472 lines
336 KiB
HTML
472 lines
336 KiB
HTML
<!DOCTYPE html> <html xmlns:og=http://opengraphprotocol.org/schema/ xmlns:fb=http://www.facebook.com/2008/fbml lang=en-US class="yui3-js-enabled js flexbox canvas canvastext webgl no-touch hashchange history draganddrop rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients no-cssreflections csstransforms no-csstransforms3d csstransitions video audio svg inlinesvg svgclippaths" style><!--
|
||
Page saved with SingleFile
|
||
url: https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887
|
||
saved date: Thu Jul 11 2024 14:02:36 GMT-0400 (Eastern Daylight Time)
|
||
--><meta charset=utf-8><meta http-equiv=X-UA-Compatible content="IE=edge,chrome=1"><meta name=viewport content="initial-scale=1"><title>Heliocentrism Refuted: The Michelson-Morely Experiment (1887) </title><meta http-equiv=Accept-CH content="Sec-CH-UA-Platform-Version, Sec-CH-UA-Model"><meta property=og:site_name content="Plane Geodesy "><meta property=og:title content="Heliocentrism Refuted: The Michelson-Morely Experiment (1887) "><meta property=og:url content=https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887><meta property=og:type content=website><meta property=og:description content="The Michelson-Morley Experiment (1887), Heliocentrism Refuted, Geocentrism Confirmed, Michelson's Interferometer."><meta itemprop=name content="Heliocentrism Refuted: The Michelson-Morely Experiment (1887) "><meta itemprop=url content=https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887><meta itemprop=description content="The Michelson-Morley Experiment (1887), Heliocentrism Refuted, Geocentrism Confirmed, Michelson's Interferometer."><meta name=twitter:title content="Heliocentrism Refuted: The Michelson-Morely Experiment (1887) "><meta name=twitter:url content=https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887><meta name=twitter:card content=summary><meta name=twitter:description content="The Michelson-Morley Experiment (1887), Heliocentrism Refuted, Geocentrism Confirmed, Michelson's Interferometer."><meta name=description content="The Michelson-Morley Experiment (1887), Heliocentrism Refuted, Geocentrism
|
||
Confirmed, Michelson's Interferometer."><meta name=referrer content=no-referrer><link rel=icon type=image/x-icon href="data:text/plain;base64,AAABAAIAEBAAAAEAIAAoBQAAJgAAACAgAAABACAAKBQAAE4FAAAoAAAAEAAAACAAAAABACAAAAAAAAAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVVVUVVFRUcFZWVt4+Pj7eOzs7cD09PRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZmZmBVZWVlBUVFSwVVVV+lRUVP9UVFT/Ojo6/zo6Ov86Ojr6Ozs7sD09PVBmZmYFAAAAAAAAAABXV1cvVVVVkFVVVepUVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ozs76jo6OpA8PDwvVFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/V1dX/2RkZP9xcXH/bGxs/1VVVf8/Pz//Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1VVVf9fX1//bW1t/3d3d/94eHj/eHh4/3h4eP94eHj/d3d3/2VlZf9OTk7/Ozs7/zo6Ov86Ojr/WVlZ8GhoaP91dXX/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3Nzc/9dXV3/Q0ND8H19fS95eXmPeXl56nh4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP95eXnqeXl5j319fS8AAAAAAAAAAJmZmQV7e3tPeXl5r3h4ePp4eHj/eHh4/3h4eP94eHj/eHh4+nl5ea97e3tPmZmZBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5eXkVenp6b3l5ec95eXnPenp6b3l5eRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAAAIAAAAEAAAAABACAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFVVVRVUVFRwVlZW3j4+Pt47OztwPT09FQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZmZmBVZWVlBUVFSwVVVV+lRUVP9UVFT/Ojo6/zo6Ov86Ojr6Ozs7sD09PVBmZmYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV1dXL1VVVZBVVVXqVFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zs7O+o6OjqQPDw8LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVVVUVVFRUcFVVVdBUVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ozs70Ds7O3A9PT0VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGZmZgVWVlZQVFRUsFVVVfpUVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ovo7OzuwPT09UGZmZgUAAAAAAAAAAFdXVy9VVVWQVVVV6lRUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ozs76jo6OpA8PDwvVFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9XV1f/ZGRk/3Fxcf9sbGz/VVVV/z8/P/86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1VVVf9fX1//bW1t/3d3d/94eHj/eHh4/3h4eP94eHj/d3d3/2VlZf9OTk7/Ozs7/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov9UVFT/VFRU/1RUVP9UVFT/VFRU/1RUVP9UVFT/VFRU/1tbW/9oaGj/dXV1/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP9zc3P/XV1d/0ZGRv86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/Ojo6/1RUVP9UVFT/VFRU/1RUVP9UVFT/V1dX/2RkZP9xcXH/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/2xsbP9VVVX/Pz8//zo6Ov86Ojr/Ojo6/zo6Ov86Ojr/VFRU/1RUVP9VVVX/X19f/21tbf93d3f/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP93d3f/ZWVl/05OTv87Ozv/Ojo6/zo6Ov9ZWVnwaGho/3V1df94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3Nzc/9dXV3/Q0ND8H19fS95eXmPeXl56nh4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eXl56nl5eY99fX0vAAAAAAAAAACZmZkFe3t7T3l5ea94eHj6eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj6eXl5r3t7e0+ZmZkFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHl5eRV6enpveXl5z3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP95eXnPenp6b3l5eRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfX19L3l5eY95eXnqeHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3h4eP94eHj/eHh4/3l5eep5eXmPfX19LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmZmQV7e3tPeXl5r3h4ePp4eHj/eHh4/3h4eP94eHj/eHh4+nl5ea97e3tPmZmZBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeXl5FXp6em95eXnPeXl5z3p6em95eXkVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA="><style>.sf-hidden{display:none!important}</style><meta http-equiv=content-security-policy content="default-src 'none'; font-src 'self' data:; img-src 'self' data:; style-src 'unsafe-inline'; media-src 'self' data:; script-src 'unsafe-inline' data:; object-src 'self' data:; frame-src 'self' data:;"><style>img[src="data:,"],source[src="data:,"]{display:none!important}</style><body data-controllers-bound="HashManager, SiteLoader, MobileClassname" data-controller="HashManager, SiteLoader, MobileClassname" class="tweak-social-icons-style-solid tweak-social-icons-shape-square tweak-site-width-option-full-background tweak-icon-weight-medium tweak-site-ajax-loading-bar-show ancillary-header-top-left-layout-horizontal ancillary-header-top-center-layout-stacked ancillary-header-top-right-layout-stacked ancillary-header-bottom-left-layout-horizontal ancillary-header-bottom-center-layout-horizontal ancillary-header-bottom-right-layout-horizontal ancillary-header-branding-position-top-left ancillary-header-tagline-position-top-left ancillary-header-primary-nav-position-bottom-left ancillary-header-secondary-nav-position-top-left ancillary-header-social-position-hide ancillary-header-search-position-top-right ancillary-header-cart-position-top-right ancillary-header-account-position-hide tweak-header-primary-nav-hover-style-active tweak-header-primary-nav-button-style-raised tweak-header-primary-nav-button-shape-square tweak-header-secondary-nav-inherit-styles tweak-header-secondary-nav-hover-style-spotlight tweak-header-secondary-nav-button-style-solid tweak-header-secondary-nav-button-shape-square tweak-header-search-style-rectangle tweak-header-search-placeholder-show tweak-header-cart-style-cart tweak-header-account-style-text tweak-overlay-parallax-enabled tweak-index-nav-style-none tweak-index-nav-position-right tweak-index-nav-text-show tweak-index-page-fullscreen-none tweak-index-page-scroll-indicator-none tweak-index-page-scroll-indicator-icon-arrow tweak-index-page-scroll-indicator-icon-weight-hairline tweak-index-gallery-layout-split tweak-index-gallery-spacing-sides-show tweak-index-gallery-spacing-top-bottom-show tweak-index-gallery-fixed-height tweak-index-gallery-apply-bottom-spacing tweak-index-gallery-hover-style-plain tweak-index-gallery-controls-small-arrows tweak-index-gallery-controls-icon-weight-hairline tweak-index-gallery-indicators-lines tweak-index-gallery-autoplay-enable tweak-index-gallery-transition-fade tweak-index-gallery-content-position-bottom-center tweak-index-gallery-content-text-alignment-center tweak-footer-show tweak-footer-layout-stacked tweak-footer-layout-columns-auto tweak-footer-stacked-alignment-left tweak-mobile-bar-top-fixed ancillary-mobile-bar-branding-position-top-left ancillary-mobile-bar-menu-icon-position-top-right tweak-mobile-bar-menu-icon-hamburger ancillary-mobile-bar-search-icon-position-top-right ancillary-mobile-bar-cart-position-bottom-center tweak-mobile-bar-cart-style-cart ancillary-mobile-bar-account-position-hide tweak-mobile-bar-account-style-text tweak-mobile-overlay-slide-origin-left tweak-mobile-overlay-close-show tweak-mobile-overlay-menu-primary-style-button tweak-mobile-overlay-menu-primary-button-style-solid tweak-mobile-overlay-menu-primary-button-shape-square tweak-mobile-overlay-menu-secondary-inherit tweak-mobile-overlay-menu-secondary-style-button tweak-mobile-overlay-menu-secondary-button-style-solid tweak-mobile-overlay-menu-secondary-button-shape-square tweak-quote-block-alignment-left tweak-blog-meta-primary-date tweak-blog-meta-secondary-none tweak-blog-list-style-grid tweak-blog-list-separator-show tweak-blog-list-alignment-left tweak-blog-list-item-image-show tweak-blog-list-item-image-aspect-ratio-grid-11-square tweak-blog-list-item-image-aspect-ratio-stacked-11-square tweak-blog-list-item-title-show tweak-blog-list-item-excerpt-show tweak-blog-list-item-body-show tweak-blog-list-item-readmore-inline tweak-blog-list-item-meta-position-above-title tweak-blog-list-pagination-link-label-show tweak-blog-list-pagination-link-icon-weight-light tweak-blog-item-alignment-center tweak-blog-item-meta-position-above-title tweak-blog-item-share-position-below-content tweak-blog-item-pagination-link-icon-show tweak-blog-item-pagination-link-label-show tweak-blog-item-pagination-link-title-show tweak-blog-item-pagination-link-meta-category tweak-blog-item-pagination-link-icon-weight-light event-thumbnails event-thumbnail-size-32-standard event-date-label event-list-show-cats event-list-date event-list-time event-list-address event-excerpts event-item-back-link gallery-design-slideshow aspect-ratio-auto lightbox-style-dark gallery-navigation-bullets gallery-info-overlay-show-on-hover gallery-aspect-ratio-32-standard gallery-arrow-style-no-background gallery-transitions-fade gallery-show-arrows gallery-auto-crop tweak-product-list-image-aspect-ratio-11-square tweak-product-list-item-hover-behavior-show-alternate-image tweak-product-list-meta-position-under tweak-product-list-mobile-meta-position-under tweak-product-list-meta-alignment-under-center tweak-product-list-meta-alignment-overlay-center-center tweak-product-list-show-title tweak-product-list-show-price tweak-product-list-filter-display-hide tweak-product-list-filter-alignment-center tweak-product-item-nav-show-breadcrumb-and-pagination tweak-product-item-nav-pagination-style-previousnext tweak-product-item-nav-breadcrumb-alignment-left tweak-product-item-nav-pagination-alignment-split tweak-product-item-gallery-position-left tweak-product-item-gallery-design-stacked tweak-product-item-gallery-aspect-ratio-11-square tweak-product-item-gallery-thumbnail-alignment-left tweak-product-item-details-alignment-left tweak-product-item-details-show-title tweak-product-item-details-show-price tweak-product-item-details-show-excerpt tweak-product-item-details-excerpt-position-below-price tweak-product-item-details-show-share-buttons tweak-product-item-details-show-variants tweak-product-item-details-show-quantity tweak-product-item-details-options-style-square tweak-product-item-details-show-add-to-cart-button tweak-product-item-details-add-to-cart-button-style-outline tweak-product-item-details-add-to-cart-button-shape-square tweak-product-item-details-add-to-cart-button-padding-medium tweak-product-item-image-zoom-behavior-click tweak-product-item-lightbox-enabled tweak-related-products-image-aspect-ratio-11-square tweak-related-products-meta-alignment-under-center tweak-product-badge-style-none tweak-product-badge-position-top-right tweak-product-badge-inset-floating newsletter-style-dark hide-opentable-icons opentable-style-dark small-button-style-outline small-button-shape-rounded medium-button-style-outline medium-button-shape-square large-button-style-outline large-button-shape-square image-block-poster-text-alignment-center image-block-card-dynamic-font-sizing image-block-card-content-position-center image-block-card-text-alignment-left image-block-overlap-dynamic-font-sizing image-block-overlap-content-position-center image-block-overlap-text-alignment-left image-block-collage-dynamic-font-sizing image-block-collage-content-position-top image-block-collage-text-alignment-left image-block-stack-dynamic-font-sizing image-block-stack-text-alignment-left button-style-outline button-corner-style-square tweak-product-quick-view-button-style-docked tweak-product-quick-view-button-position-center tweak-product-quick-view-lightbox-excerpt-display-truncate tweak-product-quick-view-lightbox-show-arrows tweak-product-quick-view-lightbox-show-close-button tweak-product-quick-view-lightbox-controls-weight-light tweak-share-buttons-style-solid tweak-share-buttons-counts-show tweak-share-buttons-standard-background-color native-currency-code-usd collection-61aaba3eccde911eb47743ef collection-type-page collection-layout-default mobile-style-available sqs-has-custom-cart has-site-title enable-load-effects has-primary-nav" id=collection-61aaba3eccde911eb47743ef><div id=yui3-css-stamp style=position:absolute!important;visibility:hidden!important class=sf-hidden></div>
|
||
|
||
|
||
|
||
<link rel=canonical href=https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887>
|
||
<style>@font-face{font-family:"Rubik";font-style:italic;font-weight:300;src:url(data:font/woff2;base64,d09GMgABAAAAAI44ABUAAAABNnAAAI2/AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoM6G4GbLByKFD9IVkFShi4/TVZBUjMGYD9TVEFUgRgnKgCEdi9cEQgKgdlkgaVuC4RMADCBtlQBNgIkA4kUBCAFh0oHi0sMB1vCGHFA2faJUeR2YG4efYcpYMeecLfkULgCscigsHEASKBvKPn/Py2pyJhJ4Wm6jTkRf/SxMg1RUiU3GN0YLpFsW+jHxGwtj0HZwnrklDRQrlpU9WzJHadfF5VLCiQJE6KkXM6ob/J1Hu9Ov/tdsfbrOCNt0Q+a/Ec3xKmpOGPxTO12BR3CzTr0MaekQEM2JSzDiSdGxg2fcZJGWzgui4SWEKfo+6ZbaP8LTfC3JlkkCGIL/T0NPURnoSJblNBpqEyLFu6OoRWXHIuc2wZekbY/UeQdl4Gxi6G0JMZaZ7w/z+vmn/vey0veyyBAWGGFMcsaISAywgpjCrhYM0AMw7ACUqWKo3TRRWlL/RatxfHRWqR+RUTLR2gpWKVqwYGIuBA3EjOd/a8kO4MMBps74k3/pw+xqbtH/MP/ffa19jm304mnM0wGUmNI95P4JfATwh4ettm/zYmEZIhgEC1YgCAdFiBGYdZctbi7NuYyvOtFX3qbLq5Xeeluv7e/82L4d7N6obQBT0LEiSkQINAghdqYrJkO5/67rnZ3FR2KZInO3csIGBIjOwktpdBnIKUjHojWgN/W/4+3ok/F5iHFxiqMBCRFaPFV/3xHRPgjTu2fyJg4bdqkMOADwOyQ8MfuPhOPoEArGViW9PN22Rsh2VOIg4sKPyrqU+3SbX4gLzWz1EmoPIRXVXqP5FPavfPbs9awrcgVV6BOa8A/wJr7WMijmk2Uu1mkZnokETKpvQ6CY0I+tc2JSej8P3h8GGltRxeT3AZJquocl0G3J12ySiMMPJU2tM00Wds8/kpe/ZDeW2EVKn7AoTPTkyG9562GEfAmKgWcu+gC6j1/Gd3aTThcU50UNFC2jADcUwpqaH2rCejyHwP/69ScFeJN5pPg63W6PmW868Jy6/g9r9caK15FSVACab1a1S0IzBqCRGicArF/hIqFG4REoG57P8z7f99kTtL2uZ0n8JNYQdrRXop4+DH3/kQhFIiktrZQ0YZXs8NKF5MeRkAuaZtyJXdfanMvhEm+Go2wdItFoxiEYhCevy+ddf1PGKvxJDRRnig2iol4Zu5rtCGma0rNVzfq342wEMgoWHaDgwQMtQqQTZWEiZqUsCfk1EJgKzgI5CBgkhwmpXzblG9Te9vbbS/XPcbD+T6H4/79mmnz5vUV+N+xK/2WXYW5Y7kFJ/Z+ksn9vO5tgbZbYEi2tGVSZRchj6oIUFgEV+frVa2tMLX6vc5uKvduae1kHBvU9y4TtdQqm4qiCaFQCuM08M//UpPO1yWan6Znp0hbGtpk0nwMSGBgGJS+FkjztrWR0idNdorXk2aLE3uH2elCuzTpBMaHn2pSKz7dmIsXsFy6Nm1hCfl5/39/Sd+SHXlGPueccWvZt8bX8MVW95oEFeACMibjLWCFhaWkUFuGGSV8leI4RBaRJUXKWBv1+VO6uzkfTA4RGUQa05iO6ZiOXybHNf+Gfog/5KD6r3usxog1ZnvsZx8mto62AwXt8405jGlZE7mVa7eDnCgIyBAUEFRM/xhT80zt2HSlZPkEKaISJYgIivaHfcvpchW/ESoiy8qTPtAAwdMMYAXAFQA6EIB+GABHAHwUBAFotsNeH+vxZozSkaV2AkAA7PevjzIsLyuqphumBW3H9fwgjOIkzfKi5JWQ6r5wgkEyLSbfbPLXjr/qu/uHx6fnl9e394/P6Wy+WK7Wm+3uaxj3h2PUdsd6/SMohk1yqXQmmy8US+VKtVZvtNodYTAcjf9uBNMULVxzJUGnGFALusFSc9pTxsNGWgBoJgSMGIaKBQHgYaiSSsyeIQxSRw0AIeARIAG0nqkaXggEdzA63cXL+QYM00B9/wcZyECSMV+C0dXKWkRKYs1OwcV1tISliBDRL0otL8aaQBxxxG8+TeUSxtHH5qrIuLscjpBw318qCHoyHS3hdvMVKw0iBADQrBEQfkYqO5QVXx5nIDYledM1Sw2RAQahJOrx3tcATrfcpLKtkMwAEAKDqwThFrpdGIY88WPHK68+uERqAA+JD6EhaIn+eS2gKQUO2k4q5TKkkAnixpY+XPfhht79IxDWIsAdPmL2/Hjfo3AfHgr0wnsANB3KqvVH58HDC/s/HjuCRV7MNP1ue3ZXz33624E9jB6yALQU6N6d2lO2UGMVs2wLNw/qH7t3WLUjL+69/0yA+v8SaKpkshuaDOGovhiZtExUk/ZJxaRo4pioJrIJZ8KY4CZQYnVcHhfGmfHKODoOjqfG3nH/+NXYPraODWP32DhWjEWjY9SNuaNoTBspI4ogNoGUvmaMZJfMpCOlSZ3EEuBX2qRdJM56Ch0nUGy1lmuhZupKjdZgnare2l9fVXu1VkN1V2NVVFE5SlWCohWmIGglS5nPzYxlKP05mgPpzMcv/m5n1OlNc6pSElcMyY8kGaEFEwAvLMJjWdDgYwFNN9b0bm7jRx7vka3NH9zfcRmvHX0utSTotzkO0/vlCKHkW1OB9d3RLLVW1PThT4jUZboOlLS+9XfUqDP3sSOt9Nn60j0y6NFIMsWfgmVKPhSe55qbI+sz7MIo6iZ4d2hxTe1YlNaj2O3g9INr6rv9CubUnZTX9FxA/+5jeUNt7sZBsn5bUwe0zW1ABIOmtK6mdjSBWEjn2j/7cab0Rz9c3h8OUMj08hRtP1Eq6uQh/WIVQIjU+mfLamAAH8d3+ABrfY+mHTt1gG30qS/qOujOYdO4UDscmP3Dr3jd/vjssK4nrIARgIe3+/t76OznZNSe/ZRHi4eoG+lX2EB4s5ADDa/vFjJm27zVqv1khzUfVeuNwOgM97Tav3tW7oSk545u8++P5vTvPvTvac5K8YoBq46zBquhezVzMRePt985K1LF5Lv5jFl9za/p+UuHcZybtb9iFjvuEGbq4H8CQB0JPPXkq5V15hARgO/mTJSeRE06bjJ/2HiOHI0xeIUupsqfWvXrqlvPFp65uIfY185hX6dwXOGJYbv3w//GJY0ch4ruh4LPQ/iaFwtf5joZZX4TQ+jpsufOmS0OUo66t/Q3lejjr8VvDH3j33R5cuB4hVpbBszfJOsrPV+2+Uz//Z/gn+a5yIsT+jfHJLD1Zn0BvVuy6mvAraQh5PbXha+eDvfKvb2xo3C7kfP1qd3D7xbaQi+P7XPeXE/5p+CfgcZhcw31W67p2l1U/dQ+oN9bzZeUxZbgaz+LwdOIwO15uH6km0f8gR9zn66ryliI8XH7ySEGvfsfAVBx6tb5un3KD3yU7ewfeU3uTxvpG4JnO5TF1smpsd5HduCI7OdLt7UP1kxfas0deLLtixo4rB8AhjFrAdhwCLWU9M/sANAKoAGAEkARgAwAcQCkACQAHOF27cCowkTzPnWyU2PBLQ9evbM7bxNge/gs5ycOaVqo+Dve3mj3Unhz7QxaiodLcZtdn4K6RVhootirQbmOfo7CASlAz48EE2UfoTm8kzR+Y/566GT/9tCj/ccFGQzR7IhXuHMz+1zPS3b/jnUc+J+T3P1/a6vadx6HKeaGOvv903hb7peiJHnhMHHab/dSL5qr+I+HnuxD82fb+r6vG7UieEyaI4dJITrOGXTekAsmTJoy65bb7rhrzrwFDywCyD8BhlewBKNHFe7CETImlgljFMYeVcjtEOmOmO6KNCemeyLcN0G/zYChSY0RgS5RwICEMWQ6f4RbMO5WIyAhpABMylfJ6FWGcwAv7YoykrB2eWPJ6MENZwgnQ+fiU3uonzbExDY7tNrV5DcvGDFmXJTta6bdaGx+x9zzR3lqybJVmlQA01LzW5LWkj+DkFiN/rEI2eGCIk/7CAqvPUoLilBAZHbKurh9kq0T1PS1hMNJvwBbeetZ9uF4pbXWGpwTepndqqLiKoWuDimQ1nqkI+nhV9BAcnmt6S3j1p7HUo2xahET08me7Oam8vmkN7hgEGwF03hqH/egQLhj9iFLC4rQPOIWDWt5qt0bsFgHx+lWysM0cSUdTW0tz7geoH4SZYsTwE1zua5q8bFppvaOfHO++jW+JjpRK+RYXhtsrU2M87rQAEw0qckzcjjN893HWC8kq7Q78h8IOQbE1m0B6WUNfLOcp7hKm0ZQNDX23QSbSbPeMqZQzr1axJT6gjwkCVw4eswAQeNseNHE6LOpdbzZDN9yY5uJ64q4ycJJvTpvFybbcwQr2P8bkvTmNo8rHsT05z+lo1t9sy+otZrLS3jn6aBnXnb/nzaYuBv1sadF8F81zeWum5xyypvvHK21H+LIk8Z06wW0xQ8y9owpReSUrxyauD3XJWlVogFeXrU6nD3L9MSzxnTubWmnv0jh3yxCxaLbv9LDg5UnOi/aUbc/Omx6EVlFHB6yPsnnxqP0HSWm67BqkEOgbMLPK9fOspiQ24BheuSmst54rBp/40MrvBzIrEhjbLkCUxJ6E71XvjtShWN0nRsNfbUVOEqXNelNS0K/A0MK2xOt0dSSOH0sb2N6WuV97W03/eVItT6VdhK0cvQVKDn21MZudPJzdmTT3Wm1dS3qg2rQwmEEVA7QX75jHycTJDVkr2cAzvntKNcELar2EdMwcbTBkd3R4V43O46R9HeHx25Knx/8qBKrN9RKYod0GPOmd9GnpErAr1Wrz7ICRzySFZE5Il2+ZAQwEgWexKtNp2uUaVGgVbOkvbt1zm8yXG6mr/kvLV8sY/VnUueGhTa9R/652z7sZ0vsr6fcb2n3R/rao4z1Zo92M30So9TDRf6RY/P76xHTi+5vob7yH3Ton12oIbQ4/DvsKlSa61gmNsxd3v+PxVgvtk+5/4aXy1CyALdETg/u6WQhQo5t8zSS5h5zaCDTV0fMnmh0XUfqrFP1VQlpR2syZ4xhvzMmPRY8qv2+jMQCixWUlEqMbgPb6XS68NXqsmTaQ/fQTbsh0jrYT+AkOXerzf38OtcXk7uYua0t3S7ZdrTac9+2ZzRnM9KvAaRQpZft+vGHHG4+o3oQ8i5h2h/vT95urpCJ1q8adW6sY6f7XDNw+kblv4V0iR09oeUmmeVChhN1eFrqmqFz8JJqh1WH+xtzM9En2bOi7Fx0OsrTfkuPVHXDx8Q7lhbaMsN9qCX7+6TanfTKQ/JuWEp3WvrzYd92JU8rHq2pHu/4z06tt6SmOlc36fBZkkUdq5uH0w850F/ofHjAXhSq0akBLpkjyX+FajgfoIdUA63xrE5MYAmR7TZ4PtrqbBf1qVbiJm0K/hFRgXVxzRy0Fb6OK0e2/e7t7fSarakOWMHWs1fZuuL1/tNf9+aS90O29kK7OpW9uyHlmzgcuaSaGT7WzWulnWSfZzR2t3CHL2zOz6Elbz8DtLrYoliZ2UjFxawQWrs/j5XnJJ6HhnEF7qt+BZr61mILV538WuUijd6VaFuTGPP6Qp1To8ML/3gzd5U6NGVNf0m4Cp9wZ2O2xVdCRQKl31EtvbfPwv/oL9/lcNZfd520MsbgC6l8q1XKlqGNSOcd0YfwlfcUdGg+BT1Yv7Ppo+BpWSinyJr9ROjuqNZfV4U2oE3ySGfxPC2ms6DPOLNySBBvkf0QGwMrKGktnXvYag8dQaeC38XXLBhrm+w4d/jHOuL5iMKplqtS3uDWTln7MfnaCefOz1XgCevDzLjU2jGqErUov7sAC1tXx24uNWDpw+hQSMJWBkFnjl67P24/W25w6jGwdGqu3oQGK4z2IliJ1kuoj9sKdgGtDONOJZbN8Qiw9f98bTuUb37lPVsljvQlnAIFwR5f1ngCvRBNezkfPZEW5+cw27rckb8SDF8LhpohVv1vXMzaS+xeCMsUZ7SYoz2hK6jXz+o6Ffqlq2sCnNW2annBYxpyLmVnTL9EXQ+fQ6hzYq5fbAUGMEerpadsWIyGPJwKtMYYfrn/vMtww52spi+Jo9b73LjTJbQLZ9CDRDcO6bpI9ugByn0y8LOEXT9btw5Xk2vgiKQ5nKBfpBqyptkYlUflr/KlgMJEbm8x/eXEIzl47GHk8/bwpd7spkhPWqxvei4T+L80DxmGD6EAsOmi6HGkw5k3e758ufPjz0OoCN6ilJIoo7RZlSq5aqjlOeeCMmPGKE2YUGnSlCqzFtUAYC4CgNITAFSeAKD5BBh/CAsLhWKMRkPYOHBcAogePTh9xhATpoyYsYRYcYR7jxPEmTOcCxeIK1c0N24E3Hlj8OWLx4+EFn/+9EhJUcKEw0SIoC9KLEycOGzx4mlLkICSKBVpgw0oG23EsUkGQqYCmEKFCEWKUIoV01eiBKFUKS45OUqZMgbKKTFVqaKjhoquWrUM1VFjO2cQ33lDTFxwAd+YMZYmTBCaNEVo1i18t90mcscdFu66S2TOHAv33GNq3jwz991nasECMw8sModZC8lcoRASa2yCl3n0adFFSP1mPgI+TImYTzmxcEByxAQg32iAITja6FRGQhGD1CZyw8USBlZggbm+HsIMXmAu8rEUUDEUggkYQmsJjTkYAvSC8dBlpV5Ig3gahagvfcMUXSzQxQFTTNHFDnvssLd1B7DBGpv/zxaKmBTA55e97rxi6+1bB8WCeHSfj2xb2grvbnFUbNsiaQssN27+BtuhzQPSdNGNdvSEuN6H9dyLNkX92mYp2Vo/Tl/ugxuurvLsQWtXllNrq8iGxukHdjnq6Mx3MzkzIS4bNK85s3rFjatvO3H14dVte9i/32qLlmZup1YLV91e9cUq1aoAtrMSt+LH5X8s7zLLZ0YpWu76BBctu71sYFnPsn1Lnyy9HjBGr02Hp8em1UsWkrdQPu6rkWOOdl1Hq+22XlPlkwLPc7+tF0YX4g/MB/8QtFDLtQ1Xfzu4qrELqZx2rRFVdUZQk1E3f5PY2/rJ+9V210KtbvgDg/LObxZXn3oeq3ZgMgL83xIC4YmMAf+pUoJsXV9rhNSVwUkaMJwGALUn0II6+mTBNnAIGJAwYUGt7tZMYwGfVj4pxO2dXsCv+6c9kGy7/Tt81PD6EYQRBBt0PgIg9RSyH5/g08StD8RNPqMq8w9LUJ193YTz6eA4RBGFex5p+kwkH2D6e2Jg9r7DqHP9jzB+L5XuJhKoBsZPrBsEAp0FsQhCznI01PI4DwvAIWBAwoQFVWS3dQUCDnrtRmw33Y2QcN3drJK2BjbYYoc9Djji3O7a3j3MvZO7gceGJ154F8Pin3DhzYg4AEQBmaNBDLFbcdlPiQBR6+yc98bjLdaskcZ45VObAveozSDDmYXOAtnkkEse+RS4EC5m45L44NKkKxCUFRwy5ZYdrvAo2IJyZ2XspVDFsU+e6rRLAGrSnxJbgcq1R65rxPWOBhpRb86BmnvpAwwcAgYkTFhQ7XQn5ynsVs7jOJu5SfOAFny00UEXgfUK0ccAw3YjjlvEgJDZxn9hvGGGuUXAAktbUdka2GCLHfY44Oj3gJOdk7i0uzZ8vYB7D44cHg5PvPAu+gHT15IUw+peXwnPIurjsCggczSIyWL3nX+IS3/XKSpyX5kbXijr8sh0xY+ijoQEMpxZ7iyQTQ655JFPgQvhYjYuiQ8oDT+PK8u+olgeduSoQMEWlJPKyRUvDFSFH5tUJ1w71QSur2wFKtceua4R1zsaaET9KABVJ2Dw6c7eQNzdNw+kFb1tQeVm0aE6LpfXYDfci3AcekUTYHw6U1sBa9sAW+ywxwFHnCeu85lwo1svrpNxb8sewBMvvFfx6YPrZXybOjyAX28FINmKYXkbB4Q3I3IaBqJiy0A0McS2x6Uv1iANoHtlerKcDXLIJY98Clxc4+BSoHOssgAplFt9iEAFULAF5cbK2os1qIpVTQxbUbmOjetBA42ozwPQi4K8ZNttvvaco4w3OUgQAJnYiG1AndHgiTnnVumTHg56z5UbAYDKjD6p9sY0AqCBMuDLDlAXmgRgATgEDEiYsNqpLrYkJj3YLIHpJjdQheVODkczIrhJQFRsGYgmhtiHxedscin0V7GY59SVPTB4Y6PR1mUT2EyGMwudBbLJIZc88ilwIVzMxiVxv7SwLVcCwzshG6X5Psanpa1d5VDWS1xfe2ZMQFpx79Dt5c4DQqi11RBgATgEDEiYsH4d1fpLDNxa7g18Wugyfs29kGzFZW0J7Y4WVVlwXVUGzKoqo7gm9lagcl2J60EDjaj3Etw6aJv4iOUz/FreDpAgtVMlW5fWoEUmN2UYM3uObDvrE9+RvLeJBiTf40InDY6FgUPAgIQJ62i39ms3n4aLlBgYXMpj1C1xJUOZUfClXPCBbeCPYET6L6ZLujCHt4eXvgXIH3zY3oAl4QNtUSUoWfNJ/kuNLsZT9dPlcaA7gpvp3Q08Kyynig62ehtx0+Mhp9P6hFzwShlVIbz3TkWqZ6BsdsYGeg/joFc0aa+KgamtkrYGNthihz0OOOK8ultvDZ9PGwDw7TEA/LrSFCRbMaykBoLwLKJuO0UBmaNBDLFZfN2TZIIsZ4MccskjnwIXk/dKQfohv7x9JXUVJcfUkJlsbonYbaOPCfReCGDLCZh82mwhxK3GK04HZ8kWNTBvIWtyMduhvTPwgqgHH5gHh4ABCRNW0aTh6gJMt9z6P5FU3D29gG+P2gLcxg4B/Lq4ZJG4Lf/GJ57Fd5tkjBAxtSTFljmiiSHW8XlkkkU2OeQ6D+RT4OLCVUoLmgs4nT7zwLlq9apBcGHnWMQaZHygZVrBRE59gUkwtXe6frMENxPwbIlvueK9orXD/d//GeDNAGg8Acmnu3OX0eIqAuMJdd50TOhwM7BIPcsrg5O5cuvMRn4lZZf0nl/IFwHW0diPWq59xEDrXpU5i0o10H26poLSoDl3mox6uYyD0NovQhd7ks7VKXVigKTOgrkIMcHOG53OnDMYAPAQvYSvK0mefhAxkotXMN0sutMVaWP5+IaemNM7oujHYm24oW9++JxPVyo56LCa9ew6Miip1wUrKaMuS6231J6X1ZudJEyDbwt6yUAi/+bIv/BN3HW35wEdl9rEznDuM9poOllHnuukwknGEFf5tTNCYGDMhnMeddQ5PGq/pwVblAb4OwKznI1SUkB9Tuz8hRLiLLFmbyspIJkU1pGaaOaHgg0l3ugoQp41raj9Zs2A82fDAAaMAnS/8WQ2PcAOd7N3pzs1nDSHbP4k+78W/CDbizjuGYPVv3sOuD8CENynEF+aNBGnllprRwkuSzzJnZFEMimsIzVLq7U+ZEOJN4Ii5G7ivN2MmrziH07O9FbTmEc4GuFQV/v85BO6WusSErqMf44xRMDZVYB+wmZngIQQVQqbiOVsl/3ahIQIAxEGJpySFNaNiDAQ4WRkv7bLXzOOS7lLLufdKOCcnphrnOGQaLVUFvanQs8FwxB32idhiGxWrRZAF2UUUe5YkBQyS6KJW7p6Og0/EmidmpqrAIo3gZq18vEx/k3ljqbsMqE5UxeMpo0HRiIvmEizRyLE3xb1BYDQQYxjQmTvHceJqF9FExn1RcxVfcB9cw14z5ctSGUypt33KA4fAu6WJlCXHKNxbxpnyAB7eYC4Kw+H6jTSyheztZHzyMMjTTRFTrGWpXHSi496hSNc3SQNSxckz0dEzisj5+k3eZ8a5lvjYgU10mFN7WTP04kB4H5Ovg7LGYdl6agwOznHhlV76/TfcsdpVNVPFXl5D+rOUUy/QwZAin4qeWhRy8vVGzzED2ffZjS90ajiJ2xMhxXH8qiBcSyKmhDH1CdGWYdzwjliRuzdkfmBm+yXLuh9d9OOFtviaeFoZinYqCe6PSsnxfQGxD728k5JpVcOSk4DQEoj7LEO0ioVT/Py+sFAQq5z2IzKmsOk6jp977asPKYlx692tFSarbmx066j9tPJudPTxIEDS1h+BqirAWxSrvMQcjdHYbdHZ3DQK5r0xJNgaiuPtW2ALXbY44Ajzu2uPTYJwpKGAOFbMyIx6ouKLQPRxBA7iZscuGXxu1MkNckB4j6BPhB+3UYteWJTk2hpsyPDmeXOAtnkkEse+RS4EC7m5JJ4ldKGQ4GyptFEefoYqcKjYAvKnZVJka+K/iBXM4KtqFzXgutBA42oL94GuAtaMk77juwwYaJqaDa5MeXbeb6L4r16o5v7xaf5noSl5WeA/i2AlD4GXpOUVJK2azHcLQCnVUi2qgH7VKdzYxCAyKIQvZwFNcobYB4cAgYkTFhNqrucgj1c5gC9oklb2YuprZK2BjbYYoc9DjjijKvCahGeRdReIArIHA1iiN0ZV5iDxLMvCiTFxvBZEel7I3Zqjh2/zaoQmzK82ZPhTBJngWxyyCWPfApcCBczcwlUGqGyBlV5onRFgIItHWWy/RWzl6o8AFQHvUhNbo6xFaiatekpXV1TrgcNNKLeuy3PO2kpdtp3RESB1qKcZBd5dTpFNs91aFmPQV88nxrVhnwB7WMtLhGZqJ9KTIIpz2b4Fqp7cU41X4zvxyw0n2Z7J0tIZhKeyDrSvR5oB63fwJPUEVWSE1EuBfLFbNFyjhBMfyIt2y+qbK8vce3fJdWO6n5pRX/A9RkFPXv6YYi0FKS6OflzSlAQR4H9ENLGS28eCs6N4aHydcxHVQPWkYNCv12qV/WgVw4a+s4r7GWx0oPLUrGPWdN9R1fUAwCioLtsD7Uv8zAPDgEDEiasLbfeFuKMfjOwTkR5EAhgVekpXnLyb39e2UQnGvsXmgZWAqpQuwODpkaO9uZiL3IuzisMggtHj+ZLkrFsvDIekFsrfh5E22rgwWyeb7n22wl+wZ1YXnY3Zq75IBVLFvHhs0wZTvkssgFghMLN5lCLbhEGDgEDEiash1NNY4xJj3mB6ZYW+tKdEAVxaWp1S/zQ9w/dkhRAvGddGeXNc30j0IMBF7bHwh1xklkMmChYe9J1ptJJuGuJ4fxJAMxyK2kp/BYu/hBXTc7JHbvRg5NqwDhV0G6QYHJy3e0pcoYAOFbg/9f/GH1UNjOx1NSvMqq5X00WbSuyci1l7JwdcShyOtHSMNJ9coz2y8mS8fbkzumvS5+Og+LTKOm35GdUcwAVxxBueqkLMgFIbwJ862HWMh2TJSc+dLQpEqcLJMjTLNtmKUiN58QryWJDSCzJVfEJ4sxgK4C2m4DxUmjymrGoAETIkzI7RyP2metwiD7R2N9nWuduEJYvngPsA/ls56VBLWMeMhm1EyMSGuAEwJMT4lRKDJeX4WyiTN7i+Qrrd2Jgy5xFmfRuDwLwJb0S0lUpkCpCoADE8uAhWfJkwUkDiIPtHMAwwBRWsN4cCTVPt2DgEDAgYcJahWqSk/j0iMOFFbNA+EYEUciIJqYTmyZcLuLjI06S2NSwICmXrkuOJynepyvWHSoNUqH8Ia3xurkpV1psBhnOJHQWyCaHXPLIp8CFhRS7xGWlx9KIsoYiVF5AQyocCrag3KrMpDPTLpcS8XRKutQkoBqyxtHxrojHoIFG1O2n8w0G5ypLg8GteL5ERIbKC8lkAKWZZ4qkJXmmPJvhWzgPsHYRa5DggQsyNuJ91c4GcsbkQiHAdpdFqWs8nHKAQhZccSgSZM4XUwRK0ZlicnwBwEMj+oP3cMUxUH0zyHwO5sEhYEDChBWocuYLwDmmFWDysykNEnsLxvi1ikskLrE6blA1QM90riEGDIILHjtJb43nUtevDHcxOHZMjYiYHnXPlpS3fGooxyUEOOFsc8DHGHf0ruhP23kEMbdrHgtrBuksOPbBaw4Q5BwQEHPFzXTVxn7J2K8CupTFF4rRNevj41+lzmHPNGmL00loDqXVaU6VAMqloEgOclIwRLNyMLMUhGGEDfZYIcQSERbW+fEpWO3uYvnCrkaN6Azm+SO090O0rypY0djFDcn33N8ZDPvKhpxIfecIhjnBMC8IC+MIGLrM84IGJJCBhMNwLwTmPmPw43r69z6BFKAfpA4LvW2N6F7fsbJjjzTaOk7QAbx9CCRTgLFHJjkDIJeJhWQCQ5O4GDYPwEzWDPMaj0MhgZZnDwAeT0BgyfyIkW6Yg9CrKIlhQkGueMNObMFO6iw1BnHUEdUHwOuU03JNRvNVDDPI5MzT8n0I0KyJwHhTqkFNsTz6KCuZEmCRh34EuOUOZQeJOVddpRrYFyRueVCuq2j4Pxs5DJQvpPkQ8hf6WEHBNkvWK1tdYsOb9+xIeecsNSR8iFkmiV/HHlSAbKSQBF3GfzyTtVLAYYIzMPoB4PHdFAztA6Ye1r6qKV8RCoJepT89UcaV/LBcNeJT5RwR4+0iPuHJM9gyY0gHhxpmo0aYRHVRUZwGuDgb1aNhIgT1Q8AitKX5o3bbY699PtTuIx/7xKf+NZNZg9mU27R43/Yf1BMf2DmmzTXTCta7LYZHNv1oDBLYiRANMbZoJVky4nIoAD4M8pkusElO3LH4Vg8g/0Fil2R2E9u0xR5lNgPkH+MO0l/tMx0+94UvfeVrnb7R5TdnGjzdb33ne91+sN9/HPCjHv9zdgtWU+3GukNhTGBMrUcmBUKzdZsqw02Dum0nj49FJ7MYRgi2tsZM9NdHkoc98xp0R2DHAjEPBQw5uFHhYAAmjBkZcqNKlCYYe4hpaM6bGNEJPoTrm2zyaNSwAB7XwjrDgvqAGBwQKkEogKnLoIIVGbsQCpEfPU8swJQkvSajHxnWafaUHMRFPKTFYkachD2OeigIsVTEH6zRmsEmbFBUWLRJHS8eHuFaPnywQBvFKhmT3lgxwgzsShAw+6nTT6ZmCfdZ7rz4vd2RN89tugvmIhUFjBMo+HNjlVtcEcuLa60vEW49a1St5RuQNXuaUGRZEwt8m0QQ7++ZRRBIKkqRPITsKIjiICD3GoUxybz8goZI6wZr7bbFKIHWSfn9FDfUpIQReigoHDGDQCTCEQfSJU0ihEkm217NAu8xYcSZOQOW9BmmT6uOdZMEqce653i3mbF4NRQvPsScQhMtZqCIAl3aeEjp4Z6Cj6UZGwujZFq8uNkFjJvTK6SQM5sgIYwQO0b4bAglDpE/fKT/0LbiykkoW2miyAYJ6QhcERAOe3b00Jg8JNuoGUFGN9jgAgdRaZ4EWjaIGqTKFINwyIB0u4DZiAjNNuu9wwfatJuX7Uud5oSNaWQHHXPcKWdcdcOMR54PhYTJyED2Y+UCbAKAQN//x4ykG5YThHGaSUqytWdwkmF5QZQU3bQc16//Nlv6qJ94zOUOhfw9aWZxr3//jMzmoiQrqqYbS8txg+hSWz0Y0M8E99w60ZcIgRME0s8eJAL3EFUeEQbAnl7p7SP6dvZkU8Ej+XauGSgsjE7h/2GJVYJtRNsSQwf6eEDsmq+3BniJBbBpbACACA59cFsABBEawBp233XiKgEA/tkpKzSxEBA+E07EpBJsUgQBADSNnADgALBQqB3QMsdTlqHleIPlWHrXFXkbrMRFa6/Ct7MfhfQIGGbWJyRATvodK0DvnHUgavbVXX/aGbzP2f/thYtYLoKgJRwKxMelW4sPEYI+V37UNKlC7gnWmRqu6bo+IJzAWaINJVYSJUUypJY0tXXV1oe3sVQwhdi5BiDiRuK7UnlAAfjw5rUSLfGao7+BEgGAJtVXgdVHsiEZSctrVpevDjOfRABg5ufM8oxn5tCMZcbz71e8wxsI4gMgyTQAQC+0f1P05LSJddqwBy57PTQ8sviJN/FRqwZNOGfMeUNDIAzhcMnDh+BsXFoE9Ogz+LxRb8aciAUr73HmwpUbdz58ifnxd8O4m8OCK2MsgFSYCFHixEuQKM0GG22yWaZCxUqUKlOuUpVqNWr947nrQ8KAi15665UVLzwZoaea3Bsm/GVpRJaHAaf8OiaBwWMjY+EXzeb95JDDfkfCEFgYmCgcuvi06TBmyIgQjyU71mw4sA0Ae948ePIi4UQuyBqBQqwVLFS4WDLRYqRKlmKdSBlyZcmWL2cWQB6lCgpbbFVExVGBu+bMuu2OW3/0wp+iBdbYIBF+hfWsvUfRpkklPBcG+Csa8ViUoMnYUGgKj8MMtARgFNR6TQFj0A4l2IlRY1EBsPsHgFBWfFP75+OwNuHBBmwCOhDohW/KL90KTSn2gGaFPUJFSHR1x8cA82Oy07l2uqShWT7ydT41dXEa2gl4epfoPb9ym2k2BQAdF7YB/1Jf0dr6Ig1jI9+6ejwoII50z2W4jlYnvw7dGA35H+qyW7fY3/d6bAWOCwfJeObSyWR1NyJXpLViS0M0lXAVErNzZIpLybiUbLES42icopFrs2uVDHbVyDHSTfsN0kIQhEGKKjJukliIpTVSI1VSGuuVbMbVWHnDVoVs6ikco3EmiJShSEY4PpeTERZXg0iF/bLURARRzvfAcMoN5aEGn2G5TMYzkdcEDDEDJNDnb4q37sNxqhqNsqznILdkMYG81sE5Op0tri/geH3YVEzqBIJx8fgosrGc3VtCUzvYIOLXGQRXRfC/QLOuwPGZjNJwMa78ftRCGZEQmkHWor/sl6UU+m49N29+/lVpmgpFU+JREnwxnedME4VApVOeC+/dIbFORoiSkuO9jwqSqglAesmBMRMLUXxpzG1sXLg6iYmLAAf4QWkzwdyVWuJaTmlkX0wd6iwbugZjipJyUIay6vUg6TC53GS9hixD+3eQk906uGEKrfzISXaWk0uFagPAg7Muw7CN5OMqOmmOtz1q+IWUitcN/OzMM+1N0TnDpKURQEcqq3haVoQ5C1AvRqRHIcjLRlFGVPUFo3UKkhuVUwsrx/vE6wt1U+EIyncW2STHIJzCrqEa9LJhR5UsIxQ4mvhxt6KRmUpbmdyImJPWlq6C/VgxU7ZBQdmcLvMWny/8k+WWdkUhhaVCIivaFYWj3dtiPAJJizPrSTJ1NgxlpHBFPi0G1Iuu3Xsbn5UEa7LGRBRMwDAnkxPA1FzyNGxiE0INSkcN6wELv78qPD7BWmTMetKnTlewrAAfdUNym6VfnUGiX0cVwnx0f9Ogr7zqLD2PXCk2UWeqKouKmYsedaG5zBKmy8p4t4kWW7mZpVQUxTr/hsONQLRhcFWIG3OTLG5SUIG6KplWMaue5yliF9B0OlE6Bf2aQTVcypASNgASyFMT0kNjw1ncBdpIBQo2p/z9JBNA0TIN8VVAhclANQBElnaUXty+IAKXiXuhx1aI28mE4JAZEVNHZcTwdHA39LNvKc8V1xkVemZpH5trn68MVjmYrKeGEB9yBbpLwaP9HX33OxZAmGv0Aj5ZD2SFzZ+3zSGjkbJEVjg7Pk7Yj9PvstZqyEW8dQIjtc1McqDMQ7tPt6Yko7qyD8uaNR5A1Z11uwAcpbn2Az9m2Jif1CbBitXJiY5K1nOHzXpDtRq/qB53lIAYWcEY+FKv6ZkqglyjZTyItUOMB4FES2pCkkSw3mPioVL4uqJacVV+TELX3eUBtHi0EODIe67AB4S3Xq+dycWWdNCUSjU/g15hU8fMXSM9CJvYgzM0AY8cLkQ36w6xSBlxWBJgHVAttiN5cWF+FM2TULo5PeX9GAL8q7e/85resCQH0ce/WeRI+5KrXk3Ky/IKA9irB7Ez4O/ura8RJlxnyeqBCK1+LOFqoV0x251pgTfXSplJMKMYbwDqZReWbSPsDTMpF1drEC7fkhVCCyYln1NSBg654+/D1ywG67/OMtytfSl2tgZCcymkH2GhBSlUte0CIrKslhrAN7u1GYt+E6ddPHtZjvySsz6rxXrkqnuN7FTtW9iswubzgkf9LGjICD80qqsNlkYnPkw+g82JJXeiLVl2NH1f56g6Lc8h8lHWXJWZnWzzWReWLl1HK7Yh4ce9jv5GQEqGfYEChe+pFqGFwBP4mEACY2WSMNux+RtFh1tQ9JIpfJ1bAoXYkdnMN01h3qIR2RsFtzfnv6K4tNCx0TjmOIXXHw6yaGlqUPPj1qgdrfrjvn6YwODktgxEzdz2VmVj1PcG2n5cOllrRtqIChH2SicXmi1dRtdMdtxRWL1EAttjT1tM56xMWFkHnGYJbJZNVzxxN+wZHuybpWkVTMXA6uNTQpwGcEOZv8UHYZFKly3bIZ0ljL/sVTJiGT2KMfvqqx+cRnjdqwajMmyIi5J4EOFrBpsgVECxv5WjB1RRqV4uJ17m2SSMgbPV60yHTP37k6K5i2Yl9N5q1/r7IZ0DfSJKt9wZc8JY5Sx8pd3ENUaNzDpQnspreqCZfmYrTA41F711gEmYJ+x42+xt0bnTdVQmNhcvEoV0i0fkKmSHSktMFOPIB0YjqOqRmOgPbnpUm6sIVJZ/xxkdrQLIPfgxogkKKKgKIj6YLf/F7nJ2G9m1hnjSZ48OIe8QkGcY5J0qKLEKuEZoHcBL298cfPqzmgeoDaUV/b6YWJroIoGbWW0g2YatjU2WfBq6gVSrmCa1y76q1rM77UpZK6fGPWnr7YIPGWOPwEgaNiaI2rcNSTEgkunErtTl0lc6r7btsg6UEV6t2lj/ZOzUUVzYVIpo1i5e5cqH7nbNrjogbo/SdEpBI6leFWym/FbZGkPjTtvYBbvUrVFm0Rwve+wM7m4fe8hpb7IG2vtHVQkiLEre9YIIkQ6NbhiGwG+5CYpW/mqrLjL0MMGs1uxgh3C9pta25RkzRpqHLjg3jZ8D8h0IU5eLkUcU4/iYUwifct1BKHEXTCs6kXRg4KBLEre4iFnjHEXyJ+U4ZkdhGypI0DTfmO9pqw2zCYnlz5Igd1IJKmGjaG93Ed3cicn4/SdQSPISNYxh1RPBMC4kNaV1sv0N/gq7fbBNxW9VgoVxECYm5zun84nLXPSEJj1XuG38BwYMER6YKR+RshKFhcRjYZGZ2uCs2STH0e2rSa78njuoisLPJOlKfug67Opuo3OJCtPXrvZ0WSSb1R1Sr+iE7sst5QznSGwUmPdlK2FodAb/u0LjiN0lOigvIGDCgMM8a+W7JbhXdMZ+gLd6B86RGSFiNzn2baGNGlG43TM+/PELUb+Tic5aC43+E6g+/9T/lw4c36hyy9caQlYMdYy9pppGf8r6TWMOvWwrNl0oa7V7ak8haGS+E+U6EEScX42L+Uz3RMrMMDLMWm4K1lfUEgWDB90uTpKISwwLHGJl4nLXUAMzRaMJNzV+WrsYlV2cjP8mOnqncX9OV3w4qDTR5WKQEU4E0SI+ZcQB5kcRp3EDEmx2DrUANCl9I4YYGmCt2yVQT0BUeN7XqZIGZ1nhvm7UD2ZeUUQ8U0p0nAoesmPTH6QOKZ0OurgYJSAGl5eOiR/1dkVwJvfTw41ks1UeWFjLXLLdkTUT7iu3gY3cYqO3R+dW53pwdCuJxMB/vpvhYviKRtTDKJimhV7Ibb1cBpRvl3VlxkQmetqdLu5JB/TNdxx1eeez2m2rBt7eCPc1zpRk9/pEX5SsPpU3ilOkZqM4E1EFBQxUOGPPcSgg4BzGsyq2vuw+wNTJFrL02bAv8mGXCJC3FFGhNmtzdmYczcrN49zKEFujrXOrKVqU7D1ZWDdDCtMyDu7DYSKcy1BcYFl7oMHYBWfGPZKW8gN3SplFQ16xBeccx6xR3AWjm28qn+aw40Lh4uolSvQTQvm0ISDK2und0DcV40EDmJzvZfd5n/mO6ny6jF7XxlY9ay/hNRBlhVc7WIu/dmkSLeoje8hMxKx2hi0RJIxRstsZaf0UKblWGmf6P044Cyg1K+5/+2lvMODce1uam+I0fj21XXuF1Ol3izY8ctjElPheo6SJXntHhmyjg9lJzplthLabWVkfNu57dkEsUis7PxenMucP7KFBPDi4cp0VSEBfBZloisYPUxFlr4QlAdsPi3WyzfBqH+6x68x90leT1HXsK3M3MmZKTzYtaJdOqW7obetKjZ2sxR747A3tDaw1zRCnNtoSMmSfkwpTBS2YvFNOHd96JEQpxSRyU1esUSB70jvXwbfG4fhiPasXD/Y7fcxSuJt+viTyqNaLS87Uy9uch8lLxZxeIDiPHGcwmTooBu1JA5q5D8MFD6OY07/veF4aNrlKU/+HEy095Z1yRXJOF62vvd8p5cBUOaURVUrZbFeUesEyGXS3ZzOdLrUGPLmjhXNWJV3aNURBdNps51cnMpsOgNp0/TKZ8H6dQhjIMup8D3Kd7bY61Jv0QxpFzEQ8mphJnqvePl5W9u164Xkx6lP3xUCbu7b9+o2hX5IF+iR1b5S8AyfSyeCUierqHbnXxPavnuZNgNKFbc3aJT8mcVQ8WEK9paK5f0V8bmLNh9bXfgmTzBpP7e3GLNrcBnzSb5AMv0SbQ+LaJllM347tS/+dbicMXtnlF67P91xTX69b75695OUquTE7ElGtn5mpt90A2pQpwpXbkTUTjYToFrzbPbTcHLFGM71oZzF0mMjyuoKmRM2+yPoGeifBjyrGd3obIr4hfWaZ8wSUTFsSd/OdFl0TF1z752jOF+s5Y0cKSdjH2VlBLKbx32lHc3bm3q0Nd9rwnQhzIz56GO/2Da0yR6wRrkyHcgShvxJBjutQWO+LrGhgdI5jgkP4zqKGiK9PzylzXoAS6HDiGonDpWvlWtG1QQTb6KndO91UztaqSVOZsHXJuhGkaYoQsQ8sVdW9rZ7y1QsKKrDutq3xKKHN0Th4AKype2IrFBbCl8CkPIfCMg6Bh5K7YBRxlsLm6Q76O329lnxQ01dvGFImmz1gc8qsYXV73RFSJQ2G9AGkeymxdgrnKelfYyg2h3jJf1qzboJEZTQJz5pREFpdRe+cwoeW4jpC1SF1g8hejrLufhs+wmLaHL5X8WBcKcZbtni9kS7gzJr01SfbpDNl1FsKp5iqk6zWsQjehpGXoyLgrSw+TDBLiZuR36O76ihTcBImHZjbZ7DXtnbjwv4VnTLME851QsWDy/ah3aaBXsOYilkQwiteRCF5ChaHHlq/UkR3TH2LM/vcjEmQlHOppxVSGL9NXtMUUtTavvSRhczTQixeuPaI/iTuEJzKNOAjdSATCxt/5+jpk0k9q3q5Xf7Y6FZdDCT8LqmRTtSymXqbr4rhX4hrvoanRUk6sPKNuFiyZSnGPcWK793Qrw6x8024hmTzt4q9ee+63gVvjNF7p1DGpYReV6w8si7GgBzMGQO2ZtIfyrSVGLENLFPVPhRgek7+X+b1TVILoZqZLpaElxgrvQ12RE2O9Gh1NOkn4tMCP3UROmY3sX64seXLvCT3TFSGzgU6nSjLDoROxzbNSGx26uDngzKog++nn7muZsHtIMS7eU+qGL5ggyp9CBNdinFvJZVHhlapPZ6YmjeELW/FuKfSXgoYRCE8hPxNfjuiZJ3gTVtRbla1R6QsfoetfSDdqVUeMQil40yn6pf+sVpiPcZbW+nANGAXJmLMBzKZv1tZn3ylCEudUzW1p0trLajj1mq2lJ4Gz1BiQ5Y4UJF0hChYAqV/rJtRUNNumd0QVMoxk/UkTzbNvh/jXFPZoQ6kEhguyIiieF9Tep/O4OhQ3hn70McxkMzkYgXLdgwXfj0C/m81ZNqrltDmMKNoy+czi2EBwJTSRVhyE7wJZSt+0xYkSsbJHYVN9dXLm4iODbT5DAKtWI7MV0Y3gKeGf0Iq4ogjIGEwsay2vJawCc7UReGONS10FPiYc9h4RR5R/T1PCm7OiUxBEs23JH/Zb+IKPAnlcaA3dfo1mahnlWDLzR820pMBzTk5S2aZzA5/gMD4TBA2k/8G00ksNvno7IzC3Rr7+wiMddj/NWYyM2fGByzhr1n+364PVd8ZWDGaMBxlRkunk1J9E4frvZz9X4H6A9zJRu1XOS9clVOGd+oqGFfb/O62fdkkMUap6vLTzZDiFmZIeySzSG0p5RcY9GLQ1WUAa6q7Vfsfu/1BlEivVAZzsn3j2h2SAaS7Jz/XpcgK3tOGmB2QIB4conLqcpmGTUjjiqIwYndg5V6RNXNNxcrIBRiK6pTiJ/VcdLnLJn+DVCkrzDex8+DGRHNUQp2nN1AROqb7qzRugPlg2wlEMvWVI0g60YyhsLs098Z05SolRVxt4Er1WmwQXpkzWHWxKO/fXvhuy7sth+PK1LifgFcosIFowXaeAxZxHpn47e9f1pPfCc5atZ2XaYQGW5g92hsVrY1mt1LpUciL7nrszBXQYLo6r0SR6x7T7mA2In3rwDVKX5abEUu2SF7VUpvXDDXnWVNWXXeEHSE8DipKZVa+qTNAimoHJOhoYcCUUy66MGgMjqN40lDeSz4G6PvH5BNn9I/WgxVk7Lfb15n8HzRvsHmK8OJ5GTnM2gAiJbOnFgMmKFV9foYZqrcsbpHGUoYsJo9FsNbmCVncuiU5uZkY9+vrehWKqxgWVIAblC2opbWhjEiTraVdY+N900Kh/qVvxupEqAoqDz75aSj57NmnH/glUK4SQf/Y+m/3QF16NwS60xFQJz4b/jOtb3kFQIgbamtt15zM9kpz/LsWLITvtf3nc7J9UgVk2KjZ13ce3KR0AWVqDGpk7tLijc5Ys1JvCWroPWivGUTOA0wkx/t2y4S/TImd2YvA4OWqsf3ko46ItAkfB3qfyuUeSY73Y5BGT3L0eAgeJzHPIXRiq8huE2arOBl7iHM37t2ztgXBuLVa7OZXxX/+CbSzfa9IqFMwvBw10LRrrrSIrrFcQZoe+EXaAgc/YxGQ0+8oLiitYwTfGD0BBlu54ccdosA7lWlURH7rnDzfuHaTqTRV5voU2cGr2pAZzWYEDrJfgPzJ2wSh1hpQ0evuFdCfSKtIGK8k7JQW8wqcRxOYOcFhjTHmyiw2Q2N39KjSOr4NDqZ4HWwezQqKfxMxz9SCuVvbBif9TM/ndnuc0yrSYL7JImON/g3WK+QsFjmcqI42PCqCT0qsYEnfzESnoxUhRmAP//97+juLbqpTMs//8O7LH5EYn1PGb392e8C7rjtba43VJawxb5Wy833Sy//We6hyPDJ2JcqqSRsiraYg9RibOINpS9HYQjrl+xPCjUqbs05NxX3O2x+mCZUun4qo2D6wRZnFAW9HGOMth3qNMpeq2bHzzKNatM7U0Ky22UrUrAaETrJP+3eNwg1dae0MEYq0cQmqWFNmtXSWEYq1k0xUkToE7lC2oJrxAOxT2Bra+g4WfN2yRW2wFGnoPRhzFahv78u7GP8XXqpYH1D9J0SuPmlpDhGLtHEmuthUZkmsXUYsfnmLTKHQvwPxXYHeK3K5T5Lj3QWguGAP/q9YJ8Py/gSHucU1fvzh61EoXBeCT8j7Y1oM7d6D0YboKQOGLcFNB9WtBMkD5WAXSr1OXEvlyPy1vCWwx90uevsPcbEiz71Bu4M5iPKtU+b5GUjSalJ/c0nV2lbjZsszjdhdWFpkntXn4P0LDFLZtej938FoSNIi3y9ceW4Br7RUvDWyykg9e27TdEV3tqFMUJD1wut8MGye0mK1BnZEdvIKTLI+M+g/czmYx+0bUBurecCXjnP9vWP+0XqVze7KIwe2DI8Qy67EEk3dVRzLH+ut1U5/0Y8+UBucvRQUDOhZip7XAKQEnjqqNet05S6Mu+4mcy2Hg50Lndu1HM/CsXvSD2iNDvRLe7dYqkmrMQxnFrT1B25QLq8KX39FTVdUcxXpOMSVmefsNFXmiW94/ZfX8OkeOMc/Syv6njEj8XQi1Hlw0Tv+M6DQznnUqwOQGLfPuadDBdfkWwYWG1wZG659ZXPZoBjLEkWrv/lWdwucYhY2ePqNfJ6na9wKFW66sktORwGc++OqH+413rX1IfE4FNsx/fmw9CIas/Ha6Tv36u+E6lB4nIxt/+yTIc+bFgj8DdEzMnS+eob6MgqHMVfRCNjjfQJOkXfn9U4E/QLAX7OMxFWsfZ2gjH588DizYBtnvi7/mANgMN2vgPXX+jvN9vnuHbvzZB8CaUPT+/jGottFJc+5/PguptpPfNZ3k8Pnf5S+fpzGu327/Yy23rsj+Rgx6D8sTNbWtsnHrmPslw79EAyhHcTiT2VmKm+tN9sMM8CbG5F2rNnH10Q5Jh4T9pbb+GGvDZNJraT5OF8pC9odg7SSx7oHLzLaWsitEGUEk9HRRGpNUoeBlyi6UsUawkSjb35eRix3D3WrXa4KNUvHy2Hf0WXEqGeoS+VUl3TH6L3Ldr7iJvTmxkKlnTFGb9u7K6Pvywj+pCd5qXN23Wf/ivgoT/fm8x+qumDEo+O1ZUTHWUJ9qJUen+S8VoE0FDitYlu6QvermgYhYCipi2/Ta0IcpcunJEb2DnJMGt17jN+aprRobsALVH5zhrTAR7lBKNbfJvxRHUy6u8uOPsI4Ct1l8DhJ7CETWNqJtHEx9A1JktioSHomCIsKOKUoA1LvL++TgXR6ktnbHFVNC21VwyvH7hvx1Vx0NFJNFcK4iOB6ot7Cn49P9AyAfyh7WJEZ1EFvEF5eC1cVP7f2DHN17uMYryXoy/QP/IuvA5tKrLEIbsFy/L1lpdZ+cGxBLA8wBgmB/Wi3N9arAC9QQtTIbDldvvby5E8a3IRC6tJSSkKu76f3niXzCwIciT65aOtpd8uQ0aCWhrkGz4kTbLedK22CG3mMoKjf9JzpVcVCylbfNOntoSWlpfcR4CWKjMkl5efOF4XX/c8m5o0zLl8bX11QLpD6D79RYINdS6zdizR4Iv1ShzqnPFOvH0YZg263oiLNqNucbAq6x6re9aXsW3czTGeFFKSsX38xSAe+oJZSFpmxl168tArwcYUGhG/TJonfaqjmFnBINHD/pv7UyvuItFp/8eqzpaV8nXPP3lSnhS+NlYXOvXsGbOaDV0jqF2a4EmpHHQcubMTaLUsHXOENMpPf7zxxPIyxWZf1u9zqUHsfuaF192sOfF3BQKisY4BcFybvclxDQR8I3+9cinn60BjxwY43/+XbmCd788tdVe8l4RHn1U07bWVXdDa1tBfvaL7Ij+JCggsXVk/E3x+wJWNaHE0CFbFyzgHy2DewFixlD+WkFbVRLm7ruAmv/ikjq+xh7Em12ThZmVnWr4AqzlLqHKolEUrLN1bLRbVoG2aWxgbe65p3/buBvEKerWhria5X7yWUDeQynXsvxWJYrdRJ0uJNW/fqnMeuOZbdwxuiJDIkXZIdSS/Uj2zL0DnTshWRtELdtpF0vSt9WdVOb0pf3/pnIaZikSelYX3/j0YGOPB5UN22woI+5njmjf2bNv7CpdZuWTd4IKNXn+eYVHa3zCdHm80K56S6u2k+TWYVfzdxSbkyve8CU/TfxuJyJ67+Ogg4CI9z9u+RLr0LrPY837p2y34kiv6adVlmEjDvkCIW+crfKOey3NNh+59C4/vvvIeOQdGCFrHTlyyVckO895g/X8cZFxN606BjekUlwQzqz14EMR6Q+9YYg823lmezeKQqScNFzb6T2nKhmTj93yi0lTMbzN2ixVXb9VTQRK9o7+t9EMaCytPvnd/yjCkUTuJ/FoPfkL73Cl2/uoKxHsT0ply6MGo+0sVYF2B7a5zK/q5e5CqTvuUWTceOIvGrqr/aez5vI8MUp/8inYfAj4ys16WDdb0ZI6P9kdjl22VN9VCojpy0E7bUspv8R45v7CcZGRs4kEh5IieOWB4hAf5BgmmhHbd7wRg5/rP/3gMgK6x7F9meIkBKLy9SVWFPfOfRVGTYfYvPR2g62D6kaI7bt5VqfgpuDIcPMBhldvtJ1VbGdB1LDp1+1GJNBKKD0LggzCpymHRnLlT3kkzMzMz20d7yS0+/KG4opkC1W9lA/5NlSlnRk7yD+gQybF1wLIcsXtIryWKxxGpbHppBYGUkH5Ruhsc7Huo8XRsd2FhfBnXmCwecd+tdQ4mJpYbOpsEQPbjKCcH2CFyw7ZxKmAUi9w0lrWDzxjXrAyi1TPqEwCF9SRv4YmvBBu22FNSdfYMmYV36Npn5+kO97TeuBaVwVfUahsv1M3R/ksSE1GrOKWbK8uypa6GG107Kdc8mrUq6VQh7gKitL0E0bzyq0hdbjCXeeTz9I1fXaRlO93PmB6PeeiUHvhdxqeiM5uSIwy1g0IeQIA16vRMpCxuQfw/cQBmV/FhMvpbEtDF+P1aO0tSJJRzot59Lo1aaakt5G06Ov74+Yq1LfvVWaWMYFwTttrAjhdLVHZHS9AHLp0N1bk3BlXsJOJpMfHU90NS3xadcn1w/WK9Ylb46fxYwMeFA01zx1X6Y/34wS4afn8t6XYWfARbn5jWkQHBy8mmG7ymmThZ0hTTQFsMn+R3qbcgw5fC8BO6Bmtbz4mSBmz773TSvGl2or6/pC58mDUJ6kKeTBcUkxqH+yD1ssbTBIJKRc2iCea5lfikudBwdGQIBM3fAF3CG1UiZ6A8jdeBGBD93yb6OtCW248fwVdTB7HcNXdFcI2zKEVOeCEEVJ69cto3aT+nHbkOXkwVJI44Y+geQXbCtstPHZm2j4N47QnivdzDW5b8f40A2o0wnnis9vCa68Oqf3GcFv6BMzGap3clRJ8J3cwp1DomeM9ltuNBJhfNYe4uqH1eG7EhjJSa90wD9gyQVAWm6AKk1FGYLs9+p/XehHS9VJhZFI9jtD7jOKBzHOoYE8KZQcntCtizFgHdFLQhxeyL1FsblW90Jf5TTaRFlQOcvmcsT5SXImFx3y5+DfTiwSnYfYa+KcVhvNbF1rYtn1b7H7w90dGKmBi4/tVr44qkWDajv6g+gBxR0H8JXdFEs7ybGMKuhfySCxxsh+2u9cbRJllRo7zz08ETe9xBYHYUlfOvk7A879ix202WUGY9uvbg5bIQNOzL62UNf4zZFhSzKTYJ0ZCxmZbxycm9O/10cUPDCO+K76/bKBq1vWbIk3GboDIlpOFG2m3wK2g1tDfEqztpHHoCBKIWznWNy0jogtpTle6YKyBZHZ4N7Oc9ZMsi1uoidCJvq2Bby1RTdl3x2qZAzJWvgOIyNhJqjdleTXbDiFfkZwT1WfGP9ZROmXCRWY8xWuJfT0aGs869SlbfTvLrfzukg+npWDrnKafrrhgswGsWdhFy/39e5dqew/lGi8V8dJvQ5PKU2cK830aAEdyldWVZG6YHteSZX9pt9FFd8Um0tFcoVJn6Kdds2lSEgn17Rv0vsT6gnJMtXcwn7WOlWd2WMDL0IEo7mKO3XFufMptVynh8YqS817hmeDzKrrOux8BZ0bDNLRe7s7VEniKNfqfSGpFkfLKad/xHEPH41/mSb0UIHsszSFC84u9vTSCm7cjmZQpwcC2HjINIKa8Fwe0JYaib55HTL3uFz1l30UH+eIyLVmJ2Csy7or3LYMOaZ25srHoVYlswPh98eGMLen28Py1qZ6RMdbX+jWybiL+coo4j+Qy/9PsilnAN53pqUVWjHcer9q/pq4nlO6CvIkasdlDYEre2XLwvaNcEqqRaWaHWnXCekWpupeaXUw3KrWyjP/Ve7HUy8xERStJCnu1tELc2jpkuB/XuTx60zE+/P8qqdDfIo52CeZ0x336rempE8Jyv3Qp/ZkashRWPQ1kCvXRuslmoLuPViQftto0qKG4LH2ag3k/rY30UPxTLU4tYFEIL5UMHpg4WS7ii5w0zSni+V1OZY5LIyEH2MmCm9E0dGIY/E8WoCNWY0knfLu4ejr8w1xGYRULqeSzPQVxJ615V7OhseZ2GMdotCMymbo+c4wL//c1zV0tv3q57NEXQ19/Xecq4lrEPVXYfSPLeu6gnAGG+zogix86xrWMC+6Vib3SvE/sH1pnNPVtwC6MvFJUBZXcn2fkxU8qqWXN0zGIbOpkZn7Mz90GyKJes1SZOmxKgzZQFSSjaCf3rcwupXfm9aUNZiahh8rh9ngX9Ti5iRfjQoQG2X+jekrru2cAKU3ahv+WUMd6VG4OTmmjZuohoPCPiusKlx00aq6Ti4mCveY85sgATlGS5H0hwRriR7Q1n6K2oXYWpR57CcHnsYsw7iyWM6aiCXFOH1pEfJhnBzAnLY9QYSKXO5UO6C1x5P24/3uJcut5ZbIxkqnBEN6yeK3KgSoooLfOXrG2ldrO3EHmdT1LusIM3+Kw4tdwiNVlVTRkVCrkFfVTUZ4r+woK/6HwiXDPYRnILAQitNuueaYAeKTC0QTJ2gjaxPMJPdx8dVZMEN5KAMlp5uq8dZUpBScwD6hHDiNC2M0gTsvsY2bHFOA+6bHtfEjP8iSwPnm3abU6WfPxLcEVQaIu/KMdnTwJ90nJTW5lHcRPh94MVowpBxkbF0Ool2kOglx0/Yq0TDHqjdURwU6hvPWUyeAeL6xqoVvCR7fNPNJ9uz5Ubqtx5BEx3onwZy7qYEG0Lhpohq9HQEp8K3LbL+0+O9ExZW/3oq69t6bvudvJUqO7tlYFxA+sAwOOZoMyfwZ/x+ICB1x2Ba/ibt0A9U7SD0I3r6AfoT9S8SVJbBFQUUrE0k4zPXZF/87+Jf5FQZ9YZMupQ9/3+6SkwXEWn+WQMFZJu1b6G2w4kuJliSoF/KnVPXor941og2VcF+cXtTyVHpt41i2RY54fGYHaMwwRuB8doslenBacbSa1Y9yHnLrIVYRDYfgzUzaJieumE62J8ALSJb6HYfg3mq9TAjdeB7WQ345SA8TsSeIRKwysjYMJFUfBuIEoi5fkUzD5lw1uAEU1E8SWBiXd9EG9TlankCBMiL+tKX9uS/H629NNeFTE6Ap3ftBUH/JXNS5xl53tczddn9HgOPo7nHu9786SOl5eYTo/Wi7qUxl0SZLk9shhwupaJ4nCkjINcRKD6I5qC/j/lgAxDAOCCSCq6FWzyRjPUec0FbIsBa+upaKzxuB8A05gTmHu5xAt2AXU/w+UP6/T4lxQ2ULLwEfaC/PJBLLEQDx4dmMqugrGjiuZaLHExE7JhaNvoJDRweKjirdWhYkqvGFioh05AEV0+aTh1WG3ogoPm2w4MPG8mnYGiqjpz3wtJKGftD/guIfO4H2bfZwx2dSjZ7orPadhvtE4leQaGDvAvaCcbmDT4ahsL82MkmiKbElP8F19GU091Q2J/rkzVkaLaay8D1IZbAvDF8Ec1xCMv+fvlYVFzeeVh/8HmSgGVghejj7bN8VrK2O1oSppBUXBI49JMW30Kzq8q8JG1UduwU2h6OJb+iQyEevqz/pddsawtlqOSbN6f42us0cCszfVWE19ZKVb52n1bhVamLaoPX5/8JMuugwna6jggzWSyUcXibafaqIr74R7LXXV/8CU52Sbi+Wp98At7ByeMBtiMEgBlBGgHEqJ8Mo55XRp0kGHWDNBpEn2wYOGoZBSkx6pkz6niarOstGqQLdBeTCWd9+8aFdA6pqXvcsibVLAsmSCYrbCMrfGdZNYdQskIcW9UQ2je1ZfUc0eTu700Y9bLI1skOkSLV8itFIwZsbRKYN5r6wSh03mhswGjmYbK5fiuKFukUhScoCqcoCscgqZh0301xIdNJIeEONY23xPSaJpdbm1ngJGUijjLxMGXiKGXiBcx0+QsoQqR4nsoRT+X4M5XjZSrHYa65GU1o+gj9GrbgZ9YOUS8doaN0jI7Tf6mPTow5ycYRyqSKhYZBR+goHaPj9F/qoxN4MtVO7+iDwwXA7uauQ0d0rNrRKgnV136xOE2CkfA3KHy1zOxZeVz/qroA4ESnMRUEAzRGEzQPiC597eIf4yPPLth9uGA28d/E7CIAs9c+kHuLwAcAhOyKAEBDAbCTh85byuFDSySVnZ6GhItl8dV7Xs7WI2DRAz0ZdFXy7YNeD4zjdMJZpaPeMMRwVdDo4W092hR1ur6ud+YMSKHXw9nBbrQCYG+qUcT2BPWdX9406LGY4qRZk4ezhzFOD6ATQQcmzdd0Z5iilf5/P53CSQGbqSnGLiAPZw+7NlmtsE2li8NcwMYDNK048V1Oebp4aDqN7ilFpRbZ4PJkdMDtURX1eCLewIisg6yAnIrgINsMFmRzgBiaV2oJMOKTRusmlDfqnKypCKXOCKhkECJNshIIJfWQSGCAxAFdIIcYxJMVjiJjKrKfIwDY73EIP0NSCt+5XTWCNPN1hROetxPUKoodbpbVn2wBMLyIQaPvE9X1r51lOuCYVU9INc20gn6ROg/4N7tZeUKvqer2kOvgxa8IM2GXX3yJrv4/nADgyINECJkkG+TocX1MsjxTWSqbEldOacpcXXWq5gcMp3GdgTakDSVDxfDqcHx40bljkfhg/MpL1l+SfUnxJVsuqb1kG33lOJB43PALlx5mLvPzpK3LDwlBqiFNkC7IqOuSWMC0E1JRl3RYvC9OiU/EjPha3JRmaFxeIC41wy4CSeshBZkQown+Bf7mHWVCuBBFiHJEHWKLmlHf6ESOuW5MntR79Pf6rv5RP9XPOBovzM1FvmW84AWYXaizFlIrDr0CvcF62RqzdlgfWf/m22DcmGJMFLMR85tvGXbGD4Mrxg3jjuL+p2uCb8Kfxf9XEEmIE44R/tALIC4jHiUtIDUjrSJ9YxPJGnKcPGt/bd+w79s/2U/t/xmsGOIUUPwpNAqbwqNIKbkUDcVEcVIClDClldJHWUHZSDlKueTMG3lRS6mvUs9QrwVjaXqajealldCitDpaC62btpi2iraJdoD2afDTEBa9hj5BvxwqYowwtjPeZTwOy05xp9SkLE55JeVgytsp02F3w56ZGTDzmI3MMeaPEbLU8tS1qUdTH0cuYBWxOlj7WR9H3onKYDezX2WfYD+K+t2yIm0m+v9WOemfxRIzLBlNGcszdmU8jSvM3MFZwBnMmY6/HP/Mjsct4/Zxt3E/T/gtkccr4fXwRnk3k6x8Nz/ID/Er+fX8Nfxx/mn+taT/OQoFGkFEsF6wR/Bl8tMUhDBb6BcuF04KP095kKoQec2eReBC0BwACs4cAeBZaFnVKsq+BgpHKASBoc7/dqfdBl9h0GrkLGW6fSGQQ63KKPbwciRHGJN+3SFSXcKz1t+OvX0CoJAEAOyI88iXHac0rWqa0fSvplFNFvJHsPoWmp9yVa1S7PLvrbfbF8aiaBzIeMgZzWb5PMeRsCxYPNVynE6nXv/XKEnGvsygUcuYiqzZfj2IgnpVhIGHVqpztrFaK/+FwfSTKgwfzi7amjFAhBgY1DsIrH1EbbSjtR2g4iZFvcdSFEmy3JneXrqs6pbrWrbRS+720e3dYj92mS6b46D4xeb/Oz47k0tfxv1QBKsqz8azUb/kFTXbK8NuryKU9O3fLqHNyvj23SNsLeh358OQnZcAiesr/Rxib9Nm017vVaf65bEbrDcNW3OfqknIFdktj+1Rw+nnHNezmvslkAj5cin0kFbNlSg73UbiTKP5bY2N14DZT3Bbr+WKefNDphM1LAsOkxEOcNq1Zlim6dZIqOyYLE0qmus7rqGzksQsim9agxNNW2nurc0PDaevu9SvLNyvrSHN0j6S2m9ir7+wWwkmz362ZMzyKcUOKhXL9zxHA4n2SzVCAGO1filzlKd9lVUpVYngzyBgvz7byeWb3tkzSji7Bte2mKZhibQKwUK8X66XM86aXn/oS9vLna/2MVoKu3p0p1an12vH/VINbnwn9aNrlOACMeLWaTmUnQQaOJzhwNDDmiTEb6FhcEkShJSaVjCtQ/s2K9pd1QwNSu1wJIG5c8pd78x7vIri0eWGdRFnb4jjy2XiQrvVh1PhAfII9h9UGH6LV2n3G0HMbZnnvo6ZDB+IFiKtJv3+ZrdLknvt4wiYY95EFHk+nQ4IVKXa9jxBGDHhvnY75IPBbzDJn1/wS2n6XdMl+YluXqY531VpNHaiev3ECO6Y0RsOGfpw7Gwa8kHc7BXueV5pqaXSYLDdpfL9ywwr+dxg082Wt5gFoCpAVleWWdWtsr+yzOVrbvVaXeRTrc/CUGt0dEzeaUw//tWCYt5goyiNRrtzth9FK6t1DqyHe80tDQPccGWShTtokulY+9DwW782OwHHGNal7xrnWtHTyzXParbuKNfoxjHM+Yj2RsPCs20R/UgXq0MH1GDo+DNN0/WQeOe3z6dtBhjgPM8Kd0LhbSNWdFmhIsJ8LJr4TVfDvJBebQ9H0wQhvO4vMCHegcDLZlX4VDqelwfg3fv4p/B0oPspTfPyKai43BJnhMSMrGnQeg0StY6RedZvJV01ND/3ah/PT0oFqvVIIf1JBo8jsVqqvdkNca9fRL55Bd/UOVsTPVVbOeht5dGViiTpCNBe7y7y7i7loqR4gXAO0sW104Ltua/HHLPNNCtIQLeQxcp/9Tvtn1YkDjGjItYdouajFlafVQSaW9tZAzO+xxCbKBcqKWGh0lg1Orm5m1KUS9tuNisVPCZWhGznQEVI1NUOqLAa7zKshmfYj8tLK/f5Dqd/WTEM02yW+dPVUum3uwOjxjBG6EISJDI1xbi7krdYDjuYFZbiIkeES2d7JWJah5jU/718ZsFZIIikN47//NLzf7fX4/Of9C0Fodn4XH4+2nSMDTa4vMaLpJMwhiTKQAnHxrY7/+/W7PXGkXuhMZVSo4TPK7KkAOBdonT3VnVD1bRx7pZ7rFaHfemyNp6ErdVR5/AmQxUehkNIlinFhWusColpWmLQl3zdLvw/Y5P99ERS72eogp9HdHsGxVXk7T44TX9oGtc0oOmd/CbsHCHBS8isJAo8Lwyc5mkrzxO6jcaKQQiHi61p6WI6ZQENihjXS3Op9b/u/9hqYW30dA6GSPQ3gl54eugKb8GvCtCwrMrGVOh+xux4dvonN1AcwYJzhNHNqSRDnlwobWg3qwfMNOQMEDfnXkxOX/9zYnDqQvEq7o9dzZV4ki4syMoQ3eM7R3bNjrXB6IcAlRJuc7jqYhHVqMs3dx0PheRD03BoLLQ/eP9v0yemlm/iPpgKd1V+5HCHSc2S0BF/BtPi8lGdTEwuuRiA5cl5L5SLxU5yID0vCYIsS3Gf2d57oWmLhWGtSWATr5nrfzWbrdZl/0e7n4QpQ6TMaANuLMTDDuGnJw6pqrQ5Ubn2ivAepICmUFee0nrT//6UpGm7OfyYBCr4rIrE9aSXy6ZGg7FNgJ+b3caaqrzm2mB6cS7ETFDmGRfn77YsjF7Sz8ajIo3vFqFI6LoYwchjcHj/I0N0eS8pM9s3t7G04M2bL3wyP6NZ0PNeA5Mv0zVZe1zPXz+aW7i2dNziaBejjuH18d7SNGX1fR+qTftYH52ExBWTY2nVoMHgIGTMwctI9JCsqEw3jPaRijORKf6B+Hj1iN176f/ueun1kiLyYKJ3CSK0tf9ePFCd5LkTJvGLCNweuXFZEBaLfynGhZCvxSQgmHNGghDRhR6qwjcQBDtnO0UzJCUjvUvkQrtFpy7AFTJ5sI3+gOMEwbCvUciChlyz1aYLQ9/Rav4G49473W6ny+LKQRu9yovGpxIu7kGMJ6VoYOmP/opfMYHc74PTNKLpd/lJ0I0M/nN2Mflp1vPPhsiWSMa0V97HLzyq6gZ94mZaFPRUeIo2ufDQs8UnsSd8H3tEJtNSsXwtMdWWVqls8F5jj+2l254PLD+P4+KiQi534iKDcvB2R6BgsDBz06XvKh7cOuhU8BAUz+FiBP7sJChU5h56VXYSArDsEQ1yHI+gSGf7DERMxqF6hIlxWdN4GWjwGSQKrTZv+kwdJ1+PRKZwhFbDp8Kh5Zs0ht0yiZUa8tIVwVs7iaT00Iu0A66p9Ogq+Eq+gmV0tiMYAOPQE/9uNxp5UQTgGZBUNrOEvuUlevFxZbla00CJCK0qf0XQBNu8bsgjnqUd8OFFNEKwzRpjwgP1ClW9w0py3sIJor+dN4wBasqDV6/4fq836DMJU/B5vkw+r2tcex6+gMBpB3hsiuMnpu1jcDeptfPsBLADr1b6u2W+CDTTgt4UV0uarHCcDH4UbTYkALDVEP5Y4nmKFj58dhFtd5vNSmewvG9zcKUJ8dIXEniF5xAei/JAsNoyIedSOoLRFIdXSrCFGF7cKN01ZOdqek+3ztn5gQ1zPrSrr7U+HoNIoKc4Tf9qmtJkLX8Cl5LqJcs5wzAj9ZfC0tdVtT3mg6np/1AQJdlJLTftomi7fLK2Ipjic+k0y6zs9eA4vzr7eYPRtPdOo1HP7uZWpAfgbBY++9RMq5Rm104AkRihsUGAGL9dGl+5kfVMWwRghSsHuBjTrUa9mfU3744sJf1fXo9L0+1B5WJRTfhZGWnb8O9xmTclOHOyMZZ6QtecqsJm6UAcs20B+eA4ddN3jS4+alc2tx8mc/jfu+0X+TrBwRrX/JNhGGw2W+gfiSzLMIL4GiCsclhhBnVPLXdaE00WpfmgLuzi7x71eFTF4b3D1xyUBCLiyc2OFcXs6lqPWl44Lu6ZvPGvJn5WxR0iYVhYjhrIDzYqdyxNGZve1a0W7g9q3ibD2y046HRjVWHnlIK6fgpX3jrWIk9Gb371Os3PtNo0RAH/kMpAPSvoB15JJ3J/+K63XhPAs1ph8STsaqVgFahb91RmZIlDKbD7htVTMJbq9JPHVp/UrWpNLZmYwoMPfzWvqrqmWZVqzTc1iigUZcsxraKIs3gum2SqwZJaTT5aKvlbuW1bGnunVLm6Akyrd67pdzWojQn8xfa7u72iAEGypYkU1DUsu9qCr0bFgqJb0PYLEY5W681CoVr7puU4nmctv0ViWKfLvP/k/+qlSqGQvhwMdk5LwpMlJKeuFMUGPHoSfgT0JJ0Yk+y5/IKsGOsUF/7XYuLSf+cisWgkGo8nk1f+tBh8pUX3UodeOo467DSatTrxVauVsqyu1pFtyrXd8fvSEwu+8C8egfNRq3lKJi2pqAHHKcUcPE0E+nmobMstFJjoj4BWMI7TTNeNCkDSxvGO0AC1wjSSUVWWxjCWEkedVBWmcN8sfeW9gTU4u/BRaxn7NZjO958yOasLsCLBgoX+ABxb4vmgz5zsjifDodBlbQ/GqlshzMrGHfyDbDaTy3/dNA1dbB/2UQ6/BFwpv9U6jUSgcCD0zWmcA9lveV+6Bz2z62gFB8DyMScF+bSFkyYCCkO6KsVPytluUsmR9/FzyFsCTeE0nZf/Ch2JYjNxEGyFlmasSkL9Gb+3vZUGbdY04bpKS9cyYu2drHC2eOeqpaZu6DantEGvCNMwT7C3SWp45H/l4qsrtifcLO9+Vz/T1Ycuv56vh+CDW1vigjPEauD7BT8PXQMDQ2MN4nHj3lKzUCiz7lREs7YDoZekC2IfxXo9gvyeFwTrYJS+sN+ZuVa1XCpmKt4F7dO4Ksr8eU9rT6UL0ZMeNVSrKMm56JR0f9Ncas2nwTt7TY28lL1oRnajsOxKeNq7Ss+DHDa2LWdeKz1OIVk2vw9myvZQ4YkEzCtoiAGPihzHMKL0OugMDYm1fVgXG+oiGhSIRM63RX2mVi4X5+4Z5mEsZLbQdgsv2vnBetMuza4JRj3pveGPL2qK4QHXnAHcNG0Esl1J2HyZScTqnCrJUVSUr8abjabKEl5zIHh3NaONTvdalSDq2kudguFkpwsJB6qE/CSIvNn3w2m6r+lv+WWojZ7fRqAohH6wBvbneB4oohEU90qqYu6kII9/ZShqklbibLA4PL6r8x0bHyIR7AnTVnFxp+/hcPFjqRiPstIV3sJRtFQKG33YC40zof3M/0LfN4y6cwH+hBIECNQLWXDN/1kV2WZKC+cVq95BTnos7T5XJd09VCfdsoPyA7DyHSESKRkshAsTQr1hfkYDRyCgxMjK/AKMTTHZ7OAOftYqJXnegc73KVAoeGjCzSnzHdEYTfDaIwjNH/MLWoP/Jw+dUnKwsTCfzvwdx9e1YpkeCRx5W+M64ng2GfaHw27nvf+hUNARehqxU46xHcc0vtRpNhvZdmQMb4mZAjlbDoWscF1mpUVauhivUZfGUblwXudk6h9/79Zsc9fUZ1Nmr0lOukeFlZ7E6uUSUMBKmRZ6QWCvPl7M5TIHz8MD02BoTjYkdX2cz4kmqT0gwm8CnZfY7tecUeGlsrBiaLpqONN+M9hVNzIBTe5z3L0PHQ6EQ653jWgaxnkORYlrYiWegHsRciKZY7mltMMk4RqCP2KakH/f+Zu6TX/4vc7ATntPPk7TtKZL8jMIck4xhDBafE/iMVH5NXj7NlHNrQPx2V1w987cA83BJ+Az0hHPdZ0U2Vkysagh1lwqhP20v2P0zbFxs8ViNmnEmP/TPIT0K0gf7e87duzIr7oaM/jYIYLbIyK3qW/D7Zxe++gubWnvBSKu63gIGzmTT/2sVDPN6vK43OqpfXfzxO98JUACw72l9wkcR9Oi9MOw5ZMYWFa7Uqc10xeSOBu16kMzCdag5OTEa7EWJeT7s16vT3X67pdrDmxFsk5EotMzC49WiFdITXcFbUlM0yqeAKFLHjnHxbsFD9nei9REQ0ISeLkAZivflCVC/mNo+KXMfYG3vJ19l59oL2ApX+l5XNpsHjWGxaJqQAuGVTJKkES/T1LG2kAax/9bK5bzxUwtHOyenoQvT0i56jQ1NuERRua/4K7nn01bY6S0VfTPKGZNZMztaS3dCZmpmLKTulUrnOq3AQdOVgvyw2rLFT1AWAGFIMDotCFiAFfeCrkibUJVovxdpSvna81zt6pSlIhKSbtTHF4OlTiUWvH327bjn+NF4Ilm6mZyVicwNzyVWbg2O2Dhdo6P2l60q2Rb1nL5E9O2VQO5aAsNCk9Cp+rFKiKBA1ktMniVMqQ3eV6WSi+NbSkP6JmRaC/arhZ7mjt2h1eHswJPm6rfXPS4+rqfkJbqlOQClWINRq/i1D6BZTuoe9HoHkEWNAri62oZBAqJCI5bWllLlaQ4JkHidqJv+4DoxOsO6RJL01SHuuUriV5ZPenEdKPtBYEKn9jqyfxTTNz6ij+VMCbBGcgZBHnVBHtQ1jUfu8vM5rPKlUsFWblKzY6Whh4rU1i8dNgpi5ND1rSmAjAupAJNU3ZTAeFBE9bAwhotuEYlm2y6BeaGvBcqKCtfzr3VVGRCw8Lb+lHGXAFympvc3qcydG1sNDEMVrJQ5f9di2RPIxqbRO5R4g1rx2OvofbQS6Xuhfg9LwwfRs8Fjx7aaSPvM88lI8Irz17h7NCDfJXuDtsQiD54lvIRFah4Cdf74DTNaZqUj4AyVGLB9TxN04NXqWrcG1xK+RJK8T/YRPGAq1Z3viQYvMg99Fp2MCe85B7824WjtPstwfsOQlvXPfebbhjO/7tKtYvz5fLuC11G/LKi67IqS3+Ps0zc2Om08SQUAc9LD73KOlgalqWHVqs14xxvFHgYJEAwO/GG6MV+9jCS0HG9SXm2n79ZkJO+jlHU6xsfXPmExlgKwWPyHUmWr5vsaeGUjZGoSpyYpRwq4Z68NHKZhktTI0c7/gTJDVium8SiY1uGaQbR2cBRaHRO/5Fsuq8DQ0Rh6TQcqsJH0EhKLqKHk4SXpUfeSFPbpJ8UPOj0waU90Jmvg0Lwp2hivNTfRs5dRZZHuZD/V1MvtXKGwe/QBWuWpavQb+htJDvvV2z3FSoZG68i4jvf1HGCiZoqd/BxXJuLEDKQiWqoBs8gBh+WAmTZ4ezaUGv4eceyWp2UdndzRlHzikp5WYButvU0yP+CBOs8/84KKdTcgYbqdmsYD5/2fVutoIDdTxlVD5c7MoPpw4rHU0+knk64ZfIRohdKoeGt5FknTxQVFnQgtJ7AVi75WnFj5kAH8SC4Jyvz9XXv2TLahW9xNmrmJoYE8oTRHhwWysAyRIybQ4E+RHxBfA3fcF8UU+FPyItpp+/k8T24le8qv7by+a6scecS0kRYIjLBvebh0GHQRWKVV91WIvNxwxJSVEpZT+THzOa2brvoWXZgZRpfbkPd1AEMYEPB0e932sKWzkrTdFwuoQe1oaFso8De36/tzCFWJUBVMpW3KVaQdRIYDO+z9lrp9Mscx7MgyvtxSp7iXiEoiibw0yK0Z6y1TuLgJ9ytmDG+XJHl0DLiNGwQc5do1Uh4jhgpAaMtFoMgROlG2zyBGFdzKBZ5Xtwi4rF0GJalaaZIxROKjGw4iIkoNVEIMIu7lrS3KuV6W4GZIwFDMKRhjy4Mrx57SB8kDFtTnd8oNudVYDiuM3CMMLG1X0yBRMFX6sPI6zfue+ZwIJr6let+7wYOoYkpDIZShzSTUeFN+wIy0LyZYul46Zpv6CALzdrvpTcCQX3Yb+E6lrqX2IEKVaANFAljc/ZrCKDnCMxhIUq68t83mqr6pem4Z2Qj+/mYbIrpaCa2JadXJBn2eVoXdj6jLOUoj80C00TWrD949dqF48j3CUHaxv+Taxr8vlv/Ka0eOmUxcGQiLrXctwzTPV7rc3UauJjHjlWH0rqEN10yKyFG3uArojTMEOy2tiwTW51+cXVC3tVYGFW2/+B/uCX/E6CZkBqUUhMtSZWD1mYaIKkwMAfbXRJn8EtBcFmhYXgu+iYamWwae6e4c+Izur1ycJwo1Ohh+Due76aoOC7Ks0HpwYGgpNAmAw4HtByV8vjEACEdN4dqWOautHSXgKdZ3j2gQKOKhY2P/7+q5s3WmZQsTW19sK9V7Flf4NtHGvKUq4sENNNLYAl3KdTz+WC0/if9Jds5IdGoTerqO5dsQGf2SUYmmlLg1Z4ylgqSDoWpI2sb8mTShkWC/VxSqd88yabY5w2v8IttGpf8UMbjayCCKNk2JQB2XBvwxcd2TkLbcV6DQk/f2CzZXD08jG3vFuMDO/s7JDhG+ZcTxSAG+mrsPQmdC2fDQScDTsQ3womYSMYmQh+xEl8aXpXGcO4otfJWm6dil5XSHeLd3VKEL/y3HCcG3OTz9YaLtkDC/eTSWGDHkhaKZPY4Y5mTgbtq1Xa3ovpG+LmaEKI+59lPAWLx1KOGR4ezUEgVTi60yxns2GL7VBqRUp8dS/DByJ3E0ABrhr3+S7rOtq4rpu/wWQQ+Y9eF8n36//ntOlo2HuycMFAMbmduwYFwrZx5NyFJalg4+58XQdwI0hZdEmnUWim3IlxrJwgwDXRkt9Sq8Kk3uZxPD7SKVPugC112wfNcto7rmiqP16wTVUWjAM2wm95SrR+Go/wz/63kZ78ua51BIdcYTg0H+v+b5aWPvd6BFEgcPcrxEqKuzGVFJfN5xXcPfEAJcFzlutXKQuty9Qj+7aIkbxf93ePuE3L+9kPjtoM+vX1lpaihXyRew/ok1OvtujiDHBuOqnpsH9TapNAgi9nJR2Xm+BuFRr8huSn25GK7kiOPk7un04iVesxYjA+diH9SNI83ejIcClcnaDkv17cNtrMxuROx8fwfR3fU+jQ7vi7YdA2LE0ADB5tTZUmFjl8/LAg3iTI3Mriq9pxla2/LTY/sV0OxqONxayuH1NhIt+vBTw0CQ5govI3mJbGOpqm0K5I9tJFYpU9UIuf7OiNFUc8CN9pzUDnhgRhilcQHPMv6wBckf1QWSfzzX2R/5zkQvnEBFXQqpvMhQqAqNUTA1GOXC/3bpf9lRTn2Oq8oKLNUTYUvB2etQMeB/ln/z6xl1Cva6ajnY6u0Pw1IgBBz/VfQXp/0nUOCvkz1vzUDMePJ9AUJ8y44VgKMUw6RXTGV+dnQ6OeyN3MekZmTJFGUZVso98UMr8GcrM8++Fot/W3o/9FSoICqfen6P6pVRTGtcMHog161mMQGSxoqDn96HJQpYE3luuYiprMDedxhyC8FK1REaRn/R57f96OIgdivgtXRSzgql6qix7HvEWDT7E7AlOMXz3Lk89OyY2BLjhPJH0RF0XVbpDrvolH5QlH1lGIZNHGS0d7HJEEQV64SJGU5Y/GcGwQm0Ey1NCCL7CXXukw9eUTMANYwfmBtAFZLf8on76Q/yhINZxhBAJANSR0pz5Ecb46Zvq0tFt8wHCQ4CFyyKIbBpGqha5KgEYtNo4P1R/5fy83fVGzjBBPsnBMNLeYDu/+x+VRMXXUqLlh4MnSGvlT+9vZ/Wq3e9ubP2K7b69Zr9KgHq4SumO1rEAVI4PXFJYLMEgz8Bb5DG6oirwt2NSxVN9uVt2k61q03BMCcnXri+1J2/g5RJ0IaudaAPReek35sVnJkiq0eQoHCU1IdDwyJM8gTsKyqcIp31m9bNoARiwpYn4gB+XL9GL7Qax5LynskJdmZxBT0JDAgUi92WrrKm80Z9dHcMcNLrCh7x6vh2vmGAg+hYxn79CREEoSaIo/M1PKLd+DS0ZNoeBI1JeYB48IgjfZIiu1XO4kWIPHoA8cOOjC5b8p9du7Tct+R+8LcJ+e+LP0kgP5zjykwGcA/HrDEJwG+LThSQEDn0bHVyxhFSXqoF5RLJdcF2gMM/z/ZUW/mY3s70tpt+MQJD8dCtN0c80q356amJVAJvuBmiiVRGMeJZjVWK7mimG/N4N12v9vBzNUVvUmWpBniaSAYYDtkK2tE48wtZZS+SgFdz8MrDjx/WqeFh/gcWa+rixEZOLM1wBEWjMglLg3XEApPTBqBT+OXeXpd5mcXKfF9viGlyJsHSUkVTEk8M2a0FzYOERs/Bn7Ejfywa7vBOrMKstSAMmhvy9R5Ik9zDX2TAB3H3vbIMw1lTMUyyykUJ9fIiWFZ5EUxSNf9WklEob0s6awmaZaV5Vb0iwVHI1iTCM1wYssoeZ6EAWGAP7U2Go1li4a3oZgX7ubsUZGmf+/zhbiZErXjVU+2KE/IrgleAEOIIoL0OCcyMe7LwYckFscX9s1bJyefJav8XOPgYvbn9LDodYdfcOt1hHUocW9iO6OElx7HUdJas90w+JE5QxmbnBM0r4Y8+2zh/EBHvAtn1+pV+xG6GjgCsAb4tAZ4GlSi6lVKSjJV2KuFueJN9b9nDmV1MhIPw2qHOdiLnad5FEdZEfHK3xWrhfWur5lJagy9U5F435C6fakC7KDNIiLW6NebGwLsRYo5nYKDjcUTnmkDitlyDE7F3I+gttnzgkDAcVEcx/U77U4H+INO86fo5F6Q/3Yx8kURVNQzZRBzeS56gzhOZI1VikXJNDTTtGxsZFxkJwbViNrFHMwBccQKfqX2QEyyiRmMaogqzoW7VlYVTBBDmIGZWIinNhJDiokpC8W6YFV6jFPeagykkq9QNzSVhXHkkcKqX7H+u0mz57lrdGxhN00YqaFG1HEAP9io4sZSCbw6LErReyKs0COEbHJZ/UmUEPOzLJwYUg6Sn4NCOe4dJrV2DIbcF6RfAhBjrNqhC+DWZyAEeWViAohidz7W6xRwEOwK5+MR7m8B6oZHMcLgE4gG0vJB4LYMZ97x3y+0xObp3XdZHEPeqtSv6UOdqSm+mn3qgRPPnemx31S1VdXZEOBgiEjNZQr0jpqmre2kTEEglXRXphbjYb+15cVgrZLA9/HrMKxxB5Fgyf906tVBgq1XN/9FSzwKmsVRSf8W6kYK0nTrV0a7dhXaQsat95OlEHp5zX1JAr46TCGwbTowxFPdpDCjvBL3i4tFtVrkm42G7hrrRgM7MPiEsndeTl1tHeMby0DYnIhLJDpIvE+Ajt+BRvjl6HliyWjocRsxrOChrhKWoiyH/YXX9fwiSuuvahLwh8cuhN75SWfDCpQI1TVEnos3lMa1zcF6I8jGWYxnyhmf3fUq6iERY6jwGHpQVlXaY4dlgN8NlSgvleqNtqlHv99ufanTRors+XC/sg03tFaRjmMpMyYbe5Vas224ZVmcvzWVoVTEGesM8rqUZh98aEZjTMlhJTE8nyE6Be5Mfz0DQ6OS88qTJTdCJvWT94t42CLxSNHgc2yi0DAoBFqxa53lwQYojl+LvoGxIxs75LVTIQaTX66p8iBHHeeyaj81O9iYG1fY3zzbRys+UZWMxG28DhKwWkV3vNJRbeM37IczvraRWS2akppiQcFx69boToI81+tHHJIp0jfbYl2zqL4om3joh/w8lGpIdVp+MbS2aYdZHabBPJHd547EEonLf2s9A4PJ4Syo48D/pa4oObpkoIvb8ttHRieWlNj18UD16VPm2OiK86wHBU1qIiOQCRmG1U0Zzwr9Rbt+tHdoDhdCrTec20ZFyLahzffaC4T7uUrokIgRohjrizf1D9uxubPh/k4RT86fBPZb9Oy17aixop0CH7PPQdVMHQhC7BuUPqEpmr7FydtkkK079TaJFSLPt+2PgCD4Tk/a2oyj6PyDrRS5tso0+KtLLMEqctdrwIphSPqFTrVORnEY/b6YK2y7+OdiMQrjaGuj1mycR9AkwFjMxG9z2cyOL3OG+QsOJ//fuQZFhkxm92jXarrRBsPK6hhW6kVntzxt0GAYTg/Y8pkdsWTr1Z1rYL7hAoT+IlWjcW/Y9IGyX1Ia1cgKzM2wvpP32WdFD+CUxg1UKoZFGW/YvKjK+UBorxEgQ31MgkWlOgNfQjFwkA8BrdEwBXYdiFymaVkq8qCxWqmqNMUb3ytZRlbYX+dmEDOiWNMWtCnwS0OCLcMY4rgTZry7HeOqv8lbng/HmwSC3HtM62POr554VzViVeLa2PS/5RhxjAAdXByoH6RZi2TolZU8g4WmOR1Npjok6yJJfDBdsDUXFu6jv3hJ31lpcHcsjGW53mm5JjabBD5M494fSST3BDESiQsPJAo2hvzwfFgLG47nVLVkGCXmWsdXiSDyImeWGxGwG1C+YRT9nHnHJa0ZHn+xXK9mmTW1R0SWx60S3DJrZh1e+IthEgY/iAlbMzp9mSQYhIM22S8Kmz0d2p2t1svlDQyOVRGkFv3rF6COUitPLnOCOF6zTZQVpVrlszm+JbkcKCIO8GMIDDqXqzLegXtX5Bx0g7rsO/7WN3d1YpRLtyfhli0CqG8KA8+5FDed73z8EFJqgOalIl+IxdO8bNmGqq4IROTghE5BIuCzqvoQKIbF2XNeEG4IsLmBSpx9HuVp2zq7evr+C1fHdVNDfD4CvMGPuwIT31h3yyeKAES03aFoQYDQVNQL9mBB6Wmt9zPh5VJF0c1NYIaBGtq262QBlCa5coQEWWnM1fVfEdiKEBZ5CdN/ga7Y59Icw+M0IHWi3LUa2PHW1dnZOv/QikVgkiw96EgCYGyMwjBKYAiVEMS9hqrqiBP5kUYLLsRyfZOMtRrZYuakI+GF/MjqmpCiait6AR0ym7DRguuObaM9TX56jmG52uchawm3VmmoqaNhUmQF4jvVUG0ztVRK3JXBLAwmIoCvFzwxt+qgXFr29r+3djBcAv/XT+QxAnjsnRIAw7TigPuqdi5dzGf91JkL5wrOORuA5wcb4OKirfA3v6ldtmZy0oPHaWKw2tfG66GzJOLO6K1NelisZVxRMn8wdACWK4RBF6LhISVECOe4qrQk9f34u11lk3S+pzF6cJhF0YuRLENmq0WJZBVNFoRhxkXe7BxNAYniTJmVhXtAXtw1y/jkVV3pA7I3d2dbrX4PAWOpRw/Cm0JuGqbaYAttgA7LDDD7qBNa+SRDlnBz9hFHVJtpQo3X0HV1vph1r1ZUBoETK6AJ9YF5OkZ/5cHMbIRh9NBnONG6XGIPQFB+aU2uktChWqPnsUfeiU0jLdhWt8ga2FoB9U2GF5wJfj0mzcKgg6RVMZ+q5nNvAsicEivoQk1oKAOMNSuYz5uFRp2mlVhORxh1GTkWNhTasMXHruNRlv14OCw8rWQXIZZNTdLRZX8jH0QR1kmQJCcWE7Zl9UsCqQWeadp2rm6qDqhtb+kaw5DfhUm6V5YkaE30kxNEym59HoHhw9cQr+X7C8hlg11XyV7XNTX9IpbCyiXLQhnG1UatFl6a6dQnOrd9F4YhWO3aE0VBaEZBPXRW/Jjvl8uOZY61u51qrdooEMzMII6dHqP+83FxzGPjmoaUbGF4IWmZ9f22/xicpt/b6feRfjDaNtgegpbKGMUyX2im2+3R9l1YoYJpZyG8fzpxd6UvwZ0lZR9D+9kD91VKfcVTFMcD413NdnO/VbcObVYqjaYw4rBaD6rnsEkGsoqMG9O5YLT+zD37lf+VL/Ts1SjGlABkdEMJ1ztoBwbwPRwx6utfZtmA+949NbGk6ebzVS/LzglsYx1LMMlMOske40QRG0ZE10TFCM7yOE6iOC+OCsJ61Kt6Qt40bXZUnNV6snqv6tiO3eI8qcLFpNFoFvYVRoNBX2ixR+x0FodLE+ewPs1wB8BsUHpH8SWVUggpw0QboKh0lUmjv5DUsUu/WIpi7mIWvHAJrQPQKeZ+t0dOC8XkrMynyLUZa5VqqlkIZNRtyqAi4fPKqDMPz7ZlmRIAM1lgamXhYmJJNQ0Gpa0kjsXy3l6qaVoUSBql86BQjiWn4dnsea07u1U5VUI/7n/hx4rlim2dEPKv7V+39kISNGFWFbvMLf9z9dPc9SEJiI51eB9plfWmLadnOZqCQ9d6MQfjIkvuIm7LeAJGbUuvDS6vypHlCK78Rr60lH7izuvZ8uY+C/I0swCKM3p9biwZZBwCweNJJk3nYvzMFSREZLEQnrfJK0GQK+T7l2RqCG/G8g0N5TF0sruRiyEPoCj5vAGmbyM5nTw/4xYYdx0Tj2ZMy4YFQCuHua5vngaXfiyc/x+KcaokaRaoQF9eXunuJVvyovS1XrfZxMerdmXBUZkkEH6qtjVd9xzDhq80zmXzPRTGnzpBZ7iuE24c7uafkKupIZ0WxbCRUi5vFAZ+HFm0AEvQAscCVaYxfewe99KBpmEqU+4f1q+im77WFjTbkFVN4ATDZUagsv8MERvN7nEZV0K355Cr+8UWX3DKpfnfJA0XES1VM0/E6m7SYZqIdKJfLhVLTVLQRmaLpMg89cNZnucESZQF0bBHuFunUd9+t9tpST5NBhzP91zPd4hl4WgwEAzzLNPUNAk7G2Zx3bIsnbhl78apSxcCDrJkEoYX+wXSEhasMeht2RrwbzKegsVMza1/7VmR0rFBVwKMgcE8aCvKtpGAY6QJhXU4jLv0fhqkwQLulqaZqmrGYvtxXKUT3UI+V2iQgpIYbYomc2QnbN+NFCPY7F/J8d3vrj6q3F0uP5Ho/+vOh4PpyQvBdObLf8Otlr2/UqCePGhg8d96Xs+VUDZPsYKGUHGbgxD9w+5YTVJkcTJCd2cgEehktOL+imwexWg54IgPA2wG3TQGZIC9Fda8n6yv9FUwPk+9E16gAprffGHZ39npE96ZkjfJZ1NHMy0q33AMQ3MajTbwGrA7e2bV3P99t/cJWjgw25OLGXWYxi42VKPzUfpofzSaTPo93DWDATTPrPyFBoAkafqHhcFgNBK6uN3j1tSBPULwikH/9EhLAQ1FGig8LyjqF2RVWYhPHTBRD1G4tdR8qNN0XRLx3He/SDmDGQWrkC2OuJ0Rh6xMg/E+Ni+vqlw1sISZrJOr+LEPRUnWkzgY5TlevLVUrTXrjlakmfWWpBl7NRv1UppimEKj3Wk3r6E1hrR+scjQuE0vKiKnr5qNVWO7N7ulHSAe7Bk6Jm5ZDRv+E6RZJU7rdjujFcuyKqMfo60sZ2kQctCchmVRUiqGCilSaRs+2vEQ8PhX4YQ4OdRDzvQ6P3cUSaWbaM6p0zTK8hjuecg0hqZZ4DB0temet9pVerkJLwqyGpdjPM33TMWLeWbGHiqMP53NHHF96J+mW5PNeoKoGq6ZmVPEbKxC3+gZxhOLT72GYJrdFifQj7c0SY2q7zM41GROFufRj+dMFtOk/OHUtcD2D6UVM5pzUqwutg4JNFUU3/pgMugf96xlEBiYagapT33w6cOx7N+eBYE8SeCivMGMXMXipE5u0UcPRf5Y4vgz7pCOb7QiTS2KIBf2uS/bc6c3XIkkc61WQ/YO+v/MVZOT31qbvlDFQ8YzQd2DV6vEygR+/D0Wr7E0TFTk+2KFVyAQiVaJJq2Zi/dEYMsBrgw6XMfz3GGrL0gLebH6UxQES5ptGfqpdCknpYIbfwiUivr0+kGbwPe8938qbvNts89AXmZmn8PaPk0fLdnWJOjR7AuaasaN9K4ma4YsT4FHYehUnAem85bP49n9kn4cJ15Lo6LaqtSutKmyv79Wt0MI8bQH/ZnI4GORHVhHOa5Y+2jCVnxVpmuP5n9xfcBEuXfoJjYSkuy+3Upz3uBgrFRZJOlkGCVZlp4Ns4LFqHLe72FCLsbQyBhVTDRJUpiHusxlQPCHaGIUPR0IgmvnPEtTfA1b11cIiro2TItIkUoOW5GiYZZgPyRXpfDos/TJv0eerpGA8I8Yolt1wGSza/i4RCT/NVuBf4eH5Skq6SJFfo91/8GQ9C/BzuuTp1aA/dOMqk24gsGvgWhso73rNmeHvJxSReFK37dMMKswuL9J1e7cUanngep5L2WV8ovtT1hidS4jPO9iPkGQ5W2KYYYZ/O3lVDfLnUGo4qACAiRQbCa3/MWXMPk9zwniR3qjSfpOTpTOjQKfQVOqw+cKx9LZut0rPF4xdrzexnHje0VVe3M+n7OzuVy2re02XM6RxPVO9So+8x2vmuCOgKpmflsqn4NTVMKg5JfxSOTin5utizlByDds65/NWk0UFfWYuGGE4YKNdNvOkYpG8wyk4CKS/0ejwA4w411VDsRq8IPr7uVyvXF3rSmxVn22jm8IAy/PuTCGoQBcWDZOlazWZDhqmJRD2l1Fw3JPfVTGeg1aXbEkwRoHvBlFsSiloBtEA2+znV4Ql0e4oCpPdMaJnWi09Uihgzw8qJzCCPxzpmPdeX8087cPdwRbxHT2iOFYKb3m/L2JbYA4yM5EOvOHYNEdpGn88KLfahN+L7L9PiaOyaV+97DbBX6Eu0Z1O2cjaeewkmMdIw2ZT3/whVI6s+LMwF58m6EAWqOFL3fb7bokslwYptnodyIM4i2FUql2MDZBHfEsszdJH3QGcKIO0pJvpJLsicBzgf6gLiyKW5AqCK8s1xUMm85kmbq1XPpzO8WwKobwUI3lnqkUpdOJ3oFApfkeTnOcXI5xgYwmi6HZei/BMWQcUyqzRV0gRVFVJSTsbjifrxO3hn3WM2niUIyiVrdxCZ3X6tkFMhPp302vVEoFoYPMg/z72NDI8GTPhCzL851GE1uepAnsb+uGS7V6PbDc32yH2Gw8U3vPpoaClPHvsyyHDuKMP6hoaux7nsOS+6EukIU8OIwIcIbBms2O0w2H9QR3C4bHNj1OCJbPA16wTVPXbee1iuAZr/Q5paLNXHWt1+lg+PxJfhby3Hiu0Zus1IQpZKGc8VT4UB0hpvHKq61wdtD+vnYjPGFuoHxzFutUjO0Y+qINs6zAV5X5PizXWJxjsyPmiixJs9lvd4pZVMpCVlVNiaIUOFa3RrD0YWyFWrZkOSbNsam2noI2XUeYOQKYzGhWZdE2Lhu6ZpqWMcq1ZqGAoUimvlDOZ4r5bB6Hpwdhsxo2qhJoHG1hG9mIni2mabkTY4QKRHR8iKxOA6W7G0TwkVGg2vrwlyTLMN0vzd2iV7RhpISfA73j10FuTQeLklt171yaR/YNRpHxRFua5q3VRgmS5lEMVXnWNo01VqjAvtiJ7ThFfWo8HK4JgE4d/zmMQ69Lsi00Qi3ngNQoEtgwFAQwYJT/oTG9vlEXJRpzQf0GI0KAKxwt7ZQ9u46u16REC/ueoQmSUPGDVUla+QXSQGT4H+EbIUdcQeNnLDP1Q0zDEn3rCbA3Dk+HRApTcpDnWesx56iW2WZ1REszj5reXD5B8YFOLUMxTFivnaALlcACsBqiueI6e9ca8LUiM2NgEONWSxzy7IVa+ec4j9ToOpUM3fQzxJhHr8KiNWJQ4Ma1fWQnluy6rAKz4ztwgTNcFJ87+pu9ttwHqjxaWP7EzmeY2EERlcrrsJC0BN11LIqlSf8YIZoGzM9xAbuft/S1PJ4Fgs+Q+XBS9wiVXJJjKeoirCtjWl95Pd8azafzxWLiP/SEfshoA88Ph2iEIyfyChBmK9vbqSIvK07n85mTvxkJsixbi05m9UC90DpYD1vgjbUfSz3aaAOWELq6UnW60SckA/lDAfi6eq0+n0sSVzBkTkIf9ejHkmtAGy0UjpZEsdGo13Fz5rSqGVGSHnjG4Zet4iZsEJSQkBZlCv4uwfdj082bJppgAjO3rjqPqR9iSUzhKmOQlRNCyKXsHNe0TDNzg6lEyD6p0ISbM621yQhWRtW80F5oMtlEioOYmdj7GuBzilIbdzPEbskBQQmazKSvQs5OYkr7AADHwZXMv9VHps1CiqEGpvcHG0u9hWHZjsNhiqmmm9byY28CXznzK3Pz6t4eompVWW2Hapk/SwHImg86DegWcHytu5uYqYIAnK9jxRpp7qqa9iRBim7oji5Y+QXHHw7aKqKa2HXHwCr0FycVYZiUxdJgKZU0DYBRShQQXVzwfSuH7HJc+/engOTKzPAyiTFtsmeHcbwhAVFdkdQq4zv1qyRFxalnvCsFZuPAcNz1ttghsIHHMBiHOZzpxrqWqSp2R+6DGX/92WqbS4YXWgULgVea44IVynl61jn/D/aQQnPm6CASIww3FYtrfw8G+TYtu+1iZ203uxutHvpMpXqbS1ViyX/qC8UINwAgANjJXxWUPXWrzNUFfws4Pg8AZr48oe8T/xcQ/P/3yyNI9SiAIWEAABBYNrIZyG0HKPHvvMndTnl+DKMd6gSs9jb1GlSONOCPWNYwd7O41r7+1E8RlpclgMY5TlJnOVQrLGCjasBRebAsBjWg16h3PtkoV14EbsMqHtU3Jize95mX1EpuFcYrO7n7Aekq2ApVBxTqt6b5WUEB3ypt2+zHMujQRauk9IvM2B5Z0zKyKA67YnGKxNTxHTlf2uV4emZgiwttCKX5P7kLmqWGDlN54JOJGANru8bDHk5lbOeVLmWRCnp5QlD5rFPJqxxcooURxRw4CZuoUVmfUxQkP7bNar5DkiEjld+o4udMq8xpkLv0WKqGha4MWUGE5ccufzpl4ZifpG2MURVI3TISwAOEYAvG4Aye8CFYpi5vmtHhgl68HVBCj0nWIwrrFUqAx4RFShGJIxiFdSiLEkCRUkIzREIcyCE+WIa+Thj4BAMCzgM9S7VGaQKqm1RjVKNUU1QLVK9QLe5xe+StUIDVWPgnBu3MEHuTsLVAy8MCLOEFB7q8GLuN43Zr+YfN80/qsZBkUPKcU7lnuearrtNlDRJaBWio+FnEloEM1AFm7G8IWmLWMEKt55LOzR5Fs5M6d0BOvTijD7mT6lGlq5g5n2IqKP3bVnd10EYE09A8NYJNRhapM84jP1Tcajf7zAlbPoNBx3PQ86o2tbNYgevpuMOgmIzLwKWK0PUX23oNWTIu7D92LudQI2RLZVpZpKvllvvs8oC4+PRKIWXt4me3j1fWGr9iDsAMgCkA4/VgXEPT4EPbYgDMQVhiuO9JhsjMSaZmGEfG3CDD0B1Iv+0NIwX9qf7iWw5rIIB28H9MhzEhz0zgjmYQGhwaKQDoWp11iejnD4nh5InEiXNCEqzzhmSQJCxJlslvwuOThW0gAI4XEoGhm7E0Aqif0BBIAswckAzQ1y5JEFFIJhhKlyygxSnqVhBo+k5ekg181pIDLCaSCzro6+cBDSCEXLZcpcKoVFHKFqKCXN77GZPlK1OMg1jI09U7OqnXhUdFyFGKCadQ0RpDWohE6exVF1felLz2WfiWCBML3yOOJa+tEfC6758mPw6+mkyqUEnCNXXliFYeHYWqXrio1PJ2VAWlwviweOFiJKmWo1gpZ0rxl5DKSgJlVygn4sGFJ7fU/hNQwBUcOZU21v1c+O3j30x+pURcxBN04sRvuxrGn7HY9UWhpUP9QIVaSurawx133p1OKSE/Lj0nLJpbl+xxbgo3WLVouUIE2xexF7MJFHMRGe0y6VYo26KEogtPbr4CwalSGOBKSe8zOcCAJgZoWvDw/JzRDgCs/T4YXJTjZ7l6tbNhK4+d++zlu2TE/zlw9B4noy4bM845CQshr7iAhz/8qdBfPmq1TevpIS/eSyQ/vUlTilzhR8JfgAfWkDLpyJWEW+a7n/8KFWMWRFIIo98WUcsPP97fqtTYqlrsLEKMhZXfTZUkteo1qPO9RsckeyTFOql2SZNOrdk2TdYvwfxwi/ptHghiIhacdW7qqK270PPQIskTGTMJDNE/HEDZfeEfFqCmsTvkUE5Aq5iRlDCTGlbYSbML/zYzwzFg2XMvxi688COIMKKII4k0smRFHkWy4fFObvKSHyVtWkyZ+QnhB5a6nfcBLpKOtVFFjZ8Cx/1XyGiixcaRIUugoCmMzpAL+pxw0i8OOuSM/2GgWaHs1Gq3Nnu8L9O87X7DTLAdOiYEz2NPnCJiwdwnsu0XPEasSGOOJdbYYo8jzrjijife+OJPwD6h9rrqhmum3ZzkFKV46nfCRmE39rpOfAhpDCmI5qB8X5LiypEdNXZUZ3q9TE71QzeaS9xcVzmzNLH9KVWbyoVsjCiz5tZkRprzmzZTS7+jVnNBSiVwQTo18RO5HBPmV5gLYhoIyBUp5ZI0B7K2IAUl0ylZY5CCEUZcAEwDAA6QATkGAKAJAyMDwIAczm8tCXmY6UgndUqndUZndU7nO4SZEIo6ycfSOJStxnAn4Dss5gxX7pNMcRCiCVuzDyhL3yR9sc2fnIO5G3dBwsq7Cj/5wie3P4tNqUV5MxtuOLPNUGJNrNVH21ZJxGyGqQZV/VFLt9Ab20xjY6mbdcV5lR9ZvGWadidQXIHfjECXldkNw4roWAK8eRuZrcImsdzNG9gzSbPP4YnSdTO/bUL8YekrK0SjFziqILr0dlJR/8//1MiI)format("woff2");unicode-range:U+0000-00FF,U+0131,U+0152-0153,U+02BB-02BC,U+02C6,U+02DA,U+02DC,U+0304,U+0308,U+0329,U+2000-206F,U+2074,U+20AC,U+2122,U+2191,U+2193,U+2212,U+2215,U+FEFF,U+FFFD}@font-face{font-family:"Rubik";font-style:normal;font-weight:300;src:url(data:font/woff2;base64,d09GMgABAAAAAIp4ABUAAAABQHwAAIn8AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoMsG4G+LhyKFD9IVkFShh4/TVZBUjMGYD9TVEFUgRwnKgCEdi9cEQgKgc10gaRoC4ROADCBtVIBNgIkA4kYBCAFhUoHi1UMB1swKFHCpgOvK7cNANir6l8fPZlujh7oDnB8OVVJBdz13Q6K2vx+Mvn/sw6UyJj/1UsSSlFgzs3AIyNViq7u2thanZPaqym0RKI8XspitWpWWrwrtlfrVHdiqCLCQZynga679ghNYrdEGQoCA7afSILlUxEGGIboCEcfQoAj/GJmfMjSGq7x1RfTMy3s/k3r0qqyOfWqsl6qKq+qPYatY9OB56gVEccmlGLE4GsMcJws/E83X328Q/D4G6tHeP6/7hGPn/ra+YxjuA6Ix+ZQJaJl1nnG93h+bc37tfv/RrLUAkvmKZFLpESGgnIYCViB2OgpVh42FmLkIaJiY8aJoBK9w9N0/rskTc5ifhE7iUmjjXjTtEnNUC0m29oyVcTGZ4ZNPvvTMneYApsz8b8hCvX9WNk98/7eBVERGwGAGn2EUCBUKtIsEf1+39szd9/+ELFlZgXogHRUJKJCVKBSdWags6xd+ZLzxg59sWPZsUXE2+nYUry5RIq3cstb4ksoQSSI2CXpIJTcyq1Q7FhSJBQp3rI3pORFvOUtuyYUc7stxzVD3cAiCDKNBlk6DDm8c2qOZ5BR9R4O0/iAnf/9ye5+lva13nsZBsJNJiNlxsmq+qqaXwKuAFdyfnyn1XsCY7DEs0DY2UNC292bOaa/JYZ2iEpJm8RmyVKAD8tpoTkl5dT8tQhtmcv3xPjSLwkzsXRqaTr4m9X31GWfuv6diKzJjUlNkTpWAgmBEMQqszMQPON47zPZocBIP0GLEhPj3iLcxLQE4+azq+/DEeQcZOT51rGqWtyZBnQiQ0ZQtO8ImpvP/reNBZt0Q8iCVTDkcASP+1FOkg+0hOoQnTjnXxb1ARdVHYGuIs2ejanP879pXR7PCLSeNAJjiU+kjQkaeWjrSWrgMUFjQmxdvta/TNIV6FDNwkiywnI4CzUPa1/tj79pL4EgFkGDtD6h9zt1GqG38Q9x79tN6RYqHQPWi2Ew9H7GQ6FweAlqAdrxBTnQ/5wYI6MqJmQhg42KhP4Pd+9wTS/2OxloecByyo/llEmELzA+DLjAD4PbvJiEzoZYHJz0phURz+3w//++WUv/qz0Den+cTglThVc2w8fV6iAC0uT9W82gXwcnNa5U4wsnFUZSRWotMuszVk4SSvpRq/GKehRhbJC6lROEMSn/fzn92r4LCmA6CPsH1JFqt84Hu4P0w3osOufdpNWsQnpUFVBFCagCYVNg5AIkuQDruADjAWH9Dwq2hLM6pKROuQDLjawfUGqr7U7qyXn3/58ctyEvZ7Ga5Sxns57VchbrzWxnOf7/27RK67tGDeweXAAIwm4vUpBtEpXe/VVPVU8l2ZZlKqNsNwAWqNqlkt2tUQ+ClsgbAUGSbrRBhCmH0Zx8k2CDKCRrbdRvbkAWDCoY80RbdtbwLPehfqsXDfHhc29o+0Y4bmzIz0YIISbC5ZXn5940v7jHhUSEJpSSEZ0SSpFLcv+1u2tlnRP+2976cm59z+wSiiAiQZogIhJCsPutj5VaQMxYWgT1cDS//pZ5Fkker37usaqqVq2oESNGHZTE1Lwrl6QPAfkQNflaL1mrtsHM/Lt01XpOBj0GIcaIESJpQgjR455vOFbfb73M2+tqY6JIohBCx/T/fwwgeMoB+AngNgAxCMARGAAjAIS4EARggZVWqzUQDUYBICDmte87gijJqg6RgU2L2NRxu70wipM0ywshS6URo4wb5tLl6eXM01sc/5dMZovVRlI0YxfhcLrcHq/PHwiGGsORaCyeaEqm0plsLl8slZtbqq1ttfaOrp7evv7BqdOmz1i8en0oYAUEASUlQDAABgBwYfBwkAAALauchmiqAYYA8JEqxHNGU2FBZpkHACHgkcEFMPemNhsQgn8OI8Z9PlKbRJQF6t84jwEFadz+EJJ7JN7AAQ3hSDy8uYC/FCjw2WAz0zKWBThs2L9/xgy3kbs9zNeRfrI5mSLyVN+UoTxrPjVhd16WrUKBAwBUKgX6RtL1ntC7498qDLB16tzvpoogghLXmcP37S2wOr9EaZoAgJCJEAYPx8N46R5EN4ehjvvV+ZUA2vzAFnwUIQgDQfNnjz2KjcAxJsrmBz9ROD+uvEgKbJennCc1MADKbwJw16bK91vk5eCapqu3ma4bVve7x7rOWd+Z9l1dS6LWl/vogR/9Hevm0vdv4sLsrR3/Ulv7Z9CvubJXiyNlEAAQNjRvs1aDZlvgmjqbtvpW28qv4LIv4xItLjEyP8Y/n8Y9zumbl0MNMZbBRjfLZ95MmZ6pTnYi4x7raEY0XHykv/t1NvR4PXXVwVY/Xrpkm4sX7d2OdFaH2tFykw3WXk1F5WIj+Z33+RR3nPePTV9ehgoRS7DosjzzMiU9qSabSNzRR4ARaMhuPzvhO0cdsssnpDts1DT+2hnUusgZDli3aEK/tHplogigzw+43rKj/wPgok8o7OZbT8SRXM8cueLacd/HhvY3g8uQ8B4tM4ScBS6cJDMRjz/lRNcj/cRG9epFEEc2J96+AyXF75VXnzSsbVSQzikDWorknIt0/hiiH7KXpC1mDXvuvlC7weufpXoOPKmzssT/Hf/IvDUh/eoT9OUWiCNP7lZfhCISb1aiLQg4+Acg1zwH3negDQzCsTmZM2wLf9vHlN77/G1cVLqnPy87GnNYJTAH/wUEa0Lm74UemAhApZc5o6++aaSvWPv1yHv0Td3uk/vqQy4cJI489ESh6ECC3Vj72mf5h+Di8wBiTZkqeLoI2Vn3ZO+MXC9GYRiqQ+iUKTCnvdwHPmNHuuuikowkEsm61oMijiRr2u2okmitjzJCwMm1ADBCDO34TjPrdxbNTGCor0wjrANZ8kEGnVVe8rusrH78hV4lOhsiD1v61SzWWl4RRzIDkZdRZgJAIx8HAFNqHM4cB3aqWIfCV61Xs0datkfeziTC0DnE+DBkyuz1aBeg1EBLBEOvujvfjczMHWBn0vOgl40YSU+pV2FjeFo9KyxDusoqpf0BeQyVjchhKI2jJkOLDMUMHZ/Di9pnrVvY1drfyD1XzR7pOBzx1ScyteOoilpQDR4x1xAvaGpvgveG2vOoJ9L1ORKWo4GYq7WtidLBnEBlt5AxkP+UI+ezR8y/1xYWu63rMA+hiiUO1yZr93l4Jq0Hh4mRtKw2hM7Huw5EdIBX29KAR5NkqGRRpyFRBzqowaC+cOfBiBYw0exMgrtSxEhipIajGXHW4Rrm28ObKq2QoW0BKjoqWqMVUGnUHkZvB9ofsdIFdjXXweRG76wL7LW5bNsju0vZI53vh+/bkcm5213pkZy+7cYRMT8nS1ngDaa6J3bc4YCrNGjTrgCAgNo8aqEVakVaFdcqqtvo6ucDPAGDAZaArgAuQApQDVCy2icGds0G5moxHIChecP+Y77n2WqmddzWr60iQ3cAXisxf5TB83FkM0Q+gG4YLL5AV/T6201jl8NNmI0FSqVBBNhpDbzz0WARoA++ufJcaf+GqfsfMh551xqPWzEk3px5Lqav2XGk4u3o+8t47n7+iXY8VbxXuo/OpEDGICWcHJc/0vT7lZ7iWlkXX8R/Y8Pf9bH56dHQ/piRV1E5/HS/mMSf2dNj8DhEoLS+6prrbmjT7pHH3nnvg48++eyr7/73w7fhDkSTVLbA8MON7ue4G0dIm9jajckZu58jHyTKR7F8EuWzWL6I8M1ErBUJwxE1JgcLdFsIEgpyTvl6hPtuHDclIMn8AJjNvlnNC12pc3KaRzGS7iyCW/tarz4vhrj7VCrB0YDn/bvuIt3dnmJR5831cuC1Jxo1QMyMWWChRRZbYqlllhfjy29ocVebe6U8+1yHF156VYbFR5/V76fTT7/81mOMCoGCMECWjqevloA0fzyAIazRUjreZ5lpn49nq3OpDcFpA3fbUMlodU5SNe2N0h8XWhGfYGeetucWB57VI03B2St9HimERXcsblKwcgR+jfu7VglHDsldwWxzP2g+Edl3nsam6l+lQUHN40AQKJxfBpFGW+FBaPzy90Kr+CPmGfvo8JxnzV45C9QuHTkKzLvl2DqRExT8/dNYYJx4WKSdomAJnU/wU82SFeEUtEoyFuvwrLaBGLt/BMOif3JPm/CJ9u86I8aePeKFadYhMr/yzMq9EQzluSsDJJg1GfO2LWtSpr9De3aMguG5ZeeV1wf9k1TrlGh2iJhNahqb/KlYrLEJaP8WmjrTY7GNV1BtbRf3dUxw0igy57T647zIvdbZywJ3jn9/Mj8tsRvq5/xiPaUp1equEa9uhs2C9aA7t0G08SLu5Vx3zV4fcT9oPjFv5Z4at6UZm3/D9l0QtP8siafOSyXbKDRVnV81hHXOi9dGMKbNt23/BJHSb/fug5/vbZV/Ko+XP9swLFjd6Ndq3gbxrw9W+crNb6Pq/daFps0GRpscYvnqCFPUaMt4FhEw+5koGBA6/5bYoMIqJlaktvjjFG/DTn+UbDeI0WwMxBcn0p3kem9Uzg+ZMJV7dV8aAaFeE1wI3SscNP9FOIYVBdr+GEP5xGE9JhHnpKLG9xdNnVWyei5g7vu7IIR0i3qdv4j1O2ErivCx3nfI9sKOE9FO8rv8j6EeeU3RV71R9fWtoPV9gqk8JQABi5CSHd5sS6G5Y1I9tSIRIE2t9EFV6YnOF+mpdey2z/6GBUQKgCCDUOTZaP+4FjS/JVwn1e1b3ZtqkzWeHrAhVksCsdgkKEKRoXo5Aj5NiPJk/USMqdbjLN0sEeckzSfMo9/Tk3wWEdVmd9TD/lfdEuEXKq1b7C+ysvlJI6BjwtgpiCqdApW18ibW65S+Nyp9epQwFZ76air760gYoYMw52kbcjVfqtordNwmQ30KIzkTXBty6hdr4AEeBHD+ViYdpTXIDivKpZ/dgIAo/e8hEecvP+6Le8a3/OjdJBjn0wiAzfK+zrwy24xwlLAhNmTSpgS7N6EU57ExtcYPhtL0kfliuMPWRrkV71wIsTn3JJTjfQkRY2wEPoRwzG0NOFimruzAYNcKaddCgbwYvMOf9PvIoGJewnGKr7I14Nx+8r88qjixUgnlil0zDfEMzOxLgIDpqRF29wPHUOzN6Xw1J0qaX5Xt/An7aJwsFmO1LTa2bzaW4dnhqVytI7CrKKp3v76dgsDLfUg/tyy9Zcfnu3UU68kmrG1SyLB9Vz6x7fB8C3TjQvsVZRXQXm+kVX8hejV+VPx25ExO3iJnGBLPlQkeg2BeNN/m+Vo67HLaRuAl7Yvp5PHACOMqaUHcpL5+GjSX12AWkRkUUmUuAXMrutqT6+9wZZRo8/TKPx/PpLH/BCEO6nEakMdWcMsMPUMb8E3uvSYNzr2NtM7jj7DDm7k0tfly1CoCNt8+N+edeaKzV2pMIx5lZJ3/u3+5AVvxjn+s/L0evqfmH7zrclj3k3d8GV0tUCfmEWCPo5m+3UQ8fpwQlvFTiPeFO8YQo+RqS1nT75vD9gMBkK3ro+9+KYYv5ckGcEuJ+QXSBsdFYfl9upOOMFUFZ2/nW/RFGbU2R8qrCGYYkWS/EOEAcpWavff0gsR7sUa8bEAYqjWx33RUPRq28T2OH2ymGoMamdhhZT8Ehqu8k5OHiU5l7TfBM+5ddm+TxMqqZmmhhRzEz2X6nKaqoFolVat7gc37yMBiR8yGSpUwG/Uzm2t0ztYW7GvBRz6uJK34JfRcRasMnTt4p1z+nd7AgKk3Fg3wnBmBuUpHJihyzj7rGmPA1byHARQR7eScy45gnJPuBzW7fMYPqQe/hthABc0OM1RZDDL6LYoGu3QJMhO8PW9nqRLsdOAOQ6jmVcFa10liWtapYJOGPG+Qe9/bS5U/XLoBXW/8wicf17UcRmqfgIgh9qb80bOhYmwT8ZHY+PQ0seztc6WNnObszU1Mh3Xl7ZJyV8oo9sV8nPqZ1szYENdjhslQclIx0lbcQplXaqDh1ctBiajuka/Xz/xJryAipBuez60RoPSAF+bVtceUC0uyarNpL3+RJ99k8/1V8bwxf1TnN2a8soW5K0jhoD7cuIajEdF+cWOS4fswIuCOzL9AHOuDC0hne23mai2qsXnDc6ykoUpG7SnNCqmNL+H12aj143rz6vuQtJxwHolYVy6qzd707aFtScYyUtH5Nd32eWbe1lVwkBhBHs74DQpoXfxNg+oAq6N3QrEX2HxCCQqndwMSTb/xnXsGMI9DYyG8msA3YmON3FOO3jdYlYUNOdWXXRfsxMUGBIvzXgzlqE6+yX1941GREUznDSjW+0JXb4QNSVrgJTw87Y5St0M3WiErb1ZK2pF9bVEhGrmlTrn4v4wbWbsH2ndrr6YNZok91R6nUYH0edc30jFE1eXysI3clzSMj+cpOuT7wVa1tUdZ/j6XC1k6aWhEMudfVu2NGilHcm9j8Sz3G9kou/4IrfJkfS9aQDfo+BvdmWuCe/op1ugGb6KGw+jdQOE/H5QsyVAZz+QGzbC/DjTtb5IqxtYqsQlVJh1cmI824vzfIq1jlHOZpzIrb+4pD6uQKIxM5mHIMnd5ufdvF3INzcr6DpiZ6XINz3lTORZlJDLfBO4fsnxc94HX/jUdp6GVBx/vDnjkD3qF2PfE9TyqH5Wt5ML8JkTi5+6CnEjNoDup2uS631ftPA7VRtE+y4v9S34PQG9qKYb1lz05Me90RlhZ7bvjEGojCLipxSX4LqfnIN7FlTGdv6mZ/98gX3H2z5LlYQQQGgCHBEKNnYRLCC0szCeqxEGzEt4mKZerQoVi08xT4oobKrRpM1O7drM88ths7/wwF8CUmwCA0jWmMTHlncW4g7DRKB1oRH6IC++krdTIJaOdlNPR0DNPGrJjs+TsrC02G0FshbFbl/MJ4cqRBAcxQm6aVEjIIflNMvwFwAROqmsWBhMurgiJ1B+cESUeS6IkcgNSMFKlI2TIhyk4iFAosblSN0+EEvFMlNjCSQ2LlGOrmJRYaQapNW5/daSn8SC9RdEF1scrIMKKFi0izFgwY7Eh3sDGqAUbog4w/rwJWKDM9h63iYNO3LN8UAchSICDxSR2OTKBYZIPhsAAFyzMEVxUCFDDRoI0abqsPux76OgQgtGABVbiFSWoHBlg0JgS72AmwJDPvAEKQAcLrUXHjREWchSJKJIF1gmCOcJgriCYZ6wOyDAjg0GPHhkUNBQ0VmxYsSX5yNd52xGa9CbwExsLWbl+dYmdL6KF9upgN6aFWckEWYvoD5kg+sD+Uuqofx61GbyQSMbGVY71kXWrZSyasj4mPxOuP6r3lPW613Xzni4IG+I4URPK1v5Yee1mkeqj7dKaNcc11+V49UE1P/tVPQ6vanLxRP55EtVEKhPzelegopWfKs0UJ4vTbiJfJPdKN0qjQ0ZtV/iJ7B+bkLwvaZKckqyXVEkyJW6JRkzyZ0UQnW3v4XbZc31GID9kPvDNgbZ9vn0Oeu0Rb3bNtsOfx0eAD9kD+7vtrAtnXH9bE/N6NL4ORlTVOUA1k/MssFylC14ysOZL3WJylf+0qNHq2nfGeE2tWTdf77m00Qtt8mq9zjs/bX5/zHy/XvoO0oICi6eBF8BHgBARYiRIkaGOBppoVdpL05dBd209UKCPAZZYYVPFHVX/hHgAVAnX0NsAACi8CRBA49ctNWCAQ0BCwYJ9U3p03dgBK35UpaPUao7l6rUPlzXY+6fQuHyhSXqg8wMCAgICAgICJngoH77nyz9DcgDzYSYINhUOj0Dx3SnwIaGgYWArwW7JWdTYG67bv3yjTv9SqB6UvNdgdmzTyMVOAQDu8P5eHm9h4QXf+QxH7eWVakUX3g+MDUaxWmN9oCbj+3WG4gE8OMweQe3aZS0OmFGg07qolpN3gXMjbcd7HQ8B4FO77fia1/b7ZyUXA23Tu1MaiCcYcUQAHxIKGgb2fIFo90eacQGZAbC6XGeAY75rAQgRIUaCFJnliShQojpPDVqzOtCAwixZpqDHYKNhwmxLLlvBBgkFDYPdDnDa5eLu95hEcsE5ZnQRVCmqqKam2axyyWhBigw5CpSomm2kcUj7ZAfxQoojW401oEWH/jIDc6SdCRlFXVanr8/Eyr7srFNcpK79LsFlGxNtAjMWrNiw43AP672h6L6+wtzvrg9QLmmDW/1D7EvKsMHIGAkYZYzxo07CSHMtLxyHuOklygNd9oLPE+bJh/KUmGaG2RUwMWhGaZReJgCHgISCBbswxDmV/ZVgGgLzXQtAiAgxEqTILE9EgRJVvxoI4/8BDSgNZgDtgh6DjWDCbEsuW8EGCQUNg90OcNrl4o5mHMjzTAkjQJBQS74GAUlSpMmQJVdQfyYGBfUKSDAVriuihSqtrQpBfejYE2/nSqvzqQZpD5jkyYmeAlOZxnRmMJNZs9lEM+ZCA/UKhFuQvPJ2CvKESzYVAZOZQnlh2N9xeQ2GyLn5ygNWF4bQxXkmBqznMi4vpMk0KDmLA9hwaIALD7ggLVWKvh4pf0tgvmsBCBEhRoIUmeWJKFCi6leD3rAMNKDWiwDtgh6DjWDCbEsuW8EGCQUNg90OcNrl4u73KE9Eu2bHDHffVYoqqqlpNtvc/dGCFBlyFChRNdswe4v2quPFXTNu2rJTo7EWdOgvM9C2iU4GoCVrYusjeV8H63P0Y+rs9QGXbUy3CcxYsGLDjmPWQ7Rkztsb5bnfLRo2tzsKLcK7ATV3SxEwyhjjBTV2djW3rmiSgtStPwxfQdJWGY/mKTHNDLPbwNQg2eLEF78BVBnuK9wCwuuCfnllwCWUDhwRpDfFIDeUxLmu8yCfAgopopgSyu5VAd777aiLmyjHJLgSqqimZl7rrPdSnf3VxU3bNjOhZjN4744WpMiQo0CJqtnGX//RPurgbXa4uhw4atcaoUWH/joGxmZJZ+Cd1CXewLoXGyNsAjMWrNiw43DfrvcaCDnfDVERY5jbekSMMsb43Im1Ry5SN/foV3uFz5OFeQqmmWF2GxAulfovTyOb7OzFyLFryRXvhZWcvp6zEjpTZuxxzmoUdZlzx5DSGdqbOMH1Dm7GWg4YGqAGnqsrLwL4kFDQMLDXEbh7JXEUvB2jWdw6tSxIkSFHgRKV2pi0T3ZAKy+OaDXWgBYd+up46/WfDYfCdLUve043zYvi1X6XuGxjik1gxoIVG3Ycs57E6N+ckxYlud8t6hx5cGt9WLL0GQkYZYzxW0latQE4wXku3NqCUH1giEhvikH2WhLnQp7zoYBCiiimZFAW/ZUPXNXMIBdY6AOqqKamJS+b1R2GtH24GzTb0KVJe9XRs+jEcQY5tWsNaNGhXxmQxZN+WUxllE3CjAUrNuw43LfTk4eAFjO8HIaMwChjjB86FRf6MThb3HnELdtC+DxZhqdgmhlmF8CFodd/1HTjVqs1xGuohhsVXeCWO84C9lmxWuzUV0x1d3GGQ5ROQd+hq3yjRm4Ojj3Sf8XdV0oMT33oQgTwIaGgYWAfROCgH3NUODxSq9ZdUCfpTmlQNWaNxBG3Wu9Chwjdmg8xbTuzHHXBnYyntoEXnycTPQXTzDAbN1/1+rUAPiQUNAxsU6xLTpEUFFTfFQ0Rsvv4oHAQ9kp8Z+72j0YZbUHYrSw8a5UWAR8SChoGNiqhVmu7WuzV6gw7RoPlTq2R2GkMxCWKWn0QaQvSyw4z1SpqNRLa+JB5cmCR8vsdsqUltLOHEcj5PwU+JBQ0DGx5KWpzJl35VT3I/i+jWwg6dvxnBtKNk8gjnCH7tAgt9YmSO7MYVAbE6d5dKV7XSEitTmdQb7fS4CBJ2KR3t9wIWYdEGJVGFCcfiRG7q+Ik2ee5uMWkQsZErQlBThkRpDfFBk0PiXNd50E+BRRSRDElg7L2v4uQ3be5mX2frl0pqqimRrWaXR1dU6jY5YWaza51Ui1IkSFHgRLVqE3Y0l51lHaM46K2BrTo0HMcIybMWLBiw47DfXv0D4Q9EwyHrNlGYJSxwXhUoaeDfUxp79uGnagqEJfPRsADtrzgESdT4jZZWoVzXS8Qu+Q0pt8W10IRqMBFNWunGEVaxJns9Dxk7ZPaX012o81SE8CHhIKGgW2KlesIkpeO+iKaKd1N61L19poz9cmNMtTfZBPd16zdqLQsSJEhR4FyoIrzYkMqgyDXpTJqfbjWCC069D4ebaMw2QwWrNhsB4f7Ei8b4EqViZA10hs98piAfO4RDAgdhrFC/UmaHlnqY7iutw0714lqNIiYvlSJE6RSItFJmg941ZRHk89FjVbKcBvgBsk3o8ffXu34DEyGUllcI6+s+6QLBatxSL9IZRKclmAIGUcMRZxkcrmuCzjHbVTjPJzywotvfcIaAJOJnoJpZphtBiSVTZDQg4SF9ZAIiz0XpVQrYmCpEIcuJ+KcpHnXsOpxnyc8/cemBGXAHmqtVgL1jis+J6cs4A5HIsxJym3mBRXnRhDk2GIzt4h2EWjhugzlKnTZoIyVAvlXeCCtt4fI1s+VVF9zNg20jgGgXl18lKbmhcZ9x5j2QSX+tKzMWcIs3aSKH6siTpPHOZuUkWMVxQ6Z7SpWpWIUqT5nSVLhFnij3+JSAsqnThOYUIXs2WpIq3TpavBkZbSPYIe/xaFFCgFOL4B+JBaobQV6gtRbOKnkBdDrMS8KzwAnbV4FziPyLVxez/0P1+Q3/J3IaZ7BCkuol+w6RVXlEupUpftmrur2fQX/0wpY33IPqC0FPpeP5q1eXwPW+oO/aDG9AFYC8Dg8J4rAlD4tsxa8VTN77HBpugD8F3G1n+tImlFAeglEE0NsFbck16OHlOCTymePourmHvN1mUhrqH8C6sS2UsB8RSpZZKecgajmz9fETbuc5/+VQyDYqobCGgqzeLUQ7XTQSVfVvSSuIX7t3oxOxoP2aQARN02z74B0KrU4CeK1AsBu4jy++94UsJjj5IusRst5YMeuQc7nhLlNTAGoFYskZSIpTsG2Kjjsflt0FLC7p26lOOdLyXvUzTGpXCGQG97iih7Cl8DBjZPdU+l3J01ydXRl6XA+HLx9ZrTVW3GT0QTR64nFzOMxrFJh//t+USmXy8uS5YhqDfNq+fyQnCxZfi6UxYVq5mLxzCeR35CSyzttefIQTmPxa9b/gnDzxJIn8gYDXwysu5jZfDgQ+gnQLMQhQt7aWoV5ZFPPJ5cg94oIX2fLiWgnOZsKB54D0sbt+2c0WbA7xDnfurhHw6eCDw4MCXGiWLE4shkw3TiQc5WI1E0/zRmHPSWiLFWdVCKeBiXxYimi+Bkkjgydms/VPJDpJ4VsQ0cnzTN1g10Q4tyQcWMzC6gHkEivPiOzlcrUnKoTc816at5TU0dRUHOsplidNNa0vKZczal2uSai1ga7v2d886ohl5oTshPmeVyRrdQW2VQqnh9SK9AP5exDhi+/CjLFI3RmcOIR9odNRA021dmfR5zdSDChWUUBlL2cOk9QcCidXvWByMfPzxK9cu+1y4kTZSLzBWokT91X/6I3IrUzCHy9s2x9sXOHg8RIePv7DSjKrcCMFuBsg0VOjc+uZ4CmKSnCdMP5bCRnss7z5pvUdPqGONN6huX0cwp95JVene0q2i7vDU49hXTm1s6EksBORHpT7ChbIHGu6zzIp4BCiiimhLLDChMsvkLnvf8DqqimJjVvxWhBigw5CpSo1MakfdEBH+fKynzUrjVCiw79UYMQJzquj2Fhn1WnlvtuOi3OVGfHRJJzZVN1LalENzZmsQnMWLBiw47DfYXNB0xq/5AYgzCMADAiRhkbjMf8PdO1TqPp0QvsvPg8WbynYJoZZvsXQtpjiyIWw1+wN9w4Rc9+9rEKlds2dpp3wp6H7jUfYGgEPHrrV+zMZ7cF0jo4STqitH9NAEePX27U5NvMzg8q9+8kusnPi5VW0RSETSRW3dt6AXDGk01JBPAhoaBhYPsFLvnnCLXjUaKF9CTeQkic6zoP8imgkCKKKaHsaIVmatYcy6RRC0iRIUeBElWzTTUhtVcdx1IzTjZQWwNadOjnBoG9c1x7gBbcoLePtBNdrIOaOJrZvGFa8PkcIxH4YrQvwWUb89oEZixYsWHH4Z7E9V40Mesr2/12ckAdgMGtaNac6tRPiAgYZYzxgmiMdA6Tbjge5UHxDnzxoign5nhkT4lpZpg9XODFSOO2tVtqZ7rvuqjjgqIWtRJCbowcDwHYpBnrAVPxBsGgeRWMB3zgkBun3f2mC5tNSB/jE9S22HEizkn6H+gnbg+F/jmP1jw+5xktRjyHU+avWHiXmwMnBjhMh3cIjLM7nHAq4OudCdRCZ697OhdeXqdJNGFQg4Dg9CKs5LYZ5lsQhfxBfg6B+WWjZKuakf64GYyGbAX2u2d4mOw5J+jxihwxdtkGDAP6cNPO6cTGFX8fR9ILQQ5Em5NIVLQbSqXQkQkGp2T5jKwo4y3DUIRpm3UeOHH458qSSmW4Ytmu+g7xb+XXIF8DmKVQBE8a2BEBfEgoaBjYw6MuwOv3ZoxCt7pdf0bifbsqPhIq7KNgpPS90H5T3Ag8o8A+nBo+T0TszEcPAAEs/L+gCF22JQxBCNPdnntNDkfV9V9q4H/vNJyIdpL+O0DY5i4Vdru35v76E9iv9pSXUqxgJCJHkbrPyuPZRxgC+JBQ0DCwhwLnAmA2tYGJIOYjM//9LptjLzTWRQZRnx863eQYgGaT6haQIkOOAiWqZpsRJrRXHTOvYVc2AGrXGqFFh746/jEveDLaKJuEGQtWbNhxuG+ny5aFAQB+xFN/i8wogGz2BEMCdgcdghqE4rtXNgLnOPDWynbyAnaiURMk0wsWdkIxTXRST30emPNS0RfQ6UDMmmSTGy+DgBR3YEqsiT2TrUAeFkG9q68UckLQtXcoupQXLwnTwd8mnVpfJIk4sVfK6VWkCv3fJVb/935Z2Pr9LlpCfn4GirfGJjk2dMgOm3QidEOVrLnlNj7dlv+1l0XsgFtFIZTafxlW+rCr9YoI8+0GTu2xANoeyXX6kPeUPQb1ONVZLIQSRIl25TseG+45m0LS6RXshXdtAeTeJqr6y6kcnLFbzR2oMaCQqBS5ylDHOH/8CQnqDPhlkSTUE00c9JhY2VQSL4tS/hP4ywGNSwFoIjXfzgCdPHonaDe9S6XeDjrl4bdSPzUfrkrlBtJqsZEI6nfFSvFZJRmlnPMlMCbNjB152RF3ji5xG5NSEQG0kYArGRokZw//GnZrRAI4kiHtO9sXT85ZQATwIaGgYWD7Bc7gLkInAIgW0ptix04OiXNd50E+BRRSRDEllF1WYeIsqHXobqvbU8g0zSpuASky5ChQDlQxPc74eUBHQbazEGtrhBbdQB+vWSq8c1w/4E5dijNxKIwzLZl8vk8Hh59urb3excSEbmte5DoSl7hsY3abwIwFKzbsONyT6N5DcB/ud7uBtBAb3Oof4uFGwwJnzQiMMsa4nSXtu9B278VhMw+MjbzCdzih7X59TQQGg8EtVy+JHAm/2D1mk4vR72XKWBf4akn+AIfc9bAGAB+LbXaciHDSmg/5WOvxNnB0Kc6SRwNqjlGPnloKPtja+qJIMSDjQHTsU3xuxNVYWkNlhkolOM/vkfbGiT93QfOB+Qhat4oRKA2kMqF+YL6v+8immCKXBexJb8cLQI1gO4APCQUNA3sgALzLKIDwpg83XgIITgqOIY8GSXWj3W7Lyr2HG5OWjHghQquwGA10fboyVOHXGcKF2U9nLDXi1YiX8ZOUU+B9KshAgpiSD741+Y5xZE6HnQGVF+BjUMqiMOzfKlDu6oDzqbQ7/AGxcEVjgPbz6/M1+GlzCvCT5mWJsZ7xvXdtArCGAFpv9t0TJcN3r+rA19uyCl8sYgk+/dolw4o0mO8DMNkrPvyk3aDQzW8WgKwQSw0VKDYNTFFgjCb6SMi39HMesBdY7t+N/0dvJ8/CxuLW9FfZP+fWF99+FgynN873RnUfj0ifRfoqwvfvPdH3ZvcF4b6tvI1wRf5/qBl5gF62GhamQUebohQ9sLrIm7ACHYV3RfQWmmDG0psGhQIWNm4lkC7FNIapmNhuNwmTzBJ1Y2KCQXDpyz39k5UA8BNUSBmI0BJUBcKFNh6FJS1pveybW8355tbC1m9aRex6p/4GCO4fkU93jR4QSs8Th0QU6gJQqfIXPB/K7ZPROBjf7tTtuzDnbpoA6s1DA8Hn5576VdFRQz7//NNKNQVzTpPRT0D5ecJigonnafcy8pvzMi9YKiaSL3pciNhLHFNF5GW2hJQkI64IEJNj0ialJIL/RZkIXIorRMqKJL+2f7x0WlRRvgmeW6lHFm6/tjt85E+uGtHIp1qsV8oCJ2cy4kh/FZIJPRUJ3DyYFHNTf5RZLwo3Bx6kmI0XRUHQNAIL/HcyALfCSqvU7L/i91ljrXXWe+MtcyPdh642vwfd4LmO2nVXrATuK8w91dezRh/Uq2JMoPDXFIPYAJcLsSAb1BdC5JyIv3+7AwplDwoHFF3VX2152Pes8QKUbUtd+f2zbbDRJnU22+IfW21T76LmDH/T7XbYaZfd9thrn/0OuORyg2jINzT6Xhg5Fh39KGc/wohRnsQIeqHOrsYsPj7j3E2DBR5ohOcQ2UIO2EbxDyItMH8/oqeJAMdMIXwiAAuWWEFD5lYJ1YRgd6GMLn6NjESZ8v65q1zf/pvc+W+f1TEija+QwEgR5CggA6PevhFRsB6/TSgLvXx+KZ5oiTEF+vtGN2F9MhfxEB8Jkjgb54qGV09BaWK3I25iZBz/LA4qCk5Oy4N7ihVKhwr0nBhpC4aMeK8A7DQApPTaZCEZ5X37Ikd+gePcYBXkenS3KLsWNL5PeGDHzdjfJ6Z4fMInIO7Tg3UEFQjsnrXMKaLnp6zf83pG327Y4CghaSxG8m3HwINFqFjJx88XgXO4HCG4YPeEoCLl18IzCjWqVSkHxuEVHLERgVgQyi8N4K4QU+HPs1iQihxNS4ogIXN/qEIRwcHb73KS2qN1uxVOJD8ySjJ8giAGqggJUMKFCcHDFsuGI0OYNPpACKNSC9sirjqq5Kw8ENowQkwUcpESrJV/fGjScWCEGDVzlwwfwhG4PEC4DJiIIVislHirgikRiBIgpDTigSu2CO7h15nxGBwSIToqpV1IfFUrWm75qvmHptZGm2213R6H/OukOx7r8NLvUEhLs8u9d/MNkQhd5dmP3J6kGY7rR3GWK5MtPaMhdHqj2ULRruDeg+okUhkfmkmlM9k9B6GyVKs3mo8/5W5/OJ1xvCApqqYbpmUvHdeL9iPkgRXOYenlpTNtp4Hjkmoy9joR+IJoqU4aAHZPjgAwgS6MTsAhEXS8ChRwPECexJofElymWEfOfmAbChCb+OE5AP3YAFsIawJAgQ3NzWEAqbchGGFd+ZO3EwBgaG/uxAwvJ0RwisiLlKqwWQuAKE4A4AAwWGoBWcp/EE2ox75+DkucPeNdP48rIgvwhXIIxUMDwAkyRf5NDkBv5qX9PLXDtcB4zPs3DptV6PBxX1kUAEuHkwqR1Mhp9i8UR0YcMh5Rl1OhiuztzKGw8WaiYTiBsxXHjRqj3mg2ksaYMa+oUBzRt1lill9SARS8YnaFdnYYefi085hRZSRsR/8dFAUAVCj6wNiZKlH5Kz/FHds31rd/UgDw9oWy9hRfgC/8/weSLRkpxBGAaB0AAD2G/hbRHRpZ7oKb/nfXYBj46cfadu2txlzV7oo211xPBMIQDrd13v1fAQ4eASk5BSWCnoGRiYWDi5uHl0+jsIiouGPueR0AniSWhDx/gYKFixApSoJkKVKlyVCgSLESk5T6W4WpppnphV4vEwVNbuk3bMCIPt3R5i+VviQaHvodff4JCWedy78i0KUl8TyhyleHHXLEfygYAhuJhcYlISImoaWipiFggGJlwyADwEyIX0BQjNMCSh6Ssrxk+AoQJsQEoeLFiBUnSLocmbLkyQ4EucqVmWyK6QrNYGGWTz5754OP3m9vUetljr3oICdpqJrOBQQFwM1W8BBM8A+aoxblgdmi0wDNA+BrAdCCcOomMVQOCVlvAADA9kPrN1CcBmC6LQDEakGkflEcNlordVm4FVZFHnEcdkXcXUSEW4WSVDcGqTpxd8UUFklk5Ymd7V2yirShmGybaAW4+3oM7URuWub5AHBSIU5sSpGiNTs2MdsKx/Vx4hM+x/ThLMvlZ7SQGcX5mR+hutt/BxfDcd3GRtXkCOLrlAn0KqshahXZKLnDrJDRAgWiRcwyA5LQGHUet8ns5Bf4qFXu77DKmxR2zBWUUyKRSCMy0KIUpZCEJJhVPt5nTKZc5Mrw/nKVWpc/TKISCSFT+6Jmdswk0uoeVrK6XS2DZpH1TWRyxq9jhwhc+WPg/SKJyNau72HxGqUKRyYTnUMQZnMkotGkigSmwRB9syn8ICYwNEtlsuBzXI/Y/qbwfZmIqOr+Pdhvul3rIW0trHw8Kdd6JRJZuIrWKi/VEjhupt/0qmRZs+Jv4zGoztBWakNB6KqkRESm//JyWBBRFidCNiUYIDEmhF+CLEgNbyz3SxglY83RUMtKLh41kAePMa/UWO8pzp8IvON6vh9RmFRwCIY3054bjPB8Wz0dKL+/7kBDWWEBakII3s9NYKZrlApfJO1QgsbIcXM0lmOpOV1z9G5xuoxFHcfFejo3oVausoMiUGj+tawhWpVY3k+PWDF206U2B6+JUr1Hg3gXWCmH9RLudoQ9PoKLhHC6NyIaluFUCXflMnndo6jGnokU8xdPtounWMSo6Pa1DsfdCj/BbASAEYJBXXdYAzWdeXLDbZCIRR4gQuY3A464Z6CTpGLLvDhtf1ZowBwUiFK1FDg5xY4eukhT2cdNGDwewk+EWFObfVy+boFN+NmMkYJIZcZaj70gJSMexGXC6y69xePF3MMZRNy8PiYTFVKx+/7HE/BzilgGDNiDsvnEeKOTzCBT0jr8xeWwKH0zC0cbaLo5Zwljjg5eDHXNr9wHR2lACCihfKJYIAUf4Wdzn67hJks7JnPLf6+yGpRisPjAaD3EJwuXF4Wj2gqwmVquos0w3XuQxkabtx/jR14IgaO5KBg2sMAk1qTh15X4Cyy0+LoQ/iwjAZbb/WTE51cT91CoBCgJlPzsmNgnABpjWXZLBJV0KWs6U9AwxkoM2OLYlwairTeVLdodkMFJCOSr+hvXGtccB7po085P/q+38/eR622exzYvMRxTbo7xGIj6woFf8aQb7XoU01oSomc1hk4lDGCyEauqPBTIhHss11hfPFnkLLWVfcc4JyUMJ7jNEqy65CGks9pc7PHv+r0e8+Pq2INeM2qd7cVnhA33xH65DHS7DvxNDTTLvuekEFSCWr6jYlu967L7RtN6O8K+WvK5nl+9QGomDiwIXPLJDuv/OYRKxgEVqL+4kiMfFlw5+mhQDu++T8+HmAwuf4wFUPcY/w6h2IvvZe8SiO2TF0Od1LLBSbMxDb8kpcCZ6FboqrBq2gZmoI2ibzZAkW2jIgXSgkwoFVsA7ZCs1zqUnA8m75T3q3eLTsxzwF2igT6T4GodWkK6kCv5+rhRjautR5vbCZbmWf5BAtRU0qmG7CdzRtuHdJPjcv9fF2LTH+eccAxp5+0u20h6kCZvdqedVibJYlb6yE196MptsbtS57f6VpUAK2vW1VZkfFkvRyxbK9LQl0ab1IohmyfT12maH6bdzueONIg5blVlNjav1jDeT4U7wAG4dpY33LMFpVVme9JvDDMj9giehNjKXXta1KjDlT+QCdtSTMWBpgfEinQzqfH85hTFSCKkcvfiLDYs0KI7Qkb/stHQfL1Psgij6bz8oCGWti45VShK5Z8EsrhBHmZMablpsoEuB1uCpOqVfthvRdgK0P3HjzRa/MdD6xwTtfnw7VvJNwd8fBN8Q/e6yxCFHXgNr6qS075lPipYc4UNhdWNZfvGgkoRDtNsDlV5IWt8voBz+wNA7waQTW5MZ5BvXaHxIj1gxZglZZucZSlt7KsqIfCP5Rb9ZdaGztce8ExDq2F0OZT2bSxZRtZZV4YNrKLREXRIc4aUIiFCRxXkvzWE55S+NUDfloDhBuNyWXkt5Cg4qYl5CaDj+RNzrRZLy6whc8Qxmz/q8NSG5mqT0TwsJ5KD4a+DNUcRN380x2qO9FkTjOOQN57iOq5br5YYgQqC1HDdvrrzSHlN9VlRrDBhUemvf13Q7H3C+8DSZGLQDrwwIl7jTKFwrW7SshWK8S4l5SraUPh5zvuhfO4oSEwmZxD4trhgMJSrznCwY1YiY4jK80E5jFeqte++/QhIjCH923CfmVmrM0GkPNtQMrKDepCV2PAvCGNtypZCp0/PCEcLLL6QW85JhoLgSUO5SumqNyeYUT+f9fG0pPyYaQdEe7H4hWYhQFM1FrV29E3tyffZN1SM1wMqhHarqCwRTPwboaYx37qwmqo0vx07bYGo4xrAm8xFODiGmOIpolmZxMChbnPd++qo7FoZnyiFh21jy0RDgqJHHiG6vr5e11NB5eE0Nk8j8UmbD0l9XPiwIBa0HznF2tiYOFp2NRMTyP8s1sLHivXV1XEpOAyCVsJ74KHij6sqA7zV7K+x7p4sGwK8EoXwZH0ZSt8kd4w66Xm0ooxmNK5U7TspSiT4sDqgCGUWuYTtRaJAjpthzJIcF6pDl3iR0m8NeJa/Vz9vw+E3O43OaoUjZLgo55stfXbxGyRuG6j+Wk713UgYoz/TKPfHUcISDxBgktUgVGHnADpMnvwKWS6gHgsimoN2fjvSoiLrprA1Oz6b4I8cYUbYwgP5S1CH20hw7aHqy7B0IqPvsJnvXh+oPWxcHGzqUY1mN57jK6+o0TIQhv2+rfyLyXznan9Nb+F0X32bZijfHpr54qutp7WvWUTNUJuzE2Ee+Vv2hC1b94Nu5y67rAkrNwE5MJQ4K7G/oRwYrjqOVdqeXl42f9CKUiCiOlWc7Bd5FQc4xksVHRkIUHGSGSESD3NIgbOKl89vwb08M4jOUxQVS6JPjiaSInWyt9Jz9AIex8X64vWAXKW8fmo5BOhxx8Sx2kpaebSVQsI6r1zIT2ccV0MdY2yrkfoNvRi0I1VGTnru9nR967d4UW+zzmain+dVut2+1A9U3jCV4KUxe2E5R4bWE3fZURxOaLbmy1RjLo/16SUdadc5VUPta7MPJrz0dbUwKUTVvka3BvTOtjb9bKyN90sFCQEnSdPbbvgEo3Z2oV499j6kPpeQe+gUEd9R4JsFgs9lF6MxVDbcVilKcvgmat3+PxyB1w3NHVVc83afvDvs9xsMyRSwmbecO4ROQuDXzkbLaEpaTOdDq50iFA/YQGwUb/5UDEt8v0QbuLGill3eF9OF6SDabg8yeNaYq6c8H0olVMC1YhWXj+oNw75eDN4dvoX4bcyuYv04rxehsVwSD6hvukHucXCbOGLuZU9Qu2tU5r43+xqiPeCbSO+8XuH5Nnp9WyLm9ub4GE2TV+XhEdKpTFNn5qOx8NLBR7cx5mO+Y2qF6pPVHb7/KD8WtWSjwHCupbn56f3KI/u+s55+4lT/sa4PZpudfaxfxQ2roar24cfuOKJz+p2L53r1l/RsqrzruLci/KxcsVYTLxwCWrPnM0mRFjqjIAV9kfVBUxTGoCNKI3KX97uesdF9oEzHO75dzjQjawcA80ammm65smXfm8nxrVsyp6aWtH0sVzLG0mPJKkYnlLT3HXiduf5xtHDqSdl65nl4946M6+OQJw95MSdIGfKlC4HEUy4+K8zn7HDe8qzVzyJMiM6GdR2q5gpTwrcZ/eu3ZnB45JVoMI9BSUYssh6shIhawK1JReH5WNuJlFX+9Xg2xNDyx972mebAPXcnEWxKvtyQ9oDRgx57vnLmDqFt+x+I/FN7H05Z3mTdnnsnj/Q/8Pdpjtbmocdh76nEvcwZSsC6bmdOoM86voFEzluuUKz75H6pbWJbdOrZrbfU10EzgZM9AZPy89e6/Ieb8TeiF0GN7Cql6Fapx93TqAb7EFrys0PddUDttEiFQdnPVa/dNOeLxG3Jr7H+i13ABOgtmnbp3Y1rA5GZTA2sBN3MZayZ8+NB437emp8/1iCoOOBXY/C/VpLFPh9T9zoOXBX9u6k35XcPDEXy37g9r0S2Jprq1cpn7vcqoZl4vBqvvAcVenBpMbyG1QpPQlmt4bVLC4Ol6VQyra9I4TcRGfykVtw3J1MfnDeLPcJqZ3WzR+bNGqzPyUj6tE/CUuRNWKqvJNPTKVB6cWwXNe3okudlMvGdUvEdYmH5m+nd/plksoQOlJ0jrAKXz1Na3JnDTA9ajb6Tdssez5ve5F8NergFHBr0rVoRm/2I25H6kJ2eBFp5LicfWjh1zuoHYO2KYJUqWGF4ybyozs86aGeC2MZ+vo1cT3Xxwrgw2+dfm8QvCP4m+pUFYXTP8mxiFasVn4Gz2hIrV2S7C1Ppo8cI+GlUhqyO7fwx3CjRv2gKe4TVz+pnL140tT8+7AwNlQMPoU0oH5tAn2ATWGI9uWZ1bkAQR43GrQ12NbBid8h23COUrhb1SOpfHujRvm5l1kdWZcgBVIruh//ytBHuvoGlg6NTJnwPN2MXsH1t4VXzsnxWQLgxv1Ykgidgdr7DNbvSDdsPViTS+nOUabi9xf1qMU5l3sJyt9XoFtb7pz6cEy9DNcaqovvsquhPuAL/rNmw+p6LK6O2MwJNDjD869WgTagMvU5c5qMptxRCdy6LNa1lDeNtOGsos3Z5vK1N1LJroSGijYCGk2snWuiI9yyazV5O5AmoNTi1zxmNANYyqxXP4069xbNBb8GKmG8VNGgE+T2+1aua5n007uj4S+c1rtVDmi6rI56RH1g9dQ60UI/heqiVnjRkH2/Bn9fnuyOD+bxgLRbfZK8UyPpfSYhtKZXw/N5X5ub8mW+Sa2bu+ean1azE/nxdU1N9iuM4N+eyqX4gCyUveefSibqErP9t7pzps+q1yUXRLrFx53Fc0Z/99dw2iQi66RNQ/Hlb7J0AD90+Eoi36+AJRIru57ltbLdmpvUXE/RXk00qyqJi0GsvhAOh+ixPJd5ruPMol7cdkzac0EYNpSuV4WiSvr2fLCoqyqkeTz7clOha7AR8k2BfLXgBFjwtcyrcmIeLQBLdvjTetG7qRk0rNo/MmTvQT6mRLZw7qHiNN05NrFsSBz7eubd8WRg8FWroPnbH9JyQbEXV/Cv26rsNC+Ap903n0g1sCsJTl7qXR9dtNOvkKwTHaIMbfreUPIS4bCp0tuBC/Jf4wvtyMv4/Dhy8YoKEfsy+cRzPq2tq8O4vva5+XRl4P0t2KWWFjka+pEUKznPpgeL7ilw/4AEWODATaG/4R8z4q0LKezz8bArY90AaIuQS1907xcWUzCFUKjxoWeaepQI4erSUf0XxGrulLrKFL2lvnfJl7fmF7b3YDrlhKJ0oBU8/Ei4Q4dsRfvOT/lp/vGrYrdNtjawoXKHtfx/Nq7a4J1DOjpR5VByFdoYYU/+9cIwO1SknNU2XRqGwBX6vu+2JfuTtbyjg3+Zqp1+2scubKnb5HTVhHylE30IHUCjtbi2YzFSLfsm6+zhcuQy7hg4hAs0DTYtfzXM8w2+D+O9TONXKjBqZtzlbCdBIJ+vOMY+Ini315p2jka5kvMb4CspuTKARYAFb3FJLR+O5gK7TgGEGhatNx8PFgLmVJ/AKVMZ6IQTkdHFqo382VBT4BVDJP+uyRcVQldBvQukvEAF6bUu57Azl+zpYwxIJa7ivIx8qO8st1zL8kU9Twzlb9aAAkq3oo7lW43evgIaoh9BN+ulZoQ2oKU7H6oyvoOjWCjQCraLb4tYHFUvWXaO/qeEybcfqzjXRQshUhwVeAc/cWghEYvkZwNVPEBDR5alJ78J8wTt/alOZzkrHFf53ZFinceE9iATb8ugnnTq6m+ZykH2IFOfO9Bj+HDJc2tC+yc3/+2Sf/XZwBYKgvG/BlKZSNFjwWNr9EAvym9tvKw0Fix5zu5/FhoBhZMEDxPTUJZfzZlF9Ti40e1I0U5zaFFxWN4KtnwFgjLDVC36v4zp94I3rMSHyJsx/vTRB/bbTk+O31Upuv7/ottb8YDNzAT3bX7D8MDEp6lI1px1NQVTeuFA5FLzyo7DwSfpiQfwiHWl6XsRHjiIC+PGmjH1Hg07NWrKYKoxFOpPfJWUh9jRLOZPrdjOHUCH6NnoibTx7SlMvFi2EjHWVwG4lVaJKnDPH6hbbHepI5wdizhlpAl5Dvd460FLqGagrowAFzL1speuC9lISTdBDAm+f5C2iKOAXZcojmOH/6LKf34tsj6ol7WzidvqozNXrE/zYhZg1u2PluFeSffxAxw2BFNmHEJXl5y+p9b/FrjOFwpe/GHrdAZUdqm6RYyOGt+TNvhHP8Lw+fyzU5fVOLlu+fl7NrK18zEj3GB2UVcMRpTGYN6Ohdlq2s9dMRpenxP2zDYJGAZT2z6rdZRQzC+w3xuBhbFaKFnv7WV0Cp4DV3dtX5O19rG6my3lxQElhwcT4PZPiWTscQB/PRK8RfPrDwWpXZnLsnnEe89n+NtT5Zl90Q/VkvEb7cspOTGAVYCW2uOWNu+w8Z34LSQ6Lo9bsYDHArj3xCdgJb9G+UTVWp305RadWYBVoS2xxq2rMj47c/s3ZPzi+GNhk+zDb82K15LklOZPfZm1ZlolCIdFojl/XXnpcRXtyJo2eNQXcDXOe1/WmE60uF/F1s+Zvv/uYrzRaqGybPeHLq/+XC4RXIYQ3hrZPfGXmfispG8lofr8QbHaCNHPm+mhLLHwbNhvui5Wb+/RGOhyOQ3dFxihp3mJSFp3t1niLAArvjo7ORJMEOzLQpZyaQckz3thaSKer1bYveCJA9QXlBA/VRhQM3yN58MD6Mm+OJeRwNUJuCxI63xezz0wZ5/D+u0rdj7kiM75txQE4Qn7liXvJAn/g4ewqsHesq44IfMr7orqSCCRqs+6ev1V+kS/lv9Ng3Gv3ZJykAx4rdH8hEPOxxGXX5ZT7sACconspXXz43b7HAWYcHpZ7gxue33ApPyBtf6E9z46+5re9QTnjDqJw4OK3XLL6aPML6WRVske+/4b9N9jqOsfISdqbrR+UsuTBtxRt18ik5yKRPTeXLNd4Z+qDT+9YWHaL2LwMj52l2b5YUwZveF8yOwu72U7+xPvqd9djBtRnLtrUHWc++JcJG4845Ab6hcav7EybStH/E0eMvoogb8sV/m2emq+bY132fzWGr//hriVCznrwvyNBZSPFo7hUodHjKViWe8Ldr0mUOIbxdFzkS0L+nprS8bTvgACdH3A0VpXTFVoeTHBV02t85/JojGNcLBpBi1Zy8f7uFdAsPBBAoRndq/r7elZpScti6SDcswIYy13FHly2Aup9MEG04vDu3P+y9nrukKzzhx3dfRRjdSz7Rs+32lJyZSy29AB21pCi+2CkLre2k9HqUJQZDDHKvCed+akzIi+9Mh060ku8hwP6HMKHTyQP3VwWWVunNVcqfanWPup5cCX4zt82iS1MVRFwy5YPT0oLs+zb2bls09B8L9g/u+vHUixk+eZ6Dj6iNsdg4+AxU0jZWfyUuPwhXgSUdPOMUKhLBz+FSODXkodsvkqrr055WiNBT7lO+mx/nfqzUIwchXVFdD8awOJHU0/29f0dzg49RDZi7Qi3pWcvCACGrs/PNc5P6F5u8rvhutTvXZ4UOYAQpPiujx7GCBMDZCKj73IlpvCkWi3uaaf8bdGov1W7PU1oRW0C2LI2hsvBlDgJNfO/Brg7er7XaRcG4+jAgCYXJKv+dFMftdLTEmqK12cyyaRgzTeFevxKyms1ncsOjnjy8WCnxZdxuX3pTnMw0GVG3u1CtS6Lf8quIN0rpOn9SuFyNuvup6rWmwnwBn0AIUPQjmNPDd37qFiWqNvtRDvhmk30ULyldjuVeviRdwzGvSuIBj01xtMSDImdBE8b6UJBDP8FgMO6FKuYt1AhJiP73LWLTey+B5ftLd5lKmct3c5smj9/m0WWx8cWre0b/Anuf+w/+M9k+cHgKqNyxyevr4cSEVhsn1TKDf56XeEbPHGj+VN8ONWQKVUciAVz5FoKBZEdWova0d3qdFhP/8vS1qn5eaczqEN0mOR7Gm47qJCd+z1X1Du31zhzcnEjj69Q+BUKEPR+HojhnZ+Nhjo6tJqFGu2ue2zJG9kCmUSpXW+KZrJO28mC89WbFTJcoQC7G5wbP5LSn3JkvD3B+HfOyPXfUOksN9IBOoc3L99Xv5mUfVUVYul9EwrjI2LfG0Lg8EHmQ3ewCp/lueHa59b+wNLUgVcs+LwlxA3HxiddA7sbdCNyp5D9VdxlLTx2VlO/W02k9Nq1+xlt9D1EcJum7dYDn67wet6EzF5ts/kvGck/3gD7G6w/ekyJE8NHEuYWTrPFCcDVz8vH8u3npptTPUcDTa4mdK4ije/SyTeCmQelarzwfGgTK/Zl9aPHq1ELOJGHMDjUQF8Q6WlWXHEqTlP7zHyGWfeOtmbw9MJAjUE0sUqj0mpPEcRpjUat3k5MUyqv6mXPVKq6wYqDWcXf6JpgIp/OENeSxj3HjY2P9xjrEpev7pxVOM3WvlcEAUy+iXboIYG3W34LBUEh8HxYskr7EG7NW8NFIvaR6D5stFoamNcz3PkxJsyH7SknH/R0lqH8oCDaAnKL6uShzebNL13FdDx3H3LLuSrcbSqo/N3J5i2BOirW24RXiU9hEfI0QhtL94XrveG6IajMmhlbutGqse7YN6vLKT7xyIzurlR56/faeE8Sb9Gd4P1Z3nNLu+NBbfmBz7Xlbx6Qaz/4Jjzz9sv4pn2nLohDUHdLaTbuNUJTRzVuKNWnQtMHfZJZbDYEv4PQyDswxGZLZw/5p0NLeMpXVJOXQEbvHH612A0VJMtP/S0qQmKpa7JrMtsENZrAkyb0BCwZT6BGphMvrf2XWeAklFtRMc7sB5qehV+YqePtq8eqJfOt0or8N+T/4P6B+P3gjjHDIlK+ISzZiopqPUH1xfehsDwG3SoVTDlOTITuY4PepOFVAum8+NUPIIMZfN4e03pZabu6w+vJJmr/sBx8q6C5ooF0RtTHhY0qBYZ9wTdbegcGLP1m/hcYpgCBty3Q39YrqYwwd4vPpLebcBEgqE9FhZ1LxI+sWSNYh9sbU6dsasghnsVGS6pwx6pViDG+yYJ16PJtCLjrCfbY1L6RR1JvKGe2iTAw1cd9SUMFnleIPnEwe4Ucl1/R+ei+iH8zz9CcI+MNsnwhZOAldOFAzNIyaydn6PB+dPGLiucHAc+B2dz38UefwsH9at6DaGl/3FKZdTfzccMAuujRccGc+osLzybk0OTASDvYT/bNs6nH6ww2Vqjn6fV8xXR81EnbWk66iTh4TweibN7KEcHrVENvDnsWP4l+ncBDHbba4ElZPMawZsBN4T7eNXF6S50n4tW3GNWuxyl6HyLCL9ty4J4sbbkMF7dOk4X3qkExBV0V6XqaqvK1BWnKgI9rqyp8M8yexRPshg8h1iMMbN40bxa8GfliQBrhTzFYO3nGrX4dVzGZfH2QwHnFwEh36wq6pWfUNLHqHmGVNWGU59GlpzCmJ9YV1z8vM6n0z5k+fWBus/3S8gn8P6s7PJMI/Ys38jlQgWqoJRevi85oXxHLL0JqIr5Agq+4uWpttVfzwZMOBxAtZAIhSMnWimeBrvMPN8v2dNrREY+6OtI2afYNUNHp6b5wb8RD5zPBgo2pOpOy1ObwB1oZfSm325kt+Vc+e94nb++UywT4caOWcDclsiZfy6K3oDL0lVxwc+/CUHPcNUjO/qBFOygXdEyU9NIZgR/bFe5/Pc5s0CP7uAY/5Fx4KH0RHk/N5xNMgu/RpqdHIvF+7b4aB4IVgWDVj4tuB3+gxPAT8azxeE/qgENv2b6yimLQby+GHMdPvTusZUpV2j1NhS77TTjxbg+0tN8e4H1yT0Uu31z3evTfIkb93c1Ms/yMlGk2rzBl+d8goCeMOWVPC4+1tAjWGKtNQKmFNCYXeNo73YuSScKEqVryTb1pxF9y2EoalMdDNYgxx99YMIlUko3fRi6ZcJjtEhAYx7KFu2jLiWuoLWc6jHjyRAvwk+1fq1BkFYpR8rHfkl5+zm+iWNEAP4jx0c/KgUv7RxQK+XO97m8V6t+4E0DguEJ2XCET8L8MeUxrmhb6ki+AYlQZo31K2zhsdH/JMGOAHgkcCmZo3O4aHzyEKuDQJduDFmOy8oFc5IWKia3lhXiDLeYqF8y4x0ygRpLTdREKOhTniKTLqsLPItA5mB3QBU9eBU27owhNnby64UnsRY52sxYtu0zorgLV79vUi/WBplC9CEGmXdN+a4FqzaTEiXzxrL0byuW7DhoSMnHrun8TLWn5HVtR0l4XtfTGvslREibpquvfqvZczp6jqDxjp3LabW+ac3aGygeAUdAPf5EzNRioam4J80pzZkzlFu49P80B2YbesLPCfl2YGwm2T3PnOeKrrqJTl5Ya17Pa9mDhJbYlQ6UZ1p/1vob/L9Bsj0PcPDdRH547B1q6C5VjyXB9bkLS7NjzXTLocz8vBG9hz54nsz5fxg3QLw8uE+Q1L87fpLH9fy8xWaBEtvFQMVc+hTiF3layH5IAllKRcy+bXmprmZ7wT+MhhxAx7wsVt7nW0VyvL+xRKCQf4fMtuctqucXO10f1PA29nAd5mshWGNnyWTPQEg0eXf6yEGT8pVy2Q5vMeHS5MNi0lpWnsD5fwSqoCPYKDr74LOIKz48wCIKPPy/1HV/shawcqOOmPy5veZnNybNF09h4t7zbg3dzYZ/CsBdMYtE+/aV7+Fz6P1/Win7zTTsDVYVkffgpVITe+ITxVhaeWGmbPAWzTp9EvnX2Oh/nv3I2FvkHAKFg/ZhtEzd4uODlV539yuoZBvzLu37PDurBbVtV5NuChJ3Bs88jPNn1TUHaMGszT51/ukEYf95+SKsXftwXxYavhdXxM21C//ONLfKkNxq8f3Dj3Nz+1FKzdDPxngIMnujp2tfOQuEPt8Z3TbA5AjH3W39EPGf4v+WCrFsv754r6sKQu1qibWSR1tVDF9XyWMkZj4n/tlPUTzZxN/0y2ttQ8T6OeduF51RI+28DvQ/Y82HR4rxkGzWnUSp7Asa4lsuElusz9gjiSpu3B2Xc+/o1G4SSragEe+6Kx6sCcechptox1D92QE8n8+LKiX15nlTqFn6yxq8jD4tEYFmnUAjn8x1rPhG4pVJefkHfyhcZENM5txs5+8FaFCLgrYgA2QprXGczvk4FubU8BIENH/S/mX4/BOcD3sog9VUddvE5O27GpLzruPz9xQMCjaaee7MOXpOaKD4Ig9NhZeK5VZ8Xem4Eqz43wfs/id6DuX939J7M4xL9Em0Im8I3ehqm/vxI117rP/amq+jaF/wHJrXzNfxT+ufu+7C5FmO6XmCf4ABrq/l4eDpbz/8OADMBEAAYJAevQNI41yvBjW9AI8Wq9RNJ154j600yqsDDTu1Qg3Gt8Fo52PM2Z6wBS2qYpMVKicgviuIRkT4aslsHsYsLWIEJd9CCt7plumzzKgWjL9mw7ZIZl56MuJa++fMfpwLc6B/fW7hpC0Y0EYeQ+OnAffqjkT6+Fm2rEBkxLAtjy2jOhod6c+VJqoekVdDx0uGIfrdo/xfEHvSFTojhMM4f55yxO072jKkZGR+UidrRDIttrZ+luNhLq5OkZpI4idOwC9OW8cpmwr+ffZkNPMpjPM4TPMlTPI1G5wyWZYzBMWNwwhicMsbDQtP4YDAFDRkH/QkAeHNpB1Rb7cc7jt03RaKxmZVkNOApTvCMM9fktuYZAm37QNvBUaad0E5qZ+gu+kFrXGrEwx6N/t5z/PN3U1/drc/+F3f/BXrwtD6LvvwFBgMAgJNl07PK1wCwSzoSVpvv2cq0rzVWSWdXnibRnAw6tIywTYB5yJnJ0W0jPezpth59oVKSB7SKTwdxk9jsDOje++YCDkiElEphXJY0ArDDxFjwpryTcaqxtAeMNI6vqivj+FjkKACj6LcGDMCY+exYbSkAmw8xw0cQy2Df4hGct9A3STj7pgcf2w3xBkJhoFIYl4mGwwenrfQmZmNYX6cjAqAxp9AD0FZi5RNrCcjc22AHjFhDYDyowQyMWfsNqy1281xsln5zeQHRLDd2AD0EvcHKJ9YByDg/GLCyhkAI1KABjFnfhtWW25XLBGAfUSF8guR6fKsZ7VFsOvS8qJcc9ATudKF0XbUDT6wkJEK0zTK0xxFfdRPFLtuyr/KNO/nVx0SboRz4/1AXGc2erV3kT1ogAAgGsFMkAQDYGQAA2IlICxIpUaZCV/RlnHfpzD+YRwppTXeGc33eCTgI4GPsg9hHsU9in8X+xuPTHz+GPziYy07inMX53hNzn1hErCI2ENuIvUQvn2l4z3PqSG9AK1fDzXMXc1dxr+Bew13NPcv9YzrypvPm87bz3vJ+5P1pDljAZsMieAU8AffbschGpMdxQlNoCa2hvegm9JdrhnViC7EV2GXYVdgq7Cb2rztWccLb8U14C/4hv4HP58v5Or6N7+Y38u/kdwisgtmC7YJPwqBwuXC38JDwhPC88KrwhEhHNFl0k2iDaJvopthavE0ilPRItkvaJYPSmHSq9GEZLovJbpc9koM8VH6j/K6CVLQrdilalbrKYeVVygcqsUqtMqoolVsVUiVUOVVF1a7qV01RzVYtUq1QrVdtUC1XrVHVqXaojqnOqa6pWlWDaoE6rl6qvkPdqu7XiDQtmnWacc0yTa1mk6Zes1dzRHNSc15zRfNSM6jVayvaG7WXtb1EF/EYcYW4p9PSzdNdpduhO6W7rXur+6wb0yv0bn1NP6Lfpv/PoGWYYbjNcM7w0Sg2eozzjPcb3xpHTRrTVNMDpjZTr9lkjpj3W9gWv2Wz5ZvV0NppXWq9xnrI2mMr2PaSFLmEfJt8SI5QMqpAXUbdR7VSPbSHHqbX0jvoN4w/08J0MH3MJGYGs565mznNPGG67Gy7y95mn2y/3r7dfs3+xj7k0Ds8jiHHiGObY7ej29mYBjTHAqoSsCGBHgBZwYZhoGKB6b4HMkMogEAQBLrKHzClovM7GgGPSaKWRzeDIiuJCKowCnhPqJBgQFLOVUcYykN/BdKb+z8QsIEFAEbzAHzJU7PFsdVt67etm7bGdw7BwZVjCCqVaqR+fKoRu8knCpE1q3KOxT4icAoReLSb23M6Vn68n0si4rfTkD3kGU953BMeFsMahHtSn7QSiMDwCTm0fcWFp/Lgn3sBjsjXblZiPvDLBXMo9OLKQsQPChC2vkSygCb4VUfeNHQS1PbwvwKjQEmQFVMeF7u2EqVLUlMM09J3TZXRIzoNpdM4sYXkp5EMlJFtmt/rRtObCdhlxQkuZeDi6W4SFxLsoQuJ15wsE/XyXxeRuYmzsL2Wrgz+ztAyVvY+IBXtEIoxh3p0TaXxBz8+vP/ob7NpNDIFq5FtZG/9vfPSQw2NS1as6c1zM4i2ol/rf0eCis/h1LL5TsvDPel1H9mPOF44gjVN6uSc5piZsjuHpuG/47nq4Zx6lQlN0Q6/3+sgLUr95raSLrfDSdkIo1F9Xiyb2jzjlp50NLGCDhSMoaUaLYHzygAmARPJb8WFLJQuEEa73brLnsVzHQ0bRKECIdYrbaqWr9BFJ0+m08nogZlJQ5nN/9i3a9fuPbsHgYdHNk/HiomGSokSOfX3NLGfdAJUgENTLQK/BKol3Z+OhfFgtu7CidVmjnu2p21pW5btVI7C6Ufl7AY9uvNog5RHj3+fJZCdYn1QpiAhk15RGLDHyiP4czLzzSsdHocIT4aq64c1Z9fSmMN+hN9IywoZHULxs50BOIUIsN3cntMxBrFF3uPSGipaL/vtDSp4tt7Z+tB5Zk6UqOIn6m1wwh6VSD0HaBIR98oBWwVNWUwq8Nses8t1X7LDKRwsziBo9Vmg6irAZJz2t4lRFAbh+z//98iJdk4P0UjlqTLdz9xDX9gto72dk/D6FqnmSjuXIMnKGhSOQYCxfC7Fe1t6HUaa9X2rj39enob+ztuaRt4s3D1fMlGtXecJ4DTcIMScfkCMlyet+DDkTqPwG6cgzp4rmRpOwke+HRvwyyV3yw7YaMVxqREX3l7MiPKcFaMEv6ZB3jmW5XPv/uNFPA7mGPSAG4pzi+JVROM96yh8r1ovz1Z/5x3I3BR8uObSt5eiKEuboHHFSg1qL+zw7ymMqtcFofQP3rBR/xTEWrnsQQuTjZD6gqW4nOSEvnZj4O90yYlhGbARSeNkDiq/lgWxVQqVyXLWSHnlActxH/iDU0gQk+RbcC58AoddbmfSWY0aUsIzxFZw1pn1AFXKpyrEMCBY1h1PHLAqLpWmOhQGekc93YvtSkYYeS26EiS42gpkhW3HhFKWEMSvyY73to94Gf9Ys8Ap9PVyXuGHKWIkM2G9FgS+EgR0fkJPbxbPp9+RDiCkmP1/jtxstCxnZRDuJcSVv2344fsgzpxNGaMFet1vFJaa94Jg50LFQDybkEINCTpGdbTrnv/qudC622+HiT5TG8uMBujEoKJiLTcv6f9vvXzCoVZOt7DALjXq8UpyKnZaWUgXCSOl9K2RkrCk0Aje2jChC/hPbvMXH29fvfuGhxzJxeuTc47fjf+nPlLGs/XB1idb52z97uyEjRlSuQ7aKWItH2KWLzUdnGizVMnpWHJe+qV8yvzUJcfZSG78UULncJz0iMI5lkLprpXzPqK3/HijCXqDChwWqgBCvaIGls701CbklA41BXgMLNnstD56TnjBUWmYAdtOsdIeWu6VF5tsJgmP7WLibntrvqPkKmk6vt9kfWlkUHNW8lTuybUbkZBqI+IYLEg5N10xyH0xeTKdwC9t5xa8QFVN13v5bLYZH646ow7URw37qfiArBhlNbZer+K3/73lskUP3mFUhQWSyNjdSHIKdnoMPx2dRW3mZ8GIcqyXiiBPkyDDy5c5dE5ewCpKQplKlYr83o927+uSqxtWUDqDb15z4ONBtKBj9zjrfVsb8AeyaHMchxOfS82MCxO+8MZ8GmBdnHc0f62VxMAmCKOqpkihcyF195fZsGgv+rFwp2U8wkS7Jbex7X5u9uzxEz3mAxRCpmSmDGa4jFRzegdSrRz2iMlsYZQk47PtnrVEvIGztzh1uOHaM3Lsu4PrmiJBsLftOCyz9zyOhv25UvbSZcLnGIRIsq/kvo2TIiEK8ZNwjVOEhoVIo64fCEVeu5nDqECMKzArFlROmZmAsGF4gt8+ugObFEhjcjPy1Sdehdi3P6kPL5DZBk5jkBiTudFJwVsahCRSJsAk2yfPVXPt1Pg6dVsZz9YTW886j0CQEnlsZe7itxWyLfIQutiUNHuyeuSRi7e+argCGtVy3dpVFx1MkYxN4K2gd+1+/Jh+jx7yVAqI7cgKEwvQJ9PT5z4vGqSw+SCkK03zrZB/JHHx5mKx8O9LLz2dPPr6egyGJDgCOM/8V7ftXNjdquWw1krxayZTSgfwt+GtV2QBDhSzCTXQQ/fuSDGzVgsQTWc3O4jaFcMcP3+fyZWVQcmmrNlxX4NHvOhNmSbz5Vy9/0EoVBojdI8JtP4aPW7zqLB09ZwcnvWCJxShBDmAWTAGxEMS6/4kFkrqCwM7rIH1KYMzEzjW7EYJtisIREnYs7USXaIot6QMHgJD43Fm04MPnb3xNVUjrRs0cIaAO3pIxBp9+UAI9qURkfkmAMnLpOTa76kPQVJMdXF/zlCWbyIU4ncfT0f4XhL/2eQCJx5XFUM4m32NV6qMYzpBU6c361+4cFHPDJUyP2lDRJcrH1t76sY+ChQGBlz8bOgQuXQm2NQt70tyvtfmZMmwgxuUP5ZTJzST4FgLpZTGfqsMM516Qy76ndsuY+te9LcAIhJJn+O69fQQTiAmeK+Twoc7+aLfKkxrOORt7brYzzoE76/2h2fru63btqw7O+GynEKKVeguZ/JovfUTCwtbVNz1bwzw6UdtzBAwKPVWAuFbmmpqWm1Zt25Nuw75Zf8/23fsrNVpUo7oMFwpgP5ctZOdeJOUMCgLrmcyb1Ju3SbVe4c2d69ZBxqrx1SKIPgS/p8vv8HBF9pfP6pjioBuXM3G2X/vff/apg9C397uLG2zfjJmDZ8zrnn33ptjxFikO/lQ9LVhQ+MN8+V9xVjb8UpC4P8Fs6tUVjaBxhBYMX84T+w1BwteKly/0Xvtv9mdx05ccm7Ek7kls51j60ipoAfgh3vah3ACG7n1Gfn4JP6EFudlvEdxUr/9aq88l+KL25Zwq6Nf9IBLx9odPijN0Bo14Muf6oU2tBSxIU2XlZdetuTQhSeeeEV1STUPtsEO2ElA64mjbaxXn2icOLRk2Xbh+b2R8ybOG5O6pRVj45bu409evXyGqePpkdUWz8Np1T1GdxdD0nlWi5PR4ZQYjqlXGpE2kvF63YzVJFfIbHUs+ozabRaNXif8sU79teWl03OU03or82Ex8/4F4g29gXhUKyHy42T9Dm5KBsEAnAMGs7O9J2IZr+DMMhTJIpfN7C8Uf2pPccZlJvPizYLtM2x2Olc4JjjEgu8NOX8tzOfUU3dndJeiRiWvjBMCH1czujcZgSbB26GKKq9iu5lePHpS/vuFg+HRTlErOCGnHMR5jcapCx28J/Zdnl9dzaRXM4taceHM+QvjLl7MexxH6v2PMBiKpaVmvGpalqm2bhzwy0c8vZI/fy6nHK0soFKd1C9cKvO9SG2it6ddxleTUudBj1qiCDGlQQ6o6BMcpwJ6kiI3Y7FoVBKJRqmP2FHZS+DzJ/WCL5EzcnL+P0xs6tPAspWjcpwKYe5SEpq7XYdQV4N+KjdaaGx2T8NlBfbGnPTboOen1X3+QuHVa95+mIbbHc1uJVSVBNyWooYMVR2r+VVylX/EH9IqkyIAayddthO7tLrVYtaJeWBoMXKe284b32fGDQaq/9uq/eDZ+tB5BaZJkr+9to0HgJEuwPYiZ9a6HWBwNLspDnMSgjppLp0jd5FDKUWtZhP8tyy5unZ4xCfP9rsBPSL+9McVjJx85rM3XURFc1g+346Gi+ZNIi78XTbZNCk7DwseKb9ajV4ZTnfj7jJicJY7+zsso8bN1i8d3w+C+rkfXdCZCenukf4BFmwvS66F2ZzsZcxS0IMGo0mNstHmqi6waO+CUXfDIaFSTeGZW5/tyjLgo9IMQ9h4SMdulBwpRXze2vUiC4ZDi5Mz9Dvkenkmj3v3H4rK6Uj+cXxHUmmaQwFBxjQv/moxS97omEEGOizY0Q44NBZQq4n5BKdSchYw4/wj/47zbwoqF+PtVgS9SmXw7hMQ2/jltkS43e8uvTde2mj5GIo9QWulwVxsoyXZrB80ClqOU7csuVqUVKE/rGq+gmdrwFZX510oiok+6/BYdbrH/btHSWr6JsgxoGLmVHLt+jfseGIUvwEQQoAbDZLRZcQVv2ksHblPX49QvEXiZCVLUoiNycUi3BYN8dI2QxlfSPOJtvNG/AMJFKz0OS9oh5IvSLb39Z4FKpHJoaT/DINLlu4z+tFrceMAHRtNE7C1XEovoh2pP61JYJhTRjrd9Q/+wbFcBTdtPJpMwAnlhExaPgCVFjg6V66wEqcJEGs2CgYDe1RKhaqkjI6/MgN3PE7OSo3vBvJRbiyD/JiOwXxvpPlDv3QCapmOE9m2dj8ZjRH6vf9Udlk9hNOY7qVg6F9WuyaYpzmT8xgw7CgCHrB0L8hqVkYKWIX5BI4FZ0Ejc/30liXxSlvu6o8ObL6rNBzSOuCRP7MA9moxIkDrU1QvCNv6QmY5Lzy8h0GHLSgRA/ZK+OJteiFVeivaPwGpGUa74gyGrACvj9ujPZKqaarUe2iHbm0kfQZZdDG9NI1hN8dWGGb19fy/DWqOr8XUuKKip8jYPzfh/Llz6D5vuPYc++by3PV/b7Vunq0vnTcQ9YlYiAQf+USiq9TO73AykWLkp22N2sb+MUaGDWiwtN8TRi0YWKhI+Vec5F9fRffqWg/P2jGn6PSRIxJ0iAGNX/H9G2FOJwPnupXtpBiF3KzxHsyt7elEu6Jg8qEfhVlWd8bHXqmmenh3vuLxrkdqmbz3ggVenfaGfhus6BPZYq/R5/jcxaDZE1fMkI3EN2TQC4HU5W0tT8E7lqkUdp4PLVRMnxbq1FyNgyso8OlP+3y+J7UhrT6XiY2j1GrOCoNInuURlojF/NpUqd8cLASy+GGrL633TuersJhF92Ru1/GTL4mbyVSB1HpFDJRp4BLr6TkkhjmS9/V8ml1zLIyKcKkXDkV8QGiyw632T4z2GTrFt67jM5k+VzgmMMiCczY5by3K5ZSjs442/Rv9Z9EcoTY0daLx3qxK3Wj4wJVXQnZSHrDSOGxOlnLGPgwAXqTpNpfxR2J7ClwgEacwqZXmyqRQUrF1yDIgo9KcQyPidRuFjE+GWm3DKyxNwUcrL1A3RcAPVCrY1TmOI+ROLi5h8bCnG6r3u4ZDzmiXFCzyRy9Ow7zPMYXSBSWcJk1FJ5Kfp01fpjYy+wjCJLPNnWyrrmiPG+7k68UsC+nIHxtLlmWph5mrLhxruMiTmA5a7G6TVOld0KyntbTEHY30BDmwmLRUyhURBgfZ6OKUTs5SdFdWrLNL7RAHeBcLvJnTbvnLeadEBhmQCXU1Q1cRsfpnlNivjnQOxJwrqA0LLIqBguBfEqfsYjfqk+kg8oWzdSbTxe7MmsDZDuPpIm/S4t7bLtgoRdolZBlB8qGRdy7FnlyhYYuCzhF1IEUzVcpkvkgoeaBW08PVE+y3AfShB/3Gj4ByH5XyBSJA9Cj8imFcOLMkH1Ns3571CESp/Bs/NvveD7rNeLuU+qxFHg+pkJYhz39kz00LoR2/N07jOQiJ9P9QtT6etrMCnADeWeiiQYg2BGsB/5EEQqLXbT9uC4Nfuj6pwDQd1xJbP/TysFGpAhxOZ/Fi6hcBGZOlB71Kg+yU91cTW74JnFr7mRuvkv9XlL+9XG+8+EhLGHxHlLlMhRf4xZ87vfCoKZPpBHusJAGqr/a/lTaw7CL3AtyvYergKFAm+VEqzJIE+8EAQhHr0NwgoQ9BpjLojduX4gB+CBBGirJJDJ9ifZNIGqzM5p0kCLfnxqHN8VZTTQZjBEtClZTq/CcuP/u/MnDGSqmoUSJlJCAw8m8Mb1g/f3VY2CLUkG6axHYeAobG4TvHL5Xx9B9XLACuiUAhgTwbpz1iIy1SassNg/fYT/1FwFV6zLaNwIWRgcIyXucQBA2oxpeGCvn/M1v8/EKiryIl8ck4m5cT/AItaxDPhmTpPRbWrjOqyH/4fU1tufapip6eyg0H57HM87nMi/fh+ISQGtBAh93UQA5fEw+HJ8t15Cj7oT7Ody0t5tBu0VNfqFP0BkpUcJFcp+EstEvUPhl76YCXD3gdcTPrpWTS3KwDbNAh0Ew6A9ken3sQTh9W5Q8O2BPgbRuXx4MeJMj2ClcSAL+SW8aQ4N/QBrSZ2WD7ahSTyQwkfTxWuL3Oc9rSPjYL8ocJ74RPIiDFzSzvZPLcaCyiphXC2jCY7imocAZOphVH1HSbUV3jqHrwTZk+/ZadSoihfmj4qD0pf85IRS7VQHbc960qpKoc19Ij2lCoPuxIEIIWWk2zXP1BsyO15P17FwnwoLIZB7o9T4JxWkhJZc/bouTL6EbCp5TMyqA2mukShhRnvW6IbkNBbMAvYTurifBAMG4qHyg6a7UeZo3tSX1LCPR6HvQJoNuH7oARoKHiDfnBJY2NAmSNlAgzCii/Q3bBNKBWblgbGjb+xurcj+JVHPmL8rX/5PStZ8/1Gf0OC1g80Gkbe6OSS3HSygyHrdAdqMoQcX0O1bhjWaPxQMBG3ec7p7bwAKXy7Qc3gbDne6sYqBy5LQ1aCPCXRCwsWc/sw3j0V9vxqq5tvwGPedzTzN6MPRZK/Gmk3xXD5wnF9Q5gnNpwEWFtjBeF64wznQf+n+qzqN9LLnxmaWwBqxdquYg1/Q67zjcOThUbK+qczAUp4rSckE1bzfKmKuOhRO4XL80/3hXF5EbLutZ96jafhJi+bnzi2SseTLnvM4vRwMb1QWHvQT/aCRLLAlua+vh5xGnTIs7BDyNRCaXMDuYWH8k/gDgiJBK6Vv2Kj8Z5HM6Lt18zXY7rhZB7+U7eXn6AZplc2cZKiFrN5U3RNj/CIcrTHZCULbmkvP2fIqXV2vFKkzG/8Vk0tgrQ3+Hv5rzjcYdCJ8abcglMYiBPEu7XlHCES1LFfqR/bODimv6YI7uzrpxcnpS/oNScCMQwd6F2+f77cyni2ZUR8RaGU+xnliePeaTU4CbnLsA+JW/29Sd1He5Pb4Ins1MLc/gcR7zhl0qk6MWZpnVYd6EJhv8tYkUJMX7BuNxk3RtVBllQDB28wXXM57ggOhfgpitjyhg+Riarp7akiIhyo+Ra/ld6OzvO3XrBHwnbsTzALm2pUeaFhY5dGxNd9D/L/FPIC6JKYaD09peq/t6RW85F8Oo/qUKXmZOBRgJ9Uy4F5LH8m1WXgFN9rWsKAaRADsPF2KCN4LCGCqXS75itGZvNTLnsBD+WQbmU3qn+SW+O1LVoJLFo8plaQURM0LYte1ejxCJvASU7jWslEQqlkBlK2LoAYeAX7VvUYp8Fuk0+42t/jGELgtUKmRtZAQaiUGsnhbZhk+YYIo+bLMJXp8kiGB4ItsyWdtTcrTSQiCnRHHag/KWqI/Ap7qJNUrtwqWCp6teCwx0h5DwlZe+AZP/N8qdihKUE3q+XgIl381B2hl1wk/Z8wNMjv04n6CysvLqOI3ZfWfAaeplhuiQ/0uTUm2Wn7nesarmaFbtHxKoyyaN0MJ3n9tPUhVcgYEcP8++1KKUXNPXT4NTsh4jLSbjkGfOg25NaFVa1ktI3CVa01PLbqxZQoflj1t70Y8Huj1Prr+090Fd9xlBm+ezS8xhZ5irm+rDLF2qZeeG9ShR6XOnK9+/ULQd7n+izn8+aSGq/5MbbOU9Cy1BCQUz+pdRHJ8mNT1dIxS9n80XHtqyHp2vdFu6e5kQUAKa0AbSMJvcmx57qlJb/v43N4vDqpaRpqY2zvrLDcmqDK5pDhe8+8P+dGwaszVeIHeyrOFuoPjOLh08vxUHmEdUjvak5JNX5xLn4Wl9OAFxp/3C4Z9bVkT6f1dxErTTrw8fhSxF0Yrf7cKVuMdi0i5MeeBruhxgdClTDVtR40MQ6gc1fLv0LmQqL90xJSAby/VnK0mgZz2fR00sgnCN9jqJlwsCDCMMxg8lBPxqGUsNKMfwm995n3k1ymGbLuNMVvwmCKElNzrmR2QXeyuz8lfKbNOvUz4q0ijEBgb7xfqCqxB6V33cDzndkrEhIWFiqXFNAR0BfOZy5aXza+bamQjredLoTpQM6KubbovKeKxVnIJgqTyu3K5VGjY9tMX3gFB1bGPe66SwHJGwQyuzvSmWn+N3q6KVsFrvXwQGDgAFFXGWVHVMLEcukLhJRRP4gzrAznAVM9uFtaCHKTC8p0IG+Kb4tUtflLtTqTMXjybFYjvxXTd+MDtqNf5xC6V9QbL3K3x/5CHJ67j5X7tJXvr8nbu/DZgzBJx25/VHNKtXq9nOJ0F03/DN1PCNh+z3PvGEXn2bD49ojd/UtFazln5Ou/tvbLsVnSw/bzUo/SP5IWBlXso3uEI590ukKXLHRHXIYoGPJdxwzfAzn9N/Tf2r/Cf3X9Z/df2z/Be1jtKz/bsaP9egZCATqovQXRNowTOvijiWXsloBy9uwC7BLR0tMF/d4BlwNA5m0ccl3144P0bGCIohcgkJ5EoVRFBtOfdrIrgahE29jGcI6kslSvckrI5COQXJEwRj3tchkv1aDU4IWDAZM6PrJE5zUYRm4BwcbFEkzMQcwRNptkBjEQcQB2T8hY2+vPdVcuP2Y29kZRUWA/XRqyttAsTpIeFAwGuv9TxxFwqyPMQ90ZTpbFsBgDKlpWxJyIcsO8A+TLdsmfYeBxdaW0ODxXR2WTAUEZRiDyoDSSNptcjhbgPBIXogH5vljQ+0GkzVK2m8qBTpjUI87JO7WGEjnA/TCcs2KDPMkeeoi/2Q/7irw0EsNjplGxpJUAjDRh+2nuJaJhPRBWPraKHqT2gHndU+VD+BMzYbePc6H/4qpfZwKlqUbJZd+dWutcrTd5fU7Ccl5iPX+6rQrED2zUxRCHN6LtAdCAbvDJzl0wOwxLWeGCRWY9Ran121SoHnL4GfGX1VbuxIlRxThEL0GYTIjZFmo7jQL1zQ3WASDCZeNNFvUwmSXKakfntokBbTGEIloqZlqsxoCrNScMhmYMxJOvIPhiPUxGgtmftWfsH3PWqk5xRhqTJBnvYDf0pH/xNuZZuffKUxMhvCiE8q45kRmXdEyGU0kaaHMjAGHN6b1ynjEpMbVfvsaxq+vjRZojkGGtDgzkGkhSv/gsTUJDDkSTkFXL+UkLVQS1qdHHYwWZUZQSBztg3g/8xMQEApmaJGiO2imumm7w9mF9baafPfg2C4WIB+bpSoe0yVRaV6UbRGCEWZQqmWhUMDFavNj1hpbMxt6GI53O+rpuoBDgXbWcQOwjol/0AcQOvzGnE/MZ9hM5ejp7gEKSXARI7BXlX4ptdsYB+Lr+hKlR9N3AeCzd0Ec4U/i1MPHgUh84rgeZ6/JWhK/I8jMK/A8ckIIccQfBbHfOfCfQwQcujSIULV80CgV+33d/sp04RzxotFt+7VLTFrke5Kql1wSxZqybJi1X/m9Nukufrhci3i51G6tM60j9RdS8+SQTRfGshINTEl5KQSdBp0JzGlKjK4sWgckfkO3COgaTC91EAJI9/IaZpqxDM76SzhjyqMEoOmI+EYgfPpUcoLbTCMjFmRaFrTiSmPkAyySrlzs4CsCDCPjdyGNFP/cXZPC68FXTI/F3olFAydKIUI3tmZxVVdPLPI3bAw6BXEjGW2wmKN1FE6Fxb/QbHlnWERLQocLj61wNEoPuTByPA5msRqI+plDUQmmcI7LF5x71of6Oopyli163GMe7sfh6KgSj4ZcJzZhdVrll6qKOM6TR1q+Xnk+s8onLiT3tle7erSm6AMj9uuD3RicQYMjU+spS30bGX7jfk5aKcTyrVQFZ/PbqJWK5OpyHkfkQc960Wte6Yvyh78h0wxeDzfqi4TLtlGbaTeaC1HcWxcKc813n2t1AIDvdqJI+HI1aiJogOEMlJiVX1u7Zn39iaa2vZ7uN84b8dLJy5lv1Fmx0Kt1Clg14VVbRcsyt3B495plNfvIk5D3y9dlLcLIOqveXH2/xKHIaEDj+aNoduu8BJKHuLoGRkLDfNtxTpg55w68HUA+WhUHKdlhMHErygApMHpQkc+32y7rJhsYN07pdQ/QJx12+Blhi8MvDaopZEVgzBu+HkbhZfDVCmhOb6A2A9UyIxUYqj9yfB7oBNuT8XTKXD7z9vVHc1cDGW2CjSWpF1eXl6f6+83zgfSx6Q08g2ff4WKrjfQk/r/894O97pQbJJIUHvIorixPibe6X6NQF77WajWEj2OuVG4OhcuS2FW9VTppRoTCoeCMfbos9f8DL+j/G15o39/BqEpCKQp65Z2wNH4Sxf4V0fEcKjNU3L55tUt3M51KHajbFxbMwGwdh/ltXMhvBYVEqp/3CrEoxK2woOuolH6Ega5GDJE0jViAI2YSqykSiWdA2M9/1r36zX7WSaV2Te4DQLtNxJnDlX53cPN/QCZJIP7J0EQY+DC4UtsyodurX7hw6fIswSARyU8vFQ55AXuZXnlS/EQVIaMpMIQKDmAZEkH46Mzz55sveSlpSclHz71YOBJwUejsHkND1w/g0x67ibYzHpbJdv2NANMxSA1nueYsFnBv5cvFlf6GoVc4FI1eVYr7ApigVBmrggRTZh3UKJrhLHjE3VEYCqcsl15cKZYfP97fKcLkOs8ElVJYZg1OwCusUjcOc7yUWtzPRSMiISLO70N2ER6nhflBKMC0mE+Nit9sXryoWhk3F16CVSsJuqsMA895Dl4yRAe0rPcUcqZSopZQjKOwI8Q9bU6Md6IpvMC+fkmcf98LwnUSdDObwEsnhzvt1YsWL10+POobhGXCUHbHH9QVZiBRW/Ev/Y5uBHtNsafDkfAp3flYJsrf5yWRCu7LFmmcSUwPbXuYykJk+pBdu1GFqNn7P5UyRMqsgMX/ANLIyYSakKkAZVLtS1Sw6GzxokVV/zxzWCHYNE2OmJ0EHOZGYRglMMSmhRV5bCmPWVjym5NzWKOFB5ArZrZSueOuTNq/sC5LmZnzdDG0zX28es0moqVRLu3PbhDsyqr0VARt4phCr9HJf9MNneADzhWKICJBEVYTJQG28rdOrdcwU4678EzVQoHPgf/vCPXyiMzk0WWvJs0OI86GlGAMGaHNmxZQdpufjyVbEOgV93jnWFbfN9cMHAyYZSI09FqwI9LeLhoPUTJxaaU8e3gK7SBxQGDSgnTF+RknxTKnTYmb8XbYyxgtrcQr2QwLCXqwt5bycw0jH46J0jhx+ljXR2GTc8yFXK0EO1XpcaHVMgy/+Jpmx28Ul6Ju/cDbIwy3N8sciEtzv7gYj00zygL3H+SgsBsR7n7QWfObr8Uvf42VvGc3ng5eMZRKDZ+7HxLo5QIWxYbA3xCD7NRWYIrO5hdd3q0xh3BqQ/Mk0xyPmkWs5NvqH19k/72MgB29cUBV5YVzgTlT5mq8HW0DitfQ8HWF4zwvB4TVDRoRaDThYbOy1c3vgCBQOoTvvAGN4kyGuAJKvq++FTDhpVH0JAEfLTRfuFCcKfJc1bpcgankqb7zYd8cqXNZw04lEBf9QMK0qoVFa1EYrDSDNwT1eq2BH0lbDQZTNpwGcX0j23ByouHD37POSxBIbQwnSZYYPvrPlhKYHFv2rMMyFEPkbE0tpcTjpmlEkvvu+89/wOSMwZ7xvelvQ8sC8xMyU8qWGl6w4bHlzQZdrDESDkcaYzqD+eJFCYZ/jWAtlydRky8UCIR88T8nc6hP7Y6O+JTJk8F/dt63jzQ5qbo9EqVGDdmcgJgyrGawTXmw9rSMsj8PkTdVWeJM6k/BzMWD8B9d3g9kbt5p9ycpvI/RxCsoWPXO+qjfsmRJRR9r9brFYvoOKHmsklu37j3YPRC4A53LL24dj23cUTYYVReXwLk8TFEAXmanGO4KxNhCbQA1cqDcV2QJOlM/1Or1coRxyyglxZxmUTcisvwEX8hk1Qv5hRhlx/H6VHLhKEUqVqZmZBf3G9WGuL83Ho2Gg27mVHthq1SOR3NWe+QBumNjPmqJoVYyZS/1YmPYq8dkqqwBKWISn+hbDyLhEzYM+pTpEdCZoQFHSr1pscTEV9mBzva+ua7rsxAiyKq6OotJVLS0tZIQft2vMQ/4wSlJ4bgs08Od/TJ3mbY1stATXn3akhx1b6Rot7poZUSjKIQz6PvuMsmdKdNF5Melwy9k84WkZ041PLLZKJgEYMop/7rtWhgpZyY5RIGGnyUgF+KClTPGm5hTa5wPDliJ7/StWmGexp9OvgwPaIy5jlkZOb+h5iYRtP2R+v7MbD35YToRHpCIM/UZkH1Vh67vcQ61tSiYwOFh6ZAhUy8iDfdN+I3FYaxVuP9GC6g04HsdJxlFsdB8R0TEFzMm9BftoVZwVRGyqDmdfahC/bdhGAcS/YZfF7Fome9LOhEV1UyK9Qlv04CmZRT1B+0W34LHBGZTUJmSuTzbc9SFRNMQQ25cnka8emlndtUHPWkdV69Yu2ezZetTtUGlWgMmk6dlsOYj0VkTCO2eLApAV3tNNPJP6bctPEdVUrl3duuH6H7HGNJZGdJkseq0OtKh5kLGtidn7V7Z0bB3x9n21dSF6XKncVFejt8H1NgEScvI8e4hTIs0uD5dipz4i5ZOa36/9G8LyBLLysAKCWX0puPHT7atnufIJMMvtT0Ve2rqiyDRK38RmvHy+c7IPAIMpSJxuG142l2mV2ITwDBgBFyAMenx6GQSBYPiMSFvCKCHxewxVgg5+uxc7aMH1au4a1kJpU7/Ocw33XjqxfStfyvPnLvTbv2FJUbz8X5jaVoUoOdjKvhRWWp6B6jV7aYWEgrElNAgEYvGHIROp0lloIQQmEie70/oHGkCDMcoAgN1gP0GPjy/iKf4M9FrtM8YGY6KRQApmE4tqg0NsiaZj9DYi821sTuaYMPmpZtPXn/pb6zulzJ7Ni+9DiUI+uDkpIfil8ezeHPjETbdbwAeXpNTJH5pdO95R0Pe+dhQuHpQEiznyGhcUQMKAVWLHBe/yYnqklSjkSp/6OsTJy4Tuo2eMgOznr4bvtVw/+7jjWcmbsdoJ/uOBDfH3mVd1NwRvoYxCBdDcfi0HzUyiduDfv9WOtwfMMkwHwrUBVKGcTUmhPKvtXieMRQk6bCbCaWAL5Gq1H39/X1d1bz81a5fLqVWSSV8IUE5SNJIYH/uUXZzaMJV7vNmyi4QqU5dZ3NQVIiBP7+SVJbnNDUlIl4avzeSLnnhfJp0ewL68YUoymG/LN3tZ+ztXOju7hSBPx5dZznvUReIrBKtCzUHIBzZWiZu/+jsRHBQugkGT/JXhVR4hwUXJ7NYiIfoFRdNbjz+FfqSqCpthjQQY+6/NOzbsun5i6rqPAoNHKPk4rJAAdBFcZhr7Lr3RQHXrAKCM3dAd1v8Hqv7RWe8QMGbzNZ15eb4Pc6DtJZvKBuONVd7GdY+y4IHMV5XZuI5S2p/4quGQyeH7OZQqDx8qlE+LDw6u+eKhtMXFxQ53oTY/4OaJqhzldM7r9PBI2MrliL/ZH1/HMH3ORRdrdUqjjb4V2o11ho7B1sOJHknfc8X9EX8fvmFMTzwXS5fEv9ariBvQbrJLY2xWCzWGOKAQeul6OZyrZTLlhVDVST7T3FTRfsg8uI06WFO0pf41phzki04uW+64Fi5/sL82ZONXYcN02FdUqNjvWM4HtnhxhwUkp1ef6u0QR0YkNqgUia7HFS5IlpOw6LVWtmNekcUB4Mq1Z/KNLptCfO1hy62MQ10nKQhHh9Eij1ZFJjT8ibvl2M+uShms76c3qJ8yvWm1PR1PHDAMndRGhOSwREOm2EV6nZDrzmKXwNb4WEPNtF/D6X9FjzkYY+wnY96zEOojvVSqVCRflkpStmjJUy7mGZuIpQkd6233YII37ee0K3Fnt6+7NBhgVCGJBJeeajIfDYviA+QrPwk0aYrgxTttyFYsk0822h6tpsQRNfy+Qsmpg4bf7YcwTKVoEjw2mAwT9pcb1znDdqFqvarmNfzfn3KaabAJCb+jRgQxD4KbwzjLgzcnkbbXOf6vPoBSaKk5aehX3rT4P35SvVEJFYoy+PjLJ686cYWjuoKscjfUcnjmJcbxmobTdCuAUQfr9drdrVWq/4GKvIBZhOhfTh8Nct8QL7Xd8+dmGTSRJY+sLJAXHngWGHfvMIarxbcr7a3C5XqTcGIpGDgnUpBxXG4xUqWxKJ3qyaX0hJPCjTiD/gX2SqPIahqUsJUSqk6XcWkvArC7v+DZum1fFM+sqF0TFl+D5uWfYDdmpm6c2ziI77V/Ja+NF/xzLNXnvh8t+/FZ/M32xgKMdzqkxW+RAgsUlTKne6foq7wIPXhTjmbg5IH6SQeHZQPPvBj0V+xTr1WPY5vuUc6KNtsbujfSX/w9fT8Ja0K1+S/22n9PZQX+rjJyIigGoDo3lTK0yfuu/0OuF0+P+c2zk8KgXRs2uCoVO0we713VZtGmsl0MXQzUK3MySUXWyCDLIHPzu8dnju78yJM/Qx63yUVWTeDgle5gcisWpXW+6R8o4xbum173bWU7x16LV1uXx1KM3RRyYdSNBprSoqQ/Uh5ZV5dzVceHCkUchklaexCd3tbNPm4ZE5Xld7Klw1kjLktkrA/Ev7NkhyFwT1EfNa2WgMbJv3CaDIJLHgjufLSPptaKnAgxEOpTK2WhMPFcWIkLStDlMhY/WxZZGCMt2ZjR2z6rsWjPBnmYmPUHfkve+/TO70bOOJGRG4ILCXd6RaXMf2rLhgJA67YIuTGHQISP2LY55zBlq2BuEWpezAh/3KOWks3LFwTCS4JK0q58bHJhsbjwUDhO61mq9UWFJMBgrFxaC5X2o9CQTi6TUmDl9bb3mTbsOsjydLSDhloKLEpiV3FkFysZdKEuDYeDJUE7RJQ5GPr8LmbN2gMDc5bBucLrDjmFnae4l5w0cqxckjo3GR2wmMWk3uzgRDBhaBw5c5kkzJpoT8dfFaQWH1sNCN70W6XU8+0M8fiYRKYYxn7PgATCx5+7uFpxO6o9Jss1+0ZFLvFm3iY3DBC5IBU9jMFfmEVaLEHDPTgy6T+5+YcRwDA2sr1CxnbDKoxZOIc3icA2wMye2eREHDEm9LXkCRFwZTRdxJiP0T3ky36wP5ENbXuKmURwD7RQZJXbkSbevM+gYrjaoZlHg7Q++3UtYXA3A+34OijBHX3tQjTOmV26OjPnDCm9iL2rXg/3TeAMgRHPVRXD2Zz+42AcOTpgXzGarQhs9+uMNcBt30D5JFcHWwpBSfmYpsfEGOwZl3mW5oAkIgBQqTmYGDMTbv2IkH3614rQ3P6NK/EDbwy4Qp7Ip6fIwTOUyQc5BmDlxAxsn3Jw2UyULX8ME3gA8Cfqq5uZYmHkaDX4/nDITS244bdG4omM0wqxc6S9bBYAJ36K4GIe2OghgifirfryiVN+VCpkD2R97hIfQg2oZGoZhmEvyhOOCjUl0USADsjK71YVImnQk5sZhLE+tvBbez9Wln3pZyUAL+irgDDtWLCZzRy+R/O/Wsy58QUAL8LcZUFd/hJ5sZXtqy9TprZTHMMCSt3TdXM4Cnga89Kfb3UdIq9nvR9czT+ASWnuEqBvXHTFgOosJFn3kSaqGfpKtANh/2uQCKXzpUqFdaG4pRU0cGkUgiB8mYKzaR60DXqmoZcr5YulJoqpEa+3sH8fnj5gvOPWejTz/fv23mnn38C0KnnvfrDtGgUBxTDHuoIu13qmIYMAPHQY/phQanoaGnG8iXz/rfQgiRAjxFJpkcG6Ex8nvbb3D5hNL//2uit97U6MSGXWXLAWVwkwMef5rqXdPV/zeLcheDffqu5yr8DHgDR9f5Gin1vPlHg/u9C4fhXAP719iGm639XtW88oCImbKLiYwcABQMAgMCQiQVqHQMZkM4K/RsYbZAniOz1aJiG02bIriK9N+DdsPfVD34/gkaSDojhTZdPD+01DP1IIN8ZpRhrNgWy6ifccwDP1UZ8MqYr8e9yz7OGy47GvT2MXV1o+yiJbfJyjCeZkzsV3a7GCN/KHBZVFU1LsGyeaLgIiDyOJR+DecnMQdICTq0R7Y2Aqy1KPwwY35TybUDXAWP+QrR3jzQtIqptz5WbyC2me3Bpgeg/204ZIiq/YtMIHZmNtM2ENndPhXWSwJQLhpU1NfIzFh1HMiEXKujyh66OLc1iXDMX987BNzejXS/BprFtJ4om8LWIU06g03m4d0l7+3ADMj1BNhiCFyghDv5aq3PmYeZvotTQSx15KshSaH5rMQyBPL0Ypw1troWHRkP+sOrPiKby8QidnBdmAZhueM3UJ6c/Vr8L1snVX0LChuAGafZOoOd8cwrD/Il+KnhnPcl5Frc+w7i8hTZLaWka3TDD2xOEtO+CDFwa+gvfGLGkSEOo04cxoR0XbQTRPm65D8cXsozCabhlEC9Hs84RqYPYQvlYW3DIXXh4D90U03V33fyCogzuKYtLU7dLcMhaxvtCRL2tukYSzRLYLqz6Mba9nXGtYJT+FnY51r2e0OrINURz41TzFYH5GtM6KTRAawuEZveMKp9Sv2c8AAEtBCMsqOoGl4up+EJW0x6G7eCEdXBFdhof+UOnSqapBAG0AW+R5UhMsuriCNcdSfwMh+ZoAKjPfrsHkcXZg+FHtwdn5e/ZBK+H5OrJHorM7h4+RwseLoLKzkMAXPGYjXzl8RDC0R7SQ4BQrIcENoceCsSMPSxgyHrYwMWwtJYCiFZmkiylglVk64mK5PCBrGQJfzNgy5+ij7KXL7cVY+StvUUuvTDIZaeGmCCvPGqBQhVCKYOjeLK/ufLw5GSOckVvtuLJ2oRYZGL8yS9WroCtmgChok2VrUgJa7l0vDzlQbXLlFLwcwvwHjZuQT5XlhpGTGE3e6Ivc4fZYpuI+zXx5xYJonHhphZkdjlvTwXr+z482UzlTjKhYi+fEKMuIK8iXKwr37HFE5cTEMmYWiCuLKtXqUAXyw4UcYUyERvTu430kHmyBYrkyS8FWcoDtpbGS5hj0d+Sqg0HPyVoAwAYeSN8uCXbv3I0qGWMNIOpn5iZ6bYWd5izc3B6+zS2HLAOexDcjWdx8L4HCjy0Zscl/y+/GSc0PO6VHfZYoSdcxMQl/MJDXkSJiYqXn2QHfwHKBPouyORiRKcIHnr2XT1VYZrppgoLB5GD6v6hnCHaTLPNMctOcx0X46dYceItkyDRPFWqVUoafvfl/XBeWriIhdhw2RXb1JMM8pseIPdCWkQQxPyn+AkkVPw3y4RMuYpfCCrVatRKqFOvQaMmzVq0apPkkB69+mIqLaNdh05duvXo1affgEHYP4ftChv5Hw5iQjr09iPsZmC3a5bgoYilEjOOKAkOOsknTSbBcKXL5CmdlGmuu+GU0xqdcdAhzS4hMQwhllpsheVWWiDDVwtdxIo3i2zMfvi6dDtLwcTgDln28E4OdvwsWLRk2WYrtli11TZr1m23w05q+FrlmVee6/A6Srv9iX4jpGVmZc7LyIWQQpCE+NjeT5CsW8sk+5ZsDe+A7BJ/MD6R7FmFNYoj89ZY1HEQmZycVXJ543O2BFpzK87O3G1wbproGSeaiZ53Rm4kU0k64gZvojBBiiAzBSVTBQsKXFIAlJ6E0lOTArSi43YgYIIAaEABsAAAABcANPAMAFS+JQJykBbwAlEgC1SBLjAFtsD18XdAKBQIW8pkrW4KwdVlcqDz0oRW1k/V7IvgaXTKEZCrfDpxTr5+vSTpCCd6ENHn/hZdLyf7w/3HzDq0Q1pEmy2s5R05vME54QR3msDpT6Npifxz6/TCR7WaV+Hp0FTVy0I9p3ADw2aWqXYLwWwl2Tq3EMLsVVfvp1+DJMOevoV42Y0xkazixwaaFFSDEMTjp/rnxoQXEp/SB6vUDAUFxA+tGb1x4l+Jl7kJAAAA)format("woff2");unicode-range:U+0000-00FF,U+0131,U+0152-0153,U+02BB-02BC,U+02C6,U+02DA,U+02DC,U+0304,U+0308,U+0329,U+2000-206F,U+2074,U+20AC,U+2122,U+2191,U+2193,U+2212,U+2215,U+FEFF,U+FFFD}@font-face{font-family:"Rubik";font-style:normal;font-weight:400;src:url(data:font/woff2;base64,d09GMgABAAAAAIp4ABUAAAABQHwAAIn8AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoMsG4G+LhyKFD9IVkFShh4/TVZBUjMGYD9TVEFUgRwnKgCEdi9cEQgKgc10gaRoC4ROADCBtVIBNgIkA4kYBCAFhUoHi1UMB1swKFHCpgOvK7cNANir6l8fPZlujh7oDnB8OVVJBdz13Q6K2vx+Mvn/sw6UyJj/1UsSSlFgzs3AIyNViq7u2thanZPaqym0RKI8XspitWpWWrwrtlfrVHdiqCLCQZynga679ghNYrdEGQoCA7afSILlUxEGGIboCEcfQoAj/GJmfMjSGq7x1RfTMy3s/k3r0qqyOfWqsl6qKq+qPYatY9OB56gVEccmlGLE4GsMcJws/E83X328Q/D4G6tHeP6/7hGPn/ra+YxjuA6Ix+ZQJaJl1nnG93h+bc37tfv/RrLUAkvmKZFLpESGgnIYCViB2OgpVh42FmLkIaJiY8aJoBK9w9N0/rskTc5ifhE7iUmjjXjTtEnNUC0m29oyVcTGZ4ZNPvvTMneYApsz8b8hCvX9WNk98/7eBVERGwGAGn2EUCBUKtIsEf1+39szd9/+ELFlZgXogHRUJKJCVKBSdWags6xd+ZLzxg59sWPZsUXE2+nYUry5RIq3cstb4ksoQSSI2CXpIJTcyq1Q7FhSJBQp3rI3pORFvOUtuyYUc7stxzVD3cAiCDKNBlk6DDm8c2qOZ5BR9R4O0/iAnf/9ye5+lva13nsZBsJNJiNlxsmq+qqaXwKuAFdyfnyn1XsCY7DEs0DY2UNC292bOaa/JYZ2iEpJm8RmyVKAD8tpoTkl5dT8tQhtmcv3xPjSLwkzsXRqaTr4m9X31GWfuv6diKzJjUlNkTpWAgmBEMQqszMQPON47zPZocBIP0GLEhPj3iLcxLQE4+azq+/DEeQcZOT51rGqWtyZBnQiQ0ZQtO8ImpvP/reNBZt0Q8iCVTDkcASP+1FOkg+0hOoQnTjnXxb1ARdVHYGuIs2ejanP879pXR7PCLSeNAJjiU+kjQkaeWjrSWrgMUFjQmxdvta/TNIV6FDNwkiywnI4CzUPa1/tj79pL4EgFkGDtD6h9zt1GqG38Q9x79tN6RYqHQPWi2Ew9H7GQ6FweAlqAdrxBTnQ/5wYI6MqJmQhg42KhP4Pd+9wTS/2OxloecByyo/llEmELzA+DLjAD4PbvJiEzoZYHJz0phURz+3w//++WUv/qz0Den+cTglThVc2w8fV6iAC0uT9W82gXwcnNa5U4wsnFUZSRWotMuszVk4SSvpRq/GKehRhbJC6lROEMSn/fzn92r4LCmA6CPsH1JFqt84Hu4P0w3osOufdpNWsQnpUFVBFCagCYVNg5AIkuQDruADjAWH9Dwq2hLM6pKROuQDLjawfUGqr7U7qyXn3/58ctyEvZ7Ga5Sxns57VchbrzWxnOf7/27RK67tGDeweXAAIwm4vUpBtEpXe/VVPVU8l2ZZlKqNsNwAWqNqlkt2tUQ+ClsgbAUGSbrRBhCmH0Zx8k2CDKCRrbdRvbkAWDCoY80RbdtbwLPehfqsXDfHhc29o+0Y4bmzIz0YIISbC5ZXn5940v7jHhUSEJpSSEZ0SSpFLcv+1u2tlnRP+2976cm59z+wSiiAiQZogIhJCsPutj5VaQMxYWgT1cDS//pZ5Fkker37usaqqVq2oESNGHZTE1Lwrl6QPAfkQNflaL1mrtsHM/Lt01XpOBj0GIcaIESJpQgjR455vOFbfb73M2+tqY6JIohBCx/T/fwwgeMoB+AngNgAxCMARGAAjAIS4EARggZVWqzUQDUYBICDmte87gijJqg6RgU2L2NRxu70wipM0ywshS6URo4wb5tLl6eXM01sc/5dMZovVRlI0YxfhcLrcHq/PHwiGGsORaCyeaEqm0plsLl8slZtbqq1ttfaOrp7evv7BqdOmz1i8en0oYAUEASUlQDAABgBwYfBwkAAALauchmiqAYYA8JEqxHNGU2FBZpkHACHgkcEFMPemNhsQgn8OI8Z9PlKbRJQF6t84jwEFadz+EJJ7JN7AAQ3hSDy8uYC/FCjw2WAz0zKWBThs2L9/xgy3kbs9zNeRfrI5mSLyVN+UoTxrPjVhd16WrUKBAwBUKgX6RtL1ntC7498qDLB16tzvpoogghLXmcP37S2wOr9EaZoAgJCJEAYPx8N46R5EN4ehjvvV+ZUA2vzAFnwUIQgDQfNnjz2KjcAxJsrmBz9ROD+uvEgKbJennCc1MADKbwJw16bK91vk5eCapqu3ma4bVve7x7rOWd+Z9l1dS6LWl/vogR/9Hevm0vdv4sLsrR3/Ulv7Z9CvubJXiyNlEAAQNjRvs1aDZlvgmjqbtvpW28qv4LIv4xItLjEyP8Y/n8Y9zumbl0MNMZbBRjfLZ95MmZ6pTnYi4x7raEY0XHykv/t1NvR4PXXVwVY/Xrpkm4sX7d2OdFaH2tFykw3WXk1F5WIj+Z33+RR3nPePTV9ehgoRS7DosjzzMiU9qSabSNzRR4ARaMhuPzvhO0cdsssnpDts1DT+2hnUusgZDli3aEK/tHplogigzw+43rKj/wPgok8o7OZbT8SRXM8cueLacd/HhvY3g8uQ8B4tM4ScBS6cJDMRjz/lRNcj/cRG9epFEEc2J96+AyXF75VXnzSsbVSQzikDWorknIt0/hiiH7KXpC1mDXvuvlC7weufpXoOPKmzssT/Hf/IvDUh/eoT9OUWiCNP7lZfhCISb1aiLQg4+Acg1zwH3negDQzCsTmZM2wLf9vHlN77/G1cVLqnPy87GnNYJTAH/wUEa0Lm74UemAhApZc5o6++aaSvWPv1yHv0Td3uk/vqQy4cJI489ESh6ECC3Vj72mf5h+Di8wBiTZkqeLoI2Vn3ZO+MXC9GYRiqQ+iUKTCnvdwHPmNHuuuikowkEsm61oMijiRr2u2okmitjzJCwMm1ADBCDO34TjPrdxbNTGCor0wjrANZ8kEGnVVe8rusrH78hV4lOhsiD1v61SzWWl4RRzIDkZdRZgJAIx8HAFNqHM4cB3aqWIfCV61Xs0datkfeziTC0DnE+DBkyuz1aBeg1EBLBEOvujvfjczMHWBn0vOgl40YSU+pV2FjeFo9KyxDusoqpf0BeQyVjchhKI2jJkOLDMUMHZ/Di9pnrVvY1drfyD1XzR7pOBzx1ScyteOoilpQDR4x1xAvaGpvgveG2vOoJ9L1ORKWo4GYq7WtidLBnEBlt5AxkP+UI+ezR8y/1xYWu63rMA+hiiUO1yZr93l4Jq0Hh4mRtKw2hM7Huw5EdIBX29KAR5NkqGRRpyFRBzqowaC+cOfBiBYw0exMgrtSxEhipIajGXHW4Rrm28ObKq2QoW0BKjoqWqMVUGnUHkZvB9ofsdIFdjXXweRG76wL7LW5bNsju0vZI53vh+/bkcm5213pkZy+7cYRMT8nS1ngDaa6J3bc4YCrNGjTrgCAgNo8aqEVakVaFdcqqtvo6ucDPAGDAZaArgAuQApQDVCy2icGds0G5moxHIChecP+Y77n2WqmddzWr60iQ3cAXisxf5TB83FkM0Q+gG4YLL5AV/T6201jl8NNmI0FSqVBBNhpDbzz0WARoA++ufJcaf+GqfsfMh551xqPWzEk3px5Lqav2XGk4u3o+8t47n7+iXY8VbxXuo/OpEDGICWcHJc/0vT7lZ7iWlkXX8R/Y8Pf9bH56dHQ/piRV1E5/HS/mMSf2dNj8DhEoLS+6prrbmjT7pHH3nnvg48++eyr7/73w7fhDkSTVLbA8MON7ue4G0dIm9jajckZu58jHyTKR7F8EuWzWL6I8M1ErBUJwxE1JgcLdFsIEgpyTvl6hPtuHDclIMn8AJjNvlnNC12pc3KaRzGS7iyCW/tarz4vhrj7VCrB0YDn/bvuIt3dnmJR5831cuC1Jxo1QMyMWWChRRZbYqlllhfjy29ocVebe6U8+1yHF156VYbFR5/V76fTT7/81mOMCoGCMECWjqevloA0fzyAIazRUjreZ5lpn49nq3OpDcFpA3fbUMlodU5SNe2N0h8XWhGfYGeetucWB57VI03B2St9HimERXcsblKwcgR+jfu7VglHDsldwWxzP2g+Edl3nsam6l+lQUHN40AQKJxfBpFGW+FBaPzy90Kr+CPmGfvo8JxnzV45C9QuHTkKzLvl2DqRExT8/dNYYJx4WKSdomAJnU/wU82SFeEUtEoyFuvwrLaBGLt/BMOif3JPm/CJ9u86I8aePeKFadYhMr/yzMq9EQzluSsDJJg1GfO2LWtSpr9De3aMguG5ZeeV1wf9k1TrlGh2iJhNahqb/KlYrLEJaP8WmjrTY7GNV1BtbRf3dUxw0igy57T647zIvdbZywJ3jn9/Mj8tsRvq5/xiPaUp1equEa9uhs2C9aA7t0G08SLu5Vx3zV4fcT9oPjFv5Z4at6UZm3/D9l0QtP8siafOSyXbKDRVnV81hHXOi9dGMKbNt23/BJHSb/fug5/vbZV/Ko+XP9swLFjd6Ndq3gbxrw9W+crNb6Pq/daFps0GRpscYvnqCFPUaMt4FhEw+5koGBA6/5bYoMIqJlaktvjjFG/DTn+UbDeI0WwMxBcn0p3kem9Uzg+ZMJV7dV8aAaFeE1wI3SscNP9FOIYVBdr+GEP5xGE9JhHnpKLG9xdNnVWyei5g7vu7IIR0i3qdv4j1O2ErivCx3nfI9sKOE9FO8rv8j6EeeU3RV71R9fWtoPV9gqk8JQABi5CSHd5sS6G5Y1I9tSIRIE2t9EFV6YnOF+mpdey2z/6GBUQKgCCDUOTZaP+4FjS/JVwn1e1b3ZtqkzWeHrAhVksCsdgkKEKRoXo5Aj5NiPJk/USMqdbjLN0sEeckzSfMo9/Tk3wWEdVmd9TD/lfdEuEXKq1b7C+ysvlJI6BjwtgpiCqdApW18ibW65S+Nyp9epQwFZ76air760gYoYMw52kbcjVfqtordNwmQ30KIzkTXBty6hdr4AEeBHD+ViYdpTXIDivKpZ/dgIAo/e8hEecvP+6Le8a3/OjdJBjn0wiAzfK+zrwy24xwlLAhNmTSpgS7N6EU57ExtcYPhtL0kfliuMPWRrkV71wIsTn3JJTjfQkRY2wEPoRwzG0NOFimruzAYNcKaddCgbwYvMOf9PvIoGJewnGKr7I14Nx+8r88qjixUgnlil0zDfEMzOxLgIDpqRF29wPHUOzN6Xw1J0qaX5Xt/An7aJwsFmO1LTa2bzaW4dnhqVytI7CrKKp3v76dgsDLfUg/tyy9Zcfnu3UU68kmrG1SyLB9Vz6x7fB8C3TjQvsVZRXQXm+kVX8hejV+VPx25ExO3iJnGBLPlQkeg2BeNN/m+Vo67HLaRuAl7Yvp5PHACOMqaUHcpL5+GjSX12AWkRkUUmUuAXMrutqT6+9wZZRo8/TKPx/PpLH/BCEO6nEakMdWcMsMPUMb8E3uvSYNzr2NtM7jj7DDm7k0tfly1CoCNt8+N+edeaKzV2pMIx5lZJ3/u3+5AVvxjn+s/L0evqfmH7zrclj3k3d8GV0tUCfmEWCPo5m+3UQ8fpwQlvFTiPeFO8YQo+RqS1nT75vD9gMBkK3ro+9+KYYv5ckGcEuJ+QXSBsdFYfl9upOOMFUFZ2/nW/RFGbU2R8qrCGYYkWS/EOEAcpWavff0gsR7sUa8bEAYqjWx33RUPRq28T2OH2ymGoMamdhhZT8Ehqu8k5OHiU5l7TfBM+5ddm+TxMqqZmmhhRzEz2X6nKaqoFolVat7gc37yMBiR8yGSpUwG/Uzm2t0ztYW7GvBRz6uJK34JfRcRasMnTt4p1z+nd7AgKk3Fg3wnBmBuUpHJihyzj7rGmPA1byHARQR7eScy45gnJPuBzW7fMYPqQe/hthABc0OM1RZDDL6LYoGu3QJMhO8PW9nqRLsdOAOQ6jmVcFa10liWtapYJOGPG+Qe9/bS5U/XLoBXW/8wicf17UcRmqfgIgh9qb80bOhYmwT8ZHY+PQ0seztc6WNnObszU1Mh3Xl7ZJyV8oo9sV8nPqZ1szYENdjhslQclIx0lbcQplXaqDh1ctBiajuka/Xz/xJryAipBuez60RoPSAF+bVtceUC0uyarNpL3+RJ99k8/1V8bwxf1TnN2a8soW5K0jhoD7cuIajEdF+cWOS4fswIuCOzL9AHOuDC0hne23mai2qsXnDc6ykoUpG7SnNCqmNL+H12aj143rz6vuQtJxwHolYVy6qzd707aFtScYyUtH5Nd32eWbe1lVwkBhBHs74DQpoXfxNg+oAq6N3QrEX2HxCCQqndwMSTb/xnXsGMI9DYyG8msA3YmON3FOO3jdYlYUNOdWXXRfsxMUGBIvzXgzlqE6+yX1941GREUznDSjW+0JXb4QNSVrgJTw87Y5St0M3WiErb1ZK2pF9bVEhGrmlTrn4v4wbWbsH2ndrr6YNZok91R6nUYH0edc30jFE1eXysI3clzSMj+cpOuT7wVa1tUdZ/j6XC1k6aWhEMudfVu2NGilHcm9j8Sz3G9kou/4IrfJkfS9aQDfo+BvdmWuCe/op1ugGb6KGw+jdQOE/H5QsyVAZz+QGzbC/DjTtb5IqxtYqsQlVJh1cmI824vzfIq1jlHOZpzIrb+4pD6uQKIxM5mHIMnd5ufdvF3INzcr6DpiZ6XINz3lTORZlJDLfBO4fsnxc94HX/jUdp6GVBx/vDnjkD3qF2PfE9TyqH5Wt5ML8JkTi5+6CnEjNoDup2uS631ftPA7VRtE+y4v9S34PQG9qKYb1lz05Me90RlhZ7bvjEGojCLipxSX4LqfnIN7FlTGdv6mZ/98gX3H2z5LlYQQQGgCHBEKNnYRLCC0szCeqxEGzEt4mKZerQoVi08xT4oobKrRpM1O7drM88ths7/wwF8CUmwCA0jWmMTHlncW4g7DRKB1oRH6IC++krdTIJaOdlNPR0DNPGrJjs+TsrC02G0FshbFbl/MJ4cqRBAcxQm6aVEjIIflNMvwFwAROqmsWBhMurgiJ1B+cESUeS6IkcgNSMFKlI2TIhyk4iFAosblSN0+EEvFMlNjCSQ2LlGOrmJRYaQapNW5/daSn8SC9RdEF1scrIMKKFi0izFgwY7Eh3sDGqAUbog4w/rwJWKDM9h63iYNO3LN8UAchSICDxSR2OTKBYZIPhsAAFyzMEVxUCFDDRoI0abqsPux76OgQgtGABVbiFSWoHBlg0JgS72AmwJDPvAEKQAcLrUXHjREWchSJKJIF1gmCOcJgriCYZ6wOyDAjg0GPHhkUNBQ0VmxYsSX5yNd52xGa9CbwExsLWbl+dYmdL6KF9upgN6aFWckEWYvoD5kg+sD+Uuqofx61GbyQSMbGVY71kXWrZSyasj4mPxOuP6r3lPW613Xzni4IG+I4URPK1v5Yee1mkeqj7dKaNcc11+V49UE1P/tVPQ6vanLxRP55EtVEKhPzelegopWfKs0UJ4vTbiJfJPdKN0qjQ0ZtV/iJ7B+bkLwvaZKckqyXVEkyJW6JRkzyZ0UQnW3v4XbZc31GID9kPvDNgbZ9vn0Oeu0Rb3bNtsOfx0eAD9kD+7vtrAtnXH9bE/N6NL4ORlTVOUA1k/MssFylC14ysOZL3WJylf+0qNHq2nfGeE2tWTdf77m00Qtt8mq9zjs/bX5/zHy/XvoO0oICi6eBF8BHgBARYiRIkaGOBppoVdpL05dBd209UKCPAZZYYVPFHVX/hHgAVAnX0NsAACi8CRBA49ctNWCAQ0BCwYJ9U3p03dgBK35UpaPUao7l6rUPlzXY+6fQuHyhSXqg8wMCAgICAgICJngoH77nyz9DcgDzYSYINhUOj0Dx3SnwIaGgYWArwW7JWdTYG67bv3yjTv9SqB6UvNdgdmzTyMVOAQDu8P5eHm9h4QXf+QxH7eWVakUX3g+MDUaxWmN9oCbj+3WG4gE8OMweQe3aZS0OmFGg07qolpN3gXMjbcd7HQ8B4FO77fia1/b7ZyUXA23Tu1MaiCcYcUQAHxIKGgb2fIFo90eacQGZAbC6XGeAY75rAQgRIUaCFJnliShQojpPDVqzOtCAwixZpqDHYKNhwmxLLlvBBgkFDYPdDnDa5eLu95hEcsE5ZnQRVCmqqKam2axyyWhBigw5CpSomm2kcUj7ZAfxQoojW401oEWH/jIDc6SdCRlFXVanr8/Eyr7srFNcpK79LsFlGxNtAjMWrNiw43AP672h6L6+wtzvrg9QLmmDW/1D7EvKsMHIGAkYZYzxo07CSHMtLxyHuOklygNd9oLPE+bJh/KUmGaG2RUwMWhGaZReJgCHgISCBbswxDmV/ZVgGgLzXQtAiAgxEqTILE9EgRJVvxoI4/8BDSgNZgDtgh6DjWDCbEsuW8EGCQUNg90OcNrl4o5mHMjzTAkjQJBQS74GAUlSpMmQJVdQfyYGBfUKSDAVriuihSqtrQpBfejYE2/nSqvzqQZpD5jkyYmeAlOZxnRmMJNZs9lEM+ZCA/UKhFuQvPJ2CvKESzYVAZOZQnlh2N9xeQ2GyLn5ygNWF4bQxXkmBqznMi4vpMk0KDmLA9hwaIALD7ggLVWKvh4pf0tgvmsBCBEhRoIUmeWJKFCi6leD3rAMNKDWiwDtgh6DjWDCbEsuW8EGCQUNg90OcNrl4u73KE9Eu2bHDHffVYoqqqlpNtvc/dGCFBlyFChRNdswe4v2quPFXTNu2rJTo7EWdOgvM9C2iU4GoCVrYusjeV8H63P0Y+rs9QGXbUy3CcxYsGLDjmPWQ7Rkztsb5bnfLRo2tzsKLcK7ATV3SxEwyhjjBTV2djW3rmiSgtStPwxfQdJWGY/mKTHNDLPbwNQg2eLEF78BVBnuK9wCwuuCfnllwCWUDhwRpDfFIDeUxLmu8yCfAgopopgSyu5VAd777aiLmyjHJLgSqqimZl7rrPdSnf3VxU3bNjOhZjN4744WpMiQo0CJqtnGX//RPurgbXa4uhw4atcaoUWH/joGxmZJZ+Cd1CXewLoXGyNsAjMWrNiw43DfrvcaCDnfDVERY5jbekSMMsb43Im1Ry5SN/foV3uFz5OFeQqmmWF2GxAulfovTyOb7OzFyLFryRXvhZWcvp6zEjpTZuxxzmoUdZlzx5DSGdqbOMH1Dm7GWg4YGqAGnqsrLwL4kFDQMLDXEbh7JXEUvB2jWdw6tSxIkSFHgRKV2pi0T3ZAKy+OaDXWgBYd+up46/WfDYfCdLUve043zYvi1X6XuGxjik1gxoIVG3Ycs57E6N+ckxYlud8t6hx5cGt9WLL0GQkYZYzxW0latQE4wXku3NqCUH1giEhvikH2WhLnQp7zoYBCiiimZFAW/ZUPXNXMIBdY6AOqqKamJS+b1R2GtH24GzTb0KVJe9XRs+jEcQY5tWsNaNGhXxmQxZN+WUxllE3CjAUrNuw43LfTk4eAFjO8HIaMwChjjB86FRf6MThb3HnELdtC+DxZhqdgmhlmF8CFodd/1HTjVqs1xGuohhsVXeCWO84C9lmxWuzUV0x1d3GGQ5ROQd+hq3yjRm4Ojj3Sf8XdV0oMT33oQgTwIaGgYWAfROCgH3NUODxSq9ZdUCfpTmlQNWaNxBG3Wu9Chwjdmg8xbTuzHHXBnYyntoEXnycTPQXTzDAbN1/1+rUAPiQUNAxsU6xLTpEUFFTfFQ0Rsvv4oHAQ9kp8Z+72j0YZbUHYrSw8a5UWAR8SChoGNiqhVmu7WuzV6gw7RoPlTq2R2GkMxCWKWn0QaQvSyw4z1SpqNRLa+JB5cmCR8vsdsqUltLOHEcj5PwU+JBQ0DGx5KWpzJl35VT3I/i+jWwg6dvxnBtKNk8gjnCH7tAgt9YmSO7MYVAbE6d5dKV7XSEitTmdQb7fS4CBJ2KR3t9wIWYdEGJVGFCcfiRG7q+Ik2ee5uMWkQsZErQlBThkRpDfFBk0PiXNd50E+BRRSRDElg7L2v4uQ3be5mX2frl0pqqimRrWaXR1dU6jY5YWaza51Ui1IkSFHgRLVqE3Y0l51lHaM46K2BrTo0HMcIybMWLBiw47DfXv0D4Q9EwyHrNlGYJSxwXhUoaeDfUxp79uGnagqEJfPRsADtrzgESdT4jZZWoVzXS8Qu+Q0pt8W10IRqMBFNWunGEVaxJns9Dxk7ZPaX012o81SE8CHhIKGgW2KlesIkpeO+iKaKd1N61L19poz9cmNMtTfZBPd16zdqLQsSJEhR4FyoIrzYkMqgyDXpTJqfbjWCC069D4ebaMw2QwWrNhsB4f7Ei8b4EqViZA10hs98piAfO4RDAgdhrFC/UmaHlnqY7iutw0714lqNIiYvlSJE6RSItFJmg941ZRHk89FjVbKcBvgBsk3o8ffXu34DEyGUllcI6+s+6QLBatxSL9IZRKclmAIGUcMRZxkcrmuCzjHbVTjPJzywotvfcIaAJOJnoJpZphtBiSVTZDQg4SF9ZAIiz0XpVQrYmCpEIcuJ+KcpHnXsOpxnyc8/cemBGXAHmqtVgL1jis+J6cs4A5HIsxJym3mBRXnRhDk2GIzt4h2EWjhugzlKnTZoIyVAvlXeCCtt4fI1s+VVF9zNg20jgGgXl18lKbmhcZ9x5j2QSX+tKzMWcIs3aSKH6siTpPHOZuUkWMVxQ6Z7SpWpWIUqT5nSVLhFnij3+JSAsqnThOYUIXs2WpIq3TpavBkZbSPYIe/xaFFCgFOL4B+JBaobQV6gtRbOKnkBdDrMS8KzwAnbV4FziPyLVxez/0P1+Q3/J3IaZ7BCkuol+w6RVXlEupUpftmrur2fQX/0wpY33IPqC0FPpeP5q1eXwPW+oO/aDG9AFYC8Dg8J4rAlD4tsxa8VTN77HBpugD8F3G1n+tImlFAeglEE0NsFbck16OHlOCTymePourmHvN1mUhrqH8C6sS2UsB8RSpZZKecgajmz9fETbuc5/+VQyDYqobCGgqzeLUQ7XTQSVfVvSSuIX7t3oxOxoP2aQARN02z74B0KrU4CeK1AsBu4jy++94UsJjj5IusRst5YMeuQc7nhLlNTAGoFYskZSIpTsG2Kjjsflt0FLC7p26lOOdLyXvUzTGpXCGQG97iih7Cl8DBjZPdU+l3J01ydXRl6XA+HLx9ZrTVW3GT0QTR64nFzOMxrFJh//t+USmXy8uS5YhqDfNq+fyQnCxZfi6UxYVq5mLxzCeR35CSyzttefIQTmPxa9b/gnDzxJIn8gYDXwysu5jZfDgQ+gnQLMQhQt7aWoV5ZFPPJ5cg94oIX2fLiWgnOZsKB54D0sbt+2c0WbA7xDnfurhHw6eCDw4MCXGiWLE4shkw3TiQc5WI1E0/zRmHPSWiLFWdVCKeBiXxYimi+Bkkjgydms/VPJDpJ4VsQ0cnzTN1g10Q4tyQcWMzC6gHkEivPiOzlcrUnKoTc816at5TU0dRUHOsplidNNa0vKZczal2uSai1ga7v2d886ohl5oTshPmeVyRrdQW2VQqnh9SK9AP5exDhi+/CjLFI3RmcOIR9odNRA021dmfR5zdSDChWUUBlL2cOk9QcCidXvWByMfPzxK9cu+1y4kTZSLzBWokT91X/6I3IrUzCHy9s2x9sXOHg8RIePv7DSjKrcCMFuBsg0VOjc+uZ4CmKSnCdMP5bCRnss7z5pvUdPqGONN6huX0cwp95JVene0q2i7vDU49hXTm1s6EksBORHpT7ChbIHGu6zzIp4BCiiimhLLDChMsvkLnvf8DqqimJjVvxWhBigw5CpSo1MakfdEBH+fKynzUrjVCiw79UYMQJzquj2Fhn1WnlvtuOi3OVGfHRJJzZVN1LalENzZmsQnMWLBiw47DfYXNB0xq/5AYgzCMADAiRhkbjMf8PdO1TqPp0QvsvPg8WbynYJoZZvsXQtpjiyIWw1+wN9w4Rc9+9rEKlds2dpp3wp6H7jUfYGgEPHrrV+zMZ7cF0jo4STqitH9NAEePX27U5NvMzg8q9+8kusnPi5VW0RSETSRW3dt6AXDGk01JBPAhoaBhYPsFLvnnCLXjUaKF9CTeQkic6zoP8imgkCKKKaHsaIVmatYcy6RRC0iRIUeBElWzTTUhtVcdx1IzTjZQWwNadOjnBoG9c1x7gBbcoLePtBNdrIOaOJrZvGFa8PkcIxH4YrQvwWUb89oEZixYsWHH4Z7E9V40Mesr2/12ckAdgMGtaNac6tRPiAgYZYzxgmiMdA6Tbjge5UHxDnzxoign5nhkT4lpZpg9XODFSOO2tVtqZ7rvuqjjgqIWtRJCbowcDwHYpBnrAVPxBsGgeRWMB3zgkBun3f2mC5tNSB/jE9S22HEizkn6H+gnbg+F/jmP1jw+5xktRjyHU+avWHiXmwMnBjhMh3cIjLM7nHAq4OudCdRCZ697OhdeXqdJNGFQg4Dg9CKs5LYZ5lsQhfxBfg6B+WWjZKuakf64GYyGbAX2u2d4mOw5J+jxihwxdtkGDAP6cNPO6cTGFX8fR9ILQQ5Em5NIVLQbSqXQkQkGp2T5jKwo4y3DUIRpm3UeOHH458qSSmW4Ytmu+g7xb+XXIF8DmKVQBE8a2BEBfEgoaBjYw6MuwOv3ZoxCt7pdf0bifbsqPhIq7KNgpPS90H5T3Ag8o8A+nBo+T0TszEcPAAEs/L+gCF22JQxBCNPdnntNDkfV9V9q4H/vNJyIdpL+O0DY5i4Vdru35v76E9iv9pSXUqxgJCJHkbrPyuPZRxgC+JBQ0DCwhwLnAmA2tYGJIOYjM//9LptjLzTWRQZRnx863eQYgGaT6haQIkOOAiWqZpsRJrRXHTOvYVc2AGrXGqFFh746/jEveDLaKJuEGQtWbNhxuG+ny5aFAQB+xFN/i8wogGz2BEMCdgcdghqE4rtXNgLnOPDWynbyAnaiURMk0wsWdkIxTXRST30emPNS0RfQ6UDMmmSTGy+DgBR3YEqsiT2TrUAeFkG9q68UckLQtXcoupQXLwnTwd8mnVpfJIk4sVfK6VWkCv3fJVb/935Z2Pr9LlpCfn4GirfGJjk2dMgOm3QidEOVrLnlNj7dlv+1l0XsgFtFIZTafxlW+rCr9YoI8+0GTu2xANoeyXX6kPeUPQb1ONVZLIQSRIl25TseG+45m0LS6RXshXdtAeTeJqr6y6kcnLFbzR2oMaCQqBS5ylDHOH/8CQnqDPhlkSTUE00c9JhY2VQSL4tS/hP4ywGNSwFoIjXfzgCdPHonaDe9S6XeDjrl4bdSPzUfrkrlBtJqsZEI6nfFSvFZJRmlnPMlMCbNjB152RF3ji5xG5NSEQG0kYArGRokZw//GnZrRAI4kiHtO9sXT85ZQATwIaGgYWD7Bc7gLkInAIgW0ptix04OiXNd50E+BRRSRDEllF1WYeIsqHXobqvbU8g0zSpuASky5ChQDlQxPc74eUBHQbazEGtrhBbdQB+vWSq8c1w/4E5dijNxKIwzLZl8vk8Hh59urb3excSEbmte5DoSl7hsY3abwIwFKzbsONyT6N5DcB/ud7uBtBAb3Oof4uFGwwJnzQiMMsa4nSXtu9B278VhMw+MjbzCdzih7X59TQQGg8EtVy+JHAm/2D1mk4vR72XKWBf4akn+AIfc9bAGAB+LbXaciHDSmg/5WOvxNnB0Kc6SRwNqjlGPnloKPtja+qJIMSDjQHTsU3xuxNVYWkNlhkolOM/vkfbGiT93QfOB+Qhat4oRKA2kMqF+YL6v+8immCKXBexJb8cLQI1gO4APCQUNA3sgALzLKIDwpg83XgIITgqOIY8GSXWj3W7Lyr2HG5OWjHghQquwGA10fboyVOHXGcKF2U9nLDXi1YiX8ZOUU+B9KshAgpiSD741+Y5xZE6HnQGVF+BjUMqiMOzfKlDu6oDzqbQ7/AGxcEVjgPbz6/M1+GlzCvCT5mWJsZ7xvXdtArCGAFpv9t0TJcN3r+rA19uyCl8sYgk+/dolw4o0mO8DMNkrPvyk3aDQzW8WgKwQSw0VKDYNTFFgjCb6SMi39HMesBdY7t+N/0dvJ8/CxuLW9FfZP+fWF99+FgynN873RnUfj0ifRfoqwvfvPdH3ZvcF4b6tvI1wRf5/qBl5gF62GhamQUebohQ9sLrIm7ACHYV3RfQWmmDG0psGhQIWNm4lkC7FNIapmNhuNwmTzBJ1Y2KCQXDpyz39k5UA8BNUSBmI0BJUBcKFNh6FJS1pveybW8355tbC1m9aRex6p/4GCO4fkU93jR4QSs8Th0QU6gJQqfIXPB/K7ZPROBjf7tTtuzDnbpoA6s1DA8Hn5576VdFRQz7//NNKNQVzTpPRT0D5ecJigonnafcy8pvzMi9YKiaSL3pciNhLHFNF5GW2hJQkI64IEJNj0ialJIL/RZkIXIorRMqKJL+2f7x0WlRRvgmeW6lHFm6/tjt85E+uGtHIp1qsV8oCJ2cy4kh/FZIJPRUJ3DyYFHNTf5RZLwo3Bx6kmI0XRUHQNAIL/HcyALfCSqvU7L/i91ljrXXWe+MtcyPdh642vwfd4LmO2nVXrATuK8w91dezRh/Uq2JMoPDXFIPYAJcLsSAb1BdC5JyIv3+7AwplDwoHFF3VX2152Pes8QKUbUtd+f2zbbDRJnU22+IfW21T76LmDH/T7XbYaZfd9thrn/0OuORyg2jINzT6Xhg5Fh39KGc/wohRnsQIeqHOrsYsPj7j3E2DBR5ohOcQ2UIO2EbxDyItMH8/oqeJAMdMIXwiAAuWWEFD5lYJ1YRgd6GMLn6NjESZ8v65q1zf/pvc+W+f1TEija+QwEgR5CggA6PevhFRsB6/TSgLvXx+KZ5oiTEF+vtGN2F9MhfxEB8Jkjgb54qGV09BaWK3I25iZBz/LA4qCk5Oy4N7ihVKhwr0nBhpC4aMeK8A7DQApPTaZCEZ5X37Ikd+gePcYBXkenS3KLsWNL5PeGDHzdjfJ6Z4fMInIO7Tg3UEFQjsnrXMKaLnp6zf83pG327Y4CghaSxG8m3HwINFqFjJx88XgXO4HCG4YPeEoCLl18IzCjWqVSkHxuEVHLERgVgQyi8N4K4QU+HPs1iQihxNS4ogIXN/qEIRwcHb73KS2qN1uxVOJD8ySjJ8giAGqggJUMKFCcHDFsuGI0OYNPpACKNSC9sirjqq5Kw8ENowQkwUcpESrJV/fGjScWCEGDVzlwwfwhG4PEC4DJiIIVislHirgikRiBIgpDTigSu2CO7h15nxGBwSIToqpV1IfFUrWm75qvmHptZGm2213R6H/OukOx7r8NLvUEhLs8u9d/MNkQhd5dmP3J6kGY7rR3GWK5MtPaMhdHqj2ULRruDeg+okUhkfmkmlM9k9B6GyVKs3mo8/5W5/OJ1xvCApqqYbpmUvHdeL9iPkgRXOYenlpTNtp4Hjkmoy9joR+IJoqU4aAHZPjgAwgS6MTsAhEXS8ChRwPECexJofElymWEfOfmAbChCb+OE5AP3YAFsIawJAgQ3NzWEAqbchGGFd+ZO3EwBgaG/uxAwvJ0RwisiLlKqwWQuAKE4A4AAwWGoBWcp/EE2ox75+DkucPeNdP48rIgvwhXIIxUMDwAkyRf5NDkBv5qX9PLXDtcB4zPs3DptV6PBxX1kUAEuHkwqR1Mhp9i8UR0YcMh5Rl1OhiuztzKGw8WaiYTiBsxXHjRqj3mg2ksaYMa+oUBzRt1lill9SARS8YnaFdnYYefi085hRZSRsR/8dFAUAVCj6wNiZKlH5Kz/FHds31rd/UgDw9oWy9hRfgC/8/weSLRkpxBGAaB0AAD2G/hbRHRpZ7oKb/nfXYBj46cfadu2txlzV7oo211xPBMIQDrd13v1fAQ4eASk5BSWCnoGRiYWDi5uHl0+jsIiouGPueR0AniSWhDx/gYKFixApSoJkKVKlyVCgSLESk5T6W4WpppnphV4vEwVNbuk3bMCIPt3R5i+VviQaHvodff4JCWedy78i0KUl8TyhyleHHXLEfygYAhuJhcYlISImoaWipiFggGJlwyADwEyIX0BQjNMCSh6Ssrxk+AoQJsQEoeLFiBUnSLocmbLkyQ4EucqVmWyK6QrNYGGWTz5754OP3m9vUetljr3oICdpqJrOBQQFwM1W8BBM8A+aoxblgdmi0wDNA+BrAdCCcOomMVQOCVlvAADA9kPrN1CcBmC6LQDEakGkflEcNlordVm4FVZFHnEcdkXcXUSEW4WSVDcGqTpxd8UUFklk5Ymd7V2yirShmGybaAW4+3oM7URuWub5AHBSIU5sSpGiNTs2MdsKx/Vx4hM+x/ThLMvlZ7SQGcX5mR+hutt/BxfDcd3GRtXkCOLrlAn0KqshahXZKLnDrJDRAgWiRcwyA5LQGHUet8ns5Bf4qFXu77DKmxR2zBWUUyKRSCMy0KIUpZCEJJhVPt5nTKZc5Mrw/nKVWpc/TKISCSFT+6Jmdswk0uoeVrK6XS2DZpH1TWRyxq9jhwhc+WPg/SKJyNau72HxGqUKRyYTnUMQZnMkotGkigSmwRB9syn8ICYwNEtlsuBzXI/Y/qbwfZmIqOr+Pdhvul3rIW0trHw8Kdd6JRJZuIrWKi/VEjhupt/0qmRZs+Jv4zGoztBWakNB6KqkRESm//JyWBBRFidCNiUYIDEmhF+CLEgNbyz3SxglY83RUMtKLh41kAePMa/UWO8pzp8IvON6vh9RmFRwCIY3054bjPB8Wz0dKL+/7kBDWWEBakII3s9NYKZrlApfJO1QgsbIcXM0lmOpOV1z9G5xuoxFHcfFejo3oVausoMiUGj+tawhWpVY3k+PWDF206U2B6+JUr1Hg3gXWCmH9RLudoQ9PoKLhHC6NyIaluFUCXflMnndo6jGnokU8xdPtounWMSo6Pa1DsfdCj/BbASAEYJBXXdYAzWdeXLDbZCIRR4gQuY3A464Z6CTpGLLvDhtf1ZowBwUiFK1FDg5xY4eukhT2cdNGDwewk+EWFObfVy+boFN+NmMkYJIZcZaj70gJSMexGXC6y69xePF3MMZRNy8PiYTFVKx+/7HE/BzilgGDNiDsvnEeKOTzCBT0jr8xeWwKH0zC0cbaLo5Zwljjg5eDHXNr9wHR2lACCihfKJYIAUf4Wdzn67hJks7JnPLf6+yGpRisPjAaD3EJwuXF4Wj2gqwmVquos0w3XuQxkabtx/jR14IgaO5KBg2sMAk1qTh15X4Cyy0+LoQ/iwjAZbb/WTE51cT91CoBCgJlPzsmNgnABpjWXZLBJV0KWs6U9AwxkoM2OLYlwairTeVLdodkMFJCOSr+hvXGtccB7po085P/q+38/eR622exzYvMRxTbo7xGIj6woFf8aQb7XoU01oSomc1hk4lDGCyEauqPBTIhHss11hfPFnkLLWVfcc4JyUMJ7jNEqy65CGks9pc7PHv+r0e8+Pq2INeM2qd7cVnhA33xH65DHS7DvxNDTTLvuekEFSCWr6jYlu967L7RtN6O8K+WvK5nl+9QGomDiwIXPLJDuv/OYRKxgEVqL+4kiMfFlw5+mhQDu++T8+HmAwuf4wFUPcY/w6h2IvvZe8SiO2TF0Od1LLBSbMxDb8kpcCZ6FboqrBq2gZmoI2ibzZAkW2jIgXSgkwoFVsA7ZCs1zqUnA8m75T3q3eLTsxzwF2igT6T4GodWkK6kCv5+rhRjautR5vbCZbmWf5BAtRU0qmG7CdzRtuHdJPjcv9fF2LTH+eccAxp5+0u20h6kCZvdqedVibJYlb6yE196MptsbtS57f6VpUAK2vW1VZkfFkvRyxbK9LQl0ab1IohmyfT12maH6bdzueONIg5blVlNjav1jDeT4U7wAG4dpY33LMFpVVme9JvDDMj9giehNjKXXta1KjDlT+QCdtSTMWBpgfEinQzqfH85hTFSCKkcvfiLDYs0KI7Qkb/stHQfL1Psgij6bz8oCGWti45VShK5Z8EsrhBHmZMablpsoEuB1uCpOqVfthvRdgK0P3HjzRa/MdD6xwTtfnw7VvJNwd8fBN8Q/e6yxCFHXgNr6qS075lPipYc4UNhdWNZfvGgkoRDtNsDlV5IWt8voBz+wNA7waQTW5MZ5BvXaHxIj1gxZglZZucZSlt7KsqIfCP5Rb9ZdaGztce8ExDq2F0OZT2bSxZRtZZV4YNrKLREXRIc4aUIiFCRxXkvzWE55S+NUDfloDhBuNyWXkt5Cg4qYl5CaDj+RNzrRZLy6whc8Qxmz/q8NSG5mqT0TwsJ5KD4a+DNUcRN380x2qO9FkTjOOQN57iOq5br5YYgQqC1HDdvrrzSHlN9VlRrDBhUemvf13Q7H3C+8DSZGLQDrwwIl7jTKFwrW7SshWK8S4l5SraUPh5zvuhfO4oSEwmZxD4trhgMJSrznCwY1YiY4jK80E5jFeqte++/QhIjCH923CfmVmrM0GkPNtQMrKDepCV2PAvCGNtypZCp0/PCEcLLL6QW85JhoLgSUO5SumqNyeYUT+f9fG0pPyYaQdEe7H4hWYhQFM1FrV29E3tyffZN1SM1wMqhHarqCwRTPwboaYx37qwmqo0vx07bYGo4xrAm8xFODiGmOIpolmZxMChbnPd++qo7FoZnyiFh21jy0RDgqJHHiG6vr5e11NB5eE0Nk8j8UmbD0l9XPiwIBa0HznF2tiYOFp2NRMTyP8s1sLHivXV1XEpOAyCVsJ74KHij6sqA7zV7K+x7p4sGwK8EoXwZH0ZSt8kd4w66Xm0ooxmNK5U7TspSiT4sDqgCGUWuYTtRaJAjpthzJIcF6pDl3iR0m8NeJa/Vz9vw+E3O43OaoUjZLgo55stfXbxGyRuG6j+Wk713UgYoz/TKPfHUcISDxBgktUgVGHnADpMnvwKWS6gHgsimoN2fjvSoiLrprA1Oz6b4I8cYUbYwgP5S1CH20hw7aHqy7B0IqPvsJnvXh+oPWxcHGzqUY1mN57jK6+o0TIQhv2+rfyLyXznan9Nb+F0X32bZijfHpr54qutp7WvWUTNUJuzE2Ee+Vv2hC1b94Nu5y67rAkrNwE5MJQ4K7G/oRwYrjqOVdqeXl42f9CKUiCiOlWc7Bd5FQc4xksVHRkIUHGSGSESD3NIgbOKl89vwb08M4jOUxQVS6JPjiaSInWyt9Jz9AIex8X64vWAXKW8fmo5BOhxx8Sx2kpaebSVQsI6r1zIT2ccV0MdY2yrkfoNvRi0I1VGTnru9nR967d4UW+zzmain+dVut2+1A9U3jCV4KUxe2E5R4bWE3fZURxOaLbmy1RjLo/16SUdadc5VUPta7MPJrz0dbUwKUTVvka3BvTOtjb9bKyN90sFCQEnSdPbbvgEo3Z2oV499j6kPpeQe+gUEd9R4JsFgs9lF6MxVDbcVilKcvgmat3+PxyB1w3NHVVc83afvDvs9xsMyRSwmbecO4ROQuDXzkbLaEpaTOdDq50iFA/YQGwUb/5UDEt8v0QbuLGill3eF9OF6SDabg8yeNaYq6c8H0olVMC1YhWXj+oNw75eDN4dvoX4bcyuYv04rxehsVwSD6hvukHucXCbOGLuZU9Qu2tU5r43+xqiPeCbSO+8XuH5Nnp9WyLm9ub4GE2TV+XhEdKpTFNn5qOx8NLBR7cx5mO+Y2qF6pPVHb7/KD8WtWSjwHCupbn56f3KI/u+s55+4lT/sa4PZpudfaxfxQ2roar24cfuOKJz+p2L53r1l/RsqrzruLci/KxcsVYTLxwCWrPnM0mRFjqjIAV9kfVBUxTGoCNKI3KX97uesdF9oEzHO75dzjQjawcA80ammm65smXfm8nxrVsyp6aWtH0sVzLG0mPJKkYnlLT3HXiduf5xtHDqSdl65nl4946M6+OQJw95MSdIGfKlC4HEUy4+K8zn7HDe8qzVzyJMiM6GdR2q5gpTwrcZ/eu3ZnB45JVoMI9BSUYssh6shIhawK1JReH5WNuJlFX+9Xg2xNDyx972mebAPXcnEWxKvtyQ9oDRgx57vnLmDqFt+x+I/FN7H05Z3mTdnnsnj/Q/8Pdpjtbmocdh76nEvcwZSsC6bmdOoM86voFEzluuUKz75H6pbWJbdOrZrbfU10EzgZM9AZPy89e6/Ieb8TeiF0GN7Cql6Fapx93TqAb7EFrys0PddUDttEiFQdnPVa/dNOeLxG3Jr7H+i13ABOgtmnbp3Y1rA5GZTA2sBN3MZayZ8+NB437emp8/1iCoOOBXY/C/VpLFPh9T9zoOXBX9u6k35XcPDEXy37g9r0S2Jprq1cpn7vcqoZl4vBqvvAcVenBpMbyG1QpPQlmt4bVLC4Ol6VQyra9I4TcRGfykVtw3J1MfnDeLPcJqZ3WzR+bNGqzPyUj6tE/CUuRNWKqvJNPTKVB6cWwXNe3okudlMvGdUvEdYmH5m+nd/plksoQOlJ0jrAKXz1Na3JnDTA9ajb6Tdssez5ve5F8NergFHBr0rVoRm/2I25H6kJ2eBFp5LicfWjh1zuoHYO2KYJUqWGF4ybyozs86aGeC2MZ+vo1cT3Xxwrgw2+dfm8QvCP4m+pUFYXTP8mxiFasVn4Gz2hIrV2S7C1Ppo8cI+GlUhqyO7fwx3CjRv2gKe4TVz+pnL140tT8+7AwNlQMPoU0oH5tAn2ATWGI9uWZ1bkAQR43GrQ12NbBid8h23COUrhb1SOpfHujRvm5l1kdWZcgBVIruh//ytBHuvoGlg6NTJnwPN2MXsH1t4VXzsnxWQLgxv1Ykgidgdr7DNbvSDdsPViTS+nOUabi9xf1qMU5l3sJyt9XoFtb7pz6cEy9DNcaqovvsquhPuAL/rNmw+p6LK6O2MwJNDjD869WgTagMvU5c5qMptxRCdy6LNa1lDeNtOGsos3Z5vK1N1LJroSGijYCGk2snWuiI9yyazV5O5AmoNTi1zxmNANYyqxXP4069xbNBb8GKmG8VNGgE+T2+1aua5n007uj4S+c1rtVDmi6rI56RH1g9dQ60UI/heqiVnjRkH2/Bn9fnuyOD+bxgLRbfZK8UyPpfSYhtKZXw/N5X5ub8mW+Sa2bu+ean1azE/nxdU1N9iuM4N+eyqX4gCyUveefSibqErP9t7pzps+q1yUXRLrFx53Fc0Z/99dw2iQi66RNQ/Hlb7J0AD90+Eoi36+AJRIru57ltbLdmpvUXE/RXk00qyqJi0GsvhAOh+ixPJd5ruPMol7cdkzac0EYNpSuV4WiSvr2fLCoqyqkeTz7clOha7AR8k2BfLXgBFjwtcyrcmIeLQBLdvjTetG7qRk0rNo/MmTvQT6mRLZw7qHiNN05NrFsSBz7eubd8WRg8FWroPnbH9JyQbEXV/Cv26rsNC+Ap903n0g1sCsJTl7qXR9dtNOvkKwTHaIMbfreUPIS4bCp0tuBC/Jf4wvtyMv4/Dhy8YoKEfsy+cRzPq2tq8O4vva5+XRl4P0t2KWWFjka+pEUKznPpgeL7ilw/4AEWODATaG/4R8z4q0LKezz8bArY90AaIuQS1907xcWUzCFUKjxoWeaepQI4erSUf0XxGrulLrKFL2lvnfJl7fmF7b3YDrlhKJ0oBU8/Ei4Q4dsRfvOT/lp/vGrYrdNtjawoXKHtfx/Nq7a4J1DOjpR5VByFdoYYU/+9cIwO1SknNU2XRqGwBX6vu+2JfuTtbyjg3+Zqp1+2scubKnb5HTVhHylE30IHUCjtbi2YzFSLfsm6+zhcuQy7hg4hAs0DTYtfzXM8w2+D+O9TONXKjBqZtzlbCdBIJ+vOMY+Ini315p2jka5kvMb4CspuTKARYAFb3FJLR+O5gK7TgGEGhatNx8PFgLmVJ/AKVMZ6IQTkdHFqo382VBT4BVDJP+uyRcVQldBvQukvEAF6bUu57Azl+zpYwxIJa7ivIx8qO8st1zL8kU9Twzlb9aAAkq3oo7lW43evgIaoh9BN+ulZoQ2oKU7H6oyvoOjWCjQCraLb4tYHFUvWXaO/qeEybcfqzjXRQshUhwVeAc/cWghEYvkZwNVPEBDR5alJ78J8wTt/alOZzkrHFf53ZFinceE9iATb8ugnnTq6m+ZykH2IFOfO9Bj+HDJc2tC+yc3/+2Sf/XZwBYKgvG/BlKZSNFjwWNr9EAvym9tvKw0Fix5zu5/FhoBhZMEDxPTUJZfzZlF9Ti40e1I0U5zaFFxWN4KtnwFgjLDVC36v4zp94I3rMSHyJsx/vTRB/bbTk+O31Upuv7/ottb8YDNzAT3bX7D8MDEp6lI1px1NQVTeuFA5FLzyo7DwSfpiQfwiHWl6XsRHjiIC+PGmjH1Hg07NWrKYKoxFOpPfJWUh9jRLOZPrdjOHUCH6NnoibTx7SlMvFi2EjHWVwG4lVaJKnDPH6hbbHepI5wdizhlpAl5Dvd460FLqGagrowAFzL1speuC9lISTdBDAm+f5C2iKOAXZcojmOH/6LKf34tsj6ol7WzidvqozNXrE/zYhZg1u2PluFeSffxAxw2BFNmHEJXl5y+p9b/FrjOFwpe/GHrdAZUdqm6RYyOGt+TNvhHP8Lw+fyzU5fVOLlu+fl7NrK18zEj3GB2UVcMRpTGYN6Ohdlq2s9dMRpenxP2zDYJGAZT2z6rdZRQzC+w3xuBhbFaKFnv7WV0Cp4DV3dtX5O19rG6my3lxQElhwcT4PZPiWTscQB/PRK8RfPrDwWpXZnLsnnEe89n+NtT5Zl90Q/VkvEb7cspOTGAVYCW2uOWNu+w8Z34LSQ6Lo9bsYDHArj3xCdgJb9G+UTVWp305RadWYBVoS2xxq2rMj47c/s3ZPzi+GNhk+zDb82K15LklOZPfZm1ZlolCIdFojl/XXnpcRXtyJo2eNQXcDXOe1/WmE60uF/F1s+Zvv/uYrzRaqGybPeHLq/+XC4RXIYQ3hrZPfGXmfispG8lofr8QbHaCNHPm+mhLLHwbNhvui5Wb+/RGOhyOQ3dFxihp3mJSFp3t1niLAArvjo7ORJMEOzLQpZyaQckz3thaSKer1bYveCJA9QXlBA/VRhQM3yN58MD6Mm+OJeRwNUJuCxI63xezz0wZ5/D+u0rdj7kiM75txQE4Qn7liXvJAn/g4ewqsHesq44IfMr7orqSCCRqs+6ev1V+kS/lv9Ng3Gv3ZJykAx4rdH8hEPOxxGXX5ZT7sACconspXXz43b7HAWYcHpZ7gxue33ApPyBtf6E9z46+5re9QTnjDqJw4OK3XLL6aPML6WRVske+/4b9N9jqOsfISdqbrR+UsuTBtxRt18ik5yKRPTeXLNd4Z+qDT+9YWHaL2LwMj52l2b5YUwZveF8yOwu72U7+xPvqd9djBtRnLtrUHWc++JcJG4845Ab6hcav7EybStH/E0eMvoogb8sV/m2emq+bY132fzWGr//hriVCznrwvyNBZSPFo7hUodHjKViWe8Ldr0mUOIbxdFzkS0L+nprS8bTvgACdH3A0VpXTFVoeTHBV02t85/JojGNcLBpBi1Zy8f7uFdAsPBBAoRndq/r7elZpScti6SDcswIYy13FHly2Aup9MEG04vDu3P+y9nrukKzzhx3dfRRjdSz7Rs+32lJyZSy29AB21pCi+2CkLre2k9HqUJQZDDHKvCed+akzIi+9Mh060ku8hwP6HMKHTyQP3VwWWVunNVcqfanWPup5cCX4zt82iS1MVRFwy5YPT0oLs+zb2bls09B8L9g/u+vHUixk+eZ6Dj6iNsdg4+AxU0jZWfyUuPwhXgSUdPOMUKhLBz+FSODXkodsvkqrr055WiNBT7lO+mx/nfqzUIwchXVFdD8awOJHU0/29f0dzg49RDZi7Qi3pWcvCACGrs/PNc5P6F5u8rvhutTvXZ4UOYAQpPiujx7GCBMDZCKj73IlpvCkWi3uaaf8bdGov1W7PU1oRW0C2LI2hsvBlDgJNfO/Brg7er7XaRcG4+jAgCYXJKv+dFMftdLTEmqK12cyyaRgzTeFevxKyms1ncsOjnjy8WCnxZdxuX3pTnMw0GVG3u1CtS6Lf8quIN0rpOn9SuFyNuvup6rWmwnwBn0AIUPQjmNPDd37qFiWqNvtRDvhmk30ULyldjuVeviRdwzGvSuIBj01xtMSDImdBE8b6UJBDP8FgMO6FKuYt1AhJiP73LWLTey+B5ftLd5lKmct3c5smj9/m0WWx8cWre0b/Anuf+w/+M9k+cHgKqNyxyevr4cSEVhsn1TKDf56XeEbPHGj+VN8ONWQKVUciAVz5FoKBZEdWova0d3qdFhP/8vS1qn5eaczqEN0mOR7Gm47qJCd+z1X1Du31zhzcnEjj69Q+BUKEPR+HojhnZ+Nhjo6tJqFGu2ue2zJG9kCmUSpXW+KZrJO28mC89WbFTJcoQC7G5wbP5LSn3JkvD3B+HfOyPXfUOksN9IBOoc3L99Xv5mUfVUVYul9EwrjI2LfG0Lg8EHmQ3ewCp/lueHa59b+wNLUgVcs+LwlxA3HxiddA7sbdCNyp5D9VdxlLTx2VlO/W02k9Nq1+xlt9D1EcJum7dYDn67wet6EzF5ts/kvGck/3gD7G6w/ekyJE8NHEuYWTrPFCcDVz8vH8u3npptTPUcDTa4mdK4ije/SyTeCmQelarzwfGgTK/Zl9aPHq1ELOJGHMDjUQF8Q6WlWXHEqTlP7zHyGWfeOtmbw9MJAjUE0sUqj0mpPEcRpjUat3k5MUyqv6mXPVKq6wYqDWcXf6JpgIp/OENeSxj3HjY2P9xjrEpev7pxVOM3WvlcEAUy+iXboIYG3W34LBUEh8HxYskr7EG7NW8NFIvaR6D5stFoamNcz3PkxJsyH7SknH/R0lqH8oCDaAnKL6uShzebNL13FdDx3H3LLuSrcbSqo/N3J5i2BOirW24RXiU9hEfI0QhtL94XrveG6IajMmhlbutGqse7YN6vLKT7xyIzurlR56/faeE8Sb9Gd4P1Z3nNLu+NBbfmBz7Xlbx6Qaz/4Jjzz9sv4pn2nLohDUHdLaTbuNUJTRzVuKNWnQtMHfZJZbDYEv4PQyDswxGZLZw/5p0NLeMpXVJOXQEbvHH612A0VJMtP/S0qQmKpa7JrMtsENZrAkyb0BCwZT6BGphMvrf2XWeAklFtRMc7sB5qehV+YqePtq8eqJfOt0or8N+T/4P6B+P3gjjHDIlK+ISzZiopqPUH1xfehsDwG3SoVTDlOTITuY4PepOFVAum8+NUPIIMZfN4e03pZabu6w+vJJmr/sBx8q6C5ooF0RtTHhY0qBYZ9wTdbegcGLP1m/hcYpgCBty3Q39YrqYwwd4vPpLebcBEgqE9FhZ1LxI+sWSNYh9sbU6dsasghnsVGS6pwx6pViDG+yYJ16PJtCLjrCfbY1L6RR1JvKGe2iTAw1cd9SUMFnleIPnEwe4Ucl1/R+ei+iH8zz9CcI+MNsnwhZOAldOFAzNIyaydn6PB+dPGLiucHAc+B2dz38UefwsH9at6DaGl/3FKZdTfzccMAuujRccGc+osLzybk0OTASDvYT/bNs6nH6ww2Vqjn6fV8xXR81EnbWk66iTh4TweibN7KEcHrVENvDnsWP4l+ncBDHbba4ElZPMawZsBN4T7eNXF6S50n4tW3GNWuxyl6HyLCL9ty4J4sbbkMF7dOk4X3qkExBV0V6XqaqvK1BWnKgI9rqyp8M8yexRPshg8h1iMMbN40bxa8GfliQBrhTzFYO3nGrX4dVzGZfH2QwHnFwEh36wq6pWfUNLHqHmGVNWGU59GlpzCmJ9YV1z8vM6n0z5k+fWBus/3S8gn8P6s7PJMI/Ys38jlQgWqoJRevi85oXxHLL0JqIr5Agq+4uWpttVfzwZMOBxAtZAIhSMnWimeBrvMPN8v2dNrREY+6OtI2afYNUNHp6b5wb8RD5zPBgo2pOpOy1ObwB1oZfSm325kt+Vc+e94nb++UywT4caOWcDclsiZfy6K3oDL0lVxwc+/CUHPcNUjO/qBFOygXdEyU9NIZgR/bFe5/Pc5s0CP7uAY/5Fx4KH0RHk/N5xNMgu/RpqdHIvF+7b4aB4IVgWDVj4tuB3+gxPAT8azxeE/qgENv2b6yimLQby+GHMdPvTusZUpV2j1NhS77TTjxbg+0tN8e4H1yT0Uu31z3evTfIkb93c1Ms/yMlGk2rzBl+d8goCeMOWVPC4+1tAjWGKtNQKmFNCYXeNo73YuSScKEqVryTb1pxF9y2EoalMdDNYgxx99YMIlUko3fRi6ZcJjtEhAYx7KFu2jLiWuoLWc6jHjyRAvwk+1fq1BkFYpR8rHfkl5+zm+iWNEAP4jx0c/KgUv7RxQK+XO97m8V6t+4E0DguEJ2XCET8L8MeUxrmhb6ki+AYlQZo31K2zhsdH/JMGOAHgkcCmZo3O4aHzyEKuDQJduDFmOy8oFc5IWKia3lhXiDLeYqF8y4x0ygRpLTdREKOhTniKTLqsLPItA5mB3QBU9eBU27owhNnby64UnsRY52sxYtu0zorgLV79vUi/WBplC9CEGmXdN+a4FqzaTEiXzxrL0byuW7DhoSMnHrun8TLWn5HVtR0l4XtfTGvslREibpquvfqvZczp6jqDxjp3LabW+ac3aGygeAUdAPf5EzNRioam4J80pzZkzlFu49P80B2YbesLPCfl2YGwm2T3PnOeKrrqJTl5Ya17Pa9mDhJbYlQ6UZ1p/1vob/L9Bsj0PcPDdRH547B1q6C5VjyXB9bkLS7NjzXTLocz8vBG9hz54nsz5fxg3QLw8uE+Q1L87fpLH9fy8xWaBEtvFQMVc+hTiF3layH5IAllKRcy+bXmprmZ7wT+MhhxAx7wsVt7nW0VyvL+xRKCQf4fMtuctqucXO10f1PA29nAd5mshWGNnyWTPQEg0eXf6yEGT8pVy2Q5vMeHS5MNi0lpWnsD5fwSqoCPYKDr74LOIKz48wCIKPPy/1HV/shawcqOOmPy5veZnNybNF09h4t7zbg3dzYZ/CsBdMYtE+/aV7+Fz6P1/Win7zTTsDVYVkffgpVITe+ITxVhaeWGmbPAWzTp9EvnX2Oh/nv3I2FvkHAKFg/ZhtEzd4uODlV539yuoZBvzLu37PDurBbVtV5NuChJ3Bs88jPNn1TUHaMGszT51/ukEYf95+SKsXftwXxYavhdXxM21C//ONLfKkNxq8f3Dj3Nz+1FKzdDPxngIMnujp2tfOQuEPt8Z3TbA5AjH3W39EPGf4v+WCrFsv754r6sKQu1qibWSR1tVDF9XyWMkZj4n/tlPUTzZxN/0y2ttQ8T6OeduF51RI+28DvQ/Y82HR4rxkGzWnUSp7Asa4lsuElusz9gjiSpu3B2Xc+/o1G4SSragEe+6Kx6sCcechptox1D92QE8n8+LKiX15nlTqFn6yxq8jD4tEYFmnUAjn8x1rPhG4pVJefkHfyhcZENM5txs5+8FaFCLgrYgA2QprXGczvk4FubU8BIENH/S/mX4/BOcD3sog9VUddvE5O27GpLzruPz9xQMCjaaee7MOXpOaKD4Ig9NhZeK5VZ8Xem4Eqz43wfs/id6DuX939J7M4xL9Em0Im8I3ehqm/vxI117rP/amq+jaF/wHJrXzNfxT+ufu+7C5FmO6XmCf4ABrq/l4eDpbz/8OADMBEAAYJAevQNI41yvBjW9AI8Wq9RNJ154j600yqsDDTu1Qg3Gt8Fo52PM2Z6wBS2qYpMVKicgviuIRkT4aslsHsYsLWIEJd9CCt7plumzzKgWjL9mw7ZIZl56MuJa++fMfpwLc6B/fW7hpC0Y0EYeQ+OnAffqjkT6+Fm2rEBkxLAtjy2jOhod6c+VJqoekVdDx0uGIfrdo/xfEHvSFTojhMM4f55yxO072jKkZGR+UidrRDIttrZ+luNhLq5OkZpI4idOwC9OW8cpmwr+ffZkNPMpjPM4TPMlTPI1G5wyWZYzBMWNwwhicMsbDQtP4YDAFDRkH/QkAeHNpB1Rb7cc7jt03RaKxmZVkNOApTvCMM9fktuYZAm37QNvBUaad0E5qZ+gu+kFrXGrEwx6N/t5z/PN3U1/drc/+F3f/BXrwtD6LvvwFBgMAgJNl07PK1wCwSzoSVpvv2cq0rzVWSWdXnibRnAw6tIywTYB5yJnJ0W0jPezpth59oVKSB7SKTwdxk9jsDOje++YCDkiElEphXJY0ArDDxFjwpryTcaqxtAeMNI6vqivj+FjkKACj6LcGDMCY+exYbSkAmw8xw0cQy2Df4hGct9A3STj7pgcf2w3xBkJhoFIYl4mGwwenrfQmZmNYX6cjAqAxp9AD0FZi5RNrCcjc22AHjFhDYDyowQyMWfsNqy1281xsln5zeQHRLDd2AD0EvcHKJ9YByDg/GLCyhkAI1KABjFnfhtWW25XLBGAfUSF8guR6fKsZ7VFsOvS8qJcc9ATudKF0XbUDT6wkJEK0zTK0xxFfdRPFLtuyr/KNO/nVx0SboRz4/1AXGc2erV3kT1ogAAgGsFMkAQDYGQAA2IlICxIpUaZCV/RlnHfpzD+YRwppTXeGc33eCTgI4GPsg9hHsU9in8X+xuPTHz+GPziYy07inMX53hNzn1hErCI2ENuIvUQvn2l4z3PqSG9AK1fDzXMXc1dxr+Bew13NPcv9YzrypvPm87bz3vJ+5P1pDljAZsMieAU8AffbschGpMdxQlNoCa2hvegm9JdrhnViC7EV2GXYVdgq7Cb2rztWccLb8U14C/4hv4HP58v5Or6N7+Y38u/kdwisgtmC7YJPwqBwuXC38JDwhPC88KrwhEhHNFl0k2iDaJvopthavE0ilPRItkvaJYPSmHSq9GEZLovJbpc9koM8VH6j/K6CVLQrdilalbrKYeVVygcqsUqtMqoolVsVUiVUOVVF1a7qV01RzVYtUq1QrVdtUC1XrVHVqXaojqnOqa6pWlWDaoE6rl6qvkPdqu7XiDQtmnWacc0yTa1mk6Zes1dzRHNSc15zRfNSM6jVayvaG7WXtb1EF/EYcYW4p9PSzdNdpduhO6W7rXur+6wb0yv0bn1NP6Lfpv/PoGWYYbjNcM7w0Sg2eozzjPcb3xpHTRrTVNMDpjZTr9lkjpj3W9gWv2Wz5ZvV0NppXWq9xnrI2mMr2PaSFLmEfJt8SI5QMqpAXUbdR7VSPbSHHqbX0jvoN4w/08J0MH3MJGYGs565mznNPGG67Gy7y95mn2y/3r7dfs3+xj7k0Ds8jiHHiGObY7ej29mYBjTHAqoSsCGBHgBZwYZhoGKB6b4HMkMogEAQBLrKHzClovM7GgGPSaKWRzeDIiuJCKowCnhPqJBgQFLOVUcYykN/BdKb+z8QsIEFAEbzAHzJU7PFsdVt67etm7bGdw7BwZVjCCqVaqR+fKoRu8knCpE1q3KOxT4icAoReLSb23M6Vn68n0si4rfTkD3kGU953BMeFsMahHtSn7QSiMDwCTm0fcWFp/Lgn3sBjsjXblZiPvDLBXMo9OLKQsQPChC2vkSygCb4VUfeNHQS1PbwvwKjQEmQFVMeF7u2EqVLUlMM09J3TZXRIzoNpdM4sYXkp5EMlJFtmt/rRtObCdhlxQkuZeDi6W4SFxLsoQuJ15wsE/XyXxeRuYmzsL2Wrgz+ztAyVvY+IBXtEIoxh3p0TaXxBz8+vP/ob7NpNDIFq5FtZG/9vfPSQw2NS1as6c1zM4i2ol/rf0eCis/h1LL5TsvDPel1H9mPOF44gjVN6uSc5piZsjuHpuG/47nq4Zx6lQlN0Q6/3+sgLUr95raSLrfDSdkIo1F9Xiyb2jzjlp50NLGCDhSMoaUaLYHzygAmARPJb8WFLJQuEEa73brLnsVzHQ0bRKECIdYrbaqWr9BFJ0+m08nogZlJQ5nN/9i3a9fuPbsHgYdHNk/HiomGSokSOfX3NLGfdAJUgENTLQK/BKol3Z+OhfFgtu7CidVmjnu2p21pW5btVI7C6Ufl7AY9uvNog5RHj3+fJZCdYn1QpiAhk15RGLDHyiP4czLzzSsdHocIT4aq64c1Z9fSmMN+hN9IywoZHULxs50BOIUIsN3cntMxBrFF3uPSGipaL/vtDSp4tt7Z+tB5Zk6UqOIn6m1wwh6VSD0HaBIR98oBWwVNWUwq8Nses8t1X7LDKRwsziBo9Vmg6irAZJz2t4lRFAbh+z//98iJdk4P0UjlqTLdz9xDX9gto72dk/D6FqnmSjuXIMnKGhSOQYCxfC7Fe1t6HUaa9X2rj39enob+ztuaRt4s3D1fMlGtXecJ4DTcIMScfkCMlyet+DDkTqPwG6cgzp4rmRpOwke+HRvwyyV3yw7YaMVxqREX3l7MiPKcFaMEv6ZB3jmW5XPv/uNFPA7mGPSAG4pzi+JVROM96yh8r1ovz1Z/5x3I3BR8uObSt5eiKEuboHHFSg1qL+zw7ymMqtcFofQP3rBR/xTEWrnsQQuTjZD6gqW4nOSEvnZj4O90yYlhGbARSeNkDiq/lgWxVQqVyXLWSHnlActxH/iDU0gQk+RbcC58AoddbmfSWY0aUsIzxFZw1pn1AFXKpyrEMCBY1h1PHLAqLpWmOhQGekc93YvtSkYYeS26EiS42gpkhW3HhFKWEMSvyY73to94Gf9Ys8Ap9PVyXuGHKWIkM2G9FgS+EgR0fkJPbxbPp9+RDiCkmP1/jtxstCxnZRDuJcSVv2344fsgzpxNGaMFet1vFJaa94Jg50LFQDybkEINCTpGdbTrnv/qudC622+HiT5TG8uMBujEoKJiLTcv6f9vvXzCoVZOt7DALjXq8UpyKnZaWUgXCSOl9K2RkrCk0Aje2jChC/hPbvMXH29fvfuGhxzJxeuTc47fjf+nPlLGs/XB1idb52z97uyEjRlSuQ7aKWItH2KWLzUdnGizVMnpWHJe+qV8yvzUJcfZSG78UULncJz0iMI5lkLprpXzPqK3/HijCXqDChwWqgBCvaIGls701CbklA41BXgMLNnstD56TnjBUWmYAdtOsdIeWu6VF5tsJgmP7WLibntrvqPkKmk6vt9kfWlkUHNW8lTuybUbkZBqI+IYLEg5N10xyH0xeTKdwC9t5xa8QFVN13v5bLYZH646ow7URw37qfiArBhlNbZer+K3/73lskUP3mFUhQWSyNjdSHIKdnoMPx2dRW3mZ8GIcqyXiiBPkyDDy5c5dE5ewCpKQplKlYr83o927+uSqxtWUDqDb15z4ONBtKBj9zjrfVsb8AeyaHMchxOfS82MCxO+8MZ8GmBdnHc0f62VxMAmCKOqpkihcyF195fZsGgv+rFwp2U8wkS7Jbex7X5u9uzxEz3mAxRCpmSmDGa4jFRzegdSrRz2iMlsYZQk47PtnrVEvIGztzh1uOHaM3Lsu4PrmiJBsLftOCyz9zyOhv25UvbSZcLnGIRIsq/kvo2TIiEK8ZNwjVOEhoVIo64fCEVeu5nDqECMKzArFlROmZmAsGF4gt8+ugObFEhjcjPy1Sdehdi3P6kPL5DZBk5jkBiTudFJwVsahCRSJsAk2yfPVXPt1Pg6dVsZz9YTW886j0CQEnlsZe7itxWyLfIQutiUNHuyeuSRi7e+argCGtVy3dpVFx1MkYxN4K2gd+1+/Jh+jx7yVAqI7cgKEwvQJ9PT5z4vGqSw+SCkK03zrZB/JHHx5mKx8O9LLz2dPPr6egyGJDgCOM/8V7ftXNjdquWw1krxayZTSgfwt+GtV2QBDhSzCTXQQ/fuSDGzVgsQTWc3O4jaFcMcP3+fyZWVQcmmrNlxX4NHvOhNmSbz5Vy9/0EoVBojdI8JtP4aPW7zqLB09ZwcnvWCJxShBDmAWTAGxEMS6/4kFkrqCwM7rIH1KYMzEzjW7EYJtisIREnYs7USXaIot6QMHgJD43Fm04MPnb3xNVUjrRs0cIaAO3pIxBp9+UAI9qURkfkmAMnLpOTa76kPQVJMdXF/zlCWbyIU4ncfT0f4XhL/2eQCJx5XFUM4m32NV6qMYzpBU6c361+4cFHPDJUyP2lDRJcrH1t76sY+ChQGBlz8bOgQuXQm2NQt70tyvtfmZMmwgxuUP5ZTJzST4FgLpZTGfqsMM516Qy76ndsuY+te9LcAIhJJn+O69fQQTiAmeK+Twoc7+aLfKkxrOORt7brYzzoE76/2h2fru63btqw7O+GynEKKVeguZ/JovfUTCwtbVNz1bwzw6UdtzBAwKPVWAuFbmmpqWm1Zt25Nuw75Zf8/23fsrNVpUo7oMFwpgP5ctZOdeJOUMCgLrmcyb1Ju3SbVe4c2d69ZBxqrx1SKIPgS/p8vv8HBF9pfP6pjioBuXM3G2X/vff/apg9C397uLG2zfjJmDZ8zrnn33ptjxFikO/lQ9LVhQ+MN8+V9xVjb8UpC4P8Fs6tUVjaBxhBYMX84T+w1BwteKly/0Xvtv9mdx05ccm7Ek7kls51j60ipoAfgh3vah3ACG7n1Gfn4JP6EFudlvEdxUr/9aq88l+KL25Zwq6Nf9IBLx9odPijN0Bo14Muf6oU2tBSxIU2XlZdetuTQhSeeeEV1STUPtsEO2ElA64mjbaxXn2icOLRk2Xbh+b2R8ybOG5O6pRVj45bu409evXyGqePpkdUWz8Np1T1GdxdD0nlWi5PR4ZQYjqlXGpE2kvF63YzVJFfIbHUs+ozabRaNXif8sU79teWl03OU03or82Ex8/4F4g29gXhUKyHy42T9Dm5KBsEAnAMGs7O9J2IZr+DMMhTJIpfN7C8Uf2pPccZlJvPizYLtM2x2Olc4JjjEgu8NOX8tzOfUU3dndJeiRiWvjBMCH1czujcZgSbB26GKKq9iu5lePHpS/vuFg+HRTlErOCGnHMR5jcapCx28J/Zdnl9dzaRXM4taceHM+QvjLl7MexxH6v2PMBiKpaVmvGpalqm2bhzwy0c8vZI/fy6nHK0soFKd1C9cKvO9SG2it6ddxleTUudBj1qiCDGlQQ6o6BMcpwJ6kiI3Y7FoVBKJRqmP2FHZS+DzJ/WCL5EzcnL+P0xs6tPAspWjcpwKYe5SEpq7XYdQV4N+KjdaaGx2T8NlBfbGnPTboOen1X3+QuHVa95+mIbbHc1uJVSVBNyWooYMVR2r+VVylX/EH9IqkyIAayddthO7tLrVYtaJeWBoMXKe284b32fGDQaq/9uq/eDZ+tB5BaZJkr+9to0HgJEuwPYiZ9a6HWBwNLspDnMSgjppLp0jd5FDKUWtZhP8tyy5unZ4xCfP9rsBPSL+9McVjJx85rM3XURFc1g+346Gi+ZNIi78XTbZNCk7DwseKb9ajV4ZTnfj7jJicJY7+zsso8bN1i8d3w+C+rkfXdCZCenukf4BFmwvS66F2ZzsZcxS0IMGo0mNstHmqi6waO+CUXfDIaFSTeGZW5/tyjLgo9IMQ9h4SMdulBwpRXze2vUiC4ZDi5Mz9Dvkenkmj3v3H4rK6Uj+cXxHUmmaQwFBxjQv/moxS97omEEGOizY0Q44NBZQq4n5BKdSchYw4/wj/47zbwoqF+PtVgS9SmXw7hMQ2/jltkS43e8uvTde2mj5GIo9QWulwVxsoyXZrB80ClqOU7csuVqUVKE/rGq+gmdrwFZX510oiok+6/BYdbrH/btHSWr6JsgxoGLmVHLt+jfseGIUvwEQQoAbDZLRZcQVv2ksHblPX49QvEXiZCVLUoiNycUi3BYN8dI2QxlfSPOJtvNG/AMJFKz0OS9oh5IvSLb39Z4FKpHJoaT/DINLlu4z+tFrceMAHRtNE7C1XEovoh2pP61JYJhTRjrd9Q/+wbFcBTdtPJpMwAnlhExaPgCVFjg6V66wEqcJEGs2CgYDe1RKhaqkjI6/MgN3PE7OSo3vBvJRbiyD/JiOwXxvpPlDv3QCapmOE9m2dj8ZjRH6vf9Udlk9hNOY7qVg6F9WuyaYpzmT8xgw7CgCHrB0L8hqVkYKWIX5BI4FZ0Ejc/30liXxSlvu6o8ObL6rNBzSOuCRP7MA9moxIkDrU1QvCNv6QmY5Lzy8h0GHLSgRA/ZK+OJteiFVeivaPwGpGUa74gyGrACvj9ujPZKqaarUe2iHbm0kfQZZdDG9NI1hN8dWGGb19fy/DWqOr8XUuKKip8jYPzfh/Llz6D5vuPYc++by3PV/b7Vunq0vnTcQ9YlYiAQf+USiq9TO73AykWLkp22N2sb+MUaGDWiwtN8TRi0YWKhI+Vec5F9fRffqWg/P2jGn6PSRIxJ0iAGNX/H9G2FOJwPnupXtpBiF3KzxHsyt7elEu6Jg8qEfhVlWd8bHXqmmenh3vuLxrkdqmbz3ggVenfaGfhus6BPZYq/R5/jcxaDZE1fMkI3EN2TQC4HU5W0tT8E7lqkUdp4PLVRMnxbq1FyNgyso8OlP+3y+J7UhrT6XiY2j1GrOCoNInuURlojF/NpUqd8cLASy+GGrL633TuersJhF92Ru1/GTL4mbyVSB1HpFDJRp4BLr6TkkhjmS9/V8ml1zLIyKcKkXDkV8QGiyw632T4z2GTrFt67jM5k+VzgmMMiCczY5by3K5ZSjs442/Rv9Z9EcoTY0daLx3qxK3Wj4wJVXQnZSHrDSOGxOlnLGPgwAXqTpNpfxR2J7ClwgEacwqZXmyqRQUrF1yDIgo9KcQyPidRuFjE+GWm3DKyxNwUcrL1A3RcAPVCrY1TmOI+ROLi5h8bCnG6r3u4ZDzmiXFCzyRy9Ow7zPMYXSBSWcJk1FJ5Kfp01fpjYy+wjCJLPNnWyrrmiPG+7k68UsC+nIHxtLlmWph5mrLhxruMiTmA5a7G6TVOld0KyntbTEHY30BDmwmLRUyhURBgfZ6OKUTs5SdFdWrLNL7RAHeBcLvJnTbvnLeadEBhmQCXU1Q1cRsfpnlNivjnQOxJwrqA0LLIqBguBfEqfsYjfqk+kg8oWzdSbTxe7MmsDZDuPpIm/S4t7bLtgoRdolZBlB8qGRdy7FnlyhYYuCzhF1IEUzVcpkvkgoeaBW08PVE+y3AfShB/3Gj4ByH5XyBSJA9Cj8imFcOLMkH1Ns3571CESp/Bs/NvveD7rNeLuU+qxFHg+pkJYhz39kz00LoR2/N07jOQiJ9P9QtT6etrMCnADeWeiiQYg2BGsB/5EEQqLXbT9uC4Nfuj6pwDQd1xJbP/TysFGpAhxOZ/Fi6hcBGZOlB71Kg+yU91cTW74JnFr7mRuvkv9XlL+9XG+8+EhLGHxHlLlMhRf4xZ87vfCoKZPpBHusJAGqr/a/lTaw7CL3AtyvYergKFAm+VEqzJIE+8EAQhHr0NwgoQ9BpjLojduX4gB+CBBGirJJDJ9ifZNIGqzM5p0kCLfnxqHN8VZTTQZjBEtClZTq/CcuP/u/MnDGSqmoUSJlJCAw8m8Mb1g/f3VY2CLUkG6axHYeAobG4TvHL5Xx9B9XLACuiUAhgTwbpz1iIy1SassNg/fYT/1FwFV6zLaNwIWRgcIyXucQBA2oxpeGCvn/M1v8/EKiryIl8ck4m5cT/AItaxDPhmTpPRbWrjOqyH/4fU1tufapip6eyg0H57HM87nMi/fh+ISQGtBAh93UQA5fEw+HJ8t15Cj7oT7Ody0t5tBu0VNfqFP0BkpUcJFcp+EstEvUPhl76YCXD3gdcTPrpWTS3KwDbNAh0Ew6A9ken3sQTh9W5Q8O2BPgbRuXx4MeJMj2ClcSAL+SW8aQ4N/QBrSZ2WD7ahSTyQwkfTxWuL3Oc9rSPjYL8ocJ74RPIiDFzSzvZPLcaCyiphXC2jCY7imocAZOphVH1HSbUV3jqHrwTZk+/ZadSoihfmj4qD0pf85IRS7VQHbc960qpKoc19Ij2lCoPuxIEIIWWk2zXP1BsyO15P17FwnwoLIZB7o9T4JxWkhJZc/bouTL6EbCp5TMyqA2mukShhRnvW6IbkNBbMAvYTurifBAMG4qHyg6a7UeZo3tSX1LCPR6HvQJoNuH7oARoKHiDfnBJY2NAmSNlAgzCii/Q3bBNKBWblgbGjb+xurcj+JVHPmL8rX/5PStZ8/1Gf0OC1g80Gkbe6OSS3HSygyHrdAdqMoQcX0O1bhjWaPxQMBG3ec7p7bwAKXy7Qc3gbDne6sYqBy5LQ1aCPCXRCwsWc/sw3j0V9vxqq5tvwGPedzTzN6MPRZK/Gmk3xXD5wnF9Q5gnNpwEWFtjBeF64wznQf+n+qzqN9LLnxmaWwBqxdquYg1/Q67zjcOThUbK+qczAUp4rSckE1bzfKmKuOhRO4XL80/3hXF5EbLutZ96jafhJi+bnzi2SseTLnvM4vRwMb1QWHvQT/aCRLLAlua+vh5xGnTIs7BDyNRCaXMDuYWH8k/gDgiJBK6Vv2Kj8Z5HM6Lt18zXY7rhZB7+U7eXn6AZplc2cZKiFrN5U3RNj/CIcrTHZCULbmkvP2fIqXV2vFKkzG/8Vk0tgrQ3+Hv5rzjcYdCJ8abcglMYiBPEu7XlHCES1LFfqR/bODimv6YI7uzrpxcnpS/oNScCMQwd6F2+f77cyni2ZUR8RaGU+xnliePeaTU4CbnLsA+JW/29Sd1He5Pb4Ins1MLc/gcR7zhl0qk6MWZpnVYd6EJhv8tYkUJMX7BuNxk3RtVBllQDB28wXXM57ggOhfgpitjyhg+Riarp7akiIhyo+Ra/ld6OzvO3XrBHwnbsTzALm2pUeaFhY5dGxNd9D/L/FPIC6JKYaD09peq/t6RW85F8Oo/qUKXmZOBRgJ9Uy4F5LH8m1WXgFN9rWsKAaRADsPF2KCN4LCGCqXS75itGZvNTLnsBD+WQbmU3qn+SW+O1LVoJLFo8plaQURM0LYte1ejxCJvASU7jWslEQqlkBlK2LoAYeAX7VvUYp8Fuk0+42t/jGELgtUKmRtZAQaiUGsnhbZhk+YYIo+bLMJXp8kiGB4ItsyWdtTcrTSQiCnRHHag/KWqI/Ap7qJNUrtwqWCp6teCwx0h5DwlZe+AZP/N8qdihKUE3q+XgIl381B2hl1wk/Z8wNMjv04n6CysvLqOI3ZfWfAaeplhuiQ/0uTUm2Wn7nesarmaFbtHxKoyyaN0MJ3n9tPUhVcgYEcP8++1KKUXNPXT4NTsh4jLSbjkGfOg25NaFVa1ktI3CVa01PLbqxZQoflj1t70Y8Huj1Prr+090Fd9xlBm+ezS8xhZ5irm+rDLF2qZeeG9ShR6XOnK9+/ULQd7n+izn8+aSGq/5MbbOU9Cy1BCQUz+pdRHJ8mNT1dIxS9n80XHtqyHp2vdFu6e5kQUAKa0AbSMJvcmx57qlJb/v43N4vDqpaRpqY2zvrLDcmqDK5pDhe8+8P+dGwaszVeIHeyrOFuoPjOLh08vxUHmEdUjvak5JNX5xLn4Wl9OAFxp/3C4Z9bVkT6f1dxErTTrw8fhSxF0Yrf7cKVuMdi0i5MeeBruhxgdClTDVtR40MQ6gc1fLv0LmQqL90xJSAby/VnK0mgZz2fR00sgnCN9jqJlwsCDCMMxg8lBPxqGUsNKMfwm995n3k1ymGbLuNMVvwmCKElNzrmR2QXeyuz8lfKbNOvUz4q0ijEBgb7xfqCqxB6V33cDzndkrEhIWFiqXFNAR0BfOZy5aXza+bamQjredLoTpQM6KubbovKeKxVnIJgqTyu3K5VGjY9tMX3gFB1bGPe66SwHJGwQyuzvSmWn+N3q6KVsFrvXwQGDgAFFXGWVHVMLEcukLhJRRP4gzrAznAVM9uFtaCHKTC8p0IG+Kb4tUtflLtTqTMXjybFYjvxXTd+MDtqNf5xC6V9QbL3K3x/5CHJ67j5X7tJXvr8nbu/DZgzBJx25/VHNKtXq9nOJ0F03/DN1PCNh+z3PvGEXn2bD49ojd/UtFazln5Ou/tvbLsVnSw/bzUo/SP5IWBlXso3uEI590ukKXLHRHXIYoGPJdxwzfAzn9N/Tf2r/Cf3X9Z/df2z/Be1jtKz/bsaP9egZCATqovQXRNowTOvijiWXsloBy9uwC7BLR0tMF/d4BlwNA5m0ccl3144P0bGCIohcgkJ5EoVRFBtOfdrIrgahE29jGcI6kslSvckrI5COQXJEwRj3tchkv1aDU4IWDAZM6PrJE5zUYRm4BwcbFEkzMQcwRNptkBjEQcQB2T8hY2+vPdVcuP2Y29kZRUWA/XRqyttAsTpIeFAwGuv9TxxFwqyPMQ90ZTpbFsBgDKlpWxJyIcsO8A+TLdsmfYeBxdaW0ODxXR2WTAUEZRiDyoDSSNptcjhbgPBIXogH5vljQ+0GkzVK2m8qBTpjUI87JO7WGEjnA/TCcs2KDPMkeeoi/2Q/7irw0EsNjplGxpJUAjDRh+2nuJaJhPRBWPraKHqT2gHndU+VD+BMzYbePc6H/4qpfZwKlqUbJZd+dWutcrTd5fU7Ccl5iPX+6rQrED2zUxRCHN6LtAdCAbvDJzl0wOwxLWeGCRWY9Ran121SoHnL4GfGX1VbuxIlRxThEL0GYTIjZFmo7jQL1zQ3WASDCZeNNFvUwmSXKakfntokBbTGEIloqZlqsxoCrNScMhmYMxJOvIPhiPUxGgtmftWfsH3PWqk5xRhqTJBnvYDf0pH/xNuZZuffKUxMhvCiE8q45kRmXdEyGU0kaaHMjAGHN6b1ynjEpMbVfvsaxq+vjRZojkGGtDgzkGkhSv/gsTUJDDkSTkFXL+UkLVQS1qdHHYwWZUZQSBztg3g/8xMQEApmaJGiO2imumm7w9mF9baafPfg2C4WIB+bpSoe0yVRaV6UbRGCEWZQqmWhUMDFavNj1hpbMxt6GI53O+rpuoBDgXbWcQOwjol/0AcQOvzGnE/MZ9hM5ejp7gEKSXARI7BXlX4ptdsYB+Lr+hKlR9N3AeCzd0Ec4U/i1MPHgUh84rgeZ6/JWhK/I8jMK/A8ckIIccQfBbHfOfCfQwQcujSIULV80CgV+33d/sp04RzxotFt+7VLTFrke5Kql1wSxZqybJi1X/m9Nukufrhci3i51G6tM60j9RdS8+SQTRfGshINTEl5KQSdBp0JzGlKjK4sWgckfkO3COgaTC91EAJI9/IaZpqxDM76SzhjyqMEoOmI+EYgfPpUcoLbTCMjFmRaFrTiSmPkAyySrlzs4CsCDCPjdyGNFP/cXZPC68FXTI/F3olFAydKIUI3tmZxVVdPLPI3bAw6BXEjGW2wmKN1FE6Fxb/QbHlnWERLQocLj61wNEoPuTByPA5msRqI+plDUQmmcI7LF5x71of6Oopyli163GMe7sfh6KgSj4ZcJzZhdVrll6qKOM6TR1q+Xnk+s8onLiT3tle7erSm6AMj9uuD3RicQYMjU+spS30bGX7jfk5aKcTyrVQFZ/PbqJWK5OpyHkfkQc960Wte6Yvyh78h0wxeDzfqi4TLtlGbaTeaC1HcWxcKc813n2t1AIDvdqJI+HI1aiJogOEMlJiVX1u7Zn39iaa2vZ7uN84b8dLJy5lv1Fmx0Kt1Clg14VVbRcsyt3B495plNfvIk5D3y9dlLcLIOqveXH2/xKHIaEDj+aNoduu8BJKHuLoGRkLDfNtxTpg55w68HUA+WhUHKdlhMHErygApMHpQkc+32y7rJhsYN07pdQ/QJx12+Blhi8MvDaopZEVgzBu+HkbhZfDVCmhOb6A2A9UyIxUYqj9yfB7oBNuT8XTKXD7z9vVHc1cDGW2CjSWpF1eXl6f6+83zgfSx6Q08g2ff4WKrjfQk/r/894O97pQbJJIUHvIorixPibe6X6NQF77WajWEj2OuVG4OhcuS2FW9VTppRoTCoeCMfbos9f8DL+j/G15o39/BqEpCKQp65Z2wNH4Sxf4V0fEcKjNU3L55tUt3M51KHajbFxbMwGwdh/ltXMhvBYVEqp/3CrEoxK2woOuolH6Ega5GDJE0jViAI2YSqykSiWdA2M9/1r36zX7WSaV2Te4DQLtNxJnDlX53cPN/QCZJIP7J0EQY+DC4UtsyodurX7hw6fIswSARyU8vFQ55AXuZXnlS/EQVIaMpMIQKDmAZEkH46Mzz55sveSlpSclHz71YOBJwUejsHkND1w/g0x67ibYzHpbJdv2NANMxSA1nueYsFnBv5cvFlf6GoVc4FI1eVYr7ApigVBmrggRTZh3UKJrhLHjE3VEYCqcsl15cKZYfP97fKcLkOs8ElVJYZg1OwCusUjcOc7yUWtzPRSMiISLO70N2ER6nhflBKMC0mE+Nit9sXryoWhk3F16CVSsJuqsMA895Dl4yRAe0rPcUcqZSopZQjKOwI8Q9bU6Md6IpvMC+fkmcf98LwnUSdDObwEsnhzvt1YsWL10+POobhGXCUHbHH9QVZiBRW/Ev/Y5uBHtNsafDkfAp3flYJsrf5yWRCu7LFmmcSUwPbXuYykJk+pBdu1GFqNn7P5UyRMqsgMX/ANLIyYSakKkAZVLtS1Sw6GzxokVV/zxzWCHYNE2OmJ0EHOZGYRglMMSmhRV5bCmPWVjym5NzWKOFB5ArZrZSueOuTNq/sC5LmZnzdDG0zX28es0moqVRLu3PbhDsyqr0VARt4phCr9HJf9MNneADzhWKICJBEVYTJQG28rdOrdcwU4678EzVQoHPgf/vCPXyiMzk0WWvJs0OI86GlGAMGaHNmxZQdpufjyVbEOgV93jnWFbfN9cMHAyYZSI09FqwI9LeLhoPUTJxaaU8e3gK7SBxQGDSgnTF+RknxTKnTYmb8XbYyxgtrcQr2QwLCXqwt5bycw0jH46J0jhx+ljXR2GTc8yFXK0EO1XpcaHVMgy/+Jpmx28Ul6Ju/cDbIwy3N8sciEtzv7gYj00zygL3H+SgsBsR7n7QWfObr8Uvf42VvGc3ng5eMZRKDZ+7HxLo5QIWxYbA3xCD7NRWYIrO5hdd3q0xh3BqQ/Mk0xyPmkWs5NvqH19k/72MgB29cUBV5YVzgTlT5mq8HW0DitfQ8HWF4zwvB4TVDRoRaDThYbOy1c3vgCBQOoTvvAGN4kyGuAJKvq++FTDhpVH0JAEfLTRfuFCcKfJc1bpcgankqb7zYd8cqXNZw04lEBf9QMK0qoVFa1EYrDSDNwT1eq2BH0lbDQZTNpwGcX0j23ByouHD37POSxBIbQwnSZYYPvrPlhKYHFv2rMMyFEPkbE0tpcTjpmlEkvvu+89/wOSMwZ7xvelvQ8sC8xMyU8qWGl6w4bHlzQZdrDESDkcaYzqD+eJFCYZ/jWAtlydRky8UCIR88T8nc6hP7Y6O+JTJk8F/dt63jzQ5qbo9EqVGDdmcgJgyrGawTXmw9rSMsj8PkTdVWeJM6k/BzMWD8B9d3g9kbt5p9ycpvI/RxCsoWPXO+qjfsmRJRR9r9brFYvoOKHmsklu37j3YPRC4A53LL24dj23cUTYYVReXwLk8TFEAXmanGO4KxNhCbQA1cqDcV2QJOlM/1Or1coRxyyglxZxmUTcisvwEX8hk1Qv5hRhlx/H6VHLhKEUqVqZmZBf3G9WGuL83Ho2Gg27mVHthq1SOR3NWe+QBumNjPmqJoVYyZS/1YmPYq8dkqqwBKWISn+hbDyLhEzYM+pTpEdCZoQFHSr1pscTEV9mBzva+ua7rsxAiyKq6OotJVLS0tZIQft2vMQ/4wSlJ4bgs08Od/TJ3mbY1stATXn3akhx1b6Rot7poZUSjKIQz6PvuMsmdKdNF5Melwy9k84WkZ041PLLZKJgEYMop/7rtWhgpZyY5RIGGnyUgF+KClTPGm5hTa5wPDliJ7/StWmGexp9OvgwPaIy5jlkZOb+h5iYRtP2R+v7MbD35YToRHpCIM/UZkH1Vh67vcQ61tSiYwOFh6ZAhUy8iDfdN+I3FYaxVuP9GC6g04HsdJxlFsdB8R0TEFzMm9BftoVZwVRGyqDmdfahC/bdhGAcS/YZfF7Fome9LOhEV1UyK9Qlv04CmZRT1B+0W34LHBGZTUJmSuTzbc9SFRNMQQ25cnka8emlndtUHPWkdV69Yu2ezZetTtUGlWgMmk6dlsOYj0VkTCO2eLApAV3tNNPJP6bctPEdVUrl3duuH6H7HGNJZGdJkseq0OtKh5kLGtidn7V7Z0bB3x9n21dSF6XKncVFejt8H1NgEScvI8e4hTIs0uD5dipz4i5ZOa36/9G8LyBLLysAKCWX0puPHT7atnufIJMMvtT0Ve2rqiyDRK38RmvHy+c7IPAIMpSJxuG142l2mV2ITwDBgBFyAMenx6GQSBYPiMSFvCKCHxewxVgg5+uxc7aMH1au4a1kJpU7/Ocw33XjqxfStfyvPnLvTbv2FJUbz8X5jaVoUoOdjKvhRWWp6B6jV7aYWEgrElNAgEYvGHIROp0lloIQQmEie70/oHGkCDMcoAgN1gP0GPjy/iKf4M9FrtM8YGY6KRQApmE4tqg0NsiaZj9DYi821sTuaYMPmpZtPXn/pb6zulzJ7Ni+9DiUI+uDkpIfil8ezeHPjETbdbwAeXpNTJH5pdO95R0Pe+dhQuHpQEiznyGhcUQMKAVWLHBe/yYnqklSjkSp/6OsTJy4Tuo2eMgOznr4bvtVw/+7jjWcmbsdoJ/uOBDfH3mVd1NwRvoYxCBdDcfi0HzUyiduDfv9WOtwfMMkwHwrUBVKGcTUmhPKvtXieMRQk6bCbCaWAL5Gq1H39/X1d1bz81a5fLqVWSSV8IUE5SNJIYH/uUXZzaMJV7vNmyi4QqU5dZ3NQVIiBP7+SVJbnNDUlIl4avzeSLnnhfJp0ewL68YUoymG/LN3tZ+ztXOju7hSBPx5dZznvUReIrBKtCzUHIBzZWiZu/+jsRHBQugkGT/JXhVR4hwUXJ7NYiIfoFRdNbjz+FfqSqCpthjQQY+6/NOzbsun5i6rqPAoNHKPk4rJAAdBFcZhr7Lr3RQHXrAKCM3dAd1v8Hqv7RWe8QMGbzNZ15eb4Pc6DtJZvKBuONVd7GdY+y4IHMV5XZuI5S2p/4quGQyeH7OZQqDx8qlE+LDw6u+eKhtMXFxQ53oTY/4OaJqhzldM7r9PBI2MrliL/ZH1/HMH3ORRdrdUqjjb4V2o11ho7B1sOJHknfc8X9EX8fvmFMTzwXS5fEv9ariBvQbrJLY2xWCzWGOKAQeul6OZyrZTLlhVDVST7T3FTRfsg8uI06WFO0pf41phzki04uW+64Fi5/sL82ZONXYcN02FdUqNjvWM4HtnhxhwUkp1ef6u0QR0YkNqgUia7HFS5IlpOw6LVWtmNekcUB4Mq1Z/KNLptCfO1hy62MQ10nKQhHh9Eij1ZFJjT8ibvl2M+uShms76c3qJ8yvWm1PR1PHDAMndRGhOSwREOm2EV6nZDrzmKXwNb4WEPNtF/D6X9FjzkYY+wnY96zEOojvVSqVCRflkpStmjJUy7mGZuIpQkd6233YII37ee0K3Fnt6+7NBhgVCGJBJeeajIfDYviA+QrPwk0aYrgxTttyFYsk0822h6tpsQRNfy+Qsmpg4bf7YcwTKVoEjw2mAwT9pcb1znDdqFqvarmNfzfn3KaabAJCb+jRgQxD4KbwzjLgzcnkbbXOf6vPoBSaKk5aehX3rT4P35SvVEJFYoy+PjLJ686cYWjuoKscjfUcnjmJcbxmobTdCuAUQfr9drdrVWq/4GKvIBZhOhfTh8Nct8QL7Xd8+dmGTSRJY+sLJAXHngWGHfvMIarxbcr7a3C5XqTcGIpGDgnUpBxXG4xUqWxKJ3qyaX0hJPCjTiD/gX2SqPIahqUsJUSqk6XcWkvArC7v+DZum1fFM+sqF0TFl+D5uWfYDdmpm6c2ziI77V/Ja+NF/xzLNXnvh8t+/FZ/M32xgKMdzqkxW+RAgsUlTKne6foq7wIPXhTjmbg5IH6SQeHZQPPvBj0V+xTr1WPY5vuUc6KNtsbujfSX/w9fT8Ja0K1+S/22n9PZQX+rjJyIigGoDo3lTK0yfuu/0OuF0+P+c2zk8KgXRs2uCoVO0we713VZtGmsl0MXQzUK3MySUXWyCDLIHPzu8dnju78yJM/Qx63yUVWTeDgle5gcisWpXW+6R8o4xbum173bWU7x16LV1uXx1KM3RRyYdSNBprSoqQ/Uh5ZV5dzVceHCkUchklaexCd3tbNPm4ZE5Xld7Klw1kjLktkrA/Ev7NkhyFwT1EfNa2WgMbJv3CaDIJLHgjufLSPptaKnAgxEOpTK2WhMPFcWIkLStDlMhY/WxZZGCMt2ZjR2z6rsWjPBnmYmPUHfkve+/TO70bOOJGRG4ILCXd6RaXMf2rLhgJA67YIuTGHQISP2LY55zBlq2BuEWpezAh/3KOWks3LFwTCS4JK0q58bHJhsbjwUDhO61mq9UWFJMBgrFxaC5X2o9CQTi6TUmDl9bb3mTbsOsjydLSDhloKLEpiV3FkFysZdKEuDYeDJUE7RJQ5GPr8LmbN2gMDc5bBucLrDjmFnae4l5w0cqxckjo3GR2wmMWk3uzgRDBhaBw5c5kkzJpoT8dfFaQWH1sNCN70W6XU8+0M8fiYRKYYxn7PgATCx5+7uFpxO6o9Jss1+0ZFLvFm3iY3DBC5IBU9jMFfmEVaLEHDPTgy6T+5+YcRwDA2sr1CxnbDKoxZOIc3icA2wMye2eREHDEm9LXkCRFwZTRdxJiP0T3ky36wP5ENbXuKmURwD7RQZJXbkSbevM+gYrjaoZlHg7Q++3UtYXA3A+34OijBHX3tQjTOmV26OjPnDCm9iL2rXg/3TeAMgRHPVRXD2Zz+42AcOTpgXzGarQhs9+uMNcBt30D5JFcHWwpBSfmYpsfEGOwZl3mW5oAkIgBQqTmYGDMTbv2IkH3614rQ3P6NK/EDbwy4Qp7Ip6fIwTOUyQc5BmDlxAxsn3Jw2UyULX8ME3gA8Cfqq5uZYmHkaDX4/nDITS244bdG4omM0wqxc6S9bBYAJ36K4GIe2OghgifirfryiVN+VCpkD2R97hIfQg2oZGoZhmEvyhOOCjUl0USADsjK71YVImnQk5sZhLE+tvBbez9Wln3pZyUAL+irgDDtWLCZzRy+R/O/Wsy58QUAL8LcZUFd/hJ5sZXtqy9TprZTHMMCSt3TdXM4Cnga89Kfb3UdIq9nvR9czT+ASWnuEqBvXHTFgOosJFn3kSaqGfpKtANh/2uQCKXzpUqFdaG4pRU0cGkUgiB8mYKzaR60DXqmoZcr5YulJoqpEa+3sH8fnj5gvOPWejTz/fv23mnn38C0KnnvfrDtGgUBxTDHuoIu13qmIYMAPHQY/phQanoaGnG8iXz/rfQgiRAjxFJpkcG6Ex8nvbb3D5hNL//2uit97U6MSGXWXLAWVwkwMef5rqXdPV/zeLcheDffqu5yr8DHgDR9f5Gin1vPlHg/u9C4fhXAP719iGm639XtW88oCImbKLiYwcABQMAgMCQiQVqHQMZkM4K/RsYbZAniOz1aJiG02bIriK9N+DdsPfVD34/gkaSDojhTZdPD+01DP1IIN8ZpRhrNgWy6ifccwDP1UZ8MqYr8e9yz7OGy47GvT2MXV1o+yiJbfJyjCeZkzsV3a7GCN/KHBZVFU1LsGyeaLgIiDyOJR+DecnMQdICTq0R7Y2Aqy1KPwwY35TybUDXAWP+QrR3jzQtIqptz5WbyC2me3Bpgeg/204ZIiq/YtMIHZmNtM2ENndPhXWSwJQLhpU1NfIzFh1HMiEXKujyh66OLc1iXDMX987BNzejXS/BprFtJ4om8LWIU06g03m4d0l7+3ADMj1BNhiCFyghDv5aq3PmYeZvotTQSx15KshSaH5rMQyBPL0Ypw1troWHRkP+sOrPiKby8QidnBdmAZhueM3UJ6c/Vr8L1snVX0LChuAGafZOoOd8cwrD/Il+KnhnPcl5Frc+w7i8hTZLaWka3TDD2xOEtO+CDFwa+gvfGLGkSEOo04cxoR0XbQTRPm65D8cXsozCabhlEC9Hs84RqYPYQvlYW3DIXXh4D90U03V33fyCogzuKYtLU7dLcMhaxvtCRL2tukYSzRLYLqz6Mba9nXGtYJT+FnY51r2e0OrINURz41TzFYH5GtM6KTRAawuEZveMKp9Sv2c8AAEtBCMsqOoGl4up+EJW0x6G7eCEdXBFdhof+UOnSqapBAG0AW+R5UhMsuriCNcdSfwMh+ZoAKjPfrsHkcXZg+FHtwdn5e/ZBK+H5OrJHorM7h4+RwseLoLKzkMAXPGYjXzl8RDC0R7SQ4BQrIcENoceCsSMPSxgyHrYwMWwtJYCiFZmkiylglVk64mK5PCBrGQJfzNgy5+ij7KXL7cVY+StvUUuvTDIZaeGmCCvPGqBQhVCKYOjeLK/ufLw5GSOckVvtuLJ2oRYZGL8yS9WroCtmgChok2VrUgJa7l0vDzlQbXLlFLwcwvwHjZuQT5XlhpGTGE3e6Ivc4fZYpuI+zXx5xYJonHhphZkdjlvTwXr+z482UzlTjKhYi+fEKMuIK8iXKwr37HFE5cTEMmYWiCuLKtXqUAXyw4UcYUyERvTu430kHmyBYrkyS8FWcoDtpbGS5hj0d+Sqg0HPyVoAwAYeSN8uCXbv3I0qGWMNIOpn5iZ6bYWd5izc3B6+zS2HLAOexDcjWdx8L4HCjy0Zscl/y+/GSc0PO6VHfZYoSdcxMQl/MJDXkSJiYqXn2QHfwHKBPouyORiRKcIHnr2XT1VYZrppgoLB5GD6v6hnCHaTLPNMctOcx0X46dYceItkyDRPFWqVUoafvfl/XBeWriIhdhw2RXb1JMM8pseIPdCWkQQxPyn+AkkVPw3y4RMuYpfCCrVatRKqFOvQaMmzVq0apPkkB69+mIqLaNdh05duvXo1affgEHYP4ftChv5Hw5iQjr09iPsZmC3a5bgoYilEjOOKAkOOsknTSbBcKXL5CmdlGmuu+GU0xqdcdAhzS4hMQwhllpsheVWWiDDVwtdxIo3i2zMfvi6dDtLwcTgDln28E4OdvwsWLRk2WYrtli11TZr1m23w05q+FrlmVee6/A6Srv9iX4jpGVmZc7LyIWQQpCE+NjeT5CsW8sk+5ZsDe+A7BJ/MD6R7FmFNYoj89ZY1HEQmZycVXJ543O2BFpzK87O3G1wbproGSeaiZ53Rm4kU0k64gZvojBBiiAzBSVTBQsKXFIAlJ6E0lOTArSi43YgYIIAaEABsAAAABcANPAMAFS+JQJykBbwAlEgC1SBLjAFtsD18XdAKBQIW8pkrW4KwdVlcqDz0oRW1k/V7IvgaXTKEZCrfDpxTr5+vSTpCCd6ENHn/hZdLyf7w/3HzDq0Q1pEmy2s5R05vME54QR3msDpT6Npifxz6/TCR7WaV+Hp0FTVy0I9p3ADw2aWqXYLwWwl2Tq3EMLsVVfvp1+DJMOevoV42Y0xkazixwaaFFSDEMTjp/rnxoQXEp/SB6vUDAUFxA+tGb1x4l+Jl7kJAAAA)format("woff2");unicode-range:U+0000-00FF,U+0131,U+0152-0153,U+02BB-02BC,U+02C6,U+02DA,U+02DC,U+0304,U+0308,U+0329,U+2000-206F,U+2074,U+20AC,U+2122,U+2191,U+2193,U+2212,U+2215,U+FEFF,U+FFFD}</style>
|
||
<script type=application/ld+json>{"url":"https://planegeodesy.com","name":"Plane Geodesy ","description":"","@context":"http://schema.org","@type":"WebSite"}</script><style>:root{}/*! Squarespace LESS Compiler (less.js language v1.3.3) *//*! normalize.css v3.0.2 | MIT License | git.io/normalize */html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}main,nav,section{display:block}a{background-color:transparent}a:active,a:hover{outline:0}strong{font-weight:bold}h1{margin:.67em 0}sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}svg:not(:root){overflow:hidden}hr{-moz-box-sizing:content-box;box-sizing:content-box;height:0}button,input{color:inherit;font:inherit;margin:0}button{overflow:visible}button{-webkit-appearance:button;cursor:pointer}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}input{line-height:normal}/*! Squarespace LESS Compiler (less.js language v1.3.3) */.clear:after{display:block;visibility:hidden;font-size:0;height:0;clear:both;content:"."}@media (max-width:640px){}@media (min-width:640px){}@media (min-width:640px){}@keyframes bounceIn{0%{opacity:0;transform:scale(.3)}50%{opacity:1;transform:scale(1.05)}70%{transform:scale(.9)}100%{transform:scale(1)}}@keyframes bounceOut{0%{transform:scale(1)}25%{transform:scale(.95)}50%{opacity:1;transform:scale(1.1)}100%{opacity:0;transform:scale(.3)}}@media screen and (max-width:432px){}@media screen and (max-width:432px){}@media screen and (min-width:433px){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@keyframes sqs-spin{0%{transform:rotate(0deg)}100%{transform:rotate(360deg)}}@media screen and (max-width:432px){}@media screen and (min-width:433px){}@media screen and (max-width:432px){}@keyframes show-confirmation{from{opacity:0;transform:scale(.96)}to{opacity:1;transform:scale(1)}}@keyframes show-confirmation-mobile{from{transform:translatey(-50%)}to{transform:translatey(0)}}@media screen and (max-width:432px){}/*! Squarespace LESS Compiler (less.js language v1.3.3) */.sqs-block.vsize-1 .sqs-block-content{height:34px}@keyframes bounceIn{0%{opacity:0;transform:scale(.3)}50%{opacity:1;transform:scale(1.05)}70%{transform:scale(.9)}100%{transform:scale(1)}}@keyframes bounceOut{0%{transform:scale(1)}25%{transform:scale(.95)}50%{opacity:1;transform:scale(1.1)}100%{opacity:0;transform:scale(.3)}}@media screen and (max-width:432px){}@media screen and (max-width:432px){}@media screen and (min-width:433px){}.sqs-row{width:auto!important}.sqs-row:before,.sqs-row:after{content:"";display:table}.sqs-row:after{clear:both}[class*=sqs-col]{float:left}[class*=sqs-col] .sqs-block{padding-left:17px;padding-right:17px}[class*=sqs-col]:last-child{padding-right:0}.sqs-col-12{width:100%}.sqs-col-12 .sqs-col-11{width:91.6667%}.sqs-col-12 .sqs-col-1{width:8.3333%}.sqs-col-11 .sqs-col-10{width:90.9091%}.sqs-col-11 .sqs-col-1{width:9.0909%}.sqs-layout>.sqs-row{margin-left:-17px;margin-right:-17px}.sqs-layout:not(.sqs-editing) .sqs-row .sqs-block:not(.float):not(.sqs-feature-gated-wrapper):first-child{padding-top:0}.sqs-layout:not(.sqs-editing) .sqs-row .sqs-block:not(.float):not(.sqs-feature-gated-wrapper):first-child:last-child{padding-bottom:0}.sqs-layout:not(.sqs-editing)>.sqs-row:first-child>[class*=sqs-col]:first-child>.sqs-block:not(:first-child):last-child,.sqs-layout:not(.sqs-editing) .sqs-block+.sqs-row .sqs-block:not(.float):last-child{padding-bottom:17px}.sqs-block.sized .sqs-block-content{overflow:hidden}@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media only screen and (pointer:coarse) and (orientation:portrait) and (max-device-height:926px),only screen and (pointer:coarse) and (orientation:landscape) and (max-device-width:926px){}@keyframes loading-indicator-rotate-spinner{100%{transform:rotate(360deg)}}@keyframes loading-indicator-dash{0%{stroke-dasharray:1,200;stroke-dashoffset:0}50%{stroke-dasharray:89,200;stroke-dashoffset:-35}100%{stroke-dasharray:89,200;stroke-dashoffset:-124}}.sqs-block{position:relative;height:auto;padding-top:17px;padding-bottom:17px}.sqs-block:not(.sqs-block-html):not(.sqs-block-markdown){clear:both}.sqs-block .sqs-intrinsic{position:relative!important}@media screen and (max-width:767px){}@media screen and (max-width:480px){}@media screen and (min-width:481px){}@media only screen and (max-width:639px){}@media screen and (max-width:480px){}@media only screen and (min-width:641px){}@media only screen and (min-width:641px){}@media only screen and (max-width:960px){}@media only screen and (max-width:640px){}@media only screen and (min-width:641px){}@media screen and (max-width:640px){}@media screen and (max-width:640px){}@media screen and (min-width:641px){}@media screen and (min-width:641px) and (max-width:768px){}@media screen and (min-width:769px) and (max-width:1024px){}@media screen and (min-width:1025px) and (max-width:1280px){}@media screen and (min-width:1281px){}@media screen and (max-width:640px){}@media screen and (min-width:641px){}@media screen and (min-width:641px) and (max-width:768px){}@media screen and (min-width:769px) and (max-width:1024px){}@media screen and (min-width:1025px) and (max-width:1280px){}@media screen and (min-width:1281px){}@media only screen and (max-width:640px){}@media only screen and (max-width:640px){}@media only screen and (max-width:640px){}@media only screen and (min-width:640px){}@media only screen and (min-width:640px){}@media only screen and (max-width:640px){}@media screen and (max-width:320px){}@media screen and (max-width:640px){}@media screen and (max-width:640px){}.sqs-block-markdown{clear:none}.sqs-block-markdown .sqs-block-content{position:relative}.sqs-block-markdown .sqs-block-content *:first-child{margin-top:0}.sqs-block-markdown .sqs-block-content *:last-child{margin-bottom:0}.sqs-block-markdown hr{border:none;margin-left:auto;margin-right:auto}.sqs-block-html{clear:none}.sqs-block-html .sqs-block-content,.sqs-block-html .sqs-html-content{outline:none}.sqs-block-html .sqs-block-content *:not(h1):not(h2):not(h3),.sqs-block-html .sqs-html-content *:not(h1):not(h2):not(h3){word-wrap:break-word}.sqs-block-html .sqs-block-content>*:first-child,.sqs-block-html .sqs-html-content>*:first-child{margin-top:0}.sqs-block-html .sqs-block-content>*:last-child,.sqs-block-html .sqs-html-content>*:last-child{margin-bottom:0}@media only screen and (max-width:480px){}@media only screen and (device-width:768px){}/*! WARNING: block .less requested, but unable to resolve css from system cache: calendar */@media (-webkit-min-device-pixel-ratio:2),(min-resolution:1.5dppx){}@media (prefers-reduced-motion:reduce){}@media only screen and (max-width:400px){}/*! WARNING: block .less requested, but unable to resolve css from system cache: album */@media (hover:hover){}@media screen and (max-width:480px){}@media screen and (max-width:480px){}@media only screen and (max-width:700px){}@media only screen and (max-width:650px){}@media only screen and (max-width:600px){}.sqs-block-spacer .sqs-block-content{visibility:hidden}li>*:first-child::before{white-space:pre}@media (hover:hover){}@media (hover:hover){}@media screen and (max-width:1024px){}@media (hover:hover){}@media all and (max-width:414px){}@media screen and (max-width:640px){.sqs-layout [class*=sqs-col]{float:none!important;width:auto!important}.sqs-layout .spacer-block{display:none}.sqs-layout .sqs-row .sqs-block:first-child{padding-top:17px!important}.sqs-layout .sqs-row .sqs-block:last-child{padding-bottom:17px!important}}html{pointer-events:auto}body.tweak-site-width-option-full-background{background-color:#d9c0a6;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}body.tweak-site-width-option-full-width.tweak-footer-show:not(.tweak-site-border-show),body.tweak-site-width-option-full-background.tweak-footer-show:not(.tweak-site-border-show){background-color:#f5bb94;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.Main-content{-webkit-animation:anim-opacity-full 480ms ease-out;animation:anim-opacity-full 480ms ease-out}body{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:21px;letter-spacing:.05em;line-height:1.4em;text-transform:none;color:#000}p:first-child{margin-top:0}p:last-child{margin-bottom:0}@media screen and (max-width:640px){}@media screen and (max-width:640px){}@media screen and (max-width:640px){}h1,h2,h3{text-rendering:optimizeLegibility}h1:first-child,h2:first-child,h3:first-child{margin-top:0}h1:last-child,h2:last-child,h3:last-child{margin-bottom:0}h1{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:35px;letter-spacing:.1em;line-height:.8em;text-transform:none}@media screen and (max-width:640px){h1{font-size:32px;letter-spacing:.09142857px}}h2{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:30px;letter-spacing:.05em;line-height:1.4em;text-transform:uppercase}@media screen and (max-width:640px){h2{font-size:28px;letter-spacing:.04666667px}}h3{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:25px;letter-spacing:.05em;line-height:1.2em;text-transform:none}@media screen and (max-width:640px){h3{font-size:24px;letter-spacing:.048px}}h1+h1,h1+h2{margin-top:15px}h1{color:#404040}h2{color:#404040}@media screen and (max-width:640px){h1,h2,h3{-webkit-hyphens:auto;-moz-hyphens:auto;-ms-hyphens:auto;hyphens:auto}}a{color:inherit;text-decoration:none}a:active,a:focus{outline:0}.sqs-block-markdown p a{color:blue;-webkit-transition:color .15s ease-out;-moz-transition:color .15s ease-out;-ms-transition:color .15s ease-out;-o-transition:color .15s ease-out;padding-bottom:.05em;border-bottom-width:1px;border-bottom-style:solid;border-bottom-color:rgba(0,0,255,.3);-webkit-transition:border-color .15s ease-out,color .15s ease-out;-moz-transition:border-color .15s ease-out,color .15s ease-out;-ms-transition:border-color .15s ease-out,color .15s ease-out;-o-transition:border-color .15s ease-out,color .15s ease-out;transition:border-color .15s ease-out,color .15s ease-out}.sqs-block-html p a:hover,.sqs-block-markdown p a:hover,.sqs-block-image p a:hover,.sqs-block-html blockquote a:hover,.sqs-block-markdown blockquote a:hover,.sqs-block-image blockquote a:hover,.sqs-block-html ol a:hover,.sqs-block-markdown ol a:hover,.sqs-block-image ol a:hover,.sqs-block-html ul a:hover,.sqs-block-markdown ul a:hover,.sqs-block-image ul a:hover{color:rgba(0,0,255,.5)}.sqs-block-html p a:hover,.sqs-block-markdown p a:hover,.sqs-block-image p a:hover,.sqs-block-html blockquote a:hover,.sqs-block-markdown blockquote a:hover,.sqs-block-image blockquote a:hover,.sqs-block-html ol a:hover,.sqs-block-markdown ol a:hover,.sqs-block-image ol a:hover,.sqs-block-html ul a:hover,.sqs-block-markdown ul a:hover,.sqs-block-image ul a:hover{color:rgba(0,0,255,.6);border-color:rgba(0,0,255,.15)}.Site-inner{position:relative}.tweak-site-width-option-full-background .Header-inner,.tweak-site-width-option-full-background .Main-content,.tweak-site-width-option-full-background .Footer-inner{max-width:1800px;margin-left:auto;margin-right:auto}.tweak-overlay-parallax-enabled .Parallax-host{display:block}@media screen and (max-width:768px){}@media screen and (max-width:640px){}.Main{background-color:#fffbe6;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.Main-content{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:80px 38px}@media screen and (max-width:640px){.Main-content{padding-top:60px;padding-bottom:60px}}@media screen and (max-width:768px){.Main-content{padding-left:36px;padding-right:36px}}@media screen and (max-width:640px){.Main-content{padding-left:20px;padding-right:20px}}.Intro-content .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.Main:not(.Main--events-list):not(.Main--events-item):not(.Main--blog-list) .Main-content .sqs-layout .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.tweak-blog-list-style-stacked .BlogList--posts-full .sqs-layout .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.Index-page .sqs-layout .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.Footer-blocks--top .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.Footer-blocks--bottom .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram),.tweak-footer-layout-stacked .Footer-blocks--middle .sqs-col-12>.sqs-block:not(.float):not(.sqs-float-left):not(.sqs-float-right):not(.sqs-block-gallery):not(.sqs-block-image):not(.sqs-block-video):not(.sqs-block-map):not(.sqs-block-calendar):not(.sqs-block-menu):not(.sqs-block-tourdates):not(.sqs-block-summary-v2):not(.sqs-block-archive):not(.sqs-block-instagram){-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;width:100%;margin-right:auto;margin-left:auto}@media only screen and (max-width:640px){}[data-nc-group]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;-webkit-box-align:center;-ms-flex-align:center;-webkit-align-items:center;align-items:center;text-align:center;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center}[data-nc-container]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;-webkit-box-align:center;-ms-flex-align:center;-webkit-align-items:center;align-items:center;-webkit-box-flex:1;-ms-flex:1 1 auto;-webkit-flex:1 1 auto;flex:1 1 auto;min-width:0;max-width:100%}[data-nc-element]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;-webkit-box-flex:1;-ms-flex:0 0 auto;-webkit-flex:0 0 auto;flex:0 0 auto}[data-nc-collapse] [data-nc-element]{-webkit-box-flex:1;-ms-flex:0 1 auto;-webkit-flex:0 1 auto;flex:0 1 auto;max-width:100%}[data-nc-base="header"] [data-nc-group="top"]{display:none}[data-nc-base="header"] [data-nc-group="bottom"]{display:none}@media screen and (min-width:1280px){.ancillary-header-branding-position-top-left [data-nc-base="header"] [data-nc-group="top"]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;display:flex}.ancillary-header-primary-nav-position-bottom-left.has-primary-nav [data-nc-base="header"] [data-nc-group="bottom"]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;display:flex}}[data-nc-base="header"] [data-nc-container="top-left"]{text-align:left;-webkit-box-pack:start;-ms-flex-pack:start;-webkit-justify-content:flex-start;justify-content:flex-start}[data-nc-base="header"] [data-nc-container="top-left"] [data-nc-element="branding"]{-webkit-box-ordinal-group:1;-ms-flex-order:1;-webkit-order:1;order:1}[data-nc-base="header"] [data-nc-container="top-left"] [data-nc-element="secondary-nav"]{-webkit-box-ordinal-group:4;-ms-flex-order:4;-webkit-order:4;order:4}.ancillary-header-branding-position-top-left [data-nc-base="header"] [data-nc-container="top-left"][data-nc-container]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;display:flex}[data-nc-base="header"] [data-nc-container="top-right"]{text-align:right;-webkit-box-pack:end;-ms-flex-pack:end;-webkit-justify-content:flex-end;justify-content:flex-end}[data-nc-base="header"] [data-nc-container="top-right"] [data-nc-element="search"]{-webkit-box-ordinal-group:5;-ms-flex-order:5;-webkit-order:5;order:5}.ancillary-header-top-right-layout-stacked [data-nc-base="header"] [data-nc-container="top-right"]{-webkit-box-orient:vertical;-ms-flex-direction:column;-webkit-flex-direction:column;flex-direction:column;-webkit-box-align:end;-ms-flex-align:end;-webkit-align-items:flex-end;align-items:flex-end}.ancillary-header-search-position-top-right [data-nc-base="header"] [data-nc-container="top-right"][data-nc-container]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;display:flex}[data-nc-base="header"] [data-nc-container="bottom-left"]{text-align:left;-webkit-box-pack:start;-ms-flex-pack:start;-webkit-justify-content:flex-start;justify-content:flex-start}[data-nc-base="header"] [data-nc-container="bottom-left"] [data-nc-element="primary-nav"]{-webkit-box-ordinal-group:3;-ms-flex-order:3;-webkit-order:3;order:3}.ancillary-header-primary-nav-position-bottom-left.has-primary-nav [data-nc-base="header"] [data-nc-container="bottom-left"][data-nc-container]{display:-webkit-box;display:-ms-flexbox;display:-webkit-flex;display:flex}@media screen and (min-width:1280px){}.Footer{background-color:#f5bb94;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.tweak-footer-show .Footer{display:block}.Footer-inner{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0px 38px}@media screen and (max-width:768px){.Footer-inner{padding-left:36px;padding-right:36px}}@media screen and (max-width:640px){.Footer-inner{padding-left:20px;padding-right:20px}}.Footer-blocks{color:#000}.Footer-blocks.empty{padding:0!important}.Footer-blocks .sqs-block-markdown p a{color:#000;-webkit-transition:color .15s ease-out;-moz-transition:color .15s ease-out;-ms-transition:color .15s ease-out;-o-transition:color .15s ease-out;padding-bottom:.05em;border-bottom-width:1px;border-bottom-style:solid;border-bottom-color:rgba(0,0,0,.3);-webkit-transition:border-color .15s ease-out,color .15s ease-out;-moz-transition:border-color .15s ease-out,color .15s ease-out;-ms-transition:border-color .15s ease-out,color .15s ease-out;-o-transition:border-color .15s ease-out,color .15s ease-out;transition:border-color .15s ease-out,color .15s ease-out}.Footer-blocks .sqs-block-html p a:hover,.Footer-blocks .sqs-block-markdown p a:hover,.Footer-blocks .sqs-block-image p a:hover,.Footer-blocks .sqs-block-html blockquote a:hover,.Footer-blocks .sqs-block-markdown blockquote a:hover,.Footer-blocks .sqs-block-image blockquote a:hover,.Footer-blocks .sqs-block-html ol a:hover,.Footer-blocks .sqs-block-markdown ol a:hover,.Footer-blocks .sqs-block-image ol a:hover,.Footer-blocks .sqs-block-html ul a:hover,.Footer-blocks .sqs-block-markdown ul a:hover,.Footer-blocks .sqs-block-image ul a:hover{color:rgba(0,0,0,.5)}.Footer-blocks .sqs-block-html p a:hover,.Footer-blocks .sqs-block-markdown p a:hover,.Footer-blocks .sqs-block-image p a:hover,.Footer-blocks .sqs-block-html blockquote a:hover,.Footer-blocks .sqs-block-markdown blockquote a:hover,.Footer-blocks .sqs-block-image blockquote a:hover,.Footer-blocks .sqs-block-html ol a:hover,.Footer-blocks .sqs-block-markdown ol a:hover,.Footer-blocks .sqs-block-image ol a:hover,.Footer-blocks .sqs-block-html ul a:hover,.Footer-blocks .sqs-block-markdown ul a:hover,.Footer-blocks .sqs-block-image ul a:hover{color:rgba(0,0,0,.6);border-color:rgba(0,0,0,.15)}.tweak-footer-layout-stacked .Footer-blocks--top{padding-bottom:20px}.tweak-footer-layout-stacked .Footer-blocks--bottom{padding-top:20px}.tweak-footer-layout-stacked .Footer-blocks--middle{padding:20px 0}.tweak-footer-layout-stacked.tweak-footer-stacked-alignment-left .Footer-business{text-align:left}@media screen and (max-width:479px){}@media screen and (min-width:480px) and (max-width:599px){}.enable-load-effects .Header [data-nc-container]{-webkit-transition:opacity 200ms 600ms ease-out;-moz-transition:opacity 200ms 600ms ease-out;-ms-transition:opacity 200ms 600ms ease-out;-o-transition:opacity 200ms 600ms ease-out;transition:opacity 200ms 600ms ease-out}.enable-load-effects .Site.loaded .Header [data-nc-container]{opacity:1}.Header [data-nc-element]{padding:12px 8px}.Header-inner{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding-left:30px;padding-right:30px}@media screen and (max-width:768px){.Header-inner{padding-left:28px;padding-right:28px}}@media screen and (max-width:640px){.Header-inner{padding-left:12px;padding-right:12px}}.Header--top{display:none;background:#f5bb94;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.Header-inner--top{padding-top:18px;padding-bottom:18px}@media screen and (min-width:1280px){.ancillary-header-branding-position-top-left .Header--top{display:block}}.Header--bottom{display:none;background-color:#fffbe6;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.Header-inner--bottom{padding-top:10px}@media screen and (min-width:1280px){.ancillary-header-primary-nav-position-bottom-left.has-primary-nav .Header--bottom{display:block}}.has-site-title .Header-branding{text-rendering:optimizeLegibility}.has-site-title .Header-branding{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:27px;letter-spacing:.15em;line-height:1em;text-transform:uppercase;color:#000}.Header-nav{white-space:nowrap;line-height:1em}[data-nc-collapse] .Header-nav{white-space:normal}.Header-nav-item,.Header-nav-folder-item{-webkit-transition:color 170ms ease-in-out,background-color 170ms ease-in-out;-moz-transition:color 170ms ease-in-out,background-color 170ms ease-in-out;-ms-transition:color 170ms ease-in-out,background-color 170ms ease-in-out;-o-transition:color 170ms ease-in-out,background-color 170ms ease-in-out;transition:color 170ms ease-in-out,background-color 170ms ease-in-out}.Header-nav-item{display:inline-block;vertical-align:middle}.Header-nav-item--folder{position:relative}.Header-nav-folder{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;position:absolute;top:100%;left:-99999px;z-index:1002;margin-left:-1em;padding:1em;opacity:0;white-space:nowrap;text-align:left;-webkit-transform:translate3d(0,10px,0);-moz-transform:translate3d(0,10px,0);-ms-transform:translate3d(0,10px,0);-o-transform:translate3d(0,10px,0);transform:translate3d(0,10px,0);-webkit-transition:left 0s .2s linear,transform 0s .2s linear,opacity .2s ease-out;-moz-transition:left 0s .2s linear,transform 0s .2s linear,opacity .2s ease-out;-ms-transition:left 0s .2s linear,transform 0s .2s linear,opacity .2s ease-out;-o-transition:left 0s .2s linear,transform 0s .2s linear,opacity .2s ease-out;transition:left 0s .2s linear,transform 0s .2s linear,opacity .2s ease-out}.Header-nav-folder-title{display:inline}.Header-nav-folder-item{display:block;padding:.382em}.Header-nav-item--folder:hover .Header-nav-folder,.Header-nav-item--folder:focus-within .Header-nav-folder:focus-within{left:0;opacity:1;-webkit-transform:translate3d(0,0,0);-moz-transform:translate3d(0,0,0);-ms-transform:translate3d(0,0,0);-o-transform:translate3d(0,0,0);transform:translate3d(0,0,0);-webkit-transition:left 0s linear,transform .2s ease-out,opacity .2s ease-out;-moz-transition:left 0s linear,transform .2s ease-out,opacity .2s ease-out;-ms-transition:left 0s linear,transform .2s ease-out,opacity .2s ease-out;-o-transition:left 0s linear,transform .2s ease-out,opacity .2s ease-out;transition:left 0s linear,transform .2s ease-out,opacity .2s ease-out}.Header-nav{font-family:Rubik;font-weight:400;font-style:normal;font-size:17px;letter-spacing:.2em;text-transform:none}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-inner{margin:-.618em -2em}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-item{color:blue}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder{background-color:#f5bb94;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder-item{color:#000}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-item:hover{color:#000}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder-item:hover,.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder-item:focus-within{color:#000}.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder-title--active,.tweak-header-primary-nav-hover-style-active .Header-nav .Header-nav-folder-item--active{color:#000}body:not(.tweak-header-secondary-nav-inherit-styles) .Header-nav--secondary{font-family:Arial,Helvetica,sans-serif;font-weight:400;font-style:normal;font-size:12px;letter-spacing:0em;text-transform:none}body:not(.tweak-header-primary-nav-hover-style-button) .Header-nav--primary .Header-nav-item,body:not(.tweak-header-primary-nav-hover-style-button).tweak-header-secondary-nav-inherit-styles .Header-nav--secondary .Header-nav-item{margin:0 2em;padding:.618em 0}.Header-search{white-space:nowrap}.Header-search-form{display:inline-block;vertical-align:middle;line-height:0}.Header-search-form-input{letter-spacing:inherit;text-transform:inherit;width:12em;max-width:100%;outline:0;border:0;background-color:transparent}.Header-search-form-submit{outline:0;border:0;padding:0;background-color:transparent;text-transform:inherit;letter-spacing:inherit;vertical-align:middle;line-height:0;-webkit-transition:opacity 200ms ease;-moz-transition:opacity 200ms ease;-ms-transition:opacity 200ms ease;-o-transition:opacity 200ms ease;transition:opacity 200ms ease}.tweak-header-search-style-rectangle .Header-search-form{padding:.5em .8em}body:not(.tweak-header-search-placeholder-show) .Header-search ::-webkit-input-placeholder{visibility:hidden;opacity:0}body:not(.tweak-header-search-placeholder-show) .Header-search ::-moz-placeholder{visibility:hidden;opacity:0}.Header-search .Icon{display:none}.Header-search .Icon--search{width:20px;height:20px}.Header-search .Icon--search--small{width:15px;height:15px}.Header-search{font-family:Arial,Helvetica,sans-serif;font-weight:700;font-style:normal;font-size:12px;letter-spacing:.13em;text-transform:uppercase}.tweak-header-search-style-rectangle .Header-search{stroke:grey}.tweak-header-search-style-rectangle .Header-search-form-submit:hover{opacity:1}.tweak-header-search-style-rectangle .Header-search{color:#404040}.tweak-header-search-style-rectangle .Header-search ::-webkit-input-placeholder{color:rgba(64,64,64,.5)}.tweak-header-search-style-rectangle .Header-search ::-moz-placeholder{color:rgba(64,64,64,.5)}.tweak-header-search-style-rectangle .Header-search-form{background-color:#fffbe6;-webkit-font-smoothing:subpixel-antialiased;-moz-osx-font-smoothing:auto}.tweak-header-search-style-rectangle .Header-search .Icon--search--small{display:block}@media screen and (min-width:640px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:640px){}@media screen and (max-width:1280px){}@media screen and (max-width:960px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@keyframes indicator-loading{0%{width:0%}100%{width:100%}}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:960px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}@media screen and (max-width:950px){}@media screen and (min-width:951px) and (max-width:1850px){}@media screen and (max-width:640px){}@media screen and (max-width:768px){}@media screen and (max-width:640px){}.tweak-icon-weight-medium .Icon--search,.tweak-icon-weight-medium .Icon--search--small{stroke-width:3}@-webkit-keyframes anim-opacity-full{0%{opacity:0}100%{opacity:1}}@keyframes anim-opacity-full{0%{opacity:0}100%{opacity:1}}@-webkit-keyframes anim-opacity-half{0%{opacity:0}50%{opacity:0}100%{opacity:1}}@keyframes anim-opacity-half{0%{opacity:0}50%{opacity:0}100%{opacity:1}}@-webkit-keyframes anim-opacity-99{0%{opacity:0}99%{opacity:0}100%{opacity:1}}@keyframes anim-opacity-99{0%{opacity:0}99%{opacity:0}100%{opacity:1}}/*! Squarespace LESS Compiler (less.js language v1.3.3) */.sqs-block-markdown p a{border:none!important}@media only screen and (max-width:640px){}@media only screen and (min-width:641px) and (max-width:950px){}</style>
|
||
<style>@media (min-width:641px){}@media (max-width:576px){}@media (min-width:641px){}@media (max-width:640px){}</style><style>.MJX_Assistive_MathML{position:absolute!important;top:0;left:0;clip:rect(1px,1px,1px,1px);padding:1px 0 0 0!important;border:0!important;height:1px!important;width:1px!important;overflow:hidden!important;display:block!important;-webkit-touch-callout:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}</style><style>#MathJax_Message{position:fixed;left:1px;bottom:2px;background-color:#E6E6E6;border:1px solid #959595;margin:0px;padding:2px 8px;z-index:102;color:black;font-size:80%;width:auto;white-space:nowrap}</style><style>.MathJax{display:inline;font-style:normal;font-weight:normal;line-height:normal;font-size:100%;font-size-adjust:none;text-indent:0;text-align:left;text-transform:none;letter-spacing:normal;word-spacing:normal;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;max-width:none;max-height:none;min-width:0;min-height:0;border:0;padding:0;margin:0}.MathJax:focus,body :focus .MathJax{display:inline-table}.MathJax nobr{border:0;padding:0;margin:0;max-width:none;max-height:none;min-width:0;min-height:0;vertical-align:0;line-height:normal;text-decoration:none}.MathJax span{display:inline;position:static;border:0;padding:0;margin:0;vertical-align:0;line-height:normal;text-decoration:none}.MathJax nobr{white-space:nowrap!important}.MathJax *{transition:none;-webkit-transition:none;-moz-transition:none;-ms-transition:none;-o-transition:none}@font-face{font-family:MathJax_Main;src:url(data:font/woff;base64,d09GRk9UVE8AAIV0AAsAAAAAuhQAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAHXAAAe4UAAKkAtdjsxUZGVE0AAIVYAAAAHAAAABxfvEZVR0RFRgAAguQAAAAfAAAAIAFQAARPUy8yAAABaAAAAFMAAABgRcdazGNtYXAAAAR4AAAC0AAABEpuir4+aGVhZAAAAQgAAAA0AAAANgeLDjFoaGVhAAABPAAAACEAAAAkCBMHFWhtdHgAAIMEAAACVAAABIzCSCUabWF4cAAAAWAAAAAGAAAABgEjUABuYW1lAAABvAAAAroAAAZdqQQjYHBvc3QAAAdIAAAAEwAAACD/hgAyeNpjYGRgYGBmYDi9LfZtPL/NVwZu5hdAEYaL757mwOi/jf8+sHMztwC5HAxMIFEAtlEPlHjaY2BkYGBu+feBgYHd+W/j/33s3AxAEWTAqAwAmzoGMwAAAAAAUAABIwAAeNpjYGbqZpzAwMrAwNTFtIeBgaEHQjM+YDBkZGJAAg0MDO8FGN68hfED0lxTGBwYFN7/Z27594GBgbmFUUCBgaE/jhmoexfTCgYFIGQEADQvEiQAeNqlVN1OE0EU/hZaiBWakhhDvJoLL4rZbn+iMTSEhECqJQUCJcZ4Q9bt0B3SbpvdbReewBsfwFtfwEfQxAt9BN/CO+Ot304HoQaMSDe7882Zc77zzTkzBXDfysPC5GfjlcEWFvDe4BnM46PBs3hoFQzO4J51ZHAWd623Bs/R/tngRfyc/WpwHg8yPwwuYCH7yOAlzGefkdnK3OHspc6SYgvLeGPwDKM/GDyL5/hicAZF64nBWe4lNniO9ncGL1rfrW8G5/E488ngApazBYOXkM8+xSYGGOIMIRS68BFDoAgPKxxrqPBZRUmjKl+BLUhE2jfgrE1PRUvAUbKWAk2NHWBzMDwLVdePRdFbEbVKZbVUq1QrYktGqhuItqdk4ElbNAOP3jtwmdrHNsdTHOm5IhV23Njfdk+PdlzF2QGzdDFCj8shp7I76rkEDe4iIEE6hvSQWr2jFdf5Xkdf+pOxMQjixiDsSlFzKqIuLqcv/U73z3RXh7+gU6irONBVrFJplWYZRmoQiKpTvXWKm7XVvkFjU541JPpx0DcyT7RMx5R/nXls5Oih9KrQoiO97TG/HVrOWyawy9i+btl1m3bIlcMhVxRZLse2iY6JEl2MlGPi0ePoaf2RyTci7mgFQueQOrqJFsc91krqfV8wt6YY0gpc3TZnStl0XkFVY72HtFmv+U1tF1VxdcYN7Gsc86jmdK9i6qmjzCciW9rDIW0Rc0Wa67zOZSpvUOl1l82+8raJ4lqSJE6fB+fEPXV42tdX7FyiYl8cyEiGY9kR6T0Qu25fTt0AJ5c79FU0WW0PjuPEDaWgoac8GUSMGwUdGYrYl6LdbIm9oQwmzq2Jgy0uHXJnQmZihTt2Vc993ZNCS3FFY2NfuHE958fxsF4uR16ohnHkRKqXai7vNbjx/6rW3whv90f0C3AlPlsAAHja3dJpSFVBFAfweXf0uWf6rKzUZs7tvVu2a4vti0u7Wdm+2UorbRJhUlGUbYqmlRZEVIZmi1ZUlkJR2fqhD23Pl+feisKCehQtEPd2m1REIvB7A8P5n2FmmB8MIYSS+hlGLORPjBOdpa73oJ1ErSJbiZUkkM3kGCkiZ0gZuUSekx+WXlI/6a70UKqWXlIP6k39aQzNo/n0CD1Kj9ET9BQtZlbmy0JYWxbOOHOwKPacB/IgbuOhPIz34QX8FD/NK/lN/og/BQIUPMEH/MAG7SACGMhghy4wCIZBLMTDKBgPSTAfFsMK2ATbIQOyoAAKoQiq4B644bPsJ8tymf2ivdxeab9ldzsWOlYr7xW38lPRI4dGlrpN0xQe1uA438RRJd2XXggHoVbqKxy5TRyFtIhJzIfZWCgLY+wfjmzhKOYV/IZwPBYOSTi8hCMYWkF4g0P5y5ECi2A5pME22CkcOXBcOG4Lxyfh8JZBLm3iSHGsUmqVT8q3Osd5tyEgr8wbZrl52bxkXjCzzbVmzK9oo9A4aeQbh4xUY72xzhipf9Q/6LX6O/2t/kZ/rb/SdmsZ2hYtXUvTNmqp2jL1jpqlZqr71F3qDnWValO9VE/8il+wFt/idbyG5XgVr2AZluI5PIsleBqLsQAPYh7mYg5m4l5MxzTcgEtxAabgTJyOSZiI0RiFAehf871Gq0l2TXYlusa6Elztq0uqjzsjnQ4nd7Jn+Gx1kFz/3/6HYbGSZjEWiXp4Wr28fXz9/ANaBLYMCraFtGrdJrRtu/Zh4REdGAe5o92hdOoc2aVrt+49evaKiu7dp2+/mP4DBg4aPGTosOEjYuPiE0aOGj1m7LjxiROSJk6anDxl6rTpM2bOmj1n7rxm35i/qDEumf+SkEeLUSWkQrRPCNnzZ3nBA+IU5XBK3ab9uQcP5R1Y2nio4F+XLluxfuGatetEWvkbbIYkInjaY2BmAIP/zQxGDFgAAChEAbgAeNq8vAd8W0XWNq5rW9KQgIEIBXYXbCBAILR0AgHSAwHSQ7qTuPde5Carl3vPvVddlnvv3XKKUyGF0EnoJWzCblhYSAgLgVG4Zt9vrpRAdtnd932///f7W7ZHumXmzJlzzvOcmbmiJBEREoqilMtjC1KeiS3evjw2NevBNYnJhRmxeRIqTEJJHgkckwReogLHwwIvhwdeifhZIbTeKh//0y3S2yQS+Z3Xk/8SyQ3k/zXJN4rvHyT/Gm6aIBkQb0aS6yUTJbdJ7pI8KJkteUKyVLJcsk6yRRInSZXkSFSSColBYpVwEpfEI6mU1EpaJO2SLkm/ZKdkv+SI5FXJScmHktOSzyXnJN9LBCqCup66mbqVupt6gJpNzaOeplZTG6ntVBKVSRVQZZSeoik7VUnVU23UELWPepl6lzpDfUF9SwlhsrDIsIlht4VNDns4bHbYE2GLw1aFbQjbFpYYlhtWElYRZgpjw7xhDWE9YYNhe8IOhb0U9kbY+2GfhX0ZdiEMh4eFjw+/OTwq/O7wB8JnhM8LXx6+KTw5PCu8MLw83BDOhLvDa8K7wgfDd4cfDD8W/nr4R+Fnwr8I/yb8h/CxiPCIcRE3RtwSER1xT8SDETMj5kYsjFgWsSpiQ8S2iMSIjIjciOIITYQhgolwRPgiGiLaI/oiRiL2RRyOeCXiRMQHEX+M+DziXMT3ET9JKSmSXi+dIH1Suka6TZpQmJU6deqCqWIxfcYjwWLRo6FiQahYmJwXW5QYn50ZFxtfWBB8I56YMXV6QWpGwlWfZ4aK2aHikVAxJ1QsCBULQ8WiYDFjzlOxmZmxixMzCmLXpSQWxD4XmxmXELsxdVXq2tTkzNjnc/JTM7KzVqWkrspPXZmZmBxLbps+der0UDEjVMwMFbNCxexQ8WioWJCZmkVEDn5YLAo0fdrUpcuS8mLTCwrzYpNSU2dPmz7nUVViamJefkFebH7+mivnMhJzUmLz8rJVGYlJBcE3hTnBIi81OSV0ICFblRV8E5ddkHL5koSsYCOPzg4VoSYfnRMqgkJNWxA6t+DypwXBYuGiULE4WCyaGiqmhYpFoebiMn6Rhby/LA55d5VEcRm/CEXei3IFa1gsKqeI9DE2g9xVkBqbkZCalJRYnJpfkJglfkzMzCkoyU8sICOdkEoOJZIjpMjKvvIuvzA+hXSyQKxu+rQZoWJWqJgdS6rJS81Pz4wNtTd92pxQ8ahYXTxpNC87J5u0m50Vm5GalZSalVpQEpuVnBEcmOnTQ9VNn5WRnSxeHZuVcPlddl4qkSUvPzFevJdclZ0lHiBSZuSnZqaS6BK8c+bUUDEjPjsrOa+QiBubQ5osTswtjM0InQrqdfqsqWKPxKPkX2oRKbLiSQfz84PHkvMSY0lrv941e0GoWBgsHgl9emSh2BsiVGEcUdiV9+K/xIK8xKSMxOLQmSvvQ2eCt85ZEiwenRYqpoeKUO8fnRmfmhdPrC6jMD90YHboQGZhRkFqTkZJ6GBIsSFLmr4gVMOCUA0LZpKmchKziMYLr2hmQej6RTMTsgt+GZ1Fs0NF6NySkFBLlgaLpUHZQl5LikdDxYJQEdTDjOnTQ0Ww1RkLp4aK4H2zFs4IFY+GiqDWZy0KHVyyND8nNiE45LNnTwsV0+MzCuNCbxeHiiWhIijNI0vmhIpHQ8WSUBE6t3RWqJgdKh4JFaEbloZuWLogVAR9a8GM4H0LFoSKoNxLli5dHCqWhIqlMx6auig7pyToUrffG3/f7WIseXD61GlTb1+cmJ+anHX72vhU0WoeuH1ZVvxD/wrwrj62IjsvMzZDxDZKEiYJl0RIpBKZRC5JkVwjGScZL7lWcp0kkqDbDZIbJRMkCslNEiVBupslt0h+J/m95A+SWwnqRUmiJbdL7pDcKZlEEPBuyT2SyZJ7JfdJpkjulzxAEPEhycOSqZJpkumSGZKZklkEIR+RzJE8KnlMMlfyOEHLJyXzJPMl5ZKFkkWSxZIlBD2fkjwtWSZ5RvKs5DmCpCskKyWrJKslayRrCao+L1kv2SDZKNkk2UwQdqskRrJNsp2yEIStlGglTQRd1ZJOSYPEQVkJ7loJVjIUSHQSvcQo0VAsxVE8ZSP46aCclItyUx7KS7DUR1VR1VQNVUvVEVxtoBqpJqqZaqFaCca2Ux1UJ9UlyZbQkgUE61MJoudIciUlVDfVQ/VSfVQ/NUANEiwepvzUCLWT2kXtpvZQo9Regs77qQPUQeoQ9QL1InWYOkIdpY5RL1HHCWq/Qr1KvUa9Tr1BvUm9RZ2gTkraqbepdwiav0e9T31AfUh9RH1MfUKdoj6l/kidJhj/GfUn6s/UWepz6i8E77+k/kp9RX1NnaPOU99QFwj+/436jvqeukj9QP1IYSpAXaJ+ogRqjPqZ+jv1X2GSMCosLCw8LCJMSniCPAyFXRM2Lmx82LVh1xHWcH3YDWE3hk0IU4TdFKYkHOLmsFvCfhf2+7A/hN1K+ERUWHTY7WF3hN0ZNinsrrC7w+4hDOPesPvCpoTdH/ZA2INhDxG+MZWaJJKhO4kJxBLlvBc+LiJTOiDdL7tZli+fK6+UfyEfQ9ciBdp5zV3XvDXuzfHPXDv1uhuu64hsvF57ffX1P97w3A07bth7Y86ENxQFN8UpZyvPThy9OfEWy++e/t2J32v/oL913K3nb2NuOxfVEH3u9p/v+PrOrkmbJ12868LdH95TOfneyasmb5isnmybXDO55966+3Kn3Drl1P0VD0x+sOMh7uFrHvZO3TG1e9ru6eumn5pxcCbMmjt72uyOR+IfOTNn36MjjyU/9l9z/zj33OO2x3c9Pvr4209c/0TUE3Oe8D9x7MlVT3rnUfPU82zzmuYNzjs87+15X8y7NF8x/7H5K+bHzS+a3zB/aP4r8z+d/9OCiQseXrBogXqhZOHahW8till8zWJY8sCSC09RT9+/LGVZ6rKMZdnL8pYVLiteVraMXla17Mdnwp/Z88yJZweXL1yetLxjhXJlzKrjq/vXfL7u7fVPrh/dMH/DCxtXbLpl00+b/VtUW5+IkcT0bXtq2+fbZ25fsH3t9vrte3ckx94T+0acOX4k4c3EJUkLk7qST6TcnXIodSgtOS0/7ULaj2k/p7+cMSHjzoyazPKssqxPsv6anZQ9nP1zTnkOn/to7nO5L+dtyavIHynILfAUzil0FUmLsovURaCaoKpXDaheVJ1SBYpzi78q2VLSWSKU6kv/WlZUdrZcW35Mfa16ldpZIavIqdBrJmocGr/mI+212vXaOu2Xuuk6tz5MX6j/uyHG0G0MN642RZlGzC2WrdYp1gF6GrOa6YdwUEGAzWG/517gS2zT7UvsPziw0+66xzXPtc4VPzYfDgSWHKAOkJ/wAxPxlECXMEV2YEylJEfHlsgjx+ZHjt3F4msDX6ioj/H48I8u3acEnX9sOWvhjDamCnxgYzkna/MHloMHdWW1pqcQKIx6dWxQefu4yMApHEbhmwfx3MHwvkuRyjvG4R0T7xgXiR8WFhThT/z4IT/+REXhuf14Qz/e3B9+BF9QgsZh9lgRlsm+aAYmmmH0Kdo4pJonrAKpzmoygwa0DrPLgvBSYGgpMCVLCx7NEJAhE3SgqzQ6wQEO3ubgeE9vL74R7cTT8Or/8ZUWkLpsTjt4wW22m3kLx7CCHB6GfACWZd393hHU8MFXIP2KfLRx5G47uMFrtBtsSFgKLCcFtu5E8x+7MXJ1gQc8GocRTGCyWky0VZeWJtyIYoVpwupfr+zFNzjbwMZ49C4dGMFooc1XX0nkMVhIp7UokF2k/EUZD4B0fjGw0VeL9H49UVck/h2WfHQRq/dOOLxvyxvLfnx99LUfl72h+IsWz8YrlW2FHVlRZjAxZlplVqvNKsYMZqjgYr1JjRkdO/YUvqRFjpjRvbzMBk0Or+2d9pfegW/gZOqJdUPFvkJ3rhOV84B5GyM9ZvTn1G9jrUAqQIqvJYSxZGU0F3RHt0JjjaOVtYMdKukhXW9xZ9bQjtZ1blTBwmgMQAwN0myT2lKiX5m1aQXMhExnti+nbcOuxJfVLtpl5QDZGBC6LKx0oz2xrXgQKb6TmJ3mStqBeIe8u6mtI/p1fFEpjJczYOaMHFJ8JVlTkzwKh+DIoH93jYuvtPGAODAJEdEvCSal4k/aF8qGt8Az8PTmjWvVCN8ixwhq2CgW7IyDRsQg1w7hT4ZgCOcMnhyijnyAZ/rx4x/iGf5w/M4lpZJcZ3VadxaPavfAHhjy9FazcJ9wj3Cd8LRwrfDUZOE+xkpbGStYkdaj90bZgGd53u0IuC95OJ7z6bwaqACw6NRJWzZmLNcZmXJQA1JDOZjYFe4tLVt2ldQV+TKIqZgZE7NQs/ZRuAPm9Dy3Lw3Vaxp07TAC3e31nW1Dvj3wChyv6AVACw4puzJrN5FePVO6OTNTrdaZSZ0WWRGYHZrKrE7LKJyEk/zujm5vpddZDc3gNvkqEHaN7VaSup/dl/ZPVY+Sql+p2JM7jIrbMzriRbsNCfMY3IHwanyX2N7mYHubrmpPDzSYuAJPSZux39xCPOcIfMD2d/b+Q6uRFwpH8c+jmB2kdp6v+QAr/biPKHcDcfiEBOn8BWaLoaIk15ADWTDr1OJv4RgcaXxhF/K6K/XSQ3GHio7QZ+HQS873kTveILdsiY3bCNmQ401r17kyumieYTne7ugd6dh59JvqFl8zx6HaloGqgzyqHjXJKqwroRAKYDqr4ZA+xi7r6tPmRYOhOF265j5VRlYiMugqaqSbX15xJv1j5PNJ9x3oHqkbqGy11xL5T6S/uKPSxOlZPSRARml+fnq6ajusQjCvdmXTGoSvxaeVzcaqAkccp2W1oCdDaAaLMTEndtVyZNBbqqXlo4bdRCtHWw7sB2IawDNIWDTmVcIbdR39/ai21lNSnSntW3X80eEk3sITlwLGajVbE7JiSuNgFcQdgdOIRGK8eICE4EjlneMihZ1/fTccf0aMm8QOVue5E4dvwg8ATiW/B/ADF3G4x8OypDWO4WjOygMJm6gCsvOlS5/bMCPzbtUS/QoS1oTkN4RZWDYJdeT7QOqzs65oUjXOfTf8+CWd0krTpCcsYzfZTT8IYfuFB0FIIb+bhQfvEMLMJrOJYZDWxlRHVUJHi/TEq4f+3PVdw1vuV+EvgJOX4VmC7HuU3aIhMQwsDA3E0dJPhF8IPKgUHcTGcWxHQ3czOrpTCmriQtFsua+iERrAV8VWAavG9wKLjsZKuws6VBzjtHhZJ+91eb1QAy6T12xDS/uWdb3RI93XVO/meYfd5iGxuIb4msPIa1kSSRmStxegNbFSqML3sdFMjdpXBCWgLmfUUFglSKEcrdkpzWjObqBZo03LGK0ak04LZaC36Rxm3lqv31eI3khflrk0VWq2mLRggOLq4kbSjwu41E8FpH6CWLzyCh4dEg7KbAa7yUt8wO6wuRA+iA/KL8PJZYwgR2QWl8lJAAjMBosZMcIUEKYIh36J82ScCTpSeMFg+EfHlantuf1RbnBzbhtP9MUC0sgtqwo3xO4wGGgLWMFcW2onw2y3u93+XS0H3S+xLqI8HzpWfPj5lPzstKhI4Tx+6l3Ki+vDvfgpJa5/V6iXkUYAX0t9hK8TG5k0LvJ9gVfeNS6ycChwaZAaPo8Lz4d/HfhUuWOpegEIkSCEVT7Vvapr1eGYP0IndDg7qgbrWlsbRrpfqnwLcBiC77Rv5h6r6FQ3Ftel9MTUbYWnYX1a2haECyuVnZmudF6QQAmbRDxoHbOSKTY/ZMjMyiwtLtamQzqovKX1KKvL0GX+kqlnjsNhGGYHoY7HEldPZ1dDY5u3DbqhSVOnQpEwGnCOUjj1bHhg5kTvaK4sTZYJRay6CjH4BcCHpCY7x1YQL2SAtprNpRV6c1LB1oq1NCqOqZcNsQPOTq+N40VNjlXJjWazScNo6RQmC1BuTKWsljQKPeSFw6DWSpr7Ep/F157cO+HAS7jih3i/IoDDAguUg80dPd1FnSlWmoAwsHaXzdXU096wBz6DPYvhEVhduGXbisJss1GQCjdu25i4gzgKTeABSlFxQM7LFRd5RxOexxNEi7fKDdsYvVlt1Vl0VsZkXUnfA2ge+9IR6VuvW639XW8cbWtv7EaKQEu/twt2QyVTybhLzz9xUrgG0N1z5j4QndqUPRQVWbgLvzKAfcMTdmLFZHwNvhVLHsbjFeewIhCvHGhu646GTlVbDm9hrSwJMKzP57K31PZ5uojHVVqqdW1l7hzYTsJa1pIVBhOz2WIluP4dUSND01YxJmnIi+GsiKd3MtJRBqDa5Fe1bIPlSCWHTZbciryS1MziFNgM2+sz2pCTk3Y661ugGw3ktCelZuUlRkE5X+wsb1n+XtyfSYj46GD3m742Rxu0w9GMAxt7YztSOeARYVbAsUhx7mTbsdfhFHgYD+3U+rN7tjcVeoqc+TY9qyLAicplC/XzNsJjKKUxdzCKGAYePxpIInRy9LPwQNxE92iWLI7Vs0aHyUGM4TA6+MXow4EdcpOjBKSlBLNommZWz3hAuAsJ9wtlEIMrATZJIRVKSIctZrOZMVgrmHQGZcS4ZVX8l0TMNjgLVVYkPIGTlUIYCBSLs/Fn0sjC3R9jKX58CI/7esIBLFs8iuO+V/z0I05TpuUXJUQTkCcs0J5WmdGY59TVlrpNnQXdmr2AJ8BfvyN+CD88+9mMJlTBqzmCqIof10NaUUYeAjzfQ0trLQ10PXwNr+3a8yLyyQkLMkVZSTg1WWNLtuq2wgaI88TX6HkDz4g2zzAEfZgSSESQxcbD8yBMhXLOwpl5QteriWLt7ubhkc4XoReqK2pUqCHHmQJPwnJzgjqnOCm9YKOIN33FfmS1O0Gq+Kmts7knui+vJV00sMC1A/h5/4SdF/FTP8z9XhEIXBM4r8w2F5dDGkptKu7uaWzse2fD7iejtkGiOjV/2qrnRS3dA3fVz/I/1xG7K2uv3kMT+4UqqGIreTTo6qzt6u7rb+h3jSDFRVsN64Y6VCeHg6bG8n6VP2U4vS63qtCeBmshIy8/xUpoAiOiIyvayRc1b3bv6hjobTkCqI1uMNaUoe2CUdmUycbCs4iE8TIpPMfEF2aU5OVXJMNWSO/XDJpqTS8Sovh23ZHu7pqaBmcLoH6or6grQJGB/V/0qCYc9hv9/h8UXx4ObFNa/byc5Vg36+LrbHW8l1C6So512A5wWAHoS4h5Trr1maLMstyN09Mf1k2ji2gVaTahqaAbWqClzt5MYK6dOAB7mG3he51fNr7d94LN0Tc6eBC99SUMC9eBVJgHmazKgxQf6m0mkpEgm0quAqBJ4pMpJNMWJKr925EJu15LOoYtx5JeV5zdhR9WQqI7t6agb/0rSWcAXwd/Ogs/wpspB+J7aG7NEHFv1sE7bOhgT9egZw+pm3OJEETg0c04yt5fcGgazIdVsdmrNYWWMtHiwcLpkSuxPq0j32b26T0mVFchXZyw+nmYifAp/JMStuanZuZrdRqTwYRWD0nTG7LqrXyxr7SN4EGLp7a6qrGxo9pP2qgGJ7NftzceViDFWaFWCCihhq+x1/iGu/r9bQ7ezrPAMp0lfYXvbGXBo2surMyBHATFpmJtaWHq1py1gBYuOXwqmngVXj0YuE60t8dfxbnfk1C24GtlX2F9ZpqqOOnJ44mfRL0DJ3bvfd//esNb8D2cq3gr8+WcA3H+VT4DZyQEm+Q2rIVQVLAyDKwyZRSnphIr27xZFQdzYVFt4mDM0NZdhYdhP/hb23YhuwuMUpineTwnoTA1V5VmMBKELSepXylf5iTxyMRpXEB0y7EkRWmy1TRAB/o20KLsNXSmOBPtRfx6SIQZuTOfNBJWvAFS+00HSHN0jXUfidoXnB3tnbW1dR4xLfQxdgaFMBivuYLDARkBYuHVCILGQQqA1+PrCOsWz97w69mUtryhKBtbTxgdC9ZMq8a4QxWXnaLX0jRJyi01ZXaRYPIOB+rztx5yv8BXs7VQg16seGlDSn5uSlTkhfj+gLOfuvRMsRIctM1soznhuqPC5JNIqMcTMPmT4skn8XVHOc5u42zEIp2mKp167KTQDlFmqzWYz/ImmxVB4ITQUeNxVDlJrfh3YjpPiRn83eOE9RH3jIu8cDpQqyRXM5zFZs6qwieFKQizwjiB/EmFE8J9HT6LmbaQtMkCOqfeyyAH4BF8qxTPeB/f/ArH2Ug/xBzd6rAQdx87gTvK9CatnlCaOHFSYvfghMMv7cPjH/e//43iIqYCXmVXcxOBOZe10uLUNmfyREVslc9ub63vdg9CH7QYqjXV5XwZZKIKOWy1qPPzigrKC8uzyOjmPG/MoOcSNqJhac5iJ0HKKZJ14kjAAbmZddvqke+lkaPHd3U1t/bBPmgwN+jqcw8u75gdSoO0JPJmW9M1+WVpxTmJsAmlt6i6orB87Dal4uLtRB/awQsDAdnAhUHqiP+vp3Hp6b/6wy8l4b8RD2GqGW8pvnn+hfv2b2/aWLmZEBgDGBjhkTLhTuF2EGKgFMpYHaoVfvf+vec3jxbs1R4i2Hi25sOOPt/+WuJ3Nitv5dEqMFqlz2benjcHVIRwlfMCappxNhNT+h5Lr0hr7nr/wrl9w/V+zwigERjRDRe/lLVvc/eKtnXuWFgIi4xPZxQZzUZaSxq0kKQbmX0EVjAx1cmgN3E0qxOxNx+sDmnW7h3DiwmP1ZM8ca02JjNjc35qRSyBnBxW58hveuTIujMq5GDcxOAPQU9dR4fTYbeLZksM1Vqd1Vu0F85DDSFaWIqEV/DTyl59V35TEnLoQNhh0kkLkzLz0/QG2sAYIQNyagv6C3o1u+AonBk4/Vo1H5xhQKR2xklS+HcI/j8yGogl+O8i2G+WZUGmz1BLUkOODKPTXlW9GzW8hNXQsljqS/CmAY3UiZb0qIoYj6ya/xY6CLyfgWorco9myraxek7vsvI0TxPOTuEPpKvxws34Loa1OGiiVqSXaUmaZzVarcL2sR+txoq8jPItNCqPccoq+TehiaSNnzCVNMLrsEt5t2zNdkITv8UvSiO7YC/eNYhrRifgm8/jfiydiWXEdm++FKYcOybXaBh6DYPSYnCaDKcSHuTjvqw6+XLtRyR+V16J3yWfzn9hqhd5eKki8Oem46/AW0A4gqGuvDerK6kxtzrHleKo4BgQtrJIiInplR1lWLpSgwI3CJQSliVs3VRiZQy0mUY6+hFmDgC+UQr4epbneM5m592sg9BvP/hhmLHBEe3wZniOhLE24SMlLE96fk1xuZlhtgPaLHuIGIbJTirnGVHLO+EcwrddkH/LSF9Wj66FJ1Dk7qI9lyL3TjiCrwms2UvI85eX7sUeZbbMYqGBmI2WLrGWl099cvY9cD/MPRD3Yd5oxevwCWB564cvvoh2736h7UOiy0qmxoQU376fd2RmpUAhxZdsBcvazaiP8JNvHQ6p4kvcK7eQVJek3iTU08Aw6pKyQpSZUFEpTRqIa9zs1nEGAswkcLFmKIYya5lVuDdDiBDGFwhzGB05VYqIvZey+hZhLg4XxuF7s5rMVUw7ATcv2+rAsq6PvnXg8ahaHvkZyUD+TDKQid/iv2N5OJ74z0MXI8Nbg0OHJ7d8g6+rw3ezHjEGEyevZTwl+K4H8Q3C7zoznXWMkPuPQ4TrqpT91oGK9pJDKV0bvQvsuVwCSZmEiJLHVm7aHL9D/wjEwmbWwiLSERvjYHgSA3AM4O6rR6+X7SXsro9xkESVJ/Y2MHqGgAmxuJu+x8/5sdJf4Vf8jG8K/Jdy7PCvcgc+5WW8YwC7LiclhARr6ArjNlOeLqdgRXz2k3o1o4EnAG2UbQNabP7KwI/AXxH+/Yvyo4wLqs1+rSub24BUftwbr5LTGwzZ8dpyswFII8/j62RwGoZYjnPYbA7WRnjRfugivudhMGUaSKoRbkSKvxPSrmetyOK3yYHNxqXAItvYiZhe+WUtReYRX28ZPV+En99LiZ1a6sfX+sN/0yOvrJ7/KpTMXcPU0qhyNEdWDoWgZRM5K6v1kozxJsA3kdT7HN1isU9DRaLMRXLztHzLFBptwAoZ4ft+QgB5MWEkaMjuBLRP9meCDG3mt9RtCZULeA2rs6f8k6wvXiXrj4Wj1iKsGg0oQ37wu++37lXsDzyP25SamDZZJ/QzXkKJ7SanGW2QwwaGoY0V2zZkPAdL4amOmP2bDuW9T7gdljV9evRoyCPQFZfYe9klfvEHBwHQXun/c1doNDfTTQQ++xxdnp6q/vqaduTTSH0VHkONFilKPUa7lXAOIIBtQ4r9f5OTsG7nbA5vDdsIyEPIPowaiK/utTA5kMmooJT8oUwQZGwZF4rcw6O4cjQ4lkMXyUD+k0t5SVp+jthJF5wTk3LvaJrsedbE6n1kBG8F/Ac8BCC0SP8H1weOyd0+B/sii3pHtbJS6xTIJK8phOEh7a9uKFiFIRwpZ3Gk9H9wdaRw8nJIuOn7cHxqone0UEb6KU4Ycmab1U7zBABxE+BG8HA8b7fb3Jyb7eLayUCSasusdwervRvKxGqbZO3QRbsZN2238GbOSvBVaAShCXQkCTebLXpaz2TSOYAKSTdr+L8Fu/k3qLESOeYUDl4KG6VasQL//tvws3iJMjk7LzY6yIPNntWHtr2jcUIN7YUv4U/HfWdYFwwBjgf8JLzPcoiED7udc7JNXD2gmlGDzMwQDGUKoZgMVwYI17LlHNLEdMi6YYBgWxXttNiMJBII44MzRJGMcD0YTc9nxyZoTASz9YCKocBe7NY51G6LneZATIbszU3Qi0ayW0QmepXa/gdDvpHo0+gW53pJvIGvRvdI6+vqGxpqEV4sNEg5C6H6FlRUZM6LMpDbq7i/kdSrDmoZQtMZcYUFuUaLZBlsGV/hNNq0HpPb6BGy8CmRj+DFeJ7T0dUy7DvAo6pRk8zKFEMRowY1Uw4FMIXVckgXY5MRKkEwsdriMxAbtjAW2kpbYuMm3Y2Ee4Q7GfywlFCIt0l0q24XR7eFYBeMakH6by1n/RUNXMSv+H+rhECbXSbOE9lISLar5Fo9MNFAmxMZrfqB9E1zC3JNFniavKy/wnAQELYgloQBr5dnhzgv20RSMtQ+qpGVWAU5pJGhnAIl/ygHNlwW5JbdAfe5cHwLEQTGeq0mqSY/zZBIo9IYl8zHfyJmtfAR+ESWVCqL41Jdui7ig82EP9xL0lCWQRgJL0tfEx5/QYhmaZuJEzN9wp9tDpsTqwN/F1fRQLgJhOlIGL56tGtIpO4kr69ES/43DnuH7A5xYpwmIVKck2K2CjeuEe5Hk4T2SbhdugbfvxXfyLDIbJdaOWDvAHTHVV1854qqdwXu3xWO6yb+Qw8qAfukvDkwaeyMWy9OwBOVVYGThNP9LN4v9XT2u/wcqh3VyyqsT5CMMB8eE9cSDDG1sl10p64qB43NkRPK9XnAauaQlRfiAWLaQdpGSBRhp7axPbL/oMzIC4U7L/1OTJ7GBRbg8WJO8Ffl5HGCC7+kPJmyd2HVZHs2Yd2xIISXzN3ybFZybPpmnYnRghY2QUZ1Rhuafzz7G8C/Jxys2t5RdWHvu2/3t1aKU2s90GRs1Yo8YBS7RvC+EHHpxNf8lrj8J5cjJPFahK/9q/xb1sK0OU7Vvne05mNCSj3BaQUv7Sr5Yuqrk11GdhGJE4CElVdxmnMlyo48ezqsgvvSEqYbTEwioTRoMb5DBjg6yFtI2PEQNt9CHBa1yd6BHnowgyhFeB5f86L/m6GA00+gUyYuJDdheVmj4ufALYXKQ7uqRW+oXMFrPHG+3PqS2tJaQw+I2YaDO+Lzn4CvEVsntfAkKyYR0GJldJZtydkbIQVUtcW9ZldFGwTnSZw8Gm7qaevs23uk4y33RyIBcf/C19y6D3Lf2HakojqvTe1dtXdJ65JgZqZn0ArTyvxNceXavNyK8rj1mct0j5OQR5I0JGzD9wqz8HNRMz9XgkEEAbCwIhJDcaXBsfCl1LPiSP3Y9PHul1ye2jqPC/V37qzZCeJytJM5ajiU0r9uYE3tAsKJBUnBo1vX6HXFxQYzMlVKi/2q5jxfhV1rK4MtEJtEcsxBRtlS39YZNQIN5VVpNqNTJU5tlps0lmJjobUYUHZxU3t05LHCobJR3DWIuwgPJBbgw+M/9Ssq/oUR1ASNoJMYQc0/Qe3NgG9+A95gPLS0X9eZXZnsTTJMdWQjxcHqpS8nfG1pADfrs/dWte+C/chn4cpKrdbyKDrHWKxWGwxmqxaQmaTJJExzBS5Ng24fMRssp92avUmD8U0GXlylIkSGtXPorab3j5BIZgcHY9e/kLB3RXduVZ4ry5Hi9DLCekKaF11lYGNzlCwZEhKoN1ry8/MTEjYzswCtxrcQA5t4NTFuZlvhIryprZpJwDKS5CYTdk447I//BA99smSn4suzWKWskKnFpSpxtSoTSJC6Rm6zAO0GcVaFY1mub6/bZ7PtWoZvIcHdRgD9q4a3PgIcgeD86ncWdZS7hD90qtxI8W5cY/4I7IGT+w+chFZoNzXrDuf0r/HOsRUyDAkudUGupvsnrqYr15ShogypwaX2aVzJrWnuVSRgFxlzK1ZnbXoWHoGHjy9+L89O9xsG9WhA12cgqKb4cm9Z73pYA8viNqzWWBjC7EC4AWadIAEZgZsGi40kYiT6TQ3y5QE/Vn+Py/3hA4GVSpPfIScs3MN6HB9WDjXV11U3uLrsHkIMhglkyLpIp20aYruPgbARCZ1ys9ForqA1TCydTAhcjE/WyOMbCYkYFKeyG63IR3LnZIjlNGwFZ7SbnQh3ygFvhFMsZ6vkiVmRSveBCwihNDZqvBW1Kk+C/WlWR14WJArD2EpxLsMjxxg2yRlLqZDLkPD4TuFo4FKIHn49GoJJIUnOChtBzeqq5u5b9k7SsGpIuw/weDjzRdO3jjamgsXpBAW3/GPonhsM3XOhgkf6X0O3sEoOwiYwWgrKZ61b+7haS2tJbI2FxOqsjvxWdY9pj6UVaglTIhXu+B8xwncu3UjElWEKXzwUjmWXJEqgXxAmvSbMf1VYQN6wDG/kGa84e+EGqRdsLO/kOFwQ+B7Y6o4h3y5ATsJCtNZnoIgkLI+K/ENct+4cqsiJBpNF/ZiQjWYJ5VJGeDqg4aPFKUmeczrqbd0saiSSldP3MtmQSyxGLXa1U3aQSFalJkj/nSjapd5L85R64uwDdLvGU8rSLBDupBLuHFtKmPT9gVRb9RDfG+Ub1cnU9ORgTXPFmgyE/fkZF+0iGMlZXHmoequUrsiZmyzI0HPChvnEoGPxxNQfCeLzJMHjPPZ2vhWIWYgSzSamvAGeZ4vYoPKboJl20i7GYebNdgPe/LOMt4qEoZq4hx1sTpYbwBG78B/Qx9giZZl+IXyX8HvyOyCEE/URwuMjzMLG2sgPXhn4wlVDsg9CYFF1dZOrlyNtmmQa69qg/maIWP0LA/jwz+G4eaKHENxMPr+WUERi5Cxx7a7RgcMHPqppZomq8N1CPpiQNs5YEmUieqrmvmPFGaLToRmiDNkGVsNrKy02YQd+h/SW7do7cGTfO409NltT85DviGhwBtL+fBKU8uHhkMG5ZHV0ndGjdRp5rdWEmLuEWTQtjMcrbFGcY8DTDMgeVNRdROE5ZOjKxZsaZFWyfmhgatU2C14idJHozgjTBYvZWJC9TbM+xCYq+fehmbCJL4Js4peOfhseqCYdLZTlQzZL8j7OaKPttI3ErW8RfP8Ffkh64PSud3lbfXd/9RFxq4RRVsJsZ3aQ1hdD0OTcsha6SU9USDCMJjEqZVXsYjRPuGkWniRdgG/U1pOkz1Nt72NRXVD0u0nKkAOzxVRGFL2RJDNNjK+Ct/atOSlcg74TFsAdUrhDXJs16vX0xl8hRyR/3wTTmKdhf2BGMFad8Ace9oefIIGqQdYAwEXDvqqDdZ0d/pH6120+Ft9FABysYxFjH+lLkFoO5SwElyexicEmAJcUuBpcxfLIFa+Xm9fSxaa8kid3pM0maKeGRcxiUIuburgACnweXBG2gwcR1KfNdjSWKoMtWuFxyA8uyPP+nx7wT8Dj/PH4NsUJPE7glfg2v0xxZspPD8gUJ875hdtkkUcuZSvvHffr5U34tni/4kzTpc1KcsnfHxAvJ/f/VC5eHOjAj1A4AneE44jAUeV94yKXD1LLIwKWwTELOcvh9dQPeHX4D5cmKaeMi9QOpo/i5/vxpMEJfV88dwY/efqgX7EbI3xM2dPU2hkNNboGjQvsh/lKOAB92b4d9gpWA3moUC1fZHleu6UwT1uuKy1Fin1FRSXZkEQsssKuqd/8csZbsAuGq3raXU5PldOJLHKFyp3ent1PwKuv0zvAOUlwGULD8clySGBMZp1FbzQbxMlpu8VtqiS5h8gLJgJtqlO9tnT3dEALYG1RabJZS/Beh7Ia83qi8DZhopJZC1baSATQbo9PWAdbIVlsosZW4/S17j3e8bmDY3mRkAEJNukiPmsHzUWB+wbxhlGvasL509h8XlF0/tJiZRydamUAEZZTFF1QJ99Ne022XJL8CbeBMAcJBxvkDazdLeXtTp/djTx1TqNU0d+ZsTf7COBx8PHnNX9jXawYPPC1C848XKfjtERT62CjKiMXWa1WGgAx8NbpaHy/VU5DijXOirBaGFYO6bqyfPGuPFsCEX6rNVefa1ZbDQZtQWqiKp6k6VpWx6NMV3ZTcTcyOwGbHC5pS+9I617CkCtJoCN9qtD6A9f7J/Sdw4/9mDmi+BZ/Rwawq6VRXLMgGb+j9NDymkVEltji5KxtiVnrDcsZI1SEXqwJ+Z7cufK1tO6yDuMAHIf9bT2jBP09NdV9BEV4i43mkFpWSmiEVatLKczMragwllvLSIqQ2FHYW9SjGxF3ZlWO9vejxuY69wiBtHraR1fSDGsi4/KtTtzPpUbZ4ogF1Z87ioXL6icSm08r2rE1sEIpSKc8INwSTZyngjW4V7VtHknuyt1ZdAhehF0NvR3I5YR14tJxloPFkz0coNES+XZO67C0k+wURwOei/DRX1Sr2PXvxnMLrEV3y9M6tjU+DwgrJytBMFhM0tztMTkxhMQXVKoa03r0++Ad+NC5p3+gpbnL10tk6MtuTQmqegTHDOC7BqmO8zj+0/DADEwr8Y3LPxJuiDKJHJS5u2L2NBAmQK6twJXf9sRrqz8or7ZW01Ukh3/xSPOriHOw4mYtl4lTi5v3gJgGTVtog1GlK1Gri4vKtEmAVkBsd9GuilbjMOxD1bhfbrMRK/agR7uUBiHOKbf5Xe1VTQ2dbfXD4CH9d1n3lTZsdywmUQWRlOyLUXw3ViYOTfj+1Jm/KU7htokiuKSzRLO8mTWTYM1wcBBwOMIzsWRUCH9Dzr4LnKPBN9zR1eNwEabmYJBNptfqtVCCFOcyG4u6uhobu6Jgb2LHNl4POsYCj+nWbC1aiGgd8zQsW0wy07cJys+SknQSNl7e60AbmUJaBaiMoEkV/x7BEtQCfxGXMCKFuGE8992Tw3jpl5uHJnS+sePz+Xvwms+9b647qfhKiz8NPKjUOqVZtenuVHgW1mfnxJUVaAshGbY2ZLfkI8XftKUFmnxIhMSarIZSpDVJK0wGk1aLFBdfKC7RqCCdRBMjZ3Knt+bsVI0U+XWvwCvg9/gbdza0trt7yECICx+wu6y7oLmoPrkmwZFn18FC9jHWxmhcpIHGcg9BomaS+1Y6vJ1lvZpBeA0Odbb7a5q9jTAA/ooWVSuieXEOCliet/M+T7WzhrcT7ivuJmBEPLIwOtaI+JJKTROgxurqxr785vToHZBaVFCASEeFlcI1SmhgGzivc7CrZZiEzY58ZxKJHiogL6aY1ppSsvN2AHqmfPcb0SRkvKVUnH2hVustgzzCyY20WZcRm7VZV2LRB1mBHkpsmz2xnbouRDsYJ8n/Omo62isJvYQ3AHXKjsIw01MoRkJiKD8NhRzxu9P4+dPEUFYdVwLHiD73IvsiOGwDvo6Wlqamusph2A21KnccqwcNK0QiWADLGRqVZzN5UeLEL8S4QOrjPyDqaoYPRL7gGi2TqaCQM7Jm7rLFjcCfSPZ1kHEaPtg+OIeQgbjk9ASEP/nVa8/9S68FMyv8AYTfk19G+B3QxooyJl/c5/rv2lUTalLGGn3BxXDRHbwqrMDXTjiBxz9ySuHDN1+aprx/HEY/T1O6RgtkipFElubI5YEbRFFSrfFElHfj6bRfRfHKu6CJdpbYdIQpCffCfbDtX5h4Jfc+2wSNJHZ4raIrCrGDgQNXGl/34ygeP/eUohbPDDYv3PLzu8pKT6UPmhAxwYyMwsKMNUczjkR9BEf21x9Dir3ORiaXxX6EvRYiVrJ1BxHr4x10yq9iNch3MjVWRzZrIo4hPAnCU5BDa8wxxWm5ehORzABaAskiTRWmhOJCXBD2Tik+HBhViiJ7ie5EkT8URf4XY9YAQwiOHBqVsvClcKvNKMYPEue0OqOaQUZSgZv7lG0glx2GSityELoWC8Wu4lZ9pXAjfkacBT3+YlVlT/tw1R6esGezjGZKoZTRgJapICx6OqsP5SCVtFsU1kybxD3tBYUJKWjl8wwuBVxmBekV+/jygXHBISVElHTj+1OKwZ2hbviCVLUZ3hdjy7/oxjnAOQi/9aulnXhAfGAgqJOcoZD9k9+bblXs/3/tBFeM8T/XiS5X+v/RsT7cNvAIbIaE4owspNUaNAYdou3S8v07Wldw82B7ZtpWxDBSBpzd0f5fbf3Ug+NC8eBXZSj2/P8WDN6NG3yC//fCfUiE0/kDNwYhl/kmvAOnKWHSiekX8urNXqaZWK+XrbefbnztzZrTfA1XDTXwavZrsTtR3Mi65nXBWTUDc2fFww+AcAPCRrxReVjTk1m5zl5A2NU6lC5/IPOph6PWQ1pr8UDpAD0Ar0IH2866XUfre/wNda4GW704YwTi3hohUlg/im8bxMJo1vBl9nhqQLj3sg3+5x53wjEEZ1xGaV/WzvLdxGUa+UbnJ90vvlb1pyvUcfzCz6YS6miGUkCrYEdJci4yGJk2aLvKB/59jLwWgr+MMO6XGBkYFwhTwori1SnJBXl5mmxYD8k9BSSkGOSKUx39fV0vk77ZGRsc0+2dCw+JcSLYw6HA+GGq9zyhZ+GBa/Yrp8lhBWT+i4j33/X5z4C3IjycJC9LkOoLjaVEbpNLmtsf3xrrMrKlhAFlQL4hT/N06qalpgeRSQ7bvdsbk7o2HN9AjAP2Nw8OIh7blMIz8qKtSWnbdSYS04zByVITt7om7lNiRbs9u+p72nf3twyzyEYYrx0O6ru312whnRkmNt2Jx68dFUPeicshL0RELvOQfyZGxOJ3w17Yy+4Hj+1Y7e7WFpfTZXPZkJOr5lmGoDpNMjljMAvJbFJ1tLeIrKijuF7lKXMbuTxYC7npRcnoRMiAE8iADf4Dklw1YIsIBC5mlvwyWJHCoG4gcEvvhN6dsa/jTf741xQf4jWB6crX/cnLo8HAgc2COoJTfLdcnuJDBpnBbDIbjEhvLHdJ8yvL+QwQnxegmccMK1NglvjsB2txxren7VLV6Suto3rUbG4025gac43Oo0GKs5Uah5bwhnUJBashFtJrC/q09fomU4elBogZEj2TupDZSjjrTPT45XlL5AKvR+qw2+0si9xul1PaXtimPgjvw9621n3uensjsfbgthLNaE5vbIPKq+c2u9FmT5KrYoC4NNGzuClx30jtQZIU7NQN48Bg0uiEc6fj/TjCr3gd3xE4p7QuL1mfmVFaXKjNp5E+SaZ492OS4sKDsJU1Opft3P4evAy9O337bDWsF4ZRf3yKnFCiCsZg2lGcnQWFUFKlbzU0snoGz0KKEXwX/sOoXNEr/AE/Fy8jrqwbyA1xAzHibTyl6L0YeFoZezW8euX9UGd2ap1axsUKt7PCNSTgGaqWjGadhnbSg3pnn7u9o6EFLXXKFVtJYnLXPycmfxR3ryw1kmZNjDBZRwOK+cUALOwmEqo3M5vBZNqUF5dUUm7UEL/KAZW9wo0MTovTWksIXCuDpyPFrXiZNUgC4sQl2SkB5SiF/xJYpDTG2GQNTRUFxDymCoaNxDDiftC1A8+5q+xtLKoaNch09ONMESGTTwPJJE0xLbJB2s26VawZ3y78DGAz2mkxaNo5m9PuxRPwpzZnZWu7r59DXoLXGiaFSQWULBOnvMyESewW2w5sDCiV7lGjTE8/yaighJh9sPIGWSfjpJ1G3sKZnCrkKF0gpG/HE6T5J1XHCBmorLY1XxFqPiMy3BWgFe9rkokbSzwEO7ByTMYyNgNPRKoWZ+IcPZ93ftF3Fo0Kv5e2LWhczgWn6arJSR5sLpZte6/7LDqOF0i9XfXVvXY7OEnGT5iIWWayrodyIttTIskQuUoL3aohpm5gmDhhPCJ/Uoabil1Qiao6uIaoKySJwjETnc2yJmBptdZXFQV21k7Yvf34KY5FI+uk7Um+YmCQoURfHmWNcRPa9wGhfQ2EX3tEClQqSyZMnGR9fOZI6ihafqamUery1jVX1nb73Z5GT72n39kemorVW1cT+YphcUhCu4xj7AxPu8w2ffCJH5PVzFgrStUlKC9VqvWuPC0uDjTYajg0apCb6BzIBbRdFgfb2RKW3N8hq2ZqSPzz0l6z3czR7Uk929GxJ2JWSvPSCjKt1oKCFE2MFaljHIT3HYZ68jrJeOhg1N8xQKgqVf9N+IllypyCkvQN/uQXo13gIp0fcHW3tPn7DuKHArOdTl9Lq2+QD9pGBZNKbKMI1gER3xTDy5oaNMQS9dsFmTRvedEGoiS4Bxd2V3XyddFuMupa+gmmkNzwrDjqxphqmVvWAo2MU83RvbP9k9E7wrOlO6RFa1Ux20v1Fi2tJ7HewIoPTBI75Ugi1gD1qKOoKZuMVQWM4B8GqZ1+3OMP34lrlAa/W25/ydlWX+fxeh11tlq7E46z6JiMtgo+4ZJV3K5rJgFNx4YeN8CLGLwIwCFluWq8nOWR4/JiOF0mNa82ZJarKkoLNdnmMrqI+CjawuKb8VPSd7956VOWDU7rOYmiWYsNCV8aZLTJINzHmIkq+cHAqqHAqsEJOPHTx3HeTWcUXwaWCmVKqCTJPi+uelbAem5Dm3oIKb41+0g+gW+Dz2A34zAe3dK/sQap7VV26cGafQPOI6yDUK3PxAtou89W6fFVulvqu71DnI84E8cTQsyLs1s+qA5OL6pkWlAzJihn8s1qa6ouW11SUlJmUJtIqvktbSSBXPgDI0xhPaay8vjNyWsAldN0aSlHV0cfhf3J1fGOMsbDCveJm+GEW4HkRPXzzmT9FVCdjICOFWqCj4uN94fjaIFTPjTu185SOP50+E1nXr+UrSxnrd6oN+FAui+OpCU6VpiASGWcTupJbMvrKa42NBirzavKtqaoVyJGuFXKCArQMeaK2E3pTwPSMlZ1CUd7o72y9+B4Q29PXY2rytEcnC/Et7L4fkbjrKv2H+o7BKia42praa48eiVsHKnYa23gsd1cU3zyyf5JgPTEOpmS6Eic/mbGmxMUWnwnPqp8eJxi/tRxCu00UqorjUapQjudvJ0xTnwmOXAQy6mvsPxjLA//KhBQzhyH1zPKWeMitfiEnwq8JT6WdfbKY1kB+nYZe7vUbrSbxFkEu9PhQNgkt9gtdiOPxpplV567CoyMUicCI0r886jwsywyMDx4YYDCk/14wnA4vvfSH5Szx/3tKeUj4yIvgB+3XXn867OrHv9qEw5dru3ysUs3yv758a82fPA3xybLAM8Eo8lp4U28aPgmEk5oC8nehLuRcJ9wSP6LjOK8MN6BV4fjv11aqZxDhLk0rlMJwY14DJfRs+A9NOni9xel773X3cNy4tY1Eny9erdG5GL6yZPRpEl3XpTOfy+9m2atLPkjsurFh9GCHzhLc/6px9D3kyZNkj72WEG+uDmboYk96dw6b3AFlCdV9nS//x66ePH7SdILk916J3EXtxu8KPJCMr4D30j0he+g8Nv49nD8diBJ+eg4oVrIuKKlSzf8Y+9/vuGK/rF41aPjfp0ICGaNGCaKif+/SPtP/F+n/ei3eT/J+c+cUuzpEB75D4n+v8ryP/xfZvnoSpr/2/n/gAffLC4atoRjWQArHxv3G4v8zeD/8zJBoPIQVqioLwaxaVDc4PGIci45OIqvpfAaPD4c2y9NCz6X/29NO/DKFR+8dOd/8MGfHwu2PBZFmh6LCrV9+ZiwnxwT7g/JR46J3Ry7hXRz7JZQN8mxy40IP/13jZD+jy36VQHkSKiDYw8EezgmC/WQHBf7KLxK+iiwoT6SY2KUGLsvFCbG7rs6TpCTQRUIPwRVIFy8SgXknBOvpcYi8cFwYc+l1crHx+HHJj4ePCGO0NhEMkJjE0Mj9PNjl3YQcf5LSFc6SKC38Q4+EPfTRAI4Hr1He/l5fqt1bPXPWKeymBhxi5rGbfJGBbd+zRC35f66++t/v321Wwp4C3xCvNJhD+6n3cP6xa1YQ7l1QrT4NPJvttG2XbU1FT8Mf7kkVVEHJ17KkhHXDu7hFP5y6VkSGx0WVgVXtrmbLGbhLz8/SzzLyls5BgW24nPKt4Tow4KUEAcBQGBYDAFWGnmhcAgDnoGZQeoIjjjsxzY/KX/Z0HQUf6h8T/PaM+3z6ja6N8EieLBsWdra+KeWJTwtLtTailzzup5/r+Q7ZOxjWmAUvq56d/hY/5FDA8fcJA9hxVBTxbhoJGwYu0fp78O2VD+eEZ8q2PpInlADo5emqyj87qFw/O6ljUpghHVjAsPocrLLt1tRRZBLHYdGaIJPGa84+WSWpUNWlaFWDJ1imPT2H8Mr0EmcL2VZfM9YGmtG5SmWpKiK4ArwN2wHtMEn4gqwiwxFCqumdbUWt7Dh0nUWm8XFEHYYVJiVMRtRpBY+w4V/PKjCT/yRMJ+jfvwy+Re+N+BQMiRY1nHARUGd/ajH5rV1s3g1kN9uxmvxWOxroATRHNR53cBGGfBcKSvcCMKD5HUjMFGnx2Yq/Qfxyxv9eHn8RuHlg/Gy6WOrlYFXwYWfVoG0mAE6Gkot260aSzlDq+liOpkRQ9GTkMwWc2rSVUu1tdKyG2oRR2SOUsmCC8Znrtp++xtD/Pfbb4m5DYvbb8dO/o+23x7+dTffz1ftEYvcDUcD9we94ZLMH37pIQxKW7yc5PAkZhqeLY/PzU5NTTY+aSliBAehUQjTuFfK8YyNtjHs1jfWfIwm4UkXQfoj9DGdVnytpnVdLUkc/sH2Bb9c6CXgaqUt4lc1lCJWjTnhvHC9cLv0qSfXPssw4gPVHMHgPMAnSBt+W3D3ZRnvQMG9qm+epQ6PYu1FrNkT/lGgV1lN8pGdu9r2RIu8wsG8odm5tFIYb0sniYswBQn3yit0DJ1AawmRLgeUE1NJHBrLxX3UQIp66289Gs+Si+5bzda5/tRwtK+/qaXR44c9sCuXJPwiWNO8WUy3UCMH1dHwWsKR2MYSd4mtCDZBemlmZlxc/qrypURpRoYQ+kxcJjz6+MqnZqntjC9K3AP0/RA+PvT9KCXuprvzG3w7loUHmif+Rgw4W8VJv/OdPdj7emUTXw0t0Gyt1jSlvT794F0+pObg7L/cXCqDNPIiRQmPNDHtsmpxxo8Zplnap0PTaTnDGIhgW82byxKL1qSn7NBuJQxYH3zpWJN3a/+Oo+loqGh/2V6zk3ExLIO46bLf6LCOxzIQH3AgRZ0VCQH8lRI+G9j1bp2Hr+FtgHjhuFk23bdlD3xN7ER4SGnGx8V8zck4mE/KRnbAVJiydcd0dXBQL47gk4N/IbZ/zXl843l8w/nwE8RFq2mvwVVKFFvMJtiFBz6ajW8vQdPk/50sv43Qe2CPj5Oer3n9UNdnni5bK7ebHbbVu+tctV5XNUccnLfxCFqNju0gjSd8z0jnm8pUxjyDii5htlvvzF3ydJrBUmqkxTXpP+Jbolmc/r/XvZAuF8bBFCYKwMKauQJnSWVpTdyI+ij9R2Y3XUd4fmtZQ77DyFnEnZlbiYMRqBKfVjeAmrNWguifnwTODEzYPZKJx+/bh5ft24/HKf6ImxuUUG/pNbcb+/RdBW/nnDJ0G/2WFlrc+XzAs7uxt2vvoaH3AHVCh7G94vW0oWXwIBRaCyz5xnhDRs5jBYv1mcZUc7YlHYoRGFkzS/OEDH4L6AtOxrLOYdde96hzmGURFy9nzFLiu3raaM40FVoM4nYUC621GJgtDNrOy3i3p8Xd4GutbOjae+CT2h7fHkeTjVguNFgbzLWaXTkjyT1oxaGnW+8SHx23Br/dRFBq75mTdZ+51CrOcBTY8h2Fvm216Qfmdm2tVPnykFvlyef1yLpdvoU1sFqbRfw2Dd7iMjWZu5DiG9pJu4FHjD0egJayjDPBHePa6kwglkvjFXK7neOhEkVG4vcihfPBL1NyBX+/iBS/BwWzV3Z74Pcvf/6pbPDvZeKXM1x6RkW9Rijc5sBzyr7cttQoQtFpvVnccA7AgJjS8sdbDu3c5SA/4mOKpfVmQAZQ5et1WUmqrYbNxNPEbQMpdpW3yKuqK+4C1Nfa0Rv9j18jErgeh2HxmbmbBvDjA+E4/9Izyn+sJbj5IMV2VS1tHb19OW2p0f9OJJfLxhORbEGRsEVwKsXL/2968C/bjv63XyslVAR+/ylWqybgZZ+uGlCcwM8QeqiSQzZX5F7ljOHz2QLEmqUVnJYvdmS7imzEi3NLiwvz6staoquh0dbhrrY12nkSQowyWm0tMmcjxRnNGkYNMSBc4xSmeIUJ/Dbgeau4RVzc2Q7kA+FNVn4P8uIJTjyFcDUYZao0R0mCYu6wNtJVyMnLeWg0V1s69I0W4rFttXXNrcU1+dHlUGTJNhSbNFYtjexytplvcY66X+IaoYO0yzZI9TXGqjxABaBTG8vEPQ3Fn64cCtxxauUgTrzSy1vxskv3KInb57nikeL3ziR7JomnNENUbIEye5EdKaZkkEimJqhUXA65kF9pqDGgWpm4VjLoJbc02mvsNnHfjTguRkumgdRzqyHemkt4SFZNSWtrTV0n4Sr/p7c3AYyquv7HCWGSK7S0NY6tlgZpte67UteKCqiIsggYlgRCCCH7vk1mn3nz3rzz3pt5s89k3xMC2SZh3wybuOKGtrigtmi1lvq1/d4ZX+jvf+8kQUDrv7/f7+uPN1mYvLnv3nPPPedz7j0L124Jk7ut/Ta6YUxTkZBZq7U12cgD+o1OaATSaMjjdxF10V4VKgUdVLN5ZvKRCluNjaVzTr17XI5uGus/wx2W2qAedeobCpML9VWFM0fXTCGjKPasRUkL5ByJQBVk5RI5qHBqHSiJL/R813yRey+YsiomByUtNK/9dufN28m9zBau4fwZIe1+56SQXi/QshU2DhDnShCDUoO8hbTr2S61j/eZdjl5esQ8nkUF/3HsK/6yolg+lcgzl49/mz56bfdzdCEfUpM+6SzVFq0yaXQxEa2s095kDbAy76AOhCCSf3hO5GHRi6gPNJmd7oKuTUT2Ervjk/AfK+OUnwzHKz8hCxT0wXxvDVKUBIax2qj+lG0uG8IP8fghUOmN2flQDQafxUM3shxeX3Nnc8Pm2oDLIUAA3JzT4kSVAW0T08L67Q6WMDMr0qxqFrJCCZMl6w/hz0b+cqjjuKvy0uHPO1859ZfivyX9zTjcri5t0DUnByDo9PtcDtkjOURX6Gj98caTgT1OOdTT19vqa/S2yHWAOv3VeTNho2ZR9q0o6cwkTQqxHarJZXVYAtnhsjC4CZx3i7uD4eG2Y+4GyUfDzDnBnFxF1Ke5XGUuNlfW1OhraiyxhEoO8IJfbq3bRYSusfdvoedgEGq5ABvQDqZ1PA3rYYM+p9RstdtpwiPPZk8fCr2C54JHVskuiTwKPDa3WWYcdvFBmEusMnA6fPVvEsgvM04DzbhhZCGDy2CfsZfbaUyPMZNS1WFvJJweAI+91i7SLQogqFq1yk70op6zxTKnmR0WN+NkHQTS9ZJZBBsC5aejZtPM6dvxb/vwZf07B7b341sH4kZ24df/WvtF7c74kYiDzKCgl/TNt5xecAZQUJBqQ3bJMHMuPL2tZJ+lkakDmiTAJ7h8h4d2H6yvk/1CA1lfbnudBbUY6zSDaduXN1VtqenUNTNbYT/sD9VtcXoInHAhPyuYks0JWotgKEg1ZxN2tjkq2tbvz96a2b5q64r6FFCmwC13gjIZRSLKIrUnwe8UQjNtRxf3LoACKGfKjRuqc/NhObIkgl60yXpPlc/QW9heFqyRayQm5mhvtOtZoy49I3uFAWUEqoPPHEjdljnwtJsBImKBXLwdWDsxdvVgJBKSQ6Jd4L3Qa+/Sh/P3bHx+8TG9l1g4h+EA4QOPcNS7q6dlB/I0OIJCE9TxLlvAWquvK23M67DKVo+uzuaHBggHuhs8yCGK4INt0Fsi5SCtE0LJ05VgZX90Zn/c6VdxKlGZX36lZqAgr1yTV1ymz4dC0Dcxe3gf7ycz2Sg2ic1IDHX1qPAlOOlFPKURJ4pBwjXN5JLsbkuXpjYbaMIIFnKt+cU5KejZBzfeWXyVbrn5GdhIjGErcAiYnFzVsmcdDuq4L9idVrdJtNNd5iPHyP95wSpYg3f2px4GtBOGWo+M+H1Oup5d2jqi4nyRDjUYeS1bXTEr5e6nHtJWFuVRAeAZ8PRuxTNqD7QdbNpR31orI5H6hZN5dxigHE1PV/IGiI7GZ/rl/ktfGSh9/o1jrWGc9VYSNuJ/4Th1wOKrybcU5yRLKT05zxEzlwBE91ZfT2N3145dQ8eJ4frOpj3Lm3TOaokYqrmQZd2ku2njA7NX3oXMWhXLdXlmwt7mP3aF6ztrgyGR6GS6fSg6G8kycTISQ3NN8SyP7q15VLkGFAQZ3oKGUsRoVEmKsfwp7SOwBpG+PNOYPpJMXYwdwiu+kY/hBNSzddZaY+P9Z6j89zf7Go599cFrHzaiBkcTsS12QtNGol7LbAXGdZoFNdmFBSXF+dpiwoulTdCFAi6PD0KIPELxKlq6NR8Svc6t/n2+rWRhiwLp3Mt3ENRoFS1ggrWFacU6ZCNywEKGaGnsJeuwvP9EH76k//BOvGX/6r5Lw6+kbN+1a+/fcNwXd3yR9M8DxBJi1S9C8C3xDUJqmXebt5d35G8t7mB8UE9mb9swjaHKC6xHklGqkMqFGkELyjxQVvFmNo/LNa3Kpn1trOpASV+fYl3mepBcjoBEvf10QVZkBSvH8nYX5yKcQ/Sy2YxMJqIMOcQmWjgzgfw0w5rL4jUTC0V0EBki2OtXDa05Bh3Q6mtpQd09bQd8R929Qr3wGjqM46zELPYpKUTUJEWOg8FOd5vTmzO6qto0jbYhsqDkWGrKU2/H8pQ4eAnZxfJaGmOi11ZWotwci0uladA2E4HlEx0En5JuQ7ORiMtmxMuqLi9WH5dl6hdNvfiVq3A9J9pFO9DsZ0bC/g8w88pWZyKTRasxm/UtZR2VZHr++0B5qNKbA0VQxdQYEKFrQWV5JqwmhpJdtLjKvTXt+V05Xo2zisyTHXL4VH5VLiAd214bZEBXw9oNMzMaNwwm4434DbW7rbmlNdhWt8UfJho+csovqgToeHbrU1sWdjzLAyrRq3KrS41lFnQffx/ANpX9ONug30Vdx/uj11ReOjJofK8ET8F1g0l/fbtfrY3lAoulsKJbcgxhFxvAQeiCdnAKg/JAEwwj8HM+hsgdq7e4q6zdVMvWoaQ3iWqmB2uHPK83hpHgcNpUh57GOYreybTl+YukTWCW2Fj2Nckp+2udTcQSbOSCpgaUP7JkiLCPQ3AJXkdPK/6Vo0vwCK4YADI5LbLJqRP0SCDWlRdcor/BUSf6xBABlNuq/SXNpc28XdNRPKhts3vInLAOlqhnUxmrs5vsNQRXFTm1QY1sDup9JuSxgkllzytRrrQsRqxDpazHpQuP21wo6U8lmw0dXC/V+Mz45zkjX02mxEpNLWeFv7y5CMnWodV1GsHO2001OUurUi3ryLjZSruJGERFclV9TrDYXeMggOivTr2oJwgBikrYDTRn5gmaAw83Dsd/PZcmwRvfz3cSRKx6ef+uF5o/knwS5UY3I9EgWtHAVpbe8Oh9N280cIwdDEhkJXvA9peNb9zXeoPAiBaBk/SinZ4lyxJlY87N+VDZn9YdnX8AcVLUOZGZlWCUORWRr4axmWBgTTi3JenvHZE71D7Y4u0M7Gsb7tu8C7m8cLZEdUEyPoiWuEyq4YUvp75ZKdudsakViQKBRrtd47y27cEPyv8LJX3Ky3YXSJTo9CCGtfFGa2pFav7G3HVLs5bpNDaityqRTrB5kscpEJ0/fH4WwKicMD9l9RPld3JGjrpkWGSOntmLohQQfc56h6/ro9ff+WQzkkViN9DcNhIj3rJ53jsFH7E+W73dz/ntYg1RnFae0prY78A5C/1ZtXntK7dk7MtEZ+VzB1Y0R5B5W+Src2SI5H+oNkKOqUj/bEl6Vt4aZDWRUatYNysbBRMwNkJ4lqwBJYJgNN7qVaW/8MTORxoZkaZJIuvSRnijUhTrbH3m/qruUkKNPVnh+d4FxPK1uWlQjkOQQRJdgtz8X3/44ExbnZPIhUYU5J3m5PP4ATdGGDXP2i08c/6Ef3u+0bcn/Jv5vgNU/wOE1AJD4BrR2JJFMrbctuPp11egs3d8N4/WAM+zejQ9e1ukcpjSNLst6VRHxPht1nL9B7Q7vit7YIH/aalK4CUqQXnay4spiMZICJSEcMHUJZ2ik+f6PpZtffAUZdnj37AsE1MxNF0fz3PVlnWV6YWbxhgXXcS5yiMV0SODcR+G4/fjU2rSJ8kT7DvU+By8i2oToZavZT0g4PnKfFyg5ON+pR+rlCli7JRRooloaOCvSJOLIl6a/5pyEp9UXsQvzj4lQZCjySICEBC8wohrX/3OrqCHzhCSqhttySywnJnJLF2vTbMa7ZVEHK2A1EBmAyMwTCxVFCEoqsvyZsFyeEiTmpfCmDl6EGprrJZo/tDxjvdUxkX/NRgf+WP0KTWZWy5o3lmwr3rE6uUDfIBAuVZis4kwe7byIrlOKifnz+M5RFApvYznn2ViFdET/eQqwPl4Pk0pzVqpKy4qToT7G5b1LfXoJI6QBxrr6QLgHIwnb59mJ7wNz3n76vqQ5KYnrLzTRt2twGq3spk1G02rialTKZjEVNf6UGYrMsusRGOQqyuJ2qdjeLiiZzB6pDLu68m98SPR36npyQo9fz0+j9DxJCadPjXbDjqpVCyneyC8iV9mTalOLUA6M0d3rrj6Sqp2HJJHHmgdCu10ecVGoR52Q79poAa5WJedJj1yOogZKRHuc2v6TH3wHLxdt3PzPmq3gQM5K+u5ZNISZ9ZlLa1aDvcR/tUKJsFC0CtRl2Ti5yuEJmTi+xVCI7uAxo6LJ+xEMorZW6MvVlIW6sLXqIEMUTZvTqlLhYdguSlLk2W32RmaIUhmZEJolyhLqLd20Lub6MVG3mffYR3SDpR6GEJTQtl6CjPJGtZ5UGpXSv0yl0kgNhLN2kuseg5OncKEvTBhs+Ov0XmjvId8Zq8xmTI8x1N/CeUKJaTUKoRfFcK3dIeCaF834ULqgXSyciTrEDIHuRiQrawm8GlMYuH7K+NGwpFPhuMPRR5U2ykeU+4BZTEEZavEOTmagMwpSZLsIlz4PjoRrUr8YeV71YkEeB9YxsVJNonujzMMx6DpkWW0s7fEJGw0Mxz/9Qg+o371iT1zNGarPhl0Hlsdv5fdVwqrQGfTmQzV5fmGTO6H1ccnXt7z6sxvejYSjmYS6Z+CNer/B1pwpSOlFfZA0Bn0+uubu/0DUp3gcUIQBcyumocfW/XYYy+vOjGhlo7RPuGLXA+aKWle2T/yh+53nSFB5Bx2JysYaJC6DgTeptlw42MP3LFCb+Z5GtsVS7Ez3twI9qgfnDoBAB7bFh99LMKpfz/xzvlwoIUQYul9+ffatLydbrQ4iCFaS5Coqz78xSvvfHLQ6yDc7Efg5Wig9ll8TruPceePJtqPXkfaP/vT0evGHzyWbo9Ar5uJUWSRGCc6ezWY3Kr8lnXt2SGGTCbAQMOO1q3tyOvG7wJ+V1C5HC7HueGPYvB6VZu3bNnVvE0ilgcRGLJN0guISTCQ4VsNi5Rps25WZmbpWGJPEcgo2oNsh3WLoVP3SdofHtx1C5INAlDMKotUs9mdnKt8W86uvC3I5I3gb9Da40Tcff2jyji8mHY5Hlcpj6kBnxTwux6/qqW7NVzbKzrJ86FuQ1t6ezbyGODsVSrJJFtpPmeX7HQhwEcEfNhvVG3NHS4IV3qZsShWQXI4UCCR0lPrVqYeuhUnZuGfs0FiDo4pQp4eEnCmLOXntyqJytSlSGshpK9B+kQHK3C0CafolcONw129PcjvA+WwoBxROWxOC9VvDjd59De0jrwT8RFJLRJbuHndljWbc5DXRIg4nrd5vGxBdBZ4Larusm3FW7Wy3UFsjsyqtNLsYmIvnZ11UQEDQiSTSZWXk7OmfB1npam2ibC00yytAsj+o3jqPz/DM/uCDqLJCAlcnKhz1DgKvTWuWdvvfC/lS6tfECqJfLASmfUtKkeuiS5Qm3gbw5oRnJ1lNqhK80ozajbZqV8RaAZLhku2IHOAxycJZ6hsRGUYv8lIfYQQwuBTbepJ78poNMk2kWpgnmNZmjWxBiBkwZcsOa1MGlB+5SAmDA1dEiVHcAD/6jSehC85HHITKteSmWGJ+RnT3nYTk1GZXpCdiwxGHh8m80meaZXNcB598f6hePx8pEnN2oG3GdbfPO/B21bqLMV6PWvh7LEDG5HIoADbrg9a0OnVrz4wfItLI0CADxEbikioGAtWbyvcWbiVpVoFkECTC/4SX0l+0MMvMgK2MLswtXqC3BaXPUSACjHK6oY+O37i9F4UdLcHAg63NCGWLJLeURzQuW/b/dgf0z+11vFAVojWarfMBJpT11q/rjO1M9tB9TsQyk0G5UqiiSaDQB5HuNPRubVzZ/02SRaovvZYJRONpOYZHkWqlHR1a/mWsu5q5GVMjCq/OqestByZLaMvgtmtKm3OacmvRybZK6u2Ng50tLaiyIsJ0x+fWEXboqy6eP7Kp59dvTF/fcmGGivL8WMTpBU4OebSX+caqt/V1dOJyDoc/avVqcrtXNO1vl7jstMuELUJ2thKkHgXO1gzVNKf7zf25PoMmzPb02vTZa0UU35E9YVQ7XD78OYBn7+nJ+Dr6x5qG6x1OSRhbPWFeCK8aYaTGmtqZWrepgLE03OQAwK+QdVbsCt3R1WtlW5lxQJ8QzGu4ASrQ5m0/cbP1uPJTEwnmwGsjAl9oNyudpvh7H0Ws6q8rCRLk29nCf6Dyp7SwZJ2ZPFA9D63R9Xc0tZX1y06CJKBxtzWDW3FNOIjcmsYs5Vxkdr++OjdUwQG+87e67ARWBIbhyzR+cD+6AM0ztviMQlWMLMc4XeuYkXpQrSOSIhDsBYjVemLFc/ZiTqgm14x7zgjityh1KqVGQpWZmCsEjoAx+G4DsJU05Vry7dFbuzHWYNxw39u/yfO+Tgep0Wc6i1dnX0zobXGX+Jo2bq9+znqw8vWWfeXdTwLcyDTtlH7FOKMKuOO7C2ZAZ2zWqwGmm5Kx6Wa15etWbdidcGzNXOZUsL1xYhoa1Y0O0s9FaHy3hXbSt6AF+BY23N7Xz02/KcePKX2qNwHO4iQ/NXcM0p8I0Okgh6QIcEEBs5kf0yTklL5KGfircCgkgZdWzKRwGlqyGHLdGsNG7RZxqqC1WuyV1uYWOqQBbCphzTf4uwO7Ed1L3u7Qu3ukNsbDG3u6qrbR8EQOPmDxrY0WBALTQzjMH3FRdaF4y87dTA6+5zf5ZVKePRHF/pDRn5E3rvywvdwJuANgsrpICjLhaI3JXIum8NG9NPd51Rh+UD0xv5LB9/Dmn7Te0mf4l88GCsgIImyQ3B4tyJPlwoE2S7bW0wttlbYDtvrensaG0NNwZ6O532vA54CGBnfLHgBGToMDdUNyOD3DaqS/u5uowcP4DW4aZiKzcbZeN6cZSpANlFV7S1wF8J6yNDlFOUUV2XXrK1YYn4crgFlim9ux9PBvGBFYxVyW4wbVJYSzkhoa/JbPMn46qhNXW9VeWwhmoKez1TUqcod6B5lUFU1aN3FnYF6vpfmS/mR+I++vU0dHU2D9GyDOjXddHa6+n3cr9qJbxvAaoJvBUnlsEqMZCKGeP1KYTHcj1YnwkZ+E1SzyhWG1RszK6o0hizIh1KfNkT9uSJ/+TBuZ/QeoqXw6bNPEioyDp6G/FHnfIcTn44+Sff0OImg+bMFCUQC0Iol0Zn3qxXnaEDFgyJG3HYnEoYAZ+HrvqL8bcwIUxxCUM0HdII/oNCmGMzOslZl6le34x9XthJL8QygvyZ4HDKhJXgY2epEv0lQphC5WiRf1zTnrdI/cX6uEZxIjCy+sB7C6GIxgcDrRsnf+smJV8+0tTt5MlsC+oqAFadMa+t4GdnsQNclLINVvA2Ua7WKWokD5V70Tc/w3Eraua/OOeGJwu7TL+Kfbqnq1w4y/z/9K5ALfaUh9Df8DC45V/tn3DM3DfBUrPnwor4sTNj1yeZjhJDnufjx/KbHUq5PgbUX9nGMUsHHB5c8tx5dpWSqxlwAgboAAsKTcbd6/daCHbq9E/TB8xIbw2pl5YVUaXUK8KFwbsQ1g3GRwXD8+zS78tjR31c8MdEITO1gWm21TIupzuyz1hp3bOpZHVwhGaRKYu3YRxcnXrgWF9sTwMZVcgbditzVaZtqjEarxlxm0jClTLFNIHzOEypZbQwVziaZ8bCEhscgDC4BX+HDiZ+34Z86WwhV2snlsbWW4kt+c1r5cUOpwwzXArohwcySj5rGa2VQvnloKvn92m98pyNl3+c7Td67PgGUa4joYx1WAlCo5BEdDmKIWQHfhfC131Fc41ve1Wd/dk6KjJe4GM/SgX96FP/8SBzOeyUeV+NB9ZKJQiBsDO1UgEEDVWCWLDKD8IwFqseyn8i32xmGpQdgmtrK+tgRx7kaJoeHVaDV/xrykSZobGwI+upq9fhKSD48Ub7EEUOsTeCvI5rAw7kZGc3rfWKzyiXinxyRCWs63ISWdTWN1bHkBARzj1UvWZKuglDgH9ANdVqfRiBYireD3mY0gw7VBBTyiOkjQ/joUFzse3xkMRbVc6ZehS9T9xd1bYCnYVF+elZxsabcTDPJlnmK6zZ2FITheTjaPdTXjtrq2j09MAwtlo5qNH0kckUc+ZpohUiU6Mhg/Gd4vloSju0CHn2ubFS9ptzcvlS0S5wA7liyNckpiv/AhfgyXI+wLlIJsop3WX0xQGmzma2G0RvPfsIBmo2fUqV+mfGR3cG6CYymhyC0WoFNufQWzkpj8Mk7lnqdk9ZXMQ6nj+DPR9KHLz3Yn8QdxHlq+O2e+1/IazY12Nrhv+Cl17e/hVx+VWd686b+QpSUsi17V/UuqIeAFJDQPi6R57VE41VBjUPjyQ/ld+UPW72rTnAuuxjsCDaFX9wXfs6DvKI3tsFPLjtyDCboRB2xjVMhW5dTnlWavaEoFVkNKlNtxWaLFyV1rdv39J77ACnoCQUpk2f2c2r4aNubxwJ0n4WKFh/v4ocsg3lDS1ymPXMkYjHpinQVKGNBSuYyk8VOCfI7WPcp/ImiXuP2tcfwe8fSdlw60h8lgxTwjMiv1Ws35TzBPoKsifDro/e+ld9gbWaboQM65Q7v0dbnRvoPIJc3WKXq3lCn6ShHSQu3Ze8vehVQElHNg/Xd7dt7t7zseBO5EuEfi957uLvKVe4ohyIoZIpMi0qXL9u4AllNugZV/qCmrqgZJW1Zu/XZjvmAVkOmJrcIJa2JXqKcUadAWueyV21ydYumGeWFVVtHBnYMd/Q09ft6AZ0emX3TzPuenX17ctKW0S78nprQjpf5bdbBgt1LnEx9WV052pyhyl6Wmba+KKdioyGbWAw6Sedc1LDuLTiJ3t176jT1RQxHf10Z9/rlkXculMtKIygNAm7Bx1T4evx7PB3PEkWRQE2yePy0RBrRWDzH2+z52YpX2a0sV4puVibbOTQeqGD0EFvm4uAX/Iswvn0gHl8RLVMTAb0URh+A0VYIy1YH64wd3LocDmoCeyFSSF9euwOxLsZhJTNmsdiJBEiR6N6QCUYL6cv0LZGUAZFW+spgXOj8KA4itEeGIgVDNBbiYzXPK6HRd0AnGD3EuA2AKMt+hE2RLmwa7VLJBpEJUEq4BB8ElVDkHV7gnAxZKVawsRx3rq2RyDtq0GHSlMCfD28FAZMPQZD3mV0mggGJuDIghTStkEeoGL9d1hPj02riLaSpyAjdsYkUD8afqFBPFCxak0hz+bwpOB2bAx0tbdt2vN71AbwDbxcOp7WWeCtc2UgcvWM8loYsfdnhQTiVfOYX8CYvc13GDk372ldu3a7Ew/Xwu42rllVX1BQwJUy5UMsr5UjJSBw7kiGPLw/HHRyMFBFL9ePIZ+qHp05XgtSVPnLvvvgRRaVe3rXqueRWsclbX9/SXjfsf34rvr8Jz6jHy/x4irzT1eHq9Nb7ZY/TD24GOewEwdkRY1eVsTVVUIqKmio62pvrNydDna3FUq/tKqstoJYXkZ4rTblrqm4zry9Wrjc9rp/NpBoVhHTKLCbDUMjozAYza2ENYJFZkVgbIpJFVYujtgFaUUdFU1FxeXUeLXZw5QiefjAuuqAz/ji+Qv0IjVq5pzPy351xIwdHDpL5eZloZj9by9fyPiaoayupWwMpoLeTy5prLM5dnP2UId+aizg9zTGL7tp598fBBoc3GXx6USdoBKOsC5a0aXbBPgiI5HL1+Np7jm593t/t2oKkgBCEIDq95t1b9VqbmXSnL4wfPXjmYNxIZwR3xkdTIhvUZluNdqbt0UXL59LaBGWglYjo95UHVw5s6Nb6Kn2bGis8qwGZEm43PPUo3AgGR0VsSz8o1IrhYEtLa0d7T3AAkCOhBUJci7nd2KzbmzmS3qzrNrSaark2QN6EEHjFoPPV5n0vwUcoyNUbk89eNXqT+lG6QdVMzdQz55EJEzLplWnfVIcYOXTyUJh8fdPtStJtrW4mu7GioEhTUlNCVBaBHsAIBXKJN68erexRrW/XeKu8ObVl7o0UehE0ZSZo2MQurc5IMyyxG+30iFLnrPEkxwYTEvvaNrfVttW2esIQ207iO5k2U0+1y9asazSg/dmtujZzq7nV1kx0R71UL7/UtHsE/kBGU0dGkzQ6R/2/3c6f4Mjh0BuSnyxiD6pla00mtkaf/H8/KEeNl7Le1YP4CrJyyRyD0Wn3mo+ufmHT85XbdVvMh+Ew9Hi2B59vfKH36G6vxymCD/nMHlOymShixvbYsjtX/1ZvJYpRC1qoERjhmsCdux8bsbiopYuMFqN5Jl6tHFQ/Xblw06LVJrONnvobPWY6YCeBwK8e/HjXlwFZqBVCgELE8Hfxf9d/vPrVZbLNaaMCgcaBgc8mmjyLdi/sfboRrQ7lu56EVbDRvJ7WABzb6cFP0oCk9/CP48+rFoLbI6m0ENnEPV9WxuE7zyF6SXgf3/kZfgrhyAS+G9v0VP4MJ/Et2HvR5qZiTDiN572NrwfpQph+r3L7LcoCpEQSLti2wx/BA8otivviEqNGUGYrxy+E7bH1dktsy4oYvJHFExVLo9OJKvtO6EkG+G8CAi+4h6ybM0pyOLqoNy46O/pTNQfUjYrhRvcoQaPNbONYmlJBsjo40Y5//hS+cw7CQ8oMGVQ+wUXJ7+Algq2cnXrlOL4eKQKxXr5dzgU8Fr8B0OhHZ23qud888f3IqBoYB0PPKvGPl+Jr5yHcoFz6f1SrhRdGX8EdGro3qQcrEs6W0CfhE9Gk1ep5U/Hhy+fR/41Etqvn0//Np7NeHY6LzhqKjy7QqHkf28wGy99aOXJ/uMJT4yp153szPXkuPLX1s+0HXujc0rzPuQ9ByOoyijVgs9irmHXanOLcpfOVSenKXTVpbDq3lM8kaJIlOoFlYy6SDpvMOuwCzXh+C4fjaj7MPpNx8EnfHZLOYQoC8rvdtTNJN4ht9T7pxWzcoibGC18NS4V0aa1DubtWmTS89Hhxj3YLs81ea3dYHKzICQTVGhizfiYYHRUOTfPDe5e9m9ForrW2WrpNA+bNVmVq6U1rVywszClPsaUgrdvsTw6CwysFQxh9/AZ+oPeV4B9cZ8QByuQiMdEpBAkaXXRf9ExGOMLFrG5qOz02NfaGfTAu+uvBmOn3+NjcETY8d9vfyG2NoxvUT3zzp3MfGCUfoBNB/kZ0L26k6hcXhMlrQgMrXbMoxrHB79F9yuxEK2uOGWMxQIVn35cAD4FNpNkCYnG0LlmURXpy9zZ6F89OdDk8Ma42O61k9c1+NwE+Bo6SnBEpFLLGoNB5/aWVb9LejnmNEJN69PkIFzl24dIY/ZBYpyorx7Mcg0DpEpROlcMm2Vwcinw0fis6S4THuQ2nL85rgDb6WcLYYr7gwdGfh+NfpLw+/qFjo9zo0YQL9+U/SnBJZC6cKLLvXJzwRxML9WzJFGJ1W7/rgZ8nWGxWG7V5jU0VFF89H45sCMf/PaSOkF9GBxPJuCwBcAvU2kORl85tdQUSrCzHxvbe+0EZUF1w33QjTLQUeY/MlBFsVtaCRsOjGyLhxIuKSdKPSzYVERIEjyHsAyoax/fWyANZt81lpMx1zxBuC+O2obiD1B4nv8RfdgrfGKlWL5iKC4jYVdrdCV486Y3P/x7u8A24GwXkTMAvKXVqi9KG26REEWQi/bFagydfG6JRyi8pb6q5BDtYBaugqOuUyWe0+Brkxu2J+CWLWqtco0y+VlFrrDxDC4FymLSScEE3Iu+d14dIh5Khtoy+504M4ZlnPsfTWoNSrdgEIWjh3ec99pkpWuVaZcp1yi9Iy7rxVImkA7+oU6b8TYuvRe7Ie4n0MZF3hyjeJMtk4gm3X+5hCHhm0Q033niDshwvV23Zsr9lj3fsQX+EA9X7NqDRWevUeJkSu1TpO/NfgPfh9Y7Xd+xFkUWjl6mVZTh2qYZTuxfCPTC3aG7aSqSUXKt+AOZ1rttG6/8sxyuU5SynWpOxsPD+MdJ/T2dG7xy9XcWDtsHqy92t2QMvA74VT/kn/knbBf1S5o62qhdAWiit0+DR+CyEm+6I3K4aXtP9FOmGco/yc+Uy5XfjE52Db8fZ9Ik4jzSWd+6puGtE/Yr5+fwdq/syW9cFVsqlEk2P/ET5gvRn1y5fnPWYrpw18iWAisEolDtuaXjghcwPNQOWIQjDy80vDe/f/tyRvleDYx1DY1NDjGNlGzFOBKts8Bc3V/XDTti8BXbAztzOdCcFNxxk2/JzYT2a/nhTrAj4SXoAH/9ZSI1fiiy5aHtwCX6JlkuVLYIeWIvNgs7ecOEiOq+RiJ8skP0hdfSmxAs+orw4uvhCaRZZrLyYcGEzZ5oqomhsXypyM1mvUbw/8WJNfaFE3DcaubgNGGsgmtU44Q6n7I9ELxzAaETZd2FvzmECNB0vmTgLm7Bexw2zyJTozxIvAD5nf5rA09SFgPBtibF6nuS31wG/fhESOvuzyJSLKs6OamBUo5qwxLAtolFbWCVfyeessRql1EmGEzmHBZP3XBxNmyjBWIEXJEu4CBeJzvHMArG8A3anQt5jyH300/TznB3hlYpRrSyhF45dKmqUnyt2R1QaAXt448l4vBH3qq+vU6W4010EhfIJNtZqmwmMmzuVjv6UlnqnqmR15XoyUAJO3NTvg5ZuxVfhX+OrlF+rBOqDRM/+CPTghcqhkt0o9eM/7VCdGnZTnyMn67Il8wkMpFtTLOh6jQpchXixXeRjJ3b2sTNisNMXV6CsAJ7Qo8Q2Erl6JK49HHWTuXyL9PTJqWHFqo6UJbIeRjbBmMsJGr1KqSaDi1cp87/MrzeTt8HO8eMKa7QkUWIEllCPB7tE9GV3PZ7/Ja2iHR8hn1ON1erwgtNFZnc0HVvVC6kRmY9/hLeRry0TdOqmwSS3TCHfrqaFASPmCRKeH3ESI+Z5ISeRv58hbTw+9hWHrzj/7lF8RVSI3a4c+ObHdEUfXUXY7hHCdjmKQf31vM8T/0xP9UVZkmPpNxmZoamC4BpAyqTzNPO/1ly0IMdbqiYtNdOW0ia0nBKX8GvqMG+3crE9ZbNMfVzsMvwZ0Of/mptwcTOKNN6hlKhZPb564F9rztNukxK+/M4+3g7oxq/nja+7c03RHjm+aepfc29MvJ36Uk30h5FsEudirLQgK8Jx59QmGcFES/gEfvdo3Ak8Xe0Hwenxv4sT8OUn8DKa/v7DgndXbM/v3dSd7tXxEOD84CYGESKWomj2rz/21KEnBh4euqvtQQmtTpjFXpU5e2Fa9vr0gjSzgafuFUa3zR9zDsNXHon7+tbIdLWVusoZ1j3zzPp5+fML79XeQyT7PaH5nfO6nxlad9Dit0sExhusJtPMMfcxWbvn2a6S40vez/y0KmzpsO+GXdAhDrk/aXh/4Phh1NW2Z78cEuhaFscyghDKNOBHXozH/x3Vqitp4cAH1z42x6pM5m2QAvfDXVAgmOzlklJjyzI+vGHh0g0MzczDIkuigec9yfRIRHWgfSjctbuhJ7RN2iY4YR+chI+gi/eKzRyucfb53xp44dAgctMAMz/yJMYe+VI8NmNZDX6hB/6IMEqEEc2OisGC3esHV7QjehanYnneSgsXWVTUPV7mjq4fWOi7U7Dwepo97w7YJFighn8YFsByWCMwSNzkyavN7VqyI/VIPmoEiSw5FZBJsjgWhze8ZPyIdwsBHv8YfZVIA2l4kVA6C8LReyrjoseJtHYpC/FfVMoc/Lq+leB6iRYTYsBCkzewinL2JtYcs30m9hejlURky9R5XinAJ9WnlQfeUpKJ8Dh7Q4KA349EhOTpNipB4tsjOvV3iwKsxb+s0lM/yQa9Qn4fFyLoAikSuVyxUMGAs5TcY5EoQa8jEU59tnJCFdFodWtzFj599lIPPVWnBljMXnaIvib8CH4L4YX4M5AJKRhisaANGWpeeX80wpPvsV5GVpBuPo//RrRevvdiCUcsz1lKtdVGaGChNaSIxuDcTGSWUuXk0AUCLIPIryepTafkDkY/IaZFOLqHNDkp+oRa+WXab5RJqcosbaplPTwFVVAlGL33tD+y44lXr/3v+RhVdtp80ANoELqkXg++YQBfglV78c2hnZ4hOAYNfAPvK8PLlen4t8rskdS6Tc6FgFJgo3mDHkX6RxepoZqv5k2mu/N+n/LkvLtuflaZZLDwOr4GFsFaX1qD8uN9t+NJufjnyNzPdcIQbBFCjs5OfC8Rj1fg28LtrnZHH9RBK3h4nFqC71IeBqWCblb85fPHwklzoll4nZq6vPKybWfNcN7OonBu7+NHlh5Y91ru+0zA7tWCDuxWaw3KvWfdvKUr7p8755Gqa9kKXg9F4iPBZW2Z/qpGbYMlwMr2EN012wlbAy1Nfl+gCZqQY68lEdaan9aloiTjUzQHyk7z87AdufeyiWAXCN940vblHycSsv+v+DJioUbviW3bniLCrCS6Tp0H5UylcVF+9hz4DcScvF0PDDxy4ndB7dD6oYzdqxvz259GTq1kok6QguxqaH++sXv37qHw0FAwdOKDgTddfwRZ8BLwAZ8Uvba6r7Q+37uBrP6MipzcGq2u1FCVf2TJ/gcAlaaribVHda8nYS+06juL2otq81yZDo3DEiLkkf2iXx6o7enoaG9rq91JQ59aa1oKmvICK8hEPFW+ZPWTBRvzsp9alJOn1+mrddXaUnMVousLIPewtnXZvntPbthesDd/j2EbHIC/bz7+RoBMQiShLz6SEE1TA88YrfonlMse+c1tN2prNmSaLTb2HF+yqK1Uhadc9Znyy7eVmyRG5uihjixJ8kl815cELfwYq3xeKbbVzzmNXqT8GE+5Bs+6H9/FylaHlSYbI22h1qfVbyi/PK385IsbUb2mWqO6/sbblJ88qvxyrKMA1EnwUfzL2/BPrv8cVdfV16m++Pw0/skb+Jeik3qjAFAnv2+4B7/xgtr1b+fYmuh6Zn/B8/AG7NvRPhLsdLfBNvho4ysr2jXeGkcF5EC+sawM2YhxSIBexQ6nU9W3uSXs2SsSXBjLCue0+wwvZu1f0V7ur3Tm0bT8wPDod/oVC7T3280xcyjFn9uc468OGGtrUEUaMS44oo3Lm/P9edTjxK63LapMfRRuAr1gECze5c3regtRZ1mXdhug52GkRz5A9MRw5O691ID49WfxbxMVqqM7U1ait24HZRgJo9NVMsPRvBQBqPWpcPLnb30e+ofggSARweTiZd0LqQfmwgbIMZbWIDMD+AWV1ekQaoiivXt0jhoyzWmaDWUp6U+mpCD8u0TA88Ei+/wt/bVbiLERTIOVtBP6L+JeGsSPh+Nfimaqz+5PFGn4KtFmO+qPtB5q3tlAmFNZm0iQK0s95es8TgeKFiYSIemgoDStenHZ0rLUKgqZ+xLtEiED0fo1ZpZFg2dT1IA/7AuqGt3hum4fOtBMkOWc25QrIJufSaTl/LlA1eXwwRMZYXxpOOPtpKvwO5+pLWCwUswKJ07TvPYhWeWVXJIgoqSfSiJ8oOJotgAYvyvpKh62P0fumwSMVbITxE4wLVQzdhuy2/mrVUmL4TfKpWvgCxX8E1ibRN3ujDYzx8U8+oGF6xBco7eprASw2HkrSwQ9ZainCUPRvs4E5f5/99fCTTNhHogujpbepgnxmrwOCSU1AU7Gl+6CJ1XwGMEzHPWq9Dk9kiQKokjh/UsIXv03g0KPl6mT5pD+qmgzH5FmVIQ+ePIwvro/Hn9IY/WctsBsXL4SX76eDJk8eQhP2osvP4XLnQFw8l56mkc90ch8sHaWZmVhlCdHi+lWLSY/JYL3ZdZFRIvbK1BAODzSj68ejh+JFqnB5tSfUsr3KpcPETDKA79embRSuXy2Um7Tg02wuE0+mrbU4ZCRJOMnI8V03SvkJyezMj3WM4Ildgo2DoCiCqP2JH4HXiBYpo/82mbH1c7eC7EMeDjp34Em0PJzJqDJGDJBE9AkYRwBUTcEIha+A9zcCVkCsVp/nsgrVxNpVWF8OJNALwuNoDciA3wP8PqU7+Dd4BO64f3vQVXTv/7duUide3GL+ofxD5+hevgid5rpX1NH8bgZqqTh2Jbm+G7bDNUjP6yv+Iyv953zAZkxpX587DOmvPMDjz/6PxLA9O/HRedxfLegAz+s/j7f732Camzlf+cWwQzlgR/QFXzGlEPnGGFs64IywljHZ0wZ+bZP9Qxl5kVO1bTTr50bwve4WM/4+p8XneDMmPLh/6CT9YwpdRM9VzV8V8/v/0EJefh/bigzlDLlL9/LM3/4TwiuGlvUY0E0M6YM/adRNDNU8xJ/4EW/+7vjaGLFsXbEYfUZvP1MfDQzep3anejjJU3yRtjILyJYdaOwEZCG54wzKZhS1Qh8R3JTQgs08W6TwAl6ULqQMqRsx0MEp3QJAUFye5uEFkBNCR2CUDtTTqwTnNXJ6bCOXw2rYQ1sFMspMKRZ7IltKdokvonefH6LtMIvr+c5i6mCLyNIL6GCVgS0xdQ+0SYC6+REHj8I46/fgyg4qVNMCNFjP7tEGEWooJ8rgwoC4ohlFhgvOfyt7sUOQyIPTBy3nfyhj9sO8cPcDhbfVYMnpR+a354bypHXIalKtNaSPrrcZAij/62sijkH0o79fpCeZUVnR+J/iAM4lyWQTLjMJTV4X+s78NLgqf1Y3YafcXzHAdzoR6PVtFej0+FMHJw5cyYeppw5c20CXnOtmv4ce3v8zcjV42+Onjj/7ekR7rLofery5sijdThfCLYlKOvFxOSp8b6HfnQJ/Gjq3ql7pyVPTfhfP7p0xqSbkybdOnlS3KTfTiqfdGjSibhJcb+NezyuNu5w3JnJv5r86OSiyXsmfzT5n/Hx8b+Jvz1+TnxKfGl8R/xr8f+acvWUpVOkKdumnFU9qspUyQmTE6wJHQnPJ16XaEr8X4hF3eifl/zskt9esvCS1E1FFRtmQpFPW2v2Wj1EdgTAI3pdtR5fCDqgv6QxV0LTstuLtiZ7wSsSAC1KYqwml40gnUWlz6avY8g/miCjvsoJiAg4p9fb1BRsDHbV93q7YS/sNLdXtOr9Rhdhx02lRTkzp2V3/J8154k1ZzmvuRLaXF5bQd/mrra+zSWdWdnFxdnJ08aQnuzHf/v6SXAJXrOHGsLEaGLsnPLlv54CLZioEwOadp4++fY++QRImPats/pzO+7j54nTvr807FhlWDRWGnb1U9mPwCzIA6OzpE25EU9RLsGzyuq4Wr4W8ELAN+C7AaeRJrWYdJVGHVDQS8hFD/S9yt+/fpp1jWFWE5jNRNhNC+hUPr1kp6mt25q62tHIrgOpqp7CxmqZRe3UE37eq4sOIYtbNQ1MTjJwkestHMxFry8JBVUul0w3iJwKwtfZRZvTIJuIXKqogDI07Xt5A00wx/9O3R9y839WT+E/KBA0bfwkZGw39t+dZkzTm1KXE6sCXDYXg4IGl0s1rb6x0dNCPUO5fi2a1mqqs7SROfWKXmed2+Xq3OILeHyUJ61Oq4ymVVdWmsugGvRSVghNK/Fq3cW0kLnBpjOTSSoPVDaYUBuj2tra2d1V2pmTXVpQSFi8q6xzc0d7z+ai9rzkMRfdUlt5KRSiaTy1/6yxlAusN7M//znYDVtbQj1On+Aiej7Au2w+VLM1u+lZ6iaTZ9qIpuWARTAS88juhSboCwa3UBjBe4h6dBO7qZnxaEnD6TXWNcnTqsFqMerN+uuUy3k7DzLjtqCQ7vXDqsGe3k5R8nicZKTQUtZYQblfD7xk8RY1VAzAMHR2km8BEDi3qbOiKRMyoDAf1qNp+JfXE8Xf3TzQgV7ZU75FxUOJLq8aPZNHfisO5tfl1ZcEaS4vG8NaSJtO3gUicm40Jjof2rbwWHkd4yXqrRG8Qp18rHnbC863kW+jLRG0TIVFU7E2vSQNnoS1e0xH0DQNGIyMjtGlKT8HDvitGioa/ox/JsmxeCkZWsobKReBUeAD5j8vf+GRbb91VQOhgx8cAt1v4UVbqPSlDUdX7UX6QGWtyYuizRc52OAEm41Y2mTdAC9aJUv3vYfvezUFnW25KFM3TnA6RZ5+jhdMMiuaZYvz/v1L3sj41FoPhD0NYLGD+ZxwiPzhIm+FP3wjPvZU7svuzRpY0fwsLIVVpdlZubnlq2EFrGxM2bqpL/NA+X5A/3X6Azx55rTxs3xlTSIol8MjvI3N0xeVlaxLm1vwOyCm7ax9lZ8iu5fH6wFnqAhPyzRNAGtlGcQrqSpa8/BxwSrlewvri3c8/te1X8Gn8KfevYfqm2q75Da5ma8RcDnCGYmsy+Y2Elp2Q/p7H7/eXNvp6YRuaDV31DQZ6nThTUee7azqNTRY6eQhd0IzBB3Nvr2t/Qd9r0ghIQBeFOLqjVarQZMMKwtXZZeU1xSaC4lYK/MU1Vb4NcGM3rTw+v5n/BbRIBhpIj8Lb+MfMDwz13Q9jTwiEl8nVfngO6TrmPPE2enfSNdx94o/XORe8faEewXhOruTJbOvXPKiMusdpHjxLEy+VHjWO/iSFwXR4RBpwiW3zW2WEMeRxW3n7TM5fnSnspe1cNSUjmUbkFiHJeJVurs0dHeeKgMPEbukfVoWhxU48rcewpT8nPXKgmuVWb9X0JM0aIazUljmNhGVQh2AifkHkUG8w+GhLrgQO4m0Oxj3aB/eYResDnqYgAxWo3nmtLGAkHblZ1h1C75S7+KPwBfEKLv5IifoOxOURwUPX+gqddbI5d65fc+8rPuQmPaB2BUU3PU47uRb/2xHnbKZx48ICN95UZCKcmvCbHj4wmiUaROJ4u7kVfhR3ix0WsfCRV7LOvhEcLZgEWIeFASHWnR3P/PEvCw0Fg1SyHgE5RGeduuCcBDS7b/DCLi/Ox6kGP9UUX2qXBmwCovhekDKzRMRIefW0OGL1tDhc2to9cqs+ab7CePQzfVrhh86sLSjuL1qi2Z36QHDfppx1dnjRc/Vbe8ID+7e23fce1JwCdRs+nLd2ysOLT708BAZ8fXw4Nqly9E0ZTLczidzgvIZXgUCEvBf8WoyTbcrk5OJTFA+U1ZxPOKJ4JmMJ8OfhZnTOJPdSo+enOMYlqbgHoeH9PjGaXcRQ3+akKESaZQgEcp+l0wY+/8DI82jwQAAAHjaY2BkYGDgA2IJBhBgYmBkYGRUApIsYB4DAAXMAFYAeNpdlD9oU1EUxr97X0whcbCNjbz0xT9BsMbQIct7IEJiEexQQV5GsUMlqIXSdmgRilhoRASn6tSCOEkHO3YqnbrUbp06upnJKVPx33fOu688Ovz4zjv3nnPPPfckOEUTp4Ap45EZoOa1EVFDUa+Auvp7eEpC+lv0ReqbRtHFyP5bJCZNUidBxpa4O2rLfsIcseQRNSc8i7b9hev2AIE9pv0bY3Ybvv0A3xvWNd+8wKi1/C7Qv0j9hKr4NXYbY6o/GNdAyBw3ZY2UcjmMUK+Qop1lLWUsa81llKkLBOSl3J2xl82eao0amCYq9Ff57XN/xTT/HdpL3EOb/fHVz7tKHP03zDuuvaf2eCbX6CuxlhFqUWzNOUCb8Suq7Jn2foAZu6l9fEA2tMcDHFE3XL/1bFfvktt35Op+QvYlTvPh7zI5Iatkhjwmz8l3Mkc+k7fkNfBnTXvZxoT2b5dvsIm69u5Y30V6GTltSK+8n6x3GpC68dUR6x3g9XWOWm4u3khPeedQyH2kr4SrPPe2DXgG85svyNtVTNIel7dhvMzKMDVymn5XxXaonesmZPyRQ23mu5bRmijfBLbEsxvJzMq9ed+OQ2ay43qf0nLzK7+Hhzqzfe1F6N5wnXFhFt5J+8Z1Va2ncEaUIVbSmpOz4/MqOZ3don1POJdHkf5pD9OzZrW+i+4tPG+dM0Rb3uGCRY9vskNGU037aLaUyHuFu4yrnGk/mYMMgf4n9DjHic6rbuGbxOenEOa76AxNUqf43UU0dF815HwF6f1MI5kdPAP+A1A15WcAAAABAAAAAMbULpkAAAAAxvkyTwAAAADR7uVs)format("woff")}@font-face{font-family:MathJax_Main;src:url(data:font/woff;base64,d09GRk9UVE8AAFFMAAsAAAAAbkAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAFwAAASfgAAGIQ8BaFmUZGVE0AAFEwAAAAHAAAABxfvEZVR0RFRgAAT7gAAAAdAAAAIACpAARPUy8yAAABZAAAAFIAAABgRRtZsGNtYXAAAARwAAABPAAAAhJfQG1AaGVhZAAAAQgAAAA0AAAANgZLDbFoaGVhAAABPAAAACAAAAAkBjsC8mhtdHgAAE/YAAABVgAAAfD1OiBnbWF4cAAAAVwAAAAGAAAABgB8UABuYW1lAAABuAAAArUAAAZOlfiZc3Bvc3QAAAWsAAAAEwAAACD/hgAyeNpjYGRgYGBmYHDQUN0Wz2/zlYGb+QVQhOHiu6c5MPrfs/9sLClM7xiYGDiAGAgAc5QOSnjaY2BkYGB695+NgYH5379n/wtZUhiAIiigBgCo9wcxAABQAAB8AAB42mNgZtJjnMDAysDA1MW0h4GBoQdCMz5gMGRkYkACDQwM7wUY3ryF8QPSXFMYGBkU3v9nevefDaj/HcMvBQaG/jhmoO5dTCsYFICQEQAYfxJaAAB42qVUz0sbQRT+VpNA4w+UQpEeykChKE02P+jFIIIogUhUNNKWXmRMxuzYZDfsrlk999Bj/4b+A7300EN767F/SS+99tpvZ0c0oKXWLLvzzZs33/veezMB8MiZh4PsV8Ibix3M4qPFUyjgm8XTeOrMWJzDQ+eVxXnMOO8sLtD+xeI5/J7+avE8Hud+WryA2fwTixdRyK+S2ck94Oy1iZJiB0t4b/EU9XyyeBpNfLc4h2dOxeI8c3lrcYH2DxbPOb+cHxbP40Xus8ULWMrnLF6knufYRIARLhBCow8PMQSW0cUKxzqqfFZRNqjGV2ALCpHx9Tnr0FPT4nNUrKVAy2AX2AxGF6Hue7FY7q6IerW6Wq5Xa1WxpSLd90Wnq5XfVSXR8rv03oFkaA/bHM9xZOaaVNiRsbctz492pOasRSeJAZe6nMRyoDk2mYLPhXQMKUwZ6a6R2+B7G3d5kq4Z+HEzCPtK1N2qaIjrkcuXsf6R68a9L6ksNMULTPFq1FijWYWRDnxRc2v3479bK0t3aGbKs4bEPC6GVuOp0ejaqq8zTglFemizKnBg2NOcx/z2aLnslMAu9w5Np27L2CVXEYdc0WS5vrdDdEKU0DM0HJlHVptUf2TjnRH3jAJhYiizu4U2xz3WSpm8r5jbEwxpBW7umTuhbDKuoKqxyWHA7zG/qe2qKtJE3MC+wTFPaNH0KqaeBip8IrKlPRzRFjFWZLgu61yh8iaV3nbBSjfeMLG8liSJO+S5OZXnLo/5+kqpmOjYEwcqUuFY9UR6AcSuHKqJo+8Wi4eejrLVTnASJzJUggaeOeVH3Hfm91QoYk+JTqst9kbKz5zbmUNJXDvhbkZm9wo5lnogjwdKGClSNDf2hYwbRS+OR41KJeqGehRHbqQHqebKXpOJ/1e1/kZ4jz+fP1fZONQAAAB42mNgYGBmgGAZBkYgycDIA+QxgvksDB+AtAWDApAlwaDMYM1gyxDNEM9QxVDHsIBhMaMhkzkzCzMHMw/zFOYZzLOZ5zEvYF7MvIx5pYKIgqSCrCL/+////wNNUGBQBeq0Z4hlSETSycDMxszFPBlJ51LmFQrCChIKMkCdf4FaH/5/8P/+/3v/7/6/8//m/x3/t/3X/KfyN+Zv9N+oP1f+XPxz/s/ZP2f+nPpz8s+JB/EPYh5E3c8UqIH4gjzAyMZAUDsjEzMLAysbOwcnFzcPLx+/gKCQsIiomLiEpJQ0MMxk5eQVFJWUVVTV1DU0tbR1dPX0DQyNjE1MzcwtLBmsrG0YbO3sHRydnF1c3dw9PL28fXz9/AMCg4JDQsOApocT48xInDKFyJwIMFlUXFZeUkrAxCgEEwB4SlsHeNpjYGYAg//NDEYMWAAAKEQBuAB42ry8B3wc1dU+vELs+sZJRPCypBHJadRAjCH0akLHDrYpxgVbtmWr923a3mfmTNletCutei8rN0nuxvTqUA0BQkgjEEoC4a4zzvv7zqxMy0v+eb83/+/zGhak3Zm5pzznec49M0Wqk09WFRUVnba0vLXytnLT+qXlVfXn39paXlu1SVV0kqpI9ZP8par8ZUX5y0/KX1Gcv/JkeUIW/54/5lafUZQ85QyV6htnnCSdeobq/DPuP3OB6vvKN4jqFNW3VN9Xna26UHWZ6lrVTaqlqrtUa1QbVVtVtaomlVFlVllUTlVAxakEVViVUnWpBlUTqinVa6oPVMeLTtLXVy1adP0i5W3xRZdubS43VGxqqNtYvknfWvgP5RcXLVrcWlW7+XP/f/Hc2yVzb5fOvV0293b93NuSubcbbi6vqyv/eUVta/ldlRWt5XeU123cXL6q6s6qlVVb68rvbmypqm2ov7Oy6s6Wql/UVWwtx68tvnDRTfh24003/Xzu7ca5t5suumDRDQ2N5uaqrZWtC8/edM7CxYsWXX7+4kUXLlr484qWqq31C1duqqqo31Txk4W31m+64Evs/PkfLWtoriuvVeGfItVJqmLVySqNap6qUvUV1XzVV1VfU31dVYLW/YbqVNUClVZ1mkqnOl31TbT2t1XfUX1XdYaqVLUQLf8D1Q9VP1L9WHWm6iz0wjmqc1XnqX6iOl91geqnqkXolcWqi1QXq36mukR1KXroctUVqitVV6muQV9dp1qiukH1c9WN6LWbVbeoblXdprpddQd6cJnqF6o7VctVK1Qr0Zt3q+5R3atapbpPtRo9u74ogN4NFTFFbBFXBEV8kVAkFklFwaJQUbgoUhQtihXFixJFyaJUUXtRuihT1FHUqWpQsarrMVqqVMaibFFXUXdRj8qqBNAP8NJtqlTR08VXn/zIyb9SX6Xu1fjnfXueed7ueY8TDRn7yur5u7763Ne2fb2jxHHKNd9YdOppp15y6tCCby+gp23QrT696ZurvnXmt9nv7P3uH793c2lx6dDCsxa+8oNv//DHP+R+ZP/xtjP/cfbXzpl37snnPveT284/eMGLP+1cVLRo8yLDIseFzYuvXvyniw5fzP7McEnNpebLvn3Z61eUXDFw1Teu/unV26559Fr9dedcP+/6qSWGJX+74cjP37wxfdPATY/f9NQtJ93iufW8Wytvzd16+NY/3XbBbcxtmdv+cPvq21tuP3xHemnR0kPLsnees/ynK8pWXnTX7D1L7zXd67n3kVWlqxavennV31avXa1fza9OHy+Hffkb9xXtwz/F+06n5+aH5XM1+44bdfjT4zfOKzleXnL8bKBfz//RuOBj+o21u7RH6OvHNuj84OcCXAA8AS/b5rbbvW0B1w3H7wAHeIJcGtIg8UKQ8PzEX3fQU8lL1ABx9XBrurFUXvKPDTrtGwvnl8j35X9Jv15Eq6n2l1RbTDP5X+q+P5/ed/r355d8LF9voL/aTi/YTn9lLMo/Ml5M59HzdeAO+aIBcpR7Ga6Xz1VvvLzqJmA5FjhgwZn0RCAIQUGSCL2YvkAvh8vkq9Rbb6hb9q8/Uwxq+nXwQygoSUIQQhBigwHJFwyCfBKQMzXAZ8a7dpKpo/QGUEeCkSDEIOYNeoPkariaf4Geo97x2vgREHgBeBAgbo948Gh+NhAg8kXyC/IV8Dq9Sj353PCjIAgJV8IJPvAGWHbutyeDeiH+gGE9gYAX8CV5IozIJuF3QD7QANdWZSgnFdfIeG6P3+MHF8k30SW6z35xOag/vUJ1yccrp+irOT5Hm3NHckW0/El62cw4/mu2+Ngzx9w6Bs3AoNNY1mnftH5Z1e1uL+dAh90I6/urpk19zngVEBPY/Fb3DZV3nu0+i/OBB183Dq2dsYdYCRL4EiEskOnUzp3Dj3bv6ngAHibQ0e5Rj1lHHTMwAZOR/iiJSWpgjx/8h87jwBOywIAr5oyDBCIvijx/7CfHpGASbYYWIwlnxF16/HvyKTpwcHbO47y25oaNm202r8cATi4geMPOOJOAARKZB71SV+pQ+6OxwfbedH9npiOEx8MLGodYOawntEce09WC3t5iIa169Zo1G66ARaAXjSFTamt/5Sx0QXekO/Pk/n0fwAfwVMvDvwAyJZ+qgxWmFYaN+vL6mlZ3gPWh+xrA249H7RW7kgfi0+GeSBfJTA+O9IcFZQUwCeHVsJmUHNbnqPGtTbn3c7Nv/9oYzC2g2t97nv9w+uBuuni39uXGYxp6UNfdltSXmsDo9NqIdk+j38t38+Fgb6ZrtDcR3TGAR4R0U8gWbw42Qx1UBVqcW0n9eXfdcXldlWOTdx2cDT/fBe9Dj5iNTcVyqVkBstYhRz+QQcgmM+lMZ2YYRsiEfnhLqbb9g41rGvkygI4PBw9nRsent0MOehqkKuJl57EQQGfofa0GaCAtHbbu6c5tu5/cvO+WUow7zs8tsl7yQ7NMWCd63AItok0yErdDXb9Vv8l6P9G+1uiqC7RBM1TGtmbrti87uvEDoJuAnkJPGaS38lG+EzLwiHFb4w4iierdO3c81vmEGMfVRdguW1IPpLapqc6cNKfR6xxeIusP+BpWVtTcs3VNjc1pNLY0241MBawdbJhmSK6/f7RMO9MoT4/q9GBJuro4CeOPBzGejMfT6Y4UGqA96LOVbbWsryxFhJpDElGBkYMIIz9AdHmA/uiJYuqTRV1ckwoJoTIQOZGRNj5pehw+hm6+l0/E6ddz9Ed7KZmlRc+8+8LT3VkAkEg0wNtKHZrV1atWbVz9M1l1q3xWjXyh407fSlgF8lcn5aJHlxHlBK88UYzMRJfQ7B3bv2/H/t98/BQ9a5RemHg4dBj2A/3qVlq07FHi0HjQ9pgGLBvAXOAERgjsuK3zDlgIeq6Vczjlki3yj1bLhKyTi24+5/pb9Ea8jABxS1yqtCT/9iNF1JM/rgO/4BcDAttjHTGRgzU31qiv3sqD18H4geG8YI672jHFgrwkEKDfeI0vbb5WbdvorASOOGLORGlQk4RYKBSKRoFNvhreHhxTEjDiHa/u1mdNAieihSUgHdDdIWQhzIUDEsc3p+szq0ZYXhBEoLpHBT4VjiQhSVKOpK00gMsKsAxXb6rWk2Wb1Nw++qN4GZd0Rex8AOsDC17W7ff73W7g7ZcT+/UbdqrLdwD4eRZY/McAej0YMZFo2/aiPDdZnJ+/QheGiCSGhODTtBPhgZfo9xCivwlhkISQGApBFKK+kA8N4QV5AcinImyCICUeowgvJOqJOUt9gHnsZxnnxpZzSZX8PbkU1PI38XMM62V8+FulioQRZ8NAFwCh34Zq+Ztq03W25QpSRVxxIBhRSgG6RwmqO6eL6Z1hBF3Wx/ocFaat9VUOm9HgcHt9AQbQBklTCCIwNtrRRaZ2jTyYepIP8QpU7jL3VuHvfRwDtZ66RoSMuqxluDMZ4UpL5L/RW54t+jWNFdM3qaSTLRqvl5e89QELqxSQgMAJrIg1i2qUa/QCWkRKzECIQDAgMCKZK8pFWJGL6aLTfzi/JP8WInyhtgT83uMH/ms5Ar1fcEuMGAgzWPEgLIlSMJw/8PflvEQK4MtDwhFx42INk/ljWC9OOkoPvlicX3zsfJ1Ds9lfbq5qqGzYsqppZfNdzZe1XeZazTbBZuHS/nufaM34Y1w3kCxE+WxwNjE7MrZj76Mjzw7Rr3Q+Hz0Is4SqNj69sFQ2Hn9CB0k+I7SHtiUOdr+5jV7Y8WDvWMdAbnQnejIOQW7E3VMP5QSqHMvr5a9sli803q6vMtY16RtczoCLdcEmqB6F/aQEZvPLd9PTjEWUzzt0j4V2DWNkL5ct6nvkan8bywT8/oCfczJ1bBW0YkooIeDD/wBPmIkB2QaTwqPwOOTYnZDEkBFFQQpmseIHAyIrkirNVt7Ku0WMTQGtxY/R7+6glz1Fk+ExhRV4MdwY5aAc4SCAJ6pat65ig9ngtjAG1oLAiokQ8OnR3a4Ql0Kb6n/jzFEuR6O5BS/NTM28tXtLjpa8ce2sdr+K1tLf6UTN06FtRzKPCxEM7Qh0enMWdLPFyjEswzOSl2j3OYMuwQ0uUFIp4ChvXrqWsQAbgQ7okDoTo8O/fuixhxIkIkT4MOyFwc1wL1hYc8DgvtNaVbupZlN55Yrq81bceHHDeYTxcAr0BCRGYEla04F1DNkOL4SFUKQ3nIzHiNZ6XTAYFqO42DAXYTOBlHeihWj3XrejscszxBJRMwYjqaGB0eHBve2HgmmW84VIq8YKwPkt1vXVW7c4/ZwfbNAERnFlnGjtzq2RWsmoWA0w1EAMBoM9I8PDo93t8Xg413V0ZtfwxASZyGXHIzulDiGDnPHdO569AGrA5GuytzjNNr1+y5b6Nea7iLsRy5KZeOZV9jaPlZboc6++Q7+6+9AUvTlX9M4H4szjU/tej7xYTIfo8zqvxMZKESb4OAxzIvK5AXfKANXQGLC6K6132htamtssZqfBQ6wBG2NDo9WO+mYIJ6lHpN4umGS6rViu1kPbFliNxnfxvtSy6Y0voJfwxWNgY9F4E7EQHmmequgjqZD6waHZA50PhbISOgbSTLu/3fzAmokb8Mj3GyswhSo3uNcStsClyMbe5vHdO2am2505O+Iny7k8TjfHhFwhF0aYm7SaWpstTDRTCu3BrmhHdtvU+M72jnBWysAe6GuCtXhJTtZju7TutiVm4uPc0MBVILHFwzPeFvBjWULcunY2NJv/LfLmha8V05B8uU6wJOydCEmpUCQSjQlS54sk/UwG1L18VhqOJyVRxJiXOMEddyWBdwRsfn3AjBfMYaIQQdhFl2DOZKzxNrCDw+fxOF0A+kWO+90VwHHgFexBsrazJYT80QY9vWpaTIvfpGUP0csS4x0PS10INyKy4w47eqIeHCZvywq57QL5F/K58reIzbbVCm3gTxtFNsQIfEd7NpXlp5CAdfpnzZ3eIJZMwrJb5HPQPiX6Xb/5gN6Qo6f+/jKqWfC33TTxhvY9uoo+qEtq0ni90djYzumBPTAF6RrYDM2BJtvdbTc66lvr9A21xjov8XI+rJaroG7cP0PC4rzhwaGxHku6eZVlwz2XHrzvhbIopIQQgms31dCvAS2Dhyy5hqHW7oYk0hOoMDYYSPdv1PHdsW2AIIp8mCXaj9NMJ9uJeBbnY/zD0WfGt22TpFAGIkT7nugPMqVKKfQy+MH15vUeZKuwPl7Xjr9UCpmSISxyAzZwqfwHrPuYpghJuNTp/Fdzz73Tu20B/dpRanxj/fvav9NIXqMDPrE92N734sj+6YmR/sHkBGyDWAtAk7ulDSPd2N7WCyQFmXA8nkoFUzAC+1q6NsT8vAXZPnFq1vrvbbl/y5Jlyy+oP9OxwbXKt4FzcUYww82p9UO13S1Dtp1ApmFnesfYY/u3Hep8i2iPS50CBjcMewdsQ/odNUMrgCxZfRtfRq/eogMra/I1+pvNN3hb2u6yNTbpDWaDtxHKwTACO2As85v0LBl4eee+3ZEQ1sYwXm62WWHQ+a6x3jeK8p58l44Hxud1LpYXXiRfslG+1G/GoPbwhnZrH7RDGlcSi0mR8BB5lDrfoPdhgF0ajokKYREDEisQi6YFI9hpXXNzbVM1Bi6yLcETDEQDQ94dgZ5NsA4q9NUthEuPScgDWSEg4VccWGlZBO6FcpvyBdEvIJohv8AzCijXeF4MSmEy9sQLv3odfxT2t+s7mxLubpSAcSGCNdiwM//BjgXvPTH7S/r9F5lHtR/lLz52gU4Rcn7uEts1NxiuDJg4JxiFNR1Nw00k6bR71bdW3XVf421uPWOCFjDy3pC5Y+XBLS/BALQLA9HXhp55Nvtbos0LMQjxGXimaXTzKDFmeF4t8r2pOMbTR09P5x6Ax8lLy6evKuU26vYN1Kwqgxq3xdlqqqutqTL6Aqh0eY43pfWd5ZMByZ8IxLAAxskTRw4/XSoHj0s6SIuZUEd6Nrd792gs3BEXgOzZqN6/QWQiVjx5yC44UQO4URf4rLfeuuxKuAs2bYcHleyjK3L5ku0LPj509/vr36Cmo9q/5n9GB5EdMS7Gbvi5cV1TZf3mysZKt4d1IzpZwCI6ka65IwgkkqDWvt0dynbDIMnaMi2bW+vWl2o/ds8Du+APOtvrJsx7YTfsye7b9tITD/1p6MPMg+3PwNPw58rnFwUJAh8WmFW+dc33rS7f0FpuXeZtCLQiiawOtySb01Wdxn4XSXm7mA4gz+59kit7mA7rEFgCjNl8duvP7lltMBhdDYgJrT0YlD3hifbHe/+UGOodJH2DQ6kx/FlHA6w7wazocvr1Qr+DfkN7hNro47ofzb9GflynfQO51qfksPApestsOX7qrROfkhfIaV191jyERSgmoGW1H6BoRNEDjKvObTZvaa6sqXE4A36lrifaQkqo8QJPguLwcDy1fc/AoeShYA+PlIBM2nurN1VXbyxFhvxtpRdSdCxD39cpDQhPkMjTGnkMnP/UPZDYYaBJZLXTmkgwHIQY+cfZ8j06cIX9Eb/yUzqGMCUJSLILFY0Je6QAuhsPpRzR4/cqbYYSNMHRqfyyqQW0gn7j8r2/nnluH8KsI3+Dbniof6KMC2MSSc5OgwB45Ql1586hbYM9A92die2wHXqMsRrexzuwVtU69ZZWu8nju2oZuWKpuqXZXI25uClbk0PKsmOka3soLiUwcz/JYnOBuHn0frfD6XTanCZELCaOlSsd7oqnurvp197o7iZD/T3b4lNSWkhhxX1+/YGfK7ZEyWGDtoDDbwu0Ouwecuem+67XX8F6sDT6iD5j7SntOX6DTvvxwvklh52593J5Df6riP5k9tWj1P+bh2eL8/+gS3WQGqPfUXe+0P4oBmzEyztKPZim/pjam3UnsX5lGxM1aCkinyZ/Vz73ov0/f/OJhw9xZehfVLUcKjRfonXAMopWmOgZnB6aHflL+Gk+XlDHzxgeqNlFNu1fPn4x5pYHg/lGzw1Vd9xtc9TVOux3XLPpQsf5nAsj1kJgeWRLV0XumiOr34E+GBf6pZdiv+p5djwRkoCJsSEWyyhpBldAfWfzreZl3lbGyLVBIxhEY/jqgfteBloE9DaqpYvpqQ9MtE9E0LtYnLg4+7blsctA/ga6xs15mUrX2raV5jvNVa1Wj9/FeLE6ABfkO8hq+oouac/UIZNmXRvs95LWC9TN1c0NjRazy+yzKMRI8Aab2m052Ae7kwd79ww9PD29PUpEHokEXnPcm7KRklGYpZfO5suRtC/NFdOLBN1OGMQITQEvSRkxxSPVZZGUusDAGzDkQeJDYhBVX3owM0JGH6TVEFyiFjbyChkx1QWqMN1Fv78NazgSHvCKXBJysI3fDmQHJvAIS5IaSYp2KcqioJPaNI2gF/ySX+SNRvoXF73JTc/ieF9IABOGC5Ze1K8My7GE4eTfHX8P6wHH+Bm/oa7etgHZoRKNHOdtxgDziCzKiD7oErA60ndpXOe/YN6qcuDLfk3PVb9AvxNLAyMF4vKE6CUlXlz5dI6mZxfkn/1w9V+1H9CGYz/R+Y08F/GRDs0o9LFSADhFCYNfLj2+n/H7HG5mDWcFG1KqAIuCxkpQDAYUdocf5ASfi/sQyF80tJJv40Yiv+9+6Ujvr6SU0I7c7IWVe2+NE6cQF9UvdT3/QNfTRPtWKI0J3qW0YtmI/cF1k7cmiEOQb+Pl20CNMpgP2Ej+AnmeDkHaz7ptN9+z4rY24mKv4dRLGBDKJOkB6g5GxRCCBS/BBBr5YSyDIW7Sg4rtPiKfKlfptB/s9A1uhLvhkpXX3ag3eDlYDJfwShcFhCN0hA/yfAccwfICO5FfkpKgYebYKTNF9Ny/5FfOFB+7O+9S2EMr0nsv50Gh7BZACqBCySK3EsK8mH6884UBejIKtSCKMF4RYWgMNJDZbDSQLRVqrHUCK7XkKnrvj3p4E1gBUeQ6z7VVt6y0ObdUOGxLr9t0oXMx58D8sECD1BDU95/53I0fWUkIYyeFkZrku4JUPfTH9yeoKpTlg5zEBhkMuEITpo3Un3ORPF+ehyVwc7ZuuHbctg2eKhC9SOiR7jd6H+ze1799fILMTj838zL8Dsauh5+SkmkUq7+dLTp25TvFtP4/9rubexfI2xp6OZ+CGL87siO9c/Dh3KGHpp6aeGzgl/AW0DOueVsuinv52wGvlMg3aE74d/L4MR0E6Q/yjwvBOUcGYYQfQUY4ygXhNdfelXAB2h9lI/FtMFxqXVdz4Zpf3FS1ttXA3gykRlNTx0tlJdUYy7nZN7DkzS6gF71DK16kp81WPKP9x6On03YNVTSjKCh/gkkx2vNQ32NkhmrUiOlB9A3v5ZUmsgelM8MCuJobbzVVtDY0VW423uMhrUwztwSunYsY6THKhwfItGY3pLkE0+WPeBB/7Eyb3xhoAwaFOkrJNGB4RKMB7zg9g4zRb6n9EUEwom8xVZW/HtbjWGPXGx3NDj23AYhRY7ZjjoL0KPUKkhCUhDhGZR8MoaB6hItyT7o6WuEOMHP6QBPR/hfrQmQJEO0/wIeaKEDaNdr/yiibGSH8GS8O0aq5lgFiixzRyC0oVxXqzjGKmOQ4pPN+gRuGAS7JhVkR3YeaDOzywuPTwCmOXs3Vg9JBYAN+I9Yl8EuMyJCS5fwM7Z1994SJ383/cAbt+/dned0kjPEPw6OwnduJyYdJIfFiqAevIeJF2zRBneDkiQuhDhNESD3c8UsySrV7QH0AZXzS3x6IuDGQHb7NfquClpKyoLnlCMHHaVgxutIUIFbEySDrN1pX2Ay1LosPFRJH1sAo1ak7nk0/wguCJIkxhIExfhyV2SQXgyOBQTMsAQPnDNSgQMAMKxju73gehHTFcMc/Mdzfv2i44wElPoWA1W8UIOwlg5oBLvWpuT5vrS9NC4JInCoteVw/GzBQ02z+9JkFiCf0nXdDM9r9+VK97nV4Ymznzog97EpbiNYe9oY9wQKjF0SAQ3QDBEOpDsx8LBahEHBSKphFfRYmbo2BrUBttgHuFTag0gWWYeb8dMJN3Zp+GGLjbIwTWOWHhos9ZqLd37rmzpo7QVbBbS8qhbdDyIpdoen2R9IzPU8M792+Yw4byO/Grv9p2f+PaEfkCz+Qi+gPSwtleNssTcwWPXp6TNMnzCosG3ayO5CVcGKw40QhDrJ8PTTwLSyKBZDCIwN/wwT7Lj0d1G/uUpr2zK1ymmX+exSfsM6/O3I938pAkkCYlub3SuFQPCrs4ckQFuxItlCwldhwaTwsXgSQ1Zq1cC9fxRP7CTD7Fxi6Si53VRD5dI18iherFs8nD2WexLjlmIgUlvrEccCvfMHN/69P8RlM/4vslV9W8B7L2sFjah0E5LLj+1n8vJPBJKpHAaJmGW/rp3aKawbRTnsV4sTuVHqNPIaBiJmdFhMgcCITYnkDEAO08G7BjQiqJA7abL8oKU00iQ8LHcIQP6rohiARFDgQQWSwaDECAy1cLVcJW+B+5NkbBYcSQhwJMJ8HKJHLAunRdHVxzrISeZkhd6xopuhlOr84f+cxpANG+ZTjrazftGrLxgqHn/UiejeCMWpP+kKeBI9QrXRzyKg0MAKTbJ8p3QTk/qbK1Tcf3PxSWQzFcZh/M/X0o31Hgmk6P18fjAVjYWEcERf1dJQPBVMQIhE/7yqtgTrufrzO++B+wa4kNoeXyQasjBVPwQheAfqBbN8FrrKSh9C+Qx/eP7tAe/CXvG4KpvhpmMHXJIs4EwpxTDB9wrkNmka+mcWriIS6008m9sZ3YN6HackHPJC98vfUO2R1tAVP1mZx1yEB5Di/nrEXzufnuQSSye38JJAcTGCik8QngdPFsr4IMWmqeEfQleHEDZRcSRsJE337V+oD09M5Hm0iiZKUG5pK7wgSbZfS5RALmxaCAoHdgD88CHEf1hkXV8/VIMZUCVWIMRyueK5Pjd/yhgPR0iQbDSiyDgtmwO+yOeRL5O9deO2SpRyQKXq+eoCqEjPo9E+yJ4gBJCU/RTAltOv/N6H9L6BWYhOlJZfC7vybs0X5F/cVY8l3aGgEkUdEbvdbKinb6YUOerXG78NSaN3yw5pbzm5s9fuxqt6hdBAlEGlZ/rBSfEPIQUhEyggzfK4QvsgZ+hSwC/B2BN513BpYDWuhUiC2/zAl6bI5CvYcr0Oygz6dRN8W9AG6lJHSJ1xq0dQJ9SEYBLHnjzvptQ9TR7gPApJzz/Gjkhd1A9eOVVfigyEi8K/S0vfolYTeTA+rAeTvHd/NBv675U5EL0ZTXImjHL8LdmGkTrAk9cVTN2gaeBvvFRie45X9mTlUDEYjQr8Q5dMQVYALxcxn2Cgv0yhbWCzKlSXyNxbL5y6Wz1sin6J01+/LzyhUkRU4BIEA/BTIef9HA/rkbx7v8bvsTXWuCrbAnfDqMQr9xCsxsULFUKyXP7wDPR7VdAmosvA1yY6hPTgp+Il2Q9CxQL1iwgEi0VPzwJf+TZ5WvyXHo3VRN8loOgoUAPhx+q1t9OLHKJeYRSIaS8RjwVSkQ+rlsfx9oQB4NAGuGZo4C5g4E1RDJd8oEOeJxSANZCX0MKB1JmFIoYcOd+V6eckaeaXfzImE4zfRk1fTM/DvRnoyGgMF87lALvrEGHoEAy8Z0wxxnZzAkZvlPvVKudWxhvHNmcKg7GeYWUWcM5+E0mH9zmPf3lZEz/kwf/P7xfncsbt0P55Pz5DrdAggNs7jX229zbSi8aotS9eurajY1Fru9mCFdyr7jODjyU3tG5+G96GD7+bjsVf6fjv0yMxbzz79YmdSTAoJ+CPsuRZ+TAocO7KD7kHRoPlr8WP/szIdIxAND/T8gQzTr/4G1H/iGW4o/Gr22cNjzyQHwv2In72+HmeXflf54MqYE4uDvIQn8o3/WWrl7cdO0e3w9JnC9bwyLWHnjKzTVWG/29FsMLS0VFrLA14EuC1AljKFgow6UMDKJYmKjBzmJ2AfKq8IisHD8j206PHt70/mI4p5339qiv7uveJ8pVeHsOhk7YEtmFmtwl1dNQ8oKIOR9GBk9oHhtyO9QhQkwgVR1yvjMwzj8ZucZpvNYDDatyrzN8DwDWFHj/8w4ULxoPrI6JHH9jy/97mhV0OvIjDHMNj2+kds44GkbcAbrzpwz/jSKPHyBh75lEOz0n+36e6t8rzr5JPln4J8I1zde+OeNTs2PqB/DPbDVBo4Ip9/sDBOU8qBM+qN1I5ap+EZmBL6Yrv66Sm7/vDoE3v3PTK0X9k5RMFMXnJM3wBng5k1sSbfGuvtbWtqL15744oNxOVl42r/iCdra7cm7aFmtNmG5feV0QtFnXtek7PWiSyl1RnvnhgaHduVal5fVtKhn7LM0uEcHZ5dkK+hJ131x46PtIbHTo9r+oUZUCJmF7sdcxQ+6698MV4iw33vokb45mOgfgyBJ8wOu7LNsBHsAYtjLdHudq4PuLHeX/tI1StYv9Ds/LbIxFTHQTHMhxDKIz7BAsSsgJ3bb3A2u51um8drwprjS8MY0RognKTfhS7Y3TxRmyWusPrl/qdmhx6Odwe78adPrXroZ50N4Sgn34CReNF/GIm78w/oUIB4vLVttxvrNunX6xvg58jsmhQ9KT5FE/yJuCMS9PODsBMxOcrtdo9Z4F5kbefodx87dVfRC28PvU6XvF5Mr6Zn6TBPU1InakTUtKiIoLBRMNeVZD0IFQoshBjFEpIyPsFHY7F4LJ5IBYMkGlMPbT7Q8jQqiy6pJ/ry6GMv9vwu2MknoY+k5kGKCwVSrl3Nw5UdTbGbOjYlG6ImVFLk1WdffvHo6KqrSqGNMzMmTmkMM8QVhI7SNIiiOhh8gBogAmEfeJVfKaNsnMNmtZCmenXL5Ia+5QrSoJ640nX1rdWXOut9jei/VT3rxlsyzgjztJHkXAMomQZsqVZkW0ZgWKft5ruX3W33sgpEXQqrdwZ+RUqCCPmvzS44tnWm5pfaI/Sm/K26UYVbQbS3+8n2iUy2f2w6/jj0QB8ncgLwyjwdWytrN8vnk5vkUbXFwrLXcuXKnB3yAH8zZqFP4lJIc/fzD8HD+NrJfkbF52rgJs1dfJvgD2LdUgboQnRh/oAgCiLPB4UgH4TtGM8h6PCREWV0biMYmAbfZqJ9g7FyDmWEhGcVvqw0BdqV+TsBKQXqPKI9wvM5Wo1Gw3oIPBtM8fIZQI4rfRFkfJa75cvsG9HIQkBgFYQf1c/mj80W0Xt+X5wv0esy0ClkguORqexYfzLW05tIDk50b0/tCne/SWkkM1e9yL8qXy52ObRABZTz9fyXFq4JGPaAHlovkD8M6NvurltTUU0qau43robboGInHIG0kBGzQrj3/SE670FqZJz/t5SM56zjZ7DIUBTCAj984RJ6EuDij52Khf60vKzrmuL7SxP/fAoLc4UymQZVfK1gApHzGVllmoAtbDKxiprIAHKbLGQ5wc6zCfnH7fL1XbIvfC3PivjbDugEkceDAv0w/5YUIt0jQ5170K0KN/68emGxQFk5E9eC4Uuw8COvQDT+nP0CYoBH8O5iO72ACMT5Wb/fJfce38gJBILl+VZOQuK3A9ezgA6/t+QPtOHtK36vPUjtx07VjXIRVvQS7RDP9P3jq3jtTpHtgo7ClfHCI/SkZ+k36VdofbJb4b2SrArJ3yRB+UzppzwX8rG4BoXJINkG+nz+N0IYrz0kSJn+4c7tQD7P8yHuR5JvRg7TiEbbAjXCp075bBFx6A/0+jEIlJmSQMAlu47fUWAvgb/5qY5oc27qUEcSvcFx/CgPmBGoD8VUMMPyBZbfxlwFtWihKr5pjhzxot/yWY+sHVAWdUCaU/Qfb+bNhK9qq1HLl8sPbbkZREWKTJjzWiwXIWUSKBztDI7w2cJQyOcdQhQ92crVcbV4sgpcS5XgKujJOZ12QiI4Jej7lDA+cXpY6EKcJ1OabbCbG+EKGkrRZ4XeowThgOgCM28Joz2RFmJgh+l1dD3PEZ57RTYr22QWjy3g59ycn7Mgq/YbT8jWgKLPyASM8/uRieYgwyEQ4TVLKL0K0pmfk86YDlt4p+CNsIJj9H76TbKSXiIF1cpZBKErNdAxHN0utCuLRafhYpXWEEYyE+ZQOxMbV81VoQSpFqsxRwQGT39CHopsFC2acSvbMz4sRB4mIH9HvojDS76d/gKRRuqMtEtYIfkgn+LxojIk2Fnwl0vjRxPWcEbQcwY0YyXf8BmlPUFJ+zU5Ls6GvWHvazIfMRHJcbZM1HffsXpFwF9TU2FcwRo54P2mE9TUGwpEgHxi9WOZY1fpNkK9WI+6DALoGm+hGecVmVg67beWgsvtYZQLvl8OKRf8M7pdaYgFg0E+KsX4DN+J6lySyGcjUYVWTBtzOXp+K16wkvoC5zecSH2XIpnwgpmQl/Bs57IJeR45IC9p/pHausKxlmO8Ng9z35f1iKKaiDCE3yV7NbOwnxvnPteD43hPiJg1St/DI3gU5I7wYnxf+4Ok/6/06/Q8NVXTH6QyqVR/32hyh5AqxCtGb59CS5Q9pGYwMhvRKufAvvyFBnovIvr6/fSBg8V0fX6VzhNjk6URPKbAi1gnQp2ZBzon+vsHhybSe8MxPgWP8OQ5cDvVLfXH1yPxQIbjNWJ9ZAq6is0CXQ20stDrDosv0wzWmU9wK6DMVfg0Viw17nr9zZYtrXWt9ZXGcle918hdCeQ2nvJ0v5qeQS+jJ9MzAEMv2KFQCAaPTOStGnkpogXLIqayyg7UrXKDMspz/GxZ3P73n2wven53Mf3LsXt0vPRrUGO5SUICvysiYGKC3g1kBXJgtccne/+rHFyAJQ1TgRXhEJAH56ybFDNcEHlbrWYLW+Dk1PT3H+ICPjsFfXJ38evyRh0XuBTUgYDHjkvCKFCmEOcOpFCRSIh6/16OECwwIsd/cvK5QLYzbbw/DWREkxOALeM42fRfP0R4KMn30iuKaJJ2Fef78gd0Z84vWZorenep7qz5Jc5c/pRc0Qev06o/F+fL81foTGCyB+zeqCfuilgS5lAjFrc2T6vzhspfXKlf7GsKtEArgWtyKw+ZE4EEm0AROJnJjSvT+wpyRNuCvrSh1zEGpBsysWRycDC5LbWPDyP0iCAp5QpfStfUr2nDpPcZbHe5mm1WD2aHW3QIqEvSuLqEEAlNPkMlyJK0OW4tXbJMJzmDJvAA460131AvzwsmzS1teoPR7LQjWDlQ7LlELwZvCi0woYyq9we7Uw/3/KF9Yngk29WdyGLIZ9pijUg6JedUviSHwRk3LqCqX9KNr2v/TBcfu1bnAdT2jhNw0KXp5hJsSNHXAYxBOOv4j3w1yPHMYIFFB5YegTEYiY90kvHuyVzv9pEDHY/CQfKbtc9dft/9m/hS4NOPZ48OUSJllcbTqyGf6EOpIpc5WSDZ48/qYEjK9vyRZJ4ORdW9k8OD/bGoGBYiKBgzbeFGQeGZZqhjDNZlbTc7a6xNxFzT2NLi9rIMxlc52HIwoyzFlcuXTBb99df0dpRti/NancuvNrjsBtCTlk5H10Tv4LZSZbyRDTp2ben+BSCkmEDvbfMuqvr5RcazAybOhTVw8e47X7BGWTQ3ksskn5XI4cSB4fHt8YQgsfgyZ30K7w14Pc11lU1b7S0uE9MCxII45BUqE5ZhFMkxiPKR8K7OF5Ij3QdzUztTyWCCx3LRzSQ9KScpRNokXaUYHcNt+ztLdmv/nL/w31l9lVyrDGe17fiFsl8OHnax6bJFjfJJZC4S/8+BSOYicS4QifaVuVgU20GZ7vrXUWgXIYm1MQoxPkReoofV2lefpInw6NwUqh/IJ35sll/UnT2/4AW6Kkd/nCv6+DVqPFRMy2mLLqn5CH6b3PZgPBPtRK9GuDD6YMfm/nuBMBqfshsHFq4ePfGz6juWmC7xtbBmRKAV2fuG6/qaB217gCTwMqL8U7GHRrbN/HdPVJXfV7/KTdwsRj7mBQYMX5kwo7SHkei28CChW+k3dbDFbKi3Ndq2+G5jDfhFhclE+qRo9sDY+HR7QkoI6KHRXkNdmYJDGybz+2apK1fU+hi97lePvFeMdPEjXUvG2p3rGZzatWVgXakPfMgKqr3VzeYac62r0nyOX4+KiSMYlxtK71eASAxYTnDfaU1vVtm1YO+TE75mxuxa79lCjOervdVIGx0eh9dpw7LUJoGYjqaSoSwvKRhBetva9RX6usr1E02zSrmAoNAf6ensGu0ey+zKPJvYLXWM0xvJAC07CId4daH9mjhRvFZptliVvUYh+0F4Mror2CNFQvFIoh2PEglEGLPTaIMGJXHk8hy9Opcvzi2YfdnwGq16R/sRPVOep+s2pQx1dc2Vdz3jfLL0FXh6avxAKBbNiHFepCR/FwZTe1vMzltA7/Q5CztDQEy9pvQmyYMSMABtrMFrchPtn6/cdO2PA/J8uGRy+eOWOCMgrm2HnkR/l6SIJACucSHjIdaKmqpqh83v4lrBxBsEP0qnj5BmQBmI3WkYxANto206vl/qST3Q9VpyrG8k09nd3hFU1K8EI9BhitWIbqmtMLW4Wr5XGYT2e/3e5somfaPbzSBTALLRMTpTVqJgxSew98qz8HLXHu0f/j3uyWcd/zW4+LaUvQPjMR6MRuMx1jdJf0wm6Q8ZZ3v/2INTIzOhIK+MAnZD3Boy8/5C580BdtZNfJtNSxuuwuyzbua80AarRmr3Qwq5T0R4qHP0cOfjQmjO70plICfS0lcYaw5Y7Pfb6s0mh8vts4AdAmFF5CG5CwkpMZbaRrofS0zFtxPti5ERqRcFwtP3526GTbDRWtNAPD41gvCT2V+N0K9JXUqHGyH4s9zFeHdNKoj01XcW0JJnB5+7891NezAG7Pl3dPp0W8/gSN9oqfavPW3p1tLaxvqGMqO8WGfW2FmL1+Gp1dettd7zTyPdMYwxXiE2vJRO7Er2ZzoTiXgoxRNtvl30WcvAxdoDNi5wkezhfIXRPDesG6488AVjEO1fz5mvzZ87/0Q+/jJH57+zoOa9yF6qe2HZu9q/0878n3Ut7ZbevvGesd62dHNpdWttc5m8FLEog0ivTiNdCrXH+hPdyUy6u7d3BIj2eCbkMJYh5rhYN2s95/i3A3ZXnanObLHZbR5lZD7AM3x7LIW6gXSbkoa6+uat5SjJS5U+XUR4Mvn4/u4nBannT4O0iOxFFtavhiQb8ifsow1dGxB7FFC4z33/xprbXUafVUEoCYV9odbmaM/byakTYTf24s2vjL5/117tX1X/u8jj2EF6Ekkeis9gCvG/s8CdmCFOsHibMbRW5MofwAuOCTFpINEz2Lkr2h2fgCiJBThz6Qmk1zvLbffWegKswuGJ3RvPlCFZ6IBgeIRo31FJyh08cXjsruEVSR9fGEcFUQqK8VhXtm9wPJdJdyZJeywZSotpIcxJvqAPkBQ0+Qx6qCGtnY7s9q6x6R2GwYpSPbR6Wq0Gm82+aUNDbVubw+3xmuwcT/bTcvU0vTHUX9hj/nxBKTm+BrnJx4qp3nzx6G7t0X9nJCKfdjyuLtwl6IWVU1sPwedZ1/+g0nGFSsd/UulO1DminVEu7FPCUvKxkiu5Ivq1l+gt+Pc5eLn4VTqiy2h6wM8FY+2PxAaT6VA0EoxABiQ7GJVY47yM8Rp5N1gJb044FfneEY+khWB8Z/dvx2kp60t29+4aGBpub49kg2nlXpaIO+KQXLwblH11H+tkLTfJnWD7/NfJ3Pcn6A8YV3v/+ENfjj1kDnwQe5Y1XEms5UhtmuD+0a37YQAykXRiuGdwpv3AlyOPpYA85puaNlYgq/SHMPaUew4lIS2lklM9CuTsIHOAQ0LzfE9UjP/8RPvvfveGpvrNTISN+SPm0eqO1bActrRWVxOnIxBTB5K+qCtuSRmjTYJbaZFzW93NNcalPpO3BT3oEwuNMPmcAkwrpg4999cCSn/B1PHpSH8kE+2Ix6MCETXpkL2Q2G4WD2m6znDJVvlMxgm+/25x8m9M9kW4/v8OrD+B6nW5W9E8FS21tcRuB0mNEi/ISTYElPXQAlaXzdrW5jQ4tvraXJWfAcqcXkG+y75RTOvyOt295Rtusd14gseed/jGd9BdST4hUt3A2/R7QOfDu784sgjIHbCmsaKO1Mmdus9T1b6Hp3fujio37YWQpMV8KRvSbyNUE1hrWenYZP5F06bNzQabEXXofdC6HSl+iXzPLC0tpEP+5te/JA3CmAbK2mNOvCIP6+DQ1chYq+XTyCb5UtMSNhBw+9k6ronjP+smzGnziKZTGEUiOwFT7NjciGZ7MMtyvghp1jTyZg5JqRgeSh0mXa8LAXW7Oe3sUrosyC2mYCA12P55MQKKGAFSBZtMldXE41G7xmt6Nor1YPdY2r7EtnShfKXuAN34bwWJ7W5vs7OZ6O/bvKkCq61pp29XgVGhXb73qZz8uJianLpJGGzv7SDRsPFKteEyjvEFfAE9U4eGAfAbPmsrxWAYhvhZZUpxiB3F5XBftvLu3+2lq5QJtRGlQ+IVlXv/6qwOjy/g9fl8xO1Wmwdau9adUKxXbb79p21nMxbOikF6yZ4lrwChF+dJgbHvzJ8zh2amR77gwY7nkiOZuCQq6ZEGyYpL/lxukS9NrsRM79tknJZF2tUDB4eHR0MKMQsiDqJrPMAxbIA1e2wGaC6Uh4m+4ckDqwdXldrAxtr9ei9SUgNxONTO8dredcqNhxDgKt1NtQVgaP4cMDyAsV8yteCl9/TPv/1C/QHt8/TX9BWdaIrau1Hzd/dPPnjf0IqyO6G8qWlrW5OtATYio3RFrFFj0pZ1x3whbtib80QCCQfRvhVzSk40S3Xr1lqLxWMIGKEGGmPWDH5KFJF+SkJQIB3R9k7oJb1IiTcbazeXQhvvCTtixqS919Hj6vaPwF7YlR4fGOobOwCHYMwyaO4gLd1uYV2sPuQTvGGifd4d8ScwkuNiIpRM9XdlpqALkoG4O6jMxbHE7GpzKIT8+Cl53WwRLT5a/CdM6hnNLqWDAUvkoaZ7pjYfLMtCVygb72sfGMiORlLx7lAqlALRL80hkDIn6rMS/YrqjTUud8DO+QSHwKU+1XAv0AN/Vro2UeUGrLnO2jrNBqUNIwhT9HyIchl7wgg2cHi9XpeLY/QXEdOVa0F9Lyg3xcxty2OKzvlhSYE3Lnhxb+/RwHMvvfDqrPY9JYTOm6/92F0baERRet2uDS/DDPS0D/SFQsEgD4Iv4gh5021ZTz9LeqErkmzv703vjM+KMaGwkaVMaZ5A0zYNywaUqTPGsd5vdzd4rE6XzxfgPGDn/XFcU4xPCjEidj5PESK4DkfchFFqdnosAdcSeUbpZ3tsboepudW0FUhNW+9MGbQLHVJnaCI+MfA80b73k4JkLSyCnnPU/xw943HtW/lv5k/XgUvyRN2dhqiRbwAz5/S16C+p+f4dZh/nxXJQDm3DMEugU+wO9YUH4+PdjxDt0fPna9/a/H1nFayDq2fWvQFjWGCzqXQi293ePTTb82DXa6mHg92QI5PWyZrSmqaa5rKStSfOfu5R33PPv0yXP679c37BLp2yUSQwIoJwxNdtHfEMYeCkhIQ0ER8a6t3XOdU+k32FpJ8KZmGqcDTlYKVfuGYsA+7K1kXmdS21FqPFZWBRa1e1DE6VJeZhQgaF1AD96iQ9Ddq/YDfPSlkfMHBuzsG5CFj8LrW10tRq9DKFIfe1YB6HPRDn40IiNB7PDR4l2ldx1X/evNC1BZPssr3lbwLZCwO92SEMDyiUqAUPvX/lLjr73tIZ7YP0N05dF2SDXXGE6IHO4US2fQpiJM6wptI28HnVwLibAy7Txtq6Wjc6Gs9ZB7ZOhMQonjMmdR+g66U4iQ+luzuiYVHZgBmAiA2DvjA7jz4weKxGzCIFXyZ7h6f2bBpeV9oITY5Wvdfj9/k8bePV3WugGloczabq1rq1jo1+i4CCiGQ03cByYiKCV5bJdnR3d47BIKSMUI+MEnGPabtX3hxwENvG1qYmTBBL0BdTHi6RjsRTwQ6i/d3nJXtr7ZY1O+p2l87AwFDnAMnWDTbtQe4o6+XyKXrhiaSpfn8Dpg09/yXthyey5vdzWUOUrNk90s+VAutv9dls6w1bm5uMeoN1KwI64lh7NJSQwqFQOJwQY0T7p8+derO+pqJUwU7eH1u/veEQ/B7+dHTyQ176KP+TL+YIYf321U0/IBXyT9T6yuaadaiOfv8lSfKhkiQPOF+hu39VlL94X/EjTl0aa7o6DhwfSiS7UulkNBaKilFlE8WbtE9sEZl2f4gNcxHlBv5sMBsf7xgZ7dwR7wx1oTCM+sAyN8/usG/ZuBVP2wr2oD7SFLFKVp44+UhM3dUzMrpr5xuvj01M7E53BaOJbDAqKG1TUSHxxIJsVO1QOLzNYbS0+vw+P8N5BLvgDpu6jd3OSJsU4H28T7ktxeJtczSYWuqclYyLwworMhKXnpteLtxVx4sk1DWYGsGrD3PDrjgz6Uah41+3+sabzv1J+Zrq5X6PIpDICXFbQisOBx5cQIEe1W6gnXSz7oL52q6fztduWITvF+L74vnKc2oecj5w9+TDh+jS2b++TYtyC357KB+d0TpoiL6hUzbe8FBPgOEStfFqb72yG2oMN8JNcM8mx1rUj1j4wCv4RG/M1OEaB5LEIh8VtkWmewYHSY9drT2wq3FMfwh+A08+132EV6qsoMxgt6FdefBbbetrKqvdJMAp45JGcIltkiFiDW/uJWaUSCBFg7HObVw4+yLJvv6W0kvn+eiQsvdUuPFpvabFWGgczdAbpXjm8I5HHgFyMHv/yjLw+jh1A9PcAtW8vt3eC2Rfas+DRysevrrMgGBh9pVbtzY0VxtbrPXOBtbnLHfeTwyXV3GVoGb87hYUIx45qtM6jI01hjqW2Lxisquve7CsE9L+9sCnjYi5LgS3R/sBrc4v/d+1GtpB9GENKTQayL/tNLx1znztB0qn4RR5Qy5/JFdUaDOc9uIcI/qsl9CeS/dnuzo7OqKFjWS7QmtR7/gYyznHz/DbibPGoTeb7Xa3pxWIFfy8Op1IZCH7aSsBiUPQkXCkLZ3ecbyGILr1idThfT1faCl0qOHBytF7RVfh5s1V9rqG2rUOo2mz8tSIOe7/jzV5ht5XJDfTs4uvz/foQLiV/sAf88U8YStW3WY96gYvcCKG0LvyqUFG4JSZBhLu7xHLPv3y9bSyWD47z+hEEPhIiLzxlPqJvcm4GAxHBGUuKWtLGTDRfAGPP8DIP5bPZZlCl48l7g5TuFQ5jrKbIku0qzgzt5mCPzqspIecUdJDZvMPfFl64Kd2zBTJg/kdOnqhhl6PJxFDPB/qUW7UUbY/2VCE/xmQSzXyN6BKeVAQyzKM/VN9UCAfeJDEfuUJDLJrG23aViyfkk/ofgNH38i+iEpLwANFfbx9bqrWar7n7jtvhtVQMwb7CSTFuDIZ7Ef/uZQGOeMP+BWL3bDr7mehcOQZ+vUi+XL6jWKZ5Gd0CwuXvJ/OU9Y6/1H6lWJZyr+rq+8x920bGZsqZfotHQ1ANtVurSmjhrW6oR1904OGjqYyvzIXwNV5mlphi1jfaembO/q2yQ9yRfKaXXTedPFVxzbolE5yABr9jTaT2WRyWLA82YEVvIn6vradSrsWQjzZFh3vy4yFU0IU42a6sm8tkKllOrArBcKht/krcQEmEXogEx0MhmOdndIw9EIHA4bCOUW6skjm6VPF8tePLdVdNJ+ef/pFhWVx9LtFspN2FMePnapzwtnL2nykfEzd2mFs53gS4NVuQ7O/DPxB3+71A429+rlQEpAW07PeRvice9pU0NnnxcVdCrP5iz69b+QrM1ue1n70aGEcbDfsx9c+dhZFqfIAF1GUsriwGANN/3TjSJCW5Q+KQQQpeAWe4qLQ6d/lxDp8N5hYPdNAtHkUkooG8524teOTGzs++qc7YpwaeSPSh/8bd8R8DL8+9jVjUf780+kDMK7cjg3KbI8gBrpuo6+uobzhL5wQCDK8CWsbHpMhTGEuwe87bvjHTXgOPOvzpflb6Nu6QXlhjzxPeYqAE+R6ecGPEL5oPh/hS0sO66do7tc0N1lEz/lzfvmfPx3vLJNbdVAZ2Oza0Ch/vfziO+5YvXpF470Y23bBLt3WtfVJ+BPkxP7oLtL98eRr+5/cue+pwy/BOzB9MZxJ5G/JG3TuINdR2q7cquTrfDZxUEwgXYh4eUupdW7D1EoY2w9AvXytAvy81KE8eMjPm0utymau118vn46L8IS5dGn73CZuOxFTH4H6od3KrgYXMAPCtwlmjy02Lsiv+eN172vfePb0mLATsjAKO5TRi/iJ0Qspo6gVRuQKAs/HB8AgOWIKFiKKh4kQpI78MgkIN49npYWSrCPaIxHZofY4WjHG2xTrtn42JJ9Eb4zxyu0LQ+wIkMI4cKcQKTzhIYrrwy+YBSylPDo7TrRvQMJ4bJ4/zEgs34blQXEVw+FflmXl546/xfibK4zGVUB8CqPEP14DeIgXFVppyVp4ldqO0oqjC154snrHwf30Dwf2Tmr/SAPHFukYzyb5OwqUKDNGQuHpZETSpAH4cG98MtIRFMNiGug1PF0M05BmiOTVgIe1+ZsDBp4JMsq+dhJt5efDYUgN0q8U6hMiIWGDCV4+Bcjx76AY8mPdI/mT5TZdTeERPb5W4jfK3+Lkb0OwQy3EBGWoRWmHSqRG43ZLIcMVxHSNOuhh2SyK+Lkpk+gYiMqjjL4NanpquLA7znpYd6CtYFOfMkGVnptmEKITsZ2pA8FeUBpcjMINjg8cv01HQxrKYfIqVbcw5SZN0/OU/bQvDCAgK2c9yoO6HH6HH9V/gFOecCLfAfIPUD+5eOWWIlygFg8lRMu07/MJIRYcwpPxPknZzbcjTxXB51M+wdTK5yq3Vc9lozJo8gZK5Ive3fl+8b+/ieiTW32k9ocP09Yp+tMxqpt7mtPpaIJTFBOg9793/JDf+R/fTpSkC/PTgLw4Ku7lh5TuQfALYyzyUxp5ADb/J6D0iRWC8GD+vALWHivbE91VcUT70Zun05RyP0ThFkjFN1J89Fl63xddY8D/xXxvvd1Y2diobzW6qt2bXY2cfCYQuYinP6Zl6jdfe/ihArBjDDKiTOg2RGYMrnfgMDwACe5BZszd0UYybZEW2IKADBbWxLSybcAWZpMKj1xEYi0hJguIybUQViY3lOWnNLIyR//JdMmJhyJxo1dvO588K1+jBu6W2y+76vKrbr51jmogTn46+Y5ef/71ovyKR+nQ3uL8xOnBwpMO//lmJWVgD8uJ4OYDWE0IhJ+jOV7qfnPiT3v29PYOpXMwBUNYj5FZ4YtxBLlOhWArczixkICSHR6v2bNUmRfFT9ziXb5+9eVOc1uVW08CHtbLIS7wyhxynEdBDh/W/fIcqAWDW2/Z2FC1xrqK4EGZuVtl8dKlgFrkepSOqiBKYiwx2t83GY8ISpPyIHQ3RldjCiBEEQWlOJfz0svlJxmG9fsDPs4dqGErUBp9OkJZuDkxqRkWDqITHoSDrCIogzD7US5/t5ILH9BNz/72L8X5rcdO1oGPcXrriHO9k1Uv897SvKF2+Zata1yrOGVq16X0roLWzKqD5c+0tQd6AkEgwtxz8MyX+f3//vSHMAYOsrv/xc1iLUDmHODiC+VczL4uSDyvfDQEo6F28Zcdj43tmiG9ve09yFTahQRaozuQdnXqd60bW5pxiE1Bv2JBNDRBWHtBCM7dqvOFO3XmBgMjXuTIZD3cz64C5bVBsH8yEviF3MoB2c1lARykVj5dB3Ct/BDHrUiUd8HjMBafzYzHsuFYqr2/byS9K5oSRUDf0RXn6aDaua6tSr9uU+0Km5OxMOhT/ih9WBnoDnIhbr9zshnunIvMTbk/IOnR//bmt6aOLP+D9i26KZ/RgVdiolw7G/RJWCCVx9CBlTH7GjEvPJWMkggX71z9REss0OWLcphhSnRxhks+iQHyf8ELc2mAydsV6iXxmZSg/nXyyMzu53onM1PJvdGxWF88HWtPprpQ5GCQJvmQUjuJUnsw9/FILmVQaw3mgsXVZDZXmm9p+sHayy+tJdq/+hQMQy99lL+Ul/6Vj4jio9L/kYt2cR0ojBX6j8nDWJdWyOfXyfNbzlWQgOX9/IZM6w54lMCANBrLoWaLTIhZ6IYBX9Yccf8/jVxbTBRXGAZW1iNL1HCxaaJL2rSxaaOmfagPNvGlbRrTapWoRQRRQG4CRViWvS+7Ozs7e2Yvs7CXWXZZcBEXuYNUImDxim1NNbb60KY+mGhS20pvcdYMSfufAVMf1Jp92OzM7DlnZs75/+/7z/9/nB2XYFQmt9spC7xnWBm3kndHsua/PDDZ92fVhLDwd/blh2tuy++BG3Fzbs7X7z7BhnAAn0LZX+Or1mt4Dgs5Y/M35/p6hjqGfRyscD/+CU/uxltwoXF33cfIcERbXfbhjlebi7S7KDXLtFHotvwHMsVdbva6sJEUhSzVL0v3yEjqIVpzo6HebrWZ1U54KVXyVqvErfm4P9yZiB6bvjR4io+Eu6av9l7mZllOgvthZwfjR02/b74EBMhGKkicpMSXcopv6cV3xWwsvocbPPU+AMO3+J2nxRS8HVkqlxdig4vxouw7ANB5HEW4Jz37BhsHzujW43Qt0X0Eb3rPydjEtViPlmqjVwrsSOpvAkty4IRvBBbQ52r4ldwrT74OuIrcHBciaXYwN11LyXbsTrywDosi3kQKOh0MpQcebHc7SHMLbzzapk4VCoRcmeBKrsr9YnB0JNEcqc0zAxu32Bkn4yTrKDjgDXZNjk6N9XFesIiAW0xRCiNGonuG1sMVek3xrroP8F5U2lE3/AxZzYLkKmGZcAC6o4Xca6THqRfp0ce5PURZwRy2kx4dT+1RKFjzAkMHYwFDN0ae09BztYXFrcaLwv3zHdfnpjU3fOqsiV+Ej35ueJD90Cy8mazPZfEesS69QlyrfgcmQGOnoRtwIu8NBnwert3tcfnCc9HrsR9D014OhfuHh+KBmP8YF8EncFADjumwdkfVJgBQKdrPwKRq4GPzWENV403jpIaDbXNN8eMTPV+1dQIj5pDPwVqULViFLap0S4NFrdMZdTorqR2ze0gmIhePnEEwsqEH4XN4DGBsiA7px4p7t+NDuMxY3UiB1SKZvAlBBiZEkA2mz8Vmo4DqvW4yq3kLbwCq32TL11WY4GNGobPpvgQXB0vOUV4Ajdn3zTQudZTS+YwKlg9Dm8vJfqyH6YaFyjMcDgDeAkCOKcCrBkZHG0ncVwVjrbGobQxNsmQd9kV5ZWTo0AWVHD4f9YGjNOP5VDyfdMzL8LL5+fXy5K/rc8n3SrFCOvP48GtLhxeEJw+vTLblPCrMVXUnt2OhCfNxuXiQXa7MkAW2Zq7AmRkzGTMKZYb8n8ystSkbslNyiIb3SynFKcdTzqV8n/pyam1qPPVu2itpG9OK0mxp36X9JVstWyd7W/apjBsfGh3sU3XW5pXj2hq6HFV3a3qVii7eT2iVTWU3teyr2F9SabHRUlAwrCcZ4rAmXby/uysURuOnT86Gr7qIoHEUtS8fbO49cqiqqrQ2pu37r5kmu3mxGetiM1RIJ2kQAObh208mIl2of7xvNnTxGc2MDw2MwRjr847iZr1RbzXZTABaaqSRjo4MjCfgXFllVVleQ0yVUCqeVbJ2TnUF9+F+b3/gSuzC8NkZdOHixLc9N6Nn20gBupC39Q9xRWSp8E2BpTgD1b5ZyJByi1kJVZEKZUbcIGYRbkb2dxDr4FsAWzKcxEYS3QPH0ZUzQ8XpnY0RFSBOB+v0AO44Du4NKYQGuUAD1iLBJi/JbgGHC2yNA4aVCeA3Qy6+j4sk+/OEPVN4zF41EbTaJxbQNmNDScnnZgttYawYuL7fEqNCTg73PC/NVvFkpsDTEwXMRsq4mGHB46CbJ3thdwSri4P/+gA+BtFM7eA+peLp4c6gr4NoYZOwusZhUu9BugP6/ZQaKSKTgMI78fmaRD5uwCqjRtPY1HjQVLIYQn0c0V66DE3VDRcprZLrsjH5mspd2k/+N9YaCgU4shngsS923rIbnhf2evztfSe6g1HiEeG2fdBAVBvWc3TAjhQc4wJjAvQ4jIPeSLDDHwrE47EYEBYPediRViVNQnJwpc5QfeQo8EDK3Rxr6WzlTG6koAEI2PGi4HsTpdJVVNY3sCymkI03epUKAtsZqfyZZkw2xlG4pXybXVItdTtClI/2AtFGksgZQF5wHTkc7wHgA+Anpg9oXEjxL/Ms8nt42mNgZGBg4ANiCQYQYGJgBMJqIGYB8xgACZMArgAAAHjaLZEhSENRFIb/e5+KxSCzCCajQfANplufoBsyUJiwIrgpOLFMwSaaBBE0TLZkW7EYjAZRND3RsmBb2rA6EVnY9XvPhY//nv+ee84996onXz3JxFW2VreerwpcWqcjvKap6wLGjdMT3hle2mxpLczHi8HegCxswCzswCGcwiaUo/y4FqmxP6hVsx2l7IOSNtCV7WrBNpSw50p4I8QdJcyJ5uyYVjyDX8E/Jh+fs1Vy5yP9QH0tU+OGvUd49QD14cWWlKPvkom7L+PMEL0LUDKBdmF7sOZu7hMN754mP0PcIk4bKc97ZOiRYS/MH8EvmQZxnZmzyttJ1gE5NfRdKdOO9hLk/oRvy/3Xo5pZ15LcNKzCsNT/hTbrGBT+PZeEUZiIZvajN6vaO2avMWc4f6AcXhO9Rt/QYjiX19cBfZ7Df+Mvu+F/2inN2Hv+91tSUfoDLtuJLwAAAAAAAQAAAADG1C6ZAAAAAMb5Mk8AAAAA0e7lbA==)format("woff");font-style:italic}@font-face{font-family:MathJax_Math;src:url(data:font/woff;base64,d09GRk9UVE8AAEucAAsAAAAAZxAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAFYAAARKkAAFt+anr9hEZGVE0AAEuAAAAAHAAAABxfvEZVR0RFRgAASgwAAAAdAAAAIACRAARPUy8yAAABZAAAAFIAAABgRNpZzWNtYXAAAARsAAAA4AAAAdLri2x0aGVhZAAAAQgAAAA0AAAANgb1DbBoaGVhAAABPAAAACAAAAAkBsQCm2htdHgAAEosAAABUwAAAZDkzQz2bWF4cAAAAVwAAAAGAAAABgBkUABuYW1lAAABuAAAArIAAAZOdv3Pk3Bvc3QAAAVMAAAAEwAAACD/hgAyeNpjYGRgYGBmYJggyi8Uz2/zlYGb+QVQhOHiu6c5MPr/zf9qLNJMZxmYGDiAGAgAWz4Nd3jaY2BkYGA6+1+NgYH51P+b/91YpBmAIiggBQCZZwZkAABQAABkAAB42mNgZvJlnMDAysDA1MW0h4GBoQdCMz5gMGRkYkACDQwM7wUY3ryF8QPSXFMYGBkU3v9nOvtfDaj/LMMtBQaG/jhmoO6dTCsYFICQEQAeSRI2AAB42qVUz2sTQRT+tk0Cbn9QEaR4kAFBWkw2P/DSUAqlJZCStrQpKl7KdjPNTk12w+40ac8ePPo3+A948eBBbx79S7x49eq3k6ltoBVrs+y+b968+d43780EwENnHg7GvyJeW+xgFh8snkIBXy2exhNnxuIcHjgvLc5jxnlrcYH+zxbP4df0F4vn8Sj3w+IFzOYfW3wfhfwKmZ3cPY5emSwZdrCIdxZPUc9Hi6fRwDeLc3jqlC3Ocy9vLC7Q/97iOeen893ieTzPfbJ4AYv5nMX3qecZNhBjgHMkUOgihIbAEgIs09ZQ4bOCkkFVvgKbkEhNbMRRm5GKnohWspYCTYM9YCMenCeqG2qxFCyLWqWyUqpVqhWxKVPVjUQ7UDIKZFE0o4DR2/CZOsQW7RkO/4yx7etwyz87zCzIrjnRY86AA+33FG2DW4g4kdmEwqSR7hm5db43cZcm6RpxpBtx0pWi5lVEXVzNXLrI9Y9c1659QWWJKV5silelxirdMklVHImqV70b/+1aWbxFMzOeVYzM46FvNZ0YjZ6t+hrzFOEyQplZgX3Dnu15yG+HnotOCexwbd906qYde+RycUCkyHJ1bZvomGjEyMRwjCPGtcn0pzbfKXHHKBCGU5rVTbRod1krafZ9ydyaYMgqcH3PvAllk3kFVQ35Kvp9HPGb+S6r4puM69gzWPOEuqZXmnrqKPNJyZb1cEBfylyp4bqoc5nKG1R60wUrXnvDxNLqaDTy+jwvJ/6Zx2O+tlx0R0qHYl+mMhnKjsgugNjx+3Li6HuuexCqdDzbjo/1yE+koINnTkYp151GHZkIHUrRbrbE7kBG4+DWOKAorpxwb0xm1wp/6Kuef9STwkjxRWN9T/i67oZaD+rlchokaqBTL1W9THN5t8GN/1e1/kZ4hz+f3w9bORAAAHjaY2BgYGaAYBkGRgYQOAPkMYL5LAwbgLQGgwKQxQEk9RmiGKoYFjBPYZ7BPJt5HvMC5sXMy5hXMp9kvsh8jfkj89f3////B+oAqXRkSASqnIykcinzCuaNQJVXwSr/ApU+/H/5/6H/e/5P/7P0z6I/C/7M+zP3z+w/s/7M/DPpT/efjj95f7IFUqCuIgowsjEQVI4mz4ShgJmFlY2dg5OLm4eXj19AUEhYRFRMXEJSSloGIi8rJ6+gqKSsoqqmrqGppa2jq6dvYGhkbGJqxkARCAJiJ2QBc7KMAQDli0QheNpjYGYAg//NDEYMWAAAKEQBuAB42qy8B3wc1bU/votYcR8BEawseWkyEEgChNAJhGqKAYMxxrZs3GVbVu/SVm1vM3NmZmd70Upa9WpVy5bcwY1iOhgDJvSEEPJI5a4Zv//nf2ZleIaQvJffeyyJzFo7M/eU7/l+zz131aozz1Sp1ervLCxqLF1QZFin/LzygcaiyrKNKvUZKrXqisx9qsz96swDZ2QW5GQePHOTXP356IkizQ/Vx8/7oUr17R+e0XX+D1VX/HDlXXNU1ygfIKpzVXNU31X9SDVXdZHqJ6orVVerrlPdpLpNNU81X/Wg6lFVoeox1VrVBlWJqkpVo6pTGVQmlUXlUjEqUAVVEVVc1aJKq3pVg6ox1XbVHtVB1RHVy6qj6jPUWvVF6p82VZddffW8q+8rqqoquqe4srFoaWlxY9FDRVUbNhWtKHukbElZSVXRstqGssqa6kdKyx5pKFtUVVxSVFRZW1q0AX+zRPngJuWDxbO/ZMI38d9G5TJlNY1FFUW1tUWV2etVNxnKaqrKNtbXVNeW1ZfWNCjXvib7/41FTU2zn68tLdtYWoZ/rlHuk73MNfjeNdn/vEZ53Ovmn/pxA/64d/78e2Z/3Dv7Y/51v7j67ppaY31ZSWnjhT/beNmF11599c1XXnv1NVdfeE8x3qz6wiUby4qrNxb//MIHqjf+4ht8dfpbD9fUVxVVqvAfterbqotVP1ZdoroUHfFT1c9Ul6kuV12h+jk65Reqq9Ax16iuRedcr7pBdaPql+ikm1W/Ut2iukt1t+oe1b3orvtU96seUC1Atz2kWqh6WLVI9YhqMbpwiWqpahk6crlqBTpzpWqV2qdm1KyaU4OaVwtqUe1XS+qAOqgOqcPqiDqqjqnj6oQ6qW5Rp9Stqri6Td2uTqs71J3qLnW3ukfdq+5T96sH1IPqIfWweot6RD2qHlOPqydUm5SouhBjaZX61jOW5VyY86nm0tz1ZzWSz/9t5uxl33rpnO5z/5z3u/Me/Pai851zTnznLO052v+84LV/v/R7ke/Hf7Dwh1f+6NwfbS9ombv5wl9ddN7FuRcf+TF/yYFLl/xk90+f/ulvLiOX7b284oqFPz/vyu9e+f5VZ139vWseuHbZtYXXXXpd/HrDDfNvPPDLYzcN3zxxyzm3Bm577fbH79hxZ8O8JXddePeFd//HPaP33jz/5/NH7nPcf94D8x5Ys+BHC6YfrHyIPORfWPrwqkULHvEulh49uOR3y85Z9vvCcOFI4YHCl2F35t7d6t34T87uC+jlmQH58tzdJ/VafPfkvWfl5VHvifV6Nb1OrtAGgAe/GBAzGz6/AIIQcUbs4Aa3j/UyzMnF/0kdep+H84GP2MKeaEEeLYcZesuOzGq9euqCUG67sAXG8DXBboEE8H5/qxDgJRAh5BUs0CA0haGVgJ+XxADvT/W3DZEtB6kTYvLlGkdzHVfDET34GA3LcAzj8OoFCLpJLLdf2AE7YCdMsuOQBFCuGuL9IEDEAwZogM2CL0x8UuEJLSeC3yeyIjHlNgILbpvTKn908i2Ho6miwryKJZbZq7sbwQNePyMyJFNN41puNSwpuIT/kP5cc5wWhJPA8Fy3PA5mkkcbcIHbxmnLzJzMbz8r/Cz/j3TrCaKFRrng5Bjj87m9jIO1c7VsExBPrh54zqNj3eADBnw8i4/CBoEuA/pteBOC/POBZwd27SBTk127YRqOPrznhhiJiJoXky/vGHic5H8USwe7oBO2NnfVd9V1l7asDrp5+QpePgvugcXAcT6WY3zNhGkGEBjBw3PDQAa4Xh6chP7nL7XQ4K631NeuKty8zGljvXAHkF/BIJ2j6f4k2C+Iot8vRHkRtvIz8DbHQ5CdcHSXwlqS/8dl8vNauPTGe37ldHM18DBcxXMAEvAv0EFe4vmn4QnYCqMQ4MgO9+hGWISGua9p5sR503N2/y3j2LaBqvM/OjE306TN/+OFZ+d/1EvPlNpBIpJbcBd4oLlZ43IZDc0WfZPXx6JjzF2eQG1PeWpD0MProBnWQ4Wr3EFkdck1dy6+ZuW8upvw2ZuEJknXJZ/9ydX0IkCziJ0Bem7fX/82RM/GJ+b92RAIenkzmADAa2q4/p5bbquottd5amAVbIpVdpDlWxp2wXGIQJQPhV7r+93wwcmXDj3+4sBYcioyCuQ3u++Tz5ibR6dhR+a9GfWJJZ/m0Ml/4N065R461oXBjyvgOZ4lgtfJfQKE5gAt5BOC5p3E61PPvXDg0NYX214Lj4pdMA703+/94JKu2mCSkyt4+WaoAJYj6EWvz8JYgeMZMevEUz7MXC9fp4XNnmLL0rqLaxavWrV+/bLahxwOzgl3ww14X3SJn16ceVqQiChJYgRza4QfAXxxAfiN88Cj8BP0zFoM2bGZd3S0ENf08LM5Jx7OFGrBI4Dkw2xKYP5hVoo9tBQTXPKJjEhO7sl1+3jOZ/Yaszk3mNvLpVmJFYHHOAYPmmOacX9hjjq28ZQ5yOn2ED0NQJ8G2gthEAVJ+isN4i+JTIARiE/QgY9lcAWOpsfkc0vWPqDbaGni5Dy4ZjbSxKeoEOwhe3OPQIprcSc9kgN0YOPsniafCXwS5ioPMYgrVxSJKPD+Iaolw/TfNd6gIJqgEfyMz+g1ec1eR+PyjdydQJy59Y08zAXhMHUJfkESRUmQ+DAc5f8MHVyfZ7etpQoeBbOnCPQk7zM0WtfMHxSjzclsHqUPTGx6Nv8kXShoH4f9sJUlqdxAgGOkFinNcu4gqc/dAGWCy69kOWAkJg62vkiGaP4ToHkSQlzS2+oNOvGxbKzZq/caeC7k+dL4gvQ02saPWOVH29hylYf3GhzFTr3ZYrdbPI0+J2eHNRxZCrhKTetLyUM8jwsQZhfwIk/PxBX024asiXooBBNnYJoIZ+M8iq++4maS//nXPD36f+BpAa8QAzIFU/w+wIATm2Z8OmqYyVxwGh7soEebtG/Asb7tW/2iXwQuaO2pirlJvklgBU7AIPH3t7+Z3B/biWsL+NE5Qb5VaMFM9/mlVsIH+AAWDgweO5RDBbcKc3o5bBQQ2j0e4H0Wb5Mg4ALGcp/ioiw4wN1wFeMk+TsaV95ffo8Cxr+UHh2pOmjtdffBdkjyST7cSe99nc6lPzw4m/+/gd33gXwGyd+FmLXj/wKziHw7PfvH9BdYGHdiPE3M0Ni0+oR84nbtZihlH4FFUCJsBAsiOYvZ4DOACxwCbFHyXwA7Aae7RneD6QHLUmAJx8iXgkYucIMwl+fjj6eO9NIzxIgghhMxbgffgkvCUi0Ioj8pYlXEosdKHG+DjbAB69lqNNcGNB36jPMxeLvm2aJBhNMA559XsVmHu/xcHLF/K78TK/AuGGNJEhMBOH8CE4H1hEhlbhWvE3wCRoagJELyqbajmJg/oPj0n+wEbi4wC+SYz3V6TH15E86NZYoBj5/9725SgzfxCgwoJR5E+qPMHin095YgQkh5BgixQjNG5hUwk3l/Rr2N107BNL8LduMLL97y1YtX5FbyZt4leJVUlgDoDzP7gmEp4BciWC/7hS5oV2BHIKLIC2IC4xSf4FQ+OXKdbAXCOlmauxwW8yW8BX+VYRk0OWPxmngW0749dxQGGAmfnWd5DCXzg8vkyjvkQ4G0w9PsrlY+7cnVgfA1o5O8tqaxE2fMqA/Q83MyS05otOCQzz5Z4bXoHlq6fAVUQ1XU3OqMABcRh4M9vTDJ9OlbaoGsqi1at+DA2uNzqRo+eLnnmODvo2duod8bpt/vo2fwYiCe5juBhHPbkexJ6VNkSuDQgZyf4x1QCiXcY/AYLMUQ+q9802cxrDt3+y6wYdF8VrHttJqO/wsFE3EjjvRwhD8ET8IoO6ngOfISwY+ZF1AsilH89XiKbIvvJZ0fPb9PM9Y/0MUDOSgXaKYvTFQghzMbnRWY+mhxJmtx+ynOGMltFd+DIWQsQ1wvS6Jf9bcOg8kqOoKOoOi7jT606ePy14HnebqGXiviTySn/q2DO1I7RZIA9DhGVqAT4yLqASPn4Cq5clgLpUIpWDG3WB9hGU8jxrA76AtDgot6wQ4en9vh8HhOquUJrG7wGn1GChIlWnfyaQjzWL14JMctp8hxwCdYT6Utmc1bG14vm7e+b+QJeZhb2cDO0NGcf+iAf8BHQ0AxxAW0tygICL2Cn4R7j9M6XOGsA6y5GMMco6zN6THVzKt9dHH5sopyuBYWYI1QWOEQ/c44vYq8Tp9yN0YC4UCr8DhPxnMl/Ct/XGpH4h3EqubhimEjVw91XC2sgbV8CXIAETy6b2KveZn5syui7Re0oKv8SamNE1wBzK8yKJe8fSD525+mInmedk7IhzVd8iMt8jlYibx+VmEF6LMAL3xAL/qM3k5oIX1KA5w89+QBr/PvSxlj4TjRhxGm1LBR2MIfgEMwwk4gveD/aTBKWdzZPYs7O/lhDBoRCVkAfx1FDYdrwhf8AsgV4GE1LEI8x3LcLXL+FfKV+O+t8vnAkxI6pKmh1a4n8RkkES6CnyvOYX2MR4+RbBeQzA1wCS7EEpETBPCCUf7uyaTPba0pdWxgTYBh7j0VcYzoFTmCjwlpPsWPYrTvgn52SKnI7bPWnOG1w7jAcZhALjrIkvgXidDO8VnjlkKFYtyAmHyKMuQIjdN8ea/mT7Kve7GAscKjaZNZIoEh89PMcSGQ6BuOTAmpbF6QU4kR8mGhqYJqdjViRqVYjokh+LwGDNzZgiNyrdDLjvmgHmzO4nXy3WSZXKZhYnJpxo20Ax/pYpiHbI89pW9OBYibx8cm/VwXwhK5T+7WLJGbbKsZr7WhxrqaNWYtwXHuerQf4mVUWba+aeuJ70+od3+WafxzTmbdiaXai86mN8gGLaxxLDUsLJH/bdF1t62o1K8zrkXRYBbN0vzOTS/Bx0DP30t/cPBVEk/29Seio/3b2seDMTHOxyAKUS7MvmlGqnApyfsbVvXQVroTifX3/vaviYV/GfskEOJPpJ4lA/RbH4PmLT6ByPFy7HD/zPTIlvRIaAJLXRxjNgIRLmB+8ZGtd8aJVWBBfoSXF31DTM2qxM/naUHP2lzl1hX2ep2uob7MvNbt4Kwwn7sNQwoEQThC26TkKX3hz0bPYbRumNvpHDPBUrRySC6kZx6e/HQsE0Rb//nX4/Q7U3TpX3IyP75Fe39q9ZGCFKT8LcG9PWNHOo4E2hHj/Jzk9XsRsNFMDtuGdcWFQNaDpc2+mw1yQU4gIKVCGnrxEfojegvQRUB/dv2fZG2rA5mWCbAE3eK+peTuRc3Wigpr80PzNlxnu4Zz4N8Y4ereR3at2rH2ycYXgPRCn78/SJJ+8GnAzFSAjiynNu2KRasXsoKHncuCMe4MbR417YBXMayTfLSd3voWvYqed3hLajg0iOHWa+82kOnyzkL4FaCu5Bx6+aqF8vcvvptYnRr3M+Wjq4CUyz/S1lpjHXNhsLurOxQQxCwfEDjMBJC4ANfpihrETYR3aOptJc5qJTAbdGPmGTowRgdQXZjpWTd+3ErVtdvyG/9hCP0DHjbFK52QHRhA/5SHIRInn2x9GQXJBS+A5nWO5dsd3ZbWJigGndfiKCb5M5hKLJTyRsEZtLZv2Nn0HLQqjRqhJ9jd3tYXbY0PQJiEvWJzgRn5qsfgqNDVNTp9WEzcSBCYDpiCNESknSRfJw4KCNAwUz9Z1OUVGQHZGAzH4tIbI/v2JA8ii8IYJTBkHWzoqRhe2/5w2CL4QL6Vlwug7GtZT77W1XizThu1SRZogk3mxU2VTVUlTUXuOo8P5nErQQ9IYMQjNIZY9IUe7uF70bs7mMEKknesaebEnKk5ez+sGOt/j657P/+TzO5MSgtWpgkcShdLsavEJU/JSkl6gurQh0EPLpH4FIABm23tchZqtq1N3wXEnsthDPu4Ve71+oqa5cVrb4H74J7J5QdMEkMvKAtwg5Y01jqCDMDGuiz3LVm80OLmXCjfr4AFk94PSP5xaONj/nZ/G7osgJW2OYtiJP8T1rVEVjDdG2CCSuZni3MimUyRvsGIXTNSukv/IiQggbLow7Zn94+/FmkLtPjbpTaxDf22T7djUx9xBgxRh+gR5DlDXrE80jgIU+S99468UPD+TOG1c/NQkWSO75iTnskcmqh9Ov+jzHUXBLCEIclSwLxFjGO4iXh3LNZFvI63iW7egzSXQIBemNnL84FQiH8Kfs1u4+B2MDANnhKS/0fWytmADXgYNoVQKSj4gZQCBJL/Ec+P0HI0JxJL4FmphZd/BuRkKdJJtKLeZzetND/WON+tR2Ojtsdyg/CDrFfMRTXDh/vTT7ZNtqUTLV3x3kA6EIaDgGK1D6XrXGAr5Tmb5Ctvl58M9dgxZzyshbOwxRymWs2XbDVLBJO5I8LT8CyQ5+AZdr+SiT9tmsmcmFEf/m0O/Tm9UAtRPsoHpe1/zVzxf6Os+rk+RVkZLj95jreec3ImlIpOcPGexGVv3kdVQGgB0Bz6rVGqEoKdH3b/aZReFNshSKcX1tm6SpS6WqDU1VVYVyvEsq/U1dPLKgacs6xYvoqskNdoKq+68VqZYEFdPwWvkrwdJ86fUR86cb5W8Y+mEzo5ySH4AksH5WSnvDopn60oEkWRi6wALUBakf9qAmLmzMzvlGog+gU/ZkbA7+9o74mMC3El40RBDHYqpGdWA7lzjWw5lOBro1CmqFufz8h6OEXYuSQ2Ae1stwuMBJQmssfnlKdOlqLW4BdnfHiDQCzQiiwqgW4g6a9SSEeujrkJsWYTFPM1Amafz+fUY27Ndm7zMj9XlnYQl9aVu5ULsIKNZ7f/57m4Go8fc7oFJEEKCeIzVHMM1aiW6qOt4CPADZ20+b2iT+RmuY0UEHj6fuZ9zASURqKU7h9onQESyC5UFIIdWUTwu8DAVuLDlMEGvhQMIHp8ZsJ5lVUSt5+JdI86Ggswm7OvRy6+Rz7/Z/JdlcsxJboqMvOgi0PHCkIwnJa24EIVN0uCIHVjrgd8vBVtV8oWYoQV8ya+Hmk2k20T+nzmL7wtcD3QzcU4iQkwSOQ3EmGzbDt5rYaNVmQ2Q5AXQ1JIRMoidH6DHb2oWcq4JmjidLAZQb9G6TqhNQ1gU7S3Yk06zU8rlHHqgg5hDAvNJGzlxiGFN0edEuQDCOlBRnQqYh0fjxj99ggGVEAKoygW6SK6AZXZDvlsTfeD6UIe9YMLqbfNZ2WsnJnjwKv/gnUrLIiMwSj/BOyHQW4EGQwihh9NjxGFhuar0cA2wRUkzrD8bfoSUub3fq/ZuW9y+yy0KP9Kkt8/3DuReFxAKe/3h9rxSWZD0ZVrYxZgsaiHW/hmZZGzaOAzAevHX+C5MHIRJBwQ94VdgpO3M97qSmK3lm+uqiCFj9xOCwVeEw51BtqFWDYVRdHfjgEQYtBHG6CIWw/rYD2UCcSCl+ZFr/kU0PTlTnEJJuiSvFQtDyKAcfJm2WyzVVSsNy5idRzwXgNWciVaXBITLcg7Ze4Tl564VbsWWXMF4gRg4nCnEkfpiKRZ1Jx2cLKM24Eyc8XDD99z0+U1FXhx/qd0BEIk3O/vLYh9SepPedvAXIdhqmRNheD8QkmyPvMpJuEIwACQGU7iYjZCz5P/VH+JxjDPVcWiyHAyhRgqrKIxWG89qg+P/xRrRfhFlcRNKvs6CkSJ/jblARi+saQCogUQDna1v0F6/oKJdoXm1fcOvRAMDg4OJ/f5W7KxzvPBbgyhECM4kB03MuuyWAy7Mu+gin1tV87BkFbZdUEgYjuAVgBtzgrUkP8N2oLVJOLirQW+XBtwrL3ca3Lrfc7iy1dsuNxm5wxwF0euxVzV8EKmO/NbtL1falW6qwxejcjmXFmHC2FY1GKoyTimeYXxEVIhqzSiU8jWftQ3fvxQRIwM/G7Pwb8monwSXuZ/janLsYTjTvad/Fjp2Hn14CV5bsdo5rxR9fA79A/bcpDKXan1YRVXiJplmb3W3Oz2ehkX1wjeVuiCLUcpYjSkTFEzEB2YrU6Trqeucz0WkY3G0tqH1xTe5LiO84ALX6vC5elK0lU52PA4cvowBPih4FDbYH9QKdKI0aJX8CarB/VTQJKITSEhJoWlaLSjIzWKHEvp4Ygk7IPmgpOa1VoI8Yha0mjHh4nx1t1bnzqILm83xev8rqAJy5H9MXkt4yVeR+kmk73JrHMZoAgMW2CG5F1oH8ucN0aXz0T1cyZfpfXv5n/ywYk7tKwSFCyDTI2x+8zgU9INkAD2c+0i0wjcT05eDizxNiIbaIK7+gt3NbU6U752oOcC/Q69EOgV8P6a/fe1eHgn7wDiACcGer2n2tJk9CHQoa351DNtrw/Qs/1KEzb/eMAjegpQzVxkZ7Fmgvy5Fmp9jZYljb8wby6rbNI12JUmrEWyR42tnlbUvmk+LPUQsWWYflfZshIRIwYmR7qHg8hh0DjT0FIOq0neJbi+vHH1lvdyMpfTc7WItIzHvWltYfVCp4uzcXbARAw1txhbXGkYgnZ/d3CApD9o3ToykkjEIy3BdDQudgLZnrIwczlOg9CGVa3JYWmERlLf0tw90de/tQCGdP2lSUOw0a/sNLrBw/3MfsXtm35qLfco7b7yQEO8nnQv31PyiiKwsfQ9GX68c2o8GmlvVzr1plYPpodZibRTnhh+B/naghP3aIvZCqTtLmDdjO1UBzyd28HF2AArMbxPMetyuZj1ort4n2TqLk8ptMHCWnxkhXV1+caV5etK74e7ZqPt74ON/H20/X2wkWy0+UnQy1sK/kn0S2h4SUjQn2RehRjJPxZwC94CBsqZzQy5Qf7/tBefnXevfYw+NkYvHVNPvEv5naf7ZN2KB8ruhEegfhscgk5/T3CQV9plWAB49DZ5lh/2j4T3J8Z6WvYJQVxCGC0X5Py2qaLeJUCYXBfanePk8y1X3VT7E28jUwMNsCpe2l4VtqaMCVevYcCFlzkKz/ft3v4Vw5fTZpQInMtjrS8ut97msXA1nFIoXYraEILt/mjLVGf/lnbSEesJKZt8PSZ/KclbIxeNZXbPUMeY+onP6JbPcujZ8o3asKRpC7e0QQ/pMybqNtdVblw7VrOjoBu6ol3pyfHew12fhbZE9/fSi0gnzdsPmqcQocXAbDlEBgiPLGdAKBDFNpqfek5qj7e240pjTJghTq/G4DQboI7UtFp6RnsHxwtgZmPPWnEzNFkb9JW1ps3N9/maTVfjFXEB1VCIz894ENFYF+v2mXlGYpTm0XYs3AyygTtPLmx8yNlk1RvBAQ6/UyB5j8hF4/SW8UzO2JzImw0Yg/SZbYjTjNmx2V3pquEYe0VVeVWz3u7gqtC81bwbif8fuVwQelpghHQZWhqL68rLC5D/Ov1u1ASJ6unmY/Af8P6+7pcFPz0rswQ6ocUUM6PaNjpcVkQYFoA09TR2FEE51LuqLUtq1qyqeki/0VmEJe263Xd/CGQnTA/FouQVOq4tlDe7HJqGiqLidbAWTFswz/v9bfG9bUdjgx397b29bT2BWQAguyBZllhP8iYxr/LGZ/Nq5xt05THfmyNT+W9lrnVot0J3a3t3urN9PDIqBAWlORv2cBYwoj70NRvuK123GUgz+AJIvVvFWHJr/5tth4LjJP9NIcIrpeSlx0aUnfpNDeVVXiyhWVh7Pv3WEP22vwNhLQtq+b8/BWv/JIvJPHmX5mHZa1uFfNqUdiCJhlQsmBSk8FDPX8kW+oNgXDOyf3RgRyQkBJBDjUFMh+LeyjWzDldRw501d5P8tzwmnwWs5LHxsj0FefKSLPLRs/4yJz0ZP9p17IG/5X9OH8p8oq1rNXUNDw73dxtSDQXlVVWVcxtPUu2LsONY+hkhkG1uRLwItlkrmM3LGjZXW9w+O4si2eqLJOdCWIiIcV78gDp4P8k/KWYFP+zbOLQcGsHoMlkrmmrWmJezbi7bh1YKM0nktuGf/eHIZGq4PZ1sSQRTQITcuN/ZPBfFudVn5XzXyMhYWKU8OmH5SPleBEX52/L60cyLY8oybJ/Rwtfv/Vv+X+nuzEdaoaG1uRORoXcARtkOU0sjkNLqqtK5TrlWm5/hs3eGqgtP/hw4c9HG5SuRE/jAy6ciSSzRpMeUrK8oryleM67bVZBGPp2Wnk7t35U+gFLsg36qIbvoKmjRwE5da1WrJWATjTw+Fccglam36UxVDdUbDGs9FoELeHBpabx4MNG5f3TraCwsBvkgEumwDUwkrxkBL/nnxClY33mc/uzYPW/1U/W6sfzPVPRH/22lJSD/9OSrjca0MzE3DW3JQCrSH94zRL+FtgtCrzvm63S2YgEj+X9Q+V0CPiPJ/487wezRofsWTmx6CjogHkpE+tJd21MH/QlOmZcRWIQ3YlZu7LYssVSaTA6HzWsHlOat0KFcClLRSUT0FjbsTtg7dKmKuClQFTT5O9oC/skJvIV9ZCQcSkQHOtKxfoVSeTGk3aymyldbD2Wkoc3cPdU5MrOtfmBjQSPUOWuNOqvFunJlZZXT1Wx3OA3KJo4YHNpGb99O5wd6lFxRqsUXBCBPdp5YoFePv/H+thz6I7s2oJQWfiDY2dW2PZxO7IQwiTCc+ctqZH7QUqu3e1A8eQVbkI1g+gTQC5I0TH+c2QHts1fnQP6xw8tm+0/mL/ZZBK4T+rK25pgamZTJPyIL5KiGU9qXHlg0WXJIoa4fZ0FkzqvHxGP0W6/TVQgimE0qO8rs1kgoJQaCXX00hwzT7wdjmi0Hxwe/KVFJifwTTe3F7lok+UrjjpGsUXcL/CuXcBUZH626FZPOVoEsqhGaYo0xS4sl7egD5Od8S2i6e2gmdXgWzIgCZgWng9mXWBZPTn6BZZ+fjmVNoPPp3RXWGn1dJXE5OFFjfby47wF4ADbWlm4mdjsyIJ6fC6K71Rds7q1sLVK6/C6z2Wiy1lmLPWZXpbJT4fedlvKtL8T6WhMBf1AMQisEm0EHLs7JOsBrvEt3E6mUz3NXgZ0YU45UQd4zWRY0Jz2ROCa8Tr/1/2Tn/wcjnUqG5RX3P4YIzIQVp2SNdKzt8N8Z6UHYWFNa8nVj9FS3bchyPx+30l6zsPkRxoFr5L40RlLhMqjTRRQega5wbyAW7Ygm29EkARPa3YUo6CWe0rvlNFLLWWOsUMj5KJJX2v5+Dp3MLNT++Gz5fvlV7SVn55XLhTO0QDGWOnPVuzn9dFD7NYNLQSRKafAb0QQIfZyXMclnnSzyuYjP6WWrvhy+O208LpTbJmwBZWtpnB2eHelLos7kPCFSn1vDm1hU3vxWeocgAHRVd9sT3gDXhkaN8q3Ssa6XXhp+n8RGgltgGN77L/Y/S/6LEQRq6ojDqbGNlfeu+CJsjJY660aP0V33Zdhk5uw4xf0ti501lrrGNZtL1+GvNyUtPb6gO80GQZTS6XdJ8lB8F9r0H1L/a76wkCLfcmhSXqr9+r7YbCu9PreWN3LKGFPHB7voiqcoHxxU9mjcolJDaiwWR7PTaXO5iKGvqusfi7lZek1m+XV3oC/R0SqJaCnW56uQr7c6Pb4mpgo9DeBtIpybVRrSHj8bhdk9O/JhJqlw5Bszl42pXz1G76CqnK9Efnc/PXuCXs3Y4+m2gY7Ojmg8mBDjSvx4Ym5S7arVQ0kWeie6h6d2lg2sLLBm47HCXW1sqHM6kA2GfVFr0hY2x3TB2lMeIN/ggq8HUgADCRHVjIFUeos8ATWgxCfi4v2OMdr6bu/YnH2fVb9Cv/VK7W6szmfT67WbayqL5oKZ9wSsqeJdDS/AR3B4fPCZaFcgCUNcAvxsyDGo665IEEvQKWwOlYS8vCNM8j92hL1hSJAdU0N7tg7qvBwAi7jtQ9A2Om0G0BNd0preku4dLVD4PytZpzd0PgSPwnp9TUVjvbEMhe3GVH2XqaM5DGMussUd4CIekv/XNmeiGSlrs8fsbNaVl5sLUZfVS4aIR7SHOIFTmoE8ESEgSgIatgvLYJe5pQ5p1N1YweUZ9YHXd76e05PRavfk7hSBRS1oftBwOymVLwSjBkzACq7Ypi01u1FE9sTSLUNd4zuT2wVJUNhU0M1blXrLcYzL53CZPI66teXVFR5vlh81gbcNOmfVE+GDiQOdH5FReulnoPH7w20IbbOtrhW5q1EZzIUJ+jOkYK3NURPfCGab28x4vAbzQmK4pRA0i7OUH4MaJRmmdLbTN2ofz5w7jiRw6g3nsfw/ZjZm7tZawepxOB0OXtog36S/2XQfUhBvs8Hl0jXpLaXIrO1DMEOUTigfCkxEx4feRTLfMiWEEBd3lYwsgSrQWXWG+oaGDdZ138jzolOp4XQ6mYwHWoBIuTHBbZwLOs6rW1J9m73MU5rdS8AE0CNP8fDuYGmqodectg+4e2EGBjp6ugKBgITSIFne37gDkUhAUToe751KvzXb+wCl9wGzsE3sRe4ml8neYLU1s1+KUVSPBF6jBxJz28wR0xdgOudPbzpfo9cfRG3jsWufhd3bpt5Nb42PJg7E9waRTZKx5onSqqrqygJFE4VdffXRRqhERW336GovK31wQ63ZZvPp0QD1La5e4ktwUWgTJiPjY5+G2oPtKJPzjyGJjiII7CweWgG1WUJcWlu/zrI625D7uqFaDvdvH4oGssQ7DgEnrsnB2nw2zutqcutI1W32zZ4KtD7n4tBr5Pr9G35dkEfvV8g9lsnJbW/aj31wnJYezP8ssww9a1J0lcllXiJbgGWVomIm0Oh1apo2NOkrgKysH947N36WOBEd2/IbJHKnnLqjfHSJsm8BHnaTo6KyYaXT6LN5jLOuJf9j39bcYdvsxaf9jHViGbXC9U9tfBf2QU9v11Db5l1NhzBnA+iYZ+OTT/UcIbHB+FR8d/xAoBUmYbK5tzbIgDIxVQ0VdZieNskedZIufawRNivhjAXMaHrIXl1z8+aNq9BMVr8tpE96WmCcKCAoRKXx/fQx6Cbob2NB3miWsqn3bs2QAzkHT5VHjhejyX3bnzwCg9Cqx5vYWRvK28oS+W5diam6yYwywg02wS16BYeyJ6AUGPxfQJDEL4S9KVG3qb6suAAsoiVoSzT0mJSuiYCyqD/Sk27rby8drtkH26Av2ddBBnt7x2PbkLyKChB4eZR3yAl8VsuKVQ8twsDSt8MQgTAfRU3Vspuu8Uejg509HeEAFo4oBkSIC3kD2WEyUudsMEApaUiZexDhJ7eXjC0pqISq5oZalwtBwG0aKepbpUzvc25urXt9VdVaq95cyloIeMQsEqxR5P3Vp9DA+NlqxAN627H8DzMbvgwcxuOuq5DP199kvA/YxqrqzStPgcEsFpDAOILBexjpbUqk/wXhLcSH4YmSoSXotSar3lD3v4GED0+HhPiimfLn0QIJISYORNMpNBvnqmacpOHOxxY/ZnFi/URUdeXawCnY/S7RhjgO2Q3OWXeR/N/NegyUVgzGS7PbarNYvEoVM4q2oCNVNWmcUTYn+sMjqaeGdh/seDbY/ofMBSgXWk0KYtxjf4u2jzW/NSc/vdWujSsMDqRQsqdvyyiGcRS1e8gX8KZM7YaAN+6JeMNsDBeWjfBXkk881fYc70e3I3K5BSso8O+12TatqVqm1AKDvzRcG7QJRiDNfCymSXcODz6x6+hzIyND46n2dH+kJRAVlYlYURFsxJprwD+7bIZKq9mG9Wyf0m1wo6GcUl03yU/r0s0tyoScF5nWKte6Dablp3bk3BLXAi0Y9350Xnt/YgJDtYUZcuElBlwpJoAZCZylWddUVVO46o75ZeXlxYZGXY2tyedhT0v9vLw3+OnMdbMz5pcdztnFa8dhlH8GnoWtHBKuU5sEgU7liTFclVEtdCTZePrQtEjnZvb+12h2CJ7iX4FOrp0hBxypJqTVBlbHKINb/GnD01+bZw59dRz4v59n/obBioSi6HbDuyfO1qszL51Yp8XCzDKcx3sy8p8P4VWUuU1OYHuA/gZIRg1+Za9BEJG4+eWbTyzAmwloEx6ZEpYghd2iYu0+qdFukS/qlQnPEdYGslueK2uALwA+8+1MDN9UxpUm6Mi7dGRMvfvTjPXTLyeWbpKdWmjmzJzTcX31NcULCq+9deFNGOA2UF52cAk3tax8HugZBA3dwkfCr3S+OfDkAar53dHfR5QMDGZ7oRJ8ZN11O8g5RL5AXqJ1BrhEQSg3CiClXojv8rdhKIV43oRZkx2gVDoONsJY5O+C5u5HAHUMn91HCXt4y6nf8fgq5R8C63dxXOq0WXxRjBExQfFzLx9SBn45rxF8uL5rYebEtWhS754c6r7g1NGd0w4ENQoNWUECyiZzkIYyq3ggwAVldUj+PknKXo3d2uhFEQe+r+xIxbA8bOOnYAq2zrL3U8Qo4BMwJOpz63mr4BU5YEVOYMKbT1zACp6AAAZ8YZK4gZM/OfkZ4yP6qkrjWswan7IvxHqQeCmtUp4T3Tx08DF+AIsC2Ya3GFQCZAO8SS1v0A1vzNl3qGbk/QlplO6f9o5MT+T/5k5af+Jqrde6Sb4gi3KYohivyiR7IB3qi3RKfkka4uk6oL+EbVwbqxyM4JHue5YzDgIukfP/18g+8MEtocnIXjGJwCEoe32slODl7wM5eVsu2gCvT6STl2sTs/tqghgRYiSQpofBq9fgGlglMWbPSuDlJJL/2zsF/wT6Qjx13sCc24wp7q4l3kb5F6C5eFXW1eHRL3/BmvtlRPj0t1kWKcOGsxMeRL5FTmppXy5NI/6L2fFRXsDyvk8Mbac/+/IKtlw7WpJhPT7rUkudFxcoXwTkEpAvA831DB+cq/SkQmKnv01Q5i9EZX/V58ePIUcBn1u5IOerki9XZOrsZr8yT6/sFe7ktf/jYXTlsMz3MgORcUIvzaUFQWTpDCN//+RuV/P/5TB6gBZkpsWgPyiJyrx4j9AJJJDbjoEUSAvKMQ/xi+FQB8hvoQ1/838AWcp4OGVgf+Z1xN9bZ+LP5ZzQZ1ZpHX62pSCOkSEi+PbQCggpM7+YFPJYrtyPdI5ROuw+XzNiCT5CwESvll9hGCJfJV+oufH2ux9kGZ+P4760Ox3NpYewqiA++9+hRuBnd2IZjBCOczXUL2rcVFRepy92POi1c3IOdzOsgI2I/YT+gs7VvP3ai09n2ZKgnCqUC+g2TiD0glx6AReGAd8eT6+jtThgFvVQByZfg3IMZwe6+eW35/TNUPKp80n65O78T6YzQ9oAJgdK+UR8686B3eicfn1yc6QRsasYyjmLQhX+6l55uzwNnM/r8Xk5m6+M3YhcmwXWc+qghUvZ7CW7YDd/AA7AwW880rMRSk870vMcTYcGO94ZPb5nV1fXaHorjMOYHjZhwmZP2rhFthXRF+Ms6A+I3QhkByrG18ccWAVMQHBFTL2zUFe4ougukv9J4zprJVYF/iwUln1I5I7rn9g4aEpWhqvgXli+umql3dC8GZzEKUIC6fx30QzLxv8yo+76G9W9TFV/y6GZE2dqwcvY3NXEvlYDSsuMk89rli+fZ5DVWOWVtoOLd/Oe8Irt65+v63D1ePp8pIW1r9e4q31WjvnHlhGVCoixnp3JOPA/OOzUckRqQ3mCfyS7Qxp6ZufHT255KdIupaENfnPR/iuiHt6rnOvipTapMzYNQlgi/2hM3MGWQCmQh3Mfgfv5TTxp/up5g67cXZNgnTtfHtHqfmmaj7TXlVvtr40Y4nWtjg4Yha2Jma7RzpHJnj3xhL9TlNDIuR/x2ufsexphPqw2LK0qqSlb2fCIizhYTd5rMPPXCfry2G9m5uz88K7fbfld/ue0kl6hBV/jL/9Z8PwPTPSV4JE63uZ5Phv4EvRKcZGeO3D8wyF6DolujXSm2uMtqUhSGY4T/XE+kGWFvDInxwQ43g7KkRRl0Ikrd9dWGVZ4mhmnp9FwV93KTRvr6mtN5Q4PPhkHZB8t1RykVp85HAgH2oR9f2dee9a8JUAWonkX8Bu/wbx9MMzGuQgCkKKpbCs3yDdVy9+qvxwTnDMEnVJxm2Gc3U+gV+wJjSAyhwaEBLSR6FkwbuuuDvh4IzQgr8v1ej1OZCduiQlzHUxIDzVgYy2+ZpL/uauEMUIZAfmM5ws/bUbgssNrmQ9G57y1bYyqaqcyP9yqHBh778TNmQ4tLKpfULfSXOkyF91bvNDaaKkyldmqXTUeffYszQe5bytz+FhzPhCFV+g1ypQW0kth9oAhin+GcdsbDJs9LreN4epZ4oEmTo/M08ArNTfaFoqlB9I9ew4eONLRkx4m+X8e29/2OOyAI6UHCkdWDqyJ3wZFsMlVZl/Z/FjNpopVxWsX2h4iPh3ngFpeD27BFqgI1XUu6nw4XCNVow4XbIIBvIRdeVYtXw8Mb1eKD2I5tHHKjCzvFX28jmdYN8OLzDzCFXMl4CFgF7FSvg+aP6DVxYDgDwwILUKb0AodMMCMeffgk7lfwECaggGIoCD4ePzoMzumh/e27gTywcFl187N+0t2UkNpBg+/fXRbTuaNzI+02ZOwBtOi2kcqV5P+s7hhNuFr1729+PFrlCBG2JLPs14on6mXz8bSggooixkeEr/pwMI/AM2BT46jqgLBxzPxjT0Ve4EEc1EO9cZ7/EpX3Q9BD9K2bOPK6TYaLUYsmBxgwXeEPYPsE4TriiY0M0+Ovdr2SnZ4HKWOB29CThbJPVroDQwn9sRm4gOp7qHpmb5t8FsQLxHkc/hivlKhXc1Wi4OU1G42ljj1Xh1jgiVQOQYHSN6APE9HHxql77xC7eNzOicyc1+rejH/ZL9cmBVhCg8iz9CAxu9vu5WqFIkIEYGe00a/9Xugl8J+3XTVALHGNfmfPz219VmUKMcfefymrEG8UOotba6sszga6+2Wio11K0yFxGuSr/3Pf0OfKkNjqHXosRMa7RKoczn0rDLw54Oa7cwITECb1Bsm+Sc7G2N1sI54zvLI33lQ/pacD/dD0QwcVebGeEmIP0ODgfYResZTb7zQFs0eKiBboccQrlBOZ3rBCUre2Finc7HuseIa4vFqGkJGfwVWeCOl76rpH8dy6B8/1Sqj/JyDcEaPQdM4r/7n3lL0J6YsmPz2uCKzeFFIBqN9ba/H94SmpWnCh/hAoGXkj9v//ARVRTuDStMMoy6rHp0K11XmoVzmqpK7Gwpr7ia2Wg0HgjAXWtwT7oEqenbx3geTHr5Z2Ru05d5uv/uB6huQkiilzxnGEqaIDKR/IPh5KX3g8PgzQOj5vXK+/J25eVc5xjJvvW6YmTP62q8nj7+Tfzyz/MTlWoi7I3ZkpLuapavaG7KnnFzsauvmEnhUkaq811+aWN9dGLD4PaKLlNpKzZUNK4rWPGi916fnbKAT5o8s39XQaWv1jCiR2QFxfzqytWN4snN7z57U43AM3qzdunH3/LerdiNzDwtSIEQiiXiwQ5EYSMKSvpBvoD5uj7qiPpJ/3I9IHQIy0NrbOVf+7cl+jNDgeHx7+ujkoWc7ScSv6VvUVgJ3w12Vt5WXWywudx08DJXb4DDJu7fpSXrLyzT3sLp3a2gy53mKtXm0a2yyl0SCmh5HCzOBlSnOJ0PxQCiBXHyggi9GrmJgGuw2H4AtRmwxbwTjNB1LpeOD6T2xvTAGHe5efdAb8IVR1qVTCLKQcEnNkbLOutBSQOS+031fWelqW7OzCRpBFzIkzSTkdLg1NofJ7LTpqu3VUA3LhjZPGnss3Z5JeA+eHes/6A8pbQoCEW/AyXvAg05vWL/GdDsSj4cScIjkXSavHz2x9tnf6udsf5EumLQ8l5+hu058Vws63ipZlDmTKx6VVfJFlXK+Y5OvFCrhhpGlh6vH9J/UxVzIvNodKTOWyxqdzshuBkuwqk0h4N7s90b4vAxSE9FL/O5+c7unzR3h2nF1Svd2KNLdkRoKtwUS0A0RrEAhYh/Wd5THyQOdmvJoZdQnrOqom4QjMBSYiI0P/OnoZ6/uRhqhSZki3ARM8W1SPBYMiEE+TIY28JsK3LkmzE4XlkYP1i5UcghlJD8DAVaZD0oIKTGZ7bqJEPEEMKgbgKnmKkjeptkNFvHY86/PvJnzL2/iLpRFzVK5GnmChzfFrcr2V2s01CIGott20mXD9Du9NIcPzO4XEmW/sOCb9wtP3zz9X23BjNI9O+juMfXI67TzjRz68oml2g2e9bWb1s+7uVDObZC/697M1CApuCO1YLS41ZC2bVGyqQ2zqSNyqP+ZozMfj77a/WHoHcSPVkjB85Yn6sd1g02JDX4yO/NAnpELtFDhLXauZkyWRRxHYCW3atVKHgqATzweaOt6s/fAlm2dfZ3JDiTNyXWwmKySY9raHzcsLHusen11Ux1YUMW4Q5akYwS2w/bok+1vEj5Il4MmT16A4HGdXr3z9fTrR6Zy6LP0Si0qD/CY3DqbwWysrNho2KxoIgsXbJ8Lnf5IsH3gjfYX+mlusFcIoWpus8R1WPLNVrcFtY7F00Rq5JyGm+sfnB2IgcZoY9zSak66tihKrQc6A73xkdRgb3o4mooPKF8XwWBxzE4K0RUjL/4lqp+z6xjd+Prdv87/mP6W/kSb/wmYUWob4eGxTU/CECQiqVRXV/tkYu+pxm52M4LMDsxYH0MOY3I4bV7lKw28CeiFpJD0t5P8j8WYEMXbhbgQGzTtX9h6V8jBO3jUCV6Ih5/apZkY7mhJR0lE0nC+7LeuNLSZusd6hoZ6jInagkaodlab1zYsenRNudVVbUZx1fKcJr7LnwIsS2+cvifkc155UgOG2Rj5IrqltvRx0v0fGqwc/oIt9Gz7grl5O05cOqamvzpxo9YZcEUL0pBqjleJrj/Kw0prRO6W4/Zmj5N1YzHSJewdiGBhKRgkovDEM0eOHjm67ykk6NPy+Zru+R2LBCZoSTjibvJ8riD4s8KBQy3qjHji1nFWktdnnmEl82BxapFADLlOn8sDDpL3HNKa6/XqzNmvwrGcjO30TnR9lXwOKZF/7HVrGktqGqoRS22sHVaBoR/2nmr5jxyiZdAJreaImSenFu+Wf3LyNbDwxqRNaRPFpEg4GuXYXqoiXZ9oui2DzjEgR/c9w84FTvCKnn80+Hj6lO0/nXv8cqtJ2XmYm1eU0SrTPvn2V3E1X873sKfNfn0xRnu9/CelgaT0eEWIMcqJsrDQKtH1u+gv6VV76V0EQyYMQZJ/Z5spZiqoBovBVb1JvkQm8oXyDwrdjJvFdGRgJ31UM0l/GcgeMHALXiBfjtJcJhcdyVz3Ml314vt6dfq56O9f2ep/MYf2yEXaIehUltra0qccnm5ur4t7RPnhVzxifUyXdqVZpZLEsCoJ4WBb647Rqe3dJM5oelwhzPLdsE0URmFwk1CsTO55mnzKmIA37E4yWM0IHJl+aXd3uzngm/oKdGO68ozkSuoCK4Cg1OKMyNn9uZxfeXCII2gnZkGbKKBdy22oLAAb7xVcxObVXF0xfx7cBGWJ8q6GgDfgETgiolTS1BnrGvS19WX6Ik9pdnDHDVbeIriiG/vLt+lFlj4wX+m4eQJ2JDdmR7Pd60H3NQt1oi5Qm/QJXt4HxO502+re1g/P/adjF1vo56+oMzk9OZm7x7QQZP3euG6XA/UEjEpbg1NETD0DmkNKm0hoDSSwqEPSGbajTLwDfgmXgHwWuNnFzjUKX3dZlQ47OANcHJTdjWA0HG9vj4cGO2JoXTIErgZN/Y1lNz12MbHWgF2DvJEVvAF73KNs+rfGgi2tA0fpfvAT3v8H0ADHOhmb6V7nSu8qZE9GfK0KlMergkiv0tAP6W7oIHkGx+zIyK3v5hyUK7VfZAfrG6LfJr30TE1XdXvTHiDRXGR8fIufnjP4If0B0LPgg1UH57e4BAtvy04VeOFR56Mla5cSXU3DWkcZ4/nJyUuUnEvY2oFkzsiMaGG1foF9Q/MKU2VtfWNjvRVJM1QNOGZI6nlN+l0pFevte2rvthmYho5SWEXy5HkXjmYW79GPzRl8jt78Uv40bbxHix7z2/3eWRc57U67YYcrPTeuaBNhe2xqGuV5h6u9uYXxeyRG9Ary5W8zYm2buQsmSHZP3R9/8e2XP8X1J11pFKfHom4eAlwLRGKKbPAEzSGSP90Ya5DKEC8dnJm5xHjZ3U2XsE4sCcr8hJv3hdZ2l4w3ET9Lv3+Hn405A1awkAazqbEgb8Q+hjJFPXiUhl7PoQ/ZtQmM4YQ4E9nRMzr6xBMDL8LLMOzptXUTb+QwaJ7IBkaLlEyg7mt1SbYgkQty74CHkLwYWZ232XNv7aJHyuaZNrmULsm1h+d/hCz7XjqlBYOvwV1lfsBUWlVZU73ZWAbLoWoUnoBWsV3qTL6YGu/rJ909Q6lpfG+gFgpJ3s+UUKVXvpmezpmgY/hkPIZY5/Bo1xZJ4juwLE1kN384rmlezTXkMflGcGiaYvZ0QRuk48F2f/wQfUUUQZDgHXxhegopfxIrBNL6qFUkXkEP8oUgfx+5iIdtYppsOnN90/rltlpEPLwuuIKsstPiV/Zhs1vVx23HaMXB/L9mrsl8R4vsySsi+PIsRowhUo+MUtlk19dcvvS2RxutXguDFfXR8uFDc2E0Ojn6yRd7jp+c2nPcVza8FOrA6DLbyhtr1pkL/8U9x5p59mIvCvq/sogEkI1p3he95amyDwE/ncDgT0gH2h7fP/lWaiTUFd0W3xMYgR4yYR4rK6iurKmcm0fPdrxMD7+i3j2V0W3PyXCZh7UboNJS3VBSXbai8p7mEltF413EukGj2LjABdVhU2h9a9WAfcQX4yLQyrfwoVBP67Md24cnpICozKJJbtFSYM0tKip/wHAjY2KV3eJLX114vCHM8ngR/cJS+QywgyFua2UJ1gU+LCUC4ZiYDPZ10QKeB96Pnu2DMN8lHYofGN4xQ3bvGXoy+hxyO0Umv7np8O1AXpZvyqpL1u3arC+prGxudriM1pWV60z34NsM7+ZJeFoTPexvjQ+O/e7JA0dgH4yUI6nL+xClg1eX+f3YnJ0TmWWT+Ybn6V+0ccwyPhBsj6WSQQkVYhCrGHABX8wVM7WW9i5rX9x7OQlWy+fK/66546Y1K7KbbYqrXCFnROmW88rBH1pLvaKfhMs1bQ9239azAbOyvWrKlIWiOMZeLNAT7e4P9gghDuWijzeAF0kScIzT1aA3GpU9VXNbw86aA8ZddZ8Q55BGEKmLxvwhIbv1CFFXwKGwa47hbB65XPZ5MEQ30huKDhFdz6aWx2AtVNaby7x2BqUpcQa5eEEePSs7ZkEDegzf6eOWY6YJ+tDo2wfz/2anN2BZ+F+EX+08W7G3nuTLdk45Ye2Gy58v/o1N2cZDEsk5NlhXWFc4ipSeZFYOfNH3AF6JRNL5UQQ0h+H5of1PTE0N7WrdJ8WjO6ROqVvE/CQTzeMldeV15QVfy7FGzFQrY/E1113/q6uuq7MzBtYJxMdmN4TG6M+m6f0v04nwhLKDrWwC2pRmD8uynrrb5QPkZvltDjQ+MPqdfqNkC1mjppSrne3nBsPDY58StMnsLAmZKRtbWpD3rv29OcmZ8Sc/emLd23SlkvUuJetNEhO3thvjtVABBs7r0VtWVq+qrqtvanTWKTwiYe4ivoBbASteDIqhWHd8NNCrpL1yxCkAaUdSBy58MDdjdNqM7irMYE+dr5arIWBwuTSNNRWGaq+HU4Z3l0HNdnguO7kQCO1P79j7cjLNY3wSPuINOSWX6Aan1+VjGKu+bEX9IssDrjKmFqqggbeJRhIpaq0aMSe8CSapkEghJo6GtnT1j0gBnufZ1LqR8oOIFEiO4tLhtt3PjH6anGp9VZrkw7xy/H3KOlZyCieewBoxvd063jpGdWNzPn2z7o2hCXr9K/lv2qmFfqI9vGF8MXL7ZrfJ9K/pwJK18uXeUpL/lp21sIq3frWv9H0YgK5QX9vLO9+jP+ij+STKaFIINwLmaAB1AkS8rFFyCC4BUwf4oNgS2S72wxSB3zW8d1/aLdh5h9KbAR9X5q4y1FXVluuLoBCW924aqiNp44hxxELyd9sDrMQqxz7ND7trTY8a1xjLzFXmxuZmvc7s0mEqNfXCNIH9O+kPpccJNdNaLSywPta8kHC5LHgFt3Bf36Zx1wwX4JQJhO0du7f0pxJt4RRshcg65fsGD6MoPFfJPPW2N54bpedNpif2vpGTufLEPVrgLEtNC8wLlK/NwpxTvjMFil01zptq7llcMt9Y6q5Wms8GcEum1L2HHjtuCbFhzs8RSQRubuNVGuM8nxk/5JZAcSyvHL0XhHDHe6TrYz9oIpAWEyK9uJ9q6L8BPRtSXNSXsO4tn1jRvbin0otQgpq35VmSejb+hHICfrbDhjGpcePzMF4iT55E8tMjDUQGI73htkR6ZN/+kWcjfuWYGpBfnDzXDZp7g2u3wSskk0f/Xasc12LMpqtWPzCv3OiscTcq35vHKf5RkoDn0+/0/InM0EUiaASkLkHuSce2DTBfOcOLBWjXS3No7jSVphsmqXcS0yzl0GZFptAT6I52tR3aOXU0/U6gU4hDNyS5FJPEKwQACKZTpECZkw9LsWAkhdXhFFOV87N1/Q6QH/1nZDXR3t2RjrSFE8IAkDR4nJqyNQ0rrWudZd5STKIFnRt3WCQOBQ1E0cxh4ZXEgQOjh0ggjHFjJ3duWXq0gBbSQ1q4v6awakPJ6vV16+FR0O2AJ6FP2hIaxZznwwgo/CkTW7IjMD5n0/XLb394c5O1wVkNa8A0AjsgjbKtPbarf//ELiIFM6tB4zeJjdCEdFe+7bnfZhnvc9PUtH383RxaJN+lnYAtEmrASG4MAZe1nhqQimOuYQVN8srZgSi0MgFXyJIsla6BO6DRb065wlxQkTYpodXfK6aCY6DsdqJ86CgaqXgasgekefq99Cf0EqDnkH/EmGcJs2HxBnkRLCC37jW8W0BrMu6v8OWGxgZrLfLl2nFUut3SYHQ6OhFIRzrJ1yjzBYgty2boOTPqSZQqBbRKK9AFZ8WkUET5qhiP3y0R+V7wxzTpp6bHnw76eWXevF0ZV+MjYjiCUBX3SE4/Kc7VKdMS3PXue9YULa3Y0LwJ7oMbdix6tr7T2entQ/rcG+iPk9ZQV0KURJETfHEmyvkVIPYwHl+tscnR5HOyyldXErySZI5WtDcPwB7o9fcG2jFUb4JP1fBphvk0B8789NOf5mY++alW+ZlXkv2LL9695NS7J+8//e08Kn4nM6xt6sj8//Pt/d64mO13Yg+7HBfzNHsezm4err1ce7nluNj+8wjJMGgLM7CCTvKVY0hlmMhwipG5u7qrsquxvby3d2Irx2zQEWg9vZN6+mafmneVgxv/MTM7408VX+jmuNd9adWRDfvX7Nm14cDhm6uedz9EO66GO/R3bnMDa1FOYlI8dF8t5n7c7d3z0qcncHDHtIWXJGZFJMS61bsiz8mApmRedz/v/nh67xuOBZunLgOG3Zuw45azmnsqu2uBlkCmU2YdmrV68YqV67ct3Ajs+SxN7Q4Alvt1Xa3NcdX+9bkcJSHJybE19e11nQ3dkd0Z67uPcnADAFlXxv0AAAB42mNgZGBg4ANiCQYQYGJgBMJkIGYB8xgACIsAlgAAAHjaHZAxS9thEMZ/d2+VNhWkyp+0MTTGv9jQWIwxUbQBFRHdtOCguBVFpJChn0B0DHR0ab+AlEIdGjoEF7fWxUIHB5dCHRwEQQjooE8yvNxzz7333HPHLUVuISSo+RWxN/V+UwwVsv6PjO+RCT3Kp8nYT1KeZzK8E39Af/hFHGLhO4q+SzYkFZvq26Tki0T+lYovUArfGZNeyud5KW7Kn5G1b+TskAF/LPyHV3bJhJ2T8BkKtkZkX+5v/Inwa4ZCVVqr4v4zYM37MztSz7Hyv5Rtm16vtGuRn+hViKUV2Slxay/fkv9ZCm2Pde12Qbm1S+iSjwXS/pnnvkEUHrHsO/IzTtI7eWoNBuWrz+oM23V7VmzvpTPDqPpGfJ2kXfFG9bYvn5KPDnEfdI+3utUPejwtP5809yMvvCZcpduXFFfI6x6t/3O2T84bYDfABjwAQsZFcQAAAAABAAAAAMbULpkAAAAAxvkyTwAAAADR7uVs)format("woff");font-style:italic}</style>
|
||
<div style=visibility:hidden;overflow:hidden;position:absolute;top:0px;height:1px;width:auto;padding:0px;border:0px;margin:0px;text-align:left;text-indent:0px;text-transform:none;line-height:normal;letter-spacing:normal;word-spacing:normal><div id=MathJax_Hidden class=sf-hidden></div></div><div id=MathJax_Message style=display:none></div>
|
||
<div class="Loader sf-hidden"></div>
|
||
<div class="Mobile loaded sf-hidden" data-nc-base=mobile-bar data-controller=AncillaryLayout data-controllers-bound=AncillaryLayout>
|
||
|
||
|
||
|
||
</div>
|
||
<div class=Parallax-host-outer>
|
||
<div class=Parallax-host data-parallax-host>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
<div class="Site loaded" data-nc-base=header data-controller=AncillaryLayout data-controllers-bound=AncillaryLayout>
|
||
<div class=sqs-announcement-bar-dropzone></div>
|
||
<header class="Header Header--top">
|
||
<div class="Header-inner Header-inner--top" data-nc-group=top>
|
||
<div data-nc-container=top-left>
|
||
|
||
<a href=https://planegeodesy.com/ class=Header-branding data-nc-element=branding data-content-field=site-title>
|
||
|
||
|
||
Plane Geodesy
|
||
|
||
|
||
</a><nav class="Header-nav Header-nav--secondary" data-nc-element=secondary-nav data-content-field=navigation>
|
||
|
||
</nav></div>
|
||
<div data-nc-container=top-center class=sf-hidden>
|
||
|
||
|
||
</div>
|
||
<div data-nc-container=top-right>
|
||
|
||
<div class=Header-search data-nc-element=search>
|
||
<form class=Header-search-form action=/search>
|
||
<input class=Header-search-form-input name=q type=text spellcheck=false value autocomplete=off placeholder=Search>
|
||
<button class=Header-search-form-submit type=submit data-test=template-search>
|
||
<svg class="Icon Icon--search--small" viewBox="0 0 15 15"><symbol id=search-icon--small viewBox="0 0 15 15">
|
||
<line fill=none stroke-miterlimit=10 stroke-linecap=butt x1=9.7 y1=9.8 x2=13.6 y2=13.5></line>
|
||
<circle fill=none stroke-miterlimit=10 cx=6.5 cy=6.5 r=4.5></circle>
|
||
</symbol>
|
||
<use xlink:href=#search-icon--small></use>
|
||
</svg>
|
||
<svg class="Icon Icon--search" viewBox="0 0 20 20"><symbol id=search-icon viewBox="0 0 20 20">
|
||
<line fill=none stroke-miterlimit=10 stroke-linecap=butt x1=13.9 y1=14 x2=18.6 y2=18.6></line>
|
||
<circle fill=none stroke-miterlimit=10 cx=9 cy=9 r=7></circle>
|
||
</symbol>
|
||
<use xlink:href=#search-icon></use>
|
||
</svg>
|
||
</button>
|
||
</form>
|
||
</div></div>
|
||
</div>
|
||
</header>
|
||
<div class=Site-inner>
|
||
<header class="Header Header--bottom">
|
||
<div class="Header-inner Header-inner--bottom" data-nc-group=bottom data-nc-collapse>
|
||
<div data-nc-container=bottom-left>
|
||
|
||
<nav class="Header-nav Header-nav--primary" data-nc-element=primary-nav data-content-field=navigation>
|
||
|
||
<div class=Header-nav-inner>
|
||
<a href=https://planegeodesy.com/ class=Header-nav-item data-test=template-nav>HOME</a><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/scripture class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>SCRIPTURE</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/biblical-confirmation-of-planar-earth-geocentrism class=Header-nav-folder-item data-test=template-nav>Biblical Confirmation of Planar Earth Geocentrism</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/part-a-the-original-and-uncorrupted-douay-rheims-holy-bible-1582-1609-1610-ad class=Header-nav-folder-item data-test=template-nav>Part A: The Original and Uncorrupted Douay-Rheims Holy Bible (1582, 1609, 1610 A.D.)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/part-b-the-corrupted-challoner-revision-of-the-douay-rheims-holy-bible-1749-1752 class=Header-nav-folder-item data-test=template-nav>Part B: The Corrupted Challoner Revision of the Douay-Rheims Holy Bible (1749–1752)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/part-c-bible-verses-confirming-planar-earth-geocentrism class=Header-nav-folder-item data-test=template-nav>Part C: Bible Verses Confirming Planar Earth Geocentrism</a>
|
||
|
||
|
||
|
||
|
||
<a href="https://babel.hathitrust.org/cgi/pt?id=uc1.31822035065259&seq=8" class=Header-nav-folder-item>LINK 1: Biblia Sacra, Vvlgatae Editionis (1598 A.D.)</a>
|
||
|
||
|
||
|
||
|
||
|
||
<a href=https://archive.org/details/1582RhemesNewTestament/mode/2up class=Header-nav-folder-item>LINK 2: The Nevv Testament of Iesvs Christ, Rhemes Edition (1582 A.D.)</a>
|
||
|
||
|
||
|
||
|
||
|
||
<a href=https://archive.org/details/holiebiblefaithf00mart_0/page/n10/mode/1up class=Header-nav-folder-item>LINK 3: The Holie Bible (Old Testament – First Tome), Doway Edition (1609 A.D.)</a>
|
||
|
||
|
||
|
||
|
||
|
||
<a href=https://archive.org/details/holiebiblefaithf02engl/page/n3/mode/2up class=Header-nav-folder-item>LINK 4: The Holie Bible (Old Testament – Second Tome) Doway Edition (1610 A.D.)</a>
|
||
|
||
|
||
|
||
|
||
|
||
<a href=https://archive.org/details/1610A.d.DouayOldTestament1582A.d.RheimsNewTestament_176/mode/2up class=Header-nav-folder-item>LINK 5: The Holy Bible (Old & New Testaments) Doway-Rhemes Edition (1635 A.D.)</a>
|
||
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/perspective class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>PERSPECTIVE</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/perspective-applied-to-an-outward-bound-ships-hull-and-masthead class=Header-nav-folder-item data-test=template-nav>Perspective Applied to an Outward Bound Ship's Hull and Masthead</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/experiments class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>EXPERIMENTS</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/science-vs-scientism class=Header-nav-folder-item data-test=template-nav>Science vs. Scientism</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/heliocentrism-refuted-experimental-proof-of-a-stationary-earth class=Header-nav-folder-item data-test=template-nav>Heliocentrism Refuted: Experimental Proof of a Stationary Earth</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/spheroidal-earth-refuted-experimental-proof-of-a-planar-earth class=Header-nav-folder-item data-test=template-nav>Spheroidal Earth Refuted: Experimental Proof of a Planar Earth</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/terra-esferoidal-refutada-prova-experimental-de-uma-terra-plana class=Header-nav-folder-item data-test=template-nav>Terra esferoidal refutada: prova experimental de uma terra plana</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/tierra-esferoidal-refutada-prueba-experimental-de-una-tierra-plana class=Header-nav-folder-item data-test=template-nav>Tierra esferoidal refutada: prueba experimental de una tierra plana</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/terra-esferoidal-refutada-proba-experimental-dunha-terra-plana class=Header-nav-folder-item data-test=template-nav>Terra esferoidal refutada: proba experimental dunha terra plana</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/nota-bene-the-fallacy-of-spheroidal-earth-geocentrism class=Header-nav-folder-item data-test=template-nav>Nota Bene: The Fallacy of Spheroidal Earth Geocentrism</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/history class="Header-nav-folder-title Header-nav-folder-title--active" data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>HISTORY</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/historical-conspectus class=Header-nav-folder-item data-test=template-nav>Historical Conspectus</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/hellenistic-greece-i-aristarchus-of-samos-c-310-c-230-bc class=Header-nav-folder-item data-test=template-nav>Hellenistic Greece I: Aristarchus of Samos (c. 310–c. 230 B.C.)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/hellenistic-greece-ii-eratosthenes class=Header-nav-folder-item data-test=template-nav>Hellenistic Greece II: Eratosthenes (276–194 B.C.)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/the-early-modern-period-copernicus-to-newton-1543-1726 class=Header-nav-folder-item data-test=template-nav>The Early Modern Period: Copernicus to Newton (1543–1726)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/newtonian-gravitational-sophistry-the-cavendish-experiment-1798 class=Header-nav-folder-item data-test=template-nav>Newtonian Gravitational Sophistry: The Cavendish Experiment (1798)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/heliocentrism-refuted-the-airy-experment-1871 class=Header-nav-folder-item data-test=template-nav>Heliocentrism Refuted: The Airy Experiment (1871)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/heliocentrism-refuted-the-michelson-experiment-1881 class=Header-nav-folder-item data-test=template-nav>Heliocentrism Refuted: The Michelson Experiment (1881)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/heliocentrism-refuted-the-michelson-morley-experiment-1887 class="Header-nav-folder-item Header-nav-folder-item--active" data-test=template-nav>Heliocentrism Refuted: The Michelson-Morley Experiment (1887)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/the-lorentzfitzgerald-contraction-myth-1889-1892 class=Header-nav-folder-item data-test=template-nav>The Lorentz-FitzGerald Contraction Myth (1889–1892)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/einsteins-special-theory-of-relativity-myth-1905 class=Header-nav-folder-item data-test=template-nav>Einstein´s Special Theory of Relativity Myth (1905)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/einstein-refuted-the-sagnac-experiment-1913 class=Header-nav-folder-item data-test=template-nav>Einstein Refuted: The Sagnac Experiment (1913)</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/einstein-refuted-the-ring-laser-gyroscope-1963 class=Header-nav-folder-item data-test=template-nav>Einstein Refuted: The Ring Laser Gyroscope (1963)</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/curvature class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>CURVATURE</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/purpose-and-overview-of-the-allegedly-spheroidal-earth-curvature-analysis class=Header-nav-folder-item data-test=template-nav>Purpose and Overview of the (Allegedly Spheroidal) Earth Curvature Analysis</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-mensuration class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Mensuration</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-curvature-geometry class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Curvature Geometry</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/basic-allegedly-spheroidal-earth-curvature-equation class=Header-nav-folder-item data-test=template-nav>Basic (Allegedly Spheroidal) Earth Curvature Equation</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-curvature-equation-w/-elevated-observer class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Curvature Equation w/ Elevated Observer</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-curvature-equation-w/-elevated-observer-and-subject class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Curvature Equation w/ Elevated Observer and Subject</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/refraction class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>REFRACTION</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/refraction-overview class=Header-nav-folder-item data-test=template-nav>Refraction Overview</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/snells-law-of-refraction class=Header-nav-folder-item data-test=template-nav>Snell's Law of Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/tropospheric-refraction class=Header-nav-folder-item data-test=template-nav>Tropo[spheric] Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/optical-refraction-curvature-in-the-troposphere class=Header-nav-folder-item data-test=template-nav>Optical Refraction Curvature in the Tropo[sphere]</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/radar-or-rf-refraction-curvature-in-the-troposphere class=Header-nav-folder-item data-test=template-nav>Radar (or RF) Refraction Curvature in the Tropo[sphere]</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/effective-earth-radii-for-radar-or-rf-and-optical-refraction-in-the-troposphere class=Header-nav-folder-item data-test=template-nav>Effective Earth Radii for Radar (or RF) and Optical Refraction in the Tropo[sphere]</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/calculators class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>CALCULATORS</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/introduction-to-the-allegedly-spheroidal-earth-calculators class=Header-nav-folder-item data-test=template-nav>Introduction to the (Allegedly Spheroidal) Earth Calculators</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-calculator-i-w-o-tropospheric-refraction class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Calculator I: w/o Tropo[spheric] Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-calculator-ii-w-mean-tropospheric-optical-refraction class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Calculator II: w/ Mean Tropo[spheric] Optical Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-calculator-iii-w-maximum-tropospheric-optical-refraction class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Calculator III: w/ Maximum Tropo[spheric] Optical Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-calculator-iv-w-mean-tropospheric-radar-or-rf-refraction class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Calculator IV: w/ Mean Tropo[spheric] Radar (or RF) Refraction</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/allegedly-spheroidal-earth-calculator-v-w-maximum-tropospheric-radar-or-rf-refraction class=Header-nav-folder-item data-test=template-nav>(Allegedly Spheroidal) Earth Calculator V: w/ Maximum Tropo[spheric] Radar (or RF) Refraction</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/cartography class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>CARTOGRAPHY</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/appendices class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>APPENDICES</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/appendix-i-creation-and-the-method-of-saint-thomas-aquinas class=Header-nav-folder-item data-test=template-nav>Appendix I: Creation and the Method of Saint Thomas Aquinas</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/appendix-ii-evolutionism-refuted-by-the-ribosome class=Header-nav-folder-item data-test=template-nav>Appendix II: Evolutionism Refuted by the Ribosome</a>
|
||
|
||
|
||
</span>
|
||
</span><span class="Header-nav-item Header-nav-item--folder">
|
||
<a href=https://planegeodesy.com/blogs class=Header-nav-folder-title data-controller=HeaderNavFolderTouch data-controllers-bound=HeaderNavFolderTouch>BLOGS</a>
|
||
<span class=Header-nav-folder>
|
||
|
||
|
||
<a href=https://planegeodesy.com/blog-a-plane-geodesy-issues class=Header-nav-folder-item data-test=template-nav>Blog A: Plane Geodesy Issues</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/blog-b-other-public-interest-imperatives class=Header-nav-folder-item data-test=template-nav>Blog B: Other Public Interest Imperatives</a>
|
||
|
||
|
||
|
||
<a href=https://planegeodesy.com/blog-c-the-apocalypse-of-john-the-apostle class=Header-nav-folder-item data-test=template-nav>Blog C: The Apocalypse of John the Apostle</a>
|
||
|
||
|
||
</span>
|
||
</span><a href=https://planegeodesy.com/contact class=Header-nav-item data-test=template-nav>CONTACT</a>
|
||
</div>
|
||
</nav></div>
|
||
<div data-nc-container=bottom-center class=sf-hidden>
|
||
|
||
|
||
</div>
|
||
<div data-nc-container=bottom-right class=sf-hidden>
|
||
|
||
</div>
|
||
</div>
|
||
</header>
|
||
<div class=Content-outer>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<main class="Main Main--page">
|
||
|
||
<section class=Main-content data-content-field=main-content>
|
||
<div class="sqs-layout sqs-grid-12 columns-12" data-type=page data-updated-on=1698618373993 id=page-61aaba3eccde911eb47743ef><div class="row sqs-row"><div class="col sqs-col-12 span-12"><div class="row sqs-row"><div class="col sqs-col-11 span-11"><div class="row sqs-row"><div class="col sqs-col-1 span-1"><div class="sqs-block spacer-block sqs-block-spacer" data-aspect-ratio=1.3950538998097655 data-block-type=21 id=block-yui_3_17_2_1_1638580782857_3566><div class="sqs-block-content sqs-intrinsic" style=padding-bottom:1.39505% id=yui_3_17_2_1_1720720404258_69> </div></div></div><div class="col sqs-col-10 span-10"><div class="sqs-block html-block sqs-block-html" data-block-type=2 data-border-radii='{"topLeft":{"unit":"px","value":0.0},"topRight":{"unit":"px","value":0.0},"bottomLeft":{"unit":"px","value":0.0},"bottomRight":{"unit":"px","value":0.0}}' id=block-61aaba3eccde911eb47743f0><div class=sqs-block-content>
|
||
<div class=sqs-html-content>
|
||
<h1 style=text-align:center;white-space:pre-wrap> HELIOCENTRISM</h1><h1 style=text-align:center;white-space:pre-wrap>REFUTED:</h1><h1 style=text-align:center;white-space:pre-wrap>THE</h1><h1 style=text-align:center;white-space:pre-wrap>MICHELSON-</h1><h1 style=text-align:center;white-space:pre-wrap>MORLEY</h1><h1 style=text-align:center;white-space:pre-wrap>EXPERIMENT</h1><h2 style=text-align:center;white-space:pre-wrap>(1887)</h2>
|
||
</div>
|
||
|
||
|
||
</div></div><div class="sqs-block markdown-block sqs-block-markdown" data-block-type=44 id=block-yui_3_17_2_1_1638584123660_2658><div class=sqs-block-content><p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226>Introduction to the Michelson-Morley Experiment</h3><p></p>
|
||
<p><p data-preserve-html-node=true>The Michelson-Morley experiment of 1887<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn1 id=fnref1><strong data-preserve-html-node=true>1</strong></a></sup> decisively and categorically proved that the earth does <strong>NOT</strong> exhibit translational motion, i.e., that the earth does <strong>NOT</strong> orbit the sun.<p></p>
|
||
<p><p data-preserve-html-node=true>An earlier version of the experiment had in fact been carried our by Michelson himself in 1881;<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn2 id=fnref2><strong data-preserve-html-node=true>2</strong></a></sup> see our review of that experiment at <a data-preserve-html-node=true href=https://planegeodesy.com/heliocentrism-refuted-the-michelson-experiment-1881>Heliocentrism Refuted: The Michelson Experiment (1881)</a>.</p> <p></p>
|
||
<p><p data-preserve-html-node=true>Michelson’s concluding remarks concerning the 1881 experiment were unambiguous and definitive:<p></p>
|
||
<p><p data-preserve-html-node=true style=margin-left:10%;margin-right:10%;font-size:19px> <span data-preserve-html-node=true style=color:#a93226;background-color:#ffff00><strong>The interpretation of these results is that there is no displacement of the interference bands. The result of the hypothesis of a stationary ether is thus shown to be incorrect, and the necessary conclusion follows that the hypothesis is erroneous.</strong></span> [emphasis added]
|
||
<br data-preserve-html-node=true>
|
||
<span data-preserve-html-node=true style=color:#a93226;background-color:#ffff00><strong>This conclusion directly contradicts the explanation of the phenomenon of aberration which has been hitherto generally accepted, and which presupposes that the earth moves through the ether, the latter remaining at rest.</strong></span> [emphasis added]<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn3 id=fnref3><strong data-preserve-html-node=true>3</strong></a></sup><p><p></p>
|
||
<p><p data-preserve-html-node=true>While the 1881 experiment was sufficient in and of itself to prove that the earth is stationary, an important parameter was excluded from the experiment that actually strengthens the proof that the earth is stationary. Concerning the 1881 experiment, Michelson and Morely state in their 1887 paper:<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn4 id=fnref4><strong data-preserve-html-node=true>4</strong></a></sup><p></p>
|
||
<p><p data-preserve-html-node=true style=margin-left:10%;margin-right:10%;font-size:19px> In deducing the formula for the quantity to be measured, the effect of the motion of the earth through the ether on the path of the ray at <strong>right angles</strong> [emphasis added] to this motion was overlooked.<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn5 id=fnref5><strong data-preserve-html-node=true>5</strong></a></sup> The discussion of this oversight and of the entire experiment forms the subject of a very searching analyis by H. A. Lorentz,<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn6 id=fnref6><strong data-preserve-html-node=true>6</strong></a></sup> who finds that this effect can by no means be disregarded. In consequence, the quantity to be measured had in fact but half the value supposed, and as it was already barely beyond the limits of errors of experiment, the conclusion drawn from the result of the experiment might well be questioned; since, however, <strong>the main portion of the theory remains unquestioned</strong> [emphasis added], it was decided to repeat the experiment with such modifications as would insure a <strong>theoretical result</strong> [emphasis added] much too large to be masked by experimental errors. [...]<p></p>
|
||
<p><p data-preserve-html-node=true>So the 1887 experiment was to be an improvement over the 1881 experiment, the intention being to reveal to a much higher fidelity, any disparity between theoretical and experimental results.</p> <p></p>
|
||
<p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226>Design of the Michelson-Morley Experiment</h3><p></p>
|
||
<p><p data-preserve-html-node=true>Readers interested in the technical details of Michelson and Morley’s experimental design are advised to refer to the relevant part of their paper.<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn7 id=fnref7><strong data-preserve-html-node=true>7</strong></a></sup></p>
|
||
<p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226>Michelson and Morley’s Observations</h3><p></p>
|
||
<p><p data-preserve-html-node=true>Michelson and Morley’s paper provides a description of their observational methodology<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn8 id=fnref8><strong data-preserve-html-node=true>8</strong></a></sup> and a tabulation of their observations under the tabular headings, <span data-preserve-html-node=true style=font-variant:small-caps>Noon Observations</span> and <span data-preserve-html-node=true style=font-variant:small-caps>P.M. Observations</span>.<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn9 id=fnref9><strong data-preserve-html-node=true>9</strong></a></sup></p>
|
||
<p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226>Results of the Michelson-Morley Experiment</h3><p></p>
|
||
<p><p data-preserve-html-node=true>Michelson and Morley’s results leave little doubt that any relative velocity of the earth and the ether is highly questionable: <p></p>
|
||
<p><p data-preserve-html-node=true style=margin-left:10%;margin-right:10%;font-size:19px> The results of the observations are expressed graphically in fig. 6 [not reproduced on this web page]. The upper is the curve for the observations at noon, and the lower that for the evening observations. The dotted curves represent one-eighth of the theoretical displacements. It seems fair to conclude from the figure that if there is any displacement due to the relative motion of the earth and the luminiferous ether, this cannot be much greater than <span class=MathJax_Preview style=color:inherit;display:none></span><span class=MathJax id=MathJax-Element-1-Frame tabindex=0 style=position:relative data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0.01</mn></math>' role=presentation><nobr aria-hidden=true><span class=math id=MathJax-Span-1 style=width:2.159em;display:inline-block><span style=display:inline-block;position:relative;width:1.769em;height:0px;font-size:122%><span style=position:absolute;clip:rect(1.405em,1001.7em,2.352em,-1000em);top:-2.2em;left:0em><span class=mrow id=MathJax-Span-2><span class=mn id=MathJax-Span-3 style=font-family:MathJax_Main>0.01</span></span><span style=display:inline-block;width:0px;height:2.2em></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.079em;border-left:0px solid;width:0px;height:0.945em"></span></span></nobr><span class=MJX_Assistive_MathML role=presentation><math xmlns=http://www.w3.org/1998/Math/MathML><mn>0.01</mn></math></span></span> of the distance between the fringes.<br data-preserve-html-node=true>
|
||
Considering the [alleged] motion of the earth in its [alleged] orbit only, this displacement should be <span class=MathJax_Preview style=color:inherit;display:none></span><span class=MathJax id=MathJax-Element-2-Frame tabindex=0 style=position:relative data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>D</mi><mstyle displaystyle="true" scriptlevel="0"><mfrac><msup><mi>v</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup></mfrac></mstyle><mo>=</mo><mn>2</mn><mi>D</mi><mo>&#x00D7;</mo><msup><mn>10</mn><mrow class="MJX-TeXAtom-ORD"><mo>&#x2212;</mo><mn>8</mn></mrow></msup></math>' role=presentation><nobr aria-hidden=true><span class=math id=MathJax-Span-4 style=width:10.787em;display:inline-block><span style=display:inline-block;position:relative;width:8.844em;height:0px;font-size:122%><span style=position:absolute;clip:rect(0.604em,1008.84em,3.102em,-1000em);top:-2.243em;left:0em><span class=mrow id=MathJax-Span-5><span class=mn id=MathJax-Span-6 style=font-family:MathJax_Main>2</span><span class=mi id=MathJax-Span-7 style=font-family:MathJax_Math;font-style:italic>D</span><span class=mstyle id=MathJax-Span-8><span class=mrow id=MathJax-Span-9><span class=mfrac id=MathJax-Span-10><span style=display:inline-block;position:relative;width:1.423em;height:0px;margin-right:0.12em;margin-left:0.12em><span style=position:absolute;clip:rect(3.049em,1000.91em,4.153em,-1000em);top:-4.689em;left:50%;margin-left:-0.457em><span class=msubsup id=MathJax-Span-11><span style=display:inline-block;position:relative;width:0.914em;height:0px><span style=position:absolute;clip:rect(3.44em,1000.47em,4.153em,-1000em);top:-4.012em;left:0em><span class=mi id=MathJax-Span-12 style=font-family:MathJax_Math;font-style:italic>v</span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;top:-4.375em;left:0.485em><span class=mn id=MathJax-Span-13 style=font-size:70.7%;font-family:MathJax_Main>2</span><span style=display:inline-block;width:0px;height:4.012em></span></span></span></span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;clip:rect(3.123em,1001.3em,4.164em,-1000em);top:-3.304em;left:50%;margin-left:-0.652em><span class=msubsup id=MathJax-Span-14><span style=display:inline-block;position:relative;width:1.303em;height:0px><span style=position:absolute;clip:rect(3.2em,1000.77em,4.164em,-1000em);top:-4.012em;left:0em><span class=mi id=MathJax-Span-15 style=font-family:MathJax_Math;font-style:italic;text-rendering:optimizelegibility>V<span style=display:inline-block;overflow:hidden;height:1px;width:0.186em></span></span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;top:-4.301em;left:0.875em><span class=mn id=MathJax-Span-16 style=font-size:70.7%;font-family:MathJax_Main>2</span><span style=display:inline-block;width:0px;height:4.012em></span></span></span></span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;clip:rect(0.889em,1001.42em,1.208em,-1000em);top:-1.299em;left:0em><span style="display:inline-block;overflow:hidden;vertical-align:0em;border-top:1.4px solid;width:1.423em;height:0px"></span><span style=display:inline-block;width:0px;height:1.079em></span></span></span></span></span></span><span class=mo id=MathJax-Span-17 style=font-family:MathJax_Main;padding-left:0.278em>=</span><span class=mn id=MathJax-Span-18 style=font-family:MathJax_Main;padding-left:0.278em>2</span><span class=mi id=MathJax-Span-19 style=font-family:MathJax_Math;font-style:italic>D</span><span class=mo id=MathJax-Span-20 style=font-family:MathJax_Main;padding-left:0.222em>×</span><span class=msubsup id=MathJax-Span-21 style=padding-left:0.222em><span style=display:inline-block;position:relative;width:1.979em;height:0px><span style=position:absolute;clip:rect(3.217em,1000.96em,4.164em,-1000em);top:-4.012em;left:0em><span class=mn id=MathJax-Span-22 style=font-family:MathJax_Main>10</span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;top:-4.405em;left:1em><span class=texatom id=MathJax-Span-23><span class=mrow id=MathJax-Span-24><span class=mo id=MathJax-Span-25 style=font-size:70.7%;font-family:MathJax_Main>−</span><span class=mn id=MathJax-Span-26 style=font-size:70.7%;font-family:MathJax_Main>8</span></span></span><span style=display:inline-block;width:0px;height:4.012em></span></span></span></span></span><span style=display:inline-block;width:0px;height:2.243em></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.943em;border-left:0px solid;width:0px;height:2.838em"></span></span></nobr><span class=MJX_Assistive_MathML role=presentation><math xmlns=http://www.w3.org/1998/Math/MathML><mn>2</mn><mi>D</mi><mstyle displaystyle=true scriptlevel=0><mfrac><msup><mi>v</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup></mfrac></mstyle><mo>=</mo><mn>2</mn><mi>D</mi><mo>×</mo><msup><mn>10</mn><mrow class=MJX-TeXAtom-ORD><mo>−</mo><mn>8</mn></mrow></msup></math></span></span>. The distance <span class=MathJax_Preview style=color:inherit;display:none></span><span class=MathJax id=MathJax-Element-3-Frame tabindex=0 style=position:relative data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math>' role=presentation><nobr aria-hidden=true><span class=math id=MathJax-Span-27 style=width:0.994em;display:inline-block><span style=display:inline-block;position:relative;width:0.82em;height:0px;font-size:122%><span style=position:absolute;clip:rect(1.431em,1000.8em,2.373em,-1000em);top:-2.243em;left:0em><span class=mrow id=MathJax-Span-28><span class=mi id=MathJax-Span-29 style=font-family:MathJax_Math;font-style:italic>D</span></span><span style=display:inline-block;width:0px;height:2.243em></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.053em;border-left:0px solid;width:0px;height:0.939em"></span></span></nobr><span class=MJX_Assistive_MathML role=presentation><math xmlns=http://www.w3.org/1998/Math/MathML><mi>D</mi></math></span></span> was about eleven meters, or <span class=MathJax_Preview style=color:inherit;display:none></span><span class=MathJax id=MathJax-Element-4-Frame tabindex=0 style=position:relative data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>&#x00D7;</mo><msup><mn>10</mn><mrow class="MJX-TeXAtom-ORD"><mn>7</mn></mrow></msup></math>' role=presentation><nobr aria-hidden=true><span class=math id=MathJax-Span-30 style=width:3.842em;display:inline-block><span style=display:inline-block;position:relative;width:3.149em;height:0px;font-size:122%><span style=position:absolute;clip:rect(1.2em,1003.15em,2.352em,-1000em);top:-2.2em;left:0em><span class=mrow id=MathJax-Span-31><span class=mn id=MathJax-Span-32 style=font-family:MathJax_Main>2</span><span class=mo id=MathJax-Span-33 style=font-family:MathJax_Main;padding-left:0.222em>×</span><span class=msubsup id=MathJax-Span-34 style=padding-left:0.222em><span style=display:inline-block;position:relative;width:1.429em;height:0px><span style=position:absolute;clip:rect(3.217em,1000.96em,4.164em,-1000em);top:-4.012em;left:0em><span class=mn id=MathJax-Span-35 style=font-family:MathJax_Main>10</span><span style=display:inline-block;width:0px;height:4.012em></span></span><span style=position:absolute;top:-4.405em;left:1em><span class=texatom id=MathJax-Span-36><span class=mrow id=MathJax-Span-37><span class=mn id=MathJax-Span-38 style=font-size:70.7%;font-family:MathJax_Main>7</span></span></span><span style=display:inline-block;width:0px;height:4.012em></span></span></span></span></span><span style=display:inline-block;width:0px;height:2.2em></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.079em;border-left:0px solid;width:0px;height:1.195em"></span></span></nobr><span class=MJX_Assistive_MathML role=presentation><math xmlns=http://www.w3.org/1998/Math/MathML><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow class=MJX-TeXAtom-ORD><mn>7</mn></mrow></msup></math></span></span> wave-lengths of yellow light; hence the displacement to be expected was <span class=MathJax_Preview style=color:inherit;display:none></span><span class=MathJax id=MathJax-Element-5-Frame tabindex=0 style=position:relative data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0.4</mn></math>' role=presentation><nobr aria-hidden=true><span class=math id=MathJax-Span-39 style=width:1.598em;display:inline-block><span style=display:inline-block;position:relative;width:1.294em;height:0px;font-size:122%><span style=position:absolute;clip:rect(1.394em,1001.27em,2.352em,-1000em);top:-2.2em;left:0em><span class=mrow id=MathJax-Span-40><span class=mn id=MathJax-Span-41 style=font-family:MathJax_Main>0.4</span></span><span style=display:inline-block;width:0px;height:2.2em></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.079em;border-left:0px solid;width:0px;height:0.958em"></span></span></nobr><span class=MJX_Assistive_MathML role=presentation><math xmlns=http://www.w3.org/1998/Math/MathML><mn>0.4</mn></math></span></span> fringe. The actual displacement was certainly less than the twentieth part of this, and probably less than the fortieth part. But since the displacement is proportional to the square of the velocity, the relative velocity of the earth and the ether is probably less than one-sixth of the earth’s [alleged] orbital velocity, and certainly less than one-fourth.<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn10 id=fnref10><strong data-preserve-html-node=true>10</strong></a></sup><br data-preserve-html-node=true>
|
||
[...]</p> <p></p>
|
||
<p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226> Conclusion</h3><p></p>
|
||
<p><p data-preserve-html-node=true>Michelson and Morley did not detect any relative motion between the earth and the aether because neither the earth nor the aether (at least the aether near and at the surface of the earth) is moving. Their statement on the matter is definitive:<p></p>
|
||
<p><p data-preserve-html-node=true><p data-preserve-html-node=true style=margin-left:10%;margin-right:10%;font-size:19px> <span data-preserve-html-node=true style=color:#a93226;background-color:#ffff00><strong>It appears from all that precedes reasonably certain that if there be any relative motion between the earth and the luminiferous ether, it must be small; quite small enough entirely to refute Fresnel’s explanation of aberration.</strong></span><sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn11 id=fnref11><strong data-preserve-html-node=true>11</strong></a></sup> [...]<p></p>
|
||
<p><p data-preserve-html-node=true>But with respect to Fresnel, it was only Fresnel’s <em>heliocentric</em> interpretation of stellar aberration that was refuted. Fresnel<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn12 id=fnref12><strong data-preserve-html-node=true>12</strong></a></sup><sup data-preserve-html-node=true>,</sup><sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn13 id=fnref13><strong data-preserve-html-node=true>13</strong></a></sup> had hypothesized in 1818, refractional increase with refracting medium motion. That hypothesis was experimentally confirmed by Fizeau<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn14 id=fnref14><strong data-preserve-html-node=true>14</strong></a></sup> in 1851. But what is important to remember is that the phenomenon characterized by Fresnel and Fizeau is exclusivley optical in nature; in and of itself, it is not tied to any translational motion of the earth or the lack thereof. Fresnel’s explanation of stellar aberration is <em>optically</em> correct but cosmologically in error; being a heliocentrist, he did not consider that it is the stars that are moving (diurnally), not the earth, and hence the relative velocity between the stars and the observer.</p>
|
||
<p><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%"><p></p>
|
||
<p><h3 data-preserve-html-node=true style=color:#a93226>Denouement</h3><p></p>
|
||
<p><p data-preserve-html-node=true>Whereas geocentrism was experimentally confirmed by George Biddell Airy as far back as 1871,<sup data-preserve-html-node=true class=footnote-ref><a data-preserve-html-node=true href=#fn15 id=fnref15><strong data-preserve-html-node=true>15</strong></a></sup> re-confirmed by Albert A. Michelson in 1881 under entirely different experimental circumstances, and again re-confirmed here by Michelson and Morley in 1887, it should not surprise readers that modern systems, e.g., commercial aviation, dependent upon the earth being stationary, re-confirm geocentrism on a daily basis. See <a data-preserve-html-node=true href=https://planegeodesy.com/heliocentrism-refuted-experimental-proof-of-a-stationary-earth> Heliocentrism Refuted: Experimental Proof of a Stationary Earth.</a></p>
|
||
<br data-preserve-html-node=true><p></p>
|
||
<p><p data-preserve-html-node=true style=text-align:center;color:#a93226>— FINIS —</p>
|
||
<br data-preserve-html-node=true><p></p>
|
||
<hr data-preserve-html-node=true style="border-bottom:3px solid #DEB887;width:40%;margin-left:0px">
|
||
<section data-preserve-html-node=true class=footnotes><p data-preserve-html-node=true></p>
|
||
<p data-preserve-html-node=true><ol data-preserve-html-node=true class=footnotes-list><p data-preserve-html-node=true></p>
|
||
<p data-preserve-html-node=true></p><li data-preserve-html-node=true id=fn1 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>Albert A. Michelson and Edward W. Morley, “On the relative motion of the Earth and the Luminiferous Ether.” <em>The American Journal of Science</em>, Third Series, Vol. XXXIV, No. 203 (November 1887), Art. XXXVI, pp. 333–345.<a data-preserve-html-node=true href=#fnref1 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn2 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>Albert A. Michelson, “The relative motion of the Earth and the Luminiferous Ether.” <em>The American Journal of Science</em>, Third Series, Vol. XXII, No. CXXVIII (August 1881), Art. XXI, pp. 120–129.<a data-preserve-html-node=true href=#fnref2 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn3 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, p. 128.<a data-preserve-html-node=true href=#fnref3 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn4 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>Albert A. Michelson and Edward W. Morley, <em>op. cit.</em>, pp. 334–335.<a data-preserve-html-node=true href=#fnref4 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn5 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em> In a footnote (p. 334), Michelson and Morley state: “It may be mentioned here that the error was pointed out to the author of the former paper [i.e., Michelson] by M. A. Potier, of Paris, in the winter of 1881.”<a data-preserve-html-node=true href=#fnref5 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn6 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em> In a footnote (p. 335) Michelson and Morley provide the following reference: “De l’Influence du Mouvement de la Terre sur les Phen. Lum.” <em>Archives Néerlandaises</em>, xxi 2<sup data-preserve-html-node=true>me</sup> livr. (1886).<a data-preserve-html-node=true href=#fnref6 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn7 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, pp. 335–339.<a data-preserve-html-node=true href=#fnref7 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn8 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, p. 339.<a data-preserve-html-node=true href=#fnref8 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn9 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, pp. 339–340.<a data-preserve-html-node=true href=#fnref9 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn10 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, pp. 340–341.<a data-preserve-html-node=true href=#fnref10 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn11 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px><em>Ibid.</em>, p. 341.<a data-preserve-html-node=true href=#fnref11 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn12 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px> Augustin Fresnel, « Lettre de M. Fresnel à M. Arago sur l’influence du mouvement terrestre dans quelques phénomènes d’optique », <em data-preserve-html-node=true>Annales de chimie et de physique</em>, t. 9, 1818, p. 57–66.<a data-preserve-html-node=true href=#fnref12 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn13 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>Augustin Fresnel, « Note additionnelle à la lettre de M. Fresnel à M. Arago », <em>Annales de chimie et de physique</em>, t. 9, 1818, p. 286–287.<a data-preserve-html-node=true href=#fnref13 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn14 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>Hippolyte Fizeau, « Sur les hypothèses relatives à l’éther lumineux », <em data-preserve-html-node=true>Comptes Rendus</em>. 33: 349–355.<a data-preserve-html-node=true href=#fnref14 class=footnote-backref>↩️</a></p><li data-preserve-html-node=true id=fn15 class=footnote-item style=font-size:19px><p data-preserve-html-node=true style=font-size:19px>George Biddell Airy, “On a supposed alteration in the amount of Astronomical Aberration of Light, produced by the passage of the Light through a considerable thickness of Refracting Medium.” <em data-preserve-html-node=true>Proceedings of the Royal Society of London</em>, Volume XX (1871–1872), No. 130, November 23, 1871 (Art. IV), pp. 35–39; see also <a data-preserve-html-node=true href=https://planegeodesy.com/heliocentrism-refuted-the-airy-experment-1871>Heliocentrism Refuted: The Airy Experiment (1871)</a>.<a data-preserve-html-node=true href=#fnref15 class=footnote-backref>↩️</a></p></li>
|
||
</ol><p data-preserve-html-node=true></p>
|
||
<p data-preserve-html-node=true><hr data-preserve-html-node=true style="border-bottom:2px solid #a93226;width:100%">
|
||
<br data-preserve-html-node=true><p data-preserve-html-node=true></p>
|
||
</section>
|
||
<style data-preserve-html-node=true class=sf-hidden>.tg{border-collapse:collapse;border-spacing:0;border-color:#93a1a1}.tg td{font-family:Arial,sans-serif;font-weight:normal;padding:0px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal}.tg .tg-bbur{font-size:10px;background-color:#ffffff;color:#a93226;border-color:#000000;text-align:center;vertical-align:top}</style>
|
||
<table data-preserve-html-node=true class=tg>
|
||
<tbody data-preserve-html-node=true><tr data-preserve-html-node=true>
|
||
<td data-preserve-html-node=true class=tg-bbur colspan=2>WEB PAGE CONTROL</td>
|
||
</tr>
|
||
<tr data-preserve-html-node=true>
|
||
<td data-preserve-html-node=true class=tg-bbur>REVISION</td>
|
||
<td data-preserve-html-node=true class=tg-bbur>0</td>
|
||
</tr>
|
||
<tr data-preserve-html-node=true>
|
||
<td data-preserve-html-node=true class=tg-bbur>DATE</td>
|
||
<td data-preserve-html-node=true class=tg-bbur>2022-MAR-29</td>
|
||
</tr>
|
||
</table>
|
||
</div></div></div></div></div><div class="col sqs-col-1 span-1"><div class="sqs-block spacer-block sqs-block-spacer sized vsize-1" data-block-type=21 id=block-yui_3_17_2_1_1638580782857_1758><div class=sqs-block-content> </div></div></div></div></div></div></div>
|
||
</section>
|
||
|
||
</main>
|
||
</div>
|
||
</div>
|
||
<footer class=Footer role=contentinfo data-controller=FooterBreakpoints data-controllers-bound=FooterBreakpoints>
|
||
<div class="Footer-inner clear">
|
||
<div class="sqs-layout sqs-grid-12 columns-12 Footer-blocks Footer-blocks--top sqs-alternate-block-style-container empty" data-layout-label="Footer Top Blocks" data-type=block-field data-updated-on=1575936156231 id=footerBlocksTop><div class="row sqs-row"><div class="col sqs-col-12 span-12"></div></div></div>
|
||
<div class=Footer-middle>
|
||
<div class=Footer-business>
|
||
|
||
|
||
|
||
|
||
</div>
|
||
<div class="sqs-layout sqs-grid-12 columns-12 Footer-blocks Footer-blocks--middle sqs-alternate-block-style-container" data-layout-label="Footer Middle Blocks" data-type=block-field data-updated-on=1710844299977 id=footerBlocksMiddle><div class="row sqs-row"><div class="col sqs-col-12 span-12"><div class="sqs-block markdown-block sqs-block-markdown" data-block-type=44 id=block-yui_3_17_2_1_1573405226342_34120><div class=sqs-block-content><p data-preserve-html-node=true align=center> <span data-preserve-html-node=true style=font-family:Arial;font-size:19px>Copyright © 2021–2024<br data-preserve-html-node=true>by Edwin Wright<br data-preserve-html-node=true> All Rights Reserved</span></p>
|
||
<p data-preserve-html-node=true align=center> <span data-preserve-html-node=true style=font-family:Arial;font-size:27px><a data-preserve-html-node=true href=https://planegeodesy.com/home><span data-preserve-html-node=true style=color:#0000ee>THE EARTH IS STATIONARY<br data-preserve-html-node=true><br data-preserve-html-node=true>THE LARGE-SCALE STRUCTURE OF THE EARTH IS PLANAR</span></a></span></p>
|
||
</div></div></div></div></div>
|
||
|
||
</div>
|
||
<div class="sqs-layout sqs-grid-12 columns-12 Footer-blocks Footer-blocks--bottom sqs-alternate-block-style-container empty" data-layout-label="Footer Bottom Blocks" data-type=block-field data-updated-on=1575936805057 id=footerBlocksBottom><div class="row sqs-row"><div class="col sqs-col-12 span-12"></div></div></div>
|
||
</div>
|
||
</footer>
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
<div style=position:absolute;width:0px;height:0px;overflow:hidden;padding:0px;border:0px;margin:0px><div id=MathJax_Font_Test style=position:absolute;visibility:hidden;top:0px;left:0px;width:auto;padding:0px;border:0px;margin:0px;white-space:nowrap;text-align:left;text-indent:0px;text-transform:none;line-height:normal;letter-spacing:normal;word-spacing:normal;font-size:40px;font-weight:normal;font-style:italic;font-size-adjust:none;font-family:MathJax_Math,sans-serif class=sf-hidden></div></div> |