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Preface

This is an edited version of lecture notes distributed to students in two
of my courses, one on set theory, the other on quantification theory
and limitative results of mathematical logic. These courses are de-
signed primarily for philosophy undergraduates at the University of
London who bravely choose the Symbolic Logic paper as one of their
Finals options. They are also offered to mathematics undergraduates at
King’s College, London.

This then is a discourse addressed by a mathematician to an au-
dience with a keen interest in philosophy. The style of technical
presentation is mathematical. In particular, in logical notation and
terminology I generally conform to the usage of mathematicians. (It
seems that in this matter philosophers in any case tend follow suit —
after some delay.) But philosophical and methodological issues are
often highlighted instead of being glossed over, as is quite common in
texts addressed primarily to students of mathematics.

A naive presentation of set theory may be in order if the main aim is
instrumental: to acquaint would-be practitioners of mathematics with
the basic tools of their chosen trade and to inculcate in them methods
whereby nowadays the entire science is apparently reduced to set
theory. In a course of that kind, the student is understandably not
encouraged to scratch where it does not itch. But in the present course
such an attitude would be out of place. To be sure, here as well
set-theoretic concepts and results are needed as tools for formulating
and proving results in mathematical logic. But it would be perverse not
to alert would-be philosophers to the problematic aspects of set-
theoretic reductionism.

These considerations have largely dictated the presentation of set
theory: axiomatic, albeit unformalized. Critical notes about set
theoretic reductionism are sounded from time to time as a leitmotiv,
rounded off in a coda on Skolem’s Paradox. Also, the technical
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viii Preface

exposition of set theory is accompanied by historical remarks, mainly
because a historical perspective is needed in order to appreciate the
emergence of reductionism and the anti-reductionist critique.

In the exposition of mathematical logic, I have drawn heavily on
Chs. 1, 2, 3 and 7 of B&M (see Note below), which I had used for
many years as a main text for a postgraduate logic course. However,
considerable portions of the material presented in B&M had to be
omitted, either because they are too hard or specialized, or simply for
lack of time.

My greatest regret is that there is not enough time to include both
linear and rule-based logical calculi (my own favourite is the tableau
method). For certain technical reasons I had to sacrifice the latter.
However, as partial compensation, the linear calculi are developed in a
way that makes it clear that the logical axioms are mere stepping-
stones towards rules of deduction: once these rules are established, the
axioms can be shelved. Thus in practice the presentation comes quite
close to being rule-based. The axiom schemes have been designed so as
to make their connection with deduction rules quite direct and trans-
parent.

(The connoisseur will note that the propositional axiom schemes
have been chosen so that omitting one, two or three of them results in
complete systems for intuitionistic implication and negation, classical
implication, and intuitionistic implication. In particular, the only axiom
scheme that is not intuitionistically valid is a purely implicational one.)

Propositional logic is studied with reference to a purely propositional
language, rather than a first-order language as in B&M. This is done
for didactic reasons: although propositional languages in themselves
are of little interest, students are less intimidated by this approach.

For some tedious proofs that have been omitted, the reader is
referred to B&M. These omissions are more than balanced by the
addition of extensive methodological and explanatory comments.

A case in point is Lemma 10.10.12 (see Note below), which is the
main technical result needed for the present version of the Godel-
Rosser First Incompleteness Theorem. I have omitted its proof, but
added a detailed analysis of the meaning of the lemma and the reason
why its proof works. When this is understood, the proof itself becomes
a mere technicality, almost a foregone conclusion. The analysis is
resumed after the proof of the Godel-Rosser Theorem, to explain the
meaning of the G6del-Rosser sentence and the reason for its remark-
able behaviour.
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One major respect in which this course is not self-contained is its
heavy borrowing from recursion theory. For further details, see Pre-
view at the beginning of Ch. 9.

The Problems are an essential part of the text; the results contained
in many of them are used later on.

Moshé Machover

Note
® Throughout ‘B&M’ refers to

J. L. Bell and M. Machover, A course in mathematical logic,
North-Holland, 1977 (second printing 1986).

® The system of cross-references used here is quite common in
mathematical texts. It is illustrated by the following example.
‘Def. 2.3.4’ refers to the fourth numbered article (which in this
case is a definition) in §3 of Ch. 2. Within Ch. 2, this definition is
referred to, more briefly, as ‘Def. 3.4’

® [ would like to express my gratitude to Roger Astley, Michael
Behrend and Tony Tomlinson of Cambridge University Press for
their expert help in preparing the manuscript.

Warning

In the last three chapters of this book there is a systematic interplay
between parallel sets of symbols; one set consisting of symbols in
ordinary (feint) typeface:

£ < 9 6,y &L, & 3 4]y /Y ¢ Y ¢ 1Y
=’ VA T A Y )+

and the other of their bold-face counterparts:
‘=” ‘_l,,‘v”‘A,’ G_)” 63” LV” GX,’ 6+,.
For explanations of the purpose of this system of notation, and
warnings against confusing a feint symbol with its bold-face counter-
part, see Warnings 8.1.2, 9.1.4 and 10.1.11 and Rem. 10.1.10.
Unfortunately the bold-face characters could not always be made as
distinct from their feint counterparts as would be desirable. The reader

is therefore urged to exercise special vigilance to discern which type-
face is being used in each instance.
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Mathematical induction

§ 1. Intuitive illustration; preliminaries
A familiar trick: dominoes standing on end are arranged in a row; then

I I I I
0

1 2 n n+l

the initial domino (here labelled ‘0’) is given a gentle push — and the
whole row comes cascading down.

If you want to perform this trick, how can you make sure that all the
dominoes standing in a row will fall? Clearly, the following two
conditions are jointly sufficient.

1. The initial domino (domino 0) is made to fall to the right (for
example, by giving it a push).

2. The dominoes are arranged in such a way that whenever any one
of them (say domino ) falls to the right, it brings down the next
domino after it (domino n + 1) and causes it also to fall to the
right.

A moment’s reflection shows that these two conditions are sufficient
whether the row of dominoes is finite or proceeds ad infinitum. (In the
former case, Condition 2 does not apply to the last domino.)

The reasoning that allows us to infer from Conditions 1 and 2 that all
the dominoes will fall is based on the Principle of Mathematical (or
Complete) Induction. This is a fundamental — arguably the most
fundamental — fact about the so-called natural numbers (0, 1, 2, etc.).
It has several equivalent forms, three of which will be presented here.

1



2 0. Mathematical induction

WARNING

The term ‘induction’ used here has nothing to do with inductive
reasoning in the empirical sense.

We shall make use of the following terminology and notation.

By number we shall mean natural number. The class {0, 1, 2, ...}
of all numbers will be denoted by ‘N’. We shall use lower-case italic
letters as variables ranging over N.

If P is a property of numbers and # is any number, we write ‘Pn’ to
mean that n has the property P. The extension of P is the class of all
numbers # such that Pn. This class is denoted by ‘{n : Pr}’.

From an extensional point of view, P is identified with its extension:
P ={n: Pn}; and hence Pn is equivalent to n € P. (Here ‘€’ is short
for ‘is a member of’.)

We write ‘=’ as short for ‘implies that’, ‘iff’ or ‘=’ as short for ‘if
and only if’, ‘v’ as short for “for all’, and ‘m < n’ as short for ‘m <n
orm=n’.

We state here as ‘facts’ the following elementary properties of the
ordered system of numbers.

1.1. Fact

The relation < between numbers is transitive: whenever k < m and
m<n, then also k < n.

1.2. Fact
The relation < obeys the trichotomy: for any numbers m and n, exactly
one of the following three holds:

m<norm=norn<<m.

1.3. Fact
Every number n has an immediate successor n + 1, such that, for any
mn<miffn+1lsm.

1.4. Fact
Zero is the least number: 0 < n for all n.
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1.5. Fact
For any number m + 0, there is an n such that m = n + 1.

§ 2. Weak induction

Perhaps the most commonly used form of the Principle of Mathemat-
ical Induction is the so-called ‘Weak’ Principle of Induction. This
asserts, for any property P of numbers, that in order to prove VnPn
(i.e., that all numbers have the property P), it is sufficient to prove
two things: first, PO (i.e., that the number zero has P) and second,
Vn[Pn = P(n+ 1)] (i.e., that whenever n is a number having the
property P then its successor n + 1 also has P). In schematic form:

PO, Vn[Pn = P(n + 1)]
VnPn

A proof of a statement VnPn by weak induction thus falls into two
sections. One section, called the basis of the inductive proof, is a proof
that PO holds. The other section, called the induction step, is a proof
that Va[Pn = P(n + 1)]. When these two sections are completed (not
necessarily in the above order), the proof that VnPn is complete.

In the induction step, in order to prove that Vn[Pn = P(n + 1)],
you have to show that if » is any number such that Pn holds, then
P(n + 1) holds as well. In other words, you have to deduce P(n + 1)
from the assumption that Pn holds. The latter assumption is called the
induction hypothesis.

The induction step is therefore performed as follows. You consider
an arbitrary number, say n, about which you make just one assump-
tion: that Pn holds (the induction hypothesis). Using this assumption,
you try to deduce that P(n + 1). When this is achieved, the induction
step is complete.

In using the induction hypothesis Pn to deduce P(n + 1), you are
merely considering an arbitrary hypothetical n for which Pn holds,
without however committing yourself to the assumption that such a
number exists; in other words, you are adopting Pn as a provisional
hypothesis. If you succeed in deducing P(n + 1) from this provisional
hypothesis, then you have established the conditional statement
Pn = P(n + 1); and as you have established this for arbitrary number
n, you are entitled to infer that Va[Pn = P(n + 1)].

Note that if you have completed the induction step only (without the

2.1)




4 0. Mathematical induction

basis — that is, you have not proved that P0) then you are not entitled
to conclude that Pn holds for all numbers »; indeed you are not even
entitled to conclude that there exist any numbers n for which Pn
holds. For example, let P be the property of being a number that is
greater than itself; so Pn means that n > n. Now, from the hypothesis
n> n it is easy to deduce n + 1> n + 1 (for example, by adding 1 to
both sides of the hypothesis); so we have shown that Vn[Pn=
P(n + 1)]. But it doesn’t follow that there is any number greater than
itself.

2.2. Remark

The Weak Principle of Induction was first invoked in 1653 by Pascal in
the proof of one of the results (Corollary 12) in his Traité du triangle
arithmétique (published in 1665). Pascal does not give an explicit
formulation of the principle in general, for arbitrary P; but from his
presentation of the method of proof it is clear that the general principle
is being invoked. We shall not reproduce Pascal’s proof here. Instead,
we shall illustrate the use of weak induction in proving a simpler result.

2.3. Example
We shall prove that, for all n,

(*) 0+14+2+ -+ n=n(n+1)/2.

PROOF

Define the property P by stipulating that Pn iff (*) holds for n. We
show by weak induction that VnPn.

Basis. For n =0 the sum on the left-hand side reduces to 0, and the
value of the right-hand side is 0. Thus PO0.

Induction step. Let n be any number such that Pr; thus our induction
hypothesis is that (*) holds for this n. Then
0+142+:-+n+(n+1)=n(n+1)2+ (n+1) byind. hyp.,
=(n+1D(n2+1)
= (n+ 1)(n + 2)/2.

(The last two steps consist of simple algebraic manipulation.) Thus
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from the induction hypothesis we have deduced that
0+1+2+ -+ (n+1)=(n+1)(n+2))2

This equation says that P(n + 1) — it is the same as (*), but with n + 1
in place of n. So we have shown that Pn = P(n + 1). ]

§3. Strong induction

The so-called ‘Strong’ Principle of Induction can be stated schematic-
ally as follows:

Vn[Vm < nPm = Pn]
VnPn

Here, as before, P is any property of numbers. We have written
‘Vm < nPm’ as short for ‘all numbers m smaller than n have the
property P’.

Thus, to prove that all numbers have a given property P, it is
enough to prove that Vn[Vm < nPm = Pn]. To do this, you have to
show that if » is any number such that Vm < nPm holds, then Pn
holds as well; in other words, you have to deduce Pn from the
assumption that Vm < nPm. This assumption is called the induction
hypothesis.

Note that a proof by strong induction does not have a separate
‘basis’ section.

As in the case of weak induction, here too the induction hypothesis
Vm < nPm is adopted provisionally, without presupposing it to be
actually true.

However, unlike the case of weak induction, here there is one
particular value of n for which the hypothesis Vm < nPm is in fact
always automatically true. To see this, observe that there does not
exist any m such that m < 0; this follows at once from Facts 1.2 and
1.4. Therefore any statement of the form “for all m <0, ...’ (that is,
‘Ym <0 ...”) is considered by convention to be vacuously true. In
particular, Vm < 0Pm is always true.

(3.1)

3.2. Theorem

The Strong Principle of Induction follows from the Weak Principle of
Induction.
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PROOF

Assume that P is a property of numbers such that Vr[Vm < nPm =
Pn] holds. We shall show, using weak induction, that VnPn holds as
well. To this end, we define a new property Q by stipulating that, for
any number n,

(*) On <¢ Vm < nPm.

(The subscript ‘df’ is short for ‘definition’.) Note that our assumption
regarding P can now be rewritten as

(*+) Vn[Qn = Pn].

We shall apply weak induction to Q, to prove that VrQn holds.

First, observe that by (*) QO is the same as Vm < 0Pm, which — as
we have noted - is vacuously true.

Next, let n be a number and suppose (as induction hypothesis) that
QOn holds. From this hypothesis we shall deduce that Q(»n + 1) holds as
well.

Using our induction hypothesis we infer from (*#) that Pn holds. We
therefore have both Qn and Pn. But by (*) On means Vm < nPm.
Therefore what we have shown is that

(k) Pm holds for all m < n.

From Facts 1.2 and 1.3 it is easy to see that m < n is equivalent to
m < n + 1, hence (**+) can be rephrased as

Pmholdsforallm <n + 1,

which, by the definition (+) of Q, means that Q(n + 1) holds This
completes the proof of YnQn by weak induction.

From VnQn, which we have just proved, together with (*%) it
follows at once that Pr holds for all . |

§4. The Least Number Principle

Let M be any class of numbers; that is, M C N (M is a subclass of N).
By a least member of M we mean a number a € M such that a < m for
alme M.

Using Fact 1.2, it is easy to see that M cannot have more than one
least member; so if M has a least member we can refer to the latter as
the least member of M.
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The Least Number Principle (LNP) states:
If M C N and M is non-empty then M has a least member .

4.1. Theorem
The LNP follows from the Strong Principle of Induction.

PROOF

Let M C N and suppose that M does not have a least member. We
must show M is empty. To this end, let P be the property of not
belonging to M. Thus, for any n,

Pn&dfn¢M.

To show that M is empty is tantamount to showing that VnPn holds.
We shall do so by applying strong induction to P.

So let n be any number, and assume (as induction hypothesis) that
Vm < nPm holds. By the definition of P, our induction hypothesis
means that for all m < n we have m ¢ M. This is equivalent to saying
that m < n is not the case for any m € M. But by Fact 1.2 this means
that n < m for all m € M. Therefore n cannot belong to M, otherwise
it would be the least member of M, contrary to our assumption that M
has no such member. Hence Pr holds. and our induction is complete.

|

We shall now complete the cycle by proving:

4.2. Theorem
The Weak Principle of Induction follows from the LNP.

PROOF

Let P be a property of numbers such that PO and Vn[Pn = P(n + 1)]
hold. We must prove that VnPn holds. This amounts to showing that
the class

M =4 {n : Pn does not hold}

is empty. By the LNP, it is enough to show that M has no least
member.
Suppose that M does have a least member, m. Since PO holds, 0 is
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not in M; hence m # 0. Therefore by Fact 1.5 there is a number n
suchthat m = n + 1.

From Fact 1.3 it follows at once that n < m. If n were in M, then we
would have m < n, because m is the least member of M; but m < n is
excluded by Fact 1.2, since we already have n < m. Therefore n
cannot be in M, which means that Prn must hold.

From our assumption that Vn[Pn = P(n + 1)] it now follows that
P(n + 1) holds; in other words, Pm holds. But then m cannot be a
member of M, let alone the least member. Thus our assumption that
M has a least member leads to contradiction. |

We have thus shown that the Weak Principle of Induction, the Strong
Principle of Induction and the LNP are equivalent to one another.

4.3. Remark

While there is no evidence that the ancient Greek mathematicians
knew the Principles of Weak and Strong Induction, they did use
mathematical induction in the form of the LNP. We shall quote here
from a proof of Proposition 31 in Euclid’s Elements, Book VIII.

First we need a few definitions. By arithmds (plural: arithmoi) the
Greeks meant what we call natural number greater than 1. An arithmos
b is said to measure an arithmos a if b <a and b goes into a (in
modern terminology: b is a proper divisor of a). An arithmos a is said
to be composite if there is an arithmos that measures it; otherwise, a is
said to be prime.

In Proposition 31 of Book VII, Euclid claims that every composite
arithmos is measured by some prime arithmos. He writes:

‘Let a be a composite arithmos. I say that it is measured by some prime
arithmos. For since a is composite, it will be measured by an arithmos,
and let b be the least of the arithmoi measuring it.’
Here the LNP is clearly invoked. The proof is now easily concluded: b
must be prime; otherwise, it would be measured by some smaller
arithmos ¢, which must then also measure a — contrary to the choice of
b as the least of the arithmoi measuring a.

Euclid also gives another proof of the same proposition, in which he
uses yet another form of the Principle of Induction: There does not
exist an infinite decreasing sequence of natural numbers.!

! On these matters see David Fowler, ‘Could the Greeks have used Mathematical
Induction? Did they use it?’, Physis, vol. 31 1994 pp. 252-265.



1

Sets and classes

§ 1. Introduction
1.1. Preview

Set theory occupies a fundamental position in the edifice of modern
mathematics. Its concepts and results are used nowadays in virtually all
standard mathematical discourse — not only in pure mathematics, but
also in applied mathematics and hence in all the mathematics-based
deductive sciences. In particular, set theory is used extensively in
technical discussions of logic and analytical philosophy.

The purpose of Chs. 1-6 is to present a minimal core of set theory,
adequate for the kind of application just mentioned. In particular, we
shall provide the set-theoretical vocabulary, notation and results
needed in later chapters, devoted to Symbolic Logic.

We shall not venture into the higher reaches of the theory, which are
of interest to specialist set-theorists. Nor shall we attempt a systematic
logical-axiomatic investigation of set theory itself.

1.2. Further reading

There are hundreds of books on set theory, many of them very good.
Among those pitched at a level similar to this course, there are two
classics:

Abraham A Fraenkel, Abstract set theory,
Paul R Halmos, Naive set theory .

Both contain more material than our course. Fraenkel’s book is
suitable for readers with relatively little previous mathematical know-
ledge. If you are mathematically more experienced, you may find it too
slow or verbose. Halmos is then likely to be more suitable.

For a more advanced, logical-axiomatic study of set theory, the two

9



10 1. Sets and classes

original masterpieces are:

Kurt Gédel, The consistency of the continuum hypothesis (1940),
Paul J Cohen, Set theory and the continuum hypothesis (1966).

An alternative exposition of Godel’s results and some additional
related material is in Chapter 10 of B&M. An alternative exposition of
Cohen’s results and much additional related material is in John L Bell,
Boolean-valued models and independence proofs in set theory.

1.3. Intuitive explanation

Intuitively speaking, a set is a definite collection, a plurality of objects
of any kind, which is itself apprehended as a single object.

For example, think of a lot of sheep grazing in a field. They are a
collection of sheep, a plurality of individual objects. However, we may
(and often do) think of them — it — as a single object: a herd of sheep.!

Note that in order to qualify as a set, the collection in question must
be definite. By this we mean that, if a is any object whatsoever, then a
either definitely belongs to the collection or definitely does not. For
this reason there is no such thing as the set of all blue cars, if ‘blue’ and
‘car’ are understood in their everyday fuzzy sense: my car is sort of
bluish, and a friend of mine has a vehicle that is half-way between a
car and a sad joke. (Most collections and concepts that are used in
everyday thinking and discourse are fuzzy; some philosophers have
therefore attempted to construct a theory of so-called fuzzy sets —
which are clearly not sets at all in the present sense of the term. This
difficult subject lies outside the scope of our course.)

From now on, whenever we speak of a collection (or plurality) we
shall tacitly take it to be definite, in the sense just explained. We shall
also use the word class as synonymous with collection.

The objects belonging to a class may be of any kind whatsoever —
physical or mental, real or ideal. In fact, being an object (in the sense
in which we shall use this term) is tantamount to being capable of
belonging to a collection.

In particular, since a set is a class regarded as a single object, it can
itself belong to a class. So we can have a class some, or even all, of

U Cf. Eric Partridge, Usage and abusage: ‘COLLECTIVE NOUNS; . . . Such collective nouns
as can be used either in the singular or in the plural (family, clergy, committee,
Parliament), are singular when unity (a unit) is intended; plural, when the idea of
plurality is predominant.’
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whose members are sets If such a class, in turn, is regarded as a single
object, we get a set having sets as (some of its) members. Thus, there
are sets of sets (sets all of whose members are sets), sets of sets of sets,
and so on.

The objects dealt with by set theory are therefore of two sorts: sets,
and objects that are not sets. An object of the latter sort is called an
individual; the German term Urelement (plural: Urelemente) is often
used as well for such an object. Somewhat surprisingly, it has turned
out that, as far as applications to pure mathematics are concerned,
individuals are in principle dispensable, so that set theory can confine
itself to sets only. We shall not make any ruling on this matter. Unless
otherwise stated, what we shall say will apply regardless of whether, or
how many, individuals are present.

1.4. Definition

We write ‘a € A’ as short for ‘[the object] a belongs to [the class] A’.
The same proposition is also expressed by saying that a is a member of
A, or an element of A, or that A contains a. We write ‘a¢ A’ to
negate the proposition that a € A.

A class is specified by means of a definite property, say P, for which it
is stipulated that the condition Px is necessary and sufficient for any
object x’s membership in the class.

1.5. Definition

If P is any definite property, such that the condition Px is meaningful
for an arbitrary object x, then the extension of P, denoted by

“{x: Px}’,
is the class of all objects x such that Px. Thus a € {x : Px} iff Pa.

Classes having exactly the same members are regarded as identical. Let
us state this more formally:

1.6. Principle of Extensionality (PX)
If A and B are any classes such that, for every object x,

xe€eA<xeB,

then A = B.
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For example, the two classes
{x : x is an integer such that x? = x},
{y : y is an integer such that —1 < y <2}

are equal: although the two defining conditions differ in meaning, they
are satisfied by the same objects — the integers 0 and 1.

1.7. Remark

Set theory (along with other parts of present-day mathematics) is
dominated by a structuralist ideology, which entails an extensionalist
view of properties. This means that properties having equal extensions
are considered to be equal; thus a property and its extension uniquely
determine each other.

§ 2. The antinomies; limitation of size

Since ancient times, mathematicians have dealt with infinite pluralities
as a matter of course — an obvious example is the class of positive
integers. However, until well into the 19th century there was great
reluctance to regard such pluralities as single objects, as sets in the
sense explained in 1.3. The infinitude of a class meant that more and
more of its members could be constructed or conceived of, without
limit. But to apprehend such a plurality as a single object seems to
imply that all its members have ‘already’ been constructed or con-
ceived of, or at least that they are somehow all ‘out there’. This idea of
a completed or actual — rather than potential — infinity was (rightly!)
regarded with utmost suspicion.

However, the needs of mathematics as it developed in the 19th
century drove Georg Cantor (1845-1918) to create his Mengenlehre,
set theory, which admits infinite classes as objects. Despite early
hostility, set theory was soon accepted by the majority of mathemati-
cians as a powerful and indispensable tool; indeed, many regard it as a
framework and foundation for the whole of mathematics.

The success of set theory first lured its adherents into assuming that
every class can be regarded as a set. This assumption, known as the
Comprehension Principle, is however untenable: it leads to certain
logical contradictions or antinomies. The first such antinomy to be
discovered is called the Burali-Forti Paradox, after the person who
first published it, in 1897; but Cantor himself had been aware of it at
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least two years earlier. The antinomy results directly from the assump-
tion that the class W of all ordinals is a set. (The theory of ordinals is
an important but quite technical part of set theory. In Ch. 4, when we
study the ordinals, we shall prove that W cannot be a set.) Similar
antinomies were later discovered by Cantor himself and by others.

Cantor was not too disturbed by these discoveries. He noticed that
the antinomies arose from applying the Comprehension Principle to
classes that were not just infinite but extremely vast. (An early result
of his set theory was that not all infinite classes have the same ‘size’.)
He concluded that some classes are not merely infinite but absolutely
infinite, hence simply too large to be comprehended as a single object.
Set theory would be on safe ground if the Comprehension Principle
were restricted to classes of moderate size.! However, he did not
specify precisely how to draw the line between moderately large
infinite classes, which can be regarded as sets with impunity, and vast
ones, which cannot be so regarded.

Matters came to a head in 1903, when Bertrand Russell published a
new antinomy, Russell’s Paradox, which he had discovered two years
earlier. Whereas previous antinomies arose in rather technical reaches
of set theory and therefore required lengthy expositions, Russell’s
Paradox checkmated the Comprehension Principle in two simple
moves, as follows. Let

S =g4¢ {x : x is a set such that x ¢ x}.

Assuming that S is a set, it follows that S € S iff S satisfies the defining
condition of S — that is, iff S ¢ S. This is absurd.

The fact that an antinomy follows so easily from apparently sound
assumptions plunged set theory and logic (which cannot be sharply
demarcated from set theory) into a crisis.

In 1908, two solutions were proposed to this crisis. Both amounted
to imposing restrictions on the Comprehension Principle — but in two
very different ways. The first, proposed by Russell himself and embo-
died in his fype theory, refused to accept {x : Px} as an object if the
condition Px is impredicative (that is, refers to a totality to which the
object, if it did exist, would belong).? Russell’s type theory, elaborated

! See Michael Hallett, Cantorian set theory and limitation of size.
% Russell’s paper, ‘Mathematical logic as based on the theory of types’, is reprinted in
van Heijenoort, From Frege to Gédel.
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by Whitehead and him in their three-volume Principia Mathematica
(1910, 1912, 1913) as a total system for logic and mathematics, turned
out to be quite complicated and cumbersome; and, at least in part
because of this, has won very few adherents.

The other solution, proposed by Ernst Zermelo, embodied an idea
similar to that entertained by Cantor: limitation of size.! Zermelo
proceeded to develop set theory axiomatically: he laid down postul-
ates, or [extralogical] axioms, from which the theorems of set theory
were to be deduced by elementary logical means. Besides an Axiom of
Extensionality (for sets), Zermelo’s axioms include certain particular
cases of the Comprehension Principle, which are regarded as safe
because — as far as one can tell — they do not allow the formation of
over-large sets and do not give rise to antinomies. In addition, Zer-
melo postulated a special axiom, the Axiom of Choice, which is not a
restricted form of the Comprehension Principle, but is needed for
proving certain important results in set theory itself and in other
branches of mathematics.?

In 1921-2, Abraham Fraenkel, Thoralf Skolem and Nels Lennes
(independently of one another) proposed one further postulate, the
Axiom of Replacement, which is vital for the internal needs of set
theory rather than for applications to other branches of mathematics.
This postulate is another apparently safe special case of the Compre-
hension Principle.

The resulting theory — known as Zermelo—Fraenkel set theory (ZF) —
has proved to be very convenient and has been adopted almost
universally by users of set theory.

While Zermelo’s axiomatic approach is, as far as we can tell,
sufficient for blocking the logical antinomies, such as the Burali-Forti
and Russell Paradoxes, it does not ward against another sort of
antinomy, which may be called linguistic or semantic.

Here is a modified version of a linguistic antinomy published in 1906
by Russell, who attributed it to G. G. Berry. Some English expressions
define natural numbers; for example, ‘zero’, ‘the square of eighty-
seven’, ‘the least prime number greater than eighty-seven million’.

! Russell too had briefly toyed with the same idea in 1905.

2 A translation of Zermelo’s paper, ‘Investigations in the foundations of set theory I’, is
printed in van Heijenoort, From Frege to Gédel.

3 This postulate, as well as Zermelo’s Axiom of Separation and Axiom of Union Set, had
in fact been foreshadowed in 1899 by Cantor, in a letter to Dedekind, a translation of
which is printed in van Heijenoort, From Frege to Godel.
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Only finitely many numbers can be defined by English expressions that
use fewer than 87 letters, since clearly there are only finitely many such
expressions. Hence the class M of natural numbers not so definable
must be non-empty. By the Least Number Principle (see §4 of Ch. 0),
M has a unique least member: the least natural number not definable
by an English expression using fewer than eighty-seven letters. But
observe: the italicized part of the previous sentence is an English
expression using just 86 letters, which (presumably) defines a number
that cannot be defined by an English expression using less than 87
letters!

On the face of it, this antinomy affects arithmetic rather than set
theory. However, as we shall see in §3 of Ch. 4 and §1 of Ch. 6, the
arithmetic of natural numbers can be simulated within set theory, so
that Berry’s antinomy threatens set theory as well.

We cannot go here into a detailed discussion of the linguistic
antinomies. Suffice it to say that the source of the trouble is that the
notion of definite property, and hence also that of class (as the
extension of such a property) has been left too loose and vague. Thus,
for example, the property of being definable by an English expression
using fewer than eighty-seven letters does not have a rigorously defined
meaning.

These antinomies can be blocked by laying down precise conditions
as to what may count as a definite property (or a class).! This may be
done by specifying a formal language with precise structure and rules,
and allowing as definite properties only such as can be expressed
formally in this language. For a formalized presentation of ZF see, for
example, Chapter 10 of B&M.

We shall present a fairly rigorous but unformalized version of ZF.
However, if desired it would be easy in principle (though tedious in
practice) to formalize our treatment.

§ 3. Zermelo’s axioms

Here we present (with minor modifications) Zermelo’s axioms except
for the Axiom of Choice, which we shall discuss in Ch. 5
First, we shall assume that our universe of discourse — the class of all

! The first to formulate such precise conditions was Hermann Weyl in Das Kontinuum
(1918). A similar (and somewhat more formal) characterization was given independ-
ently by Skolem in a 1922 paper whose translation, ‘Some remarks on axiomatized set
theory’, is printed in van Heijenoort, From Frege to Gédel.
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objects with which set theory deals — is non-empty. We do not
announce this assumption officially as a special postulate, because it is
conventional to consider it as a logical presupposition.

The objects in the universe of discourse are of two distinct sorts: sets
and individuals. Classes are admitted as extensions of properties: if P
is a definite property of objects, then we admit the class A = {x : Px}.
Note that, by Def. 1.5, to say that a € A is just another way of saying
that Pa (the object a has the property P).

In order to block the semantic antinomies we must however insist
that P be defined in purely set-theoretic terms, without using extran-
eous concepts.

The universe of discourse itself can be presented as a class according
to this format: itis {x :x = x}.

Although we refer to a class in the singular, this is merely a manner
of speaking and does not imply that the class is necessarily a single
object. From the axioms it will follow, however, that certain classes are
sets, and hence objects of set theory. Each set is identified with the
class of all its members.

The universe may also contain other objects, called individuals. An
individual is not a set and has no members. As we shall see shortly,
there is also a set that has no members — the empty set.

A class that is not a set is called a proper class; a proper class is not
an object, and therefore cannot be a member of any class.

As our first postulate we adopt the Principle of Extensionality 1.6. We
shall refer to it briefly as ‘PX’.

Zermelo postulated PX for sets only, as he did not consider classes
(except the universe of discourse) and used properties instead.

Before stating our next postulate, we introduce a useful piece of
notation.

3.1. Definition

If n is any natural number and ay, a,, ..., a, are any objects, not
necessarily distinct, we put

{ar,az,...,a, =g {x:x#Fxorx =a0rx =ayor...orx = a,}.

In particular, for n = 0 we get the empty class { } = {x : x # x}, which
we denote by ‘@’. (No object can differ from itself!)
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3.2. Axiom of Pairing (A2)
For all objects a and b the class {a, b} is a set.

3.3. Remarks

(i) This set is called the pair of a and b. By PX we have
{a,b} ={b, a}.

(i) For any object a we clearly have {a} = {a, a}, which is a set by
A2. This set is called the singleton of a.

(iii) From our assumption that there exists at least one object a, it
now follows that there exists at least one set, namely {a}. Note
however that we cannot prove the existence of an individual: our
postulates are neutral on this matter.

3.4. Definition

Let A and B be classes. If every member of B is also a member of A,
we say that B is a subclass of A (also, B is included in A, or A
includes B), briefly: B C A.

If BC A but A # B, we say that B is a proper subclass of A (also,
B is properly included in A, or A properly includes B), briefly:
BCA.

3.5. Warnings

(i) Beware of confusing ‘contains’ and ‘includes’; the former refers
to the relation of membership € while the latter refers to the
relation C just defined.

(ii) However, this terminological distinction is not observed by all
authors, so watch out for other usages.

(iii) Also, the notation introduced in Def. 3.4 is not universally
accepted. Some authors use ‘C’ instead of ‘C’ for not-necessarily-
proper inclusion; and ‘&’ instead of ‘C” for proper inclusion.

The following postulate was one of Zermelo’s central ideas.

3.6. Axiom of Subsets (AS)
If BC A and A is a set then so is B.
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3.7. Definition
If A is a class and P is a definite property such that the condition Px is
meaningful for any object x, we put

{xe A:Px} =4 {x:x € Aand Px}.

3.8. Remarks

(i) Zermelo’s formulation of AS, clearly equivalent to the one used
here, said (in effect) that if A is a set then the class {x € A : Px}
is always a set. Since this class separates or singles out those
members of A that have the property P, he called AS the Axiom
of Separation (Aussonderung). This name is still in current use.

(ii) The intuitive idea behind AS is clear: if B C A and A is not too
vast, then B cannot be too vast either.

3.9. Theorem
J is a set.

PROOF

Clearly & is included in any class, and in particular in any set. By
Rem. 3.3(iii) there exists a set. Hence J is included in some set, and
by AS is itself a set. n

3.10. Theorem

The class of all objects (the universe of discourse) and the class of all
sets are proper classes.

PROOF
We saw in § 2 that Russell’s class,

{x : x is a set such that x ¢ x}

cannot be a set. Since Russell’s class is included in the class of all sets,
the latter cannot be a set by AS. The same applies to the universe of
discourse. n
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3.11. Definition
If A is any class, we put

UA =4 {x : x € y for some y € A}.
UA is called the union class of A.

3.12. Axiom of Union set (AU)
IfAisasetthensois UA.

3.13. Remarks

(i) The members of U A are the members of the members of A.

(ii) Intuitively, the idea behind AU is that if A is a set then it does
not have ‘too many’ members; and each of these, being an object
(an individual or a set), in turn does not have ‘too many’
members. Therefore JA - obtained by pooling together not-too-
many collections, none of which is too vast — cannot itself be too
vast.

3.14. Definition

For any classes A and B, we put
AUB=4{x:x€ Aorx e B}.
A U B is called the union (or join) of A and B.

3.15. Theorem
A U Bis a set iff both A and B are sets.

PROOF
If A and B are sets, then AU B = U{A, B}, which is a set by A2 and
AU. The converse follows easily from AS. n

3.16. Theorem

If n is any natural number and a,, ay, . . ., a, are any objects, the class
{ay, a3, ..., a,} is a set.
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PROOF
By (weak) induction on n.

Basis. For n = 0 the assertion of our theorem is Thm. 3.9.

Induction step. By Def. 3.14,

{a, a2, ..., ay, ap1) = {01, 02, ..., a,} U {a,41},

which is a set by the induction hypothesis, Rem. 3.3(ii) and Thm. 3.15,
[

3.17. Definition
If A is any class, we put

PA =4 {x : x isaset such that x C A}.

P A is called the power class of A.

3.18. Axiom of Power set (AP)
If Ais a set then so is PA.

3.19. Remark

Intuitively, the idea behind AP is that although P A can be very large —
in fact, much larger than A - its size is nevertheless bounded provided
A itself is not too vast.

3.20. Problem

Prove that if A is a class of sets (that is, a class all of whose members
are sets) such that A is a set, then A is a set as well.

The last axiom we shall postulate here is

3.21. Axiom of Infinity (AI)

There exists a set Z such that J € Z and such that for every set x € Z
alsox U {x} e Z.
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3.22. Remarks

(i) Without Al it is impossible to prove that there are infinite sets.
On the other hand, it is easy to see intuitively that any set Z
satisfying the conditions imposed by AI must be infinite. We shall
be able to prove this rigorously when we have a rigorous defini-
tion of infiniteness.

(ii) A2, AS, AU and AP are clearly particular cases of the Principle
of Comprehension: they say that certain classes are sets. Al-
though Al as it stands is not of this form, we shall see later that it
is equivalent to the proposition that a certain class, w, is a set.

§4. Intersections and differences
The following definitions will be needed later on.

4.1. Definition
If A is any class,
NA =4 {x:x e yforevery y € A}.

A is called the intersection class of A.

4.2. Definition
If A and B are classes,
ANB=g4{x:xe Aandx € B}.

A N B is called the intersection (or meet) of A and B.

4.3. Definition
If A is any class,
AS=4{x:x ¢ A}.

A° is called the complement of A.

4.4. Definition
If A and B are any classes,

A-B =df A N B
A — B is called the difference between A and B.
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4.5. Problem

(i) Prove that if A is a non-empty class then NA is a set. What is
N2
(ii) Prove thatif A or B is aset thensois A N B.
(iii) Prove that A and A® cannot both be sets.
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Relations and functions

§ 1. Ordered n-tuples, cartesian products and relations
1.1. Preview

By Def. 1.1.5, the extension of a property P of objects is the class {x :
Px}. Recall (Rem. 1.1.7) that from an extensionalist point of view a
property and its extension determine each other uniquely; so that—
wielding Occam’s razor, the structuralist mathematician’s favourite
instrument—one can identify the two and pretend that a property
simply is its extension. As set theory developed, it transpired that a
similar procedure could be applied to other fundamental mathematical
notions such as relation (among objects) and function: instead of
taking these as independent primitive notions, as had been done in the
early days of set theory, they could be reduced to classes and the
membership relation. In this and the next section we shall see how this
is done.

For any two objects a and b, not necessarily distinct, we need a unique
object (a, b) called the ordered pair of a and b [in this order]. It is not
really important how the ordered pair is defined, so long as the
following condition is satisfied:

(1.2) (a,b) ={(c.d) e a=cand b =d.

1.3. Warning

The ordered pair {a, b) must not be confused with the set {a, b},
sometimes known as an unordered pair, whose members are just a and
b. For example, the sets {a, b} and {b, a} are always equal (see Rem.
1.3.3(1)), but by (1.2) the ordered pairs (a, b) and (b, a) are equal
only if a = b. However, when there is no risk of confusion we shall
often omit the adjective ‘ordered’ and say ‘pair’ when we mean ordered
pair.

23
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As part of the reductionist programme aiming to reduce all mathema-
tical concepts to the notion of class and the membership relation, the
following rather artificial definition, first proposed by Kazimierz Kura-
towski in 1921, has been widely accepted.

1.4. Definition
For any objects g and b,

(a, b) =4 {{a}, {a, b}}.

1.5. Problem
Prove that (1.2) follows from Def. 1.4.

More generally, for any number n and any n objects ay, a;, ..., a,
—not necessarily distinct—we need a unique object {ay, as, ..., a,)
called the ordered n-tuple of ay, a,, . . ., a, [in this order]. Again, it is

not really important how ordered n-tuples are defined, so long as the
following condition—of which (1.2) is a special case—is satisfied:

(16) (al, az,...,a,,) = (bl’ b2,...,bn>
< ag=b;fori=1,2,...,n.
Again, we shall often say ‘n-tuple’ as short for ‘ordered n-tuple’.

The following definitions deliver the goods. Proceeding inductively, we
supplement Def. 1.4 by:

1.7. Definition
For any »n = 2 and objects ay, as, . . . , Gy, G415

<a1a az, ..., an, an+1> =df <<al’ az, ..., an>’ an+1>'

1.8. Problem

Prove (1.6) for all n=2. (Use weak induction on n, taking n =2 as
basis.)
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There remain the cases n =1 and n = 0. For n = 1, condition (1.6)
reduces to:
(a) =(b)<>a=b.

The simplest way to satisfy this is to adopt the following.

1.9. Definition

(0> =df 4.

As for n =0, condition (1.6) reduces to the unconditional equality
() = (), which will hold trivially, no matter how we define (). Since
J is the simplest object, the simplest convention to adopt is

1.10. Definition
() =D

1.11. Remark
The equality which was decreed by Def. 1.7 for n = 2, now holds also

for n =1 by virtue of Def. 1.9. However, it does not hold for n =0,
because by Def. 1.9 (a) = a, whereas by Def. 1.10 ((), a) = (), a).

We proceed to define the notions of cartesian product and cartesian
power.

1.12. Definition
(i) For any classes A, A,, ..., A,, not necessarily distinct, their
cartesian product [in this order] is the class
Al XAy X o X A, =4

{{x1, X2y oo s Xp) i X1 € A, X0 € Agy ..., X € Ay},

that is, the class of all n-tuples whose i-th component belongs to
Ajfori=1,2,...,n.

(ii) The n-th cartesian power of a class A is the cartesian product of
A with itself n times:

A" =4 A X AX--- XA,

v

n times
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that is, the class of all n-tuples of members of A. In particular,
Al= Aand A= {()} = {T}.

1.13. Remarks
(i) In Def. 1.12(i) we have used a convenient generalization of the
class notation introduced in Def. 1.1.5. Although it is almost
self-explanatory, let us spell it out.
Suppose F(xq, x2, ..., X,) is an object whenever xq, x, .. .,
x, are objects; and suppose P(x;, X3, ..., X,) is a condition
involving x;, x5, ..., X,. Then
{F(x1, X2, -« s X,) 2 P(x1, X2, ..., X))}

is defined to be the class

{y : there exist xq, x,, . . . , X, such that
F(xy, x3,...,x,)=yand P(xq, X3, ...,%,)}.

(ii) It is easy to see that, forany n =1, A; X A, X - -+ X A, = iff
A; = for at least one i.

Intuitively, if n =1 and R is an n-ary relation on a class A, then for
any n-tuple of members of A it is meaningful to say that R holds or
does not hold for it. The class of all those n-tuples for which R does
hold is known as the extension of R. From an extensionalist point of
view, two relations are identical iff they have the same extension.
Thus, a relation and its extension uniquely determine each other. In
the spirit of the reductionist programme mentioned above, a relation is
simply identified with its extension. Hence the following

1.14. Definition
(i) For any n =1 and any class A, an n-ary relation on A is a class of
n-tuples of members of A —that is, a subclass of A",
(ii) In particular, a property on A is a unary relation on A —that is, a
subclass of A.

1.15. Remarks
(i) If R is an n-ary relation we shall often write ‘R(a,, ay, . .., a,)
as short for ‘(ay, az, . . . , a,) € R’. In the special case where R is

a binary relation we shall often write ‘aRb’ for ‘(a, b) € R’.
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(ii) We could extend Def. 1.14(i) to the case n = 0, but the resulting
notion of 0-ary relation is found to be of little use.

§ 2. Functions; the axiom of replacement
Intuitively, if f is a function (or map, or mapping) then f assigns to
any object x at most one object fx as value. The class of all objects x
to which a value fx is assigned by f is called the domain [of definition]
of f and denoted by ‘dom f”.

The graph of f is then the class {{x, fx): x € dom f}. Note that the
graph of a function is a class of pairs. But not every class of pairs can
be the graph of a function: a class G of pairs is the graph of a function
iff for any object x there is at most one object y such that (x, y) € G.

From an extensionalist point of view, two functions are identical if
they have the same graphs. In the spirit of reductionism, we can
therefore identify a function with its graph:

2.1. Definition

A function (a.k.a. map or mapping) is a class f of ordered pairs
satisfying the functionality condition: whenever both (x,y) € f and
(x,z)e ftheny = z.

2.2. Definition
Let f be a function.

(i) The domain of f is the class
dom f =y {x : (x, y) € f for some y}.

(ii) If x € dom f, then the value of f at x — usually denoted by ‘fx’ —is
the [necessarily unique] y such that {x, y) € f.
(iii) The range of f is the class

ran f =4 {fx : x € dom f}.

2.3. Problem

Verify that from Defs. 2.1 and 2.2 it follows that a function f is equal
to its own graph; that is,

f={{x, fx): x e dom f}.
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Hence prove that functions f and g are equal iff dom f = dom g and
fx = gx for every x in their common domain.

2.4. Definition
Let f be a function.

(1) We say that f is a map from A to B (or that f maps A into B) if
domf= A andran f C B.

(i) We say that f is a surjection from A to B (or that f maps A onto
B)ifdomf= A andran f = B.

(iii) We say that f is an injection (or a one-to-one map) if whenever x
and y are distinct members of domf then fx and fy are also
distinct.

(iv) We say that f is a bijection from A to B if it is an injection as
well as a surjection from A to B (that is, a one-to-one map from
A onto B).

We shall now enquire when a relation or a function is a set.

2.5. Lemma

Let A and B be non-empty classes. Then A X B is a set iff both A and B
are sets.

PROOF

Let a and b be any members of A and B respectively. Then by Defs.
1.4 and 1.12 we have

{a, b} € {{a},{a, b}} =(a,b) € A X B.
Therefore by Def. 1.3.11
{a, b} € U(A x B).

Since both a and b belong to {a, b}, it follows, again by Def. 1.3.11,
that both are members of UU(A X B). Thus we have shown that
AcUUA x Byand Bc UU(A x B), hence A U B c UU(A x B).

Also, it is easy to see that UU(A x B) C A U B. Therefore by PX
we have

UUA x B)= A U B.

If A X B is a set, it follows from AU and Thm. 1.3.15 that A and B
are sets as well.
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Conversely, if A and B are sets, then by Thm. 1.3.15 and Prob.

1.3.20 it follows that A X B is a set as well. [ |
2.6. Theorem

Let n=1, and let A, A,, ..., A, be non-empty classes. Then
A XAy XX AyisasetiffA;isasetforeachi=1,2,...,n.
PROOF

By weak induction on n.

Basis. For n =1 the assertion of our theorem is trivial, since in this
case A; X Ay X -+ - X A, is simply Ay (see Defs. 1.12(i) and 1.9).

Induction step. It is easy to see that
AIXAzx"*XAnXAn.H:(AlXAzX"'XAn)XAn+1

(use Defs. 1.12(i) and 1.7 and Rem. 1.11). Hence, by Lemma 2.5 and
the induction hypothesis, A; X A; X+ -+ X A, X A4, is a set iff A; is
asetforeachi=1,2,...,n,n+1. |

2.7. Corollary

If A is a set and R is an n-ary relation on A (for somen =1) then Ris a
set as well.

PROOF

By Def. 1.14 we have R C A". If A = J then A" = by Def. 1.12(ii)
and Rem. 1.13(ii); hence R = J. If A is a non-empty set then A" is a
set by Thm. 2.6, hence R is a set by AS. |

2.8. Theorem
Let f be a function. Then f is a set iff both dom f and ran f are sets.

PROOF
It is easy to verify that

UUf = domf U ran .
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From this the required result follows, using the same argument as in
the proof of Lemma 2.5. |

At this point we introduce

2.9. Axiom of Replacement (AR)
If f is a function and dom fis a set then ran f is a set as well.

2.10. Remarks

(i) AR is clearly a particular case of the Comprehension Principle.

(i1) In view of Thm. 2.8, AR is equivalent to the proposition that if f
is a function such that dom f is a set then f itself is a set. The
intuitive idea behind AR is that f has exactly ‘as many’ members
as does dom f : for each a € dom f, f contains the corresponding
pair {a, fa). Therefore if dom f is not too vast, neither is f itself.

(iii) In mathematical applications, a function f is almost always
defined as a mapping from A to B, where both A and B are
known in advance to be sets. It then follows from AS and Thm.
2.8 that ran f and f itself are sets. AR is not needed for this. But
as we shall see AR plays an important role within set theory
itself.

§ 3. Equivalence and order relations
3.1. Preview
In this section we discuss two kinds of relation that are of particular
importance, not only in set theory but in mathematics as a whole.
Throughout the section, A is an arbitrary class.

3.2. Definition

R is an equivalence relation on A if R is a binary relation on A such
that, for any members x, y and z of A, the following three conditions
are satisfied:

xRx (reflexivity),
if xRy then also yRx (symmetry),
if xRy and yRz then also xRz (transitivity).
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3.3. Example

The paradigmatic example of an equivalence relation on A is the
binary relation {{x,x):x € A}, called the identity (or diagonal)
relation on A, and denoted by ‘d,’. By the way, id,4 is clearly a
function; indeed, it is a bijection from A to itself.

3.4. Definition
Let R be an equivalence relation on A. For each a € A we put

[a]R =df {x : XR[I}A
We call [a]g the R-class of a, or the equivalence class of a modulo R.
Where there is no risk of confusion we omit the subscript ‘R’ and write
simply ‘[a]’.

3.5. Theorem

Let R be an equivalence relation on A and let a and b be any members
of A. Then [a] = [b] iff aRb.

PROOF
(=). By reflexivity, aRa, so a € [a]. If [a] = [b] then by PX also
a € [b], so that aRb.

(«<). Suppose aRb. If x € [a], then xRa, hence by transitivity xRb,
so that x € [b]. Thus we have shown that [a] C [b].

Also, from aRb it follows by symmetry that bRa, so the argument
we have just used shows that [b] C [a]. Hence by PX [a] = [b]. |

3.6. Corollary

Let R be an equivalence relation on A and let a be any member of A.
Then a belongs to exactly one R-class, namely [a].

PROOF
We have seen that a € [a]. If also a € [b] then by Def. 3.4 aRb, so by
Thm. 3.5 it follows that [a] = [b]. n

3.7. Definition

(i) S is a sharp partial order on A if S is a binary relation on A such
that, for any members x, y and z of A, the following two
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conditions are satisfied:

if xSy, then ySx does not hold (anti-symmetry),
if xSy and ySz then also xSz (transitivity).

(ii) B is a blunt partial order on A if B is a binary relation on A such
that, for any members x, y and z of A, the following three
conditions are satisfied:

xBx (reflexivity),

if xBy and yBx thenx =y (weak anti-symmetry),

if xBy and yBz then also xBz (transitivity).
3.8. Example

Let A be a class of sets (that is, all the members of A are sets rather
than individuals). Let S and B be the restrictions to A of C and C
respectively; that is,

S=g{(x,y) e A’:xCy} and B=4{(x,y)e A%:x Cy).

Then it is easy to see that S and B are a sharp and a blunt partial
order, respectively, on A.

3.9. Problem

Let S and B be a sharp and a blunt partial order, respectively, on A.
Put

sb=;SUid, and BF=4 B —id,.
(For the definitions of id ; and — see Ex. 3.3 and Def. 1.4.4.)

(i) Prove that s and BY are a blunt and a sharp order on A,

respectively.
(i) Verify that Sb% = § and B#¥ = B.

3.10. Remarks

(i) The qualifications ‘sharp’ and ‘blunt’ are often omitted and a
partial order of either kind is referred to simply as a ‘partial
order’. There is no real harm in this, for two reasons. First,
because it is usually clear from the context which kind of partial
order is meant. Second, as shown in Prob. 3.9, there is a natural
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mutual association between a sharp partial order and a blunt
partial order, whereby the latter is obtained from the former by
applying b and the former from the latter by applying #

(ii) Sharp partial orders are often denoted by symbols such as ‘<’ or
‘<’; the corresponding blunt partial orders are then denoted by
symbols such as ‘<’ or ‘<’ respectively.

3.11. Definition

(i) S is a sharp rtotal order on A if S is a binary relation on A such
that, for any members x, y and z of A, the following two
conditions are satisfied:

exactly one of the following three disjuncts holds
xSy orx =y or ySx (trichotomy),
whenever xSy and ySz then also xSz (transitivity).

(ii) B is a blunt total order on A if B is a binary relation on A such
that, for any members x, y and z of A, the following three
conditions are satisfied:

xBy or yBx (connectedness),
if xBy and yBx thenx = y (weak anti-symmetry),
if xBy and yBz then also xBz (transitivity).

3.12. Problem

Let S and B be a sharp and a blunt total order, respectively, on A.
Prove that

(i) S is a sharp partial order, (ii) sb is a blunt total order,
(iii) B is a blunt partial order, (iv) Bfisa sharp total order,
on A.

§ 4. Operations on functions
The following definitions will be needed later on.

4.1. Definition
If f and g are functions such that ran f C dom g, we put

gof =a {{x,8y):{x,y) € f}.
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g o f—often denoted briefly ‘gf’— is called the composition of f and g.
(Note reading from right to left!)

4.2. Problem

Show: go f is a function, dom(ge f) = dom f and ran(ge f) Crang.
Moreover, for any x in dom (g ° f)—which is also dom f—check that

(g°Nx = g(fx)-

4.3. Definition
If f is an injective (that is, one-to-one) function we put

fh=a{{y,x):({x,y) e f}.

f1is called the inverse of f.

4.4. Problem
Verify that f~! itself is an injective function and, moreover,
dom(f~1) = ranf, ran(f 1) = dom f,

f—1°f=iddomf’ f°f—1=idmf.
(For the definition of id see Ex. 3.3.)

4.5. Problem

Prove that if f is a function from a proper class to a set, then f is not
injective.

4.6. Definition
If f is a function and C C dom f, we put
() fIC=g{{(x, fx):xeC},
(i) fICl =g {fx: x € C}.
f1C is called the restriction of f to C and f[C] is called the image of C
under f.

4.7. Problem

Verify that f]C is a function, dom(f|C)=C and ran(f|C) =
flC). Moreover, (f| C)x = fx for every x € C.
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4.8. Problem

Let F be a class whose members are functions. Show that UF is a
function iff the following coherence condition is fulfilled: fx = gx for
all f and g in F and all x € dom f N dom g. Assuming this condition
holds, what are dom F and ran F?
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Cardinals

§ 1. Equipollence and cardinality
We start by defining a binary relation = on the class of all sets:

1.1. Definition

Let A and B be sets. We say that A and B are equipollent, briefly:
A = B, if there exists a bijection from A to B (that is, a one-to-one
map from A onto B).

1.2. Theorem

Equipollence is an equivalence relation on the class of sets.

PROOF

For any set A, id,4 is a bijection from A to itself; so = is reflexive.

If f is a bijection from A to B then clearly f~! is a bijection from B
to A; so =~ is symmetric.

Finally, if f is a bijection from A to B and g is a bijection from B to
C, then go f is a bijection from A to C; so = is transitive. |

It is convenient to introduce the following

1.3. Definition (incomplete)

To each set A we assign an object |A|, called the cardinality of A, such
that for any two sets A and B, |A| = |B|iff A =~ B.
An object of the form |A| for some set A is called a cardinal.

36
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1.4. Remarks

(i)

(ii)

Def. 1.3 is incomplete, because we have not specified what the
object |A| is or how it is to be chosen.

Cantor regarded cardinals as special abstract entities of a new
kind. In effect, this amounted to introducing the notion of
cardinal as a separate primitive notion.

However, it would obviously be more convenient — and con-
form to the reductionist programme — if cardinals were among the
hitherto posited objects of set theory. In this spirit, Frege pro-
posed in 1884 the elegant idea of defining |A| as [A]., the
equivalence class of A modulo = (see Def. 2.3.4). The condition
required by Def. 1.3 - |A| = |B| < A = B - would then follow at
once by Thm. 2.3.5.

This procedure, novel at the time, was to become standard
practice, used with respect to various equivalence relations that
arise in numerous mathematical situations.

Ironically, Frege’s procedure does not work at all well in the
present case, where the equivalence relation is =. Unaware that
the Comprehension Principle had to be restricted, he assumed as
a matter of course that [A]. is always a set, hence an object.
Unfortunately, this is in general false. For example, if A is a
singleton, then [A]. is the class of all singletons, and hence
U[A]- is the class of all objects, the entire universe of discourse,
which is a proper class by Thm. 1.3.10. Hence by AU [A]. must
be a proper class as well. This is very inconvenient, because we
would like to be able to form classes of cardinals, which is
impossible if cardinals are proper classes.

Fortunately there are other ways of defining cardinals, satisfy-
ing the requirement of Def. 1.3, while ensuring that the cardinals
are sets. Later on, in Ch. 6, we shall follow one such procedure.
In each =~-class we shall be able to select a unique ‘distinguished’
member. Then, for any set A, we can take |A| to be the
distinguished member of [A]~ rather than that class itself. Then
Thm. 2.3.5 ensures that the requirement of Def. 1.3 is satisfied.
For the time being, let us take it on trust that Def. 1.3 can be
completed in a satisfactory way. This is not asking too much,
since our reference to cardinals may be regarded as a mere
convenience: everything that we shall say in this chapter in terms
of cardinals can easily be rephrased (at the cost of some circum-
locution) in terms of sets and mapping between sets.
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(iii) The cardinality |A| of a set A is a measure of its size. Cardinals
can be regarded intuitively as generalized natural numbers. In-
deed, if A is a finite set of the form {a;, a5, .. ., a,}, where the
a; are distinct, then we could take |A| to be n, the number of
members of A. Thus, each natural number may be regarded
intuitively as the cardinality of a finite set.

(iv) However, we shall not assume formally that the natural numbers
are in fact cardinals. Rather, in §3 we shall posit for each n a
corresponding cardinal n, without necessarily identifying the two.

§2. Ordering the cardinals; the Schroder—Bernstein Theorem

We define a binary relation < on the class of cardinals, which, as we
shall soon see, is a [blunt] partial order on that class:

2.1. Definition

Let A and p be cardinals. Let A and B be sets such that |A| = A and
| B| = u. We say that A is smaller-than-or-equal-to u - briefly: A < u — if
there is an injection from A to B.

2.2. Remark

This definition is in need of legitimation: we must make sure that the
criterion it provides for asserting that A< u depends only on these
cardinals themselves rather than on the choice of particular sets A and
B such that |A| = A and |B| = p. This is done as follows. Let A, A’,
B, B’ be sets such that |[A| =|A’| and |B| = |B’|. Given an injection
from A to B, it is easy to show — DIY! — that there is also an injection
from A’ to B'.

2.3. Theorem

Let A and u be cardinals and let B be a set such that |B| = u. Then
A< uiff B has a subset whose cardinality is A.

PROOF

Let A be a set such that |A| = A. By Def. 2.2.4, an injection from A to
B is the same thing as a bijection from A to a subset of B. |
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2.4. Theorem

The relation < on the class of cardinals is reflexive and transitive.

PROOF
DIY. |

To show that < is a partial order, it remains to establish that it is
weakly anti-symmetric (see Def. 2.3.7). This fact was conjectured by
Cantor and proved independently by F. Bernstein and E. Schroder.
The proof we shall present here, due to Zermelo, uses a lemma that is
of some interest in its own right.

2.5. Definition

A map ¢ from a class of sets to a class of sets is monotone if whenever
X and Y are sets in domg such that X C Y thengX Cg¢Y.

2.6. Lemma

Let A be a set and let g be a monotone map from P A to itself. Then A
has a subset G such that ¢G = G.

PROOF

For any subset X of A, the value ¢ X is also a subset of A. Let us say
X is a good set if it is a subset of A such that ¢ X C X. (For example,
A itself is clearly good.)

Note that if X is good then ¢ X is good as well. Indeed, if g X C X
then by the monotonicity of ¢ we get g(g X) C ¢ X, which means that
g X is good.

Let G be the intersection of all good subsets of A, that is:

G=N{XePA:gX CX).

(See Def. 1.4.1.) We claim that G itself is good. To show this, let X be
any good set. Then G C X because G is the intersection of all good
sets. Therefore by the monotonicity of ¢ we have ¢G C¢X. Also,
since X is good, we have ¢ X C X; hence ¢G C X. Thus we see ¢G is
included in every good set. Hence ¢ G must also be included in the
intersection of all good sets. But this intersection is G itself; this means
that ¢G C G, so G is good, as claimed.

It now follows that ¢ G is good as well. But G, the intersection of all
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good sets, is included in each of them and in particular in the good set
g¢G. So we have shown bothgG C Gand G C¢G. ThusgG=G. N

2.7. Theorem (Schrider—Bernstein)
If A and p are cardinals such that A< y and p< A then A= pu.

PROOF
Let A be a set such that |A| = u. Since A < yu, according to Thm. 2.3 A
has a subset, say B, such that |B| = A. Since also < A, according to
Def. 2.1 there is an injection, say, f, from A to B.

The claim that A= u will be proved if we show that there is a
bijection from A to B.

Define a map ¢ from P A into itself by putting, for any X C A,

gX =(A - B)U f[X].

(For the definitions of A — B and f[X], cf. Def. 1.4.4 and Def. 2.4.6.)
It is easy to see that ¢ is monotone. By Lemma 2.6, there exists some
G C A such that G = ¢G. Thus

G = (A — B) U f[G].

Note that f[G] C B because f maps the whole of A into B. (See Fig.
1. The large rectangle represents A; like Gaul, it is divided into three
parts.)

Now, f|G is an injection from G to B and a bijection from G to
flG] (see Prob. 2.4.7). Let us put

h=(f1G) Vidsg.

A-B

— G
f1G]

B
A-G

u

Fig. 1
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Thus 4 is a map whose domain in the whole of A, such that

_Jfx ifxeG,
hx_{x ifxeA-G.

It is obvious that 4 is a bijection from A to B. ]

2.8. Remarks

(i) In view of Thms. 2.4 and 2.7, < is a [blunt] partial order on the
class of cardinals.

(if) As usual in such cases, we denote by ‘<’ the sharp partial order
associated with <. (Thus < is s#; see Prob. 2.3.9.) If A and u are
cardinals such that A < u we say that A is smaller than p.

(iii) Later on we shall prove (using the Axiom of Choice) that < is a
total order on the class of cardinals.

§3. Cardinals for natural numbers
3.1. Definition

If n is a natural number and a4, a5, . . ., a, are distinct objects, we put
n =gt |{als az, . - -, an}l'

In particular, 0 = |J| and 1 = |{a}|, where a is any object. We call n
the cardinal for (or corresponding to) n.

3.2. Remarks
(i) To legitimize Def. 3.1 we must verify that if aq, ay, ..., a, are
distinct objects and by, b,, ..., b, are likewise distinct objects
then
{ay, a2, - ... an} = {b1, b2, ..., by}.
This is easy: {(ai, b1), (a2, b3), ..., {a,, b,)} is clearly a
bijection from {a;, as, . . . , a,} to {by, by, . .., b,}.

(ii) By Thm. 2.3, 0 < u for every cardinal u.

3.3. Problem
Define c, by induction on n as follows:

¢o = Jand ¢, = {c,} for each n.
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Prove that, for each n, the objects ¢y, ¢y, ..., ¢, are distinct. (Use
induction on n.)

Thus for any natural number n there exist n distinct objects, and
hence the corresponding cardinal n exists.

3.4. Theorem

Let aq, ay, . . ., a, be any objects. Then there does not exist an injection
from the set {ay, a,, . .., a,} to any proper subset of itself.

PROOF

By induction on n. For n =0 our theorem is trivial, since J has no
proper subset.

For the induction step, consider a set A = {ay, as, ..., Gy, api1}-
We may assume that the objects ay, a;, ..., a,, a4+ are all distinct;
otherwise, by eliminating one duplication we can write A in the form
“{by, ba, ..., by} and the required result follows at once by the
induction hypothesis.

Suppose f is an injection from A to some B C A. If B C A then at
least one member of A must be outside B; and (by relabelling the a’s
if necessary) we may assume that a,., ¢ B.

Since fa,,; must be in B, it cannot be a,; itself; and (again, by
relabelling if necessary) we may assume that fa,.; = a;. Therefore
a, € B. Also, since f is injective, a,,; is the only x € A such that
fx = a,.

It would then follow that f{ay, ay, . . ., a,} is an injection from the
set {a;, ay, ..., a,} to its proper subset B — {a;} — contrary to the
induction hypothesis. Thus B cannot be a proper subset of A. n

3.5. Theorem
For any natural numbers n and m:

Difm=nthenm=<n; (ii) if m+ n then m + n.

(WARNING. The two ‘<’ here mean different things: the first denotes
the usual order among natural numbers, while the second denotes the
partial order on the cardinals.)
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PROOF

(i) Assume m < n. Take n distinct objects a;, a3, ..., a, (which
exist by Prob. 3.3). Since {ay, a;, . .., a,,} is clearly a subset of
{ai, ay, ..., a,}, we have m < n by Thm. 2.3.

(i) Let m # n. Without loss of generality we may assume m < n.
Take n distinct objects ay, a;, ..., a,. By Thm. 3.4 there is no
bijection from {ay, ay, . . ., a,} to its proper subset {a;, ay, ...,
a,,}. Therefore m # n. |

3.6. Remark

A subtle matter: we have not shown that being a natural number is a
notion of set theory. Rather, we have taken this notion to be under-
stood in advance, prior to the development of set theory. Therefore
Def. 3.1 cannot be regarded as a single definition within this theory.
Rather, it is a definition scheme, a sequence of definitions whereby
each of the cardinals 0, 1, 2, 3, etc., in turn may be defined separately.
Similar caveats apply to the whole of this section as well as to
definitions like 1.3.1 and 2.1.7 and theorems like 1.3.16.

§4. Addition

In this section we shall see how cardinals may be added. But first we
introduce a useful bit of terminology.

4.1. Definition
If AN B =, we say that A and B are disjoint.

4.2. Lemma

For any sets A and B, there are disjoint sets A' and B’, such that
|A| =|A"| and | B| = |B’|.

PROOF

Take any two distinct objects a and b (for example, &J and {J}; see
Prob. 3.3). Then let

A'={a}xA={{a,x):xe A}, B'={b}x B={(b,x):xe€ B}.
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Using (2.1.2) it is easy to see that A’ N B’ =J. Also, a bijection f
from A’ to A is obtained by putting f(a, x) = x for every x € A; so
|A| =|A’|. Similarly, |B| = | B’|. |

4.3. Lemma
Let A, B, A’', B’ be sets such that AN B= A'"NB' =, |A|=|A'|
and |B| = |B’|. Then |A U B| =|A’' U B'|.

PROOF
Let f and g be bijections from A to A’ and from B to B’ respectively.
Then it is clear that f U g is a bijection from A U Bto A’ U B’. |

4.4. Definition
For any cardinals A and p, we define the sum of A and u:

A+ p=q|AU B,
where A and B are disjoint sets such that |A| = A and | B| = p.

4.5. Remarks

(i) Def. 4.4 is legitimized by Lemma 4.3.

(ii) In the proof of Thm. 2.7 we made use of a special case of Lemma
4.3. We had there A= G U (A — G) and B = f[G]U (A — G),
where the unions in both cases are between disjoint sets. Also,
|G| = |f[G]| because f is injective. Hence we concluded that
|A| = |B].

4.6. Theorem
If k, m and n are natural numbers and k + m = n, then k + m = n.

PROOF

DIY. (WARNING. The two ‘+’ here mean different things. The first
denotes the operation of addition of numbers. The second denotes
addition of cardinals.) |
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4.7. Problem
Verify, for all cardinals %, A and u:

() x+(A+w=x+A)+u (associativity of addition),
@) A+pu=p+421 (commutativity of addition),
(iii)) A+0=41 (neutrality of 0 w.r.t. addition),
(iv) Aspu=>x+i<x+pu (weak monotonicity of addition).

4.8. Warning

Although cardinal addition behaves in many ways like ordinary addi-
tion of natural numbers, not all rules of ordinary arithmetic apply
here. For example, as we shall see later, from » + A = x it does not
always follow that A = 0. Hence the cancellation law does not apply in
general (from x4+ A = x4+ p it does not always follow that A = u); nor
is addition of cardinals strongly monotone (from A< pu it does not
always follow that x + A < x + p).

Instead of adding just a pair of cardinals at a time, it is possible to
define the sum of many - even infinitely many — cardinals simultan-
eously. However, the legitimation of this definition requires the Axiom
of Choice (AC, see Ch. 5). We shall explain the definition here,
leaving its legitimation for later. First, we need some new notation:

4.9. Definition

If B is a function whose domain is a set X, we sometimes denote the

value of B at x € X by ‘B,’ rather than by ‘Bx’ and denote B itself by
{B;|x e X}.

In this connection we refer to X as the index set and to B as the family
of the B,, indexed by X.

4.10. Remark

Many authors use the vertical stroke ‘|’ instead of the colon for class
abstraction (as in Def. 1.1.5) and so use some other notation for
indexed families.
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4.11. Definition

Let {B,|x € X} be an indexed family of sets (that is, all the B, are
sets). Let p, = | B,| for each x € X. We put:

Sl x € X) =g |U{{x} x B, :x € X}|.
This is called the sum of the [family of the] u, indexed by X.

4.12. Remarks

(i) Thus, to add up all the u, simultaneously, we form the cartesian
product {x} x B, for each x € X. (Note that these products are
pairwise disjoint: if x # y then {x} X B, and {y} X B, are dis-
joint, although B, and B, need not be disjoint and may even be
equal.) Then we take the union of all these products. Using AR
and AU it is easy to verify that this union is a set. The cardinality
of this set is the required sum.

(ii) To legitimize this definition one must show that if A is another
indexed family of sets with the same index set X such that
|A,| = | B,| for all x € X, then

U{{x} x A, :x e X} = U{{x} x B, : x € X}.

This can easily be done, using AC (see Rem. 5.1.3(iii) below).

(iii) We need to define the sum of a family, rather than a set, of
cardinals because in a set of cardinals each cardinal can occur at
most once: a given cardinal either does or does not belong to a
given set. However, we must not forbid multiple occurrence of a
cardinal in a sum. This is taken care of by our definition, since in
the family {u, | x € X} we can have u, = p, for x # y.

(iv) Def. 4.4 is obtained as a special case of Def. 4.11 by taking the
index set X to have just two members.

(v) The set U{{x} x B,: x € X} is called the direct sum of the
indexed family {B, | x € X}.

§5. Multiplication
5.1. Definition

For any cardinals A and u, we define the product of A and u:
)"H =df IA X Bla
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where A and B are any sets such that |A| = A and | B| = u. We often
abbreviate ‘A- 1’ as ‘Ay’.

5.2. Remarks

(i) A X Bisasetby Rem. 2.1.13(ii) and Lemma 2.2.5.
(ii) Def. 5.1 is legitimized by the easily proved fact that if A' = A
and B' = B, thenalso A’ X B'= A X B.

For natural numbers m and n, the product mn equals the sum
obtained when 7 is added to itself m times (this is why the product is
read as ‘m times n’). A similar result also holds in cardinal arithmetic,
in the following sense:

5.3. Theorem

Let A and x be any cardinals and let {u, | a € A} be an indexed family
of cardinals such that u, = x for every a € A and such that |A| = A
Then

2t lae A} = Ax.

PROOF

Let D be a set such that |D| = x. Applying Def. 4.11 to the indexed
family of sets {B,|a € A} such that B,= D for every ae A, we
obtain

S{malae Ay =|U{{a} x D:a e A}|.
However, it is not difficult to verify (DIY!) that
U{{a} x D:ae A} = A x D.
Hence > {u,|a€ A} =|A X D| = Ax. [ |

5.4. Theorem

If k, m and n are natural numbers and km = n, then km = n.

PROOF
DIY. u
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5.5. Problem
Verify, for all cardinals %, A and u:

(1) #(Aw) = (xA)u (associativity of multiplication),
(ii) Au = pi (commutativity of multiplication),
(iii) A1 =2 (neutrality of 1 w.r.t. multiplication),
(v) Ass u= A < nu (weak monotonicity of multiplication),

(V) (e + M= xp + Ap
(distributivity of multiplication over addition),
Vi) ou=0<i=00ru=0 (absorptive property of 0).

5.6. Problem

Prove the following generalization of Prob. 5.5(v): if {A,|x € X} is
any indexed family of cardinals and p is any cardinal then

(B3 ex))-n= S0 ulx e )

5.7. Warning
The same as 4.8, mutatis mutandis.

As in the case of addition, multiplication can be defined for a whole
family of cardinals rather than just a pair of cardinals. (Legitimation
again requires AC.) We start from a simple observation:

5.8. Lemma

Let C and D be any sets and let u and v be distinct objects. Let P be
the class

{f : f is a function such that dom f = {u, v} and fu € C and fv € D}.

Then P is a set equipollent to C X D.

PROOF

It is quite easy to show, without using AR, that P is a set. However,
we shall not bother to do so. Instead, we shall define a bijection F
from the set C X D to P. Thus by AR the latter is also a set. We put,
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foreachce Cand d e D,
F{c,d) = {{u, c), {v,d)}.
It is easy to verify that F is indeed a bijection from C X D to P. |

The following definition generalizes the construction of Lemma 5.8 to
an arbitrary family of sets.

5.9. Definition
If {B, | x € X} is an indexed family of sets, the class

{f : fis a function such that dom f = X and fx € B, for all x € X}
is denoted by
‘X {B,|x e Xy
and called the direct product of the family {B, | x € X }.

5.10. Lemma
If {B,|x € X} is any indexed family of sets, then X{B,|x € X} isa
set.

PROOF

Recall (Def. 4.9) that { B, | x € X} is the function having the index set
X as its domain, whose value at each x € X is B,. Therefore the range
of this function is

{B;:x € X}
and this range is a set by AR. Now let us put
U=U{B,:xeXx).

U is a set by AU. Next, observe that by Def. 5.9, if f is any member of
X {B;|x € X} then f is a map from X to U. Hence fC X X U,
which means that f € P(X X U). Thus we have shown that

X{B;|x € X} CP(X x U).

Since X X U is a set (cf. Rem. 5.2(i)), it follows that P(X x U) is a
set by AP. Hence X {B,|x € X} is a set by AS. ]
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5.11. Definition
Let {B,|x € X} be a family of sets and let u, = | B,| for each x € X.
We put

[T{me [ x € X} =a | X{Bi|x € X}.

This is called the product of the [family of] u,, indexed by X.

5.12. Remarks
(i) Using AC it is easy to legitimize this definition by showing that if
A is another indexed family of sets with the same index set X
such that |A,| = | B,| for all x € X, then

X{As|x € X} = X{B,|x € X}.

(ii) Def. 5.1 can be regarded as a special case of Def. 5.11. Indeed, if
C and D are any sets, whose cardinalities are » and A respect-
ively, take X = {u, v}, where u and v are distinct objects, and let
{B,|x € X} be the family such that B, = C and B, = D. Then
Lemma 5.8, rewritten in the notation of Def. 5.9, says that

X{B,|x € X}=C x D.
So in this case we have
|X{B:|x e X}/ =[Cx DI,
which is what Def. 5.1 says »#A should be.

§ 6. Exponentiation; Cantor’s Theorem
6.1. Definition

Let A and B be any sets. Then
map (A, B) =4 {f : f is a map from A to B}.

6.2. Remarks

(i) If f is any member of map (A, B) then f C A X B, hence f is
a member of P(A X B). Thus map (A, B) CP(A X B), and
map (A, B) is a set.

(ii) Perhaps more instructively, the same result can be derived
from Lemma 5.10, as follows. Consider the indexed family
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{D,|]ae A} such that D,=B for every aeA. Then
X {D,|a € A} - which is a set by Lemma 5.10 — is, by Def. 5.9
equal to

{f : f is a function such that
domf=Aand fae Bforalla e A}.
By Def. 6.1 this is exactly map (A, B).

6.3. Definition
For any cardinals A and u, we define u to the [power of] A:
¢ =|map (A, B),

where A and B are sets such that |A| = A and | B| = u.

6.4. Remarks

(i) This definition is legitimized by the easily verified fact that if
A=~ A’ and B = B’ then map (A, B) =map(A’, B’).

(i) From Rem. 6.2(ii) it follows that exponentiation (raising to a
power) can be achieved by repeated multiplication, in the follow-
ing sense: if {x,|a € A} is an indexed family of cardinals such
that %, = uforall a € A, and if |A| = A, then

H{%alaEA}=”A'

6.5. Problem
Let k, m be natural numbers, and let n = m*. Verify that n = m*.

6.6. Problem
Verify that for any cardinals x, A and u:

(i) =1,

(i) w' = p,
(iii) @it = @+t
(iv) (> =p?,
(V) (Aw)* = A"p

6.7. Theorem
For any set A, [PA| = 2141,
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PROOF

By Def. 6.3, what we have to show is that PA is equipollent to
map (A, B), where B is a set having exactly two members. Let us take
B = {J, {J}}. Define a map F from map(A, B) to PA, by putting,
for every f € map (A, B),

Ff={acA:fa=0}.
It is easy to verify that 7 is a bijection from map (A, B) to PA. n

6.8. Cantor’s Theorem
For any set A, |A| <|PA|.

PROOF

First, we show that | 4] < |PA|. We define a map f from A into PA by
putting fa = {a} for each a € A. Clealy, f is an injection from A to
PA.
‘We show that |A| # |PA| by reductio. Let g be any map from A to
PA. For each x € A, then, gx is a member of PA —that is, a subset of
A. Put

D={xeA:x¢gx}.

Then D is a subset of A—that is, a member of PA. If g were to map
A onto PA, there would be some d € A for which gd = D. Then
degd<deD.
But from the definition of D we see thatd € D <>d ¢ gd.
Thus, d belongs to gd iff it doesn’t. This contradiction shows that g
cannot map A onto PA, and hence cannot be a bijection from A to
|}

6.9. Remark

The idea of Russell’s Paradox derives from this proof. Indeed, if A is
the class of all sets, then it is easy to see that PA C A. Thus id, is m
fact a bijection from A to a class— A itself—that includes PA. Taking
id,4 as the g in Cantor’s proof, the D of that proof becomes Russell’s
paradoxical class of all sets that do not belong to themselves.
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Ordinals

§ 1. Intuitive discussion and preview

The introduction of the set-theoretical cardinals was motivated by the
wish to generalize the natural numbers in their capacity as cardinal
numbers, answering the question ‘how many?’. But the natural num-
bers are also used, in arithmetic as well as in ordinary life, in other
capacities. In my local bank branch there is a number dispenser: on
entering the branch, each customer collects from the dispenser a piece
of paper showing a number. This number is not (at least, not directly)
an answer to a ‘how many?’ question, but an ordinal number, fixing
the place of the customer in the queue.

A finite set can always be arranged as a queue - and if we ignore the
identity of the elements being ordered, this can done in just one way.
For example, the first three customers in the bank, arranged according
to the numbers assigned to them by the dispenser, always form the
following pattern:

e<eo<e
0 1 2

We can use the number three as an ordinal number, to describe this
general abstract pattern, the order type of three objects arranged in a
queue. Note that three is also the number to be assigned to the next
customer, who is about to join the queue. This is quite general: the
ordinal number assigned to each customer is the order-type (the queue
pattern) of the queue of all preceding customers.

Cantor wished to extend this idea of finite queues and finite ordinal
numbers into the transfinite. Imagine that all the old (finite) ordinal
numbers have been dispensed. We have now got an infinite queue

53
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forming the pattern

(*) e<o<o<o<
0. 1 2 3

We need a new ordinal to describe the order type of this infinite
queue. Cantor denoted this new ordinal by ‘w’. We can assign this
ordinal to the next ‘customer’ and extend the queue by placing that
customer behind all the finite-numbered ones:

e<oe<o<0<., . <®o
0 1 2 3 w

The new order type just formed is described by the next ordinal, which
Cantor denoted by ‘w+ 1’. We can continue in this way, getting not
only w + n for every natural n but also w + o, then w + w + 1 and so
on and on and on.

Examining the ‘queues’ formed in this way, Cantor saw that they are
not merely totally ordered, but have a special property not shared by
all totally ordered sets: every non-empty subset of the queue has a
least (first) member. Cantor called such queues well-ordered.

An example of a total order that is not a well-ordering is provided by
the integers, ordered according to magnitude:

<3< -2<-1<0<1<2<3<....

Note that the fact that the pattern (*), described by the ordinal w, is
well-ordered is just the Least Number Principle, a form of the Principle
of Mathematical Induction (see § 4 of Ch. 0).

Cantor introduced the ordinals as a new and separate sort of abstract
entity, just as he did with cardinals. However, in 1923 John von
Neumann pointed out that among all well-ordered sets having a given
Cantorian ordinal as their order-type there is a particular one with
some very special properties. In the spirit of reductionism, this particu-
lar set can then be taken to be the ordinal of that order type.

We shall present von Neumann’s theory of ordinals as streamlined
by Raphael M Robinson and others.

§2. Definition and basic properties
2.1. Definition
Let < be a [sharp] partial order on a class A and let BC A.If be B
and b < x for every other x € B, we say that b is least in B with respect
to <.
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2.2. Remarks

(i) Instead of demanding that b < x for every other x € B, we may
equivalently demand that b < x for every x € B. Here < is of
course <b, the blunt partial order associated with < (see Prob.
2.3.9 and Rem. 2.3.10).

(ii) When there is no risk of confusion, we omit the phrase ‘with
respect to <’.

(iii) Since < is anti-symmetric, if B does have a least member it is
unique and we may therefore refer to it as the least member of
B.

2.3. Definition

A well-ordering on a class A is a partial order on A such that every
non-empty set included in A has a least member.

2.4. Lemma

If < is a well-ordering on a class A then < is a [sharp] total order on
A.

PROOF

According to Def. 2.3.11, we must show that < fulfils the trichotomy
and transitivity conditions. The latter condition is fulfilled because by
Def. 2.3 < is a partial order; so it only remains to verify the
trichotomy.

Let x and y be any members of A. We must show that exactly one
of the three disjuncts

x<yorx=yory<x

holds. That no two of these disjuncts can hold simultaneously follows
at once from the anti-symmetry of <. On the other hand, the set
{x, y} is included in A and so must have a least member; hence at
least one of the three disjuncts must hold. |

2.5. Definition

If A is any class, we define the binary relation €, on A, called the
restriction of € to A, by putting

€a=af{l{x,y) e A%:x ey}
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2.6. Remark

The relation €4 can also be characterized by the fact that, for all x
and y,

xegy<>xeAandye Aandx € y.

2.7. Definition
We say that a class A is e-well-ordered if the relation €4 is a
well-ordering on A.

2.8. Problem

(i) Let A be a class such that €4 is a sharp total order on A; let
B C A and b € B. Prove that b is least in B w.r.t. €4 iff b is
either an individual or a set such that b N B = .

(ii) Hence verify that a class A is e-well-ordered iff the following two
conditions are satisfied:

(1) €4 is a sharp total order on A.
(2) Every non-empty set u included in A has a member v such
that v is either an individual or a set such that v Nu = .

(iii) Prove that in (ii) we may replace (1) by the weaker condition:
(1') For any members x and y of A, at least one of the following
three disjuncts holds:

XEyorx=yorye€x.

(Show that if two of these disjuncts hold simultaneously then the
set u = {x, y} violates (2). To verify that €4 is transitive, let x, y
and z be members of A such that x € y € z and apply (2) to the
setu={x,y,z}.)

(iv) Hence (or directly from Def. 2.7) prove that if BC A and A is
e-well-ordered, then so is B.

2.9. Theorem

If A is an e-well-ordered class and B is a non-empty subclass of A, then
B has a least member w.r.t. € 4.
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PROOF

Take any z € B. If z is the least member of B, we need look no
further. So let us suppose z is not the least member of B. Therefore by
Prob. 2.8(i) z is a set rather than an individual and z N B # .

By Prob. 1.4.5(ii) zN B is a set; we have just seen that it is
non-empty; and it is clearly included in B and hence also in A. So by
Def. 2.7 z N B must have a least member w.r.t. €4.

Let y be the least member of z N B. We claim that this y is also the
least member of B. Indeed, if this were untrue, then (applying to y the
argument we have just applied to z) we would find an x such that
x ey N B. Then x € y as well as y € z and by the transitivity of €4 it
would follow that x € z, hence x € z N B. But this is impossible,
because x € y and y is the least member of z N B. |

2.10. Definition
A class A is transitive if, for all y,

ye A=y CA.

2.11. Remarks

(i) Note that every member of a transitive class must be a set rather
than an individual, because by Def. 1.3.4 y C A holds only if y is
a class. So a class A is transitive iff:

(1) all its members are sets and
(2) UA C A; that s, for all x and y,XxeEye A=>xe€A.

(ii) Unfortunately, ‘transitivity’ is used with two meanings: the pre-
sent one and that applicable to binary relations (as, for example,
in Def. 2.3.2). In practice no confusion shall arise, as the context
will indicate which meaning is intended.

2.12. Definition

An ordinal is a transitive and e-well-ordered set. The class of all
ordinals is denoted by ‘W’.

2.13. Examples

The empty set J is, vacuously, an ordinal. It is also easy to verify that
{J} and {J, {J}} are ordinals.
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2.14. Convention

We shall use lower-case Greek letters — mainly ‘o’, ‘f’, ‘y’, ‘A’, ‘€’ and
‘n’ — as variables ranging over the ordinals.

2.15. Theorem
All members of an ordinal are ordinals; thus, if « is an ordinal,

a={£:Eca}.

PROOF
Let y € . Since o« is transitive, we have y C «. Since « is an
e-well-ordered set, it follows from Prob. 2.8(iv) that its subset y is also
e-well-ordered. It remains to show that y is transitive.

So let u € x € y. Using the fact that « is a transitive set, we have
x € & and then in turn also u € «. Hence u and x, as well as y, are
members of a; so by the transitivity of the relation €, we infer from
uexeythatuey. n

2.16. Lemma

If y is any transitive subset of an ordinal « then y itself is an ordinal;
moreover,y = q Or y € «.

PROOF

That y is an ordinal follows at once from Prob. 2.8(iv). Moreover, let
u=a—y. If u= then y =a. If u is non-empty, then it has a
(unique) least member x w.r.t. €,. We shall show that y = x.

First, let z € x. Since x € & and « is transitive, it follows that z € a.
But z cannot be in u, because z € x, and x is the least member of u;
thus z must be in y. This proves that x C y.

Conversely, let z € y. Then z = x is impossible because x ¢ y. Also,
x € z is impossible because, by the transitivity of y, it would imply
x € y. Hence by Lemma 2.4 we must have z € x. This proves that
yCx. Thusy =x € a. |

2.17. Theorem
The class W of all ordinals is transitive and e-well-ordered.
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PROOF

The transitivity of W follows at once from Thm. 2.15. To prove that W
is e-well-ordered, we shall make use of Prob. 2.8(iii).

To verify that condition (1") of Prob. 2.8(iii) holds for W, let a and
B be any ordinals. Since both « and f are transitive, it is easy to see
that & N B is also transitive. Thus by Lemma 2.16 & N f is an ordinal,
say y; moreover, Yy = a or y € «. Likewise, y = for y € .

But we cannot have both y € « and y € 8 because then ye a N f -
that is, y € y; and this would violate the anti-symmetry of the well-
ordering relation €, on y. Therefore y = o or y = . Hence a = f3 or
a € Bor f3 € a, which proves condition (1') for W,

Now let u be any non-empty set of ordinals. We must prove that
there exists an ordinal & € u such that §Nu = . Take any a € u. If
« N u =, we are through.

On the other hand, suppose « N u # J. Since « is e-well-ordered,
there must exist some member & of & Nu such that ENaNu=4.
But £ €  and «is transitive; so EC a. Hence ENu=ENanNu=.

|

2.18. Corollary

W is a proper class (that is, not a set).

PROOF

If W were a set, then by Def. 2.12 and Thm. 2.17 it would be an
ordinal, hence W € W, in violation of the anti-symmetry of the well-
ordering relation €. |

2.19. Remarks

(i) The (naive) assumption that W is a set led to a contradiction.
This was the Burali-Forti Paradox (see § 2 of Ch. 1). Cor. 2.18 is
a ‘tame’ version, within ZF, of the paradox. Similarly, Thm.
1.3.101is a ‘tame’ ZF version of Russell’s Paradox.

(ii) In the proofs of Thm. 2.17 and Cor. 2.18 we used the argument
that an ordinal y cannot be a member of itself because this would
violate the anti-symmetry of the well-ordering relation €, on y.
In mathematical practice it is often convenient to posit a further
postulate — the Axiom of Foundation (or Regularity), first pro-
posed by Dimitry Mirimanoff in 1917 — one of whose effects is to
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exclude any set that belongs to itself. On the other hand, in some
special applications of set theory — notably in so-called situation
semantics, developed by Jon Barwise and others, and in abstract
computation theory — it is convenient to use an extension of ZF
proposed by Peter Aczel, which negates the Axiom of Founda-
tion and admits some sets that belong to themselves. In the
present course we do not commit ourselves either way.

2.20. Corollary
Any class of ordinals is e-well-ordered.

PROOF
Immediate from Thm. 2.17 and Prob. 2.8(iv). [ ]

2.21. Definition
The e-well-ordering on W shall be denoted by ‘<’. Thus for any
ordinals « and g,

a<f<acp

2.22. Remarks
(i) As usual, we denote by ‘<’ the blunt version of <. Thus

asfeacPfora=p

(ii) Thm. 2.15 can now be read as saying that if « is any ordinal then
a={&:E<a}l.

(iii) From now on, whenever we use order-related terminology in
connection with ordinals, we shall take it for granted that the
order relation referred to is the e-well-ordering, unless otherwise
stated.

2.23. Definition
Let < be a partial order on a class A and let B C A.

(i) If ue A and x <u for all x € B, then u is said to be an upper
bound of (or for) B with respect to <.

(ii) If u is the least member of the class of upper bounds for B w.r.t.
< - that is, if u is an upper bound for B w.r.t. < and if u <v
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whenever v is any other upper bound for B w.r.t. < — then u is
said to be the least upper bound (abbreviated ‘lub’) for B
w.r.t. <.

2.24. Remarks

(i) The phrase ‘with respect to <’ is omitted when there is no danger
of confusion.

(ii) A subclass B of A need not in general have any upper bound, let
alone a lub; but if it has a lub, it is unique.

2.25. Theorem

If A is a set of ordinals then its union-set UA is an ordinal. Moreover,
UA is the lub of A.

PROOF

To show that UA is transitive, assume that x € y € UA. Then for
some ordinal @ we have x € y € « € A. Since « is transitive, it follows
that x € @ € A; hence x € UA.

By Thm. 2.15, all the members of UA are ordinals; so by Cor. 2.20
UA is e-well-ordered. Thus U A is an ordinal.

If e A then o C UA, since UA is a transitive set. Therefore by
Lemma 2.16 a < |JA. This means that JA is an upper bound for A.

Finally, if 3 is any upper bound for A, then for each & € A we have
a<pf - that is, o € f or o = f. By the transitivity of the set f it
follows that in either case o C 8. Since this holds for each a € A, it
follows that also [JA C 8. By Lemma 2.16 we now have UA < -
which proves that UA is the least upper bound for A. n

2.26. Definition

For any ordinal o we put o' =4 U {a}. We call a’ the immediate
successor of «. (This terminology is justified by the following
theorem.)

2.27. Theorem

For any «, o' is an ordinal. Moreover, for any B, B<« iff B< o’
(equivalently: o« < B iff &' < f3). Hence a < Biff o’ < p'.
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PROOF
Easy - DIY. n

2.28. Definition

(i) An ordinal of the form «' is called a successor ordinal.
(ii) An ordinal that is neither &J nor a successor ordinal is called a
limit ordinal.

§3. The finite ordinals
3.1. Definition
An ordinal « is said to be finite if no ordinal £ < « is a limit ordinal.
Otherwise, « is said to be an infinite ordinal. We put

o =4 {@ : ais a finite ordinal}.

3.2. Theorem
w s transitive.

PROOF
Let « be a finite ordinal. We must show that every member of « is also
a finite ordinal. This is easily done — DIY, using Rem. 2.22(ii). |

3.3. Theorem
(i) D is a finite ordinal.
(i) If « is a finite ordinal then so is o'.

PROOF.

(i) We know that J is an ordinal (Ex. 2.13). But by Def. 2.28(ii) &
is not a limit ordinal. Since & has no members, the only & such
that & < J is J itself. Hence J is a finite ordinal.

(ii) Let « be a finite ordinal and let £ < a’. We must show that & is
not a limit ordinal. Now, «' itself is a successor ordinal, hence
not a limit ordinal. It remains to consider the case where £ < a’.
By Thm. 2.27 this means that § < «. Since « is a finite ordinal, &
is not a limit ordinal. |
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3.4. Theorem

wis a set.

PROOF

Using the Axiom of Infinity (Ax. 1.3.21), take a set Z such that J e Z
and such that whenever x € Z, then also x U {x} € Z. Thus if an
ordinal « belongs to Z then (by Def. 2.26) so does «o'.

Consider the class w — Z, the class of all finite ordinals not belon-
ging to Z. If this class is non-empty, then by Thm. 2.9 it must have a
least member, say 5. Now, f8 cannot be (J, because J does belong to
Z. Also, B, being a finite ordinal, cannot be a limit ordinal. So it must
be a successor ordinal, say S = &' = o U {a}. But in this case « itself
is a finite ordinal (by Thm. 3.2), such that a < . Since B was
supposed to be the least finite ordinal not belonging to Z, it follows
that o« € Z. Therefore by the assumption on Z also &’ € Z. But this is
impossible, because a’ = 3, which is the least finite ordinal nor belon-
ging to Z.

So w — Z must be empty. Thus w C Z; hence wisasetby AS. N

3.5. Corollary
w is the unique set X having the following three properties:

(i) Je X;
(ii) whenever o € X then also o’ € X
(ili) X C Z for any set Z such that J € Z and such that whenever
ae Zthenalso o' € Z.

PROOF

Thm. 3.3 says that w has properties (i) and (ii). The proof of Thm. 3.4
shows that w has also property (iii). The uniqueness of w follows by
PX, because if X is any set having the three properties then both
wC X and X C w. [ |

3.6. Remarks

(i) Our first use of AI was to prove that w is a set. Conversely, if we
postulate that w is a set, then by Thm. 3.3 w is a set satisfying the
conditions that AI lays down for Z. This shows that (in the
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presence of the other postulates) Al is equivalent to the proposi-
tion that w is a set, which is a special case of the Comprehension
Principle.

(ii) In fact, it now transpires (Cor. 3.5) that w is simply the smallest
set satisfying the conditions of Al.

We restate the fact that o satisfies condition (iii) of Cor. 3.5 as a
principle in its own right:

3.7. Corollary (Weak Principle of Induction on Finite Ordinals)

Let Z be any set such that & € Z and such that whenever « € Z then
alsoa’' € Z. Then wC Z. |

3.8. Remarks

(i) We see that the set w of finite ordinals, with its e-well-ordering,
simulates, within the confines of ZF set theory, the behaviour
that characterizes the system of natural numbers. We can take &
as the counterpart of the number 0 and the e-well-ordering on @
as the counterpart of the usual ordering of the natural numbers.
Just as each natural number » has an immediate successor, n + 1,
so every finite ordinal a has an immediate successor, a'.
Moreover, the basic facts about the ordering of the natural
numbers (Facts 0.1.1-0.1.5) are mimicked by theorems about the
finite ordinals and their e-well-ordering. And, most importantly,
the Principle of Mathematical Induction is mimicked by the
Principle of Induction on Finite Ordinals. Certainly, within ZF w
impersonates, plays the role of, ‘the set of natural numbers’. In
fact, Cor. 3.5 reproduces within ZF Richard Dedekind’s famous
characterization of the natural numbers.!

(ii) The obvious reductionist step at this point is to identify the
ZF-set o of finite ordinals as the ‘true’ (hitherto intuitive) set N
of natural numbers. This would be a grand reduction indeed,
because work done during the 19th century by several mathemati-
cians (including Hamilton, Bolzano, Weierstrass, Dedekind and
Cantor) showed that all the concepts of mathematical analysis
could be reduced to those of natural number, set and member-
ship (plus concepts such as relation and function that we have by

Y Was sind und was sollen die Zahlen?, 1888. (English translation in Essays on the theory
of numbers edited by W. W. Beman, 1901.)
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now reduced to set-theoretic concepts). Thus a huge part, if not
the whole, of mathematics would be reduced to set theory.

Many (perhaps most) mathematicians, under the influence of
the dominant structuralist ideology, do proceed in this way, and
frame (or think of) their mathematical discourse as taking place
within set theory.

3.9. Warning

This reduction, although extremely successful in a formal sense, is by
no means unproblematic, as Skolem pointed out in 1922, when he
published his famous paradox. (We shall discuss Skolem’s Paradox in
the Appendix.)

3.10. Theorem

w is the least infinite ordinal and the least limit ordinal..

PROOF

That w is an ordinal follows at once from Cor. 2.20 and Thms. 3.2 and
3.4. Also, w cannot be a finite ordinal, because that would mean that
w € w — which is impossible for an ordinal. Thus @ must be an infinite
ordinal. On the other hand, if £ < w — that is, § € w — then by Def. 3.1
& is a finite ordinal; hence w must be the least infinite ordinal.

If £ € w then, as we have just seen, & is a finite ordinal, hence a
fortiori, not a limit ordinal. If  itself were not a limit ordinal then by
Def. 3.1 it would follow that w is a finite ordinal, contrary to what we
have proved. Thus @ must be a limit ordinal. As we have just
observed, no ordinal smaller than w can be a limit ordinal. Hence w is
the least limit ordinal. n

3.11. Preview

We have yet to justify the adjectives finite and infinite introduced in
Def. 3.1 in connection with ordinals. Dedekind defined a set as infinite
if there exists an injection from it to a proper subset of itself, and as
finite if there is no such injection. We will not adopt Dedekind’s
definition, but we shall show that finite and infinite ordinals in the
sense of Def. 3.1 are finite and infinite respectively in Dedekind’s
sense.
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3.12. Theorem

There does not exist an injection from a finite ordinal to a proper subset
of itself .

PROOF

We proceed by weak induction on finite ordinals (Cor. 3.7). The proof
is a formal (or ‘internalized’) version of the proof of Thm. 3.3.4.

Let Z be the set of all finite ordinals « such that there is no injection
from « to a subset of itself. In order to prove our theorem it is enough
to show that & € Z and that if « € Z then also o' € Z.

That & € Z is obvious, since & has no proper subsets. Now assume,
as induction hypothesis, that & € Z and let f be an injection from o' —
that is, from o U {a} - to a subset B of itself. If B is a proper subset
of o' then the set &' — B is non-empty.

Without loss of generality we may assume that « belongs to o’ — B
rather than to B. (In the contrary case, where « € B, take any member
p of o' — B and let g be the bijection from o' to itself that inter-
changes f and « but leaves all other members of a' fixed: thus,
gf=a, gao=f and g& = £ for any & € o’ other than § and @. Then
use gof instead of f itself: it is an injection from o' to its proper
subset g[B] = (B - {a}) U {}.)

Our assumption that o € o' — B means that B C a. Next, let
y = fa; then y must belong to B, since f is a map to B. It now follows
that fla is an injection from « to its proper subset B — {y}. This
contradicts the induction hypothesis. So B cannot be a proper subset
of . n

3.13. Theorem

If « is an infinite ordinal then there is an injection from « to a proper
subset of itself .

PROOF

First, consider w. Define a map f on w (that is, with w as its domain)
by putting f&= &' for every finite ordinal £ Then f is injective.
Indeed, if & and 7 are distinct, say & <, then by Thm. 2.27 & <y,
hence &' and 7’ are also distinct. Also, f maps w to (in fact, onto) its
proper subset w — {J}.

Now let o be any infinite ordinal. By Thm. 3.10 we have w < «,
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which means that w € &« or w = «; and since « is a transitive set, it
follows that w C . Then the map fUid,_, (with f as before) is
clearly an injection from « to its proper subset a — {J}. |

3.14. Theorem
A finite ordinal is not equipollent to any other ordinal.

PROOF

Let a be a finite ordinal and let 8 be another ordinal. First, suppose f3
is finite as well. We have a < Bor B< o —thatis, f € o or f € o —and
since ordinals are transitive sets it follows that o C § or 8 C «; hence
by Thm. 3.12 o and S cannot be equipollent.

Now suppose f3 is an infinite ordinal. By Thm. 3.13 there exists an
injection, say g, from f to a proper subset of itself. If f were a
bijection from « to B, then clearly f~'ogo f would be an injection
from « to a proper subset of itself — which is impossible. |

3.15. Definition

A set is finite if it is equipollent to a finite ordinal (in the sense of Def.
3.1). Otherwise, it is infinite.

3.16. Remarks
(i) By virtue of Thm. 3.14, an ordinal is finite (or infinite) in the
sense of Def. 3.1 iff it is finite (or infinite, respectively) in the
sense of Def. 3.15; so there in no conflict between the two
definitions.
(i) By Thm. 3.14, a finite set is equipollent to a unigue finite ordinal.

3.17. Problem

(i) Prove that there does not exist an injection from a finite set to a
proper subset of itself. (Use Thm. 3.12.)

(ii) Prove that if 4 is a non-empty finite set of ordinals, then A has a
greatest member — that is, an ordinal &« € A such that § < « for
each & € A. (Otherwise, define a map f on A by taking, for each
a € A, fa as the least § € A such that a < &. Show that f would
be an injection from A to a proper subset of itself.)
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3.18. Problem

Let n be a natural number. Show that for any objects ay, ay, ..., a,,
the set {ay, a3, ..., a,} is finite. (Use weak mathematical induction
on the number n.)

§4. Transfinite induction

Various forms of the Principle of Mathematical Induction have an-
alogues that apply to ordinals. These analogues collectively are known
as the Principle of Transfinite Induction. First, by virtue of the fact
that W is well-ordered, we have immediately by Thm. 2.9:

4.1. Theorem (Least Ordinal Principle)
If X is a non-empty class of ordinals, then X has a least member. n

Hence other forms of the Principle of Transfinite Induction can be
deduced.

4.2. Theorem (Strong Principle of Transfinite Induction)
If X is a class of ordinals such that for every ordinal &
(*) ne Xforeveryn<&=£&e€e X,
then X = W.

PROOF

Let Y = W — X. If Y were non-empty, it would have a least member,
say &. So for each n < & we would have 5 € X. But then by (x) £ € X,
which is impossible. Thus Y must be empty. u

4.3. Remark

By Rem. 2.22(ii) the antecedent, n € X for every n< &, in condition
(*) of Thm. 4.2 is equivalent to the statement that £ C X.

4.4. Theorem (Weak Principle of Transfinite Induction)
If X is a class of ordinals satisfying the following three conditions

(i) Je X,
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(ii) for every ordinal §,5e X =§' € X,
(iii) for every limit ordinal A,AC X = Ae X,

then X = W.

PROOF

Assume X satisfies these three conditions. Then by (i) and (iii) X
satisfies condition (*) of Thm. 4.2 for & and for limit ordinals.

Now suppose & C X. By Def. 2.26 it follows that § € X; hence by
(ii) & € X. Thus X satisfies () also for successor ordinals. |

4.5. Remarks

(i) These principles have restricted forms, in which X is assumed to
be a subset of some (arbitrary) given ordinal « rather than a
subclass of W. Thus, the form of Thm. 4.1 restricted to an
arbitrary ordinal « says that a non-empty subset of a has a least
member. The restricted form of Thm. 4.2 says that if X is a
subset of « such that for all £ < @ we have £ C X = &€ X, then
X=uq.

(i) The Principle of Transfinite Induction restricted to the particular
ordinal w is precisely the Principle of Induction on Finite Ordin-
als.

4.6. Problem

Prove the restricted form of Thm. 4.2. Formulate and prove a form of
Thm. 4.4 restricted to an arbitrary ordinal.

§ 5. The Representation Theorem
5.1. Preview

In this section we shall show that every well-ordered set is similar in its
ordering to a unique ordinal.

5.2. Definition

A partially ordered set (briefly, poset) is a pair (A, <), where A is a
set and < is a [sharp] partial order on A. A frotally ordered set is a
poset (A, <), in which < is a total order on A. A well-ordered set is a
poset (A, <), in which < is a well-ordering on A.
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5.3. Remarks

(i) This is just a convenient way of packaging a set A together with a
particular partial order on A into a single object. It saves us
having to keep saying ‘such-and-such a set with such-and-such a
partial order on it’.

(ii) However, we shall often refer, somewhat inaccurately, to A itself
as the poset (or ordered set, or well-ordered set) when, strictly
speaking, we have in mind the pair (A, <). We shall only
commit this peccadillo when it is clear from the context which
relation < is involved. Thus, we refer to an ordinal « as a
well-ordered set, when strictly speaking we mean the pair
{a, <), where < is €,, the e-well-ordering on a.

5.4. Definition

A similarity map (a.k.a. isomorphism) from a poset (A, <) to a poset
(A’, <') is a bijection f from A to A’ such that, for all x and y in A,

x <y fx<'fy.

If such a map exists, (A, <) is said to be similar (or isomorphic) to
(A, <).

5.5. Remark

It is easy to see that the identity map id, is a similarity map from
(A, <) to itself. Also if f is a similarity map from (A, <) to (A’, <')
then its inverse f~! is a similarity map from (A’,<') to (A4, <).
Finally, if f is a similarity map from (A, <) to (A’,<’') and g is a
similarity map from (A’, <’) to (A", <") then the composition go f
is a similarity map from (A, <) to (A", <").

It follows that similarity is an equivalence relation on the class of
posets.

5.6. Theorem

If f is a similarity map from an ordinal « to an ordinal f then f is the
identity map id,,, hence a = .

PROOF

First, we prove by strong transfinite induction (restricted to «) that
E=< fEforevery £ € a.
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Let £ € a. By the induction hypothesis, if n < & then 5 < fn. But if
n < & then also fn < f§, since f is a similarity map. Thus for every
n < & we have 5 < fE. In particular, n # f§ for every < §&; in other
words, f& < & is impossible. This proves that & < f& and completes the
induction.

Now, f~! is a similarity map from S to a; therefore by the same
token we have also { < f~!{ for all { € 8. Taking ¢ to be f&, where
£ € @, we obtain fE< f~1fE = E. Thus f& < £ as well as & < fE, which
shows that f must be the identity id,. n

5.7. Corollary

For any poset (A, <), there exists at most one similarity map from
(A, <) to an ordinal.

PROOF

If f and g are isomorphisms from (A, <) to a and S respectively, then
the composition gof~! is clearly an isomorphism from a to p.
Therefore & = 8 and go f~! is the identity mapping, which means that

f=s n

5.8. Preliminaries

(i) For the rest of this section, we consider a fixed but otherwise
arbitrary well-ordered set (A, <).

(ii) If B C A, then B is clearly well-ordered by the relation < N B2,
that is:

{{(x.y):xeB,andy € B,and x < y},

which is called the restriction of < to B. Whenever we refer to a
subset B of A as well-ordered, we shall mean B with this
well-ordering, inherited by B from A.

(iii) For each a € A, the segment of A determined by a is the set

A, =g {x € A: x <a}.
(iv) We define a class F as follows:
F =4 {(x,E):x € A, and & is an ordinal,
and A, is similar to &}.

By Cor. 5.7, F is a function (see Def. 2.2.1). We may therefore
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use functional notation in connection with F. Thus ‘Fx = §
means the same as ‘(x, &) € F’.

Clearly, dom F is a subset of A. By AS dom F is a set; hence
by AR ran F is a set as well. Note that all the members of ran F
are ordinals.

5.9. Lemma

Let Fa = «. Then for any ordinal B < « there exists some b < a such
that Fb = 3. Conversely, if b <a then b belongs to dom F and Fb is
some ordinal < «.

PROOF
Let f be the similarity map from A, to «. Suppose B < «. This means
that B € a. Therefore fb = 3 for some b € A, — that is, b <a. Note
that by the transitivity of & we have fC a. It is easy to verify that
f1Ap, the restriction of f to Ay, is a similarity map from A, to f.
Hence Fb = .

Conversely, suppose that b < a. This means that b € 4,. Therefore
fb=p for some fe « - that is, B < a. As before, it follows that
Fb = . |

5.10. Lemma
F is injective.
PROOF

Let a and b be two distinct members of dom F. We have to show that
Fa # Fb. Without loss of generality, we may assume b <a. Let
Fa = «. Then by Lemma 5.9 it follows that Fb is some ordinal 8 < «.

[ ]

5.11. Lemma
The set ran F is an ordinal .

PROOF

As a set of ordinals, ran F is e-well-ordered. It remains to prove that it
is a transitive set. Let a € ran F; thus Fa = « for some a € A. Now let
P e o - that is, f < a. Then by Lemma 5.9 f also belongs to ran F,
showing that this set is transitive. n
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5.12. Theorem (Representation Theorem for well-ordered sets)

There exists a unique similarity map from the well-ordered set A to an
ordinal .

PROOF

Uniqueness follows from Cor. 5.7. To prove existence, we shall show
that F is a similarity map from A to the ordinal ran F. By Lemmas 5.9
and 5.10, F is a similarity map from dom F, which is a subset of A, to
ran F; so it only remains to establish that dom F is the whole of A.

Suppose not. Then, since A is well-ordered, there would be a least
b € A such that b ¢ dom F. Thus, if a € A such that a < b then a must
belong to dom F. On the other hand, if b <a then a cannot be in
dom F because if it were then by the second half of Lemma 5.9 b
would also be in that domain.

It would follow that dom F is exactly A,. But then F is a similarity
map from A, to ran F. Thus A, is similar to the ordinal ran F. By the
definition of F it would then follow that (b,ran F) € F, hence
b € dom F, contradicting the choice of b. |

5.13. Definition

A set is denumerable if it is equipollent to w. A set is countable if it is
finite or denumerable.

5.14. Problem
(i) Let D be a subset of an ordinal «. By Cor. 2.20, D is e-well-
ordered; and by Thm. 5.12, D is similar to an ordinal 8. Prove
that B < . (Let f be a similarity map from f to D. Show that
E=< fEforevery E€ f.)
(ii) Prove that a set is countable iff it is equipollent to a subset of w.
(Use (i) to show that every subset of w is countable.)

§ 6. Transfinite recursion
6.1. Preview
In this section we validate a powerful method of defining functions on
W (that is, having W as domain). Roughly speaking, F&, the value of
the function F at &, is defined in terms of the ‘behaviour’ of F for all
ordinals smaller than &.
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6.2. Convention

Throughout this section we let C be a fixed but arbitrary function such
that dom C is the class of all sets.

6.3. Definition
We shall write “R¢(F, )’ as short for the statement:

Fis a function and o' C dom F and F§ = C(F &) forall £ < a.

The equation ‘F§ = C(F [ £) is called an ordinal recursion equation.

6.4. Remarks

(i) Recall that o' = {&: E < a}.

(ii) Note that F &= {(n, Fn): n € E}. Therefore the recursion equa-
tion determines F§& in terms of the ‘previous behaviour’ of F —
the restriction of F to the set of all ordinals n < &. Note also that
even if F is a proper class, F[§& is always a set by AR and Thm.
2.2.8.

(iii) Rc(F, o) means that F is defined and satisfies the recursion
equation for all ordinals up to « inclusive. Hence

Rc(F, &) = Re(F, B) for all § < a.

6.5. Lemma
If both Rc(F, o) and R(G, «) then FE = G§& for all & < a.

PROOF

By (strong) transfinite induction, restricted to a’. Let & be any ordinal
< « (that is, £ < a’) and assume, as induction hypothesis, that Fn =
Gn for all <& - that is, for all e & This means that F|&=
G 1§, hence C(F[&) = C(G|&). It now follows from R(F, a) and
Rc(G, «) that F&E = G&. n

6.6. Lemma

For any ordinal o« there exists a unique function f, such that
dom f, = o' = {&: E < a} and such that Rc(f,, «).
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PROOF

Uniqueness follows from Lemma 6.5. We prove existence by strong
transfinite induction. Assume as induction hypothesis that for each
B < « there exists a (necessarily unique) function fg whose domain is
B’ = {&: &< B} such that Rc(fg, p).

If y< 8 < a then by Rem 6.4(iii) we have ®(fg, v) and hence by
Lemma 6.5 fg(&) = f,(§) for all £ < y. This means that fg and f, agree
wherever both of them are defined; in fact, it is easy to see that
fy C fp- By Prob. 2.4.8, we can therefore glue all the fz together to
obtain a single function: we put

F=U{fpp<a).
Clearly, f is a function whose domain is {3: f < o} — that is « itself -
and it satisfies the recursion equation ff = C(fIp) for all < a.
Finally, we extend f to a function defined for all § < a:

fo=f U {{a, C(N}.

Then domf,=a’'. Also, f=f,la and hence f.(a)=C(f)=
C(fyla). Thus f, satisfies the required recursion equation for all
B=a. n

6.7. Theorem (Definition by transfinite recursion)

We can define a (necessarily unique) function F such that dom F = W
and such that FE = C(F1&) forall Ee W.

PROOF

To define F, note that the f, of Lemma 6.6 satisfy the recursion
equation wherever they are defined, and any two of them agree with
each other wherever both are defined. Therefore all we have to do is
glue them together:

F =g U{fasr a e W}.
It is easy to see that indeed dom F = W and F§ = C(F[§) for every

& e W. Moreover, these two conditions fulfilled by F imply that
Rc(F, o) for all «; hence F is unique by Lemma 6.5. n

6.8. Remarks

(i) Note the phrasing of Thm. 6.7: it does not claim that such-and-
such an F exists but that we can define it. To say, in set theory,
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that F ‘exists’ would mean that it is an object of the theory —
which is false, since F is a proper class. In fact, Thm. 6.7 is not a
single theorem of set theory, but a meta-theorem or a theorem
scheme which shows how, for any given class C fulfilling a certain
condition (Convention 6.2), we can define a class F fulfilling
certain other conditions. The same applies to any other theorem,
postulate and definition in which general statements or stipula-
tions are made concerning classes — for example Def. 1.3.4 and
Ax. 1.3.6 (AS): they are not individual statements of set theory,
but schemes. (Compare Rem. 3.3.6.)

(ii)) From Thm. 6.7 (or directly from Lemma 6.6) it is easy to obtain a
version of definition by transfinite recursion restricted to any
given ordinal «, in which dom F is « instead of W and the
recursion equation F§ = C(F [§) is satisfied for all § < a.
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The axiom of choice

§ 1. From the axiom of choice to the well-ordering theorem

1.1. Definition

A choice function on a class & of sets is a function ¢ with domg = &,
such that ¢ X € X for every X € &.

1.2. The axiom of choice (AC) states:

If & is a set of non-empty sets then there exists a choice function on §.

1.3. Remarks

(@

(ii)

AC was the first postulate of set theory (apart from PX) to be
stated as such. Its first known explicit formulation is due to
Giuseppe Peano (1890), who however rejected it as untenable. It
was first proposed as a new valid mathematical principle by
Beppo Levi in 1902, although it had been used inadvertently by
Cantor and others long before that. Zermelo, who was told about
AC by Erhard Schmidt, used it almost at once in his first (1904)
proof of the Well-Ordering Theorem (WOT, Cor. 1.6 below), a
result that had been conjectured by Cantor. Our formulation of
AC is essentially that used by Zermelo in his 1904 paper.

In his 1908 paper on the foundations of set theory, in which the
theory is given its first fully fledged axiomatic presentation,
Zermelo does not state AC in this form but in a more restricted
version. He assumes that § is a set of non-empty sets that are
pairwise disjoint—that is, X N'Y =(J for any two distinct mem-

" bers of S (see Def. 3.4.1). He then postulates the existence of a

set A such that, for any X € &, the intersection A N X has
exactly one member.

77
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(iii)

(iv)

™)

(vi)

5. The Axiom of Choice

This restricted version follows at once from AC. Indeed, if § is
a set of non-empty pairwise disjoint sets, then by AC there exists
a choice function ¢ on &. It is then easy to see that, for any
Xed,rangN X = {gX}.

Conversely, AC in the form we have stated it follows from the
restricted version. To show this, let & be any set of non-empty
sets. Put

T={X}xX:Xed).

It is easy to verify that &/ is a set of non-empty and pairwise
disjoint sets. According to the restricted version, there exists a set
A whose intersection with each member of </ is a singleton. We
now define a function ¢ on & as follows. For any X € &, the set
{X} X X belongs to & and hence its intersection with A has
exactly one member. This member must be of the form ( X, xq),
where x is some member of X. We put ¢ X = x;. Then ¢ is a
choice function on &.

Using AC, Def. 3.4.11 is easily legitimized. If |A,| =~ |B,| for
each x € X, then by AC there exists a family f = {f,|x € X}
such that, for each x, f; is a bijection from {x} X A, to {x} X B,.
Then it is easy to see that Uran f is a bijection from U{{x} x A4, :
xe X} to U{{x} x B,:x € X}. A similar argument applies to
Def. 3.5.11.

AC has been regarded with suspicion because it is a purely
existential postulate. It asserts the existence of a set — a choice
function — without characterizing it as the extension of some
previously specified property. In other words, AC is not a special
case of the Principle of Comprehension. In this respect AC is
markedly different from all other existential postulates of set
theory. For example, the Power-set Axiom asserts that, for each
set A, there exists the power-set P A, which is characterized as
the extension of the property being a subset of A.

In 1938 Godel proved that AC is consistent relative to the other,
commonly accepted, postulates of set theory, in the sense that if
they are consistent, then the addition of AC does not result in
inconsistency. In 1963 P. J. Cohen proved that the same holds
also for the negation of AC.

AC has some weird (counter-intuitive) consequences. However,
its negation has even weirder ones: for example, the direct
product of a family of non-empty sets may well be empty. Note
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also that the finite version of AC — in which the set & is assumed
to be finite — can be deduced from the remaining postulates of
ZF. Thus AC is only needed as an additional postulate for the
case where & is infinite. It therefore appears as a natural exten-
sion to the infinite case of a principle that must in any case be
accepted in the finite case.

(vii) Most mathematicians regard AC as indispensable: without it,
many results in modern mathematics as well as in set theory itself
would be unprovable. However, in view of its somewhat contro-
versial status, when the AC is needed for proving a mathematical
result, it is customary to point this out.

1.4. Preview

Starting from AC, we shall prove a chain of other major principles, all
of which turn out to be equivalent to each other and to AC. The first
of these principles, which is also the most important, is a corollary of
the following theorem.

1.5. Theorem

Every set is equipollent to an ordinal.

PROOF

Let A be a set, and let § be the set PA — {(J} of all non-empty subsets
of A. By AC there exists a choice function ¢ on &. Since A is a set, it
cannot be the universal class (Thm. 1.3.10); so there exists an object b
that does not belong to A.

We now define a function C whose domain is the class of all sets, as
follows: for any set x we put

(+) Cx = g(A —ranx) if x is a map such that ranx C A,
b otherwise.

Using transfinite recursion (Thm. 4.6.7), we get a function F with W
as domain, satisfying the recursion equation F§= C(Fl&) for all
& € W. Combining this equation with (*), we obtain for all &:

FE= g¢(A —ran(Fl§)) ifran(FlECA,
P otherwise.
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Let £ be any ordinal such that F& # b. This means that F [ & must be a
map from & to A, and

FE=g(A —ran(Fl&) e A —ran(Fl§).

Thus F§& is a ‘fresh’ member of A, different from Fn for all n<é&.
(What happens is that so long as A is not exhausted by previous values
of F, the new value F§ is chosen, using the choice function ¢, as a
fresh member of A.)

If FE+ b for all ordinals &, it would follow that F is an injection
from the proper class W (Cor. 4.2.18) to the set A. This is impossible
by Prob. 2.4.5. So there must exist some ordinal & for which F& = b.

Let o be the least ordinal such that Fo = b. Such an « exists by the
Least Ordinal Principle (Thm. 4.4.1). Then it is easy to see that F |« is
an injection from « - that is, from the set {§: §<a} — to A. Also,
ran (F [ a) cannot be a proper subset of A. Thus Fla« is in fact a
bijection from o to A. ]

1.6. Corollary (Well-Ordering Theorem)
For every set A there exists a well-ordering on A.

PROOF
By Thm. 1.5, there exists a bijection F from an ordinal a to A. Now
put

<=4 {(FE Fn): E<n<a}.

This means that for any members x and y of A, x < y iff £ <, where
& and 7 are the (necessarily unique) ordinals < a such that x = F& and
y = Fn. Clearly, < is a well-ordering on A. n

1.7. Remarks

(i) With F, « and < as above, F |« is a similarity map from « to the
well-ordered set (A4, <).

(ii) Thms. 1.5 and Cor. 1.6 are equivalent to each other. Indeed, the
former can easily be deduced from the latter using the Represent-
ation Theorem 4.5.12. We shall therefore refer also to both Thm.
1.5 and Cor. 1.6 as the WOT.

Another important consequence of Thm. 1.5 is that the class of
cardinals is totally ordered (see Def. 2.3.11(ii)):
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1.8. Corollary
For any sets A and B, |A| <|B| or |B| <|A|.

PROOF

By Thm. 1.5, A and B are equipollent to ordinals, say a and S
respectively. Since the class of ordinals is e-well-ordered, it follows
(see Lemma 4.2.4) that a € f or = f3 or 8 € a. But ordinals are
transitive sets, hence « C for C a. |

§2. From the WOT via Zorn’s Lemma back to AC

We start by proving two simple lemmas about finite sets, which do not
depend on AC.

2.1. Lemma

If B C A and A is equipollent to a finite ordinal «, then B is equipollent
to an ordinal 3 < a. Hence every subset of a finite set is finite.

PROOF

Let BC A, where A is equipollent to a finite ordinal o. Then B is
clearly equipollent to some D C «. By Prob. 4.5.14(i), D is similar -
and hence equipollent - to some ordinal 8 < «. However, since here «
is finite, Thm. 4.3.12 excludes the possibility that = a. Therefore
B<a. |

2.2. Lemma
If f is a map such that dom f is finite then ran f is finite as well.

PROOF

By Def. 4.3.15, dom f is equipollent to a finite ordinal «. Without loss
of generality we may therefore assume that dom f is « itself. (Other-
wise, replace f by foh, where h is a bijection from & to dom f.)
Define a map g from ran f to « by putting, for each x € ran f,

gx =g4¢ the least £ € a such that f& = x.
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It is easy to see that g is injective, hence it is a bijection from ran f to
some subset D of «. By Lemma 2.1, D is finite; therefore so is ran f.
n

Next, we lay down a few definitions.

2.3. Definition

Let < be a partial order on a class A. A member a of A is said to be
maximal in A with respect to < if there is no x € A such thata <x.

2.4. Remarks

(i) When there is no risk of confusion, we shall omit the phrase ‘in A
with respect to <.

(ii) In general, A may not have a maximal member; or it may have
more than one.

(iii) Do not confuse maximal with greatest. However, if < is a total
order on A and a is maximal in A then a is also the greatest
member of A, in the sense that x < a for any other x < A for any
other x € A. In this case it is clear that A cannot have more than
one maximal member.

2.5. Definition
If o is any class of sets, we put

Cu=a{{X,Y)edAd?: X CY)

C_4 is called the restriction of C to .

2.6. Remarks

(i) We can also characterize the relation C_; by saying that, for any
XandY,

XCyu Yo XecdandYedand X CY.

(ii) As noted in Ex. 2.3.8, if of is any class of sets, C_; is a [sharp]
partial order on cf.
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2.7. Definition
A class A of sets is of finite character if, for any set X,

X e A <Y € o forevery finite Y C X.

We shall use the WOT to prove the following useful result.

2.8. Theorem (Tukey—-Teichmiiller Lemma).

If oA is a set of finite character, then for every A € ot there exists an
M € A such that A C M and M is maximal in <t w.r.t. C .

PROOF

By the WOT, <# is equipollent to some ordinal . Let G be a bijection
from « to c#. Thus

oA = {GE: E< a).

Take any A € f; we shall hold A fixed for the rest of the proof.
Without loss of generality, we may assume that A = G — otherwise,
we could compose G with the bijection from # to itself that inter-
changes A with GO and leaves all other members of <# alone.

Using transfinite recursion restricted to o (see Rem. 4.6.8(ii)), we
define a map F on « such that, for every £ < a,

Fe= | Ok it U(Fn:n< & CGE,
U{Fp:n<E otherwise.

(Note that {Fn:n< &} =ran(F &), so that here F§& is indeed being
determined in terms of F | &, as required in transfinite recursion.)

It is clear that F is monotone in the sense that whenever n< &< «
then Fn C FE.

We claim that F& € of for every £ < a. We shall prove this claim by
strong transfinite induction restricted to «. Let & < «; our induction
hypothesis is that Fn € of for every n < &.

Now, F&is GE or U{Fn: n < &}. Since certainly GE € c#, we need
only prove that the union U{Fn: 7 < &} belongs to of. But < is a set
of finite character. So it is enough to show that every finite subset of
U{ Fn:n<E&} belongs to /. We need only deal with non-empty
subsets, since J is a finite subset of A, and as such must in any case
belong to .

Let B be a non-empty finite subset of U{Fn: n < &}. Then for each
b € B there exists some 7 < £ such that b € Fr. Define a map f from
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B to & by putting, for each b € B,

fb =4 the least n < & such that b € Fn.

By Lemma 2.2, ran f is a finite non-empty set of ordinals < §. Hence
by Prob. 4.3.17(ii) ran f has a greatest member, say n*. This means
that for every b € B we have fb < n*; and, since F is monotone, it
follows that F(fb) C F(n*). But by the definition of f we have
b € F(fb); hence

b € F(fb) C F(n*) for every b € B.

Thus B C F(n*). But n* < g, so by our induction hypothesis F(7*)
belongs to of; and since # is of finite character B, as a finite subset of
F(n*), must also belong to o£. This completes the proof that F§ € o
for every £ < a.

We now put M = U{Fn:n<a}. We shall show that M has the
properties claimed by our theorem. The fact that M € £ is proved by
showing, exactly as before, that every finite subset of M belongs to £.
Also, it is easy to see that F(iJ = G{J = A, hence AC M.

It remains to show that M is maximal w.r.t. C_;. Suppose this were
not so. Then there would be some X € «f such that M C X. Now, X
must be G& for some &< «, so the assumption M C X means that
U{Fn: n < a} C GE. Hence, a fortiori,

U{Fn:n< & cGE.

But in this case the definition of F says that F§ = GE&. It would then
follow that U{Fn: n < a} C F&— which is impossible. ]

2.9. Definition

Let (A, <) be a poset. A chain in (A, <) is any subset C of A such
that, forallx and yin C,x <yorx=yory<x.

2.10. Remark

In other words, a chain in (A, <) is a subset of A that is totally
ordered by the restriction of < to it.

We shall use the Tukey—Teichmiiller (TT) Lemma to prove:
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2.11. Theorem (Hausdorff Maximality Principle)

Let (A, <) be a poset and let @ be the set of all chains in (A, <).
Then every member of € is included in some member of @ that is
maximal w.r.t. Cg.

PROOF

The condition for C being a chain in (A, <) (see Def. 2.9) involves
only two members of C at a time. Hence it is easy to see that the set €
of all chains is of finite character. Therefore the TT Lemma applies to
e. |

The most famous and frequently used of all the maximality principles
that are equivalent to AC is generally known as ‘Zorn’s Lemma’
although it is arguably due to Kuratowski, who published a version of
it in 1922, thirteen years before Zorn. We shall now deduce it from the
Hausdorff Maximality Principle (HMP). (For the meaning of upper
bound, see Def. 4.2.23.)

2.12. Theorem (Zorn’s Lemma)

Let (A, <) be a poset such that every chain in it has an upper bound in
A. Then for each a € A there is some u € A such that u is maximal in A
w.r.t. < and such that a < u.

PROOF

As before, let € be the set of all chains in (A, <), and consider the
poset consisting of € with the partial order Cg on it.

The singleton {a} is, trivially, a chain in (A, <). Hence by the
HMP {a} is included in a chain C that is maximal in € w.r.t. Cg. By
hypothesis, C has an upper bound u in A. Since a € C, it follows that
asu.

It remains to show that u is maximal in A. Suppose it were not
maximal. Then there would exist some v such that u < v. Since u is an
upper bound for C, it would follow that x < v for all x € C. But then
C U {v} would be a chain that properly includes C — contradicting the
maximality of C in €. |

‘We have shown that
AC = WOT = TT Lemma = HMP = Zorn’s Lemma.

Now we shall complete the cycle:
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2.13. Theorem
AC follows from Zorn’s Lemma.

PROOF

Let & be a set of non-empty sets. We must show that there exists a
choice function on §.

If 8 is empty then & is the required choice function. So from now on
we may assume that § is non-empty.

Let us say that ¢ is a partial choice function (pcf), if ¢ is a choice
function on a subset of &. Such creatures do exist: for example, if A is
any member of § and a is any member of A then {(A, a)} is a choice
function on {A} and hence a pcf. Let (7 be the set of all pcfs. (It is
easy to verify that (7 is indeed a set; DIY.) As we have just seen, (F is
non-empty.

We now consider the poset ((F, Cz). Note that if { and ¢ are pcfs,
then ¢ Cg¢ means that dom¢ C domg and ¢{X =¢gX for each X €
dom/.

We shall show that ((F, Cz) satisfies the condition of Zorn’s
Lemma. To this end, let us consider any chain € in this poset. We
claim that its union, @, is an upper bound for € in (7.

For any ¢ € € we obviously have ¢ C Ue. so it only remains to show
that Ue belongs to (F; in other words, that Ueisa pcf.

Since every member of €, being a pcf, is a set of ordered pairs
(X, x) such that x € X €, it is clear that J@ likewise is a set of
ordered pairs of this kind. It only remains to show that Ue is a
function.

Now, if both ¢ and ¢ are members of @ then, since € is a chain,
we must have {Cg or g C¢. Therefore X € dom¢{ N domg then
¢{X = g X. Thus the coherence condition is fulfilled, showing that Ueis
indeed a function (see Prob. 2.4.8).

We can now apply Zorn’s Lemma to the poset (7, C#). Since (7 is
non-empty, it follows from the Lemma that there exists some ¢ € (F
that is maximal w.r.t. Cz. Such ¢ is a pcf — a choice function on a
subset of &. However, if domg were not the whole of &, we could take
any A € § —domg and any a € A, and put

f=gU {<A’ a>}

Then ¢ would be a pcf such that ¢ C ¢, contradicting the maximality of
g. Therefore g must be a choice function on the whole of §. |
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2.14. Remarks

(i) We have now established
AC = WOT = TT Lemma = HMP = Zorn’s Lemma = AC.

hence these five principles are mutually equivalent.

(ii) These principles can be deduced directly from each other, with-
out going round the cycle. Some of these deductions are quite
easy. For example, to deduce AC directly from the WOT, let &
be any set of non-empty sets. Note that if X e § then X C US.
By the WOT, there exists a well-ordering < on US$. Then a
choice function ¢ on & is obtained by putting, for all X €,

g X = the least member of X w.r.t. <.

It is also not difficult to deduce the TT Lemma directly from
Zorn’s Lemma (DIY!). However, the only direct routes I know
from AC to the three maximality principles (TT Lemma, HMP
and Zorn’s Lemma) are quite rocky.



6

Finite cardinals and alephs

§ 1. Finite cardinals
1.1. Preview

In this chapter we will complete the definition of cardinal and cardinal-
ity, which has so far been left open (see Rem. 3.1.4), and derive some
important results about cardinals. In the present section we confine
ourselves to finite sets and cardinals; here we shall not invoke AC.

Recall that by Def. 4.3.15 a set is finite iff it is equipollent to a finite
ordinal (that is, an ordinal < w); moreover, by Thm. 4.3.14 this
ordinal is unique. Hence the following definition is legitimate.

1.2. Definition

For any finite set A, the cardinality |A| of A is the (necessarily unique
and finite) ordinal « such that A = «. A finite cardinal is an ordinal «
such that |A| = « for some finite set A.

1.3. Remarks

(i) Clearly, if A and B are finite sets then |A| =|B| iff A =~ B, as
required by the incomplete Def. 3.1.3.

(if) By Def. 1.2, a finite cardinal is a finite ordinal. Conversely, if « is
a finite ordinal, then obviously |&| = . Thus the finite cardinals
are just the finite ordinals by another name.

(iii) Let n be any natural number. By Def. 3.3.1 and Prob. 4.3.18, the
corresponding cardinal, n, is finite. This result also follows from
the next theorem, in which we calculate these cardinals.

88
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1.4. Theorem
(i) 0=0;1={J}.
(ii) If « is a finite cardinal, « +1 = a’; hence a + 1 is a finite
cardinal.
(iii) If m is a natural number and n = m + 1 then n = {0, 1, ..., m}.
PROOF

(i) By Def. 3.3.1, 0 = || and 1 = |{<}|. But by Thm. 4.3.3 J as
well as &' — which by Def. 4.2.26 is {(J} - are finite ordinals;
hence |J| = @ and |{D}| = {T}.

(ii) Here + is the operation of cardinal addition; so by Def. 3.4.4,

a+1=|AUB|,

where A and B are any disjoint set such that |A| = & and
1B| = 1.

As A we take « itself. As B we may then take any set
equipollent to 1 — that is, any singleton — provided it is disjoint
from «. We put B = {«}, which is disjoint from « because an
ordinal cannot belong to itself (see Rem. 4.2.19(ii)). Hence

a+1=|aU/{a}|

But by Def. 4.2.26 this is |a’|. Moreover, by Thm. 4.3.3(ii), since
a is a finite ordinal so is a’. Hence o + 1 = o', which (as we
have just noted) is a finite ordinal.
(iii) We proceed by weak mathematical induction on m. For m =0 n
is 1 and the required result, 1 = {0}, follows at once from (i).
Now assume, as induction hypothesis, that m is a number for
which (iii) holds. Let p = (m + 1) + 1 = n + 1. Then

p=n+1 by Thm. 3.4.6,
=nU {n} by (ii),
={0,1,...,m} U {n} by ind. hyp.,
={0,1,..., n}. n

1.5. Theorem

For any finite cardinals o and 8, o + B is a finite cardinal. Moreover,
a+0=aanda+ ' =(a+ p).
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PROOF
By Prob. 3.4.7(iii), the equality « + 0 = « holds for all cardinals «,

not just for finite ones.
To prove that a + B is a finite cardinal, we apply to 8 induction on

finite ordinals.

For B =, the sum a + B is o + 0 by Thm. 1.4(i), and we have just
seen that this is the finite cardinal .

Now assume, as induction hypothesis, that § is a finite cardinal such
that o + B is also a finite cardinal. Then

a+f=a+(B+1) by Thm. 1.4(ii),
=(a+p+1 by Prob. 3.4.7(i).

By our induction hypothesis, o + f is a finite cardinal; hence by Thm.
1.4(ii) so is (o + B) + 1. This shows that a + ' is a finite cardinal, and
completes the induction on .

Finally, we have just shown, for any finite cardinals & and f, that
a+ f' = (a+ B) + 1. By Thm. 1.4(ii) this equals (o + B)’. |

1.6. Theorem

For any finite cardinals o and 3, o~ 8 is a finite cardinal. Moreover,
a0=0anda-p' =a-p+ .

PROOF
DIY: proceed as in the proof of Thm. 1.5, using Prob. 3.5.5. |

1.7. Problem

Prove that if < is a [sharp] total order on a finite set A, then < is a
well-ordering on A. (Apply induction on finite ordinals to |A|. For any
non-empty subset B of A you must show that B has a least member. If
B C A, use Lemma 5.2.1. If B is A itself, let a be any member of A
and apply the induction hypothesis to A — {a}.)

1.8. Remark

In 1889, Peano proposed an axiomatization of the theory of natural
numbers.! In addition to some purely logical axioms (which must be

1 A translation of his paper, ‘The principles of arithmetic, presented by a new method’,
is in van Heijenoort, From Frege to Godel.
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satisfied by any system whatever) he proposed five postulates which we
now state, with some inessential modifications.

(1) Ois a natural number.

(2) Every natural number m has a unique successor, s(m).

(3) If m and n are distinct natural numbers, then s(m) # s(n).

(4) For every natural number m, s(m) # 0.

(5) (Principle of Mathematical Induction.) Let K be any set such
that K contains 0 and such that if it contains any natural number
m then it also contains s(m); then K contains every natural
number.

The operations of addition and multiplication of natural numbers
can then be introduced by means of four further postulates that assert,
for any natural numbers n and m:

6 m+0=m.

(7) m+ s(n)=s(m+ n).
&) m-0=0.

9 m-s(n)=m-n+ m.

Intuitively speaking, it is clear that these nine postulates express truths
about the system of natural numbers. And in fact they are adequate
for an informal axiomatic development of the arithmetic of natural
numbers.

Now, speaking more formally, in ZF we have proved for the finite
cardinals (a.k.a. finite ordinals) theorems that are exact counterparts
of Peano’s postulates. To be precise: if in the statement of these
postulates we replace the words ‘natural number’ by “finite cardinal’,
and the symbols ‘0’ and ‘s’ respectively by ‘@’ and ¢’ (writing the latter
to the right of its argument instead of to its left) and if we understand
the symbols for addition and multiplication as denoting respectively
addition and multiplication of cardinals, then all nine postulates be-
come theorems of ZF. In this sense, the system consisting of the set w
of finite cardinals together with the operations of succession, addition
and multiplication on these cardinals, provides in ZF a model for
Peano’s postulates.

Moreover, this model is structurally unique in the following sense. In
ZF it is not difficult to prove that any system of objects and operations
satisfying the appropriate re-interpretation of Peano’s postulates must
be structurally identical, an exact structural replica of (technically
speaking: isomorphic to) the system of the finite cardinals.

In this sense, the finite cardinals play within ZF the role of natural
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numbers. And mathematicians developing (or simulating) various
branches of mathematics within set theory are justified in identifying
the finite cardinals with the natural numbers, for the purpose of this
activity (cf. Rem. 4.3.8).

1.9. Warning
All this does not quite answer the question whether the ZF system of
finite cardinals is a faithful and correct representation of the (informal)
system of natural numbers, which mathematicians had studied long
before the invention of set theory.

Note that for any natural number n, we can prove that the cor-
responding cardinal » is a finite cardinal (Thm. 1.4, or Def. 3.3.1 and
Prob. 4.3.18). But we have not proved that

(*) Every finite cardinal has the form n for some natural number n.

At first sight it seems easy to prove (*) by applying induction on finite
ordinals (Cor. 4.3.7) to the ‘set’

{@ € w: a = n for some natural number n}.

But in order to be able to do so, we must first prove that such a set
exists as an object of set theory. This, in turn, requires the property
being a natural number, in terms of which this would-be set is defined,
to be a set-theoretic concept (see discussion at the end of § 2 and
beginning of § 3 of Ch. 1). But we have taken the notion of natural
number as given in advance, prior to the development of set theory (cf.
Rem. 3.3.6); and without begging the question we cannot presuppose
that it is also a set-theoretic notion.

We have no assurance that the ZF system of finite cardinals is a
faithful and correct representation of the pre-ZF informal system of
natural numbers, so long as the status of (*) is in question. We shall
see in the Appendix that this question has a rather surprising answer.

§2. Cardinals in general

To extend the definition of cardinality to infinite sets, we invoke AC,
via the WOT (Thm. 5.1.5). According to this theorem, every set A is
equipollent to some ordinal, and hence by the Least Ordinal Principle
(Thm. 4.4.1) there is a unique least ordinal to which A is equipollent.
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2.1. Definition

For any set A, the cardinality |A| of A is the least ordinal « such that
A = a. A cardinal is an ordinal « such that |A| = « for some set A.

2.2. Remarks

(i) This definition obviously agrees with Def. 1.2 when A is a finite
set.

(ii) Def. 2.1 clearly satisfies the condition imposed in Def. 3.1.3: for
any sets A and B, |A| = |B|iff A = B.

(iii) From Def. 2.1 it follows at once that a cardinal is an ordinal that
is not equipollent to any smaller ordinal. Conversely, if an
ordinal « is not equipollent to any smaller ordinal, then clearly
|a| = @, so that « is a cardinal.

(iv) If A and u are cardinals, then the statement ‘A< y’ is apparently
ambiguous, because we can interpret ‘<’ according to Def. 4.2.21
(that is, as denoting the order on the class of ordinals) or
according to Def. 3.2.1. In the next lemma we shall prove that
these two interpretations are in fact equivalent. In the formula-
tion and proof of this lemma we shall use the symbol ‘<’ in the
sense of Def. 3.2.1 only, so as not to prejudge the issue. There-
after, we shall revert to using ‘<’ in either sense, as it will make
no difference.

2.3. Lemma

For any cardinals A and u, A < u (in the sense of Def. 3.2.1) iff A€ u or
A=p.

PROOF

Suppose A € por A = u. Since ordinals are transitive sets, it follows that
AC u. Hence by Thm. 3.2.3 |A| < |u|. But A and p are cardinals, so
|A] = Aand |y| = u. Thus A< p.

Conversely, suppose that A ¢ u and A+ u. Then, since the class of
ordinals is e-well-ordered, we must have y € A. In the same way as
before, it now follows that u=< A. Hence we cannot have A <y, as by
the Schroder—Bernstein Theorem 3.2.7 it would then follow that A = u,
contrary to hypothesis. |
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2.4. Problem

Prove that if « is an infinite ordinal then |a| = |&'|; hence &' cannot be
a cardinal. (Let f be the map such that dom f = o', f&=§' for all
finite &, f& = & for all infinite £ < a, and fa = . Show that f is a
bijection from ' to «.)

2.5. Theorem
w is the least infinite cardinal . |

2.6. Theorem

If A is a set of cardinals, then \JA is the lub of A in the class of all
cardinals, that is, the least cardinal A such that E< A forall §€ A.

PROOF

For each & € A we have & C UA by Def. 1.3.11, hence || < |UA| by
Thm. 3.2.3. But £ is a cardinal, hence |&| = £. Thus &< |UA| for all
& € A. This shows that the cardinal | A| is an upper bound for A.

Note that IUAl, being a cardinal, is a fortiori an ordinal. But by
Thm. 4.2.25 A itself is the least upper bound of A in the class of all
ordinals, hence UA <|UA]|.

On the other hand, from Def. 2.1 it is clear that |a]| < a for every
ordinal «. Since by Thm. 4.2.25 UA is an ordinal, it follows that
|UA| < UA. Hence |UA| is UA itself, and is the lub of A in the class
of cardinals. ]

2.7. Theorem

For any set A of cardinals there exists a cardinal (and, in particular, an
infinite cardinal) greater than all the members of A.

PROOF

Let A be the lub of A obtained in Thm. 2.6. By Cantor’s Theorem
3.6.8, there exists a cardinal u such that A < u, and hence also & < u for
all & € A. If uis infinite, there is nothing further to prove. If u is finite,
then w is an infinite cardinal such that u < @ and hence also § < w for
allEe A. |
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2.8. Corollary

The class of all cardinals is a proper class. ]

2.9. Lemma
We can define a (necessarily unique) function F such that dom F = W
and for every ordinal o,

Fa = the least infinite cardinal not belonging to ran (F | ).

PROOF

This follows from Thm. 4.6.7 (definition by transfinite recursion). We
only need to take as the C of that theorem a function such that
whenever x is a set that is also a function, Cx is the least cardinal not
belonging to ran x. (Note that ranx is a set by AR, hence by Thm. 2.7
there exists an infinite cardinal not belonging to it; so by the Least
Ordinal Principle 4.4.1 there is a least such cardinal.) n

2.10. Definition
For any ordinal «,

N, =4t Fa,

where F is the function of Lemma 2.9.

2.11. Remarks

(i) ‘8’ is aleph, the first letter in the Hebrew alphabet. It is also the
first letter of the Hebrew word ‘“NOY’R’ (einsoph, meaning
infinity), which is a cabbalistic appellation of the deity. The
notation is due to Cantor, who was deeply interested in mysti-
cism.

(ii) Combining Def. 2.10 with the characterization of F in Lemma
2.9, we obtain:

R, = the least infinite cardinal not belonging to the set

{Re: E< a}.
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2.12. Theorem

(i) Forany a, R, is an infinite cardinal.
(ii) For any ordinals o and B, o < =R, <Rg.

(iii) R = w.
PROOF
All three statements follow easily from Rem. 2.11(ii). |

2.13. Theorem
Every infinite cardinal is R, for some ordinal «.

PROOF

From Thm. 2.12(ii) it follows that o # 8 => &, # Ng. This means that
the function F of Lemma 2.9 is a bijection from the class W of all
ordinals to the class {R,: @ € W} of all alephs. Since W is a proper
class (Cor. 4.2.18), it follows from Prob. 2.4.5 that the class of all
alephs must likewise be a proper class.

Now let A be any infinite cardinal. Then A, being an ordinal, is a set.
Hence there must be some a such that 8, ¢ A — otherwise the set A
would include the class of all alephs, and by AS the latter would be a
set, contrary to what we have just shown.

Since both A and 8, are ordinals, the fact that 8, ¢ A implies that
A=< R,. If A=18,, then there is nothing further to prove. On the other
hand, if A <8, then by Rem. 2.11(ii) it follows that A belongs to the
set {Rg: § < a}. Hence A = R¢ for some § < a. |

2.14. Remarks

(1) By Thms. 2.12 and 2.13, the alephs are just the infinite cardinals
by another name. Moreover, each infinite cardinal is an 8, for
some unique ordinal «.

(ii) The theory of real numbers, as other branches of mathematics,
can be developed within set theory. In doing so, one identifies
the finite cardinals with the natural numbers (see Rem. 1.8). It is
then not difficult to show that PRy (= Pw by Thm. 2.12(iii)) is
equipollent to the continuum — the set of all real numbers. (It is
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also equipollent to the set of all real numbers lying in any given
interval, for example, between 0 and 1.) The cardinal |Py| is
therefore the cardinality of the continuum.
Cantor conjectured (but was unable to prove) that |PRy| = §;.
This conjecture is known as the Continuum Hypothesis (CH).
More generally, the Generalized Continuum Hypothesis
(GCH) is the conjecture that |P&,| = 8, for every a.

(iii) In 1938 Godel proved that GCH is consistent relative to the
commonly accepted postulates of set theory, in the sense that if
they are consistent, then the addition of GCH does not result in
inconsistency. In 1963 P. J. Cohen proved that the same holds
also for the negation of CH (and hence GCH).

§3. Arithmetic of the alephs
3.1. Preview

In this section we shall present some important results in the arithmetic
of the alephs. Some of the proofs are given in a slightly abbreviated
form, omitting a few details. We present separately an outline of the
proof of Thm. 3.2, although it is a special case of Thm. 3.3. This is
done as a dry run, in order to display more clearly, in a simpler
context, the idea of the proof.

3.2. Theorem
o * No = No.

PROOF (OUTLINE)

According to Def. 3.5.1, 8 -8, is the cardinality of the set A X B,
where A and B are any sets whose cardinality is 9. We shall take both
A and B to be R, itself.

Recall that by Thm. 2.12(iii) 8y = w, which is the set of finite
ordinals (as well as the set of finite cardinals). Thus we must show that
the set w X w of all ordered pairs of finite ordinals is equipollent to
itself.

For any ordinals & and 7, we let max (&, i) be the greater of & and 7.
(If & = n then max (&, 1) is equal to both of them.)

We define an order < on the set w X w as follows. For any finite
ordinals &, 1, @ and ¥ we stipulate that (&, n) < (@, ¥) iff one of the
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following three conditions holds:

(1) max (&, ) < max(g, y),
(2) max (&, 1) = max (@, ) and §< ¢,
(3) max (&, n) = max (@, y) and &= @and n < .

To make this clearer, here are the first few members of w X w, listed
according to the order <:

(0,0),

(0,1),(1,0),(1,1),
(0,2),(1,2),(2,0),(2,1),(2,2),
(0,3),(1,3),(2,3),(3,0), (3,1),(3,2), (3,3), ...

It is not difficult to see that w X w with this order on it is similar to w
itself with its e-well-ordering. In particular, w X w is equipollent to w.
|

3.3. Theorem
R, 8, =R, forany ordinal «o.

PROOF

We proceed by transfinite induction. As induction hypothesis we
assume that 8g-8g = Rgforall < a.

As in the proof of Thm. 3.2, we define an order < on &, X &, by
stipulating, for any ordinals &, 1, @ and v smaller than &,, that
(€, n) < (@, v) iff one of the conditions (1), (2) and (3) listed there
holds.

It is easy to verify that < is a well-ordering on 8, X §&,. Hence, by
the Representation Theorem 4.5.12, there exists a similarity map f
from R, X &, to an ordinal . Since F is a bijection from &, x &, to 6,
it follows that 8, -8, =|6|. We shall show that this & is in fact 8,
itself.

First, note that 8, =1-8,<8,-8,= |8 <. Now suppose that
N8, < 8. This means that 8, € 6 =ran f; so for some & and 7, both
smaller than 8, we have f(&, n) = &,.

Since £ and 7 are smaller than ®,, their cardinalities are certainly
smaller than 8,. Let { = max (&, ). Then |{] is either a finite cardinal
or some ¥g such that f < a.

Let us put A = {{@, ¥) : (@, ¥) < (&, n)}. Then, by the definition
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of <, for each (@, ¥) € A we must have ¢ < £ and y < . Therefore
A is a subset of &’ X &', hence |A| < |¢'| - [&'].

If ¢ is finite then &’ is finite as well and hence, by Thm. 1.6, so is
|A].

If |¢] = R for some 8 < a, then by Prob. 2.4 |¢'| = R as well, so by
the induction hypothesis |A| < 84. Thus in any case |A| is smaller than
R,.

However, since f{&, n) = §8,, it follows that f| A is a bijection from
A to 8, and hence |A| =8, - contrary to what we have just shown.
This contradiction shows that é must be equal to R,,. n

3.4. Remark

In view of Thm. 2.13, Thm. 3.3 means simply that AA = A for any
infinite cardinal A.

3.5. Theorem

If u is an infinite cardinal and A is any cardinal such that 1 <A<y,
then Au = .

PROOF
Using Prob. 3.5.5 and Thm. 3.3, we have:
p=1lpsips<pp=p.
Thus both < Au and Au < u. n

3.6. Theorem

If w is an infinite cardinal and A is any cardinal such that A < u, then
A+ u=p.

PROOF
Using Probs. 3.4.7 and 3.5.5 and Thm. 3.3, we have:
u=0+usi+usu+u=lp+ilu=A+Du=2uspuu=u.

Thusbothu<A+pand A+ u<p. n

3.7. Theorem

If A is an infinite cardinal and « is any finite cardinal other than 0, then
AY = A
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PROOF
DIY, using induction on the finite ordinal o. |

3.8. Definition

Let A be a class. A map from an ordinal « to A is called an A-string of
length o. A map from a finite ordinal to A is called a finite A-string.

3.9. Theorem

Let A be an infinite set and let S be the class of all finite A-strings. Then
Sis a set and |S| = | A|.

PROOF

If o is a finite ordinal then o C w. Hence every finite A-string is a
subset of w X A. It follows that S C P(w X A); so § is a set by AP and
AS.

For each finite ordinal «, consider the set S, = map(«, A) of all
A-strings of length a (see Def. 3.6.1 and Rem. 3.6.2). Clearly, the S,
are pairwise disjoint and

S=U{S,: a < w}.

Hence it is easy to see that

(*) S| = 2{IS4l | & < w}.
Let |A| = A. Since S, = map (&, A), it follows from Def. 3.6.3 that
|Sal = A%,

which by Thm. 3.7 is equal to A itself, except when « = 0, in which
case A* = 1. Therefore by (*) || is the sum of 1 and 8, times A:

[S| =1+ 8- A

Since 8y is the least infinite cardinal (Thms. 2.5 and 2.12(iii)), it
follows that 8 < A. Hence by Thms. 3.5and 3.6 |S|=1+A=1 N
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Propositional logic

§ 1. Basic syntax

We shall describe a formal language -£. This will be our object
language, an object of our discussion. It must be distinguished from
our metalanguage, the language in which the discussion is conducted:
ordinary English augmented by a special technical vocabulary.

1.1. Specification
The primitive symbols of £ fall into two mutually exclusive categories:

(i) an infinite set of propositional symbols;
(ii) two distinct connectives, - and —», called negation symbol and
implication symbol respectively.

1.2. Warning

The statement just made does not mean that, for example, the
implication symbol of .£ is a boldface arrow-shaped figure. (In fact, for
all we care .£ may not have a written form at all!) Rather, the boldface
arrow is a Syntactic constant, a symbol in our metalanguage, used as a
name for the implication symbol of .£.

1.3. Definition
If / is a natural number and s, s,, . . ., s; are primitive symbols of .2,
not necessarily distinct, then the concatenation s;s, . . . s; is called an

L-string and the number [ is called its length. (More formally, an
L-string of length I can be defined as map from the set {1,2,...,/} to

101



102 7. Propositional logic

the set of primitive symbols of -£.) In particular, the empty £-string
has length 0.

We shall usually omit the prefix ‘£-’, and say simply ‘string’ rather
than ‘L-string’. Similar ellipses will be used, when there is no risk of
confusion, in connection with other bits of terminology introduced
later on.

1.4. Definition
L-formulas are strings constructed according to the following three
rules.

(1) A string consisting of a single occurrence of a propositional
symbol is an £-formula.

(2) If B is an £- formula then — P (the string obtained by concatenat-
ing a single occurrence of — and the string B, in this order) is an
L-formula.

(3) If p and y are .L-formulas then —Py (the string obtained by
concatenating a single occurrence of —, the string B and the
string v, in this order) is an .£- formula.

A formula constructed according to (1) — a single occurrence of a
propositional symbol —is called a prime formula.

A formula constructed according to (2) is called a negation formula;
here 1§ is the negation of .

A formula constructed according to (3) is called an implication
formula; here B is the antecedent and vy the consequent of —py.

1.5. Warnings
(i) In some books, particularly older ones, what we call ‘strings’ are
referred to as ‘formulas’, whereas what we call ‘formulas’ are
referred to as ‘well-formed formulas’ (‘wffs’).
(ii) Def. 1.4 does not mean that boldface lower-case Greek letters
are L-formulas. Rather, they are syntactic variables, symbols in
our metalanguage used to range over £-formulas.

1.6. Definition
A propositional symbol occurring in a formula o is called a prime
component of a.
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1.7. Definition

The degree of complexity of a formula a — briefly, dega - is the total
number of occurrences of connectives (— and —) in @.

1.8. Remark

We shall often wish to prove that all formulas a have some property P
— briefly, Ve Pa. This may be done by [strong] induction on dega, as
follows. Define a property Q of natural numbers by stipulating that Q
holds for a given number n iff P holds for all formulas a such that
dega = n. Then clearly YaPa is equivalent to VaQn. As we know
(see § 3 of Ch. 0), to prove YnQn by strong induction we deduce QOn
(for arbitrary n) from the induction hypothesis Vim < nQm.

Stated in terms of P rather than Q, this is tantamount to saying: if
we deduce Pa (for arbitrary «) from the induction hypothesis that Pp
holds for all formulas § such that degp < dega, then it follows that
VaPa.

1.9. Problem

Assign to each primitive symbol s of .£ a weight w(s) by stipulating: if
s is a propositional symbol then w(s) = —1, while w(—)=0 and
w(—)=1. If s1,s;,...,s; are primitive symbols, we assign to the
string s;S, . . . s; weight

w8187 . . . 8)) = w(s1) + w(sy) + - - - + w(s;).

Thus, the weight of a string is the sum obtained by adding —1 for each
occurrence of a propositional symbol and +1 for each occurrence of —
in the string (occurrences of = make no contribution to the weight).
Since a formula is also a string, every formula a has now been assigned
a weight w(e). Show that, for any formula «,

(i) w(a) = —1;
(i) if a is the string sys; . . . s; and k <[, then w(s;s; . . . s¢) =0.

In other words, (ii) states that any string which is a proper initial
segment of @ (an initial part of a short of the whole of @) has
non-negative weight. (Prove (i) and (ii) by strong induction on deg @..)

(iii) Show that if @ is an implication formula, & = —fy, then —8 is
the shortest non-empty initial segment of a whose weight is 0.
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§ 2. Notational conventions

In Def. 1.4 we stipulated that in forming an implication formula an
implication symbol is placed before the antecedent. The advantage of
this so-called Polish notation (invented by the Polish logician Jan
Lukasiewicz) is that £ has no need for brackets or other punctuation
marks for indicating grouping of symbols. Thus, in an implication
formula (a formula whose initial symbol is —) the antecedent and the
consequent are uniquely determined (see Prob. 1.9). This economy is
both elegant and technically useful.

So far we have mimicked this Polish system also in our meta-
language: thus in ‘->fy’ the boldface arrow is placed to the left.
However, in practice this metalinguistic notation is difficult to read,
partly because it does not conform to common usage. The Polish
notation in £ itself causes us no inconvenience, because we do not
actually use that language, only talk about it. But in our metalanguage,
which we do use continually, we shall trade off elegance for legibility
and conformity to common usage.

2.1. Definition

(e—P) =g —aB.

This definition changes nothing in .£; as far as .£ is concerned Def. 1.4
remains in force. The change is purely in the metalanguage: our
metalinguistic notation will no longer mimic the structure of .£-formu-
las, because we shall write ‘(a—p)’ instead of ‘—>af’. For the sake of
easier legibility, we use parentheses and brackets of various styles and
sizes. In this context, we refer to all of them simply as brackers. The
brackets are now needed to prevent ambiguity. For example,

[(a—B)—>7] = >—apy, but [a—(p—>Y)] = —o—Py.

Here the new notation (introduced in Def. 2.1) is used on the left-hand
side, while the old notation for the same formulas is used on the
right-hand side.

We now hit a new snag: in long metalinguistic expressions of this
kind, written in the new style, the proliferation of brackets can hinder
legibility. We therefore abbreviate such expressions by omitting as
many pairs of brackets as convenient. Of course, in order to prevent
ambiguity such omissions must be governed by certain rules, so that
the brackets can be restored to yield a unique unabbreviated expres-
sion. We shall need three such rules. The first rule is very simple:
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2.2. Rule (Omission of outermost brackets)
A pair of brackets such that no part of the expression lies outside it may
be omitted.

For example, (a—f)—>y=[(e—p)—>y] and o—-(Poy)=
[e—(B—v)].

The second rule is easier to formulate as a rule about how to restore
omitted brackets. (So a pair of brackets may be omitted if it could then
be restored according to this rule.)

2.3. Rule (Association to the right)

If there are two or more occurrences of ‘—’ all enclosed in exactly the
same pairs of brackets (or all not enclosed in any brackets) then you
may add a new pair of brackets that enclose only the rightmost of these
occurrences.

For example,

0—>p—>1—>8 = 0—>p—>(y—9) = a—[f—>(v—>9)] = {a—[p—>(v—>d)]},
(0—p—>Y¥)—d = [0>(B—>v)]>0 = {[e—(f—V)]>9},
0= (p—>7)—>d = e~ [(—>v)—>d] = {o—[(B—>v)—d]},
(0—p)>y—0 = (a—p)—>(y—d) = [(0—p)—>(v—9)],
[(e—B)—>7]—=d = {[(a—Pp)—>V]—>d}.
The third rule is

2.4. Rule (Adhesion of ‘=)

Do not omit a pair of brackets whose left member is immediately
preceded by an occurrence of ‘—’. Equivalently: In restoring brackets,
do not add a new pair of brackets whose left member immediately
follows an occurrence of ‘—’.

For example, o——f-y=[a—>(—f—>y)] but a—-—(foy)=
[a—=(B—>7)].

For reasons of economy, we allowed .£ to have only two connectives,
— and —. Other connectives can however be introduced metalinguist-
ically, by definition.



106 7. Propositional logic

2.5. Definition
() (anB) =4 (a—>—p),

(ii) (avp) =g e—p,

(iii) (ae>p) =gt (a—>P)A (P—0).

(aAP) is called a conjunction formula and e and § its first conjunct
and second conjunct respectively; (av B) is called a disjunction formula
and « and B its first disjunct and second disjunct respectively; (a<>p) is
called a bi-implication formula and a and B its left-hand side and
right-hand side respectively.

2.6. Warning

The metalinguistic symbol ‘A’ does not denote anything; strictly speak-
ing it has no meaning on its own — only the package ‘(a.AB)’ as a whole
has been defined as an abbreviation for ‘—(a—>—f)’. This is an
example of a contextual definition. Similar remarks apply to the other
two clauses of Def. 2.5.

In view of Def. 2.5 we need to modify our procedure for omitting and
restoring brackets in metalinguistic expressions. We leave Rules 2.2
and 2.4 as they are, but we replace Rule 2.3 by the following more
comprehensive rule for restoring brackets, which takes into account
not only ‘-’ but also the newly introduced metalinguistic symbols ‘A’,
‘v’and ‘©’,

2.7. Rule (Ranks and association to the right)

If there are occurrences of ‘©’, ‘=’, ‘v’ and ‘A’ — at least two
occurrences in total - all enclosed in exactly the same pairs of brackets
(or all not enclosed in any pair of brackets), order all these occurrences
by rank as follows. Occurrences of ‘<>’ have higher ranks than those
of ‘—=’; the latter have higher ranks than those of ‘Vv’; and occurrences
of ‘A’ have lowest ranks. Moreover, of two occurrences of the same
symbol, the one further to the left has the higher rank. Then you may
add a new pair of brackets that encloses only the symbol-occurrence
with the lowest rank.
For example,

—>BAy—=poy = e (BAY)-Boy = e (BAy)>(B—Y)
= a=>[(BAY)=> (-] = {e=[BAY)=>(B—-D]};
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APy o—-Bvy = (aAf)o>yeoo—-Bvy

= (anB)>yeomo—(Bvy)

= (aAB)—>ye[—as>(Bvy)] = [(eAp)>y]e[—a—(Bvy)]

= {[(eaB)>v]e[me—BvY)]}.
The idea behind Rule 2.7 is that — in the absence of brackets that
indicate otherwise — a symbol-occurrence of higher rank separates more
strongly than one of lower rank, in much the same way as in English

punctuation a full stop separates more strongly than a semicolon, and
the latter separates more strongly than a comma.

It must be stressed that the definitions and conventions introduced in
this section are metalinguistic devices used in discussing -£ and do not
change £ itself in any way.

§ 3. Propesitional combinations

A formula a is said to be a propositional combination of k formulas f,
B2, ..., B, if @ can be constructed from the B; using = and —. The
following definition puts this more precisely.

3.1. Definition

Let B4, B2, - . ., Bx be any formulas. A propositional combination of
Bis B2, .- ., By is any formula constructed according to the following
three rules.

(1) Each B; (where 1<i< k) is a propositional combination of P,

Bas .., Bu

(2) If v is a propositional combination of py, B,, . . . , Bx, then =y is
a propositional combination of B4, By, . . . , Bi-

(3) If y and & are propositional combinations of By, B,, - . - , Bx, then
v—d is a propositional combination of B4, B,, . . . , Px-

For brevity, we shall usually say ‘combination’, omitting the adjective
‘propositional’.

3.2. Warnings
(i) In forming a combination of By, B,, ..., B, not all the B; need
actually be used. For example, according to Def. 3.1, both B, and
B1— P, are combinations of f, B,, Bs.
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(ii) The B; need not be mutually independent: for example, one of
them may be a combination of the others. (Indeed, the §; need
not be distinct: some of them may coincide with each other.) For
this reason one and the same formula may be obtainable from
the B; in more than one way. For example, if f; = —f§; then
-1 B,—B,, obtained from B,, B,, B3 by using clause (1) of Def. 3.1
twice, then clause (2) and clause (3), is the same formula as
B3—>P,, which can be obtained from ;, B,, B3 without using
clause (2) of Def. 3.1.

It is clear that every formula is a combination of its prime components
(see Def. 1.6). The following problem goes a bit further.

3.3. Problem

Let B4, B2, - - . , Px be distinct prime formulas, among which are all the
prime components of a formula a. Prove that « can be obtained as a
combination of B;, B,, . . ., Bx in exactly one way. (Use induction on
dega, distinguishing three cases corresponding to the three clauses of
Def. 1.4.)

§4. Basic semantics

In classical two-valued logic — which is what we are studying here — we
admit two distinct truth values, namely truth and untruth (a.k.a.
falsehood). For brevity, we shall denote them by ‘T’ and ‘L’ respect-
ively.

4.1. Remark

From a purely technical point of view, it does not matter what the
truth values T and 1 are, so long as they are two distinct objects. But
intuitively it is best to think of them as abstract entities standing
outside the language .£.

4.2. Definition

(i) A truth valuation on £ is a mapping o from the set of all prime
L-formulas to the set {T, L} of truth values. For any truth
valuation o and any prime formula e we denote by ‘a® the truth
value assigned by o to «a.
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(ii) Given a truth valuation o, we now extend the definition of a/,
the truth value assigned by o to a, to cover every £-formula a.
We proceed by induction on dega, defining a in terms of the
truth values assigned by o to formulas whose degrees are smaller
than that of a. We distinguish three cases, corresponding to the
three clauses of Def. 1.4.

(1) If ais a prime formula, then a/ is already defined.

CRCULES Fad
o_ L ifp°=Tandy’ =1,
®) B> = {T otherwise.

(i) Let a be a formula and o a truth valuation. If ® = T we say that
o is true under o, whereas if a” = 1 we say that a is untrue (or
false) under o.

4.3. Remarks

(i) Strictly speaking, in Def. 4.2(ii) we defined a new mapping,
which extends o: whereas dom o is the set of prime formulas, the
domain of the new mapping is the set of all formulas, but it
agrees with ¢ on prime formulas. Sacrificing absolute rigour to
convenience, we denote by ‘o’ this extension as well as the
original mapping itself.

(ii) Note that a is a truth value rather than an expression in £. (Of
course, both ‘@’ and ‘a” are expressions in our metalanguage.)

4.4. Definition

(i) If ¢ is a formula and o is a truth valuation such that ¢ = T, we
say that o satisfies ¢ and write ‘o F ¢’.

(ii) If o is a truth valuation that satisfies every member of a set ® of
formulas, we say that o satisfies ® and write ‘g k ®’.

(iii) If a formula « is satisfied by every truth valuation, we say that «
is a tautology and write ‘Fg o’

(iv) If @ is a set of formulas and @ is a formula such that every truth
valuation satisfying @ also satisfies a, we say that a is a tauto-
logical consequence of ® and write ‘® kg o,

(v) If a set @ of formulas is not satisfied by any truth valuation, we
say that @ is [propositionally] unsatisfiable and write ‘® ky’.
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4.5. Remarks

(i) According to Def. 4.4(ii), a truth valuation o fails to satisfy a set
@ of formulas, iff ® has a member that fails to be satisfied by o.
Therefore if ¢ is any truth valuation, then o k. Indeed, & does
not have a member that fails to be satisfied by g, because it has
no members at all.

(ii) By Def. 4.4(iv), & ko @ means that every truth valuation satisfies
a (because, as we have just seen, every truth valuation satisfies
the empty set (J); by Def. 4.4(iii) this means that « is a tautology.
Thus, a formula is a tautology iff it is a tautological consequence
of the empty set.

(iii) In connection with ‘Fy’ we employ certain notational simplifica-
tions that ought to be self-explanatory. Thus, for example, we
write ‘@, a ko B’ instead of ‘@ U {a} ko p’.

4.6. Problem

(i) For any set @ of formulas and any two formulas « and f, prove
that @, a kB iff ® k5 a—p.
(i) Prove that {ay, @y, . . ., a;} Fo B iff kg ;> ap—- - > o —p.

4.7. Warning

Never, never get — and k, confused with each other. (I was not
referring just now to the symbols ‘-’ and ‘Ey’. You are not likely to
get them confused, because you can see they are different: the former
is a boldface arrow-shaped figure, while the latter is shaped like a
double-barred turnstile with a little ring on its lower right-hand side.
Rather, I was referring to what these symbols denote.) Much can be
written about this, but the following should help you to avoid the most
common errors.

Suppose @ and P are L-formulas. Then a—sf is another such
formula. ‘a—sf’ is a nominal phrase: if you write it on its own, you
would not be making any statement, but only referring to that formula
- just as when I say ‘my income-tax statement’ and no more I am not
making a statement but merely referring to my income-tax statement.!

1 We must exclude here cases of ellipsis, such as when, in reply to the question “‘What
were you doing last night?’, I say ‘My income-tax statement.” as an ellipsis for the
sentence ‘I was doing my income-tax statement.’
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On the other hand, if you write ‘a ko’ on its own, you would be
stating that f is a tautological consequence of @ (or, more precisely, of
the singleton {a}); and if you write ‘fg a—p’ on its own, you would be
stating that the implication formula a—f is a tautology. By Prob. 4.6,
these two statements are equivalent.

§5. Truth tables

Conditions (2) and (3) of Def. 4.2(ii)) may be summarized in rruth
tables:

BB
T 1
LT

The idea here is that any truth valuation that assigns to § (or to g and
v) the truth value(s) shown in the first column (or the first two
columns) at a given row must assign to =} (or to f—1) the truth value
shown in the last column at the same row.

This idea can be applied more generally. In the following definition
the formula « is any combination of formulas B, §5, ..., Bx. The
definition prescribes how to construct a truth table for « in terms of Py,
B2, . .., Br. It proceeds by induction on dega: the induction hypothe-
sis is that if ¥ is any combination of By, By, . . ., By and degy < dega
then we can construct a truth table for ¥ in terms of By, Bo, ..., Br;
and using this hypothesis the definition tells us how to construct a truth
table for a in terms of B4, B,, . . -, Br.

5.1. Definition

Let the formula @ be a combination of formulas ;, By, ..., Br. A
truth value for « in terms of By, Ba, . . ., By is constructed as follows.
First, set up a rectangular table with k& columns — headed ‘B, By,

-» ‘Bi’ respectively — and 2% rows. In each of the k - 2% spaces enter
‘T* or ‘L’, so that no two rows are filled out in the same way. Thus
each of the 2 different strings of length k made up of ‘T’s and “L’s
should appear in exactly one row. (For the sake of definiteness, regard
these strings as ‘words’ in an alphabet consisting of the two letters ‘T’
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and ‘L’ in this order, and enter the 2% different strings in lexicographic
order.)

Next, add a new last column, headed ‘e’, and — proceeding by
induction on dega — fill it out with ‘T’s and ‘L’s according to the
following three rules corresponding to the three clauses of Def. 3.1.

(1) If a = B; (where 1 <i=< k), copy the entries of the i-th column
(the one headed ‘B;’) into the last column, headed ‘a’.

(2) If @ = =17, where vy is a combination of B, B, . . ., Br, then by
the induction hypothesis we already know how to construct a ‘y’
column. Now, in the ‘@’ column put ‘T’ in each row where the ‘y’
column has ‘L’ and ‘L’ in each row where the ‘Y’ column has
‘T

(3) If a = y—¥&, where y and 8 are combinations of By, B;, . . ., B,
then by the induction hypothesis we already know how to con-
struct ‘Y’ and ‘8’ columns. Now, in the ‘@’ column put ‘1’ in each
row where the “y’ column has ‘T’ whereas the ‘@’ column has ‘1’;
and ‘T’ elsewhere, that is, in each row where the ‘y’ column has
‘1’ as well as in each row where the ‘8’ column has ‘T’.

5.2. Warning
Since in general the same @ may be obtained as a combination of

formulas By, §, . . . , B in more than one way — see Warning 3.2(ii) -
Def. 5.1 may not yield a unique result: @ may have more than one
truth table in terms of By, B,, . . ., Pr-
5.3. Problem
Construct truth tables in terms of a, f for:

(i) aap,

(i) avp,

(iii) a<p.

(See Def. 2.5.)

5.4. Problem

In a truth table in terms of two formulas @, B there are four (= 2%)
rows; thus the last column can be filled out with ‘T’s and ‘L’s in 16
(= 2%) different ways. Find 16 combinations of a, p whose truth tables
in terms of a, P yield all these 16 different last columns.
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5.5. Lemma

Let a be a combination of By, Ba, - - ., Bi. Consider a given row in a
truth table for a in terms of By, B2, - .., Pr. Let o be any truth
valuation such that for every i (where i =1, 2, ..., k) B;° is the truth

value indicated in the given row at the i-th column (the one headed ‘B;’).
Then @ is the truth value indicated in the given row at the last column
(headed ‘a’).

PROOF
Immediate from Def. 5.1 and Def. 4.2(ii), by induction on dega. n

5.6. Theorem (Semantic soundness of truth tables)

Let a be a propositional combination of By, By, . .., Br. If in a truth
table for a in terms of B1, Ba, - - -, B all the entries in the last (‘o)
column are ‘T’, then @ is a tautology.

PROOF

Let o be any truth valuation. Clearly, the truth values §,°, B,°, ...,
B’ must be respectively the same as those indicated in one particular
row of the given truth table. Hence by Lemma 5.5 a? is the truth value
indicated in the same row in the last column. But by assumption this
truth value is T. Thus @” = T for all o. |

5.7. Problem (
Verify that for any a, § and ¥y:
(i) Fp o—f—>a (Law of Affirmation of the Consequent),
(i) ko (a—>p—>y)—>(a— f)oa—sy
(Self-distributive Law of Implication),

(iii) ko [(o—B)—a]—a (Peirce’s Law),
(iv) kg ma—o—p (Law of Denial of the Antecedent),
V) k (a—>—a)>a (Clavius’ Law).

5.8. Warning

The converse of Thm. 5.6 is not generally true. To see this, let
0. = B—v; then a truth table for « in terms of B, vy is shown above (p.
111) and has an ‘L’ in its last column. Does it follow that & cannot be a
tautology? No; this truth table only shows that @’ = L provided o is a
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truth valuation for which %= T and ¥° = L. But such a truth valu-
ation may not exist; for example, if ¥ = f then of course we cannot
have both =T and ¥° = L. Or if ¥ = 86—, then v is a tautology,
and we can never have y° = 1, irrespective of what B happens to be.
However, the converse of Thm. 5.6 does hold, provided the B; are
subjected to special conditions.

5.9. Theorem (Semantic completeness of truth tables)

Let a be a combination of k distinct prime formulas $1, Ba, . . ., Br- If
o is a tautology, then in the truth table for « in terms of By, Ba, . . ., Bi
all the entries in the last (‘@’) column are ‘T°.

PROOF

Consider an arbitrary row in this truth table. Since By, B,, . . ., Bx are
prime and distinct, there exists a truth valuation o such that the truth
values $,7, B,°, ..., Bx° are respectively the same as those indicated
in this particular row of the truth table. By Lemma 5.5, a? is the truth
value indicated in the same row at the last column. But a® = T since «
is a tautology. Thus the entry at the last column in this rowis ‘T’. W

5.10. Remark

Thms. 5.6 and 5.9 together provide us with an algorithm (a mechanic-
ally performable procedure) whereby we can test any formula a and
decide whether or not it is a tautology: construct the truth table for a
in terms of its prime components (or in terms of any distinct prime
formulas among which are all the prime components of a; see Prob.
3.3).

Using Prob. 4.6, this algorithm also enables us to decide, for any
finite set @ of formulas and any formula a, whether or not ® kj a.

5.11. Definition

If @ and P are formulas satisfied by exactly the same truth valuations
(that is, both a ko B and B Fy «) we say that a and P are tautologically
equivalent and write ‘a =, 8’

5.12. Remarks

(i) From Prob. 5.3(iii) it is easy to see that a = § iff k) ae>p.
(ii) An argument similar to the one used in the proof of Thm. 5.6
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shows that if & and p are combinations of By, B,, . .., Bx and if
the ‘@’ and ‘B’ columns respectively in truth tables for « and § in
terms of B;, B2, - - ., Px have ‘T’s and ‘L’s in the same places,
then « =0 B

(ili) An argument similar to that used in the proof of Thm. 5.9 shows
that the converse of (ii) holds, provided B;, §,, ..., B are
distinct prime formulas.

5.13. Problem
Verify that for any @, B, v, @1, @2, . . ., @

(i) avp=o (e—p)—B,

(ii) a—p =) pf—-—a (Law of Contraposition),

(iii) 2 (PrAQA ... AQ) =g @ VgV ... v—u(pk}

(iv) 2 (Vv ... V@) S @ AI@A L AT,
(De Morgan’s Laws),
v) aABAy=¢(anPB)Ay (Associative Law of Conjunction),
(vi) avpvy=¢(avp)vy (Associative Law of Disjunction),
(Vll) PIAPIA ... AQp—U =g Q1@ * * + =@ —>0.

5.14. Problem

Let a and B be any formulas. Let @ be the set of all formulas
obtainable from e and P using negation and conjunction. More pre-
cisely,

(1) @ and B are in ®;
(2) if y is in ® then so is —y;
(3) if y and d are in @ then so is YA .

Find a formula in @ that is tautologically equivalent to a—f.

5.15. Problem

The same as Prob. 5.14, but with ‘conjunction’ and ‘A’ replaced by
‘disjunction’ and ‘v’ respectively.

5.16. Problem

For any formulas a and B, put | =4 —1(aAB). The ‘|’ here is known
as Sheffer’s stroke. The formula a|B is called the non-conjunction of «.
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and P. Let ® be the set of all formulas obtainable from « and § using
non-conjunction. Thus,

(1) aand B are in ®;

(2) if y and & are in @ then so is y|d.

Find formulas in @ that are tautologically equivalent to —a and a—§
respectively.

5.17. Problem

Let @ and P be distinct prime formulas. Let @ be defined as in Prob.
5.16, but with ‘non-conjunction’ and ‘|’ replaced by ‘implication’ and
‘—’ respectively. Prove that no formula in ® is tautologically equiva-
lent to aAf.

5.18. Problem

Let a and P be distinct prime formulas. Let ® be defined as in Prob.
5.14, but with ‘conjunction’ and ‘A’ replaced by ‘bi-implication’ and
‘e’ respectively.

(i) Find eight formulas in @ such that every formula in @ is
tautologically equivalent to exactly one of the eight.
(ii) Prove that no formula in ® is tautologically equivalent to a—p.

5.19. Remark

Prob. 5.4 means that all binary truth functions are reducible to
negation and implication. Prob. 5.14 (Prob. 5.15) means that implica-
tion — and hence all binary truth functions — can be reduced to negation
and conjunction (negation and disjunction). Prob. 5.16 means that
negation and implication — and hence all binary truth functions — can
be reduced to non-conjunction. Prob. 5.17 means that conjunction
cannot be reduced to implication (although by Prob. 5.13(i) disjunction
can be so reduced). Prob. 5.18(ii) means that implication cannot be
reduced to negation and bi-implication.

§ 6. The propositional calculus
The propositional calculus (briefly, Propcal) presented in this section
is a formal mechanism for generating the tautological consequences of
any set @ of formulas. A central role will be played by modus ponens.
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6.1. Definition
Modus ponens is the [formal] operation that may be applied to any two
formulas of the form a and a—, to yield the formula B; schematically,
o, a—>f
B

In this connection, & and a—f are called the minor premiss and major
premiss respectively, and P is called the conclusion.

6.2. Remark

From Def. 4.2 it follows at once that if a’ = (a—f)? = T then also
B°=T. (By Def. 4.4(iv) this amounts to the same thing as
{a, a—PB} kg B.) We express this by saying that modus ponens pre-
serves truth and is therefore semantically sound as a rule of inference.

We designate as propositional axioms all formulas of the following five
forms:

6.3. Axiom schemei. o—p—a,

6.4. Axiom scheme ii. (0—p—vy)—(a—p)—>o—vy,
6.5. Axiom scheme iii. [(a—p)—a]—>a,

6.6. Axiom scheme iv. —o—a—f,

6.7. Axiom schemev. (0—>—1¢)—>—d.

Note that these are not five single axioms but axiom schemes, each
representing infinitely many axioms obtained by all possible choices of
formulas a, , and y. We shall refer to them briefly as ‘Ax. i’, ‘Ax. ii’,
etc.

6.8. Definition

(i) A propositional deduction from a set ® of formulas is a non-
empty finite sequence of formulas ¢y, ¢, ..., @, such that for
each k (k=1,2, ..., n) at least one of the following conditions
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holds:
(1) ¢ is a propositional axiom,
(2) 9@,
(3) @ is obtained by modus ponens from two earlier formulas in
the sequence; that is, there are i and j, both smaller than k, such
that @; = @¢;—>qy.
In this connection @ is called a set of hypotheses.

(ii) A propositional proof is a propositional deduction from the
empty set of hypotheses.

Where there is no risk of ambiguity, we shall usually omit the qualifica-
tion ‘propositional’ and say simply ‘deduction’ and ‘proof’. Similar
ellipses will be used in connection with other bits of terminology
introduced below.

6.9. Definition

(i) A deduction (or proof) whose last formula is @ is said to be a
deduction (or proof, respectively) of a.

(ii) If there exists a propositional deduction of a formula « from a set
@ of formulas, we say that a is [propositionally] deducible from
@ and write, briefly, ‘® |q a’.

(iii) If there exists a propositional proof of a formula @ - that is, a
deduction of a from the empty set — we say that a is [proposition-
ally] provable and write, briefly, ‘o @’. In this case a is also
called a [propositional] theorem.

In connection with ‘|-’ we employ notational simplifications like those
used in connection with ‘E¢’. Thus, for example, we write ‘®, a |-’
instead of ‘@ U {a} |-o p’.

6.10. Remarks

(i) The calculus we have specified here is a linear calculus, as
distinct from calculi whose deductions have a more complex
tree-like branching form rather than being ordinary (linear) se-
quences as in Def. 6.8. A linear calculus is characterized uniquely
by specifying its axioms (by means of axiom-schemes or in some
other way) and rules of inference. In the present case the axioms
are all instances of Ax. i—Ax. v, and the sole rule of inference is
modus ponens.
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(ii) Many calculi described in the literature, based on other axioms or
rules of inference, are equivalent to the one presented here in the
sense, roughly speaking,! that their relation of deducibility is
co-extensive with our |y. (For example, the calculus presented in
B&M, Ch. 1, § 10.) All these calculi, including of course the
present one, are often referred to collectively as the [classical]
propositional calculus. Although, strictly speaking, they are dis-
tinct calculi, their mutual equivalence makes it possible to regard
them as being merely different versions of the same calculus.

(iii) The qualification ‘classical’ is often omitted; it is however needed
sometimes in order to prevent confusion with non-classical
(a.k.a. non-standard or deviant) propositional calculi that are
broadly similar but not equivalent to the present one; for exam-
ple, the intuitionistic propositional calculus (a version of which is
presented in B&M, Ch. 9, § 8).

(iv) We use the term ‘theorem’ with two quite different meanings,
which must be strictly distinguished from each other. A [proposi-
tional] theorem in the sense of Def. 6.9(iii) is a formal expres-
sion, a formula in the language £. In this book we never assert
such a theorem, since we do not use the language .£, only talk
about it. On the other hand, a theorem such as Thm. 5.6 (which
we have asserted above) is a proposition stated in our metalan-
guage. In order not to get these two kinds of theorem confused
with each other, those of the former kind are sometimes called
formal theorems or £-theorems and those of the latter kind
metatheorems. However, this will rarely be necessary here, as it
will usually be clear from the context which meaning of ‘theorem’
is intended. A similar distinction must be drawn between the two
meanings of terms such as ‘deduction’, ‘hypothesis’ and ‘proof’.

(v) The reason for using the same terms with two alternative mean-
ings is that there is an intended connection between the two sets
of meanings. Thus formal deductions are supposed to be stylized
and formalized versions or counterparts (or at least analogues)
of ‘ordinary’ deductions in informal or semi-formal axiomatic
theories expounded within mathematics and related hypothetico-
deductive disciplines. Hypotheses in the sense of Def. 6.8 are
supposed to be formal counterparts of the hypotheses or assump-
tions adopted as a starting point for real (informal or semi-
formal) mathematical deductions. (When such hypotheses or

! That is, ignoring irrelevant differences between the formal languages in which these
various calculi are formulated.
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assumptions are adopted as a point of departure for a whole
axiomatic theory, rather than for temporary or ad hoc ends, they
are usually called postulates or [extralogical] axioms.)

(vi) Formal deductions of the kind studied in Symbolic Logic differ
from ‘ordinary’ mathematical deductions not only in being com-
pletely formalized but also in spelling out the logical machinery
used. In informal or semi-formal mathematical deductions you
are allowed to assert any statement that follows logically from
previous ones, but the nature of this relation — being a logical
consequence — is not spelt out fully, if at all. In logical calculi,
such as Propcal, the purely logical steps in formal deductions are
made explicit and formally detailed by specifying logical axioms
(such as Ax. i—Ax. v) and rules of inference (such as modus
ponens).

(vii) In an ordinary mathematical deduction you are allowed to in-
troduce any statement deduced earlier (by a preceding deduc-
tion) from the same hypotheses. However, this licence is merely a
matter of practical convenience: in principle such a previously
deduced statement could be introduced together with its whole
deduction, so that every deduction would start from first prin-
ciples. This latter procedure is mimicked in Def. 6.8.

(viii) Propcal is pitifully inadequate for formalizing any but the most
trivial mathematical deductions. Its is however of interest as a
sort of pilot project for more powerful and useful systems.

6.11. Example

We show that |y a—a for every a. (In other words, we are going to
prove a [meta]theorem about Propcal, which asserts that, for every
formula @, e—a is a propositional theorem, a theorem of Propcal.)
The following sequence of five formulas is a [propositional] proof of
o—a

[e—(e—a)—a]—(e—a—a)—>a—a, (Ax. ii)
o—(a—0)—a, (Ax. 1)
(> o—a)—>a—a, (m.p.)
o—> 0>, (Ax. i)

a—q. (m.p.)
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The marginal comments on the right have been added for convenience.
Thus the first formula is an instance of Ax. ii, obtained from (6.4) by
taking p = a—a and y = «; the second formula is an instance of Ax. i,
with B = e—a; the third formula is obtained by modus ponens from
the preceding two; the fourth formula is an instance of Ax. i, with
B = a; and the fifth formula is again obtained by modus ponens from
the preceding two. In principle these explanations are redundant,
because you can always check whether or not a given formula is an
instance of an axiom scheme, or obtainable by modus ponens from two
earlier formulas.

6.12. Theorem (Semantic soundness of Propcal)
If ® | a then also ® ky a. In particular, if | « then also Fy a.

PROOF
Let @, @,, . .., @, be a deduction of a from ®; thus ¢, = a. We shall
prove by [strong] induction on k that ® kyq, for k=1,2, ..., n.

Thus, in particular, for & = n it will follow that @ k( «, as claimed. We
distinguish three cases concerning ¢, corresponding to the three
conditions in Def. 6.8(i).

Case 1: «, is a propositional axiom. In this case it is easy to verify that
Fo @ (see Prob. 5.7); in other words, ¢, is satisfied by every truth
valuation. Hence a fortiori ® kg @.

Case 2: @; € ®. Then obviously ® kg ;.

Case 3: @, is obtained by modus ponens from two earlier formulas in
the deduction; that is, there are i, j < k such that ¢; = ¢;—qy. In this
case, by Rem. 6.2, {¢;, ¢;} ko ¢,. But by the induction hypothesis
both @ F ¢; and @ Fq ;. Hence clearly ® kg .

The second claim of our theorem follows from the first by taking
D=0 ]

6.13. Theorem (Cut Rule)

If ®¢d; foreach i=1,2, ..., kand WU {d, 8, ..., 8} e
then ® UW |- a.
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PROOF

Take a deduction of a from ¥ U {d4, 8,, ..., 8;} and whenever §; is
used there as an hypothesis replace it by a deduction of d; from ®. The
result is clearly a deduction of & from ® U W. n

6.14. Remark

The Cut Rule clearly holds for any linear calculus, irrespective of its
axioms and rules of inference. The strange name of this rule is due to
the fact that it allows us to ‘cut out the middlemen’ §,.

We shall often refer to this rule briefly as ‘Cut’.

§7. The Deduction Theorem
7.1. Remark

Suppose @ g o—p. Since by modus ponens we have {a, a—p} ¢ B,
we can apply Cut to the ‘middleman’ a—f — see Thm. 6.13 — and get
®, o |¢ . Thus we have

(I)I-Oa—>ﬂ=>(l>,al—0ﬂ.

The converse of this result, which we prove next, is of central import-
ance.

7.2. Theorem (Deduction Theorem)
If ®, alqp then ® |5o—p.

PROOF
Let @, @, ..., @, be a given deduction of f from ® U {a}; thus
@ =P

We shall prove, by [strong] induction on k, that @ |4 a—¢q; for
k=1,2,...,n. Inparticular, for £ = n it will follow that ® |-, a—f,

as claimed. We distinguish three cases concerning ¢, corresponding to
the three conditions in Def. 6.8(i).

Casel: @ is a propositional axiom. In this case the following se-
quence of three formulas is a proof of a—, and hence a fortiori a
deduction of it from ®:

Pk, (ax.)
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Pr—>0—> @y, (Ax. 1)
0@y (m.p.)

Case 2: @ € ® U {a}. Thus ¢, € ® or ¢, = a. Because a plays here a
special role, we must split our argument into two subcases.

Subcase 2a: g, € ®. Then the same sequence of three formulas as in
Case 1 is a deduction of a— ), from ®, except that now the justifica-
tion for the presence of ¢, is that it is one of the hypotheses @ rather
than that it is an axiom.

Subcase 2b: @; = a. Then a—@; = a—a, so by Ex. 6.11 |5 a—q,
and a fortiori ® g a—q,.

Case 3: @ is obtained by modus ponens from two earlier formulas in
the given deduction. This means that there are i, j <k such that
@; = @;—>@; (so ¢; and @; serve as minor and major premiss, respect-
ively, to yield ¢;). By the induction hypothesis, both @ |-, o—¢; and
D |y a—@; - thatis, ® g 0—>@;—>@y.

Thanks to Cut, the required result, ® |- a—¢q,, will follow if we
show that {a—¢;, a—>¢,—>¢;} ¢ a—>q,. The following sequence of
five formulas is a deduction of a— ¢, from {a—q;, G—>@,—>@; }:

=i, (hyp.)

0>~y (hyp.)

(a—>@—> @)= (0> @) > a—qy, (Ax. ii)

(> @) 0—>g;, (m.p.)

O—> Q. (m.p) N
7.3. Remarks

(i) We shall refer to the Deduction Theorem briefly as ‘DT’.

(ii) In proving DT (and in Ex. 6.11, which is used in the proof) we
invoked only Ax. i and Ax. ii. In fact, it is not even necessary for
formulas of the forms (6.3) and (6.4) to be axioms: it would have
been enough if they were just theorems. More precisely: if |* is
the relation of deducibility in a linear calculus whose sole rule of
inference is modus ponens and if F*a—p—a as well as
F* (a—B—y)—(0—B)—a—y for all a, B and ¥y, then DT holds
for F*, thatis: ®, a F-*f = ® |-* a—p.
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(iii) Now that we have DT, we shall not need to invoke Ax. i and Ax.
ii again. Indeed, the sole purpose of adopting these axiom
schemes was to enable us to establish DT.

7.4. Problem

Let |-* be the deducibility relation in a calculus that has modus ponens
as a — not necessarily sole — rule of inference.

Show that if Cut and DT hold for |*, then |*o—p—a and
F* (a—p—y)— (a—p)—>a—y for all a, p and .

§ 8. Inconsistency and consistency
8.1. Definition

(i) A set of two formulas {a, —a}, one of which is the negation of
the other, is called a contradictory pair.

(ii) A set @ of formulas is said to be [propositionally] inconsistent
in symbols: ‘@ |-’ - if both members of some contradictory pair
are propositionally deducible from @; that is, for some formula a
D | a as well as @ |5 1. Otherwise, P is said to be [proposi-
tionally] consistent.

8.2. Warning

Some authors use ‘contradictory’, ‘consistent’ and ‘inconsistent’ as
semantic terms; so that, for example, a set ® of formulas would be
said to be inconsistent if ® ko, that is, if it is not satisfied by any truth
valuation. We shall strictly avoid that semantic usage. Although it will
transpire that a set ® of formulas is satisfied by some truth valuation
iff it is consistent (in the proof-theoretic sense of Def. 8.1), this fact is
a far from trivial theorem rather than a mere matter of definition.

8.3. Problem

(i) Prove that if W C ® and W is inconsistent then @ is inconsistent.
(i) Prove that if @ is inconsistent then it has an inconsistent finite
subset.

8.4. Theorem

An inconsistent set of formulas is not satisfied by any truth valuation: if
L1 1 |_O then @ ':0.
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PROOF

Suppose @ |. Then for some @ both @ |ga and @ |g —a. By the
soundness of Propcal (Thm. 6.12) it follows that both @ kya and
® kg —a. Thus any truth valuation satisfying @ would have to satisfy
both @ and —a, which is impossible by clause (2) of Def. 4.2(ii). |

8.5. Corollary (Consistency of Propcal)
It is impossible, for any a, that both ¢ @ and |y —a.

PROOF

The claim is equivalent to saying that the empty set is consistent; but
the empty set is satisfied by every truth valuation (cf. Rem. 4.5(i)). M

8.6. Theorem (Inconsistency Effect)
If ® | then ® | B for every formula B.

PROOF

Assume ® |-o. Then for some @ both ® |-y a and ® | —a. Now, for
any B, the formula —a—a—p is an instance of Ax. iv; hence

{(1, _I(l} l‘g B. By Cllt, (0] "‘0 ﬂ. |

8.7. Remarks

(i) For brevity, we shall refer to the Inconsistency Effect as ‘IE’.

(ii) The converse of Thm. 8.6 is trivial: if all formulas are deducible
from @, then in particular both members of any contradictory
pair are deducible from it.

(iii) Our sole purpose in adopting Ax. iv was to enable us to establish
IE. From now on this axiom scheme will not have to be invoked.

8.8. Problem

Let |-* be the deducibility relation in a calculus for which both DT and
IE hold. Prove that |-* —a—a—p for all @ and §.

8.9. Theorem (Reductio ad absurdum)
If ®, 0 then ® |-g—a.
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PROOF

Assume ®, o }o. Then by IE we have ®, a |, —a and hence, by DT,
D |‘0 o—>—d.

Now, (e—>—1a)—>—a is an instance of Ax. v; hence o—>—a |g —a.
Using Cut, we get ® |- —a, as claimed. |

8.10. Remarks

(i) The converse of reductio is immediate: if ® |-, —a then a fortiori
®, a |g—o. But clearly also @, a | a; hence ®, a |.

(ii) The sole purpose of adopting Ax. v was to enable us to prove
reductio. Henceforth there will be no need to invoke that axiom
scheme.

8.11. Problem

Let -* be the deducibility relation in a calculus that has modus ponens
as a rule of inference and for which DT and reductio hold. Prove that
F* (e—»—1a)—>—afor all a.

8.12. Problem
Prove that a. |y — =« for all a.

8.13. Remark

All the proof-theoretic results we have obtained so far — Cut, DT, IE
and reductio — hold also for the intuitionistic propositional calculus
(the most important non-classical propositional calculus). But the
following result — the inverse of Prob. 8.12 — does not hold for that
calculus, so in order to prove it we shall have to invoke Ax. iii, which
is not valid in intuitionistic logic.

8.14. Lemma
1o l—-g « for all a.

PROOF
Clearly, {@—=a,a}pa; but also {o—>—a,a}}y—a, by modus
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ponens. Therefore {a—>—a, &} ¢ and by reductio we get!
(1) - g .

Now, {—a, =0} is a contradictory pair, so it follows from (1) that
{——a, a—=a} |o. Hence by IE we have {——«a, o—>—1a} } @, and
by DT

2 —-a by (e—>—a)—a.

Next, [(e——0)—a]—>a is an instance of Ax. iii, therefore
(e—>—10a)—a | a. From this and (2) we get by Cut =w—alga, as
claimed. |

8.15. Theorem (Principle of Indirect Proof)
If ®, —o}q then ® | a.

PROOF
Assume @, —atlg. By reductio, ® |y ——a; hence, using Lemma
8.14 and Cut, @ | a, as claimed. |

8.16. Remarks

(i) For brevity, we shall refer to the Principle of Indirect Proof as
‘PIP.

(ii) Lemma 8.14 is a special case of PIP, for clearly {——a., —a} |.

(iii) The converse of PIP is immediate.

(iv) The sole purpose of adopting Ax. iii was to enable us to prove
PIP. Henceforth it will no longer be necessary to invoke this
axiom scheme.

(v) Indeed, from now on we shall not invoke any propositional
axiom, because the four proof-theoretic principles — DT, IE,
reductio and PIP - jointly contain all the information that the
choice of axioms was designed to provide (cf. Probs. 7.4, 8.8,
8.11 and 8.18). We use these four principles even where, as in the
proof of Lemma 8.14, it would have been quicker to invoke an
axiom. The reason for this apparent perversity is that the axioms
are forgettable, mere scaffolding, whereas the four principles
(together with modus ponens and Cut) encapsulate the most

! We could have got (1) more directly, as in the proof of Thm. 8.9; but see Rem.
8.16(v).



128 7. Propositional logic

important inherent structural facts about the propositional cal-
culus.

8.17. Warning

Do not commit the solecism of confusing PIP with reductio. The two
principles, though formally similar to each other, are quite distinct.
(Intuitionistic logic rejects the former and upholds the latter.)

8.18. Problem

Let |-* be the deducibility relation in a calculus that has modus ponens
as a rule of inference and for which Cut, DT, IE and PIP hold. Prove
that |-* [(a—p)—a]—a for all @ and .

8.19. Problem
Prove:
(i) maloa—p,
(i) Bloa—B,
(iii) {a, =B} ko - (a—p),
(v) = (o—p) o,
(v) =1 (a—>B) ko .

8.20. Problem
Using Def. 2.5, prove:

(i) aA—aly,
(ii) Foav—a,
(iii) aABloBAra,
(iv) avBloBvae.

8.21. Remark

In Prob. 8.20, (ii) does not depend on the intuitionistically invalid PIP
(or Ax. iii), whereas (iv) does. On the other hand, it is well known that
in intuitionistic logic the law of excluded middle is invalid, whereas
disjunction has a symmetric meaning. This apparent incongruity is due
to the fact that in intuitionistic logic Def. 2.5(ii) itself is not acceptable,
because disjunction (and, for that matter, conjunction) cannot be
reduced to negation and implication.
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8.22. Problem
Prove that |-y (ma—f)—(ma——p)—a.

8.23. Remark

The version of the propositional calculus introduced in B&M Ch. 1,
§ 10 differs from the present one solely in having the axiom scheme
(—ma—p)—>(—a—>—P)—a instead of our last three axiom schemes.
Hence by Prob. 8.22 all the axioms of that version are theorems in the
present version. On the other hand, since (as shown in B&M, Ch. 1,
§ 10) IE, reductio and PIP hold for the B&M version, it follows from
Probs. 8.8, 8.11 and 8.18 that the converse also holds: all axioms of the
present version are theorems in the B&M version. The two versions
are therefore equivalent.

§9. Weak completeness
9.1. Observation

We reproduce below the truth tables for —f in terms of f and for p—vy
in terms of B, vy (cf. p. 111). Alongside these tables we quote some
proven results concerning deducibility.

BB
Blo—m—p (Prob. 8.12),
=pFoB (obvious).
{B, v} Fo B>y (Prob. 8.19(ii)),
{B, =7} Lo (B—v) (Prob. 8.19(iii)),
{—B, v} Fo B>y (Prob. 8.19(i) or 8.19(ii)),
{—B, 77} FoB—vy (Prob. 8.19(i)).

Observe that there is a systematic relationship between each row in the
truth tables and the deducibility statement to its right. The formulas
involved in each statement are related to the headings of the columns
in the truth tables. Where the entry in the truth table is ‘T’, the
corresponding formula on the right is exactly the one indicated at the
head of the relevant column; but where the entry in the truth table is
‘L’, the corresponding formula on the right is the negation of that
indicated at the head of the column.
We shall now generalize this observation to all truth tables.
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9.2. Lemma

Let o be a combination of formulas By, Ba, . . . , Br- Select a given row
in a truth table for a in terms of By, B2, - - - , Pr. Foreachi=1,2,...,
k let B} be B; or —B;, according as the entry in the given row at the i-th
column is ‘T’ or ‘L’. Similarly, let @' be o or —a, according as the
entry in the given row at the last column is ‘T’ or ‘1’.

The”l {B{’ ﬁé’ ceey ﬂ;c} l—O o'

PROOF

For brevity, we put ® = {fi, B3, . . . , B}, so we must prove ® |-qa’.
We proceed by induction on dega and distinguish three cases, accord-
ing to which of the three rules in Def. 5.1 was used to construct the last
column in the truth table in question.

Case l: a = B; (where 1 <i =< k) and Rule (1) of Def. 5.1 was used. In
this case the entry in the given row and last column is a copy of the one
in the i-th column. Then o’ = B} € ® and obviously ® |- a'.

Case 2: o.= =y, where y is a combination of §;, B,, . . ., Bx and Rule
(2) of Def. 5.1 was used. By the induction hypothesis, ® |- y’, so the
required result, ® }-oa’, will follow (thanks to Cut) if we show that
Y’ ko o’. We distinguish two subcases.

Subcase 2a: y' =vy. Then according to Rule (2) we get o' = —a =
—1—1y. Thus ¥’ | ' is the same as y |- = —y, which holds by Prob.
8.12.

Subcase 2b: ¢’ = —1vy. Then according to Rule (2) we get &' = a =
—1v; and ¥’ | @’ is the same as =%y |o =7y, which is obvious.

Case 3: a.=y—d, where y and & are combinations of By, ,, ..., Bx
and Rule (3) of Def. 5.1 was used. By the induction hypothesis,
® oy and ®|(8', so the required result, @ }ga’, will follow
(thanks to Cut) if we show that {y’,d'} o a’. We distinguish three
subcases (the first two of which are not mutually exclusive).

Subcase 3a: y' = —vy. Then according to Rule (3) we get o' = a =
y—9. So ¥’ | a’ is the same as =y | y—9, which holds by Prob.
8.19(i). Therefore a fortiori {y',8'} ¢ a’'.
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Subcase 3b: &' = d. According to Rule (3) we have again o' = o =
y—b. So &' |ga’ is the same as & |oy—>®&, which holds by Prob.
8.19(ii). Therefore a fortiori {y', 8’} ¢ a'.

Subcase 3c: neither of the previous two subcases holds; so ¥’ =y

and 8 = —18. Then by Rule 3) &' = ma. = -1 (y—9). So {¥', 8’} o’
is the same as {y, =18} |9 —1(y—¥8), which holds by Prob. 8.19(iii). M

9.3. Lemma

Let a be a combination of By, B, - - -, Br, and suppose that in some
truth table for « in terms of By, B,, - . ., Br all the entries in the last
column are ‘T’. Foreachi=1,2, ..., klet B} be chosen arbitrarily as

B; or —P; — the choice being made independently for different i. Then
{Bi, B5 ..., Bk—p} o for every p=0, 1, ..., k. In particular, for
p= ka '_0 .

PROOF

By induction on p. For p = 0 the claim is that {f{, B3, ..., Bi} Foa.
This holds by Lemma 9.2, because according to our present assump-
tion the formula a’ (defined there) is always o itself.

For the induction step, let p < k. We must show that @ |- «, where
D= {B,B3....Pk—p+}- M p=k—1thend =.)

The induction hypothesis is that @, B;_, o a. But we are free to
choose Bj_, in two ways: as B_, or as =1ff;,_,. So we have

®,Bi-p o and @, P, Foe.

Hence

®,0,Bip ko and D, @, 2B, ko
By reductio and PIP respectively, we get

@, 0o i, and P, malgPr-p-
This shows that ®, = a |. So by PIP @ | «, as required. |
We are now in a position to prove a partial converse of Thm. 6.12. The
converse is only partial because of the restriction to finite sets of

formulas; hence also the qualification ‘weak’ in the name of the
theorem:
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9.4. Theorem (Weak semantic completeness of Propcal)

For any formula a, if Fo o then o .. More generally, if ® is a finite set
of formulas and ® kg a, then @ | a.

PROOF

Suppose kg a. Then by Thm. 5.9 the truth table of @ in terms of all its
prime components satisfies the assumption of Lemma 9.3; hence by
that lemma |- a.

To prove the second part of the theorem, assume that @ kg a, where
® is a finite set of formulas. Let ¢, ¢, ..., ¢ be all the members of
@; then ® = {¢@q, ¢, . .., ®;} and we have {(pl, @25 ... 5 @i} o .

By Prob. 4.6(ii) we get kg @;—>¢,— - -—>@;—>a. Therefore, by the
first part of the present theorem, ¢ ¢;—@,—- - -—@,—a. Hence, by
k applications of modus ponens, we obtain {¢;, ¢,, ..., @;} o,
that is, ® |- a. n

A partial converse of Thm. 8.4 can now be proved.

9.5. Theorem

A finite unsatisfiable set of formulas is inconsistent: if ® is finite and
D kg, then @ |-

PROOF

Suppose @ ky. Then trivially @ kg a for any formula . If @ is finite,
then by Thm. 9.4 it follows that @ |- & for any «; hence clearly (cf.
Rem. 8.7(ii)) @ }o. |

9.6. Remarks

(i) Thm. 9.5 has been formulated contrapositively. An equivalent
positive formulation is: A finite consistent set of formulas is
satisfiable [by some truth valuation].

(ii) Thms. 9.4 and 9.5 are equivalent. We have just seen that the
latter follows from the former, but the converse also holds.
Indeed, if ® is finite and ® k¢ a, then clearly ® U {—a} is finite
and unsatisfiable; hence by Thm. 9.5 ®, —a},, and by PIP
L )] l—O .
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§ 10. Hintikka sets
10.1 Preview

Our final task in propositional logic will be to prove the full converse
of Thm. 6.12 - the strong semantic completeness of the propositional
calculus. From Rem. 9.6 it should be clear that this task can be
accomplished by proving first the full converse of Thm. 8.4: A consist-
ent — finite or infinite — set of formulas is satisfiable. We shall do so in
three easy stages.

First, we shall show that certain special sets of formulas, called
Hintikka sets, are satisfiable. This will be quite easy, because the
definition of these sets is rigged for this very purpose.

Second, we shall introduce the even more special maximal consistent
sets of formulas and show that each such set is a Hintikka set, and
hence satisfiable. In fact, it will transpire that there is a one-to-one
correspondence between maximal consistent sets and truth valuations.

Finally, using a simple but powerful result from set theory, we shall
show that every consistent set of formulas is a subset of a maximal
consistent set, and is therefore automatically satisfied by the truth
valuation that satisfies the latter.

10.2. Definition
A [propositional] Hintikka set [in £] is a set @ of formulas satisfying
the {ollowing four conditions for all formulas « and f:

(1) If ais prime and @ € ®, then —a ¢ P.
(2) If = —a € @, then also a € P.

(3) fa»pe®then—aecPorfed.

(4) If = (0—p) € ® thena € P and —f € P.

10.3. Theorem
If ® is a Hintikka set, it is satisfied by some truth valuation.

PROOF

Let @ be a Hintikka set. Define a truth valuation o by stipulating that
o’ = T for every prime formula a belonging to ®, and &’ = L for any
other prime a. We claim that, for any formula ¢ ,

@Qoeed=>¢’=T, b)gped=¢°=1.
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We shall prove this double claim simultaneously! by induction on
deg . We distinguish three cases, corresponding to the three clauses of
Def. 1.4 and those of Def. 4.2(ii).

Case 1: ¢ is prime.

(la) pe P =>¢° =T by the definition of o.
(1b) mpeP=>9¢ P by clause (1) of Def. 10.2,
=q¢%=1 by the definition of o.

Case 2: « is a negation formula; say ¢ = —a.

(2a) ge P =>—aed

=>a’=1 by part (b) of ind. hyp.,
=¢’=T by clause (2) of Def. 4.2(ii).
(2b) —:tpe‘l>=—|—|ue(l)
=aecd by clause (2) of Def. 10.2,
=2a’=T by part (a) of ind. hyp.,
=¢°=1 by clause (2) of Def. 4.2(ii).

Case 3: « is an implication formula; say ¢ = a—§.

(3a) pe P =>0—>fec P

=>-aePorfed by clause (3) of Def. 10.2,
=>a’elorB’=T by ind. hyp.,
=2>¢°=T by clause (3) of Def. 4.2(ii).
(Bb) "peP=acP&pfcd by clause (4) of Def. 10.2,
=a’=Tandf’= L by ind. hyp.,

=>¢’=1 by clause (3) of Def. 4.2(ii)). MW

§ 11. The ambient metatheory

Let us pause to consider the mathematical presuppositions that under-
lie our study of propositional logic. This study is being conducted in
mathematical fashion: we frame precise definitions and prove [meta]-
theorems concerning the object language £, its syntax and semantics.
The mathematical theory in which this study is conducted is our

! Note that (a) by itself is sufficient for proving our theorem; and once (a) is established
for all ¢ then (b) would follow automatically. But if you try to prove (a) on its own,
you will find out that the inductive argument runs into snags.
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metatheory. (The prefix meta is used here to distinguish this theory,
which is developed in our metalanguage, from formal object theories
that may be constructed in the object language and serve as objects of
our study.)

As any other mathematical theory, our metatheory must start from a
launching pad of presuppositions: some underlying concepts, regarded
as known, in terms of which further concepts of the theory are defined;
and certain fundamental propositions, on the basis of which the
theorems of our theory can be rigorously proved.

Set theory — in the form of ZF or some broadly similar codification -
is certainly strong enough to underpin our study of logic. Indeed, the
entire technical development in the Logic part of this book can be read
as occurring within set theory. Interpreted in this way, not only the
term set but also other mathematical terms such as natural number and
finite, must be understood in the appropriate technical sense: a natural
number as an ordinal belonging to w, and a finite set as a set
equipollent to a natural number (cf. Rem. 6.1.8).

But all that we have done so far in this chapter does not really
require such a strong ambient theory. Set theory is vital only where
there is need to regard infinite pluralities as single objects: sets that in
turn can themselves be members of classes. So far we have hardly had
any need for positing such completed (or actual) infinities. Though we
have used set-theoretic terminology, this was not essential. For exam-
ple, although in Specification 1.1(i) we refer to the totality of proposi-
tional symbols of £ as a set, we have never had to regard this totality
as a single object that can be a member of a class. We only need the
stock of propositional symbols to be potentially infinite; so everything
we have done works just as well if we replace the word ‘set’ here by
‘collection’ or by one of its synonyms such as ‘plurality’ or ‘class’. The
same applies to other places where the term ‘set’ has been used.

There was one context that seems to be an exception to what we
have just said and where we did refer to infinite entities as objects. In
Def. 4.4(iii) a formula a was defined to be a tautology, k, «, just in
case 07 = T for every truth valuation o. This definition refers (at least
implicitly) to the class of all truth valuations. Now, by Def. 4.2(i), a
truth valuation is a map with an infinite domain, and hence is itself
infinite.

However, this reliance on infinite objects can be avoided by a simple
device. Clearly, the truth value a (defined in Def. 4.2(ii)) depends
only on the values assigned by ¢ to the prime components of a.
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Therefore, instead of truth valuations proper we may consider partial
truth valuations, whose domain is a finite set of propositional symbols,
among which are all the prime components of a. These partial truth
valuations themselves are finite objects; and the notion of tautology
can be redefined by referring to the class of these objects rather than of
truth valuations proper.

A similar device can be used in connection with the definition of the
notion of tautological consequence, ® ky a, provided the collection &
is finite. (It is enough to consider partial truth valuations whose
domains are finite sets of propositional symbols, among which are all
the prime components of a and all the members of ®.)

Thus, provided we restrict parts (iv) and (v) of Def. 4.4 to finite sets
®, the rest of the development of propositional logic so far does not
require the framework of set theory. Looked at in this way, terms such
as natural number and finite are to be understood informally rather
than in their technical set-theoretic sense. To be sure, some - relatively
modest — mathematical presuppositions are still needed as underpin-
ning. We shall not attempt to specify these presuppositions in detail,
but merely point out that among them the Principle of Mathematical
Induction takes pride of place.

But such modest mathematical underpinning is no longer adequate
for the development in the following sections of this chapter. Here,
particularly in the proof of Thm. 13.1, some set-theoretic machinery
must be used. So this development must be understood as taking place
within a sufficiently strong ambient set theory. (See, however, Rem.
13.3(1).)

§12. Maximal consistent sets
12.1. Definition

A maximal [propositionally] consistent set is a consistent set of formu-
las that is not a proper subset of any consistent set of formulas.

12.2. Remarks

(i) In other words, a set @ of formulas is maximal consistent iff ® is
consistent, but by adding to ® even a single new formula (that is,
one not already belonging to it) we obtain an inconsistent set.

(if) Maximal consistency is an instance of a general set-theoretic
concept. Let X be the class of all consistent sets of formulas. The



§12. Maximal consistent sets 137

relation C« is then a partial order on X (see Def. 5.2.5 and
Rem. 5.2.6). A maximal consistent set is just a maximal member
of X with respect to the partial order C« (see Def. 5.2.3).

The following theorem shows that a maximal consistent set is saturated
with respect to deducibility .

12.3. Theorem
If ® is maximal consistent and ® |- a., then o € P.

PROOF

Let ® be maximal consistent and ® |- a. Suppose it were the case that
o ¢ ®. Then, by the maximality of ®, we would get ®, a }( (cf. Rem.
12.2(i)). Hence by reductio we would have @ |-, —a, showing that ®
itself is inconsistent, contrary to hypothesis. |

The following theorem provides an alternative characterization of
maximal consistent sets.

12.4. Theorem

A consistent set ® is maximal consistent iff for every formula a either
ae®or 0ed.

First, assume @ is maximal consistent. If a ¢ @ then by the maxim-
ality of @ it follows that @, a |-¢. Hence by reductio ® |y —a, and by
Thm. 12.3 —a € P.

Conversely, assume @ is consistent and satisfies the condition in
question. Let @ be any formula that does not belong to ®; so by the
assumed condition —a € ®. It follows that ®, a |-o. Thus we see that
by adding to @ even a single new formula we get an inconsistent set.
Thus (cf. Rem. 12.2(i)) ® is maximal consistent. |

12.5. Theorem
Every maximal consistent set is a Hintikka set .

PROOF

Let @ be maximal consistent. We shall show that @ fulfils the four
conditions of Def. 10.2.
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Condition (1) of that definition is obviously satisfied, since @ is
consistent.

Now suppose =1 —1a € ®. Then by Lemma 8.14 @ | a, hence by
Thm. 12.3 a € ®. Thus condition (2) of Def. 10.2 is satisfied.

Next, suppose o—f € ®@. If =« € @ then condition (3) of Def. 10.2
is satisfied. On the other hand, if —a ¢ @ then by Thm. 12.4 a. € ®.
Since we have assumed that a—p € @, it now follows that @ |-, 8 and
hence by Thm. 12.3 § € ®@. Thus condition (3) of Def. 10.2 is satisfied
in this case as well.

Finally, suppose —1(o—f) € ®. By parts (iv) and (v) of Prob. 8.19
we have @ |ya and ® |, —p. Hence by Thm. 12.3 o€ ® and
—f € ®. Thus condition (4) of Def. 10.2 is satisfied. |

The following theorem establishes a one-to-one correspondence be-
tween truth valuations and maximal consistent sets.

12.6. Theorem

(i) For any truth valuation o, the set {@: ¢° = T} is maximal consist-
ent.

(ii) Conversely, if ® is maximal consistent then ® = {¢: @¢° =T}
for some truth valuation o. Moreover, this ¢ is the unique truth
valuation satisfying ®.

PROOF
(i) Put W = {@: ¢° = T}. W is evidently satisfiable: it is satisfied by a.
Hence by Thm. 8.4 it must be consistent.

If o is a formula such that a ¢ ¥ then, by the definition of W, it
follows that a’ = 1. Hence (—ma)° = T and so —va € W. Thus by Thm.
12.4 ¥ is maximal consistent.

(ii) Conversely, let ® be any maximal consistent set. By Thm. 12.5, ®
is a Hintikka set and hence by Thm. 10.3 it is satisfiable. Let o be a
truth valuation satisfying ®. Again let us put W = {¢: ¢° = T}. Now
W is the set of all formulas satisfied by o, so ® CW. By (i), W is
consistent; but @, being maximal consistent, cannot be included in
another consistent set. Therefore W cannot be other than @ itself.
Thus ® =W = {¢: ¢ = T}.

As we have just seen, if o is any truth valuation satisfying @ then
@° = T holds just for formulas ¢ belonging to ® and for no others.
This means that o is uniquely determined by ®. ]
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12.7. Remark

It is now clear that showing a set of formulas to be satisfiable is
tantamount to showing that it is included in a maximal consistent set.

12.8. Problem (The [classical] logic of implication)
An implicational valuation is a mapping from the set of all prime
formulas and all negation formulas to the set {T, L} of truth values.
An implicational valuation is then extended to implication formulas as
well by imposing condition (3) of Def. 4.2(ii). Let F* be the resulting
consequence relation; thus @ F*a iff every implicational valuation
satisfying @ also satisfies «.

Let |* be the relation of deducibility in the [classical] calculus of
implication - the linear calculus based on Ax. i, Ax. ii and Ax. iii, with
modus ponens as sole rule of inference.

(i) Verify that the calculus of implication is semantically sound:

dlL*o=PE*a.

(ii) Show that p—a, (B—y)— o |* a for all a, p and y.

(iii) Let a be a formula and let ® be a set of formulas such that
® |/* @ and which is maximal with this property (that is, @ is not
a proper subset of any W such that W }/* a). Show that @ is
saturated with respect to |-*: if @ |-* p then §§ € ®.

(iv) Let @ and & be as in (iii). Show that there is a unique implica-
tional valuation that satisfies ¥ but does not satisfy a.

§13. Strong completeness
The road to the strong completeness theorem is now clear.

13.1. Theorem
Every consistent set of formulas is satisfied by a truth valuation.

PROOF

Let @ be any set of formulas. If @ is consistent then clearly every
subset of @, and in particular every finite subset, is consistent (cf.
Prob. 8.3(i)). Conversely, if every finite subset of ® is consistent then
by Prob. 8.3(ii) @ itself is consistent.

Thus the class X of all consistent sets of formulas is of finite
character (see Def. 5.2.7). It is not difficult to see that X is in fact a
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set. (The class S of all £-strings is a set by Thm. 6.3.9; and X is
included in PS.) So if ® is any consistent set, it follows from the TT
Lemma (Thm. 5.2.8) that @ is included in some (not necessarily
unique) maximal consistent set ¥. By Thm. 12.6(ii) W is satisfiable,
and hence so is P. |

13.2. Theorem (Strong semantic completeness of Propcal)
For any set ® of formulas and any formula o, if ® £y a then ® |- a.

PROOF

If ® koo then every truth valuation satisfying € must satisfy a and
hence cannot satisfy —a. Thus @, =0 k. By Thm. 13.1 ®, —a};
hence by PIP @ |- a. |

13.3. Remarks

(i) If the primitive symbols of .£ are given by an explicit enumera-
tion:

{p.:ne N},

then the proof of Thm. 13.1 can be made more elementary and
constructive. First, it is easy to define explicitly an enumeration
of all .£-formulas:

{@,: ne N}.

Next, given a consistent set ®, we define, by induction on n, sets
®, as follows. We put ®; = ®; and

o . = @, U {¢g,} if this set is consistent,
T e, otherwise.

It is then quite easy to show that the union W = U{tb,, :neN}
is a maximal consistent set; and W clearly includes ®.

(ii) The soundness and completeness theorems (Thms. 6.12 and 13.2)
jointly mean that the relations of deducibility and tautological
consequence are co-extensive: @ |- « iff ® kg a. Similarly, Thms.
8.4 and 13.1 jointly mean that consistency and satisfiability are
co-extensive: ® |¢ iff @ k. Therefore any fact proved for |
holds also for kg and vice versa. An important example is the
following result.
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13.4. Theorem (Compactness theorem for propositional logic)

If @ is a set of formulas such that every finite subset of ® is satisfiable,
then so is D itself.

PROOF
Immediate from Prob. 8.3(ii). |

13.5. Problem (The logic of implication — continued)

Let F* and |* be as in Prob. 12.8. Prove the strong completeness of
the calculus of implication: if ® F* a then @ |* a. (If ® }/* @, show
that @ is included in a set ¥ such that ¥ |[/* @ and such that W is
maximal with this property; then use Prob. 12.8(iv).)
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First-order logic

§ 1. Basic syntax

From now on, our formal object language .£ will be a fixed but (unless
stated otherwise) arbitrary first-order language. We begin by specify-
ing the primitive symbols of such a language.

1.1. Specification
The primitive symbols of a first-order language £ fall into five
mutually exclusive categories:

(i) An infinite sequence of [individual] variables:
Vi, V2, V3, e e s Vpy oo

The order of the variables indicated here will be referred to as their
alphabetic order.

(ii) For each natural number n, a set of n-ary function symbols.
These sets must be pairwise disjoint and some or all of them may
be empty. The 0-ary function symbols (if any) are called [indi-
vidual] constants.

(iii) For each positive natural number n, a set of n-ary predicate
symbols. These sets must be pairwise disjoint and at least one of
them must be non-empty.

(iv) Two distinct connectives, - and —, called negation symbol and
implication symbol respectively.

(v) The universal quantifier V.

A particular binary predicate symbol = may be singled out as the
equality symbol, in which case .2 is referred to as a language with
equality. We further stipulate that if £ has at least one function symbol

142



§1. Basic syntax 143

that is not an individual constant (that is, at least one n-ary function
symbol with positive r), then it must be a language with equality.

The variables, the connectives, the universal quantifier and the
equality symbol (if present) are the logical symbols of -£. All other
primitive symbols (namely, the function symbols and the predicate
symbols other than =) are extralogical.

1.2. Warnings

(i) Specification 1.1 must not be read as exhibiting any symbol of the
object language £, which indeed may not have a written form.
Thus, for example, it must not be supposed that ‘v,’ is a variable
of .£. Rather, it is a syntactic constant, belonging to our metalan-
guage and denoting the first variable (in alphabetic order) of .£.
Also, ‘=’ should not be taken to be the equality symbol of .£.
Rather, it is a syntactic constant used to denote the equality
symbol of .2, if it has one. (Cf. Warning 7.1.2.)

(ii) Note carefully the distinction between ‘=" and ‘=’. Both are
symbols in our metalanguage. The former is a name (in the
metalanguage) of the equality symbol of the object language (if it
has one); the latter is the equality symbol of the metalanguage,
an abbreviation of the phrase ‘is the same as’.

The similarity of shape between ‘=" and ‘=" — which may be
confusing at first — is an intended pun and a mnemonic device;
see Rem. 4.3(iii) below.

1.3. Remark

The difference in the logical symbols between two different first-order
languages is clearly inessential, and there would be no real loss of
generality if we were to assume that all first-order languages share the
same logical symbols. (In the case of the equality symbol this would
mean that all first-order languages with equality have the same equality
symbol.) Two first-order languages are essentially different if only one
of them is with equality, of if they have different stocks of extralogical
symbols.

1.4. Definition

An L-string is defined in the same way as in propositional logic (see
Def. 7.1.3), namely as a finite sequence of primitive symbols of ..
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In propositional logic we had one significant type of string: the
formulas. Here we have two types: terms as well as formulas.

1.5. Definition
L-terms are strings constructed according to the following two rules.

(1) A string consisting of a single occurrence of a variable is an

L-term.
(2) If f is an n-ary function symbol and t;, t,, ..., t, are L-terms
then the string ft;t, ... t, (obtained by concatenating a single

occurrence of f and t;, t,, . . ., t,,, in this order) is an £-term.

In a term ft;t, . . . t, constructed according to clause (2), the terms t;,
ty, ..., t, are the first argument, second argument, ..., nth argu-

ment, respectively.
For n=0, (2) says that a single occurrence of a constant is an

£-term (see Specification 1.1(ii)).

1.6. Definition

The degree of complexity of a term t — briefly, degt — is the total
number of occurrences of function symbols in t.

We shall often use induction on degt in order to prove general
statements about all terms t.

1.7. Definition

L-formulas are strings constructed according to the following four
rules.

(1) If P is an n-ary predicate symbol and ty, t, ..., t, are L-terms

then the string Pt;t, . .. t, (obtained by concatenating a single
occurrence of P and ¢4, t;, ..., t,, in this order) is an £-for-
mula.

(2) If B is an L-formula then —f (the string obtained by concatenat-
ing a single occurrence of = and the string B, in this order) is an
L-formula.

(3) If B and y are £-formulas then —Py (the string obtained by
concatenating a single occurrence of —, the string f and the
string ¥, in this order) is an .£-formula.

(4) If x is a variable and B is an £-formula then Vxp (the string
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obtained by concatenating a single occurrence of V, a single
occurrence of x and the string §, in this order) is an .2- formula.

A formula Ptgt, . . . t, constructed according to (1) is called an atomic
formula; the terms ty, t;, ..., t, are its first argument, second
argument, ..., nth argument, respectively. In the particular case
where P is the equality symbol = (in which case n must be 2) the
atomic formula is also called an equation and its first and second
arguments are called its left-hand side and right-hand side respectively.

In connection with formulas constructed according to (2) and (3) we
use the same terminology as before (see Def. 7.1.4).

A formula Vxf constructed according to (4) is called a universal
formula; here x is the variable of quantification and the string xf is the
scope of the initial occurrence of the universal quantifier.

1.8. Definition

The degree of complexity of a formula a — briefly, dega — is the total
number of occurrences of connectives (— and —) and the universal
quantifier V in a.

1.9. Definition

An L-expression is an £-term or an £-formula.

1.10. Remark

We use ‘r’, ‘s’ and ‘t’ (sometimes with subscripts) as syntactic variables
ranging over £-terms. Boldface lower-case Greek letters (sometimes
with subscripts) are used as syntactic variables ranging over -£-formu-
las. These and other notational conventions of this kind should be
self-evident.

§2. Adaptation of previous material

In this section we adapt the notational conventions, definitions and
results of Ch. 7 to the new setting. Some of these will be slightly
extended to fit this new setting.

The following problem can be solved similarly to Prob. 7.1.9.
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2.1. Problem

Assign to each primitive symbol p of £ a weight w(p) by stipulating
that if x is a variable then w(x) = —1; if f is an n-ary function symbol
then w(f) = n—1; if P is an n-ary predicate symbol then w(P) =
n — 1; while w(=1) =0, w(—)=1and w(V) = 1. If p;, p2, . . ., p; are
primitive symbols, assign to the string pip; . . . p; weight

w(pip2 - - - P1) = W(p1) + w(p2) + - - - + w(p)).

Thus, the weight of a string is the sum obtained by adding —1 for each
occurrence of a variable, n —1 for each occurrence of an n-ary
function symbol or predicate symbol, and +1 for each occurrence of
— or V in the string (occurrences of — make no contribution to the
weight). Show that, for any term t,

(@) w(t) = ~1;
(ii) if t is the string p1p, . . . p; and k </, then w(pyp, . . . px) = 0.
(iii) Show that if t is a term ft;t, ... t, formed according to Def.

1.5(2), then for each k=0, 1, ..., n, ft;t; ... t; is the shortest
non-empty initial segment of t whose weight is n — k — 1.

(iv) Show that if « is a formula Pt;t; . . . t, formed according to Def.
1.7(1), then for each k =0, 1, ..., n, Ptyt, . .. t; is the shortest
non-empty initial segment of @ whose weightis n — k — 1.

(v) Also show that the results of Prob. 7.1.9 concerning formulas
hold for the present language -£. (For (i) and (ii) of Prob. 7.1.9,
four cases now need to be considered, corresponding to the four
clauses of Def. 1.7. In the case where « is atomic, the previous
results of the present problem are invoked.)

Prob. 2.1 shows that the Polish notation decreed for -£ makes brackets
and other punctuation marks unnecessary in that language.! However,
for reasons explained in § 2 of Ch. 7, we decree:

2.2, Definition

(i) The same as Def. 7.2.1.
(ii) (r=s) =g =rs,

! The ambiguities that might otherwise arise are illustrated by a piece that appeared in
The Guardian on 10 October 1985, reporting ‘grisly new details of the murder by Lord
Lucan in 1974 of one of his children’s two nannies’. Did the writer intend to say *. . . of
[one of (his children’s two nannies)]’ or ‘... of [(one of his children)’s two nannies]'?
Did Lord Lucan murder one of the two nannies of his children, or did he commit the
double murder of two nannies of one of his children?
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(iii) (r#s) =g 1 (r=s).

Also, we introduce by contextual definition surrogates for three addi-
tional connectives and the existential quantifier:

2.3. Definition
(1)—(iii)) The same as Def. 7.2.5(1)—(iii).
(iv) Ixa =g Vx—a.

With this more conventional metalinguistic notation, brackets are
needed, and so are rules for omitting and restoring them. We adopt
the same rules as before: ommission of outermost brackets (Rule
7.2.2), adhesion of ‘=’ (Rule 7.2.4), ranks and association to the right
(Rule 7.2.7) and add to them one more rule:

2.4. Rule (Adhesion of ‘Vx’ and ‘3x’)

Do not omit a pair of brackets whose left member is immediately
preceded by an occurrence of ‘Vx’ or ‘Ax’. Equivalently: In restoring
brackets, do not add a new pair of brackets whose left member
immediately follows an occurrence of ‘Vx' or ‘AX’. Similarly with ‘x’
replaced by ‘y’, or ‘z’, or by any other syntactic variable ranging over
L-variables, or by a syntactic constant denoting an £-variable.

In order to adapt the rest of the material of Ch. 7 to our present
setting, we need to redefine the notions prime formula and prime
component of a formula.

2.5. Definition
A prime formula is a formula that is atomic or universal.

2.6. Definition

The set of prime components of a formula a is the smallest set of prime
formulas from which & can be obtained as a propositional combination.
In detail, by induction on deg a:

(1) If @ is a prime formula, then the set of prime components of o. is

{a}.
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(2) If a = =P then the set of prime components of a is the same as
that of .

(3) If @ = f—y then the set of prime components of « is the union of
those of B and ¥y.

With these redefinitions, all the material of §§3-13 of Ch. 7 carries
over lock, stock and barrel into the present setting. From now on,
whenever we use a piece of notation introduced in Ch. 7, or refer to a
definition, result or remark in that chapter, we shall interpret that
notation, definition, result or remark as relating to the present setting,
in which .£ is a first-order language rather than the language of Ch. 7.

§ 3. Mathematical structures
3.1. Preview

Of course, we have not introduced our first-order language .£ merely
as a vehicle for propositional logic—this would leave the variables, the
function symbols, the predicate symbols and the universal quantifier
without gainful employment, while only the connectives would be
doing a significant job. The point of having a first-order language is
that such a language, when suitably interpreted, can be used to ‘talk
about’ this or that mathematical structure. In this section we shall
explain what a mathematical structure is.

We shall make use of the material presented in Ch. 2; in particular,
the notions of relation and property (Def. 2.1.14) and that of map
(a.k.a mapping or function, Def. 2.2.1). We shall also need the
following definition.

3.2. Definition

For n =1, an n-ary operation on a class A is a map from A" to A.

If f is an n-ary operation on A, and ay, a,, ..., a, € A, then the
value of f at the n-tuple (aj,a;, ..., a,) is usually denoted by
‘f(ay, ay, . . ., a,)’ with parentheses instead of corner brackets.

3.3. Remark

From Def. 3.2 and the definitions made in Ch. 2 it is not difficult to see
that f is an n-ary operation on A iff f is an (n + 1)-ary relation on A
such that for any a;, a,, . . ., a, € A there is a unique a € A for which

(al,az, ""ama> Ef.
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So far we have defined the notion of n-ary operation for positive n
only. If we were to extend Def. 3.2 directly to n =0, then a 0-ary
operation on A would be defined as a set of the form {(J, a)}, with
a € A. On the other hand, were we to extend the condition of Rem.
3.3 to the case n = 0, then a 0-ary operation on A would have to be
defined as a set of the form {a}, with a € A. In either case, there
would be a one-to-one correspondence between 0-ary operations on A
and members of A. It fact it turns out to be most convenient to take
neither of these courses, but — in the spirit of reductionism — simply to
identify 0-ary operations on a class with its members:

3.4. Definition
A O-ary operation on a class A is a member of A.

We are now ready to lay down the main definition of this section.

3.5. Definition

A mathematical structure is a composite entity U consisting of the
following ingredients.

(i) A non-empty set U called the domain or universe of U. The
members of the domain are called the individuals of U.
(ii) A set of operations on U, called the basic operations of Ll.
(ili) A non-empty set of relations on U, called the basic relations of U.

Note that the set of basic operations may be empty. Among the basic
operations there may be some 0O-ary ones, which by Def. 3.4 are
individuals of the structure. Such an object — that is, an individual of
the structure which is also among its basic operations — is called a
designated individual of the structure.

Perhaps the most fundamental structure of classical mathematics is:

3.6. Example
The elementary (or first-order) structure of natural numbers may be
defined as the structure N having the following ingredients.

(i) Its domain is the set N = {0, 1, 2, .. .} of all natural numbers.
(ii) Its four basic operations are the designated individual 0; the
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unary operation s which assigns to each number » its immediate
successor; and two binary operations, + and X, which assign to
each pair of numbers their sum and product respectively.

(iii) Its only basic relation is the identity relation on N, namely
idy={(n,n): neN}.

3.7. Example

A more general notion of structure than that prescribed by Def. 3.5 is
obtained by allowing the domain to be a proper class rather than a set,
and also admitting a basic relation which is a proper class. The most
important example of this liberalized notion is the structure of sets M,
having the following ingredients.

(i) Its domain is the class M of all objects, that is sets and individuals
(if any) of set theory, a.k.a. the universal class.
(ii) No basic operations.
(iii) Its basic relations are the identity relation on M and the relation
€ of membership between objects and sets.

3.8. Remark

A great many mathematical statements are, or can be construed as,
statements about mathematical structures. The structuralist view of
mathematics holds that mathematics is essentially the study of such
structures.

§4. Basic semantics
4.1. Preview

By itself, .2 is meaningless; its expressions express nothing: they are
just strings of meaningless symbols, combined according to apparently
arbitrary formal syntactic rules. In this section we introduce the basic
semantic apparatus needed to endow L-expressions with meaning.
First, we shall define the notion of .L-interpretation (a.k.a. L-struc-
ture). Roughly speaking, an £-interpretation is a mathematical struc-
ture (cf. Def. 3.5) together with a sort of ‘dictionary’ that assigns a
reference to each function symbol of £, making it a name of some
basic operation of the structure; and to each extralogical predicate
symbol of .£, making it a name of some basic relation of the structure.
Under a given .L-interpretation, each closed term (a term not
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containing variables) receives a reference, becoming a name for some
individual (a member of the domain of the structure). A term contain-
ing variables does not receive any particular reference, but once the
variables are assigned values (belonging to the domain) the term itself
receives a value (also belonging to the domain).

Certain formulas, known as sentences, also receive meaning under
an L-interpretation: each sentence expresses a proposition about the
mathematical structure concerned, and thus receives a truth value T or
L, according as that proposiiion is true or not. A formula that is not a
sentence does not express a proposition and thus cannot be said to be
true or false outright. Rather, it expresses a condition which may or
may not be satisfied by a given assignment of values (belonging to the
domain) to certain variables, the free variables of the formula.

In order to deal with all terms (including those that contain vari-
ables) and all formulas (including those that are not sentences), we
shall introduce the notion of .£-valuation, which is an .L-interpretation
together with an assignment of an individual (member of the domain)
as value to each variable of .£. Under an .L-valuation, each term
receives a value (belonging to the domain of the structure) and each
formula receives a truth value.

4.2. Definition

An L-interpretation (or £-structure) is a package — that is, a composite
entity (or, to be pedantic, an ordered triple) — U, consisting of the
following three components.

(i) A non-empty set U, called the domain or universe [of discourse]

of U. The members of U are called individuals of Ul.

(i) A mapping that assigns to each function symbol f of £ an
operation f' on U, such that if f is an n-ary function symbol then
f!' is an n-ary operation on U. In particular, if ¢ is a constant of
£ then ¢" is an individual of Ul. Operations of the form f! are
called basic operations of U; individuals of the form ¢! are called
designated individuals of Ul.

(iii) A mapping that assigns to each predicate symbol P of .£ a
relation P! on U, such that if P is an n-ary predicate symbol then
P! is an n-ary relation on U and such that if .£ has the equality
symbol = then =" is the identity (diagonal) relation on U,
namely idy = {{u, u) :ue U}.
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4.3. Remarks

(i) The requirement that the domain U be non-empty has some
technical advantages and is adopted by most modern authors.
However, it is not essential and some authors (for example,
Wilfrid Hodges, Logic, Penguin 1977) do allow structures with
empty domain; the resulting treatment differs in some minor
points from the conventional one.

(ii) The mappings mentioned in clauses (ii) and (iii) of Def. 4.2 are
not assumed to be one-to-one. For example, it is possible to have
¢ #d with ¢! = d"; in other words, two distinct constants may
have the same interpretation. (This is like an object having more
than one name in ordinary language.)

(iii) The special role of the equality symbol of £, and the reason why
we have denoted it by ‘=’, are made clear in clause (iii) of Def.
4.2. Many authors confine the mapping in this clause to extra-
logical predicate symbols; and the additional requirement that
the equality symbol = of £ be interpreted as denoting the
identity relation on U is then introduced separately as part of the
Basic Semantic Definition (see, for example, B&M, pp. 49 and
51). In the end it amounts to the same thing.

(iv) We use upper-case Serman (Fraktur) letters to denote L-structures.
We adopt the convention that where a structure is denoted by a
given German letter, its domain will be denoted by the corre-
sponding upper-case italic, unless specified otherwise.

(v) Note that the meaning of the term ‘individual’ here (as well as in
Def. 3.5) is different from its special meaning in set theory (see
1.1.3).

4.4. Definition

(i) An L-valuation is a package (say an ordered pair) o whose two
components are: an Z-interpretation U; and a mapping that
assigns to every variable x of £ a value x° € U.

(ii) The £-structure that forms part of an .£-valuation o is called the
underlying structure of 0. We also say that o is based on this
structure.

(iii) If o is an L-valuation with underlying structure U, then by the
universe of o we mean the domain U of U; and we put f7 =4 f!
for every function symbol f of .£ and P° =4 P for every predic-
ate symbol P of .2.
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4.5. Definition

If o is a valuation and u is an individual in its universe, then o(x/u) is
the valuation that is based on the same structure as ¢ and assigns the
same values as o to all variables other than x, while x°®/* = . We say
that o(x/u) is obtained from o by revaluing x as u.

Thus £°®/*) = £ for every function symbol f; and P°®/*) = P for
every predicate symbol P; and y"("/“) =y’ for every variable y # x;
while x7®/) = .

The following definition is of central importance. It was first stated
explicitly by Alfred Tarski in 1933, but had been used tacitly long
before that. For any valuation o, the first section of the definition
assigns to each term t a value t? belonging to the universe of . This is
done by induction on degt, in two clauses corresponding to those of
Def. 1.5. The second section of the definition assigns to each formula a
a truth value a°. This is done by induction on dega, in four clauses
corresponding to those of Def. 1.7.

4.6. Basic Semantic Definition (BSD)
Let o be a valuation with universe U.

(T1) If x is a variable, then x/ is already defined (see Def. 4.4).
(T2) If fis an n-ary function symbol and t;, t,, . . . , t, are terms, then

(ftits . .. t.)° = £9(,%, 6%, . .., £,°).
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