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XXXI. ON THE ELECTROMAGNETIC WAVE-SURFACE.
[Phil. Mag., June, 1885, p. 397, S. 5, vol. 19.]

MAXWELL showed (Electricity and Magnetism, vol. ii., art. 794) that his
equations of electromagnetic disturbances, on the assumption that the
electric capacity varies in different directions in a crystal, lead to the
Fresnel form of wave-surface. There is no obscurity arising from the
ignored wave of normal disturbance, because the very existence of a
plane wave requires that there be none. In fact, the electric displace-
ment and the magnetic induction are both in the wave-front, and are
perpendicular to one another. The magnetic force and induction are
parallel, on account of the constant permeability ; whilst the electric
force, though not parallel to the displacement, is yet perpendicular to
the magnetic induction (and force); the normal to the wave-front, the
electric force, and the displacement being in one plane. The ray is also
in this plane, perpendicular to the electric force. There are of course
two rays for (in general) every direction of wave-normal, each with
separate electromagnetic variables to which the above remarks apply.

It is easily proved, and it may be legitimately inferred without a
formal demonstration, from a consideration of the equations of induction,
that if we consider the dielectric to be isotropic as regards capacity, but
eolotropic as regards permeability, the same general results will follow,
if we translate capacity to permeability, electric to magnetic force, and
electric displacement to magnetic induction. The three principal
velocities will be (cp,) %, (cpo)~%, and (epg)~%, if ¢ is the constant value
of the capacity, and M1, Mgy Py are the three principal permeabilities.
The wave-surface will be of the same character, only differing in the
constants.

But a dielectric may be eolotropic both as regards capacity and
permeability. The electric displacement is then a linear function of
the electric force, and the magnetic induction another linear function
of the magnetic force. The principal axes of capacity, or lines of
parallelism of electric force and displacement, cannot, in the general
case, be assumed to have any necessary relation to the principal axes of
permeability, or lines of parallelism of magnetic force and induction.

H.E.P.—VOL. 11, A

3\



2 ELECTRICAL PAPERS.

Disconnecting the matter altogether from the hypothesis that light
consists of electromagnetic vibrations, we shall inquire into the condi-
tions of propagation of plane electromagnetic waves in a dielectric
which is eolotropic as regards both capacity and permeability, and
determine the equation to the wave-surface.

For any direction of the normal (to the wave-front, understood) there
are in general two normal velocities, i.c., there are two rays differently
inclined to the normal whose ray-velocities and normal wave-velocities
are different. And for any direction of ray there are in general two
ray-velocities, i.e., two parallel rays having different velocities and
wave-fronts.

In any wave (plane) the electric displacement and the magnetic
induction must be always in the wave-front, i.c., perpendicular to the
normal. But they are only exceptionally perpendicular to one another.

In any ray the electric force and the magnetic force are both perpen-
dicular to the direction of the ray. But they are only exceptionally
perpendicular to one another.

The magnetic force is always perpendicular to the electric displace-
ment, and the electric force perpendicular to the magnetic induction.
This of course applies to either wave. If we have to rotate the plane
through the normal and the magnetic force through an angle 6 to bring
it to coincide with the magnetic induction, we must rotate the plane
through the normal and the electric displacement through the same
angle 0 in the same direction to bring it to coincide with the electric
force, the axis of rotation being the normal itself.

In the two waves having a common wave-normal, the displacement
of either is parallel to the induction of the other. And in the two rays
having a common direction, the magnetic force of either is parallel to
the electric force of the other.

Nearly all our equations are symmetrical with respect to capacity and
permeability ; so that for every equation containing some electric
variables there is a corresponding one to be got by exchanging electric
force and magnetic force, etc. And when the forces, inductions, ete.,
are eliminated, leaving only capacities and permeabilities, these may be
exchanged in any formula without altering its meaning, although its
immediate Cartesian expansion after the exchange may be entirely
different, and only convertible to the former expression by long
processes.

If either p or ¢ be constant, we have the Fresnel wave-surface.
Perhaps the most important case besides these is that in which the
principal axes of permeability are parallel to those of capacity. There
are then six principal velocities instead of only three, for the velocity
of a wave depends upon the capacity in the direction of displacement
as well as upon the permeability in the direction of induction. For
instance, if p), p,, pg, and ¢, ¢, ¢, are the principal permeabilities and
capacities, and the wave-normal be parallel to the common axis of p,
and ¢;, the other principal axes are the directions of induction and dis-
placement, and the two normal velocities are (cp;)~* and (cyy) -2

The principal-sections of the wave-surface in this case are all ellipses
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(instead of ellipses and circles, as in the one-sided Fresnel-wave); and
two of these ellipses always cross, giving two axes of single-ray velocity.
But should the ratio of the capacity to the permeability be the same for
all the axes (u/c; = pyfc, = pgfc,;), the wave-surface reduces to a single
ellipsoid, and any line is an optic axis. There is but one velocity, and
no particular polarization. If the ratio is the same for two of the axes,
the third is an optic axis.

Owing to the extraordinary complexity of the investigation when
written out in Cartesian form (which I began doing, but gave up aghast),
some abbreviated method of expression becomes desirable. I may also
add, nearly indispensable, owing to the great difficulty in making out
the meaning and mutual connections of very complex formul®. In fact
the transition from the velocity-equation to the wave-surface by proper
elimination would, I think, baffle any ordinary algebraist, unassisted by
some higher method, or at any rate by some kind of shorthand algebra.
I therefore adopt, with some simplification, the method of vectors,
which seems indeed the only proper method. But some of the principal
results will be fully expanded in Cartesian form, which is easily done.
And since all our equations will be either wholly scalar or wholly vector,
the investigation is made independent of quaternions by simply defining
a scalar product to be so and so, and a vector product so and so. The
investigation is thus a Cartesian one modified by certain simple abbre-
viated modes of expression.

. I have long been of opinion that the sooner the much needed intro-

duction of quaternion methods into practical mathematical investigations
in Physics takes place the better. In fact every analyst to a certain
extent adopts them : first, by writing only one of the three Cartesian
scalar equations corresponding to the single vector equation, leaving the
others to be inferred ; and next, by writing the first only of the three
products which occur in the scalar product of two vectors. This,
systematized, is 1 think the proper and natural way in which quaternion
methods should be gradually brought in. If to this we further add the
use of the vector product of two vectors, immensely increased power is
given, and we have just what is wanted in the tridimensional analytical
investigations of electromagnetism, with its numerous vector magni-
tudes.

It is a matter of great practical importance that the notation should
be such as to harmonize with Cartesian formule, so that we can pass
from one to the other readily, as is often required in mixed investiga-
tions, without changing notation. This condition does not appear to
me to be attained by Professor Tait’s notation, with its numerous letter
prefixes, and especially by the —.S before every scalar product, the
negative sign being the cause of the greatest inconvenience in transitions.
I further think that Quaternions, as applied to Physics, should be
established more by definition than at present ; that scalar and vector
products should be defined to mean such or such combinations, thus
avoiding some extremely obscure and quasi-metaphysical reasoning,
which is quite unnecessary.

The first three sections of the following preliminary contain all we



4 ELECTRICAL PAPERS.

want as regards definitions ; most of the rest of the preliminary consists
of developments and reference-formule, which, were they given later,
in the electromagnetic problem, would inconveniently interrupt the
argument, and much lengthen the work.

Scalars and Vectors.—In a scalar equation every term is a scalar, or
algebraic quantity, a mere magnitude ; and + and — have the ordinary
signification. But in a vector equation every term stands for a vector,
or directed magnitude, and + and — are to be understood as com-
pounding like velocities, forces, etc. Putting all vectors upon one side,
we have the general form

A+B+C+D+ ... =0;
where A, B, ..., are any vectors, which, if » in number, may be repre-
sented, since their sum is zero, by the n sides of a polygon. Let 4,
A, A, be the three ordinary scalar components of A referred to any
set of three rectangular axes, and similarly for the other vectors. This
notation saves multiplication of letters. Then the above equation
stands for the three scalar equations

A+ B +C+ D+ ... =0,
Ay+By+Cy+ Do+ ... =0,
Az +B;+ 034+ D+ ... =0.

The ~ sign before a vector simply reverses its direction—that is,
negatives its three components.
According to the above, if i, j, k, be rectangular vectors of unit
length, we have
A =T, A, LRy i o 1)

ete.; if 4,, A4, A, be the.components of A referred to the axes of
i, j, k. That is, A is the sum of the three vectors i4,, j4, kd, of
lengths A,, 4, A, parallel to i, j, k respectively.

Sealar Product.—We define AB thus,

AB=A B, + 4B+ 4By i LE e (2)
and call it the scalar product of the vectors A and B. Its magnitude is
that of A x that of B x the cosine of the angle between them. Thus,
by (1) and (2),

A, =Ai, Al A, =Ak;
and in general, N being any unit vector, AN is the scalar component of
A parallel to N, or, briefly, the N component of A. Similarly,

2= 1, j2 =1, k= ’
because i and i are parallel and of length unity, etc. And
ij=0, jk=0, ki=0,

because i and j, for instance, are perpendicular. Notice that AB=BA.
We have also

ey
A__K_F—etc’
and -1 or A‘1=-é =é-2=et;c.
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Thus A-! has the same direction as A ; its length is the reciprocal of
that of A.
Vector Product.—We define VAB thus,

VAB=i(d4,B;— AB,) +j(4,B, - 4,B;) +k(4d,B,— A,B)), ..... (3)
and call VAB the vector product of A and B. Its magnitude is that of
A x that of B x the sine of the angle between them. Its direction is
perpendicular to A and to B with the usual conventional relation
between positive directions of translation and of rotation (the vine
system). Thus,

Vij =k, Vik =i, Vki=j.
Notice that VAB = — VBA, the direction being reversed by reversing the
order of the letters; for, by exchanging A and B in (3), we negative
each term.
Hamiltow’s v.—The operator

s hige d
v=laﬁ+']@+k¢?lfz .............................. (4)
may, since the differentiations are scalar, be treated as a vector, of
course with either a scalar or a vector to follow it. If it operate on a
scalar P we have the vector
AP SPE S AP
VP_1% +']Ey +k$
whose three components are dP/dx, ete. If it operate on a vector A,
we have, by (2), the scalar product

va_ddy dd, dd,

@t ol (6)
and, by (3), the vector product = 3
_ifdd, dA,)\ | .rdd, dA, dAd, dd,

VVA= 1(7y £ Tzi') +,](—d; 2 E:T) + k(Tm. 2 @_). ........ )

The scalar product VA is the divergence of the vector A, the amount
leaving the unit volume, if it be a flux. The vector product (7) is the
curl of A, which will occur below. There are three remarkable theorems
relating to v, viz.,

Py-P, =fVPdg, ............................. (8)
1

jAds KX j J'Bds, ............................. 9)
j j.CdS =j“v0dz-. .......................... (10)

Starting with P, a single-valued scalar function of position, the rise
in its value from any point to another is expressed in (8) as the line-
integral, along any line joining the points, of V.Pds, the scalar product
of VP and ds, the vector element of the curve.

Then passing from an unclosed to a closed curve, let A be any vector
function of position (single-valued, of course). Its line-integral round
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the closed curve is expressed in (9) as the surface-integral over any
surface bounded by the curve of another vector B, which =VVA. BdS
is the scalar product of B and the vector element of surface dS, whose
direction is defined by its unit normal.

Finally, passing from an unclosed to a closed surface, (10) expresses
the surface-integral of any vector C over the closed surface (normal
positive outward), as the volume-integral of its divergence within the
mecluded space.

Linear Vector Operators.—1f H be the magnetic force at a point, B the
induction, E the electric force, and D the displacement, all vectors, then

B=puH, and D= cBjdm 5.0 D (11)
express the relation of B to H and of D to E in a dielectric medium.
If 1t be isotropic as regards displacement, ¢ is the electric capacity ; and
if it be isotropic as regards induction, p is the magnetic permeability ;
¢ and p are then constants, if the medium be homogeneous, or scalar
functions of position if it be heterogeneous.

We shall not alter the form of the above equations in the case of
eolotropy, when ¢ and p become linear operators. For instance, the
induction will always be pH, to be understood as a definite vector, got
from H another vector, in a manner fully defined by (in case we want
the developments) the following equations (not otherwise needed). Let
o, ..., and By, ..., be the components of H and B referred to any
rectangular axes. Then

By = pyy Hy + oy + g1,
By = poy Hy - pron Hly & PogHlgy ool oo don i o i (12)
By = pgy I, + pgy Hy + posHy,
where pu,,, etc., are constants, which may have any values not making
HB negative ; with the identities p ,= p,, ete. Or,

By =p 1, By=u,H,, Bo= pa gt S I (13)
when the components are those referred to the principal axes of per-
meability, p,, o, pg being the principal permeabilities, all positive.

Inwverse Operators.—Since B =pH, we have H=u1B, where p~1is the
operator inverse to . When referred to the principal axes, we have

1 1 1
== = P (14)
(] Heo s
But when referred to any rectangular axes, we have
—_— 2 —
ply = tukn ~ P phy=taln” lale a0 SR (15)
Pafhelts Pafrofhs

by solution of (12). The accents belong to the inverse coefficients.
The rest may be written down symmetrically, by cyclical changes of
the figures. In the index-surface the operators are inverse to those in
the wave-surface.

Conjugate Property.—The following property will occur frequently.
A and B being any vectors,

AP Bplk cicaliesin s Teitistey. et (16)
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or the scalar product of A and uB equals that of B and pA. It only
requires writing out the full scalar products to see its truth, which
results from the identities j1;, = p,y, etc. Similarly,
ApcB =pAcB=cpAB, ete.,
AB=Aup'B=puAp1B, etc.,

where in the first line ¢ is another self-conjugate operator.

D is expressed in terms of E similarly to (12) by coefficients ¢,;, ¢,
etc. ; or, as in (13), by the principal capacities ¢;, ¢,, ¢,

Theorem.—The following important theorem will be required. A and

B being any vectors,
ol VAB = pVuApB . i iiiiinenian (17)

For completeness a proof is now inserted, adapted from that given by
Tait. Since VAB is perpendicular to A and B, by definition of a vector
product, therefore

AVAB=0, and BVAB =0,
by definition of a scalar product. Therefore
App~IVAB =0, and Bup~1VAB=0,
by introducing ppu=1=1. Hence
pAp~'VAB =0, and pBu~1VAB =0,
by the conjugate property ; that is, x"1VAB is perpendicular to pA and

to uB. Or
hu~'VAB = VuApB,
where % is a scalar. Or
hVAB=pVuAuB,
by operating by p. To find A, multiply by any third vector C (not to
be in the same plane as A and B), giving
hCVAB=CuVuAuB;

_ KOV AyB
therefore h= “GVAB

by the conjugate property. Now expand this quotient of two scalar
products, and it will be found to be independent of what vectors A, B, C
may be. Choose them then to be i, j, k, three unit vectors parallel to
the principal axes of p. Then

kVuip,j
h= 83-——1{\"; 11‘]&! = Mol

by the i, j, k properties before mentioned. This proves (17).
Transformation-Formule.—The following is very useful. A, B, C

being any vectors,
VAVBC=B(CA)-C(AB). ..c.evvvevririnnininnn (18)

Here CA and AB are scalar products, merely set in brackets to separate
distinctly from the vectors B and C they multiply. This formula is
evident on expansion.
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- The Equations of Induction.—E and H being the electric and magnetic
forces at a point in a dielectric, the two equations of induction are
[vol. 1., p. 449, equations (22), (23)]

BT I 2. s vay o nnins e e s (19)
~ourl Mgl s ..ol e (20)

¢ and p being the capacity and permeability operators, and curl standing
for VV as defined in equation (7). Let I' and G be the electric and the
magnetic current, then

T =cB/4m, G=pH/dm .oreirieinen. LA

The dot, as usual, signifies differentiation to the time. The electric
energy is EcE/8r per unit volume, and the magnetic energy HpH/87
per unit volume. If A is Maxwell's vector potential of the electric
current, we have also

curl A =puH, His-o o8 mlen) S (21a)

Similarly, we may make a vector Z the vector potential of the magnetic
current, such that [vol. I, p. 467]

—curl Z=(E, j: SIS A . (22)

The complete magnetic energy of any current system may, by a
well-known transformation, be expressed in the two ways

T=2HpH/8x =2 AT,

the X indicating summation through all space. Similarly, the electric
energy, if there be no electrification, may be written in the two ways

=3 BeE/8n = 3 }Z6.

If there be electrification, we have also another term to add, the real
electrostatic energy, in terms of the scalar potential and electrification.
And if there be impressed electric force in the dielectric, part of G will
be imaginary magnetic current, analogous to the imaginary electric
current which may replace a system of intrinsic magnetization.

Plane Wave.—Let there be a plane wave in the medium. Its direction
is defined by its normal. Let then N be the vector normal of unit
length, and z be distance measured along the normal. If » be the
velocity of the wave-front, the rate the disturbance travels along the
normal, or the component parallel to the normal of the actual velocity
of propagation of the disturbance, we have

H=f(z-ot),
if the wave be a positive one, as we shall suppose, giving

-V =~

gp e
applied to H or E.

Next, examine what the operator VV or curl becomes when, as at
present, the disturbance is assumed not to change direction, but only
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magnitude, as we pass along the normal. Apply the theorem of Version
(9) to the elementary rectangular area bounded by two sides parallel to
E of length a, and two sides of length & perpendicular to E and in the
same plane as E and the normal N. Since its area is ab, and b=dz sin¥,

N

» «
dz

/ Wave front

and the two sides b contribute nothing to the line-integral, we find that

d
curl—VNd_z, N S el e L0t ‘
applied to E or H or other vectors, in the case of a plane wave. Using

this, and (23), in the equations of induction (19), (20), they become

dH dE
k3
dE dH
N

Here, since the z-differentiation is scalar, and occurs on both sides, it
may be dropped, giving us
VN v B . . e n e MR L e e (25)
VIR HESG et - Rttt - & i (26)

The induction and the displacement are therefore necessarily in the
wave-front, by the definition of a vector product, being perpendicular to
N. Also the displacement is perpendicular to the magnetic force, and
the induction is perpendicular to the electric force.

Index-Surface.—Let *

be a vector parallel to the normal, whose length is the reciprocal of the
normal velocity ». It is the vector of the index-surface. By (25) and
(26) we have

cE= - VsH, therefore —-E=¢1VsH; .......... (28)

and pH= VsE, . therefore H= 31V 85 S5 (29)
Now use the theorem (17). Then, if

M= iy g s =0, O30 ek Tt hes g Mg (30)

* [In order to secure the advantage of black letters for vectors, I bave changed
the notation thus :—The original ¢ isnow 8; pisr; Bisb; yisg; and aisa.]
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be the products of the principal permeabilities and capacities, the
theorem gives, applied to (28) and (29),

—nB=VescH, ... .0 . ..., (31)

H = VB 5 it e e (32)

Putting the value of H given by (32) in (28) first, and then the value
of E given by (31) in (29), we have

—mB=c"VsVuspB, ..oooiiiiiiiiiiiiinnns (33)
—H =pFtVsVescH. "o h . oo e (34)
To these apply the transformation-formula (18), giving
— mcE = ps(spE) — pB(Sps), .oooooiiiineinnnni (33a)
and —npH =cs(scH) — cH(8¢8), ..oovevivveniciiainns (34a)
where the bracketed quantities are scalar products. Put in this form,
{(sps)p — mc} B =ps(SpE), .ooviiviiiiiiiininin (85)
{(ses)e — np}H =cs(scH), ..cooovvvvvneenninnnnnn. (36)

and perform on them the inverse operations to those contained in the
{}’s, dividing also by the scalar products on the right sides. Then

E P8
T e IR (37)
= B el Al (38)

scH  (ses)c —np

Operate by ¢ on (37) and by u on (38), and transfer all operators to the
denominators on the right. Then '

cB s

sﬁE:W: TR IR e (39)
,U.H =, .__s____ — av.
e e Dol say: Viic. el (40)

(It should be noted that, in thus transferring operators, care should
be taken to do it properly, otherwise it had better not be done at all.
Thus, we have by (37),

©s
=0 ——
(sps)p —me
and the left ¢ and the right p are to go inside the {}. Operate by ¢!
and then again by {}*1, thus cancelling the {}-, giving
18 = {(sp8)pm - mc}e~1h,.
Here we can move ¢! inside, giving
ps={(sps)pc™t —m}b, ;
and now operating by p71, it may be moved inside, giving
8= {(sps)c™t—mp1}by,

b, or by =c{(sus)p — mc}~1ps,

as in (39).)
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We can now, by (39) and (40), get as many forms of the index-
equation as we please. We know that the displacement is perpendicular
to the normal, and so is the induction. Hence

8b, =0, Bha= Dt s ks 528 4 (41)

where b, and b, are the above vectors, in (39) and (40), are two
equivalent equations of the index-surface.

Also, operate on (39) by suc™l, and on (40) by scp~l, and the left
members become unity, by the conjugate property ; hence

psc1b, =1, G RN = s o B St (42)

are two other forms of the index-equation. (41) and (42) are the
simplest forms. More complex forms are created with that surprising
ease which is characteristic of these operators; but we do not want any
more. When expanded, the different forms look very different, and no
one would think they represented the same surface. This is also true
of the corresponding Fresnel surface, which is comparatively simple in
expression. In any equation we may exchange the operators p and c.

Put s=Nv~! in any form of index-equation, and we have the velocity-
equation, a quadratic in v? giving the two velocities of the wave-front.
And if we put Nv=p, thus making p a vector parallel to the normal of
length equal to the velocity, it will be the vector of the surface which is
the locus of the foot of the perpendicular from the origin upon the
tangent-plane to the wave-surface.

By (33a), remembering that s is parallel to the normal, we see that

¢cE, pE, and uN are in one plane ;} ............ (43)
or E, N, and p1cE are in one plane.
And by (34a),
i pH, SN, ¢ ands cH are in one plane ;} .......... (44)
or H, N, and ¢ 1uH are in one plane.

These conditions expanded, give us the directions of the electric force
and displacement, the magnetic force and induction, for a given normal.
We may write the second of (43) thus,

| o AR Y S (45)
c p
and the second of (44) thus,
L B e S 1 (46)
¢ p

and as these differ only in the substitution of B for D, we see that the
induction of either ray is parallel to the displacement of the other; that
is, the two directions of induction in the wavefront are the two
directions of displacement.

The Wave-Surface.—Since the velocity-surface with the vector p=oN
is the locus of the foot of the perpendicular on the tangent-plane to the
wave-surface, we have, if r be the vector of the wave-surface,

DR o M 0 Rl o saliln. (47)
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But s the vector of the index-surface being =Nv~!=pv~2, we have, by
(47), dividing it by ¢?, '
ST = ARERHDIS, oeEL T e N e (48)

To find the wave-surface, we must therefore let 8 be variable and
eliminate it between (48) and any one of the index-equations. This is
not so easy as it may appear.

General considerations may lead us to the conciusion that the equation
to the wave-surface and that to the index-surface may be turned one
into the other by the simple process of inverting the operators, turning
¢ into ¢7! and p into 1. Although this will be verified later, any form
of index-equation giving a corresponding form of wave by inversion of
operators, yet it must be admitted that this requires proof. That it is
true when one of the operators ¢ or p is a constant does not prove
that it is also true when we have the inverse compound operator
{(ses)p1 = nc71}7! containing both ¢ and p, neither being constant. I
have not found an easy proof. This will not be wondered at when the
similar investigations of the Fresnel surface are referred to. Professor
Tait, in his “Quaternions,” gives two methods of finding the wave-
surface; one from the velocity-equation, the other from the index-
equation. The latter is rather the easier, but cannot be said to be very
obvious, nor does either of them admit of much simplification. The
difficulty is of course considerably multiplied when we have the two
operators to reckon with. I believe the following transition from index
to wave cannot be made more direct, or shorter, except of course by
omission of steps, which is not a real shortening.

Given
s%=bl= (sT‘s)c%—“ﬁFi’ ........... (49) = (39) bis
S0 e S e B (50) =(41) bis
(- =) WSS e e L2 S (51)=(48) bis
Eliminate 8 and get an equation in r. We have also
P80 THy = 1y (oo sy s B0 (52) = (42) bis

which will assist later.
By (49) we have

S=(3p8)c™by —mp Iy e (53)
Multiply by b, and use (50); then
0= (sps)(byc™1b;) —m{bp~1by). oo (54)
By differentiation, s being variable, and therefore b, also,
0 = 2(dsps)(byc™1b;) + 2(sps)(db,c b)) — 2m(dbpu~1h,). ... (55)

Also, differentiating (53),
‘ ds=2(dsps)c™'b, + (sps)dc™'b, — mdp~b, ;
and multiplying this by 2b; gives
2b,ds = 4(dsus)(b,c71h,) + 2(sps)(dbc™1b,) — 2m(db,p~1b,). ...(56)
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Subtract (55) from (56) and halve the result ; thus obtaining
b,ds = (dsps)(b,c™th,),
or {b; —(bye™1b))us}ds=0. ........ce.ccvrvunen(BT)
In the last five equations it will be understood that ds and db, are

differential vectors, and that dsus is the scalar product of ds a.n(i 18,
ete. ; also in getting (56) from the preceding equation we have

byde1b, =b,c7¥db, =db,c™h,, etc.
Equation (57) is the expression of the result of differentiating (50),
d(sh,) =dsb, +sdb, =0,
with @b, eliminated.

Now (57) shows that the vector in the {} is perpendicular to ds, the
variation of 5. But by (51) we also have, on differentiation,

MRSLIONS Vo, o sk sl g e (58)
Hence r and the {} vector in (57) must be parallel. This gives
hr=Db; — (bye7ibus, ...ooiiiiiiii (59)

where £ is a scalar. If we multiply this by ¢1b; and use (52), we
obtain

ke e AR e SO R (60)
or, by (49), giving b, in terms of ¢E,
051 e LU R e o e s (61)

a very important landmark. The ray is perpendicular to the electric
force.

Similarly, if we had started from—instead of (49), (50), and (52)—
the corresponding H equations, viz.,

P el A sh,=0 e8p by, =1
scH By (se8)u~t —mcV s ikt
with of course the same equation (51) connecting r and s, we should

have arrived at
T30 — (Do e RN OB L v ome i T sbda o ss ot Lo (62)

I/ being a constant, corresponding to (59); of this no separate proof is
needed, as it amounts to exchanging p and ¢ and turning E into H, to
make (39) become (40). And from (62), multiplying it by p~!b,,

we arrive at
rp~h,=0, (o328 2 25 0 G e (63)

corresponding to (61). The ray is thus perpendicular both to the
electric and to the magnetic force. The first half of the demonstration
is now completed, but before giving the second half we may notice some

other properties.
Thus, to determine the values of the scalar constants b and A’.
Multiply (59) by s, and use (50) and (51); then

h=- (blo‘lbl)(S/tS) e m(blf"_lbl)’
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the second form following from (54). Insert in (59), then

e L
r= Pt e (64)

gives r explicitly in terms of us and b,, the latter of which is known in
terms of the former by (49). Multiply this by p~1h,, using (50); then

Ty et ) el R R (65)
Similarly we shall find

M G0 )s oo acale et S ST (66)
giving T DRA TSI (67)

ses n(byethy)’
and, corresponding to (65), we shall have
TORADE=E= M3t e e ARy (68)

Now to resume the argument, stopped at equation (63). Up to
equation (59) the work is plain and straightforward, according to rule
in fact, being merely the elimination of the differentials, and the getting
of an equation between r and 8. What to do next is not at all obvious.
From (59), or from (64), the same with % eliminated, we may obtain all
sorts of scalar products containing r and b,, and if we could put by
explicitly in terms of r, (60) or (65) would be forms of the wave- surface
equation. From the purely mathematical point of view no direct way
presents itself; but (61) and (63), considered physically as well as
mathematically, guide us at once to the second half of the transforma-
tion from the index- to the wave-equation. . As, at the commencement,
we found the induction and the displacement to be perpendicular to the
normal, so now we find that the corresponding forces are perpendicular
to the ray. There was no difficulty in reaching the index-equation
before, when we had a single normal with two values of » the normal
velocity, and two rays differently inclined to the normal. There should
then be no difficulty, by parallel reasoning, in arriving at the wave-
surface equation from analogous equations which express that the ray
is perpendicular to the magnetlc and electric forces, considering two
parallel rays travelling with different ray-velocities with two differently
inclined wave-fronts.

Now as we got the index-equation from

VNHEE g Es L S50 S s (25) bis
ATB\ § =) 2 e R e 5 (26) bis

we must have two corresponding equations for one ray-direction. Let
M be a unit vector defining the direction of the ray, and w be the ray-
velocity, so that
Tl L e (69)
Operate on (25) and (26) by VM, giving
VMVNH= - vVM(¢E, -- :
VMVNE= oVMpH.
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Now use the formula of transformation (18), giving
N(HM) - H(MN) = - vVMcE,
N(EM)- E(MN)= +VMpH.

But HM =0 and EM =0, as proved before. Also »v=w(MN), or the
wave-velocity is the normal component of the ray-velocity. Hence

=10V i b e mnen s e i s (70)
—B=wVMpH; .. i (71)
which are the required analogues of (25) and (26). Or, by (69),
HExVire oI5 bl sl o Saliiitngsin (72)
i A Mt e it B sl oy (73)

are the analogues of (28) and (29). The rest of the work is plain.
Eliminating E and H successively, we obtain .

0=E+ VruVrcE,
0=H+ VrcVrpH;
and, using the theorem (17), these give
0=E+mVrVp lrp IR,
0=H+nVrVelre1pH;
which, using the transformation-formula (18), become
0=E +mp 'r(p"rcE) — p-IcB(rp=1r)m,
0=H+nc 'r(cirpH) — ¢ lpH(re Ir)n ;
or, rearranging, after operating by p and ¢ respectively,
{@pmir)me - p}E=mr(u~1rcE),
{(reIr)np — ¢} H =nr(c rpH).

E r
Or TS L e e LIRY. Toaer .o W s (7 4)
2 = (AN s R R R (75)

cirpH (TeTir)m—nte 2

These give us the four simplest forms of equation to the wave. For,
since rE =0 =rH, we have

R T eSS R (76)
Also, operating on (74) by p~'rc and on (75) by ¢~lrp we get
wlreg, =1, COL a3 R A Dl g (77)

two other forms.
g, and g, differ from b, and b, merely in the change from s to r, and
in the inversion of the operators. The two forms of wave (76) are
analogous to (41), and the two forms (77) analogous to (42), inverting
operators and putting r for 8.
Similarly, if the wave-surface equation be given and we require that
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of the index-surface, we must impose the same condition rs =1 as before,
and eliminate r. This will lead us to

8cg, =0, BUZI= =il usiiuieniciones oty (78)
corresponding to (60) and (65) ; and
8pg, =0, 5 R Py’ g v (79)

corresponding to (63) and (68); and the first of (78) and (79) are
equivalent to
scE=0, suH=0;

or the displacement and the induction are perpendicular to the normal.
This completes the first half of the process; the second part would be
the repetition of the already given investigation of the index-equation.

The vector rate of transfer of energy being VEH/4x in general, when
a ray is solitary, its direction is that of the transfer of energy. It seems
reasonable, then, to define the direction of a ray, whether the wave is
plane or not, as perpendicular to the electric and the magnetic forces.
On this understanding, we do not need the preliminary investigation of
the index-surface, but may proceed at once to the wave-surface by the
investigation (69) to (77), following equations (25) and (2€).

The following additional useful relations are easily deducible :—From
(25) and (26) we get

VcEpH
B 5 et s (80)
and from (72) and (73),
VEH
Tl e (81)
Also, from either set,
Bl Hpl, ©0 e S eei(82)

expressing the equality of the electric to the magnetic energy per unit
volume (strictly, at a point).

Some Cartesian Ezxpansions.—In the important case of parallelism of
the principal axes of capacity and permeability, the full expressions for
the index- or the wave-surface equations may be written down at once
from the scalar product abbreviated expressions. Thus, taking any
equation to the wave, as the first of (76), for example, rg, =0, g, being
given in (74), take the axes of coordinates parallel to the common
principal axes of ¢ and p; so that we can employ ¢,, ¢,, ¢,, the prinecipal
capacities, and p,, p, p; the principal permeabilities in the three com-
ponents of g,.  We then have, #, y,-z being the coordinates of r, '

= ¥ .2 0, (83
(xp7r)e; —m™ i (Tp7I)ey —m ™y % @pIr)e, —m=Tuy (%)
2 B
where =2 Y 2
ISk s

In (83) we may exchange the ¢’s and p’s, getting the second of (76).
Similarly the first of (77) gives
w7l 2? Py ley? ) l’*sn_l"fi___ -
@A) —m ey ()G = Ty | (T~ gy i -
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as another form, in which, again, the g’s and ¢’s may be exchanged (not
forgetting to change m into n) to give a fourth form.

These reduce to the Fresnel surface if either p =p,=p, or
Bl=—10, = C,.

Let ©=0 to find the sections in the plane %, z. The first denominator
in (83) gives

(y2+i2>c 2 e or  ylypg+lp,=1
o i)t oy » L
representing an ellipse, semiaxes

ns=(apug)~d  and vy =(cpy) -k
The other terms give

Ua zz) 2 2y ¥ i
2 M egy? + €42%) = L — g e,
(,ug Mg 2 % i Lo T o Tt

Or Yo+ Py =1,

an ellipse, semiaxes vy = (cy;)~% and vy =(cyt;) -3 Similarly, in the
plane 2, # the sections are ellipses whose semiaxes are vy, vy, and vy,
55, Where for brevity v,=(cu)-%; and in the plane z, y, the ellipses
have semiaxes vy, v.,, and v;,, v,

In one of the principal planes two of the ellipses intersect, giving
four places where the two members of the double surface unite.

If ¢,/py = o/ pg =4/ s, We have a single ellipsoidal wave-surface whose
equation is

Ty & s £ 2
s UV V%
Now, of course, v, =1v,,, etc.

When the p and ¢ axes are not parallel, we cannot immediately write
down the full expansion of the wave-surface equation. Proceed thus :—
Taking rg, =0 as the equation, let

. B=m(rp-1r), and a=m-ig;
then, by (74) and (76),
r
ch -
where =R = A Al v s e S E ook (86)

Eis a scalar. If a;, a, a, are the three components of a referred to
any rectangular axes, and «, 7, # the components of r, we have, by (86)
and (12),

BT 5 . M Ll (85)

=0, or ra=0,

@ =(Beyy — )0y + (Beyy = pyg)aa + (Beyg — prs)s
Y= (Beg — pgy)ay + (Bogg — prog)ta + (Begs — pros)
&= (Rogy — pug )y + (Begy — prgg)ag + (Begg — pgs)as 5
from which a,, a,, a; may be solved in terms of z, , z; thus
@) =0T+ Y + 432
g = Q)T + Aol + g2,

3= 0Ug %+ Aol + Agg? ;
H.E.P.—VOL. IL B
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where, by using (15),
_ (Regy — prog)(Begg -A.uss) — (B — I‘23)2,

_(feys— Pag)(Blos — l‘za)A(Rcm Pag) (£legs = l‘33)

and the rest by symmetry. Then, since

ra=2za, +ya,+ 205 =0,
we get the full expansion. A need not be written fully, as it goes ont.
The equation may be written symmetrically, thus,

0=1+mn(rp~r)(rc"'r) - {‘E?(szl*ss + Coghag — 2ggttyg) + .o

+ 22y(Cygttgg + Coghrs = Crafias = Caglyg) + .. } ------ (87)

where the coefficients of 92, 22, 4z, and zz are omitted. Here m = p pop,
and 7 =¢,¢,¢, ; Whilst

remir= e + oy + P + 201200/ + 2ey2 + 265,22,
where ¢/, ..., are the inverse coefficients. See equation (15). The
expansion of ru~Ir is exactly similar, using the inverse p coefficients.

If in (87) we for every ¢ or p write the reciprocal coefficients, we
obtain the equation to the index-surface ; that is, supposing z, 4, 2 then
to be the components of s instead of r. And, since sy=N, the unit
wave-normal, we have the velocity-equation as follows, in the general
case,

e N,LN NcN

S ”2{N2(622F33 + chopdy — 2ehspus) +

+ 2N, Vel iy + o il — Clapids — Sl pile) + } ...... (88)

in which &, N,, N, are the components of N, or the direction-cosines
of the normal. To show the dependence of * upon the capacity and
permeability perpendicular to N, take N, =1, N,=0, N;=0, which
does not destroy generality, because in (88) the axes of reference are
arbitrary. Then (88) reduces to

vt = (Cabtds + o — 205 pia)0® + (Chaths — €43) (Moot — 145) = 0.
When the p and ¢ axes are parallel, and their principal axes are those
of reference, we have

0= N:;N NCN+ 4 02{N2(2m+ 32)+N2(1;31+’1)23)+N2(7)f2+'”§1)} (89)

where NuN = p, VE + p, N2 + ps N3,

with a similar expression for N¢N, and v,,=(cyp5)~3, etec., as before.
The solution is

= VA + 08) + VIR + 1) + NI + ) £ WE, oo (90)
where X=Nul+ Njul+ Nju? — 2(NENZwuy + NENugus + N7 N7uus),
in which Uy = V2, — 13, Uy = 13 — 13, Uy =y — Vaper = ol (91)
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Take u; =0, or cy/py=cy/p,; the two velocities (squared) are then
Nivig+ Ny + Ngvdy,  and NPy + Njviy + Voo,

reducing to one velocity v,, when N, =1.
If, further, #,=0, or u,=0, making ¢/p =cy/uy=co/prs, X=0
always, and
P=NaZ + Nih+ N3k, ... R o (92)

is the single value of the square of velocity of wave-front.

Directions of B, H, D, and B.—We may expand (45) to obtain an
equation for the two directions of the induction and displacement.
Thus, since

l: S5 i(GIIIDI + oDy + Cxlaps) +j(c£1D1 + oDy + Cé:;Ds) gt k(c;lpl + b Dy + Cést)n
i . : :
7l‘ =i(ph Dy + pla Dy + piaDs) + J (phn Dy + pdo Dy + pia D)

+k(ph Dy + pi Dy + pis D),
N=iN,+jN,+kN,,

the determinant of the coefficients of i, j, k equated to zero gives the
required equation. When the principal axes of p and ¢ are parallel,
the equation greatly simplifies, being then

_ Ny Nouy  Ngug
D, + D, o AT B e (93)
where u,, ..., are the same differences of squares of principal velocities
as in (91). For D,, etc., write B, ete.; and we have the same equa-
tion for the induction directions. For D, etc., write ¢, ), etc., and the
resulting equation gives the directions of E. For D, etc., write p M,
etc., and the resulting equation gives the directions of H.

Note on Linear Operalors and Hamilton’s Cubic. (June 12th, 1892.)

[The reason of the ease with which the transformations concerned in
the above can usually be effected is, it will be observed, the symmetrical
property AcB =BcA of the scalar products. But when a linear operator,
say ¢, is not its own conjugate, some change of treatment is required.
Thus, let

Dy =cy, By + By + 1B, Di=cyy By + oy By + 1 sy
D=y By + Cpolig + o5 B, Dy =cioB) + cpo iy + 3o By,
Dy=cy E; + 3oy + Cge By, Di=cy3Ey +cosliy + g3 By,

where the nine ¢’s are arbitrary. We may then write
D=cE, D’ =¢'E,
where the operator ¢/ only differs from ¢ in the exchange of ¢;; and ¢y,
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etc. It is now D’ that is conjugate to D, whilst ¢/ is the operator
conjugate to ¢. It may be readily seen that
D=/fE+ VeE, D/'=fE - VeE,

where f is the self-conjugate operator obtained by replacing ¢,, and ¢y,
etc., in ¢ by half their sums, and e is a certain vector whose components
are half their differences. Thus,

fE=1D+D), VeE=1(D-D’),
e = Ji(egq — Cag) + 3§(C15 — €q1) + 3K (c5; — €55).
The conjugate property of scalar products is now
AcB=BcA.

That is, in transferring the operator from B to A, we must simultane-
ously change it to its conjugate. Another way of regarding the matter
is as follows :—If we put

e, =16y, +Jjeyp + Koy, Co=1iCy +jCyo+ kbpy,  Cg=1C + joa, + Kesg,

we see, by the above, that

D = cE=i.cE+j.c,E+k.cE=(i.c, +j.c,+k.c,)E,

D/ =c¢E=c,.iB+c,jE+c, kE=(c;.i+6,.j +¢,. K)E,
from which we see that ¢/E is the same as Ec, and ¢E the same as E¢’.
In the case of AcB, therefore, we may regard it either as the scalar
product of A and ¢B, or as the scalar product of Ac and B. This
is equivalent to Professor Gibbs’s way of regarding linear operators.
That is (converted to my notation),

c=i.c;+j.c,+k.c;

is the type of a linear operator. It assumes the utmost generality when
i, j, k stand for any three independent vectors, instead of a unit
rectangular system. Professor Gibbs has considerably developed the
theory of linear operators in his Vector Analysis.

The generalised form of (17) is got thus:—Let v and w be any
vectors, then, as before, we have

0= vVvw= vec 1Vvw,
0=wVvw=wcc Vvw,
where the last forms assert that ¢~'Vvw is perpendicular to v¢ and we,
or parallel to Vvewe ; that is,
MY VW= eV VW5 i o d o0 e St (A)
from which, by multiplying by a third vector u, we find

duVe've'w
T\ TR R LR (B)
which is an invariant.
Hamilton’s cubic equation in ¢ is obtained by observing that since
(A) is an identity, ¢ being any linear operator, it remains an identity
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when ¢ is changed to ¢—g¢, which changes ¢’ to ¢/ — g, where g is a
scalar constant. For ¢—g is also a linear operator. Making this sub-
stitution in (A) and expanding, we obtain

(m —myg +myg® - g°)VVw

Vvw

= A UV VW — g(uVe' VW + vV W + WV uc’v)
uVvw

+ g (’uVvw +c/vYwu +c'wVuv) — g3quw}
=cVe/ve'w - g(Ve/ve'w + cVve'w + ¢V /' vw)
+ 2 (cVvw + Vve'w + Ve'vw) — °Vvw,
- where m, m,, m, are the coefficients of ¢°, —g, and ¢2 in the expansion of
the left member of m given by (B). Comparing coefficients we see that

¢° and ¢ go out. The others give (remembering that we are dealing
with an identity),

Ve/'ve/'w + c(Vve'w + Ve/'yw) =m, Vvw,
eVvw + (Vve'w + Ve/vw) =m,Vvw.
Operate on the first by ¢ and second by ¢2, and subtract. This eliminates
the vector in the brackets, and leaves
cVe've'w — VYW =m cVVW — myc?Vvw,
where the first term on the left is mVvw. So we have
R o gt =X | SRR S SRR ©)

which is Hamilton’s cubic.
If we start instead with the conjugate operator ¢’ we shall arrive at

m/Vvw =¢/Vevew, where m = cuVevew %
uVvw

and then, later, to the cubic
m/ — mic’ +mhe’? - ¢/3>=0,
where m/, etc., come from m, etc., by exchanging ¢ and ¢/. But it may
be easily proved that m=m’/, and we may infer from this that m, =m{
and m,=mj, on account of the invariantic character of m being pre-
served when ¢ becomes ¢ —¢. Infact, putting c=f+ Ve and ¢/=f- Ve,
where f is self-conjugate, we may independently show that
/ 4
m=m,=flu\nglv+efe_cu\70vcw duVe've'w

W uwvw ~ uVvw
iy = m] = uVivfw+ vViwfu+ wVfufv o
uVvw
_uVevew +vVeweu + wVeuev _ o ith ¥,
uVvw
My =1} LS LS VxY WUH/WVUY _ oome with ¢=same with ¢/,
uVvw

So in Hamilton’s cubic (C) we may change ¢ to ¢/, leaving the m’s
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unchanged ; or else in the m’s only ; or make the change in both the ¢'s
and the m’s, without affecting its truth.

If the passage from (A) to (C) above be compared with the corre-
sponding transition in Tait’s Quaternions (3rd edition, §§ 158 to 160) it
will be seen that that rather difficult proof is simplified (as done above)
by omitting altogether the inverse operations ¢! and (¢ —g)~! and the
auxiliary operator x ; especially x, perhaps. One is led to think from
Professor Tait’s proof that the object of the investigation is to solve
the problem of inverting ¢. But the mere inversion can be done by
elementary methods. In Gibbs’s language, if a, b, ¢ is one set of
vectors, the reciprocal set is a’, b/, ¢/, given by

a’= Vbe b= Vea ¢/ = Xﬂ)—
aVbe’ bVea’' cVab
On this understanding, we may expand any vector d in terms of
a, b, ¢ thus:—
d=a.a’d+b.Wd+ec.c’d.

Similarly, if 1/, m’, n’ is the set reciprocal to 1, m, n, we have
r=VIr+m’, mr+n’,nr.
If, then, it be given that
d=¢(r)=a.lr+b.mr +ec.nr,
we see that Ir =a’d, ete., so that
r=¢Y(d)=V.a’d+m’. b/d+n’.c’d
inverts ¢. (This is equivalent to Tait, § 173.)

We see by (A) and (B) that the inverts of u, v, W are ¢/ x inverts of

cu, ¢V, ¢cwW; or ¢ x inverts of ¢/u, ¢/v, ¢/w. The cubic (C) may be written
cuVeve
Wv;wlv ¢! — (ue v/ + ve v/ + WC‘1W’)} =4 {c - (uew’ + vev’ + ch’)},

if v/, v/, w/ are the inverts of u, v, w (or the reciprocal set). In this
identity the operators ¢ and ¢~! may be inverted. When that is done
we see that the m of ¢ is the reciprocal of the m of ¢71.]

Note on Modification of Index-equation when ¢ and p are Rotational.

[Let ¢/ and p’ be the conjugates to ¢ and p. Then, by (A), (B), in
last note,

mVVvW = p/Vuvpw = pVp/vp/w,
where M= i fho s + €1148,

if pu;, pg, pg are the principal permeabilities of p,, the self-conjugate
operator such that p=p,+ Ve. With this extension of meaning, we
shall have (treating ¢ and » similarly),

~E=¢"1VsH, -nE=V¢sc’H, —mE=c"1VsVu/sp’E,
H =, 1VsE, mH=Vp/sp/B, —nH =p"1VsV¢/sc’H,
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where the first pair replace (28), (29), the second pair (31), (32), and
the third pair (33), (34). Then

— B = w's(sp/E) - wWE(sps),
~npH= ¢/s(s¢’H) — ¢/H(sc’s)
replace (33a) and (34a), and
T AR T 0 ey il
sp/B - (s8p/s)p/ —mc s’H  (s¢/s) —np
replace (37a), (38a); from which two forms of index-equation corre-
sponding to (41) are

8 8
S ol e g = 0.
(sp/8)c~ T —mp"1 7 (s¢’s)p~t = me/1

We obtain impossible values of the velocity for certain directions of the
normal. That is, there could not be a plane wave under the circum-
stances. |

XXXII. NOTES ON NOMENCLATURE.

[T'he Electrician, Note 1, Sep. 4, 1885, p. 311 ; Note 2, Jan. 26, 1886, p. 227 ;
Note 3, Feb. 12, 1886, p. 271.]

Nore 1. Ipeas, WORDS, AND SYMBOLS.

HOWEVER desirable it may be that writers on electrotechnics should
use a common notation, at least as regards the frequently recurring
magnitudes concerned—which notation should not be a difficult matter
to arrange, provided it be kept within practical limits—it is perhaps
more desirable that they should adopt a common language, within the
same practical limits, of course. For whilst the use of certain letters
for certain magnitudes requires no more explanation than, for instance,
“Let us call the currents (), C,, ete.,” it is otherwise with the language
used when speaking of the magnitudes, as more elaborate explanations
are needed to identify the ideas meant to be expressed.

As regards electric conduction currents, there is a tolerably uniform
usage, and a fairly good terminology. It is seldom that any doubt can
arise as to a writer's meaning, unless he be an ignoramus or a para-
doxist, or have unfortunately an indistinct manner of expressing him-
self. I would, however, like to see the word *intensity,” as applied to
the electric current, wholly abolished. It was formerly very commonly
used, and there was an equally common vagueness of ideas prevalent.
It is sufficient to speak of the current in a wire (total) as *the current,”
or “the strength of current,” and when referred to unit area, the
current-density. (In three dimensions, on the other hand, when every-
thing is referred to the unit volume, and the current-density is meant
as a matter of course, it is equally sufficient to call i the current.)
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It is a matter of considerable practical advantage to have single words
for names, instead of groups of words, and it is fortunate that the exist-
ing conduction-current terminology admits of very practical adaptation
this way. Thus, “specific resistance” may be well called “resistivity,”
and specific conductance ¢ conductivity,” referring to the unit volume.
Resistivity is the reciprocal of conductivity, and resistance of conduct-
ance. When wires are in parallel, their conductances may be more
easy to manage than their resistances. We have also the convenient
adjectives “conductive ” and “resistive,” to save circumlocution.

Passing to the subject of magnetic induction, there is considerable
looseness prevailing. There is a definite magnitude called by Maxwell
“the magnetic induction,” which may well be called simply “the
induction.” It is related to the magnetic force in the same manner as
current-density to the electric force. (B=pH.) The ratio p is the
“magnetic permeability.” This may be simply called the permeability,
since the word is not used in any other electrical sense. Induction and
permeability may not be the best names, but (apart from their being
understood by mathematical electricians) they are infinitely better than
the long-winded ‘“number of lines of force” (meaning magnetic) and
“conductivity for lines of force,” the use of which, though defensible
enough in merely popular explanations, becomes almost absurd when
the electrotechnical user actually goes so far as to give them quantita-
tive expression. Conductivity should not be used at all, save in point-
ing out an analogy. It has its own definite meaning.

“ Permeability,” however, does not admit of such easy adaptation to
different circumstances as conductivity. Permeability referring to the
unit volume, the word permeance is suggested for a mass, analogous to
conductance. We have also the adjective ““permeable.” By adding,
moreover, the prefix “im,” we get “impermeable,” ¢ impermeability,”
and ‘‘impermeance,” for the reciprocal ideas, sometimes wanted. Thus
impermeability, the reciprocal of u, would stand for the long-winded
“specific resistance to lines of magnetic force.” (The permeance of a
coil would be L/4m, if L is its coefficient of self-induction. In the
expression 7'= 1 LC? for the magnetic energy of current C in the coil, 4=
does not appear, whilst it does in the form 7'=} magnetomotive force x
total induction through the circuit + 4=, It is 4=C that is the magneto-
motive force, and LC the induction through the circuit. Thus we have
oppositely acting 47’s. I may here remark that it would be not only a
theoretical but a great practical improvement to have the electric and
magnetic units recast on a rational basis. But I suppose there is no
chance of such an extensive change.) It must be confessed, however,
that these various words are not so good as the corresponding con-
duction-current words.

But now, if, thirdly, we pass to electric displacement, the analogue of
magnetic induction (noting by the way that it had better not be called
the electric induction, on account of our already appropriating the word
induction, but be called the displacement), the existing terminology is
extremely unsatisfactory; and, moreover, does not readily admit of
adaptation and extension. Corresponding to conductivity and perme-
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ability we have “specific inductive capacity,” or ¢ dielectric constant,”
or whatever it may be called. I usually call it the electric capacity, or
the capacity. It refers to the unit volume. But here it is very unfor-
tunate that it is not this specific capacity ¢ (say), but ¢/4w, that is the
capacity of a unit cube condenser (such that charge = difference of
potential x capacity). D, the displacement, is the charge (+ or —,
according to the end), and we have D=cFE/4m, E being the electric
force. 'We may get over this trouble by putting it thus, D=sFE, and
calling s (or ¢/4w) the specific capacity. Then the capacity in bulk is
got in the same manner as conductance from conductivity.

Supposing we have done this, there is still the trouble that capacity
gives the extremely awkward inverse ‘incapacity,” and the adjectives
“capacious” and “incapacious,” besides not giving us any words for
use in bulk, like conductance and resistance. And, in addition, the
word capacity is itself rather objectionable, as likely to give beginners
entirely erroneous notions as to the physical quality involved. It is
not that one dielectric absorbs electricity more readily than another.
Electric displacement is an elastic phenomenon : one dielectric is more
yielding (electrically) than another. The reciprocal of s above is the
electric elasticity, measuring the electric force required to produce the
unit displacement. Thus s should have a name to express the idea of
elastic yielding or distortion, and its reciprocal also a name (not strings
of words), and they should be readily adaptable, like conductivity, etc.
(Perhaps also a better word than permeability might be introduced,
although, as we see, it is tolerably accommeodative.) Displacement
itself might also be replaced by another word less suggestive of bodily
translation ; although, on the other hand, it harmonises well with
“ current,” the displacement being the accumulated current, or the
current the time-variation of the displacement.

All these things will get right in time, perhaps. Ideas are of primary
importance, scientifically. Next, suitable language. As for the nota-
tion, it is an important enough matter, but still only takes the third
place.

Notk 2. ON THE RISE AND PROGRESS OF NOMENCLATURE.

In the beginning was the word. The importance of nomenclature
was recognised in the earliest times. One of the first duties that
devolved upon Adam on his installation as gardener and keeper of the
zoological collection was the naming of the beasts.

The history of the race is repeated in that of the individual. This
grand modern generalisation explains in the most scientific manner the
fondness for calling names displayed by little children.

Passing over the patriarchal period, the fall of the Tower of Babel
and its important effects on nomenclature, the Egyptian sojourn, the
wanderings in the desert, the times of the Kings, of the Babylonian
captivity, of the minor prophets, of early Christianity, of those dreadful
middle ages of monkish learning and ignorance, when evolution worked
backwards, and of the Elizabethan revival, and coming at once to the
middle of the 19th century, we find that Mrs. Gamp was much im-
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pressed by the importance of nomenclature. “Give it a name, I beg.
Sairey, give it a name !” cried that esteemed lady. She even went so
far as to give a name to an entirely fictitious personage—Mrs. Harris,
to wit—who has many scientific representatives.

Hayving thus fortified ourselves by quoting both ancient and modern
instances, let us consider the names of the electrical units.

A really practical name should be short, preferably monosyllabie,
pronounced in nearly the same way by all civilised peoples, and not
mistakable for any other scientific unit. If, in addition, it be the name,
or a part of the name, of an eminent scientist, so much the better.
This is quite a sentimental matter ; but if it does no harm, it is needless
to object to it. But we should never put the sentiment in the first
place, and give an unpractical name to a unit on account of the
sentiment.

Ohm and volt are admirable; farad is nearly as good (but surely it
was unpractical to make it a million times too big—the present micro-
farad should be the farad); erg and dyne please me ; watt is not quite
so good, but is tolerable. But what about those remarkable results of
the Paris Congress, the ampére and the coulomb ? Speaking entirely
for myself, they are very unpractical. Coulomb may be turned into
coul, and is then endurable; this unit is, however, little used. But
ampére shortened to am or amp is not nice. Better make it pére;
then it will do. Now an additional bit of sentiment comes in to support
us. Was not Ampere the father of electrodynamics?

It seems rather unpractical for the B.A. Committee to have selected
108 c.g.s. as the practical unit of E.M.F.,, instead of 109. This will
hardly be appreciated except by those who make theoretical calculations;
the awkward thing is that the pére is one tenth of the c.g.s. unit of
current. I suppose it was because the present volt was an approxima-
tion to the E.M.F. of a Daniell ; that is, however, a very strong reason
for making the practical unit much smaller; because the E.M.F. of a
cell has now to be given in volts and tenths, or hundredths also. How
awkward it would have been if the ohm had been made 101 ¢c.g:s., so as to
approximate to the resistance of a mile of iron telegraph wire. The ohm
and volt should be the same multiple of the c.g.s. units, both 109 for
example. Then use the millivolt or centivolt when speaking of the
E.M.F. of cells. The present 1:12 volt would be 112 millivolts. Speak-
ing from memory, Sir W. Thomson did object to the 10® volt at the
Paris Congress.

Mac, tom, bob, and dick are all good names for units. Tom and mac
(plural, max), have sentimental reasons for adoption ; bob and dick may
also at some future time. I have used tom myself (no offence, I hope)
for six years past to denote 10Y c.g.s. units of self or mutual electro-
magnetic induction coefficient. (Some reform is wanted here. Co-
efficient of self-induction, or of electromagnetic capacity, is too lengthy.)
The advantage is that L toms divided by R ohms gives L/R seconds of
time. But it is too big a unit for little coils; then use the millitom ;
or even the microtom for very small coils. This applies to fine-wire
coils. The c.g.s. unit itself would be most suitable for coils of a few
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turns of thick wire. If it is called the tom, then the kilotom or mega-
tom will come in useful for fine-wire coils.

A name should certainly be given to a unit of this quantity, whether
it be tom, or mac, or any other practical name. Also, names to a unit
of magnetic force (intensity of), and of magnetic induction.

There is also the question of the names, not of the units, but of the
physical magnitudes of which they are the units, but it is too large a
question to discuss here except in the most superficial manner. It is
engrained in the British nature to abbreviate, to make one word do for
two or three, or a short for a long word. And quite right too. We
have much to be thankful for ; in the application of this general remark,
consider what frightful names might have been given to the electrical
units by the Germans. But, on account of this national, and also
rational tendency to cut and clip, it is in the highest degree desirable
that as many as possible of the most important physical magnitudes
should be known, not by a long string of words, but by a single word,
or the smallest number possible.

Thus, I find myself frequently saying force, when I mean magnetic
force, and even then, I mean the intensity of magnetic force. The
context will generally make the meaning plain. But it is necessary to
be very careful when there are more forces than one in question.
(This use of force as an abbreviation is, of course, quite distinct from
the frequent positive misuse of the word force, to indicate it may be
momentum, or energy, or activity, or, very often, nothing in particular,
the misuser not being able to say exactly what he means; nor does it
much matter.) It would be decidedly better if such a quantity as
“intensity of magnetic force” had a one-word name, for people will
abbreviate, and sometimes confusion may step in. This remark applies
to most of the electromagnetic magnitudes. ;

There is an important magnitude termed the magnetic induction, I
call it often simply ‘“the induction”; but in doing so, carefully avoid
calling any other quantity ‘the induction” (sometimes the electric dis-
placement is called the electric induction). But there is an unfortunate
thing here, which somewhat militates against “the induction,” or even
“the magnetic induction ” being a thoroughly good name for the mag-
nitude in question. This is, that besides being a name of a physical
magnitude, the word induction has a widespread use, in a rather vague
manner, in connection with transient states in general, whether of the
electric or of the magnetic field, exemplified, to take an extreme
example, when a man explains something complex by saying it is
caused by “induction,” and so settling the matter. If this vague
qualitative use of induction were got rid of, then as a name for a
physical magnitude it would be unobjectionable. As it is, it is a
question whether the physical magnitude should not have a name for
itself alone.

“ Resistivity ” for specific resistance, and * conductance ” for what is
sometimes called the conductibility of a wire, 7., not its conductivity
(specific conductance), but the reciprocal of its resistance, are, I think,
as I have remarked before, quite practical names.
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Notk 3. THE INDUCTANCE OF A CIRCUIT.

IN my first note, amongst other things, I remarked that whilst the
conduction-current terminology admitted of the words resistivity and
conductance being coined to make it more complete, the terminology in
the allied cases of magnetic induction and electric displacement was
unsatisfactory.

As regards the former, the following appears to me to be practical.
First, abolish the word permeability, and substitute Inductivity. We
then have B=pH, when B is the Induction, and p the Inductivity,
showing how the Induction is related to the magnetic force A by the
specific quality of the medium at the place, its inductivity.

Now conductivity and conductance are mathematically related in the
same manner (except as regards a 4w) as inductivity and what it is
naturally suggested to call Inductance.

The Inductance of a circuit is what is now called its coefficient of
self-induction, or of electromagnetic capacity.

Thus the quantities induction, inductivity, and inductance are happily
connected in a manner which is at once concise and does justice to their
real relationship. When the mutual coefficient of induction of two
circuits is to be referred to, it will of course be the mutual inductance.

XXXIII. NOTES ON THE SELF-INDUCTION OF WIRES.
[The Electrician, 1886 ; Note 1, April 23, p. 471 ; Note 2, May 7, p. 510.]

Notre 1. We read in the pages of history of a monarch who was
“supra grammaticam.” All truly great men are like that monarch.
They have their own grammars, syntaxes, and dictionaries. They
cannot be judged by ordinary standards, but require interpretation.
Fortunately the liberty of private interpretation is conserved.

No man has a more peculiar grammar than Prof. Hughes. Hence, he
is liable, in a most unusual degree, to be misunderstood, as I venture to
think he has been by many, including Mr. W. Smith, whose interesting
letter appears in The Electrician, April 16, 1886, p. 455, and Prof. H.
Weber, p. 451.

The very first step to the understanding of a writer is to find out what
he means. Before that is done there cannot possibly be a clear com-
prehension of his utterances. One may, by taking his language in its
ordinary significance, hastily conclude that he has either revolutionised
the science of induction, or that he is talking nonsense. But to do this
would not be fair. We must not judge by what a man says if we have
good reason to know that what he means is quite different. To be quite
fair, we must conscientiously endeavour to translate his language and
ideas into those we are ourselves accustomed to use. Then, and then
only, shall we see what is to be seen.

‘When Prof. Hughes speaks of the resistance of a wire, he does not
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always mean what common men, men of ohms, volts, and farads, mean
by the resistance of a wire—only sometimes. He does not exactly
define what it is to be when the accepted meaning is departed from.
But by a study of the context we may arrive at some notion of its new
meaning. It is not a definite quantity, and must be varied to suit
circumstances. Again, there is his ‘“inductive capacity” of a wire.
We can only find roughly what that means by putting together this,
that, and the other. It, too, is not a definite quantity, but must be
varied to suit circumstances. It is not the coefficient of self-induction,
nor is it any quantity defining a specific quality of the wire, like
conductivity, or inductivity. It is a complex quantity, depending on a
great many things, but which may, to a first rough approximation, be
taken to be proportional to the time-constant of the wire, the quotient
of its coefficient of self-induction by its resistance. Bearing these two
things in mind, we shall be able to approximate to Prof. Hughes’s
meaning.

Owing to the mention of discoveries, apparently of the most revolu-
tionary kind, I took great pains in translating Prof. Hughes’s language
into my own, trying to imagine that I had made the same experiments
in the same manner (which could not have happened), and then asking
what are their interpretations? The discoveries I looked for vanished
for the most part into thin air. They became well known facts when
put into common language. The satisfaction of getting verifications,
however, even in so roundabout and rough a manner, is some compen-
sation for the disappointment felt. I venture to think that Prof.
Hughes does not do himself justice in thus deceiving us, however
unwittingly, and that possibly there has been also some misapprehension
on his part as to what the laws of self-induction are generally supposed
to be.

I have failed to find any departure from the known laws of electro-
magnetism. In saying this, however, I should make a reservational
remark. There may be lying latent in Prof. Hughes’s results dozens of
discoveries, but it is impossible to get at them. For consider what the
mere existence of ohms, volts, and farads means? It means that, even
before they were made, the laws of induction in linear circuits were
known, and very precisely. To get, then, at new discoveries requires
very accurate comparison of experiment with theory, by methods which
enable us to see what we are doing and measuring, in terms of the
known electromagnetic quantities. This is practically impossible, on
the basis of Prof. Hughes’s papers. We can only make very rough
verifications. I have had myself, for- many years past, occasional
experience with induction balances of an exact nature—true balances
of resistance and induction—and always found them work properly.
But, in the modification made by Prof. Hughes, the balance is generally
of a mixed nature, neither a true resistance nor a true induction balance,
and has to be set right by a foreign impressed force, viz., induction
between the battery and telephone branches. By using a strictly
simple harmonic E.M.F., as of a rotating coil, we may exactly formulate
the conditions of the false balance, and then, noting all the resistances,
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ete., concerned, derive, though in a complex manner, exact information.
Or, if we use true balances, any kind of E.M.F. will answer.

To illustrate the falsity of Prof. Hughes’s balances and the difficulty
of getting at exact information, he finds the comparative force of the
extra-currents in two similar coils in series to be 1-74 times that of a
single coil. From the context it would appear that this ¢ comparative
force of the extra-currents ” is the same thing as the former “ inductive
capacity ” of wires. Now, the coeflicient of self-induction of two similar
coils in series, not too near one another, is double that of either, whilst
the time-constant of the two is the same as of either. This can be
easily verified by true balances.

The most interesting of the experiments are those relating to the
effect of inereased diameter on what Prof. Hughes terms the “inductive
capacity ” of wires. My own interpretation is roughly this. That the
time-constant of a wire first increases with the diameter, and then later
decreases rapidly ; and that the decrease sets in the sooner the higher
the conductivity and the higher the inductivity (or magnetic perme-
ability) of the wires. If this be correct, it is exactly what I should have
expected and predicted. In fact, I have already described the pheno-
menon substantially in The Electrician ; or, rather, the phenomenon I
described contains in itself the above interpretation. In The Electrician
for January 10, 1885, I described how the current starts in a wire. It
begins on its boundary and is propagated inward. Thus, during the
rise of the current it is less strong at the centre than at the boundary.
As regards the manner of inward propagation, it takes place according
to the same laws as the propagation of magnetic force and current into
cores from an enveloping coil, which I have described in considerable
detail in The Electrician [Reprint, vol. 1, Art. 28, See especially § 20].
The retardation depends on the conductivity, on the inductivity, and on
the section, under similar boundary conditions. If the conductivity be
high enough, or the inductivity or the section be large enough, to make
the central current appreciably less than the boundary current during
the greater part of the time of rise of the current, there will be an
apparent reduction in the time-constant. Go to an extreme case. Very
rapid short currents, and large retardation to inward transmission.
Here we have the current in layers, strong on the boundary, weak in
the middle. Clearly, then, if we wish to regard the wire as a mere
linear circuit, which it is not, and as we can only do to a first approxi-
mation, we should remove the central part of the wire—that is, increase
its resistance, regarded as a line, or reduce its time-constant. This will
happen the sooner the greater the inductivity and the conductivity, as
the section is continuously increased. It is only thin wires that can be
treated as mere lines, and even they, if the speed be only great enough,
must be treated as solid conductors. I ought also to mention that the
influence of external conductors, as of the return conductor, is of
importance, sometimes of very great importance, in modifying the
distribution of current in the transient state. I have had for years in
MS. some solutions relating to round wires, and hope to publish them
soon.
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As a general assistance to those who go by old methods—a rising
current inducing an opposite current in itself and in parallel conductors
—this may be useful. Parallel currents are said to attract or repel,
according as the currents are together or opposed. This is, however,
mechanical force on the conductors. The distribution of current is not
affected by it. But when currents are increasing or decreasing, there is
an apparent attraction or repulsion between them. Oppositely going
currents repel when they are decreasing, and attract when they are
increasing. Thus, send a current into a loop, one wire the return to
the other, both being close together. During the rise of the current it
will be denser on the sides of the wires nearest one another than on the
remote sides. It is an apparent force, not between currents (on the
distance-action and real motion of electricity views), but between their
accelerations.

Notk 2. I did not expect to return to the subject, and do so because
Prof. Hughes has apparently misunderstood my statements. On p. 495
of The Electrician for April 30, 1886, he says :—Mr. Oliver Heaviside
points out that upon a close examination it will be found that all the
effects which I have described are well known to mathematicians, and
consequently old.” A regard for accuracy compels me to point out that
I did not make the statement he credits me with ; nor, to avoid any
hypereriticism, is the above a correct summary of the many things that
I pointed out.

I said, “The discoveries I looked for vanished, for the most part,
into thin air. They became well-known facts when put into common
language.” Observe here my ‘“for the most part” as against Prof.
Hughes’s “all”; and that I said not a word about mathematicians in
the whole letter. An immediate consequence of my statement is
another, namely, that some, although a minority, of the results were
not well known. There is a material difference between what I said
and what Prof. Hughes makes me say. In another place I said that I
had “failed to find any departure from the known laws of electro-
magnetism,” and then proceeded to give my reasons for it. This
statement includes the well-known facts as well as those which are not
well known.

It may be as well that I should illustrate the difference between well-
known facts and those that are less known, or only known theoretically.
The influence of the form of a thin wire (a linear conductor), and of its
length, diameter, conductivity, and inductivity on the phenomena of
self-induction is well known. The various relations involved form the
A BC of the subject. So are the effects of concentration of the current,
and of dividing it, or spreading it out in strips, well known. There is
another influence that is well known, that is scarcely touched upon by
Prof. Hughes. The self-induction depends upon the distribution of
inductivity, that is, in another form, of inductively magnetisable matter,
outside the current, as well as in it, in a manner which is quite definite
when the magnetic properties of the matter are known.

It is not to be inferred that verifications of well-known facts are of no
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value—that depends upon circumstances. To be of any use, we must
know what we are measuring and verifying. The theory of self and
mutfual induction in linear circuits is almost a branch of pure mathe-
matics, so simply are the quantities related, and so exactly. It furnishes
a most remarkable example of the dependence of complex phenomena
on a very small number of independent variables, by ignoring minute
dielectric phenomena. In getting verifications, then, it is first necessary
to employ a correct method. I have elsewhere [The Electrician, April 30,
1886, p. 489 ; the next Art. 33] shown the approximate character of Prof.
Hughes’s method of balancing, and pointed out exact methods. Next,
it is necessary to put results in terms of the quantities in the electro-
magnetic theory which is founded upon the well-known facts; how
else can we know what we are doing, and see how near our verifica-
tions go?

Coming now to results that are not well known, there is the thick-
wire effect, depending on size, conductivity, inductivity, place of return
current, etc. This is, in my opinion, the really important part of Prof.
Hughes’s researches, as it, in some respects, goes beyond what was
already experimentally known. Having been, so far as I know, the
first to correctly describe (The Electrician, Jan. 10, 1885, p. 180)
[Reprint, vol. I. pp. 439, 440] the way the current rises in a wire, viz,
by diffusion from its boundary, and the consequent approximation,
under certain circumstances, to mere surface conduction ; and believing
Prof. Hughes’s researches to furnish experimental verifications of my
views, it will be readily understood that I am specially interested in
this effect ; and I can (in anticipation) return thanks to Prof. Hughes
for accurate measures of the same, expressed in an intelligible form, to
render a comparison with theory possible if it be practicable. I send
with this a first instalment of my old core investigations applied to a
round wire with the current longitudinal. [Section 26 of ‘ Electro-
magnetic Induction,” later.]

There are also intermediate matters where one can hardly be said to
be either making verifications, except roughly, or discoveries; for
instance, the self-induction of an iron-wire coil. Theory indicates in
the plainest manner that the self-induction coefficient will be a much
smaller multiple of that of a similar copper-wire coil than if the wires
were straightened. Magnetic circuits are now getting quite popularly
understood, by reason of the commercial importance of the dynamo.
But there is really no practical way of carrying out the theory com-
pletely, as the mathematical difficulties are so great. Hence, actnal
measurements of the precise amounts in various cases of magnetic
circuits are of value, if they be accompanied by the data necessary for
comparisons. ‘

There is, however, this little difficulty in the way when transient
currents are employed. Iron, by reason of its high inductivity, is pre-
eminently suited for showing the thick-wire effect. We may not,
therefore, be always measuring what we want, but something else.
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XXXIV. ON THE USE OF THE BRIDGE AS AN INDUCTION
BALANCE.

[The Electrician, April 30, 1886, p. 489.]

IN connection with a paper “On Electromagnets, etc.,” that I wrote
about six years ago [Reprint, Art. xvii,, vol. 1, p. 95], which paper
dealt mainly with the question of the influence of the electromagnetic
induction of the lines and instruments on the magnitude of the signalling
currents, an influence which is of the greatest importance on short lines,
and which (of the instruments) is, even on long lines, where electro-
static induction is prominent, of importance as a retarding factor, I
made a great many experiments on self-induction, amongst which were
measurements of the inductances of various telegraph instruments, with
a view to ascertaining their practical values, and also the multiplying
powers of the iron cores. It was my intention to write a supplementary
paper giving the results and also further investigations; but, having
got involved, in the course of the experiments, in the difficult subject
of n&agnetic inductivity, it was postponed, and then dropped out of
mind.

I used, first of all, the Bridge and condenser method described by
Maxwell, with reversals, and a telephone for current indicator. This
was to get results at once, or by simple calculations, in electromagnetic
units. Next, I discarded the condenser, and used the simple Bridge,
balancing coils against standard coils. Thirdly, I have used a differ-
ential telephone with the same object, in a similar manner. The two
last are very sensitive methods, and the verifications of the theory of
induction in linear conductors that I have made by them are numerous.

The whole of this journal would be required to give anything like a
full investigation of the various ways of using the Bridge as an induction
balance. I can, therefore, only touch lightly on the subject of exact
balances, especially as I have to remark upon faulty methods, approxi-
mate balances, and absolutely false balances. Prof. Hughes’s balance
is sometimes fairly approximate, sometimes quite false.

Put a telephone in the branch 5, battery and
interrupter in 6. Then, » standing for resistance, 1 3
I for inductance (coefficient of self-induction),
and z for //r, the time-constant of a branch,
the conditions of a true and perfect balance,
however the impressed force in 6 vary, are three

in number, namely, , )
T L e, T S g D (1)
(gl == N AN e e O TRAL NI (2)
BRI SRR R ch R RNERG H (3)

Their interpretations are as follows :—1If the first condition is fulfilled
there will be no final current in 5 when a steady impressed force is put
in 6. This is the condition for a true resistance balance.

H.E.P.—VOL. I1, c
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If, in addition to this, the second condition be also satisfied, the
integral extra-current in 5 on making or breaking 6 is zero, besides the
steady current being zero. (1) and (2) together therefore give an
approximate induction balance with a true resistance balance.

If, in addition to (1) and (2), the third condition is satisfied, the
extra-current is zero at every moment during the transient state, and
the balance is exact, however the impressed force in 6 vary.

Practically, take

HE= T and’ =, s v (4)

that is, let branches 1 and 2 be of equal resistance and inductance.
Then the second and third conditions hecome identical ; and, to get
perfect balances, we need only make

Tg=T,, and lg= 1T, Vol S (5)

This is the method I have generally used, reducing the three con-
ditions to two, whilst preserving exactness. It is also the simplest
method. The mutual induction, if any, of 1 and 2, or of 3 and 4, does
not influence the balance when this ratio of equality, r, =1,, is employed
(whether 7, =7, or not). So branches 1 and 2 may consist of two
similar wires wound together on the same bobbin to keep their temper-
atures equal.

The sensitiveness of the telephone has been greatly exaggerated.
Altogether apart from the question of referring the sensitiveness to the
human ear rather than to the telephone, it is certainly, under ordinary
circumstances, often unable to appreciate the differences of the second
order, which vanish when the third condition is satisfied. Thus (1)
and (2) satisfied, but with (3) unsatisfied, will give silence. Take, for
instance, r, =7, and 7;=r,, but /, different from /, and /; from /,, then

silence is given by
(=0 fry =y — 1) rg 5 oasi s (6)

that is, by making the differences of the inductances on the two sides
of 6 proportional to the resistances. We can therefore get silence by
varying the inductance of any one or more of the four branches 1, 2, 3,
4, to suit equation (6). It is certain that we do get silence this way,
but it does not follow that silence is given by ezactly satisfying (6), (and
(1) of course), because it is only a balance of integral extra-currents,
and other balances of this kind are certainly quite false sometimes.
To avoid any doubt, it is of course best to keep to the legitimate and
simpler previously-described method.

There are some other ways of using the Bridge as an induction
balance in an exact manner, but they are less practically useful than
theoretically interesting. Pass, therefore, to other approximate, and to
false balances. Suppose we start with a true balance, and then upset
it by increasing the inductance of the branch 4. It is clear that we
should never alter the already truly established resistance balance.
Now, besides by the exact ways, we can get approximate silence by
allowing mutual induction between 5 and any of the other five branches,
or between 6 and any of the other five branches, that is nine ways, not



USE OF THE BRIDGE AS AN INDUCTION BALANCE. 35

counting combinations. (Put test coils in 5 and 6 with long leading
wires, so that they may be carried about from one branch to another.)
These approximate balances are all of the integral extra-current only,
and therefore imperfect, however nearly there may be silence. But the
silences are of very different values.

I find, using fine-wire coils, that mutual induction between 6 and 4
or between 6 and 3 gives silence (to my ear) with the true resistance
balance, just like the approximate balance of equation (6) in which no
mutual induction is allowed.

These are only two out of the nine ways. All the rest are bad. If
the difference in the inductance of 3 and 4 be small, there is very
nearly silence on using any of the other seven ways; but, the larger
this difference is made, the louder becomes the “silence,” and sometimes
it is even a very loud noise, quite comparable with the original sound
that was to be destroyed, even when the combinations 6 and 4 or 6 and
3, and the formerly-mentioned method give a silence that can be felt,
with the true resistance balance.

It is certainly a rather remarkable thing that the one method out of
these seven faulty ways which gave the very loudest sound was the 5
and 6 combination, which is Professor Hughes’s method. I do not say
that it is always the worst, although it was markedly so in my experi-
ments to test the trustworthiness of the method. And sometimes it is
quite fair. In fact, when the sound to be destroyed is itself weak, all
the seven faulty methods are apparently alike, nearly true. But when
we exaggerate the inequality of inductance between 3 and 4, whilst the
6 to 4 and 6 to 3 combinations keep good, the others get rapidly worse,
and differences appear between them.

I found that by increasing the resistance of the branch whose
inductance was the smaller, the sound was diminished greatly, i.c., in
the seven faulty methods. The coil of greater inductance had apparently
the higher resistance. That is, with a false resistance balance we may
approximate to silence. Such a balance is condemned for scientific
purposes.

Although mutual induction between 6 and 4 or 6 and 3 gave silence,
with true resistance balances, the experiments were not sufficiently
extended to prove their general trustworthiness. There is, however,
some reason to be given for their superiority. For, since the dis-
turbance in the telephone arises from the inequality of the momenta of
the currents in the branches 3 and 4, and of the electric impulses
arising in them when contact is broken in branch 6 (considering the
break only for simplicity), we go nearest to the root of the evil by
generating an additional impulse in 3 or 4 themselves from the battery
branch, of the right amount.

The following is an outline of the theory of these approximate
balances. Let 7, =r,r, first; so that, C standing for current, we have,
in the steady state,

Cy=Cy=Cyry/rg, Cy=0Cy Co=Cy1+1,/rg). ... (7)
The momentum of the current in branch 1 is /;(}, that in 2 is [,C,, and
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so on. Consider the break, and the integral extra-current that then
arises from /,C;. It is
WOy + {ry+rg+oy(ry+1,)/(ry + 14479}, -
and (ry+7,)/(rs+7,+75) is the fraction of this that goes through 5 ; so
that the integral current in 5 due to /,C, is
LO\(rg+7y) + {(n +r)(rs + 1) +75(ry +1p 73+ 70) )
or Cyry + {rg+1y+15+7575/11 }
by making use of equations (1) and (7).
Treat the others similarly. The total extra-current in 5 is
T O+ By — Ty — ) + {Tg + 7+ 75+ 7051} e (8)
without any mutual induction. So
T+ Ty =2y + Ty
gives approximate balance. This was mentioned before, and becomes
an exact balance with makes and breaks when a ratio of equality is
taken.

Now let there be mutual induction between 6 and 4, 5 and 4, and 5
and 6, the mutual inductances being M,,, ete. Treating these similarly
to before, we shall find the total extra-current in 5 on the break taking
place to be

{ra(@y + 2, — 2y — 25) + Moy(1 +7,/rg) + My (1 +1y/7y)
+ Myg(1 +r/r W1 +7, /1) } Oy 5 (rg + 1y 4 15 + 7475 /11)e ceeeeenns 9)

The theory of the make leads to the same result—that is, as regards
the infegral extra-current. Otherwise they are different. So, using
M (Hughes’s method) the zero integral current is when

7y(%) + @y — 2y — @) + M1 4 15/r)(1 +7,/1r5)=0. ..eeee (10)
Using M,, we have
T4( @y + Ty — Ty — Xg) + M (1 +75/r) =0 oo (1)
Using M, we have o
4@y + 2, — 2 — ) + Mo (1 +7,/r5)=0. ..ooiiiiiiil (12)

Practically employ a ratio of equality 7, =7, I, =I,; that is, make
branches 1 and 2 equal fixtures. Then these three equations become

by~ Byt 2M (1 F gl =0y oo cosian euas el (10a)
1= T4 O 0y S 5 T e (11a)
b= b 20, =0." ... . (12a)

Thus the M,; system has the simplest formula, as well as being
practically perfect. It is the same with 1, Either of these must
equal half the difference of the inductances of 3 and 4.

As (10a), or, more generally, (10) contains resistances, we cannot get
any definite results from Prof. Hughes’s numbers without a knowledge
of the resistances concerned. Note, also, that (10) and (11) are faulty
balances ; to improve them, destroy the resistance balance; of course
then the formula will change, and is likely to.become very complex.

_ It will be understood that when I speak of false resistance balances
in this paper I do not in any way refer to the thick-wire phenomenon,
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mentioned in my letter |p. 30], which, from its very nature, requires
the resistance balance to be upset, or be different from what it would
be if the wire were thin, but of the same real [i.e., steady] resistance.
The resistance balance must be upset in a perfect arrangement. Nor
can there be a true balance got, but only an approximate one, unless
a similar thick wire be employed to produce balance.

What I refer to here is the upsetting of the true resistance balance
when there is no perceptible departure whatever from the linear theory.
The two effects may be mixed.

To use the Bridge to speedily and accurately measure the inductance
of *a coil, we should have a set of proper standard coils, of known
inductance and resistance, together with a coil of variable inductance,
i.e., two coils in sequence, one of which can be turned round, so as to
vary the inductance from a minimum to a maximum. (The scale of
this variable coil could be calibrated by (12a), first taking care that the
resistance balance did not require to be upset.) This set of coils, in or
out of circuit according to plugs, to form say branch 3, the coil to be
measured to be in branch 4. Ratio of equality. Branches 1 and 2
equal. Of course inductionless, or practically inductionless resistances
are also required, to get and keep the resistance balance.

The only step to this I have made (this was some years ago) in my
experiments, was to have a number of little equal unit coils, and two or
three multiples; and get exact balance by allowing induction between
two little ones, with no exact measurement of the fraction of a unit.

So long as we keep to coils we can swamp all the irregularities due
to leading wires, etc., or easily neutralise them, and therefore easily
obtain considerable accuracy. With short wires, however, it is a
different matter. The inductance of a circuit is a definite quantity.
So is the mutual inductance of two circuits. Also, when coils are
connected together, each forms so nearly a closed circuit that it can be
taken as such, so that we can add and subtract inductances, and localise
them definitely as belonging to this or that part of a circuit. But this
simplicity is, to a great extent, lost when we deal with short wires,
unless they are bent round so as to make nearly closed circuits. We
cannot fix the inductance of a straight wire, taken by itself. It has no
meaning, strictly speaking. The return current has to be considered.
Balances can always be got, but as regards the interpretation, that will
depend upon the configuration of the apparatus. [See Section xxxviii.
of ¢ Electromagnetic Induction,” later. ]

Speaking with diffidence, having little experience with short wires, I
should recommend 1 and 2 to be two equal wires, of uny convenient
length, twisted together, joined at one end, of course slightly separated
at the other, where they join the telephone wires, also twisted. The
exact arrangement of 3 and 4 will depend on circumstances. But
always use a long wire rather than a short one (experimental wire).
If this is in branch 4, let branch 3 consist of the standard coils (of
appropriate size), and adjust them, inserting if necessary, coils in series
with 4 also. Of course I regard the matter from the point of view of
getting easily interpretable results.
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The exact balance (1), (2), (3) above is quite special. If the branches
1 and 3 consist of any combination of conductors and condensers, with
induction in masses of metal allowed, and branches 2 and 4 consist of
an exactly equal combination, in every respect, there will never be any
current in 5 due to impressed force in 6. And, more generally, 2 +4
may be only a copy of 1+ 3, on a reduced scale, so to speak.

P.S.—(April 27, 1886.) The great exactness with which, when a
ratio of equality is used, the M, and Mg, methods conform to the true
resistance balance, as above mentioned, together with the almost per-
sistent departure of the 3 (Hughes’s) method from the true resistance
balance, led me to suspect that, as in the use of the simple Bridge
method, with no mutual induction, the three conditions of a true balance
are reduced to two by a ratio of equality, the same thing happens in
the M,, and Mg, methods, but not in the M;. This I have verified.

In Hughes'’s system the three conditions are

Ty =gy . S S (13)
74(2; 4 24 — By — 25) + Myg(1 +75/r) (L +7,/15) =0, oo (14)
Ll =Ll + Mgl + 1+ 1 +1)=0. oo, (15)

Now take I,=1I, r,=r, 7,=7,; then the second and third are

equivalent to
U= L+ 2M (1 +75/r,) =0, 2, fz,=1+1,[ls.

The second of these is a special relation that must hold before the first
is true. Hence the sound with a true resistance balance, and the
necessity of a false balance to get rid of it.

But in the M, method the conditions are

T A= Flgy (oiaaiaeiae va os o S n R T (16)
Ty(Ty + 3y = Ty — @) + M (1 +75/17) =0, ooriiiinnninns (17)
= Ul + Moy (44 1)=0. .coeviiineiiieenes (18)

Take I, =1,, r, =7, r;=r, as before, and now the second and third

conditions become identical, viz.,
l,=1l4+2M, =0,
agreeing with the previously obtained equation (12a).

Thus, whilst Hughes’s method is inaccurate, sometimes greatly so,
we may employ the M, and Mg, methods without any hesitation, pro-
vided a ratio of equality be kept to. They will be as accurate as the
simple Bridge method, and the choice of the methods will be purely a
matter of convenience.

I have verified experimentally that the Hughes system requires a
false resistance balance when, instead of coils, short wires are used, the
branch of greater inductance having apparently the greater resistance.
I h?,ve also verified that this effect is mixed with the thick-wire effect,
which last is completely isolated by using the proper M, method or
the simple Bridge. Its magnitude can now be exactly measured, free
from the errors of a faulty method. That is, it can be estimated for
any particular speed of intermittences or reversals, for it is not a
constant effect. Balance a very thin against a very thick wire, so that
the effect occurs only on one side.
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XXXV. ELECTROMAGNETIC INDUCTION AND ITS
PROPAGATION. (SEcoNDp HALF.)

[The Electrician, 1886-7. Section XXV., April 23, 1886, p. 469; XXVIL., May
14, p. 8 (vol. 17) ; XXVII., June 11, p. 88; XXVIIL, June 25, p. 128; XXIX.,
July 23, p. 212; XXX., August 6, p. 252 ; XXXI., August 20, p. 296; XXXII.,
August 27, p. 316 ; XXXIII., November 12, p. 10 (vol. 18) ; XXXIV., December
24, 1886, p. 143; XXXV., January 14, 1887, p. 211; XXXVI., February 4,
p. 281 ; XXXVII., March 11, p. 390; XXXVII%., April 1, p. 457 ; XXXIXa.,
May 13, p. 5 (vol. 19); XXXI1Xb., May 27, p. 50; XL., June 3, p. 79; XLI.,
June 17, p. 124 ; XLIL., July 1, p. 163 ; XLIIL., July 15, p. 206 ; XLIV., August
12, p. 295; XLV., August 26, p. 340; XLVI., October 7, p. 459; XLVIL,
December 30, 1887, p. 189 (vol. 20).]

SEcTION XXV. SOME NOTES 0N MAGNETISATION.

ALTHOUGH it is generally believed that magnetism is molecular, yet
it is well to bear in mind that all our knowledge of magnetism is
derived from experiments on masses, not on single molecules, or
molecular structures. We may break up a magnet into the smallest
pieces, and find that they, too, are littlo magnets. Still, they are
not molecular magnets, but magnets of the same nature as the
original ; solid bodies showing magnetic properties, or intrinsic-
ally magnetised. We are nearly as far away as ever from a mole-
cular magnet. To conclude that molecules are magnets because
dividing a magnet always produces fresh magnets, would clearly be
unsound reasoning. For it involves the assumption that a molecule
has the same magnetic property as a mass, ¢.e., a large collection of
molecules, having, by reason of their connection, properties not
possessed by the molecules separately. (Of course, I do not define
a molecule to- be the smallest part of a substance that has all the
properties of the mass.) If we got down to a mass of iron so small
that it contained few molecules, and therefore certainly not possess-
ing all the properties of a larger mass, what security have we that
its magnetic property would not have begun to disappear, and that
their complete separation would not leave us without any magnetic
field at all surrounding them of the kind we attribute to intrinsic
magnetisation. That there would be magnetic disturbances round
an isolated molecule in motion through a medium, and with its parts
in relative motion, it is difficult not to believe in view of the partial
co-ordination of radiation and electromagnetism made by Maxwell.
But it might be quite different from the magnetic field of a so-called
magnetic molecule—that is, the field of any small magnet., This
evident magnetisation might be essentially conditioned by structure,
not of single molecules, but of a collection, together with relative
_motions connected with the structure, this structure and relative
motions conditioning that peculiar state of the medium in which
they are immersed, which, when existent, implies intrinsic magnet-
isation of the collection of molecules, or the little mass. However
this be, two things are deserving of constant remembrance. First,
that the molecular theory of magnetism is a speculation which it is
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desirable to keep well separated from theoretical embodiments of
known facts, apart from hypothesis. And next, that as the act of
exposing a solid to magnetising influence is, it is scarcely to be
doubted, always accompanied by a changed structure, we should
take into account and endeavour to utilise in theoretical reasoning
on magnetism which is meant to contain the least amount of
hypothes1s, the elastic properties of the body, speaking generally,
and without knowing the exact connection between them and the
magnetic property.

Hooke’s law, Ut tensio, sic vis, or strain is proportional to stress,
implies perfect elasticity, and is the first approximate law on which
to found the theory of elasticity. But beyond that, we have im-
perfect elasticity, elastic fatigue, imperfect restitution, permanent
set.

When we expose an unmagnetised body to the action of a
magnetic field of unit inductivity, it either draws in the lines of
induction, in which case it is a paramagnetic, is positively magnetised
inductively, and its inductivity i1s greater than unity; or it wards off
induction, in which case it is a diamagnetic, is negatively magnetised
inductively, and its inductivity is less than unity ; or, lastly, it may
not alter the field at all, when it is not magnetised, and its induc-
tivity is unity.

Regarding, as I do, the force and the induction—not the force and
the induced magnetisation—as the most significant quantities, it is
clear that the language in which we describe these effects is some-
what imperfect, and decidedly misleading in so prominently directing
attention to the induced magnetisation, especially in the case of no
induced magnetisation, when the body is still subject to the magnetic
influence, and is as much the seat of magnetic stress and energy as
the surrounding medium. We may, by coining a new word pro-
visionally, put the matter thus. All bodies known, as well as the
so-called vacuum, can be inductized. According to whether the
inductization (which is the same as “the induction,” in fact) is
greater or less than in vacuum (the universal magnetic medium) for
the same magnetic force (the other factor of the magnetic energy
product), we have positive or negative induced magnetisation.

To the universal medium, which is the primary seat of the
magnetic energy, we attribute properties implying the absence of
dissipation - of energy, or, on the elastic solid theory, perfect
elasticity. (Dissipation in space is scarcely within a measurable
distance of measurement.) But that the ether, resembling an elastic
solid in some of its properties, is one, is not material here. Induc-
tization in it is of the elastic or quasi-elastic character, and there can
be no intrinsic magnetisation. Nor evidently can there be intrinsic
magnetisation in gases, by reason of their mobility, nor in liquids,
except of the most transient description. But when we come to
solids the case is different.

If we admit that the act of inductization produces a structural
change in a body (this includes the case of no induced magnetisation),
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and if, on removal of the inducing force, the structural change
(hsappedrs, the body behaves like ether so far, or has no inductive
retentiveness. Here we see the advantaoe of speakmo of inductive
rather than of magnetic retentiveness. But if, by reason of im-
perfect elasticity, a portion of the changed structure remains, the
body has inductive retentiveness, and has become an intrinsic
magnet. As for the precise nature of the magnetic structure, that is
an independent question. If we can do without assuming any
particular structure, as for instance, the Weber structure, which is
nothing more than an alignment of the axes of molecules, a structure
which I believe to be, if true at all, only a part of the magnetic
structure, so much the better. It is the danger of a too special
hypothesis, that as, from its definiteness, we can follow up its
consequences, if the latter are partially verified experimentally we
seem to prove its truth (as if there could be no other explanation),
and so rest on the solid ground of nature. The next thing is to
predict unobserved or unobservable phenomena whose only reason
may be the hypothesis itself, one out of many which, within limits,
could explain the same phenomena though, beyond those limits, of
widely diverging natures.

The retentiveness may be of the most unstable nature, as in soft
iron, a knock being sufficient to greatly upset the intrinsic magnetisa-
tion existing on first removing the magnetising force, and completely
alter its distribution in the iron; or of a more or less permanent
character, as in steel. But, whether the body be para- or dia-
magnetic, or neutral, the residual or intrinsic magnetisation, if there
be any, must be always of the same character as the inducing force.
That is, any solid, if it have retentiveness, is made into a magnet
magnetxsed parallel to the inducing force, like iron.

Until lately only the magnetic metals were known to show reten-
tiveness. = Though we should theoretically expect retentiveness in
all solids, the extraordinary feebleness of diamagnetic phenomena
might be expected to be sufficient to prevent its observation. But,
first, Dr. Tumlirz has shown that quartz is inductively retentive, and
next, Dr. Lodge (Nafure, March 25th, 1886) has published some
results of his experiments on the retentiveness of a great many
other substances, following up an observation ‘of his assistant, Mr.
Davies.

The mathematical statement of the conmections between intrinsic
magnetisation and the state of the magnetic field is just the same
whether the magnet be iron or copper, para- or dia-magnetic, or is
neutral. In fact, it wounld equally serve for a water or a gas magnet,
were they possible. That is,

curl (H - h) = 4«T, divB=0;

H being the magnetic force according to the equation B=pH, where
B is the induction and p the inductivity, I' the electric current, if
any, and h the magnetic force of the intrinsic magnetisation, or the
impressed magnetic force, as I have usually called it in previous
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sections where it has occurred, because it enters into all equations as
an impressed force, distinct from the force of the field, whose rotation
measures the electric current. It is h and p that are the two data
concerned in intrinsic magnetisation and its field; the quantity I,
the intensity of intrinsic magnetisation, only gives the product, viz.,
I=ph/4w. It would not be without some advantage to make h and
i the objects of attention instead of I and p, as it simplifies ideas as
well as the formule. The induced magnetisation, an extremely
artificial and rather unnecessary quantity, is (u—1) (H - h)/4=.

It will be understood that this system, when united with the
corresponding electric equations, so as to completely determine
transient states, requires h to be given, whether constant or variable
with the time. The act of transition of elastic induction into
intrinsic magnetisation, when a body is exposed to a strong field,
cannot be traced in any way by our equations. It is not formulated,
and it would naturally be a matter of considerably difficulty to do it.

In a similar manner, we may expect all solid dielectrics to be
capable of being intrinsically electrized by electric force, as described
in a previous section. I do not know, however, whether any dielectric
has been found whose dielectric capacity is less than that of vacuum, or
whether such a body is, in the nature of things, possible.

As everyone knows nowadays, the old-fashioned rigid magnet is a
myth. Only one datum was required, the intensity of magnetisation I,
assuming p to be unity in as well as outside the magnet. It is a great
pity, regarded from the point of view of mathematical theory, which
is rendered far more difficult, that the inductivity of intrinsic magnets
is not unity. But we must take nature as we find her, and although
Prof. Bottomley has lately experimented on some very unmagnetisable
steel, which may approximate to p=1, yet it is perfectly easy to show
that the inductivity of steel magnets in general is not 1, but a large
number, though much less than the inductivity of soft iron, and we
may use a hard steel bar, whether magnetised intrinsically or not, as
the core of an electromagnet with nearly the same effects, as regards
induced magnetisation, except as regards the amount, as if it were
of soft iron.

Regarding the measure of inductivity, especially in soft iron, this is
really not an easy matter, when we pass beyond the feeble forces of
telegraphy. For all practical purposes p is a constant when the
magnetic force is small, and Poisson’s assumption of a linear relation
between the induced magnetisation and the magnetic force is abundantly
verified. It is almost mathematically true. But go to larger forces,
and suppose for simplicity we have a closed solenoid with a soft iron
core, and we magnetise it. Let F be the magnetic force of the current.
Then, if the induction were completely elastic, we should have the
induction B=pF. But in reality we have B=u(F+h)=pH. If we
assume the former of these equations, that is, take the magnetic force
of the current as the magnetic force, we shall obtain too large an
estimate of the inductivity, in reckoning which H should be taken as
the magnetic force. This may be several times as large as F. For, the
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softer the iron the more imperfect is its inductive elasticity, and the
more easily is intrinsic magnetisation made by large forces; although
the retentiveness may be of a very infirm nature, yet whilst the force
F is on, there is h on also. This over-estimate of the inductivity may
be partially corrected by separately measuring h after the original
magnetising force has been removed, by then destroying h. But this
h may be considerably less than the former. For one reason, when we
take off F' by stopping the coil-current, the molecular agitation of the
heat of the induced currents in the core, although they are in such a
direction as to keep up the induced magnetisation whilst they last,
is sufficient to partially destroy the intrinsic magnetisation, owing to
the infirm retentiveness. We should take off F by small instalments,
or slowly and continuously, if we want h to be left.

Another quantity of some importance is the ratio of the increment in
the elastic induction to the increment in the magnetic force of the
current. This ratio is the same as p when the magnetic force is small,
but is, of course, quite different when it is large.

As regards another connected matter, the possible existence of
magnetic friction, I have been examining the matter experimentally.
Although the results are not yet quite decisive, yet there does appear
to be something of the kind in steel. That is, during the act of in-
ductively magnetising steel by weak magnetic force, there is a reaction
on the magnetising current very closely resembling’ that arising from
eddy currents in the steel, but produced under circumstances which
would render the real eddy currents of quite insensible significance.
In soft iron, on the other hand, I have failed to observe the effect. It
has nothing to do with the intrinsic magnetisation, if any, of the steel.
But as no hard and fast line can be drawn between one kind of iron
and another, it is likely, if there be such an effect in steel, where, by the
way, we should naturally most expect to find it, that it would be, in a
smaller degree, also existent in soft iron. Its existence, however, will
not alter the fact materially that the dissipation of energy in iron when
it is being weakly magnetised is to be wholly ascribed to the electric
currents induced in it.

P.S. (April 13, 1886.)—As the last paragraph, owing to the hypothesis
involved in magnetic friction, may be somewhat obscure, I add this in
explanation. The law, long and generally accepted, that the induced
magnetisation is simply proportional to the magnetic force, when small,
is of such importance in the theory of electromagnetism, that I wished
to see whether it was minutely accurate. That is, that the curve of
magnetisation is, at the origin, a straight line inclined at a definite
angle to the axis of abscissw, along which magnetic force is reckoned.
I employed a differential arrangement (differential telephone) admitting
of being made, by proper means, of considerable sensitiveness. The
law is easily verified roughly. When, however, we increase the sensi-
tiveness, its accuracy becomes, at first sight, doubtful; and besides,
differences appear between iron and steel, differences of kind, not of
mere magnitude. But as the sensitiveness to disturbing influences
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is also increased, it is necessary to carefully study and eliminate
them. The principal disturbances are due to eddy currents, and to the
variation in the resistance of the experimental coil with temperature.
For instance, as regards the latter, the approach of the hand to the coil
may produce an effect larger than that under examination. The
general result is that the law is very closely true in iron and steel,
1t being doubtful whether there is any effect that can be really traced
to a departure from the law, when rapidly intermittent currents are
employed, and that the supposed difference between iron and steel is
unverified.

Of course it will be understood by scientific electricians that it is
necessary, if we are to get results of scientific definiteness, to have
true balances, both of resistance and of induction, and not to employ an
arrangement giving neither one nor the other. He will also understand
that, quite apart from the question of experimental ability, the theorist
sometimes labours under great disadvantages from which the pure
experimentalist is free. For whereas the latter may not be bound by
theoretical requirements, and can employ himself in making discoveries,
and can put down numbers, really standing for complex quantities, as
representing the specific this or that, the former is hampered by his
theoretical restrictions, and is employed, in the best part of his time, in
the poor work of making mere verifications.

SecTION XXVI. THE TRANSIENT STATE IN A ROUND WIRE WITH A
CLOSE-FITTING TUBE FOR THE RETURN CURRENT.

The propagation of magnetic force and of electric current (a function
of the former) in conductors takes place according to the mathematical
laws of diffusion, as of heat by conduction, allowing for the fact of the
electric quantities being vectors. This conclusion may perhaps be
considered very doubtful, as depending upon some hypothesis. Since,
however, it is what we arrive at immediately by the application of the
laws for linear conductors to infinitely small circuits (with a tacit
assumption to be presently mentioned), it seems to me more necessary
for an objector to show that the laws are not those of diffusion, rather
than for me to prove that they are.

‘We may pass continuously, without any break, from transient states
in linear circnits to those in masses of metal, by multiplying the
number of, whilst diminishing the section of, the ‘linear” conductors
indefinitely, and packing them closely. Thus we may pass from linear
cireuits to a hollow, core ; from ordinary linear differential equations to
a partial differential equation; from a set of constants, one for each
circuit, to a continuous function, viz., a compound of the J, function
and its complementary function containing the logarithm. This I have

-worked out. Though very interesting mathematically, it would occupy
some space, as it is rather lengthy. 1 therefore start from the partial
differential equation itself.

Our fundamental equations are, in the form I give to them,

curl H=4xC, —curl E=puH, C=/#E,
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E and H being the electric and magnetic forces, C the conduction
current, £ and p the conductivity and the inductivity. The assumption
I referred to is that the conductor has no dielectric capacity. Bad
conductors have. We are concerned with good conductors, whose
dielectric capacity is quite unknown.

We are concerned with a special application, and therefore choose the
suitable coordinates. All equations referring to this matter will be
marked . The investigations are almost identical with those given in
my paper on ““ The Induction of Currents in Cores,” in The Electrician
for 1884. [Reprint, vol. 1,, p. 353, art. XxviIL.] The magnetic force
was then longitudinal, the current circular ; now it is the current that
is lonﬂltudmal and the magnetic force cireular.

The distribution of current in a wire in the transient state depends
materially upon the position of the return conductor, when it is near.
The nature of the transient state is also dependent thereon. Now, if
the return conductor be a wire, the distributions in the two wires are
rendered unsymmetrical, and are thereby made difficult of treatment.
We, therefore, distribute the return current equally all round the wire,
by employing a tube, with the wire along its axis. This makes the
distribution symmetrical, and renders a comparatively easy mathematical
analysis possible. At the same time we may take the tube near the
wire or far away, and so investigate the effect of proximity. The
present example is a comparatively elementary one, the tube being
supposed to be close-fitting. As 1 entered into some detail on the
method of obtaining the solutions in “ Induction in Cores,” I shall not
enter into much detail now. The application to round wires with the
current longitudinal was made by me in The Electrician for Jan. 10, 1885,
p- 180, so far as a general description of the phenomenon is concerned.
See also my letter of April 23, 1886.. [Reprint, vol. I., p. 440; vol. 11.,

. 30.

1 Let]there be a wire of radius e, surrounded by a tube of outer radius
b, and thickness b —a. In the steady state, if the current-density is T'
in the wire, it is — I'a2/(0% — ¢?) in the tube, if both be of uniform con-
ductivity, and the tube or sheath be the return conductor of the wire.
Let H, be the intensity of magnetic force in the wire, and H, in the
tube. The direction of the magnetm force is circular about the axis in
both, and the current is longitudinal. We shall have

et =12l H, = - 2zLa?(r? - 2)[r(b? - a?), ......... (2b)
where 7 is the distance of the point cons1dered from the axis. Test by
the first of equations (12). We have

14d
curl = Pl

when applied to H.

Now let this steady current be left to itself, without impressed force
to keep it up, so that the ¢ extra-current” phenomena set in, and the
magnetic field subsides, the circuit being left closed. At the time £
later, if the current-density be y at distance  from the axis, it will be

ented by e ST 5 Sl v e vens, (3b)
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where = is the sign of summation. The actual current is the sum of an
infinite series of little current distributions of the type represented, in
which 4, n, and p are constants, and J(nr) is the Fourier cylinder
function. We have

1d dy
i Pl SATREY. | s T B (49)
Let d/dt =p, a constant, then n is given in terms of p by
pE= = dapfep, ol L (5d)

We suppose that £ and g are the same in the wire as in the sheath.
Differences will be brought in in the subsequent investigation with the
sheath at any distance.

In (30) there are two sets of constants, the 4’s fixing the size of the
normal systems, and the n’s or p’s, since these are connected by (50).
To find the n’s, we ignore dielectric displacement, since it is electro-
magnetic induction that is in question. This gives the condition

H,=0, at = by LT R (60)
i.e., no magnetic force outside the tube. This gives us
JYmbY=0y 0000 i w SR (70)

as the determinantal equation of the s, which are therefore known by
inspection of a Table of values of the J; function.
Kind the 4’s by the conjugate property Thus,

[ "itunyrir [ TatdGongrir G -at) g

= = (B
j " T¥nryrdr =gy
The full solution is, therefore,
_ 240 Jy(na)J o(nr)e*
o a22 STy R (90)

giving the current at time ¢ anywhere.
The equation of the magnetic force is obtained by applying the
second of equations (10) ; it is

8mal’ ZJ 1(na)J (nr)e” (108)

TR-a e

e B

and the expression for the vector-potential of the current (for its scalar
magnitude 4, that is to say, as its direction, parallel to the current,
does not vary, and need not be considered), is

87r/m'.[‘ Jy(na)J o (nr)e”
E 8 B e ceren(110)
This may be tested by
curl Al 5ol SR RN (120)



ELECTROMAGNETIC INDUCTION AND ITS PROPAGATION. 47

curl being now = —d/dr. In the steady state (initial), =0,
g o4 2 05 0

a?

in the wire, and 4 ,= b;rl‘a < 02 + 12 4 202 logg>,

in the sheath. Test by (12b) applied to (130) to obtain (20).
The magnetic energy being w/?/8x per unit volume, the amount in
length ! of wire and sheath is, by (10b),

_ul 87ra,I“)2 Ji(na)Ji(nr), ot
sTr(b"f‘-' #) 2| i by s
To verify, this should equal the space-integral of }4,y, using (11)
and (90). This need not be written. They are identical because
rJo?(nr)rdr=rJf(nr)1~dr=§b2J§(nb),
0 0

so that we may write the expression for 7' thus,
47wald x le(na)€2pt
T=4n l( a2> 3 Ty e (14B)

The dissipativity being y*/k per unit volume, the total heat in length
! of wire and sheath is, if p=£"Y the resistivity, and the complete

variable period be included,
J(na) 62T 5 (nb) 2l

Q=p{20TJ(FF ~ )t 3 g T e

When #=0, either by (14b) or by easy direct investigation, the
initial magnetic energy in length 7 is

Raat 4 4B b
Ty= ;d(;,rw)z{1 e 1 } ..... (168)

giving the inductance of length [ as

b2 2b% log (b/a
e L (b2_g£2)2 )>, Bahadrbiai (170)

which may be got in other ways. This refers to the steady state. In
the transient state there cannot be said to be a definite inductance, as
the distribution varies with the time. The expression in (156) for the
total heat may be shown to be equivalent to that in (165) for the initial
magnetic energy, thus verifying the conservation of energy in our
S 7stem
)I should remark that it is the same formula (95) that gives us the
current both in the wire and tube, and the same formula (105) that
gives us the magnetic force. They are distributed continuously in the
variable period. It is at the first moment only that they are dis-
continuous, requiring then separate formulz for the wire and tube, z.c.,
separate finite formulee, although only a single infinite series.

The first term of (99) is, of course, the most important, representing
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the normal system of slowest subsidence. In fact, there is an extremely
rapid subsidence of the higher normal systems ; only three or four need
be considered to obtain almost a complete curve; and, at a compara-
tively early stage of the subsidence, the first normal system has become
far greater than the rest. In fact, on leaving the current without
impressed force, there is at first a rapid change in the distribution of
the current (and magnetic force), besides a rapid subsidence. It tends
to settle down to be represented by the first normal system ; a certain
nearly fixed distribution, subsiding according to the exponential law of
a linear circuit.

To see the nature of the rapid change, and of the first normal system,
refer to The Electrician of Ang. 23, 1884 [vol. 1., p. 387], where is a
representation of the J, and J, curves. In Fig. 1, take the distance
0C, to be the outer radius of the tube, O being on the axis. Then the
curve marked J] is the curve of the magnetic force, showing its com-
parative strength from the centre of the wire to the outside of the tube,
in the first normal system. And, to correspond, the curve @ from O
up to C, is the curve of the current, showing its distribution in the first
normal system.

! g

$ \(‘ i A
5 \ v J ;
Cy B\l\ Ca B. /C Bz\ Caq |- Boé
0 f 2 3 &3 3 7 8 <] ]IE (=T =
N |~ ) [ Ji [ ’

L
=2

We see that the position of the point B, with respect to the inner
radius of the sheath determines whether the current is transferred from
the wire to the sheath, or vice versd, in the early part of the subsidence.
If the sheath is very thin, so that the radius of the wire extends nearly
up to C,, there is transfer of the sheath-current (initial) from the sheath
a long way into the wire. On the other hand, if the wire be of small
radius compared with the outer radius of the tube, so that the tube’s
depth extends from C), nearly up to O, there is a transfer of the original
wire-current a long way into the thick sheath. In Fig. 2 [vol. 1, p. 388]
are shown the first four normal systems, all on the same scale as regards
the vertical ordinate, but we are not concerned with them at present.

Since —p1 = 4mpkb?/ (nb)?,
by (5b), and -p~! is the time-constant of subsidence of a normal
system, we have, for the value of the time-constant of the first system,
—p, " =273 wpkb?,

because the value of the first nd, say n,b, is 3-83. Compare this with
the linear-theory time-constant L/E, where L is given by (178), and R
is the resistance of length [ of the wire and sheath (sum of resistances,
as the current is oppositely directed in them). Tet a=%b. Then

L=1:128 ul.
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We have also
R =161/3xkb?, therefore L/B=-211 wpkl?,
so that the time-constant of the first normal system is to that of the
current in wire and tube on the linear theory as *27 to 21. But it is
only after the first stage of the subsidence is over that this larger time-
constant is valid.
We may write the expression for L thus. Let z=b/a, then
la? (222 log 2
el (S S e 1>
Z2— 1( 22—1 p
nearly the same as 2ul logz when z is large. The minimum is when
b=a; then L=}pl. This is the least value of the inductance of a round
wire, viz., when it has a very thin and close-fitting sheath for the return
current, so that the magnetic energy is confined to the wire.
When b/a is only a little over unity,

_ B 30 —a?-2ab
g Sl e

We have also B =10%[xka®(b? - a®),
and therefore L/R=wlkpa® <gfl.)%9§$——/@ - 1>.
Irrespective of b/a being only a little over unity, we have,
with a/b=F;, L/ R =-009 (4w plb?),
1) %’ 1) .053 i )
RAE 9 LOD 0
whilst the time-constant of the first normal system in all three cases is

‘068 (4mpkb?).
The maximum of L/E with b/a variable is when
(# = 1) - Pt~ logz,

z being b/a. This value of z is not much different from the ratio of the
nodes in the first normal system, or the ratio of the value of 77 making
Jy(nr) =0 for the first time, to that making Jy(nr)=0. For the latter
value makes logz =465, and makes the other side of the last equation
be 486.

In the subsidence from the steady state, the central part of the wire
1s the last to get rid of its current. But the steady state has to be first
set up. Then it is the central part of the wire that is the last to get
its full current. To obtain the equations showing the rise of the
current and of the magnetic force in the wire and the tube, we have to
reverse or negative the preceding solutions, and superpose the final
steady states. As these are discontinuous, there are two solutions, one
for the wire, the other for the sheath ; but the transient part of them,
which ultimately disappears, is the same in both. There is no occasion
to write these out.

If the steady state is not fully set up before the impressed force is
removed, we see that the central part of the wire is less useful as a con-

ILE.P.—VOL. 1L D
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ductor than the outer part, as the current is there the least. If there
are short contacts, as sufficiently rapid reversals, or intermittences, the
central part of the wire is practically inoperative, and might be removed,
so far as conducting the current is concerned. Immediately after the
impressed force is put on, there is set up a positive current on the out-
side of the wire, and a negative on the inside of the sheath, which are
then propagated inward and outward respectively. If the sheath be
thin, the initial (surface) wire-current is of greater and the initial
sheath-current of less density than the values finally reached by keeping
on the impressed force; whilst if it be the sheath that is thick the
reverse behaviour obtains.

This case of a closefitting tube is rather an extreme example of
departure from the linear theory; the return current is as close as
possible and wholly envelops the wire-current. Except as regards dura-
tion, the distributions of current and magnetic force are independent of
the dimensions, i.e., in the smallest possible round wire closely sur-
rounded by the return current the phenomena are the same as in a big
wire similarly surrounded, except as regards the duration of the variable
period. The retardation is proportional to the conductivity, to the
inductivity, and to the square of the outer radius of the tube.

‘When, as in our next Section, we remove the tube to a distance, we
shall find great changes.

SEcTION XXVIL ToE VARIABLE PERIOD IN A RouND WIRE WITH
A CoxNCENTRIC, TUBE AT ANY DISTANCE FOR THE RETURN
CURRENT.

The case considered in the last Section was an extreme one of
departure from the linear theory. This arose, not from mere size,
but from the closeness of the return to the main conductor, and to
its completely enclosing it. Practically we must separate the two
conductors by a thickness of dielectric. The departure from the linear
theory is then less pronounced; and when we widely separate the
conductors it tends to be confined to a small portion only of the
variable period. The size of the wire is then also of importance.

Let there be a straight rcund wire of radius a,, conduetivity £, and
inductivity p,, surrounded by a non-conducting dielectric of specific
capacity ¢ and inductivity p, to radius a,, beyond which is a tube of
conductivity k., and inductivity p,, inner radius a, and outer ¢;. The
object of taking ¢ into account, temporarily, will appear later.

Let the current be longltudmal and the magnetic force circular.
Then, by (10), if y is the current-density at distance r from the axis,
we shall have

e T daply, or =2 Oy T e R R (18b)

in the conductors, and in the dielectric respectively; the latter form

being got by taking y—cE/4ar, the rate of increase of the elastic
displacement.
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A normal system of longitudinal current-density may therefore be
represented by
y1 = A Jy(ny7), from =0 toa,
Yo =AJo(0s7) + By Ko(ngr), ;0 r=0;80 Ggpreecnn.nn.. (190)
=g (el B (i), | v e 4= a5, tovag
in the wire, in the insulator, and in the sheath, respectively, at a given
moment. In subsiding, free from impressed force, each of these
expressions, when multiplied by the time-factor €, gives the state at
the time ¢ later.

Jy(nr) is the Fourier cylinder function, and K (nr) the complementary
function. [For their expansions see vol. I, p. 387, equations (70) and
(71)]. The A’s and B's are constants, fixing the size of the normal
functions ; the n’s are constants showing the nature of the distributions,
and p determines the rapidity of the subsidence.

By applying (182) to (195) we find

n= — dwpk; p, ng= — pyep?, ng = —dmwpkep; ... (200)
expressing all the #’s in terms of the p.

Corresponding to the expressions (195) for the current, we have the

following for the magnetic force :—

Hy = — (ny/piky p) Ay Ty (myr),

H,= — (47ny/pocp?){ A1 (nor) + B K (ngr)}, oo,

Hy—= — (ng/pgsp) {dgly(ngr) + BoKy(ngr)}, J
where, as is usual, the negative of the differential coefficient of Jy(z)
with respect to z is denoted by Ji(2); and, in addition, the negative of
the differential coefficient of K (2) with respect to z is denoted by K, (2).
These equations (215) are got by the second and third equations (18),
in the case of H, and H,; and in the case of H,, by using, instead of
Ohm’s law, the dielectric equation, giving

E= 4777/01’:

in the dielectric, £ being the electric force. Of course d/di=p, in a
normal system.

We have next to find the relations between the five 4’s and B’s, to
make the three solutions fit one another, or harmonize. This we must
do by means of the boundary conditions. These are nothing more than
the surface interpretations of the ordinary equations referring to space
distributions. In the present case the appropriate conditions are con-
tinuity of the magnetic and of the electric force at the boundaries,
because the two forces are tangential ; the conditions of continuity of
the normal components of the electric current and of magnetic induc-
tion are not applicable, because there are no normal components in
question. If the magnetic or the electric force were discontinuous, we

“should have electric or magnetic current-sheets.

Thus H, and H, are equal at r=a,, and I, and H; are equal at

r=a, These give, by (210),

(A g e, )T (m,0,) = (Amng/poep?) { A Ty (ngt)) + B K (nony)},  (220)

(21b)
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and (4mny/pyep){ A Ty (ng05) + By K (mya,) }
= (ng/pskap){d Ty (n505) + BsKy(ngto) }. ... (230,
Similarly, ¥, and E, are equal at r=a,, and F, and E; are equal at
r=a, These give, by (19),
(A /) o(myay) = (4 ep){ A T o(no0)) + B K (o)}, ooies (240)
and
(4m/cp){ ATy (ngty) + By K(ngtty) } = k™ { Ao (nyy) + ByKo(ngag)t.  (200)
Thus, starting with 4, given, (220) and (240) give 4, and B, in terms
of A,, and then (230) and (250) give 4, and B; in terms of 4,.
Similarly we might carry the system further, by putting more con-
centric tubes of condnctors and dielectrics, or both, outside the first
tube, using similar expressions for the magnetic and electric forces;
every fresh boundary giving us two boundary conditions of continuity
to connect the solution in one tube with that in the next. But at
present we may stop at the first tube. Ignore the dielectric displace-
ment beyond it, i.e, put ¢=0 beyond r=a, because our tube is to
be the return conductor to the wire inside it. We may merely remark
in passing that although when such is the case, there is, in the steady
state, absolutely no magnetic force outside the tube, yet this is not
exactly true in a transient state. To make it true, take ¢=0 beyond
r=ay; requiring H;=0 at r=a, This gives, by (215),
AT (ng5) + Bl (ng,) =0, .ooioo e LN (260)

Now A4, and B, are, by the previous, known in terms of 4,. Make
the substitution, and we find, first, that 4, is arbitrary, so that it,
when given, fixes the size of the whole normal system of electric and
magnetic force; and next, that the n’s are subject to the following
equation :—

L 1i(n50) Ky (n515) — J (ng5) K (n505) 1y
.“aJO(ngaz J, o(n5a9) Ky (ngas) — S (1505) Ko(n5015) ;2‘71(722%)
%K0(7L2(l/2) SR L R TT T g %](1("2“2)
3 2
_ (/) (may)To(maty) = (] o)y (o) o(mpay) (270)

([ p) 3 (g 1) K o(581) = (o] po) Ky (g0;) o(my1,) |
where, on the left side, to save trouble, the dots represent the same
fraction that appears in the numerator immediately over them.

Now, the n’s are known in terms of p, hence (27b) is the deter-
minantal equation of the p’s, determining the rates of subsidence of
all the possible normal systems. We have, therefore, all the informa-
tion required in order to solve the problem of finding how any initially
given state of circular magnetic force and longitudinal electric force in
the wire, insulator, and sheath subsides when left to itself. We merely
require to decompose the initial states into normal systems of the above
types, and then multiply each term by its proper time-factor ¢#* to let
it subside at its proper rate. To effect the decomposition, make use of
the universal conjugate property of the equality of the mutual potential
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and the mutual kinetic energy of two complete normal systems, U,, =T},
[vol. 1., p. 523], which results from the equation of activity. We start
with a given amount of electric energy in the dielectric, and of magnetic
energy in the wire, dielectric and sheath, which are finally used up in
heating the wire and sheath, according to Joule’s law.

It would be useless to write out the expressions, for I have no
intention of discussing them in the above general form, especially as
regards the influence of ¢. Knowing from experience in other similar
cases that I have examined, that the effect of the dielectric displace-
ment on the wire and sheath phenomena is very minute, we may put
¢=0 at once between the wire and the sheath. We might have done
this at the beginning; but it happens that although the results are
more complex, yet the reasoning is simpler, by taking ¢ into account.

The question may be asked, how set up a state of purely longitudinal
electric force in the tube, sheath, and intermediate dielectric? As
regards the wire and sheath, it is simple enough ; a steady impressed
force in any part of the circuit will do it (acting equally over a complete
section). But it is not so easy as regards the dielectric. It requires
the impressed force to be so distributed in the conductors as to support
the current on the spot without causing difference of potential. There
will then be no dielectric displacement either (unless there be impressed
force in the dielectric to cause it). Now, if we remove the impressed
force in the conductors, the subsequent electric force will be purely
longitudinal in the dielectric as well as in the conductors.

But practically we do not set up currents in this way, but by means
of localised impressed forces. Then, although the steady state is one of
longitudinal electric force in the wire and sheath, in the dielectric there
is normal or outward electric force as well as tangential or longitudinal,
and the normal component is, in general, far greater than the tangential.
In fact, the electrostatic retardation depends upon the normal displace-
ment. But electrostatic retardation, which is of such immense import-
ance on long lines, is quite insignificant in comparison with electro-
magnetic on short lines, and in ordinary laboratory experiments with
closed circuits (no condensers allowed) is usually quite insensible. We
see, therefore, that when we put ¢=0, and have purely longitudinal
electric force, we get the proper solutions suitable for such cases where
the influence of electrostatic charge is negligible, irrespective of the
distribution of the original impressed force. Our use of the longitudinal
displacement in the dielectric, then, was merely to establish a connec-
tion in time between the wire and the sheath, and to simplify the
conditions.

(In passing, I may give a little bit of another investigation. Take
both electric and magnetic induction into consideration in this wire and
sheath problem, treating them as solids in which the current distribution
varies with the time. The magnetic force is circular, so is fully specified
by its intensity, say H, at distance # from the axis. Its equation is, if
2 be measured along the axis,

d1d . &EH v, i o~ REESE [p
-d_)' —7— zT?H-*‘ 72—2 -47TM]CI[+[1'CH, \UN_T'( r;:,»
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in which discard the last term when the wire or sheath is in question ;
or retain it and discard the previous when the dielectric is considered.
The form of the normal H solution is

H=J,(sr)(d sin + B cos)mz e,

for the wire, where s2 = — (4wpkp +m?). The current has a longitudinal
and a radial component, say 1" and y, given by

T'=  sJy(sr)(4 sin+ b cos)mz e,

v= —mJy(sr)(d cos — B sin)mz €.
In the dielectric and sheath the K, and K, functions have, of course,
to be counted with the J; and J..)

Now put ¢=0 in (276). We shall have
Jongr)=1; —ngJy(ngr)=0; Ky(ng)=log(ng); —ngrKi(ngr)=1;
which will bring (270) down to |
g J(ng00) K (ngtty) — J(040,) K (505)

I a =
1ty g Jo(nag) Ky(myas) — Ji(ng05) Ko(ngay)

X {(l"laz/ 1409} o(1,01) = pottad [ (110;) log (a/ “1)}’ (280)

the determinantal equation in the case of ignored dielectric displace-
ment.

To obtain this directly, establish a rigid connection between the
magnetic and electric forces at r=a; and at r=a,, thus. Since there is
no current in the insulating space, the magnetic force varies inversely
as the distance from the axis of the wire. Therefore, instead of the
second of (21b), we shall have

Hy = — () pikey p) Ay (my0,)(ay 1),
by the first of (210). Thus H, at r=a, is known, and, equated to H;
at »=a,, gives us one equation between 4, 4, and B;. Next we have

_r (ay/r)Hydr = Ha, log (r/a;) = - (jn'lal/ Py )T (nyy) log (r/ay) 5

H, meaning, temporarily, the value of H, at r=a,. This, when
multiplied by p,, is the amount of induction through a rectangular
portion of a plane through the axis, bounded by straight lines of unit
length parallel to the axis at distances @, and 7 from it; or the line-
integral of the vector-potential round the rectangle ; or the excess of the
vector-potential at distance » over that at distance a,; so, when
multiplied by p, it is the excess of the electric force at a; over that
at r. Thus the electric force is known in the insulating space in terms
of that at the boundary of the wire. Its value at r=a, equated to &
ab 7=a, gives us a second equation between 4,, 4, and B, The third
is equation (260) over again, and the union of the three gives us (280)
again.

gWe now have, if y, and v, are the actual current-densities at time ¢ in
the wire and the sheath respectively,

vy =3 AT y(n) e ; } ........ (295)
Yo =2 B{J(ngr) - Jy(ngas) Ko(ngr)/ Ky(ngutg) } €
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where B= Afs Jomm) = ma(pfpy)J (1)) log (ay/a;)

by Jo(ngte) = Ty (ngaq) Ko(nya,)/ K, (nyas)
in which only the A4 requires to be found, so that when ¢=0, the initial
state may be expressed. The decomposition of the initial state into
normal systems may be effected by the conjugate property of the
vanishing of the mutual kinetic energy, or of the mutual dissipativity
of a pair of normal systems. Thus, in the latter case, writing (290)
thus, y, =2 4u, y,=2 4v, we shall have

I lu{ug'dr/lcl +j 31'11*27'd1'/k3 =0,
0 2

u,, v, and Uy, v, being a pair of normal solutions.

We can only get rid of those disagreeable customers, the K, and K
functions, by taking the sheath so thin that it can be regarded as a
linear conductor—i.c., neglect variations of current-density in it, and
consider instead the integral current. (Except when the sheath and
wire are in contact and of the same material, as in the last section.)
Let o, be the very small thickness of the sheath, and evaluate (280) on
the supposition that e, is infinitely small, so that a, and a, are equal
ultimately. The result is

Jo(nyy) =y, 1("1“‘1){(”#‘2/ ) log (ag/ay) - ky/ "1]"3“2“4}: -+ «(30D)

the determinantal equation in the case of a round wire of radius ¢, with a
return conductor in the form of a very thin concentric sheath, radius a,.
Notice that p,; the inductivity of the sheath itself, has gone out
altogether ; that is, an iron sheath for the return, if it be thin enough,
does not alter the retardation as compared with a copper sheath,
provided the difference of conductivity be allowed for.

We may get (30b) directly, easily enough, by considering that the
total sheath-current must be the negative of the total wire-current,
which last is, by integrating the first of (29) throughout the wire,

= (A [n)2mway 2T (na,) €.

This, divided by the volume of the sheath per unit length, that is,
by 2wa.a, gives us the sheath current-density, and this, again, divided
by %, gives us the electric force at r=a, Another expression for the
electric force at the sheath is given by the previous method (the
rectangle business). Equate them, and (30b) results.

We have now got the heavy work over, and some resnlts of special
cases will follow, in which we shall be materially assisted by the analogy
of the eddy currents in long cores inserted in long solenoidal coils.

a,

a.

SecTION XXVIIL. SoME SPECIAL RESULTS RELATING TO THE RISE
OF THE CURRENT IN A WIRE.

Premising that the wire is of radius «,, conductivity &, inductivity
Py ; that the dielectric displacement ‘outside is ignored ; and that the
sheath for the return current is at distance e, and is so thin that
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variations of current-density in it may be ignored, so that merely the
total return current need be considered ; that a, is the small thickness
of the sheath, and %, its conductivity, we have the determinantal equa-
tion (305). Let now
Ly=2p, log(a,/a,), B, =(kyma})™1, Ry =(2wa,ak,)7L

L, is the external inductance per unit length, i.c., the inductance per
unit length of surface-current, ignoring the internal magnetic field. E,
and R, are the resistances per unit length of the wire and sheath
respectively, and 1y, is the internal inductance per unit length, i.e., the
inductance per unit length of uniformly distributed wire-current when
the return current is on its surface, thus cancelling the external
magnetic field. We can now write (300) thus :—

Jo(ma) = Jl(nlal){%”lax(lfo/!‘l) = (%nlal)_l(Rz/R])} 5 oeeeens (310)

and, in this, we have

- njoy = dmplypag = dpp, [R), I 8
nial | nia
Jolma) =1 =2 H0m 9 s iy (32b)
; niat | niat
Ty(nya,) = na (1 -l > [

From (315) we see that the two important quantities are the ratio of
the external to the internal inductance, and the ratio of the external to
the internal resistance, i.c., the ratios Ly/p, and R,/R,.

Suppose, first, the return has no resistance. Draw the curves

91 =J(®)/Jy(2) and Yo =3(Lo/p1)7,
the ordinates y, abscisse z, which stands for n,¢,. Their intersections
show the required values of 2. The J,/J; curve is something like the
curve of cotangent. If Ly/u, is large, the first intersection occurs with
a small value of #, so small that Jy(z) is very little less than unity, so
that a uniform distribution of current is nearly represented by the first
normal distribution, whose time-constant is a little greater than that of
the linear theory. The remaining intersections will be nearly given by
Jy(x)=0. On the other hand, decreasing Ly/u, increases the value of
the first «; in the limit it will be the first root of Jy(v)=0. Thus, if
the wire be of copper, and the return distant (compared with radius of
wire), the linear theory is approximated to. If of iron, on the other
hand, it is not practicable to have the return sufficiently distant, on
account of the large value of p;, unless the wire be exceedingly fine.
Even if of copper, bringing the return closer has the same effect of
rendering the first normal system widely different from representing a
uniform distribution of current. It is the external magnetic field that
gives stability, and reduces differences of current-density.

Next, let the return have resistance. The curve y, must now be

: Yo =3(Lo/p)x ~ 2(Bof By2).
The effect of increasing R, from zero is the opposite of that of increas-
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ing L,. It increases the first 2, and tends to increase it up to that given
by Ji(¢)=0 (not counting the zero root of this equation). Thus there
is a double effect produced. Whilst on the one hand the rapidity of
subsidence is increased by the resistance of the sheath, on the other the
wire-current in subsiding is made to depart more from the uniform
distribution of the linear theory. The physical explanation is, that as
the external field in the case of sheath of no resistance cannot dissipate
its energy in the sheath it must go to the wire. But when the sheath
has great resistance the external field is killed by it ; then the internal
field is self-contained, or the wire-current subsides as if J;(z)=0, with a
wide departure from uniform distribution. This must be marked when
the wire-circuit is suddenly interrupted, making the return-resistance
infinite.

Now, let there be no current at the time ¢=0, when, put on, and
keep on, a steady impressed force, of such strength that the final
current-density in the wire is I';. At time ¢ the current-density I' at
distance r from the axis is given by

r 2 (B, + By} o(nyry)[ Iy (my0y) Ry e

Ly ity L= Bofpyp + {Jo(may)[Jy(may)
where the n;a,’s are the roots of equation (31%). And the total current
in the wire, say (), and with it the equal and opposite sheath-current,
will rise thus to the final value C|,

G-t (BEB)eUR
Cy niag 1= Byfpyp + {Jo(m,ay)/Jy(n100) }*

It will give remarkably different results according as we take the
resistance of the wire very small and that of the sheath great, or con-
versely, or as we vary the ratio L,/u;. Infinite conductivity shuts out
the current from the wire altogether, and so does infinite inductivity ;
the retardation to the inward transmission of the current being pro-
portional to the product pka2.  Similarly, if the sheath has no resist-
ance, the return current is shut out from it. In either of these shutting-
out cases the current becomes a mere surface-current, what it always is
in the initial stage, or when we cannot get beyond the initial stage, by
reason of rapidly reversing the impressed force, when the current will
be oppositely directed in concentric layers, decreasing in strength with
great rapidity as we pass inward from the boundary. But if both the
sheath and the wire have no resistance, there will be no current at all,
except the dielectric current, which is here ignored, and the two
surface-currents.

The way the current rises in the wire, at its boundary, and at its
centre, is illustrated in “ Induction in Cores.” For the characteristic
equation of the longitudinal magnetic force in a core placed within a
long solenoid, and that of the longitudinal current in our present case,
are identical. The boundary equations are also identical. That is,
(31b) is the boundary equation of the magnetic force in the core, except-
ing that the constants Ly/u, and R,/R, have entirely different meanings,
depending upon the number of turns of wire in the coil, and its
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dimensions, and resistance. If, then, we adjust the constants to be
equal in both cases, it follows that when any varying impressed force
acts in the circuit of the wire and sheath, the current in the wire will
be made to vary in identically the same manner as the magnetic force
in the core, at a corresponding distance from the axis, when a similarly
varying impressed force acts in the coil-circuit (which, however, must
have only resistance in circuit with it, not external self-induction as
well). Thus, we can translate our core-solutions into round-straight-
wire solutions, and save the trouble of independent investigation, in
case a detailed solution has been already arrived at in either case.

Refer to Fig. 3 [p. 398, vol. L, here reproduced]. It represents the
curves of subsidence from the steady state. The *“arrival” curves are
got by perversion and inversion, .., turn the figure upside down and
look at 1t from behind. The case we now refer to is when the sheath
has negligible resistance, and when we take the constant Lj=2py,
which requires a near return when the wire is of copper, but a very
distant one if it is iron.
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Regarding them as arrival-curves, the curve & %, is the linear-theory
curve, showing how the current-density would rise in all parts of the
wire if it followed the ordinarily assumed law (so nearly true in common
fine-wire coils).

The curve H_H, shows what it really becomes, at the boundary, and
near to it. The current rises much more rapidly there in the first part
of the variable period, and much more slowly in the later part. From
this we may conclude that, when very rapid reversals are sent, the
amplitude of the boundary current-density will be far greater than
according to the linear theory; whereas if they be made much slower
it may become weaker. This is also verified by the separate calculation



ELECTROMAGNETIC INDUCTION AND ITS PROPAGATION. 59

in ¢ Induetion in Cores” of the reaction on the coil-current of the core-
currents when the impressed force is simple-harmonic, the amplitude of
the coil-current being lowered at a low frequency, and greatly increased
at high frequencies [p. 370, vol. 1.].

The curve £, shows how the current rises at the axis of the wire.
It is very far more slowly than at the boundary. But the important
characteristic is the preliminary retardation. For an appreciable
interval of time, whilst the boundary-current has reached a considerable
fraction of its final strength, the central current is infinitesimal. In fact
the theory is similar to that of the submarine cable ; when a battery is
put on at one end, there is only infinitesimal current at the far end for
a certain time, after which comes a rapid rise.

Between the axis and the boundary the curves are intermediate
between H_ H, at the boundary and H H; at the axis, there being pre-
liminary retardation in all, which is zero at the boundary, a maximum
at the axis. It is easy to understand, from the existence of this practi-
cally dead period, how infinitesimally small the axial current can be,
compared with the boundary current, when very rapid reversals are
sent. The formulee will follow.

The fourth curve hyh, shows the way the current rises at the axis
when the return has no resistance, but when at the same time there is
no external magnetic field, or Ly/p;=0. The return must fit closely
over the wire. We may approximate to this by using an iron wire and
a closeitting copper sheath of much lower resistance. There is pre-
liminary retardation, after which the current rises far more rapidly
than when L,/u, is finite.

That is, the eftect of changing L/u; from the value 2 to the value 0
is to change the axial arrival-curve from H H, to hh, Suppose it is a
copper wire. Then L,=2 means log(a,/a,)=1, or a,/a; =2'718. Thus,
removing the sheath from contact to a distance equal to 2-7 times the
radius of the wire alters the axial arrival-curve from Ak, to H H,
Now this great alteration does not signify an increased departure from
the linear theory (equal current-density over all the wire). It is
exactly the reverse. We have increased the magnetic energy by adding
the external field, and, therefore, make the current rise more slowly.
But the shape of the curve HyH,, if the horizontal (time) scale be suit-
ably altered, will approximate more closely to the linear-theory curve
Inh,. By taking the sheath further and further away, continuously
increasing the slowness of rise of the current, we (altering the scale)
approximate as nearly as we please to the linear-theory curve, and
gradually wipe out the preliminary axial retardation, and make the
current rise nearly uniformly all over the section of the wire, except at
the first moment. In fact, we have to distinguish between the absolute
and the relative. When the sheath is most distant the current rises
the most slowly, but also the most regularly. On the other hand, when
the sheath is nearest, and the current rises most rapidly, it does so with
the greatest possible departure from uniformity of distribution.

If the wire is of iron, say p, =200, the distance to which the sheath
would have to be moved would -be impracticably great, so that, except
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in an iron wire of very low inductivity, or of exceedingly small radius,
we cannot get the current to rise according to the linear theory.

The simple-harmonic solutions I must leave to another Section. We
may, however, here notice the water-pipe analogy [p. 384, vol. 1.]. The
current starts in the wire in the same manner as water starts into
motion in a pipe, when it is acted upon by a longitudinal dragging force
applied to its boundary. Let the water be at rest in the first place.
Then, by applying tangential force of uniform amount per unit area of
the boundary we drag the outermost layer into motion instantly ; it, by
the internal friction, sets the next layer moving, and so on, up to the
centre. The final state will be one of steady motion resisted by surface
friction, and kept up by surface force.

The analogy 1s useful in two ways. First, because any one can form
an idea of this communication of motion into the mass of water from its
boundary, as it takes place so slowly, and is an everyday fact in one
form or another; also, it enables us to readily perceive the manner of
propagation of waves of current into wires when a rapidly varying im-
pressed force acts in the circuit, and the rapid decrease in the amplitude
of these waves from the boundary inward.

Next, it is useful in illustrating how radically wrong the analogy
really is which compares the electric current in a wire to the current of
water in a pipe, and impressed EM.F. to bodily acting impressed force
on the water. For we have to apply the force to the boundary of the
water, not to the water itself in mass, to make it start into motion so
that its velocity can be compared with the electric current-density.

The inertia, in the electromagnetic case, is that of the magnetic field,
not of the electricity, which, the more it is searched for, the more un-
substantial it becomes. It may perhaps be abolished altogether when
we have a really good mechanical theory to work with, of a sufficiently
simple nature to be generally understood and appreciated.

In our fundamental equations of motion

curl (e - B) = pH, curl H=4x=T,

suppose we have, in the first place, no electric or magnetic energy, so
that E=0, H=0, everywhere, and then suddenly start an impressed
force e. The initial state is

E=0, H=0, curle=pH.

Thus the first effect of e is to set up, not electric current (for that
requires there to be magnetic force), but magnetic current, or the rate
of increase of the magnetic induction, and this is done, not by e, but by
its rotation, and at the places of its rotation. [A general demonstration
will be given later that disturbances due to impressed e or h always
have curl e and curl h for sources.] 3

Now, imagine e to be uniformly distributed throughout a wire. Its
rotation is zero, except on the boundary, where it is numerically e,
directed perpendicularly to the axis of the wire. Thus the first effect
is magnetic current on the boundary of the wire, and this is propagated
inward and outward through the conductor and the dielectric respec-
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tively. Magnetic current, of course, leads to magnetic induction and
electric current.

Now, in purely electromagnetic investigations relating to wires, in
which we ignore dielectric displacement, we may, for purposes of
calculation, transfer our impressed forces from wherever they may be
in the circuit to any other part of the circuit, or distribute them uni-
formly, so as to get rid of difference of potential, which is much the
best plan. It is well, however, to remember that this is only a device,
similar in reason and in effect to the devices employed in the statics and
dynamics of supposed rigid bodies, shifting applied forces from their
points of application to other points, completely ignoring how forces
are really transmitted. The effect of an impressed force in one part of
the circuit is assumed to be the same as if it were spread all round the
circuit. It would be identically the same were there no dielectric
displacement, but only the magnetic force in question. When, however,
we enlarge the field of view, and allow the dielectric displacement, it is
not permissible to shift the impressed forces in the above manner, for
every special arrangement has its own special distribution of electric
energy. The transfer of energy is, of course, always from the source,
wherever it may be. The first effect of starting a current in a wire is
the dielectric disturbance, directed in space by the wire, because it is a
sink of energy where it can be dissipated. But the dielectric disturb-
ance travels with such great speed that we may, unless the line is Jong,
regard it as affecting the wire at a given moment equally in every part
of its length; and this is substantially what we do when we ignore
dielectric displacement in our electromagnetic investigations, distribute
the impressed force as we please, and regard a long wire in which a
current is being set up from outside as similar to a long core in a
magnetising helix, when we ignore any difference in action at different
distances along the core.

SECTION XXIX. OscCILLATORY IMPRESSED FORCE AT ONE END OF
A Lang. Its ErrFECcT. APPLICATION TO LONG-DISTANCE TELE-
PHONY AND TELEGRAPHY.

Given that there is an oscillatory impressed force in a circuit, if this
question be asked—what is the effect produced ? the answer will vary
greatly according to the conditions assumed to prevail. I therefore
make the conditions very comprehensive, taking into account frictional
resistance, forces of inertia, forces of elasticity, and also the approxima-
tion to surface conduction that the great frequency of telephonic
currents makes of importance.

Space does not permit a detailed proof from beginning to end. The
resnlts may, however, be tested for accuracy by their satisfying all the
conditions laid down, most of which I have given in the last three
Sections.

The electrical system consists of a round wire of radius a;, conduc-
tivity %, and induetivity p, ; surrounded by an insulator of inductivity
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o and specific dielectric capacity ¢, to radius a,; surrounded by the
return of conductivity k., inductivity u,, and outer radius a,. The wire
and return to be each of length /, and to be joined at the ends to make
a closed conductive circuit. ,

Let S be the electrostatic capacity, and L, the inductance of the
dielectric per unit length of the line. That is,

L,=2p, log(a,/a,), S=¢{2 log(az/a;)} % ........ (330)
We have L,S=cp,=v"%; if v is the speed of undissipated waves throngh
the dielectric.
Let 7 be the surface-potential of the wire, and C the wire-current, or
total eurrent in the wire, at distance 2 from one end, at time £ The
differential equation of 7 is

%: (Rl LID)Sp V5 o i chaveddiost s g S A

where R’ and I/ are certain even functions of p, whose structure will
be explained later, and p stands for d/d¢. That of C is the same. The
connection hetween € and V is given by

s ilz—xV — (Rt LIt st izt (350)

Both (345) and (350) assume that there is no impressed force at the
place considered. If there be impressed force ¢ per unit length, add e
to the left side of (350), and make the necessary change in (340), which
is connected with (35b) through the equation of continuity

dC
T R e e o, (36b)

But as we shall only have ¢ at one end of the line, we shall not
require to consider ¢ elsewhere. .

Now, given (34b) and (350), and that there is an impressed force
V, sinnt at the =0 end, find V and C everywhere. Owing to A’ and
L’ containing only even powers of p, and to the property p?= —n?
possessed by p in simple-harmonic arrangements, £ and L’ become
constants. The solution is therefore got readily enough. Let

et gtk e L’n}i,‘} ................. (370)
Q = (Snp {(R2+ L%t + Ln}d.)
These are very important constants concerned. Let also
tan 0, = (L/nP — R/Q)/(R'P + L/nQ),
tam By = i 2G1/(¢*" - 008 20 } ................ (38b)

These make 0, and 0, angles less than 90°. Then the potential ¥V at
distance z at time £ is

- s e"sin(nt + Qr + 0,) — e P*sin(nt — Qu + 6
V= Ve sin(nt - Q) + ¥, ( epz(e?m_l_ 5_22)1»1 _e e (QQl)i‘Q 2). (390)
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and the current C is

L (S’)l)& by o o s
= Vo(lf’fml:e sin(nt — Qu - 6,)
_ €™ sin(ni+ Qv — 0, + 0,) + =" sin(nt — Qz — 0, + 6,) (400)
(M T2 cos 2Q)E ]

Each of these consists of the sum of three waves, two positive, or from
2=0 to =/, and one negative, or the reverse way. If the line were
infinitely long, we should have only the first wave. But this wave is
reflected at =1/, and the result is the second term. Reflection at the
£=0 end produces the third and least important term.

The wave-speed is 7/@, and the wave-length 27/Q. As the waves
travel their amplitudes diminish at a rate depending upon the magni-
tude of 2. The angles 6, and 6, merely settle the phase-differences.
The limiting case is wave-speed =7, and no dissipation.

The amplitude of the current (half its range) is important. It is

A V()(_SI_L)L 2P1-7) 4 ¢=2P0=2) 4 9 003 QQ(Z it x) 3
CT(RE MR M p e 2 cos 20 :

at any distance 2. At the extreme end 2=/ it is

L 2V,(Sn)}
O (R + [P

As it is only the current at the distant end that can be utilised there,
it is clear that (412) is the equation from which valuable information is
to be drawn.

It must now be explained how to get £’ and L/, and their meanings.
Go back to equation (28), Section XXVIL [p. 54], which is the deter-
minantal or differential equation when dielectric displacement is ignored.
We may write it ;

(7 4+ €~ 2 08 2Q1)7E. ..., (41b)

J,
Jo(8305) = Kll (3303 K (33,)

J,
Sq@y) — S 1(8.00) K (.01,
(32) 1(1(38)132)
When p is d/dt it is the differential equation of the boundary magnetic
force, or of C, since they are proportional. Separating into even and
odd powers of p it will take the form, if we operate on C,

O3 = L D YO i o oo i (420)
where £/ and L’ are functions of p2. To suit the oscillatory state, put
- n? for p? making I and L/ constants. They will be of the form

R/ = R} + R}, L=Lo L8 £lf5 ciioeeiienan (43b)

where R/ depends on the wire, R, on the return; L{ on the wire, L}
on the return, and L, on the intermediate insulator. The forms of R]
and L{ have been given by Lord Rayleigh. They are, if ¢>=un/R,,
where R, =steady resistance of the wire per unit length,

Jo(818)  pss
0L P15 Yol$1%) _ PsS3
of +27ra1 Ji(s,4,) 2ma, 7

1
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e Ry DA SR )
s <1+12 1215122880 /)’
1342 7343
=g 1 — Log P e e )
" 2"‘( 24712230 12228807 )
to the last of which I have added an additional term. The getting ot
the forms of R} and Lj, depending upon the return, is less easy,
though only a question of long division. I shall give the formulz
later. At present I give their ultimate forms at very high frequencies.
Let p=resistivity, and ¢ =frequency =n/2=, then

Bl= (ﬁﬁh_@*, IR (45b)
1
These are also Lord Rayleigh’s. For the return we have

R;=(/‘%3‘7)*, LR, o0 (468)
2

I express R} and Rj in terms of the resistivity rather than the
resistance of the wire and return because their resistances have really
nothing to do with it, as we see in especial from the R} formula. The
I} of the tube depends upon its inner radius only, no matter how thick
it may be, that is to say upon extent of conducting surface, varying
inversely as the area, which is 2=a, per unit length. The proof of (460)
will follow.

Now, as regards the meanings. Let us call the ratio of the impressed
force to the current in a line when electrostatic induction is ignorable
the Impedance of the line, from the verb impede. It seems as good a
term as Resistance, from resist. (Put the accent on the middle e in
impedance.) When the flow is steady, the impedance is wholly con-
ditioned by the dissipation of energy, and is then simply the resistance
Rl of the line. This is also sensibly the case when the frequency is
very low ; but with greater frequency inertia becomes sensible. Then
(R?+ LPn%)H is the impedance. Here B and L are, in the ordinary
sense, the resistance and inductance of unit length of line, including
wire and return. When, further, differences of current-density are
sensible, the impedance is (£/24 L/2n%)}. This is greater or less than
the former, according to the frequency, becoming ultimately less,
especially if the wire is of iron, owing to the then large reduction in the
value of I/ as compared with L.

Now, when we further take electrostatic induction into account we
shall have the above equations (345) and (35b), in which £’ and L/ are
the same as if there were no static charge. The proof of this I must
also postpone. It is the only thing to be proved to make the above
quite complete, excepting (466), which is a mere matter of detail. The
proof arises out of the short sketch I gave in Section XXVIL of the
general electrostatic investigation, used there for illustration.

The impedance is made variable ; it is no longer the same all along
the line, simply because the current-amplitude decreases from the place
of impressed force, where it is greatest, to the far end of the line,
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where it is least. The question arises whether we shall confine imped-
ance according to the above definition to the place of impressed force,
or extend its meaning. If we confine the use, a new word must be
invented. I therefore, at least temporarily, extend the meaning to
signify the ratio of 7 to 'y anywhere.

It 1s very convenient to express impedance in ohms, whatever may be
its ultimate structure. Thus the greatest impedance of a line is what
its resistance would have to be in order that in steady-flow the current
should equal that arriving at the far end under the given circumstances.
It will usually be far greater than the resistance. But there is this
remarkable thing about the joint action of forces of inertia and elasticity.
The impedance may be far less than in the electromagnetic theory.
That is, //C, according to (41b) may be far less than (R/2+ L2n?)}.
This is clearly of great importance in connection with the future of
long-distance telegraphy and telephony.

(In passing I will give an illustration of reduction of impedance pro-
duced by inertia. Let an oscillatory current be kept up in a submarine
cable and in the receiving coils. Insert an iron core in them. The
result is to sncrease the amplitude of the current-waves. More fully,
increasing the inductance of the coil continuously from zero, whilst
keeping its resistance constant, increases the amplitude up to a eertain
point, after which it decreases. The theory will follow.)

To get the submarine cable formulz, ignoring inertia, take L/ =0 and
IV=R. To get the more correct formule, not allowing for variations
of current-density, but including inertia, take L’= L the steady induct-
ance, and £/=£. To get the linear magnetic theory formule, take
S=0,and L’=L, ’/=R. Finally, using £/ and L/, but with S=0, we
have the complete magnetic formulee suitable for short lines. Thus
S=0 in (410) brings it to

Cy=Vy+ (R?+ L2k,

Equations (34b) to (360) are true generally, that is, with B’ and L’ the
proper functions of d/dt. The solution in the case of steady impressed
force will follow, including the interior state of the wire. Also the
interior state in the oscillatory case.

A great deal may be dug out of (415). In the remainder of this
Section, however, we may merely notice the form it takes at very high
frequencies, so high as to bring surface conduction into play, and show
how much less the impedance is than according to the magnetic theory.
Let n be so great as to make R//L’n small. Then we may also take
L’=L, Then

P=F|2Lp, Q=mn/v.

Algo, if € is small, as it will be on increasing the frequency, we
need only consider the first term under the radical sign in (413),
which becomes .

e g 2 0—RY2Low
C, Love ;
Take for F/ its ultimate form
B =2(ppg)¥a,
H.E.P.—VOL, IL E
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got from (45b) and (46b) by supposing wire and sheath of the same
material, and 2/a=1/a, + 1/a,.
Then the impedance is

= | Uppg)t
Vy|Cy=2Lw x exp Dl

where exp is defined by € =exp z, convenient when « is complex. Here
L, is a numeric, and v=230 ohms (i.c., when we reckon the impedance
in ohms); p=1600 and p=1, if the conductors are copper; and
1=10%,, if [, is the length of the line in kilom. ; therefore

V,/Cy=15L, x exp(41,9%/30%aLy).
To see how it works out, take Ly=1, =1 cm, and ¢=10%; then
V,/Cy=15 x exp 4/,/300 ohms.

If the line is 100 kilom., Pl is made 1%, which is too small for our
approximate formula. If 1,000 kilom., it is made 131, which is rather
large. Pl=10 is large. If it is 500 kilom., then

Vy/Cy=15 x exp 62 =1,178 ohms.

So the impedance is only 1,178 ohms at 500 kilom. distance at the
enormous frequency of 10,000 waves per second. It is of course much
less at a lower frequency, but the more complete formula will have to be
used if it be much lower.

Now compare this real impedance with the resistance of the line in the
steady state, its effective resistance according to the magnetic theory,
and the impedance according to the same. The resistance of the line
we may take to be twice that of the wire, by choosing the return of a
proper thickness, or

Rl=2x 500 x 105 x 1600/7 = 50 ohms, say.
L will be a little more than 11, say 1-6, therefore
Lin =8 x 2w x 10*= 5060,

so that the linear-theory impedance is nearly 5,100 ohms. -
But, owing to the high frequency, we should use I/ and L/ instead
of B and L ; here take L/ = L,+ I//n, then

R'1=400 ohms.

This large increase of resistance is more than counterbalanced by the
reduction of inductance, so that the impedance is brought down from
the above 5,100 to about 3,500 ohms, the magnetic theory impedance ;
and this is about three times the real impedance at its greatest, viz., at
the distant end of the line.

It is further to be noted that the wire and return need not be solid,
as we see from the value of B’ compared with B. 'What is needed at
very high frequencies is two conducting sheets of small thickness, of
the highest conductivity and lowest inductivity ; i.e., of copper.
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SectioN XXX. IMPEDANCE FORMULE FOR SHORT LINES.
RESISTANCE OF TUBES.

In the case of a short line, a very high frequency is needed in general
to make it necessary to take electrostatic induction into account in
estimating the impedance. Keeping below such a frequency, the
impedance per unit length is simply

(B2 + L*?)k.

This is greater than the common (2?4 L?x?)} at first, when the
frequency is low, equal to it at some higher frequency, and less than it
for still higher frequencies. Thus, for simplicity, let the return con-
tribute nothing to the resistance or the inductance ; then, using (440),
we shall have

(R/Z i L/Znﬁ) U (RZ il L2n2)

ot Al shi2 g8 3l AT P

oty 1 <;L+10>+48.90<13;L+56> A
B and L being the steady resistance and inductance of the line per unit
length (the latter to include L, for the external medium), 2/ and L’ the
real values at frequency n/2x per second, u the inductivity of the wire,
and ¢=(un/R)%.

Thus the first increase in the square of the impedance over that of
the linear theory is }p2n? independent of resistance; large in iron,
small in copper. But as the frequency is raised, the g2 term becomes
sensible ; being negative, it puts a stop to the increase. We can get a
rough idea of the frequency required to bring the impedance down to
that of the linear theory by ignoring the ¢3 term. This gives

n?=4R ,ﬂ(f_j i ) ........................ (485)

The real frequency required must be greater than this, and taking
the ¢° term into account, we shall obtain, as a higher limit,

a2 L 3
n?=42R?+ ,u.2<; 45 %>,
approximately. We see that the simpler (480) is near enough.
If the wire is of copper of a resistance of 1 ohm per kilom., making
R=10% we shall have, using (48b),

n=20%+ (Lo +g>§.

If the return is distant, we can easily have Ly=9. Then the
frequency required is about 100 waves per second. This is a low
telephonic frequency, so that we see that telephonic signalling is
somewhat assisted by the approximation to surface conduction.

If the wire is of iron, then, on account of the large value of y, a much
lower frequency is sufficient to reduce the impedance below that of the
linear theory; that is, an iron wire is not by any means so disadvan-
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tageous, compared with a copper wire of the same diameter, as its
higher resistivity and far higher inductivity would lead one to expect.

But it is not to be inferred that there is any advantage in using iron,
electrically speaking, from the fact that the impedance is so easily made
much less than that of the linear theory. Copper is, of course, the best
to use, in general, being of the highest conductivity, and lowest induc-
tivity. Nor is any great importance to-he attached to the matter in
any case, for, on a short line, to which we at present refer, it will
usually happen that the telephones themselves are of more importance
than the line in retarding changes of current.

We also see that in electriclight mains with alternating currents
there may easily be a reduction of impedance if the wires be thick and
the returns not too close. On the other hand, the closer they are
brought the less is the impedance, according to the ordinary formula.
It should be borne in mind that we are merely dealing with a correction,
not with the absolute value of the impedance, which is really the
important thing.

Now take the frequency midway hetween 0 and the second frequency
which gives the linear-theory impedance. Then 122+ L?n? becomes

1
RZ+nQ(L2+ Eﬁ,u?),

wherein use the value of #? given by (485). The increase of impedance
is not, therefore, in a copper wire, anything of a startling nature.

Impedances are not additive, in general. We cannot say that the
impedance of a wire is so much, that of a coil so much more, and then
that their sum is the impedance when they are put in sequence, at the
same frequency.

In passing, I may as well caution the reader against the false idea
somewhere prevalent. The increased resistance of a wire is not in any
way caused or evidenced by the weakness of the current in the variable
period compared with its final strength, a result due to the back E.MLF.
of inertia. No matter how great the inertia, and how slowly it makes
the current rise, there is no change of resistance, unless there be
changed distribution of current. There must always be some change,
but it is usually negligible. When, however, as notably in the case of
iron, the central part of the wire is inoperative, of course this changed
distribution of current means a large increase of resistance, though not
of impedance, which is reduced. It is a hollow tube, not a solid wire,
that must, to a first approximation, be regarded as the conductor.
There cannot be said to be any definite resistance unless the current
distribution is definite.

Thus, in the rise of the current from zero to the steady state there is,
presuming that there is large departure from the regular final distribu-
tion, no definite resistance, and it is clearly not possible to balance a
wire in which the above takes place against a thin wire, a conclusion
that is easily verified. But the case of simple-harmonic impressed force
1s peculiar. The distribution of current, though not constant, goes
through the same regular changes over and over again in such a manner
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that the total current at every moment is the same as if a true linear
circuit of definite resistance and inductance were substituted. This is
very considerably departed from when mere rapid makes and breaks
are employed.

Consider now the resistance of a tube at a given frequency. It
depends materially upon whether the return-current be within it or
outside it. Let there be two tubes, ¢, and @, the inner and outer radii
of the inner, and «, and @, of the outer. By an easy extension of
equation (7Sb), the form quoted in the last Section, the differential
equation of the total current is

Jo(syty) - '(SlaO)KO (8141)

0=Lip+ 413 BB Fibstg epree o r R

o(bsa) K(sg%)Ko(“sa‘) (500)
B N e 2o 02 I i T

the dots indicating repetltlon of what is above them. The first term
is for the insulator between tubes, the second for the inner tube, the
third for the outer. Or,
0= Lop + (B + Lip) + (I + Lip),
where R/, Rl, L], L} are functions of p? and therefore constants when
the current is simple-harmonic. The division of the numerators by
the denominators, a simple matter in the case of a solid wire, becomes
a very complex matter in the tube case. I give the results as far as p%
It is not necessary to do the work separately for the two tubes, for,
if we compare the expressions carefully, we shall see that they only
differ in the exchange of the inner and outer radii, and in changed
sign of the whole.
For the inner tube we have

mralfl 3 ad y (%5 s
A el s {2—2 i -2 log-;.m}, .......... (510)
where 2, is the steady resistance per unit length. This is the coeficient
of p, and is therefore nothing more than the inductance per unit length
of the tube in steady flow, the first correction to which depends on p3
This may be immediately verified by the square-of-force method.

The resistance of the inner tube per unit length is

2a, log-» 4ao loo'
y npyTa a0 SR 0 ( ao :I 59
Bi= Iy + By : ) T et et (520
To obtain, from (516) and (52b), the corresponding expressions for
the outer tube, change R, to By, py to pg, gy to pg, 0 to ay, and g, to ag
The change of sign is not necessary, because it is involved in the
substitution of R, for R,. Or, simply, (510) and (52b) holding good
when the return is outside the tube, exchange ¢, and @, and we have
the corresponding formule when the return is S inside it.
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Let ay=40,. This removes a fourth part of the material from the
central part of a solid wire of radius ;. The return being outside,
the resistance is

R, =R, + R (np,wa/p,)? x -012.

If solid, the ‘012 would be ‘083 ; or the correction is reduced seven
times by removing only a fourth part of the material.
But if the return is inside, all else being the same, the resistance is

B =R, + By(mpywad/py) x 503 = Ry + B (npmal/p,) x 031,

so now the correction is reduced less than three times instead of seven
times, as when the return was outside.

This difference will be, of course, greatly magnified when the ratio
a,/a, is large ; for instance, consider a solid wire surrounded by a very
thick tube for return ; the steady resistance of the return will be only a
small fraction of that of the wire, but the percentage increase of resist-
ance of the outer conductor will be a large multiple of that of the wire.
Thus the earth’s resistance, which, in spite of the low conductivity, is
so small to a steady current, will be largely multiplied when the current
is a periodic function of the time.

Now, as regards the resistance of the tube at high frequencies. If
the return is outside it is

Rfje= (pypig)b =, e S ot R (53d)
g being the frequency. But if the return is inside, it is
RI=(papig)d = ag, RN (540)

thus depending upon the inner radius when the return is inside, and
on the outer when it is outside, for an obvious reason, when the position
of the magnetic field where the primary transfer of energy takes place
is considered.

Suppose we fix the outer radius, and then thin the tube from a solid
wire down to a mere skin. In doing so we increase the steady resist-
ance as much as we please. DBut the high-frequency formula (532)
remains the same. Now, as it would involve an absurdity for the
resistance to be less than that in steady flow, it is clear that (535)
cannot be valid until the frequency is so high as to make R/ much greater
than R, which is itself very great when the tube is thin. That is to
say, removing the central part of a wire, when the return is outside it,
makes it become more a linear conductor, so that a much higher
frequency is required to change its resistance; and when the tube is
very thin the frequency must be enormous. Practically, then, a thin
tube is always a linear conductor, although it is only a matter of raising
the frequency to make (530) or (54b) applicable.

To get them, use in (500) the appropriate Ji(z), etc., formule when z
is very large. They are

)= - K=oy by LS 0
Ji() * K(z) = (sin @ — cos z) + (w)%.
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These, used in (500), putting the circular functions in the exponential
forms, reduce it to

0=Lop+ P11t PssSel
P+ g X i RN
where i=(-1)%. Here
—sfal = dwplyalp, therefore 181040 = (wp ke, p)ay,
and similarly for s;; so we get

0= Lop + (pp[mh)}ay + (pgp/mhe)} as.
Here, since p? = — n?, pt=(}n)}(1 +14); which brings us to

O=(Bl+B)+(Lo+ LI+ LYp, .o veveveennnnnns (560)
where Bi=(mp )+ ay g R{/n,} ................. (57b)
B= (g + 0y L=Rin,

as before given, except that the inner tube was a solid wire.

If, however, the frequency were really so high as to make these high-
frequency formula applicable when the conductors are thin tubes, it is
clear that we should, by reason of the high frequency, need, at least in
general, to take electrostatic induction into account even on a short
line, and therefore not estimate the impedance by the magnetic formule,
but by the more general of the last Section, in which the same R/ and
L’ occur. As for long lines, it is imperative to consider electrostatic
induction. There is no fixed boundary between a “short” and a
“long” line; we must take into account in a particular case the
circumstances which control it, and judge whether we may treat it as a
short or a longline question. To the more general formula I shall
return in the following Section, merely remarking at present that there
is a curious effect arising from the to-and-fro reflection of the electro-
magnetic waves in the dielectric, which causes the impedance to have
maxima and minima values as the speed continuously increases; and
that when the period of a wave is somewhere about equal to the time
taken to travel to the distant end and back, the amplitude of the
received current may easily be greater than the steady current from the
same impressed force. And, in correction of the definition in Section
XXIX. of 7 as the surface potential of the wire, substitute this defini-
tion, @=S7, where @ is the charge and S the electrostatic capacity,
both per unit length of wire. ;

SectioN XXXI. THE INFLUENCE OF EvLECTRIC CAPACITY.
IMPEDANCE FORMULA.

Let us now return to the more general case of Section XXIX., the
amplitude of the current due to a simple-harmonic impressed force at one
end of a line. Although the formula (410) for the amplitude at the
distant end is very compact, yet the exponential form of the functions
does not allow us to readily perceive the nature of the change made by
lengthening the line, or making any other alteration that will cause the
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effect of the electric charge to be no longer negligible, by causing the
magnetic formula to be sensibly departed from. Let us, therefore, put
(410) in the form 7 /C;;=etc., and then expand the right member in an
infinite series of which the first term shall be the magnetic impedance
itself, whilst the others depend on the electric capacity as well as on the
resistance and inductance.

On expanding the exponentials and the cosine in (415), we obtain a
series in which the quantities P*— @, P5— ()5, ete., ocenr, all divided by
P24 @2 .

To put these in terms of the resistance, etc., we have, by (375),

P24 Q?=08nl, 2PQ=Snl, Q% - P2=8n2L/, ...(58b)
where T=(RIBB ) 00l o e (590)

I being the short-line impedance per unit length. Using these, we
convert (415) to the following form, i

V,/Cy= n[1 4 %snw + %l;(sn)‘-’(wz + Lin?) - ]* ..... (600)

Here we may repeat that 77 and (, are the amplitudes of the impressed
force at one end and of the current in the wire at the other end of the
double wire of length I/, whose ‘“constants” are R/, L/, and S, the
resistance, inductance, and electric capacity per unit length, I/ and
L/ being functions of the frequency already given. I do not give more
terms than are above expressed, owing to the complexity of the co-
efficients of the subsequent powers of S. To go further, it will be
desirable to modify the notation, and also to entirely separate the
terms depending upon resistance in the [ ] from the others. Let
SbE=tnt Jf=(&]|Ln)2, h=nlfv. ..0.....0(61b)

Here v is a velocity, f and & numerics. The least value of the velocity
is (SL)~%, at zero frequency, L being the full steady inductance per
unit length, as before. As the frequency increases, so does v. Its
limiting value is (SLy)~% or (m.e;)~%, the speed of undissipated waves
through the dielectric. The ratio f falls from infinity at zero fre-
quency, to zero at infinite frequency. See equations (430) to (46b).
The ratio % is such that &/2x is the ratio of the time a wave travelling
at speed v takes to traverse the line, to the wave-period.

In terms of I, f, and A, our formula (415), or rather (605), when
extended, becomes

Py _Si“h>2 SR _Lpay L 4( o )
Vil Co [( i) Yo7t Mt
ik e 8 o i(1edrelp) T
105.99" <1+1_6f>+105.99.91h 11/ +50”) :l e
From this, seeing that in the [ ], resistance appears in f only, we see
that the corresponding no-resistance formula is simply

AL Si;: Al sin’;_l, ..................... (63b)

where, of course, v is the speed corresponding to Ly, or the speed of un-
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dissipated waves. The sine must be reckoned positive always. To
check (630), derive it immediately from (41%) by taking 2=0. We shall
find the following form of (410) in terms of f and & useful later i—

Vo/Co=1L/0(1 +)H{eP + &~ 208 2QI}3, ........... (64b)
where Pl=hL)HA+f)E -1}
Ql=h(;)&{(1 LA, } ...................... (65b)

Let us now dig something out of the above formule. This arith-
metical digging is dreadful work, only suited for very robust intellects.
I shall therefore be glad to receive any corrections the following may
require, if they are of any importance.

It will be as well to commence with the unreal, but easily imaginable
case of no resistance. Let the wire and return be of infinite conductivity.
We have then merely wave propagation through the dielectric, without
any dissipation of energy, at the wave-speed v=(p.,)"%, which is, in
air, that of light-waves. Any disturbances originating at one end
travel unchanged in form; but owing to reflection at the other end,
and then again at the first end, and the consequent coexistence of
oppositely travelling waves, the result is rather complex in general
Now, if we introduce a simple-harmonic impressed force at one end, and
adjust its frequency until the wave-period is nearly equal to the time
taken by a wave to travel to the other end and back again at the speed
v, it is clear that the amplitude of the disturbance will be enormously
augmented by the to-and-fro reflections nearly timing with the impressed
force. This will explain (635), according to which the distant-end
impedance falls to zero when

nlfv=m, or 2w, - or 3=, etc.

Here 2x/n is the wave-period, and 2//» the time of a to-and-fro journey.
The current-amplitude goes up to infinity.

If, next, we introduce only a very small amount of resistance, we may
easily conclude that, although the impedance can never fall to zero, yet,
at particular frequencies, it will fall to a minimum, and, at others, go
up to a maximum; and that the range between the consecutive maxi-
mum and minimum impedance will be very large, if only the resistance
be low enough.

Increasing the resistance will terid to reduce the range between the
maximum and minimum, but cannot altogether obliterate the fluctua-
tions in the value of the impedance as the frequency continuously
increases. In practical cases, starting from frequency zero, and raising
it continuously, the impedance, which is simply £/, the resistance of the
line, in the first place, rises to a maximum, then falls to a minimum,
then rises to a second maximum greater than the first, and falls to a
second minimum greater than the first, and so on, there being a regular
increase in the impedance on the whole, if we dlsreaard the ﬂuctuatlons
whilst the fluctuations themselves get smaller and smaller, so that the
real maxima and minima ultimately become false, or only tendencies
towards maxima and minima at certain frequencies.

By this to-and-fro reflection, or electrical reverberation or resonance,
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the amplitude of the received current may be made far greater than the
strength of the steady current from the same impressed force, even
when the electrical data are not remote from, but coincide with, or
resemble, what may occur in practice. To show this, let us work out
some results numerically.

As this matter has no particular concern with variations of current-
density in the conductors, ignore them altogether; or, what comes to
the same thing, let the conductors be sheets, so that &/ = R, the steady
resistance, and L/=L, very nearly, the dielectric inductance, both per
unit length. Then, in (64b), let

=1, Ql=m, o= 30 ohms. , LS (660)
Then, by the second of (650), we find that
h=285;

and, by (640), that
Vo/Co=3Lgv. 24 ™" 4 8 _ 21 =606 L, ohms. ...... (670)
The ratio of the distant-end impedance to the resistance is therefore
60-6 x 10°L, 606 x 10° 202 202
7 = = =ns e dCi
by making use of the data (660). That is, the amplitude of the
received current is 42 per cent. greater than the steady current, when
(660) is enforced.
But let @/ =1, then
Vo/Co=3Lew. 2™ + e ™"} =28 L, ohms;
and the ratio of impedance to resistance is i
o Al P nearly
60'6 285 3 ’
or the amplitude of current is only 3/4 of the steady current.
And if Q/=1m, we shall find
V,/C,=435 ohms,
and that the impedance is slightly greater than the resistance. Whilst,
if @/ = 3w, we shall have

Vy/Co=47'8 ohms,
and find the ratio of impedance to resistance to be 63/85, making the
received current 35 per cent. stronger than the steady current.

The above data of f=1, and @/ =1m, 4w, 4=, and =, have been chosen
in order to get near the first maximum and minimum of impedance.
The range, it will be seen, is very great. Let us next see how these
data resemble practical data in respect to resistance, etc. Remember
that 1 ohm per kilom. makes B=10% (resistance per cm. of double
conductor). Also, that f=1 means B=nl=10%/,, if [, is in kilometres.
Then, in the case to which (660) to (680) refer, we shall have, first
assuming a given value of R, then varying L, and deducing the values
of n and /;, the following results :—

ksl L,=10,
=103} n =103, n=102,
1, =856, {,=8b68.
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This is an excessively low resistance, {% ohm per kilom. ; the frequen-
cies are rather low, and the lengths great. Next, 1 ohm per kilom. :—

R =i1° =2l L,=100,
R=10% n =104, n =103, n=102,
1, =85. 1, =856. 1, =8568.

The L,=100 case is extravagant, requiring such a very distant return
current (therefore very low electric capacity). Next, 10 ohms per
kilom. : —

=t Ly=10, L,=100,
R=10% n =105, n=104%, n=103,
I, =8:5. 1, =85. l, = 856.
Lastly, very high resistance of 100 ohms per kilom. :—
p==10; L,=10, n=105, I,=85.

In all these cases the amplitude of received current is 42 per cent.
greater than the steady current.

In the next case, QI =1, the quantity nl/v has a value one-fourth of
that assumed in the above; hence, with the same  and L, and same
frequency, the above values of [, require to be quartered. Then, in all
cases, the current-amplitude will be three-fourths of the steady current.
Similarly, to meet the @/ =} case, use the above figures, with the /;’s
halved ; and in the @/ =3 case, with the /;’s multiplied by 2.

A consideration of the above figures will show that there must be, in
telephony, a good deal of this reinforcement of current strength some-
times ; not merely that the electrostatic influence tends to increase the
amplitude all round, from what it would be were only magnetic
induction concerned, but that there must be special reinforcement of
certain tones, and weakening of others. It will be remembered that
good reproduction of human speech is not a mere question of getting
the lower tones transmitted well, but also the upper tones, through a
long range ; the preservation of the latter is required for good articula-
tion. The ultimate effect of electrostatic retardation, when the line is
long enough, is to kill the upper tones, and convert human speech into
mere murmuring.

The formula (620) is the most useful if we wish to see readily to
what extent the magnetic formula is departed from. In this, two
quantities only are concerned, f and £, or (1//L/n)? and nl/v; and if both
f and % are small, it is readily seen that the first form of (63b) applies,
the factor by which the magnetic impedance is multiplied being
(sin &)/h. Even when k is not small the f terms in (620) may be negli-
gible, and the first form of (630) apply. For example, suppose h=1,
and f small, then (sinh)/h=3 x *3272 =-9816, showing a reduction of
2 per cent. from the magnetic impedance.

Now, this ~=1 means nl, =10 or the high frequency of 105/2x on a
line of one kilom., 10¢/2x on 10 kilom., and so on, down to 10/2r on
10,000 kilom., always provided the f terms are still negligible. This
may easily be the case when the line is short, but will cease to be true
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as the line is lengthened, owing to the 7 in f getting smaller and
smaller. Thus, in the just-used example, if the resistance is 10 ohms
per kilom., and L=10, we shall have f=1; on the line of 1 kilom.,
and f=1 on 10 kiloms. So far, the f terms are negligible, and the
first form of (636) applies. But f becomes 100 on 100 kiloms., which
will make an appreciable, though not large, difference ; and f= 10,000
on 1,000 kilom. will make a large difference and cause the first (636)
formula to fail. It is remarkable, however, that this formula should
have so wide a range of validity. )

In the above we have always referred to the distant-end impedance.
But at the seat of impressed force there is a large increase of current on
account of the “charge.” Thus, at =0, by the formula preceding
(410), we have

%’:L’v(lﬂ‘)i fi”_tf‘z”t“oi'%@?l]*. et (B
0

The term impedance is of course strictly applicable at the seat of
impressed force. As the frequency is raised, this impedance tends to be

represented by

Vo|Cy=L'v(1 +f)%,
and, ultimately, by Vol Cy=Liw= 30"k, tchims, &, ot sl e isan (700)
if the dielectric be air. L, is usually a small number.

ScTioN XXXII. TaE EQUATIONS OF PROPAGATION ALONG WIRES.
ELEMENTARY.

In another place (Phil. Mag., Aug., 1886, and later) the method
adopted by me in establishing the equations of 7 and C, Section XxIx.,
was to work down from a system exactly fulfilling the conditions
involved in Maxwell's scheme, to simpler systems nearly equivalent,
but more easily worked. Remembering that Maxwell's is the only
complete scheme in existence that will work, there is some advantage
in this ; also, we can see the degree of approximation when a change is
made. In the following I adopt the reverse plan of rising from the first
rough representation of fact up to the more complete. This plan has,
of course, the advantage of greater intelligibility to those who have not
studied Maxwell's scheme in its complete form ; besides being, from an
educational point of view, the more natural plan.

Whenever the solution of a so-called physical problem has been
obtained, according to which, under such or such conditions, such or
such effects musf happen, what has really been done has been to solve
another problem, which resembles the real one more or less in those
features we wish to study, which we regard as essential, whilst it is of
such a greatly simplified nature that its solution is, in comparison with
that of the real problem, quite elementary. This remark, which is of
rather an obvious nature, conveys a lesson that is not always remem-
bered ; that the difference between theory and empiricism is only one
of degree, even when the word theory is used in its highest sense, and
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is applied to legitimate deductions from laws which are known to be
very true indeed, within wide limits.

1t is quite possible to imagine the solution of the general problem of
the universe. There does not seem to be anything against it except its
possible infinite extent. Stop the extension of the universe somewhere ;
then, if its laws be fully known, and be either invariable or known to
vary in some definite manner, and if its state be known at a given
moment, it is difficult to see how it can be indefinite at any later time,
even in the minutest particulars in the history of nations or of animal-
cule, or in the development of a human soul (which is certainly im-
mortal, for the good and evil worked by a soul in this life live for ever,
in the permanent impress they make on the future course of events).

But if this be imagined to be all done, and the universe made a
machine, no one would be a bit the wiser as to the reason why of it.
(Even if we ask what we mean by the reason why, we shall in all pro-
bability get into a vicious circle of reasoning, from which there is no
escape.) All that would be done would be the formulation of facts in
a complete manner. This naturally brings us to the subject of the
equations of propagation, for they are merely the instruments used in
attempts to formulate facts in a more or less complete manner.

The first to solve a problem in the propagation of signals was Ohm,
whose investigation is a very curious chapter in the history of electricity,
as he arrived at results which are, under certain conditions, nearly
correct, by entirely erroneous reasoning. Ohm followed the theory of
the conduction of heat in wires, as developed by Fourier. Up to a
certain point there is a resemblance between the flow of heat and the
electric conduction current, but after that a wide dissimilarity.

Let a wire be surrounded by a non-conductor of heat, in imagination ;
let the heat it contains be indestructible when in the wire, and be in
a state of steady flow along it. If C is the heat-current across a given
section, and 7 the temperature there, ' will be proportional to the rate
of decrease of / along the wire. Or

~dVjdz = RC,

if # be length measured along the wire. The ratio B of the fall of
temperature per unit length, to the current, is the “resistance” per
unit length, and is, more or less, a constant. Or, the current is pro-
portional to the difference of temperature between any two sections, and
is the same all the way between.

The law which Ohm discovered and correctly applied to steady con-
duction currents in wires is similar to this. Make (' the electric
current in the wire, and 7 the potential at a certain place. The current,
which is the same all the way between any two sections, is proportional
to their difference of potential. The ratio of the fall of potential to the
current is the electrical resistance, and is constant (at the same tem-
perature). But 7 is, in Ohm’s memoir, an indistinctly defined quantity,
called electroscopic force, I believe. Even using the modern equivalent
potential, there is not a perfect parallel between the temperature 7~ and
the potential #. For a given temperature appears to involve a definite
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physical state of the conductor at the place considered, whereas
potential has no such meaning. The real parallel is between the tem-
perature gradient, or slope, and the potential slope.

Now, returning to the conduction of heat, suppose that the heat-
current is not uniform, or that the temperature-gradient changes as we
pass along the wire. If the current entering a given portion of the
wire at one end be greater than that leaving it at the other, then, since
the heat cannot escape laterally, it must accumulate. Applying this to
the unit length of wire, we have the equation of continuity,

~dCldx =g,
¢ being the time, and ¢ the quantity of heat in the unit length. But
the temperature is a funection of ¢, say

q=_87,
where S is the capacity for heat per unit length of wire, here regarded,

for simplicity of reasoning, as a constant, independent of the tempera-
ture. This makes the equation of continuity become

- dC|dz=SV.

Between this and the former equation between C and the variation of
V, we may eliminate C' and obtain the characteristic equation of the
temperature,

d2V]da? = RSP,

which, when the initial state of temperature along the wire is known,
enables us to find how it changes as time goes on, under the influence
of given conditions of temperature and supply of heat at its ends.

Ohm applied this theory to electricity in a manner which is sub-
stantially equivalent to supposing that electricity (when prevented from
leaving the wire) flows like heat, and so must accumulate in a given
portion of the wire if the current entering at one end exceeds that
leaving at the other. The quantity ¢ is the amount of electricity in the
unit length, and is proportional to 7, their ratio S being the capacity
per unit length. With the same formal relations we arrive, of course,
at the same characteristic equation, now of the potential, so that elec-
tricity diffuses itself along a wire, by difference of potential, in the same
way as heat by difference of temperature.

A generation later, Sir W. Thomson arrived at a system which is
formally the same, but having a quite different physical significance.
Between the times of Ohm and Thomson great advances had been made
in electrical science, both in electrostatics and electromagnetism, and
the quantities in the system of the latter are quite distinct. We have

arv
";1?:307 q==5V, av 1
¢ _dy_ v da? Ik

de dt dt’

where on the left appear the elementary relations, and on the right the
resultant characteristic equation of 7.
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Here C'is the current in the wire, B its resistance per unit length,
and / the electrostatic potential. So far there is little change. But S
is the electrostatic capacity per unit length of the condenser formed
by the dielectric outside the wire, whose two coatings are the surface of
the wire and that of some external conductor, as water, for instance,
which serves as the return conductor. Thus S, from being in Ohm’s theory
a hypothetical quantity depending upon the nature of the conducting
wire, its size and shape, has become a definitely known quantity depend-
ing on the nature of the dielectric, and its size and shape. Here is the
first step towards getting out of the wire into the dielectric, to be fol-
lowed up later. The equation ¢= SV is the electrostatic law expressing
the relation between the charge of a condenser and its potential-differ-
ence, ¢ being the charge on the wire per unit length, and 7" its potential.
It is assumed that "= 0 at the outer conductor, which requires that its
resistance must be very small, theoretically nothing. This makes 7~
definitely the potential at the surface of the wire, and it must be the
potential all over its section at a given distance #, if the current is uni-
formly distributed across the section.

The meaning of the equation of continuity is now, that when the cur-
rent entering a given length of wire on one side is greater than that
leaving it on the other, the excess is employed in increasing the charge
of the condenser formed by the given length of wire, the dielectric, and
the outer conductor. In the wire, therefore, comparing the electric cur-
rent to the motion of a fluid, such fluid must be incompressible. It
can, however, accumulate on the boundary of the wire, where it makes
the surface-charge. This is exceedingly difficult to understand. But
in any case, whether electricity accumulates in the wire or only on its
boundary, is quite immaterial as regards the form of the equation of con-
tinuity, and of the characteristic equation. (Of course it is the equa-
tions which give rise to it, and their interpretation, that are of the
greatest importance. )

There is very little hypothesis in this system. We unite the con-
denser-law with Ohm’s law of the conduction current, on the hypothesis,
which is supported by experiments with condensers and conductors,
that the equation of continuity is of the kind supposed. But it is assumed
that the electric force is entirely due to difference of potential. As,
when the current is changing in strength, this is not true, there being
then also the electric force of inertia, or of magnetic induction, this
should also be taken into account in the Ohm’s law equation, making a
corresponding change in the characteristic equation. What difference
this will make in the manner of the propagation will depend upon the
relative magnitude of the electric force of inertia and of the charge, and
materially upon the length of the line. The necessary change will be
made in the next Section. At present we may only remark that elec-
trostatic induction is most important on long submarine cables, and that
the (710) equations are those to be used for them for general purposes, as
the first approximate representation of the facts of the case.

Now, as regards the accumulation difficulty. This is entirely re-
moved in a beautifully simple manner in Maxwell’s theory. The line-
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integral of the magnetic force round a wire measures the current in it,
a fact that cannot be too often repeated, until it is impressed upon
people that the electric current is a function of the magnetic field, which
is in fact what we generally make observations upon, the electricity in
motion through the wire being a pure hypothesis. Maxwell made this
the universal definition of electric current anywhere. There is no
difference between a current in a conductor or in a dielectric as a fune-
tion of the magnetic field, though there is great difference in the effect
produced, according to the nature of the matter. All currents are
closed, either in conductors alone or in dielectrics alone, or partly in
one and partly in the other. In a conductor heat is the universal result
of electric current, and energy is wasted ; in a dielectric, on the other
hand, the energy which would be wasted were it conducting is stored
temporarily, becoming the electric energy, which is recoverable. In a
conductor, the time-integral of the current is not a quantity of any
physical significance ; but in a dielectric it is a very important quantity,
the electric displacement, which can only be removed by an equal
reverse current. The electric displacement involves a back electric
force, which will cause the displacement to subside when it is permitted
by the removal of the cause that produced it. Put a condenser in
circuit with a conductor and battery. The current goes right through
the condenser. DBut it cannot continue, on account of the back force of
the displacement ; when this equals the impressed force of the battery,
there is equilibrium. Remove the battery, and leave the circuit closed.
The back force of the displacement can now act, and discharges the con-
denser. As for the positive and negative charges, they are numerically
equal to the total displacement through the condenser. They are
located at the places of, and measure the amount of discontinuity of the
elastic displacement, and that is all.

If we must have a fluid to assist (keep it well in the back-ground),
then this fluid must be everywhere, and be incompressible, and accumu-
late nowhere. I am no believer in this fluid. Its only utility is to
hang facts together. But when one has obtained an accurate idea of
the facts it has to hang together, it has served its purpose. A fluid has
mass, and when in motion, momentum and kinetic energy. But the
facts of electromagnetism decidedly negative the idea that the electric
current per se has momentum or energy, or anything of that kind; these
really belong to the magnetic field. It is therefore well to dispense with
the fluid behind the scenes.

But when one thinks of the old fluids (of surprising vitality), and of
their absurd and wholly incomprehensible behaviour, their miraculous
powers of attracting and repelling one another, of combining together
and of separating, and all the rest of that nonsense, one is struck with
the extremely rational behaviour of the Maxwell fluid. When, further,
one thinks of the greatly superior simplicity of the manner in which it
hangs the facts together (it is remarkably good in advanced electro-
statics, impressed forces in dielectric, etc.), one wonders why it does not
take the place of the commonly used two-fluid hypothesis, merely as a
working hypothesis, and nothing more.
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Returning to the wire. It is important to remember that there are
two conductors, not one only, with a dielectric between. When we put
an impressed. force in the wire we send current across the dielectric as
well as round the conducting circuit. The dielectric current ceases as soon
as the back force of the elastic displacement supplies that difference
of potential which is appropriate to the distribution of impressed force
(which difference of potential depends entirely on the conductivity con-
ditions). The equation of continuity means that when the current enter-
ing a-unit length of wire on one side is greater than that leaving it on
the other, the excess goes across the dielectric to the outer conductor, in
which there is a precisely equal variation in the current. The time-in-
tegral of this dielectric current ¢ is ¢, which 1s the total displacement
outward per unit length of wire. The quantity 7" is the back EMLF. of
the displacement. On removing the impressed force, there is left the
electric energy of the displacement, which is 77 per unit length of
wire ; the back forces act, discharge the dielectric, and this energy is
used up as heat in the conductors.

We can now make some easy extensions of the system (712). R
must be the sum of the resistances of the wire and return, per unit
length, thus removing the restriction that the return has no resistance.
S, of course, remains the same. But 7 cannot be the potential of the
wire, because 7 cannot=0 all along the return. We may, however,
call /7 the difference of potential (although that is not exactly true, on
aceount of inertia, unless we agree to include a part of the EM.F. of in-
ertia in 7). It is, however, deﬁmte]y the EM.F. of the condenser, given
by ¢g=8V. We need not restrict ourselves, in these first approxima-
tions, to round wires, or to symmetncally-arranged returns. The
return may be a parallel wire. Of course the proper change must then
be made in the value of S.

SEcTioON XXXIII. TaHE EQUATIONS OF PROPAGATION.
INTRODUCTION OF SELF-INDUCTION.

The next step to a correct formulation of the laws of propagation
along wires is, obviously, to take account of the electric force of inertia
in the expression of Ohm’s law. This appears to have been first
attempted by Kirchhoff in 1857. According to J. J. Thomson
(“Electrical Theories,” The Electrician, June 25, 1886, p. 138) this
was his system. Let

¢= Xsinus,

where ¢ is the charge per unit length, and s is length measured along
the wire. The equation of X is

d?X r? dX  d*X

2 dst 160y di T dE’
where  is the resistance of the wire in electrostatic units,  its length,
y=log (}/a), where « is its radius, and ¢ is a quantity occurring ir
Weber's hypothesis, the velocity Wlth which two particles of electricity

H.E.P.—VOL. II.
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must move in order that the electrostatic repulsion and the electro-
magnetic attraction may balance.

As it stands, I can make neither head nor tail of it. But, by
extensive alterations, it may be converted to something intelligible.
Turn X into ¢, in the second equation; or, what will come to the
same thing, take 7 as the variable, since ¢ and 7~ are proportional.
Then ignore the first equation altogether. Turn s into our variable .

BV il 2di?
o Ey T E
Clearly this should reduce to (71) by ignoring the last term. There-
fore r/8ly = RS.

Here 7/l is the resistance per unit length. Therefore (8y)-1 should
be the capacity per unit length, or {8log(l/a)}-1. This is clearly
wrong. The ! should be a,, the resistance of the return, a far smaller
quantity than /; and the 8 should be 2, if the dielectric is air. This
last correction may, however, be merely required by a change of
units. Making it, we get this resnlt

axv av azv

= Bt
in our previous notation, with the addition that L; is the inductance
per unit length of the dielectric only. That is,

Ly =2p log (ay/ay),

with unit inductivity ; a, distance of return, e, radius of wire. This
estimate of the inductance is, of course, too low. The change of units
makes it doubtful whether L, or some multiple of it was meant, but
it is clearly a wrong estimate. Notice that LS is the reciprocal of the
square of a velocity, which is numerically equal to the ratio of the
electromagnetic and electrostatic units, and is the velocity of light, or
close to it.

It is clear that there is room for considerable improvement here in
several ways, such as the establishment of the equations independently
of such a very special hypothesis as Weber’s; also in the estimation
of L; and, in interpretation, to modernise it in accordance with
Maxwell’s ideas. Having observed that Maxwell, in his treatise,
described the system (715) of the last section, with no allowance for
self-induction, and knowing this system to he quite inapplicable to
short lines, I (in ignorance of Kirchhoff’s investigation) made the
necessary change of bringing in the electric force of inertia (Phil. May.,
August, 1876), [vol. 1, p. 53], converting the system (715) to the
following :—

av_ LY

g O igp I ey v, v S
_dC_dg_ iV o L
& dt v

The equations on the left side show the elementary relations, and that
on the right the resultant equation of V.
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The difference from (718) is only in the first equation of electric
force, and in the characteristic equation of 7. To the electric force

due to 7 is added the electric force of inertia — LC, where L is the
inductance of the circuit per unit length, according to Maxwell’s
system of coefficients of electromagnetic induction. That is, L consists
of three parts, say L, for the dielectric, L; for the wire, and L, for the
return. Their expressions will vary according to the size and shape of
the conductors and their distance apart. In case of symmetry about
an axis, their determination is very easy by the square-of-force method.
The magnetic energy per unit length is JLC2 It is also = pH2/8, if
. H is the magnetic force, and the summation extends over the region of
space belonging to the unit length. As H is a simple function of ¢
and of the distance from the axis, the integration is very easily
effected.

L is calculated on the hypothesis that the current-density has always
the steady distribution, just as R is the steady resistance. As it is,
strictly speaking, impossible to have the Faraday-law of induction true
in all parts of the conductors without some departure from the steady
distributions, it is satisfactory to know that more exhaustive investi-
gation shows that L, not L, should be used in a first approximation.

In connection with this matter 1 may mention that, rather singularly,
just as I was investigating it, my brother, Mr. A. W. Heaviside, called
my attention to certain effects observed on telegraph lines, which could
be explained by the combined action of the electrostatic and electro-
magnetic induction, causing electrical oscillations which made the
pointers of the old alphabetical indicators jump several steps instead of
one. When freed from practical complications, and worked down to
the simplest form, the matter reduced to this, that the discharge of a
condenser through a coil is of an oscillatory character, under certain
circumstances, and I described the theory in the paper I have mentioned.
It had been given by Sir W. Thomson in 1853, but it is a singular
circumstance that this very remarkable and instructive phenomenon
should not be so much as mentioned in the whole of Maxwell’s treatise
(first edition), though it is scarcely possible that he was unacquainted
with it; if for no other reason, because it is so szmple a deduction from
his equations. I lay stress on the word simple, because it is not to be
supposed ' that Maxwell was fully acquainted with the whole of the
consequences of his important scheme.

Mr. Webb, the author of a suggestive little book on  Electrical
Accumulation and Conduction,” had very early practical experience of
electrical oscillations in submarine cables, when they were coiled up on
board ship, ceasing, more or less, as they were submerged.

It is far more difficult to obtain a satisfying mental representation
of the electric force of inertia — L(' than of that due to the potential,
or —dV]dz, as deseribed in the last section. The water-pipe analogy
is, however, simple enough. Let L be the mass of the fluid per unit
length, € its velocity, then § LC? is its kinetic energy, LC its momentum,

LC the force that must be applied to increase it, — LC' the force of
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reaction. A mental representation of many of the phenomena con-
nected with electrical oscillations is also very simply got by the use of
the fluid analogy. It is, however, certainly wrong, as we find by
carrying it out more fully into detail. Remark, however, that, as
4LC? is the magnetic energy per unit length, LC is the generalised

momentum corresponding to C' as a generalised velocity, LC the
generalised externally applied force, an electric force, of course, and
— LC the force of reaction—that is, the electric force of inertia. This
is by the simple principles of dynamics, disconnected from- any
hypothesis as to the mechanism concerned.
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