CHAPTER 1
FIRST-ORDER DIFFERENTIAL EQUATIONS

SECTION 1.1
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELING

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of
differential equations, and to show the student what is meant by a solution of a differential
equation. Also, the use of differential equations in the mathematical modeling of real-world

phenomena is outlined.

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
given differential equations. We include here just some typical exarnples of such verifications.

3 If y,=cos2x and y, =sin2x, then y =-2sin2x and y, =2cos 2x so
¥ = —4cos2x = -4y and y] = —dsin2x = —4y,
Thus y;+4y, = 0 and y]+4y, = 0.

4, If y=e" and y,=e™, then y, =3¢* and y,=-3¢™ so

»

v, =9¢" =9y, and ¥, =9 =9y,

5. If y=e'—e™, then y'=¢"+e"s0 y-y = (e"+e“)—(e"-e“) = 2¢™*. Thus
y = y+2e™.

6. If yy=e™ and y,=xe™, then y/=-2¢, y'=4¢ ™, y,=¢ ¥ -2x¢™, and

»

yi=-4e +4xe™, Hence

Wy +ay = (4e7 ) 14(-2e7)+4(e>) = 0

and
Yo +4y, +4y, = (—4e'2x+4xe_zx)+4(e'2‘—2xe‘2‘)+4(xe_h) =],

8. If y,=cosx—cos2x and y, =sinx-cos2x, then y, =—sinx+2sin2x,
¥, =—cosx+4cos2x, and ¥, =cosx+2sin2x, y;=—sinx+4cos2x. Hence
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11.

13.

14.

15,

16.

yi+y, = (—cosx+4cos2x)+(cosx—cos2x) = 3cos2x

and
yI+y, = (—sinx+4cos2x}+(sinx—cos2x) = 3cos2x.

If y=y =x7 then y=-2x" and y"=6x", so
Xy +5xy +4y = 22 (657 )+5x(2x)+4(x?) = 0.
If y=y,=xInx then y=x"-2x"Inx and y"=-5x"+6x"Inx, so

Ky +5xy +4y = & (—Sx"‘ +6x*1n x)-i-SJnc(x'3 —2x7In x)+4(xh2 in x)
0.

= (—5J|c‘2 +5J|c_2)-|~(6‘:|c'2 —10x7 +4x‘9)lnx =

Substitution of y=e™ into 3y =2y gives the equation 3re” = 2¢" that simplifies
to 3r=2. Thus r=2/3.

2 rx

Substitution of y=¢™ into 4y"=y gives the equation 4r°e”™ = ™ that simplifies to
4r*=1. Thus r=%x1/2.

Substitution of y=¢" into ¥+ —2y = 0 gives the equation rle™ +re” —-2e"=0
that simplifies to r’+r—2 = (r+2)(r—1) = 0. Thus r=-2 or r=1.

Substitution of y=e™ into 3y +3y'—4y = 0 gives the equation
3p2%™ + 3re™ —4e™ =0 that simplifies to 3r* +3r—4 = 0. The quadratic formula then

gives the solutions r = (-—Si \/5_'?)!6.

The verifications of the suggested solutions in Problems 17-36 are similar to those in Problems
1-12. We illustrate the determination of the value of C only in some typical cases.

17.

18.

19.

20.

21.

G =2
=73

If y(x) = Ce"—1 then y(0)=5 gives C—-1 = 5, s0 C=6.

S If y(x) = Ce™*+x—1 then y(©0)=10 gives C-1 = 10, so C = 11.

Tl
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22.

23.

24,

25.

26.

27.

28.

29,

30.

31.

If y(x) = In(x+C) then ¥0)=0 gives InC =0, so C = 1.

If y(x) =+’ +Cx" then y(2)=1 gives the equation +:32+C-1 = 1 with solution
C = -56.

C=17

If y(x) = tan(x*+C) then y(0)=1 gives the equation tan C = 1. Hence one value
of Cis C=mx/4 (asis this value plus any integral multiple of 7).

Substitutionof x=7x and y=0 into y = (x+C)cosx yields the equation
0=@m@+C)-1), so C = -x.

Yy = x+y

The slope of the line through (x,y) and (x/2,0) is y' = (y—0)/(x—x/2) = 2y/x,

so the differential equationis xy" = 2y.

If m=y" is the slope of the tangent line and m’ is the slope of the normal line at {x,¥).
then the relation mm’=~1 yields m" = 1/y" = (y—1)/(x—0). Solution for y’ then
gives the differential equation (I1-y)y" = x.

Here m=y" and m’=D,(x*+k) = 2x, so the orthogonality relation mm’=—1 gives

the differential equation 2xy" = ~1.

The slope of the line through (x,y) and (—y.x) is ¥ = (x—y)/~y—-x), sothe
differential equation is (x+y)y" = y—x.

In Problems 32-36 we get the desired differential equation when we replace the "time rate of
change” of the dependent variable with its derivative, the word "is" with the = sign, the phrase
"proportional to” with k, and finally translate the remainder of the given sentence into symbols.

32,

33

34.

35,

36.

dPldt = kJP
dvidt = kv’
dvidt = k(250—v)

dN/dt = k(P—-N)

dN/!dt = kN(P—-N)
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37. y(x) =1 or y(x) = x
38. y(x) = €&
39. y(x) = x°
40. yx) =1 or y(x) = -1
41. y(x) = e"/2
42, v(x) = cosx or y(x) = sinx
43. (a) y(10) =10 yields 10=1/(C-10), so C=101/10.
(b} There is no such value of C, but the constant function y{x)=0 satisfies the
conditions y =y* and y(0)=0.
(c) It is obvious visually that one and only one solution curve passes through each
point (a,b) of the xy-plane, so it follows that there exists a unique solution to the initial
value problem y'=y*, y(a)=b.
44, (b) Obviously the functions u(x)=— x* and v(x)=+x* both satisfy the differential
equation xy = 4y. But their derivatives W' (x)=—4x" and v'(x)=+4x" match at
x = 0, where both are zero. Hence the given piecewise-defined function y(x) is
differentiable, and therefore satisfies the differential equation because w(x) and v(x) do
so (for x<0 and x20, respectively).
(¢) If a>0 (for instance), chose C, sothat Cya' = b. Then the function
) Cx* if x<0,
x) =
. Cox'  if x20
satisfies the given differential equation for every value of C.
SECTION 1.2

INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS
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This section introduces general solutions and particular solutions in the very simplest situation
— adifferential equation of the form y'= f (x) — where only direct integration and evaluation
of the constant of integration are involved. Students should review carefully the elementary
concepts of velocity and acceleration, as well as the fps and mks unit systems.

L Integration of y' =2x+!1 yields y(x) = I(2x+1)dx = x*+x+C. Then substitution
of x=0, y=3 gives 3 = 0+0+C = C, so y(x) = x*+x+3.

Z Integration of y'=(x—2)" yields y(x) = _[(x~2)2dx = L(x-2)'+C. Then
substitution of x=2, y=1gives 1 = 0+C = C, so y(x) = _%(x—2)3.

3 Integration of y’:\/; yields y(x) = j\/;c.dx - -ﬁ-xm+C. Then substitution of
x=4, y=0 gives 0=2+C, so y(x) = 2(x"*-8).

4. Integration of ¥ =T yields y(x} = jx‘zdx = —1/x+C. Then substitution of
x=1, y=5 gives 5=-1+C, so y(x) = —-1/x+6.

5 Integration of y"=(x+2)"? vyields y(x) = J(x+ )" dx = 2dx+2+C. Then
substitution of x=2, y=—1 gives —1=2-24+C, s0 y(x) = 2Jx+2 -5.

6.  Integrationof ¥’ =x(x’+9)" yields y(x) = [x(x’+9)"dx = 1(x* +9)"* +C.
Then substitution of x=~4, y=0 gives 0=1(5+C, so
yx) = H{(*+9)" -125].

% Integration of y':'lOf(x2+1) vields y(x) = J.IOI(xEH)dx = 10tan”' x+C. Then

substitution of x=0, y=0 gives 0=10-0+C, so y(x) = 10tan' x.

8. Integration of y'=cos2x yields y(x) = Icostdx = <sin2x+C. Then substitution

of x=0, y=1 gives 1=0+C, so y(x) = Isin2x+1.

9. Integration of y' =1/4/1-x> vyields y(x) = ju 1-x* dx = sin” x+ . Then

substitution of x=0, y=0 gives 0=0+C, so y(x) = sin"' x.
10.  Integration of y =xe* yields

y(x) = [xe“dr = [ue'du = (-De* = ~(x+De™+C
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(when we substitute # =—x and apply Formula #46 inside the back cover to the
textbook). Then substitution of x=0, y=1 gives 1=-1+ C, so
y(x) = —(x+De" +2.

11.  If a(r) = 50 then v(r) = [50dt = 50t+v, = 50+10. Hence
() = [(50t+10ydt = 251 +101+x, = 25¢°+101+10.

12 If a(t) = =20 then v(r) = [(-20)dr = —201+v, = —20¢-15. Hence
M) = [(200-15)dr= ~10¢* ~150+%, = =10¢*<15¢:45.

13. It a( =3t then w(t) = [3tdt = 31*+v, = 31°+5. Hence
() I(%t2+5)d1‘: L' +514x, = 418451,

14. If a(r) = 2¢t+1 then v(t) = j(2r+1)dr = +t+v, = t*+t—7. Hence
() = [P +t-Tydt= 50 +51-Tr+x, = 30 +41-Tr+4,

15. If a{f) = 2¢t+1 then v(t) = j(2:+l)dr = 1" +1+v, = £ +1—7. Hence
x(t) = I(r2+t—7)dr= Lo ede—Tt+x, = 10 +3t-Tr+4.

16.  If a@) = U/+/t+4 then w(1) = jqu+4 dt = Wit+4+C = 24t1+4-5 (taking
C = -5 sothat v(0)=-1). Hence

x(t) = [@Nt+3-5)di= $(+4y" =51+C = Lr+4)2-51-2
(taking C=-29/3 sothat x(0)=1).

17.  If a(@®) = @+~ then v(t) = J’(:+1)"3 dt = 1@+ +C = -1 +1)7 +} (taking
C=1 sothat v(0)=0). Hence

x(t) = _[[—%(Hl)'%ﬂdrm L+ +414C = %[(Hl)_]“ﬂ-l]
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(taking C=-—4 sothat x(0)=0).

18, If a(t) = 50sin5: then v(r) = jSOsinSr dt = —10cos5t+C = —10cos5: (taking
C =0 sothat v(0)=-10). Hence

x(t) = [(~10cos5tydr= ~2sin5t+C = ~2sin5t+10

(taking C=-10 sothat x(0)=8).

19, v = -9.87+49, so the ball reaches its maximum height (v =0) after = 5 seconds. Its
maximum height then is y(5) = —4.9(5)2 +49(5) = 122.5 meters.

20. v =-32t and y = —167 +400, so the ball hits the ground (y = 0) when
t = 5sec, and then v = -32(5) =-160 ft/sec.

21. @ =-10m/s” and vo = 100 km/h = 27.78 m/s, so v = —10r +27.78, and hence
x(1) = 51" + 27.78t. The car stops when v = 0, ¢ = 2.78, and thus the distance
traveled before stopping is x(2.78) = 38.59 meters.

22, v =-98+100 and y = 4.9/ + 100z + 20.

(a) v = 0 when 7= 100/9.8 so the projectile’s maximum height is
¥(100/9.8) = —4.9(100/9.8)* + 100(100/9.8) + 20 = 530 meters.

(b) It passes the top of the building when w(r) = —4.97 + 100r + 20 = 20,
and hence after ¢ = 100/4.9 = 20.41 seconds.

{c) The roots of the quadratic equation y(f) = —4.97 + 100r+20 = 0 are
t = —0.20, 20.61. Hence the projectile is in the air 20.61 seconds.

2. a=-98m/s2 so v =-98¢-10 and
y =49 r2—10t+y0.
The ball hits the ground when y = 0 and

v=-981-10 = —60,
so t=25.10s. Hence

yg = 4.9(5.10)° + 10(5.10) ~ 178.57 m.

24, v = -32t-40 and y = —16 —40¢ +555. The ball hits the ground (y = 0)
when ¢ = 4.77 sec, with velocity v = v(4.77) = ~192.64 ft/sec, an impact
speed of about 131 mph.
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25,

26.

27.

29.

Integration of dv/dt=0.12 £+0.6 t, v(0) =Q gives v(1) =0.3 4+ 0.04 £. Hence
¥(10) = 70. Then integration of dx/dr=037+0.047, x(0)=0 gives
x(1) = 0.1 £ +004 7 so x(10) = 200. Thus after 10 seconds the car has gone 200 ft and
is traveling at 70 ft/sec,
Taking xg = 0 and vy = 60 mph = 88 ft/sec, we get
v = —gt+ 88,
and v = O yields ¢+ = 88/a. Substituting this value of ¢ and x = 176 in
x = —ar’l2 + 881,
we solve for a = 22 fusec’. Hence the car skids for 1 = 88/22 = 4 sec.
If a = —20 m/sec’ and xy = O then the car's velocity and position at time 7 are given
by
v = =20t+vy, x = —10r2+v0r.

It stops when v = 0 (so vy = 20¢), and hence when

x=75=-107+Q200t = 107

Thus 7 = V7.5 sec so
vo = 2047.5 = 54.77 m/sec = 197 km/hr.

Starting with xo = 0 and v = 50 knv/h = 5x10* m/h, we find by the method of
Problem 24 that the car's decelerationis a = (?.5!’3)><10? mv/h% Then, starting with xy =
0 and vg = 100km/h = 10° m/h, we substitute ¢+ = w/a into

x = —at’ + vt

and find that x = 60 m when v = 0. Thus doubling the initial velocity quadruples the
distance the car skids.

If vo = 0 and yp = 20 then

v=—atand y = —%at2+20.

Substitutionof ¢ = 2, y = 0 yields a = 10 ft/sec’. If vo = O and
Yo = 200 then

v = -10f and y = —-5¢ + 200.
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30.

31.

32,

33.

34.

Hence y = 0 when ¢t = V40 = 2410 sec and v = —204/10 =~ —63.25 ft/sec.

On Earth: v = -32t+ v, so 1 = v/32 at maximum height (when v = Q).
Substituting this value of # and y = 144 in

y = =168 + v,

we solve for vp = 96 ft/sec as the initial speed with which the person can throw a ball
straight upward.

On Planet Gzyx: From Problem 27, the surface gravitational acceleration on planet
Gzyx is a = 10 ft/sec’, so

v= -10t+96 and = -5¢ + 961

Therefore v = 0 yields t = 9.6 sec, and thence ymx = ¥(9.6) = 460.8 ft is the
height a ball will reach if its initial velocity is 96 ft/sec.

If vo = 0 and yo = h then the stone’s velocity and height are given by

v = —gl, y=—0.5gtz+h.
Hence y = 0 when ¢t = j2h/g so

s —g\/thg = ~.f2gh.

The method of solution is precisely the same as that in Problem 30. We find first that, on
Earth, the woman must jump straight upward with initial velocity vo = 12 ft/sec to
reach a maximum height of 2.25 ft. Then we find that, on the Moon, this initial velocity

yields a maximum height of about 13.58 ft.

We use units of miles and hours. If xp = vg = O then the car’s velocity and position
after ¢ hours are given by

(58]

v=al, x= 1ir.

|

Since v = 60 when ¢ = 5/6, the velocity equation yields @ = 72 mi/hr’. Hence the
distance traveled by 12:50 pm is

x = (0.5)(72)(5/6)* = 25 miles.

Again we have
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Butnow v = 60 when x = 35. Substitution of ¢ = 60/t (from the velocity equation)
into the position equation yields

35 = (0.5)(60/)1%) = 301,

whence t = 7/6 hr, that is, 1:10 p.m.

35. Integration of ¥y = (9/vs)(1 —4x2) yields

y = Blv)(B3x-4x) + C,

and the initial condition y(—-1/2) = 0 gives C = 3/v;. Hence the swimmer’s trajectory

15
¥x) = Blv)(Bx—4x + 1).

Substitution of ¥(1/2) = 1 now gives v = 6 mph.

36. Integration of ¥ = 3(1 — 16x") yields

y = 3x—(48/5)x° + C,

and the initial condition y(-1/2) = 0 gives C = 6/5. Hence the swimmer’s trajectory

18
yx) = (1/5)(15x — 48x° + 6),

so his downstream drift is y(1/2) = 2.4 miles.

SECTION 1.3
SLOPE FIELDS AND SOLUTION CURVES

As pointed out in the textbook, the instructor may choose to delay covering Section 1.3 until later
in Chapter 1. However, before proceeding to Chapter 2, it is important that students come to
grips at some point with the question of the existence of a unique solution of a differential
equation — and realize that it makes no sense to look for the solution without knowing in
advance that it exists. The instructor may prefer to combine existence and uniqueness by
simplifying the statement of the existence-uniqueness theorem as follows:

Suppose that the function f(x,y) and the partial derivative df /dy are both
continuous in some neighborhood of the point (a, ). Then the initial value
problem

D e s
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has a unique solution in some neighborhood of the point «.

Slope ftelds and geometrical solution curves are introduced in this section as a concrete aid in
visualizing solutions and existence-uniqueness questions. Solution curves corresponding to the
slope fields in Problems 1-10 are shown in the answers section of the textbook and will not be

duplicated here.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Eachisocline x— 1 = C is a vertical straight line.

Each isocline x+ y = C is a straight line with slope m = -1,

Each isocline y2 = C20, thatis, y = \/E or y = -\/E, is a horizontal straight
line.

Each isocline {/; = C, thatis, y = C° is ahorizontal straight line.

Eachisocline y/x = C, or y = Cx, 1s astraight line through the origin.

Each isocline x* — y* = C is a hyperbola that opens along the x-axis if C> 0, along the
y-axis if C<0.

Each isocline xy = C is arectangular hyperbola that opens along the line y = x if
C>0, along y = —x if C<0.

Each isocline x — y* = C, or y* = x— C, is a translated parabola that opens along the
X—axis.

Each isocline y~x* = C, or x> = y—C, is a translated parabola that opens along the

y—-axis.
X

Each isocline is an exponential graph of the form y = Ce’,

Because both  f(x,y) = 2xzy2 and of /dy = 4x2y are continuous everywhere, the
existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a
unique solution in some neighborhood of x = 1.

Both f(x,y) = xIny and df /dy = x/y are continuous in a neighborhood of
(1, 1), so the theorem guarantees the existence of a unique solution in some
neighborhood of x = 1.

Both f(x.y) = vy and of /9y = (1/3)y*? are continuous near (0, 1), so the
theorem guarantees the existence of a unique solution in some neighborhood of x = 0.
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24,

25,

26.

27.

28.

29,

30.

31.

i 7.

35.

36.

12

f(x,y) = y* is continuous in a neighborhood of (0, 0), but df /dy = a3y ™ s
not, so the theorem guarantees existence but not uniqueness in some neighborhood of
xig

flx,y) = (x— ¥} is not continuous at (2, 2) because it is not even defined if y>x.
Hence the theorem guarantees neither existence nor unigueness in any neighborhood of
the point x = 2,

fxy) = (x— "™ and I /1y = ~(1/2)(x— y)™* are continuous in a neighborhood
of (2, 1), sothe theorem guarantees both existence and uniqueness of a solution in some
neighborhood of x = 2.

Both f(x,y) = (x-1/y and df/dy = —{x— l)f’y2 are continuous near (0, 1), sothe
theorem guarantees both existence and uniqueness of a solution in some neighborhood of
x = 0

Neither f(x,¥) = (x— 1))y nor of /dy = —(x— 1)y’ is continuous near (1, 0), so the
existence-uniqueness theorem guarantees nothing.

Both f(x,y) = In(l + yz) and df /dy = 2y/(1+ yz) are continuous near (0, 0), so
the theorem guarantees the existence of a unique solution near x = 0.

Both f(x,y) = x’— y* and 9f /9y = -2y are continuous near (0, 1), so the theorem
guarantees both existence and uniqueness of a solution in some neighborhood of x = 0.

If fix,y) = (- yz)”2 then df /dy = ¥ - yz)_11r2 is not continuous when y = 1,
so the theorem does not guarantee uniqueness.

The two solutions are  y{(x) = 0 (constant) and y.(x) = x.

The isoclines of y' = y/x are the straight lines y = Cx through the origin, and
y = C atpointsof y = Cx, so it appears that these same straight lines are the solution
curves of xy'= y. Then we observe that there is

(1) a unique one of these lines through any point not on the y-axis;
(it) no such line through any point on the y-axis other than the origin; and
(iii)  infinitely many such lines through the origin.

f(x¥) = 4xy'? and 9f /3y = 2xy " are continuous if y >0, soforall a andall

b >0 there exists a unique solution near x = a suchthat y(@) = b. If b = 0 thenthe
theorem guarantees neither existence nor uniqueness. For any a, both yi{x) = 0 and
ya(x) = (x?’—az}2 are solutions with y(a) = 0. Thus we have existence but not

uniqueness near points on the x-axis.
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SECTION 1.4
SEPARABLE EQUATIONS AND APPLICATIONS

Of course it should be emphasized to students that the possibility of separating the variables is
the first one you look for. The general concept of natural growth and decay is important for all
differential equations students, but the particular applications in this section are optional.
Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and

problems.

L P ~[2xdy, Iy =-x'+c  yx) = e = e
Y
dy 1
2 — = —|2xdx; —-——=-x*-C xX) =
¥ J * ¥ - +C
3 2 jsin xde; Iny = —cosx+e; y(x) = e = Ce ™
y

kd

A jf?lz I‘.*E- Iny = 4ln(+x0)+InC. (&) = C1+x)*
+x

s | T2 = [oE sy =dEe s = sin(d )

6. j-‘—ji = _[3\/;dx; 2\/; = 2x"*+2C;  y(x) = (xm+C)
¥

32

¥ =31 430 ) = (26 +C)

[ Y

7. J—-‘%’T = _‘.4x”3 dx;
y

8. Icosydy = IZxdx; siny = x**+C;  y(x) = sin™ (x2+C)

9. dy de & : + ! dx (partial fractions)
I+x 1—x

Iny = n(l+x)-Inl-x)+InC, y(x) = CH—x
~X
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10. ’[_"'LE & dx o B P S _1+C0+x)
(1+y) (1+x)° 1+y 1+x 1+x
ity & I+x . i) +% 4 E—C(lJrX)
1+ C(1+x) 1+C(1+x) 1+ C(l+x)
rd)‘ 1 £ € =12
11. 57" x dx; g S y(x) = (C-%*)

r“ 'd 4 1
12. L . J.rdx; Jz‘ln(yz+1) =4x"+tC; y+l = Ce

s |
13. y4dy = j-cosxdx; {ln(_v“H) = sinx+C
J ¥y +l

4. (1+dy)ay = [(1+R) s y+3y* = x+324C

15. [-g;-——l;ldy = J‘[—l*——l-;]dx --?--i--—l—; = Inlx[+l-i—C
T3 X X y 3y x

F
d d
g sin ydy _ J-i'i “In(cosx) = 1In(1+x*) +InC
cos y I+ “

o

secy = Cvl+ x2: y(x) = sec”! (C\“-i-,’.':)

17. y = l4+x+ytxy = (1+x)(1+y)

dy

= [a+xdx; Infi+y] = x+5x7+C
I+ y

18. Y =1-x*+y'-x’y’ = (a-x)0+y»)

. B I{ﬂl—;—l]dx; tan'y = -—l*.t-i—C; y(x) = tan{C—ml-—x)
X

i l+y2 x X
( d ;

19. a9 - Je’ de; Iny =¢"+InC; y(x) = Cexp(e”)
4 ¥

y(0)=2¢ implies C=2 s0 y(x) = 2exp(e’)
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20.

21.

22

24.

25.

26.

27.

28.

J‘lfyz = J3x2dx'; tan"'y = x’ +C; y(x) = tan(x"-kC)
y

y0)=1 implies C=tan”1=m/4 so y(x) = tan(x’+71/4)
f2ydy = . y! = ¥x'=16+C

e

Vxt=1

y(5)=2 implies C=1 so y* = 1+Vx*-16

Jﬁ i j(4x3—l)dx; ny = x*—x+InC; y(x) = Cexp(x*-x)
y

y(1)=-3 implies C=-3 so y(x) = —3exp(x’—x)

[ﬂ_ = jdx; iin(2y-1) = x+3InC; 2y-1= Ce™

2y—1

y(1)=1 implies C=e? so y(x) = Jz-(l+ez"‘2)

JQ = J’co§xdx: Iny = In(sinx)+InC; y(x) = Csinx
y sinx

y(Z)=% implies C=% so y(x)} = §sinx

Jd_y s J‘(i+2x}, Iny = Inx+x*+InC;  y(x) = Cxexp(x’)
y X

y(I)=1 implies C=e" so y(x) = xexp(x” =1)

1 -1
2 (2x+3x2); —— = X+xX+C X)) = 5—
y? y ¥ +x'+C

1
y()=-1 implies C=-1 so y(x) = T

[erdy = [6e7dn @ =3e¥+Ci y(x) =n(3¢¥ +C)

y0)=0 implies C=—2 so y(x) =In(3e* -2)

jseczydy = J% tany = Vx+C; y(x) =tan™ (\/;+C)
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y(4)=Z implies C=-1 so y(x) =tan”' (ﬁ*l)

29, The population growth rate is & = In{30000/25000)/10 = 0.01823, so the population
of the city ¢ years after 1960 is given by P(f) = 25000¢*®**". The expected year 2000
population is then P(40) = 25000e""**> = 51840,

30.  The population growthrate is & = In(6)/10 = 0.17918, so the population after ¢
hours is given by P(f) = P,¢"'™* . To find how long it takes for the population to
double, we therefore need only solve the equation 2P = P, '™ for
t = (In2)/0.17918 = 3.87 hours.

31.  As in the textbook discussion of radioactive decay, the number of '*C atoms after ¢
years is given by N(1) = N, e ™% Hence we need only solve the equation
LN, = N, e for ¢ = (in6)/0.0001216 = 14735 years to find the age of the

skull,

32.  Asin Problem 31, the number of '“C atoms after 7 years is given by
N(1) = 5.0x10% ¢ *®%¢  Hence we need only solve the equation

4.6x10"° = 5.0x10' e *®" forthe age ¢ = (In(5.0/4.6)}/0.0001216 = 686 years

of the relic. Thus it appears not to be a genuine relic of the time of Christ 2000 years
ago.

33.  The amount in the account after ¢ years is given by A(f) = 5000e°”™. Hence the
amount in the account after 18 years is given by A(20) = 5000e°®% = 21,103.48
dollars.

34.  When the book has been overdue for ¢ years, the fine owed is given in dollars by
A(r) = 0.30e°%. Hence the amount owed after 100 years is given by

A(100) = 0.30e°™'° = 44.52 dollars.

35.  To find the decay rate of this drug in the dog's blood stream, we solve the equation
L = ¢ (half-life 5 hours) for k =(In2)/5=0.13863. Thus the amount in the dog's

2
bloodstream after ¢ hours is given by A(r) = Aje '™

equation A(l) = A e = 50x45 = 2250 for A, =2585mg, the amount to
anesthetize the dog properly.

. We therefore solve the

36.  To find the decay rate of radioactive cobalt, we solve the equation L = 7% (half-life

5.27 years) for k=(In2)/5.27 =0.13153. Thus the amount of radioactive cobalt ieft
after ¢ years is given by A(f) = A,e™"*¥. We therefore solve the equation
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A = A e = 0,014, for ¢=(In100)/0.13153~35.01 and find that it will be
about 35 years until the region is again inhabitable.

37.  Taking t+ = 0 when the body was formed and ¢ = T now, the amount O of *Uin
the body at time ¢ (in years) is given by Q(f) = Que™, where k = (In 2)/(4.51x10°).
The given information tells us that

_ea@) = 0.9.
Q, — Q(T)
After substituting Q(7) = Q{]e_kT, we solve readily for &M= 19/9, so
T = (1/6)In(19/9) = 4.86x10°. Thus the body was formed approximately 4.86 billion

years ago.
38.  Taking r = 0 when the rock contained only potassium and ¢ = T now, the amount

(1) of potassium in the rock at time ¢ (in years) is given by Q(f) = Qoe'k’, where

k = (In 2)/(1.28%10”). The given information tells us that the amount A(f) of argon at

time 7 is

A = 5[0, - 0]
and also that A(T) = (7). Thus
Q,~QT) = 90(T).
After substituting (T) = Q,e”*" we readily solve for
T = (In10/In2)(1.28x10%) = 4.25x10°.
Thus the age of the rock is about 1.25 billion years.

39.  Because A = O the differential equation reduces to 7' = kT, so T(H) = 25¢™. The
factthat 7(20) = 15 yields k = (1/20)In(5/3), and finally we solve

5=25" for t=(n5/k = 63min.

40.  The amount of sugar remaining undissolved after ¢ minutes is given by A(r) = Ae™™,

we find the value of k by solving the equation A(l) = Ae™ = 0.754, for
k=-1n0.75=0.28768. To find how long it takes for half the sugar to dissolve, we solve

the equation A(f) = Ae™ =1A, for r=(In2)/0.28768 ~2.41 minutes.

41.  (a)  The light intensity at a depth of x meters is given by I(x)=1I,e™**. We solve
the equation [(x)=/le ' =41 for x=(In2)/1.4 = 0495 meters.
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42,

43.

44.

45,

46.

18

(b)  Atdepth 10 meters the intensity is 7(10)=l,e™*° = (8.32x107) J;.

()  We solve the equation I(x)=1,e"** =0.01], for x=(In100)/1.4 =3.29 meters.

=02x

(a) The pressure at an altitude of x miles is given by p(x)=29.92¢7". Hence the

pressure at altitude 10000 ftis p(10000/5280) = 20.49 inches, and the pressure at
altitude 30000 ftis p(30000/5280) = 9.60 inches.

(h)  To find the altitude where p = 15 in., we solve the equation 29.92¢°** =15 for
x=(In29.92/15)/0.2 =3.452 miles = 18,200 1.

(a) A =rA+Q
(b) The solution of the differential equation with A(0) = O is given by
rA+Q = Qe".

When we substitute A = 40 (thousand), r = 0.11, and ¢ = 18, we find that
O = 0.70482, thatis, $704.82 per year.

Let N.(f) and N,(r) be the numbers of 2381J and **U atoms, respectively, at time ¢ (in
billions of years after the creation of the universe). Then Ny(f)= Noe"" and

N, (1) =Nye™, where N, is the initial number of atoms of each isotope. Also,
k=(In2)/4.51 and ¢=(In2)/0.71 from the given half-lives. We divide the equations
for N, and N, and find that when ¢ has the value corresponding to "now”,

g = Mo 397,
N

5

Finally we solve this last equation for ¢ = (In137.7)/(c—k} = 5.99. Thus we get an
estimate of about 6 billion years for the age of the universe.

The cake's temperature will be 100° after 66 min 40 sec; this problem is just like
Example 6 in the text.

(b) By separating the variables we solve the differential equation for
c-rPl) = (c-rPy e’

With P(r) = O this yields
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47.

48.

49,

50.

c =rPye’l(e’-1)

With Py = 10,800, 1 = 60, and r = 0.010 we get $239.37 for the monthly payment
at 12% annual interest. With r = 0.015 we get $272.99 for the monthly payment at
[8% annual interest.

If N(#) denotes the number of people (in thousands) who have heard the rumor after ¢
days, then the initial value problem is

N = k(100-N), N@©O) =0

and we are given that N(7) = 10. When we separate variables (dN /(100-N) =k dt)
and integrate, we get In{100—N)=~kr+C, and the initial condition N(0)=0 gives

C=In100. Then 100-N =100e™, so N(1)= 100(1—.9""). We substitute £ = 7,
N =10 and solve for the value k =In(100/90)/7 = 0.01505. Finally, 50 thousand
people have heard the mumor after ¢t =(In2)/k = 46.05 days.

With A(y) constant, Equation (19) in the text takes the form
dy
—— i k
dt \E

We readily solve this equation for 2\[37 = kt+C. The condition y(0) = 9 yields
C = 6, andthen y(1) = 4 yields k = 2. Thus the depth at time ¢ (in hours) is
y(t) = (3~ 17 and hence it takes 3 hours for the tank to empty.

With A = n(3)* and @ = 7m(1/12)*, and taking g = 32 ft/sec’, Equation (20) reduces
to 162y = —JT The solution such that y = 9 when ¢ = 0 is given by
324\[y = —1+972. Hence y = O when ¢ = 972 sec = 16 min 12 sec.

The radius of the cross-section of the cone at height y is proportional to y, so A(y) is
proportional to y°. Therefore Equation (20) takes the form

yzy; - _k-J_,
and a general solution is given by
2y"? = -5kt + C.

The initial condition y(0) = 16 yields C = 2048, and then y(1) = 9 implies that
5k = 1562. Hence y = 0 when

t = C/5k = 2048/1562 = 1.31 hr.
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51. Thesolution of y" = —k.fy isgivenby

2y = kt+C.

The initial condition y(0) =& (the height of the cylinder) yields C = 2+Jh . Then
substitution of t =7, y=0 gives k= (2\/5 WT. It follows that

y = h(1 -t
If r denotes the radius of the cylinder, then
V(y) = mr'y = ar*h(1—t/ T = V,(1-t/T).

52.  Since x = y”° the cross-sectional areais A(y) = mx’ = wy"?. Hence the

general equation A(y)y" = —a./2gy reduces to the differential equation yy' =-—k

with general solution
(12 = —kt + C.

The initial condition y(0) = 12 gives C = 72, and then y(1) = 6 yields k = 54.
Upon separating variables and integrating, we find that the the depth at time ¢ is

(1) = J144—108¢ (o).
Hence the tank is empty after ¢ = 144/108 hr, thatis, at 1:20 p.m.

53. (a) Since x° = by, the cross-sectional areais A(y) = nx* = mby. Hence the

equation A(y)y’ = —ay/2gy reduces to the differential equation

Yy = —k = —(alnb)2g
with the general solution
@Ry = -kt + C.

The initial condition ¥0) = 4 gives C = 16/3, and then (1) = 1 yields k = 14/3.
It follows that the depth at time ¢ is

¥y = (8 -7,

(b) The tank is empty after r = 8/7 hr, that is, at 1:08:34 p.m.
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(¢) We see above that & = (a/nh)./2g = 14/3. Substitution of @ = nr, b=,

g = (32)(3600)° ft/hr® yields r = (1/60)§/7/12 ft=0.15in for the radius of the
bottom-hole.

54.  With g = 32ft/sec® and a = m(1/12)*, Equation (24) simplifies to
dy b4
A= = ——/y.
O dat 18V

If z denotes the distance from the center of the cylinder down to the fluid surface, then

y = 3-z and A(y) = 10(9—22)”2. Hence the equation above becomes
dz T
=25 - Ly, iz
( ) 5 18( )

1803+ 2)"*dz = mdt,

and integration yields
1203+2)"* = m+C.

Now z = 0 when 1 = 0, so C = 1203}, The tank is empty when z = 3 (that is,
when y = () and thus after

t o= (120/m(6™ - 37 = 362.90 sec.
It therefore takes about 6 min 3 sec for the fluid to drain completely.

55. A(y) = mBy-y*) asinExample 7 in the text, butnow ¢ = 7/144 in Equation (24),
so the initial value problem is

188y~ y) = -y,  ¥0) =8
We seek the value of £ when y = 0. The answeris =869 sec = 14 min 29 sec.

56. The cross-sectional area function for the tank is 4 = 7#(1—¥°) and the area of the
bottom-hole is a = 1077, so Eq. (24) in the text gives the initial value problem

ﬂ:(l-yz)% = —1077/2x 98y, y0) = 1.

Simplification gives
(- ym)? = —14x10*J10
f
so integration yields
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2y1,’2__3_y5.f2 e —1.4)(1()4«/1_014—0

The initia] condition y(0) =1 implies that C = 2 - 2/5 = 8/5, so y=0 after
= (8!5);’(1.4><]O‘4\/E) = 3614 seconds. Thus the tank is empty at about 14
seconds after 2 pm.

57. (a) As in Example 8, the initial value problem is
2, 4y
mBy-y)— = ~mhyfy. y0)=4

where k = 0.6r°2g = 4.8r”. Integrating and applying the initial condition just in the
Example 8 solution in the text, we find that

16 30 2 sp 448
—y =yt =kt —
37 757 15

When we substitute y = 2 (ft) and r = 1800 (sec, that is, 30 min), we find that
k = 0.009469. Finally, y = 0 when

ﬂ = 3154 sec = 53 min 34 sec.

15k

t

Thus the tank is empty at 1:53:34 pm.
(b) The radius of the bottom-hole is
= Jk/48 =0.04442 ft = 0.53 in, thus about a half inch.

58. The given rate of fall of the water level is dyldt = —4 in/hr = —(1/10800) ft/sec. With
A=m’ and a = Equation (24) is

—~(mr*)2gy = —8rr y.

Hence the curve is of the form y = kx*, and in order that it pass throngh (1,4) we
must have & = 4. Comparing J; = 2x? with the equation above, we see that

(7x® )(1/10800)

(8F)(10800) = 1/2,
so the radius of the bottom hole is r = 1!(240J§) ft = 1/351n.

59, Let r = O at the time of death. Then the solution of the initial value problem
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60.

T = k70-T), 7(0) = 98.6
i
T(t) = 70+28.6¢7",

If t+ = a at 12 noon, then we know that

T(t) = 70+286e ™ = 80,

Ta+1) = 70+28.6e7 " = 75,

Hence
286e™ =10 and 286e et = 5

It follows that ¢™* = 1/2, so k = In2. Finally the first of the previous two equations
yields

a = (In2.86)/(In2) = 1.516 hr = 1 hr 31 min,
so the death occurred at 10:29 a.m.

Let + = 0 when it began to snow, and ¢ = £y at 7:.00 a.m. Let x denote distance along
the road, with x = 0 where the snowplow begins at 7:00 am. If y = ct is the snow
depth at time ¢, w is the width of the road, and v = dx/dz is the plow’s velocity, then
"plowing at a constant rate" means that the product wyv is constant. Hence our
differential equation is of the form

0 when 1 = 1 is

The solution with x

Weare giventhat x = 2 when 7 = #,+1 and x = 4 when ¢ = fh+ 3, soit follows
that

h+l =1 CZk and Hh+3 = ta €4k.
Elimination of #, yields the equation
342 = (P 1)e*-2) = 0,

so it follows (since k> Q) that e* = 2. Hence th+1 = 2f5, s0 7p = 1. Thus it began
to snow at 6 a.m.
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61. We still have t = fo 2, but now the given information yields the conditions

K+l = fﬁ€4k and fh+2 = f()e-”(

at 8 a.m. and 9 a.m., respectively. Elimination of #, gives the equation
2¢%-e-1 = 0,

which we solve numerically for k = 0.08276. Using this value, we finally solve one of
the preceding pair of equations for fo = 2.5483 hr = 2 hr 33 min. Thus it began to
snow at 4:27 a.m.

SECTION 1.5
LINEAR FIRST-ORDER EQUATIONS

1 p:exp(jldx):e‘; D,(y-e‘):ile"; ye*=2e"+C;  y(x) = 2+Ce

y(0)=0 implies C=-2 so y(x) = 2-2e"
2. p:exp(j(-2)dx)=e”2’; Dx(y-e“”):S; ye ¥ =3x+C;  yx) = Bx+C)e™
y(0)=0 implies C=0 so y(x) = 3xe™
3, p:exp(_[?,dx)=e3‘; Dx(y-e3’)=2x; ye=x2+C; yx) = P +0)e™
4, p:exp(_[(—2x)dx):e_‘?; ,Dx(y-e"i)tl; y-e"zzx-kC; y(x) = (x+C)e”
5. p:cxp(j(ﬂx)dx):ez'“=x2; Dx(y-x2)=3x2; yx’=x"+C
y(x) = x+C/x%;  y()=5 implies C=4 so y(x) = x+4/x*

6. p=exp”(5/’x)dx)=85]"‘:xs; Dx(y-xs)z’;'x"; y.x5=x7+C

y(x) = X +C/x°;  y(2)=5 implies C=32 so y(x) = x> +32/%

% P :exp(J.(li'Zx)dx):e“"”” =x; Dx(y-\/;)=5; yJx=5x+C
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y(x) = 5Vx+C/Vx

8. p=exp(j(l!3x)dx):e”“)”=%/;; Dx(y.{/;):4§/;; ol =B

-1/3

y(x) = 3x+Cx

9, p=exp(J(—1{x)dx)=e"“‘=1fx; D (y1/x)=t/x;, yllx=lnx+C
¥x) = xinx+Cx; y(I)=7 implies C=7 so y(x) = xlnx+7x

10. p=exp U(—3a’2x)d_x) A S 2 T : ) (y-x'”z): 9 %1% pou =B &0

3z

y(x) = 3x +Cx

11. p=cxp(j(ll’x~3)dx)ze'“"3‘=xe‘3‘; D, (y.xg—h):o; y-xe ¥ =C

y(x) = Cx7'e™; y(1)=0 implies C=0 so y(x) = 0 (constant)

12. p=ﬂXPU(3=’x)dx)=e””=x3; D (yx)=2x"; y-¥=is+C
y(x) = 1 +Cx7; y(2)=1 implies C=56 so p(x) = L+x°+56x~
13. P=eXP(Jldx)=e"; D,(y-e')=e*; y-e =i +C

1 ,—4&

y(x) = ' +Ce™;  y(0)=1 impliecs C=%1 so y(x) = Le*+1le

14. p=exp”(~—3!x)dx)=e’3'“=x‘3; Dx(y-x'3)=x"; y-x" =Inx+C

y(x) = x'Inx+Cx"; y(1)=10 implies C=10 so y(x) = ¥’ Inx+10x°

2

e +C

b |—

15. p:exp(-[2xdx)=exz; Dx(y—e‘z)=xe‘3; y-e‘::

¥(x) = £+Ce™;  y(0)=-2 implies C=~% so y(x) = t-3e™

16. p=exp Ucos xdx) =™ D (y e )= cosx;  y e =M 4 C

¥x) = 1+Ce™;  ym)=2 implies C=1 so y(x) = [+

17. p=exp(jlf(]+x)dx):e1"““)=|+x; D, (y-(l+x))=cosx; _v-(1+x):sinx+C
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18, pzexp(_[(—ﬂx)dx):e_z'"‘=x_2; Dx(y-x'l):cosx; yx?=sinx+C

y{x)} = x? (sin x+C)

19. »p :cxp(jcotxdx):el"“i"” =sinx; D, (y-sinx)=sinxcosx

y—sinx=%sin2x+C; y(x) = sinx+Cecscx

20.  p=exp([(-1-0dx)=e*""% D, (e )= n)e "
y’e—x—xzfl :_e—x—.rzf?._{_c; y(x) = _1+Ce-—x—121’2

—x-x242

y(@) =0 implies C=1 so y(x)} = —1l+e

21. p:exp(](—B!x)dx)me_'“”=x'3; Dx(y-x'g)zcosx; yx~ =sinx+C

y(x) = x'sinx+Cx’;  y(2r)=0 implies C=0 so y(x) = x’sinx

22, p=exp(j(v2x)dx)=e"1; Dx(y-e"’3)=3x2; y-e* =x*+C
y(x) = (x'+C)e™;  y(0)=35 implies C=5 so y(x) = (x* +5)e™
23. p =exp(j(2-3fx) dx)=e2"3‘“* =x?¢; D, (y-x7e)=de”

3 =2r

y-x'aez‘=2eh+C; y(x) 2 2x3+Cx'e

24, p= exp(_[3xl(x2 +4)dx) = Nty _ (x> +4)°; D, (y (5 +4)312) = x(x? +4)"
y- 2+ =1 4+ 0 y(x) = L+ O+
y(0)=1 implies C=%£ so y(x) = ++%(x*+4)™"

25, First we calculate

3x dx 3x 3r 2 3
= ||3x— de = —|x° =1 + 1}
jx2+l |:x x2+1] 2[ Dl )]
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It follows that p = (x* +1)™*? exp(3x*/2) and thence that

D (y- 2+ exp(3x’/2)) = 6x(x*+4)"2,
vy +D) " exp(3x2/2) = —2(x?+4) M2 4 ¢,
() = =2exp(3x/2)+ C (o + 1" exp(-3x/2).

Finally, y(0) =1 implies that C=3 so the desired particular solution is
y(x) = —2exp(3x*/2)+3(x* +1)* exp(-3x* 12).

26.  With x"=dx/dy, the differential equation is y'x’+4y*x=1. Then with y as the
independent variable we calculate

p(y) = exp([4/ydy) = ™ = ', D (xy') =y
I e
oyt = 5y2+C‘; x(y) = iy

27.  With x"=dx/dy, the differential equation is x"—x= ye’. Then with y as the
mdependent variable we calculate

P = exp([(-Ddy) = e D (x-¢7) = y
xe”? =1y4C x(y) = (§y2+C)e"

28.  With x"=dx/dy, the differential equation is (1+y*)x'—2yx=1. Then with y as the
independent variabie we calculate

P = exp([(29/1+ y)dy) = €™M = (145"
D,(x-(+y") = (1+y*)?
An integral table (or trigonometric substitution) now yields

xg: dy 2=—1- y2+tan‘1y+C
1+y (1+y2) 2{ 1+y

x(y) = %I:y+(l+y2)(tan‘ y+C)]
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29,

30.

31.

32.

33

34.

28

p= exp(j(#ilx)dx) = e"l; D, (y o ) =e™ sy e =0+ J{: e dt
y(x) = el (C‘+~“—:’5-—erf(“x))

After div{izsion of the given equation by 2x, multiplication by the integrating factor
P = x yields

R 'f‘ =1 —
e Ij)”-—%x uz}. o U2 cosx,
Dx(x‘”zy) = x " cosx,

7y = C+J’: 1™"* cost dr.
The initial condition y{1) = O implies that C = 0, so the desired particular solution is

X
y(x) = x”z_[ t™"% cost dt.

(a) 3. = C'e‘f}w(—P) =-Py,so y+Py =0.
® ¥, = (HP)e'f‘"‘“-U[Qef”‘ de]w"J”‘-QeJ”‘ = —Py, +Q

(a) If y=Acosx+ Bsinx then
y+y = (A+B)cosx+(B—-A)sinx = 2sinx

provided that A =~1 and B = 1. These coefficient values give the particular solution
yp(x) = sinx —~cos x,

(b)  The general solution of the equation y'+y=0is y(x) = Ce™ so addition to the
particular solution found in part (a) gives y(x) = Ce ™ + sinx —cos x.

(c) The initial condition y(0) =1 implies that C= 2, so the desired particular
solution is y(x) = 2e¢™* + sin x — cos x.

The amount x(7) of salt (in kg) after ¢ seconds satisfies the differential equation
X' =~x/200, so x(t) = 100e™"*®. Hence we need only solve the equation

10 = 100e™"* for ¢ =461 sec =7 min 41 sec (approximately).

Let x(#) denote the amount of pollutants in the lake after ¢ days, measured in millions of
cubic feet. Then x(z) satisfies the linear differential equation dx/dt=1/4—x/16 with
solution x(2) =4+16e™"'° satisfying x(0) = 20. The value of ¢ such that x=8 is

Chapter 1




t=16In4 =222 days. For a complete solution see Example 4 in Section 7.6 of Edwards
and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998).

35. The only difference from the Example 4 solution in the textbook is that V = 1640 km*
and r =410 km"/yr for Lake Ontario, so the time required is

t = l/+lr14 = 4In4 = 55452 years.

F

36. (a) The volume of brine in the tank after ¢ min is V(1) = 60 -1 gal, so the initial
value problem is

dx 3x

— = 2- 3 x(0) = 0.
dt 60—+t
The solution is
(60-1)
1) = (60— ————- .
x(t) = ( ) 3600

{b) The maximum amount ever in the tank is 40/+/3 = 23.09 Ib. This occurs after
t=60-20/3 = 25/36 min.

37 The volume of brine in the tank after ¢ min is V() = 100 + 2r gal, so the initial value

problem is
dx %

= 1 x(0) = 50.
dt 100+ 2¢

The integrating factor p() = (100 +20*? leads to the solution

50000
1) = (100+21)——2200
= )= H00+ 207

such that x(0) = 50. The tank is full after ¢ = 150 min, at which time
x(150) = 393,75 1b.

38. (a) dxldt = —x/20 and x(0)=50 so x(t) = 50¢%,

(b) The solution of the linear differential equation

ffl 5x _ 5y _ Ee-:rzo__iy

dt 100 200 2 40

with (0} = 50 is
y(#) = 1507 — 10077,

() The maximum value of y occurs when

Section 1.5 29




PROBLEM 2.1

KNOWN: Steady-state, one-dimensional heat conduction through an axisymmetrie
shape.

FIND: Sketch temperature distribution and explain shape of eurve.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant
properties, (3) No internal heat generation.

ANALYSIS: Performing an energy balance on the object according to Eq. 1.11a,
Ein —y Enul. = (), it follows that
Em - Enul s

and that q, # qu(x). That is, the heat rate within the object is everywhere constant.
From Fourier's law,

dT
Q = —kA, vl

and since q, and k are both constants, it follows that

dT
™ = Constant.

Ay

That is, the product of the cross-sectional area normal to the heat rate and temperature
gradient remains a constant and independent of distance x. It follows that since A,
increases with x, then dT /dx must decrease with x. Hence, the temperature distribution
appears as shown above. Note the gradient decreases with increasing x.

COMMENTS: (1) Be sure to recognize that dT /dx is the slope of the temperature
distribution. (2) What would the distribution be when Ty > T,? (3) Show on the above
plot how the heat flux, q,, varies with distance.



PROBLEM 2.2

KNOWN: Hot water pipe covered with thick layer of insulation.

FIND: Sketch temperature distribution and give briel explanation to justify shape.

SCHEMATIC:

|
Hot fa T
warler pipe

Tty
A
Lnsulation T
>% ' —

ASSUMPTIONS: (1) Steady-state conditions, (2]} One-dimensional (radial)
conduction, (3) No internal heat generation, (4) Insulation has uniform properties
independent of temperature and position.

ANALYSIS: Fourier's law, Eq. 2.1, for this one-dimensional (eylindrical) radial
syatemn has the form

dT dT
Y=g e S

where A, = 27rf and £ is the axial length of the pipe-insulation system. Recognize that
for steady-state conditions with no internal heat generation, an energy balance on the

system requires E,, = E_,; since ]':_".l = E4 =0 and hence
q, = Constant.

That is, q, is independent of radius (r). Since the thermal conduectivity is also constant,
it follows that

dT

;v Constant.

r

This relation requires that the product of the radial temperature gradient, dT /dr, and
the radius, r, remains constant throughout the insulation. For our situation, the
temperature distribution must appear as shown in the above, right sketch.

COMMENTS: (1) Note that while g, is a constant and independent of r, q, is not a
constant. How does q,(r) vary with r? (2) Recognize that the radial temperature
gradient, dT /dr, decreases with increasing radius.



PROBLEM 2.3
KNOWN: A spherical shell with prescribed geometry and surface temperatures.

FIND: Sketch temperature distribution and explain shape of the curve.

SCHEMATIC:
L] '
"I'; i
Spherical ra

Shell ?E-"'J

]; =
A 3 e T T
i T>h

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in
radial (spherical coordinates) direction, (3) No internal generation, (4) Constant
properties,

ANALYSIS: Fourier's law, Eq. 2.1, for this one-dimensional, radial (spherical
coordinate) system has the form

dT g, dT

where A, Is the surface area of a sphere given as A, = hﬂ'?. For steady-state conditions,
an energy balance on the system requires that since Eg =E, =0,E, =E,,; and thus

Us ™ Qogt = G + q,(r) . h

i+

That is, q, is a constant, independent of the radial coordinate. Since the thermal
conductivity is constant, it follows that

dT

: —l = Constant.

dr

This relation requires that the product of the radial temperature gradient, dT /dr, and
the radius squared, r*, remains constant throughout the shell. Hence, the temperature
distribution appears as shown in the above, right sketeh.

COMMENTS: Note that for the above conditions, q, = q(r); that is, q is
everywhere constant. But how does q, vary as a function of radius?



PROBLEM 2.4

KNOWN: Axisymmetric shape with prescribed cross-sectional area, temperature
distribution and heat rate.

FIND: Expression for the thermal conductivity, k.

SCHEMATIC:

Units
Aw)=(1-x) T-K
---.-.-.
T(x)=300(1-2x-x3) ¢ *~™
X -me

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduetion in x-
direction, (3) No internal heat generation.

ANALYSIS: Application of the energy balance relation, Eq. 1.11a, to the system, it
follows that sinee E;; = Egq,

qy = Constant # f(x) .

Using Fourier's law, Eq. 2.1, with appropriate expressions for A, and T, yields
dT

el B

d . K
6000W = —k * (1 —x)m? - — | — gy — Yy =,
{ x)m o [300(1 — 2x — x*)| —

Solving for k and recognizing its units are W/m * K,
. —6000 3 20
(1 —x)[300(=2 — 3x*)] (1 —x)(2 +3x?)

<

COMMENTS: (1) Note that at x=0, k=10W/m‘K and that indeed the units are
correctly obtained.

(2) Recognize that the 1-D assumption is an approximation which is more appropriate
as the area change with distance x is less.



PROBLEM 2.5

KNOWN: End-face temperatures and temperature dependence of k for a2 truncated
COME.

FIND: Variation with axial distance along the cone of q,, q:,, k, and dT /dx.

SCHEMATIC:

L<T
A >A;

l ?md.‘m

ASSUMPTIONS: (1) One-dimensional conduction in x (negligible temperature
gradients along y), (2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat
generation.

ANALYSIS: For the prescribed conditions, it follows from conservation of energy, Eq.
1.11a, that for a differential control volume, Ei; = E.yt 0F g = Qyedy. Hence
fqy 1% independent of x.

Since A(x) inereases with inereasing x, it follows that gy = qu /A(x) decreases with
mereasing X. Since T deereases with inereasing x, k inereases with increasing x.
Hence, from Fourier's law, Eq. 2.2,

O i £

lrll dI

it follows that | dT /dx | decreases with inereasing x.

Ll



PROBLEM 2.6

KNOWN: Temperature dependence of the thermal conduetivity, k(T), for heat
transfer through a plane wall.

FIND: Effect of k(T) on temperature distribution, T(x).

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3)
No internal heat generation.

ANALYSIS: From Fourier's law and the form of k{T),
. dT dT
q,—‘-kﬁ-—{kn-!-lT]E. {1]

The shape of the temperature distribution may be inferred from knowledge of
d*T fdx* = d(dT /dx)/dx. Since q, is independent of x for the prescribed conditions,

: "
= Edf (k, +aT) %-':- .. e
- (kq +=T}TTI—; % l =0 .

Hence,
d*T a ar |’ F+2Tnk}n
dx® N ks +aT | dx ] e l%] =0

from which it follows that for TH
n>0 *TMx® <0 .'5 555
a=0: d*T/dx® =0 e
a<0: dT/dx* >0. il

where the curvature for the temperature distribution T{x) is negative, zero, and
positive, respectively.

COMMENTS: The shape of the distribution could alse be inferred from Eq. (1),
Since T decreases with increasing x,
a > 0: k decreases with increasing x => | dT /dx | inereases with inereasing x
a=0: k =k, =>dT /dx is constant

a < 0: k increases with increasing x => | dT /dx | decreases with inereasing x.



PROBLEM 2.7

KNOWN: Thermal conductivity and thickness of a one-dimensional system with no
internal heat generation and steady-state conditions,

FIND: Unkoown surface temperatures, temperature gradient or heat flux.

SCHEMATIC: j-r
T, i L=05m
v f £, Temperature gradient

k= 25 Wim K-l T;

ASSUMPTIONS: (1) One-dimensional heat flow, (2) No internal heat generation, (3)
Steady-state conditions, (4) Constant properties,

ANALYSIS: The rate equation and temperature gradient for this system are

" dT dT Ti—T;
-l —— an -
b dx . dx L )

Using Eqs. (1) and (2], the unknown quantities can be determined.

(1.2)

dT _ (400—-300)K _
(a) s S Em 200 K/m 400K E
R w g
e o =R e zm% = —5000 W /m®. 300K q"f:]
" o
(b) q: = —25 » [——m— = §250 W /m*
m'K e o
dT K o L
Ty=T;—L|=—| = 1000"* C - 0.5m |-250— T K
" d.: L = =
" 1007 ax = 20m
T, = 225°C. X} <]
. w K
(¢) gy =—25 x 200— = —5000 W /m? al .
mK m e 80C dx '+EDD§
Ty = 80"C — 0.5m zmglu—m'c. o 9:- <]
dT 4 000 W /m? o
(@) 25 o8 _ A0 WimT ek
dx k 25 W/m'K m Q= o
" =3
=140+ 1 = osm|-100K | 4 (50 c) T2
X m
T, = —85"C. ."I et <]
aT _ G (3000 W/nh) _ 0K
(©) & k 25 W/m'K ] 30C A
E. L
Ty =30°'C — 0.5m|120—| = 30" C. -
s = 30 0.5m (120 30°C IUﬂﬂg




PROBLEM 2.8

KNOWN: One-dimensional systern with preseribed thermal econductivity and
thickness,

FIND: Unknowns for various temperature conditions and sketeh distribution.

SCMTIﬂt [ - L=028m

I Temperature gradient

W
k=50 Sy

e

ASSUMPTIONS: (1) Steady-state conditions, (2] One-dimensional eonduction, (3)
No internal heat generation, (4) Constant properiies.

ANALYSIS: The rate equation and temperature gradient for this system are

. dT dT _ Te—T
ty E “'d = ™ - l.. : ti"‘il
Using Eqs. (1) and (2), the unknown quantities for each case can be determined.
dT (—20 — 50) K
=) dx 0.25m = <380 Xjm ¥
v - -20°C
" =—50 —280— | = 14.0 KW /m?.
q 50— = I 14.0 kW /m e <]
dT (=10 — (—=30))K
b = — = §0 K
N 0.25m o e -10°C
. W K 30
1, = =f w |B0— | = —4. ] :.‘
Qs a0 —5 = L0 kW /m <]
. W [
e = —50 —— x [160 =| = —8.0 kW /m®
fe) 4 = = J 9.0 kW /m . '
I.zn0 K
\ 3 =160 =
Ty = L-‘:E + T = l'-l.'.!-‘.'m'n-r|]-|'.'I-i;'.ih +70*° C. oC .
dx m
F=x
Ty =110°C, <J
(d) q, = =50 r:—"' : [—m}%] = 4.0 kW /m* 3
. * dﬁﬂ-ﬂﬂﬁ
: x m
Ty =Ty —1/5% gd* G — D350 —m.‘ll_ 40C
dx m
(-
Ty =80"C. -::l
. “r K
(e) q¢ =50 e :mnm‘ = —10.0 kW /m® X C
T|=T;-L'—-&-;=3ﬂ'(‘--ﬂ.2ﬁm Eﬂ'ﬂ— =-Eﬂ'f:- "::J
m




PROBLEM 2.9

KINOWN: Plane wall with prescribed thermal conductivity, thickness, and surface
temperatures.

FIND: Heat flux, q:. and temperature gradient, dT/dx, for the three different
eoordinate systems shown.

SCHEMATIC:

"

il g

T,= 400K
A
L=600K T, A
k=100 W/mK h Ty
[=100mm —=x X X
L L Q ' (0]
(b) (c)

0
(@)

ASSUMPTIONS: (1) One-dimensional heat flow, (2) Steady-state conditions, (3] No
internal generation, (4) Constant properties.

ANALYSIS: The rate equation for conduction heat transfer is
" dT
-l =2
where the temperature gradient is constant throughout the wall and of the form
dT _ T(L) — T{(0)
Substituting numerical values, find the temperature gradients,

dT _ Ts—T, _ (soo—00)K

™ 5 L. i R0 Ky <
dT  Ti-T:  (400—600)K

T " odoem KM <
dT  Te=Ti _ (600—400)K

e) e s e 2000 K i <]

The heat rates, using Eq. (1) with k = 100 W /m'K, are

(a) gy = +1m% % 2000 K /m = —200 kW /m? <

(6 2= —:mu% (~2000 K /m) = +200 kW /m? <
. W &

le) q,=-—100 x 2000 K/m = —200 kW /m* . <]

m'K



PROBLEM 2.10

KNOWN: Temperature distribution in solid cylinder and econvection coefficient at
eylinder surface.

FIND: Expressions for heat rate at cylinder surface and fluid temperature.

SCHEMATIC:
L////—H Tir)=a+br2
r ll"'/f’-.
— %
h,To—™>

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state
conditions, (3) Constant properties,

ANALYSIS: The heat rate from Fourier's law for the radial (cylindrical) system has
the form

dT
9 kA, TiT'

Using the expression for the temperature distribution, T(r) = a + br®, evaluate the
temperature gradient, dT /dr, to find the heat rate,

qQr = —k(27rL) 2br = —dnkbLe® .

Al the outer surface (r = r,), the conduction heat rate is

Qrmy, = '—I?kal.rg . "f-.'j
From a surface energy balanee at r = il F -":i".ll
LY r.' II
q.t-r“ = Qeogy = hm-"'_rﬂl'} :T[rn} = T~,_| i ';‘“{. T
L cone

and solving for T.. using the heat rate at r = r,, find
2kbr,

h
2k br,

T = T(r,) +
Toxe =a +bri +

T:.:- =l+brn

ro + %—l =]



PROBLEM 2.11

KNOWN: Two-dimensional body with specified thermal conductivity and two
isothermal surfaces of preseribed temperatures; one surface, A, has a preseribed
temperature gradient.

FIND: Temperature gradients, &T /0% and T /Gy, at the surface B.

SCHEMATIC:
Insulation
k=10W)m-k —-
Gr‘;_;_e:rfﬂf surface A -
= 3ﬂKfm —— Y
y g9 T.=0C ‘
HA=EM L T r"l : ®

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Steady-state conditions, (3)
No heat generation, (4) Constant properties.

ANALYSIS: At the surface A, the temperature gradient in the x-direction must be
tero. That is, (8T /ix), = 0. This follows from the requirement that the heat flux
vector must be normal to an isothermal surface. The heat rate at the surface A is given
by Fourier's law written as

. a7 W
Gy,A = —k-wy | =

A
On the surface B, it follows that

(T [oy)g =0 <

in order to satisfy the requirement that the heat flux veetor be normal to the lsothermal
surface B. Using the conservation of energy requirement, Eq. 1.11a, on the body, find

% 2m :au% = —B00W /m .

q;,.n. —qla.n = ) or ilr:‘n - li;r.n .
Note that,
qQ, k'wa =
2,8 = —K'Wp =
S
and hence ;
(T /ox)y = —2A o 600 W) _ og 5 s 4

k'wg 10/W/m'K x 1m

COMMENT: Note that in using the conservation requirement, Qg = +-|;;;,H,,l and
Qout = *9x B+



PROBLEM 2.12

KNOWN: Length and thermal conductivity of a shall., Temperature distribution
along shaft.

FIND: Temperatures and heat rates at ends of shaft.

SCHEMATIC:

Suppnr‘l"my shaft,
k=25 W/fm-K, L=1m, )
A=0.005m? T x=L ==t ;

o G’rm..tmln‘ ' 8

ASSUMPTIONS: (1) Steady-state conditions, [2) One-dimensional conduction in x,
(3) Constant properties.

ANALYSIS: Temperatures at the top and botton of the shalt are, respectively,

T(0) = 100" C T(L) = —40" C. <

Applying Fourier's law, Eq. 2.1,
dT

O = —kA—— = —25 W/m-K(0.005 m?)(—150 + 20x)* C/m

qs = 0.125(150 — 20x)W.

Hence,

qe(0) = 18.75 W qe(L) = 16.25 W. <]

The difference in heat rates, q,(0) > q4(L), is due to heat losses q; from the side of the
shaft.

COMMENTS: Heat loss from the side requires the existence of temperature gradients

over the shaft cross-section. Henee, specification of T as a function of only x is an
approximation.



PROBLEM 1.13

KNOWN: A rod of constant thermal conductivity k und variable cross-sectional area A (%) = A&
where A, and a are consiants

FIND: (ai Expression for the conduction heat rate, g,(x): use this expression 1o determine the
temperature distribution, Tix). and sketch of the iemperature distribution, (b) Considenng the presence of
volumetnc heat generation rate, g =4, exp(-ax), obtain an expression for g,(x) when the lefil face, x = 1,
i well insuloted.

SCHEMATIC:

=

L |

Ay} = Aga"

o L ]

ASSUMPTIONS: (1} One-dimensional conduction in the rod, (21 Constant properties. { 3) Steady- state
conditions )

ANALYSIS:  Perform an encrgy balance on the control volume, Aix)dx,

E.-E,+E,=0

B, =4 “q-Alx) da=0

The conduction heal rate terms can be expressed as a Taylor series and substituting expressions for q
and Aix,

2E,

d‘rq,i*q,rm—m-ﬁh explax) =10 L1

T
g, ==k .-’miI L2

v With o imemal generation. g, =t and from Eg. (1) find

d
N =)
L <
indicating that the ke rate s constant with By combining Egs. (1) and (2)
d dT daT
"l -k Alllmm ]1 {1 ar Alx) mdl. =, (3 <

Connnuoed .



PROBLEM 2.13 (Cont.)

That is, the product of the cross-sectional arca and the temperature gradient is a constant, independent of
x. Hence, with T(0) > T(L), the temperature distnbution 15 exponential, and as shown in the skeich
ahove Separating vaniables and integrating Eq. (3), the general form for the temperature distnbution can
be determined.

dT
A e —=C
s explax) 57 :
dT =C A" exp{-ax)dx
T(x)=-C,A aexp(-ax)+ C, <

We could use the two temperature boundary conditions, T, = T(0) and Ty = TIL}, to evaluate C, and C,
and. hence, obtan the temperature distnbunion in terms of T, and T

(b) With the internal generation, from Eq. (1),
d .
-E{ql I+q,,ﬁ,. - n oF ql = qﬂ'ﬁ'ﬂ-x {
That is. the heat rate increases limearly with x

COMMENTS: In part (b), vou could determine the temperature distribution using Fourier's Liw and
knowledge of the heat rate dependence upon the x-coordinate. Give it a try!



PROBLEM 2.14
KNOWN: Dimensions and end temperatures of a cylindrical rod which is insulated on its side.

FIND: Rate of heat mansfer associated with different rod matenals.

SCHEMATIC:
D=25mm «—T=0°C
; \
T,=100°C
—X L=01m

ASSUMPTIONS: (1) One-dimensional conduction along cylinder axis, (2) Steady-state
conditions, (3) Constant properties.

PROPERTIES: The properties may be evaluated from Tables A-1 1o A-7 at a mean
temperature of 50°C = 323K and are summarized below.

ANALYSIS: The heat wransfer rate may be obtained from Fourier's law. Since the axial
temperature gradient 1s linear, this expression reduces to

T-T; ®(0.025m)* (100-01°C

=kA =k = 0.491(m°C)*
q T 7 0 Tm 0.491(m*C)k
Cu Al S5t SN Oak  Magnesia  Pyrex
(pure) (2024) (302) (B5%)
kiW/m-K) 401 177 16.3 149 019 0.052 1.4
q(W) 197 87 8O 73 0093 0026 06 <

COMMENTS: The k values of Cu and Al were obtained by linear interpolation; the k valuc of
St.5t. was obtained by linear extrapolation, as was the value for SiN; the value for magnesia
was obtained by linear interpolation; and the values for oak and pyrex are for 300K.



PROBLEM 2.15
KNOWN: One-dimensional system with prescribed surface temperatures and thickness.

FIND: Heat flux through system constructed of these matenials: (a) pure aluminum, (b) plain
carbon steel, (c) AISI 316, stainless steel, (d) pyroceram, () teflon and (f) concrete,

SCHEMATIC:
fp——+—L=20mm
T,=325K T,=275K
Material of
known k >
7%
%

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No heat
generation, (4) Constant thermal properties,

PROPERTIES: The thermal conductivity is evaluated at the average temperature of the

system, T=(T;+T3)2=(325+275)K/2 = 300K. Property values and table identufication are
shown below.

ANALYSIS: For this system, Fourier's law can be wrinien as

Substituting numerical values, the heat flux in terms of the system thermal conductivity is

(275-325)K K
—k T T = 42500 —k
20107 m m

where q: will have units W/m* if k has units W/m-K. The heat fluxes for esch system follow,

1.:

Thermal conductivity Heat Aux

Material Table  k(W/mK) g, (kW/m?)
(a) Pure aluminum A- 237 593 <
(b) Plain carbon steel A-] 6.5 151
(c) AISI 316, 5.5, A-1 134 335
(d} Pyroceram A-2 308 095
{e) Teflon A-3 0.35 (.88
(f) Concrete A-3 1.4 3.5

COMMENTS: Recognize the range of thermal conductivity for these solid materials is nearly
two decades.



PROBLEM 2.16

KNOWN: Different thicknesses of three matenals: rock, 18 fiu wood, 15 in: and fiberglass
insulation, 6 in.

FIND: The insulating quality of the materials with given thicknesses as measured by the R-
value,

PROPERTIES: Table A-3 (300K}):

Material Thermal
conductivity, W/m'K
Limestone 2.15
Softwood 0.12
Blanket (glass, fiber 10 kg/m?) 0.048

ANALYSIS: The R-value, a quantity commonly used in the constuction industry and building
technology, is defined as
L{in)
k(Btu-in/h-ft?-°F)
The R-value can be interpreted as the thermal resistance of a 1 ft® cross section of the material.

Using the conversion factor for thermal conductivity between the SI and English systems, the
R-values are:

R=

Rock, Limestone, 18 fi:

18 fix 1228
ft

R= - — = 15.5 (Bw/hfc* °F) !
215V _ 05778 BObASF L in
mK WimK fi
Wood, Softwood. 15 in:
15in
R= =R (B Al oyl
012 Y parey DRBIIE _ g 0 e ]
mK WimK f1
Insulation, Blanket. 6 in:
6in
R= — = 18 (Bru/h-f* *F) !
w Biwh-ft-°F in
0.048 0. STIR 2 VL b Joa
m'K T Wimk 1 ft

COMMENT: The R-value of 19 given in the advertisement is reasonable,



PROBLEM 2.17

KNOWN: Electrical heater sandwiched berween two idenucal cylindrical (30 mm dia. « 60
mm length) samples whose opposite ends contact plares maintained at T,

FIND: {a) Thermal conducuvity of 55316 samples for the prescnbed conditions (A) and s
average temperature, (b) Thermal conductivity of Armeo iron sample for the prescnbed
conditions (B}, (¢) Comment on advantages of experimental arrangement. lateral hemt losses,
condition when AT, = AT,

SCHEMATIC:
T2 77T°C T=77C
ax={5mm SSE/6

Heater: aly=25.0°C Heater, al=150C
100V, S5316 100V Armco iron
0.353A sT=250C  G60IA sT32150°C
T=77°C ax={5mm T=77°C
. Case A : Case B

ASSUMPTIONS: (1) One-dimensional heat transfer in samples, (2) Steady-state conditions,
(3) Negligible contact resistance between materials,

PROPERTIES: Table A2, Suinless steel 316 (T =400 K): k,, = 15.2 W/mK: Armeo iron (T
= 380 K} iy = T1.6 WimK.

ANALYSIS: (a) Recognize that half the heater power will pass through each of the samples
which are presumed identical; see Case A above. Apply Founier's law to a sample
AT

= kA, —
q Fm

gAX _ 0.5(100Vx).353A)0.015 m
AAT r(0.030 m)* 4x25.0°C
The total temperature drop across the length of the sample is AT (LJ/Ax) = 25°C (60 mm/1§
mm) = 100°C. Hence, the heater temperature is Ty = 177°C. Thus, the average temperature of
the sample is

e = 15.0 W/mK. <]

T=(Ty+ THV2=127°C=400 K. <
We compare this result with the mbulated value (see above) at 400 K and note the posd
agreement.

(b} For the Case B arrangement, we assume that the thermal conductivity of the S5316 is the
same as that found in Part (a). The heat rate through the Armco iron sample is

Continued .....



PROBLEM 2.17 (Cont.)

e - - v ®0.030m)*  15.0°C
Qison = Anenter — Qss = 100Vx0.601A - 15.0 W/m-Kx 2 T
Qigon = (60.1 = 10.6)W =495 W
where
Qus = ks A AT /AX5.
Applying Fourier's law to the iron sample,
ronAX
Koy = iondX2 _ 495 W0.015m _ _ 000 e

AATy  n(0.030 m)?/ax15.0°C

The total drop across the iron sample is 15°C(60/15) = 60°C; the heater temperature is (77 +
60)°C = 137°C. Hence the average temperature of the iron sample is

T=(137+77)°C2=107°C=380 K. <]
We compare this result with the tabulated value (see above) at 380 K. Note good agreement.

(c) The principle advantage of having two identical samples is the assurance that all the
elecrrical power dissipated in the heater will appear as heat flow through the samples. With
only one sample, heat can flow from the backside of the heater even though insulated.

Heat leakage out the lateral surfuces of the cylindrically shaped samples will become significant
when the sample thermal conductivity is only slightly higher than that of the isulating material
used on those surfaces. That is, the method is suitable for metallics, but must be used with
caution on non-metallic materials,

For any combination of materials in the upper and lower position, we expect AT, = AT,,
However, if the insulation were improperly applied along the lateral surfaces, it is possible that
heat leakage will occur. This may cause AT, # AT,.



PROBLEM 2.18

KNOWN: Comparative method for measuring thermal conductivity involving two identical
samples stacked with a reference material.

FIND: (a) Thermal conductivity of test marerial and average remperatures, (b) Conditions
when -I'!luT| FﬂT:.

SCHEMATIC:
T,=400K ax=10mm
T, .=3.32°C
Test sample () St
Reference material alp=249°C
Armeo iron
Test sample (2) al;,=3.32°C
T; = 300K

ASSUMPTIONS: (1) Sweady-state conditions, (2) One-dimensional heat transfer through
samples and reference material, (3) Negligible thermal contact resistance between materials.

PROPERTIES: Table A2, Armco iron (T = 350 K): k, =69.2 W/im'K.

ANALYSIS: (a) Recognizing that the heat rate through the samples and reference material, all
of the same diameter, is the same, il follows from Founer's law that

ATy AT, AT, 2

k = =K
CAx My Mgy
- By o 249°C ‘
k,_u,ﬁ_ﬁu.zwmxlwc =51.9 WimK. <]
We should assign this value a iemperature of 350 K. <

(b) If the test samples are identical in every respect, AT; # AT: only when the thermal
conductivity is highly dependent upon temperature. Also, if there is heat leakage out the lateral
surface, we can expect AT; < ATy. This would occur when the thermal conductivity of the test
material were only an order of magnitude above that of the insulating material employed.



PROBLEM 2.19

KNOWN: Identical samples of prescribed diameter, length and density mminally a1 a umiform
temperatures T, sandwich an clectric heater which provides a uniform heat flux g7 for a peniod
of time At,. Conditions shortly after energizing and a long time after de-energizing heater are
prescribed,

FIND: Epcciﬁr, heat and thermal conductivity of the est sample material. From these
properties, identify type of matenal using Table A.1 or A2

SCHEMATIC:
. b -t—I nsulation about the
Lz10mm._ " entire block
t -Sﬂmp."e fhprmgfml
T Heater, P(W)

~Sample 2,p,T-23.00C

L 5 4
Ao e S D -

Case A-forOD=ts A, = 1205 P=15W; T,(305)=2523"C
Case B - for1 > At,. P=0'W, for t » At,, T les) = 33.50°C

ASSUMPTIONS: (1) One-dimensional heat mransfer in samples, (2) Uniform propernies, (3)
Perfect insulation, no losses of heater power 1o insulation, (4) Heater has negligible mass.

Ti)=T=23.00°C
Tro)-33.50°C

ANALYSIS: Consider 4 control volume about the samples
and heater for an imerval of time 1 = 0 10 = and write the
conservalion of energy requirement,

1
i
En— Eauw=AE=E; - E| 'Emt

PAY, — 0= Mey | Tiee) = T, |

Solving tor ¢, substiuting numencal values, and recognizing the energy in 15 prescribed by
Case A power condition and the final temperature Ty by Case B, find

e SN 1S Wxl20 s
POM[Tie) = T, 23965 kg/m (00607 /41m* 0,010 m[33.50 - 23.00]°C

=765 Ikg K <J

where M = pV = 2piaD*/4)L., the mass of both samples. For Case A condition, the temperature
rise at the heater surface as a function of time has the form (see Eg. 5.59 with x={))
A

e
T '““[m-,.k

- | [ “qu ]'
xpo, L T.(0-T,

Continued ...



PROBLEM 2.19 (Cont.)

3

2x2653 W/m?
k= = 36.0 W/m'K L
nx3965 kg."m u?ﬁ& Jkg'K [ (24.57 — 23.00)°C ]
where
fim oty Lh = 2653 W/m’,

2A,  2xD4)  2m<0.0607/4)m’
With the following properties now known,

p=3965kg/m’  c,=765)kgK k=36 W/mK

search now in Table A.2 first 10 see whether values are typical of memllic or non-metallic
materials. Consider the following,

« metallics with low p generally have higher thermal conductivities,
« specific heats of both types of matenials are of similar magnitude,

e the low k value of the sumple is typical of poor metallic conductors which generally have
much higher specific heats,

« more than likely, the material is non-metallic.

Begin search through Table A.2, and find the second entry, polycrystalline aluminum oxide, has
properties at 300 K corresponding to those found for the samples. <



PROBLEM 2.20

KNOWN: Temperature distribution, T{x,y.z), within an infinite, homogenecous body at a given
instant of tme,

FIND: Regions where the temperature changes with time.

SCHEMATIC:

— Tfl,'f.lj= 11—2?3 + 22 =Xy -hErI

v —

X

ASSUMPTIONS: (1) Constant properties of infinite medium and (2) No internal hear
generation.

ANALYSIS: The temperature distribution throughout the medium, at any instant of time, must

satisfy the heat equation, For the three-dimensional cartesian coordinate system, with constant

properties and no internal heat generation, the heat equation, Eq. 2.15, has the form
ﬂIT+azT+a?T=iﬂ (1)
dx*  dy* dr a d

When T(x.y.z) satisfies this relation, then conservation of energy at every point in the medium

18 satisfied. Substituting Tix.y.2) into the Eq. (1), first find the gradients, dT/dx, dT/dy, etc.,

L I o d 1 4T
(2=} + ——(=~dy~ it e
E.l;{ X=y) + E‘ty! y-%+22) + az{znlyl 3
Performing the differentiation, find
1 4T
r TR S SRt
(R
That is,
dT

ot
which implies that, for the given instant of time, the temperature will everywhere not change.

COMMENTS: Since we do not know the mnitial and boundary conditions. we cannot
determine the temperature distribution, Tix,y.z), at any future time. We only can determine
that, for this special instant of time, the temperature will not change.



PROBLEM 2.21
KNOWN: Steady-state temperature distribution in a cylindrical rod having uniform heat
generation of §; = 5=107 W/m®,

FIND: (a) Steady-state centerline and surface heat transfer rates per unit length, g, (b) Inital
tume rate of change of the centerline and surface emperatures in response 10 a change in the

generation rate from qy 10 gy = 10° Wim™.

SCHEMATIC:
Tir) = 800-4.167+10"r2
ro=0025m 9=9, = 510" W/m?
' k=30 W/m-k
P=1100kg/m3, cp=800J/kg-K

ASSUMPTIONS: (1) One-dimensional conduction in the r direction, (2) Uniform generation,
and (3) Steady-state for g, = 5x107 W/m’

ANALYSIS: (a) From the rate equations for cylindrical coordinates,

-=_ 0T T )
L i L
Hence,
B dT
g, = —k(2xrL) =
or
- dT
q,:—inhﬁ (1

where dT/dr may be evaluated from the prescribed temperature distribution, Tir).
Atr=(0, the gradient is (8T/dr) = 0. Hence, from Eq. (1) the heat rate is

q =0 <]
At r=1,, the lemperature gradient is

' K
%']:— ==2 [d.IﬁT:Iﬂ’ 3 ] (r,) = =204, 167=107) (0.025m)
m
Ir=,
%‘::- = ~0.208<10" K/m.
& Tl

Continued .....



PROBLEM 2.21 (Cont.)

Hence, the heat rate at the ourer surface (r=,,) per unit length is

qy(re) =—2n [3& W.-*m*IC] (0.025m) [un.ma:m* H.rm]

q,(r,)=0.980 x 10° W/m . <

(b) Transient (time-dependent) conditions will exist when the generation is changed, and for the
prescribed assumptions, the temperature is determined by the following form of the heat
equation, Eq. 2,20

1 o dT

TE[’“E:]**'“"E
Hence

ar _ 1 |1 @ | ar

However, initially (at 1=0), the temperawre diswibution is given by the prescribed form,
Tir)= 800 - 4.167<10°F, and

a{ar] k 3

1

%E 5| =7 5 lrt-8.334x10%0)

(~16.668x10" 1)

r
L3
r

=30 WimK [-m.msxm’ Efm“]

=—5x10" W/m" (the original 4 =4 ).
Hence. everywhere in the wall,
dT _ 1

= -5x107 + 10*| W/m®
ot lttﬂfkgfmluHMJfkg'Kt P

%} = 56,82 K/s. <]

COMMENTS: (1) The value of (@T/dt) will decrease with increasing time beyond t=0, until a
new steady-siate condition is reached and once again (8T/h) = 0.

(2) By applying the energy conservation requirement, Eq. 1.11a, 10 the rod for the steady-state
condition, E;; + Ege — Eqy =0. Hence q,(0) = g, (r,) = —q; (mr).



PROBLEM 2.22

KNOWN: Temperawure distribution (n a one-dimensional wall with prescribed thickness and
thermal conducuvity.

FIND: (a) The heat generation rate, g, in the wall, (b) Heat fluxes at the wall faces and relation
o g,

SCHEMATIC:
= S0W/mK, 2
Tix)=a ¢ bxt T(*C) 5
L
22200°C <
Fex  |Le50mm b=-2000C/m

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3) Constant
propertics.

ANALYSIS: (a) The appropriate form of the heat equation for steady-smte, one-dimensional
conditions with constant properties is Eg. 2.15 re-writien as
: d |dT
d [

Using the form for the iemperature distibution, evaluate the gradient giving,

i b
.o 4 |4 el 4 —
q——km [dxl‘.ﬁh: 1]- kd; [2bx] = —2bk

= —2{-2000°C/m?) = 50 Wim'K = 2.0<10° Wim" <]
ib) The heat Huxes at the wall faces can be evaluated from Founer's law,

- dT
Quixi =~k E;],. :
Using the iemperature distmbution Tix) 1o evaluate the gradient, find
Qalx)=~k 5-'; [a+bx? | = ~2kbx .
The Aux at the face x={), is then

g, (0} =0 <d
and at x =L, (L) ==2kbL = -2 x SOW/m'K (=2000°C/m?) x 0.050m

g (L) = 10,000 Wim® . <
COMMENTS: From an overall encrgy balance on the wall, it follows that
Eg = Egy + Eg =0 Qa0 =gy (L) +gl=0

4= dx (L) =g, (0) 10,000 W/m? -0

- Wim' .
T 0.050m 2.0 = 10°W/m




PROBLEM 2.23

KNOWN: Wall thickness, thermal conductivity, temperature distribution, and fluid
lemperature.

FIND: () Surface heat rates and rate of change of wall energy storage unit arca, and (b)
Convection coefficient. E "

SCHEMATIC:
k=1 W/m-k
500°C | : T(x)=200-200x + 30x2
142.7°C
e T =
9 in : 9 out T T

&=100°C A

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant k.

ANALYSIS: (a) From Fourier's law,

’ a‘['_
s Ill-a-‘-‘--l'im-ﬁﬂ:l}k

= = “C w
= =M0-— = 1 = :
Gin = Qa0 % I —r =200 W/m <
Qout = usl. = (200 - 60 x 0.31°C/m » | WimK = 182 Wjm? | <
Applying an energy balance 1o a control volume about the wall, Eg, 1.11a,
I§EIL'| = Eou =]:';u
Exi = Qin — Gout = 18 Wim® <

(b} Applying a surface energy balance at x=1.,
Gou = WIT(L) = To]

- ol _ 182 Wind®
Tl -T= (1427 = 100)°C

h=4.3 WmK. <

COMMENTS: (1) From the heat equation,
(@T/00) = (kipey) & T/x? = 60(kipey) ,
it follows that the temperature is increasing with time at every point in the wall

(2] The value of h is small and is typical of free convection in a gas.



PROBLEM 2.24
KNOWN: Temperature distribution and distribution of heat generaton in central layer of a
solar pond.

FIND: (a) Heat fluxes at lower and upper surfaces of the central layer, (b) Whether conditions
are steady or transient, (¢) Rate of thermal energy generation for the entire central layer.

SCHEMATIC:

Mixed layer

Central ."uye:r

Mixed layer

ASSUMPTIONS: (1) Central layer is stagnant, (2) One-dimensional conduction, (3) Constant
properties.

ANALYSIS: (a) The desired fluxes cormespond to conduction fluxes in the central layer at the
lower and upper surfaces. A general form for the conducton flux is

_ L aT AT e
Geond =K 72 k[u ! BJ |
Hence, _
; A O A
Ge = Goondixly = —K [E 4 E,. Qu = Qeontinatty = K | 1 *B] <

ib) Conditions are steady if dT/ch = 0. Applying the heat equation,
r}‘T L8 dl ' RARTRE ET) CF  |

Lt o ——— o — W .

dx* k o o k k o o
Hence conditions are steqady since
aTfh =0 (forallD Sx<L) <
{c) For l.j;u: ::mnﬂ layer, thl: energy gencrution is

L qd:~hj1 e dx

| L.

f=-Dew | =-Betto= 2. <

¥
a 0 a a

Alternatively, from an overall energy balance,

q'l"'l.'.h +Er_—l] E n:q] 'qlt'-q;wﬂuﬁﬂj}_l_q;nlu=l_1i
r %

z | A A | _A ~al.

Eu-h[“+3] kl“t +BJ—T{1~1 ).

COMMENTS: Conduction is in the negative x-direction, necessitating use of minus signs in
the above energy balance.



PROBLEM 2.25
KNOWN: Temperature distribution in a semi-transparent medium subjected 1o radiative flux.

FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) Heat generation rate
q(x). {c) Expression for absorbed radiation per unit surface area in terms of A, a, B, C, L, and k.

SCHEMATIC:

?,. fﬂ) l limr irradiation

i ' ¥ Semi parent mnEuq
L _____ ﬁ'ﬂ* kot & Bx+C
xtﬁ}

ASSUMPTIONS: (1) Steady-state conditions, {2) One-dimensional conduction in medium, (3)
Constant propertics, (4) All laser irmadiation is absorbed and can be characterized by an internal

volumetric heat generation term qix).

ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found using
Fourier's law,

9% =—k[‘”]-~k[——-—t~lt’“ ]

Front Surface, x = 0, ati= —k[-%-l . H] =—[-‘.1 +h:BI ":]

Rear Surface.x=L: q“(Li= —k[--::r"" . H] =—[%r"" +ha]. <J

(b) The heat diffusion equation for the medium is

HE o« k(D)
qix) = —h%[+-&e"' . B] = AE™, "ﬂ

(¢) Performing an energy balance on the medium as shown above,

Ey = Eqy #E @0
recognize that f-:,m represents the absorbed irrndintion. On a unit area basis

Ep = —E% + B =70 + q'}th=+%ll -ey <
Alternatively, evaluate E%, by integration over the volume of the medium,

R



PROBLEM 2.26

KNOWN: Steady-state 1e ure distribution in a one-dimensional wall of thermal
conductivity, T(x) = Ax* + Bx* + Cx + D.

FIND: Expressions for the heat generation rate in the wall and the heat fluxes at the two wall
faces (x =0,L).

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3)
Homogeneous medium.

ANALYSIS: The appropriate form of the heat diffusion equation for these conditions is
d*T _.1 d*T
+ { or q=—k—s.
ax?

l:lll
Hence, the generation rate is

g=—k-=- ["T] ~u—13m +2Bx+C+0]

q=—k[6Ax + 2B] <]

which is linear with the coordinate x. The heat fluxes at the wall faces can be evaluated from
Founer's law,

qL= -u-g =~k[3Ax + 2Bx + C]

using the expression for the temperature gradient derived above. Hence, the heat fluxes are:

Surface x=0;

g% (0) = —kC <]
Surface x=L.:

qa(L)=—k[3AL? + 2BL + C]. <]

COMMENTS: (1) From an overall energy balance on the wall, find
Ein — Equ + Eg =0
q'a(0) = g’ (L) = (=kC) — (—K)[3AL? + 2BL+ C] + E; =0
E7 =—-3AkL? - 2BkL.
From mt:p'.m'nn of the volumetric heat rate, we can also find E°} as
-L glx)dx = L —k[6Ax + 2Bdx = —k[3Ax" + 2Bx];
E' =—3AkL? - 2BkL.



PROBLEM 2.27

KNOWN: Pline wall with no mternal energy generation.

FIND: Determine whether the prescribed temperature distribution is possible: explain your reasonmg
With the temperatares T(0) = 0°C and T_ = 20°C fixed, compute and plot the temperature Til.) as a
function of the convection coefTicient for the range 10 h < 100 Wim' K.

SCHEMATIC:
T
1“ ER——— ql‘w
Ti°C)
[1]
T(0) 10 I *,,._ﬂ"

T g S ql‘ | |
g=0 e Toe= 20 °C 2
k=4 5WImK o { e m " L

ASSUMPTIONS: (1) One-dimensional conduction, (2) No imternal energy generation, (31 Constant
properties. (41 No radiation exchange a the surface » = L. and (5) Steady-state conditions.

ANALYSIS: s the prescribed temperature distribution possible? If so, the energy balance at the
surface = L ax shown above in the Schematic. must be satisfied.

E,~B.T=10 qL)-q} 7="0 (1.2

where the conduction and convection heat fluxes are, respectively,
y JIL)=Ti0)
Y Sl

- d F -
q,iLJ'--Ld—I] =4 5W/m K x(120-0)"C/0.18m = ~3000 W/m*

Lo

Q7 = B[TIL)-T.]= 30W/m* K={120-20)'C = 3000 W/m’

Substituting the heat flux values mto Eq. (2), find (-3000) - (3000) = 0 and therefore, the temperadure
distribution is not possible.

With TI0) = 0°C and T_ = 20°C, the temperature at the surface x = L. TiL}, can be determined from an
overall energy balance on the wall as shown above in the Schematic,

EL"T'-“Lh[nL}_T_]ﬂ:
-4 5Wim K[T(L)- 0°C]/018m - 30W/m® IE[T[L] -:u'c'} =0

E.~E =0 q.ith-g" =0 =k

Tili= 10.9°C <

Using this siume analvms, TiL) as a fonction of
the convection cuefficient can be determined
aral ploties. We don’t expect Til.) to be linearly
dependent upon h. Note that as b increases to
larger values, T(L) approaches T_ . To what
value will TiL) approach as h decreases”

Astmm g g 8




PROBLEM 2.28

KNOWN: Coal pile of prescribed depth expenencing uniform volumetric generation with convection.
absorbed irradiation and emission on 1s upper surface.

FIND: (a) The appropriaie form of the hear diffusion equation ( HDE) and whether the prescribed
temperature distribotion satisfies this HDE: conditions at the bottom of the pile. x =0, skeich of the
temperature distribution with labeling of key features; (b Expression for the conduction heat rate ai the
location x = L. expression for the surface temperature T, based upon a surface energy balance st x = L.
evalusie T, and Ti0) for the prescribed conditions: (¢ Based upon typical daily averages for Gy and h,
compute and plot T, and Ti0) for (1) b =5 Wim' K with 50 € Gy € 500 Wim®, (2) Gy = 400 Wim™ with $
< h < 30 Wim' K.

SCHEMATIC:
e ) G = 400 Wim?
‘=38
—= heS S T

ASSUMPTIONS: (1) One-dimensional conduction, (2) Uniform volumetnic heat generation,  3)
Comatant properties, (41 Neghgible iradiation from the surroundings, and (5) Steady-state conditions

PROPERTIES: Table A 5, Coal (30K k =026 Wim K

ANALYSIS: 1a) For one-dimensional, steady-state conduction with uniform volumetnic heat generation
and constani properiies the heat diffusion equation ( HDE) follows from Eq, 2.16,

d [dT q

iy A, S <

dul da 1 k W
Substituting the iemperature distnbution i the HDE, Eq. (1),

ql:'[ \ ] d EL_{ 2x ] q
T(a)=T + 1-— —| O+ — ||+ 27=1 23
MEREEL U dx [u 77 e | MR o

we find that it does indeed sutisty the HDE for all values of 1 <

Fromn Eg. (2], note that the temperature distnbution must be quadratic, with maximum valee at x =0, At
x = () the hear flux s

. b
r N o 5 I
qt {0} = uLi [ kU ".'E-lu_i] =i 14 Parabolic shape
‘t.l' JIJ' !l- :h : L i
o thiat the gradient m & = 0 is 2¢r0. Hence, the bottom 1 ilﬂ'-'
15 msulated p botiom

L

0

-

Ts no T
ih From an overall energy balance on the pile, the conduction heat flux at the surface must be

QL) =E; = 4L ;=

Contmued



PROBLEM 2.28 (Cont.)

From a surface energy balance per unit area shown in the Schematic above,

E,-Ey+E, =0 qy{L)-q7, + Gy, ~E=0

gL-h(T, -T,)+ 095G, -eaT =0 134
20W/m'x1m =~ SW/m K(T, - 208K )+ 0.95x 400 W/m" — 09856710 W/m K'T* =0

T =295.7 K =22.7°C <

From Eq. (2) with x = 0. find

gL’ AT AW/ m" x(Im)

ak 2%026W,m-K
where the thermal conductivity for coal was obtained from Table A3

1) Two plots are pencrated using Eq (4) and (5) for T, and Ti0), respectively. (1) with h = S Wim' K for
50 < G < 500 Wim’® and (2) with G = 400 W/m' for $ < h < S0 Wim* K.

T(O)=T +

=611'C (5 <

Camnriior conMomt = L Wmed K

Sl mamahen, 0G5 & 400 Bmes
L Y "0
| I
~ B + = | ]
g . g .
E 5 o * | :
- “ Ll
z B |
.. & Pt 1 — |
n g |
i | " ’
* |
. 1 i i g
-
=3 -] - |
i 160 i) e e 3 )| b1 ] a0 ] ifi 80
Boier imadannny. G5 Wowd) SarRChion cowFhunm B W R
—— W £ —— T C
—a— Ty L == Ty T

From the T vs. h plot with Gy = 400 Wim®, note that the convection coefficient does not have 4 mor
mfluence on the surface or bottam coal pile temperatures. From the T vs. G, plot with h = S Wim' K,
note that the solar radiation has a very significant effisct on the temperatures. The fact that T, 15 Jess
than the ambient air temperature, T_, and, in the case of very low values of Gy, below freezing. 1 a
consequence of the large magmitude of the envissive power E

COMMENTS: In our analvsis we ignored srradistion from the sky, an environmental radintion effect
you'll consider in Chapier 12, Treated as large isothermal surroundings, G, = “T.:, where T, = -30°C

for very clear conditions and neatly air temperature for cloudy conditions. For low Gy conditions we
should consider Gy, the effect of which will be to predict higher values for T, and T(0).



PROBLEM 2,29
KNOWN: Cylindrical system with negligible temperature variation in the r.z directions.
FIND: (a) Heat equation beginning with a properly defined control volume, {(b) Temperature

distribution T(®) for steady-state conditions with no internal heat generanon and constant
properties, (c) Heat rate for Part (b) conditions.

SCHEMATIC:
e Jr S
3 o Fo —r
4 i) # ) ’%’, f/ *
ﬁ‘,r‘r .l.; ?; .’t.ﬂ \?’

ASSUMPTIONS: (1) T is independent of r,z, (2) Ar = (r,—1;) =1,

ANALYSIS: (o) Define the control volume as V = r;dg-Ar-L. where L 15 length normal 1o page.
Apply the conservation of energy requirement, Eq. 1.11a,

Bo—Fon+Eg=Bu  do=dowo +4V=pVe 3 (12
= —kiarL) 2L 2 b2
where gy =-k(ArlL) 130 qm—m+hiﬂ-]ﬁﬂ- (3.4)

Eqgs. () and (4) follow from Fourier's law, Eq. 2.1, and from Eq. 2.7, respectively. Combining
Eqs. (3) and (4) with Eq. (2) and canceling like terms, find

o ol . .
s [ == = —, - j{]
ﬂgf 31:“':' pe {3)

Considering that r.z are constant, this form agrees with Eq. 2.20.
(b} For steady-state conditions with g = 0, the heat equation, (5), becomes
i [k dT

el =1, (6)

With constanmt properties, it follows that dT/d is constant which implies T(9) is linear in §.
That 15,

dT _ T3-T
do o

(e) The heat rate for the conditions of Pan (b) follows from Fourier's law, Eq. (3), using the
emperature gradient of Eq. (7). That is.

" +%rr,-rl= or  T)=T, + %tT;-T.‘Hh 7.8<

qn = _h{ﬂr'l_-ll -IL

l a To=T;
+?l'T;;—T| l] ==k [T.} L (T>=T;). [UT{J

COMMENTS: Note the expression for the temperature gradient in Fourier's law, Eq. (3), is
dT/r;d not dT/d¢. For the conditions of Part (b) and (c). note that q(#) is independent of ¢; this
is first noted in Eq. (6) and finally confirmed in Eq. (9),



PROBLEM 3.1

KNOWN: One-dimensional, plane wall separating bot and ecold fluids at T ; and
T.Ilh,!l m'ﬁ'ﬁl}'

FIND: Temperature distribution, T(x), and heat flux, Gy, in terms of Twx.as Tae,2s by

SCHEMATIC:
Hot ﬂurd‘ fﬂH Fiuid ) gl g/
Lj h-.l 'ﬂhz fb— 1
L

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3)
Constant properties, (4) Negligible radiation, (5) No generation.

ANALYSIS: For the foregoing conditions, the general solution to the heat diffusion
equation is of the form, Equation 1.2,

T(x) =C;x + Cy . (1}

The constants of integration, C; and Cg, are determined by using surface energy
balance conditions at x=0 and x=L, Equation 2.23, and as illustrated above,

dT dT
—k — = hy [Toey — T(0)] —% — = hy|T(L) = T 2] - (2,3)
dx dx
W=l =L
For the BC at x=0, Equation (2}, use Equation (1) to find
—k (Cy +0) =hy [Te,y —(Cy'0 + Cq) (4)
and for the BC at x=L lo find
—k (C) +0)=hy [(C)L +Cg) — T 2 - (5)

Multiply Eq. (4) by hy and Eq. (5) by h;, add the equations to obtain C;. Then
substitute C, into Eq. (4) to obtain Cy. The results are

T - T T i = Tas
¢, =— [lm.l 1 .::‘ Cyp = — [ l A ] .1]1 + T
E[E+E+? hl‘h. E+F|
Ty —Ta 1
T T I [ ST N N g
T kb
by by k
From Fourier's law, the heat flux is a constant and of the form
. Ty =T
Q;——k% _— C‘l =k [ o | 1:.!] . {:]
1 e i e 2 =




PROBLEM 3.2

RNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces
ol @ rear window

FIND: (4 Inner and owter window surface temperatures. T, and T, . and (b1 T, and T, . as a funcuion o
the outside wir temperiture T_, und for selected values of outer convection coefficient, h

SCHEMATIC:

Tei o Tso Ts i be |
. NN AN —
q
Lﬂ=-1ﬂuﬂ"' lnli 1mﬂ Lk 1'111
ho = 65 Wim% K i
Lo =40°C
+ I -l

ASSUMPTIONS: | 1) Steady-smte conditions. (21 One-dimensional conduction, | 3) Negligible radiation
etfects, 14 Constant properties.

PROPERTIES: Tubie A-3. Glass (300 Ky k=14 WinmK
ANALYSIS: 1) The heat flux mav be obtained from Eqgs. 3.1 and 312,

b T-|-T:.|| JD‘C [_Iu.ci
LI e I L OoEm I

hy k& h  6SWm K 14WmK 30Wm' K
q" m r :%H“-rllrmr.

100158 - 0.0029 - 00335 KW

Hence with q" = h [T, —T, ). the inner surface Iemperature 15

- : GH8W m° .
By A SO, S
' B = W m K .

Similarly Tor the outer surface wmperature with q"=h (T, ~-T..) find

g G6EW m-
T . = T e
= 6SW m - K

F i

149°C <

==

(b Using the same analyvsis, T,, and T, , have been computed and plotted as a function of the outside air

lemperature. T_ .. for outer convection coefficients of h. = 2. 65. and OO Wim™ K. As expected, T, , and
T, . are linear with changes in the outside air temperature. The difference berween T..and T, increases
with increasing convection coefficient. since the heat flux through the window likewise increases. This

difference is larger at lower eutside air temperatures tor the same reason. Note that with b, = 2 Wim' K.
T. =T, . 15 too small 10 show on the plot



PFROBLEM A2 (ConLi

< U BB

b |

Aaiw s gt T @ T ol |
z

COMMENTS: (1) The largest resistance 1s that associated with convecnon at the inner surface. The
values of T, and T, , could be increased by increasing the value of b,

121 The IHT Thermal Resistance Network Model was used 1o create 8 model of the window and generate
the above plot. The Workspace 1s shown below

i Tharmal Resistance Network Model:
T The Matwork

&2 EL]
OV SV (Y

i Ha0t s 0 D08 |3 Mougn Mermal resstance A
a2 = (TR TH A
g2 = (TD -T2/ R3AZ
) e (T4 -T2/ Rd2

I hWodal energy balances
al !ﬂ‘l'-u

g2 -gEf + 332 = 0
03032« ilie

= ogdi=0

* AEmgnEd Yamabias el desalec he 9. Ry and T) which are unknowns. 58l G = 0 for emDeosss noos! poines
A whish s & fo evbemal source of feal

Tt = Twda i Ciumata air Wmpamiure. ©

gl = If Haat rats, W

Té= Tin i Digler surtace temperaiure. ©

= O I Haal fEbe, W, node 2, no sdismal feal soure

Ti= Tai i Inmer surface tempearaiure. G

2= 0 /1 Hoat rale. ‘W, noda 2, no sxemal neat source

Td = Tinh /1 Inssge mar tAMpArEirg, C

gl - A Heaa) rate W

N Thermal Aesistances;

Hatw 1/ (o™ As | i Corvachion fhmrmal fasstance, KW, suisr surfece
A32= Lifun*An) t Conauction thermal iesistance. KAY. giass

PFdl= Y/ (hi*"Ax) i Cotwachin tepermal resisiance, KW, minet surlane
o Oiher Assigned Variabies:

Tirdgi = -10 # Outnige ar mmparatuce, ©

nE = 85 i Camvachon coaflgient, WimsR K- ouler surtace

ko= 0004 i Thickinais, m. glans

m « Thermal conductivity, Wim K, gliss

Titih = di) I/ |sioe Air emperalute, C

o= 30 T Convaction coathoant, Wem™Z K inner sunipes

Aa= [ Crosn-sacnonal area, /T uhel area



PRORLEM 1.3

RNOWN: Devred mner surface iemperature of rear window with prescribed inside and outside an
conditions

FINI: (a1 Hewer power per umit area required 1o muintain the desired temperature. and (b Compute and
plot the electrical power requirement as a funcuon of T_, forthe range <3105 T < 0°C with b ot * 20
08 anid 100 Wim' K. Comment on heater operation needs for low b 1T h = V" where V is the vehmcie
speed and n s pasitive exponient. hivw does the vehicle speed affect the need for heater operanon *

SUHEMATIC:

T, = 169~ ~———=—L=0004m
Fhliplhllllﬂhq; : Hrwﬂhﬂ
inside arr | || ' CAmbientar
L,=28%C Too=-10°C. 1, = 68 Wim? K
h; =85 Wim? - K gl
:
T -Wb-w —q
A b Lwa 1hA
S

ASSUMPTIONS: (1) Sicadyv-sune conditions, (3} Ope-dimensional heai transfer, | 1) Uniform heater
flux. g, . 141 Constant propermies. ( ) Neghgible radiation effects, (6) Negligible film resistance

PROPERTIES: Tabir A-7, Class (300K k=4 WimK

ANALYSIS: () From an energy balance a the imner surface and the thermal cireuit, it follows that for a
Ny surtace arei.

T-I-Tl'r ik Tu.-'-TIr

TR T

o =Ty =R, I8C=[-10°C}) 5°C-15°C
= L+l bh, _DOEm [ S
HWm K 68Wm K [10Wm K
90 =113T0-100)W/m = 1270W/m <

(hi The heater electrical power requirement as a foncuon of the extenior air temperare for different
esterinr convection coefficients 1 shown in the plot. When h, = 2 Wim* K. the heater is UNECE sl
since the glass 1s muntuned at 15°C by the imeior air. 1 h = V*, we conclude that, with higher vehele

wpeeids. the extenor convection will increase. nequiring inereased heat power 1o mainiun the | $°C
coditien

s g e
SENAREN

Hadgrw o a0
——

—— s
I:“Hﬁm WI“'I q:' !u,ﬂllmmﬂmmmmT" =‘Iu‘EwﬂHthtmh
LT I 010 :
1 L ] = =], = o gl 1% - .
T,-T.., Uh<Lksih, 0118 0846, o T, =23FC-DB46{35C)=-48°C



PROBLEM 34

KNOWN: Cuning of a transparent film by radiant heanng with subsirate and (ilm surface subjected w
knowrn thermal conditions

FIND: (i) Thermal cireut for this suuation, ib) Radiant hewt flux, ¢ (W/m'y, 10 maimain bond at
cuning femperature, T, (¢ ) Compute and plot @7 a5 a function of the film thickness tor 0< L, < | mm
and (d 11 the film 15 not transparent. determine g7 reguired to achieve bonding: plot resilis as o function
“!- l-l-

SCHEMATIC:
— h=S50Wime-K |9 o~ Ky=0.025 Wim K

8
Ly=0.25 mm — '

o

_ Bond, T, =60 °C
=1., _] 3 = *
L=10mm—] Z ky = 0.06 Wim-K

~

~—Ty=30°%C
ASSUMPTIONS: 1) Sready-state conditions. | 2) Dne-dimensional heat flow. 121 All the radiant heat
flux " 1» absorbed at the bond, 121 Neghgble contact revistance

ANALYSIS: (i) The thermal circuit o

for this situation is shown at the nght Rev R} Ry

Note that terms are writlen on a per unit G — —AASANA-eN . e T
area bavs - o ) Ty T

ib} Using thas circuit and performing an energy balunce on the film-substrate interfoce.

B s Wiy e A T
q':q *q' qF':R" +er- Rri

where the thermal resistances dre
R* =1h=1/50W m K=000m KW
Ry =L, /k, = 000025m/0025Wim K=0010m" K/W
R =L, k. =0001m/005W m- K = 0020m - K/W

- (60-20)'C (50 - 300 C
y [0o20+ 0010fm KW 0020m° KW

= {133 - 1500)W/m" = 2833W/m" <
i) For the transparent film. the radiant flux required 1o achieve bonding as a function of film thickness L
i» shown in the plot below,

i 11 the film is opaque (not transparent), the thermal cwcul is shown below  Inorder o Lind 7 it s

necessary to wnite two energy balances. one around the T, node and the second abowt the T node
Ty
R (=4

The reésults of the analvses ire plotied below

Comtrmed



Wi g Smad i (ME—= T

PROBLEM 3.4 iCont.

Lo mm i o

= TEIa

COMMENTS: (1) When the film is transparent, the radiant flux 15 absorbed on the bond  The flux
required decreases with increasing film thickness. Physically. how do you explain this® Why i the

relationship not linear?

(21 When the film is opague. the radrant flux is absorbed on the surface. and the flux required increases
with increasng thickness of the film. Physically, how do vou explain this™ Why is the relatonship

[imear

i 3} The IHT Thermal Resistance Network Model was used to create 8 model of the film-substrate sy stem
and generate the sbove plot. The Warkspace is shown helow.

I Thsrmal m m a s .’. e % ix o
Model
4 Thae Matwr ""-—'—. 'I,.l"l,ﬂlr'lt—': 'l,"!i"\,-—“-.—l "-,l"..l"u—-‘li

+ Manl rgs inho Aode |31, througn thermal ressiEncs Ay

a2 = (T2- T114 R2Y
932 = (TR - T2\ / AE2
943 = (T4 - TH) ) B43

* Moos! anergy Dadances
Q=g =0

g - g2t - gi@ il
gl - pll=t

- gl

a1 = i et tbe, W i sde

TR=Ts 1 Film surtace iemperatiine. C

A=l  Amdhart fus, WimvZ. zera ior part (a)
TiaTh " Bong emperalure. ©

5 = g0 ' Pladiand Sus, Wi pan ia)

Td = Teyb /' Butstimie wmpsEtre ©

LT~ A el raE, W subsitais mids

A Tharmal Aesivinnces:

FEt= 1 /(m" &) I Cohwaction mamtance HAW
AX2 = LI 7wl ® A I Conduction resisiance, KA Rim
Rd3= L&/ s ® A M Conduction ressiancs. KW sutarati
I Qther Asssgned Veriables:

Tl = 20 {1 Armtwani g ismparaiume, C

f = 50 I Convechan coafficsant Wim 2 K

LY = O pO0gs o Thicknass. m Hm

K =025 i Trhnmat condichvty, Wem K- fiim

Tio = & i Cuma temperaiune, C

u-nnl:m I Theokrsss. m, subgimig

=008 I Thermal conguctivity, Wim K. subsirare
Taul = 30 o Subsirate ampamiure ©

LT 4 Crost-sactonn arma. med, uri area



PROBLEM 3.5

KNOWN: Maximum allowable tempersture and operating conditions of a rocket
noztle wall.

FIND: Preferred material: Cu or 304 Stainless.

SCHEMATIC:

Copper: Ty, =813K
Stainless : Ty, <1253K

n=3023K
ﬁ a::a‘wfml K

T

ASSUMPTIONS: (1) One-dimensional conduction through a plane wall, (2) Steady-
state conditions, (3) Constant properties.

—

A SR

Veanv "

PROPERTIES: Table A-1, Cu (T = (423+813)/2 = 618K): p = 8033 kg/m’, k =
378 W/m'K; St.St. (304) (T = 4234+1253/2 = 838K): p = 7000 kg/m’, k = 23.2
W/mK.

ANALYSIS: The decision concerning which material to use may be made by frst
computing the thickness L. required to insure that T, ; remains within the acceptable
limit. The lighter wall (corresponding to the smaller value of L- p] wn'uld then be the
obvious choice. Applying an energy balance to the inner surface, g, = ﬂm-d Hence,

Ty T
h[TI _Tl,:l...'-k 'IT“+
L-E- Toy = Ton _

h Tx-_T.II

For the copper:

378 W/ m'K  (813—423)K
210" W/m*K (3023—813)K

= L34 mm

ol = (8933 kg/m? « 000334 m) = 20.8 kg/m* .
For the steinless steel:

_ 232 W/mK  [1253—423)K
2x10' W /m*-K (3023—-1253)K

= [1L54 mm

pL, = (7900 kg/m® x 0.000544 m) = 4.3 kg/m® .
Henee from the standpoint of weight savings the stainless steel is preferred, <]

COMMENTS: The above considerations ignore strength requirements, which
determine the minimum wall thickness needed to sustain the nozzle loads. Such
requirements would have to be considered to complete the design caleulations.



PROBLEM L&

RNOWN: Design and operating conditions of a heat flux gage

FIND: (4 Convecnion coefficient for water flow (T, = 27°C) and error associated with neglecting
conducnion in the msulanon, (b1 Convection coefficient for amr Row i T, = 12%°C) and error associated
with neglecting conduction and radianon. ic) Effect of convecuon coefficient on error assoctated with
peglecting conduction for T, = 2T(C

SCHEMATIC:
Air or
Water =~ Toony Oy Foil (Fgge = 2000 W/imZ)
h T =269C — 1 £ §T|== (Water) ]
Ty = 125 9C (Airj |
Surround '
Insulation Tgur=25°
(=0 040 WirnK)
Ty=250C

ASSUMPTIONS: 1 1) Steady-state, () One-dimensional conduciion. (31 Constant k

ANALYSIS: 1a) The electric power dissipation is balanced by convection to the water and conduction
throwgh the msulation. An energy balunce applied to a control surface about the foil therelore v ialds

P:'-. hqlllll*Q:.ﬂ;h[T.l T.'*LIT.-T.IIIL

Hence.
po Pie =KL -T,)L _2000W 'm" -004Wim K(2K)/00Im
. 1.-T. ' 1K
4 % Y :
- 1'::“'“‘ ~996W/m' K <

If conduction s neglected, i value of h = 1000 Wim K s obtamned. with an aendant errar of {10600 .
S0 1090 = 0,405

(hi o air. energy may also be transferred from the foil surface by radiation. and the enerey balance
vields

Pl = Gy + Qs =00y = BT, - T, Jo00 (T < T3, )+ T, T, 1.

Hence
P -ta|{T =T )-kT ~T,)/L
.2 T-T,
_2000W m =015 56710 Wim' K (198 - 208 IK* 008 Wom K{ 100K 70.01m
. 100K
- S00 L6 —0FWITN . ewria. K <

ok

Continued



PROBLEM 3.6 (Cont.)

If conduction, radiation. or conduction and radiation are neglected. the corresponding values of h and the
percentage errors are 18.5 Wim™ K (27.6%), 16 Wim™ K (10.3%), and 20 Wim K (37.9%),

(¢} For a fixed value of T, = 27°C. the conduction loss remains at g7, = 8 W/m~. which 15 also the fixed
difference between P2 and q7_,  Although this difference 15 not clearly shown i the piot for 10€ h <
1000 W/m™ K. it 1s revealed in the subplot for 10 100 W/m™ K

o dbsnpanmn 17 plec fdme 7

& o] 48 -] L 1d o0
Corveoson pomnossl, PR ime7 =,
— ) GO
w5 WA COnGuon

Errors associated with neglecung conduction decrease with increasing h from values which are
significant for small h (h < 100 Wim"-K) to values which arc negligible for large h.

COMMENTS: In liquids (large h). it is an excellent approximation to neglect conduction and assume
that all of the dissipated power is transferred 1o the fluid.



PROBLEM 3.7

KNOWN: A laver of fany tissue with fixed inside temperature can experience different outside
convecuon conditions.

FIND: (2) Ratio of heat loss for different convection conditions, (b) Quter surface temperaiine
for different convection conditions, and (c) Temperature of still air which achieves same
cooling as moving air (wind chill effect).

SCHEMATIC:
l=L: 0003m
Ts.r" - 3&'1: Tm = '15 .C
TT T h=25Wim-°C ar
ﬁlh“y tissue htEEmei’-- v

ASSUMPTIONS: (1) One-dimensional conduction through a plane wall, (2) Steady -<tate
conditions. (3) Homogeneous medium with constant properties. (41 No internal heat generation
(metabolic effects are negligible), (5) Negligible radiation effects.

PROPERTIES: Table A-3, Tissue, fat laver: k=02 WimK .
ANALYSIS: The thermal circuit for this situation is
|

LIkA 1A

?I-

Hence. the heat rate is
TI.I _Ti T‘L] _T-u.
R LKA + 1/hA

Therefore,
4
g TRl
G ]._[L -
LE 8

Applying face energy balance 1o the outer surface it also follows thin

-
q“ Ry -

Continued .



PROBLEM 3.7 (Cont.)

Hence,
{- (Toi~Toa) b (Tin = Ti)

T_+iT,1;

Tya= Iﬂ;
|+ —
hL

To determine the wind chill effect, we must determine the heat loss for the windy day and use it
to evaluate the hypothetical ambient air wemperature, T.., which would provide the same heat
loss on a calm day. Hence.

Ti,l -T-' B Tl,i -T;

q"=— -
[1. 1] -[L |]
o ) N
k h windy calm

From these relatons, we can now find the results sought:
0.003 m " 1
Qaln _ 02 WimK 65 W/m™ K _ 0015+ 0.0154

(a) - -
Qodey 0.003m 1 0.015 +0.04
02 WmK 25Wm K
Salm 0,553 <
Y windy
T s w,? ﬁiﬁfma m 4
= e . =22 12
) T’"’]m 7 02 WimK okt
(25 W/m*-K) (0.003 m)
-15°C + 0.2 Wik 16°C
T ] (65 Wim*-K) (0.003m) - 10.6% <
[ e = = g
windy ti 0.2 WimK

(65 W/m*-K) (0.003m)

(0.003/0.2 + 1/25)

= 5638 q
(0.003/0.2 + 1/65) S

(e} Ta=36°C-(36+15)°C

COMMENTS: The wind chill effect is equivalent to a decrease of T, 2 by 11.3°C and increase
in the heat loss by a factor of (0.553)°" = 1.81.



PROBLEM 3.8

KNOWN: Surface-mount transistor with prescribed power dissipation and convection cooling
conditions.

FIND: Using thermal resistance circuit, an expression for the case iemperawre T, ; evaluate for
stagnant air and conductive paste filled gap.

SCHEMATIC: T (A -
T=20°C : T;:EE G s
hz SOWmi-
mh'lr Tiiadda r-']] A o= taw: Jmm s 045 mm
Gap, ky, #402mm k=tm 1B

Circuit board ransistor case, I50mW dissipation, Lyfmm

ASSUMPTIONS: (1) Transistor case is isothermal, (2) Upper surface CXPEnences convecton,
negligible losses from edges, (3) Leads provide conduction path berween case and bouard. (4)
Steady-state conditions.

PROPERTIES: (Given): Air, kg, = 0.0263 W/mrK; Paste, kg, = 0,12 W/m-K, Metal leads.
k‘. =25 Wim'K.

ANALYSIS: The thermal circuit for the surface mount transistor is
ﬂﬂl‘ﬂ" r

- T - q.!

Er" _p:.——- e R .

Riesds | T —q,

:E.FF

where the thermal resistances are, with A, = L xL, and A, = pew,
R = 1A, = 1/90 Wim® -KRedu 107 1m" = 625.0 KW
Rims = IALACA, ) = 10004 m/25 Wim-Ki190.25%10%m?) = 213.3 K/W
Ryupa = Uhg o A, = 0.0002 m /00,0263 Wiime K(Sedx 10 1im* = 237.6 K/W
Ry = Ui, A, = 00002 m/0,12 Wim-KBx4x107%1m* = 52.1 K/w,

From the thermal circuit and the thermal resistance expressions, find

B =1+ = (T, = TR +rr ~ TR s + Borl

Te={E T4 Wi |
EomReam II.H,__+ IR, 1" ; nm;.... + MR ypl™
Substituting values for the stagnant air-gap condition, find
150 10°" WeB25.0 KW « 20°C + 35°C i
B A3 - 12376
T, = s = $7T0PC. <]
/2133 = 12374

With the conductive paste condition, find T. = 319.9°C. <]



PROBLEM 3.9

KNOWN: Length, surface thermal conditions. and thermal conductivity of a plite. Plate
midpaint iemperature.,

FIND: Surface convection coefficient.

SCHEMATIC:

P20

ASSUMPTIONS: (1) One-dimensional. steady conduction with no gencration, (2) Constam
properties,

ANALYSIS: For prescribed conditions, q" is constant. Hence,

I - o O 15°C 8 2
Yeond =“050% - 0.5 /50 WimK i
do 4= 30°C 2
= = = | 500 W/m~
| (LY + (1M (002 + L/hm*-K/W o
h= 30 Wim=-K. <

COMMENTS: The contributions of conduction and convection to the wotal thermal resistance
dre

R % =0.02 m* K/W
1
h

0,033 m*-K/W.

L
R t.oomd



PROBLEM L0

KNOWN: Dimensions of a thermopane window. Room and ambient air conditions

FIND: (a1 Heat |oss through window, (b1 Effect of vanation i outside convection coefficient fod ditible
and triple pune construction

SUHEMATIC i Double Panei: _
Glass FLHLTLd - Window, 0Bmx05m

— o T L=0.007
_Air TR e L . 'ﬁ";‘ g
. =209C Alr =+10 %
| a
mi=10 Wime: K hﬂ = B0 Wimdi
TﬁJ Tn:.l'.‘l
—r
A e A T L "

WA kgh  kgA  kgA  BoA

ASSUMPTIONS: (1) Steadv-state conditions, | 23 One-dimensional heat transter, « 31 Constant
propenes. (41 Negligible radiation effects. (5) Adr between glass 4s stagnant

PROPERTIES: Table A-J, Glass (300 Ki: k=14 Wim K Tuble Ad. A iT =278 K1 b =0 0245

Wim k
ANALYSIS: ta} From the thermal circuit. the heat loss 14
. T
ift L L L 1
Alh Kk, Kk, kb
- W'C- (-10°C)
| [ p ] e IJ'.I'.I.'I'J'_an__L AT 1 = 0007 m I
D4m™ L I0OW/m" K 14Wim K 00245W m K I4Wm Kk SOW m K|
nC i
3 =24 W <

O 00150713+ U0 0 NIK W IRIKW

r!n .F"r the tniple pane window. the additional pane and airspacy increase the total resistance from 102
R/W o 1740 KAW. thereby reducing the hear loss from 20310 17.3W The effect of b, on the heat loss
i plotted as follows

o e
o /
§ . 5
} s . =
*
—,-.-—I-H--"'"“" i - 4R
] :
I} iz ] & & - -
i i STia 5 Eltiam] i T W

Continued..



PROBLEM 310 1 Cunt.)

Changes in h. imiluence the heat [oss a1 small values of he. tor which the outside convection resistance s
not neghgble relative to the total resistance. However, the reststance becomes neghgible with ingressing
h.. particularly for the mple pane window. and changes in b have litle effect on the heat loss

COMMENTS: The largest contrnibution to the thermal resistance 1 due to conduction across the
enclosed ar. Note that thas air could be in mation due o free convection currents, 11 the corresponding
convection coefficiem exceeded 3.5 Wim: K. the thermal resistance would be less than that predicued

assuming conduchion across slagnant wr.



PROBLEM A.11
KNOWN: Wall construction for passive solar collector. Net radiaton flux w0 one surface.
Ambient temperatures and convection coefficients for opposite surfaces. Meling point, liguid
convection coefficient, and solid thermal conductivity of phase change material.

FIND: Melt region thickness and surface temperatures,

SCHEMATIC:
Ligurd ]I'I Solid, k= OSWm-K
b B W L% T Ta
: TRy : ! al & E |
Trad 10 | AN RS A o e
P Trad
hy= 20Wfmd K | T, | Az:20WmtK by = 10W[ma-K
Tir0C  |efeg1oms| ma0C  TuSOT

ASSUMPTIONS: (1) One-dimensional. sieady-state heat wansfer through the wall, (2)
Verncal solid-liquid imerface in the PCM, (3) Negligible conductnion resistance in the
supporting surfaces, (4) Constant k.

ANALYSIS: An energy balance at surface 5,1 yields
Qe =1+ 97 =0Ty —Tas)* Ml - T)

U 0Ty +hTy (1000 + 20620 + 10XS0)W/m?

(hy = k) {20+ 107W/im*-K e .’

Tll =
Hence. from
4% = halTyy = T ) = 10 Wim* Kx13.3°C = 133 Win®

q"- = T- = T—: = ‘j{.._ m}T
T (M L) = (IMy) (0,10 « 200, - 0.05m KW

¥ 4 ‘ r
L, « BOC/I3 Wim®) 015 e KW _ o o

L]

9% 133 Wim®
Ta=Top+ —=C —_LL_ .87 <]
* 20 W im" K

COMMENTS: (1) Note the low energy collection efficiency (M = 305 =0.133). The
efficiency may be increased by increasing h,,, and/or decreasing T,

(2) The actwal solid-liguid interface will not be vertical, bur would slant downward to the left.



PROBLEM 3.12

KNOWN: Material thicknesses in a composite wall consisting of bnck, glass fiber. vermuculite
and pine panel. Inner and outer convecnon coefficients.

FIND: Total thermal resistance and overall heat ransfer coefficient.

SCHEMATIC:
| (lass fiber (EBkgmeJ
Ef‘ff.’k Gyp.ﬁl.!m' kg_r
Pine panel, kg
he= 70 ;g’ix h; =10 W/ml'K

1 L Ly Ly Lp 1
ho ky kgt kgy kp h;

ST
1 ﬂﬂmMﬂmm bmm
ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Neghigible

contact resistance,

I00K: Brick, ky = 1.3 W/im'K: Glass fiber (28 kg/m’),
0.17 W/m:K: Pine pancl. k, =0.12 W/m'K.

PROPERTIES: Table A-3, T
kg = 0.038 Wim-K: Gypsum, kg,

ANALYSIS: Cunsi:lmng a unit surface areq, the total thermal resistance is

b L Ly L1
hn kb |I kﬁ kp

> 1 0l 0.1 001 0006 | | m*K
R = - + +
o= 150" 1370038 017 012 10| W

Reu =

Rioe = (00143 + 0.0769 + 2.6316 + 0.0588 + 0.0500 + 0.1) m*-K/W

Ry = 2.93 m™K/W . <
From Eq. 3.18 the overall heat transfer coefficient is
I 1 5
Us = ——=(2.93 m*K/MW)"
RWI""" R'H:L
U=034] Wim* K , <

COMMENTS: As anticipated. the dominam contribution 1o the total resistance is made by the
insulaton.



PROBLEM 3.13
KNOWN: Thicknesses of three matenals which form a composite wall and thermual
conductivities of two of the materials. Inner and owter surface temperatures of the composite;
also, temperature and convection coefficient associated with adjoining gas.

FIND: Value of unknown thermal conductivity, kg.

SCHEMATIC:
o Ly4=03m

Tsi=600°C e s Lg=Lc=0l15m

k,.=aowif’m-k'

k ke ke =50W/m-K

L-soo'c |* [el* ':

e mei 5 Tm Li E.n_'
P P 17, Ly L 7

A Le & AA kA kA kA

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (4) Negligible contact resistance, (5) Negligible radiation effects.

ANALYSIS: Referring to the thermal circuit, the heat flux may be expressed as

- = Tl..l - T'I.l.l - ‘m‘m]n{:
9 L, s L 03m __015m __0.15m
ka ks ke 20W/mK ks SOW/mK

- 580
4 D018+ 0.15%s

The heat flux may be obiained from

Wim- i1

q = h(T. =T, ) =25 W/m*-K(800-600)°C (2)
g = 5000 W/m® |
Substituting for the heat flux from Eq, (2) into Eq. (1), find
0.15 _ 580 580
—— = - 0018 = —— ~ 0018 =0.098
- 018= 0.018 = 0.09
kg = 1.53 W/mK . <

COMMENTS: Radiation effects are likely to have g significant influence on the net heat fAlux
at the inner surface of the oven.



PROBLEM .14

KNOWN: Configurations of extenor wall. Inner and outer surtace conditions
FINI:: Heating load lor each of the three cases
SUHEMATIC:

| ]
| |
1 ]
[ | ba bp
10 mm ..j +.-mmm-{ [-.wm 1| I_,am : :imm-l-t-—smm-l—{-am
| 1
* ]
I |
] ] -
Wood : ; .
— L Glass ' Gilass ig) —
mw lnnnm ! " I " Aurig) eSS )
= 5 WImK hg = 15 Wimd.K
Tai ® 0 °C Tmg =-15%C

ASSUMPTIONS: (|} Sweady -staie, 1 2) One-dimensional conduction, | 31 Constani properes, (4
Negheible radiation effects

PROPERTIES: (T =30 K Table A% plaster board, b, = 017 Wim K, urethane, ki = (0026 Wim K
wood, k. =012 Wim K. glass. k; = 1.4 Wim K. Table A4 i K, =0.0263 Wim K,

ANALYSIS: (a0 The hem loss may be obtained by dividing the ovesall temperature difference by the
rousd thermul resistance. For the composite wall of umit surface aren, A = | my',
. T.-T,,
(N T TS TR TN [
20'C—|-15°C)
.8 [gu_uu.m-;.. 142« 008X+ 0067 m :-:-w] I
SC :
q= m = | 5.0W <
b For the single p.mr of glains,
’
IHM-IL WE ]] A
isC asc
b [[ﬂ.Z <0002+ 006TIm . K W] Im T020K W

= 1303w <

i1 Forthe double pane window .
o L T
¥ [ll h =31, L‘]-IL, CERL) h...l] A
c sc
0.2+ 0004+ 0190 - 006Tim - K W[ 1m~ U461K W

g= = ThAW <

COMMENTS: The composite wall 1s clearly superior from the standpoint of reducing heat [oss. and the
dominant contribution to ws tetl thermal resistance (K279 1 is associated with the foam msulation. Even

with doutle pane construction, feat loss through the window s significantls largrer than that tor the
compasite wall



PROBLEM 1.15

KNOWN: Composite wall of a house with prescribed convection processes at inner and ourer
surfaces.

FIND: (a) Expression for thermal resistance of house walls, Ry,;; (b) Total heat loss, g(W; ic)
Effect on heat loss due to increase in outside heat transfer convection coefficient, h,; and (d)
Controlling resistance for heat loss from house.

SCHEMATIC:
A-3s0ms R et g
hi= 30Wfme-K o ke
fi=20°C 741 1§ § $ho=60Wms K | To=-15°C

L= 10mm —fe—sh - 100 A—r— L5 = 20mm
ASSUMPTIONS: (1) One-dimensional conduction. (2) Sweady-state conditions. (3) Negligible
contact resistance.

PROPERTIES: Table A-3, (T = (T, + T, V2 = (20-151°C2 = 2.5°C = 300K} Fiberglass
blanket, 28 kg/m’, ky = 0,038 W/mK: Plywood siding. k, = 0.12 W/n'K: Plasterboard. k,, =
0.17 Wim-K_

ANALYSIS: (a) The expression for the total thermal resistance of the hoose walls follows
from Eq. 3.1K,

“""n:n'ba‘:a‘u:*n:a' <
(b} The total heat loss through the house walls is

4= 8Ty = (T, = TR,
Substituting numencal values, find

n 1 0.00m . {1, 10m
OW/m* KxA50m* (L1 TWim-Ks350m®  (L038W /m-Ko150m°
.02 1

T RIIWim K30m® | 6OW/m KaSim
Rua=(9.52 + 168 +752 +37.6 42,76 10 "CWaB3 1 1072 5CrW

The heat loss is then,

q=[20 - (~1 ] CRILx 10" *C/W = 431 kW <

(e) If h, changes from 60 w 300 W/m* K. then R, = I/l A changes from 47610 *"C/W 10
0.95x107*C/W. This reduces Ry, 1o 826<107°°C/W which is = 0.5% decrease in Ry, o
=1.5% increase in q.

(d) From the Ry, numerical expression in part (b), note that the insulation resistance, Ly/kypA, 15
T32/830 = 90% of the 1ol resistance. Hence, this material layer controls the resistance of the
wall. From par (c) note that a 5-fold decrease in resistance due 10 wind velocity increase has a
negligible effect on the heat loss,



PROBLEM 3i.16
KNOWN: Composite wall of a house with prescnbed convection processes at inner and outer

surfaces.

FIND: Daily heat loss for prescribed diumal varianon in ambient air temperature.

SCHEMATIC: iberglass blanket (28kq(m3) k,
A=200m2 Plywoed siding ke
m TTT ho= 6OW/mi K °
hi=30W/mK T.:h _z?sfism(n- #) Ostezzn

A.EEUMFTIHHEL {1} One-dimensional, st:u:ly-sm: mndw:linn ineghgible change in wall
thermal energy storage over 24h penod), (2) Negligible contact resistance.

PROPERTIES: Table A-3, T = 300K Fiberglass: blanket (28 kg/m’ |, ky = 0,038 Wim K.
Plywood, k, =0.12 W/m-K: Plasterboard, k, = (.17 W/m-K.

24h
Tis—Tau
ANALYSIS: The heat loss may be approximated as Q = I —'J-“—'q:ll where
sl
1 |1 Ly
=— _+—+—+— —
"‘"“ A[h- b ]
| 1 . 00lm ., 0lm . 002m 1
R"“m“:' WWm K 0L17TWmK 008BWmK 0.12WmK 6 Wim K
Ry = 001454 K/W
Hence the heat rate is
| o
! 28 i} 2
2 el . T it
Q::Rm ! 293—[1?34-5“141] maj: ga—iz 3+||nn14:] dt
W 2] m|[® axe | P
O=EEE-E4 lﬂl+5[h]cmﬁ ! EEI+H[ }ms Y Pri.h

Q=688 4 | 240+ %l-l-lh:| [dﬂﬂ Idﬂ+£ﬂ1r1+l}‘ Weh

Q=688 (480 - 382+ B4.03) Wh

Q= 3618 kW-h = 1.302x10°] <

COMMENTS: From knowledge of the fuel cost, the total dailv heating bill could be
determined. For example. ar a cost of 0. 108/&kWedoth. the heating bill would be $3.62/day.



PROBLEM 3.17

KNOWN: Dimensions and matenals associated with a composite wall (2.9m « 6.5m. 10 studs
each 2.5m high).

FIND: Wall thermal resistance.

SCHEMATIC; _ Hardwood siding (A)
e e——— g
Lnsulation T 40’"2"" oy
Glass fiber “”E'd""““f (B)
paper faced (D) ' s
(28kg/ma) ' =AU F&Ww” ()

ASSUMPTIONS: (1) Steady-state conditions, (2) Temperature of composite depends only on
x (surfaces normal to x are isothermal), (3) Constant properties, (4) Nepligible conact
resistance.

PROPERTIES: Table A-3 (T=300K): Hardwood siding, ks =0.094 W/imK: Hardweod.
kp =0.16 W/im K. Gypsum. ke =0.17 W/im-K: Insulation (glass fiber paper faced, 28 kg/m'),
kp = 0,038 Wim K.

ANALYSIS: Using the isothermal surface assumption, the thermal circuit associated with &
single unit (enclosed by dashed lines) of the wall is

Lafhg A
[::tl Lok A
Lafk Ay

LolkpPpn
B 0,008 m e
EARAMA) = G000 Wim K (0. 65mdsmy 04 KW
0.13m

{ = =119
LaknAB) = WK Oty e B
(LokpAp) = Al = 2243 K/W

0.038 WimrK (0.61m=2.5mi -

i |

LelkcAe) 0.012m 0.0434 K/W.

0.17 WK (0.65m.Sm)
The equivalent resistance of the core is

Req = (/R + I/Rp)™" = (1/8.125 + 1/2.243)" = 1.758 K/W
and the total unit resistance is

Rty =Rp = R + Re = 1854 KW
With 10 such units in parallel, the total wall resistance is

Rut = (10 1/Ry 1 177 = 0,185 K/W <

COMMENTS: If surfaces paraliel 1o the heat flow direction are assumed adiabatic the thermal
circunt and the value of R, will differ,



PROBLEM 1%

KNOWN: conditions associated with mamtaning heated and cotled condibions within i retrigerator
compartment
FIND: Coeificient of performance (COP)

SCHEMATIC:
— Ta=208C
T o= S0 WK
;= 50C
il
L
-
Electne . Cooling
heater H ol
E
- Qout

Unplugged r— Plugged
Wi, = 125000 4
12'h
ASSUMPTIONS: () Steadv-stile operating conditions. (21 Negligible radiation. (1) Compariment
completely sealed from ambient wir

ANALYSIS: The Case a) expeniment 1 performed 1o determine the overall thermal resistance 10 heat
wransfer between the interior of the refrigerator and the ambient air. Applying an energy halance 1o o
control surface about the retrigerator. it follows trom Eq. 1.1 14 thar, at any instant.

E-E. =0
Hence.

L 0

where i, =T, =T, /R, It follaws that

- 325 CrW
. 0%

T.=-T (90 - 25)C

For Case (b). heat transfier from the ambient mr 1o the compartment (the heat oo is balanced by heat
transfes 10 the refrigerani i, = g Hence. the thermal energy transfierved from the refrigersor over the
|2 hour peniod i

=i
Qs = Qe = 4,81 = —'—I'ﬁ_-—l.ll

{23 -5)'C

w0 = e gy (120 360087k} = 2660004

The coethicient of performance (OOP) s therelore

COp = Qs = R =
W 125000
COMMENTS: The ideal (Carmods COP 15
I, : TTEK
I.-T (298-278)K

213 <

COP), =

139

and the system o aperating well below iis peak possible performance



PROBLEM 119

RNOWN: Total floor space and venical distance between floors for a square. flat roof building

FIND: a1 Expression for width of building which mimimizes heat loss, ib) Width and number of floors
which nunimize heat loss for a prescribed Noor space and distance between floors Comresponding hew
loss, percent heat loss reduction trom 2 floors

SCHEMATIC:
Ag= 32,768 m?
-9
Ay e
- Ambient -
—_ar
Hfi 4m
AT=25 3
U= 1 Wim<i :
d
“w
(al
p— i —f

ASSUMPTIONS: Negligible heat [oss 1o ground.

ANALYSIS: i) To munimuze the heat liss . the exterior surface area, A, must be mimmized  From
Fig (o
A, = Wi 4WH = W - 3WN H,
where
M= A W
Hence.
A =W =dWA H, /W* =W" - dA, H, /W

The optrmum value of W comresponds to
dA A H

el YN — T )
AW Ww-
(41§
W = (2AH, ) <

The compening effects of W on the areas of the roof and sidewalis. and hence the basis for an optimum. is
shown schemancally in Fag (b

(b For & = 32768 mand H, =3 m.

] a Nk
W, =(2» 32768m" « dm) = 6dm <
Henwe
129 !
T O L <
W (fdmi
and

4« 32768m «4m
fi=t M

q=UAAT = 1W/m' K| (6dm} ]zﬁ'r = 307.200'W <
L

Continued.



PROBLEM A19 (Cont.)

For Nij=2,
W= (A/N)"" = (32,768 m72)'" = 128 m
) : Te8m”
q:lwfm--u[uzsmr+""”‘ ot

25°C = S12.000W
128m

% reduction in g = (512,000 - 307.200)/512.000 = 30%
COMMENTS: Even the minimum heat loss is excessive and could be reduced by reducing U



PROBLEM 3.20

KNOWN: Materals and dimensions of a composite wall separating a combustion gas from a
liquid coalant.

FIND: (a) Heat loss per unit area. and (b) Temperature distribution.

SCHEMATIC:

R, .= 005mt-K/W
Stainless steel (504)

.fn'il..lll I!I_\:l\:* ?"i“i‘i o

o =100°C
E.r ig&m'r_' dﬂﬂﬂ Wma- K

A lj.ﬂwffnl-f ;1 R Er  %u £; =i
‘ L gz 10mm —fe—p——==L , :20mm i.’,' E Rpe FI t g i

ASSUMPTIONS: (1) One-dimensional heat transfer, (2} Steady-state conditions, (3) Constant
properties, (4) Negligible radiation effects.

PROPERTIES: Tabie A-1, St St (304) (T = 1000K): k = 25.4 WjmK: Tabie A-2, Beryllium
Oxide (T = 1500K): k = 21.5 W/m-K.

ANALYSIS: (a) The desired hear flux may be expressed as

i Tei=Taz 2 (2600-100)°C
L b o a1 | . 0.0] 002, 1 |m*kK
Tl i ™ hy 507315 O 000 | W

q = 34,600 Wim® <

(h) The composite surface temperatures may be obtained by applving approprate rale
equations. From the facttharg = hy (T | = T, ) it follows thar

T,y =T, - L =2600°c - JL60Wim® _ oo

hy 50 Wim™ K
With q = (ka/loa) (T, ; = T, ;). it also follows that
Laq 0.0 34, 600 Wm®
Ty =T,y = = - - =
el il & 1908 C N AWmEK |892%C .
Similarly, with g = (T, ; = T2 WRic.
Tea=T.; -R; qwz Iw. » = |62°C

Continued .....



PROBLEM 3.20 (Cont.)

and with q” ={kp/LagNTe2 - Ts2)

Laq 0.02mx34, 600 W/m’
= 16 — ¥ = 134.6°C.
Te c 354 Wim K

Ts2=Te2—

The temperature distribution is therefore of the following form:

T, :162°C

?}fﬁ?E'C‘/ / & T.=1346"C
T =1892°C— oal gl

T2 =100°C

COMMENTS: (1) The calculations may be checked by recomputing q from
q = hy(T, 2 = Tu2) = 1000W/m*-K(134.6-100)°C = 34, 600W/m"

(2) The inital estimares of the mean matenal temperatures are in error, parncularly for the
stainless steel. For improved accuracy the calculations should be repeated using k values

corresponding to T = 1900°C for the oxide and T = 115°C for the sieel.

(3) The major contributions to the total resistance are made by the combustion gas boundary

layer and the contact. where the temperature drops are largest.



PROBLEM 3.21

KNOWN: Thickness, overall wemperature difference, and pressure for two stiunless sieel
plates.

FIND: (a) Heat flux and (b) Contact plane temperature drop.

SCHEMATIC:
ﬂ'ﬂfm_l"__"l-i——-vl—ﬂ Olm
i Contact
pressure | bar
A La
51 =4 — -
_1':.; R e _L ? T;: '?:_; =100°C
ke ' k T.;.,:.

Stainless steel

ASSUMPTIONS: (1) One-dimensionul heat transfer, (2) Steady-state conditions, (3) Constani
properties.

PROPERTIES: Table A-1, Stunless Steel (T = 300K): k = 16.6 Wim-K.

ANALYSIS: (a) With R_ . = 15210~ m® K/W from Table 3.1 and

L 00lm
k16,6 WimK

it follows that
Rl = 20L7K) + R = 27x107* m>K/W
hence
.- AT = 1007 C
Ry  27=107% m-K/W

(b} From the thermal circuir,

= 6,010 m* KW,

=3.TH#'|-LI" w,r'rn: ’ tﬂ

AT, Ry, <4 MKW
. . 15=100 m* KW - 0556
Toi=Tez Ry 27007 m= K/W
Hence,
AT, = (1556(T, =T, 1) = 0.556( | NPC) = 55.6°C <J

COMM ENTS: The contact resistance is significant relative 1o the conduction resistances. The
value of R, . would diminish, however, with increasing pressure,



PROBLEM 3.22

KNOWN: Temperatures and convection coefficients associated with Auids ar inner and outer
surfaces of a composite wall. Contact resistance. dimensions, and thermal conducuvines

associated with wall matenals.

FIND: ia) Raie of heat transfer through the wall. (b) Temperature dismbution,

SCHEMATIC:
PLit—L g k=004 W/m K
Te.=200C ¥ . % E T
h=10WmaK T W?
k;‘ﬂ-joﬂ‘K_ ‘r 4ﬂ.£ H ﬁ re 'A I-.Iﬂ.
HiZm, W2 Sm B Smi 4 o~ R, =030m-K[W

L 430.0lm, Ly 002m hy= 20 Wime-K

ASSUMPTIONS: (1) Steady-state condinions, (1) One-dimensional heat ranster, (3)
Negligible radiation. (4) Constant properties.

ANALYSIS: {a) Calculate the total resistance o find the heat mate,

| La Lg |
T 7Y Wi Y ™
I 001 03 002 1 |k
Ra= 11005 Y05 T 5 T 0085 305 |W
K

Ry = [0.02 4 0.02 + 0.06 + 0,10 + 0,01 |% =021

R|_|H_=

W
= - = =762 W. ":3
q R 02TKW O
{h) It follows that
q 762 W <
Ty =Ty — —i—=200°C - = 184.8°C
L A T 50 W/K
L
=Ty~ JUA _ e goc _ TERW00IM _ oo cor
h&ﬁ W L
(L1 «5m
mK
Tn = Ta — qRy = 169.6°C — 762Wx0.06— = 123 8°C
L
Toa=Ty - = 123870 - OCRP _g76C
B 0.04—_ . Sm?

m-K -

=T =8 —a16C- T2V __
Te2=Te2 s 41.6°C~ T =4°C



PROBLEM 3.23

KNOWN: Outer and inner surface convection conditions associated with zirconta-coated. Inconel
turbine blade. Thicknesses. thermul conductivities, and interfacial resistance af the blade materials
Mixirmum allowable temperature of Inconel

FIND: Whether blade operates below maximum wmpersure.  Temperature distribution in blade, with
and without the TBC

SCHEMATIC:
Lzr-ﬂﬁﬂ'l'l'l'l T -L. | 4m'ﬁﬂ1l'l'l T 3
. T"_u 328 5 T-r
l’MWWMW h
I [T T wm e e
hg = 1000 WimZ-K hy = 500 Wim?-K
o= 1700 K T =400 K
--.._|__‘__
’ ™ Inconel
k=28 WimK
T I, Ry = 1074 mEKiw Trax = 1280 K
k=13 WmK

ASSUMPTIONS: (1) One-dimensional, steady-state eonduction m a cumpusite plane wall, i2) Constam
properties. | 31 Negligible radiation.

ANALYSIS: Fora unit area, the total thermal resistance wath the TBC is

R:,. Eh..'*fl.u"k]'h *H:',+IL+"H,,+h."

Rica ={107" 4 385w 107 < 107 + 20 107 < 24 107" )" - KJW = 169 10" 'm” K/W
With a heat flux of

A 300K ]
R T30 MKW

4 = 182 10" W/m*

the mner and outer surface temperatures of the Inconel gre
Toe =T =10/, J=S00K {352 10" W m* [S00W m" K| =1104K

Tiseni™ T, =[:|rh,1-1um,_]q‘.: =A0K = (2510 "« 22 107" )m’ K/WAS2 10°W/m | =1174K

Withaut the TBC. RY,,, = 02" +(L/K), + n7" = 3200 107 m* - K/W. und ¢*, = (T, , - T, IR =

Hill e
300 K320 10 m KW = 4.06x10" Wim' The mner and outer surface lemperatures of the Inconel
ute then

T =T = 1q0, /0 ) = 400K = (406 10'W 'm" /500W m” K| =1212K

Fowen = Toy = {[10, =LK, |5, = 400K « (2 107" = 2107 Jm - K/W([4.06 « 10° Wim | = 1393K
e |

Continued...



PROBLEM 323 (Con.

Tisnpaeradiiie, T(Bj

a2 0a 0,00z @.0a3 200 0004
FEDNH Eeakan e

—&— ifin THC

=& Winout TRC

Lise of the TBC facilitates operation of the Inconel below T, = 1250 K.

COMMENTS: Since the durability of the TBC decreases with increasing temperature. which increases
with increasing thickness. limits 1o the thickness are associated with reliabihty considerations



PROBLEM 3.24

KNOWN: Surface area and maximum temperature of a chip. Thickness of aluminum cover
and chip/cover contact resistance. Fluid convection conditions.

FIND: Maximum chip power.

SCHEMATIC:
— o
m E’ ;aﬁpfff 2.K
S— N .
e e A= L000mm2=10"m?
L=2mm i -
g R c20.5¢10 m2 KW
:r-"-:.maxtajt

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer. (3)
Negligible heat loss from sides and bottom, (4) Chip is isothermal.

PROPERTIES: Table A.l, Aluminum (T = 325 K): k =238 W/m'K.

ANALYSIS: For a control surface about the chip, conservation of encrgy vields
E; = Euui =0

fT.: = Tu }A
P, - s =1
(L&) + R + (1/h)]
B (85 - 25°C(10 m?)
S (0.002/238) + 05510 + (171000)jm? - K/W
P N G0 107420 -m*
S (8.4x107 + 0.5%10~ + 107 yme-K/W

Pe.max = 5.7 W. <

COMMENTS: The dominant resistance is that due (o convection (Reaw > Rie, @ Rogna)-



PROBLEM 1.25

KNOWN: Operatng conditions tor a board mounted chip.

FIND: ia) Equivalent thermal cireuit. (h) Chup temperature, (¢} Maximum allowable heat dissipatien for
dielectric liquid (h, = 1000 Wim* K and air ¢h, = 100 Wi K Effect of changes in cirenit board
iemperature and contact resistance

SCHEMATIC:

kg -~ h;= 40 Wim2K
- '."_1l =20°C

ASSUMPTIONS: i 1) Steady-state conditions, (21 One-dimensicnal conduction, (31 Negligible chup
thermal resistance, (4) Negligible radiaton, 1 5) Constant properes.

PROPERTIES: Tuble A-3. Aluminum oxide (polverystalline. 358 K1 ky = 324 Wim K

ANALYSIS: )
Tea Te Tao

- SONNAAANAAANAAANSN N —
q" Wh, (UKl R, T'l'”h# -
1=
ib) Applying conservation of energy 10 a control surface about the chup (E, —E_ = 101).
G -qi-9:=0
il T'r .'Ti'! 'ri -Ti n
L +(L/K), =R, I,

4.

Withg" =3« 10°W/m . ho= 1000 Wim K. ha= 1| WimKand R7, = 107'm" K/W,

w T, -20'C T.-20°C
Y 10° Wm! = e e e
(1/40= 00051107 Jm - K'W  (L1000im" - K'W

Ve 10°W/m® = (332T - 664« 1000T - 20,000)W/m" K

1003T, = 50.66<4

T.=49%C <
ie1 ForT. = 85C and h, = 1000 W/m" K. the foregoing energy balance yvields

g = 6TI60W/m’ <

with ¢ = 65,000 Wim and q"' = 2160 Wim = Replacing the dielectric with air th, = 100 Win K. the
following resulis are obtmned for different combinanions of ks and BRI

Contnued



FROBLEM 3.25 (Conti

ke IW/MKD) | RT (m KW g (Wim' q (Wim' q’ (Wim")
| 10™ 2159 B500 8659
124 o 1574 6501 9074
[ 10 2166 6500 K6t
324 1o | 2583 6300 908 3

COMMENTS: | For the conditions of part ib), the total intemal resistance s 0.0301 m- BW while
the outer resistance s 0.001 m* KW, Hence

" -T. . JR:
0 _ =Tl _ 3ol =30
q (T.=-T., )R’ 0001

and only approximately 3% of the heat 1 dissipated through the board,

2 Withh. = 100 W/m' K. the outer resistince increases 10 001 m™ KW, in which case q./98"=RYR? =
QOO0 = 5.1 and now almost 25% of the heat is dissipated through the board. Hence, although
meavures (o reduce R would have a negligible effect on g for the liquid coolant. some improvemen
may be gamed for air-cooled conditions. As shown in the table of part (b, use of an aluminem oxide
board increase g by 19% (from 2159 10 2574 Wim’) by reducing R* from 0.0301 10 0.0253 m™ K/W
Because the initial contact resistance (R}, =107 m’™ K/W 1 is dlready much less than R7 . anv reduction
inats value would have a negligible effect on g . The largest gain would be realized by increasing h,,
since the inside convection resistance mukes the dommunt contribution to the total internal resistance



PROBLEM 1.26

KNOWN: Conduction in a conical section with prescribed diameter. D, as a funcnon of x n
the form D =ax'?.

FIND: (a) Temperature distribution. T(x), (b) Heat transfer rate. q,.

SCHEMATIC:
| 4 1:=400K
- 600K Fure gluminum shape
Dzaxl where E=a-5—ﬂi T \
I: .—|1 ;t IEE“’M .':
— X -1 xl:j'zfmm Xy X3 x

ASSUMPTIONS: (1) Steady-swute condinons, (2) One-dimensional conduction in x-direction,
(3} No internal heat generation, (4) Constant properties.

PROPERTIES: Table A-2, Pure Aluminum (S00K): k=236 W/m'K.

ANALYSIS: (a) Based upon the assumpdons, and following the same methodology of
Example 3.3, g, i a constant independent of x. Accordingly,

dT 12241 4T
==k — == ] —
Qs k[miax"'=)y"/ }du (1

using A = HDIM where D =ax'”, Separating variables and identifving limits,

. LS Z)
:tn'lv: ‘q
Integrating and sc—lving for T(x) and then for T,
Xa
Tix)=T, = b b - Ta=T - dq: In— (3.4)
matk X mk %1

Soiving Ey. (4) for g, and then substituting imo Eq. (3) gives the results,

Qs =‘%=1k (T, =T3n (x;/x3) (5)
In (x/x )

T(x) =T, + (Ty=T3) T <
Im (% /%2)

From Eq. (1) note that (dT/dx)x = Constant. It follows that T(x) bas the distnibuton shown
above.

(b} The heat rate follows from Eq. (5),

=20, 5-maﬁfE;M1Mn —:5 = 5.76kW q



PROBLEM 3.27
KNOWN: Geometry and surface conditions of a runcated solid cone.
FIND: (a) Temperature distribution, (h) Rate of heat transfer across the cone.

SCHEMATIC:
A Ex 1=0.075m .
7-100C
Aluminum 4 %= 0.225m
D=axl _g=m
L :=20°C T

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conducton in x. (3
Constant properties.

PROPERTIES: Table A-1. Aluminum (333K): k=238 W/im'K.

ANALYSIS: (a) From Fourier's law, Eqg. (2.1), with A = xD*/4 = (ma®/4)x°, it follows that
4q, dx

s 1% ) =kdT .
A%
Hence, since g, is independent of x.
44, y dx - T
s e I:erdT
oar
'1"'1.: [ 1II] !=-k[T-TlIv
ma* -X X
Hence
2 1

ra’k [’il X J |
(b) From the foregoing expression, it also follows that

o ma’k  Ta-T,
2 [1x3 = 1xi)
_ w Im~' 1238 Wim-K 2 (20-100°C
" 2 (00,225 ~0.075) )m 2
Qe =189 W _ <J

COMMENTS: The foregoing results are approximate due to use of a one-dimensional mode
in reanng a iwo-dimensional problem.



PROBLEM 3.28

KNOWN: Temperature dependence of the thermal conducuvaty, k.

FIND: Heat flux and form of temperature distribution for a plane wall.

SCHEMATIC:
k = kﬁ + ﬂT
To To>T;
arbitrar
T (seferf.ru};:)
‘ Iy
L x : A

ASSUMPTIONS: (1) One-dimensional conduction through a plane wall, (2) Steady-state
conditions, {3) No internal heat generation.

ANALYSIS: For the assumed conditions q, and A{x) are constant and Eq. 3.21 gives
G fldax =] " (ko+aT)dT
Gs = T-1ke(Ty=Ty) 4 S(T3-TH.

From Fourier’s law,
Qe = —(ko+aT) dT/dx .

Hence, since the product of (k,+aT) and (dT/dx) is constant, decreasing T with increasing x
implies,

a>(: decreasing (k,+aT) and increasing |dT/dx| with increasing x

a=0; k=k, => constant (dT/dx)

a < () increasing (ko,+aT) and decreasing |dT/dx| with increasing x.

The temperature distributions appear as shown in the above sketch.



PROBLEM 31,29
KNOWN: Temperature dependence of wbe wall thermal conductivity.

FIND: Expressions for heat transfer per unit length and tube wall thermal (conduction)
resisiance.

SCHEMATIC:

k :i“.ul_’j i‘ﬂT}

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conducuon, (3) No
internal heat generation.

ANALYSIS: From Eq. 3.24, the appropriate form of Fourier's law is

g ==k A, %n-k{’lmu %

g =—2nkr #g

Qs = ~2nrky (144T) % :
Separating variables,

'-;R—T % = ke(1+aT) dT

and inicgrating across the tube wall, find

- f,';f % E k.,j:‘ (14aT) dT

i

G, To a2 | [Ta
Ix " f = LT+T T;
T ) 1
-Eﬂ—'lnﬁﬂu (=T + (13- |
(Ts—=T;)
-] L] q

= =3 14 i L
® jlm"’[ 5 (Tat T3] Intra/r;)

It follows that the overall thermal resistance per unit length is

R, = ﬁ'l[' . Infra/r; ) : <
Gy
21k, [I + 2T+, .]

COMMENTS: Note the necessity of the stated assumptions 10 treating ¢, as independent of 1



PROBLEM 3.30

KNOWN: Steady-state temperature distnbution of convex shape for material with k = k(1 +
aT) where @ is a constant and the mid-point temperature is AT, higher than expected for a
linear temperature distribution,

FIND: Relationship to evaluste @ in terms of AT, and Ty, T: the temperntures at the
houndaries.

SCHEMATIC:
Tix)t

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No
internal heat generation, (4) @ is positive and constant.

ANALYSIS: At any location in the wall, Fourier's law has the form
- dr
q.t'-_kﬂ{l'{'uTlH '.Ill

Since ¢y is a constant, we can sepamte Eq. (1), identify appropriate integration limits, and
integrate (o obumn

[Fafidx =] ko) + aTHIT ()

@ 5)- ()]

We could perform the same integration but with the upper limits at x = LJ/2 to obtain
aTf u.TF
(T + — 4
zuj (r+=3)] ~

T1+T

-

Setting Eq. (3) equal to Eq. (4) and substituting from Eq. {5} for Ty into Eg. (4), and solving
for a, eventually find,

{:TF
2

=2 (i

where

Tw=TLR2)= + AT,. (3)

2AT.,
Q= 3 | = 4 Iﬂ
(T4 + Ty W2 = [(Ty + Ta)2 + AT, °




PROBLEM 3.31

KNOWN: Hollow cylinder of thermal conductuvity k. inner and outer radu. r, and r,,
respectively, and length L.

FIND: Thermal resistance using the altemartive conduction analysis method.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions. (2) One-dimensional madial conduction, (3) No
internal volumetnic generanion, (4) Constant properties.

ANALYSIS: For the differential conmrol volume, energy conservation reguires that ¢, = .y,
for steady-state, one-dimensional conditions with no heat generation. With Fourier's law,

dT dT
=—M-.—= —_—
Qe —ki(2xrL) (1N

where A = 2xrL is the area normal 10 the direction of heat transfer. Since g, is constant, Eq. (1)
may be separated and expressed in integral form,
Yy Lr. dr
ZxL r
Assuming k is constant, the hear rate is
2xlk(T; - Ta)
In(r,/r,)
Rememberning that the thermal resistance is defined as
R, = AT/q
it follows that for the hollow cylinder,

=—[1" k(TT.

gy =

In{ra/r)) ‘q

Ri=2mik

COMMENTS: Compare the alternative method used in this analvsis with the srandard
method employed in Section 3.3.1 1o obtain the same result.



PROBLEM 3.32

KNOWN: Thickness and inner surface temperature of calcium silicate insulation on a steam pipe
Convecton and radiation conditions at outer surtice.

FIND: a0 Heat loss per unit pipe length for prescribed msulation thickness and outer surface
temperature. (b} Heat loss and radial temperature distnbution as a function of insulation thickness

SCHEMATIC:

T = 25080 T.. . =32%ec
h= 25 WIm2-K i -

5 Ts 1 Ts2
g — et e
i (r2irt)
Znk TS e
P
hZnrg

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimenstonal conduction. { 3) Constant propertics
PROPERTIES: Tabie A-3, Calcum Sibicate (T =645 Kb k = 0,089 Wim K
ANALYSIS: (a) From Eg. 227 with T, ; = 490 K. the heat rate per unit length is
2xki T ~T.)
- In{r. r )
| 2(0.089Wim- K800 - 290)K
Inl0.08m 006m)

q=q,/L

q = 603W/m <
thi Pertorming an energy for a control surface around the outer surface of the msulation. 1t follows that
LR L

f ol Ls=T,

y
In(r. 6] 25k U(2anh)  1(2neh, )

4

T

abiF

where h, =ea|T .- T, I[T;‘: - T,:_] Solving this equation for T, ». the heat rate may be determimed
froem

@' =2n[WT. - T)= b (T~ T. )]
Continued



PROBLEM 4.1

KNOWN: Method of separation of variables [Section 4.2} for two-dimensional,
steady-state conduetion.

FIND: Show that negative or rero values of A*, the separation constant, result in
solutions which eannot satisfy the boundary conditions.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional, steady-state econduetion, (2) Constant
properiles.

ANALYSIS: From Section 4.2, identification of the separation constant % leads to the
two ordinary differential equations, 4.6 and 4.7, having Lhe forms

. A d*y

4X L ax =0 Y v 1.2

dy? dy® U
and the temperature distribution is x, ¥) = Xix)¥(y) - (3)

Conslder now the situation when A* = 0. From Eqgs. (1), (2), and (3), find that
X=0C; +Cx, Y =C;3 + Cyy and Hx.¥) = (Cy+Cax) (Ca+Cyy) - (4)

Evaluate the constants - €, Cy, C3 and C,; - by substitution of the boundary
conditions:

o 0, y) = {Cy + C30)(Cy + Cyy) =0 Cy =0
. #{x,0) = [0 + C:X)[Cy + C4*0) =0 Gy =0
xuml AL,0) = (0 + C;L}0 + Cyy) =0 Qs =D
y=W: Bx, W) = (D 4 0-x)[0 + C,W) =1 0=1

The |ast l:-numiar;' condition evaluation leads to an impossibility (0=1). We therefore
conclude that & A* value of zero will not result in & form af the temperature distribution
whieh will satisfy the boundary conditions. Consider now the situation when A\* < 0.
The solutions to Eqs. (1) and (2] will be

X = Cpe™® 4 Cyat't, Y = Cyeos by + Cysin Ay {5,8)
and B(x,¥) = [Cse™"" + Cye***] [Cycos Ay + Cgsin Ay| . (7)
Evaluate the constants for the boundary conditions identified above.
el #x,0) = [Cse™"" + Cgo™"*| [Cycos 0 + Cysin 0] =0 Cy =0
x=0:  A0,5) = [Cse® + Cye?] [0 + Cysin hy| =0 Cy=0

If Cg = 0, a trivial solution results or Cg = =Cg,
x=L: Bl.y) = Csle™™ - u""l‘] Upsin Ay = 0.

From the last boundary condition evaluation, we require C; or Cy 1s zero; either ease
leads to a trivial solution with either no x or ¥y dependence possible.



PROBLEM 4.2

KNOWN: Two-dimensional rectangular plate subjected to prescnbed uniform temperature boundary
conditions

FIND: Temperature at the mid-point using the exact solution considering the first five non-2ero terms:
dssess error resulting from using only first three terms. Plot the temperature distrnbutions Tix.0.5) and
Tilyi

SCHEMATIC:

L=2 x{m)

.
ASSUMPTIONS: (1) Two-dimensional, steady-state conduction, (2] Constunt properties,
ANALYSIS: From Section 4.2 the temperature distribution is

o e o
B{xy)= Lk =:E' I}n

+ Iu’n{ nax J sinhiny /L)
. L/ sinh{ntW/L}

Considering now the point (x.y)=(1.0.0.5) and recognizing &L = 1/2, y/L = 1/4 and WL = 112,

T et il4.1Mm

avl

T-T, 2 (=1*" 41 nm | sinh{nmr/4)
L05) m——t o= *'_'_“"{‘_J Snnnit)
lET_. =T, ng n 2 ) sinh{nm/2)

When niseveni2, 3,6 ), the corresponding term is zero; hence we need only considern = | 3.5.7
and Y ax the first five nun-2ero terms

fLOS)= -I—.I:;'m[ E] '".“M“-"':J % Eim[ﬂji.mh[h_sq,] y
g W2/Msinhim2) 37\ 2 )sinh{3R/2)

Eim[j:]iinh;in;\n +E“ “( Ta | sinh{7=/4) :j_.lii [lh: Junh[ﬂn.ﬂij
5\ 2 /xinh{$x:2) 7 2 Jsnb{?m/2) 9 L 2 Juinhi9ni2)
81,05 = E[ﬂ.?ﬁﬁ - 0.063 + 0,008 - 1001+ 0.000] = 0445 )
T(LOS)=BLOSHT, - T}« T, = 0.445(150 - 50)+ 50 =94.5°C <

If only the first three terms of the senes. Eqp. (2). are considered, the result will be & 1.0.5) = 0.46; thar 1,
there s less than 4 0,2% effect,

Usimg Fy (1), and writing our the first five
terms of the senes, expressions for 8ix.0.5) or

u 150 ]
Tix0.5) and 8 Ly) or T(1.y) were kevboarded : m —:"]_ . I L_:_ P
inta the THT workspace und evaluated for = i ] LN e v e 5 ol =
sweeps over the x or v variable Note that for - - t =1 e
TrLy). that us v — |, the upper boundary, g :: o i ZL.|_

TEL LY 18 greater than 150°C. Upon examination
of the magnitudes of erms, it becomes evident

that more than 3 teams are required to provide R
an accurate solution

0@ 0% o4 98 08 4

—1 :Fm



PROBLEM 4.3

KNOWN: Temperature distribution in the two-dimensional rectangular pluste of Problem 4.2

FIND: Expression for the heat rate per unit thickness from the lower surface (0 < x € 2, 0) and result
based on first five non-ziero terms of the infinite series.

SCHEMATIC:
¥ (m) T,=1509C
w-1T —

k=50 Wim . K — @

— = x({m) |
= ‘l‘#
T, =509C F ._th: L=2 s7 ¥

ASSUMPTIONS: (1) Two-dimensional, steady-state conducnion, (2) Constant properties.
ANALYSIS: The heat rate per unut thickness from the plate along the lower surface 1s

- i __T utm
1.'!1! . n'[ll ET y=0 : i j ].-[uﬂ-:,- il e

where from the solution 1o Problem 4 2,

dat=l 29 f—la“'*i-.:'n( nmx | sinh{nmy /L) o
T,.-T, = n sinh{n=W/L)
Evaluate the gradient of 8 from Eq. (2) and substitute into Eq. (1) 10 obtain
(- n"* +1 o \{nmy/Ljeoshinmy /L)|
=k(T,-T,
o = M ].L E L J sinhinaW L) [ o
- . I'I1| 1
e B AT 4yl ) - s{"’“l j
- n \lﬂh[l‘tﬂ"ﬁr.fL}
1 l|l I “lfl "'I |
=M. ~T )= [1-
s = T, '}nz 1 sinh{nm/ Lj"I m“m}] e

To evaluate the first five, non-zero terms, recognize that since cosinm) = | forn =2, 4.6 .. only the n-
odd terms will be non-zero. Hence,

(1 4 | U+
= S0W/m: K{150- $0)'C= 3 .
You s ’ { | ninhlml] " =

-1 L1 1 1 L I-+ S X
el Ll L
5 sinh{571/2) 7 sinh(7x/2) 9 sinh{9=/2}

fa = MBIKW/m[1.738 + 0.024 + 0.00062 +(...)] = S611kW/m <

Continued .



PROBLEM 4.3 (Cont.)

COMMENTS: If the foregoing procedure were used to evaluate the heat rate into the upper surface,

Rt 1

W = - [ dal(x. W), it would follow that

Wil

v I Bel
g, =k(T, - T,]iz-r—il-rl—+1‘ct1th{nx,fl][l —cm[nx‘]]

Bl

However, with cothinm/2) 2 1, irmespective of the value of n, and with Z[{ S ) e I] /n being a
n|

divergent senies, the complete senes does not converge and g, —* =. This physically unwenable
condinon results from the temperature discontinuities imposed at the upper left and right comers.



PROBLEM 4.4

KNOWRN: Rectangular plate subjected to prescribed boundary conditions.

FIND: Steady-state temperature distribution. r4 T ls
T(ny)
SCHEMATIC:
T=0 T=0
I % °

ASSUMPTIONS: (1) Steady-state, 2-D conduction, (2) Constant properties,

ANALYSIS: The solution follows the method of Seetion 4.2. The product solution is
T(x,y) = X(x)Y(y) = (Cycos hx + Cysin Ax)(Cze™" + Ce*7)

and the boundary conditions are: T(0,y) =0, T(a,y) =0, T(x,0) =0,
T(x,b) = Ax. Applying BC#1, T(0,y) =0, find C; =0. Applying BC#2, T(a,y) =0,
find that \ = nn/a with n = 1,2,.... Applying BC#3, T(x,0) = 0, find that C; = —C,.
Hence, the product solution is

Tix,¥) = X{x) Y(y) = C;C, sin

BV x| (ot? — o7
= Il (e e 7).,
Combine constants and using superposition, find

. ﬂ].
B

Tix,y) = 3 C, sin

b ‘ nmx

To evaluate O, use orthogonal funetions with Eq. 4.16 to find
J;‘ sin® ﬂI dx ,
a

noting that y = b, The numerator, denominator and C,, respectively, are:

nm

C, = ]: Axsin

b
-dx fsinh ‘“T

W
2 z
“m.[““] -‘:T [.-mqu:r};n%[—u‘”‘.

A[xesin "X dx=A [ n‘:rrm[ —

nmw - |

sinh

s
a nnh
-iﬁ]nh[ = I ¥

)

arb | . pOMX . nvh (|1 1 2nmx
= ‘J;'mn : dx linh[ = ]['.'tt -lmrl}'n[ 5

S *':_1:{.-11-'*1;%-1::1:!5}1 = 2Aa (—1)**! /a7 sink

Hence, the temperature distribution is

i sinh | ==

T(x,y) = 28 :’n‘ (=1) “5in 5 - <]
d n‘-_-ll a a nrh
sinh -




PROBLEM 4.5

KNOWN: Very long square bar with one side maintined at 100°C while the other three are
maintained at 0°C.

FIND: Without performing a flux plot, sketch the 25 and 50°C isotherms: explain how vou
arrive at their shapes and locations,

SCHEMATIC:

Symme try line
ylL A e o0

1 I i
OB o |0
050 -
goit. el
L |
f:-'l 05 10 ZxJL

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction in bar, (3)
Constant properties, (4) No internal generation.

ANALYSIS: First recognize that the temperamre distribution is symmetrical about the y-axis
at x/L = 0.5. Hence, the isotherms must be normal to this symmetry line (0.5, y). Further, the
isotherms must converge at the comer (0, 1) on the (x/L, v/L) plane. If we assume, as a first
approximation, the heat transfer in the direction along the symmetry line is one-dimensional,
then the S0°C isotherm will intersect the symmetry line at (0.5, 0.5), Likewise, the 25°C
isotherm will intersect at (0.5, 0.25). So the isotherms can now be sketched having determined
two intersections (in the upper corner and along the symmetry line) and the slope at the
symmetry line.

COMMENTS: Using the series solution of Section 4.1. the exact temperatures at (0.5, 0.5) and
(0.5, 0.25) are 25.0 and 9.54°C, respectively, Hence, we conclude that our first approximation
approach is poor since the heat transfer is mwo-dimensional. If Ly > L,, then our first
approximation approach might be more reasonable.



PROBLEM 4.6

KNOWN: Long furnace of refractory brick with prescribed surface temperatures and
material thermal conduetivity.

FIND: Shape factor and heat transfer rate per unit length using the flux plot method.

SCHEMATIC k=1 2 WjmK
]l'-mu'-': “A— |
I* . Im am
L=60°C -

F
cf :;ﬂf :E-H.‘ tion zl;{hi,l

ASSUMPTIONS: (1) Furnace length normal to page, ¢, >> cross-sectional
dimensions, (2) Two-dimensional, steady-state conduction, (3) Constant properties.

Symmetrical sectien

ANALYSIS: Considering the cross-section, the cross-hatched area represents a
symmetrical element. Hence, the heat rate for the entire furnace per unit length is

' S
- S % = 45k(T,—Ty)

where S is the shape factor for the symmetrical section. Selecting three temperature
increments (N=13), construct the flux plot shown below.

e =Adiabat

- Hall heat [law
lfame M+B

M 5 M _ 85
= il E = — — T ee— S s =5 -
From Eq. 4.26, S or e = = 83 <]
and from Eq. (1), q =4%2.83%1.2 :i{ (600—80)"C =734 kW/m, <]

COMMENTS: The shape factor can also be estimated from the relations of Table
4.1. The symmetrical section consists of two plane walls (horizontal and vertical) with

an adjoining edge. Using the appropriate relntions, the numerical values are, in the
same order,

0.756m 0.5m
0.5m " A 0.5m =

8

Note that this result compares favorably with the flux plot result of 2.83¢.



PROBLEM 4.7

KNOWN: Hot pipe embedded eccentrically in a eireular system having a prescribed
thermial conductivity,

FIND: The shape factor and heat transfer per unit length for the preseribed surface
temperatures,

SCHEMATIC:
Cross-hatched P:P-nn
e TN s 8 symmefrical section;
kiﬂ-'.l'l"lfn+ ':. ';;ﬂ'af n .u#d normal

ASSUMPTIONS: (1) Two-dimensional conduetion, (2) Steady-state conditions, (3)
Leagth ¢ >> diametrical dimensions.

ANALYSIS: Considering the cross-sectional view of the pipe system, the symmetrical
section shown sbove is readily identified. Selecting four temperature |nerements
(N=4), construct the flux plot shown below.

For the symmefrical sechic.
b -S.‘Hﬂ“‘ %:J'E.Iﬂf
For the pipe system:
5=25,-426¢

Estimate as 1/2 heat flow lane

?;:35.{: M:z=85

For the pipe system, the heat rate per unit length is

q = % =kS(Ty—Ts) = 0.5 WK «4.26(150—35) " C = 245 W /m . <]

-
COMMENTS: Note that in the lower, right-hand quadrant of the flux plot, the

eurvilinear squares are irregular. Further work is required to obtain an improved plot
and, hence, obtain & more aceurate estimate of the shape factor,



PROBLEM 4.8

RNOWN: Structural member with known thermal conductivity subjected 10 8 temperature difference

FIND: (0 Temperature at a prescribed point P, (b) Heat transfer per unit length of the strat, (¢ Sketch
the 25, 50 and 75°C isotherms. and (d) Same analvsis on the shape but with sdisbatic-isothermal
moundary conditions reversed

SCHEMATIC:

3/
e QM — Ly
Insulation — =Ty =1009C L
ASSUMPTIONS: (1) Two-dimensional conduction, (2) Steady-state conditions, | 3) Constam
Proparties

ANALYSIS: () Using the methodology of Section 4.3.1, construct a Mux plot. Note the line of
symunetry which passes theough the point P s an isotherm as shown above. [t follows tha

TIPY=(T, + T, }/2 = {100 +6)C/2 = 50°C. <

i) The flux plot on the symmetrical section is now constructed 1o obtain the shape factor from which the
heat rate s determined. That 1., from Eq. 4.25 and 4.26,

"|='k5"1-|'T;: and 8§=MiN { 1.2}

From the plot of the symmetrical section, Symmetry line,
: isotherm

3, = 42004 = 105¢, < _T=s8geC

For the full secuen of the strut,
M=M_ =42

but s =2%, =5 Hence,

S=5 /1=05} r 3 r-';Nn
-
. 1432 1
and with " = q/¢, giving =0.2 Heat lane ™o
g /0= T5W/m: K« 053100 -0)'C = 3975W/m. %

1) The sotherms for T = 50, 75 and 100°C ane shown on the fux plot. The T = 25°C isotherm i
symmetric with the T = 75°C sotherm.

(dy By reverung the adiabatic and isothermal boundary conditions, the two-dimensional shape sppears as
shown in the sketch below. The symmetrical element 1o be flux plotted is the same as for 1he strut,
except the symmetry line s now an adiabat.

Continued..



PROBLEM 4.8 (Cont,)

S T1 =100
From the flux plot. find M, = 3.4 and N, = 4, and from Eq. (2)

S, =M /N, =344/4=085¢ §=25 =170¢
and the heat rate per umt length from Eq. (1018

g = 75W/m: K = LT0{100 - 0)'C = 1 2. 750 W/m <
From the flux plot. estimate that

TiP) = 40°C <
COMMENTS: (1) By nspection of the shapes for parts (a) and (b), it is obvious that the heat rate for
the latter will be greater. The caleulanons show the heat rute is grester by more than a factor of three.

(2) By companng the flux plots for the iwo configurations, and corresponding roles of the adiabats and
isotherms, would you expect the shape fuctor for parts (a) to be the reciprocal of pant (b)?



PROBLEM 4.9

KNOWN: Relative dimensions and surface thermal conditions of a V-grooved
channel.

FIND: Flux plot and shape factor.

SCHEMATIC:

h>T

C ross section of solid

ASSUMPTIONS: (1) Two-dimensional conduction, [2) Steady-state conditions, (3)
Constant properties.

ANALYSIS: With symmetry about the midplane, only one-half of the object need be
considered as shown below.

Choosing 6 temperature increments (N=8), it follows from the plot that M=7. Hence
from Eq. 4.26, the shape factor for the hall’ section is

M 7
5='I’-'-'f=‘—"f=a-?i
N 8 1.17¢€

For the complete system, the shape factor is then

§ =2.34¢ . <]
Z
: T
&
:
/
7
a
4 1
7 2
2 [
; | 3
: 4
; 5
g 6
M= =]
T2 S;fm!fr-_.r

adiabat



PFROBLEM 4.10

KNOWN: Long conduit of inner circular cross section and outer surfaces of suare Cross section

FIND: Shape factor and heat rate for the 1wo apphications when outer surfaces are insulated o
masntamed at a uniform temperature

SCHEMATIC: _
Symmatry idmhg! T, T,=20°C
4 -
T} ]

=y

I@"'—TI b

= “
o © G

_T_ | e T*-EI}“'G " Tt
rErIITY T 1
120 mm —= 4-150w:m-u

I-/Erymﬂry adiabat
ASSUMPTIONS: (1) Two-dimensional, steady-state conduction, (2) Constant properties and (3)
Conduit is very long

ANALYSIS: The adiabatic symmetry lines for each of the apphications i1s shown above. Using the flux
plor methodology and selecting four I mperature iIncrements IHT= 41, the flux plots are as shown below
Ty —
2

IR AT
.l O N
2

For the symmetrical sections. § = 25, where S, = M# /N and the heat rate for each application s q =
A5 k(T -T2

Application M N 8¢ q° (Wim)
A 10.3 4 2.58 11,588 <
B 6.2 4 1.55 6,975 <

COMMENTS: (1) For application A, mast of the heat lanes leave the inner surface (T, ) on the uppet
poTtion

(21 For application B. most of the heat flow lanes leave the inner surface on the upper portion i that is.
lanes |4} Because the lower, right-hand comer s insulared., the entire section experiences small hear
flows {lane & + 0.2). Note the shapes of the sotherms near the nght-hand, insulated boundary and that
they intersect the boundary normally



PROBLEM 4.11

KNOWDN: Shape and surface conditions of a support column.

FIND: (a) Heat transfer rate per unit length. (b) Height of a rectangular bar of
equivalent thermal resistance.

SCHEMATIC:

=0 3m T;=100°C TD Im—
Tﬁ :IEH
e—0 bm —— E!ﬂ'ﬂ

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible three-dimensional
conduction effects, (3) Constant properiies, (4) Adiabatie sides.

PROPERTIES: Tuable A-1, Steel, AlSI 1010 (323K): k = 62.7 W/m'K.

ANALYSIS: (a) From the flux plat for the

hall section, M=5 and N=8. Henece lor the M:=12345%5

full section 1 -
24
LY
Mf y

§=0 — =1, 4 4 \

2 N 1.25¢ =4 "
q = Sk(T, ~T4) o7
N- B4

q = l.Esxuﬂ.rl{luu—u}'{:
K

nqI =T78kW/m. <]

[b) The rectangular bar provides for one-dimensional heat transfer. Hence,

I:TI—T;} (Ty=T3)
g=k ﬁ"-—'-ﬂ.—'— = k{0.3¢) B e
0.3k(Ty—T2) _ 0.3m(62.7 W/mK)(100" C)
H i H — ] — e )
- q W 0.24m <

COMMENTS: The fact that H < 0.3m is consistent with the requirement that the
thermal resistance of the trapezoidal column must be less than that of a rectangular bar
of the same height and top width (beesuse the width of the trapezoidal column

increases with increasing distance, x, from the top). Hence, if the rectangular bar is to
be of equivalent resistance, it must be of smaller height.



PROBLEM 4.12

KNOWDN: Hollow prismatic bars fabricated from plain ecarbon steel, 1m in length
with preseribed temperature difference.

FIND: Shape factors and heat rate per unit length.

SCHEMATIC:

P

Outside dimensions
100x 100 mm

Lnside dimensions
IS 35mm

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction, (3)
Constant properties.

PROPERTIES: Table A-1, Steel, Plain Carbon (400K), k = 57 W/ mK.

ANALYSIS: Construet o flux plot on the symmetrical sections (shaded-regions) of
each of the bars.

Symmet
-l;:lbl;.r

;..-n_smrfq adiabat =

The shape lactors for the symmetrical sections are,

M e »
5:,& - N Tf = 1f SoB Tf (.88¢,

Since each of these sections is 4 of the bar eross-section, it follows that

Sa = 4x1f = 4¢ Sp = 4x0.88F = 3.5¢. <]

The heat rate per unit length is q = q/¢ = k(S/6){T,=T,),

Q= 5?:?;{1{501:%}1{ = 45.8 kW /m <]
P Bl «3.5(500—300)K = 30.9 kW /m. <]

m'K



PROBLEM 4.13

KNOWN: Two-dimensional. square shapes mamtamed at uniform temperatures as prescribed, perfectly
imsulated elsewhere

FIND: Using the flux plot method. estimate the shape Factors and the center temperatures for the shapes.
ASSUMPTIONS: (1) Steady-state, two-dimensional conduction, (2) Constant propertics

ANALYSIS: Use the methodology of Section 4.3.1 1o construct the flux plots. With Figure ia), begin at
the left side making the isotherms almost equally spaced since the heat flow will only slightly spread
toward the right.  Stant sketching the adiabats in the vicinity of the T, surface. Figure (h) is more
difficult 1o analyie since neither the isotherm or heat flow lanes are regular in any region of the shape
For the present situation. the best approach is to begin in the upper right-hand cormer of the shape

T

T

6543 2 1 NM
"

LF’
T .
(2) (b)
The shape factors are calculated from Eqg. 4.26,
« M 43 M 535
3 = =—=0T2 =—=——=x= 083
N &6 : N N 6 =

Assurning that T) = 100°C and T; = 0°C. the center temperatures are estimated as
Ti00) = 53'C T(0,0) =42"C

COMMENTS: Using a finite-clement package with a fine mesh, we determined shape factors of 0. 58
for both Figures (a) and (b). Similarly. the center temperatures are nearly the same, T(0,0) = 43 4 and
A3 8°C, respectively. The precision of the flux plots for the heat rates is nearly S0% tgh. but the center
lemperiture estimates are good ones.



PROBLEM 4.14

RNOWN: Two-dimensional, square shiapes, | m o 4 side. maintained at uniform temperatures as
prescribed, perfectly insulated elsewhere.

FIND: Using the flux plot method, estimate the heat rate per umit length normal 1o the page if the
thermal conductivity is 50 Wim K

ASSUMPTIONS: (1) Steady-stute, two-dimensional conduction, (2) Constant properties

ANALYSIS: Use the methodology of Section 4.3.1 to construct the fux plots 1o obtain the shape {actors
from which the heat rates can be calculated. With Fi gure (i), begin at the lower-left side making the
isotherms almost equally spaced, since the heat flow will only shightly spread toward the nght.  Sun
sketching the adiabats in the vicinity of the T: surface, The dashed line represents the adiabut which
separates the shape into two segments. Having recognized this feature, it was convenient 1o idenufy
partial heat lanes. Figure (b is less difficult 1o analyze since the isotherm intervals are nearly regular in
the lower left-hand corner

T / T - Ts
1
B ! 0.
8 4 - B
4 4 i T. 4
31 S b |
s 2 | s 2 [
N M1
08z 2| WY 4=
M-s 05% Iﬁm - Neo T2
T (a) (b)

The shape factors are caleulated from Eqg. 4.26 and the heat rate from Eq. 4.25.

M 05+3.054+05+02 M 45

= =0
N t L i e

=070

q = k§(T, - T,) q' =kS'(T,-T,)

4 =10W/m-Kx070(100-0)K = 700W/m  q'=10W/m: K« 090100 - 0)K = 900W/m <

COMMENTS. Using a finite-element package with a fine mesh, we determined heat rates of 956 und
915 Wim, respectively, for Figures () and (b), The estimate for the less difficult Figure (b) is within
2% of the numerical method result. For Figure (a), our flux plot result was 27% low



PROBLEM 4.15

KNOWN: Two-dimensional circular shapes maintained at uniform temperatures on
portions of their boundaries.

FIND: Shape factors using fux plot methed.

ASSUMPTIONS: (1] Two-dimensional, steady-state conduction, (2) Constant
properties,

ANALYSIS: Use the methodology of Section 4.3.1 to construet the Aux plots. With
Figure (a), we need only consider the upper half of the shape; hence, the horizontal line
of symmetry is an isotherm. We've seleeted 3 increments of AT and then sketched the
heat flow lanes, beginning at the left.

Sr.-ﬂn"r firve
is an isotherm

This regian
represents lp{)l‘ﬂl
2.5 of @ heat lone
For the Mull circular shape,
SwmMpn 75 50y 050, <

N 2=3

With Figure (b), there is no symmetry to simplify the flux plotting. A value of N was
chosen and isotherms sketched. Then, beginning at the left and right sides, the
adiabats were sketehed. Note the irregular heat flow lane at the center. The effect of
the insulated region at the top has little influence on the isotherms sketehed. The
dashed lines represent intermediate isotherms.

M 6.3
m—f = = | .05F
S —€ =125 <]
o e
e o N
r _,"F i q“""_"l
ﬁ li‘.I"' "l
71 ! “..‘.
=
4 i
R
A Estimate Y3 heat Flow lane



PROBLEM 4.16
KNOWN: Uniform media of prescribed geometry,
FIND: (a) Shape factor expressions from thermal resistance relations for the plane wall,
cylindrical shell and spherical shell, (b) Shape factor expression for the isothermal sphere of
diameter D buried in an infinite medium.
ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform properties.

ANALYSIS: (a) The relationship between the shape factor and thermal resistance of a shape
follows from their definitions in terms of heat rates and overall temperature differences.

AT

q=kSAT 4.25), gq= N (3.18), S = IR, (4.27)
Using the thermal resistance relations developed in Chapter 3, their corresponding shape factors
are:

L,
Plane wall: ﬁ%’ R §=2 <
V.7 T L
pe—f—4
- Infra/ry ) 2L
Cylindrical shell: - e
‘viindrical shell R 5 = <
(L into the page)
; :‘ﬁ L g
Spherical shell: v e TF

(b) The shape factor for the sphere of diameter D in an
infinite medium can be derived easily using the alternative
conduction analysis of Section 3.1. For this situation, q, is
a constant and Fourier's law has the form

dT

=—k(4nrt)— .

e { }{tr
Separate variables, identify limits and integrate.

G = dr_m .3 I ) . 2

4::!:J;‘.m;f_jr.ﬂ H[ r]m' axk

D

q, = 4nk [T (T,=T1) or S=2xD. <]

COMMENTS: Note that the result for the buried sphere, S=2xD, can be obtained from the
expression for the spherical shell with ry=es. Also, the shape factor expression for the
“isothermal sphere buried in a semi-infinite medium” presented in Table 4,1 provides the same
result with z—es,



PROBLEM 4.17
KNOWN: Heat generation in a buried spherical container.

FIND: (a) Outer surface temperatmne of the container, (b) Representative isotherms and heat
flow lines.

SCHEMATIC:
[l=20°C T

I . A
zfn %d' Rdmfﬁ-i
A FE  Eaker® N

ASSUMPTIONS: (1) Steady-state conditions, (2) Soil is a homogeneous medium with
constant propertics.

PROPERTIES: Table A-3. Soil (300K): k =0.52 Wim K.

ANALYSIS: (a) From an energy balance on the container, q = E: and from the first entry in
Table 4.1,

2D
s = e LU
Hence,
_1 .9 1-Dhz _ SOOW _ 1-2m/40m _ . .
Ty=Ty# <=t e dCH = 92.7°C <]
ﬂ.SI—rﬁ

(b) The isotherms may be viewed as spherical surfaces whose center moves downward with
increasing radius. ‘The surface of the soil is an isotherm for which the center is at z = v,




PROBLEM 4.18
KNOWN: Temperature, diameter and burial depth of an insulated plipe.
FIND: Heat loss per unit length of pipe.
SCHEMATIC:

z:lS5m

0il, Ty «120°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensionn] econduetion
through insulation, two-dimensional through soil, (3] Constant properties, {4) Negligible
oil convection and pipe wall conduction resistances.

PROPERTIES: Table A-5, Soil (300K): k = 0.52 W/mK; Table A-8, Cellular glass
(385K} k = 0,060 W /K.

ANALYSIS: The heat rate can be expressed as
T3—Ty
Ry
where the thermal resistance is Ry = Ry, + Ry - From Eq. 3.28,
_ &D:/Dy)  &(0.7m/0.5m) _ 0.776m K /W

qt

™ . 2rLx0.069 W /m'K L
From Eq. 4.25 and Table 4.1,
e - -1
Ry = L CO8 (22/D3)  cosh™'(3/0.7) L
CT0 21l K 27(0.52 W /m )L L

Hence,

s “m*m'ﬂm_“ -m%ﬂ.

1 (0:770+0.853) =
q =q/L =8 W/m. <]

COMMENTS: (1) Contributions of the soil and Insulation to the wtal resistance are
approximately the same. The heat loss may be reduced by burying the pipe deeper or
adding more insulation.

(2) The couveetion resistance associated with the oil flow through the pipe may be
significant, in which case the foregoing result would overestimate the heat loss. A
ealeulation of this resistance may be hased on results presented in Chapter 8,

(3) Since 2 >3D/2, the shape factor for the soil ean also be evaluated from
§ = 27L/#(42/D) of Table 4.1, and an equivalent result is obtained.



PROBLEM 4.19
KNOWN: Electric conductor with insulating sleeve buried in a sand-filled trench.

FIND: Temperature at the conductor-sleeve interface for preseribed dissipation rate.

SCHEMATIC:

nd, Tl'lllﬂ =2
b k2003 WmK
2 Insulating

st

ASSUMPTIONS: (1) Steady-state conditions, {2) Constant properties, (3) Conductor
approximates horizontal, isothermal eylinder buried in a semi-infnite medium,

ANALYSIS: Perform an egergy halanee on the eonduetor ta find the radial heat rate
per unit length, nas Bg —~Bon +B; =By ear g, = Eg . The insulating
sleeve and sand medium may be represented by the thermal eireuit,

where the insulating siceve behaves as a evlindrical shell (Eq. 3.28),
@llra+t)/ral _ &|f0.012540.003)/0.0125]
K goers 2m0.01 W/m'K

The resistance of the sand follows from the appropriate shape factor for a buried
cylinder of diameter D = D, + 2t (see Table 4.1 noting ¢ > 3D /2),

R, =1 _ @l42/D)  &[4x0.5m/(0.025+0.006)m
“I-d -

R;lun -

= J3A2K-m /W .

[ *= s b '_
8K 2k 370,08 W /K mm i
From the thermal eireuit,
i T ‘—T ¥ i
gy = E:l-l" +‘;:J:4u er T = Tyu +q,i_H.“.,..+RI.._._.jj
T, =-:-.'ﬂ'l‘::+I—T'-r:-f:l.ﬂ-i-ﬂ.u]h%=ﬂﬂ'¢+25.5'{:--15.5'!:‘. g

COMMENTS: (1) The thermal resistance of the insulating  sleeve is
3.42/(3.42422.11) = 13% of the total thermal resistance.

(2) The maximum temperature will oecur at the conductor centerline. If k=400 W/mK
[pure copper), from Eq. 3.53,

|
qrg 2037 W/m*(0.0125m)*
" & TR 4400 W /m°K

where § = E'l;fﬂf = (1 W/m)/[70.025°m? /4) = 2037 W/m®. Hence the conductor is
nearly isothermal.

+W0°'C=20"C



PROBLEM 4.20

KNOWN: Operating conditons of a buried superconducring cable.

FIND: Required cooling load.

SCHEMATIC:
QJ’E UEES ket 2WfmK T
Ry z=2m Tnsulation, k;=0.005W/m-K,
ﬂu=ﬂ2m,ﬁ;:ﬂ1m
R a’.ﬁzuid nitrogen T,=77K
Ty Cable

ASSUMPTIONS: (1) Steady-state conditions, (2) Conswunt properies, (3) Two-dimensional
conduction in soil, (4) One-dimensional conduction in insulation.

ANALYSIS: The heat rate per unit length is
" T: e T“
R} +Rj

r

g

- Tl = Tn
[kg (2n/In(42/D,))] ™" + In(D,/D; )/2rk

where Tables 3.3 and 4.1 have been used to evaluate the insulation and ground resistances,
respectively, Hence,

¥

q

o (300 - 71K
[(1.2 WimrK)2ZaAn(8/0.2)]7" + In(2)2m0.005 Wim-K
" 23K
4= 10,489 + 22.060)m K/W
qQ' =99 W/m. <]

COMMENTS: The heat gain is small and the dominant contribution to the thermal resistance
15 made by the insulation.



PROBLEM 4.21

KNOWN: Electrical heater of cylindrical shape inserted into a hole drilled normal to
the surface of a large block of material with preseribed thermal conductivity.

FIND: Temperature reached when heater dissipates 50 W with the block at 25° O,

SCHEMATIC:

=25
k=5Wm-K
Electrical heater, 9=50W

ASSUMPTIONS: (1) Steady-state conditions, (2) Block approximates semi-infinite
medium with constant properties, (3) Negligible heat loss to surroundings above block
surface, (4) Heater can be approximated as isothermal at T,.

ANALYSIS: The temperature of the heater surface follows from the rate equation
written as
T, =Ty + l'.”"ks

where 5 can be estimated from the conduction shape factor given in Table 4.1 for a
"vertical cylinder in a semi-infinite medium,"”

§ =L /&1L /D) .

Substituting nurmerical values find

4x0.1m
= 2rnxD.lm -
] fﬁ[ 0005 ] 0.143m .

The temperature of the heater is then

Ty =25"C + 50 W/(5 W/mKx0.143m) = 84.9° C . <]

COMMENTS: (1) Note that the heater has L 3> D which is a requirement of the
shape factor expression,

(2) Our ecaleulation presumes there is negligible thermal contact resistance between the
heater and the medium. In practice, this would not be the case unless a conducting
paste were used.

(3) Since L. => D, the assumptions (3) and (4) are reasonable.

(4) This arrangement, referred to as the line source method, has been used to determine
the thermal conductivity of materials from observations of q and Ts:



PROBLEM 4.22
KNOWN: Surface iemperatures of two parallel pipe lines buried in soil.
FIND: Heat ransfer per unit length between the pipe lines.
SCHEMATIC:

.D: :Jmmm ﬂa ?Smm =
?}-:?J'C@ @ ==7

le— w=05m —"I

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant
properties, (4) Pipe lines are buried very deeply approximating burial in an infinite medium, (5)
Pipe length > Dy or Dy and w > Dy or Dy,
ANALYSIS: The heat transfer rate per unit length from the hot pipe to the cool pipe is
. 5
q == ZK(T;=Ty).

The shape factor S for this configuration is given in Table 4.1 as

Substituting numerncal values,

S _dnpnet | 4x(0.5mP (0. 1m)* (0.075m)?
feakh [ 20 1m0.075m

] = Mjcosh~! (65.63)
S _2
— =2N/4 R = 1.29
k
Hence, the heat rate per unit length is
q = 1.20:0.5W/mK(175 = 5)°C = 110 W/m . <]

COMMENTS: The heat gain o the cooler pipe line will be lurger than 110 W/m if the soil
temperature is greater than 5°C. How would you estimate the heat gain if the soil were at
25°C1



PROBLEM 4,23
KNOWNMN: Tube embedded in the center plane of a concrete slab.

FIND: (a}) The shape factor and heat iransfer rate per unit length using the
appropriate tabulated relation, (b) Shape factor using fux plot method.

SCHEMATIC:

AT
Y AT

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Steady-state conditions, (3)
Constant properties, (4) Conerete slab infinitely long in horizontal plane, L == ¢

PROPERTIES: Table A-9, Concrete, stone mix (300K): k = 1.4 W/m-K.

ANALYSIS: (a) The embedded tube-slab system corresponds to the fifth system
described in Table 4.1. Recognizing that our tube-slab systemn meets the restrictive
conditions (z > D /2, L = z), the shape factor relation is
S = 2L
fn(8z/7D)
where L is the length of the system normal to the page, 2 is the hall-thickness of the
slab and D is the diameter of the tube. Substituting numerical values, find

S = 271 f€n{8x50mm /750mm) = 8.72L,
Hence, the heat rate per unit length is

ro 9 8 - w
 e— T —— s ] = E;I 5

q L T kT, —Ts) 2x1.4 —

(b) To find the shape factor using the flux plot method, frst identify the symmetrieal

section bounded by the symmetry adinbats formed by the horizontal and vertical center

lines. Seleeting four temperature increments (N = 4), the flux plot can then be
constructed. r
-

(85 — 20)°C =612 W.

S e f
lEnu bu?

From Eq. 4.28, the shape factor of the
symmetrical section is N

For the tubeslab system, it follows that § = 45, = 6.0L which compares [avarably
with the shape facter relation.




PROBLEM 4.24

KNOWN: Dimensions and boundary temperatures of a steam pipe embedded in a
concrete casing,

FIND: Heat loss per unit length.

SCHEMATIC:

Comerefe

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible steam side convection
resistance, pipe wall resistance and contact resistance (T, =450K), (3) Constant
properties.

PROPERTIES: Table A-8, Concrete (300K): k = 1.4 W/m'K.

ANALYSIS: The heat rate can be expressed as
q = SkAT, 3 = Sk(T;-T,)

From Table 4.1, the shape lactor is
S = 27l

5

. li] _ 27k(T ~Ty)

1.08 w
- D

- 27 % 1AW /m'K x (450—300)K

1.08x1.5m
0.5m

= 1122 W/m . <]
th

COMMENTS: Having neglected the steam side convection resistance, the pipe wall
resistance, and the contact resistance, the foregoing result overestimates the actual heat
loas.



PROBLEM 4,25

KNOWN: Thin-walled copper tube enclosed by an eceentric cylindrical shell;
intervening space filled with insulation.

FIND: Heat loss per unit length of tube; compare result with that of a concentric
tube-shell arrangement.

SCHEMATIC:

Irnsulation

ASSUMPTIONS: (1) Steady-state eonditions, (2} Constant properties, (3) Thermal
resistances of copper tube wall and outer shell wall are negligible, (1) Two-dimensional
conduction in insulation.

ANALYSIS: The heat loss per unit length written in terms of the shape factor § is

q = k(8/€)(T;—T;) and from Table 4.1 for this geometry,

D® 4d® —a4®
2Dd

Substituting numerical values, all dimensions in mm,

L]

5
. =1
7 Jeosh

i
120" +30° —i(20)*
2x120:<30

}5_ = 27 Jeosh ] = 27 feosh ! (1.603) = 4.091 .

Hence, the heat loss is

q = 0.06W /m-Kx4.991(85-35) ' C = 12.56 W /m . <]

If the copper tube were concentric with
the shell, but all other conditions were
the same, the heat |oss would be

,  2mk(Ty=Ty) Dy=30mm D,=120mm
T D /D) T85T [-357
using Eq. 3.27. Substituting numerieal
values, k=005, 5%

i w L]
9 = 2mx0.05—-(85-35) € /& 120 /30)

e = 11.3 W/m. <]

COMMENTS: As expected, the heat loss with eccentric arrangement is larger than
that for the concentric arrangement. The effect of the eccentricity is to inerease the
heat loss by (12.5—-11.3)/11.3 = 11%.



PROBLEM 4.26
KNOWN: Cubical furnace, 350 mm external dimensions, with 50 mm thick walls,
FIND: The heat loss, g(W),
SCHEMATIC:

/ fffl#
=50mm

=75°C
Fireclay brick

Cross- sectional
view

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant
properties.

PROPERTIES: Tabie A-3, Fireclay brick (T = (T, + Ta)2 = 610K): k= 1.1 WimK.
ANALYSIS: Using relations for the shape factor from Table 4.1,

A 0.2540.25m°

Plane Walls (6 Sw=—= = .25
e/ T 0.05m =

Edges (12) Sg=0.54D=0.54=0.25m = 0.14m

Corners (8) Sc=0.15L = 0.150.05m = 0.008m.

The heat rate in terms of the shape factors is
q=k3(T;-T7)=k(6Sw + 128 + B5:) (T;-T;)

q= 1.1m—"f';c{ﬁx1.:=.5m + 1250, 14m + 0,15%0.008m) (600 — 75)°C

q=5.30 kW, <
COMMENTS: Be sure 1o note that the restrictions for Sg and S¢ have been met



PROBLEM 4.27

KNOWN: Dimensions, thermal conductivity and inner surface temperature of furnace wall Ambient
conditions,

FIND: Heat |oss.

SCHEMATIC:
. ) h=5Wm?.-K
Brick . [ e T =25°
(k= 1.4W/m-K)
L=035m _Aflw=5 Reand (20) q
T”=1'|ﬂﬂ“ﬂ AN ANANE
_ Tsi Repry 1=

ASSUMPTIONS: (1) Steady-state, (2) Uniform convection coefficient aver entire outer surface of
contamner

ANALYSIS: From the thermal circuit. the heat loss ic
T'|-.I = Tf-

q:

Rosiani + Ry

where R = I/hA, = IAAW®) = /]S Wim'-K(S m)'] = 0.008 K'W. From Eq. (4.27), the two-
dimensional conduction resistunce is

|
| 200 T "S'E

where the shape factor S must include the effects of conduction through the § cormers. 12 edges and 6
plane walls. Hence, using the relations for Cases 8 and 9 of Tuble 4.1,

S=8{0ISL)+12x 0.S4(W - L)+ 64, /L

where A, =({W-L)". Hence.
S =[B(015 % 0.35)+ 124 0.54(4.65) + 6(21.62)]m
§=(0.42+ 30.13+129.74)m = 160.29m

and R ,uom = 016029 m x 1.4 Wim K) = 0.00446 K/'W. Hence

(1100 25)"C

. _ REIKW
4% (000436 + 0.008) KW <

COMMENTS: The heat loss is extremely large and measures should be taken to insulate the furnace



PROBLEM 4.28

KNOWN: Platen heated by passage of hot fluid in poor thermal contact with cover plates
exposed (o cooler ambient air.

FIND: {a) Heat rate per unit thickness from each channel, g}, (b) Surface emperature of cover
plate. T, (c) q and T, if lower surface is perfectly insulated, (d) Effect of changing centerline
spacing on g} and T,.

SCHEMATIC:
Bi=15mm L, = bll mm
Ly = 3 mam Ly = 7.5 mm
T, = 150°C h = 1000 Wim' K
T. =25C h, = 200 W/m* K

Ey=20WimK ky=75 WmK
RY; = 2010 m" KW

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction in platen. but
ane-dimensional in coverplate, (3) Temperature of interfaces between A and B is uniform, (4)
Constant properties,

ANALYSIS: (a) The heat rate per unit thickness from heat channel can be determined from the
following thermal circuit representing the quarter section shown.
j g

T | L Eas]
5’;_;5; 1 I Ry Lg .-WE--({

-
WD) Kk,S .L_,}fz_ kglLo2) hylL,l2) ?ﬁ?’

The value for the shape factor is §” = 1.06 as determined from the flux plot shown on the next
page. Hence, the heat mte is

q;=4'rTi_T-HR'I! E”
Rige = [1/1000 W/m? K(n).015mv4) + 1/20 Wim-Kx1.06
+ 2,010 m? - K/W/(0.060my2) + 0.0075m/75 Wim-K(0.060m/2)

+ 1/200 Wim®-K(0.060m/2)]
1t = (0,085 + 0.047 + 0.0067 + 0.0033 + 0. 1667 m K/W
Rip = 0.309 mK/W

q; =4(150 - 25)K/0.309 m-K/W = 1.62 kW/m. <
(b} The surface temperature of the cover plate follows also from the thermal eircuit as
RN e 2
) )

Continued .....



PROBLEM 4.28 (Cont.)

T.='|f'_+i I

R s

#0167 m-K/W

1.62 kW
4

T, = 25°C + 67.6°C =93°C, <]

(¢.d) The effect of the centerline spacing on q; and T, can be undersiood by examining the
relative magnitudes of the thermal resistances. The dominant resistance is that due 1w the
ambient air convection process which is inversely related 1o the spacing L,. Hence. the heat
rate will increase nearly linearly with an increase in L, that is from Eq. (1),
' 1 |
Y R LD ™

From Eg. (2), find

AT=T,-T.=q} P ) e B3

1 r
hollo/2) 1
Hence we conclude that AT will not increase with a change in L,. Does this seem reasonable?
What effect does the L, spacing have on Assumptions (2} and (3)?

If the lower surface were insulated, the heat rate would be decreased nearly by half. This
follows again from the fact that the overall resistance is dominated by the surfuce convection
process. The temperature difference T, - T would only slightly increase.

Assume 1/4 lane

..|_

S'=S)1=MIN=425/4-106




PROBLEM 4.29

KNOWN: Long constantan wire buitt-welded w a large copper block forming a thermocouple junction
o the surface of the block.

FIND: (2) The measurement error (T, - T,) for the thermocouple for preseribed conditions, and (b
Compute and plot (T, - T,) for b= 5, 10 and 25 Wim® K for block thermal conductivity 15 <k < 200
Wim K. When is it advantageous 10 use smaller diameter wire”

SCHEMATIC:
Thermocouple wire, D = 1 mm., k;

ASSUMPTIONS: (1) Steady-state conditions, (2 Thermocouple wire behaves as a fin with constant
heat transter coefficient. (1) Copper black haus uniform temperature. except in the vicinity of the junction.

PROPERTIES: Talle A-/, Coppes (pure, 400 K. ks = 393 Wim K. Constantan (350 Ki k=25
Wim K.

ANALYSIS: The thermocouple wire behaves as a long fin permitting heat to flow from the surface
thereby depressing the sensing junction temperature below that of the hlock T, In the block, heat flows
into the circular region of the wire-block interface; the thermal resistance 1o heat Tow within the block s
approximated as a disk of diameter 3 on a semi-infinite medium (k,, T.). The thermocouple-block
combinution can be represented by a thermal circuit as shown sbove. The thermal resistance of the fin
tollows from the heat rate expression for an infinite fin. Ry, = (hPA '

From Table 4.1, the shape factor tor the disk-on-a-semi-infinite medium s given as § = 20 and hence
Ribs = 1765 = 1/2k,D. From the thermal circuit,

R 127 :
T -T etk T _ o) E {12525 C = DOONI2S - 25V C =00
uilili nﬁ..nm.f" L) FrE b ’ l i =

with P= 20 and A, = D4 and the thermal resistances as
Ry =(10W/m’ Keza2swym K« (110~ m)') = 12mgsw
Ries = (2)= 393W/m- K« 107 'm = 1 27K/W

(b} We keyed the above equations into the IHT workspace, performed a sweep on ky for selected values
of h and created the plot shown. When the block thermal conductivity is low, the error (T, - T)) ts larger,
increasing with increasing convecuon coefficient, A smaller diameter wire will be advantageous (or low
values of K, and higher values of h.

e B B G

Sk ey oy o s i

e W Il LA RE
— R & 0w
—— e T W [ S

T T T



PROBLEM 4.30

KNOWN: Dimensions, shape factor, and thermal conductivity of sguare rod with drilled imerior hole.
Interior and extenior convection conditions.

FIND: Heat rate and surface temperatures,

SCHEMATIC:
S=859m k=150 Wim-K

(i) -
by = 4 Wim? .K - .
g e T Tai?
e ,- in T e MMM -
-~ . q
(@) Rt Ranapapy Ream, 2
hy = 50 Wim? - K _
T,y = 300 °C —

ASSUMPTIONS: (1) Steady-state, two-dimensional conduction, (2) Constant properties. ( 1) Uniform
convection coefficients at inner and outer surfaces.

ANALYSIS: The heat loss can be expressed as

Tei—T

Rosit ¥ R.m:m + R

.'I=

where
R = (B DL) " = (SOW/m™ Kxmx 025mx 2m) = 0.01273K/W

R i1y = (Sk17 = (A59m= |50W/m- K) ™" = 0.00078 K/W

Ry = (hyx dwl)™ = (4W/m* Kx dmx Im) ' = 0.0625K/W

Hence,
(300-25)'C
e W
oot - oek <
Tl =T, i _quH'lJ =300°C - 46'C = 254°C <
T:=T. s +QR, . s =25C+ 226C = 251"C <

COMMIENTS: The largest resistance is assoctated with convection at the outer surface, and the
conduction resistance is much smaller than both convection resistances, Hence (T;-T > (T - T\
> (T - Ts)



PROBLEM 4.31

KNOWN: Long fin of aluminum alloy with prescnbed convection coefficient attached to different hase
matertals (aluminum alloy or stainiess sieel) with and withour thermal contact resistance Ry, at the

junction

FIND: {a) Heat rate g and junction iemperature T, for base materials of aluminum and stainless steel,
i) Repeat calculations considering thermal contact resistance, R} . and () Plot as a function of h for the

range 10 < h< 1000 Wim® K for esch base material,

SCHEMATIC
T 'i';. |
Base material, T, = 100 °C f-;-'=mm PANANDANAA S —e  (a)
] : R, R, U
R = 3x 109 m2 KW, ' T, T, 4
b
Pan (b) !T =2800 ‘M—h (b}
Lﬂ‘-‘ﬁﬁW!ml_'r\] Hﬁ R” Rf Ty

ASSUMPTIONS: (1) Steady-state conditions. (2) Constant properties, (3) Infinite fin,
PROPERTIES: (Given) Aluminum alloy, k = 240 Wim-K. Stainless steel k= 15 Wim K

ANALYSIS: (ab) From the thermal circuits, the heat rate and junction lemperature are
. Th -T.n. " T‘ "'T___ I )
R, H;. +R,, +R; :

9

T, =T +q,R, (2)
and. with P = nD and A, = nD/4, from Tables 4.1 and 3.4 find

R, = U/Sk, = 1/(2Dk, )= (2% 0.005Sm « k, )"

R, =R /A, =3=10"m" K'W/mi0005m)’ /4= 1528 K/W

R, = (hPkA_) =[5ﬂ"i-'f'm? K2 (0.005m) 240W/m- H.fd]_": =164 K/W

Without R, With R,
Buase R, (KW gy (W) T,("C) g (Wi T, {%C)
Al ulloy 0.417 4.46 98.2 4.09 92.1
St steel 6.667 126 78.4 308 751

() We used the IHT Model for Extended Surfaces, Performance Caleulations, Rectangslar Pin Fin 1o
caleulate g for 10 < h < 100 Wim™ K by replacing RT (thermal resistance at fin base) by the sum of the
contact and spreading resistances. Y + Ry,

Continued



PROBLEM 4.31 iCont.)

Fim Pl e 5 (W)

COMMENTS: (1) From part (a), the aluminum alloy base material has negligible effect on the fin hemt
rate and depresses the base temperature by only 2°C. The effect of the stunless steel base muterial 15
substantial, reducing the heat rate by 27% and depressing the junction temperature by 25°C

(2} The contact resistance reduces the heat rate and increases the temperature depression relatively more
with the aluminum alloy buse.

(3) From the plot of g; vs. h. note that at low values of h, the heat rates are nearly the same for both
materials since the fin is the domimant resistance. As h increases. the effect of RY becomes more

impaortant.



PROBLEM 4.32

KNOWN: gloo constructed in hemisphieric shape sits on ice cup. agloo wall thickness and
inside/outside convection coefficients (h, ) are prescribed.

FIND: (a) Inside air temperature T, when outside air temperature is T_ | = -40°C assuming occupanis
provide 320 W within iglos, (b) Perform parameter sensilivity analysis 1o detenmine which variables have
srgnificant effect on T,

SCHEMATIC:
! o f 18m
~fg=2d.3m

Tu=409%C ——
b, =15 WimZ  ———=

lce cap, T =-200C

ASSUMPTIONS: (1) Steady-state conditions, (2] Convection eoefficient is the same on floor and
cetling of ighoo, 1 3) Floor and cetling are at uniferm lempetiture. i4) Floor-ice cap resembles disk an
semi-infinie medium. (5) One-dimensional conduction through igloo walls.

PROPERTIES: lce and compacted snow (givent: & =015 Wim K.

ANALYSIS: ia) The thermal circuit representing the heat loss from the igloe 1o the ouside air and
through the floor to the ice cap is shown above. The heat loss is

TII-T-II T'-I-"Ti.
H‘I"l.l. 'R-ﬂl-'-R;l.l H'ﬂ.l +H'H .

-

q?

b |
-

— r. r 3 “m!qufrw
hild4nr’] 6W/m' K- dn{l&Bm)’

b | g
b 4nT) 15Wime K » ani2ami
| |

= hiar) 6Wim Keril8 m)

| [ I ] | |
c ; 3 H - —— — - : X '
unduction. wall wall —J{—-—-—[ a ——r' H= ’[ 3 T [ T :.3}m:|=UI BIR/W

I I I
U dkr A<0153Wim K~ 18m
where 8 was determined from the shape fuctor of Table 4 | Hence,
T, =(=i0)'C . T, = [-20'C
(D.00818+ 0281+ DOO20JK/W  (100)637 + 09250} K, W

Comvertimg celling: Rﬁ._. =

Conveciton, oumde: R

v = 000201 K/W

Comvecuon_ floar: = 00163TK/W

w0

Conduction, ice cap: R

= (.9250 K/ W

q=120W =

0W = T232T,, +40) + LOGT,, +20) T, =11, <

Continued



PROBLEM 4.32 (Cont.)

(h) Begin the parameter sensitivity analysis 1o determine important variables which have a sigmificant
mfluence on the inside air temperature by examining the thermal resistances associated with the
processes present in the system and represented by the network.

Process Svmbaols Value (KW
Convection, oulside R.o R21 00,0020
Conduction. wall Rl R32 0.1281
Convection, cerling .. R41 0.0082
Convection, floor Revt RS54 00164
Conduction, ice cap R R6S 0.9259

It follows that the convection resistances are negligible relative 1o the conduction resistance across the
1zloo wall, As such, only changes to the wall thickness will have an appreciable effect an the inside air
temperature relative 1o the owside ambient air conditions. We don’t want 1o make the igloo walls thinner
and thereby allow the it temperature 1o dip below freezing for the prescnbed enviconmental conditions.

Using the THT Thermal Resistance Network Model, we used the circuit builder 1o construct the network
and perform the energy balances 1o obtain the inside air temperature is 4 function of the outside
convection coefficient for selected increased thicknesses of the wall.

.- | i ¥ _l_ ———

i  —_—

"W ; ! re=— 1= = [ |

Ag temiparatune. Toell (3
R |
1

& ] dg a0 [ 5] 100
Oadueie powMicignt fo (Wm=2 6.

—— Wall Buckness, jro-ni= DS m
= imen) = 079 0
—il— imefjel 0m

COMMENTS: (1) From the plot, we can see that the mnfluence of the owside air velocity which
controls the outside convection coefficient h, is neglgible,

(2) The thickness of the igloo wall is the dominant thermal resistance controlling the inside air
lemperure.



PROBLEM 4.33

KNOWN: Diameter and maximum allownble temperature of an electronic component.
Contaet resistance between component and large aluminum heat sink. Temperature of
heat sink and convection conditions at exposed component surface.

FIND: (a) Thermal cireuit, (b) Maximum aperaling power of component.

—2 (25T
_ ——5 h=25Wmz-K
Epoxy, F.': = 0.5x10 m? K, Llectronic component,
' Te=1007C,P
Al block,

k=257 Wfm-K To=25C

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible
heat loss from sides of chip.

ANALYSIS: (a) The thermal circuit is:

T E T
q?_ —b
dir cony T te Egmmur ?:fn.t
p

where Rap cond is evaluated from the shape factor § = 2D of Table 4.1.

(b) Performing an energy balance for a control surface about the component,

T:—Ts

P= + By = =D /4 y = Tos) + =
T + R = h{=D/ENT, ’ RY, /=D /4) = 1,20k

' 75°C
=35 W/m"- o1 o B ;
p fo™K{r/4)[0.01 m}F75°C + {10510~ {=/a){0.00 | + [D.02%237) | K/W
PalisW e —ol® © o015 W 4 BEASW = 5.5 W. <
(084 + 021K /W

COMMENTS: The convection resistance is mieh larger than the cumulative contaet
and conduction resistance. Henee, virtually all of the heat dissipated in the component
is transferred through the block. The two-dimensionnl conduction resistance is

significantly underestimated by use of the shape factor S = 2D. Henee, the maximum
allowable power is less than 88.6 W.



PROBLEM 4.34

KNOWN: Disc-shaped electrome devices dissipating 100 W mounted to aluminum alloy block with
prescribed contact resistance.

FIND: (u) Temperature device will reach when block is at 27°C assuming all the power generated by the
device s transferred by conduction to the block and (b1 For the operating temperature found in part (a),
the permussible operating power with a 30-pin fin hewt sink

SCHEMATIC:
L /~ Electronic device
R =5X 109 m2 KjW ./ D=20mm, q=100W
s = It
a 1
T,=27°C Ged R, R, "?u
(a)

ASSUMPTIONS: (1) Two-dimensional, sicady-state conduction. (2} Device s at uniform temperature,
Tt} Block behaves as semi-infmine mediam.

PROPERTIES: Table A I, Aluminum alloy 2024 (300 Ky k= 177 Wim K.

ANALYSIS: (a) The thermal circuit for the conduction heat Mow between the device and the block
shown in the above Schematic where R, is the thermal contact resistance due o the epoxy-filled
interface,

R, =R} /A, =R}, [(rD*/4)

R, =310 K m*/W/(n(0.020m)°) 4 = 0.159 K/ W

The thermal resistance between the device and the block is given in terms of the conduction shape factor,
Tahle 4 1, as

R, = I/Sk =1/(2Dk)
R, = 1/{2x0020mx177W/m- - K)=0141K/W
From the thermal circuit,
T, =T, +qu(R, +R,)
T, = 2T°C+ IDOWIDI41 + D159) K/W
T,=2TC+30'C=5TC <

(b} The schematic below shows the device with the 30-pin fin heat sink with fins and base matenal of

copper (k =400 W/m K). The airstream temperature is 27°C und the convection coefficient 1s 1000
Wim K

Contimued...



PROBLEM 5.1

KNOWN: Electrical heater attached to backside of plate while front surface is
exposed to convection process (T, h); initially plate is at a uniform temperature of the
ambient air and suddenly heater power is switched on providing a constant g+

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the
outer surface, q,(L,t) as a function of time.

SCHEMATIC:
Heater Pla fe, Tf:, H‘
Insulation— TTT

L'"x '8

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3)
Negligible heat loss from heater through insulation.

ANALYSIS: (a) The temperature distributions for four time conditions including the

initial distribution, T(x,0), and the steady-state distribution, T(x,00), are as shown
above,

Note that the temperature gradient at x=0, —dT /dx);g, for t>0 will be a constant
since the flux, q,(0), is a constant. Noting that T, = T(0,00), the steady-state
temperature distribution will be linear such that

o=k T""TEL‘ © h[T(L,00)~T e -

L
(b) The heat flux at the front surface, x=L, will be given by qy (L,t) = —k (dT fdx)yr.
From the temperature distribution, we can construct the heat flux-time plot.

ad
4 I S e

Dx(L.1)

0 > ?-f.“',f

COMMENTS: At early times, the temperature and heat flux at x=L will not change
from their initial uluu._ Hence, we show a szero slope for q.(L,t) :t_url:r times.
Eventually, the value of q.(L,t) will reach the steady-state value which is Qq-



PROBLEM 5.2

KNOWN: Plane wall whose inner surface s insulated and outer surface is exposed to
an airstream at T.,. Initially, the wall is at a uniform temperature equal to that of the
airstream. Suddenly, a radianl source is switched on applying a uniform fux, q,, to the
outer surface,

FIND: (a) Sketch temperature distribution on T-x coordinates for initial, steady-state,
and two intermediate times, (b) Sketch heat flux at the outer surface, q,(L,t), as a
function of time.

SCHEMATIC:

Tet) + @ s Steady state, na)
Towhent>0 B i
[ d‘fﬂiﬂﬂ condition

ok 1

; Tie.@)=Tg

ASSUMPTIONS: (1) Ope-dimensional conduetion, (2) Constant properties, (1) No
internal generation, E =0, (4) Surface at x=0 is perfectly insulated, (5) All incident
radiant power is absorbed, negligible radiation exchange with surroundings.

ANALYSIS: (a) The temperature distributions are shown on the T-x eoordinates and
Iabeled accordingly. Note these special features: (1) Gradient at x=0 is always zero, @
gradient is more steep at early times and (3) for steady-state eonditions, the radiant fux
is equal to the convective heat flux; this follows from an energy balance on the CS at

x=L,
9o = Qeany = B[T{L,26)}~Tw| . —
il‘ﬂr

5

(b) The heat Aux at the outer surface, q,(L,t), as a function of time appears as shown
below.

o
9ol s) ’
-

COMMENTS: The sketch must reflect the initial and boundary conditions:

T(x,0) =T, uniform initial temperature.
'k‘g—:"h-n =0 insulated at x=0.

—k%h.]_ = h|T{L.t)—Ts]| — qq surface energy balanee at x=L.



PROBLEM 5.3
KNOWN: Microwave and radiant heating conditions for a slab of beef.

FIND: Sketch temperature distributions at specific times during heating and cooling.
SCHEMATIC:

Slab of beef of thickmess 2L
with microwave (uniform

3L internsi) heating or radiant
% (umiform surfac heating.

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Uniform internal heat
generation for microwave, (3) Uniform surface heating for radiant oven, (4) Heat loss
from surface of meat to surroundings is negligible during the heating process, (5)
Symmetry about midplane.

ANALYSIS:

COMMENTS: (1) With uniform generation and negligible surface heat loss, the
temperature distribution remains nearly uniform during microwave heating, During the
subsequent surface cooling, the maximum temperature is at the midplane.

(2) The interior of the meat is heated by conduction from the hotter surfaces during
radiant heating, and the lowest temperature is at the midplane. The situation is
reversed shortly after cooling begins, and the maximum temperature is at the midplane.



PROBLEM 5.4

KNOWN: Plate initially at a uniform temperature T, is suddenly subjected to
eanveetion process (T..,h) on both surfaces. After elapsed time t,, plate is insulated on
both surfaces.

FIND: (a) Assuming Bi - 1, sketeh on T — x coordinates: initial, steady-state (t—o0),
Tixt,) and temperature distributions for two lutermediate times 1, <1t < oo, (b)
Sketeh on T —t coordinates, midplane and surface temporature distributions, (e)
Repeat parts (a] and (b) assuming Bi < 1, and (d) Expression for Tlx, =) = Ty in terms
of plate parameters (M,cp), thermal conditions (T,, T, h), surface temperature T(L,t)
and heating time t,.

SCHEMATIC:
m—%ﬁ?-ﬂ:ﬂ;} A,
Time + Frocess w Mass M
t=0 Uniform T Tix.0)-T
Ot | Heating, (To.h) x,0)=T;
t ot T rsulated L L @

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3] No
internal generation, (4) Plate is perfectly insulated for ¢ > t,, (58) T, v <1,) < T

ANALYSIS: (a,b) With Bi = 1, appreciable temperature gradients exist in the plate
following exposure to the heating process.

TTli_r_:l" Tl t) ‘_
2 Tt @ LTI
r ’:@' | &— —
éc:. i Te )@ ‘,/:/rﬂl:]
T———Tho) @ i .
0 L % g % *

On T-z coordinates: [1) initlal, uniferin temperature, (2) steady-state conditions when
t == o, (3) distribution at t, just before plate is covered with insulation, (1) gradients
are always sero (symmetry), and (5) when t > t, (dashed lines) gradients are zero
{muTl‘Ed]-.

{e) If Biwl, plate behaves space-wise isothermal, hence, no gradients,. On T-z
coordinates, the temporature distributions are fat; on T-t coordinates, T(L.t) = T{o,t).

(d) The conservation of energy requirement for the interval of time At — iy for the
enilre plate is

Biy —Bou = AE = Bgo =~ By 2["BA[Toc = T(L,2)/dt — 0 = Mey [Ty = T))

noting that E;; is that due to the convection heating process over the period of time t
= 0 — 1. With knowledge of T(L,t), this expression can then be integrated and a
value for Ty determined.



PROBLEM 5.5
KNOWN: Diameter and initial temperature of steel balls cooling in air.

FIND: Time required to cool to a prescribed temperature.

SCHEMATIC:
D:-0012m Steel, T =1150K
p=7800kqfm3
l=325K T T T c=600 Jfkg-K
hz20Wime. K

ASSUMPTIONS: (1) Negligible radiation effects, (2) Constant properties.

ANALYSIS: Applying Eq. 5.10 to a sphere (L, = r, /3),
Bi = M _ Blro/3) _ 20 W/m®K (0.002m)
k k 40 W/m'K

Hence the temperature of the steel remains approximately uniform during the cooling
process, and the lumped capacitance method may be used. From Egs. 5.4 and 5.5,

ba pv':p In Tj=T = ﬂﬂﬂtfﬂjc - Ti=Tos

= (.001 .

hA, T-Te h#D? T-Tu
¢ = 7800kg/m*(0.012m)600J /kg-K | 1150-325
8x20 W/m?* K 400-325
t = 1122 s = 0.312h <]

COMMENTS: Due to the large value of T,, radiation effects are likely to be

significant during the early portion of the transient. The effect is to shorten the cooling
time.



PROBLEM 5.6
KNOWN: The temperature-time history of a pure copper sphere in an air stream.

FIND: The heat transfer coefficient between the sphere and the air stream.

SCHEMATIC:
) T(0)=66"C
fo=27°C T(69s):55"C
—_—
—
M -
Def2 Tmm

ASSUMPTIONS: (1) Temperature of sphere is spatially uniform, (2) Negligible
radiation exchange, (3) Constant properties.

PROPERTIES: Table A-1, Pure copper (333K): p = 8033 kg/m’, cp = 389 J kp'K,
k = 308 W /mK.

ANALYSIS: The time-temperature history is given by Eq. 5.8 with Eq. 5.7.

0w t
ﬂ. m[ R,.'L‘,t] where R{EE ﬂ":‘!’fn'l
b |
Y

Recognize that when t = 60s,

o) _ (s5—27)'C
6  (88—27)°C

and noting that r, = R,C, find

=0.718 = E:]:{—ril] -up{w%]

ry = 208s .
Hence,
- PVep _ 8933 kg/m® (70.0127° m? /6) 3800 kg K
ATy m0.0127*m* x 208a
h = 35.3 W/m"K. <

COMMENTS: Note that with L, =D, /8,
0.0127
G

hL,
Bi = —— =353 W/m* K x m /398 W/mK = 1.88x107* .

Henee Bi < 0.1 and the spatially isothermal assumption is reasonable.



PROBLEM 5.7
KNOWN: Solid steel sphere (AISI 1010), coated with dielectric layer of preseribed
thickness and thermal conductivity. Coated sphere, initially st uniform temperature, is
suddenly quenched in an oil bath.

FIND: Time required for sphere to reach 140" C.

SCHEMATIC:
.-c“‘_";“} @ﬂﬂﬂ tric
.
Sphere D: 300mm k= 0.04W/fm-K
AISI 1010 steel, @ T T N fodoZwem
T= T{0)=500°C To=100°C
h=3300 W/m= K

PROPERTIES: Table A-1, AISI 1010 Steel (T = [500+140] " C/2 = 320° C=~600K):
p=1T7832 kg/m®, ¢ =550 J fkg'K, k = 48.8 W/m'K.

ASSUMPTIONS: (1) Steel sphere is space-wise isothermal, (2) Dielectric layer has
negligible thermal eapacitance compared to steel sphere, (3) Layer is thin compared to
radius of sphere, (4) Constant properties.

ANALYSIS: The thermal resistance to heat transfer from the sphere is due to the
dielectric layer and the convection coefficient. That is,
e &, 1 0.002m ; m* K
R = + b~ 00i WK WK (0.05040.0003) = 0.0503 W
or in terms of an overall coefficient, U = 1/R" = 10.88 W/m"K. The effective Biot
number is

Bi, = UL: _ Ulre/3) _ 19.88 W/m? Kx(0-300 fg)m
k k 48.8 W /mK

where the characteristic length is L, = r /3 for the sphere. Sinee Bi, < 0.1, the lumped

capacitance approach is applicable. Hence, Eq. 5.5 is appropriate with h replaced by U,

= 0.0204

‘_,PE _‘l"l:_l EI _E l T{n]-Tm
U |A)E T A" T,

Substituting numerical values with (V/A,) = T 3= Dfﬁ,

_ 7832 kg /m®x550 1 kg'K [u.m] . (500-100)° C
19.88 W /m* K B (140—100)° C

t

t = 25,3588 = 7.04h. <]

COMMENTS: (1) Note from calculation of R that the resistance of the dielectric
layer dominates and therefore nearly all the temperature drop occurs across the layer.

(2) An alternative method of solution would be to use the Heisler chart with
Bi;" =1/0.0611 = 16.4 and 6, /8, = 0.1 to find Fo and eventually t.



PROBLEM 5.8

KNOWN: Initial temperature and convection conditions for transient heating of a
spherical bullet.

FIND: Surface temperature alter a prescribed heating period.

SCHEMATIC:

+— / Shack wave, +=04s

P, T = 300K

ABSUMPTIONS: (1) Constant properties, (2) Negligible radiation.

PROPERTIES: Table A.1 (300 K): p = 11,340 kg/m®, ¢, = 129 J/kg'K, k = 35.3
W/mK.

ANALYSIS: Evaluate first the Biot number,
Bi o hro/3 _ bD/6 _ 500 W/m*K(0.001 )
k k 35.3 W/mK
Bi = 0.0142.

Hence, the lumped capacitance method may be used. The transient response of bullet is
given by

T=Ts
T.—-_T: = exp|—{hA, /iVe)t| = exp|—(6h /pDe)t|.

Substituting numerical values, find

T(0.4s) = 700 K + (300 — 700)K ﬂp{ 6500 W /m?-K:x0.4s ]

11,340 kg/m”«0.008 mx120 J kg'K
T(0.45) = 700 K — 400 K exp(—0.137)

T(0.4s) = 351 K. <

COMMENTS: The heating effect is significant. Note from Fig. 5.15 that, for Bi~! =
23.5, T is approximately independent of r.



PROBLEM 5.9

KNOWN: Diameter and radial temperature of AISI 1010 carbon steel shaft.
Convection coefficient and temperature of furnace gases.

FIND: Time required for shaft centerline to reach a prescribed temperature.
SCHEMATIC:

ry= 005m T(r,0)=T; =300K

Ta=1200K

Tios)=800K — 5 he100Wme K

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

PROPERTIES: AISI 1010 carbon steel, Table A.1 (T = 550 K): p = 7832 kg/m?, k
= 51.2 W/m'K, ¢ = 541 J/kg'K, a = 1.21x10~% m?/s.
ANALYSIS: The Biot number is

Bi < Dfo/2 _ 100 W /m®K(0.05 m /2)
k 51.2 W/m'K
Hence, the lumped capacitance method can be applied. From Equation 5.6,

T=T p"-'l:)] R D

= ().0488,

800 — 1200 4x100 W /m* K
-—()8]] = t
!"( 300 — 1200 ) ! 7832 kg/m*(541 J kg'K)0.1 m
t = 850 s, <]

COMMENTS: To check the validity of the foregoing result, use the one-term
approximation to the series solution. From Equation 5.49e,

To =T _ —400
T, — Ty —R00
For Bi = hr,/k = 0.0978, Table 5.1 yields ¢; = 0.436 and C; = 1.024. Hence
—(0.436)*(1.2x10~* m* /)
(0,05 m)*
t=0154

The results agree to within 6%. The lumped capacitance method underestimates the

actual time, since the response at the centerline lags that at any other loeation in the
shaft.

= 0.444 = C,; exp(—¢Fo)

t = In(0.434) = —0.835



PROBLEM 5.10

KNOWMN: Configuration, initial temperature and charging conditions of a thermal
energy storage unit.

FIND: Time required to achieve 75% of maximum possible energy storage.
Temperature of storage medium at this time.

SCHEMATIC:
l Al
. Tixg=T 25°C

Tes600T—| |
h=100Wma-K |

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3)
Negligible heat exchange with surroundings.

PROPERTIES: Table A-1, Aluminum, pure (T = B00K = 327°C): k = 231 W/m'K,
e = 1033 J /kg'K, p = 2702 kg/m?.

ANALYSIS: Recognizing the characteristic length is the half thickness, find
hi, _ 100 W /m® - Kx0.025m

Bl = » 231 Wim K = 0011 .

Hence, the lumped capacitance method may be used. From Eq. 5.8,
Q = (aVe)d; |1 — exp(—t/n)| = —AE, (1)
A wss = (Ve)6, . (2)

Dividing Eq. (1) and (2), the condition seught is lor
AE,/AEy gas =1 —exp(—t/ry) =075,
Solving for 7, and substituting numerical values, find

ry = Ve _ ple 2702 kg/m?<0.025mx1033 J kg K _
hA, h 100 W /m*K
Henece, the time required is

6O8s .

—exp(—L/808s) = —0.25 or t = §B8s. <
From Eq. 5.8,
T—Te.
=Ty
T =Te + (Ti=Tx) exp(—t/ry) = 800" C — (575" C) exp(—068 /698)

T = 456" C. <]

= exp(~t/7)

COMMENTS: For the preseribed temperatures, the property temperature
dependence is significant and some error is incurred by assuming constant properties,
However, selecting properties at 600K was reasonable for this estimate.



PROBLEM 5.11

KNOWN: Conditions for properly treating the coating on a leaf spring vertically suspended in
a conveyor oven,

FIND: Time required 1o treat coating on a different-sized spring.
SCHEMATIC:

" e I}

-F. E&i@ d i ----.-..___Ir-r-
L %L =
F/J - 1
25

ASSUMPTIONS: (1) Springs are space-wise isothermal, (2) Constant properties, (3) Both
springs have same convection coefficient.

Sprmg &)

25 time

PROPERTIES: Spring material (given): p = 8131 kg/m’, ¢, = 473 JkgK, k = 42 Wim K, o =
kipc, = 1.092:10* m?/s.

ANALYSIS: Consider the smaller spring (#1) for which the coating conditions are known.
From Eq. 5.13,

8 _Th)-T. (140-175°C
'ﬂ. Tl 'T-. 25- ITﬂ"‘C

Fﬂrﬂuﬂintnmrhu.ﬂi-hl,k.ﬂt:hulﬂﬂﬂiﬁclmlthuﬁhtqﬁngis

L= i A walad . 0.032:0.0101.1 m’ = 0007 =
A, Zwed) + 2Lel) + Awoed)  20.032x1. 1) + 20010110 + 20032000 0m

With Eq. (1) and Fo = a1, /1.2,

= 0.233 = exp{-Bi-Fa). (1)

v exol - MO003TB m 1092107 m fs(254608)
= “"( "R WimK (©.0038 m)*

Cmﬁdunnwﬁth:;ﬂupﬁn;[ﬂ].ﬂmchmmﬂsﬂchnﬂhh
0.076+0.035«1.6 m’

h=14.1 Win*-K

S 076 B + H0035-1 Sy < 20T TT V018w
The time required for this spring to reach TiL ) = 140°C,
8 _ 140175 14.1 Win K0.0118 m 1092107 mfna, e

B, 28-175 a2 WmK 00120 mP
Hmm.w:nmnﬂdl:mlh:lu‘gumingfﬂnnmcmnwmmfw

tw i+ V0 min = (78 + 10)min = B8 min "':]

COMMENTS: Using L. = d/2 rather than as V/A, leads to overpredicting the residence time.
mmmwﬁmhmnlmmﬂwTﬂmﬁmhuwgwummdmhlﬁ
minutes for spring #1. For the larger spring, Bi = (.004, hence the lumped capacitance method
15 appropriate.



FPROBLEM 5.12

RNOWN: Wafer, imnally at 100°C, is suddenly placed on a chuck with umform and constani
temperature, 23°C. Waler temperuture after |5 scconds is observed as 33°C.

FIND: ia) Contact resistance, R, between interface of wafer and chuck through which helium slow
flows. and (b Whether R will change f air, rather thun helium, 15 the purge gas.

SCHEMATIC:

Water, T(1),
Tu{m - T!I'.l =100 °C
w= 0758 mm — T
—{—
- O R SR, W W Helium gas
\‘}?\ﬁ."_l_ Lo | B, %1:5 \\‘h" l\i\ﬁ
Interface regian, Chuck, Tc: 23 0C

PROPERTIES: Wafer isilicon, typical valuesy: p=2700kg/m', c =875 kg K. k= 177 Wim K

ASSUMPTIONS: (1) Wafer behaves as a space-wise isothermal object, (1) Negligible heat transtir
from water top surfuce. (3) Chuek remains gt uniform temperature, (4) Thermal resistance across the
interfuce 18 due 1o conducton effects. not convective. (5) Constant properties

ANALYSIS: (a) Perform an energy balance on the wafer as shown in the Schematie.
Bl —EL, +E =B,

“Toumi = El}
LML T Y
RT it
Separite and integrate Eq. 13)
i s -
_]r dt — = dT, {d} .-I—'-."‘-.!.l—l..—T-'_.: ex e i5)
’ FHR W - Ti- By T'\- Tip = T. FWR:

Substituting numencal values for T,(155) = 33°C,

(33-23)°C s 135
(100 -23C 2700ke/ m =« 0.758= 10" 'm= 8751 kg K« R}
R =00041m° K/W

thy BT will increase since b < Kighume See Table A4

COMMENTS: Note that Bi = R JR,,, = (w/ky R =0.001. Hence the spacewise isothermal
assumption s reasonable.

Iy

i1

(2)

i3}

(L]



PROBLEM 5,13

KNOWN: Thickness and properties of sirip steel cooled by convection and radiation.

FIND: (a) Time required to cool from prescribed initial to final temperature, (b) Relative influence of
convection and radiation on heat transfer from the strip.

SCHEMATIC:
M2=00025m
Steal l
T,=08400°C = s V=1
T;=Hﬂ“ﬂ i .

— h=25Wim?K
(&) = Too = 300K
ASSUMPTIONS: (1) Constant properties, (2) Negligible stnp temperature gradients in transverse
direction (across strip thickness), (3) Negligible effect of strip conduction in longitudinal direction

PROPERTIES: Sicel: p=T7900 kgim’, ¢, = 640 Jkg-K. k = W Wim K. e =0.7.

ANALYSIS: (a) Considering a fixed (control) mass of the maving strip, its lemperature vanation with
umhmwnmdhymnmghﬂm=whkhquuuﬂw¢hmp In energy storage to heat transfer by
convection and radiation. If the surface area associated with one side of the control mass is designated as
Ay, l'iu:lﬁ-utlh.md\l’-ﬁﬂ.in quiﬂ-l-iﬂﬂj.ls.wm reduces 1o

dT
peb— = ~2[(T-T_ )+ eo{T* - T )]
or. introducing the radiation coefficient from Equations 1.8 and | 9,

1 '
MT-T,)+h(T-T_
nqﬁfllf [ ( Al }}h
Substituting for T, = 1213 K and using the Lumped Capacitance Model of IHT to perform the numerical

Int:gminn. we obtain Ty = 813 K = 540°C at 1, = 93 5, in which case the length of the cooling section
must be

L=Vt =10mfsx 935 =930m <

Because this length exceeds practical space limitations within a steel mill, we conclude that the cooling
rate is insufficient and should be enhanced.

(b) Sewing, first h=0and then £ = 0, and repeating the numerical integration, or using Equations 5.18
and 3.5, we obtain for negligible convection and radiation, respectively,

iy (radiation only) = 140 5 <
¢ (convection only) = 292 5 <

From the foregoing results and the following plots, it is clear that radiation is the dominant heat transfer
mode.

Continued. .,



PROBLEM 5,13 (Cont.)

Tomsguiais, TICH

Haal irahsim cosSopnt (Wt B

i L] L[] e ¥ s 3

Tirr. b is)
== b FE WM R . epaiion = & T
=== LA et
== w24 A, prelen = O —b— Corvpcion cosficinnl hiWims2 )

Initsally (1 = 00, the radiation coefficient (h, = 94 Wim" K) exceeds the convection coefficient by nearly o
tactor of 4. Although h, decreases with decreasing T, it 15 still larger than h a the conclusion of the
cooling process (hy =32 Wim K for T=Ti =RI3 K).

COMMENTS: In a steel mill accelerated cooling is achieved by using water jets, as depicted in
Prablem 1.30. To check the validity of using a lumped capacitance analysis, we calculate the Biot
number using the maximum cumulative coefficient (h + h,) associated with the cooling process. With (h

+ b= (25 +94) Wim K = 119 Wim® K. it follows that Bi = (h + h(82% = 0.01 and the approximation
s valid,



PROBLEM 5.14

KNOWN: Thickness and properties of furnace wall. Thermal resistance of film on surface of
wall exposed to furnace gases. Initial wall remperature.

FIND: (@) Time required for surface of wall 1o reach a prescribed temperature, (b)
Corresponding value of film surface temperature,

SCHEMATIC:

™ 300K : .
szowi] | [ oo st 300K
R.n fa‘ m2- K [W 5
f}z] pe——-L=10mm

ASSUMPTIONS: (1) Constant propertics, (2) Negligible film thermal capacitance, (3)
Negligible radiation.

PROPERTIES: Carbon steel (given): p = 7850 kg/m’, ¢ =430 JkgK, k = 60 W/m-K.
ANALYSIS: The overall coefficient for heat ransfer from the surface of the sicel 1o the gas is

)t = (— +R7) o (m + m"lmlauw)ﬂ =20 W/m* K.
Hence,

gi= UL _ 20 Wm®Kx0.01 m
k 60 W/mK

and the lumped capacitance method can be used.

=0.0033

{a) It follows that
T=T.
T-T = exp(—/1,) = exp(—/RC) = exp(-UuplLc)
ple, T-Ta 7850 ky/m®(0.01 m)430 Jkg'K . 1200~ 1300
T= in  — - P el I et
| T 20 Wim* K 300 — 1300
t= 38865 = 1.08h. <

(b) Performing an energy balance at the outer surface (s,0),
h{T-u- ""'TL#} = n-l.n —T-..ill"R';
1 = MTa + ToiRY _ 25 Wim? Kx1300 K + 1200 K/102m? K/W
Lo = ] o 2
h+(1/Rf) (25 + 100)W/m*-K

Tyo=1220K. <
COMMENTS: The film increases 1, by increasing R, but not C,.



PROBLEM 5,15

KNOWN: Copper rod carrving 300 A experiences loss of coolant (LOC),

FIND: (01 Time required for melting to occur following LOC. (b) Performance of back-up cooling
AValeTns

SCHEMATIC:
\:\n"ﬂﬁ
Coolant passage — fq"""'
®
R,= 0 15 tim 2 Tw=15°
T,=75% (a) (b b= 10" Wim?.K
or
h = 107 Wimd.K

ASSUMPTIONS: (1) Temperature of rod is spatially uniform at any instant. (2) Without coolant.

radiative and convective heat transfer from surface of rod are negligible. (3) Constant properties. (4]
[imform heat generation.

PROPERTIES: Juhble A-]. Copper, Tug= 1358 K. (T = (348 + 1358)/2 = 850K i ¢, =338 Mg K. p =
93 kp/m

ANALYSIS: (a1 Since the outer surface of the rod is assumed 1o lose no energy by heat transfer 1o s
surroundings, the enerey balunce on the rod s
. dT
E.,=E_ PRIL=pVe, —
- N e

Separating varables. integrating with definite limts, and substituing numerical values, find

[ae= i [ar

! FRL
_el=D 5, (T, - T))
'R,

_(8933hg m Jm 410 02m) (4381 kg KK1358 - M8IK

I -
(S00) (D15) s m

= 313 <

(b1 The rod lemperature at the onset of back-up cooling may be obtained from the expression of puirt (al
For t = 35, we obimn

Tit=5%i=500K <
With back-up couling. the appropniate form of the energy equation s

BB «H, or ~hA(T-T_ )+ I'R.L = pi\'c,%

whete A, =aDL. The soluton to this linear, first-order nonhomogeneous differential equation 1s given
by Equation 1525,

T-T b

T —T' = exp{-at) + T-?I' [I—np{—:ul]

Continued. .



PROBLEM 5.15 (Cont.)

where a = hA, foVe, and b= I R} /p(xD*/4)c,. For the prescribed conditions a(water) = 0.511 5",
alair) =0.051 5", and b= 30.5 K/s. With T, = 500 K at L = 3s, the temperature histories associated with
the two cooling options are as follows.

= T

N

_7 = i, W, B
| Y -
-
e SSSSSSSS

Tifia brore iom of cosianl, 1y

Tempwaiien TiR]
g
]

L=
-]
B
8

— Compransnd 3 1 = 1000 WS
i S h = TS BT

With the water back-up system, the rod temperature quickly decays (within 105) to a steady-state value of
348 K, which corresponds to the normal operating condition. With the air system, the temperature
continues to rise and at t = 100s, it is very close (within 4 K} of the steady-state value of 885 K.
Although, the melting point is not reached with the air system, the water back-up quickly restores the rod
to its original state and is hence much preferred.

COMMENTS: With k =400 W/m- K, Bi = h(D/2)/k = 0.25 for water and 0,025 for air. Hence, the
lumped capacitance model is appropriate for the air cooling, but only marginally acceptable for the water,
The implication is that temperature gradients will develop in the rod during cooling. Nevertheless, a
final steady-state of 348 K will be approached in a time span close to that predicted by the model.



PROBLEM 5.16

KNOWN: Thickness and properties of strip steel heated in an annealing process. Furnace operating
condimons,

FINIY: ia) Time required to heat the stnp from 300 to 600°C. Required furnace length for prescnbed
strip velooity (V = 0.5 mis), tb) Effect of wall temperature on strip speed, temperature history, and
ruchation coefficient.

SCHEMATIC:

T - . 5 i . &2 = 0,006 m
T - ——— S ——— i

Tﬁﬂlﬂ“ﬂ t V=05mis

Combustion] —=  h=100 WiméK
gases —= T.=T,

ASSUMPTIONS: (1) Constant properties. (2) Negligible wmperuture gradients in transverse direction
across s, (o) Negligible effect of strip conduction in longitudinal direction.
PROPERTIES: Steel: p=T000 kg/m', ¢, = 640 Jhg K, k = 30 Wim K. e= 0.7,

ANALYSIS: (a) Considering a fixed (control) mass of the moving stnp, its termpersture variation with
time may be obtaned from an energy balance which equates the change in energy storage to heat transfer
by convection and rachation. If the surface area associated with one side of the control mass is

demignated as A, A, = A,, = 2A, and V = 8A, in Equation 5.15. which reduces 1o
dT
|.11:E~dT = -I[h[T— 1. )+eol|T -T,, ]I
or. mtroducing the radiation coefficient from Equations |8 and | 9 and integrating,

'
TR i, [T T =T

Lsing the IHT Lumped Capacitance Model 10 integrate numericully with T, = 573 K, we find that T, =
873 K corresponds to

e = 2095 <
in which case, the required furnace length is
L=V, =035mfs= 209s = 105m <

() For Ty = 1123 K and 1273 K. the numencal integration vields 1 = 102s and 625 respectively. Hence,
for L= 105 m .V = Lity yields

V(T, = 1123K) = 103 m/s

VIT, = 1273K )= 1.69m/s <
Continued



PROBLEM 5.16 (Cont.)

which correspond to increased process rates of 106% and 238%, respectively. Clearly, productivity can
be enhanced by increasing the furnace environmental temperature, albeit at the expense of increasing
energy utilization and operating costs.

If the annealing process extends from 25°C (298 K) to 600°C (873 K), numerical integration
yields the following results for the prescribed fumace temperatures.

¢

Temparuus, T|C)

with t as the strip temperature approaches T,.

COMMENTS: To check the validity of the lumped capacitance agpmuh. we calculate the Biot number
based on a maximum cumulative coefficient of (h + he) = 300 W/m™K. It follows that Bi = (h + h,)(&2Vk
= 0.06 and the assumption is valid.



PROBLEM 5.17

KNOWN: Diameter, resistance and curremt flow for a wire, Convection coefficient and
temperature of surrounding oil.

FIND: Sicady-state iemperaure of the wire. Time for the wire temperature o come within
1*C of its steady-state value.

SCHEMATIC:

L:25°C
b= SO0Wmt- K

/L-)-; & Wire Dslwrm

-—-II:HM#

ASSUMPTIONS: (1) Constant properties, {2) Wire temperature is independent of x.

PROPERTIES: Wire (given): p = BO00 kg/m', ¢, = 500 JkgK, k = 20 WimK,
RL = 0.01 Q/m.

ANALYSIS: Since

g = M) _ 500 Wim?-K(2.5x10~*m)
k 20 Wim'K

the lumped capacitance method can be used. The problem has been analyzed in Example 1.3,
and without radiation the sicady-state remperature is given by

aDh(T = T.) = I*R..

= {1006 < 0.1

Hence .
I*R; (H00AFOLOTEYm

=15°C+ = RR.7°C. <]
xDh £(0.001 m)S00 W/im*-K

With no radiation, the rransient thermal response of the wire is govermned by the expression
(Example 1.3)

dT i 4h
R G SRl 5 )
dt  pe(nD*/4) peD L )

With T = T; = 25°C at t = 0), the solution is

T=T.+

T-T. - (IFR./xDh) sh
e = ¢xp —~—-t).
T; = Ta = (I*R./xDh) pely
Substituting numerical values, find

B7.7-25-63.7 _ . (_ 4xS00 W/m* K [)
235-25-63.7 8000 kg/m 500 kg KA0.001 m
1=83ls. <

COMMENTS: The time to reach steady state increases with increasing p, ¢ and D and with
decreasing h.



PROBLEM 5.18

KNOWN: Electrical heater attached to backside of plate while front is exposed (0 a convection process
(T_. h); initially plate is &t uniform emperature T_ before heater power is switched on.

FIND: (a) Expression for temperature of plate as a function of time ussuming plate is spacewise
isothermal, (b) Approximate time (o reach steady-state and T(s=) for prescribed T, hand q° when wall
material is pure copper, (¢) Effect of h on thermal response.

SCHEMATIC:
” Te=279C
q; = 5000 Wim? h = 50, 100, 200 W/m?-K
—— —_—
Haater nmfng%" % Geony =
MT-T)

L" L tlﬁ mm
ASSUMPTIONS: (1) Plate behaves as lumped capacitance, (2) Negligible loss out backside of heater.
(3) Negligible radiation, (4) Constant properties.
PROPERTIES: Table A-1, Copper, pure (350 K): k =397 W/m K, ¢, = 385 J/kg K. p = §933 kg/m'.

ANALYSIS: (a) Following the analysis of Section 5.3, the energy conservation reguirement for the
systemis E . -E_, =E_ or q; -h({T-T,}=ple, dT/di. Rearranging, and with R = |/h and C} =
pleg.

T-T, - qi/h = Ry CydT/d (1)
Defining 8(t) = T~ T, -]/ /h with d6 = dT, the differential equation is

do

Separating variables and integrating,
fﬂ=- £
8 R'CY

it follows that

%rm{—ﬁ] <
where B, =8(0)=T,-T_ - (q%/h) (4)
(b) For h = 50 W/m’ K. the steady-state temperature can be determined from Eq. (3) with t — = that is,
B(=)=0=T(=)-T, -q"/h or Tl=) =T, +q}/h,

giving T{=s) = 27°C + 5000 W/m" /50 W/m" K = 127°C. To estimate the time 1o reach steady-state, first
determine the thermal time constant of the system,

w_ |} | ¥
T, =R, =[E]pc,L:I = [W}WHMIH’ % 385)/kg- K x12 %107 m)=825s

Continued. .,



PROBLEM 5.18 (Cont,)

When t = 31, = 3x828s = 24755, Eqs. (3} and (4) vield

S0W/m® 5000W/m'*
AT ) B o L SR TR b L
)= T0 ) =27 C - S WimT K '[ SOW/m’ x]

T(3v) =122 <
1e) As shown by the following graphical results. which were gencrated using the THT Lumped

Capacitance Model, the steady-state temperature and the time 1o reach steady-state both decrease with
increasing h.

£=]

COMMENTS: Note that, even for h= 200 W/m" K, Bi = hL/k << 0.1 and assumption (1) 1s reasonable



PROBLEM 5.19

KNOWN: Electronic device on aluminum, finned heat sink modeled as spatially isothermal
object with internal generation and convection from its surface.

FIND: (a) Temperature response after device is energized, (b) Temperature rise for prescribed

conditions afier 5 min.
M=0 31kg

SCHEMATIC:
=60W

(a)=100°C

ASSUMPTIONS: (1) Spatially isothermal object, (2) Object is primarily aluminum, (3)
Initially, object is in equilibrium with surroundings at T,,,.

PROPERTIES: Table A-1, Aluminum, pure (T = (20+100)°C/2 = 333K): ¢ =918 J/kg'K.

ANALYSIS: (a) Following the general analysis of Section 5.3, apply the conservation of
energy requirement to the object,

BotBy BB B -RAT-T) =M (1)

where T =T(1). Consider now steady-state conditions, in which case the storage term of Eq. (1)
is zero. The temperature of the object will be T(es) such that

Ey=hA, (T(e=) - T.) . (2)
Substituting for E, using Eq. (2) into Eq. (1), the differential equation is
[T}~ [T m ME OT or Pl I (3.4)
hA, i hA, i

with 8 = T-T(==) and noting that df = dT. Identifying R, = 1/hA, and C, = Me, the differential
equation is integrated with proper limits,
1 dé é I .

ﬁﬁd‘:_. T o Esup[ ch.] [5]{:]
where 8 = 8(0) = T;~T(==) and T; is the initial temperature of the object.
(b) Using the information about sicady-state conditions and Eq. (2), find first the thermal
resistance and capacitance of the system,
Rl w o Te | (100-20)%C

B OV

Using Eq. (5), the temperature of the system after 5 minutes is

B8(Smin) _ T(Smin)}-T(=) _ T({Smin}-100°C _ | Sl
) T—Ti=) @o-100rc 7| 133 K/Ws2Bs J/K

=LKW C=Mc=031kg=918 IkgK=285)/K.

=0.453

T(Smin) = 100°C + {20~ 100)"Cx),453 = 63.8°C "":l
COMMENTS: Eq. 5.24 may be used directly for Part (b) with a = hA,/Mc and b= E,/Mc.



PROBLEM 5.20

RNOWN: Spherical coal pellet at 25°C is heated by radiation while flowing through a fumace
manntained o 1000°C

FIND: Length of tube required to heat pellet (o 600°C
SCHEMATIC:
; !z-cu.' pellet, Ds Fmm
ol 3 S Tobyler fur
— o Ve Smfs ?——6 \# sur= 1000°C
-

l-25¢ 7 \T,-600°C

ASSUMPTIONS: (1) Pellet is suspended in air low and subjected 1o only radiative exchange
with furnace. (21 Pellet is small compared 1o furnace surface area. (3) Coal pellet has emissivity,
E=|

PROPERTIES: Table A-3 Coal (T =(60251°Cn = 885K, however. only 300K data
avadlable); p = 1350 kg/m'. ¢, = 1260 Jkg'K. k = 0.26 Wim K.

ANALYSIS: Considening the pellet as spatially isothermal, use the lumped capacitance
methed of decton 5.3 to find the ime required 1o heat the pellet from T, = 25°C w Ty = 600°C_

From an energy balance on the pellet E,, = E,, where

| dT
"'lh = Gpua = u""i 1Tf",-T:l E'||.l - #v'l-‘p Tl'l'

giving AT, ~T 1= pVe, ;’ﬁ
L

Separating variables and mtegrating with limits shown, the
temperiture-time relation becomes

AT E
s As J-’ jl.ﬂ'
pve, o L To-T

The megrals are evalumed in Eq. 5.18 giving.

o Ve | T T | Twe | )T A5 1
warly || T [T |2 2T T (T

Recognizing that A, = xD* and ¥ = 2116 or AV = %D and substituting velues,

_ 1350 kim0 001m) 1260 Vg K [, 12734873 12734298
267107 Wi KAI2T3K)' | 1273873 (273-29%
. | -} 873 = =i E@'
: [“" (IJTJ) " (1:?""-)] ] o
Hence, L=Vt = Im/kwi. 185 = 3.54m <]

The validity of the lumped capacitance method requires Bi = VA, )k < 0.1, Using Eq. (1-8) for
h=h, and VIA, = Di6, find that when T =600°C, Bi =0.19; but when T = 25°C, Bi =0.10. At
early times, when the pellet is cooler, the assumption is reasonable but becomes Jess Appropriate
as the pellel heats.



PROBLEM 5.21

KNOWN: Metal sphere, initially at a uniform temperature T,, is suddenly removed from a furnace and

suspended in a large room and subjected to a convection process (T, h) and to radistion exchange with
surroundings, T,

FIND: (a) Time it takes for sphere to cool to some temperature T, neglecting radiation exchange, (b)
Time it takes for sphere to cool 10 some temperature t, neglecting convection, (¢) Procedure to abtain

time required if both convection and radiation are considered, (d) Time to cool an anodized aluminum
sphere to 400 K using results of Parts (a), (b) and ic).

SCHEMATIC:

LT

h = 10Wim? K

Tee= 300 K
Taw =300K
ASSUMPTIONS: (1) Sphere is spacewise isothermal, (2) Constant properties, (3) Constant heat
transfer convection coefficient, (4) Sphere is small compared 1o surroundings.

PROPERTIES: Table A-/, Aluminum, pure (T = (800 + 400] K/2 = 600 K): p =2702 kg/mr’, ¢ = 1013

Wkg-K. k =231 Wim K, ot = kipc = 8.276 = |0” m'/s; Aluminum, anodized finish: € = 0,75, polished
surface: €=0.1.

ANALYSIS: (a) Neglecting radiation, the time to cool is predicied by Eq. 5.5,

pVe. 6, pDe. T -T,
| = ==t = - | ‘:
nA, "8 6h “TT ;

where V/A, = (RD/6)ArD*) = D/6 for the sphere.

(b) Neglecting convection, the time to cool is predicted by Eq. 5.18,

= e ol BT () (2]

where V/A,, = D6 for the sphere.

(2)

(€} If convection and radiation exchange are considered, the energy balance requirement results in Eq.
5.15 (with ] = E, =0). Hence

dT 6

dt pbe
where A= A, = xI¥ and V/A,,,, = D/6. This relation must be solved numencally in order to evaluate
the time-to-cool.

[MT-T)+ea(T* -T2 n<

(d) For the aluminum (pure) sphere with an anodized finish and the prescribed conditions, the times to
cool from T, = 800 K to T = 400 K are:

Continued...



PROBLEM 5.21 ( Cont.)

Convection only. Eg. (1)

, - 2102kg/m’ = 0.050m « 10331/ kg K |
: 6x IOW/ m K
Radiation only, Eg. (2}

2702kg/m’ « 0.050m « 1033)/kg- K { Inmumﬁr“mum]*
A00-300 800 -~ 300

800 - 300
=374% = 1.04h <
" 300-300

[=
24075567« 10" W/m*- K* « (300K’

for B 2]

E=5065«10"{1.946—0.789+2{0927 - 1.212)} = 2973 = 0.826h <
Rudiation and convection, Eq. (3}
Using the IHT Lumped Capacitance Model, numerical integration vields

t= 16005 = 0 444h

In this case, heat loss by radiation exents the stronger influence. although the effects of convection are by
ne means negligible. However, if the surface is polished (¢ = 0.1). convection clearly dominates. Fur
cach surface finish and the three cases, the temperature histories are as follows.

Tamparalive TiW|
Tamrpmanie TiK|

U 800 003 1200 1800 3000 Baoh 00 2300 SO0 4000

Ea
:
-
-
.||.
ke
-

Tima. | Tirwad, v w E-4 3
T —— e R ]
- - L3
= R loweex e B e bt ik

COMMENTS: A summuary of the analyses shows the relative umportance of the various modes of heat
loss:

Time required 1o coal 1o 400 K ih)
Active Modes E=07§ =01
Convection only 1.040 1.040
Radsation only 0.827 6,194
Both modes 0.444 0.889




PROBLEM 5.22
KNOWN: Droplet properties, diameter, velocity and initial and final temperatures,
FIND: Travel distance and rejected thermal energy.
SCHEMATIC:

I TM '.F o1 u"ﬁ- i
IﬂJl‘Efﬂf‘ | _p—b | Collector
k == D-5mm 300K

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation from space.
PROPERTIES: Droplet (given): p =885 kg/m’, ¢ = 1900 J/kg'K, k = 0.145 W/m K, ¢ = 0.95,
ANALYSIS: To assess the suitability of applying the lumped capacitance method, use
Equation 1.9 to obtain the maximum radiation coefficient, which corresponds 1o T = T,.

h, = 20T} = 0.95x5.67107" W/m?-K* (500 K)® = 6.73 W/m®-K.
Hence

helra/3)  (6.73 W/m?-K)(0.25%10~ my3)
s 0.145 W/m'K

and the lumped capacitance method can be used. From Equation 5.19,
t=_l__=pc{:D’fE}( A :)
V  3exD*)o \T{ T}

mIWE]EESkp&n’[IQMJ."kgH]ﬂSﬂﬂ‘am( 3 :_)1
18:0.95x5.67x107* W/m?-K* 300°  500° / K

L=252m. <]

Bi, = =0.0039

The amount of energy rejected by each droplet is equal to the change in its internal energy.

E; — Ep=pVe(T, - Ty) = 885 kg/m’x ‘5”’“:’“’3 1900 J/kg-K(200 K)

E;—E=00221. <]

COMMENTS: Because some of the radiation emitted by a droplet will be intercepted by other
droplets in the stream, the foregoing analysis overestimates the amount of heat dissipated by
radiation 1o space.



PROBLEM 6.1
KNOWN: Variation of h, with x for laminar flow over a flat plate.

FIND: Ratio of average coefficient, hy, to local coefficient, hy, at x.

SCHEMATIC:
Thermal boundary fa
il y fayer,
—f> P—-’-_hlic.tiﬁ where C
is @ constant

L

ANALYSIS: From Eq. 6.5, the average value of h, between 0 and x is

-i' mE.l_Iﬂ
by x-";h’d: :J;:: =

B, =2 ox!/? L g0k 1/t
X
by = 2h, .
h,
H‘Eﬂﬂt‘, E = 2 ﬂ

COMMENTS: Both the local and average coefficients decrease with increasing
distance x from the leading edge as shown in the sketeh below.

ht e

Py (x)




PROBLEM 6.2

KNOWN: Variation of local convection eoefficient with x for free convection from a
vertical heated plate.

FIND: Ratio of average to local convection coefficient.

SCHEMATIC:
n-

Bnumi'm*r layer,
he=Cu ™ where
Cis a constant

L . i N L1

X

/1

ANALYSIS: From Eq. 6.5, it follows that the average coefficient from 0 to x is

£l - i
h, xj;h,d: :j;: dx

-'_-iE:'”':‘i —|||H-i
h, 311 aﬂ: 3h,.

Hence,

nr[ =

4
-3 <

T

The variations with distance of the local and average convection coefficients are shown
in the sketch.

he A )
"h'i- x “‘;;ghx
ch
o5CH hy=Cx ™4
0  — L B

COMMENTS: Note that h,/h, = 4/3, independent of x. Hence the average
coefficient for an entire plate of length L is by, = -} hy, where by is the local coefficient

at x = L. Note also that the average erceeds the local. Why?



PROBLEM 6.3

KNOWN: Expression for the local heat transfer coefficient of a circular, hot gas jet at
T directed normal to a circular plate at T, of radius r,.

FIND: Heat transfer rate to the plate by convection.

SCHEMATIC:
Jet, To , hir) =@+ br" % i
Plote, T, % coar
—
_)rdr- -
s Fo e

ASSUMPTIONS: (1) Steady-state conditions, (2) Flow is axisymmetrical about the
plate, (3) For h(r), a and b are constants and n # —2.

ANALYSIS: The convective heat transfer rate to the plate follows from Newton's law
of eooling

Qeoary = ,r‘ dqeony = J:h h(r) + dA * (To—T,) -

The local heat transfer coefficient is known to have the form,
h(r) =a + br®

and the differential area on the plate surface is
dA =2rrdr.

Hence, the heat rate is

Ll -_,I:' (a +br®) - 2mr dr « (Tou—T,)

Qeomy = 27 (T _T!]

L
=4 0 hte
2 n+2 ,

b
2 a4
—r2 4 r

* " n4g °

[Tm _Tl } 'ﬂ:]

COMMENTS: Note the importance of the assumption requiring n + —2. Recognize
that practically, we would expect the radius of the jet to be much smaller than that of
the plate. How does the thickness of the boundary layer vary with plate radius?



PROBLEM 6.4

KNOWN: Distribution of local convection coefficient for obstructed parallel low over
a flat plate.

FIND: Average heat transfer coefficient and ratio of average to local at the trailing
edge.

SCHEMATIC:
b 207 136x-59x2
~—B A [
Lo &/ &
Vi

3#:——-;-4

Air) —= —q4 —a
{=
TV ’ \%_z@f

~ e

ANALYSIS: From Equation 6.6, the average convection coefficient (W /m? ‘K) is

L ) — 3.4x°
hy, Lj; hydx Ljn (0.7 + 13.6x — 3.4x% )dx
B, - %{n.n + 6.8L7 — 1,13L%) = 0.7 + 6.8L — 1.13L°

by, = 0.7 + 6.8(3) — 1.13(9) = 10.9 W/m* K. <]

The local coefficient at x = 3 m is
hy, = 0.7 + 13.8(3) — 3.4(9) = 10.0 W/m* K.

Hence,

hy, /by, = 1.0. <]
COMMENTS: The result h_l_ /My, = 1.0 is unique tox = 3 m and is a consequence of
the existence of a maximum for h,(x). The maximum occurs at x = 2 m, where

(dh, /dx) = D and (d*h, /dx®) < 0.



PROBLEM 6.5

KNOWN: Temperature distribution in boundary layer for air flow over a flat plate.
FIND: Vanation of local convection coefficient along the plate and value of average coefficient.
SCHEMATIC:

1‘(:,ﬂ=zu+mu””“’

ANALYSIS: From Eq. 6.17,

__kaT/onl,.o _ . k(70x600x)
= {TI_T-.:' : l:Tl-T-:I

where T, = Tix,0) = 90°C. Evaluating k at the arithmetic mean of the freestream and surface
temperatures, T = (20 +90)°C/2 = 55°C = 328 K, Table A4 yields k = 0.0284 W/m-K. Hence, with T, -
T,=70°C=T0K,

_ 0.0284 W/m- K(42,000x)K/m
70K

and the convection coefficient increases linearly with x.

h

=17x(W/m*- K) <

The average coefficient overthe mange 0 S x<5mis

=

=13
e e NI =
-L_Lhd:- sLud:r.— o nr_-11_11!'.',!:“ K <



FROBLEM 6.6

KNOWN: Variation of local convection coefficient with distance x from a heated plate with o umform
lemperature T,.

FIND: (4} An expression for the average coelTicient hy; for the section of length (x: - x, ) in terms of C.
%, and Xz, and (b} An expression for E,J in terms of x; and x;, and the average coefficients b, and b,
corresponding to lengths x; and x;. respectively.

SCHEMATIC:

necVe g hyg Average
oo s T e —T,
———p ] ¥y %
—_—

L 0y xy ¥y i """"dr llﬂ
ASSUMPTIONS: (1) Laminas flow over a plate with uniform surface temperature, T,, and (2] Spatial
variation of local coefTicient is of the form h, = Ca ™", whene € is a constam
ANALYSIS: (a) The heat transfer rate per unit width from a longitudinal section. x: - x,. can be
exprévsed o

qiy = hyg{x, =%, )T, -T,) (n
where .. is the average coefiicient for the section of length (x: - x.). The heat rate can also be written
in terms of the local coefficient. Eg. (6.3), as

i = Ny B i ¥ iy :
iz = [ AT =T )= (1) @
Combining Eq. (1) and (2),
= | ek
hy=——] h,dx (3)
- (% 'l'lj'l‘"
and substituting for the form of the local coefficient, b, =Cx™"?, find that
= i 15 S b | [ _ip3
- : Cxdx = )t =201~ N <
{;:-:‘l‘: By lJ-!j |.|’2 " .H:_!.

(B The heat rate. given as Eq. (1), can also be expressed as
Qs =R (T, = TL) = Byxy(T, -T.) (51

which is the difference between the heat rate for the plate over the section (0 - x,) and over the section (1)
- %) Combimning Eqs. (1) and (5), find,

. < Aekp By e

3 !: ri ‘.
COMMENTS: (1) Note that. from Eg. 6.6.
'Elt%ﬂh_dnn-}EE’;""&=IE{”: 5l

or b, = Ih, Substituting Eq. {7) into Eq. (6), see that the result s the same as Eq. (4),



PROBLEM 6.7
KNOWN: Radial distribution of local convection coefficient for flow normal to a circular disk.
FIND: Expression for average Nusselt number.
SCHEMATIC:

Nugy=Nu, 1 salr ra}"]
N“ -ﬂﬂHRED PF

I o
v —+
—

ASSUMPTIONS: Constant properties.
ANALYSIS: From Equation 6.5, the average convection coefficient is
= ]
h=—
R

(o 1 "iHu.,[l + a(rfr, )" | 2mrdr
)

L

H-_—

(n+1'.lr,. ]
where Nu, is the Nusselt number at the stagnation point (r=0). Hence,

nl 1,

H_un %zm [{m“ {I:I+1]'(l'n) ]

Nup = Nug[1 + 2a/(n + 2)]

Nup = [1 + 2a/(n + 2)]0.814Rep 2 P73 <]

COMMENTS: The increase in h(r) with r may be explained in terms of the sharp turn which
the boundary layer flow must make around the edge of the disk. The boundary layer accelerates
and its thickness decreases as it makes the tumn, causing the local convection coefficient 1o
increase.



PROBLEM 6.8

KNOWN: Convection correlation and temperature of an impinging air jel. Dimensions and initl
temperature of a heated copper disk. Properties of the air and copper

FIND: Effect of jet velocity on temperature decay of disk following jet impingement.
SCHEMATIC:

| st
e | b e e
: Tags /’ '\ Yeom  Pr= 0684

4 SN

p = 8933 kg/m? i -
£, = 425 JkgK L=0.025m
k= 386 Wim-K f 5 |
ce=08 ol i\
ol 4 8.

A Lo T L L e e o L .
= D=005m ——‘|'
ASSUMPTIONS: (1) Validity of lumped capacitance analvsis, (2) Negligible heat transfer from sides

and bottom of disk, (3) Constamt properties.

ANALYSIS: Performing an energy halance on the disk, it follows that
E, =pVedT/d=-A (g7, - q5) Hence, with V= AL,

4T BT-T,}+h(T-T_)
di pel

where, b, = ea{T+ T T + T, ) and. from the solution to Problem 6.7,

ke ki, 2a° .
h= =iy = E('*n_*:'J"’E”“"L P

T;= 1000 K. Ty= 400K

With a = 030 und n = 2, it follows that
h=(k/D)0936Re) P "

where Rep = VINv, Using the Lumped Capacitance Mode! of THT, the following temperature histories
were delermined.

"

Temjm men |
EEEEEEE

Continged..



PROBLEM 6.8 (Cont.)

The emperature decay becomes more pronounced with increasing V, and a final temperature of 400 K is
reached at t = 2760, 1455 and 976s for V = 4, 20 and 50 m/s, respectively.

COMMENTS: The maximum Biot number, Bi = (h+ h,]L,!‘kn , is associated with V = 50 m/s

(maximum h of 169 W/m"K) and t = 0 (maximum h, of 64 W/m"K), in which case the maximum Biot
number is Bi = (233 W/m™ K)(0.025 m)/(386 W/m-K) = 0.015 < 0.1. Hence, the lumped capacitance
approximation is valid.



PROBLEM 6.9

KNOWN: Form of the velocity and temperature profiles for flow over a surface.

FIND: Expressions for the friction and convection coefficients.

SCHEMATIC:
YA
U, T Tiy)=D+Ey+Fy?-Gy?
—n
—s }':: T{ﬂ}=ﬂ

Uty)=Ay +By?-Cy*

ANALYSIS: From Section 6.2.1, the shear stress at the wall is

du
L=R 5| =H[A+2By-3Cy’)l0=Au.

d
¥ 0
Hence, the friction coefficient has the form,
Cr= s _2Ap
puz2  pul
Cr= LTF \
us

From Section 6.2.2, the convection coefficient is
o —-In:r{E'TJB!_-r},.u . -kr IE + IF:f = J-Gyl ]-_.,-:1}

B T DT
s
= DT :

<

COMMENTS: It is a simple matter 1o obtain the important surface parameters from
knowledge of the corresponding boundary layer profile. However, it is rarely a simple martter 1o

determine the form of the profile.



PROBLEM 6.10
KNOWN: Surface temperatures of a steel wall and temperature of water flowing over the wall.

FIND: (a) Convection coefficient, (b) Temperature gradient in wall and in water at wall
surface.

SCHEMATIC:

:TT =257,
B ) D
s

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer in x, (3)
Constant properties.

PROPERTIES: Table A-1, Steel Type AIS] 1010 (70°C = 343K), k, = 61.7 W/m-K: Table A-
6, Water (32.5°C = 305K), ky = 0.62 W/m'E.

ANALYSIS: (a) Applying an energy balance Eq. 1.12 to the control surface at x=0, it follows
that

q;..mnd = q:.m- =
and using the appropriate rate equations, Eqgs. 1.2 and 1.3a,

Tya~T
K, % =h(T, ;-T.).
Hence,
_k To-Toy 617 WimK 60°C _
aa = Ty1-T.  035m  15°C S Wit 5. <
(b) The gradient in the wall at the surface is 100
__Ti.l_Tl..I L 60°C . =
{-dTMl]l = '—_"'L—" = m 171.4°C/m . Tm
In the water at x=0, the definidon of h (Section 40
6.2.2) gives 25
__h
{ﬂmlhnﬂ - _'k—' ETl.. I"T-] -035
705 W/m* K —_
(AT 0 =~ G (15°C) =~17,056°C/m. <

COMMENTS: Note relative magnitudes of the gradients.



PROBLEM 6.11
KNOWN: Boundary layer temperature distribution.
FIND: Surface heat flux.

SCHEMATIC:

ﬂ.——--"""'* E!Ls -1-exp(Pr Ys)
Air, Ta=400Kk —»p
Ll.,j""u = 5000m* —
Pr=07 ==
3ﬂﬂ.-'f

¥ S -

PROPERTIES: Table A4, Air (T, = 300K): k=0.0263 W/m-K.

ANALYSIS: Applying Fourier's law at y=0), the heat flux is
" dT

Qs =-k — ‘

. y=0

- U..
Qs =~k(T.~T;) Pr i

= —k(T.-T,) [Pr %] exp [-Fr ﬂ]

Ld

y={0

q, =—0.0263 W/mK (100K) 0.7 = 5000 1/m

qy ==9205 W/m?.

COMMENTS: (1) Negative flux implies convection heat transfer 1o the surface.

(2) Note use of k at T, to evaluate g, from Fourier's law.



PROBLEM 6.12

KNOWN: Air flow over a flat plate of length L = | m under conditions for which transition from
laminar to turbulent flow occurs at x, = 0.5m based upon the critical Reynolds number, Re,, = $x 107,
Forms for the local convection coefficients in the laminar and tarbulent regions.

FIND: (a) Velocity of the air flow using thermophysical properties evatuated at 350 K, (b) An expression
for the average coefficient b, (x), as a function of distance from the leading edge, x. for the laminar
region, 0 € x £ &, (c) An expression for the average coefficient F_.{:L as a function of distance from
the leading edge, x, for the turbulent region, x. < x < L. and (d) Compute and plot the local and average
convection coefficients, h, and b, , respectively, as a function of x for 0 S x < L.

SCHEMATIC.
Pigen = Gigey ¥ 05

L=1m

I;'
ASSUMPTIONS: (1) Forms for the local coefficients in the laminar and wrbulent regions, hy, =
Count ™ a0 by = Cogpx ¥ where Ci = 8.845 Wim' K%, Cous =49.75 Wim™ K. and x has units ().

PROPERTIES: Table A4, Air(T =350 K): k=0030 WmK, v=2092 x 10* m'ls, Pr=0.700.
ANALYSIS: ia) Using mir properties evaluated at 350 K with x, = 0.5 m,

Re,. -;‘:EL=51:IH" u_=5x10' vfx, =5:Iﬂ’u!ﬂ.ﬂlxiﬂ"m‘tﬁfﬂjm-1ﬂ9mﬂ <
(b} From Eq. 6.5, the average coefTicient in the laminar region, 0 < x < x,, is
P8 =5 [ b = L [ = L0220 = 20 () m<

() The average coefficient in the turbulent region, x, €x < L. is
- 1T . [ e G
h....(:]‘:I[J: h._[x.'rd'u-_f.lh_{:r.}h]: E"'ﬂ_j-L +:“HL]

F,_,mﬁ% Xy +125C 4 (x** - x2Y) )<

(d) The local and average coefficients, Eqs. (1) and (2) are plotted below as a function of x for the range
Dex<sl.

ol ] 6
W
|




PROBLEM 6.13

KNOWN: Air speed and temperature in a wind tunnel.

FIND: (a) Minimum plate length to achieve a Reynolds number of 10%, (b) Distance from
leading edge at which transition would occur.

SCHEMATIC:

ASSUMPTIONS: (1) Isothermal conditions, T, = T...
PROPERTIES: Table A-4, Air, (25°C = 298K): v = 15.71=10"%m?/s.

ANALYSIS: (a) From Section 6.3, the Reynolds number is

U.x L1 4
Re, = P =
18 v

To achieve a Reynolds number of 1x10*, the minimum plate length is then

_ Reyv  1x10° (15.71x10%m/s)
Lmin = i 50 m/s

Lonin = 31.4 m. <
(b) From Section 6.3, the point of transition corresponds to

_ Re.ov  5x10° (15712100 m/s)
[/ 50 m/s

Xe

x. =0,157 m. <]

COMMENTS: Note that
X Reye

—— R

L Re

This expression may be used to quickly establish the location of transition from knowledge of
Rey . and Rey..




PROBLEM 6.14

KNOWN: Transition Reynolds number. Velocity and temperature of atmospheric air, water,
engine oil and mercury flow over a flat plate.

FIND: Distance from leading edge at which transition occurs for each fluid.

SCHEMATIC:

ﬁ‘urd, — >y
U.tfqis_b W—Ts.ﬁﬂﬂx

ASSUMPTIONS: Transition Reynolds number is Re, . = 5x10°,

PROPERTIES: For the fluids at T = 300K;

Fluid Table vim?/s)
Air (1 amm) A-4 15.89x107°
Water A-6 0.858<107°
Engine oil A-5 550x107°%
Mercury A-5 0.113x107°

ANALYSIS: From Section 6.3, the point of transition is
e, Yos 5x10° g
" - U 1 ws '

Substituting appropriate viscosity values, find

Fluid x.(m) <J
Air 7.95
Water 0.43
Oil 275
Mercury 0.06

COMMENTS: The distance required to achieve transition increases with increasing v, due 1o
the effect which viscous forces have on attenuating the instabilities which bring about
transition.



PROBLEM 6.15
KNOWN: Two-dimensional low conditions for which v=0and T =Tiy).

FIND: (a) Verify that u = u(y). (b) Derive the x-momentum eguation, (c) Derive the energy

equation.
SCHEMATIC:
t‘j_ "I'.'l.h&j'— f'n‘.'u} &i{tgl}dr
tr_ ¥ 7 pu f%ﬂ'l i
e A *Fiﬂd' iu{ﬂ-ulﬂ.h*
. I euferull —» 34 x[euierudi fdx
Tud P-kOTlay
Pressure & shear forces Energy fluxes

ASSUMPTIONS: (1) Stcady-sme conditions, (2) Incompressible fluid with constamt
properties, (3) Negligible body forces, (4) v =100, (5) T=Tiy) or dT/dx = (), (6) Thermal energy
generation occurs only by viscous dissipation.

ANALYSIS: (a) From the continuity equation, Section 6.4.1, it follows from the prescribed
conditions that dw/dx =0, Hence u = u(y).

(b} From Newton's second law of monon, £ F, = (Rate of increase of fluid momentum),

] 3
ip— {I‘H -g-d:] }dr-l * [—'I.’+ [t - %ﬂ)‘J
Hence, and with ©=uiauwidy), it follows that

_9p ot _ @ " dp _ Fu
- he Tl e Fil g

(c) From the conservation of energy requirement and the prescribed conditions, it follows that,
E, - Ene =0, 07

dal= {mw 2 ((pun) dx}drl ~ {pun dy 1

<]

e+ ool & w72 [yl l—-l. % it —-ﬁ:—:'lq-i dwl

7
—iﬁ# %mm-puluf‘ma%lmnﬁmjh}iﬂ *luq-;,::-' &~ [-a i—r]#

"H.m = 1--?-- E =
ar, —a;— [F'l-ll [FHH‘ +u'fl)] o [ta'j"] L

:.i.h...“ﬂ-uﬂq.gﬂ;(}_

dy dy  dx 3y
Noting that the second and third terms cancel from the momentum equation, hence

5]+ (5) :



PROBLEM 6.16

lﬂ'u'l]‘Pf"H: Qil properties, journal and bearing temperatures, and journal speed for a lightly
loaded journal bearing.

FIND: Maximum oil temperature.

SCHEMATIC:

p=10%kg/s-m
k=01

ASSUMPTIONS: (1) Steady-state conditions, (2) Incompressible fluid with constant
properies, (3) Clearance is much less than journal radius and flow is Couette.

ANALYSIS: The temperature distribution corresponds to the result obtained in the text
Example on Couette flow,

2
- Hppll_|XL

Ty)=Ty + u

(¥)=Ty 2k » [L] :

The position of maximum temperature is obtained from
EI'={L# [ Ut [i._.gl

dy 2k L L2
or, y=L/2.
The temperature is a maximum at this point since d*T/dy* < 0, Hence,
2
T =T =Ty+ L v2 [L_ L[ o , WU
- } u*—lk U [1 2 Tg + oK
107 kg/s-m(10m/s)?
Tous =40°C + =
— 8 x0.15 WmK
Tmax = 40.83°C. <

COMMENTS: Note that T, increases with increasing |t and U, decreases with increasing
k, and is independent of L.



PROBLEM 6.17

KNOWN: Diameter, clearance, rotational speed and fluid properties of a lightly loaded journal
bearing. Temperature of bearing.

FIND: (a) Temperature distribution in the fluid, (b) Rate of heat transfer from bearing and

Operaling power.
SCHEMATIC:
-er-'g L I"«l——E-:I
Tburnal
D=75mm Journal E““_
¢ T
L=025mm

uly)=UlyiL)

ASSUMPTIONS: (1) Steady-state conditions, (2) Incompressible fluid with constam
properties, (3) Couette flow.

PROPERTIES: Oil (Given): p =800 kg/m®, v = 107" m?/s, k = 0.13 Wim-K: j = pv = 8107
kgfsm,

ANALYSIS: (a) For Couette flow, the velocity dismbution is linear. u{y) = LUi{y/L), and the
energy equation and generul form of the temperature dismbution are

Gt ol gl

Considering the boundary conditions dT/dy),—. = 0 and T((}) = Ty, find C3 = Ty and C; =
WU?/L. Hence

T= T+ (UM [tyild — 172 (yiLP). <
(b) Applying Fourier’s law at y=0, the rate of heat transfer per unit length to the hearing is

: dT e o B0 kglem (14,14 miy)
q =-k{xD) E}'] = ={nD) Ei_ = ~(r x 75x10"'m) ;ﬁ:um_, ~1507 5 Wim

where the velocity iy determined as

U = (DV2)o0 = (L037S5m3600 revimin (2x mdirey WD s/min) = 14.14 m/s.
The joumal power requirement s

P = Flyuy U = Ty =D-U

P = 452 Skg/s"m (% 78107 m) 14, 14mjs = 1507 Skg-msfs’ = 15075 Wim <]
where the shear stress at y=L is

14.14 mis

. . H_ o a 1,
Tuipeds = WOWAY) o =Hir= = BXI0 kghym [ﬂ.lhlﬂ"m 4525 kg/si'm,

COMMENTS: Note thatg =P, which is consistent with the energy conservation requirement.



PROBLEM 6.18
KNOWN: Conditions associnted with the Couette flow of air or water.

FIND: (n) Force and power requirements per unit surface area, (b) Viscous dissipation, (c)
Maximum fluid tempemture,

SCHEMATIC:

L—"'""""E""""‘“ — = 2 200m/s

&——Air or watler

L=5 T
. ;’I% us0 27T

ASSUMPTIONS: (1) Fully-developed Couette flow, (2) Incompressible fluid with constant
properties.

PROPERTIES: Table A4, Air (300K): = 184.6x10- " N-s/m?, k = 26. 3107 Wim-K; Table A-6,
Water (300K): p=855x107*N-¢/m?, k =0.613 Wim-K_

ANALYSIS: (a) The force per unit area is associated with the shear stress. Hence, with the
lincar velocity profile for Couene flow t = pidwdy) = p(U/L) .

, = 7 1 mmﬁ = ¥
Air: Toir = 184.6x1077 N-¢/m X o005 ey = 0738 Nim <]
; " 3 200 m/s _ 2
Warer: Twwier = 855x107% N-¢/m? x 0008 m = 42 N’
With the required power given by P/A =1 U,
Air: (P/A) e = (0.738 N/m*) 200 m/s = 147.6 W/m? <
Water: (P/A) waser = (34.2 N/m?) 200 my's = 6840 W/m?.,
(b) The viscous dissipation is u® = p(du/dy)® = w(UAL)® . Hence,
i » 1
: - 7 Ns | 200mfs | oo
Air. (uD)y = 184.610" 7 |00 | =2% 10* Wim? <]
r Y2
) " Ns |200mfs |
Water: (MDY gier = BS5x107% o [0005m = 1.37x10* W/m’®,

(c) From the solution to Part 4 of the text Example, the location of the maximum lemperature
corresponds 10 Ymy, = L/2. Hence, Tpg = To + 1 U2/8k and

_ - 184.6<1077 N-s/m® (200 m/s)* _
Air: (T = 27°C + TS WK =30.5°C <
- = 855x107° N-g/m? (200 mys)*
Water. (Tonua Jwater = 27°C + 820613 WK 34.0°C.

COMMENTS: (1) The viscous dissipation associated with the entire fluid layer, pdxLA),
must cqual the power, P. (2) Although (U®)user ® (WD) Kume > ky. Hence,
Tonax, waier = Toman, i -



PROBLEM 6.19

KNOWN: Velocity and temperature difference of plates maintaining Couette flow,
Mean temperature of air, water or oil between the plates.

FIND: (a) PrEe product for each fluid, (b) Pr-Ec product for air with plate at soniec
velocity.

SCHEMATIC:

lo-T-257C Air, water, or engine oif, T= 300K
o
g

ASSUMPTIONS: (1) Steady-state conditions, (2) Couette flow, (3) Air is at 1 atm.
PROPERTIES: Table A-4, Air (300K, Iatm), ¢, = 1007 J/kg'K, Pr =0.707, 7= 1.4
R = 287.02 J fkg'K: Table A-6, Water (300K]): e, = 4179 J/kg'K, Pr = 5.83; Table A-5,
Engine oil (300K}, ¢, = 1808 1 /kg-K, Pr = 6400,

ANALYSIS: The product of the Prandt! and Eckert numbers is dimensionless,

17 m* fs* m® /s*
Prle =Pr [ ~ A 2
AT (JAgKIK  (kgm? /5°) /kg
Substituting numerieal values find <]

Awr Water Chl
PrEe 0.0028 D.0056 13.41
(b) For an ideal gas, the speed of sound is
e=(4RT)"

where R, the gas constant for air, is R,/# =8.315 kJ/kmol'K/(28.97 kg/kmol)
= 287.02 J /kg-K. Hence, at 300K for air,

U=r¢ =14 » 287.02 ] /kg'K « 300K)" =347.2 m/s .

For sonic veloeities, it follows that

. (347.2 m /s)?
‘bee = 0.707 = 3.38.
e 1007 J fkg'K « 25K st <

COMMENTS: From the above results it follows that viscous dissipation effects must

be considered in the high speed flow of gases and in oil flows at moderate speeds. For
PrEe to be less than 0.1 in air with AT = 25" C, U should be < 80 m/s.



PROBLEM 6.20
KNOWN: Couette flow with moving plate isothermal and stationary plate insulated.

FIND: Temperature of stationary plate and heat flux ar the moving plate.
SCHEMATIC:

[/

— U
.'I"I u(y)=Ulyl)
0
ASSUMPTIONS: (1) Stcady-siate conditions, (2) Incompressible fluid with constant
properties, (3) Couette flow.
ANALYSIS: The energy equation is given by
|

D=k {%{-] + | [%]
Integrating twice find the general form of the temperature distribution,
12

1
u dT @ |U
o k(L) F-b[E]ree

2
5 T Y +Cy+Cy.

Consider the boundary conditions to evaluate the constants,

MAylo=0 —= Cy=0 and TL)=T, — 1:,=TL+£-U1.
Hence, the temperature distribution is

2
roeree (52] - 2 |
The temperature of the lower plate (y=0) is

TM=T_ + [EII:E]

<
The heat flux to the upper plate (y=L) is
5 = H E-Llﬁ

CGHH.EHTS The heat flux at the top surface may also be obtained by integrating the viscous
dissipation over the fluid layer height. For a control volume about a unit area of the fluid layer,

|
- - 2
By = Eo ,I:n[%] dy=q (L) q @=L



PROBLEM 6.21

KNOWN. Couette flow with heat transfer. Lower (insulated) plate moves with speed U and upper plate
iy stationary with prescribed thermal conductivity and thickness. Outer surface of upper plale muntuned
4l constant tempersture, T, = 40°C

FIND: (a1 On T-y coordinates, sketch the temperature distnibution in the o1l and the stationary plate. und
(b1 An expression for the temperature at the lower surface of the oil film, T(0) = T in terms of the plate

speed LY, the stationary plate parameters (| Ty, Koy Lyl and the oil parameters (. ko, L) Determine thes
temperature for the preseribed conditions.

SCHEMATIC
Lyg =3 mm Stationary plae (sp)
¥4 J_ /F Toq=40°C

ASSUMPTIONS: (1) Steady-state conditions, 2) Fully developed Couette flow and (3) Incompressible
Aaid with constant properties

ANALYSIS: (a) The iemperature distribution is shown above with these key features linear i plate,
parabalic m oil film, discontmuiny s plate-oil interface, and zero gradient m lower plate surface

(b From Example 6.4, the general solution 1o the conservation equations for the temperature distribution
i the ol filim 15

i B(uy
Tivi==-Ay «Cy+C, where AEZ!LH[L__]
and the boundary conditions are, ){,ff;f/{{,;,
] JT %.m fLg) //
= C— == [l =
Aty = (1, insuluted boundary 3 ]...1 0, Ci=0 .L/ﬁ ,./
Ay =L beat fluxes in oil and plate are equal, gL, ) =q5(L.,) ::‘_‘::‘:’:‘?:ﬁ.
-l'.l‘l, o I.'!I AL
m'ﬁﬁ-‘-ﬁ““"
; nﬁ] L, | i%] ==24AL,
dy J . R, i 4
Re=L,/k,  Till=-ALiscC,

Contmued



PROBLEM 6.21 (Cont.)

Hence, the temperature distribution at the lower surface is
T.[ﬂ:]t-ﬁ.-u"f'c*

B o2 k, L
T0)=T_ +—1* j4+22"2 <
0= T+, [+ L‘,kw]
Substituting numenical values. find
’ 0.799N -s/m’ :[ 0145 13
T,(0)=40'C 5 —x—|=1169"C <
(0 +1:ﬂ.145\‘l’jm-ﬂ[ e b 5 15 e

COMMENTS: (1) Give a physical explanation about why the maximum temperature occurs at the
lower surface.

(2) Skeich the temperature distribution if the upper plate moved with a speed U while the lower plate is
stationary and all other conditions remain the same,



PROBLEM 6.22

KNOWN: Shaft of diameter 100 mm rotating at 2000 rpm in a journal bearng of 70 mm length
Uniform gap of | mm separates the shaft and beaning filled with lubneant. Cuter surface of beanng s
water-<cooled and mamtained at T, = 30°C.

FIND: tab Viscous dissipation in the lubricant, jdy'W/m 1, (b) Heat transfer rate from the lubricant,
assuming po heat lost through the shafi. and (¢} Temperatures of the bearing and shaft, T, and T,

SCHEMATIC:
y{mm) - Bearing
1 m ~T
":::,‘:_‘:_,_,,;;_ Lubricant
ky = 45 WimK
f=70 mm
Lubricant, i = 0.03 N's/m?
k=015 Wim-K
Ehﬂft.
~—__ Waler-cooled surface
ey T = 30°C

77

ASSUMPTIONS: (1) Steady-state condinons. (2) Fully developed Couette flow. (3) Incompressible
Muid with constant propernies. and i4) Neghgible heat lost through the shuft

ANALYSIS: fa) The viscous dissipation, pd, Eq. 6.40, for Couette flow from Example 6.4, is

;m-u{ }““'L_ — (03N -5/m ["‘”“‘“J = 5,686%10" W/m' <

where the veloony distnbution is linear and the tngential velocity of the shafi is

U = nDN = a{ 0.100 m ) = 9000 rpm = { min/60s) =47 1L mi's
Ui The heat transter rate from the lubncant volume ¥ through the besring is

q=pd ¥ =p®(aD L /) =665x10"W/m' (x0100m = 0001 mx0.070m)=1462W <
where ¢ = 70 mim is the length of the bearing normal to the page.

Continued.



PROBLEM 6.22 (Cont.)

ic) From Fourier's law, the heat rate through the bearing material of inner and outer diameters, D, and D,
and thermal conductivity k, is, from Eq. (3.27),

_ zlﬂ.[Tb _FT-GJ

= (D, /D))
1, =T, +3:/0(D./D,)
2nlk,
1462'W In( 200/100)

T, =30°C+ =§12°C <

2ex0.070mx45W/m- K

To determine the temperature of the shaft, T(0) = T,, first the temperature distribution must be found
beginning with the general solution, Example 6.4,

U 3
T(y)= _ILE[E) y: +C,y+C,

The boundary conditions are, at y = 0, the surface is adiabatic

ﬂ] ={) C,=0
dy ¥=i
unda!y:L.th::lm:muuiulmuf:huhﬂﬁn;.T.
Uy
T{Lj='ﬁ=—~%{-{:) L*+0+C, C,=T,+2—l;—U’
Hence, the temperature distribution is

2
u ¥
Tly)=T, +~EU’[I-—F]

and the temperature at the shafi, y =0, is

% 2
T,=T(0)=T, + Lyt =§13'C 4+ 203N ¢/m

1
2%k 2x015W/m-K i B =




FROBLEM 6.23

KNOWN: Couctie Mlow with heat transfer.

FIND: (1) Dimensionless form of iemperature distibution, (b) Canditions for which top plate is
adiabuatic, (c) Expression for heat transfer 1o lower plate when top plate 1s adbatic.

SCHEMATIC:
¥
L —_—

ﬁm“m““"-\;#__-r
g T Fluid o Pl i B B B, B L
T e e e S g

0 B L T S -.'i-ﬁ.“-un.a_ Tﬂ:
Stationary plate

ASSUMPTIONS: (1) Steady-state conditions. {2} incompressible fluid with constant properties. (1)
Neghgible body forces. (4) Couerte flow.

ANALYSIS: 1a) From Example 6.4, the temperature distnbution i

2 L

5. _lr Yl

T=T T -TJL \L/)| L
or, with

8=(T-T,)/T, - T., n=y/L,

Prec k. Ee= 1 /e (T -T,)

Pr Ec ; |

H=_1":¥l'*ﬂ"l+ﬂ=l1[l+EFfEA!H*TH] <
th) For there 10 be zero hear transfer at the wp plate. dTidy),. = 0. Hence,

4o\ T, -T,_ PrEc, . Pr-Ec
There s no hewt transfer ar the 1op plate if,

EcPr=2 <
(€} The heat transfer rate 1o the lower plate (per unit area) is

T =T
PR L1 R nlﬂi{
dy| L dnl

- _ Tl ""Tn PI'E-E

WENTE [ 2 “'Eﬂxh-uﬁj]

" T, =T, ( Pr-Ec

g =kt "[ ! +1]=-:|:{TL = A 2

Contmuoed .



PROBLEM 6.23 (Cont.)

(d) Using Eq. (1), the dimensionless temperature distribution is plotted as a function of dimensionless
distance, 1) = y/L.. When Pr-Ec = 0, there is no dissipation and the temperature distribution is linear, so
that heat transfer is by conduction only. As PrEc increases, viscous dissipation becomes more
important. When PrEc = 2, heat transfer to the upper plate is zero. When Pr-Ec > 2, the heat rate is out
of the oil film at both surfaces.

S

s = Ty} TOY[TL-TO)




PROBLEM 6.24

KNOWN: Sieady, incompressible, laminar flow between infinite parallel plates ar different
temperatures.

FIND: (a) Form of continuity equation, (b) Form of momentum equations and velocity profile.
Relationship of pressure gradient 1o maximum velocity, (c) Form of energy equation and
temperature distmibution, Heat flux at top surface.

SCHEMATIC:

L— —_— L

—_— d T
op F i
—
oy, - ;f,HI " i <0 I
x,u

ASSUMPTIONS: (1) Two-dimensional flow (no variations in z) between infinite, parallel
plates, (2) Negligible body forces, (3) No internal energy generation, (4) Incompressible fluid
with constant properties,

ANALYSIS: (1) For two-dimensional, steady conditions, the continuity equation is

Eﬂq.ﬁ?ﬂﬂn
dn dy '

Hence for an incompressible fluid (constant p) in parliel flow (v=0),

du

S=0 <]
The flow is fully developed in the sense that, irmespective of y. u is independent of x.

(b) With the above result and the preseribed conditions, the momentum equations of Section
6.4.] reduce to

S T4 .

0 a‘+p3;5 i < <]
Since p is independent of v, dpfix = dp/dx is independent of vy and

Fo_ B &

I-iar‘ Hd_}'r T

Since the lefi-hand side depends only on y and the right-hand side is independent of v, both
sides must equal to the same constant C. That bs,

pise,

o
Hence, the velocity distribution has the form
C
wy)= 3o 9 4 Cry 4Gy <]

Using the boundary conditions o evaluate the constants,
uil) =0 =4 Cy=0 and wili=0 — Ci=-CLA2}.
Continued .....



PROBLEM 6.24 (Cont.)

The velocity profile is u&i:%l{j"‘—l.ﬂ.

nﬂmﬁkhm:bﬂutﬂwmﬂpmmmhhmmmwhﬁwuimm
y =L1J/2. Hence

2u 4 By dx

(¢) For fully developed thermal conditions, (9T/9x) =0 and temperature depends only on y.
Hmﬁﬁv:ﬂ.huﬁxnﬂ.mmmcdhudmmpﬁmmm:mgynqmim becomes

- i
U(L/2) = Uy = = [—L—] ® U <

F |
I .
= "a?*“u:*“[ar] |
= 9 % 1dp Ly Je_de T Je 3p
e o e Ak pa D
|
Hence the energy equation becomes 0=k d1T+|.L[%:'-] : <

ay
Thhmwhmyhuh:hﬂdhuﬂyhrmmimmﬂrﬂmweqmﬁmmm
642 for incompressible fluid and the other prescribed assumptions.  With
dufdy = (C/2u) (2y-L) it follows that
ér 2
— S — (dy* = 4Ly + L%},
~ e y' =daLy+L?)

Integrating twice,

- (-2

3
Using the boundary conditions to evaluate the constants,

+Cyy+Cy

3 -1
TM=T; — Cy=T; and TL)=T, — E]-f“;l+n’[, I}.
=Ty4 | L| Ty~ S 30 _2y Ly LYy

Hence Tiy) T;-I-[L}['ﬁ Tz) |3 3 + > = |- <]
From Fourier's law,

"Ly =—t 9L LI c |4 o B

q (L) —Har FL'L{T: T1]+-E [—i-L L7 +L .

) 3

q{L}=%rr;-T.:+t;‘; . <]

COMMENTS: The third and second terms on the right-hand sides of the temperature
distribution and heat flux, respectively, represents the effects of viscous dissipation. If C is
large (due 10 large |\ of Ug,,, ), viscous dissipation is significant. If C is small, conduction effects
dominate.



PROBLEM 6.25
KNOWN: The convection conservation equations.

FIND: (a) Identify conservation equations and describe terms, (b) ldentify approximations and
special conditions used to reduce these equations to the boundary laver equations of Section 6.5,
(c) Conditions for which momentum and energy boundary layer equations have the same form
and the analogy applies.

ANALYSIS: (a) The conservation of mass requirement has the form

dipu) , dipv) _
- 3 =()
O @

The terms, as identified, have the following significance:

L. Net change of mass flow in the x-direction, <
2. Net change of mass flow in the y-direction.

The expression for conservation of momentum in the x-direction has the form

du du d oty
“[“E”E]:E‘““'““%—*"

© @ @ @0 @

The terms, as identified, have the following significance:

. Netrate in x-momentum of fluid leaving control volume in x-direction, <
. Net rate in x-momentum of fluid leaving control volume in y-direction,

. Change of normal viscous stresses in x-direction,

. Change of static pressure in x-direction,

. Change of shear stresses in x-direction,

6. Body force in the x-direction.

The expression for conservation of energy has the form
di di o dT d dT
ﬂuﬁ:+pv&y ax {k E:]+ dy [k Br]

@ ® @

- [u%+\r%]+p¢+q

©) @ 06



PROBLEM 6.25 (Cont.)

The terms, as identified, have the following significance:

1. Change of enthalpy (thermal + flow work) advected in x and y directions, <]
2. Change of conduction rate in x and y directions,

3. Work done by static pressure forces,

4. Work done by viscous dissipation,

5. Rate of energy generation.

(b) The above conservation equations reduce to the boundary layer form when these
assumptions are made

constant properties, <
incompressible fluid,

negligible body forces,

no energy generation,

and special conditions relating to flow near a surface. The latter are referred 1o as boundary
layer simplifications.
(c) Based upon the assumptions and conditions identified above in part (b), the x-momentum
and energy equations have the forms:
du o du_ 1 adp,
TR TR TR+
or ar T v [W]?
U+ V= ——— % — | =—
[ [ﬂf]
The term

12
p dx

is zero for a flat plate and the term

v [au]®

S |9
is negligible for low velocities or a fluid with small viscosity. For such conditions, the x-
momentim and energy equarions have the same form:

u%+?%=v%
ugz +v§: nug::.

These equations establish the analogy between momentum and heat transfer. <



PROBLEM 6.26
KNOWN: Pressure independence of i, k and ¢, .

FIND: Pressure dependence of v and & for an incompressible liquid and a perfect gas. Values
of v and o for air at 350K and p= 1, 10 atm.

ASSUMPTIONS: Perfect gas behavior for air.
PROPERTIES: Tahle A<, Air (350K, | atm): v=2092x10"m"/s, 0=29.9:10"%m"/s.

ANALYSIS: The kinematic viscosity and thermal diffusivity are, respectively,
v=up a=k/pc, .

Hence, v and @ are inversely proportional o p .

For an incompressible liguid, p is constant.

Hence v and tx are independent of pressure. <

For a perfect gas, p = p/RT.
Hence, p is directly proportional 1o p, in which case v and @ vary inversely with

pressure. It follows that v and @ are inversely proportional to pressure. <]

To calculate v or a for a perfect gas atp # | atm,
vip) = vl EIII]?'%

aip)= ol Hl:nﬂ"-:T

Hence, for air at 350K,
platm) vim®/s) alm?/s)

| 2092x10°%  29.9x10°°
10 2.00<107% 2.99«0°"

COMMENTS: For the incompressible liquid and the perfect gas, Pr=v/a is independent of
pressure.



PROBLEM 6.27

KNOWN: Characteristic length, surface temperature and average heat flux for an object placed
in an airstream of prescribed temperature and velocity.

FIND: Average convection coefficient if characteristic length of object is increased by a factor
of five and air velocity is decreased by a factor of five.

SCHEMATIC:
Case 1
TR 72000 G
Vy=100mfs —o Vz=20mjs
Top= 300K —b byt T 300N

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant propertics.

ANALYSIS: From Section 6.6.2, we know that, for a particular peometry,
Nuy, = fs(Rey,Pr).

The Reynolds numbers for each case are

Vili _ (100m/s)1m _ 100 m?/s

Case 1. Rep | =

Vi Vi v
2
Case2:  Repqy=—22 . QOnVsiSm _ 100 m/s
V2 V2 V2
Hence, with v; =v;, Re ; = Re ;. Since Pr; = Pry, it therefore follows that
ml..:=]"'|‘_hl*ltq1-
Hence,
hy La/ks =hy L/
- o= Ly -
ha =hy H=ﬂ2h1 .

For Case I, using the rate equation, the convection coefficient is
q:! - Ej Al {Ti_T-.h

K (q/A) i aQ _ 20,000 W/m®
[Tl_ -}t {TI-_' -}:I Em-lﬂ]}H

Hence. it follows that for Case 2

=200 W/m* K .

ha = 0.2 x 200 W/m* K = 40 W/m* K. <

COMMENTS: If Rep_; were nof equal to Rey_y, it would be necessary to know the specific
form of fs(Rey_ Pr) before hy could be determined.



PROBLEM 7.1

KNOWN: Temperature and velocity of fluids in parallel flow over a flar plate.

FIND: (a) Velocity and thermal houndary layer thicknesses at o prescribed distance from the leading
edge. and (i For each fluid plot the boundary laver thicknesses as o function of distance.

SCHEMATIC:

B

<Flud’ %J—ﬁ
Ue=1mis —_ A
Ty=300K i—-# 0.04 m

ASSUMPTIONS: (1) Transition Revnolds number is 5 = 10"

PROPERTIES: Table A4, Air (300 K. | atm): v =589 % 10" m'fs. Pr=0.707, Table A6, Water
1300 K1 v=ywp =855 x 10" No/m/997 kg/m' = 0.858 x 10* mls, Pr = S.83; Tuble A5, Engine (n
1300 Kir v=550x 10® m/s, Pr=6400: Table A5, Mercury (300 K): v=0.113x 10* m'ls, Pr =
00248

ANALYSIS: (a) I the Row s Larminar, the following expressions may be used to compute § and 8.,
respectively,

P g o B Fluid Re, Sfmm) & (mm) o
T Rabd T
Re| Pr Alr 2517 199 4 48
ot Water 466 10" 093 0.52
whore Re, = 2=  HVSIODNM) _ 0.0dm /s oil n1 o Bs 7
v v v Mercury 354 = 10 .34 LT

(b) Using ITHT with the foregoing equations, the boundary layer thicknesses are plotted as a function of
distance from the leading edge, x

e

. Fwodaswme geita
EL e, el ameni
- -

a L =) M al

COMMENTS: (1) Note that & = & for air, > & for water, 55> & for oil, and 6 < & for mercury. As
expected, the boundary layer thicknesses increase with increasing distance from the leading edge

(2) The value of & for mercury should be viewed as a rough approximation since the expression for &
was denved subject to the approximation that Pr > 0.6



PROBLEM 7.2

KNOWN: Temperature, pressure and velocity of atmospheric wir in parallel flow over a plate of
prescribed length and femperature.

FIND: (a) Boundary layer thickness, surface shear stress and heat flux at tratling edge, (b) Drag force
and total heat transfer per unit width of plate, and (¢) Plot the parameters of pan (a) as a function of
distance from the leading edge,

SCHEMATIC: "
mﬁ_(’/’é—*ﬂ:ﬁn{;
T.=259°C —————
i

P.=1atm L=1m
ASSUMPTIONS: (1) Critical Reynolds number is 5 x 10*, (2) Flow over top and bottom surface.
PROPERTIES: Table A4, Air (Ty=323 K. | atm}: p = 1.085 kg/m’, v = 18.2 % 10" m's, k = 0.028
Wim-K. Pr=0.707.
ANALYSIS: (a) Calculate the Reynolds number 1o determine nature of flow.
_E_ SmjsxIm

BT 182x 10 m/s

Hence, the flow is laminar, and at x = L, using Eqs. 7.19 and 7.20,

154

8=5LRe;"* = 5x Im/(275x 10')"" = 9 5mm

2.75%10%,

_uz 1085 .
1,1 = [pul [2)0.664Re; " = T%‘;{:wsf 0664(275x 10°)"" =0.01 72N/ m? <
Using the appropriate correlation, Eq. 7.23,

Nu, = l‘.kLL =0332Re}* Pr'*’ = 0332(275x 10°) " (0707 = 1551

hy = 1551(0.028W/m- K)/Im=434W/m*. K
Hence, the heat flux is
(L) =h (T, -T.) =434 W/m*. K(75°C - 25°C) = 217 W/m’ <

(b} The drag force per unit plate width is D = 2LT,, where the factor of two is mcluded to account for
both sides of the plate. Hence, from Eq. 7.30, with

Ty = (pul /2)1328Re;"” = (1085 kg/m’ 2)(Smys)’ 1328(2.75 % 10°) " = 0.0343N/m’
the drag is

¥ = 2(1m)0.0343N/m* = 0.0686 N/m <
For laminar flow, the average value h, over the distance 0 to L is twice the local value, h,,

by =2h, =868W/m*. K

Continued...



PFROBLEM 7.2 (Cont.)

The total heat transter rate per unit width of the plate i
g =2Lh (T, -T,) =2m)B6BW/m" K{75-25'C = 868 W/m <

16} Using IHT with the equations of part (a), the boundary layer thickness, surface shear stress and heat
flux as a function of distance form the leading edge were calculaied and are plotted below

ool

g \
1T
= 2
! 200
8 o
g iy 04 R e L}
Distarcn o inadieg wage, © i
— [l PcsnEEs A8l " H) i
—=— Ehaaf SiERAE. [Bums " VOO T
=i Hmal Fun g O

COMMENTS: (1) The velocity boundary layer s very thin at the leading edge and increases with
increasing distance. The local shear stress and heat (lux are very large near the leading edge and
decrease with increasing distance. The shapes of the two curves are similar.

(20 A copy of the THT Workspace used to generate the above plot is shown below

V' Boundery inyer thickness, defta

delta = 5 * x * Flan ~05

gaita_mm = dolta * 1000

dmita piod = dits_mm * 10 # Scaling pararnitar fof convenisncs i plofting

i Surtace shear stress. lausa
Lnlsga = (M0 * a3 £ 31 Y 0.654 * Raa-0 5
iauEn pio! = s * 10000 i1 Bealing parameler ior comeriencs m ploing

'Heat flus, g"'x

i°n & fw * (Te - Tinkj

M = (1332 * Rax™0 B * Pr 103}
Blya =M " '

# Reynolds number
Aex = wint * u f nu

i Properiies Took Air
i Alr progery humstons - From Tabie A 4
¥ Lirta: TEKH 1 mam presaue

o = v TEAir TH o Danity, kg/m™~3
M = nu_ TR TH Y Kinematie waeosity, m2ig
kow TR T # Tharmal conductivity, Wim s
Pr = Br_T"AIF.TH) i Prandn number

il Awsigned variablas

Tinl = 25 « I12 i Alrstraam temperaiure K
Ts=T5 273 I Surtace temperatura, K

el = 5 I Airstraam valoety Mg
=23 # Film temperatule, K

] i Dhsimngeg brom beading edge. m



PROBLEM 7.3

KNOWN: Temperature and velocity of engine oil. Temperature and length of flat plate.

FIND: (2) Velocity and thermal boundary layer thickness at trailing edge, (b) Heat flux and surface
shear stress at trailing edge, (c) Total drag force and heat transfer per unit plate width, and (d) Plot the
houndary layer thickness and local values of the shear stress, convection coefficient, and heat flux as a
function of x for0 S x < 1 m.

SCHEMATIC: ;
< Engine oil 5
Uge=0.1mis H:T'ﬂm
=1
s Ly L=1m

ASSUMPTIONS: (1) Critical Reynolds number is 5 x 10", (2) Flow over top and bottom surfaces.

PROPERTIES: Table A5, Engine Oil (Ty=333 K): p=864 kg/m’, v=86.1 x 10* m'/s, k = 0.140
Wim K, Pr=1081.

ANALYSIS: (a) Calculate the Reynolds number to determine nature of the flow,
u L __Olmjsx Im
v B0 = 107* mlj'll

Hence the flow is laminar at x = L, from Eqs. 7.19 and 7.24, and

Re, = = 1161

5=5LRe;"* = 5(1m)1161)™"* = 0.147m <

6, =6Pr"" =0147m(1081)""" = 0.0143m <
(b} The local convection coefficient, Eq. 7.23, and heat flux at x = L are

hy = -"En.s:-lznaf‘ Pr'” = “""“:f"“ K 033201161 (1081)"” = 1625W/m*. K

qy =h (T, -T,)=1625W/m"- K(20 - 100)'C = 1300 W/m" <
Also, the local shear stress is, from Eq. 7.20,

3
T, = "';* 0,664 Re,'"* = ““‘*’l"‘ ——= (0. mys) 0.664(1 161)"
t,, =0.0842kg/m-s* = 0.0842 m"m <

(¢) With the drag force per unit width given by D’ = 2LT,, where the factor of 2 is included 1o account
for both sides of the plate, it follows that

D' =2L{pu, /2)L328Re;"? = 2(1m)864 kg,/m’ (0.1 mys) 1328(1161)"" = 0.673N/m <
For laminar flow, the average value h, over the distance 0 to L is twice the local value, hy,

h, =2h, =325W/m*- K
The total heat transfer rate per unit width of the plate is

q'=2Lh (T, - T, )= 2(Im)32.5W/m* - K(20 - 100)"C = —5200 W/m <
Continued. ..



PROBLEM 7.3 (Cont.i

1) Using IHT with the foregoing equations. the boundary layer thickness, and local values of the
convection coelficient and heat flux were calculated and plotted as a funcuon of x.

RS S S

-0 Hir

_ =

et 10 Pat 100 s

] - . - - .
o - | o [+ ] o] 1

Dentanc s wiadsig sage, « (m)

=il lhﬂm ' q L]

COMMENTS: (1) Note that since Pr=> 1. §>> 8. That is, for the high Prandul hquids. the velocity
houndary layer will be much thicker than the thermal boundary laver,

12V A copy of the IHT Waorkspace used to generate the above plot is shown below.

Il Boundary layer thickness, delta

it = & * » * Rex A0

delta_mm = defta = 1000

deitn_plot = dalta_mm * 10 - Gealing parameter lor convensance n platting

H Convection coefficient and heat Huz, g*x
q'e=ha * (T - Tird)
Pux = 0332 * Flaa™ 5 " PP LT

P = i " %
e _plgl = 100 * ha irmptmrr-mmmmm
g plol=|-1 )" g™ i Scakng parameter for cConvaniance in plafting
It Reynaide numbar
Raw = wanl * x/ riu
if Properties Tool: Engine oll
/" Engire Ofl property funchons - From Table A 5
¥ Urite. (%)
tha=tho_T{"Engne QIr*, TN # Danasty, ng/m=3
op=<p, Ti"Engena O, TH i Spacihc neat, Jhg K
= s T*Engine O TH) ! Kinamatic viscasty m~2's
k=5 T Engina O~ TH ¥ Tharmmal conduetrety, Wim K
Pr = Pr_TI"Engine O Th i Prandtl numbar
;..t‘wm
= [Th-= Tinl) 2 N Filrm tamperaiuce, K
Tid = 100 + 272 # Freastream temparatura, K
Ts=20+ 212 I Surlace femperature, K
il =01 4 Freestioam valogity. ms

i=t i Piate langm, m



PROBLEM 7.4
KNOWN: Velocity and temperature of air in parallel flow over a flat plate.
FIND: (a) Velocity boundary layer thickness at selected stations. Distance at which
boundary layers merge for plates separated by H = 3 mm. (b) Surface shear stress and
v({0) at selected stations.

SCHEMATIC:

Ug* £5mfs
To=300K —*

¥
iﬂlﬂ

ASSUMPTIONS: (1) Steady flow, (2) Boundary layer approximations are valid, (3)
Flow is laminar.

PROPERTIES: Table A.{, Air (300 K, 1 atm): p = L161 kg/m®, v =
15.89x10~"* m® /s,

ANALYSIS: (a) For laminar flow,
SN S Iy o Bz
Rel® ~ (un/u) (25 m /s /1589510~ m? /s)' "

x{m) 0001 001 0.
§(mm) 0128 0.309 1.282

8 - 5001070 x'H,

Boundary layer merger oceurs at x = x_ when § = 1.5 mm. Hence

SBUE _ Limet st <]

1 .
i o

(b) The shear stress is

pui /1 pui /2 0.864¢1.161 kg/m’(25 m/af /2 0.192
Fue = 0884 — = - = = (N/m").
g L]
Rey (s /PP (25 m f 1589107 m* ju)' il

x{m) 0.001 001 01
nadN/m®) B07 192 o0

The velocity distribution in the boundary layer is v = (1/2) (e [x) P (gdl fdn - [). Aty =
d, n = 5.0, = 3.24, df/dn = 0.901.

ve Il:;;usmm* m? /x5 m /a) F(5.0%0.991 — 3.28) = (0.0187 /%" *}m /u.

x{m) 0.001 0.01 0.1
vim/s) 0528 ©0.107 0,053

COMMENTS: (1) v << u,, and § << x are consistent with BL approximations.
Note, v — 00 as x — 0 and approximations breakdown very close to the leading edge.
(2) Since Re, = 2.22x10°, laminar BL model is valid. (3) Above expressions are
approximations for flow between parallel plates, since du,, /dx > 0 and dp/dx <0,



PROBLEM 7.5

KNOWN: Flow conditions and local Nusselt number-Reynolds number dependenee
for a wedge.

FIND: (a) Flow conditions at x = 0 for > 0 and variation of u,, with x for §=1,
(b) Ratio of average to local convection coefficient for 5= 0.5 and 1.0, (¢) Ratio of
average convection coefficients associated with wedge flow (=05 and 1.0) to
convection coefficient associated with parallel flow for air at x = 1m.

SCHEMATIC:
lig® Vam

m =p/(2:4) %
Hﬁlx s EJ I'Fn!] R" 1
NH;_- Eﬂ‘ E':l ¥ mr Hz

ASSUMPTIONS: (1) Laminar, boundary layer flow, (2) Constant properties.
PROPERTIES: Table A-4, Air: Pr = 0.70,

ANALYSIS: (a) For >0, m>0. Hence u, =0 at x =0, and we say that a
stagnation point exisls. For =1, m =1 (a flat plate normal to the flow) and u..
tnereases linearly with x.

(b) With Nu, = C; Rel’®, it follows that

UpeX

= 1 C
h;ﬂ?L‘h.dI-—l L S

x X

& dx = ﬂ'; yif x
x ,,.m -‘:
m=1

2 ,,____
m-+1 the

}hn“‘ ﬂ": .llfhl J'.#—l-'l - 1-333 = L5

':E: p"'h-r}.ﬂ-l,.n = E =1.0.

[ YA

(e} The ratio of the average coefficients Is
f>0)-1

- Cy(5>0) 1 x
{hhﬂ?ﬂ'ﬁt,ﬂ-ﬂ] - 'E][TET m{ﬂ'}ﬂ}+l 1_”1

For Pr=0.7: C; =0.202 for # =0; C; = 0.384 for § = 0.5; C; = 0.496, 7 = 1,
0,384 1

0202 ~ 1.333

= 0.496
h - =l = ! - ¥
. #et 0/ By gt e {1] 0.849

(1"*® = 0.087

A

E:.i'-ﬂ lﬁi,.!l-l.'l -

A

COMMENTS: Flat plate :ppru:mﬁuu is reasonable, but note dependence on x.



PROBLEM 7.6
KNOWN: Liquid metal in parallel low over a flat plate.
FIND: An expression for the local Nusselt number.

SCHEMATIC:

ASSUMPTIONS: (1) Steady, incompressible flow, (2) § > §, hence uly) ~ v, (3)
Boundary layer approximations are valid, (4) Constant properties.
AMNALYSIS: The boundary layer energy equation is
u g:. -+ ¥ grr = ¥ g:'r .
Sinee u(y) = u,, it follows that v = 0 and the energy equation becomes

dx B By Oy

Boundary Conditions: T(x,0) = T,, T(x,00) = To,.
Initial Condition: T(0,y) = T...

The differential equation is analogous to that for transient one-dimensional conduction
in a plane wall, and the conditions are analogous to those of Fig. 5.17, Case (1). Hence
the solution is given by Eqs. 5.55 and 5.58. Substituting y for x, x for t, Tes for T, and
afuy, for &, the boundary layer temperature and the surface heat flux become

T(x,y) — T, ¥
e [2{& x /i)'
W k{T:_' H]
(7 axfue)?
Hence, with
hx 'i:l
e . Y
find
NN S . A O . 3T
U (roxfue) A (k/pey)! 2l k
Nu, = 0.564 (Re, Pr)'/? = 0.564 Pe!/? <]

where Pe = Re-Pr is the Peclet number.

COMMENTS: Because k is very large, axial conduction effects may not be negligible.
That is, the a & T /ox* term of the energy equation may be important.



FROBLEM 7.7

KNOWN: Form of velocity profile for flow over a flat plate.

FIND: (a) Expression for profile in terms of u,. and & (b) Expression for &x), (c)
Expression for C; ,.

SCHEMATIC: i

— ulyCrelay
Uy —p E
—

ASSUMPTIONS: (1) Steady state conditions, (2) Constant properties, (3)
Incompressible flow, (4) Boundary layer approximations are valid,

ANALYSIS: (a) From the boundary conditions
wfx,0) =0 —=C, =0 and e, =uy —Cy =u /8.

Heace, u =y (¥/). <]
(b) From the momentum integral equation for a Hat plate

% [ (e —u)udy = 7,/p

¢ P ue?
LI T

uh dd !
- 0
Separating and integrating, find
B
& e il -
c dd - ‘E' de &

(e} The shear stress at the wall is

L
= 348 x

/2

12 %
=348x Re;2, <

it

Uk

U 211 Py

5 3A4bx

= u%] = Re?!/
y=0

and the friction coefficient is

Ty 7] 2 —~1/2
-c = —_ "FI#' = [, | f
iz LA " s 348 Re, 0.578 Re, <]

COMMENTS: The loregoing results underpredict those associated with the cxact
solution (§ = 4.00x Re; '/, C; , = 0.684 Re;'"?) and the cubie profile (§ = 4.64x Re;!/?,
Cp, = 0.848 Re; /1T,



PROBLEM 7.8
KNOWN: Velocity profile for flow over a flat plate.

FIND: (a) Expression for profile in terms of u, and 4 (b) Expression for #x), (e)
Expression for C;,.

SCHEMATIC:
P g
' L_

ASSUMPTIONS: (1) Steady, incompressible, constant property flow, (2) Boundary
layer approximations are valid.

ANALYSIS: (a) The velocity profile with n = y /& is

ux,0) =0 — C; =0

da T T T
Flﬂ-ﬁqﬂ;=ﬁ “-umﬂnli'%}h““dnliqlr <]

u(x,f) =un — Cy =u,

[b) From the momentum integral equation for a flat plate .

m - — = [F ——

1 d —gin X Mw v XX
""Ht"l‘ "":”]"":"d“ 52 z JM

d w = L mﬂi E P

o= [0 § [sngn—sin 2“1‘“’ ML 2 2 du

A sl 8 % ]I_E.__l..hi.,w..[ |] .
&[T x 0, (271 I ™

d | e 1 T v & = »
Fa kd I ?I =i 3 oot

]:ﬂdﬁﬂﬂﬁf::dl F-ﬂ.ﬂ%-ﬂ.ﬂ:‘mﬁ d=480x Reg!?., <]

(e) The shear stress and friction coefficient are

I"'ﬂ H a4 2 g pu;‘ﬂ L1 . ] LHJII,“ X
COMMENTS: The foregoing results slightly underpredict those of the exact solution
(6=4.96 x Re;'?, Cr, =0.664 Re;'/*) and are slightly more accurate than those for the
cubic profile (§ = 4.84 x Re;'/?, C;, = 0.648 Re;'/?),

r.-p% Rel® = 0.654 Re]'? . <]



PROBLEM 7.9

KNOWN:  Velocity and temperature profiles and shear stress-boundary layer
thickness relation for turbulent How over a flat plate.

FIND: (a) Expressions for hydrodynamic boundary layer thickoess and average
friction coefficient, (b) Expressions for local and average Nusselt numbers,

SCHEMATIC: g %
. Y u
P - - )"
Wl 2
S ‘L

a5\
x o nﬂﬂiiﬂﬂu-{T]
ASSUMPTIONS: (1) Steady flow, (2) Constant properties, (3) Fully turbulent
boundary layer, (4) Incompressible flow, (5) Issthermal plate, (6) Negligible viscous
dissipation, (7) § = 4.
ANALYSIS: (a) The momentum integral equation Is
FHL%: 1= | L dymr,.

Substituting the expression for the wall shear stress

e Cp-f

e Uge ¢ .
[%] dy = 0.0228 sul, [_:_',,

o118 <2l et [
dx g 3 g T |
=0l
d (2, 3 s
E[?a-ialqu.uzza s ]
7 dé v I z i
— —— =0,0028 [—| &4 k. 0 48 =D e
BT uuﬂzs[u_ HJ:-." dé num[“J [ dx
T 4 b e i i &
— e Y aag | — - iy iy F - =15
f!xsﬁ" n,n..a[u_] X, § =0,378 u.,.,.] s, —=03 GRe, <]

Knowing ¢, it follows

~1/4
r, = 0.0228 pul, ‘_E:;-I [0.376 x Re /5|14

rl
P /2

Cry = =0.0436

it i
0.376 ':—‘ "—:‘.’ xx % 00602 Re7! |

Continued .....



PROBLEM 7.9 (Cont.)

The average friction coefficient is then

—_

" -1/8
- | i b -1/
Cre =< [ Cra dx — 0.0592 5 ] f: dx

Cry = — 0.0562

~1/%
1 i] x4/% i] = 0,074 Re;'/® <
x b 1

(b) The energy integral equation for turbulent flow is

d a __h .
— ;:‘ (T —T)dy = = (Ty~Te) -
Hence,

d u T—T,,, d 1 - L
be g b o T = e g £ 079 /807 &y ~

428" 7 & ] 4
U TEE TS IR | T e
ar; W’ith E = '!'I.JMI
u_%—;*ﬂfm-%ﬁﬁ'ﬂ]-}:—’ .
Hence, with £ = 1 and &/x = 0.376 Re; /",

..-”'l
7 U d (x*/%) h
3 u.(0.376) [_1.- ] ;e _ﬂp

U X

h = 0.0202 pe,u,, Re;'/* = 0,009 % f =

Re;'/%

Nu, = ."i:‘— = 00292 Re'/® Py, <]
Hence,

ik 45
= 1 _ 00292 Pr , [t i = ko [wx]" s
by xfhdt - k[P] j:x dx ""’m,”’[y] ;

— h.x
Nuy = —— = 0.037 Ref/® Pr. <

COMMENTS: (1) The foregoing results are in excellent agreement with empirical
correlations, except that use of Pr'/? instead of Pr, would be more appropriate,

(2) Note that the 1/7 profile breaks down at the surface. For example,

ﬁ{“..lr“w:' s l =i ]r_"ﬂ = 00
'91'" ,.-,n

or 7, =co. Despite this unrealistic characteristic of the profile, its use with integral
methods provides excellent results.




PROBLEM 7.10

KNOWN: Parallel flow over a flat plate and two locations representing a short span
x; to x; where (x; — x;) << L.

FIND: Three different expressions for the average heat transfer coefficient over the
short span x; to xy, hy_s.

SCHEMATIC:
whd
—— T2 " /
—l T q‘""l.- b""‘
]:'"u‘—b o 8 E s Tr: ':_.,___' 4
Lo X Xz L A R ox "

ASSUMPTIONS: (1) Parallel flow over a flat plate.

ANALYSIS: The heat rate per unit width for the span ean be written as

'I'l—:-El-l[!t =% )(Ty — Ta) (1)
where b,_, is the average heat transfer coefficient over the span and can be evaluated in
terms of the following three parameters:

(a) Local coefficient at T = [z, + r3)/2: il the span is very short, it may be reasonable
to assume that

hy_y =hg (2)
where bz is the local value at the mid-point of the span, ¥ = (x;, + xg)/2.

(b) Local coefficients at =, and z4: if the span is very short it may be reasonable to
assume hy_y is the average of the local values at the ends of the span, that is,

By g = [hy + heo | /2. (3)
(e) Average coefficients for z, and £3: the heat rate for the span can also be written as
Tr-2 = o3 — g0 (4)

where the rate qp., denotes the heat rate for the plate over the distance 0 to x. In
terms of heat transfer coefficients, find
by-a(xy — %) = Byxg — by,
x L
] = X
Xy — X X3 — X

where h; and E, are the average coeflicients for x; and x;, respectively.

byy =hy

(5)

COMMENTS: The expressions, Eqa. (2) and (3), are approximate and work well
when the span is small and flow Is turbulent rather than laminar (hy =x"92 vy
hy =x7%%), Of course, we require that X € Xy, Xg OF X, > X3, Xa; that is, the
approximations are inappropriate around the transition region. Eq. (5) is the exaet
relationship.



PROBLEM 7.11
KNOWDN: Flat plate comprised of rectangular modules maintained at surface
temperature T, of thickness a and length b cooled by air at 25 ° C with velocity 30 m/s.
Prescribed thermophysical properties of the module material.

FIND: (a) Required power generation for the module positioned 700 mm from the
leading edge of the plate and (b) Maximum temperature in this module.

SCHEMATIC:

ASSUMPTIONS: (1) Laminar flow at leading edge of plate, (2) Transition Reynolds
number of 5x10°, (3) Heat transfer is one-dimensional in y-direction within each
module, (4) q is uniform within module and (5) Negligible radiation heat transfer.

PROPERTIES: Module material (given): k = 52 W/m'K, ¢, = 320 J/kg'K, p =
2300 kg/m®; Table A:ii. Air (Ty = (T, +Tx)/2 = 360 K, 1 atm): k = 0.0308
W/m'K, v = 22.02%10™* m* /s, Pr = 0.608.

ANALYSIS: (a) The module power generation follows from an energy balance on the
module surface,

qﬂmr o 'q-.lu.

BAT, —Tw) =dlAya) or =

To select a conveetion correlation for estimating b, find frst the Reynolds numbers at x
= L as
e g L _ 30 m/sx0.70 m
v 22.02x10°% m?/s
Since the flow is turbulent over the module, the approximation that b = h, (L + b/2)
is appropriate with
= 30 m/sx(0.700 + 0.050,2)m
oo 22.02x10~° m* /s
Using the turbulent flow correlation, find withx = L + b/2 = 0.725 m

h(T, = T.)
a

- 0.537x10%,

= 0.877x10°.

Nu, = h;I = D.0208ReYPrl A

Nu, = 0.0206(9.877x10°)*/*(0.608)'? = 1840

E _ Nusk  1640x0.0308 W/m'K

= it 2.
h = h, - o 69.7 W/m*-K.




PROBLEM 7.11 (Cont.)

Hence,

o= 0T W /m?*-K(150 — 25)K

-, 1 1.
= 713x10° W /m <]

(b) The maximum temperature within the module oecurs at the surface next to the

insulation (y = 0). For one-dimensional conduction with thermal energy generation,
use Eq. 3.42, to obtain

8.713x10° W /m®x(0.010 m)?

T(0) = 3
[ }'E_"+Tl _— EH-E'-.E WIIH'K

= +150°C = 158.4 °C. <]

COMMENTS: An alternative approach for estimating the average heat transfer
coefficient for the module follows from the relation

Gmodule = Qo—L+b — Q0—L

h'b = h-L+b'{L +b) = EL‘L or E = EL+I:| %l ]

b b’
Recognizing that mixed flow conditions exist, the appropriate correlation is
Nu, = (0.037ReY/S — 871)Pr!/3
and with x; = L + b and xs = L, find
By = 54.81 W/m*K and by, = 53.73 W/m* K.

Hence,

~ by,

0750 __, ., 0700

0.050 0.05

which is in good agreement (109%) with the simpler, but more approximate method
employed in part (a).

h= [54.31 ]W{mLH = 60.9 W/m* K.



PROBLEM 7.12

KNOWN: Dimensions and surface temperature of electrically heated strips. Temperature and velocity
of air in parallel flow,

FIND: {a) Rate of convection heat transfer from first, fifth and tenth strips as well as from all the strips,
() For air velocities of 2, 5 and 10 m/s, determine the convection heat rates for all the locations of part
(u), and (c) Repeat the calculations of pant (b), but under conditions for which the flow s fully turbulent
over the entire array of strips.

SCHEMATIC:
w=02m

L=25AL=025m
L [, [

lh::!m — T.'HHT

sEe

p=1atm =001 m
ASSUMPTIONS: (1) Top surface is smooth, (2) Bottem surface is adiabatic, (3) Critical Reynolds

number is § x 107, (4) Negligible radiation.

PROPERTIES: Tuble A4, Air (Ty= 535 K. | mm): v =43.54 » 10® m¥s, k = 0.0429 Wim-K. Pr =
00.683

ANALYSIS: (a) The location of transition is determined from
X =5H|D‘-—L=5! 10* e I['.l"mz,fs
; u, 2mjs

Since x, >> L = 0.25 m, the air flow is laminar over the entire heater. For the first strip, q; -E.ML!
w(T, - T_) where h, is obtained from

.
h, =Ium Re.* pr'"

= |09 m

K 4 0.0429W/m- K <0 2m/sx 0.01m
' 0.01m 4354 %10 m*/s

L]
] (0.683)" = 538W/m’ - K
4y =S538W/m*. K(0.01m x 02m)(500- 25)°C = S1IW <
For the fifth strip. 9, = Qq_g ~ Q.
4y =hyy(SAL x w)(T, - T_)-h,_,(4AL x wiT,-T.)
qs “{ﬁﬂ—i *4EB—4H*-"L“"IT| -T.)

Hence, with x; = SAL = 0.05 m and x, = 4AL = 0.04 m, it follows that B, , = 24.1 W/im*K and b, , =
26.9 Wim" K and

Gy = (5% 241 -4 2 269)W/m" - K{0.01 x 0.2)m* (500 - 25)K = 122 W, <
Similarly, where h,_, = 17.00 Wim* K and §,_, = 17.92 Wim K.
q.“ = [Iﬂﬁ_m -t QF‘_.HM- x WHT‘ — T,._ }

Gy = (10 % 17,00~ 93 1792) W/m* - K{0.01 % 0.2)m* (SO0 - 25)K = 83 W <
Contimoed. .



PROBLEM 7.12 (Cont.)

For the entire heater,

i k el 00429 2028 Y - ;
y = — R ] T 3 =|D75w mrH
oias = O46ARe, " Pr 035 U amangor) 10689 /
and the heat rate over all 25 strips 18
Aoz =By gflx wiT, =T, )= 1075W/m’ - K{0.25% 0.2)m (500~ 25)'C = 2553 W <

th.c) Using the IHT Correlations Tool, External Flow, for Laminar or Mixed Flow Canditions, and
fotlowing the same method of solution as above, the heat rates for the first, fifth, tenth and all the strips
were calculated for air velocities of 2, % and 10 mfs. To evaluate the heat rates for fully merbulent
conditions, the analysis was performed setting Re,, = 1 ® 10®. The results are tabulated below

Flow conditions u, Lmfs) i (Wi i (W) Qi (W) Qo (W
Lamnar 2 5L 121 B.3 156
§ L] 19.1 13.1 4
10 114 7.0 186 5§72
Fully turbulem 2 7.9 1. 2.1 235
3 33 2.1 19.0 490
10 640 RS EEN | 853

COMMENTS: (1) An alternative approach 1o evaluating the heat loss from a single sinp, for example,
strip 3, would take the form g, = hy(AL « w)(T, =T, ), where h, = h,_, ., or b, w N S h )2

12} From the wibulated results, note that for both flow conditions, the heat rage for cach strip and the
entire heater, increases with increasing air velocity. For both flow conditions and for any specified
velocity, the stnp heat rates decrease with increasing distance from the leading edge.

1 3) The effect of Now canditions. laminar vs. fully mrbulent Mow. on strip heat rates shows some
unexpected behavior. For the u, = 5 mf condition, the effect of rurbulent Now is to increase the heat
Fates for the entire heater and the tenth snd fifth sirips. For the i, = 10 mis, the effect of rrbulent Now
Bt increase the heat rates at all locations, This behavior is a consequence of low Reynolds number (Re,
=23 % 10) at x = 0.25 m with u, = 10 mis

(4) To more fully apprecinte the effects due 1o laminar vs_ turbtlent flow conditions and air velociy, it ts
useful ro examine the Jocal coefficient as a function of distance from the leading edge. How would you
use: the rexulis plotied below 10 explain heat rate behavior evident in the summary table above?

Lot s sniue T WO




PROBLEM 7.13

KNOWN: Speed and temperature of atmospheric air flowing over a fat plate of
prescribed length and temperature.

FIND: Rate of heat transfer corresponding to Re, . = 10°, 5x10° and 10°,

u.tEE——b rg Ts=125°C
Cast = 77—
p=latm _"I_)

I
X L=lm

SCHEMATIC:

ASSUMPTIONS: (1) Flow over top and bottom surfaces.

PROPERTIES: Table A-{, Air (Ty=348K, 1 atm): p=1.00 kg/m’, v =20.72x107°
m? /s, k =0,02909 W /m-K, Pr=0.700.
ANALYSIS: With
Ul 25 m/s x Im
v 20.72x107° m? /s
the flow becomes turbulent for each of the three values of Re, .. Hence,
Nup, = (0.037 Ref/> — A) Pr!/3
A = 0.037 Re/? — 0.664 Rel/?

= 1.21%10°

Rey, =

Re, . 10°  5x10°  10° <]
A 160 871 1671
Nug, 2272 1641 931
by, (W/m? 67.9  49.1 27.8

¢ (W/m) 13580 9820 5560
where q' =2 ELL{T. —T.) is the total heat loss per unit width of plate.

COMMENTS: Note that EL decreases with increasing Rey ., a3 more of the surface
becomes covered with a laminar boundary layer.



PROBLEM 7.14

RNOWN: Velocity and temperature of air in parallel flow over o flw plate of 1-m length,

FIND: {a) Calculate and plot the variation of the local convection coefficient, hyix), with distance for
flow conditions corresponding to transition Reynolds numbers of § » 10°, 2.5 % 10" and 0 (fully
tirbulent), (b) Plot the vanation of the average convection coefficient, b_(x), for the three flow
conditions of part (a), and (c) Determine the averuge convection coefficients for the entire plate. T, . for
the three Now conditions of part (a),

SCHEMATIC:

Tflmﬂ

- L=tm
n
ASSUMPTIONS: (1) Steady-state conditions, (2} Constant surface temperature, and i 3) Critical
Reynolds depends upon prescribed flow conditions.

PROPERTIES: Table Ad. Air (T)=300K. | atmy v = 1589 x 10* m'fs, k= 00263 Wi K. Pr=
0.707

ANALYSIS: (a) The Reynolds number for the plate (L = 1 m) is

w, L 0mjs= Im 5
T — = > Im 10
v I589x107mys o

Hence. the boundary layer conditions are mixed with Re, . = 5  10°,

5x 10"
= Re, |= = [1.795
Y= liRey fRey )= m gy =095,

hf_

Using the IHT Correlation Tool. External Flow, Local coefficients for Laminar or Turbudent Flow. hyix)
wis evaluated and plotted with eritical Reynolds numbers of § = 10°, 2.5 10" and 0 (Tully turbulent),
Note the location of the laminar-turbulent transition for the first two fow conditions,

Lo comfcwer W Slmed i

} ) l
& oy i L1 an i
Dimmanis b va wadng wigs s (=

Contnued



PROBLEM 7.14 (Cont.)

ib) Using the IMT Correlation Tool, External Flow, Average coefficient for Laminar or Mized Flow,
E,![n:l was evaluated and plotted for the three flow conditions. Note that the change in h, (x) at the
critical length, x., is rather gradual, compared 1o the abrupt change for the local coefficient, h,(x).

E

a4 oE -1 ] 1

(€) The average convection coefficients for the plate can be determined from the above plot since
hy =h,(L). The values for the three flow conditions are, respectively,

hy =17.4,275and 378W/m*- K

COMMENTS: A copy of the IHT Workspace used 1o generate the above plots is shown below,

i Mesthod of Solution: Lise e Correlation Tools, Extemnal Fiow, Fiat Plate, for (i) Locsl, lsminar or furbulant
Now and (i} Average, laminar or mized fow, 10 svaluale the locs and Bverage comvection coalicients as o
function of position on the plata. 0 each of thesa ooly, the value of e critical Reynolds number, Aaac, can
e nai comasponding o the special fow condfions.

#f Correlation Too!: External Flow, Plate Plate, Local, laminar or turbulent Now.
Muix = Nux EF_FP_LT{Pes Raxe Prj  § Eg 72337

Bassi "1k

Aax = winl * =/ nu

i Eaia'p Wisin

] propartas af the Nm TL

AT = [Tind & Taj 1 2

I~ Carrélabon guscrpton: Parbel sxtarnal fiow [EF] over & Nat pisle (FP), iocal coaMoent. iaemsnar Now (L1 for
Hllﬂlt.ﬁﬂ?iNMhirﬂhﬂfﬂhhnﬂmh?ﬂ;WhTﬁ?.l b 2

if Corretation Tool: External Fiow, Piate Pinte, Average, laminar or mixed fiow.
NuLbar = Nul_bar_EF_FP_LM{Rex Resc Pri 4 Eq 7.31, 7.39, T 40

Nulbine = bLbar * i/ k ! Changed variabie from L o
el = uint * x i nu ’

iHaxt = § OES

 Comrstason descrpticn. Parilel extamal fow (EF) over a flat plate (FP), average cosflicient; iaminar (L) if
Ral<Roxc, Eq 7.31; mixed (M) ¥ RelsFRexs, Eq 739 and 7.40; 0.6<=Pre=80 Ses Tabls 7.9. Y/ ¥

N Praparties Tool - Alr
A Alr propary hanctions © From Tabis A4
" Unitic T{C), 1 adm prossune

= mu T8 TH ! Kinermalc viscoaity, mdls

how b T TT) # Thearmisl conductwy, Wim K

Pr=Pr_ T TT) 7 Prandil niurritear

i Asabgned Varisbles:

(TRl N B

s N Hﬁmmmmlm 0enxocsim

Tl = 3040 N Filmn ymiperatum, K



PROBLEM 7.15

KNOWN: Velocity and temperature of water in paralle) flow over a Mat plaie of I-m length

FIND: (a) Caleulate and plot the variation of the local convection coefficient, b, (x), with distance for
flow conditions corresponding 1o transition Reynolds numbers of S % 10°, 3 % 10" and 0 (Fully rurbulent),
(b} Plot the vanation of the average convection coefficient, fi, (x). for the three flow conditinns of pan
bk and ¢} Determine the average convection coefficients for the entire plate, b, , for the three flow
condibions of part (a),

SCHEMATIC

T;'m“

|

I
"

x
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant surface temperature, and (31 Critical
Revnolds depends upon prescribed flow conditions.

PROPERTIES: Table A.6. Water (300 K p =997 kgim', i = 855 » 10" Nowim”, v = Wip = () 85Y =
10" s, k = 0,613 Wim K. Pr = 583,
ANALYSIS: (a) The Reynolds number for the plate (L= | mi is
u L s 2mis Im
w D858= 10" m" /s
and the boundary laver is mixed with Re, = § x 0.
5x |0
e — 5
TP 2em

Using the IHT Correfation Tool, Extersial Flaow, Loval coefficients for Laminar of Turbwelent Flow, hyix)
wiks evaluated and ploited with critical Reynolds numbers of § x 10°, 3.0 % 10" and 0 (lully turbulent)
Note the location of the laminar-turbulent iransition for the first two flow conditions.

Re, = =233 10",

A =LIRI:‘_J|’R§L!=-|“I

Lol 5 | W B

Continued



PROBLEM 7.15 (Cont.)

(b) Using the IHT Correlation Tool, External Fiow, Average coefficient for Laminar or Mixed Flow
h, (x) was evaluated and plotted for the three flow

conditions. Note that the change in b, (x) at the

critical length, x., is rather gradual. compared to the abrupt change for the local coefficient, hyix).

bal e L

' 0§ 4 e s 1

= g = Bl i e
— v

E:lﬁf-vmptmmmmfﬁnimufuﬂwplu mhdummmﬁmmﬁqulm:inn:
by =h,(L). The values for the three flow conditions are

by = 4110, 4490 and 5072W/m* . K

COMMENTS: A copy Hmcffﬁl#nrk:musudmmﬂum?lnlhm-nhlnw.

™ Mathod of Solution mnnmmrmmm.mhhmm.mum
Hﬂﬂjwmﬂmﬂ-.iﬂ“hhdﬂmmm-l
funclion of possion on the plake. mwdmmnmuhmww.hm
h:ﬂmuhmﬂﬂm *

;mmmm,hmuu—mrmm
Nux = Nux_EF_FP_LT{Rax, Raxz, Pr) KEqT.2237

Mux = hig * i J g

AaE = uind * x / ri

Amig = 18=10

/f Evaluste properties at the tim wemperature. T1

HT0= (Tinl « Tu) /2

™ Comrslation description: mmmmm-mhm,wm Inemvinaar fhow (L) for
mar&mmmhmm?nmmrﬁu T

#mmmm.hmwm-u milned fow,
NuLbar = Nul_bar_EF_FP_LM{Rax.Aesc,Pr| # Eq 731, 7.38, 7.40
Mulbar = hibar *x / & # Changed variabie from L 1o x

" Comelation descripion: Paralel exiemal fow over o Aal plats irvirmge coatfickant: lmminar (L) if
H-Ldln:.Eq?.h:mmlmmﬁw;unﬁml-Tuu. . |

i Properties Tool - Water:

o Water m:TMHMTﬂ-hI

N Units: T{K}, pibars):

d= 0 ﬂﬁ.ﬂyﬁ-nﬂidnr'l-lﬂﬂpnrt. "n" i used as spatial coordinamy

P = peal_T{"Wailar, T1) N Saturstion prassure, bar
= mu_Tx"Waiar, Ti x) A Kingmatic viscosity, me2e
ko= k_Tu{"Wabor®, T1.x) fi Thermal conductivity, Wim.K

/! Assigned Variables:
Ex i Distance from leading e0ge: 0 <=k <= | m
uind = 2 i Fresstroam valocity, mis



PROBLEM 7.16

KENOWN: Temperature and velocity of stmosphenc air in parallel flow aver a plate of prescribed length
and temperature.

FINIY: ) Average heat transfer coelficient, (b} Local coefficient at the midpmnt, (<) Plot the vamation
of the heat flux with distance.

SCHEMATIC:
@ — s Ty =1a%C
U= 2 mis — 4
T.=16°C /
p1aim L — e —
L=3m

x
ASSUMPTIONS: (1) Uniform surface temperature, (2) Re,, = 5= 107

PROPERTIES: Tubie A4, Air (T, = 3505 K = 350 K. l atm) v = 2092 % 10" m'/s, k = 0.03 Wim K.
Pr=0.700.

ANALYSIS: (a) With
Re u .  0mis= Im
Vv 2092x 10 mijs
maxed boundary layer conditions exist. Hence, using Egq, 741,

= 1434« 10",

h = %[n.nﬂm:”'- B71) P

£ _ 0.03Wim K

By L= oos(iasex ot} ~s71f00)" = waw/m® K <

(b} With the transition length as
l', = Llaﬂulﬂlhl l' ]m{-ﬁ'l 1D‘ILmF Iu'}': lm&ml

the midpaint (x = | 5 m) is in turbulent flow. Hence, using Eg. 7.37.
h, = f{nﬂznﬁh:” Pr)= EE‘.;M[n.nmn 117107 (0.)" ']: WAW/m* K <
m

ich Since q§ = h, [T, =T, ). it follows that the local heat Mux will vary with x us the local convection

coefficient. From the foregoing results, b, varies as x " and ' in laminar 4nd wrbulent fow.
respectively. Lising the IHT Correlation Tool, External Flow, Flar Plate. Loval coefficiem for Laminar
or Turbulent flow. h, (x) was evaluated and g% calculated as a function of distance

Samai B 36 AR




PROBLEM 7.17

KNOWN: Two plates of length L and 2L experience parallel flow with a eritical
Reynolds number of 5x10°.

FIND: Reynolds numbers for which the total heat transfer rate is independent of
orientation.

SCHEMATIC: fL — H‘x,ﬁ 52107
v f—2L ——ay
gy ———is 2L [k

ASSUMPTIONS: (1) Plate temperatures and Bow eonditions are equivalent.

ANALYSIS: The total heat transfer rate would be the same (g = qg ), if the
convection coefficients were equal, by, = hy. Conditions for which such an equality is
possible may be inferred from a sketch of hy versus Rey,.

r_:l"l

=

For laminar flow, it follows that h
laminar and turbulent flow

hy = C; L% — g, L for Rey, > Re, ,
and by, will vary with Rey, as shown. Henee two possibilities are suggested:

Case (a): Laminar flow exists on the shorter plate, while mixed flow conditions exist on
the longer plate.

L aLl™Y? for Rey < Rey .. Similarly, for mixed

Case (b): Mixed boundary layer conditions exist on both plates.

In both cases, it is required that
El. = h-u, and Rey, = 2Rey .

Continued .....



PROBLEM 7.17 (Cont.)

Case (a): From expressions for by, in laminar and mixed flow

804 %Rnf.” Pr'/f* = Ei{u.uzw Reif® — 871)Pr'

0.664 Re]? = 0.032Re}/S — 435 .

Since Rep < 5x10° and Heg, = 2Rey, > 5x10%, the required value of Rey may be
narrowed to the range

2.5x10° < Rep < 5x10%.

From a trial-and-error solution, it follows that

Re, =3.2x10° <
Case (b): For mixed flow on both plates

{-{u*nzw Re{/®* —87T1)Pr'/? = 2—1-{9.&31 Red{*—871) Pr'/?
or

0.037 Ref/*—871 = 0.032 Re{/®* —435
0.005 Ref/® = 436

Rey, = 1.50x10° . <]

COMMENTS: (1) Note that it is impossible to satisfy the requirement that hy = ha
if Rey, < 0.25x10" (laminar flow for both plates).

(2) The results are independent of the nature of the fluid.



PROBLEM 7.18
KNOWN: Water flowing over a flat plate under specified conditions.
FIND: (a) Heat transfer rate per unit width, q(W/m), evaluating properties at

Ty = (T, + Ta)/2, (b) Error in q' resulting from evaluating properties at T.., (e) Heat
transfer rate, ¢, if flow is assumed turbulent at leading edge, x = 0.

SCHEMATIC:
[ Water) —o
?:Il "l-'C — ; ?; = 40°C
Ug=0.6mfs
x L=l 5m

ASSUMPTIONS: (1) Steady-state eonditions.

PROPERTIES: Table A-6, Water (T, =4"C=217K): pr=1000kg/m?, u; =1560x10""
Na/m?, yr=py/pp= 1.560x10"* m®fs, ky=057TTW/m'K, Pr=11.44; Water [Ty =295K):
p=0.961x10"" m?/s, k=0.606W/m'K, Pr=6.62 Water (T, =40°"C=313K): u=857x10""
N-s/m?,

ANALYSIS: (a) The beat rate is given as ¢'=hL{T,—T.,), and b must be estimated
by the proper correlation. Caleulate first the Reynolds number using properties
evaluated at Ty:

Rey = Uk _ _06mfsx15m
v 0.961x10°m? /5
Hence flow is mixed and the appropriate correlation and eonvection coefficient are

Nuy, = [0.037 Re}/*—871| Pr'/® = [0.037(9.365x10°)*/* —871] 6.62'/* = 2522

= 0.365x10"° .

Pom Nupk  25220.606 W/mK
L f =
L 1.5m

Hence heat rate is

= 1010 W/m* K .

q' = 1019 W /m* K x 1.5m(40—4) * C = 55.0kW /m . <
(b) Evaluating properties at the free stream temperature, T, find
0.6m /s x 1.5m
1.580x10™%m? /i
and flow is still mixed giving
Nuy, = [0.037(5.769x10°)*/5—871] 11.44' = 1424

by = 14240577 W /m'K/1.5m = 576 W /m-K

= 5.789x10°

¢ =575 W /m'Kx 1.5m(40—)* C = 31.1kW/m . <]

Continued .....



PROBLEM 7.18 (Cont.)

(e) If low were tripped at the leading edge, the flow would be turbulent over the full
length of the plate, in which case,

Nuj, = 0.037 Re*/* Pr'/* = 0.037(9.365x10°)"/® 6.62'® = 4157
hy = Nugk/L = 4157 % 0.606 W /m'K/1.5m = 1679 W /m®-K

q' =hy L(T,—T) = 1679 W/m® x 1.5m (40—4)" C = 90.7kW /m . <]

COMMENTS: (1) It is instructive to compare the correlation of Part (a) with the
Zhukauskas correlation (9], where all properties are evaluated at T.. except for 4y
which is evaluated at T,.

14
Nuy, = 0.036|Re{/® —0200| P2 f]
1560x107° N's/in® e
Nuy, = 0.036/(5.76910° /5 —9200] 11.44° 3 : = 4006
e s | 657x10"® N's/m*
hy, = Nug, k/L = 4006 x 0.577 W /m"K /1.5m = 1541 W /m*K
q' = by, L(T,—T.) = 1541 W/m*K x 1.5m (40—4) ' C = 83.2kW /m .
If the flow is entirely turbulent, the "0200" term for the Nuy, disappears and
Nuy, = 5178 hy = 1902W /m*K q =108 kW /m .
(2) Comparing results:

Flow Part Property Evaluation Eqn. q'(kW/m) Difference (%)
mixed (a) Ty Text 55.0 -
mixed - Toaila Zhukauskas B3.2 +51
mixed (b) Tes Text 31.1 —43
turbulent  (e) Ty Text 00.7 -

turbulent - 0 Zhukauskas 108 +25



PROBLEM 7.19

KNOWN: Temperature, pressure and Reynolds number for air flow over a flat plate
of uniform surface temperature.

FIND: (a) Rate of heat transfer from the plate, (b) Rate of heat transfer if air velocity
is doubled and pressure is increased to 10 atm.

SCHEMATIC:
-

Uy, Re,x4xl0? — Je T,=100°C
o # W 0lm
p=latm x L=02m

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform surface temperature, (3)
Negligible radiation, (4) Re, = 5x10°.

PROPERTIES: Table A-§, Air (T; = 348K, 1 atm): k=0.0200W/m'K, Pr=0.70.

ANALYSIS: (a) The heat rate is
q - FL{H' b L} fT|—T“] .
Since the flow is laminar over the entire plate for Rey, = 410, it follows that

o L
Nuy, = #l’]‘l— = 0.664 Re}/* Pr'/* = 0.664 (40,000)*” (0.70)' = 117.9 .
k 0.0200 W /m'K

hy = 117.0—= = 117. = 17. 1.
Hence by =11 'L 117.9 02 17.8W /m*-K
and q= 17.5% (0.1mx 0.2m) (100—50)"C = 17.6 W . <]
- 2

(b) With p; = 10p,, it follows that Pz = 10p; and vy = 14 /10, Hence
L L
Rey, g = [i“:_) -zgm[%—] = 20Re; ; = 8x10°
2 1

and mixed boundary layer eonditions exist on the plate. Hence

e
Nuy = LT = (0.037 Re{/*—871) Pr'/* = [0.037 x (8x10°)*/5 —s71) (0.70)'

-N_l.ll__ = {81 .

0.0290'W fm-I{
0.2m

Hence, hy =961 = 143.6 W/m*K

q = 143.6

= (0.1m x 0.2m) (100—50)"C = 143.6 W . <]
COMMENTS: Note that, in caleulating Rey, 5, ideal gas behavior has been assumed.

It has also been assumed that k, 4 and Pr are independent of pressure over the range
considered.



PROBLEM 7.20
KNOWN: Air flow conditions on opposite sides of a flat plate.

FIND: Heat flux beiween the two streams at midpaint.

SCHEMATIC:
50—
Rt (T
L =1 m I'.t-.;-zlﬂ'mﬁl

Tw2=25°C

ASSUMPTIONS: (1) Airstreams are at atmospherie pressure, (2) Transition
Reynolds number is 5x10°, (3) Negligible plate eonduction resistanee,

PROPERTIES: Table A-§, Air (1 atm): Stream 1| —(T;=350K): ¢=20902x10""
m® /s, k=0.030W/m'K, Pr=0.700; Stream 2—(T;=300K): v=1580x10"" m®/s,
k = 0.0263 W /m‘K, Pr=0.707.

ANALYSIS: Caleulate Re, at x =L /2
(80m,/s) 0.5m
20.92x10" % m* fa
(10m/s) 0.5m
15.8010" m* /s

Henee, at x = L;'E. stream 1 is turbulent and stream 2 §s laminar. Henee,
A, 0.030 W /m-K
0.5m

Stream |: Re, = = 1.434x10°

= 3.14Tx10% .

Stream 2: Re, =

hyje = (0.0208 Reflh Pr!/?) 'l_lf?i' = 0.0296 (1.434x10%)*/5 (0.7)'

brmy = 133W/mK.

Also,
brsss = (0.332Rel} Pr'/7) i 0,332 (3.147:10°)/2 (0.707) 3 . 20283 W/m K
L/2 0.5m
hpjpe = B.73W/m K .
From the thermal circuit,
‘[I' e T'ﬂ.l _Tﬂhl Llj _'f; -r“j
VO s by W, T
i = 200*C — 25°C
(133 me"ﬁ]_' & Eﬂ-?ﬂwfmz’ﬂ}“l
q" = MW /m® . 4

COMMENTS: (1) Neglecting the efects of axial conduction along the plate, its
temperature  is  obtained from (T, —-T,)AT,~Txa2)=hi'/hs' =00856 or
Ty =180"C. (2) Result for midpoint is independent of airstream directions. Not so for
any other point.



PROBLEM 8.1

KNOWN: Flowrate and temperature of water in fully developed flow through a tube
of preseribed diameter.

FIND: Maximum velocity and pressure gradient.
SCHEMATIC:

ﬁ-amg,a S——
Tux27 -@D 25w
___.-'tf =

ASSUMPTIONS: (1) Steady-state conditions, (2) Isothermal flow.
PROPERTIES: Table A-6, Water (300K): p=098kg/m®, 11 =855x10"% N-s/m?.
ANALYSIS: From Eq. 8.8,

4rm 4 % 0.01kg/s
Rln = - = Eﬂﬂ- .
mDp #(0.025m)855x10® kg'm /s
Hence the flow is laminar and the velocity profile is given by Eq. 5.15,

llLrJ]'-- —({r/fr.)?
a2 = (/)]

The maximum velocity is therefore at r = 0, the centerline, where

u(0) = 2u,, .
From Eq. 8.5
_ W@ 4 % 0.01kg/s E
e prD? /4 098kg/m® x x(0.025m) ——
hence
u(0) = 0.041m/s . <

Combining Eqs. 8.16 and 8.19, the pressure gradient is
dp __ 64 g

dx Rep 2D
dp _ _ 64  998kg/m’(0.020m/fs)® _ 1.2
dx 508 2 % 0.025m S

:I_P = — 0.86N/m®'m = — 0.86x10~* bar /m . <



PROBLEM 8.2

KNOWN: Temperature and mean velocity of water flow through a cast iron pipe of
preseribed length and diameter.

FIND: Pressure drop.

SCHEMATIC:
L
Cast iron p-'pc'
T, =27°C = Duli5m

o =600m

— /

ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed flow, (3) Constant
properties.

PROPERTIES: Table A-6, Water (300K): p=007 kg/m?, i =855x10"" N-s/m?.

ANALYSIS: From Eq. 8.22, the pressure drop is

)
My
Apwflf——L.
p rHDL

With

punD 997kg/m? x 0.2m/s x 0.15m
# 855x107% N's/m?

the flow is turbulent and with e = 2.6x10™* m for cast iron (see Fig. 8.3), it follows that
e/D = 1.73x10"* and

[ == 0.027 .

Rep = = 3.50x10*

Henee,

997 kg/m® (0.2 m /)
2% 0.16m

Ap = 2154 kg/s*'m = 2154 N/m?

Ap = 0.027

(600m)

Ap = 0,0215 bar . <]

COMMENTS: For the prescribed geometry, L/D = (800/0.15) = 4000 >>
(%¢d, /D)t == 10, and the assumption of fully developed flow throughout the pipe is
Justified.



FROBLEM 8.3

KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions.

FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a
clean surface, and (c) smooth pipe for a range of mean velocities 0.05 1o 1.5 m/s,

SCHEMATIC:

Cast iron '
o) i
Upm=1mis
T,=300K _ -

ASSUMPTIONS: (1) Seady, fully developed flow.
PROPERTIES: Table A6, Water (300 K): P=997 kg/m', p=855 % 10* No/m', v = Wp=8576x

107 mi/s.
ANALYSIS: From Eq. 8.22a and 8.22b, the pressure drop and pump power requirement are
1
.ﬁp=f%‘-L P=apV = Ap(xD? /a)u,, (1.2)

The friction factor, f, may be determined from Figure 8.3 for different relative roughness, &/D, surfaces
or from Eq. 8.21 for the smooth condition, 3000 < Rep < 5 = 10°,

f=(0.7901n(Re,, ) - 1.64) &)

where the Reynolds number is

R:h;EIIEn Im/s= 025m

v  BST6x 10 m/s
{a) Smooth surface: from Eqgs. (3), (1) and (2),

= 2915« 10* i4)

f=(0.7901n(2915 % 10°)~ 164) " = 001451

Ap=001451{997kg/m" = Im”/s* /2% 025m)1000m = 289 10* kg/s* m =0.289bar <

P=289x10°N/m’ (rx025' m"/4)im/s = 14 18N . m/s = L42kW <
(b) Cast iren clean surface: with e = 260 pm, the relative roughness is &/D = 260 % 10® m/0.25 m = | .04
% 10°", From Figure 8.3 with Rep = 2.92 x 10", find { = 0.027. Hence,

Ap = 0.538 bar P=264 kW <

(e) Smooth surface: Using IHT with the expressions of part (a), the pressure drop and pump power
requirement as a function of mean velocity, ., for the range 0.05 S u, < 1.5 m/s are computed and
plotted below,

Continued..



PROBLEM 8.3 (Cont.)

dmitag; [Ear) = F |

Bdmin wOCTlY, T M

ey A

The pressure drop is a strong function of the mean velocity. So is the pump power since it is proportional
to both Ap and the mean velocity.

COMMENTS: (1) Note that L/D = 4000 >> (x4s/D) = 10 for murbulent flow and the assumption of fully
developed conditions is justified.

(2) Surface fouling results in increased surface roughness and increases operating costs through
INCrEAsing pump power requirements.

(3) The IHT Workspace used to generate the graphical results follows.

i Pressure drop:

daltap =1 * Mo umr2*L/(2° D) i Eq (') EqB.22a

deliap_bar = delisp / 1.00a8 I Cormmrsion, Pa o bar units
Power = deffap * {pi * D42 /4 ) * um i Eq (2); Bq 8220

Powsr_k\W = Power / 1000  Usatid for scaling graphical resuit
4 Reynolds numbaer and friction factor:

ReD = ym " D/ nu N Eq (3)

Tw (DT80 " In (Ael) - 1.84 )% (-2} i Eq (4}, Eg B.21, smooth surface condrtion
if Propariies Tool - Walsr:

I 'Water property luncions T dapsndence, From Tabés A8

A Uit TR, pibars);

i=0  Quality |O=aat Bquid of 1=s8 wapor]

risg = rhp_ T “Wiabar*, Tm,xj} N Danaity, knim~d

r = ATl "Water, Tm.x) i Kinamatic viscosity, me2is

i Asnighed varinbles:

=1 N hlaan velocity, m's

Tm = 300 i Wan Semparatune, K

D =025  Tuba diamalar, m

L = 1000 Tt bangth, m



PROBLEM 8.4

KNOWN: Temperature and mass flow rate of various liquids moving through a tube
of prescribed diameter.

FIND: Mean velocity and hydrodynamic and thermal entry lengths.

SCHEMATIC:
ey i
m=003kg/s D=0.025m
Tm..a?':r_:___# —
ASSUMPTIONS: Constant properties.
PROPERTIES: (T = 300K)
Liguid Table p(kg/m’) pfN-s/m®)  ifm*/s) Pr
Engine oil  A-5 884 0.488 550x10~" 8400
Mercury A-5 13,529 0.152x107*  0,113x10°® 0.0248
Water A-8 1000 0.855x107  0.855x10™" 5.83

ANALYSIS: The mean velocity is given by
_.m _  003kgls _ 6Llkg/em’
PA.  pm{0.025m)? /4 P i
The hydrodynamic and thermal entry lengths depend on Rep,
Rep = 4m _ 4x0.03kg/s _ 1.53kg/sm
aDu  x{0.025m)u T :

Hence, even for water (4 = 0.855x10~ N's/m?), Rep < 2300 and the flow is laminar.
From Eqs. 8.3 and 8.23 it follows that

91x1073
X4 = 0.05D Rep = 231X - ke/s
-3
Xtd 1 = 0.05D Rep, Pr = (1:91x10 ke/s)Pr
I
Hence:
Liquid U (m [s) Zyy p(m) Zsg,4(m ) <]
il 0.060 0.0039 25.2
Mercury 0.0045 1.257 0.031
Water 0.061 2.234 13.02

COMMENTS: Note the effect of viscosity on the hydrodynamic entry length and the
effect of Pr on the thermal entry length.



PROBLEM 8.5

KNOWN: Number, diameter and length of tubes and flow rate for an engine oil cooler.

FIND: Pressure drop and pump power (a) for flow rate of 8 kg/s and (b) as a function of flow rate for
the range 5 < m < 60 kgls.

SCHEMATIC:
D=12.7 mm N = 64 tubes

e | ) D g

ASSUMPTIONS: (1) Fully developed flow throughout the tubes.

PROPERTIES: Table A5, Engine oil (300 K): p =884 kg/m', i = 0.0486 kg/s-m.
ANALYSIS: (a) Considering flow through a single tube, find

s m 4(8kg/s)
® 2D 64x(0.0127m)0.0486 kg /s m

Hence. the flow is laminar and from Equation 8,19,

= 258 (1)

ha 4
f=——=—=0248.
Re, 258 (2)
With
m, 0125kg/s(4)
u, = = =L116 3
p(rD* /4) {Eﬂikﬂm‘]ﬂ{uﬂiﬂmf e @)
Equation 8.22a yields
; BB4kg/m’' N 1116m/s)’
pu ([ 2
Ap=ft—0L = 0248 Sm =53749N/m* = 0537 <
g e " o
The pump power requirement from Equation 8.23b,
m 3 Ehﬂl
P=Ap V=4Ap —=53T4IN/m" ————— =486 N-m/s = 486 W,
el fm S/’ (<

(b) Using IHT with the expressions of part (a), the pressure drop and pump power requirement as a
function of Mlow rate, m, for the range 5 € m £ 60 kg/s are compuied and plotted below

5 f 17 : 0
i _1_{ --_=_.__',.pf: " -

i s HHAE - H

i :l"_,,.u?".: " ! w
o #‘ r “l 0

G 18 M M 40 80 &0

Flowe riin. mdod [kig's]
Contmued. .



PROBLEM 8.5 (Cont)

In the piot above, note that the pressure drop is linear with the flow rate since, from Eqs. (2), the friction

factor is inversely dependent upon mean velocity. The pump power, however, is quadratic with the flow
rake.

COMMENTS: (1) If there is a hydrodynamic entry region, the average friction factor for the entire tube
length would exceed the fully developed value, thereby increasing Ap and P,

(2) The IHT Workspace used 1o generate the graphical results follows.

i Reynolds number and friction inctor:

AeD = 4 maott /(pi* D" mu) 1 Eq (1], Reynoids rumber
mdott=um * tho " pi° D42 /4 f Flow rate par tube, kg's: Eq (3),
mdel = maot! * M i Tolal Bow rate, M kibes
I = B4 | ReD i Friction tacior; laminar fiow; Eq (2)
il Presdurs drop and powsr requirement:
deltag =" tho " ums2 /(2" D) "L /i Pressure drop, NimA2; Eq {2),
deitap_bar = geltap / 185 i Pressune deop, bar
Powed = daltap * { maol | ma | i Powai, W, Eg (5]
Powar W = Powar /1000
i Assigned varisbles:
rdat = B N Fiow rale, kgls: N futos
N = B4  Mumber of lubes
LaS I Langth, m
T = 300 i bnan lemgaraturs,
D =001 1 Tulve diamabar, m
# Properties Tool - Engine Qil:
e = B4 i Denssty, hg'm~3
iy = 00486 I Visconity, kgia.m
" Data Browser resulls: base cass, Par ()
Powar  Power Wi A=l deftap  daltap_tar i mdofl  um
o L M Tim Frachoel mi o
4y 0487 2570 S JA2E4 05382 02482 0125 1118

oEr S5 B 300 B 00488 AB4 O



PROBLEM 8.6

KNOWN: Mean velocity and temperature of oil, water and mercury flowing through
a tube of prescribed diameter,

FIND: Corresponding hydrodynamie and thermal entry lengths.
SCHEMATIC:

D:ﬂmﬂ

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties.

PROPERTIES: (T, = 300K)

Ligquid Table plkg/m?) p{Ns/m?) Pr
Engine Oll  A-5 B84 0.486 6400
Mercury A-5 13,520  0.152x107°? 0.0248
Water A-8 007 0.855x107? 5.83

ANALYSIS: With

gD [
Rep = —— = £ 5x107"m/fs x 0.025m = l.EExlﬂ“‘mzfs'E
it follows that

7 T

il Mereury  Waler
Rep 0227 1113 146

Henee for each fluid, the flow is laminar and from Eqgs. 8.3 and 8,23,

Xdp = 0.05D HE]]. Xidt = 05D RE]]. Pr.
Hence:
Ligusd Zigafm) g ¢(m) <]
0il 2.84 x1071 1.82
Mercury 1.39 0.0345
Water 0.183 1.06

COMMENTS: Note the effect of viscosity on the hydrodynamie entry length and the
effect of Prandtl number on the thermal entry length.



PROBLEM 8.7

KNOWN: Velocity and temperature profiles for laminar flow in a tube of radius r, = 10 mm.
FIND: Mean (or bulk) temperature, T,, at this axial position.
SCHEMATIC:

ASSUMPTIONS: (1) Laminar incompressible flow, (2) Constant properties.
ANALYSIS: The prescnibed velocity and temperature profiles, (m/s and K, respectively) are

ulr) = 0.1 [1-{rfr)’] T(r) = 344.8 + 75.0 (¢/r,)" - 18.8 (v/r,)* (1.2
For incompressible flow with constant ¢, in a circular tube, from Eq. 8.27, the mean temperature and up,
the mean velocity, from Eq. 8.8 are, respectively,

3 Eu[r]-T{r]-r-dr u_-—;EE-E'ﬂ{rI-:-dr (34)

T =
Ut

Substituting the velocity profile, Eq. (1), into Eq. (4) and integrating, find

oo = ot [ (1) Jern o) =2for] e —{{rrr.l‘]]; =0.05m/s

Substiuting the profiles and u, into Eqg. (3), find
T, = mr: £{l11[1 —{rfruf]]{.ﬁ-l-j+ 750{r/e,)’ - 188(r/r, )" } e/, ) dlrfr,)

T, = 4£ H‘:\M.E{r{rﬂj +750(x/r,)" - 188(r/r, }!]-Im.ﬂrfr_]! +15.0(r/r, ¥ - 18.8(r/r, jT]}d{r,l'r,, )
T, =4{[172.40+18.75 - 313] - [86.20 + 15,00 - 2.35]} = 356K <

The velocity and temperature profiles appear as shown below, Do the values of u., and T, found above
compare with their respective profiles as you thought? Is the fluid being hested or cooled?

a4

| I 1 440 L
= F LS 1 l
i o.0d :_- -'!"w:- -I ' Ir ] g m "': ' :
I = |
e = INCTT G = = A e R
E 00 . - ! dag b e
- et ot L W 1 - -%/_-
o= Ll - ] 1 380 — -l_ﬂ- i 4
i E .| - [ R -'__'_,.ll":1_ -
a 042 o4 oOoF 08 i & 92 04 08 0B ¥

PRadis! conndmate, rie Faded codrdirale.



FROBLEM 8.8

KNOWN: Velocity and temperature profiles for laminar flow in a parallel plate channel.

FIND: Mean velocity, u,, and mean {or bulk) temperature, T, at this axial position. Plot the velocity

and wemperature distibutions. Comment on whether values of uy, and T, appear reasonable.
SCHEMATIC:
uylygh Ty)

el
ASSUMPTIONS: (1) Laminar incompressible flow, (2) Constant properties,
ANALYSIS: The prescribed velocity and emperature profiles (mfs and *C, respectively) are
uly) =0751-(y/y,)’] Tly)=50+9566(y/y,)’ - 47.83(y/y,)’
The mean velocity, uy, follows from its definition, Eq, 8.7,
m=pA U =FL. uly) dA_

where the flow cross-sectional area is dA, = 1 dy, and A, = 2y,

=, 0 dym [ty
U= i-r.f::ﬂ~?5[l'[rfr.}’]di yiy.)
o =12{038[(y/v.)-v30v/x.) ||

u, =2 075{[1-3]-[-1+ 3]} = /2% 0.75% 4/3 = /3% 0.75 = 0.50 m/s
The mean temperature, T, follows from its definition, Eq. 8.25,

E, =me, T, where m=pA_u,

pA e, T, =pe, [ uly) TlyMA,
Hence. substituting velocity and temperature profiles,

T, = E-'T,L:-]_*:_'u[r:r- Tly)y

Ta= m—jm—:,m—r r{ﬂ?‘ﬁ[l =(¥/v.) ]}{5D+Hﬁ6{m,} - 4T83(y/y,) ]d[rm]'

075

T lﬂﬁir!rulﬂwﬂﬂr.l -9ﬂtm.}] Ilﬁ'ftrf*r, ) +1903y/y,) —533{}-”‘}]}

0.7
T 5

(1.2)

(3)

4)



PROBLEM 8.8 i Cont.)

The velocity and temperature profiles along with the ug, and T, values are plotied below.

i & = g
P
5 “.t-_T_.:g . i

Dmaesrmsceiony ookl s

1111
|
¥
||
-

:wmum :Hmhm:n:
Far the velocity profile, the mean velocity is 23 that of the centerline velocity. u,= 2u(0W3, Note that
the areas above and below the u,, line appear to be equal. Considening the temperature profile, we'd

expect the mean temperature to be closer to the centerline temperature since the velocity profile weights
the integral toward the centerline.

COMMENTS: The integrations required 1o obtain u,, and T, Egs. (3) and (4), could also be performed
using the intnnsic function INTEGRAL (y.x) in the ITHT Workspace.



PROBLEM 8.9

KNOWN: Flow rate, inlet temperature and pressure, and outlet pressure of water flowing
through a pipe with a prescribed surface heat rate.

FIND: (a) Outlet temperature, (b) Outlet temperature assuming negligible flow work changes.
SCHEMATIC:

ot 1 --E' bara
n=£5
T 225C
P -fmh.lr:

ASSUMPTIONS: (1) Negligible kinetic and potential energy changes, (2) Constant properties,
(3) Incompressible liquid.

PROPERTIES: Table A-6, Water (T=300K): p=997 kg/m’, c, =c, =4179J/kg’K.

ANALYSIS: (a) Accounting for the flow work effect, Eq. 8.35 may be integrated from inlet to
outlet 1o obtain
e =fhl'=vrru+n' m.i) + (pv)s = (pv)]
Hence,
1

Qeonw
T, ST ——p—
mo = bmj+— m[l-"i'?n]

109w , (100-2) bar(10* N/m? )/bar
2kgfs «41791kgK 997 kg/m’ x 4179 Jkg K
Tmo =25°C + 12°C + 24°C

T =25°C +

T =319.4°C. <
(b) Neglecting the flow work effect, it follows from Eq. 8.37 thar,
Tmo = Tai + = =25°C + 12°C
mep
T =37°C. <

COMMENTS: Even for the large pressure drop of this problem, flow work effects make a
small contribution to heating the water, The effects may justifiably be neglected in most

practical problems.



FROBLEM B.10

ENOWN: Intemal Mow with prescribed wall hear flux as a function of distance.

FIND: (1) Beginning with a properly defined differential control volume, the temperature distribution,
Tadn). (b) Outlet temperature, Ty., (¢) Sketch T, ix), and T,(x) for fully developed and developing Mow
conditions, and {d) Value of uniform wall flux g (instead of q = ax) providing same outlet temperature
as found in part (a), skewch Tix) and T,(x) for this heating condition.

SCHEMATIC:
Wim e
q'nu{fﬂnwwn’* Tylx)
R il = & A
n‘!'#ﬁ-ﬂhﬂﬂ] _*! :/— ma _': ',-/:’/
T2 275G : . ! M & Tom | | 7 Epl T o d Ty

b el

ASSUMPTIONS: (1) Steady-state conditions, (2) Constamt properties, (3) Incompressible flow,
PROPERTIES: Tabie A.65, Water (300 K): ¢, =4.179 ki/kg-K.

ANALYSIS: (a) Applying energy conservation to the control volume above,

n:iil_m,=I'i'l|:1|,|ﬂ'1|,| (1)
where Tofx) is the mean lemperature at any cross-section and dg.... = q'- dx. Hence,
dT
ax=mc, —2,
o {2)

Separating and integrating with proper limits gives

a .E“m_ T:de_ T () =T+ ;:;. (34H<
(b} To find the outlet temperature, let x = L. then

Tl =T, .=T., +ﬂ.’f2ri'||:'- (5)
Solving for T, and substituting numerical values, find

T, =2T'C Ry ) =2T"C+172"C=442"C, -

" 2(450kg/h/ (36003 h)) = 41791/kg. K

(c) For linear wall heating, q, = ax, the fluid temperature distribution along the length of the tube is
quadratic as prescribed by Eq. (4). From the convection rate equation,
q; - h{l}' “‘D{Tl. [11 e Tu{;” {EI-]

For fully developed flow conditions. hix) = h, a constant; hence, T,(x) - To{x) a5 a fanction of distance
will be constant. For developing conditions, hix) will decrease with increasing distance along the whe
eventually achieving the fully developed value

Continued. .



PROBLEM 8.10 (Cont.)

Tglx)

id) For uniform wall heat flux hearing, the overall energy balance on the tube yields
q=qrDL=mec (T, ~T.,)
Requiring that T, = 44.2°C from par (a), find

s (450/3600) kg/s= 41791 /kg- K(44.2 - 2T)K
i wDx5m

=572/DW/m* <

where [ is the diameter (m) of the wbe which, when specified, would permit determining the required
heat flux. g7 . For uniform heating, Section 3.3.2, we know that T(x) will be lincar with distance. T.(x)
will also be linear for fully developed conditions and appear as shown below when the flow s
developing.

COMMENTS: (1) Note that ¢; should be evaluated ot T, = (27 + 4)"C2 = W K.

(2) Why did we show T,(0) = T.(0) for both types of history when the flow was developing?
(3) Why must T,(x) be linear with distance in the case of uniform wall Mux heating?



PROBLEM 8.11

KNOWN: Internal flow with constant surface heat flux, q7;.

FIND: (a) Qualitative temperamure distributions, T{x), under developing and fully-developed
flow, (b) Exit mean iemperature for both situations.

SCHEMATIC:

'-.':‘: = conatant

ARAALR)

Flow —t

ASSUMPTIONS: (a) Steady-sute conditions, (b) Constant properties, {c) Incompressible
flow.

ANALYSIS: Based upon the analysis leading 1o Eq. 8.40, note for the case of constant surface

Hence, regardless of whether the hydrodynamic or thermal boundary layer is fully developed, it
follows that

Tw(x) is linear and

Tm2  will be the same for all low conditions. <]
The surface heat flux can also be written, using Eq. 8.28, as
Qs = h[Ty(x) — Tn(x)] .

Under fully-developed flow and thermal conditions, h=hgy is a constant. When flow is
developing h > hyy. Hence, the iemperature distributions appear as below.

Fully developed, h constant, Ty (x)

Tol), T () " ‘*’*ﬂe»raq;wz Flow situation, Ty(x)

@ ®



PROBLEM 8.12

KNOWN: Geometry and coolant flow conditions associated with a nuclear fuel rod. Axial
variation of heat generation within the rod.

FIND: (a) Axial variation of local heat flux and total heat transfer rate, (b) Axial variation of
mean coolant temperature, (¢) Axial variation of rod surface temperature and location of
maximum femperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant fluid properties, (3) Uniform
surface convection coefficient, (4) Negligible axial conduction in rod and fluid, (5) Negligible
kinetic energy, potential energy and flow work changes, (6) Outer surface is adiabatic.

ANALYSIS: (a) Performing an energy balance for a control volume about the rod,

Eip — B + E; =0 ~dq+E; =0
ar

~q” (R Ddx) + §, sin (R/L) (x D2/4) dx q”* = q, (D/4) sin(rx/L), <]
The total heat transfer rate is then

q= L‘* q” D dx = (x D*/d)q, L‘- sin(rex/L) dx

=H % L L |L-:
9 4%( nmL)u

DL .
Q== m<

{(1+1)

(b) Performing an energy balance for a control volume about the coolant,
mep T +dq = mcy (T +dTy) =0.

Hence
mep,d Ty =dg=(nDdx)q"”

dx

4T xD @D . /nx
sm(—).

Continued .....



PROBLEM 8.12 (Cont.)

Ta(x) =Ty +

i

(c) From Newton's law of cooling,
q" = h(T,~Ty) .

Hence

D & 1]

W

Ty=1-+Tn

T‘nfhn X LD? 4§ [I—

an sin — T +T,,_‘+-—

Tndu:nﬁmﬂ!mﬁmﬂm:mmmmh::mm.wﬂum
dT, G@Drx ax  LD? G

X . Kx
x EmL LY ,impf""“f
or
1 nx D nX _
M‘mL-I-:hcpnnL-l]-
Hence
II__"[hcp
sd S 1 3

I:n"( DhL = Xempa -
COMMENTS: Note from Eq. (2) that
D* g,
2rhep

L
Tm..n =Tm(L)= Toni +

which is equivalent to the result obtained by combining Eq. (1) and Eq. 8.37,

)<



PROBLEM 8.13
KNOWN: Axial variation of surface heat flux for flow through a tube.
FIND: Axial variation of fluid and surface iemperatures.
SCHEMATIC:

i Toi—, Y‘!; {x].g_;rrgs".main‘?‘!‘

A o, L R .
™Ep Y rj“—ﬂ
L !

X

ASSUMPTIONS: (1) Convection coefficient is independent of x, (2) Negligible axial
conduction and kinetic and potential energy changes, (3) Fluid is an ideal gas or a liguid for
which dipv) < < (¢, Tp).

ANALYSIS: Since Equation 8.38 is applicable,
dTy _ Q5P _ (xD)q'y msin(rx/L)
o iy rhey
Scparating variables and integrating from x = 0
Ir"d.rn . m]‘l.ﬂl
i

mey
Ta(x) =Ty =

I;;in—f&x
LI?CI':‘m cos ™ c
mo,

L

Lll?qm“_mm}_ <]
My

From Newton's law of cooling, Equation 8.28,
Ty(x) = (q's/h) + Tp(x)

Talx) =Ty +

an';,,“ ~ cos /L), <]

Tyx)= . ;m ﬂ"‘?‘ + Toj +—
Op

COMMENTS: For the prescribed surface condition, the flow is not fully developed. Hence,
the assumption of constant h should be viewed as a first approximation.



PROBLEM 8.14
KNOWN: Surface heat flux for air flow through a rectangular channel.

FIND: (a) Differential equation describing variation in air mean temperature, (b) Air outlet
temperature for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS: (1) Negligible change in kinetic and potential energy of air, (2) No heat loss
through bottom of channel, (3) Uniform heat flux at top of channel.

PROPERTIES: Table A4, Air (T = 50°C, 1 atm): cp = 1008 Jkg K.

ANALYSIS: (a) For the differential control volume about the air,
Eh-u.: Eol_l
mep Ty + 975 (wdx) =mcy (T +dTy)
dT, dgaw
dx me,
Separating and integrating between the limits of x = 0 and x, fiad

Qo (Wx)

Tm(X) =Ty +

Tmu =imi+

(b) Substituting numerical values, the air outlet temperature is

¢ 4 (700 Wim?) (1 x 3)m?
0.1 kg/s (1008 Jkg'K)

T =40°

Tm.n = m-ﬂ“c & ﬂ

COMMENTS: Due to increasing heat loss with increasing Ty, the net flux q, will actually
decrease slightly with increasing x.



PROBLEM 8,15

KNOWN: Air inlet conditions and heat transfer coefTicient for i circular tube of prescribed geometry.
Surface heat flux.

FINI:: (a) Tube heat transfer rate, q. air outlet temperature, T..,, and surface inlet and outlet
temperatures, T, and T, .. for a uniform surface heat flux, q) . Air mean and surface temperature
distributions. (b) Values of g, Ty, T, and T, for a linearly varying surface heat flux g = 500x (m).
Air mean and surface temperature distributions, (c) For each type of heating process (a & b), compute
and plot the mean fluid and surface temperatures, T,(x) and T,(x), respectively, as a function of distance;
What is effect of four-fold increase in convection coefficient, and (d) For each type of heating process,
heat fluxes required to achieve an outlet lemperature of Ty, = 125°C; Plot temperatures.

SCHEMATIC:
T

80 _»
."__."' Tfﬂ-ﬂ

L=3m

m = 0.005 kgls h = 25 WimZ-K, D = 0.05m
Tn =209 < TNLTex = 1000 WM, org"= 500 (Win?)

ASSUMPTIONS: (1) Fully developed conditions in the tube. (2) Applicability of Eq. 8.36, (3) Heat
transier coefficient is the same for both heating conditions.

PROPERTIES: Tuble A.4, Air (for an assumed value of Toe = 100°C, T, = (T, + T2 = 60°C =
3 K) = 1008 kl/kg K.

ANALYSIS: (a) With constant heat flux, from Eq. 8.39,
q=gq(=xDL)=1000W/m" (nx 0.05mx= Im)=4TIW. in
From the overall energy balance, Eq. 8.37,

471W
Tn-=Tm|“ . =2W°C =1135'C 2
o, +ﬂI.'III'5|;g,.':: 1008 ]/ke- K @<
From the convection rate equation, it follows that
q; o 1000W/m*
TlI=T'I'|I —+=20°C e = B0°C
T, =Te, +q0/M=1135C+40°C=1535"C <

From Eq. B.40, (dT,/dx) is a constant, as is (dT,/dx} for constant h from Eq. 8.31. In the more realistic
case for which h decreases with x in the entry region, (dT/dx) i still constant but (dT,/dx) decreases
with increasing x. See the plot below.

(b) From Eq. 838,
dT, _ 500x(xD) _ S00xW/m’ (x x 0.05m)
dx  mc,  0005kg/sx 1008]/kg K

= |56x K/m. (4)

Continued. ..



PROBLEM 8.15 (Cont.)

Imegrating from x =0 10 L u follows thar

3 1
T, =T, + |5.ﬁﬂm =20°C+ lsb”TL =20°C+702°C =90.2°C. (<

The heat rate 15

i 11 3
q= Iq:ﬁaﬂ. = 500(x E'-ﬂSm}Lnl: = TMTL = 353W <

From Eq. 8.28 it then follows that

1
= Tu s ah= Ty, + 1565+ S00=20C 7817 20 ®

Hence, at the inlet (x = 0) and outlet (x = L),

T,=T,, =20'C and T, =150.2'C <
Note that (dT /dx) and (dT,/dx} both increase linearly with x, but (dT,/dx) = (dT,/dx).
(¢) The foregoing relations can be used to determine T(x) and T,(x) for the two heating conditions:
Uniform surface flux. q7 ; Eqs. (1-3),

Tal(x)= Ty, + qixDx/ric,, T.(x)=T,(x)+q}/h (7.8)
Linear surface heat flux, q] = ax, a, = 500 Wim'; Eqgs. (4-6),

To(x)= T, +(a,xD/2mc, Jx* T,(x)=T,(x)+a,x/h (9, 10)

Using Eqgs. (7-10) in [HT, the mean fluid and surface temperatures as a function of distance are evaluated
and plotied below. The calcalations were repeated with the coefficient increased four-fold, h = 4 25 =

100 Wim® K. As expected. the fluid temperature remained unchanged, but the surface temperatures
decreased since the thermal resistance between the surface and fluid decreased.

TG 240
200 i i s 200 -‘!1-_ T 11 r_r',.
g e ]-:_ - - = ] T R = -
G RS = 130 === : .
g [ - - == E T I
= T - = 0 I
i =
o  — P
a L 2 ¥
Dhgtnrcs frim mlal. & {m) Dustance Mom iniat, = {m)
e T —— Tmial; 4°% = S00x Wim 2
—tr— Taix}: h = 100 Wim*2 K - - ey Sy

(d) The foregoing set of equations, Egs. (7-10), in the IHT model can be used 1o determine the required
heat fluxes for the two heating conditions to achieve Ty, = 125°C. The results with h = 25 Wim' K are:

Uniform flue: g7 = 1123 Wim® Linear flux:  q' =748.7x Wim® <

] Continued...



FROBLEM 8.15 (Cont.)

The temperawre distributions resulting from these heat fluxes are plotted below. The heat rate for both

heating processes is 529 W,
i e - - -
S N N O N i
o -
5 : - — - - ro
T N - T G - & f*'f’
o e Eme i - R i e
i . i S == Lt | 1
il =t = 1 [ ]
] —3 !_l | - -
,-'"'.-.- " +—1 N - -F=1._-_. e el B 3
" — " S .
¥ L] ¥ ] [ L] ] ]
i

— N S I R

COMMENTS: Note that the assumed value for Te, ( 100°C) in determining the specific heat of the ar
was reasonable.



PROBLEM 8.16

KNOWN: Laminar, slug flow in a circular tube with uniform surface heat flux.
FIND: Temperature distribution and Nusselt number,

SCHEMATIC:

ulr)rug o —

ASSUMPTIONS: (1) Steady, incompressible flow, (2) Constant properties, (3) Fully
developed, laminar flow, (4) Uniform surface heat flux.

ANALYSIS: With v =0 for fully developed flow and 4T /% = dT,, /dx = const. from
Eqs. 8.33 and 8.40, the energy equation, Eq. 8.48, reduces to

9w _a 8 ( aT
u'd: r dr o J°

Integrating twice, it follows that

Ty o
T{r}-ii:; = L4 C () 4 €y

Since T(0) must remain finite, C; = 0. Hence, with T(r,) = T,

i, 4T, 713 n, dT,
Gl T Wer N =

From Eq. 8.27, with u, = u,,

(rfa—rt). <

2 Fa 2 s ul:l dT= 7
TN-E Trdr-ﬁj; [T.P—E TI-‘—[IT“'-‘!:}} dr
T, = s T, i —._u:. ..._.._dTn i —_ r: =T = u:f: _dTm
=M ) e da dx \ 2 4 TR I
From Eq. 8.28 and Fourier's law,
aT
h. = q-' = k? |..
1y=~Ts T,—=Tgx
Hence,
[ Ugfy | dTg
2o dx
h = 3 nlknsk Hun::tﬂ.-ﬂ. 4:1
w.r: dT, e D k




PROBLEM 8.17
KNOWN: Heat transfer between fluid flow over a wbe and flow through the wbe.

FIND: Axial variation of mean temperature for inner flow.

SCHEMATIC:
" %
o
i, Ty s i ———2 —t o

i L]

i T

<0 PP Plohy %L

ASSUMPTIONS: (1) Negligible change in kinetic and potential energy, (2) Negligible axial
conduction, (3) Constant ¢, (4) Uniform T...

ANALYSIS: From Equation 8.36,
dq = fc,dT,,
with
m UMn m} . UP[T- I'I:I}d"-
The overall heat transfer coefficient may be defined in terms of the inner or outer surface arca,
with
UiP =U,P,.
For the inner surface, from Equation 3.31,

o B
U= _[n,l <o
[ha. o By
Hence,
T _ UP
T—"Tm l'hr.'.P
'LT. "l"il']'l ﬂT.Tﬂ-ij

T, d(AT) P
aT, AT 0, u-m_p I:;Udl

m‘ﬂi ° - e f‘L‘de)

T T.,.. s (——U) <

COMMENTS: The development and results parallel those for a constant surface temperature,
with U and T.. replacing h and T,.



PROBLEM 8,18

KNOWN: Thin-walled tube experiences sinusoidal heat flux distribution on the wall,

FIND: (a) Total rate of heat transfer from the tube to the fluid, q, (b) Fluid outlet temperature, T, (c)
Axial distribution of the wall temperature T,(x) and (d) Magnitude and position of the highest wall
temperature, and (e) For prescribed conditions, calculate and plot the mean fluid and surface
temperatures, Tolx) and T(x), respectively, as a function of distance along the wbe: identify features of
the distributions; explore the effect of +25% changes in the convection coefficient on the distributions.

SCHEMATIC:
qy (x) = q_ sin (nx /L)

Fud) ﬂmmﬂ

=

i
Tﬂ“ — 2 L o

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible kinetic and potential energy changes. (3)
Turbulent, fully developed flow.

ANALYSIS: (a) The total rate heat transfer from the tube to the Muid is

4= [ aPax = quxD [Sin(xa/L)dx = q2aD(L/nf—cos(ax/L)]} = 20Lq <

(b) The fluid outlet temperature follows from the overall energy balance with knowledge of the total heat
rate,

q=me, (T, - T.,)=2DLg; T, =T, +(2DLg] /ric, ) )<
(c) The axial distribution of the wall temperature can be determined from the rate equation
q; = h{T, (x)- T, (x)] T. =T (x)+q}/h (3)

where, by combining expressions of parts (a) and (b), Ty.(x) is
L‘q:Td‘ = !'.l'lll:.{T-I. = Tml.:

Taa =T+ EE

j sin(rx/L)dx =T, + Mp - cos{nx/L)] (4)
o e,
Hence, substituting Eq. (4) into (3), find
T,(x)=T,, +DT=L‘1L[1 - cos{my/L)] + i;tm{u,u.j (5 <
v
(d) To determine the location of the maximum wall temperature &' where T.(x* ) = T\, 581

dr(x) _,_d |Dlqsr P
" ﬂ_d:{uri;:_[t cnﬂmf[..‘}]+T:-nn{qu]}

DLa: X cinimx'/L)s 0. K. L)= AT L
. L sin{nx' /L) T cosnx/L)=0 tan(xx’/L) DLq:/me, - DL

Continued



PROBLEM B.18 {Cont. )

o

¢ =t '(~rie, /DLY) (6) <
At this location, the wall temperature is

T, =Tix)="T,, +%31[I—MEI'JL]]+%‘;—MI:M‘JL] n<
(e) Consider the prescribed conditions for which to compute and plot Tyix) and T,(x),

D = 40 mm m =0.025 kg's h= 1000 W/m’ qzzlﬂ,thhn’

L=4m cp=4180 kg K Tais 250

Using Eqgs. (4) and (5) in [HT, the results are plotted below.

'“ |
i | = s .r'i'.
f_,.-"’
g
b
nj ,
8 ' 2 1 i
Dintarca. u [
:%-uﬂm
— Taiuk Ne 1000 Win2
—.— P w 750 Wi K

The effect of a lower convection coefficient is to increase the wall temperature. The position of the
maximum temperature, T, q., moves away from the tube exit with decreasing convection coefficient.

COMMENTS: (1) Because the flow is fully developed and wrbulent, assuming h is constant along the
entire length of the ube is reasonable.

(2) To determine whether the T,(x) distribution has a maximum { rather than a manimum), you should
evaluate d"T,(x)/dx’ to show the value is indeed negative.



PROBLEM 8.19
KNOWN: Flow rate of engine oil through a long tube.

FIND: (a) Heat transfer coefficient, h (b) Outlet temperature of oil, Ty, .

SCHEMATIC:
Tul‘.’l D::Zmm
' T.=100"C .[_ f‘ Ls30m
O e Y s Y1

Tom,i =60°C Tuo

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Combined entry
conditions exist.

PROPERTIES: Table A-5, Engine Qil (T, =100°C=373K): p, =1.73x10"2 N-s/m?: Table A-

5, Engine Oil (T, =77°C=350K): ¢, =2118JkgK, j1=3.56x10"2 N-s/m?, k=0.138 W/imK,
Pr=>546,

ANALYSIS: (a) The overall energy balance and rate equations have the form

q=thep (Tmo~Tm,i) q=hA, AT, (1,2)
Using Eq, 8.42b, with P= xD, and Eq. 8.6

AT, T, -Ta. (_
& T, e b &)
Ren 4m 4 x 0,02 kgfs =218,

T WD, mx 3xI07m x 3.56x107 Nowm®
For laminar and combined entry conditions, use Eq. 8.57

-]H(hh) (J‘-) (mﬂra ) (m

B = Nugh/I) = 4.83 % 0,138 W/m-K /310 m = 222 Win? K . <]
(b) Using Eqg. (3) with the foregoing value of h,

(100-T,J°C % 310" m % 30m " X =
g~ (- sitgh mwm*x) s = H0.9°C, <

COMMENTS: (1) Note that requirements for the correlation, Eq. 8.57, are satisfied.
(2) The assumption of Ty, for sclecting property values was satisfactory.

(3) For thermal entry effect only, Eq. 8.56, h = 201 W/m®-K and T, = 89.5°C,



PROBLEM 8.20

KNOWN: Inlet temperature and flowrate of oil flowing through a tube of prescribed surface
temperature and geometry.

FIND: (a) Oil outlet temperature and total heat transfer rate, and (b) Effect of Nowrate.
SCHEMATIC:

-~
g - Tmo

D=005m

05£m<20kgs - /
Tpi=20%C

ASSUMPTIONS: (1) Neghgible temperature drop across tube wall, (2) Negligible kinetic energy,
potential energy and Mlow work effects.

PROPERTIES: Table A.5, Engine oil (assume T, = 140°C, hence T, = 80°C = 353 K): p = 852
kg/m', v = 37.5 % 10® m¥s, k = 138 x 10" Wim-K, Pr =490, p = p-v = 0.032 kg/ms, ¢, = 2131 kg K.

ANALYSIS: (a) For constant surface temperature the oil outlet temperature may be obtamed from Eq.
8.42b. Hence

T, =T -[T_-T_,}up[-_ﬂ'h]

To determine b, first calculate Re from Eq. 8.6,
» dm » 4{0.5kg/s) "
aDp  m(0.05m)0032kg/m-s)
Hence the flow is lamimnar. Moreover., from Eq. 8.23 the thermal entry length is

%y, = 0.05DRe, Pr=0.050.05m)(398)(490) = 486m.

Re,, 398 .

Since L = 25 m the flow is far from being thermally fully developed. However. from Eq. 8.3, X =
0.05DRep = 0.05(0.05 m)(398) = | m and it is reasonable to assume fully developed hydrodynamic
conditions throughout the tube, Hence h may be determined from Eqg, 8.56

0,0668(D/L) Re;, Pr
14+ 0.04[(D/L)Re,, Pr]"
With (D/L)RegPr = (0,05/25)398 « 400 = 390, it follows that

Nup = 366+

mn =166+

= | L9%

1+2.14
CI3EW/m-K

=33W/m? -K and it follows that
0.05m / 5

Hence, h = mu%= 11.95

Continued...



PROBLEM 8.20 ( Cont.)

. [ m(0.05m){25m)
Ty = 150"C  (150°C - 20°C)exp 05kg/sx21311/kg- K

Fine = 2C, o
From the overall energy balance, Eqg. 8.37, it follows that
q=me,(T,, - T..)=05kg/s x 2131 )/kg- K x(35-20)"C

<33W/m’ - K

q=15980 W, <

The value of To, has been grossly overestimated in evaluating the properties. The properties should be
re-evaluated at T = (20 + 35W/2 = 27°C and the calculations repeated. lteration should continue until
satisfactory convergence is achieved between the calculated and assumed values of T,,.. Following such
a procedure, one would obtain T, = 36.4°C, Rep =278, h = 32.8 Wim* K, and q = 15,660 W. The

small effect of reevaluating the properties is anributed to the compensating effects on Reg (a large
decrease) and Pr (a large increase).

(b) The effect of flowrate on T, and q was determined by using the appropriate IHT Correlations and
Properties Toolpads,

o e Nt
vl

" 1 — /
0 15000

04 1 145 z as ' 14
s fowraia, moouge) Wasa Aowrale. moaljsgs|

Haad radn, g

g

Ol e raiure. Troof)

The heat rate increases with increasing m due to the corresponding increase in Rep and hence
However, the increase is not proportional to m, causing (T,,, - T,.,) =q/me, . and hence To., 1o

decrease with increasing m. The maximum heat rate corresponds to the maximum fowrate (m = 0.20
kgle).

COMMENTS: Note that significant error would be introduced by assuming fully developed thermal
conditions and Nup = 3.66. The Mlow remains well within the laminar region over the entire range of m_



PROBLEM 8.21

KNOWN: Flow mate and inlet temperaure of engine oil in a wbe of prescribed length,
diameter, and surface temperature.

FIND: Total heat ransfer and oil outlet temperature with and without the assumption of fully
developed flow.

SCHEMATIC:
T-100C [Z s o
i,
T-g ; _35 gt =10m

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible kinetic energy, potential energy
and flow work changes, (3) Constant properties.

PROPERTIES: Table A-5, Engine oil, (T, =340K): p=860kg/m’, c,=2076 JkgK,
w=531x10"2 kg/sm, k=0.139 W/m'K, Pr=793,

ANALYSIS: From Eqs. 8.42b and 8.37,

x0.025m x 10m E)
0.5 kghs = 2076 kg K

Tos=T, - rr,-‘r._.].up(--—- E) = 100°C - H'I'._‘e.tp(

Ty = 100°C = 75°C exp(- 0.000757xh)
q=mey, (Tyo~Tes) =03 kg 2076 )y K (T, ., - 25°C).

With Rep = 4 m/nDp = 4(0.5 kg/s)/x(0.025 m)0.0531 kg/s'm = 480 the flow is laminar.
Considering the thermal entry (te) region, it follows from Eq. 8.56 that

" oosss OLRso | _ ousowam i &
E-.E[:ﬂ-+ O | e | %] L WimlK

Trnatie) = 100°C — 75°Cexp{~0.000757x92.5) = 100°C - 69.9°C = 30.1°C <]

ey = VBBW/K (30.1-25)°C = S290W . <]
If fully developed (fd) conditions are assumed for the entire tube,

£ ko 0IOWMK i

= 5 366 = S0t 166 = 203 Win' K

Tty = 100°C - T3.9°C = 26.1°C <l

Qg = 103BW/K (26.1-25)°C = 1 190 W, <]

COMMENTS: The assumption of fully developed conditions throughout the tube leads o a
large emmor in  the  calculation of h and hence gq. Noie that
%ga, = 0.05 D Rep Pr=0.05(0.025m)480(793) = 476 m, which is much larger than the tbe
length. The calculations should be repeated with properties evaluated at T, = 300K,



PROBLEM 8.22

KNOWN: Inlet temperature and flowrate of o1l moving through a tube of prescribed diameter and
surface temperature.

FIND: (a) Oil outlet temperature T, for two tube lengths, 5 m and 100 m. and log mean and arithmetic
mean temperature differences, (b) Effect of L on Ty, and Nup.

SCHEMATIC:

D =25 mm

m= 0.5 kg/s L™ 5£L£100m
- -~

Tm,i 25"&,} \(/

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible kinetic energy, potential energy and flow
work changes, (3) Constant properties.

PROPERTIES: Table A4, Oil (330 K): ¢, =2035 Vkg K, i = 0.0836 N-s/m’, k = 0.141 Wim K, Pr =

1205,
ANALYSIS: (a) Using Egs. 8.42b and 8.6
xDL — 4
T.,-'l]-[T,—T..,]t -——h Re, = o = SxONgn - =36
me, mDy mx0.025mx00836N-5'm”

Since entry length effects will be significant, use Eq. 8.56

5o Xl i, OOSSBD/LIRe,Pr | OMsIW/m K[, . 245x10'D/L
"[ 1400(DL)Re, P | 0025m 1+ 20500

ForL=5m, h=564366+1751)=119W/m" . K, hence

. . D.ﬂ!im:im:ll'lw,u"m’-ﬁ]
T, = 100°C ~(75°C)exp| - 22 =284°C
- (=e "[ 0.5kg/sx 2035) kg K

ForL=100m, h=564(3.66+338)=40W/m' K. T.,=449°C <
Also, forL=5m,
AT, -AT,  716-75
AT, = —2t—Ll_= =733'C AT, = =733"
™=~ In(AT,/AT,)  in(716/75) T ={4T, +4T)2=T33°C S
For L = 100 m, AT, =64.5°C, AT, =651"C <

(b} The effect of wbe length on the outlet temperature and Nusselt number was determined by using the
Correlationy and Properties Toolpads of [HT.



PROBLEM B.22 (Cont.)

il i -"';-.-: 0 4 = —
i . 1T i . \NENRER
z N :
} W s SAREERS
LA Bk lbl] “‘7|r.‘
a m r:m:d [ ] 'od a p . ;m; = bl

The outlet temperature approaches the surface temperature with increasing L, but even for L = 100 m,

Ten s well below T,. Although Nup decays with increasing L, it is still well sbove the fully developed
value of Nug 4 = 3.66.

COMMENTS: (1) The average, mean temperature, T, = 330 K. was significantly overestimated in part
(a). The accuracy may be improved by evaluating the properties at a lower temperature. (2) Use of AT,
instead of AT, is reasonable for small to moderate values of (T, - Tno). For large values of (T, -
Tms), AT, should be used.



PROBLEM 8.23

KNOWN: Ethylene glycol Howing through a coiled, thin walled tube submerged in a
well-stirred water bath maintained at a constant temperature.

FIND: Heat rate and required tube length for preseribed conditions.

SCHEMATIC:
m=00
o0l v Tl Teese
Tnj !Bﬂ i

: T =357
Thin-walled Well-stirred -[; FE 257

tube, D=3mm water bath, N ¢
! To=25°C I o X

ASSUMPTIONS: (1) Steady-state conditions, (2) Tube wall thermal resistance
negligible, (3) Convection coefficient on water side infinite; cooling process approximates
constant wall surface temperature distribution, (4) KE, PE and flow werk changes
negligible, (5) Constant properties, (6) Negligible heat transfer enhancement associated
with the eoiling.

PROPERTIES: Table A-5, Ethylene glycol (T =(85435)"C/2 = 80" C = 333K):
ep =2562J fleg'K, p=0.522x10"% N's/m?, k =0.260 W /m-K, Pr=51.3.

ANALYSIS: From an overall energy balance on the tube,

Gesay = M €{Tin o~ T i) = 0.01 kg/s x 2562J kg{35-85)°C = —1281 W . (1) <]
For the constant surface temperature condition, from the rate equation,
Av = Guonr /0 ATs,, (2)

AT, ik
ATpq = (AT,—AT;)/fn —= = [(35-25)* C — (85-25)* €] /¢n S22

=279°C. (3)

AT, 85—25
Find the Reynolds number to determine flow conditions,
s dm 4 x 0.01 kg/s — 813 . (4)

i 7 x0.003m x 0.522x10°7 Nes/m?

Hence, the flow is laminar and, assuming the flow is fully developed, the appropriate
correlation is

Nup == =366, B = Nu - = 3.06 x 0.260—=—/0.003m = 317W/m*K .  (5)

From Eq. (2), the required area, A,, and tube length, L, are
A, = 1281 W/317 W /m® K x 27.9° C = 0.1448 m*

L = A, /7D = 0.1448m" /7 (0.003m) = 15.4m . <]

COMMENTS: Note that for fully developed laminar flow conditions, the requirement

is satisfied: Gs™ =(L/D)/Rep Pr =(15.3/0.002) /(513 x 51.3) = 0.122 > 0.05. Note also
the sign of the heat rate q.,,, when using Eqs. (1) and (2),



PROBLEM 8.24

KNOWN: Inlet and outlet temperatures and velocity of fluid low in mbe. Tube diameter and
length.

FIND: Surface heat flux and temperatures at x =0.5 and 10 m.

SCHEMATIC:
L=10m
umsO 2mis
Toi25°C - s 75C
D:127 y

ASS'UHFI_‘IUNS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat loss
to surroundings, (4) Negligible potential and kinetic energy changes and axial conduction.

PROPERTIES: Pharmaceutical (given): p = 1000 kg/m®, ¢, = 4000 IkgK, p = 2«07
kg/s'm, k = 0.48 W/m'K, Pr= 10,

ANALYSIS: With
i = VA = 1000 kg/m® (0.2 ms)m{0.0127 m) 4 = 0.0253 ky/s
Equation 8.37 yields

q=mey (T, . - T, ;)= 00253 kg/s(4000 Iig-K)50 K = 5060 W.
The required heat flux is then

o = gfA, = 5060 Win(0.0127 m)10 m = 12,682 W/m?, <]
With

Reg = pVDiu = 1000 kgim* (0.2 mfs)0.0127 mf2¢107 kglem = 1270
the flow is laminar and Equation 8.23 yields

xeas = 0.05Rep Pry = 0.05(1270)100.0127 m) = 8.06 m.
w. with fully developed hydrodynamic and thermal conditions at x = 10 m, Equation 8.53
¥ 5

(10 m) = Nug 1, (/D) = 4.36(0.48 W/im-K/0.0127 m) = 168.8 Wim?-K.
Hence, from Newton's law of cooling,

Ton = T+ (G'M) = 75°C + (12,682 W/m?/164.8 Wim? K) = 152°C. <

At x = 0.5 m, (xD)V(RepPr) = 0.0031 and Figure 8.9 yiclds Nup = 8 for a thermal entry region
with uniform surface heat flux. Hence, h(0.5 m) = 302.4 W/m® K and, since T,, increases
linearly with x, Tp(x =05 m) =Ty ; + (T o = T )WL) = 27.5°C. It follows that

To(x =05 m) = 27.5°C + (12,682 Wim* /3024 Wim® K} = 69.4°C, <



PROBLEM 8.25

KNOWN: Temperature and mean velocity of oil in hydrodynamically fully developed flow
through a circular tube. Tube diameter and length and temperature of heated section.

FIND: Oil outlet temperature and heat rate.
SCHEMATIC:

Tadre —
Hl=1ﬂm_u{5

D=5mm

ASSUMPTIONS: (1) Fully developed velocity profile, (2) Negligible kinetic and potential
energy and flow work changes.

PROPERTIES: Table A5, Engine oil (T, = 310 K): ¢, = 1951 JkgK, v = 288x107% m?/s, k
= (0.145 W/m-K, Pr= 3400, p = 878 kg/m’,

ANALYSIS: From Equation 8.42b,
Tmo =Ty = (T, = Ten 3 Jexp[~(nDL/mc,, )h]
where
m = p(xD?/4)ug, = 878 kg/m® (r/4)(0.005 m)* 10 m/s = 0.172 kgs

UnD 10 mys(0.005 m)
With = =
3 Rep v 288x107% mifs

the flow is laminar. For a thermal entry region,
(DVL)RepPr = (0.005 m/6 m)(173.6)(3400) = 491.9

and Equation 8.56 vields

0.0688(491.9)

=173.6

Nup = 3.66 + =134,
- 1 + 0044919/
Hence,
h = (kD)Nup = (0.145 W/m-K/0.005 m)13.4 = 387 W/m* K
£(0.005 m)6 m(387 W/m>-k)
T = = - &
e = 150°C - (125 Oema| - e TR~ = 579°C .
Hence, from Equation 8.37
q=mcy(Tme — Tmi) =0.172 kg/s(1951 Jkg-K)(12.9°C) = 4330 W, <]

COMMENTS: (1) Although the flow is hydrodynamically fully developed as it enters the
heated section, it is not fully developed thermally and Nup, = 3.66. (2) Equation 8.44 yields q =
4320 W. (3) Ty, = 3045 K and the calculations should be repeated with improved oil
properties.



PROBLEM &.26

KENOWN: Tubing with glycerin welded to transformer lateral surface 1o remove dissipated power,
Maximum allowable temperature rise of coolant is 6°C.

FIND: (a) Required coolant rate m , tube length L and lateral spacing S between turns, and (b) Effect of
flowrate on outlet lemperature and maximum power,

SCHEMATIC:
ETt-nfnnnu', 1000 W _ Giycerin, T =24°C

Hnﬁml U;;::’ Falalie

fe———=—D =300 mm
ASSUMPTIONS: (1] Steady-state conditions, (2) All heat dissipated by transformer transferred 10

glycerin, (3) Fully developed flow (part a), (4) Negligible kinetic and potential energy changes, (5)
MNeghgible tube wall thermal resistance.

PROPERTIES: Tuable A.5, Glycerin (T, = 300 K): p = 12599 kg/m’, ¢, = 2427 Jkg K. p = 79.9 x |0
Nwm’, k =286 % 107 Wim-K, Pr= 6780,

D =20 mm

ANALYSIS: (a) From an overall energy balance assuming the maximum temperature rise of the
glycenin coolant 1s 6°C. find the flow rate as

q=me,(T,,-T,,) m=gq/c,(T,,-T,,)=1000W/2427]/kg- K(6K) =687 x 10" kg/s <

From Eq. 8.43, the length of twbing can be determined,

‘_Ij:'. :::'I' = exp(-PLh/ Ii'lr-:‘,]

where P = tD. For the tube flow, find

_ A _ 4x687 =107 kg/ss
by mx0020mxT799x107°N.s/m"

which implies laminar flow, and if fully developed,

Reg =547

— hD = 366x286x10” Wim K

Nip = — = 166 = = *,

umn k h S0 523W/m' K

(47-30)'C _ . =

m—up{—{ﬂu.umm]usz.awfm KxL)/(687x107 kg/s :114111,&;-[':}1

L=153m <
Ihnmh:rqumsufﬂHﬂJbtﬂg.N,i:N:Lr"{:'r]]]-tlﬁ.lmj.l"ﬂﬂﬂm]-Iﬁ_lmdh:mthu.puings
will be

S = H/N = 500 mm/16.2 = 30.8 mm. <

Continued.



PROBLEM B.26 (Cont.)

(b} Parametric calculations were performed using the IHT Correlations Toolpad based on Eq. 8.56 (a
thermal entry length condition), and the following results were obtained.

- i —
- i )
T ,..""" L 1 =
g / ———— et = i —1 .
E—— R [ - =l - — 4 |
| |
21008 - - = -
Bl nos ais BA7r 5 ol =K =X ] “RF ] BT oxy -k 1
Mms Roswriis. mastingo] Mgy Mg, mubdsging

With T, mauntained at 47°C. the maximum allowable transformer power (heat rate) and glycenn outlet
temperature increase and decrease, respectively, with increasing m. The increase in g is due o an
increase in Nup (and hence h ) with increasing Reg. The value of Nup increased from 5.3 to 9.4 with
increasing m from 0.05 to 0.25 kg's.

COMMENTS: Since Gz;,' =(L/D)/Re,, Pr = (15.3 mi0.02 m)/(5.47 x 6780) = 0.0206 < 0,05, entrance
length effects are significant, and Eq. 8.56 should be used 1o determine Nup.



PROBLEM 9.1

KNOWN: Tabulated values of density for water and definition of the volumetric
thermal expansion coefficient, 3.

FIND: Value of the volumetric expansion coefficient at J00K; compare with tabulated
values.

PROPERTIES: Table A-6, Water (300K): p=1/v=1/1.003x10"" m? fkg=907.0
kg/m?, §=276.1x10"" K™'; (205K): p=1/v;=1/1.002x10"" m® fkg=998.0 kg/m?;
(305K): p=1/v; =1/1.006x10"" m? /kg =995.0 kg/m®,

ANALYSIS: The volumetric expansion coefficient is defined by Eq. 9.4 as

- (%),

The density change with temperature at constant pressure can be estimated as

(3).~(22)

ar /*? T,-T; /*

where the subscripts (1,2) denote the property values just above and below, respectively,
the condition for T = 300K denoted by the subseript [0). That is,

1 ( Py =P
E L]
. Po NTy—=Ty /F
Substituting numerical values, find

~_ =1 (995.0—698.0) kg /m’
097.0 kg /m? (305—205)K
Compare this value with the tabulated one, J = 276.1x%10~° K™, to find our estimate is
8.7% high. <]

A = 300.9x10™% K1 | <]

COMMENTS: (1) The poor agreement between our estimate and the tabulated value
is due to the poor precision with which the density change with temperature is
estimated. The tabulated values of § were determined from very accurate equation of
state data.

(2) Note that 7 is negative for T < 275K. Why does this cecur? What is the
implication of this to free conveetion?



PROBLEM 9.2

KNOWN: Object with specified characteristic length and temperature difference
above ambient fluid.

FIND: Grashof number for air, hydrogen, water, ethylene glycol for a pressure of 1
atm.

SCHEMATIC:

]

ASSUMPTIONS: (1) Thermophysical properties evaluated at T; = 350K, (2) For
EASES, IE e I'Jrrl"

Ty -Tn=al =25°C

Quiescent fluid
T, latm

PROPERTIES: Evaluate at 1 atm, Ty = 350K:
Table A-§, Air: =20.92x10"" m?® /s; Hydrogen: v=143x10"%m® /s
Table A-6, Water (Sat. liquid): 1=piy vp =37.5x10"% m? /s, 5, =0.624310"2 K~
Table A-5, Ethylene glycol: ©=3.17x10"%m® /5, 5=0.85x10""K!.

ANALYSIS: The Grashof number is given by Eq. 0.12,
- iﬁ[Tl- -::t'.”-'l
A
Substituting numerical values for the fluid air with § = 1 /Ty, find

0.8m/s* x (1/350K) (25K) (0.25m)?
(20.92x107% m? /s)?

Gry,

Gry air =

Gr‘LI.h. - E.EﬂxlﬁT &
Performing similar calculations for the other fluids, find

<
Gry, hya = 5.35x10° <]
<

Gry, water = 1.70x10°
Gry op = 2.48x10" . <]

COMMENTS: Higher values of Gry, imply increased free convection flows. However,
other properties affect the value of the heat transfer coefficients. Note that for the
gases, = 1 /T, assuming perfect gas behavior.



PROBLEM 9.3

KNOWN: Relation for the Rayleigh number, a dimensionless parameter used in free
convection analysis.

FIND: Rayleigh number for four fluids for preseribed conditions,

B Quiescent
fluid, T

al=30°C
L=001m

SCHEMATIC:

L=00Im J

ASSUMPTIONS: (1) Perfect gas behavior for specified gases.

PROPERTIES: Table A-4, Air (400K, 1 atm): »=26.41x10"% m® /s, 0=383x10""
m®fs, §=1/T =1/400K =2.50x10"" K~*; Table A-{, Helium (400K, 1 atm): »=199x10""
m? /s, o0=205x10"" m®/s, 3=1/T=250x10" K~I; Table A-5, Glycerin (12° C =285K):
r=2830x10"" m /s, o=0.964x10"7 m%fs, F=0475x10"' K~'; Table A-8, Water
(37° C=310K, sat. liq.): »=jipve=695x10"" Nes/m®x L.O0Tx107" m? fkg=0.700x10~" m* /s,
u-.h vifepr =0.628 W /mKx LO0Tx107" m® fkg/a178 1 /kg'K = 0.161x10°° m® fa, F, =361.0x
107 K™,

ANALYSIS: The Rayleigh number, a dimensionless parameter used in free convection
analysis, is defined as the product of the Grashof and Prandtl numbers

— GrPp — BIATLY fiey  gBATL? (v)e, _ gdATL?
- e ot k A k 4]

where a =k/pe, and v=yfp. The numerical values for the four fluids follows:

Air (400K, 1 atm)
Rag = 9.8m/s" (1/400K) 30K(0.01m)" /26.4110° m® /s x 38.3x10F m® /s = 727 “‘-'-:]
Helvum (400K, 1 atm)

Ra, = 9.8m/s* (1/100K) 30K(0.01m)" /19810~ m® /s % 295x10~ m® /s = 12.5 <]
Glyeerin (285K)

Rag = B.8m/e* (0475107 K ') 30K(0.00m)’ /283010~ m® /s x 090410~ m’/a = §12 <]
Water (310K)

Rap = #8mfn” (0.362:107°K ') 30K(0.01m)" /070010 m? s % 0.151310* % s = 9.355¢10* ‘ﬂ
COMMENTS: (1) Note the wide variation in the Ra values for the four fluids. A

large value of Ra implies an increased free convection process, however, other properties
affect the value of the heat transfer coeflicient.



PROBLEM 9.4

KNOWN: Heat transfer rate by convection from a venical surface, Im high by 0.6m wide, to
quiescent air that is 20K cooler.

FIND: Ratio of the heat transfer rate for the above case 1o the rate corresponding to a vertical
surface that is 0.6m high by 1m wide with quiescent air that is 20K warmer.

- 20K, Ag Tols ::"‘ As
l': ler quiescent mer'ﬂ
Ma:ﬁ
l I'I'I'Iil'l".l
V*w;:ﬂﬁm
Lase 1

ASSUMPTIONS: (1) Thermophysical properties independent of temperature; evaluate at
300K; (2) Negligible radiation exchange with surroundings, (3) Quiescent ambient air,

SCHEMATIC:

PROPERTIES: Table A-4, Air (300K, 1 atm): v=1589<10"% m%/s, a=22.5«10"" m%s,

ANALYSIS: The rate equation for convection between the plates and quiescent air is

g=hy A, AT (1)

where AT is either (T,-T.) or (T.-T,); for both cases, A, =Lw. The desired heat transfer ratio is
then

a B
@ By
To determine the dependence of iy, on geometry, first calculate the Rayleigh number,
Ry =gpATL ' Na (3)
and substituting property values at 300K find,
Case I:  Rayy =9.8m/s (1/300K) 20K (1m)* /1580107 m? /s x 22.5x10°* m?/s = 1.82x10°
Case2:  Rapa =Ray(La/ly) = 1.82x10° (0.6m/1.0m)° = 3.94x10",
Hence, Case 1 is turbulent and Case 2 is laminar. Using the correlation of Eq. 9.24,

(2}

— hL 5
Nup = —— = C(Rar )" hL=%CR|t (4)

where for Case I: C; =0.10, ny = 1/3 and for Case 2: C; =059, n; = 1M, Substituting Eq. (4)
into the ratio of Eq. (2) with numerical values, find

@ _ (C/LoRaL,  (0.10/1m)(1.82x10%)!
B (CyL;)Ras  (0.590.6m)3.94:x10%)

= (1§81 <]

COMMENTS: Is this result o be expected? How do you explain this effect of plate
orientation on the heat rates?



PROBLEM 9.5

KNOWN: Large vertical plate with uniform surface temperature of 130°C suspended in
quiescent air at 25°C and smospheric pressure.

FIND: (a) Boundary layer thickness at 025m from lower edge, (b) Maximum velocity in
boundary layer at this location and position of maximum, (c) Heat transfer coefficient at this
location, (d) Location where boundary layer becomes turbulent.

SCHEMATIC:

,lfﬁﬂ'ﬂ
Tg 025 Pr072
o ; r>

! 7 il

ASSUMPTIONS: (1) lsothermal, vertical surface in an extensive, quiescent medium, (2)
Boundary layer assumptions valid.

PROPERTIES: Table A4, Air (Ty=(T,+T.)2=350K, | atm); v=2092x<10"* m%%s, k=0030
Wim-K, Pr=0.700.

ANALYSIS: (a) From the similarity solution results, Fig. 9.4 (see above right), the boundary
layer thickness corresponds 1o a value n=5. From Eqs. 9.13 and 9.12,

y = Nx(Gr, )~ (1)
Gr, =gf(T,~T_)x' AV =9.8 ;",'-n ?.SIIJH TH20.92:107% m*/5)* = 6,718x10° x (2)
y = 5(0.25m) (6.718x10°(0.25°4)~"™ = | 746x10-m = 17.5mm . <

(b) From the similarity solution shown above, the maximum velocity occurs at 1 =1 with
fin) =0.275. From Eq. 9.15, find

2 x 2092x107% miss
0.2%m

The maximum velocity occurs at a value of n = 1; using Eq. (3), it follows that this corresponds
to a position in the boundary layer given as

Yenun = 1/5 (17,5 mm) = 3 Smm, <
(c) From Eq. 9.19, the local heat transfer coefficient at x = 0.25m is
Nut, = hyxk = (Gr )" g(Pr) = (6.718x10°(0.25° )" 0.586 = 41.9

v

u= "% Grl® Finy = (6.718x10°(0.25")'? % 0.275 = 047 m/s . <]

hy = Nu, kfx = 41.9 % 0.030 Wm 'K /0.25m = 5.0 Wim® K , <]
The value for g(Pr) is determined from Eq. 9.20 with Pr=0.700.
(d) According to Eq. 9.23, the boundary layer becomes turbulent at x, given as

Ray . = Gr, . Pr=10" x, =[10" 16.718x10%(0.700)]'” = 0.60m . <]

COMMENTS: Note that f = 1/T;, a suitable approximation for air.



PROBLEM 9.6

KNOWN: Thin, vertical plates of length 0.15m at 54 * C being cooled in a water bath
at 20" C.

FIND: Minimum spacing between plates such that no interference will oceur between
free-convection boundary layers.

SCHEMATIC:
L=0.15m ! Qf-uﬁn::?lg_cwufl"'.

ASSUMPTIONS: (a) Water in bath is quiescent, (b) Plates are at uniform
temperature.

PROPERTIES: Table A-6, Water (.T,-{T,+T,,]ﬁ-{54+m}'cﬂ =310K):
pe=1/fv; =003.05 kg/m?, u=695x10"" Nes/m®, v=pu/p=0.998x10"" m®/fs, Pr=4.82,
f=3861.0x107% K1,

ANALYSIS: The minimum separation distance will be twice the thickness of the
boundary layer at the trailing edge where x =0.15m. Assuming laminar, free convection
boundary layer conditions, the similarity parameter, 1, given by Eq. 9.13, is

e % ':ﬂr:hl'll"’.-:l'lr‘|

where y is measured normal to the plate

(see Fig. 9.3). According to Fig. 0.4, the Pr=5

Sk i e F=3564 7=§

Yoo = 1% (Gry )/ Y 5{5}%
whers Gr, = 52410~ )Y ™

p,'l

Gr, =9.8m /s* % 361.9:107" K™ (54—20)K % (0.15m)® /(6.998x10"7 m? /u)® =8.310x10",
Hence,

Yoe = 5 % 0.15m (8.310%10% /4)"Y* = 6.247x10*m = 6.3 mm
and the minimum separation is

d =2y, =2x63mm = 12.6 mm. <]

COMMENTS: According to Eq. 9.23, the critical Grashol number for the onset of
turbulent conditions in the boundary layer is Gry. Pr = 10°. For the conditions above,
Gr, Pr =8.31x10" « 4.62 = 3.8x10° . We conclude that the boundary layer is indeed
turbulent at x = 0.15m and our ealeulation is only an estimate which is likely to be low.
Therefore, the plate separation should be greater than 12.6 mm.



PROBLEM 9.7

KNOWN: Square aluminum plate at 15°C suspended in quiescent air at 40°C.

FIND: Average heat transfer coefficient by two methods — using results of similarity to the
boundary layer equations and results from an empirical correlation.

SCHEMATIC:
s=15C

Quiescent air Plate, 200mm square,
w ﬁ Sm nr' thickness

ASSUMPTIONS: (1) Uniform plate surface iemperature, (2) Quiescent room air, (3) Surface
radiation exchange with surroundings negligible, (4) Perfect gas behavior for air, f = 1/T,.

PROPERTIES: Table A4, Air (Ty=(T+T.)2=(40+15°C2=300K, | atm): v=158%10"*
m®fs, k=0.0263 W/m'K, a=22.5x10"® m%/s, Pr=0.707.

ANALYSIS: Calculate the Rayleigh number 1o determine the boundary layer flow conditions,
Ra, =gPATL'NVa
Rag =9.8m/s? (1/300K) (40-15)°C (0.2m) [(15.89x107% m¥/s) (22,5107 m? fs) = 1. 82710

where f=1/T; and AT=T.-T,. Since Ray < 10°, the flow is laminar and the similarity solution
of Section 9.4 is applicable. From Eqs. 9.21 and 9.20,

— L
SYLUIPA
0.75pPr'2
Ll [0.609 + 1.221 Pr'? 4+ 1.238 pr)'™
and substituting numerical values with G, = Ray /Pr, find

g(Pr) = 0,750,707 210,609 + 1.221(0.707'? + 1,238 = 0.7071"™* = 0,501

= n,uznawmu) 4 (l.azmu’m.?m) - -
B ( s x P x 0,501 = 4.42 W/m®* K . <
The appropriate empirical correlation for estimating by is given by Fq. 9.27,
hy L 0.670 Ra[™

=
Nuy = ——— = )
= e [1 + (0.492/Pr)" 16 4#

hy. = (0.0263 W/m-K/0.20m) [0.68 + 067001 827107 )™ /[ 1 + (0.492/0.707)%16 149

By =442 Wim® K . <]

COMMENTS: The agreement of hy calculated by these two methods is excellent. Using the
Churchill-Chu correlation, Eq. 9.26, find by, =487 W/m*K. This relation is not the most
accurnte for the laminar regime, but is suitable for both laminar and rbulent regions. As the
plate heats up, the average coefficient will decrease.



PROBLEM 9.8
KNOWN: Dimensions of vertical rectangular fins. Temperature of fins and quiescent air.

FIND: (a) Optimum fin spacing, (b) Rate of heat transfer from an armay of fins at the optimal
spacing.

SCHEMATIC: W=355mm
H‘J‘.Sﬂnm
Tap view ,5,:3;,

beodt = !jnm

ASSUMPTIONS: (1) Fins are isothermal, (2) Radintion effects are negligible, (3) Air is
quiescent.

PROPERTIES: Table A-4, Air (T;=325K, | am): v=18.41x10"" m%/s, k=0.0282 W/imK,
Pr=0.703.

ANALYSIS: (a) If fins are 100 close, boundary layers on adjoining surfaces will coalesce and
heat transfer® will decrease. [f fins are 100 far apar, the surface area becomes too small and heat
transfer decreases. Sqp = 8y, From Fig. 9.4, the edge of boundary layer corresponds 1o

1 = (&H) (Gry/4)'™ = 5,

Hence,
T o 2
g gP(T,~T..)H umnmmﬁsnxm:mm:’ CEAR
v (18.41x10°% m?/s)
8(H) = 5(0.15m)/(1.5<10"/4)""* =0.017m=1Tmm  §,, = 34mm. <

(b} The number of fins N can be found as
N = WHS +) = 355/35.5= 10
and the heat rate is
q=2Nh(HL) (T,-T.).
For laminar flow conditdons
Nug = 0.68 + 0.67 Ral™/[1 + (0.492/Pr)*16 14
Nuy = 0.68 + 0.67(1.5:10" = 0.703)"™ 11 + (0.492/0.703)*"5[*® = 39
h = k Nug/H = 0.0282 W/m-K(30)/0.15 m = 5.6 W/m* K

q= 2(10)5.6 W/m?-K (0.15m x 0.02 m) (350-300)K = 168 W . <]

COMMENTS: Pan (a) result is a conservative estimate of the optimum spacing. The increase
in area resulting from a further reduction in § would more than compensate for the effect of
fluid entrapment due to boundary layer merger. From a more rigorous treatment (see Section
9.7.1), Spp= 10mm is obtained for the prescribed conditions,



PROBLEM 9.9
KNOWN: Interior air and wall temperatures; wall height is 2.5m.

FIND: (a) Average heat transfer coefficient when T.. =20°C and T, =10°C, (b) Average heat
transfer coefficient when T. =27°C and T, =37°C.

SCHEMATIC:
T3
Wall height 5
) N e
ﬂ:
@ Winter condition Sumw condition

ASSUMPTIONS: (a) Wall is at a uniform temperature, (b) Room air is quiescent.

rnumnm Table A4, Air (Ty=298K, | am): B=1/T;= 3472107 K™!, v=14.8210"%
m?fs, k=00253 W/mK, 0=209<10"° mis, Pr=0710; (Ty=305K, 1 am):
B=1T=327910" K, v=1639=10"" m?fs. k=0.0267 WimK, a= Elx 10°% mis,
Pr=0.706.

ANALYSIS: The appropriate correlation for the average heat transfer coefficient for free
convection on a vertical wall is Eg. 9.26

- |
=2 IRy 0.387 Raf 1547
Ny = —=10.825
Caga: - { " T+ (0.492/Pn030 p%
where Ray = g f ATL?va, Eq. 9.25, with AT = T,~T.. or T.-T,.
(a) Substituting numerical values typical of winter conditions gives

0.8 m/s? » 3.472=107 K~ 20100 K (2.5m)®
14825107 m?/s » 20,96x107% m* /s

. 2
0.387(1.711x10'0y0-1667

Nop = {0,825+ i

- { [1 + (0.492/0.710)25630-29% 299.6

Ra, = = 1,711x10'?

Hence,  h=Nu kL =299.6(0.0253 W/mK)/2.5m = 3.03 W/im* K. <

(b) Substituting numencal values typical of summer conditions gives

9.8 m/s® x 3279107 K~'(37-27T) K (2.5 m)"
23.2x¢107% m?/s x 16.39x107° m%/s

0.387(1.320x1017)" 1667 . S
[1 + (0.492/0.706)0583 j0.2%6 o

= 1.320x10'°

L=

ml_ = {DEE =

Hence,  h=Nuy k/L = 2758 x 0.0267 Wim'K/2.5m = 2.94 W/m® K. <

COMMENTS: There is a small influence due 1o Ty on h f-ui these conditions. We should
expect radiation effects to be imponant with such low values of h.



PROBLEM 9.10

KNOWN: Vertcal plame experiencing free convection with quiescent air at atmospheric
pressure and film temperature 400 K.

FIND: Form of correlation for average heat transfer coefficient in terms of AT and

characteristic length.
T,
Quiescent air, T >
L Tp = 400K
J'_ aT=Ty T

ASSUMPTIONS: (1) Air is extensive, quiescent medium, (2) Perfect gas behavior.

SCHEMATIC:

PROPERTIES: Tabie A6, Air (Ty = 400 K., 1 atm): v = 2641107 m?/s, k = 0.0338 W/m-K_
a = 38.3x107% mi/s.

ANALYSIS: Consider the correlation having the form of Eq. 9.24 with Ray defined by Eq.
9.25.

Nuy, = hy L/k = CRa{ (1)
where

N ——
Combining Eqs. (1) and (2),

B, = (L)CRaf = SO N 00 g9007aTLY) 3)

From Fig. 9.6, note that for laminar boundary layer conditions, 10* < Ray < 10”, C = 0.59 and n
= |/M. Using Eg. (3},

154
hy = LAO[L-" (AT-L}) ¥ = 1-4&(‘5[‘_—1') <]
For wrbulent conditions in the range 10” < Ray, < 10'%, C=0.10 and n = 1/3. Using Eq. (3),
hy = 098[L"! (AT'L")'P] = 0.98AT3, <]

COMMENTS: Note carefully the dependence of AT and L on the average heat transfer
coefficient for laminar and turbulent conditions. It is’ important to note that the characteristic
length L. does not influence hy for wurbulent conditions.



PROBLEM 9.11

KNOWN: Temperature dependence of free convection coefficient, b = CAT"*, for a solid suddenly
submerged in a quiescent fluid.

FIND: ia) Expression for cooling ume. 1. (b) Considering a plate of prescribed geometry and thermal
conditions, the nme required o reach 80°C using the appropriate correlation from Problem 910 and (c)

Plot the iemperature-time history obtained from pan (b} and compare with results using a constant h,_
from an appropriate comelation based upon an average surface temperature T =(T, +T, /2.

SCHEMATIC:

Al 200 ety
150 x 150 mm_
" Thuid, T, & mm thicarsa,
Ma=2159C
TiW=T,

ASSUMPTIONS: (1) Lumped ﬂpll:l.‘lll'l-:l:' approximation is valid, (2) Negligible radiation. (%)
Constant properties.

PROPERTIES: Tuble A/, Aluminum alloy 2024 (T =(T, +T,)/2 = 400K): p = 2770 kgim'. ¢, = 925
kg K. k= 186 Wim K; Table A4, Air ( Ty, = 362 K): v=2221 x 10° m's, k= 0.03069 W/m K, ¢ =
1187 = 107 m'fs, Pr=0.6976, = VT,
ANALYSIS: (a) Apply an energy balance to a control surface about the object. ~E = E,,, und
substitule the convection rate equation, with h =CAT", 1o find

~CA,(T-T.)"" = didi(pVeT). i
Separating vanables and integrating, find

dTid = ~{CA, jpVe)(T-T.)"

T; =ldd
N [T-T _[p\'c] RE=R | '-ﬁ’?"
dpVec =it T 4pVe 'I.',I-T_ o
= =T = (- R [1-. -1-_] -l]- <

ib) Considering the aluminum plate, initially at T{0) = 225°C, and suddenly exposed 10 ambient air
atT_ =215C, from Problem 9.10 the convection coefficient has the form

=4 %]” F, =CAT"

where C = | 40/L"™ = 1.4010.150)"™ = 2. 2496 W/m® - K" . Using Eq. (2), find
Continued. ..



FROBLEM 9.11 (Cont.)

4% 2770kg/m’(0.150° x 0.005)m’ = 925)/kg- K [ 225 - 251"
1 [ ] ~1| =1154s

. 22496W/m® K" x2%(0.150m)’ (22525 K'* |\ 8025
(¢) For the vertical plate, Eq. 9.27 is an appropriate correlation. Evaluati e
T =(T+T.)/2=((T, + T, )/2+ T} 22362 K

where T, = 426K, the average plate temperature, find

_eB(T-TL'  98nys’ (1/362K)(426 - 298)K(0.150m)’

Ra . :
. va 221x107 m’ /s 38T % 10 m’ /s

=1652x%10°

= 14 16s2x10")"
W =060+ —OBTORGT g, OSTUIES2XI0°)
[1+(04927p0)™ | [1+(049206976)"]

= k=— 003069W/m-K
=N =
" L - 0.150m

From Eq. 5.6, the wemperature-time history with a constant convection coefficient is
T(t)=T. +(T, —T_]mﬁ-ﬁ.ﬁ. .I"P'c"r::ll] (3)

where A, [V =21 (LxLxw)=2/w=400m"' . The iemperature-time histories for the h = CAT"™ and
h, analyses are shown in plot below,

=334

%334 =683IW/m’ K

(Plafs isrmgweeators Ta. ()
E

] T | []
-] 00 Ay BOa B0 00D iR00  vabE RGO
i T

= Coraipn conficent. e s ot 1]
== Vanaee cosfcied h« I « Tard V0 28,

COMMENTS: (1) The times to reach T(t,) = 80°C were 1154 and 12125 for the variable and constant
coefficient analysis. respectively, a difference of 5%. For convenience. it is reasonable to evaluate the

convection coefficient as described in part (b).
(2) Note that Ray < 10" so indeed the expression selected from Problem 9.10 was the appropriate one.

(3} Recognize that if the emissivity of the plate were unity, the average lincanzed radiation coefficient
usinig Eq. (1.9)is h,,, =1L0W/m’ K and radiative exchange becomes an important process.



FPROBLEM 9.12

KNOWN: Oven door with average surface temperature of 32°C in a room with
ambient air at 22°C.

FIND: Heat loss to the room. Alse, find effect on heat loss if emissivity of door is
unity and the surroundings are at 22°C.

SCHEMATIC: 0%
‘
L:32°C
A

ASSUMPTIONS: (1) Ambient air is quiescent, (2) Surface radiation effects are
negligible.

PROPERTIES: Table A-§, Air (T;=300K, 1 atm): »=1589x10"" m®/s, k=0,0263
W/m'K, o =22.5x10"" m?/a, Pr=0.707, 3=1/Ty=3.33x10"2 K~*.

ANALYSIS: The heat rate from the oven door surface by convection to the ambient
air is
q=hA, (T,~T.) (1)

where h can be estimated from the [ree-convection correlation for a vertieal plate, Eq.
9.26,

0.387 Ra}/® 3

T T+ (0402 /peyrupE | (2)

The Rayleigh number, Eq. .25, is

BT ~To)l'  9.8m/s (1/300K)(32-22)K x 0.5% m?
b 1580107 m® /5« 22.5%10°" m* /s

Substituting numerical values into Eq. (1), find
2
=63.5

Ray, = = L.142x10% ,

— 18
o, =10.825 + n.:mn.l-:leu:}i' _
1 + (0.492/0.707)" 18|00

hy, = %mL - umza:: MK 635 =334W/m*K.

The heat rate using Eq. (1) is

q=334W/m¥K % (0.5 x 0.7)m*(32-22)K = 11.TW, <]
Heat loss by radiation, assuming « = 1, is

Grad =€ Ay O T3 Ty )

st = 1{0.5 % 0.7)m? x 567107 W/m™K* [(273+32)* — (273+22)"| K* = 214w . <]
Note that heat loss by radiation is nearly double that by lree convection.

COMMENTS: (1) Note the characteristic length in the Rayleigh number is the height
of the vertical plate (door).



PROBLEM 9.13

KNOWN: Aluminum plate (alloy 2024) at an initial uniform temperature of 227°C is suspended in a
room where the ambient air and surroundings are w 27°C.

FIND: {a) Expression for time rate of change of the plate, (b) Initial rate of cooling (K/s) when plate
tempersune is 227°C. () Validity of assuming u uniform plate temperature, (d) Decay of plate
wempersture and the convection and radianon rates dunng cooldown.

SCHEMATIC:

WL B
Plate, 0.3x 0.3 m, — -l_ Taw=Tu=279C
15 mm thick.
Aluminum 2024
plate area, A,
R Tj=227°C
| | t=0.015m

ASSUMPTIONS: (1) Platc temperature is uniform, (2) Ambient air is quiescent and extensive, (3)
Surroundings are large compared to plate.

PROPERTIES: Table A/, Aluminum alloy 2024 (T=500 K p = 2770 kg/m’, k = 186 WimK. c =
983 Mg K. Table A4, Air (Ty=400 K. | atm): v =26.41 % 10® m'fs, k = 0.0388 WimK, a =381 x
10" m'/s, Pr=0.600.

ANALYSIS: (a) From an energy balance on the plate with free convection and radiation exchange,
-E,, = E, . we obtain
dT dT -2

-Eil.ﬁ.,l‘l",—-T_I—E!A,nﬁ‘,"—T:,}=pﬁ‘|cE or -d—tna['ﬁhgrﬁr_}uarn'-ﬁ_}] a

where T.. the plate temperature, 15 assumed o be uniform at any time.
(b} To evaluate (dT/dt), estimate hy . First, find the Rayleigh number,
98m/s” (1/400KN227 - 27)K = (0.3m)’

Ra, =gf{T -T_ )L fva= = .
L =21, -T)L/ 26041x10m s x383%10*m’ /s el
Eq. 927 is appropriate; substituting numerical values, find
- (L) il : i
Nu, =068+ SE0RY; = 0,68 s eraadabicd] =555

vy + w
[l +|_n.-'.5|1,fl=r1""] Il +{U.4‘:’I!,fﬂ-_ﬁ'ilﬂ]""']m
by, =Nupk/L=555x00338W/m-K/03m=625W/m’ K

Continued...



PROBLEM 9.13 iCont.)

LU 3 =
dt 2770kg/m’ x0.015m x 983 /kg- K
[6:25W/m* - K(227 - 27)K + 025(567x 107 W/m®- K*)(500* - 300*)K*] = ~0.009 K s <

ic) The uniform temperature assumption i justified if the Biot number criterion 15 satisfied. With L. =
(VI2A) = (AUIA) = (2  and by, =h ., +h,, Bi=h_(y2)/k €0.1. Using the lincanzed radiation
coelTicient relation, find

b =eo(T, + T )T} + T, ) =0.25(567x 107 W/m" . K* {500+ 300){ 500" + 300" )K" = 386 W/m" -K
Hence, Bi = (6.25 + 3.86) Wim™-K(0.015 m/2)/186 Wim K =4.07 x 10™. Since Bi << 0.1, the
assumption is appropriate.

id) The iemperature history of the plate wis computed by combining the Liumped Capacitance Model of
IHT with the appropriate Correlations and Properties Toolpads.

e
5 —

| S S -

=
=5 S T _'_ A e e
' = e m e m . 1
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¥ S =

Due to the small values of h, and h_,, the plaie cools slowly and does not reach 30°C until 1 = 140005 =
1.8%h. The convection and radiation rates decrease rapidly with increasing t (decreasing T, thereby
decelerating the cooling process.

COMMENTS: The reduction in the convection rate with increasing time is due 1o a reduction in the
thermal conductivity of air. as well as the values of by and T.



PROBLEM 9.14

KNOWN: Instantaneous temperature and time rate of temperature change of a
vertical plate as described in Problem 9.13 while cooling in a room.

FIND: Average free convection coefficient for the prescribed conditions; compare with
standard empirical correlation.

SCHEMATIC:
T-127C, 4F = -00465K/s
¥ Plate, aluminum alloy 2024
03 '
O03m square, e=025
p—L=15mm

ASSUMPTIONS: (1) Ugiform plate temperature, (2) Quiescent room air, (3)
Surroundings large compared to surroundings.

PRDPERTIEE: Table A-1, Aluminum alloy 2024 (T,=127"C=400K): p=2770
kg /m?, n,-iEE Jﬂcgl{ Table A-4§, Air (T -’(T.-i-T,.,.}fE-HEﬂKJ, 1 atm):
p=20.02x10"" m? /5, k =0.020 W /m'K, a=20.9x10"" m* /s, Pr=0.700.

ANALYSIS: From an energy balance on the plate
considering free convection and radiation exchange,

Eip —Equ =Ey

—h (2A4) (T ~Too) ~e(2A,Jo( T4 ~Thee) =p Ay €y S
Noting that the plate area is 2A,, solving for I:;_, and substituting numerical values, find

By, =[—H=.— —~2e0{T; =Ty )| /2T, ~Tw)

by = [=2770kg/m <0.3mx925] kg K(—0.0485K /5) — 2x0.25x5,67x10~*W fm*K*(400* 300" K|
/2(127-27)" C = (8.936—2.455) W /m*-K

by, = 6.5W/m*K . <l
To select an appropriate empirical correlation, first evaluate the Rayleigh number,

Rag =g AATL? fva

Ray, =9.8m /s* (1/350K)(127—27)K (0.3m)" /(20.92x107% m® 5} (20.9x10~* m? /s) = 1.21x10" .
Since Rag, < 10°, the flow is laminar and Eq. 9.27 is applicable,

Nug = b, L e ()68 + n‘ﬁ?nﬁltﬂ
» [1+(0.492/Pr )83

by = (LR ) (0,68 +0.870(1.21x10') /' /1 4 (0492/0.700) 10 ) 55 W/ K . <]

COMMENTS: (1) The correlation estimate is 15% lower than the experimental
result. Using the Churchill-Chu relation, Eq. 9.26, which yields a less accurate estimate,

hy, =8.5W /m*K. (2) This transient method, useful for obtaining an average free
convection coefficient for spacewise isothermal objects, requires Bi < 0.1,



PROBLEM 9.15

KNOWN: Person, approximated as a eylinder, experiencing heat loss in water or air
at 10°C,

FIND: Whether heat loss from body in water is 30 times that in air.

ASSUMPTIONS: (1) Person can be approximated as a vertical eylinder of diameter
D = 0.3 m and length L. = 1.8 m, at 25" C, (2) Loss is only from the lateral surface.

PROPERTIES: Table A.{, Air (T = (25 + 10)°C/2 = 200 K, 1 atm): k = 0.02903
W/mK, v = 190.01x107% m',.":. a = 28.4x1078 m’_fn; Table A.6, Water gﬂu K k=
0.508 Wzm-K. v = pvy = L081x107% m*[s, & = kvgfe, = 1.431x10™" m?/s, 5 =
174x107° K1,

ANALYSIS: In both water (wa) and air (a), the heat loss from the lateral surface of
the eylinder approximating the body is

q = hDL(T, — T..)
where T, and T.. are the same for both situations. Hence,

h_iﬂu‘

% b,

Verlical cylinder in air:

_lgnTL’_umﬁxL K)25 - 10)K(1.8 m i "
R e 199110 m* (ax 28,410~ m" /s iz
Using Eq. 9.24 with C = 0.1 and n = 1/3,
" E‘LL ¥y i+ 2
Nup = —— = CRa} = 0.1(5.228x10 PR - 1724 by = 2.82 W/m*K.
Vertical eylinder in waler:
_ 8.8 m/s x1T4x107° K™' (25 - 10K (1.8 m)' _ i
R 1081107 m* fix1.43110~ m" /s TR
Using Eq. 9.24 with C = 0.1 and n = 1/3,
Nuo, = "I'T"' = CRa = 0.1[9.843x10")'" = 978.9 by, = 328 W/m" K.

Henee, from this analysis we find

Ges 328 W/im K _
&% IEW/mK

which compares poorly with the claim of 30.
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PROBLEM 9.16

KNOWN: Person, approximated as a vertical eylinder (plate), having surface

temperature of 25°C, exposed to surroundings at quiescent ambient conditions at
0°C.

FIND: Heat loss in ambient air. Compare loss if amblient is heliom st 15 atm, the
environment for deep sea diver.

- A o halie n-cyhndrical form
D:03m L=18m
TW=T;
T=25°C

ASSUMPTIONS: (1) Person ean be approximated as vertical cylinder (plate), (2)
Heat losses occur from lateral surface only, (3) Thermophysical properties k, ey and u
independent of pressure for helium and air, (4) Surroundings are large compared to
person.

SCHEMATIC:

PROPERTIES: Table A.11, Cloth (300 K): ¢ = 0.75 to 0.90; Table A.4, Air (300 K,
1 atm): k = 0.0283 W/m'K, v = 15.80x107° m* /s, o = 22.5x10°% m® /s, Pr = 0.707;
Table A.4, Helium (300 K, 15 atm}: k = 0152 W/mK, ¢+ = 122x107%/15 =
8.13x10°? mlfl. gsince iy = pfpand v p™! ap”!, a = 180x10"°% m?/s, Pr = 0.680.

ANALYSIS: The heat loss from the surface due to convection and radiation is

= Gopay * Qi = 'DLIE + hl“Tl- - Tm! e 'DLL'T| - m]‘

where h, = (T, + T)T? + T.F) = 56710~ W/m*K*(208 + 293)K(208° + 2037 JK* = 585,
Since ¢ varies from 0.75 to 0.90, h, = 4.4 — 5.3 W/m®K. Estimate h from the vertical
plate Churehill-Chu eorrelation with

JEATL L - }
Ray e I"'"'"I. k {ﬂ.‘l“ * [1 + {nd“mr]uﬂu]h.’:: )

Substituting numerieal values, the following results are obtained

Air (1 atm) Helium (15 atm) <]
Ray, 2.864x10° 6,507 10°
Nuy, 166.4 107.0
by, (W /m*K) 2.4 0.0
b (W/m*K) 4.4-5.3 4.4—5.3
h (W/m*K) 8.8-7.7 13.4—14.3
q (W) 57.7—65.3 114—-121

The effect of replacing atmospheric air with pressurized helium (15 atm) is to increase
the heat loss by nearly 1009%.

COMMENTS: (1) Note that radiation exchange is twice that of convection with air,

but only half with helium. In either situation, using reflective clothing would reduce
the heat losses significantly.



PROBLEM 9.7

KNOWN: Room and ambient dir conditions for window glass
FIND: Temperature of the glass and rate of heat loss,

SCHEMATIC:
Windowglass (Tmx1m, Te=1)

i
2

E_'
3
S

ASSUMPTTONS: (1) Steady-state conditions, (I) Negligible iemperature gradients in the glass, (1)
liiner and outer surfaces exposed to large surroundings.

PROPERTIES: Table A4, air (T, and Ty,): Obtained from the IHT Properiies Tool Pad.
ANALYSIS: Performing an energy balance on the window pane, it follows that E_ = E__ . or
eo( TS, ~T*)+h(T., = T)=eo(T* - T, ) +h (T-T_,)

where h, and h, may be evaluated from Egq, 9.26.

:
L]
0.387Ra)’

[1 +(0.492/Pr ;“”‘]W

Using the First Law Model for an [sothermal Plane Wall and the Correlations and Properties Tool Pads
of IHT, the energy balance equation was formulated and solved 1o obtain

T=218K <

Nuy = {0825+

The heat rate is then g, = gy, or
q, = L[eo{Ts,, - T*)+ R (T. - T)|= 1748w <

COMMENTS: The radhative and convective contribuiions to heat transfer at the inner and outer
surfaces are Qug, = 94 W, 0w = 7573 W, Qi = 86.54 W, and g, = 8823 W with corresponding
convection coefficients of h, = 195 Wim' K and b, =423 Wim>K. The heat loss could be reduced
significantly by installing a double pane window.



PROBLEM %.18

KNOWN: Room and ambient air condittons for window glass. Thickness and thermal conductivity of
2luss.

FIND: Inner and outer surface temperatures and heat loss.

SCHEMATIC:
Window glass (1mx1m kg=14 WmK.e=1)

19 =10 mm —les|
ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in the glass, () Inner
and outer surfaces exposed to large surroundings.

PROPERTIES: Table A4, air Ty, and Ty,): Obtamed from the IHT Properries Tool Pad.

ANALYSIS: Pedorming energy balances at the inner and outer surfaces, we obtain, respectively,
E.U'{T:._.-T:‘}-FF.[T_‘-T‘J:{hﬂt!.ﬂti-Tu_i ”I
(kg/elT,, - T, )=eo{T), =TS, . )+ b (T~ T..) (2)

where Eq. 926 may be used to evaluate h, and b,

1
0.387Ra)"

N, =4{0825+
[i+m.aur1=r:""]""

Using the First Law Model for One-dimensional Conduction in a Plane Wall and the Correlations and
Properties Tool Pads of [HT, the energy balance equations were formulasted and solved 1o obtain

Tu=1T44 K Tu=2132K <
from which the heut loss iz

3 by
q--{—{Tu-T“]-IbE_HW <

COMMENTS: By accounting for the thermal resistance of the glass, the heat loss is smaller (168.8 W)
than that determined in the preceding problem (174.8 W) by assuming an isothermal pane.



PROBLEM 9.19

KNOWN: Air iemperature and wall temperature and height for a room. Water temperature
and wall temperature for a simulation experiment.

FIND: Required test cell height for similarity. Ratio of average convection coefficients for the
WO Cases.

SCHEMATIC:

28 % ,=305K ?:%

T5=295K Ta=290K i

ASSUMPTIONS: (1) Air and water are quiescent, (2) Flow conditions comespond to free
convection boundary layer development on an isothermal vertical plate, (3) Constant properties.

PROPERTIES: Table A4, Air (Ty = 300 K, 1 atm): v = 15.9%107® m%/s, a0 = 22.5x10°% m?/s,
B=1/Tp=33310K™", k=00263 WmK; Table A6, Water (T; = 205 K): p = 998 kg/m”,
-Eﬂulﬂ'ﬁﬁfm’cp-dlatm'.rﬁﬂ =227.5x10° K™, k = 0,606 W/m'K; hence, v = w/p =
9.61x1077 m?/s, @ = kipe, = 1.45x10°7 m?/s.

ANALYSIS: Similarity requires that Ray_, = Rag_,, where
gh(T, - T.)L?

Rap = ———

Hence,

Ly _r(avy Bu ]m=[9.ﬁ1::1,4ﬁulﬂ'“_ 3.33x107 ]'”
Ly (av)y Bu,o 15.9%22.5x107"% 0.228x107°

L,, = 2.5 m{0.179) = 0.45 m. <
If Ray_, = Rag_,,, it follows that Nuy_, = Nuy_,,. Hence,
h, L. k& 045 n.uzﬁa_”hm_{ <

. Iy Ky 235 0406

COMMENTS: Similitude allows us 1o obtain valuable information for one system by
performing experiments for a smaller system and a different fluid.



PROBLEM 9.20

KNOWN: Thin-walled contmner with hot process fluid st 50°C placed in a quiescent. cold water bath at
10%C

FIND: (a) Overall heat transfer coefficient, U, between the hot and cold fluids, and (b) Compute and
plot U as a function of the hot process fluid temperature for the range 20 € T, < S0°C.

SCHEMATIC:

e gy L T T T g g e e g
i £ L 4]
e .

ASSUMPTIONS: (1) Steady-state conditions, (2) Heat transfer at the surfaces approximated by frec
convection from a vertical plate, (3) Fluids are extensive and quiescent. (4) Hot process fluid
thermophysical properiies approximated as those of water, and (5) Negligible container wall thermal
resisiance.

PROPERTIES: Table A.6, Water (assume Typ = 310 K): py= I/1.007 % 107 =993 kg/m', ¢, = 4178
kg K, vy= pf/py =695 x 10" N-o/m’993 kg/m' = 6.999 % 10”7 m'fs, ky=0.628 Wim-K, Pr, = 4.62. a, =
k/pucps = 1.514 % 107 m'fs, i = 361.9 % 10* K ; Table A6, Water (assume Ty, = 295 K): p, = 1/1.002
x 107 =998 kg/m', ;. = 4181 Mkg K. v, = jup, = 959 x 10* N-s/m /998 kg/m" = 9.609 = 10" m¥s, k_ =
0,606 Wim-K, Pr. = 6,62, &, = kJ/p.cy. = 1452 107 m'fs, B, =227.5% 10* K"

ANALYSIS: (a) The overall heat transfer coefficient between the hot process fluid, T_, . and the cold
water bath Muid. T__, is

u=(1fh, +VR,)" i

where the average free convection coefficicnts can be estimated from the vertical plate correlation Eqg.
9.26, with the Rayleigh number, Eq. 9.25,

0.387Ra" R, - EBOTL s
[ +{u.4az,rrﬂ‘”‘]“1 va :

To affect a solution, assume T, = I[T. s ,]J,I’lt 30°C = 303K, so that the hot and cold fluid film

temperatures are T, =313 K =310 Kand Ty, = 293 K = 295 K. From an energy balance across the
container walls,

Eh{Tlh_.]::I:Fl{]:_'Tﬂ.:} (E 1]

ﬁ., ={ 0825+

the surface temperature T, can be determined. Evaluating the correlation parameters, find:
Hot process fluid:

_ 98m/s’ %3619 % 10°* K™ (50~ 30)K(0.200m)’

Ra — 3
e 6999 x 10" m' /sx 1514 %107 m’ /s

=5357 = 10"

i P el



PROBLEM 9.20 ( Cont.)

i

0387(5.357 =« 10")

[i +(0.492/4.62)""" rh = 2515

Nues = {0825+

h, = FrEL.."T_'L= 251.5= 0628W/m™ K/0.200m = 790W/m" K

Cirled water bath:

_ 98m/s’ x 2275« 107K '(30 - 10)K(0.200m)’
0600« 107 m /s= 1.452% 107" m'/s

2

=2557« 10"

Ra,

0.387(2.557« 10°)"*

Nup, = {0825+ { } = 2039
[l +{0.492/6.62)"" |

h, = 2039 % 0,606 W/m K/0.200m = 618W/m" K

From Eqg. (1) find
U= {790+ 1/618)" W/m* K=347W/m" K <

Lsing Eq.i4). find the resulting surface temperature
T90W/m" K(50-T,)K = 618W/m" K(T, - 30)K T =324'C
Which compares favorably with our assumed value of 30°C.

(b} Using the IHT Correlations Tool, Free Convection, Vertical Plare and following the foregoing
approach, the overall coefficient was computed as a function of the hot fluid temperature and is plotied
below, Note that U increases almost linearly with T, .

Croiel il EBaFigapy L7 P |

COMMENTS: For the conditions of part {a), using the IHT model of part (b) with thermophysical
properties evaluated at the proper film temperatures, find U = 152 Wim/ K with T, = 32.4°C. Our
approximate solution was a good one.

(2) Because the set of equations for pant (b} is quite stiff, when using the IHT model you should follow
the suggestions in the IHT Example 9.2 including use of the intrinsic function Tflud_avg (T1,T2).



PROBLEM 9.21

KNOWN: Height, width, emissivity and temperature of heating pancl. Room air and wall
temperature.

FIND: Net rate of heat transfer from panel to room.
SCHEMATIC:

ASSUMPTIONS: (1) Quiescent air, (2) Walls of room form a large enclosure, (3) Negligible
heat loss from back of panel.

PROPERTIES: Table A4, Air (T =350K, 1 atm): v=20910"° m*/s, k=003 WmK.a=
29.9x107% m?/s, Pr = 0.700.

ANALYSIS: The heat loss from the panel by convection and radiation exchange is
q = hA(T, = T.)+ ecA(T} - T,
With

_ BB(T - TOOLY 9.8 mys?(1/350 K)(100 K)(1 m)®
v (20.9)(29.9)x107% m*/s?
and using the Churchill and Chu correlation for free convection from a vertical plate,

0.387Ra}® }2 s
[1+ (0.492Pr)"He@aT | =
h= 196 KL = 196:0.03W/m K/l m = 5.87 Wm*-K.

Ray = 4.48x10°

_ _EL_
Ny =3 _[u.m+

Hence,
q=5.86 W/m?-K(0.5 m*)100 K
+0.9:5. 67107  W/m? K* (0.5 m? )[(400)* = (300)* |K

Q=293 W + 447 W = 740 W. <
COMMENTS: As is typical of free convection in gases, heat transfer by surface radiation is

comparable 1o, if not larger than, the convecnon rate. The relative contribution of free
convection would increase with decreasing L and T,.



PROBLEM 9.22

KNOWN: Initial temperature and dimensions of an aluminum plate. Condition of the plate
surroundings. Plate emissivity.

FIND: (a) Initial cooling rate, (b) Validity of assuming negligible temperature gradients in the
plate during the cooling process.

SCHEMATIC:

L=05m, A;:=025mt
Vewx A, =4 x]0 5ma

ASSUMPTIONS: (1) Plate temperature is uniform, (2) Chamber air is quiescent, (3) Plate
surface is diffuse-gray, (4) Chamber surface is much larger than that of plate, (5) Negligible
heat transfer from edges.

PROPERTIES: Table A-1, Aluminum (573 K): k =232 Wim'K, ¢, = 1022 J/kg'K, p = 2702
kg/m'; Table A<, Air (Ty = 436 K, 1 am): v = 30.72¢107% m%/s, @0 = 44.7<10°° m/s, k =
0.0363 W/m-K, Pr=0.687, p = 0.00220 K™'.
ANALYSIS: (a) Performing an energy balance on the plate,
—q=-2A,[A(T - T.) + ea(T* - T.L) = E,, = pVe, [dT/i)
dTfde = ~2(R(T - T.) + ea(T* - T2 Vpwe,
Using the correlation of Eq. 9.27, with
_ BB -TOOLY 9.8 ™). 00229K (300 — 27T)K{0.5 m)*

- va 0TS e T w0
(L6 T0Ra ™ 00363 0.670(5.58=10")'*
F= X { 0.68 + } < 0063 ] o : a0y”
L [1 + (D.492/Py 88 0.5 e [1 + (049206874 24
h= 58 Wim-K.

Hence the initial cooling rate is
dT _ 258 Wim™K(300 - 27)C" + 0.25:5.67x 107" Wim™K*[(573 K)* - (300 K)*))
di 2702 kg/m' (0,016 m) 1022 IAgK

%:413&&1 <]

{b) To check the validity of neglecting wemperare gradients across the plare thickness,
calculate Bi = hoyy (w/2)/k where hyy = q7/(T; = T2) = (1583 + 1413) Wim*273 K = 11.0
W/m*K. Hence

Bi = (11 W/m®K)(0.008 m)/232 W/m-K = 3.8x10~ <]

and the assumption is excellent.

COMMENTS: (1) Longitudinal (x) temperature gradients are likely to be more severe than
those associated with the plate thickness due to the vaniation of h with x. (2) Initially
2" comv = 'rad-



PROBLEM 9.23

KNOWN: Boundary conditions associated with a rear wandow expenencing uniform volumetne
heanng.

FIND: (a) Volumetric heating rate q needed to maintain inner surface temperature at T,, = 15°C, (b)
Effectsof T_,,u_,and T_, on q and T, ..

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Constant properties, (3) Uniform
volumetric heating in window, (4) Convection heat transfer from imerior surface of window 1o intenor
air may be approximated as free convection from a vertical plate, (5) Heat transfer from outer surface 1s
due 1o forced convection over a Mat plate in parallel Now.

PROPERTIES: Table A.3, Glass (300 K): k= 1.4 Wim K: Table A4, Air (Ty, = 12.5°C. | atm): v =
14.6 % 10" m¥s, k = 00251 WimK, a=2059x 10* m'ls, f=(1/285.5) =350 % 10" K', Pr=0.711;
(Tp, = 0°C) v=1349x 10* m¥s, k = 00241 Wim K, Pr=0714.

ANALYSIS: (a) The iemperature distribution in the glass is governed by the appropriate form of the
heat equation, Eq. 3.39, whose general solution is given by Eqg. 3.40,

T{x)=—(q/2k)x’ +C,x+C,.

The constants of integration may be evaluated by applying appropriate boundary conditions at x =00 In
particular, with T{0) = T,;, Cy = T,;. Applying an energy balance to the inner surface. 97, =q°

_tg{....zﬁ'“" ~T,) -k[-%:-l-'l:i] =h,(T.,-T.)

C =—:E”|fkh"]'” _TH}

’ FLIT'I'.I =Ty ]

Tix)= =(q/2k)x* -_k_l +T, (1}

The required generation may then be obtained by formulating an energy balance a1 the outer surface.
where q_ = 4. Using Eqg. (1),

dT "
-k =h|T,, ~T. 2
Bl "l ®



FROBLEM 9.23 (Cont.)

'EE{ '-i{-ﬂ'l:*]*'ﬁ.{'r... -T,)=aL+h(T., -T,) (3)
- | 4 -y k
Subsututing Eq. (3) into Eg. (2), the energy balance becomes

QL=h,(T, ~T_,)+h(T, ~T_,) )
where T, , may be evaluated by applying Eq. (1) mtx =L

fad SRR, 0, 0

The mside convection coefficient may be obtained from Eq. 9.26, With
- BT, -T_ 0" 98m/s’ (3503 % 107K )15~ 10)K(0.5m)'
H= .

o T
Wil :‘mﬂiu*mffile}‘““]'J*mjjr‘ ?-I!Tx"} g
X
Nu - 0387713710\
N = 0825 4 oot ol ( ) =
[|+|‘.ﬂ. Fr;l"l-"li [j+{ﬂ.ﬂq!,"ﬂ'.7| I}!mrm
= e
B = Ny X < J6X00BIWIMK o oo o
H 0.5m

The outside convection coefficient may be obtained by first evaluating the Reynolds number. With
=u_H_ Wmsx0.5m
v 1349%10%m’/s

and with Re,, = § x 10°, mined boundary layer conditions exist. Hence,
Nuw = (0.037Re}*~871)Pr'" =[0.037(7:413x10°)"" - 571} 0.714)" = 864

Re, =7413x10"

h, = Nuy(k/H) = (864 < 0.0241W/m - K)/0.5m = 416 W/m" K,

Eq. (5) may now be expressed as
glO00Bm)  281W/m’ K(10-15)K

T = 288K = - 7

“ T HIAW/m K) AW/m K O00Bm+288K =-2286x 1074 + 288K

or, solving for q q=-43,745(T, - 2881) ©
and subsimnuting into Eq. (4),

—43745(T, , - 2881 ){0.008m) = 4 L6 W/m" - K(T,, - 263K )+ 281W/m’ - K(288 K - 283K).
It follows that T, , = 285.4 K in which case, from Eg. (6)
q=118kW/m". <

(b} The parametnic calculations were performed using the One-Dimensional, Steady-stare Conduction
Mode! of IHT with the appropnate Correlarions and Properties Tool Pads, and the results are as follows.

Continued..,



PROBLEM 9.23 {Cont.)

Burface lnmparmture. Tes D)
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For fixed Ty, and T_ , T,, and q are strongly influenced by T__ and u_, increasing and decreasing,
respectively, with increasing T_ , and decressing and increasing, respectively with increasing u_. For
fixed T,, and u_, T., and q are mdependent of T_,, but increase and decrease, respectively, with
increasing T_

COMMENTS: In lieu of performing a surface energy balance ot x = L, Eqg. (4) may also be obtained by
applymg an energy balance to a control volume sbout the entire window,



PROBLEM 9.24

KNOWN: Vertical panel with uniform heat flux exposed to ambient air.
FIND: Allowable heat flux if maximum temperature is not to exceed a specified value, Ty, .
SCHEMATIC:

T s Tman = 37C
— T L:lm
=
5 - | .
N \=e
g J
ASSUMPTIONS: (1) Constant properties, (2) Radiative exchange with surroundings

negligible.

PROPERTIES: Table A4, Air (Ty=(Tya+T. V2 =(35.4425°C/2 =30.2°C =303K, | atm):
v=16.19:10"° m%/fs, k=26.5:10" W/m'K, a=22.9:10"% m%/s, Pr=0.707.

ANALYSIS: Following the treatment of Section 9.6.1 for a vertical plate with uniform heat
flux (constant q,;"), the heat flux can be evaluated as

@'=hATy, where AT p=T,0/2)-T. (1,2)

and h is evaluated using an appropriate correlation for a constant temperature vertical plate.
From Eq. 9.28,

AT, =T, =T = LIS(/L)® AT )

ﬁm@iﬁngﬂmhmmtw will occur at the top edge, x=L, use Eq. (3) 10

AT n =(37-25°C/1.15(1/1)'P = 104°C or Tia=354°C.
Calculate now the Rayleigh number based upon ATz, with Tr=(T,+T..¥2 =303K,

-
Ray =}J“::_L where AT=ATip (@)

Rag =9.8m/s® (1/303K) = 10.4K (1m)*/16.19:1078 m?/5 «22.9.107 m?/s=9.07.10",

Since Ray < 107, the boundary layer flow is laminar; hence the correlation of Eq. 9.27 is
appropriate,

B 0.670 Ra[™
Nuy = —=0.68+ - S
s [1+ (0,492/Pr) 16
Fo | 00265 Wim-K
Im

(3)

] [0.68 +0.679.07=10")4/(1 + (0.4920. 7074 1" ¥ | =2 38 Wim* K .

From Egs. (1) and (2) with numerical values for h and ATy, find

q.":rl]ﬂw."mi*ﬁ «10.4°C=24 8 W/m® . <

COMMENTS: Recognize that radiation exchange with the environment will be significant.
Assuming T,=Tyn, Taw=T= and e=1, find = o(T,~T%,) =66 Wm?.



PROBLEM 9.25
KNOWN: Vertical circuit board dissipating SW to ambient air.

FIND: (a) Maximum temperature of the board assuming uniform surface heat flux and (b)
Temperature of the board for an isothermal surface condition.

SCHEMATIC: oy -E‘jm""
oard, m square =
E; =222 -H{ Quiescent
o Ty \ain To27°C 9-5W
.4
Uniform heat flux, 9y Uniform surface temperature Iy

ASSUMPTIONS: (1) Board either uniform q; or constant T,, (2) Quiescent room air.

PROPERTIES: Table A4, Air (Ty=(Tpg+T. W2 or (T,+T.)2, 1 am), values used in
iterations:

lieration Te(K) v-10%m*s) k1P (WmK) al0%(m’s)  Pr

1 312 17.10 17.2 243 0.705
2 323 18.20 28.0 25.9 0,704
3 318 17.70 27.6 25.2 0.704
4 320 17.90 178 254 (.704

ANALYSIS: (a) For the uniform heat flux case (see Section 9.6.1), the heat flux is
q =hATyn where ATir=Tin-T- (1,2)
and
qr =gfA, = SW/0.150m)* = 222 W/m?.
The maximum temperature on the board will occur at x=L and from Eq. 9.28 is
AT, = L15(x/L)'® AT (3)
Te=Tau=Te+1.15AT 5 .
The average heat transfer coefficient h is estimated from a vertical (uniform T,) plate
correlation based upon the temperature difference ATy 5. Recognize that an iterative procedure

is required: (i) assume a value of Ty, use Eq. (2) 1o find ATy p; (ii) evaluate the Rayleigh
number

Ray =gBATL, LY iva (4)
and select the approprinte correlation (either Eq. 9.26 or 9.27) 1o estimate b; (iii) use Eg. (1)

with values of h and ATy 5 to find the calculated value of q."; and (iv) repeat this procedure until
the calculated value for q. is close to q;" =222 W/m?*, the required heat flux.



PROBLEM 9.25 (Cont.)
To evaluate properties for the correlation, use the film temperarure,

lteration #1: Assume Ty 5 =50°C and from Egs. (2) and (5) find
AT =(50-27)°C=23°C Ty =(50+27)°C2=312K .

From Eg. (4), with B= 1/T;, the Rayleigh number is
Ray =9.8m/s* (1/312K) = 23°C (0.150m)* A17.10x10°® m?/5) = (24,32 10°° m? fs) = 5. 868x 10°
Since Ray, < 10, the flow is laminar and Eq. 9.27 is appropriate
h 0.670 Raf"
Nuy = & = (.68 + ———
e [1 + (0.492/Pr)* 16 %P

[0.68 +0.670(5.868x 10°) /11 +(0.492/0.705)* % 1*® | =4 71 W/m?-K .

P o DT WinK
" 0.150m

Using Eq. (1), the calculated heat flux is
q' =4.71 W/m® K = 23°C = 108 W/m? .

Sinuq,"-:ﬂzwmz.Mmquimdﬂlue_mmhnimﬁmwithmimmdmrﬂTm
is warranted. Further iteration results are tabulated,

hersion Typ(°C) ATia(°C) TdK) Ray  h(W/m?K) q'(W/m?)

2 75 48 m 1044107 558 267
3 5 k! 318 BRG1=10* 528 K
4 AR 41 320 0.321x10P 539 01

After Iteration 4.:Im¢wmlhﬂmth¢cﬂmhmdanquuimdq."hmhiwaduﬁh
Tip=68"C. From Eg. (3), the maximum board iemperature is

T = Tmaa =27°C + 1.15(41)°C = 74°C. <J

(b) For the uniform temperature case, the procedure for estimation of the average heart transfer
coefficient is the same. Hence,

T, =Tia|q~ =68°C. <

COMMENTS: In both cases, q=5W and
h=538W/m’. However, the lemperature
distributions for the two cases are quite different
as shown on the sketch. For q," = constant,
AT, = x'® according to Eq. 9.28.




CHAPTER 10

EIGENVALUES AND
BOUNDARY VALUE PROBLEMS

SECTION 10.1

STURM-LIOUVILLE PROBLEMS
AND EIGENFUNCTION EXPANSIONS

1. In the notation of Equation (9) in Section 10.1 of the text we have o = f; = 0 and
o, = f» = 1, so Theorem 1 implies that the eigenvalues are all nonnegative. If 4 = 0,
then y” = 0 implies that y(x) = Ax + B. Then y'(x) = A, so the endpoint conditions
yield A = O, but B remains arbitrary. Hence Ao = 0 is an eigenvalue with

eigenfunction
Yolx} = L.

If A = ¢ > 0, then the equation y"+ oy = 0 has general solution
y(x) = Acos ax+ Bsin o,
with
y'(x) = -Aasin ox + B cos o,
Then y(0) = O yields B = 0 so A # 0, and then
y(L) = -Aasinal. = 0,

so @l must be an integral multiple of m. Thus the nth positive eigenvalue is

and the associated eigenfunction is

nyx
L(x) = cos—.
. L

2. In the notation of Equation (9) in this section we have oq = B, = 1 and & = B =0,
so Theorem 1 implies that the eigenvalues are all nonnegative. If A = 0, then y" = 0
implies y(¥) = Ax+ B. Butthen y(0) = B = 0 and y'(L) = A = 0, so it follows that
0 is not an eigenvalue. We may therefore write A = o > 0, so our equatjon is
y"+ ofy = 0 with general solution

414 Chapter 10




y(x} = A cos ax + B sin ax.
Now ¥(0) = A = 0, so y(x) = Bsin ox and
y'(x) = Boxcos ax.
Hence

y(L) = Bacos al. = 0,

so it follows that o, must be an odd multiple of #/2. Thus

2n-1
" = (_nZL_)IE, A =a, y@ = sin @, x.

If A = 0 then y" = 0O yields y(x) = Ax+ B asusual. But y'(0) = A = 0, and then
hy(L) + y(L) = i(B)+0 = 0, so B = 0 also. Thus 4 = 0 is not an eigenvalue. If
A = o > 0 so ourequationis y”+ o’y = 0, then

A cos ax + B sin ax,

y(x)
50
y'(x) = -Aasin ax + Bet cos ocx.

Now y'(0) = 0 yields B = 0, so we may write
y(x) = cos ox, y(x) = —asin ox.

The equation
hy(L)+y'(L) = hcosal - asinal = 0
then gives

tanxl = ft— = E,
o ol

so B, = L isthe nth positive root of the equation

hL
tanx = —,
X
Thus
/'chx’:ﬁ", x=cos&-x-.
" A L2 yﬂ( ) L

Finally, a sketch of the graphs y = tanx and y = hL/x indicates that 8, = (n - )&
for n large.

Here ay = h > 0, oo = B = 1, and B, = 0, so by Theorem 1 in Section 10.1 there
are no negative eigenvalues. If 4 = 0 and y(x) = Ax + B, then the equations
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hy(0) - y(0) = hB~ A = 0, ) =AL+B =0
imply 2 = A/B = -1/L < 0. Thus O is not an eigenvalue. If A = o > 0 and
y(x) = A cos ax + B sin ax,

then the condition Ay(0) = y(0) yields B = hA/a, so

y(x) = g(a COS8 Ox + A sin o)

= -{‘-(ﬁ cos&+thin —g—{]
B L L

where 8 = al. Then the condition

¥L) = %(ﬁcosﬁ+thinﬁ) =0

reducesto tan f = —ﬂ.
hL
. (2n-Drnx \ ) ) . .
6. ¥y, (x) = smT so Equation (25} in Section 10.1 — with r{x)=1 — yields
L
. (2n—-Drx
J.o JOsin=rr==de 5 r  (on—Dax
S T xS T
j sin? ———— " dx .
o 2L

because the denominator integral here evaluates - by use of the trigonometric identity
sin’ A=1(l~cos24)—to L/2.

7. The coefficient ¢, in Eq. (23) of this section is given by Formula (25) with f{ix) = r(x)

B.x

=1,a=0,b=1L and y (x) = sinT. Using the fact that tan 8, = —ﬁ" S0

hL
sin f, o B we find that

B, WL

5 L L
j sin? ﬁ”xdx = l 1—-cos 2p,x dx = l x—Lsinz—ﬁ"—x—
0 L Hol L 2 28, L
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7 £

. L 1_ [ ¥ . . . +

and f sin B Zxdx = ( ;m B “). Hence the desired eigenfunction expansion i
0 n

. 1—cos B, - B,x

1 = 2hL
= B, (hL+cos’B,) L

for 0 < x < L.

8. The coefficient ¢, in (23) is given by Formula (25) with fix) = r(x) = 1, a = 0,
b = L, and y,(x) = cos Bx/L:

L
¥ L L A X
f cos&dx J cos ﬁ"xdx [—smﬁ#}
gy il Akiaign o L _ B, L |
" J-Lcoszﬁﬂdx J-Li 1+coszﬁ"x dx -1— x+isin——2ﬁ"x
0 L )2 L 2|7 28,7 L
£ ..
B g,
2 ' '
L L+Lsin2ﬁﬂ B, +em2p,
2 28,

Hence the desired eigenfunction expansion is

| = Z 4sm‘ﬂﬂ cos ﬁﬂx'
“~ 28, +sin2f, E
% The coefficient ¢, in (23) is given by Formula (25) with fix) = r(x) = I, a = 0,
b = 1, and y,{x) = sin f.x. Using the fact that tan 8, = -B./h, so
hsin B, = -fcos B, we find that

i 1 1
. 1 1 sin2f, x
sin? fxdx = | —(1-cos2f,x)dx = —| x—oFex
Jsm B.x Lz( cos2f,.x) 2[1: 2B, l

0
i 2 2
_1! 1__smﬁu cos B, | = i 14508 B, | _ h+cos B,
2 B 2 h 2h

n

and

1 T . P o .
IU xsin B xdx = B—:L B.xsin B x- B,dx = FL usinu du

sin . — B, cos j,
) B,
_ sin 8, — B, cos B, _ (1+ h)sin 3,

B! B

= %[sinu—ucosu]o" =
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It follows that the desired expansion is given by

x = 213, ;“E fii‘;f;;)

for 0 <« x < 1.

10. The coefficient ¢, in (23) is given by Formula (25) with fix) = x, r(x) = 1, a = 0,
b =1, and y,(x) = cos B,x. Integrations similar to those in Problems 8 and 9 give

. - lecos B, xdx _ 4(B,sin B, +cos §, 1)
’ j; cos® B, xdx B.(2B,+sin2p,)

With this value of ¢, for n = 1, 2, 3, - - -, the desired eigenfunction expansion is
x = 3e, cosPeX,
n=l L

11. If A = 0 then y"= 0 implies that y(x) = Ax+B. Then y(0) = 0 gives B = 0, so
¥(x) = Ax. Hence

(L) - y(L) = h(AL)-A = A(RL-1) = 0
if and only if AL = 1, in which case Ap = O has associated eigenfunction yp(x) = x.
12. If A= -0 < 0, then the general solution of ¥y - ¢&?y = 0 is
y(x) = A cosh ax + B sinh ax.
But then ¥(0) = A = 0, so we may take y(x) = sinh cex. Now the condition hy(L) =
y'(L) yields
hsinh al. = acosh al.

It follows that § = oL must be a root of the equation

tanhx = —.

hL

The curve y = tanh x passes through the origin with slope 1, and is concave upward for
x < 0, concave downward for x > 0. Hence this curve and the straight line y = x/hL

intersect other than at the origin if and only if the slope of the line is less than 1 — that is,
if and only if AL > 1. In this case, with S, the positive root of tanh x = x/hL, we

have A,=-f; and y,(x)=sinh B,x.
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13.

14.

15.

If A = +o® > 0, then the general solution of y" + oy =0 is
y(x) = Acos ax+ B sin ox.

But then y(0) = A = 0, so we may take y(x) = sin cox. Now the condition Ay(L) =
y'(1) yields
hsin ol = ocos al.

It follows that § = ol must be a root of the equation
x
tanx = —.
hL

Soif B, is the nth positive root of this equation, then A, =¢; = 7 /L’ and the

corresponding eigenfunction is y,(x)=sin §,x/L.

With 4 = 0, y" = 0, and hence y(x) = Ax+ B, wehave y{(0) = B = 0, s0 yx) =
Ax. Then the condition Ay(L) = y’(L) reduces to the equation AL = A, whichis
satisfied because AL = 1. Thus A = O is an eigenvalue with associated eigenfunction
yo(x) = x. Together with the positive eigenvalues and associated eigenfunctions

provided by Problem 13, this gives the eigenfunction expansion

f(x) =cpx+ icn sin ﬁix

n=1

where tan 8, = f,. The coefficients are given by

Cp =

[reoxa 5
€ = O—J.z"}? =7 , X () dx,
X
JGLf(x)Sinﬁ"xide _ 2 JLf(x)smﬁ </ L dx

j:sin2 B.x/Ldx Lsin® f,
the latter because

L
JLsinzﬁ"xf'de = —LIL(I—COSZﬁﬂfo)dx =t x- L sinﬁ’i—JE
: 2% 27728, L,

= 'Si—n-@-"--cos = Efung® =-—-———LSin23“
_2(1, L 5 ﬁ,,) 2(1 s* B, ) -

"

If A, =0, then a general solution of y"=0 is y(x)=Ax+B. The conditions
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17.

18.

19.

420

¥0)+y'(0) = B+4A =0, y(1) = A+B =0

both say that B =—A, so we may take y,(x)=x—1 as the eigenfunction associated with
A=0. If A = +0¢ < 0, then the general solution of y" + &y = 0 is

y(x) = A cos 0x + B sin ox.

But y()+y(0) = A+Ba = 0, so A = —Ba, and then
y(I) = Acosa+Bsina = —B(ocosa~sinar) = 0.

Thus the possible values of & are the positive roots {f3,} of the equation tanx=x, and
the nth eigenfunction is y,(x) = f, cos B,x—sin 8 x,

The Fourier sine series of the constant function f(x)=w for O0<x <L is

4w . nEx

L

r nod.dn

If y =Ebn sinnzx/L, then

(4) - '
EIZ]‘ T

Upon equating coefficients in these two series and solving for b,, we see that

y(x) _ dwl Z

By Equation (16) in Section 9.3, the Fourier sine series of f(x)=bx for O<x <L is

2bL > (=)™ nmx

sin .
bl Z‘ n l L
If y:Zbﬂ sinnmx/ L, then

w 44
nr'b, . nnx
Iy* = EI'Y — sin :
n=l L L
Upon equating coefficients in these two series and solving for b,, we see that

_ 2bL5 Z( 1)ﬂ+]
r=1 L

bx =

With A = o, the general solution of y¥ - o'y = 0 is
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y(x) = A cosh ax + B sinh ax + C cos ax + D sin ox,

and then
y'(x) = oA sinh ax + B cosh o - C sin ax + D cos o).

The conditions »(©0) = 0 and y'(0) = 0 yield C = -A and D = -B, sonow
y(x) = A(cosh ax - cos ax) + B(sinh ox - sin ox).

The conditions y(L) = 0 and y'(L) = 0 yield the two linear equations

A(cosh aL — cos alL) + B(sinh oL —sin o) = 0,
A(sinh oL + sin al) + B(cosh oL — cos o) = O.

This linear system can have a non-trivial solution for A and B only if its coefficient
determinant vanishes,

(cosh al —cos al)? - (sinhzaL - sinad) = 0.
Using the facts that cosh® A—sinh® A=1and cos® A+sin” A=1, this equation

simplifies to
cosholcosal—1 = 0,

so f§ = ol = x satisfies the equation
coshxcosx = l.

The eigenvalue corresponding to the nth positive root S, is

- (8]

Finally the first equation in the pair above yields

B coshol.—cosa L
sinhL—sinaL

so we may take

y,(x) = (sinh B, —sin B, )(cosh % ﬁix ]

~(cosh B, —cos B, )(sinhﬁiﬁ_sin ﬁﬂXJ

as the eigenfunction associated with the eigenvalue A,.
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20.  Asin Problem 19, the solution of y¥ - oy = 0 satisfying the left-endpoint conditions
¥(0) = 0 and y'(0) = 0 is given by

¥x) = A(cosh ox - cos ox) + B(sinh ax - sin ox).
The right-endpoint conditions y*(L) = 0 and y*(L) = 0 now yield the two linear

equations
A{cosh oL + cos &) + B(sinh aL + sin o)) = 0,

A(sinh ol - sin o) + B(cosh ol + cos o)) = 0.

This linear system can have a non-trivial solution for A and B only if its coefficient
determinant vanishes,

(cosh ol + cos L) - (sinh’od. - sin’ad) = 0.
This equation simplifies to
coshalcos ol +1 = 0,
so B = ol = x satisfies the equation
coshxcosx = -1.

The eigenvalue corresponding to the nth root f3, is

Finally the first equation in the pair above yields

coshal+cosal
sinh@L+singL

B =

so we may take

y,(x) = (sinh §, +sin 3, )(cosh % —cos Box ]

L
—{cosh B, +cos 8, )(sinh ﬁzx —sin ﬁzx]

as the eigenfunction associated with the eigenvalue A,.

21.  Asin Problem 19, the solution of y* - o'y = 0 satisfying the left-endpoint conditions
¥(0) = 0 and ¥ (0) = 0 is given by

y(x) = A(cosh ax - cos ax) + B(sinh o - sin ax).

422 Chapter 10




The right-endpoint conditions y(L) = 0 and y'(L) = O yield the two linear equations

A(cosh o —cos L) + B(sinh a. —sin al) = 0,
A(cosh o, + cos al) + B(sinh oL + sin L) = 0.

This linear system can have a non-trivial solution for A and B only if its coefficient
determinant vanishes,

(cosh ol — cos al)(sinh ol + sin o)
— {(cosh ol + cos al)(sinh ad. —sin od)

= 0.
This equation simplifies to 2coshaLsinal—2cosaLsinhal

0, which is equivalent
to tanhal = tanal. Hence B = al = x satisfies the equation tanh x

= tfan x,
and the eigenvalue corresponding to the nth positive root 8, is A4, =« =(f,/L)".

SECTION 10.2

APPLICATIONS OF EIGENFUNCTION SERIES
1. The substitution w(x,t) = X(x)}T(#) yields the separated equations

X'+aX =0 and T = —kAT

with separation constant A=a’. In Problem 3 of Section 10.1 we saw that the Sturm-
Liouville problem

X"+a’X =0, X0 = hX(Ly+X'I) = 0
has cigenvalues A, = o’ = 3’/ and eigenfunctions

X,(x) = cos B.x

for n = 1,2,3,---, with {§,] being the positive roots of the equation tan x
The solution of 7, =—kA,T, is then

T.(0) = exv{-ﬁift}

s0 the resulting formal series solution is

= hl/x.
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B.x
L

sinh

u(x,y) = icﬂ sin 5,.(1—}’)'

The coefficients in the eigenfunction expansion are given by

" osin Bt
J-O f(x)sin T dx _ 48,
L(sinh B,)(2f, —sin 2§,

C

n

L
B.x
= 7 f f(x)cos——dx,
(sinh 3, )L sin” %a’x )Jo £

because

L L i
J sinzkdx = J 1 l—cos% dx = x x——L—sin%
0 L n & L 2 28, L ),

- -l{L—LsinZﬁnJ = L(2ﬁ"—sin2ﬁ").

2 28, 48,
3. The substitution u(x,y) = X(x)Y(y) yields the separated equations
X' -ofX =0 and Y'+&Y =0

with separation constant A =a”. Problem 3 of Section 10.] we saw that the Sturm-
Liouville problem

Y'+ oY = 0, Y(0) = hY(L)+Y'(L) =0

has eigenvalues A, = &’ = B}/’ and eigenfunctions

n

B,y
Y (y) = cos—=
(67 I
for n = 1,2,3,---, with {,} being the positive roots of the equation tanx = hL/x.
The solution of
2
X,’:—L;Xrl =0, X(L) =90

18
X, (x) = sinh —ﬁ" (%) 5

so the resulting formal series solution is

u(x,y) = i ¢, sinh B, UL_ X) cos Bzy ’

n=l

The coefficients in the eigenfunction expansion are given by
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L
A i B , J‘ cos? ﬁd s (sinh ‘Bn)(hL+sin ﬁ") 0 7
"o L

because

L L
f cos’ B Y gy =J 1 1+ cos ——2= 28,y dy = 1 y-i--—L—sinw—"y
g i .2 L 2072 L
L 0
1 hL+sin® B,

= - L+~£—sin25ﬂ =
2 28 2h

n

The final step here is the same as in Problem 1, using the fact that
(hLcos B, )}/ B, = sin B, because tan B, =hL/f,.

The substitution u(x,y) = X(x)Y(y) yields the separated equations
X'+o?X=0 and Y'-0Y =0

with separation constant A =¢?. In Example 5 of Section 10.1 we saw that the Sturm-
Liouville problem

X"+ X = 0, X(0) = EX(L)+X'(L) =
has eigenvalues A, = &’ = f2/I’ and eigenfunctions
. B
X, (x) = sin——
«(%) .

for n = 1,2,3,--., with {8,] being the positive roots of the equation tan x = —x/hL.
The bounded solution of
2

is

Y,(y) = CXP(—

) ]
so the resulting formal series solution is

u(x,y) = Zc sin —=— exp( BL)’]
r=l

The coefficients in the eigenfunction expansion are given by
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L

f(x)sin%dx B x
%= J"“szg_"idx " L(2B, —smzﬁ J‘ e & ~d,

the calculation of the denominator integral here being the same as in Problem 2.

5. The substitution u(x,t) = X(x)T(f) yields the separated equations
X'+ X =0 and T = —kAT

with separation constant 4 =a”’. In Problem 4 of Section 10.1 we saw that the Sturm-
Liouville problem

X“+aX = 0, hX(0)~X'(0) = X(L)=0

has eigenvalues A, = @’ = B2/ and eigenfunctions

X, (x) =B, (:rasﬁf-{+hl.s.in-—lr—i—ij

for n = 1,2,3,---, with {8,} being the positive roots of the equation tan x = —x/AhL.
The solution of T, =—kA,T, isthen

2
T.(t) = cxp[ ﬂ }

so the resulting formal series solution is
2
itfe) = Ec exp( 4 ](ﬂ cos 22X 4 p sin £aX ﬁL ]
n=|
The coefficients in the eigenfunction expansion are given by

f f(x)(ﬁ, cos%—xwz,sin% }dx

C" — 0 = ﬁ 5
J (ﬁncos——"~£+thinﬁ—"{) dx
L L

0

The evaluation of the denominator integral here is elementary, but there seems little point
in carrying it out explicitly.

6. The substitution u(x,t) = X(x)T(t) yields the separated equations

X'+X =0 and 7' = —kAT
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with separation constant A =¢. In Problem 5 of Section 10.1 we saw that the Sturm-
Liouville problem

X"+ X = 0, hX(0) - X'(0) = hX(L) + X'(L)=0

has eigenvalues A, = ¢’ = B2/’ and eigenfunctions

B.x

X, (x) = B, cos—L——-+ hLsin

B.x

for n = 1,2,3,--+, with {8,] being the positive roots of the equation
_ 2hix
tan x = m

The solution of T, =—kA,7, is then
2
kt
(@) = exp(— ﬂ;} ]

so the resulting formal series solution is

-3 Bk Bx o Bix
u(x,t) = Z‘c"exp( T ](ﬁncos . + hLsin i J

The coefficients in the eigenfunction expansion are given by

j f(x)(ﬁn cos % +hLsin ﬁ—i{ ]dx

_ o

c, = T z
B. cos&+hl,sin B> dx
L L

0

7. The boundary value problem here is

u,+u, =0 (O<x<l, y>0)
u (0,y)= u(l, y)+u (i,t) = 0,
u(x,0) = 100.

The substitution u(x,y) = X(x)Y(y) yields the separated equations
X'+X =0 and Y'-dY =0

with separation constant A =¢”. In Problem 3 of Section 10.1 we saw (taking A= L =
1) that the Sturm-Liouville problem

X"+ a'X = 0, X'(0) = X()+X(1) =0
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with separation constant A =a. In Problem 5 of Section 10.1 we saw that the Sturm-
Liouville problem

X"+ aX = 0, hX(0)-X'(0) = hX(L) +X'(L)=0

has cigenvalues A, = & = B2/I’ and eigenfunctions

X, (x) = B.x Bux
" L L
for n = 1,2,3,---, with {8;] being the positive roots of the equation
2hlx
tanx = ST

The solution of 7, =—kA,T, isthen
Tkt
T.(t) = GXP(“ ﬁiz J

so the resulting formal series solution is

u(x,t) = ZC eXP( Bz ){ﬁ cos—— ﬁ£ +hLsin —— ﬁLx‘J

n=1

The coefficients in the eigenfunction expansion are given by

L
) J‘ f{x)(ﬁ,l cos-%-{-i-thin%“i)dx

0

" J (ﬁ cosﬁL + hLsin ﬁL de

0

;3 The boundary value problem here is

u,tu, =0 (O<x<l, y>0)
w (0,y)= ull,y)+u (1) = 0,
u(x,0) = 100.

X (x)Y(y) yields the separated equations

|

The substitution #(x, y)

X'+X =0 and Y'-e&?Y =0

]

with separation constant A =a’. In Problem 3 of Section 10.1 we saw (taking h=L =
1) that the Sturm-Liouville probiem

X"+oX = 0, X'0) = X(H)+X(1) =0




has eigenvalues A= a and eigenfunctions

X, (x) = cosor,x

for n = 1,2,3, -, with {a,} being the positive roots of the equation tanx = 1/x.
The bounded solution of ¥ —c.Y, = O isthen

Y, (y) = exp(-a,y),

so the resulting formal series solution 1s

u(x,y) = icﬂ cosa, xexp(—a,y).

n=l

The coefficients in the eigenfunction expansion are given by
L [—1@- sing, x |
_ In 100cosa, x dx _ o % . _ 200sina,

choszanxdx 1 1 . ' @, +sing, cosa, |
2 3 x+2—-sm2anx

)]

n

44

" 4]

S0

=, sin@,_ COSCf xexXp{—,
u(x,y) = 200 L6658, ML ),
o, +sing, cosa,

n=1

The first five positive solutions of tanx = l/x are 0.8603, 3.4256, 7.4373, 9.5293, and
12.6453, and we find that

u(l,1) = 30.8755+0.4737 + 0.0074+0.0002+0.0000+ --- = 31.4°C.

With m =0 the boundary value problem in Example 2 is

w, = a'u, O<x<L, t>0),
(0,1 = u (L) = 0,

u,{x,0) = 0,

w(x,0) = bx.

The substitution u(x,f) = X(x)T() gives the separated equations
X"+AX =T"+4a°T = 0.

and the eigenfunctions of the eigenvalue problem
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X"+AX =0, X0 =X(L)=0

are of the form

nTx
X, (x) = sin—
. (%) =

with n odd, with corresponding eigenvalue A, = n’z’/4L’. This leads readily to the

solution

. nATx niat
u(x,t) = 2 ¢, SIN——cos ;
nodd 2L 2L

where ¢, is the odd half-multiple sine coefficient (of Problem 21 in Section 9.3) given
by
L . (2n-Dxm
_ 8bLsin ———— -
. EJ in (2n I)n'xdx _ 2 _ BBL(-D)

bxsi = .
(2n-1’n’ (2n-1)°m?
]
(a) With A=0, the endpoint-value problem in (1%)is X* = 0, X(0)=X’(0)=0,
which has only the trivial solution X(x)=0. Thus A=0 is not an eigenvalue.

(b) With A=-a’ <0, the endpoint-value problem in (19) is
X" —a’X =0, X(0)=0, -mo*X(L)=A8X'(L).

The differential equation and the left-endpoint condition here give X (x)=sinhax, and

substitution in the right-endpoint condition gives

—mo’ sinhal = Adocoshal, thatis, tanhalL =—LL
o

with & =ASL/m>0. Butthe graph y=tanhx lies (aside from the origin) in the first
and third quadrants, while the graph y=—k/x lies interior to the second and fourth
quadrants. Hence the two cannot intersect, and it follows that there cannot be an
eigenvalue of the assumed form A=-o’<0,.

(a) With § = 7.75 gm/cm® and E = 2-10'? in Equation (16}, the speed of sound in
steel is

a = E ~ 5.08 x 10° cm/sec = 11364 mph.

(b) With & = lgm."cm3 and K = 2.25-10" in Equation (16), the speed of sound in
water is

a = \[g— ~ 1.50 x 10° cm/sec = 3355 mph.
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12.  The boundary value problem is

uy, = duyy O <x<L t>0)
(0,0 = ku(L, ) +AEu (L, ) = 0
u(x, 0) = fiz),
uix, 0) = 0.

Starting with the general solution
X(x) = Acos ox + B sin ox

of X"+ X = 0, the condition X(0) = 0 gives A = 0, so
X(x) = sin o, X'(x) = oxcos ox.

Then the condition kX(L) + AEX'(L) = 0 yields

ksin oL + AEoccos ol = 0,

which is equivalent to the equation

AEx
tanx = ———

kL
with x = al, o = x/L. ¥f {f,)} are the positive roots of this equation, then the nth

eigenvalue is 4, = a’ = (ﬁ,,a*'L)2 with associated eigenfunction
B.x

X (x) = sin—2—,
() I

The associated function of ¢ is
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B.at . B.at
T(t) = A cos—=—+B sin—"—,
1) = A 7T Bsm=r

but the condition T'(0) = O yields B, = 0. Hence we obtain a solution of the form

u(x,t) = Ec sm 5 i
= L

B.-B,  B.+B,

f"‘ o Bpx o Bx . LIsin(B,—B,) sin(B,+5,)
o L L 2
L {( B, + B, )(sin B,, cos B, —sin B, cos B,,) J

T 2(B2-p7)|  ~(B.-B,)(sinB,cos B, +sin B, cos ,)
= 71850 B cos B, sin B cos b
g e e

= ———-——(‘BISMB )COSﬁ cos f3, (gm g,, ) = —LMC;;f”‘ﬁjosﬁ” # 0

When we substitute v(r, 1) = ru(r, ) we get the boundary value problem

Vi = kv
v, t) = v(a,?t) - avla,t) = 0
wr,®) = r fin.

Then v(r,t}) = R(NT(#) yields the equations

R'"+ AR = 0, T = -AkT.
If A9 = 0 then R(r) = Ar+ B. The condition R(0) = 0 gives B = 0, and R(r) =
Ar satisfies the condition R(a) ~ aR'(a) = 0. Thus Ag = 0 is an eigenvalue with
eigenfunction

Ro(r) =r.  To) = 1.
If A= 0o >0 then

R(r) = Acos ar + B sin ar

and R(0) = 0 gives A = 0, s0

R(r) = sin ar, R'(r) = acos or.

Chapter 10




The condition R(a) = aR'(a) yields sin g = awcos oa, thatis,

tanx = x
where x = oa. If {,} are the roots of this equation, then A, = (B./a)* isan
eigenvalue with associated eigenfunction

R() =sinPl, and T = cxp[—ﬁ"—f’}
a 4

We therefore obtain a solution of the form

o 2
v(r,t) = cor+z‘crl exp[—ﬁ”—ft]sin&.
a a

r=1

The coefficient formulas given in the textbook follow immediately from Problem 14 in
Section 10.1, and finally we obtain u(r, t) upon division of v(r, f) by r.

18.  The only difference from Example 3 in the text is that the solution of Equation (37) with

nzﬂzazf

T/(0)=0 is T,(¢) = sin T

19.  With the given initial velocity function g(x) with constant value P/2p¢e concentrated
in the interval L/2—€ <x< L/2+¢g, the coefficient formula of Problem 18 gives

Li2+e
P .
G = LI sin mrxdx

" ow'mta® )., 2pE L

I'P nw R HT  NAE 21'P . nm . nme
e R o —cos| —+ = ————sin—sin——.

n’rn’a’ pe 2 27 L n'rlatpe 2 L

This gives the e-dependent solution

Dpudipid

(x,t,€) = v-»-—-—2L2P iisinn—n—sin BT iyt 0 8 g
FEEE T e e 2 L & L
Because
sin{nre/L
Lsinmg:I( )—>1 as £ -0,
nIE L el L

the limit y(x,7)= lil'l(']l y(x,t,£) has the expansion

2P & 1 . nm . n'mia’t . nmwx
—Z—é—-sm#——mn ——sin }
apan 2 L L
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