zotero/storage/9J4W7C55/s41598-024-60515-7.html

1044 lines
611 KiB
HTML
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html> <html class=grade-c style lang=en><!--
Page saved with SingleFile
url: https://www.nature.com/articles/s41598-024-60515-7
saved date: Mon Jun 10 2024 00:44:44 GMT-0400 (EDT)
--><meta charset=utf-8>
<title>Relativistic analysis of the Michelson-Gale experimental result | Scientific Reports</title>
<link rel=alternate type=application/rss+xml href=https://www.nature.com/srep.rss>
<meta http-equiv=X-UA-Compatible content="IE=edge">
<meta name=applicable-device content=pc,mobile>
<meta name=viewport content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes">
<meta name=360-site-verification content=5a2dc4ab3fcb9b0393241ffbbb490480>
<style>@media only print,only all and (prefers-color-scheme:no-preference),only all and (prefers-color-scheme:light),only all and (prefers-color-scheme:dark){html{box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}main{display:block}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}button{border-radius:0;cursor:pointer}h2{font-weight:700}h1{letter-spacing:-.0390625rem}h2{font-size:1.5rem;letter-spacing:-.0117156rem;line-height:1.6rem}.u-h3{letter-spacing:-.0117156rem}.u-h3,h3{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700;line-height:1.4rem}h3{letter-spacing:-.0117156rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-reading-companion__panel--active{display:block}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-article-recommendations-card__link{color:inherit}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}p{overflow-wrap:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-breadcrumbs>li,.c-footer__links>li{display:inline}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}.c-skip-link:link{color:#fff}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;line-height:1.4;list-style:none;margin:0-8px;padding:0}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;list-style:none;margin:0-8px}.c-header__flush{margin:0-8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url(data:image/svg+xml,%3Csvg\ height=\'16\'\ viewBox=\'0\ 0\ 16\ 16\'\ width=\'16\'\ xmlns=\'http://www.w3.org/2000/svg\'%3E%3Cpath\ d=\'m5.58578644\ 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927\ 0-1.41421356s1.02368927-.39052429\ 1.41421356\ 0l4\ 4c.39052429.39052429.39052429\ 1.02368927\ 0\ 1.41421356l-4\ 4c-.39052429.39052429-1.02368927.39052429-1.41421356\ 0s-.39052429-1.02368927\ 0-1.41421356z\'\ fill=\'%23333\'\ fill-rule=\'evenodd\'\ transform=\'matrix\(0\ 1\ -1\ 0\ 11\ 3\)\'/%3E%3C/svg%3E);background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}}.u-button{align-items:center;border-radius:2px;cursor:pointer;font-family:sans-serif;font-size:1rem;line-height:1.3;margin:0;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-16{margin-bottom:16px}.u-mb-32{margin-bottom:32px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-pdf-download__link{padding:13px 24px}}</style>
<style media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)">/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */@keyframes transparent-to-yellow{0%,to{background:0 0}25%,75%{background:#ff9}}@keyframes highlight{0%,60%{background-color:#ff9}to{background-color:#fff}}html{line-height:1.15;-webkit-text-size-adjust:100%;height:100%;overflow-y:scroll;font-size:100%;box-sizing:border-box}body{margin:0;min-height:100%;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;line-height:1.76;color:#222;font-size:1.125rem}main{display:block}a,sub,sup{vertical-align:baseline}a{background-color:transparent;-webkit-text-decoration-skip:ink;color:#069;word-wrap:break-word;overflow-wrap:break-word;text-decoration:underline}abbr[title]{border-bottom:none;-webkit-text-decoration:underline dotted}b{font-weight:bolder}sub,sup{font-size:75%;line-height:0;position:relative}sub{bottom:-.25em}sup{top:-.5em}img{border:0;max-width:100%;height:auto;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{border-style:none;padding:0}[type=button]:-moz-focusring,[type=reset]:-moz-focusring,[type=submit]:-moz-focusring,button:-moz-focusring{outline:1px dotted ButtonText}[type=checkbox]{box-sizing:border-box;padding:0}button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}button{cursor:pointer;border-radius:0}abbr[title]{text-decoration:none}h2{font-weight:700}h1{letter-spacing:-.0390625rem}h2{font-size:1.5rem;letter-spacing:-.011715625rem;line-height:1.6rem}.u-h3{letter-spacing:-.011715625rem}.u-h3,h3{font-weight:700;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:1.25rem;line-height:1.4rem}h3{letter-spacing:-.011715625rem}[contenteditable]:focus,[tabindex="0"]:focus,a:focus,button:focus,input:focus,select:focus{outline:3px solid #fece3e;will-change:transform}a:active,button:active{outline:0}figure{margin:0}nav ol,nav ul{list-style-image:none}p:empty{display:none}.article-page{background:#fff}.composite-layer{transform:translateZ(0)}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;margin-bottom:40px}.c-article-identifiers{list-style:none;font-size:1rem;line-height:1.3;display:flex;flex-wrap:wrap;color:#6f6f6f;padding:0;margin:0 0 8px}.c-article-identifiers__item{border-right:1px solid #6f6f6f;margin-right:8px;padding-right:8px;list-style:none}.c-article-identifiers__item:last-child{margin-right:0;padding-right:0;border-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{width:100%;margin:0 8px 0 0;padding:0;display:inline;list-style:none;font-size:1rem}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;line-height:1.3;font-size:1rem}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-weight:400;font-style:normal;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-author-affiliation__list,.c-article-references{list-style:none;padding:0}.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;padding-bottom:8px;margin:0}@media only screen and (min-width:768px){.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-body ol,.c-article-body p,.c-article-body ul{margin-top:0;margin-bottom:24px}.c-article-references p,.c-bibliographic-information__column p{margin-bottom:16px}.c-article-section{clear:both}.c-article-section__content{padding-top:8px;margin-bottom:40px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article__pill-button{padding:8px 16px 8px 20px;background-color:#fff;border:4px solid #bcd2dc;border-radius:20px;font-size:.875rem;line-height:1.4;font-weight:700;margin-bottom:10px;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;text-decoration:none;display:inline-flex;align-items:center}.c-article__pill-button:hover{background-color:#069;color:#fff;text-decoration:none}.c-article__pill-button:focus{outline:0;box-shadow:0 0 0 3px #fece3e;text-decoration:none}.c-article__pill-button:active,.c-article__pill-button:hover{box-shadow:0 0 0 0}.c-article__pill-button svg{height:.8em;margin-left:2px}.c-article__sub-heading{font-size:1.125rem;font-weight:400;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-style:normal;line-height:1.3;color:#222;margin:24px 0 8px}@media only screen and (min-width:768px){.c-article__sub-heading{font-size:1.5rem;line-height:1.24}}.c-article__sub-heading:first-child{margin-top:0}.c-article-references__item{display:flex;flex-wrap:wrap;border-bottom:1px solid #d5d5d5;padding-bottom:16px;margin-bottom:16px}.c-article-references__item::before{content:attr(data-counter);font-size:1.5rem;line-height:1.4;text-align:right}@media only screen and (max-width:1023px){.c-article-references__item::before{font-size:1.125rem;line-height:inherit}}.c-article-references__item>p.c-article-references__text{flex:1;padding-left:8px}.c-article-references__links{display:flex;flex-basis:100%;justify-content:flex-end;flex-wrap:wrap;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:1rem;font-weight:700;margin:0;padding:0;list-style:none}.c-article-references__links a{padding-left:8px}.c-article-references__links a:first-child{padding-left:0}.c-article-references__download{text-align:right}.c-article-references__download>a{font-size:1rem;font-weight:700;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}.c-article-references__download svg,.c-bibliographic-information__download-citation svg{margin-left:4px;margin-top:2px}.c-article-author-affiliation__list>li{margin-bottom:16px}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;padding:0;margin:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}.c-article-authors-search__title{color:#626262;font-weight:700;margin:0;padding:0;font-size:1.05rem}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-supplementary__item{margin-bottom:24px;position:relative}.c-article-supplementary__title{margin:0 0 8px;line-height:1.5}.c-article-subject-list{font-size:1rem;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;list-style:none;display:flex;flex-wrap:wrap;padding:0;margin:0 0 24px}.c-article-subject-list__subject{background-color:#dae5ea;border-radius:20px;padding:4px 10px;font-weight:700;margin-right:15px;margin-bottom:16px;flex:0 1 auto}.c-bibliographic-information{display:flex;padding-top:8px}@media only screen and (max-width:1023px){.c-bibliographic-information{padding-top:0;display:block}}.c-bibliographic-information__value{font-size:1rem;display:block}.c-bibliographic-information__column:first-child{width:81px;flex:0 0 81px}@media only screen and (max-width:1023px){.c-bibliographic-information__column:first-child{width:100%}}.c-bibliographic-information__column:last-child{flex:1}.c-bibliographic-information__column--border{border-right:1px solid #d5d5d5;margin-right:24px}@media only screen and (max-width:1023px){.c-bibliographic-information__column--border{border-bottom:1px solid #d5d5d5;padding-bottom:8px;margin-bottom:8px;border-right:0;margin-right:0}}.c-bibliographic-information__list{list-style:none;margin:0;padding:0;display:flex;justify-content:flex-start;flex-wrap:wrap}.c-bibliographic-information__list-item{flex:0 0 calc((100% - 64px)/3);box-sizing:border-box;font-size:1rem;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}@media only screen and (max-width:1023px){.c-bibliographic-information__list-item{flex:0 0 100%}}.c-bibliographic-information__list-item p{margin-bottom:0}.c-bibliographic-information__list-item:last-child{padding-right:0}.c-bibliographic-information__list-item--full-width{flex:0 0 100%}.c-bibliographic-information__citation,.c-bibliographic-information__download-citation{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:1rem}.c-article-equation{margin-bottom:24px;position:relative;width:100%;display:table;table-layout:fixed}.c-article-equation__content{display:block;text-align:left;vertical-align:middle}@media only screen and (min-width:768px){.c-article-equation__content{display:table-cell;width:90%}}.c-article-equation__number{display:block;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;text-align:left;vertical-align:middle;margin:12px 0 16px}@media only screen and (min-width:768px){.c-article-equation__number{display:table-cell;width:10%;white-space:nowrap;text-align:right;padding-left:16px}}.c-article-equation__number{min-width:35px}.c-context-bar{position:relative;width:100%;box-shadow:0 0 10px 0 rgba(51,51,51,.2)}@supports ((-webkit-backdrop-filter:blur(10px)) or (backdrop-filter:blur(10px))){.c-context-bar--sticky:after{background:linear-gradient(to top,rgba(255,255,255,.75) 50%,#fff);-webkit-backdrop-filter:blur(10px);backdrop-filter:blur(10px)}}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion .u-lazy-ad-wrapper{background-color:transparent!important;min-height:250px}.c-reading-companion .u-lazy-ad-wrapper .div-gpt-ad{height:100%}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__panel{display:none;border-top:none;margin-top:0;padding-top:0}.c-reading-companion__panel--active{display:block}.c-article-section__figure{border:2px solid #d5d5d5;padding:20px 10px;max-width:100%;margin-bottom:24px;clear:both}.c-article-section__figure-caption{margin-bottom:8px;display:block}.c-article-section__figure-content{margin-bottom:16px}.c-article-section__figure-item{max-width:100%}.c-article-section__figure-link{max-width:100%;display:block;margin:0 0 16px;padding:0}.c-article-section__figure-item img{display:block;margin:0 auto}.c-article-section__figure-description{font-size:1rem}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{flex:1}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-article-recommendations{padding:24px;background-color:#f3f3f3;margin:0 0 48px}.c-article-recommendations-title{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:1.25rem;font-weight:700;margin:0}.c-article-body .c-article-recommendations-list{display:flex;flex-direction:row;max-width:100%;margin:0;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item{flex:1}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-list{flex-direction:column}}.c-article-recommendations-list:after,.c-article-recommendations-list:before{align-self:stretch;content:"";border-left:1px solid #cedbe0}@media only screen and (max-width:539px){.c-article-recommendations-list:after,.c-article-recommendations-list:before{border-bottom:1px solid #cedbe0;border-left:none}}.c-article-recommendations-list__item{display:flex}.c-article-recommendations-list .c-article-recommendations-list__item:first-child{order:-1}.c-article-recommendations-list .c-article-recommendations-list__item:last-child{order:1}.c-article-recommendations-card{display:flex;flex-direction:column;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;overflow:hidden;position:relative}.c-article-recommendations-card__img{margin-bottom:8px}@media only screen and (max-width:539px){.c-article-recommendations-card__img{display:none}}.c-article-recommendations-card__heading{max-height:5.6em;-webkit-box-orient:vertical;display:block;display:-webkit-box;font-size:1rem;font-weight:700;margin:0 0 16px;overflow:hidden!important;text-overflow:ellipsis;-webkit-line-clamp:4;line-height:1.4}@media only screen and (max-width:539px){.c-article-recommendations-card__heading{margin:0 0 8px}}.c-article-recommendations-card__link{color:inherit}.c-article-recommendations-card__link:before{content:"";position:absolute;top:0;left:0;bottom:0;right:0}.c-article-recommendations-card__link:hover,.c-article-recommendations-card__link:visited{color:inherit;text-decoration-thickness:.25rem;text-underline-offset:.08em}.c-article-recommendations-card__main{display:flex;flex-direction:column;flex:1 1 auto}@media only screen and (max-width:539px){.c-article-recommendations-card__main{flex-direction:column-reverse}}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-meta-recommendations{margin-top:auto;padding:0;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:.875rem;line-height:inherit}.c-article-meta-recommendations__item-type{font-weight:700;border-right:1px solid #d9d9d9;padding-right:8px;margin-right:8px}@media only screen and (max-width:539px){.c-article-meta-recommendations__access-type{border-right:1px solid #d9d9d9;padding-right:8px;margin-right:8px}}.c-article-meta-recommendations__access-type+.c-article-meta-recommendations__date{display:block}@media only screen and (max-width:539px){.c-article-meta-recommendations__access-type+.c-article-meta-recommendations__date{display:inline}}@supports (display:grid) and (grid-auto-rows:auto){.c-article-metrics__legend ul{display:grid;grid-column-gap:8px;grid-auto-rows:auto;grid-template-columns:repeat(auto-fill,minmax(120px,1fr))}@media only screen and (min-width:540px){.c-article-metrics__legend ul{padding-left:16px;grid-template-columns:repeat(2,50%)}}@media only screen and (min-width:1024px){.c-article-metrics__legend ul{grid-template-columns:repeat(3,33%)}}.c-article-metrics__legend ul li{font-size:.875rem}}a:hover{text-decoration:underline;text-decoration-thickness:.25rem;text-underline-offset:.08em}p{word-wrap:break-word;overflow-wrap:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{display:none;background-color:#ccc}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 4px + 90px)}.c-ad--300x250{display:none;background-color:transparent;padding:0}.c-ad--300x250 .c-ad__inner{min-height:calc(1.5em + 4px + 250px)}.c-ad__label{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}.c-ad__label{font-size:.875rem;font-weight:400;margin-bottom:4px;color:#333;line-height:1.5}.c-breadcrumbs>li,.c-footer__links>li{display:inline}.c-meta{list-style:none;padding:0;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-size:.875rem;color:inherit;line-height:1.4}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;padding-right:4px;margin-right:4px}.c-skip-link{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;position:absolute}.c-skip-link{background:#069;color:#fff;font-size:.875rem;text-align:center;padding:8px;bottom:auto;z-index:9999;transform:translateY(-100%)}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.c-footer{background-color:#01324b;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;padding-top:32px;padding-bottom:32px;color:#fff;line-height:1.15}.c-footer__container{margin:0 auto;max-width:1280px;padding:0 16px}.c-footer__links{list-style:none;padding:0;margin:0 0 32px;line-height:2}.c-footer__links li:not(:last-child){margin-right:24px}.c-footer__legal{color:#fff;font-size:1rem;margin-top:4px;margin-bottom:0}.c-footer__link{color:inherit;white-space:nowrap}.c-footer__link.hover,.c-footer__link.visited,.c-footer__link:hover,.c-footer__link:visited{color:inherit}.c-footer__link:focus{outline:4px solid #fc0}.c-footer__link>img{vertical-align:middle}button.c-footer__link{text-decoration:underline;border:0;padding:0;background:0 0;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}.c-footer__list{list-style:none;margin:0;padding:0}.c-footer__grid{display:flex;flex-wrap:wrap}@supports (display:grid){.c-footer__grid{display:grid;grid-template-columns:repeat(auto-fit,minmax(250px,1fr));grid-column-gap:16px;grid-row-gap:32px}}.c-footer__group{flex:1 1 50%;max-width:50%;padding-right:16px;margin-bottom:16px}@media only screen and (min-width:1024px){.c-footer__group{flex-basis:25%;max-width:25%}}@supports (display:grid){.c-footer__group{padding-right:0;max-width:none;margin-bottom:0}}.c-footer__group--separator{border-bottom:2px solid #fff;margin-bottom:32px;padding-bottom:32px}.c-footer__heading{color:#fff;margin-bottom:16px;font-weight:700;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif}.c-footer__item:not(:last-child){margin-bottom:16px}.c-breadcrumbs{list-style:none;margin:0;padding:0;font-size:1rem;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;color:#000}.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#666}svg.c-breadcrumbs__chevron{margin:4px 4px 0;fill:#888;width:10px;height:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(1),.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0;aspect-ratio:var(--card--image-aspect-ratio,16/9)}}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{width:100%;height:100%;-o-object-fit:cover;object-fit:cover}}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;margin-bottom:16px;line-height:1.4}.c-header__row{position:relative;padding:0}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{display:flex;align-items:center;justify-content:space-between}.c-header__logo-container{flex:1 1 0;margin:8px 24px 8px 0;line-height:0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{list-style:none;padding:0;display:flex;align-items:center;flex-wrap:wrap;flex:0 1 auto;font-weight:700;line-height:1.4;margin:0-8px}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{-webkit-margin-before:0;margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{position:static;padding-top:0;padding-bottom:0}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-top:8px;padding-bottom:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}.c-header__item--hide-lg:first-child+*{-webkit-margin-before:0;margin-block-start:0}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{-webkit-margin-before:0;margin-block-start:0}}.c-header__link{color:inherit;padding:8px;display:inline-flex;align-items:center;white-space:nowrap}.c-account-nav__menu-item a.hover,.c-account-nav__menu-item a.visited,.c-account-nav__menu-item a:hover,.c-account-nav__menu-item a:visited,.c-header__link.hover,.c-header__link.visited,.c-header__link:hover,.c-header__link:visited{color:inherit}.c-header__link ::first-letter{text-transform:capitalize}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;padding:16px 0;font-size:.875rem;line-height:1.2}.c-header__heading{display:inline-block;line-height:1.4;font-size:1.25rem;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen-Sans,Ubuntu,Cantarell,"Helvetica Neue",sans-serif;font-weight:400;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid #d5d5d5;padding-top:16px;margin-top:16px;border-color:#2f2f2f;width:100%}.c-header__list{list-style:none;display:flex;flex-wrap:wrap;margin:0-8px}.c-header__flush{margin:0-8px}.c-header__visually-hidden{border:0;clip:rect(0,0,0,0);height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;cursor:pointer;margin:0;position:relative;text-decoration:none;font-family:sans-serif;font-size:1rem;justify-content:center;transition:.25s ease,color .25s ease,border-color .25s ease;border-radius:2px;background-image:none;display:flex;width:100%;border:1px solid #fff;color:#fff;background-color:transparent;line-height:1.15;padding:8px 16px}.u-button svg{fill:currentColor}.c-header__search-button:visited{color:#069}.c-header__search-button:hover{border:1px solid #069}.c-header__search-button:focus{border:1px solid #069}.c-header__search-button:focus,.c-header__search-button:hover{background-image:none;background-color:#fff;color:#000}.c-header__input,.c-header__select{padding:8px 16px;border:1px solid;border-radius:3px;font-size:1rem;width:100%;box-sizing:border-box}.c-header__select{display:block;min-width:150px;max-width:100%;margin:0;box-shadow:0 1px 0 1px rgba(0,0,0,.04);-webkit-appearance:none;-moz-appearance:none;background-image:url(data:image/svg+xml,%3Csvg\ height=\'16\'\ viewBox=\'0\ 0\ 16\ 16\'\ width=\'16\'\ xmlns=\'http://www.w3.org/2000/svg\'%3E%3Cpath\ d=\'m5.58578644\ 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927\ 0-1.41421356s1.02368927-.39052429\ 1.41421356\ 0l4\ 4c.39052429.39052429.39052429\ 1.02368927\ 0\ 1.41421356l-4\ 4c-.39052429.39052429-1.02368927.39052429-1.41421356\ 0s-.39052429-1.02368927\ 0-1.41421356z\'\ fill=\'%23333\'\ fill-rule=\'evenodd\'\ transform=\'matrix\(0\ 1\ -1\ 0\ 11\ 3\)\'/%3E%3C/svg%3E);background-repeat:no-repeat;background-position:right .7em top 50%;background-size:1em auto}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}}.u-button{align-items:center;cursor:pointer;margin:0;position:relative;text-decoration:none;font-family:sans-serif;font-size:1rem;line-height:1.3;transition:.25s ease,color .25s ease,border-color .25s ease;border-radius:2px}.u-button,.u-button:visited{color:#069}.u-button,.u-button:hover{border:1px solid #069}.u-button:focus{border:1px solid #069}.u-button:focus,.u-button:hover{color:#fff;background-color:#069;background-image:none}.u-button--primary{color:#fff;background-color:#069;background-image:none}.u-button--primary:visited{color:#fff}.u-button--primary,.u-button--primary:hover{border:1px solid #069}.u-button--primary:focus{border:1px solid #069}.u-button--primary:focus,.u-button--primary:hover{color:#069;background-color:#fff;background-image:none}.u-button--disabled,.u-button:disabled{color:#222;background-color:transparent;background-image:none;border:1px solid #eee;opacity:.7;cursor:default}.u-button--disabled svg,.u-button:disabled svg{fill:currentColor}.u-button--disabled:visited,.u-button:disabled:visited{color:#222}.u-button--disabled:hover,.u-button:disabled:hover{border:1px solid #eee;text-decoration:none}.u-button--disabled:focus,.u-button:disabled:focus{border:1px solid #eee;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{color:#222;background-color:transparent;background-image:none}.u-button--full-width{display:flex;width:100%}.u-hide{display:none;visibility:hidden}.js .u-js-hide:first-child+*,.u-hide:first-child+*{-webkit-margin-before:0;margin-block-start:0}.u-visually-hidden{border:0;clip:rect(0,0,0,0);height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.js .u-js-hide-at-lg:first-child+*,.u-hide-at-lg:first-child+*{-webkit-margin-before:0;margin-block-start:0}}.u-clearfix::after,.u-clearfix::before{content:"";display:table}.u-clearfix::after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentColor;transform:translate(0,0);display:inline-block;vertical-align:text-top;width:1em;height:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-text-right{text-align:right}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-display-flex{display:flex;width:100%}.u-flex-wrap{flex-wrap:wrap}.u-justify-content-space-between{justify-content:space-between}.u-flex-shrink{flex:0 1 auto}.u-ma-0{margin:0}.u-mt-0{margin-top:0}.u-mt-16{margin-top:16px}.u-mt-32{margin-top:32px}.u-mb-16{margin-bottom:16px}.u-mb-32{margin-bottom:32px}html *,html ::after,html ::before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-header__link{text-decoration:inherit}.c-footer a:hover,.c-header__link:hover,.c-site-messages .c-site-messages__close:hover,.nature-briefing-banner__checkbox-label a:hover{text-decoration:underline}.c-site-messages .c-site-messages__close{background-image:url(data:image/svg+xml;charset=utf-8,%3Csvg%20width%3D\'21\'%20height%3D\'21\'%20xmlns%3D\'http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg\'%20aria-labelledby%3D\'close\'%20role%3D\'img\'%3E%3Ctitle%20id%3D\'title\'%3EClose%20button%20icon%3C%2Ftitle%3E%3Cpath%20d%3D\'M10.5%2012.621l2.727%202.727%201.06%201.06%202.122-2.12-1.06-1.061L12.62%2010.5l2.727-2.727%201.06-1.06-2.12-2.122-1.061%201.06L10.5%208.38l-2.69-2.69-1.06-1.06L4.629%206.75l1.06%201.06%202.69%202.69-2.69%202.69-1.06%201.06%202.121%202.121%201.06-1.06%202.69-2.69zm0%208.379C4.701%2021%200%2016.299%200%2010.5S4.701%200%2010.5%200%2021%204.701%2021%2010.5%2016.299%2021%2010.5%2021z\'%20fill%3D\'%23fff\'%20fill-rule%3D\'evenodd\'%2F%3E%3C%2Fsvg%3E),none;background-position:100% 50%;background-repeat:no-repeat;background-size:16px;padding-right:20px}.c-site-messages--nature-briefing-email-variant{padding-top:15px;padding-bottom:15px;box-sizing:border-box}.c-site-messages--nature-briefing-email-variant .visually-hidden{width:1px;height:1px;position:absolute!important;clip:rect(1px,1px,1px,1px)}.c-site-messages--nature-briefing-email-variant .sans-serif,.c-site-messages--nature-briefing-email-variant.sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI","Roboto","Oxygen-Sans","Ubuntu","Cantarell","Helvetica Neue",sans-serif}.c-site-messages--nature-briefing-email-variant .box-sizing{box-sizing:border-box}.c-site-messages--nature-briefing-email-variant .text13{font-size:.8125rem}.c-site-messages--nature-briefing-email-variant .text14{font-size:.875rem}.c-site-messages--nature-briefing-email-variant .block{display:block}.c-site-messages--nature-briefing-email-variant .strong{font-weight:700}.c-site-messages--nature-briefing-email-variant .tighten-line-height{line-height:1.4}.c-site-messages--nature-briefing-email-variant .extra-tight-line-height{line-height:1.3}.c-site-messages--nature-briefing-email-variant .grid{float:left;padding-left:0!important;padding-right:0!important}.c-site-messages--nature-briefing-email-variant .grid{margin-right:3.2%}.c-site-messages--nature-briefing-email-variant .last{margin-right:0}.c-site-messages--nature-briefing-email-variant .grid-4{width:31.2%}.c-site-messages--nature-briefing-email-variant .grid-8{width:65.6%}.c-site-messages--nature-briefing-email-variant .grid-12{width:100%}.c-site-messages--nature-briefing{position:fixed;bottom:0;left:0;right:0;width:100%;box-shadow:0 0 10px 0 rgba(51,51,51,.2);transform:translateY(100%);border-bottom:none}.c-site-messages--nature-briefing .c-site-messages__close{border:0;padding:0}.c-site-messages--nature-briefing .c-site-messages__close-container{text-align:right;display:inline-block}.c-site-messages--nature-briefing .c-site-messages__close-container svg{width:25px;height:25px}.c-site-messages--nature-briefing.c-site-messages .c-site-messages__close{background:0 0}@media only screen and (min-width:960px){.c-site-messages--nature-briefing.c-site-messages .c-site-messages__close{margin-top:12px}.c-site-messages--nature-briefing-email-variant.c-site-messages .c-site-messages__banner-large .c-site-messages__close{margin-top:0}}.c-site-messages__banner-large .c-site-messages__close-container{float:right;margin-top:-5px}.c-site-messages__banner-large .c-site-messages__form-container{float:none;width:100%}@media only screen and (min-width:768px){.c-site-messages__banner-large .c-site-messages__close-container{width:30px}.c-site-messages__banner-large .c-site-messages__form-container{float:left;width:calc(100% - 30px)}}.c-site-messages--nature-briefing .c-site-messages__close{vertical-align:top}.c-site-messages__banner-small .c-site-messages__content{display:inline-block;width:89%}.c-site-messages__banner-small .c-site-messages__close-container{display:inline-block}.c-site-messages--nature-briefing .nature-briefing__link{text-align:center;text-transform:none;white-space:normal;font-weight:400;letter-spacing:.5px;padding:10px 15px;display:inline-block;margin-top:10px}@media only screen and (min-width:960px){.c-site-messages--nature-briefing .nature-briefing__link{margin-left:15px;margin-top:0}}.c-site-messages--is-visible .icon--inline path,.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__close-container:hover .c-site-messages__close svg path{fill:#069}.c-site-messages--nature-briefing .c-site-messages__close{color:#069}.nature-briefing-banner__email-input{border-color:#222}.nature-briefing-banner__checkbox-label{cursor:pointer;position:relative;padding-left:33px;max-width:467px}.nature-briefing-banner__checkbox-label:before{content:"";position:absolute;top:6px;left:0;width:24px;height:24px;border:1px solid currentColor;border-radius:0;background:#fff}.nature-briefing-banner__checkbox-label:after{content:"";position:absolute;top:12px;left:5px;width:14px;height:7px;transform:rotate(-45deg);border:solid;border-width:0 0 2px 2px;border-top-color:transparent;opacity:0;background:0 0}.nature-briefing-banner__checkbox-checkbox{font-size:20px;cursor:pointer;position:absolute;z-index:1;top:4px;left:-2px;width:28px;height:28px;margin:0;opacity:0}.nature-briefing-banner__checkbox-checkbox:checked+.nature-briefing-banner__checkbox-label:after{opacity:1}.nature-briefing-banner__checkbox-checkbox:focus+.nature-briefing-banner__checkbox-label:before,.nature-briefing-banner__submit-button:focus{outline:3px solid #fece3e}.nature-briefing-banner__submit-button{background:#069;color:#fff;text-align:center}.nature-briefing-banner__submit-button:disabled{background-color:#777;color:#fff}.nature-briefing-banner__checkbox-label a{transition:color 1s ease-in-out 1s}.c-site-messages__banner-large,.c-site-messages__banner-small{margin:0 auto;padding-left:16px;padding-right:16px}.c-site-messages__banner-large{display:none;max-width:1280px}.c-site-messages__banner-large:after,.c-site-messages__banner-large:before{content:" ";display:table}.c-site-messages__banner-large:after{clear:both}.c-site-messages__banner-small{display:block}@media only screen and (min-width:641px){.c-site-messages__banner-large{display:block}.c-site-messages__banner-small{display:none}}.c-site-messages.c-site-messages--nature-briefing-redesign-2020{color:#fff;background-color:#29303b;background-repeat:no-repeat;background-position:right top;background-image:url();transition:transform .6s ease-in-out;padding-right:120px}@media only screen and (max-width:1040px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020{background-position:666px 0}}@media only screen and (max-width:870px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020{background-position:calc(85% + 374px - 120px)0;padding-right:15%}}@media only screen and (max-width:640px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020{background-position:calc(100% + 374px - 200px)0;padding-right:100px}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing__link{display:block}}@media only screen and (max-width:480px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020{background-image:none;padding-right:0}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__banner-small .c-site-messages__content{width:100%}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__banner-small .c-site-messages--nature-briefing__strapline{display:block;width:89%;margin-top:0}}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__close-container{width:25px;height:25px;position:absolute;right:10px;top:10px;background:#29303b;border-radius:12.5px;border:0}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__close-container:hover{background:#fff}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages__banner-small .c-site-messages__close-container{text-align:center}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages--nature-briefing__strapline{margin-top:10px;margin-bottom:0;font-size:.875rem}@media only screen and (min-width:1040px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages--nature-briefing__strapline{font-size:1rem}}@media only screen and (min-width:1200px){.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .c-site-messages--nature-briefing__strapline{font-size:1.125rem}}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__checkbox-label:before{border-color:transparent;border-radius:2px}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__checkbox-label:after{border-color:transparent #222 #222}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__checkbox-label a{font-weight:400;text-decoration:underline;color:#fff}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__email-label{display:block;padding-left:0}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__email-wrapper{margin-bottom:10px}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__email-input{display:inline-block;float:none;width:70%;max-width:500px;border:1px solid #fff;border-radius:2px;padding:8px 10px 7px;font-size:.9375rem;line-height:.9375rem;vertical-align:top;margin-right:1%}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__submit-button{display:inline-block;float:none;transition:none;background-color:#29303b;border-radius:2px;border:1px solid #fff;padding:8px 2%;font-size:.9375rem;line-height:.9375rem;vertical-align:top;width:15%;min-width:75px;max-width:90px}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__submit-button:hover,.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing__link:hover{color:#29303b;background-color:#fff}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing-banner__checkbox-wrapper{position:relative}.c-site-messages.c-site-messages--nature-briefing-redesign-2020 .nature-briefing__link{border:1px solid #fff;transition:none;border-radius:2px;background-color:#29303b;color:#fff}.grade-c-hide{display:block}.c-site-messages--nature-briefing{z-index:100001}.u-lazy-ad-wrapper{min-height:137px;display:none;background-color:#ccc}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-pdf-download__link{padding:13px 24px}</style>
<noscript>
<link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-912e265451.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)">
</noscript>
<meta name=msapplication-TileColor content=#000000>
<meta name=msapplication-config content=/static/browserconfig.xml>
<meta name=theme-color content=#000000>
<meta name=application-name content=Nature>
<meta name=robots content=noarchive>
<meta name=access content=Yes>
<link rel=search href=https://www.nature.com/search>
<link rel=search href=https://www.nature.com/opensearch/opensearch.xml type=application/opensearchdescription+xml title=nature.com>
<link rel=search href=https://www.nature.com/opensearch/request type=application/sru+xml title=nature.com>
<script type=application/ld+json>{"mainEntity":{"headline":"Relativistic analysis of the Michelson-Gale experimental result","description":"The result of the Michelson-Gale experiment, which shows fringe shifts by the interference between two light beams traversing a rectangular loop in opposite directions, has been nonrelativistically analyzed based on the Galilean transformation. We relativistically analyze it via the transformation under the constant light speed (TCL) and via the framework of Mansouri and Sexl (MS). The TCL provides a coordinate transformation between the isotropic frame and a rotating frame, in which the two-way speed of light is a constant c irrespective of direction on the surface that has the same radius of rotation. When using TCL, we assume that the Solar System is isotropic so that the one-way speed of light is c in it. On the contrary, considering its movement, the analysis is carried out without the assumption of isotropy based on the MS framework. The analysis results via the TCL and via the MS framework correspond to each other and are in agreement with the result of the experiment. It is shown that the difference between the travel times of the counter-propagating light beams, which results in the fringe shift, takes place due to the two factors, the anisotropy of the one-way speed of light in inertial frames and the different rotation radii at different latitudes on the Earth surface.","datePublished":"2024-04-30T00:00:00Z","dateModified":"2024-04-30T00:00:00Z","pageStart":"1","pageEnd":"8","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41598-024-60515-7","keywords":["Optical physics","Space physics","Michelson-Gale experiment","Coordinate transformation","Standard synchronization","Speed of light","Sagnac effect","Science","Humanities and Social Sciences","multidisciplinary"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-024-60515-7/MediaObjects/41598_2024_60515_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-024-60515-7/MediaObjects/41598_2024_60515_Fig2_HTML.png"],"isPartOf":{"name":"Scientific Reports","issn":["2045-2322"],"volumeNumber":"14","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Yang-Ho Choi","affiliation":[{"name":"Kangwon National University","address":{"name":"Department of Electrical and Electronic Engineering, Kangwon National University, Chunchon, South Korea","@type":"PostalAddress"},"@type":"Organization"}],"email":"yhochoi@kangwon.ac.kr","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script>
<link rel=canonical href=https://www.nature.com/articles/s41598-024-60515-7>
<meta name=journal_id content=41598>
<meta name=dc.title content="Relativistic analysis of the Michelson-Gale experimental result">
<meta name=dc.source content="Scientific Reports 2024 14:1">
<meta name=dc.format content=text/html>
<meta name=dc.publisher content="Nature Publishing Group">
<meta name=dc.date content=2024-04-30>
<meta name=dc.type content=OriginalPaper>
<meta name=dc.language content=En>
<meta name=dc.copyright content="2024 The Author(s)">
<meta name=dc.rights content="2024 The Author(s)">
<meta name=dc.rightsAgent content=journalpermissions@springernature.com>
<meta name=dc.description content="The result of the Michelson-Gale experiment, which shows fringe shifts by the interference between two light beams traversing a rectangular loop in opposite directions, has been nonrelativistically analyzed based on the Galilean transformation. We relativistically analyze it via the transformation under the constant light speed (TCL) and via the framework of Mansouri and Sexl (MS). The TCL provides a coordinate transformation between the isotropic frame and a rotating frame, in which the two-way speed of light is a constant c irrespective of direction on the surface that has the same radius of rotation. When using TCL, we assume that the Solar System is isotropic so that the one-way speed of light is c in it. On the contrary, considering its movement, the analysis is carried out without the assumption of isotropy based on the MS framework. The analysis results via the TCL and via the MS framework correspond to each other and are in agreement with the result of the experiment. It is shown that the difference between the travel times of the counter-propagating light beams, which results in the fringe shift, takes place due to the two factors, the anisotropy of the one-way speed of light in inertial frames and the different rotation radii at different latitudes on the Earth surface.">
<meta name=prism.issn content=2045-2322>
<meta name=prism.publicationName content="Scientific Reports">
<meta name=prism.publicationDate content=2024-04-30>
<meta name=prism.volume content=14>
<meta name=prism.number content=1>
<meta name=prism.section content=OriginalPaper>
<meta name=prism.startingPage content=1>
<meta name=prism.endingPage content=8>
<meta name=prism.copyright content="2024 The Author(s)">
<meta name=prism.rightsAgent content=journalpermissions@springernature.com>
<meta name=prism.url content=https://www.nature.com/articles/s41598-024-60515-7>
<meta name=prism.doi content=doi:10.1038/s41598-024-60515-7>
<meta name=citation_pdf_url content=https://www.nature.com/articles/s41598-024-60515-7.pdf>
<meta name=citation_fulltext_html_url content=https://www.nature.com/articles/s41598-024-60515-7>
<meta name=citation_journal_title content="Scientific Reports">
<meta name=citation_journal_abbrev content="Sci Rep">
<meta name=citation_publisher content="Nature Publishing Group">
<meta name=citation_issn content=2045-2322>
<meta name=citation_title content="Relativistic analysis of the Michelson-Gale experimental result">
<meta name=citation_volume content=14>
<meta name=citation_issue content=1>
<meta name=citation_online_date content=2024/04/30>
<meta name=citation_firstpage content=1>
<meta name=citation_lastpage content=8>
<meta name=citation_article_type content=Article>
<meta name=citation_fulltext_world_readable content>
<meta name=citation_language content=en>
<meta name=dc.identifier content=doi:10.1038/s41598-024-60515-7>
<meta name=DOI content=10.1038/s41598-024-60515-7>
<meta name=size content=434761>
<meta name=citation_doi content=10.1038/s41598-024-60515-7>
<meta name=citation_springer_api_url content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41598-024-60515-7&amp;api_key=">
<meta name=description content="The result of the Michelson-Gale experiment, which shows fringe shifts by the interference between two light beams traversing a rectangular loop in opposite directions, has been nonrelativistically analyzed based on the Galilean transformation. We relativistically analyze it via the transformation under the constant light speed (TCL) and via the framework of Mansouri and Sexl (MS). The TCL provides a coordinate transformation between the isotropic frame and a rotating frame, in which the two-way speed of light is a constant c irrespective of direction on the surface that has the same radius of rotation. When using TCL, we assume that the Solar System is isotropic so that the one-way speed of light is c in it. On the contrary, considering its movement, the analysis is carried out without the assumption of isotropy based on the MS framework. The analysis results via the TCL and via the MS framework correspond to each other and are in agreement with the result of the experiment. It is shown that the difference between the travel times of the counter-propagating light beams, which results in the fringe shift, takes place due to the two factors, the anisotropy of the one-way speed of light in inertial frames and the different rotation radii at different latitudes on the Earth surface.">
<meta name=dc.creator content="Choi, Yang-Ho">
<meta name=dc.subject content="Optical physics">
<meta name=dc.subject content="Space physics">
<meta name=citation_reference content="citation_journal_title=Astrophys. J.; citation_title=The effect of the Earths rotation on the velocity of light: Part I, part II; citation_author=AA Michelson, HG Gale; citation_volume=61; citation_publication_date=1925; citation_pages=137; citation_doi=10.1086/142878; citation_id=CR1">
<meta name=citation_reference content="citation_journal_title=Am. J. Sci.; citation_title=On the relative motion of the Earth and the luminiferous ether; citation_author=AA Michelson, EW Morley; citation_volume=34; citation_publication_date=1887; citation_pages=333; citation_doi=10.2475/ajs.s3-34.203.333; citation_id=CR2">
<meta name=citation_reference content="citation_journal_title=Found. Phys.; citation_title=Relativistic rotation: A comparison of theories; citation_author=RD Klauber; citation_volume=37; citation_publication_date=2007; citation_pages=198; citation_doi=10.1007/s10701-006-9099-z; citation_id=CR3">
<meta name=citation_reference content="citation_title=Relativity in Rotating Frames; citation_publication_date=2004; citation_id=CR4; citation_publisher=Kluwer Academic">
<meta name=citation_reference content="citation_journal_title=J. Korean Phys. Soc.; citation_title=Uniqueness of the isotropic frame and usefulness of the Lorentz transformation; citation_author=Y-H Choi; citation_volume=72; citation_issue=10; citation_publication_date=2018; citation_pages=1110; citation_doi=10.3938/jkps.72.1110; citation_id=CR5">
<meta name=citation_reference content="citation_journal_title=Phys. Essays; citation_title=The Michelson-Gale experiment and its effect on the postulates on the velocity of light; citation_author=P Moon, DE Spencer, EE Moon; citation_volume=3; citation_issue=3; citation_publication_date=1990; citation_pages=421; citation_doi=10.4006/1.3033458; citation_id=CR6">
<meta name=citation_reference content="citation_journal_title=Comptes Rendus Phys.; citation_title=The Sagnac effect and its interpretation by Paul Langevin; citation_author=G Pascoli; citation_volume=18; citation_issue=910; citation_publication_date=2017; citation_pages=563-569; citation_doi=10.1016/j.crhy.2017.10.010; citation_id=CR7">
<meta name=citation_reference content="citation_journal_title=J. Korean Phys. Soc.; citation_title=Consistent coordinate transformation for relativistic circular motion and speeds of light; citation_author=Y-H Choi; citation_volume=75; citation_issue=3; citation_publication_date=2019; citation_pages=176; citation_doi=10.3938/jkps.75.176; citation_id=CR8">
<meta name=citation_reference content="citation_journal_title=Gen. Relativ. Gravit.; citation_title=A test theory of special relativity: I. Simultaneity and clock synchronization; citation_author=R Mansouri, RU Sexl; citation_volume=8; citation_issue=7; citation_publication_date=1977; citation_pages=497; citation_doi=10.1007/BF00762634; citation_id=CR9">
<meta name=citation_reference content="citation_journal_title=Phys. Rev. A; citation_title=Generalized Sagnac-Wang-Fizeau formula; citation_author=A Ori, JE Avron; citation_volume=94; citation_issue=6; citation_publication_date=2016; citation_pages=063837; citation_doi=10.1103/PhysRevA.94.063837; citation_id=CR10">
<meta name=citation_reference content="citation_journal_title=Can. J. Phys.; citation_title=Theoretical analysis of generalized Sagnac effect in the standard synchronization; citation_author=Y-H Choi; citation_volume=95; citation_issue=8; citation_publication_date=2017; citation_pages=761; citation_doi=10.1139/cjp-2016-0953; citation_id=CR11">
<meta name=citation_reference content="citation_journal_title=Phys. Rev. Lett.; citation_title=Generalized Sagnac effect; citation_author=R Wang, Y Zheng, A Yao; citation_volume=93; citation_publication_date=2004; citation_pages=143901; citation_doi=10.1103/PhysRevLett.93.143901; citation_id=CR12">
<meta name=citation_reference content="citation_journal_title=Phys. Lett. A; citation_title=Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber; citation_author=R Wang, Y Zheng, A Yao, D Langley; citation_volume=312; citation_publication_date=2003; citation_pages=7; citation_doi=10.1016/S0375-9601(03)00575-9; citation_id=CR13">
<meta name=citation_reference content="citation_journal_title=Am. J. Phys.; citation_title=Sagnac effect and pure geometry; citation_author=A Tartaglia, ML Ruggiero; citation_volume=83; citation_issue=5; citation_publication_date=2015; citation_pages=427-432; citation_doi=10.1119/1.4904319; citation_id=CR14">
<meta name=citation_reference content="citation_journal_title=Open Phys.; citation_title=Multiple velocity composition in the standard synchronization; citation_author=Y-H Choi; citation_volume=20; citation_issue=1; citation_publication_date=2022; citation_pages=155; citation_doi=10.1515/phys-2022-0017; citation_id=CR15">
<meta name=citation_reference content="citation_journal_title=C. R. Acad. Sci.; citation_title=The demonstration of the luminiferous ether by an interferometer in uniform rotation; citation_author=MG Sagnac; citation_volume=157; citation_publication_date=1913; citation_pages=708; citation_id=CR16">
<meta name=citation_reference content="citation_journal_title=Eur. Phys. J. Plus; citation_title=Coordinate transformation between rotating and inertial systems under the constant two-way speed of light; citation_author=Y-H Choi; citation_volume=131; citation_issue=9; citation_publication_date=2016; citation_pages=296; citation_doi=10.1140/epjp/i2016-16296-x; citation_id=CR17">
<meta name=citation_reference content="citation_journal_title=Rev. Mod. Phys.; citation_title=Sagnac effect; citation_author=EJ Post; citation_volume=39; citation_publication_date=1967; citation_pages=475; citation_doi=10.1103/RevModPhys.39.475; citation_id=CR18">
<meta name=citation_author content="Choi, Yang-Ho">
<meta name=citation_author_institution content="Department of Electrical and Electronic Engineering, Kangwon National University, Chunchon, South Korea">
<meta name=access_endpoint content=https://www.nature.com/platform/readcube-access>
<meta name=twitter:site content=@SciReports>
<meta name=twitter:card content=summary_large_image>
<meta name=twitter:image:alt content="Content cover image">
<meta name=twitter:title content="Relativistic analysis of the Michelson-Gale experimental result">
<meta name=twitter:description content="Scientific Reports - Relativistic analysis of the Michelson-Gale experimental result">
<meta name=twitter:image content=https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41598-024-60515-7/MediaObjects/41598_2024_60515_Fig1_HTML.png>
<meta property=og:url content=https://www.nature.com/articles/s41598-024-60515-7>
<meta property=og:type content=article>
<meta property=og:site_name content=Nature>
<meta property=og:title content="Relativistic analysis of the Michelson-Gale experimental result - Scientific Reports">
<meta property=og:image content=https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41598-024-60515-7/MediaObjects/41598_2024_60515_Fig1_HTML.png>
<meta itemprop=position content=1 class=sf-hidden><meta itemprop=position content=2 class=sf-hidden><meta itemprop=position content=3 class=sf-hidden><meta itemprop=position content=4 class=sf-hidden><meta itemprop=publisher content="Springer Nature" class=sf-hidden><link rel=icon type=image/png sizes=48x48 href=""><style>.sf-hidden{display:none!important}</style><meta http-equiv=content-security-policy content="default-src 'none'; font-src 'self' data:; img-src 'self' data:; style-src 'unsafe-inline'; media-src 'self' data:; script-src 'unsafe-inline' data:; object-src 'self' data:;"><style>img[src="data:,"],source[src="data:,"]{display:none!important}</style></head>
<body class=article-page>
<noscript class=sf-hidden><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" style="display:none;visibility:hidden" width="0" height="0"></iframe></noscript>
<div class="position-relative cleared z-index-50 background-white" data-test=top-containers>
<a class=c-skip-link href=#content>Skip to main content</a>
<div class="c-grade-c-banner u-hide">
<div class=c-grade-c-banner__container>
<p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.</p>
</div>
</div>
<div class="u-lazy-ad-wrapper u-mbs-0">
<div class=deferred-placeholder data-replace=true data-placeholder="/placeholder/v1/institutionalBanner?bpids=[bpids] #institutional-banner-container"></div>
<aside class="c-ad c-ad--728x90">
<div class=c-ad__inner data-container-type=banner-advert>
<p class=c-ad__label>Advertisement</p>
<div id=div-gpt-ad-top-1 class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type=top data-test=top-ad data-pa11y-ignore data-gpt data-gpt-unitpath=/285/scientific_reports/article data-gpt-sizes=728x90 data-gpt-targeting="type=article;pos=top;artid=s41598-024-60515-7;doi=10.1038/s41598-024-60515-7;subjmeta=400,525,639,766;kwrd=Optical+physics,Space+physics">
<noscript class=sf-hidden>
<a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/scientific_reports/article&amp;sz=728x90&amp;c=-375338952&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41598-024-60515-7%26doi%3D10.1038/s41598-024-60515-7%26subjmeta%3D400,525,639,766%26kwrd%3DOptical+physics,Space+physics">
<img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/scientific_reports/article&amp;sz=728x90&amp;c=-375338952&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41598-024-60515-7%26doi%3D10.1038/s41598-024-60515-7%26subjmeta%3D400,525,639,766%26kwrd%3DOptical+physics,Space+physics" alt="Advertisement" width="728" height="90"></a>
</noscript>
</div>
</div>
</aside>
</div>
<header class=c-header id=header data-header data-track-component=nature-150-split-header style=border-color:#cedde4>
<div class=c-header__row>
<div class=c-header__container>
<div class=c-header__split>
<div class=c-header__logo-container>
<a href=https://www.nature.com/srep data-track=click data-track-action=home data-track-label=image>
<picture class=c-header__logo>
<img src= alt="Scientific Reports" srcset sizes height=32>
</picture>
</a>
</div>
<ul class="c-header__menu c-header__menu--global">
<li class="c-header__item c-header__item--padding c-header__item--hide-md-max">
<a class=c-header__link href=https://www.nature.com/siteindex data-test=siteindex-link data-track=click data-track-action="open nature research index" data-track-label=link>
<span>View all journals</span>
</a>
</li>
<li class="c-header__item c-header__item--padding c-header__item--pipe">
<a class="c-header__link c-header__link--search" href=#search-menu data-header-expander data-test=search-link data-track=click data-track-action="open search tray" data-track-label=button>
<svg role=img aria-hidden=true focusable=false height=22 width=22 viewBox="0 0 18 18" xmlns=http://www.w3.org/2000/svg><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"></path></svg><span>Search</span>
</a>
</li>
<li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe">
<a class="c-header__link eds-c-header__link" id=identity-account-widget href="https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41598-024-60515-7"><span class=eds-c-header__widget-fragment-title>Log in</span></a>
</li>
</ul>
</div>
</div>
</div>
<div class=c-header__row>
<div class=c-header__container data-test=navigation-row>
<div class=c-header__split>
<ul class="c-header__menu c-header__menu--journal">
<li class="c-header__item c-header__item--dropdown-menu" data-test=explore-content-button>
<a href=#explore class=c-header__link data-header-expander data-test=menu-button--explore data-track=click data-track-action="open explore expander" data-track-label=button>
<span><span class=c-header__show-text>Explore</span> content</span><svg role=img aria-hidden=true focusable=false height=16 viewBox="0 0 16 16" width=16 xmlns=http://www.w3.org/2000/svg><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"></path></svg>
</a>
</li>
<li class="c-header__item c-header__item--dropdown-menu">
<a href=#about-the-journal class=c-header__link data-header-expander data-test=menu-button--about-the-journal data-track=click data-track-action="open about the journal expander" data-track-label=button>
<span>About <span class=c-header__show-text>the journal</span></span><svg role=img aria-hidden=true focusable=false height=16 viewBox="0 0 16 16" width=16 xmlns=http://www.w3.org/2000/svg><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"></path></svg>
</a>
</li>
<li class="c-header__item c-header__item--dropdown-menu" data-test=publish-with-us-button>
<a href=#publish-with-us class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test=menu-button--publish data-track=click data-track-action="open publish with us expander" data-track-label=button>
<span>Publish <span class=c-header__show-text>with us</span></span><svg role=img aria-hidden=true focusable=false height=16 viewBox="0 0 16 16" width=16 xmlns=http://www.w3.org/2000/svg><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"></path></svg>
</a>
</li>
</ul>
<ul class="c-header__menu c-header__menu--hide-lg-max">
<li class=c-header__item>
<a class=c-header__link href="https://idp.nature.com/auth/personal/springernature?redirect_uri=https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D288%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fsrep%252F" rel=nofollow data-track=click data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external>
<span>Sign up for alerts</span><svg role=img aria-hidden=true focusable=false height=18 viewBox="0 0 18 18" width=18 xmlns=http://www.w3.org/2000/svg><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill=#222></path></svg>
</a>
</li>
<li class="c-header__item c-header__item--pipe">
<a class=c-header__link href=https://www.nature.com/srep.rss data-track=click data-track-action="rss feed" data-track-label=link>
<span>RSS feed</span>
</a>
</li>
</ul>
</div>
</div>
</div>
</header>
<nav class=u-mb-16 aria-label=breadcrumbs>
<div class=u-container>
<ol class=c-breadcrumbs itemscope itemtype=https://schema.org/BreadcrumbList>
<li class=c-breadcrumbs__item id=breadcrumb0 itemprop=itemListElement itemscope itemtype=https://schema.org/ListItem><a class=c-breadcrumbs__link href=https://www.nature.com/ itemprop=item data-track=click data-track-action=breadcrumb data-track-category=header data-track-label=link:nature><span itemprop=name>nature</span></a>
<svg class=c-breadcrumbs__chevron role=img aria-hidden=true focusable=false height=10 viewBox="0 0 10 10" width=10 xmlns=http://www.w3.org/2000/svg>
<path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill=#666 fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path>
</svg>
<li class=c-breadcrumbs__item id=breadcrumb1 itemprop=itemListElement itemscope itemtype=https://schema.org/ListItem><a class=c-breadcrumbs__link href=https://www.nature.com/srep itemprop=item data-track=click data-track-action=breadcrumb data-track-category=header data-track-label="link:scientific reports"><span itemprop=name>scientific reports</span></a>
<svg class=c-breadcrumbs__chevron role=img aria-hidden=true focusable=false height=10 viewBox="0 0 10 10" width=10 xmlns=http://www.w3.org/2000/svg>
<path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill=#666 fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path>
</svg>
<li class=c-breadcrumbs__item id=breadcrumb2 itemprop=itemListElement itemscope itemtype=https://schema.org/ListItem><a class=c-breadcrumbs__link href="https://www.nature.com/srep/articles?type=article" itemprop=item data-track=click data-track-action=breadcrumb data-track-category=header data-track-label=link:articles><span itemprop=name>articles</span></a>
<svg class=c-breadcrumbs__chevron role=img aria-hidden=true focusable=false height=10 viewBox="0 0 10 10" width=10 xmlns=http://www.w3.org/2000/svg>
<path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill=#666 fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path>
</svg>
<li class=c-breadcrumbs__item id=breadcrumb3 itemprop=itemListElement itemscope itemtype=https://schema.org/ListItem>
<span itemprop=name>article</span></li>
</ol>
</div>
</nav>
</div>
<div class="u-container u-mt-32 u-mb-32 u-clearfix" id=content data-component=article-container data-container-type=article>
<main class="c-article-main-column u-float-left js-main-column" data-track-component="article body">
<div class="c-context-bar u-hide" data-test=context-bar data-context-bar aria-hidden=true>
<div class="c-context-bar__container u-container">
<div class=c-context-bar__title>
Relativistic analysis of the Michelson-Gale experimental result
</div>
<div class="c-pdf-download u-clear-both js-pdf-download">
<a href=https://www.nature.com/articles/s41598-024-60515-7.pdf class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf=true data-readcube-pdf-url=true data-test=download-pdf data-draft-ignore=true data-track=click data-track-action="download pdf" data-track-label=link data-track-external download>
<span class=c-pdf-download__text>Download PDF</span>
<svg aria-hidden=true focusable=false width=16 height=16 class=u-icon><use xlink:href=#icon-download></use></svg>
</a>
</div>
</div>
</div>
<article lang=en>
<div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile">
<div class=c-pdf-container>
<div class="c-pdf-download u-clear-both js-pdf-download">
<a href=https://www.nature.com/articles/s41598-024-60515-7.pdf class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf=true data-readcube-pdf-url=true data-test=download-pdf data-draft-ignore=true data-track=click data-track-action="download pdf" data-track-label=link data-track-external download>
<span class=c-pdf-download__text>Download PDF</span>
<svg aria-hidden=true focusable=false width=16 height=16 class=u-icon><use xlink:href=#icon-download></use></svg>
</a>
</div>
</div>
</div>
<div class=c-article-header>
<header>
<ul class=c-article-identifiers data-test=article-identifier>
<li class=c-article-identifiers__item data-test=article-category>Article</li>
<li class=c-article-identifiers__item>
<a href=https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research data-track=click data-track-action="open access" data-track-label=link class=u-color-open-access data-test=open-access>Open access</a>
</li>
<li class=c-article-identifiers__item>Published: <time datetime=2024-04-30>30 April 2024</time></li>
</ul>
<h1 class=c-article-title data-test=article-title data-article-title>Relativistic analysis of the Michelson-Gale experimental result</h1>
<ul class="c-article-author-list c-article-author-list--short" data-test=authors-list data-component-authors-activator=authors-list><li class=c-article-author-list__item><a data-test=author-name data-track=click data-track-action="open author" data-track-label=link href=#auth-Yang_Ho-Choi-Aff1 data-author-popup=auth-Yang_Ho-Choi-Aff1 data-author-search="Choi, Yang-Ho" data-corresp-id=c1>Yang-Ho Choi<svg width=16 height=16 focusable=false role=img aria-hidden=true class=u-icon><use xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=#icon-eds-i-mail-medium></use></svg></a><sup class=u-js-hide><a href=#Aff1>1</a></sup>&nbsp;</ul>
<p class=c-article-info-details data-container-section=info>
<a data-test=journal-link href=https://www.nature.com/srep data-track=click data-track-action="journal homepage" data-track-category="article body" data-track-label=link><i data-test=journal-title>Scientific Reports</i></a>
<b data-test=journal-volume><span class=u-visually-hidden>volume</span>&nbsp;14</b>, Article&nbsp;number:&nbsp;<span data-test=article-number>9956</span> (<span data-test=article-publication-year>2024</span>)
<a href=#citeas class="c-article-info-details__cite-as u-hide-print" data-track=click data-track-action="cite this article" data-track-label=link>Cite this article</a>
</p>
<div class="c-article-metrics-bar__wrapper u-clear-both">
<ul class="c-article-metrics-bar u-list-reset">
<li class=c-article-metrics-bar__item>
<p class=c-article-metrics-bar__count>1049 <span class=c-article-metrics-bar__label>Accesses</span></p>
</li>
<li class=c-article-metrics-bar__item>
<p class=c-article-metrics-bar__details><a href=https://www.nature.com/articles/s41598-024-60515-7/metrics data-track=click data-track-action="view metrics" data-track-label=link rel=nofollow>Metrics <span class=u-visually-hidden>details</span></a></p>
</li>
</ul>
</div>
</header>
<div class=u-js-hide data-component=article-subject-links>
<h3 class=c-article__sub-heading>Subjects</h3>
<ul class=c-article-subject-list>
<li class=c-article-subject-list__subject><a href=https://www.nature.com/subjects/optical-physics data-track=click data-track-action="view subject" data-track-label=link>Optical physics</a><li class=c-article-subject-list__subject><a href=https://www.nature.com/subjects/space-physics data-track=click data-track-action="view subject" data-track-label=link>Space physics</a></li>
</ul>
</div>
</div>
<div class=c-article-body>
<section aria-labelledby=Abs1 data-title=Abstract lang=en><div class=c-article-section id=Abs1-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Abs1>Abstract</h2><div class=c-article-section__content id=Abs1-content><p>The result of the Michelson-Gale experiment, which shows fringe shifts by the interference between two light beams traversing a rectangular loop in opposite directions, has been nonrelativistically analyzed based on the Galilean transformation. We relativistically analyze it via the transformation under the constant light speed (TCL) and via the framework of Mansouri and Sexl (MS). The TCL provides a coordinate transformation between the isotropic frame and a rotating frame, in which the two-way speed of light is a constant <i>c</i> irrespective of direction on the surface that has the same radius of rotation. When using TCL, we assume that the Solar System is isotropic so that the one-way speed of light is <i>c</i> in it. On the contrary, considering its movement, the analysis is carried out without the assumption of isotropy based on the MS framework. The analysis results via the TCL and via the MS framework correspond to each other and are in agreement with the result of the experiment. It is shown that the difference between the travel times of the counter-propagating light beams, which results in the fringe shift, takes place due to the two factors, the anisotropy of the one-way speed of light in inertial frames and the different rotation radii at different latitudes on the Earth surface.</p></div></div></section>
<noscript class=sf-hidden>
</noscript>
<section aria-labelledby=inline-recommendations data-title="Inline Recommendations" class=c-article-recommendations data-track-component=inline-recommendations>
<h3 class=c-article-recommendations-title id=inline-recommendations>Similar content being viewed by others</h3>
<div class=c-article-recommendations-list>
<div class=c-article-recommendations-list__item>
<article class=c-article-recommendations-card itemscope itemtype=http://schema.org/ScholarlyArticle>
<div class=c-article-recommendations-card__img><img src="" loading=lazy alt></div>
<div class=c-article-recommendations-card__main>
<h3 class=c-article-recommendations-card__heading itemprop="name headline">
<a class=c-article-recommendations-card__link itemprop=url href="https://www.nature.com/articles/s41586-024-07315-1?fromPaywallRec=false" data-track=click data-track-action="click recommendations inline - 1" data-track-label=10.1038/s41586-024-07315-1>The solar dynamo begins near the surface
</a>
</h3>
<div class=c-article-meta-recommendations>
<span class=c-article-meta-recommendations__item-type>Article</span>
<span class=c-article-meta-recommendations__access-type>Open access</span>
<span class=c-article-meta-recommendations__date>22 May 2024</span>
</div>
</div>
</article>
</div>
<div class=c-article-recommendations-list__item>
<article class=c-article-recommendations-card itemscope itemtype=http://schema.org/ScholarlyArticle>
<div class=c-article-recommendations-card__img><img src="" loading=lazy alt></div>
<div class=c-article-recommendations-card__main>
<h3 class=c-article-recommendations-card__heading itemprop="name headline">
<a class=c-article-recommendations-card__link itemprop=url href="https://www.nature.com/articles/s41550-024-02277-w?fromPaywallRec=false" data-track=click data-track-action="click recommendations inline - 2" data-track-label=10.1038/s41550-024-02277-w>An emission-state-switching radio transient with a 54-minute period
</a>
</h3>
<div class=c-article-meta-recommendations>
<span class=c-article-meta-recommendations__item-type>Article</span>
<span class=c-article-meta-recommendations__access-type>Open access</span>
<span class=c-article-meta-recommendations__date>05 June 2024</span>
</div>
</div>
</article>
</div>
<div class=c-article-recommendations-list__item>
<article class=c-article-recommendations-card itemscope itemtype=http://schema.org/ScholarlyArticle>
<div class=c-article-recommendations-card__img><img src= loading=lazy alt></div>
<div class=c-article-recommendations-card__main>
<h3 class=c-article-recommendations-card__heading itemprop="name headline">
<a class=c-article-recommendations-card__link itemprop=url href="https://www.nature.com/articles/s41550-024-02278-9?fromPaywallRec=false" data-track=click data-track-action="click recommendations inline - 3" data-track-label=10.1038/s41550-024-02278-9>Multi-source connectivity as the driver of solar wind variability in the heliosphere
</a>
</h3>
<div class=c-article-meta-recommendations>
<span class=c-article-meta-recommendations__item-type>Article</span>
<span class=c-article-meta-recommendations__access-type>Open access</span>
<span class=c-article-meta-recommendations__date>28 May 2024</span>
</div>
</div>
</article>
</div>
</div>
</section>
<div class=main-content>
<section data-title=Introduction><div class=c-article-section id=Sec1-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec1>Introduction</h2><div class=c-article-section__content id=Sec1-content><p>Michelson had shown a great passion to search for the luminiferous ether. He continued his efforts in the Michelson-Gale (MG) experiment<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 1" title="Michelson, A. A. &amp; Gale, H. G. The effect of the Earths rotation on the velocity of light: Part I, part II. Astrophys. J. 61, 137 (1925)." href=#ref-CR1 id=ref-link-section-d263354249e314>1</a></sup>, more than 35&nbsp;years after the null result in the famous Michelson-Morley (MM) experiment<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 2" title="Michelson, A. A. &amp; Morley, E. W. On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. 34, 333 (1887)." href=#ref-CR2 id=ref-link-section-d263354249e318>2</a></sup>, and at last had observed fringe shifts. The MG experiment employed a large rectangular loop with a perimeter of about 1.9&nbsp;km that two light beams traverse in opposite directions. The fringe shift is due to the difference between the travel times of the counter-propagating light beams that travel the same distance. Though nearly 100&nbsp;years have passed since then, very few relativistic analyses on the experiment result are found, which may indicate the difficulty that the special and general relativity suffers in consistently handling circular motions<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Klauber, R. D. Relativistic rotation: A comparison of theories. Found. Phys. 37, 198 (2007)." href=#ref-CR3 id=ref-link-section-d263354249e322>3</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Rizzi, G. &amp; Ruggiero, M. L. (eds) Relativity in Rotating Frames (Kluwer Academic, 2004)." href=#ref-CR4 id=ref-link-section-d263354249e322_1>4</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e325>5</a></sup>. It is stated in ref.<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 6" title="Moon, P., Spencer, D. E. &amp; Moon, E. E. The Michelson-Gale experiment and its effect on the postulates on the velocity of light. Phys. Essays 3(3), 421 (1990)." href=#ref-CR6 id=ref-link-section-d263354249e329>6</a></sup> that “an imposing list of more than a thousand books and papers on the subject of the velocity of light makes no mention of this experiment.” In ref.<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 6" title="Moon, P., Spencer, D. E. &amp; Moon, E. E. The Michelson-Gale experiment and its effect on the postulates on the velocity of light. Phys. Essays 3(3), 421 (1990)." href=#ref-CR6 id=ref-link-section-d263354249e333>6</a></sup>, the travel times of the light beams were nonrelativistically analyzed, under the assumption that the speed of light is constant regardless of direction in the Solar System. In ref.<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 7" title="Pascoli, G. The Sagnac effect and its interpretation by Paul Langevin. Comptes Rendus Phys. 18(910), 563569 (2017)." href=#ref-CR7 id=ref-link-section-d263354249e338>7</a></sup>, mentioning that the hypothesis of a dragging of the ether is not valid as an explanation about the null result, the MG experiment is invoked.<p>Circular motions can be consistently dealt with by the transformation under the constant light speed (TCL)<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e345>8</a></sup>, which provides a relativistic coordinate transformation between a uniformly rotating frame <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> and the isotropic frame <span class=mathjax-tex>\(S\)</span>. The speed of light is a constant <span class=mathjax-tex>\(c\)</span> in the isotropic frame <span class=mathjax-tex>\(S\)</span>. The two-way speed of light in <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> is <span class=mathjax-tex>\(c\)</span> on the surface that has the same rotation radius. Circular motion can be considered locally and momentarily inertial. Accordingly, a coordinate transformation between <i>S</i> and an inertial frame, which is termed the inertial transformation, can be derived from the TCL, which shows that it is consistent with the transformation between inertial frames. When the standard synchronization is employed in the inertial frame the inertial transformation becomes identical to the Lorentz transformation.<p>The Mansouri-Sexl (MS) framework<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 9" title="Mansouri, R. &amp; Sexl, R. U. A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Gravit. 8(7), 497 (1977)." href=#ref-CR9 id=ref-link-section-d263354249e480>9</a></sup>, which presupposes a privileged isotropic frame, can allow us to generally deal with motions of arbitrary direction. Under the MS framework, circular motions can also be relativistically approached<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e484>5</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e487>8</a></sup>. We analyze the travel time difference in the MG experiment via TCL and via the MS framework. In the analysis based on TCL, the Solar System is assumed to be isotropic so that it is regarded as <span class=mathjax-tex>\(S\)</span> and then the Earth can be represented as <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>. As a matter of fact, it moves in our galaxy, Milky Way, and its frame would not be isotropic. Without the assumption of isotropy, the experimental result can be investigated using the MS framework. Introducing the standard synchronization of clocks such that the speed of light appears to be isotropic in the Earth and the Solar System, we make the analysis under the unique isotropic frame. These analysis results correspond and are in agreement with the result of the experiment. It has been believed that the one-way speed of light is constant in inertial frames. However, the anisotropy of the speed of light in inertial frames has already been observed empirically in the experiments of the generalized Sagnac effect<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Ori, A. &amp; Avron, J. E. Generalized Sagnac-Wang-Fizeau formula. Phys. Rev. A 94(6), 063837 (2016)." href=#ref-CR10 id=ref-link-section-d263354249e536>10</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Choi, Y.-H. Theoretical analysis of generalized Sagnac effect in the standard synchronization. Can. J. Phys. 95(8), 761 (2017)." href=#ref-CR11 id=ref-link-section-d263354249e536_1>11</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Wang, R., Zheng, Y. &amp; Yao, A. Generalized Sagnac effect. Phys. Rev. Lett. 93, 143901 (2004)." href=#ref-CR12 id=ref-link-section-d263354249e536_2>12</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Wang, R., Zheng, Y., Yao, A. &amp; Langley, D. Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber. Phys. Lett. A 312, 7 (2003)." href=#ref-CR13 id=ref-link-section-d263354249e536_3>13</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 14" title="Tartaglia, A. &amp; Ruggiero, M. L. Sagnac effect and pure geometry. Am. J. Phys. 83(5), 427432 (2015)." href=#ref-CR14 id=ref-link-section-d263354249e539>14</a></sup>. The fringe shift in the MG experiment is shown to take place due to the anisotropy of the one-way speed of light in inertial frames and the difference in the rotation radii of the two segments, laid at different lines of latitude on the Earth surface, of the rectangular loop.</p></div></div></section><section data-title="Relativistic coordinate transformations"><div class=c-article-section id=Sec2-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec2>Relativistic coordinate transformations</h2><div class=c-article-section__content id=Sec2-content><p>The MG experimental result is relativistically analyzed under the MS framework and under the TCL. Presupposing a preferred frame <i>S</i>, the spacetime of which is isotropic so that the speed of light is <span class=mathjax-tex>\(c\)</span> in any direction, the MS framework has been derived from fundamental kinematics<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 9" title="Mansouri, R. &amp; Sexl, R. U. A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Gravit. 8(7), 497 (1977)." href=#ref-CR9 id=ref-link-section-d263354249e571>9</a></sup> and the TCL has been developed based on the Lorentz transformation<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e575>8</a></sup>. In this section, we introduce them.<h3 class=c-article__sub-heading id=Sec3>In MS framework</h3><p>We represent spacetime coordinate vectors in a complex Euclidean space where time is expressed as an imaginary number. The coordinate vector of the preferred frame <i> S</i> is denoted as <span class=mathjax-tex>\({\mathbf{p}} = [\tau ,\;x,\;y,\;z]^{T}\)</span> where <span class=mathjax-tex>\(T\)</span> stands for the transpose and <span class=mathjax-tex>\(\tau = ict\)</span> represents imaginary time. An inertial frame <span class=mathjax-tex>\(S_{k}\)</span> is in motion at a constant velocity <span class=mathjax-tex>\({\mathbf{v}}_{k}\)</span> relative to <i>S</i> and its coordinate vector is designated as <span class=mathjax-tex>\({\mathbf{p}}_{k} = [\tau_{k} ,x_{k} ,\;y_{k} ,\;z_{k} ]^{T}\)</span>. The symbol <span class=mathjax-tex>\({\varvec{\beta}}_{k}\)</span> is used to indicate the normalized velocity of <span class=mathjax-tex>\({\mathbf{v}}_{k}\)</span> with respect to <span class=mathjax-tex>\(c\)</span>, i.e. <span class=mathjax-tex>\({\varvec{\beta}}_{k} = {\mathbf{v}}_{k} /c\)</span>. For a vector <span class=mathjax-tex>\({\mathbf{q}}\)</span>, we denote its normalized vector by <span class=mathjax-tex>\({\hat{\mathbf{q}}}\)</span> and its magnitude by <span class=mathjax-tex>\(q\)</span>. For example, <span class=mathjax-tex>\(\hat{\user2{\beta }}_{k} = {\varvec{\beta}}_{k} /|{\varvec{\beta}}_{k} |\)</span> and <span class=mathjax-tex>\(\beta_{k} = \;|{\varvec{\beta}}_{k} |\)</span> where <span class=mathjax-tex>\(\;| \cdot |\)</span> designates the Euclidean norm.<p>The MS formulation includes three coefficients that have to be determined, allowing for the application of various synchronizations. We introduce the standard synchronization into <span class=mathjax-tex>\(S_{k}\)</span> and the standard-synchronized frame is denoted as <span class=mathjax-tex>\(S_{k \cdot }\)</span>. The coefficients are set according to the special theory of relativity. Then the differential coordinate vector of <i>S</i> is transformed into <span class=mathjax-tex>\(S_{k \cdot }\)</span> as<div id=Equ1 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$d{\mathbf{p}}_{k} = {\mathbf{T}}_{L} ({\varvec{\beta}}_{k} )d{\mathbf{p}},$$</span></div><div class=c-article-equation__number>
(1)
</div></div><p>where <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{k} )\)</span> is the Lorentz transformation matrix,<div id=Equ2 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$${\mathbf{T}}_{L} ({\varvec{\beta}}_{k} ) = \left[ {\begin{array}{*{20}c} {\gamma_{k} } &amp; { - i\gamma_{k} {\varvec{\beta}}_{k}^{T} } \\ {i\gamma_{k} {\varvec{\beta}}_{k} } &amp; {(\gamma_{k} - 1)\hat{\user2{\beta }}_{k} \hat{\user2{\beta }}_{k}^{T} + {\mathbf{I}}} \\ \end{array} } \right],$$</span></div><div class=c-article-equation__number>
(2)
</div></div><p>with,<div id=Equ3 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\gamma_{k} = (1 - |{\varvec{\beta}}_{k} |^{2} )^{ - 1/2} ,$$</span></div><div class=c-article-equation__number>
(3)
</div></div><p>and <span class=mathjax-tex>\({\mathbf{I}}\)</span> an identity matrix. Since <span class=mathjax-tex>\(d{\mathbf{p}} = {\mathbf{T}}_{L}^{ - 1} ({\varvec{\beta}}_{i} )d{\mathbf{p}}_{i}\)</span>, the transformation from one inertial frame <span class=mathjax-tex>\(S_{i \cdot }\)</span> to another <span class=mathjax-tex>\(S_{j \cdot }\)</span> is expressed as<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e1782>5</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 15" title="Choi, Y.-H. Multiple velocity composition in the standard synchronization. Open Phys. 20(1), 155 (2022)." href=#ref-CR15 id=ref-link-section-d263354249e1785>15</a></sup>.<div id=Equ4 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$d{\mathbf{p}}_{j} = {\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )d{\mathbf{p}}_{i} ,$$</span></div><div class=c-article-equation__number>
(4)
</div></div><p>where,<div id=Equ5 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$${\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} ) = {\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ){\mathbf{T}}_{L}^{ - 1} ({\varvec{\beta}}_{i} ).$$</span></div><div class=c-article-equation__number>
(5)
</div></div><p>It is obvious that <span class=mathjax-tex>\({\mathbf{T}}_{L}^{ - 1} ({\varvec{\beta}}_{k} ) = {\mathbf{T}}_{L}^{T} ({\varvec{\beta}}_{k} )\)</span>, which leads to <span class=mathjax-tex>\({\mathbf{T}}_{L}^{ - 1} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\, = {\mathbf{T}}_{L}^{T} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span>.<p>Proper time (PT) is independent of synchronization schemes and can be obtained in any inertial frame if relative velocity is known. We use a subscript <span class=mathjax-tex>\(\circ\)</span> in PT to distinguish it from the adjusted time (AT) through the synchronization of clocks. The PT interval is measured at the same place. From (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ1>1</a>) and (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ4>4</a>), the PT interval of an observer <span class=mathjax-tex>\(O_{j}\)</span> who is at rest in <span class=mathjax-tex>\(S_{j}\)</span> is expressed as <span class=mathjax-tex>\(d\tau_{{j^{^\circ } }} = d\tau_{i} /\gamma_{ji} = d\tau /\gamma_{j}\)</span>, which is valid even if <span class=mathjax-tex>\(i\)</span> and <span class=mathjax-tex>\(j\)</span> are interchanged.<h3 class=c-article__sub-heading id=Sec4>In TCL</h3><p>An observer <span class=mathjax-tex>\(\tilde{O^{\prime}}\)</span> is located at a radius <span class=mathjax-tex>\(r^{\prime}\)</span> in a primed rotating frame <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>, the coordinate vector of which is represented as <span class=mathjax-tex>\({\mathbf{\tilde{p}^{\prime}}}\, = [t^{\prime},\;r^{\prime},\;\tilde{\varphi^{\prime}},z^{\prime}]^{{T}}\)</span> in the cylindrical coordinate system where <span class=mathjax-tex>\(\tilde{\varphi^{\prime}}\)</span> indicates an azimuth angle. The observer is rotating at an angular velocity <span class=mathjax-tex>\(\omega\)</span> in the isotropic frame <i>S</i>, the coordinate vector of which is denoted by <span class=mathjax-tex>\({\mathbf{p}}\, = [t,\;r,\;\varphi ,z]^{T}\)</span>. In TCL, the coordinate transformation between <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> and <i>S</i> is given by,<div id=Equ6 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$t^{\prime}\, = \frac{t}{\gamma },\,r^{\prime} = \gamma {\kern 1pt} r\,,\,\tilde{\varphi^{\prime}} = \varphi - \omega \,t,\,z^{\prime} = z.$$</span></div><div class=c-article-equation__number>
(6)
</div></div><p> where <span class=mathjax-tex>\(\gamma = (1 - \beta^{2} )^{ - 1/2}\)</span> with <span class=mathjax-tex>\(\beta = r\omega /c\)</span>. The elapsed time and the radius in the primed are different from those in the unprimed. As a result, the angular velocity <span class=mathjax-tex>\(\omega^{\prime}\)</span> as seen in the primed becomes different from <span class=mathjax-tex>\(\omega\)</span>. It is convenient to introduce the primed inertial frame <span class=mathjax-tex>\(S^{\prime}\)</span> corresponding to <i>S</i> and the unprimed rotating frame <span class=mathjax-tex>\(\tilde{S}\)</span> corresponding to <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>. The coordinate transformations between <i>S</i> and <span class=mathjax-tex>\(\tilde{S}\)</span> in the unprimed and between <span class=mathjax-tex>\(S^{\prime}\)</span> and <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> in the primed are nonrelativistic Galilean. The azimuth angle <span class=mathjax-tex>\(\varphi^{\prime}\)</span> in <i>S</i> is the same as <span class=mathjax-tex>\(\varphi\)</span> in <i>S</i><sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e3173>8</a></sup>. The <span class=mathjax-tex>\(\tilde{S}\)</span> rotates at the angular velocity <span class=mathjax-tex>\(\omega\)</span> in <i>S</i> while the <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> does at the angular velocity <span class=mathjax-tex>\(\omega^{\prime}\)</span> in <span class=mathjax-tex>\(S^{\prime}\)</span>, where <span class=mathjax-tex>\(\omega^{\prime}\)</span> and <span class=mathjax-tex>\(\omega\)</span> are related by <span class=mathjax-tex>\(\omega^{\prime} = \gamma {\kern 1pt} \omega\)</span><sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e3365>8</a></sup>. It should be noted that <span class=mathjax-tex>\(r^{\prime}\)</span> is the radius seen by the observer moving with the tangential speed of <span class=mathjax-tex>\(r^{\prime}\omega^{\prime}\)</span> in <span class=mathjax-tex>\(S^{\prime}\)</span>.<p>The two-way speed of light is the constant <span class=mathjax-tex>\(c\)</span> in TCL<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e3465>8</a></sup>. In other words, when <span class=mathjax-tex>\(r^{\prime}\)</span> is fixed, the two-way speed is constant regardless of direction in TCL, which is consistent with the result of the MM experiment.</p></div></div></section><section data-title="Analysis of the MG experiment result"><div class=c-article-section id=Sec5-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec5>Analysis of the MG experiment result</h2><div class=c-article-section__content id=Sec5-content><p>We investigate the result of the MG experiment with the transformation (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>) in Subsection "<a data-track=click data-track-label=link data-track-action="section anchor" href=#Sec6>With TCL</a>", assuming that the Solar System is isotropic, and based on the MS framework without the assumption in Subsection "<a data-track=click data-track-label=link data-track-action="section anchor" href=#Sec7>Based on the MS framework</a>". Michelson had speculated about an interferometer to measure the Sagnac effect<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 16" title="Sagnac, M. G. The luminiferous ether demonstrated by the effect of the relative motion of the ether in an interferometer in uniform motion. C. R. Acad. Sci. 157, 708 (1913)." href=#ref-CR16 id=ref-link-section-d263354249e3509>16</a></sup> by the rotation of the Earth and, together with Gale and Pearson in 1925, carried out the experiment using a large rectangular loop. Figure&nbsp;<a data-track=click data-track-label=link data-track-action="figure anchor" href=#Fig1>1</a> illustrates the closed loop for the MG experiment laid on the surface of the Earth. The angular velocity of the Earth is <span class=mathjax-tex>\(\omega\)</span> as seen in the Solar System. The light source and detector are located at the same place <span class=mathjax-tex>\(P_{0}\)</span>. Two light beams emitted from the source at the same time travel along the closed loop in opposite directions. We denote by <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span> the light beams leaving the source in the horizontal and vertical directions respectively. It is assumed that <span class=mathjax-tex>\(R^{\prime}_{1} = R^{\prime}_{2}\)</span><span class=mathjax-tex>\(( = R^{\prime})\)</span> where <span class=mathjax-tex>\(R^{\prime}_{m}\)</span> is the radius of the Earth seen by an observer at the location <span class=mathjax-tex>\(P_{m}\)</span>, <span class=mathjax-tex>\(m = 1,\;2\)</span>. The polar angle is <span class=mathjax-tex>\(\alpha_{m}\)</span> at <span class=mathjax-tex>\(P_{m}\)</span> and the radius of rotation is written as,<div id=Equ7 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$r^{\prime}_{m} = R^{\prime}\sin \alpha_{m} .$$</span></div><div class=c-article-equation__number>
(7)
</div></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test=figure data-container-section=figure id=figure-1 data-title="Figure 1"><figure><figcaption><b id=Fig1 class=c-article-section__figure-caption data-test=figure-caption-text>Figure 1</b></figcaption><div class=c-article-section__figure-content><div class=c-article-section__figure-item><a class=c-article-section__figure-link data-test=img-link data-track=click data-track-label=image data-track-action="view figure" href=https://www.nature.com/articles/s41598-024-60515-7/figures/1 rel=nofollow><picture><img aria-describedby=Fig1 src="" alt="figure 1" loading=lazy srcset sizes width=685 height=559></picture></a></div><div class=c-article-section__figure-description data-test=bottom-caption id=figure-1-desc><p>Closed loop in the MG experiment.</p></div></div><div class="u-text-right u-hide-print"><a class=c-article__pill-button data-test=article-link data-track=click data-track-label=button data-track-action="view figure" href=https://www.nature.com/articles/s41598-024-60515-7/figures/1 data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel=nofollow><span>Full size image</span><svg width=16 height=16 focusable=false role=img aria-hidden=true class=u-icon><use xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=#icon-eds-i-chevron-right-small></use></svg></a></div></figure></div><p>The segments <span class=mathjax-tex>\(P_{0} P_{3}\)</span> and <span class=mathjax-tex>\(P_{1} P_{2}\)</span> have the same length of <span class=mathjax-tex>\(l^{\prime}_{h}\)</span> and <span class=mathjax-tex>\(\alpha_{1}\)</span> and <span class=mathjax-tex>\(\alpha_{2}\)</span> are related by <span class=mathjax-tex>\(\alpha_{1} = \alpha_{2} + \Delta \alpha\)</span> where <span class=mathjax-tex>\(\Delta \alpha = l^{\prime}_{h} /R^{\prime}\)</span>. The azimuthal angles that subtend the arcs <span class=mathjax-tex>\(P_{0} P_{1}\)</span> and <span class=mathjax-tex>\(P_{2} P_{3}\)</span> are equal to <span class=mathjax-tex>\(\Delta \tilde{\varphi^{\prime}}\)</span>. Their lengths are given by.<div id=Equ8 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$l^{\prime}_{wm} = r^{\prime}_{m} \Delta \tilde{\varphi^{\prime}},\,m = 1,\;2.$$</span></div><div class=c-article-equation__number>
(8)
</div></div><p>When the light beams <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span> return to the detector, their travel times are different, which brings about a fringe shift. The times that are taken for <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span> to transverse the segments <span class=mathjax-tex>\(P_{0} P_{3}\)</span> and <span class=mathjax-tex>\(P_{1} P_{2}\)</span>, by symmetry between them, are equal and thus the travel time difference results from the others. For convenience, we use <span class=mathjax-tex>\(L_{1}\)</span> and <span class=mathjax-tex>\(L_{2}\)</span> to represent the segments <span class=mathjax-tex>\(P_{0} P_{1}\)</span> and <span class=mathjax-tex>\(P_{3} P_{2}\)</span>, respectively.<h3 class=c-article__sub-heading id=Sec6>With TCL</h3><p>The Solar System is assumed to be isotropic. Our Earth and Solar System correspond to <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> and <i>S</i>, respectively. The angular velocity of <span class=mathjax-tex>\(\tilde{S}\)</span> is <span class=mathjax-tex>\(\omega\)</span> in <i>S</i> while that of <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> is <span class=mathjax-tex>\(\omega^{\prime}( = \gamma {\kern 1pt} \omega )\)</span> in <span class=mathjax-tex>\(S^{\prime}\)</span>. If we know the speeds in <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> of <span class=mathjax-tex>\(b_{ \pm }\)</span> their travel times can be calculated. The speed of light is known in <i>S</i>. Using the speed of light in <i>S</i>, we can obtain the speeds of <span class=mathjax-tex>\(b_{ \pm }\)</span> in <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>. If <span class=mathjax-tex>\(r^{\prime}\)</span> is fixed, so is <span class=mathjax-tex>\(r\)</span> and vice versa. Then the squared line element on the surface of a cylinder of radius <span class=mathjax-tex>\(r\)</span> is written in <i>S</i> as,<div id=Equ9 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$ds^{2} = - c^{2} dt^{2} + \;\;r^{2} d\varphi^{2} + dz^{2} .$$</span></div><div class=c-article-equation__number>
(9)
</div></div><p>Substituting (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>) into (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ9>9</a>) gives,<div id=Equ10 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$ds^{2} = - c^{2} (\gamma {\kern 1pt} dt^{\prime})^{2} + \;r^{{\prime}{2}} (d\tilde{\varphi^{\prime}} + \omega^{\prime}dt^{\prime})^{2} /\gamma^{2} + dz^{{\prime}{2}} .$$</span></div><div class=c-article-equation__number>
(10)
</div></div><p>The differential interval is independent of <span class=mathjax-tex>\(dr^{\prime}\)</span> since <span class=mathjax-tex>\(r^{\prime}\)</span> is fixed. Noting <span class=mathjax-tex>\(r^{\prime}\omega^{\prime} = c\gamma^{2} \beta\)</span>, (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ10>10</a>) is rewritten as,<div id=Equ11 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$ds^{2} = - (cdt^{\prime})^{2} + \;2\beta \,r^{\prime}d\tilde{\varphi^{\prime}}(cdt^{\prime}) + r^{{\prime}{2}} d\tilde{\varphi^{\prime}}^{2} /\gamma^{2} + dz^{{\prime}{2}} .$$</span></div><div class=c-article-equation__number>
(11)
</div></div><p>For light signals, <span class=mathjax-tex>\(ds\)</span> reduces to zero, which leads to,<div id=Equ12 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$cdt^{\prime} = \beta \,r^{\prime}d\tilde{\varphi^{\prime}} + dl^{\prime},$$</span></div><div class=c-article-equation__number>
(12)
</div></div><p>where <span class=mathjax-tex>\(dl^{\prime} = (r^{{\prime}{2}} d\tilde{\varphi }^{{\prime}{2}} + \;dz^{{\prime}{2}} )^{1/2}\)</span>. It can be easily shown from (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ12>12</a>) that the two-way speed is the constant <span class=mathjax-tex>\(c\)</span> irrespective of direction. Suppose that a light beam takes a round trip along a differential <span class=mathjax-tex>\(dl^{\prime}\)</span>. The sign of <span class=mathjax-tex>\(d\tilde{\varphi^{\prime}}\)</span> at one path in the round trip is reversed at the other. The round trip time is thus <span class=mathjax-tex>\(dt^{\prime}_{ \updownarrow } = 2dl^{\prime}/c\)</span>, and the two-way speed of light becomes <span class=mathjax-tex>\(c^{\prime}_{ \updownarrow } = c\)</span>. When a light beam traverses <span class=mathjax-tex>\(L_{1}\)</span> or <span class=mathjax-tex>\(L_{2}\)</span>, <span class=mathjax-tex>\(dz^{\prime}\)</span> is zero and <span class=mathjax-tex>\(dl^{\prime} = r^{\prime}|d\tilde{\varphi^{\prime}}|\)</span>. The speeds of the co-rotating and counter-rotating light beams, which are denoted by <span class=mathjax-tex>\(c^{\prime}_{ + }\)</span> and <span class=mathjax-tex>\(c^{\prime}_{ - }\)</span> respectively, are given by,<div id=Equ13 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$c^{\prime}_{ \pm } = \frac{{dl^{\prime}}}{{dt^{\prime}}} = \frac{c}{1 \pm \beta }.$$</span></div><div class=c-article-equation__number>
(13)
</div></div><p>According to the second equation of (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>), <span class=mathjax-tex>\(r^{\prime}_{m}\)</span> and <span class=mathjax-tex>\(r_{m}\)</span>, <span class=mathjax-tex>\(m = 1,\;2\)</span>, are related by <span class=mathjax-tex>\(r^{\prime}_{m} = \gamma_{m} r_{m}\)</span> with <span class=mathjax-tex>\(\gamma_{m} = (1 - \beta_{m}^{2} )^{ - 1/2}\)</span> where <span class=mathjax-tex>\(\beta_{m} = r_{m} \omega /c\)</span>. From (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ13>13</a>), the elapsed times of <span class=mathjax-tex>\(b_{ \pm }\)</span> during the travel to the segment <span class=mathjax-tex>\(L_{1}\)</span> are calculated, respectively as,<div id=Equ14 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$${\kern 1pt} t^{\prime}_{1 \pm } = \frac{{(1 \pm \;\beta_{1} \,)\,l^{\prime}_{w1} }}{c},$$</span></div><div class=c-article-equation__number>
(14)
</div></div><p>and in the case of the travel to <span class=mathjax-tex>\(L_{2}\)</span>,<div id=Equ15 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$t^{\prime\prime}_{2 \pm } = \frac{{(1 \mp \beta_{2} \,)\,l^{\prime}_{w2} }}{c}.$$</span></div><div class=c-article-equation__number>
(15)
</div></div><p>One can also confirm from (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ14>14</a>) and (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ15>15</a>) that the two-way speed of light is <span class=mathjax-tex>\(c\)</span>. For example, <span class=mathjax-tex>\(c^{\prime}_{1 \updownarrow } = 2\,l^{\prime}_{w1} /({\kern 1pt} t^{\prime}_{1 + } + t^{\prime}_{1 - } ) = c\)</span> where <span class=mathjax-tex>\(c^{\prime}_{1 \updownarrow }\)</span> is the two-way speed at <span class=mathjax-tex>\(L_{1}\)</span>. The elapsed times <span class=mathjax-tex>\(t^{\prime\prime}_{2 \pm }\)</span> are measured at <span class=mathjax-tex>\(L_{2}\)</span>. What we try to attain is the time difference at the detector, which is located at <span class=mathjax-tex>\(L_{1}\)</span>. Therefore the <span class=mathjax-tex>\(t^{\prime\prime}_{2 \pm }\)</span> should be converted into the times by the clock of the detector, which are written as<div id=Equ16 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$${\kern 1pt} t^{\prime}_{2 \pm } = \xi_{21} t^{\prime\prime}_{2 \pm } ,$$</span></div><div class=c-article-equation__number>
(16)
</div></div><p>where <span class=mathjax-tex>\(\xi_{21} = \gamma_{2} /\gamma_{1}\)</span>. The time intervals <span class=mathjax-tex>\(t^{\prime\prime}_{2 \pm }\)</span> at <span class=mathjax-tex>\(L_{2}\)</span> are observed as <span class=mathjax-tex>\({\kern 1pt} \gamma_{2} t^{\prime\prime}_{2 \pm }\)</span> in <i>S</i>, which correspond to <span class=mathjax-tex>\({\kern 1pt} t^{\prime}_{2 \pm }\)</span> when seen by the clock of the detector. The difference between the travel times of <span class=mathjax-tex>\(b_{ \pm }\)</span> is expressed as,<div id=Equ17 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\Delta {\kern 1pt} t^{\prime}_{d} = {\kern 1pt} \;t^{\prime}_{ + } - t^{\prime}_{ - } = \frac{{2(\beta_{1} {\kern 1pt} l^{\prime}_{w1} - \xi_{21} \beta_{2} {\kern 1pt} l^{\prime}_{w2} )}}{c},$$</span></div><div class=c-article-equation__number>
(17)
</div></div><p>where <span class=mathjax-tex>\(t^{\prime}_{ \pm } = t^{\prime}_{1 \pm } + \,{\kern 1pt} t^{\prime}_{2 \pm }\)</span>.<p>The tangential speed at the equator is less than 500&nbsp;m/s, and <span class=mathjax-tex>\(\beta_{1}^{{}} ,\;\beta_{2}^{{}} &lt; &lt; 1\)</span>. The fringe shift <span class=mathjax-tex>\(N\)</span> is given, to a first-order approximation by,<div id=Equ18 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$N = \frac{{4l^{\prime}_{w1} l^{\prime}_{h} \omega^{\prime}\cos \alpha_{1} }}{\lambda c},$$</span></div><div class=c-article-equation__number>
(18)
</div></div><p>where <span class=mathjax-tex>\(\lambda\)</span> is the wavelength of light. For derivation of (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ18>18</a>), see the <a data-track=click data-track-label=link data-track-action="supplementary material anchor" href=#MOESM1>Supplementary Information</a>. The quantity <span class=mathjax-tex>\(l^{\prime}_{w1} l^{\prime}_{h}\)</span> corresponds to the area of the rectangular loop. Equation&nbsp;(<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ14>18</a>) agrees with the result of the MG experiment<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 1" title="Michelson, A. A. &amp; Gale, H. G. The effect of the Earths rotation on the velocity of light: Part I, part II. Astrophys. J. 61, 137 (1925)." href=#ref-CR1 id=ref-link-section-d263354249e7457>1</a></sup>.<h3 class=c-article__sub-heading id=Sec7>Based on the MS framework</h3><p>In reality, our Solar System moves in the Milky Way and it would be different from the isotropic frame <span class=mathjax-tex>\(S\)</span>. Though it moves, we can consider that it belongs to an inertial frame during a very short time that the light beams traverse the closed loop. We denote the Solar System by <span class=mathjax-tex>\(S_{i \cdot }\)</span>, which includes the orbital motion of the Earth. The speed of light is <span class=mathjax-tex>\(c\)</span> with respect to AT, <span class=mathjax-tex>\(t_{i}\)</span>, in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. The closed loop in Fig.&nbsp;<a data-track=click data-track-label=link data-track-action="figure anchor" href=#Fig1>1</a> is divided into an infinite number of differential elements. A differential segment <span class=mathjax-tex>\(d{\mathbf{l}}_{j}\)</span>, which can be located on the segment <span class=mathjax-tex>\(L_{1}\)</span> or <span class=mathjax-tex>\(L_{2}\)</span>, belongs to an inertial frame <span class=mathjax-tex>\(S_{j \cdot }\)</span>. The direction of <span class=mathjax-tex>\(d{\mathbf{l}}_{j}\)</span> is defined such that it is the same as the direction of travel of the light beam <span class=mathjax-tex>\(b_{ + }\)</span>.<p>From (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ4>4</a>), <span class=mathjax-tex>\(|d{\mathbf{p}}_{i} |\; = \;|d{\mathbf{p}}_{j} |\)</span>. Since <span class=mathjax-tex>\(S_{i \cdot }\)</span> and <span class=mathjax-tex>\(S_{j \cdot }\)</span> are standard-synchronized, the time that is taken for a light beam to travel a distance <span class=mathjax-tex>\(dl_{j}\)</span> is <span class=mathjax-tex>\(dl_{j} /c\)</span> and so <span class=mathjax-tex>\(d\tau_{j} = idl_{j}\)</span>. When <span class=mathjax-tex>\(d{\mathbf{p}}_{j} = [idl_{j} ,\;d{\mathbf{l}}_{j}^{T} ]^{T}\)</span>, the corresponding differential vector in <span class=mathjax-tex>\(S_{i \cdot }\)</span> is <span class=mathjax-tex>\(d{\mathbf{p}}_{i} = [d\tau_{i} ,\;d{\mathbf{l}}_{i}^{T} ]^{T}\)</span>. For the light travel, <span class=mathjax-tex>\(|d{\mathbf{p}}_{j} |\; = 0\)</span> and thus <span class=mathjax-tex>\(d\tau_{i}^{2} + \;|d{\mathbf{l}}_{i} |^{2} = 0\)</span>. Equivalently,<div id=Equ19 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$dl_{i}^{{}} = \;|d\tau_{i} |.$$</span></div><div class=c-article-equation__number>
(19)
</div></div><p>The differential vector <span class=mathjax-tex>\(d{\mathbf{p}}_{i}\)</span> is related to <span class=mathjax-tex>\(d{\mathbf{p}}_{j}\)</span> by <span class=mathjax-tex>\(d{\mathbf{p}}_{i} = {\mathbf{T}}_{L} ({\varvec{\beta}}_{i} ,\;{\varvec{\beta}}_{j} )d{\mathbf{p}}_{j}\)</span>. Equation&nbsp;(<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ19>19</a>) indicates that <span class=mathjax-tex>\(dl_{i}^{{}}\)</span> can be obtained if the first row of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{i} ,\;{\varvec{\beta}}_{j} )\)</span> is known so that <span class=mathjax-tex>\(d\tau_{i}\)</span> is found, even though the rest is unknown. The first row of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{i} ,\;{\varvec{\beta}}_{j} )\)</span> is given by <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{i} ,\;{\varvec{\beta}}_{j} )_{1r} = \gamma_{ij} [1,\; - i{\varvec{\beta}}_{ij}^{T} ]\)</span> where <span class=mathjax-tex>\({\varvec{\beta}}_{kl}\)</span> is the normalized velocity of <span class=mathjax-tex>\(S_{k \cdot }\)</span> relative to <span class=mathjax-tex>\(S_{l \cdot }\)</span><sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e8843>5</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 15" title="Choi, Y.-H. Multiple velocity composition in the standard synchronization. Open Phys. 20(1), 155 (2022)." href=#ref-CR15 id=ref-link-section-d263354249e8846>15</a></sup>. Then <span class=mathjax-tex>\(d\tau_{i}^{{}}\)</span> is calculated as,<div id=Equ20 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$d\tau_{i}^{{}} = i\gamma_{ij} (dl_{j}^{{}} - {\varvec{\beta}}_{ij}^{T} d{\mathbf{l}}_{j}^{{}} ).$$</span></div><div class=c-article-equation__number>
(20)
</div></div><p>In the travel of <span class=mathjax-tex>\(b_{ + }\)</span>(<span class=mathjax-tex>\(b_{ - }\)</span>), <span class=mathjax-tex>\(d{\mathbf{l}}_{j}^{{}}\)</span> and <span class=mathjax-tex>\({\varvec{\beta}}_{ij}^{{}}\)</span> are in opposite directions at <span class=mathjax-tex>\(L_{1}\)</span>(<span class=mathjax-tex>\(L_{2}\)</span>) and in the same direction at <span class=mathjax-tex>\(L_{2}\)</span>(<span class=mathjax-tex>\(L_{1}\)</span>). Recall <span class=mathjax-tex>\(\beta_{m} = r_{m} \omega /c\)</span>, <span class=mathjax-tex>\(m = 1,\;2\)</span>. At <span class=mathjax-tex>\(L_{1}\)</span>, <span class=mathjax-tex>\(\gamma_{ij} = \gamma_{1}\)</span>, where <span class=mathjax-tex>\(\beta_{ij} = \beta_{1}\)</span>, and <span class=mathjax-tex>\({\varvec{\beta}}_{ij}^{T} d{\mathbf{l}}_{j}^{{}} = \mp dl_{j}\)</span> for <span class=mathjax-tex>\(b_{ \pm }\)</span> respectively. At <span class=mathjax-tex>\(L_{2}\)</span>, <span class=mathjax-tex>\(\beta_{ij} = \beta_{2}\)</span>, <span class=mathjax-tex>\(\gamma_{ij} = \gamma_{2}\)</span>, and <span class=mathjax-tex>\({\varvec{\beta}}_{ij}^{T} d{\mathbf{l}}_{j}^{{}} = \pm dl_{j}\)</span> for <span class=mathjax-tex>\(b_{ \pm }\)</span>. The travel distances in <span class=mathjax-tex>\(S_{i \cdot }\)</span> of <span class=mathjax-tex>\(b_{ \pm }\)</span> at <span class=mathjax-tex>\(L_{m}\)</span>, <span class=mathjax-tex>\(m = 1,\;2\)</span>, each are given from (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ19>19</a>) and (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ20>20</a>) by,<div id=Equ21 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$l_{1 \pm } = (1 \pm \beta_{1} )\,\gamma_{1} l^{\prime}_{w1} ,$$</span></div><div class=c-article-equation__number>
(21a)
</div></div><div id=Equ22 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$l_{2 \pm } = (1 \mp \beta_{2} )\gamma_{2} l^{\prime}_{w2} ,$$</span></div><div class=c-article-equation__number>
(21b)
</div></div><p>and the travel times are <span class=mathjax-tex>\(t_{m \pm } = l_{m \pm } /c\)</span>. Then the time difference in <i>S</i><sub>i</sub> is calculated as,<div id=Equ23 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\Delta t_{d} = \sum\limits_{m = 1}^{2} {(t_{m + } - \;t_{m - } )} = \frac{{2(\beta_{1} \gamma_{1} l^{\prime}_{w1} - \beta_{2} \gamma_{2} l^{\prime}_{w2} )}}{c}.$$</span></div><div class=c-article-equation__number>
(22)
</div></div><p>The time difference at <span class=mathjax-tex>\(P_{0}\)</span> is,<div id=Equ24 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\Delta t^{\prime}_{d} = \frac{{\Delta t_{d} }}{{\gamma_{1} }}.$$</span></div><div class=c-article-equation__number>
(23)
</div></div><p>Equation&nbsp;(<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ19>23</a>) is the same as (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ17>17</a>) and is valid regardless of whether the spacetime of <i>S</i><sub>i∙</sub> is actually isotropic or not.<p>The time intervals <span class=mathjax-tex>\(t_{m \pm }\)</span> in the unprimed correspond to <span class=mathjax-tex>\(t^{\prime}_{m \pm } = t_{m \pm } /\gamma_{m}\)</span> in the primed. The speeds of <span class=mathjax-tex>\(b_{ \pm }\)</span> at <span class=mathjax-tex>\(L_{m}\)</span> are written from <span class=mathjax-tex>\(t_{m \pm } = l_{m \pm } /c\)</span> and (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ21>21a</a>, <a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ22>21b</a>) as,<div id=Equ25 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$c^{\prime}_{m \pm } = \frac{{l^{\prime}_{wm} }}{{t^{\prime}_{m \pm } }} = \frac{c}{{1 \mp ( - 1)^{m} \beta_{m} }},\,m = 1,\;2.$$</span></div><div class=c-article-equation__number>
(24)
</div></div><p>Equation&nbsp;(<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ24>24</a>) is consistent with (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ13>13</a>). Virtually <span class=mathjax-tex>\(L_{1}\)</span> and <span class=mathjax-tex>\(L_{2}\)</span> can be considered to belong to certain inertial frames during the very short time of the light travel. As shown in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ25>24</a>), the inertial frames are anisotropic, the speed of light depending on the propagation direction, which has also been observed in the experiments of the generalized Sagnac effect<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Choi, Y.-H. Theoretical analysis of generalized Sagnac effect in the standard synchronization. Can. J. Phys. 95(8), 761 (2017)." href=#ref-CR11 id=ref-link-section-d263354249e10585>11</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref title="Wang, R., Zheng, Y. &amp; Yao, A. Generalized Sagnac effect. Phys. Rev. Lett. 93, 143901 (2004)." href=#ref-CR12 id=ref-link-section-d263354249e10585_1>12</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 13" title="Wang, R., Zheng, Y., Yao, A. &amp; Langley, D. Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber. Phys. Lett. A 312, 7 (2003)." href=#ref-CR13 id=ref-link-section-d263354249e10588>13</a></sup>. The time difference is caused due to two factors. One is the anisotropy of the light speed at <span class=mathjax-tex>\(L_{1}\)</span> and <span class=mathjax-tex>\(L_{2}\)</span> each. The other is the difference between the rotation radii of <span class=mathjax-tex>\(L_{1}\)</span> and <span class=mathjax-tex>\(L_{2}\)</span>, which results in different tangential speeds. Although the speed of light is anisotropic, there would be no time difference, as can be seen from (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ23>22</a>), if there were no difference in radius, i.e. <span class=mathjax-tex>\(r^{\prime}_{1} = r^{\prime}_{2}\)</span>. Although the radii are different, no fringe shifts would occur if the speed of light were isotropic in inertial frames.</p></div></div></section><section data-title=Discussion><div class=c-article-section id=Sec8-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec8>Discussion</h2><div class=c-article-section__content id=Sec8-content><p>To find exact physical quantities, we have to use <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span>. However, the absolute velocities <span class=mathjax-tex>\({\varvec{\beta}}_{i}\)</span> and <span class=mathjax-tex>\({\varvec{\beta}}_{j}\)</span> are unknown and we cannot. Disguising the inertial frame <span class=mathjax-tex>\(S_{i}\)</span> as isotropic via the standard synchronization and then using <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span> instead of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span>, nonetheless, we can exactly obtain some physical quantities such as PTs, Doppler shifts, spatial lengths, and speeds with respect to PT<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e10980>5</a></sup>. It is because the first rows of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span> and <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span> are identical<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 5" title="Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. J. Korean Phys. Soc. 72(10), 1110 (2018)." href=#ref-CR5 id=ref-link-section-d263354249e11096>5</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 15" title="Choi, Y.-H. Multiple velocity composition in the standard synchronization. Open Phys. 20(1), 155 (2022)." href=#ref-CR15 id=ref-link-section-d263354249e11099>15</a></sup>. One can readily see in the analysis of Subsection "<a data-track=click data-track-label=link data-track-action="section anchor" href=#Sec7>Based on the MS framework</a>" that even if <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span> is used in place of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span> the same time difference as (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ23>22</a>) is obtained. A similar disguise via the standard synchronization can be introduced to the TCL as well.<p>An inertial frame <span class=mathjax-tex>\(S_{i \cdot }\)</span> that is in motion with a constant velocity of <span class=mathjax-tex>\({\varvec{\beta}}_{i}\)</span> is standard-synchronized. In Fig.&nbsp;<a data-track=click data-track-label=link data-track-action="figure anchor" href=#Fig2>2</a>, a circle of radius <span class=mathjax-tex>\(r\)</span> is rotating with an angular velocity <span class=mathjax-tex>\(\omega\)</span> in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. The circle is approximated as <span class=mathjax-tex>\(n\)</span> line segments so that circular motion can be treated as rectilinear motion at each segment. As <span class=mathjax-tex>\(n\)</span> tends to infinity, the linearized shape becomes a circle. The line segments momentarily belong to inertial frames the speeds of which are all equal to <span class=mathjax-tex>\(r\omega\)</span>. As seen in <span class=mathjax-tex>\(S_{i \cdot }\)</span>, an observer <span class=mathjax-tex>\(\tilde{O}\)</span> is located at a line segment <span class=mathjax-tex>\(d{\mathbf{l}}_{j}\)</span>, whose direction varies as the circle rotates. The primed observer corresponding to the unprimed <span class=mathjax-tex>\(\tilde{O}\)</span> is <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span>, whose coordinate system is also standard-synchronized. In the coordinate transformation associated with <span class=mathjax-tex>\(\tilde{O}\)</span> and <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span>, as a matter of fact, the observer <span class=mathjax-tex>\(\tilde{O}\)</span> represents an observer in <span class=mathjax-tex>\(S_{i \cdot }\)</span> who instantaneously meets <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span> as the circle rotates. The <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span> instantaneously moves with the velocity <span class=mathjax-tex>\({\varvec{\beta}}_{ji}\)</span> relative to the observer in <span class=mathjax-tex>\(S_{i \cdot }\)</span> represented by <span class=mathjax-tex>\(\tilde{O}\)</span>. The rotating frame <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> is formed by the collection of the world lines of these primed rotating observers<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e11796>8</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 17" title="Choi, Y.-H. Coordinate transformation between rotating and inertial systems under the constant two-way speed of light. Eur. Phys. J. Plus 131(9), 296 (2016)." href=#ref-CR17 id=ref-link-section-d263354249e11799>17</a></sup>. In other words, the word lines of the primed observers <span class=mathjax-tex>\(\tilde{O}^{\prime}_{{j_{k} }}\)</span> corresponding to the unprimed <span class=mathjax-tex>\(\tilde{O}_{{j_{k} }}\)</span> located at <span class=mathjax-tex>\(d{\mathbf{l}}_{{j_{k} }}\)</span>, <span class=mathjax-tex>\(k = 1,\;2,\; \cdots\)</span>, in <span class=mathjax-tex>\(S_{i \cdot }\)</span> constitute <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>.<div class="c-article-section__figure js-c-reading-companion-figures-item" data-test=figure data-container-section=figure id=figure-2 data-title="Figure 2"><figure><figcaption><b id=Fig2 class=c-article-section__figure-caption data-test=figure-caption-text>Figure 2</b></figcaption><div class=c-article-section__figure-content><div class=c-article-section__figure-item><a class=c-article-section__figure-link data-test=img-link data-track=click data-track-label=image data-track-action="view figure" href=https://www.nature.com/articles/s41598-024-60515-7/figures/2 rel=nofollow><picture><img aria-describedby=Fig2 src="" alt="figure 2" loading=lazy srcset sizes width=685 height=671></picture></a></div><div class=c-article-section__figure-description data-test=bottom-caption id=figure-2-desc><p>Approximation to a circle with line segments.</p></div></div><div class="u-text-right u-hide-print"><a class=c-article__pill-button data-test=article-link data-track=click data-track-label=button data-track-action="view figure" href=https://www.nature.com/articles/s41598-024-60515-7/figures/2 data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel=nofollow><span>Full size image</span><svg width=16 height=16 focusable=false role=img aria-hidden=true class=u-icon><use xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=#icon-eds-i-chevron-right-small></use></svg></a></div></figure></div><p>Suppose that momentarily <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span> belongs to an inertial frame <span class=mathjax-tex>\(S_{j \cdot }\)</span>, the velocity of which is <span class=mathjax-tex>\({\varvec{\beta}}_{ji}\)</span> in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. Then the transformation matrix between <span class=mathjax-tex>\(S_{j \cdot }\)</span> and <span class=mathjax-tex>\(S_{i \cdot }\)</span> is <span class=mathjax-tex>\({\textbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span>, not <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span>. The transformation (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>) has been derived based on the Lorentz transformation for <span class=mathjax-tex>\(\tilde{O}\)</span> and <span class=mathjax-tex>\(\tilde{O}^{\prime}\)</span>. As mentioned above, even if <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span> is employed we can find exact PTs and exact spatial lengths, which leads us to suggest the transformation between <span class=mathjax-tex>\(S_{i \cdot }\)</span> and <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>,<div id=Equ26 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$t^{\prime} = \frac{{t_{ \cdot } }}{\gamma },\,r^{\prime} = \gamma {\kern 1pt} r,\,\tilde{\varphi^{\prime}} = \varphi - \omega \,t_{ \cdot } ,\,z^{\prime} = z.$$</span></div><div class=c-article-equation__number>
(25)
</div></div><p>where the symbol <span class=mathjax-tex>\(t_{ \cdot }\)</span> is used to explicitly indicate the standard-synchronized time, AT, in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. The events that occur at the same <span class=mathjax-tex>\(t^{\prime}\)</span> in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>) is actually simultaneous whereas the events at the same <span class=mathjax-tex>\(t_{ \cdot }\)</span> in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) is not since <span class=mathjax-tex>\(t_{ \cdot }\)</span> is AT. However <span class=mathjax-tex>\(t^{\prime}\)</span> is exact since it represents the PT interval.<p>The analysis of the MG experimental result with (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) is the same as in Subsection "<a data-track=click data-track-label=link data-track-action="section anchor" href=#Sec6>With TCL</a>" except that <span class=mathjax-tex>\(t\)</span> is replaced by <span class=mathjax-tex>\(t_{ \cdot }\)</span>. Here, using (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>), we analyze the Sagnac effect. In the experiment of the Sagnac effect, the Earth can be considered to be in linear motion during the traverse of light beams, though it rotates. The inertial frame <span class=mathjax-tex>\(S_{i \cdot }\)</span> represents the one for a laboratory. The light detector <span class=mathjax-tex>\(\tilde{O^{\prime}}\)</span> is located on a circumference of radius <span class=mathjax-tex>\(r\)</span> in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. At <span class=mathjax-tex>\(t_{ \cdot } = t^{\prime} = 0\)</span>, two light beams <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span> leave a light source, which is located at the same place as the detector, and traverse the circular paths in the co- and counter-rotating directions respectively.<p>Since the transformation (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) has the same form as (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ6>6</a>), the same equation as (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ12>12</a>) is obtained for the former. The angle <span class=mathjax-tex>\(\tilde{\varphi^{\prime}}\)</span> is positive in the same direction as the rotation direction of <span class=mathjax-tex>\(\tilde{O^{\prime}}\)</span>. Integrating (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ12>12</a>) with respect to <span class=mathjax-tex>\(\tilde{\varphi^{\prime}}\)</span> after the replacement of <span class=mathjax-tex>\(dl^{\prime}\)</span> by <span class=mathjax-tex>\(r^{\prime}\,|d\tilde{\varphi^{\prime}}|\)</span>, we have,<div id=Equ27 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$ct^{\prime}_{ \pm } = \int_{0}^{ \pm 2\pi } {\beta \,r^{\prime}d\tilde{\varphi^{\prime}}} + \int_{0}^{ \pm 2\pi } {r^{\prime}|d\tilde{\varphi^{\prime}}} |\; = (1 \pm \beta )l^{\prime},$$</span></div><div class=c-article-equation__number>
(26)
</div></div><p>where <span class=mathjax-tex>\(l^{\prime} = 2\pi {\kern 1pt} r^{\prime}\)</span>. The travel times of <span class=mathjax-tex>\(b_{ \pm }\)</span> are,<div id=Equ28 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$t^{\prime}_{ \pm } = \frac{{(1 \pm \beta ){\kern 1pt} l^{\prime}}}{c}.$$</span></div><div class=c-article-equation__number>
(27)
</div></div><p>The time difference is given by,<div id=Equ29 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\Delta {\kern 1pt} t^{\prime} = \frac{{2\beta {\kern 1pt} l^{\prime}}}{c},$$</span></div><div class=c-article-equation__number>
(28)
</div></div><p>which corresponds to the experimental result. The travel distances of <span class=mathjax-tex>\(b_{ \pm }\)</span> are <span class=mathjax-tex>\(l^{\prime}\)</span> and the speeds of <span class=mathjax-tex>\(b_{ \pm }\)</span> with respect to PT are equal to (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ13>13</a>).<p>Using (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>), let us make analysis on the travel of the light beams in <span class=mathjax-tex>\(S_{i \cdot }\)</span>. From (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>), <span class=mathjax-tex>\(d\varphi = d\tilde{\varphi^{\prime}} + \omega \,dt_{ \cdot }\)</span> and <span class=mathjax-tex>\(dt_{ \cdot } = \gamma {\kern 1pt} dt^{\prime}\)</span>. While the light beams <span class=mathjax-tex>\(b_{ \pm }\)</span> traverse the circular loop, <span class=mathjax-tex>\(\tilde{\varphi^{\prime}}\)</span> and <span class=mathjax-tex>\(t^{\prime}\)</span> vary from 0 to <span class=mathjax-tex>\(\pm 2\pi\)</span> and from 0 to <span class=mathjax-tex>\(t^{\prime}_{ \pm }\)</span>. Integrating <span class=mathjax-tex>\(d\varphi\)</span> yields,<div id=Equ30 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\varphi_{ \pm } = \pm 2\pi + \gamma {\kern 1pt} \omega \,t^{\prime}_{ \pm } .$$</span></div><div class=c-article-equation__number>
(29)
</div></div><p>The travel distances are calculated using (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ30>29</a>) and (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ28>27</a>) as,<div id=Equ31 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$l_{ \pm } = r|\varphi_{ \pm } |\; = \frac{l}{1 \mp \beta },$$</span></div><div class=c-article-equation__number>
(30)
</div></div><p>where <span class=mathjax-tex>\(l = 2\pi {\kern 1pt} r\)</span>. The speed of light is <span class=mathjax-tex>\(c\)</span> with respect to AT and the travel times of <span class=mathjax-tex>\(b_{ \pm }\)</span> measured by AT in <span class=mathjax-tex>\(S_{i \cdot }\)</span> are given by <span class=mathjax-tex>\(t_{ \cdot \pm } = l_{ \pm } /c\)</span>, which agrees with (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ28>27</a>), i.e. <span class=mathjax-tex>\(t_{ \cdot \pm } = \gamma {\kern 1pt} t^{\prime}_{ \pm }\)</span>. These analysis results substantiate the transformation (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>).<p>Traditionally the Sagnac effect has been analyzed usually using the Langevin metric [e.g. Refs.<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 3" title="Klauber, R. D. Relativistic rotation: A comparison of theories. Found. Phys. 37, 198 (2007)." href=#ref-CR3 id=ref-link-section-d263354249e14162>3</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 4" title="Rizzi, G. &amp; Ruggiero, M. L. (eds) Relativity in Rotating Frames (Kluwer Academic, 2004)." href=#ref-CR4 id=ref-link-section-d263354249e14165>4</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 7" title="Pascoli, G. The Sagnac effect and its interpretation by Paul Langevin. Comptes Rendus Phys. 18(910), 563569 (2017)." href=#ref-CR7 id=ref-link-section-d263354249e14168>7</a>,<a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 18" title="Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)." href=#ref-CR18 id=ref-link-section-d263354249e14171>18</a></sup>]. Since it is the first-order effect of <span class=mathjax-tex>\(\beta\)</span> as shown in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ29>28</a>), we can approximately calculate the time difference with the Langevin metric. Neglecting the terms with higher degrees than <span class=mathjax-tex>\(\beta\)</span> in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) yields,<div id=Equ32 class=c-article-equation><div class=c-article-equation__content><span class=mathjax-tex>$$\tilde{t^{\prime}} = t_{ \cdot } ,\,\tilde{r^{\prime}} = \;{\kern 1pt} r,\,\tilde{\varphi^{\prime}} = \varphi - \omega \,t_{ \cdot } ,\,\tilde{z^{\prime}} = z.$$</span></div><div class=c-article-equation__number>
(31)
</div></div><p>where the symbol “tilde” is used to explicitly represent the coordinates of <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>. The Langevin metric is found in accordance with (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>). Clearly the transformation (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>) is Galilean, which does not recognize the difference between <span class=mathjax-tex>\(\tilde{t^{\prime}}\)</span> and <span class=mathjax-tex>\(t_{ \cdot }\)</span> and between <span class=mathjax-tex>\({\kern 1pt} \tilde{r^{\prime}}\)</span> and <span class=mathjax-tex>\(r\)</span>. If the symbol “prime” in the coordinates of <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> is removed so that for example, <span class=mathjax-tex>\(\tilde{r} = \;{\kern 1pt} r\)</span> and if <span class=mathjax-tex>\(S_{i \cdot } = S\)</span>, (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>) becomes the transformation between <i>S</i> and <span class=mathjax-tex>\(\tilde{S}\)</span>, from which the same time difference as (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ29>28</a>) is exactly derived with the recognition of the difference between <span class=mathjax-tex>\(\tilde{S}\)</span> and <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span> [<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 8" title="Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. J. Korean Phys. Soc. 75(3), 176 (2019)." href=#ref-CR8 id=ref-link-section-d263354249e14659>8</a></sup>, p. 184]. Without the recognition of the difference, the computation results using (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>) are only valid within the first-order approximation. In the MG paper<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 1" title="Michelson, A. A. &amp; Gale, H. G. The effect of the Earths rotation on the velocity of light: Part I, part II. Astrophys. J. 61, 137 (1925)." href=#ref-CR1 id=ref-link-section-d263354249e14667>1</a></sup>, the fringe shift, which also results from the first-order effect as in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ23>22</a>), has been calculated based on (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>). The frame <span class=mathjax-tex>\(\tilde{S}\)</span> is different from <span class=mathjax-tex>\(\tilde{S}^{\prime}\)</span>. Under <span class=mathjax-tex>\(\tilde{S} = \tilde{S}^{\prime}\)</span>, the analyses by the Langevin metric or (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ32>31</a>) are approximate and nonrelativistic.<p>Meanwhile, the MM experiment was devised to test the effect of <span class=mathjax-tex>\(\beta^{2}\)</span> on the round trip velocity. The Langevin metric, in which the round trip speed of light is anisotropic, fails to explain the MM experiment whereas the TCL of (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) can do. The experiment had been carried out to measure the effect due to the motion of the Earth relative to the Solar System and the two arms of the interferometer, which are very small compared with the radius of the Earth, can be considered to be laid at the same rotation radius. The round trip speed of light is constant in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ26>25</a>) with the radius fixed irrespective of direction. The TCL is consistent with both MM and MG experiments. It is stated in Ref.<sup><a data-track=click data-track-action="reference anchor" data-track-label=link data-test=citation-ref aria-label="Reference 18" title="Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)." href=#ref-CR18 id=ref-link-section-d263354249e14804>18</a></sup> that “For uniform rotation in the case of the Sagnac effect one would expect on intuitive grounds that a Galilean rotation (absolute time) might give the correct choice of spacetime coordinate transformation. In consideration, however, of well-known experiences with electromagnetic theory in the realm of uniform translations where the Galilean translation (absolute time) is not an adequate substitute for a Lorentz translation, it is useful to give special attention to the question of selecting the right transformation for uniform rotations.”</p></div></div></section><section data-title=Conclusion><div class=c-article-section id=Sec9-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec9>Conclusion</h2><div class=c-article-section__content id=Sec9-content><p>The result of the MG experiment has been analyzed via the TCL and via the MS framework. These analysis results correspond and agree with the experimental result. In the MG experiment, the difference between the travel times of the light beams <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span> is shown to take place by the two factors, the anisotropy of the one-way speed of light in inertial frames and the difference between the rotation radii of the segments <span class=mathjax-tex>\(L_{1}\)</span> and <span class=mathjax-tex>\(L_{2}\)</span>. As the rotation radii are different their tangential speeds are different. The segments can be considered to belong to respective inertial frames during the travels of <span class=mathjax-tex>\(b_{ + }\)</span> and <span class=mathjax-tex>\(b_{ - }\)</span>. As shown in (<a data-track=click data-track-label=link data-track-action="equation anchor" href=#Equ25>24</a>), the one-way speed of light is anisotropic in inertial frames, which agrees with the experimental results of the generalized Sagnac effect.<p>Though inertial frames are not isotropic, regarding them as isotropic with the introduction of the standard synchronization, we can exactly obtain some physical quantities that are independent of synchronization schemes. These quantities can be accurately calculated using only relative velocities with no knowledge of absolute velocities. It is because the first rows of <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{j} ,\;{\varvec{\beta}}_{i} )\)</span> and <span class=mathjax-tex>\({\mathbf{T}}_{L} ({\varvec{\beta}}_{ji} )\)</span> are the same. As far as the experiments associated with circular motion are concerned, the Solar System or the Earth frame can be considered an inertial frame <span class=mathjax-tex>\(S_{i}\)</span> during a short time of test. Accordingly, we have obtained the exact time differences through the standard synchronization of <i>S</i><sub>i</sub> that is not isotropic.</p></div></div></section>
</div>
<div>
<section data-title="Data availability"><div class=c-article-section id=data-availability-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=data-availability>Data availability</h2><div class=c-article-section__content id=data-availability-content>
<p>All data generated or analyzed during this study are included in this published article and its supplementary information file.</p>
</div></div></section><div id=MagazineFulltextArticleBodySuffix><section aria-labelledby=Bib1 data-title=References><div class=c-article-section id=Bib1-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Bib1>References</h2><div class=c-article-section__content id=Bib1-content><div data-container-section=references><ol class=c-article-references data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=1.><p class=c-article-references__text id=ref-CR1>Michelson, A. A. &amp; Gale, H. G. The effect of the Earths rotation on the velocity of light: Part I, part II. <i>Astrophys. J.</i> <b>61</b>, 137 (1925).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1086/142878 data-track-item_id=10.1086/142878 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1086%2F142878 aria-label="Article reference 1" data-doi=10.1086/142878>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1925ApJ....61..137M" aria-label="ADS reference 1">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20effect%20of%20the%20Earth%E2%80%99s%20rotation%20on%20the%20velocity%20of%20light%3A%20Part%20I%2C%20part%20II&amp;journal=Astrophys.%20J.&amp;doi=10.1086%2F142878&amp;volume=61&amp;publication_year=1925&amp;author=Michelson%2CAA&amp;author=Gale%2CHG">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=2.><p class=c-article-references__text id=ref-CR2>Michelson, A. A. &amp; Morley, E. W. On the relative motion of the Earth and the luminiferous ether. <i>Am. J. Sci.</i> <b>34</b>, 333 (1887).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.2475/ajs.s3-34.203.333 data-track-item_id=10.2475/ajs.s3-34.203.333 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.2475%2Fajs.s3-34.203.333 aria-label="Article reference 2" data-doi=10.2475/ajs.s3-34.203.333>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1887AmJS...34..333M" aria-label="ADS reference 2">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=On%20the%20relative%20motion%20of%20the%20Earth%20and%20the%20luminiferous%20ether&amp;journal=Am.%20J.%20Sci.&amp;doi=10.2475%2Fajs.s3-34.203.333&amp;volume=34&amp;publication_year=1887&amp;author=Michelson%2CAA&amp;author=Morley%2CEW">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=3.><p class=c-article-references__text id=ref-CR3>Klauber, R. D. Relativistic rotation: A comparison of theories. <i>Found. Phys.</i> <b>37</b>, 198 (2007).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel=noopener data-track-label=10.1007/s10701-006-9099-z data-track-item_id=10.1007/s10701-006-9099-z data-track-value="article reference" data-track-action="article reference" href=https://link.springer.com/doi/10.1007/s10701-006-9099-z aria-label="Article reference 3" data-doi=10.1007/s10701-006-9099-z>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2007FoPh...37..198K" aria-label="ADS reference 3">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2298489" aria-label="MathSciNet reference 3">MathSciNet</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=Relativistic%20rotation%3A%20A%20comparison%20of%20theories&amp;journal=Found.%20Phys.&amp;doi=10.1007%2Fs10701-006-9099-z&amp;volume=37&amp;publication_year=2007&amp;author=Klauber%2CRD">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=4.><p class=c-article-references__text id=ref-CR4>Rizzi, G. &amp; Ruggiero, M. L. (eds) <i>Relativity in Rotating Frames</i> (Kluwer Academic, 2004).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Relativity%20in%20Rotating%20Frames&amp;publication_year=2004">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=5.><p class=c-article-references__text id=ref-CR5>Choi, Y.-H. Uniqueness of the isotropic frame and usefulness of the Lorentz transformation. <i>J. Korean Phys. Soc.</i> <b>72</b>(10), 1110 (2018).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.3938/jkps.72.1110 data-track-item_id=10.3938/jkps.72.1110 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.3938%2Fjkps.72.1110 aria-label="Article reference 5" data-doi=10.3938/jkps.72.1110>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018JKPS...72.1110C" aria-label="ADS reference 5">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Uniqueness%20of%20the%20isotropic%20frame%20and%20usefulness%20of%20the%20Lorentz%20transformation&amp;journal=J.%20Korean%20Phys.%20Soc.&amp;doi=10.3938%2Fjkps.72.1110&amp;volume=72&amp;issue=10&amp;publication_year=2018&amp;author=Choi%2CY-H">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=6.><p class=c-article-references__text id=ref-CR6>Moon, P., Spencer, D. E. &amp; Moon, E. E. The Michelson-Gale experiment and its effect on the postulates on the velocity of light. <i>Phys. Essays</i> <b>3</b>(3), 421 (1990).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.4006/1.3033458 data-track-item_id=10.4006/1.3033458 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.4006%2F1.3033458 aria-label="Article reference 6" data-doi=10.4006/1.3033458>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1990PhyEs...3..421M" aria-label="ADS reference 6">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20Michelson-Gale%20experiment%20and%20its%20effect%20on%20the%20postulates%20on%20the%20velocity%20of%20light&amp;journal=Phys.%20Essays&amp;doi=10.4006%2F1.3033458&amp;volume=3&amp;issue=3&amp;publication_year=1990&amp;author=Moon%2CP&amp;author=Spencer%2CDE&amp;author=Moon%2CEE">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=7.><p class=c-article-references__text id=ref-CR7>Pascoli, G. The Sagnac effect and its interpretation by Paul Langevin. <i>Comptes Rendus Phys.</i> <b>18</b>(910), 563569 (2017).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1016/j.crhy.2017.10.010 data-track-item_id=10.1016/j.crhy.2017.10.010 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1016%2Fj.crhy.2017.10.010 aria-label="Article reference 7" data-doi=10.1016/j.crhy.2017.10.010>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2017CRPhy..18..563P" aria-label="ADS reference 7">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="cas reference" data-track-action="cas reference" href=https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslajs73M aria-label="CAS reference 7">CAS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20Sagnac%20effect%20and%20its%20interpretation%20by%20Paul%20Langevin&amp;journal=Comptes%20Rendus%20Phys.&amp;doi=10.1016%2Fj.crhy.2017.10.010&amp;volume=18&amp;issue=9%E2%80%9310&amp;pages=563-569&amp;publication_year=2017&amp;author=Pascoli%2CG">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=8.><p class=c-article-references__text id=ref-CR8>Choi, Y.-H. Consistent coordinate transformation for relativistic circular motion and speeds of light. <i>J. Korean Phys. Soc.</i> <b>75</b>(3), 176 (2019).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.3938/jkps.75.176 data-track-item_id=10.3938/jkps.75.176 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.3938%2Fjkps.75.176 aria-label="Article reference 8" data-doi=10.3938/jkps.75.176>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2019JKPS...75..176C" aria-label="ADS reference 8">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Consistent%20coordinate%20transformation%20for%20relativistic%20circular%20motion%20and%20speeds%20of%20light&amp;journal=J.%20Korean%20Phys.%20Soc.&amp;doi=10.3938%2Fjkps.75.176&amp;volume=75&amp;issue=3&amp;publication_year=2019&amp;author=Choi%2CY-H">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=9.><p class=c-article-references__text id=ref-CR9>Mansouri, R. &amp; Sexl, R. U. A test theory of special relativity: I. Simultaneity and clock synchronization. <i>Gen. Relativ. Gravit.</i> <b>8</b>(7), 497 (1977).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel=noopener data-track-label=10.1007/BF00762634 data-track-item_id=10.1007/BF00762634 data-track-value="article reference" data-track-action="article reference" href=https://link.springer.com/doi/10.1007/BF00762634 aria-label="Article reference 9" data-doi=10.1007/BF00762634>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1977GReGr...8..497M" aria-label="ADS reference 9">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20test%20theory%20of%20special%20relativity%3A%20I.%20Simultaneity%20and%20clock%20synchronization&amp;journal=Gen.%20Relativ.%20Gravit.&amp;doi=10.1007%2FBF00762634&amp;volume=8&amp;issue=7&amp;publication_year=1977&amp;author=Mansouri%2CR&amp;author=Sexl%2CRU">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=10.><p class=c-article-references__text id=ref-CR10>Ori, A. &amp; Avron, J. E. Generalized Sagnac-Wang-Fizeau formula. <i>Phys. Rev. A</i> <b>94</b>(6), 063837 (2016).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1103/PhysRevA.94.063837 data-track-item_id=10.1103/PhysRevA.94.063837 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1103%2FPhysRevA.94.063837 aria-label="Article reference 10" data-doi=10.1103/PhysRevA.94.063837>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2016PhRvA..94f3837O" aria-label="ADS reference 10">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Generalized%20Sagnac-Wang-Fizeau%20formula&amp;journal=Phys.%20Rev.%20A&amp;doi=10.1103%2FPhysRevA.94.063837&amp;volume=94&amp;issue=6&amp;publication_year=2016&amp;author=Ori%2CA&amp;author=Avron%2CJE">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=11.><p class=c-article-references__text id=ref-CR11>Choi, Y.-H. Theoretical analysis of generalized Sagnac effect in the standard synchronization. <i>Can. J. Phys.</i> <b>95</b>(8), 761 (2017).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1139/cjp-2016-0953 data-track-item_id=10.1139/cjp-2016-0953 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1139%2Fcjp-2016-0953 aria-label="Article reference 11" data-doi=10.1139/cjp-2016-0953>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2017CaJPh..95..761C" aria-label="ADS reference 11">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="cas reference" data-track-action="cas reference" href=https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVSju73I aria-label="CAS reference 11">CAS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=Theoretical%20analysis%20of%20generalized%20Sagnac%20effect%20in%20the%20standard%20synchronization&amp;journal=Can.%20J.%20Phys.&amp;doi=10.1139%2Fcjp-2016-0953&amp;volume=95&amp;issue=8&amp;publication_year=2017&amp;author=Choi%2CY-H">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=12.><p class=c-article-references__text id=ref-CR12>Wang, R., Zheng, Y. &amp; Yao, A. Generalized Sagnac effect. <i>Phys. Rev. Lett.</i> <b>93</b>, 143901 (2004).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1103/PhysRevLett.93.143901 data-track-item_id=10.1103/PhysRevLett.93.143901 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1103%2FPhysRevLett.93.143901 aria-label="Article reference 12" data-doi=10.1103/PhysRevLett.93.143901>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2004PhRvL..93n3901W" aria-label="ADS reference 12">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=15524791" aria-label="PubMed reference 12">PubMed</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Generalized%20Sagnac%20effect&amp;journal=Phys.%20Rev.%20Lett.&amp;doi=10.1103%2FPhysRevLett.93.143901&amp;volume=93&amp;publication_year=2004&amp;author=Wang%2CR&amp;author=Zheng%2CY&amp;author=Yao%2CA">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=13.><p class=c-article-references__text id=ref-CR13>Wang, R., Zheng, Y., Yao, A. &amp; Langley, D. Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber. <i>Phys. Lett. A</i> <b>312</b>, 7 (2003).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1016/S0375-9601(03)00575-9 data-track-item_id=10.1016/S0375-9601(03)00575-9 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1016%2FS0375-9601%2803%2900575-9 aria-label="Article reference 13" data-doi=10.1016/S0375-9601(03)00575-9>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2003PhLA..312....7W" aria-label="ADS reference 13">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="cas reference" data-track-action="cas reference" href=https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXktVCmsrY%3D aria-label="CAS reference 13">CAS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Modified%20Sagnac%20experiment%20for%20measuring%20travel-time%20difference%20between%20counter-propagating%20light%20beams%20in%20a%20uniformly%20moving%20fiber&amp;journal=Phys.%20Lett.%20A&amp;doi=10.1016%2FS0375-9601%2803%2900575-9&amp;volume=312&amp;publication_year=2003&amp;author=Wang%2CR&amp;author=Zheng%2CY&amp;author=Yao%2CA&amp;author=Langley%2CD">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=14.><p class=c-article-references__text id=ref-CR14>Tartaglia, A. &amp; Ruggiero, M. L. Sagnac effect and pure geometry. <i>Am. J. Phys.</i> <b>83</b>(5), 427432 (2015).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1119/1.4904319 data-track-item_id=10.1119/1.4904319 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1119%2F1.4904319 aria-label="Article reference 14" data-doi=10.1119/1.4904319>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2015AmJPh..83..427T" aria-label="ADS reference 14">ADS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Sagnac%20effect%20and%20pure%20geometry&amp;journal=Am.%20J.%20Phys.&amp;doi=10.1119%2F1.4904319&amp;volume=83&amp;issue=5&amp;pages=427-432&amp;publication_year=2015&amp;author=Tartaglia%2CA&amp;author=Ruggiero%2CML">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=15.><p class=c-article-references__text id=ref-CR15>Choi, Y.-H. Multiple velocity composition in the standard synchronization. <i>Open Phys.</i> <b>20</b>(1), 155 (2022).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1515/phys-2022-0017 data-track-item_id=10.1515/phys-2022-0017 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1515%2Fphys-2022-0017 aria-label="Article reference 15" data-doi=10.1515/phys-2022-0017>Article</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Multiple%20velocity%20composition%20in%20the%20standard%20synchronization&amp;journal=Open%20Phys.&amp;doi=10.1515%2Fphys-2022-0017&amp;volume=20&amp;issue=1&amp;publication_year=2022&amp;author=Choi%2CY-H">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=16.><p class=c-article-references__text id=ref-CR16>Sagnac, M. G. The luminiferous ether demonstrated by the effect of the relative motion of the ether in an interferometer in uniform motion. <i>C. R. Acad. Sci.</i> <b>157</b>, 708 (1913).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20demonstration%20of%20the%20luminiferous%20ether%20by%20an%20interferometer%20in%20uniform%20rotation&amp;journal=C.%20R.%20Acad.%20Sci.&amp;volume=157&amp;publication_year=1913&amp;author=Sagnac%2CMG">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=17.><p class=c-article-references__text id=ref-CR17>Choi, Y.-H. Coordinate transformation between rotating and inertial systems under the constant two-way speed of light. <i>Eur. Phys. J. Plus</i> <b>131</b>(9), 296 (2016).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1140/epjp/i2016-16296-x data-track-item_id=10.1140/epjp/i2016-16296-x data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1140%2Fepjp%2Fi2016-16296-x aria-label="Article reference 17" data-doi=10.1140/epjp/i2016-16296-x>Article</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Coordinate%20transformation%20between%20rotating%20and%20inertial%20systems%20under%20the%20constant%20two-way%20speed%20of%20light&amp;journal=Eur.%20Phys.%20J.%20Plus&amp;doi=10.1140%2Fepjp%2Fi2016-16296-x&amp;volume=131&amp;issue=9&amp;publication_year=2016&amp;author=Choi%2CY-H">
Google Scholar</a>&nbsp;
</p><li class="c-article-references__item js-c-reading-companion-references-item" data-counter=18.><p class=c-article-references__text id=ref-CR18>Post, E. J. Sagnac effect. <i>Rev. Mod. Phys.</i> <b>39</b>, 475 (1967).<p class="c-article-references__links u-hide-print"><a data-track=click||click_references rel="nofollow noopener" data-track-label=10.1103/RevModPhys.39.475 data-track-item_id=10.1103/RevModPhys.39.475 data-track-value="article reference" data-track-action="article reference" href=https://doi.org/10.1103%2FRevModPhys.39.475 aria-label="Article reference 18" data-doi=10.1103/RevModPhys.39.475>Article</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1967RvMP...39..475P" aria-label="ADS reference 18">ADS</a>&nbsp;
<a data-track=click||click_references rel="nofollow noopener" data-track-label=link data-track-item_id=link data-track-value="cas reference" data-track-action="cas reference" href=https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaF2sXht1SksL4%3D aria-label="CAS reference 18">CAS</a>&nbsp;
<a data-track=click||click_references data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label=link data-track-item_id=link rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&amp;title=Sagnac%20effect&amp;journal=Rev.%20Mod.%20Phys.&amp;doi=10.1103%2FRevModPhys.39.475&amp;volume=39&amp;publication_year=1967&amp;author=Post%2CEJ">
Google Scholar</a>&nbsp;
</p></ol><p class="c-article-references__download u-hide-print"><a data-track=click data-track-action="download citation references" data-track-label=link rel=nofollow href="https://citation-needed.springer.com/v2/references/10.1038/s41598-024-60515-7?format=refman&amp;flavour=references">Download references<svg width=16 height=16 focusable=false role=img aria-hidden=true class=u-icon><use xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=#icon-eds-i-download-medium></use></svg></a></p></div></div></div></section></div><section aria-labelledby=author-information data-title="Author information"><div class=c-article-section id=author-information-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=author-information>Author information</h2><div class=c-article-section__content id=author-information-content><h3 class=c-article__sub-heading id=affiliations>Authors and Affiliations</h3><ol class=c-article-author-affiliation__list><li id=Aff1><p class=c-article-author-affiliation__address>Department of Electrical and Electronic Engineering, Kangwon National University, Chunchon, Kangwon-do, 200-701, South Korea<p class=c-article-author-affiliation__authors-list>Yang-Ho Choi</p></ol><div class="u-js-hide u-hide-print" data-test=author-info><span class=c-article__sub-heading>Authors</span><ol class="c-article-authors-search u-list-reset"><li id=auth-Yang_Ho-Choi-Aff1><span class="c-article-authors-search__title u-h3 js-search-name">Yang-Ho Choi</span><div class=c-article-authors-search__list><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="https://www.nature.com/search?author=Yang-Ho%20Choi" class=c-article-button data-track=click data-track-action="author link - publication" data-track-label=link rel=nofollow>View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in
<span class=c-article-identifiers><a class=c-article-identifiers__item href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yang-Ho%20Choi" data-track=click data-track-action="author link - pubmed" data-track-label=link rel=nofollow>PubMed</a><span class=u-hide>&nbsp;</span><a class=c-article-identifiers__item href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yang-Ho%20Choi%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track=click data-track-action="author link - scholar" data-track-label=link rel=nofollow>Google Scholar</a></span></p></div></div></ol></div><h3 class=c-article__sub-heading id=contributions>Contributions</h3><p>The submitted paper has been prepared and written solely by Yang-Ho Choi.<h3 class=c-article__sub-heading id=corresponding-author>Corresponding author</h3><p id=corresponding-author-list>Correspondence to
<a id=corresp-c1 href=mailto:yhochoi@kangwon.ac.kr>Yang-Ho Choi</a>.</p></div></div></section><section data-title="Ethics declarations"><div class=c-article-section id=ethics-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=ethics>Ethics declarations</h2><div class=c-article-section__content id=ethics-content>
<h3 class=c-article__sub-heading id=FPar1>Competing interests</h3>
<p>The authors declare no competing interests.</p>
</div></div></section><section data-title="Additional information"><div class=c-article-section id=additional-information-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=additional-information>Additional information</h2><div class=c-article-section__content id=additional-information-content><h3 class=c-article__sub-heading>Publisher's note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Supplementary Information"><div class=c-article-section id=Sec10-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=Sec10>Supplementary Information</h2><div class=c-article-section__content id=Sec10-content><div data-test=supplementary-info><div id=figshareContainer class=c-article-figshare-container data-test=figshare-container></div><div class=c-article-supplementary__item data-test=supp-item id=MOESM1><h3 class="c-article-supplementary__title u-h3"><a class=print-link data-track=click data-track-action="view supplementary info" data-test=supp-info-link data-track-label="supplementary information." href=https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-60515-7/MediaObjects/41598_2024_60515_MOESM1_ESM.pdf data-supp-info-image>Supplementary Information.</a></h3></div></div></div></div></section><section data-title="Rights and permissions"><div class=c-article-section id=rightslink-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=rightslink>Rights and permissions</h2><div class=c-article-section__content id=rightslink-content>
<p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href=http://creativecommons.org/licenses/by/4.0/ rel=license>http://creativecommons.org/licenses/by/4.0/</a>.</p>
<p class=c-article-rights><a data-track=click data-track-action="view rights and permissions" data-track-label=link href="https://s100.copyright.com/AppDispatchServlet?title=Relativistic%20analysis%20of%20the%20Michelson-Gale%20experimental%20result&amp;author=Yang-Ho%20Choi&amp;contentID=10.1038%2Fs41598-024-60515-7&amp;copyright=The%20Author%28s%29&amp;publication=2045-2322&amp;publicationDate=2024-04-30&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby=article-info data-title="About this article"><div class=c-article-section id=article-info-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=article-info>About this article</h2><div class=c-article-section__content id=article-info-content><div class=c-bibliographic-information><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark=10.1038/s41598-024-60515-7 target=_blank rel=noopener href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60515-7" data-track=click data-track-action="Click Crossmark" data-track-label=link data-test=crossmark><img loading=lazy alt="Check for updates. Verify currency and authenticity via CrossMark" src= width=57 height=81></a></div><div class=c-bibliographic-information__column><h3 class=c-article__sub-heading id=citeas>Cite this article</h3><p class=c-bibliographic-information__citation>Choi, YH. Relativistic analysis of the Michelson-Gale experimental result.
<i>Sci Rep</i> <b>14</b>, 9956 (2024). https://doi.org/10.1038/s41598-024-60515-7<p class="c-bibliographic-information__download-citation u-hide-print"><a data-test=citation-link data-track=click data-track-action="download article citation" data-track-label=link data-track-external rel=nofollow href="https://citation-needed.springer.com/v2/references/10.1038/s41598-024-60515-7?format=refman&amp;flavour=citation">Download citation<svg width=16 height=16 focusable=false role=img aria-hidden=true class=u-icon><use xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=#icon-eds-i-download-medium></use></svg></a><ul class=c-bibliographic-information__list data-test=publication-history><li class=c-bibliographic-information__list-item><p>Received<span class=u-hide>: </span><span class=c-bibliographic-information__value><time datetime=2023-09-10>10 September 2023</time></span></p><li class=c-bibliographic-information__list-item><p>Accepted<span class=u-hide>: </span><span class=c-bibliographic-information__value><time datetime=2024-04-24>24 April 2024</time></span></p><li class=c-bibliographic-information__list-item><p>Published<span class=u-hide>: </span><span class=c-bibliographic-information__value><time datetime=2024-04-30>30 April 2024</time></span></p><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class=u-hide>: </span><span class=c-bibliographic-information__value>https://doi.org/10.1038/s41598-024-60515-7</span></p></ul><div data-component=share-box><div class="c-article-share-box u-display-none sf-hidden" hidden></div></div><h3 class=c-article__sub-heading>Keywords</h3><ul class=c-article-subject-list><li class=c-article-subject-list__subject><span><a href="https://www.nature.com/search?query=Michelson-Gale%20experiment&amp;facet-discipline=%22Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary%22" data-track=click data-track-action="view keyword" data-track-label=link>Michelson-Gale experiment</a></span><li class=c-article-subject-list__subject><span><a href="https://www.nature.com/search?query=Coordinate%20transformation&amp;facet-discipline=%22Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary%22" data-track=click data-track-action="view keyword" data-track-label=link>Coordinate transformation</a></span><li class=c-article-subject-list__subject><span><a href="https://www.nature.com/search?query=Standard%20synchronization&amp;facet-discipline=%22Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary%22" data-track=click data-track-action="view keyword" data-track-label=link>Standard synchronization</a></span><li class=c-article-subject-list__subject><span><a href="https://www.nature.com/search?query=Speed%20of%20light&amp;facet-discipline=%22Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary%22" data-track=click data-track-action="view keyword" data-track-label=link>Speed of light</a></span><li class=c-article-subject-list__subject><span><a href="https://www.nature.com/search?query=Sagnac%20effect&amp;facet-discipline=%22Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary%22" data-track=click data-track-action="view keyword" data-track-label=link>Sagnac effect</a></span></ul><div data-component=article-info-list></div></div></div></div></div></section>
</div>
<section data-title=Comments><div class=c-article-section id=article-comments-section><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id=article-comments>Comments</h2><div class=c-article-section__content id=article-comments-content><p>By submitting a comment you agree to abide by our <a href=https://www.nature.com/info/tandc.html>Terms</a> and <a href=https://www.nature.com/info/community-guidelines.html>Community Guidelines</a>. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.</p></div></div></section>
<div id=inject-comments>
<div class=placeholder data-replace=true data-disqus-placeholder="/platform/disqus?doi=10.1038/s41598-024-60515-7 #article-comments-container">
</div>
</div>
</div>
</article>
</main>
<aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type=reading-companion data-track-component="reading companion">
<div class=js-context-bar-sticky-point-desktop>
<div class="c-pdf-download u-clear-both js-pdf-download">
<a href=https://www.nature.com/articles/s41598-024-60515-7.pdf class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf=true data-readcube-pdf-url=true data-test=download-pdf data-draft-ignore=true data-track=click data-track-action="download pdf" data-track-label=link data-track-external download>
<span class=c-pdf-download__text>Download PDF</span>
<svg aria-hidden=true focusable=false width=16 height=16 class=u-icon><use xlink:href=#icon-download></use></svg>
</a>
</div>
</div>
<div class=c-reading-companion>
<div class=c-reading-companion__sticky data-component=reading-companion-sticky data-test=reading-companion-sticky>
<div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id=tabpanel-sections>
<div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu>
<div class="c-ad c-ad--300x250">
<div class=c-ad__inner>
<p class=c-ad__label>Advertisement</p>
<div id=div-gpt-ad-right-2 class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type=right data-test=right-ad data-pa11y-ignore data-gpt data-gpt-unitpath=/285/scientific_reports/article data-gpt-sizes=300x250 data-gpt-targeting="type=article;pos=right;artid=s41598-024-60515-7;doi=10.1038/s41598-024-60515-7;subjmeta=400,525,639,766;kwrd=Optical+physics,Space+physics">
<noscript class=sf-hidden>
<a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/scientific_reports/article&amp;sz=300x250&amp;c=-741904600&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41598-024-60515-7%26doi%3D10.1038/s41598-024-60515-7%26subjmeta%3D400,525,639,766%26kwrd%3DOptical+physics,Space+physics">
<img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/scientific_reports/article&amp;sz=300x250&amp;c=-741904600&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41598-024-60515-7%26doi%3D10.1038/s41598-024-60515-7%26subjmeta%3D400,525,639,766%26kwrd%3DOptical+physics,Space+physics" alt="Advertisement" width="300" height="250"></a>
</noscript>
</div>
</div>
</div>
</div>
</div>
<div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id=tabpanel-figures></div>
<div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id=tabpanel-references></div>
</div>
</div>
</aside>
</div>
<nav class=c-header__dropdown aria-labelledby=Explore-content data-test=Explore-content id=explore data-track-component=nature-150-split-header>
<div class=c-header__container>
<h2 id=Explore-content class="c-header__heading c-header__heading--js-hide">Explore content</h2>
<ul class="c-header__list c-header__list--js-stack">
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/research-articles data-track=click data-track-action="research articles" data-track-label=link data-test=explore-nav-item>
Research articles
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/news-and-comment data-track=click data-track-action="news &amp; comment" data-track-label=link data-test=explore-nav-item>
News &amp; Comment
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/collections data-track=click data-track-action=collections data-track-label=link data-test=explore-nav-item>
Collections
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/browse-subjects data-track=click data-track-action=subjects data-track-label=link data-test=explore-nav-item>
Subjects
</a>
</li>
</ul>
<ul class="c-header__list c-header__list--js-stack">
<li class=c-header__item>
<a class=c-header__link href=https://www.facebook.com/scientificreports data-track=click data-track-action=facebook data-track-label=link>Follow us on Facebook
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://twitter.com/SciReports data-track=click data-track-action=twitter data-track-label=link>Follow us on Twitter
</a>
</li>
<li class="c-header__item c-header__item--hide-lg">
<a class=c-header__link href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id=288" rel=nofollow data-track=click data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role=img aria-hidden=true focusable=false height=18 viewBox="0 0 18 18" width=18 xmlns=http://www.w3.org/2000/svg><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill=#fff></path></svg>
</a>
</li>
<li class="c-header__item c-header__item--hide-lg">
<a class=c-header__link href=https://www.nature.com/srep.rss data-track=click data-track-action="rss feed" data-track-label=link>
<span>RSS feed</span>
</a>
</li>
</ul>
</div>
</nav>
<nav class=c-header__dropdown aria-labelledby=About-the-journal id=about-the-journal data-test=about-the-journal data-track-component=nature-150-split-header>
<div class=c-header__container>
<h2 id=About-the-journal class="c-header__heading c-header__heading--js-hide">About the journal</h2>
<ul class="c-header__list c-header__list--js-stack">
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/open-access data-track=click data-track-action="open access fees and funding" data-track-label=link>
Open Access Fees and Funding
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/about data-track=click data-track-action="about scientific reports" data-track-label=link>
About Scientific Reports
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/contact data-track=click data-track-action=contact data-track-label=link>
Contact
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/journal-policies data-track=click data-track-action="journal policies" data-track-label=link>
Journal policies
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/calls-for-papers data-track=click data-track-action="calls for papers" data-track-label=link>
Calls for Papers
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/guide-to-referees data-track=click data-track-action="guide to referees" data-track-label=link>
Guide to referees
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/editorschoice data-track=click data-track-action="editor's choice" data-track-label=link>
Editor's Choice
</a>
</li>
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/highlights data-track=click data-track-action="journal highlights" data-track-label=link>
Journal highlights
</a>
</li>
</ul>
</div>
</nav>
<nav class=c-header__dropdown aria-labelledby=Publish-with-us-label id=publish-with-us data-test=publish-with-us data-track-component=nature-150-split-header>
<div class=c-header__container>
<h2 id=Publish-with-us-label class="c-header__heading c-header__heading--js-hide">Publish with us</h2>
<ul class="c-header__list c-header__list--js-stack">
<li class=c-header__item>
<a class=c-header__link href=https://www.nature.com/srep/author-instructions data-track=click data-track-action="for authors" data-track-label=link>
For authors
</a>
</li>
<li class=c-header__item>
<a class=c-header__link data-test=nature-author-services data-track=click||nav_language_services data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&amp;utm_medium=Website_Nature&amp;utm_campaign=Platform+Experimentation+2022&amp;utm_id=PE2022">
Language editing services
</a>
</li>
<li class="c-header__item c-header__item--keyline">
<a class=c-header__link href=https://author-welcome.nature.com/41598 data-track=click||click_submit_manuscript_link data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external>Submit manuscript<svg role=img aria-hidden=true focusable=false height=18 viewBox="0 0 18 18" width=18 xmlns=http://www.w3.org/2000/svg><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill=#fff></path></svg>
</a>
</li>
</ul>
</div>
</nav>
<div id=search-menu class="c-header__dropdown c-header__dropdown--full-width" data-track-component=nature-150-split-header>
<div class=c-header__container>
<h2 class=c-header__visually-hidden>Search</h2>
<form class=c-header__search-form action=/search role=search autocomplete=off data-test=inline-search>
<label class=c-header__heading for=keywords>Search articles by subject, keyword or author</label>
<div class="c-header__search-layout c-header__search-layout--max-width">
<div>
<input required class=c-header__input id=keywords name=q value type=text>
</div>
<div class=c-header__search-layout>
<div>
<label for=results-from class=c-header__visually-hidden>Show results from</label>
<select id=results-from name=journal class=c-header__select>
<option value selected>All journals</option>
<option value=srep>This journal</option>
</select>
</div>
<div>
<button type=submit class=c-header__search-button>Search</button>
</div>
</div>
</div>
</form>
<div class=c-header__flush>
<a class=c-header__link href=https://www.nature.com/search/advanced data-track=click data-track-action="advanced search" data-track-label=link>
Advanced search
</a>
</div>
<h3 class="c-header__heading c-header__heading--keyline">Quick links</h3>
<ul class=c-header__list>
<li><a class=c-header__link href=https://www.nature.com/subjects data-track=click data-track-action="explore articles by subject" data-track-label=link>Explore articles by subject</a></li>
<li><a class=c-header__link href=https://www.nature.com/naturecareers data-track=click data-track-action="find a job" data-track-label=link>Find a job</a></li>
<li><a class=c-header__link href=https://www.nature.com/authors/index.html data-track=click data-track-action="guide to authors" data-track-label=link>Guide to authors</a></li>
<li><a class=c-header__link href=https://www.nature.com/authors/editorial_policies/ data-track=click data-track-action="editorial policies" data-track-label=link>Editorial policies</a></li>
</ul>
</div>
</div>
<footer class=composite-layer itemscope itemtype=http://schema.org/Periodical>
<div class="u-mt-16 u-mb-16">
<div class=u-container>
<div class="u-display-flex u-flex-wrap u-justify-content-space-between">
<p class="c-meta u-ma-0 u-flex-shrink">
<span class=c-meta__item>
Scientific Reports (<i>Sci Rep</i>)
</span>
<span class=c-meta__item>
<abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop=onlineIssn>2045-2322</span> (online)
</span>
</p>
</div>
</div>
</div>
<div class=c-footer>
<div class=u-hide-print data-track-component=footer>
<h2 class=u-visually-hidden>nature.com sitemap</h2>
<div class=c-footer__container>
<div class="c-footer__grid c-footer__group--separator">
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/npg_/company_info/index.html data-track=click data-track-action="about us" data-track-label=link>About us</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/npg_/press_room/press_releases.html data-track=click data-track-action="press releases" data-track-label=link>Press releases</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://press.nature.com/ data-track=click data-track-action="press office" data-track-label=link>Press office</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://support.nature.com/support/home data-track=click data-track-action="contact us" data-track-label=link>Contact us</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Discover content</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/siteindex data-track=click data-track-action="journals a-z" data-track-label=link>Journals A-Z</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/subjects data-track=click data-track-action="article by subject" data-track-label=link>Articles by subject</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.protocols.io/ data-track=click data-track-action=protocols.io data-track-label=link>protocols.io</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.natureindex.com/ data-track=click data-track-action="nature index" data-track-label=link>Nature Index</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Publishing policies</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/authors/editorial_policies data-track=click data-track-action="Nature portfolio policies" data-track-label=link>Nature portfolio policies</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/nature-research/open-access data-track=click data-track-action="open access" data-track-label=link>Open access</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Author &amp; Researcher services</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/reprints data-track=click data-track-action="reprints and permissions" data-track-label=link>Reprints &amp; permissions</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.springernature.com/gp/authors/research-data data-track=click data-track-action="data research service" data-track-label=link>Research data</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://authorservices.springernature.com/language-editing/ data-track=click data-track-action="language editing" data-track-label=link>Language editing</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://authorservices.springernature.com/scientific-editing/ data-track=click data-track-action="scientific editing" data-track-label=link>Scientific editing</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://masterclasses.nature.com/ data-track=click data-track-action="nature masterclasses" data-track-label=link>Nature Masterclasses</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://solutions.springernature.com/ data-track=click data-track-action="research solutions" data-track-label=link>Research Solutions</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Libraries &amp; institutions</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.springernature.com/gp/librarians/tools-services data-track=click data-track-action="librarian service and tools" data-track-label=link>Librarian service &amp; tools</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.springernature.com/gp/librarians/manage-your-account/librarianportal data-track=click data-track-action="librarian portal" data-track-label=link>Librarian portal</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/openresearch/about-open-access/information-for-institutions data-track=click data-track-action="open research" data-track-label=link>Open research</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.springernature.com/gp/librarians/recommend-to-your-library data-track=click data-track-action="Recommend to library" data-track-label=link>Recommend to library</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Advertising &amp; partnerships</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://partnerships.nature.com/product/digital-advertising/ data-track=click data-track-action=advertising data-track-label=link>Advertising</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://partnerships.nature.com/ data-track=click data-track-action="partnerships and services" data-track-label=link>Partnerships &amp; Services</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://partnerships.nature.com/media-kits/ data-track=click data-track-action="media kits" data-track-label=link>Media kits</a>
</li>
<li class=c-footer__item><a class=c-footer__link href=https://partnerships.nature.com/product/branded-content-native-advertising/ data-track-action="branded content" data-track-label=link>Branded
content</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Professional development</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/naturecareers/ data-track=click data-track-action="nature careers" data-track-label=link>Nature Careers</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://conferences.nature.com/ data-track=click data-track-action="nature conferences" data-track-label=link>Nature<span class=u-visually-hidden> </span>
Conferences</a></li>
</ul>
</div>
<div class=c-footer__group>
<h3 class="c-footer__heading u-mt-0">Regional websites</h3>
<ul class=c-footer__list>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/natafrica data-track=click data-track-action="nature africa" data-track-label=link>Nature Africa</a></li>
<li class=c-footer__item><a class=c-footer__link href=http://www.naturechina.com/ data-track=click data-track-action="nature china" data-track-label=link>Nature China</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/nindia data-track=click data-track-action="nature india" data-track-label=link>Nature India</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/natitaly data-track=click data-track-action="nature Italy" data-track-label=link>Nature Italy</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.natureasia.com/ja-jp data-track=click data-track-action="nature japan" data-track-label=link>Nature Japan</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/nmiddleeast data-track=click data-track-action="nature middle east" data-track-label=link>Nature Middle East</a></li>
</ul>
</div>
</div>
</div>
<div class=c-footer__container>
<ul class=c-footer__links>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/info/privacy data-track=click data-track-action="privacy policy" data-track-label=link>Privacy
Policy</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/info/cookies data-track=click data-track-action="use of cookies" data-track-label=link>Use
of cookies</a></li>
<li class=c-footer__item>
<button class="optanon-toggle-display c-footer__link" data-cc-action=preferences data-track=click data-track-action="manage cookies" data-track-label=link>Your privacy choices/Manage cookies
</button>
</li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/info/legal-notice data-track=click data-track-action="legal notice" data-track-label=link>Legal
notice</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/info/accessibility-statement data-track=click data-track-action="accessibility statement" data-track-label=link>Accessibility
statement</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.nature.com/info/terms-and-conditions data-track=click data-track-action="terms and conditions" data-track-label=link>Terms &amp; Conditions</a></li>
<li class=c-footer__item><a class=c-footer__link href=https://www.springernature.com/ccpa data-track=click data-track-action="california privacy statement" data-track-label=link>Your US state privacy rights</a></li>
</ul>
</div>
</div>
<div class=c-footer__container>
<a href=https://www.springernature.com/ class=c-footer__link>
<img src="" alt="Springer Nature" loading=lazy width=200 height=20>
</a>
<p class=c-footer__legal data-test=copyright>© 2024 Springer Nature Limited</p>
</div>
</div>
<div class=u-visually-hidden aria-hidden=true>
<svg xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink><defs><path id=a d="M0 .74h56.72v55.24H0z"></path></defs><symbol id=icon-access viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule=evenodd></path></symbol><symbol id=icon-account viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule=evenodd></path></symbol><symbol id=icon-alert viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule=evenodd></path></symbol><symbol id=icon-arrow-broad viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule=evenodd transform="matrix(-1 0 0 -1 14 15)"></path></symbol><symbol id=icon-arrow-down viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule=evenodd></path></symbol><symbol id=icon-arrow-left viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule=evenodd></path></symbol><symbol id=icon-arrow-right viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule=evenodd></path></symbol><symbol id=icon-arrow-sub viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule=evenodd></path></symbol><symbol id=icon-arrow-up viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule=evenodd></path></symbol><symbol id=icon-article viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule=evenodd></path></symbol><symbol id=icon-audio viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule=evenodd></path></symbol><symbol id=icon-block viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule=evenodd></path></symbol><symbol id=icon-book viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule=evenodd></path></symbol><symbol id=icon-broad viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule=evenodd transform="matrix(-1 0 0 -1 20.182742 24.805206)"></path></symbol><symbol id=icon-calendar viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule=evenodd></path></symbol><symbol id=icon-cart viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"></path></symbol><symbol id=icon-chevron-less viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule=evenodd transform="matrix(0 -1 -1 0 9 9)"></path></symbol><symbol id=icon-chevron-more viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule=evenodd transform="matrix(0 1 -1 0 11 1)"></path></symbol><symbol id=icon-chevron-right viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path></symbol><symbol id=icon-circle-fill viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule=evenodd></path></symbol><symbol id=icon-circle viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule=evenodd></path></symbol><symbol id=icon-citation viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule=evenodd></path></symbol><symbol id=icon-close viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule=evenodd></path></symbol><symbol id=icon-collections viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule=evenodd></path></symbol><symbol id=icon-compare viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule=evenodd></path></symbol><symbol id=icon-download-file viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule=evenodd></path></symbol><symbol id=icon-download viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule=evenodd></path></symbol><symbol id=icon-editors viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule=evenodd></path></symbol><symbol id=icon-email viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule=evenodd></path></symbol><symbol id=icon-error viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule=evenodd></path></symbol><symbol id=icon-ethics viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule=evenodd></path></symbol><symbol id=icon-expand><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule=evenodd></path></symbol><symbol id=icon-explore viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule=evenodd></path></symbol><symbol id=icon-filter viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"></path></symbol><symbol id=icon-home viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule=evenodd></path></symbol><symbol id=icon-image viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule=evenodd></path></symbol><symbol id=icon-info viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule=evenodd></path></symbol><symbol id=icon-institution viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule=evenodd></path></symbol><symbol id=icon-location viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule=evenodd></path></symbol><symbol id=icon-minus viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule=evenodd></path></symbol><symbol id=icon-newsletter viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule=evenodd></path></symbol><symbol id=icon-orcid viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule=evenodd></path></symbol><symbol id=icon-plus viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule=evenodd></path></symbol><symbol id=icon-print viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule=evenodd></path></symbol><symbol id=icon-search viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule=evenodd></path></symbol><symbol id=icon-social-facebook viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule=evenodd></path></symbol><symbol id=icon-social-twitter viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule=evenodd></path></symbol><symbol id=icon-social-youtube viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule=evenodd></path></symbol><symbol id=icon-subject-medicine viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule=evenodd></path></symbol><symbol id=icon-success viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule=evenodd></path></symbol><symbol id=icon-table viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule=evenodd></path></symbol><symbol id=icon-tick-circle viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule=evenodd></path></symbol><symbol id=icon-tick viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule=evenodd></path></symbol><symbol id=icon-update viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule=evenodd></path></symbol><symbol id=icon-upload viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule=evenodd></path></symbol><symbol id=icon-video viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule=evenodd></path></symbol><symbol id=icon-warning viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule=evenodd></path></symbol><symbol id=icon-checklist-banner viewBox="0 0 56.69 56.69"><path style=fill:none d="M0 0h56.69v56.69H0z"></path><clippath id=b><use xlink:href=#a style=overflow:visible></use></clippath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style=clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round></path><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style=clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round></path></symbol><symbol id=icon-chevron-down viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule=evenodd transform="matrix(0 1 -1 0 11 1)"></path></symbol><symbol id=icon-eds-i-arrow-right-medium viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"></path></symbol><symbol id=icon-eds-i-book-series-medium viewBox="0 0 24 24"><path id=shape fill-rule=evenodd clip-rule=evenodd d="M1 3.78571C1 2.75867 1.85698 2 2.8209 2H6.1791C7.14302 2 8 2.75867 8 3.78571V4H11.1668C11.885 4 12.5585 4.42017 12.8494 5.07033C12.9893 4.98169 13.1425 4.91101 13.3056 4.86206L16.5222 3.89704C17.4454 3.62005 18.4843 4.10046 18.7794 5.08419L22.9256 18.9042C23.2207 19.8878 22.618 20.8608 21.6947 21.1378L18.4781 22.1029C17.5548 22.3799 16.516 21.8993 16.2209 20.9157L13.0001 10.1804V20.2143C13.0001 21.255 12.1231 22 11.1668 22H7.83346C7.54206 22 7.25803 21.9308 7.00392 21.8052C6.75263 21.9305 6.47077 22 6.1791 22H2.8209C1.85693 22 1 21.2412 1 20.2143V3.78571ZM3 4V15H6V4H3ZM3 20V17H6V20H3ZM18.0749 20.1358L17.2129 17.2623L20.0863 16.4002L20.9484 19.2737L18.0749 20.1358ZM19.5116 14.4846L16.6381 15.3466L14.0519 6.72624L16.9254 5.86416L19.5116 14.4846ZM8.00012 20L8.00012 6H11.0001L11.0001 20H8.00012Z"></path></symbol><symbol id=icon-eds-i-chevron-down-medium viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule=evenodd></path></symbol><symbol id=icon-eds-i-chevron-down-small viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"></path></symbol><symbol id=icon-eds-i-chevron-right-medium viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path></symbol><symbol id=icon-eds-i-chevron-right-small viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule=evenodd transform="matrix(0 -1 1 0 0 10)"></path></symbol><symbol id=icon-eds-i-chevron-up-medium viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule=evenodd></path></symbol><symbol id=icon-eds-i-close-medium viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule=evenodd></path></symbol><symbol id=icon-eds-i-download-medium viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule=evenodd></path></symbol><symbol id=icon-eds-i-info-filled-medium viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule=evenodd></path></symbol><symbol id=icon-eds-i-mail-medium viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"></path></symbol><symbol id=icon-eds-i-menu-medium viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"></path></symbol><symbol id=icon-eds-i-search-medium viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"></path></symbol><symbol id=icon-eds-i-user-single-medium viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"></path></symbol><symbol id=icon-eds-i-warning-filled-medium viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule=evenodd></path></symbol><symbol id=icon-expand-image viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule=evenodd></path></symbol><symbol id=icon-github viewBox="0 0 100 100"><path fill-rule=evenodd clip-rule=evenodd d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"></path></symbol><symbol id=icon-springer-arrow-left><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"></path></symbol><symbol id=icon-springer-arrow-right><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"></path></symbol><symbol id=icon-submit-open viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule=nonzero></path></symbol></svg>
</div>
</footer>
<div class="c-site-messages message u-hide u-hide-print c-site-messages--nature-briefing c-site-messages--nature-briefing-email-variant c-site-messages--nature-briefing-redesign-2020 sans-serif" data-component-id=nature-briefing-banner data-component-expirydays=30 data-component-trigger-scroll-percentage=15 data-track=in-view data-track-action=in-view data-track-category="nature briefing" data-track-label="Briefing banner visible: Flagship">
<div class=c-site-messages__banner-large>
<div class=c-site-messages__close-container>
<button class=c-site-messages__close data-track=click data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship">
<svg width=25px height=25px focusable=false aria-hidden=true viewBox="0 0 25 25" version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink>
<title>Close banner</title>
<defs></defs>
<g stroke=none stroke-width=1 fill=none fill-rule=evenodd>
<rect opacity=0 x=0 y=0 width=25 height=25></rect>
<path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill=#ffffff></path>
</g>
</svg>
<span class=visually-hidden>Close</span>
</button>
</div>
<div class=c-site-messages__form-container>
<div class="grid grid-12 last">
<div class="grid grid-4">
<img alt="Nature Briefing" src="" width=250 height=40>
<p class="c-site-messages--nature-briefing__strapline extra-tight-line-height">Sign up for the <em>Nature Briefing</em> newsletter — what matters in science, free to your inbox daily.</p>
</div>
<div class="grid grid-8 last">
<form action=https://www.nature.com/briefing/briefing method=post data-location=banner data-track=submit||nature_briefing_sign_up data-track-action=transmit-form data-track-category="nature briefing" data-track-label="Briefing banner submit: Flagship">
<label class=nature-briefing-banner__email-label for=emailAddress>Email address</label>
<div class=nature-briefing-banner__email-wrapper>
<input class="nature-briefing-banner__email-input box-sizing text14" id=emailAddress name=emailAddress value placeholder="e.g. jo.smith@university.ac.uk" required data-test-element=briefing-emailbanner-email-input type=email>
<button type=submit class="nature-briefing-banner__submit-button box-sizing text14" data-test-element=briefing-emailbanner-signup-button>Sign up</button>
</div>
<div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last">
<input class=nature-briefing-banner__checkbox-checkbox id=gdpr-briefing-banner-checkbox name=gdpr value=true data-test-element=briefing-emailbanner-gdpr-checkbox required type=checkbox>
<label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for=gdpr-briefing-banner-checkbox>I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature Limited <a href=https://www.nature.com/info/privacy>Privacy Policy</a>.</label>
</div>
</form>
</div>
</div>
</div>
</div>
<div class=c-site-messages__banner-small>
<div class=c-site-messages__close-container>
<button class=c-site-messages__close data-track=click data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship">
<svg width=25px height=25px focusable=false aria-hidden=true viewBox="0 0 25 25" version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink>
<title>Close banner</title>
<defs></defs>
<g stroke=none stroke-width=1 fill=none fill-rule=evenodd>
<rect opacity=0 x=0 y=0 width=25 height=25></rect>
<path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill=#ffffff></path>
</g>
</svg>
<span class=visually-hidden>Close</span>
</button>
</div>
<div class="c-site-messages__content text14">
<span class="c-site-messages--nature-briefing__strapline strong">Get the most important science stories of the day, free in your inbox.</span>
<a class="nature-briefing__link text14 sans-serif" data-track=click data-track-category="nature briefing" data-track-label="Small-screen banner CTA to site" data-test-element=briefing-banner-link target=_blank rel="noreferrer noopener" href="https://www.nature.com/briefing/signup/?brieferEntryPoint=MainBriefingBanner">Sign up for Nature Briefing
</a>
</div>
</div>
</div>
<noscript class=sf-hidden>
<img src="https://verify.nature.com/verify/nature.png" style="display: none" alt="" width="0" hidden="" height="0">
</noscript>
<img src="data:*/*;base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP6zwAAAgcBApocMXEAAAAASUVORK5CYII=" alt class=u-visually-hidden width=1 height=1>