351 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
VOL. 80, NO. 2
 | 
						||
 | 
						||
JOURNAL OF GEOPHYSICAL RESEARCH
 | 
						||
 | 
						||
JANUARY 10, 1975
 | 
						||
 | 
						||
A NecessaryCondition for the Geodynamo
 | 
						||
 | 
						||
F. H. BUSSE
 | 
						||
Instituteof GeophysicasndPlanetaryPhysicsU, niversityof California Los Angeles,California 90024
 | 
						||
 | 
						||
A necessarcyonditionfor thegenerationof magneticfieldsby fluidmotionsin a sphereis derivedin termsof themagneticReynoldsnumberon thebasisof the radialcomponenot f thevelocityfield.A second parameterenteringthe criterionis the ratio betweenthe energyof the poloidalcomponentof the
 | 
						||
magneticfieldandthe total magneticenergy.Sinceboundson thisratio canbe obtainedfrom energetic considerationsth, e criterioncanbeusedasa restrictionon possibledynamomechanismsS.everalr'ecent suggestionfosr the originof thegeodynamion a stratifiedoutercorearecriticallyreviewed.
 | 
						||
 | 
						||
It is generallyacceptedthat the earth's magneticfield is earth's core and a smallermeridionalcirculation.Similarly,
 | 
						||
 | 
						||
generatedby motionswithintheliquidoutercoreof theearth. Kahleet al. [1967]founddifferentordersof magnitudefor the
 | 
						||
 | 
						||
Yet in spite of a considerableresearcheffort in the past toroidaland poloidalcomponentsof the velocityfieldin their
 | 
						||
 | 
						||
decadesi,t hasnot beenpossibleto find an unambiguoussolu- attemptto infer motionsof the corefrom the observedsecular
 | 
						||
 | 
						||
tion for the sourceof the energydissipatedby ohmicheating variation.The poloidalcomponentis generallysmalleryet of
 | 
						||
 | 
						||
and viscousfriction. The difficultyof this problem has been particular importancesinceit can be shown that a purely
 | 
						||
 | 
						||
compounded recently by the suggestionof Higgins and toroidalvelocityfieldcannotgeneratea magneticfield [Bullard
 | 
						||
 | 
						||
Kennedy[1971] that the outer core is stably stratified.This andGellman,1954].Only thepoloidalpart of thevelocityfield
 | 
						||
 | 
						||
proposalwould eliminateor severelyinhibit the traditional hasa radial componenta, nd it is desirablefor thisreasonto
 | 
						||
 | 
						||
contendersfor the energysourceof the geodynamo,namely, find a conditionsimilarto (1) involvingthe radialcomponent
 | 
						||
 | 
						||
convectionandprecessionof theearth [Bullard,1949;Malkus, of the velocityfield. This will be the goal of the analysis
 | 
						||
 | 
						||
1968]. Stimulatedby Kennedyand Higgins' [1973] 'core describedbelow. The importanceof such a condition is
 | 
						||
 | 
						||
paradox,' a number of workers have proposedalternative emphasizeidn thecaseof a stablystratifiedcoreasproposed
 | 
						||
 | 
						||
sourcesfor the earth's magneticfield [Bullardand Gubbins, by Higginsand Kennedy[1971].Althoughtoroidalmotions
 | 
						||
 | 
						||
1971;WonandKuo, 1973;Mullan, 1973].In general,however, would remainunaffectedin this case,any flow with a radial
 | 
						||
 | 
						||
theseproposalsfail to take into accountthe rather stringent velocitycomponenwt ouldbe inhibited,with the possibleex-
 | 
						||
 | 
						||
dynamic requirementsfor the geodynamo. This note will ceptionof internal gravity waves.
 | 
						||
 | 
						||
derive a simple necessarycondition for the geodynamothat may help to restrictthe classof feasiblehypotheses.
 | 
						||
 | 
						||
MATHEMATICAL ANALYSIS
 | 
						||
 | 
						||
In view of the complexitiesof actual solutionsof the In order to derive our criterion, we consider an incom.
 | 
						||
 | 
						||
dynamoproblem, necessaryconditionsfor the generationof pressiblehomogeneoufsluid containedin the finitevolumeV. the earth'smagneticfield have long beenregardedas highly Sincethe first part of our derivationdoesnot dependon the
 | 
						||
 | 
						||
desirable.The only known quantitativeconditionof thiskind particularshapeof V, we shallassumeonly later that V is a is a lowerboundon themagneticReynoldsnumberRe,,. The sphere.The magneticflux densityB is governedby the
 | 
						||
 | 
						||
existenceof a lowerboundwassuggesteodriginallyby Bullard dynamo equation
 | 
						||
 | 
						||
and Gellman [1954], and an explicit value applicableto the earth has been derived by Backus [1958]. According to this
 | 
						||
 | 
						||
(3/Ot + v. V)ll + n V X (V X B) = B. V v (2)
 | 
						||
 | 
						||
criterion, any magneticfield must decayunless
 | 
						||
 | 
						||
which can be derived easily from Maxwell's equation and
 | 
						||
 | 
						||
Rein -= Uro/• • •r
 | 
						||
 | 
						||
(1) Ohm's law in the magnetohydrodynamiacpproximation.The
 | 
						||
 | 
						||
magnetic diffusivity • is equal to (a•) -x, where a is the
 | 
						||
 | 
						||
where ro is the radius of the earth's core, which has been electricalconductivityin V and• isthemagneticpermeability.
 | 
						||
 | 
						||
assumedas a homogeneoufsluid sphereinsidean insulating We assumethat the spaceoutsideV is insulating.Hence V X
 | 
						||
 | 
						||
mantle,U isthemaximumvelocitywithrespectto anarbitrary B = 0 holdsoutsideV, and r ß Blrl' remainsfiniteas the
 | 
						||
 | 
						||
systemofcoordinaterostatingwitha constanatngulavreloci- position vector r tendsto infinity.
 | 
						||
 | 
						||
ty, andn isthemagneticdiffusivityC. ondition(1) wasderived By multiplying (2) by r and using the vector identity
 | 
						||
 | 
						||
by Backuswith the maximumdeformationrate in placeof r ß(b ß Va) = b ß Vr ß a - a ßb, we obtain
 | 
						||
 | 
						||
U•r/ro,whichisadvantageouisn thatit becomesobviousthat a
 | 
						||
 | 
						||
rigid rotationdoesnot contributeto U. The form (1) of the
 | 
						||
 | 
						||
(O/Ot + v' V)r. B - nV:r. B = B. V v. r (3)
 | 
						||
 | 
						||
criterionwasgivenby Childtess[1969].We alsoreferto the
 | 
						||
 | 
						||
discussiobnyRoberts[1971].Neitherthepresencoef therigid in V. This equationappearsin a slightlydifferentform in
 | 
						||
 | 
						||
innercorenor the inhomogeneitieosf the outercoreand the Backus'[1968]paper, whichalsoemphasizesthe analogyto
 | 
						||
 | 
						||
finiteconductivityof the mantlehavebeentakeninto account the heat equation,the right-handsideof (3) representingthe
 | 
						||
 | 
						||
in (1) sincetheir effectsare of minor importance.
 | 
						||
 | 
						||
heat source.Since diffusionultimately balancesthe source
 | 
						||
 | 
						||
A disadvantagoef (1) isthatit doesnotdistinguisbhetween termin thestationarycase(,3) suggestasnorderof magnitude
 | 
						||
 | 
						||
differentcomponentosf the velocityfield.Most theoriesof estimatefor the radial velocity component.
 | 
						||
 | 
						||
thegeomagnetifcieldassumea largedifferentiarlotationin the
 | 
						||
 | 
						||
Br
 | 
						||
 | 
						||
Copyright¸ 1975by the AmericanGeophysicaUl nion.
 | 
						||
 | 
						||
v• n IBIro
 | 
						||
 | 
						||
278
 | 
						||
 | 
						||
Buss•;A NECESSARCYONDITIO!FVORTHEGœODYNAMO
 | 
						||
 | 
						||
279
 | 
						||
 | 
						||
In thefollowingweshallderivea relationofsimilarformbya dinatescorrespondtosthelowespt ossiblsephericahlarmonic
 | 
						||
 | 
						||
rigorousanalysis.
 | 
						||
 | 
						||
l=l.
 | 
						||
 | 
						||
f• Multiplicatioonf'(3)byr ßB andintegratioon.verV yield [•.B•d'rF=[•--f•L, •h•L•'h
 | 
						||
 | 
						||
l2_ddt f•(B.dr)V=.•--nf•+v' }•7B•d.Vr[
 | 
						||
 | 
						||
.dV•_--2f,•hr.•X(• Xr•2h)dV(8)
 | 
						||
 | 
						||
-[f' vr.BB•. r.vdV (4)The lastterm in (8) canbe writtenin the form
 | 
						||
 | 
						||
We havedenotedthe spaceoutsideV by V'. The surface
 | 
						||
 | 
						||
2fvhr'XV{VXIVX(VXrh)d]V} sepa.ratiVnagndV'isS withtheoutsidneormanl.Thein-
 | 
						||
tegraol verV + V' in(4)hasbeenobtainedbypartialintegra-
 | 
						||
 | 
						||
ti•n andusingthefactthatV2rßB vanisheisn V':
 | 
						||
0--f-vr.BX7B2drV.
 | 
						||
,
 | 
						||
 | 
						||
=2fv(• Xrh)-X• [• X(• Xrhd)]V
 | 
						||
 | 
						||
=
 | 
						||
 | 
						||
X(VXrh)l
 | 
						||
 | 
						||
(9)
 | 
						||
 | 
						||
where the relation
 | 
						||
 | 
						||
In deriving(4), the fact that the term
 | 
						||
f,v• .• [r.•Bd[V=•$ n.v[-r•.•Bd[S
 | 
						||
-vanishessince n. v vanisheson S has also been used. By
 | 
						||
 | 
						||
IVx (vxr)l dF
 | 
						||
- f (• XrhX) [?X(• Xrh)]d.nS
 | 
						||
 | 
						||
furthepr artiailntegratioanndbyusingV:
 | 
						||
ingthatv ßr vanisheosn S, wefind
 | 
						||
 | 
						||
B
 | 
						||
 | 
						||
=
 | 
						||
 | 
						||
0
 | 
						||
 | 
						||
andassum-hasbeenused.Apart froma factor4/•,(9) givestheenergyEn of thepoloidap!artof themagnetifcield.HenCe(6)canbe
 | 
						||
 | 
						||
frrB. B.•r.vd-V-f-•-v,rB.•B.rdwVrit{•n'in
 | 
						||
 | 
						||
thecaseof ..
 | 
						||
 | 
						||
a
 | 
						||
 | 
						||
sphereas
 | 
						||
 | 
						||
The latter term can be bounded from above,
 | 
						||
 | 
						||
•d• (B•.rd)F• --n+max(Ev.•r)
 | 
						||
 | 
						||
--f•v,.Br -•B.dr V
 | 
						||
 | 
						||
'fv+•' Ir' BI (10)
 | 
						||
 | 
						||
• max(v.r) lB[• dV [Vr.B[ • dV
 | 
						||
 | 
						||
(5) whereE• denotetshetot• energoyfthemagnetficidd.A•ord-
 | 
						||
inglyW,½findasa necesscabrynditifoonrtheamplification
 | 
						||
 | 
						||
whereSchwarz•isnequalityhasbeenused.Thuswe obtain of fv(•. r)=dV
 | 
						||
 | 
						||
from (4) the inequality
 | 
						||
 | 
						||
max-(V' r) > n(2E•/E•) •/•
 | 
						||
 | 
						||
(1 !)
 | 
						||
 | 
						||
•d• (B.r•)dV• -n ß max(v.r)
 | 
						||
 | 
						||
Inthecasoefan0nstatiocnyacryldicynamthoi,scondition musbtesatisfitehdroughoountlypartofthecYclIen.t• case
 | 
						||
 | 
						||
ofa statiobadtynam(o1,1)P•9vidca.snecesscaoryndition
 | 
						||
 | 
						||
forthe'existenocfethedynamos.incea lowerlimit'•fotrh•
 | 
						||
 | 
						||
•a!ucofE• isavailabflreomt•cobservgeedomagnefiteicld ..
 | 
						||
 | 
						||
andsincaenuppeerstimaftoerE• canbe0bta{d0-ef'rOm
 | 
						||
 | 
						||
ßf,• [VrB,•[dV
 | 
						||
 | 
						||
(6)ener.gcy0n•ideiatio(1n•)sp,•ovidaeussefulteinsatdditiotoh (1)forthefeasibili:toyfhypotheticgael0dynams.0
 | 
						||
 | 
						||
Obviouslyt,he radialcomponenotf B mustdecaywhenthe An an•ogoust,houghl•s u•f• •te•on can• de•v• by
 | 
						||
 | 
						||
quantitwy ithin'thebracket[snegative.
 | 
						||
 | 
						||
mu!tiplyin)gb(y2'aanrbitraurynivt •tbrk.Mu!tipii•agoifon
 | 
						||
 | 
						||
WhenV isa spherew, ecanderiveaconditinothatpermitas theresultin.gequat}obny'k;B andintegratioonverV•yield
 | 
						||
 | 
						||
.
 | 
						||
 | 
						||
.,
 | 
						||
 | 
						||
..
 | 
						||
 | 
						||
physicainl terpre,tatioAns.suminthgeoriginat thecenteor f
 | 
						||
 | 
						||
thespherwee,usearepresent0aft.iBointermCs•pfoloidal
 | 
						||
andtorOidacl omponents:
 | 
						||
 | 
						||
k)dV -nmax(k'v)
 | 
						||
 | 
						||
B = V X (V ><rh) + V •Xrg
 | 
						||
 | 
						||
(7)
 | 
						||
 | 
						||
It is evidenthat onlythepoloidalfieldh contributetso the
 | 
						||
radiaCl OmponeonftB,
 | 
						||
r.B = r. [v x.(v x rh)] • L2h
 | 
						||
 | 
						||
ß IB.kldv
 | 
						||
 | 
						||
(!2)
 | 
						||
 | 
						||
where-L • isthetwo-dimensionLalaplacianonthesurfaceof after the samemanipulationsthat led to (6) havebeenper-
 | 
						||
theunitspherSei.ncweecanassumweithoulot singgeneralityformedS.inctehecomponeonfthevelocitfyieldinthedirecthattheaveragoef h overanysphericsaul rfacIer[ -- const tionOftheaxisofrotationislikelytoberelativelsymaliln:the vanishews,efindL•h:>2h,wheretheequalitysignisassumedearth'csorebecauosfetheapproximvaate[!ditoyfthe,Taylor-
 | 
						||
whenthe0,•odependenocfeh in a sphericaslystemof cOOt- Proudmatnheorem(1, 2)mayserveasausefuclonstrainwth,en
 | 
						||
 | 
						||
280
 | 
						||
 | 
						||
BussE:A NECESSARCYONDITIONFORTHEGEODYNAMO
 | 
						||
 | 
						||
k is identified with the direction of the rotation axis of the stratified.region[Malkus,1968;Busse1, 968].On theother
 | 
						||
 | 
						||
earth. Yet at this point we shall not pursue(12) further.
 | 
						||
 | 
						||
hand,the Griineisenparameterappropriatefor theconditions
 | 
						||
 | 
						||
DISCUSSION
 | 
						||
 | 
						||
of the outer core and the posSibiliyt. of slurr•yconvection proposedbyBusse[1972]andElsassenreedfurtherinvestiga-
 | 
						||
 | 
						||
We begin the discussionby relating (11) to the toroidal tionbeforetheHiggins-Kennerhlyypothesicsanbeaccepted
 | 
						||
 | 
						||
theoremmentioneidn the introduc,tiownh, ichstateltshat as a fact.
 | 
						||
 | 
						||
•
 | 
						||
 | 
						||
toroida! motions cannot generatemagneticfields. Although Weclosethediscussiwonitha remarkona shortcomionfg
 | 
						||
 | 
						||
theorems of this kind are highly significant from a (10). Sincethe quantitywithin the bracketsdependson the
 | 
						||
 | 
						||
mathematical point of view, their value for physical magnetifcield,anasymptotdicecaycannobt econcludewdhen applicationmsaybequestionabulenlessit canbeshownthat thatquantity{snegativaet a particulaProintin time.This
 | 
						||
 | 
						||
theyarenotlimitedto singulacraseswithspeciaslymmetries.shortcominigs sharedby (1) sincethemaximalvelocityU in
 | 
						||
 | 
						||
Criterion(11) is helpfulin this respectsinceit demonstrates theCOrdeependosnthemagnectifieldin generaMl. oreap-
 | 
						||
 | 
						||
that the toroidal theoremalso holds for sufficientlysmall propriatecriteriawouldinvolvethe forcesdrivingthemotion
 | 
						||
 | 
						||
deviationsfrom a purelytoroidalstateof motion.In or /he heatingratein the caseof convectionw,hichcanbe particulari,n the caseof thegeodynamaosizableradial assumetdo begivenindependentolyf themagnetifcield.TO
 | 
						||
velocictyomponeisnrtequirefodrthemaintenaonfc{ehe derive such criteria, the Navier-Stokesequationsof motion
 | 
						||
 | 
						||
geomagneticfield.
 | 
						||
 | 
						||
haveto be considereda,ndmethodssimilarto thoseemployed
 | 
						||
 | 
						||
It is unlikelythat the recentproposalsfor the energysource by Payne[1967]in the purelyhydrodynamiccasewouldhave
 | 
						||
 | 
						||
of the geodynamoto which we referredin the introduction to be used.This will be the subjectof future work.
 | 
						||
 | 
						||
providefor sufficientlhyighradialvelocitieisf a diffusivityof Acknowledgment.The researchreported in this paper was supthe order of 2 ß l0t cm2/sis assumed,which correspondsto ported by the Earth SciencesSection of the National Science
 | 
						||
 | 
						||
the frequentlyquotedvalueof 5 ß 10* mhosm-• for the con- Foundation, NSF grant GA-41750.
 | 
						||
ductivitoyftheearth'csoreI.t shoulbdenotedtha•onlythe
 | 
						||
 | 
						||
time'averageof the radial velocitycomponentoverperiodsof
 | 
						||
 | 
						||
REFERENCES
 | 
						||
 | 
						||
the order of the magneticdecaytime ro2/,1is relevantin (11), Backus,G., A classof self-sustainingdissipativesphericaldynamos, since the generation of magnetic flux cannot take place Ann. Phys.,4, 372-447, 1958.
 | 
						||
 | 
						||
withot!tdiffusion.'WonandKuo [1973]proposedlargeearthquakesasa sourceof geomagnetismand point out the steady circulation inducedby oscillationsof the inner core of the earth. When Won and Kuo's valuesand the analysisby Riley
 | 
						||
 | 
						||
Bullard, E. C., The magneticfield within the earth, Proc.Roy. Soc. London, Set. A, 197, 433-453, 1949.
 | 
						||
Bullard, 'E. C., and H. Gellman, Homogeneousdynamos and terrestrialmagnetism,Phil. Trans. Roy. Soc. London,Ser. A, 247, 213-278, 1954.
 | 
						||
 | 
						||
[1966]to whichthey refer are used,an amplitudeof the order of 10-* cm/s is found for the steadyflow, whichis muchtoo small to be significant,accordingto (11). The error made by Won and Kuo in the applicationof Riley'swork hasalsobeen pointed out by Smith [1974]. Although the generationof magneticfieldsby short-periodoscillatingvelocityfieldsasenvisionedby BullardandGubbins[1971]isfeasiblein principle,
 | 
						||
the requiredvelocityamplitudeincreaseswith the parameter o•ro2/,wh hereo•isa typicalfrequencyof thevelocityfield.Thus the energyrequirementfor the possiblesourceof the osciliatoryvelocityfieldbecomesamplified.On theotherhand, the dynamoproposalsfor a stablystratifiedcoremay not be necessarysincein their secondpaper Kennedyand Higgins [1973]allow for a regionof nearly 800 km outwardfrom the innercorewhereconvectionmayoccur.The valueof 800km is takenfromagraphin thatpapersincethevalueof200or 300 km quotedin the text appearsto be in error.
 | 
						||
It isinterestingto notethat the regioncloseto theequatorof
 | 
						||
 | 
						||
Bullard, E. C., and D. Gubbins,Geomagneticdynamosin the stable core, Nature, 232, 548-549, 1971.
 | 
						||
BusseF, . H., Steadyfluid flow in a precessinsgpheroidasl hell,J. Fluid Mech., 33, 739-751, 1968.
 | 
						||
Busse,F. H., Thermalinstabilitiesin rapidly rotatingsystemsJ,. Fluid Mech., 44, 441-460, 1970.
 | 
						||
Busse,F. H., Comment on 'The adiabaticgradient and the melting pointgradientin thecoreof theearth'by G. H. HigginsandG. C. Kennedy,J. GeophysR. es., 77, 1589-1590, 1972.
 | 
						||
Childtess,S., Th•orie magn6tohydrodynamiqudee l'effet dynamo, report, Dep. Mech. de la Fac. desSci., Univ. de Paris,Paris,1969.
 | 
						||
Higgins,G. H., and G. C. Kennedy,The adiabaticgradientandthe meltingpointgradientin thecoreof theearth,J. GeophysR.es.,76, 1870-1878, 1971.
 | 
						||
Kahle, A. B., E. H. Vestine,and R. H. Ball, Estimatedsurfacemotions
 | 
						||
of the earth'score,J. GeophysR. es.,72, 1095-1108,1967. Kennedy,G. C., and G. H. Higgins,The coreparadox,J. Geophys.
 | 
						||
Res., 78, 900-904, 1973. Malkus, W. V. R., Precession of the earth as the cause of
 | 
						||
geomagnetismS,cience1, 60, 259-264, 1968. Mullan,D. J., Earthquakwe avesand the geomagnetdicynamo,
 | 
						||
Science, 181, 553-554, 1973.
 | 
						||
 | 
						||
the inner coreis also the placewherethe criticalRayleigh
 | 
						||
number for the onset of convection is first reached either
 | 
						||
if the core is heated homogeneouslyor if heating takes placejust at theboundarybetweentheinnerandoutercores owingto crystallization.This factcanbeinferredfrom the approximatetheory of Busse[1970], which we expectto hold evenin the presenceof a stratifiedouter part of the corein place of a rigid boundary. We conclude that convection
 | 
						||
 | 
						||
Payne, L. E., On the stability of solutionsof the Navier-Sto.kes equationsand convergenceto steadystate,SIAM Soc. Ind. Appl. Math. J. Appl. Math., 15, 392-405, 1967.
 | 
						||
Riley, N., On a sphereoscillatingin a viscousfluid, Quart.J. Mech. Appl. Math., 19, 461-472, 1966.
 | 
						||
Roberts,P. H., Dynamotheory,in Lecturesin AppliedMathematics, vol. 14, pp. 129-206,American Mathematical Society,1971.
 | 
						||
Smith, M. L., The normal modesof a rotating,ellipticalearth, Ph.D. thesis, Princeton Univ., Princeton, N.J., 1974.
 | 
						||
Won, I. J., and J. T. Kuo, Oscillation of the earth's inner core and its
 | 
						||
 | 
						||
remainsthe strongestcontenderasa sourceof thegeodynamo relationto thegenerationof geomagnetifcield,J. GeophysR.es.,78, if Higgins and Kennedy'sproposalis accepted.Precession- 905-911, 1973.
 | 
						||
 | 
						||
inducedturbulencewould be lesslikely in this casesincethe shearlayer from which the turbulencearisesliesat a distance
 | 
						||
 | 
						||
(ReceivedJune 18, 1974; revisedSeptember30, 1974;
 | 
						||
 | 
						||
of about (3)toro/2 from the earth's center in the strongly
 | 
						||
 | 
						||
acceptedOctober 10, 1974.)
 | 
						||
 |