zotero-db/storage/38D8RQXR/.zotero-ft-cache

4675 lines
196 KiB
Plaintext
Raw Normal View History

UKRAINE
ISSN 1726-4499
Spacetime & Substance
International Physical Journal
Volume 3, No. 5 (15), 2002
c 2002 Research and Technological Institute of
Transcription, Translation and Replication JSC
UKRAINE
SpaIncteerntaitmioneal P&hysSicualbJosutrnaanl ce
ISSN 1726-4499
Certi cate of the series AB, No. 4858, issued by the State Committee for Information Policy, TV and Broadcasting of Ukraine (February 12, 2001).
The Journal is published by Research and Technological Institute of Transcription, Translation and Replication, JSC(Kharkiv, Ukraine).
It is a discussion journal on problems of theoretical and experimental physics in the eld of research of space, t||||imdtamehep,asepsctlutrhihibcepaesmtottiairaoointnenicscoeoacfflaosnmtmehdtobe-uodiinnpretiilsenessragaaifnmcsoptdreiaoddpcneehass,it.cltortTiishmpohetpeeir,hoeJgniacorlauaaizlvrnanbidttaai/aolsoteniprsou,onebfxwlapfihunsliahndcnedhosaa:tttmhoioueenrncsshtaiontlfhtppeehrrydaoscepitsceicarortlniipeestxs(ipoionenfrctilomuhfdeeainUnptgnshitayvhnseeidrcsaEetlhianrenesfatdoelriimtntyh'is;ccorSomRcionasgmndroesGs;uRlt)s;; | discussion of published materials, in particular, those questions, which still have not a correct explanation.
sincTeh2e0v0o3l.uTmheeolfaonngeuiasgseueisisE4n8gpliashge.sT. hFeoremquaitviaslAen4t.vPeersriioondsic:itpya:p5erisasunedsepleecrtornoneiyce(a*r.dTuErXin,g*2.P00S0,{*2.0P0D2;Fm).onthly
Editorial Board:
N.A. Zhuck (Kharkiv, Ukraine) M.J.F.T. Cabbolet
V.I. Noskov (Moscow, Russia)
|V.VE.dKitorars-nino-hcohlioevfets (Kyv, Ukraine) P. Fl(iEni(nKdhraokvoewn,, HPoollalanndd))
JV..LQ.uRirvoagcahe(Pve(rKeihraa,rkCivo,loUmkbraiain) e)
|M.MVi.cAebEddilidtionr (Almaty, Kazakhstan) JN..DG.ilK(oZlipelaoknoavG(Korhaa,rkPiovl,aUndk)raine) S.S. S(Kanhnairkkoivv,-PUrkorsakiunrej)akov
L.Ya. Arifov (Simferopol, Ukraine) A. Loinger (Milan, Italy)
V. Skalsky (Trnava, Slovakia)
Yu.A. Bogdanov (Kharkiv, Ukraine) I.Yu. Miklyaev (Kharkiv, Ukraine) R. Triay (Marseilles, France)
B.V. Bolotov (Kyv, Ukraine) V. Mioc (Bucharest, Romania) V.Ya. Vargashkin (Oryol, Russia)
M. Bounias (Le Lac d'lssarles, France) Z.G. Murzakhanov (Kazan, Russia) Yu.S. Vladimirov (Moscow, Russia)
P. Carlos (Rio de Janeiro, Brazil) Lj. Nesic (Nis, Yugoslavia) P.G. Niarxos (Athens, Greece)
(The list is not nished)
Executive Editor: V.V. Moroz; Technical Editor: A.M. Varaksin
or $ST1uh0ebpspocrsritciaepgteoifoaonnndienhpfaoanrpdmelirnaugtniaoictnci:osrd$2in.0gliyn).UTkhraeinelee,c$tr2o.5niicnvNerIsSio*nstpartiecse, i$s1205.0%inofatlhl eotphaeprecrovuenrtsrioiens p(prilcues. $1, $1.5 Kirg*h)iNziIaS, (MNoelwdoIvnad,eRpeunssdiean,tTSatdajtieksiswtaitnh,oTuutrUkmkreaniniset)aanr,eUAzbzeerkbiastiajann., Armenia, Byelorussia, Georgia, Kazakhstan,
Accounts: In US Dollars
In UA Hryvnyas
Correspondent: THE BANK OF NEW YORK Account No. 26009011415
Eastern Europe Division
in KHAB ZEMELNY BANK,
One WAll Street, New York, NY 10286
MFO 351652,
ABecncoeu ncitalNryo.B8a9n0k-:02U6K0-R61S0IBBANK of Ukraine IASnWccfaIoFvuoTnut:rKNooHf.AZ1EB6M0U0E-A8L-N25K0Y17B4A-0N1-K00JSC BAecncoeu ncitarNyo:.N2T60I0T90T1R14J1S5C
ACK(foOohrdaNrU2kT4ok4rvIa7,Ti3Un0Tek3Rr9sau,,ibnsecribers, aNtatthioenraaltBe aonfkt)he
The corresponding confermation as to the paying should be sent to the Editorial Oce by E-mail.
Tel.E: d+i3t8or(i0a5l7O2)19c-e5:5Z-7h7u,c(k04N4.)A2.,65R-T79I-T94T.RT,e3l./Kfaoxlo: m+e3n8sk(a0y5a72S)t.4,0K9-h2a9r8k,o4v0691-519646,,1U4k1r-a1i6n4e, 141-165 E-mail: zhuck@ttr.com.ua, spacetime@ukr.net, krasnoh@iop.kiev.ua. http://spacetime.narod.ru
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
& Vol. 3 (2002), No. 5 (15), pp. 193{206 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
EXPERIMENTAL EVIDENCE OF THE MICROWAVE BACKGROUND RADIATION FORMATION THROUGH THE THERMAL RADIATION OF METAGALAXY STARS
V.S. Troitskij, V.I. Aleshin1
Radiophysical Research Institute, N.Novgorod, Russia
Received Desember 2, 2002
The paper is devoted to the development of the theory of microwave background formation through the optical radiation of Metagalaxy stars which is transformed due to the redshift into the microwave and infrared star bnaoctklgersosutnhdanra4d0ia{t5i0ont.hoAunsaanpdplMicpatciosnhoowfsththeatthetohreysttoarthmeicmroowdaevl eofbaacsktgartoiounnadryisnnoontexsptrainctdliyngthUenbivlaecrkseboodfyaosnizee. Ibtys>abvr1aimgilhamtbnl,eesbmsutetaegmsruoprweemraseitgnuntrsie ucapanndttolsypopeinctitcrsaaullbwmdaeivnlleismilteynetgcetorh,risrn.efsrBpaeorsenidddeast,nodth2oe:7pv3taKicluaelinawnRadvaeydlereapignehng-edJsee.nacnTeshoirsfesgpmiroeandlli-ocsftpitoahnceeisbbaacccokkngg rrroomuunneddd uctuations on the angular resolution and the wavelength predicted by the theory is in a good agreement with the experimental data. Finally, the fact, mysterious from the background relic origin point of view, of equality of the volume background energy density and the optical star radiation energy has a very simple and natural explanation. An application of the theory to the closed model of the Universe in the big-bang cosmology shows that at wavelengths ex>cee1dmsm2.7tKhethsatatrcobmaceksgirnotuoncdonis incetgwligitihbltyhesmhyapllo(tnhoesmisoorfetthheebna0ck.1gKro)u, nbdutrealitcsourbigminillaimndettehrewidaevaesofitthsiegnbii gcbaanntlgy. It follows from the results obtained that the observable nonblackbody electromagnetic background is not a relic one and it has a star origin.
For majority opinion to change on the correctness of the hot big-bang cosmology, it is clear that one or more of the arguments given above must be seen to fail ... . However, if a change does occur, it will probably come from one of three directions: ... b) A demonstration that there is an other plausible mechanism which could be responsible for the MBR, probably related to the idea that it does not have a perfect blackbody spectrum and/or that it could not have been coupled to the matter at an earlier epoch (Burbidge, 1989, p. 988)
Introduction
The idea to explain the microwave background radiatniootnybeyt sboeuerncewsoorfkdedi eoruetntinnaantuyrceoinscnroettenefowr,mb.ut it has the Ionbtsherivs epdapmeircrwoewainvveebstaicgkagtreoaunpdosbsyibtihlietythtoeremxapllariandetuviaridetieonannt dotfoetvuhoseeluMstoieomtnaegoacfloastxmhyeoslUtoagnriiscv.aelrFsmoe.rodthTelihss eopfuprtrphoobesleestmrituocis-f tdiONehasonervidtnichkocteonohvtsmi(rms1iebd9otuih6lrot4oeig)cdoytnihicmoaaonvlofebwdtaehepslreusiesbwscoltiaaafsrsrhtrhesiietdnidsutdeowoginuoerldtrayklberyDraearsModluirielocatrVsts.hiioFktontefiirveicsin(toc1hls9sctt6uaua2lndna)d---. tions for di erent models of the standard cosmology.
1e-mail: redshift0@narod.ru
The methods of calculations were not given. It has
bssetearevrnaitnsihtoeongwrnaol,
in particular, that at a wavelength of obr>ad1imatmionthisemvoulcuhmleessentehragny tdheenbsiltayckobfotdhye
raandaiatiromnawtiiotnh (tPhaeritjesmkipj earnadtuSreunTya=ev 11K97.3)Tthhearte\wthaes
otebgsrearlvreaddriealtiiconraodfidatisiocrnetceansonuortcbese"eixnpsltaainneddarbdyctohsme ionl--
ogy models. To calculate the radiation of galaxies, as
correctly noted by Zel'dovich and Novikov (1967), \is
of prime importance in a hot model since it is the back-
ground on which the relic radiation of the model itself
is to be observed."
This is a valuable but unused so far test of the
background relic origin theory. Recently there have
been some serious experimental demonstrations that
the standard cosmology does not re ect any more a
real state of matter and radiation in the Universe (lu-
194
V.S. Troitskij, V.I. Aleshin
m(aSniedngoadsluite1y9t9oo2fe;gxTaislrtaoixnitigesska,iljtteh1r9eni9ar2t,id1vi9em9c4eon)s.smioIonnlsotgahincisadlcteohvneonoluercitetisoionint) bpofrfheecyqsotsuamiecrnaesclsiyrniembadspaiosnotndrastn,aotniwntgianptlogaarxettxioiecpsutlhaltarienra,nrtebshdfyoesrhtmmhifetiecdoropofiwtnittcahoaveletrrhbaaeyddriioaaatttdhiiiooeonnrof sItnarsthailsonfogrtmhuelaptaitohnttohaenporobbselervmer.requires justi ed palarhteyiosanibcsaaelnnpdtrtoihnceefdu ulrlrsemtseesoatfsimucaraelctsuioolanftsairop.nreTfsohernetitmesdesteohaluorltdiieoornf(cwTarhlociicuth-svmvekreeaairrjsslllee1yr9atia9sdhd4ieaao)t3tphilKtoaeenaddbs.sotahfcIboknsywgttaranhornsiutshnoipfardrdttehceisnareennamstibszotpeeraaeetopixtfcehptrnalhawoneinnetseehtgxdaaipvttbaieooynanfdtatidhnrheeygettaUUghielnenenriid---pioissfhotytnhhseieicnsaUmalnpjaiupvdsleeitreifsd oecrtaiontthicBoelunGrdeRoisnfucgltathtlshceuoecblsaatttlaaciionunndleaadftoridofrondroinmd eiee. rteeAhrnoetcndomtmwmohpdoiaecdrlhs-ebt(ahslbaseacoetkwvrgeitetrhvjhoueiueostnwtrhieds et.eiocosfaTbBtlshheamierrsvyosemstddhaeatelcyevhmm1aaoe9rnsag9ttco2tao,oeddBfrieutsqthtreuibescatispdtergtoeoefwse1tcinh9thht8eo9owtm)sho.eiercAktrr.hloelwiasslaaiovtidyre
1. Pbahcyksgicraolunbdasifsoromf asttaiornmicrowave
To determine this radiation let us consider the Universe as the Euclidean space lled with matter in the form of galaxies being the clusters of stars of di erent spectral classes. We suppose that the spatial distribution of galaxies in the Metagalaxy space is uniform and isotropic and their mean parameters over a suciently large volume do not depend practically on the distance. We suggest as well the star thermal radiation as a blackbody one. At rst let us consider the solution of the problem in a simpli ed form taking the temperature of all stars equal in the whole galaxy. Let ntrLhaegdetaimuul=sse,MatTnapk,ncteuhbmieenmtbtoheereaaocnmfctoseetuamannrtpsvetoirnhlauattmthuerteehgdeoaeflnsattsxahitireeysisr,oinpfrhg,goatatlhlaoaexsxipiriehemsse,reamearsne., not practically projected to which other.
Let us nd the spectral power density of the thermtTvhohaeleulamrfnautedleliena lnetumiaxonaefnpr toeurmRtxu2trf
hreoedwmgRiatshlitasaxrreisecseapatttiromandeidtoriaifcgrerdqaiumstean
nccyseteRr0adiinn.
d = F (; T ) r2n m R2
dR d:
(1)
ownHreerfeerenicse
the radiation frequency frame, F(; T) is the
Polfasntka'rss
fiunnctthieoinr
for the spectral density of the star blackbody emissivi-
ty W=cm2Hz sr. Along the path of propagation up to
a telescope antenna this radiation at frequency  will
have three types of attenuation and a frequency trans-
formation due to the redshift. The rst type is the
aatbtseonrupatitoionnininthRe2 ptrimopeasg,atthieonsemcoenddiutmypwe hisicthheweensehraglyl
dtyepsceroibfeatbtyentuhaetifounnicstcioonnn e(cRte)d. wAitnhdthaet rleadstshtihfteotfhfirred-
qTuoednectyermuinpettohiosbtsyeprveaotifoanttferenquuaetniocny th0er=e is=n(zo+ne1e)d.
to use any hypothesis on the redshift nature except the
fact of its existence. Let us consider the star radiation
wrtfstrohpimeiwietqshceutssfaerprandeeslqcucpiutedeeresceutntnomcrsayit(tlhwzybdei0+aleF:lsnn5p1bds(e)ietc0dytsrTeauFe.)nnm(dAssichTntoic)fn(t+etzhtaered0ti+at:fsco5dr1tbeoii)nqoswenucnrrevweinwasaictsticyitehoohmnuinbnppiocneo(hunziaannsnd+atngataaeer1rddly)-l
in the same times by weakening of the quantum ener-
gspyecf=rt(orzumm+h1i)s
etqouhal0t.o i.e.
Thus, the energy the integral of F
of the shifted ( T) in band
F( T) =(z + 1) = F( T) 0;
wwFmht(sizaoeh(om+ln.enlreToAaew1ct)e)tihxldalrtttoihihmpnme0aufceovatrr=srieeetocilacvnyeesnepoqrcewtynouri=iogemal(nnlynzpaabtppr+nauerorrdmoeoi1awndp)istato.wspbwrtTtphaipetinriohlhosoldniwasmtaicehndlrhroeet.ntsoirhuosaIiesclndhtphdicarraiea0oostepsp,medeordoi,aba.roecttortf.taiaincioidcaenlnrai.eeaaalswdTltdlsyiiiohdatiannoaees-
reception band, overlapping all the spectrum of the ob-
served radiation. To illustrate this point let us nd the
tAostaalbeonveer,gwyerescuegigveesdt ftrhoemsotuhrecesoruardcieatwioitnhinreidtsshfirftamze.
of reference have Planck spectrum. In this case each
frequency at the observer of the whole spectrum ex-
tending from  = 0 to  ! 1 will have a shift to zero
frequency decreasing in (z + 1) times. This spectrum
take the form
d
0F
(0)
=
2h
c2
03(z
+
1)3

exp
h0(z +
kT
1)

1
1 d0;
W=cm2sr;
wehBr0oh'0slet(frrzzreome+mfear01ne)0nn==cklteoTow=f=r(1azmx+eaw.1ne)dIhinsuatsvetieghnregaantftrinhaeqngeuaocelohvngaecurynegaieonllfottffhrheeevqaouSrbetianesefbcarilvneess--
P
=
2k4 h3c2(z
T4
+ 1)
Z1 0
x3 ex
1
dx
=
T
4=(z
+
1):
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars195
Thus, as it is expected all the energy received decreases in (z + 1) times.
It should be noted that in the standard cosmology the attenuation of galaxy radiation caused by the redshift due to the Doppler e ect is taken to be equal in (z + 1)2 times, i.e. for the Planck radiation spectrum F( T) d the received signal has power
F( T) d=(z + 1)2 = F( T) d0=(z + 1): Tcrheaisseatotfenthueatqiouna,ntausmsuegngeersgteyda,nisd dthueeirbontuhmtboerth(eordienat(ghzny+ios(t1qhw)ueaatryinmwttueohmsreddsaauptettphetrneoouafatrchethiqe)ou,ndeaennicscdryedtaehbsteeaennromdaf)git.naheieIndtqitsnuweae(inzmc+teus:1mt) hrtaesinmtteiiernnsdciloulunemsStiodoinettarhhteseinuod,ncehacftrraotenhmaesaetprheopcefreotcphaotecnihosbniatdonpedlrbaece(dceglvwarosoelsuuihcnmaadvleleeaesptlshep.merofeoanlctlho)w, iwneg
dE = r2 n m (R)
wraedioabttioanintetmhepreerqatuuirreed expression for the background
 r2 nm 2hc203
Zzm 0
exp(z[h+01()z3+ (R1))=ddkRzTd] z
1
=
= c2[exp(h2h0=03kTb) 1]: (5)
dinimmTeenhtseeirodsn,ilmweseesnhfsoaiorvmne
of (5)is equal to designating 0 =
cW==0cm, w2Hhezrser.0
Iins
 r2 nm
Zzm 0
exp(zh+c(z1)+3 1()R=k) dTdRz0dz
1
=
=

exp

hc k0Tb


1
1 :
(6)
Denoting the left part as x we have for the background temperature
F [0 (z + 1); T ]
d0 dR; W=cm2sr; (2) w1a)nh=tekernTen)aFa[p10e](rWztu+=rcem1f)r2;osTmr]H=azll.2thhTeh03ge(azflua+xlli1ei)lsl3ui=nmc2tih[neeaxtspioo(lhnidi0na(nztgh+lee of the radiotelescope antenna is
Z1
E =  r2 nm d0
F [0(z + 1); T ] (R) dR: (3)
Tb(0)
=
k0
hc
ln[(x +
1)=x]
:
(7)
Expression (6) is simpli ed if, rstly, in the upp1gta)re=okruinin0ngkdtTtethgeerma t0pri:oes1trnattelu0irm:rm2eitaoTnfwbdteh,hesche=eacxvo0penkodtTnlhbyee,ntacitoa0ntl:1hdfueitndi0coe:tns2iio.rnheAdce(sxbzpimatacink+s--, sion we obtain from (6)
0
0, tIhfe n(Rth)eisuspupcehrtlhimatitatosfotmhee Rint=egRraml awxi;ll b e(Rdem anxi)te=
Tb
=
r2
nm
T
Zzm
(z
0
+
1)2 (z)
dR dz
dz:
(8)
and equal to distance R
iRtsmraaxd.iaAtisoint
iastobfrveiqouuesn, acyt
the

wgiivllencogmaleaxiny
tiefhxepthrreeescsgeioapnltaiox(3ny) rbietadnissdhnifaetcteitsshsaezry.fretIoqnuuetsnhecityshwea0fuy=ntcotio=inn(ztael+grrea1lta)e-,
tzfoi.ornT b(hzee)tnw,weseeunbosbRttiatuainntid nngadlloRyr,
ultimately, between in (3) for dR = ddRz dz
R and , (R)
E = r2 nm d0
Afisutlf uNzllml oeldwl=efdfoo3rfr0o0irn00tea0gnr3datc2iTmn:5g=acimnt6di.st1nh0ee3cKesesscaothrnyed
ornset acotnTdbition3Kis to know R(z) in
tieRqnhsute=aatshbianRelrtis0se hprirvenszdattlhvae0eepxrppiin reoterzexidmrivmbeayn1al ttt0aih.olelnFyooztbrfhosetrehr5Hvizsau(tpSbiueobgnrlepa0slo:lo0s1af2ew9g9oao3nRlr,aeTxt=crihaeoensiRtaslu0ankswidzej
1994). Then, for calculation it is necessary to deter-
mine the attenuation function (R). This can be done
Zzm
F [0(z
0
+ 1); T] (z)
dR dz
dz;
W=cm2sr:
(4)
In our case it is expedient to characterize the radiataisona Etembypetrhaetue reecotfivtehteemblpaecrkabtoudrey Trabdwiahtiicohniswditeh ntehde same spectral power. Comparing (4) with the radiation of a black cavity
E = 2h03
d0=c2[exp(h0=kTb) 1]; W=cm2sr;
on the basis of di erent physical grounds. At rst we suggest the simplest ones, namely, that beginning from srboeygmitoehnedsiscRteann>trcaeRlRmpmairsttshcoeomfrapgdlaeilataetxiloyiensscflrryoeiemnngesdooun(roctrehsaebopusoatrtfbhreodmo)f wave propagation. This takes place when projections of all central parts of galaxies lying in the sight cone ontofumlNenbg=etrhnoRfRg3ma
la=ax3ri.eesTmihneercgtoionntgeala
pnrduopjteactktoiiondngisataarreneaaceo
fRRth2miesi.reqcTeuhnae-l tral parts of diameter 1 kPc is S = 0:25n
R3l2. This
196
V.S. Troitskij, V.I. Aleshin
area covers the part of the cross-section area of cone
R2. Hence, only a part of radiation will pass through the cross-section (R) = 1 0:25Rnl2. The channel will fbt uh(enzencf)ut=il olyn(1Rcdl)oopes=eszdn=1zowmthd.eRenHp=ee Rrnemd=toh0oner,atihat.tetee.nwRuaatav=teRiloemnRng(0=tophrz1stc=hrw0ae:tee2nt5hainnaklgve2)es, place practically for the optical radiation forming the observed background. Let us take for the calculation l = 6 kPc; n = 2, then Rm ' 50000 MPc; zm ' 6 103.
In the given estimation the galaxies and the stars inside the galaxies are regarded immovable relative the given spherical coordinate system with a centre at the observer. In reality there exist proper motions of the galaxies as well as the stars inside them. It is obvious that the account of these motions does not change the result obtained. Indeed, in a suciently large volume, say ' 103MPc, containing several thousand galaxies the directions of motions are distributed isotropically and the velocity values are distributed according to the normal law with the rms velocity  300km=s. So, the radiation of galaxies will have the frequency sthhiifstfancotttmheoroebstehravned rad=iat'ion vte=mc p'er1a0tur3e: fOrowminegactho galaxy well di er from the average one not more than hoTm=oTgeneity10wh3e.n Dadudeinsgmraalldnieastsioonf otfhea ela regcet naunmdbietsr of galaxies, the in uence of this chaotic velocities on the radiation frequency and temperature will be mutually compensated. The same can be said on the in uence of the velocity dispersion of the galaxy stars. Thus, the uniform and isotropic microwave background xes in a statistical sense the immovable coordinate system resting on all the galaxies of the visible part of the Universe.
2. JmtheiencerMroawelateavxgepablraaexscyskigornoufonrdsrtaadriation of
In this section we give quite a general expression for the star background suitable for di erent models of the Universe. We suggest space lling with the galaxies be uniform and isotropic and their mean luminosity and dlterimimbueintsisotionongosifvbetehaeincvsatalarcriuaslnaottfiiondni ttieamrkeeinnatgnsdipnetscoptaracacelc.ocuTlanhstseeasp,crooi.bne--. with di erent photosphere temperatures and sizes. As it is known, more than 80 per cent of stars in galaxideestearrme itnheoscehoief tyhethmeaoinbsseerqvuedencsteaarnbdahckegnrcoeutnhde.y wFoilrl ttthhrairsloucslgtaahsrsst,htrehadesituraesrqaulunirmdedipnhpoosatirtoaysmpMheeter,erdsteertmerapmnedirnaitTnugraeir.tesLgsepitveeucnsuse the known formula for the relative stellar radius
r=r
lg
r=r
=
5000
T
0:2M
0:02;
(9)
waunshudearlMelyTgisivisietnsthpienhoptthaobogtlreoassppahhniecdrivcfaoltrueemt.hpeTehrsateaturresrleaotofifotnhtheMemTstaaiinrs sequence it is approximated with a sucient accuracy by the function
T
=
26 103 0:37 M +
2:4:
(10)
Substituting (10) into (9) we have
r2 r 2
= 10
0:233M+1:05:
(11)
The luminosity distribution of the main sequence s1tfesrtaps9oabe7mrBcl4set)rA.fMa'olFr(TmcM=hlGae)isnKsle4hutsMamhtaseoi:rnibenMoeTetseeqihntr=uyevaaklf2ilnun0rtonMeewsctrphtvnieaoactnl(12tssiievnno'eevfe,(loayMMlfrvot)etorhsv(ieess-axp4ilganu,e-imcte1vets)eprg,naoel(elrf0icnvt,L+lhaaatel3snhuss)geee-, (iz+a4ti,o+n6)P , (+'(7M,+)9)=, (1+.10A,+s1a9)r.esWulet,htahvee fuusleldrandoiramtiaolnwill be
 r 2 nm X 19 10 0;233M+1;05 '(M)
4
Zzm 0
expf(hzc+(z1+)3 1()z=)d0dRkz Tdgz
1=
=

exp
hc k0Tb

1
1 :
(12)
HmdoneeinnrtceehedeTRbacy(izcse)adp.cetcEe edpxntpenedrdaetsbustyihroeen(o1or(0fe1)tt2.ih)ceaFdlruoeonedsrcstnheioxoifntpt.edrdeIitRpmse=enndndazttaeuilxrspeddlemiepctiaetennlry--ietcfhxHeepstescr1lizoom=sn(eelzdnyt+atmhl1orm)oduoaegldnhedolfscoootfhnotechnre.esttUeannfdiuvanercrdtsieocnoRss(mzRo)(l=ozg)Ry. 0RFpo(zrz,)tfho=er
3. SrUatndairivaemtriosicenroinwaavestbataicckmgrooduenldof the
WienstgeimcwoaintthseiddtehbreytghcaeolnasttxeaimetiscpiomsruoanrdyieflooorbfmstehravenaUdtiniosinvoset.rrosWep.iecSapinlasocsecsa ullgels-gsgceaaslatlexstyhteospmbaeecaei.nnvdIaitrmiaiesnntesisiosnenntsitmaianeldatlhnuadmt iintnhotisshitemywoinhdoetllheefoMsllaeomtwae-s
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars197
from observed mean (statistical) dependences of apparent luminosity m(z) and angular dimensions (z) of the galaxies and quasars which make possible to detRerm=in6e00tphez MreaplclyinextishteinrgeddsehpieftndinentecrevaRl (0z)eqzual to5 (RTr=oiRts0kpijz1,9w9h5e).re RTa0k=ing60i0nMtopcacwcoeuhnatvein (12), that
A X 19 10 0:233M+1:05 '(M)
4
Zzm z 1=2(z + 1)3 (z)dz 0 expfhc(z + 1)=0kTg
1=
=

exp
hc k0Tb

1
1 :
(13)
HerPeaTraims getiverenAbym(a1y0),haAve=o12nlyr 2andmmisRsi0b.le limits of
paosstsaibrlenuvmalbueers isninacecuabisctrMictpcm, eiasnunvkalnuoewonf. nAmcc,ori.de-.
ing to the data on the population of the Local Group
containing three large galaxies with the star number
mbnAemr=lioe1sn01ei1-n0o11nt1he.1eaT0ni1hn2detneaarnavhdtaalaRlfb10oo0ru=dt1e62trw0s0olMeAtsespnocsnwa1ed0itmcha1in0stsh,tiebawklsheteiavcr1ah0lnu1mue0maoy-f
be used in the background calculation. Then taking the
mhaevaTenh se(izzce)al=ocfu1tlahteiopcneznr=terzsamullt,pswaorhtfetrohefegzbamalacxkige5rs0o0ul0n'd
6 Kpc we 7000. tempera-
ture are given in Tables 1 and 2 in the waveband from
1cHliummulabitttbseoldeopflfaionrirttessathreoexflpalawaewrmiRmiRcer=no=tnRa.RlHT0gpzrhoezue, xntrtdrshiatnepgtsoaelwbcaloitetnehdhdianbosentbyheoeeefnonidrncttteahhrlee--
val 0  z  0:02. The comparison of two tables shows
there is not any signi cant di erence in the background
temperature dependence on wavelength. It can be seen
from the tables that at waves  > 1mm the background
ilmset<addbeet1yemaromsmnwliynebeltyldhtotbhhsyeeotscoheafeloccsflutalcasalrsatsisBoosnef.ssoTpfBeotchActehraeablcnakcdclkatihgsnsreeostseuhneArdeuFslauttGlrttasev,nwiuaoet--
ation in (z + 1)2 times due to the redshift. In this case
the dependencies remain practically unchanged, but the
ovesantleiu.meaotfeAbiosthanfoorrdtewrohliagwhesrRth=anRt0hpatzaasnadn tuhpepeHrulbimbliet
A most interesting and unexpected result of the the-
ory is the growth of the background temperature in the
submillimetre waveband. Any reasonable attempts to
eliminate this growth were failed. Finally, it has been
understood that the growth aries due to a sharp di er-
ence of the star background from the blackbody one
at submillimetre and shorter wavelengths. This has
Figure 1: A comparison of the star background spectrum
for the universe static model (solid 105) with the blackbody spectrum line)
line at at Tb
=zm2:=735K
103 7 (dotted
been shown in Fig. 1 where the star background spectrum is given in comparison with the blackbody one aTt=T2:=7K2:7coKin.ciTdeheinortehteicaRlaaynledigbhl-aJcekabno'sdryegsipoenctorfathaet Planck's spectrum and sharply di er in the Wiens's reg iaotnaantdit<s s1pmecmtra.lHdeernesitthyeesxtcaeresdpsetchtreusmpeicstrparlacdteincasiltlyy othf atthecaPulsaensckt'hsespgercotwruthmobfythmeaneqyuoivrdaelernstatbaTck=gr2o:u7nKd temperature. The reason of the spectra di erence is the fact that the star background is added up basically from the Rayleigh-Jeans's parts of the star radiation ssptaercttreamwpheriachtuerex.teRndeatlloy,otphteicianltefrgerqaul einnc(ie1s3)adtecarehaisgehs exponentially with the frequency and, hence, beginning with some value of z it does not give any essentional contribution in integral (13). One may conclude that tsoahiforinesTstuhaalcktn(,ezdse+apc1l0ha)=casekpnwe0cahTtcretanu=lahcl1lcua(dspzespt+oeerrf1ms)lti=imankreisst0faoTotfrtaidhnnite degegtrirhveaneetntieoxvonapb.lrsueeAesrss-vational waves has its actual upper limit of integration ostvaerrPzlarneclka'tsedspeacstritumis ionbivtisoWusiewnist'hs rtehgeiocnu.toT huosf, tthhee background radiation is basically made at the star radiation in the Rayleigh-Jeans's region. Table III gives btehraecRkvgarl=ouuensRdo0fprazzdeefifa,tcrioehnsapraoatnctsaeibrgilzieveescnhtihwee ayvsiezlfeeonrogftthghae. laIotcbtisiscerslveaeeyndfrom the table, that at centimeter and longer waves bato>un(d0e:d50b:1y1cgm)acmlabxtyhyetshcberaeeccknugitnorgo uanotdf ztsmhpeecstt(ra5urmra7idn)itae1tn0iso3intyainnidstensity in the Wiens's spectrum region. As a result,
198
V.S. Troitskij, V.I. Aleshin
tmhienbedacbkygrroauthnedrraadthiaintiloanyeinr othf egaWlaixeiness'rsardeigaitoinonissdinettehre-
Rayleigh-Jeans's region of the spectrum. The reduction
in number of galaxies responsible for the background at
senti1aml imncriesaasne oimf psmoratlal-nstcafalectboarcwkghriochunldea duscttouaatnioenss-
for shorter waves, that is con rmed by observations.
When calculating the star background we studied
how the background temperature is in uenced by an
ilnencrgetahsseloonfgtehretshtaanr 1pchmot.oTspoheesrteimteamteptehraistuinre uaetnwceavwee-
have the only example, the Sun. Its brightness temper-
atiwanhtsau,emvrterehesetefleaocrtr0sai.olcnA0u2ltTa0stcu1i=mocmnhTnptm0oer+moamycp5eobderreue1ara0tteuph5irpasenr,ocowox0fni:hsm0cte1earaKrertnsee.lTdyAb,=etixitnlpasc0rhsre=teos(,asuzsaeled+sdsfbb1aaye)tr
remembered that the background temperature is de-
tawdbebeaartcosmekvrtgiemanrkmoeienduenenndbdatyisftoretnaomwnemdopienacvriaaatrliltecauuqulerulsvaeiatrsAielhoumoneauesannlodntdfdbttzhehamae2st..tl7rai3mitOcKtint.v0Tvtaih=hlsueiisbe3ibvcloaiamftlsyuiAsetzhoomiesff
A is given in tables. It is clear, only those calculations
were used above.
where
A
did
not
exceed
the
limits
mentioned
4. Aswtiatcrhobmtahpceakrgmirseooaunsnuodrferpmardeeidnatitcsitoinontsheoofrtyhe
UbbaepecnktgocroanurornwieddetxhutepeonrtsyoivmefaabryaIacRkpgprceolaoursnetdotombeeoapasctuitcrusea.ml euTnpthsteohsaotvaperttp ihuocesacetlsduuwabeatxmivopeinlslals,iimsnoosfettnthraheeteuwcrobaamvallecypkbagatrhrnioesduo.onnbdBisseeisrnnivdoteetednst,ssoimttybhaeelalbt-sshocewuaonelreldylspwapasritcohaemmtairoyiecnsrctoooewrfnisaaoivudmeserbeseaaodnckfigangarrdolapuexthnyaedinlinoibnmcetleuleonndwsoiin.ntgy ooafunrtdsh.tehTeehqoeupsaetliicqtayuleorsfatidotihnaes-
4.1. The star background spectrum and observations
Its obvious, that the comparison of the theory with observations is of interest rst of all in the submillimetre waveband. The background measurements in this wavelength region have already been in progress for a q urmarttehre obflaackcbenotduyryc.haTrahcetyerhoafvreabdeiaetniosntaarttetdhistowcaovnesfollowed from the Big Bang theory. rst investigations aptenwdaevnetlelnagbtohrsator0ie<s o1fmtmhe cUaSrrAiedonoutthebyhitghhr-eaeltiitnuddeeballoons and satellite gave contradictory results: some
Figure 2: Theoretical dependence of the star background
temperature on the wavelength for the static model of the
usunrievmeresnetadtaztam
= (5 7) (crosses)
103
as compared with the mea-
gcNrooetatevs,aeltguhoeets TmTbbe==asu(23r:7e:6mKe,5nt:th5se)Kgoitvh(isneerges raaefvtheiiergwhcoeorrfreBteclmtiitoepnrer1ta9ot7ud4re)e-.
tchoenntra2d:7icKt twheersetaannddaradrecobseminogloqguyestthioenoreyd. siHncoewetvheery,
the data mentioned have last their meaning because of
uncertainty in the value of the observation wavelength
due to a wide band comparable with the mean frequen-
cy of reception.
worAktopf rMeseantstumthoetroe h(1a9v8e8b) eaetn wrealviaelbelnegrtehssul1t.s16in, 0t.h7e,
0.48, 0.137 and 0.1 mm the accuracy of which is not
worse than (3-5)%. According to the IRAS (infrared
astronomical satellite) program the background mea-
smumre,mtehnetys hhaavvee bbeeeenn cparrreiseedntoedut inat M0.a1tsmommotaon'sd p0a.6-
per after correction. Most of these results are giv-
en in ux units W=cm2:sr:Hz with exception of da-
ta at 1.16, 0.7 and 0.48 mm for which there have
been the background brightness temperatures as well.
Tthhee wvaavlueess hoafvtehebebeanckcgarlocuulnadtetdemacpceorradtuinrgestfoorrerleasttioonf
Bm(ea)su=re2dhra03d=ica2t(ieoxnp hux=kiTnb culation of the temperature
fWo1r=)ct,hmwr2ehseerraHebzoB.v(eAm) e|tensttiisocntahelde-
wcaalvcueslahtiaovne bpyrotvheids rtehlaetcioonrrfeocrtnoetshserof tuhxeest.emperature
Recently the measurements of the cosmic microwave
background were carried out by satellite COBE (Cos-
mic Background Explorer) with a help of receiver FI-
RAS (Far-Infrared Absolute Spectrometer) in the wave-
length band 0.5-5 mm (Mather, et al 1994). The back-
ground temperature in this continuous band have been
found to be equal to Tb = 2:726 0:01K. The satellite
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars199
C(DOi BuEzwInafsraalsRoeudseBdacakcgcororduinndgEtoxpthereimPreongtr)atmo DgeItRuBpE-
per limits of background values in the direction of the
south ecliptic pole at wavelengths 240, 143, 100 and 60
vhaamlvuee(uKosfoetdwhaaedsbawa,ecelkltgtrahole.urn1edv9i9ue4pw)p.oefrTtlhhimeerbietaahctkavgero=auln1sod54mbemeeans.utWrheee-
ments at radio wavelengths (Kogut, et al. 1988). Fi-
nally,to make the picture of the background spectrum
feutllalw. e1v9e9n5t;uLreadngto1u97se4)daantad aint 0th:3e ul0t:r8avmiole(tLaeitne9r1t2,
ahnavgestbroemen t(aVbikuhlaltinedinin19T9a5b)l.e IAVllinthuinsitms oefnttihoensepdecdtartaal
ux density and brightness temperature. Fig. 2 gives
a comparison of these data with the theoretical expres-
sion of the background spectrum and Fig. 3 compares
them with the background brightness temperature de-
pendence on the wavelength. As it is seen from gures,
the theoretical dependencies are quite well con rmed
by the experimental data not only at IR but also in
optics and the ultraviolet. This is an absolutely sud-
dtheen sruebsmultil.lSimometeredwivaevregbeanucendf.orWTebt(hi)nkcatnhisbemaseyenbeina
consequence of a systematic error of the measurements
which authors had been experiencing a quite natural
subconscious pressure of theoretical prejudices. How-
ever, we should note that this divergence is eliminated
either by an account of nonblackbodiness of the star
radiation in the Wien's region or by an account of in-
tergalactic absorption of optical waves or at last by a
small reduction in estimates of a relative number of
brightest stars in class B. The value 0:15% given in
literature and used by ours may be overestimated due
to the observational selection. Finally, it must always
be kept in mind that the background measurements at
wavelengths shorter than 0.5mm are aggravated by a
possible impact of the interplanetary and interstar dust
radiation. Some hypotheses given in the literature re-
pdeotretrmthiantedthteo oabgserrevaetdexbtaecnktgbroyutnhde adtust at 0T:1'mm20Kis
and so on. The uncertainty of corrections of this radi-
ation explains naturally a large spread of the data on
uxes of the cosmic origin. However, despite this fact,
one can de nitely conclude that the experimental data
in a wide wave interval do not con rm the hypothesis of
the background relic origin and are in a good agreement
with the background star theory.
Recently the background measurements have been
made by the population of levels of the hyper ne struc-
ture at mm waves in carbon clouds with the redshifts
zca=se1t:7h7e6 arsntd lzev=el 2o:9f tbheeincgarnbeoanr qhuyapsearr s.neInsttrhuect urrset
hhaass bbeenenoubsteadineadnd(Stohnegateilma,peetraatlu.re19T9b4()1.:7T) h=is 1r3e:s5uKlt
ts formally 2:73(z + 1).
HthoewBevigerB, taongextphleaoinrythwehsiechexgpievreismTebn(tzs)w=e
cannot exclude possible energy pumping from a neigh-
Figure 3: Theoretical spectrum of the star background at
z(cmro=sse(5s) 7) 103 as compared with the measurement data
boring quasar (in the rst case quasar Q1331+1700), so these data were not included in Table IV.
In conclusion one cannot but note an extraodinary stability of the calculated background spectra to the aafolntrdethrai.ttsioIdtnesepvoeefnndthetneucnceeadlocnuoluatthtieothnwaaptvaterhlaeemngsepttheercstzrmuA(m;')(wMaans)d;nzosmot practically changed if we had used a simpli ed expression (6) for stars of classes FG.
4.2. A mysterious equality of the background energy density and the optical radiation energy of our Galaxy stars has a simple explanation
ArffcirnoeaaosrrgddnemiitnoaitrtetoittdbeidoiluiseitfntsrssetocosasdomefnpeitstcnhethteseahsernfeerigRcnworeama,ilataadhilxi.oa(esyno2u.tgin-eo4mlnty)ch(iiRteoeattnfht)eltiedgaln=yaearflaratonexdf0aoqii(rsetuazrihstegoein+hwdorctniys.1fprb)Eercoa.qeoasncurecdNerdehienovsgdacepaiodteolt0sandhbxdieoifyyr-s-f its spectrum is received by the radiotelescope tuned at ftrioeqnusepneccytru0m. eIfacthhegaglaalxaxyiecsonhtarvibeutthioenPilsandcekt'esrmraidnieadby the Planck's function at frequency (R) and is equal tsnoiugmnFab[lear(tRof)fr;egTqaudlaenx0ic]ey.sIfto0risiesaaalcsdhodsienedetenurpvfrafolr.momT(h2ei)qs-u(t4aa)lkteeh saeptcltatihvceee ovaptsauabtrnoclvthpciRhoeoaeurbgstwuoliryobtaonsywobeanetralhclvsyatseoturoaosnsdenhe
dntachRvRrdeeeR.2ano
sI,unnedmsliyR.debio.oneiannrndeRgodogfs2eoatgshltawaienlmxeiaoryxtecrisaieandnsdaeeincipnaahdetcon,eihooadhnscieenhonetndniecnRreedtv,reagiirsilyns--.
200
V.S. Troitskij, V.I. Aleshin
It results that each galaxy in the line of sight would be a lantern of a monochromatic optical radiation of different colors of the Planck's spectrum. However, from the observer's point of view (he is tuned on frequency ntwh0eieal)lrtgbhtaeehlyaeexaqoierubesaseloinrnvteoet-hrc.teohlAoerarsdsruaiaamdtriieaosotnufolrrtase,lclatethrivaefredecdiqoauntaitetornnifcbrsyeuqatuito0ennaplcollyaffcraeedl0-l quencies of the Planck's spectrum from one galaxy. It follows immediately according to (2-6) that the background energy ux is simply equal to the integral over frequency energy ux of the optical radiation of one mean galaxy.
The equality of the blackground energy density and the radiation density of the stars of our Galaxy was discovered more than 15 years ago and was a serious theoretical problem not being solved in the model of the background relic origin. Contrary to this, this fact follows naturally from the theory of the background sarsa4 dtetlt=neaalsincioprrtmEsnyoaiobxtennraw ypadidcugnreiokenxiifnogsnpgsbrtstaiiohpetnocruageeaanirnacmlnbactd(bruta5etaiotcle)hnaleknueggtrgednisifrroovedoogUnvnelnuylsessnoe.nriswtitfdsvhyofire.ernseertngqsMvtaeeuhaet.ruexeliguonlpBytnevcrieoaypeollrslofuyyswitmi0ohnanwenegfrdefdooiotbmeugrnsbintvesyzihriefetveorydterovhdmoo0etflrouocaatvomdinhnerideer---

r2n
m
Z1 0
8hc303
d0
Zzm 0
(z + 1)3 (z) dR exp h0(z + 1)=kT
1=
=
Z1 0
8c033h
exp
d0 h0=kTb
1
=
4
c
Tb4:
(14)
AdraetdniTsaibttyi=on2bv:7o=Klumt0h:e2ed4reeingvsh=itctympao3rf.ttghNievoeswtsatrlhseetorfuaosduicaratGlicoaunllaavxtoeylu. tmAhese itathmies emoabenvaidnoiusatsmawretedeesrnhosofiuttylhdentmaGkaeelqahxueyrae.lwtoithmi=n0(:514l3) ,zw=he0reanl ids

=
2r2 m
l2
Z1
0
c3(ex8phh003=kdT0
1) =
=

2r2 m
l2
 T 4  Tb4
4
c
Tb4
ethqeu'Favloair4tclyuteTo=ifb4nt6h=s0qe0uv0aboKrle=u,mb0lre:a=2cd4ke1een5tvss=kitmiPisec3sc,looTmfshetuh=tseo1tmuh0nei1ci0tra,opawTnpbadrvo=,exhib2eman:7cacKktee-, ground energy and the optical radiation of our Galaxy is explained by the identity of the nature of the background and the star optical radiation and as well by the
Figure 4: The measurement results of the small-scale
sapsaacefu nuccttiounatioofntsheofrathdeiotbealecskcgorpoeunadntteenmnapepraattuterren wTid=tTh in minutes of arc: |the measurement of Parijskij; 2 | tchuervme easurements of Berlin. Solid line | the theoretical
fNtwahaacesttuptsrhpoaaeilnctlyitoa,ulotlhrfyiGsvniaocelotwaeixndyociifindstetchnhlecoeesbercaeotvcoukiletgdwhreonouomfnteBdbauenrreebslxtiicpadtlgaoiesirtni(ige1cida9nl8,fto9rhon).amet.
4.3. Background small-scale anisotropy
The spatial variations of the background radiation int(we6an)ysaiatsycdcaeoprredenidndegetnetrtomo(in7n)eddirebcytiaonch anogfethoef axn(t e)nnoaf.inItnegthraisl
Tb( )
=
hc=k0
ln

1
+
1
x

:
U 2nsdura=allryd+exriv1na=>tinv>e+1ofamnlod=gmx,Tihbne=rT(e6b)( ar)n;=d
obxt=axin.
n; m
Tahxree=nxdwi=se-
persions of corresponding values. The value r is a mean
dofimsteanrssioinn,gsaolaxires',
0. as
itTihsekndoiswpner,siisonpomf
the .
number
accoTuontdethteermtoitnael ntuhme bdiesrpoefrsgiaolnaxoifesninitthies annetceenssnaarypatto-
tern up to the Rtemnnadep eelnddionfg
oe nectiavcecodridstianngcteooTf avbisleibIiIliIt.yInRteh(e)ansight equal to
sterad there will be
Npa1van=Nrp di=an0=b:ln3=ep3s0Nn:n3n=R300:Ra(3:n33()3d3RR)
3m(3e.
()3)D
g
Tau.lef=arTTxothimoee=sniwnwphdieet(nrphee=nnddi=snenpn=N)ecn2re=s+=0ioo:(3nf3rRNma3en=N=(Ndmo)m)==
2
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars201
Ftioignuorfeo5b:serEvaxtpioernimofenwtaavledleenpgetnhdence of T=T as a func-
Figure 6:
[p(areTd=Tw)it2h
thme
Spatial dependence of the 1]
on the wavelength (solid experimental data of TableIV
(lvipanoleui)netass)Xcom=-
and we have nally
T T
=
p1m p1
+
m=0:33 n R()3
:
(15)
The measurement results of background tempera-
ture uctuations have been given in the review of Par-
ijskij (1990). These results are shown in Fig. 4 in the
ftmoerremvaasluorf0etmh<eend
teopfend2Te,n=ccToenowtfaeirlngeincgaTr7r=i3Teddoaontuatlgpi
noitnihntse.thweaTvihnee--
loefntghteh
ainntteernvnaal
10 1  pattern
00:020
50

cpm
at

3a0d0i0 0e: rent
width
All measurement results are within interval 10 5 
bgoifevThme=anTevaiinosurFri1nieg0mt.he43en.dtdIueotepfietsdnoind aoeenstrtecprneootnosfgsaiubstplhTeroe=traTosdraooennvfded
aamltoaaevnaecsyroumarrleeplgmdouaseleantdart
procedures. However, we hope that the data of the
same authors for di erent
are most free of relative
errors. These data are those of Parijskij and Berlin.
According to the data of these authors in Fig. 4 we
hthaevreechleaasrbdeeepneantdehnectiehseoorfeticTal=dTepoennd
e.ncHe ecraelcauslawteeldl
ffpooerrrimn0e=>nt2a1,lmdmmat=awho1fi0cP1h0aarasijnissdkisjeReaenn(dw)eBl=leral4gin0re. e1Ts0hw3uMitsh,ptcthheveaoelbxid--
served small-scale background anisotropy is explained
by discreteness of the background radiation sources, the
galaxy stars. Besides, the calculation presented pre-
dicts according to (15) and Table III the dependence of
thTe =sTizeoonf tthhee ogbaslearxvyatei oenctwivaevelatyherroutagkhintghepachrtaningethoef
background formation. To reveal this dependence one
should exclude the in uence of
. For this purpose we
have sampled the measurement from the data of Fig.
4 in a suciently narrow band 0:8  lg
 1:2 and
then have plotted the dependence T=T on . Fig.
5 presents this dependence which con rms the predictfdrieoopnme.nadTlelhntecheedeedsxaicrtleaud.diOdnengpeetnhcadeneinnoc beuteawniancseedaoesfitl
eyr,mfrnioanmmede(l1ay5s)wtehlel
X
"
=
T 2 T
1
m
#
=
0:33
m
n R3()
:
Hdaetrae froTm=TFiagn. d4.
Faigr.e 6thgeivceosrrtehsepoexnpdeinrigmeexnptearlimdeepnetna-l donene.ceTohf eXfaocnt of itnhceoirmppraorpiseorncwoiinthcidthenecteh itsheaorsetrtoicnagl aforrgmumateinont.in favor of the theory of the star background
5. Sstthtaaenradmlatreidcrrnocaowtsiavmveeotlbhoagecoykrmgiersooduenldanindtihne
For general formula (12) will do to calculate the background in this case. A speci c point for the standard cosmology models is a restriction of the integration limittimine o(1f2th)eugpaltaoxizems. <In1th0eopwroincgestsoofaclailmcuitlaedtioenxifsotrenthcee cfwdholRaohrsse=terthddehzeemcd=HfioosRt0dllaeoH1nlw=c=wie(ne-zRrghe+Hfdaosv1rhie)msi2ftttoharenteadlUaktetnihiotvehneegrRsetenh(zeerr)oaard=leituecixscH.par0lIene1sxzstpi=hor(inezss+sc(i1a1o2s)ne),
AH X 19 10 0:233M+1:05 '(M)
4
Z10 (z + 1) (z)dz 0 expfhc(z + 1)=0kTg
1=
202
V.S. Troitskij, V.I. Aleshin
=

exp
hc kTb0

1
1 ;
(16)
where AH
km=s Mpc
a=nd r( 2zn)
m=
c1H. 0
1
.
Let us take H0 = 75
Table V gives the calculation result at the mini-
mfroummwvhaeluree iotfisAseefnorthtwatothvealsuteasr obfaczkmgro=un5d taenmdpe1r0-
ature exceeds its noticeable
2p:a7rKt
at submillimetre waves and at millimetre waves. From
makes that it
follows an unambiguous conclusion that the observed
microwave background is to be consisted of the sum of
star and relic contributions. In other words the relic
background has no place at millimetre and especially
submillimetre waves. Hence, we have a de nite incon-
sistency of the Big Bang theory to explain the observed
microwave background radiation.
From the given calculation it is clear that none of
the models with a hot origin can explain the microwave
bcaascekgtrhoeunedxisbtyentcheeroegpitoicnalofratdhieatgioanlaxoifesstfaorrsm. Iins gthetis-
ting too small limited by the interval z  10. Here
we include the in ation model and the models based
on conformal metrics (Hoyle and Narlikar 1972, Troit-
si.kei.j n19o8n7ex, pPaentditin1g9,8n8o).nliTmhietemd oindeslpsaocfe aansdteatidmy-estUantei-,
verse are in a particular position. We have here the
model which explains the redshift by \quantum aging."
In this case, as it is known, the quantum energy is
supposed to have an exponential attenuation with dis-
tbaancckeg,rothuantd gisivaelssoRex=plaRin0eldn(bzy+th1e).opHtiecrael roabdsieartviaotnioonf
stars. In conclusion we have to note, that microwave
background distortions associated with the interaction
of relativistic electrons with photons etc. considered in
dinettahiel bmyoSdeell'doofvtihcehbaancdkgSruonuynadevsta(1r9o9r2ig)ianr.e also valid
6. Conclusion
AtUThhlneleiovortebyhrsseeoeorfrvaetarthetieiccoaouslntna batralimociknmegadrlrioybcuaynntaiodolnlnslkspimneoocifwttretnuhdmeeixnMposebBprtiRaamcienesetnaadtnradilsodrtcaiiogmtniane-. mdfaorerepmmmtereoraidfcntesitbcototyrnaIbeRtrxleeaspsacueankrlbdtipmi,olnadpgeuyrnostiibnrabaalldaebdilamayctt,oeaienocvinhcnelaunanasnitiswoodmniodcpoatetfhnibatncahtaoneltMdwbbaBafercvRokecmgso.irusodTpuenlhnceoiiddsttoteohrfgettyrhMudesBetmnRsiasitteyttneheorerfgaesytxtapadrlesaennaisnrailttioyieournarenGpodfoactlaahhx.emyAo,ypasnttseiacwrdiaeoldlulirstaaidsoeqnitauahtlaeiolficnataycuetnosoer-f ouofbebsaearncvdkagtdrieoopnuenwnddasevmneclaeelnlg-ostnchatlahereaenacinostonet nrrnompayepdwabthtyiecrhtnhpewremiddeitcahtsuavraneld--
mohfyepBnotitgsh. BesAaisnl.lgthainsdisinafasevroirouosf ethviedestnecaedyag-satiantset Uthneiviedresae
References
[1] YgRyuu,."sVsGi.arnBa)va.irtyasthioenv.a\nPdrCogorsemssoloogfyS, c4ie(n1c9e92a),nd(MToescchowno,loin-
[2] A.D. Bliter. IAU Symposium N63: \Conformation of C(UoSsmA)o.logical Theories with Observational Data," 1974
[3] G.R. Burbidge. Int. J. Theor. Phys., 28, 983 (1989).
[4] A80.9G.(1D96o4r)o.shkevich, I.D. Novikov. DAN USSR, 154,
[5] F. Hoyle and J.V. Narlicar. NNRAS, 155, 305 (1972).
[6] ML-.89Ka(1w9a9d4a),. J.J. Bock, V.V. Hristov et al. Ap. J. 425,
[7] A1 .(1K9o8g8u).t, M. Beksanelli, G. DeAmici et al. Ap.J. 325,
[8] K.R. Lang. Astophysical Formulae, New York (1974).
[9] C.H. Leinert, P. Vassanen, K. Lehtenen. Astron. Astroph. Sup. Ser.,112, 99 (1995).
[10] J.C. Mather, E.S. Cheng, D.A. Cottengham. Ap. J., 420, 439 (1994).
[11] T. Matsumoto, H. Hayakawa, H. Matsyo et al. Ap. J. 329, 567 (1988).
[12] G.C. McVittie. Phys. Rev. 128, 2871 (1962).
[13] Yu.N.. Parijskij and D.V. Korol'kov. Progress of Science and Technology. Astronomy, 31, 73 (1986).
[14] Yu.N. Parijskij and R.A. Sunyaev. IAU Symposium NO6b3se:rv\aCtioonnfarlonDtaattaio,"n 1o9f74C(oUsmSAol)o.gical Theories with
[15] J.P. Petit. Modern Physics Letters A. 3, 1527 (1988).
[16] E. Segal. Proc. Natl. Acad. Sci. USA 90, 4798 (1993).
[17] A. Songaila, L. Cowre, C. Hogan, M. Bugers. Nature, 368, 599 (1994).
[18] A. Songaila et al. Nature, 371, 43 (1994).
[19] V.S. Troitsky. Ap. Space Sci., 139, 389 (1987).
[20] V.S. Troitsky. Ap. Space Sci., 201, 203 (1993).
[21]
V.S. Troitskij. (1993).
Izvestiya
Vuzov,
Radio zika,
36,
857
[22] V.S. Troitskij. NIRFI Preprint, N400 (1994).
[23] V.S. Troitskij. UFN, 65, 703 (1995).
[24] A. Vikhlinin. Pis'ma v A. Zh., 21, 413 (1995).
[25] Yphay.Bsi.csZ,e"l'Mdoovsiccohwa,n1d9I6.7D(.iNnoRvuiksosvia.n\)R. elativistic Astro-
[26] Ya.B. Zel'dovich and R.A. Sunyaev. \Astrophysics and C19o8s2m. ic Physics," ed Sunyaev R.A., Nauka, Moscow,
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars203
Table I
TAheansdtazr
background radiation in
m
.
Columns 2-6 are radiation. The
the rst
rtehlaetsivteatciconmtroidbeultioofntshoef line of the columns 2-6
utnhievesrtsaersatofRs=peRct0razl1c=2lasfsoersdBi AereFntGcoKmbMinianttioontsheofbpaackragmroeutnedrs is a relative number of the stars of the given class.
A = 0.11488E - 10 MAX Z= 7000.0
(mm) 0.0001 0.001 00..011000 1.000 10.000 30.000 100.000 240000..000000 800.000 700.000 1000.000
B0./0S13%
A1./40S%
F7.G47/%S
K9./2S9%
M81/.8S2%
T back
0.986 0.014 0.000 0.000 0.000 3668.36
0.219 0.560 0.195 0.023 0.003 520.08
0.238 0.543 0.189 0.025 0.005 71.95
0.231 0.547 0.191 0.025 0.005 11.88
0.165 0.568 0.228 0.032 0.006 3.09
0.061 0.480 0.358 0.075 0.025 2.56
0.053 0.454 0.373 0.086 0.034 2.73
0.050 0.445 0.378 0.090 0.037 2.81
0.050 0.443 0.379 0.090 0.038 2.83
0.050 0.442 0.379 0.091 0.039 2.84
0.049 0.442 0.379 0.091 0.039 2.85
0.049 0.442 0.379 0.091 0.039 2.85
0.049 0.441 0.379 0.091 0.039 2.85
A = 0.25633E -10 MAX Z = 5000.0
(mm) 0.0001 0.001 0.010 01..100000 10.000 30.000 120000..000000 400.000 800.000 710000.00.00000
B/S
0.013%
A/S
1.40%
FG/S
7.47%
K/S
9.29%
M/S
81.82%
T back
0.986 0.014 0.000 0.000 0.000 3740.04
0.220 0.560 0.193 0.023 0.003 535.29
0.237 0.543 0.190 0.025 0.005 74.92
0.228 0.549 0.193 0.026 0.005 12.68
0.141 0.570 0.245 0.036 0.007 3.53
0.057 0.469 0.365 0.080 0.028 2.72
0.052 0.450 0.375 0.087 0.035 2.73
0.050 0.444 0.378 0.090 0.038 2.74
0.050 0.442 0.379 0.091 0.038 2.74
0.049 0.442 0.379 0.091 0.039 2.74
0.049 0.441 0.379 0.091 0.039 2.75
0.049 0.441 0.379 0.091 0.039 2.75
0.049 0.441 0.379 0.091 0.039 2.75
A=0.88421E - 10 MAX Z = 3000.0
(mm) 0.0001 0.001 0.010 0.100 11.00.00000 30.000 100.000 240000..000000 800.000 700.000 1000.000
B/S
0.013%
A/S
1.40%
FG/S
7.47%
K/S
9.29%
M/S
81.82%
T back
0.986 0.014 0.000 0.000 0.000 3857.52
0.222 0.561 0.191 0.023 0.003 560.66
0.235 0.544 0.191 0.025 0.005 80.00
0.220 0.551 0.197 0.026 0.005 14.13
0.108 0.558 0.281 0.044 0.010 4.31
0.054 0.458 0.371 0.084 0.032 2.89
0.051 0.447 0.377 0.089 0.037 2.73
0.050 0.443 0.379 0.090 0.038 2.67
0.050 0.442 0.379 0.091 0.039 2.66
0.049 0.441 0.379 0.091 0.039 2.65
0.049 0.441 0.379 0.091 0.039 2.65
0.049 0.441 0.379 0.091 0.039 2.65
0.049 0.441 0.380 0.091 0.039 2.65
204
(mm) 00..0000011 0.010 0.100 1.000 1300..000000 100.000 200.000 480000..000000 700.000 100.000 (mm) 0.0001 000...001010100 1131.0000..0000.00000000 248700000000....000000000000 1000.000
V.S. Troitskij, V.I. Aleshin
The same as in Table I, but for the Hubble law R=RH * z. A = 0.11362E - 11 MAX Z=3000.0
B/S
A/S
FG/S
K/S
M/S
0.013% 1.40% 7.47% 9.29% 81.82%
0.994 0.006 0.000 0.000 0.000
0.350 0.517 0.121 0.011 0.001
0.313 0.520 0.147 0.017 0.003
0.285 0.535 0.159 0.019 0.003
0.119 0.573 0.263 0.038 0.007
0.055 0.460 0.370 0.084 0.032
0.051 0.447 0.377 0.089 0.037
0.050 0.443 0.379 0.090 0.038
0.050 0.442 0.379 0.091 0.039
0.049 0.441 0.379 0.091 0.039
0.049 0.441 0.379 0.091 0.039
0.049 0.441 0.379 0.091 0.039
0.049 0.441 0.380 0.091 0.039
A = 0.25601E - 11 MAX 2=5000.0
B0./0S13% A1./40S% F7.G47/%S K9./2S9% M81/.8S2%
0.994 0.006 0.000 0.000 0.000
0.351 0.516 0.120 0.011 0.001
0.315 0.519 0.146 0.017 0.003
0.296 0.529 0.154 0.018 0.003
0.166 0.582 0.218 0.029 0.005
0.058 0.472 0.364 0.079 0.028
0.052 0.451 0.375 0.087 0.035
0.050 0.444 0.378 0.090 0.038 0.050 0.443 0.379 0.090 0.038
0.050 0.442 0.379 0.091 0.039
00..004499
00..444411 00..337799 00..009911 00..003399
0.049 0.441 0.379 0.091 0.039
T back
3438881.6.334 71.29 12.82 4.09 22..8763 2.68 2.67 22..6666 2.66 2.66
T back
3264.10 4616615..44.1504 3222....26778836 2222....77776777 2.77
Table II
Table III
The dependence of the e ective distance of di erent spectral class on the observation wavelength.
cm0 10
TZ17e5=12053 103
1
17.5 103
0.1
1750
0.01
175
0.001
17.5
0.0001
1.75
TZ70e=10130 103 7.103 700 70 7 0.7
TZ42e=1063 103 4.2 103 420 42 4.2 0.42
TZ28e=1043 103 2.8 103 280 28 2.8 0.28
Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars205
Table IV
depeEndxepnetrimonenwtaavlemleenagstuhr.em1-e1n6t-dKatoaguotf 1th9e88b,a1c7k-g1r8ou-nMderyaedria1t9i8o6n, s1p9e-c2t4ra-lMdeantssuitmy oatnod1i9t8s8b,r2ig5h-3tn6e-ssMtaetmhperer1a9t9u4re, 3a7s-43 Kawada 1994, 44-46 - Leinert 1995, 47 - Lang 1974, 48 -Vikhlinin 1995.
No  [mm] 1 120.000 2 81.000 34 6330..000000 5 12.000 6 9.090 7 3.330 89 22..664400 10 1.320 11 1.320 1123 31..591800 14 1.480 15 1.140 1167 12..060400 18 1.320 19 1.160 20 0.709 2212 00..428612 23 0.137 24 0.102
BW() 10 24 cm2 sr Hz 0.522 1.049 1.801 7.297 42.655 69.962 252.266 331.158 342.627 340.065 335.124 276.694 477.012 456.029 231.624 141.735 339.750 360.202 302.769 116.866 29.404 3.678 82.966 3.700
Tb [oK] No 2.780 25 2.580 26 22..760100 2278 2.780 29 2.810 30 2.600 31 22..770400 3323 2.760 34 2.750 35 22..890500 3367 2.920 38 2.650 39 22..575300 4401 2.800 42 2.790 43 2.956 44 34..117295 4456 8.650 47 8.740 48
 [mm] 350.000 125.000 8700..000000 40.000 10.000 5.000 43..000000 2.000 1.000 00..520400 0.154 0.134 00..113000 0.095 0.060 0.0008 00..000000355 0.00065 0.00000912
BW() 10 24 cm2 sr Hz 0.060 0.467 1.105 1.465 4.254 59.173 169.739 226.599 306.290 382.538 204.305 8.321 5.600 1.330 5.800 4.800 3.300 5.000 4.800 0.650 0.135 0.250 0.450 0.0001
Tb [oK] 2.700 2.700 22..675000 2.640 2.800 2.726 22..772266 2.726 2.726 27..702163 5.867 7.221 78..380250 9.436 13.726 554.560 1812266.9.74252 662.294 3181.021
Table V
The star component of the background for the closed model of the universe in the standard cosmology.
A = 0.15000 E-11 MAX Z = 10.0
(mm) 0.001 00..011000 0.500 1.000 24..000000 8.000 30.000 100.000 510000.00.00000
B/S
0.013%
A/S
FG/S
1.40% 7.47%
K/S
9.29%
M/S
81.82%
T back
0.121 0.579 0.260 0.035 0.005 469.81
0.057 0.466 0.366 0.081 0.030 54.08
0.050 0.444 0.378 0.090 0.038 5.98
0.049 0.442 0.379 0.091 0.039 1.28
0.049 0.441 0.380 0.091 0.039 0.66
0.049 0.441 0.380 0.091 0.039 0.34
0.049 0.441 0.380 0.091 0.039 0.18
0.049 0.440 0.380 0.092 0.039 0.09
0.048 0.437 0.381 0.093 0.041 0.03
0.046 0.430 0.385 0.096 0.044 0.01
0.039 0.402 0.397 0.107 0.055 0.00
0.034 0.385 0.405 0.114 0.062 0.00
206
(mm) 0.001 0.010 0.100 01..500000 2.000 4.000 83.00.00000 100.000 500.000 1000.000 (mm) 0.001 0.010 0.100 01..500000 2.000 4.000 83.00.00000 100.000 500.000 1000.000
V.S. Troitskij, V.I. Aleshin
A = 0.15000 E-12 MAX Z = 10.0
B0./0S13%
A1./40S%
F7.G47/%S
K9./2S9%
M81/.8S2%
T back
0.121 0.579 0.260 0.035 0.005 437.20
0.057 0.466 0.366 0.081 0.030 49.80
0.050 0.444 0.378 0.090 0.038 5.46
0.049 0.442 0.379 0.091 0.039 1.16
0.049 0.441 0.380 0.091 0.039 0.60
0.049 0.441 0.380 0.091 0.039 0.31
0.049 0.441 0.380 0.091 0.039 0.16
0.049 0.440 0.380 0.092 0.039 0.08
0.048 0.437 0.381 0.093 0.041 0.02
0.046 0.430 0.385 0.096 0.044 0.01
0.039 0.402 0.397 0.107 0.055 0.00
0.034 0.385 0.405 0.114 0.062 0.00
A = 0.15000 E - 12 MAX Z=5.0
B0./0S13%
A1./4S0%
F7.G47/%S
K9./2S9%
M81/.8S2%
T back
0.116 0.578 0.265 0.036 0.005 436.06
0.055 0.460 0.370 0.083 0.032 49.35
0.050 0.443 0.379 0.090 0.038 5.39
0.049 0.441 0.379 0.091 0.039 1.15
0.049 0.441 0.380 0.091 0.039 0.59
0.049 0.441 0.380 0.091 0.039 0.30
0.049 0.440 0.380 0.091 0.039 0.16
0.049 0.439 0.380 0.092 0.040 0.08
0.048 0.434 0.383 0.094 0.042 0.02
0.044 0.422 0.388 0.099 0.047 0.01
0.035 0.387 0.404 0.113 0.061 0.00
0.031 0.372 0.411 0.119 0.067 0.00
& Vol. 3 (2002), No. 5 (15), pp. 207{224 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
THE MEASURING OF ETHER-DRIFT VELOCITY AND KINEMATIC ETHER VISCOSITY WITHIN OPTICAL WAVES BAND
Yu.M. Galaev1
The Institute of Radiophysics and Electronics of NSA in Ukraine, 12 Ac. Proskury St., Kharkov, 61085 Ukraine
Received November 15, 2002
fvdoTeorlhoneecoliettecyxctopraonenmtrdrimaatgdehninecetttaeittlchhheweyroaprvkoieigtnsihnepemasrliaoshtpyivacpegovraitit shiccoeoansstiisihtoysantsahotbafeesmetbhneeeneptneestrhapfonerrordmpecoexasdines.dtbeTenahncceedonoirnspeiadtnileciarzateeluddmr.eae,sTaeihs.xeuep.rrienetrsghimuelmetmsnettaoahtfloesirdymiasoatlfegmmitnheaaedttiiiecuotmnhme,ceroarnmes usoprrvmeoemnamsetiienbontlnest of the ether existence in nature, as the material medium.
The experimental hypothesis veri cation of the espriatebhdrlefieoorrfewmoxraiesvdeteelseencabctraerlnoiienmdr,naibnagytntuethrtheeiec,wipw.oehar.akvsmseesa[m1tpe-er3rtoi]ha,polawmdgi.atehtTdiioinhunemmrh,iealrslseuimslbpteseotenoen-rf tpAdphuaotertscthueeidekcxsolpiebvsesys,rskitmtytahhte[aee4ntm-tm6 e[]a1ln.lt-tsI3esnr],iindabthloateshmneemdoetdwooicdnouoermnltldht[r4ceas-op6demt]aichcptteheor,etshemhedetaohsooderfetrighlsiieeosnpfaipanVlrrtoha.rApytoe---. emreerttphaitreeeersrsieioasnflttfvhotiershceamoluleastmtheaaernrtiaedrvliacamorlieeforoducrisiumbmmlaet,oigvroaeenssms,p.eoiTsnnthstihefboelprehmcoyfsons,risctiae.rellue. cctettirlohdonesmbe[7ta-has9gei]srnaed[n4tri-dic6ft]wAswae.Avaaers.cs,hMp pirrcosuhtpbealoligssfoahnateil,dol,Fnbt..yGhTeD.h.pPCeoe.esaMixstepiivelaelrenirmrdeiensFnu1t.lt9asP2l 2emoa-f1ros9tdoh2ene6l itpnrroe1mpT9aa2hrg9eant[eei1oxt0nip]c,.ervwiemarvie enestd[o7mp-t9ei]tchaisol dpbsearonffodrt,mhedeidi nevwreiestdthiignbayttihocenareceloefnuc--l dsttvuoieuollctnothtsaci.einrtyTgeyt,hmhaseetneirmddpiiuemusalmatsaatug.etriideOnsdtabritcbeyiatiothltnlaheyslreacdsEvoirgaaminifrltptia hpobcanlmaerenanoatmtvtemetomhtfeeaetratnhsstteumiarmeeirtsmoehmu,eenaarnstdtdcshtrtrhieaefdet-SMhhueaiisnlglehtwrtheioothfbvta2atl6hiu5neeemdva,ebalotobhucoativttye3tt3hkh0eme k/esmtesheac/e,srleeavcdne,rldiwf(tCaastvleevntlhoeolecteinthdydee,itageUthctStteAhdoe).f 1830 m (Mount Wilson observatory, USA) | about 10
1e-mail: galaev@ire.kharkov.ua; Ph.: +38 (0572) 27-30-52
km/sec. The apex coordinates the Solar system move-
mdpeeecnnlditnicawuteliaorerntdoeatnere+mc6liin5petd.ic:
Spudlacirihnecm(tcooavosercdmeinnesnaiotteniss
 17:5h, almost perof the North
Pole ecliptic: the observed
e ect1s8cha,nbe e+xp66lai)n.edM,iilfletrosahcocwepedt,,
that that
the ether stream has a galactic (space) origin and the
velocity more than 200 km/sec. Almost perpendicu-
larly directional orbital component of the velocity is
lost on this background. Miller referred the velocity
decrease of the ether drift from 200 km/sec up to 10
km/sec to unknown reasons.
andSo[1m0]e, paerecuelixaprliatiiensedofbtyhetheexpetehriemr evnitscoressituyltsin[7t-h9e]
works [4-6]. In this case the boundary layer, in which
the ether movement velocity (the ether drift) increas-
es with the height growth above the Earth's surface, is
faonrdmtehde aetthtehrenreealrattihvee Emaorvthem'sesnutrfoafcet.he solar System
In the works [1-3] it is shown, that the results of sys-
tematic experimental investigations within radio waves
band can be explained by the wave propagation phe-
nomenon in the moving medium of a space origin with
a vertical velocity gradient in this medium stream near
the Earth's surface. The gradient layer availability can
be explained by this medium viscosity, i.e. the feature
proper to material media, the media composed of sep-
arate particles. The mean value of the measured maxi-
mal gradients was equal to 8.6 m/sec m. The velocity
comparison of the suspected ether drift, measured in
the experiments [1-3], [7-9] and [10], is performed in the
works [1-3]. The place distinctions of geographic lati-
tudes and their heights above the sea level are taken
208
Yu.M. Galaev
ipeatmtnhutcath/cearoeosilwserrtaocdorcd.nuircnr.kTtoighsfIuhttf[nteu7viotl-scen9otlioe]onhmbsacestnitpathcvdayioeanr[snlii1eeuss d0oerw],en,mxotiwrthpraehdhaestiertuiincoirlmihntnc6eaco1otnari2fhnent4etscwhbi:ecdei:exote:phecn8xowied4nprn9uiitesm06chirt0dieimm0etnnhr0g/teee:nsd[ae:1tdct:sa-a1,3s[ct0]1tmoa0ht-m3h0auo]0et--f, [7-9] and [10].
The positive results of three experiments [1-3], [79], [10] give the basis to consider the e ects detected in these experiments, as medium movement developmttiiomenne.tssS,ourfecMshpamoxnewsdiebilulle,mMfowircahesleeclcsaotlrlneodmanaadsgnteehaterilcieetwrh.aevrTes[h1ep1r]cooapntactglhuae-sion was made in the works [1-3], that the measurement results within millimeter radio waves band can be constihdeermedataesritahlemexedpieurmimeenxtisatlehnycepoitnhensaistucroen surmchataisonthoef ether. Further discussions of the experiment results [1-3] have shown the expediency of additional experimental analysis of the ether drift problem in an optical wave band.
Experiments [7-9] and [10] are performed with optical interferometers manufactured according to the cruciform Michelson's schema [12,13]. The work of such idnitreercfteioronmaentderrebtausrendinognitthteo ltihghetopbasesrsviningginpoainftorawloanrdg tthiveitsyamwaesplaotwh.toTthhee Moricighienlasol ne'tsheinrtedrrfiefrtoem eetcetrs. seTnshiemserevaesdurbedanvdasluo esDet oifnasnuicnhtearfedreevniccee,pia.ett.ervniseuxaplrlyessoebdin terms of a visible bandwidth, is proportional to velvimosecalioingtcvnyieetrrytasicetclieyo,mtpqhiurseosaipdoooprnrattti(iceloiagnolhafltlet)nthogetthe[h1teho2ef]w.rtahdvereiflltiegnhWgtthbteooafmtheelelclitagrnhodt-
D = (l=) (W=c)2 :
(1)
itimtnnhhteeeetaWrlhs"ifugeemehrrseoietnhdtmbvaheeelvolastadctemlsiarugl.emaal Ttntieihsdhoaenespeiusrnrxroetpoispenfeerogravrtiramthpcileaho,ernwntemat,thslheiactes(ohhrWfotahddt=behrsciee)faoa2tnp,msdtewiicncpeaoaxasnlwspdslceheearnisoilcmlgrihendtdehettnrhhaot"eessf.
Accordingly the methods and experiments, in which the
measured value is proportional to the rst ratio extent
W rs=tc
oarrdeecra. lleTdhaes
rtahteiomiesthWod/sc
and

1expateritmheenetxspoefcttehde
value in the experiments of Michelson, Miller W  30
km/sec. The methods of the second order are ine ective
at this requirement. So at W  30 km/sec the method
osefntshiteivsietycotnod tohredemreitnho1d00o0f0th(e!) rtsitmoesrdseurc.cuHmobwsevoenr
at that time the methods of the rst order, suitable for
the ether drift velocity measuring, were not known.
The expression (1) allows to estimate the diculties,
with which the explorers of the ether drift confronted
in the rst attempts while observing the e ects of the
second order. So in the widely known rst experiment
of Michelson 1881 [12], at the suspected velocity value
of the ether drift W  30 km/sec, with the interfer-
ometer having parameters:   6 10 7 m; l  2:4
mth,e ibtawnads. Aexnpdecitteids itnotohbesreerqvueirtehme evnatlsueofDconsid0e:0ra4bolef
band shivering of an interference pattern. In the work
[12] Michelson marked: "The band were very indistinct
and they were dicult for measuring in customary con-
ditions, the device was so sensitive, that even the steps
ot1on8r8yt7h,ceaMusiiscdehedewltsaholekn,icnoamlsaophlieuntnehdirbseadwndomsrledvtea-krnsnisofhwrionnmgw!"toh.rekLo[a1bts4ee]r,r,vtaoin--
gether with E.V.Morly, once again marked the essential
de ciencies of his rst experiment as for the ether drift
[12]: "In the rst experiment one of the basic considered
diculties consisted in the apparatus rotating without
the distorting depositing, the second | in its exclusive
sensitivity to vibrations. The last was so great, that
it was impossible to see interference bands, except short
intervals at the business-time in the city, even at 2 a.m.
At last, as it was marked earlier, the value, which should
be of
measured, something
oi.ne.thteheinitnetrevrafle,rsemncaellebar,ndthsaon 1se=t20beocfauthsee
interval between them, is too small, to determine it,
mttmrohoepdouet6ruliIotec4ncioappevltmdMleielcreeiaurtnleallpege trprtesta'lhcsaot[tyh7ioiio4n-fnl9nteg]tme.n.hrigTfeenetItahrhtepocerawcmisnta.uahecrestatIaeurcngcreai,haaeltiscfnholhoeoefeerndfdsgehsttxdheo2hnpueu6seeoleidrmftxiteimpsovrehesitertoaenyriurpmetslpa.iden[cle1ynhcIr0itrensn"]edg.awttsuhhaoepees,f
experiments [7-9] and [10] the interferometers laid on
rafts, placed in tanks with quicksilver, that allowed to
remove the in uence of exterior mechanical clutters.
The positive results of Miller's experiment by virtue oc[r1iifns5ttg]hs1'et5iogr0r1g,e9eadn2te1evar-oat1ttl9eep3dn0htt,yiooasnirtcehaaelmtsetietghnhnateiitr otncdiaermndifectt.e'hsaIapnttrtortaahblmceletemomdstoatnehnovedgeprrryhaeofpyenshries-wTehree pcoosnscibenletriant eudeonncinthgeodf itshcuesdsiioncoufltMcoilnlesri'dserreesduletxs-.
terior reasons (temperature, pressure, solar radiation,
air streams etc.) on the optical cruciform interferom-
eter, sensitive to them, which had considerable overall
dimensions [16] in Miller's experiments was discussed
most widely in these works. Besides by virtue of me-
thodical limitations being in the works [7-9] and [10],
their authors did not manage to show experimentally
correctly, that the movement, detected in their exper-
immeennttsa,ncdanthbeemexedpiluaimneodf bmy attheeriaElaortrhigirne,larteisvpeomnsoibvele-
for electromagnetic waves propagation [1-3]. However
the most essential reason, which made Miller's con-
temporaries consider his experiments erratic, was that
in numerous consequent works, for example, such as
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
209
[17-20], Miller's results were not con rmed. In the experiments [17-20] so-called the \zero results" were obtained, i.e. the ether drift was not detected.
Thus, taking into consideration the works de ciencies [7-9], [10] and a major number of experiments with a zero result available, it is possible to understand the physicists' mistrust to the works [7-9], [10] at that time, the results of which pointed the necessity of the fundamental physical concept variations. The analytical review of the most signi cant experiments, performed winitthhethweoprkusrp[1o-s3e,o2f1t].he ether drift search, is explained
In 1933 D.K. Miller, in his summary work [22], performed the comparative analysis of multiple unsuccessful attempts of his followers to detect the ether drift etexmpeprtism, eenxtcaelplyt.thHeeepxapiedrimatetenntt[i1o0n],tohpatticianl ainlltesrufcehroamt-eters were placed in hermetic metallic chambers. The authors of these experiments tried to guard the devices from exposures with such chambers. In the experiment [10] it was placed into a fundamental building of the optical workshop at the Mount Wilson observatory for stabilizing the interferometer temperature schedule. The hermetic metallic chamber was not applied, and the ether drift was detected. Its velocity had the value W  6000 m/sec. Miller made the conclusion:
"Massive non-transparent shields available are undesirable while exploring the problem of ether capturing. The experiment should be made in such a way that there were no shields between free ether and light way in the interferometer".
mafteenLrtastthoeern, itnhnseetwreutmhoeeprnptdosrrtiofuctncduitirisrecesonvcfeoerrybachosaenvddeuoacnptipnceogamreepdxlpeateelrslioydetinhticvset.e)rrm.usmeaSsueisdncivheteaalesmxe(prerreteorasrilomlnioceafntcttohhsraesmws,eebmreeexraphsueeesrrlasidm,ge[eM2n3wte-sas2.ss6b]Ita.nhuAeetrhnc'edsomwae mgoaerokcinnts [23,24,26] there were the metallic resonators, in the work [25] | a lead chamber, because it was necessary to use gamma radiation. The authors of these works, perhaps, didn't pay attention to Miller's conclusions of 1933 about the bulk shields inapplicability in the ether drift experiments. The phenomena physical interpretation of the essential ether drift velocity reduction at metallic shields available was given by V.A. Atsukovsky for the rst time, having explained major eatvhaeilra-dbylenianmtihceaml m[6e]t.al resistance of a Fermi's surface
The purpose of the work is the experimental hypothesis test of the ether existence in nature within an oupmt,icraelspeolencstirbolme faogrneelteicctrwoamvaesgnbeatnicdw|avems aptreorpiaalgamtieodni-. It is necessary to solve the following problems for reaching this purpose. To take into account the de ciencies that occurred in the experiments earlier conducted. To elaborate and apply an optical measuring method and
the metering device, which does not iterate the Michel-
son's schema, but being its analog in the sense of result
interpretation. (Michelson's interferometer of the sec-
ond order is a bit sensitive to the ether streams and too
sensitive to exposures.) To execute systematic measure-
mepeoncths oinf tthhee eexppoecrhimoefntthseimyepalremcoenrrteastpioonnd[i1n-g3],to[7t-9h]e,
[10]. (The term "epoch" is borrowed from astronomy,
in which the observation of di erent years performed in
the months of the same name, refer to the observations
of one epoch.) The results of systematic measurements
should be compared to the results of the previous ex-
periments. The positive result of the experiment can
be considered as experimental hypothesis con rmation
of the ether existence in nature as material medium.
in tMheewaosurkrsin[4g-6m], ewtahsoadc.ceTptheedeatthemr amkoindgelt,hpereoxppoesreid-
ment. The following e ects should be observed experi-
mentally within the original hypothesis:
netiTc hweavaensisportorpopaygaet ioenctd|epetnhdesvoenlorcaidtyiaotifoenledcitrreocmtioang-,
that is stipulated by the relative movement of the so-
lar System and the ether - the medium, responsible for
electromagnetic waves propagation.
depTenhdeshoenightthee heecitg|ht tahbeovveelothcietyEoafrwtha'vsespurrofapcaeg,atthioant
ivesliessccttoirpuousmleaatthgedenrebtsyitcrtewhaeamvEe-asmrptharot'seprsaiugaralftmaicoeend.iinutmer,arcetsipoonnwsiibthletfhoer
ttenccihhtaeohalatneitnTccrocghihowedsearradinsisvtftigptseniapesa|svcutpealeiratl)tuosethopee vedfaeawtcgmlhubtaiteyeet|hdiSowianoutihttl.msahheprTe,aapsrhcyvepeuesesresptlir(oeooitgmcdonhaidtselympiabphceoloeterevirficgeofo)whmonntraoeeevr(enissealtgettsieecaptnlltrprllroaaoeoonrrpxmfoadwdmtgaahaaigyilye---,l
as well as for any star owing to the Earth's daily rotat-
ing. Therefore the velocity horizontal component of the
ether drift and, hence, the velocity of electromagnetic
wave propagation along the Earth's surface will change
the values with the same period.
tromTahgenheytdicrowaaevroedsypnraompaicgaet ioecnt
| the velocity of elecdepends on movement
parameters of viscous gas-like ether in directing systems
(for example, in tubes), that is stipulated by solids in-
teraction with the ether stream | material medium,re-
sponsible for electromagnetic waves propagation. (As it
is known, the law of uids and gases motions and their
iTdIntyhtnceiasaramnec itbcieosecntes, ewaeeinpctth,patwsrhoeialtnithdtls"yret,ishfseelhreeoahnurecnliedgthbtbtoyeeth chyaeedlcltree"odtahieaesrrsorddtehfyyeennraareemmtdhiiecctrsso-..
the etherdynamic e ect class. However in the work, by
virtue of methodical reception distinction used for their
discovery, the e ects are indicated as separate).
According to the investigation purpose, the measur-
ing method should be sensitive to these e ects.
210
Yu.M. Galaev
stuerriiTanlghemmefoedtlilhuoomwdi,ndrgeevsmpelooondpsemilbeslentattfoe[4mr-6ee]nl:etcstthraoermeeatuhgsneeredtiiasctawmamveaeas-ptiemh roeeacpgmtaingeeaaxtattisiilootsennnh;ocatefvhetieshmeeatachhcjyoeerprdtreheotdaahseearrposddrytoyhnpneaeamrimntiiiceitcsiar(eloesfptishovtesaiirsntdcicoyoeunn.s.amTTgaihhcsee); mopwfoaesvvteihedssocodbauanosndfdgtraihesnaemlti hzoreevsdtwemwoorreiktdnhetfironirnbtmathuseeebadeossuport[ni2inc7kag-nl2oo8efw]ltehnhcatersroeebgtmheuaeelanrgrndipetrritioeifctsveloTcihteymanedtheotdheersskeinnceemiastiinc vthisecofosiltlyo.wing. Let's place advrteieiolrtlanoeutcscbit.ioetnTytpuhtvaboeerectagtnaaionsxret.pixosrtIeeanwsrsiigtoulhalrrisebgs asdectsraropsespteearrmedbpaooemientnshdanisocruouepctlehiaonnrceaicddtuwoertnauottybhin,ceeatthhlesncaetortdtensutadbhmiineepwtInoaerrtstohh,fiasaalnclgadtaustesrhntsehtaregetaagusmabisenwssipinidellseeubdacyehtdsuatibrrweeecaatwmye,idltwlhabialloeltncitrmgheeatmhtveeoeblatoiulpcebir.teeyTsasvhxueeircsne-. daatergrgomaapssinossnettrdreetahabmmey ttiiunhnbeaaevtteauunlbubdeeess,asounofndodngte.ahrsiTsakhscietntrieosemtanamabotifilvciwezlvahoiticsiccoihtonystitathiyrmee,reetdhoeies-f ggoineaftosecmrosvtneartselrtaiaocmnfatlt[it2gmu7aeb-s.2e8sTt]sr.hiezeaeLsmeettah'sniendrmaitashrtaeku,bgvtaeehslo-allactisikttteyshmeaofadtteaeevnrremilaeoilxnpmtametreeiidnonigrtuatsehetcmrhcevoe,eerrrrldeeasiicnnsptdgrtoohnttmehsoiesabuteglhemtnheefeotoarirfccvwceweelalepaovctvceteeirdtvoyvemlehwolayocigptictnhoiytetyrthveieegcrsceaiwtgrsoad.arrvstdIeotrisnetmlpgharetetoioaopvnbeatsshgt,eaeorttvhtoieohabrnet-. Iwotnuuhrtitnschihdtisheaecobaifensaaetme,triuffdebrraeoinvm(eiosenptienttrihscieiadnleettianhhteemerereftetehxaretlolremircdieotrturiefbtrsets,ritseraaencmardme)aa,tnaeinotdtd,chatiennor bboisnh ielaosilezuexatpldptooiesobfcintettiehtoodeinbm,isonteehftroevatfrhetftdeeihs.nreeeTnsebuchtaechunhespdriatsnhsttotteerenerrvfantaemhlrureoeemiginnoaetfartedebrtrifaun,enbgrddoeutsm,ortoienht thgeeserebatsaocswnratidiaglles--l bathneedpotrrhoiepgiosnrtatailbopinloiazsliatttiiooonnt,htweimileltebh|eerdteehx etneebrdiaonrbdyssttrrheeetaumertnhveterilmokceiintteyo-, mmasruenqaerdtiutnhiitcgrohedvemdieseetcnttoohahsebroiertldevykseisirvtntaoaelamummelaeei.gtttihheHcrotevdtbnihsecoecaefo,metsthtihhtetyeoe .rrtpdTshrtreohiopfeitrnodpvsitereeiordlao,plcamopisstoeeyiaidtnvsituamsrl(nuieanoaesgts-, for Lexeat'ms pclael,cuinlaMteicthheelsionnt'esrfienrtoemrfeertoermpetaerra)m. eters. For ttahhdeevasmntrcaeetadhmeimnaatnthaieclaywlsiohsrykodsfro[t2hd7ey-n2ga8am]s-ailctiskteahpeetppharerorabtwulesem, swhsoahllivlchiunsgies,
citdrou.nenT,ehicfetetuhdsewefiootflhlostuwhciehnsgtsroreleuaqmtuioironefsmvfieosnrctoguiassspinsetcrrofeomarmmpreeadsnsaiblylesi suis-
0:5Ma2 << 1;
(2)
wag(2vah)ese,rsraioetguieMsngdpaaovsse=ssltiobrcwelieatpmyat.ocsvAne1telgotilcsheiectaytreMtoqhnaueciagrheat'msus bpenenruetmsseismbcuteripreo;lneem;w cepescanttsiaisstatinahodnne
consider the gas stream as the stream of incompressible
uid. On data of the experimental works [1-3], [7-9] and
[fw1ao0cre]k, dt[oh6ee]stehnteohtesoreuxdncrdeieftvdevtleohlceoictvyiatyliuneWthWeneetahr1e0rt4hisemeEs/tasiemrct.ha'tIsendstubhrye-
tlr(ihe2gc)ehetivisvaveple,uleoetrhcfociatsrtym.MeEd1va0,e2tn1hei3mf:s3t/tosreec1cao0,mntsh5ioda.fteHrae,esgntshaecnaes-,ttliitakchlseley=erteehcxqe,curewiercedeamssnhteabhnleetl
considered as a stream of viscous incompressible uid
and the use of the hydrodynamics corresponding math-
ematical apparatus is true for ether stream analysis.
Laminar and turbulent uid streams are distin-
guished in hydrodynamics. The laminar uid stream
es2tx8ri]esatsm, ,ifdotehse
nRoteyenxocledesd
nsuommbeeerxtRreem, edrvaawlune
up for a Rec [27-
Re < Rec:
(3)
is dTe hneedRebyyntohldesfonlulomwbinergfeoxrparersosiuonnd cylindrical tube
Re = 2apwpa 1;
(4)
wmthhaeet riceui adupdidiesnvtsihistecyo.isnDitteyerp;ioenr dtiiusnbgtehoernaddtyhiunesa;emxvtice=rvioisrcsots1rietiaysm;kinnaeis--
ture and the requirements of uid in ux into a tube,
the
Re
<va2lu:3es
1R03ecthaere uwiidthsitnreaRmec
ina2t:3ube10e3x:is:t:s1o0n4 l.y
Aast
laminar and does not depend on an extent of an exterior
stream turbulence. The following features are peculiar
for a steady laminar uid stream in a round cylindrical
tube. The particle movement pathways are rectilinear.
Talhoengmtahxeimtuable auxidis satnredamis evqeuloaclittoy wpmax takes place
wpmax = 0:25 pa2p 1lp 1;
(5)
wlehnegrteh lpp; is the pressure drop on a tube part with the
p = 0; 25 plpap 1wp2a;
(6)
eTm qpheueaiasnmlt hapuexii=dcmov6aee4llsRoctcireeeitnay1tmaotfveaalorlaocimutnyidnwatrpumrbeaegxirmeisseitswotaficn ecuemi,dowsrtherietcahhmains.
wpmax = 2wpa:
(7)
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
211
Figure 1: A tube in a gas stream
The stream velocity distribution on a tube section is called as Puazeyl's parabola and looks like
wp (r) = wpmax 1 r2ap 2 ;
(8)
where r is the coordinate along the tube radius. The laminar stream transferring into a turbulent
one takes place not uently, but by jumps. At transferrtihnegttuhbreourgehsistthaenceextcroemeecvieanluteinocfraeaRseesynboyldj'usmnpu,mabnedr then slowly reduces. The following features are peculiar for a steady stream of viscous liquid in a round cylindrical tube of turbulent stream. The pathways of particle mcvieeolnovtceimotyfeandtrioshtuarnvibdeusttcuiaobtneteiorsneedqaunaatultub repe.=seTc0ht:i3eo1nr6e4siisRstaealnm0c:oe25sct.ouTenhie-form with their sharp reduction up to zero point in a thin layer near the wall. The maximal velocity increase above the mean order value is about 10-20 % [27-28]
wpmax  (1:1 : : :1:2) wpa:
(9)
It will be shown below, that in the experiment re-
qwueirsehmalelnbtes,raesstraicrtuelde,bRyeth>e Resetcim, tahteiorenfso,rpeeirnfotrhmeewdofrokr
the ether turbulent stream.
Let's consider the method operating principle. In
the Fig. 1 the part of a cylindrical round metallic tube
wdriitfhTt)ht,heiesesltehhnoegwrtnhstrlpea, mwhiischshisowinn
the in
ether stream the gure as
(ether slant-
ing thin lines with arrows, that indicate the direction
of its movement. The tube longitudinal axis is locat-
ed horizontally and along with the ether drift velocity
vector is in a vertical plain, which represents the gure
plain. The tube walls have major ether-dynamic resis-
tance and the ether stream acting from the tube sur-
face side area, the ether inside a tube does not move.
The ether velocity stream stipulated by the horizontal
vetehloecritsytrceoammpionnaenttuobfe,thweheicthhegrodersifwtitWhht,hecrmeaetaesn tvhee-
ltohceitryouwtpinag.
It can be spoken, that the metallic system for the ether stream. Let's
tube turn
is a
tube in a horizontal plain in such a way, that its lon-
gitudinal axis will take up a position perpendicular to
tdhiceuplalraitnootfhethveelFocigit.y 1veocrt,orthoaftthise seitmheilradrr|ift.pIenrptehnis-
position both opened ends of a tube will be in identical
conditions regarding to the ether stream, the pressure
detih eerresnttrieaalm vpeldooceitsyniontaoctcuubreainsdeqaucaclortdoinagzetroo(5p)oitnhte.
Apotstithieonm. oTmheenthot0rizwoentsahlacllomtuprnonaenttuboef
into the initial the ether drift
veneldosc,ituyndWerh owpielrlactrieoanteofawphreicshsutrheedertohper sptroeanmthweitlul bbee
developed in a tube. In the work [28] the problem about
sinetatinroguinndtocmylointidornicoaflvtiusbcoeuusnidnecromopperreasstiibnlgeo futidhebseuindg-
dLeent'lsyraepdpuceendtehde cfoornmstualnatopf rtehsesuvreelodcritoypdisptriibsustoiolvnedof.
uid stream in a tube

wp (r; t) = wpmax 1
r2 a2p
8
X 1 k=1
J0
k3
k
J1
r(apk
1
)

exp
a2pk2t# ;
(10)
w0o;rhdeJerr0es;.tJTi1shteahr eertsBitmetsews;eol'sskumfiusmntchatenioednqssuianotfsioqtnuhaerroezoetbrsoraJca0kn(edtsk )erxs=t-
pcorerrsesspstoenaddyth(eatmten!tio1ne)d
laminar stream of uid and above \Puazeyl's parabola"
(8). So at a turbulent uid stream, according to (9),
the velocity distribution on a tube section is almost uni-
form, we shall consider, that the uid stream velocity
iosf ethquearlouwnpda tuonbethate awthuorlbeutluenbte sueicdtisotnre(atmheshvaoluuled b pe
uwsaeldl laatyetrh.eIvnaltuheisccaalcsueltahteioenxpwrpeas)sieoxnc(e1p0t)tahte
thin nearr = 0 will
be like
"
wp (t)  wpa 1
8 X 1 k 3J1 1 ( k)
k=1
exp  k2ap 2t :
(11)
The expression (11) describes the process of a uid
stream de ning in a round tube. It follows from (11),
tohf attheatextp!res1sionth(e11v)alsuheouisldwbpe(td)iv!idewdpain. toBoththe
parts value
oInf ctohnisstcaanste tuhied tsitmreeamvarviealtoiocintyofin auidroustnrdeatmubdeimwepna-.
sinioanlFesisg.ve2l.ocity wp (t)/wpa will be like, that is shown
In the gure the values of dimensionless velocity
wofpt(itm)/ewaprae agrievegnivoenn tohne aanbsocirsdsianaatxeiss.axAiss,itthies svhaoluwens
above, the requirement (2) is performed and the ether
stream can be described by the laws of thick liquid mo-
tions, then we shall speak about the ether stream fur-
ther, instead of uid. In the Fig. 2 we'll allocate the
212
Yu.M. Galaev
Ftuibgeure 2: Variation in time of uid movement velocity in a
ivsnhetlaeolrlcvictayallolinftthaiemtueetbthe0e:rc:hs:attnrdeg,aedmsufrrrionemggimw0heuicophnttothhe0i.se9t5thiemwrepsatir.netWaemreval as the dynamic one. We shall call the ether stream regiLmeet'astsktip>atdliagshtthbeeasmteaadlyonsgtrtehaemturebgeimaxe.is. It can be written down, that the phase of a light wave on a cut with the length lp will vary on value j, which is equal.
' = 2 f lp V 1;
(12)
wthheerlieghft viseltohceityeleinctraomtuabgen. eAticccworadviengfretoqutehnecyo;rigVinaisl hypothesis the ether is a medium, responsible for electromagnetic waves propagation. This implies, that if in avetluobcietywoitfhwthhicehlecnhgatnhgelps itnhteirme eis, stohetheethpehrassteroeafma l,igthhet wave measured on the tube output, should change in time according to variation in time of the ether stream velocity wp (t). Then the expression (12) will be like
' (t) = 2 f lp [c wp (t)] 1 ;
(13)
where c is the light velocity in a xed ether, in vacuum.
In the expression (13) the sign "+" is used, when the
direction of the light propagation coincides with the
eutsheedr, wsthreenamthdesieredctiiroenctiionnsaatrueboep,paonsditet.he sign "-" is
In the work the optical interferometer is applied for
measuring value ' (t). Rozhdestvensky's interferome-
ter schema is taken [29] as the basis, which is supple-
mented in such a way, that the light beam drove along
the empty metallic tube axis in one of the shoulders.
The interferometer schema and its basic clusters are
shown in the Fig. 3.
1 | illuminator; 2 | a metallic tube part; 3 |
ettrhyaeenfrssacphgaemrmeenant.tlTawmhiteihnbaaesa;smcMalc1eo;,uPMrs1e2,
P|2 m|irr oartspaareraslhleolwsnemoinis shown with thick lines
and arrows. The light beam in a tube pass along the
axis and is indicated with a broken line in the gure.
The tube length is lp  P1M1. The clusters P1, M1
Figure 3: The schema of an optical interferometer
aMTttPishhn1nhee2dM'emtma2Pa.rcine2orTgrn,mohllseMprieosd.pui2enliInra1ntetaie,denarrd,esvic2aoltmMalhpsasoep1srauioe,cRrnsaeMittotlehzeP2cdeha1edastMaaweenncsd1hiogtfvl=ttoebehhstynheeMsbetekbewr2tyetPhoo'wase2nmerp=eiaadsnnrrtdslaie1nmfrlrto,lofeaeiprMlnrlmlploy i1,amaunPnlegMse2gntolcte1=enoer,. operating is reduced to the following. The light beam wwarihetihcphathraaeftllewerlarvwee itelhecntaigotpnhhfarsoemisdidM iev1riedanencdde PM[2192]inatnodtpwaossbineagmPs2,
 = 4 l1 1 (cos i1 cos i2) :
(14)
eterTahdejuasntgmleesnti1s,oit2haatretheestianbtleirsfheerdenacte tphaettinertnersfehrooumld-
be observed. (The adjustment clusters are not shown
on the schema symbolically). In a tuned interferometer
the value is  = const. In the right part of the Fig. 3
tehtheeframdriilfyt ohforairzroonwtsalmcoeamnpsotnheensttvreealomcitdyi.reTcthiiosnstorfetahme
veteelor cciltuystiseresqounalatohoWrizho.ntIaf ltrootaartreadngbeatchkegrionutnerdf,ersoumch-
instrument can be turned in the ether stream. The ro-
tation axis is perpendicular to the gure plains and is
indiIcnattehde aisntAerif.erometer (Fig. 3) the band position of
an interference pattern regarding to the eyefragment
scale 3 is de ned by the phase di erence of the light
bPtoe1waMma1rsdP,s2wt.hheiIcnlhigathhrteepdFriositpgr.aibg3auttiteohdneodneitrthehceetriposanttrahelasomnPg1iMtshd2ePibr2eecaatmnedds
Pw1rMite2,doMw1nPe2x.pIrnestshioisncfaosre,thaeccpohrdaisnegdtio e(r1e3n)c,ewe s'h(atl)l
between the beams P1M2P2 and P1M1P2.
'
(t)
=
2
f

c
P1M2
wp (t)
+
M2P2 c

 P1 M1 c
+
M1P2 c Wh

+
;
(15)
wthheereexpresissioconn(s1t4a)n.t,Lteht'es vsaimlupeliofyf wthheicehxpisredssei onne(d15b)y.
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
213
For this purpose we shall introduce the identi cations
accepted earlier. Allowing, that the beam phase dif-
fteerrefenrcoemMet2ePr 2oraienndtaPti1oMn 1regdaoredsinngottodetpheenedthoenr
the instream
direction and is equal to zero point, the expression for
the value ' (t) will be like

' (t) = 2 f lp c
1 wp (t)
c
1
Wh

+
:
(16)
The rst member of the expression (16) describes
tsiepshttrrheeteeshabsremieoeabxnmvteeeianplrmoihocsarqiptsusyehtaarviresnaeearmaibavrtataviurcoeibknaloeettcPiosiw1tnyMtpo(MW2ta)d1h.Pce.opT2Lmehnedmetde'piussneenrcgneaoddolnuinddncetgenmhoteoehmnemetihtbnehexaeerr--
tor
fc
a1n=d,all1owwiengsh, tahllartecce2ive
Wh
wp
(t)
cwp (t)
cWh ,
'
(t)

2 lp

 wp
(t)
c
Wh  + :
(17)
It follows from the expression (17), that the di erePssttn1rrcMeeeLaa1mmeinPt'2svtWheiclehsoo.cnppishtriyaodspeienor rattih'oteun(bati)nlettbeworepfteaw(rteod)emin aenebtrdeeerantmhtoieapsleePrtoah1ftMeirtnh2geePx2tienetarhinioetdrrs steady regime, at t ! 1. According to the expression (e1d1,)thaantdoFwiign.g 2towthpe(ts)mt!a1ll v!aluwepoaf itthecaenthbere dsuynspaemcticvstiescaodsyitsytr(ecaemlesvtieallocbiotydiiensamtouvbeeinregtharedeinthgetro) tthhee semthaelrl length will not di er essentially from the ether exterior stream velocity and it is possible to write down, that wpops(itt)iot!n1in=thwe pwaorkWishd.et(eTrhmeinceodrreecxtpneersismoefnttahlilsysaunpdshown below.) In this case in the expression (17) the fraction numerator in square brackets is equal to zero point, and this expression will be
' (t)t!1  :
(18)
Hence, in the steady regime the interferometer op-
erating with a metallic tube does not di er from the
Rozhdestvensky's interferometer operating. In both in-
terferometers the bands position of an interference pat-
tTehrne iwnitlelrbfeerodme enteerd, wbyiththae moreigtainllaicl ptuhbaes,eidni thereesntceeady.
operating regime is not sensitive to the ether drift ve-
locity and can not detect the availability or absence of
the ether drift.
inteLrfeetr'osmcoetnesri.deLreta'sduynnraomll itcheopinetreartfienrgomreegteimr (eseoefFtihge.
3) in the horizontal plain at 180. As the direction of
the light propagation has varied in relation to the ether
drift stream to the opposite one, the expression (17)
will be like
' (t)

2 lp

 Wh
wp c
(t)

+
:
(19)
iten0tee:rq:Au:wctadclioit.thrydHiawnegnpmc(teeto),tat<ihlnleiWcaexhtdupytbraneeksasemiissoinpcsel(arn1ces1egi)tiaimavtneetdhtthetohetetihmiFneteigevir.nefe2tlore,orctvmihtaye-l dadnii sdceortvehenertitaehtlheoebfratsnhtdereseaotmh esrientesvxidateeluraieorotufsbttrheeeawminpt(evtre)fl.eorceWinticeeessphWaatlh-l tern regarding to their position in the interferometer steady work regime as follows. Let's take a di erential of the expressions (19), (18) and divide both parts of the found expression into 2, we shall receive
' (t)
'
2
(t)t!1
=
lp 
 Wh
wp c
(t)

:
(20)
The expression left-hand part (20) is equal to the required interference pattern o set, which is expressed by the number of electromagnetic wave periods. With rtoehffevereisexinpbcrleeesbtsoaiontndhs(e2o0v )issdueteasloclyfritbohebisssetprhavetetvdearlinuntereevrgafaerrrieadntinicoegntpionatttthiemeriner oorfigainnailnpteorsfietrieonnc|e pDatt(et)rn. Tcahne vbiesibtlheeboa nsdewtidmtheavsaulrueemstreenatmuninita. tTuabkeincagninhtaovecothnesiddeirreacttiioonn, otphpatostitheeteoththeer selected on the Fig. 3, generally it is possible to receive
D (t) =
lp  Wh 
wp c
(t)

:
(21)
In the expression (21) the sign "+" is used, when the light propagation direction coincides with the ether sintraeatmubde,iraencdtiothneisnigtnhe"-i"ntiserufeserodm, wetheerndtyhnesaemdiicrercetgiiomnes are opposite. According to the expression (11) and the Fatphaitagtutt.bea2retnaitstahcaewcniepnpi(sntttss0at)nta=htnett00mt.0taTh=xehim0ebnaatnlhfdrveosamelotu he(se2eer1tqs)uotwrafelaeantmsohinavtleellrorfececirteeyinvciene,
D (t0) =
lp 
Wh c
;
(22)
atgunabrddeiinnisgtehtqoeutashtleetiarodoywrirpgei(gnti)amtl!ep,1owsihtieoWnnhtihs,eetqheuetahblear0n.vdTeslhooce itdsyeetpinernea-dwdeipvn(icdte)e/v(wi2ep1wa),iDwnth(otic)(h2c2ai)sn,swbheeowoshbnatailnlinrteehdceewiFvieitgh. t2h.e Rdeepaellnyd, elnetc'es
D (t) D (t0)
=
1
wp (t)
Wh
:
(23)
=aosbtwDaApialn(lteo)dw/DiiWnng(hsttu0ht)chehesaue1pxwppaowryes,pistsi(isitoo)nsn/hwmo(pw2aa3nd.)eiTcnaahbnteohvdbeeee,Fptwiehgnra.idtt4etwnencpe(dtvo)itwe!wn1 portIinonthael teoxtphrees sirostne(x2t2e)ntthoef mtheeaestuhreerddvraifltuveeDlociistyprrao-tio to the light velocity, that characterizes the reviewed
214
Yu.M. Galaev
Fo igseutrein4a: dVyanraimatiiconinitnertfeimroemoefteinrtoeprfeerraetninceg preagtitmeren bands
method as the rst order method. It follows from the expression (22) and the Fig. 4, that if at the moment of ttiomteheti0r otorigmineaasluproesitthioenbaonndtsheo insettervfearluome Deterreegyaerfdrainggment scale, it is possible to determine the ether drift velocity horizontal component Wh which is equal to
Wh = D (t0) clp 1;
(24)
The direction of the interference pattern bands o -
set, regarding to their original position, will be de ned
by the ether exterior stream direction.
The data of the interferometer tube sizes are nec-
essary for the proposed measuring method realization.
The expression for the tube interior radius calcula-
tpiaorntsaopf tchaenebxeproebsstiaoinne(d11a)s
at
wp
the moment of (t)/wpa = 0:95,
twime sehatdll
follows. Let's divide both o(sneewtphaeanFdig,.all2o)wtihneg,rtahtaiot write down as
1 8 X 1 k 3J1 1 ( k) exp  k2ap 2td =
k=1
= 0:95:
(25)
If to be con ned by the estimation accuracy no
worse than 7 %, so the series in the expression (25) can
be exchanged by its rst member. Let's substitute in
tinhfeor(m25a)titohne wnuemsherailclaglivvaeluthesesekvaalnudes:J1 J1 ( 1) = 0:5191), we shall receive
(
1
k=)
(for the 2:4048;
ap  1:37 (td)1=2 :
(26)
The expression (26) allows to calculate such the in-
terferometer design parameter as the tube radius Atimt cea,lwcuhliacthioins,rethqeuivraedlufeotrdimispsleelmecetnetdatcioomnionfgvfirsoumal
tahpe. (or
tool) readout of bands o set value D. The data of
the ether kinematic viscosity value v will be reviewed
bpreelosswio.nT(h2e4)t,uobfewlhenicghthwelpshcaalnl rbeecefiovuend with the ex-
lp  Dmin (t0) cWhm1in;
(27)
winhteerrfeerDenmceinp(ta0t)teirsn,bawnhdischo csaent bmeindimiguitmizevdalwueithoftahne svealleuceteodf etyheefreatghmerendtriaftndhoscraizloe;ntWalhcmoimn pisontheentmvienliomciutmy, which should be measured by the interferometer (the interferometer sensitiveness). emtheaeTrsuhkreiinneegmtmhaeetrtichkovidinsrceeomasliiatzytaitvciaovlnui.escLvoesta'isrteye.sntTeimcheeasstdaeartythaefoovrfattlhhueee v, relying on the following. In the work [5] the photon formation mechanism is represented, as the oscillating result of excited atom electronic shell in the ether and the Karman's vortex track as hydromechanical photon model is proposed. In other words the photon formation is stipulated by the ether stream turbulent regime of the excited atom streamlining by the ether, oscillating in the ether. The turbulent pulsation propagation in the ether is perceived by the observer as the light emission. In the work [28] it is shown, that the existence of pulsation movement is possible in uid volume, if the Reynold's number is not lower than some extreme value equal to
Recr = wd 1;
(28)
wtehriesrteicwsizies
uid movement of a streamlined
velocity; body. In
dthies
the characwork [28] it
ipmsrooovbbeltemamiennetthdve,etvlohacaluitteysR, aewtcor,md,d4via2ma5r.eeteWarc,cittohhredrieentfgherleyern:kctiehneetmoetaohtueircr
viscosity. From the expression (28) we shall nd
  wdRecr1:
(29)
We shall call the obtained ether kinematic viscosity vvvacell.ouceLiteayts'stwhceawlcceaullscahutaelallttehadeccevetaphltuerethkveicn.oe mAsaesttitcvheevlioescctihotseyirtoysftvreealaleumcetronic atom shells in the immobile ether at a photon emission. Let's consider, that this velocity does not excatheseisditctiahsseeknlwiogiwhthtn,vthehleaos(c2itt9yh)ewwvealsuhcea.lolTrrdheecereidvdieame1te0r o10f amto.mIsn,
c  7:06 10 5 m2sec 1:
(30)
The performed estimation has shown, that the ether kthineemwoartkic imviasgcoinsaittyioncsal[c6u]laatbeodutvathluee etchoerrreasps ognadss-liktoe medium with real gas properties. So, the kinematic viscosity values of twelve gases, spread in nature, are within 7 10 6 m2sec 1 (carbon dioxide) up to 1:06 10 4 m2sec 1 (helium).
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
215
Figure 5: The interferometer structure
Optical interferometer. The calculated ether
kinematic viscosity value allows to calculate the inter-
ferometer parameters. With the expression (26) we
sphoaslelddettoerbmeineqeutahle1tusbeceornadd,iuws.e Isfhtahlle rveacleuievet,d tihsastupat-
the interferometer creation it is necessary to apply the
tdImfue/bttesoeermcwsuaiintpnhepdottahshpeeepttlihuynebtteehvriealoellrnuiggershtahtdDisluopmsuiwrnacipet=hwti0ht0:he0:05te5,hxepWmrwe.hsamsvWiieonnele=(sn2hg7a2t)lh0l.
to=lp6:50:1409
7 m, m.
so
the
required
tube
length
is
equal
The optical interferometer was manufactured for
conducting measurements. Schematic gure of the de-
vice (the top view) is shown in the Fig. 5.
In the Fig. 5 the identi cations of the basic clusters
are kept, which were introduced at viewing the inter-
ferometer schema (Fig. 3). 4,5 | the interferometer
adjustment clusters; 6,7 | racks for xing at-parallel
soemmeit-etrrafnrasmmiet;ti9ng|lapmoiwnears saunpdplmyiarrcocrusm; u8la|torisntoefrftehre-
illuminator; 10 | the illuminator switch; 11 | the eye-
fragment xing cluster; 12 | heat-insulating housing
are shown additionally. The frame 8 is manufactured
of a steel pro le with | like section. The wall thick-
nleensgstihs 0is.000.77mm., Tthheewpirdot hleish0ei.g1hmt i.sT0.h0e2imnt.erTfehreomfraemteer
clusters are xed on a at frame surface. The racks 6,
7 are manufactured of rectangular copper tubes with
interior section 0.01 m 0.023 m. The light beams
pass inside these tubes. The interval between beams is
Ppi(nIo1naMisn,tt2hsienaPnmt1dh,aeMnPpu21ofaPitnch2tteusitr eMaidst1eip,nqatuMreaar2llflee0r|lo.1sm2emmemtiier-.rrtorOtarhsnnesamrr aeicatkttisnin,psgtaianrllaaltlemhldee-.l
glasses with the thickness 0.007 m were used as semi-
transparent laminas). The laminas, mirrors and clus-
ters of their xing in the Fig. 5 are not shown symboli-
cally. Each of the clusters 4,5 allows to change the racks
position in two orthogonal related plains. The tube 2
is steel with the interior radius ap = 0:0105 m. The
t uxbinegleonngt5hairse lnpo=t s0h:o4w8nmsy. mTbhoeliccalullsyt.erTs hoef stehme itcuobne-
ductor laser with the wave length   6:5 10 7 m was
applied as the illuminator. The optical paths in the
interferometer are located in a horizontal plain. The
interferometer was located on a rotated material table,
which was manufactured of an organic glass with the
thickness 0.02 m. The heat-insulating gasket was put
between the frame and material table . The interfer-
ometer was closed by a common housing of six layers of
a soft heat-insulating material. The thickness of such
cpoearitminegtewraiss asbhoowutn.0.0T2h5emh.ouIsnintghebaFcikgg.r5outnhde whoausstinhge
box of rectangular section with the interior sizes: width
bTch=e
b0o:2x2
m, was
hmeiagnhutfahcctu=re0d:1o1f
ma ,calerndgbtoharldc
=wi0th:8
m. the
thickness 0.007 m. In the box the face wall on the
eyefragment part was absent. This opening was closed
with a common soft housing. The interferometer ro-
tating was ensured with the end thrust bearing of the
diameter 0.075 m. The bearing box is located between
the material table and support. The support is provid-
ed with the units for the interferometer installation in
a horizontal position.
inteTrfhereominetteerrftehreommineitmerumtebsatn. dsIno thseet mofaannufinacteturfreerd-
ence pattern, which could be visually digitized, meant
DmTinh=e d0e:v0i5c.e sti ness was tested by two methods. Ac-
cording to the rst method the instrument frame was
mounted on a horizontal surface. The interferometer for
one edge of a frame was hoisted in such a way, that the
frame lean angles to the surface plain reached  20.
In this position the interference patterns o set frame,
stipulated by elastic deformations of the instrument, dsweiocdroknniodntgmepxeoctsheieotdidon0t..h3eTbihnaesntfdrrsaumm(Deenle=tasn0ti:a 3nn)g.elseAsscwucpaosrtdotiens1gt0etdowitnehraee
created by the material table tilt. In this case the bands
noticeable drift was not observed. The stability of an
ilnigthetrfesrheoncckes poantttehrne tinotiemrfepruolmsiveetelroafdrasmwea,smteastteerdi.alTthae-
ble and support caused short-lived interference pattern
wince at the moments of such strikes. Thus the inter-
ference pattern was not destroyed. The bands saved an
original position after termination of impulsive loads.
The second stage of tests was performed on the ter-
rain selected for experimental investigations. In windy
weather the interference pattern was stable. The ob-
server moving in an immediate proximity from the
interferometer installation site, the movement of the
pedestrians and cars in 20 meters from the instrument
installation site did not cause the noticeable o set or
bands shivering. The short-lived bands shivering at cars
movement was marked on one of two selected points,
which was in seven meters from a ground road. Thus
the interference pattern was observed, and the bands
216
Yu.M. Galaev
dinidtnhoist ctehrarnagine tihseinpsoisgintiio nca. n(tTh|e torannstphoertavmeroavgeem3en-4t automobiles per a day.)
The interferometer heat tests were held in summer. The device was mounted on the open site. The various device orientation on an azimuth was set in cloudless weather conditions. In a xed position the instrument was heated by solar radiation. In these conditions within 30 minutes the bands o set did not exceed the value Dwea=th0er:3a5nd(at1n/i1g0h0t tbhaenidnstefrofreraenmceinpuattet)e.rnInsavcleodudany invariable position within 2-3 hours.
The measuring method sensitiveness to the ether dTrhifet mreeqtuhioreddoef iencttesrfweraosmteetsetredapaptlitchaetitoenstw ansatlhsetafgoel-. lowing. The instrument was mounted in a horizontal position in such a way, that its direct axis coincided with a meridian line, and the illuminator was turned to ttheresnteoartdhy. wIonrksu, cthheinoibtsiaerlvpeorsriteigoinst,eirnedththeeinbtaenrfdesroomrige-inal position of an interference pattern regarding to the eyefragment scale. The value D = 0 was given to the bands original position. Then the observer changed the pfeorsoimtioenter|tutronoekd ains1ea8t0a.tTthhee riloltuamtiionnaatlord.isTplhaeceimnteenrtwas performed within three seconds. At rotational displacement, as it was reviewed above, the ether stream in a tube was interrupted. The interferometer transferred into a dynamic operating regime, which is described by the expression (11). In this interferometer position the maximal value of bands o set, the bands release time to their original position was registered. The interferometer transferred into a steady regime, and turned into the initial position. At this stage of tests it was established, that after the dynamic regime termination the bands noticeable o set of an interference pattern regarding to their original position was not observed, ie.xep. rbeassnidosno( 21se)titvamlueeanDs,(tth)at!t 1theet0h.eAr sctcroeradmingvetlooctihtye aehtliohnnedrgtehtxheteeirntituoerbrefsetraroexmaismeatvetreltothc!irteys1,htohlddait. teIhrteecdvaanalubbeeitDefxrwpolmaasintbheedeby small resistance of the interferometer tube to the ether stream movement inside this tube. Let's consider in this case, that
wp (t)t!1 = wpa  Wh:
(31)
This experimental result was used above at the pro-
portion deduction (18).
At procedure implementation, described above, it
wvaarsiamtiaornksecdo,rtrhesaptoantdtehdetwo hvoalreiattiimonesc, owuhriscehoafrveaslhuoewDn
in the Fig. 4 that did not contradict the original imag-
inations about the interferometer work. The measured
duration of a dynamic regime meant The values ambiguity td is stipulated,
t drst
o1f0a:l:l,:
1b3ystehce.
Fpinaiggttureerrgenim6b:eanOdsbsoe rsveetdinvatrhiaetiinonterifnertoimmeeteorf dtyhneaminticerofepreernacte-
diculties, connected with small values visual readout
of the value D, slowly changing, at the dynamic regime
eDnd(t,)i,.ec.reaattetd!onttdh.eIdnatthaevFisiuga.l 6obtsheervdaetpioennsd,einscsehovwienw.
However, as it can be seen in the Fig. 6, on the
original site by the extent about 1 second the depen-
dcoeunrcseetqimuaelictoautrivseelyD. (At)ftedri tehreeddefvroicme raontaetxipoenctined1t8i0me,
atiphtaettehindei,tmiaaclocmporoedsniittnigoonft,otii.m(e2.e2)tD0a,(ntdt0h)et=hbea0Fnidigns.stset4ai,ldl tohocfecauvnpatilieucde-
Dwi(tth0i)n There
wt=heeremtisamuxpe.ptomSsiitnioce1nsstehocfercemearcothameindenmttheetc0hm,aantxhiciemalvasaltlvrueaeslsueDes.
itnio nueinnci1n8g0atotrhoethinetrerrfeearsoomnse,tecrobnrnaekcitnedg,affoterreixtasmroptlae-,
with air movement inside a heat-insulating housing. In
this connection di erent methods of the interferome-
ter starting into movement and its braking were test-
ed. The tests have shown, that the observed feature
othfetshuepipnotseirtfieornosmmetaedre.wTorhke csoyustledmnaotticbreouenxdp-ltahine-ecdlobcky
tests have shown the following. The daily variations of
the value D corresponded the measured ones in the
experiment [1-3] to the ether drift velocity variations
within a day. (In the experiment [1-3] round-the-clock
measurements were carried out continuously during 13
months, since August 1998 till August 1999. The part
of this experiment results is published in the works [1-
3]. The measurement results within radio waves band
have shown, that there is a rather small value of the
ether drift horizontal component velocity during the
part of a day. The same e ects were marked at the
optical interferometer test in the work. The experi-
eonf cteimheasasthtohweni,nttherafteraotmaesteeprarroattaetdioany,oonn1s8u0ch ptheeriondos-
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
217
toibcseearbvleedb. aHndesncoe ,setht eofdaetnecintetderffeeraetnucreespainttedrenpewnadsenncoet
D (t) (Fig. 6) could not be caused by the interferome-
ter mechanical strains or air movements inside the in-
terferometer heat-insulating housing, and are stipulat-
ed by the exterior reasons. Such time periods, during
wthheicinhteDrfe(trmom) ete0r
were used starting in
for improvement ways of rotation and its stopping.
These ways were used then as standard procedures at
systematic measurement conducting.
TheAdneatleyctseids orefgutlhaeritiyntinertfhereoombesetrevredtebsatndrsesou lstest.
has required its physical interpretation. The possible
in uencing analysis of the interferometer structural el-
ements on the ether streams has shown, that the ob-
saenrdveqduadnetpietnadtievneclye dfeeastcurirbeesdDw(itt)hicnatnhebefoqlluoawliitnagtisvueplyposition. Let allow, that an exterior heat-insulating dielectric housing of the interferometer (the point 12 in tehtheeFrisgt.re5a)mfordmrisftt,hbeeasdiddeistiaonmaledtairlleiccttinugbes.ysItnemthfiosrctahsee tshtreeaemxteirsiotrheinetrheleartimonovteomaenmteitnalalicdtiuelbeectorifcthheouestihnegr.
If to consider the interferometer housing as the routing
system, it is necessary to consider, that, since the mo-
mpreonctests0
in it, as well as in a of the ether stream
metallic de ning
tube, the dynamic will be developed.
It gives the basis to write down the expression (21) as
follows
D (t) =
lp 
 Wc
(t)
c
wp
(t) ;
(32)
wltohhceietrvyeariWniatctii(omtn)eoiifsntththheeeevtianhrteierartfsietorrnoemaomefttevhreelhoeoctiuthsyeinrigns;ttrwiemapme(ti)nveias-
metallic tube.
The housing basis was a cardboard box of rectangu-
lar section. Let's consider a problem about setting the
ether into motion, resting in a rectangular tube. For
this purpose let's use the comparative method, spread
in hydrodynamics, of uid stream in a tube of a com-
pound pro le with uid stream in the tube of round
section, "equivalent" on resistance, at which so-called
"hydraulic" radius nceoprtmedal[2se7c]tfioorn tGhips
artahodtieuhqseuaslecttoioann
paerreiamreatteiro
of a tube Np is ac-
ah = GpNp 1:
(33)
Such a way enables to use the mathematical apparatus developed at stream analysis in round tubes. As before we shall be limited to estimations, performed for the ether turbulent stream. In this case the dependence Wthce (etx)pcraenssiboenc(a1lc1u)laintewd hwicithhatshetheexproruesnsdiontusbiemrilaadriutos
atupbweeashhall use the "hydraulic" radius of a rectangular
"
Wc (t)  wpac 1
8 X 1 k 3J1 1 ( k)
k=1
exp  k2ah 2t ;
(34)
wbuhleernet wstpraecamis ainmtheaeninvteelrofceirtoymoeftethredieetlheecrtrsictehadouystinugr-. As before, at considering the expression (17), and taking into account the interferometer test results (31), it is peasnosdsesniibttilaieslltypoofcsrosonimbsliedtehtroe, wethtrhaiteterthdexeotwveanriloure swtrpeaacmdoveesloncoittydiW ehr
Wc (t)t!1 = wpac  Wh:
(35)
terioLreto'svecraallcludlaimteetnhseiovnasluweeraeh g. iAvebnovaet,tthhee ihnotuersfienrgomin-ehatncedr=FNsrt0orp:mu1,1cwtthumiterhe.etTxdhpehesrece(nrs3i,s3piho)tainwovne(in:2sg6hw)adiildetlttrehiesrcmpbeciiovns=eesdiba0lht:eh2=2etov0ma:s0el,u3ehe,6es7tihgGmhaptt. twtrhhaideellivudbasuelruodafeet titohndneewdionibfltlyetbrhtfeheeerdionetmu tebneretefedeorrfobhlmyaoruetghtseeienrrvgrdaayaldunhieuasmo.fiAc"hsryeadghrima>uelaictp"d,
td  0:53a2h 1:
(36)
From the expression (36) it follows, that, having the
measured kinematic
vvailsuceossittdy, viat liusepossible
to
determine
the
ether
  0:53a2htd 1:
(37)
The kinematic viscosity value, determined in such a way, we shall call as the ether kinematic viscosity masehce,a=swu0er:e0sd3h6av7lallmureecaevnicvd.eLtheet'ms seuabssutrietdutveailnuteot(d37=) t(h10e :v:a:l1u3es)
e  (5:5 : : :7:1) 10 5 m2sec 1:
(38)
The kinematic viscosity asescthiseefquunacltitoon mean value
vm=eafn(vtda)luwe ivtheain,
calculated (10 : : :13)
ea = 6:24 10 5 m2sec 1:
(39)
Comparing (30), (38) and (39) we shall mark, that on the value order the ether kinematic viscosity values, calcTulhaeteodppaonrdtumneitaysuorfedth,ecopirnocbidleemvcsoluvtieon avbeaou. t the ether viscosity measuring is of particular interest, as the experimental data about the ether viscosity and the ether viscosity measuring methods miss in literature till nowadays.
218
Yu.M. Galaev
Figure 7:
bands o set
V(caarlicautiloantioinn)
time
of
the
interference
pattern
Let's write down the expression for the value D (t). For this purpose we shall substitute the expressions (11) ainngdly(3a4n)di,na(l3lo2w) finorgtthheevparloupesorwtipo(nts) (a3n1d),W(3c5()t,)waeccsohradl-l receive
D (t) 
8lpWh X 1
c k=1
k 3J1 1 (
k)
exp  k2ap 2t exp  k2ah 2t : (40)
In the Fig. 7 in a normalized view the dependence c(4a0lc)uilsatgioivnerne.suAltt Dca(ltc)u,lapteirofnosrmthede wteirtmh sthneuemxbpererssoifona svva6ea:ip5rslicu=eFoes1rsso0ik0tomy:f0=7t1iths0m4he5,e.vitncmhFteei=;grc.faae7hlrc7ou=ml1iat0et0tefe:od50rlm3lvdo6a2ew7lssuisegem,cnot;fp1htalaphartaen=omdenteh0ttth:ee4irrem8skefaiomnrleeel;xomupwsaieirtnda=igc-: ttitTc0ihoheonoepifantetmntrheatreitcfieinbpr0geea:gn8trice2enedgnsidpiemncuag,etr,twatettihrhimnoiecneh(bvooaiaffsnlttuddhheisegeDioitin nit)zsteeeesrdtrhffeofemrruroooalmmdmxiebemttteheeareroldbmvdysayonelnrmuavaemeemndoictf.oexpperreastsiniognr(e4g0im) feormsaptetceirfsyintdgthe10o:b3sesrevce.dLveatl'useuesxeptehreitmuteentinal(ly40t)mthe1mseeacs.uFreodr tvhailsuepuorfptohsee ewtheesrhaklilnseumbasttiicvtcmoisnctorsaid0ty:i9c,t3vteshaeec=.exH6p:e2enr4iceen,1c0tehre5esmcua2lltcsseu,clawt1iho,incwhereassruhelatslslhordewocnenivoinet the Fig. 6.
The interferometer test results analysis, the ether kinematic viscosity values, calculated and measured, give the basis to consider, that the ether stream properties are close to the stream properties of known gases at their interaction with solids | to pass aside obstacles
asonldidgso(dinieldeicrtercitcisn,gmseytsatlesmest.c.I)t actaninbteerasuctsipoenctwedit,hththaet ether stream render major ether-dynamic resistance. It clari es the interferometer test results, that the tube made of dielectric can execute the same directing system role for the ether, as the tube made of metal. The ether stream property, i.e. to pass aside obstacles, could cause unsuccessful attempts to detect the ether drift with the devices placed in metallic chambers [17-20, 23-26].
For value de nition of the ether drift horizontal coo mseptomneenatsuvreeldocvitayluWe ohf iatnisinptoersfseibrelencteo puastetetrhne abtanthdes mexopmreesnsitonof(t4i0m)ewtemsh, awllhreenceDive(tm) = max. From the
Wh  D (tm) c (8lpX 1 k 3J1 1 ( k)
k=1
exp  k2ap 2tm exp  k2ah 2tm 1: (41) Let's substitute in (41) the measured values of the etohtfhetehrveakluiinneteemtrmfaetrio=cmve1itsecrsoescait,nydthvceeaaldc=eusliag6tn:i2o4npapr1aa0rma5emtmeerts2esrevca(tlhu1ee, tmcear;smelpsthn=eumm0b:e4ea8rsuomfre;adsevra=ileuse)6::5oafpt1h=0e07e:0tmh1e0;r5kdmr=i;fta4hh.=orIi0zn:o0nt3ht6ai7sl component velocity, will be de ned as follows
Wh  525D (tm) :
(42)
Let's calculate the minimal value of the ether drift
vuefalocctiutryedWihnmteinrf,erwohmicehtecra,ni.be.e
measured we shall
with the mandetermine the
instrument sensitiveness. In the part \the interferom-
ewtherichtescta"n ibs emdairgkietidz,edthwatiththethme isneilmecutemd veayleuferaDgmmeinnt,
awnedsLhsecatal'lslerdeDectemeivrimne i=Wneh0m:t0hi5ne.
Then with the expression (42) =eth2e6r:2s5trmea/msecr.egime in the in-
twvrcRctseahtoaairerdesnltefmuihieatueeibrymtntsoeohhmvfaeetwerupteahertr=dxi8ebe=trrp8utiR03reflt6t:een4eu0:sny2.bv1stdn4ie0eoorolsA5onewl1dgccamni0(cisttm4,o,in)eWr5teiudsnhwmihimasnWewtbg=2phssheohReirtWcscaoeshRlimhlbt1te2mhiclhmn6eaieme:nil2onc>er.o5nuetvlflhqFyeoRamueosrtir.eir/enrtcswehLtt.etmheheichtiteHeetsh'tunshmiepbttnnerhutieecn(eerece3wprite,mv)fhoiieivtaesrasiheertt--l
ometer tubes.
The optical interferometer tests and tests results
analysis give the basis to consider, that the hydrody-
namic description of the interferometer operating prin-
ciple, reviewed above, is adequate to the imaginations
about viscous ether stream in tubes, and the manu-
factured interferometer is suitable for the ether drift
velocity and the ether kinematic viscosity measuring.
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
219
wasTdhisepmoseedasiunrethme ecnotumnterythsoetdtsle.mTehnet inattertfheerohmeiegthert
( 190 m above sea level), in 13 km from Kharkov
northern suburb. The proximate height ( 200 m
above sea level) is located westward apart 1.7 km. Two
points were arranged for measurements. The distance
between them was about 15 m. On the point No 1
the interferometer was at the height 1.6 m above the
ground surface. On the point No 2 it was at the height
4.75 m. Two points available, which are located at dif-
ferent heights and are practically at the same point of
tfeecrtr.a"inT, hiteims reeaqsuuirreemdefnotrsoobnsetrhveatpioonintosf Nthoe1\haenidghNtoef2-
were performed in the open air. On the point No 1 the
interferometer was in surrounding trees shadow and was
not exposed to direct solar radiation a ecting within a
light day. On the point No 2 the interferometer was
mounted in an umbrella shadow. In winter time the
interferometer was transferred to Kharkov. The point
No 3 ( 30 m above the ground surface or  130 m
above sea level) was arranged in the upper level facility
of a bricky house. On the point No 1 the measurements
were carried out in August 2001, on the point No 2 in
August, September, October and November 2001, on
the point No 3 in December 2001 and in January 2002.
The measurements were carried out cyclically. One
measuring cycle lasted 25-26 hours. 2-4 cycles were
performed within one month. Each cycle contained the
following parameters. The interferometer was mounted
on a selected point, so that its rotating plain was hor-
izontal. After installation the interferometer was kept
in new heating environment within one hour (the in-
strument was stored in the facility). The measurements
were carried out at each whole hour of stellar time. One
readout of the measured value was performed under the
following schema. The interferometer longitudinal axis
wtoarswmasoutnutrendedaltoongthae mnoerrtihd.ianT,hseofuthrtahteritspriollcuemduinreas-
did not di er from the interferometer operating pro-
cedures, which were applied at the nal stage of the
interferometer test. After the interferometer dynamic
regime termination the observer registered the maximal
bbaannddss ore lseeatsevatliumeeDto(ttmhe)i,raosritghienaml epaossuirteiodnvwalause.reTghise-
tered and metered. The interferometer returned to the
steady operating regime. The instrument turned to the
initial position. As a rule, 5-7 readouts were done dur-
imngeaonnvealmueeawsuasriancgcetpimteed(for 1th0emmienaustuerse).d where S is the measuring stellar time.
The readout value D (S),
redestuThlhetsef.opllTroowhceinemgsspeianrosgucremedmuerteehnsto: drvesasluoulfetssthcpaerlocmcuelesasatiisnougnrseinomcfleutnhdet-
ectohuerrsedorfiftthheoertizhoenrtdarlifctovmeploocniteyntwvitehloincitsyepWarhat;eastdeallialyr
day and the ether drift velocity daily course averaged
during the year epoch Wh (S); a daily course of the
emtitohenaeTrsWuhdrehreimmfftreeonvametslusoiercterisimteymsenaeWvatenhrreav(sSgauel)uldt,esmfowerWaetnrh.e-esqiwnutharrooeldevutacilemudee
doef tehceas the
medeawsiutrhedthvealeuxeptraebsslieosnD(4(S2)) .wTerhee bvraoluugeshtWtho,tchaelcsualmate-
table for each hour of stellar day. Such numbers con-
sequence obtained for separate stellar day, describes a
dailTyhceoumrseeanWvhal(uSe)s.of the ether drift velocity and the
vdaalyuewsithWthwe efroellocwalicnuglaktneodwfnoreexapcrheshsioounrs
of the [30]
stellar
Wh (S) =  1 X  Whj (S);
j=1
8
W
(S)
=
><

>:
1 X  j=1
Whj (S)
(43)
Wh (S)
2 9=1=2 ;(44) ;
wwhheorlee m eiasstuhreemvaelnutessearmieos.unTthWe hco,no bdtaeninceedindtuerrivnaglsthoef the measured values were calculated with the known methods explained, for example, in the work [30]. The calculations were performed with the estimation reliability equal to 0.95.
The measurement results. The measurement series results, held since August 2001 till January 2002 are presented in the work. 2322 readouts of the measured values have been performed during this series. The distsrhiobwuntioinn othferetaadboleut1s amount per months of the year is
According to the research problems, we shall consider this work results along with the experiment results [1-3], [7-9], [10]. These four experiments have bdie eenrepnetrfmoremaesudraintgvamrieotuhsodpso:inatsnoofpatigclaolbienwteirtfhertohmreeeter of the rst order (Europe, Ukraine, 2001{2002 [this work]); a radio interferometer of the rst order, (Europe, Ukraine, 1998{1999 [1-3]); optical interferometers of the second order (Northern America, USA, 1925{ 1w9h2i6ch[7a-r9e],a1p9p2li9ed[1i0n])t.heTahbeomvee-amsuernitniognmedetehxopdesriamcetinotns,, based on wave propagation regularities in moving medium, responsible for these waves propagation, that allows to treat the experiment results in the terms of the ether drift velocity within the original hypothesis.
The development regularities of viscous medium streams ( uids or gases) in directing systems are used in the work measuring method. The measured value is proportional to a velocity di erential of the ether viscous streams in two tubes of di erent section within the original hypothesis. This di erential value is proportional to the ether drift velocity (the rst order method).
In the experiment measuring method [1-3] the regularities of viscous medium streams near the surface
220
Yu.M. Galaev
Month of theTyaebaler 1: DAis2ut0gr0iub1suttionSeop2ft0er0mea1bdeorutsOamc2t0oo0ub1nert peNr om2v0eom0n1tbhesrof tDhee2ce0ym0ea1brer Ja2n0u0a2ry Amount of readouts 792 462 288 312 240 228
FAiugguurset 8ep: oVchariation of ether drift velocity within a day in ptoarativtieornticaarle vuesleodc.ityThgeramdieeansturinedthvealeutehiesr pdrroipftosrttrioeanmal near the Earth's surface within the original hypothesis. This gradient value is proportional to the ether drift velocity (the rst order method).
In the experiments [7-9] and [10] Michelson's cruciform interferometers were applied. The measured value is proportional to a velocity di erential of wave propagation in orthogonal related directions in the ether drift stream within the original hypothesis. This di erential value is proportional to the ether drift velocity (the second order method).
In the Fig. 8 the experiment results referring to August are presented. On fragments of this gure are shown accordingly: in the Fig. 8a | this work results; in the Fig. 8b | the experiment results [1-3] (the gure is published for the rst time); in the Fig. 8c | the experiment results [7-9]. ing Tohneoertdhienratderiaftxevse.locTithieesstWelhlarintikmme/sSec.inarheopuersndis-
pending on abscissa axes. Each of the Fig. 8 fragments illustrate the variation of the ether drift velocity wariethpinresaenstteedllaorndlyaybyWthh(eSa)u.thTohrse oefxpweorrimk e[1n0t]raessualtsscertaining of the velocity maximal value, measured by thFthhaieegsm.mn,8oeitnaasasruletlrloheawemtiedoednnattitloyodsatdhtheoaepwemanvtodehvreiaesnmgceiexnenpgWterrhWeims(uSel)tns.t6wrIkneemsrute/hltsepsercFie,nsitgehtn.hat8e-t ed with the thick lines, which are obtained in each of the experiments during August epoch (mean results). The separate observations (measurement results during a separate day) are shown with thin lines. The dates of separate observations are speci ed on fragments. The separate observations on fragments of the Fig. 8a, Fig. 8b are selected from the performings, which had the date, proximate to the date of separate observation of the Fig. 8c fragment and which during the day had no skips during the measuring. The date discrepancy is stipulated also by the fact that the systematic measurements in the work began on August 14, 2001, and in the experiment [1-3] | on August 11, 1998.
The positive measurement results, given in the Fig. 8eibmmt,yheienletnlrthutdess[t1rr[oi-7af3pt-t]9teri]tec,thqahe[ule1i0oirdne]petdptvehoerefel soeiernpacogmntm.isereoIantntdterirtooohfprewyaowntaeaivo steroieksotcrntapo,nrpwodiynapiseant gdhteahiectseticoeoe|xnvxpepwetrerhearides-applied.
The similar nature of the ether drift velocity variation within a day in August epoch unite all three fragments of the Fig. 8. The rst minimums in dependreesnuclitess. IWnhth(Se)waorrek e(Fxpigr.es8saed) acnledairnlythine aexllptehrrimeeemnte[a1n3] (Fig. 8b) temporary position of minimums is S  3 hours. In the experiment [7-9] (Fig. 8c) the temporary pdiosscirteiopnanocfytihnet hrestpomsiitnioimnuomf tihsesSe min0i:m8 uhmousri.s a(Sbuocuht 2.2 hour, an explanation has not found yet.) The ether drift velocity magni cation is observed during consequent 2-3 hours. Further the plateau sites with rather small variations of the ether drift velocity in time are noticed on all fragments. The greatest duration of the plateau site was observed in the experiment [1-3] (Fig. 8b), that can be explained by arranging peculiarities of a radio-frequency spectral line on terrain. In this expfreormimaenmt etrhiediraandoion-fr4e5quetnocynosrpthecetarsatl. lTinheeisvadreiacltiinoends
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
221
oimf tuhteh)eothcecrurdsryifmt ampeetxriacazilmlyuttoha(amsewriedlilaanslainneywstitahrinaza-
stellar day. If to take account (according to
the apex Miller: 
coo6r5di,naate v1a7l:u5ehs
into [9]),
the ether drift azimuth in this part of a stellar day ac-
cepts the values, which lay in the northeast direction,
i.e. in the direction close to the direction of a radio-
frequency spectral line. In this case the angle between
the ether drift azimuth and radio frequency spectral
line direction has minimum values. Accordingly at the
interval of 12-16 hours the ether drift radial compo-
nliennet) vkeeleopcsitryat(hdeirrehctigedh vaaloluneg,adersapdiitoe-forfeqthueenacpyexspheecitgrhatl
magni cation (astronomical coordinate). Such arrang-
ing peculiarities of the radio interferometer on terrain
cthane ienxtperlavianl tohfe12re-1la6tihvoeudrsepinencdoemnpceariinscorneawsiethWthhe(Ssa)maet
dependencies shown on two other fragments. In the
work (Fig.8a), according to the accepted measurement
methods, the optical interferometer was located along
a meridian. As the variations of the ether drift azimuth
within a stellar day occur symmetrically to the merid-
ian line, in this case the plateau site duration should
be less, than in the experiment [1-3] and less than in
the experiment [7-9] in which the ether drift azimuth
variation was considered by the corresponding rotation
of the interferometer.
It can be seen in the Fig. 8a (the mean result of
the work), that the sites with rather small values of
the ether drift velocity, extended in time, take place
within a day. Noticeable bands o set of an interference
pattern was not observed per a separate day on such
sites. In these cases the ether drift velocity was lower
tmh/asnect)h,ethianttewrfaesroumseedtefrorsetnhseitiinvteenrefsesro(mi.eet.erWtehsts<, th26e
purpose of which is given in the above mentioned part
"the interferometer test".
Systematic character of experimental investigations
of this work and the works [1-3], [7-9] has shown, that
dependencies measured in one and the same epoch of
tehtheeryedarriftWvehlo(Sci)ty, vhaarviaetitohnewsiitmhiinlaar dchaya.raActtetrheofsatmhee
time dependencies epochs of the year
vdiie werWfrhom(S)ea, cmheoatshuerre,dtihnatdic aenrebnet
noticed, for example, by the experiment published re-
snuolttsb[e7e-n9]d. eT hneedreyaesto.nIstocfasnucbhe sseuasspoencatledva, rtihaatitomnsahganvee-
tosphere, at its considerable sizes and peculiar shape,
ionosphere, the known variations of their state can be
responsible for such dependence variations It can be seen in the Fig. 8, the ether
Wdrhift(Sv)e.loc-
ities, measured in each of the experiments, di er, that
can be stipulated by the arranging height di erences of
measuring systems above the Earth's surface: 1.6 m;
42 m; 1830 m (Fig. 8a, Fig. 8b, Fig. 8c accordingly).
The collection of such data illustrates the height e ect
development. In the work the ether drift velocity mea-
Figure 9: Dependence of the ether drift velocity on the
hi[m1e0ieg]nhtt[a1b-3o]v;e2thies Ethaertehx'psesruimrfaecnet, [7-9i]s; thisiswtohrekeaxnpdereixmpeenrt-
s4du.e7rn5icnegmdhi(aspcvooesviebtrieoye.nnINnpoetr.hfoe1rmtaanebddleaN2tott.hhee2)mhfeeoiargnhhtvesaigl1uh.6etsdmoefpatenhndeether drift maximal velocity are given, which are measured in the work and in the experiments [1-3], [7-8], [10]. In these four experiments the measurements are performed at ve di erent heights: 1.6m and 4.75 m in the work; 42 m in the experiment [1-3]; 265 m and 1830 m in the experiment [7-9] (Clevelend and the observat[1o0ry] tohfeMmoeuansutrWemilesnotns awcecroerdcianrgrileyd).oIunt tahlseoeoxnpetrhime oenbtservatory of Mount Wilson. However, in contrast with twhoeodexepnehriomuesne,t t[7h-e9]e,xwpheriicmh ewnats[1c0a]rriisedpeorufotrimnead liinghat fsuernvdaatmoreyn.taIltbcuainldibnegsoufpapnoosepdt,ictahlawtotrhkesheotpheorf tshtreeoabmbraking by the house walls was the reason of the ether drift velocity smaller value, measured in the experiment [10] in comparison with the experiment result [7-9].
The table 2 gives the imagination about the ether drift velocity variation in height band above the Earth's surface from 1.6 m up to 1830 m. In the gure 9 this deptheendaebnscceisvsaiewanids porredsiennatteeds ianxtehsethloegalorgitahrmithicmscicalvea.luOens owtahfnhedreavr1teai:lomusWeasWcWci/osWrtdhaiennagdenltyZdh. eZr a/drZreifctownveserildoeecpriteeydndaeitqnutgahlaecthcooe1irgdmhint/gsZleyc;,
222
Yu.M. Galaev
Table 2: Dependence of the ether driftTvheeloectithyerondrtihftevheeloigchittya(bmov/esetch)e Earth's surface
theHEe(aimgrhtehtt'easrbsso)uvreface T20hO0i1sp-tw2ic0os0rk2 TRhaede1ixo9p9we8ra-iv1me9se9n9bta[n1d3] The e1x9Op2ep5r-ti1imc9se2n6t [79] The exOp1ep9rti2mi9csent [10]
1830
{
{
10000
6000
24625
{{
14{14
30{00
{{
4.75
435
{
{
{
1.6
205
{
{
{
ibmaneIndttcfrraoensmublet1s.s6eaermne fnurepoamrtotohn1e8e3Fs0itgrma. i9gt,hhttehlaeintthedeiar neddrreinifntt vehexelpiogechrit-tsnayunersdifsna,acctrtehem.aaostTescsphahewneirbtbehoeuinttnhhtdeeeraahrccyeotingiloshaenytq.eugrerTonhhwcaeestsheocfoadnbtahsotievadeeedrttahohbeernleEosttatrhrcetioachnmk's-tvFsreiraseocndmo,icuttsthhtaeehttehtteahirmbelaeaengtd2ihn,eiartFtsiidogsrn.tirfste8oavafmetlaohnnceediatmyrthotiesdheerFlaiEt[g4ha.-er6rt9]hs'amsibtsaoculualrtnfnatecbhaeeer. trveshoedanelursveEieetsaliu3ovrl0cettihnskt"'eymss.sos/fuIswnremafcassawcunoecay,bhsvtehtiexoaaxpuktpeesecrlnyriaminampseoeentxonthprtae.sllaeWtwitnhhoeiterthkrhmesd,terrhtieienefatrseiwoanxnnhgptirocidechfesisp\vtizaiohcetnee-(2am10re)e0t-iih4tno0acd0apsnpmslbie/cnesaesbcictal,eilvtchfeuonelraemstmseedetta,hostouhtdrhaseetmoeafetttnhhttehesr,esdaeersctiohfitnnedrvtehdolirorsidcftcietaryvsaeeillsomsculooictswhyt imne6thoorddse.rs (!) than the sensitiveness of the rst order
The ether kinematic viscosity has been measured in the work. The measurement results are explained above in the part \Result analysis of the interferometer tests," that is stipulated by the peculiarities of the experiment implementation. The measured values of the ether kinematic viscosity are in the limits vevqeaauluael ov(re5da:e5=r:c:6o::i72n:41ci)d1e01s0w5i5tmhm2tsh2esceece1th,1et.rhakTtihnaeecmcmoaretdaicinnvgvisatcloousetihtiyes value calculated above vc  7:06 10 5 m2sec 1 .
Hence, the di erences between the dependencies Wavhai(lSab)leacnadn tbheeexetphlaeirneddribfty vtheleocmiteyasmureeamsuernetdmveatlhuoeds di erences of the work and the experiments [1-3], [7-9], [10] and di erences between arranging heights of measuring systems. The results of four experiments do not contradict each other, that illustrate the reproduced measurement nature of the ether drift e ects in various experiments performed in di erent geographic conditions with di erent measurement methods applying.
Figure 10: The mean daily course of the ether drift velocity
The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band
223
vvaellouAceictwcyoitrhhdoitnrhigzeotnpotetarhiloecdoormpiegprinoonanleenhtystpeWollthahressdhiaso,yut(lhdtehceehtshapenargcedereiitfftsfect). For revealing the ether drift velocity component with such period, the results of systematic measurements were subjected to statistical processing in stellar time scale. The results of such processing are shown in the Fig. 10. On the fragments of the Fig. 10 the stellar time S in hours is suspended on the abscissa asuxseps,entdheedeothnerthderioftrdvinelaotceitayxevsa.lueThWe hveirntickaml /hsaetcchisethseinmdeicaantedatihlye ccoounr sdeenofcethienteetrhvearlsd. riIfnt vtehleocFitiyg.wi1t0hacinalcauslatetelldaracdcaoyrdWinhg(tSo)thise gmiveeansu. reTmheisntdreepseunltdsenocfethies work, which were performed during ve months of the year, since September 2001 till January 2002. During ve months the numerical value of stellar time shifts regarding to the solar time in 10 hours. Since September till November the measurements were performed on the point No2. In December and January | on the point No3. The mean values are calculated with the expression (43). For comparison, in the Fig. 10b the mean result is given, which was obtained in the experiment [1-3] during year's ve months of the same name, since September 1998 till January 1999 (Here, as contrasted to the similar gure, given in the works [1-3], the measured value is expressed in the ether drift velocity values.) In the works [7-9], [10] such data miss, owing to smaller on coverage of year's epochs of the measurement statistics in these experiments.
Both fragments of the Fig. 10 as a whole have sim-
ilar nature of the ether drift velocity variation within
a day. The di erences in the curve shapes can be ex-
ptelrarianiendrbelyiefvieslceomuesnetst,hewrhsicthreainmthinesteerdaci tieornenwt ietxhpetrhie-
ments had the distinguished performances and features
of radio-frequency spectral line arranging on terrain in
the experiment [1-3]. On the fragment of the Fig. 10a
(this work), as contrasted to the result of the exper-
ismmeanllter[1v-3a]lu(eFsi,g.th1a0tbc)a,nthbeeetehxeprladinriefdt vbeylocthiteieshehiagvhet
distinction of measuring points in these experiments.
The dependencies ly changed values
Wwihth(St)hheapveertihoedsfoerqmusaol ftpoeariosdteicllaalr-
day, that can be explained by a space (galactic) origin
of the ether drift. In the work, the observed bands o -
set direction of an interference pattern corresponded to
the ether drift northern direction at measurement im-
plementation. Hence, the results of the work do not
contradict the experiment results [1-3], [7-9], [10] and
imaginations of the works [4-6] about the northern posi-
tion of the ether drift apex, that demonstrate the repro-
duced result nature of the ether drift e ects measure-
ment in di erent experiments, performed with di erent
measuring methods application.
p[1a-r3iI]sn,o[nt7h-9oe]f,wt[o1hr0ek].wwFoeorrskhcaroelnlsdubuletcsctiownngi tonhfedqthuteaoneqtxiuptaaeltriiitvmaeteicnvoetmcdpoaamtra-aatthotpieevsxpe ercascontiofayrtldiymaisnniesatwaietnevarieaslylduntieeectscaeeolrsnmsvatiirehnyweedtcooeiflnestsphttehieaceilefetsyxhppehtrheererdiemre,itwfehtnhetvrice[hd7lor-fc9iofi]rt-, tptsyitroroendpaeommpseeesndtfhdooeirnndmctioehnfegotnhnweetoahtrreekrtshrhae[e1iing-Eh3ra]te,rlattihbeof'osevinlseau btruhfoeaerncaecEt,eeatroottnhhde'tsehctseeaurlemcrtfuhailnceaeerpiatohnrnoedobrsgaepaobhseleeosrneion,tu htthuistaehnteexcisipfntregharimemosfeuentbohtfjeertcehEtseuoalfrwttssohe,rptkmahrpeaargetonexbepiltneeovmrsiepmssh.teiegnDrateut[ie1ao-nnt3dos] atdinio dneT,rthehtnhuetose,uexixgnphpeterhiriteimsmweuenosntretkfs[u,7lit-nsh9e]qesuashriytaeeptgootitvbhheveenisoriewsusseiu.txlhtpoecurotimmapnenyatracisolorvnreeroci--f aaTlgchaamettieieoodsnnitu,iammibnao, tturihetosentphoooepnftesititcbhhaleelerwefeotaxhrvieseertleebcnkaticnrneodemimnhaaangtsaintcbeuetvrieeicns,cwiop.aesev.irtefymos rpavmtareoleurpdie--. hfcmooofaressvtitthihbysoecedmoeenuateshcapteslieruioqrrndfuionriiridgsfmtbhoevaardess.legodbacTesiotehnynsettarphne readormspdtteohsvsoeeeirndledotephatrhmneerdoepkndrtiteiniracreealemcilgztueiamndltagi.ecrtiTshvtyioihessdes-todveabrmiltfuatsei.nroeeTfqduhthiserteeasdtiegitsneht iei creacckaltlsinyn.themmaTsaehatbeisecuedrvneeivmsscehoeloonspwittmynr.eeosnnuTtltthoshefehmtavhvaeeelauseebutehroeeerndrdodEtifeioarrnroethcphctathi'isoscacnansolugiarnewnfscaadiicvdteeies.ndvpcTawrrelohiuapteeshaevwgisetailstwtohiccoiatinatlhcypudhoeleearfpiitgoeoenhpddtdtvpiscgaearlroulonoewwn.ttaehThvesehateerpbalvroldaoevilrpeaoadtctgiaiohtayyne-. The|deotepcttiecdalew eacvtes pcraonpbageaetxiopnlaimneeddibuymthaevafiollalbowleinreg-: giptaoyrs,de|idi.ne.ogopftttsohieceptahalfeerwaaEatteuvaerrpetpahprr'ostripocmpalegeosrav;tetimoonemnmta;etderiuiaml mhaesdituhme vsicscooms-has|Tghoetthaweosmprkaecdreeius(umglatlssatrccetoaimcm)poaorrfiigsoiopnnt.itcoalthweaveexpperroipmaegnattiroens aptuhscalearttitshsei,ooethnneexetrarehecbedsuorurtuileifttndts tneehh aaaeetrvulceeitrexerism,shithnoeeawanosscnurebdrteeeohemrfenoesunrfpetcetpshrhrfeioomnrdhmauvytcaepeerdrodi.iotahuTlnesamhstieesuexdrcpveoieeumrromii--fmwietnhTtshdeip ewerrofeornrktmrmeedseuailsntusrdecima neernbetnemtcgeotenhosogiddreasrpeahdpipcalirsceaeqtxuipoirener.mimeenntstitnarolnmhayatpgunoreet,htieics.eiws.acvmoensa tperrrmoiapalatimgoanetdiaoiubnmo. u,trethspeoentshiberleefxoirsteelnecce-
224
Yu.M. Galaev
References
[1] Yoicnus,.ra2Md0i.0o0Gw,aValavoeelv.p.5r,\oEpNatohg.a1ert,-ipodnpri..f"t1R1e9a {de1cio3tsp2.hiny(sintichsUeakenrxadpineerleei)mc.teronnts-
[2] Yosifaur).a.Mdio. Gwaavlaee.v".Z\hEutkhoevrs-kdyr:iftP.eEtixt,p2e0ri0m0,en4t4 ipnp.th(ienbRaunsd-
[3] YmShtuuitlb.plsi:mt/Ma/enwt.crewicG,wa2.rls0aap0eda1vico,.ewtiVa\mvEoeelt.s.hnea2rpr,aorlodNp.rwaoug.i/na0td50i(o11n0i0n.-)"p,defSpx.zpppia.pecr.ei2et1in1mc{ee225o&,f
[4]
W. Azjukowski. akten Wissens.,
S\tDuyttngaamrtik, 1d9e7s4,ANthue.r2s.,"s.Id4e8e{n58d.es
ex-
[5] Vics.A. M. Aodtseulkimovasgkiyn.a\tTiohnes ionftmroadtuecrtiaiolnanindt oeeldthsetrrduycntuarmesod(inenpt.Rh, ue1s9bs8iaa0s),i.sDoefpg.ains lVikIeNeItThIer1.2".0M6o.8s0koNwo,.M27O6I0P-80phDyEsiPcs.
[6] V.A. Atsukovsky. \General ether-dynamics. Simulation otMhf oetshicdoeewam,s 1aa9tbt9oe0ru, t2s8ttrh0uepctgpua.rs(e-ilsnikaeRnuedstshi eaer).l."dsEonnergtohaetobmaiszisdaot,f
[7]
Dso.lCar. 408.
Mobislleerrv.a\tEortyh.e"rPdhriyfts.eRxpever.,im19e2n2ts,
VatolM. 1o9u,ntppW. i4ls0o7n{
[8] D.C. Miller. \Ether drift experiment at Mount Wils3o1n4.." Proc. Nat. Acad. Amer., 1925, Vol. 11, pp. 306{
[9] Dm68.e,CnN.tsoM.of1il6l1e39r52.,5\paSpti.gM4n3io 3uc{an4nt4c3We. ilosfont.h"eSectihenerc-ed.,ri1ft92e6x,pVeoril-.
[10] A.A. Michelson, F.G. Pease, F. Pearson. \Repetition of the Michelson-Morley experiment." Journal of the
OstprutimcaelnStso.c,i1et9y29o,f VAoml.er1i8c,aNaon.d3R, epvpi.ew18o1f{S18c2ie.nti c In-
[11] E.T. Whittaker. \A History of the Theories of Aether ad\nAydnHaEmislitecocsrt,yri2co0ift0y1t.h,"e5I1Tz2hheepvopsr.kie:(sinRofRICAusesRtihaee)gr.ualEan.rTd a.EnWldechtrirtaitncadiktoyem.r". Thomas Nelson and Sons Ltd, Edinburgh, 1953.
[12] A.A. Michelson. \The relative motion of the Earth and tehneceL.,u1m8i8n1if,eIrIoIusseertiehse,r.V"oTl.h2e2A, Nmoe.ri1c2a8n, Jpopu.1rn20a{l 1o2f9S.ci-
[13] GtT2e0h.r2G.e{".2SIP0no3evtti(hreiaetnsbheR,onuoScsky.sGci\al.oP)Rp.heaydusiitaci,aanlM.en\ocMsykcioclwhope,las1eo9dn6i'c2s,vInoVtcoealrb.fue2rl,aormpyp.e"-.
[14] A.A. Michelson, E.W. Morley. \The relative motion of tJ34h36oe33u{.rE3na4ar5lt;hoPfahnSidlcoisteohnpechelui.cmTalihnjioirfuderrnoSauelsr.i,ea1se8.t,8h7e1,r8.V8"7oT,l.hV2e4oA,l.pm3pe4.r,4i4cpa9pn{.
[15] WNa.uI.kFar,aMnkofsukrotw, A, 1.M97.2F,r2a1n2k.p\pO. p(itnicRs oufssmiao)v.ing media."
[16]
S.I. Vavilov. \New searchs of \the ether c(ienssResusosfiap).hysical sciences, 1926, Vol. 6,
dprpif.t"2.4"2{S2u5c4-
[17] R.J. Kennedy. \A re nement of the Michelson-Morley e1x2p, eprpim. 6e2n1t.{"62P9r.oc. Nat. Acad. Sci. of USA., 1926, Vol.
[18] K.K. Illingworth. \A repetition of the Michelson-
Morley experiment ical Review., 1927,
Vusoiln.g30K,epnpn.ed6y92's{r6e9 6n.ement."
Phys-
[19] EFBr.8e,iSbNtaaulhl.oen1l.0.",\S\D.Da9ise35MN{ai9ct3hu6er.lwsoinss-eEnxspcheraifmteenn,t", Haeufstg4e1fu, r1t92im6,
[20] Joos G. Die Jenaer. \Widerholung des Mihelsonversuchs." Ann. Phys., 1930, B7, S. 385{407.
[21] \Ether-drift," Digest by Dr. in Sc. V.A. Atsukovsky. Energoatomizdat, Moskow, 1993, 289 pp. (in Russia).
[22] D.C. Miller. \The ether-drift experiment and the de-
termination of the absolute motion Modern. Phys., 1933, Vol. 5, No. 3,
opfpt.h2e0E3{a2rt4h2.."
Rev.
[23] L19.5E5,ssVeonl.. 1\7A5,npepw. 7e9t3h{e7r94d.rift experiment." Nature.,
[24] J.P. Cedarholm, G.F. Bland, B.L. Havens, C.H. Townes. \New experimental test of special relativity." Phys. Rev. Letters., 1958, Vol. 1, No. 9. pp. 342{349.
[25] D.C. Cyampney, G.P. Isaac, M. Khan. \An ether drift
experiment ters., 1963,
based on the Mssbauer Vol. 7, pp. 241{243.
e ect."
Phys.,
Let-
[26] T.S. Jaseja, A. Javan, J. Murbeam, C.H. Townes. \Test omfasspeercsi.a"lPrehlyast.ivRiteyv.o,r1s9p6a4c.eViosol.tr1o3p3ya,bpypu.s1e2o2f1{in1f2r2a5re.d
[27] LM.Gos.kLowoy,t1sy9a7n3,sk8y4.8\Mppe.ch(iannRicsusosfia )u.id and gas." Nauka,
[28] Nid..A" .GSolesztekcinh.iz\dDaty,nMamosicksowof, v1i9s5c5o,us52in0cpopm.p(rinessRibulsesi au).-
[29] S.G. Rautian. \Rozhdestvensky's Interferometer." In tvshiiaee)t.beonockyc\loPpheydsiiac,alMeonsckyocwlo,p1a9e6d2ic, Vvoolc.a2b.upla.r2y0.3" (TinheRSuos--
[30] LpRe.uZrsi.msiRae)un.mt srhesisukltys.."\MNaatuhkeam, aMtiocsaklopwr,oc1e9s7s1in,g19o2f tphpe. e(xin-
& Vol. 3 (2002), No. 5 (15), pp. 225{233 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
ON THE BASIS FOR GENERAL RELATIVITY THEORY
S.N. Arteha1
Space Research Institute, Profsoyuznaya 84/32, Moscow 117997, Russia
Received December 23, 2002
The basic concepts of the general relativity theory (GRT), such as space, time, the relativity of simultaneity, are scyosnttermadaitcitcoarlylypaoninatlsyzoefdt.hisTthheeolorgyicaanldinitcsocnosrisotlelanrciieess aorfe bcoansiscidGerRedTinnodteiotnasil.are indicated. Many disputable and
1. Introduction
A series of logical paradoxes has been analyzed in detgta\ahrsgioeeltuohiGnmnedRep[l1tTerr-si3inszc]nca,oietnpasitnlsoeandoio.nf"tfshSeIeRsqfoTucimtoi'vmwseabaplreaslanestditchseeeemwerexexoirppnneerstetrterirsrmauseetseedet,nditntv.hagieaUl iGatndnhleRideakTseil,docSegsoRauiucTcloahdf,l hristetarcviutseicontaneodcttloatinhitmehaecodasnist ease,ttriatecthnuNetsemgowrfaatoavnninht'eaysrtp.liaoownthtoehsfiegsorraaybvoimtuauttsisotonmb.eeScicnoocnre-bliposaugstdiiTacesbamhnlleeooinntbpcisaoootsnirnniascsttissoeptdffuernGrohpcmReyorTseoet.;hf oiestfpTtaitheschxeecitsobpanownlatodoaukristnskiibem[dil4see-i6tnne]hroeraStoireocrecsrntidsitaoiiicsnnnpidsl2Gma.dyRieoAsTd-f sMgtievapecnhbtyporsidtneocpuip.blteTfuhalreectoairmlosloelasdryiisnecscuhfsrrsooemndi,zGaatnRidoTn.thiSseescuatetistoenannt3idocnothniestains the conclusions.
2. Criticism of GRT Fundamentals
MctiiopanlneytooGftcRhoeTrrceiansspceoownnsdiiteshtnoecnuectiigessrvaaivorieltaawtteeidolln-(ktcnhaoenwlninmo:ti1tei)xntighstetrwparintisnhi--otcheuleterciaontntirsooenrdsvuacctoiinnotgnraltadhwiecstasarrttehi eacbeiasxelpneetrx;itm3e)rentnhatelalrcfeoalnacdttisivt(iiortyontsoa)ft;ian2cg)ls4cfiooo)qrinudtsshisiad,devsweisrnuhiengnedgdriuetteaoslras\bsrnupesonaoincinlveu-aertpocrisopotaannliltdscicainehtbgxiaolierosnantisc.nethse(saUri-mv"tsehuibletaaehlgrslepyicn,hasshaeserntaisopyc,aecbtlohuosnetfhsoatGerrlpyluRiecpT)its-; fbaengtLianesttwiucitsphcicotthnuesriedmse,yrstuthhche\oganesntbehlreaaclckocvlhaaoirmlieassn, coBef.i"tghBeTaGhneRg,uTne.tacWm.)e-.
1e-mail: sergey.arteha@mtu-net.ru
bmit higcienauyetodiauo,rsneesxooncfloeutpthttiesoptnihenceoiitf fioaeardlnm,ayntohddfei/ ntohe,rreeibnneotquituahnaledteaigoqreynun,acetaorilaonslndoictibasiyosedns,esp.tteehcrIe--f ccibnhoovauaannrgpdiiahannyrgcyseitcchaeoelintcnhdhoeitarnirosadenconsteseeasr.rneoIoffst,pthhedecoeitw seoeerldvmue,tirint,ohenteh,naecnwayinntithitheiivnaseglun,abonrsertds,i/tuuoaltrttrfesoiepqomruenmcaaiota iinfteoitdntohosnte,srb.waseonFhlisuodifcrtoehinraomtwnnitysiailtelwsisoboelineuno,tibaniiftonvawnyainreicitaaptihnsrseoteppfwioodeirsretslanhyinbtriiylteneistcepteosore,rccrwihetncahvttnieocgnthrsetaowttnmhhisleee-l initial and/or boundary conditions. GHoRwTTe;hveefora,rntahexleoasgmuiebpsslpew,aictahe crsaounlblnesdpoatc beaestcaosrhneesoeidtfteerinseducsoseenpdsaidirnaertteehdlye. fsfrohoremectotnihnveteonsipeanaccceye,liainnsdtaeortwhthheoecleyr.elisneFdaorrriccheaexlracmouospruldaei,lnlyiantterroasylnlsistnfeegmrsa,. H reuoaewlneschveeorar,ttetsahtlilsdtmihsteaatrnheceaeml. tahtriceae-ldmimanenipsuiolnatailosnpdaoceesannodttihne-
The simplicity of postulates and their minimum qstsroiheuocloauntuntsltiudioisntnybaa:medd,eibovoiengncnuuoootltntuhespsetrhislopalobrnlgoludeuotm,iafosr.nouaTf,ntheaceqenieeudnnitu,vthameofloenbcrneocrtorehrobeeftocapftoirnntGeehirnsReesgrqTuoahifssacoitntolhuedres--, imeatmratsiaht itocciuaciaslldlmpcpooerstmoshevopsidlsdiescesaowtifitiossdoneoluowptfoniomsnslaaibwatihnsleid)tm.iceToasmthfiocepraaGlcrphRisroTooonc,sei(andtlghuoenrmegmsa,wathhtitahehs-i Sa nntittnttdriecondeadgruttephocaeesrdunar,beemcjaieenelsctst efaarertsclyo"dt,d(oatfenrnhtoedeemrwammdmiitednhteiarttirtuicoiissconiannaal,glrtetenahnuuesmsnomrkrbenasecoulrolwlmtoanfpmiso\ionnhsuieimGndntdtRpseolT)nyf. really various experimental data.
Whereas in SRT though an attempt was made to
226
S.N. Arteha
con rm the constancy of light speed experimentally and to prove the equality of intervals theoretically, in GRT eGcvaResenT, stsuhicnehcienattiettegmcraaplntRsdabhedaplveenisdnnooottnbmetehenaenupinnadgtehfurtloaifkneitnnht.eeSggrienancteieoriannl, all integral quantities and integral-involving derivations can have no sense. abclliagcsuAosoivcualaosrl,tiaetonqhfcueenaqtuowiefoshnetasiqo,tunwacsothiucoicalndhussbaeierseuitsnhndeotiotslipgmmeeninutsesiaenrba.gllleItyfraactnnhodsveiatugironieannanemttro?-Wewnheharatgtyisisamnthdeaeintsstendinseenthsoiiftsygcriasasvneiotbatytditoeh nenwgerdaoviuenps,GvifReltTohc?eitSnyiomotfiiollaingrlhoytf, (and by the niteness of a signal transmission rate)? on tThheemgeentheroadlitoyf othf eciorndseerrvivaatitoionnla(weisthdeoresbnyomt deaepnesnodf ttadrrniai denessrtofehofnerttmhureseaesttuihooletfnossirniyfntr)eo.tgmhTreahttcheiaoeosnepbhotoavyfiesnmricinoathtglielooanfswuionsrftfoaetrhgcfereraosclumaqrnufsaalycenmeatdim(tfioteeosresvcoixeautnatsioitmoeenxnrpsp)looe.eff,rmiiTemtnaheecsenrsagetnasysb,,adswmneephdnoeicmhcnehadevihnneoatnu\vGwmetRobh,Treeakenenoodgrfu"cdotlefahnrore rormcflmaeolnweimmtdsueirbotniyifetnsuncg,mouctnmarasuaeennsrrde--stGeinRriuToiut,yshadonowduebvetelsrig,iinbhiaGlsitRynTootf(fytohellteowbpurinoilggtrteuhspse opafrirsnecpciieupntlcaeet)oio.fncTofhnoeritoaethvfsseeetcnhlapfemrricinUneoncraeeiinpvxdyaepotrlehlusryeibinmtaugnniendtnvietGlsalroiRln mTboaewab:slfr,eeoa.,ertxhbtTcheyerhepeedstxaofpgmuolelboreltobismfwauylielsintns egtttimsctf,ianc(eclagvtansoicdmluaunoustdnisooeelnnysr oevinrfegct\ythionicrssa.ucnHlaassoreow",mebtveyuetptirme,n)oeonsstolbypmeoleilnianseritamroronicdleoausor,ciretfdydoirnoweafixttteahhsmesuphsnloioenu.tglidToKnhbieelolfiuanusegenx'd--s ittislthhcisaaeelrseeypnssoosm(enntnat-hlactoiehnsceeaoimoslfuizatasahtbinebcioaalsinrlate-mymfcaoeeocnafepsndehesrny\vcespaaricntegairyonplnoeqattuneuvadiunenm nttihutieeymnn.poctAehbo,nseilsodeiUf"b, )cni loiincvtuaayerulrslssoeyee,f, utvhesleotopcoirnnegcfueapspetpiofrrnooam\cfhrGeosmR. TNzecorowom,"wpleoertsehtlyoalalunspedassesoitmfhreeormottohgeernrevedrisaee-l comments to more speci c issues. GRTThies qfuulelsytiaobnerornantth.e Tchhaeng eniotfensepsasceofgtehoemeratrtye ionf tbtdrhuraaatnwtsnimtnohtgiesismnsitotarontahiiongef mhntinailtttiyeinc,reaaelcvdtleoainowensasst.nlcoiWagtnhhetxceshtipshateen,ergdoe,snhwloaynilllllbyrweecpeqahuuayissrseseiecirainttls-,, Tasnhiweteemltl.iamtOhene?em(oaTfthGiceaRslTasmedneesmeisootnfrsudterearftoiviroantthsive\eopsnlactanhneeaninnodetvscipthaaabcniegl)ie.-
ticsyonaotsfrtafhocletliocowhna:onifgnleetnohfgetgheroso,tmathteitenrygraictniooothrodefitnnhoaente-leinsnyegrsttthieamolfs,yadscutieermctl"oe tnootitosndlyiamtheetetrruwe,illbbute elovwenert,htehaonbser.veInd fgaecotm, heotrwyevweirl,l norotchcahnagnegea:s wwheemthoevre?thSeumppaotsheemata tircsatl, ltihnaetwthilel cmirocvlee will move radially. Let we have three concentric circles of almost the same radius. We place the observers on these circles and number them in the order from the center: 1, 2, 3. Let the second observer be motionless, wOlahrecvrloeelacokscw itiryss.et aaTnnhddentc,hoiuornwdtieonrng-ecsltooacrktehweriosdetai atietnrgtehnaecreosauinmnderecaleanntgtivueervelocities and contraction of lengths, the observers will interchange their places. However, when they happen tpoicbtueraest.thInedseaemd,e tphoein1t-sotf ospbasecrev,etrhewyilwl islelesetehedif oellroewnting position from the center: 3, 2, 1, whereas the 2-nd observer will see the di erent order: 1, 3, 2, and only the 3-rd observer will see the original picture: 1, 2, 3. So, we have a contradiction. Suppose now, that the geometry of a rotating plane has changed. However, what will be more preferable in such a case: the top or the bottom? The problem is symmetric, in fact; to wmhaakte stihdee ltahset spulapnpeoshitaisonc,urtvheadt itnhesurcahdiuaschasaes?cuIrfvwede (taems t)h,ethaepnpathreenstecmoontdioonbcsehravnegrews iilnl steheeintoans-ninoenr-tciuarlvseyds-, whereas the rst and third observers will consider it as \curved" to di erent sides. Thus, three observers will see di erent pictures at the same point for the same sopbajeccet;ivtheefraecfto.re, the curvature of the radius is not an
The rotating circle proves the contradictive nature of SRT and GRT ideas. Really, according to the textbooks, the radius, which is perpendicular to the motion, dthoeeisr npolatccehsainrrgees.peTcthievreefoofret,hethme octiirocnle.sLweitllursemseaatinthaet oeabcsherovtehrseronanadmprootidouncleesas cpiorcinlet-alitkeeq uaaslhdfirsotamnctehsefcroenmtoleenmr mo,ftohavecinisrgtcrloceik,recisnlewos.rildlOearwlstiohnegboetboesqeturhviedeirsssytatmonmtd.reAatrwtystuohfbesasetqpruoreoknbetspmearriokdpica ssaesshebsyeahcimh oabtsetrhveer waislhl cionns tarmnt,,tthhaattaisst,rothkee lengths of segments of motionless and rotating circles are equal. When the circles stop, the marks will remain at their places. The number of equidistant marks will not change. Therefore, the lengths of segments will be etiqounaloifnletnhgetmhsoatinodnlechssacnagseeoafsgweeolml.eTtrhyust,oonko cpolancteraactall.
Now we consider again the space geometry problem. This problem is entirely confused still since the times of Gauss, who wanted to determine the geometry with the help of light beams. The limited nature of any experi-
On the Basis for General Relativity Theory
227
A
L
B
g
C
Figure 1: \Geometry of a triangle"
ment can not in uence the ideal mathematical notions, does it? Note, that in GRT the light even moves not awlilgRhohendtrgleint=gh seu0 cs,hhiswoamretceehastastrevic?peatiTetnhnh:sGeoirnRn.eTscWtee[sah4sd]ia:ttyodfooRFfee(csr1hmd=apinasttggi'i0nsn0gg)pudrtilishnh=ecitpgh0elee-, ometry is often \substantiated" in textbooks as follows: in order the light to \draw" a closed triangle in the gravitational eld, the mirrors should be turned around at some angle; as a result, the sum of angles of a triangle wanildl tdhi reeer rfer omector.s iHnotwheev ere,ldfoorf agnrayvpitoyin(ts-eleikFeigb.od2y) the sum of \angles" can be written as:
!
!
X i =  + 4 arctan
gL
2v02
2 arctan
gL v02
:
Idvcctlsithiha0egtneap.oyhnectsaSoncgaalufiidmsnnsrosccgsehw,eobatvnetethnahlhltergca.heihitagneaIabetgncnnholoegmgetsnehlupgeddeecaeti,hrtro gaiywmoe\meonbwpemesetlhitarttoaeewyuhftvrsiersotenieyhbfn aelwosenoetp"iadhxmeonepepsadesrenlmioriibLdmiommiifrltisiprrtehtoesonyoemr.rtfstos:NaaatfAoihnmonanettreefatLpon,nisroe pdtcaichatnenihacBastdeet-sl are not emphasized. First, both in the experiment with material points, and in the experiment with the light the geometry is \drawn" sequentially during some time, rather than instantaneously. Second, for accelerated systems the particles (and the light) move in vacuum rectilinearly, according to the law of inertia, and, actually, the motion of the boundaries of this accelerated system is imposed on this motion additively. All angtolescoorfreisnpcoidnedninceg (ainngtlehseolfabreo reacttoiroyn,syasntdemth)ear\egeeoqmuae-l try of angles" does not change at all. Simply, the gure is obtained unclosed because of motion of the boundaries. Third, the role of the boundaries is not uncovered at all in determining the relations between the lengths
oathfreernesautlbhbjeeocdmtieutsot.utFahloerreee lxaeatcimtonpolfeb,ieditefwnaetleilcnpaloleiannctgcstehloesfraaatnrinedaglafbnogorcldeeys, (lrty\eioattnhlhecewhgiabetnohogumetnhesdteaoryrfbi"ebo)suorndaedirmeeasar'siiuesnisbsz.jeuecInttnachktaeaonnpyaglceaccdcae.elseeIorfan,ttlhhyieoonawE,teutvicnhelteried,nreoaaancln--l shtinwtorsoratiaizsgloilhmntatiallpailnrosetilsnroatnc-iagglinhkrtoebdlesisnu.depArpiantowrttnthh..ee FAgmrosairdvaeditxlraeaetsmoiuofplnttlaheol,ef t eobrledsdntrwdarieowndtgatwhkoeeef ailbneevsrnteodaldlio,lnftgtwthwooefoptulhopoeiwwnsaete-rrclediodk-nceedosnnurdvopsedpxo,oftrlihttnsheeefdoi orsrwtsghnteewnroesaerdracd.ot-eAncdods.narvoTerdxehsaeluintnlttewhoieesf groednseNrdoawetteedwr.meTisnhheaesllmthtiuedrdsnltertaoliignthehteblenintewex.eteinmtphoersteantwt oGbRoTndneodtsspiyyrossonttpee-emmrtt,hyne:tohenaeq-lliungmirevaraotvlvieiaitnnlaicgtteiyoo.onbfIajntelhc tcesoegnlddrtear vapeisotctsatstteiiosonsnaeianstlyts oonewmlodaner-tdiounanesriosqtmiiunaee-l gimmdleeioravcrleoepnrpstaa,errrata.hlllleIeefnllwmtieonirgreteoahnrcesehraianonttedehrtetdirwairlofeocslrytigsithnthet emnbmiettaephmleyersspleobennebtgdewaitcemiuemnlsaerwt.wtiAlool sndciooimcnnuti-llriaaanrrreyrst,tioitiauntlahtstheyioesdntgeirmrweaci,vltliiitfotatnathkioeoenfmpaalliacr crceoeellrdesartwaartaieitcohconers.liieemrnAaitltneaiddor,noporeiinrnepnttethhnaee-tesvtiuaaaotrclnuiehodeonoofatdfhlmuel ririiger.nlrhdgoAtr(nstsrphdatee,htehiedofe,blrsisotgtehmhhretvaeanebetxei tioahsenmtcee,tnsntwcowhenieiln-lollif,nhbneaoerpawgtmpiiianenelngilttyoyttot)oahcbpeaapengrgmroraaaeelvcasaihot-bnictaoeanttfiobroeuentnaatdlain.kfoetrOnhcebeinsmvtitoouhutceusorlaenyl,secitxdohineser tagctauuilorsrnaovt,atitsohuinnerceooeft,ohmfaelimrorrnfioorgrrrsowc.erissTt,hshwhegohrduaiicvlsdh-tbctoiiobenonsncfecotarliuulvonasn idtoeiolonfdfonroaftnwoismreptahshekoeeimrsgpircewoaasvrilsnoiitsnebayrgittmliiiiotanmynl atesohtlyfre syetegexlfdemcrnsoluemaddrsauinplwrgilcenaalngtls.haete.rThhgoerneaweGvhciRotaalTne-
The equivalence principle of the gravitational eld albplyynle,eadfiom.oearf.mctdcihuteeel liaeseirtncuaeetdtniriortoaeninala,sllocfa(aofinnrotdrelbexgaeaardsarmeeevpdlpiaatlttaeroeat)di.taneTtgfobahmlooesdeaneyserqseousscpniuavallnayttlibfe(aoineltrcpriteisohgipueonrrntlioirngouechnasit---l fsnaoplolrat(cGpbeh-uRtytiTmsfi,ocerasmlialnnyacdleplyraGolmlcRebaTeotdhdieitnemovs)oaa.ltnviyBceasenlcloiaynnut-oserneredllyoae)ftp.itevhAnisidlstle,icnrGectleRhaetTooivfrdiystothaeiecst lotionnlenya,ornsitlnirnaceenasrrfeoparrmlobapoteidrotinieesss c(oaefvnetnhbeeassrperaleacfteee.rdeTntchoeeenpm,oppinhttyesn)soplmeaacede-
228
S.N. Arteha
nstauddiie derfeonrctehsewsiatmh echpaoningtin(ginretfheeresnpcaecesyasntdemtismme)u.stBbuet
how can two di erent observers be placed at one point?
Therefore, the relativistic approach can possess the ap-
proximate model character only (without globality).
It is not any surprising thing, that the same physical
value - a mass - can participate in di erent phenomena:
as a measure of inertia (for any acting forces, includ-
ing the gravitational one) and as a graviting mass (for
emxaagmnpetleic, aemldso)v.inTghcehqaurgesetipornodounctehsebroigthoroeulescterqicuaalintdy
of inertial and gravitating massess is entirely arti cial,
since this equality depends on the choice of a numeri-
cal value of expressions
the gravitational (laws) retain the
csoanmsteanfotrm .
For example, in the case of
psttoraosnpetoarwrtciihollnabanelyitdyme mynsgteid=csa asmn di0nt=,obc ur2te att.heeIptgirciastvunirtoeatstinoofencaceulsrscvaoernyd-
space. The substitution of the same value (for the in-
ertial and gravitating mass) is made not only for GRT,
but for the Newton's theory of gravitation as well. It is
nothing more than an experimental fact.
When one comes to the dependence of a form of
equations on space-time properties [7], there exists
stohmatewspeeccuanlatcihonanfgoer tthhiiss isdpeaac.eT-thime eimtporecshseiockn itshgeivdeen-
pendence claimed. In fact, the Universe is only one
(unique). GRT tries to add a complexity of the Uni-
verse to any local phenomena, which is not positive
for science. The choice of local coordinates is a di er-
ent matter (a phenomenon symmetry can simplify the
description) and globality is not the case again.
The use of non-inertial systems in GRT is contra-
dictory intrinsically. Really, in a rotating system rather
distant objects will move at velocity greater than light
speed; but SRT and GTR assert, that the apparent
velocities should be lower, than c. However, the ex-
perimental fact is as follows: the photograph of the
sky, taken from the rotating Earth, indicates, that the
visible solid-state rotation is observed. The use of a ro-
tating system does not contradict the classical physics
at any distance from the center, whereas in GRT the
vinaaludemoisfsigb0l0e
component in GRT).
becomes
negative
(but
this
is
The notion of time in GRT is confused beyond the
limit as well. What does it mean by the clock syn-
chronization, if it is possible only along the unclosed
lines? The change of time reference point in moving
around a closed path is an obvious contradiction of
GRT, since at a great synchronization rate many simi-
lar passes-around can be made, and arbitrary aging or
rejuvenation can be obtained. For example, considering
the vacuum (emptiness) to be rotating (if we ourselves
shall move around a circle), we can get various results
depending on a mental idea.
Using the modi ed paradox of twins [1], the inde-
pendence of time on acceleration can easily be proven.
Lfreotmtweaocahstortohnear.utOsn- tahseigtnwailnsof-tahreebaetaacognr,easittudaistteadncaet the middle, these astronauts begin to y toward a beacon at the same acceleration. Since in GRT the time depends on the acceleration and the acceleration has relative character, each of the astronauts will believe, that his twin brother is younger than he is. At meeting near the beacon they can exchange photos. However, owing to the problem symmetry, the result is obvious: the time in an accelerated system ows at the same rate, as in non-accelerated one. If we suppose the gravitatiniogntaol GeRldTt)o, tbheeneqwueivoabletnatint,otthhaet athcceetleimraetiionnte(ravcaclosrddonot depend on the gravitational eld presence.
Now we make some remarks concerning the method of synchronization of times by means of a remote periodic source disposed perpendicular to the motion of a body [1]. We begin with inertial systems. The possibility of time synchronization on restricted segments makes it possible to synchronize the time throughout the line of motion. Indeed, if for each segment there exists an arbitrarily remote periodic source sending the foofllpoawsisnegd isnefcoornmdasti(otnh:eittsimneumrebfeerrenNcje, pthoeinqtuiasnntiotty cnojordinated with other sources), then the observers at junctions of segments can compare the time reference point for a source on the left and for a source on the right. Transmitting this information sequentially from the rst observer to the last one, it is possible to establish a single time reference point (the time itself, as it was shown in [1], has absolute sense).
Apparently, the observed rate of transmission of synchronization signals has no e ect on the determination of duration of times: the pulses (for example, light sspechoenredss,owr ipllaretqiucliedsi)s,tawnhtilcyh mllatrhke twhheonluemspbaecreo, fapnadsstehde number of spheres emitted by a source will be equal to the number of spheres, which intersect the receiving observer. (We are not the gods, you see, to be able to introduce the \beginning of times": the time takes aiflrweaedcyonitssidneorrmthael acopuprasreenatndsigenlaaplspesroupnaigfoartmiolny.r)aEtevetno be c = c(r), then, irrespective of the path of light, the number of spheres reached the receiving observer (having a zero velocity component in the source direction) wsoiullrcbee (tshiemspalmy,etahse tshpehneruems bcearnobfespshpearteisalelmy itthtiecdkebnyeda or rare ed somewhere). Thus, the full synchronization is possible in the presence of spatial inhomogeneities (of the gravitational eld) as well.
In physics it is not accepted to take into account the same e ect twice. It is clear, that the acceleration and gravitation express some force, that in uences various processes. But this will be the general result of the e ect of namely the forces. For example, not any load can be withstood by a man, the pendulum clock will not operate under zero gravity, but this does
On the Basis for General Relativity Theory
229
not mean, that the time stopped. Therefore, the rough
Hafele-Keating's experiment states the trivial fact, that
the gravitation and acceleration somehow in uence the
processes in a cesium atomic watch, and the high rela-
tive accuracy of this watch is fully groundless for a xed
sdiitcet.s Btheseid\eesx,pilnatnearptiroenta"tioofntohfetPhiosuenxdp-Rereimbkean'ts ceoxnpterrai--
ment with supposition about independence of frequen-
cy of emission in \the units of intrinsic atom time" [5]
on gravitational eld. Besides, a further uncertainty in
GRT must be taken into consideration: there can ex-
ist immeasurable rapid eld uctuations (with a rate
greater than inertness of measuring instruments) even
itnwpnyooiltstelshxdibeibeselatpesbentnsfoooednnrizncaoevennreoyongftve,t-avhdtlehueinroeemucwotgefiiahtognhnt:h, <seetiohlndregcenetg>itca.h=anSellueyt0c ,i.hmeacetpWthirivenehecueGitspnhRecoeeTwtrreatndiattsociinehaist-l, which can be worn by anybody? Probably, a rotating ywheel with a mark (in the absence of friction - on a superconducting suspension), whose axis is directed along the gravitational eld gradient (or along the resultant force) could read out the correct time. At least, no obvious reasons and mechanisms of changing the ro-
tation rate are seen in this case. Certainly, for weak
gravitation elds such a watch will be less accurate at
the modern stage, than cesium one. We hypothesize,
that atom decay is anisotropic, and this anisotropy can
be interrelated with a direction of the atomic magnetic
moment. In this case we can regulate atomic moments
and freeze the system. Then, the \frozen clock" will
register di erent time depending on its orientation in
the gravitational eld.
Now we return to synchronizing signals (for simul-
taneous measurement of lengths, for example). For a
rectilinearly moving, accelerated system it is possible
to use the signals from a remote source being perpen-
dicular to the line of motion, and for the segment of
a circle the source can be at its center. These cases
actually cover all non-inertial motions without gravi-
tation. (Besides, for the arbitrary planar motion it is
possible to make use of a remote periodic source being
orenalagpraevrpiteantdioicnualla retldo othfespphlearniceaolfbmodoiteisonin.)arFboirtrathrye
motion along the equipotential surfaces it is possible to
use periodic signals issuing from the gravitational eld
center.
Note, that to prove the inconsistency of SRT and
GRT conclusions on the change of lengths and time
intervals it is sucient, that the accuracy of ideal mea-
surement of these values could principally exceed the
vaamlupeleo, ffotrheaes oeucrtceprbeediincgtedatbtyheSRmTidadnled pGeRrpTe.nFdoicruelaxr-
to the irsa,diuts
line of can be
motion we have: decreased not only
byt
c=hool2s=in(8gRtch)e;gtrheaatt
of a light sphere, but also by choosing a small
section of motion l. From the SRT formulas on time
c thonenittiernaeRcqtuioaannlidtwysepheacvi ee:d
stpe=edl(1v
wpe c1hoovs2e=scu2)c=hv
.
l
,Ifthfoart
l=(8Rc) < (1 p1 v2=c2)=v;
(1)
be met, then the conclusions of relativistic theories occur to be invalid.
For the system arbitrarily moving along the radius (drawn from the gravitational eld center) it is possible toonuthsee fpoerrpsyenncdhicrounlaizrattoiotnhealfirneeeoffalmlinotgiopne.riIonditchissoucarcsee Ractsuhaolulyldchbaencgheos(ednueoftosuecqhuvipaoluteen, ttihaaltstphheer eelrdoucnandinnogt) apthtoeitnhGti,sRtdToiscwtoahnniccclheu,staihonendspcceoarprnreebnsedpiorcenufdluaitnregdislindfrrtaohwmisnc.(1aT)sehneaersaerwfoterhlele,. For the most important special cases the \universal" SRT and GRT conclusions on the contraction of distances as a property of the space itself are invalid. In the most general case it seems intuitively quite obvious, tthhaatt stuhcehsaignpaolsittoioncoomf ea ppeerrpioednidcicsuoluarrcetocatnhebemfootuinodn,, afuntde tthheatGsRuTchreRsulatns.dTlhefrroemis (n1o) nteoceesxsiistty, awthailclhinrea\apstlapinirngeeacddl"obcyfkrr:aemaalnefyoofrcchreeasfn;ergiteeniscoefalarwenaadlysilnepnoagsntshiabsrlbeshittorouairlndiltyrbooedpueecxre-a system of mutually motionless bodies and the universal time. Thus, the space and time must be Newtonian and independent on the motion of a system.
Now we pass to mathematical methods of GRT and ttoimceorporlolapreiretsieosfrtehsiusltthineotrhye. fTachte, tghaamteins wGiRthTtthheesappapclei-cthaetioqnuaonftvitaireisataioren nmoetthaodddsitoivcec,urtshetoLboereqnutzesttiroannasbfolre-: mdeapteinodnsoanrethneopna-tchomofminutteagtrivaet,iotnh.eEivnetnegirtailsqnuoatnctlietaiers, how the terminal points can be considered as xed, if tehneced. istances are di erent in di erent frames of refer-
Because of nonlocalizableness (non-shieldness) of gravitation eld, conditions on in nity (because of the mass absence on in nity, it is euclideanness) are principally important for the existence of the conservation laws [7] (for systems of the insular type only). The classical approach is more successive and useful (theorberecetttwliyceaetnlloytawanocdotnrpastrnaasncitttii,ocansilnlpyco)e:inttehsneehrlaogsycaalispehdnyeetrsegicryamldimni eeedarencnioncreg(therefore, conditions on in nity is groundless).
Highly doubtful is the procedure of linearization in tthenedginengertaol sfiomrmpl,icsiitnyceisitdeccalnarbede,obnulyt ienvdeinvidtwuaol.tiTmhees are introduced - coordinate and intrinsic ones. The tting to the well-known or intuitive (classically) result is often made. So, for motion of Mercury's perihelion [5] the du=d' derivative can have two signs. Which
230
S.N. Arteha
otthhf eitshfaqecmuta,nstthhiotayutldtchabenedbicevhiodzseinernog.?byCTaodlucs=uadyla'tailnirsgepatdehryefonrpometrheidhin,eglbiouontf displacement in GRT (from the rigorous solution for a single attractive point), the impression is given that we know astronomical masses exactly. If we use GRT as a correction to Newton's theory, the situation is in fact opposite: there exists a problem knowing visible planet motions to reestablish the exact planet masses (to substitute the latters and to check GRT thereafter). Imagine the circular planet orbit. It is obvious in this cbaeseta, ktehnatwtithhe rNegeawrtdontoiaannriontvaitsiiobnlepperreicoedsswioinll, ai.ler.eatdhye period will be renormalized. Therefore, renormalized masses are already included in Newton's gravitation theory. Since the GRT-corrections are much less than the perturbation planet actions and the in uence of a non-sphericity, the reestablishment of exact masses can essentially change the description of a picture of the motion for this complex many-body problem (see other objections [2]). No such detailed analysis was carried out. The complexity of spatial-temporal links is stated, but eventually one passes for a very long time to customary mathematical coordinates; otherwise there is nothing to compare the results with. For what was there a scrambling?
The prototype of the \black hole" in Laplac's solution, where the light, moving parallel to the surface, begins to move over a circle like the arti cial satellite of the Earth, di ers from the GRT ideas. Nothing prohibits the light with a rather high energy to escape the body in the direction perpendicular to its surface. There is no doubt, that such beams will exist (both by internal and external reasons): for example, the beams falling from outside will be able to accumulate energy, in accordance with the energy conservation l\aTwh,eabnldactko hleoalvese"suinchGaRT\bilsacak rheoalle"mayfstteicrisrme .ecItfinwge. take a long rod, then at motion its mass will increase and the size will decrease (according to SRT). What will happen? Is \the black hole" generated? All the sky will become lled with \black holes," if we shall mbeovirerervaeprisdilbylee.nough. And, you see, this process would
The presence of singularities or multiple connection of the solution implies, that, as a minimum, the solution is inapplicable in these regions. Such a situation takes place with the change of the space - time signature for the \black hole" in the Schwarzschild solution, and it is not necessary to search any arti cial philosophical sense in this situation. The singuliarity in the Schwarzschild smoalutthieomnaftoircarl m=anrigpuclaantinoonts:betheeliamdidniatitoend obfy tphuereinly nity with the other sign at this point is the arti cial game with the in nities, but such a procedure requires the physical basis. (You see, the singularity at zero is not eliminated by arti cial addition of exp ( r)=r,
where  is a large quantity). Even from GRT follows the impossibility of observa-
tmioantioofn\wbillalcbkehionl ens"it:etfhoer tuismaesorfem\tohteebolbascekrvheorlse."Afonrdsince the collapse cannot be completed, the solutions, which consider all things as though they have already hbnyaoptipn\e annneidtee,xtthrieammveeefneoxoraismnetnpeslreen.aolf Tathnhede reseexlpateatrirvnaiattilyoonobfsotefhrveeevtreisnmtises course," but the elementary manifestation of the inconsistency of Schwarzschild's solution. The same fact follows from \the incompleteness" of systems of solutions. It is not clear, what will happen with the charge conservation law, if a greater quantity of charges of the same sign will enter \the black hole"? The mystical d\tehsceribpltaicokn hoof l\em" eitsriicnavlatliidd,alsifnocrceesit" w[6o]ualtdampperaona,chthinagt tohfeagbraovdiyt,atbiount faolrlcGe RgrTadiideenatsisargerebaatswedithoinntthhee olipmpiot-s site assumptions. The Kerr metric in the presence of rGoRtaTti:oint gailvsoescilneaarlystdriecmt omnastthraetmesattihcealinmcaonnnsiesrtesnecvyeroafl physically unreal solutions (the same operations, as for Schwarzschild's metric, do not save the situation).
GRT contains a lot of doubtful prerequisites and results. List some of them. For example, the requirement of gravitational eld weakness for low velocities is doubtful: if the spacecraft is landed on a massive planet, whether it can not stand or slowly move? Whether some molecules with low velocities cannot be found in sopf iateceonfttreamllypesryamtumreet riucc tueladtiionnsG?RTThheasconnostidpehryastiicoanl sneontseonalsywreoltl:atsiionncse,tbhuetveelvoecnityrecaalntebme poenrlaytruardeiaclh,atrhaecntaerciasvtiictsy cisannontootbetaxiinsted(i.ien. a Tsin=gle0mKa)n.neTr,hebu te,ldsiminply, two various constants are postulated in order to avoid singularities. The emission of gravitation waves finortahepainra bnoitliec lmosostioofne(nweirtghyeaccnedntarnicgiutylare m=o1m) ernestuulmts, which obviously contradicts the experimental data. In fraoctta,tiGonRsT, ci.aen. bienatphpeliseadmoenlryefgoiornw,eaaks theledsNaenwdtowneiaank ttwheeoernymoofvgirnagvicthaatriognes. dRi eecrasllfrtohmat tthhee sitnatteircacCtoiounlobmeblaanw.lawThoefregfroarve,itaptriioonr,toit amppulsytinbge tvheeri steadticforNemwotvoinnigbodies, but this is a prerogative of the experiment.
The theories of evolution of the Universe will remain the hypotheses for ever, because none of assumptions (even on the isotropy and homogeneity) can be veri beedc:at\cahemd ouvpinognltyraaitn,thwehoitchherdepplaacrteeadndlonagt tahgeoo, tchaenr time." GRT assigns to itself the resolution of a series of paradoxes (gravitational, photometric, etc.). However, the classical physics has also described the possibilities of resolution of similar paradoxes (for example, by
On the Basis for General Relativity Theory
231
means of Charlier's structures, etc.). Apparently, the direction, points of application etc.). \The reference
Universe is not a spread medium, and we do not know points" are actually speci ed, with respect to which
at all its structure as a whole to assert the possibility the subsequent changes of quantities (position, veloc-
of realization of conditions for similar paradoxes (more ity, acceleration etc.) are investigated. The principal
probably, the opposite situation is true). For example, relativity of all quantities in GRT contradicts the ex-
the Olbers paradox can easily be understood on the ba- periments. The subsequent arti cial attempt to derive
sis of the analogy with the ocean: the light is absorbed, accelerations (or rotations) with respect to the local
scattered and re ected by portions, and the light sim- geodesic inertial Lorentzian system - this is simply the
ply ceases to penetrate to a particular depth. Certainly, tting to only workable and experimentally veri ed co-
such \a depth" is huge for the rare ed Universe. How- ordinates of the absolute space (GRT does not contain
ever, the ashing stars represent rather compact objects any similar things organically [7]).
sopnalycead antigterenautmdibsetranocfesstfarrosmmeaakcehaotchoenrt.riAbustaiornesiunltto, andTahbesoMluatcehnaptruinreciopflethoef ascticpeulelraattioionnodfuaentointehret imn auss-
the light intensity of the night sky. The expanding of the Universe gives a red shift ac-
etrnicnesiocfpfarorpsetartrisesisoaflosonedobuobdtyfuvli,astinhceepirtoepxeprtlaieisnsofthoethiner-
cording to the Doppler e ect irrespective of GRT. Be- bodies. Of course, the idea is elegant in itself. If ev-
sides, it should be taken into consideration, that even erything in the world is supposed to be interdependent
the elementary scattering will make contribution in- and some ideal complete equation of state is believed to
to the red shift and lling of the so-called relic radi- exist, then any property of bodies should be determined
abt0eie>onn:w0re.elclTaplhlreetdhshiacittfettdhofeelvCineonemsbipnytotmnheeec ghreaacnvtiisgttaiivtceiosmnwaoladv eelessldfwrhoitamhs betovyebtrh,eeiinninds iuvuciehdnucaaelco.afsTtehhaeisnwywhapoyaleritsriecfmlaeualsitnhyionufgoldrUsbncieiveencrocsene,s.iwdHehoriwecdh-
the general energy considerations.
progresses from smaller knowledge to greater, since \it
Now we pass to the following principal issue. Whether is impossible to grasp the immense." Actually, if we
pofostihtievemisattthere fcaacntn,otthabtethspeecdii sterdibaurtbioitnraarnildy?moAtinodn t(ainkecoinmtopaacctcooubnjetctths)e annodn-duin ieforermnt dviaslturiebsuotfioanttorfacmtiaosns
whether is it correct? Generally, this implies the incon- forces from close and far objects, then the complete
sistency of the theory, because there exist other forces, \tugging" would be obtained instead of uniform rota-
except gravitational ones, which are also capable to tion or uniform inertial motion of an object.
ttrhaisnsmpoesaenst,hethmatatwteer.shForuoldm stpheecipfyraactllicadlistvriiebwuptiooinnts bothThreemMovaaclhopf railnlcbipoldeiecsafnrnoomt tbhee vUenrii veerdseinanedssteenncde-:
in \the correct-for-GRT" manner even at the initial ing of the gravitation constant to zero are the abstrac-
ttiom\etihnesttainmt.e Ionf scurcehataiocna,"se dwide swheo?uldArnefderwth0aitnsptrainnt-
tions having nothing in common with the reality. However, it is possible to estimate the in uence of \far
ciples should be unambiguously determinate for such stars" experimentally by considering the mass of the
aexpcheocticeed? froTmhisGrReTqu.irOespemn otroe qkuneoswtiloendgoe,cctuhrasntoitbies UThneiveforsreceaosf matatirnalcyticoonnocefnatrsattaerdhianvicnogmapamcatsosbojfectthse.
the possibility of point-like description and the theory of disturbances, because the resulting values cannot
odrisdtearnocfetohfe1Sluignh'stmyeaasrs ((M91201150m30),kgis),ebqueiinvgalaenttthtoe
bkopfneoosmaswirabnbciilrteiortq-yauraaoyntfidaoasnrmbwoiitecfrlrslao.tr-aylTteev hetielmtsijnpbogilyniseilsn(infgaokrraotigfe exacaiaamcnlodpmcloerpme,l etpethlecielctysatteutimohnne-- ttothhifmeetheadecifstodtiraoonnuthcboeetffoaUuflnl1oBiavmidegrehsBteeaarvtn.iongWgbteheaesmeohqraauylslasalmnotfadokosenhluaysl2lem,co01fon0r1s0iad2we5yrehgatirhlaeset.,
perature dependence is rejected). The possibility of Even if the stars y away with light speed, we would
adding the cosmological constant into Einstein's equa- have the size of the Universe equal to  2 1010 light
teiqounastiiosnasnaninddiorfecptosrseicbolgenoituiotrnagoef. amIfbeivgeuriytythoinfgGcRaTn bspeescpifeycii neadrbtoitrsaurcyhmaannancecrutrhaecyi,nitthiaenl dwishtryibcuatninonotawnde
years. We have deliberately increased all quantities; for example, the mass of the Universe and its density   1033=1054  10 21 g=cm3. We take into account now, that, as the bodies move away from each other
the motion of a matter?
at the two-fold distance, the force decreases four-fold,
Let us discuss one more principal point concerning etc. Even if we suppose the mean distance between
the relativity of all quantities in GRT. The laws, written the stars to be 1 light year, then at the distance of 1
ssiemlvpesly. aTshtehseoeluqtuiaotnioonfs,andyetperrmobilneemnsottihllinrgeqbuyiretshetmheknowledge of speci c things, such as the characteristics
meter it is necessary to place the mass 2251021=06)<of5M0 g0.In25fa(1ct+, c1o=e4+ci1e=n9t+2=6)
=e(wx2pe5rsePussme1s=usnpo2mtoe
of a body (mass, shape etc.), the initial and/or bound- e ective increase of the density at the observation line.
ary conditions, the characteristics of forces (magnitude, To simulate the action of \the whole Universe" we can
232
S.N. Arteha
1 r
R2
R2
1
R3
R3
2
Figure 2: The Mach principle and in uence of the Universe
take a thick metal sphere with outer radius of 1 meter and make its thickness varying in the direction to the center. ffruormtLheettrh,etuhcpeentwotiedr1thumpoetfteoar,0s-:o4tlihdme esmptehertesarelt.hbeTrehee0in:s6aamcnyeicltihenreds,,raiicn.aed.l column of radius  0:35 cm will correspond to mass Mtak0eaitntdoenascictoyunoft the8:i3n gu=ecnmce3.ofInstarersaliinty,awceonseh,obuuldt not only in a cylinder. Though we also have a spherical metal cone, nevertheless, we shall estimate the orders of magnitudes. We shall break a cone into cylindrical layers, which arise as the new layers of stars are involved into consideration (Fig. 2). Each new layer will be greater, than a preceding layer, by 6 stars. The distances from the center to the nearest boundary of each lgTalhyesee:rreoRfofirs=et1,ar=tshcie=arnc.obrTerehfcoetunionnwdeftrohoamavetmhRea0isss=im(p wilaeir2is(tu1ym+ofrut2rp)ia=tnro-. 2 1010) will be found as
m0(1
+
1 4
+

)1
+
X
i
6
R02i

<

M0 1
+
6r2
X
i
1
i




M0 1 + 6 10 5 log(2 1010)  M0(1 + 0:02):
Tavdhceiohvcrwuseoeersuvg,nieeostr,ui,a\nrcnt cohdnonenitttrshewat,erhdutcoihccolettenisnosUtbntrnhouitiescvhtqeoiruoGbsniteRta.ew"TinsiuelalCdnbedhceriatteiarhnnmietandolfmyone,rqiocuitdfaaseekttrrehniin.eeigsTdUiewhnanitissilo-.,l spgpluohmbLeurpeeltee.dsnTcooaowuntapbvflreoaoicimdseotltthahheteeecdgsotlflorlraubotcmuetlrueatsrhleeoena snpeadcht,essr,pienrtibhnayegddaaiinittrsihoicidnnae,nvttebhhseeestpeoela.trh,eNaMonwda,cthihfepwrgienlocsbippuillnee,sutwpheiltlchemenotsrvpiehfueagrpeaa,lrfttohroecfne,esahacochcuolodrtdhaienprg-.
In this case the centrifugal force must be the same, as though the globules themselves would rotate. It seems quite obvious, that this is impossible, since such an effect would be noticed still long ago. Thus, we return to absolute notions of acceleration, mass, space and time dpee rinmedentstcilolubldyaNppeweatronto. bHeouwseefvuelr,fotrhdeetdeersmcriinbiendg tehxecorrections to the static Newton's law of gravitation. In this case the globules should have sucient freedom to move and to rotate, since the direction of action of correcting forces and moments of forces is unknown a priori.
The gravitational constant is not a mathematical constant at all, but it can undergo some variations [9]. Therefore, this value can account corrections to Newton's static law of gravitation (for example, these in pulaecnecmesendtoofntohtetpakereinheilniotno ocfonthsiedeMraetricounryf)o.r Gtheenedraisl-ly speaking, the theory of short range for gravitation cthoeulgdrabveituasteifounl t(rbauntsmitiscsainonbreanteo)tfuosretfhuel d enpiteennduinmgboenr o(tfhceassaesmoenolryd:efro)rbtohdeiersacpliodse(vto!eacch) motohteiro.nTohfemaaustshivoer does not know such practical examples.
The GRT approach to gravitation is unique: to be shut in the lift (to take pleasure from the fall) and to be not aware that the end (hurt oneself) will be after a moment. Of course, the real state is quite di erent one: we see always where and how we move relative to the attractive centre (contrary to Taylor and Wheeler, it is the second \particle," together with the rst \parttihcelep"u|re gweiothmethtreicoabpseprrvoearc)h. iTshaatteims pthoerarlezaisgoznagthfaotr physics (although it could ever be useful as a auxiliary technique). And two travelers from the parable [10] have need for \very little": for the wish to move from the equator just along meridians (on the spheric earth surface), but the rest of ve billion mans can not have such the wish. Contrary to traveler's wish, the wish \to do not attract to the Earth (or the Sun) and to y away to space" is inadequate. The notion force (the force of gravity in this case) re ects this fact. Geometry cannot ailttntnyhhhna,teeestewrwurpgeraherhecryray,etvstiataoiiohlntcnieaazdtsrtelheimeo(eteexhnaxxfieaonsiplstlyseltpforioolnwieortmcchicinnee aeagnrlcittsmqquvauuprala)eeelrsu,sossptteepwriissooeo,hrnonrycotfsshig:.optaanhhThrtagyeiohvlresweeeisjcs.,ueamepslxptaaicrrsntoottoynibcstlltrtheey2amespn,,yestwwssoahhnironyye-f
3. Conclusions
The paper is devoted to the GRT criticism. A set of spatnhrcaikes,iinzbegadsd,eobluienbgetinfpunhliynpsgoiciwnatlitsnhforgtoiemonnetsrh,aeal ncGodRn cTneiptsethxsitnobgfotwohkietshciosmveaomrrie--
On the Basis for General Relativity Theory
233
saTphreeocit garctoinougnnedcslo.eosTsrndheienssaptraeonosdfysiontfecmtohnesiisgsteceoanmrcryeietdroyfoitunhtveairpniraidnneccteiapiilnle. ooiasffnddeteqhsmueimiovnnuaoslltettiarnoancnteeeoodiufn.stTGimmhReeeaTsmauinserdetdhmiiostedcsnustssyosonfefdctlhei.mnrTogenthhsiezysaniatncirhcoeornoinnnsidniiszitcaGeatntRioceTydn fsaaoprrrieaetcsehemiesgpmeaohlosmaossteidztiiernsydtceuirbssesodsettedhimnigfnoonsrtpshtteerhcapeiataelmpdceeaarts.nhedoTs.dhtsTheehadnerooduilnbefvtooafrufrilbnapuonoumciennedotrs-fooeprufrisG\ncbcRoilpaTrolceklclaoahnrrooidellseliasto,sr"fipeGsooRsfasrTSiebc.lhceTowvhnaeesrriziid nsecccrhaoeitndlidsoii'nsnstaesdnroeecltuyaatiliolso.ofntTdhaihesnecnduMosotsaietocdhnh.nteisemtcaeTebshsaliinesthydueloodtffimbcraoeastntiuessrt.cnrouinncgtcilnutgosiotchnlaeossgfirctahavleintpaoattpiioeonrnscthoonefossirspytasocinenatthnhides
References
[1] Sor.Ny,."Atortbeheap,u\bOlinshtehde iBnaGsisalfioleraSnpEecleiacltrRodeylantaivmitiycsT. he-
[2] S.N. Arteha, \On Frequency-Dependent Light Speed," to be published in Galilean Electrodynamics.
[3] S.N. Arteha, \On Relativistic Kinematic Notions," to be published in Galilean Electrodynamics.
[4] Lof.DF.ieLldasn,d"aNuaaunkda,EM.Mos.cLoiwfs,h1it9z8,8\(TinheRculasssisaicna)l. Theory
[5] P.G. Bergmann, \Introduction to the Theory of RelaRtuivsistiya,n").Inostrannaya Literatura, Moscow, 1947 (in
[6] EM.osSccohwm,u1t9z8e1r,(i\nRReluastsiivaint)a.tstheorie - Aktuell," Mir,
[7] V. Fock, \The Theory of Space, Time and Gravitation," Pergamon Press, London, 1959.
[8] Ary.Aof. LGorgauvintoavti,oMn,."AN. Maueksatv, iMrisohsvciolwi,,\1R9e8l9at(iivnisRtiucsTsihaeno)-.
[9] V.P. Ismailov, O.V. Karagios, A.G. Parkhanov, \The
Investigation of variations of experimental data for the
gravitational constant," 1/2, 20{26 (1999).
Physical
Thought
of
Russia
[10] EW.F.H.. FTraeyelmora,n Ja.nAd. CWomhpeealneyr,, Sa\nSpFarcaentcimisceo,P1h9y6s6i.cs,"
& Vol. 3 (2002), No. 5 (15), pp. 234{234 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
ANOMALIES IN MOVEMENT OF \PIONEER 10/11"
AND THEIR EXPLANATION
N.A. Zhuck1
Research and Technological Institute of Transcription, Translation and Replication, JSC Box 589, 3 Kolomenskaya St., Kharkov 61166, Ukraine
August 17, 2002
The author has o ered the version of an explanation of anomalies of the Pioneer 10/11 motion on the basis of the Universe gravitational viscosity.
Pioneer 10 was launched on 2 March 1972 and it functions till now.
Pioneer 10 distance from Sun: 80.68 AU Speed relative to the Sun: 12.24 km/sec (27,380 mph) Distance from Earth: 12.21 billion kilometers (7.59 billion miles) Round-trip Light Time: 22 hours 38 minutes
Launched on 5 April 1973, Pioneer 11 followed its swishteenr tshheipl.asIttstramnissmsioisnsioenndferdomonth3e0spSaecpetcermafbterwa1s99re5-, ceived.
Pioneer 10/11 have anomalies in the motion. A discussion of this phenomenon appears in the 4 October 1999 issue of Newsweek magazine. The mystery of the tiny unexplained acceleration towards the Sun in the motion of the Pioneer 10, Pioneer 11 and Ulysses spacecraft remains unexplained.
A team of planetary scientists and physicists led by John Anderson has identi ed a tiny unexplained accele1lt(dohr00euae:t,7tsaAiaP6ioalciencv1codcae0netlraeleoieeer1nwrart0aayatlmt1iryiood1os/nfs,ensspewta|ochones2fedsfairieSbnabUeuldolrelniueyfocrptsiaosodn1umera0sstttehEba[ss1eipa]flw)alrrmioteco|hrmeone'ctsrwtictaoighoamfnrntsea.esoivssdifpdiesTtaetmnarhchtteeaeeiidco lrlnPeaeiadannrifoltcoatn.lpmhfuetuadeeanlrr--l ing: perturbations from the gravitational attraction of planets and smaller bodies in the Solar system; radiation pressure, the tiny transfer of momentum when photons impact the spacecraft; general relativity; interactions between the Solar wind and the spacecraft; possible corruption to the radio Doppler data; wobbles and other changes in Earth's rotation; outgassing or thermal radiation from the spacecraft; and the possible in uence of non-ordinary or dark matter. mosAt fptelaruesixbhlae,utshtienrgestehaerchliesrts oefxaemxpinlaendaptioosnssibdleeemmoeddi cation to the force of gravity as explained by New-
1e-mail: zhuck@ttr.com.ua
tftoohrnec'Hesn.oleawwwevfwoeirrtmihnut1lha9e8oS4futnahebfreaeiunetghmothroetoifdotonhmiosifnwaaonrmtkgahrtaaevsriidatealdtbiuoocndeadyl instead of the Newton's rst law [2]
d2X dt2
+
H
dX dt
=
0;
(1)
where the label is entered
H = r4G3 0 ;
(2)
wevooreffhrep isncheehe;lydrscXgsio.cyrarTialesthssapeeanocHsmnoeduoos(brthdbitoeiolnrneeatchotoefen0)mH.situaIsattbnmebntrleoieaidwslciavborleneord sdyteeianecsnstsmsitat,ayanbldloudaftiasntthshdiaspepseaUrqoteuitnaohaidn--l approximately 10 18 1/sec.
Medial density of a substance is equal approximately 4 10 21 kg/m3 in region of Solar system (one star per 10 cubic kiloparsecs). Then the Hubble parameter will be equal 1:1 10 15 1/sec. And the acceleration of Pioneer 10 equal ( 1:3) 10 11 m/sec2 for the present time. Earlier acceleration was more.
Thus, the gravitational viscosity is the most probablelaesrtegarsaovnitoaftmionoatilovnisacnoosmityalsyhoofultdhebPe isotnuedeired1.0/11. At
References
[1] N.I. Kolosnitsyn. \Relativistic orbit form and anomalIinetserinna\tPioinoanleeCro1n0f/er1e1n"cedy\nTahmeoicrse.t"icAalbastnrdacetxspoefri1m1e-tnhtal problems of General Relativity and gravitation," 2002, pp. 68-69.
[2] Nv7a1.t{Au7.r7eZ(ho2uf0c0tk0h.)e.\UhGtntripavv:e/irt/sasetp.i"aocnSeptviamicseceot.insmiatreyo&da.nrSudu.bgsetaotnectei,c1c,u2r-,
& Vol. 3 (2002), No. 5 (15), pp. 235{237 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
AGAIN ON THE GUALA-VALVERDE HOMOPOLAR-INDUCTION
EXPERIMENTS
Ricardo Achilles1
Con uencia Tech University, Rosas y Soufal - P. Huincul Neuquen, ARG Q8318EFG
Received December 21, 2002
GaApupfatlleiacra-Vibnaldelvetpeorednmedeaenctthainrlee[psAepftoietuiironondne,odf8o,thn4e1thr(ea2ct0e0np1tr)liy]ncsroiepmpleoe.rtceoTdnhsbeidsreeearcakot-tinohsnridsoeuargarhetioednxrspawearnrimeoebnnattsahetdeiotnoonroqntuhehe-op\mraoocdptuiooclntai-roantin-amd-udecicsthtiaoannnicsbem"y Ampre-Weber-Assis rationale.
1. Introduction
TstmBhisoiooh-alml vnegoienorcnlGeaepdgsttoutret[lsaehd1avlue]ra,e-ip-ormn[Vo2slidnao]to,tlhnctv[oe3ho.er]ner,Tsdeuis[xehn4ninp]egd,(geurGm[ruul5ial-mm]oarVspirett)irknytosnyt:atvsorniiiwndwdkotinhicnrnccoigalgoudesawrufsehtolcahooerwtcekdmuaheiroflren,respnesaooehsn-fltuoathtcorurhetc-nieernriposafdGsrtonoaur-gbitmcVneeeprobe denotes the presence of forces in correspondence with the eld reversion observed in that region, the statmioanganreyt csiinrcguuilta-rciltoys.inIgt bweihreavreesmaasinifs tihnesreenswiteirvee ntoo stihnegularity at all! This experimental fact enabled G-V to locate the seat of electromotive and ponderomotive actions in homopolar machines [1] con rming besides the symmetry of both, generator and motor con gurations. The aforementioned, quiet a trivial fact for ordinary alumx-ovsatrtywinogcemnatuchriiensesin, wthaes haomraothpeorlaorbdsecvuirceesi'sscuaese.for
Energy conversion by a machine is made possible by the relative motion of two of its constitutive parts; in the speci c case of electrical machines these two parts are an active conductor -the probe or the closing wire in G-V's nomenclature- and a magnet (or a second active cmoangdnuecttowri)l.l nAonyloenlgeecrtrpiclaayl-cainrcaucittivpearetnaenrgcyh-ocroendvteorstiohne role; it will be just a current-path closing means. The remaining electrical circuit -with motion relative to the magnet enabled- takes over energy conversion (mechanical to electrical for a generator or vice versa for a motor). Fig. 1 sketches a homopolar motor where a centripetal direct current is applied to the probe attached tinottehraecutipownairndtBhi-s cealdsefaccaenobfeasdpilsikt imnatgwnoet[.1]T, h[6e]:main
1e-mail: achilles@ieee.org
Fcloigsuinrge w1i:reTorques on the homopolar-motor magnet and colpopc|okswitiMseeattogornrqequtu-epeoroonnbteht:heemTpharegonbmeet,a.tghneetpreoxbeertasnaeqcuoualntbeurtweqiuse|altboMurqatugoenpepot-oncsliotthseientogcrlwqousiriene:gonTwhtihereem,mathaggnenectelteo.xsienrtgs waicrleocaknrmseioleancTth.ihavOenenipsmmrtohobetaiemocnoaontnttaagrncadhbryeo,dtthhttheopeaatchrclttoesisomiinnna-ghrgeiwnbaeiicrtttesido-eonwneeisctrhangnyoectleecplcoletanrrtvimiceoarin-tl ccttoeoornlltteihnicnettueormirtaycraitgniwnogienstt-hisepnttohahsebseelimspnsregaosibnerenereelaarsgtpttiyovaneicnsomiebndlvoeetvirfoisoanironttwhh.ieethTombhreesiserscprlvueaerctdytmtinhgaegdcnureasttg-opgmleudas-rbpyyroatbbheseolrpuorttoiasbtteioa[nr1g.],umtIhreeonntmicoaafgllntyhe,te aimsndathgeangedtaribangest--
236
Ricardo Achilles
Figure 2: Ampre-law current elements
gcdscuiunrreigrbeteanodgt)emintitsne.tcnehTreahagnceliitsgaimoidbnd.leiwtiaeo sneadclitscmlionissisnceogdmwipniraetrh-ipseoronGb-teVo(catunhraerleydnseti-siptshrtoissdAciussacsmtuaienoenhaIelEmroeEne.gEchaamsnkieismnmgb. emrI,ealmoanstitnmhteeonnhdtoihnmsgosptooomlaaenr sstwpoeerrqciuaoeln--
2. AElmecptrreodvyenrsaumsiScstandard
Ampre force law [7], [8], draws the expression for the magnitude of the mechanical forces applied on two curr2e)natse:lements Idl, I'dl' separated a distance r (see Fig.
d2F = (o=4)(I I0=r2)[(2(dl dl0)
3(r dl)(r dl0)=r2]:
(1)
This formulation supplies a quite suitable tool to
bfoertcteesr oubnedyerNsteawntdont'hsethhoirmdolpawolabreipnhgenitosmdeirneac:titohnecdo2inF-
cttAtcTsaihhiaodhmnneoneewcAphn)beenrstoeoqebamcuiidletnceitoewvuqwi pFasruineostliieegwhlevafnn.daoerttll3r-thaelcmh,ensaukeitornanoprtcnomeoocucwenyrsoraitrlnnoutige,injfInnnvu'daitteenfohrtoceimf(ierctzlnsmeaiiaseuonmleggcnggBanahemzntwe-cyiatt uveimstencemr.hlri)tudleRdaitarnny2chedtdacFpasebesrlu eniemcc[l,nt9suamriit]alrnoi,hpgromngeene[dn1t(atimetata0hglult]eeans.tddhgcerdeontea.biInlcesilnys-t--.
dquuactnitointactuivrerecnotnIsicdierrcautliaotninsgbtahsreodugohn
the probe. A equation (1)
few can
be applied to the above described con guration to un-
derstand the homopolar torque-production mechanism:
tthhee mAamgpnreetifco-srhmeulllacutirornendteepleenmdeenntcseloocnat(e1d/rm2o)redcel onsees-
ly to the probe as the ones producing the main inter-
aeIfdfoodlclerr'ltmccilo(eeoessncend.awet2tsLiFeFlIled'i'tgi2dna.lu)cb'slw3ouac)vnid:oledeln,a(asabinipndeppelatroerthoawtbetrr)haegoectencthnaoieocentnthrdpiaeourlfonocmcbtraoiceaosefgneentd-lwiecen2mutodF-rseirs'hcneu1aentc(ltthlrededeelcp.llueeuinmmrSlrsuetieeohcnnnnhettt
Figure 3: Magnetizing shell-probe Ampre interaction in the
uniform eld motor
gure, radial and azymuthal components acting on the
bulk of the magnet. These latter components are the
main responsibles for the observed clockwise rotation.
This dominant interaction can be eliminated simply by
attaching the probe to the magnet. In such case, the
only interaction left is the counterclockwise torque ap-
plied on the magnet by the closing-wire current.
Standard Electrodynamics (SE) considerations based
omnatghneetLizaipnlgacceu'rsreexnpt reelsesmioenntdsFfa=ilIt(odelxxBpl)aianphpolimedoptooltahre-
devices torque production since -by vector product
pealbreolmepeetrnottigseesan-reearalrltaedthtiaoelrqftouorecte(hIset
amctaignngetonantdh,ethshereellfocrue,rruennthas to be kept in mind that
dofurtihneg AthmeprlaesatncdenStEurfyortmheulautniorensstrwicatsedcoenq urmivaeldenfcoer
closed circuits [7]). Moreover, a closed circuit in the vicinity of an arbitrary current element will apply on
it forces perpendicular to its length (a fact manifestly
observed in the probe). In the G-V experiments the
interaction to look at is the one existing between a
nite current element (the probe or the closing wire)
ainngdcaurcrleonste)d. cAirncudith(etrhe,e aBcc- oredldinegqutoivaSlEen,tthmeacglnoestinizg-
wire is unable to produce any torque on the magnet:
a fact quite in opposition to experience! Conversely,
the interaction of the magnet with the mechanically
asattmaechoeudtcpormobeef-orpleuitsh-celrosfionrgm-wuliaretiocnir:cuaitnullelatdosrqtuoetohne
both, closed circuit and magnet [7], [11]. At last, it is
also interesting to have a look of the current interaction
taking place in the magnet's singularity shown in Fig.
4. The currents interacting here are the centripetal
Again on the Guala-Valverge Homopolar-Induction Experiments
237
Figure 4: Magnetizing shell-probe Ampre interaction in the
G-V dynamotor magnet singularity
conduction current through the probe and the equivalent magnetizing-shell current along the singularity's edges. While the upper-edge magnetizing current repehdiegglshe-tmhateatgrpanrcoittbusedtewhceitlohpcrekolwebmieseewnttoiatrhrqyufeofororccneessitd.d22FF21r,etshueltilnogwear
3. Final Remarks
A conclusive statement on the superiority of the Ampre fcdoouferrrmrrieveluenaldtta-itcvfiareoornrmmyfoiontrthgitoehnweGiaar-menVsaolaenynxgsdpisbeuoroifntmhitfheopneratmisrn.ttsmeTrhaahegcrenteie,ortensiqsbhuieainresetsmwbtreeeieencnntt c[tts1ihyoo0mren]r.memusCapneogtoirlnnnayvedt.teee-rrnsafcealelliyylswGtiiontrhartsehstcemhoegpanrnsoiinzmbeeSihlEwaormi-rafeootptrerovigbleeanunrteimirfnaagatctimhotanionctheaosec'rdtfiauotclno-l
The Ampre-formulation inclusion in electromag-
netism programs at both intermediate and graduate
levels seems a necessary outcome of this article.
AmTprheisexepssraeyssiiosn:en\dTehde
with Maxwell's
whole theory .
quote on the
. . is summed
utMDhpoeavxicenwarre(dal1li,n9f5oaA4rl m)f.oTur[rlSmaeeauet.liaaselo.sofoenr.elefceEwtrlreheoncidcctyrheniscami7mtyuaiscntasdn"ad.8lw]J.MaaymasgensreeCmtilsaemrink.
\We are to admit no more causes of natural things
tahpapneasruacnhceass."ar(eNbeowthtotnru).e and sucient to explain their
tVhaelivArecrhdkeenlpowfwuhloletddeecg hmnniietcniavtlesl:ayss TirsoetdanNmcoeyr.piantTtaeogrnesJictoarignReW&GeDubaeflroa'srEMlaecztzroondiyfnoarmhiiscsmaansdteroynintheexpAemrimpreentfoarlcpeh. ysTicos.Pedro
References
[1] J(1.99G9u)a. la-Valverde & P. Mazzoni, Apeiron, 6, 202
[2]
J. Guala-Valverde, P. Journal, 12, N 4, 785
Mazzoni, (1999).
Spacetime
&
Substance
[3]
J. Guala Valverde, P. Mazzoni & R. Achilles, Journal of Physics, 70, N 10, 1052 (2002).
American
[4] J. Guala Valverde, Physica Scripta. 66, 252, (2002).
[5] J. Guala-Valverde, Spacetime & Substance, 3, 94 (2002)
[6] J(D. Gecu.a2l0a0-V2)alverde, \In nite Energy." To be published
[7] A.K.T. Assis, \Weber's Electrodynamics." Kluwer, Dordrecht, 1994.
[8] Atr.eKal.,T1.9A99ss.is, \Relational Mechanics." Apeiron, Mon-
[9] Kan.dK.MHa. gPnaentoisfsmk.y"aAndddMis.soPnhiWllipessl,ey\,CNlaeswsicYalorEkl,ec1t9r5ic5i.ty
[10]
T.E. Phipps Jr. & J. Guala-Valverde, Science & Technology, 11, 55 (1998).
21 st
Century
[11] M. Bueno & A.K.T. Assis, \Inductance and Force Calceursl,atHiounntiinngEhlteocntr,icNaelwCiYrcourkit,s.2"00N1o.va Science Publish-
& Vol. 3 (2002), No. 5 (15), pp. 238{240 Spacetime Substance,
c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC
Spacetime & Substance Contents of issues for 2002 year
Vol. 3 (2002), No. 1 (11)
ViktoCrUARlResEhNinTsEkyL.EEMLEENCTTSR, OADMYONVAIMNIGCSC:HTAHREGCEOS NASNIDSTNEENWT
FORMULAS OF EFFECTS (1).
INTERACTION
FOR
A
MichHelABMoIuLTniOaNs.IAONN CSOPMACPEOTNIEMNETSD(IF15F)E. RENTIAL ELEMENTS AND THE DISTRIBUTION OF BIO-
P.
A.LVAWarSenOikF
aNnEdWYTuO. NPI.AVNaDreYnNikA.MTIHCES
NEW (20).
VIEW
ON
THE
NATURE
OF
BODYS
INERTIA
AND
V.V.(D28v)o. eglazov. GENERALIZED NEUTRINO EQUATIONS BY THE SAKURAI-GERSTEN METHOD]
MirosPlHavYSSIuCkSe,nCikOSaMndOLJOozGeYf SAimNDa.CTHHEEMIHSYTDRYRO(3G1E).N ATOM | A COMMON POINT OF PARTICLE
Miroslav Sukenik and Jozef Sima. NEUTRON STAR PROPERTIES VIEVED BY THE ENU MODEL (35).
L.C. DGIaLrAcTiaOdNeSAAnNdDraDdYeN. AOMNISCTARLINTGORCSOIOSMNO(3L8O).GY AND DE SITTER INFLATION WITH MASSLESS
C.A. IdNeNSEoWuzTaOLNimIAaNJCrO. SaMndOLLO.CG.YG: aSrPcIiNa EdFeFAEnCdTrSad(3e9.)G. ROWTH AND DECAY OF INGOMOGENEITIES
L.C. Garcia de Andrade and C. Sivaram. TORSION GRAVITATION AHARONOV-BOHM EFFECT (42).
L.C. IGNaTrEcRiaFdEeROAMndErTaEdRe.ST(4O5R).SION GRAVITY EFFECTS ON CHARGED-PARTICLE AND NEUTRON
RasuClkHhAoRzhGaES(.4S7)h.ara ddinov. ON THE COMPOUND STRUCTURES OF THE NEUTRINO MASS AND
Vol. 3 (2002), No. 2 (12)
L.P. FToIVmIiTnYsk(i4y9.)T. O CONCEPT OF AN INTERVAL OR BASIC MISTAKE OF THE THEORY OF RELAN.A. Zhuck. THE NEW STATIONARY MODEL OF THE UNIVERSE. COMPARISON TO THE FACTS (55). N.A. Zhuck. THE EARTH AS THE GRAVITATIONAL-WAVE RESONATOR (67). L.V. OGFruEnLsEkCayTaR,OVM.VA.GINsaEkTeIvSiMtcOh,FVT.HAE. SEU RmFoAvC, EI.LNO. VGEaRvrLiAloYvE, RMW.SI.TGHeGraEsOimPHovY.SIINCTAELRACNODMAMSUTNROIC-ATION
PHYSICAL PROCESSIS (69). AniruPdRhESPErNadChEanOFanZdERHOa-rMeARSaSmSCPAaLnAdRey.FIPELLADNSE(7S6Y).MMETRIC COSMOLOGICAL MODELS IN THE
Spacetime & Substance, Vol. 3, No. 5 (15), 2002
239
V.L. TKHaElaOshRnYikOoFv.GCROANVSITTARTAIIONNTS(8O1)N. THE COSMOLOGICAL PARAMETERS IN THE RELATIVISTIC Valer(i8V4).. Dvoeglazov. SOME MATHEMATICAL BASES FOR NON-COMMYTATIVE FIELD THEORIES RasuClkUhRoRzhEaNST.SS(h8a6)r.a ddinov. ON THE ANOMALOUS STRUCTURES OF THE VECTOR LEPTONIC SutapTaHGE hCoOshREanOdFSAomCeOnMaPthACCThaNkErWabBaOrtRy.NCNAENWTTHREORNESBTEA R-EWQIUTHILIMBORDATEERDATQEULAYRSKTRMOANTGTEMRAAGT-
NETIC FIELD? (88). Jorge Guala-Valverde. FEYNMAN LECTURES, A-FIELD AND RELATIVITY IN ROTATIONS (94).
Vol. 3 (2002), No. 3 (13)
Scott M. Hitchcock. THE CREATION OF TIME FROM SUBSTANCE AND SPACE (97). Vasile Mioc. SYMMETRIES OF THE GRAVITATIONAL N-BODY PROBLEM (104). AlexOMF. ACNheEpMic-kW.ATVHEE'SCEANLECRUGLYAT(1I0O8N). OF THE INDISPENSABLE ACCURACY OF THE MEASURING Valery P. Dmitriyev. GRAVITATION AND ELECTROMAGNETISM (114). MirosTlHavEOSuRkYe,nEiXkPaEnRdIJMoEzNefTSSimANa.DEMLEECCHTARONIMSMAGONFETTIHCEISNOFLLAURENCCOEROONNAGHREAAVTITINAGTIO(1N18A)L. MASS { A.M. Chepick. SUPREMUM OF THE INTERACTION SPEED OF THE MATTER (122). Valer(i1V25.).Dvoeglazov. SOME MATHEMATICAL BASES FOR NON-COMMYTATIVE FIELD THEORIES Afsar Abbas. TO QUANTIZE OR NOT TO QUANTIZE GRAVITY? (127). Angelo Loinger. RELATIVISTIC MOTIONS (129). AntoCniRoEAAlSfIoNnGsoS-FPaEuEsD. QOUFALNIGTUHMT AGNRDAVMITAYCHA'NSDPRGIENNCEIPRLAEL(R1E30L)A. TIVITY CONSISTENT WITH A DERasuMlkAhoGzNhEaTSI.CSNhAaTraU RdEdi(n1o3v2)..THE UNITED THEORY OF THE TWO FIELDS OF THE ELECTRIC AND RasuNlkEhUoTzhRaINSO. SMhAarSaS AdNdiDnoCvH. AORNGTEH(E13T4)Y. PE OF THE SPIN POLARIZATION DEPENDENCE OF THE Jorge Guala-Valverde. ON THE ELECTRODYNAMICS OF SPINNING MAGNETS (140).
Vol. 3 (2002), No. 4 (14)
Angelo Loinger. GRAVITY AND MOTION (145). Savita Gehlaut, A. Mukherjee, S. Mahajan and D. Lohiya. A \FREELY COASTING" UNIVERSE (152). FangpEeXiPCEhReInM.ETNHTEALRETSETSUTDSY(16O1N). THE DEBATE BETWEEN EINSTEIN AND LEVI-CIVITA AND THE
240
Contents of issues for 2002 year
A. PrCaAdLhaMnOaDnEdLOS-.RPE. VPIaSnIdTeEyDc.(1C6O9)N. FORMALLY FLAT SPHERICALLY SYMMETRIC COSMOLOGIR. RuNEUnTi,RMIN.OLSatItNanAzNi, ECX.PSAigNiDsmINoGndUiNaInVdEGRS.EV(e1r7e4s)h.chagin. CHEMICAL POTENTIAL OF MASSIVE D.L. QKUhAokNhTlUovM. MSPEACCHEA-TNIIMCES (I1N79T).HE CLASSICAL ELECTRODYNAMICS FROM THE VIEWPOINT OF A.M. Chepick. MEASUREMENTS WILL SHOW DECREASING OF THE HUBBLE CONSTANT (181). A.M. Chepick. WHY THE HUBBLE PARAMETER GROWS UP? (183). Fabio R. Fernandez. MORE ON FEYNMAN LECTURES BY J. GUALA-VALVERDE (184). JorgeNGOTuaBlaE-VAaDlvDeIrTdIeV,EP?e(d1r8o6)M. azzoni and Cristina N. Gagliardo. WHY HOMOPOLAR DEVICES CANDISCUSSION (188). 2ND GRAVITATION CONFERENCE IN KHARKIV (190).
Vol. 3 (2002), No. 5 (15)
TroitTskIOij,NVF.OI.RAMleAsThIiOnN. ETXHPREORUIMGHENTTHAELTEHVEIRDMENACLERAODFIATTHIEONMOICFRMOWETAAVGEABLAACXKYGSRTOAURNSD(1R93A).DIAYu.MW. IGTaHlaINevO. PTTHIECAMLEWASAUVREISNBGAONFDE(T2H07E)R. -DRIFT VELOCITY AND KINEMATIC ETHER VISCOSITY S.N. Arteha. ON THE BASIS FOR GENERAL RELATIVITY THEORY (225). N.A. Zhuck. ANOMALIES IN MOVEMENT OF \PIONEER 10/11" AND THEIR EXPLANATION (234). Ricar(d23o5A).chilles. AGAIN ON THE GUALA-VALVERDE HOMOPOLAR-INDUCTION EXPERIMENTS Spacetime & Substance. Contents of issues for 2002 year (238).
Spacetime & Substance International Physical Journal
INFORMATION FOR AUTHORS
The Editorial Council accepts the manuscripts for the publication only in an electronic variant in the format for LATEX 2.09. They should be completely prepared for the publication. The manuscripts are accepted by e-mail or on diskettes (3.5"). The manuscripts can be adopted in other view only for familiarization.
The original manuscripts should be preferably no longer then 6 pages. They should contain no more than 4 gures. Length of the manuscript can be up to 10 pages only in exclusive cases (at arguing problems of primary importance). If the length of the manuscript exceeds 10 pages, it should be divided by the author into two or more papers, each of which should contain all pieces of a separate paper (title, authors, abstracts, text, references etc.). The Editorial Council accepts for the publication the brief reports too. thatTJhoeuprnayaml eednittiofonr, tinhewphuicbhlichaistiopnapoefrtwhaesmpaunbulisschreidptfsreise nofotchdaorngee.. Each author gets the electronic version of
An E-mail message acknowledging the receipt of the manuscript will be sent to the corresponding anuothhT@ohiroepwS.kittiyhelvien.uFtaiwletooawnindoqruIkniirnsetgraudbcaotyiuostnastfhtfeoerrmittahsneuumsscearcinpautnssc.brieptforuencdeipatt.htItfpa:/m/sepsascaegteimise.nnoatrorde.creuiv(esdamplpelaes.zeipc,on19takctb)k.ras-
An abstract (within 20 lines) must be submitted. This one should be concise and complete regardless of the paper content. Include purpose, methodology, results, and conclusions. References should not be cited in the abstract. The abstract should be suitable for separate publication in an abstract journal and be adequate for indexing.
If the argument of an exponential is complicated or long, \exp" rather than \e" should be used. Awkward fbcroeancuvtseioendnti,aolancn,odpmaeprneoonsutithgieohsneescn,acnblorbaseuckraeevstosi,sdhaeondudlbdbyrbtaheceeisnpcarolruepdeiernditnhttoerooadvrudoceitdriofanm[o(bfi)nge]uggita.ytiDviniespdthleageyreetdeexse.tq.SuoAalticidcouonsrsdfsrihnacogtuitloodnsbthe(le/nrau)cmschebpoetureelddd consFeicguutrievsel(ybltahcrko-uagnhdo-wuthitlhe)esphaopuelrd;bteheofnmuminbimera(lisnizpeaprreonvthideisnegs)clsehaoruuldndbeersttoantdhiengri.ghBtreoafdtthheoefqtuhaet iognu.re should not exceed 84 mm or 174 mm (in exclusive cases). Figures should be made out as separate les in the format of *.pcExa(c3h0 0gduprei/minuchst) bore *c.ietepds (inmninuimmeurmicaolfokrbd)e.r in the text and must have gure legend.
Tables should be typed as authors expect them to look in print. Every table must have a title, and all columns must have headings. Column headings must be arranged so that their relation to the data is clear. Footnotes should be indicated by reference marks 1, 2 etc. or by lowercase letters typed as superiors. Each table must be cited in the text.
The Editorial Council accepts also response on papers, published in the Journal. They should be no more than 1 journal page in length and should not contain gures but only to refer to the already published materials. But they can contain the formulas. The recalls are publishing in section \Discussion."
The list of references may be formed either by rst citation in the text, or alphabetically. dataOonrlyrewpoorrktss cairteednoint itnhcelutedxetdsihnotuhledrbeefeirnecnlcuedelidsti;nththeeyrsehfoeruelndcbeelissht.owPnerpsoanreanltchoemticmaullnyicinattihonesteaxntd: u(nFp.Su.bJliosnheesd, unpublished data, 1990).
The title of paper is permissible not to indicate. It is permissible to give only the initial page number of a paper. The format of the reference list is as indicated below.
References
[1] F.W. Stecker, K.J. Frost, Nature, 245, 270 (1973).
[2] V.A. Brumberg, \Relativistic Celestial Mechanics", Nauka, Moskow, 1972 (in Russian).
[3]
S.W. Hawking, in: \General Relativity. Univ. Press, Cambridge, England, 1979.
An
Einstein
Centenary
Sutvey",
eds.
S.W.
Hawking
and
W.
Israel,
Cambr.
Read the Journal before sending a manuscript!
Spacetime & Substance
Volume 3, No. 5 (15), 2002
CONTENTS
V.S. Troitskij, V.I. Aleshin. EXPERIMENTAL EVIDENCE OF THE MICROWAVE
. . BACKGROUND RADIATION
OF METAGALAXY STARS
.F.O. .R.M. .A.T. .I.O.N. .
.T.H.R. .O.U. .G.H. .
.T.H. .E.
.T.H. .E.R. .M. .A.L.
.R. .A.D. .IA. .T.I.O.N193
Yu.M. Galaev. THE MEASURING OF
ETHER VISCOSITY WITHIN OPTICAL
EWTAHVEERS-DBARNIFDT.V. .E.L.O. .C.I.T. Y. .
.A.N. .D.
.K. I.N. .E.M. .A.T. .IC207
S.N. Arteha. ON THE BASIS FOR GENERAL RELATIVITY THEORY . . . . . . . . . . . . . 225
N.A. Zhuck.
PLANATION
.
.A. N. .O. M. .A. .L.I.E.S.
.I.N.
.M. .O.V. .E.M. .E.N. .T.
.O. .F.
.\.P.I.O.N. .E.E. .R.
.1.0./.1.1.".
.A.N. .D.
.T.H. .E.I.R. .
E. .X2-34
REXicPaErdRoIMAEcNhTilSle.s.. . .A.G. .A.I.N. .O. .N. .T. .H.E. .G. .U.A. .L.A. .-V. .A.L.V. .E.R.D. .E. .H. .O.M. .O.P. .O.L. .A.R. -.I.N.D. .U.C. .T.I.O. N235
Spacetime & Substance. Contents of issues for 2002 year . . . . . . . . . . . . . . . . . . . . . . . . . . . 238