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1. INTRODUCTION

LIGO stands for ”Laser Interferometer Gravitational-wave
Observatory”. It is a large scale physics experiment and ob-
servatory which seeks to detect cosmic gravitational waves.
There are two observatories located at Livingston, Louisiana,
and Hanford, Washington. The first gravitational wave was
observed in 2015, due to the merging of two black holes a bil-
lion light-years away from the earth. Gravitational waves have
a measurable effect on the space they travel by shrinking and
stretching distances. LIGO detectors use laser light to measure
these effects. If the ultra-precise sensors of LIGO detect any
such shrinking or stretching, they create a signal. However,
due to the ultra-sensitive nature of these sensors, sometimes
noises are generated due to instrumental or environmental fac-
tors. By detecting and classifying these noises or glitches,
their sources can be identified. This helps LIGO in removing
potential sources and to better curate their gravitational wave
data. In this project, we used a transfer learning approach to
classify these glitches. In transfer learning, a base model is
trained on a general dataset, then the learned features are ex-
tracted or transferred to the target model which is then trained
on the specific dataset. We also employed a convolutional
autoencoder to compare results.

2. RELATED WORK

Many attempts have been made to use machine learning al-
gorithms for glitch classification. An algorithm based on
distances calculated using Longest Common Subsequence
(LCSS) is presented in [1], for unsupervised classification of
glitch waveforms. In [2], authors have used Principal Com-
ponent Analysis for Transients (PCAT), Principal Component
LALInference Burst (PC-LIB) and Wavelet Detection Filter
with Machine Learning (WDF-ML) for classifying glitches.
They found that “WDF-ML can classify lower frequency tran-
sients than the other two methods. PC-LIB is better able
to classify longer duration transients due to its longer anal-
ysis window. PCAT can classify new types of transients as
soon as they appear in the data and thus provide transient

waveforms for PC-LIB’s signal models” [2]. A deep neural-
network-based classifier is used in [3] to differentiate between
gravitational-wave bursts and glitches. A Self Organizing map
(SOM) neural-network architecture is used for unsupervised
classification of glitches. In [4], the authors did supervised
classification of glitches by utilizing a variety of standard
machine learning classification models: logistic regression,
support vector machines (linear and kernel), and a custom
convolutional neural network. These are combined into an en-
semble model, which achieves 98.21 percent accuracy. Most
similar to our work is [5], which applies transfer learning using
standard state-of-the-art deep CNN classifiers (e.g., Inception,
ResNet, VGG) pre-trained on ImageNet, with the best models
achieving 98.84 percent accuracy for supervised classification
of glitches. We tried to replicate this approach by using several
other state-of-the-art CNN architectures.

3. DATASET AND FEATURES

The dataset is provided by Coughlin [6] as a set of pre-
generated spectrograms with 22 classes, and 7966 with a
split of 5587 training, 1200 validation, and 1179 test images.
They are initially provided as a matplotlib image including the
axes, thus we have to crop to just the plot area. The dataset
also provides multiple window lengths for the spectrograms
around the glitch event of 0.5, 1, 2, 4 seconds as a potential
hyperparameter. According to Bahaadini et al. [4], the dataset
was constructed by using the Omicron algorithm, which uses
sine-Gaussian wavelets to search for excess noise with high
SNR and within the target frequency range of 10 to 2048 Hz.

The split provided by the dataset was used; it should be
noted that this distribution is different than those used by our
reference papers [4] and [5], since our version is a slightly
smaller curated version (compared to both papers), and not
randomly split (compared to the second paper). Furthermore,
the images must be resized to the input dimensions of each net-
work, which is usually the ImageNet size (224 x 224), except
for Inception v3 which uses 299 x 299. We also normalized
the inputs to the ImageNet mean and standard deviation, in
accordance with the regular ImageNet preprocessing proce-
dure. Although this dataset is rather small, we were unable
to use image augmentation to improve our results, since it
does not make sense to scale or rotate spectrograms, and we



did not have the original waveforms to generate synthesized
spectrograms either.

4. METHODS

We attempted to replicate the results of George et al. [5], as
well as test other former and current state-of-the-art image
classification models.

For classifications, these neural networks use the softmax
activation function as the output of the final layer. Since the
output of the network is a probability of whether the input be-
longs to each class, they must sum to one. This is represented
in the equation

S(z)i =
ezi∑
j

ezj
(1)

where the sum in the denominator ensures the values are
normalized to 1. However, to ensure numerical stability, the
values are often offset by the maximum zi, which prevents
overflow by making the exponent always semi-negative:

S(z)i = S(z−max(zi)) (2)

4.1. Models

The following models were used in the evaluation: AlexNet
[7], VGG16 [8], ResNet-50 [9], Inception v3 [10], ResNext-50
[11], MobileNet v2 [12], EfficientNet-b4 [13]. For conciseness
we will elaborate only on the more recent networks, as we
assume most have already encountered the older models.

MobileNet v2 iterates on v1, which implemented depth-
wise separable convolutional layers. The model introduces
the idea of bottleneck layers, which are small 1x1 convolu-
tional layers inserted around the depthwise convolutional lay-
ers. These help to establish intermediate features within the
models, as they reduce the dimensionality of the representa-
tion. Residual connections, initially introduced by ResNet [9],
are also inserted connecting the bottleneck layers, as inverted
residuals since they connect the smaller rather than larger
layers. [12]

EfficientNet, released in 2019, is the current state-of-the-
art image classifier, which employs compound scaling. This in-
volves training an initial base network, which is found through
a neural architecture search with AutoML and aims for max-
imizing accuracy and FLOPs. Then, this model is scaled
through a further grid search of increasing resolutions, depth
(number of layers), and width (number of channels). Eight
variants were found with increasing size (B0-B8); we chose
B4 since it was the largest version that allowed a batch size of
32 to keep in line with the other models. [13]

For each of these models, we obtained the pretrained Im-
ageNet [14] weights through PyTorch [15], and replaced the
final fully connected layer with one that had 22 outputs, for

classification on our dataset. We enabled retraining for all
weights, so that the models could be fully fine-tuned to our
task.

4.2. Convolutional AutoEncoder

We propose another solution to tackle the problem of glitch
classification using an autoencoder with convolutional learn-
able filters. This architecture takes advantage of a two mod-
ules; an encoder module and a decoder module. The encoder
module compresses the data by forcing it through a bottleneck.
This layer is known as the latent space which contains neces-
sary information to reconstruct the information on the end of
the decoder module.

This autoencoder architecture encodes the input data
through 8 convolutional layers, and reduces the dimensionality
of the input data by performing max-pooling after every con-
volution in the encoder module. To reconstruct the data, the
network takes in compressed data from the encoder module
and upsamples it using bilinear upsampling so that it can be
fed into convolutonal layers yet again. The reason behind
bilinear upsampling was its better performance compared to
the nearest neighbour method. At the output of the network,
we expect to see a reconstruction of the input batch with mini-
mal error. For the objective function, we use Mean Squared
Error loss to measure error which can be represented as the
following equation:

Loss =
1

n

i=n∑
i=0

(xi − ti)
2 (3)

This is to measure the reconstruction quality, but here we’re
classifying, so we feed the network into a 2 layer fully con-
nected module and use cross entropy as the loss to measure
classification performance. Cross entropy loss is defined as
the following function where t is the target label and y is the
output label:

L(t, y) = −1/n

i=n∑
i=0

tilog(yi) + (1− ti)log(1− yi) (4)

Another popular method to use in the decoder module for
CNN autoencoders is using Transpose-Convolutional layers,
which removes the need of using upsampling by trying to
mimic deconvolution and changing the output size. Note that
deconvolution is not achieved by Transpose-convolution and
it only tries to increase the dimensions of the input size, or in
other words, interpolate. This method is more expensive than
performing upsampling followed by convolution, so we chose
to not use transpose convolution since our network had around
1.1 million learnable parameters.



Model # Param. (mil) Test accuracy
AlexNet 57.1 0.964
VGG16 134 0.957
Resnet-50 23.6 0.969
Inception v3 24.4 0.973
ResNext-50 23.0 0.964
MobileNet v2 2.3 0.975
EfficientNet-b4 17.6 0.975

Table 1. Number of parameters and test accuracies for each
image classifier

5. RESULTS

5.1. Transfer Learning Classification

To train our dataset, we used the Adam [16] optimizer with cat-
egorical cross entropy and a 0.001 learning rate (the default),
which was decayed by 0.1 every 7 epochs to ensure conver-
gence. However, this did not appear to matter as the accuracy
seemed to saturate at similar epochs with or without the decay.
The models were trained for 25 epochs on an NVIDIA GTX
2080 GPU with a batch size of 32. We first did a batch size
search in the beginning with Inception v3, using sizes of 4,
8, 16, and 32. As shown in the results of Figure 2, there is
no significant difference attained by increasing or decreasing
batch size, so we used the largest size to decrease training time.
For evaluation, we chose to use basic accuracy as it the papers
we referenced it also used it, and it is the best representation
of our task of classifying anomalies.

The best performing networks appeared to be MobileNet
v2 and EfficientNet, but all of the test accuracies were fairly
close to each other.

The validation and test accuracies are shown in Figure
1 and Table 1. The test accuracies are fairly close together,
implying that this problem does not necessarily need the ad-
vancements provided by each model, and/or that there isn’t
enough training data to fully make a difference. This can be
shown by the surprisingly high results achieved by AlexNet,
which was by far the oldest and most basic model tested. On
the other hand, VGG16 did not do so well, possibly because of
its large number of parameters, twice that of AlexNet. Since
we had a small dataset, there wasn’t enough data for it to ad-
just all of the parameters accordingly during fine-tuning. The
validation accuracy plot in 1 demonstrates that not very many
epochs are needed to achieve the maximum accuracy; in fact,
only 7 are needed before it plateaus.

Figure 4 shows an example of a misclassified spectrogram
on the right, and an actual example of the predicted class on
the left. They are quite similar, with blips around the start
time (center of spectrogram) in the higher frequencies, so it
is a prediction error which is quite understandable, and even
possible for humans to make.

Fig. 1. Train and validation accuracy for each image classifier

5.2. CNN Autoencoder Results

This particular architecture did not perform well and achieved
results as the following table. In autoencoders CrossEntropy
loss is the best metric to assess the output of a multiclass
classification problem. Test loss was obtained after the network
was trained and experienced overfitting.

Model # Param. (mil) Valid Accuracy
CNN-AE 0.45 0.6

This result is not acceptable for a network with 0.45 mil-
lion parameters and achieves poor performance not close to
state of the art networks that we used with deep transfer learn-
ing. This is due to the nature of the dataset. Upon inspecting
the dataset, we can see that the network doesn’t have to learn
tons of features, but the features are spread across the image,
thus the network needs to be able to learn locality of the fea-
tures. This network is only learning small patches on training
data, and can’t learn sufficient features with only 0.4 million
features. This model was trained on the same dataset as before,
and used batch sizes of 16. Larger batch sizes could not be han-
dled due to GPU memory allocation and large input sizes of
(16x224x224)]. Adam optimizer seemed to perform best with



Fig. 2. Test accuracies for different batch sizes for Inception
v3[10]

Fig. 3. Confusion matrix for Inception v3[10]

weight decay at 0.01 and learning rate of also 0.01. Weight de-
cay proved to be a significant factor in the network converge in
only 5 iterations on the training set. We picked cross-entropy
loss to measure the performance of this particular application
and it is the best metric since the task is classification. Once
the network is trained, the output layer is cascaded into a fully
connected module to map the output to a probability space. To
map the fully connected layer to probability space we would
need to use categorical cross entropy to produce class cate-
gorization and calculate error. It’s fair to mention that with
more iterations and more computational power we think this
network is able to perform well.

6. CONCLUSION

To conclude our discussion, it is worthwhile to revisit the re-
sults from both experiments on deep transfer learning, our

Fig. 4. An example of the “Violin Mode” class on the left,
and a misclassified example on the right, actual class “1400
Ripples”

Fig. 5. Accuracy plot for autoencoder

custom autoencoder architecture, and explore a new idea for
future work in this field. Deep transfer learning is fast and
reliable using pre-trained state of the art network architectures,
and they ensure high accuracy in classification, however, they
could be too large to deploy for some specific applications.
We introduced a CNN based AutoEncoder which has up to 50
times less parameters than the said networks, and are signif-
icantly faster to train from scratch. Both approaches yielded
acceptable results and achieve good performance with min-
imum loss, but they exhibit limitations. Our classification
models all achieved roughly the same accuracies, which indi-
cate that the problem is not too difficult, since even AlexNet
was able to achieve good results.

This particular task can also be approached in the time-
domain and classify the tasks in time using attention networks
which can be significantly faster and more accurate at classi-
fying the glitches, and more importantly, be able to predict
them and ignore their effect from the results. This involves
training an attention network to focus on the signal of inter-
est and ignore noise (irrelevant features in time). Attention
networks are heavily used in NLP applications and seem to
perform exceptionally well as Brown et al. [17] experimented
with RNNs with Attention on Anomalies to detect anomalies
in system log files. Another solution would be to yet again rely
on RNNs in LSTM format to detect anomalies with a much
simpler architecture.
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• Michael handled the dataset imports into PyTorch, as
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the transfer learning experiments.

9. REPLIES TO CRITICAL REVIEWS

9.1. Group 6

• I would recommend adding a subtitle ‘Glitch classifica-
tion for LIGO spectrum’, since ‘gravity spy’ seems to
be a little bit general and confusing.

Yes, our formal title is different but we forgot to put
that on the slides. The current title derives from the
Zooniverse project.

• The data part could be more explicit. Where, and how
did you get them? Any preprocessing is done to elimi-
nate noise, abnormal data, etc?

We did not mention the preprocessing in detail since it
was already done by the dataset provider [6]. All we
have to work with are the generated spectrograms.

• It’s interesting to compare the performance of different
network structures (and to me they basically perform
equally well and the differences seem minor: accuray
range from 0.957-0.975). What is your own interpreta-
tion of each of them, which one of them physically or
intuitively makes more sense? What is your conclusion
after comparing these structures?

This was mentioned in the report, but we think that the
dataset is not large or difficult enough for the differences
to show, since even AlexNet was able to achieve a decent
score.

• Have you tried any new ideas that may improve these
models? Or what do you think that can possibly yield a
major improvement based on the given models?

We were thinking of using image augmentation, but
quickly scrapped it due to infeasibility since generating
synthetic spectrograms is difficult, especially without
the original waveforms.

• Is there a particular reason why you want to encode
glitches? To me it seems unnecessary.

Technically this is true, we only need a binary classifier
to determine whether it is a glitch or not. However, it

may be useful in determining and eliminating particular
sources of these glitches to improve wave reception.

9.2. Group 44

• Group 89 uses the ImageNet pertained weights to ini-
tialize all the classification models. Considering the
gravitational wave sensor dataset, it is not very similar
to ImageNet. Though it might not harmful to initialize
them with ImageNet weights, it might achieve better
accuracy when you try to train from scratch.

We actually found that training from scratch is harmful.
There are not enough samples to fully train all of the pa-
rameters; this is why “transfer learning” or “fine-tuning”
is so popular, especially with image classification. Al-
though ImageNet does not cover spectrograms, the iden-
tification of visual features such as curves and shapes
are still useful.

• In order to use VGG or ResNet, group 89 rescales their
dataset input to 224x224 to suit the model input. It might
cause some feature loss since the original signal data
has a size of 800 x 600. You can consider doing some
convolution to keep the spatial feature before simply
cropping and scaling them into 224x224. (Also it’s
possible to adjust the input size for VGG or ResNet, but
it might takes additional effort)

Yes, this is possible. However, using smaller window
sizes from the dataset achieves the same effect, and we
found that it does not play a big role in the accuracy.

• For the accuracy plot, when at epoch 4, the validation
accuracy is much lower than epoch 3 or epoch 5. This
is not very normal and you might want to check the
validation loss as well.

This is an interesting phenomenon we observed; the
validation loss did spike, but returned to its normal tra-
jectory as before. We may need to perform additional
investigation to see why this is the case, especially since
it occurs for all models. Inception was the worst out of
all of them though, highlighting this.

• For the auto-encoder part, group 89 seems to only do the
training and reconstruct the training data. Inspired by
our last GPU homework, it might be possible to detect
anomaly using auto-encoder as well. You might give it
a try.

We tried doing that and learned that the model is not per-
forming well with only 6 iterations. More iterations and
more parameters might have helped the model perform
better.



9.3. Group 75

• More explanations on how you process data. What
is the original data, and how the gravitational waves
become pictures? Because the CNN model you use
are basically designed for pictures with 3 channels, you
should explain how you adjust data to fit in the models.

Again, we are only given the RGB spectrograms gener-
ated by the providers of the dataset [6].

• Because you do not design CNN models, maybe spend
more time on presenting their structures.

We tried to do this but realized that it would take too
long. For future presentations we will try to allocate
more time for this section.

• Explain how you adjust hyperparameters and model
structures.

We left learning rate to the default and batch size to 32
since it didn’t affect accuracy (Fig. 2) and decreased
training time. The learning rate decay didn’t seem to do
much, and 25 epochs was more than enough.

The only changes to the model we did was to resize the
final classification layer to fit the number of classes.

• What is the result of autoencoder? What does the final
layer of encoder (I mean pictures of 3*3 grid in the last
slide) tell us?

The results are added in section 5.2. The learnt filter
shown shows is representation of the latent space, how-
ever, it would have been best to show case a cluster
of the latent space to better represent the compressed
representation.

• Spend more time on analyzing you results, like why
some models produce better results, how hyperparame-
ters influence the results, etc.

Point taken, we can do better on pacing our presentation.

• Autoencoder training has a bad loss-vs-epoch plot. Do
you take any efforts improving it?

We retrained the model with fully connected layers and
produced a smoother graph, but the model experienced
overfitting.


