4469 lines
310 KiB
Plaintext
4469 lines
310 KiB
Plaintext
|
NASA/TP–2009–214174
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)—Revised
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
January 2009
|
|||
|
|
|||
|
COVER CAPTION:
|
|||
|
The eclipsareon is an 18th century instrument contrived by James Ferguson to show various solar eclipse phenomena including their time, duration, and quantity from all places on Earth (Philos. Trans.. Vol. 48, 1753–5, pp. 520–525).
|
|||
|
|
|||
|
The NASA STI Program Office … in Profile
|
|||
|
|
|||
|
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.
|
|||
|
The NASA STI Program Office is operated by Langley Research Center, the lead center for NASAʼs scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASAʼs institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:
|
|||
|
• TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASAʼs counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
|
|||
|
• TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
|
|||
|
• CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
|
|||
|
|
|||
|
• CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
|
|||
|
• SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
|
|||
|
• TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASAʼs mission.
|
|||
|
Specialized services that complement the STI Program Officeʼs diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.
|
|||
|
For more information about the NASA STI Program Office, see the following:
|
|||
|
• Access the NASA STI Program Home Page at http://www.sti.nasa.gov/STI-homepage.html
|
|||
|
• E-mail your question via the Internet to help@sti.nasa.gov
|
|||
|
• Fax your question to the NASA Access Help Desk at (301) 621-0134
|
|||
|
• Telephone the NASA Access Help Desk at (301) 621-0390
|
|||
|
• Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076
|
|||
|
|
|||
|
NASA/TP–2009–214174
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)—Revised
|
|||
|
Fred Espenak NASA Goddard Space Flight Center, Greenbelt, Maryland Jean Meeus (Retired) Kortenberg, Belgium
|
|||
|
National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771
|
|||
|
January 2009
|
|||
|
|
|||
|
NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320
|
|||
|
|
|||
|
Available from:
|
|||
|
|
|||
|
National Technical Information Service 5285 Port Royal Road Springfield, VA 22161
|
|||
|
|
|||
|
PREFACE
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
Solar eclipse canons have traditionally been publications offering maps of past and future eclipse paths using the best ephemerides of their day for calculating the positions of the Sun and Moon. The first major work of this kind was Theodor von Oppolzer’s 1887 Canon der Finsternisse (Translated as Canon of Eclipses, Gingerich, 1962). It stands as one of the greatest achievements in computational astronomy of the 19th century and contains the elements of all 8,000 solar eclipses (and 5,200 lunar eclipses) occurring between the years –1207 and +2161 (1208 BCE and 2161 CE, respectively), together with maps showing the approximate positions of the central lines. To accomplish this remarkable feat, a number of approximations were used in the calculations and maps. Consequently, the eclipse paths often differ by hundreds of miles compared to rigorous predictions generated with modern ephemerides. Furthermore, the 1887 Canon took no account of the shifts imparted to ancient eclipse paths as a consequence of Earth’s variable rotation rate and the secular acceleration of the Moon. Nevertheless, Oppolzer’s canon remained the standard reference for nearly a century.
|
|||
|
With the arrival of the electronic computer, the Canon of Solar Eclipses (Meeus, Grosjean, and Vanderleen, 1966) contains the Besselian elements of all solar eclipses from +1898 to +2510, together with central line tables and maps. The aim of this work was to provide data on future eclipses.
|
|||
|
In comparison, the Canon of Solar Eclipses, –2003 to +2526 (Mucke and Meeus, 1983) was intended primarily for historical research, serving as the modern day successor of Oppolzer’s great canon. The Mucke-Meeus publication included Besselian elements and maps of all 10,774 solar eclipses during this time interval. Each orthographic map was oriented to show the day-side hemisphere of Earth. In this projection, the path of the Moon’s penumbra and the central axis of the shadow cone could be approximated by straight lines.
|
|||
|
Several other special canons have been produced. Atlas of Historical Eclipse Maps, East Asia 1500 BC – AD 1900 (Stephenson and Houlden, 1986) provides the path maps of all total and annular eclipses visible from China. The Fifty Year Canon of Solar Eclipses: 1986–2035 (Espenak, 1987) contains individual detailed maps and central path data for all solar eclipses from 1986 through 2035.
|
|||
|
Without exception, all solar eclipse canons produced during the latter half of the 20th century were based on Newcomb’s tables of the Sun (1895) and Brown’s lunar theory (1905), subject to later modifications in the Improved Lunar Ephemeris (1954). These were the best ephemerides of their day, but they have all been superseded.
|
|||
|
The recently published Five Millennium Canon of Solar Eclipses: –1999 to +3000 (Espenak and Meeus, 2007) contains individual maps for each of the 11,898 solar eclipses occurring over this period. The following points highlight the features and characteristics of this work.
|
|||
|
• Based on modern theories of the Sun and the Moon constructed at the Bureau des Longitudes of Paris rather than the older Newcomb and Brown ephemerides.
|
|||
|
• Ephemerides and eclipse predictions performed in Terrestrial Dynamical Time. • Covers historical period of eclipses, as well as one millennium into the future. • Global maps for each eclipse depict the actual northern and southern limits of the Moon’s penumbral
|
|||
|
and umbral or antumbral shadows, as well as the sunrise and sunset curves. • Maps include curve of eclipse magnitude 0.5. • Maps include continental outlines with contemporary political boundaries and are large enough to
|
|||
|
identify geographic regions of eclipse visibility. • Maps are based on the most current determination of the historical values of ∆T. • Estimates of eclipse path accuracy based on the uncertainty in the value of ∆T (i.e., standard error in ∆T)
|
|||
|
|
|||
|
iii
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) A primary goal of this work is to assist historians and archeologists in the identification and dating of eclipses found in references and records from antiquity. This is no easy task because there are usually several possible candidates. Accurate maps using the best available values of ∆T coupled with estimates in the standard error of ∆T, are critical in discriminating among potential eclipse candidates. Ultimately, historical eclipse identification can lead to improved chronologies in the timeline of a particular culture. The Canon is of value to educators, planetariums, and anyone interested in knowing when and where past and future eclipses occur. The general public is fascinated by eclipses. With each major eclipse, the question always arises as to when a particular location experienced its last and next eclipses. The maps presented in the Canon are ideally suited to addressing such queries. To supplement the 11,898 eclipse maps in the Five Millennium Canon of Solar Eclipses, we offer the following catalog. It includes additional information for each eclipse that could not be included in the original 648-page publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, ∆T, lunation number, Saros number, eclipse type, Quincena Lunar Eclipse parameter, gamma, eclipse magnitude, geographic coordinates of greatest eclipse (latitude and longitude), and the circumstances at greatest eclipse (i.e., Sun altitude and azimuth, path width, and central line duration). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of ∆T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
|
|||
|
—Fred Espenak and Jean Meeus 2008 August
|
|||
|
PREFACE TO THE REVISED EDITION
|
|||
|
The purpose of this revised edition of the Five Millennium Catalog of Solar Eclipses is to correct an error in the value of ∆T given in some of the tables in the Appendix. The affected tables in the original publication cover the period from about –600 through +1700 with the largest deviations in ∆T (1500 to 4600 s) occurring between years +500 to +1000. The errant values resulted from an indexing problem in the software used to generate the final tables. The corresponding longitude values of greatest eclipse are also incorrect because they rely on the value of ∆T. The revised publication corrects the above errors.
|
|||
|
—Fred Espenak and Jean Meeus 2009 January
|
|||
|
iv
|
|||
|
|
|||
|
TABLE OF CONTENTS
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
Section 1: Catalog and Predictions<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>1 Section 2: Time<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 9 Section 3: Solar Eclipse Statistics<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>17 Section 4: Eclipses and the Moon’s Orbit<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 37 Section 5: Solar Eclipse Periodicity<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 48 Abbreviations<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 62 References<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 63 Appendix<08><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A-1
|
|||
|
|
|||
|
v
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Section 1: Catalog and Predictions
|
|||
|
1.1 Introduction Earth will experience 11,898 eclipses of the Sun during the 5000-year period from –1999 to +3000 (2000 BCEa to 3000 CE). The catalog presented in the Appendix consists of a series of tables that summarize the principal characteristics of each solar eclipse over this time interval. As such, it serves to complement the previously published Five Millennium Canon of Solar Eclipses (NASA/TP–2006–214141), which contain individual maps for each eclipse over the same period.
|
|||
|
1.2 Explanation of Solar Eclipse Catalog Each line in the catalog corresponds to one eclipse and provides concise parameters to characterize the eclipse. The calendar date and Dynamical Time of the instant of greatest eclipse are given along with the adopted value of delta T (ΔT). The lunation number (since 2000 Jan 06) and the Saros series are listed along with the eclipse type (P=Partial, A=Annular, T=Total, or H=Hybrid). Gamma is the distance of the shadow axis from Earth’s center at greatest eclipse, while the eclipse magnitude is defined as the fraction of the Sun’s diameter obscured at that instant. The geographic latitude and longitude of the umbra are given for greatest eclipse, along with the Sun’s altitude and azimuth, the width of the path (kilometers), and the central line duration of totality or annularity. For both partial and non-central umbral/ antumbral eclipses, the latitude and longitude correspond to the point closest to the shadow cone axis at greatest eclipse. The Sun’s altitude is always 0° at this location. A more detailed description of each field in the catalog follows.
|
|||
|
1.2.1 Catalog Number
|
|||
|
The catalog number is the sequential number assigned to each eclipse in the catalog from 1 to 11,898.
|
|||
|
1.2.2 Canon Plate
|
|||
|
The Five Millennium Canon of Solar Eclipses consists of 595 plates with 20 eclipse maps per plate. The canon plate identifies the plate number in which each eclipse appears.
|
|||
|
1.2.3 Calendar Date
|
|||
|
All eclipse dates from 1582 Oct 15 onwards use the modern Gregorian calendar currently found throughout most of the world. The older Julian calendar is used for eclipse dates prior to 1582 Oct 04. Because of the Gregorian Calendar Reform, the day following 1582 Oct 04 (Julian calendar) is 1582 Oct 15 (Gregorian calendar).
|
|||
|
The Gregorian calendar was decreed by Pope Gregory XIII in 1582 to correct a problem in a drift of the seasons. It adopts the convention of a year containing 365 days. Every fourth year is a leap year of 366 days if it is divisible by 4 (e.g., 2004, 2008, etc.). However, whole century years (e.g., 1700, 1800, 1900) are excluded from the leap year rule unless they are also divisible by 400 (e.g., 2000). This complicated dating scheme was designed to keep the vernal equinox on or within a day of March 21.
|
|||
|
Prior to the Gregorian Calendar Reform in 1582, the Julian calendar was in wide use. It was simpler than the Gregorian in that all years divisible by 4 were counted as 366-day leap years. This simplicity came at a cost. After more than 16 centuries of use, the Julian calendar date of the vernal equinox had drifted 11 days from March 21. It was this failure of the Julian calendar that resulted in the Gregorian Calendar Reform. a. The terms BCE and CE are abbreviations for “Before the Common Era” and “Common Era,” respectively. They are the secular
|
|||
|
equivalents to the BC and AD dating conventions. A major advantage of the BCE/CE convention is that both terms are suffixes, whereas BC and AD are used as a suffix and prefix, respectively.
|
|||
|
1
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) The Julian calendar does not include the year 0, so the year 1 BCE is followed by the year 1 CE. This is awkward for arithmetic calculations. In this publication, dates are counted using the astronomical numbering system which recognizes the year 0. Historians should note the numerical difference of one year between astronomical dates and BCE dates. Thus, the year 0 corresponds to 1 BCE, and the year –100 corresponds to 101 BCE, etc.
|
|||
|
There are a number of ways to write the calendar date through variations in the order of day, month, and year. The International Organization for Standardization’s (ISO) 8601 advises a numeric date representation, which organizes the elements from the largest to the smallest. The exact format is YYYY-MM-DD where YYYY is the calendar year, MM is the month of the year between 01 (January) and 12 (December), and DD is the day of the month between 01 and 31. For example, the 27th day of April in the year 1943 would then be expressed as 1943-04-27. We follow the ISO convention, but have replaced the month number with the three-letter English abbreviation of the month name for additional clarity. From the previous example, we express the date as 1943 Apr 27.
|
|||
|
1.2.4 TD of Greatest Eclipse
|
|||
|
The instant of greatest eclipse occurs when the distance between the axis of the Moon’s shadow cone and the center of Earth reaches a minimum. For partial eclipses, the instant of greatest eclipse differs slightly from the instant of greatest magnitude primarily because of Earth’s flattening. For total eclipses, the instant of greatest eclipse differs slightly from the instant of greatest duration, although the differences are quite small.
|
|||
|
Solar eclipses occur when the Moon is near one of the nodes of its orbit, and therefore, moving at an angle of about 5° to the ecliptic. Hence, unless the eclipse is perfectly central, the instant of greatest eclipse does not coincide with that of apparent ecliptic conjunction (i.e., New Moon), nor with the time of conjunction in Right Ascension.
|
|||
|
Greatest eclipse is given in Terrestrial Dynamical Time (TD, Sect. 2.3), which is a time system based on International Atomic Time. As such, TD is the atomic time equivalent to its predecessor Ephemeris Time (Sect. 2.2) and is used in the theories of motion for bodies in the solar system. To determine the geographic visibility of an eclipse, TD is converted to Universal Time (Sect. 2.4) using the parameter ∆T (Sects. 2.6 and 2.7).
|
|||
|
1.2.5 Delta T (∆T)
|
|||
|
Delta T (∆T) is the arithmetic difference, in seconds, between Terrestrial Dynamical Time (Sect. 2.3) and Universal Time (Sect. 2.4). For more information on ∆T, see Section 2.6.
|
|||
|
1.2.6 Lunation Number
|
|||
|
The lunation number is the number of synodic months or lunations since New Moon on 2000 Jan 06. The Brown Lunation Number can be calculated from it by adding 953.
|
|||
|
1.2.7 Saros Series Number
|
|||
|
Each eclipse belongs to a Saros series (Sect. 5.2) using a numbering system first introduced by van den Bergh (1955). This system has been expanded to include negative values from the past, as well as additional series in the future. The eclipses with an odd Saros number take place at the ascending node of the Moon’s orbit; those with an even Saros number take place at the descending node.
|
|||
|
The Saros is a period of 223 synodic months, or approximately 18 years, 11 days, and 8 hours. Eclipses separated by this period belong to the same Saros series and share similar geometry and characteristics.
|
|||
|
2
|
|||
|
|
|||
|
1.2.8 Eclipse Type
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
The first character in this 2-character parameter gives the eclipse type. The four basic types of solar eclipses are:
|
|||
|
|
|||
|
1) P = Partial Solar Eclipse (Moon’s penumbral shadow traverses Earth; Moon’s umbral and antumbral shadows completely miss Earth)
|
|||
|
2) A = Annular Solar Eclipse (Moon’s antumbral shadow traverses Earth; Moon is too far from Earth to completely cover the Sun)
|
|||
|
3) T = Total Solar Eclipse (Moon’s umbral shadow traverses Earth (Moon is close enough to Earth to completely cover the Sun)
|
|||
|
4) H = Hybrid Solar Eclipse (Moon’s umbral and antumbral shadows traverse different parts of Earth; eclipse appears either total or annular along different sections of its path. Hybrid eclipses are also known as annular-total eclipses.)
|
|||
|
|
|||
|
The second character of the eclipse type is a qualifier defined as follows.
|
|||
|
|
|||
|
1) m = Middle eclipse of Saros series. 2) n = Central eclipsea with no northern limit. 3) s = Central eclipse with no southern limit. 4) + = Non-central eclipseb with no northern limit. 5) – = Non-central eclipse with no southern limit. 6) 2 = Hybrid eclipsec path begins total and ends annular. 7) 3 = Hybrid eclipse path begins annular and ends total. 8) b = Saros series begins (first eclipse in a Saros series). 9) e = Saros series ends (last eclipse in a Saros series).
|
|||
|
|
|||
|
Qualifiers 1 through 5 are used with annular, total or hybrid eclipses but not partial eclipses. Qualifiers 6 and 7 apply only to special classes of hybrid eclipses while qualifiers 8 and 9 are used exclusively with partial eclipses.
|
|||
|
|
|||
|
1.2.9 Quincena Lunar Eclipse Parameter (QLE)
|
|||
|
A lunar eclipse always occurs within ~15 days of a solar eclipse. The Quincenad Lunar Eclipse parameter (QLE) identifies the type of the lunar eclipse and whether it precedes or succeeds a particular solar eclipse. There are three basic types of lunar eclipses:
|
|||
|
1) n = penumbral lunar eclipse (Moon partly or completely within Earth’s penumbral shadow) 2) p = partial lunar eclipse (Moon partly within Earth’s umbral shadow) 3) t = total lunar eclipse (Moon completely within Earth’s umbral shadow)
|
|||
|
a. A central eclipse is an annular, total or hybrid eclipse in which the central axis of the Moon’s shadow traverses Earth, thereby producing a central line in the eclipse track. The paths of most central eclipses have both a northern and southern limit. On rare occasions when the umbral or antumbral shadow grazes Earth, the resulting the eclipse track may have only one limit.
|
|||
|
b. A non-central eclipse is an annular, total or hybrid eclipse in which the central axis of the Moon’s shadow misses Earth, while one edge of the umbra or antumbra grazes Earth producing a ground track with one limit and no central line.
|
|||
|
c. Most hybrid eclipse paths begin and end as annular while becoming total along the middle portion of the track. In rare instances, however, a hybrid may begin as annular and end as total or vise versa.
|
|||
|
d. Quincena is Spanish for a period of about 15 days. The month is normally divided into two quincenas. The first quincena consists of the initial 15 days of the month while the remaining days make up the second quincena. Thus, the exact length of a quincena can vary from 13 to 16 days, depending on the month. For the purpose of this catalog, the term quincena is used to describe a pair of eclipses—one solar and one lunar—occurring within ~15 days of each other.
|
|||
|
3
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
The QLE consists of a two-character string. The characters identify the type of lunar eclipse preceding and succeeding a solar eclipse, respectively. In most instances, one of the two characters in the QLE is “-” indicating a single lunar eclipse either precedes or succeeds the solar eclipse. On some occasions, a double quincena occurs in which a solar eclipse is both preceded and succeeded by lunar eclipses. The QLE then consists of two characters identifying the types of the two lunar eclipses.
|
|||
|
|
|||
|
1.2.10 Gamma
|
|||
|
|
|||
|
The quantity gamma is the minimum distance from the axis of the lunar shadow cone to the center of Earth, in units of Earth’s equatorial radius. This distance is positive or negative, depending on whether the axis of the shadow cone passes north or south of Earth’s center. If gamma is between +0.997 and –0.997, the eclipse is a central one (either total, annular, or hybrid). The limiting value 0.997 differs from unity because of the flattening of Earth.
|
|||
|
|
|||
|
The change in the value of gamma, after one Saros period, is larger when Earth is near its aphelion (June–July) than when it is near perihelion (December–January). Table 1-1 illustrates this point using eclipses from two different Saros series.
|
|||
|
|
|||
|
Table 1-1. Variation in Gamma at Aphelion vs. Perihelion
|
|||
|
|
|||
|
Date
|
|||
|
|
|||
|
Gamma
|
|||
|
|
|||
|
Date
|
|||
|
|
|||
|
Gamma
|
|||
|
|
|||
|
1955 Jun 20
|
|||
|
|
|||
|
–0.15278
|
|||
|
|
|||
|
1956 Dec 02 +1.09229
|
|||
|
|
|||
|
1973 Jun 30
|
|||
|
|
|||
|
–0.07853
|
|||
|
|
|||
|
1974 Dec 13 +1.07975
|
|||
|
|
|||
|
1991 Jul 11
|
|||
|
|
|||
|
–0.00412
|
|||
|
|
|||
|
1992 Dec 24 +1.07107
|
|||
|
|
|||
|
2009 Jul 22
|
|||
|
|
|||
|
+0.06977
|
|||
|
|
|||
|
2011 Jan 04 +1.06265
|
|||
|
|
|||
|
2027 Aug 02 +0.14209
|
|||
|
|
|||
|
2029 Jan 14 +1.05532
|
|||
|
|
|||
|
A similar situation exists in the case of lunar eclipses. The explanation can be found in van den Bergh (1955).
|
|||
|
|
|||
|
1.2.11 Eclipse Magnitude
|
|||
|
The eclipse magnitude is defined as the fraction of the Sun’s diameter occulted by the Moon. For partial eclipses, the eclipse magnitude at the instant of greatest eclipse is given for the geographic position closest to the axis of the Moon’s shadow cone. For central eclipses (total, annular, and hybrid), the eclipse magnitude listed is actually the ratio of the topocentric apparent diameters of the Moon and Sun at greatest eclipse. The eclipse magnitude is always less than 1.0 for partial and annular eclipses, but equal to, or greater than, 1.0 for total and hybrid eclipses.
|
|||
|
|
|||
|
1.2.12 Latitude and Longitude The geographic latitude and longitude corresponds to the position of greatest eclipse.
|
|||
|
|
|||
|
1.2.13 Altitude of Sun
|
|||
|
The Sun’s altitude at the geographic position intersected by the axis of the lunar shadow cone is given at the instant of greatest eclipse. For partial eclipses, the Sun’s altitude is always 0° because the shadow axis misses Earth. In this case, the geographic position corresponds to the point closest to the shadow axis.
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
1.2.14 Azimuth of Sun
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
The Sun’s azimuth at the geographic position intersected by the axis of the lunar shadow cone is given at the instant of greatest eclipse. The values 0°, 90°, 180°, and 270° correspond to the cardinal directions north, east, south and west, respectively.
|
|||
|
|
|||
|
1.2.15 Path Width
|
|||
|
For central eclipses (total, annular, or hybrid), the width of the path of totality or annularity (kilometers) is given at the geographic position intersected by the axis of the lunar shadow cone at the instant of greatest eclipse.
|
|||
|
1.2.16 Central Line Duration
|
|||
|
For central eclipses (total, annular, or hybrid), the central line duration of the total or annular phase (in minutes and seconds) is given at the geographic position intersected by the axis of the lunar shadow cone at the instant of greatest eclipse.
|
|||
|
In the case of a total or hybrid eclipse, this duration is very nearly, but not exactly, the maximum duration of the total phase along the entire umbral path. For an annular eclipse, the duration at greatest eclipse may be near either the minimum or maximum duration of the annular phase along the path. If the annular phase duration exceeds approximately 2.3 min, then it corresponds to the near maximum duration along the central line track. If the annular phase duration is less, however, then it corresponds to a near minimum and the annular duration increases towards the ends of the central path.
|
|||
|
1.3 Solar and Lunar Coordinates
|
|||
|
The coordinates of the Sun used in these eclipse predictions have been calculated on the basis of the VSOP87 theory constructed by Bretagnon and Francou (1988) at the Bureau des Longitudes, Paris. This theory gives the ecliptic longitude and latitude of the planets, and their radius vector, as sums of periodic terms. The complete set of periodic terms of version D of VSOP87 (this version provides the positions referred to the mean equinox of the date) were used in the predictions.
|
|||
|
For the Moon, use has been made of the theory ELP-2000/82 of Chapront-Touzé and Chapront (1983), again of the Bureau des Longitudes. This theory contains a total of 37,862 periodic terms, namely 20,560 for the Moon’s longitude, 7,684 for the latitude, and 9,618 for the distance to Earth. But many of these terms are very small: some have an amplitude of only 0.00001 arcsec for the longitude or the latitude, and of 2 cm for the distance. The computer program used in the eclipse predictions neglects all periodic terms with coefficients smaller than 0.0005 arcsec in longitude and latitude, and smaller than 1 m in distance. Because of the exclusion of these very small periodic terms, the Moon’s calculated positions have a mean error (as compared to the full ELP theory) of about 0.0006 s of time in right ascension, and about 0.006 arcsec in declination. The corresponding error in the calculated times of the phases of a solar eclipse is of the order of 1/40 s, which is considerably smaller than the uncertainties in predicted values of ∆T, and also much smaller than the error due to neglecting the irregularities (mountains and valleys) at the lunar limb.
|
|||
|
Improved expressions for the mean arguments L′, D, M, M′, and F have been taken from Chapront, Chapront-Touzé, and Francou (2002). A major consequence of this work is to bring the secular acceleration of the Moon’s longitude (–25.858 arcsec/cy2, where arcsec/cy2 is arc seconds per Julian century squareda) into good agreement with Lunar Laser Ranging (LLR) observations from 1972 to 2001 (Sect. 1.4).
|
|||
|
|
|||
|
a. This unit, arcsec/cy2, is used in discussing secular changes in the Moon’s longitude over long time intervals. 5
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
The center of figure of the Moon does not coincide exactly with its center of mass. To compensate for this property in their eclipse predictions, many of the national institutes employ an empirical correction to the center of mass position of the Moon. This correction is typically +0.50 arcsec in longitude and –0.25 arcsec in latitude. Unfortunately, the large variation in lunar libration from one eclipse to the next minimizes the effectiveness of the empirical correction. The authors have chosen to ignore this convention and have performed all calculations using the Moon’s center of mass position. In any case, it has no practical impact on the present work.
|
|||
|
|
|||
|
1.4 Secular Acceleration of the Moon
|
|||
|
Ocean tides are caused by the gravitational pull of the Moon (and, to a lesser extent, the Sun). The resulting tidal bulge in Earth’s oceans is dragged ahead of the Moon in its orbit because of the daily rotation of Earth. As a consequence, the ocean mass offset from the Earth–Moon line exerts a pull on the Moon and accelerates it in its orbit. Conversely, the Moon’s gravitational tug on this mass exerts a torque that decelerates the rotation of Earth. The length of the day gradually increases as energy is transferred from Earth to the Moon, causing the lunar orbit and period of revolution about Earth to increase.
|
|||
|
|
|||
|
This secular acceleration of the Moon is small, but it has a cumulative effect on the Moon’s position when extrapolated over many centuries. Direct measurements of the acceleration have only been possible since 1969 using the Apollo retro-reflectors left on the Moon. The results from LLR show that the Moon’s mean distance from Earth is increasing by 3.8 cm per year (Dickey, et al., 1994). The corresponding acceleration in the Moon’s ecliptic longitude is –25.858 arcsec/cy2 (Chapront, Chapront-Touzé, and Francou, 2002). This is the value we have adopted in our lunar ephemeris calculations.
|
|||
|
|
|||
|
There is a close correlation between the Moon’s secular acceleration and changes in the length of the day. The relation-
|
|||
|
|
|||
|
ship, however, is not exact because the lunar orbit is inclined anywhere from about 18.5° to 28.5° to Earth’s equator.
|
|||
|
|
|||
|
The parameter ∆T (Sects. 2.6 and 2.7) is a measure of the accumulated difference in time between an ideal clock
|
|||
|
|
|||
|
and one based on Earth’s rotation as it gradually slows down. Published determinations of ∆T from historical eclipse
|
|||
|
|
|||
|
records have assumed a secular acceleration of –26 arcsec/cy2 (Morrison and Stephenson, 2004). Because a slightly
|
|||
|
|
|||
|
different value for the secular acceleration is adopted here, a small correction “c” must be made to the published
|
|||
|
|
|||
|
values of ∆T as follows:
|
|||
|
|
|||
|
c = –0.91072 (–25.858 + 26.0 ) u 2,
|
|||
|
|
|||
|
(1–1)
|
|||
|
|
|||
|
where u = (year –1955)/100.
|
|||
|
|
|||
|
Then
|
|||
|
|
|||
|
∆T (corrected) = ∆T + c.
|
|||
|
|
|||
|
(1–2)
|
|||
|
|
|||
|
Evaluation of the correction at 1,000 year intervals over the period spanned by this Catalog is found in Table 1-2.
|
|||
|
|
|||
|
Table 1-2. Corrections to ∆T Due to Secular Acceleration
|
|||
|
|
|||
|
Year
|
|||
|
–2000 –1000
|
|||
|
0 +1000 +2000 +3000
|
|||
|
|
|||
|
Correction (seconds)
|
|||
|
–202 –113 –49 –12
|
|||
|
0 –14
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus The correction is only important for negative years, although it is significantly smaller than the actual uncertainty in ∆T itself (Sect. 2.8).
|
|||
|
The secular acceleration of the Moon is poorly known and may not be constant. Careful records for its derivation only go back about a century. Before then, spurious and often incomplete eclipse and occultation observations from medieval and ancient manuscripts comprise the database. In any case, the current value implies an increase in the length of day (LOD) of about 2.3 ms/cy. Such a small amount may seem insignificant, but it has very measurable cumulative effects. At this rate, time as measured through Earth’s rotation is losing about 84 s/cy2 when compared to atomic time.
|
|||
|
1.5 Mean Lunar Radius
|
|||
|
A fundamental parameter used in eclipse predictions is the Moon’s radius, k, expressed in units of Earth’s equatorial radius. The Moon’s actual radius varies as a function of position angle and libration because of irregularity in the limb profile. From 1968 to 1980, the Nautical Almanac Office used two separate values for k in their predictions. The larger value (k=0.2724880), representing a mean over topographic features, was used for all penumbral (exterior) contacts and for annular eclipses. A smaller value (k=0.272281), representing a mean minimum radius, was reserved exclusively for umbral (interior) contact calculations of total eclipses (Explanatory Supplement, 1974). Unfortunately, the use of two different values of k for total and annular eclipses introduces a discontinuity in the case of hybrid eclipses.
|
|||
|
In 1982, the International Astronomical Union (IAU) adopted a value of k=0.2725076 for the lunar radius, based on a mean including mountain peaks and valleys along the Moon’s limb. This value is currently used by the Nautical Almanac Office for all solar eclipse predictions. The adoption of one single value for k eliminates the discontinuity in the case of hybrid eclipses and ends confusion arising from the use of two different values. However, the use of even the best mean value for the Moon’s radius introduces a problem in predicting the true character and duration of umbral and antumbral eclipses, particularly total eclipses. A total eclipse can be defined as an eclipse in which the Sun’s disk is completely occulted by the Moon. This cannot occur so long as any photospheric rays are visible through deep valleys along the Moon’s limb (Meeus, Grosjean, and Vanderleen, 1966); but the use of the IAU’s mean k guarantees that some annular or hybrid eclipses will be misidentified as total. A case in point is the eclipse of 1986 Oct 03. Using the IAU value for k, the Astronomical Almanac for 1986 (1985) identified this event as a total eclipse of 3 s duration when it was, in fact, a beaded annular eclipse. Because a smaller value of k is more representative of the deeper lunar valleys and hence, the minimum solid disk radius, it helps ensure the correct identification of an eclipse’s actual type.
|
|||
|
This publication adopts the two values for k used by the Nautical Almanac Office from 1968 through 1980. The larger value (k=0.2724880) is utilized for all partial (penumbral) eclipses. The magnitudes of these eclipses typically agree to within 0.0001 of the magnitudes calculated using the IAU value for k.
|
|||
|
In order to avoid eclipse type misidentification and to predict central durations, which are closer to the actual durations at total eclipses, the smaller value (k=0.272281) is used for all umbral and antumbral eclipses (total, annular, and hybrid). This usage of the smaller k value is consistent with predictions in Fifty Year Canon of Solar Eclipses: 1986–2035 (Espenak, 1987). Consequently, the smaller k produces shorter central durations and narrower paths for total eclipses when compared with calculations using the IAU value for k. Similarly, predictions using the smaller k result in longer central durations and wider paths for annular eclipses than do predictions using the IAU’s k.
|
|||
|
1.6 Five Millennium Catalog of Solar Eclipses on the Internet
|
|||
|
The Five Millennium Catalog of Solar Eclipses—Revised (NASA/TP–2009–214174) is available in PDF format on the NASA Eclipse Web Site at:
|
|||
|
7
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) http://eclipse.gsfc.nasa.gov/SEpubs/5MKSE.html The tables in this catalog are also available via the Web at: http://eclipse.gsfc.nasa.gov/SEcat5/catalog.html Organized into 100-year intervals, the tables have individual links to eclipse maps and Saros series tables.
|
|||
|
1.7 Five Millennium Canon of Solar Eclipses on the Internet The Five Millennium Canon of Solar Eclipses (NASA/TP–2006–214141) is available in PDF format on the NASA Eclipse Web Site at:
|
|||
|
http://eclipse.gsfc.nasa.gov/SEpubs/5MCSE.html
|
|||
|
8
|
|||
|
|
|||
|
Section 2: Time
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
2.1 Greenwich Mean Time
|
|||
|
For thousands of years, time has been measured using the length of the solar day. This is the interval between two successive returns of the Sun to an observer’s local meridian. Unfortunately, the length of the apparent solar day can vary by tens of seconds over the course of a year. Earth’s elliptical orbit around the Sun and the 23.5° inclination of Earth’s axis of rotation are responsible for these variations. Apparent solar time was eventually replaced by mean solar time because it provides for a uniform time scale. The key to mean solar time is the mean solar day, which has a constant length of 24 hours throughout the year.
|
|||
|
Mean solar time on the 0° longitude meridian in Greenwich, England is known as Greenwich Mean Time (GMT). At the International Meridian Conference of 1884, GMT a was adopted as the reference time for all clocks around the world. It was also agreed that all longitudes would be measured east or west with respect to the Greenwich meridian. In 1972, GMT was replaced by Coordinated Universal Time (UTC) as the international time reference. Nevertheless, UTC is colloquially referred to as GMT although this is technically not correct.
|
|||
|
2.2 Ephemeris Time
|
|||
|
During the 20th century, it was found that the rotational period of Earth (length of the day) was gradually slowing down. For the purposes of orbital calculations, time using Earth’s rotation was abandoned for a more uniform time scale based on Earth’s orbit about the Sun. In 1952, the International Astronomical Union (IAU) introduced Ephemeris Time (ET) to address this problem. The ephemeris second was defined as a fraction of the tropical year for 1900 Jan 01 as calculated from Newcomb’s tables of the Sun (1895). Ephemeris Time was used for Solar System ephemeris calculations until it was replaced by TD in 1979.
|
|||
|
2.3 Terrestrial Dynamical Time
|
|||
|
TD was introduced by the IAU in 1979 as the coordinate time scale for an observer on the surface of Earth. It takes into account relativistic effects and is based on International Atomic Time (TAI), which is a high-precision standard using several hundred atomic clocks worldwide. As such, TD is the atomic time equivalent to its predecessor ET and is used in the theories of motion for bodies in the solar system. To ensure continuity with ET, TD was defined to match ET for the date 1977 Jan 01. In 1991, the IAU refined the definition of TD to make it more precise. It was also renamed Terrestrial Time (TT), although we prefer, and use, the older name Terrestrial Dynamical Time.
|
|||
|
2.4 Universal Time
|
|||
|
For many centuries, the fundamental unit of time was the rotational period of Earth with respect to the Sun. GMT was the standard time reference based on the mean solar time on the 0° longitude meridian in Greenwich, England. Universal Time (UT) is the modern counterpart to GMT and is determined from Very Long Baseline Interferometry (VLBI) observations of the diurnal motion of quasars. Unfortunately, UT is not a uniform time scale because Earth’s rotational period is (on average) gradually increasing.
|
|||
|
The change is primarily due to tidal friction between Earth’s oceans and its rocky mantle through the gravitational attraction of the Moon and, to a lesser extent, the Sun. This secular acceleration (Sect. 1.4) gradually transfers angu-
|
|||
|
a. GMT was originally reckoned from noon to noon. In 1925, some countries shifted GMT by 12 h so that it would begin at Greenwich midnight. This new definition is the one in common usage for world time and in the navigational publications of English-speaking countries. The designation Greenwich Mean Astronomical Time (GMAT) is reserved for the reckoning of time from noon (and previously called GMT).
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
lar momentum from Earth to the Moon. As Earth loses energy and slows down, the Moon gains this energy and its orbital period and distance from Earth increase. Shorter period fluctuations in terrestrial rotation also exist, which can produce an accumulated clock error of ±20 s in one or more decades. These decade variations are attributed to several geophysical mechanisms including fluid interactions between the core and mantle of Earth. Climatological changes and variations in sea-level may also play significant roles because they alter Earth’s moment of inertia.
|
|||
|
The secular acceleration of the Moon implies an increase in the length of day (LOD) of about 2.3 milliseconds per century. Such a small amount may seem insignificant, but it has very measurable cumulative effects. At this rate, time as measured through Earth’s rotation is losing about 84 seconds per century squared when compared to atomic time.
|
|||
|
|
|||
|
2.5 Coordinated Universal Time
|
|||
|
Coordinated Universal Time (UTC) is the present day basis of all civilian time throughout the world. Derived from TAI, the length of the UTC second is defined in terms of an atomic transition of the element cesium and is accurate to approximately 1 ns (billionth of a second) per day. Because most daily life is still organized around the solar day, UTC was defined to closely parallel Universal Time. The two time systems are intrinsically incompatible, however, because UTC is uniform while UT is based on Earth’s rotation, which is gradually slowing. In order to keep the two times within 0.9 s of each other, a leap second is added to UTC about once every 12 to 18 months.
|
|||
|
|
|||
|
2.6 Delta T (∆T)
|
|||
|
The orbital positions of the Sun and Moon required by eclipse predictions, are calculated using TD because it is a uniform time scale. World time zones and daily life, however, are based on UTa. In order to convert eclipse predictions from TD to UT, the difference between these two time scales must be known. The parameter delta-T (∆T) is the arithmetic difference, in seconds, between the two as:
|
|||
|
|
|||
|
∆T = TD – UT.
|
|||
|
|
|||
|
(2–1)
|
|||
|
|
|||
|
Past values of ∆T can be deduced from the historical records. In particular, hundreds of eclipse observations (both solar and lunar) were recorded in early European, Middle Eastern, and Chinese annals, manuscripts, and canons. In spite of their relatively low precision, these data represent the only evidence for the value of ∆T prior to 1600 CE. In the centuries following the introduction of the telescope (circa 1609 CE), thousands of high quality observations have been made of lunar occultations of stars. The number and accuracy of these timings increase from the 17th through the 20th century, affording valuable data in the determination of ∆T. A detailed analysis of these measurements fitted with cubic splines for ∆T from –500 to +1950 is presented in Table 2-1 and includes the standard error for each value (Morrison and Stephenson, 2004).
|
|||
|
|
|||
|
a. World time zones are actually based on UTC. It is an atomic time synchronized and adjusted to stay within 0.9 s of astronomically determined UT. Occasionally, a “leap second” is added to UTC to keep it in sync with UT (which changes because of variations in Earth’s rotation rate).
|
|||
|
10
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 2-1. Values of ∆T Derived from Historical Records
|
|||
|
|
|||
|
Year
|
|||
|
–500 –400 –300 –200 –100
|
|||
|
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1750 1800 1850 1900 1950
|
|||
|
|
|||
|
∆T (seconds)
|
|||
|
17,190 15,530 14,080 12,790 11,640 10,580 9,600 8,640 7,680 6,700
|
|||
|
5,710 4,740 3,810 2,960 2,200 1,570 1,090
|
|||
|
740 490 320 200 120
|
|||
|
9 13 14 7 –3 29
|
|||
|
|
|||
|
Standard Error
|
|||
|
(seconds) 430 390 360 330 290 260 240 210 180 160 140 120 100 80 70 55 40 30 20 20 20 20 5 2 1 < 1 < 1 < 0.1
|
|||
|
|
|||
|
In modern times, the determination of ∆T is made using atomic clocks and radio observations of quasars, so it is completely independent of the lunar ephemeris. Table 2-2 gives the value of ∆T every five years from 1955 to 2005 (Astronomical Almanac for 2006 [2004], page K9).
|
|||
|
|
|||
|
11
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 2-2. Recent Values of ∆T from Direct Observations
|
|||
|
|
|||
|
Year
|
|||
|
1955.0 1960.0 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0
|
|||
|
|
|||
|
∆T (seconds)
|
|||
|
+31.1 +33.2 +35.7 +40.2 +45.5 +50.5 +54.3 +56.9 +60.8 +63.8 +64.7
|
|||
|
|
|||
|
5-Year Change (seconds)
|
|||
|
— 2.1 2.5 4.5 5.3 5.0 3.8 2.6 3.9 3.0 0.9
|
|||
|
|
|||
|
Average 1-Year Change
|
|||
|
(seconds) — 0.42 0.50 0.90 1.06 1.00 0.76 0.52 0.78 0.60 0.18
|
|||
|
|
|||
|
The average annual change of ∆T was 0.99 s from 1965 to 1980, however, the average annual increase was just 0.63 s from 1985 to 2000, and only 0.18 s from 2000 to 2005. Future changes and trends in ∆T can not be predicted with certainty because theoretical models of the physical causes are not of high enough precision. Extrapolations from the table weighted by the long period trend from tidal braking of the Moon offer reasonable estimates of +67 s in 2010, +93 s in 2050, +203 s in 2100, and +442 s in 2200.
|
|||
|
|
|||
|
Outside the period of observations (500 BCE to 2005 CE), the value of ∆T can be extrapolated from measured values using the long-term mean parabolic trend:
|
|||
|
|
|||
|
∆T = –20 + 32 u 2 s,
|
|||
|
|
|||
|
(2–2)
|
|||
|
|
|||
|
where u = (year – 1820)/100, and is defined as time measured in centuries. 2.7 Polynomial Expressions for ∆T
|
|||
|
|
|||
|
Using the ∆T values derived from the historical record and from direct observations (Tables 2-1 and 2-2, respectively), a series of polynomial expressions have been created to simplify the evaluation of ∆T for any time during the interval –1999 to +3000. We define the decimal year “y” as follows:
|
|||
|
|
|||
|
y = year + (month – 0.5)/12.
|
|||
|
|
|||
|
(2–3)
|
|||
|
|
|||
|
This gives y for the middle of the month, which is accurate enough given the precision in the known values of ∆T. The following polynomial expressions can be used to calculate the value of ∆T (in seconds) over the interval of the Five Millennium Catalog of Solar Eclipses (referred to hereafter simply as the Catalog).
|
|||
|
|
|||
|
Before the year –500, calculate where u = (y – 1820)/100.
|
|||
|
|
|||
|
∆T = –20 + 32 u2,
|
|||
|
|
|||
|
(2–4)
|
|||
|
|
|||
|
12
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Between years –500 and +500, we use the data from Table 2-1, except that for the year –500 we changed the value 17,190 to 17,203.7 in order to avoid a discontinuity with the previous formula (11) at that epoch. The value for ∆T is given by a polynomial of the 6th degree, which reproduces the values in Table 2-1 with an error not larger than 4 s:
|
|||
|
|
|||
|
∆T = 10583.6 – 1014.41 u + 33.78311 u2 – 5.952053 u3
|
|||
|
|
|||
|
–0.1798452 u4 + 0.022174192 u5 + 0.0090316521 u6
|
|||
|
|
|||
|
(2–5)
|
|||
|
|
|||
|
where u = y/100.
|
|||
|
|
|||
|
Between years 500 and 1600, we again use the data from Table 2-1. Calculate u = (y – 1000)/100. The value for ∆T is given by the following polynomial of the 6th degree with a divergence from Table 2-1 not larger than 4 s:
|
|||
|
|
|||
|
∆T = 1574.2 – 556.01 u + 71.23472 u2 + 0.319781 u3
|
|||
|
|
|||
|
– 0.8503463 u4 – 0.005050998 u5 + 0.0083572073 u6,
|
|||
|
|
|||
|
(2–6)
|
|||
|
|
|||
|
where u = (y – 1000)/100.
|
|||
|
|
|||
|
Between years 1600 and 1700, calculate
|
|||
|
|
|||
|
∆T = 120 – 0.9808 t – 0.01532 t2 + (t3 / 7129),
|
|||
|
|
|||
|
(2–7)
|
|||
|
|
|||
|
where t = y – 1600, and is defined as time measured in years.
|
|||
|
|
|||
|
Between years 1700 and 1800, calculate
|
|||
|
|
|||
|
∆T = 8.83 + 0.1603 t – 0.0059285 t2 + 0.00013336 t3 – (t4 / 1,174,000),
|
|||
|
|
|||
|
(2–8)
|
|||
|
|
|||
|
where t = y – 1700.
|
|||
|
|
|||
|
Between years +1800 and +1860, calculate
|
|||
|
|
|||
|
∆T = 13.72 – 0.332447 t + 0.0068612 t2 + 0.0041116 t3 – 0.00037436 t4
|
|||
|
|
|||
|
+ 0.0000121272 t5 – 0.0000001699 t6 + 0.000000000875 t7,
|
|||
|
|
|||
|
(2–9)
|
|||
|
|
|||
|
where t = y – 1800.
|
|||
|
|
|||
|
Between years 1860 and 1900, calculate
|
|||
|
|
|||
|
∆T = 7.62 + 0.5737 t – 0.251754 t2 + 0.01680668 t3 –0.0004473624 t4 +(t5 / 233,174),
|
|||
|
|
|||
|
(2–10)
|
|||
|
|
|||
|
where t = y – 1860.
|
|||
|
|
|||
|
Between years 1900 and 1920, calculate
|
|||
|
|
|||
|
∆T = –2.79 + 1.494119 t – 0.0598939 t2 + 0.0061966 t3 – 0.000197 t4, where t = y – 1900.
|
|||
|
|
|||
|
(2–11)
|
|||
|
|
|||
|
Between years 1920 and 1941, calculate
|
|||
|
|
|||
|
∆T = 21.20 + 0.84493 t – 0.076100 t2 + 0.0020936 t3,
|
|||
|
|
|||
|
(2–12)
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) where t = y – 1920.
|
|||
|
Between years 1941 and 1961, calculate
|
|||
|
|
|||
|
∆T = 29.07 + 0.407 t – (t2/233) + (t3 / 2547), where t = y – 1950. Between years 1961 and 1986, calculate
|
|||
|
∆T = 45.45 + 1.067 t – (t 2/260) – (t 3 / 718), where t = y – 1975. Between years 1986 and 2005, calculate
|
|||
|
∆T = 63.86 + 0.3345 t – 0.060374 t 2 + 0.0017275 t 3 + 0.000651814 t 4 + 0.00002373599 t 5, where t = y – 2000. Between years 2005 and 2050, calculate
|
|||
|
∆T = 62.92 + 0.32217 t + 0.005589 t 2, where t = y – 2000.
|
|||
|
|
|||
|
(2–13) (2–14) (2–15) (2–16)
|
|||
|
|
|||
|
This expression is derived from estimated values of ∆T in the years 2010 and 2050. The value for 2010 (66.9 s) is based on a linear extrapolation from 2005 using 0.39 s/y (average from 1995 to 2005a). The value for 2050 (93 s) is linearly extrapolated from 2010 using 0.66 s/y (average rate from 1901 to 2000).
|
|||
|
|
|||
|
Between years 2050 and 2150, calculate
|
|||
|
|
|||
|
∆T = –20 + 32 [(y – 1820)/100]2 – 0.5628 (2150 – y).
|
|||
|
|
|||
|
(2–17)
|
|||
|
|
|||
|
The last term is introduced to eliminate the discontinuity at 2050.
|
|||
|
|
|||
|
After 2150, calculate
|
|||
|
|
|||
|
∆T = –20 + 32 u2,
|
|||
|
|
|||
|
(2–18)
|
|||
|
|
|||
|
where u = (y – 1820)/100.
|
|||
|
|
|||
|
All values of ∆T, based on Morrison and Stephenson (2004), assume a value for the Moon’s secular acceleration of –26 arcsec/cy2. However, the ELP-2000/82 lunar ephemeris employed in the Catalog uses a slightly different value of –25.858 arcsec/cy2. Thus, a small correction “c” must be added to the values derived from the polynomial expressions for ∆T before they can be used in the Catalog:
|
|||
|
|
|||
|
c = – 0.000012932 (y – 1955)2.
|
|||
|
|
|||
|
(2–19)
|
|||
|
|
|||
|
a. Although ∆T values are available through 2008, the 2005 value is used here to be consistent with the values used in the Five Millennium Canon of Solar Eclipses: –1999 to +2000, NASA Tech. Pub. 2006–214141 (Espenak and Meeus, 2006).
|
|||
|
14
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Because the values of ∆T for the interval 1955 to 2005 were derived independent of any lunar ephemeris, no correction is needed for this period.
|
|||
|
|
|||
|
2.8 Uncertainty in ∆T
|
|||
|
The uncertainty in the value of ∆T is of particular interest in the calculation of eclipse paths in the distant past and future. Unfortunately, estimating the standard error in ∆T prior to 1600 CE is a difficult problem. It depends on a number of factors which include the accuracy of determining ∆T from historical eclipse records and modeling the physical processes producing changes in Earth’s rotation. Morrison and Stephenson (2004) propose a simple parabolic relation to estimate the standard error (σ), which is valid over the period 1000 BCE to 1200 CE:
|
|||
|
|
|||
|
σ = 0.8 t 2 s,
|
|||
|
|
|||
|
(2–20)
|
|||
|
|
|||
|
where t = (year – 1820)/100.
|
|||
|
|
|||
|
Table 2-3 gives the errors in ∆T along with the corresponding uncertainties in the longitude of an eclipse path.
|
|||
|
|
|||
|
Table 2-3. Uncertainty of ∆T, Part I
|
|||
|
|
|||
|
Year
|
|||
|
–1000 –500
|
|||
|
0 +500 +1000 +1200
|
|||
|
|
|||
|
σ (seconds)
|
|||
|
636 431 265 139 54 31
|
|||
|
|
|||
|
Longitude
|
|||
|
2.65° 1.79° 1.10° 0.58° 0.22° 0.13°
|
|||
|
|
|||
|
The decade fluctuations in ∆T result in an uncertainty of approximately 20 s (0.08°) for the period 1300 to 1600 CE.
|
|||
|
|
|||
|
During the telescopic era (1600 CE to present), records of astronomical observations pin down the decade fluctuations with increasing reliability. The uncertainties in ∆T are presented in Table 2-4 (Stephenson and Houlden, 1986).
|
|||
|
|
|||
|
Table 2-4. Uncertainty of ∆T, Part II
|
|||
|
|
|||
|
Year
|
|||
|
+1700 +1800 +1900
|
|||
|
|
|||
|
σ (seconds)
|
|||
|
5 1 0.1
|
|||
|
|
|||
|
Longitude
|
|||
|
0.021° 0.004° 0.0004°
|
|||
|
|
|||
|
The estimation in the uncertainty of ∆T prior to 1000 BCE must rely on a certain amount of modeling and theoretical arguments because no measurements of ∆T are available for this period. Huber (2000) proposed a Brownian motion model including drift to estimate the standard error in ∆T for periods outside the epoch of measured values. The intrinsic variability in the LOD during the 2,500 years of observations (500 BCE to 2000 CE) is 1.780 ms/cy with a standard error of 0.56 ms/cy. This rate is not due entirely to tidal friction, but includes a drift in LOD from imperfectly understood effects, such as changes in sea level due to variations in polar ice caps. Presumably, the same mechanisms operating during the present era also operated prior to 1000 BCE, as well as one millennium into the future.
|
|||
|
|
|||
|
15
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Huber’s derived estimate for the total standard error (fluctuations plus drift) in ∆T is as follows.
|
|||
|
|
|||
|
σ = 365.25 N SQRT [(N Q / 3) ( 1 + N / M)] / 1000,
|
|||
|
|
|||
|
(2–21)
|
|||
|
|
|||
|
where:
|
|||
|
|
|||
|
N = Difference between target year and calibration year; M = 2500 years (–500 to +2000)—this covers the period of observed ∆T measurements; and Q = 0.058 ms2/yr.
|
|||
|
|
|||
|
The calibration year is taken as –500 for target years before 500 BCE, while the calibration year is 2005 CE for target years in the future. Evaluation of this expression at 500-year intervals is found in Table 2-5. It shows estimates in the standard error of ∆T along with the equivalent shift in longitude.
|
|||
|
|
|||
|
Table 2-5. Uncertainty of ∆T, Part III
|
|||
|
|
|||
|
Year
|
|||
|
–4500 –4000 –3500 –3000 –2500 –2000 –1500 –1000
|
|||
|
— +2500 +3000 +3500 +4000 +4500 +5000
|
|||
|
|
|||
|
σ (seconds)
|
|||
|
20,717 16,291 12,378 8,978 6,094 3,732 1,900
|
|||
|
622 — 612 1,885 3,711 6,068 8,946 12,341
|
|||
|
|
|||
|
Longitude
|
|||
|
86.3° 67.9° 51.6° 37.4° 25.4° 15.6° 7.9° 2.6° — 2.6° 7.9° 15.6° 25.3° 37.3° 51.4°
|
|||
|
|
|||
|
16
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Section 3: Solar Eclipse Statistics
|
|||
|
|
|||
|
3.1 Statistical Distribution of Solar Eclipse Types
|
|||
|
Eclipses of the Sun can only occur during the New Moon phase. It is then possible for the Moon’s penumbral, umbral, or antumbral shadows to sweep across Earth’s surface thereby producing an eclipse. There are four types of solar eclipses:
|
|||
|
1) Partial—Moon’s penumbral shadow traverses Earth (umbral and antumbral shadows completely miss Earth)
|
|||
|
2) Annular—Moon’s antumbral shadow traverses Earth (Moon is too far from Earth to completely cover the Sun)
|
|||
|
3) Total—Moon’s umbral shadow traverses Earth (Moon is close enough to Earth to completely cover the Sun)
|
|||
|
4) Hybrid—Moon’s umbral and antumbral shadows traverse Earth (eclipse appears annular and total along different sections of its path). Hybrid eclipses are also known as annular-total eclipses.
|
|||
|
During the 5000-year period from –1999 to +3000 (2000 BCE to 3000 CE), Earth will experience 11,898 eclipses of the Sun. The statistical distribution of the four basic eclipse types over this interval is shown in Table 3-1.
|
|||
|
Table 3-1. Distribution of Basic Eclipse Types
|
|||
|
|
|||
|
Eclipse Type All Eclipses Partial Annular Total Hybrid
|
|||
|
|
|||
|
Abbreviation — P A T H
|
|||
|
|
|||
|
Number 11,898 4,200 3,956 3,173 569
|
|||
|
|
|||
|
Percent 100.0% 35.3% 33.2% 26.7% 4.8%
|
|||
|
|
|||
|
All partial eclipses are events in which some portion of the Moon’s penumbral shadow passes across Earth’s surface. In comparison all annular, total, and hybrid eclipses can be characterized as events in which some portion of the Moon’s umbral and/or antumbral shadow crosses Earth.
|
|||
|
In the case of umbral or antumbral eclipses (annular, total, or hybrid), they can be further categorized as:
|
|||
|
a) Central (two limits)—The central axis of the Moon’s umbral or antumbral shadow traverses Earth, thereby producing a central line in the eclipse track. The umbra or antumbra falls entirely upon Earth producing a ground track with both a northern and southern limit.
|
|||
|
b) Central (one limit)—The central axis of the Moon’s umbral or antumbral shadow traverses Earth, however, a portion of the umbra or antumbra misses Earth throughout the eclipse, thereby producing a ground track with just one limit.
|
|||
|
c) Non-Central—The central axis of the Moon’s umbral or antumbral shadow misses Earth, however, one edge of the umbra or antumbra grazes Earth, thereby producing a ground track with one limit and no central line.
|
|||
|
|
|||
|
Using the above categories, the distribution of the 3,956 annular eclipses is shown in Table 3-2.
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 3-2. Statistics of Annular Eclipses
|
|||
|
|
|||
|
Annular Eclipses All Annular Eclipses Central (two limits) Central (one limit) Non-Central (one limit)
|
|||
|
|
|||
|
Number 3,956 3,827 61 68
|
|||
|
|
|||
|
Percent 100.0%
|
|||
|
96.7% 1.5% 1.7%
|
|||
|
|
|||
|
Examples of central annular eclipses with one limit include: 1874 Oct 10, 2003 May 31, 2044 Feb 28, and 2101 Feb 28. Some examples of non-central annular eclipses are: 1950 Mar 18, 1957 Apr 30, 2014 Apr 29, and 2043 Oct 03.
|
|||
|
Similarly, the distribution of the 3,173 total eclipses is shown in Table 3-3.
|
|||
|
Table 3-3. Statistics of Total Eclipses
|
|||
|
|
|||
|
Total Eclipses All Total Eclipses Central (two limits) Central (one limit) Non-Central (one limit)
|
|||
|
|
|||
|
Number 3,173 3,121 26 26
|
|||
|
|
|||
|
Percent 100.0% 98.4% 0.8% 0.8%
|
|||
|
|
|||
|
Examples of central total eclipses with one limit include: 1494 Mar 07, 1523 Aug 11, 2185 Jul 26, and 2195 Aug 05. The most recent examples of non-central total eclipses are: 1957 Oct 23, 1967 Nov 02, 2043 Apr 09, and 2459 Jun 01.
|
|||
|
All 569 hybrid eclipses are central with two limits. Hybrid eclipses with a single limit (both central and non-central) are exceedingly rare. An estimate of the mean frequency of non-central hybrid eclipses is one out of every 600 million eclipses or once every 250 million years (Meeus, 2002a). Hybrid eclipses are not uniformly distributed in time. Their frequency is modulated by a sinusoidal cycle lasting approximately seventeen centuries. During some periods (e.g., 1001 to 1800 CE), there are 15 to 24 hybrid eclipses per century. At other epochs (e.g., 2201 to 2800 CE), the number of hybrids can drop below 5 eclipses per century.
|
|||
|
Most hybrid eclipses are of class 1 in which the central path of begins annular, changes to total, and then reverts back to annular (ATA). In class 2 hybrids, the eclipse begins as total and end as annular (TA). Finally, class 3 hybrid eclipses begin as annular and end as total (AT). Eclipses of class 1 (ATA) are referred to as symmetric hybrids while classes 2 (TA) and 3 (AT) are asymmetric hybrids. Asymmetric hybrids always occur when the vertex of the Moon’s umbral shadow passes through Earth’s fundamental plane during the eclipse.
|
|||
|
The symmetric class 1 type occurs in 519 out of the 569 hybrid eclipses in the Catalog. Table 3-4 lists the distribution of the three hybrid eclipse classes.
|
|||
|
Table 3-4. Statistics of Hybrid Eclipses
|
|||
|
|
|||
|
Hybrid Eclipses All Hybrid Eclipses Class 1 Hybrid (ATA) Class 2 Hybrid (TA) Class 3 Hybrid (AT)
|
|||
|
|
|||
|
Number 569 519 24 26
|
|||
|
|
|||
|
Percent 100.0% 91.2%
|
|||
|
4.2% 4.6%
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Examples of ATA hybrid eclipses include: 1986 Oct 03, 1987 Mar 29, 2005 Apr 08, and 2023 Apr 20. Examples of the relatively rare TA hybrid eclipse are: 1564 Jun 08, 1703 Jan 17, 1825 Dec 09, and 2386 Apr 29. Finally, some examples of the rare AT hybrid eclipse include: 1489 Jun 28, 1854 Nov 20, 2013 Nov 03, and 2172 Oct 17.
|
|||
|
Symmetric hybrid eclipses of class 1 (ATA) are listed in the Catalog simply as eclipse type H, while the asymmetric hybrid classes 2 (TA) and 3 (AT) are shown as H2 and H3, respectively.
|
|||
|
3.2 Distribution of Eclipse Types by Century
|
|||
|
Table 3-5 summarizes 5,000 years of eclipses by eclipse type in 100-year intervals. The number of central and noncentral (in square brackets) events are given for annular and total eclipses. The number of eclipses in any one century ranges from 222 to 255 with an average of 238.0. Over the 1,000-year interval of 1501 to 2500 CE (centered on the present era), the average is 238.9 eclipses per century.
|
|||
|
Some remarkable patterns are present in this table. There exists a cyclical variation in the number of eclipses per century with a length of a little under six centuries, giving alternating “rich” and “poor” periods (Meeus, 1997). The 20th and 21st centuries (1901–2100) are poor periods, with only 228 and 224 eclipses, respectively. This cycle is also present when only central eclipses are considered.
|
|||
|
The cycle appears to have a period of approximately 600 years with an amplitude of ~30 eclipses. This is close to a known eclipse period called the “tetradia,” which has a period of 586.02 years. The tetradia governs the recurrence of tetrads or groups of four successive total lunar eclipses each separated by six lunations. The tetradia cycle for lunar eclipse tetrads appears to be 180 degrees out of phase with the cycle for solar eclipses. When there are many tetrads, there are fewer solar eclipses. We are currently in a tetrad-rich period with tetrads in 2003 to 2004, 2014 to 2015, and 2032 to 2033.
|
|||
|
The number of hybrid solar eclipses per century also varies cyclically with a period of approximately 17 centuries.
|
|||
|
Table 3-5. Solar Eclipse Types by Century: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
Century Interval
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
|
|||
|
–1999 to –1900
|
|||
|
|
|||
|
239
|
|||
|
|
|||
|
–1899 to –1800
|
|||
|
|
|||
|
253
|
|||
|
|
|||
|
–1799 to –1700
|
|||
|
|
|||
|
254
|
|||
|
|
|||
|
–1699 to –1600
|
|||
|
|
|||
|
230
|
|||
|
|
|||
|
–1599 to –1500
|
|||
|
|
|||
|
225
|
|||
|
|
|||
|
–1499 to –1400
|
|||
|
|
|||
|
226
|
|||
|
|
|||
|
–1399 to –1300
|
|||
|
|
|||
|
234
|
|||
|
|
|||
|
–1299 to –1200
|
|||
|
|
|||
|
250
|
|||
|
|
|||
|
–1199 to –1100
|
|||
|
|
|||
|
252
|
|||
|
|
|||
|
–1099 to –1000
|
|||
|
|
|||
|
238
|
|||
|
|
|||
|
–0999 to –0900
|
|||
|
|
|||
|
226
|
|||
|
|
|||
|
–0899 to –0800
|
|||
|
|
|||
|
225
|
|||
|
|
|||
|
–0799 to –0700
|
|||
|
|
|||
|
234
|
|||
|
|
|||
|
–0699 to –0600
|
|||
|
|
|||
|
253
|
|||
|
|
|||
|
–0599 to –0500
|
|||
|
|
|||
|
255
|
|||
|
|
|||
|
Number of Partial Eclipses
|
|||
|
84 93 95 75 78 77 76 93 93 79 84 80 79 96 96
|
|||
|
|
|||
|
Number of Annular Eclipses*
|
|||
|
70 [1] 80 [0] 73 [1] 70 [1] 65 [2] 65 [4] 83 [1] 86 [0] 89 [0] 89 [2] 74 [1] 73 [2] 88 [0] 86 [1] 85 [1]
|
|||
|
|
|||
|
Number of Total Eclipses*
|
|||
|
62 [0] 62 [1] 63 [1] 60 [0] 59 [0] 61 [1] 68 [0] 64 [0] 63 [0] 67 [1] 58 [3] 64 [2] 64 [0] 63 [0] 65 [0]
|
|||
|
|
|||
|
Number of Hybrid Eclipses
|
|||
|
22 17 21 24 21 18 6 7 7 0 6 4 3 7 8
|
|||
|
|
|||
|
19
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
Century Interval
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
|
|||
|
–0499 to –0400
|
|||
|
|
|||
|
241
|
|||
|
|
|||
|
–0399 to –0300
|
|||
|
|
|||
|
225
|
|||
|
|
|||
|
–0299 to –0200
|
|||
|
|
|||
|
226
|
|||
|
|
|||
|
–0199 to –0100
|
|||
|
|
|||
|
237
|
|||
|
|
|||
|
–0099 to 0000
|
|||
|
|
|||
|
251
|
|||
|
|
|||
|
0001 to 0100
|
|||
|
|
|||
|
248
|
|||
|
|
|||
|
0101 to 0200
|
|||
|
|
|||
|
237
|
|||
|
|
|||
|
0201 to 0300
|
|||
|
|
|||
|
227
|
|||
|
|
|||
|
0301 to 0400
|
|||
|
|
|||
|
222
|
|||
|
|
|||
|
0401 to 0500
|
|||
|
|
|||
|
233
|
|||
|
|
|||
|
0501 to 0600
|
|||
|
|
|||
|
251
|
|||
|
|
|||
|
0601 to 0700
|
|||
|
|
|||
|
251
|
|||
|
|
|||
|
0701 to 0800
|
|||
|
|
|||
|
233
|
|||
|
|
|||
|
0801 to 0900
|
|||
|
|
|||
|
222
|
|||
|
|
|||
|
0901 to 1000
|
|||
|
|
|||
|
227
|
|||
|
|
|||
|
1001 to 1100
|
|||
|
|
|||
|
241
|
|||
|
|
|||
|
1101 to 1200
|
|||
|
|
|||
|
250
|
|||
|
|
|||
|
1201 to 1300
|
|||
|
|
|||
|
246
|
|||
|
|
|||
|
1301 to 1400
|
|||
|
|
|||
|
229
|
|||
|
|
|||
|
1401 to 1500
|
|||
|
|
|||
|
222
|
|||
|
|
|||
|
1501 to 1600
|
|||
|
|
|||
|
228
|
|||
|
|
|||
|
1601 to 1700
|
|||
|
|
|||
|
248
|
|||
|
|
|||
|
1701 to 1800
|
|||
|
|
|||
|
251
|
|||
|
|
|||
|
1801 to 1900
|
|||
|
|
|||
|
242
|
|||
|
|
|||
|
1901 to 2000
|
|||
|
|
|||
|
228
|
|||
|
|
|||
|
2001 to 2100
|
|||
|
|
|||
|
224
|
|||
|
|
|||
|
2101 to 2200
|
|||
|
|
|||
|
235
|
|||
|
|
|||
|
2201 to 2300
|
|||
|
|
|||
|
248
|
|||
|
|
|||
|
2301 to 2400
|
|||
|
|
|||
|
248
|
|||
|
|
|||
|
2401 to 2500
|
|||
|
|
|||
|
237
|
|||
|
|
|||
|
2501 to 2600
|
|||
|
|
|||
|
225
|
|||
|
|
|||
|
2601 to 2700
|
|||
|
|
|||
|
227
|
|||
|
|
|||
|
2701 to 2800
|
|||
|
|
|||
|
242
|
|||
|
|
|||
|
2801 to 2900
|
|||
|
|
|||
|
254
|
|||
|
|
|||
|
2901 to 3000
|
|||
|
|
|||
|
248
|
|||
|
|
|||
|
Number of Partial Eclipses
|
|||
|
84 83 83 80 92 90 80 79 73 80 93 90 77 78 76 84 92 87 76 77 75 89 92 87 78 77 79 92 88 81 83 77 84 95 91
|
|||
|
|
|||
|
Number of Annular Eclipses*
|
|||
|
76 [2] 62 [1] 61 [1] 71 [2] 77 [0] 74 [1] 75 [2] 70 [4] 74 [2] 83 [1] 86 [1] 89 [1] 86 [2] 72 [2] 83 [1] 90 [0] 82 [0] 80 [1] 72 [3] 62 [3] 69 [3] 74 [0] 78 [0] 77 [0] 71 [2] 70 [2] 82 [5] 86 [0] 86 [0] 87 [2] 71 [1] 78 [3] 92 [0] 86 [1] 80 [2]
|
|||
|
|
|||
|
Number of Total Eclipses*
|
|||
|
62 [0] 56 [0] 55 [2] 62 [1] 64 [1] 58 [0] 63 [1] 69 [0] 65 [1] 67 [0] 65 [0] 67 [0] 66 [0] 62 [2] 65 [1] 61 [0] 61 [0] 60 [0] 54 [0] 60 [1] 62 [0] 60 [1] 62 [0] 63 [0] 68 [3] 67 [1] 65 [0] 67 [0] 66 [0] 65 [1] 63 [1] 64 [0] 63 [0] 63 [0] 64 [0]
|
|||
|
|
|||
|
Number of Hybrid Eclipses
|
|||
|
17 23 24 21 17 25 16 5 7 2 6 4 2 6 1 6 15 18 24 19 19 24 19 15 6 7 4 3 8 1 6 5 3 9 11
|
|||
|
|
|||
|
* The first quantity is the number of central eclipses, while the second quantity, in square brackets [ ], is the number of non-central eclipses.
|
|||
|
|
|||
|
20
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
3.3 Distribution of Solar Eclipse Types by Month
|
|||
|
Table 3-6 summarizes 5,000 years of eclipses by eclipse type in each month of the year. The first value in each column is the number of eclipses of a given type for the corresponding month. The second number in square brackets [ ] is the number of eclipses divided by the number of days in that month. This normalization allows direct comparison of eclipse frequencies in different months.
|
|||
|
A brief examination of the values in the column “Number of All Eclipses” shows that eclipses are equally distributed around the year. The same holds true for partial eclipses; however, the columns for annular and total eclipses reveal something interesting. Annular eclipses are 1 1/3 times more likely during the period of November–December– January compared to the months May–June–July. This effect is attributed to Earth’s elliptical orbit. Earth currently reaches perihelion in early January and aphelion in early July. Consequently, the Sun’s apparent diameter varies from 1,952 to 1,887 arcsec between perihelion and aphelion. The Sun’s larger apparent diameter at perihelion makes annular eclipses more frequent at that time.
|
|||
|
The opposite argument holds true for total eclipses which are nearly 1 1/2 times more likely during the period May–June–July compared to the months November–December–January. In this case, the Sun’s smaller apparent size around aphelion increases the frequency of total eclipses at that time. Total eclipses actually outnumber annular eclipses during the season May–June–July (Meeus, 2002b).
|
|||
|
Table 3-6. Solar Eclipse Types by Month: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
Month
|
|||
|
January February March April May June July August September October November December
|
|||
|
|
|||
|
Number of All
|
|||
|
Eclipses 1010 [32.6]
|
|||
|
919 [32.8] 1009 [32.5] 981 [32.7] 1009 [32.5] 973 [32.4] 1008 [32.5] 1008 [32.5] 982 [32.7] 1008 [32.5] 977 [32.6] 1014 [32.7]
|
|||
|
|
|||
|
Number of Partial Eclipses
|
|||
|
357 [11.5] 317 [11.3] 359 [11.6] 345 [11.5] 353 [11.4] 348 [11.6] 354 [11.4] 358 [11.5] 354 [11.8] 355 [11.5] 344 [11.5] 356 [11.5]
|
|||
|
|
|||
|
Number of Annular Eclipses 380 [12.3] 334 [11.9] 319 [10.3] 294 [ 9.8] 294 [ 9.5] 279 [ 9.3] 299 [ 9.6] 308 [ 9.9] 333 [11.1] 362 [11.7] 367 [12.2] 387 [12.5]
|
|||
|
|
|||
|
Number of Total
|
|||
|
Eclipses 222 [ 7.2] 225 [ 8.0] 280 [ 9.0] 299 [10.0] 313 [10.1] 310 [10.3] 312 [10.1] 303 [ 9.8] 248 [ 8.3] 230 [ 7.4] 210 [ 7.0] 221 [ 7.1]
|
|||
|
|
|||
|
Number of Hybrid Eclipses 51 [ 1.6] 43 [ 1.5] 51 [ 1.6] 43 [ 1.4] 49 [ 1.6] 36 [ 1.2] 43 [ 1.4] 39 [ 1.3] 47 [ 1.6] 61 [ 2.0] 56 [ 1.9] 50 [ 1.6]
|
|||
|
|
|||
|
(Numbers in square brackets [ ] are number of eclipses divided by the number of days in the month.)
|
|||
|
|
|||
|
3.4 Solar Eclipse Frequency and the Calendar Year
|
|||
|
There are 2 to 5 solar eclipses in every calendar year. Table 3-7 shows the distribution in the number of eclipses per year for the 5,000 years covered in the Catalog.
|
|||
|
|
|||
|
21
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 3-7. Number of Solar Eclipses per Year
|
|||
|
|
|||
|
Number of Eclipses per Year 2 3 4 5
|
|||
|
|
|||
|
Number of Years 3,625 877 473 25
|
|||
|
|
|||
|
Percent
|
|||
|
72.5% 17.5% 9.5% 0.5%
|
|||
|
|
|||
|
When two eclipses occur in one calendar year, they can be any combination of P, A, T, or H (partial, annular, total, or hybrid, respectively) with the one exception that they can not both be T. Table 3-8 lists the frequency of each eclipse combination along with five recent years when the combination occurs. The table makes no distinction in the order of any two eclipses. For example, the eclipse combination PA includes all years where the order is either PA or AP.
|
|||
|
|
|||
|
Table 3-8. Two Solar Eclipses in One Year
|
|||
|
|
|||
|
Eclipse Combinationsa
|
|||
|
PP PA PH PT AA AH AT HH HT
|
|||
|
|
|||
|
Number of Years 177 97 19 236 292 239 2402 84 79
|
|||
|
|
|||
|
Percent
|
|||
|
4.9% 2.7% 0.5% 6.5% 8.1% 6.6% 66.3% 2.3% 2.2%
|
|||
|
|
|||
|
Examples (Years) b
|
|||
|
…, 2004, 2007, 2022, 2025, 2040, … …, 2014, 2032, 2101, 2102, 2119, … …, 0227, 0245, 1909, 1986, 2050] …, 2015, 2033, 2037, 2055, 2068, … …, 1951, 1969, 2056, 2074, 2085, … …, 2005, 2013, 2023, 2031, 2049, … …, 2006, 2008, 2009, 2010, 2012, … …, 1753, 1771, 1789, 1807, 1825] …, 1843, 1894, 1912, 1930, 2910, …
|
|||
|
|
|||
|
a. P = Partial, A = Annular, T = Total, and H = Hybrid. b. When years end with a square bracket ], there are no other examples beyond the last year.
|
|||
|
|
|||
|
When three eclipses occur in one calendar year, there are 14 possible combinations of P, A, T, or H. Table 3-9 lists the frequency of each eclipse combination along with five recent years when each combination occurs. The table makes no distinction in the order of eclipses in any combination. For example, the eclipse combination PAT includes all years where the order is PAT, PTA, APT, ATP, TAP, and TPA. The rarest combinations—PHT and AAH (actually HTP and AHA, respectively)—each occurred only twice in the five millennium span of this work.
|
|||
|
|
|||
|
22
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 3-9. Three Solar Eclipses in One Year
|
|||
|
|
|||
|
Eclipse Combinationsa
|
|||
|
PPP PPA PPH PPT PAA PAH PAT PHH PHT AAH AAT AHH
|
|||
|
AHT
|
|||
|
ATT
|
|||
|
|
|||
|
Number of Years 396 71 7 74 18 5 145 5 2 2 102 8
|
|||
|
13
|
|||
|
29
|
|||
|
|
|||
|
Percent
|
|||
|
45.2% 8.1% 0.8% 8.4% 2.1% 0.6% 16.5% 0.6% 0.2% 0.2% 11.6% 0.9%
|
|||
|
1.5%
|
|||
|
3.3%
|
|||
|
|
|||
|
Examples (Years) b
|
|||
|
…, 1971, 2018, 2036, 2054, 2058, … …, 1722, 1740, 1899, 2224, 2242, … [–1906, –1888, –1794, –0224, 1544, 1609, 1703] …, 1834, 1852, 1928, 2130, 2271, … …, 0650, 0791, 1704, 2419, 2437, … [–1907, –0457, –0316, –0101, –0055] …, 1992, 2019, 2084, 2149, 2225, … [–1683, –0037, –0019, –0001, 1768] [–1488, 1786] [–1944, 1489] …, 1954, 1973, 2038, 2103, 2122, … [–484, –0400, –0139, 1144, 1228, 1339, 1405, 1666] [–1833, –1702, –1507, –0660, –0465, –0419, –0074, 0121, 1163, 1386, 1731, 1908, 2950] …, 1554, 1712, 1889, 2057, 2252, …
|
|||
|
|
|||
|
a. P = Partial, A = Annular, T = Total, and H = Hybrid. b. When years are enclosed in square brackets [ ], they include all examples in 5,000 years.
|
|||
|
|
|||
|
When four eclipses occur in one calendar year, there are seven possible combinations of eclipse types P, A, T, and H. Table 3-10 lists the frequency of each eclipse combination along with five recent years when each combination occurs. The table makes no distinction in the order of eclipses in the seven combinations. The rarest combination—PPAH (actually HAPP)—occurred only once in year –1748 (1749 BCE).
|
|||
|
Table 3-10. Four Solar Eclipses in One Year
|
|||
|
|
|||
|
Eclipse Combinationsa
|
|||
|
PPPP PPPA PPPH PPPT PPAA PPAH
|
|||
|
PPAT
|
|||
|
|
|||
|
Number of Years 327 79 7 41 3 1
|
|||
|
15
|
|||
|
|
|||
|
Percent
|
|||
|
69.1% 16.7% 1.5% 8.7% 0.6% 0.2%
|
|||
|
3.2%
|
|||
|
|
|||
|
Examples (Years) b
|
|||
|
…, 2000, 2011, 2029, 2047, 2065, … …, 1758, 1917, 2141, 2159, 2177, … [–1925, –1870, –0120, 1573, 1591, 1685, 1750] …, 1693, 1870, 2076, 2094, 2112, … [–1209, –1032, 0596] [–1748] [–1795, –1162, –0688, –0641, –0576, –0511, –0446, 0010, 0075, 0661, 1182, 1880, 2195, 2782, 2912]
|
|||
|
|
|||
|
a. P = Partial, A = Annular, T = Total, and H = Hybrid. b. When years are enclosed in square brackets [ ], they include all examples in 5,000 years.
|
|||
|
|
|||
|
23
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
The maximum number of five solar eclipses in one calendar year is quite rare. Over the 5,000-year span of the Catalog, there are only 25 years containing five solar eclipses. They occur in three possible combinations of eclipse types where four out of the five eclipses are always of type P. The first eclipse of such a quintet always occurs in the first half of January, while the last eclipse falls in the latter half of December. Table 3-11 lists all 25 years containing five eclipses along with their eclipse combinations and frequencies. The rarest combination—PPPPH—occurred only once in year –1852 (1853 BCE). Once again, the table makes no distinction in the order of eclipses in any combination.
|
|||
|
Table 3-11. Five Solar Eclipses in One Year
|
|||
|
|
|||
|
Eclipse Combinationsa
|
|||
|
|
|||
|
Number of Years
|
|||
|
|
|||
|
PPPPA
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
PPPPH
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
PPPPT
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
Percent
|
|||
|
72.0% 4.0% 24.0%
|
|||
|
|
|||
|
All Examples (Years)
|
|||
|
–1805, –1787, –1675, –1089, –0568, –0503, –0373, 0018, 0148, 0604, 0734, 1255, 1805, 1935, 2206,
|
|||
|
2709, 2839, 2904 –1852
|
|||
|
–1740, –1154, –0438, 0083, 0669, 2774
|
|||
|
|
|||
|
a. P = Partial, A = Annular, T = Total, and H = Hybrid.
|
|||
|
|
|||
|
3.5 Extremes in Eclipse Magnitude—Partial Solar Eclipses Eclipse magnitude is defined as the fraction of the Sun’s diameter covered by the Moon. It reaches a maximum value at the instant of greatest eclipse. A search through the 11,898 eclipses in the Catalog reveals some interesting cases involving extreme values of the eclipse magnitude.
|
|||
|
Thirteen partial eclipses have a maximum magnitude less than 0.005 (Table 3-12). These events are all the first or last members in a Saros series. The smallest magnitude was the partial eclipse of –1838 Apr 04 with a magnitude of just 0.00002.
|
|||
|
Table 3-12. Partial Solar Eclipses with Magnitude 0.005 or Less
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1838 Apr 04 –1512 Apr 29 –0756 Mar 12 0662 Jun 21 0929 Jul 09 1175 Oct 16 1512 Apr 16 1639 Jan 04 1935 Jan 05 2883 Aug 23 2893 Dec 29 2904 Jun 05 2995 Aug 17
|
|||
|
|
|||
|
Saros
|
|||
|
–10 43 66 115 80 91 140 145 111 188 146 142 190
|
|||
|
|
|||
|
Gamma
|
|||
|
1.5615 1.5386 –1.5417 1.5377 1.5267 –1.5690 –1.5289 1.5650 –1.5381 –1.5524 1.5706 1.5428 –1.5542
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
0.00002 0.0041 0.0047 0.0030 0.0049 0.0019 0.0003 0.0009 0.0013 0.0010 0.0028 0.0040 0.0036
|
|||
|
|
|||
|
24
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 3-13 lists the eight partial eclipses having a maximum magnitude greater than 0.995. The greatest partial eclipse occurred on –1577 Mar 30 with a maximum magnitude of 0.9998.
|
|||
|
Table 3-13. Partial Solar Eclipses with Magnitude 0.995 or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1585 Mar 28 –1577 Mar 30 –0944 Sep 14 –0927 Nov 04 –0018 Jun 10 0257 Aug 26 0654 May 22
|
|||
|
1750 Jul 03
|
|||
|
|
|||
|
Saros
|
|||
|
33 4 29 57 56 68 106 142
|
|||
|
|
|||
|
Gamma
|
|||
|
1.0137 1.0109 –1.0056 1.0005 1.0154 1.0060 –1.0131 –0.9985
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
0.9960 0.9998 0.9987 0.9990 0.9954 0.9969 0.9990 0.9956
|
|||
|
|
|||
|
3.6 Extremes in Eclipse Magnitude—Annular Solar Eclipses Sixteen annular eclipses have a maximum magnitude (at greatest eclipse) less than or equal to 0.910 (Table 3-14). Ten of these events are central with two limits, four are central with one limit, and two are non-central (with one limit). The annular eclipses with the smallest magnitude (at greatest eclipse) occurred on –1682 Nov 12 and 1601 Dec 24 and had a magnitude of just 0.9078.
|
|||
|
Table 3-14. Annular Solar Eclipses with Magnitude 0.910 or Less
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1718 Oct 21 –1700 Oct 31 –1682 Nov 12 –1664 Nov 22 –1646 Dec 03 –0984 Nov 04 a 0123 Nov 06 b 0141 Nov 16 b 0159 Nov 27 b 0177 Dec 08 b 1565 Nov 22 1583 Dec 14 1601 Dec 24 1620 Jan 04 1638 Jan 15 2485 Dec 07 a
|
|||
|
|
|||
|
Saros
|
|||
|
6 6 6 6 6 27 64 64 64 64 135 135 135 135 135 140
|
|||
|
|
|||
|
Gamma
|
|||
|
0.9195 0.9254 0.9295 0.9323 0.9353 –1.0234 0.9783 0.9854 0.9908 0.9944 0.9564 0.9471 0.9402 0.9321 0.9242 1.0242
|
|||
|
|
|||
|
Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
0.9091 0.9081 0.9078 0.9083 0.9095 0.9099 0.9098 0.9089 0.9087 0.9093 0.9092 0.9083 0.9078 0.9081 0.9090 0.9100
|
|||
|
|
|||
|
08m 18s 08m 44s 09m 08s 09m 26s 09m 36s
|
|||
|
– 08m 20s 08m 31s 08m 34s 08m 28s 09m 37s 10m 03s 10m 14s 10m 13s 10m 00s
|
|||
|
–
|
|||
|
|
|||
|
a. Non-central annular eclipse (with one limit). b. Central annular eclipse with one limit.
|
|||
|
25
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Seventeen annular eclipses have a maximum magnitude (at greatest eclipse) greater than or equal to 0.9995 (Table 3-15). All of these events have central durations (i.e., central line duration at greatest eclipse) lasting 3 s or less. The annular eclipse with the largest magnitude (at greatest eclipse) occurs on 2931 Dec 30 with a magnitude of 0.99998.
|
|||
|
Table 3-15. Annular Solar Eclipses with Magnitude 0.9995 or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1800 Apr 03 –1734 Sep 18 –1725 Mar 17 –1624 Oct 02 –1590 Jun 20 –1482 Feb 27 –1326 Apr 14 –0124 Sep 07 1087 Aug 01 1384 Aug 17 1704 Nov 27 1822 Feb 21 1858 Mar 15 1876 Mar 25 1948 May 09 2862 Sep 15 2931 Dec 30
|
|||
|
|
|||
|
Saros
|
|||
|
10 26 2 8 21 16 27 81 111 125 118 137 137 137 137 158 166
|
|||
|
|
|||
|
Gamma
|
|||
|
0.1778 –0.5105 0.8105 0.9377 –0.0376 0.3992 0.0409 0.7642 0.1644 0.5354 0.6716 0.6914 0.6461 0.6142 0.4133 0.5956 0.1511
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
0.9997 0.9995 0.9997 0.9995 0.9997 0.9997 0.9996 0.9999 0.9996 0.9999 0.9999 0.9996 0.9996 0.9999 0.9999 0.9999 0.99998
|
|||
|
|
|||
|
Central Duration 00m 02s 00m 03s 00m 01s 00m 02s 00m 02s 00m 02s 00m 02s 00m 00s 00m 02s 00m 01s 00m 01s 00m 02s 00m 02s 00m 01s 00m 00s 00m 01s 00m 00s
|
|||
|
|
|||
|
3.7 Extremes in Eclipse Magnitude—Total Solar Eclipses
|
|||
|
Nineteen total eclipses have a maximum magnitude less than or equal to 1.0075 (Table 3-16). Six of these eclipses are central while the remaining 13 are non-central. The smallest magnitude was the total eclipse of –0839 Jul 26 with a magnitude of just 1.0002.
|
|||
|
|
|||
|
26
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 3-16. Total Solar Eclipses with Magnitude 1.0075 or Less
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1038 Apr 09 a –0915 Feb 28 b –0909 Nov 15 a –0905 Mar 10 b –0839 Jul 26 a –0829 Aug 05 a –0159 Jul 08 b
|
|||
|
0854 Feb 01 0861 Sep 08 b 0865 Jan 01 0883 Jan 12 0890 Feb 23 b 0901 Jan 23 0919 Feb 03 0994 Aug 09 a 1957 Oct 23 b 2459 Jun 01 b 2518 Mar 12 2542 Dec 08 b
|
|||
|
|
|||
|
Saros
|
|||
|
22 25 57 54 32 61 53 83 87 84 84 83 84 84 119 123 164 138 170
|
|||
|
|
|||
|
Gamma
|
|||
|
1.0023 –1.0012 0.9976 –1.0053 1.0095 0.9972 –1.0096 –0.9582 –1.0032 0.9518 0.9609 –1.0005 0.9731 0.9909 0.9985 –1.0022 –1.0097 0.9200 –0.9975
|
|||
|
|
|||
|
Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
1.0034 1.0004 1.0050 1.0072 1.0002 1.0064 1.0051 1.0065 1.0053 1.0073 1.0057 1.0005 1.0042 1.0020 1.0017 1.0013 1.0038 1.0071 1.0072
|
|||
|
|
|||
|
– – – – – – – 00m 22s – 00m 36s 00m 27s – 00m 19s 00m 09s – – – 00m 31s –
|
|||
|
|
|||
|
a. Non-central total eclipse at high northern latitudes. b. Non-central total eclipse at high southern latitudes.
|
|||
|
|
|||
|
Sixteen total eclipses have a maximum magnitude greater than or equal to 1.080. Their central durations all exceed 6 min with nearly half exceeding 7 min. Note that these eclipses all take place during the period of the year when Earth is near the aphelion of its orbit (May to July), resulting in a smaller than normal diameter of the solar disk. The total eclipse with the largest magnitude (1.0813) occurred on 0504 May 29. The total eclipse with the longest duration of totality occurs on 2186 Jul 16 with a magnitude of 1.0805. The 16 eclipses in Table 3-17 belong to just five Saros series.
|
|||
|
|
|||
|
27
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 3-17. Total Solar Eclipses with Magnitude 1.080 or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1337 May 14 –1319 May 25 –1301 Jun 05 –1160 May 07 –1142 May 18 –1124 May 28 0327 Jun 06
|
|||
|
0345 Jun 16 0363 Jun 27 0486 May 19 0504 May 29 0522 Jun 10 0540 Jun 20 2150 Jun 25 2168 Jul 05 2186 Jul 16
|
|||
|
|
|||
|
Saros
|
|||
|
26 26 26 29 29 29 81 81 81 84 84 84 84 139 139 139
|
|||
|
|
|||
|
Gamma
|
|||
|
0.1487 0.2236 0.2982 –0.2990 –0.3742 –0.4490 –0.0413 –0.1162 –0.1899 0.1193 0.1927 0.2675 0.3414 –0.0910 –0.1660 –0.2396
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
1.0801 1.0807 1.0805 1.0806 1.0809 1.0804 1.0810 1.0811 1.0804 1.0806 1.0813 1.0812 1.0801 1.0802 1.0807 1.0805
|
|||
|
|
|||
|
Central Duration
|
|||
|
06m 51s 06m 41s 06m 25s 06m 45s 06m 56s 07m 03s 07m 03s 07m 17s 07m 24s 06m 54s 06m 44s 06m 28s 06m 07s 07m 14s 07m 26s 07m 29s
|
|||
|
|
|||
|
3.8 Extremes in Eclipse Magnitude—Hybrid Solar Eclipses
|
|||
|
Fourteen hybrid eclipses have a maximum magnitude (at greatest eclipse) less than or equal to 1.00025. All of these events are central with a central duration of totality of 1 s or less.
|
|||
|
|
|||
|
Table 3-18. Hybrid Solar Eclipses with Magnitude 1.00025 or Less
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
|
|||
|
Saros
|
|||
|
|
|||
|
Gamma Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
–1747 Nov 10
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
–0.7406
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
–1716 Sep 28
|
|||
|
|
|||
|
26
|
|||
|
|
|||
|
–0.4927
|
|||
|
|
|||
|
1.0002
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
–1641 Mar 17
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
–0.2772
|
|||
|
|
|||
|
1.0002
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
–0819 Jan 18
|
|||
|
|
|||
|
47
|
|||
|
|
|||
|
0.3047
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
–0097 Mar 17
|
|||
|
|
|||
|
57
|
|||
|
|
|||
|
–0.5539
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
0121 Dec 27
|
|||
|
|
|||
|
82
|
|||
|
|
|||
|
–0.6196
|
|||
|
|
|||
|
1.0002
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
0403 Nov 01
|
|||
|
|
|||
|
88
|
|||
|
|
|||
|
–0.1968
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
1339 Jul 07
|
|||
|
|
|||
|
106
|
|||
|
|
|||
|
0.6451
|
|||
|
|
|||
|
1.0002
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
1612 Nov 22
|
|||
|
|
|||
|
136
|
|||
|
|
|||
|
–0.7691
|
|||
|
|
|||
|
1.0002
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
1627 Aug 11
|
|||
|
|
|||
|
139
|
|||
|
|
|||
|
0.9401
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
1702 Jul 24
|
|||
|
|
|||
|
131
|
|||
|
|
|||
|
0.3160
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
1804 Feb 11
|
|||
|
|
|||
|
137
|
|||
|
|
|||
|
0.7053
|
|||
|
|
|||
|
1.0000
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
1894 Apr 06
|
|||
|
|
|||
|
137
|
|||
|
|
|||
|
0.5740
|
|||
|
|
|||
|
1.0001
|
|||
|
|
|||
|
00m 01s
|
|||
|
|
|||
|
1986 Oct 03
|
|||
|
|
|||
|
124
|
|||
|
|
|||
|
0.9931
|
|||
|
|
|||
|
1.0000
|
|||
|
|
|||
|
00m 00s
|
|||
|
|
|||
|
28
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Seven hybrid eclipses have a maximum magnitude (at greatest eclipse) greater than or equal to 1.0170. All of these events are central with a duration of totality of 1 min 34 s or more.
|
|||
|
Table 3-19. Hybrid Solar Eclipses with Magnitude 1.0170 or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–0437 Dec 17 –0100 May 17 0508 Sep 11
|
|||
|
1199 Jan 28 1228 Jan 08 1564 Jun 08 2172 Oct 17
|
|||
|
|
|||
|
Saros
|
|||
|
54 65 91 108 109 120 146
|
|||
|
|
|||
|
Gamma
|
|||
|
0.1286 –0.1912 0.0826 0.0033 –0.0068 0.1253 –0.1484
|
|||
|
|
|||
|
Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
1.0173 1.0170 1.0173 1.0174 1.0176 1.0174 1.0174
|
|||
|
|
|||
|
01m 45s 01m 44s 01m 45s 01m 45s 01m 40s 01m 44s 01m 34s
|
|||
|
|
|||
|
3.9 Greatest Central Duration—Annular Solar Eclipses Ten annular eclipses have a central duration (i.e., central line duration at greatest eclipse) of 12 min or more. There are no cases between the years 1974 and 3000.
|
|||
|
Table 3-20. Annular Solar Eclipses with Central Line Duration (at greatest eclipse) of 12 min or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1655 Dec 12 –0195 Dec 11 –0177 Dec 22 0132 Nov 25 0150 Dec 07 0168 Dec 17 1628 Dec 25 1937 Dec 02 1955 Dec 14 1973 Dec 24
|
|||
|
|
|||
|
Saros
|
|||
|
25 58 58 83 83 83 116 141 141 141
|
|||
|
|
|||
|
Gamma
|
|||
|
0.6207 0.4971 0.5030 0.5691 0.5630 0.5579 0.6265 0.4389 0.4266 0.4171
|
|||
|
|
|||
|
Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
0.9147 0.9153 0.9165 0.9144 0.9147 0.9156 0.9153 0.9184 0.9176 0.9174
|
|||
|
|
|||
|
12m 07s 12m 04s 12m 08s 12m 16s 12m 23s 12m 14s 12m 02s 12m 00s 12m 09s 12m 02s
|
|||
|
|
|||
|
3.10 Greatest Central Duration—Total Solar Eclipses
|
|||
|
Forty-four total eclipses have a central duration (i.e., central line duration at greatest eclipse) of seven minutes or more. These eclipses all take place when Earth is near the aphelion of its orbit (June to July), resulting in a smaller than normal diameter of the solar disk. The total eclipse with the longest duration of totality occurs on 2186 Jul 16. Its central duration of 7 min 29 s is very close to the theoretical maximum of 7 min 32.1 s during that epoch. All 44 eclipses belong to just 12 Saros series. Note that the eclipses of 1937, 1955, and 1973 all belong to Saros 136. This is the same Saros producing the 6+ min eclipses in 1991, 2009, and 2027.
|
|||
|
|
|||
|
29
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 3-21. Total Solar Eclipses with Central Line Duration (at greatest eclipse) of 7 min or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1460 Jun 22 –1442 Jul 03 –1124 May 28 –1106 Jun 09 –0779 May 24 –0761 Jun 05 –0743 Jun 15 –0725 Jun 26 –0707 Jul 07 –0443 Apr 30 –0425 May 12 –0407 May 22 –0389 Jun 02 0114 May 22 0132 Jun 01 0150 Jun 12 0168 Jun 23 0327 Jun 06 0345 Jun 16 0363 Jun 27 0381 Jul 08 0399 Jul 19 0681 May 23 0699 Jun 03 0717 Jun 13 0735 Jun 25 1044 May 29 1062 Jun 09 1080 Jun 20 1098 Jul 01 1937 Jun 08 1955 Jun 20 1973 Jun 30 2150 Jun 25 2168 Jul 05 2186 Jul 16 2204 Jul 27 2222 Aug 08 2504 Jun 14 2522 Jun 25 2540 Jul 05 2867 Jun 23 2885 Jul 03 2903 Jul 16
|
|||
|
|
|||
|
Saros
|
|||
|
23 23 29 29 54 54 54 54 54 60 60 60 60 78 78 78 78 81 81 81 81 81 87 87 87 87 112 112 112 112 136 136 136 139 139 139 139 139 145 145 145 170 170 170
|
|||
|
|
|||
|
Gamma
|
|||
|
–0.226 –0.293 –0.449 –0.524 –0.548 –0.474 –0.400 –0.329 –0.261 –0.319 –0.247 –0.173 –0.098 –0.268 –0.193 –0.119 –0.044 –0.041 –0.116 –0.190 –0.261 –0.329 –0.354 –0.429 –0.503 –0.578 –0.553 –0.479 –0.405 –0.332 –0.225 –0.153 –0.079 –0.091 –0.166 –0.240 –0.313 –0.384 –0.428 –0.499 –0.572 –0.462 –0.391 –0.318
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
1.078 1.076 1.080 1.079 1.079 1.080 1.079 1.078 1.075 1.077 1.078 1.078 1.077 1.075 1.077 1.079 1.079 1.081 1.081 1.080 1.079 1.076 1.080 1.079 1.078 1.076 1.077 1.078 1.078 1.077 1.075 1.078 1.079 1.080 1.081 1.080 1.079 1.077 1.077 1.077 1.076 1.077 1.078 1.078
|
|||
|
|
|||
|
Central Duration
|
|||
|
07m 04s 07m 05s 07m 03s 07m 04s 07m 12s 07m 25s 07m 28s 07m 18s 07m 00s 07m 01s 07m 12s 07m 13s 07m 04s 07m 06s 07m 14s 07m 13s 07m 03s 07m 03s 07m 17s 07m 24s 07m 22s 07m 11s 07m 10s 07m 17s 07m 15s 07m 02s 07m 12s 07m 20s 07m 18s 07m 05s 07m 04s 07m 08s 07m 04s 07m 14s 07m 26s 07m 29s 07m 22s 07m 06s 07m 10s 07m 12s 07m 04s 07m 10s 07m 11s 07m 04s
|
|||
|
|
|||
|
30
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
3.11 Greatest Central Duration—Hybrid Solar Eclipses Ten hybrid eclipses have a central duration (i.e., central line duration at greatest eclipse) greater than or equal to 1 min 40 s.
|
|||
|
Table 3-22. Hybrid Solar Eclipses with Central Line Duration (at greatest eclipse) of 1 min 40s or More
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1297 Sep 17 –0979 Aug 13 –0437 Dec 17 –0100 May 17 0508 Sep 11
|
|||
|
1199 Jan 28 1228 Jan 08 1350 Nov 30 1423 Jul 08 1564 Jun 08
|
|||
|
|
|||
|
Saros
|
|||
|
33 39 54 65 91 108 109 112 117 120
|
|||
|
|
|||
|
Gamma
|
|||
|
0.0674 –0.2387 0.1286 –0.1912 0.0826 0.0033 –0.0068 0.2227 –0.1158 0.1253
|
|||
|
|
|||
|
Eclipse Magnitude
|
|||
|
1.0168 1.0168 1.0173 1.0170 1.0173 1.0174 1.0176 1.0166 1.0161 1.0174
|
|||
|
|
|||
|
Central Duration
|
|||
|
01m 40s 01m 48s 01m 45s 01m 44s 01m 45s 01m 45s 01m 40s 01m 42s 01m 45s 01m 44s
|
|||
|
|
|||
|
3.12 Theoretical Maximum Duration of Annularity The theoretical maximum duration of an annular solar eclipse slowly varies because of long term secular changes in the eccentricity of Earth’s orbit and the longitude of its perihelion. Although the maximum theoretical duration differs between the ascending and descending nodes, the durations are equal in the year +1246 because the Sun’s perihelion then coincides with longitude 270°.
|
|||
|
Table 3-23 lists the maximum duration theoretically possible over the period –2000 to +7000 (Meeus, 2007). The values here are 0.2 s smaller than those in Meeus because of the use of a slightly larger value for the Moon’s radius k (Sect. 1.5).
|
|||
|
Table 3-23. Theoretical Maximum Duration of Annularity
|
|||
|
|
|||
|
Year
|
|||
|
–2000 –1000 0000 +1000 +2000 +3000 +4000 +5000 +6000 +7000
|
|||
|
|
|||
|
Duration at Ascending Node
|
|||
|
12m 16.8s 12m 30.2s 12m 35.5s 12m 32.3s 12m 20.7s 12m 01.4s 11m 35.6s 11m 04.9s 10m 31.0s 10m 33.1s
|
|||
|
|
|||
|
Duration at Descending
|
|||
|
Node 11m 40.9s 12m 04.8s 12m 21.3s 12m 29.5s 12m 29.2s 12m 20.6s 12m 04.6s 11m 42.4s 11m 15.9s 11m 15.7s
|
|||
|
|
|||
|
31
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) The absolute maximum of 12 min 35.6 s occurred at the Moon’s ascending node about the year +0125. An inflexion point occurs between the years +6000 and +7000, when the maximum possible durations increase once again.
|
|||
|
All calculations in the Catalog use the same mean lunar radius “k” for both annular and total eclipses (Sect. 1.5). Consequently, the annular durations are extended several seconds because they include the appearance of Baily’s beadsa at the start and end of the antumbral phase.
|
|||
|
|
|||
|
3.13 Theoretical Maximum Duration of Totality The theoretical maximum duration of a total solar eclipse for a point on Earth’s surface slowly varies with time. This effect is due to long term secular changes in the eccentricity of Earth’s orbit and the longitude of its perihelion. That eccentricity is now 0.01671, but at some epochs in the distant past or future the orbit was (will be) almost exactly circular, and at other times the eccentricity can be as large as 0.06.
|
|||
|
Table 3-24 lists the maximum duration theoretically possible over the period –2000 to +7000 (Meeus 2003). The values here are 0.1 to 0.2 s larger than those in Meeus because of the use of a slightly larger value for the Moon’s radius k (Sect. 1.5).
|
|||
|
Table 3-24. Theoretical Maximum Duration of Totality
|
|||
|
|
|||
|
Year
|
|||
|
–2000 –1000 0000 +1000 +2000 +3000 +4000 +5000 +6000 +7000
|
|||
|
|
|||
|
Duration at Ascending Node
|
|||
|
7m 07.4s 7m 19.1s 7m 27.4s 7m 31.9s 7m 32.3s 7m 28.8s 7m 22.1s 7m 12.9s 7m 03.3s 7m 01.9s
|
|||
|
|
|||
|
Duration at Descending
|
|||
|
Node 7m 29.8s 7m 34.6s 7m 36.0s 7m 33.6s 7m 27.1s 7m 17.1s 7m 04.0s 6m 48.7s 6m 32.5s 6m 32.8s
|
|||
|
|
|||
|
The absolute maximum of 7 min 36.1 s occurred at the Moon’s descending node about the year –0120. Prior to –2000, there must have been epochs when the maximum possible duration was even larger due to an even greater value of the eccentricity of Earth’s orbit.
|
|||
|
|
|||
|
3.14 Solar Eclipse Duos
|
|||
|
A duo is a pair of eclipses separated by one lunation (synodic month). Of the 11,898 eclipses in the Catalog, 2,722 eclipses (22.9%) belong to a duo. In most cases, both eclipses in a duo are partial eclipses, however, there are 14 instances in the Catalog where one eclipse is partial and the other is total. The dates and eclipse combinations are listed in Table 3-25.
|
|||
|
|
|||
|
a. Baily’s beads are caused by the appearance of small points of sunlight shining through deep valleys along the Moon’s limb at the start and end of the annular or total phase.
|
|||
|
32
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 3-25. Solar Eclipse Duos of Two Types
|
|||
|
|
|||
|
Dates (Dynamical Time)
|
|||
|
–1859 May–Jun –1718 Apr–May –1310 May–Jun –1169 Apr–May –1028 Mar–Apr –0575 May–Jun –0434 Apr–May –0159 Jul–Aug –0026 May–Jun 1248 May–Jun 1928 May–Jun
|
|||
|
2195 Jul–Aug 2459 May–Jun 2912 Jul–Aug
|
|||
|
|
|||
|
Eclipse Combinations
|
|||
|
TP TP PT PT PT TP TP TP PT TP TP PT PT TP
|
|||
|
|
|||
|
3.15 Solar Eclipses Duos in One Calendar Month
|
|||
|
There are 43 instances where both members of an eclipse duo occur in one calendar month. In all cases, both eclipses in the duos are partial. The year and month of each occurrence appears in Table 3-26.
|
|||
|
|
|||
|
Table 3-26. Two Solar Eclipses in One Calendar Month
|
|||
|
|
|||
|
–1957 Mar –1805 Jan –1610 Jul –1534 Jun –1523 May –1447 Apr –1209 Dec –1122 Oct –1111 Sep
|
|||
|
|
|||
|
–1035 Aug –1024 Jul –1013 Jun –0688 Dec –0677 Nov –0601 Oct –0590 Sep –0514 Aug –0503 Jul
|
|||
|
|
|||
|
–0416 May 0007 Aug 0018 Jul 0097 Apr 0463 Aug 0528 Aug 0539 Jul 0542 May 0618 Apr
|
|||
|
|
|||
|
0629 Mar 1063 May 1150 Mar 1215 Mar 1631 May 1696 May 1805 Jan 1880 Dec 2000 Jul
|
|||
|
|
|||
|
2206 Dec 2261 Jan 2282 Nov 2304 Sep 2380 Aug 2684 Oct 2785 May
|
|||
|
|
|||
|
3.16 January–March Eclipse Duos
|
|||
|
The mean length of one synodic month is 29.5306 days (in year 2000). Because this is longer than the month of February, it is possible to have one member of an eclipse duo in January followed by the second in March. There are four instances of such a rare January/March duo in the Catalog: –1881, –1295, 1291, and 1794. In all cases, both eclipses in the duos are partial.
|
|||
|
|
|||
|
33
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
3.17 Solar Eclipses on February 29 There are nine instances of a solar eclipse occurring on February 29. Five eclipses are partial, two are annular, and two are total. A list of eclipses on February 29 with physical parameters appears in Table 3-27.
|
|||
|
Table 3-27. Solar Eclipses on February 29
|
|||
|
|
|||
|
Date (Dynamical Time)
|
|||
|
–1436 Feb 29 –0896 Feb 29 –0356 Feb 29 0108 Feb 29 0184 Feb 29 0648 Feb 29 1188 Feb 29 2416 Feb 29 2872 Feb 29
|
|||
|
|
|||
|
Type Saros
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
T
|
|||
|
|
|||
|
35
|
|||
|
|
|||
|
T
|
|||
|
|
|||
|
63
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
51
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
91
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
79
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
107
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
127
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
144
|
|||
|
|
|||
|
Gamma
|
|||
|
–1.0586 –0.3068 0.4386 –1.5625 1.1684 –0.7722 0.0292 –1.4865 1.3315
|
|||
|
|
|||
|
Eclipse Magnitude Central Duration
|
|||
|
|
|||
|
0.9059 1.0652 1.0628 0.0082 0.6947 0.9257 0.9294 0.1279 0.3864
|
|||
|
|
|||
|
– 05m 04s 05m 11s
|
|||
|
– – 06m 44s 08m 14s – –
|
|||
|
|
|||
|
3.18 Eclipse Seasons
|
|||
|
The 5.1° inclination of the lunar orbit around Earth means that the Moon’s orbit crosses the ecliptic at two points or nodes. If New Moon takes place within about 17° of a nodea, then a solar eclipse will be visible from some location on Earth.
|
|||
|
The Sun makes one complete circuit of the ecliptic in 365.24 days, so its average angular velocity is 0.99° per day. At this rate, it takes 34.5 days for the Sun to cross the 34° wide eclipse zone centered on each node. Because the Moon’s orbit with respect to the Sun has a mean duration of 29.53 days, there will always be one and possibly two solar eclipses during each 34.5-day interval when the Sun passes through the nodal eclipse zones. These time periods are called eclipse seasons.
|
|||
|
The mid-point of each eclipse season is separated by 173.3 days because this is the mean time for the Sun to travel from one node to the next. The period is a little less that half a calendar year because the lunar nodes slowly regress westward by 19.3° per year.
|
|||
|
|
|||
|
3.19 Quincena
|
|||
|
The mean time interval between New Moon and Full Moon is 14.77 days. This is less than half the duration of an eclipse season. As a consequence, the same Sun–node alignment geometry responsible for producing a solar eclipse always results in a complementary lunar eclipse within a fortnight. The lunar eclipse may either precede or succeed the solar eclipse. In either case, the pair of eclipses is referred to here as a quincena.b The QLE (Quincena Lunar Eclipse parameter) identifies the type of the lunar eclipse and whether it precedes or succeeds a particular solar eclipse. There are three basic types of lunar eclipses:
|
|||
|
1) n = penumbral lunar eclipse (Moon partly or completely within Earth’s penumbral shadow) 2) p = partial lunar eclipse (Moon partly within Earth’s umbral shadow) 3) t = total lunar eclipse (Moon completely within Earth’s umbral shadow)
|
|||
|
a. The actual value ranges from 15.3° to 18.5° of a node because of the eccentricity of the Moon’s (and Earth’s) orbit. b. Quincena is a Spanish word for a period of about 15 days. 34
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
The QLE is a two character string consisting of one or more of the above lunar eclipse types. The first character in the QLE identifies a lunar eclipse preceding a solar eclipse while the second character identifies a lunar eclipse succeeding a solar eclipse. In most instances, one of the two characters is “-” indicating a single lunar eclipse either precedes or succeeds the solar eclipse. On rare occasions, a double quincena occurs in which a solar eclipse is both preceded and succeeded by lunar eclipses.
|
|||
|
3.20 Quincena Combinations with Total Solar Eclipses
|
|||
|
A total solar eclipse can be preceded or succeeded by a total lunar eclipse (8.8%), a partial lunar eclipse (49.8%), or a penumbral lunar eclipse (28.2%). Double quincenas (a solar eclipse is both preceded and succeeded by a lunar eclipse) occur with a frequency of 13.1% and always consist of two penumbral lunar eclipses. A detailed list of total solar eclipse and quincena lunar eclipse combinations appears in Table 3-28.
|
|||
|
|
|||
|
Table 3-28 Quincena Combinations with Total Solar Eclipses
|
|||
|
|
|||
|
Quincena Lunar Eclipse
|
|||
|
|
|||
|
QLE Number Percent
|
|||
|
|
|||
|
Examples (Years)
|
|||
|
|
|||
|
– total
|
|||
|
|
|||
|
–t
|
|||
|
|
|||
|
147
|
|||
|
|
|||
|
total –
|
|||
|
|
|||
|
t–
|
|||
|
|
|||
|
133
|
|||
|
|
|||
|
– partial
|
|||
|
|
|||
|
–p
|
|||
|
|
|||
|
801
|
|||
|
|
|||
|
partial –
|
|||
|
|
|||
|
p–
|
|||
|
|
|||
|
782
|
|||
|
|
|||
|
– penumbral
|
|||
|
|
|||
|
–n
|
|||
|
|
|||
|
432
|
|||
|
|
|||
|
penumbral –
|
|||
|
|
|||
|
n–
|
|||
|
|
|||
|
462
|
|||
|
|
|||
|
penumbral – penumbral nn
|
|||
|
|
|||
|
416
|
|||
|
|
|||
|
4.6% …, 1957, 1968, 2015, 2033, 2044,… 4.2% …, 1985, 2003, 2043, 2061, 2072,… 25.2% …, 2001, 2008, 2019, 2026, 2037,… 24.6% …, 1992, 1999, 2010, 2017, 2021,… 13.6% …, 1994, 1998, 2012, 2016, 2030,… 14.6% …, 2002, 2006, 2020, 2024, 2038,… 13.1% …, 1973, 1991, 2009, 2027, 2096,…
|
|||
|
|
|||
|
3.21 Quincena Combinations with Annular Solar Eclipses
|
|||
|
An annular solar eclipse can be preceded or succeeded by a total lunar eclipse (9.0%), a partial lunar eclipse (57.4%), or a penumbral lunar eclipse (8.5%). Double quincenas consisting of two penumbral lunar eclipses (23.8%) are common, but penumbral-partial combinations are rare (1.3%). A list of annular solar eclipse and quincena lunar eclipse combinations is found in Table 3-29.
|
|||
|
|
|||
|
Table 3-29. Quincena Combinations with Annular Solar Eclipses
|
|||
|
|
|||
|
Quincena Lunar Eclipse
|
|||
|
– total total – – partial partial – – penumbral penumbral – partial – penumbral penumbral – partial penumbral – penumbral
|
|||
|
|
|||
|
QLE Number Percent
|
|||
|
|
|||
|
Examples (Years)
|
|||
|
|
|||
|
–t
|
|||
|
|
|||
|
178
|
|||
|
|
|||
|
4.5% …, 1990, 2008, 2026, 2044, 2102,…
|
|||
|
|
|||
|
t–
|
|||
|
|
|||
|
178
|
|||
|
|
|||
|
4.5% …, 1891, 2003, 2014, 2021, 2032,…
|
|||
|
|
|||
|
–p
|
|||
|
|
|||
|
1147
|
|||
|
|
|||
|
29.0% …, 1994, 2005, 2012, 2023, 2030,…
|
|||
|
|
|||
|
p–
|
|||
|
|
|||
|
1122
|
|||
|
|
|||
|
28.4% …, 1995, 2006, 2010, 2024, 2028,…
|
|||
|
|
|||
|
–n
|
|||
|
|
|||
|
160
|
|||
|
|
|||
|
4.0% …, 1991, 2001, 2009, 2016, 2019,…
|
|||
|
|
|||
|
n–
|
|||
|
|
|||
|
179
|
|||
|
|
|||
|
4.5% …, 1981, 1999, 2017, 2035, 2042,…
|
|||
|
|
|||
|
pn
|
|||
|
|
|||
|
27
|
|||
|
|
|||
|
0.7% …, 1608, 1749, 2013, 2147, 2288,…
|
|||
|
|
|||
|
np
|
|||
|
|
|||
|
24
|
|||
|
|
|||
|
0.6% …, 1694, 1835, 1958, 2819, 2960]
|
|||
|
|
|||
|
nn
|
|||
|
|
|||
|
941
|
|||
|
|
|||
|
23.8% …, 1998, 2002, 2020, 2031, 2038,…
|
|||
|
|
|||
|
35
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
3.22 Quincena Combinations with Hybrid Solar Eclipses
|
|||
|
A hybrid solar eclipse can be preceded or succeeded by a total lunar eclipse (3.0%), a partial lunar eclipse (51.1%), or a penumbral lunar eclipse (24.9%). Double quincenas consisting of two penumbral lunar eclipses (20.9%) are also fairly common. A complete list of hybrid solar eclipse and quincena lunar eclipse combinations appears in Table 3-30.
|
|||
|
|
|||
|
Table 3-30. Quincena Combinations with Hybrid Solar Eclipses
|
|||
|
|
|||
|
Quincena Lunar Eclipse
|
|||
|
– total total – – partial partial – – penumbral penumbral – penumbral - penumbral
|
|||
|
|
|||
|
QLE
|
|||
|
–t t– –p p– –n n– nn
|
|||
|
|
|||
|
Number
|
|||
|
5 12 124 167 85 57 119
|
|||
|
|
|||
|
Percent
|
|||
|
|
|||
|
Examples (Years)
|
|||
|
|
|||
|
0.9% …,-1989, -1848, -1642, 163, 1986] 2.1% …, 1627, 1645, 1768, 1909, 2050] 21.8% …, 1827, 1845, 2164, 2182, 2323,… 29.3% …, 1912, 1930, 2209, 2350, 2368,… 14.9% …, 1987, 2005, 2023, 2385, 2508,… 10.0% …, 1702, 1908, 2013, 2031, 2049,… 20.9% …, 1843, 1846, 2172, 2190, 2208,…
|
|||
|
|
|||
|
3.23 Quincena Combinations with Partial Solar Eclipses
|
|||
|
A partial solar eclipse is almost always preceded or succeeded by a total lunar eclipse (99.6 %). On very rare occasions (0.3%), a partial lunar eclipse occurs before a partial solar eclipse. However, there are no instances of a partial lunar eclipse following a partial solar eclipse. No double quincenas occur with partial solar eclipses. A list of partial solar eclipse and quincena lunar eclipse combinations is found in Table 3-31.
|
|||
|
|
|||
|
Table 3-31. Quincena Combinations with Partial Solar Eclipses
|
|||
|
|
|||
|
Quincena Lunar Eclipse
|
|||
|
– total total – partial –
|
|||
|
|
|||
|
QLE
|
|||
|
–t t– p–
|
|||
|
|
|||
|
Number Percent
|
|||
|
|
|||
|
Examples (Years)
|
|||
|
|
|||
|
2102
|
|||
|
|
|||
|
50.0% …, 2000, 2004, 2011, 2015, 2018,…
|
|||
|
|
|||
|
2085
|
|||
|
|
|||
|
49.6% …, 2000, 2007, 2011, 2014, 2018,…
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
0.3% …, -753, -196, 2086, 2607, 2625]
|
|||
|
|
|||
|
36
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Section 4: Eclipses and the Moon’s Orbit
|
|||
|
4.1 Introduction
|
|||
|
The Moon revolves around Earth in an elliptical orbit with a mean eccentricity of 0.0549. Thus, the Moon’s centerto-center distance from Earth varies with mean values of 363,396 km at perigee to 405,504 km at apogee. The lunar orbital period with respect to the stars (sidereal month) is 27.32166 days (27d 07h 43m 12s). However, there are three other orbital periods or months that are crucial to the understanding and prediction of eclipses. These three cycles and the harmonics between them determine when, where, and how solar (and lunar) eclipses occur.
|
|||
|
The mutual gravitational force between the Sun and Moon is over twice as large as between the Moon and Earth. For this reason, the Sun plays a dominant role in perturbing the Moon’s motion. The ever changing distances and relative positions between the Sun, Moon, and Earth, the inclination of the Moon’s orbit, the oblateness of Earth, and (to a lesser extent) the gravitational attraction of the other planets all act to throw the Moon’s orbital parameters into a constant state of change. Although the Moon’s position and velocity can be described by the classic Keplerian orbital elements, such osculating elements are only valid for a single instant in time (Chapront-Touze’ and Chapront, 1991). Nevertheless, these instantaneous parameters are of value in understanding the Moon’s complex motions particularly with respect to the three major orbital cycles that govern eclipses.
|
|||
|
4.2 Synodic Month
|
|||
|
The most familiar lunar cycle is the synodic month because it governs the well-known cycle of the Moon’s phases. The Moon has no light of its own but shines by reflected sunlight. As a consequence, the geometry of its orbital position relative to the Sun and Earth determines the Moon’s apparent phase.
|
|||
|
The mean length of the synodic month is 29.53059 days (29d 12h 44m 03s). This is nearly 2.21 days longer than the sidereal month. As the Moon revolves around Earth, both objects also progress in orbit around the Sun. After completing one revolution with respect to the stars, the Moon must continue a little farther along its orbit to catch up to the same position it started from relative to the Sun and Earth. This explains why the mean synodic month is longer than the sidereal month.
|
|||
|
According to astronomical convention, New Moon is defined as the instant when the geocentric ecliptic longitudes of the Sun and Moon are equal. When the synodic month is measured from New Moon to New Moon, it is sometimes referred to as a lunation, and we will follow that usage here. Historically, the phases of the Moon have been used as the basis of lunar calendars by many cultures around the world. The major problem with such calendars is that the year, based on the solar calendar, is not evenly divisible by a whole number of lunations. Consequently, most lunar calendars are actually lunisolar calendars (e.g., Chinese, Hebrew, and Hindu) that include intercalary months to keep the seasons in step with the year.
|
|||
|
The duration of the lunation actually varies from its mean value by up to seven hours. For instance, Table 4-1 contains details for all lunations in 2008. The first column lists the decimal date of every New Moon throughout the year (Terrestrial Dynamical Time), while the second column gives the duration of each lunation. The third column is the difference between the actual and mean lunation. The first lunation of the year (Jan 08) was 03h 23m longer than the mean. Continuing through 2008, the length of each lunation drops and reaches a minimum of 05h 48m shorter than the mean value (Jun 03). The duration now increases with each succeeding lunation until the maximum value of the year is reached of 06h 49m longer than the mean (Dec 27).
|
|||
|
37
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
Table 4-1 New Moon and Lunation Length in 2008
|
|||
|
|
|||
|
Date of New Moon Length of Lunation Difference From Moon’s
|
|||
|
|
|||
|
(Dynamical Time)
|
|||
|
|
|||
|
Mean Lunation True
|
|||
|
|
|||
|
Anomaly
|
|||
|
|
|||
|
2008 Jan 08.4849
|
|||
|
|
|||
|
29d 16h 07m
|
|||
|
|
|||
|
+03h 23m
|
|||
|
|
|||
|
242.4°
|
|||
|
|
|||
|
2008 Feb 07.1567
|
|||
|
|
|||
|
29d 13h 30m
|
|||
|
|
|||
|
+00h 46m
|
|||
|
|
|||
|
280.0°
|
|||
|
|
|||
|
2008 Mar 07.7190 29d 10h 41m
|
|||
|
|
|||
|
–02h 03m
|
|||
|
|
|||
|
310.8°
|
|||
|
|
|||
|
2008 Apr 06.1642 29d 08h 23m
|
|||
|
|
|||
|
–04h 21m
|
|||
|
|
|||
|
332.7°
|
|||
|
|
|||
|
2008 May 05.5134 29d 07h 04m
|
|||
|
|
|||
|
–05h 40m
|
|||
|
|
|||
|
349.4°
|
|||
|
|
|||
|
2008 Jun 03.8081 29d 06h 56m
|
|||
|
|
|||
|
–05h 48m
|
|||
|
|
|||
|
4.4°
|
|||
|
|
|||
|
2008 Jul 03.0970
|
|||
|
|
|||
|
29d 07h 54m
|
|||
|
|
|||
|
–04h 50m
|
|||
|
|
|||
|
20.1°
|
|||
|
|
|||
|
2008 Aug 01.4261 29d 09h 45m
|
|||
|
|
|||
|
–02h 59m
|
|||
|
|
|||
|
39.2°
|
|||
|
|
|||
|
2008 Aug 30.8327 29d 12h 14m
|
|||
|
|
|||
|
–00h 30m
|
|||
|
|
|||
|
64.9°
|
|||
|
|
|||
|
2008 Sep 29.3426 29d 15h 02m
|
|||
|
|
|||
|
+02h 18m
|
|||
|
|
|||
|
98.7°
|
|||
|
|
|||
|
2008 Oct 28.9687 29d 17h 41m
|
|||
|
|
|||
|
+04h 57m
|
|||
|
|
|||
|
133.4°
|
|||
|
|
|||
|
2008 Nov 27.7053 29d 19h 28m
|
|||
|
|
|||
|
+06h 44m
|
|||
|
|
|||
|
161.9°
|
|||
|
|
|||
|
2008 Dec 27.5163 29d 19h 33m
|
|||
|
|
|||
|
+06h 49m
|
|||
|
|
|||
|
186.6°
|
|||
|
|
|||
|
What is the cause of this odd behavior? The last column in Table 4-1 gives a clue; it contains the Moon’s true anomaly at the instant of New Moon. The true anomaly is the angle between the Moon’s position and the point of perigee along its orbit. In other words, it is the orbital longitude of the Moon with respect to perigee. Table 4-1 shows that when New Moon occurs near perigee (true anomaly = 0°), the length of the lunation is at a minimum (e.g., Jun 03). Similarly, when New Moon occurs near apogee (true anomaly = 180°), the length of the lunation reaches a maximum (e.g., Dec 27).
|
|||
|
|
|||
|
This relationship is quite apparent when viewed graphically. Figure 4-1 plots the difference from mean lunation (histogram) and the Moon’s true anomaly (diagonal curves) for every New Moon from 2008 through 2010. The left-hand scale is for the difference from mean lunation, while the right-hand scale is for the true anomaly. The shortest lunations are clearly correlated with New Moon at perigee, while the longest lunations occur at apogee. From the figure, the length of this cycle appears to be about 412 days. The reason why must wait until the next section.
|
|||
|
|
|||
|
The Moon’s orbital period with respect to perigee is the anomalistic month and has a duration of approximately 27.55 days. The lock-step rhythm between the lunation length and true anomaly can be explained with the help of the anomalistic month and Figure 4-2. It illustrates the Moon’s orbit around Earth and Earth’s orbit around the Sun. The relative sizes and distances of the Sun, Moon, and Earth as well as the eccentricity of the Moon’s orbit are all exaggerated for clarity. The major axis of the Moon’s orbit marks the positions of perigee and apogee.
|
|||
|
|
|||
|
38
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
Figure 4–1: Length of Lunation for 2008 – 2010
|
|||
|
8
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
difference from mean lunation
|
|||
|
|
|||
|
2
|
|||
|
Difference from Mean Lunation (hours) [mean = 29d 12h 440m 03s]
|
|||
|
|
|||
|
-2
|
|||
|
|
|||
|
-4
|
|||
|
|
|||
|
-6
|
|||
|
-8 2008
|
|||
|
|
|||
|
True Anomaly at New Moon
|
|||
|
2009
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2010
|
|||
|
|
|||
|
360°
|
|||
|
270°
|
|||
|
True Ano1m80a°ly at New Moon
|
|||
|
90° 0°
|
|||
|
2011
|
|||
|
|
|||
|
Figure 4–2: Moon's Orbit and the Synodic Month
|
|||
|
Orbit of Earth
|
|||
|
|
|||
|
Case 2:
|
|||
|
New Moon Near Apogee
|
|||
|
|
|||
|
Case 1:
|
|||
|
New Moon Near Perigee
|
|||
|
Orbit of Moon
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
Earth Moon a1 New Moon
|
|||
|
|
|||
|
B
|
|||
|
|
|||
|
b2 New Moon b
|
|||
|
|
|||
|
b1
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
d1
|
|||
|
d d2
|
|||
|
New Moon c1
|
|||
|
New Moon
|
|||
|
|
|||
|
(DLiriencetioonfoAf pPseirdigeees)
|
|||
|
|
|||
|
D C
|
|||
|
|
|||
|
Two distinct cases—each consisting of two revolutions of the Moon around Earth—are depicted in Figure 4-2. The first case covers the New Moon geometry around perigee. The orbit marked A shows New Moon taking place near perigee at position a1. One anomalistic month later (orbit B), the Moon has returned to the same position relative to perigee (marked b1). However, Earth has traveled about 30° around its orbit so the Sun’s direction relative to the Moon’s major axis has shifted. The Moon must travel an additional distance of Δb in its orbit before reaching the New Moon phase at b2. This graphically demonstrates why the synodic month is longer (~1.98 days) than the anomalistic month.
|
|||
|
39
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) The second case takes place about half a year later. New Moon then occurs near apogee (orbit C, position c1). After one anomalistic month, the Moon has returned to the same location with respect to apogee (orbit D, position d1). Once again, Earth has traveled about 30° around its orbit so the Moon must revolve an additional distance of Δd before reaching the New Moon phase at position d2.
|
|||
|
An inspection of orbits B and D reveals that the orbital arc Δd is longer that Δb. This means that the Moon must cover a greater orbital distance to reach New Moon near apogee as compared to perigee. Furthermore, the Moon’s orbital velocity is slower at apogee so it takes longer to travel a given distance. Thus, the length of the lunation is shorter than average when New Moon occurs near perigee and longer than average when New Moon occurs near apogee.
|
|||
|
Earth’s elliptical orbit around the Sun also factors into the length of the lunation. With an eccentricity of 0.0167, Earth’s orbit is about one third as elliptical as the Moon’s orbit. Nevertheless, it affects the length of the lunation by producing shorter lunations near aphelion and longer lunations near perihelion.
|
|||
|
During the 5000-year period covered in this catalog, there are 61841 complete lunations. The shortest lunation began on –1602 Jun 03 and lasted 29.26574 days (29d 06h 22m 40s; 6h 21m 23s shorter than the mean). The longest lunation began on –1868 Nov 27 and lasted 29.84089 days (29d 20h 10m 53s; 7h 26m 50s longer than the mean). Thus, the duration of the lunation varies over a range of 13h 48m 13s during this time interval.
|
|||
|
The histogram presented in Figure 4-3 shows the distribution in the length of the lunation over 5000 years. To create the histogram, the durations of individual lunations were binned into 30-minute groups. It might seem reasonable to expect a simple bell-shaped Gaussian curve. However, the results are surprising because the distribution in lunation length has two distinct peaks. This bifurcation can be understood if the lunation length, which depends primarily on the Moon’s distance, is considered as a series of sine functions. The extremes of a sine function always occur more frequently than the mean, which is just what is seen in Figure 4-3. For a more detailed discussion, see Meeus (1997).
|
|||
|
Figure 4–3: Length of Lunation Over 5000 Years
|
|||
|
2000 61,841 Lunations from 2000 BCE to 3000 CE
|
|||
|
1500
|
|||
|
1000
|
|||
|
500 Mean Lunation
|
|||
|
29d 12h 44m 03s 0 -8 -6 -4 -2 0 2 4 6 8
|
|||
|
Difference from Mean Lunation (hours) [mean = 29d 12h 44m 03s]
|
|||
|
40
|
|||
|
|
|||
|
Number
|
|||
|
|
|||
|
4.3 Anomalistic Month
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
The anomalistic month is defined as the revolution of the Moon around its elliptical orbit as measured from perigee to perigee. The length of this period can vary by several days from its mean value of 27.55455 days (27d 13h 18m 33s). Figure 4-4 plots the difference of the anomalistic month from the mean value for the 3-year interval 2008 through 2010. Also plotted is the difference between the mean longitudes of the Sun and perigee. This is just the angle between the Sun and the Moon’s major axis in the direction of perigee. The left-hand scale is the length of the anomalistic month minus the mean value, while the right-hand scale is for the difference in longitude (Sun–perigee). For comparison, the lunation length minus its mean value is also plotted (light gray).
|
|||
|
Figure 4–4: Length of Anomalistic Month for 2008 – 2010
|
|||
|
360°
|
|||
|
|
|||
|
difference from mean anomalistic
|
|||
|
month
|
|||
|
|
|||
|
difference in mean longitude (Sun - Perigee)
|
|||
|
difference from mean lunation
|
|||
|
|
|||
|
270°
|
|||
|
|
|||
|
Difference from Mean Anomalistic Month (days) [mean = 27d 13h 18m 33s]
|
|||
|
|
|||
|
Difference in Me1a8n0°Longitude (Sun - Perigee)
|
|||
|
|
|||
|
90°
|
|||
|
|
|||
|
2008
|
|||
|
|
|||
|
2009
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2010
|
|||
|
|
|||
|
0° 2011
|
|||
|
|
|||
|
The variation in the length of the anomalistic month is much larger than that of the lunation. Figure 4-4 shows the
|
|||
|
|
|||
|
anomalistic month is typically within 1 day of its mean value. But once or twice every 7 to 8 months, the anomalistic
|
|||
|
|
|||
|
month is significantly shorter than the mean by 2 to nearly 3 days. The difference in longitude of the Sun and perigee
|
|||
|
|
|||
|
show that the shortest anomalistic months are correlated with values of 90° and 270°, when the line of apsides is
|
|||
|
|
|||
|
perpendicular to the Sun’s direction.
|
|||
|
|
|||
|
In comparison, the longest anomalistic months take place when the difference in longitude passes through 0° or 180°. The line of apsides is then directed towards or away from the Sun. The maximum duration of the anomalistic month is then about 28.5 days (1.0 day longer than the mean). The Earth–Sun distance also influences the anomalistic month by causing greater extremes near perihelion. This currently occurs in early January each year.
|
|||
|
|
|||
|
In an earlier discussion on the synodic month, it was assumed that the lunar orbit’s line of apsides has a fixed and permanent direction in space. In fact, the length of the mean anomalistic month (27.55 days) exceeds the mean sidereal month (27.32 days) by 0.23 days. Thus, the Moon’s major axis slowly shifts with a mean rate of 0.11140° per day in the direct sense, that is, in the same direction as the Moon’s orbital motion. This corresponds to an average of 40.7° per year, so it takes 8.85 years (3231.6 days) for the line of apsides to make one complete revolution with respect to the stars.
|
|||
|
|
|||
|
What impact do the varying length of the anomalistic month and the direct (eastward) rotation of the Moon’s elliptical orbit have on the length of the lunation? To answer this, one must first consider Earth’s elliptical orbit around the Sun, which has a mean eccentricity of 0.0167. The center-to-center distance between Earth and the Sun varies with mean values of 147,098,074 km at perihelion to 152,097,701 km at aphelion. The direction of Earth’s orbital line of apsides also changes but at a rate far slower than the Moon’s. Having a direct (eastward) shift with a mean value of
|
|||
|
|
|||
|
41
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
0.0172° per year, it takes about 20,500 years for Earth’s major axis to make one complete revolution. This is only 0.0004 of the lunar rate, so it can be treated as fixed for the purpose of the following discussion.
|
|||
|
|
|||
|
At certain times, the perigee of the lunar orbit and the perihelion of Earth’s orbit can have the same ecliptic longitude. Ignoring the 5.1° tilt of the Moon’s obit, the major axes are then essentially parallel to each other and point in the same direction. As time passes, the major axis of the lunar orbit slowly rotates east with respect to Earth’s major axis until it becomes perpendicular to it 2.21 years later. In another 2.21 years (4.42 years from the start), the major axes of the orbits are again parallel to each other, but the perigee and the perihelion are 180° apart as they point in opposite directions. After an additional period of 2.21 years, the axes are once more perpendicular. Finally, the Moon’s perigee and Earth’s perihelion again share the same ecliptic longitude after a total interval of 8.85 years.
|
|||
|
|
|||
|
The length of each lunation minus the mean lunation is plotted in Figure 4-5 for the 20-year period from 2008 through
|
|||
|
|
|||
|
2027. The periodic rhythm between the lunation length and the true anomaly, as described earlier (via Figure 4-1),
|
|||
|
|
|||
|
can now be seen over the course of two decades. The 412-day mean period of this cycle corresponds to the time
|
|||
|
|
|||
|
between two consecutive alignments of the major axis in the direction of the Sun. It is slightly longer than a year
|
|||
|
|
|||
|
because of the slow eastward shift of the Moon’s major axis.
|
|||
|
|
|||
|
Figure 4–5: Length of Lunation for 2008 – 2027
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
360°
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
difference from
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
mean lunation
|
|||
|
|
|||
|
270°
|
|||
|
|
|||
|
2 Difference from Mean Lunation (hours)
|
|||
|
[mean = 29d 12h 440m 03s] -2
|
|||
|
|
|||
|
Difference in Lo1n8g0it°ude of Perigee & Periheli
|
|||
|
|
|||
|
-4
|
|||
|
|
|||
|
90°
|
|||
|
|
|||
|
-6
|
|||
|
|
|||
|
difference in mean longitude
|
|||
|
|
|||
|
difference in true longitude
|
|||
|
|
|||
|
of perigee & perihelion
|
|||
|
|
|||
|
of perigee & perihelion
|
|||
|
|
|||
|
-8 2010
|
|||
|
|
|||
|
2015
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2020
|
|||
|
|
|||
|
0° 2025
|
|||
|
|
|||
|
An interesting feature revealed in Figure 4-5 is how the extremes in the lunation length slowly vary over a period
|
|||
|
|
|||
|
of nearly 9 years. The envelope defined by the minima and maxima appears to oscillate over a range of values from
|
|||
|
|
|||
|
±2 h to ±6 h. This behavior is evidence revealing the influence of the 8.85-year cycle in the alignment of the major
|
|||
|
|
|||
|
axes of the orbits of the Moon and Earth.
|
|||
|
|
|||
|
The amplitude of the envelope is due to the eccentricity of Earth’s orbit. When Earth is at perihelion, its orbital velocity is at its maximum value so Earth travels a larger distance around its orbit in a given time as compared to aphelion. Thus, the Moon must travel a greater distance to align with the Sun, which results in a longer lunation. Near aphelion, the opposite conditions produce a shorter lunation.
|
|||
|
|
|||
|
Using the axis scale on the right, the diagonal lines in Figure 4-5 plot the angle between the Moon’s perigee and Earth’s perihelion. This is the difference between the Moon’s mean longitude of perigee and Earth’s true longitude of perihelion. When the angle between the perigee and perihelion is 0°, the length of the lunation varies from a minimum of 29.273 days (–6.17 hours from mean) to a maximum of 29.820 days (+6.93 hours from mean). Similarly, when the angle between the perigee and perihelion is 180°, the length of the lunation varies from a minimum of 29.452 days (–1.88 hours from mean) to a maximum of 29.628 days (+2.33 hours from mean). To summarize, the greatest
|
|||
|
42
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
extremes in the length of the lunation occur when the longitudes of the Moon’s perigee and Earth’s perihelion are equal. The smallest extremes in the lunation length occur when their longitudes differ by 180°.
|
|||
|
|
|||
|
Although the Moon’s major axis rotates eastward at a mean rate of 0.1114° per day, the true rate varies considerably. Figure 4-5 illustrates the variation by plotting the difference between the true longitudes of the Moon’s perigee and Earth’s perihelion. This quasi-sinusoidal oscillation about the difference in the mean longitudes shows peak departures of ±30° from average. Indeed, the Moon’s major axis can swing both east and west of its mean value, taking on an actual retrograde shift west during some anomalistic months.
|
|||
|
|
|||
|
This dynamic behavior is due to the gravitational pull of the Sun on the Moon as it orbits Earth. Consequently, a continuous torque is applied to the lunar orbit in an unsuccessful effort to permanently align the major axis towards the Sun. The annual orbit of the Earth–Moon system around the Sun coupled with the Moon’s synodic orbit around Earth mean that the conditions for such a permanent alignment are always changing. The overall effect is to twist and distort the shape and orientation of the Moon’s elliptical orbit.
|
|||
|
|
|||
|
It was stated earlier that the Moon’s mean orbital eccentricity is 0.0549, but this too is subject to large changes because of solar perturbations. Figure 4-6 plots the variation in the Moon’s orbital eccentricity from 2008 through 2010. The instantaneous eccentricity (light gray curve) oscillates with a period tied to the synodic month and ranges from 0.0266 to 0.0762 over this 3-year interval. Superimposed on the instantaneous eccentricity is the eccentricity at the instant of perigee, which occurs at the beginning of each anomalistic month (heavy black curve). The straight diagonal lines represent the difference between the mean longitudes of the Sun and perigee. In other words, it is the angle between the Moon’s perigee-directed major axis and the Sun. Oscillating about this line is the difference between the true longitudes of Sun and perigee. The scale for these angles appears along the right side of Figure 4-6. The extreme range of the Moon’s orbital eccentricity at perigee during the 5000 years of the catalog is 0.0255 to 0.0775.
|
|||
|
|
|||
|
Figure 4–6: Moon's Eccentricity for 2008 – 2010 0.10
|
|||
|
|
|||
|
0.08
|
|||
|
|
|||
|
eccentricity at perigee
|
|||
|
|
|||
|
instantaneous eccentricity
|
|||
|
|
|||
|
360° 270°
|
|||
|
|
|||
|
0.06 Eccentricity
|
|||
|
0.04
|
|||
|
|
|||
|
Difference in18L0o°ngitude (Sun - Perigee)
|
|||
|
|
|||
|
0.02
|
|||
|
0.00 2008
|
|||
|
|
|||
|
difference in mean longitude
|
|||
|
(Sun - Perigee)
|
|||
|
|
|||
|
2009
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
difference in true longitude (Sun - Perigee)
|
|||
|
2010
|
|||
|
|
|||
|
90°
|
|||
|
0° 2011
|
|||
|
|
|||
|
Figure 4-6 shows that the eccentricity reaches a maximum when the major axis of the lunar orbit is pointed directly towards or directly away from the Sun (angles of 0° and 180°, respectively). This occurs at a mean interval of 205.9 days, which is somewhat longer than half a year because of the eastward shift of the major axis. The eccentricity reaches a minimum when the major axis of the lunar orbit is perpendicular to the Sun (angles of 90° and 270°).
|
|||
|
|
|||
|
Such changes in orbital eccentricity produce significant variations in the Moon’s distance at perigee and apogee. Figure 4-7 plots the Moon’s distance for all perigees and apogees from 2008 through 2010. Also shown is the orbital eccentricity at perigee as well as the angle between the perigee directed major axis and the Sun. The closest
|
|||
|
43
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
perigee (minimum perigee distance) and farthest apogee (maximum apogee distance) occur when the eccentricity is at maximum. This corresponds to times when the Moon’s major axis points directly towards or directly away from the Sun (angles of 0° and 180°, respectively). The farthest perigee (maximum perigee distance) and closest apogee (minimum apogee distance) occur when the eccentricity is at minimum. At such times, the major axis is oriented perpendicular to the Sun. During the 3-year interval covered in Figure 4-7, the Moon’s perigee distance ranges from 356,568 to 370,216 km while the apogee distance ranges from 404,168 to 406,602 km.
|
|||
|
|
|||
|
Figure 4–7: Perigee & Apogee for 2008 – 2010 410
|
|||
|
apogee
|
|||
|
|
|||
|
400
|
|||
|
|
|||
|
eccentricity
|
|||
|
|
|||
|
at perigee
|
|||
|
|
|||
|
difference in mean longitude
|
|||
|
(Sun - Perigee)
|
|||
|
|
|||
|
390
|
|||
|
|
|||
|
360° 270°
|
|||
|
|
|||
|
Distance of Moon 3(8x01000 km )
|
|||
|
|
|||
|
Difference in1L8o0n°gitude (Sun - Perigee)
|
|||
|
|
|||
|
370
|
|||
|
360
|
|||
|
350 2008
|
|||
|
|
|||
|
perigee
|
|||
|
|
|||
|
2009
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2010
|
|||
|
|
|||
|
90°
|
|||
|
0° 2011
|
|||
|
|
|||
|
Over the 5000-year period of the catalog, there are 66,276 perigees and apogees. During this epoch, the distance of the Moon’s perigee varies from 356,355 to 370,399 km while the apogee varies from 404,042 to 406,725 km. The minimum and maximum extremes in orbital eccentricity are 0.0255 to 0.0775 and the extremes in the length of the anomalistic month are 24.629 days (2.925 days shorter than the mean) to 28.565 days (1.011 days longer than the mean). A histogram showing the distribution in the length of the anomalistic month is presented in Figure 4-8 where the durations of individual anomalistic months have been binned into 2-hour groups. The sharply asymmetric distribution shows that anomalistic months longer than the mean cluster over a much shorter range of values compared to anomalistic months shorter than the mean.
|
|||
|
|
|||
|
Figure 4–8: Length of Anomalistic Month Over 5000 Years
|
|||
|
|
|||
|
10000
|
|||
|
|
|||
|
66,276 Anomalistic Months from 2000 BCE to 3000 CE
|
|||
|
|
|||
|
8000
|
|||
|
|
|||
|
Mean Anomalistic Month 27d 13h 18m 33s
|
|||
|
|
|||
|
6000
|
|||
|
|
|||
|
Number
|
|||
|
|
|||
|
4000
|
|||
|
|
|||
|
2000
|
|||
|
|
|||
|
0
|
|||
|
|
|||
|
-80
|
|||
|
|
|||
|
-60
|
|||
|
|
|||
|
-40
|
|||
|
|
|||
|
-20
|
|||
|
|
|||
|
0
|
|||
|
|
|||
|
20
|
|||
|
|
|||
|
40
|
|||
|
|
|||
|
Difference from Mean Anomalistic Month (hours) [mean = 27d 13h 18m 33s]
|
|||
|
|
|||
|
44
|
|||
|
|
|||
|
4.4 Draconic Month
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
The plane of the Moon’s orbit is inclined at a mean angle of 5.145° to the plane of Earth’s orbit around the Sun. The intersection of these planes defines two points or nodes on the celestial sphere. The node where the Moon’s path crosses the ecliptic from south to north is the ascending node, while the node where the Moon’s path crosses the ecliptic from north to south is the descending node.
|
|||
|
|
|||
|
The draconic month is defined as one revolution of the Moon about its orbit with respect to the ascending node. The mean length of this nodical period is 27.21222 days (27d 05h 05m 36s). However, the actual duration can vary by over 6 h from the mean. Figure 4-9 plots the duration of the draconic month minus its mean value for 2008 through 2010. The shortest month over this 3-year period is 27.05115 days (27d 01h 14m), while the longest month is 27.38409 days (27d 09h 13m).
|
|||
|
|
|||
|
Figure 4–9: Length of Draconic Month for 2008 – 2010
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
360°
|
|||
|
|
|||
|
difference in
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
difference from mean draconic
|
|||
|
|
|||
|
mean longitude (Sun - Asc. Node)
|
|||
|
|
|||
|
month
|
|||
|
|
|||
|
270°
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
Difference from Mean Draconic Month (hours) [mean = 27d 05h 005m 36s]
|
|||
|
|
|||
|
Difference in Mean L1o8n0g°itude (Sun - Ascending Node)
|
|||
|
|
|||
|
-2 90°
|
|||
|
-4
|
|||
|
|
|||
|
-6 2008
|
|||
|
|
|||
|
2009
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2010
|
|||
|
|
|||
|
0° 2011
|
|||
|
|
|||
|
The most significant characteristic of this variation is that it is synchronized with the ascending node relative to the Sun’s position along the ecliptic. The mean angle between the Sun and the ascending node (i.e., difference in mean longitude) is also plotted in Figure 4-9 (diagonal lines) to illustrate this relationship. The longitude difference at the start of each draconic month is plotted as a black dot. Longitude values can be read using the scale along the right side of the figure. The longest draconic months occur when the difference in the mean longitudes of the Sun and the ascending node is either 0° or 180°. In contrast, the shortest months occur when the angle between the Sun and the ascending node is either 90° or 270°.
|
|||
|
The mean draconic month is 0.10944 day (2h 36m 36s) shorter than the sidereal month. Consequently, the lunar nodes slowly rotate west or retrograde (opposite the Moon’s orbital motion) along the ecliptic at a rate of 0.05295° per day. One complete rotation of the ascending node about the ecliptic requires 18.6 years (6793.48 days) with respect to the fixed stars.
|
|||
|
Figure 4-10 plots the instantaneous inclination of the lunar orbit over the 3-year period 2008–2010. The mean angle between the Sun and the ascending node (i.e., difference in mean longitude) is also plotted. The largest inclination of 5.30° occurs when the difference in longitude is either 0° or 180°. In other words, the inclination is always near its maximum value for both solar and lunar eclipses. The smallest inclination of 5.00° occurs when the difference in longitude is either 90° or 270°. Note the small monthly oscillations in the inclination when near its minimum. The
|
|||
|
|
|||
|
45
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
figure also plots the longitude of the instantaneous ascending node. Its westward motion draws to a near standstill whenever the Sun aligns with either of the nodes. This corresponds to a difference in longitude of either 0° or 180°.
|
|||
|
|
|||
|
The mean interval in the periodic variation of both the draconic month and the orbital inclination is 173.3 days. This is the average time it takes for the Sun to travel from one node to the other. It is also equivalent to the interval between the midpoints of two eclipse seasons. The period is slightly less than half a year because of the retrograde motion of the nodes.
|
|||
|
|
|||
|
Figure 4–10: Lunar Orbit Inclination for 2008 – 2010
|
|||
|
|
|||
|
5.4° instantaneous ascending node
|
|||
|
|
|||
|
360°
|
|||
|
|
|||
|
5.3° 270°
|
|||
|
|
|||
|
5.2°
|
|||
|
Inclination [mean = 5.145°]
|
|||
|
5.1°
|
|||
|
|
|||
|
Difference in Mean L1o8n0g°itude (Sun - Ascending Node)
|
|||
|
|
|||
|
5.0°
|
|||
|
4.9° 2008
|
|||
|
|
|||
|
instantaneous inclnation
|
|||
|
2009
|
|||
|
|
|||
|
difference in mean longitude (Sun - Asc. Node)
|
|||
|
|
|||
|
Year
|
|||
|
|
|||
|
2010
|
|||
|
|
|||
|
90°
|
|||
|
0° 2011
|
|||
|
|
|||
|
The length of the draconic month is strongly modulated by the position of the nodes with respect to the major axis of the Moon’s orbit. The histogram in Figure 4-11 shows how the draconic month changes from 2008 through 2017. The 173-day alignment of the Sun with a node appears as the rapid oscillation in the month length. The quasi-sinusoidal envelopes surrounding the minima and maxima form two longer period oscillations. Over the 10-year period covered in this figure, the minimum month duration varies from 27.089 to 27.011 days (3.0 to 4.8 hours shorter than the mean). The maximum month duration ranges from 27.261 to 27.472 days (1.2 to 6.2 hours longer than the mean).
|
|||
|
|
|||
|
Figure 4–11: Draconic Month and Perigee for 2008 – 2017
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
360°
|
|||
|
|
|||
|
difference from
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
mean draconic
|
|||
|
|
|||
|
month
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
270°
|
|||
|
|
|||
|
2
|
|||
|
Difference from Mean Draconic Month (hours) [mean = 27d 05h 050m 36s]
|
|||
|
|
|||
|
Difference in Mean Lon18g0it°ude (Perigee - Ascending Node)
|
|||
|
|
|||
|
-2
|
|||
|
|
|||
|
-4
|
|||
|
|
|||
|
-6
|
|||
|
-8 2008
|
|||
|
|
|||
|
difference in mean longitude (Perigee - Asc. Node)
|
|||
|
2013 Year
|
|||
|
|
|||
|
46
|
|||
|
|
|||
|
90°
|
|||
|
0° 2018
|
|||
|
|
|||
|
Number
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus The difference in the mean longitudes of perigee and the ascending node appear as diagonal lines in Figure 4-11. This is the angle between these orbital parameters measured along the ecliptic. The greatest extremes in the draconic month occur when the angle between perigee and the ascending node is 0°. Likewise, the smallest extremes of the month take place when the difference in longitude is 180°. The mean rates of the major axis and the ascending node are 0.11140° east and 0.05295° west per day, respectively. Therefore, the mean period between alignments of the axis and node is 2190.4 days or 6.0 years. This period is clearly seen in Figure 4-11. There are 67,111 draconic months during the 5000 years covered in this catalog. The shortest and longest months are 27.004 days (0.208 days or 5.0 hours shorter than the mean) and 27.487 days (0.275 days or 6.6 hours longer than the mean), respectively. A histogram of the distribution in the length of the draconic month over the five millennia appears in Figure 4-12 where the duration of individual draconic months have been binned into 30-min groups. The width and bifurcated symmetry of the distribution resemble the distribution for the lunation (synodic month) in Figure 4-4.
|
|||
|
Figure 4–12: Length of Draconic Month Over 5000 Years 3000 67,111 Draconic Months from 2000 BCE to 3000 CE
|
|||
|
2000
|
|||
|
1000
|
|||
|
Mean Draconic Month 27d 05h 05m 36s
|
|||
|
0 -8 -6 -4 -2 0 2 4 6 8
|
|||
|
Difference from Mean Draconic Month (hours) [mean = 27d 05h 05m 36s]
|
|||
|
4.5 Eclipse Cycles The interaction and harmonics of the synodic, anomalistic, and draconic months not only determine how frequently eclipses occur, but they also control the geometric characteristics and classification of each eclipse. The commensurability of these periods over long time scales results in several important eclipse cycles, which will be the subject of the next section.
|
|||
|
47
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
Section 5: Solar Eclipse Periodicity
|
|||
|
|
|||
|
5.1 Interval Between Two Successive Solar Eclipses The time interval between any two successive solar eclipses can be either 1, 5, or 6 lunations (synodic months). The distribution of these 11,897 intervals in the Catalog is found in Table 5-1.
|
|||
|
Table 5-1. Interval Between Successive Solar Eclipses
|
|||
|
|
|||
|
Number of Lunations
|
|||
|
1 5 6
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
1,361 2,743 7,793
|
|||
|
|
|||
|
Percent
|
|||
|
11.4% 23.1% 65.5%
|
|||
|
|
|||
|
5.2 Solar Eclipse Repetition
|
|||
|
Eclipses separated by 1, 5 or 6 lunations are usually quite dissimilar. They are often of unlike types (i.e., partial, annular, total or hybrid) with diverse Sun-Moon-Earth alignment geometries, and with different lunar orbital characteristics (i.e., longitude of perigee and longitude of ascending node). More importantly, these short periods are of no value as predictors of future eclipses because they do not repeat in any recognizable pattern.
|
|||
|
A simple eclipse repetition cycle can be found by requiring that certain orbital parameters be repeated. The Moon must be in the new phase with the same longitude of perigee and same longitude of the ascending node. These conditions are met by searching for an integral multiple in the Moon’s three major periods—the synodic, anomalistic and draconic months. A fourth condition might require that an eclipse occur at approximately the same time of year to preserve the axial tilt of Earth and thus, the same season, as well as the distance from the Sun.
|
|||
|
|
|||
|
5.3 Saros
|
|||
|
The Saros arises from a harmonic between three of the Moon’s orbital cycles. All three periods are subject to slow variations over long time scales, but their current values (2000 CE) are:
|
|||
|
|
|||
|
Synodic Month (New Moon to New Moon) = 29.530589 days
|
|||
|
|
|||
|
Anomalistic Month (perigee to perigee) = 27.554550 days
|
|||
|
|
|||
|
Draconic Month (node to node)
|
|||
|
|
|||
|
= 27.212221 days
|
|||
|
|
|||
|
= 29d 12h 44m 03s = 27d 13h 18m 33s = 27d 05h 05m 36s
|
|||
|
|
|||
|
One Saros is equal to 223 synodic months, however, 239 anomalistic months and 242 draconic months are also equal (within a few hours) to this same period:
|
|||
|
|
|||
|
223 Synodic Months 239 Anomalistic Months 242 Draconic Months
|
|||
|
|
|||
|
= 6585.3223 days = 6585.5375 days = 6585.3575 days
|
|||
|
|
|||
|
= 6585d 07h 43m = 6585d 12h 54m = 6585d 08h 35m
|
|||
|
|
|||
|
With a period of approximately 6,585.32 days (~18 years 11 days 8 hours), the Saros is valuable tool in investigating the periodicity and recurrence of eclipses. It was first known to the Chaldeans as an interval when lunar eclipses repeat, but the Saros is applicable to solar eclipses as well.
|
|||
|
|
|||
|
48
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Figure 5-1 — Eclipses from Saros 136: 1901 to 2045
|
|||
|
|
|||
|
2045 Aug 12 1991 Jul 11 1937 Jun 08
|
|||
|
|
|||
|
2027 Aug 02 1973 Jun 30 1919 May 29
|
|||
|
|
|||
|
2009 Jul 22 1955 Jun 20 1901 May 18
|
|||
|
|
|||
|
Any two eclipses separated by one Saros cycle share similar characteristics. They occur at the same node with the Moon at nearly the same distance from Earth and at the same time of year. Because the Saros period is not equal to a whole number of days, its biggest drawback as an eclipse predictor is that subsequent eclipses are visible from different parts of the globe. The extra 1/3 day displacement means that Earth must rotate an additional ~8 hours or ~120° with each cycle. For solar eclipses, this results in a shift of each succeeding eclipse path by ~120° west. Thus, a Saros series returns to approximately the same geographic region every three Saros periods (~54 years and 34 days). This triple Saros cycle is known as the Exeligmos. Figure 5-1 shows the path of totality for nine eclipses belonging to Saros 136. This series is of particular interest because it is currently producing the longest total eclipses of the 20th and 21st centuries. The westward migration of each eclipse path from 1901 through 2045 illustrates the consequences of the extra 1/3 day in the Saros period. The northward shift of each path is due to the progressive increase in gamma from –0.3626 (1901) to 0.2116 (2045).
|
|||
|
Saros series do not last indefinitely because the synodic, draconic, and anomalistic months are not perfectly commensurate with one another. In particular, the Moon’s node shifts eastward by about 0.48° with each eclipse in a series. The following narrative describes the life cycle of a typical Saros series at the Moon’s descending node. The series begins when the New Moon occurs ~17° east of the node. The Moon’s umbral/antumbral shadow passes about 3500 km south of Earth and a small partial eclipse will be visible from high southern latitudes. One Saros period later, the umbra/antumbra passes ~250 km closer to Earth’s geocenter (gamma increases) and a partial eclipse of slightly larger magnitude will result. After about 10 Saros cycles (~200 years), the first umbral/antumbral eclipse occurs near the South Pole of Earth. Over the course of the next 7 to 10 centuries, a central eclipse occurs every 18.031 years (= Saros), but will be displaced northward by about 250 km with respect to Earth’s center. Halfway through this period, eclipses of long duration occur near the equator (mid-series eclipses may be of short duration if hybrid or nearly so). The last central eclipse of the series takes place at high northern latitudes. Approximately 10 more eclipses will be partial with successively smaller magnitudes. Finally, the Saros series ends 12 to 15 centuries after it began at the opposite pole.
|
|||
|
Based on the above description, the path of each umbral/antumbral eclipse should shift uniformly north in latitude after every Saros period. As Fig. 5-2 shows, this is not always the case. Nine members from Saros 136 are plotted for the years 2117 through 2261. Although the paths of previous eclipses in this series were shifting progressively northward (Figure 5-1), the trend here is reversed and the paths shift south. This temporary effect is due to the tilt of Earth’s axis combined with the passage of Saros 136 eclipses from the Northern Hemisphere’s autumnal equinox through winter solstice. Note that the season for this group of eclipses runs from September through December. With
|
|||
|
49
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
each successive eclipse, Earth’s Northern Hemisphere tips further and further away from the Sun. This motion shifts geographic features and circles of latitude northward with respect to the Sun–Earth line at a rate that is faster than the change in gamma. Consequently, the eclipse paths appear to shift south in latitude until the winter solstice when they again resume a northward trend.
|
|||
|
Figure 5-2 — Eclipses from Saros 136: 2117 to 2261
|
|||
|
|
|||
|
2153 Oct 17 2207 Nov 20 2261 Dec 22 2117 Sep 26
|
|||
|
|
|||
|
2135 Oct 07 2189 Nov 08 2243 Dec 12
|
|||
|
|
|||
|
2117 Sep 26
|
|||
|
2171 Oct 29 2225 Dec 01
|
|||
|
|
|||
|
The scenario for a Saros series at the ascending node is similar except that gamma decreases as each successive eclipse shifts south of the previous one. The southern latitude trend in eclipse paths reverses to the north near the Northern Hemisphere summer solstice.
|
|||
|
Because of the ellipticity of the orbits of Earth and the Moon, the exact duration and number of eclipses in a complete Saros series is not constant. A series may last 1,226 to 1,551 years and is composed of 69 to 87 eclipses, of which 39 to 59 are umbral/antumbral (i.e., annular, total, or hybrid). At present (2008), there are 39 active Saros series numbered 117 to 155. The number of eclipses in each of these series ranges from 70 to 82, however, the majority of the series (84.6%) are composed of 70 to 73 eclipses.
|
|||
|
5.4 Gamma and Saros Series
|
|||
|
Gamma changes monotonically throughout any single Saros series. As mentioned previously (Sect. 1.2.10), the change in gamma is larger when Earth is near its aphelion (June to July) than when it is near perihelion (December to January). For odd numbered series (ascending node), gamma decreases, while for even numbered series (descending node), gamma increases. This simple rule describes the current behavior of gamma, but this has not always been the case. The eccentricity of Earth’s orbit is presently 0.0167, and is slowly decreasing. It was 0.0181 in the year –2000 and will be 0.0163 in +3000. In the past when the eccentricity was larger, there were Saros series in which the trend in gamma reversed for a few cycles before resuming its original direction. These instances occur near perihelion when the Sun’s apparent motion is highest and may, in fact, overtake the eastward shift of the node. The resulting effect is a relative shift west of the node after one Saros cycle instead of the usual eastward shift. Consequently, gamma reverses direction.
|
|||
|
The most unusual case of this occurs in Saros series 0. It began in –2955 with 11 partial eclipses, followed by 1 total, 1 hybrid, and 4 annulars. Gamma increased with each eclipse until it reversed direction with the second annular. It continued to decrease and the series began to once again produce partial eclipses. With the third partial eclipse, gamma resumed its original northward shift. The series went on to produce 45 more annular eclipses before ending in the year –1675 after 7 partial eclipses.
|
|||
|
50
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
Among several hundred Saros series examined (–34 to 247), there are many other examples of temporary shifts in the monotonic nature of gamma, although none as bizarre as Saros 0. Some series have two separate reversals in gamma (e.g., series 15, 34, and 52) or even three (e.g., series –5 and 13). The most recent eclipse with a gamma reversal was in 1674 (Saros 107). The next and last in the Catalog will occur in 2290 (Saros 165). In past millennia, the gamma reversals were more frequent because Earth’s orbital eccentricity was larger.
|
|||
|
|
|||
|
5.5 Saros Series Statistics
|
|||
|
Eclipses belonging to 204 different Saros series fall within the five millennium span of the Catalog. Two series (–13 and 190) have only one or two members represented, while 81 have a larger but incomplete subset of their members included (–12 to –26, 30, 145, 147, and 151 to 189). Finally, 121 complete Saros series are contained within the Catalog (27 to 29, 31 to 144, 146, and 148 to 150).
|
|||
|
The number of eclipses in each of these series ranges from 69 to 87; however, over a quarter (27.9%) of the series contain 72 eclipses while nearly three quarters (72.1%) of them have 70 to 73 eclipses. Table 5-2 presents the statistical distribution of the number of eclipses in each Saros series. The approximate duration (years) as a function of the number of eclipses is listed along with the first five Saros series containing the corresponding number of eclipses.
|
|||
|
Table 5-2. Number of Solar Eclipses in Saros Series
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
|||
|
|
|||
|
Duration (years) 1226 1244 1262 1280 1298
|
|||
|
1316 1334 1352 1370 1388 1406 1424 1442 1460 1478 1496 1514 1533 1551
|
|||
|
|
|||
|
Number of Saros Series Numbers
|
|||
|
Series 4 156, 171, 174, 177 25 104, 116, 122, 123, 131,… 40 22, 25, 61, 62, 64,… 57 –11, 0, 1, 3, 4,… 25 –13, –12, –3, 2, 5,… 10 –8, –1, 9, 17, 31,… 8 –10, –9, –2, 15, 74,… 3 11, 108, 146 3 145, 166, 184 1 69 2 111, 182 4 –4, 129, 147, 164 1 109 2 71, 127 4 30, 72, 88, 90 5 32, 33, 35, 53, 70 4 13, 14, 16, 51 5 –7, –5, 12, 34, 52 1 –6
|
|||
|
|
|||
|
All Saros series begin and end with a number of partial eclipses. Among the 204 Saros series with members falling within the scope of this Catalog, the number of partial eclipses in the initial phase ranges from 6 to 25. Similarly, the number of partial eclipses in the final phase varies from 6 to 24. The middle life of a Saros series is composed of
|
|||
|
|
|||
|
51
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) umbral/antumbral eclipses (i.e., annular, total, or hybrid), which range in number from 39 to 59. Table 5-3 presents the statistical distribution in the number of umbral/antumbral eclipses in the Saros series represented in the Catalog.
|
|||
|
Saros 0 is an exception to the above scheme. After beginning with 11 partial eclipses, Saros 0 proceeds with a total, a hybrid, and an annular eclipse. The series then reverts back to three more partial eclipses. It finally resumes with a string of 45 annular eclipses before ending with 7 partial eclipses. This odd behavior is due to the higher orbital eccentricity of Earth in the past and fortuitous timing.
|
|||
|
Table 5-3. Number of A/T/H Solar Eclipses in Saros Series
|
|||
|
|
|||
|
Number of A/T/H Eclipses
|
|||
|
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
|||
|
|
|||
|
Duration Number of (years) Series
|
|||
|
|
|||
|
703
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
721
|
|||
|
|
|||
|
19
|
|||
|
|
|||
|
739
|
|||
|
|
|||
|
21
|
|||
|
|
|||
|
757
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
775
|
|||
|
|
|||
|
30
|
|||
|
|
|||
|
793
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
811
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
829
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
847
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
865
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
883
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
902
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
920 a
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
938
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
956
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
974
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
992
|
|||
|
|
|||
|
14
|
|||
|
|
|||
|
1010
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
1028
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
1046
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
1064
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
Saros Series Numbers
|
|||
|
110, 144, 162, 165 –6, 31, 34, 37,… –9, –3, 12, 13,… 10, 15, 16, 28,… –8, –7, –5, –4,… –2, 11, 17, 18,… –12, 29, 48, 77,… –10, 114, 151 140 –1, 0, 38, 66, 171, 188 27, 153 103 190 57, 64, 156, 189 40, 101, 116, 133,… 47, 98, 119, 134,… 43, 59, 82, 83,… –11, 1, 6, 8,… 3, 4, 7, 20,… –13, 2, 21, 26,… 5, 23
|
|||
|
|
|||
|
a. The duration of the A/T/H eclipse sequence of Saros 0 is 974 years because it contains three partial eclipses.
|
|||
|
|
|||
|
A concise summary of all 204 Saros series (–13 to 190) is presented in Tables 5-4 to 5-9. The number of eclipses in each series is listed followed by the calendar dates of the first and last eclipses in the Saros. Finally, the chronological sequence of eclipse types in the series is tabulated. The number and type of eclipses varies from one Saros series to the next as reflected in the sequence diversity. Note that the tables make no distinction between central and non-central umbral/antumbral eclipses. The following abbreviations are used in the eclipse sequences:
|
|||
|
|
|||
|
P = Partial Eclipse A = Annular Eclipse
|
|||
|
|
|||
|
T = Total Eclipse H = Hybrid Eclipse
|
|||
|
|
|||
|
52
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 5-4. Summary of Saros Series –13 to 23
|
|||
|
|
|||
|
Saros Series
|
|||
|
–13 –12 –11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1
|
|||
|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
73 73 72 75 75 74 86 87 86 80 73 75 74 72 72 73 72 72 73 72 72 73 74 73 76 86 85 85 75 85 74 73 73 72 72 71 72
|
|||
|
|
|||
|
First Eclipse
|
|||
|
–3277 Mar 15 –3230 Mar 06 –3147 Mar 17 –3172 Jan 24 –3125 Jan 15 –3042 Jan 27 –3248 Aug 18 –3237 Jul 19 –3136 Aug 10 –3143 Jun 29 –3096 Jun 20 –3013 Jul 03 –3002 Jun 01 –2955 May 23 –2872 Jun 04 –2861 May 04 –2814 Apr 24 –2731 May 06 –2720 Apr 04 –2673 Mar 27 –2590 Apr 08 –2579 Mar 07 –2568 Feb 06 –2467 Feb 28 –2492 Jan 06 –2662 Aug 20 –2543 Sep 23 –2550 Aug 11 –2557 Jul 01 –2456 Jul 23 –2427 Jul 03 –2416 Jun 02 –2333 Jun 15 –2286 Jun 05 –2275 May 05 –2174 May 28 –2145 May 07
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
–1979 May 02 –1932 Apr 22 –1867 Apr 24 –1838 Apr 04 –1791 Mar 25 –1726 Mar 27 –1715 Feb 24 –1686 Feb 03 –1603 Feb 16 –1719 Nov 01 –1798 Aug 07 –1679 Sep 10 –1686 Jul 31 –1675 Jun 29 –1592 Jul 11 –1563 Jun 21 –1534 Jun 01 –1451 Jun 13 –1422 May 24 –1393 May 03 –1310 May 16 –1281 Apr 26 –1252 Apr 04 –1169 Apr 18 –1140 Mar 28 –1129 Feb 25 –1028 Mar 19 –1035 Feb 06 –1223 Sep 08 –0941 Jan 18 –1111 Sep 01 –1118 Jul 21 –1035 Aug 01 –1006 Jul 13 –0995 Jun 11 –0912 Jun 23 –0865 Jun 15
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
7P 39T 2H 17A 8P 8P 1T 2H 42A 20P 6P 24A 3H 29T 10P 9P 40T 2H 4A 20P 10P 1T 2H 38A 24P 8P 25A 3H 15T 23P 21P 41T 1H 1A 22P 25P 3H 37A 22P 21P 26A 3H 14T 22P 23P 41T 1H 1A 14P 24P 41A 8P 21P 27A 4H 13T 10P 18P 44T 3H 1A 8P 11P 1T 1H 4A 3P 45A 7P 9P 39A 5H 12T 7P 8P 43T 12H 3A 7P 8P 5T 2H 50A 7P 7P 29A 17H 11T 8P 7P 44T 4H 11A 7P 7P 7T 2H 47A 9P 6P 30A 6H 21T 9P 7P 45T 1H 10A 10P 9P 8T 3H 32A 22P 8P 30A 3H 9T 23P 10P 44T 22P 23P 8T 3H 30A 22P 20P 30A 3H 8T 24P 21P 43T 21P 24P 10T 3H 29A 9P 22P 33A 2H 7T 21P 21P 44T 9P 22P 13T 3H 28A 7P 21P 36A 2H 6T 8P 8P 12A 2H 43T 7P 8P 26T 4H 28A 6P 8P 49A 2H 5T 7P 6P 14A 3H 42T 7P
|
|||
|
|
|||
|
53
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 5-5. Summary of Saros Series 24 to 60
|
|||
|
|
|||
|
Saros Series
|
|||
|
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
72 71 72 72 72 73 83 74 84 84 86 84 73 73 73 72 72 72 72 72 72 72 72 72 74 72 73 85 86 84 74 73 74 73 72 72 72
|
|||
|
|
|||
|
First Eclipse
|
|||
|
–2134 Apr 06 –2033 Apr 30 –2004 Apr 08 –1993 Mar 09 –1910 Mar 22 –1881 Mar 01 –2051 Oct 12 –1805 Jan 31 –1957 Sep 24 –1982 Aug 02 –1917 Aug 04 –1870 Jul 25 –1859 Jun 23 –1794 Jun 25 –1729 Jun 26 –1718 May 26 –1653 May 28 –1588 May 28 –1577 Apr 28 –1512 Apr 29 –1447 Apr 30 –1436 Mar 30 –1371 Apr 01 –1306 Apr 02 –1331 Feb 08 –1248 Feb 22 –1201 Feb 11 –1407 Sep 02 –1378 Aug 14 –1277 Sep 06 –1284 Jul 25 –1255 Jul 06 –1172 Jul 17 –1161 Jun 17 –1114 Jun 07 –1031 Jun 19 –1020 May 18
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
–0854 May 14 –0771 May 26 –0724 May 17 –0713 Apr 16 –0630 Apr 28 –0583 Apr 19 –0572 Mar 18 –0489 Mar 31 –0460 Mar 10 –0485 Jan 17 –0384 Feb 09 –0373 Jan 09 –0561 Aug 11 –0496 Aug 12 –0431 Aug 14 –0438 Jul 03 –0373 Jul 04 –0308 Jul 05 –0297 Jun 05 –0232 Jun 05 –0167 Jun 07 –0156 May 07 –0091 May 08 –0026 May 10 –0015 Apr 09 0032 Mar 29 0097 Apr 01
|
|||
|
0108 Feb 29 0155 Feb 19 0220 Feb 21 0032 Sep 23 0043 Aug 23 0144 Sep 15 0137 Aug 04 0166 Jul 14 0249 Jul 27 0260 Jun 26
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
8P 15T 16H 26A 7P 7P 52A 1H 3T 8P 6P 10A 7H 41T 8P 8P 14T 15H 20A 15P 7P 42A 23P 7P 3A 14H 28T 21P 19P 14T 5H 24A 21P 10P 40A 24P 19P 2A 3H 39T 21P 23P 15T 4H 23A 19P 23P 40A 23P 22P 3A 2H 38T 19P 22P 18T 3H 23A 7P 24P 40A 9P 17P 8A 2H 38T 8P 9P 32T 3H 22A 6P 11P 53A 8P 7P 19A 2H 37T 7P 8P 34T 3H 21A 6P 8P 55A 9P 6P 21A 2H 35T 8P 7P 36T 3H 18A 8P 8P 43A 21P 6P 21A 3H 30T 12P 9P 37T 2H 6A 20P 9P 40A 23P 8P 22A 3H 18T 22P 21P 36T 4H 3A 21P 24P 40A 22P 20P 22A 4H 17T 21P 21P 26T 15H 3A 9P 24P 41A 8P 21P 13A 15H 15T 10P 14P 33T 13H 6A 7P 21P 44A 7P 9P 23A 16H 16T 8P 8P 40T 4H 14A 6P
|
|||
|
|
|||
|
54
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 5-6. Summary of Saros Series 61 to 97
|
|||
|
|
|||
|
Saros Series
|
|||
|
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
71 71 72 71 71 73 72 72 78 84 82 83 72 75 73 72 71 72 71 71 72 71 71 72 72 71 73 83 73 83 75 74 74 72 71 72 71
|
|||
|
|
|||
|
First Eclipse
|
|||
|
–0973 May 10 –0890 May 22 –0879 Apr 20 –0832 Apr 11 –0749 Apr 24 –0756 Mar 12 –0709 Mar 04 –0626 Mar 16 –0724 Dec 09 –0821 Sep 05 –0684 Oct 19 –0727 Aug 16 –0698 Jul 27 –0615 Aug 08 –0604 Jul 07 –0575 Jun 18 –0474 Jul 11 –0463 Jun 09 –0434 May 21 –0333 Jun 13 –0322 May 12 –0293 Apr 22 –0210 May 05 –0181 Apr 14 –0170 Mar 14 –0069 Apr 06 –0076 Feb 23 –0246 Oct 06
|
|||
|
0018 Feb 04 –0134 Sep 28 –0159 Aug 06 –0076 Aug 19 –0029 Aug 09 –0018 Jul 09
|
|||
|
0047 Jul 11 0094 Jul 01 0123 Jun 11
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
0289 Jun 05 0372 Jun 17 0401 May 29 0430 May 08 0513 May 20 0542 May 01 0571 Apr 10 0654 Apr 22 0665 Mar 22 0676 Feb 19 0777 Mar 14 0752 Jan 21 0582 Sep 03 0719 Oct 18 0694 Aug 26 0705 Jul 25 0788 Aug 06 0817 Jul 18 0828 Jun 16 0929 Jul 09 0958 Jun 19 0969 May 19 1052 May 30 1099 May 22 1110 Apr 20 1193 May 02 1222 Apr 13 1233 Mar 12 1316 Mar 24 1345 Mar 04 1175 Oct 16 1240 Oct 16 1287 Oct 08 1262 Aug 16 1309 Aug 06 1374 Aug 08 1385 Jul 08
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
8P 3T 1H 52A 7P 7P 25A 5H 27T 7P 7P 42T 2H 14A 7P 8P 4T 2H 46A 11P 6P 27A 4H 25T 9P 8P 43T 1H 4A 17P 9P 5T 2H 34A 22P 7P 28A 3H 11T 23P 14P 43T 21P 23P 5T 3H 32A 21P 18P 29A 3H 9T 23P 22P 43T 18P 23P 7T 3H 31A 8P 22P 30A 3H 8T 12P 21P 44T 8P 22P 8T 5H 30A 7P 18P 36A 2H 7T 8P 9P 9A 2H 45T 7P 8P 11T 16H 30A 6P 7P 48A 2H 6T 8P 7P 5A 9H 44T 7P 8P 11T 5H 39A 8P 7P 51A 1H 3T 9P 7P 1A 11H 43T 10P 8P 12T 4H 29A 19P 7P 41A 23P 9P 2H 42T 20P 20P 13T 4H 26A 20P 10P 40A 23P 20P 2H 40T 21P 23P 14T 3H 25A 10P 23P 40A 11P 20P 3A 1H 40T 10P 21P 18T 2H 24A 7P 22P 41A 8P 10P 14A 2H 39T 7P 8P 32T 2H 23A 6P
|
|||
|
|
|||
|
55
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 5-7. Summary of Saros Series 98 to 134
|
|||
|
|
|||
|
Saros Series
|
|||
|
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
71 72 71 71 71 72 70 72 75 72 76 81 72 79 72 71 72 72 70 71 72 71 71 71 70 70 73 73 72 82 73 80 73 70 71 72 71
|
|||
|
|
|||
|
First Eclipse
|
|||
|
0188 Jun 12 0235 Jun 03 0264 May 13 0329 May 15 0376 May 05 0387 Apr 04 0470 Apr 17 0499 Mar 27 0456 Jan 23 0557 Feb 15 0550 Jan 04 0416 Sep 07 0463 Aug 30 0528 Aug 30 0539 Jul 31 0586 Jul 22 0651 Jul 23 0662 Jun 21 0727 Jun 23 0792 Jun 24 0803 May 24 0850 May 15 0933 May 27 0944 Apr 25 0991 Apr 17 1074 Apr 29 1049 Mar 06 1060 Feb 04 1179 Mar 10 0991 Oct 10 0984 Aug 29 1103 Oct 03 1096 Aug 20 1125 Aug 01 1208 Aug 13 1219 Jul 13 1248 Jun 22
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
1450 Jul 09 1515 Jul 11 1526 Jun 10 1591 Jun 21 1638 Jun 12 1667 May 22 1714 May 13 1779 May 16 1790 Apr 14 1837 Apr 05 1902 Apr 08 1859 Feb 03 1743 Oct 17 1935 Jan 05 1819 Sep 19 1848 Aug 28 1931 Sep 12 1942 Aug 12 1971 Jul 22 2054 Aug 03 2083 Jul 15 2112 Jun 24 2195 Jul 07 2206 Jun 07 2235 May 17 2318 May 31 2347 May 11 2358 Apr 09 2459 May 03 2452 Mar 21 2282 Nov 01 2528 Feb 21 2394 Oct 25 2369 Sep 02 2470 Sep 25 2499 Sep 05 2510 Aug 06
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
9P 54A 8P 7P 18A 2H 37T 8P 7P 34T 2H 21A 7P 8P 53A 10P 7P 19A 3H 34T 8P 8P 34T 3H 13A 14P 7P 41A 22P 7P 20A 4H 21T 20P 12P 34T 4H 5A 20P 10P 40A 22P 12P 20A 5H 18T 21P 21P 24T 15H 4A 17P 23P 39A 10P 21P 11A 14H 17T 16P 21P 24T 14H 5A 8P 23P 40A 8P 18P 13A 16H 17T 8P 10P 37T 4H 14A 7P 10P 53A 7P 8P 23A 5H 28T 7P 8P 40T 2H 15A 7P 8P 2T 1H 51A 9P 7P 25A 4H 26T 9P 7P 42T 2H 11A 9P 8P 3T 2H 37A 20P 6P 27A 3H 14T 20P 9P 43T 1H 20P 12P 4T 2H 34A 21P 8P 28A 3H 10T 23P 20P 42T 20P 24P 4T 4H 32A 9P 20P 29A 3H 9T 19P 21P 43T 9P 22P 6T 5H 30A 7P 20P 33A 2H 7T 9P 12P 6A 1H 46T 7P 10P 8T 16H 30A 7P
|
|||
|
|
|||
|
56
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 5-8. Summary of Saros Series 135 to 171
|
|||
|
|
|||
|
Saros Series
|
|||
|
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
71 71 70 70 71 71 70 72 72 70 77 76 80 75 71 71 72 70 70 71 71 69 70 70 70 71 72 70 72 80 72 77 72 70 71 71 69
|
|||
|
|
|||
|
First Eclipse
|
|||
|
1331 Jul 05 1360 Jun 14 1389 May 25 1472 Jun 06 1501 May 17 1512 Apr 16 1613 May 19 1624 Apr 17 1617 Mar 07 1736 Apr 11 1639 Jan 04 1541 Sep 19 1624 Oct 12 1653 Sep 21 1664 Aug 21 1729 Aug 24 1776 Aug 14 1805 Jul 26 1870 Jul 28 1917 Jul 19 1928 Jun 17 2011 Jul 01 2058 Jun 21 2069 May 20 2134 May 23 2181 May 13 2174 Apr 01 2257 Apr 15 2286 Mar 25 2098 Oct 24 2145 Oct 16 2228 Oct 29 2203 Sep 06 2250 Aug 28 2333 Sep 10 2344 Aug 09 2391 Aug 01
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
2593 Aug 17 2622 Jul 30 2633 Jun 28 2716 Jul 11 2763 Jul 03 2774 Jun 01 2857 Jun 13 2904 Jun 05 2897 Apr 23 2980 May 05 3009 Apr 17 2893 Dec 29 3049 Feb 24 2987 Dec 12 2926 Sep 28 2991 Sep 29 3056 Oct 01 3049 Aug 20 3114 Aug 22 3179 Aug 25 3190 Jul 24 3237 Jul 14 3302 Jul 17 3313 Jun 16 3378 Jun 17 3443 Jun 20 3454 May 20 3501 May 10 3566 May 13 3523 Mar 10 3425 Dec 02 3599 Feb 08 3483 Oct 24 3494 Sep 22 3595 Oct 16 3606 Sep 15 3617 Aug 14
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
10P 45A 2H 6T 8P 8P 6A 6H 44T 7P 8P 10T 6H 4A 3H 32A 7P 7P 50A 1H 3T 9P 7P 12H 43T 9P 8P 11T 4H 32A 16P 7P 41A 22P 8P 1H 43T 20P 10P 12T 4H 26A 20P 8P 39A 23P 14P 1A 1H 41T 20P 22P 13T 4H 24A 13P 21P 40A 19P 20P 2A 1H 40T 12P 21P 17T 3H 23A 7P 22P 40A 9P 18P 6A 1H 39T 8P 9P 30T 3H 22A 6P 13P 49A 8P 7P 17A 3H 36T 8P 8P 33T 3H 20A 7P 8P 52A 9P 6P 19A 3H 34T 8P 7P 35T 2H 16A 10P 8P 41A 21P 7P 20A 3H 22T 19P 9P 35T 3H 5A 20P 9P 39A 22P 9P 20A 4H 18T 21P 20P 36T 4H 3A 17P 22P 39A 11P 19P 21A 5H 16T 16P 21P 26T 14H 3A 8P 23P 40A 7P 19P 13A 16H 15T 8P 11P 36T 11H 6A 7P 14P 48A 7P
|
|||
|
|
|||
|
57
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Table 5-9. Summary of Saros Series 172 to 190
|
|||
|
|
|||
|
Saros Series
|
|||
|
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
|||
|
|
|||
|
Number of Eclipses
|
|||
|
70 70 69 70 71 69 70 71 70 71 79 72 77 73 70 70 71 70 70
|
|||
|
|
|||
|
First Eclipse
|
|||
|
2474 Aug 13 2485 Jul 12 2532 Jul 04 2597 Jul 05 2608 Jun 04 2655 May 27 2738 Jun 09 2731 Apr 28 2760 Apr 08 2843 Apr 20 2691 Dec 11 2666 Oct 20 2785 Nov 24 2760 Oct 01 2789 Sep 11 2872 Sep 23 2883 Aug 23 2912 Aug 04 2995 Aug 17
|
|||
|
|
|||
|
Last Eclipse
|
|||
|
3718 Sep 08 3729 Aug 08 3758 Jul 18 3841 Jul 31 3870 Jul 12 3881 Jun 10 3982 Jul 04 3993 Jun 03 4004 May 02 4105 May 27 4098 Apr 15 3946 Dec 06 4156 Mar 05 4058 Nov 29 4033 Oct 06 4116 Oct 19 4145 Sep 30 4156 Aug 29 4239 Sep 12
|
|||
|
|
|||
|
Eclipse Sequence
|
|||
|
8P 23A 16H 15T 8P 7P 41T 3H 12A 7P 8P 1T 2H 50A 8P 7P 26A 5H 24T 8P 7P 43T 2H 10A 9P 8P 3T 3H 37A 18P 6P 28A 4H 11T 21P 8P 44T 19P 10P 5T 2H 33A 20P 8P 29A 3H 9T 22P 18P 42T 19P 22P 6T 4H 30A 10P 19P 30A 3H 7T 18P 21P 42T 10P 22P 8T 4H 29A 7P 20P 34A 2H 5T 9P 16P 3A 1H 44T 7P 11P 19T 6H 27A 7P 11P 46A 2H 3T 8P
|
|||
|
|
|||
|
5.6 Saros and Other Periods
|
|||
|
The numbering system used for the Saros series was introduced by van den Bergh in his book Periodicity and Variation of Solar (and Lunar) Eclipses (1955). He assigned the number 1 to a pair of solar and lunar eclipse series that were in progress during the second millennium BCE based on an extrapolation from von Oppolzer’s Canon der Finsternisse (1887).
|
|||
|
There is an interval of 1, 5, or 6 synodic months between any sequential pair of solar eclipses. Interestingly, the number of lunations between two eclipses permits the determination of the Saros series number of the second eclipse when the Saros series number of the first eclipse is known. Let the Saros series number of the first eclipse in a pair be “s”. The Saros series number of the second eclipse can be found from the relationships in Table 5-10 (Meeus, Grosjean, and Vanderleen, 1966).
|
|||
|
|
|||
|
58
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus Table 5-10. Some Eclipse Periods and Their Relationships to the Saros Number
|
|||
|
|
|||
|
Number of Synodic Months 1 5 6 135 223 235 358 669
|
|||
|
|
|||
|
Length of Time
|
|||
|
~1 month ~5 months ~6 months ~11 years – 1 month ~18 years + 11 days ~19 years ~29 years – 20 days ~54 years + 33 days
|
|||
|
|
|||
|
Saros Series Number s + 38 s – 33 s + 5 s + 1 s s + 10 s + 1 s
|
|||
|
|
|||
|
Period Name
|
|||
|
Lunation Short Semester
|
|||
|
Semester Tritos Saros
|
|||
|
Metonic Cycle Inex
|
|||
|
Exeligmos (Triple Saros)
|
|||
|
|
|||
|
5.7 Saros and Inex
|
|||
|
A number of different eclipse cycles were investigated by van den Bergh, but the most useful were the Saros and the Inex. The Inex is equal to 358 synodic months (~29 years less 20 days), which is very nearly 388.5 draconic months.
|
|||
|
|
|||
|
358 Synodic Months 388.5 Draconic Months
|
|||
|
|
|||
|
= 10,571.9509 days = 10,571.9479 days
|
|||
|
|
|||
|
= 10,571d 22h 49m = 10,571d 22h 55m
|
|||
|
|
|||
|
The extra 0.5 in the number of draconic months means that eclipses separated by one Inex period occur at opposite nodes. Consequently, an eclipse visible from the Northern Hemisphere will be followed one Inex later by an eclipse visible from the Southern Hemisphere, and vice versa. The Inex is equal to ~383.67 anomalistic months, which is far from an integer number. Thus, eclipses separated by one Inex will very likely be of different types, especially if they are central (i.e., total or annular).
|
|||
|
|
|||
|
The mean time difference between 358 synodic months and 388.5 draconic months making up an Inex is only 6 min. In comparison, the mean difference between these two cycles in the Saros is 52 min. This means that after one Inex, the shift of the Moon with respect to the node (+0.04°) is much smaller than for the Saros (–0.48°). While a Saros series lasts 12 to 15 centuries, an Inex series typically lasts 225 centuries and contains about 780 eclipses.
|
|||
|
|
|||
|
5.8 Saros–Inex Panorama
|
|||
|
Van den Bergh placed all 8,000 solar eclipses in von Oppolzer’s Canon der Finsternisse (1887) into a large twodimensional matrix. Each Saros series was arranged as a separate column containing every eclipse in chronological order. The individual Saros columns were then staggered so that the horizontal rows each corresponded to different Inex series. This “Saros–Inex Panorama” proved useful in organizing eclipses. For instance, one step down in the panorama is a change of one Saros period (6585.32 days) later, while one step to the right is a change of one Inex period (10571.95 days) later. The rows and columns were then numbered with the Saros and Inex numbers.
|
|||
|
|
|||
|
The panorama also made it possible to predict the approximate circumstances of solar (and lunar) eclipses occurring before or after the period spanned by von Oppolzer’s Canon. The time interval “t” between any two solar eclipses can be found through an integer combination of Saros and Inex periods via the following relationship:
|
|||
|
|
|||
|
t = a i + b s,
|
|||
|
|
|||
|
(5–1)
|
|||
|
|
|||
|
59
|
|||
|
|
|||
|
where
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
t = interval in days, i = Inex period of 10571.95 days (358 synodic months), s = Saros period of 6585.32 days (223 synodic months), and a, b = integers (negative, zero, or positive).
|
|||
|
|
|||
|
From this equation, a number of useful combinations of Inex and Saros periods can be employed to extend von Oppolzer’s Canon from –1207 back to –1600 using nothing more than simple arithmetic (van den Bergh, 1954). The ultimate goal of the effort was to a produce an eclipse canon for dating historical events prior to –1207. Periods formed by various combinations of Inex and Saros were evaluated in order to satisfy one or more of the following conditions:
|
|||
|
|
|||
|
1) The deviation from a multiple of 0.5 draconic months should be small (i.e., Moon should be nearly the same distance from the node).
|
|||
|
2) The deviation from an integral multiple of anomalistic months should be small (i.e., Moon should be nearly the same distance from Earth).
|
|||
|
3) The deviation from an integral multiple of anomalistic years should be small (i.e., eclipse should occur on nearly the same calendar date).
|
|||
|
|
|||
|
No single Inex–Saros combination meets all three criteria, but there are periods that do a reasonably good job for any one of them. Note that secular changes in the Moon’s elements cause a particular period to be of high accuracy for a limited number of centuries. The direct application of the Saros–Inex panorama allows for the determination of eclipse dates in the past (or future); however, the application of the longer Saros–Inex combinations permit the rapid estimation of a number of eclipse characteristics without lengthy calculations. Table 5-11 lists several of the most useful periods.
|
|||
|
|
|||
|
Table 5-11. Some Useful Eclipse Periods
|
|||
|
|
|||
|
Period Name
|
|||
|
Heliotrope Accuratissima Horologia
|
|||
|
|
|||
|
Period (Inex + Saros)
|
|||
|
58i + 6s
|
|||
|
58i + 9s
|
|||
|
110i + 7s
|
|||
|
|
|||
|
Period (years) 1,787
|
|||
|
1,841
|
|||
|
3,310
|
|||
|
|
|||
|
Use
|
|||
|
Geographic longitude of central line Geographic latitude of central line Time of ecliptic conjunction
|
|||
|
|
|||
|
Modern digital computers using high precision solar and lunar ephemerides can directly predict the dates and circumstances of eclipses. Nevertheless, the Saros and Inex cycles remain useful tools in understanding the periodicity and frequency of eclipses.
|
|||
|
5.9 Secular Variations in the Saros and Inex Because of long secular variations in the average ellipticity of the Moon’s and Earth’s orbits, the mean lengths of the synodic, draconic, and anomalistic months are slowly changing. The mean synodic and draconic months are increasing by approximately 0.2 and 0.4 s per millennium, respectively. Meanwhile, the anomalistic month is decreasing by about 0.8 s per millennium.
|
|||
|
Although small, the cumulative effects of such changes has an impact on both the Saros and Inex. Table 5-12 shows how the number of draconic and anomalistic months change with respect to 223 synodic months (Saros period) over
|
|||
|
60
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
an interval of 7000 years. Of particular interest is the last column, which shows the mean shift of the Moon’s node after a period of 1 Saros. It is gradually increasing, which means that the average number of eclipses in a typical Saros series is decreasing.
|
|||
|
|
|||
|
Table 5-12: Number of Anomalistic and Draconic Months in 1 Saros
|
|||
|
|
|||
|
Year
|
|||
|
–3000 –2000 –1000
|
|||
|
0 1000 2000 3000 4000
|
|||
|
|
|||
|
Anomalistic Months Draconic Months Node Shift (223 Lunations) (223 Lunations) (after 1 Saros)
|
|||
|
|
|||
|
238.991679 238.991763 238.991854 238.991950 238.992051 238.992157 238.992267 238.992379
|
|||
|
|
|||
|
241.998742 241.998730 241.998717 241.998703 241.998688 241.998673 241.998656 241.998639
|
|||
|
|
|||
|
0.4529 0.4571 0.4618 0.4668 0.4722 0.4779 0.4838 0.4899
|
|||
|
|
|||
|
Table 5-13 shows how the number of draconic months is changing with respect to 358 synodic months (Inex period) over a 7000-year interval. The mean shift in the lunar node after 1 Inex is much smaller than the Saros and is gradually decreasing. This explains why the lifetime of the Inex is so much longer than the Saros and is still increasing.
|
|||
|
|
|||
|
Table 5-13: Number of Draconic Months in 1 Inex
|
|||
|
|
|||
|
Year
|
|||
|
–3000 –2000 –1000
|
|||
|
0 1000 2000 3000 4000
|
|||
|
|
|||
|
Draconic Months (358 Lunations)
|
|||
|
388.500223 388.500204 388.500183 388.500160 388.500136 388.500111 388.500085 388.500057
|
|||
|
|
|||
|
Node Shift (after 1 Inex)
|
|||
|
-0.0801 -0.0734 -0.0659 -0.0578 -0.0491 -0.0400 -0.0305 -0.0207
|
|||
|
|
|||
|
Although the Inex possesses a long lifespan, its mean duration is not easily characterized because of the decreasing nodal shift seen in Table 5-13. If the instantaneous mean durations of the synodic and draconic months for the years –2000, +2000, and +4000 are used to calculate the mean duration of the Inex, the resulting lengths are about 14,500, 26,600, and 51,000 years, respectively (Meeus, 2004).
|
|||
|
|
|||
|
61
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
Abbreviations
|
|||
|
|
|||
|
arcsec AT ATA
|
|||
|
BCE
|
|||
|
CE cm
|
|||
|
ET
|
|||
|
GMAT GMT
|
|||
|
IAU ISO
|
|||
|
LLR LOD
|
|||
|
m min
|
|||
|
s arcsec/cy2
|
|||
|
TA TAI TD TT
|
|||
|
UT UTC
|
|||
|
VLBI
|
|||
|
|
|||
|
Arc second Hybrid eclipse that begins as annular, then changes to total. Hybrid eclipse that begins as annular, changes to total, and then reverts back to annular.
|
|||
|
Before the Common Era
|
|||
|
Common Era Centimeter
|
|||
|
Ephemeris Time
|
|||
|
Greenwich Mean Astronomical Time Greenwich Mean Time
|
|||
|
International Astronomical Union International Standards Organization
|
|||
|
Lunar Laser Ranging Length of Day
|
|||
|
Meter (or minutes in tables) Minutes
|
|||
|
Second Arc seconds per Julian century squared
|
|||
|
Hybrid eclipse that begins as total and ends as annular. International Atomic Time Terrestrial Dynamical Time Terrestrial Time
|
|||
|
Universal Time Coordinated Universal Time
|
|||
|
Very Long Baseline Interferometry
|
|||
|
|
|||
|
62
|
|||
|
|
|||
|
References
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
Astronomical Almanac for 1986, Washington: US Government Printing Office; London: HM Stationery Office (1985).
|
|||
|
Astronomical Almanac for 2006, Washington: US Government Printing Office; London: HM Stationery Office (2004).
|
|||
|
Bretagnon, P., and Francou G., “Planetary theories in rectangular and spherical variables: VSOP87 solution,” Astron. Astrophys., 202(309) (1988).
|
|||
|
Brown, E.W., “Theory of the Motion of the Moon,” Mem. Royal Astron. Soc., Vol. LVII, Part II, pp. 136–141, London (1905).
|
|||
|
Chapront-Touzé, M., and Chapront, J., “The Lunar Ephemeris ELP 2000,” Astron. Astrophys., vol. 124, no. 1, pp. 50–62 (1983).
|
|||
|
Chapront-Touzé, M., and Chapront, J., Lunar Tables and Programs from 4000 B.C. to A.D. 8000, Willmann-Bell, (1991).
|
|||
|
Chapront, J., Chapront-Touzé, M., and Francou, G., “A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements,” Astron. Astrophys., vol. 387, pp. 700–709 (2002).
|
|||
|
Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries,, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., and Yoder, C.F., “Lunar Laser Ranging: a Continuing Legacy of the Apollo Program,” Science, 265, pp. 482–490 (1994).
|
|||
|
Espenak, F., Fifty Year Canon of Solar Eclipses: 1986–2035, Sky Publishing Corp., Cambridge, Massachusetts (1987).a
|
|||
|
Espenak, F., and Meeus, J., Five Millennium Canon of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE), NASA Tech. Pub. 2006–214141, NASA Goddard Space Flight Center, Greenbelt, Maryland (2006).
|
|||
|
Explanatory Supplement to the Ephemeris, H.M. Almanac Office, London (1974).
|
|||
|
Gingerich, O., (Translator) Canon of Eclipses, Dover Publications, New York (1962) (from the original T.R. von Oppolzer, book, Canon der Finsternisse, Wien, [1887]).
|
|||
|
Huber, P.J., “Modeling the Length of Day and Extrapolating the Rotation of the Earth,” Astronomical Amusements, F. Bònoli, S. De Meis, and A. Panaino, Eds., Rome (2000).
|
|||
|
Improved Lunar Ephemeris 1952–1959, Nautical Almanac Office, U.S. Naval Observatory, Washington, DC (1954).
|
|||
|
Meeus, J., Mathematical Astronomy Morsels, Willmann-Bell, pp. 56–62 (1997).
|
|||
|
——, More Mathematical Astronomy Morsels, Willmann-Bell, pp. 120–126 (2002a).
|
|||
|
——, More Mathematical Astronomy Morsels, Willmann-Bell, pp. 70–72 (2002b).
|
|||
|
——, “The maximum possible duration of a total solar eclipse,” J. Br. Astron. Assoc., 113(6) (2003).
|
|||
|
——, Mathematical Astronomy Morsels III, Willmann-Bell, pp. 109–111, (2004).
|
|||
|
——, Mathematical Astronomy Morsels IV, Willmann-Bell, pp. 44–45, (2007).
|
|||
|
——, Grosjean, C.C., and Vanderleen, W., Canon of Solar Eclipses, Pergamon Press, Oxford, United Kingdom (1966).
|
|||
|
|
|||
|
63
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE) Morrison, L., and Stephenson, F.R., “Historical Values of the Earth’s Clock Error ∆T and the Calculation of Eclipses,” J. Hist.
|
|||
|
Astron., Vol. 35 Part 3, August 2004, No. 120, pp, 327–336 (2004). Mucke, H., and Meeus, J., Canon of Solar Eclipses: –2003 to +2526, Astronomisches Büro, Vienna (1983). Newcomb, S., “Tables of the Motion of the Earth on its Axis Around the Sun,” Astron. Papers Amer. Eph., Vol. 6, Part I
|
|||
|
(1895). Stephenson, F.R., Historical Eclipses and Earth’s Rotation, Cambridge University Press, Cambridge (1997). ——, and Houlden, M.A., Atlas of Historical Eclipse Maps, East Asia 1500BC—AD 1900, Cambridge University Press,
|
|||
|
Cambridge/New York (1986). van den Bergh, Eclipses in the Second Millennium B.C. –1600 to –1207, Tjeenk Willink, and Haarlem, Netherlands (1954). ——, Periodicity and Variation of Solar (and Lunar) Eclipses, Tjeenk Willink, and Haarlem, Netherlands (1955). von Oppolzer, T.R., Canon der Finsternisse, Wien, (1887).
|
|||
|
64
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
APPENDIX
|
|||
|
A-1
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1 001 -1999 Jun 12 03:14:51 2 001 -1999 Dec 05 23:45:23 3 001 -1998 Jun 01 18:09:16 4 001 -1998 Nov 25 05:57:03 5 001 -1997 Apr 22 13:19:56 6 001 -1997 May 22 02:45:35 7 001 -1997 Oct 16 08:01:52 8 001 -1997 Nov 14 18:48:49 9 001 -1996 Apr 10 13:54:52 10 001 -1996 Oct 04 23:23:37
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 46438 -49456 5 T -n 46426 -49450 10 A n46415 -49444 15 T p46403 -49438 20 A p46393 -49433 -13 P -t 46391 -49432 25 P t46381 -49427 -8 P -t 46379 -49426 30 P t46369 -49421 -3 A -p 46358 -49415 2 T -p
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.2701 -0.2317
|
|||
|
0.4994 -0.9045 -1.4670
|
|||
|
1.3253 1.1669 -1.5183 -0.7231 0.5166
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0733 0.9382 1.0284 0.9806 0.1611 0.4035 0.6954 0.0377 0.9464 1.0257
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
6.0N 33.3W 74
|
|||
|
|
|||
|
32.9S 10.8E 76
|
|||
|
|
|||
|
46.2N 83.4E 60
|
|||
|
|
|||
|
67.8S 143.8W 25
|
|||
|
|
|||
|
60.6S 106.4W 0
|
|||
|
|
|||
|
61.7N 151.7W 0
|
|||
|
|
|||
|
60.6N 22.7W 0
|
|||
|
|
|||
|
61.5S 27.7W 0
|
|||
|
|
|||
|
38.2S 167.2W 43
|
|||
|
|
|||
|
28.8N 38.6E 59
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 344 247 06m37s
|
|||
|
21 236 06m44s 151 111 02m15s
|
|||
|
74 162 01m14s 281
|
|||
|
55 265 120 321 277 05m11s 214 101 02m04s
|
|||
|
|
|||
|
11 001 -1995 Mar 30 17:24:52 46346 -49409 7 12 001 -1995 Sep 24 10:31:54 46334 -49403 12 13 001 -1994 Mar 20 03:59:50 46322 -49397 17 14 001 -1994 Sep 13 14:32:00 46310 -49391 22 15 001 -1993 Feb 08 11:41:40 46301 -49386 -11 16 001 -1993 Mar 09 19:48:09 46299 -49385 27 17 001 -1993 Aug 03 21:35:06 46289 -49380 -6 18 001 -1992 Jan 29 02:34:14 46277 -49374 -1 19 001 -1992 Jul 23 04:03:17 46265 -49368 4 20 001 -1991 Jan 17 11:29:42 46253 -49362 9
|
|||
|
|
|||
|
A nn 0.0609 0.9873 0.2S 112.7E 87 151 45 01m17s A nn -0.1863 0.9766 3.1S 150.0W 79 29 85 02m22s T p- 0.8091 1.0333 39.4N 73.3W 36 142 186 02m35s A p- -0.9265 0.9249 48.2S 116.1E 22 42 733 06m57s P -t -1.0699 0.8826 62.7S 23.1W 0 222 Pb t- 1.4907 0.0754 61.2N 11.4E 0 114 P -t 1.3116 0.4292 63.5N 166.7W 0 327 T -p -0.3875 1.0181 44.1S 13.3W 67 340 67 01m30s H -p 0.5182 1.0059 54.0N 39.0W 59 197 24 00m29s A n- 0.3460 0.9599 3.5S 160.1W 70 170 155 05m03s
|
|||
|
|
|||
|
21 002 -1991 Jul 12 17:34:12 46242 -49356 14 T n- -0.2421 1.0606 10.0N 106.3E 76 6 205 05m50s 22 002 -1990 Jan 06 13:10:01 46230 -49350 19 P t- 1.0749 0.8256 65.4N 163.3E 0 167 23 002 -1990 Jul 02 10:30:06 46218 -49344 24 T t- -0.9623 1.0609 51.2S 149.5W 15 2 756 04m30s 24 002 -1990 Nov 26 19:21:37 46208 -49339 -9 P -t -1.2517 0.5316 69.3S 67.4W 0 150 25 002 -1989 May 23 16:56:38 46196 -49333 -4 H -t 0.8616 1.0067 72.1N 79.4E 30 139 46 00m27s 26 002 -1989 Nov 16 03:39:33 46185 -49327 1 H -n -0.5096 1.0036 44.0S 54.1W 59 19 14 00m18s 27 002 -1988 May 11 23:28:58 46173 -49321 6 A nn 0.0987 0.9652 18.3N 16.8E 84 165 126 04m11s 28 002 -1988 Nov 04 17:46:47 46161 -49315 11 T n- 0.1768 1.0435 0.6S 106.5E 80 196 148 04m04s 29 002 -1987 May 01 00:29:51 46149 -49309 16 A p- -0.6733 0.9464 31.9S 17.1E 47 341 264 06m10s 30 002 -1987 Oct 25 09:21:08 46138 -49303 21 T p- 0.8460 1.0260 48.3N 107.1W 32 207 165 01m58s
|
|||
|
|
|||
|
31 002 -1986 Mar 21 15:06:51 46128 -49298 -12 P -t 1.3284 0.3949 71.2N 79.3E 0 111 32 002 -1986 Apr 20 02:55:09 46126 -49297 26 P t- -1.4035 0.2645 71.5S 44.6E 0 285 33 002 -1986 Sep 15 07:15:14 46116 -49292 -7 P -t -1.2711 0.4983 71.0S 155.5W 0 58 34 002 -1985 Mar 11 03:26:36 46104 -49286 -2 T -p 0.5312 1.0490 20.3N 44.2W 58 163 191 04m29s 35 002 -1985 Sep 04 09:29:03 46093 -49280 3 A -p -0.5977 0.9272 21.9S 138.3W 53 15 338 09m22s 36 002 -1984 Feb 28 19:51:38 46081 -49274 8 T n- -0.1975 1.0690 25.5S 81.9E 78 345 229 05m53s 37 002 -1984 Aug 23 09:09:06 46069 -49268 13 A nn 0.1151 0.9402 24.0N 123.1W 83 191 223 07m27s 38 002 -1983 Feb 17 11:43:36 46057 -49262 18 T p- -0.9309 1.0259 79.1S 89.1W 21 286 246 01m30s 39 002 -1983 Aug 12 13:43:07 46046 -49256 23 A p- 0.8332 0.9820 75.4N 168.1W 33 209 116 01m15s 40 002 -1982 Jan 08 07:26:45 46036 -49251 -10 P -t 1.1451 0.7132 65.6N 85.9W 0 191
|
|||
|
|
|||
|
41 003 -1982 Jul 03 17:34:50 46024 -49245 -5 42 003 -1982 Aug 02 01:40:26 46022 -49244 33 43 003 -1982 Dec 28 07:38:06 46012 -49239 0 44 003 -1981 Jun 23 10:42:06 46000 -49233 5 45 003 -1981 Dec 17 07:52:15 45989 -49227 10 46 003 -1980 Jun 12 01:14:01 45977 -49221 15 47 003 -1980 Dec 05 14:32:25 45965 -49215 20 48 003 -1979 May 02 19:42:02 45955 -49210 -13 49 003 -1979 Jun 01 09:17:39 45953 -49209 25 50 003 -1979 Oct 26 16:52:42 45944 -49204 -8
|
|||
|
|
|||
|
P -t -1.0663 0.8933 64.8S 127.1E 0 341 Pb t- 1.4996 0.0678 67.5N 157.3E 0 351 A -p 0.4710 0.9191 4.2N 97.2W 62 189 346 11m38s T -n -0.3407 1.0693 3.3N 146.8W 70 348 240 06m28s A n- -0.2249 0.9420 35.0S 110.7W 77 16 220 06m21s T p- 0.4248 1.0242 45.0N 19.9W 65 157 91 02m00s A p- -0.9018 0.9845 72.0S 82.1E 25 77 127 00m58s Pe -t -1.5543 0.0110 60.9S 147.5E 0 290 P t- 1.2453 0.5442 62.3N 99.3E 0 47 P -t 1.1691 0.6910 60.8N 165.9W 0 256
|
|||
|
|
|||
|
51 003 -1979 Nov 25 03:41:17 45942 -49203 30 P t- -1.5170 0.0392 62.1S 171.7W 0 130 52 003 -1978 Apr 21 20:18:29 45932 -49198 -3 A -p -0.8065 0.9476 40.6S 97.8E 36 321 315 05m00s 53 003 -1978 Oct 16 08:02:30 45920 -49192 2 T -p 0.5237 1.0214 24.8N 94.0W 58 213 84 01m47s 54 003 -1977 Apr 11 00:17:50 45908 -49186 7 A nn -0.0139 0.9927 0.4N 8.5E 89 330 26 00m44s 55 003 -1977 Oct 05 18:43:53 45897 -49180 12 A nn -0.1747 0.9713 6.9S 84.7E 80 30 104 02m53s 56 003 -1976 Mar 30 11:26:06 45885 -49174 17 T p- 0.7436 1.0404 37.9N 174.7E 42 142 197 03m05s 57 003 -1976 Sep 23 22:12:57 45873 -49168 22 A p- -0.9053 0.9215 48.2S 2.8W 25 46 678 07m10s 58 003 -1975 Feb 18 19:47:20 45863 -49163 -11 P -t -1.1099 0.8070 62.0S 155.5W 0 231 59 003 -1975 Mar 20 03:32:45 45862 -49162 27 P t- 1.4354 0.1811 60.9N 115.5W 0 105 60 003 -1975 Aug 14 04:48:27 45852 -49157 -6 P -t 1.3569 0.3516 62.7N 73.8E 0 318
|
|||
|
|
|||
|
A-3
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
61 004 -1974 Feb 08 10:34:06 62 004 -1974 Aug 03 11:35:27 63 004 -1973 Jan 28 19:13:23 64 004 -1973 Jul 24 01:18:22 65 004 -1972 Jan 17 20:43:43 66 004 -1972 Jul 12 18:09:32 67 004 -1972 Dec 07 03:38:57 68 004 -1971 Jun 02 23:50:31 69 004 -1971 Nov 26 12:22:23 70 004 -1970 May 23 05:53:04
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 45840 -49151 -1 T -p 45828 -49145 4 H -p 45817 -49139 9 A n45805 -49133 14 T n45793 -49127 19 P t45781 -49121 24 T p45772 -49116 -9 P -t 45760 -49110 -4 A -t 45748 -49104 1 H -n 45736 -49098 6 A nn
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.4230 0.5677 0.3168
|
|||
|
-0.1865 1.0502
|
|||
|
-0.9033 -1.2500
|
|||
|
0.9435 -0.5060
|
|||
|
0.1869
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0179 1.0057 0.9602 1.0601 0.8677 1.0603 0.5347 0.9992 1.0069 0.9625
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
43.3S 131.6W 65
|
|||
|
|
|||
|
55.0N 147.6W 55
|
|||
|
|
|||
|
4.2S 82.0E 72
|
|||
|
|
|||
|
12.9N 11.3W 79
|
|||
|
|
|||
|
64.4N 38.0E 0
|
|||
|
|
|||
|
40.7S 89.6E 25
|
|||
|
|
|||
|
68.4S 154.4E 0
|
|||
|
|
|||
|
81.4N 79.8W 19
|
|||
|
|
|||
|
47.7S 175.3E 59
|
|||
|
|
|||
|
26.8N 82.7W 79
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 335 68 01m28s 205 24 00m27s 166 152 04m54s
|
|||
|
10 201 05m38s 157
|
|||
|
8 464 04m50s 162
|
|||
|
87 8 00m03s 15 28 00m34s 167 138 04m23s
|
|||
|
|
|||
|
71 004 -1970 Nov 16 02:41:09 45725 -49092 11 T n- 0.1785 1.0442 4.4S 29.3W 80 193 150 04m10s 72 004 -1969 May 12 06:45:38 45713 -49086 16 A p- -0.5839 0.9485 22.1S 83.5W 54 344 231 06m24s 73 004 -1969 Nov 05 18:10:59 45701 -49080 21 T p- 0.8487 1.0233 45.1N 115.1E 32 202 149 01m51s 74 004 -1968 Mar 31 22:13:17 45692 -49075 -12 P -t 1.3890 0.2843 71.5N 42.9W 0 98 75 004 -1968 Apr 30 09:34:02 45690 -49074 26 P t- -1.3203 0.4110 71.2S 70.6W 0 298 76 004 -1968 Sep 25 15:13:22 45680 -49069 -7 P -t -1.2916 0.4628 71.5S 69.3E 0 72 77 004 -1967 Mar 21 11:03:12 45668 -49063 -2 T -p 0.5876 1.0537 27.8N 163.6W 54 160 218 04m38s 78 004 -1967 Sep 14 16:59:19 45656 -49057 3 A -p -0.6263 0.9232 27.4S 104.6E 51 18 368 09m27s 79 004 -1966 Mar 11 03:42:14 45645 -49051 8 T n- -0.1456 1.0719 18.7S 38.7W 82 344 236 06m14s 80 004 -1966 Sep 03 16:35:18 45633 -49045 13 A nn 0.0794 0.9390 18.5N 123.3E 85 194 227 07m41s
|
|||
|
|
|||
|
81 005 -1965 Feb 28 19:33:01 45621 -49039 18 T p- -0.8890 1.0279 71.9S 125.0E 27 312 208 01m44s 82 005 -1965 Aug 23 21:25:13 45610 -49033 23 A p- 0.7919 0.9831 67.9N 73.2E 37 209 98 01m14s 83 005 -1964 Jan 19 15:11:49 45600 -49028 -10 P -t 1.1713 0.6686 66.7N 145.4E 0 180 84 005 -1964 Jul 14 01:14:53 45588 -49022 -5 P -t -1.1238 0.7821 65.8S 0.1E 0 351 85 005 -1964 Aug 12 09:35:44 45586 -49021 33 P t- 1.4540 0.1540 68.5N 25.2E 0 340 86 005 -1963 Jan 07 15:19:18 45577 -49016 0 A -p 0.4901 0.9215 5.4N 144.8E 61 185 340 11m26s 87 005 -1963 Jul 03 18:12:59 45565 -49010 5 T -p -0.4077 1.0646 0.1S 98.3E 66 352 231 06m12s 88 005 -1963 Dec 27 15:54:04 45553 -49004 10 A n- -0.2134 0.9464 35.9S 129.6E 77 11 202 05m54s 89 005 -1962 Jun 23 08:20:59 45541 -48998 15 T n- 0.3533 1.0193 43.0N 124.2W 69 164 71 01m41s 90 005 -1962 Dec 16 23:03:15 45530 -48992 20 A p- -0.8949 0.9893 76.3S 47.3W 26 77 85 00m39s
|
|||
|
|
|||
|
91 005 -1961 Jun 12 15:51:46 45518 -48986 25 P t- 1.1676 0.6797 63.1N 10.3W 0 38 92 005 -1961 Nov 07 01:46:11 45508 -48981 -8 P -t 1.1690 0.6910 61.1N 50.2E 0 247 93 005 -1961 Dec 06 12:31:33 45506 -48980 30 P t- -1.5144 0.0428 62.9S 44.7E 0 139 94 005 -1960 May 02 02:39:40 45497 -48975 -3 A -p -0.8919 0.9479 45.2S 4.7E 27 319 410 04m49s 95 005 -1960 Oct 26 16:45:10 45485 -48969 2 T -p 0.5271 1.0175 21.0N 132.2E 58 210 70 01m31s 96 005 -1959 Apr 21 07:07:29 45473 -48963 7 A nn -0.0923 0.9977 0.6N 94.7W 85 331 8 00m14s 97 005 -1959 Oct 16 03:01:44 45462 -48957 12 A nn -0.1688 0.9665 11.1S 42.0W 80 30 122 03m23s 98 005 -1958 Apr 10 18:45:52 45450 -48951 17 T p- 0.6719 1.0468 37.0N 64.7E 48 142 206 03m32s 99 005 -1958 Oct 05 06:02:20 45438 -48945 22 A p- -0.8914 0.9183 49.8S 124.6W 27 49 664 07m16s 100 005 -1957 Mar 02 03:43:57 45428 -48940 -11 P -t -1.1573 0.7169 61.4S 74.5E 0 240
|
|||
|
|
|||
|
101 006 -1957 Mar 31 11:10:33 45426 -48939 27 P t- 1.3744 0.2986 60.7N 119.5E 0 96 102 006 -1957 Aug 25 12:12:43 45417 -48934 -6 P -t 1.3938 0.2884 62.0N 48.2W 0 308 103 006 -1957 Sep 24 05:12:58 45415 -48933 32 Pb t- -1.5660 0.0061 60.7S 147.1W 0 77 104 006 -1956 Feb 19 18:25:24 45405 -48928 -1 T -p -0.4649 1.0176 42.2S 111.9E 62 330 68 01m25s 105 006 -1956 Aug 13 19:17:10 45393 -48922 4 H -p 0.6100 1.0054 54.4N 100.8E 52 212 23 00m25s 106 006 -1955 Feb 08 02:47:50 45382 -48916 9 A nn 0.2811 0.9608 4.4S 33.4W 74 162 148 04m41s 107 006 -1955 Aug 03 09:08:54 45370 -48910 14 T n- -0.1359 1.0589 14.5N 130.1W 82 15 196 05m22s 108 006 -1954 Jan 28 04:09:29 45358 -48904 19 A+ t- 1.0192 0.9207 63.4N 84.9W 0 147 - 109 006 -1954 Jul 24 01:54:42 45347 -48898 24 T p- -0.8494 1.0580 34.1S 31.5W 32 12 361 04m51s 110 006 -1954 Dec 18 11:52:50 45337 -48893 -9 P -t -1.2518 0.5318 67.3S 17.7E 0 173
|
|||
|
|
|||
|
111 006 -1953 Jun 14 06:46:26 45325 -48887 -4 P -t 1.0223 0.9489 68.0N 99.1E 0 13 112 006 -1953 Dec 07 21:03:10 45314 -48881 1 H -n -0.5050 1.0107 50.8S 46.4E 59 10 43 00m52s 113 006 -1952 Jun 02 12:18:03 45302 -48875 6 A np 0.2734 0.9595 34.9N 178.5E 74 170 153 04m34s 114 006 -1952 Nov 26 11:34:24 45290 -48869 11 T n- 0.1792 1.0452 7.7S 164.7W 80 190 153 04m18s 115 006 -1951 May 22 13:02:16 45279 -48863 16 A p- -0.4945 0.9502 13.1S 176.9E 60 348 209 06m34s 116 006 -1951 Nov 16 03:00:41 45267 -48857 21 T p- 0.8520 1.0211 42.4N 22.8W 31 198 137 01m44s 117 006 -1950 Apr 12 05:14:40 45257 -48852 -12 P -t 1.4542 0.1642 71.5N 164.0W 0 85 118 006 -1950 May 11 16:12:21 45255 -48851 26 P t- -1.2352 0.5621 70.6S 174.6E 0 311 119 006 -1950 Oct 06 23:18:01 45246 -48846 -7 P -t -1.3058 0.4387 71.7S 67.9W 0 86 120 006 -1949 Apr 01 18:33:43 45234 -48840 -2 T -p 0.6496 1.0576 36.0N 77.8E 49 157 248 04m39s
|
|||
|
|
|||
|
A-4
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
121 007 -1949 Sep 26 00:37:49 122 007 -1948 Mar 21 11:25:32 123 007 -1948 Sep 14 00:12:27 124 007 -1947 Mar 11 03:11:51 125 007 -1947 Sep 03 05:17:59 126 007 -1946 Jan 29 22:46:25 127 007 -1946 Jul 25 09:01:49 128 007 -1946 Aug 23 17:40:35 129 007 -1945 Jan 18 22:51:51 130 007 -1945 Jul 15 01:49:25
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 45222 -48834 3 A -p 45211 -48828 8 T nn 45199 -48822 13 A nn 45187 -48816 18 T p45176 -48810 23 A p45166 -48805 -10 P -t 45154 -48799 -5 P -t 45153 -48798 33 P t45143 -48793 0 A -p 45131 -48787 5 T -p
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.6477 -0.0878
|
|||
|
0.0521 -0.8390
|
|||
|
0.7585 1.2051 -1.1756 1.4157 0.5161 -0.4692
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9197 1.0742 0.9380 1.0294 0.9839 0.6110 0.6819 0.2262 0.9243 1.0593
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
32.8S 14.4W 49
|
|||
|
|
|||
|
11.4S 158.1W 85
|
|||
|
|
|||
|
13.1N 6.6E 87
|
|||
|
|
|||
|
63.3S 4.3W 33
|
|||
|
|
|||
|
61.0N 48.4W 40
|
|||
|
|
|||
|
67.8N 18.9E 0
|
|||
|
|
|||
|
66.8S 129.1W 0
|
|||
|
|
|||
|
69.4N 109.9W 0
|
|||
|
|
|||
|
7.8N 28.7E 59
|
|||
|
|
|||
|
4.1S 18.5W 62
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 21 394 09m25s 343 242 06m31s 196 231 07m50s 323 183 01m59s 209 88 01m15s 169
|
|||
|
1 328 180 333 10m58s 356 221 05m48s
|
|||
|
|
|||
|
131 007 -1944 Jan 07 23:51:29 45120 -48781 10 A n- -0.1977 0.9514 35.5S 11.1E 78 6 182 05m24s 132 007 -1944 Jul 03 15:30:05 45108 -48775 15 H n- 0.2846 1.0139 40.3N 130.4E 73 170 50 01m16s 133 007 -1944 Dec 27 07:31:39 45096 -48769 20 A p- -0.8854 0.9946 80.4S 169.0W 27 69 41 00m20s 134 007 -1943 Jun 22 22:27:06 45085 -48763 25 P t- 1.0914 0.8113 63.9N 120.4W 0 28 135 007 -1943 Nov 17 10:40:46 45075 -48758 -8 P -t 1.1685 0.6919 61.6N 94.1W 0 237 136 007 -1943 Dec 16 21:18:48 45073 -48757 30 P t- -1.5092 0.0512 63.7S 98.4W 0 149 137 007 -1942 May 13 08:59:51 45063 -48752 -3 A -t -0.9784 0.9462 54.8S 81.5W 11 313 978 04m34s 138 007 -1942 Nov 07 01:29:55 45052 -48746 2 H3 -p 0.5284 1.0143 17.4N 2.2W 58 208 57 01m17s 139 007 -1941 May 02 13:57:20 45040 -48740 7 Hm nn -0.1717 1.0021 0.5N 161.9E 80 333 7 00m12s 140 007 -1941 Oct 27 11:21:18 45028 -48734 12 A nn -0.1649 0.9623 15.5S 169.1W 80 29 138 03m49s
|
|||
|
|
|||
|
141 008 -1940 Apr 21 02:04:36 45017 -48728 17 T p- 0.5983 1.0524 36.8N 44.7W 53 143 213 03m56s 142 008 -1940 Oct 15 13:56:25 45005 -48722 22 A p- -0.8816 0.9156 52.3S 112.2E 28 53 662 07m17s 143 008 -1939 Mar 12 11:31:58 44996 -48717 -11 P -t -1.2114 0.6133 61.0S 53.1W 0 249 144 008 -1939 Apr 10 18:42:36 44994 -48716 27 P t- 1.3086 0.4259 60.6N 4.1W 0 87 145 008 -1939 Sep 04 19:47:20 44984 -48711 -6 P -t 1.4230 0.2384 61.4N 172.6W 0 299 146 008 -1939 Oct 04 13:00:58 44982 -48710 32 P t- -1.5481 0.0367 60.5S 85.4E 0 86 147 008 -1938 Mar 02 02:05:12 44972 -48705 -1 T -p -0.5156 1.0169 41.0S 2.1W 59 327 67 01m21s 148 008 -1938 Aug 25 03:09:40 44961 -48699 4 H -p 0.6444 1.0050 52.6N 15.0W 50 217 22 00m23s 149 008 -1937 Feb 19 10:09:18 44949 -48693 9 A nn 0.2352 0.9613 4.4S 145.3W 76 158 144 04m29s 150 008 -1937 Aug 14 17:09:41 44937 -48687 14 T n- -0.0934 1.0574 14.8N 108.7E 85 19 190 05m05s
|
|||
|
|
|||
|
151 008 -1936 Feb 08 11:24:38 44926 -48681 19 152 008 -1936 Aug 03 09:46:19 44914 -48675 24 153 008 -1936 Dec 28 20:02:32 44905 -48670 -9 154 008 -1935 Jun 24 13:43:01 44893 -48664 -4 155 008 -1935 Dec 18 05:41:01 44881 -48658 1 156 008 -1934 Jun 13 18:42:52 44870 -48652 6 157 008 -1934 Dec 07 20:26:30 44858 -48646 11 158 008 -1933 Jun 02 19:20:26 44847 -48640 16 159 008 -1933 Nov 27 11:49:40 44835 -48634 21 160 008 -1932 Apr 22 12:14:51 44825 -48629 -12
|
|||
|
|
|||
|
An t- 0.9793 0.9202 53.9N 167.7E 11 148 - 07m38s T p- -0.8011 1.0548 29.8S 153.4W 37 17 300 04m40s P -t -1.2579 0.5216 66.2S 117.4W 0 185 P -t 1.0997 0.8073 67.0N 18.0W 0 3 H2 -p -0.5070 1.0150 53.2S 80.5W 59 4 60 01m11s A -p 0.3594 0.9558 42.5N 81.0E 69 173 173 04m44s T n- 0.1788 1.0468 10.4S 60.5E 80 186 158 04m28s A p- -0.4060 0.9512 4.8S 77.7E 66 351 195 06m39s T p- 0.8553 1.0194 40.1N 160.5W 31 193 128 01m39s Pe -t 1.5210 0.0401 71.2N 75.4E 0 71
|
|||
|
|
|||
|
161 009 -1932 May 21 22:52:55 44823 -48628 26 162 009 -1932 Oct 17 07:27:29 44814 -48623 -7 163 009 -1931 Apr 12 01:59:44 44802 -48617 -2 164 009 -1931 Oct 06 08:23:27 44790 -48611 3 165 009 -1930 Apr 01 19:02:33 44779 -48605 8 166 009 -1930 Sep 25 07:58:25 44767 -48599 13 167 009 -1929 Mar 22 10:43:01 44756 -48593 18 168 009 -1929 Sep 14 13:20:52 44744 -48587 23 169 009 -1928 Feb 10 06:11:20 44734 -48582 -10 170 009 -1928 Aug 04 16:56:04 44723 -48576 -5
|
|||
|
|
|||
|
P t- -1.1505 0.7135 69.9S 59.9E 0 323 P -t -1.3152 0.4228 71.6S 153.6E 0 101 T -p 0.7158 1.0608 44.8N 40.6W 44 154 284 04m33s A -p -0.6630 0.9167 38.0S 135.1W 48 23 418 09m19s Tm nn -0.0247 1.0760 3.7S 83.6E 89 342 246 06m43s A nn 0.0317 0.9374 7.7N 112.5W 88 197 233 07m55s T p- -0.7834 1.0303 54.5S 127.0W 38 329 164 02m13s A p- 0.7326 0.9846 54.7N 172.8W 43 208 80 01m14s P -t 1.2457 0.5418 68.8N 105.8W 0 157 P -t -1.2216 0.5932 67.8S 99.4E 0 12
|
|||
|
|
|||
|
171 009 -1928 Sep 03 01:53:33 44721 -48575 33 P t- 1.3838 0.2863 70.2N 112.4E 0 315 172 009 -1927 Jan 29 06:15:48 44711 -48570 0 A -p 0.5491 0.9274 11.5N 85.7W 57 176 326 10m18s 173 009 -1927 Jul 25 09:31:57 44700 -48564 5 T -p -0.5249 1.0535 8.6S 137.3W 58 1 208 05m16s 174 009 -1926 Jan 18 07:40:04 44688 -48558 10 A nn -0.1741 0.9570 33.5S 105.5W 80 0 159 04m50s 175 009 -1926 Jul 14 22:44:43 44677 -48552 15 H nn 0.2216 1.0079 36.8N 22.8E 77 176 28 00m46s 176 009 -1925 Jan 07 15:52:48 44665 -48546 20 H p- -0.8696 1.0006 83.1S 91.4E 29 41 4 00m02s 177 009 -1925 Jul 04 05:07:17 44653 -48540 25 P t- 1.0195 0.9342 64.8N 128.0E 0 19 178 009 -1925 Nov 28 19:33:50 44644 -48535 -8 P -t 1.1693 0.6904 62.3N 121.8E 0 227 179 009 -1925 Dec 28 06:00:28 44642 -48534 30 P t- -1.4998 0.0675 64.7S 119.6E 0 159 180 009 -1924 May 23 15:21:27 44632 -48529 -3 P -t -1.0637 0.8577 61.8S 170.4W 0 307
|
|||
|
|
|||
|
A-5
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
181 010 -1924 Nov 17 10:15:36 182 010 -1923 May 12 20:45:04 183 010 -1923 Nov 06 19:44:18 184 010 -1922 May 02 09:19:50 185 010 -1922 Oct 26 21:55:31 186 010 -1921 Mar 23 19:12:17 187 010 -1921 Apr 22 02:10:29 188 010 -1921 Sep 16 03:32:55 189 010 -1921 Oct 15 20:56:53 190 010 -1920 Mar 12 09:36:57
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 44620 -48523 2 H -p 44609 -48517 7 H nn 44597 -48511 12 A nn 44586 -48505 17 T p44574 -48499 22 A p44565 -48494 -11 P -t 44563 -48493 27 P t44553 -48488 -6 P -t 44551 -48487 32 P t44541 -48482 -1 T -p
|
|||
|
|
|||
|
Gamma
|
|||
|
0.5283 -0.2538 -0.1649
|
|||
|
0.5213 -0.8763 -1.2716
|
|||
|
1.2395 1.4440 -1.5362 -0.5721
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0116 1.0059 0.9588 1.0573 0.9134 0.4978 0.5603 0.2026 0.0567 1.0158
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
14.2N 137.0W 58
|
|||
|
|
|||
|
0.2S 59.1E 75
|
|||
|
|
|||
|
19.8S 63.2E 80
|
|||
|
|
|||
|
36.7N 152.8W 58
|
|||
|
|
|||
|
55.6S 12.7W 28
|
|||
|
|
|||
|
60.7S 178.8W 0
|
|||
|
|
|||
|
60.7N 126.7W 0
|
|||
|
|
|||
|
61.0N 60.3E 0
|
|||
|
|
|||
|
60.5S 44.0W 0
|
|||
|
|
|||
|
39.9S 114.4W 55
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 204 47 01m06s 335 21 00m36s
|
|||
|
28 152 04m14s 145 219 04m18s
|
|||
|
57 671 07m15s 258
|
|||
|
79 290
|
|||
|
95 324 65 01m16s
|
|||
|
|
|||
|
191 010 -1920 Sep 04 11:10:54 44530 -48476 4 H -p 0.6724 1.0046 49.9N 134.7W 48 220 21 00m21s 192 010 -1919 Mar 01 17:22:05 44518 -48470 9 A nn 0.1830 0.9619 4.1S 105.2E 79 155 140 04m17s 193 010 -1919 Aug 25 01:18:07 44507 -48464 14 T nn -0.0570 1.0556 13.9N 14.5W 87 23 184 04m49s 194 010 -1918 Feb 18 18:29:52 44495 -48458 19 A p- 0.9312 0.9255 46.0N 61.8E 21 148 755 07m30s 195 010 -1918 Aug 14 17:45:39 44484 -48452 24 T p- -0.7596 1.0510 27.3S 83.1E 40 21 256 04m21s 196 010 -1917 Jan 09 04:06:28 44474 -48447 -9 P -t -1.2694 0.5017 65.2S 109.5E 0 195 197 010 -1917 Jul 05 20:44:02 44463 -48441 -4 P -t 1.1718 0.6764 66.0N 135.7W 0 352 198 010 -1917 Aug 04 07:51:37 44461 -48440 34 Pb t- -1.5248 0.0346 63.5S 148.9W 0 34 199 010 -1917 Dec 29 14:13:35 44451 -48435 1 T -p -0.5141 1.0197 54.8S 154.9E 59 357 79 01m31s 200 010 -1916 Jun 24 01:12:09 44439 -48429 6 A -p 0.4409 0.9519 49.4N 15.9W 64 178 197 04m53s
|
|||
|
|
|||
|
201 011 -1916 Dec 18 05:14:10 44428 -48423 11 T n- 0.1747 1.0488 12.6S 73.1W 80 182 165 04m39s 202 011 -1915 Jun 13 01:41:44 44416 -48417 16 A p- -0.3194 0.9518 2.8N 21.3W 71 355 186 06m40s 203 011 -1915 Dec 07 20:35:33 44405 -48411 21 T p- 0.8567 1.0182 38.2N 62.4E 31 188 121 01m36s 204 011 -1914 Jun 02 05:36:42 44393 -48405 26 P t- -1.0668 0.8639 69.0S 55.2W 0 335 205 011 -1914 Oct 28 15:39:52 44384 -48400 -7 P -t -1.3215 0.4125 71.3S 14.6E 0 115 206 011 -1913 Apr 23 09:22:31 44372 -48394 -2 T -p 0.7853 1.0629 54.3N 159.8W 38 149 332 04m19s 207 011 -1913 Oct 17 16:15:51 44361 -48388 3 A -p -0.6726 0.9145 43.1S 103.1E 47 25 436 09m09s 208 011 -1912 Apr 12 02:33:41 44349 -48382 8 T nn 0.0431 1.0769 4.3N 33.4W 88 162 249 06m48s 209 011 -1912 Oct 05 15:53:35 44337 -48376 13 A nn 0.0182 0.9371 2.4N 126.0E 89 198 234 07m55s 210 011 -1911 Apr 01 18:05:15 44326 -48370 18 T p- -0.7212 1.0307 45.5S 114.4E 44 334 149 02m26s
|
|||
|
|
|||
|
211 011 -1911 Sep 24 21:33:45 44314 -48364 23 212 011 -1910 Feb 20 13:23:40 44305 -48359 -10 213 011 -1910 Mar 22 03:40:50 44303 -48358 28 214 011 -1910 Aug 16 00:59:14 44293 -48353 -5 215 011 -1910 Sep 14 10:16:33 44291 -48352 33 216 011 -1909 Feb 09 13:30:39 44282 -48347 0 217 011 -1909 Aug 05 17:20:50 44270 -48341 5 218 011 -1908 Jan 29 15:22:41 44259 -48335 10 219 011 -1908 Jul 25 06:03:48 44247 -48329 15 220 011 -1907 Jan 18 00:08:49 44236 -48323 20
|
|||
|
|
|||
|
A p- 0.7144 0.9854 48.8N 60.2E 44 207 73 01m14s P -t 1.2954 0.4569 69.7N 132.1E 0 145 Pb t- -1.5388 0.0265 71.2S 61.6E 0 250 P -t -1.2603 0.5188 68.8S 34.8W 0 24 P t- 1.3600 0.3312 70.9N 28.4W 0 302 A -p 0.5892 0.9307 16.3N 161.6E 54 172 320 09m28s T -p -0.5746 1.0475 13.5S 101.7E 55 5 193 04m38s A nn -0.1448 0.9628 30.3S 138.8E 81 356 136 04m13s H nn 0.1634 1.0017 32.7N 86.7W 80 181 6 00m10s H p- -0.8487 1.0071 81.7S 4.7E 32 1 47 00m27s
|
|||
|
|
|||
|
221 012 -1907 Jul 14 11:50:45 44224 -48317 25 A t- 0.9506 0.9452 82.7N 36.3E 18 29 673 03m30s 222 012 -1907 Dec 09 04:25:19 44214 -48312 -8 P -t 1.1714 0.6864 63.1N 22.1W 0 218 223 012 -1906 Jan 07 14:37:00 44213 -48311 30 P t- -1.4864 0.0912 65.7S 21.5W 0 170 224 012 -1906 Jun 03 21:45:37 44203 -48306 -3 P -t -1.1470 0.7138 62.5S 82.6E 0 316 225 012 -1906 Nov 28 18:58:47 44191 -48300 2 H -p 0.5296 1.0095 11.6N 89.1E 58 200 38 00m56s 226 012 -1905 May 24 03:36:37 44180 -48294 7 H -n -0.3336 1.0090 1.6S 45.0W 71 338 33 00m56s 227 012 -1905 Nov 18 04:06:24 44168 -48288 12 A nn -0.1653 0.9559 23.9S 63.9W 80 26 163 04m36s 228 012 -1904 May 12 16:35:44 44157 -48282 17 T p- 0.4441 1.0613 36.6N 99.2E 63 148 223 04m39s 229 012 -1904 Nov 06 05:56:20 44145 -48276 22 A p- -0.8727 0.9118 59.4S 138.0W 29 60 680 07m10s 230 012 -1903 Apr 03 02:45:51 44136 -48271 -11 P -t -1.3369 0.3724 60.6S 57.2E 0 267
|
|||
|
|
|||
|
231 012 -1903 May 02 09:35:23 44134 -48270 27 P t- 1.1681 0.6993 61.0N 111.5E 0 70 232 012 -1903 Sep 26 11:27:50 44124 -48265 -6 P -t 1.4585 0.1777 60.7N 68.9W 0 281 233 012 -1903 Oct 26 04:57:57 44122 -48264 32 P t- -1.5275 0.0711 60.7S 174.7W 0 104 234 012 -1902 Mar 23 16:57:33 44113 -48259 -1 T -p -0.6371 1.0140 39.4S 136.0E 50 322 61 01m07s 235 012 -1902 Sep 15 19:22:56 44101 -48253 4 H -p 0.6925 1.0044 46.6N 101.3E 46 222 21 00m20s 236 012 -1901 Mar 13 00:23:10 44090 -48247 9 Am nn 0.1217 0.9623 3.6S 1.2W 83 153 137 04m09s 237 012 -1901 Sep 05 09:35:37 44078 -48241 14 T nn -0.0279 1.0537 12.0N 140.2W 88 27 178 04m33s 238 012 -1900 Mar 01 01:25:12 44067 -48235 19 A p- 0.8748 0.9302 41.1N 42.9W 29 146 523 07m09s 239 012 -1900 Aug 25 01:52:52 44055 -48229 24 T p- -0.7250 1.0467 26.4S 42.2W 43 25 222 03m56s 240 012 -1899 Jan 19 12:03:25 44046 -48224 -9 P -t -1.2871 0.4706 64.2S 21.5W 0 205
|
|||
|
|
|||
|
A-6
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
241 013 -1899 Jul 16 03:48:10 242 013 -1899 Aug 14 15:31:53 243 013 -1898 Jan 08 22:40:58 244 013 -1898 Jul 05 07:45:10 245 013 -1898 Dec 29 13:56:59 246 013 -1897 Jun 24 08:08:49 247 013 -1897 Dec 19 05:18:24 248 013 -1896 Jun 12 12:24:24 249 013 -1896 Nov 07 23:54:29 250 013 -1895 May 03 16:43:42
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 44034 -48218 -4 P -t 44032 -48217 34 P t44023 -48212 1 T -p 44011 -48206 6 A -p 44000 -48200 11 T n43988 -48194 16 A nn 43977 -48188 21 T p43965 -48182 26 A t43956 -48177 -7 P -t 43944 -48171 -2 T -p
|
|||
|
|
|||
|
Gamma
|
|||
|
1.2402 -1.4863 -0.5261
|
|||
|
0.5188 0.1665 -0.2370 0.8559 -0.9851 -1.3252 0.8566
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.5537 0.1079 1.0248 0.9476 1.0512 0.9519 1.0176 0.9821 0.4066 1.0640
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
65.0N 106.2E 0
|
|||
|
|
|||
|
62.7S 84.8E 0
|
|||
|
|
|||
|
55.5S 32.1E 58
|
|||
|
|
|||
|
55.2N 111.5W 58
|
|||
|
|
|||
|
14.2S 154.8E 81
|
|||
|
|
|||
|
9.3N 121.0W 76
|
|||
|
|
|||
|
36.5N 73.9W 31
|
|||
|
|
|||
|
59.4S 174.8W 9
|
|||
|
|
|||
|
70.7S 124.5W 0
|
|||
|
|
|||
|
64.4N 77.3E 31
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 342
|
|||
|
43 349 99 01m53s 185 226 05m02s 178 172 04m51s 359 181 06m36s 183 117 01m35s 350 402 01m29s 129 141 407 04m00s
|
|||
|
|
|||
|
251 013 -1895 Oct 28 00:12:42 43933 -48165 3 A -p -0.6781 0.9130 48.0S 19.1W 47 25 449 08m57s 252 013 -1894 Apr 23 10:00:21 43921 -48159 8 T nn 0.1144 1.0770 12.5N 149.2W 83 162 251 06m45s 253 013 -1894 Oct 16 23:55:45 43910 -48153 13 A nn 0.0099 0.9375 2.5S 2.9E 89 198 232 07m51s 254 013 -1893 Apr 13 01:21:49 43898 -48147 18 T p- -0.6552 1.0302 36.7S 1.7W 49 337 134 02m36s 255 013 -1893 Oct 06 05:53:28 43887 -48141 23 A p- 0.7011 0.9865 43.4N 68.7W 45 205 67 01m11s 256 013 -1892 Mar 02 20:26:50 43877 -48136 -10 P -t 1.3514 0.3609 70.5N 11.7E 0 133 257 013 -1892 Apr 01 10:34:53 43875 -48135 28 P t- -1.4763 0.1369 71.5S 57.4W 0 263 258 013 -1892 Aug 26 09:10:32 43866 -48130 -5 P -t -1.2926 0.4570 69.7S 171.7W 0 36 259 013 -1892 Sep 24 18:46:57 43864 -48129 33 P t- 1.3420 0.3652 71.4N 171.6W 0 288 260 013 -1891 Feb 19 20:35:10 43854 -48124 0 A -p 0.6381 0.9340 22.4N 50.9E 50 168 318 08m31s
|
|||
|
|
|||
|
261 014 -1891 Aug 16 01:16:58 43843 -48118 5 T -p -0.6177 1.0412 18.6S 21.6W 52 9 175 03m57s 262 014 -1890 Feb 08 22:55:57 43831 -48112 10 A nn -0.1069 0.9690 25.8S 24.5E 84 352 112 03m32s 263 014 -1890 Aug 05 13:30:29 43820 -48106 15 Am nn 0.1125 0.9952 28.1N 161.0E 83 185 17 00m30s 264 014 -1889 Jan 29 08:15:48 43808 -48100 20 T p- -0.8198 1.0140 76.7S 101.4W 35 342 85 00m54s 265 014 -1889 Jul 25 18:42:25 43797 -48094 25 A p- 0.8889 0.9427 86.2N 90.3E 27 189 470 04m01s 266 014 -1889 Dec 20 13:12:37 43787 -48089 -8 P -t 1.1769 0.6761 64.0N 165.3W 0 208 267 014 -1888 Jan 18 23:06:19 43785 -48088 30 P t- -1.4674 0.1258 66.7S 161.3W 0 181 268 014 -1888 Jun 14 04:13:21 43776 -48083 -3 P -t -1.2276 0.5742 63.3S 25.4W 0 325 269 014 -1888 Dec 09 03:39:58 43764 -48077 2 H -p 0.5320 1.0079 9.8N 44.3W 58 196 32 00m48s 270 014 -1887 Jun 03 10:29:53 43753 -48071 7 H -p -0.4126 1.0115 3.7S 149.8W 66 341 43 01m13s
|
|||
|
|
|||
|
271 014 -1887 Nov 28 12:27:35 43742 -48065 12 272 014 -1886 May 23 23:51:15 43730 -48059 17 273 014 -1886 Nov 17 13:59:10 43719 -48053 22 274 014 -1885 Apr 14 10:13:55 43709 -48048 -11 275 014 -1885 May 13 16:58:46 43707 -48047 27 276 014 -1885 Oct 07 19:30:51 43698 -48042 -6 277 014 -1885 Nov 06 13:03:01 43696 -48041 32 278 014 -1884 Apr 03 00:11:40 43686 -48036 -1 279 014 -1884 Sep 26 03:43:13 43675 -48030 4 280 014 -1883 Mar 23 07:14:53 43663 -48024 9
|
|||
|
|
|||
|
Am nn -0.1654 0.9537 27.4S 169.8E 80 22 171 04m54s T p- 0.3658 1.0644 36.1N 8.4W 68 152 226 04m59s A p- -0.8709 0.9109 63.5S 96.4E 29 63 688 07m03s P -t -1.4065 0.2387 60.7S 65.3W 0 275 P t- 1.0951 0.8412 61.4N 10.0W 0 61 P -t 1.4674 0.1624 60.6N 159.9E 0 272 P t- -1.5214 0.0810 61.1S 53.6E 0 113 H3 -p -0.7065 1.0117 39.5S 27.9E 45 321 56 00m56s H -p 0.7067 1.0045 43.1N 26.0W 45 221 22 00m21s A nn 0.0534 0.9625 3.0S 105.1W 87 151 136 04m04s
|
|||
|
|
|||
|
281 015 -1883 Sep 15 18:00:59 43652 -48018 14 T nn -0.0050 1.0518 9.2N 91.9E 90 35 172 04m20s 282 015 -1882 Mar 12 08:11:58 43640 -48012 19 A p- 0.8112 0.9347 37.7N 145.4W 36 145 402 06m41s 283 015 -1882 Sep 05 10:07:48 43629 -48006 24 T p- -0.6972 1.0423 26.8S 169.2W 46 28 193 03m30s 284 015 -1881 Jan 30 19:52:53 43619 -48001 -9 P -t -1.3118 0.4269 63.3S 150.3W 0 215 285 015 -1881 Mar 01 09:41:45 43618 -48000 29 Pb t- 1.5127 0.0793 61.4N 157.8E 0 120 286 015 -1881 Jul 27 10:59:30 43608 -47995 -4 P -t 1.3015 0.4449 64.0N 13.3W 0 333 287 015 -1881 Aug 25 23:20:13 43606 -47994 34 P t- -1.4549 0.1672 62.0S 43.2W 0 52 288 015 -1880 Jan 20 07:01:48 43597 -47989 1 T -p -0.5444 1.0301 55.3S 88.9W 57 341 121 02m13s 289 015 -1880 Jul 15 14:24:03 43585 -47983 6 A -p 0.5912 0.9430 59.7N 154.2E 53 195 262 05m12s 290 015 -1879 Jan 08 22:33:28 43574 -47977 11 T n- 0.1528 1.0539 15.2S 24.5E 81 173 180 05m01s
|
|||
|
|
|||
|
291 015 -1879 Jul 04 14:42:43 43562 -47971 16 A nn -0.1592 0.9516 14.7N 138.6E 81 3 179 06m28s 292 015 -1879 Dec 29 13:53:36 43551 -47965 21 T p- 0.8495 1.0175 34.7N 151.7E 32 177 114 01m36s 293 015 -1878 Jun 23 19:18:52 43539 -47959 26 A t- -0.9074 0.9881 42.6S 71.0E 24 358 101 01m09s 294 015 -1878 Nov 19 08:08:52 43530 -47954 -7 P -t -1.3285 0.4012 70.0S 97.0E 0 142 295 015 -1877 May 15 00:04:14 43518 -47948 -2 T -t 0.9288 1.0633 74.5N 60.5W 21 117 570 03m33s 296 015 -1877 Nov 08 08:12:04 43507 -47942 3 A -p -0.6816 0.9122 52.8S 141.0W 47 25 457 08m43s 297 015 -1876 May 03 17:23:23 43496 -47936 8 T -n 0.1886 1.0763 20.7N 96.0E 79 163 251 06m34s 298 015 -1876 Oct 27 08:04:34 43484 -47930 13 A nn 0.0064 0.9384 7.2S 121.6W 90 199 229 07m43s 299 015 -1875 Apr 23 08:29:55 43473 -47924 18 T p- -0.5830 1.0291 27.8S 115.1W 54 340 120 02m42s 300 015 -1875 Oct 16 14:21:40 43461 -47918 23 A p- 0.6941 0.9877 38.6N 160.3E 46 203 60 01m07s
|
|||
|
|
|||
|
A-7
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
301 016 -1874 Mar 14 03:18:38 302 016 -1874 Apr 12 17:19:20 303 016 -1874 Sep 06 17:30:25 304 016 -1874 Oct 06 03:24:58 305 016 -1873 Mar 03 03:31:18 306 016 -1873 Aug 27 09:20:55 307 016 -1872 Feb 20 06:23:37 308 016 -1872 Aug 15 21:02:20 309 016 -1871 Feb 08 16:17:25 310 016 -1871 Aug 05 01:40:13
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 43452 -47913 -10 P -t 43450 -47912 28 P t43440 -47907 -5 P -t 43438 -47906 33 P t43429 -47901 0 A -p 43418 -47895 5 T -p 43406 -47889 10 A nn 43395 -47883 15 A nn 43383 -47877 20 T p43372 -47871 25 A p-
|
|||
|
|
|||
|
Gamma
|
|||
|
1.4157 -1.4066 -1.3183
|
|||
|
1.3299 0.6938 -0.6537 -0.0635 0.0669 -0.7858 0.8327
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.2506 0.2599 0.4083 0.3878 0.9372 1.0348 0.9753 0.9887 1.0210 0.9393
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
71.1N 106.4W 0
|
|||
|
|
|||
|
71.5S 174.2W 0
|
|||
|
|
|||
|
70.5S 48.6E 0
|
|||
|
|
|||
|
71.6N 43.0E 0
|
|||
|
|
|||
|
29.6N 58.7W 46
|
|||
|
|
|||
|
23.9S 147.1W 49
|
|||
|
|
|||
|
20.3S 89.3W 86
|
|||
|
|
|||
|
23.1N 46.6E 86
|
|||
|
|
|||
|
70.3S 141.1E 38
|
|||
|
|
|||
|
77.5N 4.6W 33
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 120 277
|
|||
|
49 274 164 321 07m32s
|
|||
|
13 154 03m15s 348 88 02m49s 189 40 01m14s 336 117 01m24s 202 410 04m37s
|
|||
|
|
|||
|
311 016 -1871 Dec 30 21:54:24 43362 -47866 -8 312 016 -1870 Jan 29 07:27:56 43360 -47865 30 313 016 -1870 Jun 25 10:47:42 43351 -47860 -3 314 016 -1870 Jul 25 01:47:41 43349 -47859 35 315 016 -1870 Dec 20 12:15:47 43340 -47854 2 316 016 -1869 Jun 14 17:29:24 43328 -47848 7 317 016 -1869 Dec 09 20:43:48 43317 -47842 12 318 016 -1868 Jun 03 07:10:24 43305 -47836 17 319 016 -1868 Nov 27 22:00:10 43294 -47830 22 320 016 -1867 Apr 24 17:36:03 43284 -47825 -11
|
|||
|
|
|||
|
P -t 1.1869 0.6574 65.0N 52.7E 0 198 P t- -1.4425 0.1718 67.8S 60.4E 0 192 P -t -1.3031 0.4433 64.2S 135.4W 0 334 Pb t- 1.5600 0.0081 66.8N 151.8E 0 359 H -p 0.5379 1.0066 9.0N 176.3W 57 192 27 00m42s H -p -0.4875 1.0133 6.6S 103.4E 61 345 52 01m26s A nn -0.1623 0.9521 30.1S 45.4E 80 18 178 05m11s T n- 0.2900 1.0667 35.3N 116.9W 73 157 227 05m17s A p- -0.8678 0.9107 67.8S 27.5W 29 65 686 06m55s Pe -t -1.4802 0.0973 60.8S 173.6E 0 284
|
|||
|
|
|||
|
321 017 -1867 May 24 00:20:47 43283 -47824 27 P t- 1.0213 0.9844 61.9N 131.3W 0 53 322 017 -1867 Oct 18 03:41:29 43273 -47819 -6 P -t 1.4709 0.1561 60.7N 26.8E 0 262 323 017 -1867 Nov 16 21:10:19 43271 -47818 32 P t- -1.5165 0.0884 61.6S 78.8W 0 123 324 017 -1866 Apr 14 07:17:07 43262 -47813 -1 H -p -0.7818 1.0084 40.8S 77.7W 38 320 45 00m41s 325 017 -1866 Oct 07 12:11:37 43250 -47807 4 H -p 0.7148 1.0050 39.4N 156.4W 44 219 24 00m24s 326 017 -1865 Apr 03 13:57:33 43239 -47801 9 A nn -0.0214 0.9623 2.6S 153.4E 89 331 137 04m04s 327 017 -1865 Sep 27 02:35:16 43227 -47795 14 T nn 0.0102 1.0500 5.6N 38.6W 89 207 166 04m09s 328 017 -1864 Mar 22 14:50:16 43216 -47789 19 A p- 0.7404 0.9389 35.4N 114.6E 42 144 326 06m12s 329 017 -1864 Sep 15 18:30:18 43205 -47783 24 T p- -0.6763 1.0377 28.4S 61.8E 47 31 168 03m03s 330 017 -1863 Feb 10 03:35:11 43195 -47778 -9 P -t -1.3429 0.3711 62.6S 83.1E 0 225
|
|||
|
|
|||
|
331 017 -1863 Mar 11 16:45:13 43193 -47777 29 P t- 1.4511 0.1845 61.0N 41.3E 0 111 332 017 -1863 Aug 06 18:16:57 43184 -47772 -4 P -t 1.3569 0.3480 63.1N 133.9W 0 323 333 017 -1863 Sep 05 07:16:15 43182 -47771 34 P t- -1.4302 0.2136 61.4S 173.0W 0 62 334 017 -1862 Jan 30 15:14:50 43172 -47766 1 T -p -0.5698 1.0355 54.4S 151.5E 55 334 145 02m34s 335 017 -1862 Jul 26 21:10:21 43161 -47760 6 A -p 0.6570 0.9383 62.4N 60.2E 49 206 304 05m24s 336 017 -1861 Jan 20 07:03:23 43150 -47754 11 T n- 0.1335 1.0568 15.7S 104.1W 82 168 189 05m11s 337 017 -1861 Jul 15 21:24:00 43138 -47748 16 A nn -0.0870 0.9510 19.0N 37.1E 85 8 180 06m18s 338 017 -1860 Jan 09 22:23:09 43127 -47742 21 T p- 0.8391 1.0178 33.0N 19.0E 33 172 112 01m39s 339 017 -1860 Jul 04 02:20:00 43116 -47736 26 A t- -0.8339 0.9917 32.9S 40.2W 33 3 53 00m52s 340 017 -1860 Nov 29 16:22:01 43106 -47731 -7 P -t -1.3320 0.3957 69.0S 40.5W 0 155
|
|||
|
|
|||
|
341 018 -1859 May 25 07:24:25 43095 -47725 -2 342 018 -1859 Jun 23 14:36:03 43093 -47724 36 343 018 -1859 Nov 18 16:12:53 43083 -47719 3 344 018 -1858 May 15 00:44:54 43072 -47713 8 345 018 -1858 Nov 07 16:16:01 43061 -47707 13 346 018 -1857 May 04 15:35:26 43049 -47701 18 347 018 -1857 Oct 27 22:54:36 43038 -47695 23 348 018 -1856 Mar 24 10:02:17 43028 -47690 -10 349 018 -1856 Apr 22 23:58:22 43026 -47689 28 350 018 -1856 Sep 17 01:57:42 43017 -47684 -5
|
|||
|
|
|||
|
T+ -t 1.0015 1.0203 69.5N 100.9E 0 33 - Pb t- -1.5239 0.0181 67.0S 142.0E 0 357 A -p -0.6838 0.9121 57.3S 98.3E 47 23 460 08m27s T -n 0.2636 1.0746 28.8N 18.0W 75 165 251 06m15s A nn 0.0044 0.9400 11.5S 113.4E 90 201 222 07m30s T p- -0.5094 1.0272 19.3S 132.9E 59 343 107 02m41s A p- 0.6901 0.9895 34.3N 28.1E 46 201 51 00m59s P -t 1.4854 0.1309 71.5N 137.2E 0 106 P t- -1.3330 0.3895 71.3S 70.4E 0 290 P -t -1.3381 0.3709 71.1S 93.4W 0 62
|
|||
|
|
|||
|
351 018 -1856 Oct 16 12:08:28 43015 -47683 33 P t- 1.3223 0.4022 71.5N 103.9W 0 260 352 018 -1855 Mar 13 10:18:56 43006 -47678 0 A -p 0.7566 0.9402 37.9N 167.3W 41 159 335 06m34s 353 018 -1855 Sep 06 17:32:50 42994 -47672 5 T -p -0.6822 1.0286 29.2S 85.1E 47 17 132 02m35s 354 018 -1854 Mar 02 13:41:30 42983 -47666 10 A nn -0.0113 0.9817 13.9S 158.6E 89 347 65 02m05s 355 018 -1854 Aug 27 04:43:27 42972 -47660 15 A nn 0.0302 0.9822 17.9N 70.6W 88 192 63 01m59s 356 018 -1853 Feb 20 00:10:17 42960 -47654 20 T p- -0.7440 1.0282 63.0S 21.0E 42 335 143 01m57s 357 018 -1853 Aug 16 08:46:38 42949 -47648 25 A p- 0.7840 0.9356 69.7N 111.7W 38 205 388 05m17s 358 018 -1852 Jan 11 06:29:27 42939 -47643 -8 P -t 1.2024 0.6283 66.0N 88.2W 0 187 359 018 -1852 Feb 09 15:41:30 42937 -47642 30 P t- -1.4111 0.2304 68.7S 76.4W 0 203 360 018 -1852 Jul 05 17:28:58 42928 -47637 -3 P -t -1.3730 0.3218 65.1S 112.5E 0 344
|
|||
|
|
|||
|
A-8
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
361 019 -1852 Aug 04 08:41:15 362 019 -1852 Dec 30 20:45:47 363 019 -1851 Jun 25 00:33:02 364 019 -1851 Dec 20 04:56:02 365 019 -1850 Jun 14 14:32:21 366 019 -1850 Dec 09 05:58:42 367 019 -1849 Jun 04 07:44:24 368 019 -1849 Oct 29 11:58:23 369 019 -1849 Nov 28 05:19:01 370 019 -1848 Apr 24 14:17:16
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 42926 -47636 35 P t42917 -47631 2 H -p 42905 -47625 7 H2 -p 42894 -47619 12 A nn 42883 -47613 17 T n42871 -47607 22 A p42860 -47601 27 T t42851 -47596 -6 P -t 42849 -47595 32 P t42839 -47590 -1 H -t
|
|||
|
|
|||
|
Gamma
|
|||
|
1.5009 0.5483 -0.5598 -0.1566 0.2160 -0.8628 0.9488 1.4700 -1.5121 -0.8605
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.1091 1.0059 1.0145 0.9511 1.0680 0.9113 1.0660 0.1571 0.0947 1.0042
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
67.9N 35.6E 0
|
|||
|
|
|||
|
9.2N 53.2E 57
|
|||
|
|
|||
|
10.4S 5.0W 56
|
|||
|
|
|||
|
31.8S 77.5W 81
|
|||
|
|
|||
|
33.7N 133.8E 77
|
|||
|
|
|||
|
72.0S 148.4W 30
|
|||
|
|
|||
|
71.4N 148.2E 18
|
|||
|
|
|||
|
60.9N 107.9W 0
|
|||
|
|
|||
|
62.2S 148.2E 0
|
|||
|
|
|||
|
43.8S 178.6E 30
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 348 187 24 00m38s 349 60 01m34s
|
|||
|
14 181 05m24s 162 227 05m33s
|
|||
|
64 673 06m47s 82 698 03m25s 253 132 319 28 00m20s
|
|||
|
|
|||
|
371 019 -1848 Oct 17 20:46:35 42828 -47584 4 H -p 0.7184 1.0059 35.7N 71.0E 44 217 29 00m29s 372 019 -1847 Apr 13 20:33:27 42817 -47578 9 A nn -0.1011 0.9617 2.3S 53.7E 84 331 139 04m09s 373 019 -1847 Oct 07 11:15:47 42805 -47572 14 T nn 0.0209 1.0485 1.7N 170.8W 89 209 161 04m01s 374 019 -1846 Apr 02 21:21:37 42794 -47566 19 A p- 0.6631 0.9428 34.0N 16.8E 48 144 274 05m46s 375 019 -1846 Sep 27 02:59:55 42782 -47560 24 T p- -0.6615 1.0333 31.0S 68.9W 48 34 147 02m38s 376 019 -1845 Feb 21 11:10:37 42773 -47555 -9 P -t -1.3808 0.3024 61.9S 41.7W 0 234 377 019 -1845 Mar 22 23:43:44 42771 -47554 29 P t- 1.3838 0.3009 60.7N 73.8W 0 102 378 019 -1845 Aug 18 01:41:20 42762 -47549 -4 P -t 1.4057 0.2638 62.4N 103.9E 0 314 379 019 -1845 Sep 16 15:18:31 42760 -47548 34 P t- -1.4111 0.2495 61.0S 55.8E 0 71 380 019 -1844 Feb 10 23:20:42 42750 -47543 1 T -p -0.6022 1.0408 52.9S 33.0E 53 327 170 02m53s
|
|||
|
|
|||
|
381 020 -1844 Aug 06 04:04:34 42739 -47537 6 A -p 0.7161 0.9335 63.3N 35.0W 44 217 355 05m37s 382 020 -1843 Jan 30 15:24:14 42728 -47531 11 T n- 0.1064 1.0598 15.7S 129.6E 84 164 198 05m19s 383 020 -1843 Jul 26 04:14:32 42716 -47525 16 A nn -0.0216 0.9502 21.9N 66.1W 89 14 183 06m09s 384 020 -1842 Jan 20 06:43:06 42705 -47519 21 T p- 0.8212 1.0185 31.3N 110.9W 35 167 110 01m43s 385 020 -1842 Jul 15 09:30:31 42694 -47513 26 A p- -0.7668 0.9941 26.0S 152.4W 40 8 32 00m38s 386 020 -1842 Dec 11 00:30:01 42684 -47508 -7 P -t -1.3391 0.3838 68.0S 176.1W 0 167 387 020 -1841 Jun 05 14:47:29 42673 -47502 -2 P -t 1.0723 0.8834 68.7N 23.7W 0 22 388 020 -1841 Jul 04 22:03:49 42671 -47501 36 P t- -1.4564 0.1461 66.0S 17.6E 0 7 389 020 -1841 Nov 30 00:13:30 42662 -47496 3 A -p -0.6864 0.9127 61.4S 20.6W 46 18 459 08m08s 390 020 -1840 May 25 08:04:26 42650 -47490 8 T -n 0.3401 1.0720 36.8N 130.7W 70 167 249 05m50s
|
|||
|
|
|||
|
391 020 -1840 Nov 18 00:31:24 42639 -47484 13 392 020 -1839 May 14 22:35:50 42628 -47478 18 393 020 -1839 Nov 07 07:32:22 42616 -47472 23 394 020 -1838 Apr 04 16:36:35 42607 -47467 -10 395 020 -1838 May 04 06:31:11 42605 -47466 28 396 020 -1838 Sep 28 10:33:15 42596 -47461 -5 397 020 -1838 Oct 27 20:57:36 42594 -47460 33 398 020 -1837 Mar 24 17:00:38 42584 -47455 0 399 020 -1837 Sep 18 01:51:07 42573 -47449 5 400 020 -1836 Mar 12 20:55:13 42562 -47443 10
|
|||
|
|
|||
|
A nn 0.0048 0.9422 15.3S 12.2W 90 199 214 07m13s T p- -0.4321 1.0246 11.0S 22.7E 64 346 92 02m34s A p- 0.6895 0.9917 30.5N 105.4W 46 197 40 00m48s Pe -t 1.5615 0.0000 71.6N 23.0E 0 93 P t- -1.2547 0.5269 70.9S 43.1W 0 303 P -t -1.3514 0.3459 71.4S 122.1E 0 76 P t- 1.3189 0.4084 71.2N 108.1E 0 246 A -p 0.8244 0.9428 47.3N 83.7E 34 154 369 05m39s T -p -0.7050 1.0226 34.4S 44.4W 45 20 108 01m58s A nn 0.0456 0.9880 6.9S 46.8E 87 163 43 01m22s
|
|||
|
|
|||
|
401 021 -1836 Sep 06 12:30:48 42550 -47437 15 A nn -0.0004 0.9759 12.6N 170.3E 90 174 86 02m45s 402 021 -1835 Mar 02 07:56:34 42539 -47431 20 T p- -0.6959 1.0353 55.3S 99.4W 46 335 165 02m34s 403 021 -1835 Aug 26 16:01:09 42528 -47425 25 A p- 0.7422 0.9317 62.4N 137.4E 42 206 381 06m00s 404 021 -1834 Jan 21 14:57:13 42518 -47420 -8 P -t 1.2239 0.5877 67.1N 132.4E 0 176 405 021 -1834 Feb 19 23:47:18 42517 -47419 30 P t- -1.3735 0.3016 69.6S 148.2E 0 215 406 021 -1834 Jul 17 00:19:47 42507 -47414 -3 P -t -1.4360 0.2124 66.1S 2.3W 0 354 407 021 -1834 Aug 15 15:45:30 42505 -47413 35 P t- 1.4493 0.1971 68.9N 83.8W 0 336 408 021 -1833 Jan 11 05:07:17 42496 -47408 2 H -p 0.5652 1.0052 10.7N 75.3W 56 183 22 00m34s 409 021 -1833 Jul 06 07:46:09 42485 -47402 7 T -p -0.6253 1.0151 14.7S 116.4W 51 353 66 01m37s 410 021 -1833 Dec 31 13:00:55 42473 -47396 12 A nn -0.1456 0.9506 32.3S 161.7E 81 9 183 05m35s
|
|||
|
|
|||
|
411 021 -1832 Jun 24 21:59:15 42462 -47390 17 T n- 0.1456 1.0685 31.5N 22.9E 81 167 226 05m46s 412 021 -1832 Dec 19 13:52:26 42451 -47384 22 A p- -0.8539 0.9126 76.0S 97.1E 31 58 646 06m40s 413 021 -1831 Jun 14 15:09:59 42439 -47378 27 T p- 0.8784 1.0667 74.3N 64.4E 28 111 459 03m40s 414 021 -1831 Nov 08 20:18:55 42430 -47373 -6 P -t 1.4672 0.1612 61.3N 116.5E 0 244 415 021 -1831 Dec 08 13:25:07 42428 -47372 32 P t- -1.5050 0.1053 63.0S 15.7E 0 142 416 021 -1830 May 05 21:11:40 42419 -47367 -1 A -t -0.9428 0.9984 50.0S 79.3E 19 316 17 00m08s 417 021 -1830 Oct 29 05:27:09 42408 -47361 4 H -p 0.7181 1.0074 32.1N 63.4W 44 213 36 00m38s 418 021 -1829 Apr 25 03:02:58 42396 -47355 9 A nn -0.1855 0.9607 2.5S 44.3W 79 332 145 04m21s 419 021 -1829 Oct 18 20:01:55 42385 -47349 14 T nn 0.0269 1.0472 2.6S 55.4E 88 210 157 03m56s 420 021 -1828 Apr 13 03:47:21 42374 -47343 19 A p- 0.5808 0.9464 33.1N 79.3W 54 144 237 05m23s
|
|||
|
|
|||
|
A-9
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
421 022 -1828 Oct 07 11:36:07 422 022 -1827 Mar 03 18:37:30 423 022 -1827 Apr 02 06:34:52 424 022 -1827 Aug 28 09:13:31 425 022 -1827 Sep 26 23:28:24 426 022 -1826 Feb 21 07:18:40 427 022 -1826 Aug 17 11:07:52 428 022 -1825 Feb 10 23:37:36 429 022 -1825 Aug 06 11:15:15 430 022 -1824 Jan 31 14:55:54
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 42362 -47337 24 T p42353 -47332 -9 P -t 42351 -47331 29 P t42342 -47326 -4 P -t 42340 -47325 34 P t42330 -47320 1 T -p 42319 -47314 6 A -p 42308 -47308 11 T nn 42297 -47302 16 A nn 42285 -47296 21 T p-
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.6527 -1.4261
|
|||
|
1.3094 1.4472 -1.3988 -0.6416 0.7672 0.0732 0.0361 0.7981
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0290 0.2193 0.4314 0.1933 0.2727 1.0459 0.9289 1.0627 0.9491 1.0194
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
34.4S 158.7E 49
|
|||
|
|
|||
|
61.4S 164.1W 0
|
|||
|
|
|||
|
60.5N 172.9E 0
|
|||
|
|
|||
|
61.7N 19.9W 0
|
|||
|
|
|||
|
60.7S 77.2W 0
|
|||
|
|
|||
|
51.3S 84.2W 50
|
|||
|
|
|||
|
62.6N 133.7W 40
|
|||
|
|
|||
|
15.2S 5.3E 86
|
|||
|
|
|||
|
23.4N 171.5W 88
|
|||
|
|
|||
|
29.8N 121.5E 37
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 36 127 02m15s 243 93 305 80 322 198 03m11s 227 414 05m53s 160 206 05m25s 196 187 06m01s 162 109 01m47s
|
|||
|
|
|||
|
431 022 -1824 Jul 25 16:48:41 42274 -47290 26 A p- -0.7049 0.9959 21.1S 94.4E 45 12 20 00m26s 432 022 -1824 Dec 21 08:34:10 42265 -47285 -7 P -t -1.3486 0.3679 66.9S 49.9E 0 178 433 022 -1823 Jun 15 22:13:19 42254 -47279 -2 P -t 1.1413 0.7498 67.7N 148.4W 0 11 434 022 -1823 Jul 15 05:38:07 42252 -47278 36 P t- -1.3935 0.2659 65.0S 108.1W 0 17 435 022 -1823 Dec 10 08:10:48 42242 -47273 3 A -p -0.6918 0.9140 65.0S 136.2W 46 12 456 07m48s 436 022 -1822 Jun 05 15:25:30 42231 -47267 8 T -p 0.4148 1.0686 44.3N 117.3E 65 170 246 05m20s 437 022 -1822 Nov 29 08:46:06 42220 -47261 13 A nn 0.0036 0.9451 18.6S 137.2W 90 201 202 06m49s 438 022 -1821 May 26 05:35:56 42208 -47255 18 T n- -0.3555 1.0212 3.3S 86.7W 69 349 77 02m18s 439 022 -1821 Nov 18 16:10:47 42197 -47249 23 A p- 0.6886 0.9945 27.2N 120.9E 46 194 26 00m33s 440 022 -1820 May 14 13:01:43 42186 -47243 28 P t- -1.1748 0.6667 70.3S 155.6W 0 316
|
|||
|
|
|||
|
441 023 -1820 Oct 08 19:14:50 42177 -47238 -5 P -t -1.3602 0.3298 71.6S 24.2W 0 90 442 023 -1820 Nov 07 05:49:12 42175 -47237 33 P t- 1.3177 0.4108 70.7N 40.2W 0 232 443 023 -1819 Apr 03 23:34:14 42165 -47232 0 A -p 0.8990 0.9446 58.2N 28.1W 26 144 465 04m48s 444 023 -1819 Sep 28 10:17:02 42154 -47226 5 T -p -0.7208 1.0171 39.5S 175.6W 44 23 84 01m26s 445 023 -1818 Mar 24 04:01:15 42143 -47220 10 Am nn 0.1098 0.9939 0.8N 63.6W 84 162 21 00m40s 446 023 -1818 Sep 17 20:26:38 42132 -47214 15 A nn -0.0232 0.9700 7.3N 48.8E 89 17 108 03m28s 447 023 -1817 Mar 13 15:35:24 42120 -47208 20 T p- -0.6407 1.0421 47.2S 141.1E 50 336 183 03m14s 448 023 -1817 Sep 06 23:25:42 42109 -47202 25 A p- 0.7087 0.9279 55.6N 23.3E 45 206 382 06m45s 449 023 -1816 Feb 01 23:16:53 42100 -47197 -8 P -t 1.2520 0.5345 68.1N 5.6W 0 165 450 023 -1816 Mar 02 07:44:54 42098 -47196 30 P t- -1.3292 0.3861 70.4S 14.3E 0 228
|
|||
|
|
|||
|
451 023 -1816 Jul 27 07:19:00 42088 -47191 -3 P -t -1.4927 0.1141 67.1S 119.6W 0 5 452 023 -1816 Aug 25 22:59:47 42087 -47190 35 P t- 1.4050 0.2724 69.8N 153.6E 0 324 453 023 -1815 Jan 21 13:21:20 42077 -47185 2 H -p 0.5875 1.0048 13.2N 157.8E 54 178 21 00m31s 454 023 -1815 Jul 16 15:06:20 42066 -47179 7 T -p -0.6856 1.0151 19.6S 129.8E 47 357 71 01m35s 455 023 -1814 Jan 10 20:57:33 42055 -47173 12 A nn -0.1287 0.9506 31.3S 43.0E 82 3 183 05m43s 456 023 -1814 Jul 06 05:31:47 42043 -47167 17 T nn 0.0796 1.0682 28.5N 90.0W 85 173 223 05m56s 457 023 -1814 Dec 30 21:41:13 42032 -47161 22 A p- -0.8414 0.9146 78.8S 6.8W 32 42 608 06m34s 458 023 -1813 Jun 25 22:38:32 42021 -47155 27 T p- 0.8105 1.0656 74.1N 23.1W 36 138 369 03m49s 459 023 -1813 Nov 20 04:41:44 42012 -47150 -6 P -t 1.4632 0.1670 61.9N 19.9W 0 234 460 023 -1813 Dec 19 21:29:10 42010 -47149 32 P t- -1.4956 0.1196 63.9S 116.5W 0 152
|
|||
|
|
|||
|
461 024 -1812 May 16 04:03:20 42000 -47144 -1 P -t -1.0261 0.9429 61.5S 6.4W 0 302 462 024 -1812 Nov 08 14:11:00 41989 -47138 4 H -p 0.7160 1.0094 28.8N 161.2E 44 209 45 00m49s 463 024 -1811 May 05 09:27:26 41978 -47132 9 A np -0.2735 0.9592 3.4S 141.1W 74 333 153 04m39s 464 024 -1811 Oct 29 04:52:15 41967 -47126 14 T nn 0.0298 1.0464 6.8S 79.3W 88 209 155 03m53s 465 024 -1810 Apr 24 10:09:51 41956 -47120 19 A p- 0.4952 0.9495 32.5N 174.3W 60 146 210 05m06s 466 024 -1810 Oct 18 20:16:20 41944 -47114 24 T p- -0.6476 1.0251 38.4S 25.5E 49 38 110 01m54s 467 024 -1809 Mar 15 01:59:09 41935 -47109 -9 P -t -1.4765 0.1261 61.0S 74.9E 0 252 468 024 -1809 Apr 13 13:24:19 41933 -47108 29 P t- 1.2320 0.5684 60.5N 60.1E 0 85 469 024 -1809 Sep 08 16:53:49 41924 -47103 -4 P -t 1.4811 0.1367 61.2N 145.6W 0 295 470 024 -1809 Oct 08 07:43:56 41922 -47102 34 P t- -1.3919 0.2862 60.6S 148.5E 0 89
|
|||
|
|
|||
|
471 024 -1808 Mar 03 15:09:43 41913 -47097 1 T -p -0.6876 1.0506 49.8S 159.7E 46 319 229 03m28s 472 024 -1808 Aug 27 18:20:00 41901 -47091 6 A -p 0.8110 0.9244 60.9N 123.0E 36 233 482 06m12s 473 024 -1807 Feb 21 07:42:02 41890 -47085 11 Tm nn 0.0323 1.0654 14.4S 116.8W 88 155 214 05m31s 474 024 -1807 Aug 16 18:27:18 41879 -47079 16 A nn 0.0854 0.9481 23.6N 80.3E 85 201 192 05m55s 475 024 -1806 Feb 10 22:57:03 41868 -47073 21 T p- 0.7659 1.0204 28.3N 2.6W 40 158 106 01m51s 476 024 -1806 Aug 06 00:18:42 41856 -47067 26 A p- -0.6514 0.9971 17.9S 21.3W 49 16 13 00m18s 477 024 -1805 Jan 01 16:30:32 41847 -47062 -7 P -t -1.3642 0.3415 65.8S 81.6W 0 189 478 024 -1805 Jan 31 08:30:57 41845 -47061 31 Pb t- 1.5526 0.0081 63.3N 167.9W 0 144 479 024 -1805 Jun 27 05:43:43 41836 -47056 -2 P -t 1.2069 0.6227 66.7N 86.3E 0 0 480 024 -1805 Jul 26 13:20:27 41834 -47055 36 P t- -1.3363 0.3747 64.1S 124.7E 0 27
|
|||
|
|
|||
|
A-10
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
481 025 -1805 Dec 21 16:04:21 482 025 -1804 Jun 15 22:47:41 483 025 -1804 Dec 09 17:00:35 484 025 -1803 Jun 05 12:33:29 485 025 -1803 Nov 29 00:51:05 486 025 -1802 May 25 19:29:58 487 025 -1802 Oct 20 04:01:48 488 025 -1802 Nov 18 14:42:23 489 025 -1801 Apr 15 06:05:13 490 025 -1801 Oct 09 18:49:02
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 41825 -47050 3 A -p 41814 -47044 8 T -p 41802 -47038 13 A nn 41791 -47032 18 T nn 41780 -47026 23 A p41769 -47020 28 P t41759 -47015 -5 P -t 41758 -47014 33 P t41748 -47009 0 A -t 41737 -47003 5 H3 -p
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.7005 0.4884 0.0015
|
|||
|
-0.2775 0.6885
|
|||
|
-1.0933 -1.3649
|
|||
|
1.3175 0.9760 -0.7313
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9159 1.0643 0.9487 1.0171 0.9979 0.8083 0.3213 0.4110 0.9447 1.0119
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
67.8S 111.9E 45
|
|||
|
|
|||
|
51.4N 6.6E 61
|
|||
|
|
|||
|
21.3S 98.2E 90
|
|||
|
|
|||
|
4.0N 165.2E 74
|
|||
|
|
|||
|
24.4N 13.2W 46
|
|||
|
|
|||
|
69.5S 93.0E 0
|
|||
|
|
|||
|
71.4S 171.9W 0
|
|||
|
|
|||
|
69.9N 171.6E 0
|
|||
|
|
|||
|
70.3N 160.1W 12
|
|||
|
|
|||
|
44.5S 52.0E 43
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 2 451 07m26s 174 242 04m47s 349 188 06m18s 353 61 01m54s 190 10 00m13s 328 105 219 114 988 04m02s 26 60 00m58s
|
|||
|
|
|||
|
491 025 -1800 Apr 03 11:04:05 41726 -46997 10 A nn 0.1778 0.9997 8.7N 173.4W 80 162 1 00m02s 492 025 -1800 Sep 28 04:28:25 41715 -46991 15 A nn -0.0402 0.9644 2.0N 74.3W 88 18 129 04m09s 493 025 -1799 Mar 23 23:09:16 41703 -46985 20 T p- -0.5805 1.0485 38.9S 22.6E 54 337 197 03m55s 494 025 -1799 Sep 17 06:58:25 41692 -46979 25 A p- 0.6823 0.9244 49.3N 93.2W 47 206 388 07m32s 495 025 -1798 Feb 12 07:27:30 41683 -46974 -8 P -t 1.2872 0.4675 69.1N 141.8W 0 153 496 025 -1798 Mar 13 15:34:58 41681 -46973 30 P t- -1.2789 0.4828 71.0S 118.3W 0 241 497 025 -1798 Aug 07 14:29:58 41672 -46968 -3 Pe -t -1.5404 0.0313 68.1S 119.6E 0 16 498 025 -1798 Sep 06 06:25:28 41670 -46967 35 P t- 1.3692 0.3331 70.6N 27.6E 0 311 499 025 -1797 Feb 01 21:25:34 41661 -46962 2 H -p 0.6170 1.0043 17.0N 32.9E 52 174 19 00m28s 500 025 -1797 Jul 27 22:35:52 41649 -46956 7 T -p -0.7391 1.0147 25.0S 12.9E 42 2 75 01m30s
|
|||
|
|
|||
|
501 026 -1796 Jan 22 04:44:37 41638 -46950 12 A nn -0.1047 0.9509 29.0S 73.7W 84 358 181 05m49s 502 026 -1796 Jul 16 13:11:22 41627 -46944 17 T nn 0.0193 1.0673 25.0N 154.7E 89 178 220 06m01s 503 026 -1795 Jan 10 05:21:00 41616 -46938 22 A p- -0.8213 0.9173 79.0S 98.4W 34 16 556 06m29s 504 026 -1795 Jul 06 06:11:22 41605 -46932 27 T p- 0.7465 1.0633 71.5N 117.7W 41 160 313 03m53s 505 026 -1795 Nov 30 13:04:30 41595 -46927 -6 P -t 1.4602 0.1709 62.6N 156.4W 0 225 506 026 -1795 Dec 30 05:27:20 41594 -46926 32 P t- -1.4807 0.1432 64.9S 112.3E 0 162 507 026 -1794 May 27 10:52:48 41584 -46921 -1 P -t -1.1099 0.7897 62.1S 119.5W 0 310 508 026 -1794 Jun 25 20:54:42 41582 -46920 37 Pb t- 1.5328 0.0144 64.4N 115.8W 0 24 509 026 -1794 Nov 19 22:56:01 41573 -46915 4 H2 -p 0.7137 1.0120 26.0N 25.7E 44 205 58 01m05s 510 026 -1793 May 16 15:49:33 41562 -46909 9 A -p -0.3627 0.9571 5.0S 122.5E 69 336 166 05m03s
|
|||
|
|
|||
|
511 026 -1793 Nov 09 13:46:13 41551 -46903 14 Tm nn 0.0296 1.0461 11.0S 145.2E 88 207 153 03m54s 512 026 -1792 May 04 16:28:25 41539 -46897 19 A p- 0.4057 0.9522 31.8N 92.1E 66 148 190 04m53s 513 026 -1792 Oct 29 05:01:32 41528 -46891 24 T p- -0.6471 1.0216 42.9S 108.8W 49 39 95 01m36s 514 026 -1791 Mar 25 09:14:19 41519 -46886 -9 Pe -t -1.5327 0.0211 60.8S 44.4W 0 260 515 026 -1791 Apr 23 20:09:41 41517 -46885 29 P t- 1.1501 0.7149 60.7N 51.7W 0 76 516 026 -1791 Sep 19 00:42:05 41508 -46880 -4 P -t 1.5081 0.0925 60.8N 86.8E 0 286 517 026 -1791 Oct 18 16:05:01 41506 -46879 34 P t- -1.3898 0.2908 60.7S 12.8E 0 99 518 026 -1790 Mar 14 22:53:21 41497 -46874 1 T -p -0.7405 1.0548 48.7S 45.1E 42 316 266 03m42s 519 026 -1790 Sep 08 01:42:19 41486 -46868 6 A -p 0.8463 0.9202 58.7N 14.4E 32 237 558 06m33s 520 026 -1789 Mar 04 15:39:33 41474 -46862 11 T nn -0.0146 1.0677 13.2S 122.9E 89 336 221 05m36s
|
|||
|
|
|||
|
521 027 -1789 Aug 28 01:48:41 41463 -46856 16 A nn 0.1279 0.9470 22.6N 30.3W 83 205 196 05m52s 522 027 -1788 Feb 22 06:50:44 41452 -46850 21 T p- 0.7280 1.0213 27.2N 124.2W 43 154 104 01m55s 523 027 -1788 Aug 16 07:57:40 41441 -46844 26 A p- -0.6041 0.9980 16.2S 138.8W 53 20 9 00m12s 524 027 -1787 Jan 12 00:19:01 41432 -46839 -7 P -t -1.3854 0.3057 64.8S 149.4E 0 199 525 027 -1787 Feb 10 16:07:23 41430 -46838 31 P t- 1.5213 0.0626 62.5N 66.9E 0 135 526 027 -1787 Jul 07 13:19:08 41421 -46833 -2 P -t 1.2685 0.5034 65.7N 39.9W 0 350 527 027 -1787 Aug 05 21:11:03 41419 -46832 36 P t- -1.2853 0.4718 63.2S 4.3W 0 36 528 027 -1787 Dec 31 23:51:46 41409 -46827 3 A -p -0.7145 0.9183 69.5S 4.2E 44 350 446 07m03s 529 027 -1786 Jun 27 06:14:07 41398 -46821 8 T -p 0.5578 1.0592 57.5N 102.8W 56 181 235 04m13s 530 027 -1786 Dec 21 01:10:23 41387 -46815 13 Am nn -0.0054 0.9529 23.5S 25.0W 90 1 172 05m41s
|
|||
|
|
|||
|
531 027 -1785 Jun 16 19:34:08 41376 -46809 18 H nn -0.2030 1.0124 10.4N 57.1E 78 356 44 01m23s 532 027 -1785 Dec 10 09:29:08 41365 -46803 23 H p- 0.6857 1.0019 22.0N 146.8W 47 185 9 00m12s 533 027 -1784 Jun 05 01:57:48 41354 -46797 28 A- t- -1.0116 0.9493 68.6S 17.8W 0 339 - 534 027 -1784 Oct 30 12:52:51 41344 -46792 -5 P -t -1.3666 0.3184 71.0S 39.7E 0 119 535 027 -1784 Nov 28 23:35:25 41342 -46791 33 P t- 1.3172 0.4116 69.0N 24.2E 0 206 536 027 -1783 Apr 25 12:31:39 41333 -46786 0 P -t 1.0571 0.8684 71.3N 51.5E 0 66 537 027 -1783 Oct 20 03:26:05 41322 -46780 5 H -p -0.7370 1.0075 49.4S 81.1W 42 28 38 00m35s 538 027 -1782 Apr 14 18:01:43 41311 -46774 10 H nn 0.2512 1.0049 17.1N 77.8E 75 161 17 00m30s 539 027 -1782 Oct 09 12:37:27 41300 -46768 15 A nn -0.0506 0.9593 3.1S 160.8E 87 18 148 04m46s 540 027 -1781 Apr 04 06:37:38 41289 -46762 20 T p- -0.5149 1.0545 30.4S 94.7W 59 339 209 04m36s
|
|||
|
|
|||
|
A-11
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
541 028 -1781 Sep 28 14:39:03 542 028 -1780 Feb 23 15:29:49 543 028 -1780 Mar 23 23:18:05 544 028 -1780 Sep 16 14:01:07 545 028 -1779 Feb 12 05:19:31 546 028 -1779 Aug 07 06:14:34 547 028 -1778 Feb 01 12:22:05 548 028 -1778 Jul 27 20:58:21 549 028 -1777 Jan 21 12:53:29 550 028 -1777 Jul 17 13:49:57
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 41278 -46756 25 A p41268 -46751 -8 P -t 41266 -46750 30 P t41255 -46744 35 P t41246 -46739 2 H -p 41235 -46733 7 T -p 41224 -46727 12 A nn 41213 -46721 17 T nn 41201 -46715 22 A p41190 -46709 27 T p-
|
|||
|
|
|||
|
Gamma
|
|||
|
0.6625 1.3291 -1.2229 1.3406 0.6544 -0.7859 -0.0733 -0.0353 -0.7951 0.6876
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9211 0.3875 0.5913 0.3814 1.0038 1.0139 0.9516 1.0658 0.9205 1.0601
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
43.4N 148.1E 48
|
|||
|
|
|||
|
69.9N 83.4E 0
|
|||
|
|
|||
|
71.4S 110.5E 0
|
|||
|
|
|||
|
71.2N 101.6W 0
|
|||
|
|
|||
|
22.0N 90.0W 49
|
|||
|
|
|||
|
30.8S 107.0W 38
|
|||
|
|
|||
|
25.4S 171.3E 86
|
|||
|
|
|||
|
20.8N 37.0E 88
|
|||
|
|
|||
|
75.8S 166.7E 37
|
|||
|
|
|||
|
67.3N 139.2E 46
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 205 395 08m19s 141 254 298 170 17 00m24s
|
|||
|
7 77 01m21s 354 178 05m53s
|
|||
|
2 215 06m01s 355 501 06m26s 174 273 03m53s
|
|||
|
|
|||
|
551 028 -1777 Dec 11 21:26:59 41181 -46704 -6 P -t 1.4583 0.1729 63.4N 66.9E 0 215 552 028 -1776 Jan 10 13:21:28 41179 -46703 32 P t- -1.4616 0.1738 66.0S 18.2W 0 173 553 028 -1776 Jun 06 17:41:15 41170 -46698 -1 P -t -1.1934 0.6385 62.8S 127.4E 0 319 554 028 -1776 Jul 06 04:07:49 41168 -46697 37 P t- 1.4717 0.1295 65.3N 124.2E 0 15 555 028 -1776 Nov 30 07:41:49 41159 -46692 4 T -p 0.7115 1.0151 23.7N 110.0W 44 201 73 01m24s 556 028 -1775 May 26 22:10:28 41148 -46686 9 A -p -0.4519 0.9546 7.5S 26.2E 63 339 184 05m34s 557 028 -1775 Nov 19 22:40:15 41137 -46680 14 T nn 0.0296 1.0462 14.7S 10.0E 88 205 154 03m58s 558 028 -1774 May 15 22:47:48 41126 -46674 19 A pn 0.3163 0.9543 31.0N 1.7W 71 152 175 04m47s 559 028 -1774 Nov 09 13:48:09 41114 -46668 24 T p- -0.6486 1.0186 47.5S 117.2E 49 39 83 01m22s 560 028 -1773 May 05 02:55:56 41103 -46662 29 P t- 1.0674 0.8642 61.0N 163.7W 0 68
|
|||
|
|
|||
|
561 029 -1773 Sep 30 08:36:13 41094 -46657 -4 P -t 1.5296 0.0580 60.6N 42.1W 0 277 562 029 -1773 Oct 30 00:28:20 41092 -46656 34 P t- -1.3904 0.2907 61.0S 123.4W 0 108 563 029 -1772 Mar 25 06:31:35 41083 -46651 1 T -p -0.7985 1.0583 48.3S 68.3W 37 314 313 03m53s 564 029 -1772 Sep 18 09:13:28 41072 -46645 6 A -p 0.8744 0.9165 56.3N 98.7W 29 238 641 06m57s 565 029 -1771 Mar 14 23:27:17 41061 -46639 11 T nn -0.0696 1.0696 12.1S 5.0E 86 332 227 05m39s 566 029 -1771 Sep 07 09:22:22 41050 -46633 16 A nn 0.1610 0.9462 20.5N 144.5W 81 207 201 05m50s 567 029 -1770 Mar 04 14:33:02 41039 -46627 21 T p- 0.6815 1.0220 26.4N 117.6E 47 151 100 01m57s 568 029 -1770 Aug 27 15:48:22 41028 -46621 26 A p- -0.5657 0.9986 16.0S 100.9E 55 24 6 00m08s 569 029 -1769 Jan 23 07:57:06 41018 -46616 -7 P -t -1.4143 0.2567 63.8S 23.4E 0 209 570 029 -1769 Feb 21 23:32:24 41016 -46615 31 P t- 1.4816 0.1318 61.8N 55.2W 0 125
|
|||
|
|
|||
|
571 029 -1769 Jul 18 21:01:54 41007 -46610 -2 P -t 1.3244 0.3955 64.7N 167.4W 0 340 572 029 -1769 Aug 17 05:11:34 41005 -46609 36 P t- -1.2420 0.5539 62.4S 135.5W 0 46 573 029 -1768 Jan 12 07:33:02 40996 -46604 3 A -p -0.7337 0.9212 69.8S 100.6W 43 336 441 06m38s 574 029 -1768 Jul 07 13:43:11 40985 -46598 8 T -p 0.6244 1.0535 62.5N 150.3E 51 190 227 03m39s 575 029 -1768 Dec 31 09:17:22 40974 -46592 13 A nn -0.0155 0.9578 24.9S 147.1W 89 357 154 04m59s 576 029 -1767 Jun 27 02:35:28 40963 -46586 18 Hm nn -0.1298 1.0070 16.0N 50.3W 83 0 25 00m47s 577 029 -1767 Dec 20 18:04:43 40952 -46580 23 H p- 0.6801 1.0065 20.0N 80.3E 47 181 31 00m41s 578 029 -1766 Jun 16 08:27:00 40941 -46574 28 A t- -0.9312 0.9509 46.9S 133.4W 21 355 499 05m03s 579 029 -1766 Nov 10 21:46:53 40931 -46569 -5 P -t -1.3664 0.3191 70.4S 109.0W 0 132 580 029 -1766 Dec 10 08:27:16 40929 -46568 33 P t- 1.3157 0.4144 68.0N 122.3W 0 194
|
|||
|
|
|||
|
581 030 -1765 May 06 18:57:36 40920 -46563 0 P -t 1.1387 0.7279 70.8N 60.2W 0 54 582 030 -1765 Oct 31 12:05:53 40909 -46557 5 H -p -0.7400 1.0034 54.1S 146.0E 42 28 18 00m16s 583 030 -1764 Apr 25 00:58:42 40898 -46551 10 H -n 0.3262 1.0096 25.6N 30.8W 71 161 35 00m57s 584 030 -1764 Oct 19 20:50:22 40887 -46545 15 A nn -0.0567 0.9548 8.0S 35.2E 87 18 165 05m20s 585 030 -1763 Apr 14 14:01:43 40876 -46539 20 T p- -0.4451 1.0598 21.9S 149.1E 63 341 218 05m15s 586 030 -1763 Oct 08 22:26:39 40865 -46533 25 A p- 0.6488 0.9183 38.1N 27.5E 49 203 403 09m05s 587 030 -1762 Mar 05 23:23:27 40856 -46528 -8 P -t 1.3777 0.2947 70.6N 49.7W 0 128 588 030 -1762 Apr 04 06:55:36 40854 -46527 30 P t- -1.1623 0.7087 71.6S 19.5W 0 268 589 030 -1762 Sep 27 21:45:47 40843 -46521 35 P t- 1.3186 0.4185 71.6N 126.6E 0 284 590 030 -1761 Feb 23 13:03:27 40833 -46516 2 H -p 0.6992 1.0028 28.1N 149.0E 45 166 14 00m17s
|
|||
|
|
|||
|
591 030 -1761 Aug 18 14:04:01 40822 -46510 7 T -p -0.8246 1.0130 36.6S 129.7E 34 12 79 01m12s 592 030 -1760 Feb 12 19:48:27 40811 -46504 12 A nn -0.0336 0.9523 20.5S 58.2E 88 351 175 05m54s 593 030 -1760 Aug 07 04:53:14 40800 -46498 17 Tm nn -0.0834 1.0638 16.3N 83.4W 85 6 210 05m54s 594 030 -1759 Jan 31 20:15:58 40789 -46492 22 A p- -0.7606 0.9242 70.3S 63.6E 40 344 443 06m25s 595 030 -1759 Jul 27 21:35:14 40778 -46486 27 T p- 0.6349 1.0561 62.3N 29.0E 50 184 240 03m49s 596 030 -1759 Dec 22 05:44:51 40769 -46481 -6 P -t 1.4605 0.1673 64.3N 68.9W 0 205 597 030 -1758 Jan 20 21:06:35 40767 -46480 32 P t- -1.4347 0.2181 67.1S 146.9W 0 183 598 030 -1758 Jun 18 00:31:08 40758 -46475 -1 P -t -1.2740 0.4936 63.6S 13.8E 0 329 599 030 -1758 Jul 17 11:26:42 40756 -46474 37 P t- 1.4162 0.2332 66.2N 2.5E 0 5 600 030 -1758 Dec 11 16:25:49 40747 -46469 4 T -p 0.7109 1.0187 22.2N 114.8E 45 196 90 01m47s
|
|||
|
|
|||
|
A-12
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
601 031 -1757 Jun 07 04:31:26 602 031 -1757 Dec 01 07:34:28 603 031 -1756 May 26 05:07:02 604 031 -1756 Nov 19 22:36:12 605 031 -1755 May 15 09:40:36 606 031 -1755 Oct 10 16:37:28 607 031 -1755 Nov 09 08:54:37 608 031 -1754 Apr 05 14:04:42 609 031 -1754 Sep 29 16:52:56 610 031 -1753 Mar 26 07:09:38
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 40736 -46463 9 A -p 40725 -46457 14 T nn 40714 -46451 19 A nn 40703 -46445 24 T p40692 -46439 29 A t40682 -46434 -4 P -t 40680 -46433 34 P t40671 -46428 1 T -p 40660 -46422 6 A -p 40649 -46416 11 T -n
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.5404 0.0292 0.2263
|
|||
|
-0.6516 0.9819 1.5447
|
|||
|
-1.3940 -0.8613
|
|||
|
0.8956 -0.1289
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9515 1.0468 0.9560 1.0162 0.9858 0.0345 0.2852 1.0607 0.9133 1.0709
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
11.0S 70.7W 57
|
|||
|
|
|||
|
17.8S 124.9W 88
|
|||
|
|
|||
|
29.7N 95.3W 77
|
|||
|
|
|||
|
52.1S 16.4W 49
|
|||
|
|
|||
|
65.4N 105.4E 10
|
|||
|
|
|||
|
60.5N 172.8W 0
|
|||
|
|
|||
|
61.4S 99.5E 0
|
|||
|
|
|||
|
49.1S 179.8W 30
|
|||
|
|
|||
|
54.1N 144.1E 26
|
|||
|
|
|||
|
10.9S 111.5W 83
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 342 208 06m08s 201 156 04m05s 156 164 04m46s
|
|||
|
38 73 01m10s 78 284 00m51s 268 117 312 385 03m59s 236 725 07m23s 331 232 05m43s
|
|||
|
|
|||
|
611 031 -1753 Sep 18 17:05:43 40638 -46410 16 A nn 0.1868 0.9456 17.6N 98.4E 79 209 204 05m50s 612 031 -1752 Mar 14 22:07:20 40627 -46404 21 T p- 0.6290 1.0224 26.0N 2.0E 51 149 96 01m57s 613 031 -1752 Sep 06 23:48:10 40616 -46398 26 A p- -0.5338 0.9991 17.0S 21.6W 58 27 4 00m05s 614 031 -1751 Feb 02 15:26:22 40607 -46393 -7 P -t -1.4497 0.1966 62.9S 100.1W 0 219 615 031 -1751 Mar 04 06:47:43 40605 -46392 31 P t- 1.4347 0.2136 61.3N 174.7W 0 116 616 031 -1751 Jul 29 04:51:39 40596 -46387 -2 P -t 1.3749 0.2987 63.8N 63.6E 0 330 617 031 -1751 Aug 27 13:20:51 40594 -46386 36 P t- -1.2053 0.6232 61.8S 91.3E 0 55 618 031 -1750 Jan 22 15:05:02 40585 -46381 3 A -p -0.7609 0.9243 69.1S 156.6E 40 323 440 06m12s 619 031 -1750 Jul 18 21:18:48 40574 -46375 8 T -p 0.6850 1.0472 65.9N 44.9E 46 202 216 03m07s 620 031 -1749 Jan 11 17:17:46 40563 -46369 13 A nn -0.0323 0.9631 25.7S 92.6E 88 352 133 04m13s
|
|||
|
|
|||
|
621 032 -1749 Jul 08 09:40:54 40552 -46363 18 H nn -0.0609 1.0013 20.5N 158.0W 87 5 5 00m09s 622 032 -1748 Jan 01 02:35:12 40541 -46357 23 H p- 0.6695 1.0117 18.2N 51.2W 48 176 54 01m12s 623 032 -1748 Jun 26 14:59:14 40530 -46351 28 A p- -0.8533 0.9496 35.5S 121.5E 31 0 356 05m50s 624 032 -1748 Nov 21 06:40:48 40520 -46346 -5 P -t -1.3662 0.3196 69.6S 102.9E 0 146 625 032 -1748 Dec 20 17:14:20 40519 -46345 33 P t- 1.3104 0.4242 66.9N 93.0E 0 182 626 032 -1747 May 17 01:22:07 40509 -46340 0 P -t 1.2218 0.5842 70.1N 170.9W 0 41 627 032 -1747 Nov 10 20:47:50 40498 -46334 5 H -p -0.7406 1.0001 58.7S 13.8E 42 28 1 00m00s 628 032 -1746 May 06 07:54:16 40487 -46328 10 H -p 0.4033 1.0136 34.2N 138.8W 66 162 51 01m16s 629 032 -1746 Oct 31 05:06:38 40476 -46322 15 A nn -0.0594 0.9510 12.5S 91.0W 87 16 180 05m50s 630 032 -1745 Apr 25 21:23:14 40465 -46316 20 T p- -0.3724 1.0644 13.6S 33.8E 68 343 226 05m50s
|
|||
|
|
|||
|
631 032 -1745 Oct 20 06:21:00 40454 -46310 25 A p- 0.6405 0.9160 33.2N 94.8W 50 201 411 09m50s 632 032 -1744 Mar 16 07:08:25 40445 -46305 -8 P -t 1.4332 0.1887 71.2N 178.9E 0 115 633 032 -1744 Apr 14 14:26:42 40443 -46304 30 P t- -1.0965 0.8368 71.5S 147.9W 0 281 634 032 -1744 Oct 08 05:39:41 40432 -46298 35 P t- 1.3033 0.4443 71.7N 7.8W 0 270 635 032 -1743 Mar 05 20:37:21 40423 -46293 2 H -p 0.7516 1.0016 35.4N 29.4E 41 162 8 00m09s 636 032 -1743 Aug 28 22:03:23 40412 -46287 7 T -p -0.8559 1.0120 42.3S 3.2E 31 17 80 01m02s 637 032 -1742 Feb 23 03:04:13 40401 -46281 12 A nn 0.0142 0.9531 14.6S 53.0W 89 166 171 05m53s 638 032 -1742 Aug 18 12:56:59 40390 -46275 17 T -n -0.1242 1.0614 11.4N 153.6E 83 10 203 05m43s 639 032 -1741 Feb 12 03:30:55 40379 -46269 22 A p- -0.7199 0.9282 63.6S 43.9W 44 339 390 06m24s 640 032 -1741 Aug 08 05:26:17 40368 -46263 27 T p- 0.5875 1.0516 56.7N 86.0W 54 191 212 03m41s
|
|||
|
|
|||
|
641 033 -1740 Jan 02 13:59:35 40359 -46258 -6 P -t 1.4660 0.1558 65.3N 155.7E 0 194 642 033 -1740 Feb 01 04:46:24 40357 -46257 32 P t- -1.4026 0.2717 68.1S 85.2E 0 195 643 033 -1740 Jun 28 07:23:09 40348 -46252 -1 P -t -1.3513 0.3560 64.5S 100.6W 0 338 644 033 -1740 Jul 27 18:50:24 40346 -46251 37 P t- 1.3653 0.3273 67.2N 120.9W 0 354 645 033 -1740 Dec 22 01:06:10 40337 -46246 4 T -p 0.7143 1.0228 21.7N 19.3W 44 191 110 02m11s 646 033 -1739 Jun 17 10:54:45 40326 -46240 9 A -p -0.6264 0.9480 15.5S 168.7W 51 346 243 06m43s 647 033 -1739 Dec 11 16:25:31 40315 -46234 14 T nn 0.0317 1.0479 20.1S 101.4E 88 197 159 04m15s 648 033 -1738 Jun 06 11:30:50 40304 -46228 19 A nn 0.1392 0.9572 27.9N 169.6E 82 160 157 04m50s 649 033 -1738 Dec 01 07:21:07 40293 -46222 24 T p- -0.6526 1.0142 56.4S 147.5W 49 35 64 01m01s 650 033 -1737 May 26 16:29:39 40282 -46216 29 A t- 0.8985 0.9933 68.0N 33.4E 26 107 54 00m26s
|
|||
|
|
|||
|
651 033 -1737 Oct 22 00:43:06 40273 -46211 -4 P -t 1.5554 0.0182 60.7N 55.5E 0 259 652 033 -1737 Nov 20 17:20:19 40271 -46210 34 P t- -1.3979 0.2791 61.9S 37.6W 0 127 653 033 -1736 Apr 15 21:32:48 40262 -46205 1 T -t -0.9288 1.0617 52.0S 72.2E 21 308 538 03m57s 654 033 -1736 Oct 10 00:40:09 40251 -46199 6 A -p 0.9103 0.9108 52.1N 23.5E 24 233 802 07m50s 655 033 -1735 Apr 05 14:43:41 40240 -46193 11 T -n -0.1950 1.0715 9.9S 134.0E 79 330 236 05m46s 656 033 -1735 Sep 29 00:59:34 40229 -46187 16 A nn 0.2048 0.9454 14.1N 21.8W 78 210 205 05m50s 657 033 -1734 Mar 26 05:31:07 40218 -46181 21 T p- 0.5685 1.0223 25.9N 110.3W 55 147 91 01m56s 658 033 -1734 Sep 18 07:59:14 40207 -46175 26 A p- -0.5105 0.9995 19.1S 146.9W 59 30 2 00m03s 659 033 -1733 Feb 13 22:44:34 40198 -46170 -7 P -t -1.4933 0.1221 62.2S 139.4E 0 228 660 033 -1733 Mar 15 13:52:14 40196 -46169 31 P t- 1.3796 0.3097 60.9N 68.6E 0 107
|
|||
|
|
|||
|
A-13
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
661 034 -1733 Aug 09 12:48:19 662 034 -1733 Sep 07 21:38:26 663 034 -1732 Feb 02 22:29:32 664 034 -1732 Jul 29 04:59:19 665 034 -1731 Jan 22 01:11:38 666 034 -1731 Jul 18 16:50:06 667 034 -1730 Jan 11 11:00:39 668 034 -1730 Jul 07 21:35:47 669 034 -1730 Dec 02 15:33:38 670 034 -1729 Jan 01 01:57:02
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 40187 -46164 -2 P -t 40185 -46163 36 P t40176 -46158 3 A -p 40165 -46152 8 T -p 40154 -46146 13 A nn 40143 -46140 18 A nn 40132 -46134 23 T p40121 -46128 28 A p40112 -46123 -5 P -t 40110 -46122 33 P t-
|
|||
|
|
|||
|
Gamma
|
|||
|
1.4200 -1.1752 -0.7944
|
|||
|
0.7411 -0.0552
|
|||
|
0.0039 0.6541 -0.7792 -1.3670 1.3017
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.2127 0.6800 0.9278 1.0404 0.9690 0.9951 1.0173 0.9472 0.3181 0.4405
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
63.0N 66.8W 0
|
|||
|
|
|||
|
61.2S 43.7W 0
|
|||
|
|
|||
|
67.6S 54.0E 37
|
|||
|
|
|||
|
67.3N 59.6W 42
|
|||
|
|
|||
|
25.9S 26.0W 87
|
|||
|
|
|||
|
23.9N 94.2E 90
|
|||
|
|
|||
|
16.8N 178.8E 49
|
|||
|
|
|||
|
27.3S 17.4E 39
|
|||
|
|
|||
|
68.7S 44.3W 0
|
|||
|
|
|||
|
65.9N 50.1W 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 321
|
|||
|
64 312 446 05m46s 215 202 02m36s 347 112 03m25s 186 17 00m32s 172 78 01m46s
|
|||
|
5 310 06m33s 158 171
|
|||
|
|
|||
|
671 034 -1729 May 28 07:49:57 40101 -46117 0 P -t 1.3024 0.4438 69.3N 78.1E 0 29 672 034 -1729 Jun 26 22:02:21 40099 -46116 38 Pb t- -1.5245 0.0649 66.7S 13.9E 0 0 673 034 -1729 Nov 22 05:30:00 40090 -46111 5 A -p -0.7405 0.9973 63.0S 116.5W 42 25 14 00m12s 674 034 -1728 May 16 14:50:12 40079 -46105 10 T -p 0.4811 1.0170 42.8N 113.6E 61 162 66 01m30s 675 034 -1728 Nov 10 13:24:24 40068 -46099 15 A nn -0.0600 0.9478 16.6S 142.8E 86 14 192 06m17s 676 034 -1727 May 06 04:43:17 40057 -46093 20 T n- -0.2975 1.0681 5.4S 80.7W 73 345 232 06m18s 677 034 -1727 Oct 30 14:18:33 40046 -46087 25 A p- 0.6350 0.9144 28.9N 142.0E 50 199 418 10m32s 678 034 -1726 Mar 27 14:45:53 40037 -46082 -8 Pe -t 1.4941 0.0722 71.5N 49.0E 0 102 679 034 -1726 Apr 25 21:54:40 40035 -46081 30 P t- -1.0281 0.9698 71.2S 84.6E 0 294 680 034 -1726 Oct 19 13:40:25 40024 -46075 35 P t- 1.2925 0.4624 71.6N 144.0W 0 255
|
|||
|
|
|||
|
681 035 -1725 Mar 17 04:02:01 40015 -46070 2 A -p 0.8105 0.9997 43.9N 89.3W 36 156 2 00m01s 682 035 -1725 Sep 09 06:11:45 40004 -46064 7 T -p -0.8805 1.0111 47.8S 126.2W 28 23 81 00m54s 683 035 -1724 Mar 05 10:09:29 39993 -46058 12 A nn 0.0698 0.9538 7.9S 162.3W 86 165 169 05m50s 684 035 -1724 Aug 28 21:09:28 39982 -46052 17 T -n -0.1577 1.0589 6.3N 28.0E 81 13 196 05m28s 685 035 -1723 Feb 22 10:33:54 39971 -46046 22 A p- -0.6693 0.9324 56.1S 151.7W 48 338 340 06m23s 686 035 -1723 Aug 18 13:25:56 39960 -46040 27 T p- 0.5480 1.0467 51.0N 154.6E 57 195 186 03m30s 687 035 -1722 Jan 12 22:07:13 39951 -46035 -6 P -t 1.4777 0.1330 66.3N 21.7E 0 184 688 035 -1722 Feb 11 12:16:43 39949 -46034 32 P t- -1.3621 0.3405 69.1S 40.9W 0 206 689 035 -1722 Jul 09 14:19:32 39940 -46029 -1 P -t -1.4238 0.2284 65.5S 143.5E 0 348 690 035 -1722 Aug 08 02:21:22 39938 -46028 37 P t- 1.3210 0.4084 68.2N 113.3E 0 343
|
|||
|
|
|||
|
691 035 -1721 Jan 02 09:41:25 39929 -46023 4 T -p 0.7224 1.0271 22.3N 152.2W 44 187 133 02m37s 692 035 -1721 Jun 28 17:22:09 39918 -46017 9 A -p -0.7083 0.9440 21.1S 91.6E 45 350 291 07m15s 693 035 -1721 Dec 23 01:13:39 39907 -46011 14 T nn 0.0364 1.0494 21.3S 31.3W 88 192 164 04m27s 694 035 -1720 Jun 16 17:56:39 39896 -46005 19 A nn 0.0531 0.9579 25.3N 73.7E 87 166 153 04m58s 695 035 -1720 Dec 11 16:04:48 39885 -45999 24 H3 p- -0.6533 1.0129 60.1S 83.5E 49 30 58 00m55s 696 035 -1719 Jun 05 23:20:36 39874 -45993 29 A t- 0.8156 0.9985 67.9N 50.6W 35 127 9 00m06s 697 035 -1719 Nov 01 08:52:28 39865 -45988 -4 Pe -t 1.5624 0.0080 61.0N 77.3W 0 250 698 035 -1719 Dec 01 01:44:30 39863 -45987 34 P t- -1.4014 0.2734 62.6S 174.4W 0 136 699 035 -1718 Apr 27 04:58:09 39854 -45982 1 T- -t -0.9988 1.0262 60.9S 13.9W 0 287 - 700 035 -1718 May 26 11:58:02 39852 -45981 39 Pb t- 1.5157 0.0319 62.2N 37.2E 0 50
|
|||
|
|
|||
|
701 036 -1718 Oct 21 08:33:49 39843 -45976 6 A -p 0.9195 0.9091 50.2N 100.1W 23 229 861 08m18s 702 036 -1717 Apr 16 22:13:43 39832 -45970 11 T -n -0.2642 1.0714 9.3S 20.5E 75 331 240 05m49s 703 036 -1717 Oct 10 09:00:26 39821 -45964 16 A nn 0.2176 0.9456 10.2N 144.0W 77 210 205 05m51s 704 036 -1716 Apr 05 12:48:28 39810 -45958 21 T p- 0.5035 1.0218 26.2N 139.4E 60 147 85 01m52s 705 036 -1716 Sep 28 16:18:00 39799 -45952 26 H p- -0.4927 1.0002 22.0S 85.8E 60 32 1 00m01s 706 036 -1715 Feb 24 05:51:54 39790 -45947 -7 Pe -t -1.5449 0.0340 61.6S 21.9E 0 237 707 036 -1715 Mar 25 20:46:57 39789 -45946 31 P t- 1.3171 0.4188 60.7N 45.6W 0 99 708 036 -1715 Aug 19 20:53:33 39779 -45941 -2 P -t 1.4584 0.1402 62.3N 160.9E 0 311 709 036 -1715 Sep 18 06:04:44 39778 -45940 36 P t- -1.1521 0.7235 60.8S 179.2E 0 74 710 036 -1714 Feb 13 05:44:32 39768 -45935 3 A -p -0.8361 0.9311 65.8S 47.3W 33 302 468 05m21s
|
|||
|
|
|||
|
711 036 -1714 Aug 09 12:47:18 39758 -45929 8 T -p 0.7902 1.0335 66.8N 166.8W 37 228 184 02m07s 712 036 -1713 Feb 02 08:57:33 39747 -45923 13 A nn -0.0858 0.9750 25.6S 142.5W 85 342 90 02m39s 713 036 -1713 Jul 30 00:06:08 39736 -45917 18 A nn 0.0620 0.9888 26.0N 14.9W 86 194 40 01m11s 714 036 -1712 Jan 22 19:18:39 39725 -45911 23 T p- 0.6319 1.0233 15.7N 50.9E 51 167 102 02m19s 715 036 -1712 Jul 18 04:17:46 39714 -45905 28 A p- -0.7099 0.9441 21.2S 87.0W 45 10 291 07m11s 716 036 -1712 Dec 13 00:23:31 39705 -45900 -5 P -t -1.3704 0.3119 67.6S 169.8E 0 170 717 036 -1711 Jan 11 10:32:45 39703 -45899 33 P t- 1.2875 0.4674 64.8N 169.1E 0 161 718 036 -1711 Jun 07 14:20:18 39694 -45894 0 P -t 1.3815 0.3056 68.4N 33.0W 0 18 719 036 -1711 Jul 07 04:35:37 39692 -45893 38 P t- -1.4482 0.1959 65.7S 96.7W 0 11 720 036 -1711 Dec 02 14:09:37 39683 -45888 5 A -p -0.7421 0.9951 67.0S 116.2E 42 19 26 00m21s
|
|||
|
|
|||
|
A-14
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
721 037 -1710 May 27 21:48:23 722 037 -1710 Nov 21 21:42:44 723 037 -1709 May 17 12:02:25 724 037 -1709 Nov 10 22:19:39 725 037 -1708 May 06 05:18:38 726 037 -1708 Oct 29 21:47:25 727 037 -1707 Mar 27 11:16:25 728 037 -1707 Sep 19 14:30:13 729 037 -1706 Mar 16 17:05:16 730 037 -1706 Sep 09 05:29:48
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 39672 -45882 10 T -p 39661 -45876 15 A nn 39650 -45870 20 T n39639 -45864 25 A p39628 -45858 30 T t39618 -45852 35 P t39608 -45847 2 A -t 39598 -45841 7 T -p 39587 -45835 12 A nn 39576 -45829 17 T -n
|
|||
|
|
|||
|
Gamma
|
|||
|
0.5580 -0.0598 -0.2214
|
|||
|
0.6325 -0.9564
|
|||
|
1.2865 0.8766 -0.8974 0.1323 -0.1846
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0196 0.9453 1.0711 0.9133 1.0657 0.4725 0.9970 1.0105 0.9544 1.0563
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
51.3N 6.4E 56
|
|||
|
|
|||
|
20.3S 16.8E 86
|
|||
|
|
|||
|
2.5N 165.4E 77
|
|||
|
|
|||
|
25.1N 18.0E 51
|
|||
|
|
|||
|
58.2S 66.9W 16
|
|||
|
|
|||
|
71.2N 78.5E 0
|
|||
|
|
|||
|
53.7N 151.4E 28
|
|||
|
|
|||
|
52.9S 101.4E 26
|
|||
|
|
|||
|
0.5S 90.1E 82
|
|||
|
|
|||
|
1.1N 99.8W 79
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 164 81 01m36s
|
|||
|
11 202 06m38s 347 237 06m38s 195 423 11m10s 330 750 04m22s 241 149 22 00m14s
|
|||
|
29 82 00m48s 163 168 05m44s
|
|||
|
15 189 05m11s
|
|||
|
|
|||
|
731 037 -1705 Mar 05 17:29:56 39565 -45823 22 A p- -0.6127 0.9367 48.0S 100.7E 52 338 297 06m22s 732 037 -1705 Aug 29 21:32:37 39554 -45817 27 T p- 0.5150 1.0416 45.2N 32.0E 59 198 162 03m16s 733 037 -1704 Jan 24 06:09:21 39545 -45812 -6 P -t 1.4945 0.1007 67.4N 111.5W 0 173 734 037 -1704 Feb 22 19:40:22 39543 -45811 32 P t- -1.3152 0.4213 70.0S 165.9W 0 219 735 037 -1704 Jul 19 21:19:49 39534 -45806 -1 P -t -1.4918 0.1103 66.5S 26.2E 0 358 736 037 -1704 Aug 18 09:58:25 39532 -45805 37 P t- 1.2823 0.4782 69.2N 14.5W 0 331 737 037 -1703 Jan 12 18:10:50 39523 -45800 4 T -p 0.7358 1.0318 23.9N 76.3E 42 182 158 03m01s 738 037 -1703 Jul 08 23:54:56 39512 -45794 9 A -p -0.7850 0.9397 27.8S 10.3W 38 354 361 07m38s 739 037 -1702 Jan 02 09:54:44 39501 -45788 14 T nn 0.0469 1.0512 21.3S 162.1W 87 187 170 04m40s 740 037 -1702 Jun 28 00:30:18 39490 -45782 19 A nn -0.0270 0.9582 22.1N 24.7W 89 349 152 05m09s
|
|||
|
|
|||
|
741 038 -1702 Dec 23 00:42:38 39479 -45776 24 H p- -0.6502 1.0120 62.7S 41.6W 49 23 54 00m51s 742 038 -1701 Jun 17 06:16:54 39469 -45770 29 H p- 0.7360 1.0025 66.4N 140.2W 42 144 13 00m11s 743 038 -1701 Dec 12 10:04:20 39458 -45764 34 P t- -1.4024 0.2720 63.5S 49.6E 0 146 744 038 -1700 May 07 12:21:06 39449 -45759 1 P -t -1.0709 0.8874 61.3S 135.2W 0 295 745 038 -1700 Jun 05 19:15:14 39447 -45758 39 P t- 1.4394 0.1769 62.9N 83.1W 0 41 746 038 -1700 Oct 31 16:31:53 39438 -45753 6 A -p 0.9254 0.9081 48.5N 134.6E 22 223 905 08m44s 747 038 -1699 Apr 27 05:37:08 39427 -45747 11 T -n -0.3386 1.0703 9.3S 91.3W 70 332 242 05m50s 748 038 -1699 Oct 20 17:09:38 39416 -45741 16 Am nn 0.2245 0.9464 6.1N 91.4E 77 209 202 05m50s 749 038 -1698 Apr 16 19:57:41 39405 -45735 21 T p- 0.4325 1.0206 26.5N 31.6E 64 147 77 01m47s 750 038 -1698 Oct 10 00:44:55 39394 -45729 26 H p- -0.4809 1.0011 25.6S 43.4W 61 33 4 00m06s
|
|||
|
|
|||
|
751 038 -1697 Apr 06 03:33:07 39383 -45723 31 P t- 1.2482 0.5389 60.6N 157.5W 0 90 752 038 -1697 Aug 31 05:06:54 39374 -45718 -2 P -t 1.4904 0.0804 61.7N 26.8E 0 302 753 038 -1697 Sep 29 14:39:00 39373 -45717 36 P t- -1.1353 0.7547 60.6S 40.3E 0 83 754 038 -1696 Feb 24 12:50:43 39363 -45712 3 A -p -0.8850 0.9344 64.1S 146.6W 27 294 522 04m57s 755 038 -1696 Aug 19 20:41:34 39353 -45706 8 T -p 0.8335 1.0263 65.1N 81.8E 33 237 161 01m39s 756 038 -1695 Feb 12 16:36:30 39342 -45700 13 A nn -0.1229 0.9814 24.9S 102.6E 83 338 67 01m54s 757 038 -1695 Aug 09 07:28:10 39331 -45694 18 A nn 0.1143 0.9822 26.8N 125.3W 83 199 63 01m50s 758 038 -1694 Feb 02 03:29:44 39320 -45688 23 T p- 0.6032 1.0296 14.8N 75.0W 53 163 125 02m51s 759 038 -1694 Jul 29 11:07:04 39309 -45682 28 A p- -0.6466 0.9407 16.9S 167.5E 50 14 285 07m41s 760 038 -1694 Dec 24 09:09:54 39300 -45677 -5 P -t -1.3768 0.2997 66.6S 25.5E 0 181
|
|||
|
|
|||
|
761 039 -1693 Jan 22 19:02:44 39298 -45676 33 P t- 1.2686 0.5034 63.9N 30.1E 0 151 762 039 -1693 Jun 18 20:55:31 39289 -45671 0 P -t 1.4570 0.1734 67.4N 144.8W 0 7 763 039 -1693 Jul 18 11:15:43 39287 -45670 38 P t- -1.3762 0.3192 64.7S 151.5E 0 21 764 039 -1693 Dec 13 22:46:18 39278 -45665 5 A -p -0.7455 0.9933 70.3S 6.8W 41 10 36 00m28s 765 039 -1692 Jun 07 04:50:08 39268 -45659 10 T -p 0.6331 1.0216 59.6N 100.2W 50 167 95 01m38s 766 039 -1692 Dec 02 05:58:03 39257 -45653 15 A nn -0.0611 0.9435 23.4S 107.9W 86 8 209 06m54s 767 039 -1691 May 27 19:22:45 39246 -45647 20 T n- -0.1459 1.0731 9.8N 51.8E 82 350 240 06m48s 768 039 -1691 Nov 21 06:20:30 39235 -45641 25 A p- 0.6297 0.9131 21.7N 105.9W 51 192 424 11m40s 769 039 -1690 May 17 12:42:18 39224 -45635 30 T p- -0.8849 1.0681 45.7S 167.5E 27 342 477 05m07s 770 039 -1690 Nov 10 05:56:47 39213 -45629 35 P t- 1.2815 0.4809 70.6N 59.0W 0 227
|
|||
|
|
|||
|
771 039 -1689 Apr 07 18:23:32 39204 -45624 2 A -t 0.9476 0.9929 65.1N 24.3E 18 132 80 00m30s 772 039 -1689 Sep 30 22:56:52 39193 -45618 7 T -p -0.9084 1.0102 57.6S 33.2W 24 35 84 00m44s 773 039 -1688 Mar 26 23:50:07 39183 -45612 12 A nn 0.2032 0.9547 7.6N 15.2W 78 162 169 05m37s 774 039 -1688 Sep 19 13:58:44 39172 -45606 17 T -n -0.2045 1.0537 4.1S 130.1E 78 17 181 04m53s 775 039 -1687 Mar 16 00:15:31 39161 -45600 22 A p- -0.5470 0.9410 39.5S 5.1W 57 338 260 06m20s 776 039 -1687 Sep 09 05:47:51 39150 -45594 27 T p- 0.4896 1.0364 39.5N 93.5W 60 200 140 02m59s 777 039 -1686 Feb 03 14:02:23 39141 -45589 -6 Pe -t 1.5192 0.0538 68.4N 117.1E 0 161 778 039 -1686 Mar 05 02:54:52 39139 -45588 32 P t- -1.2597 0.5183 70.7S 70.8E 0 231 779 039 -1686 Jul 31 04:27:07 39130 -45583 -1 Pe -t -1.5528 0.0060 67.6S 93.2W 0 9 780 039 -1686 Aug 29 17:43:54 39128 -45582 37 P t- 1.2512 0.5337 70.1N 145.0W 0 319
|
|||
|
|
|||
|
A-15
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
781 040 -1685 Jan 24 02:33:47 782 040 -1685 Jul 20 06:33:02 783 040 -1684 Jan 13 18:30:49 784 040 -1684 Jul 08 07:09:27 785 040 -1683 Jan 02 09:14:40 786 040 -1683 Jun 27 13:18:34 787 040 -1683 Dec 22 18:19:28 788 040 -1682 May 18 19:44:10 789 040 -1682 Jun 17 02:36:40 790 040 -1682 Nov 12 00:32:11
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 39119 -45577 4 T -p 39108 -45571 9 A -p 39098 -45565 14 T -n 39087 -45559 19 Am nn 39076 -45553 24 H p39065 -45547 29 H p39054 -45541 34 P t39045 -45536 1 P -t 39043 -45535 39 P t39034 -45530 6 A -p
|
|||
|
|
|||
|
Gamma
|
|||
|
0.7549 -0.8568
|
|||
|
0.0613 -0.1029 -0.6429
|
|||
|
0.6596 -1.4005 -1.1432
|
|||
|
1.3656 0.9295
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0365 0.9349 1.0533 0.9580 1.0116 1.0056 0.2754 0.7472 0.3177 0.9078
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
26.8N 54.0W 41
|
|||
|
|
|||
|
35.8S 114.7W 31
|
|||
|
|
|||
|
20.2S 68.2E 87
|
|||
|
|
|||
|
18.1N 125.2W 84
|
|||
|
|
|||
|
63.7S 163.3W 50
|
|||
|
|
|||
|
63.7N 125.6E 48
|
|||
|
|
|||
|
64.4S 85.5W 0
|
|||
|
|
|||
|
61.8S 103.4E 0
|
|||
|
|
|||
|
63.7N 155.4E 0
|
|||
|
|
|||
|
47.1N 8.3E 21
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 177 187 03m23s 359 473 07m48s 182 177 04m55s 354 153 05m22s
|
|||
|
13 52 00m50s 158 26 00m25s 156 304
|
|||
|
31 218 936 09m08s
|
|||
|
|
|||
|
791 040 -1681 May 08 12:59:02 39024 -45524 11 T -p -0.4138 1.0685 10.0S 157.0E 65 334 243 05m49s 792 040 -1681 Nov 01 01:23:34 39013 -45518 16 A nn 0.2281 0.9477 2.2N 34.3W 77 207 197 05m47s 793 040 -1680 Apr 27 03:00:58 39002 -45512 21 T n- 0.3575 1.0188 26.7N 74.2W 69 149 68 01m39s 794 040 -1680 Oct 20 09:17:56 38991 -45506 26 H p- -0.4736 1.0023 29.7S 174.1W 62 34 9 00m12s 795 040 -1679 Apr 16 10:11:56 38980 -45500 31 P t- 1.1740 0.6681 60.6N 92.4E 0 81 796 040 -1679 Sep 10 13:28:28 38971 -45495 -2 Pe -t 1.5160 0.0331 61.2N 109.2W 0 293 797 040 -1679 Oct 09 23:19:31 38970 -45494 36 P t- -1.1237 0.7763 60.6S 100.2W 0 92 798 040 -1678 Mar 06 19:47:59 38961 -45489 3 A -t -0.9415 0.9369 63.1S 119.2E 19 283 696 04m34s 799 040 -1678 Aug 31 04:44:18 38950 -45483 8 T -p 0.8690 1.0192 62.7N 35.2W 29 242 132 01m13s 800 040 -1677 Feb 24 00:07:48 38939 -45477 13 A nn -0.1674 0.9877 23.8S 10.5W 80 334 44 01m12s
|
|||
|
|
|||
|
801 041 -1677 Aug 20 14:57:08 38928 -45471 18 A nn 0.1598 0.9757 26.3N 122.6E 81 203 88 02m28s 802 041 -1676 Feb 13 11:32:52 38917 -45465 23 T p- 0.5673 1.0361 14.3N 161.5E 55 159 146 03m21s 803 041 -1676 Aug 08 18:04:23 38906 -45459 28 A p- -0.5900 0.9371 14.1S 60.5E 54 18 286 08m04s 804 041 -1675 Jan 03 17:48:56 38897 -45454 -5 P -t -1.3891 0.2764 65.5S 116.5W 0 192 805 041 -1675 Feb 02 03:22:41 38896 -45453 33 P t- 1.2417 0.5548 63.0N 106.1W 0 141 806 041 -1675 Jun 29 03:37:03 38887 -45448 0 Pe -t 1.5277 0.0493 66.4N 102.4E 0 357 807 041 -1675 Jul 28 18:05:50 38885 -45447 38 P t- -1.3114 0.4301 63.7S 37.5E 0 30 808 041 -1675 Dec 24 07:17:15 38876 -45442 5 A -p -0.7531 0.9920 72.6S 124.5W 41 357 43 00m34s 809 041 -1674 Jun 18 11:56:44 38865 -45436 10 T -p 0.7047 1.0227 67.4N 155.1E 45 173 110 01m36s 810 041 -1674 Dec 13 14:09:35 38854 -45430 15 A nn -0.0650 0.9423 25.9S 128.7E 86 4 214 07m04s
|
|||
|
|
|||
|
811 041 -1673 Jun 08 02:45:01 38843 -45424 20 T nn -0.0714 1.0742 16.6N 61.6W 86 353 241 06m49s 812 041 -1673 Dec 02 14:21:47 38833 -45418 25 A p- 0.6274 0.9135 18.9N 130.1E 51 188 423 12m00s 813 041 -1672 May 27 20:03:02 38822 -45412 30 T p- -0.8111 1.0687 35.5S 48.6E 36 348 382 05m39s 814 041 -1672 Nov 20 14:09:47 38811 -45406 35 P t- 1.2789 0.4852 69.7N 163.1E 0 214 815 041 -1671 Apr 18 01:22:18 38802 -45401 2 P -t 1.0243 0.9436 71.6N 143.4W 0 74 816 041 -1671 Oct 11 07:30:53 38791 -45395 7 T -p -0.9140 1.0104 61.8S 169.6W 23 41 89 00m43s 817 041 -1670 Apr 07 06:27:44 38780 -45389 12 A np 0.2792 0.9546 16.1N 119.0W 74 161 172 05m29s 818 041 -1670 Sep 30 22:34:46 38770 -45383 17 T -n -0.2186 1.0513 9.2S 1.7W 77 18 174 04m37s 819 041 -1669 Mar 27 06:55:32 38759 -45377 22 A p- -0.4766 0.9451 30.8S 109.9W 61 339 229 06m14s 820 041 -1669 Sep 20 14:08:41 38748 -45371 27 T n- 0.4697 1.0313 33.9N 138.9E 62 201 119 02m40s
|
|||
|
|
|||
|
821 042 -1668 Mar 15 10:04:15 38737 -45365 32 P t- -1.1992 0.6254 71.3S 51.7W 0 245 822 042 -1668 Sep 09 01:35:56 38727 -45359 37 P t- 1.2266 0.5771 70.8N 82.3E 0 306 823 042 -1667 Feb 03 10:48:21 38718 -45354 4 T -p 0.7813 1.0412 30.8N 177.4E 38 172 221 03m40s 824 042 -1667 Jul 30 13:19:42 38707 -45348 9 A -t -0.9208 0.9297 45.2S 137.0E 23 4 682 07m44s 825 042 -1666 Jan 24 02:58:13 38696 -45342 14 T -n 0.0825 1.0554 17.7S 59.6W 85 177 184 05m10s 826 042 -1666 Jul 19 13:58:11 38685 -45336 19 A nn -0.1715 0.9577 13.7N 131.3E 80 359 156 05m33s 827 042 -1665 Jan 13 17:38:08 38674 -45330 24 H p- -0.6296 1.0115 62.8S 77.6E 51 3 51 00m51s 828 042 -1665 Jul 08 20:28:30 38664 -45324 29 H p- 0.5893 1.0079 60.0N 25.9E 54 170 34 00m37s 829 042 -1664 Jan 03 02:26:41 38653 -45318 34 P t- -1.3932 0.2881 65.4S 141.0E 0 166 830 042 -1664 May 29 03:06:18 38644 -45313 1 P -t -1.2163 0.6052 62.4S 18.0W 0 313
|
|||
|
|
|||
|
831 042 -1664 Jun 27 10:01:58 38642 -45312 39 P t- 1.2944 0.4538 64.6N 32.7E 0 22 832 042 -1664 Nov 22 08:33:54 38633 -45307 6 A -p 0.9323 0.9083 46.1N 118.5W 21 212 955 09m26s 833 042 -1663 May 18 20:17:26 38622 -45301 11 T -p -0.4912 1.0656 11.5S 46.1E 61 337 244 05m44s 834 042 -1663 Nov 11 09:41:25 38612 -45295 16 A nn 0.2290 0.9497 1.6S 161.0W 77 205 189 05m40s 835 042 -1662 May 08 09:59:19 38601 -45289 21 H3 nn 0.2795 1.0162 26.7N 178.6W 74 151 58 01m28s 836 042 -1662 Oct 31 17:56:59 38590 -45283 26 H p- -0.4710 1.0040 34.1S 54.1E 62 33 15 00m20s 837 042 -1661 Apr 27 16:44:02 38579 -45277 31 P t- 1.0949 0.8056 60.8N 16.0W 0 73 838 042 -1661 Oct 21 08:05:55 38569 -45271 36 P t- -1.1170 0.7887 60.7S 117.9E 0 101 839 042 -1660 Mar 17 02:38:17 38560 -45266 3 A- -t -1.0038 0.9574 60.7S 47.7E 0 255 - 840 042 -1660 Sep 10 12:54:09 38549 -45260 8 T -t 0.8980 1.0123 60.3N 156.8W 26 244 95 00m47s
|
|||
|
|
|||
|
A-16
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
841 043 -1659 Mar 06 07:31:35 842 043 -1659 Aug 30 22:33:53 843 043 -1658 Feb 23 19:29:26 844 043 -1658 Aug 20 01:09:31 845 043 -1657 Jan 15 02:22:05 846 043 -1657 Feb 13 11:36:16 847 043 -1657 Aug 09 01:05:08 848 043 -1656 Jan 04 15:41:43 849 043 -1656 Jun 28 19:08:31 850 043 -1656 Dec 23 22:15:04
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 38538 -45254 13 A nn 38527 -45248 18 A -n 38517 -45242 23 T p38506 -45236 28 A p38497 -45231 -5 P -t 38495 -45230 33 P t38484 -45224 38 P t38475 -45219 5 A -p 38465 -45213 10 T -p 38454 -45207 15 A nn
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.2191 0.1980 0.5250
|
|||
|
-0.5401 -1.4062
|
|||
|
1.2097 -1.2530 -0.7653
|
|||
|
0.7729 -0.0731
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9941 0.9694 1.0425 0.9334 0.2443 0.6162 0.5298 0.9909 1.0231 0.9417
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
22.6S 121.8W 77
|
|||
|
|
|||
|
24.8N 8.1E 78
|
|||
|
|
|||
|
14.1N 40.0E 58
|
|||
|
|
|||
|
12.8S 48.1W 57
|
|||
|
|
|||
|
64.5S 103.4E 0
|
|||
|
|
|||
|
62.3N 119.5E 0
|
|||
|
|
|||
|
62.9S 78.5W 0
|
|||
|
|
|||
|
73.4S 122.3E 40
|
|||
|
|
|||
|
74.4N 55.8E 39
|
|||
|
|
|||
|
27.8S 7.1E 86
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 332 21 00m34s 206 112 03m06s 156 165 03m48s
|
|||
|
21 291 08m21s 202 132
|
|||
|
40 341 50 00m37s 185 125 01m31s 359 216 07m06s
|
|||
|
|
|||
|
851 043 -1655 Jun 18 10:11:15 38443 -45201 20 T nn 0.0000 1.0745 22.6N 175.0W 90 180 242 06m41s 852 043 -1655 Dec 12 22:17:54 38432 -45195 25 A p- 0.6207 0.9147 16.4N 7.5E 52 184 414 12m07s 853 043 -1654 Jun 08 03:26:19 38422 -45189 30 T p- -0.7398 1.0678 26.9S 68.6W 42 353 329 05m58s 854 043 -1654 Dec 01 22:21:49 38411 -45183 35 P t- 1.2745 0.4928 68.8N 26.2E 0 202 855 043 -1653 Apr 29 08:15:17 38402 -45178 2 P -t 1.1044 0.7984 71.2N 97.9E 0 61 856 043 -1653 May 28 18:12:41 38400 -45177 40 Pb t- -1.5359 0.0073 69.1S 94.5E 0 331 857 043 -1653 Oct 22 16:10:27 38391 -45172 7 T -p -0.9157 1.0111 65.9S 53.0E 23 47 96 00m44s 858 043 -1652 Apr 17 12:57:24 38381 -45166 12 A -p 0.3613 0.9542 25.1N 138.9E 69 161 179 05m19s 859 043 -1652 Oct 11 07:17:32 38370 -45160 17 T -n -0.2268 1.0492 14.2S 134.9W 77 19 167 04m22s 860 043 -1651 Apr 06 13:26:49 38359 -45154 22 A p- -0.3984 0.9490 21.9S 147.3E 66 341 203 06m06s
|
|||
|
|
|||
|
861 044 -1651 Sep 30 22:37:42 38348 -45148 27 T n- 0.4574 1.0264 28.6N 9.0E 63 201 100 02m20s 862 044 -1650 Mar 26 17:06:50 38338 -45142 32 P t- -1.1319 0.7457 71.6S 172.9W 0 258 863 044 -1650 Sep 20 09:35:05 38327 -45136 37 P t- 1.2085 0.6083 71.3N 52.8W 0 292 864 044 -1649 Feb 14 18:55:44 38318 -45131 4 T -p 0.8141 1.0456 36.1N 49.8E 35 167 261 03m51s 865 044 -1649 Aug 10 20:14:27 38307 -45125 9 As -t -0.9777 0.9237 57.8S 22.8E 11 13 - 07m21s 866 044 -1648 Feb 04 11:17:57 38296 -45119 14 T -n 0.1102 1.0577 14.1S 173.9E 84 173 191 05m24s 867 044 -1648 Jul 29 20:54:51 38286 -45113 19 A nn -0.2343 0.9570 8.7N 25.2E 77 3 161 05m42s 868 044 -1647 Jan 24 01:53:47 38275 -45107 24 H p- -0.6104 1.0117 60.1S 41.1W 52 354 51 00m53s 869 044 -1647 Jul 19 03:46:15 38264 -45101 29 H p- 0.5243 1.0096 55.3N 78.7W 58 178 39 00m47s 870 044 -1646 Jan 13 10:25:39 38254 -45095 34 P t- -1.3800 0.3109 66.4S 9.1E 0 177
|
|||
|
|
|||
|
871 044 -1646 Jun 09 10:31:31 38245 -45090 1 P -t -1.2869 0.4678 63.1S 140.3W 0 322 872 044 -1646 Jul 08 17:34:05 38243 -45089 39 P t- 1.2284 0.5802 65.5N 92.0W 0 12 873 044 -1646 Dec 03 16:35:07 38234 -45084 6 A -p 0.9353 0.9095 45.6N 114.7E 20 206 971 09m36s 874 044 -1645 May 30 03:35:26 38223 -45078 11 T -p -0.5683 1.0619 14.0S 65.1W 55 340 244 05m33s 875 044 -1645 Nov 22 18:00:57 38213 -45072 16 A nn 0.2292 0.9523 4.9S 72.0E 77 202 179 05m30s 876 044 -1644 May 18 16:54:40 38202 -45066 21 H nn 0.2002 1.0131 26.3N 78.1E 78 155 46 01m13s 877 044 -1644 Nov 11 02:38:09 38191 -45060 26 H p- -0.4694 1.0062 38.5S 77.6W 62 32 24 00m30s 878 044 -1643 May 07 23:11:49 38180 -45054 31 P t- 1.0124 0.9483 61.2N 123.4W 0 64 879 044 -1643 Oct 31 16:56:07 38170 -45048 36 P t- -1.1135 0.7952 61.0S 25.0W 0 110 880 044 -1642 Mar 28 09:22:04 38161 -45043 3 P -t -1.0719 0.8423 60.5S 63.6W 0 264
|
|||
|
|
|||
|
881 045 -1642 Sep 21 21:10:34 38150 -45037 8 H -t 0.9211 1.0057 58.1N 77.9E 23 244 50 00m22s 882 045 -1641 Mar 17 14:48:59 38139 -45031 13 H nn -0.2772 1.0002 21.5S 128.4E 74 330 1 00m01s 883 045 -1641 Sep 11 06:18:17 38129 -45025 18 A -n 0.2290 0.9633 22.4N 108.8W 77 209 136 03m43s 884 045 -1640 Mar 06 03:16:50 38118 -45019 23 T p- 0.4746 1.0488 14.2N 78.8W 62 153 182 04m13s 885 045 -1640 Aug 30 08:24:11 38107 -45013 28 A p- -0.4982 0.9298 12.9S 159.0W 60 25 299 08m34s 886 045 -1639 Jan 25 10:45:55 38098 -45008 -5 P -t -1.4306 0.1979 63.6S 33.9W 0 212 887 045 -1639 Feb 23 19:39:29 38097 -45007 33 P t- 1.1695 0.6937 61.6N 12.0W 0 122 888 045 -1639 Aug 19 08:15:30 38086 -45001 38 P t- -1.2026 0.6154 62.1S 163.1E 0 49 889 045 -1638 Jan 14 23:57:02 38077 -44996 5 A -p -0.7844 0.9901 72.8S 11.7E 38 325 56 00m41s 890 045 -1638 Jul 10 02:27:59 38066 -44990 10 T -p 0.8355 1.0227 79.4N 30.3W 33 212 142 01m24s
|
|||
|
|
|||
|
891 045 -1637 Jan 04 06:14:24 38056 -44984 15 A nn -0.0858 0.9417 28.9S 112.6W 85 354 217 07m01s 892 045 -1637 Jun 29 17:40:22 38045 -44978 20 Tm nn 0.0694 1.0740 27.7N 71.7E 86 182 241 06m27s 893 045 -1637 Dec 24 06:11:25 38034 -44972 25 A p- 0.6119 0.9165 14.4N 114.4W 52 179 401 11m58s 894 045 -1636 Jun 18 10:49:52 38024 -44966 30 T p- -0.6688 1.0659 19.5S 175.4E 48 357 290 06m06s 895 045 -1636 Dec 12 06:32:48 38013 -44960 35 P t- 1.2687 0.5027 67.7N 109.8W 0 190 896 045 -1635 May 09 15:02:53 38004 -44955 2 P -t 1.1875 0.6484 70.6N 18.9W 0 48 897 045 -1635 Jun 08 01:14:28 38002 -44954 40 P t- -1.4667 0.1372 68.2S 24.5W 0 343 898 045 -1635 Nov 02 00:55:01 37993 -44949 7 T -p -0.9140 1.0124 69.8S 84.7W 23 52 106 00m47s 899 045 -1634 Apr 28 19:23:02 37983 -44943 12 A -p 0.4456 0.9533 34.3N 37.9E 63 160 190 05m08s 900 045 -1634 Oct 22 16:04:12 37972 -44937 17 T -n -0.2317 1.0474 19.0S 91.1E 76 18 162 04m10s
|
|||
|
|
|||
|
A-17
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
901 046 -1633 Apr 17 19:55:43 902 046 -1633 Oct 12 07:11:21 903 046 -1632 Apr 06 00:04:42 904 046 -1632 Sep 30 17:40:36 905 046 -1631 Feb 25 02:54:56 906 046 -1631 Aug 21 03:19:08 907 046 -1630 Feb 14 19:28:09 908 046 -1630 Aug 10 04:03:27 909 046 -1629 Feb 04 09:59:41 910 046 -1629 Jul 30 11:12:58
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 37961 -44931 22 A p37951 -44925 27 T n37940 -44919 32 P t37929 -44913 37 P t37920 -44908 4 T -p 37910 -44902 9 P -t 37899 -44896 14 T -n 37888 -44890 19 A nn 37878 -44884 24 H p37867 -44878 29 H p-
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.3178 0.4495
|
|||
|
-1.0596 1.1964 0.8541
|
|||
|
-1.0262 0.1455
|
|||
|
-0.2879 -0.5842
|
|||
|
0.4660
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9527 1.0217 0.8763 0.6288 1.0495 0.9099 1.0597 0.9562 1.0121 1.0108
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
13.0S 45.3E 71
|
|||
|
|
|||
|
23.7N 122.2W 63
|
|||
|
|
|||
|
71.7S 67.0E 0
|
|||
|
|
|||
|
71.6N 170.1E 0
|
|||
|
|
|||
|
42.8N 77.0W 31
|
|||
|
|
|||
|
69.6S 104.2W 0
|
|||
|
|
|||
|
9.4S 49.2E 82
|
|||
|
|
|||
|
3.6N 84.5W 73
|
|||
|
|
|||
|
55.8S 159.8W 54
|
|||
|
|
|||
|
50.2N 172.1E 62
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 342 182 05m53s 200 83 02m00s 272 278 162 315 03m54s
|
|||
|
32 169 198 05m35s
|
|||
|
7 166 05m46s 348 51 00m57s 185 42 00m55s
|
|||
|
|
|||
|
911 046 -1628 Jan 24 18:14:58 37856 -44872 34 P t- -1.3600 0.3452 67.5S 120.8W 0 188 912 046 -1628 Jun 19 17:59:12 37848 -44867 1 P -t -1.3552 0.3351 64.0S 96.5E 0 332 913 046 -1628 Jul 19 01:13:01 37846 -44866 39 P t- 1.1677 0.6962 66.5N 141.1E 0 2 914 046 -1628 Dec 14 00:32:53 37837 -44861 6 A -p 0.9413 0.9113 46.1N 11.0W 19 200 1006 09m33s 915 046 -1627 Jun 09 10:53:30 37826 -44855 11 T -p -0.6445 1.0573 17.6S 176.8W 50 343 244 05m14s 916 046 -1627 Dec 03 02:20:57 37816 -44849 16 A nn 0.2295 0.9557 7.5S 54.8W 77 198 166 05m13s 917 046 -1626 May 29 23:48:06 37805 -44843 21 Hm nn 0.1201 1.0092 25.2N 24.8W 83 159 32 00m54s 918 046 -1626 Nov 22 11:21:31 37794 -44837 26 H p- -0.4691 1.0089 42.6S 150.9E 62 30 35 00m43s 919 046 -1625 May 19 05:36:22 37784 -44831 31 A t- 0.9278 0.9523 66.7N 179.3E 21 100 469 03m19s 920 046 -1625 Nov 12 01:49:44 37773 -44825 36 P t- -1.1128 0.7965 61.4S 168.9W 0 120
|
|||
|
|
|||
|
921 047 -1624 Apr 07 15:58:59 37764 -44820 3 P -t -1.1456 0.7162 60.5S 173.1W 0 272 922 047 -1624 Oct 02 05:33:58 37753 -44814 8 A -t 0.9377 0.9995 56.3N 51.0W 20 242 5 00m02s 923 047 -1623 Mar 27 22:00:44 37743 -44808 13 H -n -0.3407 1.0060 20.5S 19.9E 70 329 22 00m33s 924 047 -1623 Sep 21 14:09:41 37732 -44802 18 A -n 0.2531 0.9575 19.3N 132.1E 75 210 159 04m20s 925 047 -1622 Mar 17 10:58:47 37722 -44796 23 T p- 0.4190 1.0548 14.7N 164.1E 65 151 197 04m35s 926 047 -1622 Sep 10 15:47:27 37711 -44790 28 A p- -0.4637 0.9263 14.1S 88.0E 62 28 308 08m44s 927 047 -1621 Feb 05 19:02:47 37702 -44785 -5 P -t -1.4606 0.1410 62.8S 169.2W 0 222 928 047 -1621 Mar 07 03:36:28 37700 -44784 33 P t- 1.1243 0.7812 61.2N 141.8W 0 113 929 047 -1621 Aug 30 15:35:02 37690 -44778 38 P t- -1.1588 0.6897 61.5S 42.6E 0 58 930 047 -1620 Jan 26 08:04:19 37681 -44773 5 A -p -0.8094 0.9893 71.1S 99.3W 36 312 64 00m43s
|
|||
|
|
|||
|
931 047 -1620 Jul 20 09:55:17 37670 -44767 10 T -p 0.8927 1.0217 79.8N 101.9W 26 255 166 01m16s 932 047 -1619 Jan 14 14:03:27 37659 -44761 15 A nn -0.1063 0.9420 29.6S 130.5E 84 349 216 06m51s 933 047 -1619 Jul 10 01:16:28 37649 -44755 20 T nn 0.1332 1.0727 31.7N 42.4W 82 187 238 06m08s 934 047 -1618 Jan 03 13:57:11 37638 -44749 25 A p- 0.5961 0.9190 12.6N 125.9E 53 175 382 11m34s 935 047 -1618 Jun 29 18:17:57 37628 -44743 30 T p- -0.6021 1.0630 13.5S 59.3E 53 2 259 06m01s 936 047 -1618 Dec 23 14:39:12 37617 -44737 35 P t- 1.2582 0.5207 66.6N 115.9E 0 179 937 047 -1617 May 20 21:47:47 37608 -44732 2 P -t 1.2714 0.4977 69.8N 134.6W 0 36 938 047 -1617 Jun 19 08:17:47 37606 -44731 40 P t- -1.3992 0.2632 67.3S 143.3W 0 354 939 047 -1617 Nov 13 09:42:09 37597 -44726 7 T -p -0.9108 1.0143 73.8S 137.8E 24 56 120 00m52s 940 047 -1616 May 09 01:42:23 37587 -44720 12 A -p 0.5345 0.9518 43.9N 61.5W 57 160 208 04m57s
|
|||
|
|
|||
|
941 048 -1616 Nov 02 00:55:43 37576 -44714 17 T -n -0.2327 1.0461 23.4S 43.6W 76 17 158 04m01s 942 048 -1615 Apr 28 02:19:23 37566 -44708 22 A nn -0.2322 0.9558 4.1S 55.3W 77 344 165 05m37s 943 048 -1615 Oct 22 15:50:19 37555 -44702 27 T n- 0.4467 1.0176 19.2N 105.2E 63 198 67 01m40s 944 048 -1614 Apr 17 06:58:45 37544 -44696 32 A t- -0.9828 0.9847 67.3S 77.0W 10 308 317 01m04s 945 048 -1614 Oct 12 01:52:40 37534 -44690 37 P t- 1.1902 0.6389 71.6N 31.2E 0 264 946 048 -1613 Mar 08 10:47:14 37525 -44685 4 T -p 0.9003 1.0528 50.8N 155.7E 25 155 401 03m49s 947 048 -1613 Sep 01 10:32:31 37514 -44679 9 P -t -1.0673 0.8396 70.4S 133.1E 0 44 948 048 -1612 Feb 26 03:30:45 37504 -44673 14 T -n 0.1870 1.0616 3.7S 74.2W 79 167 206 05m44s 949 048 -1612 Aug 20 11:21:53 37493 -44667 19 A -n -0.3338 0.9553 1.8S 162.9E 70 10 172 05m46s 950 048 -1611 Feb 14 17:55:34 37482 -44661 24 H p- -0.5506 1.0125 50.2S 81.6E 56 344 52 01m01s
|
|||
|
|
|||
|
951 048 -1611 Aug 09 18:49:44 37472 -44655 29 H p- 0.4152 1.0115 44.7N 58.6E 65 190 44 01m01s 952 048 -1610 Feb 04 01:55:01 37461 -44649 34 P t- -1.3337 0.3905 68.5S 111.1E 0 200 953 048 -1610 Jul 01 01:31:29 37452 -44644 1 P -t -1.4198 0.2100 64.9S 28.1W 0 341 954 048 -1610 Jul 30 08:59:13 37451 -44643 39 P t- 1.1127 0.8009 67.6N 12.0E 0 351 955 048 -1610 Dec 25 08:26:41 37442 -44638 6 A -p 0.9505 0.9134 47.8N 135.9W 18 194 1076 09m18s 956 048 -1609 Jun 20 18:13:40 37431 -44632 11 T -p -0.7181 1.0518 22.2S 70.4E 44 347 245 04m47s 957 048 -1609 Dec 14 10:38:54 37421 -44626 16 A nn 0.2324 0.9596 9.2S 179.1E 77 194 151 04m50s 958 048 -1608 Jun 09 06:40:23 37410 -44620 21 H nn 0.0401 1.0048 23.4N 127.6W 88 164 16 00m29s 959 048 -1608 Dec 02 20:03:58 37399 -44614 26 H p- -0.4676 1.0122 46.2S 20.8E 62 26 48 00m59s 960 048 -1607 May 29 12:00:07 37389 -44608 31 A p- 0.8427 0.9525 66.9N 103.4E 32 121 322 03m32s
|
|||
|
|
|||
|
A-18
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
961 049 -1607 Nov 22 10:42:35 962 049 -1606 Apr 18 22:32:52 963 049 -1606 Oct 13 14:02:49 964 049 -1605 Apr 08 05:07:38 965 049 -1605 Oct 02 22:07:42 966 049 -1604 Mar 27 18:33:35 967 049 -1604 Sep 20 23:20:23 968 049 -1603 Feb 16 03:08:36 969 049 -1603 Mar 17 11:23:31 970 049 -1603 Sep 09 23:06:46
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 37378 -44602 36 P t37369 -44597 3 P -t 37359 -44591 8 A -t 37348 -44585 13 H -p 37338 -44579 18 A -n 37327 -44573 23 T n37317 -44567 28 A p37308 -44562 -5 Pe -t 37306 -44561 33 P t37295 -44555 38 P t-
|
|||
|
|
|||
|
Gamma
|
|||
|
-1.1117 -1.2220
|
|||
|
0.9490 -0.4092
|
|||
|
0.2711 0.3569 -0.4370 -1.4993 1.0711 -1.1239
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.7986 0.5843 0.9940 1.0114 0.9523 1.0603 0.9232 0.0673 0.8846 0.7488
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
62.1S 47.2E 0
|
|||
|
|
|||
|
60.7S 78.0E 0
|
|||
|
|
|||
|
54.7N 177.1E 18
|
|||
|
|
|||
|
19.9S 87.5W 66
|
|||
|
|
|||
|
15.7N 10.9E 74
|
|||
|
|
|||
|
15.3N 49.2E 69
|
|||
|
|
|||
|
16.3S 27.4W 64
|
|||
|
|
|||
|
62.1S 58.5E 0
|
|||
|
|
|||
|
60.8N 91.0E 0
|
|||
|
|
|||
|
61.0S 80.8W 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 129 281 238 66 00m25s 329 43 01m02s 211 180 04m58s 150 211 04m56s
|
|||
|
30 318 08m52s 231 105
|
|||
|
67
|
|||
|
|
|||
|
971 049 -1602 Feb 05 16:01:25 37286 -44550 5 A -p -0.8424 0.9884 68.8S 149.9E 32 301 76 00m47s 972 049 -1602 Jul 31 17:30:59 37276 -44544 10 T -p 0.9438 1.0198 75.5N 172.5E 19 285 209 01m06s 973 049 -1601 Jan 25 21:44:24 37265 -44538 15 A nn -0.1330 0.9427 29.6S 15.6E 82 344 214 06m36s 974 049 -1601 Jul 21 08:58:04 37255 -44532 20 T -n 0.1927 1.0707 34.4N 157.1W 79 192 235 05m47s 975 049 -1600 Jan 14 21:36:47 37244 -44526 25 A p- 0.5753 0.9221 11.3N 7.9E 55 170 358 10m55s 976 049 -1600 Jul 10 01:48:41 37234 -44520 30 T p- -0.5381 1.0593 8.6S 56.7W 57 6 231 05m44s 977 049 -1599 Jan 02 22:41:56 37223 -44514 35 P t- 1.2439 0.5453 65.5N 16.9W 0 168 978 049 -1599 May 31 04:30:55 37214 -44509 2 P -t 1.3554 0.3481 69.0N 110.8E 0 25 979 049 -1599 Jun 29 15:23:21 37213 -44508 40 P t- -1.3341 0.3833 66.3S 97.8E 0 4 980 049 -1599 Nov 23 18:30:08 37204 -44503 7 T -p -0.9075 1.0167 78.0S 1.3E 24 58 138 00m59s
|
|||
|
|
|||
|
981 050 -1598 May 20 08:01:43 37193 -44497 12 A -p 0.6228 0.9498 53.6N 160.5W 51 160 235 04m46s 982 050 -1598 Nov 13 09:49:09 37183 -44491 17 T -n -0.2322 1.0452 27.5S 178.2W 76 15 155 03m55s 983 050 -1597 May 09 08:42:30 37172 -44485 22 A nn -0.1455 0.9587 4.5N 155.3W 82 346 152 05m18s 984 050 -1597 Nov 03 00:31:48 37161 -44479 27 H n- 0.4466 1.0138 15.1N 28.1W 63 196 53 01m22s 985 050 -1596 Apr 27 13:51:25 37151 -44473 32 A t- -0.9034 0.9937 52.6S 151.4E 25 332 51 00m31s 986 050 -1596 Oct 22 10:08:45 37140 -44467 37 P t- 1.1881 0.6419 71.4N 108.6W 0 250 987 050 -1595 Mar 18 18:31:52 37132 -44462 4 T -t 0.9531 1.0547 60.8N 24.3E 17 142 607 03m33s 988 050 -1595 Sep 11 17:56:44 37121 -44456 9 P -t -1.0994 0.7850 71.1S 7.1E 0 57 989 050 -1594 Mar 08 11:24:32 37110 -44450 14 T -n 0.2355 1.0630 2.7N 164.0E 76 164 212 05m48s 990 050 -1594 Aug 31 18:51:18 37100 -44444 19 A -n -0.3714 0.9546 7.2S 47.3E 68 13 178 05m41s
|
|||
|
|
|||
|
991 050 -1593 Feb 26 01:41:29 37089 -44438 24 H p- -0.5096 1.0128 43.8S 36.3W 59 341 51 01m06s 992 050 -1593 Aug 21 02:36:50 37079 -44432 29 H p- 0.3723 1.0120 39.0N 58.7W 68 193 44 01m05s 993 050 -1592 Feb 15 09:22:30 37068 -44426 34 P t- -1.2977 0.4525 69.5S 14.4W 0 211 994 050 -1592 Jul 11 09:08:18 37059 -44421 1 Pe -t -1.4808 0.0925 65.9S 154.2W 0 351 995 050 -1592 Aug 09 16:53:53 37058 -44420 39 P t- 1.0643 0.8927 68.6N 119.8W 0 340 996 050 -1591 Jan 04 16:14:07 37049 -44415 6 A -p 0.9652 0.9160 51.3N 100.6E 15 187 1258 08m45s 997 050 -1591 Jul 01 01:36:49 37038 -44409 11 T -p -0.7886 1.0455 28.0S 43.9W 38 351 246 04m10s 998 050 -1591 Dec 24 18:53:12 37028 -44403 16 A nn 0.2392 0.9642 9.9S 54.1E 76 189 133 04m20s 999 050 -1590 Jun 20 13:34:12 37017 -44397 21 A nn -0.0376 0.9997 20.8N 128.9E 88 346 1 00m02s 1000 050 -1590 Dec 14 04:45:51 37007 -44391 26 T p- -0.4650 1.0161 49.0S 108.1W 62 21 62 01m16s
|
|||
|
|
|||
|
1001 051 -1589 Jun 09 18:22:35 36996 -44385 31 A p- 0.7568 0.9516 65.7N 23.0E 41 138 271 03m51s 1002 051 -1589 Dec 03 19:36:25 36986 -44379 36 P t- -1.1114 0.7994 62.8S 97.0W 0 139 1003 051 -1588 Apr 29 05:03:27 36977 -44374 3 P -t -1.3012 0.4465 61.0S 30.0W 0 290 1004 051 -1588 May 28 19:00:17 36975 -44373 41 Pb t- 1.5121 0.0847 62.4N 83.4W 0 47 1005 051 -1588 Oct 23 22:36:30 36966 -44368 8 A -t 0.9560 0.9892 53.4N 42.8E 17 232 129 00m47s 1006 051 -1587 Apr 18 12:11:17 36956 -44362 13 T -p -0.4816 1.0163 19.9S 165.7E 61 329 63 01m29s 1007 051 -1587 Oct 13 06:11:49 36945 -44356 18 A -n 0.2834 0.9476 11.9N 112.2W 73 210 200 05m35s 1008 051 -1586 Apr 08 02:05:05 36935 -44350 23 T n- 0.2911 1.0653 16.0N 64.6W 73 149 222 05m16s 1009 051 -1586 Oct 02 06:59:43 36924 -44344 28 A p- -0.4154 0.9204 19.3S 144.4W 65 31 327 08m59s 1010 051 -1585 Mar 28 19:05:42 36914 -44338 33 P t- 1.0137 0.9960 60.6N 35.0W 0 96
|
|||
|
|
|||
|
1011 051 -1585 Sep 21 06:47:30 36903 -44332 38 P t- -1.0953 0.7971 60.6S 153.7E 0 76 1012 051 -1584 Feb 16 23:47:55 36894 -44327 5 A -t -0.8833 0.9871 66.6S 40.7E 28 292 97 00m51s 1013 051 -1584 Aug 11 01:16:09 36884 -44321 10 T -t 0.9879 1.0164 68.0N 75.4E 8 305 414 00m51s 1014 051 -1583 Feb 05 05:13:52 36873 -44315 15 A nn -0.1687 0.9436 29.1S 96.4W 80 339 211 06m20s 1015 051 -1583 Jul 31 16:48:13 36863 -44309 20 T -n 0.2452 1.0683 35.7N 86.4E 76 197 230 05m26s 1016 051 -1582 Jan 25 05:06:22 36852 -44303 25 A p- 0.5459 0.9257 10.1N 107.3W 57 166 331 10m07s 1017 051 -1582 Jul 21 09:26:34 36842 -44297 30 T p- -0.4804 1.0550 5.0S 173.9W 61 10 206 05m19s 1018 051 -1581 Jan 14 06:38:15 36831 -44291 35 P t- 1.2234 0.5810 64.5N 147.6W 0 158 1019 051 -1581 Jun 11 11:13:09 36822 -44286 2 P -t 1.4387 0.2008 68.0N 3.0W 0 13 1020 051 -1581 Jul 10 22:32:03 36821 -44285 40 P t- -1.2721 0.4967 65.3S 21.5W 0 14
|
|||
|
|
|||
|
A-19
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1021 052 -1581 Dec 05 03:18:02 1022 052 -1580 May 30 14:19:02 1023 052 -1580 Nov 23 18:43:19 1024 052 -1579 May 19 15:04:38 1025 052 -1579 Nov 13 09:16:15 1026 052 -1578 May 08 20:43:09 1027 052 -1578 Nov 02 18:28:07 1028 052 -1577 Mar 30 02:11:02 1029 052 -1577 Apr 28 09:28:38 1030 052 -1577 Sep 23 01:29:44
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 36812 -44280 7 T -p 36801 -44274 12 A -p 36791 -44268 17 T -n 36780 -44262 22 A nn 36770 -44256 27 H n36759 -44250 32 H t36749 -44244 37 P t36740 -44239 4 P -t 36738 -44238 42 Pb t36730 -44233 9 P -t
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.9051 0.7124
|
|||
|
-0.2312 -0.0570
|
|||
|
0.4492 -0.8219
|
|||
|
1.1893 1.0109 -1.5198 -1.1243
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0196 0.9472 1.0450 0.9609 1.0107 1.0005 0.6394 0.9998 0.0233 0.7428
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
82.3S 132.7W 25
|
|||
|
|
|||
|
63.7N 101.5E 44
|
|||
|
|
|||
|
31.1S 47.6E 76
|
|||
|
|
|||
|
12.9N 105.5E 87
|
|||
|
|
|||
|
11.6N 162.0W 63
|
|||
|
|
|||
|
41.0S 36.9E 34
|
|||
|
|
|||
|
70.9N 111.2E 0
|
|||
|
|
|||
|
71.6N 140.3W 0
|
|||
|
|
|||
|
71.1S 106.8W 0
|
|||
|
|
|||
|
71.6S 121.6W 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 58 160 01m08s 161 278 04m35s 12 154 03m51s 348 142 04m58s 193 41 01m05s 341 3 00m03s 236 97 298 71
|
|||
|
|
|||
|
1031 052 -1576 Mar 18 19:09:49 36719 -44227 14 T -n 0.2909 1.0640 9.8N 43.8E 73 163 218 05m47s 1032 052 -1576 Sep 11 02:31:18 36709 -44221 19 A -n -0.4011 0.9540 12.7S 71.0W 66 16 182 05m34s 1033 052 -1575 Mar 08 09:17:47 36698 -44215 24 H p- -0.4614 1.0130 36.7S 153.2W 62 340 50 01m10s 1034 052 -1575 Aug 31 10:33:31 36688 -44209 29 H n- 0.3364 1.0123 33.2N 179.3W 70 196 45 01m08s 1035 052 -1574 Feb 25 16:40:43 36677 -44203 34 P t- -1.2549 0.5262 70.3S 138.2W 0 224 1036 052 -1574 Aug 21 00:57:11 36667 -44197 39 P t- 1.0228 0.9711 69.5N 105.6E 0 328 1037 052 -1573 Jan 15 23:55:57 36658 -44192 6 An -t 0.9847 0.9183 57.7N 22.6W 9 180 - 07m57s 1038 052 -1573 Jul 12 09:03:23 36647 -44186 11 T -t -0.8554 1.0385 35.1S 160.0W 31 356 250 03m26s 1039 052 -1572 Jan 05 03:03:16 36637 -44180 16 A -n 0.2502 0.9693 9.5S 69.9W 76 185 114 03m45s 1040 052 -1572 Jun 30 20:30:31 36626 -44174 21 A nn -0.1120 0.9941 17.5N 24.3E 84 352 21 00m40s
|
|||
|
|
|||
|
1041 053 -1572 Dec 24 13:22:36 36616 -44168 26 T p- -0.4577 1.0206 50.4S 125.5E 63 14 79 01m37s 1042 053 -1571 Jun 20 00:48:42 36606 -44162 31 A p- 0.6743 0.9499 63.3N 61.8W 47 152 249 04m15s 1043 053 -1571 Dec 14 04:26:39 36595 -44156 36 P t- -1.1088 0.8046 63.7S 119.3E 0 149 1044 053 -1570 May 10 11:34:14 36586 -44151 3 P -t -1.3807 0.3072 61.4S 138.2W 0 298 1045 053 -1570 Jun 09 01:21:29 36585 -44150 41 P t- 1.4258 0.2328 63.1N 170.4E 0 38 1046 053 -1570 Nov 04 07:12:05 36576 -44145 8 A -t 0.9608 0.9850 52.4N 92.6W 16 226 191 01m08s 1047 053 -1569 Apr 29 19:13:12 36565 -44139 13 T -p -0.5562 1.0205 20.7S 59.2E 56 331 83 01m52s 1048 053 -1569 Oct 24 14:20:38 36555 -44133 18 A -n 0.2910 0.9435 8.0N 123.3E 73 209 217 06m13s 1049 053 -1568 Apr 18 09:30:17 36544 -44127 23 T n- 0.2195 1.0696 16.6N 176.5W 77 150 232 05m35s 1050 053 -1568 Oct 12 14:47:54 36534 -44121 28 A p- -0.4012 0.9181 22.9S 96.4E 66 32 335 09m05s
|
|||
|
|
|||
|
1051 053 -1567 Apr 08 02:40:01 36523 -44115 33 T t- 0.9502 1.0617 57.0N 125.2W 18 116 649 03m40s 1052 053 -1567 Oct 01 14:38:25 36513 -44109 38 P t- -1.0743 0.8325 60.5S 25.7E 0 86 1053 053 -1566 Feb 27 07:24:03 36504 -44104 5 A -t -0.9317 0.9851 64.7S 64.6W 21 283 145 00m57s 1054 053 -1566 Aug 22 09:11:28 36494 -44098 10 P -t 1.0244 0.9567 62.0N 40.2W 0 308 1055 053 -1565 Feb 16 12:34:13 36483 -44092 15 A nn -0.2112 0.9446 28.3S 153.7E 78 335 209 06m04s 1056 053 -1565 Aug 12 00:44:52 36473 -44086 20 T -n 0.2924 1.0653 35.8N 31.7W 73 202 223 05m05s 1057 053 -1564 Feb 05 12:29:02 36462 -44080 25 A p- 0.5104 0.9297 9.3N 139.6E 59 162 303 09m13s 1058 053 -1564 Jul 31 17:09:48 36452 -44074 30 T n- -0.4277 1.0500 2.7S 68.1E 65 14 183 04m48s 1059 053 -1563 Jan 24 14:27:55 36442 -44068 35 P t- 1.1965 0.6282 63.5N 83.6E 0 148 1060 053 -1563 Jun 21 17:57:26 36433 -44063 2 Pe -t 1.5190 0.0603 67.0N 116.8W 0 3
|
|||
|
|
|||
|
1061 054 -1563 Jul 21 05:46:11 36431 -44062 40 P t- -1.2151 0.5997 64.4S 141.7W 0 24 1062 054 -1563 Dec 15 12:03:55 36422 -44057 7 T -p -0.9053 1.0228 86.7S 103.4E 25 48 186 01m18s 1063 054 -1562 Jun 10 20:38:45 36412 -44051 12 A -p 0.7993 0.9440 74.1N 4.0E 37 162 347 04m26s 1064 054 -1562 Dec 05 03:35:56 36401 -44045 17 T -n -0.2314 1.0450 34.0S 85.5W 76 8 154 03m50s 1065 054 -1561 May 30 21:29:33 36391 -44039 22 A nn 0.0299 0.9628 20.8N 6.4E 88 171 135 04m37s 1066 054 -1561 Nov 24 17:59:42 36380 -44033 27 H n- 0.4519 1.0080 8.6N 64.4E 63 190 31 00m51s 1067 054 -1560 May 19 03:35:10 36370 -44027 32 H p- -0.7395 1.0062 30.8S 73.9W 42 346 32 00m37s 1068 054 -1560 Nov 13 02:48:31 36360 -44021 37 P t- 1.1921 0.6342 70.2N 28.9W 0 222 1069 054 -1559 Apr 09 09:44:40 36351 -44016 4 P -t 1.0736 0.8801 71.6N 90.7E 0 84 1070 054 -1559 May 08 16:46:41 36349 -44015 42 P t- -1.4450 0.1650 70.5S 128.8E 0 311
|
|||
|
|
|||
|
1071 054 -1559 Oct 03 09:11:03 36340 -44010 9 P -t -1.1425 0.7121 71.8S 107.2E 0 85 1072 054 -1558 Mar 30 02:47:55 36330 -44004 14 T -n 0.3520 1.0642 17.5N 74.9W 69 161 224 05m39s 1073 054 -1558 Sep 22 10:21:59 36320 -43998 19 A -n -0.4227 0.9538 18.0S 168.0E 65 18 185 05m23s 1074 054 -1557 Mar 19 16:43:59 36309 -43992 24 H n- -0.4056 1.0128 29.2S 91.6E 66 340 48 01m13s 1075 054 -1557 Sep 11 18:40:22 36299 -43986 29 H n- 0.3083 1.0124 27.5N 57.0E 72 198 45 01m10s 1076 054 -1556 Mar 07 23:47:10 36288 -43980 34 P t- -1.2031 0.6157 71.0S 100.4E 0 237 1077 054 -1556 Aug 31 09:09:55 36278 -43974 39 Tn t- 0.9891 1.0404 74.7N 51.1W 7 297 - 02m05s 1078 054 -1555 Jan 26 07:28:19 36269 -43969 6 A+ -t 1.0120 0.9351 67.8N 148.3W 0 169 - 1079 054 -1555 Jul 22 16:35:55 36259 -43963 11 T -t -0.9162 1.0306 43.7S 81.0E 23 1 260 02m35s 1080 054 -1554 Jan 15 11:07:55 36248 -43957 16 A -n 0.2661 0.9749 7.9S 167.3E 75 180 93 03m03s
|
|||
|
|
|||
|
A-20
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1081 055 -1554 Jul 12 03:30:02 1082 055 -1553 Jan 04 21:56:12 1083 055 -1553 Jul 01 07:17:10 1084 055 -1553 Dec 25 13:14:00 1085 055 -1552 May 20 18:04:09 1086 055 -1552 Jun 19 07:45:20 1087 055 -1552 Nov 14 15:50:05 1088 055 -1551 May 10 02:15:08 1089 055 -1551 Nov 03 22:31:46 1090 055 -1550 Apr 29 16:54:59
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 36238 -43951 21 A nn 36227 -43945 26 T p36217 -43939 31 A p36207 -43933 36 P t36198 -43928 3 P -t 36196 -43927 41 P t36187 -43922 8 A -t 36177 -43916 13 T -p 36167 -43910 18 A -n 36156 -43904 23 T n-
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.1826 -0.4474
|
|||
|
0.5941 -1.1037 -1.4612
|
|||
|
1.3403 0.9631 -0.6318 0.2961 0.1468
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9882 1.0254 0.9476 0.8148 0.1652 0.3798 0.9815 1.0240 0.9401 1.0731
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
13.4N 81.7W 80
|
|||
|
|
|||
|
50.5S 0.3E 63
|
|||
|
|
|||
|
59.7N 150.2W 53
|
|||
|
|
|||
|
64.7S 23.9W 0
|
|||
|
|
|||
|
62.0S 113.6E 0
|
|||
|
|
|||
|
63.9N 63.4E 0
|
|||
|
|
|||
|
51.5N 130.7E 15
|
|||
|
|
|||
|
22.4S 47.5W 51
|
|||
|
|
|||
|
4.3N 1.8W 73
|
|||
|
|
|||
|
17.0N 71.9E 81
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 356 42 01m24s
|
|||
|
7 97 02m01s 164 240 04m44s 159 307
|
|||
|
28 220 245 01m27s 333 103 02m12s 206 231 06m50s 152 240 05m54s
|
|||
|
|
|||
|
1091 055 -1550 Oct 23 22:41:00 36146 -43898 28 A p- -0.3911 0.9164 26.9S 23.8W 67 32 342 09m09s 1092 055 -1549 Apr 19 10:10:16 36135 -43892 33 T p- 0.8833 1.0653 55.0N 130.4E 28 124 449 04m00s 1093 055 -1549 Oct 12 22:37:05 36125 -43886 38 P t- -1.0587 0.8589 60.5S 104.1W 0 95 1094 055 -1548 Mar 09 14:50:24 36116 -43881 5 A -t -0.9874 0.9813 62.9S 156.9W 8 265 462 01m08s 1095 055 -1548 Sep 01 17:16:45 36106 -43875 10 P -t 1.0539 0.9018 61.4N 172.2W 0 299 1096 055 -1547 Feb 26 19:42:22 36095 -43869 15 A -n -0.2636 0.9456 27.4S 46.9E 75 332 207 05m49s 1097 055 -1547 Aug 22 08:51:29 36085 -43863 20 T -n 0.3316 1.0622 34.6N 152.7W 70 207 216 04m46s 1098 055 -1546 Feb 15 19:41:55 36075 -43857 25 A p- 0.4660 0.9340 8.8N 29.3E 62 158 275 08m17s 1099 055 -1546 Aug 12 01:00:17 36064 -43851 30 T n- -0.3814 1.0447 1.7S 51.5W 68 18 160 04m13s 1100 055 -1545 Feb 04 22:09:58 36054 -43845 35 P t- 1.1621 0.6891 62.7N 42.8W 0 138
|
|||
|
|
|||
|
1101 056 -1545 Aug 01 13:05:55 36043 -43839 40 P t- -1.1630 0.6926 63.5S 97.1E 0 34 1102 056 -1545 Dec 26 20:45:32 36035 -43834 7 T -p -0.9094 1.0265 88.0S 94.2E 24 285 220 01m28s 1103 056 -1544 Jun 21 02:59:53 36024 -43828 12 A -t 0.8846 0.9399 85.4N 89.2W 27 167 485 04m19s 1104 056 -1544 Dec 15 12:26:09 36014 -43822 17 T -n -0.2338 1.0457 36.3S 142.5E 76 3 157 03m51s 1105 056 -1543 Jun 10 03:57:24 36004 -43816 22 Am nn 0.1152 0.9640 28.0N 92.6W 83 174 131 04m16s 1106 056 -1543 Dec 05 02:41:32 35993 -43810 27 H n- 0.4537 1.0060 6.2N 68.7W 63 186 23 00m39s 1107 056 -1542 May 30 10:30:04 35983 -43804 32 H p- -0.6579 1.0109 21.9S 176.3E 49 351 50 01m09s 1108 056 -1542 Nov 24 11:09:45 35972 -43798 37 P t- 1.1960 0.6272 69.3N 168.5W 0 209 1109 056 -1541 Apr 20 17:13:51 35964 -43793 4 P -t 1.1403 0.7517 71.4N 37.0W 0 71 1110 056 -1541 May 20 00:03:34 35962 -43792 42 P t- -1.3684 0.3112 69.8S 5.2E 0 323
|
|||
|
|
|||
|
1111 056 -1541 Oct 14 17:00:21 35953 -43787 9 P -t -1.1543 0.6921 71.7S 26.0W 0 100 1112 056 -1540 Apr 09 10:19:32 35943 -43781 14 T -p 0.4183 1.0638 25.7N 167.7E 65 160 229 05m25s 1113 056 -1540 Oct 02 18:22:02 35933 -43775 19 A -n -0.4375 0.9538 23.2S 44.8E 64 20 186 05m10s 1114 056 -1539 Mar 30 00:01:51 35922 -43769 24 H n- -0.3438 1.0122 21.2S 21.9W 70 341 45 01m13s 1115 056 -1539 Sep 22 02:56:41 35912 -43763 29 H n- 0.2873 1.0127 21.9N 69.4W 73 199 45 01m13s 1116 056 -1538 Mar 19 06:45:45 35901 -43757 34 P t- -1.1456 0.7152 71.4S 19.5W 0 250 1117 056 -1538 Sep 11 17:29:52 35891 -43751 39 T t- 0.9613 1.0409 73.4N 137.0E 15 253 514 02m18s 1118 056 -1537 Feb 06 14:54:09 35882 -43746 6 P -t 1.0448 0.8815 68.8N 87.0E 0 158 1119 056 -1537 Aug 03 00:14:13 35872 -43740 11 T -t -0.9713 1.0216 55.1S 42.3W 13 8 322 01m40s 1120 056 -1536 Jan 26 19:04:59 35862 -43734 16 A -n 0.2895 0.9809 5.1S 46.1E 73 176 71 02m18s
|
|||
|
|
|||
|
1121 057 -1536 Jul 22 10:35:03 35851 -43728 21 A -n -0.2477 0.9820 8.8N 170.2E 76 1 66 02m13s 1122 057 -1535 Jan 15 06:22:23 35841 -43722 26 T p- -0.4303 1.0308 49.0S 123.2W 64 0 115 02m27s 1123 057 -1535 Jul 11 13:52:31 35831 -43716 31 A p- 0.5194 0.9449 55.3N 116.6E 58 174 238 05m19s 1124 057 -1534 Jan 04 21:54:23 35820 -43710 36 P t- -1.0931 0.8353 65.7S 165.8W 0 169 1125 057 -1534 Jun 01 00:38:21 35811 -43705 3 Pe -t -1.5387 0.0279 62.7S 4.3E 0 316 1126 057 -1534 Jun 30 14:17:09 35810 -43704 41 P t- 1.2601 0.5177 64.9N 46.0W 0 19 1127 057 -1534 Nov 26 00:27:19 35801 -43699 8 A -t 0.9654 0.9786 51.1N 5.9W 15 213 295 01m44s 1128 057 -1533 May 21 09:16:51 35791 -43693 13 T -p -0.7085 1.0266 25.3S 154.5W 45 335 125 02m27s 1129 057 -1533 Nov 15 06:45:08 35780 -43687 18 A -n 0.2987 0.9374 0.9N 127.4W 73 204 243 07m26s 1130 057 -1532 May 10 00:16:30 35770 -43681 23 T nn 0.0711 1.0758 17.0N 38.7W 86 154 246 06m12s
|
|||
|
|
|||
|
1131 057 -1532 Nov 03 06:39:37 35760 -43675 28 A p- -0.3854 0.9154 31.1S 145.0W 67 31 346 09m11s 1132 057 -1531 Apr 29 17:35:10 35749 -43669 33 T p- 0.8123 1.0672 54.2N 24.5E 35 129 371 04m13s 1133 057 -1531 Oct 23 06:44:07 35739 -43663 38 P t- -1.0493 0.8751 60.6S 123.9E 0 104 1134 057 -1530 Mar 20 22:07:07 35730 -43658 5 P -t -1.0501 0.8949 60.6S 100.3E 0 258 1135 057 -1530 Sep 13 01:30:42 35720 -43652 10 P -t 1.0771 0.8587 61.0N 53.9E 0 290 1136 057 -1529 Mar 10 02:41:53 35710 -43646 15 A -p -0.3224 0.9466 26.4S 58.0W 71 330 206 05m38s 1137 057 -1529 Sep 02 17:05:29 35699 -43640 20 T -n 0.3648 1.0588 32.5N 83.8E 68 210 207 04m29s 1138 057 -1528 Feb 27 02:45:44 35689 -43634 25 A p- 0.4139 0.9385 8.6N 78.4W 65 155 248 07m24s 1139 057 -1528 Aug 22 08:57:37 35679 -43628 30 T n- -0.3414 1.0390 1.8S 172.6W 70 22 139 03m37s 1140 057 -1527 Feb 15 05:44:59 35668 -43622 35 P t- 1.1210 0.7626 62.0N 167.3W 0 129
|
|||
|
|
|||
|
A-21
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1141 058 -1527 Aug 11 20:32:13 1142 058 -1526 Jan 06 05:22:05 1143 058 -1526 Jul 02 09:27:03 1144 058 -1526 Dec 26 21:12:07 1145 058 -1525 Jun 21 10:29:50 1146 058 -1525 Dec 16 11:19:44 1147 058 -1524 Jun 09 17:28:51 1148 058 -1524 Dec 04 19:27:19 1149 058 -1523 May 01 00:40:11 1150 058 -1523 May 30 07:22:51
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 35658 -43616 40 P t35649 -43611 7 T -p 35639 -43605 12 A -t 35629 -43599 17 T -n 35618 -43593 22 A nn 35608 -43587 27 H n35598 -43581 32 T p35587 -43575 37 P t35579 -43570 4 P -t 35577 -43569 42 P t-
|
|||
|
|
|||
|
Gamma
|
|||
|
-1.1170 -0.9184
|
|||
|
0.9646 -0.2397
|
|||
|
0.1975 0.4531 -0.5781 1.1975 1.2096 -1.2928
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.7734 1.0302 0.9346 1.0466 0.9649 1.0044 1.0148 0.6244 0.6174 0.4563
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
62.6S 25.5W 0
|
|||
|
|
|||
|
83.6S 12.6W 23
|
|||
|
|
|||
|
80.3N 14.8W 15
|
|||
|
|
|||
|
37.7S 12.1E 76
|
|||
|
|
|||
|
34.5N 168.5E 78
|
|||
|
|
|||
|
4.4N 159.2E 63
|
|||
|
|
|||
|
14.0S 66.8E 55
|
|||
|
|
|||
|
68.3N 53.5E 0
|
|||
|
|
|||
|
70.9N 163.8W 0
|
|||
|
|
|||
|
68.9S 118.5W 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 43 260 263 01m39s 341 971 04m11s 357 160 03m54s 179 129 03m58s 182 17 00m29s 355 62 01m37s 197 58 335
|
|||
|
|
|||
|
1151 058 -1523 Oct 25 00:55:50 35568 -43564 9 P -t -1.1616 0.6799 71.4S 160.6W 0 114 1152 058 -1522 Apr 20 17:45:50 35558 -43558 14 T -p 0.4886 1.0625 34.2N 51.5E 61 159 234 05m05s 1153 058 -1522 Oct 14 02:29:48 35548 -43552 19 A -n -0.4467 0.9544 28.2S 79.9W 63 20 185 04m55s 1154 058 -1521 Apr 10 07:11:26 35537 -43546 24 H nn -0.2758 1.0112 13.1S 133.6W 74 342 40 01m09s 1155 058 -1521 Oct 03 11:22:04 35527 -43540 29 H n- 0.2732 1.0131 16.6N 161.7E 74 199 47 01m16s 1156 058 -1520 Mar 29 13:32:25 35517 -43534 34 P t- -1.0788 0.8307 71.7S 136.6W 0 263 1157 058 -1520 Sep 22 01:59:24 35506 -43528 39 T t- 0.9413 1.0400 68.3N 11.9W 19 234 403 02m24s 1158 058 -1519 Feb 16 22:10:22 35498 -43523 6 P -t 1.0857 0.8139 69.7N 35.9W 0 146 1159 058 -1519 Aug 13 07:59:47 35487 -43517 11 P -t -1.0198 0.9636 68.9S 176.9W 0 24 1160 058 -1518 Feb 06 02:55:29 35477 -43511 16 A -n 0.3191 0.9871 1.1S 73.9W 71 172 48 01m31s
|
|||
|
|
|||
|
1161 059 -1518 Aug 02 17:46:16 35467 -43505 21 A -p -0.3067 0.9756 3.7N 60.0E 72 5 92 03m03s 1162 059 -1517 Jan 26 14:43:34 35456 -43499 26 T n- -0.4084 1.0364 46.0S 113.6E 66 354 134 02m56s 1163 059 -1517 Jul 22 20:32:30 35446 -43493 31 A p- 0.4487 0.9418 50.0N 19.7E 63 181 241 05m59s 1164 059 -1516 Jan 16 06:30:12 35436 -43487 36 P t- -1.0790 0.8627 66.8S 53.0E 0 180 1165 059 -1516 Jul 10 20:55:20 35425 -43481 41 P t- 1.1840 0.6484 65.9N 157.2W 0 9 1166 059 -1516 Dec 06 09:02:31 35417 -43476 8 A -t 0.9687 0.9762 51.4N 141.8W 14 206 348 01m59s 1167 059 -1515 May 31 16:22:02 35407 -43470 13 T -p -0.7831 1.0283 29.5S 97.2E 38 338 152 02m35s 1168 059 -1515 Nov 25 14:58:10 35396 -43464 18 A -n 0.3005 0.9353 2.0S 107.3E 73 200 251 08m00s 1169 059 -1514 May 21 07:39:13 35386 -43458 23 T nn -0.0042 1.0776 16.5N 149.6W 90 321 251 06m29s 1170 059 -1514 Nov 14 14:39:37 35376 -43452 28 A p- -0.3807 0.9151 35.1S 94.0E 67 29 348 09m12s
|
|||
|
|
|||
|
1171 059 -1513 May 11 00:58:13 35365 -43446 33 T p- 0.7399 1.0680 53.9N 81.7W 42 135 326 04m23s 1172 059 -1513 Nov 03 14:55:34 35355 -43440 38 P t- -1.0424 0.8872 61.0S 9.3W 0 113 1173 059 -1512 Mar 31 05:13:52 35346 -43435 5 P -t -1.1200 0.7695 60.5S 16.7W 0 267 1174 059 -1512 Apr 29 15:38:06 35345 -43434 43 Pb t- 1.5386 0.0041 61.2N 16.3W 0 69 1175 059 -1512 Sep 23 09:54:09 35336 -43429 10 P -t 1.0935 0.8282 60.7N 82.3W 0 281 1176 059 -1511 Mar 20 09:30:47 35326 -43423 15 A -p -0.3896 0.9473 25.6S 160.2W 67 328 208 05m31s 1177 059 -1511 Sep 13 01:28:05 35316 -43417 20 T -n 0.3910 1.0555 29.6N 42.6W 67 212 198 04m15s 1178 059 -1510 Mar 09 09:40:57 35305 -43411 25 A p- 0.3540 0.9430 8.6N 176.4E 69 153 223 06m36s 1179 059 -1510 Sep 02 17:03:29 35295 -43405 30 T n- -0.3092 1.0334 3.2S 64.1E 72 25 118 03m02s 1180 059 -1509 Feb 26 13:11:48 35285 -43399 35 P t- 1.0720 0.8508 61.4N 70.4E 0 120
|
|||
|
|
|||
|
1181 060 -1509 Aug 23 04:05:42 35274 -43393 40 P t- -1.0774 0.8417 61.9S 149.6W 0 53 1182 060 -1508 Jan 17 13:52:29 35266 -43388 7 T -p -0.9330 1.0340 78.9S 137.2W 21 255 326 01m49s 1183 060 -1508 Jul 12 15:59:43 35256 -43382 12 P -t 1.0399 0.8917 65.0N 113.2W 0 342 1184 060 -1507 Jan 06 05:51:53 35245 -43376 17 T -n -0.2508 1.0479 38.4S 116.6W 75 352 165 03m57s 1185 060 -1507 Jul 01 17:09:19 35235 -43370 22 A nn 0.2750 0.9653 39.9N 69.1E 74 184 131 03m43s 1186 060 -1507 Dec 26 19:53:46 35225 -43364 27 H n- 0.4493 1.0034 3.0N 28.1E 63 178 13 00m22s 1187 060 -1506 Jun 21 00:32:06 35214 -43358 32 T p- -0.5007 1.0180 7.2S 42.9W 60 359 71 02m00s 1188 060 -1506 Dec 16 03:42:20 35204 -43352 37 P t- 1.1975 0.6243 67.3N 83.2W 0 186 1189 060 -1505 May 12 08:04:36 35196 -43347 4 P -t 1.2809 0.4789 70.3N 70.4E 0 45 1190 060 -1505 Jun 10 14:43:50 35194 -43346 42 P t- -1.2178 0.6009 68.0S 117.9E 0 346
|
|||
|
|
|||
|
1191 060 -1505 Nov 05 08:56:27 35185 -43341 9 P -t -1.1646 0.6749 70.8S 63.9E 0 128 1192 060 -1504 May 01 01:06:51 35175 -43335 14 T -p 0.5627 1.0604 43.0N 63.5W 56 158 239 04m40s 1193 060 -1504 Oct 24 10:45:01 35165 -43329 19 A -n -0.4506 0.9555 33.0S 154.2E 63 20 181 04m38s 1194 060 -1503 Apr 20 14:15:00 35154 -43323 24 H nn -0.2038 1.0095 4.9S 116.2E 78 343 33 01m01s 1195 060 -1503 Oct 13 19:53:42 35144 -43317 29 H n- 0.2637 1.0138 11.6N 31.2E 75 198 49 01m22s 1196 060 -1502 Apr 09 20:13:36 35134 -43311 34 A- t- -1.0080 0.9531 71.7S 107.4E 0 277 - 1197 060 -1502 Oct 03 10:35:41 35124 -43305 39 T p- 0.9268 1.0389 63.1N 153.6W 22 224 350 02m28s 1198 060 -1501 Feb 28 05:19:15 35115 -43300 6 P -t 1.1329 0.7347 70.5N 157.5W 0 133 1199 060 -1501 Aug 24 15:52:09 35105 -43294 11 P -t -1.0619 0.8833 69.9S 51.1E 0 36 1200 060 -1500 Feb 17 10:38:07 35095 -43288 16 A -n 0.3562 0.9934 3.9N 167.5E 69 169 25 00m45s
|
|||
|
|
|||
|
A-22
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1201 061 -1500 Aug 13 01:05:13 1202 061 -1499 Feb 05 22:55:25 1203 061 -1499 Aug 02 03:22:20 1204 061 -1498 Jan 26 14:57:28 1205 061 -1498 Jul 22 03:42:06 1206 061 -1498 Dec 17 17:33:27 1207 061 -1497 Jun 11 23:29:47 1208 061 -1497 Dec 06 23:08:53 1209 061 -1496 May 31 15:00:53 1210 061 -1496 Nov 24 22:41:35
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 35084 -43282 21 A -p 35074 -43276 26 T n35064 -43270 31 A p35053 -43264 36 P t35043 -43258 41 P t35035 -43253 8 A -t 35024 -43247 13 T -p 35014 -43241 18 A -n 35004 -43235 23 Tm nn 34994 -43229 28 A p-
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.3582 -0.3784
|
|||
|
0.3864 -1.0584
|
|||
|
1.1138 0.9748 -0.8561 0.3041 -0.0807 -0.3774
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9692 1.0421 0.9386 0.9028 0.7687 0.9742 1.0290 0.9340 1.0785 0.9154
|
|||
|
|
|||
|
Lat. ° 1.6S
|
|||
|
41.7S 44.4N 67.8S 66.9N 52.8N 35.4S
|
|||
|
4.1S 15.2N 38.8S
|
|||
|
|
|||
|
Sun Long. Alt
|
|||
|
° ° 52.6W 69
|
|||
|
8.7W 68 81.5W 67 86.5W 0 88.9E 0 83.4E 12 12.2W 31 17.3W 72 99.7E 85 26.8W 68
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 8 119 03m52s 350 152 03m28s 186 248 06m42s 191 359 200 429 02m11s 342 189 02m35s 196 258 08m30s 340 254 06m44s 26 346 09m09s
|
|||
|
|
|||
|
1211 061 -1495 May 21 08:18:46 34983 -43223 33 T p- 0.6657 1.0676 53.6N 172.9E 48 141 294 04m29s 1212 061 -1495 Nov 13 23:10:56 34973 -43217 38 P t- -1.0379 0.8956 61.5S 143.5W 0 122 1213 061 -1494 Apr 11 12:13:12 34965 -43212 5 P -t -1.1948 0.6354 60.6S 131.8W 0 276 1214 061 -1494 May 10 22:40:29 34963 -43211 43 P t- 1.4688 0.1342 61.6N 132.4W 0 61 1215 061 -1494 Oct 04 18:25:40 34954 -43206 10 P -t 1.1040 0.8087 60.6N 139.5E 0 272 1216 061 -1493 Mar 31 16:11:09 34944 -43200 15 A -p -0.4632 0.9478 25.3S 99.6E 62 327 213 05m27s 1217 061 -1493 Sep 24 09:58:07 34934 -43194 20 T -n 0.4111 1.0522 26.2N 171.5W 66 212 188 04m03s 1218 061 -1492 Mar 19 16:28:54 34924 -43188 25 A pn 0.2876 0.9476 8.9N 73.4E 73 151 200 05m54s 1219 061 -1492 Sep 13 01:16:24 34913 -43182 30 T n- -0.2831 1.0277 5.4S 61.0W 74 27 97 02m29s 1220 061 -1491 Mar 08 20:32:07 34903 -43176 35 P t- 1.0164 0.9520 60.9N 50.1W 0 111
|
|||
|
|
|||
|
1221 062 -1491 Sep 02 11:46:56 34893 -43170 40 P t- -1.0446 0.8972 61.4S 84.5E 0 62 1222 062 -1490 Jan 27 22:16:48 34884 -43165 7 T -p -0.9536 1.0375 74.1S 99.0E 17 251 431 01m58s 1223 062 -1490 Jul 23 22:39:19 34874 -43159 12 P -t 1.1094 0.7729 64.0N 135.5E 0 333 1224 062 -1489 Jan 17 14:25:23 34864 -43153 17 T -n -0.2673 1.0493 38.4S 116.4E 74 346 170 04m00s 1225 062 -1489 Jul 12 23:56:21 34854 -43147 22 A -n 0.3473 0.9653 44.1N 30.9W 69 190 134 03m31s 1226 062 -1488 Jan 07 04:19:45 34843 -43141 27 H n- 0.4395 1.0028 2.1N 100.8W 64 173 11 00m18s 1227 062 -1488 Jul 01 07:42:06 34833 -43135 32 T p- -0.4278 1.0204 1.5S 153.4W 65 3 77 02m15s 1228 062 -1488 Dec 26 11:50:17 34823 -43129 37 P t- 1.1921 0.6335 66.2N 142.4E 0 174 1229 062 -1487 May 22 15:29:11 34815 -43124 4 P -t 1.3520 0.3405 69.5N 54.9W 0 33 1230 062 -1487 Jun 20 22:09:54 34813 -43123 42 P t- -1.1463 0.7387 67.0S 6.4W 0 357
|
|||
|
|
|||
|
1231 062 -1487 Nov 15 16:58:34 34804 -43118 9 P -t -1.1669 0.6713 70.1S 71.4W 0 141 1232 062 -1486 May 12 08:25:29 34794 -43112 14 T -p 0.6384 1.0573 52.2N 177.8W 50 158 245 04m10s 1233 062 -1486 Nov 04 19:05:27 34784 -43106 19 A -n -0.4511 0.9572 37.5S 27.6E 63 19 174 04m19s 1234 062 -1485 May 01 21:11:15 34774 -43100 24 Hm nn -0.1265 1.0072 3.4N 8.0E 83 344 25 00m47s 1235 062 -1485 Oct 25 04:32:54 34763 -43094 29 H n- 0.2597 1.0149 7.0N 101.0W 75 197 53 01m29s 1236 062 -1484 Apr 20 02:45:50 34753 -43088 34 A t- -0.9299 0.9493 57.7S 45.3W 21 326 506 04m24s 1237 062 -1484 Oct 13 19:19:27 34743 -43082 39 T p- 0.9184 1.0376 58.6N 66.5E 23 216 320 02m30s 1238 062 -1483 Mar 10 12:19:02 34735 -43077 6 P -t 1.1879 0.6414 71.1N 82.6E 0 120 1239 062 -1483 Sep 03 23:53:00 34724 -43071 11 P -t -1.0963 0.8179 70.6S 83.7W 0 49 1240 062 -1482 Feb 27 18:14:42 34714 -43065 16 A -n 0.3992 0.9997 9.7N 49.8E 66 166 1 00m02s
|
|||
|
|
|||
|
1241 063 -1482 Aug 24 08:30:20 34704 -43059 21 A -p -0.4036 0.9628 7.3S 167.1W 66 12 147 04m37s 1242 063 -1481 Feb 17 07:01:44 34694 -43053 26 T n- -0.3430 1.0480 36.3S 131.0W 70 346 170 04m01s 1243 063 -1481 Aug 13 10:18:57 34683 -43047 31 A p- 0.3298 0.9351 38.4N 174.1E 71 190 256 07m27s 1244 063 -1480 Feb 06 23:17:12 34673 -43041 36 P t- -1.0317 0.9547 68.8S 135.3E 0 203 1245 063 -1480 Aug 01 10:37:55 34663 -43035 41 P t- 1.0501 0.8778 67.9N 27.7W 0 348 1246 063 -1480 Dec 28 01:59:17 34655 -43030 8 A -t 0.9844 0.9722 56.1N 50.0W 9 193 611 02m20s 1247 063 -1479 Jun 22 06:43:32 34644 -43024 13 T -p -0.9253 1.0285 43.6S 123.6W 22 345 256 02m24s 1248 063 -1479 Dec 17 07:14:46 34634 -43018 18 A -n 0.3109 0.9332 5.2S 140.5W 72 192 262 08m55s 1249 063 -1478 Jun 11 22:26:44 34624 -43012 23 T nn -0.1541 1.0785 13.2N 12.4W 81 345 257 06m57s 1250 063 -1478 Dec 06 06:41:47 34614 -43006 28 A p- -0.3725 0.9165 41.8S 146.1W 68 22 341 09m04s
|
|||
|
|
|||
|
1251 063 -1477 Jun 01 15:38:49 34604 -43000 33 T p- 0.5914 1.0662 52.9N 67.8E 53 149 267 04m33s 1252 063 -1477 Nov 25 07:27:52 34593 -42994 38 P t- -1.0340 0.9033 62.2S 81.7E 0 132 1253 063 -1476 Apr 21 19:05:07 34585 -42989 5 P -t -1.2741 0.4936 60.8S 114.9E 0 284 1254 063 -1476 May 21 05:39:55 34583 -42988 43 P t- 1.3975 0.2665 62.1N 112.1E 0 52 1255 063 -1476 Oct 15 03:04:02 34575 -42983 10 P -t 1.1097 0.7982 60.7N 0.3W 0 262 1256 063 -1475 Apr 10 22:43:34 34565 -42977 15 A -p -0.5427 0.9478 25.7S 1.3E 57 327 223 05m30s 1257 063 -1475 Oct 04 18:35:57 34554 -42971 20 T -n 0.4246 1.0492 22.4N 57.0E 65 212 179 03m53s 1258 063 -1474 Mar 30 23:10:04 34544 -42965 25 A nn 0.2149 0.9519 9.3N 27.6W 78 150 180 05m17s 1259 063 -1474 Sep 24 09:36:28 34534 -42959 30 T n- -0.2638 1.0222 8.5S 171.9E 75 29 78 01m58s 1260 063 -1473 Mar 20 03:45:39 34524 -42953 35 A t- 0.9541 0.9823 53.6N 140.1W 17 126 207 01m19s
|
|||
|
|
|||
|
A-23
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1261 064 -1473 Sep 13 19:36:05 1262 064 -1472 Feb 08 06:32:03 1263 064 -1472 Aug 03 05:27:42 1264 064 -1471 Jan 27 22:50:49 1265 064 -1471 Jul 23 06:52:23 1266 064 -1470 Jan 17 12:38:40 1267 064 -1470 Jul 12 14:59:27 1268 064 -1469 Jan 06 19:52:36 1269 064 -1469 Jun 02 22:52:59 1270 064 -1469 Jul 02 05:39:07
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 34514 -42947 40 P t34505 -42942 7 T -t 34495 -42936 12 P -t 34485 -42930 17 T -n 34475 -42924 22 A -p 34464 -42918 27 H n34454 -42912 32 T p34444 -42906 37 P t34436 -42901 4 P -t 34434 -42900 42 P t-
|
|||
|
|
|||
|
Gamma
|
|||
|
-1.0190 -0.9820
|
|||
|
1.1715 -0.2904
|
|||
|
0.4129 0.4246 -0.3600 1.1831 1.4237 -1.0770
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.9395 1.0401 0.6673 1.0508 0.9650 1.0025 1.0221 0.6489 0.2010 0.8722
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
60.9S 43.1W 0
|
|||
|
|
|||
|
68.6S 17.3W 10
|
|||
|
|
|||
|
63.2N 22.3E 0
|
|||
|
|
|||
|
37.7S 8.7W 73
|
|||
|
|
|||
|
46.8N 132.1W 65
|
|||
|
|
|||
|
1.6N 132.2E 65
|
|||
|
|
|||
|
2.9N 95.0E 69
|
|||
|
|
|||
|
65.1N 9.9E 0
|
|||
|
|
|||
|
68.6N 179.4W 0
|
|||
|
|
|||
|
66.0S 131.0W 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 71 243 771 02m01s 323 341 176 04m04s 197 139 03m23s 169 9 00m16s
|
|||
|
7 81 02m24s 164
|
|||
|
21 7
|
|||
|
|
|||
|
1271 064 -1469 Nov 27 01:03:08 34425 -42895 9 P -t -1.1673 0.6708 69.1S 153.4E 0 154 1272 064 -1468 May 22 15:41:36 34415 -42889 14 T -p 0.7155 1.0533 61.6N 68.7E 44 157 253 03m37s 1273 064 -1468 Nov 15 03:29:14 34405 -42883 19 A -n -0.4497 0.9596 41.5S 98.9W 63 16 164 03m59s 1274 064 -1467 May 12 04:04:18 34395 -42877 24 H nn -0.0476 1.0043 11.4N 99.0W 87 346 15 00m29s 1275 064 -1467 Nov 04 13:16:02 34385 -42871 29 H2 n- 0.2581 1.0164 2.9N 125.8E 75 195 58 01m39s 1276 064 -1466 May 01 09:14:05 34375 -42865 34 A p- -0.8490 0.9511 45.4S 156.9W 32 337 336 04m54s 1277 064 -1466 Oct 25 04:07:02 34365 -42859 39 T p- 0.9133 1.0365 54.7N 73.0W 24 210 302 02m33s 1278 064 -1465 Mar 21 19:13:02 34356 -42854 6 P -t 1.2478 0.5385 71.5N 36.2W 0 107 1279 064 -1465 Sep 15 08:00:34 34346 -42848 11 P -t -1.1241 0.7653 71.2S 139.4E 0 63 1280 064 -1464 Mar 10 01:42:32 34336 -42842 16 H -p 0.4502 1.0058 16.5N 66.2W 63 163 22 00m36s
|
|||
|
|
|||
|
1281 065 -1464 Sep 03 16:04:01 34326 -42836 21 A -p -0.4408 0.9566 12.9S 76.0E 64 15 175 05m17s 1282 065 -1463 Feb 27 14:59:01 34315 -42830 26 T n- -0.2999 1.0537 30.1S 107.8E 72 344 186 04m35s 1283 065 -1463 Aug 23 17:25:29 34305 -42824 31 A nn 0.2817 0.9318 32.3N 66.3E 73 194 266 08m10s 1284 065 -1462 Feb 17 07:27:51 34295 -42818 36 T- t- -0.9981 1.0200 69.7S 1.2W 0 215 - 1285 065 -1462 Aug 12 17:44:37 34285 -42812 41 An t- 0.9943 0.9375 72.8N 153.1W 4 331 - 03m45s 1286 065 -1461 Jan 08 10:17:29 34277 -42807 8 A+ -t 0.9994 0.9805 66.1N 178.6E 0 187 - 1287 065 -1461 Jul 03 14:01:38 34266 -42801 13 Ts -t -0.9914 1.0252 59.2S 124.8E 6 347 - 01m52s 1288 065 -1461 Dec 28 15:15:29 34256 -42795 18 A -n 0.3213 0.9331 5.2S 97.6E 71 188 263 09m12s 1289 065 -1460 Jun 22 05:54:44 34246 -42789 23 T -n -0.2256 1.0776 10.4N 125.4W 77 349 257 07m04s 1290 065 -1460 Dec 16 14:39:12 34236 -42783 28 A p- -0.3653 0.9183 43.7S 96.1E 68 17 333 08m56s
|
|||
|
|
|||
|
1291 065 -1459 Jun 11 22:59:34 34226 -42777 33 T p- 0.5183 1.0638 51.5N 37.8W 59 156 244 04m34s 1292 065 -1459 Dec 05 15:45:47 34216 -42771 38 P t- -1.0304 0.9106 63.0S 53.5W 0 142 1293 065 -1458 May 03 01:51:20 34207 -42766 5 P -t -1.3569 0.3463 61.1S 3.0E 0 293 1294 065 -1458 Jun 01 12:36:59 34206 -42765 43 P t- 1.3249 0.4003 62.7N 2.9W 0 43 1295 065 -1458 Oct 26 11:47:51 34197 -42760 10 P -t 1.1115 0.7949 60.9N 141.5W 0 253 1296 065 -1457 Apr 22 05:10:13 34187 -42754 15 A -p -0.6262 0.9475 27.0S 95.6W 51 328 241 05m36s 1297 065 -1457 Oct 16 03:19:31 34177 -42748 20 T -n 0.4335 1.0465 18.6N 76.3W 64 211 170 03m46s 1298 065 -1456 Apr 10 05:45:20 34167 -42742 25 A nn 0.1365 0.9560 9.5N 126.9W 82 150 162 04m47s 1299 065 -1456 Oct 04 18:02:52 34157 -42736 30 H3 n- -0.2502 1.0169 12.2S 43.3E 75 30 60 01m30s 1300 065 -1455 Mar 30 10:54:58 34147 -42730 35 A t- 0.8869 0.9909 49.7N 118.4E 27 131 67 00m42s
|
|||
|
|
|||
|
1301 066 -1455 Sep 24 03:31:13 34136 -42724 40 A- p- -0.9989 0.9719 60.6S 172.2W 0 80 - 1302 066 -1454 Feb 18 14:40:46 34128 -42719 7 P -t -1.0164 0.9845 61.9S 130.7W 0 234 1303 066 -1454 Aug 14 12:25:20 34118 -42713 12 P -t 1.2259 0.5752 62.4N 93.0W 0 314 1304 066 -1453 Feb 08 07:07:43 34108 -42707 17 T -n -0.3204 1.0523 36.5S 132.0W 71 336 183 04m07s 1305 066 -1453 Aug 03 13:57:48 34098 -42701 22 A -p 0.4715 0.9644 48.0N 124.7E 62 203 145 03m18s 1306 066 -1452 Jan 28 20:47:42 34087 -42695 27 H n- 0.4021 1.0025 1.5N 7.8E 66 165 9 00m16s 1307 066 -1452 Jul 22 22:25:55 34077 -42689 32 T n- -0.2987 1.0233 6.0N 18.4W 73 12 83 02m27s 1308 066 -1451 Jan 17 03:43:57 34067 -42683 37 P t- 1.1656 0.6789 64.1N 119.4W 0 154 1309 066 -1451 Jun 13 06:19:54 34059 -42678 4 Pe -t 1.4929 0.0667 67.7N 55.8E 0 10 1310 066 -1451 Jul 12 13:15:57 34057 -42677 42 P t- -1.0135 0.9944 65.0S 102.9E 0 17
|
|||
|
|
|||
|
1311 066 -1451 Dec 07 09:06:01 34049 -42672 9 P -t -1.1698 0.6671 68.1S 19.2E 0 166 1312 066 -1450 Jun 02 22:56:37 34039 -42666 14 T -p 0.7928 1.0482 71.4N 44.6W 37 157 265 03m03s 1313 066 -1450 Nov 26 11:54:35 34029 -42660 19 A -n -0.4479 0.9626 45.0S 135.2E 63 13 151 03m36s 1314 066 -1449 May 23 10:52:54 34018 -42654 24 H nn 0.0344 1.0008 19.3N 155.7E 88 169 3 00m05s 1315 066 -1449 Nov 15 22:02:29 34008 -42648 29 T n- 0.2591 1.0185 0.8S 8.0W 75 192 65 01m53s 1316 066 -1448 May 11 15:36:15 33998 -42642 34 A p- -0.7633 0.9518 34.5S 98.5E 40 344 271 05m26s 1317 066 -1448 Nov 04 12:59:34 33988 -42636 39 T p- 0.9124 1.0357 51.5N 147.1E 24 204 294 02m36s 1318 066 -1447 Apr 01 02:00:26 33980 -42631 6 P -t 1.3133 0.4249 71.7N 153.6W 0 93 1319 066 -1447 Apr 30 16:14:13 33978 -42630 44 Pb t- -1.5170 0.0757 71.0S 135.5E 0 303 1320 066 -1447 Sep 25 16:14:53 33970 -42625 11 P -t -1.1457 0.7247 71.6S 0.2E 0 76
|
|||
|
|
|||
|
A-24
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1321 067 -1446 Mar 21 09:05:39 1322 067 -1446 Sep 14 23:45:00 1323 067 -1445 Mar 10 22:49:45 1324 067 -1445 Sep 04 00:40:23 1325 067 -1444 Feb 28 15:30:44 1326 067 -1444 Aug 23 01:01:34 1327 067 -1443 Jan 18 18:27:07 1328 067 -1443 Jul 13 21:28:21 1329 067 -1442 Jan 07 23:08:57 1330 067 -1442 Jul 03 13:27:32
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 33959 -42619 16 H -p 33949 -42613 21 A -p 33939 -42607 26 T n33929 -42601 31 A nn 33919 -42595 36 T t33909 -42589 41 A t33901 -42584 8 P -t 33891 -42578 13 P -t 33880 -42572 18 A -p 33870 -42566 23 T -n
|
|||
|
|
|||
|
Gamma
|
|||
|
0.5060 -0.4711 -0.2507
|
|||
|
0.2404 -0.9581
|
|||
|
0.9460 1.0207 -1.0510 0.3369 -0.2933
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0117 0.9508 1.0593 0.9286 1.0513 0.9403 0.9425 0.9110 0.9334 1.0760
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
23.9N 178.5E 59
|
|||
|
|
|||
|
18.5S 42.9W 62
|
|||
|
|
|||
|
23.2S 12.6W 75
|
|||
|
|
|||
|
26.2N 44.3W 76
|
|||
|
|
|||
|
75.5S 169.1E 16
|
|||
|
|
|||
|
78.4N 24.5E 18
|
|||
|
|
|||
|
67.1N 43.9E 0
|
|||
|
|
|||
|
66.2S 4.6E 0
|
|||
|
|
|||
|
4.1S 22.6W 70
|
|||
|
|
|||
|
6.9N 119.9E 73
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 161 46 01m09s
|
|||
|
17 203 05m50s 342 201 05m10s 196 276 08m51s 280 614 02m48s 261 701 04m06s 176 354 183 264 09m20s 353 257 07m05s
|
|||
|
|
|||
|
1331 067 -1442 Dec 27 22:31:42 33860 -42560 28 A p- -0.3539 0.9207 44.4S 19.9W 69 11 321 08m46s 1332 067 -1441 Jun 23 06:22:32 33850 -42554 33 T p- 0.4478 1.0606 49.3N 144.5W 63 164 223 04m32s 1333 067 -1441 Dec 17 00:00:13 33840 -42548 38 P t- -1.0231 0.9247 63.9S 171.8E 0 152 1334 067 -1440 May 13 08:32:40 33832 -42543 5 P -t -1.4422 0.1952 61.6S 107.8W 0 302 1335 067 -1440 Jun 11 19:34:14 33830 -42542 43 P t- 1.2530 0.5316 63.5N 118.1W 0 34 1336 067 -1440 Nov 05 20:35:39 33822 -42537 10 P -t 1.1108 0.7964 61.3N 76.2E 0 244 1337 067 -1439 May 02 11:32:15 33812 -42531 15 A -p -0.7131 0.9465 29.6S 168.6E 44 329 273 05m46s 1338 067 -1439 Oct 26 12:07:11 33801 -42525 20 T -n 0.4389 1.0443 14.8N 149.2E 64 209 163 03m41s 1339 067 -1438 Apr 21 12:16:55 33791 -42519 25 A nn 0.0544 0.9598 9.6N 134.9E 87 152 146 04m24s 1340 067 -1438 Oct 16 02:35:27 33781 -42513 30 H n- -0.2425 1.0121 16.3S 86.9W 76 30 43 01m04s
|
|||
|
|
|||
|
1341 068 -1437 Apr 10 17:57:46 33771 -42507 35 A p- 0.8132 0.9987 47.6N 16.1E 35 134 8 00m06s 1342 068 -1437 Oct 05 11:34:09 33761 -42501 40 As p- -0.9860 0.9460 59.4S 74.1E 9 74 - 03m49s 1343 068 -1436 Feb 29 22:40:19 33753 -42496 7 P -t -1.0586 0.9059 61.3S 98.9E 0 243 1344 068 -1436 Mar 30 06:41:36 33751 -42495 45 Pb t- 1.5035 0.0569 60.7N 135.2E 0 93 1345 068 -1436 Aug 24 19:33:14 33743 -42490 12 P -t 1.2719 0.4976 61.7N 149.5E 0 305 1346 068 -1435 Feb 18 15:15:25 33733 -42484 17 T -n -0.3579 1.0536 35.0S 106.7E 69 332 189 04m10s 1347 068 -1435 Aug 13 21:14:14 33723 -42478 22 A -p 0.5219 0.9637 47.8N 18.5E 58 209 153 03m16s 1348 068 -1434 Feb 08 04:48:24 33713 -42472 27 H n- 0.3736 1.0026 1.8N 114.4W 68 161 10 00m16s 1349 068 -1434 Aug 03 05:59:35 33703 -42466 32 T n- -0.2425 1.0240 7.8N 133.1W 76 16 84 02m26s 1350 068 -1433 Jan 28 11:27:55 33692 -42460 37 P t- 1.1428 0.7181 63.2N 113.5E 0 144
|
|||
|
|
|||
|
1351 068 -1433 Jul 23 20:58:00 33682 -42454 42 T t- -0.9538 1.0553 48.3S 12.4W 17 17 615 04m08s 1352 068 -1433 Dec 18 17:06:34 33674 -42449 9 P -t -1.1742 0.6603 67.0S 113.7W 0 178 1353 068 -1432 Jun 13 06:11:50 33664 -42443 14 T -t 0.8691 1.0420 81.9N 159.8W 29 154 288 02m28s 1354 068 -1432 Dec 06 20:19:34 33654 -42437 19 A -n -0.4473 0.9662 47.8S 10.5E 63 8 136 03m10s 1355 068 -1431 Jun 02 17:41:14 33644 -42431 24 A nn 0.1153 0.9967 26.7N 51.3E 83 172 12 00m22s 1356 068 -1431 Nov 26 06:48:35 33634 -42425 29 T n- 0.2592 1.0210 3.9S 141.5W 75 189 74 02m09s 1357 068 -1430 May 22 21:58:08 33624 -42419 34 A p- -0.6776 0.9517 24.9S 3.5W 47 348 239 05m58s 1358 068 -1430 Nov 15 21:53:14 33614 -42413 39 T p- 0.9127 1.0353 48.9N 7.2E 24 199 292 02m39s 1359 068 -1429 Apr 12 08:42:37 33605 -42408 6 P -t 1.3832 0.3025 71.6N 90.4E 0 80 1360 068 -1429 May 11 22:34:56 33604 -42407 44 P t- -1.4306 0.2237 70.4S 25.6E 0 316
|
|||
|
|
|||
|
1361 069 -1429 Oct 07 00:35:25 33595 -42402 11 P -t -1.1614 0.6953 71.7S 140.7W 0 91 1362 069 -1428 Mar 31 16:22:18 33585 -42396 16 T -p 0.5682 1.0171 31.9N 64.3E 55 159 70 01m34s 1363 069 -1428 Sep 25 07:33:38 33575 -42390 21 A -p -0.4941 0.9454 24.1S 163.5W 60 19 230 06m17s 1364 069 -1427 Mar 21 06:32:50 33565 -42384 26 T n- -0.1946 1.0643 15.9S 131.8W 79 342 214 05m41s 1365 069 -1427 Sep 14 08:05:58 33555 -42378 31 A nn 0.2080 0.9256 20.2N 158.0W 78 197 286 09m27s 1366 069 -1426 Mar 10 23:24:56 33545 -42372 36 T p- -0.9114 1.0557 68.4S 17.4E 24 310 451 03m20s 1367 069 -1426 Sep 03 08:29:04 33535 -42366 41 A t- 0.9055 0.9410 71.8N 120.0W 25 232 519 04m24s 1368 069 -1425 Jan 30 02:27:26 33527 -42361 8 P -t 1.0486 0.8929 68.2N 89.0W 0 165 1369 069 -1425 Jul 25 05:02:03 33517 -42355 13 P -t -1.1054 0.8092 67.2S 121.2W 0 5 1370 069 -1424 Jan 19 06:52:57 33507 -42349 18 A -p 0.3595 0.9342 1.8S 140.6W 69 179 263 09m17s
|
|||
|
|
|||
|
1371 069 -1424 Jul 13 21:05:32 33497 -42343 23 T -n -0.3564 1.0736 2.8N 3.4E 69 358 256 06m58s 1372 069 -1423 Jan 07 06:18:43 33487 -42337 28 A n- -0.3381 0.9238 43.7S 134.4W 70 4 306 08m33s 1373 069 -1423 Jul 03 13:48:32 33477 -42331 33 T n- 0.3805 1.0566 46.2N 107.2E 67 171 202 04m27s 1374 069 -1423 Dec 27 08:12:11 33467 -42325 38 A- t- -1.0132 0.9438 64.9S 37.4E 0 162 - 1375 069 -1422 May 24 15:11:38 33458 -42320 5 Pe -t -1.5278 0.0446 62.2S 141.8E 0 311 1376 069 -1422 Jun 23 02:32:27 33456 -42319 43 P t- 1.1828 0.6588 64.4N 126.1E 0 25 1377 069 -1422 Nov 17 05:26:18 33448 -42314 10 P -t 1.1083 0.8014 61.9N 66.9W 0 234 1378 069 -1421 May 13 17:50:05 33438 -42308 15 A -p -0.8027 0.9448 34.0S 73.9E 36 331 331 05m56s 1379 069 -1421 Nov 06 20:58:56 33428 -42302 20 T -n 0.4408 1.0425 11.2N 13.6E 64 206 157 03m39s 1380 069 -1420 May 01 18:45:54 33418 -42296 25 A nn -0.0302 0.9631 9.3N 37.4E 88 332 134 04m05s
|
|||
|
|
|||
|
A-25
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1381 070 -1420 Oct 26 11:11:24 1382 070 -1419 Apr 21 00:58:56 1383 070 -1419 Oct 15 19:41:51 1384 070 -1418 Mar 12 06:33:44 1385 070 -1418 Apr 10 14:11:01 1386 070 -1418 Sep 05 02:49:50 1387 070 -1417 Mar 01 23:14:30 1388 070 -1417 Aug 25 04:41:00 1389 070 -1416 Feb 19 12:36:46 1390 070 -1416 Aug 13 13:44:07
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 33408 -42290 30 H n33398 -42284 35 H p33388 -42278 40 A p33380 -42273 7 P -t 33378 -42272 45 P t33370 -42267 12 P -t 33360 -42261 17 T -p 33350 -42255 22 A -p 33340 -42249 27 H n33330 -42243 32 T n-
|
|||
|
|
|||
|
Gamma
|
|||
|
-0.2384 0.7371
|
|||
|
-0.9779 -1.1062
|
|||
|
1.4371 1.3109 -0.4023 0.5647 0.3355 -0.1945
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
1.0077 1.0055 0.9420 0.8159 0.1817 0.4323 1.0546 0.9630 1.0027 1.0243
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
20.6S 142.3E 76
|
|||
|
|
|||
|
46.5N 86.5W 42
|
|||
|
|
|||
|
60.4S 52.2W 11
|
|||
|
|
|||
|
61.0S 29.9W 0
|
|||
|
|
|||
|
60.7N 12.5E 0
|
|||
|
|
|||
|
61.2N 29.9E 0
|
|||
|
|
|||
|
33.4S 12.8W 66
|
|||
|
|
|||
|
46.4N 91.3W 55
|
|||
|
|
|||
|
2.2N 126.8E 70
|
|||
|
|
|||
|
8.3N 109.6E 79
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 30 27 00m41s 137 28 00m26s 78 1058 04m02s 252 84 296 329 196 04m12s 214 161 03m16s 157 10 00m16s 20 84 02m23s
|
|||
|
|
|||
|
1391 070 -1415 Feb 07 18:59:49 33320 -42237 37 P t- 1.1105 0.7734 62.4N 10.3W 0 134 1392 070 -1415 Aug 03 04:48:22 33310 -42231 42 T t- -0.9008 1.0560 40.7S 133.0W 25 21 423 04m22s 1393 070 -1415 Dec 29 01:01:31 33301 -42226 9 P -t -1.1836 0.6452 65.9S 115.4E 0 188 1394 070 -1414 Jun 24 13:28:59 33291 -42220 14 T -t 0.9429 1.0344 85.6N 71.0W 19 355 358 01m52s 1395 070 -1414 Dec 18 04:42:29 33281 -42214 19 A -n -0.4490 0.9705 49.9S 112.8W 63 1 119 02m42s 1396 070 -1413 Jun 14 00:27:17 33271 -42208 24 A nn 0.1970 0.9919 33.5N 51.5W 78 176 29 00m51s 1397 070 -1413 Dec 07 15:35:10 33261 -42202 29 T n- 0.2593 1.0242 6.3S 85.1E 75 185 85 02m29s 1398 070 -1412 Jun 02 04:17:50 33251 -42196 34 A p- -0.5902 0.9509 16.1S 103.7W 54 352 222 06m30s 1399 070 -1412 Nov 26 06:47:37 33241 -42190 39 T p- 0.9137 1.0353 46.7N 132.8W 24 193 294 02m44s 1400 070 -1411 Apr 22 15:21:18 33233 -42185 6 P -t 1.4562 0.1736 71.2N 24.6W 0 66
|
|||
|
|
|||
|
1401 071 -1411 May 22 04:55:43 33231 -42184 44 P t- -1.3429 0.3744 69.6S 83.8W 0 328 1402 071 -1411 Oct 17 09:01:51 33223 -42179 11 P -t -1.1718 0.6758 71.6S 76.9E 0 105 1403 071 -1410 Apr 11 23:35:20 33213 -42173 16 T -p 0.6340 1.0220 40.5N 49.6W 50 156 96 01m52s 1404 071 -1410 Oct 06 15:28:22 33203 -42167 21 A -p -0.5113 0.9405 29.5S 74.5E 59 21 255 06m39s 1405 071 -1409 Apr 01 14:10:45 33193 -42161 26 T n- -0.1337 1.0690 8.2S 110.0E 82 342 227 06m09s 1406 071 -1409 Sep 25 15:39:41 33183 -42155 31 A nn 0.1825 0.9229 14.4N 86.1E 79 198 296 10m00s 1407 071 -1408 Mar 21 07:11:08 33173 -42149 36 T p- -0.8586 1.0592 59.5S 115.4W 30 323 379 03m51s 1408 071 -1408 Sep 13 16:07:15 33163 -42143 41 A p- 0.8732 0.9414 64.7N 112.0E 29 221 445 04m41s 1409 071 -1407 Feb 09 10:18:04 33155 -42138 8 P -t 1.0831 0.8315 69.2N 139.9E 0 153 1410 071 -1407 Aug 04 12:44:32 33145 -42132 13 P -t -1.1531 0.7196 68.2S 110.3E 0 16
|
|||
|
|
|||
|
1411 071 -1407 Sep 02 23:13:08 33143 -42131 51 Pb t- 1.5266 0.0355 70.5N 100.0E 0 311 1412 071 -1406 Jan 29 14:27:44 33135 -42126 18 A -p 0.3890 0.9352 1.8N 103.3E 67 175 262 09m06s 1413 071 -1406 Jul 25 04:50:26 33125 -42120 23 T -n -0.4136 1.0707 1.8S 115.5W 66 2 252 06m42s 1414 071 -1405 Jan 18 13:57:34 33115 -42114 28 A n- -0.3152 0.9274 41.4S 112.6E 71 358 288 08m17s 1415 071 -1405 Jul 14 21:18:35 33105 -42108 33 T n- 0.3172 1.0519 42.3N 3.4W 71 177 182 04m17s 1416 071 -1404 Jan 07 16:17:53 33095 -42102 38 A- t- -0.9974 0.9734 66.0S 95.8W 0 172 - 1417 071 -1404 Jul 03 09:33:53 33085 -42096 43 P t- 1.1160 0.7784 65.3N 9.3E 0 15 1418 071 -1404 Nov 27 14:16:25 33077 -42091 10 P -t 1.1066 0.8051 62.6N 149.9E 0 225 1419 071 -1403 May 24 00:07:06 33067 -42085 15 A -t -0.8922 0.9421 41.0S 20.1W 27 332 463 06m02s 1420 071 -1403 Nov 17 05:52:19 33057 -42079 20 T -n 0.4410 1.0412 8.1N 122.4W 64 203 152 03m40s
|
|||
|
|
|||
|
1421 072 -1402 May 13 01:12:48 33047 -42073 25 Am nn -0.1173 0.9660 8.3N 59.6W 83 335 123 03m51s 1422 072 -1402 Nov 06 19:50:47 33037 -42067 30 H n- -0.2378 1.0039 24.9S 10.9E 76 28 14 00m21s 1423 072 -1401 May 02 07:56:36 33027 -42061 35 H p- 0.6571 1.0118 45.9N 171.9E 49 140 53 00m55s 1424 072 -1401 Oct 27 03:54:45 33017 -42055 40 A p- -0.9744 0.9382 62.3S 177.1E 12 85 1052 04m13s 1425 072 -1400 Mar 22 14:18:16 33009 -42050 7 P -t -1.1615 0.7103 60.7S 156.3W 0 261 1426 072 -1400 Apr 20 21:34:37 33007 -42049 45 P t- 1.3652 0.3183 60.9N 108.7W 0 76 1427 072 -1400 Sep 15 10:17:19 32999 -42044 12 P -t 1.3414 0.3816 60.8N 92.3W 0 287 1428 072 -1399 Mar 12 07:05:11 32989 -42038 17 T -p -0.4535 1.0551 31.9S 130.5W 63 327 203 04m14s 1429 072 -1399 Sep 04 12:17:50 32979 -42032 22 A -p 0.6000 0.9624 44.2N 155.2E 53 217 168 03m18s 1430 072 -1398 Mar 01 20:16:49 32969 -42026 27 H n- 0.2913 1.0027 3.0N 10.3E 73 154 10 00m16s
|
|||
|
|
|||
|
1431 072 -1398 Aug 24 21:37:16 32959 -42020 32 T n- -0.1528 1.0243 7.7N 9.8W 81 23 83 02m18s 1432 072 -1397 Feb 19 02:22:00 32949 -42014 37 P t- 1.0711 0.8412 61.7N 131.5W 0 125 1433 072 -1397 Aug 14 12:45:34 32939 -42008 42 T p- -0.8534 1.0554 36.4S 104.7E 31 24 346 04m23s 1434 072 -1396 Jan 09 08:51:43 32931 -42003 9 P -t -1.1971 0.6232 64.9S 13.9W 0 199 1435 072 -1396 Jul 04 20:49:24 32921 -41997 14 P -t 1.0130 0.9822 65.7N 171.2E 0 349 1436 072 -1396 Dec 28 13:01:06 32911 -41991 19 A -n -0.4552 0.9753 51.0S 125.8E 63 355 99 02m13s 1437 072 -1395 Jun 24 07:16:36 32901 -41985 24 A -p 0.2749 0.9867 39.5N 153.8W 74 181 49 01m21s 1438 072 -1395 Dec 18 00:18:52 32891 -41979 29 T n- 0.2562 1.0278 8.2S 47.5W 75 181 97 02m50s 1439 072 -1394 Jun 13 10:39:05 32881 -41973 34 A p- -0.5042 0.9497 8.3S 156.8E 60 356 214 06m58s 1440 072 -1394 Dec 07 15:40:19 32871 -41967 39 T p- 0.9135 1.0359 44.8N 87.7E 24 187 299 02m51s
|
|||
|
|
|||
|
A-26
|
|||
|
|
|||
|
Fred Espenak and Jean Meeus
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1441 073 -1393 May 03 21:58:15 1442 073 -1393 Jun 02 11:18:15 1443 073 -1393 Oct 28 17:31:46 1444 073 -1392 Apr 22 06:44:14 1445 073 -1392 Oct 16 23:29:12 1446 073 -1391 Apr 11 21:43:28 1447 073 -1391 Oct 05 23:21:33 1448 073 -1390 Apr 01 14:50:14 1449 073 -1390 Sep 24 23:55:59 1450 073 -1389 Feb 20 17:56:51
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 32863 -41962 6 Pe -t 32861 -41961 44 P t32853 -41956 11 P -t 32843 -41950 16 T -p 32833 -41944 21 A -p 32823 -41938 26 T nn 32813 -41932 31 A nn 32803 -41926 36 T p32793 -41920 41 A p32785 -41915 8 P -t
|
|||
|
|
|||
|
Gamma
|
|||
|
1.5310 -1.2553 -1.1784
|
|||
|
0.7040 -0.5228 -0.0681
|
|||
|
0.1637 -0.8002
|
|||
|
0.8486 1.1266
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.0404 0.5257 0.6633 1.0261 0.9363 1.0729 0.9207 1.0619 0.9417 0.7544
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
70.7N 138.7W 0
|
|||
|
|
|||
|
68.7S 167.0E 0
|
|||
|
|
|||
|
71.2S 66.2W 0
|
|||
|
|
|||
|
49.6N 163.2W 45
|
|||
|
|
|||
|
34.7S 48.4W 58
|
|||
|
|
|||
|
0.3S 7.1W 86
|
|||
|
|
|||
|
8.9N 31.9W 81
|
|||
|
|
|||
|
50.4S 119.2E 37
|
|||
|
|
|||
|
58.2N 13.5W 32
|
|||
|
|
|||
|
70.1N 11.2E 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 54 339 119 153 124 02m03s 21 276 06m55s 342 237 06m31s 198 304 10m27s 331 337 04m22s 215 405 04m58s 141
|
|||
|
|
|||
|
1451 073 -1389 Aug 15 20:35:54 32775 -41909 13 P -t -1.1942 0.6423 69.2S 21.0W 0 28 1452 073 -1389 Sep 14 07:18:31 32774 -41908 51 P t- 1.4962 0.0905 71.2N 36.4W 0 298 1453 073 -1388 Feb 09 21:51:55 32765 -41903 18 A -p 0.4267 0.9365 6.5N 10.7W 65 171 261 08m44s 1454 073 -1388 Aug 04 12:42:32 32755 -41897 23 T -p -0.4648 1.0672 6.8S 123.4E 62 6 247 06m19s 1455 073 -1387 Jan 28 21:28:28 32746 -41891 28 A n- -0.2853 0.9315 37.8S 0.7E 73 353 268 07m59s 1456 073 -1387 Jul 25 04:54:11 32736 -41885 33 T n- 0.2592 1.0467 37.8N 116.4W 75 183 161 04m02s 1457 073 -1386 Jan 18 00:19:23 32726 -41879 38 A t- -0.9773 0.9560 78.5S 128.5E 11 186 817 02m35s 1458 073 -1386 Jul 14 16:37:21 32716 -41873 43 P t- 1.0515 0.8922 66.3N 108.4W 0 5 1459 073 -1386 Dec 08 23:06:43 32708 -41868 10 P -t 1.1054 0.8081 63.4N 6.5E 0 215 1460 073 -1385 Jun 04 06:23:36 32698 -41862 15 As -t -0.9813 0.9373 54.5S 109.8W 10 329 - 05m51s
|
|||
|
|
|||
|
1461 074 -1385 Nov 28 14:45:32 32688 -41856 20 T -n 0.4414 1.0404 5.5N 101.7E 64 199 150 03m43s 1462 074 -1384 May 23 07:40:49 32678 -41850 25 A nn -0.2042 0.9684 6.6N 157.0W 78 339 116 03m41s 1463 074 -1384 Nov 17 04:30:43 32668 -41844 30 H n- -0.2385 1.0006 28.9S 120.1W 76 26 2 00m03s 1464 074 -1383 May 12 14:55:38 32658 -41838 35 T p- 0.5768 1.0173 45.4N 70.0E 55 145 72 01m22s 1465 074 -1383 Nov 06 12:08:33 32648 -41832 40 A p- -0.9724 0.9348 64.7S 45.0E 13 92 1076 04m20s 1466 074 -1382 Apr 02 21:58:15 32640 -41827 7 P -t -1.2208 0.5962 60.7S 78.4E 0 270 1467 074 -1382 May 02 04:57:24 32638 -41826 45 P t- 1.2920 0.4585 61.2N 130.2E 0 67 1468 074 -1382 Sep 26 17:53:21 32630 -41821 12 P -t 1.3651 0.3422 60.6N 143.5E 0 278 1469 074 -1381 Mar 23 14:46:27 32620 -41815 17 T -p -0.5121 1.0551 30.8S 114.0E 59 326 209 04m14s 1470 074 -1381 Sep 15 20:05:29 32610 -41809 22 A -p 0.6273 0.9620 41.3N 37.7E 51 218 174 03m21s
|
|||
|
|
|||
|
1471 074 -1380 Mar 12 03:44:58 32600 -41803 27 H nn 0.2381 1.0025 3.9N 103.1W 76 152 9 00m14s 1472 074 -1380 Sep 04 05:41:07 32590 -41797 32 T n- -0.1195 1.0242 6.0N 132.1W 83 26 83 02m14s 1473 074 -1379 Mar 01 09:31:59 32580 -41791 37 P t- 1.0223 0.9252 61.2N 110.6E 0 116 1474 074 -1379 Aug 24 20:52:28 32571 -41785 42 T p- -0.8141 1.0540 34.4S 20.1W 35 28 302 04m14s 1475 074 -1378 Jan 19 16:34:35 32562 -41780 9 P -t -1.2170 0.5903 63.9S 141.0W 0 209 1476 074 -1378 Jul 16 04:12:53 32552 -41774 14 P -t 1.0796 0.8554 64.7N 48.7E 0 339 1477 074 -1378 Aug 14 13:12:41 32551 -41773 52 Pb t- -1.5201 0.0278 62.5S 68.7E 0 46 1478 074 -1377 Jan 08 21:15:24 32543 -41768 19 A -p -0.4658 0.9806 51.2S 5.6E 62 347 78 01m42s 1479 074 -1377 Jul 05 14:07:10 32533 -41762 24 A -p 0.3510 0.9810 44.5N 105.1E 69 187 72 01m51s 1480 074 -1377 Dec 29 08:58:42 32523 -41756 29 T n- 0.2495 1.0320 9.4S 178.9W 76 176 112 03m13s
|
|||
|
|
|||
|
1481 075 -1376 Jun 23 17:02:24 32513 -41750 34 A p- -0.4201 0.9478 1.5S 57.7E 65 1 211 07m22s 1482 075 -1376 Dec 18 00:30:56 32503 -41744 39 T p- 0.9116 1.0369 43.1N 51.2W 24 181 304 02m59s 1483 075 -1375 Jun 12 17:43:49 32493 -41738 44 P t- -1.1691 0.6748 67.7S 57.6E 0 350 1484 075 -1375 Nov 08 02:03:59 32485 -41733 11 P -t -1.1825 0.6554 70.6S 150.7E 0 133 1485 075 -1374 May 03 13:52:19 32475 -41727 16 T -p 0.7755 1.0295 59.2N 82.0E 39 149 158 02m07s 1486 075 -1374 Oct 28 07:34:31 32465 -41721 21 A -p -0.5297 0.9326 39.7S 171.8W 58 21 295 07m08s 1487 075 -1373 Apr 23 05:11:28 32455 -41715 26 T nn 0.0018 1.0762 7.7N 123.0W 90 169 247 06m47s 1488 075 -1373 Oct 17 07:10:35 32445 -41709 31 A nn 0.1509 0.9190 3.7N 151.7W 81 198 310 10m51s 1489 075 -1372 Apr 11 22:23:02 32436 -41703 36 T p- -0.7369 1.0637 41.4S 2.2W 42 336 306 04m52s 1490 075 -1372 Oct 05 07:52:53 32426 -41697 41 A p- 0.8301 0.9423 52.4N 139.3W 34 210 380 05m12s
|
|||
|
|
|||
|
1491 075 -1371 Mar 03 01:25:53 32417 -41692 8 P -t 1.1769 0.6651 70.8N 115.6W 0 128 1492 075 -1371 Apr 01 12:44:43 32416 -41691 46 Pb t- -1.5280 0.0258 71.5S 142.6W 0 268 1493 075 -1371 Aug 26 04:36:55 32408 -41686 13 P -t -1.2282 0.5786 70.0S 155.2W 0 40 1494 075 -1371 Sep 24 15:32:49 32406 -41685 51 P t- 1.4723 0.1337 71.5N 175.4W 0 284 1495 075 -1370 Feb 20 05:06:20 32398 -41680 18 A -p 0.4717 0.9378 12.2N 122.9W 62 167 261 08m17s 1496 075 -1370 Aug 15 20:41:22 32388 -41674 23 T -p -0.5101 1.0633 12.1S 0.2E 59 10 241 05m51s 1497 075 -1369 Feb 09 04:50:40 32378 -41668 28 A nn -0.2481 0.9359 32.9S 110.2W 75 349 246 07m38s 1498 075 -1369 Aug 05 12:35:59 32368 -41662 33 T n- 0.2075 1.0410 32.8N 128.0E 78 187 140 03m41s 1499 075 -1368 Jan 29 08:11:40 32358 -41656 38 A t- -0.9492 0.9636 83.7S 42.8W 18 237 432 02m15s 1500 075 -1368 Jul 24 23:47:15 32348 -41650 43 An t- 0.9934 0.9744 72.3N 130.2E 5 353 - 01m24s
|
|||
|
|
|||
|
A-27
|
|||
|
|
|||
|
Five Millennium Catalog of Solar Eclipses: –1999 to +3000 (2000 BCE to 3000 CE)
|
|||
|
|
|||
|
TD of
|
|||
|
|
|||
|
Cat Canon Calendar Greatest
|
|||
|
|
|||
|
Num Plate Date
|
|||
|
|
|||
|
Eclipse
|
|||
|
|
|||
|
1501 076 -1368 Dec 19 07:53:14 1502 076 -1367 Jun 14 12:42:35 1503 076 -1367 Dec 08 23:36:35 1504 076 -1366 Jun 03 14:10:48 1505 076 -1366 Nov 28 13:10:48 1506 076 -1365 May 23 21:53:13 1507 076 -1365 Nov 17 20:25:06 1508 076 -1364 Apr 13 05:31:40 1509 076 -1364 May 12 12:17:35 1510 076 -1364 Oct 07 01:38:20
|
|||
|
|
|||
|
Luna Saros Ecl. ∆T Num Num Type QLE s 32340 -41645 10 P -t 32330 -41639 15 P -t 32321 -41633 20 T -n 32311 -41627 25 A nn 32301 -41621 30 A n32291 -41615 35 T p32281 -41609 40 A p32273 -41604 7 P -t 32271 -41603 45 P t32263 -41598 12 P -t
|
|||
|
|
|||
|
Gamma
|
|||
|
1.1072 -1.0678
|
|||
|
0.4432 -0.2899 -0.2400
|
|||
|
0.4943 -0.9735 -1.2855
|
|||
|
1.2162 1.3816
|
|||
|
|
|||
|
Ecl. Mag.
|
|||
|
0.8055 0.8463 1.0401 0.9703 0.9979 1.0220 0.9320 0.4709 0.6046 0.3149
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
Lat. Long. Alt
|
|||
|
|
|||
|
°
|
|||
|
|
|||
|
° °
|
|||
|
|
|||
|
64.3N 136.3W 0
|
|||
|
|
|||
|
63.6S 156.2E 0
|
|||
|
|
|||
|
3.8N 33.5W 64
|
|||
|
|
|||
|
4.2N 104.7E 73
|
|||
|
|
|||
|
32.4S 109.5E 76
|
|||
|
|
|||
|
44.6N 31.2W 60
|
|||
|
|
|||
|
67.2S 90.3W 13
|
|||
|
|
|||
|
60.8S 45.3W 0
|
|||
|
|
|||
|
61.6N 9.7E 0
|
|||
|
|
|||
|
60.6N 17.1E 0
|
|||
|
|
|||
|
Central Sun Path Line Azm Width Dur.
|
|||
|
° km 205 328 195 149 03m48s 342 111 03m35s
|
|||
|
22 7 00m11s 150 86 01m47s 102 1159 04m25s 278
|
|||
|
58 268
|
|||
|
|
|||
|
1511 076 -1363 Apr 02 22:20:58 32253 -41592 17 T -p -0.5757 1.0543 30.2S 0.0E 55 325 216 04m13s 1512 076 -1363 Sep 26 04:03:15 32243 -41586 22 A -p 0.6468 0.9619 38.1N 83.5W 49 218 177 03m25s 1513 076 -1362 Mar 23 11:05:00 32234 -41580 27 H nn 0.1792 1.0020 4.9N 145.9E 80 151 7 00m12s 1514 076 -1362 Sep 15 13:53:07 32224 -41574 32 T n- -0.0924 1.0240 3.4N 103.5E 85 28 82 02m10s 1515 076 -1361 Mar 12 16:33:12 32214 -41568 37 A t- 0.9669 0.9403 54.3N 18.6E 14 127 864 04m57s 1516 076 -1361 Sep 05 05:06:58 32204 -41562 42 T p- -0.7810 1.0521 33.9S 146.8W 38 31 270 04m01s 1517 076 -1360 Jan 31 00:09:43 32196 -41557 9 P -t -1.2435 0.5457 63.0S 94.3E 0 219 1518 076 -1360 Jul 26 11:42:29 32186 -41551 14 P -t 1.1403 0.7409 63.7N 75.0W 0 329 1519 076 -1360 Aug 24 21:13:05 32184 -41550 52 P t- -1.4850 0.0962 61.9S 62.1W 0 55 1520 076 -1359 Jan 19 05:23:36 32176 -41545 19 A -p -0.4825 0.9862 50.7S 113.1W 61 341 56 01m10s
|
|||
|
|
|||
|
1521 077 -1359 Jul 15 21:02:47 32166 -41539 24 A -p 0.4217 0.9751 48.2N 4.0E 65 193 98 02m20s 1522 077 -1358 Jan 08 17:33:00 32157 -41533 29 T n- 0.2376 1.0365 10.1S 51.1E 76 172 126 03m36s 1523 077 -1358 Jul 04 23:30:55 32147 -41527 34 A pn -0.3401 0.9456 4.1N 41.8W 70 5 213 07m38s 1524 077 -1358 Dec 29 09:15:55 32137 -41521 39 T p- 0.9054 1.0386 41.3N 171.4E 25 175 307 03m09s 1525 077 -1357 Jun 24 00:13:59 32127 -41515 44 P t- -1.0855 0.8198 66.7S 52.5W 0 1 1526 077 -1357 Nov 19 10:37:00 32119 -41510 11 P -t -1.1851 0.6502 69.7S 8.0E 0 146 1527 077 -1356 May 13 20:59:28 32109 -41504 16 T -p 0.8487 1.0317 69.4N 36.7W 32 141 203 02m03s 1528 077 -1356 Nov 07 15:41:51 32099 -41498 21 A -p -0.5343 0.9298 44.3S 65.2E 57 20 311 07m16s 1529 077 -1355 May 03 12:36:48 32089 -41492 26 Tm nn 0.0743 1.0785 15.7N 122.0E 86 165 254 06m53s 1530 077 -1355 Oct 27 15:05:56 32080 -41486 31 A nn 0.1429 0.9180 1.0S 87.2E 82 196 314 11m10s
|
|||
|
|
|||
|
1531 077 -1354 Apr 23 05:49:30 32070 -41480 36 T p- -0.6687 1.0648 32.5S 120.7W 48 340 283 05m19s 1532 077 -1354 Oct 16 15:58:40 32060 -41474 41 A p- 0.8181 0.9430 47.4N 93.6E 35 206 362 05m24s 1533 077 -1353 Mar 14 08:43:42 32052 -41469 8 P -t 1.2353 0.5616 71.4N 119.9E 0 115 1534 077 -1353 Apr 12 19:56:23 32050 -41468 46 P t- -1.4667 0.1390 71.4S 94.0E 0 282 1535 077 -1353 Sep 06 12:47:14 32042 -41463 13 P -t -1.2549 0.5283 70.7S 67.6E 0 53 1536 077 -1353 Oct 05 23:56:17 32040 -41462 51 P t- 1.4553 0.1643 71.7N 43.1E 0 270 1537 077 -1352 Mar 02 12:09:04 32032 -41457 18 A -p 0.5256 0.9391 19.1N 127.3E 58 164 264 07m44s 1538 077 -1352 Aug 26 04:48:59 32022 -41451 23 T -p -0.5478 1.0592 17.5S 125.6W 57 13 232 05m20s 1539 077 -1351 Feb 19 12:05:04 32013 -41445 28 A nn -0.2042 0.9406 27.1S 139.8E 78 346 225 07m12s 1540 077 -1351 Aug 15 20:23:41 32003 -41439 33 T nn 0.1616 1.0350 27.5N 10.0E 81 191 119 03m16s
|
|||
|
|
|||
|
1541 078 -1350 Feb 08 15:58:43 31993 -41433 38 A t- -0.9158 0.9712 80.0S 139.2E 23 296 262 01m53s 1542 078 -1350 Aug 05 07:01:49 31983 -41427 43 A p- 0.9399 0.9722 83.8N 51.1W 19 283 300 01m44s 1543 078 -1350 Dec 30 16:36:22 31975 -41422 10 P -t 1.1125 0.7964 65.3N 81.4E 0 194 1544 078 -1349 Jun 25 19:04:07 31965 -41416 15 P -t -1.1519 0.7023 64.6S 49.5E 0 338 1545 078 -1349 Dec 20 08:24:42 31955 -41410 20 T -n 0.4473 1.0402 2.9N 167.8W 63 190 150 03m54s 1546 078 -1348 Jun 13 20:45:31 31946 -41404 25 A -p -0.3727 0.9716 1.0N 4.8E 68 346 109 03m31s 1547 078 -1348 Dec 08 21:47:05 31936 -41398 30 A n- -0.2392 0.9958 35.1S 19.3W 76 18 15 00m24s 1548 078 -1347 Jun 03 04:55:30 31926 -41392 35 T p- 0.4146 1.0260 43.3N 133.8W 65 156 97 02m09s 1549 078 -1347 Nov 28 04:39:56 31916 -41386 40 A p- -0.9739 0.9298 69.8S 134.2E 12 112 1219 04m28s 1550 078 -1346 Apr 24 13:01:27 31908 -41381 7 P -t -1.3532 0.3390 61.0S 168.0W 0 287
|
|||
|
|
|||
|
1551 078 -1346 May 23 19:38:06 31907 -41380 45 P t- 1.1401 0.7519 62.2N 111.0W 0 49 1552 078 -1346 Oct 18 09:30:13 31898 -41375 12 P -t 1.3929 0.2963 60.7N 111.0W 0 259 1553 078 -1345 Apr 14 05:48:09 31889 -41369 17 T -p -0.6448 1.0528 30.5S 112.2W 50 326 224 04m08s 1554 078 -1345 Oct 07 12:09:59 31879 -41363 22 A -p 0.6600 0.9623 34.7N 152.3E 49 217 178 03m27s 1555 078 -1344 Apr 02 18:14:26 31869 -41357 27 Hm nn 0.1122 1.0010 5.8N 37.7E 84 150 4 00m06s 1556 078 -1344 Sep 25 22:15:23 31859 -41351 32 T n- -0.0731 1.0240 0.1N 23.8W 86 29 82 02m08s 1557 078 -1343 Mar 22 23:24:02 31849 -41345 37 A p- 0.9031 0.9437 49.4N 77.9W 25 132 470 04m53s 1558 078 -1343 Sep 15 13:29:48 31840 -41339 42 T p- -0.7547 1.0500 34.9S 84.5E 41 35 247 03m46s 1559 078 -1342 Feb 10 07:36:39 31832 -41334 9 P -t -1.2772 0.4885 62.3S 28.2W 0 228 1560 078 -1342 Aug 06 19:17:49 31822 -41328 14 P -t 1.1956 0.6377 62.9N 160.2E 0 320
|
|||
|
|
|||
|
A-28
|
|||
|
|