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This is an introduction to set theory and logic that starts completely 
from scratch. The text is accompanied by many methodological 
remarks and explanations. A rigorous axiomatic presentation of 
Zermelo-Fraenkel set theory is given, demonstrating how the basic 
tdncepts of mathematics have apparently been reduced to set 
theory. This is followed by a presentation of propositional and first­
order logic. Concepts and results of recursion theory are explained in 
intuitive terms, and the author proves and explains the I imitative 
results of Skolem, Tarski, Church and Godel (the celebrated 
incompleteness theorems). 

For students of mathematics or philosophy this book provides an 
excellent introduction to logic and set theory. 

Cover design by Chris McLeod 

CAMBRIDGE 
UNIVERSITY PRESS 







Set Theory, Logic and their Limitations 

[ 



---~-------------------------------------



Set Theory, Logic 
and their Limitations 

Moshe Machover 
King's College London 

~ CAMBRIDGE 
~ UNIVERSITY PRESS 



Published by the Press Syndicate of the University of Cambridge 
The Pitt Building, Trumpington Street, Cambridge CB2 lRP 

40 West 20th Street, New York, NY 10011-4211, USA 
10 Stamford Road, Oakleigh, Melbourne 3166, Australia 

© Cambridge University Press 1996 

First published 1996 

A catalogue record for this book is available from the British Library 

Library of Congress cataloguing in publication data available 

ISBN O 521 47493 0 hardback 
ISBN O 521 47998 3 paperback 

Transferred to digital printing 2003 

KT 



Contents 

Preface vii 

0 Mathematical induction 1 

1 Sets and classes 9 

2 Relations and functions 23 

3 Cardinals 36 

4 Ordinals 53 

5 The axiom of choice 77 

6 Finite cardinals and alephs 88 

7 Propositional logic 101 

8 First-order logic 142 

9 Facts from recursion theory 194 

10 Limitative results 210 

Appendix: Skolem's Paradox 275 

Author index 283 

General index 284 

V 





Preface 

This is an edited version of lecture notes distributed to students in two 
of my courses, one on set theory, the other on quantification theory 
and limitative results of mathematical logic. These courses are de­
signed primarily for philosophy undergraduates at the University of 
London who bravely choose the Symbolic Logic paper as one of their 
Finals options. They are also offered to mathematics undergraduates at 
King's College, London. 

This then is a discourse addressed by a mathematician to an au­
dience with a keen interest in philosophy. The style of technical 
presentation is mathematical. In particular, in logical notation and 
terminology I generally conform to the usage of mathematicians. (It 
seems that in this matter philosophers in any case tend follow suit -
after some delay.) But philosophical and methodological issues are 
often highlighted instead of being glossed over, as is quite common in 
texts addressed primarily to students of mathematics. 

A naive presentation of set theory may be in order if the main aim is 
instrumental: to acquaint would-be practitioners of mathematics with 
the basic tools of their chosen trade and to inculcate in them methods 
whereby nowadays the entire science is apparently reduced to set 
theory. In a course of that kind, the student is understandably not 
encouraged to scratch where it does not itch. But in the present course 
such an attitude would be out of place. To ,be sure, here as well 
set-theoretic concepts and results are needed as tools for formulating 
and proving results in mathematical logic. But it would be perverse not 
to alert would-be philosophers to the problematic aspects of set­
theoretic reductionism. 

These considerations have largely dictated the presentation of set 
theory: axiomatic, albeit unformalized. Critical notes about set 
theoretic reductionism are sounded from time to time as a leitmotiv, 
rounded off in a coda on Skolem's Paradox. Also, the technical 
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viii Preface 

exposition of set theory is accompanied by historical remarks, mainly 
because a historical perspective is needed in order to appreciate the 
emergence of reductionism and the anti-reductionist critique. 

In the exposition of mathematical logic, I have drawn heavily on 
Chs. l, 2, 3 and 7 of B&M (see Note below), which I had used for 
many years as a main text for a postgraduate logic course. However, 
considerable portions of the material presented in B&M had to be 
omitted, either because they are too hard or specialized, or simply for 
lack of time. 

My greatest regret is that there is not enough time to include both 
linear and rule-based logical calculi (my own favourite is the tableau 
method). For certain technical reasons I had to sacrifice the latter. 
However, as partial compensation, the linear calculi are developed in a 
way that makes it clear that the logical axioms are mere stepping­
stones towards rules of deduction: once these rules are established, the 
axioms can be shelved. Thus in practice the presentation comes quite 
close to being rule-based. The axiom schemes have been designed so as 
to make their connection with deduction rules quite direct and trans­
parent. 

(The connoisseur will note that the propositional axiom schemes 
have been chosen so that omitting one, two or three of them results in 
complete systems for intuitionistic implication and negation, classical 
implication, and intuitionistic implication. In particular, the only axiom 
scheme that is not intuitionistically valid is a purely implicational one.) 

Propositional logic is studied with reference to a purely propositional 
language, rather than a first-order language as in B&M. This is done 
for didactic reasons: although propositional languages in themselves 
are of little interest, students are less intimidated by this approach. 

For some tedious proofs that have been omitted, the reader is 
referred to B&M. These omissions are more than balanced by the 
addition of extensive methodological and explanatory comments. 

A case in point is Lemma 10.10.12 (see Note below), which is the 
main technical result needed for the present version of the Godel­
Rosser First Incompleteness Theorem. I have omitted its proof, but 
added a detailed analysis of the meaning of the lemma and the reason 
why its proof works. When this is understood, the proof itself becomes 
a mere technicality, almost a foregone conclusion. The analysis is 
resumed after the proof of the Godel-Rosser Theorem, to explain the 
meaning of the Godel-Rosser sentence and the reason for its remark­
able behaviour. 



Preface IX 

One major respect in which this course is not self-contained is its 
heavy borrowing from recursion theory. For further details, see Pre­
view at the beginning of Ch. 9. 

The Problems are an essential part of the text; the results contained 
in many of them are used later on. 

Note 

• Throughout 'B&M' refers to 

Moshe Machover 

J. L. Bell and M. Machover, A course in mathematical logic, 
North-Holland, 1977 (second printing 1986). 

• The system of cross-references used here is quite common in 
mathematical texts. It is illustrated by the following example. 
'Def. 2.3.4' refers to the fourth numbered article (which in this 
case is a definition) in § 3 of Ch. 2. Within Ch. 2, this definition is 
referred to, more briefly, as 'Def. 3.4'. 

• I would like to express my gratitude to Roger Astley, Michael 
Behrend and Tony Tomlinson of Cambridge University Press for 
their expert help in preparing the manuscript. 

Warning 

In the last three chapters of this book there is a systematic interplay 
between parallel sets of symbols; one set consisting of symbols in 
ordinary (feint) typeface: 

'=', '-,', 'v', 'A','~', '3', '\/', 'X', '+' 

and the other of their bold-face counterparts: 

'=', '--,', 'v', 'A','--+', '3', 'V', 'X', '+'. 

For explanations of the purpose of this system of notation, and 
warnings against confusing a feint symbol with its bold-face counter­
part, see Warnings 8.1.2, 9.1.4 and 10.1.11 and Rem. 10.1.10. 

Unfortunately the bold-face characters could not always be made as 
distinct from their feint counterparts as would be desirable. The reader 
is therefore urged to exercise special vigilance to discern which type­
face is being used in each instance. 
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Mathematical induction 

§ 1. Intuitive illustration; preliminaries 

A familiar trick: dominoes standing on end are arranged in a row; then 

I I I I I ... 
0 1 2 n n+l 

the initial domino (here labelled '0') is given a gentle push - and the 
whole row comes cascading down. 

If you want to perform this trick, how can you make sure that all the 
dominoes standing in a row will fall? Clearly, the following two 
conditions are jointly sufficient. 

1. The initial domino (domino 0) is made to fall to the right (for 
example, by giving it a push). 

2. The dominoes are arranged in such a way that whenever any one 
of them (say domino n) falls to the right, it brings down the next 
domino after it (domino n + 1) and causes it also to fall to the 
right. 

A moment's reflection shows that these two conditions are sufficient 
whether the row of dominoes is finite or proceeds ad infinitum. (In the 
former case, Condition 2 does not apply to the last domino.) 

The reasoning that allows us to infer from Conditions 1 and 2 that all 
the dominoes will fall is based on the Principle of Mathematical (or 
Complete) Induction. This is a fundamental - arguably the most 
fundamental - fact about the so-called natural numbers (0, 1, 2, etc.). 
It has several equivalent forms, three of which will be presented here. 

1 



2 0. Mathematical induction 

WARNING 

The term 'induction' used here has nothing to do with inductive 
reasoning in the empirical sense. 

We shall make use of the following terminology and notation. 
By number we shall mean natural number. The class {O, 1, 2, ... } 

of all numbers will be denoted by 'N'. We shall use lower-case italic 
letters as variables ranging over N. 

If P is a property of numbers and n is any number, we write 'Pn' to 
mean that n has the property P. The extension of P is the class of all 
numbers n such that Pn. This class is denoted by ' { n : Pn}'. 

From an extensional point of view, Pis identified with its extension: 
P = {n: Pn}; and hence Pn is equivalent tone P. (Here 'e' is short 
for 'is a member of'.) 

We write '::;.' as short for 'implies that', 'iff' or '<c>' as short for 'if 
and only if, "r:/' as short for 'for all', and 'm ~ n' as short for 'm < n 
orm=n'. 

We state here as 'facts' the following elementary properties of the 
ordered system of numbers. 

I.I. Fact 

The relation < between numbers is transitive: whenever k < m and 
m < n, then also k < n. 

1.2. Fact 

The relation < obeys the trichotomy: for any numbers m and n, exactly 
one of the following three holds: 

m <norm= nor n < m. 

1.3. Fact 

Every number n has an immediate successor n + 1, such that, for any 
m, n < m iff n + 1 ~ m. 

1.4. Fact 

Zero is the least number: 0 ~ n for all n. 
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1.5. Fact 

For any number m * O. there is an n such that m = n + 1. 

§2. Weak induction 

Perhaps the most commonly used form of the Principle of Mathemat­
ical Induction is the so-called 'Weak' Principle of Induction. This 
asserts, for any property P of numbers, that in order to prove \/ nPn 
(i.e., that all numbers have the property P), it is sufficient to prove 
two things: first, PO (i.e., that the number zero has P) and second, 
\/n[Pn => P(n + 1)] (i.e., that whenever n is a number having the 
property P then its successor n + 1 also has P). In schematic form: 

PO, 'v'n[Pn => P(n + 1)] 
(2.1) 

'v'nPn 

A proof of a statement \/ nPn by weak induction thus falls into two 
sections. One section, called the basis of the inductive proof, is a proof 
that PO holds. The other section, called the induction step, is a proof 
that \/n[Pn => P(n + 1)]. When these two sections are completed (not 
necessarily in the above order), the proof that\/ nPn is complete. 

In the induction step, in order to prove that \/n[Pn => P(n + 1)], 
you have to show that if n is any number such that Pn holds, then 
P(n + 1) holds as well. In other words, you have to deduce P(n + 1) 
from the assumption that Pn holds. The latter assumption is called the 
induction hypothesis. 

The induction step is therefore performed as follows. You consider 
an arbitrary number, say n, about which you make just one assump­
tion: that Pn holds (the induction hypothesis). Using this assumption, 
you try to deduce that P(n + 1). When this is achieved, the induction 
step is complete. 

In using the induction hypothesis Pn to deduce P(n + 1), you are 
merely considering an arbitrary hypothetical n for which Pn holds, 
without however committing yourself to the assumption that such a 
number exists; in other words, you a-re adopting Pn as a provisional 
hypothesis. If you succeed in deducing P(n + 1) from this provisional 
hypothesis, then you have established the conditional statement 
Pn => P(n + 1); and as you have established this for arbitrary number 
n, you are entitled to infer that \/n[Pn => P(n + 1)). 

Note that if you have completed the induction step only (without the 
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basis - that is, you have not proved that PO) then you are not entitled 
to conclude that Pn holds for all numbers n; indeed you are not even 
entitled to conclude that there exist any numbers n for which Pn 
holds. For example, let P be the property of being a number that is 
greater than itself; so Pn means that n > n. Now, from the hypothesis 
n > n it is easy to deduce n + 1 > n + 1 (for example, by adding 1 to 
both sides of the hypothesis); so we have shown that Vn[Pn => 
P(n + l)]. But it doesn't follow that there is any number greater than 
itself. 

2.2. Remark 

The Weak Principle of Induction was first invoked in 1653 by Pascal in 
the proof of one of the results (Corollary 12) in his Traite du triangle 
arithmetique (published in 1665). Pascal does not give an explicit 
formulation of the principle in general, for arbitrary P; but from his 
presentation of the method of proof it is clear that the general principle 
is being invoked. We shall not reproduce Pascal's proof here. Instead, 
we shall illustrate the use of weak induction in proving a simpler result. 

2.3. Example 

We shall prove that, for all n, 

0 + 1 + 2 + • • • + n = n( n + 1 )/2. 

PROOF 

Define the property P by stipulating that Pn iff (*) holds for n. We 
show by weak induction that VnPn. 

Basis. For n = 0 the sum on the left-hand side reduces to 0, and the 
value of the right-hand side is 0. Thus PO. 

Induction step. Let n be any number such that Pn; thus our induction 
hypothesis is that ( *) holds for this n. Then 

0 + 1 + 2 + • • · + n + (n + 1) = n(n + 1)/2 + (n + 1) by ind. hyp., 

= (n + l)(n/2 + 1) 

= (n + l)(n + 2)/2. 

(The last two steps consist of simple algebraic manipulation.) Thus 
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from the induction hypothesis we have deduced that 

0 + 1 + 2 + • • • + (n + 1) = (n + l)(n + 2)/2. 

This equation says that P(n + 1) - it is the same as(*), but with n + 1 
in place of n. So we have shown that Pn => P(n + 1). ■ 

§ 3. Strong induction 

The so-called 'Strong' Principle of Induction can be stated schematic­
ally as follows: 

v'n[v'm < nPm => Pn) 

v'nPn 
(3.1) 

Here, as before, P is any property of numbers. We have written 
''Ii m < nPm' as short for 'all numbers m smaller than n have the 
property P'. 

Thus, to prove that all numbers have a given property P, it is 
enough to prove that v'n[v'm < nPm => Pn). To do this, you have to 
show that if n is any number such that v' m < nPm holds, then Pn 
holds as well; in other words, you have to deduce Pn from the 
assumption that 'r:lm < nPm. This assumption is called the induction 
hypothesis. 

Note that a proof by strong induction does not have a separate 
'basis' section. 

As in the case of weak induction, here too the induction hypothesis 
'Ii m < nPm is adopted provisionally, without presupposing it to be 
actually true. 

However, unlike the case of weak induction, here there is one 
particular value of n for which the hypothesis v' m < nPm is in fact 
always automatically true. To see this, observe that there does not 
exist any m such that m < O; this follows at once from Facts 1.2 and 
1.4. Therefore any statement of the form 'for all m < 0, ... ' (that is, 
''Ii m < 0 ... ') is considered by convention to be vacuously true. In 
particular, v'm < OPm is always true. 

3.2. Theorem 

The Strong Principle of Induction follows from the Weak Principle of 
Induction. 
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PROOF 

Assume that P is a property of numbers such that V n[V m < nPm => 

Pn] holds. We shall show, using weak induction, that \inPn holds as 
well. To this end, we define a new property Q by stipulating that, for 
any number n, 

Qn <a>df \Im< nPm. 

(The subscript 'df is short for 'definition'.) Note that our assumption 
regarding P can now be rewritten as 

Vn[Qn => Pn]. 

We shall apply weak induction to Q, to prove that \inQn holds. 
First, observe that by(*) QO is the same as \Im< OPm, which - as 

we have noted - is vacuously true. 
Next, let n be a number and suppose (as induction hypothesis) that 

Qn holds. From this hypothesis we shall deduce that Q(n + 1) holds as 
well. 

Using our induction hypothesis we infer from(**) that Pn holds. We 
therefore have both Qn and Pn. But by(*) Qn means \Im< nPm. 
Therefore what we have shown is that 

(***) Pm holds for all m ~ n. 

From Facts 1.2 and 1.3 it is easy to see that m ~ n is equivalent to 
m < n + 1, hence(***) can be rephrased as 

Pm holds for all m < n + 1, 

which, by the definition (*) of Q, means that Q(n + 1) holds This 
completes the proof of V nQn by weak induction. 

From \inQn, which we have just proved, together with (**) it 
follows at once that Pn holds for all n. ■ 

§ 4. The Least Number Principle 

Let M be any class of numbers; that is, Mk N (Mis a subclass of N). 
By a least member of M we mean a number a E M such that a ~ m for 
allmeM. 

Using Fact 1.2, it is easy to see that M cannot have more than one 
least member; so if M has a least member we can refer to the latter as 
the least member of M. 



§ 4. The Least Number Principle 

The Least Number Principle (LNP) states: 
If M ~ N and M is non-empty then M has a least member. 

4.1. Theorem 

The LNP follows from the Strong Principle of Induction. 

PROOF 

7 

Let M ~ N and suppose that M does not have a least member. We 
must show M is empty. To this end, let P be the property of not 
belonging to M. Thus, for any n, 

Pn <a>ctf n ff. M. 

To show that M is empty is tantamount to showing that V nPn holds. 
We shall do so by applying strong induction to P. 

So let n be any number, and assume (as induction hypothesis) that 
\Im < nPm holds. By the definition of P, our induction hypothesis 
means that for all m < n we have m ff. M. This is equivalent to saying 
that m < n is not the case for any m E M. But by Fact 1.2 this means 
that n ,s; m for all m E M. Therefore n cannot belong to M, otherwise 
it would be the least member of M, contrary to our assumption that M 
has no such member. Hence Pn holds. and our induction is complete. 

■ 

We shall now complete the cycle by proving: 

4.2. Theorem 

The Weak Principle of Induction follows from the LNP. 

PROOF 

Let P be a property of numbers such that PO and Vn[Pn => P(n + 1)) 
hold. We must prove that \fnPn holds. This amounts to showing that 
the class 

M =ctf {n: Pn does not hold} 

is empty. By the LNP, it is enough to show that M has no least 
member. 

Suppose that M does have a least member, m. Since PO holds, 0 is 
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not in M; hence m =I= 0. Therefore by Fact 1.5 there is a number n 
such that m = n + 1. 

From Fact 1.3 it follows at once that n < m. If n were in M, then we 
would have m ..,; n, because m is the least member of M; but m ~ n is 
excluded by Fact 1.2, since we already have n < m. Therefore n 
cannot be in M, which means that Pn must hold. 

From our assumption that 'v'n[Pn => P(n + l}] it now follows that 
P(n + l} holds; in other words, Pm holds. But then m cannot be a 
member of M, let alone the least member. Thus our assumption that 
M has a least member leads to contradiction. ■ 

We have thus shown that the Weak Principle of Induction, the Strong 
Principle of Induction and the LNP are equivalent to one another. 

4.3. Remark 

While there is no evidence that the ancient Greek mathematicians 
knew the Principles of Weak and Strong Induction, they did use 
mathematical induction in the form of the LNP. We shall quote here 
from a proof of Proposition 31 in Euclid's Elements, Book VIII. 

First we need a few definitions. By arithm6s (plural: arithmoi) the 
Greeks meant what we call natural number greater than 1. An arithmos 
b is said to measure an arithmos a if b < a and b goes into a (in 
modern terminology: bis a proper divisor of a). An arithmos a is said 
to be composite if there is an arithmos that measures it; otherwise, a is 
said to be prime. 

In Proposition 31 of Book VII, Euclid claims that every composite 
arithmos is measured by some prime arithmos. He writes: 

'Let a be a composite arithmos. I say that it is measured by some prime 
arithmos. For since a is composite, it will be measured by an arithmos, 
and let b be the least of the arithmoi measuring it.' 

Here the LNP is clearly invoked. The proof is now easily concluded: b 
must be prime; otherwise, it would be measured by some smaller 
arithmos c, which must then also measure a - contrary to the choice of 
bas the least of the arithmoi measuring a. 

Euclid also gives another proof of the same proposition, in which he 
uses yet another form of the Principle of Induction: There does not 
exist an infinite decreasing sequence of natural numbers .1 

1 On these matters see David Fowler, 'Could the Greeks have used Mathematical 
Induction? Did they use it?', Physis, vol. 311994 pp. 252-265. 
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Sets and classes 

§ 1. Introduction 
1.1. Preview 

Set theory occupies a fundamental position in the edifice of modern 
mathematics. Its concepts and results are used nowadays in virtually all 
standard mathematical discourse - not only in pure mathematics, but 
also in applied mathematics and hence in all the mathematics-based 
deductive sciences. In particular, set theory is used extensively in 
technical discussions of logic and analytical philosophy. 

The purpose of Chs. 1-6 is to present a minimal core of set theory, 
adequate for the kind of application just mentioned. In particular, we 
shall provide the set-theoretical vocabulary, notation and results 
needed in later chapters, devoted to Symbolic Logic. 

We shall not venture into the higher reaches of the theory, which are 
of interest to specialist set-theorists. Nor shall we attempt a systematic 
logical-axiomatic investigation of set theory itself. 

1.2. Further reading 

There are hundreds of books on set theory, many of them very good. 
Among those pitched at a level similar to this course, there are two 
classics: 

Abraham A Fraenkel, Abstract set theory, 
Paul R Halmos, Naive set theory. 

Both contain more material than our course. Fraenkel's book is 
suitable for readers with relatively little previous mathematical know­
ledge. If you are mathematically more experienced, you may find it too 
slow or verbose. Halmos is then likely to be more suitable. 

For a more advanced, logical-axiomatic study of set theory, the two 

9 



10 1. Sets and classes 

original masterpieces are: 

Kurt Godel, The consistency of the continuum hypothesis (1940), 
Paul J Cohen, Set theory and the continuum hypothesis (1966). 

An alternative exposition of Godel's results and some additional 
related material is in Chapter 10 of B&M. An alternative exposition of 
Cohen's results and much additional related material is in John L Bell, 
Boolean-valued models and independence proofs in set theory. 

1.3. Intuitive explanation 

Intuitively speaking, a set is a definite collection, a plurality of objects 
of any kind, which is itself apprehended as a single object. 

For example, think of a lot of sheep grazing in a field. They are a 
collection of sheep, a plurality of individual objects. However, we may 
(and often do) think of them - it - as a single object: a herd of sheep.1 

Note that in order to qualify as a set, the collection in question must 
be definite. By this we mean that, if a is any object whatsoever, then a 
either definitely belongs to the collection or definitely does not. For 
this reason there is no such thing as the set of all blue cars, if 'blue' and 
'car' are understood in their everyday fuzzy sense: my car is sort of 
bluish, and a friend of mine has a vehicle that is half-way between a 
car and a sad joke. (Most collections and concepts that are used in 
everyday thinking and discourse are fuzzy; some philosophers have 
therefore attempted to construct a theory of so-called fuzzy sets -
which are clearly not sets at all in the present sense of the term. This 
difficult subject lies outside the scope of our course.) 

From now on, whenever we speak of a collection ( or plurality) we 
shall tacitly take it to be definite, in the sense just explained. We shall 
also use the word class as synonymous with collection. 

The objects belonging to a class may be of any kind whatsoever -
physical or mental, real or ideal. In fact, being an object (in the sense 
in which we shall use this term) is tantamount to being capable of 
belonging to a collection. 

In particular, since a set is a class regarded as a single object, it can 
itself belong to a class. So we can have a class some, or even all, of 

1 Cf. Eric Partridge, Usage and abusage: 'coU,EcnVE NOUNS; ... Such collective nouns 
as can be used either in the singular or in the plural (family, clergy, committee, 
Parliament), are singular when unity (a unit) is intended; plural, when the idea of 
plurality is predominant.' 
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whose members are sets If such a class, in turn, is regarded as a single 
object, we get a set having sets as (some of its) members. Thus, there 
are sets of sets (sets all of whose members are sets), sets of sets of sets, 
and so on. 

The objects dealt with by set theory are therefore of two sorts: sets, 
and objects that are not sets. An object of the latter sort is called an 
individual; the German term Urelement (plural: Urelemente) is often 
used as well for such an object. Somewhat surprisingly, it has turned 
out that, as far as applications to pure mathematics are concerned, 
individuals are in principle dispensable, so that set theory can confine 
itself to sets only. We shall not make any ruling on this matter. Unless 
otherwise stated, what we shall say will apply regardless of whether, or 
how many, individuals are present. 

1.4. Definition 

We write 'a e A' as short for '[the object) a belongs to [the class] A'. 
The same proposition is also expressed by saying that a is a member of 
A, or an element of A, or that A contains a. We write 'a fJ A' to 
negate the proposition that a e A. 

A class is specified by means of a definite property, say P, for which it 
is stipulated that the condition Px is necessary and sufficient for any 
object x's membership in the class. 

1.5. Definition 

lf P is any definite property, such that the condition Px is meaningful 
for an arbitrary object x, then the extension of P, denoted by 

'{x: Px}', 

is the class of all objects x such that Px. Thus a e { x : Px} iff Pa. 

Classes having exactly the same members are regarded as identical. Let 
us state this more formally: 

1.6. Principle of Extensionality (PX) 

If A and B are any classes such that, for every object x, 

xeA~xeB, 

then A= B. 
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For example, the two classes 

{x: xis an integer such that x2 = x}, 

{y : y is an integer such that -1 < y < 2} 

are equal: although the two defining conditions differ in meaning, they 
are satisfied by the same objects - the integers O and 1. 

1.7. Remark 

Set theory (along with other parts of present-day mathematics) is 
dominated by a structuralist ideology, which entails an extensionalist 
view of properties. This means that properties having equal extensions 
are considered to be equal; thus a property and its extension uniquely 
determine each other. 

§ 2. The antinomies; limitation of size 

Since ancient times, mathematicians have dealt with infinite pluralities 
as a matter of course - an obvious example is the class of positive 
integers. However, until well into the 19th century there was great 
reluctance to regard such pluralities as single objects, as sets in the 
sense explained in 1.3. The infinitude of a class meant that more and 
more of its members could be constructed or conceived of, without 
limit. But to apprehend such a plurality as a single object seems to 
imply that all its members have 'already' been constructed or con­
ceived of, or at least that they are somehow all 'out there'. This idea of 
a completed or actual - rather than potential - infinity was (rightly!) 
regarded with utmost suspicion. 

However, the needs of mathematics as it developed in the 19th 
century drove Georg Cantor (1845-1918) to create his Mengenlehre, 
set theory, which admits infinite classes as objects. Despite early 
hostility, set theory was soon accepted by the majority of mathemati­
cians as a powerful and indispensable tool; indeed, many regard it as a 
framework and foundation for the whole of mathematics. 

The success of set theory first lured its adherents into assuming that 
every class can be regarded as a set. This assumption, known as the 
Comprehension Principle, is however untenable: it leads to certain 
logical contradictions or antinomies. The first such antinomy to be 
discovered is called the Burali-Forti Paradox, after the person who 
first published it, in 1897; but Cantor himself had been aware of it at 
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least two years earlier. The antinomy results directly from the assump­
tion that the class W of all ordinals is a set. (The theory of ordinals is 
an important but quite technical part of set theory. In Ch. 4, when we 
study the ordinals, we shall prove that W cannot be a set.) Similar 
antinomies were later discovered by Cantor himself and by others. 

Cantor was not too disturbed by these discoveries. He noticed that 
the antinomies arose from applying the Comprehension Principle to 
classes that were not just infinite but extremely vast. (An early result 
of his set theory was that not all infinite classes have the same 'size'.) 
He concluded that some classes are not merely infinite but absolutely 
infinite, hence simply too large to be comprehended as a single object. 
Set theory would be on safe ground if the Comprehension Principle 
were restricted to classes of moderate size.1 However, he did not 
specify precisely how to draw the line between moderately large 
infinite classes, which can be regarded as sets with impunity, and vast 
ones, which cannot be so regarded. 

Matters came to a head in 1903, when Bertrand Russell published a 
new antinomy, Russell's Paradox, which he had discovered two years 
earlier. Whereas previous antinomies arose in rather technical reaches 
of set theory and therefore required lengthy expositions, Russell's 
Paradox checkmated the Comprehension Principle in two simple 
moves, as follows. Let 

S =ctf {x: xis a set such that x '1- x}. 

Assuming that S is a set, it follows that S e S iff S satisfies the defining 
condition of S - that is, iff S fJ S. This is absurd. 

The fact that an antinomy follows so easily from apparently sound 
assumptions plunged set theory and logic (which cannot be sharply 
demarcated from set theory) into a crisis. 

In 1908, two solutions were proposed to this crisis. Both amounted 
to imposing restrictions on the Comprehension Principle - but in two 
very different ways. The first, proposed by Russell himself and embo­
died in his type theory, refused to accept {x : Px} as an object if the 
condition Px is impredicative (that is, refers to a totality to which the 
object, if it did exist, would belong).2 Russell's type theory, elaborated 

1 See Michael Hallett, Cantorian set theory and limitation of size. 
2 Russell's paper, 'Mathematical logic as based on the theory of types', is reprinted in 

van Heijenoort, From Frege to Godel. 
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by Whitehead and him in their three-volume Principia Mathematica 
(1910, 1912, 1913) as a total system for logic and mathematics, turned 
out to be quite complicated and cumbersome; and, at least in part 
because of this, has won very few adherents. 

The other solution, proposed by Ernst Zermelo, embodied an idea 
similar to that entertained by Cantor: limitation of size.1 Zermelo 
proceeded to develop set theory axiomatically: he laid down postul­
ates, or [ extralogical] axioms, from which the theorems of set theory 
were to be deduced by elementary logical means. Besides an Axiom of 
Extensionality (for sets), Zermelo's axioms include certain particular 
cases of the Comprehension Principle, which are regarded as safe 
because - as far as one can tell - they do not allow the formation of 
over-large sets and do not give rise to antinomies. In addition, Zer­
melo postulated a special axiom, the Axiom of Choice, which is not a 
restricted form of the Comprehension Principle, but is needed for 
proving certain important results in set theory itself and in other 
branches of mathematics. 2 

In 1921-2, Abraham Fraenkel, Thoralf Skolem and Nels Leones 
(independently of one another) proposed one further postulate, the 
Axiom of Replacement, which is vital for the internal needs of set 
theory rather than for applications to other branches of mathematics. 
This postulate is another apparently safe special case of the Compre­
hension Principle.3 

The resulting theory - known as Zermelo-Fraenkel set theory (ZF) -
has proved to be very convenient and has been adopted almost 
universally by users of set theory. 

While Zermelo's axiomatic approach is, as far as we can tell, 
sufficient for blocking the logical antinomies, such as the Burali-Forti 
and Russell Paradoxes, it does not ward against another sort of 
antinomy, which may be called linguistic or semantic. 

Here is a modified version of a linguistic antinomy published in 1906 
by Russell, who attributed it to G. G. Berry. Some English expressions 
define natural numbers; for example, 'zero', 'the square of eighty­
seven', 'the least prime number greater than eighty-seven million'. 

1 Russell too had briefly toyed with the same idea in 1905. 
2 A translation of Zermelo's paper, 'Investigations in the foundations of set theory I', is 

printed in van Heijenoort, From Frege to Godel. 
3 This postulate, as well as Zermelo's Axiom of Separation and Axiom of Union Set, had 

in fact been foreshadowed in 1899 by Cantor, in a letter to Dedekind, a translation of 
which is printed in van Heijenoort, From Frege to Godel. 



§3. Zermelo's axioms 15 

Only finitely many numbers can be defined by English expressions that 
use fewer than 87 letters, since clearly there are only finitely many such 
expressions. Hence the class M of natural numbers not so definable 
must be non-empty. By the Least Number Principle (see §4 of Ch. 0), 
M has a unique least member: the least natural number not definable 
by an English expression using fewer than eighty-seven letters. But 
observe: the italicized part of the previous sentence is an English 
expression using just 86 letters, which (presumably) defines a number 
that cannot be defined by an English expression using less than 87 
letters! 

On the face of it, this antinomy affects arithmetic rather than set 
theory. However, as we shall see in §3 of Ch. 4 and§ 1 of Ch. 6, the 
arithmetic of natural numbers can be simulated within set theory, so 
that Berry's antinomy threatens set theory as well. 

We cannot go here into a detailed discussion of the linguistic 
antinomies. Suffice it to say that the source of the trouble is that the 
notion of definite property, and hence also that of class ( as the 
extension of such a property) has been left too loose and vague. Thus, 
for example, the property of being definable by an English expression 
using fewer than eighty-seven letters does not have a rigorously defined 
meaning. 

These antinomies can be blocked by laying down precise conditions 
as to what may count as a definite property (or a class). 1 This may be 
done by specifying a formal language with precise structure and rules, 
and allowing as definite properties only such as can be expressed 
formally in this language. For a formalized presentation of ZF see, for 
example, Chapter 10 of B&M. 

We shall present a fairly rigorous but unformalized version of ZF. 
However, if desired it would be easy in principle (though tedious in 
practice) to formalize our treatment. 

§ 3. Zermelo's axioms 

Here we present (with minor modifications) Zermelo's axioms except 
for the Axiom of Choice, which we shall discuss in Ch. 5 

First, we shall assume that our universe of discourse - the class of all 

1 The first to formulate such precise conditions was Hermann Weyl in Das Kontinuum 
(1918). A simila~ (and somewhat more formal) characterization was given independ­
ently by Skolem m a 1922 paper whose translation, 'Some remarks on axiomatized set 
theory', is printed in van Heijenoort, From Frege to Godel. 
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objects with which set theory deals - is non-empty. We do not 
announce this assumption officially as a special postulate, because it is 
conventional to consider it as a logical presupposition. 

The objects in the universe of discourse are of two distinct sorts: sets 
and individuals. Classes are admitted as extensions of properties: if P 
is a definite property of objects, then we admit the class A= {x: Px}. 
Note that, by Def. 1.5, to say that a e A is just another way of saying 
that Pa (the object a has the property P). 

In order to block the semantic antinomies we must however insist 
that P be defined in purely set-theoretic terms, without using extran­
eous concepts. 

The universe of discourse itself can be presented as a class according 
to this format: it is {x: x = x}. 

Although we refer to a class in the singular, this is merely a manner 
of speaking and does not imply that the class is necessarily a single 
object. From the axioms it will follow, however, that certain classes are 
sets, and hence objects of set theory. Each set is identified with the 
class of all its members. 

The universe may also contain other objects, called individuals. An 
individual is not a set and has no members. As we shall see shortly, 
there is also a set that has no members - the empty set. 

A class that is not a set is called a proper class; a proper class is not 
an object, and therefore cannot be a member of any class. 

As our first postulate we adopt the Principle of Extensionality 1.6. We 
shall refer to it briefly as 'PX'. 

Zermelo postulated PX for sets only, as he did not consider classes 
( except the universe of discourse) and used properties instead. 

Before stating our next postulate, we introduce a useful piece of 
notation. 

3 .1. Defmition 

If n is any natural number and a1, a2, ... , all are any objects, not 
necessarily distinct, we put 

{a1, a2, . .. , all} =df {x : x =I- x or x = a1 or x = a2 or ... or x = an}. 

In particular, for n = 0 we get the empty class { } = {x: x =I- x}, which 
we denote by '0'. (No object can differ from itself!) 



§3. Zermelo's axioms 

3.2. Axiom of Pairing(A2) 

For all objects a and b the class {a, b} is a set. 

3.3. Remarks 
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(i) This set is called the pair of a and b. By PX we have 
{a, b} = {b, a}. 

(ii) For any object a we clearly have {a} = {a, a}, which is a set by 
A2. This set is called the singleton of a. 

(iii) From our assumption that there exists at least one object a, it 
now follows that there exists at least one set, namely {a}. Note 
however that we cannot prove the existence of an individual: our 
postulates are neutral on this matter. 

3.4. Definition 

Let A and B be classes. If every member of Bis also a member of A, 
we say that B is a subclass of A ( also, B is included in A, or A 
includes B), briefly: BC A. 

If B C A but A * B, we say that B is a proper subclass of A ( also, 
B is properly included in A, or A properly includes B), briefly: 
BCA. 

3.5. Warnings 

(i) Beware of confusing 'contains' and 'includes'; the former refers 
to the relation of membership E while the latter refers to the 
relation C just defined. 

(ii) However, this terminological distinction is not observed by all 
authors, so watch out for other usages. 

(iii) Also, the notation introduced in Def. 3.4 is not universally 
accepted. Some authors use 'C' instead of 'C' for not-necessarily­
proper inclusion; and•~' instead of 'C' for proper inclusion. 

The following postulate was one of Zermelo's central ideas. 

3.6. Axiom of Subsets (AS) 

If BC A and A is a set then so is B. 
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3.7. Definition 

If A is a class and P is a definite property such that the condition Px is 
meaningful for any object x, we put 

{x EA: Px} =df {x: XE A and Px}. 

3.8. Remarks 

(i) Zermelo's formulation of AS, clearly equivalent to the one used 
here, said (in effect) that if A is a set then the class {x E A : Px} 
is always a set. Since this class separates or singles out those 
members of A that have the property P, he called AS the Axiom 
of Separation (Aussonderung). This name is still in current use. 

(ii) The intuitive idea behind AS is clear: if B ~ A and A is not too 
vast, then B cannot be too vast either. 

3.9. Theorem 

0 is a set. 

PROOF 

Clearly 0 is included in any class, and in particular in any set. By 
Rem. 3.3(iii) there exists a set. Hence 0 is included in some set, and 
by AS is itself a set. ■ 

3.10. Theorem 

The class of all objects (the universe of discourse) and the class of all 
sets are proper classes. 

PROOF 

We saw in § 2 that Russell's class, 

{x: xis a set such that x ft. x} 

cannot be a set. Since Russell's class is included in the class of all sets, 
the latter cannot be a set by AS. The same applies to the universe of 
discourse. ■ 
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3.11. Definition 

If A is any class, we put 

U A = dt { x : x E y for some y E A}. 

U A is called the union class of A. 

3.12. Axiom of Union set (AV) 

If A is a set then so is UA. 

3.13. Remarks 

(i) The members of UA are the members of the members of A. 
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(ii) Intuitively, the idea behind AU is that if A is a set then it does 
not have 'too many' members; and each of these, being an object 
(an individual or a set), in turn does not have 'too many' 
members. Therefore UA - obtained by pooling together not-too­
many collections, none of which is too vast - cannot itself be too 
vast. 

3.14. Definition 

For any classes A and B, we put 

AU B =dt {x: x EA or x EB}. 

A U B is called the union ( or join) of A and B. 

3.15. Theorem 

A U B is a set iff both A and B are sets. 

PROOF 

If A and Bare sets, then AU B = U{A, B}, which is a set by A2 and 
AU. The converse follows easily from AS. ■ 

3.16. Theorem 

If n is any natural number and a 1, a2, ... , an are any objects, the class 
{ai, a2, ... , an} is a set. 
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PROOF 

By (weak) induction on n. 

1. Sets and classes 

Basis. For n = 0 the assertion of our theorem is Thm. 3.9. 

Induction step. By Def. 3.14, 

{ai, a2, ... , an, an+il = {ai, a2, ... , an} U {an+il, 

which is a set by the induction hypothesis, Rem. 3.3(ii) and Thm. 3.15. 
■ 

3.17. Definition 

If A is any class, we put 

PA =dr{x :xisasetsuchthatx !;;;:A}. 

PA is called the power class of A. 

3.18. Axiom of Power set (AP) 

If A is a set then so is PA. 

3.19. Remark 

Intuitively, the idea behind AP is that although PA can be very large -
in fact, much larger than A - its size is nevertheless bounded provided 
A itself is not too vast. 

3.20. Problem 

Prove that if A is a class of sets (that is, a class all of whose members 
are sets) such that UA is a set, then A is a set as well. 

The last axiom we shall postulate here is 

3.21. Axiom of Infinity (Al) 

There exists a set Z such that 0 E Z and such that for every set x E Z 
alsox U {x} E Z. 
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3 .22. Remarks 

(i) Without AI it is impossible to prove that there are infinite sets. 
On the other hand, it is easy to see intuitively that any set Z 
satisfying the conditions imposed by AI must be infinite. We shall 
be able to prove this rigorously when we have a rigorous defini­
tion of infiniteness. 

(ii) A2, AS, AU and AP are clearly particular cases of the Principle 
of Comprehension: they say that certain classes are sets. Al­
though Al as it stands is not of this form, we shall see later that it 
is equivalent to the proposition that a certain class, w, is a set. 

§ 4. Intersections and differences 

The following definitions will be needed later on. 

4.1. Definition 

If A is any class. 

n A = df { X : X E y for every y E A}. 

nA is called the intersection class of A. 

4.2. Definition 

If A and Bare classes, 

A n B =dt {x : x e A and x e B}. 

An Bis called the intersection (or meet) of A and B. 

4.3. Definition 

If A is any class, 

Ac =df {x: x ft_ A}. 

Ac is called the complement of A. 

4.4. Definition 

If A and Bare any classes, 

A - B =dt A n Be. 

A - B is called the difference between A and B. 
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4.5. Problem 

(i) Prove that if A is a non-empty class then nA is a set. What is 
n01 

(ii) Prove that if A or Bis a set then so is A n B. 
(iii) Prove that A and Ac cannot both be sets. 
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Relations and functions 

§ 1. Ordered n-tuples, cartesian products and relations 
I.I. Preview 

By Def. 1.1.5, the extension of a property P of objects is the class {x : 
Px}. Recall (Rem. 1.1. 7) that from an extensionalist point of view a 
property and its extension determine each other uniquely; so that­
wielding Occam's razor, the structuralist mathematician's favourite 
instrument-one can identify the two and pretend that a property 
simply is its extension. As set theory developed, it transpired that a 
similar procedure could be applied to other fundamental mathematical 
notions such as relation ( among objects) and function: instead of 
taking these as independent primitive notions, as had been done in the 
early days of set theory, they could be reduced to classes and the 
membership relation. In this and the next section we shall see how this 
is done. 

For any two objects a and b, not necessarily distinct, we need a unique 
object (a, b) called the ordered pair of a and b [in this order]. It is not 
really important how the ordered pair is defined, so long as the 
following condition is satisfied: 

(1.2) (a, b) = (c, d) <=>a= c and b = d. 

1.3. Warning 

The ordered pair (a, b) must not be confused with the set {a, b}, 
sometimes known as an unordered pair, whose members are just a and 
b. For example, the sets {a, b} and { b, a} are always equal ( see Rem. 
l.3.3(i)), but by (1.2) the ordered pairs (a,b) and (b,a) are equal 
only if a = b. However, when there is no risk of confusion we shall 
often omit the adjective 'ordered' and say 'pair' when we mean ordered 
pair. 

23 
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As part of the reductionist programme aiming to reduce all mathema­
tical concepts to the notion of class and the membership relation, the 
following rather artificial definition, first proposed by Kazimierz Kura­
towski in 1921, has been widely accepted. 

1 .4. Definition 

For any objects a and b, 

(a, b) =dt {{a}, {a, b}}. 

1.5. Problem 

Prove that (1.2) follows from Def. 1.4. 

More generally, for any number n and any n objects ai, a2, ... , an 
-not necessarily distinct-we need a unique object (ai, a2, ... , an) 
called the ordered n-tuple of a1, a2, •.. , an [in this order]. Again, it is 
not really important how ordered n-tuples are defined, so long as the 
following condition-of which (1.2) is a special case-is satisfied: 

(1.6) (ai, a2, ... , an) = (b1, b2, ... , bn) 

<=> a; = b; for i = 1, 2, ... , n. 

Again, we shall often say 'n-tuple' as short for 'ordered n-tuple'. 

The following definitions deliver the goods. Proceeding inductively, we 
supplement Def. 1.4 by: 

1. 7. Definition 

For any n ~ 2 and objects a1, a2, ... , an, an+l• 

(a1, a2, •••,an, an+1) =dt ( (a1, a2, •••,an), an+1), 

1.8. Problem 

Prove (1.6) for all n ~ 2. (Use weak induction on n, taking n = 2 as 
basis.) 
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There remain the cases n = 1 and n = 0. For n = l, condition (1.6) 
reduces to: 

(a)= (b) <c>a = b. 

The simplest way to satisfy this is to adopt the following. 

1.9. Definition 

(a} =dt a. 

As for n = 0, condition (1.6) reduces to the unconditional equality 
( ) = ( ) , which will hold trivially, no matter how we define ( ) . Since 
0 is the simplest object, the simplest convention to adopt is 

1.10. Definition 

(} =df0, 

1 .11. Remark 

The equality which was decreed by Def. 1. 7 for n ~ 2, now holds also 
for n = 1 by virtue of Def. 1.9. However, it does not hold for n = 0, 
because by Def. 1.9 (a}= a, whereas by Def. 1.10 ((),a}= (0, a}. 

We proceed to define the notions of cartesian product and cartesian 
power. 

1.12. Definition 

(i) For any classes Ai, A 2 , ... , An, not necessarily distinct, their 
cartesian product [in this order] is the class 

Ai X A2 X • • • X An =df 

{(xi, Xz, ... , Xn): X1 E Ai, X2 E A2, .•• , Xn E An}, 

that is, the class of all n-tuples whose i-th component belongs to 
A; for i = 1, 2, ... , n. 

(ii) The n-th cartesian power of a class A is the cartesian product of 
A with itself n times: 

An =dtA X A X • • • X A, 

n times 
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that is, the class of all n-tuples of members of A. In particular, 
A1 = A and A0 = {()} = {0}. 

1.13. Remarks 

(i) In Def. 1.12(i) we have used a convenient generalization of the 
class notation introduced in Def. 1.1.5. Although it is almost 
self-explanatory, let us spell it out. 

Suppose F(x1, x 2, ... , Xn) is an object whenever x 1, x 2, ... , 

Xn are objects; and suppose P(x1, x2, ... , Xn) is a condition 
involving xi, x2, ... , Xn, Then 

{F(x1, Xz, ... , Xn) : P(x1, X2, ... , Xn)} 

is defined to be the class 

{y : there exist xi, x2, ... , Xn such that 

F(xi, X2, ... , Xn) = y and P(xi, Xz, ... , Xn)}. 

(ii) It is easy to see that, for any n ;;;i,, l, A1 X A 2 X • • • X An= 0 iff 
A;= 0 for at least one i. 

Intuitively, if n ;;;i,, 1 and R is an n-ary relation on a class A, then for 
any n-tuple of members of A it is meaningful to say that R holds or 
does not hold for it. The class of all those n-tuples for which R does 
hold is known as the extension of R. From an extensionalist point of 
view, two relations are identical iff they have the same extension. 
Thus, a relation and its extension uniquely determine each other. In 
the spirit of the reductionist programme mentioned above, a relation is 
simply identified with its extension. Hence the following 

1.14. Definition 

(i) For any n ;;;i,, 1 and any class A, an n-ary relation on A is a class of 
n-tuples of members of A-that is, a subclass of An. 

(ii) In particular, a property on A is a unary relation on A-that is, a 
subclass of A. 

1.15. Remarks 

(i) If R is an n-ary relation we shall often write 'R(a1, a2 , .•. , an)' 
as short for ' ( a1 , a2 , ••• , an) e R'. In the special case where R is 
a binary relation we shall often write 'aRb' for '(a, b) e R'. 
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(ii) We could extend Def. 1.14(i) to the case n = 0, but the resulting 
notion of 0-ary relation is found to be of little use. 

§ 2. Functions; the axiom of replacement 

Intuitively, if f is a function (or map, or mapping) then f assigns to 
any object x at most one object fx as value. The class of all objects x 
to which a value fx is assigned by f is called the domain [of definition] 
off and denoted by 'domf'. 

The graph off is then the class { (x, fx): x E dom /}. Note that the 
graph of a function is a class of pairs. But not every class of pairs can 
be the graph of a function: a class G of pairs is the graph of a function 
iff for any object x there is at most one object y such that ( x, y) E G. 

From an extensionalist point of view, two functions are identical if 
they have the same graphs. In the spirit of reductionism, we can 
therefore identify a function with its graph: 

2.1. Definition 

A function (a.k.a. map or mapping) is a class f of ordered pairs 
satisfying the functionality condition: whenever both ( x, y) E / and 
(x,z)Eftheny=z. 

2.2. Definition 

Let f be a function. 

(i) The domain off is the class 

domf=ctr{x: (x,y) E/forsomey}. 

(ii) If x e dom /, then the value off at x - usually denoted by 'fx' - is 
the [necessarily unique] y such that (x, y) E /. 

(iii) The range off is the class 

ran/ =dr {fx : x E domf}. 

2.3. Problem 

Verify that from Defs. 2.1 and 2.2 it follows that a function f is equal 
to its own graph; that is, 

f = {(x, /x): x e domf}. 
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Hence prove that functions / and g are equal iff dom f = dom g and 
fx = gx for every x in their common domain. 

2.4. Definition 

Let/ be a function. 

(i) We say that f is a map from A to B (or that f maps A into B) if 
dom/ = A and ran/~ B. 

(ii) We say that f is a surjection from A to B ( or that f maps A onto 
B) if dom/ = A and ran/= B. 

(iii) We say that f is an injection (or a one-to-one map) if whenever x 
and y are distinct members of dom f then fx and fy are also 
distinct. 

(iv) We say that f is a bijection from A to B if it is an injection as 
well as a surjection from A to B (that is, a one-to-one map from 
A onto B). 

We shall now enquire when a relation or a function is a set. 

2.5. Lemma 

Let A and B be non-empty classes. Then A x B is a set if! both A and B 
are sets. 

PROOF 

Let a and b be any members of A and B respectively. Then by Defs. 
1.4 and 1.12 we have 

{a, b} E {{a}, {a, b}} = (a, b) EA X B. 

Therefore by Def. 1.3.11 

{a, b} e U(A x B). 

Since both a and b belong to {a, b }, it follows, again by Def. 1.3.11, 
that both are members of UU(A x B). Thus we have shown that 
A~ UU(A x B) and Bk UU(A x B), hence AU Bk UU(A x B). 

Also, it is easy to see that UU(A x B) k AU B. Therefore by PX 
we have 

UU(A X B) =Au B. 

If A x B is a set, it follows from AU and Thm. 1.3.15 that A and B 
are sets as well. 
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Conversely, if A and B are sets, then by Thm. 1.3.15 and Prob. 
1.3.20 it follows that A X B is a set as well. ■ 

2.6. Theorem 

Let n;;,, 1, and let Ai, A2, ... , An be non-empty classes. Then 
A 1 x A2 x • • • x An is a set if! A; is a set for each i = 1, 2, ... , n. 

PROOF 

By weak induction on n. 

Basis. For n = 1 the assertion of our theorem is trivial, since in this 
case A1 x A2 x · · • x An is simply A 1 (see Defs. l.12(i) and 1.9). 

Induction step. It is easy to see that 

A1 X A2 X • • • X An X An+l = (A1 X A2 X • • • X An) X An+l 

(use Defs. l.12(i) and 1.7 and Rem. 1.11). Hence, by Lemma 2.5 and 
the induction hypothesis, A 1 X A2 x • • • x An x An+l is a set iff A; is 
a set for each i = 1, 2, ... , n, n + 1. ■ 

2.7. Corollary 

If A is a set and R is an n-ary relation on A (for some n ;;,, 1) then R is a 
set as well. 

PROOF 

By Def. 1.14 we have R ~An.If A= 0 then An= 0 by Def. 1.12(ii) 
and Rem. 1.13(ii); hence R = 0. If A is a non-empty set then An is a 
set by Thm. 2.6, hence R is a set by AS. ■ 

2.8. Theorem 

Let f be a function. Then f is a set if! both dom f and ran/ are sets. 

PROOF 

It is easy to verify that 

UUJ = domf Uran/. 
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From this the required result follows, using the same argument as in 
the proof of Lemma 2.5. ■ 

At this point we introduce 

2.9. Axiom of Replacement (AR) 

If f is a function and dom f is a set then ran f is a set as well. 

2.10. Remarks 

(i) AR is clearly a particular case of the Comprehension Principle. 
(ii) In view of Thm. 2.8, AR is equivalent to the proposition that if f 

is a function such that dom f is a set then f itself is a set. The 
intuitive idea behind AR is that f has exactly 'as many' members 
as does domf: for each a E domf, f contains the corresponding 
pair ( a, fa). Therefore if dom f is not too vast, neither is f itself. 

(iii) In mathematical applications, a function f is almost always 
defined as a mapping from A to B, where both A and B are 
known in advance to be sets. It then follows from AS and Thm. 
2.8 that ran/ and f itself are sets. AR is not needed for this. But 
as we shall see AR plays an important role within set theory 
itself. 

§ 3. Equivalence and order relations 
3.1. Preview 

In this section we discuss two kinds of relation that are of particular 
importance, not only in set theory but in mathematics as a whole. 

Throughout the section, A is an arbitrary class. 

3 .2. Definition 

R is an equivalence relation on A if R is a binary relation on A such 
that, for any members x, y and z of A, the following three conditions 
are satisfied: 

xRx 
if xRy then also yRx 
if xRy and yRz then also xRz 

(reflexivity), 
(symmetry), 

(transitivity). 
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3.3. Example 

The paradigmatic example of an equivalence relation on A is the 
binary relation { ( x, x ) : x e A} , called the identity ( or diagonal) 
relation on A, and denoted by 'idA'• By the way, idA is clearly a 
function; indeed, it is a bijection from A to itself. 

3.4. Definition 

Let R be an equivalence relation on A. For each a e A we put 

[a]R =df {x: xRa}. 

We call [a]R the R-class of a, or the equivalence class of a modulo R. 
Where there is no risk of confusion we omit the subscript 'R' and write 
simply '[a]'. 

3.5. Theorem 

Let R be an equivalence relation on A and let a and b be any members 
of A. Then [a]= [b] iff aRb. 

PROOF 

(=>). By reflexivity, aRa, so a e [a]. If [a]= [b] then by PX also 
a e [b], so that aRb. 

(<=). Suppose aRb. If x e [a], then xRa, hence by transitivity xRb, 
so that x e [b]. Thus we have shown that [a] C [b]. 

Also, from aRb it follows by symmetry that bRa, so the argument 
we have just used shows that [b] C [a]. Hence by PX [a]= [b]. ■ 

3.6. Corollary 

Let R be an equivalence relation on A and let a be any member of A. 
Then a belongs to exactly one R-class, namely [a]. 

PROOF 

We have seen that a e [a]. If also a e [b] then by Def. 3.4 aRb, so by 
Thm. 3.5 it follows that [a] = [b]. ■ 

3.7. Definition 

(i) S is a sharp partial order on A if S is a binary relation on A such 
that, for any members x, y and z of A, the following two 
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conditions are satisfied: 

if xSy, then ySx does not hold 
if xSy and ySz then also xSz 

(anti-symmetry), 
(transitivity). 

(ii) B is a blunt partial order on A if B is a binary relation on A such 
that, for any members x, y and z of A, the following three 
conditions are satisfied: 

xBx 
if xBy and yBx then x = y 
if xBy and yBz then also xBz 

3.8. Example 

(reflexivity), 
(weak anti-symmetry), 

(transitivity). 

Let A be a class of sets (that is, all the members of A are sets rather 
than individuals). Let S and B be the restrictions to A of c and ~ 
respectively; that is, 

S=dt{(x,y)eA2 :xCy} and B=dt{(x,y)eA2 :x~y}. 

Then it is easy to see that S and B are a sharp and a blunt partial 
order, respectively, on A. 

3.9. Problem 

Let S and B be a sharp and a blunt partial order, respectively, on A. 
Put 

sb =df s u idA and n# =df B - idA. 

(For the definitions of id A and - see Ex. 3.3 and Def. 1.4.4.) 

(i) Prove that sb and n# are a blunt and a sharp order on A, 
respectively. 

(ii) Verify that sb# = S and n#b = B. 

3.10. Remarks 

(i) The qualifications 'sharp' and 'blunt' are often omitted and a 
partial order of either kind is referred to simply as a 'partial 
order'. There is no real harm in this, for two reasons. First, 
because it is usually clear from the context which kind of partial 
order is meant. Second, as shown in Prob. 3.9, there is a natural 
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mutual association between a sharp partial order and a blunt 
partial order, whereby the latter is obtained from the former by 
applying b and the former from the latter by applying #. 

(ii) Sharp partial orders are often denoted by symbols such as'<' or 
'<'; the corresponding blunt partial orders are then denoted by 
symbols such as•,;;;;• or•~• respectively. 

3.11. Definition 

(i) S is a sharp total order on A if S is a binary relation on A such 
that, for any members x, y and z of A, the following two 
conditions are satisfied: 

exactly one of the following three disjuncts holds 
xSy or x = y or ySx (trichotomy), 

whenever xSy and ySz then also xSz (transitivity). 

(ii) B is a blunt total order on A if B is a binary relation on A such 
that, for any members x, y and z of A, the following three 
conditions are satisfied: 

xBy or yBx 
if xBy and yBx then x = y 
if xBy and yBz then also xBz 

3.12. Problem 

(connectedness), 
(weak anti-symmetry), 

(transitivity). 

Let S and B be a sharp and a blunt total order, respectively, on A. 
Prove that 

(i) S is a sharp partial order, 
(iii) Bis a blunt partial order, 

on A. 

(ii) sb is a blunt total order, 
(iv) Btr, is a sharp total order, 

§ 4. Operations on functions 

The following definitions will be needed later on. 

4.1. Definition 

If f and g are functions such that ran f ~ dom g, we put 

g 0 f=dt{(x,gy): (x,y) E/}. 
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go /-often denoted briefly 'gf' - is called the composition off and g. 
(Note reading from right to left!) 

4.2. Problem 

Show: go f is a function, dom (go/) = dom f and ran (go/) k rang. 
Moreover, for any x in dom (g 0 /)-which is also dom /-check that 

(g 0 /)x = g(fx). 

4.3. Definition 

If f is an injective (that is, one-to-one) function we put 

1-1 =df {(y, x): (x, y) E /}. 

1-1 is called the inverse of/. 

4.4. Problem 

Verify that 1-1 itself is an injective function and, moreover, 

dom(/-1) = ran/, ran(/-1) = dom/, 

/-l 0 f = iddomf, 

(For the definition of id see Ex. 3.3.) 

4.5. Problem 

Prove that if f is a function from a proper class to a set, then f is not 
injective. 

4.6. Definition 

If f is a function and Ck domf, we put 
(i) /tC =df {(x, fx}: x e C}, 

(ii) f[C] =dr {fx: x e C}. 

/ t C is called the restriction off to C and /[ C] is called the image of C 
under/. 

4.7. Problem 

Verify that ft C is a function, dom (ft C) = C and ran (ft C) = 
/[ C]. Moreover, (/ t C)x = fx for every x e C. 
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4.8. Problem 

Let F be a class whose members are functions. Show that U F is a 
function iff the following coherence condition is fulfilled: fx = gx for 
all f and g in F and all x E <lorn f n dom g. Assuming this condition 
holds, what are dam F and ran F? 



3 

Cardinals 

§ 1. Equipollence and cardinality 

We start by defining a binary relation= on the class of all sets: 

1.1. Definition 

Let A and B be sets. We say that A and B are equipollent, briefly: 
A = B, if there exists a bijection from A to B (that is, a one-to-one 
map from A onto B). 

1.2. Theorem 

Equipollence is an equivalence relation on the class of sets. 

PROOF 

For any set A, id A is a bijection from A to itself; so = is reflexive. 
If f is a bijection from A to B then clearly 1-1 is a bijection from B 

to A; so = is symmetric. 
Finally, if f is a bijection from A to B and g is a bijection from B to 

C, then go f is a bijection from A to C; so= is transitive. ■ 

It is convenient to introduce the following 

1.3. Definition (incomplete) 

To each set A we assign an object IAI, called the cardinality of A, such 
that for any two sets A and B, IAI = IBI iff A= B. 

An object of the form IA I for some set A is called a cardinal. 

36 
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1.4. Remarks 

(i) Def. 1.3 is incomplete, because we have not specified what the 
object IAI is or how it is to be chosen. 

Cantor regarded cardinals as special abstract entities of a new 
kind. In effect, this amounted to introducing the notion of 
cardinal as a separate primitive notion. 

However, it would obviously be more convenient - and con­
form to the reductionist programme - if cardinals were among the 
hitherto posited objects of set theory. In this spirit, Frege pro­
posed in 1884 the elegant idea of defining IAI as [A],,., the 
equivalence class of A modulo= (see Def. 2.3.4). The condition 
required by Def. 1.3 - IAI = jBj <c> A= B -would then follow at 
once by Thm. 2.3.5. 

This procedure, novel at the time, was to become standard 
practice, used with respect to various equivalence relations that 
arise in numerous mathematical situations. 

Ironically, Frege's procedure does not work at all well in the 
present case, where the equivalence relation is =. Unaware that 
the Comprehension Principle had to be restricted, he assumed as 
a matter of course that [A],,. is always a set, hence an object. 
Unfortunately, this is in general false. For example, if A is a 
singleton, then [A].., is the class of all singletons, and hence 
U[A],,., is the class of all objects, the entire universe of discourse, 
which is a proper class by Tom. 1.3.10. Hence by AU [A].,. must 
be a proper class as well. This is very inconvenient, because we 
would like to be able to form classes of cardinals, which is 
impossible if cardinals are proper classes. 

Fortunately there are other ways of defining cardinals, satisfy­
ing the requirement of Def. 1.3, while ensuring that the cardinals 
are sets. Later on, in Ch. 6, we shall follow one such procedure. 
In each =-class we shall be able to select a unique 'distinguished' 
member. Then, for any set A, we can take IAI to be the 
distinguished member of [A] .. rather than that class itself. Then 
Thm. 2.3.5 ensures that the requirement of Def. 1.3 is satisfied. 

(ii) For the time being, let us take it on trust that Def. 1.3 can be 
completed in a satisfactory way. This is not asking too much, 
since our reference to cardinals may be regarded as a mere 
convenience: everything that we shall say in this chapter in terms 
of cardinals can easily be rephrased (at the cost of some circum­
locution) in terms of sets and mapping between sets. 
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(iii) The cardinality IAI of a set A is a measure of its size. Cardinals 
can be regarded intuitively as generalized natural numbers. In­
deed, if A is a finite set of the form {ai, a2, ... , an}, where the 
a; are distinct, then we could take IAI to be n, the number of 
members of A. Thus, each natural number may be regarded 
intuitively as the cardinality of a finite set. 

(iv) However, we shall not assume formally that the natural numbers 
are in fact cardinals. Rather, in § 3 we shall posit for each n a 
corresponding cardinal n, without necessarily identifying the two. 

§ 2. Ordering the cardinals; the Schroder-Bernstein Theorem 

We define a binary relation :e;; on the class of cardinals, which, as we 
shall soon see, is a [blunt) partial order on that class: 

2.1. Definition 

Let Ji. and µ be cardinals. Let A and B be sets such that IA I = Ji. and 
IBI =µ.We say that Ji. is smaller-than-or-equal-toµ- briefly: Ji. :e;; µ - if 
there is an injection from A to B. 

2.2. Remark 

This definition is in need of legitimation: we must make sure that the 
criterion it provides for asserting that Ji.,;,;µ depends only on these 
cardinals themselves rather than on the choice of particular sets A and 
B such that IAI =Ji.and IBI =µ.This is done as follows. Let A, A', 
B, B' be sets such that IAI = IA'I and IBI = IB'I. Given an injection 
from A to B, it is easy to show - DIY! - that there is also an injection 
from A' to B'. 

2.3. Theorem 

Let A and µ be cardinals and let B be a set such that I Bl = µ. Then 
Ji. :e;; µ if! B has a subset whose cardinality is Ji.. 

PROOF 

Let A be a set such that IAI = Ji.. By Def. 2.2.4, an injection from A to 
B is the same thing as a bijection from A to a subset of B. ■ 
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2.4. Theorem 

The relation :;;;; on the class of cardinals is reflexive and transitive. 

PROOF 

DIY. 
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■ 

To show that :;;;; is a partial order, it remains to establish that it is 
weakly anti-symmetric (see Def. 2.3. 7). This fact was conjectured by 
Cantor and proved independently by F. Bernstein and E. Schroder. 
The proof we shall present here, due to Zermelo, uses a lemma that is 
of some interest in its own right. 

2.5. Definition 

A map f/ from a class of sets to a class of sets is monotone if whenever 
X and Y are sets in dom q such that X C Y then <J X C r; Y. 

2.6. Lemma 

Let A be a set and let <J be a monotone map from PA to itself Then A 
has a subset G such that fJ G = G. 

PROOF 

For any subset X of A, the value r; X is also a subset of A. Let us say 
Xis a good set if it is a subset of A such that qX C X. (For example, 
A itself is clearly good.) 

Note that if X is good then <J X is good as well. Indeed, if q_ X C X 
then by the monotonicity of r; we get q(qX) C qX, which means that 
qX is good. 

Let G be the intersection of all good subsets of A, that is: 

G = n { X E PA : r; X C X}. 

(See Def. 1.4.1.) We claim that G itself is good. To show this, let X be 
any good set. Then G C X because G is the intersection of all good 
sets. Therefore by the monotonicity of q we have qG C qX. Also, 
since Xis good, we have r;X C X; hence q.G C X. Thus we see r;G is 
included in every good set. Hence r; G must also be included in the 
intersection of all good sets. But this intersection is G itself; this means 
that qG CG, so G is good, as claimed. 

It now follows that (J-G is good as well. But G, the intersection of all 
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good sets, is included in each of them and in particular in the good set 
fJG. So we have shown both 'JG!; G and G !; fJG. Thus 'JG= G. ■ 

2.7. Theorem (Schroder-Bernstein) 

If Ji. and µ are cardinals such that Ji. ..;; µ and µ ..;; Ji. then Ji. = µ. 

PROOF 

Let A be a set such that IAI =µ.Since Ji...;;µ, according to Thm. 2.3 A 
has a subset, say B, such that IBI = Ji.. Since also µ..;; Ji., according to 
Def. 2.1 there is an injection, say,/, from A to B. 

The claim that Ji. = µ will be proved if we show that there is a 
bijection from A to B. 

Define a map tJ from PA into itself by putting, for any X !; A, 

tJ,X = (A - B) U /[X]. 

(For the definitions of A - Band /[X), cf. Def. 1.4.4 and Def. 2.4.6.) 
It is easy to see that 'I is monotone. By Lemma 2.6, there exists some 
G !; A such that G = tJ,G. Thus 

G = (A - B) U /[G). 

Note that /[ G) !; B because f maps the whole of A into B. (See Fig. 
1. The large rectangle represents A; like Gaul, it is divided into three 
parts.) 

Now, f t G is an injection from G to B and a bijection from G to 
/[G) (see Prob. 2.4.7). Let us put 

h = (/tG) u idA-G• 

A-B l 
I 

G 

/[G] J 
i----------t 

B 

l A-G 

Fig. l 
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Thus h is a map whose domain in the whole of A, such that 

if XE G, 
if x e A - G. 

It is obvious that h is a bijection from A to B. ■ 

2.8. Remarks 

(i) In view of Toms. 2.4 and 2.7, :!:i is a [blunt] partial order on the 
class of cardinals. 

(ii) As usual in such cases, we denote by '<' the sharp partial order 
associated with :!:i. (Thus< is :!:i#; see Prob. 2.3.9.) If A andµ are 
cardinals such that A < µ we say that A is smaller than µ. 

(iii) Later on we shall prove (using the Axiom of Choice) that :!:i is a 
total order on the class of cardinals. 

§ 3. Cardinals for natural numbers 
3.1. Definition 

If n is a natural number and a1, a2, ... , an are distinct objects, we put 

n =df l{ai, a2, • • •, an}I. 

In particular, 0 = 101 and 1 = i{a}I, where a is any object. We call n 
the cardinal for ( or corresponding to) n. 

3.2. Remarks 

(i) To legitimize Def. 3.1 we must verify that if a1, a2, ... , an are 
distinct objects and bi, b2, ... , bn are likewise distinct objects 
then 

{a1, a2, ... , an}= {bi, b2, ... , bn}. 

This is easy: {(a1, b1), (a2, b2), ... , (an, bn)} is clearly a 
bijection from {a1, a2, ... , an} to {b1, b2, ... , bn}-

(ii) By Thm. 2.3, 0 :!:i µ for every cardinal µ. 

3.3. Problem 

Define cn by induction on n as follows: 

co = 0 and Cn+l = { cn} for each n. 
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Prove that, for each n, the objects c0 , Ci, ... , Cn are distinct. (Use 
induction on n.) 

Thus for any natural number n there exist n distinct objects, and 
hence the corresponding cardinal n exists. 

3.4. Theorem 

Let ai, a2, ... , an be any objects. Then there does not exist an injection 
from the set {a1, a2, ... , an} toanypropersubsetofitself 

PROOF 

By induction on n. For n = 0 our theorem is trivial, since 0 has no 
proper subset. 

For the induction step, consider a set A = {ai, a2, ... , an, an+1}­
We may assume that the objects a1, a2, ... , an, an+t are all distinct; 
otherwise, by eliminating one duplication we can write A in the form 
'{bi, b2, ... , bn}' and the required result follows at once by the 
induction hypothesis. 

Suppose f is an injection from A to some B ~ A. If B c A then at 
least one member of A must be outside B; and (by relabelling the a's 
if necessary) we may assume that an+l ,t B. 

Since fan+l must be in B, it cannot be an+l itself; and (again, by 
relabelling if necessary) we may assume that fan+l = a1. Therefore 
a1 e B. Also, since f is injective, an+l is the only x EA such that 
fx = a1. 

It would then follow that ft { a1, a2 , .•. , an} is an injection from the 
set {a1, a2, •.• , an} to its proper subset B - {a1} - contrary to the 
induction hypothesis. Thus B cannot be a proper subset of A. ■ 

3.5. Theorem 

For any natural numbers n and m: 

(i) if m ~ n then m ~ n; (ii) if m ::/= n then m ::/= n. 

(WARNING. The two •~• here mean different things: the first denotes 
the usual order among natural numbers, while the second denotes the 
partial order on the cardinals.) 
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PROOF 

(i) Assume m ~ n. Take n distinct objects a1, a2, ... , an (which 
exist by Prob. 3.3). Since {ai, a2, ... , am} is clearly a subset of 
{a1, a2, ... , an}, we have m ~ n by Thro. 2.3. 

(ii) Let m =I= n. Without loss of generality we may assume m < n. 
Take n distinct objects a1, a2, ... , an- By Thm. 3.4 there is no 
bijection from { a 1 , a2, ... , an} to its proper subset { a 1, a2, ... , 
am}. Therefore m =I= n. ■ 

3.6. Remark 

A subtle matter: we have not shown that being a natural number is a 
notion of set theory. Rather, we have taken this notion to be under­
stood in advance, prior to the development of set theory. Therefore 
Def. 3.1 cannot be regarded as a single definition within this theory. 
Rather, it is a definition scheme, a sequence of definitions whereby 
each of the cardinals 0, 1, 2, 3, etc., in turn may be defined separately. 
Similar caveats apply to the whole of this section as well as to 
definitions like 1.3.1 and 2.1.7 and theorems like 1.3.16. 

§ 4. Addition 

In this section we shall see how cardinals may be added. But first we 
introduce a useful bit of terminology. 

4.1. Definition 

If A n B = 0, we say that A and B are disjoint. 

4.2. Lemma 

For any sets A and B, there are disjoint sets A' and B', such that 
IAI = IA'I and IBI = IB'I. 

PROOF 

Take any two distinct objects a and b (for example, 0 and {0}; see 
Prob. 3.3). Then let 

A'= {a} x A= {(a,x) :x EA}, B' = {b} x B = {(b,x) :x EB}. 
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Using (2.1.2) it is easy to see that A' n B' = 0. Also, a bijection f 
from A' to A is obtained by putting f ( a, x) = x for every x e A; so 
IAI = IA'I, Similarly, IBI = IB'I. ■ 

4.3. Lemma 

Let A, B, A', B' be sets such that An B = A' n B' = 0, IAI = IA'I 
and IBI = IB'I. Then IA U Bl= IA' U B'I. 

PROOF 

Let f and g be bijections from A to A' and from B to B' respectively. 
Then it is clear that f U g is a bijection from AU B to A' U B'. ■ 

4.4. Definition 

For any cardinals it and µ, we define the sum of it and µ: 

j\, + µ =df IA u Bl, 

where A and Bare disjoint sets such that IAI = it and IBI = µ. 

4.5. Remarks 

(i) Def. 4.4 is legitimized by Lemma 4.3. 
(ii) In the proof of Thm. 2.7 we made use of a special case of Lemma 

4.3. We had there A= GU (A - G) and B = f[GJ U (A - G), 
where the unions in both cases are between disjoint sets. Also, 
IGI = lf[GJI because f is injective. Hence we concluded that 
IAl=IBI, 

4.6. Theorem 

If k, m and n are natural numbers and k + m = n, then k + m = n. 

PROOF 

DIY. (WARNING. The two'+' here mean different things. The first 
denotes the operation of addition of numbers. The second denotes 
addition of cardinals.) ■ 
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4.7. Problem 

Verify, for all cardinals x, }.. and µ: 

(i) x+(}..+µ)=(u+}..)+µ 
(ii) }.. + µ = µ + }.. 
(iii) }.. + 0 =}.. 

(iv) }.. ,;,; µ = x + }.. e;:;: x + µ 

4.8. Warning 

(associativity of addition), 
(commutativity of addition), 

(neutrality of O w.r.t. addition), 
(weak monotonicity of addition). 

Although cardinal addition behaves in many ways like ordinary addi­
tion of natural numbers, not all rules of ordinary arithmetic apply 
here. For example, as we shall see later, from " + }.. = " it does not 
always follow that }.. = 0. Hence the cancellation law does not apply in 
general (from "+ }.. = "+ µ it does not always follow that }.. = µ); nor 
is addition of cardinals strongly monotone (from }.. < µ it does not 
always follow that x + }.. < "+ µ). 

Instead of adding just a pair of cardinals at a time, it is possible to 
define the sum of many - even infinitely many - cardinals simultan­
eously. However, the legitimation of this definition requires the Axiom 
of Choice (AC, see Ch. S). We shall explain the definition here, 
leaving its legitimation for later. First, we need some new notation: 

4.9. Definition 

If B is a function whose domain is a set X, we sometimes denote the 
value of B at x e X by 'Bx' rather than by 'Bx' and denote B itself by 

'{Bx IX EX}'. 

In this connection we refer to X as the index set and to B as the family 
of the Bx, indexed by X. 

4.10. Remark 

Many authors use the vertical stroke 'I' instead of the colon for class 
abstraction ( as in Def. 1.1.S) and so use some other notation for 
indexed families. 
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4.11. Definition 

Let {Bx Ix EX} be an indexed family of sets (that is, all the Bx are 
sets). Let µx = IBxl for each x E X. We put: 

L{µx IX EX} =dt ILJ{{x} X Bx: XE X}I. 

This is called the sum of the [family of the] µx, indexed by X. 

4.12. Remarks 

(i) Thus, to add up all the µx simultaneously, we form the cartesian 
product {x} x Bx for each x EX. (Note that these products are 
pairwise disjoint: if x =I= y then { x} x Bx and {y} x By are dis­
joint, although Bx and By need not be disjoint and may even be 
equal.) Then we take the union of all these products. Using AR 
and AU it is easy to verify that this union is a set. The cardinality 
of this set is the required sum. 

(ii) To legitimize this definition one must show that if A is another 
indexed family of sets with the same index set X such that 
IAxl = IBxl for all x EX, then 

U{{x} X Ax: x EX}= LJ{{x} X Bx: x EX}. 

This can easily be done, using AC (see Rem. 5.1.3(iii} below). 
(iii) We need to define the sum of a family, rather than a set, of 

cardinals because in a set of cardinals each cardinal can occur at 
most once: a given cardinal either does or does not belong to a 
given set. However, we must not forbid multiple occurrence of a 
cardinal in a sum. This is taken care of by our definition, since in 
the family {µx I x E X} we can have µx = µY for x =I= y. 

(iv) Def. 4.4 is obtained as a special case of Def. 4.11 by taking the 
index set X to have just two members. 

(v) The set U{{x} x Bx: x EX} is called the direct sum of the 
indexed family { Bx I x E X}. 

§ 5. Multiplication 
5.1. Definition 

For any cardinals }., and µ, we define the product of A and µ: 

A·µ =dt IA X Bl, 



§5. Multiplication 47 

where A and Bare any sets such that IAI =), and IBI =µ.We often 
abbreviate '), • µ' as ').µ'. 

5.2. Remarks 

(i) A x Bis a set by Rem. 2.1.13(ii) and Lemma 2.2.5. 
(ii) Def. 5.1 is legitimized by the easily proved fact that if A' = A 

and B' = B, then also A' x B' = A x B. 

For natural numbers m and n, the product mn equals the sum 
obtained when n is added to itself m times (this is why the product is 
read as 'm times n'). A similar result also holds in cardinal arithmetic, 
in the following sense: 

5.3. Theorem 

Let ), and x be any cardinals and let {µa I a e A} be an indexed family 
of cardinals such that µ0 = x for every a EA and such that IAI = A. 
Then 

PROOF 

Let D be a set such that IDI = x. Applying Def. 4.11 to the indexed 
family of sets {Ba I a e A} such that Ba= D for every a e A, we 
obtain 

L {µa I a E A} = I LJ { {a} X D : a E A} 1-

However, it is not difficult to verify (DIY!) that 

U{{a} x D: a e A}= Ax D. 

Hence }:{µa I a e A}= IA X DI= Ji.x. 

5.4. Theorem 

If k, m and n are natural numbers and km= n, then km= n. 

PROOF 

DIY. 

■ 

■ 
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5.5. Problem 

Verify, for all cardinals "• Ji. and µ: 

(i) ,e(Ji.µ) = (,eJi.)µ 
(ii) Ji.µ= µJi. 

(iii) Al= Ji. 
(iv) Ji. ~ µ => ,e)i. ~ ,eµ 
(v) (,e +Ji.)µ= ,eµ + Ji.µ 

(associativity of multiplication), 
( commutativity of multiplication), 

(neutrality of 1 w.r.t. multiplication), 
(weak monotonicity of multiplication), 

(distributivity of multiplication over addition), 
(vi) Ji.µ = 0 ~ Ji. = 0 orµ = 0 (absorptive property of 0). 

5.6. Problem 

Prove the following generalization of Prob. 5.5(v): if {Ax Ix e X} is 
any indexed family of cardinals and µ is any cardinal then 

5.7. Warning 

The same as 4.8, mutatis mutandis. 

As in the case of addition, multiplication can be defined for a whole 
family of cardinals rather than just a pair of cardinals. (Legitimation 
again requires AC.) We start from a simple observation: 

5.8. Lemma 

Let C and D be any sets and let u and v be distinct objects. Let P be 
the class 

{/: f is a function such that domf = {u, v} and fu e C and fv e D}. 

Then P is a set equipollent to C x D. 

PROOF 

It is quite easy to show, without using AR, that Pis a set. However, 
we shall not bother to do so. Instead, we shall define a bijection F 
from the set C x D to P. Thus by AR the latter is also a set. We put, 
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for each c EC and d eD, 

F(c, d) = { (u, c), (v, d) }. 
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It is easy to verify that F is indeed a bijection from C x D to P. ■ 

The following definition generalizes the construction of Lemma 5.8 to 
an arbitrary family of sets. 

5.9. Definition 

If { Bx I x E X} is an indexed family of sets, the class 

{/ : f is a function such that dom f = X and fx e Bx for all x E X} 

is denoted by 

'X { Bx I X E X}' 

and called the direct product of the family { Bx I x e X } . 

5.10. Lemma 

If { Bx I x E X} is any indexed family of sets, then X { Ba I x e X} is a 
set. 

PROOF 

Recall (Def. 4.9) that {Bx Ix e X} is the function having the index set 
X as its domain, whose value at each x e X is Bx. Therefore the range 
of this function is 

{Bx: XE X} 

and this range is a set by AR. Now let us put 

U = LJ { Bx : x e X}. 

U is a set by AU. Next, observe that by Def. 5.9, if f is any member of 
X { Bx I x e X} then f is a map from X to U. Hence fr;;;, X x U, 
which means that f e P(X x U). Thus we have shown that 

X {Bx IX EX} r;;;, P(X X U). 

Since Xx U is a set (cf. Rem. 5.2(i)), it follows that P(X x U) is a 
set by AP. Hence X {Bx Ix e X} is a set by AS. ■ 
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5.11. Definition 

Let { Bx I x E X} be a family of sets and let µx = I Bxl for each x E X. 
We put 

TI{µx IX EX} =df IX{Bxlx E X}I. 

This is called the product of the [family ofl µx, indexed by X. 

5.12. Remarks 

(i) Using AC it is easy to legitimize this definition by showing that if 
A is another indexed family of sets with the same index set X 
such that IAxl = IBxl for all x EX, then 

X{Ax IX EX}= X{Bx IX EX}. 

(ii) Def. 5.1 can be regarded as a special case of Def. 5.11. Indeed, if 
C and D are any sets, whose cardinalities are u and ,l respect­
ively, take X = {u, v}, where u and v are distinct objects. and let 
{ Bx I x e X} be the family such that Bu = C and B v = D. Then 
Lemma 5.8, rewritten in the notation of Def. 5.9, says that 

X {Bx IX EX}= C X D. 

So in this case we have 

IX{Bx IX E X}I = IC X DI, 

which is what Def. 5.1 says ui should be. 

§ 6. Exponentiation; Cantor's Theorem 
6.1. Definition 

Let A and B be any sets. Then 

map(A, B) =dt {/: f is a map from A to B}. 

6.2. Remarks 

(i) If f is any member of map (A, B) then f <;;;, A x B, hence f is 
a member of P(A x B). Thus map(A, B) <;;;, P(A x B), and 
map (A, B) is a set. 

(ii) Perhaps more instructively, the same result can be derived 
from Lemma 5.10, as follows. Consider the indexed family 
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{Da I a EA} such that Da = B for every a EA. Then 
X {Da I a EA} - which is a set by Lemma 5.10 - is, by Def. 5.9 
equal to 

{f : f is a function such that 

dom f = A and fa e B for all a E A}. 

By Def. 6.1 this is exactly map (A, B). 

6.3. Definition 

For any cardinals A and µ, we define µ to the [power of] A: 

,1 = lmap(A, B)I, 
where A and Bare sets such that IA!= A and IBI = µ. 

6.4. Remarks 

(i) This definition is legitimized by the easily verified fact that if 
A= A' and B = B' then map(A, B) = map(A', B'). 

(ii) From Rem. 6.2(ii) it follows that exponentiation (raising to a 
power) can be achieved by repeated multiplication, in the follow­
ing sense: if { Xa I a E A} is an indexed family of cardinals such 
that Xa =µfor all a EA, and if IAI =).,then 

fl{xa I a EA}=,}. 

6.5. Problem 

Let k, m be natural numbers, and let n = mk. Verify that n = mk. 

6.6. Problem 

Verify that for any cardinals x, A andµ: 

(i) l = 1, 
(ii) µl = µ, 

(iii) µ",} = µ"+\ 
(iv) (,})" = µ"\ 
(v) (Aµ)"= A"µ". 

6.7. Theorem 

For any set A, !PAI= 2IAI_ 
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PROOF 

By Def. 6.3, what we have to show is that PA is equipollent to 
map(A. B). where Bis a set having exactly two members. Let us take 
B = (0, (0)). Define a map F from map(A, B) to PA, by putting, 
for every f e map{A, B), 

Ff= {a e A: fa =0). 

Itis easy to verify that 7is a bijection from map(A, B) to PA. ■ 

6.8. Canto~s Theorem 

ForanysetA, IAJ<IPAI. 

PROOF 

First, we show that ]Al ,i;;;; ]PA]. We define a map /from A into PA by 
putting fa= (a} for each a e A. Qearly, f is an injection from A to 
PA. 

We show that JAi ,fa IPAI by reductio. Let g be any map from A to 
PA. For eachx e A, then, gx is a member of PA-that is, a subset of 
A.Put 

D = {x e A : x f gx). 

Then Dis a subset of A-that is, a member of PA. If g were to map 
A onto PA, there would be some d e A for which gd = D. Then 
de gd<t;>d e D. 

But from the dermition of D we see that d e D «;;>- d f gd. 
Thus, d belongs to gd iff it doesn't. This contradiction shows that g 

cannot map A onto PA, and hence cannot be a bijection from A to 
M. ■ 

6.9. Remm-k 

The idea of Russell's Paradox derives from this proof. Indeed, if A is 
the class of all sets, then it is easy to see that PA CA. Thus id.A is in 
fact a bijection from A to a class-A itself-that includes PA. Talcing 
idA as the g in Cantor's proof, the D of that proof becomes Russell's 
paradoxical class of all sets that do not belong to themselves. 
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Ordinals 

§ 1. Intuitive discussion and preview 

The introduction of the set-theoretical cardinals was motivated by the 
wish to generalize the natural numbers in their capacity as cardinal 
numbers, answering the question 'how many?'. But the natural num­
bers are also used, in arithmetic as well as in ordinary life, in other 
capacities. In my local bank branch there is a number dispenser: on 
entering the branch, each customer collects from the dispenser a piece 
of paper showing a number. This number is not (at least, not directly) 
an answer to a 'how many?' question, but an ordinal number, fixing 
the place of the customer in the queue. 

A finite set can always be arranged as a queue - and if we ignore the 
identity of the elements being ordered, this can done in just one way. 
For example, the first three customers in the bank, arranged according 
to the numbers assigned to them by the dispenser, always form the 
following pattern: 

We can use the number three as an ordinal number, to describe this 
general abstract pattern, the order type of three objects arranged in a 
queue. Note that three is also the number to be assigned to the next 
customer, who is about to join the queue. This is quite general: the 
ordinal number assigned to each customer is the order-type (the queue 
pattern) of the queue of all preceding customers. 

Cantor wished to extend this idea of finite queues and finite ordinal 
numbers into the transfinite. Imagine that all the old (finite) ordinal 
numbers have been dispensed. We have now got an infinite queue 
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forming the pattern 

(*) 

4. Ordinals 

We need a new ordinal to describe the order type of this infinite 
queue. Cantor denoted this new ordinal by 'w'. We can assign this 
ordinal to the next 'customer' and extend the queue by placing that 
customer behind all the finite-numbered ones: 

•<•<•<•< ... <• 
0 1 2 3 w 

The new order type just formed is described by the next ordinal, which 
Cantor denoted by 'w + 1'. We can continue in this way, getting not 
only w + n for every natural n but also w + w, then w + w + 1 and so 
on and on and on. 

Examining the 'queues' formed in this way, Cantor saw that they are 
not merely totally ordered, but have a special property not shared by 
all totally ordered sets: every non-empty subset of the queue has a 
least (first) member. Cantor called such queues well-ordered. 

An example of a total order that is not a well-ordering is provided by 
the integers, ordered according to magnitude: 

... < -3 < -2 < -1 < 0 < 1 < 2 < 3 < .... 

Note that the fact that the pattern (*), described by the ordinal w, is 
well-ordered is just the Least Number Principle, a form of the Principle 
of Mathematical Induction (see§ 4 of Ch. 0). 

Cantor introduced the ordinals as a new and separate sort of abstract 
entity, just as he did with cardinals. However, in 1923 John von 
Neumann pointed out that among all well-ordered sets having a given 
Cantorian ordinal as their order-type there is a particular one with 
some very special properties. In the spirit of reductionism, this particu­
lar set can then be taken to be the ordinal of that order type. 

We shall present von Neumann's theory of ordinals as streamlined 
by Raphael M Robinson and others. 

§ 2. Definition and basic properties 
2.1. Definition 

Let < be a [sharp] partial order on a class A and let B !: A. If be B 
and b < x for every other x e B, we say that b is least in B with respect 

to<. 
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2.2. Remarks 

(i) Instead of demanding that b -< x for every other x E B, we may 
equivalently demand that b :,.,; x for every x E B. Here :,.,; is of 
course -<b, the blunt partial order associated with -< (see Prob. 
2.3.9 and Rem. 2.3.10). 

(ii) When there is no risk of confusion, we omit the phrase 'with 
respect to -<'. 

(iii) Since -< is anti-symmetric, if B does have a least member it is 
unique and we may therefore refer to it as the least member of 
B. 

2.3. Definition 

A well-ordering on a class A is a partial order on A such that every 
non-empty set included in A has a least member. 

2.4. Lemma 

If< is a well-ordering on a class A then < is a [sharp] total order on 
A. 

PROOF 

According to Def. 2.3.11, we must show that -< fulfils the trichotomy 
and transitivity conditions. The latter condition is fulfilled because by 
Def. 2.3 < is a partial order; so it only remains to verify the 
trichotomy. 

Let x and y be any members of A. We must show that exactly one 
of the three disjuncts 

x -< y or x = y or y -< x 

holds. That no two of these disjuncts can hold simultaneously follows 
at once from the anti-symmetry of -<. On the other hand, the set 
{x, y} is included in A and so must have a least member; hence at 
least one of the three disjuncts must hold. ■ 

2.5. Definition 

If A is any class, we define the binary relation EA on A, called the 
restriction of E to A, by putting 

EA =ctf {(x, y) E A 2 : XE y}. 
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2.6. Remark 

The relation EA can also be characterized by the fact that, for all x 
and y, 

x E AY = x E A and y E A and x e y. 

2.7. Definition 

We say that a class A is e-well-ordered if the relation EA is a 
well-ordering on A. 

2.8. Problem 

(i) Let A be a class such that EA is a sharp total order on A; let 
B ~ A and b EB. Prove that b is least in B w.r.t. EA iff b is 
either an individual or a set such that b n B = 0. 

(ii) Hence verify that a class A is E-well-ordered iff the following two 
conditions are satisfied: 
(1) EA is a sharp total order on A. 
(2) Every non-empty set u included in A has a member v such 
that v is either an individual or a set such that v n u = 0. 

(iii) Prove that in (ii) we may replace (1) by the weaker condition: 
(1') For any members x and y of A, at least one of the following 
three disjuncts holds: 

X E y or X = y or y E X. 

(Show that if two of these disjuncts hold simultaneously then the 
set u = { x, y} violates (2). To verify that EA is transitive, let x, y 
and z be members of A such that x E y e z and apply (2) to the 
set u = {x, y, z}.) 

(iv) Hence (or directly from Def. 2.7) prove that if B ~ A and A is 
E-well-ordered, then so is B. 

2.9. Theorem 

If A is an e-well-ordered class and Bis a non-empty subclass of A, then 
B has a least member w.r.t. EA-
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PROOF 

Take any z E B. If z is the least member of B, we need look no 
further. So let us suppose z is not the least member of B. Therefore by 
Prob. 2.8(i) z is a set rather than an individual and z n B * 0. 

By Prob. 1.4.S(ii) z n B is a set; we have just seen that it is 
non-empty; and it is clearly included in B and hence also in A. So by 
Def. 2.7 z n B must have a least member w.r.t. EA. 

Let y be the least member of z n B. We claim that this y is also the 
least member of B. Indeed, if this were untrue, then ( applying to y the 
argument we have just applied to z) we would find an x such that 
x E y n B. Then x E y as well as y E z and by the transitivity of EA it 
would follow that x E z, hence x E z n B. But this is impossible, 
because x E y and y is the least member of z n B. ■ 

2.10. Defmition 

A class A is transitive if, for all y, 

y EA=> y CA. 

2.11. Remarks 

(i) Note that every member of a transitive class must be a set rather 
than an individual, because by Def. 1.3.4 y CA holds only if y is 
a class. So a class A is transitive iff: 
(1) all its members are sets and 
(2) UA CA; that is, for all x and y, x E y EA=> x EA. 

(ii) Unfortunately, 'transitivity' is used with two meanings: the pre­
sent one and that applicable to binary relations (as, for example, 
in Def. 2.3.2). In practice no confusion shall arise, as the context 
will indicate which meaning is intended. 

2.12. Definition 

An ordinal is a transitive and E-well-ordered set. The class of all 
ordinals is denoted by 'W'. 

2.13. Examples 

The empty set 0 is, vacuously, an ordinal. It is also easy to verify that 
{0} and {0, {0}} are ordinals. 
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2.14. Convention 

We shall use lower-case Greek letters - mainly 'c.r', '/3', 'y', 'A', \;' and 
'rJ' - as variables ranging over the ordinals. 

2.15. Theorem 

All members of an ordinal are ordinals; thus, if a is an ordinal, 
c.r={~:~ec.r}. 

PROOF 

Let y E c.r. Since a is transitive, we have y k a. Since a is an 
e-well-ordered set, it follows from Prob. 2.8(iv) that its subset y is also 
e-well-ordered. It remains to show that y is transitive. 

So let u e x e y. Using the fact that a is a transitive set, we have 
x e c.r and then in tum also u e c.r. Hence u and x, as well as y, are 
members of a; so by the transitivity of the relation ea we infer from 
u E X E y that U E y. ■ 

2.16. Lemma 

If y is any transitive subset of an ordinal a then y itself is an ordinal; 
moreover, y = a or y e a. 

PROOF 

That y is an ordinal follows at once from Prob. 2.8(iv). Moreover, let 
u = a - y. If u = 0 then y = a. If u is non-empty, then it has a 
(unique) least member x w.r.t. Ea. We shall show that y = x. 

First, let z e x. Since x e c.r and a- is transitive, it follows that z e c.r. 
But z cannot be in u, because z ex, and x is the least member of u; 
thus z must be in y. This proves that x k y. 

Conversely, let z e y. Then z =xis impossible because x f/; y. Also, 
x e z i~ impossible because, by the transitivity of y, it would imply 
x E y. Hence by Lemma 2.4 we must have z e x. This proves that 
y k x. Thus y = x E c.r. ■ 

2.17. Theorem 

The class W of all ordinals is transitive and e-well-ordered. 
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PROOF 

The transitivity of W follows at once from Tom. 2.15. To prove that W 
is E-well-ordered, we shall make use of Prob. 2.8(iii). 

To verify that condition (1 ') of Prob. 2.8(iii) holds for W, let a and 
f3 be any ordinals. Since both a and f3 are transitive, it is easy to see 
that an f3 is also transitive. Thus by Lemma 2.16 an f3 is an ordinal, 
say y; moreover, y = a or y Ea. Likewise, y = f3 or y E /3. 

But we cannot have both y E a and y E /3 because then y E a n /3 -
that is, y E y; and this would violate the anti-symmetry of the well­
ordering relation Ey on y. Therefore y = a or y = (3. Hence a= f3 or 
a E f3 or f3 E a, which proves condition (1') for W. 

Now let u be any non-empty set of ordinals. We must prove that 
there exists an ordinal ; Eu such that l; nu= 0. Take any a Eu. If 
an u = 0, we are through. 

On the other hand, suppose a n u =fa 0. Since a is e-well-ordered, 
there must exist some member l; of an u such that ; n an u = 0. 
But ; e a and a is transitive; so l; k a. Hence ; n u = ; n an u = 0. 

■ 

Z.18. Corollary 

Wis a proper class (that is, not a set). 

PROOF 

If W were a set, then by Def. 2.12 and Thm. 2.17 it would be an 
ordinal, hence W E W, in violation of the anti-symmetry of the well­
ordering relation E w. ■ 

Z.19. Remarks 

(i) The (naive) assumption that W is a set led to a contradiction. 
This was the Burali-Forti Paradox (see§ 2 of Ch. 1). Cor. 2.18 is 
a 'tame' version, within ZF, of the paradox. Similarly, Thm. 
1.3.10 is a 'tame' ZF version of Russell's Paradox. 

(ii) In the proofs of Thm. 2.17 and Cor. 2.18 we used the argument 
that an ordinal y cannot be a member of itself because this would 
violate the anti-symmetry of the well-ordering relation Ey on y. 
In mathematical practice it is often convenient to posit a further 
postulate - the Axiom of Foundation (or Regularity), first pro­
posed by Dimitry Mirimanoff in 1917 - one of whose effects is to 
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exclude any set that belongs to itself. On the other hand, in some 
special applications of set theory - notably in so-called situation 
semantics, developed by Jon Barwise and others, and in abstract 
computation theory - it is convenient to use an extension of ZF 
proposed by Peter Aczel, which negates the Axiom of Founda­
tion and admits some sets that belong to themselves. In the 
present course we do not commit ourselves either way. 

2.20. Corollary 

Any class of ordinals is e-well-ordered. 

PROOF 

Immediate from Thm. 2.17 and Prob. 2.8(iv). ■ 

2.21. Definition 

The e-well-ordering on W shall be denoted by '<'. Thus for any 
ordinals a and /3, 

a < /3 ¢> a e /3. 

2.22. Remarks 

(i) As usual, we denote by•~• the blunt version of<. Thus 

a "== /3 ¢> a e /3 or a = {3. 

(ii) Thm. 2.15 can now be read as saying that if a is any ordinal then 
a={;:;< a}. 

(iii) From now on, whenever we use order-related terminology in 
connection with ordinals, we shall take it for granted that the 
order relation referred to is the e-well-ordering, unless otherwise 
stated. 

2.23. Definition 

Let< be a partial order on a class A and let BC A. 

(i) If u e A and x ~ u for all x e B, then u is said to be an upper 
bound of ( or for) B with respect to <. 

(ii) If u is the least member of the class of upper bounds for B w.r.t. 
< - that is, if u is an upper bound for B w.r.t. < and if u < v 
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whenever v is any other upper bound for B w.r.t. < - then u is 
said to be the least upper bound (abbreviated 'lub') for B 
w.r.t. <. 

2.24. Remarks 

(i) The phrase 'with respect to <' is omitted when there is no danger 
of confusion. 

(ii) A subclass B of A need not in general have any upper bound, let 
alone a lub; but if it has a lub, it is unique. 

2.25. Theorem 

If A is a set of ordinals then its union-set LJA is an ordinal. Moreover, 
LJA is the lub of A. 

PROOF 

To show that UA is transitive, assume that x eye UA. Then for 
some ordinal a we have x e y ea e A. Since a is transitive, it follows 
that x e a e A; hence x e U A. 

By Thm. 2.15, all the members of UA are ordinals; so by Cor. 2.20 
UA is e-well-ordered. Thus UA is an ordinal. 

If a e A then a C U A, since U A is a transitive set. Therefore by 
Lemma 2.16 a :,;;;; U A. This means that U A is an upper bound for A. 

Finally, if f3 is any upper bound for A, then for each a e A we have 
a:,;;;; /3 - that is, a e /3 or a = {3. By the transitivity of the set f3 it 
follows that in either case a C {3. Since this holds for each a e A, it 
follows that also UA C /3. By Lemma 2.16 we now have UA:,;;;; /3 -
which proves that U A is the least upper bound for A. ■ 

2.26. Definition 

For any ordinal a we put a' =dr a U { a}. We call ex' the immediate 
successor of a. (This terminology is justified by the following 
theorem.) 

2.27. Theorem 

For any a, a' is an ordinal. Moreover, for any /3, f3:,;;;; a if! f3 < a' 
(equivalently: a< f3 if! a',;;;; {3). Hence a< f3 iff a'< /3'. 
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PROOF 

Easy-DIY. 

2.28. Definition 

4. Ordinals 

(i) An ordinal of the form a' is called a successor ordinal. 

■ 

(ii) An ordinal that is neither 0 nor a successor ordinal is called a 
limit ordinal. 

§3. The rmite ordinals 
3 .1. Definition 

An ordinal a is said to be finite if no ordinal ; ::;;; a is a limit ordinal. 
Otherwise, a is said to be an infinite ordinal. We put 

3.2. Theorem 

w is transitive. 

PROOF 

w =dt {a: a· is a finite ordinal}. 

Let a be a finite ordinal. We must show that every member of a is also 
a finite ordinal. This is easily done - DIY, using Rem. 2.22(ii). ■ 

3.3. Theorem 

(i) 0 is a finite ordinal. 
(ii) If a is a finite ordinal then so is a'. 

PROOF. 

(i) We know that 0 is an ordinal (Ex. 2.13). But by Def. 2.28(ii) 0 
is not a limit ordinal. Since 0 has no members, the only ; such 
that ; ~ 0 is 0 itself. Hence 0 is a finite ordinal. 

(ii) Let a be a finite ordinal and let ; ..; a'. We must show that ; is 
not a limit ordinal. Now, a' itself is a successor ordinal, hence 
not a limit ordinal. It remains to consider the case where ; < a'. 
By Tom. 2.27 this means that ; ..; a. Since a is a finite ordinal, ; 
is not a limit ordinal. ■ 



3.4. Theorem 

w is a set. 

PROOF 
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Using the Axiom of Infinity (Ax. 1.3.21), take a set Z such that 0 E Z 
and such that whenever x E Z, then also x U { x} E Z. Thus if an 
ordinal a belongs to Z then (by Def. 2.26) so does a'. 

Consider the class w - Z, the class of all finite ordinals not belon­
ging to Z. If this class is non-empty, then by Thm. 2.9 it must have a 
least member, say /3. Now, /3 cannot be 0, because 0 does belong to 
Z. Also, /3, being a finite ordinal, cannot be a limit ordinal. So it must 
be a successor ordinal, say /3 = a' = a u {a}. But in this case a itself 
is a finite ordinal (by Thm. 3.2), such that a< {3. Since /3 was 
supposed to be the least finite ordinal not belonging to Z, it follows 
that a E Z. Therefore by the assumption on Z also a' E Z. But this is 
impossible, because a' = {3, which is the least finite ordinal not belon­
ging to Z. 

Sow- Z must be empty. Thus w CZ; hence w is a set by AS. ■ 

3.5. Corollary 

w is the unique set X having the following three properties: 

(i) 0 EX; 
(ii) whenever a E X then also a' E X; 

(iii) X C Z for any set Z such that 0 E Z and such that whenever 
a E Z then also a' E Z. 

PROOF 

Thm. 3.3 says that w has properties (i) and (ii). The proof of Tom. 3.4 
shows that w has also property (iii). The uniqueness of w follows by 
PX, because if X is any set having the three properties then both 
w C X and X C w. ■ 

3.6. Remarks 

(i) Our first use of Al was to prove that w is a set. Conversely, if we 
postulate that w is a set, then by Tom. 3.3 w is a set satisfying the 
conditions that AI lays down for Z. This shows that (in the 
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presence of the other postulates) AI is equivalent to the proposi­
tion that w is a set, which is a special case of the Comprehension 
Principle. 

(ii) In fact, it now transpires (Cor. 3.5) that w is simply the smallest 
set satisfying the conditions of AI. 

We restate the fact that w satisfies condition (iii) of Cor. 3.5 as a 
principle in its own right: 

3.7. Corollary (Weak Principle of Induction on Finite Ordinals) 

Let Z be any set such that 0 e Z and such that whenever a E Z then 
also a' E Z. Then wi;;: Z. ■ 

3.8. Remarks 

(i) We see that the set w of finite ordinals, with its e-well-ordering, 
simulates, within the confines of ZF set theory, the behaviour 
that characterizes the system of natural numbers. We can take 0 
as the counterpart of the number O and the e-well-ordering on w 
as the counterpart of the usual ordering of the natural numbers. 
Just as each natural number n has an immediate successor, n + 1, 
so every finite ordinal a has an immediate successor, a'. 
Moreover, the basic facts about the ordering of the natural 
numbers (Facts 0.1.1-0.1.5) are mimicked by theorems about the 
finite ordinals and their e-well-ordering. And, most importantly, 
the Principle of Mathematical Induction is mimicked by the 
Principle of Induction on Finite Ordinals. Certainly, within ZF w 
impersonates, plays the role of, 'the set of natural numbers'. In 
fact, Cor. 3 .5 reproduces within ZF Richard Dedekind's famous 
characterization of the natural numbers.1 

(ii) The obvious reductionist step at this point is to identify the 
ZF-set w of finite ordinals as the 'true' (hitherto intuitive) set N 
of natural numbers. This would be a grand reduction indeed, 
because work done during the 19th century by several mathemati­
cians (including Hamilton, Bolzano, Weierstrass, Dedekind and 
Cantor) showed that all the concepts of mathematical analysis 
could be reduced to those of natural number, set and member­
ship (plus concepts such as relation and function that we have by 

1 Was sind und was sollen die Zahlen?, 1888. (English translation in Essays on the theory 
of numbers edited byW. W. Beman, 1901.} 
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now reduced to set-theoretic concepts). Thus a huge part, if not 
the whole, of mathematics would be reduced to set theory. 

Many (perhaps most) mathematicians, under the influence of 
the dominant structuralist ideology, do proceed in this way, and 
frame ( or think of) their mathematical discourse as taking place 
within set theory. 

3.9. Warning 

This reduction, although extremely successful in a formal sense, is by 
no means unproblematic, as Skolem pointed out in 1922, when he 
published his famous paradox. (We shall discuss Skolem's Paradox in 
the Appendix.) 

3.10. Theorem 

w is the least infinite ordinal and the least limit ordinal. 

PROOF 

That w is an ordinal follows at once from Cor. 2.20 and Thms. 3.2 and 
3.4. Also, w cannot be a finite ordinal, because that would mean that 
w e w - which is impossible for an ordinal. Thus w must be an infinite 
ordinal. On the other hand, if;< w- that is, ; e w- then by Def. 3.1 
; is a finite ordinal; hence w must be the least infinite ordinal. 

If ; e w then, as we have just seen, ; is a finite ordinal, hence a 
fortiori, not a limit ordinal. If w itself were not a limit ordinal then by 
Def. 3.1 it would follow that w is a finite ordinal, contrary to what we 
have proved. Thus w must be a limit ordinal. As we have just 
observed, no ordinal smaller than w can be a limit ordinal. Hence w is 
the least limit ordinal. ■ 

3.11. Preview 

We have yet to justify the adjectives finite and infinite introduced in 
Def. 3.1 in connection with ordinals. Dedekind defined a set as infinite 
if there exists an injection from it to a proper subset of itself, and as 
finite if there is no such injection. We will not adopt Dedekind's 
definition, but we shall show that finite and infinite ordinals in the 
sense of Def. 3.1 are finite and infinite respectively in Dedekind's 
sense. 
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3.12. Theorem 

There does not exist an injection from a finite ordinal to a proper subset 
of itself. 

PROOF 

We proceed by weak induction on finite ordinals (Cor. 3.7). The proof 
is a formal ( or 'internalized') version of the proof of Thm. 3.3.4. 

Let Z be the set of all finite ordinals a such that there is no injection 
from a to a subset of itself. In order to prove our theorem it is enough 
to show that 0 e Z and that if a e Z then also a' e Z. 

That 0 e Z is obvious, since 0 has no proper subsets. Now assume, 
as induction hypothesis, that a e Z and let f be an injection from a' -
that is, from a U {a} - to a subset B of itself. If Bis a proper subset 
of a' then the set a' - Bis non-empty. 

Without loss of generality we may assume that a belongs to a' - B 
rather than to B. (In the contrary case, where a e B, take any member 
f3 of a' - B and let g be the bijection from a' to itself that inter­
changes f3 and a but leaves all other members of a' fixed: thus, 
gf:J = a, ga = f3 and g; = ; for any ; e a' other than f3 and a. Then 
use g of instead of f itself: it is an injection from a' to its proper 
subset g[B] = (B - {a}) U {/3}.) 

Our assumption that a e a' - B means that B !:: a. Next, let 
y = fa; then y must belong to B, since f is a map to B. It now follows 
that ft a is an injection from a to its proper subset B - { y}. This 
contradicts the induction hypothesis. So B cannot be a proper subset 
of a'. ■ 

3.13. Theorem 

If a is an infinite ordinal then there is an injection from a to a proper 
subset of itself. 

PROOF 

First, consider ro. Define a map f on w (that is, with ro as its domain) 
by putting f; = ;' for every finite ordinal ;. Then f is injective. 
Indeed, if ; and rJ are distinct, say ~ < f/, then by Thm. 2.27 ;' < f/', 
hence ;' and f/' are also distinct. Also, f maps ro to (in fact, onto) its 
proper subset w - {0}. 

Now let a be any infinite ordinal. By Thm. 3.10 we have ro :,s;; a, 
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which means that ro e £Y or ro = a; and since a is a transitive set, it 
follows that ro ~ a. Then the map f U idll'-w (with f as before) is 
clearly an injection from a to its proper subset a - {0}. ■ 

3.14. Theorem 

A finite ordinal is not equipollent to any other ordinal. 

PROOF 

Let a be a finite ordinal and let f3 be another ordinal. First, suppose f3 
is finite as well. We have a< f3 or /3 < £Y - that is, /3 e a or f3 e a - and 
since ordinals are transitive sets it follows that a C f3 or f3 C a; hence 
by Tom. 3.12 a and f3 cannot be equipollent. 

Now suppose f3 is an infinite ordinal. By Tum. 3.13 there exists an 
injection, say g, from f3 to a proper subset of itself. If f were a 
bijection from a to (3, then clearly 1-1 0 g Of would be an injection 
from a to a proper subset of itself - which is impossible. ■ 

3.15. Definition 

A set is finite if it is equipollent to a finite ordinal (in the sense of Def. 
3.1). Otherwise, it is infinite. 

3.16. Remarks 

(i) By virtue of Thm. 3.14, an ordinal is finite (or infinite) in the 
sense of Def. 3.1 iff it is finite (or infinite, respectively) in the 
sense of Def. 3.15; so there in no conflict between the two 
definitions. 

(ii) By Thm. 3.14, a finite set is equipollent to a unique finite ordinal. 

3.17. Problem 

(i) Prove that there does not exist an injection from a finite set to a 
proper subset of itself. (Use Thm. 3.12.) 

(ii) Prove that if A is a non-empty finite set of ordinals, then A has a 
greatest member - that is, an ordinal a e A such that ; :,;;; a for 
each~ e A. (Otherwise, define a map f on A by taking, for each 
a e A, fa as the least ~ e A such that a < ~. Show that f would 
be an injection from A to a proper subset of itself.) 
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3.18. Problem 

Let n be a natural number. Show that for any objects ai, a2, ... , an, 
the set {ai, a2, .•. , an} is finite. (Use weak mathematical induction 
on the number n.) 

§ 4. Transfmite induction 
Various forms of the Principle of Mathematical Induction have an­
alogues that apply to ordinals. These analogues collectively are known 
as the Principle of Transfinite Induction. First, by virtue of the fact 
that W is well-ordered, we have immediately by Thm. 2.9: 

4.1. Theorem (Least Ordinal Principl.e) 

If Xis a non-empty class of ordinals, then X has a least member. ■ 

Hence other forms of the Principle of Transfinite Induction can be 
deduced. 

4.2. Theorem (Strong Principle of Transfinite Induction) 

If Xis a class of ordinals such that for every ordinal ; 

1J E Xforevery 1J <;:;,;EX, 

thenX = W. 

PROOF 

Let Y = W - X. If Y were non-empty, it would have a least member, 
say;. So for each 1J <; we would have 1J EX. But then by(*); e X, 
which is impossible. Thus Y must be empty. ■ 

4.3. Remark 

By Rem. 2.22(ii) the antecedent, 1J E X for every 1J < ~. in condition 
( *) of Thm. 4.2 is equivalent to the statement that ; ~ X. 

4.4. Theorem (Weak Principle of Transfinite Induction) 

If Xis a class of ordinals satisfying the following three conditions 

(i) 0 EX, 
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(ii) for every ordinal;,; e X ~ ;' e X, 
(iii) for every limit ordinal A, A ~ X ~ A e X, 

thenX = W. 

PROOF 
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Assume X satisfies these three conditions. Then by (i) and (iii) X 
satisfies condition ( *) of Thm. 4.2 for 0 and for limit ordinals. 

Now suppose ;' ~ X. By Def. 2.26 it follows that s e X; hence by 
(ii);' e X. Thus X satisfies(*) also for successor ordinals. ■ 

4.5. Remarks 

(i) These principles have restricted forms, in which Xis assumed to 
be a subset of some (arbitrary) given ordinal a rather than a 
subclass of W. Thus, the form of Thm. 4.1 restricted to an 
arbitrary ordinal a says that a non-empty subset of a has a least 
member. The restricted form of Thm. 4.2 says that if X is a 
subset of a such that for all;< ll' we have ; ~ X ~; e X, then 
X=a. 

(ii) The Principle of Transfinite Induction restricted to the particular 
ordinal w is precisely the Principle of Induction on Finite Ordin­
als. 

4.6. Problem 

Prove the restricted form of Thm. 4.2. Formulate and prove a form of 
Thm. 4.4 restricted to an arbitrary ordinal. 

§ 5. The Representation Theorem 
5.1. Preview 

In this section we shall show that every well-ordered set is similar in its 
ordering to a unique ordinal. 

5.2. Definition 

A partially ordered set (briefly, poset) is a pair (A,<}, where A is a 
set and < is a [sharp] partial order on A . A totally ordered set is a 
poset (A, <}, in which < is a total order on A. A well-ordered set is a 
poset (A, <), in which < is a well-ordering on A. 
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5.3. Remarks 

(i) This is just a convenient way of packaging a set A together with a 
particular partial order on A into a single object. It saves us 
having to keep saying 'such-and-such a set with such-and-such a 
partial order on it'. 

(ii) However, we shall often refer, somewhat inaccurately, to A itself 
as the poset (or ordered set, or well-ordered set) when, strictly 
speaking, we have in mind the pair (A, <) . We shall only 
commit this peccadillo when it is clear from the context which 
relation < is involved. Thus, we refer to an ordinal a as a 
well-ordered set, when strictly speaking we mean the pair 
(a,<), where< is Ea-, the E-well-ordering on a. 

5.4. Definition 

A similarity map (a.k.a. isomorphism) from a poset (A,<) to a poset 
(A', <') is a bijection f from A to A' such that, for all x and y in A, 

x<y¢>fx<'fy. 

If such a map exists, (A,<) is said to be similar (or isomorphic) to 
(A',<'). 

5.5. Remark 

It is easy to see that the identity map idA is a similarity map from 
(A,<) to itself. Also if f is a similarity map from (A,<) to (A', <') 
then its inverse 1-1 is a similarity map from (A', <') to (A, <). 
Finally, if f is a similarity map from (A,<) to (A',<') and g is a 
similarity map from (A', <') to (A", < ") then the composition go f 
is a similarity map from (A,<) to (A",<"). 

It follows that similarity is an equivalence relation on the class of 
posets. 

5.6. Theorem 

If f is a similarity map from an ordinal a to an ordinal /3 then f is the 
identity map ida-, hence a = {3. 

PROOF 

First, we prove by strong transfinite induction (restricted to a) that 
S:,;;; /s for every SE fr. 



§ 5. The Representation Theorem 71 

Let l_; E a. By the induction hypothesis, if 1J < ,; then 1J:,;;:; /17. But if 
'f/ <,; then also f'f/ < f,;, since f is a similarity map. Thus for every 
'f/ < l; we have 'f/ < f,;. In particular, 'f/ * fl; for every 'f/ < l;; in other 
words, f,; <,; is impossible. This proves that l;:,;;:; f,; and completes the 
induction. 

Now, 1-1 is a similarity map from /3 to CY; therefore by the same 
token we have also s:,;;:; f-1s for all s E /3. Taking s to be fl;, where 
,; E a, we obtain f,;:,;;:; 1-1/,; = f Thus f,;:,;;:;,; as well as,;:,;;:; f,;, which 
shows that f must be the identity ida-. ■ 

5.7. Corollary 

For any poset (A, -<), there exists at most one similarity map from 
(A,<) to an ordinal. 

PROOF 

If f and g are isomorphisms from (A, -<) to a and /3 respectively, then 
the composition g O 1-1 is clearly an isomorphism from a to {3. 
Therefore a= /3 and g O 1-1 is the identity mapping, which means that 
f= g. ■ 

5.8. Preliminaries 

(i) For the rest of this section. we consider a fixed but otherwise 
arbitrary well-ordered set (A, -<). 

(ii) If B ~ A, then B is clearly well-ordered by the relation < n B2, 

that is: 

{ ( x. y): x E B, and y E B, and x -< y}, 

which is called the restriction of < to B. Whenever we refer to a 
subset B of A as well-ordered, we shall mean B with this 
well-ordering, inherited by B from A. 

(iii) For each a EA, the segment of A determined by a is the set 

Aa =dt {x EA: X-< a}. 

(iv) We define a class Fas follows: 

F =df { (x, l;) : x EA, and,; is an ordinal, 

and Ax is similar to l;}. 

By Cor. 5.7, Fis a function (see Def. 2.2.1). We may therefore 
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use functional notation in connection with F. Thus 'Fx = s' 
means the same as '(x, ;) e F'. 

Clearly, dom F is a subset of A. By AS dom Fis a set; hence 
by AR ran F is a set as well. Note that all the members of ran F 
are ordinals. 

5.9. Lemma 

Let Fa= a. Then for any ordinal f3 < a there exists some b < a such 
that Fb = /3. Conversely, if b < a then b belongs to dom F and Fb is 
some ordinal f3 < a. 

PROOF 

Let f be the similarity map from Aa to a. Suppose fJ <a.This means 
that f3 ea. Therefore fb = f3 for some be A 0 - that is, b < a. Note 
that by the transitivity of a we have fJ ~ a. It is easy to verify that 
ft Ab, the restriction off to Ab, is a similarity map from Ab to /3. 
Hence Fb = fJ. 

Conversely, suppose that b < a. This means that be A 0 • Therefore 
fb = f3 for some f3 e a - that is, f3 < a. As before, it follows that 
Fb = fJ. ■ 

5.10. Lemma 

F is injective. 

PROOF 

Let a and b be two distinct members of dom F. We have to show that 
Fa =I= Fb. Without loss of generality, we may assume b < a. Let 
Fa= a. Then by Lemma 5.9 it follows that Fb is some ordinal fJ < a. 

■ 

5.11. Lemma 

The set ran Fis an ordinal. 

PROOF 

As a set of ordinals, ran F is e-well-ordered. It remains to prove that it 
is a transitive set. Let a e ran F; thus Fa= a for some a e A. Now let 
fJ ea - that is, fJ < a. Then by Lemma 5.9 fJ also belongs to ran F, 
showing that this set is transitive. ■ 
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5.12. Theorem (Representation Theorem for well-ordered sets) 

There exists a unique similarity map from the well-ordered set A to an 
ordinal. 

PROOF 

Uniqueness follows from Cor. 5.7. To prove existence, we shall show 
that Fis a similarity map from A to the ordinal ran F. By Lemmas 5.9 
and 5.10, Fis a similarity map from dom F, which is a subset of A, to 
ran F; so it only remains to establish that dom F is the whole of A. 

Suppose not. Then, since A is well-ordered, there would be a least 
b EA such that b fJ dom F. Thus, if a EA such that a < b then a must 
belong to dom F. On the other hand, if b < a then a cannot be in 
dom F because if it were then by the second half of Lemma 5.9 b 
would also be in that domain. 

It would follow that dom F is exactly Ab. But then F is a similarity 
map from Ab to ran F. Thus Ab is similar to the ordinal ran F. By the 
definition of F it would then follow that (b, ran F} E F, hence 
b E dom F, contradicting the choice of b. ■ 

5.13. Definition 

A set is denumerable if it is equipollent to w. A set is countable if it is 
finite or denumerable. 

5.14. Problem 

(i) Let D be a subset of an ordinal a. By Cor. 2.20, D is E-well­
ordered; and by Thm. 5.12, D is similar to an ordinal {3. Prove 
that f3 -s. a. (Let f be a similarity map from (3 to D. Show that 
; -s. f; for every s E /3.) 

(ii) Prove that a set is countable iff it is equipollent to a subset of w. 
(Use (i) to show that every subset of w is countable.) 

§ 6. Transf"mite recursion 
6.1. Preview 

In this section we validate a powerful method of defining functions on 
W (that is. having W as domain). Roughly speaking, F;, the value of 
the function Fat s, is defined in terms of the 'behaviour' of F for all 
ordinals smaller than ; . 
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6.2. Convention 

Throughout this section we let C be a fixed but arbitrary function such 
that dom C is the class of all sets. 

6.3. Definition 

We shall write '(R,c(F. a)' as short for the statement: 

Fis a function and a-' ~ dom F and F; = C(F t ;) for all ; :!:i a-. 

The equation 'F; = C( F t ;)' is called an ordinal recursion equation. 

6.4. Remarks 

(i) Recall that a'={;: s :!:i a-}. 
(ii) Note that Ft s = { ( 71, F71): TJ e s}. Therefore the recursion equa­

tion determines F; in terms of the 'previous behaviour' of F -
the restriction of F to the set of all ordinals TJ < ;. Note also that 
even if F is a proper class. Ft; is always a set by AR and Tum. 
2.2.8. 

(iii) mc(F, a-) means that F is defined and satisfies the recursion 
equation for all ordinals up to a- inclusive. Hence 

mc(F, a-)=> mc(F, fJ) for all /3 :!:i a-. 

6.5. Lemma 

If both mc(F. a) and mc(G, a-) then F; = G; for all; :!:i a-. 

PROOF 

By (strong) transfinite induction, restricted to a-'. Let ; be any ordinal 
:!:i a- (that is. ; < <l'') and assume, as induction hypothesis, that F71 = 
Gri for all TJ <; - that is. for all TJ e ;. This means that Ft;= 
G ts, hence C(Fts) = C(G t;). It now follows from (R,c(F, a-} and 
mc(G, a-) that F; = G;. ■ 

6.6. Lemma 

For any ordinal a- there exists a unique function fa such that 
domfa =a-'= {;: ; :!:i a-} and such that me(/(¥, a-). 
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PROOF 

Uniqueness follows from Lemma 6.5. We prove existence by strong 
transfinite induction. Assume as induction hypothesis that for each 
/3 < a there exists a (necessarily unique) function fp whose domain is 
/3' = {s: ; ,;,;; /3} such that rQc(fp, {3). 

If y ~ /3 < a then by Rem 6.4(iii) we have rQc(f p, y) and hence by 
Lemma 6.5 fp(;) = fy(;) for all;~ y. This means that fp and fr agree 
wherever both of them are defined; in fact, it is easy to see that 
fr k f 13 . By Prob. 2.4.8, we can therefore glue all the f p together to 
obtain a single function: we put 

f = UU13: /3 < a}. 

Clearly, f is a function whose domain is {/3: /3 < a} - that is a itself -
and it satisfies the recursion equation f /3 = C(ft /3) for all /3 < a. 
Finally, we extend f to a function defined for all /3 ~ a: 

f o: = f U { ( a, C(f)) } . 

Then domfo: =a'. Also, f = fo: ta and hence fo:(a) = C(f) = 
C(f o: ta). Thus f o: satisfies the required recursion equation for all 
/3~ a. ■ 

6.7. Theorem (Definition by transfinite recursion) 

We can define a (necessarily unique) function F such that dom F = W 
and such that F; = C( F t ;) for all ; E W. 

PROOF 

To define F, note that the f« of Lemma 6.6 satisfy the recursion 
equation wherever they are defined, and any two of them agree with 
each other wherever both are defined. Therefore all we have to do is 
glue them together: 

F =ctt UUo:: a E W}. 

It is easy to see that indeed dom F = W and F; = C( F t ;) for every 
; E W. Moreover, these two conditions fulfilled by F imply that 
rQc(F, a) for all a; hence Fis unique by Lemma 6.5. ■ 

6.8. Remarks 

(i) Note the phrasing of Thm. 6.7: it does not claim that such-and­
such an F exists but that we can define it. To say, in set theory, 
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that F 'exists' would mean that it is an object of the theory -
which is false, since Fis a proper class. In fact, Thm. 6.7 is not a 
single theorem of set theory, but a meta-theorem or a theorem 
scheme which shows how, for any given class C fulfilling a certain 
condition (Convention 6.2), we can define a class F fulfilling 
certain other conditions. The same applies to any other theorem, 
postulate and definition in which general statements or stipula­
tions are made concerning classes - for example Def. 1.3.4 and 
Ax. 1.3.6 (AS): they are not individual statements of set theory, 
but schemes. (Compare Rem. 3.3.6.) 

(ii) From Thm. 6.7 (or directly from Lemma 6.6) it is easy to obtain a 
version of definition by transfinite recursion restricted to any 
given ordinal a, in which dom F is a instead of W and the 
recursion equation F; = C(F t ;) is satisfied for all ; < a. 
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The axiom of choice 

§ 1. From the axiom of choice to the well-ordering theorem 
1.1. Definition 

A choice function on a class J of sets is a function lJ with domlJ = J, 
such that qX e X for every Xe J. 

1.2. The axiom of choice (AC) states: 

If cS- is a set of non-empty sets then there exists a choice function on J. 

1.3. Remarks 

(i) AC was the first postulate of set theory (apart from PX) to be 
stated as such. Its first known explicit formulation is due to 
Giuseppe Peano (1890), who however rejected it as untenable. It 
was first proposed as a new valid mathematical principle by 
Beppo Levi in 1902, although it had been used inadvertently by 
Cantor and others long before that. Zermelo, who was told about 
AC by Erhard Schmidt, used it almost at once in his first (1904) 
proof of the Well-Ordering Theorem (WOT, Cor. 1.6 below), a 
result that had been conjectured by Cantor. Our formulation of 
AC is essentially that used by Zermelo in his 1904 paper. 

(ii) In his 1908 paper on the foundations of set theory, in which the 
theory is given its first fully fledged axiomatic presentation, 
Zermelo does not state AC in this form but in a more restricted 
version. He assumes that J is a set of non-empty sets that are 
pairwise disjoint-that is, X n Y = 0 for any two distinct mem­
bers of cS- (see Def. 3.4.1). He then postulates the existence of a 
set A such that, for any X e &, the intersection A n X has 
exactly one member. 

77 
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This restricted version follows at once from AC. Indeed, if J. is 
a set of non-empty pairwise disjoint sets, then by AC there exists 
a choice function fJ on J.. It is then easy to see that, for any 
Xe J., ranq. n X = {q.X}. 

Conversely, AC in the form we have stated it follows from the 
restricted version. To show this, let J. be any set of non-empty 
sets. Put 

g= {{X} XX: X eJ'.}. 

It is easy to verify that g is a set of non-empty and pairwise 
disjoint sets. According to the restricted version, there exists a set 
A whose intersection with each member of g is a singleton. We 
now define a function q. on J. as follows. For any XE J., the set 
{ X} x X belongs to g and hence its intersection with A has 
exactly one member. This member must be of the form (X, x0), 
where x0 is some member of X. We put tJX = Xo- Then q. is a 
choice function on J.. 

(iii) Using AC, Def. 3.4.11 is easily legitimized. If IAxl = IBxl for 
each x E X, then by AC there exists a family f = {fx I x E X} 
such that, for each x, fx is a bijection from {x} x Ax to {x} x Bx. 
Then it is easy to see that Uran f is a bijection from U { { x} x Ax : 
x E X} to U { { x} x Bx : x E X}. A similar argument applies to 
Def. 3.5.11. 

(iv) AC has been regarded with suspicion because it is a purely 
existential postulate. It asserts the existence of a set - a choice 
function - without characterizing it as the extension of some 
previously specified property. In other words, AC is not a special 
case of the Principle of Comprehension. In this respect AC is 
mar\{edly different from all other existential postulates of set 
theory. For example, the Power-set Axiom asserts that, for each 
set A, there exists the power-set PA, which is characterized as 
the extension of the property being a subset of A. 

(v) In 1938 Godel proved that AC is consistent relative to the other, 
commonly accepted, postulates of set theory, in the sense that if 
they are consistent, then the addition of AC does not result in 
inconsistency. In 1963 P. J. Cohen proved that the same holds 
also for the negation of AC. 

(vi) AC has some weird (counter-intuitive) consequences. However, 
its negation has even weirder ones: for example, the direct 
product of a family of non-empty sets may well be empty. Note 
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also that the finite version of AC - in which the set J'. is assumed 
to be finite - can be deduced from the remaining postulates of 
ZF. Thus AC is only needed as an additional postulate for the 
case where J'. is infinite. It therefore appears as a natural exten­
sion to the infinite case of a principle that must in any case be 
accepted in the finite case. 

(vii) Most mathematicians regard AC as indispensable: without it, 
many results in modern mathematics as well as in set theory itself 
would be unprovable. However, in view of its somewhat contro­
versial status, when the AC is needed for proving a mathematical 
result, it is customary to point this out. 

1.4. Preview 

Starting from AC, we shall prove a chain of other major principles, all 
of which tum out to be equivalent to each other and to AC. The first 
of these principles, which is also the most important, is a corollary of 
the following theorem. 

1.5. Theorem 

Every set is equipollent to an ordinal. 

PROOF 

Let A be a set, and let cS be the set PA - {0} of all non-empty subsets 
of A. By AC there exists a choice function fJ on J'.. Since A is a set, it 
cannot be the universal class (Thm. 1.3.10); so there exists an object b 
that does not belong to A. 

We now define a function C whose domain is the class of all sets, as 
follows: for any set x we put 

Cx = {~(A - ranx) if xis a map such that ranx CA, 
otherwise. 

Using transfinite recursion (Thm. 4.6.7), we get a function F with W 
as domain, satisfying the recursion equation F s = C( Ft s) for all 
s E W. Combining this equation with ( *), we obtain for all s: 

ifran(Fts) CA, 
otherwise. 
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Let s be any ordinal such that F s * b. This means that F ts must be a 
map from s to A, and 

Fs = 9'.(A - ran(Fts)) EA - ran(Ft;). 

Thus Fs is a •fresh' member of A, different from FTJ for all T/ < ;. 
(What happens is that so long as A is not exhausted by previous values 
of F, the new value F; is chosen, using the choice function 9'., as a 
fresh member of A.) 

If F s * b for all ordinals ; , it would follow that F is an injection 
from the proper class W (Cor. 4.2.18) to the set A. This is impossible 
by Prob. 2.4.5. So there must exist some ordinals for which Fs = b. 

Let a be the least ordinal such that Fa= b. Such an a exists by the 
Least Ordinal Principle (Tom. 4.4.1). Then it is easy to see that Ft a is 
an injection from a - that is, from the set {s:; < a} - to A. Also, 
ran (Ft a) cannot be a proper subset of A. Thus Ft a is in fact a 
bijection from a to A. ■ 

1.6. Corollary (Well-Ordering Theorem) 

For every set A there exists a well-ordering on A. 

PROOF 

By Thm. 1.5, there exists a bijection F from an ordinal a to A. Now 
put 

This means that for any members x and y of A, x < y iff s < T/, where 
; and T/ are the (necessarily unique) ordinals< a such that x = Fs and 
y = FTJ. Clearly, < is a well-ordering on A. ■ 

1.7. Remarks 

(i) With F, a and < as above, Ft a is a similarity map from a to the 
well-ordered set (A, <). 

(ii) Toms. 1.5 and Cor. 1.6 are equivalent to each other. Indeed, the 
former can easily be deduced from the latter using the Represent­
ation Theorem 4.5.12. We shall therefore refer also to both Thm. 
1.5 and Cor. 1.6 as the WOT. 

Another important consequence of Thm. 1.5 is that the class of 
cardinals is totally ordered (see Def. 2.3.ll(ii)): 
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1.8. CoroUary 

For any sets A and B, IAI,;;; IBI or IBI,;;; IAI. 

PROOF 

By Thm. 1.5, A and B are equipollent to ordinals, say a: and /3 
respectively. Since the class of ordinals is e-well-ordered, it follows 
(see Lemma 4.2.4) that a E /3 or a:= /3 or /3 E a. But ordinals are 
transitive sets, hence a~ {3 or f3 ~ a. ■ 

§ 2. From the WOT via Zorn's Lemma back to AC 

We start by proving two simple lemmas about finite sets, which do not 
depend on AC. 

2.1. Lemma 

If B C A and A is equipollent to a finite ordinal a:, then B is equipollent 
to an ordinal /3 < a. Hence every subset of a finite set is finite. 

PROOF 

Let B c A, where A is equipollent to a finite ordinal a. Then B is 
clearly equipollent to some DC a:. By Prob. 4.5.14(i), D is similar -
and hence equipollent - to some ordinal /3,;;; a. However, since here a 
is finite, Tom. 4.3.12 excludes the possibility that /3 = a. Therefore 
/3< a. ■ 

2.2. Lemma 

If f is a map such that dom f is finite then ran f is finite as well. 

PROOF 

By Def. 4.3.15, domf is equipollent to a finite ordinal a. Without loss 
of generality we may therefore assume that domf is a: itself. (Other­
wise, replace f by f O h, where h is a bijection from a to domf.) 
Define a map g from ran f to a: by putting, for each x E ran f, 

gx =dt the least s E a such that fl; = x. 



82 5. The Axiom of Choice 

It is easy to see that g is injective, hence it is a bijection from ran/ to 
some subset D of a-. By Lemma 2.1, Dis finite; therefore so is ran/. 

■ 

Next, we lay down a few definitions. 

2.3. Definition 

Let < be a partial order on a class A. A member a of A is said to be 
maximal in A with respect to < if there is no x e A such that a < x. 

2.4. Remarks 

(i) When there is no risk of confusion, we shall omit the phrase 'in A 
with respect to <'. 

(ii) In general, A may not have a maximal member; or it may have 
more than one. 

(iii) Do not confuse maximal with greatest. However, if < is a total 
order on A and a is maximal in A then a is also the greatest 
member of A, in the sense that x < a for any other x < A for any 
other x E A. In this case it is clear that A cannot have more than 
one maximal member. 

2.5. Definition 

If al is any class of sets, we put 

Cot =df {(X, Y) E al2 : X CY}. 

Cot is called the restriction of C to al. 

2.6. Remarks 

(i) We can also characterize the relation Cot by saying that, for any 
Xand Y, 

X Cot Y ~ X e ctl and Y E al and X C Y. 

(ii) As noted in Ex. 2.3.8, if al is any class of sets, Cot is a [sharp] 
partial order on al. 
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2.7. Definition 

A class dl of sets is of finite character if, for any set X, 

Xe d <=>Ye ell for every finite Y C X. 

We shall use the WOT to prove the following useful result. 

2.8. Theorem (Tukey-Teichmuller Lemma). 

If ell is a set of finite character, then for every A E d there exists an 
Med such that A C Mand Mis maximal in dl w.r.t. Cc1, 

PROOF 

By the WOT, dl is equipollent to some ordinal a. Let G be a bijection 
from a to d. Thus 

Take any A E ell; we shall hold A fixed for the rest of the proof. 
Without loss of generality, we may assume that A = G0 - otherwise, 
we could compose G with the bijection from d to itself that inter­
changes A with G0 and leaves all other members of d alone. 

Using transfinite recursion restricted to a (see Rem. 4.6.S(ii)), we 
define a map Fon a such that, for every;< a, 

if U{F17: 17 < ;) CG;, 
otherwise. 

(Note that { F17 : 'fJ < ;} = ran (Ft;), so that here Fl; is indeed being 
determined in terms of Ft;, as required in transfinite recursion.) 

It is clear that F is monotone in the sense that whenever 17 """ ; < a 
then F17 CF;. 

We claim that F; e ell for every;< a. We shall prove this claim by 
strong transfinite induction restricted to a. Let ; < a; our induction 
hypothesis is that F17 Ed for every 'fJ < l;. 

Now, F; is G; or U{F17: 'fJ < ;}. Since certainly Gl; Ed, we need 
only prove that the union U { F17 : 17 < l;} belongs to d. But di, is a set 
of finite character. So it is enough to show that every finite subset of 
U{F17: 1J < l;} belongs to d. We need only deal with non-empty 
subsets, since 0 is a finite subset of A, and as such must in any case 
belong to ell. 

Let B be a non-empty finite subset of U { F'fJ : 17 < l;}. Then for each 
b E B there exists some '1J < l; such that b e F1]. Define a map f from 
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B to ; by putting, for each b e B, 

fb =dr the least 'f/ <; such that b e FrJ. 

By Lemma 2.2, ran/ is a finite non-empty set of ordinals < ;. Hence 
by Prob. 4.3.17(ii) ran/ has a greatest member, say 'f/*. This means 
that for every be B we have fb ~ rJ*; and, since F is monotone, it 
follows that F(fb) ~ F(r,*). But by the definition of f we have 
be F(fb); hence 

be F(fb) ~ F(r,*) for every be B. 

Thus B !;;: F(TJ*). But 'f/* < ;, so by our induction hypothesis F(rJ*) 
belongs to o1.; and since o1. is of finite character B, as a finite subset of 
F(rJ*), must also belong to o1.. This completes the proof that F; e o1. 
for every ; ~ a. 

We now put M = U{FrJ: 'f/ < a}. We shall show that M has the 
properties claimed by our theorem. The fact that M E o1. is proved by 
showing, exactly as before, that every finite subset of M belongs to o1.. 
Also, it is easy to see that F0 = G0 = A, hence A !;;: M. 

It remains to show that M is maximal w.r.t. Cot. Suppose this were 
not so. Then there would be some XE o1. such that MC X. Now, X 
must be G; for some ; < a, so the assumption Mc X means that 
U{FrJ: 'f/ < a} CG;. Hence, a fortiori, 

But in this case the definition of F says that F; = G;. It would then 
follow that U{F'Y/: 'f/ < a} C F;-which is impossible. ■ 

2.9. Definition 

Let (A, <) be a poset. A chain in (A, <) is any subset C of A such 
that, for all x and yin C, x < y or x = y or y < x. 

2.10. Remark 

In other words, a chain in {A,<) is a subset of A that is totally 
ordered by the restriction of< to it. 

We shall use the Tukey-Teichmilller (TT) Lemma to prove: 
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2.11. Theorem (Hausdorff Maximality Principle) 

Let (A,<) be a poset and let (Q be the set of all chains in (A,<). 
Then every member of (Q is included in some member of (Q that is 
maximal w.r.t. Cr2. 

PROOF 

The condition for C being a chain in (A,<) (see Def. 2.9) involves 
only two members of C at a time. Hence it is easy to see that the set (Q 

of all chains is of finite character. Therefore the TT Lemma applies to 
<Q. ■ 

The most famous and frequently used of all the maximality principles 
that are equivalent to AC is generally known as 'Zorn's Lemma' 
although it is arguably due to Kuratowski, who published a version of 
it in 1922, thirteen years before Zorn. We shall now deduce it from the 
Hausdorff Maximality Principle (HMP). (For the meaning of upper 
bound, see Def. 4.2.23.) 

2.12. Theorem (Zorn's Lemma) 

Let (A, <) be a poset such that every chain in it has an upper bound in 
A. Then for each a E A there is some u E A such that u is maximal in A 
w.r.t. < and such that a~ u. 

PROOF 

As before, let (Q be the set of all chains in (A, <), and consider the 
poset consisting of (Q with the partial order C@ on it. 

The singleton {a} is, trivially, a chain in ( A , <). Hence by the 
HMP {a} is included in a chain C that is maximal in @ w .r. t. C@. By 
hypothesis, C has an upper bound u in A. Since a E C, it follows that 
a~ u. 

It remains to show that u is maximal in A. Suppose it were not 
maximal. Then there would exist some u such that u < u. Since u is an 
upper bound for C, it would follow that x < u for all x e C. But then 
C U { u} would be a chain that properly includes C - contradicting the 
maximality of C in @. ■ 

We have shown that 

AC => WOT => TT Lemma => HMP => Zorn's Lemma. 

Now we shall complete the cycle: 



86 5. The Axiom of Choice 

2.13. Theorem 

AC follows from Zorn's Lemma. 

PROOF 

Let J. be a set of non-empty sets. We must show that there exists a 
choice function on J.. 

If J. is empty then 0 is the required choice function. So from now on 
we may assume that J. is non-empty. 

Let us say that I is a partial choice function (pcf), if I is a choice 
function on a subset of J.. Such creatures do exist: for example, if A is 
any member of J. and a is any member of A then { (A, a)} is a choice 
function on {A} and hence a pcf. Let (f be the set of all pcfs. (It is 
easy to verify that (f is indeed a set; DIY.) As we have just seen, (f is 
non-empty. 

We now consider the poset ((f, Cq). Note that if I and fJ are pcfs, 
then IC fJ means that dom/ C domfJ and IX= qX for each Xe 
dom/. 

We shall show that ((f, Cq} satisfies the condition of Zorn's 
Lemma. To this end, let us consider any chain e in this poset. We 
claim that its union, Ue, is an upper bound fore in (f. 

For any I e @ we obviously have I k Ue. So it only remains to show 
that Ue belongs to (f; in other words, that Ue is a pcf. 

Since every member of e, being a pcf, is a set of ordered pairs 
( X, x) such that x e X e J., it is clear that U@ likewise is a set of 
ordered pairs of this kind. It only remains to show that U@ is a 
function. 

Now, if both I and fJ are members of @ then, since e is a chain, 
we must have I k 'l- or fJ ~ I- Therefore X e dom I n dom fJ then 
IX = fJX. Thus the coherence condition is fulfilled, showing that U@ is 
indeed a function (see Prob. 2.4.8). 

We can now apply Zorn's Lemma to the poset ((f, Cq}. Since (f is 
non-empty, it follows from the Lemma that there exists some fJ E (f 
that is maximal w.r.t. Cq. Such fJ is a pcf - a choice function on a 
subset of J.. However, if domq were not the whole of J., we could take 
any A e J'. - domfJ and any a e A, and put 

l='l-U{(A,a)}. 

Then I would be a pcf such that fJ C I, contradicting the maximality of 
fJ· Therefore fJ must be a choice function on the whole of J.. ■ 
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2.14. Remarks 

(i) We have now established 

AC => WOT => TI Lemma => HMP => Zorn's Lemma => AC. 

hence these five principles are mutually equivalent. 
(ii) These principles can be deduced directly from each other, with­

out going round the cycle. Some of these deductions are quite 
easy. For example, to deduce AC directly from the WOT, let J 
be any set of non-empty sets. Note that if Xe J then X !;;; UJ. 
By the WOT, there exists a well-ordering < on UJ. Then a 
choice function fJ on d is obtained by putting, for all X e J, 

qX = the least member of X w.r.t. <. 

It is also not difficult to deduce the TT Lemma directly from 
Zorn's Lemma (DIY!). However, the only direct routes I know 
from AC to the three maximality principles (TI Lemma, HMP 
and Zorn's Lemma) are quite rocky. 
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Finite cardinals and alephs 

§ 1. Finite cardinals 
1.1. Preview 

In this chapter we will complete the definition of cardinal and cardinal­
ity, which has so far been left open (see Rem. 3.1.4), and derive some 
important results about cardinals. In the present section we confine 
ourselves to finite sets and cardinals; here we shall not invoke AC. 

Recall that by Def. 4.3.15 a set is finite iff it is equipollent to a finite 
ordinal (that is, an ordinal < w); moreover, by Thm. 4.3.14 this 
ordinal is unique. Hence the following definition is legitimate. 

1.2. Definition 

For any finite set A, the cardinality IAI of A is the (necessarily unique 
and finite) ordinal a- such that A = a-. A finite cardinal is an ordinal a­
such that IAI = a-for some finite set A. 

1.3. Remarks 

(i) Clearly, if A and B are finite sets then IAI = IBI iff A= B, as 
required by the incomplete Def. 3.1.3. 

(ii) By Def. 1.2, a finite cardinal is a finite ordinal. Conversely, if a-is 
a finite ordinal, then obviously la-I= a-. Thus the finite cardinals 
are just the finite ordinals by another name. 

(iii) Let n be any natural number. By Def. 3.3.1 and Prob. 4.3.18, the 
corresponding cardinal, n, is finite. This result also follows from 
the next theorem, in which we calculate these cardinals. 

88 
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1.4. Theorem 

(i) 0 = 0; 1 = {0}. 
(ii) If a- is a finite cardinal, a- + 1 = a-'; hence a- + 1 is a finite 

cardinal. 
(iii) If mis a natural number and n = m + I then n = {O, 1, ... , m}. 

PROOF 

(i) By Def. 3.3.1, 0 = 101 and 1 = 1{0}1. But by Thm. 4.3.3 0 as 
well as 0' - which by Def. 4.2.26 is {0} - are finite ordinals; 
hence 101 = 0 and 1{0}1 = {0}. 

(ii) Here + is the operation of cardinal addition; so by Def. 3.4.4, 

a-+ 1 = IA U Bl, 
where A and B are any disjoint set such that IAI = a- and 
IBI = 1. 

As A we take a- itself. As B we may then take any set 
equipollent to 1 - that is, any singleton - provided it is disjoint 
from a-. We put B = {a-}, which is disjoint from a- because an 
ordinal cannot belong to itself (see Rem. 4.2.19(ii)). Hence 

a-+ 1 = la- u {a-}I. 

But by Def. 4.2.26 this is la-'j. Moreover, by Thm. 4.3.3(ii), since 
a- is a finite ordinal so is a'. Hence a- + 1 = a-', which ( as we 
have just noted) is a finite ordinal. 

(iii) We proceed by weak mathematical induction on m. Form= 0 n 
is 1 and the required result, 1 = {O}, follows at once from (i). 

Now assume, as induction hypothesis, that m is a number for 
which (iii) holds. Let p = (m + 1) + 1 = n + 1. Then 

p = n + 1 by Thm. 3.4.6, 
= n U {n} by (ii), 
= {O, 1, ... , m} U {n} by ind. hyp., 
= {O, 1, ... , n}. ■ 

1.5. Theorem 

For any finite cardinals a- and {3, a- + f3 is a finite cardinal. Moreover, 
a-+ 0 = a- and a-+ {3' = (a-+ /3)'. 
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PROOF 

By Prob. 3.4.7(iii), the equality a+ 0 = a holds for all cardinals a, 
not just for finite ones. 

To prove that a + {3 is a finite cardinal, we apply to /3 induction on 
finite ordinals. 

For {3 = 0, the sum a+ {3 is a+ 0 by Thm. 1.4(i), and we have just 
seen that this is the finite cardinal a. 

Now assume, as induction hypothesis, that /3 is a finite cardinal such 
that a + f3 is also a finite cardinal. Then 

a + {3' = a + ({3 + 1) 
=(a+/3)+1 

by Tom. 1.4(ii), 
by Prob. 3.4.7(i). 

By our induction hypothesis, a + f3 is a finite cardinal; hence by Thm. 
1.4(ii) so is ( a + /3) + 1. This shows that a + {3' is a finite cardinal, and 
completes the induction on {3. 

Finally, we have just shown, for any finite cardinals a and {3, that 
a + {3' = ( a + {3) + 1. By Tom. 1.4(ii) this equals ( a + /3)'. ■ 

1.6. Theorem 

For any finite cardinals a and {3, a· f3 is a finite cardinal. Moreover, 
a·O = 0 and a" {3' = a· f3 + a. 

PROOF 

DIY: proceed as in the proof of Thm. 1.5, using Prob. 3.5.5. ■ 

1.7. Problem 

Prove that if < is a [sharp] total order on a finite set A, then < is a 
well-ordering on A. (Apply induction on finite ordinals to IAI, For any 
non-empty subset B of A you must show that B has a least member. If 
B c A, use Lemma 5.2.1. If Bis A itself, let a be any member of A 
and apply the induction hypothesis to A - {a}.) 

1.8. Remark 

In 1889, Peano proposed an axiomatization of the theory of natural 
numbers. 1 In addition to some purely logical axioms (which must be 

1 A translation of his paper, 'The principles of arithmetic, presented by a new method', 
is in van Heijenoort, From Frege to Godel. 
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satisfied by any system whatever) he proposed five postulates which we 
now state, with some inessential modifications. 

(1) 0 is a natural number. 
(2) Every natural number m has a unique successor, s(m). 
(3) If m and n are distinct natural numbers, then s(m) =I= s(n). 
(4) For every natural number m, s(m) =I= 0. 
(5) (Principle of Mathematical Induction.) Let K be any set such 

that K contains 0 and such that if it contains any natural number 
m then it also contains s(m); then K contains every natural 
number. 

The operations of addition and multiplication of natural numbers 
can then be introduced by means of four further postulates that assert, 
for any natural numbers n and m: 

(6) m + 0= m. 
(7) m + s(n) = s(m + n). 
(8) m ·0 = 0. 
(9) m • s(n) = m • n + m. 

Intuitively speaking, it is clear that these nine postulates express truths 
about the system of natural numbers. And in fact they are adequate 
for an informal axiomatic development of the arithmetic of natural 
numbers. 

Now, speaking more formally, in ZF we have proved for the finite 
cardinals (a.k.a. finite ordinals) theorems that are exact counterparts 
of Peano's postulates. To be precise: if in the statement of these 
postulates we replace the words 'natural number' by 'finite cardinal', 
and the symbols '0' and 's' respectively by '0' and"' (writing the latter 
to the right of its argument instead of to its left) and if we understand 
the symbols for addition and multiplication as denoting respectively 
addition and multiplication of cardinals, then all nine postulates be­
come theorems of ZF. In this sense, the system consisting of the set w 
of finite cardinals together with the operations of succession, addition 
and multiplication on these cardinals, provides in ZF a model for 
Peano's postulates. 

Moreover, this model is structurally unique in the following sense. In 
ZF it is not difficult to prove that any system of objects and operations 
satisfying the appropriate re-interpretation of Peano's postulates must 
be structurally identical, an exact structural replica of (technically 
speaking: isomorphic to) the system of the finite cardinals. 

In this sense, the finite cardinals play within ZF the role of natural 
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numbers. And mathematicians developing (or simulating) various 
branches of mathematics within set theory are justified in identifying 
the finite cardinals with the natural numbers, for the purpose of this 
activity (cf. Rem. 4.3.8). 

1.9. Warning 

All this does not quite answer the question whether the ZF system of 
finite cardinals is a faithful and correct representation of the (informal) 
system of natural numbers, which mathematicians had studied long 
before the invention of set theory. 

Note that for any natural number n, we can prove that the cor­
responding cardinal n is a finite cardinal (Thm. 1.4, or Def. 3.3.1 and 
Prob. 4.3.18). But we have not proved that 

( *) Every finite cardinal has the form n for some natural number n. 

At first sight it seems easy to prove ( *) by applying induction on finite 
ordinals (Cor. 4.3.7) to the 'set' 

{ a e w : a = n for some natural number n}. 

But in order to be able to do so, we must first prove that such a set 
exists as an object of set theory. This, in tum, requires the property 
being a natural number, in terms of which this would-be set is defined, 
to be a set-theoretic concept (see discussion at the end of § 2 and 
beginning of § 3 of Ch. 1). But we have taken the notion of natural 
number as given in advance, prior to the development of set theory ( cf. 
Rem. 3.3.6); and without begging the question we cannot presuppose 
that it is also a set-theoretic notion. 

We have no assurance that the ZF system of finite cardinals is a 
faithful and correct representation of the pre-ZF informal system of 
natural numbers, so long as the status of (*) is in question. We shall 
see in the Appendix that this question has a rather surprising answer. 

§ 2. Cardinals in general 

To extend the definition of cardinality to infinite sets, we invoke AC, 
via the WOT (Thm. 5.1.5). According to this theorem, every set A is 
equipollent to some ordinal, and hence by the Least Ordinal Principle 
(Thm. 4.4.1) there is a unique least ordinal to which A is equipollent. 
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2.1. Definition 

For any set A, the cardinality IAI of A is the least ordinal a such that 
A""' a. A cardinal is an ordinal a such that IAI = a for some set A. 

2.2. Remarks 

(i) This definition obviously agrees with Def. 1.2 when A is a finite 
set. 

(ii} Def. 2.1 clearly satisfies the condition imposed in Def. 3.1.3: for 
any sets A and B, IAI = IBI iff A""' B. 

(iii) From Def. 2.1 it follows at once that a cardinal is an ordinal that 
is not equipollent to any smaller ordinal. Conversely, if an 
ordinal a is not equipollent to any smaller ordinal, then clearly 
lal = a, so that a is a cardinal. 

(iv) If A and µ are cardinals, then the statement 'A :s;; µ' is apparently 
ambiguous, because we can interpret ':s;;' according to Def. 4.2.21 
(that is, as denoting the order on the class of ordinals) or 
according to Def. 3.2.1. In the next lemma we shall prove that 
these two interpretations are in fact equivalent. In the formula­
tion and proof of this lemma we shall use the symbol ':s;;' in the 
sense of Def. 3.2.1 only, so as not to prejudge the issue. There­
after, we shall revert to using ':s;;' in either sense, as it will make 
no difference. 

2.3. Lemma 

For any cardinals A andµ, A :s;; µ (in the sense of Def 3.2.1) if! A e µ or 
A=µ. 

PROOF 

Suppose A e µ or A = µ. Since ordinals are transitive sets, it follows that 
ACµ. Hence by Thm. 3.2.3 Iii :s;; lµI. But A and µ are cardinals, so 
Iii = A and lµI = µ. Thus A :,:;;; µ. 

Conversely, suppose that A ft µ and A =I= µ. Then, since the class of 
ordinals is e-well-ordered, we must have µ e A. In the same way as 
before, it now follows that µ ,,:;;; A. Hence we cannot have A :s;; µ, as by 
the Schrfider-Bernstein Theorem 3.2. 7 it would then follow that A= µ, 
contrary to hypothesis. ■ 
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2.4. Problem 

Prove that if a- is an infinite ordinal then I a-I = I a-' I; hence a-' cannot be 
a cardinal. (Let f be the map such that domf =a-', f; = ;' for all 
finite ;, f; =; for all infinite ; < a, and fa= 0. Show that f is a 
bijection from a' to a.) 

2.5. Theorem 

w is the least infinite cardinal. ■ 

2.6. Theorem 

If A is a set of cardinals, then UA is the lub of A in the class of all 
cardinals, that is, the least cardinal A such that ; ,,;;; A for all ; E A. 

PROOF 

For each ; EA we have ; !: UA by Def. 1.3.11, hence Isl,,;;; IUAI by 
Thm. 3.2.3. But ; is a cardinal, hence Isl=;. Thus ; :s;;; IUAI for all 
; E A. This shows that the cardinal I U A I is an upper bound for A. 

Note that IUAI, being a cardinal, is a fortiori an ordinal. But by 
Thro. 4.2.25 UA itself is the least upper bound of A in the class of all 
ordinals, hence U A ,,;;; I U A I. 

On the other hand, from Def. 2.1 it is clear that I al ,,;;; a for every 
ordinal a. Since by Thm. 4.2.25 UA is an ordinal, it follows that 
IUAI,,;;; UA. Hence IUAI is UA itself, and is the lub of A in the class 
of cardinals. ■ 

2.7. Theorem 

For any set A of cardinals there exists a cardinal (and, in particular, an 
infinite cardinal) greater than all the members of A. 

PROOF 

Let A be the lub of A obtained in Thm. 2.6. By Cantor's Theorem 
3.6.8, there exists a cardinalµ such that A<µ, and hence also;<µ for 
all; EA. Ifµ is infinite, there is nothing further to prove. Ifµ is finite, 
then w is an infinite cardinal such that µ < w and hence also ; < w for 
all;EA. ■ 
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2.8. Corollary 

The class of all cardinals is a proper class. 

2.9. Lemma 
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■ 

We can define a (necessarily unique) function F such that dom F = W 
and for every ordinal a, 

Fa: = the least infinite cardinal not belonging to ran ( F t a). 

PROOF 

This follows from Thm. 4.6.7 (definition by transfinite recursion). We 
only need to take as the C of that theorem a function such that 
whenever x is a set that is also a function, Cx is the least cardinal not 
belonging to ranx. (Note that ranx is a set by AR, hence by Thm. 2.7 
there exists an infinite cardinal not belonging to it; so by the Least 
Ordinal Principle 4.4.1 there is a least such cardinal.) ■ 

2.10. Definition 

For any ordinal a, 

where Fis the function of Lemma 2.9. 

2.11. Remarks 

(i) 'K' is aleph, the first letter in the Hebrew alphabet. It is also the 
first letter of the Hebrew word 'f)lOl'N' (einsoph. meaning 
infinity), which is a cabbalistic appellation of the deity. The 
notation is due to Cantor, who was deeply interested in mysti­
cism. 

(ii) Combining Def. 2.10 with the characterization of F in Lemma 
2.9, we obtain: 

Ka = the least infinite cardinal not belonging to the set 
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2.12. Theorem 

(i) For any a,~« is an infinite cardinal. 
(ii) For any ordinals a and {3, a< f3 => ~« < ~p­

(iii) ~o = w. 

PROOF 

All three statements follow easily from Rem. 2.ll(ii). 

2.13. Theorem 

Every infinite cardinal is~« for some ordinal a. 

PROOF 

■ 

From Thm. 2.12(ii) it follows that a* f3 => ~« * ~.8- This means that 
the function F of Lemma 2.9 is a bijection from the class W of all 
ordinals to the class {~a : a e W} of all alephs. Since W is a proper 
class (Cor. 4.2.18), it follows from Prob. 2.4.5 that the class of all 
alephs must likewise be a proper class. 

Now let Ji. be any infinite cardinal. Then Ji., being an ordinal, is a set. 
Hence there must be some a such that ~« ft Ji. - otherwise the set Ji. 
would include the class of all alephs, and by AS the latter would be a 
set, contrary to what we have just shown. 

Since both Ji. and ~« are ordinals, the fact that ~« ft A implies that 
A.~ ~«- If A. = ~a, then there is nothing further to prove. On the other 
hand, if A.<~« then by Rem. 2.ll(ii) it follows that A belongs to the 
set {~g:; < a}. Hence Ji.= ~s for some;< a. ■ 

2.14. Remarks 

(i) By Toms. 2.12 and 2.13, the alephs are just the infinite cardinals 
by another name. Moreover, each infinite cardinal is an ~« for 
some unique ordinal a. 

(ii) The theory of real numbers, as other branches of mathematics, 
can be developed within set theory. In doing so, one identifies 
the finite cardinals with the natural numbers (see Rem. 1.8). It is 
then not difficult to show that P~0 (= Pw by Thm. 2.12(iii)) is 
equipollent to the continuum - the set of all real numbers. (It is 
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also equipollent to the set of all real numbers lying in any given 
interval, for example, between O and 1.) The cardinal IPKol is 
therefore the cardinality of the continuum. 

Cantor conjectured (but was unable to prove) that IPK01 = K1. 

This conjecture is known as the Continuum Hypothesis (CH). 
More generally, the Generalized Continuum Hypothesis 

(GCH) is the conjecture that IPK(l'I = Kil', for every a-. 
(iii) In 1938 Godel proved that GCH is consistent relative to the 

commonly accepted postulates of set theory, in the sense that if 
they are consistent, then the addition of GCH does not result in 
inconsistency. In 1963 P. J. Cohen proved that the same holds 
also for the negation of CH (and hence GCH). 

§ 3. Arithmetic of the alephs 
3.1. Preview 

In this section we shall present some important results in the arithmetic 
of the alephs. Some of the proofs are given in a slightly abbreviated 
form, omitting a few details. We present separately an outline of the 
proof of Thm. 3.2, although it is a special case of Thm. 3.3. This is 
done as a dry run, in order to display more clearly, in a simpler 
context, the idea of the proof. 

3.2. Theorem 

~o·Ko = ~o-

PROOF (OUTLINE) 

According to Def. 3.5.1, Ko· Ko is the cardinality of the set A x B, 
where A and Bare any sets whose cardinality is K0 . We shall take both 
A and B to be Ko itself. 

Recall that by Thm. 2.12(iii) ~o = w, which is the set of finite 
ordinals (as well as the set of finite cardinals). Thus we must show that 
the set w x w of all ordered pairs of finite ordinals is equipollent to w 
itself. 

For any ordinals sand T/, we let max (s, T/) be the greater of sand TJ. 
(Ifs= TJ then max ( s, TJ) is equal to both of them.) 

We define an order < on the set w x w as follows. For any finite 
ordinals s, TJ, <p and 1/J we stipulate that ( s, TJ) < ( <p, 1/J) iff one of the 
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following three conditions holds: 

(1) max(!;, 71) < max(q,i, ,P), 
(2) max(!;, 71) = max(q,i, ,P) and l;< qi, 

(3) max(!;, 71) = max(q,i, ,p) and l; = qi and 71 < ,p. 

To make this clearer, here are the first few members of w x w, listed 
according to the order <: 

(0,0), 
(0, 1), (1, 0), (1, 1), 
(0, 2), (1, 2), (2, 0), (2, 1), (2, 2), 
(0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), .... 

It is not difficult to see that w x w with this order on it is similar to w 
itself with its E-well-ordering. In particular, w x w is equipollent to w. 

■ 

3.3. Theorem 

~a • ~a = ~a for any ordinal a. 

PROOF 

We proceed by transfinite induction. As induction hypothesis we 
assume that ~/3 • ~p = ~p for all /3 < a. 

As in the proof of Thm. 3.2, we define an order < on ~a x ~a by 
stipulating, for any ordinals ;, 71, qi and 1/J smaller than ~a, that 
( l;, 71) < ( qi, ,p) iff one of the conditions (1), (2) and (3) listed there 
holds. 

It is easy to verify that < is a well-ordering on Ka x Ka. Hence, by 
the Representation Theorem 4.5.12, there exists a similarity map f 
from Ka x Ka to an ordinal 6. Since F is a bijection from Ka x Ka to 6, 
it follows that Ka· Ka= 161. We shall show that this 6 is in fact Ka 
itself. 

First, note that Ka = 1 ·Kao;;; Ka· ~a = 1<51 .;;; <5. Now suppose that 
Ka < 6. This means that Ka e 6 = ran/; so for some l; and 71, both 
smaller than Ka, we have/(!;, 71) = Ka. 

Since ; and 71 are smaller than ~a, their cardinalities are certainly 
smaller than Ka. Let t = max ( l;, 71). Then I ti is either a finite cardinal 
or some ~p such that /3 < a. 

Let us put A = { ( qi, ,p) : ( qi, ,p) < ( l;, 11)}. Then, by the definition 
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of <, for each ( rp, 1/J) e A we must have rp,;;;. (; and 1/J,;;;. (;. Therefore 
A is a subset of(;' x (;', hence IAI,;;;. l(;'I • l(;'I. 

If (; is finite then (;' is finite as well and hence, by Thm. 1.6, so is 
IAI. 

If I (;I = K13 for some fJ < a-, then by Prob. 2.4 I(;' I = K13 as well, so by 
the induction hypothesis IAI :!S; Kµ. Thus in any case IAI is smaller than 

Ka· 
However, since f ( f;, 'f/) = Ka, it follows that ft A is a bijection from 

A to Ka and hence IAI = Ka - contrary to what we have just shown. 
This contradiction shows that {J must be equal to Ka. ■ 

3.4. Remark 

In view of Thm. 2.13, Thm. 3.3 means simply that ,U, = A for any 
infinite cardinal A. 

3.5. Theorem 

If µ is an infinite cardinal and A is any cardinal such that 1,;;;. A,;;;.µ, 
then Aµ=µ. 

PROOF 

Using Prob. 3.5.5 and Thm. 3.3, we have: 
µ = 1µ ,s;. Aµ =!S; µµ = µ. 

Thus both µ ,s;. Aµ and Aµ =!S; µ. ■ 

3.6. Theorem 

If µ is an infinite cardinal and A is any cardinal such that A ,;;;. µ, then 
A+µ=µ. 

PROOF 

Using Probs. 3.4.7 and 3.5.5 and Thm. 3.3, we have: 
µ = 0 + µ,;;;. A + µ =!S; µ + µ = 1µ + 1µ = (1 + 1)µ = 2µ ,s;. µµ = µ. 

Thus both µ ,s;. A + µ and A + µ ,s;. µ. ■ 

3.7. Theorem 

If A is an infinite cardinal and a- is any finite cardinal other than 0, then 
All'= A. 



100 6. Finite cardinals and alephs 

PROOF 

DIY, using induction on the finite ordinal a. ■ 

3.8. Definition 

Let A be a class. A map from an ordinal a to A is called an A-string of 
length a. A map from a finite ordinal to A is called a finite A-string. 

3.9. Theorem 

Let A be an infinite set and let S be the class of all finite A-strings. Then 
Sisasetand ISi = IA!. 

PROOF 

If a is a finite ordinal then a C w. Hence every finite A-string is a 
subset of w x A. It follows that SC P(w x A); so Sis a set by AP and 
AS. 

For each finite ordinal a, consider the set Sa= map(a, A) of all 
A-strings of length a (see Def. 3.6.1 and Rem. 3.6.2). Clearly, the Sa 
are pairwise disjoint and 

Hence it is easy to see that 

Let IAI =A.Since Sa= map (a, A), it follows from Def. 3.6.3 that 

!Sal= Aa, 

which by Thm. 3.7 is equal to A itself, except when a= 0, in which 
case ia = 1. Therefore by(*) ISi is the sum of 1 and ~o times k 

ISi = 1 + ~o·A. 

Since ~o is the least infinite cardinal (Tums. 2.5 and 2.12(iii)), it 
follows that ~o:;;; A. Hence by Thms. 3.5 and 3.6 ISi = 1 +A= A. ■ 
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Propositional logic 

§ 1. Basic syntax 

We shall describe a formal language .i!.. This will be our object 
language, an object of our discussion. It must be distinguished from 
our metalanguage, the language in which the discussion is conducted: 
ordinary English augmented by a special technical vocabulary. 

1.1. Specification 

The primitive symbols of .i!. fall into two mutually exclusive categories: 

(i) an infinite set of propositional symbols; 
(ii) two distinct connectives, -, and -+, called negation symbol and 

implication symbol respectively. 

1.2. Warning 

The statement just made does not mean that, for example, the 
implication symbol of .i!. is a boldface arrow-shaped figure. {In fact, for 
all we care .i!. may not have a written form at all!) Rather, the boldface 
arrow is a syntactic constant, a symbol in our metalanguage, used as a 
name for the implication symbol of .i!.. 

1.3. Definition 

If/ is a natural number and si, s2 , ... , St are primitive symbols of .i!., 
not necessarily distinct, then the concatenation s1s2 ... St is called an 
.i!.-string and the number / is called its length. (More formally, an 
.i!.-string of length l can be defined as map from the set {l, 2, ... , /} to 

101 
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the set of primitive symbols of .J2.) In particular, the empty .J2-string 
has length 0. 

We shall usually omit the prefix '.J2-', and say simply 'string' rather 
than '.J2-string'. Similar ellipses will be used, when there is no risk of 
confusion, in connection with other bits of terminology introduced 
later on. 

1.4. Definition 

J2- formulas are strings constructed according to the following three 
rules. 

(1) A string consisting of a single occurrence of a propositional 
symbol is an J2-formula. 

(2) If pis an J2-formula then -.p (the string obtained by concatenat­
ing a single occurrence of-. and the string p, in this order) is an 
J2-formula. 

(3) If P and y are J2-formulas then -+PY (the string obtained by 
concatenating a single occurrence of -+, the string P and the 
stringy, in this order) is an J2-formula. 

A formula constructed according to {l) - a single occurrence of a 
propositional symbol - is called a prime formula. 

A formula constructed according to (2) is called a negation formula; 
here -. p is the negation of p. 

A formula constructed according to (3) is called an implication 
formula; here p is the antecedent and y the consequent of -+PY. 

1.5. Warnings 

(i) In some books, particularly older ones, what we call 'strings' are 
referred to as 'formulas', whereas what we call 'formulas' are 
referred to as 'well-formed formulas' ('wffs'). 

(ii) Def. 1.4 does not mean that boldface lower-case Greek letters 
are .J2-formulas. Rather, they are syntactic variables, symbols in 
our metalanguage used to range over .J2-formulas. 

1.6. Definition 

A propositional symbol occurring in a formula a is called a prime 
component of a. 
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1.7. Definition 

The degree of complexity of a formula « - briefly, deg« - is the total 
number of occurrences of connectives (, and .-) in «. 

1.8. Remark 

We shall often wish to prove that all formulas« have some property P 
- briefly, V«P«. This may be done by {strong] induction on deg«, as 
follows. Define a property Q of natural numbers by stipulating that Q 
holds for a given number n iff P holds for all formulas « such that 
deg«= n. Then clearly Y«P« is equivalent to YnQn. As we know 
(see § 3 of Ch. 0), to prove YnQn by strong induction we deduce Qn 
(for arbitrary n) from the induction hypothesis Y m < nQm. 

Stated in terms of P rather than Q, this is tantamount to saying: if 
we deduce Pa (for arbitrary«) from the induction hypothesis that PP 
holds for all formulas p such that deg p < deg«, then it follows that 
Y«P«. 

1.9. Problem 

Assign to each primitive symbols of,,£ a weight w(s) by stipulating: if 
s is a propositional symbol then w(s) = -1, while w(,) = 0 and 
w(.-) = 1. If si,s2 •.. . ,St are primitive symbols, we assign to the 
string s1s2 ... St weight 

w(s1s2 ... St) = w(s1) + w(s2) + · · · + w(s,). 

Thus, the weight of a string is the sum obtained by adding -1 for each 
occurrence of a propositional symbol and + 1 for each occurrence of.­
in the string (occurrences of-, make no contribution to the weight). 
Since a formula is also a string, every formula« has now been assigned 
a weight w(«). Show that, for any formula«. 

(i) w(«) = -1; 
(ii) if« is the string s1 s2 ... St and k < l, then w(s 1 s2 ... sk) .?= 0. 

In other words, (ii) states that any string which is a proper initial 
segment of « (an initial part of « short of the whole of «) has 
non-negative weight. (Prove (i) and (ii) by strong induction on deg«.) 

(iii) Show that if « is an implication formula, « = .-py, then .-p is 
the shortest non-empty initial segment of« whose weight is 0. 
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§ 2. Notational conventions 

In Def. 1.4 we stipulated that in forming an implication formula an 
implication symbol is placed before the antecedent. The advantage of 
this so-called Polish notation (invented by the Polish logician Jan 
Lukasiewicz) is that Jl, has no need for brackets or other punctuation 
marks for indicating grouping of symbols. Thus, in an implication 
formula (a formula whose initial symbol is--+) the antecedent and the 
consequent are uniquely determined (see Prob. 1.9). This economy is 
both elegant and technically useful. 

So far we have mimicked this Polish system also in our meta­
language: thus in '-+Py' the boldface arrow is placed to the left. 
However, in practice this metalinguistic notation is difficult to read, 
partly because it does not conform to common usage. The Polish 
notation in Jl, itself causes us no inconvenience, because we do not 
actually use that language, only talk about it. But in our metalanguage, 
which we do use continually, we shall trade off elegance for legibility 
and conformity to common usage. 

2.1. Definition 

(«--+P) =dt--+«lt 

This definition changes nothing in Jl.; as far as Jl, is concerned Def. 1.4 
remains in force. The change is purely in the metalanguage: our 
metalinguistic notation will no longer mimic the structure of Jl.-formu­
las, because we shall write '( «--+P)' instead of '--+«P'. For the sake of 
easier legibility, we use parentheses and brackets of various styles and 
sizes. In this context, we refer to all of them simply as brackets. The 
brackets are now needed to prevent ambiguity. For example, 

[(«--+P)--+y] = -+-+«PY, but [«--+(IJ-y)] = -+«-+Py. 

Here the new notation (introduced in Def. 2.1) is used on the left-hand 
side, while the old notation for the same formulas is used on the 
right-hand side. 

We now hit a new snag: in long metalinguistic expressions of this 
kind, written in the new style, the proliferation of brackets can hinder 
legibility. We therefore abbreviate such expressions by omitting as 
many pairs of brackets as convenient. Of course, in order to prevent 
ambiguity such omissions must be governed by certain rules, so that 
the brackets can be restored to yield a unique unabbreviated expres­
sion. We shall need three such rules. The first rule is very simple: 
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2.2. Rule (Omission of outermost brackets) 

A pair of brackets such that no part of the expression lies outside it may 
be omitted. 

For example, («--+P)--+y = [(«--+P)-+y] and «--+(IJ-+y) = 
[«--+(IJ-+y)). 

The second rule is easier to formulate as a rule about how to restore 
omitted brackets. (So a pair of brackets may be omitted if it could then 
be restored according to this rule.) 

2.3. Rule (Association to the right) 

If there are two or more occurrences of'--+' all enclosed in exactly the 
same pairs of brackets (or all not enclosed in any brackets) then you 
may add a new pair of brackets that enclose only the rightmost of these 
occurrences. 

For example, 

«--+IJ-+y--+b = «--+IJ-+(y--+b) = «--+[IJ-+(y--+b)) = {«--+[P-(y--+b)]}, 

(«--+l}-+y)--+b = [«--+(IJ-+y))--+b = {[«--+(IJ-+y))--+b}, 

«--+(l}-+y)--+b = «-[(P-Y)--+b) = {«--+[(l}-+y)--+b]}, 

(«--+P)--+y--+b = («--+P)-(y--+b) = [(«--+P)--+(y--+b}], 

[(«--+P)--+y]--+b = {[(«--+P)--+Y)--+b}. 

The third rule is 

2.4. Rule (Adhesion of•-,') 

Do not omit a pair of brackets whose left member is immediately 
preceded by an occurrence of '-, '. Equivalently: In restoring brackets, 
do not add a new pair of brackets whose left member immediately 
follows an occurrence of '-, '. 

For example, «--+-,IJ-+i' = [«--+(-,1}-+y)] but «--+-,(1}-+y) = 
[ «--+-, (IJ-+y)]. 

For reasons of economy, we allowed .J2 to have only two connectives, 
-, and --+. Other connectives can however be introduced metalinguist­
ically, by definition. 
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2.5. Definition 

(i) («AP) =df-, ( «-+-, P), 
(ii) («vP) =df-,«-+P, 

(iii) («-P) =df(«-+P)A(P.-.,.«). 

(«AP) is called a conjunction formula and « and p its first conjunct 
and second conjunct respectively; ( « v P) is called a disjunction formula 
and a and pits first disjunct and second disjunct respectively; («-P) is 
called a bi-implication formula and « and P its left-hand side and 
right-hand side respectively. 

2.6. Warning 

The metalinguistic symbol 'A' does not denote anything; strictly speak­
ing it has no meaning on its own- only the package '(«AP)' as a whole 
has been defined as an abbreviation for '-, ( «-+-, P)'. This is an 
example of a contextual definition. Similar remarks apply to the other 
two clauses of Def. 2.5. 

In view of Def. 2.5 we need to modify our procedure for omitting and 
restoring brackets in metalinguistic expressions. We leave Rules 2.2 
and 2.4 as they are, but we replace Rule 2.3 by the following more 
comprehensive rule for restoring brackets, which takes into account 
not only '-+' but also the newly introduced metalinguistic symbols 'A', 

'v' and•-•. 

2.7. Rule (Ranks and association to the right) 

If there are occurrences of •-•, '-+', 'v' and 'A' - at least two 
occurrences in total - all enclosed in exactly the same pairs of brackets 
(or all not enclosed in any pair of brackets), order all these occurrences 
by rank as follows. Occurrences of •-• have higher ranks than those 
of'-+'; the latter have higher ranks than those of 'v'; and occurrences 
of 'A' have lowest ranks. Moreover, of two occurrences of the same 
symbol, the one further to the left has the higher rank. Then you may 
add a new pair of brackets that encloses only the symbol-occurrence 
with the lowest rank. 

For example, 

«-+PA y-+JJ-y = «-+(PA y)-+f}-+y = «-+(PA y)-+(f}-+y) 

= «-+[(PAY)-+(f}-+y)] = { «-+[(PA y)-+(JJ-y)]}; 



§3. Propositional combinations 

«Afl-y_.,a-flvy = (aAfl)-Y--•«-flvy 

= (aAfl)-y_.,a-(flvy) 

= (aAfl)-y_.[,a-(livy)] = [(aA(l)-y]_.[,a-(flvy)] 

= {[(uAfl)-y]_.[,a-(flvy)]}. 
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The idea behind Rule 2. 7 is that - in the absence of brackets that 
indicate otherwise - a symbol-occurrence of higher rank separates more 
strongly than one of lower rank, in much the same way as in English 
punctuation a full stop separates more strongly than a semicolon, and 
the latter separates more strongly than a comma. 

It must be stressed that the definitions and conventions introduced in 
this section are metalinguistic devices used in discussing Jl. and do not 
change Jl. itself in any way. 

§ 3. Propositional combinations 

A formula a is said to be a propositional combination of k formulas fl1, 
(}2, ... , (lb if a can be constructed from the lli using -, and -- The 
following definition puts this more precisely. 

3.1. Definition 

Let f}i, 1}2, ... , Ilk be any formulas. A propositional combination of 
(li, flz, ... , flk is any formula constructed according to the following 
three rules. 

(1) Each fl; (where 1 ,,s;; i:,;:; k) is a propositional combination of fl1 , 

flz, · • • , flk-
(2) If y is a propositional combination of 1}1, (}2, ... , Ilk, then ,y is 

a propositional combination of (li, fl2, ... , Ilk• 

(3) If y and bare propositional combinations of fl 1, fl2, ... , flk, then 
y-b is a propositional combination of fl1, flz, ... , Ilk• 

For brevity, we shall usually say 'combination', omitting the adjective 
'propositional'. 

3.2. Warnings 

(i) In forming a combination of 1}1, fl2, ... , flk, not all the (l; need 
actually be used. For example, according to Def. 3.1, both fl2 and 
fl1-fl2 are combinations of fl1, (lz, (l3. 
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(ii) The P; need not be mutually independent: for example, one of 
them may be a combination of the others. (Indeed, the P; need 
not be distinct: some of them may coincide with each other.) For 
this reason one and the same formula may be obtainable from 
the p; in more than one way. For example, if P3 = -,p1 then 
-, P1--+P2, obtained from P1, Pi, P3 by using clause (1) of Def. 3.1 
twice, then clause (2) and clause (3), is the same formula as 
P3-+Pi, which can be obtained from pi, Pi, P3 without using 
clause (2) of Def. 3.1. 

It is clear that every formula is a combination of its prime components 
(see Def. 1.6). The following problem goes a bit further. 

3 .3. Problem 

Let Pi, P2 , ... , Pk be distinct prime formulas, among which are all the 
prime components of a formula a. Prove that a can be obtained as a 
combination of Pi, Pi, ... , Pk in exactly one way. (Use induction on 
deg a, distinguishing three cases corresponding to the three clauses of 
Def. 1.4.) 

§ 4. Basic semantics 

In classical two-valued logic - which is what we are studying here - we 
admit two distinct truth values, namely truth and untruth (a.k.a. 
falsehood). For brevity, we shall denote them by 'T' and '..L' respect­
ively. 

4.1. Remark 

From a purely technical point of view, it does not matter what the 
truth values T and J_ are, so long as they are two distinct objects. But 
intuitively it is best to think of them as abstract entities standing 
outside the language ./2,. 

4.2. Definition 

(i) A truth valuation on ./2, is a mapping a from the set of all prime 
./2,-formulas to the set { T, J_} of truth values. For any truth 
valuation a and any prime formula a we denote by •aa• the truth 
value assigned by a to a. 
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(ii) Given a truth valuation a, we now extend the definition of aa, 
the truth value assigned by a to a, to cover every .£-formula a. 
We proceed by induction on deg a, defining aa in terms of the 
truth values assigned by a to formulas whose degrees are smaller 
than that of a. We distinguish three cases, corresponding to the 
three clauses of Def. 1.4. 
(1) If a is a prime formula, then aa is already defined. 

{ 
..L if pa = T, 

(2) (-,p)a = T 
if pa= ..L. 

{
..L if pa= T and ya= ..L, 

(3) (fl-y)a = T otherwise. 

(iii) Let a be a formula and a a truth valuation. If aa = T we say that 
a is true under a, whereas if aa = ..L we say that a is untrue (or 
false) under a. 

4.3. Remarks 

(i) Strictly speaking, in Def. 4.2(ii) we defined a new mapping, 
which extends a: whereas dom a is the set of prime formulas, the 
domain of the new mapping is the set of all formulas, but it 
agrees with a on prime formulas. Sacrificing absolute rigour to 
convenience, we denote by 'a' this extension as well as the 
original mapping itself. 

(ii) Note that aa is a truth value rather than an expression in.£. (Of 
course, both 'a' and •aa• are expressions in our metalanguage.) 

4.4. Definition 

(i) If q, is a formula and a is a truth valuation such that q,a = T, we 
say that a satisfies qi and write 'a F q,'. 

(ii) If a is a truth valuation that satisfies every member of a set cJ> of 
formulas, we say that a satisfies cJ> and write 'a F cJ>'. 

(iii) If a formula a is satisfied by every truth valuation, we say that a 
is a tautology and write 'Fo a'. 

(iv) If cJ> is a set of formulas and a is a formula such that every truth 
valuation satisfying cJ> also satisfies a, we say that a is a tauto­
logical consequence of cJ> and write 'cJ> Fo a'. 

(v) If a set cJ> of formulas is not satisfied by any truth valuation, we 
say that cJ> is {propositionally] unsatisfiable and write 'cJ> Fo'. 
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4.5. Remarks 

(i) According to Def. 4.4(ii), a truth valuation a fails to satisfy a set 
(J) of formulas, iff (J) has a member that fails to be satisfied by a. 
Therefore if a is any truth valuation, then a I= 0. Indeed, 0 does 
not have a member that fails to be satisfied by a, because it has 
no members at all. 

(ii) By Def. 4.4(iv), 01=0 « means that every truth valuation satisfies 
« (because, as we have just seen, every truth valuation satisfies 
the empty set 0); by Def. 4.4(iii) this means that« is a tautology. 
Thus, a formula is a tautology iff it is a tautological consequence 
of the empty set. 

(iii) In connection with '1=0' we employ certain notational simplifica­
tions that ought to be self-explanatory. Thus, for example, we 
write '(J), « l=o fl' instead of '(J) U { «} 1=0 fl'. 

4.6. Problem 

(i) For any set (J) of formulas and any two formulas « and p, prove 
that 4>, « l=o P iff 4> l=o «-+P. 

(ii) Prove that {«i, «z, ... , «d l=o P iff l=o «1-+«2-+· • •-+«k-+IJ. 

4.7. Warning 

Never, never get -+ and 1=0 confused with each other. (I was not 
referring just now to the symbols '-+' and '1=0'. You are not likely to 
get them confused, because you can see they are different: the former 
is a boldface arrow-shaped figure, while the latter is shaped like a 
double-barred turnstile with a little ring on its lower right-hand side. 
Rather, I was referring to what these symbols denote.) Much can be 
written about this, but the following should help you to avoid the most 
common errors. 

Suppose « and p are .£-formulas. Then «-+P is another such 
formula. '«-+P' is a nominal phrase: if you write it on its own, you 
would not be making any statement, but only referring to that formula 
- just as when I say 'my income-tax statement' and no more I am not 
making a statement but merely referring to my income-tax statement.1 

1 We must exclude here cases of ellipsis, such as when, in reply to the question 'What 
were you doing last night?', I say 'My income-tax statement.' as an ellipsis for the 
sentence 'I was doing my income-tax statement.' 
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On the other hand, if you write '« 1=0 P' on its own, you would be 
stating that p is a tautological consequence of a (or, more precisely, of 
the singleton {«}); and if you write '1=0 «-P' on its own, you would be 
stating that the implication formula «-Pis a tautology. By Prob. 4.6, 
these two statements are equivalent. 

§5. Truth tables 
Conditions (2) and (3) of Def. 4.2(ii) may be summarized in truth 
tables: mp p 'Y P-r 

T .l T T T 
.l T T .l .l 

.l T T 

.l .l T 

The idea here is that any truth valuation that assigns to P ( or to P and 
y) the truth value(s) shown in the first column (or the first two 
columns) at a given row must assign to -,p (or to P-r) the truth value 
shown in the last column at the same row. 

This idea can be applied more generally. In the following definition 
the formula a is any combination of formulas Pi, I½, ... , Pk- The 
definition prescribes how to construct a truth table for a in terms of P1, 
I½, ... , Pk· It proceeds by induction on deg«: the induction hypothe­
sis is that if y is any combination of Pi, P2, ... , Pk and degy < deg« 
then we can construct a truth table for 'Y in terms of Pi, P2, ... , Pk; 
and using this hypothesis the definition tells us how to construct a truth 
table for a in terms of Pi, I½, ... , Pk• 

5.1. Definition 

Let the formula a be a combination of formulas 1}1, P2, ... , Pk• A 
truth value for a in terms of Pi. P2, ... , Pk is constructed as follows. 
First, set up a rectangular table with k columns - headed 'P1', 'Pi', 
••• , 'Pk' respectively - and 2k rows. In each of the k • 2k spaces enter 
'T' or '.L ', so that no two rows are filled out in the same way. Thus 
each of the 2k different strings of length k made up of 'T's and '.L's 
should appear in exactly one row. (For the sake of definiteness, regard 
these strings as 'words' in an alphabet consisting of the two letters 'T' 
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and 'J_' in this order, and enter the 2k different strings in lexicographic 
order.) 

Next, add a new last column, headed '«', and - proceeding by 
induction on deg« - fill it out with 'T's and 'J_'s according to the 
following three rules corresponding to the three clauses of Def. 3.1. 

(1) If«= 13; (where 1:,;;; i,,;;; k), copy the entries of the i-th column 
(the one headed '13;') into the last column, headed '«'. 

(2) If«= -,y, where y is a combination of 131, 132, ... , Ilk, then by 
the induction hypothesis we already know how to construct a 'y' 
column. Now, in the'«' column put 'T' in each row where the 'y' 
column has 'J_ ', and 'J_' in each row where the 'y' column has 
'T'. 

(3) If « = y-+b, where y and b are combinations of !31, 132 , ... , !lb 

then by the induction hypothesis we already know how to con­
struct 'y' and 'b' columns. Now, in the'«' column put 'J_' in each 
row where the 'y' column has 'T' whereas the 'b' column has 'J_'; 
and 'T' elsewhere, that is, in each row where the 'y' column has 
'J_' as well as in each row where the 'b' column has 'T'. 

5.2. Warning 

Since in general the same « may be obtained as a combination of 
formulas Pi, P2 , ... , Ilk in more than one way - see Warning 3.2(ii) -
Def. 5.1 may not yield a unique result: « may have more than one 
truth table in terms of 131, 132, ... , Ilk• 

5.3. Problem 

Construct truth tables in terms of «, p for: 

(i) «AP, 
(ii) « V p, 

(iii) «-13-

(See Def. 2.5.) 

5.4. Problem 

In a truth table in terms of two formulas «, p there are four ( = 22) 
rows; thus the last column can be filled out with 'T's and 'J_'s in 16 
( = 24) different ways. Find 16 combinations of «, 13 whose truth tables 
in terms of«, 13 yield all these 16 different last columns. 
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5.5. Lemma 

Let a be a combination of lh, P2, ••. , fJk• Consider a given row in a 
truth table for a in terms of (}1, P2, ... , fJk- Let a be any truth 
valuation such that for every i (where i = 1, 2, ... , k) P/1 is the truth 
value indicated in the given row at the i-th column (the one headed 'P;'). 
Then «0 is the truth value indicated in the given row at the last column 
(headed'«'). 

PROOF 

Immediate from Def. 5.1 and Def. 4.2(ii), by induction on deg«. ■ 

5.6. Theorem (Semantic soundness of truth tables) 

Let a be a propositional combination of P1, Pi, ... , Pk· If in a truth 
table for « in 1erms of Pi. fJ2, ... , Pk all the entries in the last ('«') 
column are 'T', then a is a tautology. 

PROOF 

Let a be any truth valuation. Clearly, the truth values (}1 °, (}2 °, ... , 
Pk O must be respectively the same as those indicated in one particular 
row of the given truth table. Hence by Lemma 5.5 a0 is the truth value 
indicated in the same row in the last column. But by assumption this 
truth value is T. Thus «0 = T for all a. ■ 

5.7. Problem 

Verify that for any«, p and y: 

(i) l=o «--+P-« (Law of Affirmation of the Consequent), 
(ii) l=o («-P--+Y)-(«--+ P)--+«--+Y 

(iii) l=o [(«-P)-«)-« 
(iv) l=o -, «--+«-P 
(v) 1=0 (a-,a)--+,a 

5.8. Warning 

(Self-distributive Law of Implication), 
(Peirce's Law), 

(Law of Denial of the Antecedent), 
(Clavius' Law). 

The converse of Tom. 5.6 is not generally true. To see this, let 
a= JJ-y; then a truth table for« in terms of p, y is shown above (p. 
111) and has an '..1' in its last column. Does it follow that « cannot be a 
tautology? No; this truth table only shows that a0 = ..1 provided a is a 
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truth valuation for which p11 = T and y17 = ..1. But such a truth valu­
ation may not exist; for example, if y = P then of course we cannot 
have both p11 = T and y 11 = ..1. Or if y = b-+b, then y is a tautology, 
and we can never have y0 = ..1, irrespective of what p11 happens to be. 
However, the converse of Thm. 5.6 does hold, provided the P; are 
subjected to special conditions. 

5.9. Theorem (Semantic completeness of truth tables) 

Let a be a combination of k distinct prime formulas P1, (½, ... , Pk• If 
a is a tautology, then in the truth table for a in terms of P1, Pi, ... , Pk 

all the entries in the last ('a') column are 'T'. 

PROOF 

Consider an arbitrary row in this truth table. Since P1, P2, ... , Pk are 
prime and distinct, there exists a truth valuation o such that the truth 
values 1}111 , (½11 , ••• , Pk 11 are respectively the same as those indicated 
in this particular row of the truth table. By Lemma 5.5, a 0 is the truth 
value indicated in the same row at the last column. But a0 = T since a 
is a tautology. Thus the entry at the last column in this row is 'T'. ■ 

5.10. Remark 

Thms. 5.6 and 5.9 together provide us with an algorithm (a mechanic­
ally performable procedure) whereby we can test any formula a and 
decide whether or not it is a tautology: construct the truth table for a 
in terms of its prime components ( or in terms of any distinct prime 
formulas among which are all the prime components of a; see Prob. 
3.3). 

Using Prob. 4.6, this algorithm also enables us to decide, for any 
finite set 4> of formulas and any formula a, whether or not 4> 1=0 a. 

5.11. Definition 

If a and p are formulas satisfied by exactly the same truth valuations 
(that is, both a 1=0 p and p 1=0 a) we say that a and p are tautologically 
equivalent and write 'a =o (J'. 

5.12. Remarks 

(i) From Prob. 5.3(iii) it is easy to see that a =o P iff 1=0 «~p. 
(ii) An argument similar to the one used in the proof of Thm. 5.6 
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shows that if a and f} are combinations of fh, fl2 , ... , flk and if 
the 'a' and 'fl' columns respectively in truth tables for a and fl in 
terms of fl1, fl2, ... , Ilk have 'T's and 'J_'s in the same places. 
then a ==o fl. 

(iii) An argument similar to that used in the proof of Thm. 5.9 shows 
that the converse of (ii) holds, provided lh, fl2 , ... , Ilk are 
distinct prime formulas. 

5.13. Problem 

Verify that for any a, fl, y, (1)1, QJ2, ... , q:>k: 

(i) avfl ==o («-fl)-P, 

(ii) «-fl ==o •fl-•« (Law of Contraposition), 

(iii) ,((1)1A(ll21\ ... I\Ql1<) :o •(1)1V,(1)2V •,, V,(llk} 

(iv) ,(QJ1VQ)2V ... VQJ1<)=o•QJ1A,Q)2/\ ... l\,Q)k 

(De Morgan's Laws), 
( v) a" P" y ==o (a" fl)" y ( Associative Law of Conjunction), 

(vi) avflvy ==o (avfl)vy (Associative Law of Disjunction), 
(vii) q:>1 A(ll2" ... AQJ1<-« ==o QJ1-Ql2- • • • -q,k-«. 

5.14. Problem 

Let a and fl be any formulas. Let cJ> be the set of all formulas 
obtainable from a and p using negation and conjunction. More pre­
cisely, 

(1) a and fl are in cJ>; 
(2) if y is in cJ> then so is ,y; 
(3) if y and b are in cJ> then so is y" b. 

Find a formula in cJ> that is tautologically equivalent to «-fl. 

5.15. Problem 

The same as Prob. 5.14, but with 'conjunction' and '"' replaced by 
'disjunction' and 'v' respectively. 

5.16. Problem 

For any formulas a and fl, put «lfl =ctr, («A fl). The 'I' here is known 
as Sheffer's stroke. The formula «lfl is called the non-conjunction of a 
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and p. Let cJ> be the set of all formulas obtainable from « and p using 
non-conjunction. Thus, 

(1) « and pare in cJ>; 
(2) if y and bare in cJ> then so is ylb. 

Find formulas in cJ> that are tautologically equivalent to ,a and «-+P 
respectively. 

5.17. Problem 

Let« and p be distinct prime formulas. Let cJ> be defined as in Prob. 
5.16, but with 'non-conjunction' and 'I' replaced by 'implication' and 
'-+' respectively. Prove that no formula in cJ> is tautologically equiva­
lent to «A p. 

5.18. Problem 

Let« and p be distinct prime formulas. Let cJ> be defined as in Prob. 
5.14, but with 'conjunction' and 'A' replaced by 'bi-implication' and 
'++' respectively. 

(i) Find eight formulas in cJ> such that every formula in cJ> is 
tautologically equivalent to exactly one of the eight. 

(ii) Prove that no formula in cJ> is tautologically equivalent to «-+P, 

5.19. Remark 

Prob. 5.4 means that all binary truth functions are reducible to 
negation and implication. Prob. 5.14 (Prob. 5.15) means that implica­
tion- and hence all binary truth functions- can be reduced to negation 
and conjunction (negation and disjunction). Prob. 5.16 means that 
negation and implication - and hence all binary truth functions - can 
be reduced to non-conjunction. Prob. 5.17 means that conjunction 
cannot be reduced to implication (although by Prob. 5.13(i) disjunction 
can be so reduced). Prob. 5.18(ii) means that implication cannot be 
reduced to negation and bi-implication. 

§ 6. The propositional calculus 

The propositional calculus (briefly, Pro peal) presented in this section 
is a formal mechanism for generating the tautological consequences of 
any set cJ> of formulas. A central role will be played by modus ponens. 
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6.1. Definition 

Modus ponens is the [formal] operation that may be applied to any two 
formulas of the form a and «-'»P, to yield the formula P; schematically, 

a, «-'»P 
p 

In this connection, a and «-'»IJ are called the minor premiss and major 
premiss respectively, and P is called the conclusion. 

6.2. Remark 

From Def. 4.2 it follows at once that if a 0 = (a-'»P) 0 = T then also 
p0 = T. (By Def. 4.4(iv) this amounts to the same thing as 
{a, «-'»P} 1=0 p.) We express this by saying that modus ponens pre­
serves truth and is therefore semantically sound as a rule of inference. 

We designate as propositional axioms all formulas of the following five 
forms: 

6.3. Axiom scheme i. a-'»Jl--+a, 

6.4. Axiom scheme ii. («-'»ll--+'Y)-'»(«-'»P)-'»«-'»'Y, 

6.5. Axiom scheme iii. [( «-'»P)-'»«]-'»«, 

6.6. Axiom scheme iv. -,a-'»a-'»p, 

6.7. Axiom scheme v. (a-'»-,a)-'»-,a. 

Note that these are not five single axioms but axiom schemes, each 
representing infinitely many axioms obtained by all possible choices of 
formulas a, p, and y. We shall refer to them briefly as 'Ax. i', 'Ax. ii', 
etc. 

6.8. Definition 

(i) A propositional deduction from a set cf> of formulas is a non­
empty finite sequence of formulas <pi, qi2, ... , ffln such that for 
each k ( k = 1, 2, ... , n) at least one of the following conditions 
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holds: 
(1) (flk is a propositional axiom, 
(2) (flk E cJ), 

(3) (()k is obtained by modus ponens from two earlier formulas in 
the sequence; that is, there are i and j, both smaller than k, such 
that ((Jj = (fl;-4((Jk• 

In this connection cJ> is called a set of hypotheses. 
(ii) A propositional proof is a propositional deduction from the 

empty set of hypotheses. 

Where there is no risk of ambiguity, we shall usually omit the qualifica­
tion ·propositional' and say simply 'deduction' and 'proof'. Similar 
ellipses will be used in connection with other bits of terminology 
introduced below. 

6.9. Definition 

(i) A deduction ( or proof) whose last formula is a is said to be a 
deduction (or proof, respectively) of a. 

(ii) If there exists a propositional deduction of a formula a from a set 
cJ> of formulas, we say that a is {propositionally] deducible from 
cJ> and write, briefly, 'cJ> f--o a'. 

(iii) If there exists a propositional proof of a formula a - that is, a 
deduction of a from the empty set - we say that a is [proposition­
ally] provable and write, briefly, 'f--0 a'. In this case a is also 
called a [propositional} theorem. 

In connection with 'f--0 ' we employ notational simplifications like those 
used in connection with '1=0'. Thus, for example, we write 'cJ>, a f--0 W 
instead of 'cJ> U {a} f--o W. 

6.10. Remarks 
(i) The calculus we have specified here is a linear calculus, as 

distinct from calculi whose deductions have a more complex 
tree-like branching form rather than being ordinary (linear) se­
quences as in Def. 6.8. A linear calculus is characterized uniquely 
by specifying its axioms (by means of axiom-schemes or in some 
other way) and rules of inference. In the present case the axioms 
are all instances of Ax. i-Ax. v, and the sole rule of inference is 
modus ponens. 
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(ii) Many calculi described in the literature, based on other axioms or 
rules of inference, are equivalent to the one presented here in the 
sense, roughly speaking, 1 that their relation of deducibility is 
co-extensive with our l-0 . (For example, the calculus presented in 
B&M, Ch. 1, § 10.) All these calculi, including of course the 
present one, are often referred to collectively as the {classical] 
propositional calculus. Although, strictly speaking, they are dis­
tinct calculi, their mutual equivalence makes it possible to regard 
them as being merely different versions of the same calculus. 

(iii) The qualification 'classical' is often omitted; it is however needed 
sometimes in order to prevent confusion with non-classical 
(a.k.a. non-standard or deviant) propositional calculi that are 
broadly similar but not equivalent to the present one; for exam­
ple, the intuitionistic propositional calculus (a version of which is 
presented in B&M, Ch. 9, § 8). 

(iv) We use the term 'theorem' with two quite different meanings, 
which must be strictly distinguished from each other. A [proposi­
tional] theorem in the sense of Def. 6.9(iii) is a formal expres­
sion. a formula in the language .£. In this book we never assert 
such a theorem, since we do not use the language .£, only talk 
about it. On the other hand, a theorem such as Tom. 5.6 (which 
we have asserted above) is a proposition stated in our metalan­
guage. In order not to get these two kinds of theorem confused 
with each other, those of the former kind are sometimes called 
formal theorems or .£-theorems and those of the latter kind 
metatheorems. However, this will rarely be necessary here, as it 
will usually be clear from the context which meaning of 'theorem' 
is intended. A similar distinction must be drawn between the two 
meanings of terms such as 'deduction·, 'hypothesis' and 'proof'. 

(v) The reason for using the same terms with two alternative mean­
ings is that there is an intended connection between the two sets 
of meanings. Thus formal deductions are supposed to be stylized 
and formalized versions or counterparts (or at least analogues) 
of 'ordinary' deductions in informal or semi-formal axiomatic 
theories expounded within mathematics and related hypothetico­
deductive disciplines. Hypotheses in the sense of Def. 6.8 are 
supposed to be formal counterparts of the hypotheses or assump­
tions adopted as a starting point for real (informal or semi­
formal) mathematical deductions. (When such hypotheses or 

1 That is, ignoring irrelevant differences between the formal languages in which these 
various calculi are formulated. 
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assumptions are adopted as a point of departure for a whole 
axiomatic theory, rather than for temporary or ad hoc ends, they 
are usually called postulates or [extralogical] axioms.) 

(vi) Formal deductions of the kind studied in Symbolic Logic differ 
from 'ordinary' mathematical deductions not only in being com­
pletely formalized but also in spelling out the logical machinery 
used. In informal or semi-formal mathematical deductions you 
are allowed to assert any statement that follows logically from 
previous ones, but the nature of this relation - being a logical 
consequence - is not spelt out fully, if at all. In logical calculi, 
such as Propcal, the purely logical steps in formal deductions are 
made explicit and formally detailed by specifying logical axioms 
(such as Ax. i-Ax. v) and rules of inference (such as modus 
ponens). 

(vii) In an ordinary mathematical deduction you are allowed to in­
troduce any statement deduced earlier (by a preceding deduc­
tion) from the same hypotheses. However, this licence is merely a 
matter of practical convenience: in principle such a previously 
deduced statement could be introduced together with its whole 
deduction, so that every deduction would start from first prin­
ciples. This latter procedure is mimicked in Def. 6.8. 

(viii) Propcal is pitifully inadequate for formalizing any but the most 
trivial mathematical deductions. Its is however of interest as a 
sort of pilot project for more powerful and useful systems. 

6.11. Example 

We show that 1-o «--+« for every «. (In other words, we are going to 
prove a [meta]theorem about Propcal, which asserts that, for every 
formula «, «--+« is a propositional theorem, a theorem of Propcal.) 
The following sequence of five formulas is a [propositional] proof of 
«--+«: 

[ «--+ ( «--+« )--+ « ]--+ ( «--+ «--+ « )--+ «--+ «' 

«--+ ( «--+ « )--+ «' 

( «--+ «--+« )--+«--+«, 

«--+«. 

(Ax. ii) 

(Ax. i) 

(m.p.) 

(Ax. i) 

(m.p.) 
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The marginal comments on the right have been added for convenience. 
Thus the first formula is an instance of Ax. ii, obtained from (6.4) by 
taking P = «--+« and y = a; the second formula is an instance of Ax. i, 
with P = «--+«; the third formula is obtained by modus ponens from 
the preceding two; the fourth formula is an instance of Ax. i, with 
P = a; and the fifth formula is again obtained by modus ponens from 
the preceding two. In principle these explanations are redundant, 
because you can always check whether or not a given formula is an 
instance of an axiom scheme, or obtainable by modus ponens from two 
earlier formulas. 

6.12. Theorem (Semantic soundness of Propcal) 

If cf> 1-o « then also cf> 1=0 a. In particular, if 1-o « then also l=o a. 

PROOF 

Let (fli, qi2 , ... , ffln be a deduction of« from cf>; thus ffln = «. We shall 
prove by [strong] induction on k that cf> 1=0 fflk for k = l, 2, ... , n. 
Thus, in particular, for k = n it will follow that cf> 1=0 «, as claimed. We 
distinguish three cases concerning fflh corresponding to the three 
conditions in Def. 6.8(i). 

Case 1: fflk is a propositional axiom. In this case it is easy to verify that 
1=0 fflk (see Prob. 5.7); in other words, c:pk is satisfied by every truth 
valuation. Hence a fortiori cf> l=o fflk· 

Case 2: fflk e cf>. Then obviously cf> l=o fflk· 

Case 3: fflk is obtained by modus ponens from two earlier formulas in 
the deduction; that is, there are i, j < k such that ffli = (fl;--+fflk• In this 
case, by Rem. 6.2, {qi;, ffli} 1=0 c:pk. But by the induction hypothesis 
both cf> l=o (fl; and cf> l=o ffli• Hence clearly cf> l=o fflk• 

The second claim of our theorem follows from the first by taking 
cf)= 0. ■ 

6.13. Theorem (Cut Rule) 

If cf> I-ob; for each i = l, 2, ... , k and 'I' U {b1, b2 , ... , bk} 1-o« 
then cf> U 'I' 1-0 a. 
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PROOF 

Take a deduction of« from 'I' U {bi, b2, ... , bk} and whenever bi is 
used there as an hypothesis replace it by a deduction of b; from 41>. The 
result is clearly a deduction of a from «I» U 'I'. ■ 

6.14. Remark 

The Cut Rule clearly holds for any linear calculus, irrespective of its 
axioms and rules of inference. The strange name of this rule is due to 
the fact that it allows us to 'cut out the middlemen' b;. 

We shall often refer to this rule briefly as 'Cut'. 

§ 7. The Deduction Theorem 
7.1. Remark 

Suppose 41> h «--+(}. Since by modus ponens we have { «, «--+P} 1-o P, 
we can apply Cut to the 'middleman' «--+P - see Thm. 6.13 - and get 
41>, « 1-o p. Thus we have 

«I» 1-o «--+P ⇒ 41>, « 1-o p. 
The converse of this result, which we prove next, is of central import­
ance. 

7.2. Theorem (Deduction Theorem) 

If 41>, « 1-o P then 41> 1-o «--+(}. 

PROOF 

Let q,1, q,2 , . . . , qi n be a given deduction of p from 41> U { «} ; thus 
q,n = p. 

We shall prove, by [strong] induction on k, that 41> 1-o «-+(Ilk for 
k = 1, 2, ... , n. In particular, for k = nit will follow that «I» f-0 «--+P, 
as claimed. We distinguish three cases concerning (Ilk, corresponding to 
the three conditions in Def. 6.8(i). 

Case 1: q,k is a propositional axiom. In this case the following S(?­

quence of three formulas is a proof of «-+(Ilk and hence a fortiori a 
deduction of it from 41>: 

(ax.) 
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(Ax. i) 
(m.p.) 
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Case 2: <pk e cJ) U {«}. Thus c:pk e cJ) or Cflk =a.Because« plays here a 
special role, we must split our argument into two subcases. 

Subcase 2a: fllk e cJ>. Then the same sequence of three formulas as in 
Case 1 is a deduction of «-+fllk from cJ>, except that now the justifica­
tion for the presence of c:p k is that it is one of the hypotheses cJ) rather 
than that it is an axiom. 

Subcase 2b: fllk = a. Then «-+fllk = «-+«, so by Ex. 6.11 1-0 «-+fllk 
and a fortiori cJ» 1-o «-+qi k • 

Case 3: Cflk is obtained by modus ponens from two earlier formulas in 
the given deduction. This means that there are i, j < k such that 
{flj = q>;-+fllk (so q>; and flli serve as minor and major premiss, respect­
ively, to yield fIJk). By the induction hypothesis, both cJ> 1-o «-+fl); and 
cJ> 1-o «-+Cfli - that is, cJ> 1-o «--+Ql;-+Cf>k• 

Thanks to Cut, the required result, cJ) 1-o «--+{flk, will follow if we 
show that { «-+Ql;, «-+q>;-+flld 1-o «-+fllk· The following sequence of 
five formulas is a deduction of «--+q>k from {«--+q>;, «-+(f);-+q>d: 

«-+Cf);, 
«--+fl);-+fllk, 
( «-+Ql;--+Cflk)-+( «--+Ql;)--+«--+fllk, 
( «--+(ll;)-+«-+c:pk, 
«--+fllk• 

7.3. Remarks 

(hyp.) 
(hyp.) 

(Ax. ii) 
(m.p.) 
(m.p.) ■ 

(i) We shall refer to the Deduction Theorem briefly as 'DT'. 
(ii) In proving DT (and in Ex. 6.11, which is used in the proof) we 

invoked only Ax. i and Ax. ii. In fact, it is not even necessary for 
formulas of the forms (6.3) and (6.4) to be axioms: it would have 
been enough if they were just theorems. More precisely: if I-* is 
the relation of deducibility in a linear calculus whose sole rule of 
inference is modus ponens and if I-* «-+P--+« as well as 
I-* («-+f}--+y)-+(«--+f})--+«--+y for all«, p and y, then OT holds 
for I-*, that is: cJ>, « I-* p => cJ) I-* «-+P. 
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(iii) Now that we have DT, we shall not need to invoke Ax. i and Ax. 
ii again. Indeed, the sole purpose of adopting these axiom 
schemes was to enable us to establish DT. 

7.4. Problem 

Let I-* be the deducibility relation in a calculus that has modus ponens 
as a - not necessarily sole - rule of inference. 

Show that if Cut and DT hold for I-*, then I-* u-.(J-+« and 
I-* (u-.(J-+y)-.(«-.p)-.u-.y for all«, Pandy. 

§ 8. Inconsistency and consistency 
8.1. Definition 

(i) A set of two formulas { «, -, «}, one of which is the negation of 
the other, is called a contradictory pair. 

(ii) A set cJ) of formulas is said to be [propositionally] inconsistent -
in symbols: 'cJ) 1-o' - if both members of some contradictory pair 
are propositionally deducible from cJ); that is, for some formula « 
cJ> 1-o « as well as cJ) 1-o -,«. Otherwise, cJ) is said to be [proposi­
tionally J consistent. 

8.2. Warning 

Some authors use 'contradictory', 'consistent' and 'inconsistent' as 
semantic terms; so that, for example, a set cJ) of formulas would be 
said to be inconsistent if cJ> 1=0 , that is, if it is not satisfied by any truth 
valuation. We shall strictly avoid that semantic usage. Although it will 
transpire that a set cJ> of formulas is satisfied by some truth valuation 
iff it is consistent (in the proof-theoretic sense of Def. 8.1), this fact is 
a far from trivial theorem rather than a mere matter of definition. 

8.3. Problem 

(i) Prove that if 'P {: cJ) and 'P is inconsistent then cJ) is inconsistent. 
(ii) Prove that if cJ> is inconsistent then it has an inconsistent finite 

subset. 

8.4. Theorem 

An inconsistent set of formulas is not satisfied by any truth valuation: if 
cJ> 1-o then cJ» l=o. 
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PROOF 

Suppose Cl> 1-0 . Then for some « both Cl> 1-0 « and «1> l-0 -,«. By the 
soundness of Propcal (Thm. 6.12) it follows that both Cl> 1=0 « and 
Cl> 1=0 -, «. Thus any truth valuation satisfying Cl> would have to satisfy 
both « and -, «. which is impossible by clause (2) of Def. 4.2(ii). ■ 

8.5. Corollary (Consistency of Propcal) 

It is impossible, for any «, that both 1-o « and 1-o -,a. 

PROOF 

The claim is equivalent to saying that the empty set is consistent; but 
the empty set is satisfied by every truth valuation (cf. Rem. 4.5(i)). ■ 

8.6. Theorem (Inconsistency Effect) 

If «I> 1-o then «I> 1-o P for every formula I}. 

PROOF 

Assume «I> f-0 . Then for some a both «1> l-0 « and «1> l-0 -,a. Now, for 
any p, the formula -, «-+«-+P is an instance of Ax. iv; hence 
{«, -,«} 1-o I}. By Cut, «1> l-o I}. ■ 

8.7. Remarks 

(i) For brevity, we shall refer to the Inconsistency Effect as 'IE'. 
(ii) The converse of Thm. 8.6 is trivial: if all formulas are deducible 

from Cl>, then in particular both members of any contradictory 
pair are deducible from it. 

(iii) Our sole purpose in adopting Ax. iv was to enable us to establish 
IE. From now on this axiom scheme will not have to be invoked. 

8.8. Problem 

Let I-* be the deducibility relation in a calculus for which both DT and 
IE hold. Prove that I-*-,«-+«-+!} for all« and I}. 

8.9. Theorem (Reductio ad absurdum) 

If «I>,« 1-o then «I> 1-o -,«. 
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PROOF 

Assume cf), a f-0 . Then by IE we have cf), a l-0 ,a and hence, by DT, 
cJ) 1-o a-.,a. 

Now, (a-.,a)-.,a is an instance of Ax. v; hence a-.,a 1-o ,a. 
Using Cut, we get cJ) 1-o ,a, as claimed. ■ 

8.10. Remarks 

(i) The converse of reductio is immediate: if cJ) 1-o -, a then a fortiori 
cJ), « 1-o -, a. But clearly also cJ), « 1-o a; hence cJ), a l-0 . 

(ii) The sole purpose of adopting Ax. v was to enable us to prove 
reductio. Henceforth there will be no need to invoke that axiom 
scheme. 

8.11. Problem 

Let I-* be the deducibility relation in a calculus that has modus ponens 
as a rule of inference and for which DT and reductio hold. Prove that 
I-* (a-.,a)-.,a for al1 «. 

8.12. Problem 

Prove that a 1-0 -, -, a for all «. 

8.13. Remark 

All the proof-theoretic results we have obtained so far - Cut, DT, IE 
and reductio - hold also for the intuitionistic propositional calculus 
(the most important non-classical propositional calculus). But the 
following result - the inverse of Prob. 8.12 - does not hold for that 
calculus, so in order to prove it we shall have to invoke Ax. iii, which 
is not valid in intuitionistic logic. 

8.14. Lemma 

-, -, a 1-o « for all a. 

PROOF 

Clearly, {«-.-,«, «} 1-o «; but also {a-.,a, a} 1-o ,a, by modus 



§ 8. Inconsistency and consistency 

ponens. Therefore{«.--,«,«} ~o and by reductio we get1 

(1) «.--,« ~o -,a. 
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Now, {-, «, -, -, «} is a contradictory pair, so it follows from (1) that 
{-,-,«, «.--,«} ~o- Hence by IE we have {-,-,a,«.--,«} ~o «, and 
byDT 

(2) 

Next, [(«.--,«).-«].-« is an instance of Ax. iii, therefore 
(«.--,«).-« ~o «. From this and (2) we get by Cut -,-,a ~o «, as 
claimed. ■ 

8.15. Theorem (Principle of Indirect Proof) 

If cl>, -,a ~o then cl> ~o «. 

PROOF 

Assume cl>, -,a ~o- By reductio, cl> ~o -,-,a; hence, using Lemma 
8.14 and Cut, cl> ~o «, as claimed. ■ 

8.16. Remarks 

(i) For brevity, we shall refer to the Principle of Indirect Proof as 
'PIP'. 

(ii) Lemma 8.14 is a special case of PIP, for clearly {-,-, «, -, «} ~0. 

(iii) The converse of PIP is immediate. 
(iv) The sole purpose of adopting Ax. iii was to enable us to prove 

PIP. Henceforth it will no longer be necessary to invoke this 
axiom scheme. 

(v) Indeed, from now on we shall not invoke any propositional 
axiom, because the four proof-theoretic principles - DT, IE, 
reductio and PIP - jointly contain all the information that the 
choice of axioms was designed to provide (cf. Probs. 7.4, 8.8, 
8.11 and 8.18). We use these four principles even where, as in the 
proof of Lemma 8.14, it would have been quicker to invoke an 
axiom. The reason for this apparent perversity is that the axioms 
are forgettable, mere scaffolding, whereas the four principles 
(together with modus ponens and Cut) encapsulate the most 

1 We could have got (1) more directly, as in the proof of Tom. 8.9; but see Rem. 
8.16(v). 
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important inherent structural facts about the propositional cal­
culus. 

8.17. Warning 

Do not commit the solecism of confusing PIP with reductio. The two 
principles, though formally similar to each other, are quite distinct. 
(Intuitionistic logic rejects the former and upholds the latter.) 

8.18. Problem 

Let f--* be the deducibility relation in a calculus that has modus ponens 
as a rule of inference and for which Cut, DT, IE and PIP hold. Prove 
that f--* [(«-+P)--Hi]--Ht for all a and p. 

8.19. Problem 

Prove: 

(i) ,a f--o «-+P, 
(ii) p f--o «-+P, 

(iii) {«, ,P} f--o ,(«-+P), 
{iv) ,(«-+P) f-o a, 
(v) ,(«-+fl) f--o ,p. 

8.20. Problem 

Using Def. 2.5, prove: 

(i) «A,« f--o, 
(ii) f-- 0 av-,«, 

(iii) a AP f--o (l A a, 
(iv) av(} f--o (lv«. 

8.21. Remark 

In Prob. 8.20, (ii) does not depend on the intuitionistically invalid PIP 
(or Ax. iii), whereas (iv) does. On the other hand, it is well known that 
in intuitionistic logic the law of excluded middle is invalid, whereas 
disjunction has a symmetric meaning. This apparent incongruity is due 
to the fact that in intuitionistic logic Def. 2.5(ii) itself is not acceptable, 
because disjunction (and, for that matter, conjunction) cannot be 
reduced to negation and implication. 
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8.22. Problem 

Prove that 1-o (-,«-+P)-+(-,«-+-,f})-+«. 

8.23. Remark 

The version of the propositional calculus introduced in B&M Ch. 1, 
§ 10 differs from the present one solely in having the axiom scheme 
(-,«-+P)-+(-,«-+-,f})-+« instead of our last three axiom schemes. 
Hence by Prob. 8.22 all the axioms of that version are theorems in the 
present version. On the other hand, since (as shown in B&M, Ch. 1, 
§ 10) IE, reductio and PIP hold for the B&M version, it follows from 
Probs. 8.8, 8.11 and 8.18 that the converse also holds: all axioms of the 
present version are theorems in the B&M version. The two versions 
are therefore equivalent. 

§ 9. Weak completeness 
9.1. Observation 

We reproduce below the truth tables for -,pin terms of p and for (l-+y 
in terms of P, y (cf. p. 111). Alongside these tables we quote some 
proven results concerning deducibility. 

m ..l. p 1-o -,-,p (Prob. 8.12), 
T -,p 1-o -,p (obvious). 

p 'Y (J-+y 

T T T {P, 'Y} 1-o Jl-+y (Prob. 8.19(ii)), 
T ..l. ..l. {P, -,y} 1-o-,(Jl-+y) (Prob. 8.19(iii)), 
..l. T T {-, p, 'Y} r-o (J-+y (Prob. 8.19(i) or 8.19(ii)), 
..l. ..l. T {-, p, -, 'Y} 1-o (J-+y (Prob. 8.19(i)). 

Observe that there is a systematic relationship between each row in the 
truth tables and the deducibility statement to its right. The formulas 
involved in each statement are related to the headings of the columns 
in the truth tables. Where the entry in the truth table is 'T', the 
corresponding formula on the right is exactly the one indicated at the 
head of the relevant column; but where the entry in the truth table is 
'.L ', the corresponding formula on the right is the negation of that 
indicated at the head of the column. 

We shall now generalize this observation to all truth tables. 
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9.2. Lemma 

Let a be a combination of formulas Pt, Pz, ... , Pk· Select a given row 
in a truth table for a in terms of Pt, Pz, ... , Pk- For each i = 1, 2, ... , 
k let p; be P1 or -, P1, according as the entry in the given row at the i-th 
column is 'T' or '.L '. Similarly, let a' be a or -, a, according as the 
entry in the given row at the last column is 'T' or '.L '. 

Then {Pi, P2, ... , PU 1-o «'. 

PROOF 

For brevity, we put cf> = {Pi, P2, ... , PD, so we must prove cf> 1-o «'. 
We proceed by induction on deg« and distinguish three cases, accord­
ing to which of the three rules in Def. 5.1 was used to construct the last 
column in the truth table in question. 

Case 1: a= P1 (where 1 ~ i ~ k) and Rule (1) of Def. 5.1 was used. In 
this case the entry in the given row and last column is a copy of the one 
in the i-th column. Then «' = p; E cf> and obviously cf> 1-0 «'. 

Case 2: a= -,y, where y is a combination of Pt, Pz, ... , Pk and Rule 
(2) of Def. 5.1 was used. By the induction hypothesis, cf> 1-0 y', so the 
required result, cf> 1-o «', will follow (thanks to Cut) if we show that 
y' 1-0 «'. We distinguish two subcases. 

Subcase 2a: y' = y. Then according to Rule (2) we get«'= -,a= 
-,-,y, Thus y' l-0 «' is the same as y 1-o -,-,y, which holds by Prob. 
8.12. 

Subcase 2b: y' = -,y, Then according to Rule (2) we get «' = « = 
-,y; and y' 1-o «' is the same as ,y 1-o -,y, which is obvious. 

Case 3: a= y-+b, where y and bare combinations of Pt, Pi, ... , Pk 

and Rule (3) of Def. 5.1 was used. By the induction hypothesis, 
cf> 1-o y' and cf> 1-o b', so the required result, cf> 1-o «', will follow 
(thanks to Cut) if we show that {y',b'} 1-0 «'. We distinguish three 
subcases ( the first two of which are not mutually exclusive). 

Subcase3a: y' = -,y, Then according to Rule (3) we get a'= a= 
y-+b. So y' 1-o «' is the same as -,y 1-o y-+b, which holds by Prob. 
8.19(i). Therefore a fortiori { y', b'} 1-0 «'. 
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Subcase 3b: b' = b. According to Rule (3) we have again a' = a = 
y--+b. So b' 1-o a' is the same as b 1-o y--+b, which holds by Prob. 
8.19(ii). Therefore afortiori {y',b'} 1-o«'. 

Subcase 3c: neither of the previous two subcases holds; so y' = y 
and b' = -,b. Then by Rule (3) a'= -,a= -,(y--+b). So {y', b'} 1-o«' 
is the same as {i', -,b} 1-0 -,(y--+b), which holds by Prob. 8.19(iii). ■ 

9.3. Lemma 

Let a be a combination of Pt, P2, ... , Ph and suppose that in some 
truth table for a in terms of Pi, Pz, ... , Pk all the entries in the last 
column are 'T'. For each i = 1, 2, ... , k let p; be chosen arbitrarily as 
(J; or -, (}; - the choice being made independently for different i. Then 
{P1, Pi, ... , P1c-p} 1-o a for every p = 0, l, ... , k. In particular, for 
p = k, 1-o a. 

PROOF 

By induction on p. For p = 0 the claim is that {PL Pi, ... , PD 1-o a. 
This holds by Lemma 9.2, because according to our present assump­
tion the formula a' (defined there) is always a itself. 

For the induction step, let p < k. We must show that cJ> 1-o a, where 
4> = {Pi, Pi, ... , P1c-(p+1)}. (If p = k - l then 4> = 0.) 

The induction hypothesis is that 4>, P1c-p 1-o a. But we are free to 
choose P1c-p in two ways: as Pk-p or as -,pk-p• So we have 

4>, Pk-p 1-o a and 4>, -,pk-p 1-o a. 

Hence 

4>, -,a, Pk-p 1-o and 4>, -,a, -,pk-p 1-o­

By reductio and PIP respectively, we get 

4>, -,a 1-o -,pk-p and 4>, -,a 1-o Pk-p• 

This shows that 4>, -,a l-0 . So by PIP 4> l-0 a, as required. ■ 

We are now in a position to prove a partial converse of Thm. 6.12. The 
converse is only partial because of the restriction to finite sets of 
formulas; hence also the qualification 'weak' in the name of the 
theorem: 
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9.4. Theorem (Weak semantic completeness of Propcal) 

For any formula a, if 1=0 « then 1--o «. More generally, if 4> is a finite set 
of formulas and cl> l=o «, then 4> 1--o «. 

PROOF 

Suppose 1=0 «. Then by Tom. 5.9 the truth table of« in terms of all its 
prime components satisfies the assumption of Lemma 9.3; hence by 
that lemma 1--o «. 

To prove the second part of the theorem, assume that cl> 1=0 «, where 
4> is a finite set of formulas. Let cp1, cp2, ... , Cf)k be all the members of 
cl>; then 4> = {cp1, cp2, ... , cl>!} and we have {cpi, {f)i, ... , cpk} 1=0 «. 

By Prob. 4.6(ii) we get 1=0 cp1--+C()i--+· • •--+Cf)k--+«. Therefore, by the 
first part of the present theorem, f-0 (f)1--+q>2--+· • ·--+q>k--+«. Hence, by 
k applications of modus ponens, we obtain { f(Ji, f(J2 , ... , ffJd 1--o «, 
that is, cl> 1--o «. ■ 

A partial converse of Tom. 8.4 can now be proved. 

9.5. Theorem 

A finite unsatisfiable set off ormulas is inconsistent: if 4> is finite and 
4> l=o, then cl> f-o-

P ROOF 

Suppose 4> 1=0 . Then trivially 4> 1=0 « for any formula «. If cl> is finite, 
then by Thm. 9.4 it follows that 4> f-o « for any «; hence clearly (cf. 
Rem. 8.7(ii)) cl> f-o. ■ 

9.6. Remarks 

(i) Tom. 9.5 has been formulated contrapositively. An equivalent 
positive formulation is: A finite consistent set of formulas is 
satisfiable [by some truth valuation]. 

(ii) Toms. 9.4 and 9.5 are equivalent. We have just seen that the 
latter follows from the former, but the converse also holds. 
Indeed, if 4> is finite and cl> 1=0 «, then clearly cl> U {-, «} is finite 
and unsatisfiable; hence by Tom. 9.5 4>, ,a f-o, and by PIP 
4) f-o Cl. 
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Our final task in propositional logic will be to prove the full converse 
of Thm. 6.12 - the strong semantic completeness of the propositional 
calculus. From Rem. 9.6 it should be clear that this task can be 
accomplished by proving first the full converse of Thm. 8.4: A consist­
ent - finite or infinite - set of formulas is satisfiable. We shall do so in 
three easy stages. 

First, we shall show that certain special sets of formulas, called 
Hintikka sets, are satisfiable. This will be quite easy, because the 
definition of these sets is rigged for this very purpose. 

Second, we shall introduce the even more special maximal consistent 
sets of formulas and show that each such set is a Hintikka set, and 
hence satisfiable. In fact, it will transpire that there is a one-to-one 
correspondence between maximal consistent sets and truth valuations. 

Finally, using a simple but powerful result from set theory, we shall 
show that every consistent set of formulas is a subset of a maximal 
consistent set, and is therefore automatically satisfied by the truth 
valuation that satisfies the latter. 

10.2. Definition 

A [propositional/ Hintikka set [in J2] is a set 4> of formulas satisfying 
the following four conditions for all formulas « and P: 

(1) If« is prime and« E 4>, then-,« ,J 4>. 
(2) If-,-,« E 4>, then also« E Cl>. 
(3) If «-+PE 4> then-,« E Cl> or PE 4>. 
(4) If-,(«-+P) E 4> then« E Cl> and -,p E Cl>. 

10.3. Theorem 

If Cl> is a Hintikka set, it is satisfied by some truth valuation. 

PROOF 

Let Cl> be a Hintikka set. Define a truth valuation a by stipulating that 
«0 = T for every prime formula « belonging to 4>, and «0 = ..1 for any 
other prime «. We claim that, for any formula q, , 

(a) qi E Cl> ~ q,0 = T, (b) -,qi E Cl>~ qi0 = ..1. 
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We shall prove this double claim simultaneously1 by induction on 
deg qi. We distinguish three cases, corresponding to the three clauses of 
Def. 1.4 and those of Def. 4.2(ii). 

Case 1: qi is prime. 

(la) qi E cl> ⇒ qia = T 
(lb) -, qi E «I> ⇒ qi ft cl> 

⇒ qia = .l 

by the definition of a. 
by clause (1) of Def. 10.2, 

by the definition of a. 

Case 2: qi is a negation formula; say qi = -, a. 

(2a) qi E cJ> ⇒ -,a E cJ> 
⇒ aa = ..L 

⇒ qia = T 

(2b) ,qi E cJ> ⇒ -,-,a E cJ> 
⇒ aEcJ> 

⇒ aa= T 

⇒ qia = .l 

by part (b) of ind. hyp., 
by clause (2) of Def. 4.2(ii). 

by clause (2) of Def. 10.2, 
by part (a) of ind. hyp., 

by clause (2) of Def. 4.2(ii). 

Case 3: qi is an implication formula; say qi = a-fJ. 

(3a) qi E cJ> ⇒ «-(} E cJ> 
⇒ -, a E cJ> or (} E cJ> 
⇒ aa E .l or pa = T 
⇒ qia = T 

(3b) ,qi E cl> ⇒ a E cJ> & -,p E cJ> 
⇒ aa = T and (}a = .l 
⇒ qia = .l 

by clause (3) of Def. 10.2, 
by ind. hyp., 

by clause (3) of Def. 4.2(ii). 
by clause (4) of Def. 10.2, 

by ind. hyp., 
by clause (3) of Def. 4.2(ii). 

§ 11. The ambient metatheory 

■ 

Let us pause to consider the mathematical presuppositions that under­
lie our study of propositional logic. This study is being conducted in 
mathematical fashion: we frame precise definitions and prove [meta]­
theorems concerning the object language cl!,, its syntax and semantics. 
The mathematical theory in which this study is conducted is our 

1 Note that (a) by itself is sufficient for proving our theorem; and once (a) is established 
for all (j) then (b) would follow automatically. But if you try to prove (a) on its own, 
you will find out that the inductive argument runs into snags. 
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metatheory. (The prefix meta is used here to distinguish this theory, 
which is developed in our metalanguage, from formal object theories 
that may be constructed in the object language and serve as objects of 
our study.) 

As any other mathematical theory, our metatheory must start from a 
launching pad of presuppositions: some underlying concepts, regarded 
as known, in terms of which further concepts of the theory are defined; 
and certain fundamental propositions, on the basis of which the 
theorems of our theory can be rigorously proved. 

Set theory - in the form of ZF or some broadly similar codification -
is certainly strong enough to underpin our study of logic. Indeed, the 
entire technical development in the Logic part of this book can be read 
as occurring within set theory. Interpreted in this way, not only the 
term set but also other mathematical terms such as natural number and 
finite, must be understood in the appropriate technical sense: a natural 
number as an ordinal belonging to w, and a finite set as a set 
equipollent to a natural number (cf. Rem. 6.1.8). 

But all that we have done so far in this chapter does not really 
require such a strong ambient theory. Set theory is vital only where 
there is need to regard infinite pluralities as single objects: sets that in 
turn can themselves be members of classes. So far we have hardly had 
any need for positing such completed ( or actual) infinities. Though we 
have used set-theoretic terminology, this was not essential. For exam­
ple, although in Specification 1. l(i) we refer to the totality of proposi­
tional symbols of J2 as a set, we have never had to regard this totality 
as a single object that can be a member of a class. We only need the 
stock of propositional symbols to be potentially infinite; so everything 
we have done works just as well if we replace the word 'set' here by 
'collection· or by one of its synonyms such as 'plurality' or 'class'. The 
same applies to other places where the term 'set' has been used. 

There was one context that seems to be an exception to what we 
have just said and where we did refer to infinite entities as objects. In 
Def. 4.4(iii) a formula a was defined to be a tautology, 1=0 a, just in 
case a 0 = T for every truth valuation CJ. This definition refers (at least 
implicitly) to the class of all truth valuations. Now, by Def. 4.2(i), a 
truth valuation is a map with an infinite domain, and hence is itself 
infinite. 

However, this reliance on infinite objects can be avoided by a simple 
device. Clearly, the truth value a 0 (defined in Def. 4.2(ii)) depends 
only on the values assigned by CJ to the prime components of a. 
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Therefore, instead of truth valuations proper we may consider partial 
truth valuations, whose domain is a finite set of propositional symbols, 
among which are all the prime components of a. These partial truth 
valuations themselves are finite objects; and the notion of tautology 
can be redefined by referring to the class of these objects rather than of 
truth valuations proper. 

A similar device can be used in connection with the definition of the 
notion of tautological consequence, cf> 1=0 a, provided the collection cf> 
is finite. (It is enough to consider partial truth valuations whose 
domains are finite sets of propositional symbols, among which are all 
the prime components of a and all the members of cf>.) 

Thus, provided we restrict parts (iv) and (v) of Def. 4.4 to finite sets 
cf>, the rest of the development of propositional logic so far does not 
require the framework of set theory. Looked at in this way, terms such 
as natural number and finite are to be understood informally rather 
than in their technical set-theoretic sense. To be sure, some - relatively 
modest - mathematical presuppositions are still needed as underpin­
ning. We shall not attempt to specify these presuppositions in detail, 
but merely point out that among them the Principle of Mathematical 
Induction takes pride of place. 

But such modest mathematical underpinning is no longer adequate 
for the development in the following sections of this chapter. Here, 
particularly in the proof of Thm. 13.1, some set-theoretic machinery 
must be used. So this development must be understood as taking place 
within a sufficiently strong ambient set theory. (See, however, Rem. 
13.3(i).) 

§ 12. Maximal consistent sets 
12.1. Definition 

A maximal {propositionally] consistent set is a consistent set of formu­
las that is not a proper subset of any consistent set of formulas. 

12.2. Remarks 

(i) In other words, a set cf> of formulas is maximal consistent iff cf> is 
consistent, but by adding to cf> even a single new formula (that is, 
one not already belonging to it) we obtain an inconsistent set. 

(ii) Maximal consistency is an instance of a general set-theoretic 
concept. Let -:X be the class of all consistent sets of formulas. The 
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relation Cx is then a partial order on X (see Def. 5.2.5 and 
Rem. 5.2.6). A maximal consistent set is just a maximal member 
of X with respect to the partial order C_x (see Def. 5.2.3). 

The following theorem shows that a maximal consistent set is saturated 
with respect to deducibility. 

12.3. Theorem 

If 4> is maximal consistent and 4> 1-o «, then « E 4>. 

PROOF 

Let 4> be maximal consistent and 4> 1-o «. Suppose it were the case that 
« f 4>. Then, by the maximality of 4>, we would get 4>, « 1-o (cf. Rem. 
12.2(i)). Hence by reductio we would have 4> l-0 --,«, showing that 4> 
itself is inconsistent, contrary to hypothesis. ■ 

The following theorem provides an alternative characterization of 
maximal consistent sets. 

12.4. Theorem 

A consistent set 4> is maximal consistent if! for every formula « either 
« e 4> or --, « e 4>. 

First, assume 4> is maximal consistent. If« f 4> then by the maxim­
ality of 4> it follows that 4>, « 1-0 . Hence by reductio 4> 1-o --, a, and by 
Tum. 12.3 -,a E 4>. 

Conversely, assume 4> is consistent and satisfies the condition in 
question. Let a be any formula that does not belong to 4>; so by the 
assumed condition --, « e 4>. It follows that 4>, « 1-0. Thus we see that 
by adding to 4> even a single new formula we get an inconsistent set. 
Thus (cf. Rem. 12.2(i)) 4> is maximal consistent. ■ 

12.5. Theorem 

Every maximal consistent set is a Hintikka set. 

PROOF 

Let 4> be maximal consistent. We shall show that 4> fulfils the four 
conditions of Def. 10.2. 
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Condition (1) of that definition is obviously satisfied, since cJ> is 
consistent. 

Now suppose -,-,a e cJ>. Then by Lemma 8.14 cJ> 1-o «, hence by 
Thm. 12.3 « e cJ>. Thus condition (2) of Def. 10.2 is satisfied. 

Next, suppose «-+fl e cJ>. If -,a e cJ> then condition (3) of Def. 10.2 
is satisfied. On the other hand, if -,a f cJ> then by Thm. 12.4 a e cJ>. 
Since we have assumed that «-+fl e cJ>, it now follows that cJ> h P and 
hence by Thm. 12.3 p e cJ>. Thus condition (3) of Def. 10.2 is satisfied 
in this case as well. 

Finally, suppose -,(«-+P) e cJ>. By parts (iv) and (v) of Prob. 8.19 
we have cJ> 1-o a and cJ> 1-o -, p. Hence by Thm. 12.3 a e cJ> and 
-, p e cJ>. Thus condition ( 4) of Def. 10.2 is satisfied. ■ 

The following theorem establishes a one-to-one correspondence be­
tween truth valuations and maximal consistent sets. 

12.6. Theorem 

(i) For any truth valuation a, the set { q,: q,0 = T} is maximal consist­
ent. 

(ii) Conversely, if cJ> is maximal consistent then cJ> = { q,: q,0 = T} 
for some truth valuation a. Moreover, this a is the unique truth 
valuation satisfying cJ>. 

PROOF 

(i) Put 'P = {q,: qi0 = T}. 'Pis evidently satisfiable: it is satisfied by a. 
Hence by Thm. 8.4 it must be consistent. 

If « is a formula such that a f 'P then, by the definition of 'P, it 
follows that «0 = .L. Hence (-,«)0 = T and so-,« e 'P. Thus by Thm. 
12.4 'P is maximal consistent. 

(ii) Conversely, let cJ> be any maximal consistent set. By Thm. 12.5, cJ> 
is a Hintikka set and hence by Thm. 10.3 it is satisfiable. Let a be a 
truth valuation satisfying cJ>. Again let us put 'P = {qi: q,0 = T}. Now 
'P is the set of all formulas satisfied by a, so cJ> !;;;;; 'P. By (i), 'P is 
consistent; but cJ>, being maximal consistent, cannot be included in 
another consistent set. Therefore 'I' cannot be other than cJ> itself. 
Thus cJ> = 'I' = { q,: qi0 = T}. 

As we have just seen, if a is any truth valuation satisfying cJ> then 
q,0 = T holds just for formulas qi belonging to cJ> and for no others. 
This means that a is uniquely determined by cJ>. ■ 
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12.7. Remark 

It is now clear that showing a set of formulas to be satisfiable is 
tantamount to showing that it is included in a maximal consistent set. 

12.8. Problem (The [classical] logic of implication) 

An implicational valuation is a mapping from the set of all prime 
formulas and all negation formulas to the set { T, ..1.} of truth values. 
An implicational valuation is then extended to implication formulas as 
well by imposing condition (3) of Def. 4.2(ii). Let I=* be the resulting 
consequence relation; thus cJJ I=* « iff every implicational valuation 
satisfying cJJ also satisfies«. 

Let f-* be the relation of deducibility in the [classical} calculus of 
implication - the linear calculus based on Ax. i, Ax. ii and Ax. iii, with 
modus ponens as sole rule of inference. 

(i) Verify that the calculus of implication is semantically sound: 
cJJ f-* Cl => cJJ I=* Cl. 

(ii) Show that fl-+«, (fl-+y)-+« f-* « for all«, p and y. 
(iii) Let « be a formula and let «I> be a set of formulas such that 

«I> If* a and which is maximal with this property (that is, «I> is not 
a proper subset of any 'I' such that 'I' If*«). Show that cJJ is 
saturated with respect to f-*: if «I> f-* p then p E fl>. 

(iv) Let « and fl> be as in (iii). Show that there is a unique implica­
tional valuation that satisfies fl> but does not satisfy «. 

§ 13. Strong completeness 

The road to the strong completeness theorem is now clear. 

13.1. Theorem 

Every consistent set of formulas is satisfied by a truth valuation. 

PROOF 

Let fl> be any set of formulas. If «I> is consistent then clearly every 
subset of «I>, and in particular every finite subset, is consistent (cf. 
Prob. 8.3(i)). Conversely, if every finite subset of «I> is consistent then 
by Prob. 8.3(ii) fl> itself is consistent. 

Thus the class J( of all consistent sets of formulas is of finite 
character (see Def. 5.2.7). It is not difficult to see that -:Xis in fact a 
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set. (The class S of all .£-strings is a set by Thm. 6.3.9; and J( is 
included in PS.) So if cJ> is any consistent set, it follows from the TT 
Lemma (Thm. 5.2.8) that cJ> is included in some (not necessarily 
unique) maximal consistent set 'I'. By Thm. 12.6(ii) 'I' is satisfiable, 
and hence so is cJ>. ■ 

13.2. Theorem (Strong semantic completeness of Propcal) 

For any set cJ» of formulas and any formula a, if cJ> l=o « then cJ» 1-o a. 

PROOF 

If cJ) 1=0 « then every truth valuation satisfying cJ) must satisfy « and 
hence cannot satisfy --,«. Thus cJ>, -,a 1=0. By Thm. 13.1 cJ>, -,a 1-o; 
hence by PIP cJ> f-o «. ■ 

13.3. Remarks 

(i) If the primitive symbols of .£ are given by an explicit enumera­
tion: 

{Pn: n EN}, 

then the proof of Thm. 13.1 can be made more elementary and 
constructive. First, it is easy to define explicitly an enumeration 
of all .£-formulas: 

Next, given a consistent set cJ>, we define, by induction on n, sets 
cJ)n as follows. We put cJ>0 = cJ>; and 

if this set is consistent, 
otherwise. 

It is then quite easy to show that the union 'I'= U{cJ>n: n e N} 
is a maximal consistent set; and 'I' clearly includes cJ>. 

(ii) The soundness and completeness theorems (Thms. 6.12 and 13.2) 
jointly mean that the relations of deducibility and tautological 
consequence are co-extensive: cJ:) f-o a iff cJ> 1=0 a. Similarly, Thms. 
8.4 and 13.1 jointly mean that consistency and satisfiability are 
co-extensive: cJ> f-o iff cJ) 1=0 • Therefore any fact proved for f-o 
holds also for 1=0 and vice versa. An important example is the 
following result. 
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13.4. Theorem (Compactness theorem for propositional logic) 

If cJ> is a set of formulas such that every finite subset of cJ> is satisfiable, 
then so is cJ> itself. 

PROOF 

Immediate from Prob. 8.3(ii). ■ 

13.5. Problem (The logic of implication - continued) 

Let I=* and I-* be as in Prob. 12.8. Prove the strong completeness of 
the calculus of implication: if cJ> I=*« then cJ> I-*«. (If cJ> If* a, show 
that cJ> is included in a set 'I' such that 'I' If* « and such that 'I' is 
maximal with this property; then use Prob. 12.8(iv).) 
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First-order logic 

§ 1. Basic syntax 

From now on, our formal object language.£ will be a fixed but (unless 
stated otherwise) arbitrary first-order language. We begin by specify­
ing the primitive symbols of such a language. 

1.1. Specification 

The primitive symbols of a first-order language .£ fall into five 
mutually exclusive categories: 

(i) An infinite sequence of [individual] variables: 

The order of the variables indicated here will be referred to as their 
alphabetic order. 

(ii) For each natural number n, a set of n-ary function symbols. 
These sets must be pairwise disjoint and some or all of them may 
be empty. The 0-ary function symbols (if any) are called [indi­
vidual] constants. 

(iii) For each positive natural number n, a set of n-ary predicate 
symbols. These sets must be pairwise disjoint and at least one of 
them must be non-empty. 

(iv) Two distinct connectives, -, and-+, called negation symbol and 
implication symbol respectively. 

( v) The universal quantifier \/. 

A particular binary predicate symbol = may be singled out as the 
equality symbol, in which case .£ is referred to as a language with 
equality. We further stipulate that if.£ has at least one function symbol 

142 
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that is not an individual constant (that is, at least one n-ary function 
symbol with positive n), then it must be a language with equality. 

The variables, the connectives, the universal quantifier and the 
equality symbol (if present) are the logical symbols of ./2. All other 
primitive symbols (namely, the function symbols and the predicate 
symbols other than =) are extralogical. 

1.2. Warnings 

(i) Specification 1.1 must not be read as exhibiting any symbol of the 
object language ./2, which indeed may not have a written form. 
Thus, for examp]e, it must not be supposed that 'v1' is a variable 
of ./2. Rather, it is a syntactic constant, belonging to our metalan­
guage and denoting the first variable (in alphabetic order) of ./2. 
Also, '=' should not be taken to be the equality symbol of ./2. 
Rather, it is a syntactic constant used to denote the equality 
symbol of .12, if it has one. (Cf. Warning 7.1.2.) 

(ii) Note carefully the distinction between '=' and '='. Both are 
symbols in our metalanguage. The former is a name (in the 
metalanguage) of the equality symbol of the object language (if it 
has one); the latter is the equality symbol of the metalanguage, 
an abbreviation of the phrase 'is the same as'. 

The similarity of shape between '=' and '=' - which may be 
confusing at first - is an intended pun and a mnemonic device; 
see Rem. 4.3(iii) below. 

1.3. Remark 

The difference in the logical symbols between two different first-order 
languages is clearly inessential, and there would be no real loss of 
generality if we were to assume that all first-order languages share the 
same logical symbols. (In the case of the equality symbol this would 
mean that all first-order languages with equality have the same equality 
symbol.) Two first-order languages are essentially different if only one 
of them is with equality, of if they have different stocks of extralogical 
symbols. 

1.4. Definition 

An ./2-string is defined in the same way as in propositional logic (see 
Def. 7 .1.3), namely as a finite sequence of primitive symbols of ./2. 
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In propositional logic we had one significant type of string: the 
formulas. Here we have two types: terms as well as formulas. 

1.5. Definition 

.£-terms are strings constructed according to the following two rules. 

(1) A string consisting of a single occurrence of a variable is an 
.£-term. 

(2) If f is an n-ary function symbol and t1 , t2 , ... , tn are .£-terms 
then the string ft1 t2 . . . tn ( obtained by concatenating a single 
occurrence off and t1, t2 , ... , tn, in this order) is an .£-term. 

In a term ft1t2 ... tn constructed according to clause (2), the terms ti, 
t2, ... , tn are the first argument, second argument, ... , nth argu­
ment, respectively. 

For n = 0, (2) says that a single occurrence of a constant is an 
.£-term (see Specification 1.l(ii)). 

1.6. Definition 

The degree of complexity of a term t - briefly, deg t - is the total 
number of occurrences of function symbols int. 

We shall often use induction on degt in order to prove general 
statements about all terms t. 

1.7. Definition 

.£-formulas are strings constructed according to the following four 
rules. 

(1) If P is an n-ary predicate symbol and t1, t2 , ... , tn are .£-terms 
then the string Pt1t2 ... tn (obtained by concatenating a single 
occurrence of P and t1, t2 , ... , tn, in this order) is an .£-for­
mula. 

(2) If Pis an .£-formula then -,p (the string obtained by concatenat­
ing a single occurrence of-, and the string p, in this order) is an 
.£-formula. 

(3) If P and y are .£-formulas then -+Py (the string obtained by 
concatenating a single occurrence of -+, the string p and the 
stringy, in this order) is an .£-formula. 

(4) If x is a variable and p is an .£-formula then Vxp (the string 
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obtained by concatenating a single occurrence of V, a single 
occurrence of x and the string p, in this order) is an .£-formula. 

A formula Pt1t2 ... tn constructed according to (1) is called an atomic 
formula; the terms ti, t2, ... , tn are its first argument, second 
argument, ... , nth argument, respectively. In the particular case 
where P is the equality symbol = (in which case n must be 2) the 
atomic formula is also called an equation and its first and second 
arguments are called its left-hand side and right-hand side respectively. 

In connection with formulas constructed according to (2) and (3) we 
use the same terminology as before (see Def. 7.1.4). 

A formula Vxp constructed according to (4) is called a universal 
formula; here x is the variable of quantification and the string xP is the 
scope of the initial occurrence of the universal quantifier. 

1.8. Definition 

The degree of complexity of a formula « - briefly, deg« - is the total 
number of occurrences of connectives (-, and --+) and the universal 
quantifier V in «. 

1.9. Definition 

An .£-expression is an .£-term or an .£-formula. 

1.10. Remark 

We use 'r', 's' and 't' (sometimes with subscripts) as syntactic variables 
ranging over .£-terms. Boldface lower-case Greek letters (sometimes 
with subscripts) are used as syntactic variables ranging over .£-formu­
las. These and other notational conventions of this kind should be 
self-evident. 

§ 2. Adaptation of previous material 

In this section we adapt the notational conventions, definitions and 
results of Ch. 7 to the new setting. Some of these wi1l be slightly 
extended to fit this new setting. 

The following problem can be solved similarly to Prob. 7.1.9. 
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2.1. Problem 

Assign to each primitive symbol p of Jl, a weight w(p) by stipulating 
that if xis a variable then w(x) = -1; if f is an n-ary function symbol 
then w(f) = n - l; if P is an n-ary predicate symbol then w(P) = 

n - l; while w(,) = 0, w(-.) = 1 and w(V) = 1. If P1, P2, ... , Pt are 
primitive symbols, assign to the string p1p2 ... Pt weight 

w(P1P2 · · · P1) = w(p1) + w(p2) + • • • + w(p,). 

Thus, the weight of a string is the sum obtained by adding -1 for each 
occurrence of a variable, n - l for each occurrence of an n-ary 
function symbol or predicate symbol, and + 1 for each occurrence of 
-+ or V in the string ( occurrences of -, make no contribution to the 
weight). Show that, for any term t, 

(i) w(t)=-1; 
(ii) if tis the string P1P2 ... Pl and k < l, then w(P1P2 ... Pk);;;;, 0. 
(iii) Show that if t is a term ft1t2 ... tn formed according to Def. 

1.5(2), then for each k = 0, l, ... , n, ft1t2 ... tk is the shortest 
non-empty initial segment of t whose weight is n - k - l. 

(iv) Show that if« is a formula Pt1t2 ... tn formed according to Def. 
1.7(1), then for each k = 0, l, ... , n, Pt1t2 ... tk is the shortest 
non-empty initial segment of « whose weight is n - k - l. 

(v) Also show that the results of Prob. 7.1.9 concerning formulas 
hold for the present language Jl.. (For (i) and (ii) of Prob. 7.1.9, 
four cases now need to be considered, corresponding to the four 
clauses of Def. 1. 7. In the case where « is atomic, the previous 
results of the present problem are invoked.) 

Prob. 2.1 shows that the Polish notation decreed for Jl, makes brackets 
and other punctuation marks unnecessary in that language.1 However, 
for reasons explained in § 2 of Ch. 7, we decree: 

2.2. Definition 

(i) The same as Def. 7.2.1. 
(ii) (r=s) =df =rs, 

1 The ambiguities that might otherwise arise are illustrated by a piece that appeared in 
The Guardian on 10 October 1985, reporting 'grisly new details of the murder by Lord 
Lucan in 1974 of one of his children's two nannies'. Did the writer intend to say • ... of 
[one of (his children's two nannies)]' or• ... of [(one of his children)'s two nannies]'? 
Did Lord Lucan murder one of the two nannies of his children, or did he commit the 
double murder of two nannies of one of his children? 
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(iii) (r=l=s) =dt •(r=s). 
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Also, we introduce by contextual definition surrogates for three addi­
tional connectives and the existential quantifier: 

2.3. Definition 

(i)-(iii) The same as Def. 7.2.5(i)-(iii). 
(iv) 3x« =dr-, Vx-, «. 

With this more conventional metalinguistic notation, brackets are 
needed, and so are rules for omitting and restoring them. We adopt 
the same rules as before: ommission of outermost brackets (Rule 
7.2.2), adhesion of'-,' (Rule 7.2.4), ranks and association to the right 
(Rule 7.2.7) and add to them one more rule: 

2.4. Rule (Adhesion of 'Vx' and '3x') 

Do not omit a pair of brackets whose left member is immediately 
preceded by an occurrence of 'Vx' or '3x'. Equivalently: In restoring 
brackets, do not add a new pair of brackets whose left member 
immediately follows an occurrence of 'Vx' or '3x'. Similarly with 'x' 
replaced by 'y', or 'z', or by any other syntactic variable ranging over 
.12-variables, or by a syntactic constant denoting an .12-variable. 

In order to adapt the rest of the material of Ch. 7 to our present 
setting, we need to redefine the notions prime formula and prime 
component of a formula. 

2.5. Definition 

A prime formula is a formula that is atomic or universal. 

2.6. Definition 

The set of prime components of a formula a is the smallest set of prime 
formulas from which a can be obtained as a propositional combination. 
In detail, by induction on deg«: 

(1) If« is a prime formula, then the set of prime components of a is 
{«}. 



148 8. First-order logic 

(2) If « = -, p then the set of prime components of « is the same as 
that of I}. 

(3) If« = f}-y then the set of prime components of« is the union of 
those of p and y. 

With these redefinitions, all the material of §§ 3-13 of Ch. 7 carries 
over lock, stock and barrel into the present setting. From now on, 
whenever we use a piece of notation introduced in Ch. 7, or refer to a 
definition, result or remark in that chapter, we shall interpret that 
notation, definition, result or remark as relating to the present setting, 
in which .J!, is a first-order language rather than the language of Ch. 7. 

§ 3. Mathematical structures 
3.1. Preview 

Of course, we have not introduced our first-order language .J!, merely 
as a vehicle for propositional logic-this would leave the variables, the 
function symbols, the predicate symbols and the universal quantifier 
without gainful employment, while only the connectives would be 
doing a significant job. The point of having a first-order language is 
that such a language, when suitably interpreted, can be used to •talk 
about' this or that mathematical structure. In this section we shall 
explain what a mathematical structure is. 

We shall make use of the material presented in Ch. 2; in particular, 
the notions of relation and property (Def. 2.1.14) and that of map 
(a.k.a mapping or function, Def. 2.2.1). We shall also need the 
following definition. 

3.2. Definition 

For n ~ 1, an n-ary operation on a class A is a map from An to A. 
If/ is an n-ary operation on A, and ai, a2, •.• , an e A, then the 

value of f at the n-tuple (ai, a2, ... , an) is usually denoted by 
•t(a1, a2 , •.• , an)' with parentheses instead of corner brackets. 

3.3. Remark 

From Def. 3.2 and the definitions made in Ch. 2 it is not difficult to see 
that f is an n-ary operation on A iff f is an (n + 1)-ary relation on A 
such that for any a1, a2, ... , an EA there is a unique a EA for which 
(a1, a2, ... , an, a) E /. 
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So far we have defined the notion of n-ary operation for positive n 
only. If we were to extend Def. 3.2 directly to n = 0, then a 0-ary 
operation on A would be defined as a set of the form { (0, a)}, with 
a e A. On the other hand, were we to extend the condition of Rem. 
3.3 to the case n = O. then a 0-ary operation on A would have to be 
defined as a set of the form {a}, with a e A. In either case, there 
would be a one-to-one correspondence between 0-ary operations on A 
and members of A. It fact it turns out to be most convenient to take 
neither of these courses, but - in the spirit of reductionism - simply to 
identify 0-ary operations on a class with its members: 

3.4. Definition 

A 0-ary operation on a class A is a member of A. 

We are now ready to lay down the main definition of this section. 

3.5. Definition 

A mathematical structure is a composite entity U consisting of the 
following ingredients. 

(i) A non-empty set U called the domain or universe of U. The 
members of the domain are called the individuals of U. 

(ii) A set of operations on U, called the basic operations of U. 
(iii) A non-empty set of relations on U, called the basic relations of U. 

Note that the set of basic operations may be empty. Among the basic 
operations there may be some 0-ary ones, which by Def. 3.4 are 
individuals of the structure. Such an object - that is, an individual of 
the structure which is also among its basic operations - is called a 
designated individual of the structure. 

Perhaps the most fundamental structure of classical mathematics is: 

3.6. Example 

The elementary ( or first-order) structure of natural numbers may be 
defined as the structure 91 having the following ingredients. 

(i) Its domain is the set N = {0, 1, 2, ... } of all natural numbers. 
(ii) Its four basic operations are the designated individual O; the 
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unary operation s which assigns to each number n its immediate 
successor; and two binary operations, + and x, which assign to 
each pair of numbers their sum and product respectively. 

(iii) Its only basic relation is the identity relation on N, namely 
idN = { (n, n): n e N}. 

3.7. Example 

A more general notion of structure than that prescribed by Def. 3.5 is 
obtained by allowing the domain to be a proper class rather than a set, 
and also admitting a basic relation which is a proper class. The most 
important example of this liberalized notion is the structure of sets cm, 
having the following ingredients. 

(i) Its domain is the class M of all objects, that is sets and individuals 
(if any) of set theory, a.k.a. the universal class. 

(ii) No basic operations. 
(iii) Its basic relations are the identity relation on M and the relation 

e of membership between objects and sets. 

3.8. Remark 

A great many mathematical statements are, or can be construed as, 
statements about mathematical structures. The structuralist view of 
mathematics holds that mathematics is essentially the study of such 
structures. 

§ 4. Basic semantics 
4.1. Preview 

By itself, .I!.. is meaningless; its expressions express nothing: they are 
just strings of meaningless symbols, combined according to apparently 
arbitrary formal syntactic rules. In this section we introduce the basic 
semantic apparatus needed to endow ./!..-expressions with meaning. 

First, we shall define the notion of J!.-interpretation (a.k.a. J!.-struc­
ture). Roughly speaking, an .£-interpretation is a mathematical struc­
ture (cf. Def. 3.5) together with a sort of 'dictionary' that assigns a 
reference to each function symbol of .I!.., making it a name of some 
basic operation of the structure; and to each extralogical predicate 
symbol of J!., making it a name of some basic relation of the structure. 

Under a given ./!..-interpretation, each closed term (a term not 
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containing variables) receives a reference, becoming a name for some 
individual (a member of the domain of the structure). A term contain­
ing variables does not receive any particular reference, but once the 
variables are assigned values (belonging to the domain) the term itself 
receives a value (also belonging to the domain). 

Certain formulas, known as sentences, also receive meaning under 
an .£-interpretation: each sentence expresses a proposition about the 
mathematical structure concerned, and thus receives a truth value T or 
l., according as that proposition is true or not. A formula that is not a 
sentence does not express a proposition and thus cannot be said to be 
true or false outright. Rather, it expresses a condition which may or 
may not be satisfied by a given assignment of values (belonging to the 
domain) to certain variables, the free variables of the formula. 

In order to deal with all terms (including those that contain vari­
ables) and all formulas (including those that are not sentences), we 
shall introduce the notion of .£-valuation, which is an .£-interpretation 
together with an assignment of an individual (member of the domain) 
as value to each variable of .£. Under an .£-valuation, each term 
receives a value (belonging to the domain of the structure) and each 
formula receives a truth value. 

4.2. Definition 

An .£-interpretation (or .£-structure) is a package - that is, a composite 
entity (or, to be pedantic, an ordered triple) - U, consisting of the 
following three components. 

(i) A non-empty set U, called the domain or universe [of discourse] 
of U. The members of U are called individuals of U. 

(ii) A mapping that assigns to each function symbol f of .1! an 
operation fu on U, such that if f is an n-ary function symbol then 
r" is an n-ary operation on U. In particular, if c is a constant of 
.£ then cu is an individual of U. Operations of the form ru are 
called basic operations of U; individuals of the form c" are called 
designated individuals of U. 

(iii) A mapping that assigns to each predicate symbol P of .£ a 
relation pU on U, such that if P is an n-ary predicate symbol then 
pU is an n-ary relation on U and such that if .£ has the equality 
symbol = then =" is the identity ( diagonal) relation on U, 
namely idu = { (u, u) : u e U}. 
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4.3. Remarks 

(i) The requirement that the domain U be non-empty has some 
technical advantages and is adopted by most modem authors. 
However, it is not essential and some authors (for example, 
Wilfrid Hodges, Logic, Penguin 1977) do allow structures with 
empty domain; the resulting treatment differs in some minor 
points from the conventional one. 

(ii) The mappings mentioned in clauses (ii) and (iii) of Def. 4.2 are 
not assumed to be one-to-one. For example, it is possible to have 
c =/: d with cu= du; in other words, two distinct constants may 
have the same interpretation. (This is like an object having more 
than one name in ordinary language.) 

(iii) The special role of the equality symbol of .R., and the reason why 
we have denoted it by'=', are made clear in clause (iii) of Def. 
4.2. Many authors confine the mapping in this clause to extra­
logical predicate symbols; and the additional requirement that 
the equality symbol = of .R. be interpreted as denoting the 
identity relation on U is then introduced separately as part of the 
Basic Semantic Definition (see, for example, B&M, pp. 49 and 
51). In the end it amounts to the same thing. 

(iv) We use upper-case e3etman {'Btaktut) letters to denote .£-structures. 
We adopt the convention that where a structure is denoted by a 
given German letter, its domain will be denoted by the corre­
sponding upper-case italic, unless specified otherwise. 

(v) Note that the meaning of the term 'individual' here (as well as in 
Def. 3.5) is different from its special meaning in set theory (see 
1.1.3). 

4.4. Definition 

(i) An ./2,-valuation is a package (say an ordered pair) a whose two 
components are: an ./2,-interpretation U; and a mapping that 
assigns to every variable x of ./2, a value x0 e U. 

(ii) The ./2,-structure that forms part of an ./2,-valuation a is called the 
underlying structure of a. We also say that a is based on this 
structure. 

(iii) If a is an ./2,-valuation with underlying structure U, then by the 
universe of a we mean the domain U of U; and we put f'7 =drrU 
for every function symbol f of .R. and P17 =dr pU for every predic­
ate symbol P of ./2. 
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4.5. Definition 

If a is a valuation and u is an individual in its universe, then a(x/u) is 
the valuation that is based on the same structure as a and assigns the 
same values as a to all variables other than x, while x 0 <x/u) = u. We say 
that a(x/u) is obtained from aby revaluing x as u. 

Thus ro<x/u) = C° for every function symbol f; and po(x/u) = P0 for 
every predicate symbol P; and yu<x/u) = yu for every variable y -=I:- x; 
while xo<x/u) = u. 

The following definition is of central importance. It was first stated 
explicitly by Alfred Tarski in 1933, but had been used tacitly long 
before that. For any valuation a, the first section of the definition 
assigns to each term t a value t 0 belonging to the universe of a. This is 
done by induction on deg t, in two clauses corresponding to those of 
Def. 1.5. The second section of the definition assigns to each formula a 
a truth value a0 . This is done by induction on deg a, in four clauses 
corresponding to those of Def. 1.7. 

4.6. Basic Semantic Definition (BSD) 

Let a be a valuation with universe U. 

(Tl) If x is a variable, then x0 is already defined (see Def. 4.4). 
(T2) If f is an n-ary function symbol and t1, t2, ... , tn are terms, then 

(Fl) If P is an n-ary predicate symbol and ti, t2, ... , tn are terms, 
then 

In particular, 

(F2) 

if (t1u, lzu, ... , tn°) E P0 , 

otherwise. 

(s=t)0 = {: 
if su = tu, 

otherwise. 

if pu = T, 
if 1}0 = .L. 
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(F3) 

(F4) 

4.7. Remarks 

8. First-order logic 

((Hy)"= { * 
(Vxfl)° = {: 

if fl 0 = T and y 0 = J_, 

otherwise. 

if po<x/u) = T for every u e U, 
otherwise. 

(i) Strictly speaking, what the BSD defines is a pair of new mappings 
induced by the given valuation <J and extending it to larger 
domains. This is somewhat obscured by the fact that both of 
these two new mappings are also denoted by 'a'. The first of 
these, defined in (Tl) and (T2), is a map from the set of all terms 
to the universe U of a. The second map induced by a, defined in 
(Fl)-(F4), maps the set of all formulas to the set { T, J_} of truth 
values. 

(ii) Clauses (F2) and (F3) are identical with clauses (2) and (3) of 
Def. 7.4.2(ii), and so ensure that [the second mapping induced 
by] a valuation assigns truth values to formulas in just the way a 
truth valuation is required to do in propositional semantics. Thus, 
as far as its effect on formulas is concerned, a valuation may be 
regarded as a special case of a truth valuation. Note however that 
not every truth valuation can be obtained in this way from a 
valuation. For example, if « is any formula and x is any variable, 
then by Def. 2.5 the formula Vx( «-+«) is prime; hence there are 
truth valuations under which Vx(«-+«) has the truth value L 
But it is easy to see that [Vx(«-+«)]0 = T for any valuation a. (If 
..l!, is a language with equality, then a simpler counter-example is 
provided by the equation x=x, where x is any variable: this 
formula is prime, but its truth value under any valuation is T.) 

(iii) Due to (F4), the BSD has a strongly non-effective character: it 
does not, in general, provide us with a method whereby the truth 
value a 0 (for given a and a) might be found in a finite number of 
steps. For, if the universe U is infinite and a is a universal 
formula, Vxp, then by (F4) the truth value a0 depends on the 
infinitely many truth values po<x/u), for all the infinitely many u in 
U. Of course, for some particular x, p and a with infinite 
universe U it may be possible to determine, using some theoret­
ical argument, whether or not po<x/u) = T for all the infinitely 
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many u in U. But there is no a priori reason to suppose that 
there is some universally applicable method for arriving at such 
an argument. (Indeed, we shall see later that there can be no 
such method.) Compare this to the situation in propositional 
logic, where the truth value of any given formula under any given 
truth valuation can be computed mechanically: for example, 
using a truth table. 

4.8. Problem 

Using Def. 2.3(iv), show that 

(3xp)a = T <c:> pa(x/u) = T for some u in the universe U of a. 

4.9. Definition 

(i) If q> is a formula and a is a valuation such that q>a = T, we say 
that a satisfies q> and write 'a I= qi'. 

(ii) If cJ> is a set of formulas and a is a valuation that satisfies every 
member of cJ>, we say that a satisfies cJ> and write 'a I= cJ>'. 

4.10. Definition 

(i) If the formula a is satisfied by every valuation, we say that a is 
logically true ( or logically valid) and write 'I= a'. 

(ii) If cJ> is a set of formulas and a is a formula such that every 
valuation that satisfies cJ> also satisfies a, we say that a is a logical 
consequence of cJ> and write 'cJ> I= a'. In this connection we 
employ simplified notation similar to that used in connection with 
'1=0'. For example, we write 'cJ>, cp I= a' as short for 'cJ> U { q>} I= a'. 

(iii) If cJ> is a set of formulas that is satisfied by some valuation, we 
say that cJ> is satisfiable. If cJ> is not satisfied by any valuation we 
say that it is unsatisfiable and write 'cJ>I='. 

(iv) If u I= P and also p I= a (that is, aa = pa for every valuation a) then 
we say that a and p are logically equivalent and write 'a = W. 

4.11. Theorem 

If cJ> 1=0 u then also cJ> I= u. In particular, if 1=0a then also l=u; and if 
a =0 P then also a = p. 
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PROOF 

Immediate from Rem. 4.7(ii). ■ 

The converse of this theorem is of course false. As pointed out in 
Rem. 4.7(ii), the logically true formula Vx(a--+a) is prime, so cannot 
be a tautology. And this same formula is logically equivalent, but not 
tautologically equivalent, to the formula Vx(a++a). 

4.12. Problem 

(i) For any set cf> of formulas and any two formulas a and p, prove 
that cf>, a I= P iff cf> I= «--+P. 

(ii) Prove that { «i, (½, ... , ad I= P iff I= «1--+(½--+ • • ·--+ak--+P, 
(iii) Prove that a = P iff I= a++P. 

4.13. Remark 

We say that P is a subformula of a if the formula p, regarded as an 
.£-string, occurs as a consecutive part of the formula a, where the 
latter is also regarded as an .£-string. (Note that p can occur in a more 
than once; but using Prob. 2.l(v) it is easy to show that two distinct 
occurrences of pin a cannot overlap.) 

An obvious feature of the BSD is that if a is a non-atomic formula, 
then a 0 is determined in terms of the truth values of certain subformu­
las of a under a itself and (if a is a universal formula) under certain 
other valuations. Note that it is the truth values of these subformulas 
that matter, not the subformulas themselves. 

This has the following consequence. Suppose that P' is a formula 
such that P' = P and let «' result from « when an occurrence of a 
subformula P in « is replaced by P'. Then a' = «. This rather obvious 
result can be proved rigorously by a simple but tedious induction on 
dega. 

4.14. Remark 

Let us pause to consider the issue raised in § 11 of Ch. 7: that of the 
ambient metatheory. While the mathematical presuppositions required 
for the first three sections of this chapter are rather modest, the 
Tarskian semantics presented in this section is quite another matter. 
This is mainly due to Def. 4.10, which refers (albeit implicitly) to the 
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class of all .£-valuations, and thereby requires these valuations to be 
objects. 

Now, a valuation is in general an infinite entity, for two reasons. 
First, because a valuation must assign interpretations to all extralogical 
symbols of .J!., of which there may be infinitely many; and values to all 
variables of .J!., of which there must be infinitely many. Second, 
because one component of a valuation is its universe, which may be an 
infinite set. 

The first reason is not essential, at least if we are prepared to confine 
our semantic treatment to a single formula ( or to finitely many 
formulas) at a time. We can employ a device similar to that described 
in § 11 of Ch. 7 in connection with truth valuations: instead of using 
full valuations, we may use partial valuations, which assign interpreta­
tions and values to finitely many extralogical symbols and variables, 
including all those that occur in the given formula(s). But the possible 
infinitude of the universe of a valuation cannot be circumvented in this 
way, because clause (F4) of the BSD makes the truth value of a 
universal formula, (Vxp)a, dependent on the whole universe U of a. 

For this reason, those parts of our investigation that depend on 
concepts defined in Def. 4.10 wil1 generally presuppose the existence 
of infinite sets as objects, and must be viewed as taking place in an 
ambient theory that incorporates a sufficiently rich set theory. 

§ 5. Free and bound occurrences of variables 
5.1. Preview 

The value ta of a term and the truth value «a of a formula under a 
valuation a clearly ought not to depend on the whole of a but only on 
its 'relevant' parts. For example, if f is a function symbol that does not 
occur int (or in«) then surely ta (or «a) ought not to depend on CU. 
We shall soon state this proposition more precisely, and prove that it is 
indeed correct. However, when it comes to variables, we must distin­
guish two ways in which they occur in formulas: an occurrence of a 
variable in a formula can be either free or bound. It will transpire that 
«a does not depend on xa even if the variable x does occur in «, 
provided that all its occurrences are bound. 

5.2. Definition 

We say that valuations a and -r agree on a variable x (or function 
symbol f, or extralogical predicate symbol P) if a and -r have the same 
universe and x0 = xr (or fa= rr, or pa= Pr, respectively). 
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5.3. Remark 

We can characterize a(x/u) as the valuation that agrees with a on all 
extralogical symbols and all variables other than x, whereas xa(x/u) = u. 

5.4. Theorem 

Let t be a term and let a and r be valuations that agree on all function 
symbols and all variables occurring int. Then tu= tr. 

PROOF 

Easy, by induction on degt. DIY or see B&M, p. 54. ■ 

5.5. Remark 

In particular, if t contains no variables ( and is therefore made up 
entirely of constants and other function symbols) and the valuations a 
and 'l' are based on the same ..e-structure then tu= tr. 

5.6. Definition 

A term t is closed if it contains no variables. If t is such a term and U is 
an ..l2-structure, we put tu =dttu, where a is some valuation based on 
U. (By Rem. 5.5 it makes no difference which valuation based on U is 
chosen.) 

An occurrence of a variable x in a formula « is bound if it falls inside 
the scope of a quantifier that has x as its variable of quantification. 
Any other occurrence of x in « is free. More precisely, we define these 
concepts by induction on deg a. 

5.7. Definition 

The occurrences of a variable x in a formula a are classified into two 
mutually exclusive kinds, free occurrences of x in « and bound 
occurrences of x in «, as follows: 

(1) If a is atomic, then all occurrences of x in a are free in a. 
(2) If « = -, P then an occurrence of x in a is free in a iff it is free 

in ft 
(3) If« = ~'Y then an occurrence of x in a is free in « iff it is free in 

P or in y. 
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(4) If a= Vxp then all occurrences of x in a are bound in a. But if 
a= Vyp, where y is a variable other than x, then an occurrence 
of x in a is free in a iff it is free in p. 

A variable x is free in a formula a if x has a free occurrence in a. The 
free variables of a formula are those that are free in it. 

5.8. Theorem 

Let a be a formula and let a and • be valuations that have the same 
universe and agree on all the extralogical symbols and free variables of 
a. Then a 0 = ai-. 

PROOF 

By induction on deg a. We distinguish four cases. 

Case 1: a is an atomic formula, say Pt1t2 . .. tn. Then 

ao= T~(t10,t20, ... ,tno) EPo 

<c:>(t1°,t2°, ... ,tn°) EPi-

<c:> (t1 i-, t2i-, . .. , tn i-) E pi-

<c:> at"= T 

by BSD Fl, 
by assumption, 

byThm. 5.4, 
by BSD Fl. 

Case 2: a is a negation formula, say -,p. Note that a and• agree on 
the extralogical symbols and free variables of p, since they are the 
same as those of a. Hence 

ao = T <c:> po = J_ 

<c> pr= l. 

<c>ai- = T 

Case 3: a is an implication formula. DIY. 

byBSDF2, 
by ind. hyp., 
byBSDF2. 

Case 4: a is a universal formula, say Vxp. The valuations a and • 
agree on all the extralogical symbols of p, because they are exactly 
those of a. Every free variable of a is also free in p; but p may have 
one additional free variable, namely x. Now, a and • need not agree 
on x; but if u is any member of U then a(x/u) and o(x/u) do agree on 
x as well: both assign to it the value u. Hence by the induction 
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hypothesis po<x/u) = pT(x/u). So 

«0 = T <=> pa<x/u) = T for every u E U 
<=> pT(x/u) = T for every u e U 
<=>Ur = T 

5.9. Remark 

byBSDF4, 
by ind. hyp., 
byBSDF4. ■ 

In particular, if a has no free variables (so that all occurrences of 
variables in it, if any, are bound) and the valuations a and -r are based 
on the same structure then o.0 = a r. 

5.10. Definition 

A sentence is a formula without free variables. If a is a sentence and U 
is an .£-structure, and a is satisfied by some - and hence (cf. Rem. 5.9) 
by every - valuation based on U, then we say that a holds (or is 
satisfied) in U, and that U is a model for a, and write 'U 1= «'. 

If U I= q, for every member q, of a set E of sentences, we say that U is 
a model for l:. 

5.11. Problem 

Prove: I= Vx(«-+P)-+Vxa-+Vxp. (Use Prob. 4.12.) 

5.12. Problem 

Show that if x is not free in « then Vx« == « == 3x«. 

5.13. Problem 

Assuming that xis not free in p, show that 

(i) Vx(«AP) ==Vx«AP, 
(ii) 3x(«AP) ==3xaAf}; 

(iii) Vx( « v P) = Vx« v p, 
(iv) 3x(«vP) == 3xavp; 
(v) Vx(«-+P) == 3x«-+P, 

(vi) 3x(«-+P) == Vx«-+P; 
(vii) Vx(f}-+a) == f}-+Vxa, 
(viii) 3x(f}-+a) = f}-+3xu. 
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5.14. Problem 

Construct a sentence « containing only logical symbols (that is, no 
function symbols and no predicate symbols other than =) such that a 
holds in a structure U iff the domain U of U has 

(i) at least three members, 
(ii) at most three members, 

(iii) exactly three members. 

5.15. Problem 

Let .R. be a language without = whose only extralogical symbol is a 
binary predicate symbol P. Construct an .R.-sentence a such that a has 
no finite model (that is, a does not hold in any structure whose domain 
is finite) and such that if U is any infinite set then there is a binary 
relation P on U such that the .R.-structure U with domain U and with 
pU =Pis a model for a. (In writing your solution, do not be tempted 
to denote the predicate symbol of .R. by anything other than 'P'. Note 
that any condition that you wish to impose on the interpretation P of P 
must be written into a.) 

§ 6. Substitution 

Substitution is a purely syntactic operation: occurrences of a variable in 
a given expression are replaced by [occurrences of] a term. Thus, three 
..fl-entities are involved: first, the expression in which the substitution is 
made; second, the variable for which a term is substituted; and third, 
the term which is substituted for occurrences of this variable. We start 
with the straightforward case where the first mentioned entity, the 
expression in which the substitution is made, is itself a term. 

We denote by 's(x/t)' (read: 's, with x replaced by t') the result 
obtained from the term s when all occurrences of the variable x in s are 
simultaneously replaced by occurrences of the term t. In detail, s(x/t) 
is defined by induction on deg s. 

6.1. Definition 

For any variable x and any term t, 

(la) x(x/t) = t; 
(lb) y(x/t) = y for any variable y other than x; 
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(2) ifs= fs1s2 ... Sn where f is an n-ary function symbol and s1, s2, 
... , Sn are terms, then s(x/t) = fs1(x/t)si(x/t) ... sn(x/t). 

The most important fact about s(x/t) is its semantic behaviour: the way 
its value under a valuation a depends on s, x, t and a. 

We must not expect the value s(x/t)a to be the same as sa, because 
s(x/t) ands are, in general, two different terms. However, note that in 
the former term t occupies the same positions that x occupies in the 
latter. Thus we ought to expect the value s(x/tr to be the same as the 
value of s not under a itself, but under the valuation obtained from a 
by revaluing x and assigning to it the value that t has under a (see Def. 
4.5). Thus we ought to have: 

(6.2) s(x/t)a = sa(x/r), where t = ta. 

6.3. Remark 

For purely typographical reasons, the printed form of (6.2) is a bit 
more complicated than it need be. When writing this formula by hand, 
there is no need to use 't' at all, because the 't' in the main part of the 
formula can be replaced by 'ta•. The form then taken by (6.2) is shown 
here: 

(6.2') 

Unfortunately, this requires three levels of print and the third-floor 
characters have to be smaller than ordinary small print. This is 
technically difficult to typeset as well hard on the eye. So in print we 
use the verbose form (6.2); but in hand-written texts it is better to use 
the more compact (6.21). A similar remark applies also to (6.6) below. 

6.4. Theorem 

(6.2) holds for alls, x, t and a. 

PROOF 

By induction on degs. Three cases must be considered, corresponding 
to the three clauses in Def. 6.1. Throughout, we put t = ta. 

Case la: sis x. Then s(x/t)a = x(x/t)a = ta, by Def. 6.1. On the other 
hand, sa(x/t) = xa(x/t) = t, by Def. 4.5. So (6.2) holds in this case. 
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Case lb: s is a variable y if= x. Then s(x/t)0 = y(x/t)a =ya, by Def. 
6.1. On the other hand, sa(x/t) = yo<x/r) = ya, by Def. 4.5. So (6.2) 
holds also in this case. 

Case 2: s is fs1s2 ... Sn. Then 

s(x/t)0 = [fs1s2 ... sn](x/t)a 
= [fs1(x/t)s2(x/t) ... sn(x/t)] 0 

= l°(s1(x/t)0 , Sz(x/t)0 , ••• , Sn(x/t)a) 
= ca(x/t)(s1(x/t)0 , s2(x/t)a, ... , Sn(x/t)a) 
= ..rr(x/r)(s o(x/r) S a(x/r) S o(x/t)) •-, 1 , 2 , • • • , n 

= [fs1s2 ... sn]o(x/t) 
= so(x/1)_ 

6.5. Remark 

by Def. 6.1, 
by BSD T2, 
by Def. 4.5, 

by ind. hyp., 
byBSDT2, 

• 

Thm. 6.5 does not tell us anything unexpected about the semantic 
effect of substitution - on the contrary, the result is what we anticip­
ated. The point of the theorem is that it confirms that Def. 6.1 was 
correct, in the sense of ensuring the desired effect. 

Let us tum to the case where a term t is to be substituted for a 
variable x in a formula a. For reasons that should now be clear, we 
must define the substitution in such a way that 

(6.6) 

Now however complications arise due to the different roles played by 
free and bound occurrences of variables. Here we shall only outline the 
way these complications are resolved. Full technical details can be 
found in B&M, pp. 57-64. 

First, it is clear that when substituting t for x in a, only free 
occurrences of x in a should be replaced by t. Intuitively speaking, the 
reason for this is that the truth value aa depends on the value xa only 
through the free occurrences of x in a (see Thm. 5.8). Besides, if we 
replace all occurrences of x by t, the result may not be a formula at all. 
Indeed, if x has bound occurrences in a, then at least one of them must 
immediately follow an occurrence of V. If such an occurrence of x is 
replaced by t, then the result will not be a formula, unless t itself 
happens to be a variable, because in a formula each V must be 
followed by a variable. 

Can we therefore define a(x/t) as the result of replacing all free 
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occurrences of x in « by t? Unfortunately, this does not always work. 
Cases where if fails to work are those in which some free occurrence of 
x in « occurs within the scope of a y-quantifier, where the variable y 
(which must of course be distinct from x) happens to occur int. If we 
then simply replace such an occurrence of x by t, the resulting 
occurrence of y in the new formula so obtained will be captured: it 
becomes bound by the y-quantifier. It turns out that when capturing 
takes place, (6.6) may fail. 

For example, let « be Vy(x=y), where x and y are distinct. If we 
were to define «(x/t) as Vy(t=y) for arbitrary t, then taking t as y 
itself we would get «(x/t) = Vy(y=y). Note that the new (second) 
occurrence of y got captured by a y-quantifier. But then (6.6) would 
not always hold, because Vy(y=y) is satisfied by every valuation (it is 
logically true), whereas Vy(x=y) is satisfied just by valuations whose 
universe is a singleton. 

Of course, this kind of complication, due to capturing, does not 
always arise. Instead of defining «(x/t) outright for all «, x and t, we 
proceed in stages. First, we confine ourselves to cases in which 
capturing does not take place. 

6.7. Definition 

If no free occurrence of x in « is within the scope of a y-quantifier, 
where y is a variable that occurs in t, then we say that t is free [to be 
substituted] for x in a; and in this case we define «(x/t) as the result 
obtained from « when all free occurrences of x in « are simultaneously 
replaced by t. [For a more detailed version of this definition, proceed­
ing by induction on deg«, see B&M, p. 59f.) 

It is now fairly easy to show that (6.6) holds in the special case where 
«(x/t) has so far been defined. 

6.8. Theorem 

(6.6) holds whenever the term t is free for the variable x in the form­
ula«. 

PROOF 

DIY or see B&M, p. 60f. ■ 
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6.9. Remark 

There are two special cases where t is free for x in a. First, where t 
contains no variable other than x. Def. 6. 7 therefore applies in this 
case. In particular, in the case where t is x itself, it is easy to see that 
a(x/x) is just a, as it ought to be. The second special case is where t 
contains no variable that occurs bound in a: in this case a does not 
contain any y-quantifier where y occurs int. 

In order to define a(x/t) in the remaining case - where tis not free for 
x in a - we must first modify the offending parts of a and make them 
harmless. The trouble is caused by free occurrences of x in a that fall 
within subformulas of « having the form \f yl}, where y is a variable 
that occurs int. In order to make the substitution work, so that (6.6) is 
ensured, such subformulas of a must first be replaced by logically 
equivalent ones that use a harmless variable, say z, instead of y. This 
motivates the following 

6.10. Definition 

If z is a variable that does not occur free in I} but is free for y in p, we 
say that the formula \/z[l}(y/z)] arises from the formula Vyp by 
[correct} alphabetic change [of variable of quantification}. 

6.11. Remarks 

(i) The reasons for requmng that z be free for y in P is that 
otherwise the substitution p(y/z) is not defined as yet. The reason 
for requiring that z has no free occurrences in P is that otherwise 
the formulas \fz[p(y/z)] and \/yp may not be logically equivalent. 
For example, let p be y=z, where y and z are distinct variables. 
It is easy to see that \/z(z=z) and \/y(y=z) are not logically 
equivalent: the former is logically true, whereas the latter is 
satisfied by a valuation a iff the universe of a is a singleton. 

(ii) If z does not occur at all in p, then z clearly fulfils the conditions 
in Def. 6.10. 

(iii) It is not difficult to show that the operation of alphabetic change 
is reversible: in other words, if \fz[f}(y/z)] arises from \/yp by an 
alphabetic change, then the latter formula can be retrieved from 
the former by an alphabetic change (see B&M, p. 61). 
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6.12. Theorem 

If Vz[f}(y/z)] arises from Vyp by alphabetic change then these two 
formulas are logically equivalent. 

PROOF 

DIY or see B&M, p. 61. ■ 

6.13. Definition 

(i) We say that a formula y is obtained from a formula « by an 
alphabetic step if a has a subformula of the form Vyp and y 
results from a when one occurrence of Vyp is replaced by a 
formula Vz[f}(y/z)] that arises from it by alphabetic change. 

(ii) We say that a' is a variant of «, and write '« ~ «'', if «' can be 
obtained from « by a finite number of alphabetic steps. 

6.14. Remarks 

(i) The relation ~ is easily seen to be an equivalence relation. It is 
reflexive: « ~ a always holds because « is obtained from itself by 
0 alphabetic steps. It is symmetric: if a ~ a' then also «' ~ « 
because alphabetic changes, and hence also alphabetic steps, are 
reversible. Finally, it is clearly transitive: if « ~ «' and «' ~ «" 
then also«~«". 

(ii) By Thm. 6.12 and Rem. 4.13, if« ~ a' then « = «'. 

We can now define the substitution «(x/t) in full generality. 

6.15. Definition 

Let a variable x and a term t be given. For any formula «, we select a 
formula «' such that if t is free for x in «, then «' is « itself; but if t is 
not free for x in «, then «' is a variant of « in which· t is free for x. 
Thus «'(x/t) is already defined in Def. 6.7. We now define «(x/t) to be 
the same as «'(x/t). [For details see B&M, p. 63. If tis not free for x in 
«, then it does not really matter which variant of « is selected to be «', 
so long as tis free for x in«'. But a definition must be unambiguous, 
so a particular variant «' must be selected. This is done by induction 
on deg«. The gist of the choice is that each offending subfonnula Vyp 
of a is replaced by Vz[f}(y/z)], where z is the first variable in the 
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alphabetic list of ,£-variables - that is, the v; with the least i - such that 
this is a correct alphabetic change and such that z does not occur int.) 

6.16. Problem 

Show that (6.6) holds for all«, x, t and a. 

§ 7. Hintikka sets 

We shall introduce first-order Hintikka sets because, as in the proposi­
tional case, it is relatively easy to prove that such sets are satisfiable. It 
will follow that any set included in a Hintikka set is also satisfiable. 
This will come in handy later on, when we shall want to prove the 
appropriate completeness theorem. 

7.1. Definition 

A {first-order} Hintikka set [in .P.J is a set cl> of .£-formulas satisfying 
the following nine conditions: 

(1) If« is any atomic formula such that« E cl>, then-,«($ cl>. 
(2) If « is any formula such that -, -, « E cl>, then also « E cl>. 
(3) If« and fl are any formulas such that «-+fl E cl>, then-,« E cl> or 

fl E cf>. 
( 4) If « and fl are any formulas such that -, ( «--+P) E cl>, then « E cl> 

and -, fl e cl>. 
(5) If« is any formula and xis any variable such that Vx« E cl>, then 

«(x/t) E cl> for every .P.-term t. 
(6) If« is any formula and xis any variable such that -,Vx« E cl>, 

then -,«(x/t) E cl> for some .P.-term t. 
(7) If .P. is a language with equality, then t=t E cl> for every .P.-term t. 
(8) If n;;,,, 1 and s1, s2, ... , Sn and t1, t2, ... , tn are any 2n .£-terms 

such that for each i = 1, 2, ... , n the equation s;=t; is in cl>, 
then it follows that for every n-ary function symbol f of .P. the 
equation fs1s2 ... sn=ft1t2 ... tn is also in cl>. 

(9) If n;;,,, 1 and s1, s2, ... , Sn and t1, t2 , ... , tn are any 2n .P.-terms 
such that for each i = 1, 2, ... , n the equation s;=t; is in cl>, and 
if P is any n-ary predicate symbol such that the atomic formula 
Ps1s2 ... Sn is in cl>, then the formula Pt1t2 ... tn is also in cl>. 
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7.2. Remarks 

(i) Conditions (8) and (9) of the definition are vacuous if .£ is a 
language without equality. The reason for excluding the case 
n = 0 in (8) is that for n = 0 this condition would have reduced to 
requiring that if c is any individual constant of .£ then c=c e 4>, 
which is already covered by condition (7). 

(ii) Condition (9) applies in particular to the case where n = 2 and P 
is = itself. In this special case the condition says that if s1, s2, t1 
and t2 are any four terms such that the three equations s1 =t1, 

s2=t2 and s1=s2 are in 4>, then the equation t1=t2 is also in 4>. 
Fig. 2 can be used as a mnemonic for this statement. The four 
terms are represented by the four corners of the square; the three 
equations assumed to belong to 4> are represented by the three 
solid sides, reading from top to bottom and from left to right; and 
the fourth equation, which is then required to belong to 4>, is 
represented by the dotted side, again reading from left to right. 

For the rest of this section, we let 4> be a fixed but arbitrary Hintikka 
set. We shall refer to the nine conditions of Def. 7.1 simply as '(1)', 
'(2)' and so on. 

Our aim is to prove that 4> is satisfiable. We shall define a particular 
valuation u and show that u I= 4>. In order to define u, we must specify 
its various ingredients: first, we must specify its universe U; next, for 
each variable x we shall have to specify its value xu, which must of 
course be a member of U; then, for each function symbol f we must 
specify the corresponding operation CU on U; finally, for each extra­
logical predicate symbol P we have to specify the corresponding 
relation pu on U. (As for the logical predicate symbol =, if it is 
present in.£, we have no choice: =u has to be the diagonal relation on 
U.) 

Of all the ingredients of u, the first - the universe U - turns out to 

Fig.2 
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require most work. Once U has been properly set up, the rest will 
follow quite smoothly. The nature of the members of U (that is, what 
'stuff' they are made of) is clearly of no importance; what is vital is that 
for each term t there should be a member of U to serve as the value ta. 
In general, the universe of a valuation may have members that do not 
serve as the value of any term under that valuation; but in the present 
case Occam's razor turns out to be useful. So we shall define an object 
[t] for each term t and-even before deciding what [t] is to be -we put 

7.3. Definition 

U =df {[t]: tis an .£-term}. 

Our plan is to define a in such a way that ta= [t] for every term t. As 
we have said, the nature of [t] is unimportant; but we must decide 
whether distinct terms are to have distinct values; in other words, if s 
and t are distinct, should [s] and [t] also be distinct? The simplest 
choice is to answer this question in the affirmative. The good news is 
that if ..e is without equality then this simplest choice actually works. 

The bad news is that it does not work if ..e has equality. The snag is 
that in this case cl> may contain equations s=t, where s and t are 
distinct terms. If a is to satisfy cI>, it must in particular satisfy these 
equations, which (by the BSD Fl) means that sa and ta must be the 
same. As we intend these values to be [s] and [t] respectively, we are 
forced to allow [s] and [t] to be equal whenever s=t e cI>, even though 
s and t may be distinct. This motivates the following definition of the 
relation E between terms: 

7.4. Definition 

The relation E holds between two terms s and t - briefly, sEt - if 
either ..e is without equality and s is the same as t, or .i!. has equality 
and the equation s=t is in cI>. 

7.5. Lemma 

E is an equivalence relation: it is reflexive, symmetric and transitive. 

PROOF 

The case where ..e is without equality is trivial. Now suppose that ..e 
does have equality. 
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The reflexivity of E follows at once from (7). 
To prove that Eis symmetric, assume that s=t e cl>. We must show 

that also t=s e cl>. We shall make use of Rem. 7.2(ii). Choosing s1, s2, 

t1 and t2 ass, s, t ands respectively, we get the configuration shown in 
Fig. 3. 

The equation s=t (left side of the square) belongs to Cl> by assump­
tion; and the equation s=s (right and top sides) belongs to cl> by (7). 
Hence by Rem. 7 .2(ii) the equation t=s (bottom side) must also be in 
cl>. So E is symmetric. 

To prove that Eis transitive, assume that r=s and s=t are in cl>. We 
must show that also r=t E cl>. Again, we use Rem. 7.2(ii). This time 
we choose s1, s2 , t1 and t2 as r, s, r and t respectively, and obtain the 
configuration shown in Fig. 4. The equation r=r (left side of the 
square) is in cl> by (7); and the equations r=s and s=t (top and right 
sides) are in cl> by assumption. Hence also the equation r=t (bottom 
side) is in cl>. So E is transitive. ■ 

7.6. Definition 

For each term t, we define [t] as the E-class of t (see Def. 2.3.4). 
Thus, 

[t] =ctt [t]E = {s: sEt}. 

S -------.S 

t •••••••••••••••••••••••••••••••••• s 
Fig. 3 

r .--------, s 

r .................................. t 

Fig. 4 



§ 7. Hintikka sets 171 

7.7. Remarks 

(i) If .P. is without equality, then [t] is simply {t}, so that ifs and t 
are distinct terms then [ s] and [ t] are also distinct. If .P. does have 
equality, then [t] is a class of terms that may have several -
indeed even infinitely many - members. 

(ii) Recall that by Thm. 2.3.5, [s] = [t] iff sEt. Also, by Cor. 2.3.6, 
each term belongs to a unique £-class. 

(iii) The class of all .P.-strings is a set by Thm. 6.3.9. Hence by AS the 
class T of all terms is also a set. For each t, (t] is a subset of T 
and so, by Def. 7 .3, U ~ PT. Thus U is a set by AP and AS. 

Our intention was to have t 11 = [t] for very term t. For the particular 
case where t is a variable we are free to decree this as part of the 
specification of a. 

7.8. Definition 

We put x17 = [x] for each variable x. 

Next, for each n-ary function symbol f we must define the n-ary 
operation on U that is to serve as f'1. To define F, we must specify, for 
each n-tuple of members of U, the member of U produced by 
applying C° to that n-tuple. Take n arbitrary members of U; by Def. 
7.3 they are of the form [t1], [t2], ... , [tn], where ti, t2, ... , tn are 
terms. We must specify a member of U as F([ti], [t2], ... , [tnD· This 
individual (again by Def. 7.3) must have the form [t] where tis some 
term. How shall we choose this t? Clearly, t must involve f and ti, t2, 

... , tn. So an obvious choice is 

7.9. Definition 

If f is any n-ary function symbol and t1, t2, ... , tn are any terms, 

7.10. Legitimation 

If n > 0 - in which case, as stipulated in Sp. 1.1, J! must have equality 
- then this definition needs to be legitimized. The point is that one and 
the same member of U may be represented in more than one way: r 
and s may be distinct terms such that the object [r] is the same as (s]. 
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However, the definiendum f'°([ti], [t2], ... , [tn]) must depend only on 
the objects [t1], [t2], ... , [tn] and not on the particular terms t1, t2, 
... , tn that happen to represent them. So we have to prove that the 
definiens [ft1t2 ... tnJ depends only on the objects [ti], [t2], ... , [tn) 
rather than on the particular terms t1, t2 , ... , tn used to represent 
them. We must therefore show that if [s;] = [t;] for i = 1, 2, ... , n, 
then also 

This is easily done. Indeed, if [s;] = [t;] for i = 1, 2, ... , n, then by 
Rem. 7.7(ii) for each i the equation s;=t; is in cf>. So by (8) the equation 
fs1s2 ... Sn=ft1t2 ... tn is also in 4> and [fs1s2 ... Sn]=[ft1t2 ... tnJ. ■ 

We have not completed our definition of a: we still have to specify the 
relations P11 • But we are already in a position to prove 

7.11. Lemma 

t11 = [t] for every term t. 

PROOF 

We proceed by induction on degt. The case where t is a variable is 
covered by Def. 7.8. Now let t be ft1t2 ... tn. Then 

t 11 = (ft1t2 ... tn) 11 = f'1(t1 11 , t211 , ••• , tn 11) 

= f'1([t1], [t2], • • . , [tn]) 
= [ft1t2 .. • tn] 
= [t]. 

byBSDF2, 
by ind. hyp., 
by Def. 7.9, 

■ 

To complete the definition of a, we have to define for each extralogical 
n-ary predicate symbol P an n-ary relation P11 on U; that is, P11 must 
be defined as a subset of un. To do this, we have to specify, for any n 
objects [t1], [t2J, ... , [tn], whether the n-tuple ([ti], [t2], ... , [tn]) 
is to belong to P11 • How are we to do this? Note that as we have 
just proved, ([t1], [t2], ... , [tn]) is (t111 , t211 , ••• , tn11 ). Now, by the 
BSD Fl, the atomic formula Pt1t2 ... tn is going to be satisfied by a iff 
( t1 11, t211 , ••• , tn 11 ) e P11• But remember what a is for: it is supposed to 
satisfy 4>. Therefore, if Pt1t2 ... tn is in cf> we would like the n-tuple 
(t111 , t211 , ••• , tn 11 ) to be in P11 • This suggests 
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7.12. Definition 

If P is any n-ary extralogical predicate symbol, then pa is defined to be 
the subset of un such that for any n terms t1, t2, ... , tn, 

7.13. Legitimation 

This definition too needs legitimation. We must make sure that 
whether or not ([ti], [t2], ... , [tn]) E pa holds depends on the objects 
[t1], [t2], ... , [tn] rather than on the terms that happen to represent 
them. In other words, it must be proved that if [s;] = [t;] for i = 1, 2, 
... , n, then 

This is easy. DIY, using (9). ■ 

7.14. Remark 

As mentioned before, if J! has equality we have no choice as to the 
relation =a; we must put, for all terms sand t, 

([s], [t]) E =a<=> [s] = [t]. 

But by Rem. 7.7(ii) this amounts to 

([s], [t]) E =a<=> s=t E 4». 

This means that Def. 7.12 extends automatically also to the logical 
predicate symbol =. 

Having completed the definition of a, we can prove 

7.15. Theorem 

For any formula q,, 

(a) <p E 4» ==> q,a = T, 

PROOF 

We shall prove this double claim simultaneously by induction on degq,. 
We distinguish four cases, corresponding to the clauses of Def. l. 7. 
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Case 1: qi is atomic; say qi = Pt1 t2 ... tn. 

(la) qi E cJ) => Pt1t2 ... tn E cJ) 

=> ( [ti], [t2], ... , [tn]) E P0 

by Def. 7.12 and Rem. 7.14, 
=> (t10, t20, ... , tn o) E po 

=> (Pt1 t2 ... tn)0 = T 
=> qio = T. 

(lb) -, qi E Cl> => qi ft Cl> 
=> Pt1t2 • • • tn ft Cl> 
=> ([ti], [t2], ... , [tn]) f P0 

by Lemma 7.11, 
by BSD Fl, 

by (1), 

by Def. 7.12 and Rem. 7.14, 
=> (t1°, t2°, ... , tn°) f P0 by Lemma 7.11, 
=> (Pt1t2 .. . tn)0 = ..L by BSD Fl, 
=> qiO = ..l. 

Case 2: qi is a negation formula. Similar to Case 2 in the proof of Tom. 
7.10.3. 

Case 3: qi is an implication formula. Similar to Case 3 in the proof of 
Tom. 7.10.3. 

Case 4: qi is a universal formula; say qi = Vx«. 

(4a) qi e Cl>=> Vx« e Cl> 
=> «(x/t) e Cl> for every term t by (5), 
=> «(x/t)0 = T for every term t by ind. hyp., 
=> «oCx/t) = T (where t = t0 ) for every term t 

=> «o(x/[t]) = T for every term t 
=> «o<xfu) = T for every u E U 

=> (Vx«) 0 = T 
=> qio = T. 

(4b) ,qi e Cl>=> ,Vx« e Cl> 

by Prob. 6.16, 
by Lemma 7.11, 

by Def. 7.3, 
by BSD F4, 

=> ,a(x/t) e Cl> for some term t by (6), 
=> «(x/t)0 = ..L for some term t by ind. hyp., 
=> «o(x/t) = ..L (where t = t0 ) for some term t 

by Prob. 6.16, 
=> «o(x/[t]) = ..L for some term t by Lemma 7.11, 
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⇒ «a(x/u) = ..L for some u E U 

⇒ (\fxo.)a = ..L 

⇒ qia = ..L. 

by Def. 7.3, 
by BSD F4, 

175 

■ 

We have thus shown that the valuation a - specified by Defs. 7.3, 7.6, 
7.8, 7.9 and 7.12- satisfies the Hintikka set cJ>. We shall now obtain an 
upper bound for the cardinality of the universe of a. 

7.16. Definition 

The cardinality of the set of all primitive symbols of ,2, is called the 
cardinality of .12 and denoted by 'll.1211'. 

7.17. Theorem 

Given a Hintikka set cJ> in .12, we can define an .12-valuation a such that 
the cardinality of the universe of a is at most ll.1211 and such that a I= cJ>. 

PROOF 

Take a as the valuation specified above. By AC, there exists a choice 
function on the universe U of a: a function that selects a single term in 
each E-class of terms. Since by Rem. 7.7(ii) distinct E-classes are 
disjoint, the choice function is an injection from U to the set of all 
.12-strings, whose cardinality, by Thm. 6.3.9, is exactly ll.1211- ■ 

§ 8. Prenex formulas; parity 
8.1 Definition 

(i) A formula is said to be prenex if it is of the form 

01x102x2 .. . Qkxdl, 

where k:;;,, 0 and, for each i, Q; is either \f or 3, and I} is 
quantifier-free (that is, contains no quantifiers). In this connec­
tion the string Q1x 1Q2x2 ... Qxk is called the prefix and I} the 
matrix. If moreover the variables x1, x2, ... , xk in the prefix are 
distinct and all of them are free in the matrix I}, then the formula 
is said to be prenex normal. 

(ii) A prenex normal form for a formula o. is a prenex normal 
formula logically equivalent to «. 



176 8. First-order logic 

8.2. Problem 

(i) Let qi be a formula containing n + 1 occurrences of V. Show how 
to find a formula of the form Qxlj1 - where Q is V or 3 and lj1 

contains only n occurrences of V - which is logically equivalent to 
qi. (Proceed by [strong] induction on deg qi. In the case where qi is 
«-.p, we may assume, by the induction hypothesis, that qi is 
logically equivalent to a formula of the form Qxy-.p or «-.Qyb, 
and by alphabetic change we can arrange that x is not free in p 
and y is not free in«. Then use Prob. 5.13(v)-(viii).) 

(ii) Hence show how to obtain a prenex normal form for any given 
formula. 

8.3. Definition 

By induction on deg a, we assign to each formula a a parity pr a, 
which is either O or 1, as follows: 

(1) If a is atomic, then pra = 0. 
(2) If « = -, p, then pr« = 1 - pr p. 
(3) If«= fH'Y, then pr«= (1 - prp) • pry. 
(4) If«= Vxp, then pr«= prp. 

We say that« is even or odd according as pr« is O or 1. 

8.4. Problem 

(i) Show that the set of all even formulas is a Hintikka set, and 
hence is satisfiable. 

(ii) Without using (i), define directly a valuation a such that a I=« iff 
a is even. (Take the universe of a to be a singleton.) 

§9. The first-order predicate calculus 

We designate as first-order axioms all ...e-formulas of the following 
eight groups: 

9.1. Axiom group 1 

All propositional axioms (7.6.3-7.6.7). 
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9 .2. Axiom group 2 

\Ix( o:-+fl)-+ Vxa-+ \Ix(}, for any formulas a and (l and any variable x. 

9.3. Axiom group 3 

a-+Vxa, for any formula a and any variable x that is not free in a. 

9.4. Axiom group 4 

Vxa-+a(x/t), for any formula a, variable x and term t. 

9.5. Axiom group 5 

t=t, for any term t. 

9.6. Axiom group 6 

S1=t1-+S2=t2-+•. ·-+Sn=tn-+fS1S2 · • • Sn=ft1t2 · · · tn, 

for any n;,;,, I, any 2n terms Si, s2, ... , Sn, ti, t2, ... , tn and any 
n-ary function symbol f. 

9.7. Axiom group 7 

for any n;,;,, I, any 2n terms s1, s2, ... , sn, t1, t2, ... , tn and any 
n-ary predicate symbol P. 

9.8. Axiom group 8 

Vx1 Vx2 ... \lxka, for any k;,;,, 1, any variables Xi, x2, ... , xk (not 
necessarily distinct) and any ,£-formula a belonging to any of the 
preceding axiom groups. 

9.9. Remarks 

(i) Six of the eight groups of axioms are given by means of schemes; 
but the first and last groups are miscellanies. We shall refer to 
these eight groups of axioms briefly as 'Ax. l', 'Ax. 2' and so on. 
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(ii) If.£ is without equality then Ax. 5, 6 and 7 are vacuous, because 
then there are no such .£-formulas. 

(iii) In Ax. 7, P can be the equality symbol=. In this case n = 2 and 
we obtain the axiom scheme 

s1 =t1-s2=t2-s1 =s2-t1 =tz. 

Fig. 2 of Rem. 7 .2(ii) can be used here too as a mnemonic, with 
the proviso that the equations are to be read off the square in the 
order: left side, right side, top, bottom. 

9.10. Definition 

(i) The {classical] first-order predicate calculus [in .£] (briefly, 
Fopcal) is the linear calculus based on the first-order axioms 
listed above, and on modus ponens as sole rule of inference. 

(ii) First-order deduction is defined in the same way as propositional 
deduction (Def. 7.6.8), except that 'propositional axiom' is re­
placed by 'first-order axiom'. 

(iii) We use 'I-' to denote first-order deducibility - that is, deducibility 
in Fopcal - in the same way as '1-0' was used to denote proposi­
tional deducibility. 

(iv) All terminological and notational definitions and conventions laid 
down in §§ 6-8 and § 12 of Ch. 7 in connection with t-0 and 
Propcal are hereby adopted, mutatis mutandis, in connection with 
I- and Fopcal. 

9 .11. Theorem 

The Cut Rule, the Deduction Theorem, the Inconsistency Effect, reduc­
tio ad absurdum and the Principle of Indirect Proof hold for Fopcal. ■ 

9.12. Remark 

In B&M a similar system of axioms is used, but Ax. 4 is subject to the 
proviso that t be free for x in «. The two versions of Fopcal are 
equivalent; the B&M version is more economical whereas the present 
one is a bit more user-friendly. 

9.13. Warning 

Versions of the classical Fopcal found in the literature fall into two 
groups. One group consists of strong versions that are equivalent to 
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ours. The other group consists of weak versions that are equivalent to 
each other, but not to ours. To describe the relationship between the 
two groups, let us denote by 'f-\1' the relation of deducibility in a weak 
version of Fopcal. The following four facts must be noted. 

(i) Whenever cJ> f- « then also cJ> f- \I «, but the converse does not 
always hold - it is in this sense that f- is stronger than f- v' _ 

(ii) For any set cJ> of formulas, let cJ> \I be a set of sentences obtained 
from cJ> upon replacing each qi E cJ> by \fx1 Vx2 ... Vxkqi, where 
xi, x2, ... , xk are the free variables of qi. Then cJ> f-v' « iff 
cJ> \I f- «. 

(iii) While DT holds for f- outright (see Thm. 9.11), only a restricted 
version of it, subject to certain conditions, holds for f-v'. 

(iv) An unrestricted rule of generalization holds for f- \I: if cJ> f-v' « then 
also cJ> f-\1 Vx«, where x is any variable. For f- only a restricted 
version of this rule holds, as we shall see. 

9.14. Theorem (Semantic soundness of Fopcal) 

If cJ> f- « then also cJ> t= «. In particular, if f-« then also t=«. 

PROOF 

Similar to the proof of the soundness of the propositional calculus 
(Thm. 7.6.12), except that now it needs to be verified that all first­
order axioms are logically valid. This is straightforward; DIY. ■ 

9.15. Theorem 

If cJ> f-0 « then also cJ> f- «. In particular, if f-0 « then also f- «. ■ 

9.16. Problem 

Prove that f- «(x/t)-3x«. 

9.17. Problem 

Prove that f- 3x(t=x), provided x does not occur int. Point out where 
you use the assumption about x and t. 
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§ 10. Rules of instantiation and generalization 
10.1. Theorem (Rule of Universal Instantiation) 

If 41» I- Vxo. then 41» I- o.(x/t) for any term t. 

10.2. Remarks 

(i) For brevity we shall refer to this rule as 'UI'. 

■ 

(ii) Clearly, UI holds for any linear calculus with modus ponens as a 
rule of inference and all formulas of the form Vxa.-+o.(x/t) as 
theorems. 

(iii) The only purpose of adopting Ax. 4 was to enable us to establish 
UL Now that we have done so, Ax. 4 need not be invoked again. 
Indeed, it is easy to see that any calculus for which UI and DT 
hold has all formulas of the form Vx«-+«(x/t) as theorems. 

(iv) Closely related to UI is the Rule of Existential Generalization 
(briefly, EG): If 41» I- o.(x/t) for some term t, then 41» I- 3xo.. This 
rule follows at once from Prob. 9.16. 

10.3. Definition 

A variable is said to be free in a set (or a sequence) of formulas, if that 
variable is free in some formula belonging to the set (or the sequence). 

10.4. Theorem 

Given a deduction D of a formula a from a set 41» of hypotheses, if x is 
a variable that is not free in 41» then we can construct a deduction D' of 
Vxo. from 41» such that x is not free in D' and every variable free in D' 
is free in D as well. 

PROOF 

Let D be <pi, Cf):z, ••• , q>n; so (l)n = a. We shall show by induction on k 
(k = 1, 2, ... , n) how to construct a deduction Dk of Vxq>k from 41», 
such that x is not free in Dk, and every variable free in Dk is free also 
in D. Then we can take Dn as the required D'. 

Case 1: <pk is an axiom of Fopcal. Then Vxq>k is likewise an axiom -
Ax. 8- and we can take Dk as this formula by itself. 

Case 2: q> k E C,. Then by assumption x is not free in q> k, and we can 
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take Dk to be 

(hyp.) 
(Ax. 3) 
(m.p.) 
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Case 3: qik is obtained by modus ponens from two earlier formulas in 
D. Then there are i, j < k such that cpi = (f);-+(flk• By the induction 
hypothesis, we already possess deductions with the required proper­
ties, D; and Di of Vxq>; and Vx(qir-(flk) respectively. It is now enough 
to show that from these two formulas the formula Vxq>k can be 
deduced by means of a deduction in which x is not free and whose free 
variables are all included among those of D. Here is such a deduction: 

Vxqi;, 

Vx( (fJ;-+qik}, 
Vx( (fJ;-+qik)-+ Vxq>;-+ \fxq>k, 

Vqi;-VX(f)k, 

Vxcpk. 

(hyp.) 
(hyp.) 

(Ax. 2) 
(m.p.) 
(m.p.) ■ 

10.5. Corollary (Rule of Universal Generalization on a Variable) 

If 4> f- « and x is not free in 4> then 4> f- Vx«. ■ 

10.6. Remarks 

(i) We shall refer to this rule briefly as 'UGV'. 
(ii) The only purpose of adopting Ax. 2, Ax. 3 and Ax. 8 was to 

enable us to prove Thm. 10.4. Now that this has been done these 
axioms need not be invoked again. 

(iii) It is obvious that if f-* is the relation of deducibility in any 
calculus for which UGV holds, then from f-*« it follows that also 
f-*Vx« for any variable x (cf. Ax. 8). If in addition DT also holds 
for f-*, then f-*«-+ Vx« for any formula « and any variable x that 
is not free in« (cf. Ax. 3). See also Prob. 10.7 below. 

(iv) Thm. 10.4 can be strengthened: it is enough to require that x is 
not free in any formula of cf> used as a hypothesis in the given 
deduction ( although it may be free in formulas of 4> that are not 
so used). To see this, let 4>0 be the set of those members of 4> 
that are used in the given deduction D, and apply the theorem to 
4>0. Similarly, in Cor. 10.5 it is enough to require that x is not 
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free in members of Cl> used as hypotheses in some particular 
deduction of « from Cl>. Similar remarks apply also to other 
results in the present section. 

(v) On the other hand, the proviso that x must not be free in the 
hypotheses used to deduce « is essential. For example, let « be 
x-=l=y, where x and y are distinct variables. If not for the proviso 
in Cor. 10.5, we would have x-=l=y f- 'Vx(x-=l=y) and hence, by Tom. 
9.14, also x-:/=y F 'Vx(x-=l=y). But this is absurd, as x-:/=y is clearly 
satisfied by any valuation that assigns x and y distinct values, 
whereas 'Vx(x -=I= y) is satisfied by no valuation. 

10.7. Problem 

Let f-* be the relation of deducibility in a calculus with modus ponens 
as a rule of inference and for which Cut, DT, UI and UGV hold. Show 
that f-*'Vx(«-+P)-+'Vx«-+'Vxp for any formulas « and p and any 
variable x. 

10.8. Definition 

For any formula « and variable x, we put 

3!xa =dt 3y'Vx(a++x=y), 

where y is the first variable in alphabetic order that differs from x and 
is not free in «. 

10.9. Problem 

(i) Verify that a F 3!x« iff a(x/u) F « for exactly one individual u in 
the universe U of a. 

(ii) Prove that f-3!x(t=x), provided x does not occur int. 

JO.JO. Theorem (Rule of Universal Generalization on a Constant) 

If Cl> f- «(x/c), where c is a constant that occurs neither in Cl> nor in a, 
then also «I> f- 'Vxa. 

PROOF 

Let D be a deduction cp1, q>z, ... , Cf>n of «(x/c) from «I>. Thus 
Cf>n = «(x/c). 

Now let y be a new variable, in the sense that it is distinct from x 
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and does not occur at all (either free or bound) in the deduction D. Let 
D' be the sequence q,1', q,2', ... , q,n' of formulas obtained from D 
upon replacing c everywhere by y. We claim that D' is a deduction of 
a(x/y) from (I), 

Indeed, for any k (where 1,,;;; k,,;;; n) three cases are possible. First, 
fflk may be an axiom. In this case it is easy to verify that fflk' is also an 
axiom. Second, CJlk may be a hypothesis, a member of (I). In this case 
fflk' is q,k itself, because c does not occur in (I). Finally, fflk may have 
been obtained by modus ponens from two earlier formulas in D. q,i 
and {flj• In this case it is obvious that CJlk' is obtained by modus ponens 
from {fl;' and q,/. Thus D' is a deduction of a(x/c)' from (I). 

We still have to show that a(x/c)' is in fact a(x/y). To see this, recall 
that c does not occur in a. Thus the occurrences of c in a(x/c) are just 
those that replace the free occurrences of x in a; there are no other 
occurrences of c in a(x/c). Now, a(x/c)' was obtained from a(x/c) 
upon replacing these occurrences of c by the new variable y. Thus 
a(x/c)' can be obtained directly from a upon replacing all free occur­
rences of x in a by y. But a(x/y) is obtained from « in precisely the 
same way, because y is a new variable, not occurring in a, so that the 
substitution of y for x in a does not involve any alphabetic changes. 

We have now established that D' is indeed a deduction of a(x/y) 
from «I>. Moreover, note that y does not occur in those members of (I) 

that are used as hypotheses in D': the only occurrences of yin D' are 
those that have replaced occurrences of c, but c does not occur in (I). 

Therefore by UGV we have (I) f- 'v'y[a(x/y)]. 
By UI we have 'v'y[a(x/y)] f- a(x/y)(y/x). But it is easy to see that 

a(x/y)(y/x) is in fact a itself; hence we have got 'v'y[a(x/y)] f- a. Now, 
x is clearly not free in 'v'y[a(x/y)], so we can use UGV again and 
obtain Vy[ a(x/y)] f- 'v'xa. 

By Cut we finally have (I) f- 'v'xa, as required. ■ 

10.11. Remark 

We shall refer to this rule briefly as 'UGC'. 

§ 11. Consistency 

As decreed in Def. 9.l0(iv), a set (I) of .£-formulas is [first-order] 
inconsistent (briefly, (l}f-) if both members of a contradictory pair can 
be deduced from (I) in Fopcal. Otherwise, cf> is [first-order] consistent. 
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We have already noted (Thm. 9.11) that IE, reductio and PIP hold 
for Fopcal. The other results of § 8 of Ch. 7 also have counterparts in 
Fopcal. In particular, the following two results are proved similarly to 
Thm. 7.8.4 and Cor. 7.8.5. 

11.1. Theorem 

If 4> I- then 4> I=. 

11 .2. Corollary (Consistency of Fopcal) 

It is impossible that both I- « and I- -, «. 

11.3. Remark 

■ 

■ 

This proof of the consistency of Fopcal uses semantic notions which, 
generally speaking, require a relatively powerful set-theoretic ambient 
theory (see Rem. 4.14). On the other hand, since deductions are finite 
objects, proof-theoretic notions such as deducibility and consistency 
are quite elementary. It is therefore natural to ask whether the 
consistency of Fopcal can be proved in an elementary way, without 
appealing to semantics. Such a proof is outlined in the following 
problem. 

11 .4. Problem 

(i) Show that if 4> I-« and 4> is a set of even formulas (see Def. 8.3) 
then « is even as well. (Verify that all the axioms of Fopcal are 
even formulas and that modus ponens yields an even conclusion 
from even premisses.) 

(ii) Hence prove the consistency of Fopcal. 

We shall now prove a few results that have no counterpart in the 
propositional calculus. These results, which will be needed later, are 
concerned with a consistent set (J) of formulas that contains formulas of 
the form ,Vx«. We add to (J) 'witnessing' formulas ,«(x/c), where 
the 'witness' c is a fresh constant, that does not occur in 4>. We prove 
that the resulting set is consistent. First we consider the case where just 
one witnessing formula is added; then a finite number; and then an 
arbitrary set of such formulas. 
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11.5. Lemma 

If cl> is consistent and -, \Ix« E cl>, and c is a constant that does not 
occur in cl>, then cl> U {-, «( x/c)} is also consistent. 

PROOF 

If cl>, -,of~• 1 , f-, then by PIP cl> f- «(x/c). As c does not occur in cl> and 
as we a1 urning that -, \Ix« E cl>, c cannot occur in « either. 
Therefore by UGC cl> f- \lxa. But this is impossible, since -, \Ix« E cl> 
and cl> was assumed to be consistent. ■ 

11.6. Problem 

Prove the Rule of Existential Instantiation with a Constant (EiC): If 
cl> is consistent and 3x« E cl>, and c is a constant that does not occur in 
«I>, then cl> U {«(x/c)} is also consistent. 

11.7. Lemma 

Let cl> be consistent; for each i = l, 2, ... , k, let -, \Ix;«; E cl>, and 
let c; be distinct constants that do not occur in cl>. 

Then cl> U {-, «;(x;/c;) : i = 1, 2, ... , k} is also consistent. 

PROOF 

DIY by [weak] induction on k, using Lemma 11.5. ■ 

11.8. Lemma 

Let cl> be consistent; let cl>' be obtained from cl> by adding, for every 
formula of the form -,\fxa in cl>, a 'witnessing' formula ,«(x/c), 
where c does not occur in cl> and where distinct constants c are used for 
distinct formulas of the form -, \Ix«. Then cl>' is consistent as well. 

PROOF 

It is enough to prove that every finite subset of cl>' is consistent. (Cf. 
Prob. 7.8.3(i): a similar result clearly holds for Fopcal.) However, a 
finite subset of cl>' contains only a finite number of the new witnessing 
formulas, and is therefore included in a set of the form cl> U 
{-,«;(x;/c;): i = 1, 2, ... , k}, which is consistent by Lemma 11.7. ■ 

In the sequel we shall need to consider, in addition to a given 
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first-order language J!.., languages obtained from it by adding new 
individual constants, which will be used in connection with Lemma 
11.8. We shall need to be sure that a consistent set of ,£-formulas 
remains consistent within such an extended language. 

This is not entirely obvious. Suppose ,,e+ is obtained from ,£ by 
adding a set C of new constants. Let «I» be a set of ,£-formulas that is 
consistent within J!... This means that there exists an ,£-formula a that 
is not deducible from «I» within J!... But in ,,e+ there are formulas that 
do not belong to ,£ and in particular there are more axioms -
additional members of the eight axiom groups - containing new 
constants. Can the formula a become deducible from 4> within ,,e+ by 
using these additional axioms? 

We shal1 now show that this is in fact impossible. 

11.9. Theorem 

Let «I» be a set of ,£-formulas that is consistent within J!... Let ,,e+ be 
obtained from ,£ by adding a set C of new individual constants. Then «I» 
is consistent within ,,e+ as well. 

PROOF 

By assumption, there is an ,£-formula a not deducible from 4> in J!... It 
is enough to show that this remains the case also in ,,e+. 

Suppose that D is a deduction of a from «I» within ,,e+. Since D is a 
finite sequence of ,,e+ -formulas, it can contain only a finite number of 
new constants, say c1, c2, ... , Cm. Now choose m distinct variables y1, 
Y2, ... , Ym that do not occur {free or bound) in D and let D' be 
obtained from D upon replacing c1, c2, ... , Cm throughout by y1, y2, 

... , y m respectively. 
An argument similar to that used in the proof of Thm. 10.10 shows 

that D' is a deduction from 4>. Indeed, when D was transformed into 
D' any axiom used in D was transformed into an axiom; any hypothe­
sis remained unchanged (since «I» is a set of ,£-formulas, it contains no 
new constants); and any application of modus ponens in D was 
transformed into an application of modus ponens. Now, D' is a 
deduction within J!.., because the new constants that were present have 
been supplanted by variables. The last member of D' is still a, which 
has remained unchanged as it does not contain any new constants. So 
now we have a deduction of a from 4> within ,£ - contrary to our 
original assumption. ■ 
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§ 12. Maximal consistency 

By Def. 9.lO(iv), a set of .£-formulas is maximal {first-order] consistent 
[in .I!] if it is consistent but not included in any other consistent set of 
..e-formulas. As usual, we omit the qualifications 'first-order' and 'in ..e• 
when there is no risk of confusion. The following two theorems are 
proved in exactly the same way as their propositional counterparts. 

12.1. Theorem 

If cl> is a maximal consistent set and cl> I- «, then « e cl>. ■ 

12.2. Theorem 

A consistent set cl> is maximal consistent if! for every formula « either 
« e cl> or -,a e cf>. ■ 

12.3. Remark 

From Thm. 12.2 it follows that if .fl. is extended to a richer language 
.J!.,+, by adding new extralogical symbols (for example, new constants) 
then a set cf> of .£-formulas that is maximal consistent in .£ will no 
longer be so in ..e+. Indeed, if « is an ..e+ -formula containing a new 
symbol ( one that does not belong to ..e) then « is not an ..e-formula, so 
neither« nor -,a can belong to cl>. Of course, by Tom. 11.9 cl> is still 
consistent in .£+. 

The following result is proved similarly to Tom. 7.12.6(i). 

12.4. Theorem 

For any valuation a, the set { q>: q>a = T} is maximal consistent. ■ 

The counterpart of Tom. 7.12.6(ii) is also true: every maximal [first­
order] consistent set has the form { q> : q>a = T} for a unique valuation 
a. But in order to prove this we must first show that every maximal 
consistent set is satisfiable. In propositional logic we were able to show 
that every maximal [propositionally] consistent set is a [propositional] 
Hintikka set, and hence satisfiable. Here matters are not so simple. 
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12.5. Theorem 

If cf> is maximal consistent, it fulfils conditions (1)-(5) and (7)-(9) of 
Def. 7.1. 

PROOF 

Conditions (1)-(4) are verified as in the proof of Thm. 7.12.5. Condi­
tions (5) and (7)-(9) are verified by invoking UI and Ax. 5-Ax. 7 
respectively and using Thm. 12.1. ■ 

The following problem provides a counter-example showing that a 
maximal consistent set need not fulfil the missing condition (6) of Def. 
7.1, and hence need not be a Hintikka set. 

12.6. Problem 

Let .£ be a first-order language with equality but without any extra­
logical symbols. Let o be the .£-valuation whose universe is 
U = {u, v}, where u and v are distinct, and such that x0 = u for every 
variable x. Let cf>= {qi: q>0 = T}, so that by Thm. 12.4 cJ> is m~mal 
consistent. Let « be the formula x=y, where x and y are distinct 
variables. 

Show that -, Vx« e cf> but there is no .£-term t such that 
-,a(x/t) e cf>. (Note that the only terms of.£ are the variables.) 

§ 13. Completeness 
13.1. Preview 

As in propositional logic, the [ strong] completeness of Fopcal will 
follow immediately once we show that any given consistent set cf> of 
.£-formulas is satisfiable. Also, exactly as in propositional logic, it is 
easy to see that the set of all consistent sets of .£-formulas is of finite 
character (cf. proof of Thm. 7.13.1); hence, by the Tukey-Teichmiiller 
Lemma (Thm. 5.2.8), any consistent cf> is included in some 'I' that is 
maximal consistent within .£. However, since a maximal consistent set 
may not be a Hintikka set, we have no direct way of showing that 'I' is 
satisfiable. 

It is clear from Thm. 12.5 and Prob. 12.6 that the only reason that 
may prevent 'P from being a Hintikka set is the absence in it of 
witnessing formulas. To overcome this obstacle, we use Lemma 11.8, 
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and add to 'I' enough witnessing formulas, using constants as witnes­
ses. However, in order to make sure that these witness constants do 
not occur in 'I' (as Lemma 11.8 requires) we extend .£ to a richer 
language .£1 by adding an adequate supply of new constants. By Thm. 
11.9 'I' is still consistent in .l!.i, so we may apply Lemma 11.8 there. Let 
4>1 be the set so obtained. Unfortunately, in .£1 'I' is no longer 
maximal consistent (see Rem. 12.3), nor does the addition of new 
witnessing formulas produce a maximal consistent set: all we can say 
about 4>1 is that it is consistent. It seems as though we are back where 
we started. 

Not despairing, we extend 4>1 to a maximal consistent set '1'1 within 
.£1. Then we extend .£1 to a richer language .£2 by adding yet more 
new constants. and get 4>2 from '1'1 in the same way as we got 4>1 

from 'I'. 
The good news is that by iterating this procedure ad infinitum we 

obtain in the limit a set that is not only maximal consistent but also a 
Hintikka set, and includes our original set 4>. 

Throughout this section we shall be working within set theory (that 
is, assume it as an ambient metatheory). In particular, as explained in 
Rem. 6.1.8, we shall identify the natural numbers with the finite 
ordinals (a.k.a. finite cardinals). 

13.2. Definition 

A set 4> of .£-formulas is a Henkin set in .J2 if 4> is maximal consistent 
in .£ and, for any formula « and variable x, if -, Vx« E cJ> then 
,a(x/t) e cJ> for some term t. 

13.3. Remark 

From Thm. 12.5 and Def. 7.1 it follows at once that a Henkin set in.£ 
is also a Hintikka set in .JZ. Hence by Thm. 7.17 such a set is satisfied 
by some valuation whose universe has cardinality not greater than 11.£11-

From now until the end of the proof of Thm. 13.8 we let cJ> be a 
fixed but arbitrary consistent set of .£-formulas. 

By [weak] induction on n we define for each natural number n a 
first-order language .i!.n, a set cJ> n of .l!.n-formulas, and a set 'I' n of 
.£n-formulas that is maximal consistent in .l!.n. 
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13.4. Definition 

Basis. We put .P.0 = ,/2, and 4l0 = fll. As 'Po we choose some set of 
formulas that is maximal consistent in .P.o and includes 4l0 . (The 
existence of such 'Po is ensured by the Tukey-Teichmilller Lemma.) 

Induction step. Assume as induction hypothesis that ,/2,n, 4l n and 'I' n 

have been defined, and that 'I' n is a set of .P.n-formulas that is maximal 
consistent within .P.n. 

For each .P.n-formula qi, let Cq, be a new constant (not present in ,/2,n) 

such that if qi and lj, are distinct formulas then cq, and C,p are distinct 
constants. Let Cn be the set of all these new constants: 

Cn = {cfll: qi is an .P.n-fonnula}. 

We define .P.n+l as the language obtained by adding the set of 
constants Cn to .P.n. 

Since 'Pn is maximal consistent in .P.n, it follows from Thm. 11.9 that 
it is still consistent (albeit not maximally so) in the richer language 
.P.n+l· We define flln+l to be the set of formulas obtained from 'Pn as 
follows: for each formula qi e 'I' n of the form -, Vx«, add to 'I' n the 
formula ,«(x/cfll), where cfll is the new constant in Cn corresponding 
to this particular formula qi. Clearly, flln+l is a set of .P.n+1-formulas. 
And since 'I' n is a set of ,/2,n-formulas, none of these new constants 
occur in it, so by Lemma 11.8 flln+l is consistent. 

Finally, we choose as 'Pn+l some set of formulas that is maximal 
consistent in .P.n+l and includes flln+l· (The existence of such a set is 
again ensured by the Tukey-TeichmUller Lemma.) 

This concludes our inductive definition. 

13.5. Remark 

From Def. 13.4 it is evident that the flln and 'I' n form a chain of sets: 

4l = fllo k 'Pok fll1 k '1'1 ... k flln k 'Pn k flln+1 k 'Pn+1 k ... 

13.6. Definition 

We define .P.w as the union of all the languages .P.n; and 'I' OJ as the 
union of all the sets 'I' n for n = 0, 1, 2, .... 

Thus .P.OJ is obtained from .P. by adding to the latter the union of all 
the sets Cn, for n = 0, 1, 2, ... ; and an .P.OJ-formula « belongs to 'I' OJ 
iff it belongs to 'I' n for some n. 
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13.7. Remark 

From Rem. 13.5 it follows that an .£ro-formula a belongs to 'I' w iff 
there is some n such that a E 'I' k for all k ;;;,: n. 

13.8. Theorem 

'I' w is a Henkin set in .flw. 

PROOF 

First, we show that 'I''° is consistent. For the same reason as in 
propositional logic (cf. Prob. 7.8.3), it is enough to show that every 
finite subset of 'I' w is consistent. So let ai, a2, ... , am be members of 
'I' w; we shall show that { a1 , a2, ... , am} is consistent. 

Since a 1 E 'l'w, it follows (see Rem. 13.7) that there is a number n1 

such that a1 E 'I' k for all k ;;;,: n1. Similarly, there is a number n2 such 
that cr.z E 'I' k for all k;;;,: n2. And so on for each of the aj, where j = 1, 
2, ... , m. Now let k be any number greater than them numbers n1, 

n2, ... , nm. Then clearly aj E 'I' k for j = 1, 2, ... , m. It follows that 
{ a1, a2, ... , am} C 'I' k· But by Def. 13.4 'I' k is maximal consistent in 
.£k, hence consistent. So its subset {a1, a2, ... , am} is certainly 
consistent, as claimed. 

By Tom. 12.2, in order to show that 'I' w is maximal consistent in .flw 

it is enough to show that for any .L'.w-formula a, either a or -,a is in 
'I' w· So let a be any .flw-formula. Now, a can only contain a finite 
number of the new constants (those not in the original language .,£'.); 
say these constants are c1, c2 , ... , Cm. An argument entirely similar to 
the one used in the preceding paragraph shows that if k is a sufficiently 
big number then alJ these m constants are present in .£k. Thus a is in 
fact an .£k-formula for some k. But by Def. 13.4 'I' k is maximal 
consistent in .,,l'.k, so a or -, a must belong to 'I' k and hence also to 'I' w, 

which includes 'I' k· 

Having proved that 'I' w is maximal consistent in ..f!.w, we need only 
show that it fulfils the additional condition: given that -, Vxa E 'I' ro we 
have to show that -,a(x/t) E 'l'w for some term t. However, if 
-,\/xa E 'Pro then by Def. 13.6 -,\/xa E 'Pn for some n. Therefore by 
Def. 13.4 a formula -,a(x/c) - where c is a suitably chosen new 
constant belonging to C n - was one of the formulas added to 'I' n to 
obtain cI>n+l· Thus -,a(x/c) E cI>n+l C 'Pn+l C 'l'w. ■ 
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13.9. Theorem 

If cJ» is a consistent set of .12-formulas then cJ» is satisfied by some 
.12-valuation whose universe has cardinality not greater than 11.JZII-

PROOF 

We have specified in Defs. 13.4 and 13.6 how to extend the language 
.J2 to a language .12.w by adding new constants, and how to define a set 
\JI w of .12.w-formulas such that cJJ {:;;; 'P w; and we have shown in Thm. 
13.8 that 'P w is a Henkin set in .12.w. 

By Rem. 13.3, lJI w - and hence also its subset cJJ - is satisfied by 
some .12.w-valuation, say aw, as obtained in § 7, whose universe has 
cardinality not greater than 11.12.wll-

Let a be the .12-valuation that agrees with aw on all the variables, as 
well as on all the extralogical symbols of .12. (The only difference 
between aw and a is that the former assigns interpretations to the new 
constants, which are not in .12, while a ignores them.) Then clearly a is 
an .12-valuation that satisfies cJJ. 

The universe of a is the same as that of aw; so we shall complete the 
proof by showing that ll.12.wll = 11.JZII- For brevity, we put A= 11.JZII. Of 
course, A is an infinite cardinal, because the set of variables is infinite; 
in fact, its cardinality is ~0 . 

The set of all .J2-formulas is included in the set of all .12-strings, hence 
by Thm. 6.3.9 the cardinality of the former set is :;;;;i. (In fact, it is 
quite easy to show that its cardinality is exactly i, but we shall not need 
this.) Recall that .120 is .J2 itself; so by Def. 13.4 C0 is equipollent to the 
set of .12-formulas, hence JCol :;;;; A. By Def. 13.4 and Thm. 6.3.6 we 
have ll.12111 = A. The same argument shows, by induction on n, that 
ll.12.nll = A and ICnl ,s.;; A for all n. 

It now follows that IU{Cn: n < w}l :s.;; ~o • A, which by Thm. 6.3.5 is 
exactly A. Using Tom. 6.3.6 as before, we see that ll.12.wll = A. ■ 

We can now prove 

13.10. Theorem (Strong semantic completeness of Fopcal) 

For any set cJ» of formulas and any formula a, if cJJ I= a then cJ» 1- a. 

PROOF 

Similar to that of Thm. 7 .13.2. ■ 
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13.11. Remarks 

(i) Conjoining Thms. 9.14 and 13.10 we have 

cf) I= « <=> cf) I- «. 

Similarly, from Thms. 11.1 and 13.9 we get 

cf) I= <=> cf) I- . 
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(ii) As pointed out in Rem. 4.14, the notions of logical consequence 
and (un)satisfiability are essentially set-theoretic and thus pre­
suppose a fairly strong ambient theory. In contrast, as pointed 
out in Rem. 11.3, the notions of deducibility and (in)consistency 
in Fopcal are relatively elementary and do not require an ambient 
theory that treats infinite pluralities as objects. It is therefore 
highly remarkable that logical consequence and unsatisfiability 
turn out to be equivalent to deducibility and inconsistency, 
respectively. Of course, the proof of this equivalence required 
rather powerful set theory. 

(iii) Note however that if the primitive symbols of .£ are given by 
explicit enumeration, the proof can be made more elementary: in 
Def. 13.4, instead of invoking the TT Lemma we can obtain the 
maximal consistent sets 'Pn as outlined in Rem. 7.13.3(i). 

We conclude this chapter with two very important results. 

13.12. Theorem (Compactness theorem for first-order logic) 

If cf> is a set of formulas such that every finite subset of cf> is satisfiable, 
then so is cf> itself. 

PROOF 

Similar to that of Thm. 7.13.4. ■ 

13.13. Theorem (Lowenheim-Skolem) 

Let cf> be a satisfiable set of .£-formulas. Then there exists a valuation a 
such that a I= cf> and such that the universe of u has cardinality not 
greater than 11.£11-

PROOF 

By Thm. 11.1, cf> is consistent. Now apply Thm. 13.9. ■ 
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Facts from recursion theory 

§ 1. Preliminaries 
I.I. Preview 

In this chapter we put formal languages on one side and present some 
concepts and results from recursion theory that will be needed in the 
sequel. 

Recursion theory was created in the 1930s by logicians (Alonzo 
Church, Kurt Godel, Stephen Kleene, Emil Post, Alan Turing and 
others) mainly for the sake of its applications to logic. But the theory 
itself belongs to the abstract part of computing science. It is concerned 
with computability - roughly speaking, the property of being mechan­
ically computable in principle (ignoring practical limitations of time 
and memory storage space). 

Our exposition will be neither rigorous nor self-contained. For some 
of the key concepts, we shall provide intuitive explanations rather than 
precise definitions. Instead of proving all theorems rigorously, we shall 
in most cases present intuitive arguments. One major result - the 
MRDP Theorem - will be stated without proof. 

For a rigorous coverage of all this material, see Ch. 6 of B&M. 
Alternative presentations of recursion theory can be found in books 
wholly devoted to this subject, as well as in books that combine it with 
logic. A classic of the first kind is 

Hartly Rogers, Theory of recursive functions and effective 
computability. 

A fairly recent example of the second kind of book is 

Daniel E. Cohen, Computability and logic. 

194 
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1.2. Conventions 

(i) In this chapter, by n-ary relation we mean n-ary relation on the 
set N of natural numbers - that is, a subset of Nn. In particular. 
a property is a subset of N. By relation we mean n-ary relation 
for some n ~ 1. 

(ii) By n-ary function we mean an n-ary operation on N (see Defs. 
8.3.2 and 8.3.4). In particular, a 0-ary function is just a natural 
number. By function we mean n-ary function for some n ~ 0. 

(iii) We use small italic letters - especially 'a', 'b', 'c', 'x', 'y' and 'z', 
with or without subscripts - as informal variables ranging over 
natural numbers; that is, the values of these variables are always 
assumed to be natural numbers. 

(iv) We use small German letters as informal variables ranging over 
n-tuples of natural numbers. For the i-th component of such an 
n-tuple we use the corresponding italic letter with subscript 'i'. 
For example, a= (ai, a2, ... , an) and x = (x1, Xz, ... , Xn). 

(v) If Pis an n-ary relation, we often write 'Pa' instead of 'a e P'. 

1.3. Definition 

(i) We define propositional (a.k.a. Boolean) operations on relations 
as follows. If P is an n-ary relation, then its negation -, P is 
defined by stipulating, for all x e Nn: 

-, Px <=> Px does not hold. 

If P and Q are n-ary relations, we define their disjunction P v Q 
by stipulating, for all x E Nn: 

(P v Q)x <=> Px or Qx. 

Other propositional operations, such as conjunction and implica­
tion, can be defined in the obvious way, either directly or from 
negation and disjunction. We shall usually write, e.g., 'Px v Qx' 
instead of '(P v Q)x'. 

(ii) If Q is an (n + 1)-ary relation, we can obtain an n-ary relation P 
by stipulating, for all x E Nn: 

Px <=> Q(x, y) holds for some y. 

We shall write, more briefly, Px <=> 3yQ(x, y ), and say that P is 
obtained from Q by existential quantification. 
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The operation of universal quantification is defined in the 
obvious way, directly or in terms of negation and existential 
quantification. 

(iii) The propositional operations as well as the two quantifications 
are called logical operations. 

1.4. Warning 

Take care not to confuse '-, ', 'V', etc. with their bold-face counter­
parts, '-, ', 'V', etc. The former denote operations on relations; the 
latter denote symbols in a formal language ( which we are not studying 
in this chapter). The typographical similarity between the two sets of 
symbols is an intended pun and a mnemonic device, as will become 
clearer in the next chapter. 

§ 2. Computers 

We shall define the central concepts of recursion theory in terms of the 
notion of computer. The computers we have in mind are like real-life 
programmable digital computers, but idealized in one crucial respect 
(see Assumption 2.6 below). To help clarify this notion, we state in 
informal intuitive terms the most essential assumptions we will make 
about computers and the way they operate. 

2.1. Assumption 

A computer is a digital calculating machine: its states differ from each 
other in a discrete manner. (This rules out analogue calculating devices 
such as the slide-rule, whose states [are supposed to] vary continu­
ously.) 

2.2. Assumption 

A computer is a deterministic mechanism: it operates by rigidly and 
deterministically following instructions stored in it in advance. (This 
rules out resort to chance or random devices.) 

2.3. Assumption 

A computer operates in a serial discrete step-wise manner. 
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2.4. Assumption 

A computer has a memory capable of storing finitely many [represen­
tations of] natural numbers - which may be part of the input or the 
output or an intermediate stage of a computation - and instructions. 
(Without loss of generality, we may assume that instructions are coded 
by natural numbers, as is in fact the case in present-day programmable 
computers; so the content of the memory is always a finite sequence of 
numbers.) 

2.5. Assumption 

A computer operates according to a program, a finite list of instruc­
tions, stored in it in advance (see Assumptions 2.2 and 2.4). Each 
instruction requires the computer to execute a simple step such as to 
erase a number stored in a specified location in the memory, or 
increase by 1 the number stored in a specified location, or print out as 
output the number stored in a specified location, or simply to stop. 
After each step, the next instruction to be obeyed is determined by the 
content of the memory (including the program itself). 

2.6. Assumption 

The computer's memory has an unlimited storage capacity: it is able to 
store an arbitrarily long finite sequence of natural numbers, each of 
which can be arbitrarily large. (Thus, although the amount of informa­
tion stored in the memory is always finite, we assume that this amount 
has no upper bound.) 

2.7. Remarks 

(i) Assumptions 2.1-2.5 are perfectly realistic: they are in fact 
satisfied by many existing machines, from giant super-computers 
down to modest programmable pocket calculators. Assumption 
2.6, in contrast, is a far-reaching idealization: a real-life machine 
can only store a limited amount of information. While the storage 
capacity of many real machines can be enhanced by adding on 
peripheral devices such as magnetic tapes or disks, this cannot be 
done without limit. 

(ii) In connection with Assumption 2.5 it is interesting to note that 
the repertory of commands that a computer is able to obey ( that 
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is, the range of elementary steps it is able to perform) need not 
be at all impressive: in this respect the powers of a modest 
programmable pocket calculator are more than adequate. Real­
life computing machines vary enormously in memory size and 
speed of operation. But if we assume that restrictions of memory 
size are removed, then the only significant difference is that of 
speed. Provided it had access to unlimited storage capacity, a 
machine with fairly rudimentary powers could simulate (if only at 
much reduced speed) the operation of any computer that has so 
far been constructed or described. 

(iii) Several computers can be combined to form a more complex 
system, which can itself be regarded as a computer. 

§ 3. Recursiveness 
3.1. Definition 

Let P be an n-ary relation. By a decide-P machine we mean a 
computer with an input port and an output port, which is programmed 
so that if any n-tuple x e Nn is fed into the input port then after a 
finite number of steps the computer prints out an output - say 1 for yes 
and O for no - indicating whether Px holds or not. 

A relation P is recursive ( or computable) if a decide-P machine can 
be constructed (that is, if a computer can be programmed to act as a 
decide-P machine). 

3.2. Remarks 

(i) Naturally, the length of the computation, the number of steps 
required by the machine to produce an output, will in general 
depend on the input n-tuple x. We impose no bound on the 
length of the computation but merely require it to be finite. Thus 
we ignore real-life limitations of time: in practice a computation 
that may take a million years is useless. 

(ii) To be precise we should have said that the inputs fed into the 
computer are not n-tuples of numbers (which are abstract enti­
ties) but representations of such n-tuples. Similarly what the 
computer prints out is not a number, 0 or 1, but a representation 
of a number. Similar - quite harmless - lapses will be committed 
throughout this chapter. 
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(iii) Any relation you are likely to think of, off-hand, is certain to be 
recursive - unless you are already familiar with some of the tricks 
of recursion theory or are exceptionally ingenious. (We shall 
meet examples of non-recursive relations in the next chapter.) 

(iv) Nevertheless, set-theoretically speaking, the overwhelming ma­
jority of relations are non-recursive. (Here is an outline of a 
proof. Working within ZF set theory, we identify N with the set 
of finite cardinals. Using Thm. 6.3.7 and Cantor's Thm. 3.6.8, it 
is easy to show that for each n ;;,, 1 the set of all n-ary relations 
has cardinality >~0 . On the other hand, a computer program is a 
finite string of instructions, each of which is a finite string of 
symbols in some programming language with a countable set of 
primitive symbols. Hence by Tom. 6.3.9 the set of all programs is 
countable. If follows that the set of all recursive relations must 
also be countable.) 

3.3 Definition 

Let P be an n-ary relation. By an enumerate-P machine we mean a 
computer with an output port and programmed so that it prints out, 
one by one, all the n-tuples x E Nn for which Px holds, and no others. 

A relation Pis said to be recursively enumerable - briefly, r.e. - if 
an enumerate-P can be constructed (that is, if a computer can be 
programmed to act as an enumerate-P machine). 

3.4. Remarks 

(i) If Pis infinite (that is, holds for infinitely many n-tuples) then an 
enumerate-P machine, once switched on, will never stop unless it 
is switched off. We impose no bound on the number of computa­
tion steps the machine may make between printing out two 
successive n-tuples; we only require it to be finite. 

(ii) An r.e. relation is sometimes said to be semi-recursive. The 
reason for this will soon become clear. 

3.5. Lemma 

The n-ary relation Nn (the set of all n-tuples of natural numbers) is r.e. 
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PROOF 

All n-tuples can be arranged in some systematic order. For example, 
we may order them according to the following two rules: 

1. If the maximal component of a is smaller than that of b, then a 
will precede b. 

2. All n-tuples with the same maximal component will be ordered 
lexicographically. 

(The maximal component of an n-tuple x is the greatest among the 
numbers Xi, x2, ... , Xn. Lexicographic order is the order in which 
words are listed in a dictionary. Here we regard an n-tuple x as a 
'word' with x1 as its first letter, x2 as its second, and so on.) As an 
illustration, take n = 2. The pairs of natural numbers will be ordered 
as follows (cf. proof of Thm. 6.3.2): 

(0, 0), 
(0, 1), (1, 0), (1, l}, 
(0, 2), (1, 2), (2. 0). (2, 1), (2, 2), 
(0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), .... 

Clearly, this procedure can be mechanized: a computer can be pro­
grammed to spew out all n-tuples of natural numbers in this order. ■ 

3.6. Theorem 

Let P be an n-ary relation. Then P is recursive iff both P and -, P 
are r.e. 

PROOF 

(=>). Suppose P is recursive. Then we can construct a decide-P 
machine en. As we have just seen, we can also construct an enumerate­
Nn machine Ii. We set Ii to work, and compile a final output by 
modifying the output of Q: as follows. We feed a copy of each n-tuple a 
that Cf prints out into en. If the latter says that Pa holds, a is left in the 
final output; but if en says that Pa does not hold, then a is eliminated 
from the final output. This procedure can be mechanized, yielding an 
enumerate-P machine. An enumerate-, P machine can be constructed 
in a similar way. 

(<=). Now suppose both P and -, P are r.e. Then we have at 
our disposal both an enumerate-P machine and an enumerate-, P 
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machine. These can be used to construct a (rather inefficient but quite 
legitimate) decide-P machine, as follows. We set both enumerating 
machines to work. Given any n-tuple a E N", the outputs of both 
machines are monitored, until a emerges from one of them (this is 
bound to happen sooner or later!) and then it is noted from which of 
our two machines a has emerged. (All this monitoring and noting can 
of course be done automatically.) If a has come out of the enumerate­
p machine, then Pa holds; whereas if a has come out of the other 
machine, Pa does not hold. ■ 

3.7. Remarks 

(i) Note that in the second half of this proof we needed both 
enumerating machines. If we only had an enumerate-P machine, 
and we tried to use it for testing whether Pa holds, then if the 
answer happened to be negative we would never find that out. 

(ii) By Thm. 3.6, every recursive relation is r.e. We shall see in the 
next chapter that the converse of this is false. 

3.8. Theorem 

If Pis obtained from Q by existential quantification and Q is r.e., then 
Pis r.e. as well. 

PROOF 

Suppose Px = 3yQ(x, y). Since Q is r.e., we can construct an 
enumerate-Q machine. Set this machine to work, and let its output be 
modified as follows. Whenever an (n + 1)-tuple (a, b) pops out, the 
last component b is erased, leaving the n-tuple a. (This modification 
can of course be done automatically.) It is easy to see that we now 
have an enumerate-P machine. ■ 

3.9. Definition 

Let f be an n-ary function. By a compute-[ machine we mean a 
computer with an input port and an output port, and programmed so 
that if any x E N" is fed into the input port, then after a finite number 
of steps the computer prints out as output the value fx. 

We say that f is a recursive (or computable) function if a compute-/ 
machine can be constructed. 
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Recall that the graph of an n-ary function f is the (n + 1)-ary relation 
P such that 

P(x, y) <=> (fx = y) 

for all x e Nn and all y e N. (As a matter of fact, if n ~ 1 then from 
Convention 1.2(ii), Def. 8.3.2 and Prob. 2.3.3 it follows that the graph 
of f is f itself; but this is not important just now.) 

3.10. Theorem 

For any function f, the following three conditions are equivalent: 

(i) f is a recursive function (in the sense of Def. 3.9); 
(ii) the graph off is recursive (in the sense of Def. 3.1); 

(iii) the graph off is r.e. 

PROOF 

Let f be an n-ary function, and let P be its graph. 
(i) => (ii). Assuming that f is recursive, we can construct a compute-/ 
machine (L We can employ <r to find out, for any (n + 1)-tuple 
( a, b) e Nn, whether P( a, b) holds or not, as follows. 

Given any (n + 1)-tuple ( a, b), we split it into the n-tuple a and the 
number b. We make a record of the latter, and feed the former into <r. 
When <r prints out the value fa, we compare it with our record of b 
and see whether they are equal. P(a, b) holds iff fa= b. 

The procedure described in the previous paragraph can obviously be 
automated, yielding a decide-P machine. 
(ii) => (iii) is immediate from Thm. 3.6. 
(iii)=> (i). Assuming that P is r.e., we can construct an enumerate-P 
machine Q:. We can use Q: in the following way to calculate fa for any 
a E Nn. 

Upon receiving a, we set Q: to work and monitor its output, checking 
each (n + 1)-tuple as it is printed out, to see whether it is of the form 
(a, b), having a as its first n components. Sooner or later, such an 
(n + 1)-tuple is bound to tum up. When it does, we know that its last 
component, b, is the value fa. 

The procedure described in the previous paragraph can obviously be 
automated, yielding a compute-/ machine. (No prizes for efficiency, 
but it is perfectly legitimate.) ■ 
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3.11. Remarks 

(i) Recursion theory studies functions of a more general kind: an 
n-ary function is allowed to have any subset of Nn as its domain 
( instead of the whole of N n, as we insist here). The definition of 
a compute-[ machine must then be modified by stipulating that 
the machine prints out the correct value f o. for any input o. e 
domf; but for an input o. it domf it goes on computing for ever, 
without producing any output. For these more general functions 
it is not difficult to show that conditions (i) and (iii) of Thm. 3.10 
are still equivalent to each other; but they do not imply condition 
(ii). 

(ii) The first rigorous description of a computer satisfying Assump­
tions 2.1-2.6, devised expressly for the purpose of explicating the 
intuitive notion of computability, was published by Turing in 
1936. Since then many alternative machines satisfying Assump­
tions 2.1-2.6 have been invented. (For a description of Turing 
machines see the books by Rogers and D. E. Cohen cited in § 1; 
the latter contains also descriptions of several other alternatives.) 
In each case it was easy to prove that the operation of the 
alternative machine can be simulated by a Turing machine; the 
converse also holds, provided the alternative machine satisfies 
some modest requirements. 

This and other evidence lends overwhelming support to the 
claim - known as Church's Thesis - that any function that is 
mechanically computable in the intuitive sense is computable by a 
Turing machine (or, for that matter, by one of its equivalent 
alternatives). Church's Thesis is equivalent to the claim that any 
relation that is mechanically decidable ( or enumerable) in the 
intuitive sense can be decided (or enumerated, respectively) by a 
Turing machine. 

(iii) Although a recursive or r.e. relation may well be infinite in 
extension, and a recursive function is necessarily infinite in 
extension, each such entity is completely determined by a com­
puter program, which is a finite object. For this reason, recursion 
theory does not on the whole require powerful set-theoretic 
presuppositions. Even without such presuppositions it is possible 
to treat recursive and r.e. relations and recursive functions as 
objects: if need be, programs can play this role vicariously, 
standing in for the more abstract entities they characterize. 
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§ 4. Closure results 
4.1. Theorem 

The class of recursive relations is closed under all propositional opera­
tions. 

PROOF 

Let P and Q be n-ary recursive relations. Thus we can construct a 
decide-P machine ttlp and a decide-Q machine tt>Q. Then ttlp can be 
turned into a decide-, P machine, simply be reversing its outputs. 
Therefore -, P is recursive. 

To construct a decide-(P v Q) machine, let ttlp and tt>Q operate 
alongside each other. Given any n-tuple a e Nn, a copy of it is fed into 
each of these two machines. Their two outputs are channelled into a 
collating unit. This unit checks the two outputs, and if at least one of 
them is 'yes' it gives out a final output 'yes'; but if both ttlp and tt>Q say 
'no', then the collating unit gives out a final output 'no'. We have now 
got a decide-(P v Q) machine, showing that P v Q is recursive. The 
other Boolean operations can be reduced to negation and disjunction. 

■ 

4.2. Remark 

According to Assumption 2.3, a computer is supposed to operate in 
a serial manner. This seems to be violated by the decide-(P v Q) 
machine just described, which has ttlp and tt>Q as two components 
working in parallel. The apparent difficulty can be resolved by assum­
ing that the two components operate alternately, as in bipedal walking: 
each one pausing while the other performs a step. 

4.3. Theorem 

The class of r. e. relations is closed under disjunction, conjunction and 
existential quantification. 

PROOF 

Let P and Q be n-ary r.e. relations. So, we can construct an 
enumerate-P machine ijp and an enumerate-Q machine ijQ· We set 
these two machines to operate alongside each other (see Rem. 4.2). 

To get an enumerate-(P v Q) machine, we channel the outputs of 
Ci p and CiQ into a collating unit that combines these two outputs into a 
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single list. The combined list is the output of an enumerate-(P v Q) 
machine. Hence P v Q is r.e. 

To get an enumerate-(P" Q) machine, we need, in addition to a 
collating unit, two waiting lists or buffers in which information can be 
accumulated - one each for P and Q. Initially both buffers are empty. 
The collating unit examines in tum each fresh n-tuple that pops out of 
Ci p or Q:Q. The two buffers as well as a final list are compiled according 
to the following rules. Each time a fresh n-tuple a comes out of Cip, the 
collating unit checks whether an identical n-tuple is already stored in 
the Q-buffer. If a is found to be in the Q-buffer, then it is put onto the 
finaJ list; but if a is not in the Q-buffer then the collating unit adds it to 
the P-buffer. Similarly, each time a fresh n-tuple b comes out of Q:Q, 
the collating unit checks whether b is stored in the P-buffer. If b is 
found to be stored there, then it is put onto the final list; otherwise, it 
is added to the Q-buffer. It is easy to see that the final list is the output 
of an enumerate-(P" Q) machine, showing that P" Q is r.e. 

As for closure under existential quantification - this has already 
been proved (see Thm. 3.8). ■ 

Next, we show that the class of r.e. relations is closed under the 
operation of adding a redundant variable. 

4.4. Theorem 

Let P be an n-ary relation. Let Q be the (n + 1)-ary relation such that, 
for all x E Nn and all y E N, 

Q(x, y) <a> Px. 

If Pis r.e., then Q is r.e. as well. 

PROOF 

By hypothesis we can construct an enumerate-P machine Cip. Also, by 
Lemma 3.5 we can construct an enumerate-N(n+l) machine Ci. 

To get an enumeration of Q, we set both Cl: p and Cl: to work. As in 
the proof of the " part of Thm. 4.3, we compile a final list as well as 
two buffers, one each for P and N(n+l). When an n-tuple a pops out of 
Cip, it is added to the P buffer; and every (n + 1)-tuple of the form 
(a, b) that is already stored in the N(n+l) buffer is added to the final 
list. 

When any (n + 1)-tuple (a, b) pops out of C:, we check whether a is 
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present in the P buffer; if it is, ( a, b) goes on the final list; if not, it 
goes to the N(n+l) buffer. ■ 

4.5. Remarks 

(i) Results similar to Tom. 4.4 hold also for the class of recursive 
relations and the class of recursive functions; but they are too 
obvious to be stated as theorems. 

(ii) Using these facts, we can deal with disjunctions and conjunctions 
of r.e. or recursive relations that are not of the same n-arity. For 
example, if P and Q are binary, we can form a quaternary 
relation R by stipulating that for all w, x, y and z, 

R(w,x,y,z)<a>P(w,x)" Q(y,z). 

By adding y and z to P and w and x to Q as redundant variables, 
we can see that if P and Qare r.e. (or recursive) then so is R. 

For the final theorem of this section, we let / 1, h, ... , fk be n-ary 
functions. Let g be a k-ary function and let the function h be obtained 
by composing g with / 1, h, ... , fk; in other words, for all x E Nn, 

hx = g(/1x, fix, ... , fkx). 

Let P be a k-ary relation and let the relation Q be obtained by 
composing P with / 1, h, ... , fk; in other words, for all x e Nn, 

Qx <a> P(/1:i:, hx, ... , fkx). 

4.6. Theorem 

Let/1, h, ... , fk be recursive/unctions. 

(i) If g is a recursive function as well, then so is h. 
(ii) If Pis a recursive relation, then so is Q. 
(iii) If Pis r.e., then so is Q. 

PROOF 

(i) By hypothesis, we can construct machines 'Bi. 'B2, ... , 'Bk that 
compute /i, h, ... , fk respectively; also, we can construct a compute­
g machine, lS. To compute h, we proceed as follows. 

Given any n-tuple a E Nn, copies of it are fed into the input ports of 
'Bi. '82, .•• , 'Bk• When these k machines have produced their outputs, 
b1 , b2 , •.. , bk> they are put together as a k-tuple (bi, b2 , .•. , bk), 
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which is fed into the input port of e;. The output produced by the latter 
is the required value ha. 

This procedure can be mechanized, yielding a compute-h machine. 
The proof of (ii) is similar. To prove (iii), we note that 

Qx ¢> 3y13Y2 ... 3yk[(/1x = Y1) A (hx = Y2) A ••• , A (Ax = Yk) 

A P(y1, Y2, • · • , Yk)]. 

By Thm. 3.10, the graphs of / 1 , fz, ... , fk are r.e., and Pis r.e. by 
hypothesis. Hence Q is r.e. by Thm. 4.3. and Rem. 4.S(ii). ■ 

§ 5. The MRDP Theorem 
5.1. Preview 

In 1970, Yuri Matiyasevic - building upon work done during the 
preceding two decades by Julia Robinson, Martin Davis and Hilary 
Putnam - completed the proof of a remarkable theorem that character­
izes r.e. relations in extremely elementary terms. We refer to this 
result by the acronym 'MRDP', for the four names just mentioned. 

In view of Thms. 3.6 and 3.10, the MRDP Thm. also provides 
elementary characterizations of the other two central concepts of 
recursion theory: recursive relations and recursive functions. These 
characterizations simplify the application of recursion theory to logic. 

We shall present the MRDP Thm. without proof, which is too long 
to be included here. 

5.2. Definition 

(i) An n-ary function f is a monomial if for some natural number a 
(called the coefficient) and natural numbers k 1 , k2, •.• , kn 
( called the exponents) the equality 

f " = ax k1X k2 X kn 
" 1 2 • • • n 

holds for all x E Nn. 
(ii) An n-ary function f is a polynomial if it is a sum of monomials; 

that is, for some monomials / 1 , h, ... , fm the equality 

fx =fix+ hx + · · · + fmx 

holds for all x E Nn. 
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5.3. Definition 

(i) An n-ary relation P is elementary if there are n-ary polynomials 
f and g such that, for all x e Nn, 

Px <a;,- (fx = gx). 

(ii) An n-ary relation P is said to be diophantine if it can be obtained 
by a finite number of existential quantifications from an elemen­
tary relation; in other words, there are (n + m)-ary polynomials 
f and g such that, for all x e Nn, 

Px-= 3y13y2 .. · 3ym[f(x, Y1, Y2, · · ·, Ym) = 

g(x, Yi, Y2, · · · , Ym)]. 

(Here m may be 0, so every elementary relation is a fortiori 
diophantine.) 

5.4. Theorem (MRDP) 

A relation is r.e. if/it is diophantine. ■ 

5.5. Remarks 

(i) The <= part of the theorem is simple to prove. First, let P be an 
n-ary elementary relation, and let f and g be polynomials 
satisfying the condition of Def. 5.3(i). For any given x e Nn we 
can calculate the values fx and gx - this involves a finite number 
of additions and multiplications of natural numbers. Then the two 
values can be compared to see whether Px holds or not. This 
procedure can clearly be mechanized, yielding a decide-P 
machine. Thus every elementary relation is recursive, and hence 
r.e. by Thm. 3.6. Now, by Def. 5.3(ii), any diophantine relation 
is obtainable from an elementary relation by a finite number of 
existential quantifications; so it is r.e. by Thm. 3.8. 

(ii) The => part of the MRDP Thm. is far harder to prove. The 
original proof (including Robinson's early results and her joint 
work with Davis and Putnam) is reproduced in B&M, pp. 
284-311. A shorter and more direct version of the proof is 
presented in pp. 111-123 of Cohen's book cited in§ 1. 

(iii) The proof of the MRDP Thm. is effective: it provides us with a 
method whereby from a given description (program) of an 
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enumerate-P machine it is possible in principle (granted enough 
time and patience) to obtain polynomials f and g in terms of 
which P can be presented as prescribed in Def. 5.3 (ii). Con­
versely, given such a presentation, it is easy to construct a 
program under which a computer will operate as an enumerate-P 
machine. 
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Limitative results 

§ 1. Preliminaries 
1.1. Preview 

The main results in this chapter reveal the inherent limitations of 
formalism and the formalist approach to mathematics. For the sake of 
simplicity we confine ourselves to a very basic part of mathematics: 
elementary arithmetic (a.k.a. elementary number theory), whose sub­
ject-matter is the elementary structure of natural numbers (see Ex. 
8.3.6). However, these results can be generalized without much dif­
ficulty to richer and more elaborate mathematical contexts. 

1.2. Convention 

We shall often write 'number' as short for 'natural number'. Unless 
stated otherwise, we shall follow the notation and terminology of Ch. 9 
(see Conv. 9.1.2). Also, we use 'k', 'm', 'n' and 'p' as informal 
variables ranging over numbers. 

1 .3. Specification 

From now on, unless stated otherwise, our formal object language .1!. 
will be the first-order language of arithmetic; namely, the first-order 
language with equality=, whose extralogical symbols are: 

(i) One individual constant, O; 
(ii) One unary function symbol, s; 

(iii) Two binary function symbols, + and X. 

1.4. Remarks 

(i) Note that .1!. has no extralogical predicate symbols, so its only 
atomic formulas are equations. 

210 
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(ii) Since 's' is now used as a syntactic constant denoting the unary 
function-symbol of Jl,, we cannot use it any longer as a syntactic 
variable ranging over Jl,-terms. For this purpose we shall use 'q', 
'r' and 't', with or without subscripts. 

(iii) The terms of J2, evidently fall into the following five mutually 
exclusive categories: 
(1) Terms of the form x, consisting of a single occurrence of a 
variable; 
(2) The single term O; 
(3) Terms of the form st, where tis any term; 
( 4) Terms of the form +rt, where r and t are any terms; 
(5) Terms of the form Xrt, where rand tare any terms. 
Terms of the last three categories will be referred to as 's-terms', 
'+-terms' and 'X-terms' respectively. 

1.5. Definition 

In addition to Def. 8.2.2, which remains in force here - and for similar 
reasons -we put, for any terms rand t: 

(i) {r+t) =ctt +rt, 
(ii) (rXt) =ctr Xrt. 

In using this metalinguistic notation, brackets are required. To prevent 
proliferation of brackets, which would impair legibility, we omit brack­
ets subject to three simple conventions. First, the Greek cross '+' is 
deemed to separate more strongly than the St Andrew cross 'X'. 

Second, of any two occurrences of'+' (or of 'X') enclosed within the 
same pairs of brackets, the one further to the left is deemed to 
separate more strongly. Third, we do not omit any pair of brackets 
whose left member comes immediately after an occurrence of 's'; 
hence, when restoring brackets, no new left bracket should be placed 
immediately after an 's'. For example, 

s0+ss0Xs0Xsss0+0 = s0+ssOX{s0Xsss0)+0 
= s0+[ss0X(s0Xsss0)]+0 
= s0+{[ss0X{s0Xsss0)]+0} = {s0+{[ss0X{s0Xsss0)]+0}}. 

1.6. Definition 

Proceeding by induction, we define, for each natural number k, an 
Jl,-term sk, called the k-th Jl,-numeral: 

So= 0, 
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Thus skis the .£-term consisting of a single occurrence of O preceded 
by k occurrences of s. 

1.7. Recapitulation 

Applying Def. 8.4.2 to our present language ..e, we see that an 
.£-interpretation (a.k.a . .£-structure) U is completely determined by 
the following ingredients. 

(i) A non-empty set U - the domain of U. 
(ii) An individual ou e U - the individual denoted by O under the 

interpretation U. 
(iii) A unary operation su on U - the operation that interprets s under 

u. 
(iv) Two binary operations +" and x" on U - the operations that 

interpret+ and X respectively under U. 

Apart from the conditions we have just specified, these ingredients of 
an .£-interpretation can be quite arbitrary. Thus U can be a set of any 
cardinality whatsoever, so long as it is non-empty; the nature of the 
individuals (members of U) is immaterial; and ou can be any member 
of U. Similarly, s" can be an arbitrary unary operation on U; and +" 
and Xu can be arbitrary binary operations on U. 

However, of the huge variety of possible .£-interpretations we single 
out one, for which the language ..e was designed in the first place. 

1.8. Defmition 

The intended or standard .£-interpretation 9l is characterized as fol­
lows: 

(i) 9l has as its domain the set N of natural numbers. 
(ii) om= 0 (the number zero). 
(iii) sm = s, the successor function (that is, sx = x + 1 for each num­

ber x). 
(iv) +m = + and xm = x (the operations of natural-number addition 

and multiplication, respectively). 
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1.9. Definition 

(i) If t is a closed .12-term, we call t91 the numerical value of t (cf. 
Def. 8.5.6). 

(ii) We say that an .£-sentence q> is true or false according as 9l I= q> or 
91 ~ q> (cf. Def. 8.5.10). 

1.10. Remarks 

(i) We have chosen the syntactic constants 'O', 's', '+' and 'X' 

advisedly, so as to serve a mnemonic purpose: each of these 
symbols graphically suggests the standard interpretation of the 
.£-symbol that it denotes. This punning mnemonic role of the 
four syntactic constants is made manifest in clauses (ii), (iii) and 
(iv) of Def. 1.8. For example, 'O' has been chosen as the name (in 
our metalanguage) for the individual constant of .12. The shape (if 
any!) of the latter constant is left unspecified, but under the 
standard interpretation of .12 it is treated as a name of the number 
zero, that number which is conventionally denoted by the num­
eral 'O'. Since 'O' was chosen for its present role precisely because 
it looks like 'O', we have a mnemonically useful pun: 091 = 0. 

A similar mnemonic purpose is served by the choice of'=' as 
the syntactic constant denoting the equality symbol of .12, except 
that in this case the pun is not confined to the standard interpre­
tation. Indeed, by Def. 8.4.2(iii), under any .£-interpretation U 
the equality symbol of .12 is interpreted as denoting the identity 
relation on the domain U of U. As a result, we have (as part of 
clause Fl of the BSD) the mnemonically useful pun: 

(r=t)0 =Tiff r0 = t 0 , 

for any .£-valuation a and any .£-terms r and t. 
(ii) A practical advantage of the choice of 'O', 's', '+' and 'X' is that 

when we refer to an .12-term by means of this metalinguistic 
notation, it is often quite easy to work out by inspection the value 
of that term under any valuation based on m. (This value must be 
a number, because the domain of 9l is the set N of numbers.) 

For example, consider the term xXx + ssOXxXy + yXy, where 
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x and y are variables. If a is a valuation based on ffi, it is easy to 
see that (xxx + ssOXxXy + yXy) 0 = x 2 + 2xy + y2, where x and 
y are the numbers x0 and y0 respectively. 

In particular, if tis a closed term, it is a simple matter to work 
out the numerical value tm oft. 

Similarly, when we refer to an .12-formula by means of our 
metalinguistic notation, it is often quite easy to work out by 
inspection the truth value of that formula under any valuation 
based on ffi. In particular, if q> is an .12-sentence it may be quite 
easy to work out by inspection whether ffi I= q> - that is, whether q> 
is true. For example, it is not difficult to verify that 

m I= \fx\fy[(x+y)X(x+y)=xXx + ssOXxXy + yXy). 

1.11. Warning 

Beware, however, of being deceived by this suggestive notation: Rem. 
1. lO(ii) works for the standard interpretation, but not necessarily for 
other interpretations. Thus, for example, you must not assume that 0 
always denotes the number 0. Rather, under an arbitrary .12-interpreta­
tion U, the object ou denoted by O need not be a number at all, let 
alone the number 0; in fact, it can be any object whatsoever. 

Or, to take another simple example, you must not assume that the 
sentence O+O=O is true under an arbitrary .12-interpretation. Of 
course, this sentence is easily seen to be true in the sense of Def. 
l.9(ii). It is clearly satisfied in the standard structure ffi. But it is not 
logically true: If a is a valuation based on an arbitrary interpretation 
U, then we find (using the BSD) that (0+0=0)0 = T iff f(a, a) = a, 
where f = +u and a= ou (that is, f and a are the binary operation and 
individual named by + and O respectively under U). It is quite possible 
that f(a, a) -=I= a, in which case U ~ O+O=O. 

1.12. Problem 

Show that sk m = k (see Def. 1.6). 

1.13. Problem 

Let x, y and z be distinct variables. Let a be a valuation based on ffi 
and let x and y be the numbers x0 and y0 respectively. For each of the 
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following five formulas state a condition involving x and y, which is 
necessary and sufficient in order that a satisfy the formula in question. 

(i) 3z(x+z=y), 
(ii) 3z(x+sz=y), 

(iii) Vy(x=l=sy), 
(iv) 3y(x=s2XY), 
(v) 3z(x=yXz). 

§ 2. Theories 
2.1. Definition 

For any number n, we let 4>n be the set of all .£-formulas whose free 
variables are among vi, v 2 , ... , Vn, the first n variables of ..e in 
alphabetic order (cf. Spec. 8.1.l(i)). In particular, 4>0 is the set of all 
.£-sentences. 

2.2. Remark 

If qi e 4>n, it does not follow that all the variables vi, v2, ... , Vn must 
be free in qi; but only that no other variables are free in qi. Hence 
4>n k 4>n+1 for all n. 

2.3. Definition 

(i) If r is any set of sentences (that is, r k 4>0) we put 

Der =ctt {qi e «I>o: r 1-- qi}. 

Der is called the deductive closure of r. 
(ii) We put A =ctr De0. 

2.4. Remarks 

By definition, Der is the set of all sentences that can be deduced from 
r in Fopcal. However, by the soundness and completeness of Fopcal 
(Thms. 8.9.14 and 8.13.10), Der is also the set of all sentences that are 
logical consequences of r; in particular A is the set of all logically true 
sentences (cf. Def. 8.4.10). 'A' is mnemonic for 'logic'. 
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2.5. Definition 

An ..Q-theory is a set l: C «1>0 such that ::E = Del:; in other words, it is a 
set of ..Q-sentences closed ( or saturated) under deducibility of ..Q-sent­
ences. 

2.6. Problem 

If r is any set of sentences, show that Der is a theory that includes r 
itself. Moreover, Der is the smallest such theory: if I: is any theory 
that includes r, then Der C l:. 

2.7. Definition 

If I: is a theory, then a postulate set for I: is any set r of sentences such 
that I: = Der. 

2.8. Remark 

The ideas we have just introduced may be applied in two mutually 
converse ways. In some cases we start with a given set r of sentences 
as postulates, and wish to investigate the resulting theory Der. In 
other cases we start with a given theory I: and wish to find a set of 
postulates for it that has some desirable property. (Of course, by Defs. 
2.5 and 2. 7 every theory is a postulate set for itself; but the point is to 
find a simpler set.) 

2.9. Examples 

(i) Consider A= De0. By Prob. 2.6, A is a theory; moreover, it is 
the smallest theory, in the sense that it is included in every 
theory. 

(ii) The set «1>0 of all sentences is evidently a theory. Moreover, it is 
the largest theory, in the sense that it includes every theory. 
Oearly, «1>0 is inconsistent. Moreover, it is the only inconsistent 
theory. Indeed, if I: is an inconsistent theory, then for every 
sentence qi we have I: I- qi by IE, hence qi E I: because I: is a 
theory. So I: must be «1>0. 
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2.10. Definition 

For any .£-structure U we put 

ThU =df {qi E cI>o: U I= qi}. 

ThU is called the theory of U; it is the set of all sentences that hold in 
u. 

2.11. Remark 

It is easy to see that ThU is indeed a theory in the sense of Def. 2.5: if 
\jJ is a sentence such that ThU I- \jJ then, by the soundness of Fopcal, 
U I= \jJ; therefore \jJ e ThU. 

2.12. Definition 

A theory l: is complete if it is consistent, and for any sentence qi either 
qi e l: or -, qi e l:. 

2.13. Problem 

(i) Show that a consistent theory l: is complete iff it is maximal 
among consistent theories, that is, it is not included in any other 
consistent theory. 

(ii) Show that, for any .£-structure U, ThU is a complete theory. 
(iii) Show that any consistent theory is included in a complete theory. 
(iv) Show that any complete theory is of the form Thll for some U. 

2.14. Definition 

(i) We put 
Q =dr Thffi. 

The theory Q, consisting of all true sentences (in the sense of 
Def. l.9(ii)) is called complete first-order arithmetic. 

(ii) A set of sentences - and, in particular, a theory - is said to be 
sound if it is included in Q; in other words, if all the sentences 
belonging to it are true. 

2.15. Remarks 

(i) By Prob. 2.13(ii), Q is indeed a complete theory. By Def. 2.14, 
Q is a sound theory. In fact, Q is the only complete sound 
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theory. Indeed, if l: is sound, then I:!;;;; 9; but if l: is also a 
complete theory then by Prob. 2.13(i) it cannot be included in 
another consistent theory, so I: must coincide with Q. 

(ii) Q can be regarded as the whole truth about 91 in 1!., in the sense 
that it consists of all £-sentences that are true in m. But is it 
really the whole truth about ffi? We shall address this question in 
the next section. 

§ 3. Skolem's Theorem 
3.1. Preview 

In this section we show that m cannot be uniquely characterized in 1!.: 
even 9 - the whole truth about m in 1!. - is not sufficient to single out 
ffi because 9 has, apart fromm m itself, other models that are not 
isomorphic to ffi. 

3.2. Convention 

We shall often wish to consider the standard structure m alongside 
some £-structure, which may or may not be the standard one. In such 
cases it will be convenient to denote the latter structure by '*ffi'. 
Whenever we use this notation, we shall take it for granted that 

(i) * N is the domain of *ffi, 
(ii) *O is o*m (the designated individual of* N), 

(iii) *sis s *m (the basic unary operation of *ffi), 
(iv) *+ and *x are + *m and x•m respectively (the basic binary 

operations of *ffi). 

The prefix '*' is pronounced as 'pseudo'. 

3.3. Remark 

The purpose of this convention is to stress both the similarities and 
dissimilarities (if any) between m and *91. 

3.4. Definition 

(i) An embedding of the structure m in the structure *ffi is an 
injection from N to * N ( that is, a 1-1 mapping from N into * N) 
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such that 

JO= *O, f(m + 1) = *s(fm), 

f(m + n) = fm *+ fn, f(mn) = fm *x fn, 

for all numbers m and n. 
(ii) If, in addition, f is a surjection from N to * N (that is, f maps N 

onto * N) then f is called an isomorphism between ffi and *ffi, and 
the two structures are said to be isomorphic to each other. 

3.5. Remarks 

(i) If f is an isomorphism between ffi and *ffi, then *ffi is an exact 
replica of ffi: each number n has a unique counterpart fn and 
each individual of *ffi is the counterpart of a unique number; and, 
moreover, by ( *) the basic operations on numbers are exactly 
mimicked by the corresponding basic operations on their counter­
parts. The two structures are structurally indistinguishable. 

For this reason we shall from now on refer not just to ffi itself 
but also to any J2-structure isomorphic to it as the standard 
structure. 

(ii) If f is merely an embedding of ffi in *ffi, then this means that *ffi 
has a substructure isomorphic to ffi. 

3.6. Problem 

Let f be an embedding of ffi in *ffi. For any valuation a based on 
ffi, we define fa as the valuation based on *ffi such that, for each vari­
able y, 

yfo = f(ya). 

(i) Show that tf0 = f(t 0) for any term t. Hence, in particular, if tis a 
closed term it follows that t':11 = f(t:11). (Use induction on degt, 
distinguishing the five cases mentioned in Rem. 1.4(iii). Note that 
the fact that f is injective need not be used in the proof.) 

(ii) Show that /[a(x/n)] = (fa)(x/fn), where xis any variable and n 
is any number. 

(iii) Show that if f is an isomorphism between ffi and *ffi then 
o.f0 = o.0 for any formula a. In particular, *ffi I= qi iff ffi I= qi for any 
sentence qi. 
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3.7. Remark 

by Def. 2.14, m I= qi iff qi en; thus m is a model for n (see Def. 
8.5.10). From Prob. 3.6(iii) it follows that any structure *ffi isomorphic 
to m is likewise a model for n. This is hardly surprising, since such *ffi 
is a carbon copy of m. The surprising fact, which will be proved next, is 
that not all models for n are standard. 

3.8. Theorem (Skolem, 1934) 

There exists a nonstandard model for n - that is, a model for n that is 
not isomorphic to ffi. Moreover, there is such a model whose domain is 
denumerable. 

PROOF 

Choose any variable x, and for each number n let flln be the formula 
x::fosn. Now consider the following set of formulas: 

Cl>= 0 U {qin: n EN}. 

We claim that cJ> is satisfiable. By the Compactness Thm. 8.13.12, this 
claim will be proved if we show that every finite subset of cJ> is 
satisfiable. 

So let «I»' be any finite subset of «I». Clearly, Cl>' can only contain a 
finite number of formulas flln; hence Cl>' is included in the set 
n U { flln : n < p}, provided p is sufficiently large. So in order to show 
that cJ>' is satisfiable, we need only show that n U { flln : n < p} is 
satisfiable. However, the latter set is satisfied by any valuation a based 
on m, provided x0 ;.,; p. Indeed, since a is based on m, it satisfies n. 
Furthermore, Sn°= n (see Prob. 1.12); hence if x0 ;.,; p then a also 
satisfies the formulas flln - that is, x::fosn - for every n < p. 

We have thus proved our claim that cJ> is satisfiable. Let T be a 
valuation that satisfies «I» and let *ffi be its underlying structure. *ffi is a 
model for n, because i- satisfies «I», which includes n. 

As the language ..e is denumerable, it follows from the L5wenheim­
Skolem Tom. 8.13.13 that we may take the domain * N of *ffi to be 
countable (that is, finite or denumerable). However, * N cannot be 
finite, because O contains the sentences Sm ::fo Sn for all pairs of distinct 
numbers m and n, and therefore all these sentences must be satisfied 
in *al, which can only happen if * N is infinite. Thus * N is denumer­
able. 

It remains to show that *ffi is nonstandard; in other words, that it is 
not isomorphic to ffi. Suppose f is an embedding of min *ffi. We shall 
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prove that / cannot be surjective (that is, cannot map N onto * N). 
Indeed, for each number n our valuation T satisfies the formula ffln, 
that is, x=l=sn. Hence (by the BSD) we must have 

xr =I= Sn r for every number n. 

However, by Probs. 3.6(i) and 1.12 we have 

Snr = s/91 = /(sn91) = fn. 

Thus x r - which must belong to * N, the universe of T - cannot be fn 
for any number n. This shows that/ is not surjective. ■ 

3.9. Problem 

Let *al be any model for O. Let / be the mapping from N to * N 
defined by: 

fn = Sn •m for all n. 

(i) Show that f is injective. (If m =I= n then Sm =I= Sn is in O and so 
must hold in *al.) Prove: 

(ii) f is an embedding of al in *al. 
(iii) / is the only embedding ofal in *al. (Use Prob. 3.6(i).) 
(iv) Hence *al is a standard model of O iff * N = {sn •m : n e N}. 

3.10. Remark 

Skolem's Theorem means that the whole truth about al cannot be 
expressed in .J2. As we have noted, 0 is all that can be said in .J2 about 
al; but O fails to pin al down uniquely (even up to isomorphism). At 
first sight it may seem that is perhaps due to some accidental defect of 
.J2. Can .J2 perhaps be enriched ( and al correspondingly elaborated) so 
that in the richer formal language the correspondingly more elaborate 
structure of natural numbers may be characterized uniquely up to 
isomorphism? For a discussion of this question, and a pessimistic 
answer, see B&M, pp. 320-324. We shall return to this issue in the 
Appendix. 

§ 4. Representability 
4.1. Preview 

This section is devoted to defining new concepts rather than to proving 
major results. We shall introduce two ways in which a relation on N 
may be formally expressed or represented in a theory I:. 
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4.2. Reminder 

We recall some of the conventions introduced in Ch. 9. Lower-case 
German letters 'a', 'b', 'x' and 't)' are used as informal variables ranging 
over the set Nn of all n-tuples of numbers. Where a German letter is 
used for an n-tuple, the corresponding italic letter is used for the 
components of that n-tuple. Thus, for example, a= (a1, a2, . .. , an) 
and x = (xi, Xz, .•. , Xn). 

Note that the number of components of a tuple denoted by a 
German letter is always assumed to be n (rather thank or m etc.). 

Recall that by relation we mean relation on N. If P is an n-ary 
relation, we usually write, for example, 'Pa' as short for 'a e P'. 

4.3. Remark 

The symbols 'a' and 'x' do not refer to, or have anything to do with, 
the formal language .i!,; they are ordinary mathematical symbols used 
as variables in our own language. 

4.4. Definition (abbreviated notation/or substitution) 

For any terms r, ti, t2, ... , tn and any formula « we put 

(i) r(ti, t2, .. , , tn) =df r(v1/ti, vz/t2, , .. , V n/tn), 
(ii) «(ti, t2,,,., tn) =df «(vi/t1, vz/t2,, .. , Vn/tn), 

4.5. Remarks 

(i) Here the terms t1, tz, ... , tn are substituted simultaneously for 
all free occurrences of v1, v2, ... , Vn respectively - the first n 
variables in alphabetic order (cf. Spec. 8.1.l(i)). So, for example, 
'«(t)' is short for '«(vi/t)'. If tis to be substituted for a variable x 
other than vi, we cannot use the abbreviated notation but have to 
write '«(x/t)' in full. 

(ii) When substituting several terms in a formula, as in Def. 4.4(ii), 
alphabetic changes of bound variables may be necessary in order 
to prevent capture. Also, it is important that the terms are 
substituted simultaneously rather than successively. (For a de­
tailed precise treatment of the technicalities involved in simul­
taneous substitution, see B&M, pp. 65-67.) However, in many 
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cases when the abbreviated notation is used below, the terms that 
are substituted will be closed terms; so no changes of bound 
variables will be required. In such cases it is also unimportant 
whether the substitution is made simultaneously or successively. 

Next, for the case where the terms to be substituted for the variables 
vi, v2, ... , Vn are numerals, we introduce a further useful abbrevi­
ation which slightly stretches the use of lower-case German letters. 

4.6. Definition 

For any term r, any formula « and any a E N", we put 

(i) r(s0 ) =df r(sa1 , Sa2 , ••• , sa.), 
(ii) «(s0 ) =df «(Sa1 , Sa2 , ••• , Sa.). 

Thus. «(s0 ) is obtained from a by substituting the a;-th numeral for all 
free occurrences of v;, where i = 1, 2, ... , n. 

If« E cJ>n, then - for any a EN" - «(s0 ) is a sentence. If I: is a theory, 
it makes sense to enquire whether the sentence «(sa) belongs to I:; 
similarly, we may enquire whether its negation, the sentence -.«(s0 ), 

belongs to that theory. This gives rise to the following important 
definition. 

4.7. Definition 

Let P be any n-ary relation and let I: be a theory. 

(i) A formula« E 4>n represents P weakly in I: if, for all x E N", 

Px ~ «(sx) E I:. 

P is weakly representable in I: if it is weakly represented in I: by 
some a E cJ> 11 • 

(ii) A formula« E 4>11 represents P strongly in I: if, for all x E N", 

Px => a(sx) e I:, 

P is strongly representable in I: if it is strongly represented in I: by 
some a E 4> 11 • 
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4.8. Remarks 

(i) Recall that -, is the (informal) negation operation on relations; 
thus -, Px holds iff Px does not. 

(ii) Use of the adverbs 'weakly' and 'strongly' is justified because, for 
a consistent theory, weak representation follows from strong 
representation: if a represents P strongly in I: and Px does not 
hold, then -,a(s) e I:; and - provided I: is consistent - it follows 
that a(sx) f I:. Thus a also represents P weakly in I:. 

If I: is the inconsistent theory, the above argument fails. Weak 
and strong representability in this theory are, however, trivial 
notions. (See Prob. 4.9.) 

(iii) For any a e cJ) n and any theory I:, there is always a unique n-ary 
relation P that is weakly represented by a in I:, because Def. 
4.7(i) determines such P uniquely. 

On the other hand, a may not represent any relation strongly 
in I:, because for some x it may happen that neither a(sx) e I: nor 
-,a(sx) e I:. 

(iv) However, if I: is a complete theory (cf. Def. 2.12) then 
-,a(sx) e I: iff a(sx) ff. I:; so in this case strong representation is 
equivalent to weak representation. In other words, in a complete 
theory any a e cJ) n represents a unique n-ary relation both 
weakly and strongly. In connection with a complete theory we 
shall therefore omit these qualifications and say simply that a 
given formula represents the relation. 

4.9. Problem 

Let a e cJ)n, where n > 0. Determine the n-ary relations that a repre­
sents weakly /strongly in the inconsistent theory. 

§ 5. Arithrneticity 
5.1. Preview 

In this section we investigate an important class of relations: those 
representable in complete first-order arithmetic, ll. In view of Rem. 
4.8(iv), in the present context we need not distinguish between weak 
and strong representation, so we say simply that a given formula 
represents a relation in ll. 



§5. Arithmeticity 225 

5.2. Definition 

A relation is arithmetical if it is representable in U. 

5.3. Remark 

Thus by Def. 4. 7, an n-ary relation P is arithmetical iff there is a 
representing formula a E cl> n such that 

for an X E Nn. 
And since by Def. 2.14(i) U = Thm, condition(*) is tantamount to: 

(**) 

5.4. Definition 

Let a E cl>n and a e Nn. If« is satisfied by some valuation a based on 
m such that v;° = a; for i = l, 2, ... , n, we write: 

'91 I= «[a]'. 

5.5. Remarks 

(i) If m I= «[a], then by Thm. 8.5.8 a is satisfied by every valuation a 
based on m such that v;° = a; for i = l, 2, ... , n. 

(ii) Def. 5.4 is a contextual definition: it defines the whole expression 
'911= «[a]' as a package. The part '«[a]' of this package has no 
meaning on its own: it does not denote anything whatsoever. In 
particular, '«[a]' must not be confused with '«(so)', which does 
have meaning on its own: it denotes the .J2-sentence obtained 
from a by substituting the n-tuple of numerals s0 for the first n 
variables of .J2. However -

5.6. Lemma 

Let a e cl>n and a E Nn. Then 91 I= «(s0) if/ 91 I= «[a]. 

PROOF 

We consider in detail the case n = l. In this case« has no free variable 
other than v1 , and we must show, for any number a, that 91 I= a(sa) if! 
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m I= a[a]. Here goes: 

ffi I= a(s0 ) <a> a(s0 )'1 = T for some valuation a based on m 
by Def. 8.5.10, 

by Prob. 8.6.16, since s/7 = a, 
by Def. 5.4. 

<a> ao<vJa) = T 

¢> m I= a[a] 

The general case, for arbitrary n, is treated similarly. Of course, it 
utilizes the generalization of Eqn. 8.6.6 to the case of simultaneous 
substitution of n terms. (See B&M, p. 65.) ■ 

5.7. Remark 

From this lemma it now follows that conditions ( *) and ( **) of Rem. 
5.3 are equivalent to 

Px. <a> ffi I= a[x]. 

5.8. Examples 

Because condition (***) refers to the standard interpretation, it is 
always straightforward to work out the n-ary relation represented in S! 
by a given a E cl> n. All that we need to do is to 'deformalize' a by 
'translating' it from .J2 into the metalanguage (see Rem. 1.10). 

(i) Consider the formula v1 +v3=v2. It belongs to 4>3 and hence 
represents in Q a ternary relation P. Moreover, P is evidently 
the relation determined by 

P(x1, x 2, x 3) <a> x 1 + x3 = X2. 

Equivalently, P = { (xi, x2, x3) E N 3 : x1 + X3 = x2}. 

Note that our formula also belongs to cl> 4 ( as well as to cl> n for 
any n ~ 3). So it represents in Q a quaternary relation Q, which 
is given by 

or 

Q = { (Xi, X2, X3, X4) E N ; X1 + X3 = X2}. 

Of course, Q does not depend on its fourth argument; but it is 
nevertheless a quaternary relation! 

(ii) Next, consider the formula 3v3(v1 +v3=v2). It belongs to 4>2 and 
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therefore represents in Q a binary relation R. By direct 'deform­
alization' we see at once that R is given by 

R(x1, X2) ¢> 3x3(X1 + X3 = X2). 

lt does not require much knowledge of arithmetic to realize that 
R is the relation:,;;;; more explicitly: 

R(xi, x2) <c> x1 :,;;; X2 or R = { (x1, x2) E N 2 : X1 :,;;; x2}-

This example should look familiar; it is of course Prob. l.13(i) in 
a slightly different guise. 

(iii) Now consider the formula \fv2(v1=1:sv2). This belongs to «1>1 and 
therefore represents in Q a property S. By direct 'deformaliza­
tion' we see: 

Sx1 <c> 'v'x2(x1 * x2 + 1), 

and, using a tiny bit of knowledge of arithmetic, we realize that 
Sx1 <c> x 1 = 0, so that S = {0}. Of course, S is also represented in 
Q by other formulas, for example v1 =O. 

5.9. Lemma 

If the equation r=t belongs to cJ> n then it represents in Q an elementary 
n-ary relation. Conversely, every elementary relation is represented in Q 
by an equation. 

PROOF 

First, suppose that r=t belongs to «I>n. This simply means that every 
variable occurring in r or t is among v1, v2, ... , Vn. In addition to 
variables, r and t may contain occurrences of 0, s, + and X. 

Let P be the n-ary relation represented by this equation in Q. To 
determine P we use the process of 'deformalization' illustrated in Ex. 
5.8. We get, for all x E Nn: 

Px <c> fx = gx, 

where f x and gx are obtained from r and t respectively in the obvious 
way: each v; is 'translated' as 'x;', 0 is 'translated' as '0', and so on. 
Thus f x and gx are given by expressions (in our metalanguage) made 
up of variables 'x1', 'x2', ... , 'xn' numerals '0' and '1' (the latter comes 
from translating the symbols of.£) and operation symbols'+' and 'x'. 
Simplifying these expressions by the rules of elementary algebra, we 
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see that fx and gx are polynomials; hence P is elementary (cf. Defs. 
9.5.2 and 9.5.3). 

Conversely, suppose that Pis an n-ary elementary relation. Then P 
satisfies an equivalence of the form (*), where fx and gx are poly­
nomials. To obtain an .£-formula that represents Pin n, all we have to 
do is to formalize the equation f x = gx - translating it in the obvious 
way into ..e. We get an equation r=t that represents Pinn. ■ 

5.10. Warning 

Not every formula that represents in Q an elementary relation is an 
equation. What we have shown is that among the (infinitely many) 
formulas representing in Q a given elementary relation there must be 
an equation. 

5.11. Theorem 

The following two conditions are equivalent: 

(i) P is an arithmetical relation; 
(ii) P can be obtained from elementary relations by a finite number of 

applications of logical operations. 

PROOF 

(i) => (ii). Let P be an n-ary arithmetical relation. Then P is repre­
sented in Q by some formula« E «l»n. We shall show by induction on 
deg« that (ii) holds. 

Case 1: a is an equation. Then by Lemma 5.9 Pis itself elementary, so 
(ii) clearly holds. 

Case 2: a = -, p. Let Q be the n-ary relation represented in Q by p. 
Then it is easy to see that P = -, Q. By the induction hypothesis, Q is 
obtainable from elementary relations by a finite number of applications 
of logical operations. Since P is obtained from Q by an application of 
-, , it is clear that (ii) holds. 

Case 3: a= IJ-y. Let Q and R be the n-ary relations represented in 
Q by P and y respectively. Then it is easy to see that P = Q - R = 
-, Q v R. By the induction hypothesis, both Q and R are obtainable 
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from elementary relations by a finite number of applications of logical 
operations. Hence the same holds for P. 

Case 4: a = Vyp. Without loss of generality, we may assume that y is 
Vn+l (otherwise, by appropriate alphabetic changes, we can obtain 
from a a variant \Iv n+iP', which is logically equivalent to a, has the 
same degree as« and, like a, represents Pin 0). Therefore Pe cf>n+l• 

so p represents in O an ( n + 1 )-ary relation Q. Then clearly P is 
obtained from Q by (informal) universal quantification: Px <=:>­

'v' yQ(x, y). By the induction hypothesis, Q is obtainable from elemen­
tary relations by a finite number of applications of logical operations. 
Hence the same holds for P. 

(ii)=> (i). Assume (ii). Then P is obtainable from elementary rela­
tions by a finite number, say k, of applications of the three logical 
operations: negation, implication and universal quantification. (The 
other logical operations can be reduced to these.) We proceed by 
induction on k. 

Case 1: P itself is elementary. Then Pis arithmetical by Lemma 5.9. 

Case 2: P = -, Q, where Q is obtainable from elementary relations by 
k - 1 applications of the three logical operations. By the induction 
hypothesis, Q is arithmetical, hence it is represented in O by some 
formula p. Then P is represented in O by the formula -, p, and is 
therefore arithmetical. 

Case 3: P = Q- R, where Q and R are each obtainable from 
elementary relations by fewer than k applications of the three logical 
operations. By the induction hypothesis, P and Q are arithmetical, 
hence represented in O by formulas p and y respectively. Then P is 
represented in Q by the formula J}-y, and is therefore arithmetical. 

Case4: Pis obtained by universal quantification from an (n + 1)-ary 
relation Q: 

Px ¢> \lxn+1Q(x, Xn+1), 

where Q is obtainable from elementary relations by k - 1 applications 
of the three logical operations. By the induction hypothesis, Q is 
arithmetical, hence represented in Q by some p e «l>n+1· Then it is easy 
to see that P is represented in Q by the formula Vvn+iP, and is 
therefore arithmetical. ■ 
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5.12. Remarks 

(i) Thm. 5.11 means that the class of arithmetical relations is the 
smallest class that contains all elementary relations and is closed 
under the logical operations. 

(ii) That the proof of Thm. 5.11 was so easy is due in part to the 
notation we are using (cf. Warning 9.1.4). 

The following corollary is extremely useful. 

5.13. Corollary 

If P is an n-ary r.e. relation, then it is arithmetical. Moreover, it is 
represented in O by a formula of the form 

3Vn+13Vn+2 ••• 3Vn+m(r=t), 

wherem ;;;,:Q. 

PROOF 

By the MRDP Thm. 9.5.4, P is diophantine. This means that P is 
obtained from an elementary relation by a finite number of (informal) 
existential quantifications. The second half of the proof of Thm. 5.11 
shows that P is represented in O by a formula having the required 
form. ■ 

5.14. Remark 

Since the formula in Cor. 5 .13 must be in cJ) n, all the variables 
occurring in r or t must be among V1, v2, ... , v n+m· 

5.15. Corollary 

Every recursive relation is arithmetical. 

PROOF 

A recursive relation is r.e. by Thm. 9.3.6, hence it is arithmetical by 
Cor. 5.13. ■ 

5.16. Remark 

Since every elementary relation is recursive (see Rem. 9.5.S(i)), it 
follows from Rem. 5.12(i) and Cor. 5.15 that the class of arithmetical 
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relations is the smallest class that contains all recursive relations and is 
closed under the logical operations. 

5.17. Reminder 

In what follows we use the terms function and graph in the same sense 
as in Ch. 9: an n-ary function is an n-ary operation on N; and its graph 
is the (n + 1)-ary relation P such that, for al] x e N' and ally e N, 

P(x, y) ~ fx = y. 

5.18. Definition 

An arithmetical function is a function whose graph is an arithmetical 
relation. 

5.19. Theorem 

Every recursive function is arithmetical. 

PROOF 

If f is a recursive function then by Thm. 9.3.10 its graph is r.e., hence 
by Cor. 5.13 it is arithmetical. ■ 

5.20. Problem 

Let P be a k-ary arithmetical relation and let fi, fz, ... , fk be n-ary 
arithmetical functions. Let the n-ary relation Q be defined, for all 
x e N', by the equivalence 

Qx ~ P(/1x, fix, ... , fkx). 

Prove that Q is arithmetical. (Argue as in the proof of Thm. 9.4.6.) 

§6. Coding 
6.1. Preview 

ln a natural language we can talk of many things: of shoes and ships 
and sealing wax, of cabbages and kings - and of that very language 
itself. Can the same thing be done in.£, under its standard interpreta­
tion? Can .£ be used to 'talk' of its own expressions, of their proper­
ties, of relations among them and of operations upon them? At first 
glance this seems absurd: under its standard interpretation .£ 'talks' of 
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numbers, numerical properties, relations and operations. However, we 
can make this idea work by using the device of coding: to each symbol 
and expression of ..ewe assign a code-number (a.k.a. Godel number) 
and then we can refer to expressions obliquely, via their code-num­
bers. Because ..e, under its standard interpretation, 'talks' of numbers, 
it can be construed as referring obliquely to its own expressions, via 
their code-numbers. 

The particular method of coding is of little importance; the only 
essential condition is that coding and decoding ( encryption and decryp­
tion) must be algorithmic operations, of the kind that a computer can 
be programmed to do. Thus, it should be possible to program a 
computer so that, whenever an .£-expression is fed into it, the com­
puter, after a finite number of computation steps, will output the 
code-number of the expression. Likewise, it should be possible to 
program a computer so that, whenever a number is fed into it, the 
computer, after a finite number of computation steps, will output a 
signal indicating whether that number is the code-number of an 
.£-expression; and, if so, also output that expression. (Here we have 
used the term computer in the sense explained in § 2 of Ch. 9. Note 
that, strictly speaking, computer inputs and outputs are not numbers 
and .£-expressions as such, but suitable representations of them in a 
notation that the computer can handle.) 

The coding we shall introduce here is different from that used in 
B&M (p. 327f). It will employ the binary ('base-2') representation of 
numbers. 

6.2. Definition 

(i) To distinguish between the ordinary decimal and the binary 
notation we shall use italic (slanted) digits 'O' and 'l' for the 
latter. Thus O = 0, 1 = 1, 10 = 2, 11 = 3,100 = 4, etc. 

(ii) If k ;;;,, 1 and ai, a2, ... , ak are any numbers, with a1 > 0, we 
define their binary concatenation 

a1 a2 

to be the number whose binary representation is obtained by 
concatenating the binary representations of ai, a2, ... , akin this 
order. Thus, for example, 

3"0"6 = 11"0"110 = 110110 = 32 + 16 + 4 + 2 = 54. 
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6.3. Definition 

(i) To each primitive symbol p of ./2 we assign a code-number #p, as 
follows: 

#0 = 2 = 10, 

#s = 4 = 22 = 100, 

#+ = s = 23 = 1,000, 

#X = 16 = 24 = 10,000, 

#= = 32 = 25 = 100,000, 

#-, = 64 = 26 = 1,000,000, 

#- = 128 = 27 = 10,000,000, 

#V = 256 = 28 = 100,000,000, 

#v; = 2s+; for i = 1, 2, ... . 

(ii) If k;,,, 1 and p1, p2, ... , Pk are primitive symbols of ./2 then we 
assign to the .12-string p1p2 . .. Pk the code-number 

6.4. Remarks 

(i) It is easy to see that a number is the code-number of a string iff 
its binary representation consists of one or more blocks, each of 
which consists of a single 'l' followed by one or more 'O's. For 
example, 0, 3 (= 11) and 5 (= 101) are not code-numbers of any 
string. 

(ii) Since ./2-expressions - terms and formulas - are in particular 
./2-strings, Def. 6.3 assigns a code-number #t to each term t and a 
code-number #« to each formula «. Note that in computing the 
code-number of an expression, the symbols of the latter must be 
taken in the order in which they occur in the original 'Polish' 
notation of ./2. For example, the (false) equation s0=s1 is the 
string =Os0. Hence its code-number is 

#(=Os0) = 32"'2"'4"'2 = 100,000"'10"'100"'10 

= 1,000,001,010,010 = 4,096 + 64 + 16 + 2 = 4,178. 
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6.5. Convention 

When a noun or nominal phrase referring to ,£-expressions appears in 
small capitals, it should be read with the words 'code-number of' or 
'code-number of a' prefixed to it. Thus, for example, 'TERM' is short 
for 'code-number of a term'. 

Many relations and functions connected with the syntax of ,12 can easily 
be seen to be recursive. 

6.6. Examples 

(i) Consider the property Tm defined by 

Tm (x) -df Xis a TERM. 

It is clear that a computer can be programmed to check whether 
any number x fed into it is a TERM or not. ( According to standard 
practice, the computer will first represent x in binary notation. 
The results of Prob. 8.2.1 can then be used to 'parse' this binary 
representation and check whether x is a TERM.) Thus Tm is a 
recursive property. 

(ii) The property Fla, defined by 

Fla(x) -df x is a FORMULA, 

is similarly seen to be recursive. 
(iii) Consider the relation Frm, defined by 

Frm(x, y) -df xis a FORMULA belonging to cI>y. 

In other words, Frm(x, y) holds iff x = #« for some formula a 
such that all the free variables of a are among vi, v 2, ... , v y. 

Frm is clearly recursive. 

The following example introduces a recursive function that will play an 
important role in the sequel. 

6.7. Example 

The diagonal function is the unary function d defined as follows 

d(x) =df {x#[a(sx)] if Xis a FORMULA«, 

if X is not a FORMULA. 

How can d(x) be calculated? First, we check whether x is a FORMULA. 

If it isn't, there is nothing further to do: d(x) is x itself. 
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Now suppose x is a FORMULA. We have to take that formula a of 
which x is the code-number and substitute sx in it for v1 (cf. Def. 4.4); 
and d(x) is then the code-number of the resulting formula, a(sx)- This 
calculation is quite easy to do if x is represented in binary notation. 
Each occurrence of v 1 appears in this representation as a block of the 
form '1000000000'. We have to locate all blocks of this form that 
correspond to free occurrences of v1 in a, and replace each of them by 
the binary representation of sx, which consists of x successive blocks of 
the form '100' (corresponding to x successive occurrences of s) fol­
lowed by a single block 'JO' (corresponding to 0). When these replace­
ments are made, we have got the binary representation of d(x). 

Clearly, a computer can be programmed to perform this procedure. 
Thus we have: 

6.8. Theorem 

The function d is recursive. For any formula a, 

d(#a) = #[a(s#a)]. 

PROOF 

For the recursiveness claim, see above. The equality follows directly 
from the definition of d. ■ 

§ 7. Tarski's Theorem 
7.1. Preview 

We have seen that various relations connected with the syntax of .P. are 
recursive. By Cor. 5.15, these relations are representable in U; thus 
they are expressible in .P. under its standard interpretation. 

For example, we have seen that the property Tm of being a TERM is 
recursive; hence it is arithmetical. So (cf. Rems. 5.3 and 5.7) there is a 
formula a E cJ,1 such that, for any number x, 

Tm(x) <c> ffi I= a[x] <c> ffi I= a(sx)-

In this sense the formula a expresses the property of being a TERM and 
the sentence a(sx) 'says' that x is a TERM. Thus .P., under its standard 
interpretation m, is able to discourse of various aspects of its own 
syntax, albeit obliquely, by referring to its own expressions via their 
code-numbers. 

Can the standard semantics of .P. likewise be discussed in .P.? We 
shall show that it cannot. 
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7.2. Definition 

For any set I: of sentences, the property Tr. is defined by 

Tr,(x) <=>df xis a SENTENCE belonging to :E. 

7.3. Remarks 

(i) Equivalently, Tr. is the set #[E] of all SENTENCES of E. 
(ii) In particular, T n is the property of being a SENTENCE of O. In 

other words, T0 (x) holds iff x is a TRUE SENTENCE (see Def. 
1.9(ii)). 

7.4. Theorem (Tarski, 1933) 

T n is not arithmetical. 

PROOF 

By Tum. 6.8, the diagonal function dis recursive; hence by Thm. 5.19 
it is arithmetical. Now, let P be the property obtained by composing 
T n with d and then applying -, ; thus 

Px <=>dr-, Tn(d(x)). 

If Tu. were arithmetical, then by Prob 5.20 and Tum. 5.11 it would 
follow that P is arithmetical as well. This would mean that there is 
some formula « e 4l1 such that, for any number x, 

Taking x to be #a, we would therefore have: 

«(s# .. ) e O <=> P(#a) 
<=>-, Tn(d(#a)) 
<=>-, T n(#[«(s# .. )]) 
<=> «(s# .. ) ft 0 

by(**), 
by(*), 

by Tum. 6.8, 
by Def. 7.2. 

This contradiction proves that T n cannot be arithmetical. 

7.5. Remarks 

■ 

(i) Let us paraphrase the proof just given. If the property P were 
arithmetical then it would be expressed (that is, represented in 
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0) by some formula « e «IJ1. For any number x, the sentence 
«(sx) 'says' that Px holds. By(*), this is the same as 'saying' that 
d(x) is not a TRUE SENTENCE. 

Now, taking x to be the FORMULA « itself, we find that the 
sentence «(s#u) 'says' that d(#a) is not a TRUE SENTENCE. By 
Thm. 6.8, this means that #[u(s#u)] is not a TRUE SENTENCE; in 
other words, that the sentence «(s#u) itself is untrue. 

Thus, a(s#a) would be 'saying' something like 'I am false'! 
Clearly, this is closely related to the well-known Liar Paradox. 

Except that here there is no paradox: the argument in the proof 
shows that a formula representing Pin O cannot exist; hence P -
and therefore also TO - cannot be arithmetical. 

(ii) Tarski's Theorem applies not only to the language ..12, and its 
standard interpretation; indeed, it was originally proved in a far 
wider context. The argument used here can be adapted to show, 
roughly speaking, that any sufficiently powerful formal language­
cum-interpretation - powerful enough to express certain key 
concepts regarding its own syntax - cannot adequately express 
the most basic notions of its own semantics. Hence it cannot 
adequately serve as its own metalanguage. 

The rest of this section contains an outline of a somewhat stronger 
version of Tarski's Theorem. 

7.6. Definition 

Let f be an n-ary function and let« E «IJn+l• We say that« represents f 
numeralwise in a theory I: if, for any a e N'1, the sentence 

(***) 

belongs to I:. 

7.7. Problem 

Let a represent the n-ary function f numeralwise in the theory I:. For 
any formula I} in «IJ1, define P' as the formula 

3v n+1[P(v n+1) A«]. 

Prove that, for any a e N", the sentence P(s10 )~P'(s0 ) belongs to I:. 
(It is enough to show that this sentence is deducible from (***) in 
Fopcal.) 
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7.8. Definition 

A formula y e «1>1 is called a truth definition inside a theory 1: if, for 
each sentence qi, I: contains the sentence 

y(s#q,)++qi. 

7.9. Problem 

(i) Prove that if the diagonal function d is representable numeral­
wise in a consistent theory 1:, then there cannot exist a truth 
definition inside 1:. (Given any ye «1>1 , use Prob. 7.7 to find a 
formula b e «1>1 such that for every number a the sentence 
-,y(sd(a))++b(sa) is in I:; then take qi as b(s#6).) 

(ii) Prove that d is representable numeralwise in O; hence deduce 
that there is no truth definition inside 0. (Since dis arithmetical, 
there is a formula « e «1>2 that represents the graph of d in O. 
Show that the same a also represents d numeralwise in O.) 

(iii) Using (ii), give a new proof of Thm. 7.4. (Show that if Tn were 
represented in O by a formula y, then y would be a truth 
definition inside O.) 

(iv) Prove that if 1: is a sound theory (see Def. 2.14) there is no truth 
definition inside it. 

§ 8. Axiomatizability 

Recall (Def. 2. 7) that a set of postulates (a.k.a. extralogical axioms) for 
a theory I: is a set of sentences r such that 1: = Der. Having a set of 
postulates is no big deal: every theory 1: has one, because (by Def. 2.5) 
I:= Del:. In order to qualify as an axiomatic theory, 1: must be 
presented by means of a postulate set r specified by a finite recipe. 
This does not mean that r itself must be finite. (Of course, if r is finite 
then so much the better, for then its sentences can be specified directly 
by means of a finite laundry list.) Rather, it means that we are 
provided with an algorithm - a finite set of instructions - whereby the 
sentences of r can be generated mechanically, one after the other. By 
Church's Thesis, this is equivalent to saying that Tr must be given as 
an r.e. property. 

8.1. Conventions 

(i) When we say that a set r of sentences is recursive (or r.e.), we 
mean that Tr is a recursive (or r.e.) property. 
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(ii) When we say that r is given as a recursive (or r.e.) set, we mean 
that it is given in such a way as to enable us to program a 
computer to operate as a decide-Tr (or enumerate-Tr) machine. 
Similarly, when we say that we can find a recursive (or r.e.) set of 
sentences r, we mean that we can describe r in such a way as to 
indicate how a computer can be programmed to operate as a 
decide-Tr ( or enumerate-Tr) machine. 

8.2. Definition 

(i) A theory I: is axiomatic if it is presented by means of a set of 
postulates r, which is given as an r .e. set. 

(ii) A theory I: is axiomatizable if there exists an r.e. set r of 
postulates for I:. 

8.3. Remark 

Note that being axiomatic is an intensional attribute: it is not a 
property of a theory as such, in a Platonic sense, but describes the way 
in which a theory is presented. On the other hand, axiomatizability is 
an extensional attribute of a theory as such, irrespective of how it is 
presented. 

8.4. Theorem 

If I: is an axiomatizable theory then there exists a recursive set of 
postulates for I:. 

PROOF 

By assumption, I:= Der, where r is an r.e. set of sentences. 
Without loss of generality we may assume that r is infinite. (Other­

wise, we can add to r an infinite r.e. set of Fopcal axioms, for 
example: 9 = {sn=sn: n e N}. The set r U 9 is clearly an infinite r.e. 
set of postulates for our theory I:.) 

By assumption, there exists an enumerate-Tr machine. Let 

#yo, #"(1, · · ·, #yn, • • • 

be the order in which it enumerates the SENTENCES of r. We define 
sentences bn by induction on n as follows: 

bo = 'Yo, 
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Thus, bn = 'Yn A"/n-1A ... A 'Yo for all n. We put L\. = {bn: n EN}. 

It is easy to see that A is a set of postulates for I:. Indeed, it is 
evident that for each n we have r ~o bn as well as A ~o y n. Hence 
DcA =Der= ::E. 

Clearly, using the enumerate-Tr machine we can construct a ma­
chine that enumerates the SENTENCES of A, 

in this order. (The output of the enumerate-Tr machine can be 
converted by a simple further computation to yield this enumeration.) 

Note, moreover, that in the enumeration(*) the SENTENCES of A are 
produced in increasing order: it is easy to see that 

#bn+l = #(Yn+1Abn) > #bn for all n. 

This enables us to construct a decide-Ta machine, as follows. Given 
any number x, monitor the enumeration ( *) until a number greater 
than x turns up - which is bound to happen, sooner or later, because 
the numbers in ( *) keep increasing. Then Ta (x) holds iff by this time x 
itself has turned up in the enumeration ( *). 

This procedure is clearly mechanizable; hence A is a recursive set of 
postulates for I:. ■ 

8.5. Remark 

The proof of Thm. 8.4 shows that if I: is not merely axiomatizable but 
an axiomatic theory, then we can actually find a recursive set ~f 
postulates for it. 

To proceed, we shall need to assign a code-number to each non-empty 
finite sequence of formulas. 

8.6. Definition 

For any formulas q>i, q>2, ... , q>n, where n;:?: 1, we put 

8.7. Remark 

Thus, the binary representation of #(cp1, q>2 , ... , cpn) is obtained by 
stringing together the binary representations of the code-numbers #{f)1, 
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#qi2 , ••• , #qin, in this order, but inserting a digit 'l' between each one 
and the next. These additional 'J's serve as separators (like commas) 
showing where the binary representation of the code-number of one 
formula ends, and the next one begins. These separators are easily 
detected: they are always the first of two successive occurrences of 'l'. 
(The second 'l' belongs to the binary representation of the next 
formula.) 

8.8. Definition 

For any set of sentences r we define a binary relation Dedr by: 

Dedr(x, y) ~df x is a SENTENCE and y is a SEOUENCE-oF­
FORMuLAs that constitutes a deduction of that sentence from r. 

8.9. Lemma 

If r is a recursive set of sentences then the relation Dedr is recursive. 

PROOF 

It is easy to see that the property of being an AXIOM of Fopcal in .J!. is 
recursive: from the description of the axioms (Ax. 8.9.1-Ax. 8.9.8) it 
is clear that a computer can be programmed to decide whether any 
given number is an AXIOM. By assumption, the property Tr is recursive 
as well. 

In order to determine whether Dedr(x, y) holds for a given x and y, 
the following checks must be made. 

(1) It must be verified that y is the code-number of a finite sequence 
of formulas. 

(2) If it is, this sequence must next be scanned to verify that it is a 
deduction from r; that is, that each formula in it is an axiom, or a 
member of r, or obtainable by modus ponens from two formulas 
that occur earlier in the sequence. 

(3) If this turns out to be so, then finally the last formula of the 
sequence must be checked to verify that it is a sentence and that 
its code-number is x. 

Clearly, a computer can be programmed to perform the checks in (1) 
and (3). Since the property of being an AXIOM and the property Tr are 
recursive, it follows that the checks required in (2) can likewise be 
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done by a suitably programmed computer. This shows that the relation 
Dedr(x, y) is recursive. ■ 

8.10. Theorem 

A theory is axiomatizable iff it is an r. e. set of sentences. 

PROOF 

If I: is axiomatizable then by Thm. 8.4 there is a recursive set of 
sequences r such that I: = Der; that is, I: is the set of sentences 
deducible in Fopcal from r. Thus, for all x, 

Ti:(x) ~ 3y Dedr (x, y ). 

By Lemma 8.9, Dedr is recursive, hence r.e. (by Thm. 9.3.6). There­
fore (by Thm. 9.3.8) T'l:. is an r.e. property. 

Conversely, if the theory I: is r.e., then I: has an r.e. set of 
postulates: I: itself, because I: = Del:. ■ 

8.11. Remarks 

(i) The proof of Tom. 8.10 (including the proofs of Thm. 8.4 and 
Lemma 8.9) shows that if I: is not merely axiomatizable but an 
axiomatic theory, then a program can actually be produced for 
making a computer operate as an enumerate-T'l:. machine. Hence 
I: can be given as an r.e. set in the sense of Conv. 8.l(i). 

(ii) The theorem means that a theory is axiomatizable iff there exists 
a finite presentation of it, by means of a program for generating 
one by one all the SENTENCES of the theory. 

8.12. Theorem 

!! is not axiomatizable. 

PROOF 

By Tarski's Tom. 7.4, Tn is not arithmetical; hence by Cor. 5.13 it is 
not an r.e. property. ■ 

8.13. Theorem 

If P is weakly representable in an axiomatizable theory then P is an r. e. 
relation. 
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PROOF 

Let P be an n-ary relation and let a be a formula in cJ> n that represents 
P weakly in an axiomatizable theory l:. By Def. 4.7(i) we have, for all 
xeN", 

Px <c> a(s.) E l:. 

This means that, for all x E N1, 

Px <c> Ti;(#[a(sx)J). 

The n-ary function f defined by the identity fx = #[a(sx)l is clearly 
recursive. (To compute fx the n numerals s. must be substituted for 
the variables v1 , v2 , ... , vn in a; the code-number of the resulting 
sentence is /x. This computation can evidently be performed by a 
suitably programmed computer.) 

By Thm. 8.10 T'E. is r.e.; therefore by Thm. 9.4.6(iii) P is r.e. as 
well. ■ 

8.14. Problem 

Prove that if P is strongly representable in a consistent axiomatizable 
theory, then Pis a recursive relation. (First show that if a represents P 
strongly in a theory, then -, « represents -, P strongly in that theory.) 

§ 9. Baby arithmetic 
9.1. Preview 

In this section we introduce a sound axiomatic theory D0, which we 
call 'baby arithmetic' because it formalizes only a very rudimentary 
corpus of arithmetic facts: it 'knows' the true addition table and 
multiplication table for numerals, and of course everything that can be 
deduced from them logically - but nothing more. Despite its weakness, 
it is sufficient for a very simple weak representation of all r.e. 
relations. 

D0 is based on the following four postulate schemes: 

9 .2. Postulate scheme 1 
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9.3. Postulate scheme 2 

9.4. Postulate scheme 3 

9.5. Postulate scheme 4 

Here m and n are any numbers. 

9.6. Remark 

Evidently, all these postulates are true; hence D0 is sound. Also, this 
theory is axiomatic, as the set of postulates 9.2-9.5 is evidently 
recursive. 

From the postulates of D0 we can deduce in Fopcal formal versions 
of the addition and multiplication tables. 

9.7. Example 

Let us show that s1 +s1 =s2 E D0. First, note that the equation 

(1) 

is an instance of Post. 2, and so belongs to D0 . Also, the equation 

(2) 

is an instance of Post. 1, and hence belongs to D0 . Using Ax. 6 of 
Fopcal, we deduce from (2) the equation s(s1+s0)=ss1, which (in view 
of Def. 1.6) is 

(3) 

Finally, using Ax. 5 and Ax. 7 of Fopcal, we deduce from (1) and (3) 
the equation 

which must therefore belong to D0 , as claimed. 
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9.8. Problem 

Prove that Il0 contains the sentence: 

245 

(i) Sm+sn=Sm+n 

{ii) SmXsn=Smn 

(the formal addition table), 
(the formal multiplication table), 

for all m, n e N. (Use weak induction on n.) 

9.9. Lemma 

If tis a closed term and t 91 = n, then t=sn E Il0. 

PROOF 

We proceed by induction on degt, considering the five cases men­
tioned in Rem. 1.4(iii). In each case it is enough to show that the 
equation t=sn is deducible in Fopcal from sentences known to belong 
to Il0. 

Case 1: t is a variable. Inapplicable here, as t is assumed closed. 

Case 2: tis 0. Then n = 0 and sn = s0 = 0 by Def. 1.6. So the equation 
t=s0 is O=O, which is an instance of Ax. 5 of Fopcal, and hence 
belongs to Il0 . 

Case 3: t is sr, where r is a closed term. Let r91 = m. Then n = m + 1. 
By the induction hypothesis, the equation r=sm is in Il0 . From this 
equation we deduce (using Ax. 6 of Fopcal) the equation sr=ssm, 
which is in fact t=sn. 

Case 4: t is q+r, where q and r are closed terms. Let q91 = k and 
r91 = m. Then n = k + m. By the induction hypothesis, the sentences 
q=sk and r=sm are in Il0. From these two sentences we deduce (again 
using Ax. 6 of Fopcal) q+r=sk+sm, which is in fact 

t=sk+sm. 

By Prob. 9.8(i), the equation 

also belongs to Il0 . From these two equations we deduce (using Ax. 5 
and Ax. 7 of Fopcal) the equation t=sn. 
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Case5: t is qXr, where q and r are closed terms. This is similar to 
Case 4. ■ 

9.10. Definition 

A formula (or sentence) of the form 

3x13x2 ... 3xm(r=t), 

where m;;,,, 0, is called a simple existential formula (or sentence). 

9.11. Lemma 

D0 contains all true simple existential sentences. 

PROOF 

Let qi be a true simple existential sentence. We proceed by induction 
on the number m of quantifiers in qi. 

First, let m = 0. Then cp is an equation r=t, where r and t are closed 
terms. Since qi is true, it follows that rm= tm; that is, r and t have the 
same numerical value. Let n be this common numerical value. Then by 
Lemma 9.9 the equations r=sn and t=sn belong to D0. Using the 
equality axioms of Fopcal, we can deduce from these two equations the 
equation r=t, which must therefore belong to D0 as well. 

For the induction step, let qi have m + 1 quantifiers. Then qi has the 
form 3x\J,I, where \J.I is a simple existential formula with m quantifiers, 
and with no free variable other than x. 

Since q> is true, it is easy to see (cf. Lemma 5.6) that \J,l(x/sn) must be 
true for some number n. But \J,l(x/sn) is a simple existential sentence 
with m quantifiers; hence, by the induction hypothesis, it belongs to 
D 0. By EG (Rem. 8.10.2(iv)), \J,l(x/sn) I- 3x\J,I. Thus (fl must be in 0 0. 

■ 

9.12. Theorem 

For any given n-ary r. e. relation P, we can find a formula of the form 

3vn+13Vn+2 ... 3vn+mCr=t), 

that belongs to cJ) n and represents P weakly in every sound theory that 
includes D0. 
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PROOF 

By Cor. 5.13, we can find a formula« of this form that represents Pin 
9. Thus, for every x E Nn, 

Px-= «(sx) E 9. 

But «(sx) is a simple existential sentence. Hence, if I: is a theory such 
that II0 CI: C 9, it follows from Lemma 9.11 that 

«(sx) E 9 ~ «(sx) E I:. 

Hence, for every x E Nn, 

■ 

9 .13. Remarks 

(i) By Thm. 8.13, only r.e. relations can be weakly represented in an 
axiomatizable theory. We have just shown that every r.e. relation 
is in fact weakly representable in Il0 . Thus Il0 achieves as much 
as is possible for any axiomatizable theory as regards weak 
representation. 

(ii) As we shall see (Tum. 11.13), there are even weaker axiomatic 
theories in which every r.e. relation is weakly representable. 
However, the postulates of D0 have been devised so as to make 
this theory just strong enough for Lemma 9.11 to hold; hence r.e. 
relations are weakly represented in D0 by formulas of a particu­
larly simple form. 

9.14. Problem 

Let Ube an .Q-structure whose domain U is a singleton {u}. 

(i) Show that all the sentences of II0 are satisfied in U. 
(ii) Show that the sentence s0*s1 is not in Il0 . 

(iii) Show that if the n-ary relation P is strongly representable in 0 0, 
then P is a trivial relation: Px holds either for all x E Nn or for 
none. In other words, P is Nn or 0. (First show that if« E «l>n 
and U I= «(sa) for some a E Nn, then LI I= «(sx) for every x E Nn.) 

We return to our discussion ofThm. 9.12. Let a be the formula 
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where qi is any formula belonging to «l>n+m; thus a E «l>n. Let P be the 
n-ary relation represented by « in O and let o. e Nn. Thus we have 
Po.<=> m I= «[o.] (see Rem. 5.7). Now, due to the particular form of«, it 
is easy to see that 

ffi I= «[o.] <=> there are numbers bi, b2, ... , bm 

such that ffi I= qi [o., bi, b2, ... , bml• 

Therefore 

(9.15) Po.<=> there are numbers bi, b2, ... , bm 

such that ffi I= qi[o., b1, b2, . .. , bm)­

This justifies the following 

9.16. Definition 

Let qi be a formula belonging to «l>n+m and let a be the formula 

3Vn+13Vn+2 ••• 3Vn+mqi. 

Let P be the n-ary relation represented by a in 0. Let o. e Nn. Then 
by an a-witness that Po. we mean any m-tuple of numbers 
(bi, b2, . .. , bm) such that 

ffi I= qi[o., b1, b2, ... , bm). 

9.17. Remarks 

(i) Thus (9.15) means that - under the assumptions made in Def. 
9.16 - Po. holds iff there exists an «-witness that it does. 
Moreover, the sentence «(s,i) may be regarded as 'saying' that 
there exists an «-witness that Po.. Indeed, it is clear that «(sa) is 
true - that is, m I= «(s0) - iff such a witness exists. 

(ii) In the special situation covered by Thm. 9.12, P is an r.e. 
relation, « is a simple existential formula of a particularly neat 
form and q> is an equation r=t. In this case an «-witness that Po. 
is an m-tuple {bi, b2, ... , bm) such that 

What does it take to show that such a witness exists? We may 
search systematically through the set Nm of all m-tuples of 
numbers. For each m-tuple {bi, b2, ... , bm), we can test 
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whether it is a witness of the kind we are looking for. This 
involves performing a finite number of additions and multiplica­
tions, to see whether (*) holds; in other words, whether the 
equation r=t is satisfied by a valuation (based on 92) that assigns 
the values 11, bi, b2, ... , bm to the variables Vt, Vz, ... , v n+m· 
Of course, if Pa does not hold, then we can never find a witness 
that it does. But if Po. does hold, then a witness exists, and in 
order to recognize one we only need to be able to do the 
following things: 
1. Add and multiply, to calculate the values of terms r and t 
under a given assignment of numerical values to their variables. 
2. If both terms have the same value, recognize that this is so. 
Now, these operations are so simple, that even the very modest 
power of the theory Il0 is sufficient for performing them for­
mally, within this theory. In other words, if the sentence «(s0 ) -

which 'says' formally that a witness of the required kind exists - is 
true, then it can be deduced in Fopcal from Post. 9.2-9.5. 

§ 10. Junior arithmetic 
10.1. Preview 

By adding to the postulates of baby arithmetic three schemes dealing 
with inequalities, we obtain a somewhat more powerful axiomatic 
theory, Ilt (a.k.a. junior arithmetic), in which all recursive relations 
are strongly represented by relatively simply formulas. This will follow 
from a major result, the Main Lemma, which will also play an 
important role later on. 

10.2. Definition 

For any terms r and t, we put 

r,s;;;t =dr 3z(r+z=t), 

where z is the first variable in alphabetic order that occurs neither in r 
nor int. 

10.3. Remark 

This is yet another mnemonic pun: by Ex. 5.8(ii), the formula Vt ,s;;;v2 

represents in O the relation ::s.. 
As postulates for Ilt we take Post. 1-4 (9.2-9.5), as well as the 
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following three schemes: 

10.4. Postulate scheme 5 

10.5. Postulate scheme 6 

10.6. Postulate scheme 7 

Vv1(sn,e.v1 vv1,e.sn), 

where n is any number, and (in Post. 5) m is any number such that 
m =I= n. 

10.7. Remarks 

(i) Evidently, Il1 is a sound axiomatic theory. 
(ii) n1 is a proper extension of Il0 because, for example, no instance 

of Post. 5 belongs to Ilo (cf. Prob. 9.14(ii)). 

10.8. Problem 

Show that the results of Prob. 3.9(i), (ii) and (iii) hold with '0' 
replaced by 'Il1'. 

10.9. Problem 

(i) Let *9l be the .£-structure such that: 
1. * N = N U { oo}, where oo is an object that is not a natural 
number; 
2. *O = O; 
3. *sis the extension of the ordinary successor function such that 
*s(oo) = O; 
4. *+ is the extension of ordinary addition such that if a = oo or 
b = oo then a * + b = oo; 

5. *x is the extension of ordinary multiplication such that if 
a= oo orb= oo then a *x b = 0. 
Show that *9l is a model for Il1. 

(ii) Prove that the sentence Vv1(sv1=l=s0) is not in Il1. 
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JO.JO. Definition 

For any variable x, term rand formula« we put 

(i) 3x~r« =df 3x(x~rA«), 
(ii) Vx~r« =df Vx(x~r--+«). 

JO.II. Preliminaries 

Let two n-ary r.e. relations P and P' be given. By Cor. 5.13, we 
obtain two formulas 

« = 3vn+13Vn+2 ... 3vn+m(r=t), 

«' = 3Vn+13Vn+2 .. , 3Vn+m•(r'=t'), 

that belong to cJ>n and represent P and P' respectively in 9. Without 
loss of generality we may assume that m' = m. Indeed, if m' < m, 
then by Prob. 8.5.12 we may insert a string of m -m' additional 
('vacuous') quantifiers 3vn+m'+l ... 3vn+m in«' and obtain a formula 
that is logically equivalent to «' and, like it, represents P' in 9. 
Similarly, if m < m ', we can insert additional quantifiers into «. 
Therefore we shall assume 

From these two formulas we construct two new ones: 

p = 3vn+l~y3vn+2~Y ... 3vn+m~y(r=t), 

w = 3vn+l~y3vn+2~Y ... 3vn+m~y(r'=t'), 

where y is Vn+m+l• Finally, we construct a fifth formula: 

"/ = 3y(p A-, pt). 

Note that the free variables of p and P' are among v1, v2 , ... , Vn and 
y, and therefore y is in cJ> n. 

J0.12. Main Lemma 

Given any two n-ary r.e. relations P and P', let 'Y be the formula 
constructed above. Then for every a E Nn we have 

Pa I\ ,P'a ==> y(s0 ) E Il1, 

,Pa I\ P'a ==> -,y(s0 ) E Il1, 
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PROOF 

For the simple but somewhat lengthy proof, see B&M, pp. 337-340. 
(The Main Lemma appears there as Lemma 7.9, but its proof requires 
two earlier results, Lemmas 7.7 and 7.8.) ■ 

10.13. Analysis 

Let q> and qi' be the equations r=t and r'=t' that occur in the formulas 
« and «' respectively. 

We take up the discussion begun in Rem. 9.17. Recall that Po. holds 
iff there exists an «-witness that it does. By Def. 9.16, such a witness is 
an m-tuple ( bi, b2, ... , bm) for which 

91 t= qi[o., bi, b2, . • • , bm]. 

Moreover, «(sa) 'says' that such a witness exists. 
Now let us find out what is 'said' by a sentence obtained from P by 

substituting numerals for its free variables. It is easy to see that 

P(sa,y/sb) E o-9?t=fl[o.,y/b] 

- there are bi, b2, ... , bm..;; b such that 

9? t= qi[a, bi, b2, ... , bm]-

Thus fl(s0 , y/sb) 'says': There is an a-witness that Po., and this witness is 
bounded by the number b. In other words: Among the numbers ..;; b 
there can be found an a-witness that Po.. Exactly the same analysis 
applies to P', a' and P'. 

What does the sentence y(sa) 'say'? Recalling that y = 3y(f}A-, fl'), 
we see that 

- there is a number b such that 

91 t= P[o., y/b] but91 ~ fl'[a, y/b]. 

Thus y(sa) is true iff for some number b there is an «-witness, bounded 
by b, that Pa, but there is no «'-witness bounded by b that P'a. 
Putting this a bit less accurately but more suggestively, y(sa) 'says': 

An a-witness that Po. is found before an «'-witness that P'a. 

Or, even more simply: 

Pa is a-witnessed before P'a is «'-witnessed. 
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The whole of Nn can be divided into four mutually exclusive regions, 
as follows (see Fig. 5): 

Region I= PA ,P', 
Region II = , P I\ P', 

Region III = P A P', 
Region IV = , P A , P'. 

Let us consider the truth value of y(sa) in each of these regions (that is, 
for a belonging to each region). 

For a in Region I, Pa holds, and hence is a-witnessed by some 
m-tuple (bi, b2, ... , bm). If we choose b large enough (say as the 
largest among these b;) then Pa has an a-witness bounded by b. But in 
this region P' a does not hold, hence has no a' -witness, let alone a 
witness bounded by our b. Thus Pa is a-witnessed before P'a is 
«'-witnessed, simply because the former witness exists and the latter 
does not. So y(sa) is true throughout Region I. 

In Region II, the position is reversed. Here P'a holds, and is 
therefore a' -witnessed; but Pa is not a-witnessed at all, let alone 
before P' a is a' -witnessed. Hence y(s0) is false throughout Region II. 

In Region III, both Pa and P'a hold, and are therefore witnessed, 
but for some a in this region Pa may be a-witnessed before P' a is 
a' -witnessed, while for other a in the same region this may not be the 
case. So there is no general uniform answer for this region: y(s0) may 
be true for some a and false for others. 

In Region IV, neither Pa nor P'a holds, and hence neither is 
witnessed. So, Pa is not a-witnessed at all, let alone before P' a 1s 
a' -witnessed. Hence the sentence y(s0) is false in this region. 

IV 

T l l 

II 

p P' 

Fig. 5 
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Our Lemma says that for a in Region I the sentence y(sa) is not only 
true. but even deducible from the postulates of Il1; and that for a in 
Region II the sentence is not only false, but even refutable (that is, its 
negation is deducible) from these postulates. 

The Lemma says nothing about the provability or refutability of 
y(s0 ) in the other two regions. As far as Region III is concerned, the 
reason is obvious: as we have seen, the sentence may not have a 
uniform truth value in this region, so we cannot expect any uniform 
result concerning its provability or refutability. But in Region IV the 
position is quite different, because our sentence is false throughout this 
region, just as in Region II. Why does the Lemma tell us nothing about 
this fourth region? 

To understand the reason for this discrepancy, we must examine 
what kind of evidence is available for the truth or falsehood of y(s0 ) 

when a is in Regions I, II, and IV. 
In order to decide whether a given m-tuple (b1, b2, ... , bm) of 

numbers is an a-witness that Pa, we must be able to tell whether 
9l I= q>(o., bi. b2 •. .. , bm], where q> is the equation r=t. 

As we saw in Rem. 9.17, if (b1, b2, ... , bm) is indeed an «-witness 
that Pa, then the operations required to recognize this fact can be 
performed formally within Il0 , and a fortiori within Il1. 

Now, if (b1, b2, ... , bm) is not an «-witness that Po., then the 
operations required to recognize this fact involve not only adding and 
multiplying to compute the relevant values of r and t. but also the 
ability to tell that these two values are unequal. Thanks to Post. 5, all 
this can be performed formally within Il1. 

Thus, in Il1 it is possible to carry out formally all the operations 
required to tell whether or not any given m-tuple (b1, b2, ... , bm) is 
an «-witness that Po.. 

In order to decide whether a given «-witness that Pa is bounded by a 
number b, we need to check whether each of the m components of the 
witness is :!:i b. 

Now, if o. is in Region I, then in order to verify that y(sa) is true we 
need only to check that a given m-tuple of numbers is an «-witness 
that Pa, and is bounded by some given number b; and then to verify 
that each of the m-tuples bounded by b fails to be an «'-witness that 
P'o.. Since there are only finitely many such m-tuples, all this requires 
a finite number of simple steps. 

In order to obtain a formal deduction of y(sa), we need to formalize 
the process just described; and for this we need to have at our disposal 
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a fairly modest set of postulates dealing formally with addition, multi­
plication and inequalities of both kinds (that is, -=I= and ,s;;). The 
postulates of Il1 are adequate for this. 

In Region II the situation is broadly similar. If a is in this region, 
then in order to verify that y(s0 ) is false, we need to check that a given 
m-tuple is an «'-witness that P'a and is bounded by a given number b; 
then we need to check, for each m-tuple bounded by b, that it fails to 
be an «-witness that Pa. Finally, from these facts - namely, that P'a 
has an «-witness bounded by b, but Pa has no such «-witness - we 
need to infer that Pa cannot be «-witnessed before P' a is «' -witnessed. 
Again, all this amounts to a finite number of operations of additions 
and multiplications, together with some very elementary inferences 
about inequalities. 

To obtain a formal refutation of y(s0), we need to formalize this 
procedure. Again, the postulates of Il1 are adequate for this. 

But in Region IV the situation is quite different. If o. is in this region, 
then in general there is no finite procedure of the kind described above 
(that is, consisting of additions, multiplications and simple inferences 
with inequalities) that would provide sufficient evidence that y(s0 ) is 
false. Of course, the sentence is in fact false, but in general the only 
way to verify this would be to check that none of the infinitely many 
m-tuples of numbers is an «-witness that Po.. This requires an infinite 
amount of calculation, and we cannot expect such an infinite procedure 
to be formalizable within an axiomatic theory such as Il1. 

One final remark. There is nothing magical about the particular set 
of postulates of fl1. It is not these postulates that are of prime 
importance, but the Main Lemma. What we need is a sound axiomatic 
theory, preferably quite weak, for which the lemma can be proved. 
The theory Il1 was invented for the sake of the lemma. The postulates 
of the theory were selected by working back from the lemma, and 
discovering what postulates were needed to make the proof of the 
lemma work without too much difficulty. This is of course the kind of 
process described by Imre Lakatos in Proofs and Refutations. 

10.14. Theorem 

Given a recursive relation R, we can find a formula 'Y, of the form 
specified in Prel. 10.11, that represents R strongly in any theory that 
includes n 1. 



256 10. Limitative results 

PROOF 

In the Main Lemma, take P and P' as R and -, R, which are r.e. by 
Thm. 9.3.6. Then the lemma shows that y represents R strongly in 0 1, 
and hence also in any theory that includes 0 1. ■ 

10.15. Problem 

Let I: be a theory that includes 0 1. Show that every recursive function 
is representable numeralwise in I:. (If« strongly represents the graph 
of the n-ary function f in n 1, prove that the formula 

Vy,s;,.v n+1[«(v n+i/y)++y=v n+d, 

where y is v n+2 , represents f numeralwise in Il1.) 
Hence show that if I: is consistent there cannot exist a truth 

definition inside it. (See Def. 7.8 and Prob. 7.9.) 

10.16. Remark 

The results of this section, particularly the Main Lemma, in a some­
what weaker form, are essentially due to Barkley Rosser.1 The present 
stronger version is made possible by the MRDP Thm., which allows us 
to take « and «' as simple existential formulas. 

§ 11. A finitely axiomatized theory 

Whereas 0 0 and Il1 were based on infinitely many postulates, our next 
theory, Il2, is based on the following nine. 

11.1. Postulate I 

11.2. Postulate II 

1 His 1936 paper, 'Extensions of some theorems of Godel and Church', is reprinted in 
M. Davis, The Undecidable. 
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11.3. Postulate Ill 

Vv1(v1+so=v1). 

11.4. Postulate IV 

11.5. Postulate V 

11 .6. Postulate VI 

11.7. Postulate Vil 

11 .8. Postulate VIII 

11.9. Postulate IX 

11 .10. Remarks 

(i) The theory Il2 is clearly sound and axiomatic. 
(ii) Instead of adopting these nine separate postulates, we could have 

taken their conjunction as a single postulate for Il2• Indeed, we 
shall make use of this option in the sequel. However, here we 
have preferred to present shorter separate postulates, for the 
sake of clarity. 

(iii) 0 2 is a modification of a finitely axiomatized theory proposed by 
Raphael Robinson in 1950. 
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11.11. Theorem 

111 k 112, 

PROOF 

It is quite easy to show that all the postulates of 111 (Post. 1-7) can be 
deduced from Post. I-IX. (DIY, or see the details in B&M, pp. 
341-342.) ■ 

11.12. Problem 

(i) Let *9? be the ..e-structure such that: 
1. * N = N U {co}, where co is an object that is not a natural 
number; 
2. *0= O; 
3. *sis the extension of the ordinary successor function such that 
*s(oo) = co; 

4. *+ is the extension of ordinary addition such that if a= co or 
b = co then a*+ b = co; 

5. *x is the extension of ordinary multiplication such that if 
b -:I=- O then oo *x b = co; co *x O = O; and a *x oo = co for all a. 
Show that *mis a model for 112. 

(ii) Prove that the sentence Vv1(sv1-:l=-v1) is not in 112, 

11.13. Theorem 

(i) Given an r.e. relation P, we can find a formula that represents P 
weakly in any sound theory. 

(ii) Given a recursive relation R, we can find a formula that represents 
R weakly in any theory I: such that I: U 112 is consistent. 

PROOF 

(i) Let P be a given n-ary r.e. relation. Take a as the formula 
provided by Cor. 5.13 and Thm. 9.12. Let :1t be the conjunction of 
Posts. I-IX. We shall show that~« does the job. 

112 is a sound theory, and by Thm. 11.11 it includes Iii, hence also 
110. Therefore by Thm. 9.12 a represents P weakly in 112. 

Let a be an n-tuple such that Pa. Then «(s0) e 112. Since all the 
sentences of 0 2 are deducible in Fopcal from :It, we have :It I- «(s0); 
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hence by DT I- 3t-+«(s0). Thus the sentence :1t-+«(s0) belongs to every 
theory, and in particular to every sound one. 

Now let a be such that -, Pa. Since a. represents P in 0, we have 
«(s0) rt O; in other words, a.(s0) is false. But :It is a true sentence, so 
:1t-+«(s0) is false, and hence cannot belong to any sound theory. Thus 
we have shown that, for any sound theory I: and any a e Nn. 

Pa <c> :1t-+a(s0) E I:. 

(ii) Let R be a given n-ary recursive relation. Take y as the formula 
of Tum. 10.14. Then y represents R strongly in Il2. 

Let a be an n-tuple such that Ra. Then by an argument like the one 
used in the proof of (i) it follows that the sentence 3t-+y(s0) belongs to 
every theory. 

Now let a be such that -, Ra. Then ,y(s0) E 112, hence :It I- ,y(s0). 
If I: is a theory such that :1t-+y(s0) EI:, then from I: U {:1t} we can 
deduce both y(s0) and ,y(s0), so I: U 112 is inconsistent. In other 
words, if I: U 112 is consistent then 3t-+y(s0) rt I:. 

Thus we have shown that if I: is a theory such that I: U 112 is 
consistent then. for any a e Nn, 

■ 

§ 12. Undecidability 

Let I: be a set of sentences. The decision problem for I: is the problem 
of finding an algorithm - a deterministic mechanical procedure -
whereby, for any sentence qi, it can be determined whether or not 
qi e I:. This is clearly equivalent to the problem of finding an algorithm 
whereby, for any number x, it can be determined whether or not 
Ti;(x) holds (that is, whether or not x is a SENTENCE of I:). If such an 
algorithm is found, then this constitutes a positive solution to the 
decision problem for I:, and I: is said to be decidable. If it is proved 
that such an algorithm cannot exist, this constitutes a negative solution 
to that decision problem, and I: is said to be undecidable. 

Note that if I: is undecidable, it does not follow that there is some 
sentence for which it is impossible to decide whether or not it belongs 
to I:. Each such individual problem may well be solvable by some 
means or other. The undecidability of I: only means that no algorithm 
will work for all sentences. 

In order to make rigorous reasoning about decidability possible, this 
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intuitive notion must be given a precise mathematical explication. 
Church's Thesis (a.k.a. the Church-Turing Thesis) states that such 
explication is provided by the notion of recursiveness. As mentioned in 
Rem. 9.3.H(ii), this thesis is supported by very weighty arguments, 
and has won virtually universal acceptance. Nevertheless, we shall 
keep our terminology free from commitment to Church's Thesis, by 
using the adverb 'recursively' where the thesis is needed to justify its 
omission. 

12.1. Definition 

If E is a set of sentences such that the property Tr. is not recursive, we 
say that I: is recursively undecidable and that the decision problem for 
I: is recursively unsolvable. 

From Tarski's Theorem 7.4 and Cor. 5.15 it follows at once that O is 
recursively undecidable. This, as well as many other undecidability 
results, also follows from 

12.2. Theorem 

If E is a theory in which every recursive property is weakly represent­
able, then E is recursively undecidable. 

PROOF 

Suppose Tr. were recursive. Let the property P be defined by 

Since by Thm. 6.8 the function d is recursive, P would also be 
recursive by Thms. 9.4.6(ii) and 9.4.1. Therefore P would be weakly 
represented in I: by some formula « e fJ» 1. Thus, for all x e N, 

Taking x to be the number #a, we get, exactly as in the proof of Thm. 
7.4: 

«(s#a) E I: ~ P( #«) 
~-, Tr.(d(#«)) 
~-, Ti;(#[«(s#a)]) 
<=> «(s#a) f E 

by(**), 
by(*), 

byThm. 6.8, 
by Def. 7.2. 

This contradiction proves that Tr. cannot be recursive. ■ 
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12.3. Corollary 

Any sound theory is recursively undecidable. 

PROOF 

Immediate, by Thms. 9.3.6 and ll.13(i). 

12.4. Corollary 
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■ 

Any consistent theory in which every recursive property is strongly 
representable is recursively undecidable. 

PROOF 

Immediate, by Rem. 4.8(ii). ■ 

12.5. Corollary 

Any consistent theory that includes 111 is recursively undecidable. 

PROOF 

Immediate, by Cor. 12.4 and Thm. 10.14. ■ 

12.6. Corollary 

If l: is a theory such that l: U 112 is consistent, then l: is recursively 
undecidable. 

PROOF 

Immediate, by Thm. 11.13(ii). 

12.7. Corollary (Church's Theorem) 

A is recursively undecidable. 

PROOF 

■ 

Immediate from Cor. 12.6, since AU 112 = 112 is clearly consistent. ■ 

12.8. Remarks 

(i) The consistency of 112 follows of course from its soundness; but it 
can also be proved by more elementary arguments, without 
invoking semantic notions. 
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(ii) If E is an axiomatizable theory that satisfies the condition of 
Thm. 12.2, then Tr. is r.e. by Thm. 8.10, but not recursive. This 
applies, in particular, to A, Il

0
, Il

1 
and Il

2
. These provide us 

with examples of r.e. properties that are not recursive. 

12.9. Problem 

Using Rem. 12.S(ii) and Prob. 8.14, obtain an alternative proof of 
Thm. 8.12, not using Tarski's Theorem. 

12.10. Probkm 

Deduce Cor. 12.3 from Cor. 12.6. 

12.11. Remarks 

(i) Cor. 12.6 can be deduced from Cor. 12.5, as follows. Assume 
that E is a theory such that E U 0 2 is consistent. 

In general, E U 0 2 is not a theory; but A = Dc(E U 0 2) is 
clearly a consistent theory that includes Il2 , and hence also Il1 . 

Therefore by Cor. 12.5 A is recursively undecidable. 
Let :it be the conjunction of the nine postulates of n 2. Then, it 

is easy to show (DIY!) that, for any sentence c:p, 

c:p E A - :lt-+(f) E E. 

Recall that #(:it-+c:p) = 128"#:it"#c:p. Therefore, for all x, 

where fx = 128"#:it"x. 

Clearly, f is a recursive function. If Tr. were recursive then TA 
would likewise be recursive, which is impossible because A is 
recursively undecidable. Therefore Tr. cannot be recursive, so E 
is recursively undecidable. 

(ii) This illustrates the method of reduction. If E1 and E2 are theories 
such that for all x 

Tr.,(x) - Tr.ifx), 

where f is a recursive function, then f is said to be a reduction of 
l:1 to l:2. If I:1 is known to be recursively undecidable, then it 
follows that E2 must also be recursively undecidable. 

Starting from the results we have proved here, the method of 
reduction is used to obtain many other undecidability results, not 
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only for theories in the present language .J2, but in other lan­
guages as well. It turns out that almost every interesting mathe­
matical theory is recursively undecidable. Which is just as well, 
for otherwise mathematicians could be made redundant and 
replaced by computers. 

§ 13. First-order Peano arithmetic 

The theory 0, generally known as first-order Peano arithmetic 
(FOPA), is based on the set of postulates comprising the first six 
postulates of 0 2 and the following scheme: 

13.1. Postulate scheme of induction 

Vv2Vv3 ... Vvn[«(so)-Vv1{«-«(sv1)}-Vv1«], 

for every number n ~ l and any formula « E cI> n. 

13.2. Remark 

It is clear that O is axiomatic. We shall soon see that it is also sound. 

To explain the meaning of these new postulates, we need the following 
two definitions, the first of which extends the notation introduced in 
Def. 5.4 to arbitrary .J2-structures. 

13.3. Definition 

(i) Let« E Cl>n, let *91 be an .J2-structure and let a= (ai, a2, .. . , a,,) 
be an n-tuple of individuals in the domain * N. If a. is satisfied by 
some - and hence every - valuation a based on *91 such that 
v;° = a; for i = l, 2, ... , n, we write: 

'*ffi I= «[a]'. 

(ii) For any .J2-structure *ffi, any formula a. E Cl>n (with n;;;,, 1) and 
any a2, a3, .... a,, E *N, we put 

M(*91, a; a2, a3, ... , an) =dr {a1 E *N: *ffi I= «[a]}. 

(iii) The set M(*91, a; a2, a3, ... , a,,) is said to be defined in *91 by a., 
with parameter values a2, a3, ... , a,,. Sets of this form are said to 
be parametrically definable in *91. 
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13.4. Definition 
If *91 is an .£-structure and X is any subset of * N, we say that X is 
inductive in *91 if it satisfies the condition: 

If *O e X, and for every x e X also *s(x) EX, then X = *N. 

13.5. Remarks 

(i) A straightforward application of the BSD shows that 

*91 I= Vv2VV3 ... Vvn[«(so)-+Vv1{«-+«(sv1)}-+Vv1«] 

is equivalent to the condition that for all a2, a3, •.• , an e * N the 
set M(*91, a; a2, a3, ... , an) is inductive in *91. 

Thus, all instances of the induction postulates 13.1 hold in *91 
iff all sets that are parametrically definable in *91 are inductive in 
*91. 

(ii) The Principle of Induction says that every subset of N is induc­
tive in 91. It follows that all instances of 13.1 are true (that is, 
they hold in 91) and hence D is sound. 

(iii) However, the present first-order induction scheme 13.1 falls far, 
far short of expressing (under the standard interpretation) the full 
power of the Principle of Induction. The latter states that all 
subsets of N are inductive (in 91). It is a second-order principle, 
and was stated as such in Peano's 1889 axiomatization of arith­
metic (cf. Rem. 6.1.8). Note that by Cantor's Thm. 3.6.8 there 
are uncountably many subsets of N. 

On the other hand, our first-order induction postulates only 
manage to state (under the standard interpretation) the induc­
tiveness of subsets of N that are parametrically definable in 91 -
that is, sets of the form M(91, a; a2, a3, ... , an). However, it is 
easy to see (by an argument similar to that used in proving Thm. 
6.3.9) that there are only denumerably many such subsets of N. 

POPA is in this sense merely a pale first-order shadow of the 
theory outlined by Peano. 

(iv) Nevertheless, n is an extremely strong theory. Although by 
Thm. 8.12 we know that D must be a proper subtheory of O, and 
there must therefore exist true sentences that are not in Il, it 
requires very great ingenuity to discover such sentences. 

The first examples of true sentences that do not belong to Il 
were given by Godel in 1931. (We shall present his results in the 
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next two sections.) However, his sentences state interesting facts 
only when read obliquely, as referring to .£-expressions via their 
code-numbers; and these facts are then of purely logical (rather 
than general mathematical) interest. 

It was only in 1977 that J. Paris and L. Harrington invented a 
method for producing true sentences that do not belong to Il 
and, when read directly rather than obliquely, express reasonably 
interesting mathematical facts, of the kind that can be of interest 
to an honest mathematician. not just to a logician. 

13.6. Theorem 

Il2 k Il. 

PROOF 

It is enough to show that the last three postulates of Il2 (Post. VII-IX) 
belong to Il. This is not difficult. (DIY or see B&M, p. 343f.) ■ 

13.7. Problem 

Prove that Vv1(sv14:v1) e Il. Hence by Prob. 11.12(ii) Il is a proper 
extension of Ilz. 

13.8. Remarks 

(i) Let *91 be a model of Il. Then *91 is, in particular, also a model 
of Il1 ; hence by Prob. 10.8 there is a unique embedding f of 91 in 
*97. Without loss of generality, we can assume that *91 is actually 
an extension of 97. This amounts to assuming that N k * N and 
that fn = n for every number n. Thus by Def. 3.4 we have: 

*O = 0, *s(m) = m + l, m *+ n = m + n, m *x n = mn, 

for all numbers m and n. 
(ii) For some structural information about nonstandard models of Il, 

see B&M, p. 345 (Prob. 9.14 there). The same information 
applies, in particular, to nonstandard models of Q. 

13.9. Problem 

Let *91 be a nonstandard model of Il. Without loss of generality, 
assume that *97 is an extension of 97. 
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(i) Show that N is not parametrically definable in *ffi. (See Def. 
13.3(iii).) 

(ii) Hence prove, more generally, that no infinite subset of N is 
parametrically definable in *ffi. 

§ 14. The First Incompleteness Theorem 
14.1. Preview 

In an epoch-making paper published in 1931, Godel presented two 
main results, known as the First and Second Incompleteness 
Theorems.1 

Actually, the First Incompleteness Theorem came in two versions. 
One version, which applies to sound theories - and therefore depends 
on semantic notions - is explained in the introduction to the paper. 
Thanks to the MRDP Thm. 9.5.4, proved in 1970, it is now possible to 
obtain a somewhat stronger form of this semantic version: we shall 
prove it as Thm. 14.2 below. 

In the main body of the paper, Godel proves another version of the 
First Theorem, which does not depend on semantic notions. It applies 
to theories that are w-consistent. (A theory E is w-inconsistent if for 
some formula « e 4»1, it contains the sentences «(sn) for all n as well 
as the sentence --, Vv1«. The inconsistent theory is clearly w-inconsist­
ent, but the converse is not true.) In 1936 Rosser showed that this 
version of the First Theorem can be extended to theories that are just 
consistent, but not necessarily w-consistent. His proof employed a 
result which is the prototype of our Main Lemma 10.12. 

Using the MRDP Thm., the Godel-Rosser Theorem can also be 
strengthened. This stronger form is proved below as Thm. 14.6. 

The Second Incompleteness Theorem is stated by Godel, but its 
proof is only briefly outlined. In the next section we shall give a mere 
outline of the proof. 

By Tom. 8.12, Q is not axiomatizable. It follows at once that every 
sound axiomatizable theory E must be a proper sub-theory of Q, and 
hence incomplete. Thus there must exist a true sentence that does not 
belong to E. The following theorem shows that, given a sound axio­
matic theory E, we can find such a sentence, of a particularly simple 
form. 

1 A translation of his paper, 'On formally undecidable propositions of Principia mathe­
matica and related systems I', is printed in van Heijenoort, From Ferge to Godel. 
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14.2. Theorem (Semantic version of First Incompleteness Theorem) 

Given a sound axiomatic theory I:, we can find a true sentence qi of the 
form Vx1 Vx2 ... Vxm(P:PQ) that does not belong to I:. 

PROOF 

By Thm. 8.10 (cf. also Rem. 8.ll(i)), we obtain T,:. as an r.e. property. 
We put 

Then by Thm. 9.4.6(iii) Pis r.e. as well. Hence, by Cor. 5.13, we can 
find a formula a E <1>1 of the form 3v23v3 ... 3v m+ 1 (r=t) that repre­
sents P in Q. Let 

Clearly, P is logically equivalent to -,a, and represents -, P in Q. 
Thus, for any number x, 

jl(sx) E Q ¢>-, T'f.(d(x)). 

Taking x = #jl, we have: 

jl(s#fl) E Q ¢>-, T,:.(d(#jl)) 
¢> -, Ti;( #[P( S#jl)]) 

¢> jl(s#fl) 1 I: 
byThm. 6.8, 
by Def. 7.2. 

Let qi be jl(s#ll). Then qi is indeed of the form Vx1 Vx2 ... Vxm(p=t=q). 
(Here xi, Xz, ... , Xm are v2 , v3, ... , Vm+l respectively; and the terms 
p and q are obtained from r and t respectively by substituting the 
numeral s#IJ for the variable v1.) Also, we have just shown that 

This means that either 

qi E Q and qi 1 l:, 

or 

qi 1 Q and Ql E I:. 

However, (**) is impossible by the soundness of I:; so(*) must be the 
cue. ■ 
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14.3. Remarks 

(i) If I:, instead of being axiomatic, is assumed to be merely axio­
matizable, then the proof shows that there exists a sentence q> 

with the properties stated in the theorem, without telling us how 
to obtain it. 

(ii) In the proof of Thm. 14.2 we established not only that qi ff. I: but 
also that q> e Q; hence -,cp ff. Q. Since I: is assumed to be sound, 
it follows that -, qi ff. I: as well. Thus neither q> nor its negation is 
in I:, showing I: to be incomplete. For this reason Tom. 14.2 is an 
incompleteness theorem. 

(iii) Godel says of q> that it is [formally] undecidable in I:. We prefer 
to say that qi is undecided by I:, so as to avoid confusion with the 
term undecidable explained in§ 12. 

14.4. Analysis 

We know that Tr. is the property of being a SENTENCE of I:. Moreover, 
tracing through the proof of Thm. 8.10, we see that - for an axiomatic 
theory I: - Tr. was obtained as an r.e. property by noting that, for 
anyx, 

Tr.(x) <c> xis a SENTENCE deducible from the postulates of I:. 

(The postulates referred to here are an r.e. set of postulates in terms of 
which I: is presented.) Since p represents -, Pin 9, the sentence P(sx) 
can be taken to 'say' (under the standard interpretation): d(x) is not a 
SENTENCE deducible from the postulates of I:. 

In particular, when we take x to be #P, the sentence P(sx) is our q> 

and d(x) is #cp. Thus q> 'says': #qi is not a SENTENCE deducible from the 
postulates of I:. Or, briefly, q> 'says': 

I am not deducible from the postulates of I:. 

Compare this with the proof of Tarski's Theorem, analysed in Rem. 
7.5(i). There we saw that if T0 were arithmetical, there would exist a 
sentence that 'says' I am untrue. This would reproduce the Liar 
Paradox in .IL But in fact there was no paradox, since such a sentence 
cannot exist; and this only showed that TO is not arithmetical. 

The Godel sentence qi in the proof of Thm. 14.2. certainly does 
exist: we have in fact shown how to obtain it. Nor does it assert its own 
falsity; rather, it asserts its own undeducibility from the postulates of 
I:. Since I: is sound, the postulates of I: are all true. It follows that qi 
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cannot lie; for if it lied, it would be deducible from these true 
postulates, and hence it would be true! Thus (f) is true and just because 
of this it is undeducible from the postulates of I:. Or, if you like, it is 
true because it is undeducible from these postulates. 

Here too there is no paradox: the Liar Paradox is merely skirted. 
So far, we have subjected qi to the oblique version of the standard 

interpretation, the reading that takes (fl to refer to expressions of ..e via 
their code-numbers. It transpires that the ..£-expression to which it 
refers is (f) itself. Read in this way, from a logical point of view, (fl is a 
very interesting sentence. 

Now Jet us read (fl directly. Deformalizing (fl (cf. Ex. 5.8) we see that 
under the standard interpretation it expresses a fact of the form 

Vx1 Vx2 ... Vxm(fx ::f:. gx), 

where f and g are n-ary polynomials in the sense of Def. 9.5.2(ii). An 
equation f x = gx, where f and g are two such polynomials, is called 
diophantine, after Diophantus, the third-century(?) author of a book 
on arithmetic. By a solution of the equation we mean an n-tuple a of 
natural numbers such that fa= ga. 

So (fl asserts the unsolvability of the diophantine equation fx = gx, 
and the proof of Thm. 14.2 produces, for any given sound axiomatic 
theory I:, a particular diophantine equation that is really unsolvable, 
but whose unsolvability cannot be deduced from the postulates of I:. 

However, from a mathematical (rather than purely logical) point of 
view. there is in general no reason why the equation f x = gx, or the 
fact that it is unsolvable, should be of any particular interest. 

From now on we shall consider the issue of completeness with regard 
to axiomatizable theories that are consistent, but need not be sound. 

14.5. Theorem 

Every axiomatizable complete theory is recursively decidable. 

PROOF 

Let I: be an axiomatizable complete theory. Then by Tom. 8.10 Tr, is 
an r.e. property. 

Also. if x is any number then, by the completeness of I::-, Tr,(x) iff 
x is not a SENTENCE, or x is a SENTENCE whose negation belongs to I:. 
Thus 

,Tr,(x)<c>,Frm(x,0) v Tr,(64"x). 
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Here Frm is the recursive relation defined in Ex. 6.6(iii). Note that 
Frm (x, 0) holds iff x is a SENTENCE. Note also that by Def. 6.3 
Ti;(64"x) holds iff xis a SENTENCE whose negation belongs to I:. 

Clearly, 64"x is a recursive function of x. Also, by Tom. 9.3.6 
-, Frm is r.e. since Frm is recursive. Hence by Thms. 9.4.3 and 
9.4.6(iii) it follows that-, T'E. is an r.e. property. 

Therefore by Tom. 9.3.6 Ti; is recursive. ■ 

By Cor. 12.5 it now follows that every consistent axiomatizable theory 
I: that includes 0 1 must be incomplete; so there must exist a sentence 
qi such that neither qi e I: nor -,qi e I:. The following theorem shows 
that, given a consistent axiomatic extension of Di, we can find such a 
sentence whose form is relatively simple. 

14.6. Theorem (Strengthened version of Godel-Rosser First 
Incompleteness Theorem) 

Given any axiomatic theory I: that includes 0 1, we can find a formula 
ye cJ)i, of the form described in Prel. 10.11 with n = 1, such that if 
either of the sentences y(s#y), -,y(s#y) belongs to I: then so does the 
other, and hence I: is inconsistent. 

PROOF 

As in the proof of Thm. 14.2, we obtain Ti; as an r.e. property. We 
now put, for any number x, 

Px <e>df Ti;(64"d(x)), P'x <e>dt Ti;(d(x)). 

Clearly, P and P' are r.e. properties. So we can construct the formulas 
a, a', p, P' and y as described in Prel. 10.11, with n = 1. 

Note that, by Def. 6.3 and Tom. 6.8, it follows from the definitions 
of P and P' that 

Now assume y(s#y) e I:. Then P'(#y). If it were the case that 
-,y(s#y) fJ I: then-, P(#y) would also hold; therefore we would have 
-, P(#y)A P'(#y). 

So by the Main Lemma 10.12 we would have -iy(s#y) e 0 1 ~ I:. 
Thus -iy(s#y) e I: after all, and hence I: is inconsistent in this case. 

Similarly, suppose that -,y(s#y) e I:. Then P(#y) holds. If it were 
the case that y(s#y) fJ I:, then -,P'(#y) would also hold, and we would 
have P(#y)A-,P'(#y). 
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So by the Main Lemma we would have y(s#y) e 0 1 {: I:. Thus 
y(s#y) e I: after all, and I: is inconsistent in this case as well. ■ 

14.7. Remark 

If I: is not assumed to be axiomatic but merely axiomatizable, then the 
proof shows that there exists a formula y with the stated properties, 
without telling us how to obtain it. 

14.8. Analysis 

Consider the properties P and P' defined in the proof of Thm. 14.6. 
By definition, P'x holds iff d(x) is a SENTENCE belonging to I:, and Px 
holds iff d(x) is a SENTENCE whose negation is in I:. 

Thus, if I: is consistent Px and P' x are incompatible. Referring back 
to the definition of the four regions in Analysis 10.13, this means that, 
for a consistent I:, Region III is empty. (The two discs in Fig. 5 do not 
overlap.) 

On the other hand, if I: is the inconsistent theory, then Px and P'x 
hold for exactly the same numbers x - namely, for any x such that 
d(x) is a SENTENCE. Thus in this case Regions I and II are empty. (The 
two discs in Fig. 5 coincide.) 

Also, from Analysis 10.13 we find that (under the standard interpre­
tation) the Godel-Rosser sentence y(s#y) 'says': 

An a-witness that P(#y) is found before an «'-witness that 
P'(#y). 

However, as we observed in the proof of Thm. 14.6, P(#y) means, by 
definition, that the sentence -,y(s#y) is deducible from the given 
postulates of I:; or, in other words, that y(s#y) itself is refutable from 
these postulates. Also, P'(#y) means that y(s#y) is deducible from the 
postulates of I:. 

Thus y(s#y) 'says': 

(*) An a-witness that I am refutable from the postulates of I: is found 
before an a' -witness that I am deducible from these postulates. 

The proof of Thm. 14.6 shows that #y cannot belong to either of the 
Regions I and II. Let us see why this is so. 

Suppose #y were in Region I. Then, as we saw in Analysis 10.13, 
y(s#y) must be true. Therefore (*) is a true statement. This implies 
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that -,y(s#y) is in I:. On the other hand, the Main Lemma tells us that 
if #y were in Region I then y(s#y) would be in 0 1 and hence in I:, 
making I: inconsistent - in which case Region I is empty! So #y cannot 
be in Region I. 

Now suppose #y were in Region II. Then the Main Lemma tells us 
that y(s#y) is refutable from the postulates of 0 1, hence also from 
those of I:. Therefore there is an «-witness that y(s#y) is refutable 
from the latter postulates. But since #y is in Region II, we know from 
Analysis 10.13 that y(s#y) is false, so (*) is a false statement. This 
implies that although an «-witness for the refutability of y(s#y) in I: 
can indeed be found, this does not happen before an «' -witness for the 
provability of y(s#y) in I: is also found. This means that y(s#y) is both 
refutable and provable from the postulates of I:, again making I: 
inconsistent, in which case Region II is empty. So #y cannot be there 
either. 

So #y must be in Region III or in Region IV. The former happens if 
I: is the inconsistent theory. In this case y(s#y) may be true or false, 
depending on the precise form of« and «', and in particular on the 
(inconsistent) set of postulates by means of which I: is given. 

If I: is a consistent theory, then Region III is empty, so #y belongs 
to Region IV. From Analysis 10.13 we know that in this case y(s#y) is 
a false sentence. This can also be seen from the proof of Thm. 14.6, 
which shows that if I: is consistent then y(s#y) is neither provable nor 
refutable from the postulates of I:. Therefore (*) is an untrue state­
ment, and y(s#y) is a false sentence. 

§ 15. The Second Incompleteness Theorem 

We take Thm. 14.6 as our point of departure. So let I: be an axiomatic 
theory that includes O 1. We let P, P', a, a', fl, fl' and 'Y be as specified 
in the proof of that theorem. 

Part of what the theorem establishes is that 

(1) If I: is consistent then -,y(s#y) tr- I:. 

We now look for a formalization of (1); in other words, we wish to 
find an .12-sentence that, under the standard interpretation, 'states' (1). 
This is in fact quite easy. 

First, the words 'if ... then' are obviously formalized by the 
implication symbol -+. 

Next, let us look at the clause '-,y(s#y) tr- I:'. It states that sentence 
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-,y(s#y), whose code-number is 64Ad(#y), is not in I:. Referring to 
the definition of P in the proof of Thm. 14.6, we see that this amounts 
to saying that -, P(#y). But Pis represented in O by the formula«. 
Thus the statement that-, P(#y) is expressed formally by the sentence 
-,u(s#y), which 'says': P(#y) does not hold. As we have just seen, this 
means that -,y(s#y) fJ I:. 

Now let us look at the clause 'I: is consistent'. This is equivalent to 
saying that the sentence 04=0 - the negation of the simplest logical 
axiom - is not in I:. An easy calculation, using Def. 6.3, shows that 
#(0=0) = 32Ar2 = 522. Since 0=0 is a sentence, substituting any 
term for v1 in it leaves it unchanged, so by Thm. 6.8 we get 
d(522) = #(0=0) = 522. Therefore #(04=0) = 64Ad(522). So, by the 
definition of P, to say that 04=0 fJ I: amounts to saying that -, P(522). 
This statement is expressed formally by the sentence -,a(s522), which 
'says': P(522) does not hold. As this amounts to saying that I: is 
consistent, we put 

Consis~ =df -,a(s522). 

We have now got an .12-sentence that expresses (1) formally; it is 

(2) 

Moreover, since (1) is a true statement - we have proved it! - it 
follows that (2) is a true sentence; in other words, it belongs to 0. 

In fact, (2) belongs not only to O but even to FOP A. This can be 
proved by examining the whole chain of (informal) reasoning that was 
used to establish (1), and showing that it can be formalized: repro­
duced step by step as a formal deduction in Fopcal from the postulates 
of POPA. 

This process is rather tedious, as the chain of reasoning that estab­
lished (1) was very long: it includes the proofs of Thm. 14.6 itself as 
well as of the theorems on which it depended. But each step is quite 
easy. What makes the whole thing possible is the great strength of the 
postulates of FOPA. We shall not present the proof here, but ask you 
to accept the fact that 

(3) 

Referring to Prel. 10.11 (with n = 1), it is easy to see that for any 
number k we have both y(sd I- 3yl}(sk) and 3yl}(sk) I- «(sd. Hence 
1--,«(sd---+-,y(sk). Using this fact fork= #y, it follows from (3) that 

(4) 
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So far, we have assumed I: to be an axiomatic theory that includes Il1. 

Now let I: be an axiomatic theory that includes Il; then it certainly 
includes Il1 , so (4) holds. Moreover, since Il b I:, we have 

(5) Consis~ - -,y(s#'i) e I:. 

15.1. Theorem (Second Incompleteness Theorem) 

Let I: be an axiomatic theory that includes FOPA. If I: is consistent, 
then the sentence Consis~, which expresses this fact formally, is not 
in I:. 

PROOF 

If Consi~ EI: then by (5) also -,y(s#y) EI:. But then by Thm. 14.6 it 
follows that I: is inconsistent. ■ 

15.2. Remarks 

(i) The Second Incompleteness Theorem can be extended to all 
sufficiently strong formal theories, in ..12, and other languages. All 
that is required is that the theory in question is axiomatic, and 
includes an appropriate 'translation' of n. For example, this 
result applies to all the usual formalizations of set theory, such as 
ZF. 

(ii) The result means that the consistency of any sufficiently strong 
consistent axiomatic theory cannot be proved by means of argu­
ments that are wholly formalizable within that theory. 

(iii) This poses a grave difficulty for the formalist view of mathema­
tics. For a brief discussion of this, see B&M, p. 358f. 

(iv) In particular, if ZF is consistent, a proof of this fact cannot be 
carried out within ZF itself. For this reason, it is extremely 
unlikely that an intuitively convincing consistency proof for ZF 
can ever be found. 

Godel's two Incompleteness Theorems have had a profound and 
far-reaching effect on the subsequent development of logic and philo­
sophy, particularly the philosophy of mathematics. 



Appendix: Skolem's Paradox 

§ 1. Set-theoretic reductionism 

Zermelo's 1908 paper,1 in which he proposed his axioms for set theory, 
begins with the words: 

'Set theory is that branch of mathematics whose task is to investigate 
mathematically the fundamental notions "number", "order", and "func­
tion", taking them in their pristine, simple form, and to develop thereby 
the logical foundation of all arithmetic and analysis; thus it constitutes an 
indispensable component of the science of mathematics.' 

This comes close to saying-but does not quite say-that set theory is 
the sole foundation of the whole of mathematics. But soon such radical 
claims were voiced. In 1910 Hermann Weyl2 put forward the view that 
the whole of mathematics ought to be reduced to axiomatic set theory. 
Each notion in the other branches of mathematics must be defined 
explicitly in terms of previously defined notions. This regress stops 
with set theory; ultimately all mathematical notions are to be defined 
in set-theoretic terms. 

'So set theory appears to us today, in logical respects, as the proper 
foundation of mathematical science, and we will have to make a halt with 
set theory if we wish to formulate principles of definition which are not 
only sufficient for elementary geometry, but also for the whole of 
mathematics.' 

The basic set-theoretic notions (set and membership) cannot be de­
fined explicitly, for this would lead to infinite regress. They - alone of 
all mathematical notions - have to be characterized implicitly by means 

1 Cited in § 2 of Ch. l. 
2 The paper, 'Ober die Definitionen der mathematischen Grundbegriffe' is reprinted in 

his Gesammelte Abhandlungen (1968). In this paper Wey! outlines a characterization of 
the notion definite property, which he was to make more precise eight years later in 
Das Kontinuum (cited in §2 of Ch. 1). The lines quoted here were translated by 
Michael Hallett. 

275 



276 Appendix: Skolem's Paradox 

of an axiom system. Thus axiomatic set theory (more or less along the 
lines proposed by Zermelo) becomes the ultimate framework for the 
whole of mathematics. 

Although Weyl was to change his mind, the reductionist view he had 
expressed in 1910 was rapidly becoming very widespread among 
mathematicians. 

It was this reductionism that Skolem set out to criticize in 1922. His 
short paper1 - text of an address delivered at a congress of Scandina­
vian mathematicians - contains a lucid presentation of an astonishing 
wealth of logical and set-theoretic ideas and insights.2 But in Skolem's 
own view the most important result in his paper is what came to be 
known as Skolem's Paradox. It is the first of the fundamental limitat­
ive results in logic. In a Concluding Remark he comments on it: 

'I had already communicated it orally to F. Bernstein in Gottingen in the 
winter of 1915-16. There are two reasons why I have not published 
anything about it until now: first, I have in the meantime been occupied 
with other problems; second, I believed that it was so clear that axiomat­
ization in terms of sets was not a satisfactory ultimate foundation of 
mathematics that mathematicians would, for the most part, not be very 
much concerned with it. But in recent times I have seen to my surprise 
that so many mathematicians think that these axioms of set theory 
provide the ideal foundation for mathematics; therefore it seemed to me 
that the time has come to publish a critique.' 

§ 2. Hugh's world 

In what follows we shall deal with ZF set theory; and for the sake of 
simplicity we shall exclude individuals, so that all objects are assumed 
to be sets. But a similar treatment, with very few minor modifications, 
can be applied to the other axiomatizations of set theory, with or 
without individuals. 

As mentioned in § 2 of Ch. 1, in order to make axiomatic set theory 
conform to the highest standard of rigour and to bar the linguistic as 
well as the logical antinomies, the theory must be formalized. 

We shall assume that ZF is formalized in a first-order langauge .P. 
with equality, whose only extralogical symbol is a binary predicate 

1 Cited in § 2 of Ch. 1. 
2 Including the conjectures that it would 'no doubt be very difficult' to prove the 

consistency of Zennelo's axioms; and that the Continuum Hypothesis is 'quite prob­
ably' undecided by them. These conjectures have indeed been vindicated: the former in 
1931 by Godel's Second Incompleteness Theorem (see § 15 of Ch. 10); and the latter in 
1963 by P. J. Cohen's result (cf. Rem. 6.2.14). 
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symbol e:. In the intended interpretation of.£, the variables range over 
all sets and E is interpreted as denoting the relation E of membership 
between sets. We shall write, for example, 'x e: y' rather than 'Exy'. 

Let ZF be the formalized version of ZF. The postulates and 
theorems of ZF are expressed in ZF by .£-sentences. For example, the 
Principle of Extensionality (for sets) is expressed by 

(PX) VxVy{Vz[z Ex~z Ey]-+x=y}, 

where x, y and z are distinct variables. (In ZF there is no need for 
classes; instead, one can use properties, expressed by .£-formulas.) 

From the formal postulates of ZF, formal versions of the theorems of 
set theory can be deduced in Fopcal. 

In particular, from the postulates of ZF we can deduce a formal 
version of the theorem that there exists an uncountable set. This 
theorem follows logically from the existence of a denumerable set - for 
example, w (Thm. 4.3.4 and Def. 4.5.13) - and Cantor's Tom. 3.6.8. 

Let us assume that ZF is consistent. If it isn't - which in any case is 
highly unlikely - then the very idea of reducing to it the whole of 
mathematics is quite pointless. 

Since the language .i!. is denumerable, it follows from Tom. 8.13.9 
that ZF has a model U (an .l2-structure, or .£-interpretation, under 
which all the sentences of ZF are true) whose universe U is countable 
(cf. Def. 4.5.13). 1 

It is easy to show that U cannot be finite. This can be done even 
without invoking the Axiom of Infinity. Instead, it is enough to point 
out that the formal version of Prob. 3.3.3 must hold in U. So we may 
assume that U is denumerable. 

Note that we are not saying that every model of ZF has a denumer­
able universe; only that among the models of this theory (assuming it is 
consistent) there is a model U whose universe is denumerable. 

What does the model U consist of? First, there is the universe U, 
which serves as the range of values for the variables of .£. In other 
words, the members of U (that is, the individuals of the structure U) 
are what the structure U interprets as 'sets'. We shall say that the 
members of U are U-sets. 

Second, there is the binary relation e:u. For brevity, let us put 

1 In 1922 Fopcal had not been finalized (this was done in 1928 by David Hilbert and 
Wilhelm Ackermann). When Skolem assumes ZF to be 'consistent', he means that it is 
satisfiable. He then invokes the Lowenheim-Skolem Theorem {which he proves 
directly, using relatively elementary means) to obtain a denumerable model for ZF. 
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E = Eu. E is a binary relation on U, that is, a binary relation among 
U-sets; it serves as the interpretation of e: in the structure U. We shall 
say that E is the relation of U-membership. We shall write, for 
example, 'aEb' when we wish to say that the U-set a bears the relation 
E to the U-set b. 

The U-sets are not necessarily sets in the usual intuitive sense, and 
the relation E is not necessarily a relation of membership in the usual 
intuitive sense. Rather, U-sets are sets in the sense of the model U, and 
the relation E of U-membership is the relation of membership in the 
sense of U. Nevertheless, since U is a model of ZF, all the postulates of 
ZF are true in U; in other words, they hold for U-sets and U-member­
ship just as they presumably hold for 'true' sets and 'true' membership. 
The same applies of course to all the theorems of ZF, that is, to all 
.£-sentences deducible from the postulates. 

Let us imagine an internal observer, called Hugh, who 'lives' in the 
structure U. Hugh can observe the U-sets; they are the objects of his 
world. He can also observe whether or not aEb holds for any such 
objects a and b. Let us also imagine that we can communicate with 
Hugh and transmit to him .£-formulas, and in particular the postulates 
of ZF. He can then check and confirm that, as far as his observations 
go, these postulates - and indeed all .£-sentences deduced from them 
using Fopcal - are true under the interpretation U, in which the 
variables are regarded as ranging over U and the predicate symbol E is 
interpreted as denoting the relation E. 

Hugh has heard that ZF is 'axiomatic set theory'. He therefore 
comes to the conclusion that the theory is really about the objects of 
his world and the relation E. He comes to believe that the 'sets' and 
the 'membership relation' about which the theory speaks are these 
objects and the relation E (which for us are merely U-sets and 
U-membership). We try to tell him that the theory is intended to be 
about real sets and the real membership relation e. But he has no 
reason to believe us. For one thing, he has no notion of what we call 
'real' sets and 'real' membership - they are not real to him. Moreover, 
since his observations confirm that the postulates of ZF are true under 
his interpretation, why should he believe us that the theory is 'really' 
about some other reality? 

Note that the whole idea of an axiomatic theory is that nothing must 
be assumed concerning the objects and relations about which the 
theory speaks, except what is stipulated by the postulates of the 
theory. An axiomatic theory cannot say more than what can be 
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logically deduced from its postulates. The postulates, and they alone, 
must determine whether or not a given interpretation of the extra­
logical symbols of the theory is legitimate: an interpretation is legiti­
mate iff it satisfies the postulates. 

Hugh - whose outlook is confined to his small provincial world -
cannot understand our talk of 'real' sets and 'real' membership. But we 
- broad-minded people living in the big world - can understand his talk 
of 'sets' and 'membership'. We only have to remember that by 'set' he 
means what we think of as a U-set, and by 'membership' he means the 
relation E. 

Actually, we can even translate his talk of [what are in reality] U-sets 
and the relation E to talk about genuine sets and membership. This is 
done as follows. For each U-set a, let us define: 

(1) a= {x: xEa}. 

We call a the E-extension of a. Clearly, a is a genuine set, in fact a 
subset of U; and we have, for all x 

(2) x E a¢>xEa. 

Moreover, the correspondence between U-sets and their respective 
£-extensions is one-to-one. This follows from the fact that U, being a 
model of ZF, must satisfy the postulate PX. If a and b are two U-sets 
such that the sets a and b are equal, then it follows from (2) that a and 
b have exactly the same U-members. But the postulate PX, as inter­
preted in U, says that any two U-sets that have exactly the same 
U-members are equal. Hence a and b are equal. 

Any statement about U-sets and the relation E can be rephrased in 
terms of £-extensions (which are real sets) and real membership. 

§ 3. The paradox and its resolution 

We have already observed that all the theorems of ZF must be true in 
U. Among these theorems there is, as we have noted, a sentence that 
says 'there exists an uncountable set'. In fact, Hugh - who is a 
competent logician and has been able to deduce this theorem - can 
point at a particular U-set c that instantiates the theorem: he can show 
that c has 'uncountably many members'. Naturally, we know that what 
Hugh regards as 'members' of c are really just U-members of c; in 
other words, they are U-sets that bear the relation E to c. But how can 
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this be? The whole universe U of U contains only denumerably many 
objects; therefore for any a there can only be countably many objects 
bearing the relation E to a. So how can there be uncountably many 
objects bearing the relation E to c? 

This seeming contradiction is Skolem's Paradox. 
In fact, the contradiction is only apparent. The resolution of the 

paradox depends on the fact that many important set-theoretical 
notions, such as countability, are relative. Thus, a U-set c may be 
uncountable in the sense of the structure U, although when viewed from 
the outside c has only countably many U-members. 

Let us explain how this comes about. First, let us recall what it 
means for a set to be countable. By Prob. 4.5.14, a set C is countable 
iff there exists an injective function from C to the set w of finite 
ordinals (which in set theory play the role of natural numbers). Recall 
that such a function is itself a set. To say that f is an injective function 
from C to w means that f is a set of ordered pairs of the form (x, s) 
with x e C and s e w, such that for each x e C there is exactly one 
s E w for which (x, s) E f, and for each ; E w there is at most one 
x e C for which (x, ;) e f. 

So, to say that C is countable means that there exists a set f having 
the properties just mentioned. But we must realize that existence of 
such-and-such a set may mean quite different things, depending on 
whether we interpret this phrase inside the structure U or in the outside 
'real' world. 

We have seen above that to each U-set a there corresponds the real 
set a, which is a subset of U. Now, it is easy to see that the converse is 
not generally true: if A is an arbitrary subset of U, there may not exist 
any U-set a such that a = A. Indeed, the mapping that maps each U-set 
a to its £-extension a is an injection from the set U to its own power 
set; so by Cantor's Theorem it cannot be surjective.1 

Let A be a subset of U, that is, a set of U-sets. Then A is an object 
in our world, the world of external observers. But if A is not a for any 
U-set a, then there is no object in the world U of the internal observer 
Hugh that corresponds to A. The set A is then purely external, it 
corresponds to nothing in Hugh's ontology. 

1 Note the ironic double role played by Cantor's Theorem. On the one hand, the fact 
that Cantor's Theorem holds inside U (that is, under the interpretation U) gave rise to 
the paradox in the first place, because it was used to give us an uncountable set (in the 
sense of U). Now we are using the fact that Cantor's Theorem holds 'in the real world' 
in order to resolve the paradox. 
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Let us see how these observations help to resolve the paradox. In his 
universe, Hugh finds an object roll that is 'the set of finite ordinals' in 
his sense (al satisfies, in the interpretation ti, the formal set-theoretic 
definition of the set of finite ordinals). Of course, wu may not 'really' 
be the set of finite ordinals; but it is quite easy to see that its 
£-extension is in fact denumerable. Now, Hugh has found another 
object (ti-set) c, which serves as the ti-power-set of wu, and he can 
prove that c ;,s uncountable. We, on the other hand, can prove that c 
has only countably many ti-members. Who is right? 

In fact, both he and we are right. He is right because there does not 
exist any ti-set ffJ that constitutes an injection from c to wu in the sense 
of the interpretation ti. We, on the other hand, are right because the set 
c (the £-extension of c) is countable in the sense of our external 
world. In fact, we can prove that there exists an injection f from c to 
the £-extension of wu. However, this f is purely external; it exists in 
the outside world, but it cannot be the £-extension of any ti-set. 
Indeed, if f were not purely external then it would be quite easy to 
show that c is countable in the sense of ti. 

So the paradox is resolved - but not very happily. It is disappointing 
to find that axiomatic set theory, if consistent, has such perverse 
models, in which an object that is really quite modest in size can seem 
huge. 

As Skolem himself pointed out, countability is by no means the only 
important set-theoretic notion that is relative in this sense. For exam­
ple, the notion of finiteness is also relative: we can have a model ti 
(even a denumerable one) in which a ti-set a may be finite in the 
internal sense of ti, while in fact a has infinitely many ti-members. 

Indeed, by an argument like that used in the proof of Skolem's Thm. 
10.3.8 we can show that ZF has a model ti (with denumerable universe) 
such that the object wu, the ti-set-of-finite-ordinals, is nonstandard. 
This means that - in addition to ti-members of the form nu for each 
natural number n (that is, LI-cardinals corresponding to the natural 
numbers) - wu also has ti-members that do not correspond to any 
natural number. If a is such a nonstandard LI-member of wu then a is 
a ti-finite-ordinal: it satisfies in ti the formal definition of the notion 
finite ordinal (the formalization of the first part of Def. 4.3.1). In 
particular, a is U-finite. But, as seen from outside U, a actually has 
infinitely many ti-members, and so a is really (really?) an infinite set! 
(Cf. Warning 6.1.9.) 

This has an important bearing on the issue raised in Rem. 10.3.10 in 
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connection with Skolem's Theorem. The theorem says that the struc­
ture 91 of natural numbers cannot be characterized uniquely (up to 
isomorphism) in the first-order language of arithmetic. 

Now, Dedekind showed that the system of natural numbers can be 
characterized uniquely in set-theoretic terms (cf. Rem. 4.3.8(i)). Fol­
lowing him, Peano also formulated his axiomatization of that system 
using variables ranging over all sets of natural numbers (cf. Rem. 
10.13.S(iii)). These, then, are characterizations of the system of natural 
nunibers within an ambient set theory. And they seem to work, in the 
sense that in a sufficiently strong set theory it can be shown that 
Peano's axioms have (up to isomorphism) a unique model (cf. Rem. 
6.1.8). 

However, these set-theoretic characterizations are all relative: they 
merely pass the buck to set theory. And now we see that set theory 
itself has strange (nonstandard) models. Hugh may be very pleased to 
find that in his world there is ( essentially) just one 'system of natural 
numbers' satisfying Peano's second-order postulates. But we, from our 
external vantage point, can see that this U-system-of-natural-numbers 
is in fact (in fact?) nonstandard, containing infinite unnatural numbers, 
which merely seem finite to Hugh. 

It turns out that axiomatic set theory is unable to characterize some of 
the most basic notions of mathematics, including intuitive set-theoretic 
notions - except in a merely verbal sense. lf mathematics - and in 
particular the arithmetic of natural numbers - is more than mere verbal 
discourse, then its reduction to axiomatic set theory somehow fails to 
do it full justice. 
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Power of cardinals, 3.6.3 
Power set, Axiom of, 1.3.18 
Predicate symbol, 8.1.1 
Prenex formula, 8.8.1 
Prenex normal form(ula], 8.8.1 
Prime arithmos, 0.4.3 
Prime component, 7.1.6, 8.2.6 
Prime formula 7.1.4, 8.2.5 
Primitive symbol, 7.1.1, 8.1.1 
Principle of Indirect Proof, 7.8.15 
Product of cardinals. 3.5.1. 3.5.11 
Proof, propositional, 7.6.8 
Propcal, see Propositional calculus, 
Proper class, 1.3 
Proper inclusion, 1.3.4 
Proper subclass, 1.3.4 
Property. 2.1.14, 9.1.2 
Propositional calculus, 7.6, 7.6.10 
Propositional combination, 7.3.1 
Propositional operation, 9.1.3 
Propositional symbol, 7.1.1 
Provability, 7.6.9, 8.9.10 
PX, see Extensionality, Principle of 
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Range of function, 2.2.2 
R.e., see Recursively enumerable 
Recursive decidability, 10.12.1 
Recursive function, 9.3.9 
Recursive relation, 9.3.1 
Recursive set of sentences, 10.8.1 
Recursive undecidability, 10.12.1 
Recursive unsolvability, 10.12.lw 
Recursively enumerable relation, 9.3.3 
Recursively enumerable set of sentences, 

10.8.l 
Reductio [ad absurdum], 7.8.9 
Reduction of theory, 10.12.11 
Reflexivity, 2.3.2 
Relation, 2.1.14, 9.1.2, 10.4.2 
Replacement, Axiom of, 2.2.9 
Representation, numeralwise, 10.7.6 
Representation, strong/weak, 10.4. 7 
Representability, strong/weak, 10.4.7 
Restriction of function, 2.4.6 
Restriction of e, 4.2.5 
Restriction of!:;, 2.3.8 
Restriction of c, 2.3.8, 5.2.5 
Restriction of well-ordering, 4.5.8 
Revaluing, 8.4.5 
Russell's Paradox, 1.2 

Satisfaction, 7.4.4, 8.4.9, 8.5.10 
Satisfiability, 7.4.4, 8.4.10, 
Schroder-Bernstein Theorem, 3.2.7 
Scope of quantifier, 8.1. 7 
Segment of well-ordered set, 4.5.8 
Self-distributive Law of Implication, 7 .5. 7 
Semantic completeness 

of truth tables, 7.5.9 
strong, of Fopcal, 8.13.10 
strong, of Propcal, 7 .13.2 
weak, of Propcal, 7 .9.4 

Semantic soundness 
ofFopcal, 8.9.14 
of modus ponens, 7.6.2 
of Propcal, 7.6.12 
of truth tables, 7.5.6 

Sentence, 8.5.10 
Sheffer's stroke, 7.5.16 
Similarity (map), 4.5.4 
Simple existential formula/sentence, 

10.9.10 
Singleton, l.3.3 
Skolem's Paradox, Appendix § 3 
Skolem's Theorem, 10.3.8 
Sound set of sentences, 10.2.14 
Standard interpretation 

(of first-order language of arithmetic), 
10.l.8 

Standard structure, 10.3.5 
see also Standard interpretation 

String, 6.3.8, 7.1.3, 8.1.4 

Structuralism, 1.1.7, 8.3.8 
Structure (for first-order language), 8.4.2 
Structure, mathematical, 8.3.5 
Subclass, 1.3.4 
Subfonnula, 8.4.13 
Subsets, Axiom of, 1.3.6 
Substitution, 8.6.1, 8.6.7, 8.6.15 
Successor ordinal, 4.2.28 
Sum of cardinals, 3.4.4, 3.4.11 
Surjection, 2.2.4 
Symmetry, 2.3.2 

Tarski's Theorem, 10.7.4 
Tautology, 7.4.4 
Tautological consequence, 7.4.4 
Tautological equivalence, 7.5.11 
Term, 8.1.5 
Theorem (formal), 7.6.9, 8.9.10 
Theory, 10.2.5, 10.2.10 
Total order, blunt, 2.3.11 
Total order, sharp, 2.3.11 
Totally ordered set, 4.5.2 
Transfinite induction, see Induction, 

Principle of (on ordinals) 
Transfinite recursion, see Recursion, 

transfinite 
Transitivity of class, 4.2.10 
Transitivity of relation, 2.3.2 
Trichotomy, 0.1.2, 2.3.11 
True sentence (in first-order language of 

arithmetic), 10.1.9 
Truth definition (inside theory), 10.7.8 
Truth table, 7.5.1 
Truth value, 7.4.1 
Truth value of formula, 7.4.2, 8.4.6 
Truth valuation, 7.4.2 
TI Lemma, see Tukey-Teichmiiller 

Lemma 
Tukey-Teichmiiller Lemma, 5.2.8 
Type theory, 1.2 

UGC, see Universal Generalization, Rules 
of 

UGV, see Universal Generalization, Rules 
of 

UI, see Universal Instantiation, Rule of 
Undecidability, 10.12 
Underlying structure of valuation, 8.4.4 
Union, 1.3.11, 1.3.14 
Union set, Axiom of, 1.3.12 
Universal class, see Universe of discourse 

( set theory) 
Universal formula, 8.1.7 
Universal Generalization, Rules of, 

8.10.5, 8.10.10 
Universal Instantiation, Rule of, 8.10.1 
Universal quantification, 9.1.3 
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Universal quantifier, 8.1.1 
Universe of discourse (set theory), 1.3, 

8.3.7 
Universe of discourse (first-order logic), 

8.4.2 
Universe of mathematical structure, 8.3.5 
Universe of valuation, 8.4.4 
Upper bound, 4.2.23 
Urelement, 1.1.3 

Valuation of first-order language, 8.4.4 
Value of function, 2.2.2 
Value of term under valuation, 8.4.6 
Value of variable under valuation, 8.4.4 
Variable, 8.1.1 

Variable of quantification, 8.1.7 
Variant, 8.6.13 

Weight, 7.1.9, 8.2.1 
Well-ordered set, 4.5.2 
Well-ordering, 4.2.3 

e-well-ordering, 4.2.7 
Well-Ordering Theorem, 5.1.5, 5.1.6 
Witness m-tuple of numbers, 10.9.16 
Witness term, 8.11 
Witnessing formula, 8.11 
WOT, see Well-Ordering Theorem 

Zermelo-Fraenkel set theory, 1.2 
ZF, see Zermelo-Fraenkel set theory 
Zorn's Lemma, 5.2.12 




