.0084 1.9995 1 4 '3C" - 3 .0 1.9994 - 0.0090 1.9994 15'30" - 3.7 1.9992 -0.0090 1.9993 1650" - 3 .6 1.9991 - 0.0106 1.9991 10 ' 10" - 3 .5 1.9990 -0.0115 ■ 1.9990 19140" - 3.4 1.999 - 0.012 1.999 21 - 3.3 1.999 -0.014 1.999 23
(14)
27
X Re 0 Im a Id arc 0
- 3-2 1-998 -0.015 1.998 2 6
. 3.1 1.998 - 0.016 ' 1.998 281 - 3.0 1.998 - 0.018 1.998 31' - 2.9 1.997 - 0.020 1.997 34- 2.8 1.996 - 0.022 ■ 1.996 37' - 2.7 1.996 -0.024 1.996 41' - 2.6 1.995 - 0.026 1.995 46' - 2.5 1.993 -0.029 1.994 51' - 2.4 1.992 - 0. 03? 1.992 56' - 2.3 1.990 -0.036 1.990 - l°0 3 ' - 2 .2 1.988 -0.040 1.988 - 1° 10' - 2.1 1.985 -0.045 1.985 - l ° l 8 ' - 2 .0 1.981 -0.050 1.982 - l° 2 7 ' - 1.9 1.977 -0.056 1.977 - l°3 7 ' - 1.8 1.971 - 0.062 1.972 - 101*7 . - 1.7 1.965 - 0.068 1.966 - 1° 58' - 1.6 1.956 -0.075 1.958 - 2° 11' - 1.5 1.946 - 0.082 1.948 - 2°25' - 1.4 1.933 - 0.090 1.936 - 2°40' - 1 .3 1.919 -O.098 1.921 - 2°55' - 1,2 1.901 -0.105 1.904 - 3° 10' - 1.1 1.880 -0.113 1.884 - 3°27' - 1.0 1.857 -0.119 1.861 - 3°40' - 0.9 1.829 -0.123 1.833 - 3°51' - 0 .8 1.798 - 0.126 1.802 - 4°00 - 0.7 1.762 - 0.126 1.766 - 4°05 - 0 .6 1.722 - 0.122 1.726 - 4003" - 0.5 1.678 -0.115 1.682 - 3°54' - 0.4 1.630 - 0.103 1.633 - 3°36' - - .3 1.578 - 0.086 1.580 - 3°o6 ' 0 .2 1.522 -0.063 1.523 - 2° 22' - 0.1 1.462 -0.034 1.463 - 1°21'
(15)
28
X Re 0 Im 0 M arc 0
0 1.399 0 1.399 0° 00' 0.1 1.333 0.040 1.334 1°44* 0.2 1.263 0.086 1.266 3°55' 0.3 1.189 0.137 1.197 6°35' 0.4 1.111 0.193 1.128 9°51' 0.5 1.029 0.252. 1.059 13°45' 0 .6 0.941 0.312 0.991 18° 2f 0.7 0.846 0.373 0.924 23°47' 0 .8 0.744 0.432 0.860 30° 08' 0.9 0.634 0.484 0.798 37°221 1 .0 0.515 0.529 0.738 45°44'
Table of th e fu n ctio n g(x)
T?
O(x)
X Re g In. g 1*1 arc g
- 1.0 1.794 0.495 1.861 15°26' - 0.9 1.805 # 0.320 1.833 10°041 - 0.8 1.793 • 0.181 1.802 5° 47' - 0.7 1.765 1.766 2° 28' - 0.6 1.726 1.726 0°04' - 0.5 1.681 - 0.045 1.682 - 1°31' - 0.4 1.632 - 0.068 1.633 - 2°23' - 0.3 1.578 - 0.071 1.580 - 2°35' - 0.2 1.522 - 0.059 1.523 - 2°13' - 0.1 1.462 - 0.034 1.463 - 1° 20' 0 1.399 0 1.399 0° 00'
(16)
29
x Re e Im g 1*1 arc g
1.333 0.040 1.334 1°430.2 1.263 0.083 1.266 3°450.3 1.190 0.127 1.197 6°04' 0.4 1.115 0.169 1.128 8°37 0.5 1.038 0.209 ■ 1.059 11° 21' 0.6 O.961 0.244 0.991 1 4 °l4' 0.7 0.883 0.274 0.924 17°14' 0.8 0.806 0.299 0.660 20° 190.9 0.732 0.317 0.798 23°271 1.0 0.660 0.331 0.738 26° 38' 1.1 0.591 0-339 0.682 29°50' 1.2 0.527 0.343 O.628 33°02' 1.3 0.467 0.342 0.578 36°13' 1.4 0.411 0.338 0.532 39°25' 1.5 0.360 0.330 0.488 42°34' 1.6 0.313 0.320 0.448 45°421 1.7 0.270 0.309 0.410 48°48' 1.6 0.232 2.960 0.376 51°53' 1.9 0.197 0.281 0.343 54°56' 2.0 0.167 0.267 0.315 57°591 2.1 0.140 0.252 0.289 6l ° 00' 2.2 0.116 0.237 0.264 64°00' 2 .3 0.095 0.222 0.242 66° 5B' 2 .4 0.076 0.208 0.221 69°56' 2 .5 0.0596 0.1936 0.2025 72°54' 2.6 0.0453 0.1797 0.1853 75°51' 2 .7 0.0330 0.1664 O.I696 78°47' 2.8 0.0224 0.1536 0.1552 8l°43' 2.9 0.0133 . 0.1414 0.1421 84°391 3.0 - 0.0055 0.1299 0.1300 87°3v 3.1 - 0.0010 0.1190 0.1190 90°30' 3.2 - 0.0065 0.1088 0.1089 93°25'
(17)
30
* Re g Im g M a rc g
3 .3 - 0.0110 0.0991 0.0997 96°20* 3.* - 0.0147 0.0901 0.0913 99°15' 3.5 - 0.0176 0.0817 0.0836 102° 10' 3.6 - 0.0199 0.0739 0.0765 105°05' 3.7 - 0.0216 0.0666 0.0700 108° 00' 3 .8 - 0.0229 0.0599 0.0O41 110°55' 3.9 - 0.0237 0.0537 0.0587 H 3 °5 0 4.0 - 0.0242 0.0480 0.0537 116°45' 4.1 - 0.0244 0.0428 0.0492 119°40' 4.2 - 0.0243 0.0380 0.0451 122°35' 4.3 - 0.0240 0.0336 0.0413 125°30' 4.4 - 0.0235 0.0296 0.0378 128°25' 4.5 - 0.0228 0.0260 0.0346 131°20'
(18)
31
j j L DIFFRACTION OF RADIO WAVES'AROUND THE EARTH'S SURFACE V. Fock
The problem o f th e p ro p a g a tio n o f r a d io waves around th e homogeneous su rfa ce o f th e e a rth is In v es tig a te d . The d if f r a c ti o n e f f e c ts a re co n sid ere d but th e in flu e n c e o f th e Io n o sp h ere Is n e g le c te d . The aim o f th e p a p e r I s t o d e r iv e f o rm u la s f o r th e wave a m p li tude as a fu n c tio n o f th e e le v a tio n o f th e so u rce , I t s d ista n c e from th e p o in t o f o b se rv a tio n ( s itu a te d on th e s u rfa c e o f th e e a r th ) , o f th e wave le n g th and o f e l e c t r i c a l p r o p e r tie s o f th e s o i l . The main r e s u l t is the d e riv a tio n o f an ex p ressio n fo r the a tte n u a tio n fa c to r in form o f an I n te g r a l. T his e x p re ssio n i s v a lid f o r a l l th e v a lu es o f p a ra m eters which a re of p ra c tic a l I n te r e s t. In the lim itin g cases the w ellknown fo rm u la s a r e o b ta in e d : t h e W eyl—v an d e r P o l form ula f o r ill u m in a te d re g io n and th e form ula which c o rr e s p o n d s to th e f i r s t te rm i n W atB on's s e r i e s f o r the shaded region (th e la tte r in a s lig h tly c o rrected f o rm ). E s s e n t i a l l y new I s th e I n v e s t i g a t i o n o f th e reg io n o f th e penumbra (near th e ll.ie o f h o riz o n ). Form ulas a re o b ta in ed which g iv e a co n tin u o u s t r a n s i tio n from th e illu m in a te d re g io n to th e shaded one. Methods f o r n u m e rica l c a lc u la tio n s o f sums and I n te g ra ls Involved in th e problem a re e la b o ra te d .
INTRODUCTION *
T h ere a r e many p a p e r s d e v o te d t o th e p ro b lem o f th e d i f f ra c tio n o f ra d io waves around th e su rfa ce o f th e e a r th . A r e v ie w o f more r e c e n t i n v e s t i g a t i o n s may be fo u n d i n a p a p e r by B. V vedensky.^ The in te r e s t in th is problem i s J u s ti f i e d by th e f a c t, th a t a t sm all d lo ta n c e s , o f th e o rd e r o f a few hundreds o f
*A s h o r t . a c c o u n t o f th e r e s u l t s o f t h i s p a p e r i s g iv e n in our note.
52
k ilo m e tre s , th e r e f r a c tio n o f ra d io waves In the Ionized lay ers o f th e atmosphere may be n eg lected and the d e c isiv e ro le In the pro p ag atio n o f ra d io waves is played oy the d if f r a c tio n . In sp ite of the fact th a t a rigorous so lu tio n of the pro blem o f d if f r a c t i o n by th e sphere had been alread y o b tained some decades e a r l i e r , no p r a c t i c a l l y s u ita b le approximate s o lu t io n has been proposed up t o now. In t h i s paper we In tend to f i l l up th is gap.
1. STATEMENT OP THE PROBLEM AMD ITS SOLUTION IN THE FORM OP SERIES
We denote by r , 6 , $ sp h e ric a l co o rd in ates w ith o r ig in a t the center of the earth globe. The e q u atio n o f the e a r t h 's s u rfa c e (considered as smooth) I s r ■ a , where a Is th e ra d iu s of th e e a r th . Let us suppose th a t a v e rtic a l e le c tric dipole la located a t the point r - b, 6 * 0 (where b> a). S uppressing the tim e-dependent f a c to r e~lu)t In the f i e l d components, we can express th ese components by means o f the Hertz fu n c tio n U which depends on r and 0 o n ly . De n o tin g by k th e ab so lu te v alue o f th e wave v e c to r we o b ta in fo r the f ie ld In the a ir;
(2 )
33
the o th e r components b ein g equal to zero. Sim ilar equations hold for the fie ld In the e a rth . The fu n c tio n U s a tlB f le ^ fo r r > a the equation LV + k2U - 0 , ( 1. 02) and the r a d ia tio n co n d itio n a t i n f i n i t y
11m - lk r U ) (1.03)
I f b > a, 1. e. I f the source (dipole) Is located over the e a r t h 's su rfa c e and no t on th e su rface I t s e l f , U must have
a sin g u la rity a t the point r ■ b, 8 * 0, such th a t
_lkR
U * S jp - + u f (1.04)
and U* remains f i n i t e I f kR ■» 0. In th is formula
R = Vr2 + b2 - 2rb cos S (1 . 05) is the d ista n c e IVora the d ip o le . On the e a r t h 's su rfao e the Hertz fu n c tio n U has to s a t i s f y th e boundary conditions which ensure the c o n tin u ity of th e ta n g e n tia l components Eg and H^. I f we denote th e Hei^tl fu n ctio n w ith in the e a rth by Uj th ese boundary c o n d itio n s w ill have th e form:
k2U = k2 U2 ; £ (rU) « (rU2 ) f o r r - a . (1 . 06)
For O ^ r ^ g (w ith in the e a r th ) the fu n ctio n U2 has to s a tis f y an equation sim ila r to (1 . 02) and to remain f i n i t e . The q u a n tity k2 In form ula (1 .0 6 ) and In subsequent form ulas I s determ ined by the equation i,2 = „„2 * , „ (1.07)
3*
and by the c o n d itio n Im(kg) > 0. I t Is u se fu l to Introduce In ste ad of th e co n d u c tiv ity of' the e a r t h 0, a length I which c h a ra c te riz e s the s p e c if ic re s is ta n c e o f th e e a r th . We put
f « c/4sfl. (1.08)
For sea w ater the v alues o f I vary from 0.05 cm (very s a lty w ater) to 0 .5 cm (d careely s a l t y w a te r ) . For th e s o il th is length Is hundreds or thousands times g re a te r. Introducing the complex lndu o tlv e c a p a c ity of. th e e a rth
1 H I 0*09)
, fcg '■ k. J T ( i.io ) The s o lu tio n o f our problem In th e form of s e rie s Is well known. We w rite , down the n e cessary ..form ulas, w ithout giving th eir derivation
*n <x> *V"5 "Jn+* W.».
Cn tx) (*>.■■
( 1 . 11)
where J y(x) Is th e Beeeel fu n c tio n and H ^ ( x ) I s the Hankel fu n c tio n of th e f i r s t kin d . These fu n c tio n s are; connected by the re la tio n ♦n (*) C^(x) - ^ ( * ) ' C n (x) ■ 'l . (1.18)
We Introduce a s p e c ia l n o ta tio n f o r the logarith m ic d e riv a tiv e of th e fu n c tio n Fn(* )i *n<x >
. »A(«) *n ( x ) <*)
(1.13)
35
A8 s e e n rro m ( 1 . 0 1 ) , th e f i e l d on th e e a r t h 's s u r f a c e aay be expressed by the q u a n titie s
° a ” D| r ■ a 5 * 5F (rU> |r - a* ( * • » > For th ese q u a n titie s th e follow ing s e rie s In Legendre p o ly n o m ia ls may be o b ta in e d :
„ - - r V Y (2n + 1) <n(kb)
Pn(cos e),
Ua kab Z.!^(ka) - ^ Xn (k2a) Cn(ka)
D. = . k- F] (2n + 1 ) Cn(kb) x„(k2a)
r((-'os e). 1 ^ xn ( V > <n<ka>
(1 .1 5 )
(1 .16)
Our ta s k I s to p erform an approxim ate summation o f th e se se rie s .
2. THE SUMMATION FORMULA
The sums we have to c a lc u la te are o f the form
S - ^ v * ( v ) P y_^(cos 6), (2.01)
where the summation Is tak en over h a lf In te g ra l values o f v. I n th e sum ( 1 .1 5 ) th e f u n c ti o n $ ( v ) ( d i s r e g a r d i n g a c o n sta n t fac to r) is equal to
*(v) .. ----------------- j-i- 2 --------------------------- . (2 .( X y-i(k2a)
I n th e sura ( 1 .1 6 ) t h i s f u n c t i o n d i f f e r s fro m ( 2 .0 2 ) by th e fa c to r xv_
(5)
36
For the d i r e c t com putation o f th e eun I t would be necessary to take th e number o f th e tarm s approxim ately equal to 2ka, 1. e. to double the number o f th e waves which may be p ut around the e a r th circum ference. Since t h i s number la enormous. I t la e v i d e n t, th a t such a d i r e c t summation Is Im possible. For the c a l c u la tio n o f the sum S I t I s n ecessary to make use of th e fa c t t h a t d(v) i s an a n a l y tic a l fu n c tio n and to transform th is sum in to an I n te g r a l, which Is to be ev a lu a ted by some approximate method. Such a tra n s fo rm a tio n was f i r s t l y proposed by Watson^ In 1918 and was th e n used by v ario u s a u th o rs. But a l l th ese a u th o rs aimed to b rin g th e ex p re ssio n o b tain ed by th is tr a n s fo rm ation to the form o f a sum o f re s id u e s , while our aim Is to s e p a ra te out a main term which I s e a s ie r to In v e s tig a te and to estim a te the magnitude o f th e rem ainder. The method of com p u ta tio n of th e main term I s not p redeterm ined th ereb y . When perform ing our tra n sfo rm a tio n we have to b ear in mind th e follo w in g g e n e ra l p ro p e r tie s o f th e fu n c tio n d (v ). I t Is an a n a ly tic a l fu n c tio n o f v meromorphlc In th e r ig h t h a lr -plane. I t has poles only In the f i r s t quadrant and Is holomorphlc In the fo u rth quadrant. I t decreases a t In fin ity In such a way t h a t a l l th e I n te g r a ls co n sid ered converge. The Legendre fu n c tio n s t h a t e n te r (2 .0 1 ) can be expressed by means o f th e fu n c tio n
°v ■ £ {Y r { M t } p ( * ' * ' v + r a r * ) (2 03)
( 6)
37
where F denotes the hypergeom etrlcal fu n c tio n . Denoting by Gf and by P*_^ the ex p ressio n s which are obtained from G and from Pymj = Py_ j(co s ®) by re p la c in g 0 by 71 - 0 we g e t:
P , ■ — 7= = f e iv 0 ' 1T 0* + e ' lv ®+1? o 1 . (2.0*.) v' s 11V2 s i., 0 I v v J
It. i s seen from (2.03) th a t I f the values of v l i e o u t sid e of a c e r ta in s e c to r , which Includes the n egative re a l a x le , and I f | v s in 0 | I s la rg e , then the fu n ctio n Gy (and a ls o G*) I s approxim ately equal to
Ov ~ t ^ A . (2.05)
S u b s titu tin g (2.05) In (2 .p 4 ) we g et the w ell known asym ptotic ex p ressio n f o r I f we denote by B(v) the f i r s t term in formula (2.C1.) :
B(v) = — -1--------- e lv ®-1¥ G* (2.06) 7i V2 s in 0
the follo w in g r e la tio n may be proved
P*_j ■ e 1^ - ^ " Pv. j + 21 cos vti B (v). (2.07)
We s h a ll use t h i s r e l a t i o n l a t e r on. We note th a t B(v) Is holomorphic In the rig h t half-p lan e. Let us c o n sid er In th e plane o f th e .complex v a ria b le v th re e c o n to u rs: 1) th e loop which s t a r t s a t i n f in ity on the p o s itiv e r e a l a x is , runs above the r e a l a x is , e n c irc le s the7
(7)
38
o rig in counter-clockw ise and retu rn s to the s ta rtin g point a t I n f i n i t y running below the r e a l a x is ; 2) th e broken lin e Cg, which c o n tain s th e f i r s t quadrant and la describ ed (in i t s h o riz o n ta l p a r t drawn s l i g h t l y o v er the r e a l ax le ) from the l e f t to th e r ig h t a id e ; 3) the s t r a i g h t lin e which crosses th e o r ig in and i s in c lin e d a t a sm all angle to the Imaginary a x is. This lin e is described from the top to the bottom and lie 3 in the second and fourth quadrants. He can w rite th e sum S in th e form
S • j J" v$(v) sec vii dv, (2.08)
sin c e th e I n te g r a l on the rig h t-h a n d sid e reduces to the sum o f th e re s id u e s in th e p o in ts v * n + 4. The fu n ctio n d(v) being hdlomorphlc in the fo u rth q u a d ra n t, we may rep la c e the contour Cj by th e contours C2 and and w rite
5■' * J C2
»♦(») ■
(2.09)
This tra n sfo rm a tio n o f the sum corresponds to the usual one; the In teg ral along the contour is neglected because of th e sm alln ess o f the odd p a r t o f $(v) (an estim ate o f i t s magni tude w ill be given below ), and th e in te g r a l along Cg is reduced
59
t o the sum o f re s id u e s . But we s h a ll go a ste p fu r th e r and d iv id e the I n te g r a l along Cg in to two p a r ts : the main term >nd the c o rre c tio n term . I n s e r tin g in the in te g r a l th e ex p re ssio n (2 .0 7 ) f o r P*_£ we s h a ll have
S = Sx + S2 + Sy (2 .1 0 ) '
where
S1 ] v*(v) B(v) dv. (2.11) C
S9 ■ - $ \ v*(v) sec vn e lvfl Pv . dv (2.12) J C2
S3 = | j v*(v) sec vn P j_ j dv. (2.13)
C5
The in teg ran d in S1 has no poles on the re a l ax is (and a ls o in th e fo u rth q u a d ra n t). T herefo re, th ere i s no d iffe re n c e , whether we ev a lu a te the in te g r a l along Cg or along Cj We have denoted by C any contour, which i s e q u iv alen t to Cg o r C y The re p re s e n ta tio n o f S as a sum o f th ree I n te g ra ls (2.10) is e x a c t—th e re was made no n e g le c tio n in our d e riv a tio n . But th e e stim a tio n o f the magnitude o f Sg and shows th a t these in te g r a ls a re n e g lig ib ly sm all a s compared to S1 . In f a c t , i f we ev a lu a te the I n te g r a l Sg as a sum of r e s i dues a t th e p o le s of d(v) we s h a ll see th a t i t s r a t i o to S1 is of the order
(9)
(2 .I t)
40
| #2 iv i (* -« )|
where v1 Is th e pole o f d(v) n e a re s t to the r e a l a x is . The Imaginary p a r t o f Vj I s p o s itiv e and f o r la rg e values o f ka w ill be Im(vj) - c(ka)1/5 , (2.15)
where c I s a pure number o f th e o rd e r of u n ity ( f o r the p e r fe c t conductor c ■ 0 .7 0 ). Since ka Is very la rg e ,o f the order o f a m illio n ( f o r X • 40 m, ka • 10^), I t Is c le a r , th a t the q u a n tity (2 .1 5 ) w ill be la rg e ( f o r In stan ce, equal to 70) and the q u a n tity (2.14) w ill be n e g lig ib ly sm all. (In our problem 6 cannot reach the v alue s sin c e In th is case we have to take Into account the Influence of Ionized layers of the atmosphere and our form ulas cease to be v a l i d .) The v alue of th e I n te g r a l S^ Is determined by the odd p a r t o f $ ( v ). But the odd p a r t o f t h i s fu n ctio n w ill be o f the order | e 21k2a | . (2.16)
S ince th e im aginary p a r t o f kga I s a p o sitiv e and very la rg e , th e v alue o f (2 .1 6 ) w ill be Inconceivably Bmall. The fo llo w in g p h y sic a l p :c .tu r e g jv e s a n o tio n of th e sm alln ess o f the I n te g r a ls S2 and S^. The In te g ra l Sg Is the am plitude o f a wave which tr a v e lle d once o r s e v e ra l times around th e globe w ithout r e f r a c t i o n (by means o f d if f r a c tio n o n ly ) . The in te g r a l S j la the am plitude o f a wave which
(1 0 )
*»1
traversed a path equal to the diam eter of the globe with the abso rp tio n which ta k e s p la c e w ith in the e a rth . I t Is c le a r th a t both the I n te g r a ls a re nefellglbly small as compared w ith the am plitude o f the wave which reached the o b server through the a i r by the n e a re s t way. T herefore w ith the whole p e rm issib le accuracy ( l . e . with an e r r o r which I s n e g lig ib ly sm all as compared w ith the e rro rs Involved In th e p o s itio n o f our p h y sic al problem) the otu.i S defined by (2.01) may be pu t equal to the In te g ra l Sj alo n e. This In te g r a l may be w ritte n In th e form
= ^ v * (v ) e lv0 0 * d v , (2.17)
which follow s from (2.11) when the e x p ression (2 . 06) fo r I Is Inserted.
I f 0(v) I s the fu n c tio n (2 .0 2 ), then the re la tio n between urn S and the q u a n tity Ufl Is
ua ' ' TEafr S> (3.01) approximate ex p ression fo r U& may be
Therefore, w ritten
2e = \ v * { ,
V
elvO > d v .
us s (3 .02)
42
The p o s itio n of the main p a r t of the In te g ra tio n p ath In (3.02) depends on the p o in t fo r which the In te g ra l Is evaluated. In g e n e ra l the main p a r t I s In the v ic i n ity o f the p o in t v = v0 , where (5.03)
The q u a n tity h la th e len g th o f the p e rp en d icu lar dropped from th e e a r t h 's c e n te r on th e ray (1. e.} on the s tr a ig h t lin e which connects th e source and the p o in t o f o b se rv a tio n ). For the approximate evaluation o f the In te g ra l I t Is necessary to obtain the asymptotic expressions for the func tio n s 0* and d(v) v a lid on th e main p a r t o f the In te g ra tio n p a th . Since v0 and vq6 a re la rg e as compared w ith u n ity , we may pu t according to (2.05)
Q* = V w /v . ( 3 .0 4 )
For th e Hankel fu n c tio n s Involved In ip(v) one may te n ta tiv e l y use the Debye exp ressio n
Cw_4 (P)
V i - ( v2/ p2 )
(3-05)
where (3.06)
These expressions are v alid provided the condition
I p2 - v2 ! » PV 3
U2)
(3.07)
*»3
la s a tis f ie d - As to th e fu n c tio n i t s value near the p o in t v * vQ nay be re p re se n te d w ith a s u f f ic ie n t ap p ro x i mation by the e x p ressio n '
K - i <k2a > “ - W 1 - T 7 (3-03)
k2 a
In o rd e r to make c l e a r . In which cases the In e q u a lity (3.07) Is s a tis f ie d , le t us Introduce the parameter
(3-09)
where 7 la the angle between the v e r t i c a l d ire c tio n a t the observ atio n p o in t and the d ire c tio n from t h i s p o in t to the source. I t I s e a s ily seen th a t f o r v * vQ, p • ka th e In e q u a lity ( 3 . 07) Is eq u iv a le n t to the c o n d itio n th a t p should be larg e and p o s itiv e . Such values of p correspond to the Illum inated reg io n . The v alues o f p o f the o rd e r of. u n ity (p o sitiv e and negativ e ones) correspond to the reg io n o f penumbras the special value p ■ 0 gives the boundary of the geom etrical shadow (horizon l i n e ) . Large and neg ative values of p c o rre s pond to the shadow re g io n . In t h i s s e c tio n we s h a ll In v e s tig a te the case of a larg e p o sitiv e p (Illum inated region)j other cases w ill be in v e stig a ted in the next sections. We have seen thai, I f p » 1 the Debye expressions fo r the Hankel fu n c tio n s a re v a lid . I n s e r tin g th ese expressions In to
P cos 7,
(13)
44
(3 .0 2 ) and u sin g (3.04) and (3 .0 8 ) we g et
(3.10) e 1<BV 7 dv
where (3.11) lea
I f the condition kh cos y » 1 (3.12)
1b s a t i s f i e d , where h • b - a Is th e h e ig h t o f th e source above the e a r th , th e In te g ra l (3-10) can be c a lc u la te d by means of th e method o f th e B teepest d escent and the follow ing " r e f le c tio n formula" Is obtained:
In th is formula
la th e d istan c e from the source, and W la th e " a tte n u a tio n fu n c tio n " which In our case I s equal to
(3.14)
(14)
(3.15)
The q u a n tity d efin ed by th e s e rie s (1.16) d if f e r s (in our approxim ation) from Ua by a c o n stant fa c to r only. We have '__________
®; ■ - ^ \ f l - {£ s in 2 7 Ua . (3 .1 6 )
The l a s t form ula la tru e not only fo r the illu m in ated region, but also In other cases. I f condition (3-12) Is not s a tis fie d , the denominator In the In tegrand (3.10) cannot be considered as slowly v ary ing. I f In ste a d of (3.12) we suppose th a t the c o n d itio n s;
1 < < (ka)2 /3 , (3.17) n
1 « kR « a /h , (3.18)
are s a tis fie d (the Inequality p » 1, being a consequence of these c onditions), the In te g ra l (3.10) can be approximately c a lc u la te d by in tro d u c in g a new In te g ra tio n v a ria b le u, according to
» ' ^ ^ ■ (3>19)
For the function W In (3.13) the follow ing approximate expression Is obtained;
(15)
■ <3 -20 >
M-0 = h/R (3.21)
J*6
where
is th e in c lin a tio n o f the ray to the h o rizo n . The contour T i s a s t r a i g h t lin e which crosseB the p o in t u, * u0 p assin g th ere from th e fo u rth to th e second quadrant o f the plane o f n (or of u - u0 to be more e x a c t) . Hie I n te g r a l ( 3 . 20) can be c alcu lated w ithout any f u r th e r approxim ation and g ives the well-known Weyl—van d er Pol form ula. I f we put
<>•»>
we s h a ll have
W » 2 - i(de"((3+T)2 f e*2 1®
(3 .2 »
To o b ta in th e f i e l d components from our ex p ressio n s fo r Uft and we have to d i f f e r e n t i a t e th e se e x p ressio n s by 6 which Is e a s ily done, sin c e we may reg ard a l l f a c to rs in ( 3 . 13) ex cept e lkR, as co nstants.
it. ASYMPTOTIC EXPRESSIONS FOR THE HANKEL FUNCTIONS
In th e follow ing we have to c o n sid e r the case when the p o in t of observation is in the region o f penumbra. T his case is c h a ra c te riz e d by th e values o f th e param eter p (p o s itiv e s o r n e g a tiv e s) o f the o rd e r u n ity . Aa th e in e q u a lity
( 16)
U7
(» 01) is n o t s a t i s f i e d In th lB c a se , the hebye expressions 05) fo r th e Hankel fu n ctio n s are not v a lid on the main p a r t 0f the In te g ra tio n c o n to u r and must be replaced by some o th e rs, jhe new ex pressions f o r the Hankel fu n c tio n s s u ita b le fo r our purpose c»n be o b tain ed from th e asym ptotic expressions which
are given In our p”e v lo u s pap er^, o r from the form ulas given h
in the well-known W atson's t r e a t i s e , b ut i t Is more sim ple to deduce them Independently. Our aim Is to f i n d an approxim ate expression fo r the Hankel fu n c tio n in te rm s of th e fu n c tio n w (t), defined by the In teg ral
w (t) = Ije12-1/ 5*5 dz, (<(.01)
the contour T running frun in fin ity to the origin along the ray arc c » - 2u/3 and from th e o r ig in to In f in ity along the ray arc z ■ 0 (the p o s itiv e r e a l a x is ) . Tne fu n ctio n w (t) sa tis fie s the d iffe re n tia l equation
w "(t) - tw (t) (1. . 02)
with the i n i t i a l conditions:
"(0 ) = ■o / l = 1.0899290710 + 10.6292708b25, 32 /3 r (2/5)
w' (0) - e -i(it/6) . 0,791,5704238 - io.4587**5,'8 l. 3 / 5 r ( */ « (<<. 03)
(17)
48
w (t) ie an I n te g r a l tra n sc e n d e n ta l fu n c tio n , which can be ex panded In to a power a e rle a o f the form:
w (t) w(0) 1 1 + 2T^ + (2.5)h-«> ) + (5-5
; t “ t i t 10 i
(4.04) I f we s e p a ra te In w (t) th e r e a l and the Imaginary p a rts (for re a l values of t) putting
w (tj ■ u (t) + l v ( t) , (4.05)
then u ( t ) and v ( t ) w l l l be two Independent I n te g r a ls o f equa tio n ( 4 , 0£) connected by the r e l a t i o n
u ( t ) v ( t ) - u ( t ) v ■( t ) - 1. (4.06)
The asym ptotic expressio n s of th ese fu n ctio n s fo r larg e negative values of t are obtained by separation of the re a l and Imaginary p a r ts In th e form ulas:
For large p o sitiv e values of t the asymptotic expressions u ( t ) , v (t) and th e ir d e riv a tiv e s are of the form
, i t 3/ 2 i ( t ) = t * 1/ " e7 ;
, t t 3/2
= t 1/* e 3 ;
(18)
(4.09)
49
2 ,.3/2 v ( t) ■ K l/U • 5 .
. a t 3/2
v , (t) , . l t l / ^ e 3 k .
Prom the s e r ie s (4.04) th e follow ing re la tio n s deduced: w w (te ^ ) • 2elE v (-t).
w (te "5”) = e 5 [ u ( t ) - l v (t ) j .
These r e la tio n s d e sc rib e th e b ehavior, of w(t) In t l t-plane. Ve note th a t w (t) is e x p re s s ib le In terms of th fu n c tio n of the o rd e r 1/5 scco rd ln g to the formula
«(t) (-«)3/2) .
A fter having enumerated '.he main p ro p e rtie s of now proceed to deduce the asym ptotic e x pression fo r fu n c tio n H ^ ( p ) where v and p are la rg e and nearly that the ratio
remains bounded, while p tends to In fin ity . The Hankel fu n c tio n H ^ ( p ) adm its the in te g ra l tatlon
(19)
(*•10)
are easily
(« .ll)
(4.12)
e complex
e Hankel
(*.13)
w (t), we the Hankel eq u al, so
{*1.10
repreaen
(1.15)
50
< »w. 4 p
where the contour C c o n sists of a p a rt of the str a ig h t lin e Im(v) = - 7t d e sc rib e d from - n l - onto some p o in t v = v w ith He(v0) < 0 [ e . g . vo * ( - n /V T ) - lw}, a s tr a ig h t lin e Jo in ing vo to the o rig in and, fin a lly , the p o sitiv e re a l axis des c rib e d from th e o r ig in to I n f i n i t y . Let us express v through t , according to (4 .1 4 ), and In tro d u ce a new I n te g r a tio n v a ria b le
z * I T J /Z V (4.16)
C onsidering t and z as f i n i t e and p as la rg e , we can ex pand the lntergrand In (4.15) In a a e rie s of negative (fra c tio n a l) powers of p. Since th e re le v a n t p a r t of the tra n s formed contour C c o in cid es w ith contour T we can w rite
- A ( l ) ' 1/5 - & ( f f * * ...]« •
* (4.17)
and ev alu a te th e In te g r a l u sin g (4 .0 1 ). We thus o b tain
(4.18)
In v irtu e of the d iffe re n tia l equation (4.02) the f if th d eriv ativ e equals * ( 5 ) ( t ) = t 2 w' ( t ) + 4 tw ( t) . (4 . 19)
(2 0 )
51
In s e rtin g t h i s In (4 .1 8 ) and usin g ( l . l l ) we g et the follow ing ex p ressio n f o r the fu n c tio n ? v- l / 2 (p):
Cv- l / 2 ( p ) = - - ( f ) l / 6| " ( t ) - ^ { | ) * 2/ 3 [t2W ( t) + 4 tw ( tj+ .. | . (4.20)
D iffe re n tia tin g th is expression with respect to p (with account of the dependence o f t on p w ith v co n stan t) we get the following expression fo r the derivative:
t ^ - l / 2 (p)= l ( f ) " l / 6| w ' ( t ) - ^ ( f ) 2/I?f*+9 )^ (t)-iltw '(t)] + . . . } . ( * . 21)
These ex p ressio n s w ill be used In the next se c tio n . § 5 . The expressions o f th e Herz fu n c tio n v a lid In the penumbra reg io n . We re w rite th e ex p re ssio n (3.02) f o r the Herz fu n ctio n re p la c in g th e r e in the q u a n tity Oj by I t s approximate value V jt/v and th e q u a n tity s i n 6 b efore the In te g ra l by 9. We g et
f
U ( v ) e lve y r a v . (5 .01) 8 kab J
The contour C may be taken Id e n tic a l w ith contour C2 , which was d efin ed In ^ 2 , o r may be re p laced by some contour eq u iv a len t to C? . The main p a r t of th e In te g ra tio n p ath l i e s in our case ( l .e . fo r f in ite values of the parameter p) near
(21)
52
th e p o in t v = lea. Consequently, th e fu n ctio n _^{k2a) involved in (2 . 02) can be rep la c e d by th e value o f (3 . 08) fo r v = ka. I n t r o d u c e th is In d(v) we o b ta in :
*(v)
____________ t v.j(K b )____________ (5.02)
For ( v j and i t s d e r iv a tiv e we must uee expressions v a lid n ear the p o in t v ■ k a. Such e x p ressio n s were obtained in the p receedlng p arag rap h . R e tain in g In (<*.20) and (X.21) the p rin c lp a l term s only we g e t:
I v ^ O * ) - - i ( j * ) V 6 •<*), (5.03)
Cv.* (k a ) * l ( ^ ) 1/6 w '( t ) . ( 5 .0 0
where the v a ria b le t 1* connected w ith v by the r e la tio n
(5.05)
The num erator In (5 .0 2 ) la o b tain ed from (5 . 03) by rep lacin g a by b and t by t ', where
(5.06)
Equating (5 . 05) and (5 .0 6 ) we o b ta in th e connection between t and t 1. Since th e r a t i o h /a , where h • b - a , Is a n a ll £we s h a l l c o n sid e r I t o f rhe sane o rd e r aa (ka)"2^ j we must neg le c t I t as compared to u n ity . We may then put
(2 2 )
f = t - y,
where
kh ( 5 . 08) (k a /2 ) ly
Is a quantity proportional to the height of the source over the e a r t h 's s u rfa c e . We may c a ll y the reduced heig h t o f the sou rce. Hence, w ith n e g le c t of terras o f the o rd er h /a o r Oca) -2 /3 a
tv-i(kb) - 1(!r )1/6w(t • y)* (5.09)
where t la determ ined by (5 .0 5 ). (We have a lso rep laced b by a In the f a c to r b e fo re w.) S u b s titu tio n o f (5 .0 3 ), (5-04) and (5.09) In (5-02) giver, the desired approximate expression fo r ${v). I f we pu t f o r the sake o f b re v ity
' W iq \ (5 -10)
* (v) ■ - ( | r ) /? •
:mberlng formulas (1 . 09) and (1 .1 0 ), v Mty q
- _ , /naN1^ V e - 1 + 1(x/2ti/)
Q' 1W -eTilx/Lf)
(5 .n )
■may w rite fo r
w ith th e same accuracy
54
q ■ 1 ( ^ ) 1/3 - = = = ? = = = = = = (5.13)
VX / V € + 1 + l(X /2n/)
This form is s l i g h t l y more convenient fo r c a lc u la tio n s . We have now to s u b s titu te th e value o f $(v) from (5-11) in to (5-01) and Intro d u ce th e in te g ra tio n v a ria b le t . Making t h i s s u b s t i t u t i o n , we may re p la c e the q u a n tity V""v"in th e i n t e grand by th e c o n sta n t value V k a and a lso w rite b in ste a d a t a in the f a c to r b efo re the in te g r a l. The r e s u ltin g formula may be w r itte n in th e form:
Ua = e - ^ f e 1Xt I & ( t) d t, (5.14) c'
where x denotes th e q u a n tity
x = ( t ) 1/3®' (5.15)
which may be termed as th e reduced h o riz o n ta l d istan ce from the s o u rc e, while y and q have the values given by (5.08) and (5 .1 3 ). The conto u r C must be such t h a t a l l th e poles o f the in te g ran d are comprised w ith in the contour; as we s h a ll see la te r , they are a ll situ ated in the f ir s t quadrant of the t p la n e . Thus we can c a rry out th e in te g ra tio n in (5-14) from loo to 0 and from 0 to + oa In o rd e r to g e t a more c le a r idea on the r a t i o of the h o r iz o n ta l and th e v e r t i c a l sc a le in the v a ria b le s x and y , we w rite th e e x p ressio n f o r th e param eter p, as defined by (24)
55
■)), in te rn s o f x and y . Prom th e c o n s id e ra tio n o f the trian g le with v e rtic e s In the e a r th 's c en ter. In the source po in t and In the p o in t o f o b s e rv a tio n , th e follow ing approxlpate expression la ea sily deduced:
I t follows th a t the equation of the horizon lin e Is x = V 7 . Fu rth er we s h a ll need th e r e l a tio n between the d i s tance R from the source as measured along a s tr a ig h t lin e and the h o riz o n ta l d is ta n c e afl as measured along the arc o f a grea^t c i r c l e . Assuming a® >> h, 1. e . (k a)1^ x >> y , th l6 r e la tio n may be w ritte n
kR ■ ka6 + u)o , (5.17)
where
“ o = h + ¥ - h • (5 -18)
6. DISCUSSION OF THE EXPRESSION FOR THE HERTZ FUNCTION
The expression o b tained fo r th e Hertz fu n ctio n Is most conveniently w ritte n In the form:
lka$
Ua * S-g— V ( x ,y ,q ) , (6.01)
where
- . ' V ? " • (6 -02> c
(25)
56
The q u a n tity V may be c a lle d a tte n u a tio n fa c to r by analogy with th e q u a n tity W, which waa Introduced e a r l i e r ^see (3 .1 3 )]. Let us determ ine th e connection between V and W. Since In the d e nom inators of ex p ressio n s (3.13) and (6 .01) the q u a n titie s R and aO can be co nsidered as e q u al. I t follo w s from (5-17)
W » Ve-lu)o. (6.03)
We have now to I n v e s tig a te the ex p ressio n (6.02) fo r V. We s h a ll f i r s t co n sid e r the case o f larg e p o s itiv e values o f p(Illum inated reg io n ). This case has been already discussed by a n o th er methcd (f 3 ). B ut, as formula (6.02) w?i obtained f o r the case o f a f i n i t e p . I t seems to be o f I n te r e s t to v e r if y th a t i t 13 a ls o v a lid in th e case o f a larg e p . I f p >> 1, th e I n te g r a tio n p a th may be deformed so as to c ro ss the p o in t where - / T - P- I t s main p a r t w ill be s itu a te d In th e domain o f la rg e n e g a tiv e v alues of t , where expressions (it.07) and (<<.0c) i c r w and w are a p p lic a b le . Using them and applying the method o f th e s te e p e s t d e sc e n t, we o b tain
V ,1<uc 2
i - i(d /p ) (6.014)
and in v ir tu e o f ( o .03)
• ' i- - i h m ■ |6 -°5> The l a t t e r ex p re ssio n p r a c t i c a l l y coincided w ith (5 .15). We note t h a t in th e case when x i s of the order o f u n ity o r large the condition p » 1 is su ffic ie n t for the a p p lic a b ility
(2 6 )
57
0f the method of s te e p e s t d e sc e n t. I f x Is :-mall, the fu rth e r condition y2 » 2x is n e c essary . I f th e l a t t e r co n d itio n Is not s a t i s f i e d bu t l.ie In e q u a lity
x « y « 1/x (6.06) *
is s a t i s f i e d I n s te a d , the I n te g r a l can be c a lc u la te d by another method. F u rth er s im p lif ic a tio n s in th e asym ptotic expression f o r w(t - y) can be then made, and th e in te g ra l (6.02) reduces to the form
l£ IT
V =e Vs ] ----------- d t - (6.07) C
Taking V - t as in te g r a tio n v a r ia b le , we are led to an In te g ra l o f the form (5.20) £with V- t - (k a /2 )1^ u ]and we g et again the Weyl-van d er Pol form ula (3-23) w ith the follow ing values of 6 and t :
6 - ¥ q V7 , T - e 1 " — X— . (6.08)
2V x
These valu es p r a c tic a lly c o in cid e w ith (3 .2 2 ). Let us now in v e s tig a te tne most in te r e s tin g case when p is o f th e order o f u n ity ( p o s itiv e or n e g a tiv e ). Vfe know th a t t h i s Is th e region o f the penumbra, where th e d if f r a c tio n e f f e c ts p lay the dominant p a r t . I f the values of x and y are of the order of u n ity , the most e f f e c tiv e method o f e v a lu a tio n o f the in te g ra l (6.02) is th e re p re s e n ta tio n o f t h i s I n te g r a l in form o f a sum of resid u es
(27)
58
taken a t the poles o f the Integrand. D enoting by t 8 * t g (q) th e ro o ts o f th e e q u atio n
**'(t) - qw (t) - 0 ( 6 . OS)
we o b ta in
(6 . 10)
The ro o ts t 9 (q) are fu n c tio n s o f the complex param eter q. For the value q ■ 0 they reduce to the roots t^ = t g(0) of the d e riv a tiv e w '( t ) and fo r q * oo they reduce to the ro o ts t ° ■ t s (a} o f the fu n ctio n w (t). The phases o f t ; and t ° are equal to n/3» so th a t
We g iv e h e re th e m o d u li o f th e f i r s t f i v e r o o t s t ^ a n d t ° :
s
For la rg e v a lu e s of s we have approxim ately
(28)
(6 .12)
59
To c a lc u la te th e ro o ts f o r f i n i t e values of q we may use the d iffe re n tia l equation
(6.13)
which can be e a s ily deriv ed from (4 .0 2 ). The root t 8 (q) Is determ ined e ith e r as th a t s o lu tio n o f (6.13) which a t q * 0 reduces to t^ o r as th a t s o lu tio n which a t q ■ coreduces to t®. Both d e fin itio n s a re e q u iv a le n t. S to rtin g from the f i r s t d e f in itio n , a s e r ie s in ascending powers o f q may be e a s ily co n stru cted fo r t B; th i s s e r i e s w ill converge fo r | q | <|)/"t^*|. S ta rtin g from th e second d e f in itio n we may co n stru ct a s e rie s in descending (negative) powers of q; th is w ill converge fo r M > 1 ^ 1 - These s e r ie s s h a l l not be w ritte n down here. I t may be n o ticed t h a t th e v alue o f t , which fo r larg e values of | q | Is clo se to qc , I s no t a r o o t o f equation (6 .0 9 ). I f th e co n d itio n y2 « » I V s l 13 s a t i s f i e d , we have the approximate re la tio n
^■w| t • ch(y sh(y y f t g). (6.14)
This r e la tio n perm its us to e stim a te the value o f remote terms In the se rie s (6.1 0 ). I f s Is 3 0 'larg e th at |q | « I V ^ I . we have approxim ately t g * t g (0) ■ t ^ . I t follow s from th is and from e x p ressio n (6 .1 4 ) t h a t the s e r ie s (6.10) Is always
(29)
60
convergent. But I f x Is small or I f y Is la rg e , the s e rie s converges slo w ly , and to c a lc u la te I t s sum a larg e number of terms may be re q u ire d . In the shadow re g io n , where p Is la rg e and n e g a tiv e , the s e r ie s (6 .1 0 ) converges very ra p id ly and I t s sum approxim ately reduces to I ts f ir s t term. Our s e r ie s (6.10) corresponds to th a t o f Watson but has the advantage of sim p lic ity . The fundamental form ula (6.02) perm its us to In v e stig a te not only the lim iting cases (large p o sitive values of p -lllu m lr.ated region, large negative values of p-shadow region) but a ls o the In term ed iate c a se s, namely the region of the penumbra. While In the lim itin g cases our form ula leads to an Improvement o f form ulas p re v io u sly known (the r e f le c tio n formula and the Weyl-van der Pol formula f o r th e Illu m inated region and the Watson s e r ie s f o r the shadow r e g io n ). In the tra n s itio n a l penumbra re g io n I t y ie ld s e s s e n t i a l l y new r e s u lts . The case when x and y a re la rg e and p - f l n i t e (s h o rt waves, penumbra) Is o f s p e c ia l I n t e r e s t . This case has not been In v e s tig a te d b e fo re as th e known form ulas are not v a lid h ere. In what follow s we s h a ll d e riv e approximate form ulas, which allow a complete d iscussion of th is case. We In tro d u ce the q u a n tity
* -V 7 .
(?0)
2 = (6.15)
61
which re p re s e n ts the reduced d ista n c e measured from the boun dary o f the geom etrical shadow (and no t from the so u rc e ). In the region o f geom etrical shadow we have z > 0, In the v lB lble region z < 0. Our p aram eter p , expressed In terms o f z and x, takes th e form
In our case x Is la rg e an z I s f i n i t e ; hence we have ap p ro x i mately p = - z. The main p a r t o f the I n te g r a tio n path In (6.02) c o rre s ponds now to v alues o f t o f th e o rd er o f u n ity ; but I f y Is larg e and t f i n i t e we may use fo r w (t-y) the asym ptotic ex p re ssio n (4 .0 7 ) which g ives
w(t - y) (6.17)
or approximately
1? -1 /4 i f y5^2- 1 V y t . (6.1ft) w(t - y) = e "y e 5
I n s e r tin g (6 .1 8 ) In to (6 .0 2 ) and rep lacin g In the fa c to r b efore the I n te g r a l the q u a n tity x^ y '^ by u n ity , we g et
yV2 V (x .y .q ) = e 5 V ^ x - V y . i l ) , (6.19)
where
f eizt
= J W*(t) - qw(t) d t
(31)
(6 .20)
62
The terms n eg lected In (6 .1 9 ) are (fo r a f i n i t e z) o f the order of 1/V "y" (o r of 1 /x ). T herefo re, th e fu n c tio n V (x ,y ,q ) o f two arguments x ,y and o f the param eter q reduces In our ease to a fu n c tio n V1(z,q ) o f a s in g le argument z and of the same p aram eter q. The r e sulting sim plification Is quite e ssen tial. Let us now d e riv e the r e l a t i o n connecting the a tte n u a tio n fu n c tio n Wwith th e fu n c tio n V j. We have the I d e n tity
(6 .21)
where u> has th e v alue (5 .1 6 ). O m itting In (6.21) the la s t term we o b ta in from (6.03) and (6 . 19)
iz ? W ■= e^ V ^ z .q ) . (6.22)
Thus, in our approxim ation function W depends on x and y only through z = x -\J~y". The fu nctio n V1(z ,q ) I s an I n te g r a l tra n sc e n d e n ta l func tio n o f th e v a ria b le z. For a p o s itiv e z we can ev a lu a te the I n te g r a l (6.20) a s a sum o f re s id u e s , and we get
V ^ z .q ) * 12 ^ L i (6.23)
. ( t . - q j w(t_) 8=1 3 (fo r z > 0), where t s a re th e ro o ts o f equ atio n (6 . 09) which were d iscu ssed e a r l i e r . The la r g e r Is z the more ra p id ly converges th e s e rie s ( 6 . 23) . For a s u f f i c i e n t l y la rg e p o s itiv e z I t s sum reduces to
(32)
63
the f i r s t term. For f in ite negative values of z (e .g . - 2 < z < o) the I n te g ra l (6.20) has to be e v alu ated by q u ad ratu res. For larg e n eg ativ e v alues o f z th i s In te g ra l may be evaluated by th e method o f s te e p e s t d e scen t, and we g et
v i ( z '«> e i V w ^ T (6 ' 21°
According to (6 .2 2 ), th i s gives
W = 2 / ( l + ^ ) . (6.25)
Since approximately z « - p, th is coincides with expres sion (6.05). We note In conclu sio n t h a t our fundamental formula (6.02) can be obtain ed by th e method o f p a ra b o lic eq u ation, proposed by M. Leontovich and ap p lie d by him-' to the d e riv a tio n o f the Weyl-van d er Pol form ula. The a p p lic a tio n o f L eontovichs method (in a s l i g h t l y Improved form) to our problem w ill be given In a separate paper.
REFERENCES
1 V. Fock, C. R. Acad. S c l . URSS, >43 (19*»5). 2 B. Vvedensky, B u ll. Acad. S c l. URSS, s e r phys. , ^ 415 (19&0). 5 V. Fock, C. R. Acad. S c l. URSS, 1,. 97 (1934). u o. n . Watson, TrcaU.Be an..the..Theory o f B e m i F vnctlona. Cambridge, 1922. ^ M. Leontovich, B u ll. Acad. S c l. URSS, s e r . p h y s., fl, 16 (1 9 « ).
(33)
65
... SOLUTION o p t h e problem o p pro pag ation o p electromagnetic waves *'■ ALONO THE EARTH'S SURFACE BY THE METHOD OF PARABOLIC EQUATION
The problem o f p ro p a g a tio n o f e le c tro m a g n e tic waves alo n g th e su rfa c e o f th e e a r th is so lv e d by th e m ethod o f p a ra b o lic e q u a tio n p ro p o sed by Leonto v ic h . In the f i r s t se c tio n th e su rfa ce o f the e a rth is co n sid ered as p lane and th e well-know n W eyl-van d e r Pol form ula i s d educed. T h is form ula tu rn s ou t to be th e e x ac t s o lu tio n o f th e pa ra b o lic e q uation w ith corresponding boundary c o n d itio n s. In th e second se ctio n the su rfa ce is co n sidered as sp h e ric a l, and the re s u ltin g form ula co in cid es w ith th a t o b ta in ed by Pock by th e method o f summation o f in fin ite se rie s rep resen tin g the rigorous so lu tio n o f th e problem .
A new form o f th e s o l u t i o n o f th e p ro b le m o f p r o p a g a tio n o f e lec tro m ag n e tic waves from a v e r ti c a l e lem en tary d ip o le
the f ie ld is c a lc u la te d f o r p o in ts on th e su rfa ce of th e e a rth , b u t a cc o rd in g to th e r e c ip r o c ity theorem th e same s o lu tio n gives d ire c tly the f ie ld a t any p o in t above the su rface i f the d ip o le is lo c a te d on th e s u rfa c e I t s e l f . In th e p re s e n t p a p er i t i s shown t h a t P o c k 's s o l u t i o n c a n a l s o be o b ta in e d by a n o th er m ethod, namely by red u c in g th e problem to an e q u atio n of p arab o lic type fo r the "atten u a tio n fu n ctio n ".
*In the sequel these papers w ill be re fe rre d as I .
M. L e o n to v ic h and V. Pock
s itu a te d a t a given h e ig h t above th e s p h e rica l su rfa ce o f the In th is so lu tio n
(1) OiLlL
66
The method o f p a ra b o lic eq u atio n was proposed by Leontovlch and a p p lied by him to th e s o lu tio n o f th e same problem f o r the case o f a plane earth . Since the considerations of the o riginal paper by leo n to v lc h ( ^ ) * * need some m o d ificatio n s, we s h a ll give In what follow s a new e x p o sitio n o f th e method, applying I t f i r s t l y to the case of a plane earth and considering then the case of a spherical earth.
1. THE CASE OP A PLANE EARTH
We assume th e tim e-dependence o f a l l th e f i e l d components to be o f the form e”lu>t. In th e fo llo w ing th is fa c to r s h a ll be om itted. Let us denote by k th e ab so lu te value of the wave v e c to r and by q th e complex In d u ctiv e c a p a c ity o f the e a rth :
I c - f S j , - e + i M . e + 1 , (i.oi)
The q u a n tity
having the dimensions of a length c h a ra c te rise s the sp ecific re s is ta n c e of th e e a rth ( t h i s le n g th v a r ie s from some ten th s o f a ce n tim ete r f o r sea w ater to te n and more m eters fo r dry s o i l ) . Let U be th e v e r t i c a l component o f the Hertz vecto r (the Hertz fu n ctio n ). This function s a tis f ie s the equation
AU + k2U - 0 . ( 1 . 03) We s h a ll w rite th e H ertz fu n c tio n In th e form
• • T h i s pap - w ill be r e f e r r e d In th e sequel as I I .
(2)
67
where R la th e d ista n c e from th e p o in t o f o b servation to the *ource and th e fa c to r W le th e s o -c a lle d "atte n u a tio n fu n ctio n ". H3 i t 1® known, f o r kR-*0 th e H e rtz fu n c tio n tends to i n f in ity in such a way th a t W ta k e s a f i n i t e v a lu e . We n o m a llz e U in ( uch a manner t h a t th i s v alue s h a l l be equal to u n ity ( i t being gupposed th a t both th e source and th e o b servation po in t remain above the su rfa c e o f th e e a r th ) . In the follow ing we assume, however, th a t the source la located on th e e a r t h 's s u rfa c e . Let us introduce c y lin d ric a l coord in ates r , z w ith th e o rig in Jr. the dip o le and the z a x is drawn v e r t i c a l l y upwardb . On th e ear t h 's su rface we have z - 0 . The d is ta n c e R w ill be R - - J r 2 + z2 . Hie p rin c ip a l "larg e param eter" of our problem i s the q u a n tity h | . For la rg e In I the attenuation function Wis a slowly varying function of coordinates. In order to c h aracterize the slowness of its v ariatio n i t Is useful to introduce the dimensionless coordinates .
p - JSL . ; C = , (1-05) 2 Ini -J Ini
and to co n sid e r W as a fu n c tio n o f p and ?. The d e riv a tiv e s of W w ith re s p e c t to itB arguments w ill be then o f the same o rd e r of magnitude bb th e fu n c tio n W i t s e l f . S u b stitu tio n of (1.04) in to equation (1.03) gives fo r the fu n c tio n W(p,?) an e q u a tio n , which can be s im p lifie d i f one supposes th a t the i n c lin a tio n angle o f th e ray to the horizon Is small and th a t th e d is ta n c e from the source i s a t l e a s t equal to s e v e ra l wave le n g th s . These assumptions y ie ld the Ineq u alities:
| « 1 ; kR » 1 , (1.06) which a re eq u iv a le n t to
i « 2.JN ; P » •
(3)
(1.07)
68
Since |i)| la assumed to be la rg e , th e In e q u a litie s (1.07) hold in a wide range of the v alu es o f p and ( (and In any case fo r values of p and C of the order of u n ity ). I f the In eq u a litie s (1.07) are v a lid , th e eq u atio n f o r W (p,() assumes the form
The terms om itted in (1.08) a re of th e o rd er o f l / | q | as compared with those re ta in e d . The boundary co n d itio n f o r Won the e a r t h 's surface Is obtain ed from th e c o n d itio n f o r th e Hertz v e c to r
— * -------- U ( f o r z - 0 ) ( 1 . 09)
az
given by L eontovlch. I t has th e form
+ qxw • 0 (fo r C -0 ) (1.10) 9C where ____
ql - 1 P f el ^ (l-H)
and « I s th e s o -c a lle d lo ss a n g le , defin ed by
6 - arc tg ; 0 < 6 < | . (l .IP)
In th e lim it |n | —wo th e range o f the v a ria tio n s of p and Cls0<p<oo,0<?<®. As a " co n d itio n a t I n f in ity " we may re q u ire th a t fo r a l l p o sitiv e values of p and C [w ith the possible exception of the sin g u la r p oint p - 0 of equation (1 . 08) J the fu n ctio n V should be bounded o r such t h a t the H ertz v e c to r U Is bounded.
00
69
We now proceed to th e form ulation o f the co n d itio n fo r p o O , Since t h i s I s a p o in t o f some d e lic a c y , we s h a ll d isc u ss I t in a more d e ta ile d way. / We must s t a t e , f i r s t l y , t h a t in the region clo se to the $ource, l . e . , f o r sm all v alu es of kR, the I n e q u a litie s (1.07) cease to be s a t i s f i e d ; th e d i f f e r e n t i a l equation (1 . 08) and the expression f o r W to be deduced from I t become In v a lid . The region o f sm all kR Is a "forbidden zone" fo r our approximate function W. T herefo re, th e c h a ra c te r o f the s in g u la rity o f the exact H ert2 fu n c tio n cannot be used fo r the purpose o f o b ta in ing the required condition a t p * 0 . For the statem ent of th is co n d itio n we have to c o n sid er the p ro p e rtie s o f the Hertz fu n ctio n fo r la rg e v alues o f kR. I t Is known t h a t f o r la rg e values o f kR the so -c a lle d " r e f le c tio n form ula" may be u sed. This formula gives an approxim ation f o r th e H ertz fu n c tio n In the whole space above th e e a r t h s s u rfa c e , where the In c lin a tio n o f the ray to the horizon Is n o t very Bmall. I f the Hertz fu n ctio n Is norm alized as s ta te d above, th e re f le c tio n formula may be w ritten
Is the F resn el c o e f f ic ie n t (7 Is the Incidence angle and cos 7 mz/R lr. o u r c a s e ) . The r e f le c tio n formula I s c e r ta in ly v a lid In the re g io n where th e I n e q u a litie s
(1.13)
where
<1.1*0
(1.15)
(5)
70
are sa tisfie d . I f | t) | l a l a r g e and I f
TSr “ 7 “ 1 ■
th e n th e F r e s n e l c o e f f i c i e n t f i s clO Be t o u n i t y , an d we have
(1 .1 7 )
When e x p re s s e d I n d im e n s io n le s s c o o r d in a te s p ,C , th e I n e q u a l i t i e s (1 .1 5 ) and (1 .1 6 ), which a r e n e c e s s a ry f o r fo rm u la (1 .1 7 ) to be v a lid , become i « i p « 2 h l p , (i.i® )
i « | « a JpiT- (1-19)
To o b t a i n t h e r e q u ir e d c o n d itio n f o r W a t p - * 0 , we m ust c arry out a double lim itin g pro cess: f i r s t l y | q| — and then p - » 0 . I n th e l i m i t | q | —»Q vthe r i g h t- h a n d s i d e s o f t h e i n e q u a l i t i e s may be d ro p p ed an d we g e t
1 << 1 « p • (1 20)
I f th ese re la tio n s are s a tis f ie d , the H ertz fu n o tio n tends to (1.17) and then W -r2 . (1.81)
In e q u a litie s (1.20) a re v a lid p a r tic u la rly f o r p-eO, i f i > 0 . Hence th e d e s ire d so lu tio n o f (1 .0 8 ) h as to s a t i s f y th e c o n d itio n
|w - 2 | —♦ 0 f o r p - * 0 a n d t > 0 .
(6)
(1 . 22)
71
However, s i n e s p ■ 0 1b a s in g u l a r p o i n t o f th e e q u a tio n f o r V, c o n d itio n (1.20) tu m e o u t to be n o t s u f fic ie n t fo r th e unique d eterm in atio n o f th e s o lu tio n . Ve re p la c e I t , th e re f o re , by • more s tr in g e n t c o n d itio n
f o r p-eO and C > 0 , (1.2 3 )
which I s , a s I t w ill be seen l a t e r , a s u f f i c ie n t one. Thus, fo r th e d eterm ination o f th e "atten u a tio n fu n ctio n " V we have th e d i f f e r e n t i a l e q u a tio n (1 . 0 8 ) , th e b o u n d a ry c o n d itio n s (1.10) and (1.23) and the co n d itio n o f fln lte n e e s o f U In the region considered (fo r p > 0 ). To s im p lif y th e d i f f e r e n t i a l e q u a tio n , we make t h e su b
stitu tio n r2 Wa . (1 . 2M
Then th e e q u atio n ta k e s th e form
• 0 (1.25)
The boun d a ry c o n d itio n f o r W1 w i l l be
ow,
The c o n d itio n a t p * 0 becomes
1 JT
(for C -0 ).
-♦0 (fo rp -» 0 ).
(1 .26)
(1-27)
Since p - 0 Is a re g u la r p o in t o f the equation fo r «1 (In d i s t i n c t i o n t o th e e q u a tio n f o r W) c o n d itio n ( 1 .2 7 ) 1« • s u ffic ie n t one.
(7)
72
S o lv in g ( 1 .2 5 ) by means o f s e p a r a t i o n o f v a r i a b l e s , we e a s ily o b ta in a p a r ti c u la r s o lu tio n w hich s a t i s f i e s th e boundary c o n d itio n (1 . 26) ; namely
V1 - e ' lv 2 P (c o s vC - s i n v f) , ( 1 . 2 8 )
where v i s the param eter o f se p a ra tio n . For r e a l v a lu es o f v th is e x p re ssio n rem ains f i n i t e and s a tis f ie s a ll conditions w ith th e exception of (1 .2 7 ). For complex v a lu es o f v (ex cep t th e c ase v - ± lq ^ ) ex p re ssio n (1 . 28) becomes I n f i n i t e when C-e® and th e r e f o r e , does n o t s a tis fy th e necessary co n d itio n s. I f lq^ th is expression transform s in to th e fo ra
W1
p - c (1 .29)
A cc o rd in g t o ( 1 .1 1 ) and ( 1 . 1 2 ) , we have
$ < arc qx < f , (1 .30)
and, consequently,
Re ( q x ) > 0 ; Re ( iq * ) < 0 . ( 1 .3 1 )
Hence th e r e a l p a rte o f th e c o e f fi c ie n ts o f p and ( In (1 .2 9 ) a re n eg ativ e and exp ressio n (1 .28) a lso s a tis f ie s a l l c onditions w ith th e exception o f (1 .2 7 ). I n o r d e r t o s a t i s f y a l s o th e l a s t c o n d i t i o n ; we c o n s t r u c t a f u n c ti o n w hloh I s a s u p e r p o s i tio n o f s o l u t i o n s o f th e tw o form s (1 . 28) and (1.29)
v l m ^ • " 1V P ^c©* VC - ^ s i n v { ^ f ^>) dv + Ae .
(1 .3 2 )