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Preface to the Second Edition

Over the decade and a half since I wrote the first edition, nothing has altered my
belief in the soundness of the overall approach taken here. This is based on the
response of teachers, students, and my own occasional rereading of the book. I was
generally quite happy with the book, although there were portions where 1 felt 1
could have done better and portions which bothered me by their absence. I welcome
this opportunity to rectify all that.

Apart from small improvements scattered over the text, there are three major
changes. First, I have rewritten a big chunk of the mathematical introduction in
Chapter 1. Next, I have added a discussion of time-reversal invariance. I don’t know
how it got left out the first time—I wish I could go back and change it. The most
important change concerns the inclusion of Chaper 21, “Path Integrals: Part IL.”
The first edition already revealed my partiality for this subject by having a chapter
devoted to it, which was quite unusual in those days. In this one, I have cast off all
restraint and gone all out to discuss many kinds of path integrals and their uses.
Whereas in Chapter 8 the path integral recipe was simply given, here I start by
deriving it. I derive the configuration space integral (the usual Feynman integral),
phase space integral, and (oscillator) coherent state integral. I discuss two applica-
tions: the derivation and application of the Berry phase and a study of the lowest
Landau level with an eye on the quantum Hall effect. The relevance of these topics
is unquestionable. This is followed by a section of imaginary time path integrals—
its description of tunneling, instantons, and symmetry breaking, and its relation to
classical and quantum statistical mechanics. An introduction is given to the transfer
matrix. Then I discuss spin coherent state path integrals and path integrals for
fermions. These were thought to be topics too advanced for a book like this, but I
believe this is no longer true. These concepts are extensively used and it seemed a
good idea to provide the students who had the wisdom to buy this book with a head
start.

How are instructors to deal with this extra chapter given the time constraints?
I suggest omitting some material from the earlier chapters. (No one I know, myself
included, covers the whole book while teaching any fixed group of students.) A
realistic option is for the instructor to teach part of Chapter 21 and assign the rest
as reading material, as topics for take-home exams, term papers, etc. To ignore it,
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I think, would be to lose a wonderful opportunity to expose the student to ideas that are
central to many current research topics and to deny them the attendant excitement. Since
the aim of this chapter is to guide students toward more frontline topics, it is more
concise than the rest of the book. Students are also expected to consult the references
given at the end of the chapter.

Over the years, | have received some very useful feedback and I thank all those
students and teachers who took the time to do so. I thank Howard Haber for a
discussion of the Born approximation; Harsh Mathur and Ady Stern for discussions
of the Berry phase; Alan Chodos, Steve Girvin, Ilya Gruzberg, Martin Gutzwiller,
Ganpathy Murthy, Charlie Sommerfeld, and Senthil Todari for many useful comments
on Chapter 21. I am most grateful to Captain Richard F. Malm, U.S.C.G. (Retired),
Professor Dr. D. Schliiter of the University of Kiel, and Professor V. Yakovenko of the
University of Maryland for detecting numerous errors in the first printing and taking the
trouble to bring them to my attention. I thank Amelia McNamara of Plenum for urging
me to write this edition and Plenum for its years of friendly and warm cooperation.
I thank Ron Johnson, Editor at Springer for his tireless efforts on behalf of this book,
and Chris Bostock, Daniel Keren and Jimmy Snyder for their generous help in
correcting errors in the 14" printing. Finally, I thank my wife Uma for shielding me as
usual from real life so I could work on this edition, and my battery of kids (revised and
expanded since the previous edition) for continually charging me up.

R. Shankar
New Haven, Connecticut



Preface to the First Edition

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum mechanics,
one would think that the public needs one more as much as it does, say, the latest
version of the Table of Integers. But this does not deter me (as it didn’t my predeces-
sors) from trying to circulate my own version of how it ought to be taught. The
approach to be presented here (to be described in a moment) was first tried on a
group of Harvard undergraduates in the summer of 76, once again in the summer
of *77, and more recently at Yale on undergraduates (*77-'78) and graduates ('78-
’79) taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject well
and to have enjoyed the presentation. It is, in fact, their enthusiastic response and
encouragement that convinced me of the soundness of my approach and impelled
me to write this book.

The basic idea is to develop the subject from its postulates, after addressing
some indispensable preliminaries. Now, most people would agree that the best way
to teach any subject that has reached the point of development where it can be
reduced to a few postulates is to start with the latter, for it is this approach that
gives students the fullest understanding of the foundations of the theory and how it
is to be used. But they would also argue that whereas this is all right in the case of
special relativity or mechanics, a typical student about to learn quantum mechanics
seldom has any familiarity with the mathematical language in which the postulates
are stated. I agree with these people that this problem is real, but I differ in my belief
that it should and can be overcome. This book is an attempt at doing just this.

It begins with a rather lengthy chapter in which the relevant mathematics of
vector spaces developed from simple ideas on vectors and matrices the student is
assumed to know. The level of rigor is what I think is needed to make a practicing
quantum mechanic out of the student. This chapter, which typically takes six to
eight lecture hours, is filled with examples from physics to keep students from getting
too fidgety while they wait for the “real physics.” Since the math introduced has to
be taught sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without having to
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battle with the mathematical theorems at the same time. Also, by segregating the
mathematical theorems from the physical postulates, any possible confusion as to
which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the Lagrangian
and Hamiltonian formalisms are developed in some depth. It is for the instructor to
decide how much of this to cover; the more students know of these matters, the
better they will understand the connection between classical and quantum mechanics.
Chapter 3 is devoted to a brief study of idealized experiments that betray the
inadequacy of classical mechanics and give a glimpse of quantum mechanics.

Having trained and motivated the students I now give them the postulates of
quantum mechanics of a single particle in one dimension. I use the word “*postulate”
here to mean ‘“‘that which cannot be deduced from pure mathematical or logical
reasoning, and given which one can formulate and solve quantum mechanical prob-
lems and interpret the results.” This is not the sense in which the true axiomatist
would use the word. For instance, where the true axiomatist would just postulate
that the dynamical variables are given by Hilbert space operators, I would add the
operator identifications, i.c., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, [ would not stop with the
statement that there is a Hamiltonian operator that governs the time evolution
through the equation i%d|y)/ét=H|y); I would say the H is obtained from the
classical Hamiltonian by substituting for x and p the corresponding operators. While
the more general axioms have the virtue of surviving as we progress to systems of
more degrees of freedom, with or without classical counterparts, students given just
these will not know how to calculate anything such as the spectrum of the oscillator.
Now one can, of course, try to “derive” these operator assignments, but to do so
one would have to appeal to ideas of a postulatory nature themselves. (The same
goes for “deriving” the Schrodinger equation.) As we go along, these postulates are
generalized to more degrees of freedom and it is for pedagogical reasons that these
generalizations are postponed. Perhaps when students are finished with this book,
they can free themselves from the specific operator assignments and think of quantum
mechanics as a general mathematical formalism obeying certain postulates (in the
strict sense of the term).

The postulates in Chapter 4 are followed by a lengthy discussion of the same,
with many examples from fictitious Hilbert spaces of three dimensions. Nonetheless,
students will find it hard. It 1s only as they go along and see these postulates used
over and over again in the rest of the book, in the setting up of problems and the
interpretation of the results, that they will catch on to how the game is played. It is
hoped they will be able to do it on their own when they graduate. I think that any
attempt to soften this initial blow will be counterproductive in the long run.

Chapter 5 deals with standard problems in one dimension. It is worth mentioning
that the scattering off a step potential is treated using a wave packet approach. If
the subject seems too hard at this stage, the instructor may decide to return to it
after Chapter 7 (oscillator), when students have gained more experience. But I think
that sooner or later students must get acquainted with this treatment of scattering.

The classical limit is the subject of the next chapter. The harmonic oscillator is
discussed in detail in the next. It is the first realistic problem and the instructor may
be eager to get to it as soon as possible. If the instructor wants, he or she can discuss
the classical limit after discussing the oscillator.



We next discuss the path integral formulation due to Feynman. Given the intui-
tive understanding it provides, and its elegance (not to mention its ability to give
the full propagator in just a few minutes in a class of problems), its omission from
so many books is hard to understand. While it is admittedly hard to actually evaluate
a path integral (one example is provided here), the notion of expressing the propag-
ator as a sum over amplitudes from various paths is rather simple. The importance
of this point of view is becoming clearer day by day to workers in statistical mechanics
and field theory. I think every effort should be made to include at least the first three
(and possibly five) sections of this chapter in the course.

The content of the remaining chapters is standard, in the first approximation.
The style is of course peculiar to this author, as are the specific topics. For instance,
an entire chapter (11) is devoted to symmetries and their consequences. The chapter
on the hydrogen atom also contains a section on how to make numerical estimates
starting with a few mnemonics. Chapter 15, on addition of angular momenta, also
contains a section on how to understand the “‘accidental”” degeneracies in the spectra
of hydrogen and the isotropic oscillator. The quantization of the radiation field is
discussed in Chapter 18, on time-dependent perturbation theory. Finally the treat-
ment of the Dirac equation in the last chapter (20) is intended to show that several
things such as electron spin, its magnetic moment, the spin-orbit interaction, etc.
which were introduced in an ad hoc fashion in earlier chapters, emerge as a coherent
whole from the Dirac equation, and also to give students a glimpse of what lies
ahead. This chapter also explains how Feynman resolves the problem of negative-
energy solutions (in a way that applies to bosons and fermions).

For Whom Is this Book Intended?

In writing it, I addressed students who are trying to learn the subject by them-
selves; that is to say, I made it as self-contained as possible, included a lot of exercises
and answers to most of them, and discussed several tricky points that trouble students
when they learn the subject. But I am aware that in practice it is most likely to be
used as a class text. There is enough material here for a full year graduate course.
It is, however, quite easy so adapt it to a year-long undergraduate course. Several
sections that may be omitted without loss of continuity are indicated. The sequence
of topics may also be changed, as stated earlier in this preface. I thought it best to
let the instructor skim through the book and chart the course for his or her class,
given their level of preparation and objectives. Of course the book will not be particu-
larly useful if the instructor is not sympathetic to the broad philosophy espoused
here, namely, that first comes the mathematical training and then the development
of the subject from the postulates. To instructors who feel that this approach is all
right in principle but will not work in practice, I reiterate that it has been found to
work in practice, not just by me but also by teachers elsewhere.

The book may be used by nonphysicists as well. (I have found that it goes well
with chemistry majors in my classes.) Although I wrote it for students with no familiar-
ity with the subject, any previous exposure can only be advantageous.

Finally, I invite instructors and students alike to communicate to me any sugges-
tions for improvement, whether they be pedagogical or in reference to errors or
misprints.

xi

PREFACE TO THE
FIRST EDITION
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Prelude

Our description of the physical world is dynamic in nature and undergoes frequent
change. At any given time, we summarize our knowledge of natural phenomena by
means of certain laws. These laws adequately describe the phenomenon studied up
to that time, to an accuracy then attainable. As time passes, we enlarge the domain
of observation and improve the accuracy of measurement. As we do so, we constantly
check to see f ihe laws continue to be valid. Those laws that do remain valid gain
in stature, and those that do not must be abandoned in favor of new ones that do.

In this changing picture, the laws of classical mechanics formulated by Galileo,
Newton, and later by Euler, Lagrange, Hamilton, Jacobi, and others, remained
unaltered for almost three centuries. The expanding domain of classical physics met
its first obstacles around the beginning of this century. The obstruction came on two
fronts: at large velocities and small (atomic) scales. The problem of large velocities
was successfully solved by Einstein, who gave us his relativistic mechanics, while the
founders of quantum mechanics—Bohr, Heisenberg, Schrédinger, Dirac, Born, and
others—solved the problem of small-scale physics. The union of relativity and quan-
tum mechanics, needed for the description of phenomena involving simultaneously
large velocities and small scales, turns out to be very difficult. Although much pro-
gress has been made in this subject, called quantum field theory, there remain many
open questions to this date. We shall concentrate here on just the small-scale problem,
that is to say, on non-relativistic quantum mechanics.

The passage from classical to quantum mechanics has several features that are
common to all such transitions in which an old theory gives way to a new one:

(1) There is a domain D, of phenomena described by the new theory and a sub-
domain D, wherein the old theory is reliable (to a given accuracy).

(2) Within the subdomain D, either theory may be used to make quantitative pre-
dictions. It might often be more expedient to employ the old theory.

(3) In addition to numerical accuracy, the new theory often brings about radical
conceptual changes. Being of a qualitative nature, these will have a bearing on
all of D,,.

For example, in the case of relativity, D, and D, represent (macroscopic)
phenomena involving small and arbitrary velocities, respectively, the latter, of course,
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being bounded by the velocity of light. In addition to giving better numerical pre-
dictions for high-velocity phenomena, relativity theory also outlaws several cherished
notions of the Newtonian scheme, such as absolute time, absolute length, unlimited
velocities for particles, etc.

In a similar manner, quantum mechanics brings with it not only improved
numerical predictions for the microscopic world, but also conceptual changes that
rock the very foundations of classical thought.

This book introduces you to this subject, starting from its postulates. Between
you and the postulates there stand three chapters wherein you will find a summary
of the mathematical ideas appearing in the statement of the postulates, a review of
classical mechanics, and a brief description of the empirical basis for the quantum
theory. In the rest of the book, the postulates are invoked to formulate and solve a
variety of quantum mechanical problems. It is hoped that, by the time you get to
the end of the book, you will be able to do the same yourself.

Note to the Student

Do as many exercises as you can, especially the ones marked * or whose results
carry equation numbers. The answer to each exercise is given either with the exercise
or at the end of the book.

The first chapter is very important. Do not rush through it. Even if you know
the math, read it to get acquainted with the notation.

I am not saying it is an easy subject. But I hope this book makes it seem
reasonable.

Good luck.
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Mathematical Introduction

The aim of this book is to provide you with an introduction to quantum mechanics,
starting from its axioms. It is the aim of this chapter to equip you with the necessary
mathematical machinery. All the math you will need is developed here, starting from
some basic ideas on vectors and matrices that you are assumed to know. Numerous
examples and exercises related to classical mechanics are given, both to provide some
relief from the math and to demonstrate the wide applicability of the ideas developed
here. The effort you put into this chapter will be well worth your while: not only
will it prepare you for this course, but it will also unify many ideas you may have
learned piecemeal. To really learn this chapter, you must, as with any other chapter,
work out the problems.

1.1. Linear Vector Spaces: Basics

In this section you will be introduced to linear vector spaces. You are surely
familiar with the arrows from elementary physics encoding the magnitude and
direction of velocity, force, displacement, torque, etc. You know how to add them
and multiply them by scalars and the rules obeyed by these operations. For example,
you know that scalar multiplication is distributive: the multiple of a sum of two
vectors is the sum of the multiples. What we want to do is abstract from this simple
case a set of basic features or axioms, and say that any set of objects obeying the same
forms a linear vector space. The cleverness lies in deciding which of the properties to
keep in the generalization. If you keep too many, there will be no other examples;
if you keep too few, there will be no interesting results to develop from the axioms.

The following is the list of properties the mathematicians have wisely chosen as
requisite for a vector space. As you read them, please compare them to the world
of arrows and make sure that these are indeed properties possessed by these familiar
vectors. But note also that conspicuously missing are the requirements that every
vector have a magnitude and direction, which was the first and most salient feature
drilled into our heads when we first heard about them. So you might think that in
dropping this requirement, the baby has been thrown out with the bath water.
However, you will have ample time to appreciate the wisdom behind this choice as
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you go along and see a great unification and synthesis of diverse ideas under the
heading of vector spaces. You will see examples of vector spaces that involve entities
that you cannot intuitively perceive as having either a magnitude or a direction.
While you should be duly impressed with all this, remember that it does not hurt at
all to think of these generalizations in terms of arrows and to use the intuition to
prove theorems or at the very least anticipate them.

Definition 1. A linear vector space V is a collection of objects |1),
12>, ..., VD, ..., | W), ..., called vectors, for which there exists

1. A definite rule for forming the vector sum, denoted | V) +|W>
2. A definite rule for multiplication by scalars a, b, . . ., denoted a| V> with the
following features:

e The result of these operations is another element of the space, a feature called
closure: |VY+|W)eV.

e Scalar multiplication is distributive in the wvectors: a(|V)+|W))=
aVy+a W.

e Scalar multiplication is distributive in the scalars: (a+b)|\VY=a|V>+b| V.

e Scalar multiplication is associative: a(b|V)=ab| V.

e Addition is commutative: |V)+| W)= |W>+|V)>.

e Addition is associative: |V)+({W>+|ZX)=( V) +|W>)+|2Z>.

@ There exists a null vector |0) obeying | V) +|0>=|V>.

e For every vector | V') there exists an inverse under addition, |—V >, such that
IVo+[=V)>=10).

There is a good way to remember all of these; do what comes naturally.

Definition 2. The numbers a, b, . .. are called the field over which the vector
space is defined.

If the field consists of all real numbers, we have a real vector space, if they are
complex, we have a complex vector space. The vectors themselves are neither real
nor complex; the adjective applies only to the scalars.

Let us note that the above axioms imply

e |0) is unique, i.e., if |0’) has all the properties of |0, then |0>=]0"D.
e 0|V>=|0>.

o |—-V>=—|V>.

e |— V) is the unique additive inverse of | V).

The proofs are left as to the following exercise. You don’t have to know the proofs,
but you do have to know the statements.

Exercise 1.1.1. Verify these claims. For the first consider |0 +|0')> and use the advertised
properties of the two null vectors in turn. For the second start with |0>=(0+ DV >+ |—V).
For the third, begin with |V )+ (—{V>)=0|V)>=|0>. For the last, let |W) also satisfy
|V>+|W)>=|0). Since [0) is unique, this means | V> +|W)>=|V) +|-V ). Take it from here.



Figure 1.1. The rule for vector addition. Note that it obeys axioms

(i)-(iii).

<y

Exercise 1.1.2. Consider the set of all entities of the form (a, b, ¢} where the entries are
real numbers. Addition and scalar multiplication are defined as follows:

(a,b,c)+(d, e, f)=(a+d bte ctf)
a(a, b, ¢)=(aa, ab, ac).

Write down the null vector and inverse of (&, b, ¢). Show that vectors of the form (a, b, 1) do
not form & vector space.

Observe that we are using a new symbol | V) to denote a generic vector. This
object is called ket V and this nomenclature is due to Dirac whose notation will be
discussed at some length later. We do not purposely use the symbol V 1o denote the
vectors as the first step in weaning you away from the limited concept of the vector as
an arrow. You are however not discouraged from associating with | V) the arrowlike
object till you have seen enough vectors that are not arrows and are ready to drop
the crutch.

You were asked to verify that the set of arrows qualified as a vector space as
you read the axioms. Here are some of the key ideas you should have gone over.
The vector space consists of arrows, typical ones being Vand V'. The rule for
addition is familiar: take the tail of the second arrow, put it on the tip of the first,
and so on as in Fig. 1.1.

Scalar multiplication by a corresponds to stretching the vector by a factor a.
This is a real vector space since stretching by a complex number makes no sense. (If
a is negative, we interpret it as changing the direction of the arrow as well as rescaling
it by |a|.) Since these operations acting on arrows give more arrows, we have closure.
Addition and scalar multiplication clearly have all the desired associative and distri-
butive features. The null vector is the arrow of zero length, while the inverse of a
vector is the vector reversed in direction.

So the set of all arrows qualifies as a vector space. But we cannot tamper with
it. For example, the set of all arrows with positive z-compone:ts do not form a
vector space: there is no inverse.

Note that so far, no reference has been made to magnitude or direction. The
point is that while the arrows have these qualities, members of a vector space need
not. This statement is pointless unless I can give you examples, so here are two.

Consider the set of all 2 x 2 matrices. We know how to add them and multiply
them by scalars (multiply all four matrix elements by that scalar). The corresponding
rules obey closure, associativity, and distributive requirements. The null matrix has
all zeros in it and the inverse under addition of a matrix is the matrix with all elements
negated. You must agree that here we have a genuine vector space consisting of
things which don’t have an obvious length or direction associated with them. When
we want to highlight the fact that the matrix M is an element of a vector space, we
may want to refer to it as, say, ket number 4 or: |[4).
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As a second example, consider all functions f(x) defined in an interval 0 <x < L.
We define scalar multiplication by a simply as af(x) and addition as pointwise
addition: the sum of two functions / and g has the value f(x) +g(x) at the point x.
The null function is zero everywhere and the additive inverse of fis —/.

Exercise 1.1.3. Do functions that vanish at the end points x=0 and x= L form a vector
space? How about periodic functions obeying f(0)=f(L)? How about functions that obey
f(0)=4? If the functions do not qualify, list the things that go wrong.

The next concept is that of linear independence of a set of vectors | 1), 12> .. . [n).
First consider a linear relation of the form

n

Y ailiy=[0) (1.1.1)

We may assume without loss of generality that the left-hand side does not
contain any multiple of |0), for if it did, it could be shifted to the right, and combined
with the |[0) there to give |0) once more. (We are using the fact that any multiple
of |0> equals {0).)

Definition 3. The set of vectors is said to be /inearly independent if the only such
linear relation as Eq. (1.1.1) is the trivial one with all a;=0. If the set of vectors
is not linearly independent, we say they are linearly dependent.

Equation (1.1.1) tells us that it is not possible to write any member of the
linearly independent set in terms of the others. On the other hand, if the set of
vectors is linearly dependent, such a relation will exist, and it must contain at least
two nonzero coefficients. Let us say a;#0. Then we could write

n

=3 b (1.1.2)

i=1,#3 43

thereby expressing [3) in terms of the others.

As a concrete example, consider two nonparallel vectors [1) and |2) in a plane.
These form a linearly independent set. There is no way to write one as a multiple of
the other, or equivalently, no way to combine them to get the null vector. On the
other hand, if the vectors are parallel, we can clearly write one as a multiple of the
other or equivalently play them against each other to get 0.

Notice I said 0 and not |0>. This is, strictly speaking, incorrect since a set of
vectors can only add up to a vector and not a number. It is, however, common to
represent the null vector by 0.

Suppose we bring in a third vector {3) also in the plane. If it is parallel to either
of the first two, we already have a linearly dependent set. So let us suppose it is not.
But even now the three of them are linearly dependent. This is because we can write
one of them, say |3), as a linear combination of the other two. To find the combina-
tion, draw a line from the tail of {3) in the direction of |1). Next draw a line
antiparallel to |2) from the tip of |3). These lines will intersect since |1 and |2) are



not parallel by assumption. The intersection point P will determine how much of
|1 and |2) we want: we go from the tail of |3) to P using the appropriate multiple
of |1> and go from P to the tip of |3} using the appropriate multiple of |23.

Exercise 1.1.4. Consider three elements from the vector space of real 2 x 2 matrices:

| 2 -
'1>=B (IJ m:[o i] |3>=[ 0 —j

Are they linearly independent? Support your answer with details. (Notice we are calling
these matrices vectors and using kets to represent them to emphasize their role as elements
of a vector space.)

Exercise 1.1.5. Show that the following row vectors are linearly dependent: (1,1, 0),
(1,0, 1), and (3, 2, 1). Show the opposite for (1, 1,0), (1,0, 1), and (0, 1, 1).

Definition 4. A vector space has dimension n if it can accommodate a maximum
of n linearly independent vectors. It will be denoted by V*(R) if the field is real
and by V"(C) if the field is complex.

In view of the earlier discussions, the plane is two-dimensional and the set of
all arrows not limited to the plane define a three-dimensional vector space. How
about 2 x 2 matrices? They form a four-dimensional vector space. Here is a proof.
The following vectors are linearly independent:

1o fo 1 _[o o oo
Il>~[o o] |2>‘[o 0} e [1 0] e [0 1}

since it is impossible to form linear combinations of any three of them to give the
fourth any three of them will have a zero in the one place where the fourth does
not. So the space is at least four-dimensional. Could it be bigger? No, since any
arbitrary 2 X 2 matrix can be written in terms of them:

[a bj|=a|1>+b[2>+c|3>+d|4>
c d

If the scalars a, b, ¢, d are real, we have a real four-dimensional space, if they
are complex we have a complex four-dimensional space.

Theorem 1. Any vector | V) in an n-dimensional space can be written as a linear
combination of # linearly independent vectors |1) ... |n).

The proof is as follows: if there were a vector |V) for which this were not
possible, it would join the given set of vectors and form a set of n+1 linearly
independent vectors, which is not possible in an n-dimensional space by definition.
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Definition 5. A set of n linearly independent vectors in an n-dimensional space
is called a basis.

Thus we can write, on the strength of the above

no —

[Vo=73 uli) (1.1.3)

i=1
where the vectors |i) form a basis.

Definition 6. The coefficients of expansion v, of a vector in terms of a linearly
independent basis (|i)) are called the components of the vector in that basis.

Theorem 2. The expansion in Eq. (1.1.3) is unique.

Suppose the expansion is not unique. We must then have a second expansion:

V=3 ullid (1.1.4)

i=1

Subtracting Eq. (1.1.4) from Eq. (1.1.3) (i.e., multiplying the second by the
scalar —1 and adding the two equations) we get

10> =2 (vi= oDl > (1.1.5)

which implies that
v;= V] (1.1.6)

since the basis vectors are linearly independent and only a trivial linear reiation
between them can exist. Note that given a basis the components are unique, but if
we change the basis, the components will change. We refer to | V) as the vector in
the abstract, having an existence of its own and satisfying various relations involving
other vectors. When we choose a basis the vectors assume concrete forms in terms
of their components and the relation between vectors is satisfied by the components.
Imagine for example three arrows in the plane, 4, B, C satisfying 4 + B= C according
to the laws for adding arrows. So far no basis has been chosen and we do not need
a basis to make the statement that the vectors from a closed triangle. Now we choose
a basis and write each vector in terms of the components. The components will
satisfy C;=A;+ B;, i=1, 2. If we choose a different basis, the components will change
in numerical value, but the relation between them expressing the equality of C to
the sum of the other two will still hold between the new set of components.



In the case of nonarrow vectors, adding them in terms of components proceeds
as in the elementary case thanks to the axioms. If

|¥y=Y v,|i> and (1.1.7)
|W>=Y wi|i> then (1.1.8)
\V>+|W>=Z(v,-+wi)|i> (1.1.9)

where we have used the axioms to carry out the regrouping of terms. Here is the
conclusion:

To add two vectors, add their components.

There is no reference to taking the tail of one and putting it on the tip of the
other, etc., since in general the vectors have no head or tail. Of course, if we are
dealing with arrows, we can add them either using the tail and tip routine or by
simply adding their components in a basis.

In the same way, we have:

alVy=ay vli>=Y av|i) (1.1.10)

In other words,

To multiply a vector by a scalar, multiply all its components by the scalar.

1.2. Inner Product Spaces

The matrix and function examples must have convinced you that we can have
a vector space with no preassigned definition of length or direction for the elements.
However, we can make up quantities that have the same properties that the lengths
and angles do in the case of arrows. The first step is to define a sensible analog of
the dot product, for in the case of arrows, from the dot product

A-B=|A||B| cos 6 (1.2.1)

we can read off the length of say A as \/|A| - |A] and the cosine of the angle between
two vectors as A4+ B/| A|| B|. Now you might rightfully object: how can you use the dot
product to define the length and angles, if the dot product itself requires knowledge of
the lengths and angles? The answer is this. Recall that the dot product has a second
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R
Vi Figure 1.2. Geometrical proof that the dot product obeys axiom (3)
e for an inner product. The axiom requires that the projections obey
— Py B Pt Pi=Py.

equivalent expression in terms of the components:
A-B=AB.+A,B.+ A.B. (1.2.2)

Our goal is to define a similar formula for the general case where we do have the
notion of components in a basis. To this end we recall the main features of the above
dot product:

1. A-B=B- A (symmetry)
2. 4420 0 iff A=0 (positive semidefiniteness)
3. A-(bB+cC)y=bA- B+ cA- C (linearity)

The linearity of the dot product is illustrated in Fig. 1.2.

We want to invent a generalization called the inner product or scalar product
between any two vectors | V) and | W ). We denote it by the symbol (VW ). It is
once again a number (generally complex) dependent on the two vectors. We demand
that it obey the following axioms:

e (V|W)=(W|V>* (skew-symmetry)
e (V|V>=0 0 iff | V> =|0) (positive semidefiniteness)
e (V|(a|WY+bZ))=L{V|aW+bZ)=alVIW>+b{V|Z) (linearity in ket)

Definition 7. A vector space with an inner product is called an inner product
space.

Notice that we have not yet given an explicit rule for actually evaluating the
scalar product, we are merely demanding that any rule we come up with must have
these properties. With a view to finding such a rule, let us familiarize ourselves with
the axioms. The first differs from the corresponding one for the dot product and
makes the inner product sensitive to the order of the two factors, with the two
choices leading to complex conjugates. In a real vector space this axioms states the
symmetry of the dot product under exchange of the two vectors. For the present,
let us note that this axiom ensures that {V |V is real.

The second axiom says that (V| V") is not just real but also positive semidefinite,
vanishing only if the vector itself does. If we are going to define the length of the
vector as the square root of its inner product with itself (as in the dot product) this
quantity had better be real and positive for all nonzero vectors.



The last axiom expresses the linearity of the inner product when a linear super-
position a| W +b|Z>=|aW+bZ) appears as the second vector in the scalar prod-
uct. We have discussed its validity for the arrows case (Fig. 1.2).

What if the first factor in the product is a linear superposition, i.e., what is
{aW+bZ|V>? This is determined by the first axiom:

aW+bBZ|\VY=(V|aW+bZ)>*

=(a{V|W>+bV|Z))*

=a*"(V|WY*+b*(V|Z)*

=a*(W|V>+b*(2Z|V> (1.2.3)
which expresses the antilinearity of the inner product with respect to the first factor
in the inner product. In other words, the inner product of a linear superposition
with another vector is the corresponding superposition of inner products if the super-
position occurs in the second factor, while it is the superposition with all coefficients
conjugated if the superposition occurs in the first factor. This asymmetry, unfamiliar
in real vector spaces, is here to stay and you will get used to it as you go along.

Let us continue with inner products. Even though we are trying to shed the

restricted notion of a vector as an arrow and seeking a corresponding generalization
of the dot product, we still use some of the same terminology.

Definition 8. We say that two vectors are orthogonal or perpendicular if their
inner product vanishes.

Definition 9. We will refer to \/{V|V)=|V]| as the norm or length of the vector.
A normalized vector has unit norm.

Definition 10. A set of basis vectors all of unit norm, which are pairwise ortho-
gonal will be called an orthonormal basis.

We will also frequently refer to the inner or scalar product as the dot product.
We are now ready to obtain a concrete formula for the inner product in terms
of the components. Given | V) and | W)

V=% vl
WD =% wilj>
j
we follow the axioms obeyed by the inner product to obtain:

VIWY=3 ¥ v wgil)> (12.4)

To go any further we have to know {i|;), the inner product between basis vectors.
That depends on the details of the basis vectors and all we know for sure is that
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they are linearly independent. This situation exists for arrows as well. Consider a
two-dimensional problem where the basis vectors are two linearly independent but
nonperpendicular vectors. If we write all vectors in terms of this basis, the dot
product of any two of them will likewise be a double sum with four terms (determined
by the four possible dot products between the basis vectors) as well as the vector
components. However, if we use an orthonormal basis such as i, j, only diagonal
terms like ¢i|i> will survive and we will get the familiar result 4- B=A,B.+ 4, B,
depending only on the components.
For the more general nonarrow case, we invoke Theorem 3.

Theorem 3 (Gram-Schmidt). Given a linearly independent basis we can form
linear combinations of the basis vectors to obtain an orthonormal basis.

Postponing the proof for a moment, let us assume that the procedure has been
implemented and that the current basis is orthonormal:

1 fori=j
0 fori#j

E(S,‘j

<i|j>:{

where 0 is called the Kronecker delta symbol. Feeding this into Eq. (1.2.4) we find
the double sum collapses to a single one due to the Kronecker delta, to give

VIWy=% vfw; (1.2.5)

This is the form of the inner product we will use from now on.

You can now appreciate the first axiom; but for the complex conjugation of
the components of the first vector, {V|V» would not even be real, not to mention
positive. But now it is given by

VY=Y |v*=0 (1.2.6)

and vanishes only for the null vector. This makes it sensible to refer to (V|V) as
the length or norm squared of a vector.

Consider Eq. (1.2.5). Since the vector | V') is uniquely specified by its compo-
nents in a given basis, we may, in this basis, write it as a column vector:

Uy
[25)

[V>—| - in this basis (1.2.7)

Uy



Likewise
Wy
|WH—| : in this basis (1.2.8)
Wn,

The inner product (V| W) is given by the matrix product of the transpose conjugate
of the column vector representing | V) with the column vector representing | W) :

Wi
W2

VIWy=[vf, of,... .00 (1.2.9)

Wn

1.3. Dual Spaces and the Dirac Notation

There is a technical point here. The inner product is a number we are trying to
generate from two kets | V') and | W), which are both represented by column vectors
in some basis. Now there is no way to make a number out of two columns by direct
matrix multiplication, but there is a way to make a number by matrix multiplication
of a row times a column. Our trick for producing a number out of two columns has
been to associate a unique row vector with one column (its transpose conjugate)
and form its matrix product with the column representing the other. This has the
feature that the answer depends on which of the two vectors we are going to convert
to the row, the two choices ({(V|W) and {(W|V)) leading to answers related by
complex conjugation.

But one can also take the following alternate view. Column vectors are concrete
manifestations of an abstract vector | V) or ket in a basis. We can also work back-
ward and go from the column vectors to the abstract kets. But then it is similarly
possible to work backward and associate with each row vector an abstract object
{W]|, called bra-W. Now we can name the bras as we want but let us do the following.
Associated with every ket | V') is a column vector. Let us take its adjoint, or transpose
conjugate, and form a row vector. The abstract bra associated with this will bear
the same label, i.e., it will be called {(V|. Thus there are two vector spaces, the space
of kets and a dual space of bras, with a ket for every bra and vice versa (the
components being related by the adjoint operation). Inner products are really defined
only between bras and kets and hence from elements of two distinct but related
vector spaces. There is a basis of vectors |i) for expanding kets and a similar basis
{i| for expanding bras. The basis ket |/) is represented in the basis we are using by
a column vector with all zeros except for a 1 in the ith row, while the basis bra {i|
is a row vector with all zeros except for a | in the i/th column.

11
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All this may be summarized as follows:

Voo o lelof, o3, oflo V) (1.3.1)

where <> means “‘within a basis.”

There is, however, nothing wrong with the first viewpoint of associating a scalar
product with a pair of columns or kets (making no reference to another dual space)
and living with the asymmetry between the first and second vector in the inner
product (which one to transpose conjugate?). If you found the above discussion
heavy going, you can temporarily ignore it. The only thing you must remember is
that in the case of a general nonarrow vector space:

® Vectors can still be assigned components in some orthonormal basis, just as with
arrows, but these may be complex.

e The inner product of any two vectors is given in terms of these components by
Eq. (1.2.5). This product obeys all the axioms.

1.3.1. Expansion of Vectors in an Orthonormal Basis

Suppose we wish to expand a vector | V) in an orthonormal basis. To find the
components that go into the expansion we proceed as follows. We take the dot
product of both sides of the assumed expansion with [j>: (or {j| if you are a purist)

(V=3 vli> (1.3.2)
o=y ol (1.3.3)
=0, (1.3.4)

i.e., to find the jth component of a vector we take the dot product with the jth unit
vector, exactly as with arrows. Using this result we may write

V=21 (1.3.5)

Let us make sure the basis vectors look as they should. If we set |V >=|,> in Eq.
(1.3.5), we find the correct answer: the ith component of the jth basis vector is §,.
Thus for example the column representing basis vector number 4 will have a 1 in
the 4th row and zero everywhere else. The abstract relation

V=3 vli> (1.3.6)

i



becomes in this basis

Uy 1 0 0
vy 0 1 0

ol 0| 0+ 0] (13.7)
Oy 0 0 1

1.3.2. Adjoint Operation

We have seen that we may pass from the column representing a ket to the
row representing the corresponding bra by the adjoint operation, i.e., transpose
conjugation. Let us now ask: if (V| is the bra corresponding to the ket | V> what
bra corresponds to a| V') where a is some scalar? By going to any basis it is readily
found that

alVy—| | [a*of, a*vk, ..., a*vf]— (V|a* (1.3.8)
av,

It is customary to write a| V') as |aV") and the corresponding bra as {a¥’|. What
we have found is that

(aV|={V|a* (1.3.9)

Since the relation between bras and kets is linear we can say that if we have an
equation among kets such as

alVy=bWy+cZy+- - (1.3.10)
this implies another one among the corresponding bras:
(Va*={W|b*+{(Z|c*+- - (1.3.11)

The two equations above are said to be adjoints of each other. Just as any equation
involving complex numbers implies another obtained by taking the complex conju-
gates of both sides, an equation between (bras) kets implies another one between
(kets) bras. If you think in a basis, you will see that this follows simply from the
fact that if two columns are equal, so are their transpose conjugates.

Here is the rule for taking the adjoint:
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To take the adjoint of a linear equation relating kets (bras), replace every ket
(bra) by its bra (ket) and complex conjugate all coefficients.

We can extend this rule as follows. Suppose we have an expansion for a vector:

[Vy=73 vli) (1.3.12)

in terms of basis vectors. The adjoint is

V=3 <ot

Recalling that v,={i| V') and v = (V|i), it follows that the adjoint of

(Vo= 13V (1.3.13)
=1

V=3 Vil (1.3.14)

from which comes the rule:

To take the adjoint of an equation involving bras and kets and coefficients,
reverse the order of all factors, exchanging bras and kets and complex conjugating
all coefficients.

Gram-Schmidt Theorem

Let us now take up the Gram-Schmidt procedure for converting a linearly
independent basis into an orthonormal one. The basic idea can be seen by a simple
example. Imagine the two-dimensional space of arrows in a plane. Let us take two
nonparallel vectors, which qualify as a basis. To get an orthonormal basis out of
these, we do the following:

® Rescale the first by its own length, so it becomes a unit vector. This will be the
first basis vector.

e Subtract from the second vector its projection along the first, leaving behind only
the part perpendicular to the first. (Such a part will remain since by assumption
the vectors are nonparallel.)

e Rescale the left over piece by its own length. We now have the second basis vector:
it is orthogonal to the first and of unit length.

This simple example tells the whole story behind this procedure, which will now
be discussed in general terms in the Dirac notation.



Let |I), |II),... be a linearly independent basis. The first vector of the
orthonormal basis will be

|1>=|—|]I—I> where |I|=./|I)

Clearly

Ny _

1
1

A=

As for the second vector in the basis, consider

12 =115 — [ 15T

which is | I7) minus the part pointing along the first unit vector. (Think of the arrow
example as you read on.) Not surprisingly it is orthogonal to the latter:

Y25 =AU =< =0

We now divide |2') by its norm to get |2)> which will be orthogonal to the first and
normalized to unity. Finally, consider

13 =1 = 15T — 22T

which is orthogonal to both |1} and |2). Dividing by its norm we get |3), the third
member of the orthogonal basis. There is nothing new with the generation of the
rest of the basis.

Where did we use the linear independence of the original basis? What if we had
started with a linearly dependent basis? Then at some point a vector like |2) or |3")
would have vanished, putting a stop to the whole procedure. On the other hand,
linear independence will assure us that such a thing will never happen since it amounts
to having a nontrivial linear combination of linearly independent vectors that adds
up the null vector. (Go back to the equations for |2) or |3’') and satisfy yourself
that these are linear combinations of the old basis vectors.)

Exercise 1.3.1. Form an orthonormal basis in two dimensions starting with 4 =3i+4j
and B=2i—6j. Can you generate another orthonormal basis starting with these two vectors?
If so, produce another.
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Exercise 1.3.2. Show how to go from the basis

3 0 0
[I>=]0 [>=]1 [[>=]2
0 2 5
to the orthonormal basis
1 0 0
y=0] |2={145]| [3=|-2/5
0 2/ 1/J5

When we first learn about dimensionality, we associate it with the number of
perpendicular directions. In this chapter we defined it in terms of the maximum
number of linearly independent vectors. The following theorem connects the two
definitions.

Theorem 4. The dimensionality of a space equals 7, , the maximum number of
mutually orthogonal vectors in it.

To show this, first note that any mutually orthogonal set is also linearly indepen-
dent. Suppose we had a linear combination of orthogonal vectors adding up to
zero. By taking the dot product of both sides with any one member and using the
orthogonality we can show that the coefficient multiplying that vector had to vanish.
This can clearly be done for all the coefficients, showing the linear combination is
trivial.

Now n_ can only be equal to, greater than or lesser than n, the dimensionality
of the space. The Gram-Schmidt procedure eliminates the last case by explicit con-
struction, while the linear independence of the perpendicular vectors rules out the
penultimate option.

Schwarz and Triangle Inequalities
Two powerful theorems apply to any inner product space obeying our axioms:
Theorem 5. The Schwarz Inequality

VIO VIIW] (1.3.15)
Theorem 6. The Triangle Inequality
[V+W|<|Vi+| W] (1.3.16)

The proof of the first will be provided so you can get used to working with bras
and kets. The second will be left as an exercise.



Before proving anything, note that the results are obviously true for arrows:
the Schwarz inequality says that the dot product of two vectors cannot exceed the
product of their lengths and the triangle inequality says that the length of a sum
cannot exceed the sum of the lengths. This is an example which illustrates the merits
of thinking of abstract vectors as arrows and guessing what properties they might
share with arrows. The proof will of course have to rely on just the axioms.

To prove the Schwarz inequality, consider axiom (Z|Z) >0 applied to

—ip VS
12> =1V =2 W (1.3.17)
We get
ey S L D
(Z\ZYy=LV W /404 W W
_ iy SHVXVIWY (WY SV
Wi W1
+<W|V>*<W|V><W|W>
W
>0 (1.3.18)

where we have used the antilinearity of the inner product with respect to the bra.
Using

WV =(VIW)
we find

VOV

Wy

(1.3.19)

Cross-multiplying by | W|* and taking square roots, the result follows.

Exercise 1.3.3.  When will this equality be satistied? Does this agree with your experience
with arrows?

Exercise 1.3.4. Prove the triangle inequality starting with |V + W|°. You must use
Re{V| W) <|{(V|W)| and the Schwarz inequality. Show that the final inequality becomes an
equality only if | V) =a| W) where a is a real positive scalar.

1.4. Subspaces

Definition 11. Given a vector space V, a subset of its elements that form a
vector space among themselves] is called a subspace. We will denote a particular
subspace i of dimensionality n; by V",

} Vector addition and scalar multiplication are defined the same way in the subspace as in V.
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Example 1.4.1. In the space V3(R), the following are some examples of sub-
spaces: (a) all vectors along the x axis, the space V,/; (b) all vectors along the y
axis, the space V,; (c) all vectors in the x — y plane, the space V2. Notice that all
subspaces contain the null vector and that each vector is accompanied by its inverse
to fulfill axioms for a vector space. Thus the set of all vectors along the positive x
axis alone do not form a vector space. |

Definition 12. Given two subspaces V{' and V/%, we define their sum
Vi@ V["=Vi* as the set containing (1) all elements of V/, (2) all elements of
V;¥, (3) all possible linear combinations of the above. But for the elements (3),
closure would be lost.

Example 1.4.2. 1f, for example, V@V, contained only vectors along the x
and y axes, we could, by adding two elements, one from each direction, generate
one along neither. On the other hand, if we also included all linear combinations,
we would get the correct answer, V, @\/l AV L

Exercise 1.4.1.* In a space V", prove that the set of all vectors {|V\),[V2),...},
orthogonal to any | V) # 0), form a subspace V"',

Exercise 1.4.2.  Suppose V{" and V3* are two subspaces such that any element of V, is

orthogonal to any element of V,. Show that the dimensionality of V,@®V, is n, +#,. (Hint:
Theorem 4.)

1.5. Linear Operators

An operator  is an instruction for transforming any given vector | V) into
another, | V')>. The action of the operator is represented as follows:

QVy=|V') (1.5.1)

One says that the operator €2 has transformed the ket | V) into the ket | V). We
will restrict our attention throughout to operators € that do not take us out of the
vector space, i.e., if | ) is an element of a space V, so is | V'>=Q| V).

Operators can also act on bras:

VQ=<v"| (1.5.2)

We will only be concerned with linear operators, i.e., ones that obey the following
rules:

Qa|V)>=aQd| V> (1.5.3a)
Q{alViy+BIV,y} = aQ V> +BQIV,> (1.5.3b)
ViaQ=<{V;|Qa (1.5.4a)

(Vila+ <V B)Q=alViiQ+BHIQ (1.5.4b)



R[12)+13)] 12) +13)

Figure 1.3. Action of tae operator R(%ﬂi). Note that
R[|2>+13>}=R|2)+ R|3) as expected of a linear operator. (We
will often refer to R(3ri) as R if no confusion is likely.) X

Example 1.5.1. The simplest operator is the identity operator, I, which carries
the instruction:

I-Leave the vector alone!

Thus,

I\"V>=|V) forallkets|V) (1.5.5)
and

(V|I={V| forallbras (V]| (1.5.6)
We next pass on to a more interesting operator on V’(R):

R(3 wi)—Rotate vector by 37 about the unit vector i

[More generally, R(0) stands for a rotation by an angle 6 =8| about the axis parallel
to the unit vector 6 =6/6.] Let us consider the action of this operator on the three

unit vectors i, i, and k, which in our notation will be denoted by |1), |2), and |3)
(see Fig. 1.3). From the figure it is clear that

RGri)1>=]1) (1.5.7a)
RGi)|2>=13) (1.5.7b)
RGmi)|3)=—|2) (1.5.7¢)

Clearly R(5mi) is linear. For instance, it is clear from the same figure that
R[2>+|3>]=R|2)>+R|3). O

The nice feature of linear operators is that once their action on the basis vectors
is known, their action on any vector in the space is determined. If

Qliy=1i")
for a basis [1), [2), ..., |n) in V", then for any | V) =3 v;]i)

QVH=% Qu|iy =} v:Qliy=} vi|i") (1.5.8)
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This is the case in the example Q= RE7i). If
V=01 +0,]2)+ 033>
is any vector, then
RIVYy=0R|1)+0:R|12) +03R|3> =0 1>+ 153> — 03] 2>

The product of two operators stands for the instruction that the instruction$
corresponding to the two operators be carried out in sequence

AQV>=AQV>)=A|QV> (1.5.9)

where |21 1s the ket obtained by the action of Q on | V7). The order of the operators
in a product is very important: in general,

OA—AQ=[Q, A]

called the commutator of Q and A isn’t zero. For example R(37i) and R(37j) do
not commute, i.e., their commutator is nonzero.
Two useful identities involving commutators are

[Q, AB]=A[Q, 0]+[Q, A]6 (1.5.10)
[AQ. 0] =A[Q, 0] +[A., 0]Q (1.5.11)

Notice that apart from the emphasis on ordering, these rules resemble the chain rule
in calculus for the derivative of a product.
The inverse of Q, denoted by Q' satisfies]

QO '=0"'0=1 (1.5.12)
Not every operator has an inverse. The condition for the existence of the inverse is
given in Appendix A.1. The operator R(3ri) has an inverse: it is R(—3xi). The
inverse of a product of operators is the product of the inverses in reverse:

(QA) '=AT'Q7! (1.5.13)

for only then do we have

(QA)QA) '=(QA)AT'Q ) =0AA'Q ' =00 =]

1.6. Matrix Elements of Linear Operators

We are now accustomed to the idea of an abstract vector being represented in
a basis by an n-tuple of numbers, called its components, in terms of which all vector

I In V*(C) with » finite, Q7 'Q=7< QQ '=1. Prove this using the ideas introduced toward the end of
Theorem A.1.1., Appendix A.1.



operations can be carried out. We shall now see that in the same manner a linear
operator can be represented in a basis by a set of n” numbers, written as an nXxn
matrix, and called its matrix elements in that basis. Although the matrix elements,
just like the vector components, are basis dependent, they facilitate the computation
of all basis-independent quantities, by rendering the abstract operator more tangible.

Our starting point is the observation made earlier, that the action of a linear
operator is fully specified by its action on the basis vectors. If the basis vectors suffer
a change

Qlip=1i">

(where |i") is known), then any vector in this space undergoes a change that is readily
calculable:

QY>=Q T olid=F o> =3 vli’)

When we say |i’) is known, we mean that its components in the original basis
iD=l =Q; (1.6.1)
are known. The »*> numbers, Qy, are the matrix elements of Q in this basis. If
QVy=\V"

then the components of the transformed ket | V') are expressable in terms of the £
and the components of |V'):

o=V =iQ V>=<iIQ(Z vj|j>)

7

=% <191

=Z ijvj (1.6.2)
J

Equation (1.6.2) can be cast in matrix form:

o [ Q2> ARyl
o |_| i e (163
ol L@y Qim0

A mnemonic: the elements of the first column are simply the components of the first
transformed basis vector |1'> =Q|1) in the given basis. Likewise, the elements of the
jth column represent the image of the jth basis vector after Q acts on it.
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Convince yourself that the same matrix Q, acting to the Jeft on the row vector
corresponding to any {v'| gives the row vector corresponding to {v”| ={v'|Q.

Example 1.6.1. Combining our mnemonic with the fact that the operator R(3 i)
has the following effect on the basis vectors:

RG i) 1>=(1)
RGmi)|2y=13)
RGm)|3)=—12)

we can write down the matrix that represents it in the |1), |2), |3) basis:

10 0
RGri)e—|0 0 -1 (1.6.4)
01 0

For instance, the —1 in the third column tells us that R rotates |3 into —|2). One
may also ignore the mnemonic altogether and simply use the definition R;={i|R|;j)
to compute the matrix. O

Exercise 1.6.1. An operator Q is given by the matrix

What is its action?

Let us now consider certain specific operators and see how they appear in matrix
form.
(1) The Identity Operator 1.

L=<l jy=<ilj> =6, (1.6.5)

Thus [/ is represented by a diagonal matrix with 1’s along the diagonal. You should
verify that our mnemonic gives the same result.

(2) The Projection Operators. Let us first get acquainted with projection opera-
tors. Consider the expansion of an arbitrary ket | V) in a basis:

V=3 1DV

i



In terms of the objects |i><i|, which are linear operators, and which, by definition,
act on | V) to give |i){i| V), we may write the above as

i

|V>=( ) 1i><i|>|V> (1.6.6)
=1

Since Eq. (1.6.6) is true for all | V'), the object in the brackets must be identified
with the identity (operator)

1= Y 1ixil=

i

P, (1.6.7)
i=1

i

The object P;=|i)<i| is called the projection operator for the ket |i>. Equation (1.6.7),

which is called the completeness relation, expresses the identity as a sum over projec-

tion operators and will be invaluable to us. (If you think that any time spent on the

identity, which seems to do nothing, is a waste of time, just wait and see.)
Consider

P V=10V =]Dv: (1.6.8)

Clearly P, is linear. Notice that whatever | V) is, P;| V) is a multiple of |i) with
a coefficient (v;) which is the component of | V') along |i>. Since P; projects out the
component of any ket | V) along the direction |i), it is called a projection operator.
The completeness relation, Eq. (1.6.7), says that the sum of the projections of a
vector along all the » directions equals the vector itself. Projection operators can
also act on bras in the same way:

VP= Vi< = v<]| (1.6.9)
Projection operators corresponding to the basis vectors obey
PP= D<= 6;P (1.6.10)

This equation tells us that (1) once P; projects out the part of | V) along |i), further
applications of P, make no difference; and (2) the subsequent application of P;(j#1)
will result in zero, since a vector entirely along |/ cannot have a projection along a
perpendicular direction | .
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Figure 1.4. P, and P, are polarizers placed in the way of a beam traveling along the z axis. The action
of the polarizers on the electric field E obeys the law of combination of projection operators:
P.P=3,P;.

The following example from optics may throw some light on the discussion.
Consider a beam of light traveling along the z axis and polarized in the x —y plane
at an angle 6 with respect to the y axis (see Fig. 1.4). If a polarizer P,, that only
admits light polarized along the y axis, is placed in the way, the projection E cos 8
along the y axis is transmitted. An additional polarizer P, placed in the way has no
further effect on the beam. We may equate the action of the polarizer to that of a
projection operator [P, that acts on the electric field vector E. If P, is followed by a
polarizer P, the beam is completely blocked. Thus the polarizers obey the equation
P;P;= 3, P; expected of projection operators.

Let us next turn to the matrix elements of P,. There are two approaches. The
first one, somewhat indirect, gives us a feeling for what kind of an object |i){i] is.
We know

1) <

and

{i| «[0,0,...,1,0,0,...,0]



so that
0] K . 0]
0
: 0
|iY¢i| < | 1([0,0,...,1,0,...,0]=1": 1 (1.6.11)
0 0
0 0 0]

by the rules of matrix multiplication. Whereas <(V|V’')=(1xn matrix)x
(n % 1 matrix) = (1 x 1 matrix) is a scalar, | ¥ )<{¥"’| = (n X 1 matrix) x (1 X n matrix) =
(n x n matrix) is an operator. The inner product (¥V|V’) represents a bra and ket
which have found each other, while | V' ){V’|, sometimes called the outer product,
has the two factors looking the other way for a bra or a ket to dot with.

The more direct approach to the matrix elements gives

(Pwr= <kl iD= 6k 64= b (1.6.12)

which is of course identical to Eq. (1.6.11). The same result also follows from mne-
monic. Each projection operator has only one nonvanishing matrix element, a 1 at
the ith element on the diagonal. The completeness relation, Eq. (1.6.7), says that
when all the P; are added, the diagonal fills out to give the identity. If we form the
sum over just some of the projection operators, we get the operator which projects
a given vector into the subspace spanned by just the corresponding basis vectors.

Matrices Corresponding to Products of Operators

Consider next the matrices representing a product of operators. These are related
to the matrices representing the individual operators by the application of Eq. (1.6.7):

(QA);= QALY = GIQIA|j)
=Y |QIkY<kIA) =3 Qu Ay (1.6.13)
k k

Thus the matrix representing the product of operators is the product of the matrices
representing the factors.

The Adjoint of an Operator
Recall that given a ket a| V' )>=|a V) the corresponding bra is

(aV|=(V]|a* (andnot {(V|a)
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In the same way, given a ket

QVy=1QV)
the corresponding bra is

Q@ri=we’ (1.6.14)
which defines the operator Q'. One may state this equation in words: if Q turns a
ket | > to | V'), then Q' turns the bra (V| into {V'|. Just as a and a*, | V) and

(V| are related but distinct objects. so are Q and Q'. The relation between Q. and
Q' called the adjoint of Q or “‘omega dagger,” is best seen in a basis:

Q)= IR > =<Qilj»
= IQD =19l *
SO
Q=03 (1.6.15)
In other words, the matrix representing Q' is the transpose conjugate of the matrix
representing . (Recall that the row vector representing (V| is the transpose conju-
gate of the column vector representing | V). In a given basis, the adjoint operation is
the same as taking the transpose conjugate.)
The adjoint of a product is the product of the adjoints in reverse:
(QA) =ATQ] (1.6.16)
To prove this we consider (QAV|. First we treat QA as one operator and get
(QAV={QA) V] =(VI(QA)
Next we treat (A V') as just another vector, and write
QAV | =AYV ) =(AVIQ"
We next pull out A, pushing Q" further out:
(AVIQ =V IATQ
Comparing this result with the one obtained a few lines above, we get the desired
result.

Consider now an equation consisting of kets, scalars, and operators, such as

a|Viy=as| Vo) + as| Vay{Va| Vs> + a QA Vs> (1.6.17a)
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In the last term we can replace (QAVs| by
VQA) = (V| ATQT
so that finally we have the adjoint of Eq. (1.6.17a):
Vilat=Valat+ (V3| Vay{Valad + Vol A'Qak (1.6.17b)

The final rule for taking the adjoint of the most general equation we will ever
encounter is this:

When a product of operators, bras, kets, and explicit numerical coefficients is
encountered, reverse the order of all factors and make the substitutions Q-Q,
1> e, aea”

(Of course, there is no real need to reverse the location of the scalars a except in
the interest of unifermity.)

Hermitian, Anti-Hermitian, and Unitary Operators

We now turn our attention to certain special classes of operators that will play
a major role in quantum mechanics.

Definition 13. An operator Q is Hermitian if Q'=Q.
Definition 14. An operator Q is anti-Hermitian if Q' =—~Q.

The adjoint is to an operator what the complex conjugate is to numbers. Hermitian
and anti-Hermitian operators are like pure real and pure imaginary numbers. Just
as every number may be decomposed into a sum of pure real and pure imaginary
parts,
* *
a=2 +a Lo
2 2

we can decompose every operator into its Hermitian and anti-Hermitian parts:

Q+0" o-of
= - 4 =
2 2

Q (1.6.18)

Exercise 1.6.2.* Given Q and A are Hermitian what can you say about (1) QA; (2)
QA+AQ; (3) [Q, Al; and (4) {[Q, A]?
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Definition 15. An operator U is unitary if
uU'=1 (1.6.19)

This equation tells us that U and U are inverses of each other. Consequently,
from Eq. (1.5.12),

vu=1 (1.6.20)

Following the analogy between operators and numbers, unitary operators are
like complex numbers of unit modulus, u=e". Just as «*u=1, so is U'U=1.

Exercise 1.6.3.* Show that a product of unitary operators is unitary.

Theorem 7. Unitary operators preserve the inner product between the vectors

they act on.
Proof. Let
[Vi=UlVr)
and
[Va=UIVo)
Then

VIV =CUV UV
= (VU UV Y=LVl Vi) (1.6.21)

(QED.)

Unitary operators are the generalizations of rotation operators from V*(R) to
V"(C), for just like rotation operators in three dimensions, they preserve the lengths
of vectors and their dot products. In fact, on a real vector space, the unitarity
condition becomes U~ '=U" (T means transpose), which defines an orthogonal or
rotation matrix. [R(37i) is an example.]

Theorem 8. 1f one treats the columns of an # X n unitary matrix as components
of n vectors, these vectors are orthonormal. In the same way, the rows may be
interpreted as components of # orthonormal vectors.

Proof 1. According to our mnemonic, the jth column of the matrix representing
U is the image of the jth basis vector after U acts on it. Since U preserves inner
products, the rotated set of vectors is also orthonormal. Consider next the rows. We
now use the fact that U' is also a rotation. (How else can it neutralize U to give
U'U=17) Since the rows of U are the columns of U (but for an overall complex



conjugation which does not affect the question of orthonormality), the result we
already have for the columns of a unitary matrix tells us the rows of U are
orthonormal.
Proof 2. Since U'U=1,
8= <ill|j>=<i|U'ULj)
=Y, GIU'kY<KIUL )
k
=Y UpUy=Y UiUy (1.6.22)
k k
which proves the theorem for the columns. A similar result for the rows follows if
we start with the equation UU'=I. QED.

Note that U'U=17 and UU'=1 are not independent conditions.

Exercise 1.6.4.* Tt is assumed that you know (1) what a determinant is, (2) that det Q"=
det Q (T denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

ol ]
y O

with det Q=(ad — fy).] Prove that the determinant of a unitary matrix is a complex number
of unit modulus.

Exercise 1.6.5.* Verify that R(3 rri) is unitary (orthogonal) by examining its matrix.

Exercise 1.6.6. Verify that the following matrices are unitary:

‘1_{1 i:l l[lﬂ 1—:]
272 1 2010 144
Verify that the determinant is of the form ¢ in each case. Are any of the above matrices
Hermitian?
1.7. Active and Passive Transformations
Suppose we subject all the vectors | V) in a space to a unitary transformation
(VS=UIVD (1.7.1)

Under this transformation, the matrix elements of any operator € are modified as
follows:

VNQUY Y= UV |IQUUV Y=V | U'QUI YD (1.7.2)
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It is clear that the same change would be effected if we left the vectors alone and
subjected all operators to the change

Q-UQU (1.7.3)

The first case is called an active transformation and the second a passive transforma-
tion. The present nomenclature is in reference to the vectors: they are affected in an
active transformation and left alone in the passive case. The situation is exactly the
opposite from the point of view of the operators.

Later we will see that the physics in quantum theory lies in the matrix elements
of operators, and that active and passive transformations provide us with two equiva-
lent ways of describing the same physical transformation.

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal matrix
elements

TrQ=yQ,

i

Show that

(1) Tr(QA)=Tr(AQ)

(2) Tr(QAG)=Tr(AOQ)=Tr(6QA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis [i/>— U|i). [Equiva-
lently, show Tr Q=Tr(U'QU).]

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary change
of basis. [Equivalently show det Q=det(U'QU).]

1.8. The Eigenvalue Problem
Consider some linear operator Q acting on an arbitrary nonzero ket |V ):
Q=" (1.8.1)

Unless the operator happens to be a trivial one, such as the identity or its multiple,
the ket will suffer a nontrivial change, i.e., | V> will not be simply related to [ V).
So much for an arbitrary ket. Each operator, however, has certain kets of its own,
called its eigenkets, on which its action is simply that of rescaling:

QV>=w|V)> (1.8.2)

Equation (1.8.2) is an eigenvalue equation: | V') is an eigenket of Q with eigenvalue
w. In this chapter we will see how, given an operator €, one can systematically
determine all its eigenvalues and eigenvectors. How such an equation enters physics
will be illustrated by a few examples from mechanics at the end of this section, and
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way.



Example 1.8.1. To illustrate how easy the eigenvalue problem really is, we will
begin with a case that will be completely solved: the case 2=1. Since

IW\WVy=1V>
for all | V), we conclude that
(1) the only eigenvalue of Iis 1;
(2) all vectors are its eigenvectors with this eigenvalue. O

Example 1.8.2. After this unqualified success, we are encouraged to take on a
slightly more difficult case: Q= Py, the projection operator associated with a normal-
ized ket | V). Clearly
(1) any ket a|V)>=|aV), parallel to | V) is an eigenket with eigenvalue 1:

PulaVy=VXXV]aVy=a|V)|V|*=1|aV)
(2) any ket | V), perpendicular to | V'), is an eigenket with eigenvalue 0:

PulV.y=IVYVIV.)=0=0V.>

(3) kets that are neither, i.e., kets of the form e|V)>+B|V,), are simply not
eigenkets:

Py(alVy+BIV.d)=laVi#y(alV)+BIVL))

Since every ket in the space falls into one of the above classes, we have found
all the eigenvalues and eigenvectors. O

Example 1.8.3. Consider now the operator R(37i). We already know that it
has one eigenket, the basis vector |1) along the x axis:

RGzmi)|1)=]1)
Are there others? Of course, any vector a|1) along the x axis is also unaffected by
the x rotation. This is a general feature of the eigenvalue equation and reflects the
linearity of the operator:
if

QVy=a|V>

then

Qa|Vy=aQ|V)=aw|V)=walV)
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for any multiple a. Since the eigenvalue equation fixes the eigenvector only up to
an overall scale factor, we will not treat the multiples of an eigenvector as distinct
cigenvectors. With this understanding in mind, let us ask if R(37i) has any eigenvec-
tors besides |17, Our intuition says no. for any vector not along the x axis necessarily
gets rotated by R(:7i) and cannot possibly transform into a multiple of itself. Since
every vector is either parallel to |1 or isn’t, we have fully solved the eigenvalue
problem.

The trouble with this conclusion is that it is wrong! R(7i) has two other
eigenvectors besides |1). But our intuition is not to be blamed, for these vectors are
in V*(C) and not V*(R). It is clear from this example that we need a reliable and
systematic method for solving the eigenvalue problem in V*(C). We now turn our
attention to this very question. O

The Characteristic Equation and the Solution to the Eigenvalue Problem

We begin by rewriting Eq. (1.8.2) as
(Q—whH)|V>={0) (1.8.3)
Operating both sides with (Q— /)", assuming it exists, we get
[Vy=(Q—wl) 0> (1.8.4)

Now, any finite operator (an operator with finite matrix elements) acting on the null
vector can only give us a null vector. It therefore seems that in asking for a nonzero
eigenvector | V), we are trying to get something for nothing out of Eq. (1.8.4). This
is impossible. It follows that our assumption that the operator (Q— /)" exists (as
a finite operator) is false. So we ask when this situation will obtain. Basic matrix
theory tells us (see Appendix A.1) that the inverse of any matrix M is given by

_, _ cofactor M"

1.8.5
det M ( )

Now the cofactor of M is finite if M is. Thus what we need is the vanishing of the
determinant. The condition for nonzero eigenvectors is therefore

det(Q—wl)=0 (1.8.6)

This equation will determine the eigenvalues ©. To find them, we project Eq. (1.8.3)
onto a basis. Dotting both sides with a basis bra {i|, we get

Q- I V=0



and upon introducing the representation of the identity [Eq. (1.6.7)], to the left of
| V>, we get the following image of Eq. (1.8.3):

Y (Q— 08,);=0 (1.8.7)

Setting the determinant to zero will give us an expression of the form

Y =0 (1.8.8)

m=0

Equation (1.8.8) is called the characteristic equation and

P(w)=Y c,0" (1.8.9)
» 0

"=

is called the characteristic polynomial. Although the polynomial is being determined
in a particular basis, the eigenvalues, which are its roots, are basis independent, for
they are defined by the abstract Eq. (1.8.3), which makes no reference to any basis.

Now, a fundamental result in analysis is that every nth-order polynomial has n
roots, not necessarily distinct and not necessarily real. Thus every operator in V(C)
has n eigenvalues. Once the eigenvalues are known, the eigenvectors may be found,
at least for Hermitian and unitary operators, using a procedure illustrated by the
following example. [Operators on V*(C) that are not of the above variety may not
have n eigenvectors—see Exercise 1.8.4. Theorems 10 and 12 establish that Hermitian
and unitary operators on V"(C) will have n eigenvectors.]

Example 1.8.4. Let us use the general techniques developed above to find all
the eigenvectors and eigenvalues of R(37i). Recall that the matrix representing it is

1 0 O
RGmi) |0 0 -1
01 0
Therefore the characteristic equation is
l—o 0 0
det(R—wl)=| O -0 —1|=0
0 1 ~o

(1-o)*+1)=0 (1.8.10)
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with roots ® =1, +i. We know that @ =1 corresponds to |1). Let us see this come
out of the formalism. Feeding w=1 into Eq. (1.8.7) we find that the components
X1, X2, and x3 of the corresponding eigenvector must obey the equations

-1 0 0«7 [o 0=0
0 0-1 —l|lx|=|0 ——»—,\‘3—/\3:0}_“2_)‘3_0
0 1 0-—-1 X3 0 Xy — X3 =0

Thus any vector of the form
X
x| 0
0

is acceptable, as expected. It is conventional to use the freedom in scale to normalize
the eigenvectors. Thus in this case a choice is

o=1y=|1>=

OO

I say a choice, and not the choice, since the vector may be multiplied by a number
of modulus unity without changing the norm. There is no universally accepted con-
vention for eliminating this freedom, except perhaps to choose the vector with real
components when possible.

Note that of the three simultaneous equations above, the first is not a real
equation. In general, there will be only (r—1) LI equations. This is the reason the
norm of the vector is not fixed and, as shown in Appendix A.l, the reason the
determinant vanishes.

Consider next the equations corresponding to w=i. The components of the
eigenvector obey the equations

(1=i)yx; =0 (i.e., x;=0)
—ixs—x3=0 (i.e., X2 =ix3)
Xy—ix;=0 (i.e., xa=1ix3)
Notice once again that we have only n— 1 useful equations. A properly normalized

solution to the above is

=10 5

o



A similar procedure yields the third eigenvector:

0

Ia)=—i><—>~2-m —i D
1

In the above example we have introduced a popular convention: labeling the
eigenvectors by the eigenvalue. For instance, the ket corresponding to @ =w; is
labeled | = ;) or simply |®;>. This notation presumes that to each w; there is just
one vector labeled by it. Though this is not always the case, only a slight change in
this notation will be needed to cover the general case.

The phenomenon of a single eigenvalue representing more than one eigenvector
is called degeneracy and corresponds to repeated roots for the characteristic poly-
nomial. In the face of degeneracy, we need to modify not just the labeling, but also
the procedure used in the example above for finding the eigenvectors. Imagine that
instead of R(}7i) we were dealing with another operator Q on V3(R) with roots ,
and @,= ;. It appears as if we can get two eigenvectors, by the method described
above, one for each distinct @. How do we get a third? Or is there no third? These
questions will be answered in all generality shortly when we examine the question
of degeneracy in detail. We now turn our attention to two central theorems on
Hermitian operators. These play a vital role in quantum mechanics.

Theorem 9. The eigenvalues of a Hermitian operator are real.
Proof. Let
Qlo)=o|w)
Dot both sides with {w|:
(o|Qo)=wlo|o) (1.8.11)
Take the adjoint to get
(0|Q|l0)=0*(vlo)
Since Q=QT, this becomes
(w|Qe)=0*(v|o)
Subtracting from Eq. (1.8.11)
0=(w— ") wlw)

o=0* QE.D.

35

MATHEMATICAL
INTRODUCTION



36

CHAPTER 1

Theorem 10. To every Hermitian operator Q, there exists (at least) a basis
consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and
has its eigenvalues as its diagonal entries.

Proof. Let us start with the characteristic equation. It must have at least one
root, call it @, . Corresponding to @, there must exist at least one nonzero eigenvector
|w:>. [If not, Theorem (A.1.1) would imply that (Q—®,/) is invertible.] Consider
the subspace V'17' of all vectors orthogonal to |@;>. Let us choose as our basis the
vector |®,) (normalized to wunity) and any n—1 orthonormal vectors
(Vi Vi, ..., V1" in V47" In this basis Q has the following form:

w, 00 00 - 0

Qel 0 (1.8.12)

The first column is just the image of |w,) after Q has acted on it. Given the
first column, the first row follows from the Hermiticity of Q.
The characteristic equation now takes the form

(@~ ) (determinant of boxed submatrix) =0

n—1
(0= 0) Y 6uo"=(w,—0)P" (0)=0
0
Now the polynomial P"~' must also generate one root, @,, and a normalized
eigenvector |@,). Define the subspace V"3 of vectors in V', ' orthogonal to |,
(and automatically to |®,)) and repeat the same procedure as before. Finally, the

matrix ) becomes, in the basis (@), (@2, ..., |®,),
w, 0 0 0
0 w2 O 0
Qa1 0 0 o, 0
0 0 0 ®,

Since every |@,> was chosen from a space that was orthogonal to the previous
ones, |@:>, |@2), ..., |w;—1>; the basis of eigenvectors is orthonormal. (Notice that
nowhere did we have to assume that the eigenvalues were all distinct.) Q.E.D.

[The analogy between real numbers and Hermitian operators is further strength-
ened by the fact that in a certain basis (of eigenvectors) the Hermitian operator can
be represented by a matrix with all real elements.]

In stating Theorem 10, it was indicated that there might exist more than one
basis of eigenvectors that diagonalized Q. This happens if there is any degeneracy.
Suppose @, = w,= . Then we have two orthonormal vectors obeying



Qo) =olw)
Qlwz)=olw,)
It follows that
Qlalw) + Bloy ]=ao|w) + folw:) = ola|w)+ fle)]

for any @ and . Since the vectors |@;) and |®>) are orthogonal (and hence LI),
we find that there is a whole two-dimensional subspace spanned by |®,) and |@»),
the elements of which are eigenvectors of Q with eigenvalue @. One refers to this
space as an eigenspace of Q with eigenvalue @. Besides the vectors |w,) and |w2),
there exists an infinity of orthonormal pairs |@1), |®2), obtained by a rigid rotation
of |@), |@,), from which we may select any pair in forming the eigenbasis of Q.
In general, if an eigenvalue occurs m; times, that is, if the characteristic equation has

m;

m; of its roots equal to some ®;, there will be an eigenspace V! from which we may
choose any m; orthonormal vectors to form the basis referred to in Theorem 10.

In the absence of degeneracy, we can prove Theorem 9 and 10 very easily. Let
us begin with two eigenvectors:

Qlo)=0wl0;) (1.8.13a)
Qo) =o0;|w;) (1.8.13b)
Dotting the first with {w;| and the second with {w;|, we get
(0;|Qlw;)=0olo;|w;) (1.8.14a)
(|Qw;y=0w;{w|o,) (1.8.14b)
Taking the adjoint of the last equation and using the Hermitian nature of Q, we get
(,|Qo)=o/v|o)
Subtracting this equation from Eq. (1.8.14a), we get
O0=(w,— 0} )w;|w;) (1.8.15)
If i=j, we get, since {w;|w,;>#0,

w,=w} (1.8.16)
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If i#j, we get

{wilw;y=0 (1.8.17)
since ®;,—w=w,— w,;#0 by assumption. That the proof of orthogonality breaks
down for w,= w; is not surprising, for two vectors labeled by a degenerated eigenvalue
could be any two members of the degenerate space which need not necessarily be
orthogonal. The modification of this proof in this case of degeneracy calls for argu-
ments that are essentially the ones used in proving Theorem 10. The advantage in

the way Theorem 10 was proved first is that it suffers no modification in the degener-
ate case.

Degeneracy

We now address the question of degeneracy as promised earlier. Now, our
general analysis of Theorem 10 showed us that in the face of degeneracy, we have
not one, but an infinity of orthonormal eigenbases. Let us see through an example
how this variety manifests itself when we look for eigenvectors and how it is to be
handled.

Example 1.8.5. Consider an operator Q with matrix elements
1 01
Q{0 20
1 01

in some basis. The characteristic equation is

(=2 0=0
1.e.,

©0=0,2,2

The vector corresponding to @ =0 is found by the usual means to be

The case w=2 leads to the following equations for the components of the
eigenvector:

_X|+X3=O
0=0

x;—x3=0



Now we have just one equation, instead of the two (n— 1) we have grown accustomed
to! This is a reflection of the degeneracy. For every extra appearance (besides the
first) a root makes, it takes away one equation. Thus degeneracy permits us extra
degrees of freedom besides the usual one (of normalization). The conditions

X1 = X3
X, arbitrary

define an ensemble of vectors that are perpendicular to the first, |[@ =0}, i.e., lie in
a plane perpendicular to |@ =0). This is in agreement with our expectation that a
twofold degeneracy should lead to a two-dimensional eigenspace. The freedom in x;
(or more precisely, the ratio x,/x3) corresponds to the freedom of orientation in this
plane. Let us arbitrarily choose x, =1, to get a normalized eigenvector corresponding
to w=2:

The third vector is now chosen to lie in this plane and to be orthogonal to the second
(being in this plane automatically makes it perpendicular to the first | =05 ):

1

1
| =2, second one) < P -2
1

Clearly each distinct choice of the ratio, x»/x3, gives us a distinct doublet of orthonor-
mal eigenvectors with eigenvalue 2. O

Notice that in the face of degeneracy, |®;) no longer refers to a single ket but
to a generic element of the eigenspace V7. To refer to a particular element, we must
use the symbol |®@;, a), where a labels the ket within the eigenspace. A natural
choice of the label a will be discussed shortly.

We now consider the analogs of Theorems 9 and 10 for unitary operators.

Theorem 11. The eigenvalues of a unitary operator are complex numbers of
unit modulus.

Theorem 12. The eigenvectors of a unitary operator are mutually orthogonal.
(We assume there is no degeneracy.)
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Proof of Both Theorems (assuming no degeneracy). Let
Ulup = uilu;p (1.8.18a)
and
Ulu = u|u) (1.8.18b)

If we take the adjoint of the second equation and dot each side with the corresponding
side of the first equation, we get

| U"Ulusy = gt oy |y
so that
(I =wuf ) luy =0 (1.8.19)
If i=), we get, since {u;|u;»#0,
wut = (1.8.20a)
while if i #/,
uplupy =0 (1.8.20b)

since |u;) #|u; d=>w; #w=wuf #uuf=uu*#1. (Q.E.D.)

If Uis degenerate, we can carry out an analysis parallel to that for the Hermitian
operator Q, with just one difference. Whereas in Eq. (1.8.12), the zeros of the first
row followed from the zeros of the first column and Q' =Q, here they follow from
the requirement that the sum of the modulus squared of the elements in each row
adds up to 1. Since |u,| =1, all the other elements in the first row must vanish.

Diagonalization of Hermitian Matrices

Consider a Hermitian operator Q on V"(C) represented as a matrix in some
orthonormal basis [1),...,]i>,...,|n). If we trade this basis for the eigenbasis
lo >, ..., lo), ..., |w,, the matrix representing © will become diagonal. Now the
operator U inducing the change of basis

fw:>=Ul|i) (1.8.21)

is clearly unitary, for it “‘rotates” one orthonormal basis into another. (If you wish
you may apply our mnemonic to U and verify its unitary nature: its columns contain
the components of the eigenvectors |@,) that are orthonormal.) This result is often
summarized by the statement:

Every Hermitian matrix on V”(C) may be diagonalized by a unitary change of
basis.



We may restate this result in terms of passive transformations as follows:

If Q is a Hermitian matrix, there exists a unitary matrix U (built out of the
eigenvectors of Q) such that U'QU is diagonal.

Thus the problem of finding a basis that diagonalizes Q is equivalent to solving
its eigenvalue problem.

Exercise 1.8.1. (1) Find the eigenvalues and normalized eigenvectors of the matrix
1 3 1
Q={0 2 0
01 4
(2) Is the matrix Hermitian? Are the eigenvectors orthogonal?

Exercise 1.8.2.* Consider the matrix

<o o ©
[

(1) Is it Hermitian?
(2) Find its eigenvalues and eigenvectors.
(3) Verify that U'QU is diagonal, U being the matrix of eigenvectors of Q.

Exercise 1.8.3.* Consider the Hermitian matrix

| 2 0 0

Q=-10 3 -1
2

0 -1 3

(1) Show that w,=@,=1; ©®;=2.
(2) Show that |w=2) is any vector of the form

0
1

(3) Show that the w =1 eigenspace contains all vectors of the form

b
1

(B +26%)2

either by feeding o =1 into the equations or by requiring that the @ =1 eigenspace be ortho-
gonal to @ =2).
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Exercise 1.8.4. An arbitrary n x n matrix need not have »n eigenvectors. Consider as an

example
i
o} )]
-1 2
(1) Show that o, =w-,=3.

(2) By feeding in this value show we get only one eigenvector of the form

We cannot find another one that is LI.

Exercise 1.8.5.* Consider the matrix
0 __[ C(.)S 6 sin Q:I
—sin € cos 6

(1) Show that it is unitary.

(2) Show that its eigenvalues are ¢ and e™".
(3) Find the corresponding eigenvectors; show that they are orthogonal.

(4) Verify that U'QU = (diagonal matrix), where U is the matrix of cigenvectors of Q.

Exercise 1.8.6.™ (1) We have seen that the determinant of a matrix is unchanged under
a unitary change of basis. Argue now that

det Q= product of eigenvalues of Q=[] ;

i=1

for a Hermitian or unitary .
(2) Using the invariance of the trace under the same transformation, show that

TrQ=3 o,

i=

Exercise 1.8.7. By using the results on the trace and determinant from the last problem,
show that the eigenvalues of the matrix

o], ]

are 3 and —1. Verify this by explicit computation. Note that the Hermitian nature of the
matrix is an essential ingredient.



Exercise 1.8.8.* Consider Hermitian matrices M', M>, M> M* that obey
M M/ +MM'=28, ij=1,...,4
(1) Show that the eigenvalues of M* are + 1. (Hint: go to the eigenbasis of M, and use
the equation for i=j.)
(2) By considering the relation

MM'=—M/M' fori#j

show that M’ are traceless. [Hint: Tr(4CB) =Tr(CBA).]
(3) Show that they cannot be odd-dimensional matrices.

Exercise 1.8.9. A collection of masses m, , located at r, and rotating with angular velocity
o around a common axis has an angular momentum

1=% ma(rs X ve)

where v, = Xr, is the velocity of m, . By using the identity
Ax(BxC)=B(A-C)-C(A-B)
show that each Cartesian component /; of 1 is given by

=Y M0,
j

where

M,-j= Z ma[?iég_ (ra)i(rﬂ))']

or in Dirac notation
[>=Mlw)

(1) Will the angular momentum and angular velocity always be parallel?

(2) Show that the moment of inertia matrix M is Hermitian.

(3) Argue now that there exist three directions for @ such that 1 and @ will be parallel.
How are these directions to be found?

(4) Consider the moment of inertia matrix of a sphere. Due to the complete symmetry
of the sphere, it is clear that every direction is its eigendirection for rotation. What does this
say about the three eigenvalues of the matrix M?

Simultaneous Diagonalization of Two Hermitian Operators
Let us consider next the question of simultaneously diagonalizing two Hermitian
operators.

Theorem 13. If Q and A are two commuting Hermitian operators, there exists
(at least) a basis of common eigenvectors that diagonalizes them both.
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Proof. Consider first the case where at least one of the operators is nondegener-
ate, i.e., to a given eigenvalue, there is just one eigenvector, up to a scale. Let us
assume £ is nondegenerate. Consider any one of its eigenvectors:

Q)=o)

AQ o) =w:Alw;)

Since [A, Q] =0,

QAlo>=w,Ao) (1.8.22)

i.e., Alw;) is an eigenvector of Q with eigenvalue ®;. Since this vector is unique up
to a scale,

Awy=A|o) (1.8.23)

Thus |w;) is also an eigenvector of A with eigenvalue A;. Since every eigenvector of
Q is an eigenvector of A, it is evident that the basis |@;> will diagonalize both
operators. Since 2 is nondegenerate, there is only one basis with this property.

What if both operators are degenerate? By ordering the basis vectors such that
the elements of each eigenspace are adjacent, we can get one of them, say €, into
the form (Theorem 10)

[ON

(04}

@

(0] ]

Now this basis is not unique: in every eigenspace Vi, '=V/" corresponding to the
eigenvalue w,, there exists an infinity of bases. Let us arbitrarily pick in V) a set
|w;, a) where the additional label a runs from 1 to m;.

How does A appear in the basis? Although we made no special efforts to get A
into a simple form, it already has a simple form by virtue of the fact that it commutes
with Q. Let us start by mimicking the proof in the nondegenerate case:

QAlw;, a>=AQ|w;, a)=w;Alw;, a>
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Now, since vectors from different eigenspaces are orthogonal [Eq. (1.8.15)],
{w;, BiAlw:, > =0

if |w;, @) and |w,, B) are basis vectors such that @;# ;. Consequently, in this basis,

0
Ao

0

which is called a block diagonal matrix for obvious reasons. The block diagonal form
of A reflects the fact that when A acts on some element |w;, a) of the eigenspace
V7%, it turns it into another element of Vi, Within each subspace i, A is given by
a matrix A;, which appears as a block in the equation above. Consider a matrix A;
in V7", It is Hermitian since A is. It can obviously be diagonalized by trading the
basis |w;, 1D, |0, 2D, ..., |®,;, m) in V7" that we started with, for the eigenbasis of
A;. Let us make such a change of bhasis in each eigenspace, thereby rendering A
diagonal. Meanwhile what of Q? It remains diagonal of course, since it is indifferent
to the choice of orthonormal basis in each degenerate eigenspace. If the eigenvalues

of A;are ALV A, ..., A" then we end up with
_ o :
AP
A — AL
A5
l](cmk)
o) .
@
Qe [0
(04
@ |

Q.ED.
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If A is not degenerate within any given subspace, A*) # 1", for any k, I, and i, the
basis we end up with is unique: the freedom  gave us in each eigenspace is fully
eliminated by A. The elements of this basis may be named uniquely by the pair of
indices @ and A as |w, A), with A playing the role of the extra label a. If A is
degenerate within an eigenspace of Q, if say A{"”=A{", there is a two-dimensional
eigenspace from which we can choose any two orthonormal vectors for the common
basis. It is then necessary to bring in a third operator I', that commutes with both
Q and A, and which will be nondegenerate in this subspace. In general, one can
always find, for finite n, a set of operators {Q, A, I', ...} that commute with each
other and that nail down a unique, common, eigenbasis, the elements of which may
be labeled unambiguously as |@, 4, 7, ... >. In our study of quantum mechanics it
will be assumed that such a complete set of commuting operators exists if n is infinite.

Exercise 1.8.10.* By considering the commutator, show that the following Hermitian
matrices may be simultaneously diagonalized. Find the eigenvectors common to both and
verify that under a unitary transformation to this basis, both matrices are diagonalized.

1 0 1 2 1 1
Q=10 0 0] . A=l 0 -1
I 0 1 [ 2

Since Q is degenerate and A is not, you must be prudent in deciding which matrix dictates
the choice of basis.

Example 1.8.6. We will now discuss, in some detail, the complete solution to a
problem in mechanics. It ic important that you understand this example thoroughly,
for it not only illustrates the use of the mathematical techniques developed in this
chapter but also contains the main features of the central problem in quantum
mechanics.

The mechanical system in question is depicted in Fig. 1.5. The two masses m
are coupled to each other and the walls by springs of force constant k. If x, and x;
measure the displacements of the masses from their equilibrium points, these coordi-
nates obey the following equations, derived through an elementary application of
Newton’s laws:

=Kk (1.8.24a)

H= -y, (1.8.24b)

"~ m Y m s Figure 1.5. The coupled mass problem. All masses are
m, all spring constants are &, and the displacements of
L—-x Lexp the masses from equilibrium are x; and x,.




The problem is to find x,(¢) and x,(¢) given the initial-value data, which in this
case consist of the initial positions and velocities. If we restrict ourselves to the case
of zero initial velocities, our problem is to find x,(¢) and x(¢), given x;(0) and x,(0).

In what follows, we will formulate the problem in the language of linear vector
spaces and solve it using the machinery developed in this chapter. As a first step, we
rewrite Eq. (1.8.24) in matrix form:

[’f]}[g” Q”}[’“} (1.8.25a)
Xl [ Qpnllx
where the elements of the Hermitian matrix Q; are
Q) =Qy=-2k/m, QuL=Q=k/m (1.8.25b)
We now view x; and x, as components of an abstract vector |x), and Q; as the matrix
elements of a Hermitian operator Q. Since the vector |x) has two real components, it
is an element of V*(R), and Q is a Hermitian operator on V*(R). The abstract form
of Eq. (1.8.25a) is
1X(6)>=Q)x(1)> (1.8.26)

Equation (1.8.25a) is obtained by projecting Eq. (1.8.26) on the basis vectors |1),
|2>, which have the following physical significance:

| & . .
> o [ } o [ rst mass dlsplaceq by umty] (1.8.27a)
0 second mass undisplaced
2y [0} [ first mass undisplaced ] (1.8.27b)
L) > «> 0.
1 second mass displaced by unity

An arbitrary state, in which the masses are displaced by x, and x,, is given in this

basis by
X1 1 0
[ i|=[ }xﬁ-[ }xz (1.8.28)
X2 0 1

The abstract counterpart of the above equation is
x> =11>x1+[2)x, (1.8.29)

It is in this [1), |{2) basis that Q is represented by the matrix appearing in Eq.
(1.8.25), with elements —2k/m, k/m, etc.

The basis |1), |2) is very desirable physically, for the components of | x) in this
basis (x; and x,) have the simple interpretation as displacements of the masses.
However, from the standpoint of finding a mathematical solution to the initial-value
problem, it is not so desirable, for the components x, and x, obey the coupled
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differential equations (1.8.24a) and (1.8.24b). The coupling is mediated by the off-
diagonal matrix elements Q,,=Q,, =k/m.

Having identified the problem with the |1), |2) basis, we can now see how to
get around it: we must switch to a basis in which Q is diagonal. The components of
|x> in this basis will then obey another uncoupled differential equations which may
be readily solved. Having found the solution, we can return to the physically prefer-
able |1}, |2) basis. This, then, is our broad strategy and we now turn to the details.

From our study of Hermitian operators we know that the basis that diagonalizes
Q is the basis of its normalized eigenvectors. Let |I) and |II) be its eigenvectors
defined by

Q> =—o}I) (1.8.30a)
QI = -1 (1.8.30b)

We are departing here from our usual notation: the eigenvalue of € is written as
— @” rather than as o in anticipation of the fact that Q has eigenvalues of the form
— »?, with o real. We are also using the symbols |I) and |II) to denote what should
be called | — w?) and | — @) in our convention.

It is a simple exercise (which you should perform) to solve the eigenvalue prob-
lem of Q in the |1), |2) basis (in which the matrix elements of {2 are known) and

to obtain
1/2
k 1|1
GJI=(;) , 'I>H'2‘]ﬁ|:1:l (183]&)

1/2
3k 1 1

If we now expand the vector |x(¢)) in this new basis as
[x(2)> = Dxi(2) + [ xu(r) (1.8.32)

[in analogy with Eq. (1.8.29)], the components x; and x;; will evolve as follows:

s ]
X 0 —ohllxu

=[ ““’f"l] (1.8.33)

2
— @y X

We obtain this equation by rewriting Eq. (1.8.26) in the |ID, |II> basis in which Q
has its eigenvalues as the diagonal entries, and in which |x) has components x; and



xp. Alternately we can apply the operator

d2
P_

to both sides of the expansion of Eq. (1.8.32), and get
10> ={T) (%1 + @ix() + |11 (G + oh xn) (1.8.34)

Since {I> and |II) are orthogonal, each coefficient is zero.
The solution to the decoupled equations

%+ oix=0, =L 10 (1.8.35)
subject to the condition of vanishing initial velocities, is
x(2)=x(0) cos wit, i=L1I (1.8.36)

As anticipated, the components of |x) in the |I), |II) basis obey decoupled equations
that can be readily solved. Feeding Eq. (1.8.36) into Eq. (1.8.32) we get

[x(2)> =|1>x1(0) cos wit + |I>x;(0) cos wy ¢ (1.8.37a)
=|I>{A|x(0)) cos ¢+ || x(0)) cos @t (1.8.37b)

Equation (1.8.37) provides the explicit solution to the initial-value problem. It corre-
sponds to the following algorithm for finding |x(z)) given |x(0)).

Step (1). Solve the eigenvalue problem of Q.

Step (2). Find the coefficients x;(0) = (I|x(0)> and xy(0)= (I[|x(0)) in the
expansion

126(0) > = [1>x1(0) + I x1i(0)

Step (3). Append to each coefficient x,(0) (i=1, II) a time dependence cos w;¢
to get the coefficients in the expansion of |x(¢)).

Let me now illustrate this algorithm by solving the following (general) initial-
value problem: Find the future state of the system given that at =0 the masses are
displaced by x;(0) and x,(0).

Step (1). We can ignore this step since the eigenvalue problem has been solved
[Eq. (1.8.31)].
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x(0) = 1jx(0)) -

) [xl(O)}le(O) +x,(0)
21 /2

(0] 27

xl(O)} _x1(0)~ x,(0)

1
xu(0) = () =5 (1, —1>L2(0) S

Step (3).

x1(0) + x»(0 ) xi1(0) — ’Cz( )

[x(6)>=|I> 572 wrt+ |11 i cos wyy ¢

The explicit solution above can be made even more explicit by projecting |x(¢)) onto
the |1), |2) basis to find x,(¢) and x,(¢), the displacements of the masses. We get
(feeding in the explicit formulas for w; and wn)

x(0)=C11x(0)
1/2
_ O+ x:(0) xl(O) x0) [() }r <1|H>x1<0)];cz(0)cos[<_> t}
m 2 m
2

1 2 3K\
=§[x1(0)+az(0)]cos m t [r](O) x,(0)] cos t (1.8.38a)

using the fact that
ADy=QIIy=1/2"?

It can likewise be shown that

X)) == [x1(0) + x2(0)] cos| | — ] t|—=[x1(0)—x2(0)] cos||—] ¢ (1.8.38b)
2 m 2 m

We can rewrite Eq. (1.8.38) in matrix form as

cos[(k/m)"*t]+cos[(3k/m)' *t] cos[(k/m)'*1]—cos[(3k/m)' *(]

iih(ﬂ}, 2 2
xo(1)] | cos[(k/m)' 1) = cos[(3k/m)" %] cos[(k/m)" 1]+ cos[(3k/m)"*1]
2 2

x [x‘(o)} (1.8.39)
x2(0)




This completes our determination of the future state of the system given the initial
state.

The Propagator

There are two remarkable features in Eq. (1.8.39):

(1) The final-state vector is obtained from the initial-state vector upon multiplication
by a matrix.

(2) This matrix is independent of the initial state. We call this matrix the propagator.
Finding the propagator is tantamount to finding the complete solution to the
problem, for given any other initial state with displacements %,(0) and %,(0), we
get %,(¢) and %,(¢) by applying the same matrix to the initial-state vector.

We may view Eq. (1.8.39) as the image in the |1), |2) basis of the abstract
relation

|x()> = U(2)|x(0)) (1.8.40)

By comparing this equation with Eq. (1.8.37b), we find the abstract representation
of U:

U(t)={I>] cos wyt+ |II<II| cos o ¢t (1.8.41a)
I

=3 |i)<i] cos w;t (1.8.41b)
i=1

You may easily convince yourself that if we take the matrix elements of this operator
in the |1), |2) basis, we regain the matrix appearing in Eq. (1.8.39). For example

Un=U1»

1/2 172

= (1| {IIXII cos[(ﬁ) t]-}-lII)(IIi cos[(%) t}}ll)
m \m

=D A|1) cos [(E> | t}— UIDAIT cos[(glf) t}
m m

ol el

Notice that U(z) [Eq. (1.8.41)] is determined completely by the eigenvectors
and eigenvalues of Q. We may then restate our earlier algorithm as follows. To solve
the equation

1% =Q|x>
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(1) Solve the eigenvalue problem of .
(2) Construct the propagator U in terms of the eigenvalues and eigenvectors.

(3) [x()>= U(1)|x(0)).

The Normal Modes

There are two initial states |x(0)) for which the time evolution is particularly
simple. Not surprisingly, these are the eigenkets |I> and |II>. Suppose we have
[x(0)>=|I). Then the state at time ¢ is

(1)) =UM0)|D
= (|ID<| cos wr ¢+ [II)II] cos @ 2)|I)
={I) cos w;¢ (1.8.42)

Thus the system starting off in {I) is only modified by an overall factor cos w;z. A
similar remark holds with I—II. These two modes of vibration, in which all (two)
components of a vector oscillate in step are called normal modes.

The physics of the normal modes is clear in the |1), |2) basis. In this basis

11

and corresponds to a state in which both masses are displaced by equal amounts.
The middle spring is then a mere spectator and each mass oscillates with a frequency
1= (k/m)""* in response to the end spring nearest to it. Consequently

1 Jcos[(k/m)'"*]
0 <57 [cos[(k/m)l’/zt]}

On the other hand, if we start with

1 1
-

the masses are displaced by equal and opposite amounts. In this case the middle
spring is distorted by twice the displacement of each mass. If the masses are adjusted
by A and —A, respectively, each mass feels a restoring force of 3kA (2kA from the
middle spring and kA from the end spring nearest to it). Since the effective force
constant is k.g=3kA/A =3k, the vibrational frequency is (3k/m)'/? and

(1)) 1 [ cos [(3k/m)" z]}

2172 —cos [(3k/m)'?1]

If the system starts off in a linear combination of |I) and |II) it evolves into
the corresponding linear combination of the normal modes |I(#)> and |II(7))>. This



is the content of the propagator equation

[x(0)>=U(0)|x(0)>
=|I>{|x(0)) cos w; ¢+ |II){T| x(0)) cos wnt
=[1(6) )<I|x(0) + [11(r) ><H| x(0) >

Another way to see the simple evolution of the initial states |I> and |II) is to
determine the matrix representing U in the |I), |II) basis:

cos Wyt 0 }
U 1.8.43
LIT [ 0 cos wrt ( )

basis

You should verify this result by taking the appropriate matrix elements of U(z) in
Eq. (1.8.41b). Since each column above is the image of the corresponding basis
vectors (|I) or |II)) after the action of U(#), (which is to say, after time evolution),
we see that the initial states |I) and |II) evolve simply in time.

The central problem in quantum mechanics is very similar to the simple example
that we have just discussed. The state of the system is described in quantum theory
by a ket |y which obeys the Schrodinger equation

iy )>=Hy>

where 7i is a constant related to Planck’s constant A by #i=h/2r, and H is a Hermitian
operator called the Hamiltonian. The problem is to find | y(¢)) given |w(0)). [Since
the equation is first order in ¢, no assumptions need be made about |y(0)), which
is determined by the Schrédinger equation to be (—i/A)H|w(0)).]

In most cases, H is a time-independent operator and the algorithm one follows
in solving this initial-value problem is completely analogous to the one we have just
seen:

Step (1). Solve the eigenvalue problem of H.

Step (2). Find the propagator U(¢) in terms of the eigenvectors and eigenvalues
of H.

Step (3). [y (1)>=U(1)|y(0)).

You must of course wait till Chapter 4 to find out the physical interpretation
of |y, the actual form of the operator H, and the precise relation between U(?)
and the eigenvalues and eigenvectors of H. ]

Exercise 1.8.11. Consider the coupled mass problem discussed above.

(1) Given that the initial state is |1), in which the first mass is displaced by unity and
the second is left alone, calculate |1(#)) by following the algorithm.

(2) Compare your result with that following from Eq. (1.8.39).
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Exercise 1.8.12. Consider once again the problem discussed in the previous example.
(1) Assuming that

[%)=Qlx)
has a solution
|x(2)> = U(2)|x(0))

find the differential equation satisfied by U(r). Use the fact that |x(0)) is arbitrary.

(2) Assuming (as is the case) that Q and U can be simultaneously diagonalized, solve
for the elements of the matrix U in this common basis and regain Eq. (1.8.43). Assume
|%(0)>=0.

1.9. Functions of Operators and Related Concepts

We have encountered two types of objects that act on vectors: scalars, which
commute with each other and with all operators; and operators, which do not
generally commute with each other. It is customary to refer to the former as ¢
numbers and the latter as ¢ numbers. Now, we are accustomed to functions of ¢
numbers such as sin(x), log(x), etc. We wish to examine the question whether
functions of ¢ numbers can be given a sensible meaning. We will restrict ourselves
to those functions that can be written as a power series. Consider a series

S(x)= }JE a, X" (1.9.1)
=0

n

where x is a ¢ number. We define the same function of an operator or g number to
be

o

fQ)=3 a0 (1.9.2)

n=0

This definition makes sense only if the sum converges to a definite limit. To see what
this means, consider a common example:

=y = (1.9.3)
n=1M1:

Let us restrict ourselves to Hermitian Q. By going to the eigenbasis of €2 we can
readily perform the sum of Eq. (1.9.3). Since

@,

Q= @2 (1.9.4)



and
@y
Q= @2 (1.9.5)
@y
o w’]"
Lo
m=0 M
&= (1.9.6)
- O
m=0m!

Since each sum converges to the familiar limit ¢, the operator ¢ is indeed well
defined by the power series in this basis (and therefore in any other).

Exercise 1.9.1.* We know that the series

f= 73 »
n=0

may be equated to the function f(x)=(1—x) "' if |x| <1. By going to the eigenbasis, examine
when the ¢ number power series

f)= i 24

n=0
of a Hermitian operator 2 may be identified with (1 —Q)™".

Exercise 1.9.2.* If H is a Hermitian operator, show that U=¢" is unitary. (Notice the
analogy with ¢ numbers: if 8 is real, =" is a number of unit modulus.)

Exercise 1.9.3. For the case above, show that det U=¢"""",
Derivatives of Operators with Respect to Parameters

Consider next an operator 8(1) that depends on a parameter 4. Its derivative
with respect to A is defined to be

oy . [0(A+ AL)— e(x)}
—_— = hm —_—
dir AA—D AL

If 6(A) is written as a matrix in some basis, then the matrix representing df(A)/dA
is obtained by differentiating the matrix elements of 0(1). A special case of (1) we

55

MATHEMATICAL
INTRODUCTION



56
CHAPTER 1

are interested in is
O(A) =™
where Q is Hermitian. We can show, by going to the eigenbasis of €, that

ag(1)
di

The same result may be obtained, even if Q is not Hermitian, by working with the
power series, provided it exists:

=Qe’ =0 =9(1)Q (1.9.7)

w0 neyn © ln IQn o n—leyn—1 e mgym
d 2 X Zn PN LN
dln=0 n! n=1 ! n=1 (n_l)' m=0 m!

Conversely, we can say that if we are confronted with the differential Eq. (1.9.7),
its solution is given by

A
8(A)=cexp (J Q d/l’) =cexp(Q1)
0

(It is assumed here that the exponential exists.) In the above, c is a constant (opera-
tor) of integration. The solution 8 =¢™* corresponds to the choice ¢=1.

In all the above operations, we see that Q behaves as if it were just a ¢ number.
Now, the real difference between ¢ numbers and ¢ numbers is that the latter do not
generally commute. However, if only one ¢ number (or powers of it) enter the
picture, everything commutes and we can treat them as ¢ numbers. If one remembers
this mnemonic, one can save a lot of time.

If, on the other hand, more than one g number is involved, the order of the
factors is all important. For example, it is true that

9P = flatpa

as may be verified by a power-series expansion, while it is not true that
£®RB0 — a0 + 50

or that
eaﬂeﬁee—aﬂ = eﬂe

unless [Q, 8]1=0. Likewise, in differentiating a product, the chain rule is

dileme“’ =™t + %9 (1.9.8)
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but not as
Pt 9)

unless [, 8]1=0.

1.10. Generalization to Infinite Dimensions

In all of the preceding discussions, the dimensionality (n) of the space was
unspecified but assumed to be some finite number. We now consider the generaliza-
tion of the preceding concepts to infinite dimensions.

Let us begin by getting acquainted with an infinite-dimensional vector. Consider
a function defined in some interval, say, a<x<b. A concrete example is provided
by the displacement f(x, t) of a string clamped at x=0 and x= L (Fig. 1.6).

Suppose we want to communicate to a person on the moon the string’s displace-
ment f(x), at some time ¢. One simple way is to divide the interval 0— L into 20 equal
parts, measure the displacement f(x;) at the 19 points x=L/20, 2L/20, ..., 19L/20,
and transmit the 19 values on the wireless. Given these f(x;), our friend on the moon
will be able to reconstruct the approximate picture of the string shown in Fig. 1.7.

If we wish to be more accurate, we can specify the values of f(x) at a larger
number of points. Let us denote by f,(x) the discrete approximation to f(x) that
coincides with it at # points and vanishes in between. Let us now interpret the ordered

n-tuple {/.(x1), fu(x2), ..., fu(x,)} as components of a ket | £, in a vector space
V(R):
Julx1)
| fu) f”(:xz) (1.10.1)
Ja(xn)

Figure 1.6. The string is clamped at x=0 f(x)
and x= L. It is free to oscillate in the plane
of the paper. 09 x

Figure 1.7. The string as reconstructed by the x=0 e | , ’
person on the moon. X X2 X9
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The basis vectors in this space are

|x;) & | 1 |« ith place (1.10.2)

corresponding to the discrete function which is unity at x=ux; and zero elsewhere.
The basis vectors satisfy

{xi|x;» =6, (orthogonality) (1.10.3)

i [x;>{x;| =1 (completeness) (1.10.4)

i=1

Try to imagine a space containing » mutually perpendicular axes, one for each
point x;. Along each axis is a unit vector |x,>. The function f,(x) is represented by
a vector whose projection along the 7th direction is f,(x;):

| fo>= Z FECHIEH (1.10.5)

i

To every possible discrete approximation g,(x), h.(x), etc., there is a corresponding
ket |g,>, Ay, etc., and vice versa. You should convince yourself that if we define
vector addition as the addition of the components, and scalar multiplication as the
multiplication of each component by the scalar, then the set of all kets representing
discrete functions that vanish at x=0, L and that are specified at » points in between,
forms a vector space.

We next define the inner product in this space:

Two functions f,(x) and g,(x) will be said to be orthogonal if { f,|g.>=0.

Let us now forget the man on the moon and consider the maximal specification
of the string’s displacement, by giving its value at every point in the interval 0— L.
In this case f..(x)=f(x) is specified by an ordered infinity of numbers: an f(x) for
each point x. Each function is now represented by a ket | /.. in an infinite-dimen-
sional vector space and vice versa. Vector addition and scalar multiplication are
defined just as before. Consider, however, the inner product. For finite n it was
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in particular

i =3 UwP

i

If we now let n go to infinity, so does the sum, for practically any function. What
we need is the redefinition of the inner product for finite # in such a way that as »
tends to infinity, a smooth limit obtains. The natural choice is of course

Chlgnw =3 flxdgdx)A,  A=L/(n+1) (1.10.6")
i=1
If we now let » go to infinity, we get, by the usual definition of the integral,

<f|g>=f S(x)g(x) dx (1.10.7)

L
<flf>=f SAx) dx (1.10.8)
0

If we wish to go beyond the instance of the string and consider complex functions
of x as well, in some interval a <x<b, the only modification we need is in the inner
product:

b
{Sfle= j fH(0)g(x) dx (1.10.9)

What are the basis vectors in this space and how are they normalized? We know
that each point x gets a basis vector |x). The orthogonality of two different axes
requires that

{x|x">=0, x#x' (1.10.10)
What if x=x"? Should we require, as in the finite-dimensional case, (x|x>=1? The
answer is no, and the best way to see it is to deduce the correct normalization. We

start with the natural generalization of the completeness relation Eq. (1.10.4) to the
case where the kets are labeled by a continuous index x’:

b
J‘ |x'><{x| dx'=1 (1.10.11)
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where, as always, the identity is required to leave each ket unchanged. Dotting both
sides of Eq. (1.10.11) with some arbitrary ket | /> from the right and the basis bra
{x| from the left,

b
j XXX f) dx' = x| 5 = <x1 (1.10.12)

a

Now, (x| f>, the projection of |f) along the basis ket |x), is just f(x). Likewise
(X| f>=f(x'). Let the inner product {x|x’) be some unknown function &(x, x').
Since §(x, x') vanishes if x5 x’ we can restrict the integral to an infinitesimal region
near x'=x in Eq. (1.10.12):

J 8(x, x) f(x") dx'=f(x) (1.10.13)

xX— €

In this infinitesimal region, f (x") (for any reasonably smooth /) can be approximated
by its value at x’=x, and pulled out of the integral:

f(x)J‘ 8(x, x') dx'=f(x) (1.10.14)
so that
J 6(x,x)dx' =1 (1.10.15)

Clearly &(x, x') cannot be finite at x'=x, for then its integral over an infinitesimal
region would also be infinitesimal. In fact §(x, x’) should be infinite in such a way
that its integral is unity. Since &(x, x") depends only on the difference x—x’, let us
write it as 6(x— x’). The “function,” §(x — x'), with the properties

S(x—x")=0, x#x
(1.10.16)

b
f S(x—x")dx' =1, a<x<b

is called the Dirac delta function and fixes the normalization of the basis vectors:
x| x> =68(x—x") (1.10.17)

It will be needed any time the basis kets are labeled by a continuous index such as
x. Note that it is defined only in the context of an integration: the integral of the
delta function §(x —x’) with any smooth function f(x') is f(x). One sometimes calls



{a) "A"I (b)

' dgalx-x")
OA(x-x } -—Ld—x— %€ .
) xte

Figure 1.8. (a) The Gaussian g, approaches the delta function as A—0. (b) Its derivative (dg/dx)(x—x’)
approaches &'(x—x’) as A—0.

the delta function the sampling function, since it samples the value of the function
f(x') at one point]

j&(x—-x’) F(x) dx' =f(x) (1.10.18)

The delta function does not look like any function we have seen before, its
values being either infinite or zero. It is therefore useful to view it as the limit of a
more conventional function. Consider a Gaussian

G- x’)’]

x (1.10.19)

a1
gA(x—x)—Wexp

as shown in Fig. 1.8a. The Gaussian is centered at x’=x, has width A, maximum
height (xA%) '/, and unit area, independent of A. As A approaches zero, g, becomes
a better and better approximation to the delta function.§

It is obvious from the Gaussian model that the delta function is even. This may
be verified as follows:

Sx—x)={x|x>=(XxD*=86(x"~x)*=86(x'—x)

since the delta function is real.
Consider next an object that is even more peculiar than the delta function: its
derivative with respect to the first argument x:

6’(x—x’)=£6(x-—x’)=—j:z—’&(x-—x’) (1.10.20)

What is the action of this function under the integral? The clue comes from the
Gaussian model. Consider dga(x — x")/dx = —dga(x—x")/dx’' as a function of x'. As
ga shrinks, each bump at =+ £ will become, up to a scale factor, the § function. The

} We will often omit the limits of integration if they are unimportant.

§ A fine point that will not concern you till Chapter 8: This formula for the delta function is valid even
if A? is pure imaginary, say, equal to i8> First we see from Eq. (A.2.5) that g has unit area. Consider
next the integral of g times f(x’) over a region in x’ that includes x. For the most part, we get zero
because f is smooth and g is wildly oscillating as f—+0. However, at x=x’, the derivative of the phase
of g vanishes and the oscillations are suspended. Pulling f(x’ = x) out of the integral, we get the desired
result.
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first one will sample —f(x— ¢€) and the second one +f(x+ ¢), again up to a scale,
so that

JE’(x—x’)f(x’) dx' ocf(x+ &) —f(x— 8)=2£dﬁjj
X x=x
The constant of proportionality happens to be 1/2¢ so that
, ) df df (o
f5’(x—x’)f(x’) =2 -4 (1.10.21)
dx' |v—x dx
This result may be verified as follows:
dé(x—x'
JB’(x—x’)f(x’) dx' = JM f(x" dx=i J O(x—x") f(x) dx’
dx dx
_df()
dx

Note that §'(x—x’) is an odd function. This should be clear from Fig. 1.8b or Eq.
(1.10.20). An equivalent way to describe the action of the ¢’ function is by the
equation

d
dx’'

O'(x—xN=686(x—x") (1.10.22)

where it is understood that both sides appear in an integral over x' and that the
differential operator acts on any function that accompanies the 8' function in the
integrand. In this notation we can describe the action of higher derivatives of the
delta function:

TECX)
dxﬂ dxln

(1.10.23)

We will now develop an alternate representation of the delta function. We know
from basic Fourier analysis that, given a function f(x), we may define its transform

f(k)mﬁﬁf e " f(x) dx (1.10.24)



and its inverse

1
(27‘[)1/2

f(x)= r e™ f(k) dk (1.10.25)

Feeding Eq. (1.10.24) into Eq. (1.10.25), we get

f(x)= jx <L ch dk e"k(x'_"))f(x) dx
o N2m )

/

Comparing this result with Eq. (1.10.18), we see that

RS J dk e* " =8§(x'—x) (1.10.26)
2

-

Exercise 1.10.1.* Show that §(ax)=8(x)/|a|. [Consider jS(ax) d(ax). Remember that
8(x)=6(—x).]

Exercise 1.10.2.* Show that

. S(x;—
sr=x

where x; are the zeros of f(x). Hint: Where does 8( f{x)) blow up? Expand f(x) near such
points in a Taylor series, keeping the first nonzero term.

Exercise 1.10.3. Consider the theta function 6(x — x') which vanishes if x—x’ is negative
and equals 1 if x—Xx’ is positive. Show that §(x—x")=d/dx 8(x—Xx").

Operators in Infinite Dimensions

Having acquainted ourselves with the elements of this function space, namely,
the kets | /> and the basis vectors |x), let us turn to the (linear) operators that act
on them. Consider the equation

Qf>=11>

Since the kets are in correspondence with the functions, Q takes the function f(x)
into another, f(x). Now, one operator that does such a thing is the familiar differen-
tial operator, which, acting on f(x), gives f(x)=df(x)/dx. In the function space we
can describe the action of this operator as

D\ f)=|df/dx)

where |df/dx) is the ket corresponding to the function df/dx. What are the matrix
elements of D in the |x) basis? To find out, we dot both sides of the above equation
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with {x],

(A DNI)
<x|D|f>~<xldx> e

and insert the resolution of identity at the right place

d
J(xD[x’><x’|f>dx'=—f (1.10.27)
dx
Comparing this to Eq. (1.10.21), we deduce that
. . d
{x|D|x'y=D,=0 (x-x’)=b(x—x)7 (1.10.28)
X

It is worth remembering that D, = 6'(x — x') is to be integrated over the second index
(x") and pulls out the derivative of f at the first index (x). Some people prefer to
integrate 6'(x—x") over the first index, in which case it pulls out —df/dx’. Our
convention is more natural if one views D,, as a matrix acting to the right on the
components f.=f(x") of a vector | /). Thus the familiar differential operator is an
infinite-dimensional matrix with the elements given above. Normally one doesn’t
think of D as a matrix for the following reason. Usually when a matrix acts on a
vector, there is a sum over a common index. In fact, Eq. (1.10.27) contains such a
sum over the index x'. If, however, we feed into this equation the value of D.., the
delta function renders the integration trivial:

d . df df
S(x—x)— f(x)dx'=— ==
J (x Y)dx’f(x) ¥ dx'|v-v dx

Thus the action of D is simply to apply d/dx to f(x) with no sum over a common
index in sight. Although we too will drop the integral over the common index
ultimately, we will continue to use it for a while to remind us that D, like all linear
operators, is a matrix.

Let us now ask if D is Hermitian and examine its eigenvalue problem. If D were
Hermitian, we would have

But this is not the case:
D..=8"(x—x")
while

D¥ . =8'(xX—x)*=8"(x'—x)=—8"(x—x)



But we can easily convert D to a Hermitian matrix by multiplying it with a pure
imaginary number. Consider

K=—iD
which satisfies
K =[-i6'(x —x)]*=+i6'(x' —x)=—i§ ' (x—x)=K.»

It turns out that despite the above, the operator X is not guaranteed to be Hermitian,
as the following analysis will indicate. Let | ) and |g) be two kets in the function
space, whose images in the X basis are two functions f(x) and g(x) in the interval
a—b. If K is Hermitian, it must also satisfy

CElKIf>=<g| Kf >=(Kf|g>*={fIK'|g>*={ f1KIg)*

So we ask
b prb
'[ '[ gl x) KX Y (X | f> dx dx’
, b rb *
= (J j CAXI AKX D (X | g> dxdx’)

b .
[ 2o o 2o

Integrating the left-hand side by parts gives

zf B/ (x) e

b
—ig*(x) f(x)| +

So K is Hermitian only if the surface term vanishes:
b

—ig* () f(x)| = (1.10.29)

In contrast to the finite-dimensional case, K, = K}, is not a sufficient condition for
K to be Hermitian. One also needs to look 4t the behavior of the functions at the
end points @ and b. Thus K is Hermitian if the space consists of functions that
obey Eq. (1.10.29). One set of functions that obey this condition are the possible
configurations f(x) of the string clamped at x=0, L, since f(x) vanishes at the end
points. But condition (1.10.29) can also be fulfilled in another way. Consider
functions\in our own three-dimensional space, parametrized by r, 6, and ¢ (¢ is the
angle measured around the z axis). Let us require that these functions be single
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valued. In particular, if we start at a certain point and go once around the z axis,
returning to the original point, the function must take on its original value, i.e.,

S(d)=f(¢+2n)

In the space of such periodic functions, K= —id/d¢ is a Hermitian operator. The
surface term vanishes because the contribution from one extremity cancels that from
the other:

2n

—ig*(8) £ () L —ilg*(27) f (2m) —g*(0) £ (0)] =0

In the study of quantum mechanics, we will be interested in functions defined
over the full interval —oo < x < +00. They fall into two classes, those that vanish as
|x| = o0, and those that do not, the latter behaving as €**, k being a real parameter
that labels these functions. It is clear that K= —i d/dx is Hermitian when sandwiched
between two functions of the first class or a function from each, since in either case
the surface term vanishes. When sandwiched between two functions of the second
class, the Hermiticity hinges on whether

. e ?
elkxe ik'x =0

If k=K', the contribution from one end cancels that from the other. If k#k’, the
answer is unclear since e'® ~¥* oscillates, rather than approaching a limit as | x| — co.
Now, there exists a way of defining a limit for such functions that cannot make up
their minds: the limit as |x| — oo is defined to be the average over a large interval.
According to this prescription, we have, say as x — o,

L+A
lim ™ e **= lim 1 j e TN gx =0 ifk#k'
0

X— L
A—or

and so K is Hermitian in this space.

We now turn to the eigenvalue problem of K. The task seems very formidable
indeed, for we have now to find the roots of an infinite-order characteristic poly-
nomial and get the corresponding eigenvectors. It turns out to be quite simple and
you might have done it a few times in the past without giving yourself due credit.
Let us begin with

Kk =klk> (1.10.30)



Following the standard procedure,
(x| Klkey = kx| k)
j(le]x’) X' kY dx' =kyi(x) (1.10.31)

=i 4 wi(x) =kyi(x)
dx

where by definition y,(x)={x|k). This equation could have been written directly
had we made the immediate substitution X= —i d/dx in the X basis. From now on
we shall resort to this shortcut unless there are good reasons for not doing so.

The solution to the above equation is simply

Yi(x)=A e* (1.10.32)

where A, the overall scale, is a free parameter, unspecified by the eigenvalue problem.
So the eigenvalue problem of K is fully solved: any real number k is an eigenvalue,
and the corresponding eigenfunction is given by 4 ¢**. As usual, the freedom in
scale will be used to normalize the solution. We choose 4 to be (1/27)”'/? so that

L
|k>4—>(2—”)1781k

and
<k;k'>=J el xD<{xtk> dx=2ij e kTR gy =8(k—Kk') (1.10.33)
-0 7[ -0

(Since (k| k) is infinite, no choice of 4 can normalize |k) to unity. The delta function
normalization is the natural one when the eigenvalue spectrum is continuous.)

The attentive reader may have a question at this point.

“Why was it assumed that the eigenvalue k was real? It is clear that the function
A ** with k=k, + ik, also satisfies Eq. (1.10.31).”

The answer is, yes, there are eigenfunctions of K with complex eigenvalues. If,
however, our space includes such functions, K must be classified a non-Hermitian
operator. (The surface term no longer vanishes since ¢** blows up exponentially as
x tends to either +co or —oo, depending on the sign of the imaginary part k,.) In
restricting ourselves to real k we have restricted ourselves to what we will call the
physical Hilbert space, which is of interest in quantum mechanics. This space is
defined as the space of functions that can be either normalized to unity or to the
Dirac delta function and plays a central role in quantum mechanics. (We use the
_qualifier “physical” to distinguish it from the Hilbert space as defined by mathemat-
icians, which contains only proper vectors, i.e., vectors normalizable to unity. The
role of the improper vectors in quantum theory will be clear later.)
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We will assume that the theorem proved for finite dimensions, namely, that the
eigenfunctions of a Hermitian operator form a complete basis, holds in the Hilbert
space. (The trouble with infinite-dimensional spaces is that even if you have an
infinite number of orthonormal eigenvectors, you can never be sure you have them
all, since adding or subtracting a few still leaves you with an infinite number of
them.)

Since K is a Hermitian operator, functions that were expanded in the X basis
with components f(x) = (x|f > must also have an expansion in the K basis. To find
the components, we start with a ket | />, and do the following:

x«

x5 x| S dx = r e ® f(x)dx  (1.10.34)

SR)=<k| fy= J )

The passage back to the X basis is done as follows:

’ Cklxy<klf> dkm#r e® f(k)dk  (1.10.35)

f(x)=<x1f>=j (2”)1/2

Thus the familiar Fourier transform is just the passage from one complete basis |x)
to another, |k). Either basis may be used to expand functions that belong to the
Hilbert space.
The matrix elements of K are trivial in the K basis:
Ck|KWK Y =k'Ck| k' y=k'6(k—k') (1.10.36)
Now, we know where the K basis came from: it was generated by the Hermitian
operator K. Which operator is responsible for the orthonormal X basis? Let us call
it the operator X. The kets |x) are its eigenvectors with eigenvalue x:
Xix)>=x|x) (1.10.37)
Its matrix elements in the X basis are
XN X|xy=x6(x—x) (1.10.38)
To find its action on functions, let us begin with

X1 fo=17>

and follow the routine:

xlXlfo= j(-’CIXIX'> XNy dx =xf(x)={x| [>=](x)
S To=x(0)

I Hereafter we will omit the qualifier “physical.”



Thus the effect of X is to multiply f(x) by x. As in the case of the K operator, one
generally suppresses the integral over the common index since it is rendered trivial
by the delta function. We can summarize the action of X in Hilbert space as

X1 f(x)>=1xf(x)> (1.10.39)

where as usual |xf(x)) is the ket corresponding to the function xf(x).
There is a nice reciprocity between the X and K operators which manifests itself
if we compute the matrix elements of X in the K basis:

1 (™ ”
<k|X!k’>=—~J e ** x e dx
2

—oC

=+ii (LJ el i dx>=i5’(k-k’)1:
dk \2m J__

Thus if |g(k)) is a ket whose image in the k basis is g(k), then

d dg(k)> (1.10.40)
dk

Xlg(k))=

In summary then, in the X basis, X acts as x and K as —i d/dx [on the functions
S(x)], while in the K basis, K acts like k and X like i d/dk [on f(k)]. Operators with
such an interrelationship are said to be conjugate to each other.

The conjugate operators X and K do not commute. Their commutator may be
calculated as follows. Let us operate X and K in both possible orders on some ket
| f> and follow the action in the X basis:

X\ /5= xf(x)

AC]
K f>——i ir

So

XKL 3 = —in L2

d
KX\ f5—>—i—xf(x)
dx
Therefore

LA
[X, K| f>——ix dx+lxdx

Hif=if—il f>

1 In the last step we have used the fact that §(k’ — k)= S(k—k’).
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Since | £ ) is an arbitrary ket, we now have the desired result:
(X, K1=il (1.10.41)

This brings us to the end of our discussion on Hilbert space, except for a final
example. Although there are many other operators one can study in this space, we
restricted ourselves to X and K since almost all the operators we will need for
quantum mechanics are functions of X and P=#K, where # is a constant to be
defined later.

Example 1.10.1: A Normal Mode Problem in Hilbert Space. Consider a string
of length L clamped at its two ends x=0 and L. The displacement w(x, {) obeys the
differential equation

%
]
<
D
9
<

=- (1.10.42)

(8]
o

j3}
~
jo8)
-

Given that at =0 the displacement is w(x, 0) and the velocity y(x, 0) =0, we wish
to determine the time evolution of the string.

But for the change in dimensionality, the problem is identical to that of the
two coupled masses encountered at the end of Section 1.8 [see Eq. (1.8.26)]. It is
recommended that you go over that example once to refresh your memory before
proceeding further.

We first identify w(x, t) as components of a vector |y(¢)) in a Hilbert space,
the elements of which are in correspondence with possible displacements v, i.e.,
functions that are continuous in the interval 0<x <L and vanish at the end points.
You may verify that these functions do form a vector space.

The analog of the operator Q in Eq. (1.8.26) is the operator & /0x". We recognize
this to be minus the square of the operator K« —~id/éx. Since K acts on a space in
which w(0)=w(L)=0, it is Hermitian, and so 1s K?. Equation (1.10.42) has the
abstract counterpart

Ly =—Ky(1)) (1.10.43)

We solve the initial-value problem by following the algorithm developed in Example
1.8.6:

Step (1). Solve the eigenvalue problem of —-K*

Step (2). Construct the propagator U(z) in terms of the eigenvectors and
eigenvalues.

Step (3).

lw (1)) =U0)]y(0)) (1.10.44)



The equation to solve is

Kyy=Ky) (1.10.45)
In the X basis, this becomes
d2
3 wi(x) =k y(x) (1.10.46)
the general solution to which is
Wi(x)=A cos kx+ Bsin kx (1.10.47)

where 4 and B are arbitrary. However, not all these solutions lie in the Hilbert space
we are considering. We want only those that vanish at x=0 and x=L. At x=0 we
find

yi(0)=0=4 (1.10.48a)
while at x=L we find
0=Bsin kL (1.10.48b)
If we do not want a trivial solution (4 =B=0) we must demand
sinkL=0, kL=mr, m=1,2,3,... (1.10.49)

We do not consider negative m since it doesn’t lead to any further LI solutions
[sin(—x) = —sin x]. The allowed eigenvectors thus form a discrete set labeled by an
integer m:

1/2
2\ mnrx
m(X)=| — sin { — 1.10.50
o= (7] sin (") 11050
where we have chosen B=(2/L)""* so that
L
j V() W (%) dX = 8 (1.10.51)
0

Let us associate with each solution labeled by the integer m an abstract ket |m):

{my —— (2/L)"*sin (%”) (1.10.52)

X basis

gh!
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If we project |w(#)) on the |m) basis, in which K is diagonal with eigenvalues
(mm /L), the components {m| y(z)> will obey the decoupled equations

2,2

d? ‘m’n
L m w(z)>——( -

)<ml (D)), m=12,... (1.10.53)

in analogy with Eq. (1.8.33). These equations may be readily solved (subject to the
condition of vanishing initial velocities) as

{m| (1)) =<m| W(0)>COS<m—Lﬂ~t) (1.10.54)
Consequently
lw(0>= T Im) <mly(0)
= i |m> (m| w(0)) cos wut, w=% (1.10.55)
m=1
or
Uh)='3 |m)<mlcos @m, wm=m7” (1.10.56)
m=1
The propagator equation
ly(6)>=UD)ly(0))
becomes in the |x) basis
ly@)y=y(x, 1)
= x| UMy (0))
L
= [ PO x> (X w(0)) dx’ (1.10.57)

vo
It follows from Eq. (1.10.56) that
IO X"y =3 {x|m){m| x) cos @t

2

=% (I)sin <m_;tx> sin (rnzi)cos @, (1.10.38)



Thus, given any w(x',0), we can get w(x,t) by performing the integral in Eq.

73
(1.10.57), using {x|U(t)|x") from Eq. (1.10.58). If the propagator language seems MATHEMATICAL
too abstract, we can begin with Eq. (1.10.55). Dotting both sides with (x|, we get INTRODUCTION

v )= (xlm)<m| w(0)) cos ot

m=1

= 2\ (mfrx)
*mz=:l (Z) sin e cos @t <{m| y(0)) (1.10.59)

Given |w(0)>, one must then compute

(2 12 e ,mn'x>
<miw(0)>—<z) L sm(T v (x, 0) dx

Usually we will find that the coefficients {m| y(0)) fall rapidly with m so that a few
leading terms may suffice to get a good approximation.

O
Exercise 1.10.4. A string is displaced as follows at t=0:
2xh L
W(X,O)—T, OSXSE
2h L
=—(L—x), —<x<L
L 2

Show that

© . [mrx 8h . nm)
x, )= sin| —— | cos @,,! - sin| —
W( ) mz.—_:[ ( L ) <ﬂ2m2> ( 2



Review of Classical Mechanics

In this chapter we will develop the Lagrangian and Hamiltonian formulations of
mechanics starting from Newton’s laws. These subsequent reformulations of mechan-
ics bring with them a great deal of elegance and computational ease. But our principal
interest in them stems from the fact that they are the ideal springboards from which
to make the leap to quantum mechanics. The passage from the Lagrangian formula-
tion to quantum mechanics was carried out by Feynman in his path integral formal-
ism. A more common route to quantum mechanics, which we will follow for the
most part, has as its starting point the Hamiltonian formulation, and it was dis-
covered mainly by Schrédinger, Heisenberg, Dirac, and Born.

It should be emphasized, and it will soon become apparent, that all three formu-
lations of mechanics are essentially the same theory, in that their domains of validity
and predictions are identical. Nonetheless, in a given context, one or the other may
be more inviting for conceptual, computational, or simply aesthetic reasons.

2.1. The Principle of Least Action and Lagrangian Mechanics

Let us take as our prototype of the Newtonian scheme a point particle of mass
m moving along the x axis under a potential ¥(x). According to Newton’s Second
Law,

m—s=——r 2.1.1)

If we are given the initial state variables, the position x(z;) and velocity %(¢;), we
can calculate the classical trajectory x.; (¢) as follows. Using the initial velocity and
acceleration [obtained from Eq. (2.1.1)] we compute the position and velocity at a
time ¢;+ At. For example,

Xo (8:+ AL) = x(8;) + x(t.) At

Having updated the state variables to the time ¢+ Az, we can repeat the process
again to inch forward to ¢,+2At and so on.
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Xty

Figure 2.1. The Lagrangian formalism asks what dis-

tinguishes the actual path x. (¢) taken by the particle from

all possible paths connecting the end points (x;,¢) and
t (xp, tr)-

{(X,1)

The equation of motion being second order in time, two pieces of data, x(z,)
and x(t;), are needed to specify a unique x (¢). An equivalent way to do the same,
and one that we will have occasion to employ, is to specify two space-time points
(x:, t;) and (x7, t7) on the trajectory.

The above scheme readily generalizes to more than one particle and more than
one dimension. If we use n Cartesian coordinates (xi, xa, ..., x,) to specify the
positions of the particles, the spatial configuration of the system may be visualized
as a point in an n-dimensional configuration space. (The term “configuration space”
is used even if the n coordinates are not Cartesian.) The motion of the representative
point is given by

2. ) V
dx;, v (2.1.2)

m
J
dr 0x;

where m;, stands for the mass of the particle whose coordinate is x;. These equations
can be integrated step by step, just as before, to determine the trajectory.

In the Lagrangian formalism, the problem of a single particle in a potential
V(x) is posed in a different way: given that the particle is at x; and x, at times # and
t,, respectively, what is it that distinguishes the actual trajectory x () from all other
trajectories or paths that connect these points? (See Fig. 2.1.)

The Lagrangian approach is thus global, in that it tries to determine at one
stroke the entire trajectory x4 (), in contrast to the local approach of the Newtonian
scheme, which concerns itself with what the particle is going to do in the next
infinitesimal time interval.

The answer to the question posed above comes in three parts:

(1) Define a function &, called the Lagrangian, given by £ =T-V, T and V'
being the kinetic and potential energies of the particle. Thus & = £ (x, %, 7). The
explicit 7 dependence may arise if the particle is in an external time-dependent field.
We will, however, assume the absence of this ¢ dependence.

(2) For each path x(f) connecting (x;, ;) and (X, t;), calculate the action
S[x(#)] defined by

S[x(1)] =f/f L(x, x) dt (2.1.3)



(R¢,10)

N

C‘/f’/

+
e,
2

e “ . {x { ,f;)
Figure 2.2. If x, () minimizes S, then §S =0 if we

go to any nearby path x. (¢) + n(2). ]

We use square brackets to enclose the argument of S to remind us that the function
S depends on an entire path or function x(#), and not just the value of x at some
time ¢. One calls S a functional to signify that it is a function of a function.

(3) The classical path is one on which S is a minimum. (Actually we will only
require that it be an extremum. It is, however, customary to refer to this condition
as the principle of least action.)

We will now verify that this principle reproduces Newton’s Second Law.

The first step is to realize that a functional S[x(¢)] is just a function of » variables
as n—oo. In other words, the function x(¢) simply specifies an infinite number of
values x(t;),...,x(#),...,x(s), one for each instant in time ¢ in the interval
1,<t<t; and S is a function of these variables. To find its minimum we simply
generalize the procedure for the finite n case. Let us recall that if f=f(x,, ..., x,) =
f(x); the minimum x° is characterized by the fact that if we move away from it by
a small amount n in any direction, the first-order change 81" in f vanishes. That
is, if we make a Taylor expansion:

F&+n)=fxH+ 3 —;i n;+ higher-order terms in 1 (2.1.4)
i=1 0Xilx®
then
n a
TARED) ¥ 7:=0 (2.1.5)
=1 0x;]x0

From this condition we can deduce an equivalent and perhaps more familiar
expression of the minimum condition : every first-order partial derivative vanishes at
x’. To prove this, for say, f/dx;, we simply choose 1 to be along the ith direction.
Thus

of

=0, i=1,...,n (2.1.6)
6)([

xU

Let us now mimic this procedure for the action S. Let x, (¢) be the path of least
action and xq (#) +n(#) a “nearby” path (see Fig. 2.2). The requirement that all
paths coincide at ¢; and ¢, means

nt)=n(t)=0 (2.L.7)

77

REVIEW OF
CLASSICAL
MECHANICS



78
CHAPTER 2

Now

Yy
S[xa (1) +n(0)] =f L(xa(t) +n(2); Xa() + n(1)) dt

i

= J; [y(xc](t)’ Xcl(t)) +5x(f) . ’ 77(1)
ag A - ..
+6X(t) xc]~ n(t)+ }dz

= S[xq (1)]+ 88" + higher-order terms

We set 85" =0 in analogy with the finite variable case:

o=55<1>=j'[ G
) ax(t)

If we integrate the second term by parts, it turns into

"4 e
ﬂ(t)?[’ L [E E_x(—t)l] n(t) dr

The first of these terms vanishes due to Eq. (2.1.7). So that

y A A
0=53‘”=j [i‘?i-i C“?J (1) dt (2.1.8)
. Léx(e) dt 0x(0) -

0¥
xc" n(t)+6_>€Zt_)

: 7’7(1)} dr

Xel

Xel

Note that the condition S =0 implies that S is extremized and not necessarily
minimized. We shall, however, continue the tradition of referring to this extremum
as the minimum. This equation is the analog of Eq. (2.1.5): the discrete variable 7;
is replaced by 7(f); the sum over i is replaced by an integral over f, and df/0x; is
replaced by

0 d 0¥

ax(t) dt o3(t)

There are two terms here playing the role of éf/dx; since % (or equivalently S) has
both explicit and implicit (through the % terms) dependence on x(¢). Since 1(7) is
arbitrary, we may extract the analog of Eq. (2.1.6):

{6&/7 d[ay

"""""""""" ax(1)

—0 forn<i<t 2.1.9
ox(1) dr } o s (2.1.9)

xci(2)

To deduce this result for some specific time 7o, we simply choose an 77(¢) that vanishes
everywhere except in an infinitesimal region around .



Equation (2.1.9) is the celebrated Euler-Lagrange equation. If we feed into it
L=T—V, T=13mi* V=V(x), we get

0¥ oT .
ox 0%

and

oz _ v
0x Ox

so that the Euler-Lagrange equation becomes just

which is just Newton’s Second Law, Eq. (2.1.1).
If we consider a system described by # Cartesian coordinates, the same procedure
yields

4 (0_%);9;? G=1,. ..n) (2.1.10)
dt 5)2, 0x,~
Now
T=% Z mi(xi)z
i=1
and
V=V(x,...,x,
so that Eq. (2.1.10) becomes
..oV
5 (mx;) ox,

which is identical to Eq. (2.1.2). Thus the minimum (action) principle indeed repro-
duces Newtonian mechanics if we choose ¥ =T-V.

Notice that we have assumed that V is velocity-independent in the above proof.
An important force, that of a magnetic field B on a moving charge is excluded by
this restriction, since Fg=¢vxB, g being the charge of the particle and v=# its
velocity. We will show shortly that this force too may be accommodated in the
Lagrangian formalism, in the sense that we can find an % that yields the correct
force law when Eq. (2.1.10) is employed. But this . no longer has the form 7— V.
One therefore frees oneself from the notion that #=T— V; and views % as some
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function Z(x;, x;) which yields the correct Newtonian dynamics when fed into the
Euler-Lagrange equations. To the reader who wonders why one bothers to even
deal with a Lagrangian when all it does is yield Newtonian force laws in the end, I
present a few of its main attractions besides its closeness to quantum mechanics.
These will then be illustrated by means of an example.

(1) In the Lagrangian scheme one has merely to construct a single scalar &
and all the equations of motion follow by simple differentiation. This must be con-
trasted with the Newtonian scheme, which deals with vectors and is thus more
complicated.

(2) The Euler-Lagrange equations (2.1.10) have the same form if we use, instead
of the n Cartesian coordinates xy, . . ., x,,, any general set of n independent coordi-
nates ¢, ¢2. . . . » ¢.. To remind us of this fact we will rewrite Eq. (2.1.10) as

i (02 oz
dt \ 8(}, /

= 2.1.11
24, ( )

One can either verify this by brute force, making a change of variables in Eq. (2.1.10)
and seeing that an identical equation with x, replaced by ¢, follows, or one can simply
go through our derivation of the minimum action condition and see that nowhere
were the coordinates assumed to be Cartesian. Of course, at the next stage, in showing
that the Euler-Lagrange equations were equivalent to Newton’s, Cartesian coordi-
nates were used, for in these coordinates the kinetic energy 7" and the Newtonian
equations have simple forms. But once the principle of least action is seen to generate
the correct dynamics, we can forget all about Newton’s laws and use Eq. (2.1.11)
as the equations of motion. What is being emphasized is that these equations, which
express the condition for least action, are form invariant under an arbitrary change
of coordinates. This form invariance must be contrasted with the Newtonian equation
(2.1.2), which presumes that the x; are Cartesian. If one trades the x; for another
non-Cartesian set of ¢;, Eq. (2.1.2) will have a different form (see Example 2.1.1 at
the end of this section).

Equation (2.1.11) can be made to resemble Newton’s Second Law if one defines
a quantity

o
pi== (2.1.12)
8(],‘
called the canonical momentum conjugate to g; and the quantity
3G
= (2.1.13)
oq;

called the generalized force conjugate to q;. Although the rate of change of the
canonical momentum equals the generalized force, one must remember that neither
is p; always a linear momentum (mass times velocity or “‘mv” momentum), nor is F;
always a force (with dimensions of mass times acceleration). For example, if g; is an
angle 6, p; will be an angular momentum and F; a torque.



(3) Conservation laws are easily obtained in this formalism. Suppose the Lag-
rangian depends on a certain velocity ¢; but not on the corresponding coordinate g;.
The latter is then called a cyclic coordinate. It follows that the corresponding p; is
conserved:

4 <0$>=dﬂ=aﬁ=o (2.1.14)
dt \dq;) dt 0q;

Although Newton’s Second Law, Eq. (2.1.2), also tells us that if a Cartesian coordi-
nate x; is cyclic, the corresponding momentum m;X; is conserved, Eq. (2.1.14) is more
general. Consider, for example, a potential ¥(x, y) in two dimensions that depends
only upon p=(x"+y)"? and not on the polar angle ¢, so that V(p, ¢)=V(p). It
follows that ¢ is a cyclic coordinate, as T depends only on ¢ (see Example 2.1.1
below). Consequently 6. /¢ = Ps 1s conserved. In contrast, no obvious conservation
law arises from the Cartesian Eqs. (2.1.2) since neither x nor y is cyclic. If one
rewrites Newton’s laws in polar coordinates to exploit 8¥/d¢ =0, the corresponding
equations get complicated due to centrifugal and Coriolis terms. It is the Lagrangian
formalism that allows us to choose coordinates that best reflect the symmetry of the
potential, without altering the simple form of the equations.

Example 2.1.1. We now illustrate the above points through an example. Con-
sider a particle moving in a plane. The Lagrangian, in Cartesian coordinates, is

L =m(F+ )~ V(x, y)
=%mv-v—V(_x’y) (2115)

where v is the velocity of the particle, with v=¥, r being its position vector. The
corresponding equations of motion are

mx=-‘i—V (2.1.16)
oxX
0

mj=—— (2.1.17)
dy

which are identical to Newton’s laws. If one wants to get the same Newton’s laws
in terms of polar coordinates p and ¢, some careful vector analysis is needed to
unearth the centrifugal and Coriolis terms:

mp= —%LL mp($)’ (2.1.18)
p

. 1 0V o
m=—1 OV_2mpé (2.1.19)
p op p
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2
ds

&Qb 2o

d¢
$ Figure 2.3. Points (1) and (2) are positions of the
X particle at times differing by Ar.

Notice the difference in form between Eqgs. (2.1.16) and (2.1.17) on the one hand
and Egs. (2.1.18) and (2.1.19) on the other.

In the Lagrangian scheme one has only to recompute % in polar coordinates.
From Fig. 2.3 it is clear that the distance traveled by the particle in time Af is

dS=[(dp)’+(p d$)’}'?
so that the magnitude of velocity is

ds oy
v=""= 10+ P ()
t

and
L=:2m(p+p’¢) = Vip, §) (2.1.20)
(Notice that in these coordinates 7 involves not just the velocities p and ¢ but also

the coordinate p. This does not happen in Cartesian coordinates.) The equations of
motion generated by this ¥ are

oV .
4 (mp)= —(ﬁ—+mp¢2 (2.1.21)
dt op
d S v ,
— = - 2122
o (mp~¢) 26 ( )

which are the same as Egs. (2.1.18) and (2.1.19). In Eq. (2.1.22) the canonical
momentum py = mp?¢ is the angular momentum and the generalized force —0V/d¢
is the torque, both along the z axis. Notice how easily the centrifugal and Coriolis
forces came out.

Finally, if V(p, ¢)=V(p), the conservation of py4 is obvious in Eq. (2.1.22).
The conservation of p, follows from Eq. (2.1.19) only after some manipulations and
is practically invisible in Egs. (2.1.16) and (2.1.17). Both the conserved quantity and
its conservation law arise naturally in the Lagrangian scheme. g



Exercise 2.1.1.* Consider the following system, called a harmonic oscillator. The block
has a mass m and lies on a frictionless surface. The spring has a force constant k.

Write the Lagrangian and get the equations of motion.

Exercise 2.1.2.* Do the same for the coupled-mass problem discussed at the end of
Section 1.8. Compare the equations of motion with Egs. (1.8.24) and (1.8.25).

Exercise 2.1.3.* A particle of mass m moves in three dimensions under a potential
V(r, 8, ¢)=V(r). Write its ¥ and find the equations of motion.
2.2. The Electromagnetic Lagrangiani

Recall that the force on a charge ¢ due to an electric field E and magnetic field
B is given by

F=q<E+YxB) 2.2.1)
C

where v=1 is the velocity of the particle. Since the force is velocity-dependent, we
must analyze the problem afresh, not relying on the preceding discussion, which was
restricted to velocity-independent forces.

Now it turns ow that if we use

Lom=1mvv—gp+Lv-A (2.2.2)
C

we get the correct electromagnetic force laws. In Eq. (2.2.2) ¢ is the velocity of light,
while ¢ and A are the scalar and vector potentials related to E and B via

1 0A
E=-V¢—— 223
¢ Py (2.2.3)
and
B=VxA (2.2.4)

1 See Section 18.4 for a review of classical electromagnetism.
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The Euler-Lagrange equations corresponding to 2., are

d | \ 6 -A
A(mx,ﬂA,):—qf—‘i’ﬂ WAy 0s (2.2.5)
dt ¢ ox; ¢ 0x;

Combining the three equations above into a single vector equation we get

d | A
d (mv+1—>=—qv¢+g V(v-A) (2.2.6)
dt ¢ c
The canonical momentum is
qA
p=mv+-— (2.2.7)
C
Rewriting Eq. (2.2.6), we get
d dA
L mvy=—qvp+2 l:—---—-f— V(V’A)] (2.2.8)
dt ¢ dt

Now, the total derivative dA/dr has two parts: an explicit time dependence ¢A4/0t,
plus an implicit one (v V)A which represents the fact that a spatial variation in A
will appear as a temporal variation to the moving particle.Now Eq. (2.2.8) becomes

L oy ==gv—2 29 (A = (v-VIA] (2.2.9)
dt ¢ ot ¢

which is identical to Eq. (2.2.1) by virtue of the identity
vX(VXA)=V(v-A)—(v'V)A

Notice that &..,, is not of the form 7— V, for the quantity U=q¢—(g/c)v-A
(sometimes called the generalized potential) cannot be interpreted as the potential
energy of the charged particle. First of all, the force due to a time-dependent electro-
magnetic field is not generally conservative and does not admit a path-independent
work function to play the role of a potential. Even in the special cases when the
force is conservative, only g¢ can be interpreted as the electrical potential energy.
The [—¢q(v-A)/c] term is not a magnetic potential energy, since the magnetic force
Fs=q(vxB)/c never does any work, being always perpendicular to the velocity. To
accommodate forces such as the electro-magnetic, we must, therefore, redefine & to
be that function #(q, ¢, t) which, when fed into the Euler-Lagrange equations,
reproduces the correct dynamics. The rule ¥ = T'— V' becomes just a useful mnemonic
for the case of conservative forces.



Figure 2.4. The relation between r;, r; and rem, T.

2.3. The Two-Body Problem

We discuss here a class of problems that plays a central role in classical physics:
that of two masses m, and m, exerting equal and opposite forces on each other.
Since the particles are responding to each other and nothing external, it follows that
the potential between them depends only on the relative coordinate xr=r;—r, and
not the individual positions r; and r,. But ¥V(r,, r;) = V(r; —r;) means in turn that
there are three cyclic coordinates, for ¥ depends on only three variables rather than
the possible six. (In Cartesian coordinates, since 7 is a function only of velocities, a

_ coordinate missing in ¥ is also cyclic.) The corresponding conserved momenta will
of course be the three components of the total momentum, which are conserved in
the absence of external forces. To bring out these features, it is better to trade r,
and r; in favor of

r=r—n (2.3.1)
and
+
Fon =L ol (2.3.2)
my +"’I2

where rcum is called the center-of-mass (CM') coordinate. One can invert Egs. (2.3.1)
and (2.3.2) to get (see Fig. 2.4)

n=row+—2 (23.3)
(3] +m2
r
ry=Tom— —t (2.3.4)
my +m2
If one rewrites the Lagrangian
L=3m|b|*+ 3myl|t|* — V(1 —12) (2.3.5)
in terms of rcm and r, one gets
1 1
L== (m+my)liem®+= 2112 - V(r) (2.3.6)
2 2 hy -+ my
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The main features of Eq. (2.3.6) are the following.

(1) The problem of two mutually interacting particles has been transformed to
that of two fictitious particles that do not interact with each other. In other words,
the equations of motion for r do not involve rcnm and vice versa, because Z(r, t;
Fom, Fom) = L(r, 1) + L(rem, Fom).

(2) The first fictitious particle is the CM, of mass M =m, +m,. Since roum is a
cyclic variable, the momentum pem = Micem (which is just the total momentum) is
conserved as expected. Since the motion of the CM is uninteresting one usually
ignores it. One clear way to do this is to go to the CM frame in which fcy =0, so
that the CM is completely eliminated in the Lagrangian.

(3) The second fictitious particle has mass u=mnumy/(m;+m,) (called the
reduced mass), momentum p = uf and moves under a potential ¥(r). One has just to
solve this one-body problem. If one chooses, one may easily return to the coordinates
r; and r, at the end, using Egs. (2.3.1) and (2.3.2).

Exercise 2.3.1.* Derive Eq. (2.3.6) from (2.3.5) by changing variables.

2.4. How Smart Is a Particle?

The Lagrangian formalism seems to ascribe to a particle a tremendous amount
of foresight: a particle at (., r;) destined for (x,, #;) manages to calculate ahead of
time the action for every possible path linking these points, and takes the one with
the least action. But this, of course, is an illusion. The particle need not know its
entire trajectory ahead of time, it needs only to obey the Euler-Lagrange equations
at each instant in time to minimize the action. This in turn means just following
Newton’s law, which is to say, the particle has to sample the potential in its immediate
vicinity and accelerate in the direction of greatest change.

Our esteem for the particle will sink further when we learn quantum mechanics.
We will discover that far from following any kind of strategy, the particle, in a sense,
goes from (x;, t;) to (x, t;) along all possible paths, giving equal weight to each!
How it is that despite this, classical particles do seem to follow x (7) is an interesting
question that will be answered when we come to the path integral formalism of
quantum mechanics.

2.5. The Hamiltonian Formalism

In the Lagrangian formalism, the independent variables are the coordinates g;
and velocities ¢;,. The momenta are derived quantities defined by

_i¥

- (2.5.1)
oq;

Di



In the Hamiltonian formalism one exchanges the roles of ¢ and p: one replaces the
Lagrangian #(q, ¢)1 by a Hamiltonian #(q, p) which generates the equations of
motion, and § becomes a derived quantity,

0A
=" (2.5.2)
op;

thereby completing the role reversal of the ¢’s and the p’s.

There exists a standard procedure for effecting such a change, called a Legendre
transformation, which is illustrated by the following simple example. Suppose we
have a function f(x) with

a

u(x)= I

(2.5.3)

Let it be possible to invert u(x) to get x(u). [For example if u(x)=x", x(u)=u'",
etc.] If we define a function

g(u) = x(uyu—f(x(u)) (2.5.4)
then
dg_dx -V B
o u+x(u) . x(u) (2.5.5)

That is to say, in going from f to g (or vice versa) we exchange the roles of x and
u. One calls Eq. (2.5.4) a Legendre transformation and f and g Legendre transforms
of each other.

More generally, if f=f(x;, X2, . . ., X,), one can eliminate a subset {x;, =1 to
J} in favor of the partial derivatives u,= df/0x; by the transformation

J
gy, oty Xty ey X)) = 2 U f (X, X) (2.5.6)
i=1

i

It is understood in the right-hand side of Eq. (2.5.6) that all the x/’s to be eliminated
have been rewritten as functions of the allowed variables in g. It can be easily verified
that

% _

ou;

X, (2.5.7)

where in taking the above partial derivative, one keeps all the other variables in g
constant.

1 We will often referto ¢, . . ., g.asqand p;,..., Pn as p.
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Table 2.1. Comparison of the Lagrangian and Hamiltonian Formalisms

Lagrangian formalism Hamiltonian formalism

(1) The state of a system with »n degrees of (1) The state of a system with n degrees of free-

freedom is described by »n coordinates dom is described by n coordinates and n
(gre.... g.) and n velocities (¢, . . .. 4,), or momenta (g, ....,q,; Pis-- .. P.) O, more
in a more compact notation by (g, ¢). succinctly, by (g, p).

(2) The state of the system may be represented  (2) The state of the system may be represented
by a point moving with a definite velocity in by a point in a 2n-dimensional phase space.
an n-dimensional configuration space. with coordinates (¢;, ..., 4. ;Pis.. .. Dn).

(3) The n coordinates evolve according to n  (3) The 2n coordinates and momenta obey 2n
second-order equations. first-order equations.

(4) For a given &, several trajectories may pass (4) For a given # only one trajectory passes
through a given point in configuration space through a given point in phase space.
depending on ¢.

Applying these methods to the problem in question, we define

H(qp)= ). pgi—L(q. §) (2.5.8)
i=1
where the §’s are to be written as functions of ¢’s and p’s. This inversion is generally
easy since % is a polynomial of rank 2 in ¢, and p;= 0.% /44, is a polynomial of rank
1 in the §’s, e.g., Eq. (2.2.7). Consider now

2P~ ff) (2.5.9)

- 0L
=g, (smcep,=%) (2.5.10)

[There are no (0.%¥/0¢;)(0q;/0p;) terms since ¢ is held constant in 6.5#/dp, ; that is,
g and p are independent variables.] Similarly,
oA éq; & 0¥ 6, o0&
—=2p "“gf"“: ““““ LT _:@:_T (2.5.11)
0g: 7 0qi 0q; T 04y Oqi  0gs
We now feed in the dynamics by replacing (8.%°/dq,) by p;, and obtain Hamilton’s
canonical equations:
BH %
g o, (2.5.12)
op; 5q,

Note that we have altogether 2n first-order equations (in time) for a system with »
degrees of freedom. Given the initial-value data, (¢:(0), p;(0)), i=1,..,n, we can
integrate the equations to get (g;(¢), p:(2)).

Table 2.1 provides a comparison of the Lagrangian and Hamiltonian
formalisms.



Now, just as % may be interpreted as 7— V if the force is conservative, so there
exists a simple interpretation for # in this case. Consider the sum Zl. pig:. Let us
use Cartesian coordinates, in terms of which

T=1Y, smt
i=1
0y oT
== m
5)6,- 6xl
and
i=1 i=1
so that

H=Y phi—L=T+V (2.5.14)

the total energy. Notice that although we used Cartesian coordinates along the
way, the resulting equation (2.5.14) is a relation among scalars and thus coordinate
independent.

Exercise 2.5.1. Show that if 7=}, Z,- T;(9)4:q;, where ¢’s are generalized velocities,
Y, piqi=2T.

The Hamiltonian method is illustrated by the simple example of a harmonic
oscillator, for which

The canonical momentum is

oz _

=—=mx
ox

p

It is easy to invert this relation to obtain X as a function of p:

X=p/m
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H(x, py=T+V=sm[x(p)]"+ 3kx”
T
=P e (2.5.15)
2m 2
The equations of motion are
oH . p_,
=g —=X (2.5.16)
cp m
—=p——kx=p (2.5.17)
iq

These equations can be integrated in time, given the initial ¢ and p. If, however, we
want the familiar second-order equation, we differentiate Eq. (2.5.16) with respect
to time, and feed it into Eq. (2.5.17) to get

mx+kx=0

Exercise 2.5.2. Using the conservation of energy, show that the trajectories in phase
space for the oscillator are ellipses of the form (x/a)*+ (p/b)* =1, where a®=2E/k and b*=
2mE.

Exercise 2.5.3. Solve Exercise 2.1.2 using the Hamiltonian formalism.

Exercise 2.5.4.* Show that # corresponding to £ in Eq. (2.3.6) is # =|pcw|/2M + |p|*/
2u + V(r), where M is the total mass, g is the reduced mass, pcm and p are the momenta
conjugate to rey and r, respectively.

2.6. The Electromagnetic Force in the Hamiltonian Scheme

The passage from %,., to its Legendre transform 3., is not sensitive in any
way to the velocity-dependent nature of the force. If \Z..,, generated the correct force
laws, so will #,.,,, the dynamical content of the schemes being identical. In contrast,
the velocity independence of the force was assumed in showing that the numerical
value of # is T+ V, the total energy. Let us therefore repeat the analysis for the
electromagnetic case. As

Lom= émv-v—qq&-&-g v:A
c

andi

I Note that in this discussion, ¢ is the charge and not the coordinate. The (Cartesian) coordinate r is
hidden in the functions A(r, 7) and ¢ (r. 7).



A
p"—“mv+q—
c

we have

%e'mzp'v_gg-m

‘A ] ‘A
=mv-v+qY———---- mv-v+q¢>—f]—v——
c 2 c

=smy-v+qp=T+q¢ (2.6.1)

Now, there is something very disturbing about Eq. (2.6.1): the vector potential A
seems to have dropped out along the way. How is .., to generate the correct
dynamics without knowing what A is? The answer is, of course, the # is more than
just T+qé; it is T+q¢ written in terms of the correct variables, in particular, in
terms of p and not v. Making the change of variables, we get

_le-gA/or

Hoem
2m

(2.6.2)

with the vector potential very much in the picture.

2.7. Cyelic Coordinates, Poisson Brackets, and Canonical Transformations

Cyclic coordinates are defined here just as in the Lagrangian case and have the
same significance: if a coordinate ¢; is missing in ', then

p=— = (2.7.1)

Now, there will be other quantities, such as the energy, that may be conserved in
addition to the canonical momenta.§ There exists a nice method of characterizing
these in the Hamiltonian formalism. Let w(p, ¢) be some function of the state vari-
ables, with no explicit dependence on t. Its time variation is given by

to_g (0.0,
a5 \og " op”
dw X 0w OH )
_y (fodx tu o)
7 \dq; Op; Op: Og;
={w, #) (2.7.2)
§ Another example is the conservation of L=xp,—yp. when V(x, y)=V(x’+ »?). There are no cyclic

coordinates here. Of course, if we work in polar coordinates, V(p, ¢)= V(p), and p,,,=mp2q5=l: is
conserved because it is the momentum conjugate to the cyclic coordinate ¢.
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where we have defined the Poisson bracket (PB) between two variables w(p, ¢) and
A(p, ) to be

w, A=
(@ A=Y dq: ap: op. og;

;

0w A Jw 0L
<nw oA oo ) 2.73)

It follows from Eq. (2.7.2) that any variable whose PB with # vanishes is constant in
time, i.e., conserved. In particular ¢ itself is a constant of motion (identified as the
total energy) if it has no explicit + dependence.

Exercise 2.7.1.* Show that
(0.2} = {1 o)
{o,A+o}={w, 1} + {0, o}
(o, Ao} ={0, Ajo+ o, o}

Note the similarity between the above and Egs. (1.5.10) and (1.5.11) for commutators.

Of fundamental importance are the PB between the ¢’s and the p’s. Observe
that

{q:, q;} = {pi,pi} =0 (2.7.4a)
g p}=9, (2.7.4b)

since (qi, . . ., p,) are independent variables (3q,/0q;= 8, 6g:;/0px =0, etc.). Hamil-
ton’s equations may be written in terms of PB as

4i=1{q:, H'} (2.7.5a)
pi={p;, H} (2.7.5b)

by setting w =g, or p; in Eq. (2.7.2).
Exercise 2.7.2.* (i) Verify Eqgs. (2.7.4) and (2.7.5). (ii) Consider a problem in two dimen-

sions given by # =pl+pl+ax’+by’. Argue that if a=b5, {I., #} must vanish. Verify by
explicit computation.

Canonical Transformations

We have seen that the Euler-Lagrange equations are form invariant under an
arbitrary} change of coordinates in configuration space

qG:—=q:(q1, ..., 4qn), i=1,...,n (2.7.6a)

I We assume the transformation is invertible, so we may write ¢ in terms of §: ¢ = g(§). The transformation
may also depend on time explicitly [§=q(q, 7)], but we do not consider such cases.



or more succinctly

q—q(q) (2.7.6b)

The response of the velocities to this transformation follows from Eq. (2.7.6a):

. - d-i 6 i .
qlqu_z_‘?_z (aq >qj (2.7.7)
j 4q;

The response of the canonical momenta may be found by rewriting . in terms of
(7, §) and taking the derivative with respect to ¢:

13,-=w(f” )] (2.7.8)
ﬁq,
The result is (Exercise 2.7.8):
-—Z <f‘_b> (2.7.9)
oqg;

Notice that although & enters Eq. (2.7.8), it drops out in Eq. (2.7.9), which connects
p to the old variables. This is as it should be, for we expect that the response of the
momenta to a coordinate transformation (say, a rotation) is a purely kinematical
question.

A word of explanation about Z(q, q) By £(q, q) we mean the Lagrangian (say
T— V, for definiteness) written in terms of g and g. Thus the numerical value of the
Lagrangian is unchanged under (g, §) — (4, §); for (g, ¢) and (g, q) refer to the same
physical state. The functional form of the Lagrangian, however, does change and so
we should really be using two different symbols £(g, §) and #(g, §). Nonetheless
we follow the convention of denoting a given dynamical variable, such as the Lag-
rangian, by a fixed symbol in all coordinate systems.

The invariance of the Euler-Lagrange equatlons under (g, ¢) - (4, q) implies
the invariance of Hamilton’s equation under (g, p) — (4, p), i.e., (¢, p) obey

G:=0X4 /0p:, pi=—(0#/07:) (2.7.10)

where # = #(q, p) is the Hamiltonian written in terms of ¢ and p. The proof is
simple: we start with £(q, §), perform a Legendre transform, and use the fact that
g obeys Euler-Lagrange equations.

The transformation

_ _ aq;
gi—=Gi(qrs - Gn)s P::Z( q’)p (2.7.11)
J
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is called a point transformation. If we view the Hamiltonian formalism as something
derived from the Lagrangian scheme, which is formulated in n-dimensional config-
uration space, this is the most general (time-independent) transformation which
preserves the form of Hamilton’s equations (that we can think of). On the other
hand, if we view the Hamiltonian formalism in its own right, the backdrop is the
2n-dimensional phase space. In this space, the point transformation is unnecessarily
restrictive. One can contemplate a more general transformation of phase space
coordinates:

q-4(q.p)

(2.7.12)
p—plq,p)

Although all sets of 2n independent coordinates (g, 5) are formally adequate for
describing the state of the system, not all of them will preserve the canonical form
of Hamilton’s equations. (This is like saying that although Newton’s laws may be
written in terms of any complete set of coordinates, the simple form mg,=—8V/dg,
is valid only if the ¢; are Cartesian). If, however, (g, p) obey the canonical equations
(2.7.10), we say that they are canonical coordinates and that Eq. (2.7.12) defines a
canonical transformation. Any set of coordinates (g, . . ., g,), and the corresponding
momenta generated in the Lagrangian formalism ( p,= 6.4 /0q,), are canonical coordi-
nates. Given one set, (g, p), we can get another, (7, p), by the point transformation,
which is a special case of the canonical transformation. This does not, however,
exhaust the possibilities. Let us now ask the following question. Given a new set of
coordinates (G(q, p), p(q, p)), how can we tell if they are canonical [assuming (g, p)
are]? Now it is true for any w(q, p) that

0w dH o OH )
a’;={a),yf}=z(—f‘i - —ﬂ—) (2.7.13)
. \dq; dp; Op; Oq,
Applying this to g;(g, p) we find
o= (.’i@ oA _og, %) (2.7.14)
i 6% ap: apx 5(], /
If we view # as a function of (g, p) and use the chain rule, we get
&%’(q,p):é’f(q,p)zz <<3§ @ﬁéfﬁ @) (2.7.152)
op; ap: x \OGx dp; Opr Op;
and
0H@.p)_OH@D)_ (5{ %Gi, OH ?&) (2.7.15b)
0q; 0g; k o\ an 0q; Opx 0Og;



Feeding all this into Eq. (2.7.14) we find, upon regrouping-terms,
. oH _ ., 0F  _
=% ("r_ (@, o) +— {qj,pk}) (2.7.16)
k \OGk 0P
It can similarly be established that

. o o  _
b= < {Pss Gu} +—— {PpPk}) 2.7.17)
K \O 0P

Gx

If Eqgs. (2.7.16) and (2.7.17) are to reduce to the canonical equations (2.7.10) for
any # (g, p), we must have

(@ @} =0=1{p;, Px}

‘ (2.7.18)
{@), Pi} =z

These then are the conditions to be satisfied by the new variables if they are to be
canonical. Notice that these constraints make no reference to the specific functional
form of . : the equations defining canonical variables are purely kinematical and
true for any #(q, p).

Exercise 2.7.3. Fill in the missing steps leading to Eq. (2.7.18) starting from Eq. (2.7.14).
Exercise 2.7.4. Verify that the change to a rotated frame
X=xcos@—ysin
y=xsin +ycos 6
Px=pycos 8—p,sin
p,=pssin @+p,cos 0
is a canonical transformation.
Exercise 2.7.5. Show that the polar variables p=(x*+%)"? ¢=tan"'(y/x),

N xpxtypy
=¢, p=————"—, =Xp,— VPx =]z
Do o' P (xz_‘:_yz)]/zv Pe Py~ VP ( )

are canonical. (¢, is the unit vector in the radial direction.)
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Exercise 2.7.6.* Verify that the change from the variables r,, 12, p;, p2 t0 fom, Pom, T
and p is a canonical transformation. (See Exercise 2.5.4).

Exercise 2.7.7. Verify that
G=In(g ' sin p)
p=qgcotp
is a canonical transformation.

Exercise 2.7.8. We would like to derive here Eq. (2.7.9), which gives the transformation
of the momenta under a coordinate transformation in configuration space:

%*"71(‘11 ----- qn)

(1) Argue that if we invert the above equation to get g = ¢(§), we can derive the following
counterpart of Eq. (2.7.7):

(2) Show from the above that

(3) Now calculate

e [mq, ﬂ :[w(q’ q)}
' g &g,

Use the chain rule and the fact that ¢=¢g(g) and not ¢(g, §) to derive Eq. (2.7.9).
(4) Verify, by calculating the PB in Eq. (2.7.18), that the point transformation is
canonical.

If (g, p) and (g, p) are both canonical, we must give them both the same status,
for Hamilton’s equations have the same appearance when expressed in terms of
either set. Now, we have defined the PB of two variables ® and o in terms of (¢, p)
as

o éo fw do)
(0.0}= ( 2

—f
PUEEN A A =10, G}w
oq; op;  Cpi 04;

Should we not also define a PB, {w, o}, ; for every canonical pair (g, 5)? Fortunately
it turns out that the PB are invariant under canonical transformations:
{C(), O'}q_,,:{(u, O‘}q‘p (2719)

(It is understood that w and o are written as functions of g and p on the right-hand
side.)



Exercise 2.7.9. Verify Eq. (2.7.19) by direct computation. Use the chain rule to go from
q, p derivatives to g, p derivatives. Collect terms that represent PB of the latter.

Besides the proof by direct computation (as per Exercise 2.7.9 above) there is
an alternate way to establish Eq. (2.7.19).
Consider first o =. We know that since (g, p) obey canonical equations,

@ ={w, #}q,
But then (g, p) also obey canonical equations, so
o={w, #};

Now o is some physical quantity such as the kinetic energy or the component
of angular momentum in some fixed direction, so its rate of change is independent
of the phase space coordinates used, i.e., @ is @, whether w = w(q, p) or ®(q, p). So

{0, #}op={0, £}, (2.7.20)

Having proved the result for what seems to be the special case o=, we now pull
the following trick. Note that nowhere in the derivation did we have to assume that
A was any particular function of ¢ and p. In fact, Hamiltonian dynamics, as a
consistent mathematical scheme, places no restriction on 4. It is the physical require-
ment that the time evolution generated by # coincide with what is actually observed,
that restricts # to be T+ V. Thus # could have been any function at all in the
preceding argument and in the result Eq. (2.7.20) (which is just a relation among
partial derivatives.) If we understand that # is not T+ V in this argument but an
arbitrary function, call it o, we get the desired result.

Active Transformations

So far, we have viewed the transformation
4=4(q, p)
p=p(q,p)

as passive: both (g, p) and (g, p) refer to the same point in phase space described
in two different coordinate systems. Under the transformation (g, p) - (g, p), the
numerical values of all dynamical variables are unchanged (for we are talking about
the same physical state), but their functional form is changed. For instance,
under a change from Cartesian to spherical coordinates, (x,y,z)=
X +3y°+ 22> o(r, 0, ) =r>. As mentioned earlier, we use the same symbol for a
given variable even if its functional dependence on the coordinates changes when we
change coordinates.

Consider now a restricted class of transformations, called regular trans-
Jformations, which preserve the range of the variables: (g, p) and (g, p) have the same
range. A change from one Cartesian coordinate to a translated or rotated one is
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regular (each variable goes from —oo to +oo before and after), whereas a change to
spherical coordinates (where some coordinates are nonnegative, some are bounded
by 2x, etc.) is not.

A regular transformation (g, p) — (g, p) permits an alternate interpretation:
instead of viewing (g, p) as the same phase space point in a new coordinate system,
we may view it as a new point in the same coordinate system. This corresponds to
an active transformation which changes the state of the system. Under this change,
the numerical value of any dynamical variable w(q, p) will generally change:
o (g, p) #w(q, p), though its functional dependence will not: w(q, p) is the same
function @(q, p) evaluated at the new point (¢=4, p=p).

We say that o is invariant under the regular transformation (g, p) — (g, p) if

(g, p)=w(q, p) (2.7.21)

(This equation has content only if we are talking about the active transformations,
for it is true for any @ under a passive transformation.)

Whether we view the transformation (g, p) — (g, p) as active or passive, it is
called canonical if (g, p) obey Eq. (2.7.18). As we shall see, only regular canonical
transformations are physically interesting.

2.8. Symmetries and Their Consequences

Let us begin our discussion by examining what the word “symmetry” means in
daily usage. We say that a sphere is a very symmetric object because it looks the
same when seen from many directions. Or, equivalently, a sphere looks the same
before and after it is subjected to a rotation around any axis passing through its
center. A cylinder has symmetry too, but not as much: the rotation must be per-
formed around its axis. Generally then, the symmetry of an object implies its invari-
ance under some transformations, which in our examples are rotations.

A symmetry can be discrete or continuous, as illustrated by the example of a
hexagon and a circle. While the rotation angles that leave a hexagon unchanged
form a discrete set, namely, multiples of 60°, the corresponding set for a circle is a
continuum. We may characterize the continuous symmetry of the circle in another
way. Consider the identity transformation, which does nothing, i.e., rotates by 0° in
our example. This leaves both the circle and the hexagon invariant. Consider next
an infinitesimal transformation, which is infinitesimally “‘close” to the identity; in our
example this is a rotation by an infinitesimal angle ¢. The infinitesimal rotation
leaves the circle invariant but not the hexagon. The circle is thus characterized by
its invariance under infinitesimal rotations. Given this property, its invariance under
finite rotations follows, for any finite rotation may be viewed as a sequence of
infinitesimal rotations (each of which leaves it invariant).

It is also possible to think of functions of some variables as being symmetric in
the sense that if one changes the values of the variables in a certain way, the value
of the function is invariant. Consider for example

flx, py=x>+y



If we make the following change

xX—X=xcosf—ysin 6
) (2.8.1)
y—->jy=xsin 8+ycos 0

in the arguments, we find that f is invariant. We say that f is symmetric under the
above transformation. In the terminology introduced earlier, the transformation in
question is continuous: its infinitesimal version is

X—>X=XxC08 £E—ysin e=x—y¢
) (2.8.2)
y—oy=xsine+tycos e=xeg+y (to order €)

Consider now the function 3#(q, p). There are two important dynamical conse-
quences that follow from its invariance under regular canonical transformations.

I. If 5# is invariant under the following infinitesimal transformation (which you
may verify is canonical, Exercise 2.8.2),

0
Gi= G=qi+ £ o= g+ g,
opi

(2.8.3)
e
o,

pi—pi=pi— =p;+p;

where g(qg, p) is any dynamical variable, then g is conserved, i.e., a constant of motion.
One calls g the generator of the transformation.

II. If o is invariant under the regular, canonical, but not necessarily infinitesi-
mal, transformation (g, p) — (g, p), and if (¢q(¢), p(2)) is a solution to the equations
of motion, so is the transformed (translated, rotated, etc.) trajectory, ((¢), p(1)).

Let us now analyze these two consequences.

Consequence I. Let us first verify that g is indeed conserved if # is invariant
under the transformation it generates. Working to first order in ¢, if we equate the
change in # under the change of its arguments to zero, we get

A 0 0
P (8_3§,>+% <_g£)=g{yf,g}=o (2.8.4)
7 Og: \ Opi/  Op. 0q;

But according to Eq. (2.7.2),
{g, #}=0—gis conserved (2.8.5)
(More generally, the response of any variable @ to the transformation is

dw=c¢l{w,g} (2.8.6)

99

REVIEW OF
CLASSICAL
MECHANICS



100

CHAPTER 2

Note that ép and 8¢ in Eq. (2.8.3) may also be written as PBs.) Consider as an
example, a particle in one dimension and the case g=p. From Eq. (2.8.3),

sr= P
op
A (2.8.7)
p=—¢ i;p:()
Ox

which we recognize to be an infinitesimal translation. Thus the linear momentum p
is the generator of spatial translations and is conserved in a translationally invariant
problem. The physics behind this result is clear. Since p is unchanged in a translation,
so is T=p*/2m. Consequently V(x+ €)= V{(x). But if the potential doesn’t vary from
point to point, there is no force and p is conserved.

Next consider an example from two dimensions with g=1/,= xp, —yp.. Here,

(2.8.8)

ol
Op,=p.€ (=—£ %)
ay

which we recognize to be an infinitesimal rotation around the z axis, [Eq. (2.8.2)].
Thus the angular momentum around the z axis is the generator of rotations around
that axis, and is conserved if # is invariant under rotations of the state around that
axis. The relation between the symmetry and the conservation law may be understood
in the following familiar terms. Under the rotation of the coordinates and the
momenta, |p| doesn’t change and so neither does T'= Ip|>/2m. Consequently, Vis a
constant as we go along any circle centered at the origin. This in turn means that
there is no force in the tangential direction and so no torque around the z axis. The
conservation of /. then follows.

Exercise 2.8.1. Show that p=p, + p,, the total momentum, is the generator of infintesimal
translations for a two-particle system.

Exercise 2.8.2.% Verify that the infinitesimal transformation generated by any dynamical
variable g is a canonical transformation. (Hint: Work, as usual, to first order in ¢.)

Exercise 2.8.3. Consider

L+
P S

] 2 2
+omoi (X +y?
o T me) )



whose invariance under the rotation of the coordinates and momenta leads to the conservation
of [.. But & is also invariant under the rotation of just the coordinates. Verify that this is a
noncanonical transformation. Convince yourself that in this case it is not possible to write
3H as e{ A, g} for any g, i.e., that no conservation law follows.

Exercise 2.8.4.% Consider # = 3p*+ 5x% which is invariant under infinitesimal rotations
in phase space (the x-p plane). Find the generator of this transformation (after verifying that
it is canonical ). (You could have guessed the answer based on Exercise 2.5.2.).

The preceding analysis yields, as a by-product, a way to generate infinitesimal
canonical transformations. We take any function g(g, p) and obtain the transforma-
tion given by Eq. (2.8.6). (Recall that although we defined a canonical transformation
earlier, until now we had no means of generating one.) Given an infinitesimal canon-
ical transformation, we can get a finite one by “integrating” it. The following
examples should convince you that this is possible. Consider the transformation
generated by g= . We have

6q,‘= & qi, H
{ } (2.8.9)
5Pi= E{pia '}f}
But we know from the equations of motion that ¢;= {g;, #} etc. So
5q,= &4;
. (2.8.10)
bp,'= 8p.,'

Thus the new point in phase space (g, p) = (g + 84, p+ ép) obtained by this canonical
transformation of (g, p) is just the point to which (g, p) would move in an infinitesi-
mal time interval €. In other words, the motion of points in phase space under the
time evolution generated by 4 is an active canonical transformation. Now, you
know that by integrating the equations of motion, we can find (g, p) at any future
time, i.e., get the finite canonical transformation. Consider now a general case of
g##. We still have

0g;=€{q:, g}

(2.8.11)
Spi=¢€{pi. g}

Mathematically, these equations are identical to Eq. (2.8.9), with g playing the role
of the Hamiltonian. Clearly there should be no problem integrating these equations
for the evolution of the phase space points under the “fake” Hamiltonian g, and
fake “time” ¢. Let us consider for instance the case g =1/ which has units erg sec
and the corresponding fake time ¢= 80, an angle. The transformation of the coordi-
nates is

dx=¢e{x, L.} =—gy=(—60)y

2.8.12
Sy=(80)x ( )
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The fake equations of motion are

dx _ d_

= = 2813
a0 a " (28.13)

Differentiating first with respect to 6, and using the second, we get

2

d-x
:+x=0
do-
and likewise,
d*y
ﬁ..:..’.. + p= 0
a

So
x=Acos 0+ Bsin 0
y=Csiu 6+ D cos 0

We find the constants from the “‘initial” (0 =0) coordinates and ““velocities”: A4 =
Xo, D=yo, B=(0x/00)o=—yo, C=(0y/36)y=x,. Reverting to the standard nota-
tion in which (x, y), rather than (xo. yo), labels the initial point and (X, y), rather
than (x, y), denotes the transformed one, we may write the finite canonical trans-
formation (a finite rotation) as

X=xcosf—ysin @
. (2.8.14)
y=xsin 8+ycos 6

Similar equations may be derived for p, and P, in terms of p, and p,.

Although a wide class of canonical transformations is now open to us, there
are many that aren’t. For instance, (g, p) = (—¢, —p) is a discrete canonical trans-
formation that has no infinitesimal version. There are also the transformations that
are not regular, such as the change from Cartesian to spherical coordinates, which
have neither infintesimal forms, nor an active interpretation. We do not consider
ways of generating these.]

Consequence II. Let us understand the content of this result through an example
before turning to the proof. Consider a two-particle system whose Hamiltonian is
invariant under the translation of the entire system, i.e., both particles. Let an
observer S, prepare, at 1=0, a state (x}, x3:p7, p3) which evolves as (x,(¢), x2(¢);
pi(1), p2(1)) for some time and ends up in the state (x], x5 p1, p7) at time 7. Let

I For an excellent and lucid treatment of this question and many other topics in advanced classical
mechanics, see H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1950); E.
C. G. Sudharshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York
(1974).



us call the final state the outcome of the experiment conducted by S,. We are told
that as a result of the translational invariance of #, any other trajectory that is
related to this by an arbitrary translation a is also a solution to the equations of
motion. In this case, the initial state, for example, is (x}+a, x3+a; p, p3). The final
state and all intermediate states are likewise displaced by the same amount. To an
observer Sp, displaced relative to S, by an amount g, the evolution of the second
system will appear to be identical to what S, saw in the first. Assuming for the sake
of this argument that S had in fact prepared the second system, we may say that
a given experiment and its translated version will give the same result (as seen by
the observers who conducted them) if # is translationally invariant.

The physical idea is the following. For the usual reasons, translational invariance
of # implies the invariance of V(x;, x;). This in turn means that V(x;, x;)=
V(x;— x5). Thus each particle cares only about where the other is relative to it, and
not about where the system as a whole is in space. Consequently the outcome of the
experiment is not affected by an overall translation.

Consequence II is just a generalization of this result to other canonical trans-
formations that leave # invariant. For instance, if # is rotationally invariant, a
given experiment and its rotated version will give the same result (according to the
observers who conducted them).

Let us now turn to the proof of the general result.

Proof. Tmagine a trajectory (¢(¢), p(¢)) in phase space that satisfies the equations
of motion. Let us associate with it an image trajectory, (g(z), p(¢)), which is obtained
by transforming each point (g, p) to the image point (g, p) by means of a regular
canonical transformation. We ask if the image point moves according to Hamilton’s
equation of motion, i.e., if

. O0H(G,p . 0K p
5=22XG@D o 0HGP) (2.8.15)
op; g

if # is invariant under the transformation (g, p) — (g, p). Now §;(q, p), like any
dynamical variable w(qg, p), obeys

§G=1{G;, #(4, D)} ep (2.8.16)

If (g, p) = (g, p) were a passive canonical transformation, we could write, since the
PB are invariant under such a transformation,

. _ - 0H#(q, p
qj={qj,%(q,p)}qﬁ{q/,%(q,p)}q,f—%
J

But it is an active transformation. However, because of the symmetry of H#, i.e.,
H(q, p)=#(q, p), we can go through the very same steps that led to Eq. (2.7.16)
from Eq. (2.7.14) and prove the result. If you do not believe this, you may verify it
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by explicit computation using #(q, p) = #(g, p). A similar argument shows that

3]

PYSCEACY) (2.8.17)

=1y

0

=R

So the image point moves according to Hamilton’s equations. Q.E.D.

Exercise 2.8.5. Why is it that a noncanonical transformation that leaves # invariant
does not map a solution into another? Or, in view of the discussions on consequence II, why
is it that an experiment and its transformed version do not give the same result when the
transformation that leaves # invariant is not canonical? It is best to consider an example.
Consider the potential given in Exercise 2.8.3. Suppose I release a particle at (x=a, y=0)
with (p.=b, p,=0) and you release one in the transformed state in which (x=0, y=4) and
(p.=b, p,=0), i.e., you rotate the coordinates but not the momenta. This is a noncanonical
transformation that leaves 5 invariant. Convince yourself that at later times the states of the
two particles are not related by the same transformation. Try to understand what goes wrong
in the general case.

As you go on and learn quantum mechanics, you will see that the symmetries
of the Hamiltonian have similar consequences for the dynamics of the system.

A Useful Relation Between § and E

We now prove a result that will be invoked in Chapter 16:

6Scl (xfs l,f’ Xis li)_ _ #(l‘ )
L T T 5

A

oty

where Sa (x/, t7; X;, t;) is the action of the classical path from x;, ¢ to x;, t, and H#
is the Hamiltonian at the upper end point. Since we shall be working with problems
where energy is conserved we may write

OSc (Xr, tr; Xi, 1)

A

oty

—E (2.8.18)

where E is the conserved energy, constant on the whole trajectory.
At first sight you may think that since

ty
SCI:J & dt

1



Figure 2.5. The upper trajectory takes time ¢ while the lower
takes 7+ At.

n(t)
X4(t)

tt+ At

the right side must equal % and not —E. The explanation requires Fig. 2.5 wherein

we have set x;=t,=0 for convenience.

The derivative we are computing is governed by the change in action of the
classical path due to a change in travel by Ar holding the end points x; and x; fixed.
From the figure it is clear that now the particle takes a different classical trajectory

x(£)=xq()+n(t) with 7(0)=0.

so that the total change in action comes from the difference in paths between =0
and t=1, as well as the entire action due to the extra travel between #r and 1, + Aty

Only the latter is given #At. The correct answer is then

]/‘ -~
5sd=J [g nin+2Z f;(t)} di+ 2(1)) At
0 Ox ox

‘ - - i
=JI(_E U_%Jr?g) n(t)dt+J d
0

dt ox Ox

Xel

0

=0+§i({i ()| +L(t) At.
0x .

v

It is clear from the figure that n(¢,)=—x(t;) At so that

55= [—(ﬂi_p_wg} At=—#(t;) At

0X
I

from which the result follows.

Exercise 2.8.6. Show that 0S./0x,=p(t;).

dt

[a—% n(t)] dt+ L (1) At
ox

Exercise 2.8.7. Consider the harmonic oscillator, for which the general solution is

x(1)= A4 cos ot + B sin ot.
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Express the energy in terms of 4 and B and note that it does not depend on time. Now choose
4 and B such that x(0)=x, and x(7') =x,. Write down the energy in terms of x,, x,, and 7.
Show that the action for the trajectory connecting x, and x, is

me .
Sa(xi, %, Ty=——[(x1+x3) cos ©T—2x1x,].
2sinwT

Ver]‘t‘y that 6SC1//67‘= —L



All Is Not Well with
Classical Mechanics

It was mentioned in the Prelude that as we keep expanding our domain of observa-
tions we must constantly check to see if the existing laws of physics continue to
explain the new phenomena, and that, if they do not, we must try to find new laws
that do. In this chapter you will get acquainted with experiments that betray the
inadequacy of the classical scheme. The experiments to be described were never
performed exactly as described here, but they contain the essential features of the
actual experiments that were performed (in the first quarter of this century) with
none of their inessential complications.

3.1. Particles and Waves in Classical Physics

There exist in classical physics two distinct entities: particles and waves. We
have studied the particles in some detail in the last chapter and may summarize their
essential features as follows. Particles are localized bundles of energy and momentum.
They are described at any instant by the state parameters g and ¢ (or g and p). These
parameters evolve in time according to some equations of motion. Given the initial
values ¢(¢;) and ¢(¢;) at time #;, the trajectory ¢(¢) may be deduced for all future
times from the equations of motion. A wave, in contrast, is a disturbance spread over
space. It is described by a wave function w(r, ¢) which characterizes the disturbance at
the point r at time ¢.

In the case of sound waves, v is the excess air pressure above the normal, while
in the case of electromagnetic waves, ¥ can be any component of the electric field
vector E. The analogs of ¢ and ¢ for a wave are y and ¥ at each point r, assuming
y obeys a second-order wave equation in time, such as

Vzl,U: —_

iy
at2

r\"ul p—

4]
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(a) A (b)

I, bz
) T™
5 U
t Y T %min
1’ Figure 3.1. (a) When a wave y=¢ """
SZF is incident on the screen with either slit S,
or S, open, the intensity patterns /, and /,,
g respectively, are measured by the row of
(w,k)—= I, B detectors on 4B. (b) With both slits open,

r’y [R—— I,,#I+I, the pattern /;., is observed. Note that
X I+ >#1,+1,. This is called interference.

which describes waves propagating at the speed of light, ¢. Given y(r, 0) and y(r, 0)
one can get the wave function w(r, ¢) for all future times by solving the wave
equation.

Of special interest to us are waves that are periodic in space and time, called
plane waves. In one dimension, the plane wave may be written as

wix,t)=A4 exp[i(%x—%rﬂEAexp[iq}] (3.1.1)

At some given time ¢, the wave is periodic in space with a period A, called its
wavelength, and likewise at a given point x, it is periodic in time, repeating itself
every T seconds, T being called the time period. We will often use, instead of A and
T, the related quantities k= 2x /A called the wave number and w =2x/T called the
(angular) frequency. In terms of the phase ¢ in Eq. (3.1.1), k measures the phase
change per unit length at any fixed time ¢, while @ measures the phase change per
unit time at any fixed point x. This wave travels at a speed v=/k. To check this
claim, note that if we start out at a point where ¢ =0 and move along x at a rate
x=(w/k)t, ¢ remains zero. The overall scale 4 up front is called the amplitude. For
any wave, the intensity is defined to be I=|y|” For a plane wave this is a constant
equal to | 4> If y describes an electromagnetic wave, the intensity is a measure of
the energy and momentum carried by the wave. [Since the electromagnetic field is
real, only the real part of y describes it. However, time averages of the energy and
momentum flow are still proportional to the intensity (as defined above) in the case
of plane waves.]

Plane waves in three dimension are written as

wr,)=A4% %" o=klv (3.1.2)
where each component k; gives the phase changes per unit length along the ith axis.
+

One calls k the wave vector .

3.2. An Experiment with Waves and Particles (Classical)

Waves exhibit a phenomenon called interference, which is peculiar to them and
is not exhibited by particles described by classical mechanics. This phenomenon is
illustrated by the following experiment (Fig. 3.1a). Let a wave y =4 ¢*°" be

1 Unfortunately we also use k to denote the unit vector along the - axis. It should be clear from the
context what it stands for.



(a) L A (b) A

Figure 3.2. (a) Intensity pattern ]
when S, or S, is open, due to a S San

e x
beam of incident particles. (b) The !
pattern with both slits open accord- 1
. . . z
ing to classical mechanics (f;.,= 8
L+DL). 8 .27 L+,

incident normally on a screen with slits S; and S,, which are a distance a apart. At
a distance d parallel to it is a row of detectors that measures the intensity as a
function of the position x measured along 4B.

If we first keep only S, open, the incident wave will come out of S; and propagate
radially outward. One may think of S, as the virtual source of this wave y,, which
has the same frequency and wavelength as the incident wave. The intensity pattern
I =|y,|* is registered by the detectors. Similarly if S, is open instead of S;, the wave
v produces the pattern I, =|y,|°. In both cases the arrival of energy at the detectors
is a smooth function of x and ¢.

Now if both S§; and S, are opened, both waves y, and y, are present and
produce an intensity pattern I, o=y, + y,|°.

The interesting thing is that I, ,#1; + I, but rather the interference pattern
shown in Fig. 3.1b. The ups and downs are due to the fact that the waves v, and
v> have to travel different distances d, and 4, to arrive at some given x (see Fig.
3.1a) and thus are not always in step. In particular, the maxima correspond to the
case d,—d;=nA (n is an integer), when the waves arrive exactly in step, and the
minima correspond to the case d> —d) = (2n+1)A/2, when the waves are exactly out
of step. In terms of the phases ¢ and ¢,, ¢»(x)— ¢ (x)=2nr at a maximum and
¢2(x) = ¢1(x)=(2n+ 1)7r at a minimum. One can easily show that the spacing Ax
between two adjacent maxima is Ax = Ad/a.

The feature to take special note of is that if x.;, is an interference minimum,
there is more energy flowing into Xy, with just one slit open than with both. In
other words, the opening of an extra slit can actually reduce the energy flow into
Xmin -

Consider next the experiment with particles (Fig. 3.2a). The source of the inci-
dent plane waves is replaced by a source of particles that shoots them toward the
screen with varying directions but fixed energy. Let the line 4B be filled with an
array of particle detectors. Let us define the intensity /(x) to be the number of
particles arriving per second at any given x. The patterns with S; or S, open are
shown in (Fig. 3.2a). These look very much like the corresponding patterns for the
wave. The only difference will be that the particles arrive not continuously, but in a
staccato fashion, each particle triggering a counter at some single point x at the time
of arrival. Although this fact may be obscured if the beam is dense, it can be easily
detected as the incident flux is reduced.

What if both S, and S, are opened? Classical mechanics has an unambiguous
prediction: /,.,=1;+ L. The reasoning is as follows: each particle travels along a
definite trajectory that passes via S; or S to the destination x. To a particle headed
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for S, it is immaterial whether S, is open or closed. Being localized in space it has
no way of even knowing if S, is open or closed, and thus cannot respond to it in
any way. Thus the number coming via S; to x is independent of whether S; is open
or not and vice versa. It follows that /,.»,=1,+ 1, (Fig. 3.2b).

The following objection may be raised: although particles heading for S, are
not aware that S, is open, they certainly can be deflected by those coming out of
S,, if, for instance, the former are heading for x, and the latter for x, (see Fig. 3.1a).

This objection can be silenced by sending in one particle at a time. A given
particle will of course not produce a pattern like /; or I, by itself, it will go to some
point x. If, however, we make a histogram, the envelope of this histogram, after
many counts, will define the smooth functions 7,, >, and /, .,. Now the conclusion
Ii.,=1,+ 1 is inevitable.

This is what classical physics predicts particles and waves will do in the double-
slit experiment.

3.3. The Double-Slit Experiment with Light

Consider now what happens when we perform the following experiment to check
the classical physics notion that light is an electromagnetic wave phenomenon.

We set up the double slit as in Fig. 3.1a, with a row of light-sensitive meters
along AB and send a beam y =4 ¢"**~“" in a direction perpendicular to the screen.
(Strictly speaking, the electromagnetic wave must be characterized by giving the
orientation of the E and B vectors in addition to @ and k. However, for a plane
wave, B is uniquely fixed by E. If we further assume E is polarized perpendicular to
the page, this polarization is unaffected by the double slit. We can therefore suppress
the explicit reference to this constant vector and represent the field as a scalar function
w.) We find that with the slits open one at a time we get patterns /, and I, and
with both slits open we get the interference pattern /., as in Figs. 3.1a and 3.1b.
(The interference pattern is of course what convinced classical physicists that light
was a wave phenomenon.) The energy arrives at the detectors smoothly and continu-
ously as befitting a wave.

Say we repeat the experiment with a change that is expected (in classical physics)
to produce no qualitative effects. We start with S, open and cut down the intensity.
A very strange thing happens. We find that the energy is not arriving continuously,
but in sudden bursts, a burst here, a burst there, etc. We now cut down the intensity
further so that only one detector gets activated at a given time and there is enough
of a gap, say a millisecond, between counts. As each burst occurs at some x, we
record it and plot a histogram. With enough data, the envelope of the histogram
becomes, of course, the pattern /,. We have made an important discovery: light
energy is not continuous—it comes in bundles. This discrete nature is obscured in
intense beams, for the bundles come in so fast and all over the line 4B, that the
energy flow seems continuous in space and time.

We pursue our study of these bundles, called photons, in some detail and find
the following properties:

1. Each bundle carries the same energy E.
2. Each bundle carries the same momentum p.



3. E=pc. From the famous equation E*=p’c’+m’c*, we deduce that these bundles
are particles of zero mass.
4. If we vary the frequency of the light source we discover that

E=Hho (3.3.1)
p=Tik (3.3.2)

where i=h/2n is a constant. The constant 4 is called Planck’s constant, and has the
dimensions of erg sec, which is the same as that of action and angular momentum.
Its value is

L. ~ 107" erg sec (3.3.3)
2w

For those interested in history, the actual experiment that revealed the granular
nature of light is called the photoelectric effect. The correct explanation of this experi-
ment, in terms of photons, was given by Einstein in 1905.

That light is made of particles will, of course, surprise classical physicists but
will not imply the end of classical physics, for physicists are used to the idea that
phenomena that seem continuous at first sight may in reality be discrete. They will
cheerfully plunge into the study of the dynamics of the photons, trying to find the
equations of motion for its trajectory and so on. What really undermines classical
physics is the fact that if we now open both slits, still keeping the intensity so low
that only one photon is in the experimental region at a given time, and watch the
histogram take shape, we won’t find that 7, ., equals 7, + I, as would be expected of
particles, but is instead an interference pattern characteristic of wave number k.
This result completely rules out the possibility that photons move in well-defined
trajectories like the particles of classical mechanics—for if this were true, a photon
going in via S, should be insensitive to whether S, is open or not (and vice versa),
and the result 7,.,=1,+ 1, is inescapable! To say this another way, consider a point
Xmin Which is an interference minimum. More photons arrive here with ¢ither S; or
S open than with both open. If photons followed definite trajectories, it is incompre-
hensible how opening an extra pathway can reduce the number coming to X, . Since
we are doing the experiment with one photon at a time, one cannot even raise the
improbable hypothesis that photons coming out of S| collide with those coming out
of §> to modify (miraculously) the smooth pattern I, + I, into the wiggly interference
pattern.

From these facts Born drew the following conclusion: with each photon is
associated a wave y, called the probability amplitude or simply amplitude, whose
modulus squared |w(x)|* gives the probability of finding the particle at x. [Strictly
speaking, we must not refer to |w(x)|> as the probability for a given x, but rather
as the probability density at x since x is a continuous variable. These subtleties can,
however, wait.] The entire experiment may be understood in terms of this hypothesis
as follows. Every incoming photon of energy £ and momentum p has a wave function
y associated with it, which is a plane wave with @ =E/# and k=p/#. This wave
interferes with itself and forms the oscillating pattern | y(x)|* along AB, which gives
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the probability that the given photon will arive at x. A given photon of course arrives
at some definite x and does not reveal the probability distribution. If, however, we
wait till several photons, all described by the same y, have arrived, the number at
any x will become proportional to the probability function |y (x)|°. Likewise, if an
intense (macroscopic) monochromatic beam is incident, many photons, all described
by the same wave and hence the same probability distribution, arrive at the same
time and all along the line AB. The intensity distribution then assumes the shape of
the probability distribution right away and the energy flow seems continuous and in
agreement with the predictions of classical electromagnetic theory.

The main point to note, besides the probability interpretation, is that a wave
is associated not with a beam of photons, but with each photon. If the beam is
monochromatic, every photon is given by the same y and the same probability
distribution. A large ensemble of such photons will reproduce the phenomena
expected of a classical electromagnetic wave yw and the probabilistic aspect will be
hidden.

3.4. Matter Waves (de Broglic Waves)

That light, which one thought was a pure wave phenomenon, should consist of
photons, prompted de Broglie to conjecture that entities like the electron, generally
believed to be particles, should exhibit wavelike behavior. More specifically, he con-
jectured, in analogy with photons, that particles of momentum p will produce an
interference pattern corresponding to a wave number k =p/#i in the double-slit experi-
ment. This prediction was verified for electrons by Davisson and Germer, shortly
thereafter. It is now widely accepted that all particles are described by probability
amplitudes w(x), and that the assumption that they move in definite trajectories is
ruled out by experiment.

But what about common sense, which says that billiard balls and baseballs
travel along definite trajectories? How did classical mechanics survive for three cen-
turies? The answer is that the wave nature of matter is not apparent for macroscopic
phenomena since 7 is so small. The precise meaning of this explanation will become
clear only after we fully master quantum mechanics. Nonetheless, the following
example should be instructive. Suppose we do the double-slit experiment with pellets
of mass 1 g, moving at 1 cm/sec. The wavelength associated with these particles is

which is 10™"* times smaller than the radius of the proton! For any reasonable values
of the parameters a and d (see Fig. 3.1b), the interference pattern would be so dense
in x that our instruments will only measure the smooth average, which will obey
I, .,=1I+1I, as predicted classically.

3.5. Conclusions

The main objective of this chapter was to expose the inadequacy of classical
physics in explaining certain phenomena and, incidentally, to get a glimpse of what



the new (quantum) physics ought to look like. We found that entities such as the
electron are particles in the classical sense in that when detected they seem to carry
all their energy, momentum, charge, etc. in localized form; and at the same time
they are not particlelike in that assuming they move along definite trajectories leads
to conflict with experiment. It appears that each particle has associated with it a
wave function w(x, ¢), such that |w(x, t)|> gives the probability of finding it at a
point x at time 7. This is called wave-particle duality.

The dynamics of the particle is then the dynamics of this function y(x, ¢) or, if
we think of functions as vectors in an infinite-dimensional space, of the ket |y (?)).
In the next chapter the postulates of quantum theory will define the dynamics in
terms of | y(¢)). The postulates, which specify what sort of information is contained
in |y(#)> and how |y(#)) evolves with time, summarize the results of the double-
slit experiment and many others not mentioned here. The double-slit experiment was
described here to expose the inadequacy of classical physics and not to summarize
the entire body of experimental results from which all the postulates could be inferred.
Fortunately, the double-slit experiment contains most of the central features of the
theory, so that when the postulates are encountered in the next chapter, they will
appear highly plausible.
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The Postulates—a
General Discussion

Having acquired the necessary mathematical training and physical motivation, you
are now ready to get acquainted with the postulates of quantum mechanics. In this
chapter the postulates will be stated and discussed in broad terms to bring out
the essential features of quantum theory. The subsequent chapters will simply be
applications of these postulates to the solution of a variety of physically interesting
problems. Despite your preparation you may still find the postulates somewhat
abstract and mystifying on this first encounter. These feelings will, however, dis-
appear after you have worked with the subject for some time.

4.1. The Postulates}

The following are the postulates of nonrelativistic quantum mechanics. We
consider first a system with one degree of freedom, namely, a single particle in one
space dimension. The straightforward generalization to more particles and higher
dimensions will be discussed towards the end of the chapter. In what follows, the
quantum postulates are accompanied by their classical counterparts (in the Hamil-
tonian formalism) to provide some perspective.

Classical Mechanics Quantum Mechanics
I.  The state of a particle at any given [. The state of the particle is represen-
time is specified by the two variables ted by a vector |w(¢)) in a Hilbert
x(t) and p(?), i.e., as a point in a two- space.

dimensional phase space.

II. Every dynamical variable @ is a II. The independent variables x and p of
function of x and p: @ =w(x, p). classical mechanics are represented

I Recall the discussion in the Preface regarding the sense in which the word is used here.
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116 by Hermitian operators X and P
CHAPTER 4 with the following matrix elements
in the eigenbasis of X

x| X|x'>=x8(x—x")
{x|Pix'y=—ihé ' (x—x")
The operators corresponding to
dependent variables o(x,p) are
given Hermitian operators

QX, P)=o(x—X, p—P)§

IIL. If the particle is in a state given by IIL If the particle is in a state | y >, meas-

x and p, the measurement| of the urement’ of the variable {corre-
variable o will yield a value o(x, p). sponding to) Q will yield one of the
The state will remain unaffected. eigenvalues ® with probability

P(o)x|{w]|w)|* The state of the
system will change from |y) to |@)
as a result of the measurement.

IV. The state variables change with time IV. The state vector |w(f))> obeys the

according to Hamilton’s equations: Schridinger equation
. OH L, d
x= ihi— |y (1))=Hly (1))
op dt
__oF where H(X, P)=#(x—-X, p—P) is
P the quantum Hamiltonian operator

and # is the Hamiltonian for the
corresponding classical problem.

4.2. Discussion of Postulates I-I1I

The postulates (of classical and quantum mechanics) fall naturally into two
sets: the first three, which tell us how the system is depicted at a given time, and the
last, which specifies how this picture changes with time. We will confine our attention
to the first three postulates in this section, leaving the fourth for the next.

The first postulate states that a particle is described by a ket |y ) in a Hilbert
space which, you will recall, contains proper vectors normalizable to unity as well as

1 Note that the X operator is the same one discussed at length in Section 1.10. Likewise P=#K, where
K was also discussed therein. You may wish to go over that section now to refresh your memory.

§ By this we mean that  is the same function of X and P as o is of x and p.

|| That is, in an ideal experiment consistent with the theory. It is assumed you are familiar with the ideal
classical measurement which can determine the state of the system without disturbing it in any way. A
discussion of ideal quantum measurements follows.



improper vectors, normalizable only to the Dirac delta functions.f Now, a ket in
such a space has in general an infinite number of components in a given basis. One
wonders why a particle, which had only two independent degrees of freedom, x and
p, in classical mechanics, now needs to be specified by an infinite number of variables.
What do these variables tell us about the particle? To understand this we must go
on to the next two postulates, which answer exactly this question. For the present
let us note that the double-slit experiment has already hinted to us that a particle
such as the electron needs to be described by a wave function w(x). We have seen
in Section 1.10 that a function f(x) may be viewed as a ket | /> in a Hilbert space.
The ket |y ) of quantum mechanics is none other than the vector representing the
probability amplitude w(x) introduced in the double-slit experiment.

When we say that |y is an element of a vector space we mean that if |y ) and
|w") represent possible states of a particle so does a|w >+ Bly’'>. This is called the
principle of superposition. The principle by itself is not so new: we know in classical
physics, for example, that if f(x) and g(x) [with f(0)=f(L)=g(0)=g(L)=0] are
two possible displacements of a string, so is the superposition af(x)+ fg(x). What
is new is the interpretation of the superposed state a|y >+ S| w'>. In the case of the
string, the state af+ g has very different attributes from the states fand g: it will
look different, have a different amount of stored elastic energy, and so on. In quantum
theory, on the other hand, the state a|w) + | y'> will, loosely speaking, have attri-
butes that sometimes resemble that of |y ) and at other times those of |y’). There
is, however, no need to speak loosely, since we have postulates II and III to tell us
exactly how the state vector |y ) is to be interpreted in quantum theory. Let us find
out.

In classical mechanics when a state (x, p) is given, one can say that any dynam-
ical variable @ has a value @(x, p), in the sense that if the variable is measured the
result w(x, p) will obtain. What is the analogous statement one can make in quantum
mechanics given that the particle is in a state |y)? The answer is provided by
Postulates II and III, in terms of the following steps:

Step 1. Construct the corresponding quantum operator Q=w(x—X, p—P),
where X and P are the operators defined in postulate II.

Step 2. Find the orthonormal eigenvectors |@;> and eigenvalues w; of Q.

Step 3. Expand |y ) in this basis:

ly>=2 o)<y

Step 4. The probability P(w) that the result @ will obtain is proportional to
the modulus squared of the projection of |y} along the eigenvector |, that is
P(w)x<c|<{w|y)*>. In terms of the projection operator P,=|o)<{w|,
P(@)oc[{o | y)I’ =y o) o] y)=< Y|P, |y>=Cy|P.Puly) =<P,y | P,y).

There is a tremendous amount of information contained in these steps. Let us
note, for the present, the following salient points.

I The status of the two classes will be clarified later in this chapter.
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(1) The theory makes only probabilistic predictions for the result of a measure-
ment of Q. Further, it assigns (relative) probabilities only for obtaining some eigen-
value w of Q. Thus the only possible values of Q are its eigenvalues. Since postulate
IT demands that Q be Hermitian, these eigenvalues are all real.

(2) Since we are told that P(w;)oc|<w;| w>|?, the quantity |{w,| w>|* is only
the relative probability. To get the absolute probability, we divide [<w;| w)|* by the
sum of all relative probabilities:

Ko W _ Koyl

Plw;)= (4.2.1)
YKoyl Cyly
It is clear that if we had started with a normalized state
ly>
vy =t
ylyy'?
we would have had
Plw) =<0y (4.2.2)

If |w) is a proper vector, such a rescaling is possible and will be assumed
hereafter. The probability interpretation breaks down if |y > happens to be one of
the improper vectors in the space, for in this case {y| y)>=05(0) is the only sensible
normalization. The status of such vectors will be explained in Example 4.2.2 below.

Note that the condition {y | v ) =1 is a matter of convenience and not a physical
restriction on the proper vectors. (In fact the set of all normalized vectors does not
even form a vector space. If |w) and |y’) are normalized, then an arbitrary linear
combination, a|y >+ Bly’>, is not.)

Note that the relative probability distributions corresponding to the states |y )
and a| ), when they are renormalized to unity, reduce to the same absolute probabil-
ity distribution. Thus, corresponding to each physical state, there exists not one
vector, but a ray or “direction’ in Hilbert space. When we speak of the state of the
particle, we usually mean the ket |w) with unit norm. Even with the condition
{w|w>=1, we have the freedom to multiply the ket by a number of the form e’
without changing the physical state. This freedom will be exploited at times to make
the components of |y} in some basis come out real.

(3) If |y> is an eigenstate | @, the measurement of Q is guaranteed to yield
the result ;. A particle in such a state may be said to have a value o, for Q in the
classical sense.

(4) When two states |@,)» and |@,) are superposed to form a (normalized)
state, such as

_alowy+ o)

ATy TR

one gets the state, which upon measurement of Q, can yield either @, or w, with
probabilities |a|?/(Ja|*+|B/%) and | B|*/(|a|*+]|B|*), respectively. This is the peculiar



a)

lwp ¥iIxp)
Figure 4.1. (a) The normalized ket in V’(R) representing the state of the particle. (b) The Q basis, |@;),
lw,>, and |@;). (¢) The Q and the A bases. To get the statistical information on a variable, we find the
eigenvectors of the corresponding operator and project |y ) on that basis.

consequence of the superposition principle in quantum theory, referred to earlier. It
has no analog in classical mechanics. For example, if a dynamical variable of the
string in the state af+ fg is measured, one does not expect to get the value corre-
sponding to f some of the time and that corresponding to g the rest of the time;
instead, one expects a unique value generally distinct from both. Likewise, the
functions f and af («a real) describe two distinct configurations of the string and are
not physically equivalent.

(5) When one wants information about another variable A, one repeats the
whole process, finding the eigenvectors |A;) and the eigenvalues A,. Then

P =<yl

The bases of Q2 and A will of course be different in general. In summary, we have a
single ket | ) representing the state of the particle in Hilbert space, and it contains
the statistical prediction for all observables. To extract this information for any
observable, we must determine the eigenbasis of the corresponding operator and find
the projection of |y ) along all its eigenkets.

(6) As our interest switches from one variable Q, to another, A, so does our
interest go from the kets |@), to the kets |A). There is, however, no need to change
the basis each time. Suppose for example we are working in the Q basis in which

|w>=Z_|mf><wqu/>

and P(w;)=|<w;| w>|>. If we want P(1;) we take the operator A (which is some
given matrix with elements A=< ;| Alw,>); find its eigenvectors |A,> (which are
column vectors with components {@;|A,>), and take the inner product {4;| v) in
this basis:

il w>=Y <Al @) <oy w)

Example 4.2.1. Consider the following example from a fictitious Hilbert space
V*(R) (Fig. 4.1). In Fig. 4.1a we have the normalized state |y ), with no reference
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to any basis. To get predictions on €, we find its eigenbasis and express the state
vector |w) in terms of the orthonormal eigenvectors |@;), |®,), and |w;) (Fig.
4.1b). Let us suppose

1 1 1
|w>=§|a),>+£|a)z>+§;3|w3>

This means that the values w,, @,, and w; are expected with probabilities i,
and 5, respectively, and other values of @ are impossible. If instead |y were some
eigenvector, say |@,), then the result @, would obtain with unit probability. Only a
particle in a state |y)=|w,) has a well-defined value of Q in the classical sense. If
we want P(A;) we construct the basis |4,), [1;), and |A;>, which can in general be
distinct from the € basis. In our example (Fig. 4.1c) there is just one common
eigenvector |ws)=|45). O

Returning to our main discussion, there are a few complications that could arise
as one tries to carry out the steps 1-4. We discuss below the major ones and how
they are to be surmounted.

Complication 1: The Recipe Q= wfx—-X, p—P) Is Ambiguous. If, for example,
o = xp, we don’t know if Q=X P or PX since xp = px classically. There is no universal
recipe for resolving such ambiguities. In the present case, the rule is to use the
symmetric sum: Q= (XP+ PX)/2. Notice incidentally that symmetrization also
renders Q Hermitian. Symmetrization is the answer as long as Q does not involve
products of two or more powers of X with two or more powers of P. If it does, only
experiment can decide the correct prescription. We will not encounter such cases in
this book.

Complication 2: The Operator 2 Is Degenerate. Let us say o= @>=w. What

is P(w) in this case? We select some orthonormal basis |@, 1) and |, 2) in the
eigenspace V,, with eigenvalue ®. Then :

P(w)=[{o, 1|y +]<o, 2| y)I’
which is the modulus squared of the projection of |y ) in the degenerate eigenspace.
This is the result we will get if we assume that w, and @, are infintesimally distinct
and ask for P(®, or w,). In terms of the projection operator for the eigenspace,

Po=|a, I){w, | +|o, 2){o, 2| (4.2.3a)
we have

P(o)=y|Poly) =Py | Poy) (4.2.3b)

In general, one can replace in Postulate III

Plw)oc{y|Pyly)



where P, is the projection operator for the eigenspace with eigenvalue . Then
postulate III as stated originally would become a special case in which there is no
degeneracy and each eigenspace is simply an eigenvector.

In our example from V’(R), if @, =w,= o (Fig. 4.1b) then P(w) is the square
of the component of |y ) in the “x y” plane.

Complication 3. The Eigenvalue Spectrum of €2 Is Continuous. In this case one
expands |y) as

lw>=f|w><wlw>dw

One expects that as @ varies continuously, so will (@ | y), that is to say, one expects
{w|y) to be a smooth function y(w). To visualize this function one introduces an
auxiliary one-dimensional space, called the @ space, the points in which are labeled
by the coordinate . In this space y (@) will be a smooth function of @ and is called
the wave function in the @ space. We are merely doing the converse of what we did
in Section 1.10 wherein we started with a function f(x) and tried to interpret it as
the components of an infinite-dimensional ket |y in the x> basis. As far as the
state vector |y ) is concerned, there is just one space, the Hilbert space, in which it
resides. The @ space, the A space, etc. are auxiliary manifolds introduced for the
purpose of visualizing the components of the infinite-dimensional vector |y ) in the
Q basis, the A basis, and so on. The wave function y(o) is also called the probability
amplitude for finding the particle with Q= .

Can we interpret [{@|y)|® as the probability for finding the particle with a
value @ for Q? No. Since the number of possible values for @ is infinite and the
total probability is unity, each single value of @ can be assigned only an infinitesimal
probability. One interprets P(w)=|<@| )| to be the probability density at @, by
which one means that P(®) dw is the probability of obtaining a result between @
and @ +dw. This definition meets the requirement that the total probability be unity,
since

»

JP(w)dw=fl<w1 w>|2dw=f<w|w><w| v do
=iy =<yl pd>=1 (4.2.4)

If <y|y>=56(0) is the only sensible normalization possible, the state cannot be
normalized to unity and P(w) must be interpreted as the relative probability density.
We will discuss such improper states later.

An important example of a continuous spectrum is that of X, the operator
corresponding to the position x. The wave function in the X basis (or the x space),
y(x), is usually referred to as just the wave function, since the X basis is almost
always what one uses. In our discussions in the last chapter, |y (x)|> was referred to
as the probability for finding the particle ar a given x, rather than as the probability
density, in order to avoid getting into details. Now the time has come to become
precise!
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Earlier on we were wondering why it was that a classical particle defined by
just two numbers x and p now needs to be described by a ket which has an infinite
number of components. The answer is now clear. A classical particle has, at any
given time, a definite position. One simply has to give this value of x in specifying
the state. A quantum particle, on the other hand, can take on any value of x upon
measurement and one must give the relative probabilities for all possible outcomes.
This is part of the information contained in y(x)= (x| ), the components of |y )
in the X basis. Of course, in the case of the classical particle, one needs also to specify
the momentum p as well. In quantum theory one again gives the odds for getting
different values of momenta, but one doesn’t need a new vector for specifying this;
the same ket |w) when expanded in terms of the eigenkets |p) of the momentum
operator P gives the odds through the wave function in p space, y(p)={p|y).

Complication 4: The Quantum Variable £2 Has No Classical Counterpart. Even
“point” particles such as the electron are now known to carry “spin,” which is an
internal angular momentum, that is to say, angular momentum unrelated to their
motion through space. Since such a degree of freedom is absent in classical mechanics,
our postulates do not tell us which operator is to describe this variable in quantum
theory. As we will see in Chapter 14, the solution is provided by a combination of
intuition and semi-classical reasoning. It is worth bearing in mind that no matter
how diligently the postulates are constructed, they must often be supplemented by
intuition and classical ideas.

Having discussed the four-step program for extracting statistical information
from the state vector, we continue with our study of what else the postulates of
quantum theory tell us.

Collapse of the State Vector

We now examine another aspect of postulate 111, namely, that the measurement
of the variable Q changes the state vector, which is in general some superposition
of the form

ly>=2lw><{oly)

(3]

into the eigenstate |@) corresponding to the eigenvalue @ obtained in the measure-
ment. This phenomenon is called the collapse or reduction of the state vector.

Let us first note that any definitive statement about the impact of the measure-
ment process presupposes that the measurement process is of a definite kind. For
example, the classical mechanics maxim that any dynamical variable can be measured
without changing the state of the particle, assumes that the measurement is an ideal
measurement (consistent with the classical scheme). But one can think up nonideal
measurements which do change the state; imagine trying to locate a chandelier in a
dark room by waving a broom till one makes contact. What makes Postulate III
profound is that the measurement process referred to there is an ideal quantum
measurement, which in a sense is the best one can do. We now illustrate the notion
of an ideal quantum measurement and the content of this postulate by an example.



Consider a particle in a momentum eigenstate | p). The postulate tells us that
if the momentum in this state is measured we are assured a result p, and that the
state will be the same after the measurement (since |y > =|p) is already an eigenstate
of the operator P in question). One way to measure the momentum of the particle
is by Compton scattering, in which a photon of definite momentum bounces off the
particle.

Let us assume the particle is forced to move along the x-axis and that we send
in a right-moving photon of energy 7i® that bounces off the particle and returns as
a left-moving photon of energy fiw’. (How do we know what the photon energies
are? We assume we have atoms that are known to emit and absorb photons of any
given energy.) Using momentum and energy conservation:

cp=cptilo+aw)
E=E+#iow-o’)

it is now possible from this data to reconstruct the initial and final momenta of the
particle:

’ 2 4 — ’
=_(ﬁm+ﬁw)+ 1+Tc fiw —Hw
2 oo’ 2

’

(hw + fio') mc* o — hw'
=2y i
2 oo 2

Solving for @’ and p’ interms of @ and p, one readily sees that for any choice of p, if @ — 0,
then so does @’ Thus one can always make the change in momentum p'— p arbi-
trarily small. Hereafter, when we speak of a momentum measurement, this is
what we will mean. We will also assume that to each dynamical variable there exists
a corresponding ideal measurement. We will discuss, for example, the ideal position
measurement, which, when conducted on a particle in state |x), will give the result
x with unit probability and leave the state vector unchanged.

Suppose now that we measure the position of a particle in a momentum eigenstate
|p>. Since | p) is a sum of position eigenkets |x),

|P>=fIX> {xlpydx

the measurement will force the system into some state |x). Thus even the ideal
position measurement will change the state which is not a position eigenstate. Why
does a position measurement alter the state | p>, while momentum measurement does
not? The answer is that an ideal position measurement uses photons of infinitely
high momentum (as we will see) while an ideal momentum measurement uses photons
of infinitesimally low momentum (as we have seen).

This then is the big difference between classical and quantum mechanics: an
ideal measurement of any variable o in classical mechanics leaves any state invariant,
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whereas the ideal measurement of Q in quantum mechanics leaves only the eigenstates
of Q invariant.
The effect of measurement may be represented schematically as follows:

_ Poly)
€ measured, @ obtained <Pw Y ‘ pw W> 12

v

where P, is the projection operator associated with | @), and the state after measure-
ment has been normalized. If » is degenerate,

where P, is the projection operator for the eigenspace V,,. Special note should be
taken of the following point: if the initial state | ) were unknown, and the measure-
ment yielded a degenerate eigenvalue @, we could not say what the state was after
the measurement, except that it was some state in the eigenspace with eigenvalue .
On the other hand, if the initial state | w ) were known, and the measurement yielded
a degenerate value o, the state after measurement is known to be P,|y> (up to
normalization). Consider our example from V*(R) (Fig. 4.1b). Say we had o, =
w>= . Let us use an orthonormal basis |, 1), @, 2>, |®3), where, as usual, the
extra labels 1 and 2 are needed to distinguish the basis vectors in the degenerate
eigenspace. If in this basis we know, for example, that

lwy=slo, 1>+3]0,2)+(3) 7o)

and the measurement gives a value o, the normalized state after measurement is
known to us to be

ly>=2""Yo, >+|w,2))

If, on the other hand, the initial state were unknown and a measurement gave a
result o, we could only say

W= gy

where a and f§ are arbitrary real numbers.

Note that although we do not know what a and § are from the measurement,
they are not arbitrary. In other words, the system had a well-defined state vector
|w> before the measurement, though we did not know |y, and has a well-defined
state vector P,y after the measurement, although all we know is that it lies within
a subspace V,,.



How to Test Quantum Theory

One of the outstanding features of classical mechanics is that it makes fully
deterministic predictions. It may predict for example that a particle leaving x = x;
with momentum p; in some potential V(x) will arrive 2 seconds later at x= x, with
momentum p=p,. To test the prediction we release the particle at x =x; with p=p,
at t=0 and wait at x=x, and see if the particle arrives there with p=p, at t=2
seconds.

Quantum theory, on the other hand, makes statistical predictions about a
particle in a state |y) and claims that this state evolves in time according to
Schrodinger’s equation. To test these predictions we must be able to

(1) Create particles in a well-defined state |y ).
(2) Check the probabilistic predictions at any time.

The collapse of the state vector provides us with a good way of preparing definite
states: we begin with a particle in an arbitrary state |y ) and meaure a variable Q.
If we get a nondegenerate eigenvalue @, we have in our hands the state (o). (If @
is degenerate, further measurement is needed. We are not ready to discuss this
problem.) Notice how in quantum theory, measurement, instead of telling us what
the system was doing before the measurement, tells us what it is doing just after the
measurement. (Of course it does tell us that the original state had some projection
on the state |@) obtained after measurement. But this information is nothing com-
pared to the complete specifications of the state just after measurement.)

Anyway, assume we have prepared a state |@ ). If we measure some variable A,
immediately thereafter, so that the state could not have changed from |®), and if
say,

1

160>=§172

2 1/2
|3~1>+<§) |A2> +0- (others)

/

the theory predicts that A, and A, will obtain with probabilities 1/3 and 2/3, respec-
tively. If our measurement gives a A;, i#1, 2 (or worse still a A#any eigenvalue!)
that is the end of the theory. So let us assume we get one of the allowed values, say
Ar. This is consistent with the theory but does not fully corroborate it, since the
odds for 4, could have been 1/30 instead of 1/3 and we could still get A,. Therefore,
we must repeat the experiment many times. But we cannot repeat the experiment
with this particle, since after the measurement the state of the particle is [4,). We
must start afresh with another particle in |@ ). For this purpose we require a quantum
ensemble, which consists of a large number N of particles all in the same state |@).
If a measurement of A is made on every one of these particles, approximately N/3
will yield a value A, and end up in the state |A,) while approximately 2N/3 will yield
a value A, and end up in a state |A,). For sufficiently large N, the deviations from
the fractions 1/3 and 2/3 will be negligible. The chief difference between a classical
ensemble, of the type one encounters in, say, classical statistical mechanics, and the
quantum ensemble referred to above, is the following. If in a classical ensemble of
N particles N/3 gave a result A4; and 2N/3 a result 4,, one can think of the ensemble
as having contained N/3 particles with A=A, and the others with A= 1, before the
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measurement. In a quantum ensemble, on the other hand, every particle is assumed
to be in the same state |@) prior to measurement (i.e., every particle is potentially
capable of yielding either result 4, or 4;). Only after that measurement are a third
of them forced into the state |4, and the rest into |A,).

Once we have an ensemble, we can measure any other variable and test the
expectations of quantum theory. We can also prepare an ensemble, let it evolve in
time, and study it at a future time to see if the final state is what the Schrodinger
equation tells us it should be.

Example 4.2.2. An example of an ensemble being used to test quantum theory
was encountered in the double-slit experiment, say with photons. A given photon of
momentum p and energy E was expected to hit the detectors with a probability
density given by the oscillating function |w(x)|>. One could repeat the experiment
N times, sending one such photon at a time to see if the final number distribution
indeed was given by |w(x)|>. One could equally well send in a macroscopic, mono-
chromatic beam of light of frequency w=E/% and wave number k=p/#, which
consists of a large number of photons of energy F and momentum p. If one makes the
assumption (correct to a high degree) that the photons are noninteracting, sending in
the beam is equivalent to experimenting with the ensemble. In this case the intensity
pattern will take the shape of the probability density |w(x)|%, the instant the beam
is turned on. O

Example 4.2.3. The following example is provided to illustrate the distinction
between the probabilistic descriptions of systems in classical mechanics and in quan-
tum mechanics.

We choose as our classical system a six-faced die for which the probabilities
P(n) of obtaining a number n have been empirically determined. As our quantum
system we take a particle in a state

6
lyy>=73 Cloy

i=1

Suppose we close our eyes, toss the die, and cover it with a mug. Its statistical
description has many analogies with the quantum description of the state [y :

(1) The state of the die is described by a probability function P(n) before the mug
is lifted.

(2) The only possible values of n are 1, 2, 3, 4, 5, and 6.

(3) If the mug is lifted, and some value—say n=3-—is obtained, the function P(n)
collapses to 8,3 .

(4) If an ensemble of N such dice are thrown, NP(n) of them will give the result n
(as N— o).

The corresponding statements for the particle in the state |y ) are no doubt
known to you. Let us now examine some of the key differences between the statistical
descriptions in the two cases.



(1) It is possible, at least in principle, to predict exactly which face of the die
will be on top, given the mass of the die, its position, orientation, velocity, and
angular velocity at the time of release, the viscosity of air, the elasticity of the table
top, and so on. The statistical description is, however, the only possibility in the
quantum case, even in principle.

(2) If the result n=3 was obtained upon lifting the mug, it is consistent to
assume that the die was in such a state even prior to measurement. In the quantum
case, however, the state after measurement, say | @), is not the state before measure-
ment, namely |y ).

(3) If N such dice are tossed and covered with N mugs, there will be NP(1)
dice with n=1, NP(2) dice with n=2, etc. in the ensemble before and after the
measurement. In contrast, the quantum ensemble corresponding to |y ) will contain
N particles all of which are in the same state |y ) (that is, each can yield any of the
values @, . . ., we) before the measurement, and NP(w;) particles in |®,) after the
measurement. Only the ensemble before the measurement represents the state |y ).
The ensemble after measurement is a mixture of six ensembles representing the states
o), lwe)d O

Having seen the utility of the ensemble concept in quantum theory, we now
define and discuss the two statistical variables that characterize an ensemble.

Expectation Value

Given a large ensemble of N particles in a state | ), quantum theory allows us
to predict what fraction will yield a value w if the variable Q is measured. This
prediction, however, involves solving the eigenvalue problem of the operator Q. If
one is not interested in such detailed information on the state (or the corresponding
ensemble) one can calculate instead an average over the ensemble, called the expecta-
tion value, {Q>. The expectation value is just the mean value defined in statistics:

Q=Y P(@)o=F [ v’

=X (ylop ol y)o; (4.2.5)

But for the factors @, multiplying each projection operator |®,) {®;|, we could have
used Y, |o;> {w,;| =1. To get around this, note that wj®;» =Q|w@>. Feeding this in
and continuing, we get

Q> =Z y|Qo) <oy

Now we can use ) ; |@;) (o, =1 to get

Q) = y|Qy> (4.2.6)

1 This is an example of a mixed ensemble. These will be discussed in the digression on density matrices,
which follows in a while.
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There are a few points to note in connection with this formula.

(1) To calculate {Q2), one need only be given the state vector and the operator Q
(say as a column vector and a matrix, respectively, in some basis). There is no
need to find the eigenvectors or eigenvalues of Q.

(2) If the particle is in an eigenstate of €, that is Q|w) =w|y), then (Q>=w.

(3) By the average value of Q we mean the average over the ensemble. A given
particle will of course yield only one of the eigenvalues upon measurement. The
mean value will generally be an inaccessible value for a single measurement unless
it accidentally equals an eigenvalue. [A familiar example of this phenomenon is
that of the mean number of children per couple, which may be 2.12, although
the number in a given family is restricted to be an integer.]

The Uncertainty

In any situation described probabilistically, another useful quantity to specify
besides the mean is the standard deviation, which measures the average fluctuation
around the mean. It is defined as

AQ={(Q— ()2 (4.2.7)

and often called the root-mean-squared deviation. In quantum mechanics, it is
referred to as the uncertainty in Q. If Q has a discrete spectrum

(AQ)* =3 P(o)(0,= Q) (4.2.8)
and if it has a continuous spectrum,
(AQ )2=[P(a))(w—<9>)2 do (4.2.9)

Notice that AQ, just like (2, is also calculable given just the state and the operator,
for Eq. (4.2.7) means just

AQ=[y[( Q=L V|y>]'"? (4.2.10)

Usually the expectation value and the uncertainty provide us with a fairly good
description of the state. For example, if we are given that a particle has {<X) =a and
AX=A, we know that the particle is likely to be spotted near x=a, with deviations
of order A.

So far, we have concentrated on the measurement of a single variable at a time.
We now turn our attention to the measurement of more than one variable at a time.
(Since no two independent measurements can really be performed at the same time,
we really mean the measurement of two or more dynamical variables in rapid
succession. )



Exercise 4.2.1 (Very Important). Consider the following operators on a Hilbert space
V3(C):

1 0 1 0 | 0 —-i 0 1 0 0
Lx:F 1 0 1 N y=é.]—/_2 0 —i N LZ= 0 0 0
01 0 i 0 0 0 -1

(1) What are the possible values one can obtain if L, is measured?

(2) Take the state in which L,=1. In this state what are (L., (L), and AL,?

(3) Find the normalized eigenstates and the eigenvalues of L, in the L, basis.

(4) If the particle is in the state with L,=—1, and L, is measured, what are the possible
outcomes and their probabilities?

(5) Consider the state

1/2
ly>=| 1/2
1/21/2

in the L, basis. If L2 is measured in this state and a result +1 is obtained, what is the state
after the measurement? How probable was this result? If L, is measured immediately
afterwards, what are the outcomes and respective probabilities?

(6) A particle is in a state for which the probabilities are P(L.=1)=1/4, P(L.=0)=
1/2, and P(L,=—1)=1/4. Convince yourself that the most general, normalized state with
this property is

&0 g £
|W>=7 IL,= 1>+F [L=0)+ 3

|L:==1)

It was stated earlier on that if |y is a normalized state then the state e’ |y is a physically
equivalent normalized state. Does this mean that the factors e® multiplying the L, eigenstates
are irrelevant? [Calculate for example P(L,=0).]

Compatible and Incompatible Variables

A striking feature of quantum theory is that given a particle in a state |y >, one
cannot say in general that the particle has a definite value for a given dynamical
variable Q: a measurement can yield any eigenvalue @ for which (@ | ) is not zero.
The exceptions are the states |@). A particle in one of these states can be said, as
in classical mechanics, to have a value o for £, since a measurement is assured to
give this result. To produce such states we need only take an arbitrary state |y ) and
measure ). The measurement process acts as a filter that lets through just one
component of |y), along some |w). The probability that this will happen is P(w) =
Kelp)l?.

We now wish to extend these ideas to more than one variable. We consider
first the question of two operators. The extension to more than two will be
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straightforward. We ask:

Question 1. s there some multiple filtering process by which we can take an
ensemble of particles in some state | > and produce a state with well-defined values
o and A for two variables © and A?

Question 2. What is the probability that the filtering will give such a state if we
start with the state |y >»?

To answer these questions, let us try to devise a multiple filtering scheme. Let
us first measure € on the ensemble described by | ) and take the particles that yield
a result @. These are in a state that has a well-defined value for Q. We immediately
measure A and pick those particles that give a result 1. Do we have now an ensemble
that is in a state with Q= and A= 1? Not generally. The reason is clear. After the
first measurement, we had the system in the state [ ), which assured a result o for
Q, but nothing definite for A (since |w) need not be an eigenstate of A). Upon
performing the second measurement, the state was converted to

lyD=1[4)

and we are now assured a result A for A, but nothing definite for Q (since |A> need
not be an eigenstate of Q).

In other words, the second filtering generally alters the state produced by the
first. This change is just the collapse of the state vector |@) =Y |A>{(i| @) into the
eigenstate [1).

An exception occurs when the state produced after the first measurement is
unaffected by the second. This in turn requires that |@ > also be an eigenstate of A.
The answer to the first question above is then in the affirmative only for the simulta-
neous eigenstates |wA). The means for producing them are just as described above.
These kets satisfy the equations

Qwiy=wlol) (4.2.11)

AoAy=Awoi) (4.2.12)

The question that arises naturally is: When will two operators admit simulta-

neous eigenkets? A necessary (but not sufficient) condition is obtained by operating
Eq. (4.2.12) with Q, Eq. (4.2.11) with A, and taking the difference:

(QA—-AQ)wi)=0 (4.2.13)

Thus [Q, A] must have eigenkets with zero eigenvalue if simultaneous eigenkets are
to exist. A pair of operators Q and A will fall into one of the three classes:

A. Compatible: [Q2, A]=0
B. Incompatible: [Q, A] =something that obviously has no zero eigenvalue
C. Others



Class A. If two operators commute, we know a complete basis of simultaneous
eigenkets can be found. Each element |wA) of this basis has well-defined values for
Q and A.

Class B. The most famous example of this class is provided by the position and
momentum operators X and P, which obey the canonical commutation rule

(X, P]=i% (4.2.14)

Evidently we cannot ever have ifij w > =0} y) for any nontrivial |y ). This means there
doesn’t exist even a single ket for which both X and P are well defined. Any attempt
to filter X is ruined by a subsequent filtering for P and vice vesa. This is the origin
of the famous Heisenberg uncertainty principle, which will be developed as we go
along.

Class C. In this case there are some states that are simultaneous eigenkets. There
is nothing very interesting we can say about this case except to emphasize that even
if two operators don’t commute, one can still find a few common eigenkets, though
not a full basis. (Why?)

Let us now turn to the second question of the probability of obtaining a state
{@A) upon measurement of Q and A in a state |y ). We will consider just case A;
the question doesn’t arise for case B, and case C is not very interesting. (You should
be able to tackle case C yourself after seeing the other two cases.)

Case A. Let us first assume there is no degeneracy. Thus, to a given eigenvalue
A, there is just one ket and this must be a simultaneous eigenket |@A>. Suppose
we measured Q first. We get @ with a probability P(w)=|{wA|y>|>. After the
measurement, the particle is in a state |wA). The measurement of A is certain to
yield the result A. The probability for obtaining @ for Q and A for A is just the
product of the two probabilities

P(o, ) =[{aAly)* 1= oA y)I’

Notice that if A were measured first and Q next, the probability is the same for
getting the results A and w. Thus if we expand |y ) in the complete common eigenbasis
as

[y =) loAX oAy (4.2.15a)

then
P(w, M) =|<oMyd|*= P, ) (4.2.15b)

The reason for calling Q and A compatible if [Q2, A] =0 is that the measurement
of one variable followed by the other doesn’t alter the eigenvalue obtained in the
first measurement and we have in the end a state with a well-defined value for both
observables. Note the emphasis on the invariance of the eigenvalue under the second
measurement. In the non-degenerate case, this implies the invariance of the state
vector as well. In the degenerate case, the state vector can change due to the second
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measurement, though the eigenvalue will not, as the following example will show.
Consider two operators A and Q on V(R). Let |w34;) be one common eigenvector.
Let 4, =A,=A. Let @, # o, be the eigenvalues of Q in this degenerate space. Let us
use as a basis [@,4), |2A), and |wsAs). Consider a normalized state

ly)=alwsds)+ Blwd) +7|wd) (4.2.16)

Let us say we measure € first and get w;. The state becomes |@3;4;) and the subse-
quent measurement of A is assured to give a value A; and to leave the state alone.
Thus P(®3, A1) =|{@sAs| w)|*=a’ Evidently P(w;, A3) = P(1s, w3).

Suppose that the measurement of 2 gave a value @, . The resulting state is [@ 1)
and the probability for this outcome is | (w:A| ¥ >|>. The subsequent measurement of
A will leave the state alone and yield the result A with unit probability. Thus P(w,, 1)
is the product of the probabilities:

P(ar, D) =[{o Ay 1= Ay = (4.2.17)
Let us now imagine the measurements carried out in reverse order. Let the result

of the measurement be A. The state | ') after measurement is the projection of |y )
in the degenerate A eigenspace:

, Pily) WAty @A) ‘
o= cad ]/sz 12 )2/1/22 (4.2.18)
[Py Pay >l (B +7)"
where, in the expression above, the projected state has been normalized. The prob-
ability for this outcome is P(1)= B>+ 7°, the square of the projection of |y in the
eigenspace. If Q is measured now, both results ©, and w; are possible. The probability
for obtaining @, is |<{@,A|y'>|*= B*/(B>+ y*). Thus, the probability for the result
A=A Q=w,, is the product of the probabilities:
ﬁ2

ﬁz+y7_=l32=P(w1, A) (4.2.19)

P(A, )= (B*+7?):

Thus P(®w,, A)=P(A, ®,) independent of the degeneracy. But this time the state
suffered a change due to the second measurement (unless by accident |y’)> has no
component along |@,A»). Thus compatibility generally implies the invariance under
the second measurement of the eigenvalue measured in the first. Therefore, the state
can only be said to remain in the same eigenspace after the second measurement. If
the first eigenvalue is non-degenerate, the eigenspace is one dimensional and the state
vector itself remains invariant.

In our earlier discussion on how to produce well-defined states |y ) for testing
quantum theory, it was observed that the measurement process could itself be used
as a preparation mechanism: if the measurement of Q on an arbitrary, unknown
initial state given a result @, we are sure we have the state |y) =|w). But this
presumes o is not a degenerate eigenvalue. If it is degenerate, we cannot nail down
the state, except to within an eigenspace. It was therefore suggested that we stick to
variables with a nondegenerate spectrum. We can now lift that restriction. Let us



say a degenerate eigenvalue @ for the variable Q was obtained. We have then some
vector in the o eigenspace. We now measure another compatible variable A. If we
get aresult A, we have a definite state |wA), unless the value (@, 1) itself is degenerate.
We must then measure a third variable I' compatible with © and A and so on.
Ultimately we will get a state that is unique, given all the simultaneous eigenvalues:
|w, A, y,...>. It is presumed that such a set of compatible observables, called a
complete set of commuting observables, exists. To prepare a state for studying quan-
tum theory then, we take an arbitrary initial state and filter it by a sequence of
compatible measurements till it is down to a unique, known vector. Any nondegener-
ate operator, all by itself, is a “complete set.”

Incidentally, even if the operators © and A are incompatible, we can specify
the probability P(w, A) that the measurement of Q followed by that of A on a state
|w> will give the results @ and A, respectively. However, the following should be
noted:

(1) P(w, A)# P(4, @) in general.

(2) The probability P(w, A) is not the probability for producing a final state
that has well-defined values @ and A for Q and A. (Such a state doesn’t exist by the
definition of incompatibility.) The state produced by the two measurements is just
the eigenstate of the second operator with the measured eigenvalue.

The Density Matrix—a Digression{

So far we have considered ensembles of N systems all in the same state |y ).
They are hard to come by in practice. More common are ensembles of N systems,

n (i=1,2,...,k) of which are in the state |i>. (We restrict ourselves to the case
where |7} is an element of an orthonormal basis.) Thus the ensemble is described by
k kets |1, |2, ..., k), and k occupancy numbers ny, . .., n,. A convenient way to

assemble all this information is in the form of the density matrix (which is really an
operator that becomes a matrix in some basis):

p=2pli><i (4.2.20)

where p;=n;/N is the probability that a system picked randomly out of the ensemble
is in the state |{». The ensembles we have dealt with so far are said to be pure; they
correspond to all p;=0 except one. A general ensemble is mixed.

Consider now the ensemble average of Q. It is

<ﬁ>=z pilQiD (4.2.21)

The bar on (Q) reminds us that two kinds of averaging have been carried out: a
quantum average <i|Q|i> for each system in |i) and a classical average over the

I This digression may be omitted or postponed without loss of continuity.
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Tr(Qp) =3 <jlQplj>
i
=2 2 QU il jppi= 2 i > GIQUDp:
;o iJ
=3 <iQidp,
= (4.2.22)
The density matrix contains all the statistical information about the ensemble. Sup-

pose we want, not (€, but instead P(w), the probability of obtaining a particular
value w. We first note that, for a pure ensemble,

P(o)=[Kaly)I’=<{ylo){o|y) = y|Pyy)>={P,)
which combined with Eq. (4.2.22) tells us that
P(o)=Ti(P,p)

The following results may be easily established:

(1) o'=p

) Trp=1

(3) p’=p for a pure ensemble

(4) p=(1/k)I for an ensemble uniformly distributed over k states

(5) Trp*<1 (equality holds for a pure ensemble) (4.2.23)

You are urged to convince yourself of these relations.

Example 4.2.4. To gain more familiarity with quantum theory let us con-
sider an infinite-dimensional ket |y ) expanded in the basis |[x) of the position
operator X:

oo

|w>=f |x><xlw>dx=J ) dx

e e =

We call w(x) the wave function (in the X basis). Let us assume y(x) is a Gaussian,
that is, w(x)=A exp[—(x—a)*/2A?] (Fig. 4.2a). We now try to extract information
about this state by using the postulates. Let us begin by normalizing the state:

1 =<l//i!//>=f Cylx) {xlyo dx:J Ly (x)|* dx

gs

= f A2 e YA = 42(2AD)'Y? (see Appendix A.2)

—C



{a) (b)
[¥(x)] 28]

1
| a x o] [

Figure 4.2. (a) The modulus of the wave function, |[{x|w>|=|w(x}|. (b) The modulus of the wave
function, {{plw>| =|v(p)l.

So the normalized state is

W(X)= _____________ l _____________ e = (x=a)?/2A2
TA%)"

The probability for finding the particle between x and x-+dx is

P(x) dx=|y(x)|? dx= —m @8 g

1
(”AZ)I/Q

which looks very much like Fig. 4.2a. Thus the particle is most likely to be found
around x=ga, and chances of finding it away from this point drop rapidly beyond a
distance A. We can quantify these statements by calculating the expectation value
and uncertainty for X. Let us do so.

Now, the operator X defined in postulate II is the same one we discussed at
length in Section 1.10. Its action in the X basis is simply to multiply by x, i.e., if

xlyy=w(x)

then,

m oo

’ x| X x"y <Xy dx’=JaC x8(x—x")Yy(x") dx'

— .

x| Xy )=

=xy(x)

Using this result, the mean or expectation value of X is
X =<ylX]| W>=J Qy|x) x| X ) dx

=J w*(o)xy(x) dx

00

l o
—_ —_ 2/A2
= ( e TNy dx
(mA*) =)

—o0
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We should have anticipated this result of course, since the probability density is
symmetrically distributed around x=a.
Next, we calculate the fluctuations around (X} =a, i.e., the uncertainty

AX =[Cyl|(X = O y>]?
=[(YIX7 = 2X X0+ X0 w7
=[wX* = XY w>]'? (since (ylX|w)=(X))
:[<X2>_ <X>2]1 2

:[<4X2>_az]l 2
Now
Xy :z A12)1 ) fI o (TN (2 pmmat2AT g
ﬂ o e
: ( e N (VP 2vat+dd) d AZ+0+ 2
T e - y a a )= a
(rA})? . J 34 2% »
So
A
AX=21'2

So much for the information on the variable X. Suppose we next want to know
the probability distribution for different values of another dynamical variable, say
the momentum P.

(1) First we must construct the operator P in this basis.

(2) Then we must find its eigenvalues p, and eigenvectors | p).

(3) Finally, we must take the inner product {p|y).

(4) If p is discrete, |{plw>|?=P(p,), and if p is continuous, |{p|w>|*= P(p), the
probability density.

Now, the P operator is just the K operator discussed in Section 1.10 multiplied by
% and has the action of —i# d/dx in the X basis, for if

xly>=wi(x)



then

[
X[ Ply )=}
J

Thus, if we project the eigenvalue equation

Plp>=plp>

onto the X basis, we get

(x| Pl py=p<x p>

or

dy,(x
—in ) )=pwp(x)
dx

where y,(x)={x|p)>. The solutions, normalized to the Dirac delta function] are
(from Sectio= 1.10)

— 1 ipx/h
yp(x) = ni)? v

Now we can compute
<ply)= j<p[X> {xly) dx= J Wy ()y(x) dx

o —ipx/fi_—(x—a)2/2A? 2\ 1/4
= e e dx = A e—zpa/h e—p2A2/27i2
12 20174 2
(2R (rA%) rh
o0

The modulus of yw(p) is a Gaussian (Fig. 4.2b) of width 7/2'?A. It follows that
(P>=0, and AP=7#/2"?A. Since AX=A/2"?; we get the relation

AX-AP=1/2

I Here we want (p|p'>=8(p—p')=8(k—k')/h, where p=fik. This explains the (27%) '/? normalization
factor.
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The Gaussian happens to saturate the lower bound of the uncertainty relation (to
be formally derived in chapter 9):

AX-AP>#)2

The uncertainty relation is a consequence of the general fact that anything
narrow in one space is wide in the transform space and vice versa. So if you are a
110-1b weakling and are taunted by a 600-1b bully, just ask him to step into momen-
tum space! O

This is a good place to point out that the plane waves ¢”*'* (and all improper

vectors, i.e., vectors that can’t be normalized to unity but only to the Dirac delta
function) are introduced into the formalism as purely mathematical entities. Our
inability to normalize them to unity translates into our inability to associate with
them a sensible absolute probability distribution, so essential to the physical interpre-
tation of the wave function. In the present case we have a particle whose relative
probability density is uniform in all of space. Thus the absolute probability of finding
it in any finite volume, even as big as our solar system, is zero. Since any particle
that we are likely to be interested in will definitely be known to exist in some finite
volume of such large dimensions, it is clear that no physically interesting state will
be given by a plane wave. But, since the plane waves are eigenfunctions of P, does
it mean that states of well-defined momentum do not exist? Yes, in the strict sense.
However, there do exist states that are both normalizable to unity (i.e., correspond
to proper vectors) and come arbitrarily close to having a precise momentum. For
example, a wave function that behaves as ¢”*'" over a large region of space and
tapers off to zero beyond, will be normalizable to unity and will have a Fourier
transform so sharply peaked at p=p, that momentum measurements will only give
results practically indistinguishable from po. Thus there is no conflict between the
fact that plane waves are unphysical, while states of well-defined momentum exist,
for “well defined” never means ‘“‘mathematically exact,” but only “exact to any
measurable accuracy.” Thus a particle coming out of some accelerator with some
advertised momentum, say 500 GeV/c, is in a proper normalizable state (since it is
known to be located in our laboratory) and not in a plane wave state corresponding
to | p=500 GeV/c).

But despite all this, we will continue to use the eigenkets | p) as basis vectors
and to speak of a particle being in the state | p), because these vectors are so much
more convenient to handle mathematically than the proper vectors. It should, how-
ever, be borne in mind that when we say a particle is (coming out of the accelerator)
in a state | po), it is really in a proper state with a momentum space wave function
so sharply peaked at p=p, that it may be replaced by a delta function §(p — py).

The other set of improper kets we will use in the same spirit are the position
eigenkets | x), which also form a convenient basis. Again, when we speak of a particle
being in a state |xo)> we shall mean that its wave function is so sharply peaked at
X=Xo that it may be treated as a delta function to a good accuracy.}

{ Thus, by the physical Hilbert space, we mean the space of interest to physicists, not one whose elements
all correspond to physically realizable states.



Occasionally, the replacement of a proper wave function by its improper coun-
terpart turns out to be a poor approximation. Here is an example from Chapter 19:
Consider the probability that a particle coming out of an accelerator with a nearly
exact momentum scatters off a target and enters a detector placed far away, and not
in the initial direction. Intuition says that the answer must be zero if the target is
absent. This reasonable condition is violated if we approximate the initial state of
the particle by a plane wave (which is nonzero everywhere). So we proceed as follows.
In the vicinity of the target, we use the plane wave to approximate the initial wave
function, for the two are indistinguishable over the (finite and small) range of influ-
ence of the target. At the detector, however, we go back to the proper wave (which
has tapered off) to represent the initial state.

Exercise 4.2.2.* Show that for a real wave function w(x), the expectation value of
momentum {P»=0. (Hint: Show that the probabilities for the momenta +p are equal.)
Generalize this result to the case y =cy,, where y, is real and ¢ an arbitrary (real or complex)
constant. (Recall that |y and a|y) are physically equivalent.)

Exercise 4.2.3.* Show that if w(x) has mean momentum (P>, ™% y(x) has mean
momentum {P) +pg.

Example 4.2.5. The collapse of the state vector and the uncertainty principle
play a vital role in explaining the following extension of the double slit experiment.
Suppose I say, “I don’t believe that a given particle (let us say an electron) doesn’t
really go through one slit or the other. So T will set up a light source in between the
slits to the right of the screen. Each passing electron will be exposed by the beam
and I note which slit it comes out of. Then I note where it arrives on the screen. |
make a table of how many electrons arrive at each x and which slit they came from.
Now there is no escape from the conclusion that the number arriving at a given x
is the sum of the numbers arriving via §; and S,. So much for quantum theory and
its interference pattern!”

But the point of course is that quantum theory no longer predicts an interference
pattern! The theory says that if an electron of definite momentum p is involved, the
corresponding wave function is a wave with a well-defined wave number k=p/#,
which interferes with itself and produces a nice interference pattern. This prediction
is valid only as long as the state of the electron is what we say it is. But this state is
necessarily altered by the light source, which upon measuring the position of the
electron (as being next to Sy, say) changes its wave function from something that
was extended in space to something localized near S;. Once the state is changed, the
old prediction of interference is no longer valid.

Now, once in a while some electrons will get to the detectors without being
detected by the light source. We note where these arrive, but cannot classify them
as coming via S, or S>. When the distribution of just these electrons is plotted; sure
enough we get the interference pattern. We had better, for quantum theory predicts
it, the state not having been tampered with in these cases.

The above experiment can also be used to demystify to some extent the collapse
of the wave function under measurement. Why is it that even the ideal measurement
produces unavoidable changes in the state? The answer, as we shall see, has to do
with the fact that % is not zero.
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M
O \ i
567/
>t X Figure 4.3. Light of frequency A bounces off the electron, enters
f f 1 the objective O of the microscope, and enters the eye E of the
b observer.

Consider the schematic set up in Fig. 4.3. Light of wavelength A illuminates an
electron (e7), enters the objective (O) of a microscope (M) and reaches our eye (£).
If 50 is the opening angle of the cone of light entering the objective after interacting
with the electron, classical optics limits the accuracy of the position measurement
by an uncertainty

AX=A/sin 66

Both classically and quantum mechanically, we can reduce AX to 0 by reducing 4
to zero.] In the latter description however, the improved accuracy in the position
measurement is at the expense of producing an increased uncertainty in the x compo-
nent (p,) of the electron momentum. The reason is that light of wavelength A is not
a continuous wave whose impact on the electron momentum may be arbitrarily
reduced by a reduction of its amplitude, but rather a flux of photons of momentum
p=2rh/A As A decreases, the collisions between the electron and the photons
become increasingly violent. This in itself would not lead to an uncertainty in the
electron momentum, were it not for the fact that the x component of the photons
entering the objective can range from 0 to p sin §0=2x% sin §8/A. Since at least
one photon must reach our eyes after bouncing off the electron for us to see it, there
is a minimum uncertainty in the recoil momentum of the electron given by

2nh
AP~ sin 50
A

Consequently, we have at the end of our measurement an electron whose position
and momenta are uncertain by AX and AP, such that

AX AP . ~2nh~Hh
[The symbols AX and AP, are not precisely the quantities defined in Eq. (4.2.7) but
are of the same order of magnitude.] This is the famous uncertainty principle. There is
no way around it. If we soften the blow of each photon by increasing A or narrowing

the objective to better constrain the final photon momentum, we lose in resolution.

1 This would be the ideal position measurement.



More elaborate schemes, which determine the recoil of the microscope, are equally
futile. Note that if % were 0, we could have AX and AP, simultaneously 0. Physically,
it means that we can increase our position resolution without increasing the punch
carried by the photons. Of course 7 is not zero and we can’t make it zero in any
experiment. But what we can do is to use bigger and bigger objects for our experiment
so that in the scale of these objects 7 appears to be negligible. We then regain
classical mechanics. The position of a billiard ball can be determined very well
by shining light on it, but this light hardly affects its momentum. This is why one
imagines in classical mechanics that momentum and position can be well defined
simultaneously. O

Generalization to More Degrees of Freedom

Our discussion so far has been restricted to a system with one degree of free-
dom—namely, a single particle in one dimension. We now extend our domain to a
system with N degrees of freedom. The only modification is in postulate II, which
now reads as follows.

Postulate II. Corresponding to the N Cartesian coordinates x, . . ., x describ-
ing the classical system, there exist in quantum theory N mutually commuting
operators Xy, ..., Xy. In the simultaneous eigenbasis |x;, x5, . . ., xy)> of these

operators, called the coordinate basis and normalized as
CXps Xas oo XN X, XS, o, XD =800 —x1) L L S(xy— X))

(the product of delta functions vanishes unless all the arguments vanish) we
have the following correspondence:

IW>“’><X19' .. ,X‘V|W>=W(X1, .. -9xN)
Xiyo=lx, . xnl XD =xu(x,, ..., xn)
L 0
Plyy—<xy, .. -,lePill//>=—lﬁ£j w(xy,...,xn)

P; being the momentum operator corresponding to the classical momentum
pi. Dependent dynamical variables o (x;, p;) are represented by operators Q=
w(x;>X;, p}_’Pj)

The other postulates remain the same. For example
lw(x1,...,xy)?%dx,...dxy is the probability that the particle coordinates lie
between xi, x2, ..., xyand x,+dx;, x;+dx,, ..., xy+dxy.

This postulate is stated in terms of Cartesian coordinates since only in terms
of these can one express the operator assignments in the simple form X,—x;,
P;——ifi 0/0x;. Once the substitutions have been made and the desired equations
obtained in the coordinate basis, one can perform any desired change of variable
before solving them. Suppose, for example, that we wan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>