4675 lines
196 KiB
Plaintext
4675 lines
196 KiB
Plaintext
UKRAINE
|
||
|
||
ISSN 1726-4499
|
||
|
||
Spacetime & Substance
|
||
International Physical Journal
|
||
|
||
Volume 3, No. 5 (15), 2002
|
||
|
||
c 2002 Research and Technological Institute of
|
||
Transcription, Translation and Replication JSC
|
||
|
||
UKRAINE
|
||
|
||
SpaIncteerntaitmioneal P&hysSicualbJosutrnaanl ce
|
||
|
||
ISSN 1726-4499
|
||
|
||
Certicate of the series AB, No. 4858, issued by the State Committee for Information Policy, TV and Broadcasting of Ukraine (February 12, 2001).
|
||
The Journal is published by Research and Technological Institute of Transcription, Translation and Replication, JSC(Kharkiv, Ukraine).
|
||
|
||
It is a discussion journal on problems of theoretical and experimental physics in the eld of research of space, t||||imdtamehep,asepsctlutrhihibcepaesmtottiairaoointnenicscoeoacfflaosnmtmehdtobe-uodiinnpretiilsenessragaaifnmcsoptdreiaoddpcneehass,it.cltortTiishmpohetpeeir,hoeJgniacorlauaaizlvrnanbidttaai/aolsoteniprsou,onebfxwlapfihunsliahndcnedhosaa:tttmhoioueenrncsshtaiontlfhtppeehrrydaoscepitsceicarortlniipeestxs(ipoionenfrctilomuhfdeeainUnptgnshitayvhnseeidrcsaEetlhianrenesfatdoelriimtntyh'is;ccorSomRcionasgmndroesGs;uRlt)s;; | discussion of published materials, in particular, those questions, which still have not a correct explanation.
|
||
|
||
sincTeh2e0v0o3l.uTmheeolfaonngeuiasgseueisisE4n8gpliashge.sT. hFeoremquaitviaslAen4t.vPeersriioondsic:itpya:p5erisasunedsepleecrtornoneiyce(a*r.dTuErXin,g*2.P00S0,{*2.0P0D2;Fm).onthly
|
||
|
||
Editorial Board:
|
||
|
||
N.A. Zhuck (Kharkiv, Ukraine) M.J.F.T. Cabbolet
|
||
|
||
V.I. Noskov (Moscow, Russia)
|
||
|
||
|V.VE.dKitorars-nino-hcohlioevfets (Kyv, Ukraine) P. Fl(iEni(nKdhraokvoewn,, HPoollalanndd))
|
||
|
||
JV..LQ.uRirvoagcahe(Pve(rKeihraa,rkCivo,loUmkbraiain) e)
|
||
|
||
|M.MVi.cAebEddilidtionr (Almaty, Kazakhstan) JN..DG.ilK(oZlipelaoknoavG(Korhaa,rkPiovl,aUndk)raine) S.S. S(Kanhnairkkoivv,-PUrkorsakiunrej)akov
|
||
|
||
L.Ya. Arifov (Simferopol, Ukraine) A. Loinger (Milan, Italy)
|
||
|
||
V. Skalsky (Trnava, Slovakia)
|
||
|
||
Yu.A. Bogdanov (Kharkiv, Ukraine) I.Yu. Miklyaev (Kharkiv, Ukraine) R. Triay (Marseilles, France)
|
||
|
||
B.V. Bolotov (Kyv, Ukraine) V. Mioc (Bucharest, Romania) V.Ya. Vargashkin (Oryol, Russia)
|
||
|
||
M. Bounias (Le Lac d'lssarles, France) Z.G. Murzakhanov (Kazan, Russia) Yu.S. Vladimirov (Moscow, Russia)
|
||
|
||
P. Carlos (Rio de Janeiro, Brazil) Lj. Nesic (Nis, Yugoslavia) P.G. Niarxos (Athens, Greece)
|
||
|
||
(The list is not nished)
|
||
|
||
Executive Editor: V.V. Moroz; Technical Editor: A.M. Varaksin
|
||
|
||
or $ST1uh0ebpspocrsritciaepgteoifoaonnndienhpfaoanrpdmelirnaugtniaoictnci:osrd$2in.0gliyn).UTkhraeinelee,c$tr2o.5niicnvNerIsSio*nstpartiecse, i$s1205.0%inofatlhl eotphaeprecrovuenrtsrioiens p(prilcues. $1, $1.5 Kirg*h)iNziIaS, (MNoelwdoIvnad,eRpeunssdiean,tTSatdajtieksiswtaitnh,oTuutrUkmkreaniniset)aanr,eUAzbzeerkbiastiajann., Armenia, Byelorussia, Georgia, Kazakhstan,
|
||
|
||
Accounts: In US Dollars
|
||
|
||
In UA Hryvnyas
|
||
|
||
Correspondent: THE BANK OF NEW YORK Account No. 26009011415
|
||
|
||
Eastern Europe Division
|
||
|
||
in KHAB ZEMELNY BANK,
|
||
|
||
One WAll Street, New York, NY 10286
|
||
|
||
MFO 351652,
|
||
|
||
ABecncoeuncitalNryo.B8a9n0k-:02U6K0-R61S0IBBANK of Ukraine IASnWccfaIoFvuoTnut:rKNooHf.AZ1EB6M0U0E-A8L-N25K0Y17B4A-0N1-K00JSC BAecncoeuncitarNyo:.N2T60I0T90T1R14J1S5C
|
||
|
||
ACK(foOohrdaNrU2kT4ok4rvIa7,Ti3Un0Tek3Rr9sau,,ibnsecribers, aNtatthioenraaltBe aonfkt)he
|
||
|
||
The corresponding confermation as to the paying should be sent to the Editorial Oce by E-mail.
|
||
|
||
Tel.E: d+i3t8or(i0a5l7O2)19c-e5:5Z-7h7u,c(k04N4.)A2.,65R-T79I-T94T.RT,e3l./Kfaoxlo: m+e3n8sk(a0y5a72S)t.4,0K9-h2a9r8k,o4v0691-519646,,1U4k1r-a1i6n4e, 141-165 E-mail: zhuck@ttr.com.ua, spacetime@ukr.net, krasnoh@iop.kiev.ua. http://spacetime.narod.ru
|
||
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 193{206 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
EXPERIMENTAL EVIDENCE OF THE MICROWAVE BACKGROUND RADIATION FORMATION THROUGH THE THERMAL RADIATION OF METAGALAXY STARS
|
||
V.S. Troitskij, V.I. Aleshin1
|
||
Radiophysical Research Institute, N.Novgorod, Russia
|
||
Received Desember 2, 2002
|
||
|
||
The paper is devoted to the development of the theory of microwave background formation through the optical radiation of Metagalaxy stars which is transformed due to the redshift into the microwave and infrared star bnaoctklgersosutnhdanra4d0ia{t5i0ont.hoAunsaanpdplMicpatciosnhoowfsththeatthetohreysttoarthmeicmroowdaevl eofbaacsktgartoiounnadryisnnoontexsptrainctdliyngthUenbivlaecrkseboodfyaosnizee. Ibtys>abvr1aimgilhamtbnl,eesbmsutetaegmsruoprweemraseitgnuntrsieucapanndttolsypopeinctitcrsaaullbwmdaeivnlleismilteynetgcetorh,risrn.efsrBpaeorsenidddeast,nodth2oe:7pv3taKicluaelinawnRadvaeydlereapignehng-edJsee.nacnTeshoirsfesgpmiroeandlli-ocsftpitoahnceeisbbaacccokknggrrroomuunneddd
|
||
uctuations on the angular resolution and the wavelength predicted by the theory is in a good agreement with the experimental data. Finally, the fact, mysterious from the background relic origin point of view, of equality of the volume background energy density and the optical star radiation energy has a very simple and natural explanation. An application of the theory to the closed model of the Universe in the big-bang cosmology shows that at wavelengths ex>cee1dmsm2.7tKhethsatatrcobmaceksgirnotuoncdonis
|
||
incetgwligitihbltyhesmhyapllo(tnhoesmisoorfetthheebna0ck.1gKro)u, nbdutrealitcsourbigminillaimndettehrewidaevaesofitthsiegnbiigcbaanntlgy. It follows from the results obtained that the observable nonblackbody electromagnetic background is not a relic one and it has a star origin.
|
||
|
||
For majority opinion to change on the correctness of the hot big-bang cosmology, it is clear that one or more of the arguments given above must be seen to fail ... . However, if a change does occur, it will probably come from one of three directions: ... b) A demonstration that there is an other plausible mechanism which could be responsible for the MBR, probably related to the idea that it does not have a perfect blackbody spectrum and/or that it could not have been coupled to the matter at an earlier epoch (Burbidge, 1989, p. 988)
|
||
|
||
Introduction
|
||
The idea to explain the microwave background radiatniootnybeyt sboeuerncewsoorfkdedieoruetntinnaantuyrceoinscnroettenefowr,mb.ut it has the Ionbtsherivs epdapmeircrwoewainvveebstaicgkagtreoaunpdosbsyibtihlietythtoeremxapllariandetuviaridetieonannt dotfoetvuhoseeluMstoieomtnaegoacfloastxmhyeoslUtoagnriiscv.aelrFsmoe.rodthTelihss eopfuprtrphoobesleestmrituocis-f tdiONehasonervidtnichkocteonohvtsmi(rms1iebd9otuih6lrot4oeig)cdoytnihicmoaaonvlofebwdtaehepslreusiesbwscoltiaaafsrsrhtrhesiietdnidsutdeowoginuoerldtrayklberyDraearsModluirielocatrVsts.hiioFktontefiirveicsin(toc1hls9sctt6uaua2lndna)d---. tions for dierent models of the standard cosmology.
|
||
1e-mail: redshift0@narod.ru
|
||
|
||
The methods of calculations were not given. It has
|
||
|
||
bssetearevrnaitnsihtoeongwrnaol,
|
||
|
||
in particular, that at a wavelength of obr>ad1imatmionthisemvoulcuhmleessentehragny tdheenbsiltayckobfotdhye
|
||
|
||
raandaiatiromnawtiiotnh (tPhaeritjesmkipj earnadtuSreunTya=ev 11K97.3)Tthhearte\wthaes
|
||
|
||
otebgsrearlvreaddriealtiiconraodfidatisiocrnetceansonuortcbese"eixnpsltaainneddarbdyctohsme ionl--
|
||
|
||
ogy models. To calculate the radiation of galaxies, as
|
||
|
||
correctly noted by Zel'dovich and Novikov (1967), \is
|
||
|
||
of prime importance in a hot model since it is the back-
|
||
|
||
ground on which the relic radiation of the model itself
|
||
|
||
is to be observed."
|
||
|
||
This is a valuable but unused so far test of the
|
||
|
||
background relic origin theory. Recently there have
|
||
|
||
been some serious experimental demonstrations that
|
||
|
||
the standard cosmology does not re
|
||
ect any more a
|
||
|
||
real state of matter and radiation in the Universe (lu-
|
||
|
||
194
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
m(aSniedngoadsluite1y9t9oo2fe;gxTaislrtaoixnitigesska,iljtteh1r9eni9ar2t,id1vi9em9c4eon)s.smioIonnlsotgahincisadlcteohvneonoluercitetisoionint) bpofrfheecyqsotsuamiecrnaesclsiyrniembadspaiosnotndrastn,aotniwntgianptlogaarxettxioiecpsutlhaltarienra,nrtebshdfyoesrhtmmhifetiecdoropofiwtnittcahoaveletrrhbaaeyddriioaaatttdhiiiooeonnrof sItnarsthailsonfogrtmhuelaptaitohnttohaenporobbselervmer.requires justied palarhteyiosanibcsaaelnnpdtrtoihnceefduulrlrsemtseesoatfsimucaraelctsuioolanftsairop.nreTfsohernetitmesdesteohaluorltdiieoornf(cwTarhlociicuth-svmvekreeaairrjsslllee1yr9atia9sdhd4ieaao)t3tphilKtoaeenaddbs.sotahfcIboknsywgttaranhornsiutshnoipfardrdttehceisnareennamstibszotpeeraaeetopixtfcehptrnalhawoneinnetseehtgxdaaipvttbaieooynanfdtatidhnrheeygettaUUghielnenenriid---pioissfhotytnhhseieicnsaUmalnpjaiupvdsleeitreifsdoecrtaiontthicBoelunGrdeRoisnfucgltathtlshceuoecblsaatttlaaciionunndleaadftoridofrondroinmdeiee.rteeAhrnoetcndomtmwmohpdoiaecdrlhs-ebt(ahslbaseacoetkwvrgeitetrhvjhoueiueostnwtrhiedset.eiocosfaTbBtlshheamierrsvyosemstddhaeatelcyevhmm1aaoe9rnsag9ttco2tao,oeddBfrieutsqthtreuibescatispdtergtoeoefwse1tcinh9thht8eo9owtm)sho.eiercAktrr.hloelwiasslaaiovtidyre
|
||
|
||
1. Pbahcyksgicraolunbdasifsoromf asttaiornmicrowave
|
||
|
||
To determine this radiation let us consider the Universe as the Euclidean space lled with matter in the form of galaxies being the clusters of stars of dierent spectral classes. We suppose that the spatial distribution of galaxies in the Metagalaxy space is uniform and isotropic and their mean parameters over a suciently large volume do not depend practically on the distance. We suggest as well the star thermal radiation as a blackbody one. At rst let us consider the solution of the problem in a simplied form taking the temperature of all stars equal in the whole galaxy. Let ntrLhaegdetaimuul=sse,MatTnapk,ncteuhbmieenmtbtoheereaaocnmfctoseetuamannrtpsvetoirnhlauattmthuerteehgdeoaeflnsattsxahitireeysisr,oinpfrhg,goatatlhlaoaexsxipiriehemsse,reamearsne., not practically projected to which other.
|
||
Let us nd the spectral power density of the thermtTvhohaeleulamrfnautedleliena
|
||
lnetumiaxonaefnpr
|
||
toeurmRtxu2trf
|
||
hreoedwmgRiatshlitasaxrreisecseapatttiromandeidtoriaifcgrerdqaiumstean
|
||
nccyseteRr0adiinn.
|
||
|
||
d = F (; T ) r2n m R2
|
||
dR d:
|
||
|
||
(1)
|
||
|
||
ownHreerfeerenicse
|
||
|
||
the radiation frequency frame, F(; T) is the
|
||
|
||
Polfasntka'rss
|
||
|
||
fiunnctthieoinr
|
||
|
||
for the spectral density of the star blackbody emissivi-
|
||
|
||
ty W=cm2Hz sr. Along the path of propagation up to
|
||
|
||
a telescope antenna this radiation at frequency will
|
||
|
||
have three types of attenuation and a frequency trans-
|
||
|
||
formation due to the redshift. The rst type is the
|
||
|
||
aatbtseonrupatitoionnininthRe2 ptrimopeasg,atthieonsemcoenddiutmypwe hisicthheweensehraglyl
|
||
|
||
dtyepsceroibfeatbtyentuhaetifounnicstcioonnn
|
||
e(cRte)d. wAitnhdthaet rleadstshtihfteotfhfirred-
|
||
|
||
qTuoednectyermuinpettohiosbtsyeprveaotifoanttferenquuaetniocny th0er=e is=n(zo+ne1e)d.
|
||
|
||
to use any hypothesis on the redshift nature except the
|
||
|
||
fact of its existence. Let us consider the star radiation
|
||
|
||
wrtfstrohpimeiwietqshceutssfaerprandeeslqcucpiutedeeresceutntnomcrsayit(tlhwzybdei0+aleF:lsnn5p1bds(e)ietc0dytsrTeauFe.)nnm(dAssichTntoic)fn(t+etzhtaered0ti+at:fsco5dr1tbeoii)nqoswenucnrrevweinwasaictsticyitehoohmnuinbnppiocneo(hunziaannsnd+atngataaeer1rddly)-l
|
||
|
||
in the same times by weakening of the quantum ener-
|
||
|
||
gspyecf=rt(orzumm+h1i)s
|
||
|
||
etqouhal0t.o i.e.
|
||
|
||
Thus, the energy the integral of F
|
||
|
||
of the shifted ( T) in band
|
||
|
||
F( T) =(z + 1) = F( T) 0;
|
||
|
||
wwFmht(sizaoeh(om+ln.enlreToAaew1ct)e)tihxldalrtttoihihmpnme0aufceovatrr=srieeetocilacvnyeesnepoqrcewtynouri=iogemal(nnlynzpaabtppr+nauerorrdmoeoi1awndp)istato.wspbwrtTtphaipetinriohlhosoldniwasmtaicehndlrhroeet.ntsoirhuosaIiesclndhtphdicarraiea0oostepsp,medeordoi,aba.roecttortf.taiaincioidcaenlnrai.eeaaalswdTltdlsyiiiohdatiannoaees-
|
||
|
||
reception band, overlapping all the spectrum of the ob-
|
||
|
||
served radiation. To illustrate this point let us nd the
|
||
|
||
tAostaalbeonveer,gwyerescuegigveesdt ftrhoemsotuhrecesoruardcieatwioitnhinreidtsshfirftamze.
|
||
|
||
of reference have Planck spectrum. In this case each
|
||
|
||
frequency at the observer of the whole spectrum ex-
|
||
|
||
tending from = 0 to ! 1 will have a shift to zero
|
||
|
||
frequency decreasing in (z + 1) times. This spectrum
|
||
|
||
take the form
|
||
|
||
d
|
||
|
||
0F
|
||
|
||
(0)
|
||
|
||
=
|
||
|
||
2h
|
||
c2
|
||
|
||
03(z
|
||
|
||
+
|
||
|
||
1)3
|
||
|
||
|
||
exp
|
||
|
||
h0(z +
|
||
kT
|
||
|
||
1)
|
||
|
||
|
||
1
|
||
|
||
1 d0;
|
||
|
||
W=cm2sr;
|
||
|
||
wehBr0oh'0slet(frrzzreome+mfear01ne)0nn==cklteoTow=f=r(1azmx+eaw.1ne)dIhinsuatsvetieghnregaantftrinhaeqngeuaocelohvngaecurynegaieonllfottffhrheeevqaouSrbetianesefbcarilvneess--
|
||
|
||
P
|
||
|
||
=
|
||
|
||
2k4 h3c2(z
|
||
|
||
T4
|
||
+ 1)
|
||
|
||
Z1 0
|
||
|
||
x3 ex
|
||
|
||
1
|
||
|
||
dx
|
||
|
||
=
|
||
|
||
T
|
||
|
||
4=(z
|
||
|
||
+
|
||
|
||
1):
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars195
|
||
|
||
Thus, as it is expected all the energy received decreases in (z + 1) times.
|
||
It should be noted that in the standard cosmology the attenuation of galaxy radiation caused by the redshift due to the Doppler eect is taken to be equal in (z + 1)2 times, i.e. for the Planck radiation spectrum F( T) d the received signal has power
|
||
F( T) d=(z + 1)2 = F( T) d0=(z + 1): Tcrheaisseatotfenthueatqiouna,ntausmsuegngeersgteyda,nisd dthueeirbontuhmtboerth(eordienat(ghzny+ios(t1qhw)ueaatryinmwttueohmsreddsaauptettphetrneoouafatrchethiqe)ou,ndeaennicscdryedtaehbsteeaennromdaf)git.naheieIndtqitsnuweae(inzmc+teus:1mt)hrtaesinmtteiiernnsdciloulunemsStiodoinettarhhteseinuod,ncehacftrraotenhmaesaetprheopcefreotcphaotecnihosbniatdonpedlrbaece(dceglvwarosoelsuuihcnmaadvleleeaesptlshep.merofeoanlctlho)w, iwneg
|
||
dE = r2 n m
|
||
(R)
|
||
|
||
wraedioabttioanintetmhepreerqatuuirreed expression for the background
|
||
|
||
r2 nm 2hc203
|
||
|
||
Zzm 0
|
||
|
||
exp(z[h+01()z3+
|
||
(R1))=ddkRzTd] z
|
||
|
||
1
|
||
|
||
=
|
||
|
||
= c2[exp(h2h0=03kTb) 1]: (5)
|
||
|
||
dinimmTeenhtseeirodsn,ilmweseesnhfsoaiorvmne
|
||
|
||
of (5)is equal to designating 0 =
|
||
|
||
cW==0cm, w2Hhezrser.0
|
||
|
||
Iins
|
||
|
||
r2 nm
|
||
|
||
Zzm 0
|
||
|
||
exp(zh+c(z1)+3
|
||
1()R=k) dTdRz0dz
|
||
|
||
1
|
||
|
||
=
|
||
|
||
=
|
||
|
||
|
||
exp
|
||
|
||
|
||
|
||
hc k0Tb
|
||
|
||
|
||
|
||
|
||
1
|
||
|
||
1 :
|
||
|
||
(6)
|
||
|
||
Denoting the left part as x we have for the background temperature
|
||
|
||
F [0 (z + 1); T ]
|
||
d0 dR; W=cm2sr; (2) w1a)nh=tekernTen)aFa[p10e](rWztu+=rcem1f)r2;osTmr]H=azll.2thhTeh03ge(azflua+xlli1ei)lsl3ui=nmc2tih[neeaxtspioo(lhnidi0na(nztgh+lee of the radiotelescope antenna is
|
||
Z1
|
||
E = r2 nm d0
|
||
F [0(z + 1); T ]
|
||
(R) dR: (3)
|
||
|
||
Tb(0)
|
||
|
||
=
|
||
|
||
k0
|
||
|
||
hc
|
||
ln[(x +
|
||
|
||
1)=x]
|
||
|
||
:
|
||
|
||
(7)
|
||
|
||
Expression (6) is simplied if, rstly, in the upp1gta)re=okruinin0ngkdtTtethgeermat0pri:oes1trnattelu0irm:rm2eitaoTnfwbdteh,hesche=eacxvo0penkodtTnlhbyee,ntacitoa0ntl:1hdfueitndi0coe:tns2iio.rnheAdce(sxbzpimatacink+s--, sion we obtain from (6)
|
||
|
||
0
|
||
0, tIhfe
|
||
n(Rth)eisuspupcehrtlhimatitatosfotmhee Rint=egRraml awxi;ll b
|
||
e(Rdemanxi)te=
|
||
|
||
Tb
|
||
|
||
=
|
||
|
||
r2
|
||
|
||
nm
|
||
|
||
T
|
||
|
||
Zzm
|
||
(z
|
||
0
|
||
|
||
+
|
||
|
||
1)2
|
||
(z)
|
||
|
||
dR dz
|
||
|
||
dz:
|
||
|
||
(8)
|
||
|
||
and equal to distance R
|
||
|
||
iRtsmraaxd.iaAtisoint
|
||
|
||
iastobfrveiqouuesn, acyt
|
||
|
||
the
|
||
|
||
|
||
wgiivllencogmaleaxiny
|
||
|
||
tiefhxepthrreeescsgeioapnltaiox(3ny) rbietadnissdhnifaetcteitsshsaezry.fretIoqnuuetsnhecityshwea0fuy=ntcotio=inn(ztael+grrea1lta)e-,
|
||
|
||
tzfoi.ornT
|
||
b(hzee)tnw,weseeunbosbRttiatuainntidnngadlloRyr,
|
||
|
||
ultimately, between in (3) for dR = ddRz dz
|
||
|
||
R and ,
|
||
(R)
|
||
|
||
E = r2 nm d0
|
||
|
||
|
||
AfisutlfuNzllmloeldwl=efdfoo3rfr0o0irn00tea0gnr3datc2iTmn:5g=acimnt6di.st1nh0ee3cKesesscaothrnyed
|
||
|
||
ornset acotnTdbition3Kis to know R(z) in
|
||
|
||
tieRqnhsute=aatshbianRelrtis0sehprirvenszdattlhvae0eepxrppiinreoterzexidmrivmbeayn1al ttt0aih.olelnFyooztbrfhosetrehr5Hvizsau(tpSbiueobgnrlepa0slo:lo0s1af2ew9g9oao3nRlr,aeTxt=crihaeoensiRtaslu0ankswidzej
|
||
|
||
1994). Then, for calculation it is necessary to deter-
|
||
|
||
mine the attenuation function
|
||
(R). This can be done
|
||
|
||
Zzm
|
||
F [0(z
|
||
0
|
||
|
||
+ 1); T]
|
||
(z)
|
||
|
||
dR dz
|
||
|
||
dz;
|
||
|
||
W=cm2sr:
|
||
|
||
(4)
|
||
|
||
In our case it is expedient to characterize the radiataisona Etembypetrhaetuereecotfivtehteemblpaecrkabtoudrey Trabdwiahtiicohniswditehntehde same spectral power. Comparing (4) with the radiation of a black cavity
|
||
|
||
E = 2h03
|
||
d0=c2[exp(h0=kTb) 1]; W=cm2sr;
|
||
|
||
on the basis of dierent physical grounds. At rst we suggest the simplest ones, namely, that beginning from srboeygmitoehnedsiscRteann>trcaeRlRmpmairsttshcoeomfrapgdlaeilataetxiloyiensscflrryoeiemnngesdooun(roctrehsaebopusoatrtfbhreodmo)f wave propagation. This takes place when projections of all central parts of galaxies lying in the sight cone ontofumlNenbg=etrhnoRfRg3ma
|
||
la=ax3ri.eesTmihneercgtoionntgeala
|
||
pnrduopjteactktoiiondngisataarreneaaceo
|
||
fRRth2miesi.reqcTeuhnae-l tral parts of diameter 1 kPc is S = 0:25n
|
||
R3l2. This
|
||
|
||
196
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
area covers the part of the cross-section area of cone
|
||
R2. Hence, only a part of radiation will pass through the cross-section
|
||
(R) = 1 0:25Rnl2. The channel will fbt
|
||
uh(enzencf)ut=il
|
||
olyn(1Rcdl)oopes=eszdn=1zowmthd.eRenHp=ee
|
||
Rrnemd=toh0oner,atihat.tetee.nwRuaatav=teRiloemnRng(0=tophrz1stc=hrw0ae:tee2nt5hainnaklgve2)es, place practically for the optical radiation forming the observed background. Let us take for the calculation l = 6 kPc; n = 2, then Rm ' 50000 MPc; zm ' 6 103.
|
||
In the given estimation the galaxies and the stars inside the galaxies are regarded immovable relative the given spherical coordinate system with a centre at the observer. In reality there exist proper motions of the galaxies as well as the stars inside them. It is obvious that the account of these motions does not change the result obtained. Indeed, in a suciently large volume, say ' 103MPc, containing several thousand galaxies the directions of motions are distributed isotropically and the velocity values are distributed according to the normal law with the rms velocity 300km=s. So, the radiation of galaxies will have the frequency sthhiifstfancotttmheoroebstehravned rad=iat'ion vte=mc p'er1a0tur3e: fOrowminegactho galaxy well dier from the average one not more than hoTm=oTgeneity10wh3e.n Dadudeinsgmraalldnieastsioonf otfhea elaregcet naunmdbietsr of galaxies, the in
|
||
uence of this chaotic velocities on the radiation frequency and temperature will be mutually compensated. The same can be said on the in
|
||
uence of the velocity dispersion of the galaxy stars. Thus, the uniform and isotropic microwave background xes in a statistical sense the immovable coordinate system resting on all the galaxies of the visible part of the Universe.
|
||
2. JmtheiencerMroawelateavxgepablraaexscyskigornoufonrdsrtaadriation of
|
||
In this section we give quite a general expression for the star background suitable for dierent models of the Universe. We suggest space lling with the galaxies be uniform and isotropic and their mean luminosity and dlterimimbueintsisotionongosifvbetehaeincvsatalarcriuaslnaottfiiondnittieamrkeeinnatgnsdipnetscoptaracacelc.ocuTlanhstseeasp,crooi.bne--. with dierent photosphere temperatures and sizes. As it is known, more than 80 per cent of stars in galaxideestearrme itnheoscehoief
|
||
tyhethmeaoinbsseerqvuedencsteaarnbdahckegnrcoeutnhde.y wFoilrl ttthhrairsloucslgtaahsrsst,htrehadesituraesrqaulunirmdedipnhpoosatirtoaysmpMheeter,erdsteertmerapmnedirnaitTnugraeir.tesLgsepitveeucnsuse the known formula for the relative stellar radius
|
||
|
||
r=r
|
||
|
||
lg
|
||
|
||
r=r
|
||
|
||
=
|
||
|
||
5000
|
||
T
|
||
|
||
0:2M
|
||
|
||
0:02;
|
||
|
||
(9)
|
||
|
||
waunshudearlMelyTgisivisietnsthpienhoptthaobogtlreoassppahhniecdrivcfaoltrueemt.hpeTehrsateaturresrleaotofifotnhtheMemTstaaiinrs sequence it is approximated with a sucient accuracy by the function
|
||
|
||
T
|
||
|
||
=
|
||
|
||
26 103 0:37 M +
|
||
|
||
2:4:
|
||
|
||
(10)
|
||
|
||
Substituting (10) into (9) we have
|
||
|
||
r2 r2
|
||
|
||
= 10
|
||
|
||
0:233M+1:05:
|
||
|
||
(11)
|
||
|
||
The luminosity distribution of the main sequence s1tfesrtaps9oabe7mrBcl4set)rA.fMa'olFr(TmcM=hlGae)isnKsle4hutsMamhtaseoi:rnibenMoeTetseeqihntr=uyevaaklf2ilnun0rtonMeewsctrphtvnieaoactnl(12tssiievnno'eevfe,(loayMMlfrvot)etorhsv(ieess-axp4ilganu,e-imcte1vets)eprg,naoel(elrf0icnvt,L+lhaaatel3snhuss)geee-, (iz+a4ti,o+n6)P , (+'(7M,+)9)=, (1+.10A,+s1a9)r.esWulet,htahvee fuusleldrandoiramtiaolnwill be
|
||
|
||
r2 nm X 19 10 0;233M+1;05 '(M)
|
||
4
|
||
|
||
Zzm 0
|
||
|
||
expf(hzc+(z1+)3
|
||
1()z=)d0dRkz Tdgz
|
||
|
||
1=
|
||
|
||
=
|
||
|
||
|
||
exp
|
||
|
||
hc k0Tb
|
||
|
||
|
||
1
|
||
|
||
1 :
|
||
|
||
(12)
|
||
|
||
HmdoneeinnrtceehedeTRbacy(izcse)adp.cetcEeedpxntpenedrdaetsbustyihroeen(o1or(0fe1)tt2.ih)ceaFdlruoeonedsrcstnheioxoifntpt.edrdeIitRpmse=enndndazttaeuilxrspeddlemiepctiaetennlry--ietcfhxHeepstescr1lizoom=sn(eelzdnyt+atmhl1orm)oduoaegldnhedolfscoootfhnotechnre.esttUeannfdiuvanercrdtsieocnoRss(mzRo)(l=ozg)Ry. 0RFpo(zrz,)tfho=er
|
||
|
||
3. SrUatndairivaemtriosicenroinwaavestbataicckmgrooduenldof the
|
||
|
||
WienstgeimcwoaintthseiddtehbreytghcaeolnasttxeaimetiscpiomsruoanrdyieflooorbfmstehravenaUdtiniosinvoset.rrosWep.iecSapinlasocsecsaullgels-gsgceaaslatlexstyhteospmbaeecaei.nnvdIaitrmiaiesnntesisiosnenntsitmaianeldatlhnuadmt iintnhotisshitemywoinhdoetllheefoMsllaeomtwae-s
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars197
|
||
|
||
from observed mean (statistical) dependences of apparent luminosity m(z) and angular dimensions (z) of the galaxies and quasars which make possible to detRerm=in6e00tphez MreaplclyinextishteinrgeddsehpieftndinentecrevaRl (0z)eqzual to5 (RTr=oiRts0kpijz1,9w9h5e).re RTa0k=ing60i0nMtopcacwcoeuhnatvein (12), that
|
||
|
||
A X 19 10 0:233M+1:05 '(M)
|
||
4
|
||
|
||
Zzm z 1=2(z + 1)3
|
||
(z)dz 0 expfhc(z + 1)=0kTg
|
||
|
||
1=
|
||
|
||
=
|
||
|
||
|
||
exp
|
||
|
||
hc k0Tb
|
||
|
||
|
||
1
|
||
|
||
1 :
|
||
|
||
(13)
|
||
|
||
HerPeaTraims getiverenAbym(a1y0),haAve=o12nlyr2andmmisRsi0b.le limits of
|
||
|
||
paosstsaibrlenuvmalbueers isninacecuabisctrMictpcm, eiasnunvkalnuoewonf. nAmcc,ori.de-.
|
||
|
||
ing to the data on the population of the Local Group
|
||
|
||
containing three large galaxies with the star number
|
||
|
||
mbnAemr=lioe1sn01ei1-n0o11nt1he.1eaT0ni1hn2detneaarnavhdtaalaRlfb10oo0ru=dt1e62trw0s0olMeAtsespnocsnwa1ed0itmcha1in0stsh,tiebawklsheteiavcr1ah0lnu1mue0maoy-f
|
||
|
||
be used in the background calculation. Then taking the
|
||
|
||
mhaevaTenh
|
||
se(izzce)al=ocfu1tlahteiopcneznr=terzsamullt,pswaorhtfetrohefegzbamalacxkige5rs0o0ul0n'd
|
||
|
||
6 Kpc we 7000. tempera-
|
||
|
||
ture are given in Tables 1 and 2 in the waveband from
|
||
|
||
1cHliummulabitttbseoldeopflfaionrirttessathreoexflpalawaewrmiRmiRcer=no=tnRa.RlHT0gpzrhoezue,xntrtdrshiatnepgtsoaelwbcaloitetnehdhdianbosentbyheoeeefnonidrncttteahhrlee--
|
||
|
||
val 0 z 0:02. The comparison of two tables shows
|
||
|
||
there is not any signicant dierence in the background
|
||
|
||
temperature dependence on wavelength. It can be seen
|
||
|
||
from the tables that at waves > 1mm the background
|
||
|
||
ilmset<addbeet1yemaromsmnwliynebeltyldhtotbhhsyeeotscoheafeloccsflutalcasalrsatsisBoosnef.ssoTpfBeotchActehraeablcnakcdclkatihgsnsreeostseuhneArdeuFslauttGlrttasev,nwiuaoet--
|
||
|
||
ation in (z + 1)2 times due to the redshift. In this case
|
||
|
||
the dependencies remain practically unchanged, but the
|
||
|
||
ovesantleiu.meaotfeAbiosthanfoorrdtewrohliagwhesrRth=anRt0hpatzaasnadn tuhpepeHrulbimbliet
|
||
|
||
A most interesting and unexpected result of the the-
|
||
|
||
ory is the growth of the background temperature in the
|
||
|
||
submillimetre waveband. Any reasonable attempts to
|
||
|
||
eliminate this growth were failed. Finally, it has been
|
||
|
||
understood that the growth aries due to a sharp dier-
|
||
|
||
ence of the star background from the blackbody one
|
||
|
||
at submillimetre and shorter wavelengths. This has
|
||
|
||
Figure 1: A comparison of the star background spectrum
|
||
|
||
for the universe static model (solid 105) with the blackbody spectrum line)
|
||
|
||
line at at Tb
|
||
|
||
=zm2:=735K
|
||
|
||
103 7 (dotted
|
||
|
||
been shown in Fig. 1 where the star background spectrum is given in comparison with the blackbody one aTt=T2:=7K2:7coKin.ciTdeheinortehteicaRlaaynledigbhl-aJcekabno'sdryegsipoenctorfathaet Planck's spectrum and sharply dier in the Wiens's reg
|
||
iaotnaantdit<s s1pmecmtra.lHdeernesitthyeesxtcaeresdpsetchtreusmpeicstrparlacdteincasiltlyy othf atthecaPulsaensckt'hsespgercotwruthmobfythmeaneqyuoivrdaelernstatbaTck=gr2o:u7nKd temperature. The reason of the spectra dierence is the fact that the star background is added up basically from the Rayleigh-Jeans's parts of the star radiation ssptaercttreamwpheriachtuerex.teRndeatlloy,otphteicianltefrgerqaul einnc(ie1s3)adtecarehaisgehs exponentially with the frequency and, hence, beginning with some value of z it does not give any essentional contribution in integral (13). One may conclude that tsoahiforinesTstuhaalcktn(,ezdse+apc1l0ha)=casekpnwe0cahTtcretanu=lahcl1lcua(dspzespt+oeerrf1ms)lti=imankreisst0faoTotfrtaidhnnitedegegtrirhveaneetntieoxvonapb.lrsueeAesrss-vational waves has its actual upper limit of integration ostvaerrPzlarneclka'tsedspeacstritumis ionbivtisoWusiewnist'hs rtehgeiocnu.toThuosf, tthhee background radiation is basically made at the star radiation in the Rayleigh-Jeans's region. Table III gives btehraecRkvgarl=ouuensRdo0fprazzdeefifa,tcrioehnsapraoatnctsaeibrgilzieveescnhtihwee
|
||
ayvsiezlfeeonrogftthghae. laIotcbtisiscerslveaeeyndfrom the table, that at centimeter and longer waves bato>un(d0e:d50b:1y1cgm)acmlabxtyhyetshcberaeeccknugitnorgouanotdf ztsmhpeecstt(ra5urmra7idn)itae1tn0iso3intyainnidstensity in the Wiens's spectrum region. As a result,
|
||
|
||
198
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
tmhienbedacbkygrroauthnedrraadthiaintiloanyeinr othf egaWlaixeiness'rsardeigaitoinonissdinettehre-
|
||
|
||
Rayleigh-Jeans's region of the spectrum. The reduction
|
||
|
||
in number of galaxies responsible for the background at
|
||
|
||
senti1aml imncriesaasne oimf psmoratlal-nstcafalectboarcwkghriochunldea
|
||
duscttouaatnioenss-
|
||
|
||
for shorter waves, that is conrmed by observations.
|
||
|
||
When calculating the star background we studied
|
||
|
||
how the background temperature is in
|
||
uenced by an
|
||
|
||
ilnencrgetahsseloonfgtehretshtaanr 1pchmot.oTspoheesrteimteamteptehraistuinre
|
||
uaetnwceavwee-
|
||
|
||
have the only example, the Sun. Its brightness temper-
|
||
|
||
atiwanhtsau,emvrterehesetefleaocrtr0sai.olcnA0u2ltTa0stcu1i=mocmnhTnptm0oer+moamycp5eobderreue1ara0tteuph5irpasenr,ocowox0fni:hsm0cte1earaKrertnsee.lTdyAb,=etixitnlpasc0rhsre=teos(,asuzsaeled+sdsfbb1aaye)tr
|
||
|
||
remembered that the background temperature is de-
|
||
|
||
tawdbebeaartcosmekvrtgiemanrkmoeienduenenndbdatyisftoretnaomwnemdopienacvriaaatrliltecauuqulerulsvaeiatrsAielhoumoneauesannlodntdfdbttzhehamae2st..tl7rai3mitOcKtint.v0Tvtaih=hlsueiisbe3ibvcloaiamftlsyuiAsetzhoomiesff
|
||
|
||
A is given in tables. It is clear, only those calculations
|
||
|
||
were used above.
|
||
|
||
where
|
||
|
||
A
|
||
|
||
did
|
||
|
||
not
|
||
|
||
exceed
|
||
|
||
the
|
||
|
||
limits
|
||
|
||
mentioned
|
||
|
||
4. Aswtiatcrhobmtahpceakrgmirseooaunsnuodrferpmardeeidnatitcsitoinontsheoofrtyhe
|
||
|
||
UbbaepecnktgocroanurornwieddetxhutepeonrtsyoivmefaabryaIacRkpgprceolaoursnetdotombeeoapasctuitcrusea.ml euTnpthsteohsaotvaperttp
|
||
ihuocesacetlsduuwabeatxmivopeinlslals,iimsnoosfettnthraheeteuwcrobaamvallecypkbagatrhrnioesduo.onnbdBisseeisrnnivdoteetednst,ssoimttybhaeelalbt-sshocewuaonelreldylspwapasritcohaemmtairoyiecnsrctoooewrfnisaaoivudmeserbeseaaodnckfigangarrdolapuexthnyaedinlinoibnmcetleuleonndwsoiin.ntgy ooafunrtdsh.tehTeehqoeupsaetliicqtayuleorsfatidotihnaes-
|
||
|
||
4.1. The star background spectrum and observations
|
||
Its obvious, that the comparison of the theory with observations is of interest rst of all in the submillimetre waveband. The background measurements in this wavelength region have already been in progress for a qurmarttehre obflaackcbenotduyryc.haTrahcetyerhoafvreabdeiaetniosntaarttetdhistowcaovnesfollowed from the Big Bang theory. rst investigations aptenwdaevnetlelnagbtohrsator0ie<s o1fmtmhe cUaSrrAiedonoutthebyhitghhr-eaeltiitnuddeeballoons and satellite gave contradictory results: some
|
||
|
||
Figure 2: Theoretical dependence of the star background
|
||
|
||
temperature on the wavelength for the static model of the
|
||
|
||
usunrievmeresnetadtaztam
|
||
|
||
= (5 7) (crosses)
|
||
|
||
103
|
||
|
||
as compared with the mea-
|
||
|
||
gcNrooetatevs,aeltguhoeets TmTbbe==asu(23r:7e:6mKe,5nt:th5se)Kgoitvh(isneerges raaefvtheiiergwhcoeorrfreBteclmtiitoepnrer1ta9ot7ud4re)e-.
|
||
|
||
tchoenntra2d:7icKt twheersetaannddaradrecobseminogloqguyestthioenoreyd. siHncoewetvheery,
|
||
|
||
the data mentioned have last their meaning because of
|
||
|
||
uncertainty in the value of the observation wavelength
|
||
|
||
due to a wide band comparable with the mean frequen-
|
||
|
||
cy of reception.
|
||
|
||
worAktopf rMeseantstumthoetroe h(1a9v8e8b) eaetn wrealviaelbelnegrtehssul1t.s16in, 0t.h7e,
|
||
|
||
0.48, 0.137 and 0.1 mm the accuracy of which is not
|
||
|
||
worse than (3-5)%. According to the IRAS (infrared
|
||
|
||
astronomical satellite) program the background mea-
|
||
|
||
smumre,mtehnetys hhaavvee bbeeeenn cparrreiseedntoedut inat M0.a1tsmommotaon'sd p0a.6-
|
||
|
||
per after correction. Most of these results are giv-
|
||
|
||
en in
|
||
ux units W=cm2:sr:Hz with exception of da-
|
||
|
||
ta at 1.16, 0.7 and 0.48 mm for which there have
|
||
|
||
been the background brightness temperatures as well.
|
||
|
||
Tthhee wvaavlueess hoafvtehebebeanckcgarlocuulnadtetdemacpceorradtuinrgestfoorrerleasttioonf
|
||
|
||
Bm(ea)su=re2dhra03d=ica2t(ieoxnp
|
||
hux=kiTnb culation of the temperature
|
||
|
||
fWo1r=)ct,hmwr2ehseerraHebzoB.v(eAm) e|tensttiisocntahelde-
|
||
|
||
wcaalvcueslahtiaovne bpyrotvheids rtehlaetcioonrrfeocrtnoetshserof
|
||
tuhxeest.emperature
|
||
|
||
Recently the measurements of the cosmic microwave
|
||
|
||
background were carried out by satellite COBE (Cos-
|
||
|
||
mic Background Explorer) with a help of receiver FI-
|
||
|
||
RAS (Far-Infrared Absolute Spectrometer) in the wave-
|
||
|
||
length band 0.5-5 mm (Mather, et al 1994). The back-
|
||
|
||
ground temperature in this continuous band have been
|
||
|
||
found to be equal to Tb = 2:726 0:01K. The satellite
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars199
|
||
|
||
C(DOiBuEzwInafsraalsRoeudseBdacakcgcororduinndgEtoxpthereimPreongtr)atmo DgeItRuBpE-
|
||
|
||
per limits of background values in the direction of the
|
||
|
||
south ecliptic pole at wavelengths 240, 143, 100 and 60
|
||
|
||
vhaamlvuee(uKosfoetdwhaaedsbawa,ecelkltgtrahole.urn1edv9i9ue4pw)p.oefrTtlhhimeerbietaahctkavgero=auln1sod54mbemeeans.utWrheee-
|
||
|
||
ments at radio wavelengths (Kogut, et al. 1988). Fi-
|
||
|
||
nally,to make the picture of the background spectrum
|
||
|
||
feutllalw. e1v9e9n5t;uLreadngto1u97se4)daantad aint 0th:3e ul0t:r8avmiole(tLaeitne9r1t2,
|
||
|
||
ahnavgestbroemen t(aVbikuhlaltinedinin19T9a5b)l.e IAVllinthuinsitms oefnttihoensepdecdtartaal
|
||
|
||
|
||
ux density and brightness temperature. Fig. 2 gives
|
||
|
||
a comparison of these data with the theoretical expres-
|
||
|
||
sion of the background spectrum and Fig. 3 compares
|
||
|
||
them with the background brightness temperature de-
|
||
|
||
pendence on the wavelength. As it is seen from gures,
|
||
|
||
the theoretical dependencies are quite well conrmed
|
||
|
||
by the experimental data not only at IR but also in
|
||
|
||
optics and the ultraviolet. This is an absolutely sud-
|
||
|
||
dtheen sruebsmultil.lSimometeredwivaevregbeanucendf.orWTebt(hi)nkcatnhisbemaseyenbeina
|
||
|
||
consequence of a systematic error of the measurements
|
||
|
||
which authors had been experiencing a quite natural
|
||
|
||
subconscious pressure of theoretical prejudices. How-
|
||
|
||
ever, we should note that this divergence is eliminated
|
||
|
||
either by an account of nonblackbodiness of the star
|
||
|
||
radiation in the Wien's region or by an account of in-
|
||
|
||
tergalactic absorption of optical waves or at last by a
|
||
|
||
small reduction in estimates of a relative number of
|
||
|
||
brightest stars in class B. The value 0:15% given in
|
||
|
||
literature and used by ours may be overestimated due
|
||
|
||
to the observational selection. Finally, it must always
|
||
|
||
be kept in mind that the background measurements at
|
||
|
||
wavelengths shorter than 0.5mm are aggravated by a
|
||
|
||
possible impact of the interplanetary and interstar dust
|
||
|
||
radiation. Some hypotheses given in the literature re-
|
||
|
||
pdeotretrmthiantedthteo oabgserrevaetdexbtaecnktgbroyutnhde adtust at 0T:1'mm20Kis
|
||
|
||
and so on. The uncertainty of corrections of this radi-
|
||
|
||
ation explains naturally a large spread of the data on
|
||
|
||
|
||
uxes of the cosmic origin. However, despite this fact,
|
||
|
||
one can denitely conclude that the experimental data
|
||
|
||
in a wide wave interval do not conrm the hypothesis of
|
||
|
||
the background relic origin and are in a good agreement
|
||
|
||
with the background star theory.
|
||
|
||
Recently the background measurements have been
|
||
|
||
made by the population of levels of the hyperne struc-
|
||
|
||
ture at mm waves in carbon clouds with the redshifts
|
||
|
||
zca=se1t:7h7e6arsntd lzev=el 2o:9f tbheeincgarnbeoanr qhuyapsearrs.neInsttrhuecturrset
|
||
|
||
hhaass bbeenenoubsteadineadnd(Stohnegateilma,peetraatlu.re19T9b4()1.:7T) h=is 1r3e:s5uKlt
|
||
|
||
ts formally 2:73(z + 1).
|
||
|
||
HthoewBevigerB, taongextphleaoinrythwehsiechexgpievreismTebn(tzs)w=e
|
||
|
||
cannot exclude possible energy pumping from a neigh-
|
||
|
||
Figure 3: Theoretical spectrum of the star background at
|
||
z(cmro=sse(5s) 7) 103 as compared with the measurement data
|
||
boring quasar (in the rst case quasar Q1331+1700), so these data were not included in Table IV.
|
||
In conclusion one cannot but note an extraodinary stability of the calculated background spectra to the aafolntrdethrai.ttsioIdtnesepvoeefnndthetneucnceeadlocnuoluatthtieothnwaaptvaterhlaeemngsepttheercstzrmuA(m;')(wMaans)d;nzosmot practically changed if we had used a simplied expression (6) for stars of classes FG.
|
||
4.2. A mysterious equality of the background energy density and the optical radiation energy of our Galaxy stars has a simple explanation
|
||
ArffcirnoeaaosrrgddnemiitnoaitrtetoittdbeidoiluiseitfntsrssetocosasdomefnpeitstcnhethteseahsernfeerigRcnworeama,ilataadhilxi.oa(esyno2u.tgin-eo4mlnty)ch(iiRteoeattnfht)eltiedgaln=yaearflaratonexdf0aoqii(rsetuazrihstegoein+hwdorctniys.1fprb)Eercoa.qeoasncurecdNerdehienovsgdacepaiodteolt0sandhbxdieoifyyr-s-f its spectrum is received by the radiotelescope tuned at ftrioeqnusepneccytru0m. eIfacthhegaglaalxaxyiecsonhtarvibeutthioenPilsandcekt'esrmraidnieadby the Planck's function at frequency (R) and is equal tsnoiugmnFab[lear(tRof)fr;egTqaudlaenx0ic]ey.sIfto0risiesaaalcsdhodsienedetenurpvfrafolr.momT(h2ei)qs-u(t4aa)lkteehsaeptcltatihvceee ovaptsauabtrnoclvthpciRhoeoaeurbgstwuoliryobtaonsywobeanetralhclvsyatseoturoaosnsdenhe
|
||
dntachRvRrdeeeR.2ano
|
||
sI,unnedmsliyR.debio.oneiannrndeRgodogfs2eoatgshltawaienlmxeiaoryxtecrisaieandnsdaeeincipnaahdetcon,eihooadhnscieenhonetndniecnRreedtv,reagiirsilyns--.
|
||
|
||
200
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
It results that each galaxy in the line of sight would be a lantern of a monochromatic optical radiation of different colors of the Planck's spectrum. However, from the observer's point of view (he is tuned on frequency ntwh0eieal)lrtgbhtaeehlyaeexaqoierubesaseloinrnvteoet-hrc.teohlAoerarsdsruaiaamdtriieaosotnufolrrtase,lclatethrivaefredecdiqoauntaitetornnifcbrsyeuqatuito0ennaplcollyaffcraeedl0-l quencies of the Planck's spectrum from one galaxy. It follows immediately according to (2-6) that the background energy
|
||
ux is simply equal to the integral over frequency energy
|
||
ux of the optical radiation of one mean galaxy.
|
||
The equality of the blackground energy density and the radiation density of the stars of our Galaxy was discovered more than 15 years ago and was a serious theoretical problem not being solved in the model of the background relic origin. Contrary to this, this fact follows naturally from the theory of the background sarsa4dtetlt=neaalsincioprrtmEsnyoaiobxtennraw
|
||
ypadidcugnreiokenxiifnogsnpgsbrtstaiiohpetnocruageeaanirnacmlnbactd(bruta5etaiotcle)hnaleknueggtrgednisifrroovedoogUnvnelnuylsessnoe.nriswtitfdsvhyofire.ernseertngqsMvtaeeuhaet.ruexeliguonlpBytnevcrieoaypeollrslofuyyswitmi0ohnanwenegfrdefdooiotbmeugrnsbintvesyzihriefetveorydterovhdmoo0etflrouocaatvomdinhnerideer---
|
||
|
||
|
||
|
||
r2n
|
||
|
||
m
|
||
|
||
Z1 0
|
||
|
||
8hc303
|
||
|
||
d0
|
||
|
||
Zzm 0
|
||
|
||
(z + 1)3
|
||
(z) dR exp h0(z + 1)=kT
|
||
|
||
1=
|
||
|
||
=
|
||
|
||
Z1 0
|
||
|
||
8c033h
|
||
|
||
exp
|
||
|
||
d0 h0=kTb
|
||
|
||
1
|
||
|
||
=
|
||
|
||
4
|
||
c
|
||
|
||
Tb4:
|
||
|
||
(14)
|
||
|
||
AdraetdniTsaibttyi=on2bv:7o=Klumt0h:e2ed4reeingvsh=itctympao3rf.ttghNievoeswtsatrlhseetorfuaosduicaratGlicoaunllaavxtoeylu. tmAhese itathmies emoabenvaidnoiusatsmawretedeesrnhosofiuttylhdentmaGkaeelqahxueyrae.lwtoithmi=n0(:514l3) ,zw=he0reanl ids
|
||
|
||
|
||
|
||
=
|
||
|
||
2r2 m
|
||
l2
|
||
|
||
Z1
|
||
0
|
||
|
||
c3(ex8phh003=kdT0
|
||
|
||
1) =
|
||
|
||
=
|
||
|
||
|
||
|
||
2r2 m
|
||
l2
|
||
|
||
T 4 Tb4
|
||
|
||
4
|
||
c
|
||
|
||
Tb4
|
||
|
||
ethqeu'Favloair4tclyuteTo=ifb4nt6h=s0qe0uv0aboKrle=u,mb0lre:a=2cd4ke1een5tvss=kitmiPisec3sc,looTmfshetuh=tseo1tmuh0nei1ci0tra,opawTnpbadrvo=,exhib2eman:7cacKktee-, ground energy and the optical radiation of our Galaxy is explained by the identity of the nature of the background and the star optical radiation and as well by the
|
||
|
||
Figure 4: The measurement results of the small-scale
|
||
sapsaacefu
|
||
nuccttiounatioofntsheofrathdeiotbealecskcgorpoeunadntteenmnapepraattuterren wTid=tTh in minutes of arc:
|
||
|the measurement of Parijskij; 2 | tchuervme easurements of Berlin. Solid line | the theoretical
|
||
|
||
fNtwahaacesttuptsrhpoaaeilnctlyitoa,ulotlhrfyiGsvniaocelotwaeixndyociifindstetchnhlecoeesbercaeotvcoukiletgdwhreonouomfnteBdbauenrreebslxtiicpadtlgaoiesirtni(ige1cida9nl8,fto9rhon).amet.
|
||
|
||
4.3. Background small-scale anisotropy
|
||
The spatial variations of the background radiation int(we6an)ysaiatsycdcaeoprredenidndegetnetrtomo(in7n)eddirebcytiaonchanogfethoef axn(te)nnoaf.inItnegthraisl
|
||
|
||
Tb()
|
||
|
||
=
|
||
|
||
hc=k0
|
||
|
||
ln
|
||
|
||
|
||
1
|
||
|
||
+
|
||
|
||
1
|
||
x
|
||
|
||
|
||
|
||
:
|
||
|
||
U2nsdura=allryd+exriv1na=>tinv>e+1ofamnlod=gmx,Tihbne=rT(e6b)(ar)n;=d
|
||
|
||
obxt=axin.
|
||
n; m
|
||
|
||
Tahxree=nxdwi=se-
|
||
|
||
persions of corresponding values. The value r is a mean
|
||
|
||
dofimsteanrssioinn,gsaolaxires',
|
||
|
||
0. as
|
||
|
||
itTihsekndoiswpner,siisonpomf
|
||
|
||
the .
|
||
|
||
number
|
||
|
||
accoTuontdethteermtoitnael ntuhme bdiesrpoefrsgiaolnaxoifesninitthies annetceenssnaarypatto-
|
||
|
||
tern up to the Rtemnnadepeelnddionfg
|
||
|
||
oenectiavcecodridstianngcteooTf avbisleibIiIliIt.yInRteh(e)ansight equal to
|
||
sterad there will be
|
||
|
||
Npa1van=Nrp di=an0=b:ln3=ep3s0Nn:n3n=R300:Ra(3:n33()3d3RR)
|
||
3m(3e.
|
||
()3)D
|
||
g
|
||
Tau.lef=arTTxothimoee=sniwnwphdieet(nrphee=nnddi=snenpn=N)ecn2re=s+=0ioo:(3nf3rRNma3en=N=(Ndmo)m)==
|
||
2
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars201
|
||
|
||
Ftioignuorfeo5b:serEvaxtpioernimofenwtaavledleenpgetnhdence of T=T as a func-
|
||
|
||
Figure 6:
|
||
[p(areTd=Tw)it2h
|
||
|
||
thme
|
||
|
||
Spatial dependence of the 1]
|
||
on the wavelength (solid experimental data of TableIV
|
||
|
||
(lvipanoleui)netass)Xcom=-
|
||
|
||
and we have nally
|
||
|
||
T T
|
||
|
||
=
|
||
|
||
p1m p1
|
||
|
||
+
|
||
|
||
m=0:33 n R()3
|
||
:
|
||
|
||
(15)
|
||
|
||
The measurement results of background tempera-
|
||
|
||
ture
|
||
uctuations have been given in the review of Par-
|
||
|
||
ijskij (1990). These results are shown in Fig. 4 in the
|
||
|
||
ftmoerremvaasluorf0etmh<eend
|
||
teopfend2Te,n=ccToenowtfaeirlngeincgaTr7r=i3Teddoaontuatlgpi
|
||
noitnihntse.thweaTvihnee--
|
||
|
||
loefntghteh
|
||
|
||
ainntteernvnaal
|
||
|
||
10 1 pattern
|
||
|
||
00:020
|
||
|
||
50
|
||
|
||
|
||
cpm
|
||
|
||
|
||
at
|
||
|
||
|
||
3a0d0i00e: rent
|
||
|
||
width
|
||
|
||
All measurement results are within interval 10 5
|
||
|
||
bgoifevThme=anTevaiinosurFri1nieg0mt.he43en.dtdIueotepfietsdnoindaoeenstrtecprneootnosfgsaiubstplhTeroe=traTosdraooennvfded
|
||
aamltoaaevnaecsyroumarrleeplgmdouaseleantdart
|
||
|
||
procedures. However, we hope that the data of the
|
||
|
||
same authors for dierent
|
||
are most free of relative
|
||
|
||
errors. These data are those of Parijskij and Berlin.
|
||
|
||
According to the data of these authors in Fig. 4 we
|
||
|
||
hthaevreechleaasrbdeeepneantdehnectiehseoorfeticTal=dTepoennd
|
||
e.ncHe ecraelcauslawteeldl
|
||
|
||
ffpooerrrimn0e=>nt2a1,lmdmmat=awho1fi0cP1h0aarasijnissdkisjeReaenn(dw)eBl=leral4gin0re. e1Ts0hw3uMitsh,ptcthheveaoelbxid--
|
||
|
||
served small-scale background anisotropy is explained
|
||
|
||
by discreteness of the background radiation sources, the
|
||
|
||
galaxy stars. Besides, the calculation presented pre-
|
||
|
||
dicts according to (15) and Table III the dependence of
|
||
|
||
thTe =sTizeoonf tthhee ogbaslearxvyateioenctwivaevelatyherroutagkhintghepachrtaningethoef
|
||
|
||
background formation. To reveal this dependence one
|
||
|
||
should exclude the in
|
||
uence of
|
||
. For this purpose we
|
||
|
||
have sampled the measurement from the data of Fig.
|
||
|
||
4 in a suciently narrow band 0:8 lg
|
||
1:2 and
|
||
|
||
then have plotted the dependence T=T on . Fig.
|
||
|
||
5 presents this dependence which conrms the predictfdrieoopnme.nadTlelhntecheedeedsxaicrtleaud.diOdnengpeetnhcadeneinnoc
|
||
beuteawniancseedaoesfitl
|
||
eyr,mfrnioanmmede(l1ay5s)wtehlel
|
||
|
||
X
|
||
|
||
"
|
||
=
|
||
|
||
T 2 T
|
||
|
||
1
|
||
m
|
||
|
||
#
|
||
|
||
|
||
|
||
|
||
=
|
||
|
||
0:33
|
||
|
||
m
|
||
n R3()
|
||
|
||
:
|
||
|
||
Hdaetrae froTm=TFiagn. d4.
|
||
Faigr.e 6thgeivceosrrtehsepoexnpdeinrigmeexnptearlimdeepnetna-l donene.ceTohf eXfaocnt of itnhceoirmppraorpiseorncwoiinthcidthenecteh itsheaorsetrtoicnagl aforrgmumateinont.in favor of the theory of the star background
|
||
|
||
5. Sstthtaaenradmlatreidcrrnocaowtsiavmveeotlbhoagecoykrmgiersooduenldanindtihne
|
||
|
||
For general formula (12) will do to calculate the background in this case. A specic point for the standard cosmology models is a restriction of the integration limittimine o(1f2th)eugpaltaoxizems. <In1th0eopwroincgestsoofaclailmcuitlaedtioenxifsotrenthcee cfwdholRaohrsse=terthddehzeemcd=HfioosRt0dllaeoH1nlw=c=wie(ne-zRrghe+Hfdaosv1rhie)msi2ftttoharenteadlUaktetnihiotvehneegrRsetenh(zeerr)oaard=leituecixscH.par0lIene1sxzstpi=hor(inezss+sc(i1a1o2s)ne),
|
||
|
||
AH X 19 10 0:233M+1:05 '(M)
|
||
4
|
||
|
||
Z10 (z + 1)
|
||
(z)dz 0 expfhc(z + 1)=0kTg
|
||
|
||
1=
|
||
|
||
202
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
=
|
||
|
||
|
||
exp
|
||
|
||
hc kTb0
|
||
|
||
|
||
1
|
||
|
||
1 ;
|
||
|
||
(16)
|
||
|
||
where AH
|
||
km=s Mpc
|
||
|
||
a=nd
|
||
r(2zn)
|
||
|
||
m=
|
||
|
||
c1H. 0
|
||
|
||
1
|
||
|
||
.
|
||
|
||
Let us take H0 = 75
|
||
|
||
Table V gives the calculation result at the mini-
|
||
|
||
mfroummwvhaeluree iotfisAseefnorthtwatothvealsuteasr obfaczkmgro=un5d taenmdpe1r0-
|
||
|
||
ature exceeds its noticeable
|
||
|
||
2p:a7rKt
|
||
|
||
at submillimetre waves and at millimetre waves. From
|
||
|
||
makes that it
|
||
|
||
follows an unambiguous conclusion that the observed
|
||
|
||
microwave background is to be consisted of the sum of
|
||
|
||
star and relic contributions. In other words the relic
|
||
|
||
background has no place at millimetre and especially
|
||
|
||
submillimetre waves. Hence, we have a denite incon-
|
||
|
||
sistency of the Big Bang theory to explain the observed
|
||
|
||
microwave background radiation.
|
||
|
||
From the given calculation it is clear that none of
|
||
|
||
the models with a hot origin can explain the microwave
|
||
|
||
bcaascekgtrhoeunedxisbtyentcheeroegpitoicnalofratdhieatgioanlaxoifesstfaorrsm. Iins gthetis-
|
||
|
||
ting too small limited by the interval z 10. Here
|
||
|
||
we include the in
|
||
ation model and the models based
|
||
|
||
on conformal metrics (Hoyle and Narlikar 1972, Troit-
|
||
|
||
si.kei.j n19o8n7ex, pPaentditin1g9,8n8o).nliTmhietemd oindeslpsaocfe aansdteatidmy-estUantei-,
|
||
|
||
verse are in a particular position. We have here the
|
||
|
||
model which explains the redshift by \quantum aging."
|
||
|
||
In this case, as it is known, the quantum energy is
|
||
|
||
supposed to have an exponential attenuation with dis-
|
||
|
||
tbaancckeg,rothuantd gisivaelssoRex=plaRin0eldn(bzy+th1e).opHtiecrael roabdsieartviaotnioonf
|
||
|
||
stars. In conclusion we have to note, that microwave
|
||
|
||
background distortions associated with the interaction
|
||
|
||
of relativistic electrons with photons etc. considered in
|
||
|
||
dinettahiel bmyoSdeell'doofvtihcehbaancdkgSruonuynadevsta(1r9o9r2ig)ianr.e also valid
|
||
|
||
6. Conclusion
|
||
|
||
AtUThhlneleiovortebyhrsseeoeorfrvaetarthetieiccoaouslntnabatralimociknmegadrlrioybcuaynntaiodolnlnslkspimneoocifwttretnuhdmeeixnMposebBprtiRaamcienesetnaadtnradilsodrtcaiiogmtniane-. mdfaorerepmmmtereoraidfcntesitbcototyrnaIbeRtrxleeaspsacueankrlbdtipmi,olnadpgeuyrnostiibnrabaalldaebdilamayctt,oeaienocvinhcnelaunanasnitiswoodmniodcpoatetfhnibatncahtaoneltMdwbbaBafercvRokecmgso.irusodTpuenlhnceoiiddsttoteohrfgettyrhMudesBetmnRsiasitteyttneheorerfgaesytxtapadrlesaennaisnrailttioyieournarenGpodfoactlaahhx.emyAo,ypasnttseiacwrdiaeoldlulirstaaidsoeqnitauahtlaeiolficnataycuetnosoer-f ouofbebsaearncvdkagtdrieoopnuenwnddasevmneclaeelnlg-ostnchatlahereaenacinostonetnrrnompayepdwabthtyiecrhtnhpewremiddeitcahtsuavraneld--
|
||
|
||
mohfyepBnotitgsh. BesAaisnl.lgthainsdisinafasevroirouosf ethviedestnecaedyag-satiantset Uthneiviedresae
|
||
|
||
References
|
||
|
||
[1] YgRyuu,."sVsGi.arnBa)va.irtyasthioenv.a\nPdrCogorsemssoloogfyS, c4ie(n1c9e92a),nd(MToescchowno,loin-
|
||
|
||
[2] A.D. Bliter. IAU Symposium N63: \Conformation of C(UoSsmA)o.logical Theories with Observational Data," 1974
|
||
|
||
[3] G.R. Burbidge. Int. J. Theor. Phys., 28, 983 (1989).
|
||
|
||
[4] A80.9G.(1D96o4r)o.shkevich, I.D. Novikov. DAN USSR, 154,
|
||
|
||
[5] F. Hoyle and J.V. Narlicar. NNRAS, 155, 305 (1972).
|
||
|
||
[6] ML-.89Ka(1w9a9d4a),. J.J. Bock, V.V. Hristov et al. Ap. J. 425,
|
||
|
||
[7] A1 .(1K9o8g8u).t, M. Beksanelli, G. DeAmici et al. Ap.J. 325,
|
||
|
||
[8] K.R. Lang. Astophysical Formulae, New York (1974).
|
||
|
||
[9] C.H. Leinert, P. Vassanen, K. Lehtenen. Astron. Astroph. Sup. Ser.,112, 99 (1995).
|
||
|
||
[10] J.C. Mather, E.S. Cheng, D.A. Cottengham. Ap. J., 420, 439 (1994).
|
||
|
||
[11] T. Matsumoto, H. Hayakawa, H. Matsyo et al. Ap. J. 329, 567 (1988).
|
||
|
||
[12] G.C. McVittie. Phys. Rev. 128, 2871 (1962).
|
||
|
||
[13] Yu.N.. Parijskij and D.V. Korol'kov. Progress of Science and Technology. Astronomy, 31, 73 (1986).
|
||
|
||
[14] Yu.N. Parijskij and R.A. Sunyaev. IAU Symposium NO6b3se:rv\aCtioonnfarlonDtaattaio,"n 1o9f74C(oUsmSAol)o.gical Theories with
|
||
|
||
[15] J.P. Petit. Modern Physics Letters A. 3, 1527 (1988).
|
||
|
||
[16] E. Segal. Proc. Natl. Acad. Sci. USA 90, 4798 (1993).
|
||
|
||
[17] A. Songaila, L. Cowre, C. Hogan, M. Bugers. Nature, 368, 599 (1994).
|
||
|
||
[18] A. Songaila et al. Nature, 371, 43 (1994).
|
||
|
||
[19] V.S. Troitsky. Ap. Space Sci., 139, 389 (1987).
|
||
|
||
[20] V.S. Troitsky. Ap. Space Sci., 201, 203 (1993).
|
||
|
||
[21]
|
||
|
||
V.S. Troitskij. (1993).
|
||
|
||
Izvestiya
|
||
|
||
Vuzov,
|
||
|
||
Radiozika,
|
||
|
||
36,
|
||
|
||
857
|
||
|
||
[22] V.S. Troitskij. NIRFI Preprint, N400 (1994).
|
||
|
||
[23] V.S. Troitskij. UFN, 65, 703 (1995).
|
||
|
||
[24] A. Vikhlinin. Pis'ma v A. Zh., 21, 413 (1995).
|
||
|
||
[25] Yphay.Bsi.csZ,e"l'Mdoovsiccohwa,n1d9I6.7D(.iNnoRvuiksosvia.n\)R. elativistic Astro-
|
||
|
||
[26] Ya.B. Zel'dovich and R.A. Sunyaev. \Astrophysics and C19o8s2m. ic Physics," ed Sunyaev R.A., Nauka, Moscow,
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars203
|
||
|
||
Table I
|
||
|
||
TAheansdtazr
|
||
|
||
background radiation in
|
||
|
||
m
|
||
|
||
.
|
||
|
||
Columns 2-6 are radiation. The
|
||
|
||
the rst
|
||
|
||
rtehlaetsivteatciconmtroidbeultioofntshoef line of the columns 2-6
|
||
|
||
utnhievesrtsaersatofRs=peRct0razl1c=2lasfsoersdBiAereFntGcoKmbMinianttioontsheofbpaackragmroeutnedrs is a relative number of the stars of the given class.
|
||
|
||
A = 0.11488E - 10 MAX Z= 7000.0
|
||
|
||
(mm) 0.0001 0.001 00..011000 1.000 10.000 30.000 100.000 240000..000000 800.000 700.000 1000.000
|
||
|
||
B0./0S13%
|
||
|
||
A1./40S%
|
||
|
||
F7.G47/%S
|
||
|
||
K9./2S9%
|
||
|
||
M81/.8S2%
|
||
|
||
T back
|
||
|
||
0.986 0.014 0.000 0.000 0.000 3668.36
|
||
|
||
0.219 0.560 0.195 0.023 0.003 520.08
|
||
|
||
0.238 0.543 0.189 0.025 0.005 71.95
|
||
|
||
0.231 0.547 0.191 0.025 0.005 11.88
|
||
|
||
0.165 0.568 0.228 0.032 0.006 3.09
|
||
|
||
0.061 0.480 0.358 0.075 0.025 2.56
|
||
|
||
0.053 0.454 0.373 0.086 0.034 2.73
|
||
|
||
0.050 0.445 0.378 0.090 0.037 2.81
|
||
|
||
0.050 0.443 0.379 0.090 0.038 2.83
|
||
|
||
0.050 0.442 0.379 0.091 0.039 2.84
|
||
|
||
0.049 0.442 0.379 0.091 0.039 2.85
|
||
|
||
0.049 0.442 0.379 0.091 0.039 2.85
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.85
|
||
|
||
A = 0.25633E -10 MAX Z = 5000.0
|
||
|
||
(mm) 0.0001 0.001 0.010 01..100000 10.000 30.000 120000..000000 400.000 800.000 710000.00.00000
|
||
|
||
B/S
|
||
0.013%
|
||
|
||
A/S
|
||
1.40%
|
||
|
||
FG/S
|
||
7.47%
|
||
|
||
K/S
|
||
9.29%
|
||
|
||
M/S
|
||
81.82%
|
||
|
||
T back
|
||
|
||
0.986 0.014 0.000 0.000 0.000 3740.04
|
||
|
||
0.220 0.560 0.193 0.023 0.003 535.29
|
||
|
||
0.237 0.543 0.190 0.025 0.005 74.92
|
||
|
||
0.228 0.549 0.193 0.026 0.005 12.68
|
||
|
||
0.141 0.570 0.245 0.036 0.007 3.53
|
||
|
||
0.057 0.469 0.365 0.080 0.028 2.72
|
||
|
||
0.052 0.450 0.375 0.087 0.035 2.73
|
||
|
||
0.050 0.444 0.378 0.090 0.038 2.74
|
||
|
||
0.050 0.442 0.379 0.091 0.038 2.74
|
||
|
||
0.049 0.442 0.379 0.091 0.039 2.74
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.75
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.75
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.75
|
||
|
||
A=0.88421E - 10 MAX Z = 3000.0
|
||
|
||
(mm) 0.0001 0.001 0.010 0.100 11.00.00000 30.000 100.000 240000..000000 800.000 700.000 1000.000
|
||
|
||
B/S
|
||
0.013%
|
||
|
||
A/S
|
||
1.40%
|
||
|
||
FG/S
|
||
7.47%
|
||
|
||
K/S
|
||
9.29%
|
||
|
||
M/S
|
||
81.82%
|
||
|
||
T back
|
||
|
||
0.986 0.014 0.000 0.000 0.000 3857.52
|
||
|
||
0.222 0.561 0.191 0.023 0.003 560.66
|
||
|
||
0.235 0.544 0.191 0.025 0.005 80.00
|
||
|
||
0.220 0.551 0.197 0.026 0.005 14.13
|
||
|
||
0.108 0.558 0.281 0.044 0.010 4.31
|
||
|
||
0.054 0.458 0.371 0.084 0.032 2.89
|
||
|
||
0.051 0.447 0.377 0.089 0.037 2.73
|
||
|
||
0.050 0.443 0.379 0.090 0.038 2.67
|
||
|
||
0.050 0.442 0.379 0.091 0.039 2.66
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.65
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.65
|
||
|
||
0.049 0.441 0.379 0.091 0.039 2.65
|
||
|
||
0.049 0.441 0.380 0.091 0.039 2.65
|
||
|
||
204
|
||
(mm) 00..0000011 0.010 0.100 1.000 1300..000000 100.000 200.000 480000..000000 700.000 100.000 (mm) 0.0001 000...001010100 1131.0000..0000.00000000 248700000000....000000000000 1000.000
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
The same as in Table I, but for the Hubble law R=RH * z. A = 0.11362E - 11 MAX Z=3000.0
|
||
|
||
B/S
|
||
|
||
A/S
|
||
|
||
FG/S
|
||
|
||
K/S
|
||
|
||
M/S
|
||
|
||
0.013% 1.40% 7.47% 9.29% 81.82%
|
||
|
||
0.994 0.006 0.000 0.000 0.000
|
||
|
||
0.350 0.517 0.121 0.011 0.001
|
||
|
||
0.313 0.520 0.147 0.017 0.003
|
||
|
||
0.285 0.535 0.159 0.019 0.003
|
||
|
||
0.119 0.573 0.263 0.038 0.007
|
||
|
||
0.055 0.460 0.370 0.084 0.032
|
||
|
||
0.051 0.447 0.377 0.089 0.037
|
||
|
||
0.050 0.443 0.379 0.090 0.038
|
||
|
||
0.050 0.442 0.379 0.091 0.039
|
||
|
||
0.049 0.441 0.379 0.091 0.039
|
||
|
||
0.049 0.441 0.379 0.091 0.039
|
||
|
||
0.049 0.441 0.379 0.091 0.039
|
||
|
||
0.049 0.441 0.380 0.091 0.039
|
||
|
||
A = 0.25601E - 11 MAX 2=5000.0
|
||
|
||
B0./0S13% A1./40S% F7.G47/%S K9./2S9% M81/.8S2%
|
||
|
||
0.994 0.006 0.000 0.000 0.000
|
||
|
||
0.351 0.516 0.120 0.011 0.001
|
||
|
||
0.315 0.519 0.146 0.017 0.003
|
||
|
||
0.296 0.529 0.154 0.018 0.003
|
||
|
||
0.166 0.582 0.218 0.029 0.005
|
||
|
||
0.058 0.472 0.364 0.079 0.028
|
||
|
||
0.052 0.451 0.375 0.087 0.035
|
||
|
||
0.050 0.444 0.378 0.090 0.038 0.050 0.443 0.379 0.090 0.038
|
||
|
||
0.050 0.442 0.379 0.091 0.039
|
||
|
||
00..004499
|
||
|
||
00..444411 00..337799 00..009911 00..003399
|
||
|
||
0.049 0.441 0.379 0.091 0.039
|
||
|
||
T back
|
||
3438881.6.334 71.29 12.82 4.09 22..8763 2.68 2.67 22..6666 2.66 2.66
|
||
T back
|
||
3264.10 4616615..44.1504 3222....26778836 2222....77776777 2.77
|
||
|
||
Table II
|
||
|
||
Table III
|
||
|
||
The dependence of the eective distance of dierent spectral class on the observation wavelength.
|
||
|
||
cm0 10
|
||
|
||
TZ17e5=12053 103
|
||
|
||
1
|
||
|
||
17.5 103
|
||
|
||
0.1
|
||
|
||
1750
|
||
|
||
0.01
|
||
|
||
175
|
||
|
||
0.001
|
||
|
||
17.5
|
||
|
||
0.0001
|
||
|
||
1.75
|
||
|
||
TZ70e=10130 103 7.103 700 70 7 0.7
|
||
|
||
TZ42e=1063 103 4.2 103 420 42 4.2 0.42
|
||
|
||
TZ28e=1043 103 2.8 103 280 28 2.8 0.28
|
||
|
||
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars205
|
||
|
||
Table IV
|
||
|
||
depeEndxepnetrimonenwtaavlemleenagstuhr.em1-e1n6t-dKatoaguotf 1th9e88b,a1c7k-g1r8ou-nMderyaedria1t9i8o6n, s1p9e-c2t4ra-lMdeantssuitmy oatnod1i9t8s8b,r2ig5h-3tn6e-ssMtaetmhperer1a9t9u4re, 3a7s-43 Kawada 1994, 44-46 - Leinert 1995, 47 - Lang 1974, 48 -Vikhlinin 1995.
|
||
|
||
No [mm] 1 120.000 2 81.000 34 6330..000000 5 12.000 6 9.090 7 3.330 89 22..664400 10 1.320 11 1.320 1123 31..591800 14 1.480 15 1.140 1167 12..060400 18 1.320 19 1.160 20 0.709 2212 00..428612 23 0.137 24 0.102
|
||
|
||
BW() 10 24 cm2 sr Hz 0.522 1.049 1.801 7.297 42.655 69.962 252.266 331.158 342.627 340.065 335.124 276.694 477.012 456.029 231.624 141.735 339.750 360.202 302.769 116.866 29.404 3.678 82.966 3.700
|
||
|
||
Tb [oK] No 2.780 25 2.580 26 22..760100 2278 2.780 29 2.810 30 2.600 31 22..770400 3323 2.760 34 2.750 35 22..890500 3367 2.920 38 2.650 39 22..575300 4401 2.800 42 2.790 43 2.956 44 34..117295 4456 8.650 47 8.740 48
|
||
|
||
[mm] 350.000 125.000 8700..000000 40.000 10.000 5.000 43..000000 2.000 1.000 00..520400 0.154 0.134 00..113000 0.095 0.060 0.0008 00..000000355 0.00065 0.00000912
|
||
|
||
BW() 10 24 cm2 sr Hz 0.060 0.467 1.105 1.465 4.254 59.173 169.739 226.599 306.290 382.538 204.305 8.321 5.600 1.330 5.800 4.800 3.300 5.000 4.800 0.650 0.135 0.250 0.450 0.0001
|
||
|
||
Tb [oK] 2.700 2.700 22..675000 2.640 2.800 2.726 22..772266 2.726 2.726 27..702163 5.867 7.221 78..380250 9.436 13.726 554.560 1812266.9.74252 662.294 3181.021
|
||
|
||
Table V
|
||
|
||
The star component of the background for the closed model of the universe in the standard cosmology.
|
||
|
||
A = 0.15000 E-11 MAX Z = 10.0
|
||
|
||
(mm) 0.001 00..011000 0.500 1.000 24..000000 8.000 30.000 100.000 510000.00.00000
|
||
|
||
B/S
|
||
0.013%
|
||
|
||
A/S
|
||
|
||
FG/S
|
||
|
||
1.40% 7.47%
|
||
|
||
K/S
|
||
9.29%
|
||
|
||
M/S
|
||
81.82%
|
||
|
||
T back
|
||
|
||
0.121 0.579 0.260 0.035 0.005 469.81
|
||
|
||
0.057 0.466 0.366 0.081 0.030 54.08
|
||
|
||
0.050 0.444 0.378 0.090 0.038 5.98
|
||
|
||
0.049 0.442 0.379 0.091 0.039 1.28
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.66
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.34
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.18
|
||
|
||
0.049 0.440 0.380 0.092 0.039 0.09
|
||
|
||
0.048 0.437 0.381 0.093 0.041 0.03
|
||
|
||
0.046 0.430 0.385 0.096 0.044 0.01
|
||
|
||
0.039 0.402 0.397 0.107 0.055 0.00
|
||
|
||
0.034 0.385 0.405 0.114 0.062 0.00
|
||
|
||
206
|
||
(mm) 0.001 0.010 0.100 01..500000 2.000 4.000 83.00.00000 100.000 500.000 1000.000 (mm) 0.001 0.010 0.100 01..500000 2.000 4.000 83.00.00000 100.000 500.000 1000.000
|
||
|
||
V.S. Troitskij, V.I. Aleshin
|
||
|
||
A = 0.15000 E-12 MAX Z = 10.0
|
||
|
||
B0./0S13%
|
||
|
||
A1./40S%
|
||
|
||
F7.G47/%S
|
||
|
||
K9./2S9%
|
||
|
||
M81/.8S2%
|
||
|
||
T back
|
||
|
||
0.121 0.579 0.260 0.035 0.005 437.20
|
||
|
||
0.057 0.466 0.366 0.081 0.030 49.80
|
||
|
||
0.050 0.444 0.378 0.090 0.038 5.46
|
||
|
||
0.049 0.442 0.379 0.091 0.039 1.16
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.60
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.31
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.16
|
||
|
||
0.049 0.440 0.380 0.092 0.039 0.08
|
||
|
||
0.048 0.437 0.381 0.093 0.041 0.02
|
||
|
||
0.046 0.430 0.385 0.096 0.044 0.01
|
||
|
||
0.039 0.402 0.397 0.107 0.055 0.00
|
||
|
||
0.034 0.385 0.405 0.114 0.062 0.00
|
||
|
||
A = 0.15000 E - 12 MAX Z=5.0
|
||
|
||
B0./0S13%
|
||
|
||
A1./4S0%
|
||
|
||
F7.G47/%S
|
||
|
||
K9./2S9%
|
||
|
||
M81/.8S2%
|
||
|
||
T back
|
||
|
||
0.116 0.578 0.265 0.036 0.005 436.06
|
||
|
||
0.055 0.460 0.370 0.083 0.032 49.35
|
||
|
||
0.050 0.443 0.379 0.090 0.038 5.39
|
||
|
||
0.049 0.441 0.379 0.091 0.039 1.15
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.59
|
||
|
||
0.049 0.441 0.380 0.091 0.039 0.30
|
||
|
||
0.049 0.440 0.380 0.091 0.039 0.16
|
||
|
||
0.049 0.439 0.380 0.092 0.040 0.08
|
||
|
||
0.048 0.434 0.383 0.094 0.042 0.02
|
||
|
||
0.044 0.422 0.388 0.099 0.047 0.01
|
||
|
||
0.035 0.387 0.404 0.113 0.061 0.00
|
||
|
||
0.031 0.372 0.411 0.119 0.067 0.00
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 207{224 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
THE MEASURING OF ETHER-DRIFT VELOCITY AND KINEMATIC ETHER VISCOSITY WITHIN OPTICAL WAVES BAND
|
||
Yu.M. Galaev1
|
||
The Institute of Radiophysics and Electronics of NSA in Ukraine, 12 Ac. Proskury St., Kharkov, 61085 Ukraine
|
||
|
||
Received November 15, 2002
|
||
|
||
fvdoTeorlhoneecoliettecyxctopraonenmtrdrimaatgdehninecetttaeittlchhheweyroaprvkoieigtnsihnepemasrliaoshtpyivacpegovraititshiccoeoansstiisihtoysantsahotbafeesmetbhneeeneptneestrhapfonerrordmpecoexasdines.dtbeTenahncceedonoirnspeiadtnileciarzateeluddmr.eae,sTaeihs.xeuep.rrienetrsghimuelmetmsnettaoahtfloesirdymiasoatlfegmmitnheaaedttiiiecuotmnhme,ceroarnmesusoprrvmeoemnamsetiienbontlnest of the ether existence in nature, as the material medium.
|
||
|
||
The experimental hypothesis verication of the espriatebhdrlefieoorrfewmoxraiesvdeteelseencabctraerlnoiienmdr,naibnagytntuethrtheeiec,wipw.oehar.akvsmseesa[m1tpe-er3rtoi]ha,polawmdgi.atehtTdiioinhunemmrh,iealrslseuimslbpteseotenoen-rf tpAdphuaotertscthueeidekcxsolpiebvsesys,rskitmtytahhte[aee4ntm-tm6e[]a1ln.lt-tsI3esnr],iindabthloateshmneemdoetdwooicdnouoermnltldht[r4ceas-op6demt]aichcptteheor,etshemhedetaohsooderfetrighlsiieeosnpfaipanVlrrtoha.rApytoe---. emreerttphaitreeeersrsieioasnflttfvhotiershceamoluleastmtheaaernrtiaedrvliacamorlieeforoducrisiumbmmlaet,oigvroaeenssms,p.eoiTsnnthstihefboelprehmcoyfsons,risctiae.rellue.cctettirlohdonesmbe[7ta-has9gei]srnaed[n4tri-dic6ft]wAswae.Avaaers.cs,hMppirrcosuhtpbealoligssfoahnateil,dol,Fnbt..yGhTeD.h.pPCeoe.esaMixstepiivelaelrenirmrdeiensFnu1t.lt9asP2l 2emoa-f1ros9tdoh2ene6l itpnrroe1mpT9aa2hrg9eant[eei1oxt0nip]c,.ervwiemarvieenestd[o7mp-t9ei]tchaisol dpbsearonffodrt,mhedeidinevwreiestdthiignbayttihocenareceloefnuc--l dsttvuoieuollctnothtsaci.einrtyTgeyt,hmhaseetneirmddpiiuemusalmatsaatug.etriideOnsdtabritcbeyiatiothltnlaheyslreacdsEvoirgaaminifrltptiahpobcanlmaerenanoatmtvtemetomhtfeeaetratnhsstteumiarmeeirtsmoehmu,eenaarnstdtdcshtrtrhieaefdet-SMhhueaiisnlglehtwrtheioothfbvta2atl6hiu5neeemdva,ebalotobhucoativttye3tt3hkh0eme k/esmtesheac/e,srleeavcdne,rldiwf(tCaastvleevntlhoeolecteinthdydee,itageUthctStteAhdoe).f 1830 m (Mount Wilson observatory, USA) | about 10
|
||
1e-mail: galaev@ire.kharkov.ua; Ph.: +38 (0572) 27-30-52
|
||
|
||
km/sec. The apex coordinates the Solar system move-
|
||
|
||
mdpeeecnnlditnicawuteliaorerntdoeatnere+mc6liin5petd.ic:
|
||
|
||
Spudlacirihnecm(tcooavosercdmeinnesnaiotteniss
|
||
|
||
17:5h, almost perof the North
|
||
|
||
Pole ecliptic: the observed
|
||
|
||
eect1s8cha,nbe e+xp66lai)n.edM,iilfletrosahcocwepedt,,
|
||
|
||
that that
|
||
|
||
the ether stream has a galactic (space) origin and the
|
||
|
||
velocity more than 200 km/sec. Almost perpendicu-
|
||
|
||
larly directional orbital component of the velocity is
|
||
|
||
lost on this background. Miller referred the velocity
|
||
|
||
decrease of the ether drift from 200 km/sec up to 10
|
||
|
||
km/sec to unknown reasons.
|
||
|
||
andSo[1m0]e, paerecuelixaprliatiiensedofbtyhetheexpetehriemr evnitscoressituyltsin[7t-h9e]
|
||
|
||
works [4-6]. In this case the boundary layer, in which
|
||
|
||
the ether movement velocity (the ether drift) increas-
|
||
|
||
es with the height growth above the Earth's surface, is
|
||
|
||
faonrdmtehde aetthtehrenreealrattihvee Emaorvthem'sesnutrfoafcet.he solar System
|
||
|
||
In the works [1-3] it is shown, that the results of sys-
|
||
|
||
tematic experimental investigations within radio waves
|
||
|
||
band can be explained by the wave propagation phe-
|
||
|
||
nomenon in the moving medium of a space origin with
|
||
|
||
a vertical velocity gradient in this medium stream near
|
||
|
||
the Earth's surface. The gradient layer availability can
|
||
|
||
be explained by this medium viscosity, i.e. the feature
|
||
|
||
proper to material media, the media composed of sep-
|
||
|
||
arate particles. The mean value of the measured maxi-
|
||
|
||
mal gradients was equal to 8.6 m/sec m. The velocity
|
||
|
||
comparison of the suspected ether drift, measured in
|
||
|
||
the experiments [1-3], [7-9] and [10], is performed in the
|
||
|
||
works [1-3]. The place distinctions of geographic lati-
|
||
|
||
tudes and their heights above the sea level are taken
|
||
|
||
208
|
||
|
||
Yu.M. Galaev
|
||
|
||
ipeatmtnhutcath/cearoeosilwserrtaocdorcd.nuircnr.kTtoighsfIuhttf[nteu7viotl-scen9otlioe]onhmbsacestnitpathcvdayioeanr[snlii1eeussd0oerw],en,mxotiwrthpraehdhaestiertuiincoirlmihntnc6eaco1otnari2fhnent4etscwhbi:ecdei:exote:phecn8xowied4nprn9uiitesm06chirt0dieimm0etnnhr0g/teee:nsd[ae:1tdct:sa-a1,3s[ct0]1tmoa0ht-m3h0auo]0et--f, [7-9] and [10].
|
||
The positive results of three experiments [1-3], [79], [10] give the basis to consider the eects detected in these experiments, as medium movement developmttiiomenne.tssS,ourfecMshpamoxnewsdiebilulle,mMfowircahesleeclcsaotlrlneodmanaadsgnteehaterilcieetwrh.aevrTes[h1ep1r]cooapntactglhuae-sion was made in the works [1-3], that the measurement results within millimeter radio waves band can be constihdeermedataesritahlemexedpieurmimeenxtisatlehnycepoitnhensaistucroensurmchataisonthoef ether. Further discussions of the experiment results [1-3] have shown the expediency of additional experimental analysis of the ether drift problem in an optical wave band.
|
||
Experiments [7-9] and [10] are performed with optical interferometers manufactured according to the cruciform Michelson's schema [12,13]. The work of such idnitreercfteioronmaentderrebtausrendinognitthteo ltihghetopbasesrsviningginpoainftorawloanrdg tthiveitsyamwaesplaotwh.toTthhee Moricighienlasol ne'tsheinrtedrrfiefrtoemeetcetrs. seTnshiemserevaesdurbedanvdasluoesDet oifnasnuicnhtearfedreevniccee,pia.ett.ervniseuxaplrlyessoebdin terms of a visible bandwidth, is proportional to velvimosecalioingtcvnyieetrrytasicetclieyo,mtpqhiurseosaipdoooprnrattti(iceloiagnolhafltlet)nthogetthe[h1teho2ef]w.rtahdvereiflltiegnhWgtthbteooafmtheelelclitagrnhodt-
|
||
|
||
D = (l=) (W=c)2 :
|
||
|
||
(1)
|
||
|
||
itimtnnhhteeeetaWrlhs"ifugeemehrrseoietnhdtmbvaheeelvolastadctemlsiarugl.emaal Ttntieihsdhoaenespeiusrnrxroetpoispenfeerogravrtiramthpcileaho,ernwntemat,thslheiactes(ohhrWfotahddt=behrsciee)faoa2tnp,msdtewiicncpeaoaxasnlwspdslceheearnisoilcmlgrihendtdehettnrhhaot"eessf.
|
||
|
||
Accordingly the methods and experiments, in which the
|
||
|
||
measured value is proportional to the rst ratio extent
|
||
|
||
Wrs=tc
|
||
|
||
oarrdeecra. lleTdhaes
|
||
|
||
rtahteiomiesthWod/sc
|
||
|
||
and
|
||
|
||
|
||
1expateritmheenetxspoefcttehde
|
||
|
||
value in the experiments of Michelson, Miller W 30
|
||
|
||
km/sec. The methods of the second order are ineective
|
||
|
||
at this requirement. So at W 30 km/sec the method
|
||
|
||
osefntshiteivsietycotnod tohredemreitnho1d00o0f0th(e!) rtsitmoesrdseurc.cuHmobwsevoenr
|
||
|
||
at that time the methods of the rst order, suitable for
|
||
|
||
the ether drift velocity measuring, were not known.
|
||
|
||
The expression (1) allows to estimate the diculties,
|
||
|
||
with which the explorers of the ether drift confronted
|
||
|
||
in the rst attempts while observing the eects of the
|
||
|
||
second order. So in the widely known rst experiment
|
||
|
||
of Michelson 1881 [12], at the suspected velocity value
|
||
|
||
of the ether drift W 30 km/sec, with the interfer-
|
||
|
||
ometer having parameters: 6 10 7 m; l 2:4
|
||
|
||
mth,e ibtawnads. Aexnpdecitteids itnotohbesreerqvueirtehme evnatlsueofDconsid0e:0ra4bolef
|
||
|
||
band shivering of an interference pattern. In the work
|
||
|
||
[12] Michelson marked: "The band were very indistinct
|
||
|
||
and they were dicult for measuring in customary con-
|
||
|
||
ditions, the device was so sensitive, that even the steps
|
||
|
||
ot1on8r8yt7h,ceaMusiiscdehedewltsaholekn,icnoamlsaophlieuntnehdirbseadwndomsrledvtea-krnsnisofhwrionnmgw!"toh.rekLo[a1bts4ee]r,r,vtaoin--
|
||
|
||
gether with E.V.Morly, once again marked the essential
|
||
|
||
deciencies of his rst experiment as for the ether drift
|
||
|
||
[12]: "In the rst experiment one of the basic considered
|
||
|
||
diculties consisted in the apparatus rotating without
|
||
|
||
the distorting depositing, the second | in its exclusive
|
||
|
||
sensitivity to vibrations. The last was so great, that
|
||
|
||
it was impossible to see interference bands, except short
|
||
|
||
intervals at the business-time in the city, even at 2 a.m.
|
||
|
||
At last, as it was marked earlier, the value, which should
|
||
|
||
be of
|
||
|
||
measured, something
|
||
|
||
oi.ne.thteheinitnetrevrafle,rsemncaellebar,ndthsaon1se=t20beocfauthsee
|
||
|
||
interval between them, is too small, to determine it,
|
||
|
||
mttmrohoepdouet6ruliIotec4ncioappevltmdMleielcreeiaurtnleallpege
|
||
trprtesta'lhcsaot[tyh7ioiio4n-fnl9nteg]tme.n.hrigTfeenetItahrhtepocerawcmisnta.uahecrestatIaeurcngcreai,haaeltiscfnholhoeoefeerndfdsgehsttxdheo2hnpueu6seeoleidrmftxiteimpsovrehesitertoaenyriurpmetslpa.iden[cle1ynhcIr0itrensn"]edg.awttsuhhaoepees,f
|
||
|
||
experiments [7-9] and [10] the interferometers laid on
|
||
|
||
rafts, placed in tanks with quicksilver, that allowed to
|
||
|
||
remove the in
|
||
uence of exterior mechanical clutters.
|
||
|
||
The positive results of Miller's experiment by virtue oc[r1iifns5ttg]hs1'et5iogr0r1g,e9eadn2te1evar-oat1ttl9eep3dn0htt,yiooasnirtcehaaelmtsetietghnhnateiitrotncdiaermndifectt.e'hsaIapnttrtortaahblmceletemomdstoatnehnovedgeprrryhaeofpyenshries-wTehree pcoosnscibenletriant
|
||
eudeonncinthgeodf itshcuesdsiioncoufltMcoilnlesri'dserreesduletxs-.
|
||
|
||
terior reasons (temperature, pressure, solar radiation,
|
||
|
||
air streams etc.) on the optical cruciform interferom-
|
||
|
||
eter, sensitive to them, which had considerable overall
|
||
|
||
dimensions [16] in Miller's experiments was discussed
|
||
|
||
most widely in these works. Besides by virtue of me-
|
||
|
||
thodical limitations being in the works [7-9] and [10],
|
||
|
||
their authors did not manage to show experimentally
|
||
|
||
correctly, that the movement, detected in their exper-
|
||
|
||
immeennttsa,ncdanthbeemexedpiluaimneodf bmy attheeriaElaortrhigirne,larteisvpeomnsoibvele-
|
||
|
||
for electromagnetic waves propagation [1-3]. However
|
||
|
||
the most essential reason, which made Miller's con-
|
||
|
||
temporaries consider his experiments erratic, was that
|
||
|
||
in numerous consequent works, for example, such as
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
209
|
||
|
||
[17-20], Miller's results were not conrmed. In the experiments [17-20] so-called the \zero results" were obtained, i.e. the ether drift was not detected.
|
||
Thus, taking into consideration the works deciencies [7-9], [10] and a major number of experiments with a zero result available, it is possible to understand the physicists' mistrust to the works [7-9], [10] at that time, the results of which pointed the necessity of the fundamental physical concept variations. The analytical review of the most signicant experiments, performed winitthhethweoprkusrp[1o-s3e,o2f1t].he ether drift search, is explained
|
||
In 1933 D.K. Miller, in his summary work [22], performed the comparative analysis of multiple unsuccessful attempts of his followers to detect the ether drift etexmpeprtism, eenxtcaelplyt.thHeeepxapiedrimatetenntt[i1o0n],tohpatticianl ainlltesrufcehroamt-eters were placed in hermetic metallic chambers. The authors of these experiments tried to guard the devices from exposures with such chambers. In the experiment [10] it was placed into a fundamental building of the optical workshop at the Mount Wilson observatory for stabilizing the interferometer temperature schedule. The hermetic metallic chamber was not applied, and the ether drift was detected. Its velocity had the value W 6000 m/sec. Miller made the conclusion:
|
||
"Massive non-transparent shields available are undesirable while exploring the problem of ether capturing. The experiment should be made in such a way that there were no shields between free ether and light way in the interferometer".
|
||
mafteenLrtastthoeern, itnhnseetwreutmhoeeprnptdosrrtiofuctncduitirisrecesonvcfeoerrybachosaenvddeuoacnptipnceogamreepdxlpeateelrslioydetinhticvset.e)rrm.usmeaSsueisdncivheteaalesmxe(prerreteorasrilomlnioceafntcttohhsraesmws,eebmreeexraphsueeesrrlasidm,ge[eM2n3wte-sas2.ss6b]Ita.nhuAeetrhnc'edsomwaemgoaerokcinnts [23,24,26] there were the metallic resonators, in the work [25] | a lead chamber, because it was necessary to use gamma radiation. The authors of these works, perhaps, didn't pay attention to Miller's conclusions of 1933 about the bulk shields inapplicability in the ether drift experiments. The phenomena physical interpretation of the essential ether drift velocity reduction at metallic shields available was given by V.A. Atsukovsky for the rst time, having explained major eatvhaeilra-dbylenianmtihceaml m[6e]t.al resistance of a Fermi's surface
|
||
The purpose of the work is the experimental hypothesis test of the ether existence in nature within an oupmt,icraelspeolencstirbolme faogrneelteicctrwoamvaesgnbeatnicdw|avems aptreorpiaalgamtieodni-. It is necessary to solve the following problems for reaching this purpose. To take into account the deciencies that occurred in the experiments earlier conducted. To elaborate and apply an optical measuring method and
|
||
|
||
the metering device, which does not iterate the Michel-
|
||
|
||
son's schema, but being its analog in the sense of result
|
||
|
||
interpretation. (Michelson's interferometer of the sec-
|
||
|
||
ond order is a bit sensitive to the ether streams and too
|
||
|
||
sensitive to exposures.) To execute systematic measure-
|
||
|
||
mepeoncths oinf tthhee eexppoecrhimoefntthseimyepalremcoenrrteastpioonnd[i1n-g3],to[7t-9h]e,
|
||
|
||
[10]. (The term "epoch" is borrowed from astronomy,
|
||
|
||
in which the observation of dierent years performed in
|
||
|
||
the months of the same name, refer to the observations
|
||
|
||
of one epoch.) The results of systematic measurements
|
||
|
||
should be compared to the results of the previous ex-
|
||
|
||
periments. The positive result of the experiment can
|
||
|
||
be considered as experimental hypothesis conrmation
|
||
|
||
of the ether existence in nature as material medium.
|
||
|
||
in tMheewaosurkrsin[4g-6m], ewtahsoadc.ceTptheedeatthemr amkoindgelt,hpereoxppoesreid-
|
||
|
||
ment. The following eects should be observed experi-
|
||
|
||
mentally within the original hypothesis:
|
||
|
||
netiTc hweavaensisportorpopaygaetioenctd|epetnhdesvoenlorcaidtyiaotifoenledcitrreocmtioang-,
|
||
|
||
that is stipulated by the relative movement of the so-
|
||
|
||
lar System and the ether - the medium, responsible for
|
||
|
||
electromagnetic waves propagation.
|
||
|
||
depTenhdeshoenighttheeheecitg|ht tahbeovveelothcietyEoafrwtha'vsespurrofapcaeg,atthioant
|
||
|
||
ivesliessccttoirpuousmleaatthgedenrebtsyitcrtewhaeamvEe-asmrptharot'seprsaiugaralftmaicoeend.iinutmer,arcetsipoonnwsiibthletfhoer
|
||
|
||
ttenccihhtaeohalatneitnTccrocghihowedsearradinsisvtftigptseniapesa|svcutpealeiratl)tuosethopeevedfaeawtcgmlhubtaiteyeet|hdiSowianoutihttl.msahheprTe,aapsrhcyvepeuesesresptlir(oeooitgmcdonhaidtselympiabphceoloeterevirficgeofo)whmonntraoeeevr(enissealtgettsieecaptnlltrprllroaaoeoonrrpxmfoadwdmtgaahaaigyilye---,l
|
||
|
||
as well as for any star owing to the Earth's daily rotat-
|
||
|
||
ing. Therefore the velocity horizontal component of the
|
||
|
||
ether drift and, hence, the velocity of electromagnetic
|
||
|
||
wave propagation along the Earth's surface will change
|
||
|
||
the values with the same period.
|
||
|
||
tromTahgenheytdicrowaaevroedsypnraompaicgaetioecnt
|
||
|
||
| the velocity of elecdepends on movement
|
||
|
||
parameters of viscous gas-like ether in directing systems
|
||
|
||
(for example, in tubes), that is stipulated by solids in-
|
||
|
||
teraction with the ether stream | material medium,re-
|
||
|
||
sponsible for electromagnetic waves propagation. (As it
|
||
|
||
is known, the law of
|
||
uids and gases motions and their
|
||
|
||
iTdIntyhtnceiasaramnecitbcieosecntes,ewaeeinpctth,patwsrhoeialtnithdtls"yret,ishfseelhreeoahnurecnliedgthbtbtoyeethchyaeedlcltree"odtahieaesrrsorddtehfyyeennraareemmtdhiiecctrsso-..
|
||
|
||
the etherdynamic eect class. However in the work, by
|
||
|
||
virtue of methodical reception distinction used for their
|
||
|
||
discovery, the eects are indicated as separate).
|
||
|
||
According to the investigation purpose, the measur-
|
||
|
||
ing method should be sensitive to these eects.
|
||
|
||
210
|
||
|
||
Yu.M. Galaev
|
||
|
||
stuerriiTanlghemmefoedtlilhuoomwdi,ndrgeevsmpelooondpsemilbeslentattfoe[4mr-6ee]nl:etcstthraoermeeatuhgsneeredtiiasctawmamveaeas-ptiemhroeeacpgmtaingeeaaxtattisiilootsennnh;ocatefvhetieshmeeatachhcjyoeerprdtreheotdaahseearrposddrytoyhnpneaeamrimntiiiceitcsiar(eloesfptishovtesaiirsntdcicoyoeunn.s.amTTgaihhcsee); mopwfoaesvvteihedssocodbauanosndfdgtraihesnaemltihzoreevsdtwemwoorreiktdnhetfironirnbtmathuseeebadeossuport[ni2inc7kag-nl2oo8efw]ltehnhcatersroeebgtmheuaeelanrgrndipetrritioeifctsveloTcihteymanedtheotdheersskeinnceemiastiinc vthisecofosiltlyo.wing. Let's place advrteieiolrtlanoeutcscbit.ioetnTytpuhtvaboeerectagtnaaionsxret.pixosrtIeeanwsrsiigtoulhalrrisebgs asdectsraropsespteearrmedbpaooemientnshdanisocruouepctlehiaonnrceaicddtuwoertnauottybhin,ceeatthhlesncaetortdtensutadbhmiineepwtInoaerrtstohh,fiasaalnclgadtaustesrhntsehtaregetaagusmabisenwssipinidellseeubdacyehtdsuatibrrweeecaatwmye,idltwlhabialloeltncitrmgheeatmhtveeoeblatoiulpcebir.teeyTsasvhxueeircsne-. daatergrgomaapssinossnettrdreetahabmmey ttiiunhnbeaaevtteauunlbubdeeess,asounofndodngte.ahrsiTsakhscietntrieosemtanamabotifilvciwezlvahoiticsiccoihtonystitathiyrmee,reetdhoeies-f ggoineaftosecmrosvtneartselrtaiaocmnfatlt[it2gmu7aeb-s.2e8sTt]sr.hiezeaeLsmeettah'sniendrmaitashrtaeku,bgvtaeehslo-allactisikttteyshmeaofadtteaeevnrremilaeoilxnpmtametreeiidnonigrtuatsehetcmrhcevoe,eerrrrldeeasiicnnsptdgrtoohnttmehsoiesabuteglhemtnheefeotoarirfccvwceweelalepaovctvceteeirdtvoyvemlehwolayocigptictnhoiytetyrthveieegcrsceaiwtgrsoad.arrvstdIeotrisnetmlpgharetetoioaopvnbeatsshgt,eaeorttvhtoieohabrnet-. Iwotnuuhrtitnschihdtisheaecobaifensaaetme,triuffdebrraeoinvm(eiosenptienttrihscieiadnleettianhhteemerereftetehxaretlolremircdieotrturiefbtrsets,ritseraaencmardme)aa,tnaeinotdtd,chatiennor bboisnhielaosilezuexatpldptooiesobfcintettiehtoodeinbm,isonteehftroevatfrhetftdeeihs.nreeeTnsebuchtaechunhespdriatsnhsttotteerenerrvfantaemhlrureoeemiginnoaetfartedebrtrifaun,enbgrddoeutsm,ortoienhtthgeeserebatsaocswnratidiaglles--l bathneedpotrrhoiepgiosnrtatailbopinloiazsliatttiiooonnt,htweimileltebh|eerdteehxetneebrdiaonrbdyssttrrheeetaumertnhveterilmokceiintteyo-, mmasruenqaerdtiutnhiitcgrohedvemdieseetcnttoohahsebroiertldevykseisirvtntaoaelamummelaeei.gtttihheHcrotevdtbnihsecoecaefo,metsthtihhtetyeoe.rrtpdTshrtreohiopfeitrnodpvsitereeiordlao,plcamopisstoeeyiaidtnvsituamsrl(nuieanoaesgts-, for Lexeat'ms pclael,cuinlaMteicthheelsionnt'esrfienrtoemrfeertoermpetaerra)m. eters. For ttahhdeevasmntrcaeetadhmeimnaatnthaieclaywlsiohsrykodsfro[t2hd7ey-n2ga8am]s-ailctiskteahpeetppharerorabtwulesem, swhsoahllivlchiunsgies,
|
||
|
||
citdrou.nenT,ehicfetetuhdsewefiootflhlostuwhciehnsgtsroreleuaqmtuioironefsmvfieosnrctoguiassspinsetcrrofeomarmmpreeadsnsaiblylesi
|
||
suis-
|
||
|
||
0:5Ma2 << 1;
|
||
|
||
(2)
|
||
|
||
wag(2vah)ese,rsraioetguieMsngdpaaovsse=ssltiobrcwelieatpmyat.ocsvAne1telgotilcsheiectaytreMtoqhnaueciagrheat'msus bpenenruetmsseismbcuteripreo;lneem;wcepescanttsiaisstatinahodnne
|
||
|
||
consider the gas stream as the stream of incompressible
|
||
|
||
|
||
uid. On data of the experimental works [1-3], [7-9] and
|
||
|
||
[fw1ao0cre]k, dt[oh6ee]stehnteohtesoreuxdncrdeieftvdevtleohlceoictvyiatyliuneWthWeneetahr1e0rt4hisemeEs/tasiemrct.ha'tIsendstubhrye-
|
||
|
||
tlr(ihe2gc)ehetivisvaveple,uleoetrhcfociatsrtym.MeEd1va0,e2tn1hei3mf:s3t/tosreec1cao0,mntsh5ioda.fteHrae,esgntshaecnaes-,ttliitakchlseley=erteehcxqe,curewiercedeamssnhteabhnleetl
|
||
|
||
considered as a stream of viscous incompressible
|
||
uid
|
||
|
||
and the use of the hydrodynamics corresponding math-
|
||
|
||
ematical apparatus is true for ether stream analysis.
|
||
|
||
Laminar and turbulent
|
||
uid streams are distin-
|
||
|
||
guished in hydrodynamics. The laminar
|
||
uid stream
|
||
|
||
es2tx8ri]esatsm, ,ifdotehse
|
||
|
||
nRoteyenxocledesd
|
||
|
||
nsuommbeeerxtRreem, edrvaawlune
|
||
|
||
up for a Rec [27-
|
||
|
||
Re < Rec:
|
||
|
||
(3)
|
||
|
||
is dTehneedRebyyntohldesfonlulomwbinergfeoxrparersosiuonnd cylindrical tube
|
||
|
||
Re = 2apwpa 1;
|
||
|
||
(4)
|
||
|
||
wmthhaeet
|
||
riceui
|
||
adupdidiesnvtsihistecyo.isnDitteyerp;ioenr dtiiusnbgtehoernaddtyhiunesa;emxvtice=rvioisrcsots1rietiaysm;kinnaeis--
|
||
|
||
ture and the requirements of
|
||
uid in
|
||
ux into a tube,
|
||
|
||
the
|
||
Re
|
||
|
||
<va2lu:3es
|
||
|
||
1R03ecthaere
|
||
uwiidthsitnreaRmec
|
||
|
||
ina2t:3ube10e3x:is:t:s1o0n4 l.y
|
||
|
||
Aast
|
||
|
||
laminar and does not depend on an extent of an exterior
|
||
|
||
stream turbulence. The following features are peculiar
|
||
|
||
for a steady laminar
|
||
uid stream in a round cylindrical
|
||
|
||
tube. The particle movement pathways are rectilinear.
|
||
|
||
Talhoengmtahxeimtuable
|
||
auxidis satnredamis evqeuloaclittoy wpmax takes place
|
||
|
||
wpmax = 0:25 pa2p 1lp 1;
|
||
|
||
(5)
|
||
|
||
wlehnegrteh lpp; is the pressure drop on a tube part with the
|
||
|
||
p = 0; 25
|
||
plpap 1wp2a;
|
||
|
||
(6)
|
||
|
||
eTm
|
||
qpheueaiasnmlt
|
||
|
||
hapuexii=dcmov6aee4llsRoctcireeeitnay1tmaotfveaalorlaocimutnyidnwatrpumrbeaegxirmeisseitswotaficn
|
||
ecuemi,dowsrtherietcahhmains.
|
||
|
||
wpmax = 2wpa:
|
||
|
||
(7)
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
211
|
||
|
||
Figure 1: A tube in a gas stream
|
||
|
||
The stream velocity distribution on a tube section is called as Puazeyl's parabola and looks like
|
||
|
||
wp (r) = wpmax 1 r2ap 2 ;
|
||
|
||
(8)
|
||
|
||
where r is the coordinate along the tube radius. The laminar stream transferring into a turbulent
|
||
one takes place not
|
||
uently, but by jumps. At transferrtihnegttuhbreourgehsistthaenceextcroemeecvieanluteinocfraeaRseesynboyldj'usmnpu,mabnedr then slowly reduces. The following features are peculiar for a steady stream of viscous liquid in a round cylindrical tube of turbulent stream. The pathways of particle mcvieeolnovtceimotyfeandtrioshtuarnvibdeusttcuiaobtneteiorsneedqaunaatultub
|
||
repe.=seTc0ht:i3eo1nr6e4siisRstaealnm0c:oe25sct.ouTenhie-form with their sharp reduction up to zero point in a thin layer near the wall. The maximal velocity increase above the mean order value is about 10-20 % [27-28]
|
||
|
||
wpmax (1:1 : : :1:2) wpa:
|
||
|
||
(9)
|
||
|
||
It will be shown below, that in the experiment re-
|
||
|
||
qwueirsehmalelnbtes,raesstraicrtuelde,bRyeth>e Resetcim, tahteiorenfso,rpeeirnfotrhmeewdofrokr
|
||
|
||
the ether turbulent stream.
|
||
|
||
Let's consider the method operating principle. In
|
||
|
||
the Fig. 1 the part of a cylindrical round metallic tube
|
||
|
||
wdriitfhTt)ht,heiesesltehhnoegwrtnhstrlpea, mwhiischshisowinn
|
||
|
||
the in
|
||
|
||
ether stream the gure as
|
||
|
||
(ether slant-
|
||
|
||
ing thin lines with arrows, that indicate the direction
|
||
|
||
of its movement. The tube longitudinal axis is locat-
|
||
|
||
ed horizontally and along with the ether drift velocity
|
||
|
||
vector is in a vertical plain, which represents the gure
|
||
|
||
plain. The tube walls have major ether-dynamic resis-
|
||
|
||
tance and the ether stream acting from the tube sur-
|
||
|
||
face side area, the ether inside a tube does not move.
|
||
|
||
The ether velocity stream stipulated by the horizontal
|
||
|
||
vetehloecritsytrceoammpionnaenttuobfe,thweheicthhegrodersifwtitWhht,hecrmeaetaesn tvhee-
|
||
|
||
ltohceitryouwtpinag.
|
||
|
||
It can be spoken, that the metallic system for the ether stream. Let's
|
||
|
||
tube turn
|
||
|
||
is a
|
||
|
||
tube in a horizontal plain in such a way, that its lon-
|
||
|
||
gitudinal axis will take up a position perpendicular to
|
||
|
||
tdhiceuplalraitnootfhethveelFocigit.y 1veocrt,orthoaftthise seitmheilradrr|ift.pIenrptehnis-
|
||
|
||
position both opened ends of a tube will be in identical
|
||
|
||
conditions regarding to the ether stream, the pressure
|
||
|
||
detiheerresnttrieaalm vpeldooceitsyniontaoctcuubreainsdeqaucaclortdoinagzetroo(5p)oitnhte.
|
||
|
||
Apotstithieonm. oTmheenthot0rizwoentsahlacllomtuprnonaenttuboef
|
||
|
||
into the initial the ether drift
|
||
|
||
veneldosc,ituyndWerh owpielrlactrieoanteofawphreicshsutrheedertohper sptroeanmthweitlul bbee
|
||
|
||
developed in a tube. In the work [28] the problem about
|
||
|
||
sinetatinroguinndtocmylointidornicoaflvtiusbcoeuusnidnecromopperreasstiibnlgeo
|
||
futidhebseuindg-
|
||
|
||
dLeent'lsyraepdpuceendtehde cfoornmstualnatopf rtehsesuvreelodcritoypdisptriibsustoiolvnedof.
|
||
|
||
|
||
uid stream in a tube
|
||
|
||
|
||
wp (r; t) = wpmax 1
|
||
|
||
r2 a2p
|
||
|
||
8
|
||
|
||
X 1 k=1
|
||
|
||
J0
|
||
|
||
k3
|
||
|
||
k
|
||
J1
|
||
|
||
r(apk
|
||
|
||
1
|
||
)
|
||
|
||
|
||
exp
|
||
|
||
a2pk2t# ;
|
||
|
||
(10)
|
||
|
||
w0o;rhdeJerr0es;.tJTi1shteahreertsBitmetsews;eol'sskumfiusmntchatenioednqssuianotfsioqtnuhaerroezoetbrsoraJca0kn(edtsk)erxs=t-
|
||
|
||
pcorerrsesspstoenaddyth(eatmten!tio1ne)d
|
||
|
||
laminar stream of
|
||
uid and above \Puazeyl's parabola"
|
||
|
||
(8). So at a turbulent
|
||
uid stream, according to (9),
|
||
|
||
the velocity distribution on a tube section is almost uni-
|
||
|
||
form, we shall consider, that the
|
||
uid stream velocity
|
||
|
||
iosf ethquearlouwnpda tuonbethate awthuorlbeutluenbte
|
||
sueicdtisotnre(atmheshvaoluuled b
|
||
pe
|
||
|
||
uwsaeldl laatyetrh.eIvnaltuheisccaalcsueltahteioenxpwrpeas)sieoxnc(e1p0t)tahte
|
||
|
||
thin nearr = 0 will
|
||
|
||
be like
|
||
|
||
"
|
||
wp (t) wpa 1
|
||
|
||
8 X 1 k 3J1 1 ( k)
|
||
|
||
k=1
|
||
|
||
exp k2ap 2t :
|
||
|
||
(11)
|
||
|
||
The expression (11) describes the process of a
|
||
uid
|
||
|
||
stream dening in a round tube. It follows from (11),
|
||
|
||
tohf attheatextp!res1sionth(e11v)alsuheouisldwbpe(td)iv!idewdpain. toBoththe
|
||
|
||
parts value
|
||
|
||
oInf ctohnisstcaanste
|
||
tuhied tsitmreeamvarviealtoiocintyofin
|
||
auidroustnrdeatmubdeimwepna-.
|
||
|
||
sinioanlFesisg.ve2l.ocity wp (t)/wpa will be like, that is shown
|
||
|
||
In the gure the values of dimensionless velocity
|
||
|
||
wofpt(itm)/ewaprae agrievegnivoenn tohne aanbsocirsdsianaatxeiss.axAiss,itthies svhaoluwens
|
||
|
||
above, the requirement (2) is performed and the ether
|
||
|
||
stream can be described by the laws of thick liquid mo-
|
||
|
||
tions, then we shall speak about the ether stream fur-
|
||
|
||
ther, instead of
|
||
uid. In the Fig. 2 we'll allocate the
|
||
|
||
212
|
||
|
||
Yu.M. Galaev
|
||
|
||
Ftuibgeure 2: Variation in time of
|
||
uid movement velocity in a
|
||
|
||
ivsnhetlaeolrlcvictayallolinftthaiemtueetbthe0e:rc:hs:attnrdeg,aedmsufrrrionemggimw0heuicophnttothhe0i.se9t5thiemwrepsatir.netWaemreval as the dynamic one. We shall call the ether stream regiLmeet'astsktip>atdliagshtthbeeasmteaadlyonsgtrtehaemturebgeimaxe.is. It can be written down, that the phase of a light wave on a cut with the length lp will vary on value j, which is equal.
|
||
|
||
' = 2 f lp V 1;
|
||
|
||
(12)
|
||
|
||
wthheerlieghft viseltohceityeleinctraomtuabgen. eAticccworadviengfretoqutehnecyo;rigVinaisl hypothesis the ether is a medium, responsible for electromagnetic waves propagation. This implies, that if in avetluobcietywoitfhwthhicehlecnhgatnhgelps itnhteirme eis, stohetheethpehrassteroeafma l,igthhet wave measured on the tube output, should change in time according to variation in time of the ether stream velocity wp (t). Then the expression (12) will be like
|
||
|
||
' (t) = 2 f lp [c wp (t)] 1 ;
|
||
|
||
(13)
|
||
|
||
where c is the light velocity in a xed ether, in vacuum.
|
||
|
||
In the expression (13) the sign "+" is used, when the
|
||
|
||
direction of the light propagation coincides with the
|
||
|
||
eutsheedr, wsthreenamthdesieredctiiroenctiionnsaatrueboep,paonsditet.he sign "-" is
|
||
|
||
In the work the optical interferometer is applied for
|
||
|
||
measuring value ' (t). Rozhdestvensky's interferome-
|
||
|
||
ter schema is taken [29] as the basis, which is supple-
|
||
|
||
mented in such a way, that the light beam drove along
|
||
|
||
the empty metallic tube axis in one of the shoulders.
|
||
|
||
The interferometer schema and its basic clusters are
|
||
|
||
shown in the Fig. 3.
|
||
|
||
1 | illuminator; 2 | a metallic tube part; 3 |
|
||
|
||
ettrhyaeenfrssacphgaemrmeenant.tlTawmhiteihnbaaesa;smcMalc1eo;,uPMrs1e2,
|
||
|
||
P|2 m|irr
|
||
oartspaareraslhleolwsnemoinis shown with thick lines
|
||
|
||
and arrows. The light beam in a tube pass along the
|
||
|
||
axis and is indicated with a broken line in the gure.
|
||
|
||
The tube length is lp P1M1. The clusters P1, M1
|
||
|
||
Figure 3: The schema of an optical interferometer
|
||
|
||
aMTttPishhn1nhee2dM'emtma2Pa.rcine2orTgrn,mohllseMprieosd.pui2enliInra1ntetaie,denarrd,esvic2aoltmMalhpsasoep1srauioe,cRrnsaeMittotlehzeP2cdeha1edastMaaweenncsd1hiogtfvl=ttoebehhstynheeMsbetekbewr2tyetPhoo'wase2nmerp=eiaadsnnrrtdslaie1nmfrlrto,lofeaeiprMlnrlmlploy
|
||
i1,amaunPnlegMse2gntolcte1=enoer,. operating is reduced to the following. The light beam wwarihetihcphathraaeftllewerlarvwee
|
||
itelhecntaigotpnhhfarsoemisdidMiev1riedanencdde PM[2192]inatnodtpwaossbineagmPs2,
|
||
|
||
= 4 l1 1 (cos i1 cos i2) :
|
||
|
||
(14)
|
||
|
||
eterTahdejuasntgmleesnti1s,oit2haatretheestianbtleirsfheerdenacte tphaettinertnersfehrooumld-
|
||
|
||
be observed. (The adjustment clusters are not shown
|
||
|
||
on the schema symbolically). In a tuned interferometer
|
||
|
||
the value is = const. In the right part of the Fig. 3
|
||
|
||
tehtheeframdriilfyt ohforairzroonwtsalmcoeamnpsotnheensttvreealomcitdyi.reTcthiiosnstorfetahme
|
||
|
||
veteelor cciltuystiseresqounalatohoWrizho.ntIaf ltrootaartreadngbeatchkegrionutnerdf,ersoumch-
|
||
|
||
instrument can be turned in the ether stream. The ro-
|
||
|
||
tation axis is perpendicular to the gure plains and is
|
||
|
||
indiIcnattehde aisntAerif.erometer (Fig. 3) the band position of
|
||
|
||
an interference pattern regarding to the eyefragment
|
||
|
||
scale 3 is dened by the phase dierence of the light
|
||
|
||
bPtoe1waMma1rsdP,s2wt.hheiIcnlhigathhrteepdFriositpgr.aibg3auttiteohdneodneitrthehceetriposanttrahelasomnPg1iMtshd2ePibr2eecaatmnedds
|
||
|
||
Pw1rMite2,doMw1nPe2x.pIrnestshioisncfaosre,thaeccpohrdaisnegdtioe(r1e3n)c,ewe s'h(atl)l
|
||
|
||
between the beams P1M2P2 and P1M1P2.
|
||
|
||
'
|
||
|
||
(t)
|
||
|
||
=
|
||
|
||
2
|
||
|
||
f
|
||
|
||
|
||
c
|
||
|
||
P1M2
|
||
wp (t)
|
||
|
||
+
|
||
|
||
M2P2 c
|
||
|
||
|
||
|
||
P1 M1 c
|
||
|
||
+
|
||
|
||
M1P2 c Wh
|
||
|
||
|
||
|
||
+
|
||
|
||
;
|
||
|
||
(15)
|
||
|
||
wthheereexpresissioconn(s1t4a)n.t,Lteht'es vsaimlupeliofyf wthheicehxpisredsseionne(d15b)y.
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
213
|
||
|
||
For this purpose we shall introduce the identications
|
||
|
||
accepted earlier. Allowing, that the beam phase dif-
|
||
|
||
fteerrefenrcoemMet2ePr 2oraienndtaPti1oMn 1regdaoredsinngottodetpheenedthoenr
|
||
|
||
the instream
|
||
|
||
direction and is equal to zero point, the expression for
|
||
|
||
the value ' (t) will be like
|
||
|
||
|
||
' (t) = 2 f lp c
|
||
|
||
1 wp (t)
|
||
|
||
c
|
||
|
||
1
|
||
Wh
|
||
|
||
|
||
|
||
+
|
||
|
||
:
|
||
|
||
(16)
|
||
|
||
The rst member of the expression (16) describes
|
||
|
||
tsiepshttrrheeteeshabsremieoeabxnmvteeeianplrmoihocsarqiptsusyehtaarviresnaeearmaibavrtataviurcoeibknaloeettcPiosiw1tnyMtpo(MW2ta)d1h.Pce.opT2Lmehnedmetde'piussneenrcgneaoddolnuinddncetgenmhoteoehmnemetihtbnehexaeerr--
|
||
|
||
tor
|
||
fc
|
||
|
||
a1n=d,all1owwiengsh, tahllartecce2ive
|
||
|
||
Wh
|
||
|
||
wp
|
||
|
||
(t)
|
||
|
||
cwp (t)
|
||
|
||
cWh ,
|
||
|
||
'
|
||
|
||
(t)
|
||
|
||
|
||
|
||
2 lp
|
||
|
||
|
||
wp
|
||
|
||
(t)
|
||
c
|
||
|
||
Wh + :
|
||
|
||
(17)
|
||
|
||
It follows from the expression (17), that the dierePssttn1rrcMeeeLaa1mmeinPt'2svtWheiclehsoo.cnppishtriyaodspeienor rattih'oteun(bati)nlettbeworepfteaw(rteod)eminaenebtrdeeerantmhtoieapsleePrtoah1ftMeirtnh2geePx2tienetarhinioetdrrs steady regime, at t ! 1. According to the expression (e1d1,)thaantdoFwiign.g 2towthpe(ts)mt!a1ll v!aluwepoaf itthecaenthbere dsuynspaemcticvstiescaodsyitsytr(ecaemlesvtieallocbiotydiiensamtouvbeeinregtharedeinthgetro) tthhee semthaelrl length will not dier essentially from the ether exterior stream velocity and it is possible to write down, that wpops(itt)iot!n1in=thwe pwaorkWishd.et(eTrhmeinceodrreecxtpneersismoefnttahlilsysaunpdshown below.) In this case in the expression (17) the fraction numerator in square brackets is equal to zero point, and this expression will be
|
||
|
||
' (t)t!1 :
|
||
|
||
(18)
|
||
|
||
Hence, in the steady regime the interferometer op-
|
||
|
||
erating with a metallic tube does not dier from the
|
||
|
||
Rozhdestvensky's interferometer operating. In both in-
|
||
|
||
terferometers the bands position of an interference pat-
|
||
|
||
tTehrne iwnitlelrbfeerodmeenteerd, wbyiththae moreigtainllaicl ptuhbaes,eidnithereesntceeady.
|
||
|
||
operating regime is not sensitive to the ether drift ve-
|
||
|
||
locity and can not detect the availability or absence of
|
||
|
||
the ether drift.
|
||
|
||
inteLrfeetr'osmcoetnesri.deLreta'sduynnraomll itcheopinetreartfienrgomreegteimr (eseoefFtihge.
|
||
|
||
3) in the horizontal plain at 180. As the direction of
|
||
|
||
the light propagation has varied in relation to the ether
|
||
|
||
drift stream to the opposite one, the expression (17)
|
||
|
||
will be like
|
||
|
||
' (t)
|
||
|
||
|
||
|
||
2 lp
|
||
|
||
|
||
Wh
|
||
|
||
wp c
|
||
|
||
(t)
|
||
|
||
|
||
|
||
+
|
||
|
||
:
|
||
|
||
(19)
|
||
|
||
iten0tee:rq:Au:wctadclioit.thrydHiawnegnpmc(teeto),tat<ihlnleiWcaexhtdupytbraneeksasemiissoinpcsel(arn1ces1egi)tiaimavtneetdhtthetohetetihmiFneteigevir.nefe2tlore,orctvmihtaye-l dadniisdceortvehenertitaehtlheoebfratsnhtdereseaotmhesrientesvxidateeluraieorotufsbttrheeeawminpt(evtre)fl.eorceWinticeeessphWaatlh-l tern regarding to their position in the interferometer steady work regime as follows. Let's take a dierential of the expressions (19), (18) and divide both parts of the found expression into 2, we shall receive
|
||
|
||
' (t)
|
||
|
||
'
|
||
2
|
||
|
||
(t)t!1
|
||
|
||
=
|
||
|
||
lp
|
||
|
||
Wh
|
||
|
||
wp c
|
||
|
||
(t)
|
||
|
||
|
||
|
||
:
|
||
|
||
(20)
|
||
|
||
The expression left-hand part (20) is equal to the required interference pattern oset, which is expressed by the number of electromagnetic wave periods. With rtoehffevereisexinpbcrleeesbtsoaiontndhs(e2o0v)issdueteasloclyfritbohebisssetprhavetetvdearlinuntereevrgafaerrrieadntinicoegntpionatttthiemeriner oorfigainnailnpteorsfietrieonnc|e pDatt(et)rn. Tcahne vbiesibtlheeboansdewtidmtheavsaulrueemstreenatmuninita. tTuabkeincagninhtaovecothnesiddeirreacttiioonn, otphpatostitheeteoththeer selected on the Fig. 3, generally it is possible to receive
|
||
|
||
D (t) =
|
||
|
||
lp Wh
|
||
|
||
wp c
|
||
|
||
(t)
|
||
|
||
|
||
|
||
:
|
||
|
||
(21)
|
||
|
||
In the expression (21) the sign "+" is used, when the light propagation direction coincides with the ether sintraeatmubde,iraencdtiothneisnigtnhe"-i"ntiserufeserodm, wetheerndtyhnesaemdiicrercetgiiomnes are opposite. According to the expression (11) and the Fatphaitagtutt.bea2retnaitstahcaewcniepnpi(sntttss0at)nta=htnett00mt.0taTh=xehim0ebnaatnlhfdrveosamelotuhe(se2eer1tqs)uotwrafelaeantmsohinavtleellrorfececirteeyinvciene,
|
||
|
||
D (t0) =
|
||
|
||
lp
|
||
|
||
Wh c
|
||
|
||
;
|
||
|
||
(22)
|
||
|
||
atgunabrddeiinnisgtehtqoeutashtleetiarodoywrirpgei(gnti)amtl!ep,1owsihtieoWnnhtihs,eetqheuetahblear0n.vdTeslhooceitdsyeetpinernea-dwdeipvn(icdte)e/v(wi2ep1wa),iDwnth(otic)(h2c2ai)sn,swbheeowoshbnatailnlinrteehdceewiFvieitgh. t2h.e Rdeepaellnyd, elnetc'es
|
||
|
||
D (t) D (t0)
|
||
|
||
=
|
||
|
||
1
|
||
|
||
wp (t)
|
||
Wh
|
||
|
||
:
|
||
|
||
(23)
|
||
|
||
=aosbtwDaApialn(lteo)dw/DiiWnng(hsttu0ht)chehesaue1pxwppaowryes,pistsi(isitoo)nsn/hwmo(pw2aa3nd.)eiTcnaahbnteohvdbeeee,Fptwiehgnra.idtt4etwnencpe(dtvo)itwe!wn1 portIinonthael teoxtphreessirostne(x2t2e)ntthoef mtheeaestuhreerddvraifltuveeDlociistyprrao-tio to the light velocity, that characterizes the reviewed
|
||
|
||
214
|
||
|
||
Yu.M. Galaev
|
||
|
||
Foigseutrein4a: dVyanraimatiiconinitnertfeimroemoefteinrtoeprfeerraetninceg preagtitmeren bands
|
||
|
||
method as the rst order method. It follows from the expression (22) and the Fig. 4, that if at the moment of ttiomteheti0r otorigmineaasluproesitthioenbaonndtsheoinsettervfearluome Deterreegyaerfdrainggment scale, it is possible to determine the ether drift velocity horizontal component Wh which is equal to
|
||
|
||
Wh = D (t0) clp 1;
|
||
|
||
(24)
|
||
|
||
The direction of the interference pattern bands o-
|
||
|
||
set, regarding to their original position, will be dened
|
||
|
||
by the ether exterior stream direction.
|
||
|
||
The data of the interferometer tube sizes are nec-
|
||
|
||
essary for the proposed measuring method realization.
|
||
|
||
The expression for the tube interior radius calcula-
|
||
|
||
tpiaorntsaopf tchaenebxeproebsstiaoinne(d11a)s
|
||
|
||
at
|
||
wp
|
||
|
||
the moment of (t)/wpa = 0:95,
|
||
|
||
twime sehatdll
|
||
|
||
follows. Let's divide both o(sneewtphaeanFdig,.all2o)wtihneg,rtahtaiot write down as
|
||
|
||
1 8 X 1 k 3J1 1 ( k) exp k2ap 2td =
|
||
k=1
|
||
|
||
= 0:95:
|
||
|
||
(25)
|
||
|
||
If to be conned by the estimation accuracy no
|
||
|
||
worse than 7 %, so the series in the expression (25) can
|
||
|
||
be exchanged by its rst member. Let's substitute in
|
||
|
||
tinhfeor(m25a)titohne wnuemsherailclaglivvaeluthesesekvaalnudes:J1 J1 ( 1) = 0:5191), we shall receive
|
||
|
||
(
|
||
1
|
||
|
||
k=)
|
||
|
||
(for the 2:4048;
|
||
|
||
ap 1:37 (td)1=2 :
|
||
|
||
(26)
|
||
|
||
The expression (26) allows to calculate such the in-
|
||
|
||
terferometer design parameter as the tube radius Atimt cea,lwcuhliacthioins,rethqeuivraedlufeotrdimispsleelmecetnetdatcioomnionfgvfirsoumal
|
||
|
||
tahpe. (or
|
||
|
||
tool) readout of bands oset value D. The data of
|
||
|
||
the ether kinematic viscosity value v will be reviewed
|
||
|
||
bpreelosswio.nT(h2e4)t,uobfewlhenicghthwelpshcaalnl rbeecefiovuend with the ex-
|
||
|
||
lp Dmin (t0) cWhm1in;
|
||
|
||
(27)
|
||
|
||
winhteerrfeerDenmceinp(ta0t)teirsn,bawnhdischocsaent bmeindimiguitmizevdalwueithoftahne svealleuceteodf etyheefreatghmerendtriaftndhoscraizloe;ntWalhcmoimn pisontheentmvienliomciutmy, which should be measured by the interferometer (the interferometer sensitiveness). emtheaeTrsuhkreiinneegmtmhaeetrtichkovidinsrceeomasliiatzytaitvciaovlnui.escLvoesta'isrteye.sntTeimcheeasstdaeartythaefoovrfattlhhueee v, relying on the following. In the work [5] the photon formation mechanism is represented, as the oscillating result of excited atom electronic shell in the ether and the Karman's vortex track as hydromechanical photon model is proposed. In other words the photon formation is stipulated by the ether stream turbulent regime of the excited atom streamlining by the ether, oscillating in the ether. The turbulent pulsation propagation in the ether is perceived by the observer as the light emission. In the work [28] it is shown, that the existence of pulsation movement is possible in
|
||
uid volume, if the Reynold's number is not lower than some extreme value equal to
|
||
|
||
Recr = wd 1;
|
||
|
||
(28)
|
||
|
||
wtehriesrteicwsizies
|
||
|
||
|
||
uid movement of a streamlined
|
||
|
||
velocity; body. In
|
||
|
||
dthies
|
||
|
||
the characwork [28] it
|
||
|
||
ipmsrooovbbeltemamiennetthdve,etvlohacaluitteysR, aewtcor,md,d4via2ma5r.eeteWarc,cittohhredrieentfgherleyern:kctiehneetmoetaohtueircr
|
||
|
||
viscosity. From the expression (28) we shall nd
|
||
|
||
wdRecr1:
|
||
|
||
(29)
|
||
|
||
We shall call the obtained ether kinematic viscosity vvvacell.ouceLiteayts'stwhceawlcceaullscahutaelallttehadeccevetaphltuerethkveicn.oemAsaesttitcvheevlioescctihotseyirtoysftvreealaleumcetronic atom shells in the immobile ether at a photon emission. Let's consider, that this velocity does not excatheseisditctiahsseeknlwiogiwhthtn,vthehleaos(c2itt9yh)ewwvealsuhcea.lolTrrdheecereidvdieame1te0r o10f amto.mIsn,
|
||
|
||
c 7:06 10 5 m2sec 1:
|
||
|
||
(30)
|
||
|
||
The performed estimation has shown, that the ether kthineemwoartkic imviasgcoinsaittyioncsal[c6u]laatbeodutvathluee etchoerrreasps ognadss-liktoe medium with real gas properties. So, the kinematic viscosity values of twelve gases, spread in nature, are within 7 10 6 m2sec 1 (carbon dioxide) up to 1:06 10 4 m2sec 1 (helium).
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
215
|
||
|
||
Figure 5: The interferometer structure
|
||
|
||
Optical interferometer. The calculated ether
|
||
|
||
kinematic viscosity value allows to calculate the inter-
|
||
|
||
ferometer parameters. With the expression (26) we
|
||
|
||
sphoaslelddettoerbmeineqeutahle1tusbeceornadd,iuws.e Isfhtahlle rveacleuievet,d tihsastupat-
|
||
|
||
the interferometer creation it is necessary to apply the
|
||
|
||
tdImfue/bttesoeermcwsuaiintpnhepdottahshpeeepttlihuynebtteehvriealoellrnuiggershtahtdDisluopmsuiwrnacipet=hwti0ht0:he0:05te5,hxepWmrwe.hsamsvWiieonnele=(sn2hg7a2t)lh0l.
|
||
|
||
to=lp6:50:1409
|
||
|
||
7 m, m.
|
||
|
||
so
|
||
|
||
the
|
||
|
||
required
|
||
|
||
tube
|
||
|
||
length
|
||
|
||
is
|
||
|
||
equal
|
||
|
||
The optical interferometer was manufactured for
|
||
|
||
conducting measurements. Schematic gure of the de-
|
||
|
||
vice (the top view) is shown in the Fig. 5.
|
||
|
||
In the Fig. 5 the identications of the basic clusters
|
||
|
||
are kept, which were introduced at viewing the inter-
|
||
|
||
ferometer schema (Fig. 3). 4,5 | the interferometer
|
||
|
||
adjustment clusters; 6,7 | racks for xing
|
||
at-parallel
|
||
|
||
soemmeit-etrrafnrasmmiet;ti9ng|lapmoiwnears saunpdplmyiarrcocrusm; u8la|torisntoefrftehre-
|
||
|
||
illuminator; 10 | the illuminator switch; 11 | the eye-
|
||
|
||
fragment xing cluster; 12 | heat-insulating housing
|
||
|
||
are shown additionally. The frame 8 is manufactured
|
||
|
||
of a steel prole with | like section. The wall thick-
|
||
|
||
nleensgstihs 0is.000.77mm., Tthheewpirdothleish0ei.g1hmt i.sT0.h0e2imnt.erTfehreomfraemteer
|
||
|
||
clusters are xed on a
|
||
at frame surface. The racks 6,
|
||
|
||
7 are manufactured of rectangular copper tubes with
|
||
|
||
interior section 0.01 m 0.023 m. The light beams
|
||
|
||
pass inside these tubes. The interval between beams is
|
||
|
||
Ppi(nIo1naMisn,tt2hsienaPnmt1dh,aeMnPpu21ofaPitnch2tteusitr
|
||
eMaidst1eip,nqatuMreaar2llflee0r|lo.1sm2emmemtiier-.rrtorOtarhsnnesamrr
|
||
aeicatkttisnin,psgtaianrllaaltlemhldee-.l
|
||
|
||
glasses with the thickness 0.007 m were used as semi-
|
||
|
||
transparent laminas). The laminas, mirrors and clus-
|
||
|
||
ters of their xing in the Fig. 5 are not shown symboli-
|
||
|
||
cally. Each of the clusters 4,5 allows to change the racks
|
||
|
||
position in two orthogonal related plains. The tube 2
|
||
|
||
is steel with the interior radius ap = 0:0105 m. The
|
||
|
||
tuxbinegleonngt5hairse lnpo=t s0h:o4w8nmsy. mTbhoeliccalullsyt.erTs hoef stehme itcuobne-
|
||
|
||
ductor laser with the wave length 6:5 10 7 m was
|
||
|
||
applied as the illuminator. The optical paths in the
|
||
|
||
interferometer are located in a horizontal plain. The
|
||
|
||
interferometer was located on a rotated material table,
|
||
|
||
which was manufactured of an organic glass with the
|
||
|
||
thickness 0.02 m. The heat-insulating gasket was put
|
||
|
||
between the frame and material table . The interfer-
|
||
|
||
ometer was closed by a common housing of six layers of
|
||
|
||
a soft heat-insulating material. The thickness of such
|
||
|
||
cpoearitminegtewraiss asbhoowutn.0.0T2h5emh.ouIsnintghebaFcikgg.r5outnhde whoausstinhge
|
||
|
||
box of rectangular section with the interior sizes: width
|
||
|
||
bTch=e
|
||
|
||
b0o:2x2
|
||
|
||
m, was
|
||
|
||
hmeiagnhutfahcctu=re0d:1o1f
|
||
|
||
ma ,calerndgbtoharldc
|
||
|
||
=wi0th:8
|
||
|
||
m. the
|
||
|
||
thickness 0.007 m. In the box the face wall on the
|
||
|
||
eyefragment part was absent. This opening was closed
|
||
|
||
with a common soft housing. The interferometer ro-
|
||
|
||
tating was ensured with the end thrust bearing of the
|
||
|
||
diameter 0.075 m. The bearing box is located between
|
||
|
||
the material table and support. The support is provid-
|
||
|
||
ed with the units for the interferometer installation in
|
||
|
||
a horizontal position.
|
||
|
||
inteTrfhereominetteerrftehreommineitmerumtebsatn. dsInothseet mofaannufinacteturfreerd-
|
||
|
||
ence pattern, which could be visually digitized, meant
|
||
|
||
DmTinh=e d0e:v0i5c.e stiness was tested by two methods. Ac-
|
||
|
||
cording to the rst method the instrument frame was
|
||
|
||
mounted on a horizontal surface. The interferometer for
|
||
|
||
one edge of a frame was hoisted in such a way, that the
|
||
|
||
frame lean angles to the surface plain reached 20.
|
||
|
||
In this position the interference patterns oset frame,
|
||
|
||
stipulated by elastic deformations of the instrument, dsweiocdroknniodntgmepxeoctsheieotdidon0t..h3eTbihnaesntfdrrsaumm(Deenle=tasn0ti:a3nn)g.elseAsscwucpaosrtdotiens1gt0etdowitnehraee
|
||
|
||
created by the material table tilt. In this case the bands
|
||
|
||
noticeable drift was not observed. The stability of an
|
||
|
||
ilnigthetrfesrheoncckes poantttehrne tinotiemrfepruolmsiveetelroafdrasmwea,smteastteerdi.alTthae-
|
||
|
||
ble and support caused short-lived interference pattern
|
||
|
||
wince at the moments of such strikes. Thus the inter-
|
||
|
||
ference pattern was not destroyed. The bands saved an
|
||
|
||
original position after termination of impulsive loads.
|
||
|
||
The second stage of tests was performed on the ter-
|
||
|
||
rain selected for experimental investigations. In windy
|
||
|
||
weather the interference pattern was stable. The ob-
|
||
|
||
server moving in an immediate proximity from the
|
||
|
||
interferometer installation site, the movement of the
|
||
|
||
pedestrians and cars in 20 meters from the instrument
|
||
|
||
installation site did not cause the noticeable oset or
|
||
|
||
bands shivering. The short-lived bands shivering at cars
|
||
|
||
movement was marked on one of two selected points,
|
||
|
||
which was in seven meters from a ground road. Thus
|
||
|
||
the interference pattern was observed, and the bands
|
||
|
||
216
|
||
|
||
Yu.M. Galaev
|
||
|
||
dinidtnhoist ctehrarnagine tihseinpsoisgintiionca. n(tTh|e torannstphoertavmeroavgeem3en-4t automobiles per a day.)
|
||
The interferometer heat tests were held in summer. The device was mounted on the open site. The various device orientation on an azimuth was set in cloudless weather conditions. In a xed position the instrument was heated by solar radiation. In these conditions within 30 minutes the bands oset did not exceed the value Dwea=th0er:3a5nd(at1n/i1g0h0t tbhaenidnstefrofreraenmceinpuattet)e.rnInsavcleodudany invariable position within 2-3 hours.
|
||
The measuring method sensitiveness to the ether dTrhifet mreeqtuhioreddoefiencttesrfweraosmteetsetredapaptlitchaetitoenstwansatlhsetafgoel-. lowing. The instrument was mounted in a horizontal position in such a way, that its direct axis coincided with a meridian line, and the illuminator was turned to ttheresnteoartdhy. wIonrksu, cthheinoibtsiaerlvpeorsriteigoinst,eirnedththeeinbtaenrfdesroomrige-inal position of an interference pattern regarding to the eyefragment scale. The value D = 0 was given to the bands original position. Then the observer changed the pfeorsoimtioenter|tutronoekd ains1ea8t0a.tTthhee riloltuamtiionnaatlord.isTplhaeceimnteenrtwas performed within three seconds. At rotational displacement, as it was reviewed above, the ether stream in a tube was interrupted. The interferometer transferred into a dynamic operating regime, which is described by the expression (11). In this interferometer position the maximal value of bands oset, the bands release time to their original position was registered. The interferometer transferred into a steady regime, and turned into the initial position. At this stage of tests it was established, that after the dynamic regime termination the bands noticeable oset of an interference pattern regarding to their original position was not observed, ie.xep. rbeassnidosno(21se)titvamlueeanDs,(tth)at!t 1theet0h.eAr sctcroeradmingvetlooctihtye aehtliohnnedrgtehtxheteeirntituoerbrefsetraroexmaismeatvetreltothc!irteys1,htohlddait.teIhrteecdvaanalubbeeitDefxrwpolmaasintbheedeby small resistance of the interferometer tube to the ether stream movement inside this tube. Let's consider in this case, that
|
||
|
||
wp (t)t!1 = wpa Wh:
|
||
|
||
(31)
|
||
|
||
This experimental result was used above at the pro-
|
||
|
||
portion deduction (18).
|
||
|
||
At procedure implementation, described above, it
|
||
|
||
wvaarsiamtiaornksecdo,rtrhesaptoantdtehdetwo hvoalreiattiimonesc, owuhriscehoafrveaslhuoewDn
|
||
|
||
in the Fig. 4 that did not contradict the original imag-
|
||
|
||
inations about the interferometer work. The measured
|
||
|
||
duration of a dynamic regime meant The values ambiguity td is stipulated,
|
||
|
||
tdrst
|
||
|
||
o1f0a:l:l,:
|
||
|
||
1b3ystehce.
|
||
|
||
Fpinaiggttureerrgenim6b:eanOdsbsoersveetdinvatrhiaetiinonterifnertoimmeeteorf dtyhneaminticerofepreernacte-
|
||
|
||
diculties, connected with small values visual readout
|
||
|
||
of the value D, slowly changing, at the dynamic regime
|
||
|
||
eDnd(t,)i,.ec.reaattetd!onttdh.eIdnatthaevFisiuga.l 6obtsheervdaetpioennsd,einscsehovwienw.
|
||
|
||
However, as it can be seen in the Fig. 6, on the
|
||
|
||
original site by the extent about 1 second the depen-
|
||
|
||
dcoeunrcseetqimuaelictoautrivseelyD. (At)ftedritehreeddefvroicme raontaetxipoenctined1t8i0me,
|
||
|
||
atiphtaettehindei,tmiaaclocmporoedsniittnigoonft,otii.m(e2.e2)tD0a,(ntdt0h)et=hbea0Fnidigns.stset4ai,ldl tohocfecauvnpatilieucde-
|
||
|
||
Dwi(tth0i)n There
|
||
|
||
wt=heeremtisamuxpe.ptomSsiitnioce1nsstehocfercemearcothameindenmttheetc0hm,aantxhiciemalvasaltlvrueaeslsueDes.
|
||
|
||
itnio
|
||
nueinnci1n8g0atotrhoethinetrerrfeearsoomnse,tecrobnrnaekcitnedg,affoterreixtasmroptlae-,
|
||
|
||
with air movement inside a heat-insulating housing. In
|
||
|
||
this connection dierent methods of the interferome-
|
||
|
||
ter starting into movement and its braking were test-
|
||
|
||
ed. The tests have shown, that the observed feature
|
||
|
||
othfetshuepipnotseirtfieornosmmetaedre.wTorhke csoyustledmnaotticbreouenxdp-ltahine-ecdlobcky
|
||
|
||
tests have shown the following. The daily variations of
|
||
|
||
the value D corresponded the measured ones in the
|
||
|
||
experiment [1-3] to the ether drift velocity variations
|
||
|
||
within a day. (In the experiment [1-3] round-the-clock
|
||
|
||
measurements were carried out continuously during 13
|
||
|
||
months, since August 1998 till August 1999. The part
|
||
|
||
of this experiment results is published in the works [1-
|
||
|
||
3]. The measurement results within radio waves band
|
||
|
||
have shown, that there is a rather small value of the
|
||
|
||
ether drift horizontal component velocity during the
|
||
|
||
part of a day. The same eects were marked at the
|
||
|
||
optical interferometer test in the work. The experi-
|
||
|
||
eonf cteimheasasthtohweni,nttherafteraotmaesteeprarroattaetdioany,oonn1s8u0ch ptheeriondos-
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
217
|
||
|
||
toibcseearbvleedb. aHndesncoe,setht eofdaetnecintetderffeeraetnucreespainttedrenpewnadsenncoet
|
||
|
||
D (t) (Fig. 6) could not be caused by the interferome-
|
||
|
||
ter mechanical strains or air movements inside the in-
|
||
|
||
terferometer heat-insulating housing, and are stipulat-
|
||
|
||
ed by the exterior reasons. Such time periods, during
|
||
|
||
wthheicinhteDrfe(trmom) ete0r
|
||
|
||
were used starting in
|
||
|
||
for improvement ways of rotation and its stopping.
|
||
|
||
These ways were used then as standard procedures at
|
||
|
||
systematic measurement conducting.
|
||
|
||
TheAdneatleyctseids orefgutlhaeritiyntinertfhereoombesetrevredtebsatndrsesoulstest.
|
||
|
||
has required its physical interpretation. The possible
|
||
|
||
in
|
||
uencing analysis of the interferometer structural el-
|
||
|
||
ements on the ether streams has shown, that the ob-
|
||
|
||
saenrdveqduadnetpietnadtievneclye dfeeastcurirbeesdDw(itt)hicnatnhebefoqlluoawliitnagtisvueplyposition. Let allow, that an exterior heat-insulating dielectric housing of the interferometer (the point 12 in tehtheeFrisgt.re5a)mfordmrisftt,hbeeasdiddeistiaonmaledtairlleiccttinugbes.ysItnemthfiosrctahsee tshtreeaemxteirsiotrheinetrheleartimonovteomaenmteitnalalicdtiuelbeectorifcthheouestihnegr.
|
||
|
||
If to consider the interferometer housing as the routing
|
||
|
||
system, it is necessary to consider, that, since the mo-
|
||
|
||
mpreonctests0
|
||
|
||
in it, as well as in a of the ether stream
|
||
|
||
metallic dening
|
||
|
||
tube, the dynamic will be developed.
|
||
|
||
It gives the basis to write down the expression (21) as
|
||
|
||
follows
|
||
|
||
D (t) =
|
||
|
||
lp
|
||
|
||
Wc
|
||
|
||
(t)
|
||
|
||
c
|
||
|
||
wp
|
||
|
||
(t) ;
|
||
|
||
(32)
|
||
|
||
wltohhceietrvyeariWniatctii(omtn)eoiifsntththheeeevtianhrteierartfsietorrnoemaomefttevhreelhoeoctiuthsyeinrigns;ttrwiemapme(ti)nveias-
|
||
|
||
metallic tube.
|
||
|
||
The housing basis was a cardboard box of rectangu-
|
||
|
||
lar section. Let's consider a problem about setting the
|
||
|
||
ether into motion, resting in a rectangular tube. For
|
||
|
||
this purpose let's use the comparative method, spread
|
||
|
||
in hydrodynamics, of
|
||
uid stream in a tube of a com-
|
||
|
||
pound prole with
|
||
uid stream in the tube of round
|
||
|
||
section, "equivalent" on resistance, at which so-called
|
||
|
||
"hydraulic" radius nceoprtmedal[2se7c]tfioorn tGhips
|
||
|
||
artahodtieuhqseuaslecttoioann
|
||
|
||
paerreiamreatteiro
|
||
|
||
of a tube Np is ac-
|
||
|
||
ah = GpNp 1:
|
||
|
||
(33)
|
||
|
||
Such a way enables to use the mathematical apparatus developed at stream analysis in round tubes. As before we shall be limited to estimations, performed for the ether turbulent stream. In this case the dependence Wthce (etx)pcraenssiboenc(a1lc1u)laintewd hwicithhatshetheexproruesnsdiontusbiemrilaadriutos
|
||
|
||
atupbweeashhall use the "hydraulic" radius of a rectangular
|
||
|
||
"
|
||
Wc (t) wpac 1
|
||
|
||
8 X 1 k 3J1 1 ( k)
|
||
|
||
k=1
|
||
|
||
exp k2ah 2t ;
|
||
|
||
(34)
|
||
|
||
wbuhleernet wstpraecamis ainmtheaeninvteelrofceirtoymoeftethredieetlheecrtrsictehadouystinugr-. As before, at considering the expression (17), and taking into account the interferometer test results (31), it is peasnosdsesniibttilaieslltypoofcsrosonimbsliedtehtroe, wethtrhaiteterthdexeotwveanriloure swtrpeaacmdoveesloncoittydiWehr
|
||
|
||
Wc (t)t!1 = wpac Wh:
|
||
|
||
(35)
|
||
|
||
terioLreto'svecraallcludlaimteetnhseiovnasluweeraeh g. iAvebnovaet,tthhee ihnotuersfienrgomin-ehatncedr=FNsrt0orp:mu1,1cwtthumiterhe.etTxdhpehesrece(nrs3i,s3piho)tainwovne(in:2sg6hw)adiildetlttrehiesrcmpbeciiovns=eesdiba0lht:eh2=2etov0ma:s0el,u3ehe,6es7tihgGmhaptt. twtrhhaideellivudbasuelruodafeettitohndneewdionibfltlyetbrhtfeheeerdionetmutebneretefedeorrfobhlmyaoruetghtseeienrrvgrdaayaldunhieuasmo.fiAc"hsryeadghrima>uelaictp"d,
|
||
|
||
td 0:53a2h 1:
|
||
|
||
(36)
|
||
|
||
From the expression (36) it follows, that, having the
|
||
|
||
measured kinematic
|
||
|
||
vvailsuceossittdy, viat liusepossible
|
||
|
||
to
|
||
|
||
determine
|
||
|
||
the
|
||
|
||
ether
|
||
|
||
0:53a2htd 1:
|
||
|
||
(37)
|
||
|
||
The kinematic viscosity value, determined in such a way, we shall call as the ether kinematic viscosity masehce,a=swu0er:e0sd3h6av7lallmureecaevnicvd.eLtheet'ms seuabssutrietdutveailnuteot(d37=) t(h10e :v:a:l1u3es)
|
||
|
||
e (5:5 : : :7:1) 10 5 m2sec 1:
|
||
|
||
(38)
|
||
|
||
The kinematic viscosity asescthiseefquunacltitoon mean value
|
||
|
||
vm=eafn(vtda)luwe ivtheain,
|
||
|
||
calculated (10 : : :13)
|
||
|
||
ea = 6:24 10 5 m2sec 1:
|
||
|
||
(39)
|
||
|
||
Comparing (30), (38) and (39) we shall mark, that on the value order the ether kinematic viscosity values, calcTulhaeteodppaonrdtumneitaysuorfedth,ecopirnocbidleemvcsoluvtieon avbeaou. t the ether viscosity measuring is of particular interest, as the experimental data about the ether viscosity and the ether viscosity measuring methods miss in literature till nowadays.
|
||
|
||
218
|
||
|
||
Yu.M. Galaev
|
||
|
||
Figure 7:
|
||
bands oset
|
||
|
||
V(caarlicautiloantioinn)
|
||
|
||
time
|
||
|
||
of
|
||
|
||
the
|
||
|
||
interference
|
||
|
||
pattern
|
||
|
||
Let's write down the expression for the value D (t). For this purpose we shall substitute the expressions (11) ainngdly(3a4n)di,na(l3lo2w) finorgtthheevparloupesorwtipo(nts) (a3n1d),W(3c5()t,)waeccsohradl-l receive
|
||
|
||
D (t)
|
||
|
||
8lpWh X 1
|
||
c k=1
|
||
|
||
k 3J1 1 (
|
||
|
||
k)
|
||
|
||
exp k2ap 2t exp k2ah 2t : (40)
|
||
|
||
In the Fig. 7 in a normalized view the dependence c(4a0lc)uilsatgioivnerne.suAltt Dca(ltc)u,lapteirofnosrmthede wteirtmh sthneuemxbpererssoifona svva6ea:ip5rslicu=eFoes1rsso0ik0tomy:f0=7t1iths0m4he5,e.vitncmhFteei=;grc.faae7hlrc7ou=ml1iat0et0tefe:od50rlm3lvdo6a2ew7lssuisegem,cnot;fp1htalaphartaen=omdenteh0ttth:ee4irrem8skefaiomnrleeel;xomupwsaieirtnda=igc-: ttitTc0ihoheonoepifantetmntrheatreitcfieinbpr0geea:gn8trice2enedgnsidpiemncuag,etr,twatettihrhimnoiecneh(bvooaiaffsnlttuddhheisegeDioitinnit)zsteeeesrdtrhffeofemrruroooalmmdmxiebemttteheeareroldbmvdysayonelnrmuavaemeemndoictf.oexpperreastsiniognr(e4g0im) feormsaptetceirfsyintdgthe10o:b3sesrevce.dLveatl'useuesxeptehreitmuteentinal(ly40t)mthe1mseeacs.uFreodr tvhailsuepuorfptohsee ewtheesrhaklilnseumbasttiicvtcmoisnctorsaid0ty:i9c,t3vteshaeec=.exH6p:e2enr4iceen,1c0tehre5esmcua2lltcsseu,clawt1iho,incwhereassruhelatslslhordewocnenivoinet the Fig. 6.
|
||
The interferometer test results analysis, the ether kinematic viscosity values, calculated and measured, give the basis to consider, that the ether stream properties are close to the stream properties of known gases at their interaction with solids | to pass aside obstacles
|
||
|
||
asonldidgso(dinieldeicrtercitcisn,gmseytsatlesmest.c.I)t actaninbteerasuctsipoenctwedit,hththaet ether stream render major ether-dynamic resistance. It claries the interferometer test results, that the tube made of dielectric can execute the same directing system role for the ether, as the tube made of metal. The ether stream property, i.e. to pass aside obstacles, could cause unsuccessful attempts to detect the ether drift with the devices placed in metallic chambers [17-20, 23-26].
|
||
For value denition of the ether drift horizontal coomseptomneenatsuvreeldocvitayluWe ohf iatnisinptoersfseibrelencteo puastetetrhne abtanthdes mexopmreesnsitonof(t4i0m)ewtemsh, awllhreenceDive(tm) = max. From the
|
||
|
||
Wh D (tm) c (8lpX 1 k 3J1 1 ( k)
|
||
k=1
|
||
|
||
exp k2ap 2tm exp k2ah 2tm 1: (41) Let's substitute in (41) the measured values of the etohtfhetehrveakluiinneteemtrmfaetrio=cmve1itsecrsoescait,nydthvceeaaldc=eusliag6tn:i2o4npapr1aa0rma5emtmeerts2esrevca(tlhu1ee, tmcear;smelpsthn=eumm0b:e4ea8rsuomfre;adsevra=ileuse)6::5oafpt1h=0e07e:0tmh1e0;r5kdmr=i;fta4hh.=orIi0zn:o0nt3ht6ai7sl component velocity, will be dened as follows
|
||
|
||
Wh 525D (tm) :
|
||
|
||
(42)
|
||
|
||
Let's calculate the minimal value of the ether drift
|
||
|
||
vuefalocctiutryedWihnmteinrf,erwohmicehtecra,ni.be.e
|
||
|
||
measured we shall
|
||
|
||
with the mandetermine the
|
||
|
||
instrument sensitiveness. In the part \the interferom-
|
||
|
||
ewtherichtescta"n ibs emdairgkietidz,edthwatiththethme isneilmecutemd veayleuferaDgmmeinnt,
|
||
|
||
awnedsLhsecatal'lslerdeDectemeivrimne i=Wneh0m:t0hi5ne.
|
||
|
||
Then with the expression (42) =eth2e6r:2s5trmea/msecr.egime in the in-
|
||
|
||
twvrcRctseahtoaairerdesnltefmuihieatueeibrymtntsoeohhmvfaeetwerupteahertr=dxi8ebe=trrp8utiR03reflt6t:een4eu0:sny2.bv1stdn4ie0eoorolsA5onewl1dgccamni0(cisttm4,o,in)eWr5teiudsnhwmihimasnWewtbg=2phssheohReirtWcscaoeshRlimhlbt1te2mhiclhmn6eaieme:nil2onc>er.o5nuetvlflhqFyeoRamueosrtir.eir/enrtcswehLtt.etmheheichtiteHeetsh'tunshmiepbttnnerhutieecn(eerece3wprite,mv)fhoiieivtaesrasiheertt--l
|
||
|
||
ometer tubes.
|
||
|
||
The optical interferometer tests and tests results
|
||
|
||
analysis give the basis to consider, that the hydrody-
|
||
|
||
namic description of the interferometer operating prin-
|
||
|
||
ciple, reviewed above, is adequate to the imaginations
|
||
|
||
about viscous ether stream in tubes, and the manu-
|
||
|
||
factured interferometer is suitable for the ether drift
|
||
|
||
velocity and the ether kinematic viscosity measuring.
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
219
|
||
|
||
wasTdhisepmoseedasiunrethme ecnotumnterythsoetdtsle.mTehnet inattertfheerohmeiegthert
|
||
|
||
( 190 m above sea level), in 13 km from Kharkov
|
||
|
||
northern suburb. The proximate height ( 200 m
|
||
|
||
above sea level) is located westward apart 1.7 km. Two
|
||
|
||
points were arranged for measurements. The distance
|
||
|
||
between them was about 15 m. On the point No 1
|
||
|
||
the interferometer was at the height 1.6 m above the
|
||
|
||
ground surface. On the point No 2 it was at the height
|
||
|
||
4.75 m. Two points available, which are located at dif-
|
||
|
||
ferent heights and are practically at the same point of
|
||
|
||
tfeecrtr.a"inT, hiteims reeaqsuuirreemdefnotrsoobnsetrhveatpioonintosf Nthoe1\haenidghNtoef2-
|
||
|
||
were performed in the open air. On the point No 1 the
|
||
|
||
interferometer was in surrounding trees shadow and was
|
||
|
||
not exposed to direct solar radiation aecting within a
|
||
|
||
light day. On the point No 2 the interferometer was
|
||
|
||
mounted in an umbrella shadow. In winter time the
|
||
|
||
interferometer was transferred to Kharkov. The point
|
||
|
||
No 3 ( 30 m above the ground surface or 130 m
|
||
|
||
above sea level) was arranged in the upper level facility
|
||
|
||
of a bricky house. On the point No 1 the measurements
|
||
|
||
were carried out in August 2001, on the point No 2 in
|
||
|
||
August, September, October and November 2001, on
|
||
|
||
the point No 3 in December 2001 and in January 2002.
|
||
|
||
The measurements were carried out cyclically. One
|
||
|
||
measuring cycle lasted 25-26 hours. 2-4 cycles were
|
||
|
||
performed within one month. Each cycle contained the
|
||
|
||
following parameters. The interferometer was mounted
|
||
|
||
on a selected point, so that its rotating plain was hor-
|
||
|
||
izontal. After installation the interferometer was kept
|
||
|
||
in new heating environment within one hour (the in-
|
||
|
||
strument was stored in the facility). The measurements
|
||
|
||
were carried out at each whole hour of stellar time. One
|
||
|
||
readout of the measured value was performed under the
|
||
|
||
following schema. The interferometer longitudinal axis
|
||
|
||
wtoarswmasoutnutrendedaltoongthae mnoerrtihd.ianT,hseofuthrtahteritspriollcuemduinreas-
|
||
|
||
did not dier from the interferometer operating pro-
|
||
|
||
cedures, which were applied at the nal stage of the
|
||
|
||
interferometer test. After the interferometer dynamic
|
||
|
||
regime termination the observer registered the maximal
|
||
|
||
bbaannddss orelseeatsevatliumeeDto(ttmhe)i,raosritghienaml epaossuirteiodnvwalause.reTghise-
|
||
|
||
tered and metered. The interferometer returned to the
|
||
|
||
steady operating regime. The instrument turned to the
|
||
|
||
initial position. As a rule, 5-7 readouts were done dur-
|
||
|
||
imngeaonnvealmueeawsuasriancgcetpimteed(for 1th0emmienaustuerse).d where S is the measuring stellar time.
|
||
|
||
The readout value D (S),
|
||
|
||
redestuThlhetsef.opllTroowhceinemgsspeianrosgucremedmuerteehnsto: drvesasluoulfetssthcpaerlocmcuelesasatiisnougnrseinomcfleutnhdet-
|
||
|
||
ectohuerrsedorfiftthheoertizhoenrtdarlifctovmeploocniteyntwvitehloincitsyepWarhat;eastdeallialyr
|
||
|
||
day and the ether drift velocity daily course averaged
|
||
|
||
during the year epoch Wh (S); a daily course of the
|
||
|
||
emtitohenaeTrsWuhdrehreimmfftreeonvametslusoiercterisimteymsenaeWvatenhrreav(sSgauel)uldt,esmfowerWaetnrh.e-esqiwnutharrooeldevutacilemudee
|
||
|
||
doef
|
||
tehceas the
|
||
|
||
medeawsiutrhedthvealeuxeptraebsslieosnD(4(S2)) .wTerhee bvraoluugeshtWtho,tchaelcsualmate-
|
||
|
||
table for each hour of stellar day. Such numbers con-
|
||
|
||
sequence obtained for separate stellar day, describes a
|
||
|
||
dailTyhceoumrseeanWvhal(uSe)s.of the ether drift velocity and the
|
||
|
||
vdaalyuewsithWthwe efroellocwalicnuglaktneodwfnoreexapcrheshsioounrs
|
||
|
||
of the [30]
|
||
|
||
stellar
|
||
|
||
Wh (S) = 1 X Whj (S);
|
||
j=1
|
||
|
||
8
|
||
|
||
W
|
||
|
||
(S)
|
||
|
||
=
|
||
|
||
><
|
||
|
||
>:
|
||
|
||
1 X j=1
|
||
|
||
Whj (S)
|
||
|
||
(43)
|
||
|
||
Wh (S)
|
||
|
||
2 9=1=2 ;(44) ;
|
||
|
||
wwhheorlee m eiasstuhreemvaelnutessearmieos.unTthWe hco,nobdtaeninceedindtuerrivnaglsthoef the measured values were calculated with the known methods explained, for example, in the work [30]. The calculations were performed with the estimation reliability equal to 0.95.
|
||
The measurement results. The measurement series results, held since August 2001 till January 2002 are presented in the work. 2322 readouts of the measured values have been performed during this series. The distsrhiobwuntioinn othferetaadboleut1s amount per months of the year is
|
||
According to the research problems, we shall consider this work results along with the experiment results [1-3], [7-9], [10]. These four experiments have bdieeenrepnetrfmoremaesudraintgvamrieotuhsodpso:inatsnoofpatigclaolbienwteirtfhertohmreeeter of the rst order (Europe, Ukraine, 2001{2002 [this work]); a radio interferometer of the rst order, (Europe, Ukraine, 1998{1999 [1-3]); optical interferometers of the second order (Northern America, USA, 1925{ 1w9h2i6ch[7a-r9e],a1p9p2li9ed[1i0n])t.heTahbeomvee-amsuernitniognmedetehxopdesriamcetinotns,, based on wave propagation regularities in moving medium, responsible for these waves propagation, that allows to treat the experiment results in the terms of the ether drift velocity within the original hypothesis.
|
||
The development regularities of viscous medium streams (
|
||
uids or gases) in directing systems are used in the work measuring method. The measured value is proportional to a velocity dierential of the ether viscous streams in two tubes of dierent section within the original hypothesis. This dierential value is proportional to the ether drift velocity (the rst order method).
|
||
In the experiment measuring method [1-3] the regularities of viscous medium streams near the surface
|
||
|
||
220
|
||
|
||
Yu.M. Galaev
|
||
|
||
Month of theTyaebaler 1: DAis2ut0gr0iub1suttionSeop2ft0er0mea1bdeorutsOamc2t0oo0ub1nert peNr om2v0eom0n1tbhesrof tDhee2ce0ym0ea1brer Ja2n0u0a2ry Amount of readouts 792 462 288 312 240 228
|
||
|
||
FAiugguurset 8ep: oVchariation of ether drift velocity within a day in ptoarativtieornticaarle vuesleodc.ityThgeramdieeansturinedthvealeutehiesr pdrroipftosrttrioeanmal near the Earth's surface within the original hypothesis. This gradient value is proportional to the ether drift velocity (the rst order method).
|
||
In the experiments [7-9] and [10] Michelson's cruciform interferometers were applied. The measured value is proportional to a velocity dierential of wave propagation in orthogonal related directions in the ether drift stream within the original hypothesis. This dierential value is proportional to the ether drift velocity (the second order method).
|
||
In the Fig. 8 the experiment results referring to August are presented. On fragments of this gure are shown accordingly: in the Fig. 8a | this work results; in the Fig. 8b | the experiment results [1-3] (the gure is published for the rst time); in the Fig. 8c | the experiment results [7-9]. ing Tohneoertdhienratderiaftxevse.locTithieesstWelhlarintikmme/sSec.inarheopuersndis-
|
||
|
||
pending on abscissa axes. Each of the Fig. 8 fragments illustrate the variation of the ether drift velocity wariethpinresaenstteedllaorndlyaybyWthh(eSa)u.thTohrse oefxpweorrimk e[1n0t]raessualtsscertaining of the velocity maximal value, measured by thFthhaieegsm.mn,8oeitnaasasruletlrloheawemtiedoednnattitloyodsatdhtheoaepwemanvtodehvreiaesnmgceiexnenpgWterrhWeims(uSel)tns.t6wrIkneemsrute/hltsepsercFie,nsitgehtn.hat8e-t ed with the thick lines, which are obtained in each of the experiments during August epoch (mean results). The separate observations (measurement results during a separate day) are shown with thin lines. The dates of separate observations are specied on fragments. The separate observations on fragments of the Fig. 8a, Fig. 8b are selected from the performings, which had the date, proximate to the date of separate observation of the Fig. 8c fragment and which during the day had no skips during the measuring. The date discrepancy is stipulated also by the fact that the systematic measurements in the work began on August 14, 2001, and in the experiment [1-3] | on August 11, 1998.
|
||
The positive measurement results, given in the Fig. 8eibmmt,yheienletnlrthutdess[t1rr[oi-7af3pt-t]9teri]tec,thqahe[ule1i0oirdne]petdptvehoerefelsoeiernpacogmntm.isereoIantntdterirtooohfprewyaowntaeaivosteroieksotcrntapo,nrpwodiynapiseantgdhteahiectseticoeoe|xnvxpepwetrerhearides-applied.
|
||
The similar nature of the ether drift velocity variation within a day in August epoch unite all three fragments of the Fig. 8. The rst minimums in dependreesnuclitess. IWnhth(Se)waorrek e(Fxpigr.es8saed) acnledairnlythine aexllptehrrimeeemnte[a1n3] (Fig. 8b) temporary position of minimums is S 3 hours. In the experiment [7-9] (Fig. 8c) the temporary pdiosscirteiopnanocfytihnethrestpomsiitnioimnuomf tihsesSe min0i:m8 uhmousri.s a(Sbuocuht 2.2 hour, an explanation has not found yet.) The ether drift velocity magnication is observed during consequent 2-3 hours. Further the plateau sites with rather small variations of the ether drift velocity in time are noticed on all fragments. The greatest duration of the plateau site was observed in the experiment [1-3] (Fig. 8b), that can be explained by arranging peculiarities of a radio-frequency spectral line on terrain. In this expfreormimaenmt etrhiediraandoion-fr4e5quetnocynosrpthecetarsatl. lTinheeisvadreiacltiinoends
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
221
|
||
|
||
oimf tuhteh)eothcecrurdsryifmt ampeetxriacazilmlyuttoha(amsewriedlilaanslainneywstitahrinaza-
|
||
|
||
stellar day. If to take account (according to
|
||
|
||
the apex Miller:
|
||
|
||
coo6r5di,naate v1a7l:u5ehs
|
||
|
||
into [9]),
|
||
|
||
the ether drift azimuth in this part of a stellar day ac-
|
||
|
||
cepts the values, which lay in the northeast direction,
|
||
|
||
i.e. in the direction close to the direction of a radio-
|
||
|
||
frequency spectral line. In this case the angle between
|
||
|
||
the ether drift azimuth and radio frequency spectral
|
||
|
||
line direction has minimum values. Accordingly at the
|
||
|
||
interval of 12-16 hours the ether drift radial compo-
|
||
|
||
nliennet) vkeeleopcsitryat(hdeirrehctigedh vaaloluneg,adersapdiitoe-forfeqthueenacpyexspheecitgrhatl
|
||
|
||
magnication (astronomical coordinate). Such arrang-
|
||
|
||
ing peculiarities of the radio interferometer on terrain
|
||
|
||
cthane ienxtperlavianl tohfe12re-1la6tihvoeudrsepinencdoemnpceariinscorneawsiethWthhe(Ssa)maet
|
||
|
||
dependencies shown on two other fragments. In the
|
||
|
||
work (Fig.8a), according to the accepted measurement
|
||
|
||
methods, the optical interferometer was located along
|
||
|
||
a meridian. As the variations of the ether drift azimuth
|
||
|
||
within a stellar day occur symmetrically to the merid-
|
||
|
||
ian line, in this case the plateau site duration should
|
||
|
||
be less, than in the experiment [1-3] and less than in
|
||
|
||
the experiment [7-9] in which the ether drift azimuth
|
||
|
||
variation was considered by the corresponding rotation
|
||
|
||
of the interferometer.
|
||
|
||
It can be seen in the Fig. 8a (the mean result of
|
||
|
||
the work), that the sites with rather small values of
|
||
|
||
the ether drift velocity, extended in time, take place
|
||
|
||
within a day. Noticeable bands oset of an interference
|
||
|
||
pattern was not observed per a separate day on such
|
||
|
||
sites. In these cases the ether drift velocity was lower
|
||
|
||
tmh/asnect)h,ethianttewrfaesroumseedtefrorsetnhseitiinvteenrefsesro(mi.eet.erWtehsts<, th26e
|
||
|
||
purpose of which is given in the above mentioned part
|
||
|
||
"the interferometer test".
|
||
|
||
Systematic character of experimental investigations
|
||
|
||
of this work and the works [1-3], [7-9] has shown, that
|
||
|
||
dependencies measured in one and the same epoch of
|
||
|
||
tehtheeryedarriftWvehlo(Sci)ty, vhaarviaetitohnewsiitmhiinlaar dchaya.raActtetrheofsatmhee
|
||
|
||
time dependencies epochs of the year
|
||
|
||
vdiiewerWfrhom(S)ea, cmheoatshuerre,dtihnatdicaenrebnet
|
||
|
||
noticed, for example, by the experiment published re-
|
||
|
||
snuolttsb[e7e-n9]d. eThneedreyaesto.nIstocfasnucbhe sseuasspoencatledva, rtihaatitomnsahganvee-
|
||
|
||
tosphere, at its considerable sizes and peculiar shape,
|
||
|
||
ionosphere, the known variations of their state can be
|
||
|
||
responsible for such dependence variations It can be seen in the Fig. 8, the ether
|
||
|
||
Wdrhift(Sv)e.loc-
|
||
|
||
ities, measured in each of the experiments, dier, that
|
||
|
||
can be stipulated by the arranging height dierences of
|
||
|
||
measuring systems above the Earth's surface: 1.6 m;
|
||
|
||
42 m; 1830 m (Fig. 8a, Fig. 8b, Fig. 8c accordingly).
|
||
|
||
The collection of such data illustrates the height eect
|
||
|
||
development. In the work the ether drift velocity mea-
|
||
|
||
Figure 9: Dependence of the ether drift velocity on the
|
||
hi[m1e0ieg]nhtt[a1b-3o]v;e2thies Ethaertehx'psesruimrfaecnet, [7-9i]s; thisiswtohrekeaxnpdereixmpeenrt-
|
||
s4du.e7rn5icnegmdhi(aspcvooesviebtrieoye.nnINnpoetr.hfoe1rmtaanebddleaN2tott.hhee2)mhfeeoiargnhhtvesaigl1uh.6etsdmoefpatenhndeether drift maximal velocity are given, which are measured in the work and in the experiments [1-3], [7-8], [10]. In these four experiments the measurements are performed at ve dierent heights: 1.6m and 4.75 m in the work; 42 m in the experiment [1-3]; 265 m and 1830 m in the experiment [7-9] (Clevelend and the observat[1o0ry] tohfeMmoeuansutrWemilesnotns awcecroerdcianrgrileyd).oIunt tahlseoeoxnpetrhime oenbtservatory of Mount Wilson. However, in contrast with twhoeodexepnehriomuesne,t t[7h-e9]e,xwpheriicmh ewnats[1c0a]rriisedpeorufotrimnead liinghat fsuernvdaatmoreyn.taIltbcuainldibnegsoufpapnoosepdt,ictahlawtotrhkesheotpheorf tshtreeoabmbraking by the house walls was the reason of the ether drift velocity smaller value, measured in the experiment [10] in comparison with the experiment result [7-9].
|
||
The table 2 gives the imagination about the ether drift velocity variation in height band above the Earth's surface from 1.6 m up to 1830 m. In the gure 9 this deptheendaebnscceisvsaiewanids porredsiennatteeds ianxtehsethloegalorgitahrmithicmscicalvea.luOens owtahfnhedreavr1teai:lomusWeasWcWci/osWrtdhaiennagdenltyZdh. eZr a/drZreifctownveserildoeecpriteeydndaeitqnutgahlaecthcooe1irgdmhint/gsZleyc;,
|
||
|
||
222
|
||
|
||
Yu.M. Galaev
|
||
|
||
Table 2: Dependence of the ether driftTvheeloectithyerondrtihftevheeloigchittya(bmov/esetch)e Earth's surface
|
||
|
||
theHEe(aimgrhtehtt'easrbsso)uvreface T20hO0i1sp-tw2ic0os0rk2 TRhaede1ixo9p9we8ra-iv1me9se9n9bta[n1d3] The e1x9Op2ep5r-ti1imc9se2n6t [79] The exOp1ep9rti2mi9csent [10]
|
||
|
||
1830
|
||
|
||
{
|
||
|
||
{
|
||
|
||
10000
|
||
|
||
6000
|
||
|
||
24625
|
||
|
||
{{
|
||
|
||
14{14
|
||
|
||
30{00
|
||
|
||
{{
|
||
|
||
4.75
|
||
|
||
435
|
||
|
||
{
|
||
|
||
{
|
||
|
||
{
|
||
|
||
1.6
|
||
|
||
205
|
||
|
||
{
|
||
|
||
{
|
||
|
||
{
|
||
|
||
ibmaneIndttcfrraoensmublet1s.s6eaermne fnurepoamrtotohn1e8e3Fs0itgrma. i9gt,hhttehlaeintthedeiarneddrreinifntt vehexelpiogechrit-tsnayunersdifsna,acctrtehem.aaostTescsphahewneirbtbehoeuinttnhhtdeeeraahrccyeotingiloshaenytq.eugrerTonhhwcaeestsheocfoadnbtahsotievadeeedrttahohbeernleEosttatrhrcetioachnmk's-tvFsreiraseocndmo,icuttsthhtaeehttehtteahirmbelaeaengtd2ihn,eiartFtsiidogsrn.tirfste8oavafmetlaohnnceediatmyrthotiesdheerFlaiEt[g4ha.-er6rt9]hs'amsibtsaoculualrtnfnatecbhaeeer. trveshoedanelursveEieetsaliu3ovrl0cettihnskt"'eymss.sos/fuIswnremafcassawcunoecay,bhsvtehtiexoaaxpuktpeesecrlnyriaminampseoeentxonthprtae.sllaeWtwitnhhoeiterthkrhmesd,terrhtieienefatrseiwoanxnnhgptirocidechfesisp\vtizaiohcetnee-(2am10re)e0t-iih4tno0acd0apsnpmslbie/cnesaesbcictal,eilvtchfeuonelraemstmseedetta,hostouhtdrhaseetmoeafetttnhhttehesr,esdaeersctiohfitnnedrvtehdolirorsidcftcietaryvsaeeillsomsculooictswhyt imne6thoorddse.rs (!) than the sensitiveness of the rst order
|
||
The ether kinematic viscosity has been measured in the work. The measurement results are explained above in the part \Result analysis of the interferometer tests," that is stipulated by the peculiarities of the experiment implementation. The measured values of the ether kinematic viscosity are in the limits vevqeaauluael ov(re5da:e5=r:c:6o::i72n:41ci)d1e01s0w5i5tmhm2tsh2esceece1th,1et.rhakTtihnaeecmcmoaretdaicinnvgvisatcloousetihtiyes value calculated above vc 7:06 10 5 m2sec 1 .
|
||
Hence, the dierences between the dependencies Wavhai(lSab)leacnadn tbheeexetphlaeirneddribfty vtheleocmiteyasmureeamsuernetdmveatlhuoeds dierences of the work and the experiments [1-3], [7-9], [10] and dierences between arranging heights of measuring systems. The results of four experiments do not contradict each other, that illustrate the reproduced measurement nature of the ether drift eects in various experiments performed in dierent geographic conditions with dierent measurement methods applying.
|
||
|
||
Figure 10: The mean daily course of the ether drift velocity
|
||
|
||
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
|
||
|
||
223
|
||
|
||
vvaellouAceictwcyoitrhhdoitnrhigzeotnpotetarhiloecdoormpiegprinoonanleenhtystpeWollthahressdhiaso,yut(lhdtehceehtshapenargcedereiitfftsfect). For revealing the ether drift velocity component with such period, the results of systematic measurements were subjected to statistical processing in stellar time scale. The results of such processing are shown in the Fig. 10. On the fragments of the Fig. 10 the stellar time S in hours is suspended on the abscissa asuxseps,entdheedeothnerthderioftrdvinelaotceitayxevsa.lueThWe hveirntickaml /hsaetcchisethseinmdeicaantedatihlye ccoounrsdeenofcethienteetrhvearlsd. riIfnt vtehleocFitiyg.wi1t0hacinalcauslatetelldaracdcaoyrdWinhg(tSo)thise gmiveeansu. reTmheisntdreepseunltdsenocfethies work, which were performed during ve months of the year, since September 2001 till January 2002. During ve months the numerical value of stellar time shifts regarding to the solar time in 10 hours. Since September till November the measurements were performed on the point No2. In December and January | on the point No3. The mean values are calculated with the expression (43). For comparison, in the Fig. 10b the mean result is given, which was obtained in the experiment [1-3] during year's ve months of the same name, since September 1998 till January 1999 (Here, as contrasted to the similar gure, given in the works [1-3], the measured value is expressed in the ether drift velocity values.) In the works [7-9], [10] such data miss, owing to smaller on coverage of year's epochs of the measurement statistics in these experiments.
|
||
|
||
Both fragments of the Fig. 10 as a whole have sim-
|
||
|
||
ilar nature of the ether drift velocity variation within
|
||
|
||
a day. The dierences in the curve shapes can be ex-
|
||
|
||
ptelrarianiendrbelyiefvieslceomuesnetst,hewrhsicthreainmthinesteerdacitieornenwt ietxhpetrhie-
|
||
|
||
ments had the distinguished performances and features
|
||
|
||
of radio-frequency spectral line arranging on terrain in
|
||
|
||
the experiment [1-3]. On the fragment of the Fig. 10a
|
||
|
||
(this work), as contrasted to the result of the exper-
|
||
|
||
ismmeanllter[1v-3a]lu(eFsi,g.th1a0tbc)a,nthbeeetehxeprladinriefdt vbeylocthiteieshehiagvhet
|
||
|
||
distinction of measuring points in these experiments.
|
||
|
||
The dependencies ly changed values
|
||
|
||
Wwihth(St)hheapveertihoedsfoerqmusaol ftpoeariosdteicllaalr-
|
||
|
||
day, that can be explained by a space (galactic) origin
|
||
|
||
of the ether drift. In the work, the observed bands o-
|
||
|
||
set direction of an interference pattern corresponded to
|
||
|
||
the ether drift northern direction at measurement im-
|
||
|
||
plementation. Hence, the results of the work do not
|
||
|
||
contradict the experiment results [1-3], [7-9], [10] and
|
||
|
||
imaginations of the works [4-6] about the northern posi-
|
||
|
||
tion of the ether drift apex, that demonstrate the repro-
|
||
|
||
duced result nature of the ether drift eects measure-
|
||
|
||
ment in dierent experiments, performed with dierent
|
||
|
||
measuring methods application.
|
||
|
||
p[1a-r3iI]sn,o[nt7h-9oe]f,wt[o1hr0ek].wwFoeorrskhcaroelnlsdubuletcsctiownngitonhfedqthuteaoneqtxiuptaaeltriiitvmaeteicnvoetmcdpoaamtra-aatthotpieevsxpeercascontiofayrtldiymaisnniesatwaietnevarieaslylduntieeectscaeeolrsnmsvatiirehnyweedtcooeiflnestsphttehieaceilefetsyxhppehtrheererdiemre,itwfehtnhetvrice[hd7lor-fc9iofi]rt-, tptsyitroroendpaeommpseeesndtfhdooeirnndmctioehnfegotnhnweetoahtrreekrtshrhae[e1iing-Eh3ra]te,rlattihbeof'osevinlseau
|
||
btruhfoeaerncaecEt,eeatroottnhhde'tsehctseeaurlemcrtfuhailnceaeerpiatohnrnoedobrsgaepaobhseleeosrneion,tu
|
||
htthuistaehnteexcisipfntregharimemosfeuentbohtfjeertcehEtseuoalfrwttssohe,rptkmahrpeaargetonexbepiltneeovmrsiepmssh.teiegnDrateut[ie1ao-nnt3dos] atdiniodneT,rthehtnhuetose,uexixgnphpeterhiriteimsmweuenosntretkfs[u,7lit-nsh9e]qesuashriytaeeptgootitvbhheveenisoriewsusseiu.txlhtpoecurotimmapnenyatracisolorvnreeroci--f aaTlgchaamettieieoodsnnitu,iammibnao, tturihetosentphoooepnftesititcbhhaleelerwefeotaxhrvieseertleebcnkaticnrneodemimnhaaangtsaintcbeuetvrieeicns,cwiop.aesev.irtefymos rpavmtareoleurpdie--. hfcmooofaressvtitthihbysoecedmoeenuateshcapteslieruioqrrndfuionriiridgsfmtbhoevaardess.legodbacTesiotehnynsettarphnereadormspdtteohsvsoeeeirndledotephatrhmneerdoepkndrtiteiniracreealemcilgztueiamndltagi.ecrtiTshvtyioihessdes-todveabrmiltfuatsei.nroeeTfqduhthiserteeasdtiegitsnehtieicreacckaltlsinyn.themmaTsaehatbeisecuedrvneeivmsscehoeloonspwittmynr.eeosnnuTtltthoshefehmtavhvaeeelauseebutehroeeerndrdodEtifeioarrnroethcphctathi'isoscacnansolugiarnewnfscaadiicvdteeies.ndvpcTawrrelohiuapteeshaevwgisetailstwtohiccoiatinatlhcypudhoeleearfpiitgoeoenhpddtdtvpiscgaearlroulonoewwn.ttaehThvesehateerpbalvroldaoevilrpeaoadtctgiaiohtayyne-. The|deotepcttiecdaleweacvtes pcraonpbageaetxiopnlaimneeddibuymthaevafiollalbowleinreg-: giptaoyrs,de|idi.ne.ogopftttsohieceptahalfeerwaaEatteuvaerrpetpahprr'ostripocmpalegeosrav;tetimoonemnmta;etderiuiaml mhaesdituhme vsicscooms-has|Tghoetthaweosmprkaecdreeius(umglatlssatrccetoaimcm)poaorrfiigsoiopnnt.itcoalthweaveexpperroipmaegnattiroensaptuhscalearttitshsei,ooethnneexetrarehecbedsuorurtuileifttndts tneehhaaaeetrvulceeitrexerism,shithnoeeawanosscnurebdrteeeohemrfenoesunrfpetcetpshrhrfeioomnrdhmauvytcaepeerdrodi.iotahuTlnesamhstieesuexdrcpveoieeumrromii--fmwietnhTtshdeipewerrofeornrktmrmeedseuailsntusrdecimaneernbetnemtcgeotenhosogiddreasrpeahdpipcalirsceaeqtxuipoirener.mimeenntstitnarolnmhayatpgunoreet,htieics.eiws.acvmoensatperrrmoiapalatimgoanetdiaoiubnmo. u,trethspeoentshiberleefxoirsteelnecce-
|
||
|
||
224
|
||
|
||
Yu.M. Galaev
|
||
|
||
References
|
||
|
||
[1] Yoicnus,.ra2Md0i.0o0Gw,aValavoeelv.p.5r,\oEpNatohg.a1ert,-ipodnpri..f"t1R1e9a{de1cio3tsp2.hiny(sintichsUeakenrxadpineerleei)mc.teronnts-
|
||
|
||
[2] Yosifaur).a.Mdio. Gwaavlaee.v".Z\hEutkhoevrs-kdyr:iftP.eEtixt,p2e0ri0m0,en4t4 ipnp.th(ienbRaunsd-
|
||
|
||
[3] YmShtuuitlb.plsi:mt/Ma/enwt.crewicG,wa2.rls0aap0eda1vico,.ewtiVa\mvEoeelt.s.hnea2rpr,aorlodNp.rwaoug.i/na0td50i(o11n0i0n.-)"p,defSpx.zpppia.pecr.ei2et1in1mc{ee225o&,f
|
||
|
||
[4]
|
||
|
||
W. Azjukowski. akten Wissens.,
|
||
|
||
S\tDuyttngaamrtik, 1d9e7s4,ANthue.r2s.,"s.Id4e8e{n58d.es
|
||
|
||
ex-
|
||
|
||
[5] Vics.A. M. Aodtseulkimovasgkiyn.a\tTiohnes ionftmroadtuecrtiaiolnanindtoeeldthsetrrduycntuarmesod(inenpt.Rh, ue1s9bs8iaa0s),i.sDoefpg.ains lVikIeNeItThIer1.2".0M6o.8s0koNwo,.M27O6I0P-80phDyEsiPcs.
|
||
|
||
[6] V.A. Atsukovsky. \General ether-dynamics. Simulation otMhf oetshicdoeewam,s 1aa9tbt9oe0ru, t2s8ttrh0uepctgpua.rs(e-ilsnikaeRnuedstshieaer).l."dsEonnergtohaetobmaiszisdaot,f
|
||
|
||
[7]
|
||
|
||
Dso.lCar. 408.
|
||
|
||
Mobislleerrv.a\tEortyh.e"rPdhriyfts.eRxpever.,im19e2n2ts,
|
||
|
||
VatolM. 1o9u,ntppW. i4ls0o7n{
|
||
|
||
[8] D.C. Miller. \Ether drift experiment at Mount Wils3o1n4.." Proc. Nat. Acad. Amer., 1925, Vol. 11, pp. 306{
|
||
|
||
[9] Dm68.e,CnN.tsoM.of1il6l1e39r52.,5\paSpti.gM4n3io3uc{an4nt4c3We. ilosfont.h"eSectihenerc-ed.,ri1ft92e6x,pVeoril-.
|
||
|
||
[10] A.A. Michelson, F.G. Pease, F. Pearson. \Repetition of the Michelson-Morley experiment." Journal of the
|
||
|
||
OstprutimcaelnStso.c,i1et9y29o,f VAoml.er1i8c,aNaon.d3R, epvpi.ew18o1f{S18c2ie.ntic In-
|
||
|
||
[11] E.T. Whittaker. \A History of the Theories of Aether ad\nAydnHaEmislitecocsrt,yri2co0ift0y1t.h,"e5I1Tz2hheepvopsr.kie:(sinRofRICAusesRtihaee)gr.ualEan.rTd a.EnWldechtrirtaitncadiktoyem.r". Thomas Nelson and Sons Ltd, Edinburgh, 1953.
|
||
|
||
[12] A.A. Michelson. \The relative motion of the Earth and tehneceL.,u1m8i8n1if,eIrIoIusseertiehse,r.V"oTl.h2e2A, Nmoe.ri1c2a8n, Jpopu.1rn20a{l 1o2f9S.ci-
|
||
|
||
[13] GtT2e0h.r2G.e{".2SIP0no3evtti(hreiaetnsbheR,onuoScsky.sGci\al.oP)Rp.heaydusiitaci,aanlM.en\ocMsykcioclwhope,las1eo9dn6i'c2s,vInoVtcoealrb.fue2rl,aormpyp.e"-.
|
||
|
||
[14] A.A. Michelson, E.W. Morley. \The relative motion of tJ34h36oe33u{.rE3na4ar5lt;hoPfahnSidlcoisteohnpechelui.cmTalihnjioirfuderrnoSauelsr.i,ea1se8.t,8h7e1,r8.V8"7oT,l.hV2e4oA,l.pm3pe4.r,4i4cpa9pn{.
|
||
|
||
[15] WNa.uI.kFar,aMnkofsukrotw, A, 1.M97.2F,r2a1n2k.p\pO. p(itnicRs oufssmiao)v.ing media."
|
||
|
||
[16]
|
||
|
||
S.I. Vavilov. \New searchs of \the ether c(ienssResusosfiap).hysical sciences, 1926, Vol. 6,
|
||
|
||
dprpif.t"2.4"2{S2u5c4-
|
||
|
||
[17] R.J. Kennedy. \A renement of the Michelson-Morley e1x2p, eprpim. 6e2n1t.{"62P9r.oc. Nat. Acad. Sci. of USA., 1926, Vol.
|
||
|
||
[18] K.K. Illingworth. \A repetition of the Michelson-
|
||
|
||
Morley experiment ical Review., 1927,
|
||
|
||
Vusoiln.g30K,epnpn.ed6y92's{r6e96n.ement."
|
||
|
||
Phys-
|
||
|
||
[19] EFBr.8e,iSbNtaaulhl.oen1l.0.",\S\D.Da9ise35MN{ai9ct3hu6er.lwsoinss-eEnxspcheraifmteenn,t", Haeufstg4e1fu, r1t92im6,
|
||
|
||
[20] Joos G. Die Jenaer. \Widerholung des Mihelsonversuchs." Ann. Phys., 1930, B7, S. 385{407.
|
||
|
||
[21] \Ether-drift," Digest by Dr. in Sc. V.A. Atsukovsky. Energoatomizdat, Moskow, 1993, 289 pp. (in Russia).
|
||
|
||
[22] D.C. Miller. \The ether-drift experiment and the de-
|
||
|
||
termination of the absolute motion Modern. Phys., 1933, Vol. 5, No. 3,
|
||
|
||
opfpt.h2e0E3{a2rt4h2.."
|
||
|
||
Rev.
|
||
|
||
[23] L19.5E5,ssVeonl.. 1\7A5,npepw. 7e9t3h{e7r94d.rift experiment." Nature.,
|
||
|
||
[24] J.P. Cedarholm, G.F. Bland, B.L. Havens, C.H. Townes. \New experimental test of special relativity." Phys. Rev. Letters., 1958, Vol. 1, No. 9. pp. 342{349.
|
||
|
||
[25] D.C. Cyampney, G.P. Isaac, M. Khan. \An ether drift
|
||
|
||
experiment ters., 1963,
|
||
|
||
based on the Mssbauer Vol. 7, pp. 241{243.
|
||
|
||
eect."
|
||
|
||
Phys.,
|
||
|
||
Let-
|
||
|
||
[26] T.S. Jaseja, A. Javan, J. Murbeam, C.H. Townes. \Test omfasspeercsi.a"lPrehlyast.ivRiteyv.o,r1s9p6a4c.eViosol.tr1o3p3ya,bpypu.s1e2o2f1{in1f2r2a5re.d
|
||
|
||
[27] LM.Gos.kLowoy,t1sy9a7n3,sk8y4.8\Mppe.ch(iannRicsusosfia
|
||
)u.id and gas." Nauka,
|
||
|
||
[28] Nid..A" .GSolesztekcinh.iz\dDaty,nMamosicksowof, v1i9s5c5o,us52in0cpopm.p(rinessRibulsesi
|
||
au).-
|
||
|
||
[29] S.G. Rautian. \Rozhdestvensky's Interferometer." In tvshiiaee)t.beonockyc\loPpheydsiiac,alMeonsckyocwlo,p1a9e6d2ic, Vvoolc.a2b.upla.r2y0.3" (TinheRSuos--
|
||
|
||
[30] LpRe.uZrsi.msiRae)un.mt srhesisukltys.."\MNaatuhkeam, aMtiocsaklopwr,oc1e9s7s1in,g19o2f tphpe. e(xin-
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 225{233 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
ON THE BASIS FOR GENERAL RELATIVITY THEORY
|
||
S.N. Arteha1
|
||
Space Research Institute, Profsoyuznaya 84/32, Moscow 117997, Russia
|
||
|
||
Received December 23, 2002
|
||
|
||
The basic concepts of the general relativity theory (GRT), such as space, time, the relativity of simultaneity, are scyosnttermadaitcitcoarlylypaoninatlsyzoefdt.hisTthheeolorgyicaanldinitcsocnosrisotlelanrciieess aorfe bcoansiscidGerRedTinnodteiotnasil.are indicated. Many disputable and
|
||
|
||
1. Introduction
|
||
A series of logical paradoxes has been analyzed in detgta\ahrsgioeeltuohiGnmnedRep[l1tTerr-si3inszc]nca,oietnpasitnlsoeandoio.nf"tfshSeIeRsqfoTucimtoi'vmwseabaplreaslanestditchseeeemwerexexoirppnneerstetrterirsrmauseetseedet,nditntv.hagieaUl iGatndnhleRideakTseil,docSegsoRauiucTcloahdf,l hristetarcviutseicontaneodcttloatinhitmehaecodasnistease,ttriatecthnuNetsemgowrfaatoavnninht'eaysrtp.liaoownthtoehsfiegsorraaybvoimtuauttsisotonmb.eeScicnoocnre-bliposaugstdiiTacesbamhnlleeooinntbpcisaoootsnirnniascsttissoeptdffuernGrohpcmReyorTseoet.;hf oiestfpTtaitheschxeecitsobpanownlatodoaukristnskiibem[dil4see-i6tnne]hroeraStoireocrecsrntidsitaoiiicsnnnpidsl2Gma.dyRieoAsTd-f sMgtievapecnhbtyporsidtneocpuip.blteTfuhalreectoairmlosloelasdryiisnecscuhfsrrsooemndi,zGaatnRidoTn.thiSseescuatetistoenannt3idocnothniestains the conclusions.
|
||
2. Criticism of GRT Fundamentals
|
||
MctiiopanlneytooGftcRhoeTrrceiansspceoownnsdiiteshtnoecnuectiigessrvaaivorieltaawtteeidolln-(ktcnhaoenwlninmo:ti1tei)xntighstetrwparintisnhi--otcheuleterciaontntirsooenrdsvuacctoiinnotgnraltadhwiecstasarrttehieacbeiasxelpneetrx;itm3e)rentnhatelalrcfeoalnacdttisivt(iiortyontsoa)ft;ian2cg)ls4cfiooo)qrinudtsshisiad,devsweisrnuhiengnedgdriuetteaoslras\bsrnupesonaoincinlveu-aertpocrisopotaannliltdscicainehtbgxiaolierosnantisc.nethse(saUri-mv"tsehuibletaaehlgrslepyicn,hasshaeserntaisopyc,aecbtlohuosnetfhsoatGerrlpyluRiecpT)its-; fbaengtLianesttwiucitsphcicotthnuesriedmse,yrstuthhche\oganesntbehlreaaclckocvlhaaoirmlieassn, coBef.i"tghBeTaGhneRg,uTne.tacWm.)e-.
|
||
1e-mail: sergey.arteha@mtu-net.ru
|
||
|
||
bmithigcienauyetodiauo,rsneesxooncfloeutpthttiesoptnihenceoiitffioaeardlnm,ayntohddfei/ntohe,rreeibnneotquituahnaledteaigoqreynun,acetaorilaonslndoictibasiyosedns,esp.tteehcrIe--f ccibnhoovauaannrgpdiiahannyrgcyseitcchaeoelintcnhdhoeitarnirosadenconsteseeasr.rneoIoffst,pthhedecoeitwseoeerldvmue,tirint,ohenteh,naecnwayinntithitheiivnaseglun,abonrsertds,i/tuuoaltrttrfesoiepqomruenmcaaiotaiinfteoitdntohosnte,srb.waseonFhlisuodifcrtoehinraomtwnnitysiailtelwsisoboelineuno,tibaniiftonvawnyainreicitaaptihnsrseoteppfwioodeirsretslanhyinbtriiylteneistcepteosore,rccrwihetncahvttnieocgnthrsetaowttnmhhisleee-l initial and/or boundary conditions. GHoRwTTe;hveefora,rntahexleoasgmuiebpsslpew,aictahe crsaounlblnesdpoatc
|
||
beaestcaosrhneesoeidtfteerinseducsoseenpdsaidirnaertteehdlye. fsfrohoremectotnihnveteonsipeanaccceye,liainnsdtaeortwhthheoecleyr.elisneFdaorrriccheaexlracmouospruldaei,lnlyiantterroasylnlsistnfeegmrsa,. H
|
||
reuoaewlneschveeorar,ttetsahtlilsdtmihsteaatrnheceaeml. tahtriceae-ldmimanenipsuiolnatailosnpdaoceesannodttihne-
|
||
The simplicity of postulates and their minimum qstsroiheuocloauntuntsltiudioisntnybaa:medd,eibovoiengncnuuoootltntuhespsetrhislopalobrnlgoludeuotm,iafosr.nouaTf,ntheaceqenieeudnnitu,vthameofloenbcrneocrtorehrobeeftocapftoirnntGeehirnsReesgrqTuoahifssacoitntolhuedres--, imeatmratsiahtitocciuaciaslldlmpcpooerstmoshevopsidlsdiescesaowtifitiossdoneoluowptfoniomsnslaaibwatihnsleid)tm.iceToasmthfiocepraaGlcrphRisroTooonc,sei(andtlghuoenrmegmsa,wathhtitahehs-iSanntittnttdriecondeadgruttephocaeesrdunar,beemcjaieenelsctstefaarertsclyo"dt,d(oatfenrnhtoedeemrwammdmiitednhteiarttirtuicoiissconiannaal,glrtetenahnuuesmsnomrkrbenasecoulrolwlmtoanfpmiso\ionnhsuieimGndntdtRpseolT)nyf. really various experimental data.
|
||
Whereas in SRT though an attempt was made to
|
||
|
||
226
|
||
|
||
S.N. Arteha
|
||
|
||
conrm the constancy of light speed experimentally and to prove the equality of intervals theoretically, in GRT eGcvaResenT, stsuhicnehcienattiettegmcraaplntRsdabhedaplveenisdnnooottnbmetehenaenupinnadgtehfurtloaifkneitnnht.eeSggrienancteieoriannl, all integral quantities and integral-involving derivations can have no sense. abclliagcsuAosoivcualaosrl,tiaetonqhfcueenaqtuowiefoshnetasiqo,tunwacsothiucoicalndhussbaeierseuitsnhndeotiotslipgmmeeninutsesiaenrba.gllleItyfraactnnhodsveiatugironieannanemttro?-Wewnheharatgtyisisamnthdeaeintsstendinseenthsoiiftsygcriasasvneiotbatytditoehnenwgerdaoviuenps,GvifReltTohc?eitSnyiomotfiiollaingrlhoytf, (and by the niteness of a signal transmission rate)? on tThheemgeentheroadlitoyf othf eciorndseerrvivaatitoionnla(weisthdeoresbnyomt deaepnesnodf ttadrrniaidenessrtofehofnerttmhureseaesttuihooletfnossirniyfntr)eo.tgmhTreahttcheiaoeosnepbhotoavyfiesnmricinoathtglielooanfswuionsrftfoaetrhgcfereraosclumaqrnufsaalycenmeatdim(tfioteeosresvcoixeautnatsioitmoeenxnrpsp)looe.eff,rmiiTemtnaheecsenrsagetnasysb,,adswmneephdnoeicmhcnehadevihnneoatnu\vGwmetRobh,Treeakenenoodgrfu"cdotlefahnrorerormcflmaeolnweimmtdsueirbotniyifetnsuncg,mouctnmarasuaeennsrrde--stGeinRriuToiut,yshadonowduebvetelsrig,iinbhiaGlsitRynTootf(fytohellteowbpurinoilggtrteuhspse opafrirsnecpciieupntlcaeet)oio.fncTofhnoeritoaethvfsseeetcnhlapfemrricinUneoncraeeiinpvxdyaepotrlehlusryeibinmtaugnniendtnvietGlsalroiRlnmTboaewab:slfr,eeoa.,ertxhbtTcheyerhepeedstxaofpgmuolelboreltobismfwauylielsintnsegtttimsctf,ianc(eclagvtansoicdmluaunoustdnisooeelnnysr oevinrfegct\ythionicrssa.ucnHlaassoreow",mebtveyuetptirme,n)oeonsstolbypmeoleilnianseritamroronicdleoausor,ciretfdydoirnoweafixttteahhsmesuphsnloioenu.tglidToKnhbieelolfiuanusegenx'd--s ittislthhcisaaeelrseeypnssoosm(enntnat-hlactoiehnsceeaoimoslfuizatasahtbinebcioaalsinrlate-mymfcaoeeocnafepsndehesrny\vcespaaricntegairyonplnoeqattuneuvadiunenm
|
||
nttihutieeymnn.poctAehbo,nseilsodeiUf"b, )cniloiincvtuaayerulrslssoeyee,f, utvhesleotopcoirnnegcfueapspetpiofrrnooam\cfhrGeosmR. TNzecorowom,"wpleoertsehtlyoalalunspedassesoitmfhreeormottohgeernrevedrisaee-l comments to more specic issues. GRTThies qfuulelsytiaobnerornantth.e Tchhaengeniotfensepsasceofgtehoemeratrtye ionf tbtdrhuraaatnwtsnimtnohtgiesismnsitotarontahiiongefmhntinailtttiyeinc,reaaelcvdtleoainowensasst.nlcoiWagtnhhetxceshtipshateen,ergdoe,snhwloaynilllllbyrweecpeqahuuayissrseseiecirainttls-,, Tasnhiweteemltl.iamtOhene?em(oaTfthGiceaRslTasmedneesmeisootnfrsudterearftoiviroantthsive\eopsnlactanhneeaninnodetvscipthaaabcniegl)ie.-
|
||
|
||
ticsyonaotsfrtafhocletliocowhna:onifgnleetnohfgetgheroso,tmathteitenrygraictniooothrodefitnnhoaente-leinsnyegrsttthieamolfs,yadscutieermctl"oe tnootitosndlyiamtheetetrruwe,illbbute elovwenert,htehaonbser.veInd fgaecotm, heotrwyevweirl,l norotchcahnagnegea:s wwheemthoevre?thSeumppaotsheematatircsatl, ltihnaetwthilel cmirocvlee will move radially. Let we have three concentric circles of almost the same radius. We place the observers on these circles and number them in the order from the center: 1, 2, 3. Let the second observer be motionless, wOlahrecvrloeelacokscwitiryss.et aaTnnhddentc,hoiuornwdtieonrng-ecsltooacrktehweriosdetaiatietnrgtehnaecreosauinmnderecaleanntgtivueervelocities and contraction of lengths, the observers will interchange their places. However, when they happen tpoicbtueraest.thInedseaemd,e tphoein1t-sotf ospbasecrev,etrhewyilwl islelesetehedifoellroewnting position from the center: 3, 2, 1, whereas the 2-nd observer will see the dierent order: 1, 3, 2, and only the 3-rd observer will see the original picture: 1, 2, 3. So, we have a contradiction. Suppose now, that the geometry of a rotating plane has changed. However, what will be more preferable in such a case: the top or the bottom? The problem is symmetric, in fact; to wmhaakte stihdee ltahset spulapnpeoshitaisonc,urtvheadt itnhesurcahdiuaschasaes?cuIrfvwede (taems t)h,ethaepnpathreenstecmoontdioonbcsehravnegrews iilnl steheeintoans-ninoenr-tciuarlvseyds-, whereas the rst and third observers will consider it as \curved" to dierent sides. Thus, three observers will see dierent pictures at the same point for the same sopbajeccet;ivtheefraecfto.re, the curvature of the radius is not an
|
||
The rotating circle proves the contradictive nature of SRT and GRT ideas. Really, according to the textbooks, the radius, which is perpendicular to the motion, dthoeeisr npolatccehsainrrgees.peTcthievreefoofret,hethme octiirocnle.sLweitllursemseaatinthaet oeabcsherovtehrseronanadmprootidouncleesas cpiorcinlet-alitkeeq
|
||
uaaslhdfirsotamnctehsefcroenmtoleenmr mo,ftohavecinisrgtcrloceik,recisnlewos.rildlOearwlstiohnegboetboesqeturhviedeirsssytatmonmtd.reAatrwtystuohfbesasetqpruoreoknbetspmearriokdpica
|
||
ssaesshebsyeahcimh oabtsetrhveer
|
||
waislhl cionnstarmnt,,tthhaattaisst,rothkee lengths of segments of motionless and rotating circles are equal. When the circles stop, the marks will remain at their places. The number of equidistant marks will not change. Therefore, the lengths of segments will be etiqounaloifnletnhgetmhsoatinodnlechssacnagseeoafsgweeolml.eTtrhyust,oonko cpolancteraactall.
|
||
Now we consider again the space geometry problem. This problem is entirely confused still since the times of Gauss, who wanted to determine the geometry with the help of light beams. The limited nature of any experi-
|
||
|
||
On the Basis for General Relativity Theory
|
||
|
||
227
|
||
|
||
A
|
||
|
||
L
|
||
|
||
B
|
||
|
||
g
|
||
|
||
C
|
||
Figure 1: \Geometry of a triangle"
|
||
|
||
ment can not in
|
||
uence the ideal mathematical notions, does it? Note, that in GRT the light even moves not awlilgRhohendtrgleint=ghseu0cs,hhiswoamretceehastastrevic?peatiTetnhnh:sGeoirnRn.eTscWtee[sah4sd]ia:ttyodfooRFfee(csr1hmd=apinasttggi'i0nsn0gg)pudrtilishnh=ecitpgh0elee-, ometry is often \substantiated" in textbooks as follows: in order the light to \draw" a closed triangle in the gravitational eld, the mirrors should be turned around at some angle; as a result, the sum of angles of a triangle wanildl tdhireeer rfer
|
||
omector.s iHnotwheevere,ldfoorf agnrayvpitoyin(ts-eleikFeigb.od2y) the sum of \angles" can be written as:
|
||
|
||
!
|
||
|
||
!
|
||
|
||
X i = + 4 arctan
|
||
|
||
gL
|
||
2v02
|
||
|
||
2 arctan
|
||
|
||
gL v02
|
||
|
||
:
|
||
|
||
Idvcctlsithiha0egtneap.oyhnectsaSoncgaalufiidmsnnsrosccgsehw,eobatvnetethnahlhltergca.heihitagneaIabetgncnnholoegmgetsnehlupgeddeecaeti,hrtrogaiywmoe\meonbwpemesetlhitarttoaeewyuhftvrsiersotenieyhbfnaelwosenoetp"iadhxmeonepepsadesrenlmioriibLdmiommiifrltisiprrtehtoesonyoemr.rtfstos:NaaatfAoihnmonanettreefatLpon,nisroepdtcaichatnenihacBastdeet-sl are not emphasized. First, both in the experiment with material points, and in the experiment with the light the geometry is \drawn" sequentially during some time, rather than instantaneously. Second, for accelerated systems the particles (and the light) move in vacuum rectilinearly, according to the law of inertia, and, actually, the motion of the boundaries of this accelerated system is imposed on this motion additively. All angtolescoorfreisnpcoidnedninceg (ainngtlehseolfabreo
|
||
reacttoiroyn,syasntdemth)ear\egeeoqmuae-l try of angles" does not change at all. Simply, the gure is obtained unclosed because of motion of the boundaries. Third, the role of the boundaries is not uncovered at all in determining the relations between the lengths
|
||
|
||
oathfreernesautlbhbjeeocdmtieutsot.utFahloerreeelxaeatcimtonpolfeb,ieditefwnaetleilcnpaloleiannctgcstehloesfraaatnrinedaglafbnogorcldeeys, (lrty\eioattnhlhecewhgiabetnohogumetnhesdteaoryrfbi"ebo)suorndaedirmeeasar'siiuesnisbsz.jeuecInttnachktaeaonnpyaglceaccdcae.elseeIorfan,ttlhhyieoonawE,teutvicnhelteried,nreoaaancln--l shtinwtorsoratiaizsgloilhmntatiallpailnrosetilsnroatnc-iagglinhkrtoebdlesisnu.depArpiantowrttnthh..ee FAgmrosairdvaeditxlraeaetsmoiuofplnttlaheol,efteobrledsdntrwdarieowndtgatwhkoeeef ailbneevsrnteodaldlio,lnftgtwthwooefoptulhopoeiwwnsaete-rrclediodk-nceedosnnurdvopsedpxo,oftrlihttnsheeefdoiorsrwtsghnteewnroesaerdracd.ot-eAncdods.narvoTerdxehsaeluintnlttewhoieesf groednseNrdoawetteedwr.meTisnhheaesllmthtiuedrdsnltertaoliignthehteblenintewex.eteinmtphoersteantwt oGbRoTndneodtsspiyyrossonttpee-emmrtt,hyne:tohenaeq-lliungmirevaraotvlvieiaitnnlaicgtteiyoo.onbfIajntelhctcesoegnlddrtear
|
||
vapeisotctsatstteiiosonsnaeianstlytsoonewmlodaner-tdiounanesriosqtmiiunaee-l gimmdleeioravcrleoepnrpstaa,errrata.hlllleIeefnllwmtieonirgreteoahnrcesehraianonttedehrtetdirwairlofeocslrytigsithnthetemnbmiettaephmleyersspleobennebtgdewaitcemiuemnlsaerwt.wtiAlool sndciooimcnnuti-llriaaanrrreyrst,tioitiauntlahtstheyioesdntgeirmrweaci,vltliiitfotatnathkioeoenfmpaalliacrcrceoeellrdesartwaartaieitcohconers.liieemrnAaitltneaiddor,noporeiinrnepnttethhnaee-tesvtiuaaaotrclnuiehodeonoofatdfhlmuelririiger.nlrhdgoAtr(nstsrphdatee,htehiedofe,blrsisotgtehmhhretvaeanebetxeitioahsenmtcee,tnsntwcowhenieiln-lollif,nhbneaoerpawgtmpiiianenelngilttyoyttot)oahcbpeaapengrgmroraaaeelvcasaihot-bnictaoeanttfiobroeuentnaatdlain.kfoetrOnhcebeinsmvtitoouhutceusorlaenyl,secitxdohinesertagctauuilorsrnaovt,atitsohuinnerceooeft,ohmfaelimrorrnfioorgrrrsowc.erissTt,hshwhegohrduaiicvlsdh-tbctoiiobenonsncfecotarliuulvonasnidtoeiolonfdfonroaftnwoismreptahshekoeeimrsgpircewoaasvrilsnoiitsnebayrgittmliiiiotanmynl atesohtlyfresyetegexlfdemcrnsoluemaddrsauinplwrgilcenaalngtls.haete.rThhgoerneaweGvhciRotaalTne-
|
||
The equivalence principle of the gravitational eld albplyynle,eadfiom.oearf.mctdcihuteeel
|
||
liaeseirtncuaeetdtniriortoaeninala,sllocfa(aofinnrotdrelbexgaeaardsarmeeevpdlpiaatlttaeroeat)di.taneTtgfobahmlooesdeaneyserqseousscpniuavallnayttlibfe(aoineltrcpriteisohgipueonrrntlioirngouechnasit---l fsnaoplolrat(cGpbeh-uRtytiTmsfi,ocerasmlialnnyacdleplyraGolmlcRebaTeotdhdieitnemovs)oaa.ltnviyBceasenlcloiaynnut-oserneredllyoae)ftp.itevhAnisidlstle,icnrGectleRhaetTooivfrdiystothaeiecst lotionnlenya,ornsitlnirnaceenasrrfeoparrmlobapoteidrotinieesss c(oaefvnetnhbeeassrperaleacfteee.rdeTntchoeeenpm,oppinhttyesn)soplmeaacede-
|
||
|
||
228
|
||
|
||
S.N. Arteha
|
||
|
||
nstauddiiederfeonrctehsewsiatmh echpaoningtin(ginretfheeresnpcaecesyasntdemtismme)u.stBbuet
|
||
|
||
how can two dierent observers be placed at one point?
|
||
|
||
Therefore, the relativistic approach can possess the ap-
|
||
|
||
proximate model character only (without globality).
|
||
|
||
It is not any surprising thing, that the same physical
|
||
|
||
value - a mass - can participate in dierent phenomena:
|
||
|
||
as a measure of inertia (for any acting forces, includ-
|
||
|
||
ing the gravitational one) and as a graviting mass (for
|
||
|
||
emxaagmnpetleic, aemldso)v.inTghcehqaurgesetipornodounctehsebroigthoroeulescterqicuaalintdy
|
||
|
||
of inertial and gravitating massess is entirely articial,
|
||
|
||
since this equality depends on the choice of a numeri-
|
||
|
||
cal value of expressions
|
||
|
||
the gravitational (laws) retain the
|
||
|
||
csoanmsteanfotrm
|
||
.
|
||
|
||
For example, in the case of
|
||
|
||
psttoraosnpetoarwrtciihollnabanelyitdymemynsgteid=csaasmn
|
||
di0nt=,obcur2te
|
||
att.heeIptgirciastvunirtoeatstinoofencaceulsrscvaoernyd-
|
||
|
||
space. The substitution of the same value (for the in-
|
||
|
||
ertial and gravitating mass) is made not only for GRT,
|
||
|
||
but for the Newton's theory of gravitation as well. It is
|
||
|
||
nothing more than an experimental fact.
|
||
|
||
When one comes to the dependence of a form of
|
||
|
||
equations on space-time properties [7], there exists
|
||
|
||
stohmatewspeeccuanlatcihonanfgoer tthhiiss isdpeaac.eT-thime eimtporecshseiockn itshgeivdeen-
|
||
|
||
pendence claimed. In fact, the Universe is only one
|
||
|
||
(unique). GRT tries to add a complexity of the Uni-
|
||
|
||
verse to any local phenomena, which is not positive
|
||
|
||
for science. The choice of local coordinates is a dier-
|
||
|
||
ent matter (a phenomenon symmetry can simplify the
|
||
|
||
description) and globality is not the case again.
|
||
|
||
The use of non-inertial systems in GRT is contra-
|
||
|
||
dictory intrinsically. Really, in a rotating system rather
|
||
|
||
distant objects will move at velocity greater than light
|
||
|
||
speed; but SRT and GTR assert, that the apparent
|
||
|
||
velocities should be lower, than c. However, the ex-
|
||
|
||
perimental fact is as follows: the photograph of the
|
||
|
||
sky, taken from the rotating Earth, indicates, that the
|
||
|
||
visible solid-state rotation is observed. The use of a ro-
|
||
|
||
tating system does not contradict the classical physics
|
||
|
||
at any distance from the center, whereas in GRT the
|
||
|
||
vinaaludemoisfsigb0l0e
|
||
|
||
component in GRT).
|
||
|
||
becomes
|
||
|
||
negative
|
||
|
||
(but
|
||
|
||
this
|
||
|
||
is
|
||
|
||
The notion of time in GRT is confused beyond the
|
||
|
||
limit as well. What does it mean by the clock syn-
|
||
|
||
chronization, if it is possible only along the unclosed
|
||
|
||
lines? The change of time reference point in moving
|
||
|
||
around a closed path is an obvious contradiction of
|
||
|
||
GRT, since at a great synchronization rate many simi-
|
||
|
||
lar passes-around can be made, and arbitrary aging or
|
||
|
||
rejuvenation can be obtained. For example, considering
|
||
|
||
the vacuum (emptiness) to be rotating (if we ourselves
|
||
|
||
shall move around a circle), we can get various results
|
||
|
||
depending on a mental idea.
|
||
|
||
Using the modied paradox of twins [1], the inde-
|
||
|
||
pendence of time on acceleration can easily be proven.
|
||
|
||
Lfreotmtweaocahstortohnear.utOsn- tahseigtnwailnsof-tahreebaetaacognr,easittudaistteadncaet the middle, these astronauts begin to
|
||
y toward a beacon at the same acceleration. Since in GRT the time depends on the acceleration and the acceleration has relative character, each of the astronauts will believe, that his twin brother is younger than he is. At meeting near the beacon they can exchange photos. However, owing to the problem symmetry, the result is obvious: the time in an accelerated system
|
||
ows at the same rate, as in non-accelerated one. If we suppose the gravitatiniogntaol GeRldTt)o, tbheeneqwueivoabletnatint,otthhaet athcceetleimraetiionnte(ravcaclosrddonot depend on the gravitational eld presence.
|
||
Now we make some remarks concerning the method of synchronization of times by means of a remote periodic source disposed perpendicular to the motion of a body [1]. We begin with inertial systems. The possibility of time synchronization on restricted segments makes it possible to synchronize the time throughout the line of motion. Indeed, if for each segment there exists an arbitrarily remote periodic source sending the foofllpoawsisnegd isnefcoornmdasti(otnh:eittsimneumrebfeerrenNcje, pthoeinqtuiasnntiotty cnojordinated with other sources), then the observers at junctions of segments can compare the time reference point for a source on the left and for a source on the right. Transmitting this information sequentially from the rst observer to the last one, it is possible to establish a single time reference point (the time itself, as it was shown in [1], has absolute sense).
|
||
Apparently, the observed rate of transmission of synchronization signals has no eect on the determination of duration of times: the pulses (for example, light sspechoenredss,owr ipllaretqiucliedsi)s,tawnhtilcyhmllatrhke twhheonluemspbaecreo, fapnadsstehde number of spheres emitted by a source will be equal to the number of spheres, which intersect the receiving observer. (We are not the gods, you see, to be able to introduce the \beginning of times": the time takes aiflrweaedcyonitssidneorrmthael acopuprasreenatndsigenlaaplspesroupnaigfoartmiolny.r)aEtevetno be c = c(r), then, irrespective of the path of light, the number of spheres reached the receiving observer (having a zero velocity component in the source direction) wsoiullrcbee (tshiemspalmy,etahse tshpehneruems bcearnobfespshpearteisalelmy itthtiecdkebnyeda or rareed somewhere). Thus, the full synchronization is possible in the presence of spatial inhomogeneities (of the gravitational eld) as well.
|
||
In physics it is not accepted to take into account the same eect twice. It is clear, that the acceleration and gravitation express some force, that in
|
||
uences various processes. But this will be the general result of the eect of namely the forces. For example, not any load can be withstood by a man, the pendulum clock will not operate under zero gravity, but this does
|
||
|
||
On the Basis for General Relativity Theory
|
||
|
||
229
|
||
|
||
not mean, that the time stopped. Therefore, the rough
|
||
|
||
Hafele-Keating's experiment states the trivial fact, that
|
||
|
||
the gravitation and acceleration somehow in
|
||
uence the
|
||
|
||
processes in a cesium atomic watch, and the high rela-
|
||
|
||
tive accuracy of this watch is fully groundless for a xed
|
||
|
||
sdiitcet.s Btheseid\eesx,pilnatnearptiroenta"tioofntohfetPhiosuenxdp-Rereimbkean'ts ceoxnpterrai--
|
||
|
||
ment with supposition about independence of frequen-
|
||
|
||
cy of emission in \the units of intrinsic atom time" [5]
|
||
|
||
on gravitational eld. Besides, a further uncertainty in
|
||
|
||
GRT must be taken into consideration: there can ex-
|
||
|
||
ist immeasurable rapid eld
|
||
uctuations (with a rate
|
||
|
||
greater than inertness of measuring instruments) even
|
||
|
||
itnwpnyooiltstelshxdibeibeselatpesbentnsfoooednnrizncaoevennreoyongftve,t-avhdtlehueinroeemucwotgefiiahtognhnt:h,<seetiohlndregcenetg>itca.h=anSellueyt0c,i.hmeacetpWthirivenehecueGitspnhRecoeeTwtrreatndiattsociinehaist-l, which can be worn by anybody? Probably, a rotating
|
||
ywheel with a mark (in the absence of friction - on a superconducting suspension), whose axis is directed along the gravitational eld gradient (or along the resultant force) could read out the correct time. At least, no obvious reasons and mechanisms of changing the ro-
|
||
|
||
tation rate are seen in this case. Certainly, for weak
|
||
|
||
gravitation elds such a watch will be less accurate at
|
||
|
||
the modern stage, than cesium one. We hypothesize,
|
||
|
||
that atom decay is anisotropic, and this anisotropy can
|
||
|
||
be interrelated with a direction of the atomic magnetic
|
||
|
||
moment. In this case we can regulate atomic moments
|
||
|
||
and freeze the system. Then, the \frozen clock" will
|
||
|
||
register dierent time depending on its orientation in
|
||
|
||
the gravitational eld.
|
||
|
||
Now we return to synchronizing signals (for simul-
|
||
|
||
taneous measurement of lengths, for example). For a
|
||
|
||
rectilinearly moving, accelerated system it is possible
|
||
|
||
to use the signals from a remote source being perpen-
|
||
|
||
dicular to the line of motion, and for the segment of
|
||
|
||
a circle the source can be at its center. These cases
|
||
|
||
actually cover all non-inertial motions without gravi-
|
||
|
||
tation. (Besides, for the arbitrary planar motion it is
|
||
|
||
possible to make use of a remote periodic source being
|
||
|
||
orenalagpraevrpiteantdioicnuallaretldo othfespphlearniceaolfbmodoiteisonin.)arFboirtrathrye
|
||
|
||
motion along the equipotential surfaces it is possible to
|
||
|
||
use periodic signals issuing from the gravitational eld
|
||
|
||
center.
|
||
|
||
Note, that to prove the inconsistency of SRT and
|
||
|
||
GRT conclusions on the change of lengths and time
|
||
|
||
intervals it is sucient, that the accuracy of ideal mea-
|
||
|
||
surement of these values could principally exceed the
|
||
|
||
vaamlupeleo, ffotrheaesoeucrtceprbeediincgtedatbtyheSRmTidadnled pGeRrpTe.nFdoicruelaxr-
|
||
|
||
to the irsa,diuts
|
||
|
||
line of can be
|
||
|
||
motion we have: decreased not only
|
||
|
||
byt
|
||
|
||
c=hool2s=in(8gRtch)e;gtrheaatt
|
||
|
||
of a light sphere, but also by choosing a small
|
||
|
||
section of motion l. From the SRT formulas on time
|
||
|
||
cthonenittiernaeRcqtuioaannlidtwysepheacviee:d
|
||
|
||
stpe=edl(1v
|
||
|
||
wpe c1hoovs2e=scu2)c=hv
|
||
|
||
.
|
||
l
|
||
|
||
,Ifthfoart
|
||
|
||
l=(8Rc) < (1 p1 v2=c2)=v;
|
||
|
||
(1)
|
||
|
||
be met, then the conclusions of relativistic theories occur to be invalid.
|
||
For the system arbitrarily moving along the radius (drawn from the gravitational eld center) it is possible toonuthsee fpoerrpsyenncdhicrounlaizrattoiotnhealfirneeeoffalmlinotgiopne.riIonditchissoucarcsee Ractsuhaolulyldchbaencgheos(ednueoftosuecqhuvipaoluteen, ttihaaltstphheereelrdoucnandinnogt) apthtoeitnhGti,sRtdToiscwtoahnniccclheu,staihonendspcceoarprnreebnsedpiorcenufdluaitnregdislindfrrtaohwmisnc.(1aT)sehneaersaerwfoterhlele,. For the most important special cases the \universal" SRT and GRT conclusions on the contraction of distances as a property of the space itself are invalid. In the most general case it seems intuitively quite obvious, tthhaatt stuhcehsaignpaolsittoioncoomf ea ppeerrpioednidcicsuoluarrcetocatnhebemfootuinodn,, afuntde tthheatGsRuTchreRsulatns.dTlhefrroemis (n1o) nteoceesxsiistty, awthailclhinrea\apstlapinirngeeacddl"obcyfkrr:aemaalnefyoofrcchreeasfn;ergiteeniscoefalarwenaadlysilnepnoagsntshiabsrlbeshittorouairlndiltyrbooedpueecxre-a system of mutually motionless bodies and the universal time. Thus, the space and time must be Newtonian and independent on the motion of a system.
|
||
Now we pass to mathematical methods of GRT and ttoimceorporlolapreiretsieosfrtehsiusltthineotrhye. fTachte, tghaamteins wGiRthTtthheesappapclei-cthaetioqnuaonftvitaireisataioren nmoetthaodddsitoivcec,urtshetoLboereqnutzesttiroannasbfolre-: mdeapteinodnsoanrethneopna-tchomofminutteagtrivaet,iotnh.eEivnetnegirtailsqnuoatnctlietaiers, how the terminal points can be considered as xed, if tehneced. istances are dierent in dierent frames of refer-
|
||
Because of nonlocalizableness (non-shieldness) of gravitation eld, conditions on innity (because of the mass absence on innity, it is euclideanness) are principally important for the existence of the conservation laws [7] (for systems of the insular type only). The classical approach is more successive and useful (theorberecetttwliyceaetnlloytawanocdotnrpastrnaasncitttii,ocansilnlpyco)e:inttehsneehrlaogsycaalispehdnyeetrsegicryamldimnieeedarencnioncreg(therefore, conditions on innity is groundless).
|
||
Highly doubtful is the procedure of linearization in tthenedginengertaol sfiomrmpl,icsiitnyceisitdeccalnarbede,obnulyt ienvdeinvidtwuaol.tiTmhees are introduced - coordinate and intrinsic ones. The tting to the well-known or intuitive (classically) result is often made. So, for motion of Mercury's perihelion [5] the du=d' derivative can have two signs. Which
|
||
|
||
230
|
||
|
||
S.N. Arteha
|
||
|
||
otthhf eitshfaqecmuta,nstthhiotayutldtchabenedbicevhiodzseinernog.?byCTaodlucs=uadyla'tailnirsgepatdehryefonrpometrheidhin,eglbiouontf displacement in GRT (from the rigorous solution for a single attractive point), the impression is given that we know astronomical masses exactly. If we use GRT as a correction to Newton's theory, the situation is in fact opposite: there exists a problem knowing visible planet motions to reestablish the exact planet masses (to substitute the latters and to check GRT thereafter). Imagine the circular planet orbit. It is obvious in this cbaeseta, ktehnatwtithhe rNegeawrtdontoiaannriontvaitsiiobnlepperreicoedsswioinll, ai.ler.eatdhye period will be renormalized. Therefore, renormalized masses are already included in Newton's gravitation theory. Since the GRT-corrections are much less than the perturbation planet actions and the in
|
||
uence of a non-sphericity, the reestablishment of exact masses can essentially change the description of a picture of the motion for this complex many-body problem (see other objections [2]). No such detailed analysis was carried out. The complexity of spatial-temporal links is stated, but eventually one passes for a very long time to customary mathematical coordinates; otherwise there is nothing to compare the results with. For what was there a scrambling?
|
||
The prototype of the \black hole" in Laplac's solution, where the light, moving parallel to the surface, begins to move over a circle like the articial satellite of the Earth, diers from the GRT ideas. Nothing prohibits the light with a rather high energy to escape the body in the direction perpendicular to its surface. There is no doubt, that such beams will exist (both by internal and external reasons): for example, the beams falling from outside will be able to accumulate energy, in accordance with the energy conservation l\aTwh,eabnldactko hleoalvese"suinchGaRT\bilsacak rheoalle"mayfstteicrisrme
|
||
.ecItfinwge. take a long rod, then at motion its mass will increase and the size will decrease (according to SRT). What will happen? Is \the black hole" generated? All the sky will become lled with \black holes," if we shall mbeovirerervaeprisdilbylee.nough. And, you see, this process would
|
||
The presence of singularities or multiple connection of the solution implies, that, as a minimum, the solution is inapplicable in these regions. Such a situation takes place with the change of the space - time signature for the \black hole" in the Schwarzschild solution, and it is not necessary to search any articial philosophical sense in this situation. The singuliarity in the Schwarzschild smoalutthieomnaftoircarl m=anrigpuclaantinoonts:betheeliamdidniatitoend obfy tphuereinlynity with the other sign at this point is the articial game with the innities, but such a procedure requires the physical basis. (You see, the singularity at zero is not eliminated by articial addition of exp ( r)=r,
|
||
|
||
where is a large quantity). Even from GRT follows the impossibility of observa-
|
||
tmioantioofn\wbillalcbkehionlens"it:etfhoer tuismaesorfem\tohteebolbascekrvheorlse."Afonrdsince the collapse cannot be completed, the solutions, which consider all things as though they have already hbnyaoptipn\eannneidtee,xtthrieammveeefneoxoraismnetnpeslreen.aolf Tathnhede reseexlpateatrirvnaiattilyoonobfsotefhrveeevtreisnmtises course," but the elementary manifestation of the inconsistency of Schwarzschild's solution. The same fact follows from \the incompleteness" of systems of solutions. It is not clear, what will happen with the charge conservation law, if a greater quantity of charges of the same sign will enter \the black hole"? The mystical d\tehsceribpltaicokn hoof l\em" eitsriicnavlatliidd,alsifnocrceesit" w[6o]ualtdampperaona,chthinagt tohfeagbraovdiyt,atbiount faolrlcGe RgrTadiideenatsisargerebaatswedithoinntthhee olipmpiot-s site assumptions. The Kerr metric in the presence of rGoRtaTti:oint gailvsoescilneaarlystdriecmt omnastthraetmesattihcealinmcaonnnsiesrtesnecvyeroafl physically unreal solutions (the same operations, as for Schwarzschild's metric, do not save the situation).
|
||
GRT contains a lot of doubtful prerequisites and results. List some of them. For example, the requirement of gravitational eld weakness for low velocities is doubtful: if the spacecraft is landed on a massive planet, whether it can not stand or slowly move? Whether some molecules with low velocities cannot be found in sopf iateceonfttreamllypesryamtumreet
|
||
riucctueladtiionnsG?RTThheasconnostidpehryastiicoanl sneontseonalsywreoltl:atsiionncse,tbhuetveelvoecnityrecaalntebme poenrlaytruardeiaclh,atrhaecntaerciasvtiictsy cisannontootbetaxiinsted(i.ien. a Tsin=gle0mKa)n.neTr,hebute,ldsiminply, two various constants are postulated in order to avoid singularities. The emission of gravitation waves finortahepainrabnoitliec lmosostioofne(nweirtghyeaccnedntarnicgiutylare m=o1m) ernestuulmts, which obviously contradicts the experimental data. In fraoctta,tiGonRsT, ci.aen. bienatphpeliseadmoenlryefgoiornw,eaaks theledsNaenwdtowneiaank ttwheeoernymoofvgirnagvicthaatriognes. dRieecrasllfrtohmat tthhee sitnatteircacCtoiounlobmeblaanw.lawThoefregfroarve,itaptriioonr,toit amppulsytinbge tvheeristeadticforNemwotvoinnigbodies, but this is a prerogative of the experiment.
|
||
The theories of evolution of the Universe will remain the hypotheses for ever, because none of assumptions (even on the isotropy and homogeneity) can be veribeedc:at\cahemd ouvpinognltyraaitn,thwehoitchherdepplaacrteeadndlonagt tahgeoo, tchaenr time." GRT assigns to itself the resolution of a series of paradoxes (gravitational, photometric, etc.). However, the classical physics has also described the possibilities of resolution of similar paradoxes (for example, by
|
||
|
||
On the Basis for General Relativity Theory
|
||
|
||
231
|
||
|
||
means of Charlier's structures, etc.). Apparently, the direction, points of application etc.). \The reference
|
||
|
||
Universe is not a spread medium, and we do not know points" are actually specied, with respect to which
|
||
|
||
at all its structure as a whole to assert the possibility the subsequent changes of quantities (position, veloc-
|
||
|
||
of realization of conditions for similar paradoxes (more ity, acceleration etc.) are investigated. The principal
|
||
|
||
probably, the opposite situation is true). For example, relativity of all quantities in GRT contradicts the ex-
|
||
|
||
the Olbers paradox can easily be understood on the ba- periments. The subsequent articial attempt to derive
|
||
|
||
sis of the analogy with the ocean: the light is absorbed, accelerations (or rotations) with respect to the local
|
||
|
||
scattered and re
|
||
ected by portions, and the light sim- geodesic inertial Lorentzian system - this is simply the
|
||
|
||
ply ceases to penetrate to a particular depth. Certainly, tting to only workable and experimentally veried co-
|
||
|
||
such \a depth" is huge for the rareed Universe. How- ordinates of the absolute space (GRT does not contain
|
||
|
||
ever, the
|
||
ashing stars represent rather compact objects any similar things organically [7]).
|
||
|
||
sopnalycead antigterenautmdibsetranocfesstfarrosmmeaakcehaotchoenrt.riAbustaiornesiunltto, andTahbesoMluatcehnaptruinreciopflethoef ascticpeulelraattioionnodfuaentointehret imn
|
||
auss-
|
||
|
||
the light intensity of the night sky. The expanding of the Universe gives a red shift ac-
|
||
|
||
etrnicnesiocfpfarorpsetartrisesisoaflosonedobuobdtyfuvli,astinhceepirtoepxeprtlaieisnsofthoethiner-
|
||
|
||
cording to the Doppler eect irrespective of GRT. Be- bodies. Of course, the idea is elegant in itself. If ev-
|
||
|
||
sides, it should be taken into consideration, that even erything in the world is supposed to be interdependent
|
||
|
||
the elementary scattering will make contribution in- and some ideal complete equation of state is believed to
|
||
|
||
to the red shift and lling of the so-called relic radi- exist, then any property of bodies should be determined
|
||
|
||
abt0eie>onn:w0re.elclTaplhlreetdhshiacittfettdhofeelvCineonemsbipnytotmnheeecghreaacnvtiisgttaiivtceiosmnwaoladveelessldfwrhoitamhs betovyebtrh,eeiinninds
|
||
iuvuciehdnucaaelco.afsTtehhaeisnwywhapoyaleritsriecfmlaeualsitnhyionufgoldrUsbncieiveencrocsene,s.iwdHehoriwecdh-
|
||
|
||
the general energy considerations.
|
||
|
||
progresses from smaller knowledge to greater, since \it
|
||
|
||
Now we pass to the following principal issue. Whether is impossible to grasp the immense." Actually, if we
|
||
|
||
pofostihtievemisattthere fcaacntn,otthabtethspeecdiisterdibaurtbioitnraarnildy?moAtinodn t(ainkecoinmtopaacctcooubnjetctths)e annodn-duinieforermnt dviaslturiebsuotfioanttorfacmtiaosns
|
||
|
||
whether is it correct? Generally, this implies the incon- forces from close and far objects, then the complete
|
||
|
||
sistency of the theory, because there exist other forces, \tugging" would be obtained instead of uniform rota-
|
||
|
||
except gravitational ones, which are also capable to tion or uniform inertial motion of an object.
|
||
|
||
ttrhaisnsmpoesaenst,hethmatatwteer.shForuoldm stpheecipfyraactllicadlistvriiebwuptiooinnts bothThreemMovaaclhopf railnlcbipoldeiecsafnrnoomt tbhee vUenriiveerdseinanedssteenncde-:
|
||
|
||
in \the correct-for-GRT" manner even at the initial ing of the gravitation constant to zero are the abstrac-
|
||
|
||
ttiom\etihnesttainmt.e Ionf scurcehataiocna,"se dwide swheo?uldArnefderwth0aitnsptrainnt-
|
||
|
||
tions having nothing in common with the reality. However, it is possible to estimate the in
|
||
uence of \far
|
||
|
||
ciples should be unambiguously determinate for such stars" experimentally by considering the mass of the
|
||
|
||
aexpcheocticeed? froTmhisGrReTqu.irOespemn otroe qkuneoswtiloendgoe,cctuhrasntoitbies UThneiveforsreceaosf matatirnalcyticoonnocefnatrsattaerdhianvicnogmapamcatsosbojfectthse.
|
||
|
||
the possibility of point-like description and the theory of disturbances, because the resulting values cannot
|
||
|
||
odrisdtearnocfetohfe1Sluignh'stmyeaasrs ((M91201150m30),kgis),ebqueiinvgalaenttthtoe
|
||
|
||
bkopfneoosmaswirabnbciilrteiortq-yauraaoyntfidaoasnrmbwoiitecfrlrslao.tr-aylTteevhetielmtsijnpbogilyniseilsn(infgaokrraotigfeexacaiaamcnlodpmcloerpme,l
|
||
etpethlecielctysatteutimohnne-- ttothhifmeetheadecifstodtiraoonnuthcboeetffoaUuflnl1oBiavmidegrehsBteeaarvtn.iongWgbteheaesmeohqraauylslasalmnotfadokosenhluaysl2lem,co01fon0r1s0iad2we5yrehgatirhlaeset.,
|
||
|
||
perature dependence is rejected). The possibility of Even if the stars
|
||
y away with light speed, we would
|
||
|
||
adding the cosmological constant into Einstein's equa- have the size of the Universe equal to 2 1010 light
|
||
|
||
teiqounastiiosnasnaninddiorfecptosrseicbolgenoituiotrnagoef. amIfbeivgeuriytythoinfgGcRaTn bspeescpifeyciineadrbtoitrsaurcyhmaannancecrutrhaecyi,nitthiaenl dwishtryibcuatninonotawnde
|
||
|
||
years. We have deliberately increased all quantities; for example, the mass of the Universe and its density 1033=1054 10 21 g=cm3. We take into account now, that, as the bodies move away from each other
|
||
|
||
the motion of a matter?
|
||
|
||
at the two-fold distance, the force decreases four-fold,
|
||
|
||
Let us discuss one more principal point concerning etc. Even if we suppose the mean distance between
|
||
|
||
the relativity of all quantities in GRT. The laws, written the stars to be 1 light year, then at the distance of 1
|
||
|
||
ssiemlvpesly. aTshtehseoeluqtuiaotnioonfs,andyetperrmobilneemnsottihllinrgeqbuyiretshetmheknowledge of specic things, such as the characteristics
|
||
|
||
meter it is necessary to place the mass 2251021=06)<of5M0 g0.In25fa(1ct+, c1o=e4+ci1e=n9t+2=6)
|
||
|
||
=e(wx2pe5rsePussme1s=usnpo2mtoe
|
||
|
||
of a body (mass, shape etc.), the initial and/or bound- eective increase of the density at the observation line.
|
||
|
||
ary conditions, the characteristics of forces (magnitude, To simulate the action of \the whole Universe" we can
|
||
|
||
232
|
||
|
||
S.N. Arteha
|
||
|
||
1 r
|
||
|
||
R2
|
||
|
||
R’2
|
||
|
||
1
|
||
|
||
R3
|
||
|
||
R’3
|
||
|
||
2
|
||
|
||
Figure 2: The Mach principle and in
|
||
uence of the Universe
|
||
|
||
take a thick metal sphere with outer radius of 1 meter and make its thickness varying in the direction to the center. ffruormtLheettrh,etuhcpeentwotiedr1thumpoetfteoar,0s-:o4tlihdme esmptehertesarelt.hbeTrehee0in:s6aamcnyeicltihenreds,,raiicn.aed.l column of radius 0:35 cm will correspond to mass Mtak0eaitntdoenascictoyunoft the8:i3n
|
||
gu=ecnmce3.ofInstarersaliinty,awceonseh,obuuldt not only in a cylinder. Though we also have a spherical metal cone, nevertheless, we shall estimate the orders of magnitudes. We shall break a cone into cylindrical layers, which arise as the new layers of stars are involved into consideration (Fig. 2). Each new layer will be greater, than a preceding layer, by 6 stars. The distances from the center to the nearest boundary of each lgTalhyesee:rreoRfofirs=et1,ar=tshcie=arnc.obrTerehfcoetunionnwdeftrohoamavetmhRea0isss=im(p wilaeir2is(tu1ym+ofrut2rp)ia=tnro-. 2 1010) will be found as
|
||
|
||
m0(1
|
||
|
||
+
|
||
|
||
1 4
|
||
|
||
+
|
||
|
||
|
||
)1
|
||
|
||
+
|
||
|
||
X
|
||
i
|
||
|
||
6
|
||
R02i
|
||
|
||
|
||
|
||
<
|
||
|
||
|
||
M0 1
|
||
|
||
+
|
||
|
||
6r2
|
||
|
||
X
|
||
i
|
||
|
||
1
|
||
i
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
M0 1 + 6 10 5 log(2 1010) M0(1 + 0:02):
|
||
|
||
Tavdhceiohvcrwuseoeersuvg,nieeostr,ui,a\nrcntcohdnonenitttrshewat,erhdutcoihccolettenisnosUtbntrnhouitiescvhtqeoiruoGbsniteRta.ew"TinsiuelalCdnbedhceriatteiarhnnmietandolfmyone,rqiocuitdfaaseekttrrehniin.eeigsTdUiewhnanitissilo-.,l spgpluohmbLeurpeeltee.dsnTcooaowuntapbvflreoaoicimdseotltthahheteeecdgsotlflorlraubotcmuetlrueatsrhleeoenasnpeadcht,essr,pienrtibhnayegddaaiinittrsihoicidnnae,nvttebhhseeestpeoela.trh,eNaMonwda,cthihfepwrgienlocsbippuillnee,sutwpheiltlchemenotsrvpiehfueagrpeaa,lrfttohroecfne,esahacochcuolodrtdhaienprg-.
|
||
|
||
In this case the centrifugal force must be the same, as though the globules themselves would rotate. It seems quite obvious, that this is impossible, since such an effect would be noticed still long ago. Thus, we return to absolute notions of acceleration, mass, space and time dpeerinmedentstcilolubldyaNppeweatronto. bHeouwseefvuelr,fotrhdeetdeersmcriinbiendg tehxecorrections to the static Newton's law of gravitation. In this case the globules should have sucient freedom to move and to rotate, since the direction of action of correcting forces and moments of forces is unknown a priori.
|
||
The gravitational constant is not a mathematical constant at all, but it can undergo some variations [9]. Therefore, this value can account corrections to Newton's static law of gravitation (for example, these in
|
||
pulaecnecmesendtoofntohtetpakereinheilniotno ocfonthsiedeMraetricounryf)o.r Gtheenedraisl-ly speaking, the theory of short range for gravitation cthoeulgdrabveituasteifounl t(rbauntsmitiscsainonbreanteo)tfuosretfhuel denpiteennduinmgboenr o(tfhceassaesmoenolryd:efro)rbtohdeiersacpliodse(vto!eacch) motohteiro.nTohfemaaustshivoer does not know such practical examples.
|
||
The GRT approach to gravitation is unique: to be shut in the lift (to take pleasure from the fall) and to be not aware that the end (hurt oneself) will be after a moment. Of course, the real state is quite dierent one: we see always where and how we move relative to the attractive centre (contrary to Taylor and Wheeler, it is the second \particle," together with the rst \parttihcelep"u|re gweiothmethtreicoabpseprrvoearc)h. iTshaatteims pthoerarlezaisgoznagthfaotr physics (although it could ever be useful as a auxiliary technique). And two travelers from the parable [10] have need for \very little": for the wish to move from the equator just along meridians (on the spheric earth surface), but the rest of ve billion mans can not have such the wish. Contrary to traveler's wish, the wish \to do not attract to the Earth (or the Sun) and to
|
||
y away to space" is inadequate. The notion force (the force of gravity in this case) re
|
||
ects this fact. Geometry cannot ailttntnyhhhna,teeestewrwurpgeraherhecryray,etvstiataoiiohlntcnieaazdtsrtelheimeo(eteexhnaxxfieaonsiplstlyseltpforioolnwieortmcchicinneeaeagnrlcittsmqquvauuprala)eeelrsu,sossptteepwriissooeo,hrnonrycotfsshig:.optaanhhThrtagyeiohvlresweeeisjcs.,ueamepslxptaaicrrsntoottoynibcstlltrtheey2amespn,,yestwwssoahhnironyye-f
|
||
3. Conclusions
|
||
The paper is devoted to the GRT criticism. A set of spatnhrcaikes,iinzbegadsd,eobluienbgetinfpunhliynpsgoiciwnatlitsnhforgtoiemonnetsrh,aeal ncGodRncTneiptsethxsitnobgfotwohkietshciosmveaomrrie--
|
||
|
||
On the Basis for General Relativity Theory
|
||
|
||
233
|
||
|
||
saTphreeocitgarctoinougnnedcslo.eosTsrndheienssaptraeonosdfysiontfecmtohnesiisgsteceoanmrcryeietdroyfoitunhtveairpniraidnneccteiapiilnle. ooiasffnddeteqhsmueimiovnnuaoslltettiarnoancnteeeoodiufn.stTGimmhReeeaTsmauinserdetdhmiiostedcsnustssyosonfefdctlhei.mnrTogenthhsiezysaniatncirhcoeornoinnnsidniiszitcaGeatntRioceTydn fsaaoprrrieaetcsehemiesgpmeaohlosmaossteidztiiernsydtceuirbssesodsettedhimnigfnoonsrtpshtteerhcapeiataelmpdceeaarts.nhedoTs.dhtsTheehadnerooduilnbefvtooafrufrilbnapuonoumciennedotrs-fooeprufrisG\ncbcRoilpaTrolceklclaoahnrrooidellseliasto,sr"fipeGsooRsfasrTSiebc.lhceTowvhnaeesrriziidnsecccrhaoeitndlidsoii'nsnstaesdnroeecltuyaatiliolso.ofntTdhaihesnecnduMosotsaietocdhnh.nteisemtcaeTebshsaliinesthydueloodtffimbcraoeastntiuessrt.cnrouinncgtcilnutgosiotchnlaeossgfirctahavleintpaoattpiioeonrnscthoonefossirspytasocinenatthnhides
|
||
|
||
References
|
||
|
||
[1] Sor.Ny,."Atortbeheap,u\bOlinshtehde iBnaGsisalfioleraSnpEecleiacltrRodeylantaivmitiycsT. he-
|
||
|
||
[2] S.N. Arteha, \On Frequency-Dependent Light Speed," to be published in Galilean Electrodynamics.
|
||
|
||
[3] S.N. Arteha, \On Relativistic Kinematic Notions," to be published in Galilean Electrodynamics.
|
||
|
||
[4] Lof.DF.ieLldasn,d"aNuaaunkda,EM.Mos.cLoiwfs,h1it9z8,8\(TinheRculasssisaicna)l. Theory
|
||
|
||
[5] P.G. Bergmann, \Introduction to the Theory of RelaRtuivsistiya,n").Inostrannaya Literatura, Moscow, 1947 (in
|
||
|
||
[6] EM.osSccohwm,u1t9z8e1r,(i\nRReluastsiivaint)a.tstheorie - Aktuell," Mir,
|
||
|
||
[7] V. Fock, \The Theory of Space, Time and Gravitation," Pergamon Press, London, 1959.
|
||
|
||
[8] Ary.Aof. LGorgauvintoavti,oMn,."AN. Maueksatv, iMrisohsvciolwi,,\1R9e8l9at(iivnisRtiucsTsihaeno)-.
|
||
|
||
[9] V.P. Ismailov, O.V. Karagios, A.G. Parkhanov, \The
|
||
|
||
Investigation of variations of experimental data for the
|
||
|
||
gravitational constant," 1/2, 20{26 (1999).
|
||
|
||
Physical
|
||
|
||
Thought
|
||
|
||
of
|
||
|
||
Russia
|
||
|
||
[10] EW.F.H.. FTraeyelmora,n Ja.nAd. CWomhpeealneyr,, Sa\nSpFarcaentcimisceo,P1h9y6s6i.cs,"
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 234{234 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
ANOMALIES IN MOVEMENT OF \PIONEER 10/11"
|
||
|
||
AND THEIR EXPLANATION
|
||
N.A. Zhuck1
|
||
Research and Technological Institute of Transcription, Translation and Replication, JSC Box 589, 3 Kolomenskaya St., Kharkov 61166, Ukraine
|
||
|
||
August 17, 2002
|
||
The author has oered the version of an explanation of anomalies of the Pioneer 10/11 motion on the basis of the Universe gravitational viscosity.
|
||
|
||
Pioneer 10 was launched on 2 March 1972 and it functions till now.
|
||
Pioneer 10 distance from Sun: 80.68 AU Speed relative to the Sun: 12.24 km/sec (27,380 mph) Distance from Earth: 12.21 billion kilometers (7.59 billion miles) Round-trip Light Time: 22 hours 38 minutes
|
||
Launched on 5 April 1973, Pioneer 11 followed its swishteenr tshheipl.asIttstramnissmsioisnsioenndferdomonth3e0spSaecpetcermafbterwa1s99re5-, ceived.
|
||
Pioneer 10/11 have anomalies in the motion. A discussion of this phenomenon appears in the 4 October 1999 issue of Newsweek magazine. The mystery of the tiny unexplained acceleration towards the Sun in the motion of the Pioneer 10, Pioneer 11 and Ulysses spacecraft remains unexplained.
|
||
A team of planetary scientists and physicists led by John Anderson has identied a tiny unexplained accele1lt(dohr00euae:t,7tsaAiaP6ioalciencv1codcae0netlraeleoieeer1nwrart0aayatlmt1iryiood1os/nfs,ensspewta|ochones2fedsfairieSbnabUeuldolrelniueyfocrptsiaosodn1umera0sstttehEba[ss1eipa]flw)alrrmioteco|hrmeone'ctsrwtictaoighoamfnrntsea.esoivssdifpdiesTtaetmnarhchtteeaeeiidcolrlnPeaeiadannrifoltcoatn.lpmhfuetuadeeanlrr--l ing: perturbations from the gravitational attraction of planets and smaller bodies in the Solar system; radiation pressure, the tiny transfer of momentum when photons impact the spacecraft; general relativity; interactions between the Solar wind and the spacecraft; possible corruption to the radio Doppler data; wobbles and other changes in Earth's rotation; outgassing or thermal radiation from the spacecraft; and the possible in
|
||
uence of non-ordinary or dark matter. mosAt fptelaruesixbhlae,utshtienrgestehaerchliesrts oefxaemxpinlaendaptioosnssibdleeemmoeddication to the force of gravity as explained by New-
|
||
1e-mail: zhuck@ttr.com.ua
|
||
|
||
tftoohrnec'Hesn.oleawwwevfwoeirrtmihnut1lha9e8oS4futnahebfreaeiunetghmothroetoifdotonhmiosifnwaaonrmtkgahrtaaevsriidatealdtbiuoocndeadyl instead of the Newton's rst law [2]
|
||
|
||
d2X dt2
|
||
|
||
+
|
||
|
||
H
|
||
|
||
dX dt
|
||
|
||
=
|
||
|
||
0;
|
||
|
||
(1)
|
||
|
||
where the label is entered
|
||
|
||
H = r4G3 0 ;
|
||
|
||
(2)
|
||
|
||
wevooreffhrepisncheehe;lydrscXgsio.cyrarTialesthssapeeanocHsmnoeduoos(brthdbitoeiolnrneeatchotoefen0)mH.situaIsattbnmebntrleoieaidwslciavborleneord
|
||
sdyteeianecsnstsmsitat,ayanbldloudaftiasntthshdiaspepseaUrqoteuitnaohaidn--l approximately 10 18 1/sec.
|
||
Medial density of a substance is equal approximately 4 10 21 kg/m3 in region of Solar system (one star per 10 cubic kiloparsecs). Then the Hubble parameter will be equal 1:1 10 15 1/sec. And the acceleration of Pioneer 10 equal ( 1:3) 10 11 m/sec2 for the present time. Earlier acceleration was more.
|
||
Thus, the gravitational viscosity is the most probablelaesrtegarsaovnitoaftmionoatilovnisacnoosmityalsyhoofultdhebPe isotnuedeired1.0/11. At
|
||
|
||
References
|
||
|
||
[1] N.I. Kolosnitsyn. \Relativistic orbit form and anomalIinetserinna\tPioinoanleeCro1n0f/er1e1n"cedy\nTahmeoicrse.t"icAalbastnrdacetxspoefri1m1e-tnhtal problems of General Relativity and gravitation," 2002, pp. 68-69.
|
||
[2] Nv7a1.t{Au7.r7eZ(ho2uf0c0tk0h.)e.\UhGtntripavv:e/irt/sasetp.i"aocnSeptviamicseceot.insmiatreyo&da.nrSudu.bgsetaotnectei,c1c,u2r-,
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 235{237 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
AGAIN ON THE GUALA-VALVERDE HOMOPOLAR-INDUCTION
|
||
EXPERIMENTS
|
||
Ricardo Achilles1
|
||
Con
|
||
uencia Tech University, Rosas y Soufal - P. Huincul Neuquen, ARG Q8318EFG
|
||
|
||
Received December 21, 2002
|
||
|
||
GaApupfatlleiacra-Vibnaldelvetpeorednmedeaenctthainrlee[psAepftoietuiironondne,odf8o,thn4e1thr(ea2ct0e0np1tr)liy]ncsroiepmpleoe.rtceoTdnhsbeidsreeearcakot-tinohsnridsoeuargarhetioednxrspawearnrimeoebnnattsahetdeiotnoonroqntuhehe-op\mraoocdptuiooclntai-roantin-amd-udecicsthtiaoannnicsbem"y Ampre-Weber-Assis rationale.
|
||
1. Introduction
|
||
|
||
TstmBhisoiooh-almlvnegoienorcnlGeaepdgsttoutret[lsaehd1avlue]ra,e-ip-ormn[Vo2slidnao]to,tlhnctv[oe3ho.er]ner,Tsdeuis[xehn4ninp]egd,(geurGm[ruul5ial-mm]oarVspirett)irknytosnyt:atvsorniiiwndwdkotinhicnrnccoigalgoudesawrufsehtolcahooerwtcekdmuaheiroflren,respnesaooehsn-fltuoathtcorurhetc-nieernriposafdGsrtonoaur-gbitmcVneeeprobe denotes the presence of forces in correspondence with the eld reversion observed in that region, the statmioanganreyt csiinrcguuilta-rciltoys.inIgt bweihreavreesmaasinifs tihnesreenswiteirvee ntoo stihnegularity at all! This experimental fact enabled G-V to locate the seat of electromotive and ponderomotive actions in homopolar machines [1] conrming besides the symmetry of both, generator and motor congurations. The aforementioned, quiet a trivial fact for ordinary
|
||
alumx-ovsatrtywinogcemnatuchriiensesin, wthaes haomraothpeorlaorbdsecvuirceesi'sscuaese.for
|
||
Energy conversion by a machine is made possible by the relative motion of two of its constitutive parts; in the specic case of electrical machines these two parts are an active conductor -the probe or the closing wire in G-V's nomenclature- and a magnet (or a second active cmoangdnuecttowri)l.l nAonyloenlgeecrtrpiclaayl-cainrcaucittivpearetnaenrgcyh-ocroendvteorstiohne role; it will be just a current-path closing means. The remaining electrical circuit -with motion relative to the magnet enabled- takes over energy conversion (mechanical to electrical for a generator or vice versa for a motor). Fig. 1 sketches a homopolar motor where a centripetal direct current is applied to the probe attached tinottehraecutipownairndtBhi-scealdsefaccaenobfeasdpilsikt imnatgwnoet[.1]T, h[6e]:main
|
||
1e-mail: achilles@ieee.org
|
||
|
||
Fcloigsuinrge w1i:reTorques on the homopolar-motor magnet and colpopc|okswitiMseeattogornrqequtu-epeoroonnbteht:heemTpharegonbmeet,a.tghneetpreoxbeertasnaeqcuoualntbeurtweqiuse|altboMurqatugoenpepot-oncsliotthseientogcrlwqousiriene:gonTwhtihereem,mathaggnenectelteo.xsienrtgs waicrleocaknrmseioleancTth.ihavOenenipsmmrtohobetaiemocnoaontnttaagrncadhbryeo,dtthhttheopeaatchrclttoesisomiinnna-ghrgeiwnbaeiicrtttesido-eonwneeisctrhangnyoectleecplcoletanrrtvimiceoarin-tl ccttoeoornlltteihnicnettueormirtaycraitgniwnogienstt-hisepnttohahsebseelimspnsregaosibnerenereelaarsgtpttiyovaneicnsomiebndlvoeetvirfoisoanironttwhh.ieethTombhreesiserscprlvueaerctdytmtinhgaegdcnureasttg-opgmleudas-rbpyyroatbbheseolrpuorttoiasbtteioa[nr1g.],umtIhreeonntmicoaafgllntyhe,te aimsndathgeangedtaribangest--
|
||
|
||
236
|
||
|
||
Ricardo Achilles
|
||
|
||
Figure 2: Ampre-law current elements
|
||
|
||
gcdscuiunrreigrbeteanodgt)emintitsne.tcnehTreahagnceliitsgaimoidbnd.leiwtiaeosneadclitscmlionissisnceogdmwipniraetrh-ipseoronGb-teVo(catunhraerleydnseti-siptshrtoissdAciussacsmtuaienoenhaIelEmroeEne.gEchaamsnkieismnmgb. emrI,ealmoanstitnmhteeonnhdtoihnmsgosptooomlaaenr sstwpoeerrqciuaoeln--
|
||
|
||
2. AElmecptrreodvyenrsaumsiScstandard
|
||
|
||
Ampre force law [7], [8], draws the expression for the magnitude of the mechanical forces applied on two curr2e)natse:lements Idl, I'dl' separated a distance r (see Fig.
|
||
|
||
d2F = (o=4)(I I0=r2)[(2(dl dl0)
|
||
|
||
3(r dl)(r dl0)=r2]:
|
||
|
||
(1)
|
||
|
||
This formulation supplies a quite suitable tool to
|
||
|
||
bfoertcteesr oubnedyerNsteawntdont'hsethhoirmdolpawolabreipnhgenitosmdeirneac:titohnecdo2inF-
|
||
|
||
cttAtcTsaihhiaodhmnneoneewcAphn)beenrstoeoqebamcuiidletnceitoewvuqwipFasruineostliieegwhlevafnn.daoerttll3r-thaelcmh,ensaukeitornanoprtcnomeoocucwenyrsoraitrlnnoutige,injfInnnvu'daitteenfohrtoceimf(ierctzlnsmeaiiaseuonmleggcnggBanahemzntwe-cyiattuveimstencemr.hlri)tudleRdaitarnny2chedtdacFpasebesrlueniemcc[l,nt9suamriit]alrnoi,hpgromngeene[dn1t(atimetata0hglult]eeans.tddhgcerdeontea.biInlcesilnys-t--.
|
||
|
||
dquuactnitointactuivrerecnotnIsicdierrcautliaotninsgbtahsreodugohn
|
||
|
||
the probe. A equation (1)
|
||
|
||
few can
|
||
|
||
be applied to the above described conguration to un-
|
||
|
||
derstand the homopolar torque-production mechanism:
|
||
|
||
tthhee mAamgpnreetifco-srhmeulllacutirornendteepleenmdeenntcseloocnat(e1d/rm2o)redcelonsees-
|
||
|
||
ly to the probe as the ones producing the main inter-
|
||
|
||
aeIfdfoodlclerr'ltmccilo(eeoessncend.awet2tsLiFeFlIled'i'tgi2dna.lu)cb'slw3ouac)vnid:oledeln,a(asabinipndeppelatroerthoawtbetrr)haegoectencthnaoieocentnthrdpiaeourlfonocmcbtraoiceaosefgneentd-lwiecen2mutodF-rseirs'hcneu1aentc(ltthlrededeelcp.llueeuinmmrSlrsuetieeohcnnnnhettt
|
||
|
||
Figure 3: Magnetizing shell-probe Ampre interaction in the
|
||
uniform eld motor
|
||
|
||
gure, radial and azymuthal components acting on the
|
||
|
||
bulk of the magnet. These latter components are the
|
||
|
||
main responsibles for the observed clockwise rotation.
|
||
|
||
This dominant interaction can be eliminated simply by
|
||
|
||
attaching the probe to the magnet. In such case, the
|
||
|
||
only interaction left is the counterclockwise torque ap-
|
||
|
||
plied on the magnet by the closing-wire current.
|
||
|
||
Standard Electrodynamics (SE) considerations based
|
||
|
||
omnatghneetLizaipnlgacceu'rsreexnpt reelsesmioenntdsFfa=ilIt(odelxxBpl)aianphpolimedoptooltahre-
|
||
|
||
devices torque production since -by vector product
|
||
|
||
pealbreolmepeetrnottigseesan-reearalrltaedthtiaoelrqftouorecte(hIset
|
||
|
||
amctaignngetonantdh,ethshereellfocrue,rruennthas to be kept in mind that
|
||
|
||
dofurtihneg AthmeprlaesatncdenStEurfyortmheulautniorensstrwicatsedcoenqurmivaeldenfcoer
|
||
|
||
closed circuits [7]). Moreover, a closed circuit in the vicinity of an arbitrary current element will apply on
|
||
|
||
it forces perpendicular to its length (a fact manifestly
|
||
|
||
observed in the probe). In the G-V experiments the
|
||
|
||
interaction to look at is the one existing between a
|
||
|
||
nite current element (the probe or the closing wire)
|
||
|
||
ainngdcaurcrleonste)d. cAirncudith(etrhe,e aBcc-oredldinegqutoivaSlEen,tthmeacglnoestinizg-
|
||
|
||
wire is unable to produce any torque on the magnet:
|
||
|
||
a fact quite in opposition to experience! Conversely,
|
||
|
||
the interaction of the magnet with the mechanically
|
||
|
||
asattmaechoeudtcpormobeef-orpleuitsh-celrosfionrgm-wuliaretiocnir:cuaitnullelatdosrqtuoetohne
|
||
|
||
both, closed circuit and magnet [7], [11]. At last, it is
|
||
|
||
also interesting to have a look of the current interaction
|
||
|
||
taking place in the magnet's singularity shown in Fig.
|
||
|
||
4. The currents interacting here are the centripetal
|
||
|
||
Again on the Guala-Valverge Homopolar-Induction Experiments
|
||
|
||
237
|
||
|
||
Figure 4: Magnetizing shell-probe Ampre interaction in the
|
||
G-V dynamotor magnet singularity
|
||
|
||
conduction current through the probe and the equivalent magnetizing-shell current along the singularity's edges. While the upper-edge magnetizing current repehdiegglshe-tmhateatgrpanrcoittbusedtewhceitlohpcrekolwebmieseewnttoiatrhrqyufeofororccneessitd.d22FF21r,etshueltilnogwear
|
||
|
||
3. Final Remarks
|
||
|
||
A conclusive statement on the superiority of the Ampre fcdoouferrrmrrieveluenaldtta-itcvfiareoornrmmyfoiontrthgitoehnweGiaar-menVsaolaenynxgsdpisbeuoroifntmhitfheopneratmisrn.ttsmeTrhaahegcrenteie,ortensiqsbhuieainresetsmwbtreeeieencnntt c[tts1ihyoo0mren]r.memusCapneogtoirlnnnayvedt.teee-rrnsafcealelliyylswGtiiontrhartsehstcemhoegpanrnsoiinzmbeeSihlEwaormi-rafeootptrerovigbleeanunrteimirfnaagatctimhotanionctheaosec'rdtfiauotclno-l
|
||
|
||
The Ampre-formulation inclusion in electromag-
|
||
|
||
netism programs at both intermediate and graduate
|
||
|
||
levels seems a necessary outcome of this article.
|
||
|
||
AmTprheisexepssraeyssiiosn:en\dTehde
|
||
|
||
with Maxwell's
|
||
whole theory .
|
||
|
||
quote on the
|
||
. . is summed
|
||
|
||
utMDhpoeavxicenwarre(dal1li,n9f5oaA4rl m)f.oTur[rlSmaeeauet.liaaselo.sofoenr.elefceEwtrlreheoncidcctyrheniscami7mtyuaiscntasdn"ad.8lw]J.MaaymasgensreeCmtilsaemrink.
|
||
|
||
\We are to admit no more causes of natural things
|
||
|
||
tahpapneasruacnhceass."ar(eNbeowthtotnru).e and sucient to explain their
|
||
|
||
tVhaelivArecrhdkeenlpowfwuhloletddeecghmnniietcniavtlesl:ayssTirsoetdanNmcoeyr.piantTtaeogrnesJictoarignReW&GeDubaeflroa'srEMlaecztzroondiyfnoarmhiiscsmaansdteroynintheexpAemrimpreentfoarlcpeh. ysTicos.Pedro
|
||
|
||
References
|
||
|
||
[1] J(1.99G9u)a. la-Valverde & P. Mazzoni, Apeiron, 6, 202
|
||
|
||
[2]
|
||
|
||
J. Guala-Valverde, P. Journal, 12, N 4, 785
|
||
|
||
Mazzoni, (1999).
|
||
|
||
Spacetime
|
||
|
||
&
|
||
|
||
Substance
|
||
|
||
[3]
|
||
|
||
J. Guala Valverde, P. Mazzoni & R. Achilles, Journal of Physics, 70, N 10, 1052 (2002).
|
||
|
||
American
|
||
|
||
[4] J. Guala Valverde, Physica Scripta. 66, 252, (2002).
|
||
|
||
[5] J. Guala-Valverde, Spacetime & Substance, 3, 94 (2002)
|
||
|
||
[6] J(D. Gecu.a2l0a0-V2)alverde, \Innite Energy." To be published
|
||
|
||
[7] A.K.T. Assis, \Weber's Electrodynamics." Kluwer, Dordrecht, 1994.
|
||
|
||
[8] Atr.eKal.,T1.9A99ss.is, \Relational Mechanics." Apeiron, Mon-
|
||
|
||
[9] Kan.dK.MHa. gPnaentoisfsmk.y"aAndddMis.soPnhiWllipessl,ey\,CNlaeswsicYalorEkl,ec1t9r5ic5i.ty
|
||
|
||
[10]
|
||
|
||
T.E. Phipps Jr. & J. Guala-Valverde, Science & Technology, 11, 55 (1998).
|
||
|
||
21 st
|
||
|
||
Century
|
||
|
||
[11] M. Bueno & A.K.T. Assis, \Inductance and Force Calceursl,atHiounntiinngEhlteocntr,icNaelwCiYrcourkit,s.2"00N1o.va Science Publish-
|
||
|
||
& Vol. 3 (2002), No. 5 (15), pp. 238{240 Spacetime Substance,
|
||
|
||
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
|
||
|
||
Spacetime & Substance Contents of issues for 2002 year
|
||
|
||
Vol. 3 (2002), No. 1 (11)
|
||
|
||
ViktoCrUARlResEhNinTsEkyL.EEMLEENCTTSR, OADMYONVAIMNIGCSC:HTAHREGCEOS NASNIDSTNEENWT
|
||
|
||
FORMULAS OF EFFECTS (1).
|
||
|
||
INTERACTION
|
||
|
||
FOR
|
||
|
||
A
|
||
|
||
MichHelABMoIuLTniOaNs.IAONN CSOPMACPEOTNIEMNETSD(IF15F)E. RENTIAL ELEMENTS AND THE DISTRIBUTION OF BIO-
|
||
|
||
P.
|
||
|
||
A.LVAWarSenOikF
|
||
|
||
aNnEdWYTuO. NPI.AVNaDreYnNikA.MTIHCES
|
||
|
||
NEW (20).
|
||
|
||
VIEW
|
||
|
||
ON
|
||
|
||
THE
|
||
|
||
NATURE
|
||
|
||
OF
|
||
|
||
BODYS
|
||
|
||
INERTIA
|
||
|
||
AND
|
||
|
||
V.V.(D28v)o. eglazov. GENERALIZED NEUTRINO EQUATIONS BY THE SAKURAI-GERSTEN METHOD]
|
||
|
||
MirosPlHavYSSIuCkSe,nCikOSaMndOLJOozGeYf SAimNDa.CTHHEEMIHSYTDRYRO(3G1E).N ATOM | A COMMON POINT OF PARTICLE
|
||
|
||
Miroslav Sukenik and Jozef Sima. NEUTRON STAR PROPERTIES VIEVED BY THE ENU MODEL (35).
|
||
|
||
L.C. DGIaLrAcTiaOdNeSAAnNdDraDdYeN. AOMNISCTARLINTGORCSOIOSMNO(3L8O).GY AND DE SITTER INFLATION WITH MASSLESS
|
||
|
||
C.A. IdNeNSEoWuzTaOLNimIAaNJCrO. SaMndOLLO.CG.YG: aSrPcIiNa EdFeFAEnCdTrSad(3e9.)G. ROWTH AND DECAY OF INGOMOGENEITIES
|
||
|
||
L.C. Garcia de Andrade and C. Sivaram. TORSION GRAVITATION AHARONOV-BOHM EFFECT (42).
|
||
|
||
L.C. IGNaTrEcRiaFdEeROAMndErTaEdRe.ST(4O5R).SION GRAVITY EFFECTS ON CHARGED-PARTICLE AND NEUTRON
|
||
|
||
RasuClkHhAoRzhGaES(.4S7)h.araddinov. ON THE COMPOUND STRUCTURES OF THE NEUTRINO MASS AND
|
||
|
||
Vol. 3 (2002), No. 2 (12)
|
||
L.P. FToIVmIiTnYsk(i4y9.)T. O CONCEPT OF AN INTERVAL OR BASIC MISTAKE OF THE THEORY OF RELAN.A. Zhuck. THE NEW STATIONARY MODEL OF THE UNIVERSE. COMPARISON TO THE FACTS (55). N.A. Zhuck. THE EARTH AS THE GRAVITATIONAL-WAVE RESONATOR (67). L.V. OGFruEnLsEkCayTaR,OVM.VA.GINsaEkTeIvSiMtcOh,FVT.HAE. SEURmFoAvC, EI.LNO. VGEaRvrLiAloYvE, RMW.SI.TGHeGraEsOimPHovY.SIINCTAELRACNODMAMSUTNROIC-ATION
|
||
PHYSICAL PROCESSIS (69). AniruPdRhESPErNadChEanOFanZdERHOa-rMeARSaSmSCPAaLnAdRey.FIPELLADNSE(7S6Y).MMETRIC COSMOLOGICAL MODELS IN THE
|
||
|
||
Spacetime & Substance, Vol. 3, No. 5 (15), 2002
|
||
|
||
239
|
||
|
||
V.L. TKHaElaOshRnYikOoFv.GCROANVSITTARTAIIONNTS(8O1)N. THE COSMOLOGICAL PARAMETERS IN THE RELATIVISTIC Valer(i8V4).. Dvoeglazov. SOME MATHEMATICAL BASES FOR NON-COMMYTATIVE FIELD THEORIES RasuClkUhRoRzhEaNST.SS(h8a6)r.addinov. ON THE ANOMALOUS STRUCTURES OF THE VECTOR LEPTONIC SutapTaHGE hCoOshREanOdFSAomCeOnMaPthACCThaNkErWabBaOrtRy.NCNAENWTTHREORNESBTEAR-EWQIUTHILIMBORDATEERDATQEULAYRSKTRMOANTGTEMRAAGT-
|
||
NETIC FIELD? (88). Jorge Guala-Valverde. FEYNMAN LECTURES, A-FIELD AND RELATIVITY IN ROTATIONS (94).
|
||
|
||
Vol. 3 (2002), No. 3 (13)
|
||
Scott M. Hitchcock. THE CREATION OF TIME FROM SUBSTANCE AND SPACE (97). Vasile Mioc. SYMMETRIES OF THE GRAVITATIONAL N-BODY PROBLEM (104). AlexOMF. ACNheEpMic-kW.ATVHEE'SCEANLECRUGLYAT(1I0O8N). OF THE INDISPENSABLE ACCURACY OF THE MEASURING Valery P. Dmitriyev. GRAVITATION AND ELECTROMAGNETISM (114). MirosTlHavEOSuRkYe,nEiXkPaEnRdIJMoEzNefTSSimANa.DEMLEECCHTARONIMSMAGONFETTIHCEISNOFLLAURENCCOEROONNAGHREAAVTITINAGTIO(1N18A)L. MASS { A.M. Chepick. SUPREMUM OF THE INTERACTION SPEED OF THE MATTER (122). Valer(i1V25.).Dvoeglazov. SOME MATHEMATICAL BASES FOR NON-COMMYTATIVE FIELD THEORIES Afsar Abbas. TO QUANTIZE OR NOT TO QUANTIZE GRAVITY? (127). Angelo Loinger. RELATIVISTIC MOTIONS (129). AntoCniRoEAAlSfIoNnGsoS-FPaEuEsD. QOUFALNIGTUHMT AGNRDAVMITAYCHA'NSDPRGIENNCEIPRLAEL(R1E30L)A. TIVITY CONSISTENT WITH A DERasuMlkAhoGzNhEaTSI.CSNhAaTraURdEdi(n1o3v2)..THE UNITED THEORY OF THE TWO FIELDS OF THE ELECTRIC AND RasuNlkEhUoTzhRaINSO. SMhAarSaSAdNdiDnoCvH. AORNGTEH(E13T4)Y. PE OF THE SPIN POLARIZATION DEPENDENCE OF THE Jorge Guala-Valverde. ON THE ELECTRODYNAMICS OF SPINNING MAGNETS (140).
|
||
|
||
Vol. 3 (2002), No. 4 (14)
|
||
Angelo Loinger. GRAVITY AND MOTION (145). Savita Gehlaut, A. Mukherjee, S. Mahajan and D. Lohiya. A \FREELY COASTING" UNIVERSE (152). FangpEeXiPCEhReInM.ETNHTEALRETSETSUTDSY(16O1N). THE DEBATE BETWEEN EINSTEIN AND LEVI-CIVITA AND THE
|
||
|
||
240
|
||
|
||
Contents of issues for 2002 year
|
||
|
||
A. PrCaAdLhaMnOaDnEdLOS-.RPE. VPIaSnIdTeEyDc.(1C6O9)N. FORMALLY FLAT SPHERICALLY SYMMETRIC COSMOLOGIR. RuNEUnTi,RMIN.OLSatItNanAzNi, ECX.PSAigNiDsmINoGndUiNaInVdEGRS.EV(e1r7e4s)h.chagin. CHEMICAL POTENTIAL OF MASSIVE D.L. QKUhAokNhTlUovM. MSPEACCHEA-TNIIMCES (I1N79T).HE CLASSICAL ELECTRODYNAMICS FROM THE VIEWPOINT OF A.M. Chepick. MEASUREMENTS WILL SHOW DECREASING OF THE HUBBLE CONSTANT (181). A.M. Chepick. WHY THE HUBBLE PARAMETER GROWS UP? (183). Fabio R. Fernandez. MORE ON FEYNMAN LECTURES BY J. GUALA-VALVERDE (184). JorgeNGOTuaBlaE-VAaDlvDeIrTdIeV,EP?e(d1r8o6)M. azzoni and Cristina N. Gagliardo. WHY HOMOPOLAR DEVICES CANDISCUSSION (188). 2ND GRAVITATION CONFERENCE IN KHARKIV (190).
|
||
|
||
Vol. 3 (2002), No. 5 (15)
|
||
TroitTskIOij,NVF.OI.RAMleAsThIiOnN. ETXHPREORUIMGHENTTHAELTEHVEIRDMENACLERAODFIATTHIEONMOICFRMOWETAAVGEABLAACXKYGSRTOAURNSD(1R93A).DIAYu.MW. IGTaHlaINevO. PTTHIECAMLEWASAUVREISNBGAONFDE(T2H07E)R. -DRIFT VELOCITY AND KINEMATIC ETHER VISCOSITY S.N. Arteha. ON THE BASIS FOR GENERAL RELATIVITY THEORY (225). N.A. Zhuck. ANOMALIES IN MOVEMENT OF \PIONEER 10/11" AND THEIR EXPLANATION (234). Ricar(d23o5A).chilles. AGAIN ON THE GUALA-VALVERDE HOMOPOLAR-INDUCTION EXPERIMENTS Spacetime & Substance. Contents of issues for 2002 year (238).
|
||
|
||
Spacetime & Substance International Physical Journal
|
||
|
||
INFORMATION FOR AUTHORS
|
||
|
||
The Editorial Council accepts the manuscripts for the publication only in an electronic variant in the format for LATEX 2.09. They should be completely prepared for the publication. The manuscripts are accepted by e-mail or on diskettes (3.5"). The manuscripts can be adopted in other view only for familiarization.
|
||
The original manuscripts should be preferably no longer then 6 pages. They should contain no more than 4 gures. Length of the manuscript can be up to 10 pages only in exclusive cases (at arguing problems of primary importance). If the length of the manuscript exceeds 10 pages, it should be divided by the author into two or more papers, each of which should contain all pieces of a separate paper (title, authors, abstracts, text, references etc.). The Editorial Council accepts for the publication the brief reports too. thatTJhoeuprnayaml eednittiofonr, tinhewphuicbhlichaistiopnapoefrtwhaesmpaunbulisschreidptfsreise nofotchdaorngee.. Each author gets the electronic version of
|
||
An E-mail message acknowledging the receipt of the manuscript will be sent to the corresponding anuothhT@ohiroepwS.kittiyhelvien.uFtaiwletooawnindoqruIkniirnsetgraudbcaotyiuostnastfhtfeoerrmittahsneuumsscearcinpautnssc.brieptforuencdeipatt.htItfpa:/m/sepsascaegteimise.nnoatrorde.creuiv(esdamplpelaes.zeipc,on19takctb)k.ras-
|
||
An abstract (within 20 lines) must be submitted. This one should be concise and complete regardless of the paper content. Include purpose, methodology, results, and conclusions. References should not be cited in the abstract. The abstract should be suitable for separate publication in an abstract journal and be adequate for indexing.
|
||
If the argument of an exponential is complicated or long, \exp" rather than \e" should be used. Awkward fbcroeancuvtseioendnti,aolancn,odpmaeprneoonsutithgieohsneescn,acnblorbaseuckraeevstosi,sdhaeondudlbdbyrbtaheceeisnpcarolruepdeiernditnhttoerooadvrudoceitdriofanm[o(bfi)nge]uggita.ytiDviniespdthleageyreetdeexse.tq.SuoAalticidcouonsrsdfsrihnacogtuitloodnsbthe(le/nrau)cmschebpoetureelddd consFeicguutrievsel(ybltahcrko-uagnhdo-wuthitlhe)esphaopuelrd;bteheofnmuminbimera(lisnizpeaprreonvthideisnegs)clsehaoruuldndbeersttoantdhiengri.ghBtreoafdtthheoefqtuhaetiognu.re should not exceed 84 mm or 174 mm (in exclusive cases). Figures should be made out as separate les in the format of *.pcExa(c3h00gduprei/minuchst) bore *c.ietepds (inmninuimmeurmicaolfokrbd)e.r in the text and must have gure legend.
|
||
Tables should be typed as authors expect them to look in print. Every table must have a title, and all columns must have headings. Column headings must be arranged so that their relation to the data is clear. Footnotes should be indicated by reference marks 1, 2 etc. or by lowercase letters typed as superiors. Each table must be cited in the text.
|
||
The Editorial Council accepts also response on papers, published in the Journal. They should be no more than 1 journal page in length and should not contain gures but only to refer to the already published materials. But they can contain the formulas. The recalls are publishing in section \Discussion."
|
||
The list of references may be formed either by rst citation in the text, or alphabetically. dataOonrlyrewpoorrktss cairteednoint itnhcelutedxetdsihnotuhledrbeefeirnecnlcuedelidsti;nththeeyrsehfoeruelndcbeelissht.owPnerpsoanreanltchoemticmaullnyicinattihonesteaxntd: u(nFp.Su.bJliosnheesd, unpublished data, 1990).
|
||
The title of paper is permissible not to indicate. It is permissible to give only the initial page number of a paper. The format of the reference list is as indicated below.
|
||
|
||
References
|
||
|
||
[1] F.W. Stecker, K.J. Frost, Nature, 245, 270 (1973).
|
||
|
||
[2] V.A. Brumberg, \Relativistic Celestial Mechanics", Nauka, Moskow, 1972 (in Russian).
|
||
|
||
[3]
|
||
|
||
S.W. Hawking, in: \General Relativity. Univ. Press, Cambridge, England, 1979.
|
||
|
||
An
|
||
|
||
Einstein
|
||
|
||
Centenary
|
||
|
||
Sutvey",
|
||
|
||
eds.
|
||
|
||
S.W.
|
||
|
||
Hawking
|
||
|
||
and
|
||
|
||
W.
|
||
|
||
Israel,
|
||
|
||
Cambr.
|
||
|
||
Read the Journal before sending a manuscript!
|
||
|
||
Spacetime & Substance
|
||
|
||
Volume 3, No. 5 (15), 2002
|
||
|
||
CONTENTS
|
||
|
||
V.S. Troitskij, V.I. Aleshin. EXPERIMENTAL EVIDENCE OF THE MICROWAVE
|
||
|
||
. . BACKGROUND RADIATION
|
||
OF METAGALAXY STARS
|
||
|
||
.F.O. .R.M. .A.T. .I.O.N. .
|
||
|
||
.T.H.R. .O.U. .G.H. .
|
||
|
||
.T.H. .E.
|
||
|
||
.T.H. .E.R. .M. .A.L.
|
||
|
||
.R. .A.D. .IA. .T.I.O.N193
|
||
|
||
Yu.M. Galaev. THE MEASURING OF
|
||
ETHER VISCOSITY WITHIN OPTICAL
|
||
|
||
EWTAHVEERS-DBARNIFDT.V. .E.L.O. .C.I.T. Y. .
|
||
|
||
.A.N. .D.
|
||
|
||
.K. I.N. .E.M. .A.T. .IC207
|
||
|
||
S.N. Arteha. ON THE BASIS FOR GENERAL RELATIVITY THEORY . . . . . . . . . . . . . 225
|
||
|
||
N.A. Zhuck.
|
||
PLANATION
|
||
|
||
.
|
||
|
||
.A. N. .O. M. .A. .L.I.E.S.
|
||
|
||
.I.N.
|
||
|
||
.M. .O.V. .E.M. .E.N. .T.
|
||
|
||
.O. .F.
|
||
|
||
.\.P.I.O.N. .E.E. .R.
|
||
|
||
.1.0./.1.1.".
|
||
|
||
.A.N. .D.
|
||
|
||
.T.H. .E.I.R. .
|
||
|
||
E. .X2-34
|
||
|
||
REXicPaErdRoIMAEcNhTilSle.s.. . .A.G. .A.I.N. .O. .N. .T. .H.E. .G. .U.A. .L.A. .-V. .A.L.V. .E.R.D. .E. .H. .O.M. .O.P. .O.L. .A.R. -.I.N.D. .U.C. .T.I.O. N235
|
||
|
||
Spacetime & Substance. Contents of issues for 2002 year . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
|
||
|