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1. Introduction and Historical

General Introduction

Hypothesen sind Netze, nur der wird fangen der auswirft. Novalis.

I think it was Hermann Bondi who once said that physics is such a consis-
tent and connected logical structure that if one starts to investigate it at any
point and if one pursues correctly every issue that branches away from
one’s starting point, in the outcome one will be led to understand the whole
of physics. With Mach’s Principle it seems something like that.

Sir Fred Hoyle, this volume, p. 269.

This volume is based on the conference ‘Mach’s Principle: From
Newton’s Bucket to Quantum Gravity,” held July 26-30, 1993, at the
Max-Planck-House in Tiibingen, Germany. As far as we know, this was
the first conference exclusively devoted to Mach’s Principle. (Sir
Hermann Bondi in his closing remarks: “This conference was a splendid
idea, and I am only surprised that nobody thought of having such a
conference before.”)

The so-called Mach’s Principle is surely one of the most elusive
concepts in physics: On one hand, Machian aspects have been present
either explicitly or implicitly in theoretical astronomy, general physics,
and dynamics from their Greek infancy up to the present day (Barbour
1989 and following article). On the other hand, most of practical
physics is done, and successfully done, without ever thinking of the
‘deep questions’ connected with Mach’s Principle. (The situation is
similar in quantum theory, which functions extremely well using
established prescriptions notwithstanding deep and unresolved questions
about its interpretation, its measuring process, and its classical limit.)

In this volume, the notion ‘Mach’s Principle’ is understood in as
broad a sense as possible. Although it is certainly interesting (see Chap.
1) and may be important (see p. 215) to establish precisely what Mach

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 1-5 © 1995 Birkhdiuser Boston, Inc. Printed in the United States.



2 General Introduction

said about absolute and relative elements in physics, and to see how
Einstein (who coined the actual expression ‘Mach’s Principle’ in 1918,
p. 186) tried to incorporate Mach’s ideas in general relativity, it would
be ridiculous for a book published in 1995 to narrow these age-old
questions about the foundations of physics to the pronouncements of just
these two physicists, however eminent, and not to cover the contributions
of their contemporaries. It is also very important to consider the
development in thinking and the accumulation of experimental facts that
have occurred in the intervening period.

The root of Mach’s Principle, as understood in this volume, is deeply
connected with the question of what constitutes the essence of the method
of physics and the concept of a physical system: It is often not
sufficiently appreciated how kind nature has been in supplying us with
‘subsystems’ of the universe which possess characteristic properties
(literally in the sense ‘proper to the system’) that can be described and
measured almost without recourse to the rest of the universe. The
strategy of dividing the universe into ever smaller and ‘simpler’ parts has
shaped physics, beginning with the investigations of the solar system,
which resulted in the concept of a mass point for complicated objects
such as planets, going on to atoms and elementary particles, and
presumably coming to an end only at the level of the constituents
(quarks, subquarks) of elementary particles. On the other hand, it is
evident that basic concepts such as ‘inertia’ and ‘centrifugal force’ cannot
be understood and explained within the context of the subsystems
themselves, but at best by taking into account the rest of the universe.

As is well known, Newton ‘solved’ this conflict by the introduction
of the extremely successful concepts of ‘absolute space’ and ‘absolute
time.” Newton recognized clearly that only relative quantities can be
directly observed but, unlike his relationist contemporaries Huygens,
Leibniz, and Berkeley, he was convinced that a scientifically useful
notion of motion could not be based on relational quantities. Instead, he
sought to demonstrate how absolute quantities could be deduced from
relative observations. In this endeavor he was not entirely successful
(Barbour 1989).

The most emphatic and most influential physicist to insist on a
reformulation or extension of the foundations of physics in purely
relational terms was Ernst Mach in the last quarter of the 19th century,
though he made only tentative proposals for such a goal. Albert Einstein
was very much influenced by Mach’s writings, and his general relativity
was at least partly conceived in the spirit of realizing Mach’s dictum.
Indeed, general relativity was the first theory to supply a dynamic
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spacetime (dependent on the matter distribution) and to indicate at least
possibilities of how inertia and centrifugal forces could result from
interaction with the distant cosmic objects. On the other hand, general
relativity in its present formulation does not, despite its name, fulfill the
demand of using solely relational properties between physical objects
composed of matter in the strict sense (as opposed to ‘generalized matter’
in the form of gravitational waves or spacetime curvature). One of the
main debates at the conference concerned the question of how far general
relativity realizes Mach’s Principle: Does this principle make sense for
the full theory with its huge manifold of (partly unphysical) solutions, or
does it function as a selection principle for special classes of solutions
(and if so which?), or has it meaning only in our unique universe? The
cosmological context of Mach’s Principle goes a long way towards
explaining why this principle is so elusive: Cosmology lies somewhere
at the edge of the physical method, which usually relies on the possibility
of preparing physical systems and confirming results by repeated
measurements on ensembles of similar systems. In this respect it is
remarkable how much reliable information astronomy and astrophysics
have already supplied about our cosmos. In the future we can expect
information about still more distant, and therefore earlier, parts of the
universe, and in this way information about the cosmos as a whole. This
will surely have an impact on ‘Machian questions.’

Investigations of the very early cosmos necessarily call for a
unification of gravity and quantum theory, which is widely held to be the
deepest open problem in contemporary theoretical physics. As it
happens, many problems in so-called quantum gravity and quantum
cosmology are intrinsically of a Machian character, for instance the goal
to treat ‘time’ no longer as an absolute, external parameter, but to
understand it as an intrinsic property of the considered system, i.e., the
whole universe. It is clear that this volume cannot do full justice to these
rather new and actively developing fields of quantum gravity and
quantum cosmology. On the other hand, these may well be the fields in
which most activity and progress in Machian questions can be expected
from future research.

Although this volume is based on a conference, it is not a usual
conference proceedings volume, to which all participants contribute only
their latest, very specialized results without much interrelation between
them. From the beginning, it was the intention that the conference and
this volume should - very much in agreement with the general policy of
the Einstein Studies Series - cover all aspects of Mach’s Principle -
historical, philosophical, astronomical, theoretical and experimental — and
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confront, where necessary, the different views on these aspects. Experts
were invited to prepare general overviews, which were distributed to all
participants already two months ahead of the conference. In some cases,
these overviews were then supplemented by prepared reply talks. It was
guaranteed that there was enough time for lively discussions after all
talks. In addition, there were scheduled discussion sessions on selected,
especially controversial topics. All these discussions were recorded on
tape, and were edited by us and the contributors after the conference.
Some talks and discussion contributions have been considerably improved
and in part even rewritten after the conference. As organizers of the
conference, we were very happy that it was possible to gather together
in Tiibingen nearly all experts worldwide on the different views of
Mach’s Principle. Only a few prominent names are obviously missing,
for example, Boris Al’tshuler, Bruno Bertotti, Jeffrey Cohen, Robert
Dicke, Dennis Sciama, and John Wheeler. They had to decline their
participation for different reasons, some of them at the last minute.
Their influence can nevertheless be easily traced through this entire
volume. For example, it turned out that one entire morning session,
devoted to the initial-value problem in general relativity and based on
Isenberg’s paper (p. 188), was intimately related to the Machian ideas of
John Wheeler and was exclusively presented by former collaborators of
John. The session Chairman, Jayant Narlikar, introduced it as “Wheeler
without Wheeler.’ '

It should be mentioned that many important historic papers connected
with Mach’s Principle are scattered in hardly accessible journals or other
sources; most of them are originally in German and have never been
translated, and some of them have moreover been forgotten for decades.
Indeed, one of the more important consequences of the conference was
that it brought to light significant papers on Mach’s Principle by
Hofmann (1904), Reissner (1914, 1915), and Schrodinger (1925) that
were virtually unknown, even to experts in the field. Therefore we
found it appropriate to collect such papers (partly in extracts) in English
translation in this volume.

In summary, we hope that this volume represents a fairly complete
status report and reference source on most aspects of Mach’s Principle.
In order to give greater unity to this collection of contributions, we have
not hesitated to give cross references (indicated in square parentheses) to
other places in the volume in which the same or related topics are
discussed. In various places, especially following the translations and in
the chapter introductions, we give commentaries. We have also prepared
an index, in which we also attempt to draw the reader’s attention to
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common themes that run through the volume.

Given the topic of the book, it is hardly to be expected that its two
editors will be in complete agreement on all aspects of Mach’s Principle.
Indeed, as will be evident from our own contributions, one of us (J.B.B.)
believes Mach’s Principle is in essence fully contained within general
relativity whereas the other (H.P.) has reservations on this score. This
divergence of opinion has not been any hindrance to productive and
harmonious collaboration; indeed, we feel that the book gains from a
certain friendly rivalry, each of us being keen to see the respective
viewpoints properly represented. Somehow this seems very appropriate
for Mach’s Principle - see p. 630. Let the reader decide!

We should also mention a project to publish within the next year or
two a book with the provisional title Relativity and Its Alternatives (J.
Renn ef al., eds.). This will cover much ground in common with the
present volume; in particular it will include a long paper “The Third
Way to General Relativity. Einstein and Mach in Context” by Jiirgen
Renn. This paper is based on the talk he gave at Tiibingen but because
of its length unfortunately could not be included in the present volume.
The new book may also include translations of some papers with
Machian context that also could not be included in this volume for lack
of space. In particular, there may be a complete translation of Absolute
oder relative Bewegung? by Benedict and Immanuel Friedlaender (1896)
and also of Reissner’s paper of 1915, partial extracts of which are
included in this volume (p. 114, p. 309, p. 145ff).

The motto from Novalis - “Hypotheses are nets; only he that casts
will catch™ - has already been used: by Karl Popper at the head of his
book The Logic of Scientific Discovery. We are grateful to Domenico
Giulini for suggesting its appropriateness in connection with Mach’s
Principle. (It was also Giulini who drew our attention to the long-
forgotten papers of Schrodinger and Reissner.) The idea to use the
motto by Fred Hoyle came during the work of compiling the index! A
glance at the index confirms the truth of Bondi’s remark.

Julian B. Barbour, Herbert Pfister
REFERENCE

Barbour, Julian B. (1989). Absolute or Relative Motion?, vol. 1: The Discovery
of Dynamics. Cambridge: Cambridge University Press.



Mach before Mach

Julian B. Barbour

The debate about motion - Is it absolute or relative? — extends back to
antiquity, and ‘Machian’ attitudes can be readily identified in the writings
of Aristotle, but I begin this brief survey at the dawn of the scientific
age: with Copernicus and Kepler.

Not surprisingly - since astronomers cannot fail to be aware that
observations are relational — both were ‘Machians.” Copernicus defined
his frame of reference thus: “The first and highest of all is the sphere of
the fixed stars, which contains itself and everything, and is therefore
immovable. It is unquestionably the place of the universe, to which the
motion and position of all the other heavenly bodies are compared.”

Kepler’s standpoint is particularly interesting, since he was deeply
impressed by Tycho Brahe’s ‘demolition’ of the crystal spheres. Kepler
posed the problem of astronomy in the famous words: “From henceforth
the planets follow their paths through the aether like the birds in the air.
We must therefore philosophize about these things differently.” His
response to the problem was very ‘Machian’ (Barbour 1989): The planets
could not possibly follow such precise orbits by a mere inspection of
empty space - they must be both guided and driven in their motion by
the real masses of the universe, namely, the sun and the sphere of the
fixed stars. This deeply held conviction was a decisive factor in Kepler’s
discovery of the laws of planetary motion - truly, a pre-Machian triumph
of Mach’s Principle.

Although Galileo retained many Aristotelian — and hence ‘Machian’
- concepts, he instinctively believed in motion relative to space. This
comes out clearly in his theory of the tides, in the discussion of which
he actually uses the expression absolute motion (Barbour 1989, p. 400).

The modern debate about motion had a most ironic origin. In 1632,
Descartes was about to publish his Le Monde when he heard about
Galileo’s condemnation by the Inquisition. Since Copernicanism was
central to his new mechanical philosophy, this put Descartes in a

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 6-8 © 1995 Birkhéuser Boston, Inc. Printed in the United States.



Mach before Mach 7

quandary. He suppressed Le Monde and only ventured to present his
new physics in his Principia Philosophiae of 1645. To avoid censure,
Descartes began by asserting, in a very Aristotelian manner, that both
position and motion are relative. A convoluted argument enabled him to
wriggle out of potential difficulties with the Inquisition. However, when
he came to his laws of motion, he reverted, without explanation or
warning, to the instinctively ‘absolutist’ position he had adopted in Le
Monde, in which he had advanced something almost identical to
Newton’s first law of motion as the foundation of his physics.

About 25 years later, Newton spotted the crass discrepancy between
Descartes’s espousal of relationalism and the use of the law of inertia as
the foundation of mechanics. In De Gravitatione, which only came to
light this century, Newton inveighed against Descartes. He saw that to
set up a science of motion one must be able to define velocity as
something definite. But if motion is relative and everything in the world
is in motion - as it is in Cartesian philosophy - Descartes’s own
relationalism makes a mockery of the Cartesian law of inertia: “That the
absurdity of this position may be disclosed in full measure, I say that
thence it follows that a moving body has no determinate velocity and no
definite line in which it moves.” This is the nub - the fundamental
problem of motion (Barbour 1989, Introduction): If all motion is relative
and everything in the universe is in motion, how can one ever set up a
determinate theory of motion?

Unlike his contemporaries Huygens and Leibniz, who both cheerfully
used the law of inertia as the foundation of dynamics while stoutly
maintaining the relativity of motion, Newton felt this problem so acutely
that he could not conceive of any dynamics formulated without a rigid
framework - absolute space. The Scholium in his Principia was simply
a coded reworking of De Gravitatione in which Newton disdained to
mention Descartes by name. Especially revealing is Newton’s use of
centrifugal force — in Cartesian philosophy the explicatory basis of both
light and gravity - to exhibit the reality of absolute motion. Descartes
is to be hoist with his own petard. The choice of a bucket was also at
least in part mischievous in intent: By Descartes’s philosophical concept
of motion, the only ‘true’ motion of the water must be that relative to its
immediate ambience (the bucket wall). This is why Newton said
pointedly: “Therefore this endeavor does not depend upon any translation
in respect of the ambient bodies, nor can true circular motion be defined
by such translation.”

Two centuries later, Mach (unaware of Newton’s fixation with
Cartesian absurdities) thought Newton naive to suppose the mere bucket
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wall to have any relevance to centrifugal force and produced one of the
great suggestive sayings in the history of physics: “Newton’s experiment
with the rotating vessel of water simply informs us, that the relative
rotation of the water with respect to the sides of the vessel produces no
noticeable centrifugal forces .... No one is competent to say how the
experiment would turn out if the sides of the vessel increased in thickness
and mass till they were ultimately several leagues thick.” Given the
effect of this remark - and the whole absolute-relative debate that
Descartes initiated — on Einstein, it may not be too fanciful to suppose
that if the Inquisition had condemned Galileo a few months later, and
Descartes had published Le Monde, Newton might never have thought of
the bucket nor Einstein of general relativity!

Let me conclude with a remark about Bishop Berkeley, who in De
Motu (1721) comments that in empty space motion of two globes around
a common center cannot be conceived by the imagination, but that if we
“suppose that the sky of the fixed stars is created; suddenly from the
conception of the approach of the globes to different parts of that sky the
motion will be conceived.” For this remark, Berkeley is often credited
with having been a true precursor of Mach. Note, however, Berkeley’s
phrase ‘fixed stars.” The stars were still very fixed in his mind, as we
see from his earlier Principles of Human Knowledge (1710, §114):

Philosophers who have a greater extent of thought, and juster notions of the
system of things, discover even the earth itself to be moved. In order
therefore to fix their notions, they seem to conceive the corporeal world as
finite, and the utmost unmoved walls or shell thereof to be the place,
whereby they estimate true motions. If we sound our own conceptions, I
believe we may find all the absolute motion we can frame an idea of, to be
at bottom no other than relative motion thus defined.

Thus, Berkeley looked backward to Kepler and Copernicus just as
much as he looked forward to Mach. He never confronted the real
problem of both Newton and Mach - the definition of determinate
velocities if “the heavens began to move and the stars swarmed in
confusion” (cf. p. 222).

But the exhortation to “sound our own conceptions” cannot be
bettered at the start of our journey to the distant goal of quantum gravity
- and perhaps even more remote consensus on Mach’s Principle. The
references are to my The Discovery of Dynamics, cited on p. 5.



Mach’s Principle before Einstein

John D. Norton!

1. Introduction

The doctrine of the relativity of motion is attractive for its simplicity.
According to it, the assertion that a body moves can mean nothing more
than that it moves with respect to other bodies. Acceleration has long
proved to be the stumbling block for the doctrine, for, in the case of
acceleration, the simplest of observations seem to contradict the doctrine.
When a test body rotates, for example, it is acted upon by centrifugal
forces. The presence of these centrifugal forces seems to be completely
independent of whether the test body rotates with respect to bodies
immediately surrounding. Thus Newton observed in his famous bucket
experiment that these centrifugal forces induced a concavity in the
surface of a rotating body of water and did so independently of whether
the water rotated with respect to the bucket containing the water.
Therefore, using these inertial forces as a marker to indicate whether the
body is accelerating, it seems possible to know that a body is
accelerating without any concern for whether it accelerates with respect
to the other bodies around it. This outcome contradicts the doctrine of
the relativity of motion as applied to acceleration.

For about a century now, the most popular escape from this
unwelcome refutation has been the following simple idea. Relativists
point out that experiments such as Newton’s reveal only that inertial
forces are not noticeably related to motion with respect to nearby bodies.
That, however, does not rule out the possibility that inertial forces are
caused by acceleration with respect to more distant bodies. If this were
the case, then inertial forces would not reveal an absolute acceleration
but merely an acceleration relative to these distant masses. The core idea
is that the inertial forces acting on an accelerating body arise from an
interaction between that body and other bodies. The idea is not so much
a proposal of a definite, new physical law; rather it is the prescription

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 9-57 © 1995 Birkhéiuser Boston, Inc. Printed in the United States.



10 John D. Norton

that such a law should be found. The law recommended is only loosely
circumscribed. It must be such that more distant masses play the decisive
role in fixing the inertial forces on a given body, for example.

The proposal’s most prominent sponsor was Albert Einstein. In the
early years of his work on general relativity, he believed that his theory
implemented the proposal, although he completely lost this belief in his
later years. Nonetheless, the future of the proposal was guaranteed by the
vigorous support of an Einstein who rapidly rose to celebrity status both
inside and outside the scientific community. Einstein did not claim the
proposal as his own invention. From the earliest moments, he attributed
it to Ernst Mach and in 1918 gave a field theoretic formulation of the
proposal its now standard name of “Mach’s Principle.” (Einstein 1918).2

The story of the role of the principle in Einstein’s work, his
enchantment with it, and his subsequent disenchantment, has been
frequently told because of its enormous importance in the historical
development of relativity theory and relativistic cosmology. My purpose
in this paper is to explore another side of Mach’s Principle, its earliest
years prior to its adoption by Einstein, which so profoundly redirected
and ruled its future. I will ask: What role did the principle play in
Mach’s own system? How was it received by Mach’s contemporaries?
In answering these questions, we shall find a story that is a little different
from the one we might expect. With Mach now universally acclaimed as
the patron of a growing literature on Mach’s Principle and Machian
theories, one expects to find in Mach’s writings a penetrating voice of
prescient clarity that easily transcends the generations that separate us
from him. Instead we shall find:

® Mach’s own writings that pertain to the principle were vague and
ambiguous, bordering on the contradictory. The principle is never clearly
stated, but at best obliquely suggested, and it remains unclear whether Mach
endorsed the suggestion or condemned it as unscientific.

® It was Mach’s disciples and his contemporary and later readers who
extracted an unequivocal proposal from his writings. Several even claimed
the idea independently of Mach.

® Mach’s Principle proved to be an idea that fascinated Einstein so much
that he sought to build his general theory of relativity around it. However
he was in a minority in his fascination.

® Prior to the advent of general relativity, the principle was a fringe idea,
often opposed by those who would become Einstein’s most ardent
supporters. The philosophical community was largely uninterested in the
proposal. As an empirical proposal, it had no foundations because of the
failure of every experimental test actually tried. As a product of
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philosophical analysis, it smacked of a priori physics.

In Sec. 2 of this paper, I will pose the question of precisely what it
is that Mach proposed concerning the origin of inertia. In Sec. 3, T will
argue that cases can be mounted for each of two plausible answers. In
Sec. 4, I will offer a reconciliation. In Secs. 5 and 6, I will assess the
broader reaction to the proposal, considering both the favorable and
unfavorable responses.

Although use of the term ‘Mach’s Principle’ is anachronistic in much
of the time period under consideration, I will use the term here for lack
of anything better. Over the years it has come to label a proliferation of
different ideas. Here I will understand it to refer to the proposal that the
inertia of a body is caused entirely by an interaction with other bodies.

2. What Mach Actually Said

In his first published reference to the principle he attributed to Mach,
Einstein (1912, p. 39) formulated it as “...the entire inertia of a point
mass is the effect of the presence of all other masses, deriving from a
kind of interaction with the latter.” A footnote appended to this sentence
announced its origin:

This is exactly the point of view which E. Mach urged in his acute
investigations on the subject. (E. Mach, The Development of the Principles
of Dynamics. Second Chapter. Newton’s Views of Time, Space and
Motion.)

The attribution is deliberate and unequivocal. Einstein, who is
notorious for the infrequency of citation in his writings, is carefully
naming a section of the second chapter of Mach’s celebrated The Science
of Mechanics: A Critical and Historical Account of Its Development
(Mach, 1960). '

Readers who turn to the relevant section of The Science of
Mechanics, a critique of Newton’s notions of absolute time, space, and
motion, will find many assertions reminiscent of the principle Einstein
enunciated. But nowhere will they find it stated without distracting
qualification or ambiguous hesitation. Indeed if the relevant section of
Mach’s text was intended to state clearly and advocate forcefully the
principle Einstein enunciated, then it has failed. Rather, readers of the
relevant section find Mach clearly devoting his expository energies to an
attack on Newton’s conceptions. The assault is based on two of Mach’s
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favorite themes, which are enunciated clearly and repeatedly. These two
themes, rather than some forerunner of Mach’s Principle, are what
readers find as the principal content of this section of The Science of
Mechanics. The following remarks from this section are typical:

No one is competent to predicate things about absolute space and absolute
motion; they are pure things of thought, pure mental constructs, that cannot
be produced in experience. All our principles of mechanics are, as we have
shown in detail, experimental knowledge concerning the relative positions
and motions of bodies. Even in the provinces in which they are now
recognized as valid, they could not, and were not, admitted without
previously being subject to experimental tests. No one is warranted in
extending these principles beyond the boundaries of experience. In fact,
such an extension is meaningless, as no one possesses the requisite
knowledge to make use of it. (Mach 1960, pp. 280) ...

When we say that a body K alters its direction and velocity solely
through the influence of another body K’', we have asserted a conception
that it is impossible to come at unless other bodies A, B, C ... are present
with reference to which the motion of the body K has been estimated. In
reality, therefore, we are simply cognizant of a relation of the body K to 4,
B, C ... If now we suddenly neglect A, B, C ... and attempt to speak of
the deportment of the body K in absolute space, we implicate ourselves in
a twofold error. In the first place, we cannot know how K would act in the
absence of A, B, C ...; and in the second place, every means would be
wanting of forming a judgment of the behavior of K and of putting to the
test what we had predicated — which latter therefore would be bereft of all
scientific significance. (Mach 1960, p. 281)

These passages recapitulate the two themes. First is the notion that
physical science is or ought to aspire simply to provide economical
descriptions of experience. Thus elsewhere Mach (1882) had pronounced
“Physics is experience, arranged in economical order” (p. 197), and
“The goal which it [physical science] has set itself is the simplest and
most economical abstract expression of facts” (p. 207). The second
theme is that Newton’s absolute space, time, and motion are idle
metaphysical excesses that are superfluous to this goal of economical
description. Again elsewhere Mach (1872, 1911) had made the point
very clearly. All our statements containing the terms ‘space’ and ‘time’
are really only statements of the relation of phenomena to phenomena,
and the terms could be struck out without affecting the content of the
statements. Mach (1872, 1911, pp. 60-61) even gave a prescription for
how this striking out might be effected:3
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We can eliminate time from every law of nature by putting in its place a
phenomenon dependent on the earth’s angle of rotation. The same holds of
space. We know positions in space by the affections of our retina, of our
optical or other measuring apparatus. And our x, y, z in the equations of
physics are, indeed, nothing else than convenient names for these affections.
Spatial determinations are, therefore, again determinations of phenomena by
means of phenomena.

These two themes comprise Mach’s attack on Newton’s conception.
In his The Science of Mechanics, Mach now goes to some pains to
emphasize the error that one may fall into if one forgets Mach’s lesson
and takes Newton’s absolute space and time too seriously. Talk of
motion of a body K in space is really only an abbreviated description of
the change of relations between K and other bodies 4, B, C .... If we
forget that these abbreviated descriptions do depend essentially on these
other bodies and try to anticipate the motion of K ‘in absolute space,’
that is, if these other bodies were not present, then we will illegitimately
extend our science beyond its proper domain. The domain of science is
experience. We have no experience of the motion of a body in a space
devoid of other bodies. Our extension would cease to be science.*

These two themes would be the ones that every modern reader would
find pursued by Mach with vigor and clarity in his critique of Newton,
were it not for the modern obsession of recovering Mach’s Principle
from Mach’s critique. As a result of this obsession, the modern reading
of Mach focuses on passages that are certainly highly suggestive, but, in
the last analysis, vague and ambiguous. Typical of them is the most
quoted of all passages of Mach’s critique (1960, p. 284), which I have
broken up into three sentences, labeled s,, s,, and s;, for discussion:

[s;] Newton’s experiment with the rotating vessel of water simply informs
us, that the relative rotation of the water with respect to the sides of the
vessel produces no noticeable centrifugal forces, but that such forces are
produced by its relative rotation with respect to the mass of the earth and
the other celestial bodies.

[s,] No one is competent to say how the experiment would turn out if the
sides of the vessel increased in thickness and mass till they were ultimately
several leagues thick.

{ss] The one experiment only lies before us, and our business is, to bring
it into accord with the other facts known to us, and not with the arbitrary
fictions of our imagination.

The ambiguity of this famous passage lies in the admissibility of two
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readings that contradict one another:

First is the reading that returns what we now call Mach’s Principle.
Sentence s, reminds us that, in our search for causes for the centrifugal
forces within the bucket, we have overlooked one possibility, the rotation
of the water with respect to other bodies. We cannot rule out such a
cause, as long as it is a cause that only acts when very large masses are
involved. Thus s, agrees with Newton that rotation with respect to the
walls of the bucket induce no noticeable centrifugal forces. But according
to the new physical mechanism conjectured, this would not be so if the
walls were substantially increased in mass and size. Sentence s, closes by
observing that we would never have been tempted with an explanation
in terms of absolute space - the “arbitrary fictions of our imagination”
- had we recalled that the real business of science is economical
description of experience. In this case, the experience is of Newton’s
experiment and of the other bodies that surround it.

The second reading recalls the two themes of Mach’s critique. Since
the goal of physical science is economical description of experience, s,
reminds us of what we should really infer from Newton’s experiment.
We should conclude merely that there is a correlation between two
experiences, the presence of centrifugal forces and rotation with respect
to the stars. There is no place for a metaphysical absolute space in such
descriptions. Sentence s, is a tease to shake the dogmatic belief of a
Newtonian. It points out that the Newtonian has inferred far more than
what is actually warranted by Newton’s experiment. The experiment does
not give us enough information to rule out the possibility of an
alternative physical theory in which the centrifugal forces are caused by
rotation with respect to other bodies. Sentence s;, however, reaffirms
resoundingly that such speculation lies well beyond the compass of
science as economical description of experience. This speculation
requires us to think of cases in which we do not and cannot have
experience: for example, the walls of the bucket enlarged to a thickness
of several leagues - “an arbitrary fiction[s] of the imagination” if ever
there was one. Therefore Mach will not entertain such speculation.

Thus we have two readings of Mach’s famous analysis of Newton’s
bucket experiment:

*The first escapes Newton’s conclusion by proposing a new physical
mechanism for the generation of inertial forces that will later be associated
with the label ‘Mach’s Principle.’

*The second effects the escape essentially by insisting that Newton be
restricted to describing the experiment only in terms of what is experienced
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and pointedly condemns as unscientific the proposal of Mach’s Principle.

Our task now is to decide which if either is the correct reading.5 Our
resources are Mach’s other writings as well as the interpretations of his
contemporaries. Unfortunately we shall see that quite strong cases can be
mounted for both readings. My accusation of the broader ambiguity of
Mach’s analysis rests on this unhappy fact. I now proceed to develop the
case for each reading of Mach’s analysis.

3. Mach Escapes Absolute Space by Urging ...

3.1. ... Mere Redescription. 1t is clear that a major component of Mach’s
analysis involved the simple recommendation to redescribe motion in
space as experiences that do not invoke the term ‘space.” Thus he wrote
(1960, pp. 285-86; Mach’s emphasis): “When...we say that a body
preserves unchanged its direction and velocity in space, our assertion is
nothing more or less than an abbreviated reference to the entire
universe.”

How are we to decide if in addition to this project of simple
redescription Mach is also proposing a new physical mechanism? I shail
assume that a proposal for a new physical mechanism must make claims
about counterfactual or hypothetical systems, that is, claims about
systems which are known not to exist or are not known to exist.
Certainly such a proposal cannot approach the proposal of Mach’s
Principle unless it is prepared to license inferences about such cases as
the rotation of a hypothetical bucket with walls several leagues thick or
perhaps about the inertial forces induced between two bodies in an
otherwise (counterfactually) empty universe.5

Under this criterion there would seem to be no possibility that Mach
could be proposing a new physical mechanism. For the claim he repeats
most in the entire analysis is that we have no business in science
speculating about such systems that are beyond our experience. Merely
in the passages already quoted above, Mach has made the point three
times. And it appears elsewhere in his analysis. For example (1960,
p. 285):

The comportment of terrestrial bodies with respect to the earth is reducible
to the comportment of the earth with respect to the remote heavenly bodies.
If we were to assert that we knew more of moving objects than this their
last-mentioned, experimentally given comportment with respect to celestial
bodies, we should render ourselves culpable of a falsity.
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Or again Mach considers a proposal by C. Neumann, who imagines
that a rotating celestial body will still be deformed into oblateness by
centrifugal forces even if the other heavenly bodies were absent. Mach
(1960, pp. 340-41) insists that this latter assumption is meaningless and
objects that one is simply not allowed to assume away these other masses
as unimportant when experimenting in thought.” But if Mach refuses to
allow any consideration of such hypothetical or counterfactual systems,
then it is hard to see how he could be proposing a principle that even
vaguely resembles the later Mach’s Principle. On the contrary he must
condemn any such principle as unscientific.

In places Mach does seem to urge a reformulation of the pr1nc1ples
of mechanics. He allows for example®: “The principles of mechanics
can, presumably, be so conceived, that even for relative rotations
centrifugal forces arise.”

Is Mach suggesting a reconception of mechanics in which the
principles are materially changed and a new physical mechanism
introduced? Or is the reconception merely a restatement of the same laws
in such a way that the idle metaphysical conceptions of space and time
are no longer mentioned? We may answer by looking at what Mach
proceeds to do. On the pages following, what Mach actually does
corresponds to the latter alternative of simple redescription. He seeks
ways of restating the law of inertia so that it does not use the term
‘space.” This project of redescription proves quite simple for one case (p.
286)

Bodies very remote from each other, moving with constant direction and
velocity with respect to other distant fixed bodies, change their mutual
distances proportionately to the time. We may also say, all very remote
bodies - all mutual or other forces neglected — alter their mutual distances
proportionately to those distances.

Mach then shows (pp. 286-287) how this type of formulation of the law
of inertia can be couched in the language of mathematical formulae. The
usual form of the principle requires that the acceleration of a body
remote from other masses be constant. That is, if the body has absolute
spatial coordinates (x, y, z) and the time is #, then

dx’ _dy? _dz? _

drr dr? dr?
Mach’s goal is to rewrite the law without the absolute spatial coordinates
(x, ¥, 2). To achieve this, he considers the distances r, r’, r”, ... to the
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other distant masses m, m’, m”, ... from the test mass. In place of the
spatial coordinates, Mach uses the mass weighted sum of these distances
(XEmr/Xm) so that the principle becomes

d? [Emr =0. (1)

ar?| Tm

The project is clearly just one of redescription of existing laws and not
the proposal of a new mechanism.® Indeed Mach soon makes it very
clear that his new expression for the principle of inertia is not intended
to be applied to cases remote from experience (p. 289):

It is impossible to say whether the new expression would still represent the
true condition of things if the stars were to perform rapid movements
among one another. The general experience cannot be constructed from the
particular case given us. We must, on the contrary, wait until such an
experience presents itself.

Thus it is possible to present a collection of Mach quotations that
drives towards the conclusion that Mach is not advancing what we now
know as Mach’s Principle, but condemning it. Is this an example of
selective and biased quotation? Apparently not in the view of several of
Mach’s contemporary readers. C. D. Broad (1916) reviewed the
supplement that contained a compendium of Mach’s additions to the third
English language edition of The Science of Mechanics. He reported that
he now understood more clearly Mach’s ambiguous discussion
surrounding Newton’s bucket experiment. What he understood in that
discussion was not a proposal for a new physical mechanism but merely
Mach’s strictures about redescription:

There is also a far clearer statement than before of Mach’s much quoted
remark (in connection with Newton’s bucket) that “the universe is not given
to us twice, but only once.” It is now clear that Mach’s meaning is that the
Ptolemaic and the Copernican view are simply different ways of describing
precisely the same set of facts, and that therefore there is no real difference
between the bucket standing still with the fixed stars rotating and the bucket
rotating with the fixed stars standing still. This is clearly a necessary result
of the relative view, and it is one that is often overlooked.

Broad’s remarks were those of a sympathetic reviewer. Far more
significant was the evaluation of Paul Carus. Carus was born in Germany
in 1852, received a doctorate from the University of Tiibingen in 1876,
and emigrated to America. There he began working for the Open Court
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Publishing Company, editing its journals Open Court and the Monist. In
particular, Carus became the medium, welcomed heartily by Mach,
through which Mach’s writings were made available in English to the
American audience. Carus found a natural empathy with Mach’s views!®
and was able to engage Mach in a huge correspondence spanning almost
three decades, one of Mach’s largest correspondences.!! What induced
Carus to publish on precisely the question that concerns us was a talk
given by Philipp Frank in 1909, “Is There Absolute Motion?,” published
the following year as Frank (1909). Frank clearly attributed to Mach the
proposal of a new physical mechanism to explain inertial forces of the
type of Mach’s Principle. Carus’s discussion (1913, pp. 23-40) contains
extensive quotation from Frank’s lecture and provides the foundation for
his denunciation of the suggestion that Mach was proposing a new
physical mechanism:

Another point where we feel justified in doubting Dr. Frank’s exposition is
the statement that Mach hypothetically assumes a new law of nature as to
the efficacy of masses, besides the law of gravitation. The passage in
Mach’s writings to which Dr. Frank refers!? does not (in my opinion)
suggest the idea of an additional law of nature according to which the
distant fixed stars should exercise a mysterious influence on the Foucault
pendulum. We will later on let Mach speak for himself. In our opinion it
seems that it would be sufficient to ascribe the rotation of the pendulum to
its inertia while the earth revolves round itself, and this takes place in the
space in which the earth has its motion, viz., the space of the Milky Way
system. The pendulum remains in the plane of oscillation in which it started
while the earth turns around underneath. ... There seems to me no need of
inventing a new force besides gravitation. The law of inertia seems to
explain the Foucault pendulum experiment satisfactorily.

Carus supports his reading of Mach with his own selection of Mach
quotes, similar to those discussed here, pointing out that Mach’s
endeavors are devoted to elimination of the terms ‘space’ and ‘time.’
Carus’s published argument is based on widely available published
writing of Mach. However, because Carus also enjoyed the privileged
view of an extensive correspondence with Mach, it is tempting to
conjecture that Carus is also silently drawing on this correspondence or
even on discussions with Mach during one of Carus’s visits to Mach in
1893 or 1907. Whether such correspondence is still extant will have to
be decided by a search of the relevant archives. However, the prospect
that any such correspondence existed in 1913 seems slight. If it did exist,
Carus would almost certainly have published it to buttress his case. As
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editor of the Monist, Carus had clearly been eager to publish a letter by
Mach (Carus 1906a) on an earlier article by Carus (1906) on Mach’s
philosophy. He published it with obvious delight, embedding the letter
in the pomp of an introduction and afterword by Carus, and retaining its
original German “lest it lose many of the fine points in an English
translation.” (Carus (1913), however, showed no restraint in presenting
extensive passages of Frank (1909) in English translation!)

Finally, whatever their differences over whether Mach did propose
a new hypothetical law, both agreed that such a proposal is an anomaly
in Mach’s broader systematic proclamations in which such hypothesis is
abhorred. Thus Frank notes (1909, p. 17; trans. Carus 1913, p.32): “But
Mach in this case stands in the opposite camp as in most other cases
where his repugnance to all hypothesis has made him a pioneer in the
phenomenological direction.” And Carus (1913, p. 32) himself, speaking
of Frank’s broader reading of Mach, writes provocatively “Strange that
Mach, with his reluctance to introduce anything hypothetical except what
is absolutely indispensable, should range on the side of the theorists....”

3.2. ... a New Physical Mechanism. Or did Mach intend to recommend
more than mere description? Did he intend to propose a new physical
mechanism for the origin of inertial forces? Once again a case can be
made for this possibility and it too rests on quotations from Mach’s
writings and on his interactions with colleagues and others. However, if
the case for this possibility were to rest only on the first part, Mach’s
writings for publication, then the case would be considerably weaker than
the corresponding case for his advocacy of mere redescription. For none
of the writings unambiguously endorses a proposal for a new mechanism.
Worse, it is not clear which of his writings even talks about such a
proposal.

In Mach’s critique of Newton’s conceptions in The Science of
Mechanics are several much cited remarks that could be taken as
suggesting a new physical mechanism. However, precisely because they
are rhetorical flourishes, they admit of many interpretations and do not
provide a firm foundation for the case. He exclaims (p. 279): “Try to fix
Newton’s bucket and rotate the heaven of fixed stars and then prove the
absence of centrifugal forces.”

But could this not simply mean that Mach takes the case of bucket
rotating/stars resting to be exactly the same as the case of bucket
resting/stars rotating? Then to try to prove the absence of centrifugal
forces, as Mach challenges, is obviously futile since the two cases are
really just the one case described differently. Indeed the sentences
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immediately preceding the exclamation are devoted to arguing that the
two cases are really one. Again, there is Mach’s famous observation on
Newton’s bucket experiment (p. 284): “No one is competent to say how
the experiment would turn out if the sides of the vessel increased in
thickness and mass till they were ultimately several leagues thick.”

As we saw above, a consistent continuation in Mach’s voice would
be “And I [Mach] certainly would not dare to speculate on such an
unscientific thing!” - this being a plausible reading of what Mach
actually says in the next sentence: “The one experiment only lies before
us, and our business is, to bring it into accord with the other facts known
to us, and not with the arbitrary fictions of our imagination.”

Again, Mach concludes the paragraph preceding with an apparently
unequivocal recommendation for a new physical mechanism for inertial
forces: “The principles of mechanics can, presumably, be so conceived,
that even for relative rotations centrifugal forces arise.”®

However, the appearance is deceptive, for, as we saw above, this
reconception might just be referring to a simple redescription such as
Ieads up to Mach’s equation (1) above.

More promising are his later remarks that Barbour (1989, p. 692)
identifies as “Mach’s clearest statement of the ideal of a seamless
dynamics” such as would arise were he proposing a new mechanism for
inertia. Mach writes (p. 296, Mach’s emphasis)

The natural investigator must feel the need of further insight — of knowledge
of the immediate connections, say, of the masses of the universe. There will
hover before him as an ideal an insight into the principles of the whole
matter, from which accelerated and inertial motions result in the sarme way.
The progress from Kepler’s discovery to Newton’s law of gravitation, and
the impetus given by this to the finding of a physical understanding of the
attraction in the manner in which electrical actions at a distance have been
treated, may here serve as a model. We must even give rein to the thought
that the masses which we see, and by which we by chance orientate
ourselves, are perhaps not those which are really decisive. On this account
we must not underestimate even experimental ideas like those of Friedldnder
[(1896)] and Foppl [(1904, 1904a)], even if we do not yet see any
immediate result from them.

Once again I do not see that we can rule out the possibility that these
remarks refer to Mach’s project of redescription. The understanding of
(1) is of immediate connection of the masses since the superfluous
mediation of ‘space’ has been eliminated. And was not the progress
from Kepler to Newton (in Machian terms) the discovery of a system of
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laws that yielded a far more economical summary of not just Kepler’s
astronomical discoveries but much else besides? It is also very possible,
however, that Mach is referring to a new physical mechanism for the
origin of inertia. For, as we shall see below, Friedlaender (1896) and
Foppl (1904a) both clearly consider such a novel mechanism and conduct
experiments to detect it.

If this passage does refer to such a novel mechanism, it still provides
no evidence that the proposal of such a mechanism originated with Mach
or that Mach endorsed it. The passage in question was added to the
seventh German edition of 1912,13 presumably in response to
Friedlaender (1896) and Foppl (1904, 1904a). Since these works already
propose a new physical mechanism for inertia, one can hardly say that
the proposal originated with Mach’s remarks of 1912. Even Mach’s
vague suggestion of the use of the theory of electricity as a model had
been anticipated and in more precise form. Friedlaender (1896, p. 17)
had raised the possilibility of applying Weber’s law of electrodynamics
to gravitation in this context, as does Hofler (1900, p. 126), as we shall
see below. Worse, Mach’s language suggests that whatever he is intro-
ducing is novel and goes beyond what was already said in earlier
editions. That is, after the Machian ideal of purification from
meaninglessness has been achieved, there is a new goal, some “further
insight,” a speculative “ideal.” In one sentence, we are invited “even [to]
give rein to the thought [sogar dem Gedanken Raum geben)] that the
masses which we see, and by which we by chance orientate ourselves,
are perhaps not those which are really decisive.” This invitation would
hardly be necessary if we had already made space for that thought in the
earlier text of the earlier editions. The thought for which we are to make
space might even be a distinctly non-Machian one. If the thought is that
the decisive bodies are ones we cannot see, then it contradicts Mach’s
repeated and forceful pronouncements on the primacy of the observable.
If the theoretical and experimental work of the Friedlaenders and Foppl
is a part of such non-Machian speculation, then Mach can hardly be
giving them unreserved endorsement. Indeed the passage quoted above
closes with what seems to be a gentle rebuke: “Although the investigator
gropes with joy after what he can immediately reach, a glance from time
to time into the depths of what is uninvestigated cannot hurt him.”

One could read this as a very kind way for Mach to point out to the
Friedlaenders and Foppl that he finds their work to have strayed well
beyond science, the domain of economical descriptions of experience,
into the murky depths of unscientific speculation.!4

Remarks published by Mach in 1872 [quoted here from Mach
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(1911)] support most strongly his advocacy of a new physical mechanism
for the origin of inertia - although they are still subject to the same
ambiguities. In the appendix, Mach stresses that in referring motions in
the law of inertia to space we should never lose sight of the fact that this
is really only an abbreviated reference to other bodies. He then begins
to discuss how the motion of these other reference bodies might affect
the law of inertia, arriving at the following puzzle (p. 78):

But what would become of the law of inertia if the whole of the heavens
began to move and the stars swarmed in confusion? How would we apply
it then? How would it have to be expressed then?

It seems clear enough that Mach’s puzzle refers to the problem of stating
- redescribing - the law of inertia in a form similar to (1), in the
awkward case in which the heavenly bodies adopted chaotic motion. How
can Mach be sure that an expression in terms of a simple mass weighted
sum of distances (Emr/Xm) will be adequate? This seems to be the same
problem that Mach discusses in The Science of Mechanics (1960, p. 289)
(see above). Mach then proceeded to another example, a free body acted
upon by an instantaneous couple so that it rotates. He continues (p. 79)

Here the body makes very strange motions with respect to the celestial
bodies. Now do we think that these bodies, without which one cannot
describe the motion imagined, are without influence on this motion? Does
not that to which one must appeal explicitly or implicitly when one wishes
to describe a phenomenon belong to the most essential conditions, to the
causal nexus of the phenomenon? The distant heavenly bodies have, in our
example, no influence on the acceleration, but they have on the velocity.

The ambiguity of these remarks resides in the unexplained terms
‘influence’ and ‘causal nexus.” What do they mean? What sort of influ-
ence is suggested?!>

Mach then makes the remarks that most strongly suggest that he is
seeking a new physical mechanism. He seems to be conjecturing the
form of the law that governs it:

Now, what share has every mass in the determination of direction and
velocity in the law of inertia? No definite answer can be given to this by
our experiences. We only know that the share of the nearest masses
vanishes in comparison with that of the farthest. We could, then, be able
completely to make out the facts known to us if, for example, we were to
make the simple supposition that all bodies act in the way of determination
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proportionately to their masses and independently of the distance, or
proportionately to the distance, and so on.

This talk of ‘share’ and ‘masses’ acting in proportion to their mass and
distance might well be a conjecture of some new physical mechanism.
However, it can also be read as a part of Mach’s project of
redescription. As we have seen, Mach gives such a redescription of the
law of inertia in terms of the mass weighted sum of distances (Emr/Zm)
or its second time derivative d*/dt*(Emr/Em). The ‘share’ of each mass
m, m', m" ... in the reformulated law would simply be the magnitude of
the term each mass contributes to these sums. The functional dependence
of these contributions are then exactly of the type Mach mentions. In the
first sum, for example, each mass contributes a term proportional to its
mass and to its distance from the test body. And the nearest masses
certainly contribute vanishingly small terms in comparison with the
remaining masses.

In my reading, one thing makes it clear that Mach intends in this
passage to propose only a redescription of the law of inertia and not a
new physical mechanism. That is the sentence immediately following the
passage quoted above, which closes the paragraph and Mach’s dis-
cussion: “Another expression would be: In so far as bodies are so distant
from one another that they contribute no noticeable acceleration to one
another, all distances vary proportionately to one another.”

This expression is clearly offered as a variant or, possibly, a special
form of the general laws discussed. Yet it is just a redescription of the
inertial motion of a collection of noninteracting bodies that avoids
mention of space.!¢ There is no hint of some new physical mechanism
that would enforce the proportional variation of distances.

This discussion is the best evidence in Mach’s published writing for
his advocacy of a new physical mechanism for the origin of inertial
forces. But it does not make a good case. Even in the collective
judgments of Mach’s sympathetic contemporaries, its intent is unclear.
As we have seen, Frank (1909) found it to advocate a new mechanism;
Carus (1913) did not. My judgment is also that it is ambiguous, but I
think its most natural reading is as a proposal for simple redescription.
In my view, this same judgment must also hold of Mach’s published
corpus on Newton’s bucket experiment and the law of inertia. The only
unequivocal proposal Mach makes is for a simple redescription of the
experiment and the law in a formulation that does not use the term
‘space.” It remains unclear whether Mach intended to propose and
endorse a new physical mechanism for the origin of inertial forces.
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However it is dubious that this verdict represents Mach’s real
intentions. What speaks loudly against this verdict is that the majority of
Mach’s contemporaries and confidants understood him to be proposing
a new physical mechanism. On this point Carus is in a clear minority.
Indeed the view that Mach proposed a new mechanism is a commonplace
of the literature from around 1900 and on to the year of Mach’s death in
1916. It is mentioned!” by Friedlaender (1896, p. 9), Hofler (1900, pp.
122-26), Foppl (1904a, p. 383), Frank (1909), Cassirer (1910, p.
177),18 Petzoldt (1912, p. 1057), Schlick (1915, p. 166), and, of course,
Einstein, whose repeated attributions, commencing with Einstein (1912),
brought the viewpoint to the broadest audience. If this view were an
outright misreading of Mach, then Mach had ample opportunity to
correct it. But this correction never came.!? He even mentioned the work
of the Friedlaenders (1896) and Foppl (1904a) in later editions of his 7The
Science of Mechanics (1960, p. 296). Surely that is the point at which
Mach would issue a correction if both works were misrepresenting his
position. Or are the somewhat indirect remarks quoted above (“...a
glance ... into the depths of what is uninvestigated...”) intended as a
gentle rebuke?

It would seem that any corrections that Mach may have issued would
have been so gentle as to escape later reporting, or, at least, any
reporting of which I am aware. In particular, in a letter of June 25,
1913, Einstein reported to Mach that Einstein’s new theory had yielded
a new physical mechanism for the origin of inertia and Einstein attributed
that idea directly to Mach20: “...inertia has its origins in a kind of
interaction of bodies, quite in the sense of your reflections on Newton’s
bucket experiment.”

Yet Einstein’s later writings contain no trace of hesitation in
continuing this attribution to Mach. Similarly, Frank (1957, p. 153)
continues the attribution. Again, in a letter of January 11, 1910
(Blackmore and Hentschel 1985, pp. 66-67) to Mach, Foppl mentions
his “treatment of the question of relative motion” - presumably Foppl
(19042). He commented with relief that Mach “at least had no
fundamental misgiving [Bedenken] to raise against [it].” We might well
wonder what Mach did say to evoke such a response!

Fortunately, within Mach’s surviving correspondence there is a
record of how Mach responded to such attributions. In a letter of
September 3, 1904, which contained an enthusiastic response to the fifth
German edition of Mach’s The Science of Mechanics, Petzoldt put to
Mach a series of questions and proposals about Mach’s ideas on the law
of inertia. In particular, he attributed to Mach the idea that the thickened
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walls of Newton’s bucket could induce centrifugal forces and expressed
his own doubts on this notion (Blackmore and Hentschel 1985, p. 36,
Petzoldt’s emphasis):

I still cannot reconcile myself to your observation (p. 247) on the possible
variation of the experiment through the thickening of the bucket walls. With
this you still make the appearance of centrifugal forces dependent on the
magnitude of the surrounding bodies instead of the (relative) rotations of the
bodies. The centrifugal forces are still aroused only through relative rotation
against the locations of the masses of the earth and the other heavenly
bodies. I am inclined, however, very much to the belief, which you also
admit, that the heavenly bodies here play only a chance role like the axial
rotation of the earth for the determination of temporal processes, and hope
for future experiences on the deeper relations of things, without shutting my
eyes to your doubt over whether such experiences will ever be accessible
to us as people.

Mach’s response in a letter of September 18, 1904, is lengthy and
unfortunately never actually mentions the walls of Newton’s bucket. He
does make clear that he dislikes Petzoldt’s idea that the locations of the
masses may be the decisive thing. He objects (Blackmore and Hentschel
1985, p. 39, Mach’s emphasis): “A bare, efficacious location has been
observed by no one.”

However, he does clearly leave the impression that Mach’s own view
of inertia is that it is a matter to be decided by experiment. After
explaining that his original thoughts on inertia were formulated before
the ascendancy of Faraday’s conception of local action and of a medium
or material intervening between bodies (“aether, space or whatever it is
called™), he continued: (p. 38, Mach’s emphasis)

As long as one attends to bodies alone, one conceives naturally of
gravitational processes and inertial motions as determined by them alone or,
correspondingly, through other masses. If one now also is not to expect a
positive result from the Friedlinder fly-wheel experiment,?! since the mass
and velocity of the wheel is too small, then a greatly refined Foucault
experiment could still show that a pendulum or gyroscope orients itself not
only according to the fixed heavenly stars, but also in part is influenced by
the earth, which is, after all, a powerful flywheel. However should such an
experiment definitely come out negative, that would also be a great gain in
insight. ... If I conceive of gravitation as carried through a medium, then
I can conceive of the state of this medium still as only determined by the
masses of bodies, for the reaction accelerations depend on the masses of the
bodies. But if one body that is very distant and unaccelerated with respect
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to the others is in motion, then its motion can only be described with
reference to the latter. The idea that this motion is determined by the latter
bodies cannot be dismissed without further ado. In any case, the orientation
of the motion through the distant bodies can be a merely apparent one.
Perhaps the motion is a concern only of the moving body and the medium
alone. Perhaps each body conducts itself in space like Dirichlet’s bodies in
a frictionless fluid.??

The letter closes with a very brief sketch of an experiment designed to
detect the Friedlaenders’ effect arising from the earth’s motion.

With a response such as this, it is no surprise that Petzoldt (1912, p.
1057) should proceed to attribute to Mach the conjecture that the relative
rotation of masses induces centrifugal forces, the same effect sought
experimentally by the Friedlaenders and Foppl. However the only
definite point that Mach has made is to rule out Petzoldt’s proposal with
his disparagement of a “bare, efficacious location.” His answer strongly
suggests that he expects or would welcome a positive outcome of a
Friedlaender style experiment. But he has still not positively asserted that
he believes that a thickened bucket in Newton’s experiment would induce
inertial forces - his original passage in The Science of Mechanics insists
that no one is competent to assert this! And for all our pursuit of Mach’s
writings, we still do not have a clear statement from Mach that he
conjectures that the origin of inertia lies solely in an interaction of bodies
through some new physical mechanism.

4. A Reconciliation?

This is the puzzle that Mach’s writings on inertia pose for us. We must
reconcile two facts. Mach’s publications contain only a clear advocacy
of the view that one ought to redescribe Newton’s bucket experiment and
the law of inertia in such a way that the term ‘space’ does not arise. If
there is a suggestion of a new physical mechanism to explain the origin
of inertial forces, then its discussion is vague, and the proposal of a new
mechanism might even be condemned as unscientific. On the other hand,
Mach must have been aware that the proposal of exactly such a new
causal mechanism was routinely attributed to him, but, in spite of ample
opportunity, there is no evidence that he ever moved to correct this
misattribution - if it did in fact need correcting. In brute form, we are
left wondering whether Mach did intend to propose a new mechanism but
was simply incompetent in expressing his intention. Or, if he did not
intend a new mechanism, we must ask why Mach allowed such
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widespread misinterpretation of his work.

I can offer two reconciliations, although neither is attractive. The
first is that Mach was unwilling to see the need for a new physical
mechanism in his system. That is, he was an adherent of the relativist
doctrine with respect to motion, which leads to the need for a new
mechanism to account for inertial forces. Mach, however, was simply
unwilling to embrace this consequence, so willingly embraced by other
relativists, and simply tried to avoid committing himself. There is some
evidence for this view. It stems from Hugo Dingler, who had been
sanctified by an extremely favorable mention from Mach in the
penultimate paragraph of his preface to the last edition of The Science of
Mechanics. He reported in Dingler (1921, p. 157) that Mach’s?3

...only salvation [from the problem of centrifugal forces] was to bring the
centrifugal appearances into relation with the fixed stars, and, in fact, Mach
also accepts this in the last (7th) edition of his Mechanics (I cannot really
decide how much this was already the case in earlier editions); he was
forced to it, even though this also obviously contradicted his sensibilities.

To the last sentence, Dingler appended the crucial footnote

I thank Herr Dr. Ludwig Mach for the fr[ien]dl[y] communication that this
consequence was always “especially tormenting” [besonders qudlend] for
his father, that he knew for a long time of the monstrous conclusions
deducible from it, yet did not draw them, but rejected them.

Thus Mach’s behavior could be explained by a horror and unwillingness
to accept what his system had produced. In this account, his aversion
would be so profound that he would be unable to address the horrific
consequence squarely in both his writings and in his private
correspondence and discussions.

There are two difficulties with this view. First, contrary to Dingler’s
suggestion, Mach’s system offered a perfectly good reason for rejecting
a new physical mechanism: It transcended the economical description of
experience that was the proper domain of science. With perfect
consistency and in clear conscience, Mach could denounce this new
mechanism as unscientific, if he disliked it so much, and there would be
no need to be tormented. Second, by 1921, Dingler had become an
outspoken critic of relativity theory and, as a disciple of Mach, may well
have been overeager to seek reasons to remove Mach’s support from
relativity theory.?4
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A second more plausible reconciliation is the one I favor. It depends
on Mach’s somewhat idiosyncratic notion of the true nature of causation.
In Sec. 3, when seeking to judge whether Mach’s proposals advanced
beyond mere redescription to a new physical mechanism, I used the
criterion that such a mechanism must make claims about counterfactual
or hypothetical systems, for that was clearly required if Mach’s proposals
were to approach what later became Mach’s Principle. However Mach’s
view of physical science as merely economical description of experience
rules out exactly such considerations. A causal connection for Mach is
merely a functional dependence extracted from experience. He makes this
very clear in (Mach 1911, p. 61; Mach’s emphasis) when he writes

The present tendency of physics is to represent every phenomenon as a
function of other phenomena and of certain spatial and temporal positions.
If, now, we imagine the spatial and temporal positions replaced in the above
manner [by phenomena), in the equations in question, we obtain simply
every phenomenon as function of other phenomena.

Thus the law of causality is sufficiently characterized by saying that it
is the presupposition of the mutual dependence of phenomena. Certain idle
questions, for example, whether the cause precedes or is simultaneous with
the effect, then vanish by themselves.

The law of causality is identical with the supposition that between the
natural phenomena «, £, v, 9, ...,  certain equations subsist.

One cannot overemphasize how different this view is from the
common view of causation. Newton’s inverse square law of gravity is
commonly understood to legislate that the sun causes an acceleration of
the earth that varies directly with the inverse square of the distance that
separates them. And this is assumed to hold whether the two masses are
the sun and earth of our actual universe or a sun and earth in some
hypothetical universe devoid of all other matter. As Mach’s frequent
protestations above show, he does not allow, in general, this assuming
away of the other masses of the universe. Now it is not clear whether
Mach would want this prohibition to apply in this case. If it does apply,
however, then the relevant causal law simply becomes the assertion of
the functional relationship between the sun-earth distance and the
acceleration of the earth towards the sun that happens to obtain in our
universe alone.

If we now apply precisely this same thinking to Newton’s bucket
experiment, we arrive almost verbatim at many of Mach’s pro-
nouncements on the experiment and the law of inertia. And we do so
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without Mach ever proposing the type of new physical mechanism soon
to be suggested under the banner of Mach’s Principle. If we seek the
fundamental causal relation revealed by Newton’s bucket experiment, we
must recover the functional relation of the actual phenomena - and that
is merely

... that the relative rotation of the water with respect to the sides of the
vessel produces no noticeable centrifugal forces, but that such forces are
produced by its relative rotation with respect to the mass of the earth and
the other celestial bodies.

It now follows immediately that, using Mach’s definition, the centrifugal
forces in the bucket and the mass of the earth and other celestial bodies
stand in a causal relation. Speaking loosely, in a way that risks ‘idle
questions,” we might identify these masses as the cause of the forces.
Also, to identify the role that each of the masses play in the functional
relation is just to identify their causal role. Mach might well describe this
as their ‘influence,” a term with obvious causal connotations. Or he
might well ask: “What share has every mass in the determination of
direction and velocity in the law of inertia?” And if the relevant
functional relation is linear in mass, he might well describe the body as
‘acting’ in proportion to its mass. Further, a result such as (1) appears
to non-Machian readers merely to describe a functional relation and
nothing more. But to Mach, the very fact that it describes a functional
relation between phenomena of our world makes it the statement of a
causal relation. Finally, Mach can offer a functional relation such as (1)
as the fundamental causal relation pertaining to inertia, that is, the law
of inertia, without needing to suggest that this same relation would obtain
were the motions of the masses of the universe to be very different. For
the functional relation need only obtain for our actual experiences to
qualify as a causal relation.3

There is an unappealing aspect of this resolution. The resolution rests
on the assumption that what Mach meant by causation is very different
from what the same term meant for the many proponents of what came
to be known as Mach’s Principle. Thus, when Einstein wrote to Mach
that “inertia has its origins in a kind of interaction of bodies, quite in the
sense of your reflections on Newton’s bucket experiment,” Einstein’s
notion of causal interaction extended well beyond the simple functional
relations of phenomena. It included relations on hypothetical and
counterfactual systems of precisely the type denounced by Mach. What
remains unexplained is how Mach could repeatedly allow such
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misattributions to pass without objection or correction by him.
5. Early Sponsors of Mach’s Principle

Whatever may have been Mach’s attitude to the principle that came to
bear his name, his writing proved to be a continuing inspiration to the
advocates of the principle and it prospered under their guidance. Prior
to Einstein, the sponsors of the principle formed a scattered group,
largely on the fringe of the physics community. Typically, the members
of this group thought that the existence of the new physical mechanism
was an issue to be settled by experiment.26 They devoted their energies
to devising and executing such experiments — and to the writing of
labored but generally inconsequential treatises.

Mach ensured remembrance of two such experiments, those of the
Friedlaenders and Foppl, by citing them in his The Science of Mechanics
(1960, p. 296). The work of the Friedlaenders is described in the short,
two-part monograph, Friedlaender (1896). The first part, written by
Immanuel Friedlaender, describes how Immanuel’s pursuit of the
relativity of motion and the problem of centrifugal forces lead him to
what we would now call Mach’s Principle (p. 14):

Without knowing that this had already been done by Mach, I have doubted
the completeness of these foundations of mechanics for many years now. In
particular I have come to the conviction that the appearance of centrifugal
forces ought to be explicable also through regular mechanical knowledge
[Erkenntnis] from the relative motions alone of the systems concerned,
without resorting to absolute motion.

In just a few words, Immanuel is able to state clearly the call for a new
physical mechanism which would supplement the existing laws of
mechanics and explain centrifugal forces in terms of relative motions
alone. Yet, ironically, he gives priority for this idea to Mach, even
though I have been unable to find a similarly clear formulation of the
idea in Mach’s writings. Immanuel then proceeded to describe his efforts
to detect this mechanism experimentally. He expected that the spinning
of a fly wheel would produce forces directed away from its axis through
this mechanism, just as the rotation of the heavens about the earth
produces centrifugal forces. He proposed to detect these forces with a
torsion balance, “the most sensitive of all physical instruments” (p. 15).
However, when he sought to carry out these experiments in a rolling mill
in Peine in November 1894, this necessary but extreme sensitivity of the
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balance proved to be his undoing. His results were inconclusive since he
was unable to control disturbing influences. He lamented (p. 16): “A
sensitive torsion balance is, however, a tricky instrument and a rolling
mill certainly not the most comfortable or most favorable location for
precision measurement.”

Upon the failure of these experiments, he turned to his brother, Dr.
Benedict Friedlaender, who only then informed him of Mach’s work.
Jointly they developed their ideas, upon which Benedict reported in the
second part of the monograph. Immanuel concluded by stating his
expectation that the correct formulation of the law of inertia ought to lead
to “a unified law” which combined both gravitation and inertia as an
action of masses. The idea that this new mechanism be integrated with
the law of gravitation is not usually attributed to Mach, but is considered
Einstein’s innovation. Of course, in the Friedlaenders’ hands it was
merely speculation, but at least we see that the unification Einstein
effected was not so completely unanticipated.

Foppl (1904) described his attempt to perform an improved version
of the Foucault pendulum experiment. The purpose of the experiment
was to reveal the precise disposition of an inertial system, correcting for
the acceleration of the laboratory on the surface of the earth. He
explained that “Foucault’s pendulum experiment is afflicted with such
sources of error that its accuracy leaves much to be desired even with
careful execution” (p. 5). Foppl described how his experiment employed
a carefully suspended gyroscope. Its precessional motion would reveal
the disposition of an inertial frame of reference. Foppl hoped his
experiment might decide whether (p. 5): “... the terrestrial phenomena
of motion is itself influenced by the rotation of the earth in such as way
that, for [these motions], the rotation of the earth does not coincide with
that [rotation] with respect to the fixed star heaven.”

In other words, Foppl is interested in comparing two reference
systems. The first is the reference system of the fixed stars. The second
is the inertial reference system in the neighborhood of the earth’s surface
revealed by the motions of bodies, such as the pendulum of Foucault’s
experiment. These systems are routinely assumed to coincide. Foppl
conjectures that they may not because of “a possible, special influence
of the rotation of the earth” (p. 5). In the event, Foppl reported that he
could detect no deviation from coincidence within the accuracy of his
experiment.

The report of this experiment was communicated to the Munich
Academy on February 6. It was not until a further communication of
November 5 (Foppl 1904a) that we find what led Foppl to conjecture
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such a special influence. His inspiration was the work of Mach on the
relativity of motion. According to Mach, Foppl reported, an inertial
system “obtains its orientation from the masses of the system of the
universe in some kind of law governed manner.” (p. 383). Foppl later
(p. 386) considered the bodies of the universe divided into a large and
a small group. An inertial system is determined by the combined group.
Therefore, if the larger group is used to define a rest system of
reference, the inertial frame will execute some motion in it, such as a
rotation. This rotation would appear as Coriolis forces in the rest system
of the larger group; they would not be regarded as merely artifacts of
calculation but as “physically existing forces exerted by the smaller
group on each test point.” Foppl then explained that these were the
considerations that led to the experiment described in his earlier
communication, If one takes the fixed stars as the larger group of bodies
and the earth as the smaller, then these forces would be the “special
influence of the earth” sought.

If Mach ensured remembrance of the work of the Friedlaenders and
Foppl, then Einstein similarly ensured remembrance of the work of
Hofmann. In (Einstein 1913, §9), he discussed what he called the
“hypothesis of the relativity of inertia,” the hypothesis that inertial
resistance is merely resistance to acceleration with respect to other
bodies. As to the origin of the idea, Einstein wrote

It is well known that E. Mach, in his history of mechanics, first advanced
this point of view with all sharpness and clarity, so that here I can simply
refer to his exposition. I refer also to the ingenious pamphlet of the
Viennese mathematician W. Hofmann, in which the same point of view is
advanced independently.

The work referred to is (Hofmann 1904)27 The forty three page
pamphlet is a wordy and labored defense of the relativity of motion. It
seeks to escape the inference from centrifugal forces to absolute
acceleration by urging that these forces arise from an interaction with the
remaining masses of the universe. Unlike Foppl and the Friedlaenders,
Hofmann (pp. 28-30) conjectured a new mechanical law that would lead
to this interaction and perhaps this is what attracted the description of
‘ingenious’ from Einstein. Hofmann considered the standard result of
traditional mechanics that the kinetic energy (die lebendige Kraft) of a
body of mass m moving at velocity v is mv%2. He found this result
unsatisfactory since, in the case of two masses m and M in relative
motion, the kinetic energy of m with respect to M is not the same as the
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kinetic energy of M with respect to m. Therefore Hofmann proposed a
new, symmetric law for the kinetic energy L of two bodies of mass m
and M in relative motion with speed v and at a distance r
L=kMmf(ryv?, @
where k is a constant and f some function to be determined. For
consistency with known results in mechanics, Hofmann indicated that the
kinetic energy of a mass of actual experiment derives contributions from
all the masses of the universe according to (2), so that (2), upon
integration over all these masses, must yield the familiar mv?/2.

Hofmann’s law contains a mechanism in which inertial resistance is
resistance to acceleration with respect to other bodies; for, in the case of
two masses m and M, an attempt to change the relative velocity v will
change the kinetic energy and thus require a force. In the case of a body
in relative rotation with respect to the bodies of the rest of the universe,
one would expect this same mechanism to yield centrifugal forces.

Hofmann did not develop the technical details and formal con-
sequences of his supposition (2) in any systematic or extensive manner.
This task was carried out by Reissner (1914, 1915). Reissner gave the
usual attribution to Mach. Curiously, however, he made no mention of
Hofmann, even though Hofmann’s law (2) is the fundamental supposition
upon which Reissner’s theory is built. Perhaps we should allow for the
possibility that Reissner independently arrived at the same supposition.
In any case, the years 1914 and 1915 were not the time to construct a
theory embodying the relativity of inertia, for such a theory would have
no chance of competing with Einstein’s general theory of relativity,
whose brilliance came to outshine all competitors. By 1916, Reissner
(1916) had turned his attentions to work on the latter theory, developing
his celebrated solution of Einstein’s field equations.

There is a small puzzle associated with the pamphlet. Einstein
attributes its positing of the relativity of inertia as independent of Mach.
Certainly the pamphlet itself makes no claim either way; no works by
other authors are mentioned, and Mach is never named. However there
is sufficient similarity between parts of Mach’s and Hofmann’s analysis
to raise suspicion of an unacknowledged debt by Hofmann to Mach.
Hofmann, for example, couches part of his discussion in terms of
Newton’s bucket experiment. He even proposes consideration of what
would happen if the water-filled bucket were surrounded by a very heavy
ring which is set into as rapid a motion as possible (p. 32) - close indeed
to Mach’s suggestion of the thickening of the walls of the bucket.
Perhaps Einstein’s attribution of independence from Mach derives from
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the failure of the text of Hofmann (1904) to cite Mach. However,
Einstein may also have the claim directly from a meeting with Hofmann,
which might have happened during Einstein’s visit to Vienna for the 85th
Naturforscherversammlung in September 1913 - (Einstein 1913) is the
text of a lecture he delivered at that meeting. Again, Einstein describes
Hofmann as a Viennese mathematician. That information could not be
gleaned from the pamphlet alone, which simply described Hofmann as
a professor and gave no affiliation.

The work of the Friedlaenders, Foppl, and Hofmann enables us to
start to assemble an image of the group working around 1900 on what
is to become Mach’s Principle. First, the group members are on the
fringes of the physics community. Only Foppl has any status in this
community.?® And they are an isolated and fragmented group. None of
these authors cites any of the others. Indeed, the work of the Fried-
laenders and of Hofmann were published in such obscure vehicles that
we are now probably only aware of them because they happened to be
cited by Mach and Einstein. In any case they are difficult works to
procure. Thus we might well conjecture that the works discussed so far
are but a random sample of other similar works which may be unknown
because of their obscure vehicles of publication or a failure to publish at
all.

This conjecture is confirmed by Hofler’s (1900, pp. 122-26) report.
He described experiments of which he was aware and which were
designed to test the relativity of motion. Hofler knew of the
Friedlaenders’ experiment and described Mach’s remark about the
thickening of the walls of Newton’s bucket as a thought experiment. In
addition, he described an experiment due to Johannesson (1896). The
experiment, only incompletely described by Hofler, involved rotation in
connection with an oil droplet or sphere. Johannesson’s results did not
correspond at all with Johannesson’s expectations. The design of the
experiment seems flawed and Hofler devoted a page-long footnote to
conjectures on where the deficiencies of the experiment may have been.
He made clear that no positive result came from the experiment. Hofler
also described another proposal for an experiment by Herr Dr. Karl
Neisser.2® The proposal involved examining the behavior of a gyroscope
in air and in atmospheres of reduced pressure. Neisser, a relativist about
motion, somehow managed to infer from this doctrine that the behavior
of a gyroscope must at least in part be dependent on the relative rotation
of the wheel against the air. Therefore he expected that a spinning
gyroscope would lose its stability if enclosed in a chamber from which
the air is pumped and that it would fall down like a gyroscope that is not
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spinning. Hofler added a remark to the proofs of his volume that Neisser
had informed him that he had been able to perform the experiment, but
the expected effect had not occurred. Hofler’s report confirms that there
was more interest around 1900 in what became Mach’s Principle. But it
would also seem that these further investigations were not as competently
executed.

6. Early Critics of Mach’s Principle

When Einstein incorporated Mach’s Principle into the foundations of his
general theory of relativity, he drew it in from these fringes into a new
mainstream. In fact, Einstein’s work defined what the new mainstream
was to be in the physics of space, time, and gravitation and also, as it
happened, a new mainstream in philosophy of space and time. Thus the
principle enjoyed an enviable prominence. Einstein incorporated the
principle or its precursors into most of his accounts of general relativity
in the 1910s and 1920s. And, in his hands, the principle acted as
midwife at the birth of modern relativistic cosmology. Einstein’s efforts
to ensure the place of the principle in his theory in 1917 led to his
modification of his gravitational field equations and the introduction of
the Einstein universe - not to mention the Einstein-de Sitter
controversy.30 The principle also rapidly entered into a popular and
semi-popular literature on relativity, written for a wider, popular
audience eager to come to grips with Einstein’s great revelations. [See,
for example, Born (1924, Ch. VII).] Finally the principle came to enjoy
the sponsorship of leading philosophers and became a paradigm of the
fruitfulness of the interplay of physics and philosophy. Prominent among
these sponsors was Hans Reichenbach, leading figure in the logical
empiricist movement, whose works in philosophy of space and time
would dominate the discipline for several generations. [See (Reichenbach
1928, Sec. 34).]

6.1. Among the Physicists. The rapidity of the principle’s rise and its
lasting prominence tend to obscure the fact that it ascended only over a
considerable if somewhat quiet opposition that persisted throughout this
period as a tenacious skepticism towards the principle. That opposition
can be located clearly in two areas: among physicists both before and
after the advent of general relativity, and among philosophers, both of
the neo-Kantian old guard and of the new generation that spawned logical
positivism.

Prior to Einstein’s championing of the principle, it is difficult to find
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broad measures of the overall feeling of the physics community
concerning it. Little was said in opposition to it. But it was not a strong
position which could expect or demand response from its critics, since,
as we have seen, support for the principle lay scattered and disorganized
in the fringes of the community. Of course, this fact itself indicates a
broader lack of support. However, we have two fairly clear expressions
of opposition. Toward the end of the first decade of this century, Ernst
Mach and Max Planck engaged in a fairly bitter, polemical exchange
(Planck 1909, 1910; Mach 1910). At issue was the reality of atoms,
defended resolutely by Planck against Mach’s skepticism, and the
viability of Mach’s notions of economy of thought in science and the
elimination of metaphysics. As Planck’s assault become more bitter, he
decided to mention another area of disagreement with Mach, the
relativity of motion, even though this was not the focus of their dispute.
He wrote (Planck 1910; taken from Blackmore’s translation 1992, p. 145
with minor corrections)

Where Mach attempts to move forward by relying on his theory of
knowledge quite often he runs into error.

Here belongs Mach’s strenuously fought for but physically entirely
useless thought that the relativity of all translational movements also
corresponds to a relativity of all rotary movement, that therefore, one
cannot decide at all in principle whether the fixed stars rotate around the
earth at rest or the Earth rotates around the fixed stars. The equally general
and simple principle that in Nature the angular velocity of an infinitely
distant body circling a finite, rotating axis cannot possibly possess finite
value is therefore for Mach either false or not applicable. According to
Mach’s mechanics, one is just as bad as the other.

The conceptual errors about physical matters which this unallowable
transfer of the principle of the relativity of rotary movements from
kinematics into mechanics has already caused, if they were depicted more
closely at this point, would lead us too far astray. It therefore naturally
follows that Mach’s theory cannot possibly account for the immense
progress which is intimately associated with the introduction of the
Copernican theory - a circumstance which should suffice by itself to put
Mach’s theory of knowledge into considerable doubt.

The target of Planck’s skeptical ridicule is the relativity of all motion.
Since this relativity is the motivation for what soon becomes known as
Mach’s Principle, Planck’s scorn would presumably extend to that
principle. It might well be the “conceptual errors about physical matters”
to which Planck alludes. Frank (1957, p. 153) did report Planck’s
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remark as aimed directly at this principle.

It is tempting to dismiss Planck’s intemperate remarks as a petulant
outburst. Even if it was, there is no reason to dismiss its basic sentiments
as insincere. Whatever its origin, opposition from Max Planck was very
serious. Perhaps it reflected a broader consensus. If not, Planck was
sufficiently influential that his views could foster such a consensus.
Worse, while we now principally remember Planck for his contribution
to quantum theory, he was also one of the earliest well-placed supporters
of Einstein’s special theory of relativity. He energetically threw in his lot
and his prestige with Einstein’s theory at a time when the theory’s author
was still a little-known patent clerk with a proclivity for incorporating
bizarre philosophy into his physics.3! Clearly Planck’s opposition to a
full relativity of motion did not derive from any ill-considered antipathy
to the general idea of the relativity of motion.

Philipp Frank was both physicist and philosopher. As physicist, like
Planck, he was one of the early group that took up active research in
special relativity. With Hermann Rothe, he first discovered one of the
most frequently rediscovered results in special relativity - that the group
property and requirement of linearity already powerfully constrain the
possible transformation laws between inertial coordinate systems: The
only viable options remaining are the Galilei transformation or the
Lorentz transformations, with ¢* an undetermined factor (Frank and
Rothe 1911). This publication, which was not Frank’s first on special
relativity, introduced the term ‘Galilei transformation.” Frank also had
very favorable relations with Einstein: Einstein recommended Frank as
Einstein’s own successor at the German University in Prague and Frank
later published a biography of Einstein (Frank 1947). Thus we might
well expect that Frank would have been sympathetic to the view that
played such a prominent role in Einstein’s thinking. Yet the final
outcome of Frank’s 1909 lecture, discussed above, is a decision against
the Machian view, which, in Frank’s hands, contains Mach’s Principle.
Frank (1909) attributed to Mach the view that inertia arises through “a
formal, new law of nature about the action of masses” (p. 17). This
view allows Mach to retain his relativist position and to answer
affirmatively to the question of whether the future behavior of a system
of bodies is determined solely by their relative motions and not any
absolute motion of the entire system. Frank prefers a view intermediate
between the relativism of Mach and antirelativism or absolutism. He
considers the absolute motion of mechanics merely a special case of
relative motion, that is, it is motion relative to ‘fundamental bodies’ or
‘inertial bodies,” such as the fixed heavenly stars. This somewhat
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tortured, hybrid position enables him to claim establishment of his
conclusion, stated in emphasized text (p. 18): “Physical phenomena do
not depend only on the relative motion of bodies; this however still does
not admit the possibility of the concept of an absolute motion in the
philosophical sense.”

Whatever may have been the broader feeling about Mach’s Principle
in the physics community in this early period, one would expect that,
after its endorsement by Einstein, the principle would enjoy the broader
support of the physics community, at least through the late 1910s and
1920s, the period of the euphoria over Einstein’s discovery of general
relativity. Of course, it is widely known that at least one member of the
astrophysical community dissented. Willem de Sitter was clearly an
enthusiastic supporter of Einstein’s general theory of relativity. For
example, in 1916 and 1917, when relations between the English and
German physics communities were stretched by the bitterness of the
Great War, de Sitter took upon himself the task of informing his English
colleagues of Einstein’s new theory by means of a series of
communications to the Royal Astronomical Society. At the same time,
however, he found himself disputing sharply Einstein’s view that his
general theory of relativity satisfied the relativity of inertia or what came
to be called Mach’s Principle. (See Kerszberg 1989 for a recent account
of the controversy.)

There is some evidence that a majority in the physics community at
this time did not agree with Einstein’s view that Mach’s Principle, in
some suitable form, was one of the fundamental postulates of general
relativity. (Einstein (1918) had listed Mach’s Principle along with the
principle of [general] relativity and of equivalence as the fundamental
postulates of general relativity, when he published a carefully worded
defense of his view of the foundations of the theory.) This is an outcome
of a survey of expositions of general relativity which I recently
completed (see Norton 1993, especially Sec. 4.2). Emphasis on Mach’s
Principle as a fundamental postulate of general relativity tended to be
concentrated in popular and semi-popular expositions. Otherwise, most
typically for serious textbook expositions, the principle found no place
in the accounts of the foundations of the theory, with Einstein’s own
expositions comprising the major exception. Or the principle may appear
later in discussion devoted to the cosmological problem, as in (Pauli
1921). It is difficult to know what to read into this treatment — or lack
of treatment — of the principle. It certainly does not rule out the
possibility that many of these authors regarded the principle as an
uncontroversial consequence of the theory that they simply did not
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choose to discuss.

Laue (1921), at least, makes clear that his omission of Mach’s
Principle was based on reservations concerning the place of the principle
in the theory. The goal of Einstein’s (1917) famous cosmological paper
was to eliminate the need to posit Minkowskian boundary conditions for
the metric tensor in general relativity, for Einstein held that such
boundary conditions violated the Machian requirement that the inertia of
a body be fully determined by other masses alone. His ingenious solution
was to abolish spatial infinity by means of the Einstein universe, which
became an admissible solution of this field equations after the
introduction of the cosmological term. Laue (1921, p. 180) discussed
Einstein’s proposal in the context of Laue’s treatment of Minkowskian
boundary conditions:

According to the fundamental idea of the general theory of relativity, the
inertia of a single body should vanish if it is at a sufficient distance from all
other masses. For inertia can only be a relational concept, which can be
applied only to two or more bodies. ... With the boundary conditions
mentioned, however, the inertia [of a single body] continues to exist. Such
considerations have led Einstein to the hypothesis of a space which runs
back on itself like the surface of a sphere.32 To us the whole question seems
clarified too little physically for us to want to go into the matter. In the
following we understand ‘infinity’ to be regions inside our fixed star system
for which the mentioned boundary conditions hold, but which are
sufficiently far distant from the bodies of the gravitational field under
consideration.

6.2. Among the Philosophers. When it comes to the philosophical
community in the period prior to the mid 1910s, it is more difficult to
assess the broader view towards what will become Mach’s Principle. The
principle seems not to have been a major focus of philosophical debate
and, for this reason, not to have many supporters or detractors. In 1912,
Joseph Petzoldt wrote an article on special relativity and its
epistemological connection to relativistic positivism. Because of
Petzoldt’s close connection and sympathy with Mach and his positivist
views and because they had corresponded on precisely this question, we
might expect the principle to figure in his article. It is mentioned only
briefly in a footnote (p. 1057), and Petzoldt takes no position on it,
beyond merely suggesting that further experiments like those of the
Friedlaenders and FoOppl may settle the question. Perhaps his
correspondence with Mach in 1904 had not assuaged the doubts he
initially expressed to Mach as quoted above in Sec. 3.2. Frank (1909),
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in mapping out ‘relativist’ and ‘antirelativist’ positions, wrote of the
work of Héfler (1900) and more recently Hamel (1909a) as opposing
Mach, characterizing their disagreement as a controversy (p. 12) and
Hofler as writing a “polemic against Mach’s thesis.”

However, a reading of the sources Frank cites does not give one the
impression of a polemical dispute over the specific question of whether
inertia arises from some interaction of accelerated bodies mediated by a
new physical mechanism. Hamel [(1909a), and the closely related (1909)]
was devoted to developing Hamel’s own axiomatic development of
mechanics, with the discussion of Mach’s views in preliminary surveys
of the alternatives. Hamel does not directly address the question of a new
physical mechanism for inertia. The closest is a critique of Mach’s
strictures against absolute space (for example Hamel 1909a, pp. 363-64).
Hofler does rehearse lengthy debates over the relativist and absolutist
positions. Yet his specific attitude to the possibility of a such a new
physical mechanism is very sober and undogmatic. He seems fully
prepared to let actual experiment decide. For this reason, presumably,
he gave the careful review (discussed above) of experiments designed to
detect the mechanism. He then stated his view (or rather buried it in
grammar of bewildering complexity!) (pp. 125-26):

From my point of view I must admit in any case that, in so far as it is
allowed at all, or even is ones duty, before an experiment, to form ideas
over what can reasonably emerge from it, I expect nothing from all such
experiments that could become somehow in the future a direct experimental
proof for the relativity of rotational motion. I hold this negative expectation
not without expressed experiential, even in part experimental foundations.
Rather I believe that, flor] i[nstance], according to the total experiences of
mechanics so far, in an axially symmetric™ system, such as would be a
bucket with miles thick walls in rotation about its geometric axis, no force
couples would arise on the water mass inside and therefore according to
these mechanical experience so far, it cannot be set into rotation. More
precisely: It cannot be set into rotation any more than [a water mass] in a
bucket with walls of ordinary thickness, of which we know of course (or at
least for the present believe to know), that only the innermost layer is acted
upon by friction.

He continued to quote Hertz and Mach to stress the dependence of the
question on experiment and the possibility of new experiments
overturning the outcomes of old experiments, concluding: “But do I have
to give up our current law of inertia, the foundations of our whole
present mechanics, for such a ‘possibility?’”
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It is difficult to fault the good sense of this unadventurous
assessment. Let experiment decide, Hofler says. But he notes his
skepticism about a positive outcome, since the mechanism sought would
have to be quite unlike anything encountered so far in mechanics. The
footnote to the word ‘symmetric’ sought to drive this last point home.
Yet, ironically, in the attempt to dismiss them, the footnote ended up
anticipating a Machian class of mechanical theories modeled after
electrodynamical laws!

One must at least say that a geometrically axially symmetric system is not
also phoronomically [kinematically] and dynamically axially symmetric,
even only because it rotates about its axis. But in this case force effects
would be ascribed to mass particles propagating in different directions, flor]
i[nstance], antiparallel, and [those effects] should be functions of the
direction (and speed?); and also this assumption (an analogy to Weber’s
electrodynamic hypothesis) is certainly at least suggested by nothing in the
current experiences of mechanics and would hardly allow explanation of the
current experiences, upon which, after all, the thesis of the relativity of
motion depends.

Hofler’s work lies in the neo-Kantian mainstream. It is actually an
afterword to an edition of Kant’s Meraphysische Anfangsgriinde der
Naturwissenschaft, and the two are bound as one volume. Thus it would
seem that the neo-Kantians, a dominant force in German language
philosophy at this time, had no objection of Kantian principle to the
possibility of inertia arising from some new physical mechanism. But that
did not guarantee assent from the neo-Kantians. The leading neo-Kantian,
Ernst Cassirer (1910, pp. 176-77) attributed to Mach the notion that the
fixed stars are “one of the causative factors on which the law of inertia
is dependent.” He felt the view untenable since it amounted to robbing
the law of inertia of its status as a law:

If the truth of the law of inertia depended on the fixed stars as these definite
individuals, then it would be logically unintelligible that we could ever think
of dropping this connection and going over to another system of reference.
The principle of inertia would in this case not be so much a universal
principle of the phenomena of motion in general, as rather an assertion
concerning definite properties and ‘reactions’ of a given empirical system
of objects; - and how could we expect that the physical properties found in
a concrete individual thing could be separated from their real ‘subject’ and
transferred to another? ... [the meaning of principle in this view]
corresponds in no way to the meaning and function it has actually fulfilled



42 John D. Norton

in scientific mechanics from the beginning.

While we would not expect unqualified support from neo-Kantians
for ideas attributed to Ernst Mach, we would expect such ideas to receive
a more sympathetic hearing from members of the Vienna Circle, a
discussion group which met in Vienna in the 1920s and out of which the
logical positivist movement sprang. Ernst Mach was the spiritual
inspiration for the group - Frank (1949, p. 79) called Mach “the real
master of the Vienna Circle.” Frank himself was one of the longest
standing members of the Circle; his early discussion meetings with the
mathematician Hans Hahn and economist Otto Neurath starting in 1907
had laid the foundations for the group of the 1920s. Yet as we have seen,
Frank (1909) did not endorse the proposal for a new physical mechanism
for inertia that he read in Mach’s works. This opposition was no longer
voiced in Frank’s later writings, however. (See, for example, Frank
1947, Ch. 2, §8; 1957, p. 153.)3

In 1922, Moritz Schlick was appointed to Ernst Mach’s old chair at
the University of Vienna, and it was around Schlick that the Vienna
Circle organized itself. Thus it is somewhat surprising to discover that
the principal burden of Schlick (1915) was to drive a wedge between
Mach’s analysis of inertia and the treatment given by Einstein in the
context of his general theory of relativity.34 Einstein’s approach is
praised and Mach’s is condemned. Schlick states Mach’s escape from
Newton’s argument in his bucket experiment as follows (p. 166):
“Experience does not show us that centrifugal forces do not also arise if
the entire fixed heavenly stars were to rotate around it.”

Against Mach’s view, Schlick levels two objections. The first is
aimed at Mach’s often stated view that there is no distinction between the
cases of the bucket rotating and stars at rest and the case of the bucket
at rest and stars rotating, so that (Schlick quoted Mach as saying)

The experiment [of testing whether rotating stars induce centrifugal forces]
cannot be carried out, the idea is completely meaningless, since the two
cases do not sensibly differ from one another. I hold the two cases to be the
same case and the Newtonian distinction an illusion.

Schlick responds that Mach’s proposal is not at all beyond test. He refers
to Einstein’s work on the relativity of rotation that has led to
experimentally testable conclusions. Presumably Schlick means that if
rotation relative to the distant stars induces inertial forces, then one
would also expect rotation relative to other bodies to induce forces, such
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as Einstein (1912, 1913) found in his developing general theory of
relativity. For example, a rotating shell of matter induces Coriolis forces
within it. Schlick’s second objection is (p. 166): “...the assertion that the
two cases do not differ sensibly, a petitio principii, is evoked by ignoring
the difference between kinematic and dynamic ways of consideration.”

That is, he objects that one can define motion purely kinematically
if one wishes; but that does not ensure that all the physical facts
associated with motion are reducible to kinematics. Newton’s theory
supposes otherwise. It posits the possibility of kinematically identical
systems which differ dynamically - for example a rotating and non-
rotating body. And the difference between the two is a fact of sense
experience (p. 168): “We can also ascertain the absolute rotation of a
body, according to the Newtonian view, through muscular sensation, for
we will find with its help that centripetal forces are needed for the body
to keep its shape and to hold together its parts.”

Mach’s analysis ironically had turned into an exercise in a priori
physics (p. 167): “It is curious to observe how sometimes exactly the
attempt always to stick with just sensible experience leads to clever, a
priori postulates, since one forgets that experiences can only be isolated
from one another in abstraction.”

Schlick proceeded to compare Mach’s view with that of Einstein in
his general theory of relativity. He asked if Einstein’s theory amounted
to “a great triumph of Mach’s philosophy, since it had asserted the
relativity of all motion as necessary.” Schlick felt it did not represent
such a triumph for three reasons:

The first reason, which is already completely decisive, is one we have
already presented, in that we have showed the arguments that led Mach to
his conclusion are completely untenable. If, nevertheless, it turns out to be
correct, it would result more from an accidental coincidence than a proper
verification. With Mach the conclusion arises as a necessity of thought; with
Einstein it is posited as a fundamental assumption of a theory and the
decision of how far it may be considered valid is finally still left to
experience.

The second objection referred to the lack of general covariance of the
then current version of general relativity and to Einstein’s belief that a
generally covariant theory would be physically uninteresting. Thus
Einstein’s theory contradicted Mach’s view, which required the
equivalence of all reference systems. This objection could not stand for
long, since, in November 1915, Einstein advanced the final generally
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covariant version of his theory and retracted his objections to general
covariance. (See Norton 1984 for an account of this episode.) The third
objection repeated parts of the first: Mach had just had a clever idea; but
Einstein had built a theory on it. Schlick however was anxious - if not
over anxious - to deprive Mach even of much credit for having a clever
idea. He called the idea “very obvious” and explained in a footnote

@. 171);

In order to show just how obvious the idea is, I might perhaps mention that
1 had already thought of it as a 6th form boy [Primaner] and in conversa-
tions stubbomly defended the assertion following from it that the cause of
inertia must be assumed to be an interaction of masses. I was delighted, but
not at all surprised, to come across the idea again shortly, when I got to
know Mach’s Mechanics.

It is difficult to overlook the unpleasant, dismissive tone of Schlick’s
remarks. It is somewhat reminiscent of Planck’s tone, as is Schlick’s
general argument. For Planck was clearly happy to endorse a relativity
of inertial motion, which formed the foundation of Einstein’s special
theory of relativity. He was unable to find kind words for Mach’s pro-
posal that this relativity be extended to all motion. Thus we may wonder
if it is mere coincidence that Schlick studied physics under Max Planck
at the University of Berlin, taking his doctorate in 1904. Is there some
kind of unhealthy conspiracy against Mach plotted by the students of
Mach’s opponents? If one wants to, one can always find fragments of
evidence for conspiracies. Laue, too, was an assistant of Planck in Ber-
lin, and Frank was a student of Mach’s arch rival, Boltzmann! However,
I think there is no weight of evidence for such a conspiracy theory. The
opposition of Frank and Laue is mild and mildly stated. It is more com-
patible with seriously considered disagreement. Schlick, however, was
more intemperate. He was not prepared to concede anything to Mach. He
closed his paper by noting that particular relativistic assertions made by
positivists such as Mach were more likely to be refuted than confirmed
by advances in physical science. Moreover, the investigations of Mach
or other positivists on the concept of time did not pave the way for
Einstein’s special theory of relativity. “No one anticipated, flor]
i[nstance], the relativization of simultaneity.”33
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7. Conclusion

Mach presents us with a perplexing puzzle in his analysis of Newton’s
bucket experiment and the law of inertia. On the one hand, in his
publications, the only unequivocal proposal is that we eliminate the
odious notion of space by redescribing the relevant experiment and law
in a way that does not use the term ‘space.’ If there is a suggestion of a
new physical mechanism that would reach from the distant stars to cause
the inertial forces in Newton’s bucket, then the proposal is made vaguely
and we are left to wonder whether Mach endorses it or condemns it as
unscientific. On the other hand, if Mach did not wish to propose a new
physical mechanism for the origin of inertia, then, in the course of the
final two decades of his life, he passed over numerous opportunities to
correct many who publicly attributed such a proposal to him.

I favor the view that Mach’s published pronouncements cease to be
ambiguous when we recognize that Mach held an extremely restrictive
view of causation. Specifically, Mach held a causal relation to be nothing
more than a functional relation between actual phenomena and prohibited
speculation on hypothetical or counterfactual systems as unscientific. All
we are allowed to infer from Newton’s bucket experiment is that
centrifugal forces arise when there is relative rotation between the water
in the bucket and the other bodies of the universe. That alone is the
causal relation. We have no license to infer to an absolute motion or
even what would happen if (counterfactually) the walls of the bucket
were made several leagues thick. This reading exonerates Mach of
equivocation, ambiguity and inconsistency in his publications. However,
it requires that the proposal of a new physical mechanism, as commonly
attributed to Mach, is incorrect, and it leaves unexplained why he failed
to correct this frequent misattribution in the final decades of his life.

If Mach did not propose such a mechanism, then at least the proposal
was widely attributed to him in the 1890s and 1900s. It was then the
focus of work of a scattered and disconnected group of investigators,
largely on the fringes of the physics community. August Foppl was
perhaps the only member of this group with any standing in the physics
community. There is some indication of the proposal arising
independently of Mach. Immanuel Friedlaender claimed his own version
of the proposal came prior to knowing of Mach’s work. Einstein
attributed independent introduction of the proposal to Hofmann. Because
of their lack of cohesion and because they tended to publish in obscure
vehicles, it is likely that the full extent of their work is not now
appreciated. The known work tends towards actual experimental test of
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the mechanism (unlike Mach) and labored but rather inconsequential
treatises.

It is difficult to gauge the broader view of the proposal for a physical
mechanism to explain inertia, prior to its sponsorship by Einstein. The
difficulty is that the proponents of the view were largely on the fringes
of the physics community and could not expect or demand a response
from the mainstream. At least Max Planck, in 1910, spoke out strongly
against Mach’s insistence on the relativity of motion, while at the same
time energetically supporting the relativity of inertial motion in Einstein’s
special theory of relativity. In 1909, Philipp Frank also weighed the
possibility of a new physical mechanism to explain inertia and decided
against it. After Einstein’s sponsorship of what became Mach’s Principle,
the notion was widely celebrated by both physicist and philosopher. It
seemed to provide a paradigm of fruitful interaction between the two
disciplines. However, in the physics community its celebration tended to
be focused in the popular and semi-popular expositions of general
relativity. In general, as a review of expositions of general relativity
from the 1910s and 1920s shows, the broader physics community did not
wish to present Mach’s Principle as one of the fundamental postulates of
general relativity.

Prior to Einstein’s sponsorship, the philosophy community devoted
little attention to the proposal. If it was noticed at all, it accrued a
mention in passing in the more traditional debates over absolute and
relative motion. Criticism offered was sober and, in my view, largely
justified. For example, if Mach’s proposal was to be construed narrowly
as urging the replacing of the Newtonian law of inertia by the
observation that free bodies move uniformly with respect to the fixed
stars, then Cassirer objected that this was a retrograde step for science,
for it replaced a general law by an extremely restrictive description of
one case. If Mach’s proposal was for a new law, then Hofler felt that its
merit was to be settled by experiment. But all experiments so far had
yielded no positive results. This was hardly an encouraging foundation
for overturning the Newtonian principle of inertia, then one of the most
successful of scientific laws. In a similar vein, Schlick complained that
Mach was engaged in a priori physics, an ironical twist given Mach’s
emphasis on the supremacy of experience. One could, Schlick noted,
define motion purely kinematically. But this by no means guaranteed that
the complete physics of moving bodies ought to be determined solely by
kinematic relations. Newton had certainly supposed otherwise — and the
dynamic effects to which he appealed, inertial forces, were matters of
direct experience. The centrifugal forces that distinguish rotation are
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directly sensed by the muscles. Thus Schlick was at pains to distinguish
Mach’s view, which legislated a priori and seemed uninterested in
experimental test, from Einstein’s view, in which one constructed a
definite theory with definite predictions that could be subject to
experimental test.

If there is a moral in the early history of Mach’s Principle, it lies
exactly in Schlick’s last point. As long as the relativity of all motion is
posited dogmatically and Mach’s Principle derived from it as a priori
physics, then it is moribund. Its promise lies in the realm of empirical
science, in the attempt to draw the doctrine of relativity and Mach’s
Principle into a physical theory that can be subject to experimental test,
where one allows that experience may speak against it.36 It was
Einstein’s recognition of this point that enabled him to breathe life into
Mach’s Principle.

NOTES

I am grateful to John Earman, Peter Galison, and Ulrich Maier for
assistance in procuring sources for this paper and to Julian Barbour for helpful
discussion.

2While Einstein is usually credited with christening the principle, Schlick
(1915) had already used the term [“das Machsche Prinzip” (p. 170) and “...des
Machsches Postulats” (p. 171)]. It is a little unclear precisely to what Schlick’s
terms referred. They most likely referred to Mach’s general proposal for a
relativity of all motion, from which, Schlick noted (p. 171), it follows that “the
cause of inertia must be assumed to be an interaction of masses.”

3In his synopsis of his critique of Newton’s ideas, Mach (1960, pp.
303-304) gives another example of how the terms ‘space’ and ‘time’ can be
eliminated in this case from the fundamental propositions of Newton’s
mechanics.

4Mach (1960, pp. 272-73) gives a similar analysis of time. When we say
that some process takes time, this is simply an abbreviated way of saying that
the process has a dependence on another thing such as the changing position of
the earth as it rotates. If we forget that this is all we may mean, we can fall
into the error of thinking of time as an independent entity. In fact time has
“neither a practical nor a scientific value” and “It is an idle metaphysical
conception.”

5In recent literature, it has been urged that Mach did not intend to propose
a new physical law and merely intended a redescription of Newton’s theory that
preserved its true empirical content. See, in particular, Strauss (1968).
Wahsner and von Borzeszkowski (1988, pp. 602-603) also found Mach’s goal
merely to be redescription of existing Newtonian theory.

6This criterion may contradict Mach’s own highly restrictive
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pronouncements on causality which do not seem to admit such hypothetical or
counterfactual claims. However if we rule out the possibility that Mach did
allow such claims in his analysis — possibly in contradiction with his own
general view of causality — then it seems to me that we have settled the question
in advance of whether Mach actually proposed what we now know as Mach’s
Principle. (Added in proof) Julian Barbour (this volume, p. 218) has identified
a remark found only in early editions of Mach’s, Mechanics, as employing
counterfactuals in the way I require. The remark is suggestive but still contains
no positive proposal for a new mechanism. Rather it casts doubt on whether a
particle in the set up described would move according to Newtonian pre-
scriptions if the fixed stars were absent or not unvarying. The remark makes
no positive claim about how the particle would move in this counterfactual
circumstance. It does not even deny outright that the motion will not be
Newtonian. It is merely “very questionable.” These sentiments fit well with
Mach’s repeated exhortation that we have no business proclaiming what would
happen in situations beyond our experience, such as if there were no fixed stars.
All such attempts are dubious.

7As almost everywhere, Mach’s precise point remains clouded by
ambiguity. We cannot assume away these bodies, he says, since we cannot
assume that “the universe is without influence on the phenomenon here in
question.” Is Mach assuming there is some influence? If so, he does not say
so. What does Mach mean by ‘influence’ in any case?

8The text is a slightly corrected version of the standard English translation
(1960, p. 284) “The principles of mechanics can, indeed, be so conceived, that
even for relative rotations centrifugal forces arise.” I am grateful to Herbert
Pfister for pointing out an error in this standard translation of the wohl of
Mach’s original “Die mechanischen Grundsitze kdnnen also wohl so gefasst
werden, dass auch fiir Relativdrehungen Zentrifugalkrifte sich ergeben.”

Mach continues in a similar vein, using mass weighted sums of distances,
to treat the motion of two bodies which do exert a force upon each other.

10Carus (1906, p. 332) calls Mach a “kindred spirit” and is “proud to count
him among my dearest personal friends,” although “there are no doubt
differences between Mach’s views and mine,”

1For more details see (Holton 1992, pp. 30-33) and (Thiele 1971).

12He refers to a passage from Mach (1911) which will be discussed below.

13gee Mach (1915, p. 44).

14These passages do not exhaust the relevant passages from The Science of
Mechanics, although I have found none that provide brighter illumination. I
leave to readers the task of deciding what Mach intended when he asked of the
bodies 4, B, C, ... “... whether the part they play is fundamental or collateral”
and that “it will be found expedient provisionally to regard all motions as
determined by these bodies” (p. 283).

151 cannot resist observing that if this consideration is intended to show a
Newtonian that the distant masses engage in some causal interaction with the
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body in question, then it is an extremely odd argument. Under the Newtonian
viewpoint, the reason that distant celestial bodies are so valuable for describing
the motion of the rotating body is precisely that there are no causal interactions
between them and the body.

16(Added in proof) Julian Barbour (this volume, p. 216) doubts this claim.
He points out that distances between inertially moving bodies do not in general
vary in direct proportion to one another. In support he cites Mach’s own
equation for the distance between two inertially moving bodies [Barbour’s
equation (1)]. I do not find the situation so unequivocal. Since a is constant
and |dr/dt <a, the equation does give the stated linear dependence in the limit
in which r becomes sufficiently large. Mach’s words are all too few, but he is
considering bodies separated by great distances. Are these distances great
enough to bring us towards this limit? (If not, so that the bodies are close but
just not interacting, how can Mach escape this equation, whose derivation
requires little more than simple geometry?)

17Many of these authors were sufficiently close to Mach to meet or enter
into correspondence with him, including Petzoldt, Frank, Foppl, and Einstein.

18Cagsirer is sufficiently unsure of the attribution to indicate that he infers
it from Mach’s writing by introducing it as “Mach himself must, according to
his whole assumption, regard the fixed stars ... as one of the causal factors” and
felt the need to support the attribution with a lengthy quotation from Mach
(1911).

19Mach’s celebrated July 1913 renunciation of the role of ‘forerunner of
relativity’ in the preface to his Optics (1921, pp. vii-viii) is far too vague to be
such a correction, since it clearly refers to Einstein’s relativity theory in general.
Wolters (1987) also urges that this famous renunciation was forged by Emst
Mach’s son Ludwig.

20Blackmore and Hentschel 1985, p. 121. Otto Neurath also wrote in about
1915 along similar but vaguer lines to Mach (Blackmore and Hentschel 1985,
pp- 150-152), although one might no longer reasonably expect a response from
an ill Mach who would die in 1916.

21The experiment sought inertial dragging effects in the vicinity of a
spinning fly-wheel.

22Mach here cites a passage in his The Science of Mechanics (1960, p. 283,
Mach’s emphasis) where he reports the result that “...a rigid body experiences
resistance in a frictionless fluid only when its velocity changes.” He conjectures
about the possibility of this result as a “primitive fact,” introduced prior to the
notion of inertia, were our world filled with some hypothetical, frictionless
medium, which would be an alternative to “the forlom idea of absolute space.”

2Dingler here raises the possibility that Mach’s position on this matter may
have altered considerably through the years 1883-1912 of the various editions
of The Science of Mechanics. 1 have been unable to check this possibility
thoroughly. However the task of comparison has been eased considerably by
a remarkable and unusual volume (Mach 1915). This volume contains, in
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English translation, a compendium of the extensive additions and alterations
made in preparation of the 7th German edition of the work. It is interesting to
speculate why such a compendium, useless without the earlier volume, should
be published at all, rather than simply publishing a complete, updated text. In
any case, in examining the volume, I could see no evidence of a significant shift
in Mach’s viewpoint with respect to the matters at issue here.

24Recall also that, on Wolters’s (1987) account, Ludwig Mach was hardly
a reliable source for his father’s views pertaining to relativity theory, since
Wolters accuses Ludwig of forging his father’s famous renunciation of his role
as ‘forerunner of relativity theory.’

251t is helpful to compare the analysis of Newton’s bucket experiment under
Mach’s view of causation and under a view that leads to some version of Mach’s
Principle. In both, we arrive at the result that the centrifugal forces in the
bucket arise from the rotation of the water relative to the distant masses A, B,
C, ... Mach requires that we halt analysis at this point. The other view makes
the assumption, decried by Mach, that this one relation can be decomposed into
parts. It regards the interaction between the water and the masses A4, B, C, ...
as the compounding of many smaller interactions between the water and mass
A, between the water and mass B, ... These smaller interactions are understood
to obtain in the circumstance in which we have a universe devoid of all matter
excepting the water and mass A, etc.

26This emphasis is quite different from Mach’s. He seems less interested
in experimental tests. His The Science of Mechanics only mentions the
possibility of real experimental test in later editions in response to the
experiments of the Friedlaenders and Foppl and does so in an equivocal way.
He did however propose an experiment to Petzoldt in their correspondence of
1904, as we have seen.

271 am grateful to the editors of The Collected Papers of Albert Einstein
(Draft of 1992) for determining that this was the work referred to by Einstein.

28For example, he was the author of (FGppl 1894), one of the most
important German language introductions to Maxwell’s electrodynamics, and
first of the famous series. Many German physicists learned vector analysis from
its self-contained exposition of vector analysis.

2Neisser is identified as one of the ‘Teilnehmer des Kant-Maxwell-Collegs’
and the only reference given is to a conference in 1893 on the question “Is
absolute motion, if not discemible, at least conceivable?” at the philosophical
society of the University of Vienna.

30For discussion of the role of the relativity of inertia and Mach’s Principle
in Einstein’s accounts of the foundations of general relativity and of Einstein’s
later disenchantment with the principle, see (Norton 1993, Sec. 3).

31planck had entered into an encouraging correspondence with Einstein by
1906. He had given a colloquium on the theory in Berlin in the fall of 1905 and
encouraged work on the theory, supervising von Mosengeil’s doctoral thesis on
the theory. Planck also is believed to be the one that approved Einstein’s 1905
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special relativity paper for publication in Annalen der Physik (Miller 1981, p.
2). His immensely important paper (Planck 1908) on relativistic dynamics is
credited by Pais (1982, p. 150) as the first paper on relativity authored by
someone other than Einstein. See (Stachel 1989, pp. 266-67). Planck’s support
for Einstein did not wane. He was instrumental in engineering Einstein’s move
to Planck’s own Berlin in 1914.

321 aue’s footnote merely cites Einstein (1917).

33The latter discussion does, however, recapitulate Planck’s (1910) objec-
tions, but proceeds to allow that Einstein’s work eventually vindicated Mach’s
view.

34The same viewpoint is advanced far more briefly and in far more muted
voice in (Schlick 1920, pp. 37-40).

35perhaps Schlick might have agreed with Abraham’s (1914, p. 520) gibe
that Einstein’s new theory scarcely fitted Mach’s requirement of economy, for
it replaces the then standard single gravitational potential with the complication
of ten potentials, the components of the metric tensor.

361, Friedlaender’s and Foppl’s experiments fell short of this goal. While
the experiments could in principle reveal a positive effect, a null outcome could
not provide a decisive refutation. Since they had no definite theory that fixed
the magnitude of the effect, they could not rule out the possibility that a small
positive effect lay hidden behind the random error that shrouds all null results.
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Discussion

Nordtvedt: Did you consider all the experiments a failure in the sense
that they saw nothing, or did they have problems? Null experiments are
good experiments even when they see no effects, and perhaps you were
being a bit hard on the experimentalists, particularly Foppl.

Norton: I did not mean to say that the experiments were bungled.
Rather what I meant was that the results had to be inconclusive since the
experimenters had no idea of the magnitude of the effect sought.
Therefore a null result could not eliminate the possibility of a positive
effect smaller than their experimental error. Of course the experiments
were not uninformative, since they did place an upper bound on the size
the effect could have.

Ehlers: I’d like to have your reaction to the following: If one takes the
redescription interpretation, then it seems to me that although Mach
hinted at possibilities of redescription, he would not have been able to
reconstruct the whole body of Newton’s theory. Newton was, I think,
much more of a mathematical physicist than Mach. Mach was perhaps
more an intuitive and empirically oriented physicist. The Newtonian
system needs a basis for concepts such as velocities, accelerations, and
so on, some framework, relatively to which these concepts are well
defined. Even people like Euler struggled with the question: How can
you give a meaning to the concept of velocity if you don’t have some
space to which you refer it? It requires a considerable amount of
abstraction to consider velocity as meaningful without absolute space,
namely, only have a certain class of inertial frames. So my question is:
Could a redescription be given which does not lose an essential part of
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the Newtonian system as a quantitative mathematical theory?

The second remark is a comment only. I think if one, as a physicist,

compares these two interpretations, namely, the redescription
interpretation and the interpretation that one would like to have a new
mechanics, then if one cannot decide, as a historian, which of the two
interpretations is truer to the text, then I think it matters that physicists
are interested in history, not so much because they want to know what
has been said by such and such a person but which useful suggestions are
contained in earlier works. The second view, namely, looking for a new
mechanics, is fruitful and interesting for bringing physics further,
whereas the redescription point of view, in that sense, is not of interest.
Therefore I feel, even if one cannot decide, that for a physicist the other
point of view is more fruitful and interesting.
Norton: Briefly, on the second point, as a historian, I'm fairly
constrained by what happens [laughter], at least, I try to be. As a
physicist you try to be constrained by the world. If the two can
coincide, and I can find useful things happening, all the better, but I have
to stick with what was there.

On the first point, I think you can redescribe everything that Newton
had in his science without talk of absolute space and time. It’s simply
a matter of doing what Mach prescribed. You work through Newton’s
texts replacing every metaphysical claim by a statement of the
observational content of the claim. Whether the resulting description will
be economical is the real question. And this, I think, is what has always
troubled Mach’s system. There was a tension between the need for the
descriptions to be restricted to observation and for them to be
economical. We see this clearly in the case of Mach’s skepticism over
atoms. We like them since they do provide a very economical
systematization of many physical phenomena. But the price of the
economy is talk of entities that transcend observation. So it is with
spacetime structures; they are unobserved, but, as you point out, they
do enable just the systematization we want. In the end, I think this
problem was a major part of the transition from the simple positivism of
Mach to the logical positivism of those who followed Mach. It was the
realization that ome cannot be so narrow and restrict all talk to
experience. You also need theoretical terms. Then follows the long
debate over what to do with these theoretical terms. Are spacetime
structures real entities or merely convenient aids to prediction?
Rindler: Did you say Foppl and Friedlaender had no idea of the
magnitude of the effect they were looking for? Why didn’t they have an
idea? In those days there were a number of people who had played with
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Maxwellian theories of gravitation. Dennis Sciama later pointed out that
the Maxwellian type of gravitational theory has various Machian
features. My question is, surely somebody before Dennis Sciama must
have thought of that. Why isn’t it that people used some kind of a
Maxwellian estimate for the magnitude of the Machian effects they were
looking for before they did those experiments? Of course, this would
have totally discouraged them from even trying.

Norton: You’re referring, I take it, to the literature in gravitation theory
towards the end of the nineteenth century. They were trying to start
modeling extra terms for Newton’s theory on the basis of
electrodynamics. I believe that a Weber-like law was one of them; there
are many different variants. However, I did not find any cases of
experimentalists using such laws to estimate the magnitude of the effect
sought. As you point out, that is odd.

Renn: I think the answer to the question as to why the scientists who
were looking around the turn of the century for Machian effects did not
come up with precise ideas on the magnitude of these effects can be
found in the split of two conceptual traditions, that of mechanics and that
of electrodynamics, which I discuss at some length in my contribution
[see p. 5]. Without much exaggeration one can say that those interested
in electrodynamic theories of gravitation did not link this interest with a
critique of mechanics along the lines of Mach and vice versa. A short
footnote in the paper of the Friedlaender brothers, referring to a
Weberian theory of gravitation, and the work of Einstein are exceptional
in establishing the link between these two traditions.

Editorial Note (J.B.B.): The reader may be puzzled by the limited discussion
recorded above of the issue raised by Norton of whether Mach truly intended a
physically new theory of inertia or merely a redescription of Newtonian theory
in relational terms. In fact, there was a fairly extended discussion at Tiibingen
around the passage by Mach reproduced in its entirety on p. 110 (beginning line
5) and discussed by Norton on pp. 16-17. However, examination of the
discussion transcript showed that quite a large proportion of the comments,
which were made without benefit of the complete exact text for examination,
were either irrelevant or misleading, though Kuchaf did make the important
point that, irrespective of the physical significance Mach may have read into Eq.
(1) on p. 17, the equation itself is mathematically incomplete, since it is a single
scalar equation and therefore insufficient to describe either absolute or relative
motion (cf. my comments on p. 217). Since the issue of whether Mach merely
intended a redescription is discussed in some length in my own contribution (pp.
215-218) and Notes 1 and 2 on p. 230) and both Norton (in his Notes 6 and 16)
and von Borzeszkowski and Wahsner (pp. 65-66) have responded to my
comments, there seems little point in reproducing here the Tiibingen discussion.



Mach’s Criticism of Newton
and Einstein’s Reading of
Mach: The Stimulating Role
of Two Misunderstandings

Horst-Heino v. Borzeszkowski and Renate Wahsner

In the present paper we will give some arguments in favor of the thesis
that the so-called Mach’s Principle owes its existence to two mis-
understandings, namely first to Mach’s misunderstanding of funda-
mentals of Newtonian mechanics, mainly of the Newtonian notion of
space, and second to a misreading of Mach by Einstein. The latter was
admittedly a reading of genius, but nevertheless a misreading.

To start with, it should be mentioned that in order to discuss this
matter it is not sufficient to study appropriate passages of Mach’s
Mechanik. Rather, one has also to analyze the other critical-historical
treatises and, first of all, the philosophical work of Mach. Since this,
however, is not the place for discussing Mach’s philosophy in detail,
here we shall make only a few remarks summarizing some aspects of
Mach’s philosophy that are of interest in the context of this topic. (For
a detailed consideration, see Wahsner and v. Borzeszkowski 1988.)

Mach’s main intention was to free mechanics, optics, and other
physical branches from metaphysics, so that the real nature of physics
becomes visible. In the search for a way toward his aim, he arrived at
the conclusion that one has to study the history of physics. In his 1872
pamphlet Die Geschichte und die Wurzel des Satzes von der Erhaltung
der Arbeit, which was programmatic for his life’s work, Mach said:

Denn metaphysisch pflegen wir diejenigen Begriffe zu nennen, von welchen
wir vergessen haben, wie wir dazu gelangt sind. Man kann jedoch nie den
thatsichlichen Boden unter den Fiissen verlieren oder gar mit den
Thatsachen in Collision gerathen, wenn man stets auf den Weg

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 58-66 © 1995 Birkhiiuser Boston, Inc. Printed in the United States.
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zurilickblickt, den man gegangen. [For the notions that we usually call
metaphysical are the ones for which we have forgotten how we arrived at
them. However, we can never lose the real ground from under our feet or,
worse, come into collision with the facts if we always look back over the
way that we have gone.] (Mach 1872, p. 2)

As far as mechanics is concerned, Mach considered it correct but,
for historical reasons, represented by Newton in a manner containing a
lot of metaphysical elements. Therefore, he intended to remove these
elements by reformulating mechanics, and the result was his critical-
historical account of mechanics: Die Mechanik in ihrer Entwicklung.
Historisch-kritisch dargestellt (Mach 1883; later editions published in
1889, 1897, 1901, 1904, 1908, 1912).

As is well known, Mach was dissatisfied in particular with Newton’s
definition of mass and his representation of the axioms of mechanics.
Therefore, he started by reformulating them.

First he replaced Newton’s definition of masses, saying that the ratio
of the masses m, and m, of two bodies is equal to the ratio of their
weights, m,/m,=G,/G,, by the definition that states: The ratio of the
masses m, and m, of two bodies is equal to the negative and inverse ratio
of the accelerations b; and b, caused by their mutual interaction,
m,/m,= —b,/b,.

From this point of view, Mach considered Newton’s second law as
a convention and the third law as a consequence of his definition of
mass. So for him there remained only the task to answer the question as
to the first Newtonian law. Mach’s answer was: This law is a fact first
perceived by Galileo, but it has only a definite meaning when one can
answer the question as to the reference system one needs in order to
determine the motion.

He argued as follows. When one says “a system or a body on which
no forces act is either at rest or in uniform motion,” one has to ask
“uniform motion, relative to what?” Newton’s answer was “to absolute
space.” But this is a metaphysical element that can be replaced by the
totality of the cosmic masses, more precisely, by the fixed stars realizing
a rigid reference system.

To demonstrate this, Mach showed that the center of mass of an N-
body system on which no external masses act realizes a system to which
the motion described by mechanics can be referred. Assuming then that
this N-body system is the system of cosmic masses (on which per
definitionem no external forces act), he has in this way determined a
cosmic reference system. For Mach this was a proof that one can free
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mechanics of the metaphysical element ‘absolute space’ by replacing it
with something that is nearer to experience. In this way, inertia seemed
to him caused by cosmic masses.

Mach was encouraged to use this formulation by his analysis of
Newton’s arguments concerning the behavior of water in a rotating
bucket. According to Newton, the curved surface of water arising when
the water was rotating with respect to the heavens showed that inertial
forces are caused by the motion with respect to the absolute space. In
contrast to Newton, Mach believed that this experiment is no proof of the
existence of an absolute space, since one can ask what would happen if
the whole of the heavens rotated around the bucket. He believed that it
should lead to the same result, namely to a curved surface of water as a
consequence of the rotating cosmic masses. So one cannot - he argued
- distinguish between relative and absolute motions by experience. One
can, however, talk about the real (relative) motion with respect to the
COSMIC Mmasses.

Now it is not intended to discuss here the problem of the extent to
which Mach did really provide a formulation of mechanics which could
be used in physical work (for a detailed discussion of this, see, for
instance, Bunge 1966). The point we want to stress is rather that the
starting point of Mach’s considerations was a misunderstanding of
mechanics. When Mach started he believed that the space of Newtonian
mechanics is a rigid background given once and for all like a stage in
front of which physical processes unfold. He did not see that the so-
called absolute space is the totality of all inertial systems and thus is not
a metaphysical ghost but a constructive element like the quantity mass
and other notions that are determined by the entire system of classical
mechanics.

To be fair, it should be mentioned that in Mach’s day classical
mechanics was taught in a version which indeed was loaded with
metaphysical ballast. Furthermore, when the first edition of Mach’s
Mechanik was published, the clarifying papers of Carl Neumann
(Neumann 1870) and Ludwig Lange (Lange 1886) were not well known
or even not yet published. Finally, the meaning of inertial systems was
only understood when the role of Galileo’s principle of relativity was
cleared up, and this was only done in the context of the discussion
around Einstein’s special theory of relativity.

Mentioning these objective reasons for Mach’s misreading of
classical mechanics, however, one has also to state that it was too a
consequence of his philosophical standpoint, i.e., of his empiro-
pragmatic philosophy. This philosophy replaced the system (the physical
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theory) by a catalog of experimental data and their mutual relations.
Mach wrote:

Wenn man eine volistindige Theorie als das Endziel der Forschung
bezeichnen wollte, ... miissten [wir] unter diesem Namen vielmehr eine
volistdndige systematische Darstellung der Thatsachen begreifen ... Das
Ideal aber, dem jede wissenschaftliche Darstellung wenn auch sozusagen
asymptotisch zustrebt, ... ist ein volistdndiges iibersichtliches Inventar der
Thatsachen eines Gebietes. (Mach 1896, p. 461) [If we wish to say that a
complete theory is the final aim of research ... we [must] understand by this
word a complete and systematic representation of the facts ... But the ideal
to which every scientific representation tends (even though only so to speak
asymptotically) ... is a complete and clear inventory of the facts of a
domain (quoted with slight alteration from Mach 1986, p. 415).]

Therefore, Mach did not and could not realize in what manner a
physical theory determines its notions. He overemphasized the role of
that what he called the real (das Tatsdchliche), so that his expurgation of
metaphysics from physics degenerated into a liquidation of basic episte-
mological prerequisites of physics (Wahsner and v. Borzeszkowski 1988,
pp. 595-597).

Because of his missing insight into the inevitability of transcendental
assumptions of physics, it was difficult for Mach to incorporate results
of authors like Lange clarifying the notion inertial system into later
editions of his Mechanik. In the second edition of 1889, one finds, for
instance, an Appendix with remarks on Lange’s 1886 paper, but no
change of the main text of his book. Subsequent editions then incorporate
the supplements and other insertions into the main text. Here one feels
that he has a lot of problems accepting Lange’s definition of inertial
systems without changing his own criticism of Newtonian mechanics. His
way out of this dilemma is to say that Lange’s answer to the question as
to the reference system of mechanics and thus to the notion of space is
purely mathematical, while his own is physical.

Let us now turn to Einstein and his attitude to Mach’s ideas. As is
well known, Einstein did not refer to Mach during the first period of the
foundation of the theory of general relativity. Only when he arrived at
the conclusion that the principle of relativity should be extended to
arbitrarily moving reference systems and that gravitation is to be
described by the metric tensor of a curved spacetime did he begin to talk
of the relativity of inertia (this was about in 1912). In a 1912 paper he
writes:
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Es legt dies die Vermutung nahe, dass die ganze Trigheit eines
Massenpunktes eine Wirkung des Vorhandenseins aller iibrigen Massen sei,
auf einer Art Wechselwirkung mit den anderen beruhend. [This makes it
plausible that the entire inertia of a point mass is the effect of the presence
of all other masses, deriving from a kind of interaction with the latter.]
(Einstein 1912, p. 39).

And in 1918 he even used the expression Mach’s Principle (Einstein
1918).

Although Einstein’s attitude to Mach’s ideas changed in his later
years (see, for example, Pais 1982; Wahsner and v. Borzeszkowski
1988), this principle played a stimulating and constructive role in
physical discussions in the course of years. While initially the question
as to validity of the principle in the theory of general relativity was in the
center of interest, later this principle became the point of departure for
the construction of alternative gravitational theories. In this connection,
different authors were working with different formulations of this
principle. In an analysis of this situation, it was stated (Goenner 1981)
that this is due to the fact that Mach did not propose a definite ansarz for
an induction of inertia by cosmic masses, so that Mach’s principle says
more about Einstein’s and other authors’ reading of Mach than about
Mach’s intention.

The thesis in favor of which we will give arguments here goes a step
further. It says that Mach did not only not create a cosmic principle of
the type gathered by Einstein from Mach’s Mechanik but such a principle
is even in conflict with Mach’s ideas.

To this end, let us return to Mach’s philosophy. As mentioned
above, as a consequence of his empiro-pragmatic standpoint, Mach could
not understand the status of a physical theory. The analysis of the
discussion between Mach and Boltzmann, Planck, Hertz, and Einstein
(Wahsner and v. Borzeszkowski 1988, pp. 604-642) makes this
especially clear. Thus Mach could not grasp in what a manner a physical
theory determines its notions and, in particular, not understand that
Newton’s axioms determine simultaneously the physical dynamics and
the systems of reference to which this dynamics refers or has to be
referred. Since he could only conceive of a catalog of single statements
and facts but not of a theory, he could only ask whether a statement
under consideration is a fact or not. In this scheme there is no room left
for the space notion of classical mechanics. Therefore, he did not think
of another physical theory as an answer to his criticism of Newtonian
mechanics. He did not think at all in terms of theories, and Einstein’s
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theory of general relativity had to seem to him further from experience
than Newton’s theory. To repeat, the aim he had was to reformulate
classical mechanics so that its notions and statements were nearer to
experience.

This is one line of argument showing that Mach did not think of a
new cosmic principle that would lay the foundation of a new theory. But
there are also more explicitly formulated arguments that one can find in
Mach and which show the same.

When Mach had shown that the law of inertia can also be referred
to the cosmic masses, he added that this reading implies the same
difficulties as Newton’s. For, in the Newtonian version one has to refer
to absolute space, on which one cannot get a hold. In the other case,
only a limited number of masses is accessible to our knowledge but not
the totality of cosmic masses. In Mach’s words:

In dem einen Fall kénnen wir des absoluten Raumes nicht habhaft werden,
in dem anderen Fall ist nur eine beschrinkte Zahl von Massen unserer
Kenntnis zuginglich, und die angedeutete Summation ist also nicht zu
vollenden (Mach 1912, p. 230). [In the one case we are unable to come at
an absolute space, in the other a limited number of masses only is within
the reach of our knowledge, and the summation indicated can consequently
not be fully carried out (Mach 1960, p. 289).]

For Mach, these obstacles were of a fundamental nature, so that he
did not believe that one could overcome them by modifying the physical
theory. According to him, the universe as a whole is not tractable as a
physical system. Notions like energy of the universe or entropy of the
universe have no tangible sense because they imply applications of
measurement notions to an object that is not accessible to measurement
(Mach 1896, p. 338). The only thing he wanted to do was to bring to
our attention the fact that the law of inertia (and other physical laws) is
based on experience, on experience that is never complete and, even
more, that can never be completed.

To conclude, Einstein introduced a cosmic principle into physics, and
the irony of the story is that this was initiated by Mach and called by his
name, although the possibility of cosmology as a physical discipline was
the very thing that Mach himself denied.
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Discussion

Norton: I wanted to see if you have had any more luck with the
historical puzzle than I have had. We seem to agree that Einstein is
misreading Mach. I have tried to get some idea of where Einstein got
the reading from. Is it possible that he just read Mach by himself, we
know he read it in his early years, and produced this reading or is it
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possible that he had some help? Was there some intermediate source?
Did he read about Mach elsewhere? For a while I conjectured that
Philip Frank had played some intermediate role on the basis of Frank’s
1909 paper that I cited and the fact that Frank was, I believe, Einstein’s
successor at Prague, but I couldn’t come up with anything. I don’t know
if you might have come across something.

Borzeszkowski: I don’t know. Maybe there was such an intermediate
stage, but I think the main reason is that Einstein read only Mach’s
Mechanics, and then he did what a physicist should do. He tried to win
from it a constructive idea.

One finds it also in other connections that when authors discussed
epistemological questions and they were talking about philosophy,
Einstein read it in a physicalizing manner, and, to repeat, this can be
useful for purely physical considerations. One encounters, however,
another situation when one wants to discuss such matters as we did this
morning, namely the relation to philosophy and historical context. Then
one has, of course, to analyze the whole edifice of thoughts of the author
one refers to.

Bondi: You have not mentioned the very interesting statement of
Mach’s “the universe is only given once,” which I think influenced
Einstein. It certainly influenced me. To me, it means all our physics is
learned in the presence of just the universe we’ve got and of no other.
Borzeszkowski: Yes, I wanted to mention it, but I didn’t due to the
shortage of time. Because it is a further hint that Mach did not really
mean that one should construct a physics that starts from a cosmological
principle. Inhis Wdrmelehre, for instance, he says that one can’t use the
notions which we know from physics like energy and so on which one
applies to several different finite systems to the universe as a whole,
because it is only once given. More precisely, Mach says (Wdrmelehre
1900, p. 338) that sentences on the energy, entropy, and so on of the
universe have no conceivable sense since they contain applications of
measuring notions to an object which is not accessible to measurement.
I completely agree.

Von Borzeszkowski and Wahsner: Two comments on Julian Barbour’s
comments (pp- 215-218). (i) With Eq. (1) describing the change of the relative
distance between two bodies moving purely inertially, Mach presents a further
simple implication of Newton’s laws — here, in particular, of the first law. This
passage shows once more, first, that he considered Newtonian mechanics to be
true and, second, that he believed that the laws and statements of this physics
can be reformulated so that, instead of absolute, relative distances occur. That
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this, to some extent, is possible, C. Neumann (Uber die Principien der
Galilei-Newtonschen Theorie, Leipzig 1870) had already shown by
demonstrating that, choosing an arbitrary body alpha, mechanics can be written
in Jacobian coordinates. Roughly speaking, Mach intended to rewrite
Newtonian mechanics by replacing the body alpha by something one can call
‘the totality of cosmic masses,” maybe, the center of cosmic masses.

(ii) Mach’s criticism of Lange that one finds in some editions of his
Mechanik shows that he did not mention that, accepting - as he did - Lange’s
construction of an inertial system, for reasons of logical self-consistence, a
fourth force-free material point must follow with respect to one of Lange’s
inertial systems a straight line (uniformly). The passage here under
consideration shows again Mach’s initial misunderstanding, not only of Newton
but also of Lange. This led him to a dim formulation. One should not,
however, forget that Mach himself dropped this passage later. In later editions,
in particular in the last edition supervised by the author, Mach agrees with
Lange. There his point then was to state that Lange’s point of view need not
be the last word. Mach could imagine a physics describing Friedlaender-F6ppl
effects. Anyone looking for a passage in Mach that can be read as something
like Einstein’s version of Mach’s Principle should take this one (cf. Chap. 2,
Sec. 6, Subsec. 11 in the 7th edition).



Einstein’s Formulations of Mach’s Principle

Carl Hoefer

It is well known that Einstein first used the term ‘Mach’s Principle’ in
his 1918 paper on the general theory, “Prinzipielles zur allgemeinen
Relativititstheorie.” In that paper Einstein expresses his current
understanding of the requirements of Mach’s ideas on inertia:

Mach’s Principle: The G-field is without remainder determined by the
masses of bodies. Since mass and energy are, according to results of the
special theory of relativity, the same, and since energy is formally described
by the symmetric energy tensor (7,,), this therefore entails that the G-field
be conditioned and determined by the energy tensor.!

What is less well known is that Einstein struggled with other ways
of understanding Mach’s ideas on inertia in the context of the general
theory, only arriving at his 1918 conception after failing adequately to
cash out Mach’s ideas in other ways in the years from 1912 to 1917; and
that Einstein had to abandon this 1918 formulation of Mach’s Principle
by the middle of that year.

In this paper I will discuss some of the history of Einstein’s work on
Mach’s Principle, by identifying several distinct ways that Einstein
adopted, at various times, of formulating the general idea that we now
call ‘Mach’s Principle.’> Many important details of Einstein’s work in
1916 on Mach’s Principle are not widely known and deserve greater
attention from those interested in Machian ideas on inertia..In addition
to highlighting some very puzzling aspects of Einstein’s work on Mach’s
Principle, I will also contend that, compared with the 1918 formulation,
Einstein’s 1917 formulation in his cosmological paper (Einstein 1917)
was correct in some crucial respects, even though it conflicts with much
current usage of the term ‘Mach’s Principle’ in the physics community.

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 67-90 © 1995 Birkhduser Boston, Inc. Printed in the United States.
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1. Pre-1916 Formulations and Puzzles

I want to begin with a quote from 1912, which I believe is the earliest
expression of Einstein’s understanding of Mach’s Principle. This is from
the paper “Gibt es eine Gravitationswirkung, die der elektrodynamischen
Induktionswirkung analog ist?”:

This suggests the hypothesis that the whole inertia of any material point is
an effect of the presence of all other masses, depending on a kind of
interaction with them.’

A footnote citing Mach’s The Science of Mechanics follows this
sentence in the text. This is only the first of many such passages to
appear in Einstein’s writings between 1912 and 1918. In 1912, Einstein
had not yet made the move to working on gravitation through field
equations linking a metric tensor to material tensors, using what was then
called the absolute differential calculus. When he did make this move,
it affected his expressions of Mach’s Principle in two main ways. First,
it immediately suggested to Einstein that the metric tensor should be
‘determined’ by the tensor describing matter and energy (the core of the
1918 formulation). Second, it led Einstein to equate the achievement of
generally covariant field equations for the metric with a complete
relativization of motion - and therefore, presumptive satisfaction of
Mach’s Principle. These connections will be discussed further below.

The most important differences between Einstein’s understanding of
Mach’s Principle in the 1913-1915 period, and the 1918 formulation, are
two: First, in the early period there is (apparently) no recognition of the
fact that an empty spacetime with Minkowski structure is incompatible
with Mach’s Principle; and second, Einstein substantially equated general
covariance, Mach’s Principle, and the equivalence principle. This
equation was responsible for several conceptual problems that plagued
Einstein prior to November, 1915, and also helped shape the next stage
of Einstein’s thinking on Mach’s Principle, in 1916. An examination of
Einstein’s understanding of covariance, the equivalence principle, and
their relations to Mach’s Principle, is therefore necessary for
understanding Einstein’s later formulations.

The next passage of interest is from Einstein’s 1913 exposition of the
Entwurf theory that appeared in the Vierteljahrsschrift der Naturfor-
schenden Gesellschaft Ziirich. In the paper Einstein describes the highest
goal of a theory of gravitation as being the task of determining the
(components of the) metric, when the ‘field-creating’ material contents
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of the world are given. Here we see the core of the 1918 formulation
expressed. Later, Einstein takes up Mach’s ideas explicitly and claims
that the Enmtwurf theory overcomes the ‘epistemological defect’ of
absolute acceleration that Mach criticized:

The theory sketched eliminates an epistemological defect, emphasized
particularly by E. Mach, that affects not only the original relativity theory
but also Galilean mechanics. It is plausible to suppose that the concept of
the acceleration of a material particle can no more have an absolute meaning
ascribed to it than the concept of velocity.... One must demand that the
occurrence of an inertial resistance be tied to the acceleration of the body
under consideration relative to other bodies....4

Einstein appears to claim that Mach’s Principle is fully implemented
in the Entwurf theory, since the epistemological defect of earlier
mechanics has been overcome. In other passages from this period,
Einstein’s claims are more modest, describing the Machianization of
inertia as still not yet complete in the Entwurf theory. Still, this claim of
having overcome the epistemological defect, which is repeated in other
writings of 1913-1914 (and in the 1916 review paper on the final GTR),
is remarkable to modern readers. The reason is that it is clear that
Minkowski spacetime is a solution of the Entwurf equations and that
Einstein realized this. But Minkowski spacetime is the most clearly
anti-Machian spacetime possible: It has a well-defined inertial and
metrical structure, without any matter being present that could be said to
‘determine’ or explain that structure. We will come back to this point
below; first, some further intriguing passages from this period.

In a long exposition of the whole of his current general relativity
theory of October 1914, Einstein invokes the Machian conception of
inertia in a way that suggests strongly that he viewed it as the same as
the principle of equivalence. After mentioning the Newtonian argument
from centrifugal effects to the existence of absolute motion, Einstein
expresses the Machian response particularly clearly:

We need not necessarily trace the existence of these centrifugal forces back
to a[n absolute] movement of K’; we can instead just as well trace them
back to the rotational movement of the distant ponderable masses in relation
to K', whereby we treat K’ as ‘at rest.’... On the other hand, the following
important argument speaks for the relativistic perspective. The centrifugal
force that works on a body under given conditions is determined by
precisely the same natural constants as the action of a gravitational field on
the same body [i.e., its mass], in such a way, that we have no means to
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differentiate a ‘centrifugal field’ from a gravitational field.... This quite
substantiates the view that we may regard the rotating system K’ as at rest
and the centrifugal field as a gravitational field.’

The reader will recognize the spirit (if not the letter) of the
equivalence principle in Einstein’s reference to the fact that one natural
constant is involved in the definition of both gravitational and centrifugal
forces, and in the idea of our being able to regard the system K’ (here
rotating, rather than uniformly accelerated) as being at rest in a
gravitational field. To regard a centrifugal force field as being a
gravitational field is, on the one hand, a natural Machian move: Inertial
forces of all kinds are produced by interaction with other masses, and
hence are just gravitational forces. On the other hand, it is an extension
of the equivalence principle, extending what Einstein had claimed about
an inertial system K and a uniformly accelerated system K’, to systems
K’ accelerated in different ways.

The connection between general covariance and the equivalence
principle can be seen as follows. The equivalence principle shows that
we can extend the validity of the equations of a theory of motion to
reference frames that are uniformly accelerated, so long as we regard
them as in the presence of a uniform gravitational field. But the
extension of the validity of the equations of a theory to all reference
frames, including uniformly accelerated ones, is just what is achieved by
general covariance. Therefore, as Einstein wrote in 1916, “The
requirement of general covariance of equations embraces the principle
of equivalence as a quite special case.”® To modern readers, it seems
clear that this reasoning confuses reference frames with coordinate
systems, and that the purely formal requirement of general covariance is
in fact unrelated to the equivalence principle. But this is somewhat
unfair. Einstein’s understanding of general covariance was more robust
than the modern view, and this is clear from his 1918 Prinzipielles
paper. In particular, he viewed the absence of prior absolute
spatiotemporal structure in GTR (a feature not shared by generally
covariant formulations of other theories) as crucially part of what he
understood by ‘general covariance.” Therefore, GTR did implement
general covariance in a way that does not necessarily make it misleading
to say that the equations of the theory apply in accelerated reference
frames just as they do in unaccelerated frames (in so far as such frames
can be meaningfully defined and related to coordinate systems) - and so
such frames may be considered ‘at rest’ in a kind of gravitational field.

Having now seen the links between Mach’s Principle and the
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equivalence principle, and between the equivalence principle and general
covariance, there remains the question of the link between general
covariance and Mach’s Principle. This latter link proceeds through the
idea of an extended principle of relativity: General covariance is
sufficient to ensure that no reference systems are privileged, this ensures
the extension of the principle of relativity to arbitrary motions, and this
is what is demanded by the Machian criticism of absolute motion. In the
Entwurf period, this line is never pursued to completion by Einstein
because of his uneasy conviction that, despite lacking general covariance,
the Entwurf equations do implement Mach’s Principle and a general
relativity of motion. A discussion from the 1914 paper “Die formale
Grundlage der allgemeinen Relativititstheorie” (Einstein 1914a)
illustrates Einstein’s dilemma. After arguing for the special principle of
relativity from the fact that from a kinematical standpoint all coordinate
systems should be considered equal, Einstein continues:

This argument, however, immediately provokes a counter-argument. The
kinematic equivalence of two coordinate systems, namely, is not restricted
to the case in which the two systems, K and K’, are in uniform relative
translational motion. The equivalence exists just as well, from the
kinematical standpoint, when for example the two systems rotate relative to
one another. One feels therefore forced to the assumption that the previous
relativity theory is to be generalized in a far-reaching way, so that the
apparently incorrect privileging of uniform translations as opposed to other
sorts of relative motions disappears.’

Einstein follows this passage immediately with a discussion of the
Newtonian argument against such a widened relativity: the argument
from inertial effects of rotation for the absoluteness of such motion.
Einstein goes on in the usual way to give the Machian response, thus
showing the identification of Machianization of inertia and a general
relativity of motion in his thinking. But what about general covariance?
Because of the non-general covariance of the Entwurf equations, Einstein
postpones the question until after he has had a chance to explain the
reasons for this apparent failure.

The question now naturally arises, what kinds of reference systems and
transformations we should regard as ‘justifiable.” This question will
however first be answered much later (section D). In the meantime we shall
take up the standpoint that all coordinate systems and transformations are
to be allowed, so long as they are compatible with the always-presupposed
conditions of continuity.?
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At least three puzzles arise in the above passages on Mach, relativity,
and covariance:

(1) Einstein throughout this period viewed the extension of the
covariance of a theory to be crucial to an extension of the relativity of
motion in the theory. But the Entwurf theory had covariance properties
that Einstein recognized to be far short of what would be required for an
extension of relativity to acceleration and, in particular, rotation. For a
brief period in 1914, Einstein thought that covariance over a wide class
of transformations, including uniform rotations, pertained to the theory’s
equations; but this proved to be an error.

(2) Einstein equated the extension of covariance to cover acceleration
transformations with the principle of equivalence, on the one hand; and
on the other hand, he equated an extended equivalence principle with the
implementation of Mach’s ideas on the origin of inertial forces (as seen
in the quote just above). But Einstein maintained that Mach’s ideas were
implemented in the Entwurf theory, without clearly explaining how this
could be the case without a corresponding general (or at least
wide-ranging) covariance of all the theory’s equations.

(3) Einstein articulated Mach’s ideas as the demand that the metric
field g,, should be fully determined by the material distribution 7,,. And
Einstein was aware that in the Minkowski spacetime of the Special
Theory (with 7,,=0), Mach’s ideas are violated and spacetime has a
structure of its own. But Einstein repeatedly referred to the Minkowski
metric as the proper case of no gravitational field being present, and
never discussed the obvious problem that this metric is a valid solution
of the Entwurf equations.

I believe that some of these puzzles can be resolved through the
following story on Einstein’s thinking in this period.

The Entwurf theory is not generally covariant, and even at the time
Einstein was prone to view this as a serious defect of the theory given its
goal of generalizing the relativity of motion. A letter to Lorentz from
August 1913 makes this clear, as Einstein writes:

But the gravitation equations themselves unfortunately do not have this
property of general covariance. Only their covariance under linear
transformations is established. But now, the entire trust in the theory rests
on the conviction that acceleration of a reference system is equivalent to a
gravitational field.®

And in a letter just two days after this one, Einstein refers to the lack
of general covariance as an “ugly dark spot” on the theory.
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But Einstein had two arguments that he believed justified and
explained the lack of general covariance.!® One was the now-notorious
‘hole argument.” The other was Einstein’s temporary belief that this
failure was justified by the necessity of restricting coordinate systems to
those in which the conservation law below holds!!:

a(Tav+tur) — 1
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y

As an ordinary partial differential equation, this equation is not
generally covariant if the quantities T, and ¢,, are tensors; given that it
holds in a coordinate system, it will then hold also only in coordinate
systems related to the first by a linear transformation. By laying the
blame for failure of general covariance at the feet of the conservation
law, Einstein was able to persuade himself that this failure of the
equations to hold in arbitrary systems did not bring with it a failure of
the Machian idea that the metrical structure of spacetime should be
determined by the material distribution. For, as Einstein (1914b) pointed
out in the Scientia article of 1914, there is no prior selection of certain
coordinate systems or frames as privileged; instead, the specification of
the material distribution appears subsequently to pick out certain
coordinate systems, namely those in which (1) hold. Einstein held - and
this was his belief in the Machian character of the Entwurf theory - that
the material distribution determines the metric field. So, if one imagines
that the material distribution had instead been laid out differently on the
spacetime manifold, the metric (and, hence, the class of privileged
coordinate systems, since the metric restricts the systems in which the
conservation law can hold) would “follow’ the material distribution; and
this shows that they are only frames privileged by the actual material
distribution, not frames privileged in an absolute way as in Newtonian
mechanics.!!

There is still some tension left, since Einstein never describes how
the covariance limitations imposed by the hole argument affect the
question of relativity of motion and the existence of privileged coordinate
systems. Einstein never fully dropped the linkage of covariance to the
relativity of motion in the back of his mind (even after 1918); rather, he
was greatly relieved in November 1915 when he finally achieved the
generally covariant equations of GTR. Nevertheless, this interpretation
clears up some puzzles about Einstein’s thinking on Mach’s Principle in
the Entwurf period.

But the problem remains that the material distribution does not fully
determine the class of inertial systems in the Entwurf theory, despite
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Einstein’s claims. This is shown by the compatibility of Minkowski
spacetime with the field equations. The Entwurf theory faces the same
problem of models with absolute or quasi-absolute inertial structure that
the final GTR faces.

How did Einstein reconcile the Minkowski spacetime solution with
the allegedly Machian character of the theory? This is a problem that
carries over into the early period after the discovery of the final GTR
field equations, since at that time too Einstein claimed that his theory
overcame the problem of the Machian epistemological argument against
privileged frames.!? I believe that insofar as there is a solution to this
puzzle, it is the same for both periods: Einstein was aware of the
difficulty, even though he did not mention it in his published writings of
the time; and he intended to overcome it by finding suitable boundary
conditions to impose on physically realistic solutions, conditions that
would rule out the empty Minkowski spacetime. At the latest, Einstein
was already working on such conditions by May 1916, as they are
mentioned in a letter to Besso of that month. Einstein may have been
working on them much further back, in late 1915 or early 1916, and he
may well have had the idea in the Entwurf period.

2. 1916: Mach’s Principle as Boundary Conditions

In the next stage of Einstein’s work on Mach’s Principle, then, there are
two kinds of formulations of Mach’s Principle to be found. First,
continuing expressions of the type “The metric g,, should be completely
determined by the material distribution 7,,.” And second, mathematical
expressions of Mach’s Principle through the idea of Machian boundary
conditions that would supplement the field equations and eliminate
non-Machian solutions. In the face of Einstein’s recognition in 1916 that
the field equations alone do not satisfy Machian demands, the Machian
boundary conditions sought would have amounted to the implementation
of Mach’s Principle in GTR. 3

Einstein thought that Mach’s Principle should be implemented in
GTR through boundary conditions rather than by some more general
mathematical constraint, because of the way in which he saw the
problematic models as violating Mach’s Principle. Minkowski spacetime
and Schwarzschild’s solution both violate Mach’s Principle because they
display metrical/inertial structure that cannot be attributed to a material
distribution. In the case of the Schwarzschild solution, this structure is
evident at large r, where spacetime is essentially Minkowskian and the
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central mass evidently is not responsible for that structure. Instead, on
Einstein’s way of thinking, the Minkowski boundary conditions imposed
in deriving the solution are to blame for that absoluteness. The same
perspective can be used in thinking of empty Minkowski spacetime. The
metrical structure at any point is a result of the ‘absolutist’ boundary
conditions, plus the local (lack of) material distribution.

Given this perspective, the way to avoid violations of Mach’s
Principle is to come up with boundary conditions that do not impart any
absolute structure to spacetime, so that the structure of spacetime at finite
distances from the center is attributable only to the global matter
distribution, not to the boundary conditions as well. Einstein expresses
this idea in a letter to Willem de Sitter, from June 1916:

I am sorry to have plagued you with too much emphasis on the question of
boundary conditions.... But I must add that I have never thought about a
temporally finite extension of the world; and even spatially, the finite
extension is not what matters. Rather, my need to generalize drove me to
the following view: It is possible to give a spatial envelope (massless
geometrical surface) (in four dimensions, a tube) outside of which a gram
weight has as little inertia as I choose to specify. Then I can say that inside
the envelope, inertia is determined by the masses present there; and to be
sure, only by these masses. !4

Very little survives about Einstein’s work on such conditions. All we
have to go on are the clues from the above verbal expression, the 1917
Betrachtungen paper discussion (Einstein 1917), and brief reports by de
Sitter in two 1916 articles. The boundary conditions that de Sitter
provides, as well as others that he himself proposes as cashing out
Mach’s Principle, turn out to be in themselves meaningless, for reasons
I will discuss below. But a mathematical reconstruction of what
Einstein’s calculations may have involved in this period might be able to
shed more light on Einstein’s temporary belief in a boundary conditions
approach to Mach’s Principle.

De Sitter reported in September 1916 that Einstein ‘found’ that the
following set of boundary conditions at infinity satisfies the demand for
the complete relativization of inertial3:

0 0 0 o

0 0 0 o @)
0 0 0 o

0 00 00 002
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De Sitter gives no explanation of the exponent on g,; he does
remark that the invariance of these values is restricted to transformations
in which x* is a function of x* alone.

This set of boundary values, as well as two others proposed by de
Sitter in 1917, were intended to cash out an interesting idea that Einstein
seems to have held for a while in 1916: The General Theory needed
supplementation by generally covariant boundary conditions in order to
secure the complete relativization of inertia.l6

The idea is that the boundary values of g,, at infinity should be such
that they are left unchanged by a wide group of coordinate
transformations (at least those corresponding to rigid motions - a
requirement well short of general covariance). Choosing boundary values
of either 0 or o for the relevant metric components seems superficially
to be a good way to approach this idea, but this alone falls well short of
guaranteeing anything about what will happen under a coordinate trans-
formation. With a given metric expressed in some coordinate system, for
example, a component that approaches zero or infinity in some limit may
well fail to do so after a transformation such as a linear acceleration or
rotation. Whether this is so or not depends on the given metric. In fact,
it is not too strong to say that boundary conditions such as (2) are
completely meaningless, until they are linked to one or more concrete
metrics.

Unfortunately, this set of boundary conditions is not accompanied by
any discussion by de Sitter of how they arise, i.e., what sort of actual
functions might be compatible with the field equations, and also take
these limiting values. Without a concrete example, of course, there is no
way to verify that they do in fact represent a boundary region in which
inertia ‘disappears,’ in some intrinsic sense. Further, much general work
delimiting the class of metrics that can take such boundary values (with
a given definition of ‘at infinity’) would be necessary in order to
establish that the boundary conditions correctly capture Machian
demands.

Einstein may have subscribed to these boundary conditions for
perhaps as long as four or five months, from before September 1916, to
December 1916, at which point Einstein had already turned to the
cosmological constant and his closed universe, abandoning the idea of
Machian boundary conditions.

A letter to Besso from December 1916 shows Einstein giving, in
brief, the argument against boundary conditions and in favor of a closed
world, that he would repeat in more detail in the Kosmologische
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Betrachtungen paper. In this letter Einstein formulates what he sees as
the dilemma facing him:

It’s certain that infinitely large differences of potential would have to give
rise to stellar velocities of very significant magnitude, and these would
surely have already have manifested themselves long ago. Small potential
differences in combination with an infinite [spatial] extent of the world
demand the emptiness of the world at infinity (constancy of the g,, at
infinity given appropriate choice of coordinates [Minkowski conditions]), in
contradiction with a meaningfully understood relativity. Only the closure of
the world frees us from this dilemma. 17

The technical part of the argument against the boundary conditions
(equation) based on stellar velocities is made only somewhat more clear
in Einstein’s Kosmologische Betrachtungen paper (Einstein 1917). I
present the entire relevant excerpt below (the English translation only,
due to its length):

The opinion which I entertained until recently, as to the limiting conditions
to be laid down in spatial infinity, took its stand on the following
considerations. In a consistent theory of relativity there can be no inertia
relatively to “space,” but only an inertia of masses relatively to one
another. If, therefore, I have a mass at a sufficient distance from all other
masses in the universe, its inertia must fall to zero. We will try to formulate
this condition mathematically.

According to the general theory of relativity the negative momentum is
given by the first three components, the energy by the last component of the
covariant tensor multiplied by (—g)'?

dx
_ a 3
M8 B @
where, as always, we set
ds*=g,dx dx,. “

In the particularly perspicuous case of the possibility of choosing the system
of coordinates so that the gravitational field at every point is spatially
isotropic, we have more simply

ds*=—A(dx] +dx? +dx2) +Bdx?. &)
If, moreover, at the same time

-g =1=/A°B
we obtain from (4), to a first approximation for small velocities,
Ady A dx, A dx
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for the components of momentum, and for the energy (in the static case)

myB.

From the expressions for the momentum, it follows that m(A/A/B) plays
the part of the rest mass. As m is a constant peculiar to the point of
mass, independently of its position, this expression, if we retain the
condition (—g)"?=1 at spatial infinity, can vanish only when A diminishes
to zero, while B increases to infinity. It seems, therefore, that such a
degeneration of the coefficients g,, is required by the postulate of relativity
of all inertia. This requirement implies that the potential energy m/B
becomes infinitely great at infinity. Thus a point of mass can never leave
the system; and a more detailed investigation shows that the same thing
applies to light-rays. A system of the universe with such behavior of the
gravitational potentials at infinity would not therefore run the risk of
wasting away which was mooted just now in connexion with the Newtonian
theory....

At this stage, with the kind assistance of the mathematician J.
Grommer, | investigated centrally symmetrical, static gravitational fields,
degenerating at infinity in the way mentioned. The gravitational potentials
8., were applied [angesetzt], and from them the energy-tensor T, of matter
was calculated on the basis of the field equations of gravitation.!® But here
it proved that for the system of the fixed stars no boundary conditions of the
kind can come into question at all, as was also rightly emphasized by the
astronomer de Sitter recently.

For the contravariant energy-tensor T** of ponderable matter is given
by
dx, dx,
ds ds’
where p is the density of matter in natural measure. With an appropriate
choice of the system of coordinates the stellar velocities are very small in
comparison with that of light. We may, therefore, substitute (g,,)"?dx, for
ds. This shows us that all components of 7** must be very small in
comparison with the last component 7*. But it was quite impossible to
reconcile this condition with the chosen boundary conditions. In the
retrospect this result does not appear astonishing. The fact of the small
velocities of the stars allows the conclusion that wherever there are fixed
stars, the gravitational potential (in our case +/B) can never be much greater
than here on earth. This follows from statistical reasoning, exactly as in the
case of the Newtonian theory. Atany rate, our calculations have convinced
me that such conditions of degeneration for the g,, in spatial infinity may
not be postulated. 19

T =p

This discussion contains all the evidence there really is, about why
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Einstein abandoned his boundary-conditions formulation of Mach’s
Principle. When one considers that this transition was Einstein’s
motivation for introducing the A-term, and thus beginning modern
cosmology with his 1917 closed model of the universe, the absence of
discussion of this passage in the literature is quite remarkable.20 A
reconstruction of Einstein’s calculations on the question of boundary
conditions would significantly enhance our understanding of the early
history of GTR.

Without yet having such a reconstruction in hand, it is still possible
to note some doubtful aspects of Einstein’s reasoning in the 1917 paper.
Because Einstein at this time (with everyone else) did not fully grasp the
difference between coordinate effects (for example, singularities) and
intrinsic effects, his results concerning large potentials and large stellar
velocities have to be clearly reconstructed before they can be accepted as
sound. Even if large stellar velocities are derived in some intrinsically
meaningful sense, it has further to be shown whether these velocities
would be observable from the earth, and whether they would be
velocities in a static space, or ‘velocities’ like the velocities of recession
of distant galaxies, which are a function of the expansion of spacetime.
There are ample reasons to doubt that Einstein’s arguments against the
boundary-conditions approach are sound - though there are also ample
reasons to doubt that the approach itself makes sense to begin with.

3. 1917: The Closed-Universe Formulation

The boundary-conditions expression of Mach’s Principle was replaced by
the demand of a closed universe, and not by any explicitly mathematical
reformulation of the principle. Instead, Einstein’s 1917 - early 1918 un-
derstanding of Mach’s Principle can be cashed out only verbally, as
comprised of two demands:

(I) The universe should be finite and closed, i.e., have no boundary
region; then, the local metric cannot be thought of as determined in part
by boundary conditions of space (but rather only by the global matter
distribution). This, Einstein thought, would assure that the metric is fully
determined by the matter distribution in spacetime.

(II) The modified field equations should allow no matter-free,
singularity-free solutions. This is necessary to ensure that the theory as
a whole (not just some subset of models) is Machian in character.

Demand (I) emerges clearly from the Kosmologische Betrachtungen
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paper and the December 1916 letter to Besso. Both (I) and (II) are
present in the 1918 discussion in the Prinzipielles paper but are stated
even more explicitly by Einstein in a letter to de Sitter of March 24,
1917:

In my opinion it would be dissatisfying, if there were a conceivable world
without matter. The g*’-field should rather be determined by the matter, and
not be able to exist without it. This is the heart of what I understand by the
demand for the relativity of inertia. One could just as well speak of the
“material conditionedness of geometry.” As long as this demand was not
fulfilled, for me the goal of general relativity was not yet completely
achieved. This was first achieved through the introduction of the A term.2!

In demand (I) we see the residue of Einstein’s conviction that the
non-Machian character of certain models is a product of their absolutist
boundary conditions: if there is no boundary region, Einstein assumes,
there is no room for a non-Machian determination of the metric. This
reasoning can only hold, of course, if spacetime is nonempty; this
explains the importance of demand (II) for Einstein.

As is now well known, the introduction of the A-term failed to
achieve condition (II). In early 1917, de Sitter found a 7,,=0 solution to
the new field equations. Einstein struggled for over a year to show either
that the solution was physically unacceptable due to a singularity, or not
really matter-free after all; he gave up the struggle in June 1918, and in
an important sense this marks the end of Einstein’s advocacy of Mach’s
Principle.??

4. Post-1918 Formulations

After accepting the failure of the modified field equations to meet
demand (II), Einstein’s attempts to implement Mach’s Principle in GTR
ended, and his enthusiasm for Mach’s Principle began a steady decline
that culminated, near the end of his life, in complete repudiation of the
principle.2? The decline can be explained in part as due to the evident
failure to make GTR perfectly Machian, and in part as due to Einstein’s
growing interest in unified field theories, in which a realistic (as opposed
to reductionistic) attitude towards the metric field is presupposed. But
Einstein did not cease to discuss Mach’s ideas on inertia, in a positive
manner, for many years after 1918. Instead, he tended to emphasize the
respects in which it seems that Machian ideas are fulfilled in the general
theory, and to advocate his closed-universe cosmology as fulfilling the
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Machian demands due to its lack of a boundary region. The discussion
in the textbook The Meaning of Relativity is representative:

The theory of relativity makes it appear probable that Mach was on the
right road in his thought that inertia depends upon a mutual action of
matter.... What is to be expected along the line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses are piled
up in its neighborhood.2*

2. A body must experience an accelerating force when neighboring masses
are accelerated, and, in fact, the force must be in the same direction as the
acceleration.

3. A rotating hollow body must generate inside of itself a ‘Coriolis field,’
which deflects moving bodies in the sense of the rotation, and a radial
centrifugal field as well.

Two pages later Einstein continues, discussing his cosmological model

Although all of these effects are inaccessible to experiment, because « is so
small, nevertheless they certainly exist according to the general theory of
relativity. We must see in them a strong support for Mach’s ideas as to the
relativity of all inertial actions. If we think these ideas consistently through
to the end we must expect the whole inertia, that is, the whole g, field, to
be determined by the matter of the universe, and not mainly by the
boundary conditions at infinity. 25

After this passage, Einstein discusses his closed universe model, citing
with particular favor its lack of boundary conditions.

The differences between Einstein’s expression of Mach’s Principle
here and his 1917 expression described above are subtle but important.
Here the emphasis is on Machian-seeming effects that are present in
GTR, and on one model that seems both to satisfy the core demand that
the metric be determined by the energy tensor and to be physically
reasonable. There is no demand that the theory exclude empty (and hence
anti-Machian) models in general. And with the absence of this demand,
there is no trace of agny precise mathematical expression of Mach’s
Principle.

Einstein seems content with the possibility that the actual world is
well described by a model that appears to be Machian by the light of
intuition. This attitude toward Mach’s Principle is quite common among
current relativists who, like Einstein, are sympathetic to Mach’s ideas on
inertia. Aside from a few, such as Wheeler and Raine, who do try to
formulate an explicit mathematical version of Mach’s Principle, most
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physicists are content to rely on their intuitions about Machian effects in
the absence of mathematical criteria and to follow Einstein in regarding
a closed matter-filled universe as automatically Machian.6

5. Conclusion; The Correct Formulation

I will end with some critical remarks about Einstein’s formulations of
Mach’s Principle and current assumptions among working physicists.

The widespread assumption that a closed, matter-filled cosmology
such as Einstein’s spherical cosmology must satisfy Mach’s Principle is
questionable. It is based on the reasoning discussed above, that since in
anti-Machian models the trouble seems to come from the boundary
conditions, if one eliminates the boundary region one eliminates the
problem. But this reasoning is clearly fallacious. There is a missing
premise: The only way a model can fail to be Machian is to have an
empty boundary region in which an absolute spatiotemporal structure is
posited. This premise is by no means intuitively obvious, and it could
only be established if we had a general, mathematical explication of
Mach’s Principle and could show that this premise follows from it. Such
a mathematical version of Mach’s Principle would itself have to be
supported by arguments showing that it correctly captures the core of
Mach’s ideas on the origin of inertia. It would entail a restriction of the
class of models of GTR and delimit exactly those models in which inertia
is fully determined by matter-energy. I do not know if such a
mathematical expression is possible for GTR; but its attainment is
necessary before we can claim that any given model does satisfy Mach’s
Principle.

In the meantime, it seems more clear that we can (as did Einstein)
rule out some models of GTR as definitely anti-Machian and use these
judgments as constraints on any explication of Mach’s Principle. The
clearest case is that of empty spacetimes. Since they do not contain any
matter—energy and have a definite spatial (and hence inertial) structure,
they clearly run contrary to the core of Mach’s ideas on the origin of
inertia. Therefore, I believe that Einstein was absolutely right to demand
(I) as a necessary condition for the relativization of inertia, or
satisfaction of Mach’s principle by a gravitation theory. Demand (II)
should remain our most secure touchstone in theorizing about how to
create a Machian gravitation theory.

I stress this point because apparently it has become a minority view
among physicists working on Mach’s Principle.2’ The reasons have to
do, I believe, with work done by Wheeler and others on initial-value
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formulations of Mach’s Principle (which do not rule out empty
solutions), and also with the widespread view that gravitational field
energy [z,, of Eq. (1)] should count as part of the energy that helps to
determine the metrical structure of spacetime. If gravitational
stress—energy were a tensor quantity (and hence well-defined and
localizable), this attitude would clearly be appropriate; the Machian
demand would then be, roughly, that the combination of material and
gravitational stress-energy uniquely determines the whole metric field
8,,- But since this is not the case, the status of gravitational stress-energy
as a second kind of matter-energy in the universe is dubious. Further-
more, it is one thing to suppose that gravitational stress-energy present
on a hypersurface or thin-sandwich in a matter-containing world should
be included as part of the material distribution that determines future
inertial structure, but it is quite another to suppose that a matter-free
universe could count as Machian in virtue of some conditions satisfied
by the gravitational waves present. At any rate, it seems to me that much
further work clarifying the status of gravitational stress—energy is needed
if we are to abandon the initially compelling view that a matter-free
(T,,=0) universe is automatically anti-Machian.
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NOTES

IEinstein (1918), pp. 241-242. “Machsches Prinzip: Das G-Feld ist restlos
durch die Massen der Korper bestimmt. Da Mass und Energie nach den
Ergebnissen der speziellen Relativititstheorie das Gleiche sind und die Energie
formal durch den symmetrischen Energietensor (7,,) beschrieben wird, so besagt
dies, dafl das G-Feld durch den Energietensor der Materie bedingt und bestimmt
sei.” Throughout, all translations are my own unless otherwise noted.

2A discussion of some of the history of Einstein’s work on Mach’s ideas can
be found in Kerszberg (1989a, b). Some of the material in this paper is also
covered in (Hoefer 1993).

3Einstein (1912), p. 39. “Es legt dies die Vermutung nahe, daB die ganze
Trégheit eines Massenpunktes eine Wirkung des Vorhandenseins aller ibrigen
Massen sei, auf einer Art Wechselwirkung mit den letzteren beruhend.”

“Einstein (1913a), p. 290. “Durch die skizzierte Theorie wird ein
erkenntnistheoretischer Mangel beseitigt, der nicht nur der urspriinglichen
Relativititstheorie, sondern auch der Galilei’schen Mechanik anhaftet und
insbesondere von E. Mach betont worden ist. Es ist einleuchtend, daB dem
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Begriff der Beschleunigung eines materiellen Punktes ebensowenig ein absolute
Bedeutung zugeschrieben werden kann wie demjenigen der Geschwindigkeit ....
[Es wird] gefordert werden miissen, daB das Auftreten eines Triigheits-
widerstandes an die Relativbeschleunigung des betrachteten Kdrpers gegeniiber
andern Korpern gekniipft sei....”

SEinstein (1914), pp. 1031-2. “Die Existenz jener Zentrifugalkrifte
brauchen wir ndmlich nicht notwendig auf eine Bewegung von KX’
zuriickzufilhren; wir kOnnen sie vielmehr ebensogut zuriickfilhren auf die
durchschnittliche Rotationsbewegung der ponderabeln fernen Massen der
Umgebung in bezug auf K’, wobei wir K’ als ‘ruhend’ behandeln.... Fiir die
relativistische Auffassung spricht anderseits folgendes wichtige Argument. Die
Zentrifugalkraft, welche unter gegebenen Verhiltnissen auf einen Korper wirkt,
wird genau durch die gleiche Naturkonstante desselben bestimmt wie die
Wirkung eines Schwerefeldes auf denselben, derart, dal wir gar kein Mittel
haben, ein ‘Zentrifugalfeld’ von einem Schwerefeld zu unterscheiden....
Dadurch gewinnt die Auffassung durchaus an Berechtigung, daB wir das
rotierende System K' als ruhend und das Zentrifugalfeld als ein Gravitationsfeld
auffassen diirfen.”

SEinstein (1916), p. 641. Here I use John Norton’s translation (Norton
1989b, p. 26). I am greatly indebted to this paper of Norton’s for the above
points on the equivalence principle. Needless to say, Norton might not agree
with my interpretation on all points.

TEinstein (1914), p. 1031. “Dies Argument fordert aber ein Gegenargument
heraus. Die kinematische Gleichberechtigung zweier Koordinatensysteme ist
nimlich durchaus nicht auf den Fall beschrinkt, daB die beiden ins Auge
gefassten Koordinatensysteme K und K’ sich in gleichférmiger Translations-
bewegung gegeneinander befinden. Diese Gleichberechtigung vom
kinematischen Standpunkt aus besteht z.B. ebensogut, wenn die Systeme relativ
zueinander gleichférmig rotieren. Man fiihlt sich daher zu der Annahme
gedringt, daB die bisherige Relativititstheorie in weitgehendem Mass zu
verallgemeinern sei, derart, daf die ungerecht scheinende Bevorzugung der
gleichférmigen Translation gegeniiber Relativbewegungen anderer Art aus der
Theorie verschwindet.”

8Einstein (1914), p. 1032. “Es erhebt sich nun naturgemif die Frage, was
fiir Bezugssysteme und Transformationen wir in einer verallgemeinerten
Relativititstheorie als “berechtigte” anzusehen haben. Diese Frage wird sich
jedoch erst viel spiter beantworten lassen (Abschnitt D). Einstweilen stellen wir
uns auf den Standpunkt, daB alle Koordinatensysteme und Transformationen
zuzulassen seien, die mit den bei physikalischen Theorien stets vorausgesetzten
Bedingungen der Stetigkeit vereinbar sind.”

EA 16-434. “Aber die Gravitationsgleichungen selbst haben die
Eigenschaft der allgemeinen Kovarianz leider nicht. Nur deren Kovarianz
linearen Transformationen gegeniiber ist gesichert. Nun beruht aber das ganze
Vertrauen auf die Theorie auf der Uberzeugung, daB Beschleunigung des
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Bezugsystems einem Schwerefeld dquivalent sei.”

105ee Norton’s (1989a) pp. 126-132, for an enlightening discussion of
Einstein’s arguments against general covariance in 1913 and 1914.

HEinstein (1913b), p. 1258.

12Ejnstein (1923b), p. 113.

13Early 1916 is the latest date that can be placed on Einstein’s full
recognition of the non-Machian character of the field equations: The
Schwarzschild solution showed that even solutions containing matter might be
radically non-Machian. But as I indicated earlier, Einstein’s recognition of the
problem was probably complete at an earlier stage.

14EA 20-539. “Es thut mir leid, Thnen gegeniiber zu viel Nachdruck auf
die Frage der Grenzbedingungen gelegt zu haben. ... Aber ich muss doch
sogleich hinzufiigen, dass ich an eine zeitlich endliche Ausdehnung der Welt
niemals gedacht habe; auch bei dem Raumlichen kommt es auf eine endliche
Ausdehnung nicht an. Sondern es trieb mich mein Verallgemeinerungsbediirfnis
mir zu folgendes Auffassung:

Es sei mdglich eine rdumliche Hiille (masselose geometrische Fliche) (in
vierdimensionalen einen Schlauch) anzugeben, ausserhalb welcher ein
Grammgewicht eine so geringe Triigheit hat, als ich nur immer will. Dann kann
ich sagen, dass innerhalb der Hiille die Trigheit durch die dort vorhandenen
Massen bedingt sei; und zwar nur durch diese.”

15pe Sitter (1916), p. 531.

161¢ is impossible to be sure that Einstein’s search for boundary conditions
is accurately described in this way; only de Sitter uses the term ‘generally
covariant boundary conditions,’ in texts that survive. But since de Sitter and
Einstein were in intensive correspondence in the period from June-December
1916 (only some of which correspondence survives), it is likely that de Sitter’s
reports on Einstein’s thinking are accurate.

178peziali, p. 97. Speziali dates this letter as probably mid-December,
1916, but the dating is not certain. “Sicher ist, dass unendlich grosse
Potentialdifferenzen zu Sterngeschwindigkeiten von sehr bedeutender Grdsse
Anlass geben miissten, die sich wohl schon lange eingestellt hitten. Kleine
Potentialdifferenzen im Verein mit unendlicher Ausdehnung der Welt verlangen
Leersein der Welt im Unendlichen (Konstanz der g,, im Unendlichen bei
passender Koordinatenwahl), im Widerspruch mit einer sinnvoll aufgefassten
Relativitit. Nur Geschlossenheit der Welt befreit aus dem Dilemma.

18This sentence tempts one to suppose that Einstein had constructed a
complete solution to the field equations that embodied the boundary conditions
(5), thus constructing a (possibly) Machian cosmological model before the
famous Einstein universe of the Betrachtungen paper. Of course, Einstein’s
calculations may well have fallen far short of that.

19Einstein (1923a), pp. 180-182.

20T have searched many of the most important current and older textbooks
on GTR for any discussion of this passage - in vain. One reason for the lack
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of attention to this episode may be the fact that, like de Sitter, most relativists
were and are hostile to the goal of Machianizing GTR. This was especially true
in the late teens and 20s (long before the work of Wheeler, Brans, Dicke, and
others revived interest in the ’50s and ’60s). By the time later physicists
returned to Mach’s Principle in GTR, this episode had been completely written
out of the textbook history of general relativity.

21EA 20-548. “Es wire nach meiner Meinung unbefriedigend, wenn es
eine denkbare Welt ohne Materie gibe. Das g*-Feld soll vielmehr durch die
Materie bedingt sein, ohne dieselbe nicht bestehen konnen. Das ist der Kern
dessen, was ich under der Forderung von der Relativitit der Trigheit verstehe.
Man kann auch ebensogut von der ‘materiellen Bedingtheit der Geometrie’
sprechen. Solange diese Forderung nicht erfiillt war, war fiir mich das Ziel der
Allgemeinen Relativitit noch nicht ganz erreicht. Dies wurde durch das A-Glied
erst herbeigefiihrt.”

22Einstein conceded the singularity-free nature of de Sitter’s metric in a
postcard to Felix Klein, EA 14-449.

23Einstein to Felix Pirani, EA 17-448.

24Tulian Barbour (1992) has recently argued, persuasively I believe, that this
effect is not really a consequence of Mach’s ideas.

25Einstein (1922), pp. 100, 103.

26 At the 1993 Tiibingen conference, Julian Barbour organized several straw-
polls of the attendees concerning their views on GTR and Mach’s Principle. My
claims here are based partly on these straw polls [p. 106], as well as the
evidence of current literature.

27 Again, this fact emerged clearly from straw-polls and discussions at the
1993 Tiibingen conference.
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Discussion

Earman: People sometimes talk as if there is a dichotomy between
universes that are spatially open and universes that are spatially closed.
Now, of course, there are universes you can slice up with open sections
and there’s another way of slicing with closed sections, so is it enough
for Mach’s Principle that there exists a way of slicing it with spatially
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closed sections?
Hoefer: My way of thinking about Mach’s Principle, and I can only
speak for my own understanding, is that closed vs open and infinite vs
noninfinite has nothing to do with Mach’s Principle. I have never seen
any reason to connect Mach’s Principle with any kind of demand on the
topology.
Barbour [comment after conference]: I believe the argument for closure is
rather obvious. Mach said that motion is with respect to the universe as a
whole. Now motion of one body relative to a finite universe is easy to define
but to define motion, as a definite quantity, relative to an infinite universe is not
at all easy. Virtually all actual implementations of Machian ideas have assumed
the universe is finite. Also in Wheeler’s geometrodynamic approach, in which
the three-geometry is the basic concept, two slightly different closed three-
geometries in principle determine a complete spacetime by themselves (thin-
sandwich principle). However, if space is infinite, boundary conditions have to
be imposed arbitrarily. The dynamics of the universe is no longer self-
contained. It was this sort of arbitrariness Einstein sought to avoid.
Hoefer [response to above comment]: Dr. Barbour’s comment illustrates
exactly the widespread conceptions of the relation of finitude/closure to Mach’s
ideas that I believe to be misconceptions. Motion is not more difficult to define
relative to an infinite universe than to a finite universe, if by ‘defining’ we
simply mean a nonmetrized description via a coordinate system. If we mean
something stronger - specifying relative velocities or accelerations for pairs of
bodies, for example — then problems do arise, in relativity in general, but
especially difficult problems arise for the Machian. Spatiotemporal structure is
needed to characterize these motions, yet the structure of spacetime is, for the
Machian, supposed to arise out of those very relative motions. This problem is
not resolved, conceptually speaking, just by assuming closure of space.
Wheeler’s approach to Mach’s ideas illustrates what I mean. As Barbour
points out, the idea is that two different closed three-geometries determine the
whole structure of spacetime. Is it an acceptable Machian strategy for the
relativist to help herself to the whole geometry of these slices, which is clearly
more than just a summary of relative motions of bodies at a time (for example,
they may contain gravity waves)? I don’t know whether it is or not — but I do
claim that their being closed three-geometries does not automatically validate
them for Machian use. Nor, if one used open, infinite spatial slices, do I see
that this would automatically violate any Machian ideas. Boundary conditions
would have to be imposed, but would they have to be arbitrary? Einstein
thought that there might be naturally Machian boundary conditions, and while
his attempt to work out this idea was a failure, I have argued that this doesn’t
show that the idea itself is necessarily mistaken.
Bondi [response to same comment]: I disagree with Barbour. As1I see it, any
radius of curvature significantly greater than the Hubble distance is of little
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relevance, whether it is positive, negative or infinite.

Barbour: In response to both Bondi and Hoefer, I still maintain it is far easier
to define a definite relative motion of either mass particles or fields that can be
used in an action function in the case of a finite or closed universe. As regards
the role of gravitational degrees of freedom, when Mach first criticized Newton,
the ‘ontology’ of the world was mass points in Euclidean space. Einstein
changed the ontology and worked with fields and dynamic geometry, but he
never seems to have asked himself seriously this question: What precisely is the
Machian problem in the new context of fields and dynamic geometry? The
Poincaré-type criteria of Machianity that I develop in my paper (p. 214, Sec. 3)
translate immediately into the new context, but frankly it seems to me
anachronistic in a world of fields and dynamic geometry to say only matter, and
not other degrees of freedom, can determine the inertial frames.

Gravitational waves are just as observable as matter fields. The fact that
there is no proper energy-momentum tensor of the gravitational field presents
no problem in the formulation of the thin-sandwich problem, which operates
exclusively with 3-metrics (and fields if they are also present). See gravitational
degrees of freedom, role in Mach’s Principle in the Index and also the
immediately following comments of Ciufolini made at Tiibingen.

Ciufolini: This discussion is related to the view of John Wheeler. He
thinks that a model universe is in agreement with Mach’s Principle if it
has a Cauchy surface that is a closed manifold, that is compact and
without boundary; that is a model that admits a closed Cauchy surface.
I think Jim [Isenberg] has done some work on that.

Isenberg: Yes that is essentially Wheeler’s view: That if a spacetime
admits a closed Cauchy surface, and if it also satisfies Einstein’s
equations (with the constraints thus imposed on the initial data on any
Cauchy surface) then the spacetime should be Machian. Oh, he also
includes that topological restriction on the Cauchy surface.

Ciufolini: So according to Wheeler the corresponding initial-value
formulation clarifies the origin of inertia...

Isenberg: There is no ambiguity about whether a Cauchy surface is
open or closed.

Ciufolini: Yes, but in the spatially nonclosed case you have to admit
some kind of prior geometry such as asymptotic Minkowskian geometry.
Hoefer: Well, I have always been puzzled about this, exactly why that
demand expresses anything Machian.

Narlikar: From the last transparency, it was not clear to me that
Einstein wanted singularities or no singularity.

Hoefer: Singularity free. The confusion arises because Einstein
desperately wanted the de Sitter solution to have some kind of
singularity, because it was a matter-free solution and his demand for a
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physically reasonable solution was that it be singularity free.

Renn: You mentioned the problem of the Entwurf theory not being fully
covariant. That was actually only one of its ‘Machian problems,’ so to
say. Another problem is related to Einstein’s claim that his theory would
also do justice to the requirement that inertial mass is created by the
presence of other masses in the universe. Max Abraham, who wrote a
critical review of the Entwurf theory in 1914, actually calculated the
effect that other masses have on the mass of a given body according to
this theory. He found this effect to be so small that he concluded that
Einstein’s claim can only be maintained if the existence of invisible
matter is assumed, an assumption he considered absurd.

Hoefer: I was curious when you mentioned that earlier. I am not clear
about that, why the smallness of the effect should be a stumbling block.
Any effect at all would seem to fulfill your Machian expectations.
Lynden-Bell: No, no. All of it has to be.

Hoefer: You mean removing all the rest of the mass from the universe
only subtracts a negligible amount of inertia?

Ehlers: It seems to me that the term inertia was used in a somewhat
unclear fashion even in the quotations which you showed. One could
either think that by saying that the inertia of a particle should be
determined by the cosmic masses it is to be interpreted as saying a local
piece of the inertial trajectory of the particle, or one could interpret the
term as meaning the value of the inertial mass, and these are rather
different requirements. I am not sure which requirement was considered
as a Machian requirement at that period by Einstein.

Hoefer: Well Einstein thought both that the inertial mass should be a
product of the presence of other masses and also that the local piece of
the inertial trajectory should be determined by the distribution of masses.
I believe Professor Barbour has argued that the first requirement
shouldn’t be thought as a true Machian requirement.

Barbour: That is certainly my view. I am delighted with Jiirgen’s
question. That’s one of the things I’m hoping we will discuss in the
session this afternoon (p. 91).

Norton: I have a brief remark on why Einstein thought the theory was
Machian. As early as 1912 and 1913, he could derive the weak field
effects associated with the dragging of inertial frames by accelerating
masses. Even though his theory was not generally covariant at this early
stage, he did believe (erroneously) that it was covariant under
transformations to rotating frames of reference. That problem was fixed
in November 1915, when he found the generally covariant version of his
theory.



General Discussion:
What is the Machian Program?

Because Mach’s Principle is surrounded by so much controversy, the
final session of the first day of the Tiibingen conference was devoted to
a general discussion, led by Barbour, on the theme What is the Machian
Program? The edited transcript of the discussion, to which a few
comments made at other times during the conference have been added,
follows. The editors feel that the discussion session did achieve its
purpose - to identify all the main issues associated with Mach’s
Principle. At the end of the discussion, a straw poll on certain issues
was held. The questions and results of the poll are given at the end of
the discussion transcript [p. 106]. At the end of the final day of the
conference, the straw poll was repeated to see if any significant changes
of opinion had occurred. The results of that poll too are given.

Barbour: There are at least four questions that I feel we should discuss,
the first of which has already been raised by John Norton [p. 9].

Question 1: What was Mach actually advocating? Was he advocating a
mere redescription of Newtonian theory without any change in its physical
content, or was he advocating a genuinely new theory?

This next question has already been precisely formulated by Jiirgen
Ehlers [p. 90]:

Question 2: Should the Machian principle be something to do with a cosmic
derivation of the inertial mass, some sort of formula where m, the inertial
mass, is equal to some integral stretched over the entire universe, something
like that, or is it just to do with a cosmic derivation of the local inertial
frames of reference?

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 91-106 © 1995 Birkhiuser Boston, Inc. Printed in the United States.
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My own view is that it’s the latter. I think Einstein brought in a red
herring by requiring a cosmic derivation of the inertial mass. This is an
important issue because it determines the sort of theory we want to find.
Indeed, for me the main purpose of this meeting, and especially this
session, is: Can we establish, if it’s possible, what are the true criteria
of ‘Machianity’? When can we say that a theory is truly Machian? In
fact, as I argue in my contribution [p. 214, Sec. 3], I believe that
Poincaré has given us a very useful and precise criterion.

The third issue has not yet been mentioned today and has seldom
been raised in the literature. When you read Mach’s Mechanics, the first
five or six pages of his critique of Newtonian mechanics are not about
motion; they are about time. He starts by making a big issue about time.

In fact, Mittelstaedt (1976) even wondered whether one should not
formulate a Second Mach’s Principle, which is to do with relativity of
time. This would then match the First Mach’s Principle, or the first
Machian requirement if you like, to do with the relativity of motion.
When we get into quantum gravity, I think we shall see it’s extremely
important, and that it is a Machian issue. Therefore:

Question 3: Is there a Second Mach’s Principle to do with the relativity of
time?

Finally, if we do accept that the Machian requirement is to show how
the local inertial frames of reference are determined by the universe at
large, then: What agents do that determining?

Question 4: In the context of general relativity, must the local inertial
frames of reference be determined completely by the energy—momentum
tensor of matter in the narrow sense, or can the gravitational degrees of
freedom themselves contribute to the determination of the local frames of
reference?

Hoyle: Specified under what mathematical conditions? On a Cauchy
surface?

Barbour: That is fair enough; a Cauchy surface. I think this is an
important issue, because quite a lot of interpretations of Mach’s
Principle, which stem from Einstein himself [p. 180], suggest that g,,,
which determines the local frames of reference, should be determined by
the matter alone. Therefore, if you are going to give a Machian inter-
pretation of general relativity, is Einstein right about the agents that can
determine g,,? There’s quite a large body of opinion that thinks it must
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be pure matter only and not the gravitational degrees of freedom.
Ehlers: Not to anticipate the debate, but it seems to me that Question
4 as it stands does not make sense, because if you have a tensor 7,, and
not a metric, then this does not meaningfully describe matter. There’s
no theory of physics so far which can describe matter without already the
metric as an ingredient of the description of matter, and therefore within
existing theories the statement that the matter by itself determines the
metric is neither wrong nor false, but meaningless.

Hoyle: I agree entirely with that. If you’re to specify a field, it’s got
to be given on a free surface or a Cauchy surface.

Renn: The remark of Jirgen Ehlers concerning the metric as an
ingredient of the description of matter corresponds almost literally to
what Einstein said in his letter to Felix Pirani, from 2 February 1954.
Einstein drew the conclusion that one should no longer speak of Mach’s
Principle at all.

Barbour: I myself agree very largely with you’ve said, Jiirgen [Ehlers],
but I think that nevertheless there are people who are attempting to make
sense of these sort of things, and that is actually how Einstein himself
formulated it when he coined the expression ‘Mach’s Principle’ [p. 186].
However, before we get into this discussion, can anyone add any major
issues to the four I’ve listed.

Kuchar: I don’t know what it is that we are doing here. Are we trying
to interpret what Mach has said historically, or are we trying to say what
he should have said?

Barbour: I would say that one quarter is trying to establish what he
actually said - that is the historical part - and then the rest is trying to
establish what Einstein should have done and whether he succeeded.
Kuchar: Well, I would say it’s pouring new wine into old bottles.
Jones: Mach pointed out that the inertial frames we observe do not
rotate relative to the stars as we see them, and I would say any theory
has to explain why that seems to be the case.

Lynden-Bell: None of us believes it’s true though ...

Barbour: You think it’s only approximate, Donald?

Lynden-Bell: Yes, I think it’s only approximate, and I think most
people think it’s only approximate.

Jones: Yes, but it’s approximate to a very high degree of accuracy.
Lynden-Bell: No more accurate than you would expect.

Jones: No, I think there are actually observations to show that it’s quite
accurate.

Lynden-Bell: Quite accurate, but no more accurate than one would
expect.
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Hoyle: But do the stars count? Couldn’t you talk about the microwave
background? That would be more accurate.

Bondi: I want to make two points: 1) If we want this conference to lay
down criteria for Machianity, history is interesting but shouldn’t be the
final judge; 2) I don’t regard Question 4 as controversial. I think the
answer is obvious.

Barbour: And the answer is?

Bondi: I mean that if I have a Cauchy surface and the same 7, but give
different gravitational wave situations in between differences will
develop, so I don’t think it’s a controversial question.

Raine: I’'m not quite sure that what you’ve actually written down really
encapsulates what you are trying to say because once you actually try and
spell out what you really mean you start having to talk about particular
theories and getting down to specifics. What you really are trying to say
is in some sense this: Are there, at the beginning of the universe, some
free gravitational modes that have to be put in as well as all the matter
modes, or should we somehow eliminate the free gravitational degrees
of freedom in the Big Bang.

Barbour: That is certainly one aspect of the question. I was also
thinking of Wheeler’s interpretation, which is done on instantaneous
surfaces by means of the constraints. Wheeler argues strongly that the
effective energy density of the gravitational field should also determine
the local inertial frames of reference. So I think that there are at least
two theories where these things are discussed a bit more precisely. Can
we note you’ve registered that point and the issue may need more precise
formulation, Derek?

Ciufolini: Can I rephrase Question 4 and instead of ‘matter’ use mass
‘energy’ to make Professor Bondi happy?

Barbour: What do you mean by ‘energy’ though? You don’t mean 7,,,
I think.

Ciufolini: I mean that when one talks of energy one should somehow
include the energy of the gravitational field and, in particular, the energy
of gravitational waves.

Barbour: Well, this was my alternative view, that both of them should
count. This is John Wheeler’s viewpoint. You think it should be that?
Ciufolini: Yes.

Barbour: Well, by saying gravitational degrees of freedom, that was
what [ meant. I am avoiding talking about energy of gravitational waves
because that is so difficult.

Hoefer: It seems to me that the sentiment here is that you can’t do
anything just with T,, neglecting things like gravitational waves, but on
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the other hand I am inclined philosophically to think that for the theory
to be perfectly Machian it would have to be that, just with 7,, [see
p. 831

Barbour: That’s certainly how Einstein was interpreting it around
1917-18, and that is what I was trying to capture with this question.
Bondi: The way you formulated Question 4, it appears as a question of
what is correct mathematically, physically correct within general
relativity, which is the technical question to which I, and I think many
other people here, think the answer is clear. The hidden agenda which
has been brought out is: Is a theory in which the gravitational degrees
of freedom play a role thereby non-Machian?

Barbour: You are right. There is the technical question, on which
there is little disagreement. However, it still may be possible as Derek
Raine has intimated, to formulate some sort of condition where at the
start of the evolution there are, in some sense, no gravitational waves.
So there is a group of people who are trying to eliminate gravitational
waves and think that it is technically possible to make that meaningful,
notwithstanding what you’ve said, and that that is necessary. Then the
second question is: Does the fact that the gravitational degrees of
freedom play a role make general relativity non-Machian? [ share John
Wheeler’s view that their role in the determination of the local frames of
reference by no means disqualifies general relativity as a Machian
theory.

Isenberg: I think that it is important to think about other theories of
gravity as well as Einstein’s theory and consider whether you can get
away without having gravitational degrees of freedom and yet have the
theory agree with experiment and observation.

Kuchar: I don’t know what Derek [Raine] meant, but isn’t Penrose’s
proposal that the initial singularity be such that the Weyl tensor vanishes
at it just a formulation that answers sort of your question?

Isenberg: Well, that’s just a restricted class of universes. He’s saying
that there are a number of solutions of Einstein’s equations where we can
look at the initial data, and the gravitational degrees of freedom are
turned off.

Kuchar: No, I would say Mach’s Principle is used as a selection
principle, which is traditionally how it was used many times.

Barbour: Paul Tod at Dennis Sciama’s birthday celebration a year or
two ago gave a very interesting paper on just that question, that perhaps
the Green’s function formulation that Derek [Raine] will be talking about
is realized in Roger Penrose’s idea.

Raine: I will also be talking about that tomorrow [p. 286].
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Assis: On Question 2, I would say that in my mind both things would
be Machian and should be looked for in a theory in which one tries to
implement Mach’s Principle. There should be a cosmic derivation of
inertial mass and a cosmic derivation of the local inertial frame of
reference.

Barbour: Would you be prepared to see one of them go and say that it
would be a nice optional extra rather than absolutely essential? Has it
got to be both?

Assis: In my mind, both together, because, for instance, when Mach
makes the definition of inertial ratios, of inertial masses, the opposite
ratio of the accelerations, it’s not only about the mass. The accelerations
are relative to the distant stars, and so the two things are intimately
connected.

Barbour: I have difficulty in accepting the idea about the inertial mass,
because it seems to me that Mach was totally happy with the idea that the
inertial mass was something intrinsic to the body. It is true you only see
inertial mass when a body interacts with another body, but the inertial
mass is just determined by the mutual accelerations that the two particles
impart to each other.

Suppose we have a situation in which two bodies interact, one is
taken as unit of mass, and we find that the other has two units of mass
when they interact with a certain mass background. If we take away half
the mass in the universe and let those two bodies interact again, then
surely the mass ratio is not going to change, so I see no way in which
you can change the inertial mass unless you say you have got an
independent definition of what you mean by a force. Then you could
perhaps define what you mean by inertial mass, but for me it’s a
nonissue, as regards both what Mach himself wanted and what is called
for physically.

Jones: What you say would be true if you consider only gravitational
forces, but if you bring in any other forces like electromagnetism, then
you have the e/m ratio, which could be different.

Barbour: Something like that may turn up, but the masses alone are not
going to give you anything meaningful. You’ve got to be talking about
more than one force.

Nordtvedt: You do. You have other forces.

Ehlers: I would even go so far as to say that the requirement that the
inertial mass should come about by the interaction with distant masses is
contrary to the use which so far one has made of the concept of mass in
physics, namely, mass is a characteristic, a number, which one assigns
to a body insofar as the body can be considered as isolated from the rest,
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and in that approximation and only then it is useful. However, nowadays
when one considers quarks, quark masses are not well defined in particle
physics precisely because of confinement, and all the useful uses of
mass, at least in particle physics, arise whenever you consider particles
as essentially free. That is the role of mass, and if you look at general
relativity and you consider a system of two stars, forming a double star,
then you can meaningfully assign masses separately to the bodies
precisely to the extent that you can consider one body as separated from
the field. As soon as you can no longer, you would perhaps have a
Machian situation, but at the same time mass would no longer be
unambiguously defined.

Ciufolini: In Question 4, do you mean by the gravitational degrees of
freedom the energy of gravitational waves and also the possibility of
asymptotic flatness?

Barbour: I would allow that, but I think a lot of people wouldn’t. They
would want closure, so they wouldn’t consider the second possibility.
Ciufolini: The two possibilities are different, so they should be
distinguished. If you assume conditions in which you have a compact
manifold and you also have gravitational waves, that’s one possibility,
and another possibility is that you have asymptotic flatness, so, according
to some views, one is Machian and the other is not.

King: Question 2 on cosmic derivation of the inertial mass: Regardless
of whether Mach wanted that or not, it’s not terribly interesting
anymore, because it’s been ruled out by experiment, and there’s two
flavors of that: You could have just G in Newtonian gravitation
changing, or you could have an anisotropic mass if it’s cosmically
determined, but both of those possibilities in a sense have been ruled out.
Assis: By which experiments?

King: The Brans-Dicke theory is the best example of G varying, and
that’s been essentially ruled out.

Barbour: Do you have a figure on that?

Will: The most recent experiments looking for anisotropoy in energy
levels of atoms, using basically trapped atoms, are in the region of about
a part in 10%,

Barbour: So for anisotropy there is a very low bound. What about
variation of the gravitational constant?

Will: Parts in 10" per year, still from Viking radar.

Barbour: As I understand it, that is not much different from what one
would expect anyway, since the gravitational constant could certainly
decrease as the reciprocal of the Hubble ‘radius.’

Will: It’s on the edge.
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Barbour: So I think it’s not totally ruled out that the gravitational
constant is changing. [See also Nordtvedt’s contribution, p. 422].
Lynden-Bell: I was just worried about one thing. We’ve heard a lot
about the relationships of Einstein and Mach: How long did they meet?
How long did they talk? Can someone who knows much more about the
history than I do tell us?

Renn: As Gereon Wolters (1987) has reconstructed from an entry by
Einstein in a contemporary scratch notebook, he visited Mach on a day
in the last week of September 1910. Einstein had traveled to Vienna to
discuss his appointment at the German University in Prague with the
authorities, and he took the occasion to see Ernst Mach. There are three
reports of this encounter, all due directly or indirectly to Einstein. There
is no indication in these reports that Einstein and Mach discussed
problems of relativity, although they might have, of course, as Einstein
was rereading Mach’s Mechanics in this period. In any case, according
to Einstein’s notebook entry, the meeting was short: He planned to meet
Mach at 4:30 p.m. and had the next appointment already at 5:45 p.m.
Lynden-Bell: Well, you must know when it is, therefore, and whether
what Einstein says is Mach’s Principle is likely to be something that he’s
heard, or could have heard, directly from Mach.

Renn: No, he certainly had it from his reading of Mach, as is
confirmed by his later recollections.

Lynden-Bell: Long before he met Mach?

Renn: Long before, according to one recollection even before 1907, so
he had quite some freedom to give it his own interpretation.

Kuchar: In fact, your account of the discussion between Mach and
Einstein reminds me of the account of the only encounter of Newton and
Huygens, who in fact met in Cambridge and then went to London by a
coach, and no one knows what they discussed [laughter].

Norton: We only have fleeting glimpses of this; there’s an entry in a
notebook where you see Einstein’s going to visit Mach, and there’s a
very brief correspondence where Einstein attributes the Mach Principle
to Mach. A major focus of discussion this morning was whether that
attribution was correct [see the papers of Norton (p. 9), wv.
Borzeszkowski and Wahsner (p. 58), and Barbour (p. 214)]. Clearly
Mach never straightened it out if it wasn’t, though I believe that it
wasn’t. The only extensive discussion that’s close to contemporary that
I would know of is Philipp Frank, who in his biography of Einstein gives
a lengthy story of how they met and what they talked about, and atoms
was the topic of discussions, and apparently Mach was prepared to move
at last on atoms if some decisive experiment could come up.
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Assis: To go back, giving a modern argument why it seems to me that
a cosmic derivation of inertial mass would be interesting in any theory
trying to implement Mach’s Principle, it is because of the remarkable
fact that the inertial mass is proportional to the gravitational mass and not
to the electric charge or to a nuclear property of the body and so on.

So if we only assume that is a coincidence, that is all right, but if we
try to understand this proportionality, which is to me remarkable, then
it is natural to try and find some derivation of the inertial mass as some
kind of gravitational interaction with the distant bodies.

Barbour: Thank you for bringing that in. I should have included this
issue of the identity of the two masses.

Perhaps I could mention here the very interesting result that Reissner
obtained in his theory using a Weber-type potential, from which he can
actually also derive gravitational type forces that come out of inertial
forces. He argues that gravitation is really a manifestation of the inertial
effects of rotating bodies with rapid internal motion [p. 142, Note].

This seems to be a hint you can get some way in that direction.
Kuchar: I have one comment about the program that can be regarded
as implementing Mach’s ideas, namely, to eliminate spacetime and turn
everything into a relational theory of the matter. There is a
complementary program in relativity, which is to eliminate matter and
leave only the spacetime. This idea goes back to Rainich, and it was
later developed by John Wheeler, Charlie Misner, and many other
people. I would say that the Rainich program is much easier to
implement than the Mach program. It’s much easier to eliminate matter,
leave the spacetime as the only dynamical entity, and still have viable
physics, than to do it the other way around.

Earman: Can you give some indication of why that’s the case?
Kuchar: Yes, because of the universality of the gravitational interac-
tion. All matter leaves an imprint on the gravitational field, but the
gravitational field leaves only a partial imprint on the motion of the
matter. Furthermore, general relativity is a field theory, rather than a
Machian action-at-a-distance, which enables one to reconstruct matter
dynamics more or less locally from its universal imprint on the metric
structure,

Isenberg: Just a comment on what Karel’s [Kucha¥] remarks about the
geometrodynamics program. My understanding is that if you include the
Yang-Mills fields, then the geometrodynamics program doesn’t work in
the traditional sense. Maxwell fields and Abelian fields are okay, but
non-Abelian Yang-Mills fields cause trouble.

Renn: I would like to make a philosopher’s comment on Question 1.
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I have the impression that the distinction between a redescription and a
new theory is not really so obvious as it may appear, and I want to give
you some examples illustrating this point: Is Hamilton’s formulation of
classical mechanics a redescription of Newton’s mechanics or is it a new
theory? Is Hertz’s reformulation of Maxwell’s electrodynamics a
redescription or a new theory? Now, regarding these two examples one
might in fact argue that the emphasis is on formal improvement rather
than on conceptual development. But what about the example of
Lorentz’s electron theory - can one not perhaps consider special
relativity merely as a reformulation of Lorentz’s theory? At least many
of Einstein’s and Lorentz’s contemporaries have taken this point of view.
My philosophical argument is that if one introduces a new formalism to
describe an old theory, one may achieve at first just a more or less
equivalent reformulation - but eventually the new formalism will allow
one to draw consequences that transcend the horizon of the original
formulation.

Ehlers: I wonder how you would answer to the following proposal. If
I have two formulations of a theory, I would be inclined to call them
physically equivalent if the empirically or observationally testable
predictions of both are the same. Isn’t that a reasonable proposal?
Renn: No. I think the proposal is unsatisfactory because it does not
provide a criterion for distinguishing between conceptually different
theories and differences in the stage of elaboration of one and the same
theory. For instance, initially special relativity and Lorentz’s electron
theory could be considered to be physically equivalent in the sense of
your definition, that is, they agreed on all empirical accounts known at
the time; but then special relativity would lead to consequences which are
inconceivable in the conceptual framework of Lorentz’s theory, such as
the idea to generalize the relativity principle. In other words, what may
have initially appeared as a mere reformulation eventually turned out to
have fundamentally new implications. But even when these new
consequences became visible, special relativity and Lorentz’s theory
could still be considered equivalent on the basis of your definition.
Ehlers: That I don’t understand, and you would have to show me.
Renn: Is what you doubt my claim that there is a version of Lorentz’s
electrodynamics which was empirically equivalent to special relativity?
I have to refer to the historical literature for evidence to this effect. In
order to proceed further let me just assume that I can in fact substantiate
my claim that such different formulations with the same empirical con-
tent may indeed exist. Their difference would then primarily consist in
the distinct conceptual implications to which the two formulations give
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rise.

Ehlers: Yes, I will say as soon as you can derive from the two different
formulations empirical consequences which follow in one formulation
and not in the other, then of course I would consider them different.
Renn: The crucial point is, however, the time index by which you must
label the different formulations. What begins as the physically equivalent
(in your sense of the term) reformulation of a theory at one point in time
may end up as a conceptual revolution later on. In fact, I would go so
far as to claim that conceptual revolutions in physics begin, as a rule,
with reformulations of preexisting theories. The principle of inertia was
found by reformulating a consequence of Aristotelian dynamics; classical
electrodynamics emerged from a theory that was originally formulated
in mechanical terms; Einstein reformulated Planck’s radiation law,
introducing the revolutionary concept of light quanta, and so on.

You may always claim, of course, that all later consequences were
already implicitly present in the original formulation. But this view
ignores the fact that the elaboration of a theory involves its application
to new problems, which may have consequences that cannot be predicted
by purely logical means at the outset of the development. In other
words, the development of a theory is always also the development of its
concepts and can hence not be sufficiently described by formal logic.
The notion of ‘implicit consequences’ only buries this problem.
Barbour: Surely Feynman was always making the point that for any
existing theory you should have as many different conceptual
formulations as is possible so that you can see different ways to
generalize the theory and find some new theory. However, I was
thinking of something more definite than that. You certainly can rewrite
Newtonian theory in purely relative terms. There’s no question of it.
The question is what time derivatives go into the equations of motion.
If you allow some third time derivatives in the rewriting of Newtonian
theory, you can recast Newtonian theory in purely relative terms. It’s
completely equivalent in its observational predictions to standard
Newtonian theory (see Poincaré’s comments, pp. 111-112), and that is
a mere redescription, and in fact I think that is what Lange did do, and
Mach praised him for it but said that’s still not what I want, I want
something different from that [pp. 217-218]. Now, in fact, those theo-
ries of Reissner [p. 134] and Schrddinger [p. 147], the ones that Bruno
Bertotti and I and several others, including Liebscher and Assis [p. 159],
rediscovered, definitely make new predictions. They have a perihelion
advance. That is a new theory, and it’s Machian, so it is possible to go
over to a theory which has new content. No question of it.
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Ciufolini: As regards Question 1, I think that when Mach was writing
about increasing the the mass of the walls of the bucket he was thinking
of something like the possibility of dragging of inertial frames or at least
dragging of a test particle due to the mass current, the angular
momentum, and therefore this was a new effect and therefore he was
looking for a new theory.

- Bondi: May I come in here with a quotation from Eddington, who in
discussing variational principles said in any such principle we divide
possible states into three: what actually happens, those that are near
enough to what happens so we compare it with them - that’s what the
variational principle is - and those so different that we don’t allow them
to enter. Now I think this is precisely the question about your inertial
mass. If you allow an almost empty universe, I rebel against the idea
that you put one particle there and that fixes all inertial frames and
everything has the same inertia. If on the other hand you only permit as
a comparison universes reasonably similar to our own, you may well
only have the cosmic derivation of the frames without a complete
derivation of the mass, and I think it is the universal comparison, if I
may use the term, that defines the answer to Question 2. If I come back
to a final point, it goes back to what we discussed earlier today. If there
are two bodies of unequal masses revolving about each other, then I
believe any advocate of cosmic derivation of inertial mass will think that
in a different universe the ratio of the radii of the orbits would be the
same. But the sizes of the orbits would be different.

Assis:  Let’s go to Question 3. It seems to me that this is a very
important issue, the nonexistence of time, but very few models or
theories have tried to implement that, and I would like you to make a
few more comments on that.

Barbour: Thank you. I do think that there is a Second Mach’s
Principle, which has to do with the fact that there is no external time and
that any ‘time’ we use has to be got from some motion that is in some
way observed. We have to get a measure of time from the motions that
are happening within the universe, and I think this is a very important
point. It’s half of Mach’s criticism of Newtonian mechanics.
Lynden-Bell: If there are comments on time like that, that it does not
exist, do we try and say the nonexistence of space in that spirit or not?
Barbour: That’s a very deep question. I would like to establish the
nonexistence of space, but I don’t yet see any way to do it. It’s very
hard to formulate a dynamical theory unless you’ve got some structure.
If you are going to formulate dynamical theory, your variables must
correspond to something, be it a Riemannian three-geometry or particles
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in Euclidean space or something. It is much easier to do without time
(see my contribution in this volume, p. 214). After all, for two millenia
the astronomers used the rotation of the earth to tell the time, but still
made models of the bodies of the solar system in space.

Lynden-Bell: Yes, but there’s something very nonrelativistic about your
separating out time, and that’s what I was trying to get at.

Kuchar: I would rather say it’s a technically ill-defined question,
because for any system with an external time, you can adjoin that time
to the rest of the dynamical variables and formulate everything internally
on an extended configuration space, which is truly a configuration
spacetime. The Second Mach’s Principle is then implemented on that
space, and the change of everything, including the formal time variable,
is driven by a super-Hamiltonian constraint. I would say that your
question has two ingredients. There is the philosophical ingredient -
What variables qualify for time? - and there is a technical ingredient -
Does the theory satisfy the Second Mach’s Principle? The answer to the
technical question, I think, is pretty clear: Whatever system you have,
you can always cast it into the mold in which it satisfies the Second
Mach’s Principle.

Barbour: Now as Karel well knows, we have been arguing about this
for fifteen years [laughter]. An external time is a totally heterogeneous
element. The time you put in parametrized particle dynamics, the model
Karel has in mind, is simply not there. You can’t see it. As Mittelstaedt
says, die Zeit ist nicht wahrnehmbar. When astronomers look through
telescopes, they actually see the separations of bodies. They don’t see
time, so I think it’s quite wrong just to adjoin formally something which
you call time and claim you have a Machian theory of time. In the real
world, there are just relative positions of bodies, and that is something
quite different from a heterogeneous and invisible time, so I take that as
a challenge to construct a theory that uses only things we truly see.
Kuchar: It’s the same question as that of when a theory is generally
covariant. As Kretschmann (1917) pointed out, if you take more
variables and toss them into the theory, you can always make it generally
covariant. You can argue from simplicity that those elements which
were tossed in are in some sense heterogeneous, but simplicity is a tacky
subject. '

Barbour: I would say you put your finger precisely on the criterion:
You are not allowed to throw in these heterogeneous elements. The
kinematic framework must contain only the relative distances, if we are
talking about a Newtonian-type theory. I quite agree that one must
distinguish the philosophical question - perhaps one might call it the
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ontology — from the purely technical requirement of reparametrization
invariance. For me the ontology is decisive, and I am not sure it is such
a tacky issue.

Nojarov: I think it is very complicated about time, but time is ultimately
related with motion, velocity, and you are right when you say that the
astronomers see only positions. You don’t have any time, but if you
record change in positions, which we see, and they are different, you
have to introduce time in order to describe a process.

Barbour: In my paper [p. 214], I try to explain how everything can be
done with different configurations.

Norton: Before things get out of hand, I just want to mention one thing
- what Mach said about inertia is I think ambiguous, but having recently
reread what Mach said about time I don’t think it’s ambiguous. For that
reason, lest we perpetuate another myth, I'd urge that in Question 3 we
strike out the words Second Mach’s Principle and write in Barbour’s
Principle [laughter].

Ehlers: Maybe it would help if the word ‘time’ there would be
specified. I understand you are saying that the time metric should not be
imposed a priori as a fundamental structure but should come out of the
theory. The time metric and metric statements about time should be
derived within the theory and not put in a priori, but wouldn’t you also
agree that you need an ordering of configurations in order to start talking
at all about changes?

Barbour: Certainly at the classical level. I am not trying to do away
with the idea that there is a sequence of configurations.

Ehlers: The time order has to be used as a primitive concept in order
to start talking meaningfully.

Barbour: At the level of the classical theory. But in the quantum
domain that goes, and there is nothing at all, so you must do something
drastic, I believe, to recover notions of time in the quantum theory [p.
501].

Isenberg: I think it’s interesting in this context to think about certain
spacetimes that are flat and yet are spatially compact and even have an
intrinsic notion of time based on the mean curvature. These are the ones
that are compactified using some funny topology, and yet at each point
of spacetime there’s a unique constant mean-curvature surface which
goes through it. There’s nothing moving in it, in a sense, and yet you
do have this nice notion of time. These are just certain models, but they
are certainly solutions of Einstein’s equations.

Barbour: Is that all that different from the astronomers using the
rotation of the earth as a clock? If you’ve got configurations, you can
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always take one coordinate to label the time if not put a metric on it.
The question then is whether that’s a sensible time. For example, if you
took the mean extrinsic curvature as time seriously, you would have a
nonconservative dynamics.

Zeh: Julian, I was surprised to hear you agree with Ehlers, because you
once introduced the analogy with a deck of cards that can be shuffled, so
even their ordering is merely a consequence of their intrinsic structure.
Why did you now agree that this ordering has to be there from the
beginning?

Barbour: As long as the universe has got a lot of particles in it and is
in a generic area of its configuration space, then just the successive
configurations of the particles, if you took snapshots of them, would be
sufficient for you to order them in a curve. I agreed with Jiirgen
[Ehlers] in that T conceive of classical physics as an extremal history in
the configuration space, that it’s a one-dimensional sequence of
configurations. That is classical physics. To that extent one thing does
follow another (though, in fact, one direction of change is as good as the
opposite one). Certainly, if you give all the snapshots in a jumbled
heap, I could, just by examination, establish that they did form a one-
dimensional sequence and put them in the correct order as long as there
are no nongeneric configurations.

Zeh: There is no absolute order!

Barbour: The order is in the configurations. Everything is in the
configurations. It’s not absolute in that sense.

Kuchar: I just want to make the point that when we discussed Question
3 we did it within the model theories which were Newtonian. There was
only one foliation on which evolution took place. It’s pretty clear to
everyone who ever studied the Hamiltonian formulation of general
relativity that there is no such privileged foliation, that one should work
with the many-fingered time concept, that there is no single ordering
which one can put in, or, as Wheeler put it, spacetime is a sheaf of
geodesics in superspace. Moreover, if we ask Question 3 about time, we
should also ask it about space. In general relativity, space and time
come in a single package.
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Results of Straw Polls

The four following questions were put to the participants at the end of
the general discussion session on the first day of the conference
(Entrance Poll) and repeated at the end of the conference (Exit Poll). It
should be noted that a few participants of the Exit Poll did not participate
in the Entrance Poll and also that several participants had to leave before

the Exit Poll.
Question Answer Entrance Exit
Poll Poll

1) Was Mach advocating a mere MRD 12 10
redescription (MRD) of Newtonian
Mechanics without any change of
physical content or was he advocating GNT 26 16
a genuinely new theory (GNT)?
2) Is general relativity perfectly Yes 2 3
Machian?

No 30 21
3) Is general relativity with appropriate | Yes 14 9
boundary conditions of closure of some
kind perfectly Machian? No 18 14
4) Is general relativity with appropriate | Yes 19 14
boundary conditions of closure of some
kind very Machian? No 18 7




2. Nonrelativistic Machian
Theories

Introduction

The passages from Mach with which this chapter opens have been chosen
so that the reader can judge the extent to which the later papers in the
chapter truly implement Mach’s ideas in the context of the nonrelativistic
physics in which they were formulated. For further quotations from
Mach look under Mach in the separate Quotations Index (p. 636).
Discussions of precisely what Mach had in mind are given by Norton (p.
9), von Borzeszkowski and Wahsner (p. 58), and Barbour (p. 214). The
passages from Poincaré (p. 111) are important because of their precision
and the attention they draw to the initial-value problem in dynamics.
Mach’s writings imply in very qualitative terms that only relative
distances should be used in the formulation of mechanics, but as Poincaré
makes clear Newtonian mechanics can be written in purely relative terms
if one allows time derivatives of the relative separations of higher than
the second order in the equations of motion. As Poincaré notes, “for the
mind to be fully satisfied,” this should not be the case, and he says one
should require that the future be uniquely determined by what may be
called [though Poincaré does not even mention Mach] Machian initial
data: the masses of the particles, their separations, and the rates of
change of those separations. This requirement then provides a precise
criterion of Machianity (p. 92 and p. 218ff). All the nonrelativistic
theories presented in this chapter meet this requirement, which is
implemented by the construction of a Lagrange function which depends
on the quantities listed by Poincaré and nothing else.

Before the Tiibingen conference, virtually no one knew that Machian
models had been proposed several times in the early part of this century.
The simple and decisive step, first taken by Hofmann (p. 128) and
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Reissner (p. 134) and independently rediscovered many times since then
(as recounted by Assis, p. 159), is to replace the Newtonian kinetic
energy, which is a sum over individual masses, by a sum over products
of pairs of masses multiplied by the square of the relative velocity of the
corresponding pair and some function of the separation. However, all
the Machian kinetic energies of this type proposed in the early models
lead to an anisotropic inertial mass. In 1925, Schrédinger came within
a hair’s breadth of being able to rule out such models on observational
grounds (see p. 157).

When such models were rediscovered 50 years later, the problem of
mass anisotropy could not be ducked, and this led to the formulation of
an alternative scheme based on the notion of the intrinsic derivative
(p. 223ff). In the original form of this model, the kinetic energy is a
sum over individual masses, as in Newtonian theory, but with a
‘Machian correction’ that depends on all the masses in the universe. For
this reason, mass anisotropy is avoided. Very interestingly, as Lynden-
Bell shows (p. 172), it turns out that this model can, when the Machian
correction is calculated and substituted back in the Lagrange function, be
cast in the same basic form as the Hofmann-Reissner-Schrodinger
models with kinetic energy in the form of a sum over products of
masses. Thus, in all the models inertia arises as a kind of interaction (cf.
Einstein, p. 180) and “accelerated [under gravitational forces] and
inertial motions result in the same way,” as Mach anticipated (p. 110).

Because the Lagrange function of general relativity can be cast in a
form using a generalized intrinsic derivative (p. 223ff), the present writer
believes general relativity is perfectly Machian. That, however, is the
subject matter of the next chapter and, no doubt, considerable
controversy. But as regards nonrelativistic theories, the situation seems
to be clear beyond dispute: Mach’s qualitative idea was cast into a
precise form by Poincaré in 1902 and has been implemented in the
framework of a certain class of theories many times since then; at least
one theory of this class does not lead to mass anisotropy and is locally
indistinguishable from Newtonian theory. Only historical accident and
the overwhelming influence of Einstein obscured these facts for so long.

J.B.B.



Selected Passages: Mach, Poincaré,
Boltzmann

Ernst Mach

But if we think of the earth at rest and the other celestial bodies
revolving around it, there is no flattening of the earth, no Foucault’s
experiment, and so on - at least according to our usual conception of the
law of inertia. Now, one can solve the difficulty in two ways; either all
motion is absolute, or our law of inertia is wrongly expressed. Neumann
preferred the first supposition, I, the second. The law of inertia must be
so conceived that exactly the same thing results from the second
supposition as from the first. By this it will be evident that, in its
expression, regard must be paid to the masses of the universe.... Now
what share has every mass in the determination of direction and velocity
in the law of inertia? No definite answer can be given to this by our
experiences. We only know that the share of the nearest masses vanishes
in comparison with that of the farthest. We would, then, be able
completely to make out the facts known to us if, for example, we were
to make the simple supposition that all bodies act in the way of
determination proportionately to their masses and independently of the
distance, or proportionately to the distance and so on (Mach 1872).

The universe is not twice given, with an earth at rest and an earth in
motion; but only once, with its relative motions, alone determinable....
The principles of mechanics can, presumably [see p. 48, Note 8], be so
conceived, that even for relative rotations centrifugal forces arise.
Newton’s experiment with the rotating vessel of water simply
informs us, that the relative rotation of the water with respect to the sides
of the vessel produces no noticeable centrifugal forces, but that such
forces are produced by its relative rotation with respect to the mass of
the earth and other celestial bodies. No one is competent to say how the
experiment would turn out if the sides of the vessel increased in thickness
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and mass till they were ultimately several leagues thick....

When, accordingly, we say, that a body preserves unchanged its
direction and velocity in space, our assertion is nothing more or less than
an abbreviated reference to the entire universe....

Instead, now, of referring a moving body to space, that is to say to
a system of coordinates, let us view directly its relation to the bodies of
the universe, by which alone such a system of coordinates can be
determined. Bodies very remote from each other, moving with constant
direction and velocity with respect to other distant fixed bodies, change
their mutual distances proportionately to the time. We may also say, all
very remote bodies - all mutual or other forces neglected - alter their
mutual distances proportionately to those distances. Two bodies, which,
situated at a short distance from one another, move with constant
direction and velocity with respect to other fixed bodies, exhibit more
complicated relations. If we should regard the two bodies as dependent
on one another, and call r the distance, ¢ the time, and a a constant
dependent on the directions and velocities, the formula would be
obtained: d’r/dt*=(1/r) [@®— (dr/dt)*]. 1t is manifestly much simpler and
clearer to regard the two bodies as independent of each other and to
consider the constancy of their direction and velocity with respect to
other bodies.

Instead of saying, the direction and velocity of a mass p in space
remain constant, we may also employ the expression, the mean
acceleration of the mass p with respect to the masses m, m’, m”.... at the
distances r, r’, r".... is =0, or d*Emr/tm)/dt*=0. The latter
expression is equivalent to the former, as soon as we take into
consideration a sufficient number of sufficiently distant and sufficiently
large masses. The mutual influence of more proximate small masses,
which are apparently not concerned about each other, is eliminated of
itself (Mach (1883).

The natural investigator must feel the need of further insight - of
knowledge of the immediate connections, say, of the masses of the
universe. There will hover before him as an ideal an insight into the
principles of the whole matter, from which accelerated and inertial
motions result in the same way. The progress from Kepler’s discovery
to Newton’s law of gravitation, and the impetus given by this to the
finding of a physical understanding of the attraction in the manner in
which electrical actions at a distance have been treated, may here serve
as a model. We must even give rein to the thought that the masses
which we see, and by which we by chance orientate ourselves, are
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perhaps not those which are really decisive. On this account we must
not underestimate even experimental ideas like those of Friedldnder and
Foppl, even if we do not yet see any immediate result from them (Mach
1912).

Henri Poincaré

Consider any material system whatever. We have to consider on the one
hand the ‘state’ of the various bodies of this system - for example, their
temperature, their electrical potential, etc.; and on the other hand their
position in space. And among the data which enable us to define this
position we distinguish the mutual distances of these bodies that define
their relative positions, and the conditions which define the absolute
position of the system and its absolute orientation in space. The law of
the phenomena which will be produced in this system will depend on the
state of these bodies, and on their mutual distances; but because of the
relativity and the inertia of space, they will not depend on the absolute
position and orientation of the system. In other words, the state of the
bodies and their mutual distances at any moment will solely depend on
the state of the same bodies and on their mutual distances at the initial
moment, but will in no way depend on the absolute initial orientation.
This is what we shall call, for the sake of abbreviation, the law of
relativity....

To apply the law of relativity in all its rigour, it must be applied to
the entire universe; for if we were to consider only a part of the uni-
verse, and if the absolute position of this part were to vary, the distances
of the other bodies of the universe would equally vary; their influence on
the part of the universe considered might therefore increase or diminish,
and this might modify the laws of the phenomena which take place in it.
But if our system is the entire universe, experiment is powerless to give
us any opinion on its position and its absolute orientation in space....

I have spoken above of the data which define the position of the
different bodies of the system. I might also have spoken of those which
define their velocities. I should then have to distinguish the velocity with
which the mutual distances of the different bodies are changing, and on
the other hand the velocities of translation and rotation of the system;
that is to say, the velocities with which its absolute position and
orientation are changing. For the mind to be fully satisfied, the law of
relativity would have to be enunciated as follows: The state of bodies and
their mutual distances at any given moment, as well as the velocities with
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which those distances are changing at that moment, will depend only on
the state of those bodies, on their mutual distances at the initial moment,
and on the velocities with which those distances were changing at the
initial moment. But they will not depend on the absolute initial position
of the system nor on its absolute orientation, nor on the velocities with
which that absolute position and orientation were changing at the initial
moment. Unfortunately, the law thus enunciated does not agree with
experiments....

We have seen that the co-ordinates of bodies are determined by
differential equations of the second order, and that so are the differences
of these co-ordinates. This is what we have called the generalised
principle of inertia, and the principle of relative motion. If the distances
of these bodies were determined in the same way by equations of the
second order, it seems that the mind would be entirely satisfied. How
far does the mind receive this satisfaction, and why is it not content with
it? To explain this we had better take a simpler example. I assume a
system analogous to our solar system, but in which fixed stars foreign to
this system cannot be perceived, so that astronomers can only observe
the mutual distances of the planets and the sun, and not the absolute
longitudes of the planets. If we deduce directly from Newton’s law the
differential equations which define the variation of these distances, these
equations will not be of the second order. I mean that if, outside
Newton’s law, we know the initial values of these distances and of their
derivatives with respect to time - that would not be sufficient to
determine the values of these same distances at an ulterior moment. A
datum would still be lacking, and this datum might be, for example, what
astronomers call the area-constant. ...

Our universe is more extended than theirs, since we have fixed stars;
but it, too, is very limited, so we might reason on the whole of our
universe just as these astronomers do on their solar system. We thus see
that we should be definitively led to conclude that the equations which
define distances are of an order higher than the second.... The values of
the distances at any given moment depend upon their initial values, on
that of their first derivatives, and something else. What is that something
else? If we do not want it to be merely one of the second derivatives,
we have only the choice of hypotheses. Suppose as is usually done, that
this something else is the absolute orientation of the universe, or the
rapidity with which this orientation varies; this may be, it certainly is,
the most convenient solution for the geometer. But it is not the most
satisfactory for the philosopher, because this orientation does not exist
(Poincaré 1905).
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Ludwig Boltzmann

Quite independently of this there is the question whether the mechanical
equations here developed and therefore also the law of inertia might
perhaps be only approximately correct and whether, by formulating them
more correctly, the improbability or rather inhomogeneity of having to
adopt into the picture a co-ordinate system as well as material points
would disappear of itself.

Here Mach pointed to the possibility of a more correct picture,
obtained by assuming that only the acceleration of the change of distance
between any two material particles is determined mainly by the
neighbouring masses, its velocity being determined by a formula in
which very distant masses are decisive. This naturally avoids the
adopting of any co-ordinate system into the picture, since now it is only
a question of distances. Of course, Mach does not avoid introducing
other difficulties, for example that the world is finite, a kind of action at
a distance for the greatest distances and so on....

In all these considerations we started from the presupposition that the
world is finite. If one conceives the world as infinite, concepts such as
the world’s centre of gravity, invariable axis, principal inertial axes and
so on become quite empty. One would then have to assume that the law
of inertia is determined by a formula according to which masses that are
nearby have vanishing influence on the formulation of the law of inertia,
that those at distances like Sirius have the greatest such influence and
those at much greater distance still again next to none (Boltzmann 1904).
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Benedict Friedlaender

No one has yet carried out and tested that recasting [of the Newtonian
law of inertia]. The law of inertia in the usual manner of representation
can be transparently described by saying that every body opposes any
change of its velocity (conceived as absolute) with a resistance
proportional to its mass in the corresponding direction. Here, the
remaining bodies of the universe are completely ignored; in fact, a point
that must be especially emphasized is that the concept of mass is, except
for its derivation from gravity (mg), derived precisely from the facts of
inertia. Every change in velocity, i.e., every acceleration, for example,
in the simplest case the imparting of motion to a body previously at rest
until it reaches a certain velocity, is held to be opposed by a resistance,
the overcoming of which requires the quantity of energy that is
afterwards present in the corresponding body, namely that contained in
the considered motion as ‘kinetic energy.” It is here to be noted once
more that translational motion of a single body in space otherwise
regarded as empty is a nonsense, namely, it does not differ from its
opposite, rest. Thus, the creation of such a chimera should not require
any energy; therefore if in contrast the actual world does agree with our
prerequisites of thought, the relevant question should be that of the other
bodies with respect to which motion is to be created, in a word, it is that
of what relative motion of previously nonmoving bodies is to be created.
Accordingly, inertia is to be grasped relatively; one could formulate the
law of relative inertia as follows: All masses strive to maintain their
mutual state of motion with respect to speed and direction; every change
requires positive or negative energy expenditure, that is, work is either
required - in the case of an increase in velocity - or is given up - in the
case of a decrease in velocity. The resistance to changes in velocity
would then, as soon as we regard all motions as relative, be expressed
not only in the one body that, as we are accustomed to say, we ‘set in
motion’ (that is, set in motion relative to the earth) but also in all the
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others that we regard as being at rest in accordance with the usual
conception....

The application of the thought indicated here is very simple but
unusual to a high degree. For if we consider the resistance to accel-
eration that some body exhibits, we do not have the slightest thought of
other masses that are nearby! But if we do so and hold firmly to the
guiding thought that the masses strive to maintain their relative velocity,
it turns out that (for motion on a straight line of body A relative to body
B as the simplest case)

accelerated approach and decelerated withdrawal
must have a repulsive effect, and
accelerated withdrawal and decelerated approach

must have an attractive effect....
Let us now apply these considerations to our flywheel and the torsion
balance placed before it [see Immanual Friedlaender’s account, p. 309].
Let the circle AFCBDF’A [Fig. 1] represent the rim of the flywheel
and P a readily movable body or mass point within the rim of the
flywheel, as close as possible to its plane, namely a part of the mass of

Fig. 1 Fig. 2
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the arm of the torsion balance. For simplicity, let us assume that the
point P actually lies within the plane of the flywheel.... Let us now join
the point P to the middle point M of the flywheel, extend this line until
it meets the rim at A on the left, at B on the right and also erect the
perpendicular on AB at P, cutting the rim above at C, below at D; then
it is clear that every mass point of the rim on its way from A4 over C to
B approaches the point P and then on the way from B over D to A
recedes from it. However, the approach on the semicircle AB is
accelerated up to C and then decelerated to B; similarly, the withdrawal
on the semicircle BA is accelerated to D and decelerated from D to A.
In view of the simplicity of the situation we can dispense with the
analytic proof. But since in accordance with what we have said
accelerated approach and decelerated withdrawal act in the same sense,
namely both repulsively, while decelerated approach and accelerated
withdrawal both act attractively, we see that we can divide the rim into
two parts that differ in their effect, namely, the part left of CD, which
repels, and the part right of CD, which attracts the point P....
Therefore, on the basis of the conception of the relativity of inertia an
acceleration away from the axis is imparted to the point P, as our
conception of the invertibility of centrifugal force requires. The relative
rotation between the wall of Newton’s bucket and the water contained in
it would indeed generate appreciable centrifugal forces if the wall
contained mass in sufficient amount to be no longer practically non-
existent compared with the mass of the earth.D...

If the ideas sketched here are correct, many consequences will
follow, some of which will admittedly seem very strange. The same
amount of gunpowder, acting on the same cannon ball in the same
cannon, would impart to the projectile a greater velocity on, for
example, the moon than on the earth; naturally, however, the greater
velocity would not represent a greater but the same amount of energy as
the smaller velocity that the projectile receives on our more massive
planet. This would reveal itself in the fact that, despite the greater
velocity, the penetration capacity would not be greater than on the earth.
For the (1/2)mv* as measure of the so-called kinetic energy would not be
the complete expression, lacking allowance for the environment in
accordance with mass and distance, namely, the specification of the
masses for which the velocity ‘v’ holds....

DWe originally said ‘universe’ but now the ‘earth.’ It is to be assumed that the
earth will probably play a much larger role than the more distance masses of the
universe.
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The phenomena of the tides would also have to have a treatment
different from the usual one; namely, in our figure we merely need to
take our point P outside the circle [Fig. 2] and draw tangents from it to
C and D; the circle then represents the earth, the point P the moon or the
sun, and PC and PD the axial section of a cone tangent to the earth from
the moon, treated as a point. One will then see that the earth will be
divided by the approximately circular plane CD, which appears in the
figure as a line, into two parts that, on account of the distance, are very
nearly equal; of these, the half below CD, i.e., the part turned toward
the moon, will be attracted, while the part above CD, away from the
moon, must be repelled; the mobile water follows these attractive and
repulsive forces and excites both the tidal waves that in the time between
two culminations of the moon circle the earth....

To indicate the extent to which the problem of motion that we have
raised and hypothetically solved is related to that of the nature of
gravitation but also at the same time shows some similarity with the
known manner in which electrical forces act, let us mention the following
parallels: A body that approaches or recedes from a second body would
have no influence on it as long as the velocity of approach, which is to
be taken as positive or negative, remains unchanged; in contrast, any
change of the velocity would have the effect previously shown.

It is well known that the presence of a current in a conductor is not
sufficient to generate an induction effect - there must be a change of
either the current strength or the distance; in our case the change of
distance by itself would not be sufficient to generate the attractive or
repulsive effects, i.e., motion itself is not sufficient, the velocity must
change....

On the basis of our conception it is naturally also necessary to
modify the interpretation of the astronomical facts.... In accordance with
the conception of the relativity of all motions, including therefore central
motions, a revolution of the earth can be completely replaced by an axial
rotation of the sun insofar as only these two bodies come into con-
sideration. The circumstance that the earth, despite the ‘attraction,” does
not plunge into the sun, or the moon into the earth, is of course
explained on the basis of the usual conception by the motion of
revolution of the smaller celestial body, while, for example, the axial
rotation of the sun with respect to the universe plays no role at all. If
our conception is correct, the so-called axial rotations are not irrelevant
for the equilibrium of the world systems but must be equally taken into
account like all other factors. Incidentally, the assumption of an
attraction of the earth by the sun is not a felicitous interpretation of the
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factual situation insofar as the so-called attractive forces can only be
adduced from reduction of distance; naturally, this is not to say that the
sun would not attract the earth if the relative motions of the two bodies
were other than they actually are. However, as the facts stand, actual
reduction of distance does not occur; in accordance with everything we
know, it would indeed occur in the case of relative rest of the bodies and
bring about the fall of the earth into the sun. The attraction is
compensated by the existing relative motions, and this would correspond
to the usual conception if it would take into account the relative motions
instead of operating with the phantom of absolute rotation and inertia
treated correspondingly as absolute.

It is also readily seen that in accordance with our conception the
motions of the bodies of the solar system can be regarded as pure inertial
motions, whereas in accordance with the usual conception the inertial
motion, or rather its gravitationally continually modified tendency,
strives to produce a rectilinear tangential motion....

Berlin, January 1896.

NOTES

(T ranslated by Julian B. Barbour from: Friedlaender, Benedict and
Friedlaender, Immanuel (1896). Absolute oder Relative Bewegung? Teil 1I:
Ueber das Problem der Bewegung und die Umkehrbarkeit der Centrifugal-
erscheinungen auf Grund der relativen Trigheit. Berlin: Leonhard Simion, pp.
24-33. Mach refers briefly to the Friedlaenders’ booklet in the editions of his
Mechanik from 1897. See the Notes on p. 311.

COMMENTARY

As my coeditor comments (p. 315), the Friedlaenders’ booklet is the first really
interesting contribution to the problems of inertia and frame dragging after
Mach’s initial comments. The above extracts from the part by Benedict should
be read in conjunction with the description of the conceptually very beautiful
experiment described by Immanuel in his attempt to measure a putative Machian
centrifugal force generated near the axis of a rapidly rotating flywheel (p. 309).

Besides the actual experiment, the booklet is noteworthy for two further
reasons:

1) The brothers get rather closer to Mach in the actual formulation of a law
of relative inertia. In fact, on the basis of simple heuristic arguments very
similar to ones used repeatedly by Einstein himself, Benedict is able to show
how centrifugal forces will arise in the context of a theory of relative inertia
near the axis of a rapidly rotating flywheel. This seems to me to be work of
high quality and a genuine technical advance, even if Benedict somewhat spoils
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the achievement by his clearly unrealistic belief (footnote, p. 116) that the earth
is much more important for the determination of terrestrial inertia than the
distant masses of the universe. In fact, his simple intuitive arguments bear a
remarkable similarity to those used by Kepler {see p. 6] in the Astronomia Nova
(1609) to justify the use of physical forces (rather than invisible space) to
explain why the planets follow such precise orbits. Even the illustrations are
similar. Both investigators were groping for observable determinants of motion
to replace invisible mathematical frameworks (crystal spheres and absolute
space, respectively). It is also worth noting the similarity between Benedict’s
qualitative formulation of the law of relative inertia (p. 114) and the one given
eight years later by Hofmann (p. 128). Like Hofmann, and unlike Mach, who
despised the notions of analytical mechanics (p. 217), Benedict is looking for a
‘Machian kinetic energy.” All he lacked was the final decisive step in which
that energy is represented explicitly as a two-body interaction dependent solely
on relative quantities (p. 108). Lastly, it is worth noting that in his somewhat
bizarre attempt to explain the tides Benedict gets very close to discovering the
internal-motion mechanism of generation of a gravity-type force that Reissner
found in 1915 (p. 142, Note). Had Benedict included a 1/r distance dependence
of his force of relative inertia and considered the effect of the rotating earth on
the moon, he would have been able to predict the existence of a weak attractive
force with strength proportional to the product of the masses of the two bodies,
just as in the case of gravity. See also my comment below.

2) Unlike Mach, the Friedlaenders quite clearly anticipate Einstein in
asserting that there is an intimate relationship between inertia and gravity (in
1904, Foppl actually explicitly denied any such connection, see p. 124); very
significantly, they also draw attention to an analogy between their concept of
relative inertia and inductive effects in electromagnetism, the possibility of
which Einstein noted in 1912 (p. 180). In this connection, it is a pity that they
were not just a little bit more explicit about gravitation; both brothers make
some tantalizing suggestions. In the final passage translated here Benedict seems
almost to anticipate Einstein’s geodesic unification of gravity and inertia (cf. pp.
317-317), though he has not made any explicit claim that Newtonian gravity
receives a new explanation in terms of a theory of relative inertia. One would
also like to understand the significance of Immanuel’s use of the expression
“relative rotations” in his comments on gravity (p. 309). Did the brothers
somehow have some intuition for the Reissner mechanism mentioned above, or
were they, again like Einstein, interpreting gravitation in a generalized sense in
which inductive forces are added to Newtonian gravity? The second possibility
seems more likely.

J.B.B.
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August Foppl

The most acute observations on the physical significance of the law of
inertia and the related concept of absolute motion are due to Mach.
According to him, in mechanics, just as in geometry, the assumption of
an absolute space and, with it, an absolute motion in the strict sense is
not permitted. Every motion is only comprehensible as a relative
motion, and what one normally calls absolute motion is only motion
relative to a reference system, a so-called inertial system, which is
required by the law of inertia and has its orientation determined in
accordance with some law by the masses of the universe (Weltsystem).

Most authors are today in essential agreement with this point of
view, as expressed most recently by Voss! and Poincaré® in particular.
A different standpoint is adopted by Boltzmann,? who does not believe
he can simply completely deny an absolute space and, with it, an
absolute motion. Here, however, I shall proceed from Mach’s view and
attempt to add some further considerations to it.

Mach summarizes his considerations in the following sentence®:
“The natural standpoint for the natural scientist is still that of regarding
the law of inertia provisionally as an adequate approximation, relating it
in the spatial part to the heaven of fixed stars and in the time part to the
rotation of the earth, and to await a correction or refinement of our
knowledge from extended experience.” Now it seems to me not entirely
impossible that just such an extended experience could now be at hand.
In a recent publication of K. R. Koch® on the variation in time of the

DA. Voss, Die Prinzipien der rationellen Mechanik. Enzyklop. d. math.
Wissensch., Band 1V, 1, p. 39 (1901).

DH. Poincaré, Wissenschaft und Hypothese. Deutsch von F. und L.
Lindemann, Leipzig (1904).

3L. Boltzmann, Prinzipe der Mechanik, II, p. 330, Leipzig (1904).

“E. Mach, Mechanik, 4. Aufl. p. 252, Leipzig (1901).

K. R. Koch, Drudes Annalen der Physik, Band 15, p. 146 (1904).

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 120-127 © 1995 Birkhduser Boston, Inc. Printed in the United States.



On Absolute and Relative Motion 121

strength of gravity we read: “Accordingly, the assumption of a genuine
variation of gravity, or, more precisely, its difference between Stuttgart
and Karlsruhe, seems to me appropriate.” We shall naturally have to
wait and see if this assertion stands up to further testing; at the least, we
must now reckon with the real possibility that it is correct.

An explanation of such a phenomenon, if it is correct, would be very
difficult on the basis of known causes. This circumstance encourages me
to come forward now with a consideration that I have already developed
earlier and long ago led me to the assumption that small periodic
variations of gravity of measurable magnitude should be considered as
a possibility.

Experience teaches us first that the inertial system required by the
law of inertia can be taken to coincide with the heaven of the fixed stars
to an accuracy adequate for practical purposes. It is also possible to
choose a reference system differently, for example, fixed relative to the
earth, in order to describe the phenomena of motion. However, it is
then necessary to apply to every material point the Coriolis additional
forces of relative motion if one is to predict the motions correctly. One
can therefore say that the inertial system is distinguished from any other
reference system by the fact that in it one can dispense with the adoption
of the additional forces. Rectilinear uniform translation of the chosen
reference system can be left out of consideration here as unimportant.

However, it is obvious that the fixing of the inertial system relative
to the heaven of the fixed stars cannot be regarded as fortuitous. Rather,
one must ascribe it to the influence, expressed in some manner, of the
masses out of which it is composed. We can therefore pose the question
of the law in accordance with which the orientation of the inertial system
is determined when the instantaneous form and relative motion of the
complete system of masses, i.e., the values of the individual masses,
their separations, and the differential quotients of these separations with
respect to the time, are regarded as given.

The logical need for such a formulation of the problem if one wishes
to avoid the assumption of an absolute space was also felt by Boltzmann
when he referred in passing to the possibility® that the three principal
axes of inertia of the complete universe could provide the required
orientation. If this rather natural idea could be maintained, the
conceptual difficulties would indeed be overcome. However, I believe
that the proposal is not admissible. Let us imagine, for example, a
universe that is otherwise arranged like ours but with the only difference

loc.cit., p. 333.
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that there are no forces at all between the individual bodies in the
universe. Then for the inertial system valid for this universe, all the
bodies in it would move along straight lines. However, a calculation that
is readily made shows us that under this assumption the principal axes of
inertia of the complete system would in general execute rotations relative
to the inertial system. It is therefore necessary to look for a different
condition that can enable us to understand the fixing of the inertial
system.

If first we assume that all the bodies of the universe are at rest
relative to each other except for a single mass point that I suppose is
used to test the law of inertia, and which I will call the ‘test point,” then
in accordance with the experiences we already have one could not doubt
that the test point would, when no forces act on it, describe a straight
path relative to a reference system rigidly fixed to the masses. In this
case, the inertial system would be immediately fixed in space.

We can now imagine the case in which the bodies of the universe
consist of two groups, one of which is ‘overwhelmingly’ large compared
with a smaller group and in which the masses within each group do not
change their relative separations, whereas the smaller group, regarded in
its totality, does carry out at the considered time a motion, say a
rotation, relative to the larger group. If only one of the two groups were
present, the inertial system would be fixed relative to it. Since the two
work together, and one of the groups has been assumed to be much more
‘powerful’ than the other, the inertial system will now be indeed very
nearly at rest relative to the first group, but it will still execute a small
motion relative to that group, which, of course, will be the consequence
of the influence of the second, smaller group.

Given such a situation, what would be the most expedient way to
proceed? 1 believe that one cannot be in doubt. One would fix the
reference system exclusively using the first, overwhelming group and
calculate as if this were the inertial system but take into account the
influence of the second group by applying in this case to every test point
the very weak additional forces of the relative motion that the chosen
reference system executes relative to the true inertial system. If one
makes such a decision, then these Coriolis forces no longer appear as
mere computational quantities that arise from a coordinate transformation
but as physically existing forces that are exerted by the masses of the
smaller group on every test point and arise because these masses have a
motion relative to the chosen reference system.

To develop this idea further, one could start by investigating the case
in which the second, smaller group that I just mentioned is represented
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by a single body. One then has the task of determining the magnitude
and direction of the force, which will depend on the velocities of the
single body and the test point relative to the reference system determined
by the remaining bodies of the universe and on the separation between
the single body and the test point. If we suppose that this problem has
been solved for a single body, then, using the superposition law, we can
also obtain the influence of a whole group of moving bodies.

The securely established observational results that are currently
available are certainly not adequate to solve this fundamental problem;
however, one does not therefore need to doubt that on the basis of
further observations we could arrive at a solution.

After these preliminary considerations, I now turn to the case that
corresponds to reality. Using the circumstance that the constellation of
the fixed stars changes little in the course of several years or centuries,
we can suppose that a reference system that more or less coincides with
the inertial system is fixed relative to three suitably chosen stars.
However, in order to take into account the small deviations that still
remain, one must suppose that to each test point there are applied
Coriolis forces, which, as we have just described, are to be interpreted
as forces that depend on the velocities of the individual bodies in the
universe and the velocity of the test point.

We are now in the position — and on this I put considerable value -
to specify a condition meeting our requirement for causality that must be
satisfied by the true inertial system required by the law of inertia.
Namely, the true inertial system is the reference system for which all the
velocity-dependent forces that arise from the individual bodies of the
universe are in balance at the test point. Even if in practice it is clear
that we have not gained very much through this statement, it does appear
to me that we have thereby obtained a very suitable basis for forming a
clear concept of what is known as absolute motion in the framework of
mechanics. There is at the least a prospect opened up of a way of
determining the inertial system once the law that establishes the velocity-
dependent forces has been found. In other words, it will be possible to
construct the absolute space that appears in the law of inertia without
having to sacrifice the notion that ultimately all motions are merely
relative.

In fact, in all these considerations my main aim is to make it at least
plausible that if one is to find a satisfactory solution to the questions that
relate to the law of inertia it will be necessary to assume the existence of
forces between the bodies in the universe that depend on their velocities
relative to the inertial system. If this is accepted, then there follows the
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task of looking for possible phenomena whose relationship to the
expected general law of nature could be such that the law governing the
velocity-dependent forces could be deduced. These forces, which for
brevity I shall in what follows simply call ‘velocity forces,” have nothing
to do with gravitational forces, which arise concurrently with them, and
specifically they can - and probably will - follow a quite different law
as regards the distance dependence compared with the gravitational
forces.

At this point I should like to make a remark in order to divide this
communication into two quite separate sections. I believe that I can
defend with complete definiteness and confidence what I have said up to
now. However, I regard what follows as merely an attempt that could
very well fail; nevertheless, it is an attempt that at the least has a
prospect of success and therefore must be brought forward at some time.

It seems to me that the most promising way of proving the existence
of the postulated velocity forces and finding the law in accordance with
which they act is to observe with the greatest possible accuracy
phenomena associated with motions near the earth that occur with great
velocity. Just as the discovery of gravitation had as its starting point the
observation of free fall, here too the first step to the solution of the
puzzle could be obtained through observations of terrestrial motions and
their correct interpretation. The immediate vicinity of the earth’s mass
opens up some prospect of proving the existence of velocity forces more
accurately than would be possible with the finest astronomical
observations, which, as experience teaches, are certainly only very weak
under normal circumstances.

This thought led me some time ago to make the gyroscope
experiments that I reported to the Academy very nearly a year ago.” I
expected then, as I explicitly said, to establish a behavior of the
gyroscope that did not agree with the usual theory in the hope that the
observed deviation could be attributed to the velocity forces I seek and
that these would therefore be made accessible to experimental research.
Now certain indications of a deviation were indeed discernible, but as a
careful and conscientious experimentalist I could not put any weight on
them and I was forced, as I did, to declare a negative result of the
experiment as regards the direction that it was intended to follow in the
first place. In the meanwhile, I have made some further experiments
with the same apparatus, though admittedly few, since they are very
laborious and time consuming. However, the result could do nothing but

Dsitzungsberichte 1904, p. 5.
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strengthen me in the view that the accuracy that can be achieved with
this experimental arrangement is not sufficient to prove the existence of
the velocity forces if they exist at all.

[Most of pp. 390-392 of Foppl’s paper, which considers the possible
implications of what were evidently ephemeral rogue experimental results,
including the observation of Koch mentioned in the beginning of the paper, is
here omitted. The translation ends with Foppl’s final speculations about velocity
forces.]

Consider a planet that circles its central star in agreement with the
first two laws of Kepler. Let the law of the velocity forces be of the
form that the planet is subject to an attraction by its sun that is
proportional to the velocity component orthogonal to the radius vector
and inversely proportional to the first power of the distance. One
immediately recognizes that under these circumstances one would not
need any gravitational force in addition to the velocity force in order to
explain the motion of the planet that is given by the observations. The
astronomers of a solar system with only a single planet would have
indeed no means to decide whether Newton’s gravitational force or the
velocity force adopted in the indicated manner were correct if they
wished to restrict themselves to observation of the orbit alone. However,
the difference would immediately be apparent when they took into
account observations on their planet.

There is in accordance with Newton’s gravitational law too a daily
period of variation of the gravity force that gives rise to the contribution
of the sun to the motion of the tides but is too weak to be established by
pendulum observations. However, if the astronomers of that solar
system were to make the attempt to replace Newton’s law of gravitation
by the law of the velocity forces that we have mentioned, they would
have to expect a much greater daily period, which, for the same
relationships between our earth and the sun, would be about 180 times
greater than would be expected in the other case.

It should also be remarked here that the velocity law, which was
chosen at random, is in fact only one of infinitely many that would all
achieve the same, namely, the explanation of the motion of a single
planet around its sun in agreement with Kepler’s first two laws without
having to invoke in addition Newton’s gravitational force. All one needs
to do is to allow the velocity component in the direction of the radius
vector, which was hitherto assumed to be without influence, to
participate as well in accordance with some arbitrary law and then
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arrange the law according to which the orthogonal velocity component
acts on the force of attraction in such a way that the required motion
results. There is also no need to make a restriction to the first power of
the velocity; one could also consider the second or other powers.

When a solar system has more than one planet, it is naturally much
more difficult to explain all the planetary orbits merely with the help of
velocity forces, since it is now necessary to satisfy Kepler’s third law as
well. So far as I can see, one would then be forced to make decidedly
artificial assumptions. Even if one could achieve success in a simpler
manner than it now appears to me, it would still be questionable if one
could also explain the disturbances of the planetary orbits, the motion of
the moon, etc.

However, one should not forget the aim of this discussion. It is in
no way my intention to replace Newton’s law by a law of velocity
forces. Ionly want to make it plausible that under certain circumstances
the velocity forces by themselves could have effects very similar to those
of the gravitational forces. If this is then granted, it immediately follows
that in such an event it would be very difficult to separate out from the
astronomical observations the part due, on the one hand, to gravitational
forces and, on the other, to the velocity forces.

On the basis of this consideration, I believe it is best not to be
deflected by the admittedly very weighty objections of the astronomers
from seeking phenomena that could be related to velocity forces. If it
does prove possible, following this entirely independent research
approach, to derive a law of the velocity forces, it will still be possible
to make, as the best test of the admissibility of the result, an accurate
comparison with the astronomical observations, taking into account the
error limits that are relevant.

Naturally, I would not recommend such a procedure if I did not have
great confidence in the very existence of the velocity forces, even though
I must leave it as an open question whether they have a magnitude such
that they are measurable in motions accessible to our perception. If one
will admit an absolute space, then, of course, every ground for the
adoption of velocity forces disappears. However, in this point at least
- that I do not recognize an absolute space - I am in agreement with the
majority of natural scientists, and I therefore hope that I shall receive
recognition among them, at least for the conclusions drawn in the first
part of this communication.
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NOTES

[Fjrst published in Sitzungsberichte der Bayerischen Akademie der
Wissenschaften, mathematisch-physikalische Klasse (1904) 34: 383-395
(submitted November 5, 1904). Translated by Julian B. Barbour. There is an
extended and very positive critique of both of Fdppl’s papers (this and the one
from which we give a partial translation on p. 312) in a supplement (Anhang)
to Mach’s 1908 edition of the Mechanik. In the 1912 edition, only the brief
mention on p. 111 is made.

COMMENTARY

The main interest of this paper is that it represents a clear formulation of the
Mach problem by a scientist of high standing (cf. Norton’s comments, p. 34 and
p. 50, Note 8) made at a time (1904) before the explosion of Einstein and
special relativity onto the scene — and all the complications both introduced.
Several details should be noted: 1) There is no suggestion that there is a need
for some cosmic derivation of inertial mass (Einstein’s red herring, p. 91-92).
2) The problem is seen entirely as that of showing how inertial frames of
reference, whose effective existence is demonstrated by dynamics, are
determined at a given point “in accordance with some law by the masses of the
universe” (p. 120, first paragraph). 3) Foppl states explicitly the physical
quantities that must enter the law “in accordance with which the orientation of
the inertial system is determined”; they are: “the individual masses [of the
complete system of masses], their separations, and the differential quotients of
these separations with respect to the time” (p. 121, penultimate paragraph). The
essential identity of this listing and Poincaré’s formulation in Science and
Hypothesis of the problem of predictability of classical dynamics and of stating
the relativity principle in a form with which the mind can be truly satisfied is
noteworthy (it will be seen that Foppl cites Poincaré at the start of his paper).
It is obvious that the ability to predict the future uniquely from purely relative
instantaneous data, as required by Poincaré, will bring with it the ability to
determine the inertial frames of reference, as required by Foppl. A further
point of interest in this connection is the quotation from Mach given by Foppl
at the bottom of p. 120. I have not been able to find this in the English
translation of the Mechanics published by Open Court in 1960. The quotation
makes clear that Mach was solely concerned with the law of inertia, not inertial
mass, and that he definitely saw the problem as consisting of two parts, a spatial
part and a time part (cf. the two Machian requirements, p. 92 and p. 102ff).
Otherwise the paper is somewhat disappointing; unlike Hofmann, Foppl is
hesitant to attack the problem head on (cf. the commentary on Hofmann’s paper,
p. 133), and, to me at least, several of his suggestions seem rather unphysical,
especially in the final part.
J.B.B.



Motion and Inertialil

Wenzel Hofmann

The hitherto existing concept of inertia is regarded as absolute because
it is defined without any reference to any other body apart from the one
that is actually being considered, but I cannot accept this absolute
character; much rather, I am of the opinion that the concept of inertia,
like the concept of motion, is to be regarded as exclusively relative.

Namely, a body can be in a state of rest or motion only with respect
to some other body. If we now say that the considered body has the
tendency to maintain its state, this cannot mean anything other than that
it strives to remain in rest or motion relative to that second body. Thus,
the inertia of the considered body consists of a relationship between it
and the body with respect to which the state of rest or motion has been
established.

In order to explain my ideas on this matter through an example, I
suppose that in infinite space there is nothing else apart from two
material points A and B that steadily move away from each other. It is
then obvious that for these two points the law of inertia cannot be
formulated in any other way than that the two bodies have a tendency to
maintain their relative motion.

I must now be able to assert that the inertia of 4 is expressed in the
fact that it continually increases its distance from B and, conversely, B
has the tendency to increase its distance from A.

Considered in this way, we find that the inertia of each of the two
points consists of a relation to the other.

If I now imagine several material points A, B, C, etc., then, for
example, 4 will want to follow the inertial tendency with respect to each
of the other points; the behavior of point A must then be established as
the resultant of the individual inertial tendencies.

This consideration can then be extended to whole groups of material
points, and to bodies. I must therefore be allowed to make the following
statement:

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
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Every body is subject to the law of conservation of its relative state
of motion or rest with respect to all the other bodies in space, its actual
behavior is then the resultant of all the individual influences.

However, the extent to which this resultant depends on the mutual
separations, the sizes of the various bodies, and their mutual disposition
can hardly be found by speculation but only on the basis of experience
(perhaps through experiments made specifically for this purpose).
However, if one is committed to the view that the inertia of a mass is to
be regarded as relative, then one must certainly abandon rectilinear
inertia, since then the orbit of the considered body will depend on so
many varying conditions.

I should only like to emphasize once more that, in my opinion,
inertial effects are relationships of the masses to each other, and that
therefore these relationships occur mutually and, like the mutual motions
of masses, exhibit the character of reciprocity, that is, 4 expresses its
inertia relative to B in the same way as B with respect to A.

However, a characteristic difference in establishing the relative
behavior of bodies in respect of motion or inertia is that when one
establishes a relative motion of a point this can be referred to ‘one’
arbitrary, freely chosen reference system, whereas when one is observing
the inertia of a body one must always take into account the simultaneous
influence of all the other masses in space.

It is now an exceptionally broad, but also difficult undertaking to
search out the laws in accordance with which the masses execute their
mutual inertial tendencies. The greatest difficulty is certainly the fact
that in any experiments one might set up the observed mass can never be
considered in its dependence on a single mass but always with respect to
the totality of all existing masses.

It cannot enter my head to want to develop here a complete theory
of inertia; that cannot be the work of a single person done in a few
weeks.

What should be done here is draw attention to the inadequacy of the
law of inertia currently regarded as valid and simultaneously give a
stimulus and indication of the sense in which possible studies aimed at
a better foundation of the law of inertia should be made.

However, some basic principles can already be established.

To this end, I return once more to the example in which I assumed
the existence in infinite space of just two masses in relative motion that
they strive to maintain as a result of inertia. If I choose mass A as
reference system, then B must exhibit inertia relative to mass A, and
conversely the law of inertia must be valid for mass A with B as
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reference system. However, in each instant the relative position of the
two bodies must be the same in both cases whatever reference system we
take as basis of the observation, since the behavior of the two masses
cannot depend on the point of view that an observer associates with a
phenomenon.

The reciprocity of the inertial effects of two masses on each other
can also be illuminated from another standpoint. By virtue of its inertia,
every body that is in motion has the capacity to do work; we call the
corresponding quantity its vis viva (lebendige Kraft).

The vis viva of a moving mass is therefore an inertial phenomenon,
and it is therefore natural to examine the law of inertia from this point
of view too.

To this end, I will suppose that there are in space nothing else but
two unequal masses M and m which are in a state in which they approach
each other, doing so, in fact, in such a way that the distance between
them is reduced by the amount v in the unit of time.

If I take M as the reference system, then m is the mass in motion and
in the system M it can exhibit a certain vis viva, i.e., it can do a certain
amount of work.

However, if I change my point of view and choose m as the
reference system, then the mass M has a vis viva with respect to m.

It is now very interesting to pose this question: What is the
relationship of these two amounts of vis viva that are acquired by the
different masses that have the same velocities (the velocity in each of the
two cases is equal v).

In accordance with the familiar expression L=mv?*/2, we should have
to say that the greater mass generates the greater vis viva, since the
changing of the reference system does not change the velocity.

But that is not the case, as we shall see from the following
consideration: Suppose that the two masses M and m finally collide as
a result of the mutual approach to each other; then the work capacity of
these two masses can be actually realized. Let us suppose that at the
point of impact an instrument is set up that consumes the existing kinetic
energies and simultaneously records them, for example, an elastic spring
that is compressed by the two masses and frozen in this state; then the
instrument gives directly (for example, in the tension achieved in the
spring) the measure of the work that has been done.

If we first allow the mass M as the reference system, then the energy
stored in the spring is the work done by m in the system M.

However, in the other case, namely, when we regard m as the
reference system and M as the mass that is in motion, the same energy
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of the stressed spring is to be regarded as the measure of the work done
by M in the system m. Therefore, the amounts of vis viva achieved by
the unequal masses M and m are the same.

From this we draw an important conclusion.: “If two mass systems
M and m are in relative motion, the vis viva of M relative to m is equal
to the vis viva of m relative to M.

Since the validity of this law is independent of the magnitude of both
masses M and m, it must also be true when, for example, M=o0; that
is, the vis viva that an arbitrary body can exert through its motion
relative to all masses situated outside it is equal to the vis viva with
which these bodies can act on the first one if it is chosen as the reference
system.

From all the foregoing, we can conclude that all inertial phenomena
are to be traced to the mutual relationships of the masses to each other,
so that the effects of inertia that are achieved are independent of the mass
that is chosen as the reference system.

I should like to give this law the name reciprocity of inertia.

The equation L=mv*/2 appears to be in contradiction to these
discussions; however, this is resolved by the following consideration:

The inertial effect of a mass M relative to another mass m is a
function of both masses; the expression of the amounts of vis viva that
they exhibit relative to each other must therefore contain both masses.

Let us call the vis viva that two mass units possessing a relative
velocity equal to the length unit can exert on each other k; then the vis
viva associated with the two masses M and m that have relative velocity
v can be expressed by the equation L=k-M-m-v?, where I take it as
proven that the velocity exerts its influence in the quadratic relationship.

In addition, in setting up this equation we have made no allowance
for a possible, indeed probable influence of the separation r of the two
masses. If however such an influence could be established by
experiments, the equation would then read: L=k -M-m-f(r)-v°.

[half a page omitted]

The conclusions that can be drawn from this principle concerning the
phenomenon of centrifugal force in rotating masses are particularly
interesting.

If we suppose some rotating body K, then we must regard the
experimentally established phenomenon of centrifugal force present in it
as an inertial relationship of the rotating mass relative to all the masses
outside the considered body that do not take part in the rotation.

Then in accordance with the principles that we have developed
earlier, the same inertial tendencies must occur if I regard the first body
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K as the reference system and, as a result, suppose that all the other
masses are rotating around it [cf. Mach, p. 109].
[11 pages omitted]

If we apply this view in the case of a pendulum oscillating at the
pole, we must draw the following conclusion: The pendulum must
exhibit inertia simultaneously with respect to the earth, the sun, and all
the remaining heavenly bodies; the overwhelming influence is surely to
be ascribed to the infinitely great mass of the heaven of the fixed stars,
while the inertial influence of the sun and the earth must be regarded as
subsidiary. Nevertheless, it is to be assumed that the mutual separation
of the masses does have an influence, and therefore even the sun and
earth will not be entirely without effect, since they are at a shorter
distance from the swinging pendulum. The various inertial influences to
which the pendulum is subject must be expressed in such a way that the
pendulum, when subject to the influence of the mass of the earth alone,
must exhibit an unchanged position relative to the earth; the influence
of the mass of the sun, however, ought to cause the plane of the
oscillations to rotate once in a solar day, while the inertial effects of the
remaining heaven of the fixed stars ought to cause a complete rotation of
the plane of the pendulum already within a sidereal day. Under these
circumstances, it is natural to assume that both the sun and the earth
ought to have a retarding effect on the rotation of the plane of the
pendulum. Therefore, we should expect the complete rotation of the
plane of the pendulum to require a time that is somewhat greater than
one sidereal day.

It would therefore be very interesting to consider the Foucault
pendulum experiment from this point of view in order to establish
experimentally the influence exerted by the earth, sun, and the other
masses on the pendulum.

Indeed, we can go further; it is a small step from this to wish to
learn the effect of smaller terrestrial masses on the freely swinging
pendulum.

To this end, what one should do is set as large a mass as possible in
the most rapid possible rotation underneath a Foucault pendulum; the
rapid rotation could then to a certain degree paralyze the overwhelming
influence of the mass of the earth and the remaining celestial bodies.

If it proved possible in this way to change the rate of rotation of the
plane of oscillation of the Foucault pendulum, this would not only be a
proof of ‘relative’ inertia but also be a means to establish experimentally
the extent to which these inertial influences depend on the magnitude of
the masses, their mutual separations, and their velocities.
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NOTES

(Ipartial translation from p. 26 to the end (with breaks) of: Hofmann,
Wenzel (1904). Kritische Beleuchtung der beiden Grundbegriffe der Mechanik:
Bewegung und Trigheit und daraus gezogene Folgerungen betreffs der
Achsendrehung der Erde und des Foucault’schen Pendelversuchs. Vienna and
Leipzig: M. Kuppitsch Wwe. Translated by Julian B. Barbour. The German
original makes very extensive use of wide-spaced type for emphasis which has
not been reproduced. Hofmann is described as a K. K. Professor (K. K. =
Kaiserlich und Koniglich). Einstein refers to him as a mathematician who
developed his ideas independently of Mach (see Norton’s comments, pp. 32-34).
Because of space limitations, we have not been able to include Hofmann’s
discussion (on pp. 32-33 of his booklet) of Newton’s bucket experiment, in
which, like Mach (p. 109), he comments that a very much larger mass than
Newton’s bucket might well have an effect on the motion of the water: There
is also a proposal for a Friedlaender-type experiment (p. 309).

COMMENTARY

Although, as Norton comments (p. 32), Hofmann’s booklet is very wordy (the
five pages translated here are about an eighth of the total), the above passage is
noteworthy for the clarity and simplicity of its argument and for the fact that
Hofmann perfectly anticipated the later work and motivation of no less a person
than Schrodinger (p. 147) (and Reissner, p. 134). His intuition for the heart of
the problem seems to be surer than Foppl’s (p. 120), who was writing at the
same time (1904). Unlike Foppl, with his provisional assumption of velocity
forces manifested with respect to a not quite perfectly determined inertial frame
of reference (p. 122), Hofmann goes straight for effects that depend directly on
purely relative quantities.
There is a striking similarity between Mach’s “... the mean acceleration of
the mass u with respect to the masses m, m’, m”, .... at the distances r, r', v’
... 18 =0, or d¥Emr/Em)/dt*=0” (p. 110) and Hofmann’s central conclusion
in italics on p. 129. However, whereas Mach bungled the mathematics, writing
down a scalar equation where a vector equation was needed, Hofmann went on
correctly to write down a scalar Machian kinetic energy, from which vector
equations of motion will follow. So far as I know, Hofmann was also the first
person to state clearly that in a relational theory of inertia the kinetic energy
cannot be a sum of contributions of individual masses but must be a sum over
products of all possible pairs of masses (pp. 107-108). In fact, it seems clear
that Hofmann’s is the earliest known implementation of the Machian idea in a
physically and mathematically transparent form. Even Poincaré failed to achieve
that, despite having correctly formulated the problem (pp. 111-112) two years
earlier in 1902. Note added in proof. See Note 2 on p. 230.
J.B.B.



On the Relativity of Accelerations
in Mechanicsl!]

Hans Reissner

The relativity postulate can, so far as I can see, be extended for
accelerated states of motion in two directions, namely, through the two
following essentially different requirements:

1. The complete equivalence that holds in Newtonian mechanics
between external forces (in particular gravitational forces) and inertial
forces is also to be implemented for electromagnetic—optical and
thermodynamic phenomena (Einstein’s equivalence hypothesis).

2. It is to be required that not only absolute velocity but also any
absolute motion whatever, in particular acceleration, must be undetect-
able. This requirement was already formulated by Mach, but it has not
yet been carried out; much rather, modern researchers have repeatedly
denied the justification of such a postulate.

In contrast to this view, I wish to show now that the implementation
of this last postulate can indeed be arranged very easily; it is true that the
foundations of Newtonian mechanics are changed, but its consequences
are not greatly affected.

For this first demonstration, only mass points will be considered,
although it will later be necessary to support the results by a limiting
process from a continuum.

It will also be assumed that all velocities are small compared with the
velocity of light, so that questions such as the speed of propagation of the
interaction of masses through empty space will not arise.

I proceed now to the establishment of a mechanics of relative
accelerations as follows:

It has no meaning to speak of the acceleration or kinetic energy of
an independent mass point, but the following statement does have
meaning.

The kinetic energy in relative-acceleration form. Two points with
gravitating masses m; and m, separated by the distance r possess a kinetic

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
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energy that is proportional to the product of the two masses and, further,
is a quadratic function of their relative velocity #, and may also contain
the separation r. Thus

T=mm,*f(r). )
It is then to be required that the energy theorem holds for this
isolated system of two mass points, namely:
T—U=const, @)
where — U is the potential energy of the gravitation of these two masses,
which are conceived as being alone in the world, and

Uy mm, . 3)
r
This assumption already contains the statement that a single mass
point possesses neither potential nor kinetic energy, namely, when m, or
m,=0 holds.
The energy theorem (2) now yields

F2f(r)—yr - =const, F2=_Y , sonst.

0= GG
Now since the velocity 7 must be able to take any arbitrary finite pre-
scribed value for an infinitely large separation of the two masses, f(r)
must either tend asymptotically to a constant at infinity or simply be a
constant. For the moment, there is no reason not to make this last
simplest assumption, and we therefore set '

T=6mm?
and in accordance with the energy theorem
j2- Y, const
or 9o

Thus 7., =(const/8)"? is the relative velocity that the two masses would
have when separated by a great distance for the realized initial condition
(the value of the constant).

Thus, the total energy of the two masses is here divided into a
potential energy and a kinetic energy. Whether and how these energy
forms can, as in relativity theory, be unified at velocities that are of the
same order as the velocity of light can hardly be established purely
mechanically.

The force in relative-acceleration form. The equation of motion of
two mass points that exist alone is now to be derived in the Lagrangian
form from the expression (2) for the energy:




136 Hans Reissner

dt[ (T- U)] _r(T—U)=0.

This expression can be decomposed into the contribution of the gravita-
tional force,
_oUu
& oar’

and the contribution of the inertial force:

_d [dT] oT

Par|ldr] or
This law of motion, which is possible only if at least two masses are
present, thus states the following:

Two mass points (when they exist alone in the world) oppose a
relative acceleration 7 with a resistance of magnitude 26m,m, 7.

In contrast, there is no sense in speaking of an acceleration of these
points in any other direction.

If one wishes, one may also say that a force cannot arise in any other
direction.

Finally, one can say that the space of two mass points has one
dimension.

Space first becomes multidimensional through the addition of other
mass points; in other words, accelerations and velocities in a direction
different from the line joining the first two mass points first become
detectable when further masses are present.

In order to proceed further, let us now make the simplest assumption
that when further mass points are present not only the gravitational
forces but also the inertial forces are added geometrically.

From this assumption we must then be able to deduce universal
inertia of masses and, in particular, Newton’s law of motion and inertia
in a form which shows that Newton’s law is an extraordinarily good
approximation of the relative-acceleration law of motion and inertia.

To set up such a law, a coordinate system must now be chosen that
in some way is fixed relative to the mass points that are present, which
incidentally are assumed to be very numerous. The following question
must then be answered:

Does there exist in the relative-acceleration mechanics assumed above
a coordinate system for which the Newtonian law of motion, which has
hitherto been regarded as absolute, holds with a sufficiently good
approximation?

The resultant inertial force in the direction of the X axis that acts on

=20mm,}. *)
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a mass point of mass m, with coordinates x;, y,, z; as a consequence of
the action of the remaining masses m,, ..., m,, ..., m, has in accordance
with our assumption the value

! (4a)

X=-2mgsy mpr, -

1n

If we express r,, and #,, in terms of the coordinates, we obtain

P = ri [(xn =X (X )R, X)) + :|

nl

2

—% [(xn—xl)(x" —x)+ ] .
r nl
If we place the origin of the coordinate system for the considered instant
coincident with m, with respect to position and velocity and separate this
expression into the part that contains the factor X, and the part that
contains all the remaining terms, we obtain the inertial force in the form

2

X=2mxp5y. mnx_: +2my,8y m, x"f"
nl nl

r
nOxn ) (4b)

+2m 78y m, x"zz" -2m 8y m,
nl nl
We now have a coordinate system whose origin coincides as regards
position and velocity with point 1 but with respect to it has accelerations
X1, ¥4, Z4; F, is now to be the acceleration of separation of the point #
relative to this coordinate origin.
The usual Newtonian equations of motion then hold with respect to
the three axes if the following equations hold exactly or with sufficiently
good accuracy:

X X Z
DR ST YL ®
nl rnl rnl
2 2 2
8y m”x_'; =8y mny_'z‘ =8y, mn-zlz =1, ©
1n nt n
E mnrnoxn =E mn anyn =E m,, rnozn 20. (7)
rnl rnl rnl

Equations (5) will hold when the mass distribution of the radiating
and nonradiating celestial bodies possesses a certain polar symmetry.
Equations (6) give the meaning of the constant 6 if one sets
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2 2 2 2
Mx, I, FatVa*Ze 1
E 2 *gz:mn—rz—' -3—2'",.

nl nl

in the relation
1
1 ’
'52 m,
and let us see that in accordance with these assumptions proportionality
of inertial and gravitational mass is guaranteed.

The smallness of the constant 6 of the law of interaction of inertia
shows that although two masses do have a resistance to mutual
acceleration this effect is immeasurably small compared with the inertial
force of all the remaining masses.

On the other hand, the value —26=3/Xm shows that Eq. (4) does not
represent an elementary law since in the interaction of any two masses
all the remaining masses have an influence on 6. In contrast, the
Newtonian gravitational law, with a fixed value of the gravitational
constant v that is independent of the presence of the remaining masses,
appears as a true elementary law.

Admittedly, this behavior can also be inverted. For example, if the
masses are introduced in gravitational units, the kinetic energy must be
written in the form

_26=

)
T=—mmyp?
and one would then obtain

—25=_3

Y m
One could then regard 6 as a constant that is independent of the number
of masses and + as dependent on Xm.

The treatment of the inertia of masses presented above need not
differ greatly in its consequences from the Newtonian behavior, but it
does meet the Machian requirement of the undetectability of acceleration
relative to empty space; in particular, it gives the following answer to the
objection of the supporters of absolute mechanics that the centrifugal
forces associated with the rotation of bodies prove absolute rotation:

For a start, these centrifugal forces correspond to equally great and
opposite centrifugal forces that are distributed over all the remaining
masses of the world, this happening in such a way that exactly the same
forces and counterforces would arise if we were to regard the rotating
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body as in rest and the heaven of the fixed stars as rotating. In accor-
dance with the assumptions made above, there is no difference between
the two representations of the motion {cf. p. 109].

Significant centrifugal forces arise whenever one body rotates relative
to a certain average position of all the other bodies. It then exerts on all
the other bodies centripetal forces, but because these are distributed over
all the masses of the world they cannot be noted.

The three equations (7) determine for every point of space and every
instant the behavior of three inertial planes relative to the masses of the
world. In fact, strictly speaking the behavior is different for each point
and for each instant, since the masses in the world are accelerated among
each other.

However, it will certainly follow from astronomical statistical
considerations that the spatial and temporal variations will be unde-
tectable for spaces and times that are very large on the terrestrial scale.

In order to say more about the determination of the relative-
acceleration inertial system, it will be necessary to investigate the inertial
torques exerted on a small body in accordance with the above
assumptions and compare them with Euler’s gyroscope equations of
absolute-acceleration mechanics.

The kinetic energy of a mass point and the line element of space. The
law of inertia for a mass point can be obtained by setting the inertial
force K; equal to zero. However, it is more convenient to use here the
conservation law for the energy.

In accordance with Eq. (2), the energy theorem gives

T—U=const, ¥, Y mm(8r.—yr,")=const

and is now to be used to give a relation for the mass point m,. To this
end, we write the last equation as follows:

mYy. m [6r‘f,—l] +Y Y mm, [6r§—l] =const,
rls 2 2 rr.v
where the subscript 1 no longer occurs in the second sum.
Since we wish to obtain the effect of inertia alone, without
gravitation, on the mass point m,, we may omit the summand +yr;,' in the
first term and obtain

maYy mri==Y"Y " mm, [6r‘§— rl] +const.

rs

The first term on the right-hand side is the total energy (gravitational
and kinetic) of all the other masses and may be set equal to a constant
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because of the slight significance of the particle m, for the remaining
world.

If, further, we express r, in Cartesian coordinates, the above
equation becomes

mlsz m, [(x,,-_x1)(x.s-x1) + (Ys —yl)()’s—-yl) + (Z:_Z1)(2s—21)]

-
sl

or, after x%, X,, y%, etc., have been taken in front of the corresponding

sums,

e

.\'1 sl sl

=const,

m(z, —-zl)""

2y, x,—X),—Y,) 222 m (x,—x)(z, zl)

r 51 r 51
2y m OTETH ‘r)ng_zl)
%Y m, X, —x,)° +}’:(Y$—y1)();s:-l-xl) +2(z,—z,)(x,—x,)
Y m, 20, =) *4z, —zl)(yr::—yl) 2 (x,—x)3,~Y,)
2Ym 2(z,~2,) +xs(xs—x1)(z$2—nzl) +9.0,-3,)@, —zi)] ®
Iy

If this expression is multiplied by the square of the time element
(dr)*, a homogeneous quadratic function in the four quantities dx, dy, dz,
dr arises with coefficients g, g, etc., that are functions of position, and
one sees that this function has the same nature as the line element of the
Einstein-Grossmann gravitational space. This expression only goes over
into the expression of Newtonian mechanics, m,(ds/df)*=const, when, as
in Eq. (6),

(x )2 (}’ —yo)2 (Z _Zo)z
) =0y m—= "~ =6y m_—"__— =const
d.m, — d.m, = d.m, =
and the remaining factors are set equal to zero.

This last will, for statistical reasons, be true to a very good approxi-
mation relative to the first factors, but nevertheless it will not hold
exactly.

One can now either, as has up to now been done here, attribute these
deviations in the motion of the mass point from the motion of absolute-
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acceleration mechanics to the inertial influence of the remaining masses,
or one can blame this deviating behavior on the geometrical structure of
empty space.

Indeed, H. A. Lorentz similarly attributed the contraction of bodies
and the change in the rate of clocks in the case of a change in velocity
to ponderomotive electromagnetic forces, whereas Einstein and
Minkowski made the properties of the space-time world responsible for
them.

It seems to me that Einstein in the assumption!) for the line element
of the gravitational space had the intention also in the future for
acceleration-relative physics to express the influence of the gravitational
field through purely geometrical properties of the space-time world and
that my assumption (8) above for the kinetic energy of a mass point,
which agrees in its form!) with Einstein’s Hamilton function H and the
line element ds of space of the generalized relativity theory and gives the
coefficients g,, as functions of the coordinates, provides a first physical
example for such a non-Euclidean line element.

If the expression (8) is regarded as a line element, the isotropy of
space must then indeed be given up, but the law of inertia of uniform
motion in the shortest path in the absence of forces that has hitherto been
used remains valid.

It would then appear that space and its geometrical properties are
first created by the presence of masses and that the coefficients of the
resulting velocity (8), g,, in the case of Einstein, prescribe the nature of
the measurement of length and time at each point.

The expressions given above contain in their coefficients the
distances of distant mass points and therefore for the time being are
based on the notion of action at a distance.

It now clearly appears to be desirable that the inertia of masses
should also be represented from the point of view of a field effect
without explicit knowledge of the position and relative motion of the
distant masses. For this it would be necessary that the coefficients of the
vis viva (8) (the g,, in Einstein’s case) should be represented as integrals
of differential equations (generalized Laplace equations). However that
may be, it is certainly not the gravitational potential alone that must be
considered here, since the coefficients of the form Lm(xy/r?) cannot be
derived from the potential X(m/r), as follows from the fact that for one
and the same gravitational potential X(m/r) very different values of

DA. Einstein und M. Grossmann, Entwurf einer verallgemeinerten Relativitits-
theorie und einer Theorie der Gravitation, 1913 (Teubner), p.7.
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Xm(xy/r® can be constructed by suitable mass distributions.

According to Einstein, they should not be derivable from a scalar
function at all.

That which we have attempted to formulate here for the inertial
forces of ponderable masses will certainly also have to be required for
all forces, for example, for the ponderomotive forces that act on
electrical charges. Thus, it will also be necessary to express Maxwell’s
electromagnetic equations in such a form that a single electron
experiences no effects as a consequence of its own field alone but only
in the presence of either other electrical charges or ponderable masses.
Was this perhaps also Einstein’s desired collateral result when he put the
speed of light equal to the gravitational potential up to a constant? In the
case of an isolated electric particle, this constant would then have to be
able to become zero, so that in the absence of gravitating masses the
Maxwell equations would have no content anymore.

The outline presented here represents, of course, only the part of the
relativity of acceleration that deals with mechanics alone. The further
postulates that absolute acceleration should also not be detectable by
optical, electrical, thermodynamic, or elastic means and also that inertial
forces should not be distinguishable from gravitational forces through
these last means are what will make this extension of the theory of
relativity truly fruitful - with a success that in my opinion must be
awaited with the most eager expectation.

Charlottenburg

NOTES

[1] Translated (with corrections of some obvious errors and misprints) from
Physikalische Zeitschrift (1914) 15: 371-375 (submitted March 21, 1914).
Translated by Julian B. Barbour. A further paper by Reissner, “On a Possibility
of Deriving Gravitation as a Direct Consequence of the Relativity of Inertia,”
appeared in Physikalische Zeitschrift (1915) 16: 179-185 (submitted April 1,
1914). In it Reissner specialized the general Hofmann—Reissner expression (1)
for the Machian kinetic energy to the form Y4m;m,#*/r and showed that in such
a theory microscopic internal motion of bodies gives rise to a gravitational-type
attraction. Because of shortage of space, we publish below a translation of only
a few selected passages from the second paper that deal with the general
Machian program. A complete translation may appear in the book mentioned
on p. 5. Reissner’s idea for the generation of gravity from Machian inertia was
rediscovered in: Barbour, Julian B. (1975). “Forceless Machian Dynamics.”
Nuovo Cimento 26B: 16-22. Essentially the same idea was rediscovered
independently in: Cook, R. J. (1976). Nuovo Cimento 35B: 25-34.
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Selected Passages from Reissner’s 1915 Paper

From p. 179: Acceleration could be referred to an absolute space as long
as one could take a nonmoving luminiferous ether as reference system.
Nevertheless, Mach’s Mechanics already declared in 1883 that the idea
that a distinguished frame of reference independent of material processes
could exist was absurd and gave some hints of a conception of
acceleration relative to space as being an average relative to all the
remaining masses.!

In particular, Mach already considered the argument of the
supporters of absolute mechanics that it is permitted to speak of absolute
centripetal accelerations because they are detectable through centrifugal
forces, and he pointed out that centrifugal forces are only observed in
rotating systems that have a very small extension compared with the
heaven of the fixed stars.

However, quite recently Abraham and Mie advanced against
Einstein’s requirement of covariance of the physical laws with respect to
arbitrary transformations of the frame of reference the fact that such
covariance contradicts the observed inertial forces.?)

Only recently, after I had in the meanwhile made clear the possibility
of a relative-acceleration mechanics in a specific case, has Abraham
withdrawn his fundamental objection.

In the paper to which I am referring, I have, apparently for the first
time, stated and quantitatively formulated the fact that relativity of
acceleration can be implemented only when the centrifugal forces of a
rotating body correspond to centripetal forces of all the remaining
masses, so that there is no dynamical difference between rotation of the
body with respect to all the remaining masses or rotation of all the
remaining masses relative to the body.

DE. Mach, Die Mechanik in ihrer Entwicklung, 6, Aufl., 1908, pp.250-253.
DDiscussion contribution of G. Mie to Einstein’s lecture published in this
Jjournal (14: 1264 (1913)); Abraham, Die neue Mechanik, Scientia Jan. 1914,
Sur le probleme de la relativité, Juli 1914.

From p. 181: 1t is also to be noted that the mass [in the theory with two-
body Machian kinetic energy Yap pu 72/r,]

© -
m= ?'2 wry

of a point also cannot be a universal constant in a scalar theory but is
rather a function of position. However, for those forces that also turn
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out to be proportional to the mass this variability will not be manifested.
Also this variability is common to all relative-acceleration theories.!
On the other hand, the fact that classical mechanics with the mass as
a constant scalar quantity yields such good service is surely to be
regarded as an indication that we find ourselves in a part of space with
a sufficiently symmetric mass distribution, unless it should turn out that
variable properties of our measuring instruments should make the
tensorial and variable inertial mass appear to be scalar and unchanging.
Since, however, the generalized relativity theory permits our measuring
instruments to establish bending of light rays and a displacement of
spectral lines in a gravitational field, the second possibility appears to me
less probable. In accordance with Eq. (4), we must also consider
whether there are not indications of the inertial forces being greater in
the plane of the Milky Way than in the direction perpendicular to it.

Din Nordstrom’s theory, for example, the mass is set equal to
m=pu(const—Lulr).

From end p. 183: It is to be desired that the results so far achieved
should be incorporated in a field theory that also encompasses variations
in time and the relativity postulate.

Now it is certainly the case ... that such incorporation cannot be
achieved in Nordstrom’s scalar theory of gravitation, since in that theory
the inertial mass decreases on approach to other masses, whereas in
accordance with our assumption, as in Einstein’s theory, it increases.
The character of our above assumption also appears to point more toward
a tensor theory.

However, I have not yet succeeded in achieving a complete
accommodation to the generalized relativity scheme of Einstein and
Grossmann. It seems to me that this is difficult for the following reason.

The complete differential equations of the gravitational field and the
complete covariant stress—energy tensor of the mass current in Einstein’s
latest publications, which together form the generalization of the
Laplace-Poisson potential equation, present a mathematically very
difficult problem. Admittedly, Einstein himself manages to gain valuable
results from them by taking the line element of the previous relativity
theory as a first approximation and obtains from the energy tensor of this
first approximation a correction, assumed to be small, by means of the
differential equations of the field, which now become linear.

By adopting this procedure he gives up, knowingly, an insight into
the mechanical building up of the initial value of the line element, which
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he takes as given, although it should follow from the differential
equations. But precisely the assumptions made here provide this physical
insight, if only for equilibrium of the field, and therefore it is perhaps
only after a different method of integration of the general Einstein field
equations that our assumptions can be accommodated. I believe in such
an accommodation because my results relating to the dependence between
inertia, potential function, and velocity of light have a very similar
structure to those of Einstein, and Einstein’s scheme must have a very
great compass.

COMMENTARY

It will be seen that Reissner’s first paper consists basically of two parts. In the
first he presents a theory of relative inertia that is essentially identical to the part
of Hofmann’s paper published 10 years earlier that we have translated on pp.
128-133. Although there is slightly more formal development, Reissner obtains
no results that were not intuitively clear to and explicitly anticipated by
Hofmann. The question must arise of whether Reissner knew of Hofmann’s
work. He can hardly have been unaware of Hofmann’s existence, since
Hofmann’s booklet was cited by Einstein in his 1913 lecture in Vienna (cited by
Reissner in the second footnote on p. 143), which Reissner had attended. It will
be noted that in 1915 (p. 143) Reissner believed he had the priority for a result
that Hofmann had already stated in more or less identical terms. The charitable
explanation for Reissner’s mistake is most likely the correct one: Einstein’s brief
reference to Hofmann (p. 32) gives no indication that Hofmann had given a
precise mathematical formulation that went beyond anything that can be found
in Mach, so there is no reason to suppose Reissner felt it was necessary to
obtain a copy of Hofmann’s obscure and not properly cited booklet.

The second and final part of Reissner’s 1914 paper opens up territory
entirely foreign to Hofmann’s booklet and reflects the dramatic impact of
Einstein’s (and Minkowski’s) contributions to the debate. It is clear that
Reissner was extremely impressed (not to say overawed) by Einstein’s work and
in both the 1914 and 1915 papers he is constantly ‘looking over his shoulder’
at what Einstein is doing and trying to interpret his own ideas in terms of the
conceptual formalism that Einstein was developing for general relativity.

It is interesting that Reissner opens his 1914 paper with the statement that,
so far as he can see, his requirement “that not only absolute velocity but also
any absolute motion whatever, in particular acceleration, must be undetectable”
is “essentially different” from Einstein’s approach to extension of the relativity
principle even though Einstein himself had strongly implied the identity of the
two approaches (p. 180ff). Reissner does not elaborate on his claim and in fact
in later passages in both papers tries to show that his ideas might well serve to
illustrate what happens in a general relativistic framework. However, this is
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hardly possible, since, as we now know, a Hofmann-Reissner type theory leads
to anisotropy of inertia in clear disagreement with both experiment and general
relativity.

Particularly interesting in this connection are Reissner’s comments on
anisotropy of inertia in his 1915 paper (p. 144), which should be read in
conjunction with Rindler’s comments on pp. 56-57. Reissner missed an
opportunity to make interesting quantitative statements about anisotropy of
inertia by not calculating the specific effects of the anisotropy of inertia with the
particular Machian two-body kinetic energy “am m,ri/r,, that he introduced in
his 1915 paper. It appears that Schrodinger (p. 153) was the first to realize that
in a theory of Hofmann-Reissner type with 1/r dependence the mass anisotropy
induced by the sun and Galaxy would in principle have observable effects in
solar-system dynamics. In this connection, it is interesting that in the early
history of general relativity neither Einstein nor anyone else seems to have
discussed explicitly the situation in general relativity with regard to this effect;
given Einstein’s conviction that inertia arises from interaction with other masses,
it is perhaps surprising that he did not discuss the possible influence of the
Galaxy on solar-system dynamics.

Other points of interest are that, in 1914, Reissner judged “modern
researchers” to be hostile to the Machian idea (p. 134), whereas in 1904 Foppl
considered that “most authors are today in essential agreement with this point
of view” (p. 120). Presumably Planck’s deep antagonism had something to do
with this (see Norton’s paper, pp. 36-37). It is also interesting to note that
according to Reissner Abraham withdrew his objection to the Machian idea
having been persuaded by Reissner’s 1914 paper (p. 143). I am not aware that
Einstein mentions Reissner’s papers explicitly anywhere (but see p. 186). It
would be interesting to know if there is anything in his correspondence.

On Reissner’s part it seems clear that he felt the main interest of his papers
was that they would provide a simple model of illustration of Einstein’s theory,
which Reissner believed to be Machian. With hindsight we can see that this
expectation was based on an entirely incorrect idea of how, in the framework
of general relativity, the metric tensor, indeed space itself, would be generated
by matter [see lines 8-13 after Eq. (4) on p. 136, the paragraph beginning: “It
would then appear ...” in the middle of p. 141, and the third extract from the
1915 paper (pp. 144--5)]. Einstein himself expressed a very similar idea in 1918
(p. 186). In this connection, see Ehlers’s comments (p. 93) on the mathematical
impossibility, within the framework of general relativity, of first specifying a
matter distribution and then determining a metric tensor from that distribution.

J.B.B.



The Possibility of Fulfillment of the
Relativity Requirement in Classical
Mechanicsitl

Erwin Schrodinger

It is well known that classical point-particle mechanics with central
forces, the foundations of which were developed in the clearest form by
L. Boltzmann,! was already criticized by E. Mach? because it does not
satisfy the relativity requirement clearly suggested by epistemological
considerations - its laws do not hold for arbitrarily moving coordinate
systems but only for a group of so-called inertial systems, which have a
uniform translational motion relative to each other. Empirically, it is
found that the inertial systems are coordinate axes that on the average are
at rest relative to the heaven of the fixed stars or have a uniform
translational motion relative to it, but the foundations of classical
mechanics do not in any way indicate a reason for this.

The general theory of relativity too in its original form® could not
yet satisfy the Machian requirement, as was soon recognized. After the
secular precession of the perihelion of Mercury was deduced, in amazing
agreement with experiment, from it, every naive person had to ask: With
respect to what, according to the theory, does the orbital ellipse perform
this precession, which according to experience takes place with respect
to the average system of the fixed stars? The answer that one receives
is that the theory requires this precession to take place with respect to a
coordinate system in which the gravitational potentials satisfy certain
boundary conditions at infinity. However, the connection between these

DL. Boltzmann, Vorlesungen iiber die Prinzipe der Mechanik, Leipzig, J. A.
Barth, 1897.

2. Mach, Die Mechanik in ihrer Entwicklung, Leipzig, F. A. Brockhaus, 3.
Aufl. 1897. Vgl. bes. Kap. II. 6.

3A. Einstein, Ann. d. Phys. 49. S. 769. 1916.

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 147-158 © 1995 Birkhduser Boston, Inc. Printed in the United States.
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boundary conditions and the presence of the masses of the fixed stars
was in no way clear, since these last were not included in the calculation
at all.

The way to overcome this difficulty is today suggested by cosmol-
ogical theories which require a spatially closed world and thereby avoid
boundary conditions altogether. Because of the conceptual difficulties
that these cosmological theories still present,® and not least because of
the mathematical difficulty of their understanding, the solution of an
important epistemological problem, which is immediately clear to any
scientifically educated person, is thus transferred to a field in which few
can follow it and in which it is truly not easy to distinguish between truth
and fantasy. I do not doubt that when the solution is finally reached in
the sense of those theories it will not only be satisfactory to a high
degree but also will permit representation in a form that allows true
insight to a wide circle. However, given the present status, it is perhaps
not without value to ask whether the Machian relativity requirement
could not be satisfied, and the determination of the inertial systems by
the heaven of the fixed stars made comprehensible, in a simple manner
by a simple modification of classical mechanics.®

The expression for the potential energy in point-particle mechanics
and, in particular, the expression for the Newtonian potential already
satisfies the Machian postulate since it only depends on the separation of
the two mass points and not on their absolute position in space. Since
it has proved itself, it can therefore also be retained from the standpoint
of that postulate, if only as a first approximation for a law that in reality
is much more complicated. The situation is different with regard to the
kinetic energy. In accordance with classical mechanics, it is determined
by the absolute motion in space, whereas in principle only relative
motions, separations, and variations of separations of mass points are
observable. One must therefore see if it is possible in the case of the
kinetic energy, just as hitherto for the potential energy, to assign it, not
to mass points individually, but instead also represent it as an energy of

“H. Weyl, Raum, Zeit. Materie, 5. Aufl. § 39. - Berlin. J. Springer. 1923. Cf.
also the paper “Massentrigheit und Kosmos” by the same author in the
Naturwissenschaften (1924, 12. Jahrgang).

5)The solution of this problem is in fact already contained in the representation
of the law of inertia given by Mach. The main reason why it has received so
little recognition is presumably mainly because Mach believed he had to adopt
a mutual inertial influence that is independent of the distance (loc. cit., p. 228
ff.).



Fulfillment of Relativity in Classical Mechanics 149

interaction of any two mass points and let it depend only on the separa-
tion and the rate of change of the separation of the two points. In order
to select an expression from the copious possibilities, we use heuristically
the following analogy requirements:

1. The kinetic energy as an interaction energy shall depend on the
masses and the separations of the two points in the same manner as does
the Newtonian potential.

2. It shall be proportional to the square of the rate of change of the
separation.

For the total interaction energy of two mass points with the masses
p and p’ with separation r we then obtain the expression

Wy M (1)
r r
The masses are here measured in a unit such that the gravitational

constant has the value 1. The constant vy, which for the moment is
undetermined, has the dimensions of a reciprocal velocity. Since it
should be universal, one will expect that, apart from a numerical factor,
this will be the velocity of light, or that iy will be reduced to a numerical
factor when the light second is chosen as the unit of time. We shall have
cause later to set this numerical factor equal to 3.

Let us now suppose a mass point y in the neighborhood of the center
of a hollow sphere of radius R that has a uniform mass density o
distributed over it. We refer all expressions to a coordinate system in
which the hollow sphere is at rest. Let the mass point move in this
coordinate system, its spatial polar coordinates be p, ¥, ¢, and those of
a surface element of the sphere be R, ¥, ¢’. The distance r of the point
from the surface element is given by

r?=R%+p?—2Rp cos(Rp)=R? + p*—
2Rp[cos #cos ¢ +sindsin? cos(e —¢”)]. @)
The total potential energy is the same in every position, and we do not
consider it. By differentiation we obtain
r*=pp—Rp[cos dcos ¥ +sindsind’ cos(e —¢’)] —Rp[—sind
cos & +cos Isind’ cos(p — ¢’ )& — sindsind’ sin(p — ¢’ @]. ®
Since we can choose an arbitrary orientation of the coordinate system,
it is sufficient to make the calculation for #=0. Further, we want to
calculate only the main terms that remain when p <R. We can then omit

the terms with p except when they are multiplied by & or ¢. In this
approximation, we also have r=R. That gives

F=—pcost —pdsin®’ cos(g—¢’). @
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Then in accordance with (1)

2x x

2
W= #_I dy’ j sind’dd’ [p?cos?d +
0 0

2ppdsin®’ cos ¥ cos(p—¢’) +
P29’ sin?d cos?(p—¢') = i@g‘—w(b"' +p2). )
This is exactly the value of the kinetic energy in accordance with
classical mechanics on the condition that the usual mass m of our point
(in grams) must be given by
Since now, on the other hand, in accordance with the assumption made
for the potential energy

m=

m=2+_ )
Jk
where k is the usual gravitational constant, we must have
R= 81ryaR. 3
T3 ®)
Alternatively, if we introduce for ¢ the usual surface density s,
s=-2, ©)
Jk
we obtain
4msR>_ 3 (10)
R 2ky’

and this is a relation that we shall have to discuss later.

If the masses are expressed in grams, the total interaction energy
becomes

w= Yimm o mm” (1)
r r

If a mass point m (planet) moves in the neighborhood of a large mass m’
(sun), it will also be necessary to take into account not only the kinetic
energy (5) of the mass point with respect to the ‘mass horizon” but also
its potential and kinetic energy (1) with respect to m’. For the total
energy of the ‘single-body problem” we obtain

W= ﬂ+7kmm/]r.2 m

s Mpagp kmm” (11)
2 r 2 r
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The presence of the sun has, in addition to the gravitational attraction,
also the effect that the planet has a somewhat greater inertial mass
‘radially’ than ‘tangentially.” Using the area law, which is unchanged,
r2 ¢ - _f, (12)
and making the substitution
ri=¢, (13)

we obtain after elimination of the time from (11) and (12) in the usual
manner

(1+2ylan/g)[§]2+gz—ﬂ’g_2_wzo. (14)
Setting @ r ¢l
£:n+km’, C- 2W+k2nj’2’ (15)
we obtain r KA
d¢=dn‘/1+2'yk2m’2/f2+2'ykm’n ’ (16)

yC—7?
which deviates from the usual form in the square-root factor in the
numerator. It is easy to show that when applied to planetary orbits this
factor merely represents a small correction provided vy has the order of
magnitude of the reciprocal of the square of the velocity of light. We
can therefore use the approximation

2, /2
Q= [1 + 'ka’:l ]sin‘ln—ykm’\/c—n2 + const. a7

Whereas the second term on the right-hand side represents only an
extraordinarily small periodic perturbation, the first term gives a secular
perihelion precession of magnitude

240,12
A= m (18)
per revolution, in the sense of the revolution (¢ passes through the angle
27+ A before n and, therefore, also r returns to the same value and in

the same phase of motion). Now in accordance with the well-known
expressions

! = 47r2a3, f= 27rab, (19)

7 T

and therefore
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k’m’* _4x%* _ 4xn’a’
f? b (1-¢&)
(7, a, b, ¢ are the orbital period, the semimajor and semiminor axes, and
the numerical eccentricity of the ellipse). This gives
a-8mva’ 20)
(1-¢6%)
We obtain agreement with the perihelion precession derived in the

general theory of relativity,® i.e., in the case of Mercury agreement with
experiment also, if we set

v=2. @1)
c
The expression (1) then takes the more definite form
W= 3”}L/f'2__[£, (1”)
r r

when the time and mass units are so chosen that the velocity of light and
the gravitational constant are both equal to 1. Equation (10) becomes

AR _C 67107 c.gs. (10")
R 2k

If one assumes that the ‘mass horizon’ is made up of individual mass
points and allows irregularly distributed velocities among them, which
nevertheless do not have a greater order of magnitude relative to suitably
chosen coordinate systems as the velocities with which the experiments
are being made at the center of the sphere, the change in the result (5)
in the case of sufficiently large R is nothing more than, first, that this
result holds relative to that coordinate system among those considered
with respect to which the center of gravity of the horizon masses is at
rest and, secondly, that there is an additional constant term which arises
from the radial velocities of the horizon masses but which has no
influence on the motion.

Further, it is clear that the surface-type distribution of the horizon
masses can also be replaced by a spatial distribution that is spherically
symmetric around the observation point on a large scale provided the
conditions are such that the innermost shells of this spatial distribution
for which R is not yet sufficiently large in order to justify the approxima-
tions made above make only vanishing contributions to the total inertial
effect. Let d be spatial density of this distribution in g/cm® and R be its

©A. Einstein, loc. cit., final page.
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outer radius; then in place of (10") we obviously obtain
R

4mp’d
[=%

do =27rR2d=;_; 67107 c.g.s., (10")
0

where we have performed the integration for a d that is constant inside

R. This strange relation states that the (negative) potential of all masses

at the point of observation, calculated with the gravitational constant

valid at the point of observation, must be equal to half the square of the

velocity of light.

A rough approximation of the integral in (10”) for the radiating
masses of our stellar system gives the value 10" c.g.s. It has here been
assumed that a sphere of radius R=200 parsec (1 parsec=3.09-10" cm)
is uniformly filled with stars with the mass of the sun in such a way that
30 such stars are present in a sphere of radius S parsec. It follows from
this that only an entirely vanishing fraction of the inertial effects
observed on the earth and in the planetary system arises from the
interaction with the masses of our Milky Way system. With regard to
the admissibility of the ideas developed here, this is a very encouraging
result. For were the conditions to be only slightly different in order of
magnitude, it would only be possible with great difficulty to explain the
absence of every anisotropy of the terrestrial and planetary inertia. A
mass distribution like that established for the radiating stars would have
to have the consequence that bodies are subject to a greater inertial
resistance in the galactic plane as at right angles to it. The circumstance
that we are probably not exactly in the middle of this mass distribution
would also have to have similar consequences. The orders of magnitude
established above appear to me to depress the inertial anisotropy that
arises from the asymmetric distribution of the masses of our Milky Way
system just about under the limit of astronomical observability, as one
can roughly estimate by comparison with the anisotropy of the mass of
Mercury, which is still readily established.

However, it seems that the question of why our inertial systems are
free of rotation precisely with respect to our stellar system (or it with
respect to them) reappears if the inertial systems are not primarily
‘anchored’ in that system but rather in much more distant stellar masses.
The reason, or, better, the actual state of affairs, is evidently, from our
entirely naive and elementary standpoint, that empirically only compara-
tively small relative stellar velocities occur at all, namely, velocities that
are significantly smaller than the velocity of light. Our expression (1”)
does not let us recognize any reason for this state of affairs.



154  Erwin Schrodinger

However, such a reason appears quite naturally if to the knowledge
of the mechanics of our solar system, which is all that we have so far
used, we add as a purely empirical basis, the observations of a significant
growth of the inertia as the velocity of light is approached (deflection
experiments with electrons). These experiments show that the expression
(1) is only to be regarded as an approximation for small velocities, and
requires a correction for large 7, i.e., comparable with unity. If we
regard the ‘relativistic’ energy formula as expression of the observations,

Kin. En. =mc? | —L__—1}, 22)

=
it is easy to give a modification of (1") that for arbitrary velocities leads
precisely to (22). Let us set

/
w2 3], 1"
r (1 —_ ,12)3/2
we here substitute 7 in accordance with (4) and perform the calculation

analogous to (5) [omitting the second bracket term in (1), which yields
only a constant]:

2211' x . / Y
W= ZMZR jd‘o/ I 5 7 SIPI? dﬂ/ / 232"
d 3 (I—=[pcosd +pdsind cos(p’ —¢))?)

If we set here in the first place
x=cos ¥, y=sin & cos(¢’ —¢),

then x and y pass over the surface of the unit circle twice when ¢’ and
@' pass over their complete range. We find

W=duoR| s _dxdy :

(1= [px+pdy))**Y1—x>—y?
Let us now introduce for x and y ‘planar polar coordinates’ r and y and
recognize that in place of r it is expedient to take immediately

T =2

2x 1

W=4uoR [ dy j

0 0

as variable. That gives

dz
(1 _a2+a2z 2)3/2

2%
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with the abbreviations

a=pcosy +pdsiny, v=yp?+p%.

One now sees, most readily through a series expansion of the last inte-
gral (or by direct calculation or by integration in the complex domain),
that finally

We 8muoR _  8mwpoR

\/l—v2 ‘/1—b2—p2192
which in accordance with (6) and (21) agrees with the variable part of
(22), since in the present calculation we have from the very beginning
taken the velocity of light as unity.

Let us mention in passing that to the expression (1") there
corresponds the Lagrange function

(23)

/ A
L=M|_2 4157 +3 24)
r 1 _’s2
which satisfies the equation
/ 3
PAL _pow-pr [__2 3], 25)
ar r (1 — f2)3/2

If L is integrated in accordance with (24), in the same way as W earlier
for the interaction of our mass point with the hollow sphere, we obtain,
up to a constant, the well-known relativistic Lagrange function of a mass

point:
L=—meyT=F, (26)

where (3 is again the ratio of the velocity of the mass point to the velocity
of light.

The most serious objection that can be raised against the conceptual
possibilities presented in this note is that they appear to rely on the
principle of instantaneous action at a distance that nowadays is quite
unacceptable. It is obvious that today no one, the present author
included, will be persuaded to regard the assumptions (1), (1"), etc.,
truly in this sense. But in just the same way as we may be convinced
that a star that is many light years away exerts on a terrestrial second-
pendulum a tiny and apparently instantaneous effect through its gravi-
tational field, even when gravitation in truth only propagates with the
velocity of light, in just the same way we are allowed, I believe, to
calculate with the ~dependent terms of our expressions without sinning
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against the basic principle of a finite propagation velocity of all influ-
ences provided the conditions are such that on the average it does not
matter whether we calculate with the instantaneous or the retarded state
of motion of the distant world mass.

In other cases, one would admittedly encounter at first certain
difficulties if one wanted to take into account seriously the retardation
time. It is then in principle impossible to specify 7. One could define
it purely empirically by the observed Doppler effect, but for two
observers on two different mass points that send each other light signals
the effect is not the same ‘in the same instant.” The kinetic energy of the
interaction, which at the start we have put together in a single term, then
necessarily breaks up again into two terms. One may also note that the
reason for the difference of the Doppler effect, if the two world masses
have approximately the same mass, can only be recognized in the
existence of all the remaining world bodies, which accordingly must
define an inertial system for light just as well as for point-particle
motion.

I believe it is probable that through further development of these
ideas one will finally, after certain modifications, arrive at the general
theory of relativity. For this represents a framework that can hardly be
completely overthrown by any future theory but today is by no means yet
filled out with concrete and lively concepts. I regard the concept used
here - that change of the relative, not the absolute, state of motion of
bodies requires expenditure of work - to be at least an allowed and
useful intermediate stage that makes it possible to understand, in a simple
and yet basically sound manner, a simple empirical state of affairs by
means of concepts that are familiar to everyone.

Ziirich, Physikalisches Institut der Universitit

NOTES

MTranslated from Annalen der Physik 77: 325-336 (1925) (submitted June
16, 1925). Translated by Julian B. Barbour. We are grateful to the editorial
board of the Annalen der Physik for permission to publish this translation. In
the recently published collected works of Schrédinger, a typewritten note, signed
by Schrédinger, is appended to this paper. In the note Schrédinger expresses
profuse apologies to Reissner for unconsciously plagiarizing his idea of deriving
inertia in a Machian manner by two-body interactions (p. 134). Schrédinger
says that he quite definitely knew of Reissner’s first paper but is not certain
about the second. He calls both of Reissner’s papers “very interesting” and
hopes that his own paper will still be of some interest on account of his
somewhat different standpoint and treatment.
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COMMENTARY

Like Reissner, Schrodinger sees the main value of his paper in its potential to
serve as a simple illustration of general relativity, which he believes will
eventually be shown to be Machian in a satisfying manner. It is worth noting
that the opinion which Schridinger attributes to Mach in the opening sentence
reads much more like some of the early formulations of Einstein (p. 180).

The idea that represents the heart of Schrodinger’s approach (pp. 148-149)
is a rerun of Hofmann’s arguments from 20 years earlier but with a brevity of
which Hofmann was clearly incapable (what Hofmann says in paragraphs,
Schrodinger says in sentences). It is noteworthy that Schrodinger’s two
requirements 1) and 2) (top of p. 149) identify exactly the same variables
(masses, relative separations, rates of change thereof) that were listed by
Poincaré and Foppl as being the only ones allowed to appear in a satisfactory
relational mechanics. The conceptual advance made by Schrédinger is just the
same as that of Hofmann and Reissner - implementation of the Poincaré-Foppl
requirements by a Machian kinetic energy containing products of the masses of
all possible pairs of particles. [Incidentally, models can be constructed using
three-body interactions, see (Bertotti and Easthope 1978).]

The real novelty of Schrddinger’s paper is his explicit working out of solar-
system dynamics in a model cosmology, from which he can draw potentially
very interesting conclusions (of the type Rindler mentions, p. 56-57): In such
a theory the advance of Mercury’s perihelion appears as a Machian effect, and
from its magnitude one can make a nontrivial estimate about the distribution and
amount of matter in the universe, in particular that there must be vastly more
matter in the universe than is visible in our Galaxy (no longer a dramatic
prediction in 1925). Schrédinger’s cautious conclusion that the inertial
anisotropy which arises from the “asymmetric distribution of the masses of our
Milky Way system” is “just about under the limit of astronomical observability”
is quite ironic, since it was based on what we now know is a gross
underestimate of the mass of the Galaxy, which Schrédinger took to be ~2-16
solar masses against the present estimate of 1.4:10'! solar masses. The effect
of the error in the mass was offset somewhat by Schrédinger’s underestimate of
the radius of the Galaxy (200 parsec against the present estimate of 12000
parsec), but he still underestimated the mass-anisotropy effect of the Galaxy by
about 1000 times. As Nordtvedt (1975) showed 50 years later, such putative
mass-anisotropy effects of the Galaxy would be very readily observable in the
solar system (comparable with the perihelion advance of Mercury). (See also
my comment at the end of the first paragraph of p. 146.)

There are several other points of interest in Schrddinger’s paper. For
example, like Reissner (p. 144, middle of page) Schrodinger insists that a proper
formulation of Machian interaction must be based on modern field-theoretical
notions, and to avoid instantaneous action at a distance he insists that retardation
effects must be taken into account. Admittedly, he is then forced to recognize
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the difficulties to which Ehlers draws attention on p. 466. In fact, it seems to
me that in his penultimate paragraph Schrodinger casts serious doubt on the
whole approach of his paper. So far as I know, the Green’s function approach
described by Raine (p. 274) is the only one in which allowance for retardation
has been directly attempted. Hoyle and Narlikar seek to avoid fields by using
symmetric advanced-retarded potentials (p. 250). In contrast, Wheeler (see
Isenberg’s paper, p. 188), followed by Bertotti and myself (p. 214), seeks to
implement the Machian requirement in a field-theoretical framework through the
initial-value constraints of general relativity. That this may be the route to the
Machian goal was also noted some years ago by Lindblom and Brill (see
Pfister’s comments on p. 324) and was recently advocated by Lynden-Bell,
Katz, and Bicdk (1995).

Finally, it may be noted that Schrédinger, like Einstein and Reissner before
him, clearly thinks that in a Machian approach the inertial properties of
spacetime are to be determined by the matter degrees of freedom alone. On the
evidence of the Tiibingen workshop, there is a growing awareness among
physicists that in the context of general relativity the elimination of a role of
gravitational degrees of freedom can be questioned on physical grounds and
seems extremely difficult to realize mathematically (see Gravitational degrees
of freedom, role in Mach’s Principle in the Index).

J.B.B.
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Weber’s Law and Mach’s Principle

André K. T. Assis

1. Introduction

Recently we applied a Weber’s force law for gravitation to implement
quantitatively Mach’s Principle (Assis 1989, 1992a). In this work we
present a brief review of Weber’s electrodynamics and analyze in greater
detail the compliance of a Weber’s force law for gravitation with Mach’s
Principle.

2. Weber’s Electrodynamics

In this section we discuss Weber’s original work as applied to electro-
magnetism. For. detailed references of Weber’s electrodynamics, see
(Assis 1992b, 1994).

In order to unify electrostatics (Coulomb’s force, Gauss’s law) with
electrodynamics (Ampere’s force between current elements), W. Weber
proposed in 1846 that the force exerted by an electrical charge g, on
another ¢; should be given by (using vectorial notation and in the
International System of Units):

F _44, T, - i'f2+r12f12]. 1)

» ame, 2 22 ¢?
In this equation, ¢,=8.85-107"2 F/m is the permittivity of free space; the
position vectors of g, and g, are r, and r,, respectively; the distance
between the charges is

T, = |l‘1 - l'2| = [(x1 _x2)2+ (yl_y2)2 +(Zl_22)2] "
P,=(r;—ry)/r, is the unit vector pointing from g, to ¢;; the radial
velocity between the charges is given by 7, =dr,/dt=t,"v,,; and the

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 159-171 © 1995 Birkhduser Boston, Inc. Printed in the United States.
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radial acceleration between the charges is

2 [ ] — =S L] 2 [ ]
r dr12 d r12 = [v12 v12 (r12 v12) +l‘12 a12]
277d Tar Ty
where
ety dr, _dvy, _ dr,

=70 12§_dt“’ a12=7 7o
Moreover, ¢= (e, o)~ * is the ratio of electromagnetic and electrostatic
units of charge (u,=4m-10~7 N/A? is the permeability of free space).
This quantity ¢ was first measured experimentally by W. Weber and
Kohlrausch in 1856, when they found ¢=3.1-10® m/s. This was one of
the first unambiguous and quantitative indications of an essential
interconnection between electromagnetism and optics.

In 1848, Weber presented a potential energy U, from which he
could derive his force by F,, = —¢,,dU,,/dr,,:

449, 1 [ flz ] )

12
dmwe, ry,

There is a Lagrangian L and a Hamiltonian H from which we can
also derive his electrodynamics. For a system of two charges ¢, and g,
of masses m, and m, interacting through Weber’s force, we have a
kinetic energy T;, and a Lagrangian energy S, given by:

2 2
V. *V vV, *V m m
Tyem Tt T I T ©
.2
5, 0% 1 1+£], @
dme, 1., 2¢?

Note the change of sign in front of 7% in U,, and S,,.
Weber’s Lagrangian and Hamiltonian are then given by

L=T,-S§ ©)

122

6
E[Eqkﬂ] ~L=T;* Uy ©
k=1 aqk

where ¢,, with k ranging from 1 to 6, represents the velocity com-
ponents, namely, X,, ¥, Z;, X,, ¥, and Z,, respectively.

Weber’s force can be obtained from S, by the usual procedure. For
instance, the x-component of F,, is given by
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xziaslz_aSu: 4.4, xl_xz[l_f_fZ_,_rlzle] )
Aok, ox, dme, rl 22 ¢ )

The main properties of Weber’s electrodynamics are:

A. It complies with Newton’s action and reaction law, which means
conservation of linear momentum for an isolated system of particles
interacting through Weber’s force and through other forces which also
follow the law of action and reaction.

B. The force is always along the straight line connecting the two
charges, which means conservation of angular momentum.

C. The force can be derived from the velocity dependent potential
energy U,,, which means conservation of the total energy E=T,,+ U,,.
Although Weber presented U,, in 1848, he proved the conservation of
energy for his electrodynamics only in 1869 and 1871. In 1847, only one
year after Weber had presented his force law (1), Helmholtz published
his famous paper on the conservation of energy. In this work he showed
that a force which depends on the distance and velocities of the
interacting particles does not conserve energy, even if the force is a
central one. This was the main objection that, from his first paper on
electromagnetism of 1855/56, Maxwell advanced against Weber’s elec-
trodynamics and the reason that, in his own words, prevented him from
considering Weber’s theory as an ultimate one (Maxwell 1965a, 1965b).
Maxwell was wrong, but he only changed his mind in 1871, after
Weber’s proof (Harman 1982). When he wrote the Treatise in 1873, he
presented the new point of view that Weber’s electrodynamics is
consistent with the principle of conservation of energy (Maxwell 1954).
Helmbholtz’s proof of 1847 does not apply to Weber’s electrodynamics
because Weber’s force depends not only on the distance and velocity of
the charges but also on their accelerations. This general case was not
analyzed by Helmholtz at that time.

Other properties of Weber’s law are:

D. When there is no relative motion between the interacting charges
(7,=0 and 7,,=0), we recover Coulomb’s force and Gauss’s law. So all
electrostatics is embodied in Weber’s electrodynamics.

E. Weber suceeded in deriving Faraday’s law of induction (1831)
from his force (Maxwell 1954).

F. Weber derived his force from Ampere’s force (1823) exerted by
the current element I,dl, on I dl;:
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II
d’F, = - 417(; _123f'12[2(d L -dl) =3, -dl)t, d 12)]. ®)
12

Alternatively we can postulate Weber’s law and derive Ampere’s force
between current elements as a special case of Weber’s electrodynamics.
From Ampere’s force (8) Maxwell derived what is known as Ampere’s
circuital law in 1856, twenty years after Ampere’s death. Maxwell was
the first to derive the circuital law even without the term with the
displacement current.

The force between current elements usually found in the textbooks
is due to Grassmann (1845) utilizing the Biot-Savart magnetic field dB,

of 1820, namely

2

d*F, =1dl xdB,=1dl X [ —
12

wy LAl ¢, ]

=— ﬁ"_f;[(dll LdL), — @), £,)dly). ©)
47 T

Ampere’s force (8) complies with the action and reaction law in the
strong form for any independent orientation of each current element,
while this is not valid in general for Grassmann’s force (9). Both
expressions give the same result for the force of a closed current loop of
arbitrary form on a current element of another circuit. In the last ten
years many experiments have been performed trying to distinguish (8)
and (9) in situations involving a single circuit (for instance, measuring
and calculating the force and-tension on a mobile part of a closed circuit
due to the remainder of the circuit). Although most experiments seem to
favor Ampere’s force over Grassmann’s one, the situation is not yet
completely clear, and more experiments and theoretical analysis are
desirable before a final conclusion can be drawn. For references on this
topic see (Assis 1989, 1992b, 1994).

It should be remembered that Maxwell knew both expressions, (8)
and (9). When comparing these assumptions he said that “Ampere’s is
undoubtedly the best, since it is the only one which makes the forces on
the two elements not only equal and opposite but in the straight line
which joins them” (Maxwell 1954, vol. 2, § 527, p. 174).

The last property of Weber’s law to be discussed here is undoubtedly
one of the most important of them. It is also closely related to Mach’s
Principle:

G. The law depends only on the relative distance between the par-
ticles, ry,, on the relative velocity between them, 7,, = dr,,/dt, and on
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the relative radial acceleration between them,

P, =dr,ldt=d’r,/dt*.
This is what we call a relational theory. These terms have the same value
in all frames of reference, even for noninertial ones.

This is a distinguishing feature of Weber’s electrodynamics. In the
other formulations of electromagnetism the terms in the velocity and
acceleration of the particles which are relevant depend on the velocities
or accelerations of the charges either relative to a material medium like
the ether, or relative to an inertial frame of reference. This last situation
is typical of Lorentz’s force law, F=gE+gv xXB, where v is the velocity
of the charge ¢ relative to an arbitrary inertial frame of reference (and
not, for instance, relative to the laboratory or to the magnet which
generated the magnetic field B).

After this short review we shall discuss the relation of Weber’s
electrodynamics to Mach’s Principle.

3. The Mach-Weber Model

In order to implement quantitatively Mach’s Principle we need to modify
Newton’s law of gravitation by including terms which depend on the
velocity and acceleration between the interacting bodies. This was never
done by Mach himself. In our opinion the best model in this direction
seems to be some kind of Weber’s law for gravitation. In the first place
this would comply with Mach’s idea that only relative positions and
motions are important, as this force depends only on r,, 7,,, and #,,. It
also depends on the accelerations of the source and test bodies. So it has
embodied in it the possibility of deriving ma, the centrifugal and Coriolis
forces as real gravitational forces arising from the relative acceleration
of the test body and the remainder of the universe.

Here we list some (but not all) people who have worked with this
model. The first to propose a Weber’s law for gravitation seems to have
been G. Holzmiiller in 1870 (North 1965, p. 46). Then Tisserand, in
1872, studied a Weber’s law for gravitation and its application to the
precession of the perihelion of the planets (Tisserand 1872, 1895).
Weber himself and Zo6lner obtained this law as applied to gravitation
around 1876, when implementing the idea of Young and Mossotti of
deriving gravitation from electromagnetism (Assis 1992b; Woodruff
1976). Later on Paul Gerber obtained- essentially the same potential
energy up to second order in 1/c (Gerber 1898). He obtained this law
independently, following ideas of retarded time, without discussing
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Weber’s work. He also studied the precession of the perihelion of the
planets. Gerber’s work was criticized by Seeliger (Seeliger 1917), who
was aware of Weber’s electrodynamics. The work of Tisserand applying
a Weber’s law for gravitation in celestial mechanics was also discussed
by Poincaré in a course which he delivered at the Faculté des Sciences
de Paris during 1906-1907 (Poincaré 1953, see especially p. 125 and
Chap. IX, pp. 201-203, “Loi de Weber”). None of the authors tried to
implement Mach’s Principle with these force laws.

Although Mach dealt with many branches of physics (mechanics and
gravitation, optics, thermodynamics), we are not aware that he ever
mentioned Weber’s electrodynamics. We also do not know any reference
of Einstein to Weber’s force or potential energy. The first to suggest a
Weber’s law for gravitation in order to implement Mach’s Principle
seems to have been I. Friedlaender in 1896 (Friedlaender and Fried-
laender 1896, p. 17, footnote, p. 310 in this volume). They seem to have
been also the first to suggest that inertia should be related to gravitation.
Hofler in 1900, although opposing Mach, mentioned Weber’s electro-
dynamics when discussing Mach’s Principle (Norton 1995). Hofmann in
1904 suggested a kinetic energy that depended on the product of the
masses, on a function of the distance between the interacting masses, and
on the square of their relative speed, which is somewhat similar to
Weber’s potential energy when applied to gravitation (this volume, p.
128). In this century we have Reissner and Schrodinger considering
relational quantities in gravitation to implement Mach’s Principle
(Reissner 1914, 1915, this volume, p. 134; Schrodinger 1925, this
volume, p. 147). They arrived independently at a potential energy very
similar to that of Weber, apparently without being aware of Weber’s
electrodynamics. In 1933, we have Przeborski discussing Weber’s law
and other expressions in connection with Newton’s second law of
motion, although not analyzing Mach’s Principle directly (Przeborski
1933). More recently we have Sciama (1953). Although he made an
analogy between gravitation and electromagnetism, he did not work with
a relational force law, and his expression did not even comply with
Newton’s action and reaction principle. He also did not mention Weber’s
electrodynamics. Brown was closer to this idea, although his force law
is different from Weber’s one (Brown 1955, 1982). Moon and Spencer
published an important work on this topic (Moon and Spencer 1959),
although they did not consider Weber’s law or relational quantities.
Edwards worked explicitly with relational quantities and with analogies
between electromagnetism and gravitation (Edwards 1974). Once more
Weber’s electrodynamics is not mentioned. Barbour and Bertotti opened
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new lines of research working not only with relational quantities but with
intrinsic derivatives and with the relative configuration space (RCS) of
the universe (Barbour 1974; Barbour and Bertotti 1977, 1982). Eby
worked along this line and studied the precession of the perihelion of the
planets (Eby 1977). Although he worked essentially with a Weber’s
Lagrangian, he did not mention Weber’s work. Treder, von
Borzeszkowski, van der Merwe, Yourgrau, and collaborators have
worked with and discussed explicitly a Weber’s force applied to
gravitation. References to their original works and to other authors can
be found in (Treder 1975; Treder, von Borzeszkowski, van der Merwe,
and Yourgrau 1980). Ghosh worked with closely related ideas, although
he was not aware of Weber’s force (Ghosh 1984, 1986, 1991). More
recently we have Wesley and a direct use of Weber’s law (Wesley 1990).
He also worked with a potential similar to Schrodinger’s potential energy
(Schrodinger 1925), without being aware of that work.

Although we could quote many other authors and papers, we stop
here. This short list gives an idea of the continuing effort and research
that has been performed by many important people along this line (trying
to implement quantitatively Mach’s Principle by some kind of Weber’s
law). We are following these ideas, although we were not aware of many
of these works when we began. Here we present how we deal with this
subject (Assis 1989, 1992a).

Our basic idea is to begin with a gravitational potential energy
between two particles given by
m 1m 2 r f2 10
U, = -H [1—%7] exp(—ar.,). (10)
In this expression, H, is an arbitrary constant, m,,, are gravitational
masses, £ is a dimensionless constant, and « gives the characteristic
length of the gravitational interaction. Newton’s potential energy is (10)
with H,=G, £=0, and o=0.

The first to propose an exponential decay in the gravitational
potential energy were Seeliger and Neumann, in 1895-1896. What they
proposed would be equivalent to (10) with H,=G and £=0. An expo-
nential term in Newton’s gravitational force (but not in the potential) had
been proposed much earlier by Laplace, in 1825. For references and
further discussion see (Assis 1992a; North 1965, pp. 16-18; Laplace
1969; Seeliger 1895). In this century there is a remarkable paper by W.
Nernst proposing an exponential decay in gravitation (Nernst 1937).
These exponential decays have been proposed as an absorption of gravity



166 André K. T. Assis

due to the intervening medium, in analogy with the propagation of light.
In this case o« would depend on the amount and distribution of the
intervening matter in the straight line between m,; and m,,. Alternatively
it has also been proposed to solve some gravitational paradoxes arising
in an infinite and homogeneous universe (indefinite value of the potential
or of the gravitational force). In this last situation o may be considered
as a universal constant irrespective of the medium between m,, and m,,.

To our knowledge we were the first to propose the exponential decay
in a Weberian potential (Assis 1992a).

To simplify the analysis in this work, we will consider the arbitrary
constant H, as equal to Newton’s gravitational constant G. Moreover we
will treat o as a constant irrespective of the medium between the
particles 1 and 2. Its value will be taken as a=H,/c, where H, is
Hubble’s constant (Assis 1992a). We will also take £=6, as in our
previous work (Assis 1989, 1992a).

The force exerted by m, on m, can be obtained utilizing F, =
—1,,dU,,/dr,,. This yields:

2 -
_Er12+£r12r12
2 ¢? c?

H 7
o, ' - %%} ] exp(—~H,r,,/C). (b
We now integrate this expression for a particle of gravitational mass
m,, interacting with an isotropic, homogeneous and infinite universe. Its
average gravitational matter density is represented by p,. In order to
integrate we utilize spherical coordinates and replace m,, by p,r3 sin 6,
dr,db,de,. We integrate from ¢,=0 to 27, from 6,=0 to 7, and from
r,=0 to infinity. The procedure is the same as in (Assis 1989, 1992a).
We perform the integration in a frame of reference relative to which the
universe as a whole (the set of distant galaxies) has an overall
translational acceleration a, and is rotating with an angular velocity w,(7).
Relative to this arbitrary frame of reference, the particle m,, is located
at the position r; and has a velocity v, =dr,/dt and acceleration a,=dr,/
dr*. The final result of the integration is found to be

d
F,=—Am, [a1+ w, X (w, Xr,)—2w, Xv,— ;;“ Xrl—a\] . (12

In this expression
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4w, €

_ ® _ _4m 4, Py
A=H 0, j _ryexp(—ar,)dr, = TGE?F' (13)

0
In Newtonian mechanics, this expression is zero.

To complete the formulation of a Machian dynamics, we need the
principle of dynamical equilibrium (Assis 1989). According to this
principle, the sum of all forces of any nature (gravitational, electro-
magnetic, elastic, nuclear, etc.) on any particle is always zero in all
coordinate frames, even when the particle is in motion and accelerated.
We represent by LY_,F; the resultant force acting on m,, due to N local
bodies j (like the gravitational force of the earth and the sun, contact
forces, electromagnetic forces, friction forces, etc.). The principle of
dynamical equilibrium can then be expressed as:

N
Y F,+F, =0. (14)
= A ul

Utilizing (12) this can be written as

Eﬁi F.

J1
Y —m @ X (@, Xr,) +2m XV,

u

dt

This is essentially Newton’s second law of motion with ‘fictitious’
forces. In the Mach-Weber model these are real gravitational forces
which arise in any frame of reference in which the universe as a whole
has a translational acceleration a, and is rotating as a whole with an
angular velocity w,. The proportionality between Newton’s inertial and
gravitational masses (the principle of equivalence) is derived at once in
this model as the right-hand side of (15) arose from the gravitational
interaction (12) of m,, with the isotropic matter distribution surrounding
it. The constant A must be exactly equal to 1, and this is known to be
approximately true since the 1930s with Dirac (Assis 1989, 1992a).
Equation (15) takes its simplest form in a frame of reference in which the
universe at large is essentially stationary (a,=0, w,=0, dw,/dt=0). This
explains the coincidence (in Newtonian mechanics) that the frame of the
fixed stars is the best inertial frame we have, namely, a frame in which
there are no fictitious forces (Schiff 1964).

- 15
+*my—Xr +ma =m.a,. (15)
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Discussion

Vucetich: When you introduce the expression for the force, you
explicitly introduce Hubble’s constant, which is not a constant, generally,
but varies in time. So do you get a varying gravitational constant?
Assis: The Hubble constant in this model is introduced as the term in
the exponential decay. So if you write that expression in terms of
Hubble’s constant, you have two choices: If the universe is expanding
and so on, you get that the Newtonian gravitational constant is related to
Hubble’s constant. If one is varying, the other is also varying. But if
the universe has no expansion, and Hubble’s law of red shift has another
origin, like tired light or any other thing, then Hubble’s constant and
Newton’s gravitational constant will be constant in time. So that depends
on the origin of the red shift.

Lynden-Bell: You take a totally isotropic universe.

Assis: No, I assume you can always divide the universe into two parts
- one anisotropic, and one isotropic.

Lynden-Bell: Yes, but I think if you take a small but significant thing
like the center of the Galaxy, or the Great Attractor, or something like
that, which is far away, and in the system, you’ll find that the mass is
slightly anisotropic.

Assis:  Not necessarily, because this anisotropy may also appear in the
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other constants, which you apply in the force. So, like Dicke (1961,
1964) said, the effects may cancel out in the end.

Lynden-Bell: Well, that might happen, but I think in a purely
gravitational situation, I don’t think it does [see, for example, (Nordtvedt
1975)].

Brill: If you try to implement into your scheme the principle of
relativity, according to which influences take a finite time to propagate,
would you then need to introduce advanced potentials? If I start
accelerating now, then I see the distant universe accelerate now; but
because what I see now happened earlier, the universe must have started
accelerating a long time ago.

Assis: Yes, what I would say is that only recently have people begun to
introduce retardation in Weber’s law. There is a paper by Wesley
(1990), who introduced that since 1987. Not only in electrodynamics,
but also in gravitation. And so the situation is still open with regard to
what we will get with retardation in Weber’s law applied to gravitation
and electrodynamics. But this is a new area of research which is being
performed nowadays, so I can’t answer it now.
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A Relative Newtonian Mechanics

Donald Lynden-Bell

1. Introduction

Newton was well aware of the difficulty of defining absolute space. In
the Principia (Newton 1687, Cajori 1934) he writes (my italics):

It is indeed a matter of greatr difficulty to discover and effectually to
distinguish the true motions of particular bodies from the apparent, because
the parts of that immovable space in which those motions are performed do
by no means come under the observation of our senses. Yet the thing is not
altogether desperate.

To Newton absolute space was part of reality. To Leibniz,! it was
a useful invention for simplifying calculations of the relationships
between bodies (Alexander 1984).

Can we rebuild Newtonian mechanics without the concept of absolute
space? In this paper, a purely relative Lagrangian is found that yields
the same results as Newtonian mechanics in all cases when the angular
momentum of the whole universe is zero.

2. Relativity of Translation
This is most readily done from the Lagrangian

L=T-V, 1)
where

1 [dr])’ @)
T",Zi’”f[ﬁ]’

and

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
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= —GZ Y mmir,. 3)

i<
Why is one of these terms a sum ovér all particles and the other a sum
over all pairs of particles? Why does the first change when we choose
a moving or rotating frame while the other does not?
Relative to axes moving with velocity v(z), the kinetic energy is

d_ 2
T-Y dm | Sy =7-Mu-v+Lmv?, @
v 2 ' dt 2

where
1 dr,
M=Y"m and u=—_Y"m . &)
S wd - L8
Now minimize 7, over all possible choices of v(f), and we find
= ()
v=u,

and the minimum value, T", of 7T, is, after a little manipulation and writ-
ing ry=r;—r,

EZ o [ ] @)

Notice that 7° is a double sum like V and only involves the relative
velocities, so, like V, it is invariant under the transformation r—r;+ A(z).
Hence the new Lagrangian, L*=T"—V, gives no equation for the motion
of the center of mass. We can take it to move how we like! Lagrange’s
equations are

Gm. Jmr;
J

= — 8

Jz;e; ri 2;: Tar 7 ®
If we decide to choose axes so that the mass center of the universe moves
uniformly in a straight line, then in such axes the final term vanishes, so
we recover the Newtonian equations. However, we are at liberty to
choose axes that move more jerkily, in which case the final term
remains. The new Lagrangian may be written

) ;)" M| ©)
T T T 5|5 -2

r..
g

in this form it is remarkable that G only occurs in the product GM. The
initial M ! is irrelevant as the variation of ML gives the same result as
the variation of L*. Then G and the mass of the universe occur only in
the product GM. This suggests, but in no way proves, that the value of
the gravitational constant is in some way determined by the mass of the
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universe.

The relative motions of the bodies are the same in all such axes and
those are the observables. However 7" is not purely relative; nor is L,
so although this dynamics is invariant to arbitrary time-dependent
displacements of the axes, it is not invariant under transformation to
rotating axes. Rotation remains absolute.

3. Relativity under Rotation

To remove absolute rotation from Newtonian mechanics, we make a
similar modification of 7%. Relative to axes that rotate at angular
velocity (f), the kinetic energy is

mm. [ dr, 2
Ty = il [_v—n xr,..] : (10)
RN vl e

Minimizing this over all choices of Q(¢), we find, calling the Q of the
minimizing frame Q*(),

EZ o [ —0* x ,]xr,.j=0 an

which yields

I-9° =], (12)
where 1, the moment of inertia about the barycenter, is
mm,
g(t)=_zzj fuj dry —r.x,), (13)
i<

0 is the unit tensor (Kronecker’s symbol), and J, the angular momentum
of the universe about its barycenter is

dr

) (14)
Oy dt

The minimum kinetic energy is given by
T ** [ ] _J . I ~ J (15)

To demonstrate more explicitly that this kinetic energy is independent of
the rotating frame chosen to write it in, we write r,=rf,, where r; is
the purely relative distance and f; is the unit vector in the initial axes.
Its rate of change may be written in those axes
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@ e

We may then rewrite the kinetic energy as

mm. ([ dr,)*
ok _ i Y + —-0O* 2 (17)
T ;XJ: 2M{[E] [(w;—2*) Xr,] },

which clearly depends only on the relative angular velocity w;—Q",
which is independent of the frame. It is the angular velocity of &; as
seen by an observer in the Q°(f) frame. It is related to the angular
momentum in the initial frame by (12).

Now consider the mechanics that follows from the Lagrangian
L™=T"-V. In L™ the quantity J is not fixed but is a shorthand for
expression (14), and r; and dr;/dt are to be varied. Expressions (7) and
(15) only differ in the last term —J-I"'J/2. The first-order variation of
this term is —&J-I - J—J-6[*-J/2. Whatever the § terms are, this is
zero if J, the angular momentum of the universe in the Newtonian frame,
is zero. Thus in a Newtonian universe with zero angular momentum the
new dynamics given by L™ precisely agrees with Newton’s.

The new dynamics is non-Newtonian in that it has no absolute space
and is purely relative. It does not predict motions of bodies but rather
their separations and relative orientations as functions of time. To
compare its predictions with Newtonian theory, we must predict those
relative quantities according to Newtonian theory. From the discussion
of the last paragraph, we see that when Newtonian theory is applied to
a universe with J=0 in absolute Newtonian axes, then the relative
dynamics’ Lagrangian L™ is equivalent to L", which was shown to give
exactly the same relative motions as Newtonian mechanics in our
discussion in Sec. 1, Relativity of Translation. For such universes the
new relative dynamics gives the same predictions as Newton’s.
However, now suppose that absolute space exists and Newtonian
mechanics governs even universes that rotate relative to absolute axes.
In such universes J#0. If, perhaps wrongly, we were to apply the new
relative mechanics, will its predictions differ from those found from
Newtonian mechanics? The answer is yes!

Translating what the new relative mechanics predicts into the more
familiar Newtonian language, its answer for the relative motions is that
given by the following procedure. Take the given initial positions and
velocities in absolute axes permanently zeroed at the barycenter. Take
off from the resulting initial velocities the rotational velocity Q" Xr,,
where Q"=I""-J. This, of course, gives the initial velocities relative to
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axes rotating with ©°. Now work out the motions that Newton would
have predicted from these doctored initial conditions kad he forgotten
that these axes rotate! These motions clearly do not obey true
Newtonian mechanics unless 9"=0 (i.e., unless J=0)! However, the
relative motions predicted by adopting this procedure and then calculating
the resulting relative motions are exactly those predicted by the new
relative mechanics. In this sense the new mechanics differs from
Newton’s if the universe rotates in absolute space.

However, the evidence suggests that the universe does not rotate; so
applied to it the new mechanics predicts the same relative motions as
Newton’s. Furthermore, the new mechanics has extra symmetries and
does away with absolute space, so it is perhaps preferable to the
Newtonian description. If we adopt it as a revised correct ‘Classical
Mechanics,’ then there is no meaning to the motion of the center of mass
of the universe and no meaning to the rotation or angular momentum of
the universe because all motion is relative!

One part can, of course, rotate relative to another. The Lagrangian
L™ is invariant to arbitrary time-dependent rotations of axes Q(¢) and to
arbitrary time-dependent translations A(f). It is convenient in practice
to choose a frame in which parts of the system that are far distant from
any subsystem that concerns us have as little effect as possible. This is
conveniently done by choosing axes such that for the universe at all times

m.m. _
; ; I'M’rij X¥,;=0

and
Y m i, =Mu=const.

In such a frame the equations are Newtonian, and we can consider
the isolated subsystems as independent except for the influence of the
universe, which is perceived only through these inertial axes.

Although rediscussions of Newtonian mechanics such as this may
clarify some seventeenth-century issues, they are no substitute for a full
general relativistic discussion of the relativity of inertia, some steps
towards which are given in this book. Many past attempts [for example,
those of Al’tshuler (1967), Lynden-Bell (1967), Sciama et al. (1969),
and Raine (1975, 1981)] are unsatisfactory since they neglect energy and
momentum in gravitational waves as a source of inertia.
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4. Retrospect

The considerations above are in the spirit of the seventeenth century and
cannot be converted readily into a relativistic theory (Barbour and
Bertotti 1982; Earman 1989). However, in the course of trying the first
step I found an interesting quantity in special relativity that needs further
physical interpretation. It is placed here so others may be intrigued and
interpret physically.

In special relativity the total energy E and momentum P are the sums
of those of the independently moving components

E=Y e, P=3p; (18)

E?—P3c? is invariant to changes to moving axes. Hence the minimum
of E, E7, is attained in axes for which P=0. Now put Im,=M and
consider

Et2_(MCZ)2. (19)
After some manipulation I find, writing €7=(e;+¢,*— (p,+p,)’c’,
E**—(Mc)*=Y ¥ {e;” — [(m+m)c?]?}. (20)
i< j

If one calls E**—(Mc?? the ‘kinergy,” then Eq. (20) says that the kinergy
of the system is the sum of the kinergies of all pairs of the particles that
constitute the system. Note that the kinergy is not the square of the
kinetic energy in the center-of-mass frame.

This article is closely related to that published in the Symposium in
honor of Michael Feast (Lynden-Bell 1992).

Note added 3 October 1994. For the general-relativity version of
this work, the reader is referred to the paper by Lynden-Bell, Katz, and
Bitdk (1995) “Mach’s Principle from the Relativistic Constraint
Equations.” Monthly Notices of the Royal Astronomical Society 272:
150-160.

NOTE

Huygens, Berkeley, Mach, and Einstein were all critical of absolute space!
Bondi gives a fine discussion of the issues. The development here is in the
spirit of Barbour and Bertotti (1977) and turns out to be mathematically
equivalent to the quasi-Newtonian example given in §3 of Barbour and Bertotti
(1982), although that equivalence is not apparent.
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3. General Relativity as a
More or Less Machian Theory

Introduction

This chapter opens with selected comments by Einstein that relate to the
Machian issue. Further comments will be found under Einstein in the
separate Quotations Index at the bottom of p. 636; see also Hoefer’s
paper, p. 67. Note especially the difference between Einstein’s
formulation of the relativity principle in terms of form invariance of the
laws of nature in different coordinate systems and Poincaré’s coordinate-
free formulation in terms of the physical quantities that need to be posed
in an initial-value problem for the evolution of the universe as a whole
(p. 111-112). Poincaré’s formulation is much closer to Mach’s
instinctive conviction and supplies a precise criterion, which is not easy
to garner from Einstein’s statements.

It is striking how many different formulations Einstein gives: form
invariance of the laws of nature in different coordinate systems (1907,
1909, 1911); inertial mass must arise from interaction with other masses
(1912, 1913, 1917); the principle of sufficient reason - observable
effects must have observable causes (1914, 1916); general covariance
needed because all measurements are merely verifications of coincidences
(1916, 1918); the metric tensor must be completely determined by the
matter in the universe (1918); a dynamical theory should not contain
entities that act but which are not acted upon (p. 458).

The papers by Barbour and Isenberg basically attempt to analyze the
dynamical structure of general relativity from Poincaré’s initial-value
standpoint. Both of these papers and King’s contribution assume that in
the determination of inertial frames of reference gravitational degrees of
freedom are on an equal footing to matter degrees of freedom.

J.B.B.

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, p. 179 © 1995 Birkhdiuser Boston, Inc. Printed in the United States.



Selected Passages on Machian Ideas

Albert Einstein

Hitherto we have applied the principle of relativity, i.e., the assumption
that the laws of nature are independent of the state of motion of the
reference system, only to systems of reference free of acceleration. Is it
conceivable that the principle of relativity is also valid for systems that
are accelerated relative to each other?.... In what follows, we shall
assume the complete physical equivalence of a gravitational field and a
corresponding acceleration of the reference system.

This assumption extends the principle of relativity to the case of
uniformly accelerated translational motion of the reference system
(Einstein 1907).

The treatment of the uniformly rotating rigid body seems to me to be of
great importance on account of an extension of the relativity principle to
uniformly rotating systems along analogous lines of thought to those that
I tried to carry out for uniformly accelerated translation in the last
section of my paper published in the Zeitschrift fiir Radioaktivitdit [sic]
(Einstein (1909).

This assumption of exact physical equivalence [of a uniform gravitational
field and uniform acceleration] makes it impossible for us to speak of the
absolute acceleration of the system of reference, just as the usual theory
of relativity forbids us to talk of the absolute velocity of a system
(Einstein 1911).

In itself, this result is of great interest. It shows that the presence of the
inertial shell K increases the inertial mass of the material point P within
it. This makes it plausible that the entire inertia of a mass point is the
effect of the presence of all other masses, resulting from a kind of
interaction with them. This is exactly the standpoint for which E. Mach
has argued persuasively in his penetrating investigations of this question
(Einstein 1912).

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
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The theory [Einstein—Grossmann] that has been outlined eliminates an
epistemological shortcoming that is present in not only the original
theory of relativity but also in Galilean mechanics and has been
emphasized by E. Mach in particular. It is clear that the concept of
acceleration of a material point can no more be given an absolute
significance than can that of velocity. Acceleration can only be defined
as relative acceleration of a point relative to other bodies. This
circumstance indicates that it is meaningless to ascribe to a body a
resistance relative to acceleration as such (inertial resistance of bodies in
the sense of classical mechanics); much rather, it must be required that
the appearance of an inertial resistance be tied to the relative acceleration
of the considered body relative to other bodies. It must be required that
the inertial resistance of a body can be increased by bringing unaccel-
erated ponderable masses into the neighborhood of the body (Einstein
1913a).

To avoid misunderstanding, it should be said once more that I do not,
any more than Mach, assert a logical necessity of the relativity of inertia.
But a theory in which the relativity of inertia does hold is more satisfying
than the theory currently used, since in the latter an inertial system is
introduced whose state of motion is not determined by the state of the
observable objects, i.e., is not determined by anything accessible to
observation, while on the other hand it is supposed to play a determining
role in the behavior of material points.

The concept of the relativity of inertia demands moreover not only
that the inertia of a mass A be increased by the accumulation of masses
BC... at rest in its neighborhood but also that the increase of the inertial
resistance should have no effect if the masses BC... are accelerated
together with the mass A. One can also express this as follows: The
acceleration of the masses BC... must induce an accelerating force on 4
that is in the same direction as the acceleration. One sees in this way
that the extra accelerating force must overcompensate the increase of the
inertia caused by the mere presence of BC..., since in accordance with
the relation between energy and inertia of systems the system ABC... as
a whole must have a smaller inertia the smaller is its gravitational
energy...

Equations (7¢’) and (1d) [not reproduced here] show how slowly
moving masses act on each other in accordance with the new gravita-
tional theory. To a large degree, the equations correspond to those of
electrodynamics: g,, corresponds to the scalar potential of electrical
masses except for its sign and for the circumstance that the factor 1/2
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occurs in the first term on the right-hand side of (1d). g [g is the vector
with components g,,, g, &s.] corresponds to the vector potential of
electrical currents; the second term on the right-hand side of (1d), which
corresponds to an electric field strength that derives from the time
variation of the vector potential, yields precisely the induction effect in
the same direction as the acceleration that we must expect in accordance
with the concept of inertia of energy. The vector o [curl g] corresponds
in electrodynamics to the magnetic field strength (curl of the vector
potential), and thus the final term in (1d) corresponds to the Lorentz
force.

It should also be recalled that a term of the form ¢ Xo occurs in the
theory of relative motion in mechanics, being known as the Coriolis
force. It can be shown on the basis of (7e¢’) that in the interior of a
rotating shell there exists a field of the vector o, and this has the
consequence that the plane of oscillation of a pendulum that is set up in
the interior of the shell is not fixed in space but must, as a consequence
of the rotation of the shell, execute a precession in the same sense as the
rotation. This result too is to be anticipated - and was anticipated long
ago - in the sense of the relativity of inertia. It is noteworthy that in this
respect too the theory corresponds to such a conception; unfortunately,
the effect that is to be expected is so small that we cannot hope to
establish it through terrestrial experiments or in astronomy (Einstein
1913b).

But the confidence that we have in the theory of relativity has still
another root. It is difficult to dismiss the following consideration. If K’
and K are two coordinate systems that are in uniform motion relative to
each other, then from the kinematic standpoint these systems are entirely
equivalent. Therefore, we seek in vain for a sufficient reason why one
of these systems should be more suitable than the other as a reference
system for the formulation of the laws of nature; much rather, we feel
forced to postulate the equivalence of the two systems.

However, this argument immediately brings forth a counter argu-
ment. Namely, the kinematic equivalence of two coordinate systems is
by no means restricted to the case in which the two considered coor-
dinate systems are in uniform translational motion. This equivalence
from the kinematic standpoint exists, for example, just as well if the
systems rotate uniformly relative to each other. One feels forced to the
assumption that the theory of relativity as it has hitherto existed should
be generalized to a large degree, so that the apparently unjustified
preference for uniform translation over relative motions of other kinds
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disappears. Anyone who has thought about this matter seriously must
experience this need for such an extension of the theory.

It does at first appear that such an extension of the theory of
relativity is to be rejected on physical grounds. Let K be an allowed
coordinate system in the Galilei-Newton sense and K’ be a coordinate
system that rotates uniformly with respect to K. Then masses at rest in
K' are subject to centrifugal forces, which do not act on masses at rest
in K. Newton already saw in this a proof that the rotation of K’ is to be
regarded as ‘absolute’ and that therefore one cannot treat K’ on an equal
footing with K as being ‘at rest.” But, as E. Mach in particular has
noted, this argument is not decisive. We do not need to attribute the
existence of the centrifugal forces to the motion of K’; instead, we can
just as well attribute them to the average rotational motion of the distant
ponderable masses relative to K', this K’ now being regarded as ‘at rest.’
If Newton’s laws of mechanics and gravitation do not admit such an
interpretation, the reason for this may well be a shortcoming of this
theory (Einstein 1914).

In classical mechanics, and no less in the special theory of relativity,
there is an inherent epistemological defect which was, perhaps for the
first time, clearly pointed out by E. Mach. We will elucidate it by the
following example: Two fluid bodies of the same size and nature hover
freely in space at so great a distance from each other and from all other
masses that only those gravitational forces need be taken into account
which arise from the interaction of different parts of the same body. Let
the distance between the two bodies be invariable, and in neither of the
bodies let there be any relative movements of the parts with respect to
one another. But let either mass, as judged by an observer at rest
relatively to the other mass, rotate with constant angular velocity about
the line joining the masses. This is a verifiable relative motion of the
two bodies. Now let us imagine that each of the bodies has been
surveyed by means of measuring instruments at rest relatively to itself,
and let the surface of S, prove to be a sphere, and that of §, an ellipsoid
of revolution.

Thereupon we put the question - What is the reason for this differ-
ence in the two bodies? No answer can be admitted as epistemologically
satisfactory, unless the reason given is an observable fact of experience.
The law of causality has not the significance of a statement as to the
world of experience, except when observable facts ultimately appear as
causes and effects.

Newtonian mechanics does not give a satisfactory answer to this
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question. It pronounces as follows: The laws of mechanics apply to a
space R,, in respect to which the body S, is at rest, but not to a space R,
in respect to which the body S, is at rest. But the privileged space R, of
Galileo, thus introduced, is a merely factitious cause, and not a thing that
can be observed. It is therefore clear that Newton’s mechanics does not
really satisfy the requirement of causality in the case under consideration,
but only apparently does so, since it makes the factitious cause R, res-
ponsible for the observable difference in the bodies S, and S,.

The only satisfactory answer to the question addressed above must
be that the physical system consisting of §; and S, reveals within itself
no imaginable cause to which the differing behaviour of §; and S, can be
referred. The cause must therefore lie outside this system. We have to
take it that the general laws of motion, which in particular determine the
shapes of S, and §,, must be such that the mechanical behaviour of S,
and §, is partly conditioned, in quite essential respects, by distant masses
which we have not included in the system under consideration. These
distant masses (and their motions relative to §; and §,) must then be
regarded as the seat of the causes (which must be susceptible to
observation) of the different behavior of our two bodies S, and §,. They
take over the role of the factitious cause R,. Of all imaginable spaces R;,
R,, etc., in any kind of motion relatively to one another, there is none
which we may look upon as privileged a priori without reviving the
above-mentioned epistemological objection. The laws of physics must be
of such a nature that they apply to systems of reference in any kind of
motion. Along this road we arrive at an extension of the postulate of
relativity (Einstein 1916).

We therefore reach this result: In the general theory of relativity,
space and time cannot be defined in such a way that differences of the
spatial co-ordinates can be directly measured by the unit measuring rod,
or differences in the time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates into the space-
time continuum in a definite manner thus breaks down, and there seems
to be no other way which would allow us to adapt systems of coordinates
to the four-dimensional universe so that we might expect from their
application a particularly simple formulation of the laws of nature. So
there is nothing for it but to regard all imaginable systems of co-
ordinates, on principle, as equally suitable for the description of nature.
This comes to requiring that:

The general laws of nature are to be expressed by equations which
hold good for all systems of co-ordinates, that is, are co-variant with
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respect to any substitutions whatsoever (generally co-variant).

It is clear that a physical theory which satisfies this postulate will be
suitable for the general postulate of relativity. For the totality of all
substitutions certainly includes those which correspond to all relative
motions of (three-dimensional) systems of co-ordinates. That this
requirement of general co-variance, which takes away from space and
time the last remnant of physical objectivity, is a natural one, will be
seen from the following reflection. All our space-time verifications
invariably amount to a determination of space-time coincidences. If, for
example, nothing happened in the world but the motion of material
points, then ultimately nothing would be observable but the meetings of
two or more of these points. Moreover, the results of our measurings
are nothing but verifications of such meetings of the material points of
our measuring instruments with other material points, coincidences
between the hands of a clock and points on the clock dial, and observed
point-events happening at the same place at the same time.

The introduction of a system of reference serves no other purpose
than to facilitate the description of the totality of such coincidences
(Einstein 1916).

In a consistent theory of relativity there can be no inertia relatively to
‘space,” but only an inertia of masses relatively to one another. If,
therefore, I remove a mass to a sufficient distance from all other masses
in the universe, its inertia must fall to zero (Einstein 1917).

The theory, as it now appears to me, rests on three main points of view,
which, however, are by no means independent of each other...:

a) Relativity principle: The laws of nature are merely statements
about space-time coincidences; they therefore find their only natural
expression in generally covariant equations.

b) Equivalence principle: Inertia and weight are identical in nature.
It follows necessarily from this and from the result of the special theory
of relativity that the symmetric ‘fundamental tensor’ [g,,] determines the
metrical properties of space, the inertial behavior of bodies in it, as well
as gravitational effects. We shall denote the state of space described by
the fundamental tensor as the ‘G-field.’
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¢) Mach’s Principle): The G-field is completely determined by the
masses of the bodies. Since mass and energy are identical in accordance
with the results of the special theory of relativity and the energy is
described formally by means of the symmetric energy tensor (7,,), this
means that the G-field is conditioned and determined by the energy
tensor of the matter (Einstein 1918a).

DHitherto I have not distinguished between principles (a) and (c), and this was
confusing. I have chosen the name ‘Mach’s principle’ because this principle has
the significance of a generalization of Mach’s requirement that inertia should be
derived from an interaction of bodies.

We want to distinguish more clearly between quantities that belong to a
physical system as such (are independent of the choice of the coordinate
system) and quantities that depend on the coordinate system. Ones initial
reaction would be to require that physics should introduce in its laws
only the quantities of the first kind. However, it has been found that this
approach cannot be realized in practice, as the development of classical
mechanics has already clearly shown. One could, for example, think -
and this was actually attempted [Einstein is here presumably referring to
the work of Hofmann and Reissner] - of introducing in the laws of
classical mechanics only the distances of material points from each other
instead of coordinates; a priori one could expect that in this manner the
aim of the theory of relativity should be most readily achieved.
However, the scientific development has not confirmed this conjecture.
It cannot dispense with coordinate systems and must therefore make use
in the coordinates of quantities that cannot be regarded as the results of
definable measurements (Einstein 1918b).

Mach conjectures that in a truly rational theory inertia would have to
depend upon the interaction of the masses, precisely as it was true for
Newton’s other forces, a conception which for a long time I considered
as in principle the correct one. It presupposes implicitly, however, that
the basic theory should be of the general type of Newton’s mechanics:
masses and their interaction as the original concepts. The attempt at such
a solution does not fit into a consistent field theory, as will be
immediately recognized (Einstein 1949).

When not otherwise indicated, translations by Julian B. Barbour
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Wheeler-Einstein-Mach Spacetimes

James Isenberg

1. Introduction

Throughout the history of the natural sciences, physical principles - such
as the Atomic Principle, the Cosmological Principle, the Principle of
Conservation of Energy, the Equivalence Principle, the Parity Principle,
the Quantum Principle, and Mach’s Principle - have been formulated and
used in addressing fundamental issues in physics such as the nature of
matter and its interactions, the nature of space and time, and the
typicality in the universe of our local physical laboratory. These
principles, which are almost always based on some combination of
empirical evidence, philosophical predilection, and theoretical orienta-
tion, have played an important role (not always progressive) in the
development of theoretical physics.

Often formulated somewhat roughly, at least in its earliest incarna-
tions, a physical principle usually states that certain behavior holds - or
should hold - in real, observable, physical systems. A theoretical
physicist who believes in a given principle may then use that principle
as a screening device: Theories at variance with the principle may be
tossed out, while those enforcing the behavior described by the principle
may be favored. As for a theory which allows the behavior described by
the principle but does not enforce it, the physicist may use the principle
to screen among the various solutions of the theory,! favoring those
which behave as prescribed by the principle and disfavoring those which
do not. Such a theory draws support from the principle if almost all, if
not all, solutions have the prescribed behavior.

While the interaction of physical principle and physical theory has
proceeded fairly smoothly in a number of cases (for example, for the
Principle of Equivalence and the theory of general relativity), it has also
become quite convoluted in others. Mach’s Principle (MP) provides a
very interesting example of this. Ever since Einstein popularized MP

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 188-207 © 1995 Birkhduser Boston, Inc. Printed in the United States.
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and cited it as one of the primary motivations for the particular form he
chose for the gravitational field equations in his theory of general
relativity (Einstein 1918, 1955), Mach’s Principle has hotly - and
simultaneously - been used to argue that these equations (and the full
theory) need to be modified, need to be abandoned, or should be
supported as they are. While the debate has cooled in recent years,
Mach’s Principle is still used to argue both for and against general
relativity and both for and against Einstein’s equations in particular.?
The convoluted interaction between Mach’s Principle and general
relativity is largely a result of the difficulties and ambiguities which arise
when one attempts to formulate MP precisely. Mach’s Principle in its
nineteenth-century form could be stated roughly as follows:

Mach’s Principle (19th-Century Version): The distribution of matter
everywhere in the universe determines the inertial frame at each point in the
universe.

Even in the context of the nineteenth-century physics in which Mach
discussed his ideas, this statement involves some concepts - like inertia
- which are difficult to make theoretically precise. In the context of
twentieth-century physics, with vastly changed ideas concerning the
nature of space and time and matter, almost every word in this statement
is ambiguous. It is easy to see how one can produce greatly varying
updated statements of Mach’s Principle with consequently contradictory
theoretical implications.

Our purpose here is not to discuss all of the different interpretations
and statements of Mach’s Principle which can be made, and debate their
respective virtues. Instead, we shall focus on one particular inter-
pretation: the initial value approach, as championed by Wheeler. We
shall first state a version of this approach to MP, which we call the
Wheeler-Einstein-Mach Principle (WEM Principle), in Sec. 2. Then in
Sec. 3, we shall discuss how the WEM Principle relates to the traditional
statement of Mach’s Principle (as given above), clarifying some of the
former’s interpretations. Finally in Sec. 4 we shall discuss some
theorems and conjectures which are relevant to the WEM Principle and
its relationship to Einstein’s and other theories of the gravitational field
in spacetime.
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2. Statement of the Wheeler-Einstein-Mach Principle

The present paradigm? (and that of the last 75 years) for mathematically
describing a model for the physical universe is that of a spacetime (M*,
g, V), where M*is a smooth, time-orientable, four-dimensional manifold,
g is a smooth Lorentz-signature metric field on M*, and y represents a
collection of smooth tensor and spinor and connection fields on M*
(including, perhaps, Maxwell fields, Yang-Mills fields, fluid fields,
Vlasov fields, Dirac fields, etc.). The Wheeler-Einstein—Mach Principle
works within this spacetime paradigm. It is a statement of certain
properties which a spacetime (M*, g, ¥) should have if it is to be deemed
‘Machian’ (and therefore physically acceptable) from this WEM point of
view.

The first requirement which the WEM Principle makes upon a
spacetime is that it be spatially compact. More specifically, the WEM
Principle requires that

M*=T°XR, (M
where £ is a compact (without boundary) orientable three-dimensional
manifold, such as $°, T?, §2x 8", or the like. Physically, it follows that
‘at a given instant,” the universe is finite, with finite volume.

The second WEM Principle requirement is that the spacetime be
globally hyperbolic, with no spacetime extensions existing (globally
hyperbolic or not). This condition tells us that (M*, g, ¥) is causal - no
closed or almost closed causal paths - and is not part of a bigger
spacetime which fails to be causal. Further, this condition tells us that
if (M*, g, ¥) satisfies a set of field equations which has a well-posed
Cauchy formulation (relative to g) - for example, the vacuum Einstein,
the Einstein—-Maxwell, the Einstein-Yang—Mills, the Einstein—-Vlasov, or
the Brans-Dicke field equations - then it follows that if one knows the
values of the fields (g, y) and their transverse (‘time”) derivatives - i.e.,
the “initial data’ - on a spacelike embedding of £° in M*=Z*XR - i.e.,
on a ‘Cauchy surface’ - one can use the field equations to determine the
fields (g, ¥) everywhere on M*,

The third requirement is that, indeed, (M*, g, V) satisfies a set of
field equations having a well-posed Cauchy formulation.

The last requirement that the WEM Principle makes on a spacetime
(M*, g, ) is that it satisfy a set of field equations which imposes
constraint equations on the initial data on any Cauchy surface; and
further that one can split the initial data into two sets of fields such that
the first set can be freely chosen on the Cauchy surface, and the second
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set can be determined from the first set using these constraint equations.
Typically, the constraint equations take the form of a system of elliptic
partial differential equations with coefficients involving the first set of
fields, to be solved for the second set.

Note that if a spacetime satisfies all four of the requirements of the
WEM Principle (we shall call such a spacetime a “WEM spacetime’),
then it can be reconstructed completely if one knows explicitly the values
of the first set of fields on any Cauchy surface in M*.

3. Are WEM Spacetimes Machian?

We would like to argue that every spacetime that satisfies the require-
ments listed above (in Sec. 2) for a WEM spacetime is Machian in the
traditional sense. From the Wheeler (initial-value) point of view, the key
property which makes a spacetime Machian is, in a slightly modified
version of the nineteenth century statement of Mach’s Principle given in
Sec. 1, that the distribution of matter and field energy-momentum
everywhere at a particular moment in the universe determines the inertial
frame at each point in the universe.

This property holds in every WEM spacetime in the following sense:
To represent the universe at a particular moment (let us call this moment
‘ty’), one chooses a fixed Cauchy surface Efo in (M*, g, ¥). This Cauchy
surface may be any spacelike embedding of I* in M* (Budic, Isenberg,
Lindblom, and Yasskin 1978). So, at the moment ¢,, “everywhere... in
the universe” means everywhere on the Cauchy surface ,. And the
“distribution of matter and field energy-momentum everywhere” means
the specification of certain fields on L. Which fields? From the WEM
Principle point of view, the right fields to know on E,?) are exactly those
which make up the ‘first set’ of the split of the initial data, as discussed
in the last WEM Principle requirement (Sec. 2). It follows from this last
WEM Principle requirement that, if we know explicitly this first set of
fields on X7 (which we identify as the “distribution of matter and field
energy-momentum everywhere at the moment #,”), then we can use the
constraint equations to determine uniquely the full set of initial data on
Ei. Then, since the spacetime (M*, g, ¥) is globally hyperbolic (second
WEM Principle requirement) and since the fields (g, ¥) satisfy a set of
field equations which have a well-posed Cauchy formulation (third WEM
Principle requirement), it follows that we can uniquely determine g and
¥ in a spacetime neighborhood of £2. The inertial frames are determined
by the metric, so we have (at least near E,i) determined the inertial
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frames everywhere at time £, from knowledge of the matter and field
energy-momentum everywhere at time #,. In fact, since the spacetime
(M*, g, ¥) is globally hyperbolic and nonextendible (second WEM
Principle requirement) we can determine (from knowledge of the matter
and field energy-momentum everywhere at time £,) the inertial frames
everywhere in the universe at all times.

This claim - that a WEM spacetime is Machian in the traditional
sense — and some of the details of the statement of the WEM version of
Mach’s Principle raise a number of questions, which we shall now
address.

a) Why does the Wheeler-Einstein-Mach Principle focus on knowledge of
the matter and field energy-momentum at a specific moment? Why do we
need to choose a Cauchy surface in M* to specify a particular moment?
Are all choices of a Cauchy surface equally valid, or are some choices
better than others?

Whether or not Mach intended the determination of inertial frames
to be based on knowledge of the matter distribution at a particular
moment, or on knowledge of the matter distribution for all time, is not
clear. Regardless of Mach’s intentions, it is a much stronger restriction
to demand that inertial frames be determined from information at a single
moment, rather than from information at all times, and Wheeler has
chosen this interpretation. It is the basis of the initial-value approach to
Mach’s Principle, and it is the basis of the WEM Principle.

One of the key features of general relativity and of our present way
of thinking about possible models of the universe in terms of spacetimes
(M*, g, ¥) is that such a model does not generally come equipped with
a notion of simultaneity. On the other hand, one can pick a notion of
simultaneity in any given spacetime: One simply assigns certain sets of
acausally related points in the spacetime to be simultaneous (labeling
them with the same value of time). If such an assignment is made
consistently with the causal structure of the spacetime and if it is made
as complete and as all-inclusive as possible, then each set of simultaneous
points makes up a Cauchy surface. Conversely, every choice of a family
of Cauchy surfaces determines a notion of simultaneity. Hence we
identify the choice of a notion of simultaneity with the choice of a family
of Cauchy surfaces. Note that if the spacetime (M*, g, ¥) is spatially
compact, then every spacelike embedding of £* in M* specifies a Cauchy
surface (Budic, Isenberg, Lindblom, and Yasskin 1978), and every
Cauchy surface is given by such an embedding. Note also that if one
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wants to make a choice of time for every point in the spacetime
(associating to each point a unique Cauchy surface I7), then one simply
needs to choose a foliation of (M*, g, ¥) by Cauchy surfaces.

Now in certain spacetimes there are physically preferred choices of
simultaneity which can be made. For example, in Minkowski spacetime,
an observer can use various light-bouncing schemes to single out certain
‘Lorentz frame’ Cauchy surfaces through each point. These are unique
up to the action of the Lorentz group. In a Friedman-Robertson—-
Walker spacetime, the spatial homogeneity of the spacetime picks out a
unique Cauchy surface through each spacetime point. However, in a
general spacetime with no isometries, there is generally no privileged
choice of Cauchy surfaces®; hence “everywhere at the particular moment
t,” may be associated to any Cauchy surface in the spacetime.

b) Mach’s Principle in its traditional form (see Sec. 1) says that one should
be able to determine inertia everywhere based on knowledge of the matter
distribution everywhere. Exactly which fields does the WEM Principle
require one to know (as ‘matter and field energy-momentum distribution’)?
If it requires more than just the matter distribution, why?

In our description of the Wheeler-Einstein-Mach Principle (in Sec.
2), we have been a bit vague concerning the specific fields (‘the first
set’) that one needs to know on Ez if one wants to use the constraints to
determine the rest of the initial data (‘the second set’). This vagueness
allows us to avoid tying the statement of the WEM Principle to a specific
set of field equations. If we examine how this works for spacetimes
satisfying, say, the Einstein-Maxwell-perfect-fluid equations, then we
can be fairly specific regarding the particular fields we need to know on
Efo: (i) the spatial metric, up to conformal factor®; (ii) the mean
curvature function; (iii) the transverse-traceless part of the extrinsic
curvature, up to conformal factor>; (iv) the electric and magnetic vector
fields, up to conformal factor®; and (v) the energy density function and
momentum density function of the fluid, up to conformal factor.>

This is clearly more than just information regarding the matter
distribution. While the specific choice of the needed fields is determined
by the mathematics of the field equations under study, it should not
surprise us that we do need to know about more than just the ‘matter’
fields. Physicists have learned in the twentieth century that electro-
magnetic fields and gravitational fields (as well as most others) carry
energy and momentum, and concentrations of these fields can accurately
mimic matter concentrations. Indeed, electromagnetic fields can
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transform into elementary particle matter and vice versa; the same is true
of gravitational fields. So knowledge of some parts of the electro-
magnetic and gravitational (and other) fields is needed, along with
knowledge of matter fields directly, to determine inertia. As for which
parts of the fields we need to know, we let the mathematics tell us.
What it tells us makes sense.

c) What, precisely, does it mean to determine the inertial frames at every
point in the universe? Is it sufficient to know the metric everywhere? Is it
necessary to know the metric everywhere?

It has never been easy, either in the context of nineteenth- or
twentieth-century physics, to pinpoint precisely where in the structure of
space or spacetime it is that the direct information about inertial frames
resides. This is one of the reasons why discussions of Mach’s Principle
have often focused on specific inertial phenomena like frame-dragging by
rotating or accelerating matter, rather than on abstract, more complete
formulations of the notion of inertial frames. Certainly, however, if we
know the full spacetime metric everywhere in a neighborhood of a point,
then we know all there is to know about inertial frames at that point. It
may not be necessary to know the full spacetime metric - this issue is
dodged in the formulation of the WEM Principle - but it is certainly
sufficient.

d) Why does the WEM version of Mach’s Principle require that a WEM
spacetime be spatially compact?

While Mach never said anything about the universe being compact
or finite, Einstein argued in his 1917 cosmological paper that if a
spacetime is to satisfy the Machian requirement, then it should be
spatially compact (Einstein 1917, 1955). Einstein based his argument on
the need which he perceived to avoid posing boundary conditions. If a
spacetime manifold M* is not spatially compact, and if one wishes to
solve an initial-value problem for a system of partial differential
equations (like the Einstein-Maxwell-fluid equations) on M* for the
metric g and the fields ¢, then one needs to specify the full metric (and
full values of ) on the spatial boundary of M*. (If the spacetime is
asymptotically flat, then this means that one needs to specify limits for
g and y as one approaches spatial infinity.) The need to make such a
specification, Einstein argued, is un-Machian because it more or less
requires one to choose absolute inertial frames at the spatial boundary,
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independent of the content of the universe. Since the need to pick
boundary conditions for the metric goes away if the spacetime is spatially
compact, Einstein required this feature in those spacetimes which he
viewed as properly Machian. Wheeler, in his development of the initial-
value formulation of Mach’s Principle (Wheeler 1964; also Isenberg and
Wheeler 1980), also treats spatial compactness as a key feature, and
hence we include it in our statement of the Wheeler-Einstein-Mach
Principle. We shall see below (in Sec. 4) that spatial compactness also
plays a role in the proof of certain results which are useful in considering
the extent to which WEM spacetimes are compatible with Einstein’s
gravitational field equations.

e) Why does the WEM Principle require that a WEM spacetime be
inextendible?

A spacetime (M*, g, ) is smoothly extendible to a (larger) spacetime
(M*, g, y) if there exists a smooth diffeomorphism ¢ which maps M*
into an open region §(M*)C M*, with £*gl..»=g and £V |4, =V. The
spacetime (M*=T°X(—1,1), g=gn, ¥=0) is an example of an
extendible spacetime: It extends to (M*=T°>XR, g =gq., ¥=0) via the
natural embedding. The familiar Taub spacetime is also extendible: It
extends to Taub-NUT. The standard Big Bang-Big Crunch (k=+1)
Friedman-Robertson-Walker spacetime, on the other hand, is not
extendible.

Globally hyperbolic spacetimes that only admit extensions to space-
times which are also globally hyperbolic (the 7°x(—1, +1) spacetime
mentioned above is an example of such a spacetime) are not a real issue
for the WEM Principle. The nonextendibility requirement in the WEM
Principle simply replaces such a spacetime by its maximal globally
hyperbolic extension. As shown by Choquet-Bruhat and Geroch (1969),
such maximal globally hyperbolic extensions are unique.

If a globally hyperbolic spacetime admits a nonglobally hyperbolic
extension (the Taub spacetime is an example of this), then the
nonextendibility requirement does really disqualify the spacetime, and
one may ask why this is necessary. Consider the following scenario: A
physicist in the original (globally hyperbolic) spacetime (M*, g, ¢) who
is interested in Mach’s Principle somehow gathers together the right
matter and field energy-momentum information at time #, to determine
inertial frames. Since (M*, g, ¥) is globally hyperbolic, he can in fact
determine inertial frames for all observers for all time in (M*, g, ¥).
But since (M*, g, ) is extendible, some observers may proceed out of
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(M*, g, ¥) into the extension (M*, g, ¥). Since (M*, g, ¥) is not
globally hyperbolic, and since these nonglobally hyperbolic extensions
are not generally unique (Chrusciel and Isenberg 1993), the inertial
frames of the fugitive observers cannot be determined. Collecting
information from (M*, g, y) outside (M*, g, ¥) generally will not help,
either.

Our view is that this is un-Machian behavior, so our statement of the
Wheeler-Einstein-Mach Principle disallows spacetimes with nonglobally
hyperbolic extensions.

One may argue against including this requirement in the WEM
Principle, asserting that inertial frames need to be determined only near
I;, not necessarily for every observer for all time. Indeed, I believe that
this is Wheeler’s point of view, and he does not generally include the
nonextendibility requirement in his version of Mach’s Principle.
However, I do consider nonextendibility to be an important part of the
initial value formulation of Mach’s Principle, so I include it in the WEM
Principle.

f) Do Machian gedanken experiments have the proper outcomes in WEM
spacetimes?

As noted above, much of the debate over Mach’s Principle has
focused on certain gedanken experiments, such as the ones involving
rotating matter shells in which one tests for the proper amount of
dragging of inertial frames (Dicke 1964). The statement of the WEM
Principle does not in any way refer to these experiments; a space is
labeled WEM or non-WEM without investigating the expected outcome
of any such experiment. One can of course consider various gedanken
experiments both in WEM and in non-WEM spacetimes, with Einstein’s
field equations or any other appropriate set of field equations imposed.
Such a study, done systematically, could be interesting. It has not been
done.

4. Conjectures and Theorems Relevant to the
Wheeler-Einstein-Mach Principle

Do any WEM spacetimes exist? Which field theories do they satisfy?
Are there any field theories for which the generic solution on Z*XR is
a WEM spacetime? These questions are not philosophical or theoretical;
they are mathematical. We shall discuss some mathematical results and
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mathematical conjectures which are relevant to questions such as these.

We first need to know that there exist field theories, for the metric
g and other fields y on a spacetime M*, which have well-posed Cauchy
formulations. A given spacetime field theory for g and v is said to have
a well-posed Cauchy formulation if one can prove the following: For
every choice of the initial data® - which consist of a Riemannian 3-metric
v, a symmetric tensor K, and certain other fields 6 and 7 (closely tied to
projections of Y and its derivatives) all on I° possibly with certain
constraint equations and certain differentiability and integrability
conditions imposed on (y, K, 6, ) - there exists a unique globally
hyperbolic spacetime which (i) satisfies the field equations of the field
theory, (ii) has an embedding i:Z*->M*=E’XR such that the induced
metric and induced extrinsic curvature are y and K, while appropriate
projections of y and its derivatives on i(X°) are 6 and =, and (iii) admits
no globally hyperbolic extension.

Over thirty years ago, Choquet-Bruhat (Bruhat 1962; Choquet-Bruhat
and Geroch 1969) proved that Einstein’s vacuum field theory has a well-
posed Cauchy formulation; subsequently she and others have shown that
the Einstein-Maxwell, Einstein-Yang-Mills, Einstein—Cartan, Brans—
Dicke, supergravity, and a number of other theories of interest do as
well. Hence, all of these field theories can have WEM spacetimes as
solutions. Note, on the other hand, that there are many other field
theories for g and possibly ¢ that do not admit well-posed Cauchy
formulations and hence are incompatible with WEM spacetimes. These
include a number of ‘R+R* theories, the Horndeski theory for gravity
coupled to electromagnetism (Isenberg and Horndeski 1986), and many
others.

Next, we wish to consider the nature of the constraint equations that
occur in these spacetime field theories and see what we can do with
them. Since all of the theories being discussed involve the diffeo-
morphism group as a gauge freedom, Noether-type considerations show
that all of the theories have supermomentum and super-Hamiltonian
constraints. If a given field theory is to be compatible with the WEM
Principle (and admit WEM spacetimes as solutions) then it is crucial (see
Sec. 2) that one be able to split the initial data (y, K, 6, w) into
nontrivial first and second sets, with the second set being obtainable from
knowledge of the first set by solving the constraints. This can be done
for most of the well-posed theories listed above, and for many others.
Rather than discuss how this is done for an abstract, general theory, we
shall focus on the specific example of the Einstein-Maxwell-fluid-field
theory.
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The initial data for this field theory consists of a Riemannian 3-
metric v,, and symmetric tensor K* for the gravitational field, as noted
above, together with a magnetic vector field B and an electric vector
field E, for the Maxwell field and an energy density function p and
momentum density vector field J° for the fluid.” In terms of these
quantities, the constraint equations for this theory take the following
form:

V B*=0, 2a)

V E*=0, (2b)

V Ki—V,(K)) = —8n(e, ,EB+],), 2c)
R-K K +(K.)*=8m(EE®+BB"+2p). (2d)

Here V, is the covariant derivative determined by the 3-metric v,,, R is
its covariant derivative, and ¢,, is the skew-symmetric Levi-Civita
symbol. Note that certain constants have been set to unity for con-
venience.

While there may be alternative schemes for splitting the fields into
first and second sets, to date the most successful is that which has been
developed by Lichnerowicz, Choquet-Bruhat, and York (Choquet-Bruhat
and York 1980). One writes out the initial data fields v, K, B, E, p, J
as follows:

Y= 9N, (3a)

ch = ¢-10(0.cd + L We +%¢—4xcd7.’ (3b)
Ba=¢—66a, (3C)
E*=¢"(n"+V"p), )
p=¢r, Be)

Ja = d)-l(?]'a. (3f)

Here the first set of fields include a Riemannian 3-metric A, a scalar
field 7 (the mean curvature), a symmetric transverse traceless tensor field
o™ (traceless means that A ;,0*=0, while transverse means that V_0*/=0,
where V_ is the covariant derivative defined by A,,), a pair of transverse
vector fields 8° and #* (transverse means that V,3°=0 and V 5°=0), a
vector field j°, and a scalar field r. (Note that these fields are really only
to be specified up to the joint conformal transformation indicated in Eqgs.
(3) via the conformal factor ¢).8 The second set of fields consists of the
scalar field p (electric potential), the vector field W* (generating the
longitudinal part of K), and the positive definite scalar field ¢ (conformal
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factor). The notation LW® indicates the conformal Killing field operator
L, which acts on the vector field W* according to the definition
LW, =V“W”+V”W“—§)\“”VCW°. @
Now if one substitutes the field decomposition (3) into the constraint
equations (2), one obtains the coupled elliptic system

Avg h= 0, (5 a)
v LW, =§¢6Vb'r+87rsbcdﬁc(n"+V"u) ~8mj,, (5b)

2=1R _l +LW)2g7
V¢ §¢ 8(0 W)*e

+1—1272¢5—7r(6ﬁ“+[n+Vu]2+r)¢'3, (50)

where V and R indicate the covariant derivative and scalar curvature
determined by the metric A. The idea is to solve these equations for (u,
W, ¢), given (A, o, 7, B, 1, r, j). Does it work?

This issue has received much attention (Choquet-Bruhat and York
1980; Isenberg 1987; Choquet-Bruhat, Isenberg, and Moncrief 1992).
There are two questions involved. The first, existence, asks the
following: For which choices of the ‘free data’ (A, o, 7, 8, 7, r, j) can
one solve Eqs. (5) for (u, W, ¢) and thus construct a new spacetime?
The second question, uniqueness, asks: If, in a given spacetime, one
happens to know the information (A, o, 7, 8, 3, r, j) on some Cauchy
surface, can one proceed to solve Egs. (5) uniquely for (u, W, ¢), and
thence determine the fields and the inertial frames in the given
spacetime?

The existence question is the most interesting one mathematically and
has received the most attention. Much is known: Existence has been
resolved completely for spatially compact X° with 7=constant [this is the
constant-mean-curvature, or CMC case (Isenberg 1987)], and existence
is increasingly being understood for non-CMC data as well (Choquet-
Bruhat, Isenberg, and Moncrief 1992; Isenberg and Moncrief, unpub-
lished). However, existence is not as important for Machian studies as
is uniqueness. Understanding existence is useful for parametrizing and
cataloging globally hyperbolic spacetimes, but it does not tell us whether
or not these are WEM spacetimes. For this, determining uniqueness is
crucial. How much is known about uniqueness?

For compact, constant-mean-curvature hypersurfaces, uniqueness
holds, so long as the data (A, o, 7, 8, 7, r, j) do not correspond to a
time-symmetric Cauchy surface in a flat spacetime (in which case the
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solution is unique up to a trivial rescaling constant) (Choquet-Bruhat and
York 1980). For non-CMC Cauchy surfaces, the issue of uniqueness
(like that of existence) is not yet resolved. However, there has been
much progress in verifying uniqueness for non-CMC data in the last
three years (Choquet-Bruhat, Isenberg, and Moncrief 1992; Isenberg and
Moncrief, unpublished), and thus far there seems to be no indication that
uniqueness should ever fail. Indeed, I believe that if efforts were
focused on proving uniqueness (rather than examining it only after
existence has been verified), then one should be able to obtain
comprehensive results - showing that uniqueness always, or almost
always, holds - using known techniques. Such results would confirm the
following conjecture: If a globally hyperbolic, nonextendible, spatially
compact spacetime (M*, g, V) satisfies the Einstein-Maxwell-fluid-field
equations, then the conformal split discussed above [Egs. (3)] for the
initial data on any Cauchy surface can always be made, with the data (u,
W, ¢) determined uniquely by solving Egs. (5). Hence, such a space-
time is a WEM spacetime.

We further conjecture that the same result is true if one replaces the
Einstein-Maxwell-fluid field equations by the Einstein—# field equations,
where & is any nonderivative coupled theory with a well-posed Cauchy
problem. Here we note the useful work of Isenberg and Nester (1977),
which shows how to carry out the Lichnerowicz—-Choquet-Bruhat-York
type conformal decomposition of the initial data for a large collection of
such Einstein-4 type field theories.

If this conjecture turns out to be true (it certainly holds if we restrict
to constant mean curvature hypersurfaces), then there are very large
classes of WEM spacetimes which solve the Einstein vacuum, Einstein—
Maxwell, and more generally, Einstein-% field equations. Are the
generic solutions of these field equations WEM spacetimes? This
question, as stated, does not make much sense, but it does if we refocus
it as follows: Fix a compact three-dimensional manifold £°, and
consider the space of all smooth initial data (y, K, 6, w) which satisfy the
constraint equations of the chosen field theory. Assuming that the field
theory has a well-posed Cauchy problem, then for each choice of this
initial data (v, K, 6, ), there exists a corresponding maximally extended
globally hyperbolic spacetime (M, g, ¥). For the generic choice of the
data (v, K, 0, m), is (M, g, ¥) a WEM spacetime?

Assuming that the split of the initial data discussed above can be
carried out, we find that this question is exactly equivalent to asking if,
for the generic choice of initial data, the spacetime (M, g, ) is
extendible past a Cauchy horizon to a nonglobally hyperbolic spacetime.
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But now, we recall, the Strong Cosmic Censorship Conjecture (SCC)
(Penrose 1979) concerns exactly the same issue. This conjecture claims
that, indeed, the maximal globally hyperbolic spacetime development of
generic initial data cannot be extended. So SCC, if true, would tell us
that generic initial data produce a WEM spacetime.

As yet, there is no proof for the Strong Cosmic Censorship
Conjecture, even if we restrict attention to the vacuum Einstein
equations. Nor is there a serious counter example. There are various
results (Isenberg 1992) which support the validity of SCC (all of these
consider only spatially compact spacetimes), but the issue remains wide
open, with a number of active research efforts currently focused on
determining if Strong Cosmic Censorship holds or does not hold.

5. Conclusion

We have not argued that there is one, unique, best way to formulate
Mach’s Principle in modern physical terms. We have not proven that
Einstein’s gravitational field equations are ‘Machian’ or ‘un-Machian’ in
any rigorous sense. Rather, we have focused on defining a class of
spacetimes - we call them the Wheeler-Einstein-Mach spacetimes since
their definition is based on a succession of ideas developed by Mach,
Einstein, and Wheeler - and discussing some of their properties. We
believe that these WEM spacetimes, which are traditionally Machian in
a certain essential sense (see Sec. 3), are interesting and worth studying
from both a mathematical and a physical point of view, whether or not
you believe in, or care about, Mach’s Principle.
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the University of Oregon and PHY89-04035 at the Institute for
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NOTES

IIn using the terminology ‘solutions of the theory’ to refer to ‘model
physical systems compatible with the theory,” we are adopting language which
reflects the usual classical situation in which a model physical system is
compatible with a given physical theory iff certain model-representative
functions satisfy certain theory-representative differential equations.

ZJust this month (June 1993), I read a paper which relies on Mach’s
Principle as its chief argument for adding torsion fields to Einstein’s theory.
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30ur discussion here focuses on medium- to large-scale features of the
universe, generally far from any singularities, and so we ignore quantum
considerations.

“In many spacetimes there is a unique foliation by constant-mean-curvature
(CMC) Cauchy surfaces (Brill and Flaherty 1978). However, there are some
spacetimes (vacuum solutions of Einstein’s equations) that do not admit CMC
Cauchy surfaces (Eardley and Witt, unpublished; also Bartnik 1988), so this is
not a reliable choice of simultaneity in a general spacetime.

5The conformal quotienting of all these quantities is coordinated; see
(Choquet-Bruhat and York 1980), as well as Sec. 4 below.

6We describe here the initial data which are appropriate to a spacetime field
theory which is second order; i.e., the spacetime covariant field equations
involve second derivatives of the metric (and other fields) and no higher-order
derivatives. The generalization to higher-order spacetime field theories is
straightforward, but will not be discussed here.

TFor this particular field theory, (B%, E, p, J°) together make up the (6,
7)’ portion of the initial data.

8This is because one can prove, so long as 7 is constant, that if we replace
O\, o, 7, B, 1, 1, ) by (@*\, 67 %, 1, 6758, 6%, 675, 67'9), then we get the
same (constraint-satisfying) initial data (y, K, B, E, p, J) by solving Egs. (5).
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Discussion

Ciufolini: I like this approach, but there is one thing I never fully
understood. To solve for the spacetime geometry, you give on a Cauchy
surface some conditions that are not directly related with the matter
distribution such as the trace of the extrinsic curvature, the conformal
metric, and the conformal traceless free part of the extrinsic curvature.
Probably this last part has some relation to the energy of gravitational
waves. My query is that the definition you gave at the beginning was
that to determine the spacetime geometry you need the distribution of
matter; however, you need to give something else apart from the
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distribution of matter. Is the conformal traceless free part of the
extrinsic curvature related to the energy of gravitational waves?
Isenberg: Yes. Very roughly, this extra gravitational information in the
‘first set” includes the quantities which relate to ‘gravitational energy’
and ‘gravitational momentum.” It is hard to be too specific about this -
York has talked about it in terms of the Cotton tensor and its conjugate,
and Wheeler has as well. But I don’t see how to make this relationship
exact. Indeed, there is the fact that, in the ‘first set,” you’re leaving
everything conformally undetermined. So the first set data can’t really
contain quantities exactly equivalent to gravitational energy.

While this lack of exactness might bother a serious Machian, I
believe that what we should do is let the mathematics guide us, and say
“0.K., maybe this isn’t exactly what Mach wanted, or what anybody
wanted, but it works [laughter] in the sense that if you specify this first
set of information, then you can determine everything else. Whether it’s
exactly energy, momentum, or whatever - it’s just the stuff that works.
Barbour: You said you’d like to know if Mach formulated Mach’s
Principle in these terms, talking about initial data at an initial instant.
I’'m almost certain that he didn’t, and of course that’s one of the
problems with Mach. He had such a distrust of theory he would never
pin himself down to any particular theory. I think this is what creates
the impression that he was only in favor of a redescription and not
something more. However, you will find an absolutely clear, precise
statement by Poincaré [pp. 111-112] of the problem in initial-data terms,
and it’s very close to what Wheeler is arguing for, at least in the original
thin-sandwich conjecture.

Isenberg: I don’t believe that there is a clear initial-value version in
Einstein’s work, either.

Barbour: But it’s in Poincaré, and that’s what I’ll be talking about
tomorrow [p. 214], which is an approach through the configuration space
somewhat different from yours but very much in the same spirit.
Ehlers: I think that what you have presented to us was a very nice way
of how to look at a certain class of classical field theories mathemati-
cally, and that’s fine, but I think there is a big gap with respect to what
one would like from the point of view of physics. The big concern -
and this is no criticism because I don’t know of anybody who could do
better than this - is that I think we do not understand what is the
relation, even in those cases where one has sorted out the free data; we
do not know what is the relation between these free data and quantities
which are actually accessible to observation.

Isenberg: Exactly; I agree completely.
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Ehlers: Also, the Cauchy initial-value problem is, I think, a very nice
tool in order to specify particular solutions within a given theory, and
that is its main purpose, but it has little to do with, for example, what
the cosmologist wants to do if he has observational data and wants to
know what he can infer from these data. I just wanted to say that it is
perhaps a little regrettable that people with much knowledge of mathe-
matics work on these questions. They focus their attention more on
things which are mathematically nice and avoid those questions which
from the point of view of physics are the more urgent ones. This is not
a criticism of you.

Isenberg: This is a point well-taken, and I think it’s a nice invitation to
look at the characteristic initial-value problem, which rather than
examining data specified on a spacelike hypersurface, examines data
specified on a past causal (null) cone. I agree, my approach here is
basically a mathematical one rather than a physical one. As I noted
sometime earlier, I’'m paid by a math department to come up with and
prove theorems. As for questions like “What is the physics of the
information in the first set, and how might one go about measuring it?”,
well, I guess I just don’t know. I would like to understand this issue.
Ehlers: Can I make another remark? I think it would be very nice if
one could give nearly as clear-cut a description of the framework of the
quantum field theory. With respect to such questions we seem to be.
very far from understanding a similarly clear mathematical structure in
quantum field theory.

Isenberg: My approach is completely classical, and I am rather
pessimistic regarding the imminence of a clear, consistent theory of the
physical gravitational field. I've seen a lot of discussion of quantum
gravity, and so far as I can tell none of it yet makes a lot of sense
physically.

Goenner: Maybe it’s a stupid question, but the most trivial solution I
can think of, which I do not expect to be lying in your class, is if you
take 77 cross R.

Isenberg: It’s in there. The spacetime you are talking about is basically
Minkowski spacetime with a closed spatial topology. You take a cube
in ordinary Euclidean space, you identify its opposite faces so that you
have the three-dimensional torus 72, and then cross 7° with the time axis
R'. This is a solution of the Einstein equations, and it is not extendible
past a Cauchy horizon, so it does fit into the set of WEM spacetimes.
This is a point where Wheeler and I diverge a bit. Wheeler hates these
spacetimes [laughter]; and, as I understand it, he includes in his version
of Mach’s Principle a restriction which throws out this spacetime along
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with all spacetimes which are spatially 7°. Indeed, his restriction throws
out almost all three-dimensional manifolds. It leaves a few, like $> and
§2x 8! and many other familiar ones; but in a mathematical sense it
throws out almost all of them. The restriction he makes is that if a
spacetime is to be deemed Machian, then among other things it must be
able to stop expanding and then begin to collapse. Such behavior for a
solution of Einstein’s equations is incompatible with most three-
dimensional manifolds. In defining the WEM spacetimes, I do not
include this restriction. Consequently, the 7° Minkowski spacetime
solution qualifies. If you think that such a spacetime is un-Machian, then
this is something to dislike about my WEM spacetime formulation. I,
however, don’t find anything drastically un-Machian about the 7> Min-
kowski spacetime, so I’m not bothered by its inclusion.

Goenner: Well, I'm very sorry for your class, because test particles in
that kind of spacetime would have inertia.

Isenberg: I did think about that issue some years ago, but I ran into
some trouble deciding what it means to put a test particle into a 7°
Minkowski spacetime. The problem is that these spacetimes are unstable
in the sense that if you add a bit of matter to the spacetime, you need to
add a corresponding bit of ‘gravitational waves.” Then the spacetime
becomes dynamic, and then it has other stuff around to help fix inertial
frames. I would like to understand this issue better.

King: Just a last point on trying to rule out 7°. At first it sounds like
Wheeler was trying to introduce some sort of topological discrimination,
which doesn’t seem to be terribly fair, but if it’s almost impossible to
satisfy the constraint equations for a spacetime, then that spacetime is
virtually ruled out anyway.

Isenberg: Oh, it’s not impossible to satisfy the constraints. There is a
whole big fat function space of solutions of the constraints on the three
torus 7°; the only problem is that the flat 7° (Minkowski spacetime)
solution is unstable, as I noted before.

King: If you can’t put one particle in the spacetime though.

Isenberg: You can put a particle in, but only if you also add in some
gravitational waves at the same time, allow the spacetime to expand (or
contract).

Ciufolini: The main reason, as you said, why Wheeler doesn’t like these
kinds of topologies is because they imply a model universe expanding for
ever.

Isenberg: Right, they do. A T°XR spacetime which satisfies Einstein’s
equations (and is not dead flat) either expands or contracts forever. But
while that may bother Wheeler, it doesn’t bother me in any Machian
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sense. What does bother me is if the spacetime extends past a Cauchy
horizon. Then, an observer who is doing all kinds of nice experiments
may head off into the spacetime region past the Cauchy horizon.
Suddenly determinism and causality are lost. Inertial frames are not
fixed by the distribution of matter or anything. Physics becomes strange,
and all bets are off. That’s the sort of thing I want to throw out of the
class of ‘Machian’ spacetimes.
Barbour (post-conference comment). Perhaps I may be allowed to make some
comments here about the remarks Isenberg makes on p. 204 about the difficulty
of being precise about the definition of gravitational stress—energy and about
what “works.” A little bit of the history might be in order. Although back in
the early sixties, when he formulated the thin-sandwich conjecture (see the
Wheeler references on p. 231), John Wheeler was not, so far as I know, aware
of the remarks of Poincaré (pp. 111-112), which show the intimate connection
between Newton’s use of absolute space and the formulation of the initial-value
problem, the conjecture was nevertheless formulated in a manner that does relate
it closely to what Poincaré said. In my contribution (p. 214) and in (Barbour
1994a) cited in it, I show how the parallel can be made very close indeed,
especially if the nonexistence of an external time is taken into account.
However, the problem with the thin-sandwich conjecture is that the
associated mathematics is still not at all well understood, as Kuchaf remarked
at Tiibingen (unfortunately not recorded and therefore not reproduced here).
This was at least partly why, in response to important work done by York at the
beginning of the seventies, Wheeler went over to the kind of formalism Isenberg
describes. Essentially, York gave up the attempt to solve the initial-value
problem in the Lagrangian formulation of general relativity and went over to the
same problem in the Hamiltonian ADM formalism. Now for simple dynamical
systems, the relationship between the Lagrangian and Hamiltonian formulations
is trivial, but in reparametrization-invariant theories like general relativity there
are very significant differences. In a remarkable manner, the Hamiltonian
formalism seems to be especially well suited to the formulation of the initial-
value problem. Having a strong sense of the importance of a dynamical
approach for the quantization problem, Wheeler adopted the York formalism,
especially since the intuitive transparency of the Lagrangian thin-sandwich
formulation had nevertheless not born much fruit. This is all recounted in very
readable form in (Isenberg and Wheeler 1980), which also gives references to
York’s work. Thus, as of now, we have a transparent formalism with almost
intractable mathematics and the formalism that “works” described by Isenberg.
As Kuchar remarked at Tiibingen, further work on the thin-sandwich conjecture
is greatly to be desired; recent work in this direction by Bartnik and Fodor
(discussed and cited by Giulini, p. 500) is an encouraging sign of a revival of
interest in the conjecture.



Comments on Initial-Value Formulation:
Response to Isenberg

Dieter R. Brill

1. On Principles

Isenberg’s proposal (1995) is remarkable not least because it is intended
to cover not one or the other aspect of Machian ideas, but a complete
formulation of Mach’s Principle. Isenberg gives cogent reasons why the
Wheeler-Einstein-Mach (WEM) program expresses the important
Machian demands, and it is hard to see how it could be improved as a
general program, particularly since Isenberg added the nonextendibility
requirement, giving a link between Mach’s Principle and cosmic
censorship.

Isenberg also considers Mach’s Principle in the larger context of
- principles in physics. In this general context, Mach’s Principle is
somewhat unusual: It cannot easily be disproved, because we know few
if any effects that are unequivocally anti-Machian (for example, Ozsvith
and Schiicking 1962). By contrast, the most useful principles in physics
naturally have a negative or interdictory aspect. For example, the
uncertainty principle forbids certain variables from being simultaneously
well-defined, the energy principle forbids perpetual motion, the
equivalence principle denies distinction between gravity and inertia, the
atomic principle excludes infinite divisibility, and so on. Such a
formulation is not only heuristically useful (for example, it saves us from
useless speculation about impossible situations), but it can also point the
way toward progress in the theory: A negative principle implies a
challenge, to find the mechanism or rationale behind the prohibition, and
can lead to a new theory in which the principle is automatic and no
longer needs to be stated explicitly.

At first sight the WEM Principle looks like business as usual (we
still do classical general relativity in a way that current lingo might
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associate with STINO!), and gives no direct motivation to change the
theory. The implication is different if we state it as a negation: No
spacetime can fail to satisfy the four WEM requirements. But of course
there are solutions of the classical Einstein equations that are not WE
Machian. Hence the challenge is to find the mechanism that excludes the
offending spacetimes. Thus the WEM Principle also points the way
beyond classical general relativity to new and certainly as yet unfinished
business.

2. On Inertia

Many, like Einstein, find something fascinating about the idea that in
inertia we feel the rest of the universe at work, and they look to Mach’s
principle for the real origin of inertia. Does the WEM-Isenberg approach
finish that business of formulating the principle? Isenberg tells us that if
we know the full spacetime metric near a point, we know all there is to
know about inertial frames at that point. In Shimony’s comparison
(1992), you enter Mach’s Store looking on the shelves for various useful
and fascinating gadgets, many of them somehow connected with inertia.
But in the WEM store you find only a general do-it-yourself kit from
which you might be able to build your own gadgets. How much more
effort is required to build the gadgets we care about out of the WEM kit?
Let us consider some of the ‘gadgets’ that other authors in this volume
might hope to find in Mach’s Store.

Pfister might care about the inertial frame dragging. Suppose we
consider a point inside Pfister’s shell. We know the metric there - it is
flat. But this knowledge does not tell us all there is to know about the
dragging as usually understood (Brill and Cohen 1966, Lindblom and
Brill 1974). A true answer about inertia and inertial frames must involve
specific frames or coordinates. The WEM Principle, being a child of
general relativity, tends to be hostile to picking out a particular frame -
the really significant information is considered to be frame-independent.
“Frame not included” is written on the packages in the WEM store; but
is this not one of the things we expect to get from Mach, not to put into
it?

Raine, whose own formulation of Mach’s Principle has been
questioned concerning the distinction between matter and gravitational
waves, might ask of the WEM principle whether there is really a crucial
difference between the following two situations: an otherwise closed
WEM universe containing either a black hole formed by collapse of
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matter, or an eternal Kruskal black hole with an asymptotically flat
region on the ‘other side’ of the horizon. The former would be called
WE Machian, and the latter would not, because its Z* is not compact.
But this distinction is not reasonable: Since the difference can be
extremely small between the physical regions on °‘this side’ of the
horizon, and since one cannot look behind a horizon, the Machian nature
of a spacetime would be something that could never be ascertained by
experiment. Perhaps the attribute Machian should apply to regions in
spacetimes, for which it does not matter what happens behind horizons.
If we allow this extension of the WEM Principle, we can treat the
following situation, which is more amusing than profound. Suppose
Narlikar asked the question that has a definite answer in his formulation:
What is the smallest number of masses in a WE Machian §° universe that
is free from other content such as gravitational waves? Suppose we take
the absence of wave content to mean that the free data can be chosen to
- —be trivial, and the presence of mass t0 mean that n asymptotically flat
regions behind (apparent) horizons are allowed. Since asymptotically flat
regions are conformally equivalent to taking points out of the §°, an
appropriate choice for Isenberg’s first set (Z°, A, o) is (R® less n—1
points, flat, 0). For n=1, the only regular solution for the Lichnerowicz
conformal factor ¢ is ¢=constant, which is flat spacetime without
horizon, and hence without Machian region. For n=2 the solution is
¢=1+M/2r, with r = Euclidean distance in R? from the removed point.
This is just the single-mass Schwarzschild solution with one horizon,
which does not bound a compact Machian region. So one mass is not
enough. For n=3, we have ¢=1+M,/2r,+M,r,, which is asymptotically
flat in three regions, at r,—>o, at r,~>o, and at (r, and r,)—>o. For
small M,, M, there are only two horizons, not bounding a Machian
region. But if M, and M, are chosen large enough (compared to their
Euclidean distance), there can be another apparent horizon surrounding
the two (Brill and Lindquist 1963). A Machian region then exists
between these three horizons. Thus three masses is the answer by this
extended WEM Principle, not unreasonable because three masses usually
do define a frame. (Unfortunately in this particular construction they do
not, because the solution is rotationally symmetric about an axis through
the original M,, M,. In this sense the answer is not better than Narlikar’s
two-mass minimum.)
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3. On Details

Examples such as the above suggest that the WEM Principle leaves some
room for further refinement. This appears particularly urgent in
connection with the distinction between the ‘first’ and ‘second’ set of
Cauchy data. The first set should contain variables that can be freely
chosen; but in Isenberg’s examples it consists of a TT tensor ¢ and
transverse fields 8 and 5. Because of such transversality requirements
these fields are really not free but are themselves subject to constraints.
Would it then not be simpler to choose as the first set any
constraint-satisfying initial data, so that the second set is empty? If it is
allowed to demand transversality of the first set, then why not
constraint-satisfaction? Isenberg (1995) suggests that the former condition
is linear and does not essentially restrict free choice, whereas the latter
condition is nonlinear and implements the Machian determination of the
inertial frames. This interpretation itself would, of course, constitute a
(small) refinement of the WEM Principle, a refinement motivated by a
possible physical meaning of the splitting into first and second sets.
Refining the physical meaning of the decomposition of data into the first
and second sets seems a promising task. It could have interesting
physical significance if a particular decomposition were demanded, not
just the existence of some decomposition (one of possibly many). For
example, in the Lichnerowicz-York decomposition, the vector W itself
does not appear in the ‘Machian’ constraints; only LW occurs. Perhaps
this (or some other, even more Machian) decomposition can give an
appropriate, general definition of the frame dragging by means of a
vector like W (which may be related to the shift vector, a coordinate
quantity of the type needed really to describe inertia).

It would seem unusual to find that a formulation, one of whose
authors is Wheeler, could benefit from greater emphasis on physical
meaning, but such are the conclusions to which we are led.

NOTE

ISTINO, from stinknormal, the name of a new popular music phenomenon
in Germany, celebrating traditional melodies and folk songs. Perhaps such labels
can help us gain recognition in the lay public. (What attention the no-hair
theorems might have received if they were identified with skinheads!)
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Discussion

Rindler: Just a small point to Dieter’s remarks. Mathematically you
can continue a static Schwarzschild spacetime region across the horizon
either into a collapsing massive object, or into a Kruskal wormhole with
vacuum everywhere. So the same external Schwarzschild spacetime with
its inertial structure can be ‘caused’ by matter a la Mach or by pure
geometry.

Brill: Well, that was my point. Is it reasonable for it to change from
Machian to non-Machian on the basis of something that changes only
behind this horizon? It’s sort of connected with Bondi’s point [p. 88]
that distant things somehow shouldn’t affect the inertia, which is maybe
what we’re after very much.

Goenner: You made a remark on only frame-independent quantities
being accepted nowadays, but then we can adjourn because inertia is only
a concept which is defined relative to a frame.

Brill: Yes, that was my point also — that Mach’s Principle may point the
way toward giving physical meaning to quantities usually considered
frame-dependent.

Goenner: Perhaps the question is whether we should be satisfied to
identify coordinate systems and frames, or whether we should come up
with some sort of definition of what a frame is, or a rule which selects
reference frames from among all the coordinate frames.

Barbour: One definition of the Machian problem is that there do exist
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locally Minkowskian frames, which seem to be distinguished locally, in
which rotation is well defined. The question is: What is their origin?
I would say that what one should be doing - and I think this the hidden
agenda of what Jim Isenberg was saying this morning - is start from
initial data which do not in any sense contain frames in the kinematics,
solve the dynamical problem, and construct spacetime. You then find an
explanation why you can introduce in the dynamical solution, which is
spacetime, local distinguished frames. To repeat, the question we have
to ask is: Why do local frames exist in which rotation is so well defined?
The answer has to come out of a deeper, fundamental theory in the
kinematics of which there are no distinguished frames, but when you
solve the problem and you construct spacetime, frames can be then
introduced in the resulting spacetime.

Brill: Yes, I’d love to see that spelled out.

Narlikar: I think I would like to add to this and not talk about rotation
but just Minkowski frames, one related to another. There is a unique
Minkowski frame in which the universe looks isotropic, with respect to
the Hubble law.

Bondi: Hear! Hear!

Narlikar: So that if you’re moving relative to that with uniform motion
you would still notice that. That is something which is a nonrotation
effect that is distinguishing.

Bondi: I will talk about that a little on Friday [p. 474].



General Relativity as a
Perfectly Machian Theory

Julian B. Barbour

1. Introduction

In this paper, I shall argue that general relativity is as Machian as one
could reasonably hope to make any theory. The qualification is to cover
an infinite universe, for which there are subtleties (Sec. 5).

The first step to this thesis is to establish just what Mach did want;
this I attempt to do in Sec. 2. In contrast to some contributors to this
volume, I believe this is clear: an account of inertia containing only
relational quantities and different in its observable consequences from
Newtonian theory. Moreover, I point out that Mach criticized not only
the Newtonian concept of absolute space but also the notion of absolute
external time; the need to formulate dynamics without an external time
can be regarded as a kind of Second Mach’s Principle (cf. p. 92 and
102ff).

In Sec. 3, I discuss the relationship between Poincaré’s formulation
of the problem of absolute vs relative motion (p. 111) and Mach’s more
intuitive statements (p. 109) and argue that Poincaré has provided a
precise criterion of Machianity of a dynamical theory in at least the
nonrelativistic case. The formulation of a second criterion to take into
account the nonexistence of an external time is straightforward.

In Sec. 3, I also describe the appropriate kinematic framework for
Machian dynamics. The key concept is the relative configuration space
(RCS) of the universe. The two criteria of Machianity are then formu-
lated in the RCS, and it is noted that the first is met by the theories of
Hofmann, Reissner, and Schrodinger translated in Chap. 2 and that the
implementation of the second is relatively trivial.

However, these theories are ruled out experimentally by the aniso-
tropic inertia that they predict, and it is fortunate that both Machian
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criteria can be met in theories of a somewhat different form based on a
notion that Bertotti and I call the intrinsic derivative. This is discussed
in Sec. 4. It is important that this notion can be very easily generalized
to field theories and theories in which geometry itself is dynamic. In
fact, when the Hilbert action of general relativity is appropriately
rewritten in terms of the dynamical evolution of 3-geometries, it is found
to be based on a natural generalization of the intrinsic derivative. The
dynamics is also formulated without an external time. These two results
show that general relativity is Machian.

In Sec. 5, I argue that the problem of the so-called anti-Machian
solutions of general relativity disappears very largely once it is realized
that even the seemingly most anti-Machian spacetime - Minkowski space
- still admits interpretation as the outcome of a perfectly Machian
evolution of 3-geometries. It is very important here that gravitational
degrees of freedom are treated on an equal footing with conventional
matter degrees of freedom.

The full relativistic theory of the intrinsic derivative, together with
a Machian treatment of time, is given in (Barbour and Bertotti 1982) and
(Barbour 1994a, b), in which I also consider the quantum implications.
This material also formed the basis of my talk at Tiibingen, but it seems
to me inappropriate to reproduce this recently published material here,
especially since there is a page limit on this volume. I also hope to give
a more extended account of the entire matter in Vol. 2 of my study
Absolute or Relative Motion?, which is in preparation. I therefore ask
the interested reader to consult these other works for the detailed
elaboration. I should mention that the discussion session at the end of
this paper refers to material in my Tiibingen talk published in those
works and only partly reproduced here.

2. What Was Mach Advocating?

Norton (p. 9) doubts whether Mach really did advocate a new theory of
inertia, while von Borzeszkowski and Wahsner (p. 58) say categorically
that Mach did not. Mach’s writings are sometimes obscure, but if they
are considered as a whole I think it is impossible to maintain that Mach
did not envisage a quite new account of inertia. Moreover, important
issues are at stake. As noted elsewhere (p. 7), around 1670 Newton
already recognized the fundamental problem of motion, which even now
is a central issue of quantum gravity (Barbour 1994a,b). Mach was the
first person who saw a way to resolve Newton’s problem without
invoking absolute space.
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I start by referring the reader to Mach’s 1872 passage on p. 109 that
begins: “Now what share has every mass in the determination of
direction and velocity in the law of inertia?” (My italics to make the
point that by ‘inertia’ Mach always meant the direction and velocity of
inertial motion, not the inertial mass, cf. pp. 91-92.) Given that
Newtonian gravitation, the paradigm of a physical force, determines
acceleration proportionately to the mass of the attracting body and in
inverse proportion to the square of its distance, Mach can hardly have
intended here anything other than a physical force that determines
direction and velocity in accordance with some definite (but as yet
unknown) law containing (in principle) both the mass and the distance of
the inertia-determining body.

Such an interpretation accords with the 1912 passage in which Mach
(1960, p. 296) says the ideal is an account in which “accelerated and
inertial motions result in the same way.” While granting the strength of
this interpretation, Norton (p. 23) claims that the final sentence (not
given on p. 109 because of lack of space but quoted on p. 23) in the
1872 passage is a “variant or, possibly, special form™ of the possibilities
considered in the previous sentence and is “just a redescription of the
inertial motion of a collection of noninteracting bodies that avoids
mention of ‘space,”” However, while the sentence in question does read
like that, the statement that Norton makes is not strictly true. The
distances between bodies that are moving inertially do nor vary
proportionately to one another (even if they are sufficiently far apart for
mutual gravitation and other recognized forces to have negligible effect).

Mach knew this well and mentioned it in the 1883 passage
(reproduced in its entirety on p. 110, starting line 5) in the Mechanik that
Norton analyzes. Mach points out that the distance between two bodies
moving purely inertially satisfies the differential equation

d>rldt?=(1/P[a* - drlde)?], @)
where a is a constant. (This behavior arises because the separation of
two bodies that each moves uniformly in absolute space passes once and
only once through a minimum R>0 but increases linearly at the rate a
in the limits > + c.) Having noted, among other things, the form of
Eq. (1) in the first paragraph of the section, which undoubtedly concerns
mere redescription, Mach continues in the second paragraph: “Instead of
saying, the direction and velocity of a mass p in a space remain constant,
we may also employ the expression, the mean acceleration of the mass
u with respect to the masses m, m’, m” ... at the distances r, v, r" ...
is =0, or
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d2(EmriTm)ldt?=0.” @
Is Mach here proposing a redescription of Newtonian law (as Norton
believes) or a specimen of a new relational law?!

It is unfortunate that, in either interpretation, Mach’s equation is
mathematically flawed, since it is a single scalar equation, whereas a
vector equation with three components is needed to specify the motion
of a particle fully (as Kuchat pointed out in the discussion session at
Tiibingen). However, if Newtonian mechanics is correct, any relational
equation like (2) will only hold exactly in very exceptional occasions and
at most at certain instants. In a universe containing very few particles,
it will in general disagree strongly with the Newtonian prediction.
Whatever Mach may have intended with (2), as it stands it is a physically
distinct law. Moreover, his following remark that Newton’s expression
and (2) are equivalent “as soon as we take into consideration a sufficient
number of sufficiently distant and sufficiently large masses” can hardly
be understood in any other way than that he regarded (2) to be a possible
exact relational law from which Newton’s expression would follow as a
very good approximation in a universe like ours. Note that, in contrast,
Mach’s first equation (1) and Newton’s expression are always exactly
equivalent. ,

While Mach’s first equation is obviously mere redescription, the
second is unambiguously non-Newtonian because it contains the masses
of the bodies of the universe. In contrast, the masses play no role at all
in (1), and they also play no role in Lange’s construction (1885). It is
the presence of the masses in (2) that makes it dynamical: Large masses
substituted anywhere for some small masses will cause the mass p to
move differently, even if only slightly. This is quite different from
Newtonian inertial motion. Schrédinger (p. 148, Note 5) was also in no
doubt that (2) was an attempt at a new law,

Mach’s comments sometimes seem open to doubt because he was a
reluctant (and, in the above example, a somewhat incompetent) theorist
who distrusted analytical mechanics (Mach 1960, p. 575). In analytical
mechanics, an equation like ud*(Cmr/Em)/dt*=0 [where I have added to
(2) the particle’s own mass u, which cannot be omitted when there are
forces] could only be derived from a Lagrange function that contains
terms with the mass products um, =1, 2,..., as coefficients, i.e.,
interaction terms, just as in the electrostatic interaction potential e;e;/r;.

There is an even more decisive passage (cited by neither Norton nor
von Borzeszkowski and Wahsner) that makes Mach’s position clear
beyond peradventure. Mach added it to at least the second and third
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editions (1889, 1897) of the Mechanik as his response to Lange’s
redescription (1885) of Newtonian mechanics in purely relational terms.
Following an extremely positive evaluation of Lange’s proposal, which
is granted to be perfectly possible, Mach says he is still dissatisfied with
such an approach and then comments (p. 236, my italics and translation):
“It appears very questionable whether a fourth force-free material point
would follow with respect to one of Lange’s ‘inertial systems’ a straight
line (uniformly) if the heaven of fixed stars were not present, or were not
unvarying, or could not be regarded as unvarying with sufficient
accuracy.” Here are counterfactuals employed just as Norton requires
(p. 15, p. 28). How could Mach say more explicitly that he wanted and
expected a law of inertia physically different from Newton’s law??

3. Criteria of Machianity

Even among those who recognize that Mach wanted a new law of inertia,
there is still much disagreement about precisely what Mach’s Principle
should be. My view is that there should be no doubt on this score and
that virtually all the disagreement has arisen because, ironically, Einstein
himself never really sorted out the matter.

In this connection it is illuminating to read (Chap. 2) the six authors
Mach, Poincaré, Boltzmann, Benedict Friedlaender, Fo6ppl, and
Hofmann,? who all wrote before Einstein appeared on the scene. They
are in essential agreement about what needs to be done - and was done
in first tentative steps by the Friedlaenders and Hofmann and then in
detail by Reissner and Schrodinger. In contrast, no one can read the
selected passages from Einstein on the Machian issue (pp. 180-187)
without recognizing that Einstein introduced many different formulations
over the years, and twice finished up by rejecting his own earlier
formulations (rejection of general covariance as a criterion of Machianity
in 1918 and rejection of the whole Machian idea in 1949, the latter
rejection being made on the basis of an argument - false in my opinion
- that requires a mere “moment’s reflection”!).

Although what Einstein says is seldom completely divorced from the
core of Mach’s thought and is often close to it, it is important to get this
matter straight, for it goes to the heart of dynamics. Also, it seems to
me that some of Einstein’s less successful characterizations of the
Machian issue have often been the starting points for modern attempts to
implement Mach’s Principle; for example, the theory of Jordan (1955)
and Brans and Dicke (1961), the approach of Hoyle and Narlikar (p.
262), the Green’s function approach described by Raine (p. 274), or
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Dehnen’s Higgs-type mechanism for mass generation (p. 479) all derive
from Einstein, not Mach. Interesting as these are, I personally would
not call them Machian since they do not start with a radical critique of
the kinematic foundations of dynamics. That is the first agendum of a
Machian theory.

Lack of space prevents me here from discussing why Einstein took
the route he did and why he gave so many different formulations of the
Machian idea [however, see (Barbour 1992) and Hoefer, p. 67]; instead,
I shall attack that agendum frontally (which, interestingly, Einstein
claimed was not possible, p. 187, 1918b), establish unambiguous criteria
of Machianity for nonrelativistic particle mechanics, and then see how
they should be applied to relativistic geometrodynamics. I think we shall
then see that even if Einstein was more often wrong than right in his
Machian pronouncements general relativity itself is perfectly Machian.
I ask the reader to look at what the man did, not what he said.

Mach’s arguments against absolute space stem from a gut feeling
about the nature of reality that can be traced back several centuries, to
Copernicus at least (p. 6). This is that at any instant of time the objects
in the universe occupy some definite relative configuration which is
changing in some definite relative manner and that this is all that should
count in physics. Numerous authors have noted the absurdity of
supposing the universe as a whole has any position, orientation, or
motion in any sort of space external to the universe. Almost by
definition, the universe must be a self-contained whole. Hence Mach’s
eloquent “The universe is not rwice given, with an earth at rest and an
earth in motion, but only once, with its relative motions, alone
determinable.” Unfortunately, things are seldom as simple as such
aphorisms. As Newton correctly sensed, Tait (1883) and Lange (1885)
showed, and Mach himself admitted (see above), something very like
absolute motions, namely, motions in inertial frames of reference, can
be deduced from the purely relative motions.

The supremely important point made by Poincaré (pp. 111-112),
who shared all Mach’s gut convictions, was that, in any one instant, the
complete set of these inertial-frame motions cannot be deduced from the
instantaneous relative data that characterize any particular dynamical
system that one may be studying, for example, the solar system. The
problem is the overall rotation of the system. For suppose we are told
the masses of n material particles and are given the relative configuration
of these masses at one instant, i.e., we are given the distances r; between
all pairs of points i and j, and also the rate of change of this relative
configuration, i.e., the values of dr,/dt at the same instant . Since we
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know the masses, the instantaneous configuration enables us to calculate
its center of mass. However, we can deduce nothing about its overall
rotation, which is described by additional nonrelational degrees of
freedom. But this means we cannot deduce the angular momentum M,
of the system about its center of mass. Unfortunately, the vector M,
which has three components, has a strong influence on the subsequent
evolution of the system - a planet without angular momentum will fall
straight into the sun. The three nonrelational degrees of freedom are
therefore unobservable in the relational initial data but have a dynamical
effect and modify the subsequent relational data.

Poincaré comments that if all that counted in physics were the purely
relative data one would expect such data at any one instant to contain
sufficient information to predict the future uniquely. This is simply not
the case in Newtonian mechanics. Ultimately, all the unease about
absolute space derives from this fact. For subsystems of the universe,
there is no way round it. However, Mach’s vital hint was that the
situation might be different if the entire universe were considered as a
dynamical system. His Mechanik is full of comments about the need to
contemplate the entire universe when formulating dynamics (p. 110).
Thus, we may conjecture that the universe as a whole is governed by a
purely relational dynamics for which relative initial data do suffice to
predict the future uniquely and that the mismatch in a subsystem is due
to the ignored influence of the rest of the universe on it.

For decades it has been impossible - and this volume is testimony to
the fact — to get scientists to agree on the answer to this question: When
is a theory Machian? But the answer suggested by Poincaré’s analysis
is simple: when the dynamical evolution of the universe as a whole can
be predicted uniquely on the basis of purely relative initial data. In the
case of a universe consisting of point particles, these data will be r; and
dr,/dt at any one instant.

I shall call this the First Machian Requirement.

Let me here recall that the analytical mechanics of n Newtonian point
particles is done in a (3n+ 1)-dimensional space, which is formed by the
3n dimensions of the ordinary configuration space @, to which is
adjoined the one-dimensional space 7 of the absolute time t. The
coordinates of Q are the positions of the particles in some inertial frame
of reference.

There is, however, also the configuration space @, of the purely
relative variables. I call this the relative configuration space (RCS); it
has 3n—6 degrees of freedom. It is the natural arena of Machian
dynamics. Machian histories are curves in the RCS. According to
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Poincaré’s analysis, in a relational theory initial data should be specified
in the RCS Q,, not Q. This cannot be done in standard Newtonian theory
because of the problem with the angular momentum M,,.

Before continuing, let me dispose of one matter. Given the purely
relative instantaneous state of a system — the Machian instantaneous state
- it is not only the overall rotation but also the center-of-mass motion
that we are unable to determine. However, for an isolated system, such
motion has no dynamical consequence because of the Galilean invariance
of physics.

What, however, is important is access to an external clock. For the
above discussion assumes a measure of time in order to specify the rates
of change dr,/dt of the r;. In reality, as Mach repeatedly emphasized
(p. 92), physicists never have access to time. All they can ever do is
measure one motion with respect to another or, more generally, one
physical change with respect to another. If we consider our universe of
n point particles is defined solely by all the r;, this leaves no variable by
means of which we can measure ‘time.” We would have to nominate one
of the ry, say ry,, to play the role of ‘time’ and then give the rates of
change of the remaining r;’s with respect to this ‘internal time.’

However, it is more satisfactory to note the following. Since we
deny the existence of time, we clearly cannot adjoin a one-dimensional
‘time space’ 7to our RCS. Instead, histories of the universe are simply
curves in its RCS Q,. There is no way in which we can say ‘how fast’
the universe moves along such a curve. That would require an external
time. At any point, such a curve has a direction in the RCS, but speed
along the curve in that direction is meaningless. This is the lesson we
must draw from Mach’s “It is utterly beyond our power to measure the
changes of things by time” (Mach 1960, p. 273).

Although time does not exist, in the context of classical (non-
quantum) Machian physics we may still assume that the universe in its
history occupies a unique continuous sequence of configurations. Each
such configuration may be called an instant. There are instants, but
there is no time. A history is a string of such instants.

We can now extend Poincaré’s analysis to include this nonexistence
of time. Just as the First Machian Requirement is associated with
inability to determine M, of a dynamical system from relative initial
data, the absence of external time is associated with a Second Machian
Requirement and an inability to determine kinetic energy - and hence a
total energy E - from relative data. Therefore, the initial condition for
a fully Machian theory takes the form of specifying an initial point of the
RCS Q, and an initial direction in @, at that point. If time existed, we
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could allow the luxury of specifying both an initial direction in Q, and
an initial speed along that direction. The Second Machian Requirement
prohibits specification of such a speed; the direction must suffice.

To formulate a Machian theory, we distinguish different instants by
an arbitrary labeling parameter A that increases monotonically along the
Machian histories. In the technical implementation (Barbour 1994a), the
action is invariant with respect to arbitrary reparametrization of \, i.e.,
its replacement by any other monotonic label parameter. It is, however,
important that reparametrization invariance by itself does not necessarily
implement the Second Machian Requirement. So-called parametrized
particle dynamics is reparametrization invariant, but it is not timeless
(Barbour 1994a). The true criterion of a timeless theory is that its initial
conditions require specification of only a direction in a genuine RCS. In
parametrized particle dynamics, the configuration space is augmented by
a completely heterogeneous ‘time space,” which is simply Newton’s
absolute time in another guise (cf. pp. 103-104).

It should also be said that once dynamical Machian histories have
been found in a truly timeless fashion, the very fact that they are
obtained as the solution of a Machian variational principle in the RCS
makes it possible to introduce along the curve of any such history a
uniquely distinguished time metric, with respect to which the history of
the universe unfolds in a particularly simple manner. In the context of
nonrelativistic particle dynamics, this time metric is found by exactly the
same method as the astronomers used for several decades to determine
what they called ephemeris time. In fact, its properties are identical to
those of Newton’s absolute time metric (duration), but it is found
operationally.

A very important fact about ephemeris time is that all the dynamical
degrees of freedom contribute to its determination. Because Mach said
“A motion is termed uniform in which equal increments of space
described correspond to equal increments of space described by some
motion with which we form a comparison, as the rotation of the earth,”
(Mach 1960, p. 273) he may have misled some people into thinking
certain motions can be separated out and used as clocks to measure all
the remaining motions. However, in the generic case this is not so
(Barbour 1994a). The only satisfactory definition of uniform motion is
with respect to the ephemeris time, to which all motions contribute. In
the context of geometrodynamics, the global ephemeris time of
nonrelativistic theory is generalized to a local ephemeris time, which
turns out to be identical to Einsteinian local proper time (Barbour
1994a).
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In classical (nonquantum) physics the consequences of the non-
existence of an external time are relatively minor and amount to little
more than the introduction of an operational definition of time and the
recognition that any actual classical universe can have only one value of
its total energy; this means that the history can be described by means of
Jacobi’s principle as a timeless geodesic in the configuration space
(Barbour 1994a). However, in a quantum theory of the universe the
implications of timelessness are potentially very great (Barbour 1994b);
see the final discussion session in this volume.

Let me conclude this section by introducing a new word that was
kindly proposed to me at Tiibingen by Dieter Brill as an alternative to the
somewhat staid Machianity. In a play on machismo, he proposed
Machismo. This appropriately matches Ehlers’s comment, also made at
Tiibingen, that you are a Machian, “If you are so courageous as to think
that you primarily formulate a theory for the whole universe.” To this
I would only add that, of course, such a theory must satisfy both
Machian requirements. That is real Machismo.3

4. Implementation of the First Machian Requirement
by Means of the Intrinsic Derivative

It is now necessary to discuss the implementation of the First Machian
Requirement, first in nonrelativistic physics, and then in geometro-
dynamics. I do not think anyone can doubt the ‘Machianity’ of the
kinetic energy introduced by Hofmann, Reissner, and Schrédinger in the
papers translated and published in Chap. 2 of this book. Since
Newtonian potential energies are already Machian, the First Machian
Requirement is clearly met by such theories. Moreover, as Bertotti and
I (1976) showed, it is easy to translate such theories into a timeless form
and so implement the Second Machian Requirement too.

However, most theories of the Hofmann-Reissner—Schrddinger type,
in particular those based on the Weber potential (Assis, p. 159), lead to
an anisotropic effective mass, in crass disagreement with experiment
(Will, Nordtvedt, this volume). It was this fact above all that led Bertotti
and me to seek alternative ways of implementing the two Machian
requirements in a timeless RCS. This led us to the notion of the intrinsic
derivative (Barbour and Bertotti 1982, referred to below as BB2; Barbour
1994a), which is found by a procedure in which two complete
configurations of the universe that have some small intrinsic difference
are compared in a ‘best matching’ procedure.
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One can imagine that one configuration is ‘slid around’ on top of the
other into all possible trial matchings; this has the effect of establishing
trial equilocality pairings of points in the respective configurations.
Given such a trial equilocality relation, one can define rates of change at
points provisionally taken to be equilocal and use them to define a trial
action by integrating a suitable functional of the dynamical degrees of
freedom and their derivatives over space. Extremalization of this action
with respect to all trial equilocality relations then leads to an invariantly
defined action. As Ehlers notes (p. 460, see also p. 7 and p. 55), in
order to define velocity, Newton introduced the notion of absolute space
in order to be able to say when some given body is ‘at the same place,’
i.e., is equilocal, at different instants of time. An inertial frame of
reference serves the same purpose. The intrinsic derivative is a fully
Machian alternative to this use of external frames of reference.

It is interesting that when the equilocality extremalization is carried
out explicitly (Lynden-Bell, p. 172), rather than implicitly (BB2), the
resulting Machian kinetic energy also has the intuitively Machian form
first proposed by Hofmann, i.e., it has the form of an interaction
involving pairs of masses and their relative separations. However, in
contrast to the Weber potential, the BB2-Lynden-Bell action does not
lead to mass anisotropy.

The really remarkable and ironic fact is that the relative motions
predicted by the BB2-Lynden-Bell model are identical to the relative
motions in Newtonian mechanics for a system having vanishing center-
of-mass angular momentum M,, M,=0, and one fixed total energy E.
This is how intrinsic dynamics resolves the failure of predictability that
Poincaré identified in Newtonian mechanics, in which instantaneous
relational data cannot determine M, and E. In intrinsic dynamics M,=0,
and E can have only one fixed value.

A further advantage of the intrinsic derivative is that it can be
immediately applied as soon as one has chosen an ‘ontology’ of the
world, that is, one has chosen what kind of relative configurations are
supposed to embody possible instants. In Newtonian mechanics, the
relative configurations are those of mass points in Euclidean space. One
could just as easily develop Machian field theory (BB2), for which the
relative configurations are defined by field intensities. Finally, one can
develop Machian geometrodynamics, in which the relative configurations
are Riemannian 3-geometries (and matter fields defined on them if one
wants more than pure geometrodynamics). As shown in BB2 and
(Barbour 1994a), formulation of the appropriate Lagrange function leads
unambiguously to an action that has the same key basic properties as the
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Baierlein-Sharp~Wheeler (1962, BSW) form of the Hilbert action of
general relativity, though it is not possible to pin down the precise form
without invoking certain additional hypotheses (cf. Kuchaf’s comments,
pp- 454-455). However, this is of no concern to a Machian; the claim
is not that general relativity is zhe unique Machian theory but merely that
it is a Machian theory.

The basic formulas for the intrinsic derivative and ephemeris time in
particle dynamics are compared with the corresponding generalizations
in geometrodynamics by Goenner (pp. 449-450).

Let me end this section with a response to the difficulties Ehlers
finds (p. 466) with extending relational particle mechanics into the
context of general relativity. What Ehlers says is perfectly correct if we
are talking about relative motion of particles in spacetime. But in
Machian geometrodynamics the intrinsic derivative is used to define
relative motion of fields or geometries in a context in which spacetime
does not yet exist. That is a very different matter. In fact, Bertotti and
I developed the notion of the intrinsic derivative precisely in order to
overcome, in the context of the modern ‘ontology’ of fields and dynamic
geometry, the very difficulties to which Ehlers refers. It may also be
worth mentioning that when we developed the idea we were expecting to
create a Machian geometrodynamics with physical predictions different
from those of general relativity. We had no idea the notion already
existed at the core of Einstein’s theory in the form of the BSW action.
When Kuchat pointed this out to us in 1980, our initial reaction was one
of disappointment. We had lost the chance of finding a new theory!

5. ‘Anti-Machian’ Solutions and Infinity

Because of program constraints, the material in this section was not
presented at Tiibingen, and is partly written in answer to remarks made
elsewhere in this volume, especially by Hoefer (pp. 82-83, 88), Isenberg
(pp. 205-206), Ehlers (pp. 466-468), and Goenner (p. 450). I begin
with a brief review of the steps, given in detail in (Barbour 1994a), that
lead me to conclude that general relativity is Machian:

1) The natural RCS for general relativity considered as a dynamical
theory is superspace, the space of all Riemannian 3-geometries, which
for the moment we shall assume are compact. If matter fields are
present, the RCS is extended accordingly. In pure geometrodynamics,
a 3-geometry is characterized formally by three intrinsic degrees of
freedom per space point.

2) In the BSW form, the Lagrange function of general relativity



226 Julian B. Barbour

defines a generalized line element in superspace provided the thin-
sandwich problem (Wheeler 1964b, 1968) can be solved. The manner
in which BSW action is calculated, by variation with respect to a 3-
vector field that establishes trial equilocality relations, ensures that the
First Machian Requirement is satisfied. @ The Second Machian
Requirement would already be satisfied if the BSW action principle
possessed global reparametrization invariance. In fact, it possesses local
reparametrization invariance and therefore satisfies the Second Machian
Requirement a fortiori. General relativity is more than Machismo - it’s
Machissimo. -

To reach this conclusion, we had to shed at least two Einsteinian
convictions: 1) Cosmic derivation of the inertial mass is the essence of
Mach’s Principle; 2) local inertial frames of reference must be
exclusively determined by the matter energy-momentum tensor. It was
widely accepted at the Tiibingen conference (cf. Ehlers’s comments, p.
93) that such a formulation of Mach’s Principle, as given by Einstein in
1918, is hopelessly flawed from the mathematical point of view. From
the physical point of view, there is also no good reason to rule out purely
gravitational degrees of freedom as determinants of motion. This too
was also widely recognized at Tiibingen. See gravitational degrees of
freedom, role in Mach'’s Principle in the Index. Moreover, the fact that
in the spacetime picture the gravitational degrees of freedom do not
possess a generally covariant energy-momentum tensor (Hoefer’s
objection, pp. 82-83) in no way prevents one from formulating an initial-
value problem in which the role of such degrees of freedom is perfectly
well defined. This is related to the fact that the intrinsic derivative is
defined at a level of the dynamics that is logically prior to the appearance
of spacetime.

We must now consider those perennial bogey men, the so-called
manifestly anti-Machian solutions of general relativity, especially matter-
free spacetimes and above all empty Minkowski space. We can go a
long way to exorcizing these bogey men if we hold fast to the following
principle: Any solution of pure geometrodynamics, i.e., any Ricci-flat
spacetime, is not to be analyzed as a matter-free structure in which test
particles have inertia or as a structure that has a disconcerting
resemblance to Newton’s absolute space and time but as a dynamical
history of 3-geometries. The Machian requirements apply to the
structure of such a dynamical history, not to the behavior of test particles
within it.

Thus, what we need is a change of perspective - away from the view
that flat Minkowski space is the ‘natural ground state of the universe’
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(or, alternatively, a fixed external framework) and to the recognition that
it is a highly atypical solution of a sophisticated dynamical theory. It
must also be remembered that the worries Einstein struggled with in the
1916-18 period (Hoefer, p. 67) stemmed to a quite considerable degree
from his complete misunderstanding of the mathematics of his own field
equations (see Ehlers’s comments, p. 92). They are not elliptic equations
like Poisson’s equation, for which one first specifies the matter
distribution and then finds the field, but evolution equations with very
nontrivial initial-value constraints on both the geometry and the matter.
The Machismo is all in the constraints.

Let us consider in this light the spatially compactified Minkowski
spaces discussed by Isenberg and Goenner (pp. 205-206). To interpret
such solutions dynamically, we must foliate them in some manner.

Any foliation of such a spacetime by spacelike hypersurfaces
generates a curve in superspace, each point of which represents one leaf
of the foliation, i.e., one 3-dimensional hypersurface. If we choose the
foliation trivially, i.e., we choose Galilean coordinates in such a
spacetime, so that all the 3-dimensional hypersurfaces are flat and
identical, the curve that is supposed to represent our history degenerates
into a singular point. Nothing happens! However, there are also
infinitely many other foliations of the same spacetime, and these
correspond to nontrivial Machian histories of the 3-geometries. Looked
at from the point of view of Machismo, there is nothing wrong with
these histories. The ‘degeneracy’ of general relativity — the fact that
foliation invariance can generate so many different histories - in no way
diminishes the virility of its Machismo. Quite the opposite - it is
evidence of its potency (cf. what I said above about general relativity
being Machissimo).

It should also be noted that superspace, like all RCSs, has frontiers,
or strata. Virtually all exact solutions of general relativity, including the
ones that seem so anti-Machian, possess special symmetries and live on
these degenerate frontiers, or, rather, some of the histories into which
they can be foliated live on the frontiers. This is an important
contributory factor that helps to create the impression of anti-Machianity.

It should be noted here that simply because a spacetime like
Minkowski space that arises out of Machian geometrodynamics does not
seem to contain propagating gravitational waves this does not mean there
are no nontrivial geometrical degrees of freedom in the spacetime. Any
curved - or even flat - 3-geometry is a bona fide state of the geometry
even if it happens to fit into a very special, entirely nongeneric 4-
geometry.



228  Julian B. Barbour

However, as Isenberg remarks, when you add a particle to such a 4-
geometry you simultaneously have to add some rather more nontrivial
gravitational degrees of freedom. What this does is shift the solution and
all the histories into which it can be foliated away from the degenerate
frontiers of superspace and into its generic interior. Then the very
superficial similarity between the high-symmetry solutions and
Newtonian absolute structures disappears. But — let me emphasize it
again - the real difference between the Newtonian absolute structures and
all Einsteinian spacetimes is that the former are a rigid kinematic
framework for dynamics, whereas the latter arise as a result of Machian
dynamical evolution in a situation in which there are no preexisting
frameworks at all.

Finally, we must consider the toughest nut - solutions that are not
spatially compact, in particular, solutions that are asymptotically flat at
infinity. It cannot be denied that here some difficulty does arise. The
point about Machian geometrodynamics is that it is formulated solely in
terms of 3-geometries. A solution of geometrodynamics is merely a
sequence of 3-geometries. Now the process of finding such sequences
involves solution of the partial differential equations of the thin-sandwich
problem (Wheeler 1964b, 1968) for a 3-vector field N, (subsequently
identified with the shift). Once N, has been found, it can be used in
conjunction with the known 3-metric g; and its derivative with respect to
an arbitrary time parameter, both of which are given, to find, by means
of purely algebraic relations, the four remaining components g, and g,
of a four-dimensional metric tensor. In this way, spacetime is
constructed from the sequence of 3-geometries.

Now as Wheeler (1964a,b, 1968) pointed out long ago, if the 3-
geometries are spatially compact, the thin-sandwich equations are ‘self-
contained,” that is boundary conditions do not arise. It is merely (1)
necessary to ensure that N, satisfies the thin-sandwich conditions over the
complete compact 3-manifold. If, however, the 3-manifold is not
spatially closed, some sort of boundary condition for N; must be imposed
at the frontier of the manifold or at spatial infinity. From the Machian
point of view, the imposition of such a condition violates the spirit of
‘Machismo’. It is also an affront to the principle of sufficient reason (cf.
Einstein’s comments on p. 182 and p. 183) and brings in an extraneous
element at infinity. It is, however, important to note here the difference
between the nonrelativistic form of Mach’s Principle as implemented in
the BB2-Lynden-Bell model and Einsteinian geometrodynamics. The
former is based on a global gauge group, the latter on a local gauge
group. It is for this reason that the thin-sandwich equations are
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differential, not algebraic, as in the BB2-Lynden-Bell model.

Thus, everywhere within any Einsteinian spacetime the thin-sandwich
equations must be satisfied. Locally there is nothing to tell us how this
fulfillment of the Machian thin-sandwich conditions is brought about: We
cannot tell whether we are in a spatially compact or asymptotically flat
spacetime; for we can never get to infinity to put the matter to the test!
No matter how far we go in exploration of our spacetime, the thin-
sandwich equations will always be satisfied. As we progress further and
further, we shall find an ever larger region in which the structure of
spacetime can be understood in a perfectly Machian manner. For us, as
opposed to mathematicians “paid by their math department” (cf. p. 205)
to find Einsteinian solutions, that process can never end. Moreover,
even if we could ‘get to infinity’ all we should find would be some
condition on its rim that somehow ‘pegs the world down.” All the action
within the rim would be totally Machian. Once again, the proper
recognition of 3-geometry as a bona fide determinant of inertial frames
of reference along with ordinary matter fields goes a very long way to
defuse the worries that Einstein was expressing in 1916-17 (Hoefer, pp.
74-80). In spacetimes that are nearly flat and nearly free of matter, the
inertial frames are not determined solely by boundary conditions at
infinity but - to a far, far greater extent - by fulfillment of the Machian
constraints on the geometry all the way out to infinity.

Infinity is always going to be a problem for the human mind.
General relativity is wondrously Machian, as perfectly so as any mortal
could construct. As Copernicus remarked (1543), we can leave the
philosophers to worry about infinity.*
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NOTES

1t is certainly true that the opening words of Mach’s second paragraph (p.
110) could easily give one the impression that it is simply going to continue the
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theme of mere redescription. In correspondence with me, Norton comments:
“If he intended the major change of course you propose, one would expect some
stronger indication that the enterprise is different.” That is a very fair
comment, and when I first looked at the passage I initially thought Norton was
correct. However, closer examination has persuaded me otherwise. I am very
happy to concur with Norton’s further proposal in his letter: “We ought now to
hand over the decision to the good sense of our readers.”

ZNote added in proof. 1 have just discovered that in the fifth and sixth
editions of the Mechanik (1908), Mach actually referred to Hofmann (p. 262,
my italics): “I have in front of me also a lively, clear text written in a very
popular style by W. Hofmann (Bewegung und Trdgheit, Vienna 1904), who
seems unaware of the controversy and who seeks the solution in almost the same
ways as I did (die Losung fast auf denselben Wegen sucht, wie ich es seinerzeit
gethan habe).” This comment too seems to support my position.

3Since machismo does have a pejorative overtone, especially in this feminist
age, and Dieter Brill’s own attitude to Mach’s Principle, on the evidence of his
contributions to this volume, is somewhat more pragmatic than my robust
stance, was there, I just wonder, a playful subversive intent behind his coining?
Whatever the truth, the happy inspiration was — and is — very gladly accepted.

41t will probably not have escaped the reader that only two of my fellow
symposiasts at Tiibingen joined me in the straw poll (p. 106) in saying that
“General relativity is perfectly Machian.” However, a majority did agree that
“General relativity with appropriate conditions of closure of some kind [is] very
Machian.” Probably the only substantive difference between my position and
that view concerns the delicate issue of the status of conditions at infinity, and
that is bound to remain something of a quibble. I hope the new arguments of
this final section will win over at least some waverers. | may also mention that
one participant told me after the straw poll he completely accepted my argument
and had only abstained in the ‘perfect Machianity’ vote out of a sense of
anticlimax - he wanted Mach’s Principle to do more than “just be general
relativity.” Personally, I think much may yet be won from a Machian
standpoint, but the dynamic core of general relativity strikes me as a good start.
Finally, the quantum aspect needs to be considered too. If, as I — and quite a
number of other quantum cosmologists - conjecture (pp. 516-517), quantum
gravity simply gives probabilities for 3-geometries, the classical histories
dissolve - to be recovered at best in certain regions of superspace in which the
wave function of the universe gets into a WKB regime. All this will be
determined in a perfectly Machian manner, see p. 478.
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Discussion
Ehlers: It may be helpful to mention the following: In classical

mechanics it was a question how to separate the internal motions of a
deformable body, like a planet, from the overall motion. In order to do
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this Tisserand (1891 Treatise de Mécanique Céleste, Vol. 2, Chap. 30,
§ 1-3, pp. 500-505) has introduced into classical mechanics the concept
of a corotating frame of an arbitrary deformable body. He requires to
choose that particular reference point, and that system of reference
directions, with respect to which the relative kinetic energy is minimized.
Then the reference point is the center of mass, and the reference
directions are those for which the relative angular momentum vanishes
[cf. Frauendiener, pp. 354-356, and Lynden-Bell, pp. 174-175]. And
I think your description [of the intrinsic derivative] amounts to something
quite similar. Instead of starting with the standard Newtonian
description, and attaching such a frame to one particular body at a time,
you attach it to the universe as a whole, and then say you should
describe the whole situation only with respect to this preferred frame.
Barbour: There are undoubtedly similarities, but I do not think what
you describe is exactly the same as Bertotti and I did, since the scheme
you describe must presumably work for any rest-frame angular
momentum whereas in the Machian scheme one recovers (in relative
variables) only those Newtonian motions for which the rest-frame angular
momentum is exactly zero.

Lynden-Bell: In your scheme there is length?

Barbour: There is at this stage; to get rid of length, I think you have
to solve Riemann’s problem of where metrical properties come from.
Somehow or other, all of physics works with metrical quantities,
intensities, or something that has definite numerical values.
Lynden-Bell: You could make this scale invariant?

Barbour: One could certainly make it scale invariant.

Ehlers: A short remark. I think for the conceptual set-up it’s essential
to realize that in your Q, version even [Sec. 3], you accept without
criticism two a priori structures. Namely, a simultaneity relation and
Euclidean distances, and everything else is then made dynamical.
Barbour: That’s quite true. And in Machian geometrodynamics I
assume there are 3-geometries, described by a spatial metric, just as in
the ADM form of general relativity. Each of these 3-geometries will
represent instants, or simultaneities. It is important that Einstein never
abolished simultaneities. He just abolished the distinguished foliations;
but spacelike hypersurfaces, particularly in a Hamiltonian formulation of
general relativity, are central concepts. These are what the n-body
configurations in Euclidean space become in GR.

Giulini: But this simultaneity is a very abstract one. It is an abstraction
really from nonrelativistic Newtonian mechanics. Since there is
relativity, special relativity, it’s pretty doubtful you can use it. We do
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not have direct access to positions, even relative positions. Rather, it is
the theory which permits us to infer them from observations.

Bondi: As a final word [on particle dynamics], you could say the
universe is not only its own clock, it is its own measure of rotation.
Barbour: Yes, and we must find it out from within the universe.
Jones: I don’t think that the total angular momentum of the universe can
be expressed in the relative configuration space. It seems like an
absolute rather than a relative concept.

Barbour: The fact that an n-body Newtonian system has a nonvanishing
angular momentum certainly does show up in the relative motions, and
therefore it can be expressed in relative terms [pp. 111-112].
Nordtvedt: I've probably been thinking about radar and laser ranging
too much, but there’s this trend in which people more and more reduce
so-called distance measurements into effectively local time measurements.
In some sense, time is emerging as more fundamental; in my conceptual
world anyway, it’s more essential and significant than space. However,
I got the opposite twist from you, that you saw time disappearing. For
me clocks have become more central, at least in experimental physics.
Barbour: I don’t think there’s any necessary conflict. The important
thing is to distinguish between theoretical concepts posited as basic and
effective concepts derived from them. This would also be my answer to
the remark Giulini just made. After all, we continually use temperature
but still look to derive it from microscopic motions of atoms. I don’t
think there’s anything wrong with having a theoretical framework that
leads to effective concepts which then dominate your thinking. Indeed,
this workshop is about recovering the inertial frames of reference, which
dominate the way most of physics is done on the earth. They are
certainly very good concepts; they are around us here, almost concrete,
and confront us all the time. But are they the most fundamental entities?
The fact that we use something a lot doesn’t mean that we cannot explain
where it comes from. My aim is to recover both local time and local
inertial frames of reference from the one idea that the history of the
universe is an extremal in an RCS.

Bondi: As you quote enough of ancient authors, I'll quote myself
[laughter]. I think, quoting from memory, Gold and I in our 48 paper,
45 years ago, wrote “A law of motion is only relevant to describe a large
number of different motions. The universe has no law of motion, it has
only a motion.”

Barbour: 1 thought a lot about that remark of yours, and it was
important to me in clarifying these ideas. In the end, I didn’t agree with
you. You can formulate a law for the whole universe. I believe it’s
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been done here this morning: The unique history of the universe is a
geodesic in its RCS. But you can then look at many subsystems within
the one universe and describe them by means of effective local inertial
frames and an effective time that are both determined by the universe as
a whole. You then do indeed have laws of motion that describe a large
number of different motions. Our two standpoints are reconciled by
noting that the law describing the motion of the universe has a form quite
different from the laws that describe subsystems, since they include
effective concepts derived from the motion of the complete universe.
Bondi: In the light of your talk, I interpret myself slightly differently
[laughter]. In all the subsystems, you use the time defined by the
universe, but the universe defines its own time, which is an identical
statement.

Barbour: Yes.

Bondi: Which is quite a different thing - relying on somebody else’s
time and manufacturing it yourself.

Barbour: Well, everything we use must ultimately be extracted from
within the world.

Kuchar: Julian, you treated the angular momentum differently than the
energy, because you put it equal to zero. You didn’t put the energy
equal to zero. To proceed symmetrically, you should perform, not a
reduction to zero angular momentum, but to a constant value of the
angular momentum.

Barbour: Yes, this too we have discussed over several years Karel.
Rotations are different because the components of the angular momentum
do not commute. This is an issue that I will cover elsewhere. [In Vol.
2 of my study Absolute or Relative Motion?.]

Will: Do you want to comment on any possible Machian ironies in
situations that may arise if atomic time, which replaces ephemeris time,
is ultimately replaced by a time based on millisecond pulsars, where then
the basis of standard time is rotation? The current millisecond pulsar is
at least as stable as all the atomic clocks on earth. We cannot tell which
is the stablest, so if we have a collection of millisecond pulsars, like the
one we now know, that could then become the operational definition of
time.

Barbour: That is a lovely question, because I'm sure you know there’s
a problem with the binary pulsar and the accuracy with which its
emission of gravitational waves is conformed. As Joe Taylor and
Thibault Damour note (1991, Astrophysical Journal 366: 501), the
differential acceleration between the solar system and the binary pulsar
in the field of the Galaxy exactly mimics emission of gravitational waves,
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so to interpret the binary-pulsar data the galactic gravitational field must
be modeled. Now certainly the millisecond pulsars that you refer to may
well become the most useful actual clocks from which to read out time,
but if there are several of them there’s no doubt it will be necessary to
model the Galaxy - and, in fact, to some extent the universe as a whole
because of the role that quasars play in determining frames of reference
- in order to extract a meaningful time from them. There is a very nice
paper by G.M. Clemence in the Reviews of Modern Physics for 1957 in
the issue that’s got the proceedings of the Chapel Hill relativity
conference. It’s the very first article in that issue; it’s on astronomical
time, on ephemeris time, and Clemence asks: What is a clock? His
answer is: “A clock is a mechanical device which is continually cali-
brated against ephemeris time.”

Will: Except the ephemeris time is no longer enough.

Barbour: Not the ephemeris time based on the solar system no; I'm
talking now about a generalized ephemeris time extracted from
observation of the entire universe.

Hoefer: 1 was wondering whether Newtonian empty absolute space
turned out to be a Machian situation with this scheme.

Barbour: No. Here I'm exactly with Hoyle and Narlikar [p. 250 and
262]. In fact they need two particles, but, because I get rid of time, I
need at least three particles to get a nontrivial Lagrange function. The
simplest nontrivial Machian model must have three particles in it in the
nonrelativistic case. In geometrodynamics there is no need for matter
since geometry has its own degrees of freedom.

Hoyle: I think it is the case that there are people who go round the
world, or were a few years ago, selling time. Their job is to sell it.
They carry it in a little suitcase, and I came across one of these chaps
some years ago. We got talking, and I said “Well what are you doing?”
I mean because he’s very careful with this suitcase, you wonder if he’s
got some sort of explosives in it, and he says “I’m selling time, I'm a
salesman for time,” and it means he’s simply got an exceedingly accurate
atomic vibration, and my understanding is that astronomers have for
quite some time used this rather than anything connected with the sky.
Barbour: That is, of course, true, but my answer is very much like the
one before to Cliff [Will], Fred. My understanding is that time is now
determined by a system of about seven such atomic clocks, which are
distributed around the world. Just like the earth, atomic clocks have
internal jitters, over which the scientists have no control.

Hoyle: There are perturbations on the system.

Barbour: Yes, and to counteract those you have to model the earth and
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average the clock readings. To extract a time out of the network that Joe
Taylor can actually use to test if the binary pulsar’s really giving off
gravitational waves, you have to model the continental drift, the
Chandler wobble of the axis of the earth, and all these things. There is
no clock from which you can simply read off time. It does not exist.
The present one is a network of such clocks with a model of the motion
of the earth.

Hoyle: I think you could use a system in some other place in the
universe. It need not be the earth at all.

Barbour: Yes, but you still have got to have a complete dynamical
system, and you’ve got to parametrize the environment in which the
clock is read.

Hoyle: If you reduce it to practical time, yes. But it’s a system of time
in which you count the number of oscillations of a certain transition, and
that is going to be the same wherever you are in the universe.
Barbour: With respect, Fred, that’s not a clock because an actual
atomic clock is a many-body system. An atomic clock corresponds to
a complicated many-body problem of solid-state physics. One can never
get one’s hands on an oscillation of one atom like that; it just isn’t there.
Ehlers: I think you talked about proper time, which is defined in terms
of atomic systems, and in order to relate different proper times, you have
to have a good model of the gravitational potentials and relative motions
in order to reduce them to a common time. It is unfortunate that we use
just one word. I think for science we need at least two different
concepts, which are unfortunately denoted by the same word, namely, we
use time in a first sense as a global parameter of events, to order them
in a certain sequence, and that is not necessarily the same as what is
measured by a good clock. Secondly, we use clocks, and we know that
already in special relativity time in the first sense is the coordinate time
of some inertial frame, and proper time is something of a different
nature. It’s idealized by a different mathematical structure and it is
different also in its actual scientific use. Would you agree?

Hoyle: Yes, I agree entirely, because clearly there’s an infinitely large
number of ways in which one can define coordinate time, but my point
is that the proper time is unique.

Ehlers: The proper time of one particular clock at one particular place.
Hoyle: At one particular place, yes.

Barbour: 1 would only add that, nevertheless, in order actually to
measure that local proper time one must still in principle model the
universe since it is the dynamics of the universe that ultimately
‘manufactures’ proper time.



A Closed Universe Cannot Rotate

D. H. (Harry) King

1. Introduction

What does it mean for a universe to rotate? In the context of
Newtonian physics, a rotating universe is one where there is a net
rotation of its contents with respect to absolute space. In other words,
a rotating universe has a nonzero total angular momentum with
respect to the global inertial frame. Our solar system in otherwise
empty space is an example of a Newtonian rotating universe. All the
planets orbit the Sun in the same direction, thus contributing to a
nonzero total angular momentum for the solar system. This model
universe can be said to be rotating because there is nothing to cancel
the angular momentum of the solar system.

At this point, I find myself in the somewhat awkward position of
having to define Mach’s Principle in order to explain why a rotating
universe is contrary to this principle. Mach’s Principle is dangerous
to define because everyone seems to have a different interpretation.
Nevertheless, I follow Barbour’s lead (Barbour 1989) by saying that,
within the context of Newtonian physics, Mach’s Principle asserts that
only the relative motions of the mass in a universe are significant.
According to this principle, absolute space is not a fundamental part
of (Newtonian) dynamics, but merely an auxiliary device that is
introduced for computational convenience.

It is clear that a rotating model universe is not Machian because
the rotation takes place with respect to absolute space instead of with
respect to matter. It turns out that the connection between a Machian
universe and a nonrotational one is fundamental. Barbour and Bertotti
(1982) have shown that the Newtonian dynamics of a model universe
can be reinterpreted in terms of a theory of relative motion if, and
only if, the total angular momentum of that universe is zero. (See also
Lynden-Bell’s contribution in this volume, p. 172.)

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 237-248 ©1995 Birkhduser Boston, Inc. Printed inthe United States.
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In summary, the status of Mach’s Principle within Newtonian
physics is as follows: 1) Not all Newtonian model universes are
Machian, and 2) Machian is equivalent to nonrotating.

Shifting now to general relativity, things become considerably
more difficult. Einstein had hoped to create a theory of relative
motion (hence the name general relativity) where all model universes
would be Machian. Relative motion was supposed to be implemented
indirectly by making the inertial frame, now local instead of global,
a dynamic element of the theory responding to the matter content of
the universe. General relativity would indeed be a theory of relative
motion if the inertial frame was completely determined by the matter
content of the universe. However, this is not the case. The inertial
frame is a dynamic element of the theory having independent degrees
of freedom. Further complications are introduced by the Equivalence
Principle, which inextricably combines the gravitational field with the
local inertial frame and by the inclusion of continuous fields, which
makes the definition of relative motion itself rather unclear. At this
point the definition of Mach’s Principle becomes open to much
discussion, since any definition requires the above complications to
be addressed.

Barbour [p. 225], who has interpreted relative motion for contin-
uous fields, has shown that general relativity is a theory of relative
motion.

I have taken a different approach to Mach’s Principle by avoiding
the issue of relative motion altogether and asking the question: “Does
general relativity, unlike Newtonian dynamics, automatically exclude
rotating model universes?” Because adherents of Mach’s Principle
would like to answer this question in the affirmative, I will call it the
Mach Question for general relativity.

The first thing to note about the Mach Question is that it is false
for asymptotically flat model universes. Consider a general relativistic
model of the solar system in otherwise empty space. Because the
gravitational field within the solar system is weak, the general
relativistic model is little different from the Newtonian model
discussed previously. Like the Newtonian model, the general relati-
vistic model has a nonzero total angular momentum, which qualifies
it as a rotating universe. Thus, asymptotically flat general relativistic
model universes are no more Machian than Newtonian ones.

The source of this anti-Machian behavior is the need by Einstein’s
field equations for spatial boundary conditions. Boundary conditions
of asymptotic flatness provide an inertial frame at infinity which is
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completely unaffected by the matter content of the universe.
Elsewhere in space, the inertial frame is only modified by the
presence of matter. The inertial frame is not completely determined
by the universe’s matter content. The problem of boundary conditions
can be avoided by considering only spatially closed (3-sphere
topology) model universes.

The Mach Question for closed model universes has a long history
and for the last thirty years has been thought to be false (Ozsvdth and
Schiicking 1962, 1969). The most important conclusion of this paper
is that the Mach Question is true for closed model universes when: 1)
The angular momentum is measured relative to the average inertial
frame for the universe, and 2) the angular momentum of gravitational
waves is included in the total for the universe.

As the above two conditions suggest, the Mach Question requires
a number of issues to be addressed: 1) Global rotation must be
defined for an arbitrary spacetime that lacks rotational symmetry; 2)
angular momentum must be defined for a closed universe; and 3) the
angular momentum carried by gravitational waves must be taken into
account. The key to the solution of all these issues is the introduction
in Sec. 2 of an average inertial frame for a given model universe. The
average inertial frame permits the definition of total angular
momentum in Sec. 3 and permits the definition of the stress-energy
of gravitation in Sec. 4. These definitions lead to the proof in Sec. 5
that the total angular momentum of a closed universe is zero.

2. Average Inertial Frame

The lack of a global inertial frame for general relativity makes it
much harder to define the rotation of a universe in this theory. The
approach adopted in this paper is to restrict the discussion to
approximately homogeneous and isotropic universes and to introduce
a global frame of reference that is approximately inertial. Despite this
restriction, the results of this paper are valid to all orders of the
perturbation.

The fact that our own universe is thought to be approximately
homogeneous and isotropic helps to motivate the introduction of an
approximately inertial frame. Our universe is modeled by astro-
physicists as an average Hubble flow plus inhomogeneities
corresponding to individual galaxies or clusters of galaxies.

Corresponding to the average Hubble flow is a homogeneous and

isotropic background metric tensor, g®,,, which picks out a preferred
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coordinate system that is equivalent to the global approximately
inertial frame. The background metric is defined to be the average of

the real metric,
g(B)‘“ = <g'”> . (1)

The problem of devising the best way to perform the average in Eq.
(1) is as yet unsolved and is called the ‘fitting problem’ for
cosmology (Ellis 1984). This average is difficult to define because the
quantity being averaged is a tensor, and in order for the definition to
be covariant, the tensor must be parallel transported to a common
point in order to sum up the contributions from different points in
space.

For the purposes of this paper, it is not necessary to specify a
particular solution of the fitting problem. Any reasonable fitting
procedure must meet a number of consistency conditions. However,
first we must establish some notation. Suppose that we have already
selected a background metric. Being homogeneous and isotropic, the
background metric has a number of vector fields associated with it.
There is the time-like vector field n* that is orthogonal to the
hypersurfaces of homogeneity. There are the six linearly independent
Killing vector fields {¢,*, a=1,...6} that result from the homo-
geneity and isotropy of the hypersurfaces. It is convenient to
introduce the usual coordinate system {x*}, where x°=t¢ is constant on
each hypersurface and {x’, i=1,...3} label the points on any given
hypersurface. In these coordinates, we have n*=(1, 0, 0, 0), £=(0,
£y, and g®,,=diag(—1, g®,), which simplify the consistency
conditions.

The consistency conditions result from three types of physical
requirements on the background metric:

1) The background metric must measure the same proper time, on
average, as the real metric, i.e.,

<(gp.v - g(B)p.y)n “n y> = <g00 _g(B)00> =0. (2)

2) The background metric must measure the same spatial
distances, on average, as the real metric, i.e.,

(g, ~&®,)8®" =g, -g®/> =0, 3)
where Eq. (2) has been used to simplify the equation.
3) The background metric must have no net translation or rotation
relative to the real metric, i.e.,

{8,, 8@ In"E > =8y =8 Po)E, ) =0. @)
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The average performed in each of the above consistency
conditions is applied over the entire spatial hypersurface
corresponding to a given time. That is, the average of a scalar field
A is defined to be

=1 5
A = j Adv, Q)

where V is the volume of the spatial hypersurface at time ¢, and dV is
the volume element for the background metric. In each case, because
the hypersurface average is applied to a scalar quantity, there is no
difficulty in performing the parallel transport of the quantity from one
location to another during the averaging process.

It is always possible to choose a background metric that satisfies
these consistency conditions. If the background metric does not satisfy
the first condition, it can be adjusted by choosing a new time
coordinate r—t'. (Here and in the following procedures for adjusting
the background metric, the components of the real metric are
transformed to a new coordinate system while the components of the
background metric remain the same in the new coordinate system. In
this way, the real metric remains the same tensor, but the background
metric is changed to a new tensor. This procedure is analogous to the
gauge transformation used in perturbation analysis.) If the background
metric does not satisfy the second condition, it can be modified by
choosing a new scale factor S(¢). If the background metric does not
satisfy the third conditions, it can be adjusted by the coordinate
transformation

t"’t/ ={, (6)
i 1i_ i i i
X'oxt=x A (O + A (D E s

where the functions 4,(?)... A«(?) are to be determined by Eq. (4).
An elementary way to satisfy the third consistency conditions, but by
no means the preferred way, would be to choose synchronous
coordinates for both the real and background metrics. In fact, the
consistency conditions are extremely unrestrictive, leaving great
freedom in the choice of a fitting procedure.

In summary, the background metric:

* gives the best approximation to the geometry of spacetime;

® evolves in response to the evolution of the real metric;

¢ is completely determined by the real metric (for a given choice
of fitting procedure); and

¢ is coordinate independent (the fitting procedure is covariant).
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Although the background metric is certainly not a fundamental
element of general relativity, it is nevertheless a valuable tool for the
interpretation of a given universe. In the next two sections, I show
that the use of the background metric allows: 1) global rotations to be
defined, and 2) the stress-energy of the gravitational field to be
identified. These resolve the two main outstanding issues in the
interpretation of the Mach Question for general relativity.

As a final note, it is important to recognize that the background
metric g®,, is quite different from the unperturbed metric g©,, used
in perturbation theory. The unperturbed metric is a solution of the
field equations that is completely unaffected by a perturbation,
whereas the background metric responds to changes in the real metric
as it evolves. Even though both are homogeneous and isotropic, the
background and unperturbed metrics differ in the evolution of their
scale factors. If, however, a perturbation analysis is carried out only
to the first order, then the background metric is equal to the
unperturbed metric as long as the consistency conditions are main-
tained by the choice of gauge. In this case, the selection of a fitting
condition completely specifies the gauge.

3. Total Angular Momentum

The homogeneity and isotropy of the background metric introduced
in the previous section allows us to give meaning to the total angular
momentum. Only when a spacetime is rotationally symmetric about
some axis at a point P is it possible to give a coordinate independent
definition for total angular momentum. Rotational symmetry implies
the existence of a Killing vector field. A Killing vector field &* is
required to define total angular momentum. The total angular

momentum L, of a stress-energy field 7* is given by '

L= [ ToEav, )

where V is the spatial hypersurface of homogeneity at time ¢, and dV
is the volume element for the hypersurface. This definition reduces to
the usual definition of angular momentum for the case of 3-
dimensional Euclidean space.

Rewritten in terms of the hypersurface average defined in Eq. (5),
the angular momentum is given by:

L,=-V{T ), ®)
where T%= —T holds in the special coordinate system chosen.
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4. Stress-Energy for Gravitation

In general, the smoothed background metric does not satisfy
Einstein’s equations when the source is the stress energy of the
Hubble flow because these equations are nonlinear, i.e.,

G® , #8w{T™ ), &)

where G®,, is the Einstein tensor corresponding to the background
metric, and (T™,,) is the stress-energy tensor for the matter
comprising the Hubble flow. The reason for this discrepancy is that
the stress-energy for the Hubble flow does not take into account the
effective stress-energy of the gravitational field.

It is well known that there is no place for the stress-energy of
gravitation in Einstein’s equations, nor is there any way to define this
stress—energy in a general way. However, the situation changes when
Einstein’s equations are averaged. To illustrate, the effective total
mass for a binary star system is not just the sum of the masses of each
star, but this amount plus the (negative) potential energy of the
gravitational field between the two stars. This potential energy
appears only when the two individual stars are modeled as a single
entity. When a system is averaged over a nonzero length scale, the
stress—energy for gravitational interactions occurring at a smaller
scale must be included.

The existence of the background metric allows the effective
stress—energy of gravitation relative to this metric to be given a
completely rigorous definition. The first step is to define the tensor

=g —og® 10
h,=g,-8%, (10)
and then to expand the Einstein tensor in a power series in h#,,, i.e.,
G, =G® +GO +GO . (11)

nv 34 24 ny ’

where G®, is the Einstein tensor for the background metric and
G™,, contains all the terms involving n factors of 4,,.

The effective stress—energy for gravitation is defined in terms of
the nonlinear portion of the Einstein tensor, i.e.

1
T(G)I»‘v = -E—(G(Z)M + G(S)w +). (12)

™

The background stress—energy is defined in terms of the background
portion of the Einstein tensor, i.e.,

1 gw (13)
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With these definitions, Einstein’s equation can be rewritten as
GO =8x(T™ +T©® -T® 1 (14)
ny /34 By 73

where 7™, is the stress-energy tensor for matter. When G, is
expanded, Eq. (14) can be seen to be a linear wave equation for the
field A,, whose source is the difference between the total stress-
energy (matter plus gravitation) and the background stress-energy.
The unusual feature of this equation is that the field 4,, is a source for
itself. The equation shows explicitly that ‘gravity gravitates.’

This reformulation of Einstein’s equation is called the field theory
approach to gravity and has been presented by numerous authors
(Gupta 1957; Thirring 1961; Deser 1970; Weinberg 1972; Grishchuk
et al. 1984), traditionally in terms of a Minkowski background
metric. Here, the field theory formulation has been shown in a
general form that is valid for any choice of background metric. The
appropriate background metric for a model universe similar to our
own is the metric for an expanding FRW universe.

5. Total Angular Momentum of a Model Universe

In the previous three sections I have defined the average global
inertial frame of reference, the total angular momentum with respect
to that frame, and the stress-energy of the gravitational field with
respect to the average global inertial frame. I now show that, given
these definitions, the total angular momentum of the matter and
gravitation in a closed universe is zero.

For a closed universe (3-sphere topology background), the
consistency conditions (2), (3), and (4) lead to the result (King 1990)

(Gt > =0. (15)

By substituting the Oi-components of the field equations (14) into the
above result, we obtain

L(T™ +TO ~T® ) E(a)i> =0. (16)
The background stress-energy makes no contribution to this equation
since T® ;=0 in the preferred coordinate system. Therefore we have

{T™, +TO ) f(,,)i> =0. (17)

Now consider the Killing vector £* corresponding to a rotation
about a given axis at some point P. The Killing vector £ is equal to
a linear combination of the six linearly independent Killing vector
fields {£,*}. Therefore, we have
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(T, +TO)EY =0. (18)

By Eq. (8), the left-hand side of this equation is proportional to
the total angular momentum L, of the matter and gravitational waves
in the universe about the given axis and given point P; therefore,

L,=0. (19)
This proves that a closed universe cannot rotate.

6. Conclusions

One intuitively expects a closed universe to be nonrotating. The proof
that closed universes cannot rotate has been sought since Einstein
introduced closed model universes to general relativity. The difficulty
has been in accounting for the energy and momentum carried by the
gravitational field and in interpreting solutions of Einstein’s equa-
tions. The need to include gravitational waves in the analysis of
rotation had been established as early as the 1960’s (Dehnen and Honl
1962, Wheeler 1964). The problem was not the identification of the
theorem, but the formulation of the required definitions to include the
momentum carried by gravitational waves.

Admittedly, one can argue that the introduction of the average
inertial frame is unnecessary for general relativity and therefore
should not be done. However, the situation is exactly the same for
nonrotating (Machian) Newtonian model universes since the global
inertial frame can be dispensed with in these models just as the
average inertial frame can be dispensed with in general relativity. In
both cases, these inertial frames are introduced as an auxiliary device
to aid in the interpretation of these models. The widespread use of
this technique by astrophysicists indicates its great practical value in
cosmology.

The Ozsv4th-Schiicking model universe (and other Bianchi type-IX
closed model universes) were thought previously to contradict Mach’s
Principle. In fact, they are a special case of the theorem. The angular
momentum of rotating matter in the Bianchi type-IX model universes
is exactly canceled by the angular momentum of a longest-wavelength
gravitational wave rotating in the opposite direction to the matter
(King 1991). Because the Bianchi IX model universes are homogen-
eous, the momentum of the matter is exactly canceled by the momen-
tum of the gravitational wave at each point in space.

In conclusion, every closed model universe is nonrotating in that
the total angular momentum of matter and gravitation about any point
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is zero. This result holds for every 3-sphere topology model universe
that is approximately homogeneous and isotropic and is valid to all
orders of perturbation from homogeneity and isotropy.
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Discussion

Ehlers: I didn’t quite get your proposal concerning the averaging.
Imagine that you have a realistic, complicated metric; how do you
then identify first of all your preferred hypersurfaces and then do the
construction of the best-fit Robertson-Walker metric?

King: That’s a very difficult problem that nobody has solved.
Ehlers: It seems to me you go the other way round. You assume that
you have already some background, and then you formulate a condi-
tion for what you consider as permitted deviations from the flat
background.

King: That’s right. It’s a consistency requirement for the back-
ground. For a selected background to be valid, it must satisfy that
condition. Now that condition does in no way uniquely select a
background metric. A very large set of background metrics will
satisfy that condition. The condition is very weak indeed, but that S
the only requirement you need to get this theorem out.

Ehlers: I think for cosmology this is really a serious question. What
does this mean when we usually say in cosmology on a sufficiently
large scale the metric is Robertson-Walker? This is, I think, so far
always done in some rather rough intuitive way, and it seems to me,
considering the hierarchical structure which seems to be observed,
that it becomes more and more urgent to give a really precise meaning
to this splitting into what we call a large-scale average of the metric
and the actual metric which is supposed to obey Einstein’s field
equations. Usually, if one would have such an averaging procedure,
one could not expect that the average metric itself should satisfy
Einstein’s equations because of various nonlinearities.

King: That’s in fact exactly where this gravitational stress-energy
tensor comes in. It is the gravitational stress-energy tensor that is
taking care of these nonlinearities.

Ehlers: In order just to see how one actually makes use of the
properties of the averaging, I have looked in which way one assumes
properties of the averaging in statistical gravitational lens theory.
There one does actually make assumptions concerning the relation
between the average Robertson-Walker metric and the actual
inhomogeneous metric. There it is essential to make two assump-
tions; namely, if we consider our past light cone, which is, after all,
where we really observe, and go to a particular value of the red shift
in the actual inhomogeneous universe and then compare it with what
we call the background universe, then the areas of the z=constant
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sections are supposed to have the same magnitude in the average and
in the actual metric which is used for statistical purposes; the second
assumption is that the relationship between the red shift z and the
affine parameter is essentially the same in the background model as
in the inhomogeneous one. If you would not make these two
assumptions, the statistical arguments in gravitational lens theory
simply would not work, and therefore the purpose of my remark is
only to show I think one is not at liberty to make any assumptions
about the averaging which are convenient in a particular setting. It
is essential to find what, if one compares the theory with the
observations, is needed there for the averaging process.

Isenberg: I don’t see what this averaging has to do with the
observations one would make as a physicist.

King: Well, the trouble is we are not able to observe enough of the
universe to be able to tell whether Mach’s Principle is right.
Isenberg: Right, so it’s not clear to me that this averaging is relevant
to what we actually see.

King: Well, it only tells you something about what we see if you
believe the universe is closed and that is very problematic.
Isenberg: Even if the universe is spatially closed, I don’t see what
this averaging calculation over the whole 3-sphere gives us,
particularly since, as Jirgen [Ehlers] was noting, we only see
information propagating along our past causal cone. How does this
have anything to do with averaging over three-spheres?

Nojarov: You assume the existence of these gravitational waves
which compensate the angular momentum, but are there more funda-
mental principles to claim this for the universe?

King: There is a difference between conservation of angular
momentum and a theorem which shows that the total angular
momentum is zero. For example, for an open universe the angular
momentum is conserved but it can easily be nonzero. For a closed
universe the angular momentum is constrained to be zero. But, you
know, there’s an interpretational framework put on this model
universe and that framework is necessary to get an intuitive feel for
what is going on in this model. The background metric is not real,
it’s a useful interpretational tool. That has to be kept in mind.



4. Other Formulations of
Mach’s Principle

Introduction

This chapter illustrates the strikingly different ways in which different
people have attempted to implement Mach’s Principle. Like Brans and
Dicke, Hoyle and Narlikar set out to realize in a systematic manner
Einstein’s contention (p. 180) that in a Machian approach the inertial
mass of any body must be determined by a kind of interaction of that
body with all the other masses in the universe. Narlikar gives a particu-
larly clear rationale for such an approach at the beginning of his paper.

In contrast, Raine takes as his point of departure Einstein’s brief
1918 paper (pp. 185-186) in which he actually coined the expression
Mach’s Principle and gave a formal definition of it: The metric tensor in
a Machian solution of general relativity must be completely determined
by the energy-momentum tensor of matter, understood in the narrow
sense (i.e., gravitational waves are not to contribute). The development
of the Green’s function approach (or integral formulation) as a way to
give rigorous mathematical expression to this idea must represent one of
the most remarkable examples of simultaneous discovery in science - it
was developed independently by Al’tshuler, Lynden-Bell, Sciama and
Waylen, and Gilman, as Raine recounts.

Finally, Bleyer and Liebscher’s paper is the most radical attempt in
this volume to relate the distribution of matter in the universe as a whole
to the deep structure of local physics, in this case the causal (light-cone)
structure of Minkowski space. This is work in the spirit of Dicke’s
‘generalized Mach’s Principle,” in accordance with which one seeks
systematically for ways in which the universe at large might influence
local physics (cf. the remarks of Brill and Brans, pp. 333 and 337).

1.B.B.

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, p. 249 © 1995 Birkhduser Boston, Inc. Printed in the United States.



Direct Particle Formulation of
Mach’s Principle

Jayant V. Narlikar

1. Introduction

There are two ways of measuring the Earth’s spin about its polar axis.
By observing the rising and setting of stars the astronomer can determine
the period of one revolution of the Earth around its axis: the period of
23"56™4°.1. The second method employs a Foucault pendulum whose
plane gradually rotates around a vertical axis as the pendulum swings.
Knowing the latitude of the place of the pendulum, it is possible to
calculate the Earth’s spin period. The two methods give the same
answer.

At first sight this does not seem surprising. Closer examination,
however, reveals why the result is nontrivial. The first method measures
the Earth’s spin period against a background of distant stars, while the
second employs the standard Newtonian mechanics in a spinning frame
of reference. In the latter case, we take note of how Newton’s laws of
motion get modified when their consequences are measured in a frame
of reference spinning relative to the ‘absolute space’ in which these laws
were first stated by Newton.

Thus, implicit in the assumption that equates the two methods is the
coincidence of absolute space with the background of distant stars. It was
Ernst Mach in the last century who pointed out that this coincidence is
nontrivial. He read something deeper in it, arguing that the postulate of
absolute space that allows one to write down the laws of motion and
arrive at the concept of inertia is somehow intimately related to the
background of distant parts of the universe. This argument is known as
‘Mach’s Principle,” and we will analyze it further.

When expressed in the framework of the absolute space, Newton’s
second law of motion takes the familar form

Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum
Gravity, pp. 250-261 © 1995 Birkhiiuser Boston, Inc. Printed in the United States.
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P=mf. @
This law states that a body of mass m subjected to an external force P
experiences an acceleration f. Let us denote by S the coordinate system
in which P and f are measured.

Newton was well aware that his second law has the simple form (1)
only with respect to § and those frames that are in uniform motion
relative to S. If we choose another frame §’ that has an acceleration a
relative to S, the law of motion measured in §' becomes

P'=P—ma=mf. @

Although (2) outwardly looks the same as (1), with f' being the
acceleration of the body in §’, something new has entered into the force
term. This is the term ma, which has nothing to do with the external
force but depends solely on the mass m of the body and the acceleration
a of the reference frame relative to the absolute space. Realizing this
aspect of the additional force in (2), Newton termed it ‘inertial force.” As
this name implies, the additional force is proportional to the inertial mass
of the body.

According to Mach, the Newtonian discussion was incomplete in the
sense that the existence of the absolute space was postulated arbitrarily
and in an abstract manner. Why does § have a special status in that it
does not require the inertial force? How can one physically identify S
without recourse to the second law of motion, which is based on it?

To Mach the answers to these questions were contained in the
observation of the distant parts of the universe. It is the universe that
provides a background reference frame that can be identified with
Newton’s frame S. Instead of saying that it is an accident that Earth’s
rotation velocity relative to S agrees with that relative to the distant parts
of the universe, Mach took it as proof that the distant parts of the
universe somehow enter into the formulation of local laws of mechanics.

One way this could happen is by a direct connection between the
property of inertia and the existence of the universal background. To see
this point of view, imagine a single body in an otherwise empty universe.
In the absence of any forces, (1) becomes

mf=0.
What does this equation imply? Following Newton we would conclude
that f=0, that is, that the body moves with uniform velocity. But we
now no longer have a background against which to measure velocities.
Thus f=0 has no operational significance. Rather, f should be completely
indeterminate. And it is not difficult to see that such a conclusion follows
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naturally provided we argue that
m=0. 3)

In other words, the measure of inertia depends on the existence of
the background in such a way that in the absence of the background the
measure vanishes! This aspect introduces a new feature into mechanics
not considered by Newton. The Newtonian view that inertia is the
property of matter has to be augmented to the statement that inertia is the
property of matter as well as of the background provided by the rest of
the universe.

Einstein, an avid reader of Mach, was impressed by this chain of
reasoning and hoped that his theory of gravity would turn out to
incorporate Mach’s principle. This hope was not realized in the end.
There are several anti-Machian solutions in general relativity.

For example, there are empty space solutions that are nontrivially
different from the flat spacetime of special relativity. In these solutions
R,=0 but R,,,#0. What do the timelike geodesics in such spacetime
mean? With no ‘background’ of matter why are these trajectories of
‘particles under no force’ singled out?

On a second count there are cosmological solutions of Einstein’s
equations wherein the distant background rotates with respect to the local
inertial frame. Ironically, the classic paper of Kurt Godel (1949) which
produced one such model appeared in the 70th birthday festschrift for
Einstein. By then, however, Einstein himself had lost his enthusiasm for
Mach’s Principle. In his autobiographical notes he writes (Einstein 1949):

Mach conjectures that in a truly rational theory inertia would have to
depend upon the interaction of the masses, precisely as was true for
Newton’s other forces, a conception which for a long time I considered as
in principle the correct one. It presupposes implicitly, however, that the
basic theory should be of the general type of Newton’s mechanics: masses
and their interaction as the original concepts. The attempt at such a solution
does not fit into a consistent field theory, as will be immediately
recognized.

Although Einstein himself moved away from Mach’s Principle, there
were others who felt its impact and sought to give expression to it in
quantitative theories of gravity. For example, Dennis Sciama (1953) and
Carl Brans and Robert Dicke (1961), among others, proposed alternative
theories of gravity. However, these were field theories, since the general
belief (shared by these authors with Einstein) was that field theories
alone provide a proper description of physics.
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Nevertheless, action-at-a-distance theories can also foot the bill if
they are properly formulated and applied with the right cosmological
boundary conditions. I will discuss this possibility here.

2. The Hoyle-Narlikar Formulation

In 1964, Fred Hoyle and I proposed an action-at-a-distance theory of

inertia that directly incorporated Mach’s principle. In this theory the

inertial mass of ath particle (@=1, 2, ...) at world point X was given by
mX =AY\, [ G(X,B)ds,, @)

b=a

where ds, is the element of proper time on the worldline of particle b and

A, a coupling constant. The action at a distance is through the two-point

scalar propagator G satisfying the relation

1 6,X,B)
OG(X,B)+_RG(X,B) =2 , ®)
6 V—8X)
and we define
m®(X) =\, [ G(X,B)ds,. ©)

{O and R in (5) are evaluated at X.]
The propagator G is symmetric with respect to its two points:

G(X,B)=G(B,X). @
The rationale for these formulas will be considered next.

First we notice that the interaction conveys the property of inertia
from one particle to another. Next, from (7) we also learn that the
interaction works symmetrically between pairs of particles. Finally, the
wave equation (5) ensures that the mass interaction propagates with the
speed of light.

3. A Digression into Electromagnetic Theory

What are these functions m®(X)? That they communicate the property
of inertia from particles b to any particle placed at the spacetime point
X is clear from the context. To arrive at a suitable form for them we
take hints from action-at-a-distance electromagnetism, in which it is usual
to introduce electromagnetic disturbances that arise specifically from
sources, that is, from moving electrical charges. Accordingly, we
introduce the 4-potential AP(X) as denoting the electromagnetic effect at
X from the electric charge b. The AP(X) satisfies the wave equation
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04 +R/A® =47J?, ®)

where J® is the 4-current generated by the charge . The solution of (8)
may be written in the integral form

APX) =47rj e,G,(X, B)db*, ©9)

where G,(X, B) is a Green’s function of the wave operator (gf(J +R?).
The well-known Coulomb potential is a special case of (8).

The Green’s function is not uniquely fixed from the form of the wave
operator alone. Boundary conditions must also be specified. The cus-
tomary boundary condition is imposed by causality; that is, the influence
from B to X must vanish if X lies outside the future light cone of B. The
Green’s function satisfying this condition is called the retarded Green’s
Junction. We will denote such a Green’s function with a superscript R.
Similarly, a Green’s function confined to the past light cone of B is
called the advanced Green’s function and is denoted with a superscript
A.

These Green’s functions have played a key role in action-at-a-
distance theories. It was originally believed that action at a distance
must be instantaneous and hence inconsistent with the framework of
special relativity. However, Schwarzschild (1903), Tetrode (1922), and
Fokker (1929a,b; 1932) demonstrated during the first three decades of
this century that a relativistically consistent action-at-a-distance theory
can indeed be formulated. If we consider two spacetime points A and B
with s3; as the invariant square of the relativistic distance between them,
then &(s2;), where & is the Dirac delta function, is a convenient function
for transmitting physical influences between A and B. For, this function
acts only when A and B are connectable by a light ray (that is, when
s2;=0). This delta function therefore necessarily occurs as the main
component in any Green’s function in the action-at-a-distance theory.
The action principle, which is the basis of the electromagnetic theory in
Riemannian spacetime, is described below. We start with the action

A=-Y Y 4nee, I j aikda idb* (10)

a <b

where G, is the symmetric Green’s function given by

G,(4,B) = %[G,-’:(A,B) +GH(A,B)]. (11

Thus G(A, B)=Gy(B, A) and each term in the action is completely
symmetric between each pair of particles. The electromagnetic potential
given by (9) is a symmetric half-advanced plus half-retarded combina-
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tion, rather than the more familiar pure retarded one. However, the
action (10) together with suitable cosmological boundary conditions
reproduces all the electromagnetic effects of the standard Maxwell field
theory. The key issue recognized first by Wheeler and Feynman (1945,
1949) is that no charge is isolated. The motion of a typical charge a
invokes a reaction from all other charges in the universe, which we may
term the response of the universe.

What is the response of the universe? It was shown by Dirac (1938)
that when an electric charge a accelerates, it suffers a force of radiative
damping, and that this force can be calculated by evaluating half the
difference of the retarded and the advanced fields F of the charge on its
worldline:

Q(a)=%[FR(a) — F¥a)]. (12)

In the Maxwell field theory Dirac’s result had remained just a curiosity
without a proper reasoning as to why the radiative reaction must be
determined by the above formula. In the Wheeler-Feynman theory the
‘correct’ response from the universe to the motion of a is precisely this!

Moreover, if we add (12) to the basic time-symmetric direct particle
field of a, viz.

F(a)=%[FR(a)+FA(a)] (13)

we get the total effect in the neighborhood of a to be a pure retarded
one. A correct response therefore eliminates all advanced effects except
those present in the radiation reaction. However, all this works provided
we have the correct cosmological boundary conditions, which are spelled
out below.

In 1945, Wheeler and Feynman had shown that to get the correct
response the universe has to be a perfect absorber. Their work was
carried out within the framework of a static universe. When Hogarth
(1962) repeated the calculation in an expanding universe, he found that
the correct response (12) is possible in a universe that is a perfect
absorber in the future but not in the past. The steady-state cosmology
fulfills this condition, but all known Friedman models fail to meet it. In
1963, Hoyle and I arrived at the same conclusion with somewhat more
general assumptions (Hoyle and Narlikar 1963). Because of the crucial
requirement of perfect absorption, this theory is sometimes called the
‘absorber theory of radiation.’



256  Jayant V. Narlikar
4. Inertia and Gravity

Our purpose in the above digression into electromagnetism was to show
that a similar approach to inertia leads us to a Machian theory of gravity.
In the case of inertia, we note that the functions m®(X) are scalars, and
so we have to deal with scalar Green’s functions. Thus we wrote (6) in
analogy to (9), and (7) in analogy to (11), while the inertial action in
analogy to (10) becomes
A=-Y Y} j I M\, G(A, B)ds, ds,. (14)
a <b

The analogy continues further. The wave equation (5) is conformally
invariant and gives us a conformally invariant Machian theory just as
(10) gives us a conformally invariant electromagnetic theory.

The action of HN theory is given by (14), and with the help of
definition (6) we may write it as

--y I m,ds,, (15)

Written in this form, this action appears to have only the inertial term of
Newtonian mechanics. How can such an action yield any gravitational
equations?

The answer to this question lies in the fact that the m,’s in (15) are
not constants but depend on spacetime coordinates as well as on
spacetime geometry. For they are defined with the help of Green’s
functions, which in turn are defined in terms of spacetime geometry.
Thus if we make a small variation

848, +08,

the wave equation (5) will change and so will its solution. Thus we will
have

G(4,B)~>G(4, B) +5G(4, B)
and hence A—>A+06A. We therefore have a nontrivial problem whose
solution may be expressed in the following way. To simplify matters we
will take all A, to be equal to unity.
Define the following functions:

mX) =¥ mex) =%[mR(X) “mAX)), (16)
$(X) =mAXMAX), my =m, ..., (17)
NX) =Y jagx, A)[—gX)]"ds,. (18)

As in the electromagnetic case, we have chosen the symmetric (half R+
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half A) Green’s function. The gravitational equations then become

R, — %gl.kR =—6¢[T, "%(g;k[:' =94

— i« mfm =g, gmm )], (19)
together with the ‘source’ equation for m(X)
Om + %Rm -N. (20)

The derivation leading to the final set of equations of the theory may
appear somewhat long-winded to anybody unfamiliar with the techniques
of direct interparticle action. We have followed here the method used
by Hoyle and the author, who arrived at this theory via their earlier work
on electromagnetism. As in the electromagnetic case, the universe re-
sponds to a local event. To ensure causality and to eliminate advanced
effects, the correct response should be given by

Y mOAX) =Y mORX) =m(X). 1)
Under these conditiolrzls the equati(;ns (19) further simplify to
1 6 1
Rik_ ig,k == W [Tik_ g(gik[]mz_m;%k)
- [mm-.zl.gmtm] ] | @2)

Had we accepted the standard field theoretical approach and intro-
duced a scalar inertia field m(X), we could have arrived at (20) and (22)
from an action given by

A [l_lsz_mm] sd'x=¥ | mds, 23)
The action-at-a-distance approach, although unfamiliar to a typical
theoretical physicist, is useful in that it gives a more direct expression to
Mach’s Principle. The physical interpretation of the field theoretical
term (23) is not so easy to see. For this reason, we have discussed the
former approach at some length.

Notice that in the former approach our action (15) contained only the
last term of (23), but there m was made up of nonlocal two-point
functions. Here m is a straightforward field with sources whose dynam-
ical properties are defined through the first term in the above action.

Since the property of conformal invariance was used in the
formulation of the theory, we expect the final equations (20) and (22) to
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exhibit conformal invariance. This expectation is borne out. If (g,, m)
are a solution of these equations, then so are

g,=Pg,, m=0"'m, 24

Thus, apart from coordinate invariance of general relativity, this theory
also shows conformal invariance.

The symmetry of conformal invariance of the action leads to a
vanishing of trace of the field equations. It may be easily verified that
the trace of (22) vanishes in view of (20). The vanishing of trace
represents the fact that the problem is underdetermined. Just as the
vanishing of 7%, in general relativity shows that more solutions can be
generated from any given solution by coordinate transformations, so we
can generate more solutions through (24). All these solutions are
physically equivalent provided we stick to the rule that ? does not vanish
or become infinite.

5. The Transition to General Relativity

Suppose we are allowed to choose an  in the above range that
ensures that

m=Q"'m =constant =m,). (25)
This choice of Q is possible provided m does not vanish or become

infinite. This conformal frame is called the Einstein frame, in which we
get a simplified form for (22):

R,- %g&R _— 26)
with the constant « given by
K= 12. Q7
my

Thus we have arrived at Einstein’s equations! At first sight we don’t
seem to have gained anything. We have no new theory and hence no
new predictions, as in the Brans-Dicke theory. Closer examination,
however, reveals several ways in which this theory goes beyond
relativity.

1. Our starting point was based on Mach’s Principle. It is only in
the many-particle approximation, when the response condition (21) is
satisfied, that we arrive at the final Einstein-like field equations. An
empty universe in relativity is given by

R, =0,
which can have well-defined spacetimes as solutions. Test particles in
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such spacetimes will have well-defined trajectories. Such trajectories
would not make any sense according to Mach, since we no longer have
a material background against which to measure the motion of these
particles. These solutions in fact correspond to the f=0 solutions of
Newtonian theory. In the HN theory, an empty universe corresponds to

m=0, indeterminate g,

in accord with the Machian m=0 solution of (3).

2. The sign of « is fixed arbitrarily in general relativity. Neither in
the heuristic derivation of Einstein nor in the Hilbert action principle is
k required to be positive. It is only when « is determined by reference
to Newtonian gravity in the weak-field approximation that we conclude
that k>0. In the HN theory (27) shows that « must necessarily be
positive. (This conclusion does not depend on our assumption of A,=1;
the result follows whatever sign the A\, are given.)

3. In the direct interparticle approach, it is not possible to accommo-
date the A-term of cosmic repulsion without making the wave equation
(5) nonlinear. Thus Occam’s razor automatically comes into play. In
relativity, the A-term is still possible.

4, The transition from (22) to (26) is possible provided 0 <2< oco.
What happens if we break this rule? Suppose in the solution of (22) we
had a hypersurface on which m=0. If we insist on the transformation
(25) in a region that contains such a hypersurface, we have to pay the
price of 2->0, which in turn produces spacetime singularities. The work
of Kembhavi (1978) showed that the well-known cases of spacetime
singularities of relativity arise because of the occurrence of zero-mass
hypersurfaces in the solution of the equations (22). For a simple
example of this conclusion, let us look at the standard Big-Bang singu-
larity of relativity.

Consider the Minkowski line element (with c=1)

ds?=dr—dx*—dy*—dz* (28)
as a solution of (22). It is easily verified that the mass function satis-
fying both (20) and (22) for a uniform number density N of particles is

moc 72, 29)
This is the simplest possible cosmological solution in this theory.

If we now insist on going over to a frame with constant mass 7, then

from (24) we see that the appropriate  must be given by
Qocr (30)

However, (2 vanishes on the hypersurface m=0. The transformation

to the Einstein conformal frame is ‘illegal.” The price paid for insisting
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that r2=constant is that the resulting model has a geometrical singularity
at 7=0. In fact, it is easily verified that the new model is none other
than the singular Einstein-de Sitter model.

5. It is instructive to see how the phenomenon of Hubble redshift is
explained in the flat spacetime model of (28) and (29). Clearly, a photon
traveling in Minkowski spacetime does not undergo redshift. Consider,
however, what happens to a photon arriving at the observer at the
present epoch 7, from a galaxy at a distance r. This photon originated
in an atomic (or molecular) transition at time 7,—7r.

From atomic physics, the wavelength of a photon so transmitted
varies inversely as the mass of the electron (making the atomic transi-
tion). From (29) we see that if A is the wavelength of this photon and
X is the wavelength of a photon emitted in a similar transition at 7, at
the observer, then

A__ma) G

Thus the redshift in the above HN cosmology arises from the variation
of particle masses.

6. Concluding Remarks

This basic theory therefore resembles general relativity in the Einstein
frame but has more general implications in the sense that unlike the
relativity theory it is conformally invariant. It has the advantage that it
starts with the Machian notion of inertia of a particle arising from other
particles in the universe.

Further work along these lines has opened up the possibilities of a
variable gravitational constant (Hoyle and Narlikar 1974), anomalous
redshifts (Arp and Narlikar 1993), and creation of matter (Hoyle,
Burbidge, and Narlikar 1993). These investigations lead to observa-
tionally testable results, thus bringing the theory scientific respectability.
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Mach’s Principle and the Creation of Matter

Sir Fred Hoyle

1. What is Creation of Matter?

Narlikar has shown that a Machian approach to the problem of inertia
nevertheless leads to Einstein’s equations, and therefore to the problem
of what to do about the so-called Big-Bang in which the entire universe
is supposed to have originated at a particular moment of time. Choosing
this moment at the zero of the time ¢, Narlikar’s expression (15) for the
action of a set of particles a, b, ... is truncated to
A= —}; ] _m,da, (1)
time being with respect to a particular choice of coordinates in which the
metric takes the well-known Robertson-Walker form
2
ds?=dr*—S*(t) [ ar’ s raap +sin20d¢2)] , 2

kr2

1

where k can be 0 or +1.

Now unless we are willin