606 lines
157 KiB
HTML
606 lines
157 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html lang=en-US style><!--
|
||
Page saved with SingleFile
|
||
url: https://web.archive.org/web/20220818041911/mb-soft.com/public4/neutrino.html
|
||
saved date: Wed Jun 19 2024 13:33:42 GMT-0400 (Eastern Daylight Time)
|
||
--><head lang=en-US><meta charset=utf-8>
|
||
<style>:root{--sf-img-0: url("");--sf-img-10: url("")}</style><style>@-moz-keyframes bounce_spinningSquaresG{0%{-moz-transform:scale(1);background-color:#000000}100%{-moz-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-webkit-keyframes bounce_spinningSquaresG{0%{-webkit-transform:scale(1);background-color:#000000}100%{-webkit-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-ms-keyframes bounce_spinningSquaresG{0%{-ms-transform:scale(1);background-color:#000000}100%{-ms-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-o-keyframes bounce_spinningSquaresG{0%{-o-transform:scale(1);background-color:#000000}100%{-o-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@keyframes bounce_spinningSquaresG{0%{transform:scale(1);background-color:#000000}100%{transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}#wm-ipp-base{padding:0;margin:0;border:none;background:none transparent}#wm-ipp{z-index:2147483647}#wm-ipp,#wm-ipp *{font-family:Lucida Grande,Helvetica,Arial,sans-serif;font-size:12px;line-height:1.2;letter-spacing:0;width:auto;height:auto;max-width:none;max-height:none;min-width:0!important;min-height:0;outline:none;float:none;text-align:left;border:none;color:#000;text-indent:0;position:initial;background:none}#wm-ipp div,#wm-ipp canvas{display:block}#wm-ipp div,#wm-ipp tr,#wm-ipp td,#wm-ipp a,#wm-ipp form{padding:0;margin:0;border:none;border-radius:0;background-color:transparent;background-image:none;height:auto}#wm-ipp table{border:none;border-collapse:collapse;margin:0;padding:0;width:auto;font-size:inherit}#wm-ipp form input{padding:1px!important;height:auto;display:inline;margin:0;color:#000;background:none #fff;border:1px solid #666}#wm-ipp form input[type=submit]{padding:0 8px!important;margin:1px 0 1px 5px!important;width:auto!important;border:1px solid #000!important;background:#fff!important;color:#000!important}#wm-ipp form input[type=submit]:hover{background:#eee!important;cursor:pointer!important}#wm-ipp form input[type=submit]:active{transform:translateY(1px)}#wm-ipp a{display:inline}#wm-ipp a:hover{text-decoration:underline}#wm-ipp a.wm-btn:hover{text-decoration:none;color:#ff0!important}#wm-ipp a.wm-btn:hover span{color:#ff0!important}#wm-ipp #wm-ipp-inside{margin:0 6px;border:5px solid #000;border-top:none;background-color:rgba(255,255,255,0.9);-moz-box-shadow:1px 1px 4px #333;-webkit-box-shadow:1px 1px 4px #333;box-shadow:1px 1px 4px #333;border-radius:0 0 8px 8px}#wm-ipp #wm-logo{padding:0 10px;vertical-align:middle;min-width:100px;flex:0 0 100px}#wm-ipp .c{padding-left:4px}#wm-ipp .c .u{margin-top:4px!important}#wm-ipp .n{padding:0 0 0 5px!important;vertical-align:bottom}#wm-ipp .n a{text-decoration:none;color:#33f;font-weight:bold}#wm-ipp .n .b{padding:0 6px 0 0!important;text-align:right!important;overflow:visible;white-space:nowrap;color:#99a;vertical-align:middle}#wm-ipp .n .y .b{padding:0 6px 2px 0!important}#wm-ipp .n .c{background:#000;color:#ff0;font-weight:bold;padding:0!important;text-align:center}#wm-ipp .n td.f{padding:0 0 0 6px!important;text-align:left!important;overflow:visible;white-space:nowrap;color:#99a;vertical-align:middle}#wm-ipp .n tr.m td{text-transform:uppercase;white-space:nowrap;padding:2px 0}#wm-ipp .c .s{padding:0 5px 0 0!important;vertical-align:bottom}#wm-ipp #wm-nav-captures{white-space:nowrap}#wm-ipp .c .s a.t{color:#33f;font-weight:bold;line-height:1.8}#wm-ipp .c .s div.r{color:#666;font-size:9px;white-space:nowrap}#wm-ipp .c .k{padding-bottom:1px}#wm-ipp .c .s{padding:0 5px 2px 0!important}#wm-ipp td#displayMonthEl{padding:2px 0!important}#wm-ipp td#displayYearEl{padding:0 0 2px 0!important}div#wm-ipp-sparkline{white-space:nowrap;background-color:#fff;cursor:pointer;line-height:0.9}#wm-sparkline-canvas{position:relative;z-index:9012;max-width:none}#wm-ipp-sparkline div.yt{position:absolute;z-index:9010!important;background-color:#ff0!important;top:0}#wm-ipp-sparkline div.mt{position:absolute;z-index:9013!important;background-color:#ec008c!important;top:0}#wm-ipp .r{margin-left:4px}#wm-ipp .r a{color:#33f;border:none;position:relative;background-color:transparent;background-repeat:no-repeat!important;background-position:100% 100%!important;text-decoration:none}#wm-ipp #wm-capinfo{border-radius:0 0 4px 4px}#wm-ipp #wm-expand{right:1px;bottom:-1px;color:#ffffff;background-color:#666!important;padding:0 5px 0 3px!important;border-radius:3px 3px 0 0!important}#wm-ipp #wm-expand span{color:#ffffff}#wm-ipp #wm-expand #wm-expand-icon{display:inline-block;transition:transform 0.5s;transform-origin:50% 45%}#wm-ipp #wmtb{text-align:right}#wm-ipp #wmtb #wmtbURL{width:calc(100% - 45px)}#wm-ipp #wm-graph-anchor{border-right:1px solid #ccc}@media (max-width:414px){#wm-ipp .xxs{display:none!important}}@media (min-width:1055px){#wm-ipp #wm-graph-anchor{display:block!important}}@media (max-width:1054px){#wm-ipp #wm-graph-anchor{display:none!important}}@media (max-width:1163px){#wm-logo{display:none!important}}#wm-btns{white-space:nowrap;margin-top:-2px}#wm-btns #wm-save-snapshot-open{margin-right:7px;top:-6px}#wm-btns #wm-sign-in{box-sizing:content-box;margin-right:7px;top:-8px;border:2px #000 solid;border-radius:14px;padding-right:2px;padding-bottom:2px;width:11px;height:11px}#wm-btns #wm-sign-in>.iconochive-person{font-size:12.5px}#wm-ipp #wm-share{display:flex;align-items:flex-end;justify-content:space-between}#wm-share>#wm-screenshot{display:inline-block;margin-right:3px}#wm-share>#wm-video{display:inline-block;margin-right:3px;visibility:hidden}#wm-video>.iconochive-movies{color:#000;display:inline-block;font-size:150%;margin-bottom:2px}#wm-btns #wm-save-snapshot-in-progress{font-size:160%;opacity:0.5;position:relative;margin-right:7px;top:-5px}.wm-icon-screen-shot{background:var(--sf-img-0) no-repeat!important;background-size:contain!important;width:22px!important;height:19px!important;display:inline-block}#donato{border-bottom:1px solid #999!important}#donato #donato-base{width:100%;margin:0;padding:0;position:absolute;z-index:2147483639}</style>
|
||
<style>@font-face{font-family:"Iconochive-Regular";src:url(data:font/woff;base64,d09GRgABAAAAAG04AAsAAAAAbOwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABCAAAAGAAAABg9NIOqWNtYXAAAAFoAAAGNAAABjR/M37KZ2FzcAAAB5wAAAAIAAAACAAAABBnbHlmAAAHpAAAYIgAAGCIeuX2S2hlYWQAAGgsAAAANgAAADYIPwfOaGhlYQAAaGQAAAAkAAAAJAnpBstobXR4AABoiAAAAdgAAAHYwZQeMGxvY2EAAGpgAAAA7gAAAO5GJywIbWF4cAAAa1AAAAAgAAAAIACQAVFuYW1lAABrcAAAAagAAAGoEeivMHBvc3QAAG0YAAAAIAAAACAAAwAAAAMEAAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAoQAA5OACAAAAAAAAAAAAAAAAQAAA//8DgP+AAIADgACAAAAAAQAAAAAAAAAAAAAAIAAAAAAABAAAAAMAAAAkAAAABAAAAbwAAwABAAAAJAADAAoAAAG8AAQBmAAAAGIAQAAFACIAAQAgACsALQA/AFQAZwBpAsMDsiG1IdUh9iIIIhEiHiKVIp4i1CMYI3Aj5CPqI/gk2CWmJa8ltCW2JbglviXCJgYmYSZlJmsmkSaZJqAm9icOJxAnFCc9J04nXSfz//3//wAAAAAAIAArAC0APwBUAGYAaQLCA7IhtSHVIfYiCCIRIh4ilSKeItQjFyNwI+Qj6SP4JNglpiWvJbQltiW4Jb4lwiYFJmEmZSZrJpAmmSagJvYnDicQJxMnPSdOJ10n8//9//8AAf/j/9n/2P/H/7P/ov+h/Un8W95Z3jreGt4J3gHd9d1/3XfdQt0A3KncNtwy3CXbRtp52nHabdps2mvaZtpj2iHZx9nE2b/Zm9mU2Y7ZOdki2SHZH9j32OfY2dhEAAMAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAABHgAAAAAAAAAXgAAAAAAAAABAAAAAQAAACAAAAAgAAAAAwAAACsAAAArAAAABAAAAC0AAAAtAAAABQAAAD8AAAA/AAAABgAAAFQAAABUAAAABwAAAGYAAABnAAAACAAAAGkAAABpAAAACgAAAsIAAALDAAAACwAAA7IAAAOyAAAADQAAIbUAACG1AAAADgAAIdUAACHVAAAADwAAIfYAACH2AAAAEAAAIggAACIIAAAAEQAAIhEAACIRAAAAEgAAIh4AACIeAAAAEwAAIpUAACKVAAAAFAAAIp4AACKeAAAAFQAAItQAACLUAAAAFgAAIxcAACMYAAAAFwAAI3AAACNwAAAAGQAAI+QAACPkAAAAGgAAI+kAACPqAAAAGwAAI/gAACP4AAAAHQAAJNgAACTYAAAAHgAAJaYAACWmAAAAHwAAJa8AACWvAAAAIAAAJbQAACW0AAAAIQAAJbYAACW2AAAAIgAAJbgAACW4AAAAIwAAJb4AACW+AAAAJAAAJcIAACXCAAAAJQAAJgUAACYGAAAAJgAAJmEAACZhAAAAKAAAJmUAACZlAAAAKQAAJmsAACZrAAAAKgAAJpAAACaRAAAAKwAAJpkAACaZAAAALQAAJqAAACagAAAALgAAJvYAACb2AAAALwAAJw4AACcOAAAAMAAAJxAAACcQAAAAMQAAJxMAACcUAAAAMgAAJz0AACc9AAAANAAAJ04AACdOAAAANQAAJ10AACddAAAANgAAJ/MAACfzAAAANwAB1N8AAdTfAAAAOAAB84EAAfOBAAAAOQAB85YAAfOWAAAAOgAB854AAfOeAAAAOwAB86QAAfOkAAAAPAAB86cAAfOnAAAAPQAB86wAAfOsAAAAPgAB89sAAfPbAAAAPwAB9CYAAfQmAAAAQAAB9EEAAfRBAAAAQQAB9GQAAfRlAAAAQgAB9H0AAfR9AAAARAAB9KEAAfShAAAARQAB9KUAAfSlAAAARgAB9LAAAfSwAAAARwAB9L4AAfS/AAAASAAB9MIAAfTCAAAASgAB9MgAAfTIAAAASwAB9NEAAfTRAAAATAAB9NoAAfTaAAAATQAB9OQAAfTlAAAATgAB9OcAAfToAAAAUAAB9PAAAfTwAAAAUgAB9PYAAfT2AAAAUwAB9PoAAfT8AAAAVAAB9QAAAfUBAAAAVwAB9QcAAfUKAAAAWQAB9Q0AAfUNAAAAXQAB9RIAAfUTAAAAXgAB9RcAAfUXAAAAYAAB9SQAAfUlAAAAYQAB9VEAAfVRAAAAYwAB9WgAAfVoAAAAZAAB9W4AAfVuAAAAZQAB9XYAAfV2AAAAZgAB9XkAAfV5AAAAZwAB9bMAAfWzAAAAaAAB9bwAAfW8AAAAaQAB9cMAAfXDAAAAagAB9c8AAfXPAAAAawAB9dEAAfXRAAAAbAAB9dQAAfXWAAAAbQAB9dkAAfXZAAAAcAAB9ekAAfXqAAAAcQAB9fIAAfXyAAAAcwAB9foAAfX6AAAAdAAB9qMAAfajAAAAdQABAAH//wAPAAEAAAAAAAAAAAACAAA3OQEAAAAAAQAAAAAAAAAAAAIAADc5AQAAAAABAAAAAAAAAAAAAgAANzkBAAAAAAMAJ/+5A8oDQgAcAC0AOgAAPwEmNTQ3Njc2MzIXFhUUBwYjIicHBiMiJyY1NDclMjc2NTQnJiMiBwYVFBcWMyczFTM1MzUjNSMVIxU+8D8wMVVUZJdra2trl3lh8xEaGRITFwIfZEdHR0dkZUdHR0hkfF9DX19DXyXeXHRjVFUxMmxsl5lra0fhERISGhoUuUhIZWRHR0dHZGVISMxfX0RfX0QAAwAn/7oDygNBACAAMQA2AAA/ASY1NDc2NzYzMhcWFxYVFAcGBwYjIicHBiMiJyY1NDclMjc2NTQnJiMiBwYVFBcWMychNSEVPfFAMTFUVWNkVFQxMTExVFRkeGD1EhgZEhMWAh9lR0dHR2VkR0dHR2SLASP+3SbeXXJjVFUxMTExVVRjZFVUMTFH4RASEhobE7lIR2VkR0dHR2RlR0jHWVkAAAADADT/pQO2AycAHABVAFoAAAEzMhcWFxYXFAcGBwYHIyInJicmNSY3Njc2NzYzEzU2NzY3Njc2NzY3NjU0JyYnJicmIyIHBgcGBwYHMzQ3Njc2NzYzMhcWFRYHBgcGBwYHBgcGBxUzFyMVMzUB8wJ5Z2g8PAEhIj+DugJ6Z2c9PAEiIj9AUlFaOwQOCxQZDRQREAwLCwwZHCksPi8qJx0dDw8ChAUGCwoTERgkFBQCCgoPFwoSEBELDAN5B4yMAyc8PGdneVpSUkGDATs8aGd6WVJTP0AjIv2oIh0QEBASCg0VFBsaLRwcHRsbEBIREB4eKCcyFhgWDhAKCRQTKRkQEQ0UBw0SFRccJSk1iooAAAIAW//FA6cDEQAEACoAAAERIREhARUyMzYXFhUGFQYXFhcWFxY3Jjc2JwYnJjcxMzUjNSMGBwYHBgcDp/y0A0z9sgUbGgEDAQEODR8mQkIzAQEBBGoXFQ2GhlEICwwZGCYDEfy0A0z+92oBAy80NCwrJiYTGAECFAs1NQUfNDGWaoMnGRkUFAIAAAAAAgBb/8UDpwMRAAQALAAAAREhESEDNyMmNzY3NhcWNzY1JgcGBwYHBgcGBwYVBh0BIxUzETM0JyY1JjczA6f8tANMgQZ5AxkLEREPEBMDRBxZIwYEAwMCAQEBUFF7AQEBAXIDEfy0A0z+FXFvCwUCAQEBAjM1BwIGPgsMDQoLEhMKChghcf7MC0lJNTYsAAAABABb/8UDpwMRADMARgBZAG4AAAEzESE2JyYnJicmJyY3Njc2NzY3NicmJzM2NzY3NiMhIgcGBwYPATUhFSM1IxUjFTMVMzUlFgcGJyYnJicmNzY3Njc2FxYXATUWNwYXFhcWFxYXFhcWFyYHIxU1Njc2MzIXMhcWFxYXFhcWFxYHIQMydf6kDU4QJCQRGAMGHAcREAMxExgZEjNKBA0eEAIB/toxRxUVFQwLA0x1RX19Rf5pExgcRUEtKQ4SHQ0VGiI8MCcP/sBGdRECAQICBgYCAwkIAYJRASVKKCc3HAECDh4YCgkREQUFAv5rAgf9vnVHDxwcEBUQIB4JDQ0CKTE+SzciAQ8eEgQaCA8QCguHxX19RXx8C1I4PwEDMCw9TDwbERQBBTgrP/5g50QKJhoJCQgICAQECQgCBS2tUzgYDgsBCBURBwgSEhUVGgAAAwBD/6YDyQMtAB4ALwBTAAABMzIXFhcWFxYVFgcGBwYHIyInJicmJyY1Jjc2NzY3FzY1NCcmIyIHBhUUFxYzMjcDJzQ3EwcXNDMyFxYXFA8BBhcWFxY7ATI3Njc2NzY/AScHBgcCBQFbVFM9PCQkASIiP4S7AltTVDw9JCQBIiJAg7x1FxYXISEWGBgXICEWcAwLc9ACDA0HBwESSg4BARYRGwUYICEVEgsMAwMaGwoJAy0jJDw8VFNbW1JTQIQCJCM9PFNUW1pTUkGEAfQXICEXFhYXIR4ZFxf+KAkGIAFeICMCBAMHDDTYLBEWDgoJCA0LCAkEAx4SBgIAAQDO/7MC4wNFABEAABMnATYzMhcWFwkBBgcGIyInAc8BAX8gHR0YGAz+ogFeDBgYHRwh/oEBfAEBqh4SER3+d/53HRIRHQGrAAAAAAEA9f+yAwoDQwARAAABFwEGIyInJicJATY3NjMyFwEDCQH+gSEcHRgYDAFe/qIMGBgdHh8BfwF7Av5WHRESHQGJAYgdERId/lYAAAAIACD/oAPgA2AAFAAqAFIAaAB1AH4AgwCMAAAFIi4CNTQ+AjMyHgIVFA4CIwE1MzIWMx4BFx4BFx4BFRQGBw4BKwEnFTMyNjc+ATc+ATc+ATU0JicuASc+ATc+ATU0JicuAScuAScuASsBFzUzMhYXHgEVFAYHDgEHDgEHBiIrATcVMzUjNTM1IzUzNSMFFTM1MzUjFTMXNzEXIzcHMzczFzMnIwIAY6+DS0uDr2Njr4NLS4OvY/6+LAMGAwMFAgMDAgEBBAQECgYwL2cIDgcGDQUFCQMDAwUFBQ4KBwsEAwQDAgMGBQQLBwYOB2UvMwgMBQQFAQIBBAIDBQQDBgQytaJzaGhxoAECMECwQLQcGzcEUTAQUBExUTBgS4OvY2Ovg0tLg69jY6+DSwIFMwEBAgECAwMCBgQHCQMDA1bWAgIBBgQDCgYGDggKEQcICgIECQUFDggIDAUFCQMDBAIBAbE6AwQDDAgEBwMDBAIBAgEBsdYoNCUuJyevrycnXE5Og9YwMNYAAAMAJf/lA7oDNAAEAAkAEQAAAScBFwEnBwE3AQMXESMRITUhAdZd/qxcAVVXXQFVXP6sAUGCAn39xALXXf6oXQFYXV3+qF0BWP01QgKN/TGEAAAAAAIAyv+7AxMDRAACAAUAAAkBIQkBIQHvAST9twEl/tsCSQNE/rn9vgFHAAAABQATADQD0wLIABIAJQA4AEsAXgAAASEiJyY1NDc2MyEyFxYVFAcGIwUhMhcWFRQHBiMhIicmNTQ3NjMVITIXFhUUBwYjISInJjU0NzYzFSEyFxYVFAcGIyEiJyY1NDc2MxUhMhcWFRQHBiMhIicmNTQ3NjMDtvx6DQgICAgNA4YLCQkJCQv8egOGCwkJCQkL/HoNCAgICA0DhgsJCQkJC/x6DAkICAkMA4YLCQkJCgr8egwJCAgIDQOGCwkJCQkL/HoNCAgICA0CjwgJDAsJCAgJCwwJCF0ICQsMCQkJCQwLCQiXCAkLCwkJCQkLDAgIlwgICwsKCQkJDAwIB5cJCQwLCAgICAsMCQkAAAQADAA1A/kCpAAUABsAKAA9AAABNTQnJiMhIgcGHQEUFxYzITI3NjUFATUjNTM1BSEyFxYdARQHBiMhNwE1NCcmIyEiBwYdARQXFjMhMjc2NQP5DAsQ/eAQDAsLDBACIBALDP5S/minpwGZAYYQCwwMCxD+eVgBVgwLEP3gEAwLCwwQAiAQCwwCWB4TDg0NDhMeEw4ODQ4U7P7jusa74Q0OEyASDQ4+/vYeEg4ODg4SHhIODQ0NEwAHAE//wAO1AkUAFAApAD4AUwBoAH0AkgAABRE0JyYjISIHBhURFBcWMyEyNzY1ARUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVA7UVFRT9DhcPEA8QFwLyFBUV/WAICAgyCAgICAgIMgcJCAI2BwcK/koLBwcIBwoBtgkHCP3KCAgIMggICAgICDIHCQgCNgcHCv5KCwcHCAcKAbYJBwj9yggICDIICAgICAgyBwkIAjYHBwr+SgsHBwgHCgG2CQcIBAIMGRISEREb/fQaERESERkBtxoIBwgHCAgaCQ0ODg0JGggIBwcICBoKDQ0NDQqqGwcHCAgHBxsJDg0ODQkbBwcICAcHGwoNDQ0OCawXCQgHBwgJFwoODQ0OChcJCAcHCAkXCw0NDQ4KAAAAAwBP/8MDpgMYABIAIQAyAAAFMzQnJicmJyYnJicmBxUEFxYTARUWFxYXMzYnJicmJyYHEyIHBhcWFxYzMjc2NzQnJiMDE5MjIjw8UlFfXmhoZgEtxccH/T/najoQjgQwL05OZmZmbi8iIQEBIiIsLSAhASAfMDp9dHReXU5NMzMbGgSQC8jH/tgCJ4wYnVuLcmpqSkoqKgf+tyIiLiwiISEhLTEgIQAAAwBT/8EDtgMlABoAKwA4AAAFMjc2NzY1NCcmJyYnJiMiBwYHBhUUFxYXFjMRMhcWFRQHBiMiJyY1NDc2MxMjFSM1IzUzNTMVMxUCBXVlZDo5IiI6OlFQWHVkZDs6OjtkZHWGX19fX4aGX19fX4bquGS4uGS4Pzo7ZGR1WFFQOjoiIzo6ZGR2dWRkOzoC9l9fhoZfX19fhoZfX/6KuLhkuLhkAAADACv/3ARfAvgABAAJAA4AAAEhESERKQERIRERIREhEQIU/hcB6QJL/hcB6f4XAekC+P19AoP+owFd/kH+owFdAAAAAAIAZ//BBmgDNQA6AEsAAAEXBzUhBgcGIyInJjU0NzYzMhcWFzM2NzY3Njc2NzY3NjMhNRcHNSEmBwYHBgcGBwYHBgcGBwYPASE1ATI3NjU0JyYjIgcGFRQXFjMEteXm/TAcLi42Vjw9PTxWQTU1FgM3EiEbJm1LNRg4NysBQOTl/ug5MwgHBwgHBAQICAIPHBwVFQFm/IEiGBkZGCIiGBgYGCIBcNLdeysaGj08VlU9PSUmOwMIDh4qtHkbDQcGfdrWegYaBAUGCAgFBQoJAxMuLSUke/7qGBgiIhgYGBgiIhgYAAYAUwBIA6kCiAAUACkAPgBTAGgAfQAAExUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYV3gsLDUMODAsLDA5DDQsLAssLCw791BAKCgoKEAIsDgsL/TULCw1DDgwLCwwOQw0LCwLLCwsO/dQQCgoKChACLA4LC/01CwsNQw4MCwsMDkMNCwsCywsLDv3UEAoKCgoQAiwOCwsCXhsSDAwMDBIbEgwMDAwSGxENDAwMEhsSDAwNDBHoHRAMCwsMEB0SDQ0NDRIdEAwLCwsRHRMMDQ0NEukaEgwNDQwSGhMMDQ0MExoSDA0MDBMaEwwNDQ0SAAAGADP/wwO0Az4APQBMAFsAYABvAH4AACUzFhcWMzI3NjU0JyYrATUzNjc2NTQnJiMiBwYdASM1NCcmIyIHBhUUFxYXMxUjIgcGFRQXFjMyNzY3NTMVASMiJyY1NDc2MzIXFh0BITU0NzYzMhcWFRQHBisBAyM1MxUFFRQHBiMiJyY1NDc2OwEhMzIXFhUUBwYjIicmPQECSwEENDRHSzU1NTVLTlhHMTI1NEtLNTSvNDVLSzQ1MjFHV05LNDU1NEtINDQFr/7pTSAXFhYXIB8XFwF/FxcfIBYXFxYgTWivr/7pFxcfIBcWFhcgTQF/TSAWFxcWIB8XF21IMTE0NUtKNTWrBDQ0SEs0NTU0S05OSzQ1NTRLSDQ0BKs1NUpLNTQxMUhaWgHRFhYgIBYXFxYgTEwgFhcXFiAgFhb+7aysZE0gFhcXFiAfFxcXFx8gFhcXFiBNAAAAAAQAOf+lA7wDJwAfADEAagBvAAABIyIHBgcGBwYVFBcWFxYXFjMyNzY3NjUmJyYnJicmIxMjIicmNSY3NjcyFxYXFgcGBzc1Njc2NzY3Njc2NzY1NCcmJyYnJiMiBwYHBgcGFTM0NzY3Njc2MzIXFhUWBwYHBgcGBwYHBgcVMwcVMzUjAfoBW1JSPz8iISQjPTxTVFxaUlFAgwEkJDw8U1NbAgKPZWYBZmSRj2VlAQJmZY8wAwsODhYLEQ4OCgoKCBgVJiU2KyIjGBgODnIEBQkLDg8VHhISAQkIDQgUEA4PCQoDaXN5eQMnIiNAP1NSWltTUzw7JCMiIkCEu1tSUzw8IyT85GZlj45mZgFlZY+PZmUC4B4XDxALEQcMEg8aFicXGBgZFg8QDw8YGSQmJhQSFAwOCAgRESMUDw4MBxAMDxIUFyEjLnh4AAAAAQAjAOYBAwGPAAQAAAEjFTM1AQPg4AGPqakAAAIAEABABEsCvQACAAUAAAkBEQkBEQIt/eMEO/3iAX/+wQJ9/sL+wQJ9AAAAAgAlAEAEYAK9AAIABQAACQERCQERAkMCHfvFAh4Bf/7BAn3+wv7BAn0AAAACAOL/+QMiAvkABAAJAAABIxEzESEjETMRAa7MzAF0zMwC+f0AAwD9AAMAAAMAJP+EA+cDRwAeAC8AUwAAATIXFhcWFxYXFAcGBwYjIicmJyYnJjUmNzY3Njc2NxM2NTQnJiMiBwYVFBcWMzI3Ayc0NxMHFzc2MzIXFhUUDwEGFRYXFjsBNjc2PwEnBwYPAQYjAgNiWVpAQSYnAUBAb26DYllaQEEmJwEmJkBBWFliUxEQEBcYDxAQEBYXEE0JCFGtAgckBwkFBAwzCgIODhEEHSEbGgMSBQ8PBwgFA0cmJkBBWFlig29vQUElJkFAWFliYlpZQUAnJgH+zBEWFhEQEBAXFxAQEP6hBwQaARAfGwIFAwMECiioIg4RCgkBFxMeBBcHEgoFBgAAAAAD//7/bQFAA1wABAAJAA4AAAEhFSE1ESEVITURIRUhNQFA/r4BQv6+AUL+vgFCA1zz8/6C9PT+gfLyAAAFAAQAagN8AlcABAAJAA4AEwAYAAABIREhEQUjFTM1MyMVMzUhIxUzNTMjFTM1AkP++wEF/jJxcZ1wcAHNcHCdcHACV/4TAe2ziIiIiIiIiIgAAAABABkAlQMHAlcAAgAACQEhAZABd/0SAlf+PgAAAQBZ/7UD0gMvAAIAAAkBEQPS/IcBcf5EA3oAAAEAJwAHAekC9QACAAAJAREB6f4+AX4Bd/0SAAABADkApQMnAmcAAgAAJQEhAbD+iQLupQHCAAAAAQAXAAcB2QL1AAIAABMBERcBwgF+AXf9EgAAAAEAIf+pA/MDSAAJAAAFJQUTJSEbASEFAzn+0v7TaP7bAW97eQFv/t1X0dEBW+oBWv6m6gACACf/pAPUA0kACQATAAABEyUFEy0BGwEFASc3BycHJxcHNwKxff7R/tF8/tsBZ3BtAWn+wj+qzDc4zKo+mAEM/prl5wFnzQUBbP6VBv6js20EtrYEbbRzAAAAAAIAF//xA1ICxQAcAE8AAAEmJyYHBgcGByYnJicmBwYHBhcWFxYXNjc2NzYnJTY3NhcWFxYXFgcUBwYHBgcGBwYHBgcmJyYnJicmJyYnJicmJyY1NDc2FxYXFhc2NzY3A1IBQ0ReKjc3IB43NytfQ0MBAU0/c3ItLHN0P04C/ucVFxgWFxISCwsBDA0MDBYWBSVFRB8eREQmAw4OBwcMDAcGBQYrKkMcMjIREC0uGgH6Wzo6BAIkJDY2JCQCBDo6W2VaSm1uJSNvbkpbZE4MAwMICA8PGxohDhUVDw4ZGAYrQEAaGUBBKwMQEAgIERAKCw0NCUYeHxEHMzIfGzAwEAABAAz/5wNGArsAHgAAASYnJgcGBwYHJicmJyYHBgcGFQYXFhcWFzY3Njc2JwNGAUNDXis3NiAfNzcqPjU0IB8CTj5yci8qdHNBTQIB71s6OgMCJCQ2NiQkAgIZGi8wPGNcSW1tJiJvbkpcYwABACb/qQOzA2UARAAAASUWFxYXFhURJicmJyYHBgcGFxY3Njc2NzY3Njc2JyY1BAcGFRYHBhUmJyYHBgcGFxYXFjc2NzY3NjU2NzQ1Njc0JzQ1AX8B7wEBAgEBChIRB1BGRRseVikzNC4uICABAwEBAQL+2+liAQICFBNES0sXExYVMDpFRSkPCAkBAQIBAQJpbQkKCwcHBv52AwUFAhUiI0lXLBYGBRQVJSYqZGxslJRBRS4TR12trUMOBhQgIT8zLy8MDxMTLA8YGBcXGhkURElJZGMsAAACADX/tQPPA1QALQBWAAABNzYXFhcWFxY3Njc2NxcCBwYHBicmJyYHBgcGBwYHBgcGByYnJjcBNBcWFxYXARY3Nj8BIicmJyYnJicmJyYnJicmJyYnJgciBwYPATIXFhcWFxYXFhcBsAhpXgsWFg1emQMGBQQDiCECCQkFo05pfR0pKhwbDQIDAwETGhsEAUsJCAwNBgExBVcFCQcOFhYvMBYJLwsGBwsLCAgLCwoJDAsMEAZcKCAgGBkMDRNLYgM8Ax5WChkYC1EYAQEBAQH+p1AGBQUBGFJwD0tra0lIIgQHBwMDHR0JA1kCBAUHBwP+BQHUDBgQAQILCxMHKgkGBggHBQUFBQECAQMFDuAHBw8OCgoSSQ4AAQA0/7UDzwNUACgAABcHJicmNxI3NhcWFxYXNjc2FxYXFhcWNzY3NjMXAgcGBwYjJicmBwIHhAkTGxwD8FoBCAkPDgQEBWZgChcWDV2ZAwYFAwSIIgEJCAahUGh9oxA1FgMeHgkCb+gBBAQJCQICAR9WCRkZC08WAQEBAf6rUgYFBBdTcBD+WisAAAACADj/vAPKA1EAnACtAAAlNjc2FxYXFhcWFxY3Nj8BNjc2NzYXFjc2NzY3Njc2NTQnNCcmJyY3Njc2NzY1NCcmJyYnJicmJyYnJicmNzYnJicmBwYHBicmJyYnJgcGBwYHBicmJyYHBg8BFAcGFxYXFhcWBwYHBgcGBwYHBgcGBwYHBgcGFRQHFAcUFxQXFhcWFxYXMhcWFxYXFhcWFxYHBhcWFxYXFhcWNzY3ARYHBgciJyYnNDc2NzIXFhcBDwolJQlBEgUNDRgoDAsOCgUMDBc7QRQNDREOAwMHBwEDAwcUEhc6GggJCAkbBAcHBA0LCgQECiEkEh0fCQ4iAwUxLzQTDwwMLyYIFUMsGygPDwwNHAIDAgIECgoDBQMDBQQDBAUGBwkMDRMTCAMGBwEBAQMBCAcMDAQDBAQCDwoLBQUJICILAwQSEwQFCwsICBUBkwEwMENBMDABMC9DQDEwATUDAgECDkYWCQgCAQcHIxQTCgoLIyYKAwMQEAMDCgkDAwkKBwgPLy1ADQcPEBwdEREFAQMEAQMJCQcHED5AIRwfAwYOAgIWFRUyKAcGAQMgShMMDBACAgkIIQMBCQkEDhkaCwsLBw4PCAkLCgcJBwYGBwQBAwUDBw8OCQkNDAoFBQQEBAMDAgEECQkICBE8ORUQEBISBAQEAwMDCAFTQjAwAS8wQUMwMAEwMEEAAAAEACj/vAPyAyMADwATABkAHgAACQEWBwYjISInJjcBNjc2FwkCIQE1IxUXMwcVMzUjAk0BmxoQEDD8tjAQDxoBmxskJRsBGP6o/qkCr/7QUBUmPVVVAv/9ICkdHR0dKQLYKQMDJ/0tAlX9qwFKZWWRKlRUAAQANf+gA8kDMwAHAA8AFwAfAAABBxcHJwcRIQEnByc3JyERARc3FwcXIREBNyc3FzcRIQFOZaxNrmUBGQJ7Z6xPrmcBG/xsZa5NrGX+5wJ5Z65PrGf+5QMzZ6xOrWYBGv7mZq1OrGf+5v6gZ61OrGUBGf7nZaxOrWf+5wADAFX/uQPjA0sAEQAdACIAAAE3NjcyFxYfAhYVFAcGDwIHJwEDBhcWMzI/ASUnFwcnNwJ+ZBcYEQ4OBgWDFwUEBQRiTO7+dFQIEwcMCwgHAQw+GZ4gMALWYRICAwMEBIQUJA4NDgcHZk/x/nf+8CAPBQMCTbR5LiCgAAAABABH/48D3wN1ADgASgBWAFsAAAE3JxUmIyIHBgcGFRQXFhcWMzI3Njc2NTQnJicmJyYnJicmIyIHBg8BFhUUBwYjIicmNTQ3NjMyFxc3NjcyFxYfAhYVFAcGDwIHJw8BBhcWMzI/AicXByc3AjunpxoOfWpqPT4+PWpqfX1qaj49BwEBAgcGCQgPEBIUEBAGBghcXIKCXVxcXYIaDAYnCQsHBQYDAjQKAgICAigdYqAiBAgEBAQEA20aCkANEwJChq1QAT0+aWp9fWpqPT4+PWpqfSUnAwQECQoICAYGDw8QDx8qgl1cXF2CglxcAp8oBwEBAgECNgcPBQYFAwMqH2GfbwwGAwECH0kyEg1BAAABAEj/0wPaAvQAFgAABSUmJyY3Njc2PwEXATcWFxYXFhUUDwEBs/6uFwIDDQ0QEA4O9wGzLSoZGQYGBAUt8RAaGhkZFxcODr8CCSYbHBsUFA8QCAgAAAAAAgBL/94D4QMTABYALgAALQEmJyY3Njc2PwEXATcWFxYXFhcUDwEBNTQnNDUmNzQ3Nj8CESERIQcGByERIQI5/vwSAgIKCgwNCgu9AU4kIBMUBQQBAwT+6QEBAgQEBARY/SACckIOB/5NAhCruQ0UFBMTEhILC5QBkB4VFRUPDwwMBgb9tC4CAgIHBwEDBgYEBGb+2ALgThYE/fAAAwBN/7UD0QNFABcAMgBDAAABByMnBxcVJxU3FQcXNzMXNyc1FzUHNTcDJwYjIicmNTQ3NjMyFxYVFAcXFhUUBwYjIicBFBcWMzI3NjU0JyYjIgcGFQNmOAI4OVeGh1g1PAI3OlmLi1e8xUxgeVVVVVV5eVVVMsESDw4VEw797C8wREQwMDAwREQwLwNFgYAhcAERPhECcCGCgSFuAhA+EgFz/J7DOFVWeHlVVlZVeVxJwQ8XEw8ODgGuRDEwMTBERDAwMDBEAAACAO4AXgMXAocAGAAkAAABJicmBwYHBgcGFxYXFhcWNzY3Njc2JyYnBxcHFwcnByc3JzcXAs46SkpKSTY2ExMTEzY2SUlJSTY5FRQSEzZaM3R0M3V0NHV1NHQCPjYTExUVOTZJSUhJNjcTExMTNzVKSUtKOSczdXQ0dXU0dHUzdAAAAAADABP/igPoA10AGwA8AF0AAAUzNjc2NzY3NjU0JyYnJiMiBwYHBgcGFRQXFhcBNjc2FxYHBgcGBwYHBhcWBzYXFhcWBwYHBicmJyYnJjchNjc2FxYHBgcGBwYHBhcWBzYXFhcWBwYHBicmJyYnJjcB0ElfVVY+PiQlQkFxcYZkWltCQiYngIG8/uwhQT9MBAgHExINDwYFAwICLSMiDg4HBh0xTEslFgQEDgFVIEM+TAUHCBITDRAFBQICAi0jIg4OBgYeMUxLJRYDBA12BSgpQUFYWGCGcXFBQicnQUFbW2W9jYwSAfhuNzoOAwcHEBAQFRMTCAgKAxgZJCUrLCI1Bwc5HzAvJWs6Og4DBwcQEBAVExMICAoDGBkkJSssIjUHBzkfMC8lAAEAPf/cAsoC3AAnAAATNTY3NjMyFxYVFAcGKwEVJzcVMzI3NjU0JyYjIgcGIwcGBwYXByY1PQNfYIWHX2BfYIcWqqoWW0BAQEBbLCYIAhJGGxsdZBYBlgeFXV1gX4eIYF9zqqp2QEFbW0BADwQKKE5NTiY7PgAAAAIAW//FA6cDEQAEAHIAAAERIREhAT8BNjc2NzY3FhcWFxYXFhcyNzY3Njc2JyYnJicmBwYHBhUUHwEyMxY3NjcyNzY1Njc2NTc2NSYnJjUmJyY3Njc2FxYXFhcWBwYHBgcGJyY3Njc2JyYnJgcGBwYXFBcWFRQHBhUGBwYHBh8BNjcDp/y0A0z99Q0ICQcHBwcEAQECAQQCIiotJkAeDAUEEBxIJikuM1M1PDkRBAIDAgIBAQIBAQECAwEBBAUTAQEUJFQxKyoYGQQDDQsVHiQ0CwMJFgEGBQYREhgjCwoNAgICAgMJCgYXAwcUDwMR/LQDTP04FhERFhceHg8BAwIBBgIdARUkUCM1LytIJxQEBwkQOUFVWSUJAQICAQQEAQIEBQEKCgMEBgUBGSIvJ0oPCQ0MHB8tKzQpHiYBAiwPHk4EHw8UCgsIDS0oKAIDAwEDBwYCDSkpFWEvNxIUAAACACj/9gPlAvgAGQA+AAABFQYHBgcGBwYHBgcGDwE2NzY3Njc2HwEVJQM3MjcyMzYXFhcWHwERIREhFhcWFxYHFAcGDwEGDwEjESE1NDcCzVlISCwtICEPDwgIAgE3QUA2Ni4uGhoBGOE9AQIBBQQFBAMCAQH8ygGdAgIDAwMBAwMDAyUcNbkCWAYC+G0FFhUfHyUkIyQdHRIRLxwdCAgBAgQFcuf+6DQBAQIBAwMCAv7OArYBAQIFBQYFBAMCAhURKf4vegYHAAMABP9/Aq8DagCGAJ4A6gAAASMiJyYnJicGBwYHBicmJwYHJicmJwYHBgcGJyYnJicGBwYHBgcXFgcGBxYXBgcGBxYXFhcWBwYHFhcWFRQVMjcyFxYXFhcWFzY/ATYXFhc2NzY3NhcWFzY3NhcWMxYXNjc2NzY3JicmJyY3Njc2NyYnJjc2NzY3JicmNzY3NjcmLwEmNTQnBSM1Njc2NzY3MxEUHwEVIzU2NzY3Njc1ATM2NzYXFhcWFxYXNxYXFhc2NzY3NhcWFxYXFjM0NSYnJiMmJyYHBgcGByYnJicmBwYHBgcmJyYHBgcGJyYnJicmJyYnIg8BBgcGBwJMPgkDAQkJBQkTEwsJCAciFSIJFRUMBQsLBQMKCxUWCQMJAQ8ZHggDCxccDBYJDxAECRERBAYCCQsZHgssFgcDBAMEBQUCCxMaDQcIIAYQEAkJCgMxFgUKFQMJGQ0KAQMJOQQBAwMBAwsKExMCEQ0FBwUNDQgeEQYDAwcGBAsSGwwB/tpPJQkzHwUDMB4q/w8eEgcHAf76By5cCgQQGwYLDANCCBIRCRAcHAcGCRQ6DRkZAiArAgYQKQgEBgsMBQsVFQUHBQQTEwsaDwcKDyUIAwMGBgEGBAMRCgJABQ0MBwMHCAMWFgwDBwYEAwgKJRQYBQsLBgkSEgkHAQIDAwEOKw0CBQg5DAcNExUqChQTBQkODwQFCRgkCQwEDBQqAQoICQoLDAcEBgkFCgklBQ0NCAgGAhsfDBYHAwMBNgULAQsBDBUVAw0HBgwMASIVCAYHEBEKHAwHCQkTFAoECAsCDBMrnx0CAQcnBQH+6x4IBxYWAgUBCQkTwf1xCBADCRgkChERBKgaMjIZFiUlCgkCBAwDBAUCAlt3BwMGAgkJExIIBgsLAwMEAw8OCB0SBwMHCwQJCA8PAw8DAgEKpw4fIBEADwBU/7kDqwNKADAAQwBWAGkAfACPAKIAuQDMAN8A8gEJASABNwFOAAAFIzU0JyYvASMGHQEhNTQnJi8BIwYdASMRMxUUFxYfATM2PQEhFRQXFh8BMzY9ATMRAxE0JyYjISIHBhURFBcWMyEyNSU1NCcmLwEjBh0BFBcWMxczMjUhNTQnJi8BIwYdARQXFjMXMzI1BTU0JyYvASMGHQEUFxYfATM2NSE1NCcmLwEjBh0BFBcWHwEzNjUFNTQnJi8BIwYdARQXFjMXMzI1ITU0JyYvASMGHQEUFxYzFzMyNzI3NjUFNTQnJi8BIwYdARQXFh8BMzY1ITU0JyYvASMGHQEUFxYfATM2NQMRNCMhIgcGFREUFxYzITI3NjUlNTQnJiMnIyIjBgcGHQEUFxYfATM2NSE1NCcmIycjIiMGBwYdARQXFh8BMzY1BTU0JyYvASMGHQEUFxYzFzMyMzY3NjUhNTQnJi8BIwYdARQXFjMXMzIzNjc2NQOrHAQEAwQ6D/2gAwQEBDkPLCwEAwQEOQ8CYAQEAwQ6DxyuCwsV/lwLCQkJCAwBpCv92gMEBAQ5DwQDBAQ5DwK4BAQDBDoPBAQDBDoP/UgDBAQEOQ8EAwQEOQ8CuAQEAwQ6DwQEAwQ6D/1IAwQEBDkPBAMEBDkPArgEBAMEOg8EBAMEOgICAwQE/UgDBAQEOQ8EAwQEOQ8CuAQEAwQ6DwQEAwQ6D5Ir/lwMCAkJCQsBpBULC/3aAwQEBDkCAgMEBAQDBAQ5DwK4BAQDBDoBAwIEBQQEAwQ6D/1IAwQEBDkPBAMEBDkBAwIFBAK4BAQDBDoPBAQDBDoCAgMEBEcdBwcIBAQPDx0dBwcIBAQPDx0DkRwHBwcEBA8OHBwHBwcEBA8OHPxvAhkBBgsICQkJCv76FQsMLNkdBwcIBAMNEB0GBAMBDh0HBwgEAw0QHQYEAwEOdBAGBwcEBA8NEAYHBwUEDw4QBgcHBAQPDRAGBwcFBA8Ogh0GCAcEBQ8PHQcDBAEPHQYIBwQFDw8dBwMEAQEEAwd0DwYHBwQEDg4PBwcHBAQPDg8GBwcEBA4ODwcHBwQEDw7+3wEELAwLFf78DAkJCQgNnh0HBAMBAQMEBx0HBwcDBA0PHQcEAwEBAwQHHQcHBwMEDQ+CHQcHBwQEDw4dBgQEAQEEBAYdBwcHBAQPDh0GBAQBAQQEBgAAAgDo/8QDHwM3ABcAPAAAARE0JyYnJgcGBwYHFTEdARQXFhcWNzY1NxUGBwYHBgcGJyYnJj0BIwYXFhcVIxUhNSM1NjM2NzY3Nj0BIwKLAQopKTk0JiYCAxFLSz0xTQMBDTg4RkxAPxEGRw5ERHaRAXmTCQNBLS0jKEcBmgEHEwo4IiIDAicnNEtLghQSUBoZNCpKJjYjBksxMQQFLi9KF0oNhWFhEV5GR10DEh0dNDxlNAAAAwAaADcDzQMNAEMASABNAAATEQYHIicmJyYnJicmJyY1Jjc2NzY3Njc2MzIXFhcWFxYXFhcWBxQHBgcGBwYHBgcGLwERNjMmJyYnJicmBwYHBgcGBzczESMRISMRMxGzAwUGEBAODhISDQwJCQERERwGODhdXmxSS0s3NiIiBRwQEAEICQ4NERAQEQ0OCAkEBQQfHy4uODk5T0hJMDEGIVhYAkpXVwGF/rUBAQEBBQQMDBISIB8pQSEhEGhcXTk5IiI3OElKTREhIEEpHyASEgwMBAQCAQEBAUsBPzg5JycWFgECJSZERVMB/rABUP6wAVAAAAcAOv/uA9cDDAAUABwAIQAmACsAOAA7AAATITIXFhURFAcGIyEiJyY1ETQ3NjMXJyIHBh0BMzMnIxczMycjFzMzJyMXMwEhMjc2NREhERQXFjMlBRGIAu8kHh4eHyP9ESIWFhYWIlBQCwICX/Bgfl6A31B/T4DgUH9fcP0BAu8MAgL88gQDBAJT/rEDDB4eJP2hIx4eHR0lAl8mHR2wYAIBDVBgYGBgYGD94QICDAG//kEHBATfsAFfAAAACABj/8gDjwNHAAQACQAnAHgAxgD9AQIBBwAAAQchJyUFIRUhNQMXFhcUFxQzMhcWNzYDJgcUFQYVFAcGBxQHBhUGFwUVFhUWFRQXFBUUFRYVFBcUFRYVFDMWFxYzFjc2NTQ3NjU0NyYnNDU0JyYnJic0IyYnJgcGFQYVBhUGFRQVFAcUFRQHFAcUBxUWFRQVFhUUFR8BFBcUFxQXFDMWFxYXFjMWNzY1NjU2NzY1NDU0LwI0IyYnJgcGFQcUFQYVFBUGHQEGFRQVBhUGFRQdARQVFBUUFxUWFRQXFBcUFRQVASc0IyYnJgcGFQYHBgciFxUUFxYVFBcWFRQXFhUUMzIXFjMWNzY1NDU0NzY3NjU2NTQnNCcmJwEhNSEVByE1IRUDdQ79Fg4BgwF0/RgC6F0CAwIBAQEFISERESQmAQICAQECAQP9hQEBAQEBAQMBBwYDHBcDAQQDAQEBAQECAQIHChwXBAEBAQEBAQIBAc8CAQEBAgEEBAMDAx0VAwIDAQEBAwIDCAkcGAMBAQEBAgIBAQEBAToCAwcKHBcDBAEDAQEBAQEBAgICAgEGBwQcFgQBAwEBAQIBAQH97QLt/RMhAyz81ALhHBxmoEtL/lRIPRsEAQIBCQrnAQYICAIDAwEUJiYSCyYmFCs1Jw0IDgUICQUFCAkEBAcCBQUDBAoCAQICAwcBAgsWQiYGaQ8fHhAPICAQEyIDAwIDBwEDBAkGCQUKAQYDBgcCCQUMGxAfdgoVBAcIBA0HPhoIAwkGCAYCAQEBAQEDBwECFgtCJhMkJRMcQF81AwMCAwcBAw0DBQUCAgUFAwcGDAUJGQ4gDwsWNwUKCgUUCxcHDQkEDggFCAkFAX0pAwMCAwcBAyQnVi0mJAsVFgsOGxsNCxQUCgMCAwMHAQIHDQ0GRyQRIiIRFjYUKSkV/fA1NTsnJwACAFv/xQOnAxEABABDAAABIREhEQcUBwYHBgcWBwYHBgcGBwYnJicWNyYnFjcmJxYXFjMmJyY3FhcWFyY3Njc2NzYXFhc2NwYHBgcGBwYHNjc2NwOn/LQDTHIJCREQBgUXFigpODg9PEFCOFJeWxEhC1cBBgwNChgMCxg2OjlQCA0MGhkfHyAgFiokAQUGBAQLCgMHFRYHAxH8tANM6A0MDA0OB0U/Py4uHyAKCg0OJw45F0UCAidWAQYGFTIxKjghIQYjICETEgkICQkZCxMLCwsFBQoLAwIGBgYAAwARADUD6QLiADUARgBXAAABJicmJyYnJicmJyYnJiMiBwYHBgcGBwYHBg8BFhcWFxYXFhcWFxYXFjMyNzY3Njc2NzY3NjcnFAcGIyInJjU0NzYzMhcWFScyFxYVFAcGIyInJjU0NzYzA+kECAgaGh0dLS0uLzw7PD07PC8wKysfHxcXDAsECAcaGxwdLS0uLjw8PTw7OzAvKywfHxcYC+9HR2NkR0dHR2RjR0fxKyAgICArLR8gIB8tAYsHDAwkIyEhJycdHRMUExMeHyQlJCUeHxMSCAwMJCMhICcoHBwUExMSHh4lJSQlHh4TE2RHR0dHZGNGR0dGY2sgISosICAgHy0rICAAAgCU/7ADkwMkABAAIAAAATI3NjU0JyYjJgcGFRQXFjMBISYnJicmJyYHBgcGBwYHAgZLNjY3NkpMNjU0NU7+jgL/EgwaRUZVVV9fS0kcHAgBujU1Sko2NgI2NU1MNDT99oksYkZGGhsREkFCWll/AAQAM/+4A+gC1gAQACEAMwBFAAABMjc2NTQnJiMmBwYXFBcWMwUyNzY1NCcmIyIHBhUWFxYzASE2NzY3JicmJyYHBgcGBwYHJSEmJyYnJicmJyYHBgcGBwYHAXxEMDExMEREMTEBMDBFAXovICEhIS4uISEBICEu/T0BnwQhIlMcGxwlrIM4ISELCgMB6gHLAQQDAwMDFj8+TU08LRERAgGOLy9EQzIxATEwRUQwL5QgIDAsISEhIS4uICD+vmhJSSsoGRoKN18pPDw5OU8BDBcXEhIPTi4uAgI1Jzc2SgAACQBb/8UDpwMRAAQAQwBUAGkAcwB+AI8AoAC8AAABIREhEQEVFhc2FxYXFgcWBwYHBgcGJyYnJjc0NwcmJyY3Njc2FxYXNjc1JyY3Nhc2NzYzMhcWFRQHBiMiJyYnJgcGFzc0JyYjIgcGFRQXFjMyNzY1AzYnJicmBwYHBgcGFxYXFjc2NzY3JTUmBwYXFhc2NwU2JyYHFDMWFzY3BTIXFhUUBwYjIicmNTQ3NjMzMhcWFRQHBiMiJyY1NDc2MwcnJicmNzYXFhcWMzI3Njc2FxYHFAcGBwYjIicDp/y0A0z+gGBLHDk6Cg9ECg8PGzpkZGVlOkIOAQEeDw8GBx4eIiMSVWcBAjM0YQoVFRsjGBkYGCQdFhYIRiIiAfgJCA0NCQgJCQwMCQk9DUEgNTQ1MCZYGxo0K0xMS0wpGAb+JxIbGgcGDQ0fAjEHGxoSAhoRDQb+cBELCwsLERALDAwLELcQCwwMCxAQDAwMDBCyCwUDBgkICQ0EHyMjHgQOCgcKBwcGBSgtLSgDEfy0A0z+5Q0HMSoMDDFCKCopKR49GBcVFj1GWAIDBREcHCEfEhIFBRs2AwgFRSMiEBkPEBkZIyMZGBERGw0PEDRdDggICAgODQkJCQkN/qNENBkPDwQDDR8+QTguERASEi0aH50BEw0NIBEGGyImIA0NEwIXJQYREwsLERAMCwsMEBELCwsLERAMCwsMEBELC6oIBQULCAYDAgQODgQCAwYJCgQGAwUSEgAACQBd/4sDnAM1ABQAKQA+AGUAlwCsAMEA1gDrAAABIyIHBh0BFBcWOwEyNzY9ATQnJiMFBwYHBh8BFjc2PwE2NzYvASYHBgcFJyYnJg8BBhcWHwEWFxY/ATYnJicFFhcWHQEGBwYVBgcGDwIjJyYnJiciJyYnJicmJyYnNTQ3Njc2MwMzNjc0NzY3Njc2NzY3NjU0NSYnJicmJyYnBgcGBwYHBhUHFhcWFxYfATEXFicWFxYXJzU0JyYrASIHBh0BFBcWOwEyNzY1ITU0JyYrASIHBh0BFBcWOwEyNzY1ATU0JyYrASIHBh0BFBcWOwEyNzY1BzU0JyYrASIHBh0BFBcWOwEyNzY1AgAHDgoKCgoOBw4LCgoLDv7TBgkCAghMBwwNCQYJAgIGTQgMDQkCWQYJDQwHTAgCAgkGCQ0MCEsIAQIK/tF6NBcDKAURDAwDAwLHAgINDBMBAgICDQYGCAkBFxgtLTwmTQcnBgYCAgQFAgICAwEGBwsLGRkhIRkYDAsGBwEBAgIBAgUHCAgBDwwLBNgHBwtsCgcICAcKbAsHBwKhBwcKbQoHCAgHCm0KBwf+zQgIC6MLCAgICAujCwgIHwgIC2QLCAkJCAtkCwgIAzUIBwpsCggHBwgKbAoHCHMFCgwMB00HAgIKBQoMDAdNBwICCgUFCgICB00HDAwKBQoCAgdNBwwMCmwBZDAwA0BACAEdHh4QEDQyFSMiIAMDAhQLCxwcIAMwMDAbGv5VPEECCQkDBAkKBwcLCwsECAkUFBAQDQ0BAQwMEhIREgwMDQsLBwcJDQwMAhggHxPnBw4JCgoJDgcOCgoKCg4HDgkKCgkOBw4KCgoKDv5nBgsIBwcICwYLCAgICQpiBwsHCAgHCwcLCAcHCAsAAAAACABb/8UDpwMRAAQAHgBBAE0AUQBVAFkAXgAAASERIRELAQcnAzcmNzY3Njc2NzYXFgcWFxYXFgcGBycmBwYHBhcWFxY3FhcWMyY3Fjc2JyYnNDcmBwY1NicmBwYXFycGBwYHBicmJwcXNw8BNwUXLwEFBxU3JxcWFScDp/y0A0ylLdzeK3YOBwYgHyoNKSkjIwIWEREHBwUFEawnHB0DAxEZJycYAhAPCAMJJw8NEwwWDAEPDwchHBQMAr5bCxcYGhYjIxpFstA7DzD+nS4ROgErOzO1DTUDAxH8tANM/pz+1JSUASVELCwsIyMCJAwLFhYvBRcXGxsdHRClBBkYIiIfJgIDIwQDBB0BDiIeHBEBDRADAgIFJwgIFQwS7y8ODg4DBAgJFSVeNCjQIQQcyiQ3H9cmy8whAcsAAAcAAwAXA/oCjAAkAEsAcgCXALsAxADNAAABBxYXFTM1Njc2PQE0JyYnNRYXNyYnNSMVBgcGHQEUFxYXFSYnAwYHBhUUFxYXFhcWNzY1NCcmJyY1NDc2NzY3Njc2NzYnJicmJyIHBRYXFhUUBwYHBgcGJyY1NDc2NzY1NCcmJyYnJicmJyY3Njc2NzIXBQYHBhUUFxYzMjc2NTYnJicmNTQ3NjcyNzY3Njc2JyYnJicmBwUWFxYVFAcGIyInJicmNzY3NjU0JyYvATEnJjc0NTQ3Njc2FwU1NDcVJicmNRcxFAc1FhcWFQGJMD5UOTsiIx8gQyghLTFCOD4iIh8gRTE190InJh8fNwYSEQ4JAwQEYyEiOgEBAgMEAgICAQYKDw8KAtBCJyYfHzcGEhEOCQMEBGMiITkCAQIDBAIBAQEGCg8PCf2SLx0cQwMSEgsIAQMaERIXFygBAQEDAwEBAgIFCAsLBwIMMRwdRAISEgsIAQEEGRERFhYoAgUEAQgHCwsI/sklFQgIeyQVCAcBGUgtCYSDBh4eMAEyGhsQPwoXSSMIdnUFHh8wATEbGhBBCCQBTThLS1VKRUQ3BgMCCAgMCwgHBGF6SD4/LQECAgYFBgUHBwYKAQQFOEtLVUpFRDcGAwIICAwLCAcEYHtIPj8tAQICBgUGBQcHBgoBBFcmNzc9YE0FCQcMDAEbJycmMygoGAICBQUFBAcIBggBAQMDJjc3PV9OBQkHDAwBHCcnJTMoKBgCBwcDAwgJBQgBAQNrARgDOwYHBwumGAQ7BgYHDAAABABT/8gDogMZAAwAGAAdACsAAAURNCMhIhURFDMhMjUDFRQjISInJj0BNyEHFTM1IwERNDc2MyEyFxYVEQchA6Is/QksLAL2LdQk/poNCQkBAaiua2v+qREKDAIJEQsMAf2pCgL3LC39CS0uAtPYJAkIDdkFHbGx/WcBEhwMCAwMEv7rAwAAAAgAJv+nA84DTwAgADMAPABNAFUAZgBrAHQAAAUyNzY3Njc2NTQnJicmJyYjIgcGBwYHBhUUFxYXFhcWMxEyFxYXFhUUBwYjIicmNTQ3NjMFByYnNxYXFhcHNCcmIyIHBhUUFxYzMjc2NRcnNic3FgcxJTIXFhUUBwYjIicmNTQ3NjMHFwcmNxc3FhcHJicmJwH6XldXPz4lJiYlPj9XV15fV1c/PiUlJSU+P1dXX2RWVTIxbG2ZmW1tbWyaATSyGTc7QjQ0HdIdHCkoHR0dHSgpHB33wwIEvgoD/qcNCAkJCA0MCQkJCQyNArgKAhutFTc4QTMyG1klJj4/V1deX1dXPz4lJSUlPj9XV19eV1c/PiYlA0cxMlVWZZltbW1tmZpsbeZONBO5FC8vQIonHRwcHScpHR0dHSkbDhAVKS4uOAkJCw0JCQkJDQsJCRckLCQ1n00zE7QVLS0+AAIAI//XA/4CkgAKAA4AAAEhAxE3MxYXFSEVFyEDIQMs/aOsQtEIBgHo0v0A2wMAAcX+nQHbVQMOM4ky/kQAAAAZACf/gwPsA0gABAAJAA4AEwAcACIAKwA6AD8ASgBRAFcAXABnAHMAgACVAJ0AqQCvAMIAxwDMANwA4wAAASERIREFMxUjNSEVIzUzFzUzFSM3MwYPAQYrATUXNzIzFSMXIzc2NzYXMxUnFSMiLwEmJyYnJjU2NTMFNTMVIzczFSYPAQYjJiM1ITMPAQYnNQcjNzIxFTM1FhcjByM/ATYzMDMyMRUzIzUyMzIXFhcWMxUzNTQzNjc2NzY7ARUjJTMUFxQVFAcUBwYjIiMiIyIjIiM1OwEHIjUwIzUhMxQVFBUUBwYHJic7AQYHIzUDIzQ1Jj0BNDc2NzY3Njc2OwEVMyM1MxUzNTMVIyUzBgcGBwYHBgcGBwYPATUXIzY3NjcVA+z8OwPF/KG6ugF6u7sFu7vBmwMFOwQITI4qAQEsLHQUHw8ECyPAPQIEaQEDBwMCAbv9xrq6v7sVC0EFCBk0AYFTFywEDMYpKAEFGR84BYgEVAQKERHAuiYTAgY+Hw0PBQULBgkiBAtru/3BugEBAgMGHDg4HAECAgK/U1EBAQFAOwICBSUNQQoDBQLGugEFAgMDARkFAwWHwLq6Brq6/cCxAgQDAwMEAgMcNjUNBbqWHDIzFQNI/DsDxWK8vLy8vLy8uwcPnQm8u29vwDZSKgoBu7u8BooFAQQFBQwLAbu6urocAxmACgG7OngNBbq6Tk5KISnBCaoIu7sGUyoSJiMFBQ8ZXQm7uwIDBAFpNQgFB7ykAaMFDAsGBgoJBzERCQ8Y/oQBAwIBWQQHAgUFATIKB7u7u7u7ugQICAYGBgMDEyMkCAORuhMhIQ9kAAACAEH/gQJhA0EABQASAAAXCQERIREBIxUjNSM1MzUzFTMVQQERAQ/94AHOg2iDg2iDfwFT/q0DwPxAAmSEhGeDg2cAAAkAVP+tA5kDSAAmADoAPwBSAF4AcQB9AIwAnQAAASEWFxYXFjsBESMVIxUhIicmLwERNDc2PwEzNTQ3Nj8BMzU0NzY3AREmJyYnESEUJyYHBhUUFxYfASElIREhERMzMhcWFRQHBisBIicmNTQ3NjMDITUjIicmLwERIxEBMzIXFhUUBwYrASInJjU0NzYzASE1IyInJi8BESMRJSMVITEHBhcUFxYzFyE1ByMVIRQnJgcGFRQXFhczITUBzAGACgkIDg8KC6ap/jUQCwoEAgoKCgmBCgoKCoAKCgoBphAECgL+hwMCAwMDAgMCAZr+eAEx/s9BsAoHBwcHCrAKBwcHBwrpASeREAoKAwNsAQN7BwUGBgUHewgEBQUECP5WASaRDwoLAwNrAi8g/oYFBQECAgMCAZqpH/6IAwIDAwIDAgMBmANIGwYHAwT9tpOPCgkKCwIjEwwLAwJiEgwLAwJjEwwLAv2pAgkFBAgG/f4BAQEDAwcHBAUBAV4Bvv5CAWoGBgkJBgYGBgkJBgb9+CAKCQoLAYL+NgG2BwYJCQcGBgcJCQYH/bodCgsKCgGD/jewUwMDBwYFBQJyk1ABAQEEAwgHBAQBbgAAAAACAB3/1APqAwEADgAgAAATITUhFTEVBjUVMRUGNRUTMwYVFjMRMjMyMzA3NSYnJicdA838NQEBpY4Bcd4aNTYbATxwbyMCfoMgHR0FFA8OBQL+iG7DAQEvAgE+cnIjAAACAEn/5gPZAuQAEgAhAAABESIHFBcjATY3Njc1IjUiIwYjASEnIRUxFQY1FTEVFDUVAqHQagGFASsgaWk4ARkyMhn9qAOQAfxyAQHHAR0Bt2f+0CBrazoCAQH+H3wfGxsEEw0OBgMAAAUAIwAEA6kCqAAEAA8AEgAVACIAAAERIREhBQEWMzI3Nj8BASEBFxEFETcFJwcGBwYjIi8CByEDqfx6A4b86wEuFwoGCAgFBgEw/WAB+M/9FswBzbIdEwUeHx4kFB+zAkwCqP1cAqRF/skTBAUEBQE4/tXQAaEF/mbN57QeEQMRFA4gswAAAAAEAFv/xQOnAxEABAAqADUARgAAASERIREFMxYXFhcWFxYXFhcWFxYXFhcWFxYXFhcWFxYXFhUjJicmJyYjNRE1FhcWFSM0JyYjFzIXFhUUBwYjIicmNTQ3NjMDp/y0A0z83xQxGCYiISUtFSIfGSIlERcZGBENFxIJCwoHBQSAAXRalVZi4YNVgYBQaFsmGhsbGiYlGxsbGyUDEfy0A0x1BAMGCQcPEgwQFBAbIBIYHx8eFismHh8oHykhKLuUczghgf6cgQavc5GbYjuCGxomJRsbGxslJhobAAAACACG//4DmAL0AAwAJAApADwAUwBmAHkAjAAAASEyFxEhIicmJyY1EQEhJicmJyYnJjURIxEUFxYXFhcWFxUhNQEjFTM1FzMyNzY1NCcmKwEiBwYVFBcWMxMhJicmJyYnJjURIxEUFxYXFhcWFyE1AzMyNzY1NCcmKwEiBwYVFBcWMwchMjc2NTQnJiMhIgcGFRQXFjMVITI3NjU0JyYjISIHBhUUFxYzAV4B7DgW/e0SCQYDAwIF/gcJCwwHCAISOgIDCQkOEEECAP7NiIg31wcGBgYGB9cHBgYGBge4/h87HQ0KCgIDOgMEDg8WHFoB6bjXBwYGBgYH1wgFBgYFCK8BhgcGBgYGB/56BgUFBQUGAYYHBgYGBgf+egYFBQUFBgL0Ff3vCAUFBgQCCv2gAwMDAgICEQoB+v38AwcIDg8MEgkEOgH5iYkoBwYJBwYFBQYHCQYH/dEPFQ0VFQwMBQG//kAHEBEfHxYdFjgBywcHCgcGBgYGBwoHB18GBgkHBQUFBQcKBQZmBwYJCQYHBgYKCQYHAAAABAAT/4UDzgM+ACwAWwBsAIEAADcWFxY3NicmJyY1NDc2MzIXFhUUBwYHBhcWNzY3NjU0JyYnJiMiBwYHBhUUFzcWFxY3Mjc2NzYnJicmNTQ3NjMyFxYVFAcGBwYXFhcWNzY3NjU0JyYjIgcGFRQXNzI3Njc0JyYjIgcGFxQXFjMDITQnJicmJyYnJgcGBwYHBgcGHQGMChgYEQsCAwdocXKfoHJxawgCAg4SFRUIgEBAbm6CgW5uQEB5iQQICA0NCgoDAgUbDQ08O1daOzsSER0DBQUKEBERBklVVHl3VFVF2yccGwEcHCYnHBwBGxsnsgFcAQIQDxwqQT8uFg8PBgcCAyUMBQUPExAQCHGXoHFycnGgnHAHFBQRCgUECIq7gm5uP0BAP25ugrWHgAUEBAEKCBYXBB8cHCdZPj03N1gqKyseAxARCAkDAwdTbHhVVFRVeGpSWBwbJyYcHBscJycbHP6IFiMjSEgcKgIDLRUjIyMjISATFQAAAAACAG3/kgO+A1oAQABVAAAXMzYzMhcyNzY1Ajc2JyYrAQYjIiMmKwEmJzc2JyYnJiMiDwEjJyYjIgcGBwYfAQYHIwYjIicjIgcGFxYHBhcWMxMhMhcWFREUBwYjISInJjURNDc2M7wDa+HteCgVEQQEARITKAw3IgoWFgpLBBl9CQUCDAgJFQqPGIoIEwsIDAQDB30RAUcYLyQ2CSgQFQMCAgMVEypRAhAYEBAREBf98BcQEBAQF24CARITLgEc2C0XEQIBIAzOCg4PCAMP698SBgcODgvMDRYBAhAWM/L3NBQTAi4QEBf+sRcREhIRFwFPFxAQAAAAAAcANv/gA7cDPQAqADoASwBbAGwAegCLAAABERQHBgchIAciJyY3NhE0NzY3NjcBFzYXFhcWBwYHBiMFMzYXFhcWFxYVBQYXFjMhMjU0IwYjIiciBwEWNzY1NicmJyIHBhUGFxYXJSIHBjMWNzI3NCcmKwEiBwU2JyYnIgcGBxQXFhcWNzY3BSEyNTQjMCsCIgcUMxczFjU0JyYjISIHBhUWMzIzA7cTEx/+g/63KSUUFQEBEhIiGjUBqQENDxAICQQDDgUC/tcC5OscGxwSE/zUAQgIEAEpHR0xYmYzGQMCNT4rKwErKz46LSwBKyw8/ccXAgEYm5sXAQcHDJlmMwJ7ARQTGxsUFAESEhwaFRUB/YUBMhobTEyZGAEZt5UdBwgO/tUNCAgBHTFkAdb+TyAREgEBFRYiLwFzJBYWBAMFAQ4BCAMEDQ4PDwkDvAwaAgYFFRYcRQwGBxcYAQEW/ucBKyo+PSwrASssOj4rLAHUFhcBARUNBgYBRhwUFAESExocFBQCARMUGkIWFhUXWwEYDgQFBgUOFQAAAAAFACcAAQPiAmwAFAAdAC4AMwBEAAAlETQnJiMhIgcGFREUFxYzITI3NjUnIychByMRIREBMhcWFRQHBiMiJyY1NDc2MwUjNTMVNzIXFhUUBwYjIicmNTQ3NjMD4gwMEPyVEQsMDAsRA2sQDAxXUQr9qxFOAw/9lBwUExMUHBoUFBQTGwFY5+dwHBQTExQcGxMTExMbKQIaEQwMDAwR/eYRDAsLDBE6OTkBqf5XASQTExwbFBQUFBscExOFhYWFExMcGxQUFBQbHBMTAAADABj/3QQtAt0ACgAQABkAAAE1IwEhNTMBMzUXBQcnIzUhATUjJzcXMzUXA2Ol/of+0/IBeeDK/Y9KaPIBMAIb6HVKaKvKAaRi/jh2AchhnEdlcXb9YWGGZXVinQAAAAACAFT/wAOiAsAAEgAmAAATNTQ3NjMhFTcnFSEiBwYdARQXEyc3FSEyNzY9ATcWHQEUBwYjIRXfFRYdAX7l5f6AVj0+Bvzl5QGAHhUWfQY9Plb+hQFGPR4VFm2xsG4+PVaGGBf+9LGwbhUWHkJ3GRuGVj49agAAAAACAFD/gQQ0A0EAJQAxAAAFEQYHBgcGDwExBwYnIgcGJwcxByMmIyIHETIXFhcWFxYXFhcWFwEXBycHJzcnNxc3FwKKEAPSMgQJDAoLAQELCwQRFxwVZgoQoyAhFiZERREWKisVAThyR3NySHNzSHJzR38DwAsCrCwECAoICAEGBgIDAQEC/nIBAhEeOTgOEiMiEQHgc0dzc0dzc0dzc0cAAQBQ/4ECigNBACUAAAURBgcGBwYPATEHBiciBwYnBzEHIyYjIgcRMhcWFxYXFhcWFxYXAooQA9IyBAkMCgsBAQsLBBEXHBVmChCjICEWJkRFERYqKxV/A8ALAqwsBAgKCAgBBgYCAwEBAv5yAQIRHjk4DhIjIhEAAgBG/4EDfQNBACUAPwAABREGBwYHBg8BMQcGJyIHBicHMQcjJiMiBxEyFxYXFhcWFxYXFhcTFxYHBgcGFxYXFjc2NzY1JicmJyYHBgcGFwKAEAPSMgQJDAoLAQELCwQRFxwVZgoQoyAhFiZERREWKisVUQxLFgw2DwEBDw8VFRBiBFsRFBUREAEBEH8DwAsCrCwECAoICAEGBgIDAQEC/nIBAhEeOTgOEiMiEQKQD1xuPz8SFBQPDgEBEGZ/mGETAQIODhQUFAADAEb/gQRzA0EAJQA+AFgAAAURBgcGBwYPATEHBiciBwYnBzEHIyYjIgcRMhcWFxYXFhcWFxYXASYnJicmBwYXFhcWFxYHBgcGBwYXFjc2NyUXFgcGBwYXFhcWNzY3NjUmJyYnJgcGBwYXAoAQA9IyBAkMCgsBAQsLBBEXHBVmChCjICEWJkRFERYqKxUB8wiWFhgZETJCAwcIAnsjFFobBgYXJy6hAv5eDEsWDDYPAQEPDxUVEGIEWxEUFREQAQEQfwPACwKsLAQICggIAQYGAgMBAQL+cgECER45OA4SIyIRAdH8oBYDBA8oUwUJCAOXt2tmHyAfGiMpqdK/D1xuPz8SFBQPDgEBEGZ/mGETAQIODhQUFAAAAgBG/9MDpAMqACAAMQAABScGIyInJicmNTQ3Njc2MzIXFhcWFRQHFxYVFAcGIyInARQXFjMyNzY1NCcmIyIHBhUDQdBcc19QUC4vLy5QUF9fUFEvLj3NFRERGBcS/Zo6O1JTOjs7OlNSOzod0EQvL1BRXl9RUC8vLy9QUV9rWc0SGxgSERAB6VI7Ojo7UlM7Ojo7UwAAAAACAIv/hQNzA1wAIwA1AAABNTQnJicmBwYHFSIHBiMGBwYVERQzITI3NjURNCcmJyInJiMjISY1JzQzNDc2NzYXFhcWHQEDHVJSeHVTUwMFBgYDJw4PPAJvIA4PDg4gBQkJA4r+3AEBASkoPTssKwQBAYyzeFFSAgFRUne3AQEBDg8l/nw+Dw8fAYsgDg4BAQEPBVBQPSoqAQIpKDwafyIAAQCj/4UDWwNbACwAAAE1Njc2NzYXFhcWHQEhJwYjBgcGFREUMyEyNTYnNCcmJyInNSYnJicmBwYHFQF3AyUmNzgpKQIC/u+EDQYkDg05Akc4AgINDh0KDgJMTHBtTU4EAisxNyUlAgElJTkgsyABAgEODST+ljo5uLodDQ4BAupwSkoCAUlJbi8AAAADAFAARgPVAlEAAwATACUAAAEjAzMBNzY3NhcWFwcXBgcGJyInJScmJyYHBgcXBxYXFjc2PwExAo9fnWH+XLgIDBQYGAOoqAMXFhcLCQLNuAcNFBgXBKioBBcWFgwIuAJR/fUBCuwGAwUNDQvV1gsMDAQJ7OwGAwUNDQvV1gsMDAQBCOwAAAAABABw/4wFDwMzAAcADwATAB4AAAEzNzMXMwMjCQIzETMRMwE3FyMDITUjNzUhFTMHFQOAaBqKGWqXX/7K/sf+xsPuwgEvNTVqfgE8tLT+yq2zAcw/PwFn/bf+ogFeAkX9uwFwhYX9MlPKSFPKSAAAAAQAcP+OBQ8DNQAKABIAGgAeAAABITUjNzUhFTMHFQcJATMRMxEzEzM3MxczAyMHNxcjA54BPLS0/suss7v+x/7Gw+7CnWgaihlql18HNTVqAc9UyUlUyUnj/qIBXgJF/bv+rD8/AWbYhYUAAAMAOf+lA7wDKAAhADUAPAAAASMiBwYHBgcGFRQXFhcWFxYzMjc2NzY3NjU0JyYnJicmIxMjIicmJzQ3NjMyFxYXFhcUBwYjARUhETMRMwH6AlpSUj8/IiEkIz09U1RbWlJSPkAiIiQkPD1TU1sCAo9lZgFmY5JeT1AvLgFlZo4BDf6iafUDKCMiQEBRUltbU1M8PCMkIyJAP1JTWlxSUzw8IyT85GVlj45nZi4uT1BdkWVmAWNpAWn/AAAABACz/88DTQM8ACIAMwBEAFUAAAE0JyY1NDc2JyYHBicmBwYXEgcGFxY3NhcWNzYnJjU0NzY1ATIXFhUUBwYjIicmNTQ3NjMRMhcWFRQHBiMiJyY1NDc2Mxc0JyYjIgcGFRQXFjMyNzY1A00BAQICFRUy9fE0ExQBAgIBFBUy8/M0FBQCAgEB/rIxIyMiIzIxIyMjIzFLNTU1NUtKNDU1NEoyDw8UEw8ODg8TFA8PAYMmR0c6OjQyFxYCAwMCFxYz/jblMhgXAQcHARgXNDE5OEVFJgFcJCMxMiIiIiIyMSMk/rQ1NUtLNTY2NUtLNTW1FA8ODg8UFA4ODg4UAAAAAAMAF/+9BGIC8QASACIAQwAAEyEyFxEjJicmLwEhIicmJyYnESERBgcGBwYHIQYHIxE2MyEXAyIHBgcGBwYnJicmIREHESQXFjMyNzY3Njc2NzYzFxGCATw9Ix4JExMPDv77FQ4EAwIBA20EEAUJCQf/AEEKHyQ8ATxACQZ6e1ZWCwY3NxAX/mosAbgWEVYNEhIMDAIFc3JxcALxKv1uCQgJBAUIBAgHBgJ4/ZQXDAQDAgESEQKSKh79RwECBwgRDQICEhoCvhL9Gg4eEwMDAwMCCgUEAQLkAAMAIf+9A/oDUQAvAEAAUQAAAQcWFxYfAQYHBgcGBwYHBgcGBwYjIicHJzcmJyYvATY3Njc2NzY3Njc2NzYzMhc3ATcmIyIHBhUUFzc1NDc2OwEPARYzMjc2NTQnBxUUBwYrAQPhljEsKxMUBQcIGhscHS0tLi87PDxkX6pmlDAsKxQTBQcIGhscHS0tLi49PDxiYKr+mWs1O2NHRxhtICAsBQxrNjxjR0YaaiAgLAcC6JIrMzQfHwcMDSMkICAoJxwdExQypWqRKzMzHx4HDQwkJCAhJygcHRQTM6b+omgcRkdkOTFpASwgIddqHUdHYzwwaAQsHx8ABgA2//cFSgNCAEUAVgCDAJQApQC2AAABIRYXFhUUBwYjIicmJyMGBwYjIicmNTQ3NjMhNjc2NzY3Njc2NzY7ARY3Njc2NzY/ATMiBwYHBgcGBwYHBgcGKwEmBwYHATI3NjU0JyYjIgcGFRQXFjMFNTQnJisBNTQnJisBIgcGHQEjIgcGHQEUFxY7ARUUFxY7ATI3Nj0BMzI3NjUFMjc2NTQnJiMiBwYVFBcWMzMyNzY1NCcmIyIHBhUUFxYzBzI3NjU0JyYjIgcGFRQXFjMDAAEff1ZWVld+YEtLKIIoS0tgflZXV1d9ATESBQwIDyAaEAgSEg4NEhEIDAUJCgcHTwECAgMDAhcYGw8IEhINDhIRBBABDBYPDw8PFhUPDw8PFf2/CgsSTggICicKCAhbCggICAgKWwcICycLBwhOEgoLAdEWDw8PDxYVDw8PDxXhFQ8PDw8VFg8PDw8WcRYPDw8PFhUPDw8PFQJaClZWdYBcXDQ1Wlo1NFxcgHdaWgECBQoSNigHBAIDAggEEQUPDwwMBAMFBQMeKCkHBAICAggCE/7VDw8VFg4PDw4WFQ8PVScLBwhbCggICAgKWwgICicKCAhOEgsKCgsSTgcICxQPDxYVDw8PDxUWDw8PDxYVDw8PDxUWDw9iDxAVFQ8QEA8VFRAPAAAADQAw/9cD3AM6ADYASwBPAFQAWQBeAGIAZgBrAHAAdQB5AIQAACU1JicmJyYnJic2NRE0JyYnJiMhIgcGFREGFwYHBgcGBwYHBgcWMyEWNzY3NjsBNhcWFxYzNjMBITIXFhURFAcGIyEiJyY1ETQ3NjMTIzczFyM3MxUzIzUzFTczFyM1OwEXIwUjNzMXIzczFTMjNTMVNzMXIzU7ARcjBTUhFRQXFjMhMjcD3A0nCAYFCwsEGRQVJRkL/c5YGAcEGwQHBgYFAwwVFQsHCQEqFgQDCA4djzAJBQoLFDH7/ScCBxoKCgoKGv32GAoKCwsZMUQHQ21UBU9+W1seTQZTbUIGQv5tVglSQioGJPjU1BwkBipDUwhUART8VAsKGgNPJghDBSJdGA0KEhIGHD8BSCweHgoFRxYe/rY3HgYLDAgICB04NxsBAxUKDxwCKxEIBwICowoLG/7FGgoKCgoZAUAXCwr+BRUVFRUVFRUVFRU3ExMTExMTExMTE8EqGBoKChwAAAQALf/FBGoDSwAEAA0AHgA0AAABESERIQEzJRcTFxEhEQE0JyYjIgcGFRQXFjMyNzY1JRUGIxM2NzY3NTYzMjcWFwYFBAcCAwRq/KgDWPz3cwEWZXdY/UMBDhkZJSMaGhoaIyUZGf55UQkwbOzsewohIQoGApP+0f7RgCQZA0v9ZwKZ/bXleQEalgEO/gIBVCQZGRkZJCMZGhkZJBtZDv4fCxoaCyYCAWsMDiIiDAFyAR0AAAIAI//XA/4CkgAKAA4AAAEhAxE3MxYXFSEVFyEDIQMs/aOsQtEIBgHo0v0A2wMAAcX+nQHbVQMOM4ky/kQAAAAGADv/0wMaAyQADgATACMAMwBDAFYAABMhMhcWFxYXESEmJyYnEQUjFTM1FyE2NTQnJi8BIQYVFBcWFxchNjU0JyYvASEGFRQXFhcHITI1NCcmLwEhIhUUFxYzFSE2NTQnJichIgcGFRQVFhcWMzsCeRUUFQgJF/0xBwQEAQESrKw6AR8OBAMDBP7hDwQEAwQBHw4EAwME/uEPBAQD1QH4DgQDAwT+CA0CAQoB+A4EAwP+BAoBAgEDAwYDJAUGBAQL/M0GCwoIAy7Ju7s6Dg0HCAcFBA8QBgYHBIUODQYIBwUEEA4GBgcEdw0GCAcEBR4KAQKCDQ8GBAQBAgILCgQFBAUAAAYARv+oA6oDVgA8AEEATABXAFwAZwAAExUUFxYVFBcUFxYXFjMhNjc2JzQ3Nj0BMzY3NicmJyYrATUmPQEmJyYnISIHBh0BIyIHBgcGFxYXMhcWFyUVIzUzBSEUBwYVITQnJjUTMzQnJjUjFBcWFTsBESMROwE0NzY1IxQHBhWMCQkBCgkTFgcCIS4SEQEKCSMgAQYGAhQNC9IBAwsMHP78JQwNwBgJCQECAwEYBQ8OCgHW6en+ogHqCAj+NwgJVkQICUYJCn1ERHpGCQlGCQkCUhFkxcVeFQ0SCgkEAgESEi1iwsNiEgIbGSAXBQISDBckHQsLAQ0NJU4JCRgPHhkDAQECvUVFvV68vF1cvLxf/hNDhYVCQoWFQwGP/nFDhYVCQoWFQwAABQBE/8kD0gK5AAQACQAOABMAGAAAFyERIRETIRUhNSEzFSM1OwEVIzUFIREhEUQDjvxySQHY/igCC2VllGVl/WAC//0BNwLw/RACqG5ucHBwcNr+gQF/AAIANv+lA+kDWQAUABkAAAE0JyYjIgcGBwYVFBcWFxYzMjc2NQchNSEVA+mLisSBbW1APz9AbW2BxIqLkP1tApMBf8SLiz9AbW2BgW1tP0CLi8RLlpYAAAACAB//kwPSA0cAEgAfAAABNCcmIyIHBgcGFRQXFjMyNzY1ByMVIzUjNTM1MxUzFQPSi4vEgG1tP0CKi8TEi4vB0JHQ0JHQAW3Ei4tAP25tgMSLi4uLxErPz5TPz5QAAAABAEb/gQQXA1EACwAACQEHCQEnCQE3CQEXAj0B2hD+J/4nDwHa/iYPAdkB2RABaP4nDgHa/iYOAdkB2w7+JwHZDgAAAAEANv+5A9ADNwAXAAABETQnJiMhIgcGFREUFxY7ARMBITI3NjUD0BUVHfzzHBUVFRUcYgMBKwF9HRUVARUB2h4VFRUVHv4mHRUV/usBFRUVHQAAAAIAFwAcA/gC6wAeADIAAD8BJicmNTQ3Njc2MzIXFhcmIyIHBgcGFRQXFhcjIicFJwYjIicmNTQ3NjMyFxYVFAcGB3gfPSEiOjliY3SCamoySE1gU1IvMB8eNwNkWwKbWjI3dVRTU1R1dVRTGhsxJJcuPDxEWEtMKyw2NlkaJSY/QEw7NjUnI2Q3Dz4+V1k+Pj4+WS8qKh8AAQBL/6MCmgNNAAUAAAEnAQMzAQEKvwITi8f92wE3AgIU/mr97AAAAA0AJf+RA+wDXgAZACEALQAzADoARgBSAF4AagB0AH4AjACaAAABIyIHBgcGFRQXFhcWMzI3Njc2NTQnJicmIwMnNzY3NjcRMxEWFxYXFhciBwYHJSc2NwYHISYnFhcGBwUXJicmJyY3FhcGFQU2NSc2NxYHBgcGByUVJicmJyYnJjcWFxc1NjcWBwYHBgcGBwcXFhcWFyYnFhcFNjc2NzYzNwYHJxUGJyYnJicmJxYXFhcXNTY3NjcGBwYHBgcGJwIMCIJub0BAQEBwb4WEb29BQEBBbm+CH5gLHzkWHzceFToeAwkSNDUc/v5/R4s5GgHNGjqKRzBN/igEUiUfBQcXRkUEAd4FBTdVGAkDISRT/viaAgECAgEBAjNuN2g4AwEBAgIDAZn9CQcQERSTP4wBAXwVEREHBwGMPZW2Hx4VEREJCA0TMzMZNhozMxINCQgRERUcIQNeQUFvcIOGcHFBQUFBcXCGg3BvQUH+jAkxdkYYCv7oARgKGEV3CCkEAwIOJJUzVJiWVjOVDhaWZg8WESJUPxIRShhmNTFiDRZDUCESFg+61A4BARwdLi44AwbU1AYDOC4uHRwBAQ4mHBwqKh89mSkCqx4rKhwcK5k9nb8BHBYgHxgZKQIEAwK/vwIEBAErFxcgIBYcAQAAAAAFAAD/gAQAA4AAFAAhAC4AMwA8AAAFMj4CNTQuAiMiDgIVFB4CMwEzFSMVMxUjFTMVIzU7ARc3MwcXIycHIzcnOwEVIzU7ARUjFSM1IzUCAGq7i1BQi7tqaruLUFCLu2r+zYxqYmJsjrUoLC8mQUUpMTEnRUDbIiJTnj4iPoBQi7tqaruLUFCLu2pqu4tQAmYdMxw5HsNERF5lS0tlXsPDHaamHQAAAAABAAAAAQAAB529g18PPPUACwQAAAAAANFc4fIAAAAA0Vzh8v/+/20GaAOAAAAACAACAAAAAAAAAAEAAAOA/4AAAAbb//7/+QZoAAEAAAAAAAAAAAAAAAAAAAB2AAAAAAAAAAAAAAAAAAAAAAQAACcEAAAnBAAANAQAAFsEAABbBAAAWwQAAEMEAADOBAAA9QQAACAEAAAlBAQAygP0ABMEAAAMBAAATwQAAE8EAABTBJQAKwbbAGcEAgBTBAAAMwQAADkBJgAjBHAAEARwACUEAADiBAAAJAFL//4DkgAEAwAAGQQAAFkCAAAnA0AAOQIAABcEAAAhBAAAJwOAABcDgAAMBAAAJgQAADUEAAA0BAAAOAQAACgEAAA1BAAAVQQAAEcEAABIBAAASwQAAE0ECQDuBAAAEwMAAD0EAABbBAAAKALAAAQEAABUBAAA6AQAABoEAAA6BAAAYwQAAFsEAAARBAAAlAQAADMEAABbBAAAXQQAAFsEAAADBAAAUwQAACYEAAAjBAAAJwLAAEEEAABUBAAAHQQAAEkD1AAjBAAAWwQAAIYEAAATBAAAbQQAADYEAAAnBEwAGAQAAFQEsABQA+cAUARMAEYEsABGBAAARgQAAIsEAACjBAAAUAV4AHAFeABwBAAAOQQJALMEjgAXBAAAIQV4ADYEAAAwBKAALQQAACMDQAA7BAAARgQAAEQD8AA2A/AAHwRMAEYEAAA2BAAAFwLAAEsEAAAlBAAAAAAAAAAACgAUAB4AcADCAUoBkAHYAoAC/gMkA0oEDgQ4BE4E1AUwBfgGTAaeBsAHMgfcCIgJLgk8CVIJaAl+Cf4KHApGClQKYgpwCn4KjAqmCtQLVAuKC/YMggzIDdAOCg5IDoYPDg86D4gP7BAuEMIQ/hGuEhITchU0FY4WCBZmF8YYNBi4GPAZYBp6G8ocaB2SHdYehB6kH9wf/iDkIRQhSCGMIfoixiOEJAAkziU0JWQloCXwJiwmkCccJ2gnuCf+KEIoeiiwKQ4pjin6KnYrciw0LI4sri0wLcQt8C4cLkwubi6YLuQu+C/wMEQAAAABAAAAdgFPABkAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAADgCuAAEAAAAAAAEAJAAAAAEAAAAAAAIADgCUAAEAAAAAAAMAJAA6AAEAAAAAAAQAJACiAAEAAAAAAAUAFgAkAAEAAAAAAAYAEgBeAAEAAAAAAAoANADGAAMAAQQJAAEAJAAAAAMAAQQJAAIADgCUAAMAAQQJAAMAJAA6AAMAAQQJAAQAJACiAAMAAQQJAAUAFgAkAAMAAQQJAAYAJABwAAMAAQQJAAoANADGAEkAYwBvAG4AbwBjAGgAaQB2AGUALQBSAGUAZwB1AGwAYQByAFYAZQByAHMAaQBvAG4AIAAxAC4AMABJAGMAbwBuAG8AYwBoAGkAdgBlAC0AUgBlAGcAdQBsAGEAckljb25vY2hpdmUtUmVndWxhcgBJAGMAbwBuAG8AYwBoAGkAdgBlAC0AUgBlAGcAdQBsAGEAcgBSAGUAZwB1AGwAYQByAEkAYwBvAG4AbwBjAGgAaQB2AGUALQBSAGUAZwB1AGwAYQByAEYAbwBuAHQAIABnAGUAbgBlAHIAYQB0AGUAZAAgAGIAeQAgAEkAYwBvAE0AbwBvAG4ALgADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)format("woff");font-weight:normal;font-style:normal}[class^="iconochive-"]{font-family:"Iconochive-Regular"!important;font-style:normal;font-weight:normal;font-variant:normal;text-transform:none;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.iconochive-movies:before{content:"🎞"}.iconochive-web:before{content:"🗔"}.iconochive-question:before{content:"⍰"}.iconochive-person:before{content:"👤"}.iconochive-down-solid:before{content:"▾"}.iconochive-remove-circle:before{content:"❎"}.iconochive-twitter:before{content:"🐦"}.iconochive-facebook:before{content:"f"}</style>
|
||
<meta name=viewport content="width=device-width, initial-scale=1">
|
||
<style>*,*:before,*:after{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}</style>
|
||
<meta name=Keywords lang=en-US content="vector addition, neutrinos don't exist,
|
||
neutrinos do not exist, neutrino, vector, scalar, nucleus, Pauli, error, nuclear spin, blunder ">
|
||
<meta name=Description lang=en-US content="
|
||
Neutrinos Do Not Exist. Wolfgang Pauli seems to have made an enormous logical blunder in 1930 when he speculated that neutrinos had to exist.">
|
||
<title>Neutrinos Do Not Exist</title>
|
||
<meta name=referrer content=no-referrer><style>.sf-hidden{display:none!important}</style><link rel=canonical href=https://web.archive.org/web/20220818041911/mb-soft.com/public4/neutrino.html><meta http-equiv=content-security-policy content="default-src 'none'; font-src 'self' data:; img-src 'self' data:; style-src 'unsafe-inline'; media-src 'self' data:; script-src 'unsafe-inline' data:; object-src 'self' data:; frame-src 'self' data:;"><style>img[src="data:,"],source[src="data:,"]{display:none!important}</style></head>
|
||
<body lang=en-US bgcolor=#ffffff text=#000000 link=#0000ff background=data:,>
|
||
<div id=wm-ipp-base lang=en style=display:block;direction:ltr;height:286px><template shadowrootmode=closed><div id=wm-ipp style=position:fixed;left:0;top:0;right:0>
|
||
<div id=donato style=position:relative;width:100%;height:217.667px>
|
||
<div id=donato-base style=height:217.667px>
|
||
|
||
</div>
|
||
</div><div id=wm-ipp-inside>
|
||
<div id=wm-toolbar style="position:relative;display:flex;flex-flow:row nowrap;justify-content:space-between">
|
||
<div id=wm-logo style=padding-top:12px>
|
||
<a href=https://web.archive.org/web/ title="Wayback Machine home page"><img src="" srcset alt="Wayback Machine" style=width:100px border=0 sizes></a>
|
||
</div>
|
||
<div class=c style="display:flex;flex-flow:column nowrap;justify-content:space-between;flex:1">
|
||
<form class=u style=display:flex;flex-direction:row;flex-wrap:nowrap target=_top action=/web/submit name=wmtb id=wmtb><input type=text name=url id=wmtbURL value=http://mb-soft.com/public4/neutrino.html style=flex:1 autocomplete=off><input type=submit value=Go>
|
||
</form>
|
||
<div style="display:flex;flex-flow:row nowrap;align-items:flex-end">
|
||
<div class=s id=wm-nav-captures style=flex:1><a class=t href=https://web.archive.org/web/*/http://mb-soft.com/public4/neutrino.html title="See a list of every capture for this URL">57 captures</a><div class=r title="Timespan for captures of this URL">25 Jun 2014 - 24 Jan 2024</div></div>
|
||
<div class=k>
|
||
<a href=https://web.archive.org/web/20170701000000/http://mb-soft.com/public4/neutrino.html id=wm-graph-anchor>
|
||
<div id=wm-ipp-sparkline title="Explore captures for this URL" style=position:relative>
|
||
<canvas id=wm-sparkline-canvas width=725 height=27 border=0 style="background-blend-mode:normal!important;background-clip:content-box!important;background-position:center center!important;background-color:rgba(0,0,0,0)!important;background-image:url()!important;background-size:100% 100%!important;background-origin:content-box!important;background-repeat:no-repeat!important"></canvas>
|
||
<div class=yt style=display:none;width:25px;height:27px;left:525px></div><div class=mt style=display:none;width:2px;height:27px;left:538px></div></div>
|
||
</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class=n>
|
||
<table>
|
||
<tbody>
|
||
|
||
<tr class=m>
|
||
<td class=b nowrap><a href=https://web.archive.org/web/20211207022750/https://mb-soft.com/public4/neutrino.html title="07 Dec 2021"><strong>Dec</strong></a></td>
|
||
<td class=c id=displayMonthEl title="You are here: 04:19:11 Aug 18, 2022">Aug</td>
|
||
<td class=f nowrap><a href=https://web.archive.org/web/20240124193834/http://mb-soft.com/public4/neutrino.html title="24 Jan 2024"><strong>Jan</strong></a></td>
|
||
</tr>
|
||
|
||
<tr class=d>
|
||
<td class=b nowrap><a href=https://web.archive.org/web/20211207022750/https://mb-soft.com/public4/neutrino.html title="02:27:50 Dec 07, 2021"><img src="" alt="Previous capture" width=14 height=16 border=0></a></td>
|
||
<td class=c id=displayDayEl style=width:34px;font-size:22px;white-space:nowrap title="You are here: 04:19:11 Aug 18, 2022">18</td>
|
||
<td class=f nowrap><a href=https://web.archive.org/web/20240124193834/http://mb-soft.com/public4/neutrino.html title="19:38:34 Jan 24, 2024"><img src= alt="Next capture" width=14 height=16 border=0></a></td>
|
||
</tr>
|
||
|
||
<tr class=y>
|
||
<td class=b nowrap><a href=https://web.archive.org/web/20210802095122/http://mb-soft.com/public4/neutrino.html title="02 Aug 2021"><strong>2021</strong></a></td>
|
||
<td class=c id=displayYearEl title="You are here: 04:19:11 Aug 18, 2022">2022</td>
|
||
<td class=f nowrap><a href=https://web.archive.org/web/20240124193834/http://mb-soft.com/public4/neutrino.html title="24 Jan 2024"><strong>2024</strong></a></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
<div class=r style="display:flex;flex-flow:column nowrap;align-items:flex-end;justify-content:space-between">
|
||
<div id=wm-btns style=text-align:right;height:23px>
|
||
<span class=xxs>
|
||
<div id=wm-save-snapshot-success class=sf-hidden>success</div>
|
||
<div id=wm-save-snapshot-fail class=sf-hidden>fail</div>
|
||
<a id=wm-save-snapshot-open href=# title="Share via My Web Archive" style=display:none>
|
||
|
||
</a>
|
||
<a href=https://archive.org/account/login.php title="Sign In" id=wm-sign-in style=display:inline-block>
|
||
<span class=iconochive-person></span>
|
||
</a>
|
||
<span id=wm-save-snapshot-in-progress class=iconochive-web style=display:none></span>
|
||
</span>
|
||
<a class=xxs href=http://faq.web.archive.org/ title="Get some help using the Wayback Machine" style=top:-6px><span class=iconochive-question style=color:rgb(87,186,244);font-size:160%></span></a>
|
||
<a id=wm-tb-close href=#close style=top:-2px title="Close the toolbar"><span class=iconochive-remove-circle style=color:#888888;font-size:240%></span></a>
|
||
</div>
|
||
<div id=wm-share class=xxs>
|
||
<a href=https://web.archive.org/web/20220818041911/http://web.archive.org/screenshot/http://mb-soft.com/public4/neutrino.html id=wm-screenshot title=screenshot style=visibility:hidden>
|
||
<span class=wm-icon-screen-shot></span>
|
||
</a>
|
||
<a href=# id=wm-video title=video>
|
||
<span class=iconochive-movies></span>
|
||
</a>
|
||
<a id=wm-share-facebook href=# data-url=https://web.archive.org/web/20220818041911/https://mb-soft.com/public4/neutrino.html title="Share on Facebook" style=margin-right:5px target=_blank><span class=iconochive-facebook style=color:#3b5998;font-size:160%></span></a>
|
||
<a id=wm-share-twitter href=# data-url=https://web.archive.org/web/20220818041911/https://mb-soft.com/public4/neutrino.html title="Share on Twitter" style=margin-right:5px target=_blank><span class=iconochive-twitter style=color:#1dcaff;font-size:160%></span></a>
|
||
</div>
|
||
<div style=padding-right:2px;text-align:right;white-space:nowrap>
|
||
<a id=wm-expand class="wm-btn wm-closed" href=#expand><span id=wm-expand-icon class=iconochive-down-solid></span> <span class=xxs style=font-size:80%>About this capture</span></a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div id=wm-capinfo style="border-top:1px solid #777;display:none;overflow:hidden">
|
||
|
||
|
||
|
||
</div></div></div><style>.__wb_overlay{filter:alpha(opacity=60);opacity:0.6;-moz-opacity:0.6;opacity:0.6;background-color:#000;position:fixed;width:100%;height:100%;top:0px;left:0px;padding:0px!important;border:0px!important;margin:0px!important;border-radius:0px!important;z-index:2147483643!important}#__wb_record_overlay_div{cursor:wait!important}.__wb_record_content{opacity:1.0;position:fixed;top:50%;left:50%;margin:0px!important;padding:0px!important;background-color:#ffffff!important;border-radius:8px;z-index:2147483644!important;box-shadow:0 0 30px 5px #000;-moz-box-shadow:0 0 30px 5px #000;-webkit-box-shadow:0 0 30px 5px #000}#__wb_record_content_loader{cursor:wait!important;padding-top:30px!important;margin-left:-287px!important;margin-top:-177px!important;width:574px!important;height:355px!important}#__wb_record_content_done{margin-left:-427px!important;margin-top:-177px!important;width:855px!important;height:355px!important}.__wb_record_content>*{margin:auto!important;display:block!important;text-align:center!important;font-family:"Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif!important}.__wb_record_content>wb_h1{font-size:36px!important;color:#222!important;margin:0px 0px 0px 0px!important;padding:0px!important;line-height:2em;font-weight:normal!important;width:auto!important;height:auto!important}.__wb_record_content>wb_p{font-size:17px!important;color:#222!important;margin:8px 0px 8px 0px!important;padding:0px!important;line-height:2em}.__wb_record_content>#_wb_logo{margin-bottom:10px!important}.__wb_record_content>#_wb_spinner{margin-top:30px!important;margin-bottom:30px!important}.__wb_record_content>#_wb_curr_url{text-decoration:underline!important;font-weight:bold!important}#__wb_record_content_done>#__wb_link{font-size:20px!important;border:1px!important;border-color:#aaa!important;border-style:solid!important;padding:3px!important;text-align:center!important;width:80%!important;height:auto!important}#__wb_record_content_done>#__wb_link:focus{outline:0px!important;border-color:#428bca!important}#__wb_record_content_done>#__wb_donate_close{font-size:18px!important;width:auto!important;float:right;display:inline-block;margin:0px!important;padding:8px 8px 0px 0px!important}#__wb_donate_close>#__wb_record_done_close{cursor:pointer!important;display:inline-block;vertical-align:bottom!important}#__wb_record_content_done>#__wb_donate_close a{color:#428bca!important}#__wb_record_content_done>#__wb_donate_close a:link{color:#428bca!important;text-decoration:none!important;margin-right:16px!important}#__wb_record_content_done>#__wb_donate_close a:visited{color:#428bca!important}#__wb_record_content_done>#__wb_donate_close a:hover{color:#00B1F7!important}#__wb_spinningSquaresG{position:relative;width:240px;height:20px;padding:0px!important;margin:30px 0px 30px 160px!important;border:0px!important;border-radius:0px!important}.__wb_spinningSquaresG{margin:0px!important;padding:0px!important;border:0px!important;border-radius:0px!important;position:absolute;top:0;background-color:#000000;width:22px;height:22px;-moz-animation-name:bounce_spinningSquaresG;-moz-animation-duration:1.9s;-moz-animation-iteration-count:infinite;-moz-animation-direction:linear;-moz-transform:scale(.3);-webkit-animation-name:bounce_spinningSquaresG;-webkit-animation-duration:1.9s;-webkit-animation-iteration-count:infinite;-webkit-animation-direction:linear;-webkit-transform:scale(.3);-ms-animation-name:bounce_spinningSquaresG;-ms-animation-duration:1.9s;-ms-animation-iteration-count:infinite;-ms-animation-direction:linear;-ms-transform:scale(.3);-o-animation-name:bounce_spinningSquaresG;-o-animation-duration:1.9s;-o-animation-iteration-count:infinite;-o-animation-direction:linear;-o-transform:scale(.3);animation-name:bounce_spinningSquaresG;animation-duration:1.9s;animation-iteration-count:infinite;animation-direction:linear;transform:scale(.3)}#__wb_spinningSquaresG_1{left:0;-moz-animation-delay:0.76s;-webkit-animation-delay:0.76s;-ms-animation-delay:0.76s;-o-animation-delay:0.76s;animation-delay:0.76s}#__wb_spinningSquaresG_2{left:30px;-moz-animation-delay:0.95s;-webkit-animation-delay:0.95s;-ms-animation-delay:0.95s;-o-animation-delay:0.95s;animation-delay:0.95s}#__wb_spinningSquaresG_3{left:60px;-moz-animation-delay:1.14s;-webkit-animation-delay:1.14s;-ms-animation-delay:1.14s;-o-animation-delay:1.14s;animation-delay:1.14s}#__wb_spinningSquaresG_4{left:90px;-moz-animation-delay:1.33s;-webkit-animation-delay:1.33s;-ms-animation-delay:1.33s;-o-animation-delay:1.33s;animation-delay:1.33s}#__wb_spinningSquaresG_5{left:120px;-moz-animation-delay:1.52s;-webkit-animation-delay:1.52s;-ms-animation-delay:1.52s;-o-animation-delay:1.52s;animation-delay:1.52s}#__wb_spinningSquaresG_6{left:150px;-moz-animation-delay:1.71s;-webkit-animation-delay:1.71s;-ms-animation-delay:1.71s;-o-animation-delay:1.71s;animation-delay:1.71s}#__wb_spinningSquaresG_7{left:180px;-moz-animation-delay:1.9s;-webkit-animation-delay:1.9s;-ms-animation-delay:1.9s;-o-animation-delay:1.9s;animation-delay:1.9s}#__wb_spinningSquaresG_8{left:210px;-moz-animation-delay:2.09s;-webkit-animation-delay:2.09s;-ms-animation-delay:2.09s;-o-animation-delay:2.09s;animation-delay:2.09s}@-moz-keyframes bounce_spinningSquaresG{0%{-moz-transform:scale(1);background-color:#000000}100%{-moz-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-webkit-keyframes bounce_spinningSquaresG{0%{-webkit-transform:scale(1);background-color:#000000}100%{-webkit-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-ms-keyframes bounce_spinningSquaresG{0%{-ms-transform:scale(1);background-color:#000000}100%{-ms-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@-o-keyframes bounce_spinningSquaresG{0%{-o-transform:scale(1);background-color:#000000}100%{-o-transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}@keyframes bounce_spinningSquaresG{0%{transform:scale(1);background-color:#000000}100%{transform:scale(.3) rotate(90deg);background-color:#FFFFFF}}#wm-ipp-base{height:65px;padding:0;margin:0;border:none;background:none transparent}#wm-ipp{z-index:2147483647}#wm-ipp,#wm-ipp *{font-family:Lucida Grande,Helvetica,Arial,sans-serif;font-size:12px;line-height:1.2;letter-spacing:0;width:auto;height:auto;max-width:none;max-height:none;min-width:0!important;min-height:0;outline:none;float:none;text-align:left;border:none;color:#000;text-indent:0;position:initial;background:none}#wm-ipp div,#wm-ipp canvas{display:block}#wm-ipp div,#wm-ipp tr,#wm-ipp td,#wm-ipp a,#wm-ipp form{padding:0;margin:0;border:none;border-radius:0;background-color:transparent;background-image:none;height:auto}#wm-ipp table{border:none;border-collapse:collapse;margin:0;padding:0;width:auto;font-size:inherit}#wm-ipp form input{padding:1px!important;height:auto;display:inline;margin:0;color:#000;background:none #fff;border:1px solid #666}#wm-ipp form input[type=submit]{padding:0 8px!important;margin:1px 0 1px 5px!important;width:auto!important;border:1px solid #000!important;background:#fff!important;color:#000!important}#wm-ipp form input[type=submit]:hover{background:#eee!important;cursor:pointer!important}#wm-ipp form input[type=submit]:active{transform:translateY(1px)}#wm-ipp a{display:inline}#wm-ipp a:hover{text-decoration:underline}#wm-ipp a.wm-btn:hover{text-decoration:none;color:#ff0!important}#wm-ipp a.wm-btn:hover span{color:#ff0!important}#wm-ipp #wm-ipp-inside{margin:0 6px;border:5px solid #000;border-top:none;background-color:rgba(255,255,255,0.9);-moz-box-shadow:1px 1px 4px #333;-webkit-box-shadow:1px 1px 4px #333;box-shadow:1px 1px 4px #333;border-radius:0 0 8px 8px}#wm-ipp #wm-logo{padding:0 10px;vertical-align:middle;min-width:100px;flex:0 0 100px}#wm-ipp .c{padding-left:4px}#wm-ipp .c .u{margin-top:4px!important}#wm-ipp .n{padding:0 0 0 5px!important;vertical-align:bottom}#wm-ipp .n a{text-decoration:none;color:#33f;font-weight:bold}#wm-ipp .n .b{padding:0 6px 0 0!important;text-align:right!important;overflow:visible;white-space:nowrap;color:#99a;vertical-align:middle}#wm-ipp .n .y .b{padding:0 6px 2px 0!important}#wm-ipp .n .c{background:#000;color:#ff0;font-weight:bold;padding:0!important;text-align:center}#wm-ipp.hi .n td.c{color:#ec008c}#wm-ipp .n td.f{padding:0 0 0 6px!important;text-align:left!important;overflow:visible;white-space:nowrap;color:#99a;vertical-align:middle}#wm-ipp .n tr.m td{text-transform:uppercase;white-space:nowrap;padding:2px 0}#wm-ipp .c .s{padding:0 5px 0 0!important;vertical-align:bottom}#wm-ipp #wm-nav-captures{white-space:nowrap}#wm-ipp .c .s a.t{color:#33f;font-weight:bold;line-height:1.8}#wm-ipp .c .s div.r{color:#666;font-size:9px;white-space:nowrap}#wm-ipp .c .k{padding-bottom:1px}#wm-ipp .c .s{padding:0 5px 2px 0!important}#wm-ipp td#displayMonthEl{padding:2px 0!important}#wm-ipp td#displayYearEl{padding:0 0 2px 0!important}div#wm-ipp-sparkline{position:relative;white-space:nowrap;background-color:#fff;cursor:pointer;line-height:0.9}#sparklineImgId,#wm-sparkline-canvas{position:relative;z-index:9012;max-width:none}#wm-ipp-sparkline div.yt{position:absolute;z-index:9010!important;background-color:#ff0!important;top:0}#wm-ipp-sparkline div.mt{position:absolute;z-index:9013!important;background-color:#ec008c!important;top:0}#wm-ipp .r{margin-left:4px}#wm-ipp .r a{color:#33f;border:none;position:relative;background-color:transparent;background-repeat:no-repeat!important;background-position:100% 100%!important;text-decoration:none}#wm-ipp #wm-capinfo{border-radius:0 0 4px 4px}#wm-ipp #wm-capinfo .c-logo{display:block;float:left;margin-right:3px;width:90px;min-height:90px;max-height:290px;border-radius:45px;overflow:hidden;background-position:50%;background-size:auto 90px;box-shadow:0 0 2px 2px rgba(208,208,208,128) inset}#wm-ipp #wm-capinfo .c-logo span{display:inline-block}#wm-ipp #wm-capinfo .c-logo img{height:90px;position:relative;left:-50%}#wm-ipp #wm-capinfo .wm-title{font-size:130%}#wm-ipp #wm-capinfo a.wm-selector{display:inline-block;color:#aaa;text-decoration:none!important;padding:2px 8px}#wm-ipp #wm-capinfo a.wm-selector.selected{background-color:#666}#wm-ipp #wm-capinfo a.wm-selector:hover{color:#fff}#wm-ipp #wm-capinfo.notice-only #wm-capinfo-collected-by,#wm-ipp #wm-capinfo.notice-only #wm-capinfo-timestamps{display:none}#wm-ipp #wm-capinfo #wm-capinfo-notice .wm-capinfo-content{background-color:#ff0;padding:5px;font-size:14px;text-align:center}#wm-ipp #wm-capinfo #wm-capinfo-notice .wm-capinfo-content *{font-size:14px;text-align:center}#wm-ipp #wm-expand{right:1px;bottom:-1px;color:#ffffff;background-color:#666!important;padding:0 5px 0 3px!important;border-radius:3px 3px 0 0!important}#wm-ipp #wm-expand span{color:#ffffff}#wm-ipp #wm-expand #wm-expand-icon{display:inline-block;transition:transform 0.5s;transform-origin:50% 45%}#wm-ipp #wm-expand.wm-open #wm-expand-icon{transform:rotate(180deg)}#wm-ipp #wmtb{text-align:right}#wm-ipp #wmtb #wmtbURL{width:calc(100% - 45px)}#wm-ipp #wm-graph-anchor{border-right:1px solid #ccc}html.wb-highlight{box-shadow:inset 0 0 0 3px #a50e3a!important}.wb-highlight{outline:3px solid #a50e3a!important}#wm-ipp-print{display:none!important}@media (max-width:414px){#wm-ipp .xxs{display:none!important}}@media (min-width:1055px){#wm-ipp #wm-graph-anchor{display:block!important}}@media (max-width:1054px){#wm-ipp #wm-graph-anchor{display:none!important}}@media (max-width:1163px){#wm-logo{display:none!important}}#wm-btns{white-space:nowrap;margin-top:-2px}#wm-btns #wm-save-snapshot-open{margin-right:7px;top:-6px}#wm-btns #wm-sign-in{box-sizing:content-box;display:none;margin-right:7px;top:-8px;border:2px #000 solid;border-radius:14px;padding-right:2px;padding-bottom:2px;width:11px;height:11px}#wm-btns #wm-sign-in>.iconochive-person{font-size:12.5px}#wm-save-snapshot-open>.iconochive-web{color:#000;font-size:160%}#wm-ipp #wm-share{display:flex;align-items:flex-end;justify-content:space-between}#wm-share>#wm-screenshot{display:inline-block;margin-right:3px;visibility:hidden}#wm-screenshot>.iconochive-image{color:#000;font-size:160%}#wm-share>#wm-video{display:inline-block;margin-right:3px;visibility:hidden}#wm-video>.iconochive-movies{color:#000;display:inline-block;font-size:150%;margin-bottom:2px}#wm-btns #wm-save-snapshot-in-progress{display:none;font-size:160%;opacity:0.5;position:relative;margin-right:7px;top:-5px}#wm-btns #wm-save-snapshot-success{display:none;color:green;position:relative;top:-7px}#wm-btns #wm-save-snapshot-fail{display:none;color:red;position:relative;top:-7px}.wm-icon-screen-shot{background:var(--sf-img-0) no-repeat!important;background-size:contain!important;width:22px!important;height:19px!important;display:inline-block}#donato{height:0;margin:0;padding:0;border-bottom:1px solid #999!important}body.wm-modal{height:auto!important;overflow:hidden!important}#donato #donato-base{width:100%;height:100%;margin:0;padding:0;position:absolute;z-index:2147483639}body.wm-modal #donato #donato-base{position:fixed;top:0;left:0;right:0;bottom:0;z-index:2147483640}.wb-autocomplete-suggestions{font-family:Lucida Grande,Helvetica,Arial,sans-serif;font-size:12px;text-align:left;cursor:default;border:1px solid #ccc;border-top:0;background:#fff;box-shadow:-1px 1px 3px rgba(0,0,0,.1);position:absolute;display:none;z-index:2147483647;max-height:254px;overflow:hidden;overflow-y:auto;box-sizing:border-box}.wb-autocomplete-suggestion{position:relative;padding:0 .6em;line-height:23px;white-space:nowrap;overflow:hidden;text-overflow:ellipsis;font-size:1.02em;color:#333}.wb-autocomplete-suggestion b{font-weight:bold}.wb-autocomplete-suggestion.selected{background:#f0f0f0}</style><style>@font-face{font-family:"Iconochive-Regular";src:url(data:font/woff;base64,d09GRgABAAAAAG04AAsAAAAAbOwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABCAAAAGAAAABg9NIOqWNtYXAAAAFoAAAGNAAABjR/M37KZ2FzcAAAB5wAAAAIAAAACAAAABBnbHlmAAAHpAAAYIgAAGCIeuX2S2hlYWQAAGgsAAAANgAAADYIPwfOaGhlYQAAaGQAAAAkAAAAJAnpBstobXR4AABoiAAAAdgAAAHYwZQeMGxvY2EAAGpgAAAA7gAAAO5GJywIbWF4cAAAa1AAAAAgAAAAIACQAVFuYW1lAABrcAAAAagAAAGoEeivMHBvc3QAAG0YAAAAIAAAACAAAwAAAAMEAAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAoQAA5OACAAAAAAAAAAAAAAAAQAAA//8DgP+AAIADgACAAAAAAQAAAAAAAAAAAAAAIAAAAAAABAAAAAMAAAAkAAAABAAAAbwAAwABAAAAJAADAAoAAAG8AAQBmAAAAGIAQAAFACIAAQAgACsALQA/AFQAZwBpAsMDsiG1IdUh9iIIIhEiHiKVIp4i1CMYI3Aj5CPqI/gk2CWmJa8ltCW2JbglviXCJgYmYSZlJmsmkSaZJqAm9icOJxAnFCc9J04nXSfz//3//wAAAAAAIAArAC0APwBUAGYAaQLCA7IhtSHVIfYiCCIRIh4ilSKeItQjFyNwI+Qj6SP4JNglpiWvJbQltiW4Jb4lwiYFJmEmZSZrJpAmmSagJvYnDicQJxMnPSdOJ10n8//9//8AAf/j/9n/2P/H/7P/ov+h/Un8W95Z3jreGt4J3gHd9d1/3XfdQt0A3KncNtwy3CXbRtp52nHabdps2mvaZtpj2iHZx9nE2b/Zm9mU2Y7ZOdki2SHZH9j32OfY2dhEAAMAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAABHgAAAAAAAAAXgAAAAAAAAABAAAAAQAAACAAAAAgAAAAAwAAACsAAAArAAAABAAAAC0AAAAtAAAABQAAAD8AAAA/AAAABgAAAFQAAABUAAAABwAAAGYAAABnAAAACAAAAGkAAABpAAAACgAAAsIAAALDAAAACwAAA7IAAAOyAAAADQAAIbUAACG1AAAADgAAIdUAACHVAAAADwAAIfYAACH2AAAAEAAAIggAACIIAAAAEQAAIhEAACIRAAAAEgAAIh4AACIeAAAAEwAAIpUAACKVAAAAFAAAIp4AACKeAAAAFQAAItQAACLUAAAAFgAAIxcAACMYAAAAFwAAI3AAACNwAAAAGQAAI+QAACPkAAAAGgAAI+kAACPqAAAAGwAAI/gAACP4AAAAHQAAJNgAACTYAAAAHgAAJaYAACWmAAAAHwAAJa8AACWvAAAAIAAAJbQAACW0AAAAIQAAJbYAACW2AAAAIgAAJbgAACW4AAAAIwAAJb4AACW+AAAAJAAAJcIAACXCAAAAJQAAJgUAACYGAAAAJgAAJmEAACZhAAAAKAAAJmUAACZlAAAAKQAAJmsAACZrAAAAKgAAJpAAACaRAAAAKwAAJpkAACaZAAAALQAAJqAAACagAAAALgAAJvYAACb2AAAALwAAJw4AACcOAAAAMAAAJxAAACcQAAAAMQAAJxMAACcUAAAAMgAAJz0AACc9AAAANAAAJ04AACdOAAAANQAAJ10AACddAAAANgAAJ/MAACfzAAAANwAB1N8AAdTfAAAAOAAB84EAAfOBAAAAOQAB85YAAfOWAAAAOgAB854AAfOeAAAAOwAB86QAAfOkAAAAPAAB86cAAfOnAAAAPQAB86wAAfOsAAAAPgAB89sAAfPbAAAAPwAB9CYAAfQmAAAAQAAB9EEAAfRBAAAAQQAB9GQAAfRlAAAAQgAB9H0AAfR9AAAARAAB9KEAAfShAAAARQAB9KUAAfSlAAAARgAB9LAAAfSwAAAARwAB9L4AAfS/AAAASAAB9MIAAfTCAAAASgAB9MgAAfTIAAAASwAB9NEAAfTRAAAATAAB9NoAAfTaAAAATQAB9OQAAfTlAAAATgAB9OcAAfToAAAAUAAB9PAAAfTwAAAAUgAB9PYAAfT2AAAAUwAB9PoAAfT8AAAAVAAB9QAAAfUBAAAAVwAB9QcAAfUKAAAAWQAB9Q0AAfUNAAAAXQAB9RIAAfUTAAAAXgAB9RcAAfUXAAAAYAAB9SQAAfUlAAAAYQAB9VEAAfVRAAAAYwAB9WgAAfVoAAAAZAAB9W4AAfVuAAAAZQAB9XYAAfV2AAAAZgAB9XkAAfV5AAAAZwAB9bMAAfWzAAAAaAAB9bwAAfW8AAAAaQAB9cMAAfXDAAAAagAB9c8AAfXPAAAAawAB9dEAAfXRAAAAbAAB9dQAAfXWAAAAbQAB9dkAAfXZAAAAcAAB9ekAAfXqAAAAcQAB9fIAAfXyAAAAcwAB9foAAfX6AAAAdAAB9qMAAfajAAAAdQABAAH//wAPAAEAAAAAAAAAAAACAAA3OQEAAAAAAQAAAAAAAAAAAAIAADc5AQAAAAABAAAAAAAAAAAAAgAANzkBAAAAAAMAJ/+5A8oDQgAcAC0AOgAAPwEmNTQ3Njc2MzIXFhUUBwYjIicHBiMiJyY1NDclMjc2NTQnJiMiBwYVFBcWMyczFTM1MzUjNSMVIxU+8D8wMVVUZJdra2trl3lh8xEaGRITFwIfZEdHR0dkZUdHR0hkfF9DX19DXyXeXHRjVFUxMmxsl5lra0fhERISGhoUuUhIZWRHR0dHZGVISMxfX0RfX0QAAwAn/7oDygNBACAAMQA2AAA/ASY1NDc2NzYzMhcWFxYVFAcGBwYjIicHBiMiJyY1NDclMjc2NTQnJiMiBwYVFBcWMychNSEVPfFAMTFUVWNkVFQxMTExVFRkeGD1EhgZEhMWAh9lR0dHR2VkR0dHR2SLASP+3SbeXXJjVFUxMTExVVRjZFVUMTFH4RASEhobE7lIR2VkR0dHR2RlR0jHWVkAAAADADT/pQO2AycAHABVAFoAAAEzMhcWFxYXFAcGBwYHIyInJicmNSY3Njc2NzYzEzU2NzY3Njc2NzY3NjU0JyYnJicmIyIHBgcGBwYHMzQ3Njc2NzYzMhcWFRYHBgcGBwYHBgcGBxUzFyMVMzUB8wJ5Z2g8PAEhIj+DugJ6Z2c9PAEiIj9AUlFaOwQOCxQZDRQREAwLCwwZHCksPi8qJx0dDw8ChAUGCwoTERgkFBQCCgoPFwoSEBELDAN5B4yMAyc8PGdneVpSUkGDATs8aGd6WVJTP0AjIv2oIh0QEBASCg0VFBsaLRwcHRsbEBIREB4eKCcyFhgWDhAKCRQTKRkQEQ0UBw0SFRccJSk1iooAAAIAW//FA6cDEQAEACoAAAERIREhARUyMzYXFhUGFQYXFhcWFxY3Jjc2JwYnJjcxMzUjNSMGBwYHBgcDp/y0A0z9sgUbGgEDAQEODR8mQkIzAQEBBGoXFQ2GhlEICwwZGCYDEfy0A0z+92oBAy80NCwrJiYTGAECFAs1NQUfNDGWaoMnGRkUFAIAAAAAAgBb/8UDpwMRAAQALAAAAREhESEDNyMmNzY3NhcWNzY1JgcGBwYHBgcGBwYVBh0BIxUzETM0JyY1JjczA6f8tANMgQZ5AxkLEREPEBMDRBxZIwYEAwMCAQEBUFF7AQEBAXIDEfy0A0z+FXFvCwUCAQEBAjM1BwIGPgsMDQoLEhMKChghcf7MC0lJNTYsAAAABABb/8UDpwMRADMARgBZAG4AAAEzESE2JyYnJicmJyY3Njc2NzY3NicmJzM2NzY3NiMhIgcGBwYPATUhFSM1IxUjFTMVMzUlFgcGJyYnJicmNzY3Njc2FxYXATUWNwYXFhcWFxYXFhcWFyYHIxU1Njc2MzIXMhcWFxYXFhcWFxYHIQMydf6kDU4QJCQRGAMGHAcREAMxExgZEjNKBA0eEAIB/toxRxUVFQwLA0x1RX19Rf5pExgcRUEtKQ4SHQ0VGiI8MCcP/sBGdRECAQICBgYCAwkIAYJRASVKKCc3HAECDh4YCgkREQUFAv5rAgf9vnVHDxwcEBUQIB4JDQ0CKTE+SzciAQ8eEgQaCA8QCguHxX19RXx8C1I4PwEDMCw9TDwbERQBBTgrP/5g50QKJhoJCQgICAQECQgCBS2tUzgYDgsBCBURBwgSEhUVGgAAAwBD/6YDyQMtAB4ALwBTAAABMzIXFhcWFxYVFgcGBwYHIyInJicmJyY1Jjc2NzY3FzY1NCcmIyIHBhUUFxYzMjcDJzQ3EwcXNDMyFxYXFA8BBhcWFxY7ATI3Njc2NzY/AScHBgcCBQFbVFM9PCQkASIiP4S7AltTVDw9JCQBIiJAg7x1FxYXISEWGBgXICEWcAwLc9ACDA0HBwESSg4BARYRGwUYICEVEgsMAwMaGwoJAy0jJDw8VFNbW1JTQIQCJCM9PFNUW1pTUkGEAfQXICEXFhYXIR4ZFxf+KAkGIAFeICMCBAMHDDTYLBEWDgoJCA0LCAkEAx4SBgIAAQDO/7MC4wNFABEAABMnATYzMhcWFwkBBgcGIyInAc8BAX8gHR0YGAz+ogFeDBgYHRwh/oEBfAEBqh4SER3+d/53HRIRHQGrAAAAAAEA9f+yAwoDQwARAAABFwEGIyInJicJATY3NjMyFwEDCQH+gSEcHRgYDAFe/qIMGBgdHh8BfwF7Av5WHRESHQGJAYgdERId/lYAAAAIACD/oAPgA2AAFAAqAFIAaAB1AH4AgwCMAAAFIi4CNTQ+AjMyHgIVFA4CIwE1MzIWMx4BFx4BFx4BFRQGBw4BKwEnFTMyNjc+ATc+ATc+ATU0JicuASc+ATc+ATU0JicuAScuAScuASsBFzUzMhYXHgEVFAYHDgEHDgEHBiIrATcVMzUjNTM1IzUzNSMFFTM1MzUjFTMXNzEXIzcHMzczFzMnIwIAY6+DS0uDr2Njr4NLS4OvY/6+LAMGAwMFAgMDAgEBBAQECgYwL2cIDgcGDQUFCQMDAwUFBQ4KBwsEAwQDAgMGBQQLBwYOB2UvMwgMBQQFAQIBBAIDBQQDBgQytaJzaGhxoAECMECwQLQcGzcEUTAQUBExUTBgS4OvY2Ovg0tLg69jY6+DSwIFMwEBAgECAwMCBgQHCQMDA1bWAgIBBgQDCgYGDggKEQcICgIECQUFDggIDAUFCQMDBAIBAbE6AwQDDAgEBwMDBAIBAgEBsdYoNCUuJyevrycnXE5Og9YwMNYAAAMAJf/lA7oDNAAEAAkAEQAAAScBFwEnBwE3AQMXESMRITUhAdZd/qxcAVVXXQFVXP6sAUGCAn39xALXXf6oXQFYXV3+qF0BWP01QgKN/TGEAAAAAAIAyv+7AxMDRAACAAUAAAkBIQkBIQHvAST9twEl/tsCSQNE/rn9vgFHAAAABQATADQD0wLIABIAJQA4AEsAXgAAASEiJyY1NDc2MyEyFxYVFAcGIwUhMhcWFRQHBiMhIicmNTQ3NjMVITIXFhUUBwYjISInJjU0NzYzFSEyFxYVFAcGIyEiJyY1NDc2MxUhMhcWFRQHBiMhIicmNTQ3NjMDtvx6DQgICAgNA4YLCQkJCQv8egOGCwkJCQkL/HoNCAgICA0DhgsJCQkJC/x6DAkICAkMA4YLCQkJCgr8egwJCAgIDQOGCwkJCQkL/HoNCAgICA0CjwgJDAsJCAgJCwwJCF0ICQsMCQkJCQwLCQiXCAkLCwkJCQkLDAgIlwgICwsKCQkJDAwIB5cJCQwLCAgICAsMCQkAAAQADAA1A/kCpAAUABsAKAA9AAABNTQnJiMhIgcGHQEUFxYzITI3NjUFATUjNTM1BSEyFxYdARQHBiMhNwE1NCcmIyEiBwYdARQXFjMhMjc2NQP5DAsQ/eAQDAsLDBACIBALDP5S/minpwGZAYYQCwwMCxD+eVgBVgwLEP3gEAwLCwwQAiAQCwwCWB4TDg0NDhMeEw4ODQ4U7P7jusa74Q0OEyASDQ4+/vYeEg4ODg4SHhIODQ0NEwAHAE//wAO1AkUAFAApAD4AUwBoAH0AkgAABRE0JyYjISIHBhURFBcWMyEyNzY1ARUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVA7UVFRT9DhcPEA8QFwLyFBUV/WAICAgyCAgICAgIMgcJCAI2BwcK/koLBwcIBwoBtgkHCP3KCAgIMggICAgICDIHCQgCNgcHCv5KCwcHCAcKAbYJBwj9yggICDIICAgICAgyBwkIAjYHBwr+SgsHBwgHCgG2CQcIBAIMGRISEREb/fQaERESERkBtxoIBwgHCAgaCQ0ODg0JGggIBwcICBoKDQ0NDQqqGwcHCAgHBxsJDg0ODQkbBwcICAcHGwoNDQ0OCawXCQgHBwgJFwoODQ0OChcJCAcHCAkXCw0NDQ4KAAAAAwBP/8MDpgMYABIAIQAyAAAFMzQnJicmJyYnJicmBxUEFxYTARUWFxYXMzYnJicmJyYHEyIHBhcWFxYzMjc2NzQnJiMDE5MjIjw8UlFfXmhoZgEtxccH/T/najoQjgQwL05OZmZmbi8iIQEBIiIsLSAhASAfMDp9dHReXU5NMzMbGgSQC8jH/tgCJ4wYnVuLcmpqSkoqKgf+tyIiLiwiISEhLTEgIQAAAwBT/8EDtgMlABoAKwA4AAAFMjc2NzY1NCcmJyYnJiMiBwYHBhUUFxYXFjMRMhcWFRQHBiMiJyY1NDc2MxMjFSM1IzUzNTMVMxUCBXVlZDo5IiI6OlFQWHVkZDs6OjtkZHWGX19fX4aGX19fX4bquGS4uGS4Pzo7ZGR1WFFQOjoiIzo6ZGR2dWRkOzoC9l9fhoZfX19fhoZfX/6KuLhkuLhkAAADACv/3ARfAvgABAAJAA4AAAEhESERKQERIRERIREhEQIU/hcB6QJL/hcB6f4XAekC+P19AoP+owFd/kH+owFdAAAAAAIAZ//BBmgDNQA6AEsAAAEXBzUhBgcGIyInJjU0NzYzMhcWFzM2NzY3Njc2NzY3NjMhNRcHNSEmBwYHBgcGBwYHBgcGBwYPASE1ATI3NjU0JyYjIgcGFRQXFjMEteXm/TAcLi42Vjw9PTxWQTU1FgM3EiEbJm1LNRg4NysBQOTl/ug5MwgHBwgHBAQICAIPHBwVFQFm/IEiGBkZGCIiGBgYGCIBcNLdeysaGj08VlU9PSUmOwMIDh4qtHkbDQcGfdrWegYaBAUGCAgFBQoJAxMuLSUke/7qGBgiIhgYGBgiIhgYAAYAUwBIA6kCiAAUACkAPgBTAGgAfQAAExUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYVBRUUBwYrASInJj0BNDc2OwEyFxYVIRUUBwYjISInJj0BNDc2MyEyFxYV3gsLDUMODAsLDA5DDQsLAssLCw791BAKCgoKEAIsDgsL/TULCw1DDgwLCwwOQw0LCwLLCwsO/dQQCgoKChACLA4LC/01CwsNQw4MCwsMDkMNCwsCywsLDv3UEAoKCgoQAiwOCwsCXhsSDAwMDBIbEgwMDAwSGxENDAwMEhsSDAwNDBHoHRAMCwsMEB0SDQ0NDRIdEAwLCwsRHRMMDQ0NEukaEgwNDQwSGhMMDQ0MExoSDA0MDBMaEwwNDQ0SAAAGADP/wwO0Az4APQBMAFsAYABvAH4AACUzFhcWMzI3NjU0JyYrATUzNjc2NTQnJiMiBwYdASM1NCcmIyIHBhUUFxYXMxUjIgcGFRQXFjMyNzY3NTMVASMiJyY1NDc2MzIXFh0BITU0NzYzMhcWFRQHBisBAyM1MxUFFRQHBiMiJyY1NDc2OwEhMzIXFhUUBwYjIicmPQECSwEENDRHSzU1NTVLTlhHMTI1NEtLNTSvNDVLSzQ1MjFHV05LNDU1NEtINDQFr/7pTSAXFhYXIB8XFwF/FxcfIBYXFxYgTWivr/7pFxcfIBcWFhcgTQF/TSAWFxcWIB8XF21IMTE0NUtKNTWrBDQ0SEs0NTU0S05OSzQ1NTRLSDQ0BKs1NUpLNTQxMUhaWgHRFhYgIBYXFxYgTEwgFhcXFiAgFhb+7aysZE0gFhcXFiAfFxcXFx8gFhcXFiBNAAAAAAQAOf+lA7wDJwAfADEAagBvAAABIyIHBgcGBwYVFBcWFxYXFjMyNzY3NjUmJyYnJicmIxMjIicmNSY3NjcyFxYXFgcGBzc1Njc2NzY3Njc2NzY1NCcmJyYnJiMiBwYHBgcGFTM0NzY3Njc2MzIXFhUWBwYHBgcGBwYHBgcVMwcVMzUjAfoBW1JSPz8iISQjPTxTVFxaUlFAgwEkJDw8U1NbAgKPZWYBZmSRj2VlAQJmZY8wAwsODhYLEQ4OCgoKCBgVJiU2KyIjGBgODnIEBQkLDg8VHhISAQkIDQgUEA4PCQoDaXN5eQMnIiNAP1NSWltTUzw7JCMiIkCEu1tSUzw8IyT85GZlj45mZgFlZY+PZmUC4B4XDxALEQcMEg8aFicXGBgZFg8QDw8YGSQmJhQSFAwOCAgRESMUDw4MBxAMDxIUFyEjLnh4AAAAAQAjAOYBAwGPAAQAAAEjFTM1AQPg4AGPqakAAAIAEABABEsCvQACAAUAAAkBEQkBEQIt/eMEO/3iAX/+wQJ9/sL+wQJ9AAAAAgAlAEAEYAK9AAIABQAACQERCQERAkMCHfvFAh4Bf/7BAn3+wv7BAn0AAAACAOL/+QMiAvkABAAJAAABIxEzESEjETMRAa7MzAF0zMwC+f0AAwD9AAMAAAMAJP+EA+cDRwAeAC8AUwAAATIXFhcWFxYXFAcGBwYjIicmJyYnJjUmNzY3Njc2NxM2NTQnJiMiBwYVFBcWMzI3Ayc0NxMHFzc2MzIXFhUUDwEGFRYXFjsBNjc2PwEnBwYPAQYjAgNiWVpAQSYnAUBAb26DYllaQEEmJwEmJkBBWFliUxEQEBcYDxAQEBYXEE0JCFGtAgckBwkFBAwzCgIODhEEHSEbGgMSBQ8PBwgFA0cmJkBBWFlig29vQUElJkFAWFliYlpZQUAnJgH+zBEWFhEQEBAXFxAQEP6hBwQaARAfGwIFAwMECiioIg4RCgkBFxMeBBcHEgoFBgAAAAAD//7/bQFAA1wABAAJAA4AAAEhFSE1ESEVITURIRUhNQFA/r4BQv6+AUL+vgFCA1zz8/6C9PT+gfLyAAAFAAQAagN8AlcABAAJAA4AEwAYAAABIREhEQUjFTM1MyMVMzUhIxUzNTMjFTM1AkP++wEF/jJxcZ1wcAHNcHCdcHACV/4TAe2ziIiIiIiIiIgAAAABABkAlQMHAlcAAgAACQEhAZABd/0SAlf+PgAAAQBZ/7UD0gMvAAIAAAkBEQPS/IcBcf5EA3oAAAEAJwAHAekC9QACAAAJAREB6f4+AX4Bd/0SAAABADkApQMnAmcAAgAAJQEhAbD+iQLupQHCAAAAAQAXAAcB2QL1AAIAABMBERcBwgF+AXf9EgAAAAEAIf+pA/MDSAAJAAAFJQUTJSEbASEFAzn+0v7TaP7bAW97eQFv/t1X0dEBW+oBWv6m6gACACf/pAPUA0kACQATAAABEyUFEy0BGwEFASc3BycHJxcHNwKxff7R/tF8/tsBZ3BtAWn+wj+qzDc4zKo+mAEM/prl5wFnzQUBbP6VBv6js20EtrYEbbRzAAAAAAIAF//xA1ICxQAcAE8AAAEmJyYHBgcGByYnJicmBwYHBhcWFxYXNjc2NzYnJTY3NhcWFxYXFgcUBwYHBgcGBwYHBgcmJyYnJicmJyYnJicmJyY1NDc2FxYXFhc2NzY3A1IBQ0ReKjc3IB43NytfQ0MBAU0/c3ItLHN0P04C/ucVFxgWFxISCwsBDA0MDBYWBSVFRB8eREQmAw4OBwcMDAcGBQYrKkMcMjIREC0uGgH6Wzo6BAIkJDY2JCQCBDo6W2VaSm1uJSNvbkpbZE4MAwMICA8PGxohDhUVDw4ZGAYrQEAaGUBBKwMQEAgIERAKCw0NCUYeHxEHMzIfGzAwEAABAAz/5wNGArsAHgAAASYnJgcGBwYHJicmJyYHBgcGFQYXFhcWFzY3Njc2JwNGAUNDXis3NiAfNzcqPjU0IB8CTj5yci8qdHNBTQIB71s6OgMCJCQ2NiQkAgIZGi8wPGNcSW1tJiJvbkpcYwABACb/qQOzA2UARAAAASUWFxYXFhURJicmJyYHBgcGFxY3Njc2NzY3Njc2JyY1BAcGFRYHBhUmJyYHBgcGFxYXFjc2NzY3NjU2NzQ1Njc0JzQ1AX8B7wEBAgEBChIRB1BGRRseVikzNC4uICABAwEBAQL+2+liAQICFBNES0sXExYVMDpFRSkPCAkBAQIBAQJpbQkKCwcHBv52AwUFAhUiI0lXLBYGBRQVJSYqZGxslJRBRS4TR12trUMOBhQgIT8zLy8MDxMTLA8YGBcXGhkURElJZGMsAAACADX/tQPPA1QALQBWAAABNzYXFhcWFxY3Njc2NxcCBwYHBicmJyYHBgcGBwYHBgcGByYnJjcBNBcWFxYXARY3Nj8BIicmJyYnJicmJyYnJicmJyYnJgciBwYPATIXFhcWFxYXFhcBsAhpXgsWFg1emQMGBQQDiCECCQkFo05pfR0pKhwbDQIDAwETGhsEAUsJCAwNBgExBVcFCQcOFhYvMBYJLwsGBwsLCAgLCwoJDAsMEAZcKCAgGBkMDRNLYgM8Ax5WChkYC1EYAQEBAQH+p1AGBQUBGFJwD0tra0lIIgQHBwMDHR0JA1kCBAUHBwP+BQHUDBgQAQILCxMHKgkGBggHBQUFBQECAQMFDuAHBw8OCgoSSQ4AAQA0/7UDzwNUACgAABcHJicmNxI3NhcWFxYXNjc2FxYXFhcWNzY3NjMXAgcGBwYjJicmBwIHhAkTGxwD8FoBCAkPDgQEBWZgChcWDV2ZAwYFAwSIIgEJCAahUGh9oxA1FgMeHgkCb+gBBAQJCQICAR9WCRkZC08WAQEBAf6rUgYFBBdTcBD+WisAAAACADj/vAPKA1EAnACtAAAlNjc2FxYXFhcWFxY3Nj8BNjc2NzYXFjc2NzY3Njc2NTQnNCcmJyY3Njc2NzY1NCcmJyYnJicmJyYnJicmNzYnJicmBwYHBicmJyYnJgcGBwYHBicmJyYHBg8BFAcGFxYXFhcWBwYHBgcGBwYHBgcGBwYHBgcGFRQHFAcUFxQXFhcWFxYXMhcWFxYXFhcWFxYHBhcWFxYXFhcWNzY3ARYHBgciJyYnNDc2NzIXFhcBDwolJQlBEgUNDRgoDAsOCgUMDBc7QRQNDREOAwMHBwEDAwcUEhc6GggJCAkbBAcHBA0LCgQECiEkEh0fCQ4iAwUxLzQTDwwMLyYIFUMsGygPDwwNHAIDAgIECgoDBQMDBQQDBAUGBwkMDRMTCAMGBwEBAQMBCAcMDAQDBAQCDwoLBQUJICILAwQSEwQFCwsICBUBkwEwMENBMDABMC9DQDEwATUDAgECDkYWCQgCAQcHIxQTCgoLIyYKAwMQEAMDCgkDAwkKBwgPLy1ADQcPEBwdEREFAQMEAQMJCQcHED5AIRwfAwYOAgIWFRUyKAcGAQMgShMMDBACAgkIIQMBCQkEDhkaCwsLBw4PCAkLCgcJBwYGBwQBAwUDBw8OCQkNDAoFBQQEBAMDAgEECQkICBE8ORUQEBISBAQEAwMDCAFTQjAwAS8wQUMwMAEwMEEAAAAEACj/vAPyAyMADwATABkAHgAACQEWBwYjISInJjcBNjc2FwkCIQE1IxUXMwcVMzUjAk0BmxoQEDD8tjAQDxoBmxskJRsBGP6o/qkCr/7QUBUmPVVVAv/9ICkdHR0dKQLYKQMDJ/0tAlX9qwFKZWWRKlRUAAQANf+gA8kDMwAHAA8AFwAfAAABBxcHJwcRIQEnByc3JyERARc3FwcXIREBNyc3FzcRIQFOZaxNrmUBGQJ7Z6xPrmcBG/xsZa5NrGX+5wJ5Z65PrGf+5QMzZ6xOrWYBGv7mZq1OrGf+5v6gZ61OrGUBGf7nZaxOrWf+5wADAFX/uQPjA0sAEQAdACIAAAE3NjcyFxYfAhYVFAcGDwIHJwEDBhcWMzI/ASUnFwcnNwJ+ZBcYEQ4OBgWDFwUEBQRiTO7+dFQIEwcMCwgHAQw+GZ4gMALWYRICAwMEBIQUJA4NDgcHZk/x/nf+8CAPBQMCTbR5LiCgAAAABABH/48D3wN1ADgASgBWAFsAAAE3JxUmIyIHBgcGFRQXFhcWMzI3Njc2NTQnJicmJyYnJicmIyIHBg8BFhUUBwYjIicmNTQ3NjMyFxc3NjcyFxYfAhYVFAcGDwIHJw8BBhcWMzI/AicXByc3AjunpxoOfWpqPT4+PWpqfX1qaj49BwEBAgcGCQgPEBIUEBAGBghcXIKCXVxcXYIaDAYnCQsHBQYDAjQKAgICAigdYqAiBAgEBAQEA20aCkANEwJChq1QAT0+aWp9fWpqPT4+PWpqfSUnAwQECQoICAYGDw8QDx8qgl1cXF2CglxcAp8oBwEBAgECNgcPBQYFAwMqH2GfbwwGAwECH0kyEg1BAAABAEj/0wPaAvQAFgAABSUmJyY3Njc2PwEXATcWFxYXFhUUDwEBs/6uFwIDDQ0QEA4O9wGzLSoZGQYGBAUt8RAaGhkZFxcODr8CCSYbHBsUFA8QCAgAAAAAAgBL/94D4QMTABYALgAALQEmJyY3Njc2PwEXATcWFxYXFhcUDwEBNTQnNDUmNzQ3Nj8CESERIQcGByERIQI5/vwSAgIKCgwNCgu9AU4kIBMUBQQBAwT+6QEBAgQEBARY/SACckIOB/5NAhCruQ0UFBMTEhILC5QBkB4VFRUPDwwMBgb9tC4CAgIHBwEDBgYEBGb+2ALgThYE/fAAAwBN/7UD0QNFABcAMgBDAAABByMnBxcVJxU3FQcXNzMXNyc1FzUHNTcDJwYjIicmNTQ3NjMyFxYVFAcXFhUUBwYjIicBFBcWMzI3NjU0JyYjIgcGFQNmOAI4OVeGh1g1PAI3OlmLi1e8xUxgeVVVVVV5eVVVMsESDw4VEw797C8wREQwMDAwREQwLwNFgYAhcAERPhECcCGCgSFuAhA+EgFz/J7DOFVWeHlVVlZVeVxJwQ8XEw8ODgGuRDEwMTBERDAwMDBEAAACAO4AXgMXAocAGAAkAAABJicmBwYHBgcGFxYXFhcWNzY3Njc2JyYnBxcHFwcnByc3JzcXAs46SkpKSTY2ExMTEzY2SUlJSTY5FRQSEzZaM3R0M3V0NHV1NHQCPjYTExUVOTZJSUhJNjcTExMTNzVKSUtKOSczdXQ0dXU0dHUzdAAAAAADABP/igPoA10AGwA8AF0AAAUzNjc2NzY3NjU0JyYnJiMiBwYHBgcGFRQXFhcBNjc2FxYHBgcGBwYHBhcWBzYXFhcWBwYHBicmJyYnJjchNjc2FxYHBgcGBwYHBhcWBzYXFhcWBwYHBicmJyYnJjcB0ElfVVY+PiQlQkFxcYZkWltCQiYngIG8/uwhQT9MBAgHExINDwYFAwICLSMiDg4HBh0xTEslFgQEDgFVIEM+TAUHCBITDRAFBQICAi0jIg4OBgYeMUxLJRYDBA12BSgpQUFYWGCGcXFBQicnQUFbW2W9jYwSAfhuNzoOAwcHEBAQFRMTCAgKAxgZJCUrLCI1Bwc5HzAvJWs6Og4DBwcQEBAVExMICAoDGBkkJSssIjUHBzkfMC8lAAEAPf/cAsoC3AAnAAATNTY3NjMyFxYVFAcGKwEVJzcVMzI3NjU0JyYjIgcGIwcGBwYXByY1PQNfYIWHX2BfYIcWqqoWW0BAQEBbLCYIAhJGGxsdZBYBlgeFXV1gX4eIYF9zqqp2QEFbW0BADwQKKE5NTiY7PgAAAAIAW//FA6cDEQAEAHIAAAERIREhAT8BNjc2NzY3FhcWFxYXFhcyNzY3Njc2JyYnJicmBwYHBhUUHwEyMxY3NjcyNzY1Njc2NTc2NSYnJjUmJyY3Njc2FxYXFhcWBwYHBgcGJyY3Njc2JyYnJgcGBwYXFBcWFRQHBhUGBwYHBh8BNjcDp/y0A0z99Q0ICQcHBwcEAQECAQQCIiotJkAeDAUEEBxIJikuM1M1PDkRBAIDAgIBAQIBAQECAwEBBAUTAQEUJFQxKyoYGQQDDQsVHiQ0CwMJFgEGBQYREhgjCwoNAgICAgMJCgYXAwcUDwMR/LQDTP04FhERFhceHg8BAwIBBgIdARUkUCM1LytIJxQEBwkQOUFVWSUJAQICAQQEAQIEBQEKCgMEBgUBGSIvJ0oPCQ0MHB8tKzQpHiYBAiwPHk4EHw8UCgsIDS0oKAIDAwEDBwYCDSkpFWEvNxIUAAACACj/9gPlAvgAGQA+AAABFQYHBgcGBwYHBgcGDwE2NzY3Njc2HwEVJQM3MjcyMzYXFhcWHwERIREhFhcWFxYHFAcGDwEGDwEjESE1NDcCzVlISCwtICEPDwgIAgE3QUA2Ni4uGhoBGOE9AQIBBQQFBAMCAQH8ygGdAgIDAwMBAwMDAyUcNbkCWAYC+G0FFhUfHyUkIyQdHRIRLxwdCAgBAgQFcuf+6DQBAQIBAwMCAv7OArYBAQIFBQYFBAMCAhURKf4vegYHAAMABP9/Aq8DagCGAJ4A6gAAASMiJyYnJicGBwYHBicmJwYHJicmJwYHBgcGJyYnJicGBwYHBgcXFgcGBxYXBgcGBxYXFhcWBwYHFhcWFRQVMjcyFxYXFhcWFzY/ATYXFhc2NzY3NhcWFzY3NhcWMxYXNjc2NzY3JicmJyY3Njc2NyYnJjc2NzY3JicmNzY3NjcmLwEmNTQnBSM1Njc2NzY3MxEUHwEVIzU2NzY3Njc1ATM2NzYXFhcWFxYXNxYXFhc2NzY3NhcWFxYXFjM0NSYnJiMmJyYHBgcGByYnJicmBwYHBgcmJyYHBgcGJyYnJicmJyYnIg8BBgcGBwJMPgkDAQkJBQkTEwsJCAciFSIJFRUMBQsLBQMKCxUWCQMJAQ8ZHggDCxccDBYJDxAECRERBAYCCQsZHgssFgcDBAMEBQUCCxMaDQcIIAYQEAkJCgMxFgUKFQMJGQ0KAQMJOQQBAwMBAwsKExMCEQ0FBwUNDQgeEQYDAwcGBAsSGwwB/tpPJQkzHwUDMB4q/w8eEgcHAf76By5cCgQQGwYLDANCCBIRCRAcHAcGCRQ6DRkZAiArAgYQKQgEBgsMBQsVFQUHBQQTEwsaDwcKDyUIAwMGBgEGBAMRCgJABQ0MBwMHCAMWFgwDBwYEAwgKJRQYBQsLBgkSEgkHAQIDAwEOKw0CBQg5DAcNExUqChQTBQkODwQFCRgkCQwEDBQqAQoICQoLDAcEBgkFCgklBQ0NCAgGAhsfDBYHAwMBNgULAQsBDBUVAw0HBgwMASIVCAYHEBEKHAwHCQkTFAoECAsCDBMrnx0CAQcnBQH+6x4IBxYWAgUBCQkTwf1xCBADCRgkChERBKgaMjIZFiUlCgkCBAwDBAUCAlt3BwMGAgkJExIIBgsLAwMEAw8OCB0SBwMHCwQJCA8PAw8DAgEKpw4fIBEADwBU/7kDqwNKADAAQwBWAGkAfACPAKIAuQDMAN8A8gEJASABNwFOAAAFIzU0JyYvASMGHQEhNTQnJi8BIwYdASMRMxUUFxYfATM2PQEhFRQXFh8BMzY9ATMRAxE0JyYjISIHBhURFBcWMyEyNSU1NCcmLwEjBh0BFBcWMxczMjUhNTQnJi8BIwYdARQXFjMXMzI1BTU0JyYvASMGHQEUFxYfATM2NSE1NCcmLwEjBh0BFBcWHwEzNjUFNTQnJi8BIwYdARQXFjMXMzI1ITU0JyYvASMGHQEUFxYzFzMyNzI3NjUFNTQnJi8BIwYdARQXFh8BMzY1ITU0JyYvASMGHQEUFxYfATM2NQMRNCMhIgcGFREUFxYzITI3NjUlNTQnJiMnIyIjBgcGHQEUFxYfATM2NSE1NCcmIycjIiMGBwYdARQXFh8BMzY1BTU0JyYvASMGHQEUFxYzFzMyMzY3NjUhNTQnJi8BIwYdARQXFjMXMzIzNjc2NQOrHAQEAwQ6D/2gAwQEBDkPLCwEAwQEOQ8CYAQEAwQ6DxyuCwsV/lwLCQkJCAwBpCv92gMEBAQ5DwQDBAQ5DwK4BAQDBDoPBAQDBDoP/UgDBAQEOQ8EAwQEOQ8CuAQEAwQ6DwQEAwQ6D/1IAwQEBDkPBAMEBDkPArgEBAMEOg8EBAMEOgICAwQE/UgDBAQEOQ8EAwQEOQ8CuAQEAwQ6DwQEAwQ6D5Ir/lwMCAkJCQsBpBULC/3aAwQEBDkCAgMEBAQDBAQ5DwK4BAQDBDoBAwIEBQQEAwQ6D/1IAwQEBDkPBAMEBDkBAwIFBAK4BAQDBDoPBAQDBDoCAgMEBEcdBwcIBAQPDx0dBwcIBAQPDx0DkRwHBwcEBA8OHBwHBwcEBA8OHPxvAhkBBgsICQkJCv76FQsMLNkdBwcIBAMNEB0GBAMBDh0HBwgEAw0QHQYEAwEOdBAGBwcEBA8NEAYHBwUEDw4QBgcHBAQPDRAGBwcFBA8Ogh0GCAcEBQ8PHQcDBAEPHQYIBwQFDw8dBwMEAQEEAwd0DwYHBwQEDg4PBwcHBAQPDg8GBwcEBA4ODwcHBwQEDw7+3wEELAwLFf78DAkJCQgNnh0HBAMBAQMEBx0HBwcDBA0PHQcEAwEBAwQHHQcHBwMEDQ+CHQcHBwQEDw4dBgQEAQEEBAYdBwcHBAQPDh0GBAQBAQQEBgAAAgDo/8QDHwM3ABcAPAAAARE0JyYnJgcGBwYHFTEdARQXFhcWNzY1NxUGBwYHBgcGJyYnJj0BIwYXFhcVIxUhNSM1NjM2NzY3Nj0BIwKLAQopKTk0JiYCAxFLSz0xTQMBDTg4RkxAPxEGRw5ERHaRAXmTCQNBLS0jKEcBmgEHEwo4IiIDAicnNEtLghQSUBoZNCpKJjYjBksxMQQFLi9KF0oNhWFhEV5GR10DEh0dNDxlNAAAAwAaADcDzQMNAEMASABNAAATEQYHIicmJyYnJicmJyY1Jjc2NzY3Njc2MzIXFhcWFxYXFhcWBxQHBgcGBwYHBgcGLwERNjMmJyYnJicmBwYHBgcGBzczESMRISMRMxGzAwUGEBAODhISDQwJCQERERwGODhdXmxSS0s3NiIiBRwQEAEICQ4NERAQEQ0OCAkEBQQfHy4uODk5T0hJMDEGIVhYAkpXVwGF/rUBAQEBBQQMDBISIB8pQSEhEGhcXTk5IiI3OElKTREhIEEpHyASEgwMBAQCAQEBAUsBPzg5JycWFgECJSZERVMB/rABUP6wAVAAAAcAOv/uA9cDDAAUABwAIQAmACsAOAA7AAATITIXFhURFAcGIyEiJyY1ETQ3NjMXJyIHBh0BMzMnIxczMycjFzMzJyMXMwEhMjc2NREhERQXFjMlBRGIAu8kHh4eHyP9ESIWFhYWIlBQCwICX/Bgfl6A31B/T4DgUH9fcP0BAu8MAgL88gQDBAJT/rEDDB4eJP2hIx4eHR0lAl8mHR2wYAIBDVBgYGBgYGD94QICDAG//kEHBATfsAFfAAAACABj/8gDjwNHAAQACQAnAHgAxgD9AQIBBwAAAQchJyUFIRUhNQMXFhcUFxQzMhcWNzYDJgcUFQYVFAcGBxQHBhUGFwUVFhUWFRQXFBUUFRYVFBcUFRYVFDMWFxYzFjc2NTQ3NjU0NyYnNDU0JyYnJic0IyYnJgcGFQYVBhUGFRQVFAcUFRQHFAcUBxUWFRQVFhUUFR8BFBcUFxQXFDMWFxYXFjMWNzY1NjU2NzY1NDU0LwI0IyYnJgcGFQcUFQYVFBUGHQEGFRQVBhUGFRQdARQVFBUUFxUWFRQXFBcUFRQVASc0IyYnJgcGFQYHBgciFxUUFxYVFBcWFRQXFhUUMzIXFjMWNzY1NDU0NzY3NjU2NTQnNCcmJwEhNSEVByE1IRUDdQ79Fg4BgwF0/RgC6F0CAwIBAQEFISERESQmAQICAQECAQP9hQEBAQEBAQMBBwYDHBcDAQQDAQEBAQECAQIHChwXBAEBAQEBAQIBAc8CAQEBAgEEBAMDAx0VAwIDAQEBAwIDCAkcGAMBAQEBAgIBAQEBAToCAwcKHBcDBAEDAQEBAQEBAgICAgEGBwQcFgQBAwEBAQIBAQH97QLt/RMhAyz81ALhHBxmoEtL/lRIPRsEAQIBCQrnAQYICAIDAwEUJiYSCyYmFCs1Jw0IDgUICQUFCAkEBAcCBQUDBAoCAQICAwcBAgsWQiYGaQ8fHhAPICAQEyIDAwIDBwEDBAkGCQUKAQYDBgcCCQUMGxAfdgoVBAcIBA0HPhoIAwkGCAYCAQEBAQEDBwECFgtCJhMkJRMcQF81AwMCAwcBAw0DBQUCAgUFAwcGDAUJGQ4gDwsWNwUKCgUUCxcHDQkEDggFCAkFAX0pAwMCAwcBAyQnVi0mJAsVFgsOGxsNCxQUCgMCAwMHAQIHDQ0GRyQRIiIRFjYUKSkV/fA1NTsnJwACAFv/xQOnAxEABABDAAABIREhEQcUBwYHBgcWBwYHBgcGBwYnJicWNyYnFjcmJxYXFjMmJyY3FhcWFyY3Njc2NzYXFhc2NwYHBgcGBwYHNjc2NwOn/LQDTHIJCREQBgUXFigpODg9PEFCOFJeWxEhC1cBBgwNChgMCxg2OjlQCA0MGhkfHyAgFiokAQUGBAQLCgMHFRYHAxH8tANM6A0MDA0OB0U/Py4uHyAKCg0OJw45F0UCAidWAQYGFTIxKjghIQYjICETEgkICQkZCxMLCwsFBQoLAwIGBgYAAwARADUD6QLiADUARgBXAAABJicmJyYnJicmJyYnJiMiBwYHBgcGBwYHBg8BFhcWFxYXFhcWFxYXFjMyNzY3Njc2NzY3NjcnFAcGIyInJjU0NzYzMhcWFScyFxYVFAcGIyInJjU0NzYzA+kECAgaGh0dLS0uLzw7PD07PC8wKysfHxcXDAsECAcaGxwdLS0uLjw8PTw7OzAvKywfHxcYC+9HR2NkR0dHR2RjR0fxKyAgICArLR8gIB8tAYsHDAwkIyEhJycdHRMUExMeHyQlJCUeHxMSCAwMJCMhICcoHBwUExMSHh4lJSQlHh4TE2RHR0dHZGNGR0dGY2sgISosICAgHy0rICAAAgCU/7ADkwMkABAAIAAAATI3NjU0JyYjJgcGFRQXFjMBISYnJicmJyYHBgcGBwYHAgZLNjY3NkpMNjU0NU7+jgL/EgwaRUZVVV9fS0kcHAgBujU1Sko2NgI2NU1MNDT99oksYkZGGhsREkFCWll/AAQAM/+4A+gC1gAQACEAMwBFAAABMjc2NTQnJiMmBwYXFBcWMwUyNzY1NCcmIyIHBhUWFxYzASE2NzY3JicmJyYHBgcGBwYHJSEmJyYnJicmJyYHBgcGBwYHAXxEMDExMEREMTEBMDBFAXovICEhIS4uISEBICEu/T0BnwQhIlMcGxwlrIM4ISELCgMB6gHLAQQDAwMDFj8+TU08LRERAgGOLy9EQzIxATEwRUQwL5QgIDAsISEhIS4uICD+vmhJSSsoGRoKN18pPDw5OU8BDBcXEhIPTi4uAgI1Jzc2SgAACQBb/8UDpwMRAAQAQwBUAGkAcwB+AI8AoAC8AAABIREhEQEVFhc2FxYXFgcWBwYHBgcGJyYnJjc0NwcmJyY3Njc2FxYXNjc1JyY3Nhc2NzYzMhcWFRQHBiMiJyYnJgcGFzc0JyYjIgcGFRQXFjMyNzY1AzYnJicmBwYHBgcGFxYXFjc2NzY3JTUmBwYXFhc2NwU2JyYHFDMWFzY3BTIXFhUUBwYjIicmNTQ3NjMzMhcWFRQHBiMiJyY1NDc2MwcnJicmNzYXFhcWMzI3Njc2FxYHFAcGBwYjIicDp/y0A0z+gGBLHDk6Cg9ECg8PGzpkZGVlOkIOAQEeDw8GBx4eIiMSVWcBAjM0YQoVFRsjGBkYGCQdFhYIRiIiAfgJCA0NCQgJCQwMCQk9DUEgNTQ1MCZYGxo0K0xMS0wpGAb+JxIbGgcGDQ0fAjEHGxoSAhoRDQb+cBELCwsLERALDAwLELcQCwwMCxAQDAwMDBCyCwUDBgkICQ0EHyMjHgQOCgcKBwcGBSgtLSgDEfy0A0z+5Q0HMSoMDDFCKCopKR49GBcVFj1GWAIDBREcHCEfEhIFBRs2AwgFRSMiEBkPEBkZIyMZGBERGw0PEDRdDggICAgODQkJCQkN/qNENBkPDwQDDR8+QTguERASEi0aH50BEw0NIBEGGyImIA0NEwIXJQYREwsLERAMCwsMEBELCwsLERAMCwsMEBELC6oIBQULCAYDAgQODgQCAwYJCgQGAwUSEgAACQBd/4sDnAM1ABQAKQA+AGUAlwCsAMEA1gDrAAABIyIHBh0BFBcWOwEyNzY9ATQnJiMFBwYHBh8BFjc2PwE2NzYvASYHBgcFJyYnJg8BBhcWHwEWFxY/ATYnJicFFhcWHQEGBwYVBgcGDwIjJyYnJiciJyYnJicmJyYnNTQ3Njc2MwMzNjc0NzY3Njc2NzY3NjU0NSYnJicmJyYnBgcGBwYHBhUHFhcWFxYfATEXFicWFxYXJzU0JyYrASIHBh0BFBcWOwEyNzY1ITU0JyYrASIHBh0BFBcWOwEyNzY1ATU0JyYrASIHBh0BFBcWOwEyNzY1BzU0JyYrASIHBh0BFBcWOwEyNzY1AgAHDgoKCgoOBw4LCgoLDv7TBgkCAghMBwwNCQYJAgIGTQgMDQkCWQYJDQwHTAgCAgkGCQ0MCEsIAQIK/tF6NBcDKAURDAwDAwLHAgINDBMBAgICDQYGCAkBFxgtLTwmTQcnBgYCAgQFAgICAwEGBwsLGRkhIRkYDAsGBwEBAgIBAgUHCAgBDwwLBNgHBwtsCgcICAcKbAsHBwKhBwcKbQoHCAgHCm0KBwf+zQgIC6MLCAgICAujCwgIHwgIC2QLCAkJCAtkCwgIAzUIBwpsCggHBwgKbAoHCHMFCgwMB00HAgIKBQoMDAdNBwICCgUFCgICB00HDAwKBQoCAgdNBwwMCmwBZDAwA0BACAEdHh4QEDQyFSMiIAMDAhQLCxwcIAMwMDAbGv5VPEECCQkDBAkKBwcLCwsECAkUFBAQDQ0BAQwMEhIREgwMDQsLBwcJDQwMAhggHxPnBw4JCgoJDgcOCgoKCg4HDgkKCgkOBw4KCgoKDv5nBgsIBwcICwYLCAgICQpiBwsHCAgHCwcLCAcHCAsAAAAACABb/8UDpwMRAAQAHgBBAE0AUQBVAFkAXgAAASERIRELAQcnAzcmNzY3Njc2NzYXFgcWFxYXFgcGBycmBwYHBhcWFxY3FhcWMyY3Fjc2JyYnNDcmBwY1NicmBwYXFycGBwYHBicmJwcXNw8BNwUXLwEFBxU3JxcWFScDp/y0A0ylLdzeK3YOBwYgHyoNKSkjIwIWEREHBwUFEawnHB0DAxEZJycYAhAPCAMJJw8NEwwWDAEPDwchHBQMAr5bCxcYGhYjIxpFstA7DzD+nS4ROgErOzO1DTUDAxH8tANM/pz+1JSUASVELCwsIyMCJAwLFhYvBRcXGxsdHRClBBkYIiIfJgIDIwQDBB0BDiIeHBEBDRADAgIFJwgIFQwS7y8ODg4DBAgJFSVeNCjQIQQcyiQ3H9cmy8whAcsAAAcAAwAXA/oCjAAkAEsAcgCXALsAxADNAAABBxYXFTM1Njc2PQE0JyYnNRYXNyYnNSMVBgcGHQEUFxYXFSYnAwYHBhUUFxYXFhcWNzY1NCcmJyY1NDc2NzY3Njc2NzYnJicmJyIHBRYXFhUUBwYHBgcGJyY1NDc2NzY1NCcmJyYnJicmJyY3Njc2NzIXBQYHBhUUFxYzMjc2NTYnJicmNTQ3NjcyNzY3Njc2JyYnJicmBwUWFxYVFAcGIyInJicmNzY3NjU0JyYvATEnJjc0NTQ3Njc2FwU1NDcVJicmNRcxFAc1FhcWFQGJMD5UOTsiIx8gQyghLTFCOD4iIh8gRTE190InJh8fNwYSEQ4JAwQEYyEiOgEBAgMEAgICAQYKDw8KAtBCJyYfHzcGEhEOCQMEBGMiITkCAQIDBAIBAQEGCg8PCf2SLx0cQwMSEgsIAQMaERIXFygBAQEDAwEBAgIFCAsLBwIMMRwdRAISEgsIAQEEGRERFhYoAgUEAQgHCwsI/sklFQgIeyQVCAcBGUgtCYSDBh4eMAEyGhsQPwoXSSMIdnUFHh8wATEbGhBBCCQBTThLS1VKRUQ3BgMCCAgMCwgHBGF6SD4/LQECAgYFBgUHBwYKAQQFOEtLVUpFRDcGAwIICAwLCAcEYHtIPj8tAQICBgUGBQcHBgoBBFcmNzc9YE0FCQcMDAEbJycmMygoGAICBQUFBAcIBggBAQMDJjc3PV9OBQkHDAwBHCcnJTMoKBgCBwcDAwgJBQgBAQNrARgDOwYHBwumGAQ7BgYHDAAABABT/8gDogMZAAwAGAAdACsAAAURNCMhIhURFDMhMjUDFRQjISInJj0BNyEHFTM1IwERNDc2MyEyFxYVEQchA6Is/QksLAL2LdQk/poNCQkBAaiua2v+qREKDAIJEQsMAf2pCgL3LC39CS0uAtPYJAkIDdkFHbGx/WcBEhwMCAwMEv7rAwAAAAgAJv+nA84DTwAgADMAPABNAFUAZgBrAHQAAAUyNzY3Njc2NTQnJicmJyYjIgcGBwYHBhUUFxYXFhcWMxEyFxYXFhUUBwYjIicmNTQ3NjMFByYnNxYXFhcHNCcmIyIHBhUUFxYzMjc2NRcnNic3FgcxJTIXFhUUBwYjIicmNTQ3NjMHFwcmNxc3FhcHJicmJwH6XldXPz4lJiYlPj9XV15fV1c/PiUlJSU+P1dXX2RWVTIxbG2ZmW1tbWyaATSyGTc7QjQ0HdIdHCkoHR0dHSgpHB33wwIEvgoD/qcNCAkJCA0MCQkJCQyNArgKAhutFTc4QTMyG1klJj4/V1deX1dXPz4lJSUlPj9XV19eV1c/PiYlA0cxMlVWZZltbW1tmZpsbeZONBO5FC8vQIonHRwcHScpHR0dHSkbDhAVKS4uOAkJCw0JCQkJDQsJCRckLCQ1n00zE7QVLS0+AAIAI//XA/4CkgAKAA4AAAEhAxE3MxYXFSEVFyEDIQMs/aOsQtEIBgHo0v0A2wMAAcX+nQHbVQMOM4ky/kQAAAAZACf/gwPsA0gABAAJAA4AEwAcACIAKwA6AD8ASgBRAFcAXABnAHMAgACVAJ0AqQCvAMIAxwDMANwA4wAAASERIREFMxUjNSEVIzUzFzUzFSM3MwYPAQYrATUXNzIzFSMXIzc2NzYXMxUnFSMiLwEmJyYnJjU2NTMFNTMVIzczFSYPAQYjJiM1ITMPAQYnNQcjNzIxFTM1FhcjByM/ATYzMDMyMRUzIzUyMzIXFhcWMxUzNTQzNjc2NzY7ARUjJTMUFxQVFAcUBwYjIiMiIyIjIiM1OwEHIjUwIzUhMxQVFBUUBwYHJic7AQYHIzUDIzQ1Jj0BNDc2NzY3Njc2OwEVMyM1MxUzNTMVIyUzBgcGBwYHBgcGBwYPATUXIzY3NjcVA+z8OwPF/KG6ugF6u7sFu7vBmwMFOwQITI4qAQEsLHQUHw8ECyPAPQIEaQEDBwMCAbv9xrq6v7sVC0EFCBk0AYFTFywEDMYpKAEFGR84BYgEVAQKERHAuiYTAgY+Hw0PBQULBgkiBAtru/3BugEBAgMGHDg4HAECAgK/U1EBAQFAOwICBSUNQQoDBQLGugEFAgMDARkFAwWHwLq6Brq6/cCxAgQDAwMEAgMcNjUNBbqWHDIzFQNI/DsDxWK8vLy8vLy8uwcPnQm8u29vwDZSKgoBu7u8BooFAQQFBQwLAbu6urocAxmACgG7OngNBbq6Tk5KISnBCaoIu7sGUyoSJiMFBQ8ZXQm7uwIDBAFpNQgFB7ykAaMFDAsGBgoJBzERCQ8Y/oQBAwIBWQQHAgUFATIKB7u7u7u7ugQICAYGBgMDEyMkCAORuhMhIQ9kAAACAEH/gQJhA0EABQASAAAXCQERIREBIxUjNSM1MzUzFTMVQQERAQ/94AHOg2iDg2iDfwFT/q0DwPxAAmSEhGeDg2cAAAkAVP+tA5kDSAAmADoAPwBSAF4AcQB9AIwAnQAAASEWFxYXFjsBESMVIxUhIicmLwERNDc2PwEzNTQ3Nj8BMzU0NzY3AREmJyYnESEUJyYHBhUUFxYfASElIREhERMzMhcWFRQHBisBIicmNTQ3NjMDITUjIicmLwERIxEBMzIXFhUUBwYrASInJjU0NzYzASE1IyInJi8BESMRJSMVITEHBhcUFxYzFyE1ByMVIRQnJgcGFRQXFhczITUBzAGACgkIDg8KC6ap/jUQCwoEAgoKCgmBCgoKCoAKCgoBphAECgL+hwMCAwMDAgMCAZr+eAEx/s9BsAoHBwcHCrAKBwcHBwrpASeREAoKAwNsAQN7BwUGBgUHewgEBQUECP5WASaRDwoLAwNrAi8g/oYFBQECAgMCAZqpH/6IAwIDAwIDAgMBmANIGwYHAwT9tpOPCgkKCwIjEwwLAwJiEgwLAwJjEwwLAv2pAgkFBAgG/f4BAQEDAwcHBAUBAV4Bvv5CAWoGBgkJBgYGBgkJBgb9+CAKCQoLAYL+NgG2BwYJCQcGBgcJCQYH/bodCgsKCgGD/jewUwMDBwYFBQJyk1ABAQEEAwgHBAQBbgAAAAACAB3/1APqAwEADgAgAAATITUhFTEVBjUVMRUGNRUTMwYVFjMRMjMyMzA3NSYnJicdA838NQEBpY4Bcd4aNTYbATxwbyMCfoMgHR0FFA8OBQL+iG7DAQEvAgE+cnIjAAACAEn/5gPZAuQAEgAhAAABESIHFBcjATY3Njc1IjUiIwYjASEnIRUxFQY1FTEVFDUVAqHQagGFASsgaWk4ARkyMhn9qAOQAfxyAQHHAR0Bt2f+0CBrazoCAQH+H3wfGxsEEw0OBgMAAAUAIwAEA6kCqAAEAA8AEgAVACIAAAERIREhBQEWMzI3Nj8BASEBFxEFETcFJwcGBwYjIi8CByEDqfx6A4b86wEuFwoGCAgFBgEw/WAB+M/9FswBzbIdEwUeHx4kFB+zAkwCqP1cAqRF/skTBAUEBQE4/tXQAaEF/mbN57QeEQMRFA4gswAAAAAEAFv/xQOnAxEABAAqADUARgAAASERIREFMxYXFhcWFxYXFhcWFxYXFhcWFxYXFhcWFxYXFhUjJicmJyYjNRE1FhcWFSM0JyYjFzIXFhUUBwYjIicmNTQ3NjMDp/y0A0z83xQxGCYiISUtFSIfGSIlERcZGBENFxIJCwoHBQSAAXRalVZi4YNVgYBQaFsmGhsbGiYlGxsbGyUDEfy0A0x1BAMGCQcPEgwQFBAbIBIYHx8eFismHh8oHykhKLuUczghgf6cgQavc5GbYjuCGxomJRsbGxslJhobAAAACACG//4DmAL0AAwAJAApADwAUwBmAHkAjAAAASEyFxEhIicmJyY1EQEhJicmJyYnJjURIxEUFxYXFhcWFxUhNQEjFTM1FzMyNzY1NCcmKwEiBwYVFBcWMxMhJicmJyYnJjURIxEUFxYXFhcWFyE1AzMyNzY1NCcmKwEiBwYVFBcWMwchMjc2NTQnJiMhIgcGFRQXFjMVITI3NjU0JyYjISIHBhUUFxYzAV4B7DgW/e0SCQYDAwIF/gcJCwwHCAISOgIDCQkOEEECAP7NiIg31wcGBgYGB9cHBgYGBge4/h87HQ0KCgIDOgMEDg8WHFoB6bjXBwYGBgYH1wgFBgYFCK8BhgcGBgYGB/56BgUFBQUGAYYHBgYGBgf+egYFBQUFBgL0Ff3vCAUFBgQCCv2gAwMDAgICEQoB+v38AwcIDg8MEgkEOgH5iYkoBwYJBwYFBQYHCQYH/dEPFQ0VFQwMBQG//kAHEBEfHxYdFjgBywcHCgcGBgYGBwoHB18GBgkHBQUFBQcKBQZmBwYJCQYHBgYKCQYHAAAABAAT/4UDzgM+ACwAWwBsAIEAADcWFxY3NicmJyY1NDc2MzIXFhUUBwYHBhcWNzY3NjU0JyYnJiMiBwYHBhUUFzcWFxY3Mjc2NzYnJicmNTQ3NjMyFxYVFAcGBwYXFhcWNzY3NjU0JyYjIgcGFRQXNzI3Njc0JyYjIgcGFxQXFjMDITQnJicmJyYnJgcGBwYHBgcGHQGMChgYEQsCAwdocXKfoHJxawgCAg4SFRUIgEBAbm6CgW5uQEB5iQQICA0NCgoDAgUbDQ08O1daOzsSER0DBQUKEBERBklVVHl3VFVF2yccGwEcHCYnHBwBGxsnsgFcAQIQDxwqQT8uFg8PBgcCAyUMBQUPExAQCHGXoHFycnGgnHAHFBQRCgUECIq7gm5uP0BAP25ugrWHgAUEBAEKCBYXBB8cHCdZPj03N1gqKyseAxARCAkDAwdTbHhVVFRVeGpSWBwbJyYcHBscJycbHP6IFiMjSEgcKgIDLRUjIyMjISATFQAAAAACAG3/kgO+A1oAQABVAAAXMzYzMhcyNzY1Ajc2JyYrAQYjIiMmKwEmJzc2JyYnJiMiDwEjJyYjIgcGBwYfAQYHIwYjIicjIgcGFxYHBhcWMxMhMhcWFREUBwYjISInJjURNDc2M7wDa+HteCgVEQQEARITKAw3IgoWFgpLBBl9CQUCDAgJFQqPGIoIEwsIDAQDB30RAUcYLyQ2CSgQFQMCAgMVEypRAhAYEBAREBf98BcQEBAQF24CARITLgEc2C0XEQIBIAzOCg4PCAMP698SBgcODgvMDRYBAhAWM/L3NBQTAi4QEBf+sRcREhIRFwFPFxAQAAAAAAcANv/gA7cDPQAqADoASwBbAGwAegCLAAABERQHBgchIAciJyY3NhE0NzY3NjcBFzYXFhcWBwYHBiMFMzYXFhcWFxYVBQYXFjMhMjU0IwYjIiciBwEWNzY1NicmJyIHBhUGFxYXJSIHBjMWNzI3NCcmKwEiBwU2JyYnIgcGBxQXFhcWNzY3BSEyNTQjMCsCIgcUMxczFjU0JyYjISIHBhUWMzIzA7cTEx/+g/63KSUUFQEBEhIiGjUBqQENDxAICQQDDgUC/tcC5OscGxwSE/zUAQgIEAEpHR0xYmYzGQMCNT4rKwErKz46LSwBKyw8/ccXAgEYm5sXAQcHDJlmMwJ7ARQTGxsUFAESEhwaFRUB/YUBMhobTEyZGAEZt5UdBwgO/tUNCAgBHTFkAdb+TyAREgEBFRYiLwFzJBYWBAMFAQ4BCAMEDQ4PDwkDvAwaAgYFFRYcRQwGBxcYAQEW/ucBKyo+PSwrASssOj4rLAHUFhcBARUNBgYBRhwUFAESExocFBQCARMUGkIWFhUXWwEYDgQFBgUOFQAAAAAFACcAAQPiAmwAFAAdAC4AMwBEAAAlETQnJiMhIgcGFREUFxYzITI3NjUnIychByMRIREBMhcWFRQHBiMiJyY1NDc2MwUjNTMVNzIXFhUUBwYjIicmNTQ3NjMD4gwMEPyVEQsMDAsRA2sQDAxXUQr9qxFOAw/9lBwUExMUHBoUFBQTGwFY5+dwHBQTExQcGxMTExMbKQIaEQwMDAwR/eYRDAsLDBE6OTkBqf5XASQTExwbFBQUFBscExOFhYWFExMcGxQUFBQbHBMTAAADABj/3QQtAt0ACgAQABkAAAE1IwEhNTMBMzUXBQcnIzUhATUjJzcXMzUXA2Ol/of+0/IBeeDK/Y9KaPIBMAIb6HVKaKvKAaRi/jh2AchhnEdlcXb9YWGGZXVinQAAAAACAFT/wAOiAsAAEgAmAAATNTQ3NjMhFTcnFSEiBwYdARQXEyc3FSEyNzY9ATcWHQEUBwYjIRXfFRYdAX7l5f6AVj0+Bvzl5QGAHhUWfQY9Plb+hQFGPR4VFm2xsG4+PVaGGBf+9LGwbhUWHkJ3GRuGVj49agAAAAACAFD/gQQ0A0EAJQAxAAAFEQYHBgcGDwExBwYnIgcGJwcxByMmIyIHETIXFhcWFxYXFhcWFwEXBycHJzcnNxc3FwKKEAPSMgQJDAoLAQELCwQRFxwVZgoQoyAhFiZERREWKisVAThyR3NySHNzSHJzR38DwAsCrCwECAoICAEGBgIDAQEC/nIBAhEeOTgOEiMiEQHgc0dzc0dzc0dzc0cAAQBQ/4ECigNBACUAAAURBgcGBwYPATEHBiciBwYnBzEHIyYjIgcRMhcWFxYXFhcWFxYXAooQA9IyBAkMCgsBAQsLBBEXHBVmChCjICEWJkRFERYqKxV/A8ALAqwsBAgKCAgBBgYCAwEBAv5yAQIRHjk4DhIjIhEAAgBG/4EDfQNBACUAPwAABREGBwYHBg8BMQcGJyIHBicHMQcjJiMiBxEyFxYXFhcWFxYXFhcTFxYHBgcGFxYXFjc2NzY1JicmJyYHBgcGFwKAEAPSMgQJDAoLAQELCwQRFxwVZgoQoyAhFiZERREWKisVUQxLFgw2DwEBDw8VFRBiBFsRFBUREAEBEH8DwAsCrCwECAoICAEGBgIDAQEC/nIBAhEeOTgOEiMiEQKQD1xuPz8SFBQPDgEBEGZ/mGETAQIODhQUFAADAEb/gQRzA0EAJQA+AFgAAAURBgcGBwYPATEHBiciBwYnBzEHIyYjIgcRMhcWFxYXFhcWFxYXASYnJicmBwYXFhcWFxYHBgcGBwYXFjc2NyUXFgcGBwYXFhcWNzY3NjUmJyYnJgcGBwYXAoAQA9IyBAkMCgsBAQsLBBEXHBVmChCjICEWJkRFERYqKxUB8wiWFhgZETJCAwcIAnsjFFobBgYXJy6hAv5eDEsWDDYPAQEPDxUVEGIEWxEUFREQAQEQfwPACwKsLAQICggIAQYGAgMBAQL+cgECER45OA4SIyIRAdH8oBYDBA8oUwUJCAOXt2tmHyAfGiMpqdK/D1xuPz8SFBQPDgEBEGZ/mGETAQIODhQUFAAAAgBG/9MDpAMqACAAMQAABScGIyInJicmNTQ3Njc2MzIXFhcWFRQHFxYVFAcGIyInARQXFjMyNzY1NCcmIyIHBhUDQdBcc19QUC4vLy5QUF9fUFEvLj3NFRERGBcS/Zo6O1JTOjs7OlNSOzod0EQvL1BRXl9RUC8vLy9QUV9rWc0SGxgSERAB6VI7Ojo7UlM7Ojo7UwAAAAACAIv/hQNzA1wAIwA1AAABNTQnJicmBwYHFSIHBiMGBwYVERQzITI3NjURNCcmJyInJiMjISY1JzQzNDc2NzYXFhcWHQEDHVJSeHVTUwMFBgYDJw4PPAJvIA4PDg4gBQkJA4r+3AEBASkoPTssKwQBAYyzeFFSAgFRUne3AQEBDg8l/nw+Dw8fAYsgDg4BAQEPBVBQPSoqAQIpKDwafyIAAQCj/4UDWwNbACwAAAE1Njc2NzYXFhcWHQEhJwYjBgcGFREUMyEyNTYnNCcmJyInNSYnJicmBwYHFQF3AyUmNzgpKQIC/u+EDQYkDg05Akc4AgINDh0KDgJMTHBtTU4EAisxNyUlAgElJTkgsyABAgEODST+ljo5uLodDQ4BAupwSkoCAUlJbi8AAAADAFAARgPVAlEAAwATACUAAAEjAzMBNzY3NhcWFwcXBgcGJyInJScmJyYHBgcXBxYXFjc2PwExAo9fnWH+XLgIDBQYGAOoqAMXFhcLCQLNuAcNFBgXBKioBBcWFgwIuAJR/fUBCuwGAwUNDQvV1gsMDAQJ7OwGAwUNDQvV1gsMDAQBCOwAAAAABABw/4wFDwMzAAcADwATAB4AAAEzNzMXMwMjCQIzETMRMwE3FyMDITUjNzUhFTMHFQOAaBqKGWqXX/7K/sf+xsPuwgEvNTVqfgE8tLT+yq2zAcw/PwFn/bf+ogFeAkX9uwFwhYX9MlPKSFPKSAAAAAQAcP+OBQ8DNQAKABIAGgAeAAABITUjNzUhFTMHFQcJATMRMxEzEzM3MxczAyMHNxcjA54BPLS0/suss7v+x/7Gw+7CnWgaihlql18HNTVqAc9UyUlUyUnj/qIBXgJF/bv+rD8/AWbYhYUAAAMAOf+lA7wDKAAhADUAPAAAASMiBwYHBgcGFRQXFhcWFxYzMjc2NzY3NjU0JyYnJicmIxMjIicmJzQ3NjMyFxYXFhcUBwYjARUhETMRMwH6AlpSUj8/IiEkIz09U1RbWlJSPkAiIiQkPD1TU1sCAo9lZgFmY5JeT1AvLgFlZo4BDf6iafUDKCMiQEBRUltbU1M8PCMkIyJAP1JTWlxSUzw8IyT85GVlj45nZi4uT1BdkWVmAWNpAWn/AAAABACz/88DTQM8ACIAMwBEAFUAAAE0JyY1NDc2JyYHBicmBwYXEgcGFxY3NhcWNzYnJjU0NzY1ATIXFhUUBwYjIicmNTQ3NjMRMhcWFRQHBiMiJyY1NDc2Mxc0JyYjIgcGFRQXFjMyNzY1A00BAQICFRUy9fE0ExQBAgIBFBUy8/M0FBQCAgEB/rIxIyMiIzIxIyMjIzFLNTU1NUtKNDU1NEoyDw8UEw8ODg8TFA8PAYMmR0c6OjQyFxYCAwMCFxYz/jblMhgXAQcHARgXNDE5OEVFJgFcJCMxMiIiIiIyMSMk/rQ1NUtLNTY2NUtLNTW1FA8ODg8UFA4ODg4UAAAAAAMAF/+9BGIC8QASACIAQwAAEyEyFxEjJicmLwEhIicmJyYnESERBgcGBwYHIQYHIxE2MyEXAyIHBgcGBwYnJicmIREHESQXFjMyNzY3Njc2NzYzFxGCATw9Ix4JExMPDv77FQ4EAwIBA20EEAUJCQf/AEEKHyQ8ATxACQZ6e1ZWCwY3NxAX/mosAbgWEVYNEhIMDAIFc3JxcALxKv1uCQgJBAUIBAgHBgJ4/ZQXDAQDAgESEQKSKh79RwECBwgRDQICEhoCvhL9Gg4eEwMDAwMCCgUEAQLkAAMAIf+9A/oDUQAvAEAAUQAAAQcWFxYfAQYHBgcGBwYHBgcGBwYjIicHJzcmJyYvATY3Njc2NzY3Njc2NzYzMhc3ATcmIyIHBhUUFzc1NDc2OwEPARYzMjc2NTQnBxUUBwYrAQPhljEsKxMUBQcIGhscHS0tLi87PDxkX6pmlDAsKxQTBQcIGhscHS0tLi49PDxiYKr+mWs1O2NHRxhtICAsBQxrNjxjR0YaaiAgLAcC6JIrMzQfHwcMDSMkICAoJxwdExQypWqRKzMzHx4HDQwkJCAhJygcHRQTM6b+omgcRkdkOTFpASwgIddqHUdHYzwwaAQsHx8ABgA2//cFSgNCAEUAVgCDAJQApQC2AAABIRYXFhUUBwYjIicmJyMGBwYjIicmNTQ3NjMhNjc2NzY3Njc2NzY7ARY3Njc2NzY/ATMiBwYHBgcGBwYHBgcGKwEmBwYHATI3NjU0JyYjIgcGFRQXFjMFNTQnJisBNTQnJisBIgcGHQEjIgcGHQEUFxY7ARUUFxY7ATI3Nj0BMzI3NjUFMjc2NTQnJiMiBwYVFBcWMzMyNzY1NCcmIyIHBhUUFxYzBzI3NjU0JyYjIgcGFRQXFjMDAAEff1ZWVld+YEtLKIIoS0tgflZXV1d9ATESBQwIDyAaEAgSEg4NEhEIDAUJCgcHTwECAgMDAhcYGw8IEhINDhIRBBABDBYPDw8PFhUPDw8PFf2/CgsSTggICicKCAhbCggICAgKWwcICycLBwhOEgoLAdEWDw8PDxYVDw8PDxXhFQ8PDw8VFg8PDw8WcRYPDw8PFhUPDw8PFQJaClZWdYBcXDQ1Wlo1NFxcgHdaWgECBQoSNigHBAIDAggEEQUPDwwMBAMFBQMeKCkHBAICAggCE/7VDw8VFg4PDw4WFQ8PVScLBwhbCggICAgKWwgICicKCAhOEgsKCgsSTgcICxQPDxYVDw8PDxUWDw8PDxYVDw8PDxUWDw9iDxAVFQ8QEA8VFRAPAAAADQAw/9cD3AM6ADYASwBPAFQAWQBeAGIAZgBrAHAAdQB5AIQAACU1JicmJyYnJic2NRE0JyYnJiMhIgcGFREGFwYHBgcGBwYHBgcWMyEWNzY3NjsBNhcWFxYzNjMBITIXFhURFAcGIyEiJyY1ETQ3NjMTIzczFyM3MxUzIzUzFTczFyM1OwEXIwUjNzMXIzczFTMjNTMVNzMXIzU7ARcjBTUhFRQXFjMhMjcD3A0nCAYFCwsEGRQVJRkL/c5YGAcEGwQHBgYFAwwVFQsHCQEqFgQDCA4djzAJBQoLFDH7/ScCBxoKCgoKGv32GAoKCwsZMUQHQ21UBU9+W1seTQZTbUIGQv5tVglSQioGJPjU1BwkBipDUwhUART8VAsKGgNPJghDBSJdGA0KEhIGHD8BSCweHgoFRxYe/rY3HgYLDAgICB04NxsBAxUKDxwCKxEIBwICowoLG/7FGgoKCgoZAUAXCwr+BRUVFRUVFRUVFRU3ExMTExMTExMTE8EqGBoKChwAAAQALf/FBGoDSwAEAA0AHgA0AAABESERIQEzJRcTFxEhEQE0JyYjIgcGFRQXFjMyNzY1JRUGIxM2NzY3NTYzMjcWFwYFBAcCAwRq/KgDWPz3cwEWZXdY/UMBDhkZJSMaGhoaIyUZGf55UQkwbOzsewohIQoGApP+0f7RgCQZA0v9ZwKZ/bXleQEalgEO/gIBVCQZGRkZJCMZGhkZJBtZDv4fCxoaCyYCAWsMDiIiDAFyAR0AAAIAI//XA/4CkgAKAA4AAAEhAxE3MxYXFSEVFyEDIQMs/aOsQtEIBgHo0v0A2wMAAcX+nQHbVQMOM4ky/kQAAAAGADv/0wMaAyQADgATACMAMwBDAFYAABMhMhcWFxYXESEmJyYnEQUjFTM1FyE2NTQnJi8BIQYVFBcWFxchNjU0JyYvASEGFRQXFhcHITI1NCcmLwEhIhUUFxYzFSE2NTQnJichIgcGFRQVFhcWMzsCeRUUFQgJF/0xBwQEAQESrKw6AR8OBAMDBP7hDwQEAwQBHw4EAwME/uEPBAQD1QH4DgQDAwT+CA0CAQoB+A4EAwP+BAoBAgEDAwYDJAUGBAQL/M0GCwoIAy7Ju7s6Dg0HCAcFBA8QBgYHBIUODQYIBwUEEA4GBgcEdw0GCAcEBR4KAQKCDQ8GBAQBAgILCgQFBAUAAAYARv+oA6oDVgA8AEEATABXAFwAZwAAExUUFxYVFBcUFxYXFjMhNjc2JzQ3Nj0BMzY3NicmJyYrATUmPQEmJyYnISIHBh0BIyIHBgcGFxYXMhcWFyUVIzUzBSEUBwYVITQnJjUTMzQnJjUjFBcWFTsBESMROwE0NzY1IxQHBhWMCQkBCgkTFgcCIS4SEQEKCSMgAQYGAhQNC9IBAwsMHP78JQwNwBgJCQECAwEYBQ8OCgHW6en+ogHqCAj+NwgJVkQICUYJCn1ERHpGCQlGCQkCUhFkxcVeFQ0SCgkEAgESEi1iwsNiEgIbGSAXBQISDBckHQsLAQ0NJU4JCRgPHhkDAQECvUVFvV68vF1cvLxf/hNDhYVCQoWFQwGP/nFDhYVCQoWFQwAABQBE/8kD0gK5AAQACQAOABMAGAAAFyERIRETIRUhNSEzFSM1OwEVIzUFIREhEUQDjvxySQHY/igCC2VllGVl/WAC//0BNwLw/RACqG5ucHBwcNr+gQF/AAIANv+lA+kDWQAUABkAAAE0JyYjIgcGBwYVFBcWFxYzMjc2NQchNSEVA+mLisSBbW1APz9AbW2BxIqLkP1tApMBf8SLiz9AbW2BgW1tP0CLi8RLlpYAAAACAB//kwPSA0cAEgAfAAABNCcmIyIHBgcGFRQXFjMyNzY1ByMVIzUjNTM1MxUzFQPSi4vEgG1tP0CKi8TEi4vB0JHQ0JHQAW3Ei4tAP25tgMSLi4uLxErPz5TPz5QAAAABAEb/gQQXA1EACwAACQEHCQEnCQE3CQEXAj0B2hD+J/4nDwHa/iYPAdkB2RABaP4nDgHa/iYOAdkB2w7+JwHZDgAAAAEANv+5A9ADNwAXAAABETQnJiMhIgcGFREUFxY7ARMBITI3NjUD0BUVHfzzHBUVFRUcYgMBKwF9HRUVARUB2h4VFRUVHv4mHRUV/usBFRUVHQAAAAIAFwAcA/gC6wAeADIAAD8BJicmNTQ3Njc2MzIXFhcmIyIHBgcGFRQXFhcjIicFJwYjIicmNTQ3NjMyFxYVFAcGB3gfPSEiOjliY3SCamoySE1gU1IvMB8eNwNkWwKbWjI3dVRTU1R1dVRTGhsxJJcuPDxEWEtMKyw2NlkaJSY/QEw7NjUnI2Q3Dz4+V1k+Pj4+WS8qKh8AAQBL/6MCmgNNAAUAAAEnAQMzAQEKvwITi8f92wE3AgIU/mr97AAAAA0AJf+RA+wDXgAZACEALQAzADoARgBSAF4AagB0AH4AjACaAAABIyIHBgcGFRQXFhcWMzI3Njc2NTQnJicmIwMnNzY3NjcRMxEWFxYXFhciBwYHJSc2NwYHISYnFhcGBwUXJicmJyY3FhcGFQU2NSc2NxYHBgcGByUVJicmJyYnJjcWFxc1NjcWBwYHBgcGBwcXFhcWFyYnFhcFNjc2NzYzNwYHJxUGJyYnJicmJxYXFhcXNTY3NjcGBwYHBgcGJwIMCIJub0BAQEBwb4WEb29BQEBBbm+CH5gLHzkWHzceFToeAwkSNDUc/v5/R4s5GgHNGjqKRzBN/igEUiUfBQcXRkUEAd4FBTdVGAkDISRT/viaAgECAgEBAjNuN2g4AwEBAgIDAZn9CQcQERSTP4wBAXwVEREHBwGMPZW2Hx4VEREJCA0TMzMZNhozMxINCQgRERUcIQNeQUFvcIOGcHFBQUFBcXCGg3BvQUH+jAkxdkYYCv7oARgKGEV3CCkEAwIOJJUzVJiWVjOVDhaWZg8WESJUPxIRShhmNTFiDRZDUCESFg+61A4BARwdLi44AwbU1AYDOC4uHRwBAQ4mHBwqKh89mSkCqx4rKhwcK5k9nb8BHBYgHxgZKQIEAwK/vwIEBAErFxcgIBYcAQAAAAAFAAD/gAQAA4AAFAAhAC4AMwA8AAAFMj4CNTQuAiMiDgIVFB4CMwEzFSMVMxUjFTMVIzU7ARc3MwcXIycHIzcnOwEVIzU7ARUjFSM1IzUCAGq7i1BQi7tqaruLUFCLu2r+zYxqYmJsjrUoLC8mQUUpMTEnRUDbIiJTnj4iPoBQi7tqaruLUFCLu2pqu4tQAmYdMxw5HsNERF5lS0tlXsPDHaamHQAAAAABAAAAAQAAB529g18PPPUACwQAAAAAANFc4fIAAAAA0Vzh8v/+/20GaAOAAAAACAACAAAAAAAAAAEAAAOA/4AAAAbb//7/+QZoAAEAAAAAAAAAAAAAAAAAAAB2AAAAAAAAAAAAAAAAAAAAAAQAACcEAAAnBAAANAQAAFsEAABbBAAAWwQAAEMEAADOBAAA9QQAACAEAAAlBAQAygP0ABMEAAAMBAAATwQAAE8EAABTBJQAKwbbAGcEAgBTBAAAMwQAADkBJgAjBHAAEARwACUEAADiBAAAJAFL//4DkgAEAwAAGQQAAFkCAAAnA0AAOQIAABcEAAAhBAAAJwOAABcDgAAMBAAAJgQAADUEAAA0BAAAOAQAACgEAAA1BAAAVQQAAEcEAABIBAAASwQAAE0ECQDuBAAAEwMAAD0EAABbBAAAKALAAAQEAABUBAAA6AQAABoEAAA6BAAAYwQAAFsEAAARBAAAlAQAADMEAABbBAAAXQQAAFsEAAADBAAAUwQAACYEAAAjBAAAJwLAAEEEAABUBAAAHQQAAEkD1AAjBAAAWwQAAIYEAAATBAAAbQQAADYEAAAnBEwAGAQAAFQEsABQA+cAUARMAEYEsABGBAAARgQAAIsEAACjBAAAUAV4AHAFeABwBAAAOQQJALMEjgAXBAAAIQV4ADYEAAAwBKAALQQAACMDQAA7BAAARgQAAEQD8AA2A/AAHwRMAEYEAAA2BAAAFwLAAEsEAAAlBAAAAAAAAAAACgAUAB4AcADCAUoBkAHYAoAC/gMkA0oEDgQ4BE4E1AUwBfgGTAaeBsAHMgfcCIgJLgk8CVIJaAl+Cf4KHApGClQKYgpwCn4KjAqmCtQLVAuKC/YMggzIDdAOCg5IDoYPDg86D4gP7BAuEMIQ/hGuEhITchU0FY4WCBZmF8YYNBi4GPAZYBp6G8ocaB2SHdYehB6kH9wf/iDkIRQhSCGMIfoixiOEJAAkziU0JWQloCXwJiwmkCccJ2gnuCf+KEIoeiiwKQ4pjin6KnYrciw0LI4sri0wLcQt8C4cLkwubi6YLuQu+C/wMEQAAAABAAAAdgFPABkAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAADgCuAAEAAAAAAAEAJAAAAAEAAAAAAAIADgCUAAEAAAAAAAMAJAA6AAEAAAAAAAQAJACiAAEAAAAAAAUAFgAkAAEAAAAAAAYAEgBeAAEAAAAAAAoANADGAAMAAQQJAAEAJAAAAAMAAQQJAAIADgCUAAMAAQQJAAMAJAA6AAMAAQQJAAQAJACiAAMAAQQJAAUAFgAkAAMAAQQJAAYAJABwAAMAAQQJAAoANADGAEkAYwBvAG4AbwBjAGgAaQB2AGUALQBSAGUAZwB1AGwAYQByAFYAZQByAHMAaQBvAG4AIAAxAC4AMABJAGMAbwBuAG8AYwBoAGkAdgBlAC0AUgBlAGcAdQBsAGEAckljb25vY2hpdmUtUmVndWxhcgBJAGMAbwBuAG8AYwBoAGkAdgBlAC0AUgBlAGcAdQBsAGEAcgBSAGUAZwB1AGwAYQByAEkAYwBvAG4AbwBjAGgAaQB2AGUALQBSAGUAZwB1AGwAYQByAEYAbwBuAHQAIABnAGUAbgBlAHIAYQB0AGUAZAAgAGIAeQAgAEkAYwBvAE0AbwBvAG4ALgADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)format("woff");font-weight:normal;font-style:normal}[class^="iconochive-"],[class*=" iconochive-"]{font-family:"Iconochive-Regular"!important;speak:none;font-style:normal;font-weight:normal;font-variant:normal;text-transform:none;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.iconochive-Uplevel:before{content:"↵"}.iconochive-exit:before{content:"🚣"}.iconochive-beta:before{content:"β"}.iconochive-logo:before{content:"🏛"}.iconochive-audio:before{content:"🕨"}.iconochive-movies:before{content:"🎞"}.iconochive-software:before{content:"💾"}.iconochive-texts:before{content:"🕮"}.iconochive-etree:before{content:"🎤"}.iconochive-image:before{content:"🖼"}.iconochive-web:before{content:"🗔"}.iconochive-collection:before{content:"∑"}.iconochive-folder:before{content:"📂"}.iconochive-data:before{content:"🗃"}.iconochive-tv:before{content:"📺"}.iconochive-article:before{content:"🗏"}.iconochive-question:before{content:"⍰"}.iconochive-question-dark:before{content:"?"}.iconochive-info:before{content:"i"}.iconochive-info-small:before{content:"ⓘ"}.iconochive-comment:before{content:"🗩"}.iconochive-comments:before{content:"🗪"}.iconochive-person:before{content:"👤"}.iconochive-people:before{content:"👥"}.iconochive-eye:before{content:"👁"}.iconochive-rss:before{content:"∞"}.iconochive-time:before{content:"🕑"}.iconochive-quote:before{content:"❝"}.iconochive-disc:before{content:"💿"}.iconochive-tv-commercial:before{content:"💰"}.iconochive-search:before{content:"🔍"}.iconochive-search-star:before{content:"✽"}.iconochive-tiles:before{content:"⊞"}.iconochive-list:before{content:"⇶"}.iconochive-list-bulleted:before{content:"⌗"}.iconochive-latest:before{content:"∈"}.iconochive-left:before{content:"˂"}.iconochive-right:before{content:"˃"}.iconochive-left-solid:before{content:"◂"}.iconochive-right-solid:before{content:"▸"}.iconochive-up-solid:before{content:"▴"}.iconochive-down-solid:before{content:"▾"}.iconochive-dot:before{content:"⏤"}.iconochive-dots:before{content:"▦"}.iconochive-columns:before{content:"▯"}.iconochive-sort:before{content:"⇕"}.iconochive-atoz:before{content:"🔤"}.iconochive-ztoa:before{content:"🔥"}.iconochive-upload:before{content:"📤"}.iconochive-download:before{content:"📥"}.iconochive-favorite:before{content:"★"}.iconochive-heart:before{content:"♥"}.iconochive-play:before{content:"▶"}.iconochive-play-framed:before{content:"🎬"}.iconochive-fullscreen:before{content:"⛶"}.iconochive-mute:before{content:"🔇"}.iconochive-unmute:before{content:"🔊"}.iconochive-share:before{content:"🎁"}.iconochive-edit:before{content:"✎"}.iconochive-reedit:before{content:"✐"}.iconochive-gear:before{content:"⚙"}.iconochive-remove-circle:before{content:"❎"}.iconochive-plus-circle:before{content:"🗖"}.iconochive-minus-circle:before{content:"🗕"}.iconochive-x:before{content:"🗙"}.iconochive-fork:before{content:"⋔"}.iconochive-trash:before{content:"🗑"}.iconochive-warning:before{content:"⚠"}.iconochive-flash:before{content:"🗲"}.iconochive-world:before{content:"🗺"}.iconochive-lock:before{content:"🔒"}.iconochive-unlock:before{content:"🔓"}.iconochive-twitter:before{content:"🐦"}.iconochive-facebook:before{content:"f"}.iconochive-googleplus:before{content:"g"}.iconochive-reddit:before{content:"👽"}.iconochive-tumblr:before{content:"T"}.iconochive-pinterest:before{content:"𝓟"}.iconochive-popcorn:before{content:"💥"}.iconochive-email:before{content:"📧"}.iconochive-embed:before{content:"🔗"}.iconochive-gamepad:before{content:"🕹"}.iconochive-Zoom_In:before{content:"+"}.iconochive-Zoom_Out:before{content:"-"}.iconochive-RSS:before{content:"📨"}.iconochive-Light_Bulb:before{content:"💡"}.iconochive-Add:before{content:"⊕"}.iconochive-Tab_Activity:before{content:"⌘"}.iconochive-Forward:before{content:"⏩"}.iconochive-Backward:before{content:"⏪"}.iconochive-No_Audio:before{content:"🔈"}.iconochive-Pause:before{content:"⏸"}.iconochive-No_Favorite:before{content:"☆"}.iconochive-Unike:before{content:"♡"}.iconochive-Song:before{content:"♫"}.iconochive-No_Flag:before{content:"⚐"}.iconochive-Flag:before{content:"⚑"}.iconochive-Done:before{content:"✓"}.iconochive-Check:before{content:"✔"}.iconochive-Refresh:before{content:"⟳"}.iconochive-Headphones:before{content:"🎧"}.iconochive-Chart:before{content:"📈"}.iconochive-Bookmark:before{content:"📑"}.iconochive-Documents:before{content:"📚"}.iconochive-Newspaper:before{content:"📰"}.iconochive-Podcast:before{content:"📶"}.iconochive-Radio:before{content:"📻"}.iconochive-Cassette:before{content:"📼"}.iconochive-Shuffle:before{content:"🔀"}.iconochive-Loop:before{content:"🔁"}.iconochive-Low_Audio:before{content:"🔉"}.iconochive-First:before{content:"🎖"}.iconochive-Invisible:before{content:"🕶"}.iconochive-Computer:before{content:"🖳"}</style><div class="wb-autocomplete-suggestions sf-hidden" style=left:135px;top:245px;width:1019px></div></template>
|
||
</div><div id=wm-ipp-print class=sf-hidden>The Wayback Machine - https://web.archive.org/web/20220818041911/https://mb-soft.com/public4/neutrino.html</div>
|
||
|
||
|
||
<center><h1>Neutrinos Do Not Exist</h1>
|
||
<h2>Nuclear Spin is a Vector Quantity and it is not a Scalar</h2>
|
||
<h2>The Brilliant Wolfgang Pauli's Logical Blunder of 1930</h2></center>
|
||
<p><b>As of yet, 2021, no experiment has ever been done which has actually confirmed
|
||
that Neutrinos actually exist.</b> It took 25 years after Wolfgang Pauli
|
||
had (incorrectly) speculated that Neutrinos <b>must</b> exist, before the first
|
||
<b>claim</b> of an experimental confirmation was made. In 1956, <b>some
|
||
creative assumptions were made</b> by Reines and Cowan. They devised their
|
||
own unique detector, which involved detecting protons, neutrons, positrons and
|
||
electrons (in order to try to prove the existence of a Neutrino). A
|
||
Nuclear Reactor was found to have produced a <b>handful</b> of unexpected
|
||
responses in their detector and they announced it as proving the Neutrino.
|
||
<b>NO ACTUAL NEUTRINOS</b> were ever found but instead <b>only</b> a
|
||
microscopic number of creative sequences of nuclear processes. One of their favorite
|
||
processes resulted in a burst of gamma radiation, and then, <b>later</b>,
|
||
another <b>second</b> burst of gamma radiation. Based on a
|
||
<b>lot</b> of assumptions, Reines and Cowan calculated the <b>time delay</b>
|
||
they expected between the two gamma radiation bursts. On <b>this</b>, an
|
||
<b>assumed</b> sequence of nuclear events which resulted in two unique
|
||
gamma radiation bursts, Reines and Cowan announced that the had <b>proven</b>
|
||
the existence of a Neutrino. All their experiment had actually proved was
|
||
that <b>some</b> (unknown) process took place <b>where two gamma ray bursts
|
||
occurred, where no reference to any Neutrino at all was ever involved.
|
||
By the way, No Neutrino could ever cause even one gamma ray burst</b> (due to
|
||
the Conservation of Energy Law).
|
||
<b>But that specific experiment, inside a nuclear reactor, is <b>still</b>
|
||
considered the "absolute proof of Neutrinos"</b>. <b>No actual
|
||
experiment, during the following 60 years has ever (yet) even detected even
|
||
a single Neutrino</b>.</p>
|
||
<p>And even the many assumptions that have been made are incredibly weak.
|
||
<b>It is acknowledged that a Neutrino has no electric charge</b>. But one of
|
||
the primary claims of having detected Neutrinos is that Cerenkov Radiation
|
||
has been observed. I have certainly done (different) experiments which created
|
||
Cerenkov Radiation, and it <b>is</b> a unique experience. <b>But only charged
|
||
particles can create Cerenkov Radiation.</b> That would logically eliminate
|
||
Neutrinos from the picture. A very bizarre <b>assumption</b> was made where
|
||
an (electrically neutral) neutrino somehow waves a magic wand to <b>create</b>
|
||
a negatively
|
||
charged electron. We Physicists <b>know</b> that such silliness is simply
|
||
impossible. <b>We know that Electric Charge Must Be Conserved.</b> But that
|
||
assumption, where a Neutrino somehow creates a negatively charged electron
|
||
(in order to then cause the observed Cerenkov Radiation), is somehow simply
|
||
absolutely <b>ACCEPTED</b> by Physicists and the world, which then, they
|
||
declare <b>PROVES</b> that Neutrinos exist. No they don't.</p>
|
||
<p>Not only have they adopted impossible assumptions, which everyone
|
||
simply accepts as valid, but even if such a process could occur, <b>they
|
||
claim that Neutrinos pass through the entire Earth</b> without actually interacting
|
||
with <b>any</b> atom or object along the way is supposedly only <b>one chance in
|
||
2,000,000,000,000</b>. Yet, they claim that in their experiment, the
|
||
Neutrino didn't just collide with something big, like a Uranium nucleus,
|
||
but in the tiniest available target, an electron. To then do a process
|
||
which violates the Conservation Laws.</p>
|
||
<p>The only other experiments that allegedly prove that Neutrinos exist are
|
||
essentially enormous tanks of liquid chlorine very deep in mines. The
|
||
"deep in a mine" phrase is to claim that surface events then could not
|
||
affect their tank of Chlorine. But they neglect the fact that each of those
|
||
deep mines are relatively near even deeper concentrations of Radium and
|
||
Uranium and other radioactive ores in the Earth, which DO (directly) cause
|
||
Cerenkov Radiation and also DO interact with Chlorine atoms to create a few
|
||
Argon atoms. The results they see in their underground experiments are
|
||
probably absolutely natural events.</p><br><br>
|
||
<p>One of the smartest people ever, Wolfgang Pauli, saw that there
|
||
seemed to be a serious error in nuclear physics, but then he made
|
||
an even bigger logical blunder in thinking that he solved it. During
|
||
the 1920s, Physicists had found that nuclear particles, Protons, Electrons
|
||
and Neutrons each had "Spin", which meant that they had to comply
|
||
with a "Conservation of Angular Momentum Law." There appeared
|
||
to be a serious problem. Every 15 minutes, every Neutron does a
|
||
"decay" (which later came to be known as a "Beta Decay"),
|
||
where the Neutron "came apart" into a Proton and an Electron.
|
||
This seemed to represent a serious problem. Each Neutron was known to
|
||
have a "Nuclear Spin" of what is now called "1/2 unit",
|
||
and it came apart into two new objects, which each had a
|
||
"Nuclear spin" of 1/2 unit. This was considered a catastrophe!
|
||
They <b>thought</b> this meant that the Law of Conservation of Angular Momentum
|
||
must not be true! Unfortunately, they were thinking in what Physicists
|
||
call "Scalar Addition" without realizing that all those
|
||
Nuclear Spins were actually Vector quantities. <b>Vectors add differently,
|
||
like Geometrical quantities and not like simple Numbers.</b></p>
|
||
<p><img src='data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="338" height="317"><rect fill-opacity="0"/></svg>' align=left hspace=6 width=338 height=316 alt="Graphic of a Vector Addition Diagram of an equilateral triangle of Vectors" style="background-blend-mode:normal!important;background-clip:content-box!important;background-position:50% 50%!important;background-color:rgba(0,0,0,0)!important;background-image:var(--sf-img-10)!important;background-size:100% 100%!important;background-origin:content-box!important;background-repeat:no-repeat!important"></p>
|
||
<p>Dreadfully incorrect logic was used in trying to explain how and why a
|
||
Neutron can Beta-Decay into a Proton and a Electron about every 15 minutes.
|
||
During the 1920s, Physicists had discovered that the elementary particles
|
||
Electrons, Protons and Neutrons each had a "Nuclear Spin" and
|
||
all three surprised Physicists by having the exact same amount of this
|
||
Nuclear Spin, of what is now commonly called "1/2 unit". When
|
||
it was realized that every Neutron "came apart" into a Proton
|
||
and an Electron, many Physicists were panicked.
|
||
There is a basic Law in Physics called the Conservation of Angular
|
||
Momentum. The entire Physics Community was troubled by a particle
|
||
(a Neutron) having a Spin of 1/2 unit somehow coming apart into TWO new
|
||
particles, an Electron and a Proton, each of which definitely had a Spin
|
||
of 1/2 unit. And so Physicists were constantly discussing whether they
|
||
might have to discard a basic Law, that of Conservation of Angular Momentum.
|
||
Some people today have applied "Revisionist History" in claiming
|
||
that Pauli was instead explaining some problem in Energy Conservation, but
|
||
that was not actually the case. Energy is Conserved just fine in
|
||
Beta-Decay. <b>Pauli's focus was entirely based on what he
|
||
thought was an Angular Momentum Conservation issue.</b> The Beta-Decay of
|
||
Neutrons soon became the "Nuclear problem of the Decade".
|
||
Wolfgang Pauli took the lead in this matter, and he soon gave a "major
|
||
speech" where he "explained to the world" how this could
|
||
happen. Pauli announced that he had discovered that a "new
|
||
particle" (which was later called a Neutrino) was also created in
|
||
every Beta-Decay process, and Pauli explained that Nuclear Spin was
|
||
thereby conserved:</p>
|
||
<p>Pauli claimed that 1/2 → 1/2 + 1/2 + -1/2 which is (Neutron) →
|
||
(Proton) + (Electron) + (Anti-Neutrino). <b>This Scalar Addition would have
|
||
worked if Nuclear Spin had been Scalar quantities.</b></p>
|
||
<p><b>Pauli claimed this with no actual evidence whatever. In fact, no one
|
||
on Earth even claimed to have detected any Neutrino for more than 25
|
||
years after his speculation, and even that claim was based on several
|
||
very weak assumptions, and an indirect experiment, which are likely not
|
||
even to be true.</b></p>
|
||
<p>That was a logical blunder, in trying to do normal Scalar Addition
|
||
to Vector quantities, which must actually be added by Vector Addition. The graphic
|
||
above shows the <b>actual Vector Addition</b> problem, where all three Spins
|
||
happen to be Vectors of identical 1/2 Amplitude. The "lucky"
|
||
fact was that this resulted in an equilateral triangle in the Vector Addition.</p>
|
||
<p>Nuclear Spin is a Vector quantity, actually <b>Angular Momentum</b>, and
|
||
it is not a Scalar quantity as Wolfgang Pauli had incorrectly assumed in
|
||
1930. <b>As a Vector, both Amplitude and Direction are important</b>.
|
||
Most High School students learn Vector Addition by two simple examples.
|
||
You know that you can swim at 4 mph and you are standing on the edge
|
||
of a river where the water flows at 3 mph. What is the fastest you could
|
||
cross the river? And what direction do you need to swim in order to arrive
|
||
at a McDonald's Restaurant which is exactly straight across from you. These
|
||
problems seem simple but they cannot be solved with traditional Scalar
|
||
Addition. You might think that you would swim either 7 mph or 1 mph, but
|
||
neither would be true. You need to use Vector Addition to solve these
|
||
problems. For the first problem, you would discover that you would need
|
||
to "aim" straight across, but that you would arrive way downstream. For the
|
||
McDonalds problem, you would discover that you need to "aim" quite far
|
||
upstream. I won't solve it here, but it is pretty simple math, and the
|
||
answer is that you would need to "aim" 36.87° upstream (a surprising
|
||
but correct angle). You would be swimming for a long time to get to the
|
||
McDonald's restaurant.</p>
|
||
<p>As shown above, a <b>Vector Addition Diagram</b> of the Nuclear Spin of
|
||
a Neutron's Beta-Decay happens to be an <b>equilateral triangle.</b> A
|
||
Electron's Spin of 1/2 unit is one (red) side of that triangle with a
|
||
Proton's Spin of 1/2 unit (green) and an Neutron's Spin of 1/2 unit (blue)
|
||
being the other two Vector sides. (as shown in this graphic).
|
||
<font size=5><b>There is no issue of any problem with Conservation of Angular Momentum
|
||
regarding the Spin Vector of a Neutron and the consequent Spin Vectors of
|
||
a Proton and Electron</b>.</font></p>
|
||
<p>Wolfgang Pauli did not seem to know that and in incorrectly thinking
|
||
along Scalar lines (only considering the amplitude with no direction), he
|
||
dreamed up the need for Neutrinos (with another [Scalar] Spin of 1/2 unit).
|
||
His (incorrect) Scalar thinking did not add up correctly as Scalar
|
||
quantities, and so he thought he <b>needed</b> to invent a Neutrino,
|
||
<font size=5><b>for a single purpose, that of supplying an extra Scalar
|
||
quantity of Nuclear Spin in order to comply with the Conservation of
|
||
Angular Momentum</b></font>. It therefore turned out that Pauli was
|
||
<b><font size=5>trying to resolve a PROBLEM WHICH DID NOT ACTUALLY EVEN
|
||
EXIST.</font></b> He was smart and he certainly should have known
|
||
better than to try to apply Scalar thinking and logic to Vector quantities.
|
||
His explanation was interesting in that <b>he described his Neutrinos as
|
||
having zero mass, zero electrical charge, zero size, and zero everything
|
||
else, except for the 1/2 Nuclear Spin that he needed to try to justify
|
||
his Scalar Addition problem.</b></p>
|
||
<p>There is additional statistical scientific and precise mathematical
|
||
evidence that Neutrinos do not exist inside atomic nuclei in the highly
|
||
respected NIST data resource. Here are two related articles.</p>
|
||
<p align=CENTER><a href=https://web.archive.org/web/20220818041911/http://mb-soft.com/public9/nuclei74.doc><b><i><font size=4>Nuclear Physics May be Fairly Simple </font></i></b></a></p>
|
||
<p align=CENTER><a href=https://web.archive.org/web/20220818041911/http://mb-soft.com/public2/nuclei6.html><b><i><font size=4>Nuclear Physics - Statistical Analysis of Isotope Masses</font></i></b></a></p>
|
||
<p>Wolfgang Pauli was one of the most brilliant men ever, one of a handful
|
||
of men who developed Nuclear Physics, but in 1930, it appears that he made
|
||
an enormous logical blunder when he speculated that Neutrinos <b>must</b> be
|
||
necessary inside atomic nuclei!</p>
|
||
<p>There is a curious simple but huge flaw in Nuclear Physics today
|
||
regarding this incorrect reasoning of Pauli (for which he even later
|
||
received the Nobel Prize in Physics in 1945.) <b>Nuclear Spin is a Vector
|
||
quantity, actually Angular Momentum, which every beginning Physics student
|
||
knows!</b> It is not a Scalar quantity like most of the things we
|
||
encounter in normal life. The difference is that every Vector quantity has
|
||
both an Amplitude and a Direction, while all Scalar quantities only have
|
||
Amplitude and they do not have any defined direction. Examples are speed,
|
||
which is a Scalar, and velocity, which is a Vector, the difference being
|
||
that velocity tells you what direction the object is moving in, along with
|
||
its speed.</p>
|
||
<p>Physicists (should) all know that any quantity like Nuclear Spin is
|
||
necessarily a Vector, where both the rate of rotation is specified, as
|
||
well as the orientation, which is defined by the direction of the spin
|
||
axis. We say the Earth has a Spin Vector of "once a day"
|
||
rotational speed and a direction of exactly due north. If the Earth's
|
||
spin Vector were pointed south instead, that would tell us the Earth was
|
||
spinning the other way around.</p>
|
||
<p>During the 1920s, Physicists discovered that all nuclear particles
|
||
have Angular Momentum or Spin Vectors. <b>They were mostly concerned
|
||
with one specific object, the Neutron, which was known to spontaneously
|
||
decay into a Proton and an Electron with a half-life of around 15
|
||
minutes</b>. More confusing yet, the Proton and Electron tended to quickly
|
||
fuse back together to reform a into a Neutron.</p>
|
||
<p>Physics has long been based on several Conservation Laws, including one
|
||
of <b>Conservation of Angular Momentum</b>.</p>
|
||
<p>By about 1929, it was firmly known that each Proton, each Electron and
|
||
each Neutron all had the exact <b>same</b> amount of "Nuclear Spin".
|
||
This Spin is described as being 1/2 unit of Spin, using an actual scientific
|
||
quantity of Angular Momentum defined as Planck's Constant divided by
|
||
(2 * Pi), or h/2 π or h-bar.</p>
|
||
<p>Many Physicists repeated the same experiment where a Neutron spontaneously
|
||
"Beta-Decayed" into a Proton and an Electron, and everyone was uncomfortable
|
||
with the result. Pauli was one of the leading Physicists who was troubled
|
||
by a Neutron starting out with a Spin of 1/2, and coming apart into
|
||
<b>two</b> particles, a Proton with a Spin of 1/2 and an Electron with a
|
||
Spin of 1/2. <b>It was (incorrectly) thought that this violated the
|
||
Conservation of Angular Momentum.</b> And so Wolfgang Pauli dreamed up a
|
||
new particle, which became known as a Neutrino (or, in this specific
|
||
case, an Anti-Neutrino), which he said had no electrical charge, no
|
||
mass, no size and only a single characteristic, its Nuclear Spin of 1/2
|
||
unit.</p>
|
||
<p><b>In other words, <font size=5>the only reason that
|
||
the Neutrino was even speculated to exist was for the single purpose of
|
||
trying to resolve a CONSERVATION PROBLEM WHICH DID NOT ACTUALLY EVEN
|
||
EXIST.</font><font size=4> There has never been any other reason suggested
|
||
as to why Neutrinos should even exist!</font></b></p>
|
||
<p>Therefore, Pauli publicly announced that he had the explanation for
|
||
how Angular Momentum could be Conserved when a Neutron decayed. He
|
||
explained (wrongly) that the Neutron broke apart into <b>three</b> particles
|
||
and not just the obvious two, that is:</p>
|
||
<p>Neutron →
|
||
Proton + Electron + (anti-)Neutrino</p>
|
||
<p>He then explained that Nuclear Spin was conserved:</p>
|
||
<p>1/2 →
|
||
1/2 + 1/2 + -1/2</p>
|
||
<p>where the Neutrino involved was actually an Anti-Neutrino, meaning that
|
||
it spins in the opposite direction so that the Spin Vector is in the
|
||
opposite direction (and therefore the minus sign), which he needed for his
|
||
Scalar Addition to work.</p>
|
||
<p>Everyone was thrilled that the brilliant Wolfgang Pauli had solved the
|
||
biggest nuclear problem of the day! To this day, in 2018, everyone still
|
||
absolutely accepts Pauli's explanation, as he was one of a handful of
|
||
Physicists, with Einstein and Bohr, who was researching Nuclear Physics.
|
||
Therefore, no one questions Pauli's announcement that there <b>must be</b>
|
||
Neutrinos, in order to explain the Nuclear Spin Conservation issue of a
|
||
Neutron's beta-decay.</p>
|
||
<p><b>For bizarre reasons that are beyond me, the brilliant Wolfgang Pauli
|
||
and all Physicists since him seem to assume the Nuclear Spin is a Scalar
|
||
quantity, which would then require the speculation of a Neutrino's existence</b>,
|
||
with a Spin of 1/2, to Conserve Spin by a Scalar addition of
|
||
1/2 = 1/2 + 1/2 - 1/2.</p>
|
||
<p><b><font size=5>That is not remotely true!</font></b> Pauli had made
|
||
an enormous logical blunder in assuming that Nuclear Spin is a Scalar
|
||
quantity! Therefore, every Physicist today still buys into that wrong
|
||
assumption!</p>
|
||
<p><b><font size=4>As an actual Vector quantity, it is clear that THERE
|
||
IS NO NEED TO DREAM UP A NEUTRINO IN ORDER TO CONSERVE NUCLEAR
|
||
SPIN</font></b>.</p>
|
||
<p><img src='data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="338" height="317"><rect fill-opacity="0"/></svg>' align=right hspace=6 width=338 height=316 alt="Artwork of a Vector Addition Diagram of an equilateral triangle of vectors" style="background-blend-mode:normal!important;background-clip:content-box!important;background-position:50% 50%!important;background-color:rgba(0,0,0,0)!important;background-image:var(--sf-img-10)!important;background-size:100% 100%!important;background-origin:content-box!important;background-repeat:no-repeat!important">
|
||
Consider a (red) Spin Vector of an Electron, which has amplitude of "1/2 unit".
|
||
(as shown in this graphic, to the upper right). The way Vector Addition
|
||
works, is that two Vectors can fuse together into a brand new Vector,
|
||
as long as they <b>graphically add together</b>, as the green (Proton Spin
|
||
Vector) and red (Electron Spin Vector) Vectors do in this graphic, in
|
||
forming a new blue (Neutron Spin Vector).
|
||
In our example, the three Vectors form an equilateral triangle, meaning
|
||
that all three Vectors shown have exactly the same amplitude.</p>
|
||
<p>This works the other way as well. Two Spin Vectors (with identical
|
||
amplitude of 1/2 unit) (shown in green and red in our graphic) which
|
||
happen to be oriented at a space angle of 120 degrees from each other,
|
||
can also add, as Vectors, to become a new Spin Vector (shown in blue in our
|
||
graphic.) The new Neutron Spin Vector has exactly the same amplitude (1/2 unit)
|
||
but is now at an orientation of a third side of an equilateral triangle.
|
||
<b>There is NO issue of any problem with Conservation of Angular Momentum
|
||
regarding the Spin Vector of a Neutron and the consequent Spin Vectors of
|
||
a Proton and Electron</b>.</p>
|
||
<p>Vector addition therefore works both ways, and Vectors can point in
|
||
either direction, so a Neutron spin can spawn two Vectors for a Proton and
|
||
an Electron, or a Proton Spin and an Electron Spin can fuse together to form
|
||
a Neutron Spin Vector.</p>
|
||
<p><b>Note that the <b>only</b> reason that Neutrinos supposedly need to exist is
|
||
to Conserve Angular Momentum for Beta-Decays such as when a Neutron decays
|
||
into a Proton and Electron (which we know happens!) There has never been
|
||
any other reason to speculate that neutrinos even exist! Since Wolfgang
|
||
Pauli had made such an enormous logical blunder in 1930 in his speculation,
|
||
even that is not actually the case</b>.</p>
|
||
<p>It is not as though neutrinos are really obvious objects. It was more
|
||
than 25 years after Pauli had speculated the existence of neutrinos that
|
||
the first experiment claimed to have detected any of them. Worse, such
|
||
experiments, inside nuclear reactors, involved some rather creative
|
||
speculations in making that claim.</p>
|
||
<p><b>How could any Physicist, then or now, believe that it was even
|
||
needed to dream up a Neutrino, for the single purpose of Conserving Nuclear
|
||
Spin</b>? Yes, Wolfgang Pauli, who was really smart, dreamed up the
|
||
existence of neutrinos to achieve this Scalar addition of the quantities
|
||
which are actually Vectors, and apparently everyone just accepted that
|
||
Pauli must be right! <b>However, he wasn't!</b></p>
|
||
<p><b>In fact, whether a Neutron is Free-Ranging across a room or within
|
||
any atomic nucleus, the Vector nature of Spin is such that the complete
|
||
experimental explanation of the beta-decay of a Neutron is simple and
|
||
obvious! Just two objects are created, the Proton and the Electron!</b>
|
||
Much of the past 80 years of nuclear Physics has been centered on all the
|
||
complexities Pauli had made necessary by his wrong explanation of a
|
||
Neutron's decay and his wrong speculation of there therefore needing to
|
||
be Neutrinos!</p>
|
||
<p>Even as a First Year Physics student in 1963, I was bothered by
|
||
one other assumption that struck me as peculiar! IF this is all just scalar
|
||
additions, are all protons and neutrons and electrons all neatly <b>lined-up</b>
|
||
with their spin axes like trillions of soldiers? Otherwise, do Physicists
|
||
believe that a beta-decayed Neutron comes apart into two neatly lined-up
|
||
Proton and Electron objects? Because, 15 minutes later, it is assumed that
|
||
the Proton and Electron re-combine to form a Neutron again! Do people
|
||
think they stay lined up for all that time? On the other hand, do people
|
||
just never think about such things? Apparently so!</p>
|
||
<hr>
|
||
<p>In fact, Pauli and Hideki and other early Physicists extended this
|
||
(incorrect) logic into requiring a <b>Strong Nuclear Force</b>, to try to
|
||
explain how any atomic nucleus could contain a lot of positively-charged
|
||
Protons very close to each other, knowing that such objects were clearly
|
||
known to strongly repel each other due to the electrostatic force and its
|
||
inverse-square-law distance dependency. Therefore, Hideki and Pauli
|
||
dreamed up another really dumb idea, that there is an (invisible) even
|
||
more powerful force which only acts at incredibly short distances, in order
|
||
to try to come up with some explanation for how the intense mutual
|
||
electrostatic repulsion of Protons could be overcome. Some of my Physics
|
||
Professors at the University of Chicago said that the Strong Force has a
|
||
Inverse-Third-Power distance dependency. Others of those Physics Professors
|
||
said that the Strong has an Inverse-Fifth-Power distance dependency.
|
||
Worse, Hideki and Pauli and the others then also said that the Strong
|
||
USUALLY acts as an attractive force but then if anything gets too close, it
|
||
sometimes completely changes
|
||
to become an intensely repulsive force. Hideki and Pauli and others also
|
||
dreamed up an immense number of smaller particles (eventually called
|
||
<b>Pi-mesons or Pions)</b>, which supposedly whiz back and forth between
|
||
Protons (and Neutrons) inside every atomic nucleus to (somehow) do this
|
||
"Strong Nuclear Force."</p>
|
||
<p>As a Physics Major at the University of Chicago during the 1960s, I was
|
||
told to always insist on absolute rigidity of my logic, but I was taught
|
||
these very questionable speculations that seem to be rampant in the Physics
|
||
community, then and now. Why don't other Physicists today see these same
|
||
logical flaws which have troubled me during my whole 50-year career in
|
||
Physics?</p>
|
||
<p>Disappointingly, modern Physics seems to have made many more assumptions
|
||
and speculations upon which much of modern Physics is based, which may have
|
||
been weak or even wrong. Nearly all of modern Physicists absolutely believe
|
||
that our Sun creates astounding numbers of Neutrinos inside its core in the
|
||
process of the nuclear fusion which produces the heat, light and energy
|
||
upon which our lives depend. Different Physicists calculate different
|
||
numbers of such Solar Neutrinos, but all such numbers are enormous. A
|
||
popular claim is that "the Sun produces so many Neutrinos that 70
|
||
billion solar-originated neutrinos pass through every square centimeter of
|
||
the surface of Earth (or your eyeball) every second." Alternately
|
||
"The Sun creates and releases 4 * 10<sup>38</sup> Neutrinos every
|
||
second."</p>
|
||
<p>There are about 20 Neutrino telescope experiments now in operation.
|
||
They all seem to agree in detecting fewer experimental results than they
|
||
had expected. As has begun to be the "solution" to such
|
||
"problems", another unsupported assumption was soon presented,
|
||
and virtually immediately accepted by everyone. It is now believed that
|
||
many of the (alleged) Solar (electron) neutrinos on their way to Earth
|
||
spontaneously change into different (Muon or Tau) forms of Neutrinos, which
|
||
they now (comfortably) accept as the reason why they detect fewer
|
||
(electron) neutrinos than they had expected. That would be fine if there
|
||
had been any actual logical reason for such transitions or if there had
|
||
been any experimental confirmation for anyone ever having detected any
|
||
such transition, but there has never been any such actual support. Such
|
||
broadly accepted beliefs have seemingly been simply speculations without
|
||
any hint of proof! <b>Now, if it turns out those Neutrinos are not even
|
||
actually created in nuclear decays and fusion, wow!</b></p>
|
||
<p>Here is yet another logical problem that Pauli and all other Physicists
|
||
seem to have overlooked. I am especially disappointed in a life-long hero
|
||
of mine, Richard Feynman. He brought about our seeing Feynman Diagrams where
|
||
anything we observe in one time direction must also be observable in the
|
||
opposite time direction. In fact, one of the foremost example we Physics
|
||
students learned was that a Neutron can Beta-Decay into a Proton and an
|
||
Electron, with a half-life of about 15 minutes, and that we could do
|
||
experiments where we <b>fused</b> a Proton and an Electron together to create
|
||
a Neutron, which are often presented as the two most obvious examples
|
||
of that "backwards time" lesson of Feynman's. But think about
|
||
the unimaginable complications which would exist IF a neutrino was a
|
||
component in that Beta Decay. Given Feynman, then how can you rationalize
|
||
how a Neutron could first come into being. Not just a collision of an
|
||
Electron and a Proton, with a necessary photon showing up to provide the
|
||
necessary energy of the Neutron Self-Binding Energy (to fuse the Electron
|
||
and the Proton together). But now you could not do that, <b>unless</b> you also
|
||
happened to have a neutrino wander by at the same exact spot and at the
|
||
exact same moment. As a Physicist, I know how to calculate the odds of a
|
||
two-way head on collision happening. I also know how to calculate how
|
||
ridiculously rare it would be for a <b>three-way simultaneous head on
|
||
collision</b> could occur (essentially never). So as long as Feynman
|
||
was right (and he was), then it is statistically impossible for neutrinos
|
||
to ever actually exist, as <b>no</b> Neutrons would ever come about!</p>
|
||
<p> </p>
|
||
<p>In any case, I have no grudge against Pauli! When I have examined such
|
||
logical flaws as by Pauli (for which he was even given a Nobel Prize in
|
||
Physics in 1945), I found a far simpler explanation of nearly everything in
|
||
nuclear physics. In the late 1990s, I spent several years studying the
|
||
highly respected NIST nuclear data and I found many wonderful
|
||
mathematically precise statistical patterns in various groupings of their
|
||
very precise Atomic Mass data for the thousands of Atomic Isotopes.</p>
|
||
<p>The implications are in many fields, and they took me several years
|
||
(1996-2003) to analyze and digest. The <font size=5><b>Mass Defect
|
||
Chart</b></font>, which has always been ignored as being too complex to be
|
||
beyond math, is actually pretty easily and simply accurately calculated,
|
||
and by only simple quadratic equations! The <b><font size=5>Quantum
|
||
Defect</font></b> is not the irrational quantity that is ignored in
|
||
Physics, but is instead a very precisely calculable quantity! It is even
|
||
intimately related to something that Moseley discovered in 1913, which
|
||
may suggest a weird new aspect of Physics, a quantity dependent on the
|
||
<b>square of the electrostatic charge</b> of a nucleus! A rather
|
||
comprehensive web-page on the patterns and results found in the NIST data
|
||
is at <font color=#0000ff><b>public2/nuclei6.html</b></font> named <font size=4><b>Statistical
|
||
Analysis of Same-Atomic-Weight Isotopes</b></font>.</p>
|
||
<p><b>One of the most powerful results of that research is that there
|
||
appears to be <b>no</b> statistical evidence that neutrons even exist within
|
||
atomic nuclei!</b> The materials are certainly there, but <b>mathematically
|
||
they appear to exist as separate Protons and Electrons rather than as
|
||
bound Neutrons!</b> IF they exist as the universally assumed Neutrons,
|
||
then we expect to need to find rather large amounts of Neutron Self-Binding
|
||
Energy (0.78235 MeV) inside every atomic nucleus which contains any
|
||
Neutrons, and all that extra energy simply is not in the NIST data. We
|
||
note here that an entire electron is only 0.511 MeV of energy, which we
|
||
consider pretty easy to detect. <b>That Neutron Self-Binding Energy also
|
||
obviously Violates the Conservation of Energy inside nuclei.</b> In fact,
|
||
there appear to be specific patterns of motion of the (somewhat
|
||
free-ranging) electrons inside atomic nuclei, where the <b>negative charge
|
||
of the electrons provides wonderful sources of nuclear stability!</b> It
|
||
is certainly recognized that every two Protons inside a specific atomic
|
||
nucleus are so close to each other that they exert immense repulsive
|
||
electrostatic force on each other, constantly trying to push each other out
|
||
of the nucleus. <b>I found that if a single (negatively-charged) Electron
|
||
happened to be at a location exactly midway between those two protons (at
|
||
half the distance to each), there is then a net <b>attractive</b> force on both
|
||
protons that is four times as strong (due to the inverse square law of
|
||
electrostatic force)</b>. The Electron could not stay at that exact
|
||
midpoint for very long without collapsing the nucleus! However, I now
|
||
believe that the intra-nuclear Electrons migrate between such midpoint
|
||
locations, where each two protons inside an atomic nucleus repel each other
|
||
for around 3/4 of the time, while the brief presence of the centerpoint
|
||
electron enables the two protons to attract each other four times as
|
||
strongly, for the other 1/4 of the time. This should result in the Protons
|
||
vibrating with specific frequencies, which I believe are experimentally
|
||
seen in some nuclei, and it therefore provides a stability or at least a
|
||
meta-stability of the nuclei's structure, purely due to electrostatic
|
||
forces of repulsion and attraction! <b>No Strong Nuclear Force appears to
|
||
be necessary at all to provide nuclear stability!</b></p>
|
||
<p>The result of all this is that atomic nuclei seem to logically not
|
||
contain Neutrinos at all, not to contain Neutrons at all, not to contain
|
||
any Strong Nuclear Force, and not to contain massive numbers of Pions!
|
||
I believe the NIST data clearly shows that atomic nuclei only contain
|
||
Protons and an appropriate number of internally migrating Electrons.</p>
|
||
<p>My (nearby) academia.edu article <b>Nuclear Physics May be Fairly Simple</b> clarifies this.</p>
|
||
<p>The full analysis of the NIST data analysis is rather complex,
|
||
but I believe it is strictly compliant with the Logic of Physics. That
|
||
analysis of the NIST data for all the activities within atomic nuclei is
|
||
at <font color=#0000ff><b>public2/nuclei6.html</b></font>
|
||
named <i>Statistical Analysis of Same-Atomic-Weight Isotopes</i>.</p>
|
||
<p> </p>
|
||
<p>An unrelated matter regarding neutrinos is the common claim in Physics
|
||
that the Sun's fusion activity produces "nearly all" of a
|
||
spectacular number of neutrinos that supposedly penetrate through every
|
||
square centimeter of the Earth's surface every second. An assumption is
|
||
made that neutrinos penetrate essentially everything, even generally
|
||
passing completely through the entire Earth as though it was not even here.
|
||
An enormous logical error seems to be applied, which a brilliant astronomer
|
||
named Heinrich Wilhelm Olbers postulated in 1826 regarding the night sky
|
||
and the cumulative effect of all the stars that exist. <b>Olbers did not
|
||
understand why the night sky should not be brilliantly white, as no matter
|
||
what direction you look, you should be looking exactly at the brilliant
|
||
face of some star.</b> Specifically regarding neutrinos, the Olbers'
|
||
Paradox should even more obviously apply. No matter what direction we look,
|
||
logic would seem to force believing that immense numbers of Neutrinos should
|
||
be coming at us from every possible direction (from other stars). We on
|
||
Earth should only be getting a tiny fraction of our Neutrinos from the Sun.
|
||
However, all researchers think otherwise, where they only think of the Sun
|
||
as producing all the Neutrinos they try to detect! (<b>The Sun only
|
||
represents about 1/200,000 of the total area of the sky.</b> If Neutrinos
|
||
actually exist, and if they are created by nuclear fusion inside every star,
|
||
then why wouldn't we be receiving 200,000 times as many Neutrinos as
|
||
<b>"experts"</b> claim are coming from our Sun?)</p>
|
||
<p>Seems like all sorts of wrong assumptions have been applied regarding
|
||
neutrinos, which may not even exist at all! I also wonder about the logic
|
||
of using neutrino detectors deep in mines. Doesn't the Earth have
|
||
significant amounts of radioactive material inside it? What if some pocket
|
||
of radioactive material happened to be just below where the mine and
|
||
detector is? If Neutrinos actually exist, couldn't that mean that some
|
||
sort of local source of neutrinos might exist, which would screw up
|
||
experiments that only aspire to detect a few events per year?</p>
|
||
<p>Modern speculation in Physics now claims that 99% or 95% of everything
|
||
which exists in the Universe is Neutrinos. Doesn't anyone know how to
|
||
multiply any more? If the claim that the Fusion processes inside the Sun
|
||
"always" create Neutrinos in creating the energy that the Sun
|
||
radiates outward, the usual claim is that only a trillionth or less of
|
||
the mass of the protons and electrons involved would be neutrinos. In the
|
||
five-billion-year lifetime of the Sun, simple math shows that the Sun has
|
||
never even created even one-Earth's worth of Neutrinos. Even if that
|
||
speculative reasoning had any validity, simple math shows that the most
|
||
of the entirety of the Universe which could now be Neutrinos, could not
|
||
even be 0.0001% of whatever else is there. What possible logic could
|
||
claim that it represents 99% or 95% of the Universe? Silly reasoning.</p>
|
||
<p> </p>
|
||
<p>I apologize that this is a broad-ranging discussion, referring to a wide
|
||
assortment of apparently weak assumptions by assorted Physicists. More
|
||
complete and thorough discussions on each of the matters exist, in
|
||
separate Articles and discussions of each issue, both within the web-pages
|
||
of my mb-soft.com Domain and within my Articles in Academia.edu.</p>
|
||
<p>In order for Physics to advance, it is clearly important to only base
|
||
knowledge on solid sources, and if sloppy logic has ever been applied,
|
||
then our collective future may be cloudy! We should fix such flaws
|
||
in logic!</p>
|
||
<p><a href=https://web.archive.org/web/20220818041911/mailto:cj@mb-soft.com><i>E-mail</i></a> to: cj@mb-soft.com</p>
|
||
<p>Carl W. Johnson, Theoretical Physicist, Physics Degree from University of Chicago</p>
|
||
<script data-template-shadow-root>(()=>{document.currentScript.remove();processNode(document);function processNode(node){node.querySelectorAll("template[shadowrootmode]").forEach(element=>{let shadowRoot = element.parentElement.shadowRoot;if (!shadowRoot) {try {shadowRoot=element.parentElement.attachShadow({mode:element.getAttribute("shadowrootmode")});shadowRoot.innerHTML=element.innerHTML;element.remove()} catch (error) {} if (shadowRoot) {processNode(shadowRoot)}}})}})()</script> |