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ABSTRACT

The Mansouri-Sexl theory is a well known test theory of relativity. Mansouri and Sexl dealt
with the theory of the Michelson-Morley, Kennedy-Thorndike and Ives-Stilwell experiments
but left out the very interesting Sagnac experiment. In the following paper we will present a

novel way of detecting anisotropy effects in
2( ) /L v c via a reenactment of the Sagnac

experiment using fiber optic gyroscopes (FOG) where L is the length of the fiber and 
is the angular speed of the FOG. We show how the fiber optics gyroscopes are used for
constraining light speed anisotropy in the framework of the Mansouri-Sexl test theory.  We
also show an interesting amplification effect due to the use of the Mansouri-Sexl slow
clock transport equations in conjunction with FOGs. Our paper is divided into four main
sections: in the first one we give an overview of the Mansouri-Sexl test theory of special
relativity, in the second one we give a historical perspective of the Sagnac experiment, in
the third section we formulate the Mansouri-Sexl theory for the Sagnac experiment and we
conclude with experimental setup and results.
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1.  INTRODUCTION - THE MANSOURI - SEXL TEST THEORY

The test theories [1-4] of special relativity are used to examine potential alternate theories to
special relativity (SR) - such alternate theories predict particular values of the parameters of
the test theory, which may easily be compared to values determined by experiments. The
existing experiments put rather strong constraints on any alternative theory. One of these
theories, the Robertson-Mansouri-Sexl theory, starts by admitting that there is one

preferential inertial frame  in which the light propagates isotropically.  In such a frame,

light speed in a refractive medium is 0 /c c n where c is the light speed in vacuum and n

is the refraction index of the optic fiber. All other frames in motion with respect to  are
considered non-preferential and the light speed is anisotropic. The light speed in the non-
preferential frames can be deduced via simple calculations described in

3
. We start with the

Mansouri-Sexl transforms (with c=1):

2

( ) ( )
( ) ( ) ( )

( ) ( )

b v d v
d v b v T

v

t a v T v


  

 

x X v vx v

ε x

(1.1)

where v is the relative velocity between S and  ,  (x,t) are the coordinates in S while (X,T)

represent their correspondents in  . Exactly like in the original Mansouri-Sexl paper [4] by

transforming the light cone
2 2 2

0 0X c T  into S and by neglecting the terms in
2v and

higher we obtain [2]:

0 0

( )
1 (1 2 )cos

c v

c c


    (1.2)

where  is the angle between the light ray direction and the x axis. Expression (1.2) is an

approximation valid if slow clock transport [2-4] synchronization has been used. In this case,
the following expressions also hold [2]:
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(1.3)

According to Mansouri and Sexl, the one-way light speed is a measurable quantity in this

case and it is direction dependent for 0.5   .  The larger the term 1 2 in (1.2), the larger

the light speed anisotropy. We will exploit this property in the Mansouri-Sexl theory of the
FOG experiment constructed later in our paper.

On the other hand, according to Mansouri and Sexl [2], if Einstein clock synchronization is
used, no first order effects exist and the second order effects are expressed as:
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(1.4)

where ,  are parameters originating from the Taylor expansion of ,b d respectively.  In

this case, the Sagnac effect cannot be used for measuring light speed anisotropy because
the second order effects are too small to measure for any reasonable value for the speed v .

1.1. THE SPECIAL RELATIVITY THEORY OF THE SAGNAC EXPERIMENT
USING FOG

A fiber optic gyroscope (FOG) senses changes in orientation, thus performing the function of
a mechanical gyroscope. However its principle of operation is instead based on the
interference of light which has passed through a coil of optical fiber. Two beams from a laser
are injected into the same fiber but in opposite directions. Due to the Sagnac effect, the
beam travelling against the rotation experiences a slightly shorter path delay than the other
beam. The resulting differential phase shift is measured through interferometry, thus
translating one component of the angular velocity into a shift of the interference pattern
which is measured.

Fig. 1. Explanation of the sagnac experiment

The right hand side of Fig. 1 illustrates what happens if the loop itself is rotating. The symbol
 denotes the angular displacement of the loop during the time required for the pulses to

travel once around the loop. For any positive value of  , the pulse traveling in the same

direction as the rotation of the loop must travel a slightly greater distance than the pulse
traveling in the opposite direction. As a result, the counter-rotating pulse arrives at the "end"
point slightly earlier than the co-rotating pulse. Quantitatively, if we let  denote the angular

speed of the loop, then the circumferential tangent speed of the end point is R . The

respective angles traveled by the two light fronts are:
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2
c t

R
    
    (2.1)

for the co-rotating front

2
c t

R
    
    (2.2)

for the counter-rotating front,

where c c c   in vacuum and:

t   (2.3)

for the co-rotating front

t   (2.4)

for the counter-rotating front.
Substituting (2.3) in (2.1) and (2.4) in (2.2) we get:

2 R
t

c R




  

(2.5)

for the co-rotating front

2 R
t

c R




  

(2.6)

for the counter-rotating front. From (2.5) and (2.6) it follows that:

2

2 2 2 2 2 2

4 4
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R A
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c R c R

  

 
     

 
(2.7)

where A is the area of the interferometer loop. The above is the exact formula. For R c 
we recover the formula used in practice for detecting angular speed via the Sagnac
experiment [5,6]:

2

4
total

A
T

c


  (2.8)

The formula shows that the phase difference between the two counter-propagating light
signals is, at low angular speeds, proportional to the angular speed and to the area enclosed
by the interferometer loop. The first to perform a ring interferometer experiment aimed at
observing the correlation of angular velocity and phase-shift was G. Sagnac [6] in 1913 with
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the purpose of detecting "the effect of the relative motion of the ether". In 1926 a very
ambitious ring interferometry experiment was set up by A. Michelson and H.Gale [7]. The
aim was to find out whether the rotation of the Earth has an effect on the propagation of light
in the vicinity of the Earth. The Michelson-Gale experiment used a very large ring
interferometer, with a perimeter of 1.9 kilometer, so it was large enough to detect the angular
velocity of the Earth. The outcome of the experiment was that the angular velocity of the
Earth as measured by astronomical methods was confirmed to within measuring accuracy.
The situation is a little more complicated in the case of using a fiber optic of refraction index
n :

1

1

c
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c
R

nc
R
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
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




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






(2.9)

Substituting (2.9) into (2.5)-(2.6):
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for the co-rotating front
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for the counter-rotating front, resulting into a total time:

2

_ 2 2 2

4
total SR

R
T t t

c R

 


    


(2.12)

Interestingly enough, the outcome of the experiment does not depend on the refraction index
of the fiber optic. The SR prediction from expression (2.12) fully coincides with the
experimental results [9]. One of the important advantages of FOGs, besides the absence of
any moving parts is the fact that the optic cables can be wrapped around k times resulting
into an “amplification” of the net effect:
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_ 2 2 2

4
total SR

R
T k

c R

 


 


(2.13)

The resulting phase difference is:

2 2

_ _ 2 2 2

4 4
total SR total SR

R R k
S c T kc

c R c

   


    


(2.14)

that is, the effect is the first order in
c


, “amplified” by the length of the fiber, 2L Rk and

by the  radius of the gyroscope, R .

2. THE MANSOURI-SEXL THEORY OF THE FOG EXPERIMENT

Light speed is propagating with the isotropic speed c0 in the preferential frame. In the non
preferential frame S associated with the center of the rotating FOG device light speed

propagates at the speeds c in the direction of rotation and c in the direction against the

rotation of the device (Fig. 2).
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Fig. 2. Detail of the experiment with anisotropic light speed

where, for an infinitesimal angle of rotation d :

c t Rd R t       (3.1)

for the co-rotating front

c t R t Rd       (3.2)

for the counter-rotating front.

Rd
t

c R








 


(3.3)

for the co-rotating front

Rd
t

c R








 


(3.4)

for the counter-rotating front. From (3.3) and (3.4) it follows that the phase difference
element is:



Physical Review & Research International, 3(3): 161-175, 2013

168

2 ( )

( )( )
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s c t c t R d

c R c R
 

 
 

   
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 
(3.5)

Formula (3.5) is a generalization of formula (21) in reference [8]. On the other hand,
according to Fig. 2, light speed appears to be anisotropic in frame S, associated with the
center of the rotating FOG, such that for slow clock transport synchronization and for

[0, ]  the following holds by (1.2):

0 0 0

1 (1 2 )cos( ) 1 (1 2 )sin
2

c v v

c c c


           (3.6)

for the co-rotating front

0 0 0

1 (1 2 )cos( ) 1 (1 2 )sin
2

c v v

c c c


           (3.7)

for the counter-rotating front.

For [ ,2 ]   c and c exchange roles. Substituting (3.6) and (3.7) into (3.5) we obtain:

2

0
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0
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[ (1 2 )sin ]

R c d
s
c v R

 

  
 
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(3.8)

The total phase differential between the two light paths obtained through the integration of
the phase difference element is:

2

_ 0 2 2

00

( , , ) 4
[ (1 2 )sin ]

total MS

d
S v R c k

c v R




  
  

 
   (3.9)

The doubling of the integral (3.9) is caused by c and c exchanging roles in the interval

[ ,2 ]   . Using the notation ( , ) (1 2 )A v v   ( A is a function of v and  ) and

B R we obtain:

2

_
2 2 2 2

0 0

1 1
2 ( )

( ) ( )
to tal MSS R k

B c A B c A
   

   
(3.10)

A quick sanity check shows that in SR 0.5   (i.e. 0A  in (3.10)) so we recover the well

known SR expression (2.7):

2

0
_ 2 2

0

4

( )
total SR

R kc
S

c R

 


 


(3.11)
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That is, in SR the phase difference is independent of the speed between the lab and the

“preferential” frame  . Given that 0v c , the effect is very close to null for non-rotating

devices. The difference:

_ _violation total MS total SRS S S   (3.12)

is the actual Mansouri-Sexl violation expressed in terms of fraction of a fringe (in m) and it
is a function of the Mansouri-Sexl parameter , the angular speed  of the FOG with

respect to the lab frame S and the relative speed of the lab v with respect to the preferential

frame  . As it can be seen from (3.9), any deviation from -0.5 for the parameter  attracts

a dependency of the result in terms of the speed v between S and  . As opposed to the

case of the SR formula (2.12), the Mansouri-Sexl formula (3.10) depends on the refraction

index via 0 /c c n restricting the constraining of the parameter  to experiments that must

use fiber optics with refraction indexes close to unity. The difference is due to the fact that
formulas (3.6) and (3.7) are just approximations in the Mansouri-Sexl theory whereas
formula (2.9) is exact. In our experiment, we made use of the above prediction in order to set
constrains on light speed anisotropy.

The laboratory velocity ( )v t has contributions [10-19] from the motion of the Sun with

respect to frame  with a constant velocity 377 /sv km s , while Earth’s orbital motion

around the Sun 30 /ev km s .  For example, in the case of the references [10-19] the

Earth’s daily rotation speed is 0.33 /dv km s while for Berkeley, where the experiment

was executed (latitude 37o52’18” N) 0.355 /dv km s .  Finally, rv R is the active

rotation speed of the FOG so:

0( ) sin[ ( )]cos sin[ ( )]cos sin( )coss e y E d d d A r Bv t v v t t v t t v t           (3.13)

Here 8oA  is the angle between the equatorial plane and the velocity of the sun.

6oE  is the declination between the plane of Earth’s orbit and the velocity of the Sun,

33oB  is the declination between the plane of FOG plane and the velocity of the Sun,

2 / 1y yr   , 2 / d   1 sidereal day, 0t and dt are determined by the phase and

start date of the measurement, respectively. If 0.5   then the sinusoidal time variation of

vwill be reflected in the phase difference (3.10). In other words, the phase difference (3.10)

will exhibit a characteristic time signature when measured over a sufficiently long time. In
order to constrain the parameter  we will take a series of measurements at different

angular speeds  over periods of time long enough such that we could integrate the

sinusoidal effects shown in (3.13). From expression (3.13) we can see that 0( )v t c . This

enables us to further simplify expression (3.10) and, subsequently, (3.12) by using Taylor
expansion such that we can express the translational effects in v in a simpler form:
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2 2
2 2

_ 2 2

0 0

4 (4 ) (2 )
4 (1 2 ) 2 (1 2 )total MS

R k v R kn Rk v
S R k Rn

c c c c

     
          (3.14)

The amplification of the effect due to the presence of large values of the coil number k is a

game changer since we can achieve 2 Rk v   for suitable optical cable lengths even

with moderate angular speeds of rotating the FOG. In his analysis, made 14 years ago,
Stedman [5] expressed pessimism that FOGs can be used in the detection of light speed
anisotropy but FOGs have made huge advancements in the past decade, not only in terms
of precision but also in terms of the fiber optic length. For example, in our experimental

setup, 2 1200Rk m   . In order to constrain the parameter  we will take a series of

measurements at different angular speeds  over periods of time long enough such that we

could integrate the sinusoidal effects shown in (3.13). Substituting (3.13) into (3.14) we
obtain:

_ 0 11 12 21 22 3sin( ) cos( ) sin( ) cos( ) sin( )total MS y y d dS C C t C t C t C t C t           (3.15)
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
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
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 
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  
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  

  

 

(3.16)

For 0.5   we recover the SR prediction

2

_ _

4
total MS total SR

R k n
S S

c

 
   . The second

observation is that the coefficient 0C is much larger than the other coefficients in the Fourier

expansion.

3. THE EXPERIMENTAL SETUP AND THE RESULTS

We used two experimental setups, both based on commercially available FOGs. One uses

EMP-1.2k, (1.2km coil, 1.1n  ) and the other one uses EMP-1 ( 200m coil, 1.1n  ), both

from Emcore Inc mounted on a Yaskawa SGMJV Sigma-5 high precision turntable with
variable angular speed (Fig. 3). We made four sets of measurements, alternating between
the two FOGs, in a 24 hr interval, at 6 hours intervals in order to best capture the effects of
the variation of the Earth speed expressed in (3.14) as well as the diurnal changes of
temperature affecting the FOGs. Each set of measurements is composed of 10 runs, labeled
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0-9. We repeated the measurements sets four times, at different angular speeds, varying

from 30  to 150  . The violationS measurements, expressed in m, including the

calculation of the error bars, are presented in Tables 1 through 4.

Table 1. violationS measurements at 6 am

Table 2. violationS measurements at 12 pm
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Table 3. violationS measurements at 6 pm

Table 4. violationS measurements at 12 am
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Based on the measurements we developed a best fit approximation in the form of a Fourier
expansion:

^ ^ ^ ^ ^ ^ ^

0 11 12 21 22 3sin( ) cos( ) sin( ) cos( ) sin( )y y d dS C C t C t C t C t C t           (4.1)

The standard error in the determination of
^

0C is equal to
141.33 10 . Comparing with (3.16)

and taking into considerations the characteristics of the FOGs employed, this results into a

constraint of
6| 0.5| (1.2 0.83) 10     for the parameter  .

Fig. 3. The experimental setup

The measurement errors can be attributed in totality to the systematic errors introduced by
the FOG devices and the turntable, better results will be obtained in the next generation of
the experiments when more precise FOGs become available and we can get a better control
over maintaining constant angular speed of the underlying turntable.

3.1. FUTURE WORK AND COMPARISON WITH OTHER METHODS

Presently, the method using FOGs results into lesser constraints than the methods using
resonating cavities [10-19]. On the other hand, our results are better by an order of
magnitude than the ones of Champeney et al. [20] while being one order of magnitude less
restrictive than the experiment executed by Isaak [21]. We plan to repeat the measurements
as higher precision FOGs become available. The nice aspect about using FOGs is that they
have no moving parts and that their technology is advancing very quickly, both reasons for
increasing precision over time. Thus, we can put ever tightening constraints over the
Mansouri-Sexl parameter  using commercially available equipment that costs a fraction of

the price of the specially designed equipment for such kind of experiments.

4. CONCLUSION

We have developed the Mansouri-Sexl theory for the FOG experiment. We have shown that
the Mansouri-Sexl violation is a function of the Mansouri-Sexl parameter , the angular

speed  and of the relative speed of the lab v with respect to the preferential frame . We

have shown how the FOG experiment can be used in order to detect light speed anisotropy
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within the framework of the Mansouri-Sexl theory and we constrained the parameter  to

less than 60.5 0.83 10   .
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