CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS SECTION 1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELING The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of differential equations, and to show the student what is meant by a solution of a differential equation. Also, the use of differential equations in the mathematical modeling of real-world phenomena is outlined. Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the given differential equations. We include here just some typical examples of such verifications. 3. If y1 = cos Zx and y2 = sin 2x, then y; = -2sin 2x and y; = 2cos 2x so y1~ = -4 cos 2x = - 4 y, and y; = - 4sin 2x = - 4 y2. and 5. If y=ex-e-x, then l=e... +e-x so y'-y = (ex+e-x)-(ex-e-i) = ze--'. Thus y' = y+2e-x. 6 • If y1 = e-2x an d y 2 = x e-2x , then y , 1 = - 2 e-2i , y,,. = 4 e-2x , y , 2 = e-2x - 2x e -2x , an d Y,i. == - 4 e-2..- + 4x e -2.:r . H ence and 8. If y, =cosx-cos2x and y2 =sinx-cos2x, then y; =-sinx+2sin2x, Yi'=-cosx+4cos2x, and y~ =:cosx+2sin2x, y;=-sinx+4cos2x. Hence Section 1.1 1 y;+ y, = (-cosx+4cos2x)+(cosx-cos2x) ::;: 3cos2x and y;+ y2 = (-sinx+4cos2x)+(sinx-cos2x) = 3cos2x. x 2 y.. + 5x y' +4 y = x2 (-5x-4 + 6x4 ln x )+5x(x-3 -2x-3 ln x )+4(£2 In x) = (-5[2 +sx-2 )+(6x-2 - lOx-2 +4x-2 )In X = 0. 13. Substitution of y =en into 3y' =2y gives the equation 3re'x = 2 erx that simplifies to 3r=2. Thus r=213. 14. Substitution of y =e'x into 4y" = y gives the equation 4r2 e'' = e'x that simplifies to 4r2 =1. Thus r=±l/2. 15. Substitution of y =e'x into y..+ y' - 2y = 0 gives the equation r 2e'" + r en - 2 e'x =0 that simplifies to = r 2 +r-2 (r+2)(r-l) = 0. Thus r=-2 or r= 1. 16. Substitution of = y en into 3 y' + 3 y' - 4 y = 0 gives the equation 3r2e'1 +3re'x -4e'" =0 that simplifies to 3r2 +3r-4 = 0. The quadratic formula then gives the solutions r = (-3± ✓57)16. The verifications of the suggested solutions in Problems 17-36 are similar to those in Problems 1-12. We illustrate the determination of the value of C only in some typical cases. 17. C = 2 18. C = 3 19. If y(x) = Ce" -1 then y(O) = 5 gives C- I = 5, so C = 6. 20. If y(x) = Ce-x +x-1 then y(O) = 10 gives C-1 = 10, so C = 11. 21. C = 7 2 Chapter 1 22. If y(x) = ln(x + C) then y(O) = 0 gives In C = 0, so C = I. 23. If y(x) = ¼x5 + C x-2 then y(2) = 1 gives the equation ¼·32 + C ·½= I with solution C:;:;-56. 24. C::: 17 25. lf y(x) = tan(x2 + C) then y(O) = 1 gives the equation tan C = 1. Hence one value of C is C =n I 4 (as is this value plus any integral multiple of n). 26. Substitution of x = n and y =0 into y = (x+C)cosx yields the equation 0 = (Jr +C)(-1), so C = -n. = 27. y I x+ y = = 28, Theslopeofthelinethrough (x,y) and (x/2,0) is y' (y-O)l(x-x/2) 2y/x, so the differential equation is x y' = 2 y. 29. If m =y' is the slope of the tangent line and m' is the slope of the normal line at (x, y), then the relation mm'= -1 yields m' = 1I y' = (y-1) /(x-0). Solution for y' then gives the differential equation (1- y) y' = x. 30. Here m =y' and = m' Dx (x2 + k) = 2x, so the orthogonality relation mm'= -1 gives the differential equation 2x y' = - I. = 31. Theslopeofthelinethrough (x,y) and (-y,x) 1s y' (x-y)l(-y-x), so the differential equation is (x + y)y' = y - x. In Problems 32-36 we get the desired differential equation when we replace the "time rate of change" of the dependent variable with its derivative, the word "is" with the::; sign, the phrase "proportional to" with k, and finally translate the remainder of the given sentence into symbols. 32. dP/dt = k✓P = 33. dvldt k v2 34. dv Idt = k(250-v) 35. dN I dt = k(P-N) 36. dN Idt = kN(P-N) Section 1.1 3 37. y(x) = 1 or y(x) = x 38. y(x) = ex 39. y(x) = x2 = 40. y(x) = 1 or y(x) -1 42. y(x) = cos x or y(x) = sin x 43. (a) y(l0) = 10 yields 10 = I /(C-10), so C = 101/10. (b) There is no such value of C, but the constant function y(x) == 0 satisfies the conditions y' =y2 and y(O) :::: 0. (c) It is obvious visually that one and only one solution curve passes through each point (a,b) of the .xy-plane, so it follows that there exists a unique solution to the initial value problem y' =y2, y(a) =b. 44. (b) Obviously the functions u(x) = - x 4 and v(x) = + x4 both satisfy the differential equation xy' = 4y. Buttheirderivatives u'(x)=-4x3 and v'(x)=+4x3 match at x = 0, where both are zero. Hence the given piecewise-defined function y(x) is differentiable, and therefore satisfies the differential equation because u(x) and v(x) do so (for x $ 0 and x ~ 0, respectively). (c) If a~ 0 (for instance), chose C0 so that C0 a4 = b. Then the function j[ X $ 0, if X 20 satisfies the given differential equation for every value of C. SECTION 1.2 INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 4 Chapter 1 This section introduces general solutions and particular solutions in the very simplest situation = - a differential equation of the form y' f (x)- where only direct integration and evaluation of the constant of integration are involved. Students should review carefully the elementary concepts of velocity and acceleration, as well as the fps and mks unit systems. 1. = f Integration of y' 2x + l yields y(x) = (2x + I) dx = x 2 + x+ C. Then substitution of x=O, y=3 gives 3 = O+O+C = C, so y(x) = x 2 +x + 3. 2. = f = Integration of y'=(x-2)2 yields y(x) (x-2)2dx t(x-2)3+C. Then = = + substitution of x 2, y 1 gives 1 = 0 + C = C, so y(x) = (x - 2)3. 3. J Integration of y' = ✓x yields y(x) = ✓x dx = fxm + C. Then substitution of x=4, y=O gives O= 1~+C, so y(x) = f(x3I2 -8). 4. f Integration of y' = x-2 yields y(x) = x-2 dx = -11 x + C. Then substitution of = x=I, y=5 gives 5=-l+C, so y(x) -1/x+6. 5. = = f Integration of y' (x+ 2r1I2 yields y(x) (x+ 2)-112 dx = 2✓x+2 +c. Then substitution of x = 2, y:::: -1 gives -1 = 2- 2 + C, so y(x) = 2.Jx+ 2 -5. 6. = Integration of y'=x(x 2 +9l2 yields y(x) fx(x2 +9)112 dx- = f(x2 +9)312 +C. Thensubstitutionof x=-4, y=Ogives 0=f(5)3+C, so ½[ J. y(x) :::: (x2 +9)3'2 - 125 7. = J Integration of y~ 10/(x2 + 1) yields y(x) == IOl(x2 + l) dx- = lOtan-1 x + C. Then = substitution of x=O, y=O gives O=lO·O+C, so y(x) 10tan-1 x. 8. f Integration of y' = cos 2x yields y(x) = cos 2x dx = ½sin 2x + C. Then substitution of x=O, y=1 gives l=O+C, so y(x) = ½sin2x+l. 9. f = Integration of y'=1t.J1-x2 yields y(x) = 11 ✓1-x2 dx- sin-1 x+C. Then substitution of x=O, y=O gives O=O+C, so y(x) = sin-1 x. 10. Integration of y' = x e-x yields Section 1.2 5 (when we substitute u:::; -x and apply Fonnula #46 inside the back cover to the textbook). Then substitution of x =0, y =1 gives 1=-1 +C, so y(x) = -(x+l)e-x +2. = 11. If a(t) = 50 then v(t) = j50dt 50t+v0 = 50t+10. Hence x(t) = Jcsot+JO)dt= 25t2 +10t+Xo = 25t1 +10t+10. J = 12. If a(t) = -20 then v(t)::::: (-20)dt -20t+v0 = -20t-15. Hence = x(t) j(-20t-15)dt= -10t2 -15t+x0 = -10t 2 -15t+5. 13. If a(t) === 3t then v(t) = J3tdt = ft 2 +v0 = ½t2 +5. Hence Jc = x(t) -- 2 2 , 2 + 5)dt = .21,J + 5 t + X 0 l2.t' + St• 14. If a(t) = 2t+l then v(t) = j(2t+l)dt = t2 +t+v0 = t2 +t-7. Hence 15. If a(t) = 2t+1 then v(t) = Jc21+l)dt = t2 +t+Vo = t2 +t-7. Hence f 16. If a(t) = 1/ ✓t+4 then v(t) = 11 ✓t+4 dt = 2✓t+4+C = 2✓t+4-5 (taking C =-5 so that v(O) =-1 ). Hence (taking C = -29 I 3 so that x(O) =1). J 17. If a(t) = (t+lf' then v(t) = (t+l)-3 dt = -½(t+1r2 +C = 2 -½(t+Ir +½ (taking C =½ so that v(O) =0). Hence 6 Chapter 1 (taking C =-½ so that x(0) =0). = 18. If a(t) 50sin5t then v(t) = Jsosin5t dt = -10cos5t+C = -10cos5t (taking C = 0 so that v(0) =-10). Hence J x(t) = (-l0cos5t)dt::::: -2sin5t+C = -2sin5t+10 (taking C = -10 so that x(O) = 8 ). 19. v = -9.St + 49, so the ball reaches its maximum height (v = 0) after t = 5 seconds. Its maximum height then is y(5) = --4.9(5)2 + 49(5) = 122.5 meters. 20. v = -32t and y = -16? + 400, so the ball hits the ground (y = 0) when r = 5 sec, and then v = -32(5) =-160 ft/sec. 21. a = -10 rn/s2 and vo = 100 km/h = 27.78 mis, so v = -IOt + 27.78, and hence x(t) = -5t2 + 27.78t. The car stops when v = 0, t "" 2.78, and thus the distance traveled before stopping is x(2.78) = 38.59 meters. 22. v = -9.St + 100 and y = --4.9t2 + lO0t + 20. (a) v = 0 when t = 100/9.8 so the projectile's maximum height is y(I00/9.8) = --4.9(100/9.8)2 + 100(100/9.8) + 20 = 530 meters. (b) It passes the top of the building when y(t) = --4.9? + lOOt + 20 = 20, and hence after t = 100/4.9 = 20.41 seconds. (c) The roots of the quadratic equation y(t) = --4.9t2 + 100t + 20 = 0 are t = -0.20, 20.6 l. Hence the projectile is in the air 20.61 seconds. 23. a = -9.8 rn/s2 so v = -9.8 t- 10 and The ball hits the ground when y = 0 and so t = 5.10 s. Hence V = -9.8 t- JO:; -60, Yo = 4.9(5.10)2 + 10(5.10) = 178.57 m. 24. v = -32t-40 and y = -16r2-40t+555. Theballhitstheground (y = 0) when t = 4.77 sec, with velocity v = v(4.77) = -192.64 ft/sec, an impact speed of about 131 mph. Section 1.2 7 25. Integration of dvldt;;; 0.12 i3 + 0.6 t, v(O) ;;: 0 gives v(I) = 0.3 r2 + 0.04 t3. Hence v(10) = 70. Then integration of dxldt;;; 0.3 r2 + 0.04 t3, x(O) = 0 gives x(t) = 0.1 t3 + 0.04 t4, so x ( IO) = 200. Thus after 10 seconds the car has gone 200 ft and is traveling at 70 ft/sec. 26. Taking .xo = 0 and vo = 60 mph = 88 ft/sec, we get V ;: -at+ 88, and v = 0 yields t = 88/a. Substituting this value of t and x = 176 in x = -at2l2 + 88t, = we solve for a = 22 ft/sec 2 . Hence the car skids for t 88/22 = 4 sec. 27. If a = - 20 m/sec2 and x0 = 0 then the car's velocity and position at time t are given by V = -20t+ Vo, X ;;; - 10 t2 + Vol. = It stops when v 0 (so v0 = 20t), and hence when X = 75 = -10 r2 + (20t)t ;;: 10 t2. Thus t = ..fi5 sec so v0 = 20..fi':s == 54.77 m/sec = 197 km/hr. = 28. Starting with .xo = 0 and v0 50 km/h = 5x I04 rn/h, we find by the method of Problem 24 that the car's deceleration is a = (25/3)xl07 rn/h2. Then, starting with x0 = O and v0 = 100 km/h = l 05 m/h, we substitute t = vola into x = - at2 + vot and find that x = 60 m when v = 0. Thus doubling the initial velocity quadruples the distance the car skids. = 29. If v0 :::; 0 and Yo 20 then v = - at and y = -½at2+20. Substitution of t = 2, y = 0 yields a = IO ft/sec 2 • If Vo = 0 and y0 == 200 then = v = -10t and y -5t2 + 200. 8 Chapter 1 /40 Hence y = 0 when t = = 2 ../w sec and v = -20Jto = - 63.25 ft/sec. 30. On Earth: v = -32t + v0, so t = vo/32 at maximum height (when v = 0). = Substituting this value of t and y 144 in y ;:; - I6t2 + vot, v = we solve for 0 96 ft/sec as the initial speed with which the person can throw a baJI straight upward. On Planet Gzyx: From Problem 27, the surface gravitational acceleration on planet = Gzyx is a 10 ft/sec2, so = v -lOt + 96 and y = -5t2 + 96t. = Therefore v 0 yields t = 9.6 sec, and thence = Ymax y(9.6) = 460.8 ft is the height a ball will reach if its initial velocity is 96 ft/sec. = = 31. If v0 0 and Yo h then the stone's velocity and height are given by = = v - gt, y --0.5 gt2 + h. = Hence y = 0 when t ,J2h/ g so 32. The method of solution is precisely the same as that in Problem 30. We find first that, on v = Earth, the woman must jump straight upward with initial velocity 0 12 ft/sec to reach a maximum height of 2.25 ft. Then we find that, on the Moon, this initial velocity yie lds a maximum height of about 13.58 ft. 33. We use units of miles and hours. If x0 = v0 = 0 then the car's velocity and position after t hours are given by = V at, X= I 2 t2. = Since v = 60 when t = 5/6, the velocity equation yields a 72 mi/hr2. Hence the distance traveled by 12:50 pm is x = (0.5)(72)(516)2 = 25 miles. 34. Again we have V :: at, X = ½t2. Section 1.2 9 = = But now v = 60 when x 35. Substitution of a 60/t (from the velocity equation) into the position equation yields 35 = (0.5)(60/t)(t2) = 30,, whence t = 7/6 hr, that is, l: JO p.m. 35. Integration of y' = (9/vs)( 1 - 4x2) yields and the initial condition y(-1/2) = 0 gives C = 3/v5• Hence the swimmer's trajectory is Substitution of y( 1/2) = 1 now gives Vs = 6 mph. 36. Integration of y' = 3(1 - 16x4) yields = y 3x- (48/5)x5 + C, = = and the initial condition y(-1/2) 0 gives C 6/5. Hence the swimmer's trajectory is y(x) = ( l/5)(15x - 48x5 + 6), so his downstream drift is y(l/2) = 2.4 miles. SECTION 1.3 SLOPE FIELDS AND SOLUTION CURVES As pointed out in the textbook, the instructor may choose to delay covering Section 1.3 until later in Chapter l . However, before proceeding to Chapter 2, it is important that students come to grips at some point with the question of the existence of a unique solution of a differential equation - and realize that it makes no sense to look for the solution without knowing in advance that it exists. The instructor may prefer to combine existence and uniqueness by simplifying the statement of the existence-uniqueness theorem as follows: Suppose that the function f (x, y) and the partial derivative ~f I ay are both continuous in some neighborhood of the point (a, b). Then the initial value problem -dy = j(x,y), dx y(a) = b 10 Chapter 1 has a unique solution in some neighborhood of the point a. Slope fields and geometrical solution curves are introduced in this section as a concrete aid in visualizing solutions and existence-uniqueness questions. Solution curves corresponding to the slope fields in Problems 1-10 are shown in the answers section of the textbook and will not be duplicated here. 11. Each isocline x - I = C is a vertical straight line. 12. Each isocline x + y = C is a straight line with slope m = -1. .Jc 13. Each isocline y2 = C ~ 0, that is, y = or y = -Jc, is a horizontal straight line. 14. Each isocline efy = C, that is, y = C', is a horizontal straight line. 15. Each isocline ylx = C, or y = Cx, is a straight line through the origin. 16. Each isocline x2- - y2 = C is a hyperbola that opens along the x-axis if C > 0, along the y-axis if C < 0. 17. Each isocline xy = C is a rectangular hyperbola that opens along the line y = x if = C > 0, along y -x if C < 0. 18. Each isocline x - y2 = C, or y2 = x - C, is a translated parabola that opens along the x-axis. 19. Each isocline y - x2 = C, or x2 = y- C, is a translated parabola that opens along the y-axis. 20. Each isocline is an exponential graph of the fonn y = Cex. 21. Because both /(x, y) = 2x2/ and iJJ I ay = 4x2y are continuous everywhere, the existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a unique solution in some neighborhood of x = 1. = 22. Both / (x, y) x In y and iJ/ I c)y = xly are continuous in a neighborhood of (1, 1), so the theorem guarantees the existence of a unique solution in some neighborhood of x = I. 23. Both f (x, y) = y11-' and aJ I oy = (I/3)y-213 are continuous near (0, 1), so the = theorem guarantees the existence of a unique solution in some neighborhood of x 0. Section 1.3 11 24. f(x,y) = y113 iscontinuousinaneighborhoodof (0,0), but a11ay = (1/3)y-213 is not, so the theorem guarantees existence but not uniqueness in some neighborhood of X = 0. = 25. f (x, y) (x- y)112 is not continuous at (2, 2) because it is not even defined if y > x. Hence the theorem guarantees neither existence nor uniqueness in any neighborhood of the point x = 2. = 26. J (x, y) = (x - y) 112 and aJ I dy -(1/2)(x - yf112 are continuous in a neighborhood of (2, 1), so the theorem guarantees both existence and uniqueness of a solution in some neighborhood of x = 2. 27. Both f (x, y) = (x - 1/y and aJ I dy = -(x- 1)// are continuous near (0, 1), .so the theorem guarantees both existence and uniqueness of a solution in some neighborhood of X = 0. = 28. Neither J (x, y) (x - I)/y nor aJ I Jy = -(x - 1)ly2 is continuous near (1, 0), so the existence-uniqueness theorem guarantees nothing. = 29. Both f (x, y) ln(l + /) and dj (i)y = 2y/(1 + y2) are continuous near (0, 0), so the theorem guarantees the existence of a unique solution near x = 0. 30. Both f (x, y) = x2 - y2 and dj I dy = -2y are continuous near (0, 1), so the theorem guarantees both existence and uniqueness of a solution in some neighborhood of x = 0. i r = 31. If f(x,y) = -(J - y2)1'2 then aJ ldy = y(l - 112 is not continuous when y 1, so the theorem does not guarantee uniqueness. 32. The two solutions are Y1(x) = 0 (constant) and y2(x) = x3. = 35. The isoclines of y' == ylx are the straight lines y Cx through the origin, and y' = C at points of y ;;: Cx, so it appears that these same straight lines are the solution curves of xy' = y. Then we observe that there is (i) a unique one of these lines through any point not on the y-axis; (ii) no such line through any point on the y-axis other than the origin; and (iii) infinitely many such lines through the origin. = 36. J(x, y) 4xy1n and dj I dy = 2.xy-112 are continuous if y > 0, so for all a and all = = b > 0 there exists a unique solution near x = a such that y(a) b. If b 0 then the = theorem guarantees neither existence nor uniqueness. For any a, both y1(x) 0 and y 2(x) = (x2 - c/)2 are solutions with y(a) = 0. Thus we have existence but not uniqueness near points on the x-axis. 12 Chapter1 SECTION 1.4 SEPARABLE EQUATIONS AND APPLICATIONS Of course it should be emphasized to students that the possibility of separating the variables is the first one you look for. The general concept of natural growth and decay is important for all differential equations students, but the particular applications in this section are optional. Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and problems. 1. J; -f = = 2xdx; in y = -x2 +c; y(x) ' e-x-'+c = C e-.r 2. J:; J = = - 2x dx; - -1 = -x2 -C; y y(x) x2 +C 3. J; f= sinxdx; in y = -cosx+c; = = y(x) e-cou+c ce-COS_f 4. f f dy =-- 4dx., y l+x lny = 4ln(1+x)+lnC; y(x) = C(l+x)4 5. JR - J dy - zd✓xx·. sin-1 y = ,J;+ C; y(x) = sin(Fx+c) 6. f t = f 3--/xdx; 2,/Y = 2x"' +2C; y(x) = (x312 +cf 7. f:~ J = f 1 113 4x dx; y 213 = 3x413 +½ C; 3/2 = y(x) (2x413 +C) f; f f(i:x 9. = 1~d:2 = + l~x )dx (partial fractions) lny = ln(l+x)-ln(l-x)+lnC; y(x) = Cl+x 1-x Section 1.3 13 10. f dy f (1+y)2 - dx (l+x)2' l 1 - C = _ l +C(l+ x) - - - = -1+ y l+x l +x = l +x y(x) l + y = -l +-C(-l + - .x)' l+x _ 1 = x-C(l +x) t +C(l+x) l + C(l+ x) 11. f dy = x d.x- _ _ 1_ = x2 - C_ y(x) = (c - xi )-112 f y3 ' 2/ 2 2' 12. 13. 3 J Y d Y = cos x dx; ¼In ( y4 + 1) = sin x + C f y4 +I y +l.y312 = x+l.x312 +C 14. '.I 3 15. - -2 + y -31y3 =: ln\xl+ -1 + C X 16. f sin y dy = xdx ; - ln(cosx) = ½ln (l+x2) + Jn C f cosy 1+x2 17. y' = J+x+ y + xy = (l+ x)(l+ y) I = dy = Jo+ x)dx; mll+ yl x +tx2 +C l+ y f f ( - dy- = J+ y2 -1 - 1)dx; tan - 1 y = --1-x+C; x2 X f = = = 19. d: Je" dx; In y e" + Jn C; y(x) Cexp(e-' ) y(O) = 2e implies C = 2 so y(x) = 2exp(e•') 14 Chapter 1 20. f__EJ_ = f3x2 dx; tan-1 y = x 3 + C; y(x) = tan (x~+ C) l+y2 y(O) = 1 implies C = tan-' l = ,r/ 4 so = y(x) tan ( x3 + ,r / 4) 21. J f= 2y dy ✓xx2d-x16 ; y2 = ✓x1 - I6 + C y(5)=2 implies C= l so y2 = 1 + ✓x2 -16 22. f; = f(4x3 -l)dx; lny = .x4 -x+JnC; y(x) = Cexp(x4 -x) y(l) =- 3 implies C =-3 so y(x) = -3exp(x4 - x ) 23. f f _!!]_ = dx; ½ln (2y- l) = x+½InC; 2y- l = Ce2x 2y-1 t{ y(l) = l implies C = e-2 so y(x) = 1+ ei:<-z) 24. J dy __ cos. xdx ·, J y s1nx ln y = ln(sin x) + In C; y(x) = Csinx y(f) = 1} implies C = ½ so y(x) = tsinx 25. fd; = f (~ +2x} ln y = ln x+x2 + lnC; y(x) = C xexp(x2) y(l) =1 implies C = e-1 so y (x) = xexp(x2 -1) 26. - -t = x2 + x3 + C; y y(l) =-1 implies C =-1 so 1 y(x) = -l - x 2 - x-3 27. e Y = 3e2x +C·' y (O) = 0 implies C = -2 so y(x) = In (3eix -2) f Jj;; 28. sec2 ydy = tany = ✓x+ C; y(x) =tan-1 (✓x +c) 2 Section 1.4 t y(4) = implies C = -1 so y(x) = tan-'(-✓x -1) 29. The population growth rate is k = ln(30000/25000)/10 = 0.01823, so the population of the city t years after 1960 is given by P(t) = 2 5 0 0 0 e001823 ' . The expected year 2000 = population is then P(40) 25000eo.o,si3x4-0 >= 51840. = 30. Thepopulationgrowthrateis k ln(6)/10"" 0.17918, sothepopulationafter t = hours is given by P(t) Po e017918 '. To find how Jong it takes for the population to double, we therefore need only solve the equation 2 P = Po e0 179 81 •' for = t (In 2)/0.17918 = 3.87 hours. 31. As in the textbook discussion of radioactive decay, the number of 14C atoms after t years is given by N (t) == N0 e-<>·0001216 '. Hence we need only solve the equation = ¾N0 N 0001216 0 e--0 ' for t = (ln6)/0.0001216 = 14735 years tofindtheageofthe skull. 32. As in Problem 31, the number of 14C atoms after t years is given by = N(t) 5.0x1010 0001216 e-0· ' . Hence we need only solve the equation = = 4.6xl010 5.0xl0'0 e-<>·000121<>1 for the age t (ln(5.0/4.6))/0.0001216"" 686 years of the relic. Thus it appears not to be a genuine relic of the time of Christ 2000 years ago. = 33. The amount in the account after t years is given by A(t) 5000 e0081 . Hence the = amount in the account after 18 years is given by A(20) 5000e0•0sx20 "' 2 1,103.48 dollars. 34. When the book has been overdue for t years, the fine owed is given in dollars by A(t) == 0.30e005' . Hence the amount owed after 100 years is given by = A(l 00) 0.30 eo.oSxtoo ,,. 44.52 dollars. 35. To find the decay rate of this drug in the dog's blood stream, we solve the equation ½:::: e-sk (half-life 5 hours) for k= On 2)/5"'0.13863. Thus the amount in the dog's = bloodstream after t hours is given by A(t) Ao e--0.n1163'. We therefore solve the equation A(l) = Ao 3 e---0. nSG = 50x45 = 2250 for Ao = 2585 mg, the amount to anesthetize the dog properly. 36. To find the decay rate of radioactive cobalt, we solve the equation ½= e-s.m (half-life 5.27 years) for k == (]n 2)/5.27 = 0.13153. Thus the amount of radioactive cobalt left after t years is given by Ao A(t) == e--0·131531. We therefore solve the equation 16 Chap~r1 A(t) = Aoe-0 13153 ' = O.OlAo for t= (In 100)/0.13153 ""35.01 and find that it will be about 35 years until the region is again inhabitable. 37. Taking t = 0 when the body was formed and t = T now, the amount Q(t) of 238U in = = the body at time t (in years) is given by Q(t) Q0e-k1, where k (In 2)/(4.5Jx109). The given information tells us that Q(T) :::: 0.9. (J.o-Q(T) After substituting Q(T) = Q0e-kT, we solve readily for ekT = 19/9, so T = ( l/k)ln(l 9/9) = 4.86x109• Thus the body was formed approximately 4.86 billion years ago. = = 38. Taking t 0 when the rock contained only potassium and t T now, the amount = Q(t) of potassium in the rock at time t (in years) is given by Q(t) Q0e-k1, where k = (In 2)/(l.28xl09). The given information tells us that the amount A(t) of argon at time t is A(t) == ¼[(1- Q(t)] and also that A(]) = Q(T). Thus {!o - Q(T) ::c 9 Q(T). After substituting Q(T) = {1e-kT we readily solve for T = (In IO/ In 2)(1.28 x 109 ) = 4.25 x 109 . Thus the age of the rock is about 1.25 billion years. = = 39. Because A = 0 the differential equation reduces to T' kT, so T(t) 25e-k1. The = fact that T(20) =:: 15 yields k (l/20)1n(5/3), and finally we solve = 5 25e-1c1 for t = (In 5)/k °" 63 min. 40. The amount of sugar remaining undissolved after t minutes is given by A(t) = .4ae-k1 ; we find the value of k by solving the equation A(l) = Aoe-k = 0.15Ao for k =-ln 0.75 = 0.28768. To find how long it takes for half the sugar to dissolve, we solve the equation A(t) = Aoe-kr:::: ½Ao for t = (In 2) /0.28768,,, 2.41 minutes. 41. (a) The light intensity at a depth of x meters is given by l(x) = / 0e-1.4~. We solve = the equation / (x) = /0 e-14" ½/ 0 for x = (In 2) / 1.4 = 0.495 meters. Section 1.4 17 (b) At depth 10 meters the intensity is /(10) = /0e-1•4"10 = (8.32xl0-7 )/0 . (c) We solve the equation = /(x) 10e-i.4x. =0.01/0 for x =(In 100)/1.4 = 3.29 meters. 42. (a) = The pressure at an altitude of x miles is given by p(x) 29.92e--0 2 ..r. Hence the pressure at altitude 10000 ft is p(I0000/5280) ""20.49 inches, and the pressure at altitude 30000 ft is p(30000/5280) ""9.60 inches. (h) To find the altitude where p = 15 in., we solve the equation 29.92e--0 2, =15 for x = (In 29.92/15)/ 0.2 =3.452 miles= 18,200 ft. 43. (a) A' = rA + Q (b) The solution of the differential equation with A(O) = 0 is given by rA+Q = Qe". When we substitute A = 40 (thousand), r = 0.11, and t = 18, we find that Q = 0.70482, that is, $704.82 per year. 44. Let N 8 (t) and N5 (t) be the numbers of 238U and 235U atoms, respectively, at time t (in billions of years after the creation of the universe). Then = N8 (t) N0e-k' and = N 5(t) N0e-<1, where N0 is the initial number of atoms of each isotope. Also, k = (In 2)/ 4.51 and c = (In 2)/0.71 from the given half-lives. We divide the equations for N 8 and N5 and find that when t has the value corresponding to "now", = -N 8 := 137.7. N5 Finally we solve this last equation for t = (In 137.7)/(c-k) ~ 5.99. Thus we get an estimate of about 6 billion years for the age of the universe. 45. The cake's temperature will be 100° after 66 min 40 sec; this problem is just like Example 6 in the text. 46. (b) By separating the variables we solve the differential equation for = c-r P(t) (c- r P0 ) err_ With P(t) = 0 this yields 18 Chapter 1 = c rPoer 1 /(ert- l ). = With Po = 10,800, t = 60, and r 0.010 we get $239.37 for the monthly payment at 12% annual interest. With r = 0.015 we get $272.99 for the monthly payment at 18% annual interest. 47. If N(t) denotes the number of people (in thousands) who have heard the rumor after t days, then the initial value problem is = N/ k(lOO-N), N(O) = 0 and we are given that N(7) = 10. When we separate variables ( dN 1(100- N) = k dt ) and integrate, we get ln(I00-N):;:: - kt +C, and the initial condition N(0):::: 0 gives C =ln lO0. Then 100-N = l00e-.u, so N(t)=l00(1-e-kl). Wesubstitutet=7, N= 10 and solve for the value k =ln(l00/90)/7 =0.01505. Finally, 50 thousand people have heard the rumor after t =(In 2) / k = 46.05 days. 48. With A (y) constant, Equation (19) in the text takes the form We readily solve this equation for 2 Jy = kt+ C. The condition y(O) = 9 yields = = C 6, and then y( I) 4 yields k = 2. Thus the depth at time t (in hours) is y(t) == (3 - t/, and hence it takes 3 hours for the tank to empty. 49. With A = n-(3)2 and a == n-(1 I 12)2 , and taking g == 32 ft/sec2, Equation (20) reduces = = to 162 y' = - Jy. The solution such that y 9 when t 0 is given by 324 jy = -t + 972. Hence y = 0 when t = 972 sec = 16 min 12 sec. 50. The radius of the cross-section of the cone at height y is proportional to y, so A(y) is proportional to /. Therefore Equation (20) takes the form y2y' = -k.Jy, and a general solution is given by 2/ '2 = -Skt + C. = The initial condition y(O) = 16 yields C = 2048, and then y(]) 9 implies that = 5k 1562. Hence y = 0 when = = t C/5k 2048/1562 = 1.3 I hr. Section 1.4 19 = 51. The solution of y' -k.Jy is given by 2Jy = -kt+C. The initial condition y(O) =h (the height of the cylinder) yields C =2 ✓h . Then substitution of t = T, y =0 gives k =(2 ✓h )IT. It follows that = y h(l - t!T/. If r denotes the radius of the cylinder, then 52. Since x = y3'4, the cross-sectional area is A(y) = nx2 = re y312• Hence the general equation A(y) y' = - a,J2gy reduces to the differential equation yy' = -k with general solution (l/2)l = -kt+ C. The initial condition y(O) = 12 gives C = 72, and then y(l) = 6 yields k = 54. Upon separating variables and integrating, we find that the the depth at time t is y(t) = .J144-108ty(t). = Hence the tank is empty after t 144/108 hr, that is, at 1:20 p.rn. 53. (a) Since x2 = by, the cross-sectional area is = A(y) 'f!x2 = nby. Hence the equation A( y) y' = - a.J2gy reduces to the differential equation with the general solution (2l3)y312 = -kt+ C. The initial condition y(O) = 4 gives C = 16/3, and then y(l) = 1 yields k = 14/3. It follows that the depth at time t is y(t) = (8-7t)213. (b) The tank is empty after t = 817 hr, that is, at 1:08:34 p.m. 20 Chapter 1 (c) We see above that k = (altrb) jii = 14/3. Substitution of = a 1rr2• b = I, g = (32)(3600)2ftlhr2 yields r = (l/6D)-J7112 ft""0.15in fortheradiusofthc bottom-hole. 54. With g = 32 ft/sec2 and a = tr(l / 12)2, Equation (24) simplifies to A(yd)y- = --tvr Yr:: · dt 18 If z denotes the distance from the center of the cylinder down to the fluid surface, then y = 3 - z and A(v) = 10(9 - 2 112 2) . Hence the equation above becomes = 10(9-z2 )1'2 dz ..::._(3-z}1'2 , dt 18 180(3+ z)1'2 dz = trdt, and integration yields = 120(3+z)112 m+ C. Now z ;;: 0 when t = 0, so C = 120(3)312. The tank is empty when z = 3 (that is, when y = 0) and thus after t ; (120ltr)(6312 - 3312) "" 362.90 sec. It therefore takes about 6 min 3 sec for the fluid to drain completely. 55. A(y) = n(8y-y2) as in Example 7 in the text, but now a = ,r / 144 in Equation (24), so the initial value problem is -Ji, 18(8y- y2)y' = y(O) = 8. We seek the value of t when y = 0. The answer is t = 869 sec = 14 min 29 sec. 56. The cross-sectional area function for the tank is A = tr(l- y2) and the area of the bottom-hole is a = I0-41r, so Eq. (24) in the text gives the initial value problem tr(l-y2)dy = -10--4rr:.J2x9.8y, = y(O) 1. dt Simplification gives so integration yields Section 1.4 21 The initial condition y(O) = 1 implies that C = 2 - 2/5 = 8/5, so y =0 after t = (8/5)/(1.4xJ0---4,Ji'o) ""'3614 seconds. Thusthetankisemptyatabout 14 seconds after 2 pm. 57. (a) As in Example 8, the initial value problem is dt = 2 dv r:; rr(8y-y ) -1rkvY, = y(O) 4 where k = 0.6 r 2..fig = 4.8 r 2 . Integrating and applying the initial condition just in the Example 8 solution in the text, we find that When we substitute y = 2 (ft) and t = 1800 (sec, that is, 30 min), we find that k "" 0.009469. Finally, y = 0 when t = 448 "" 3154 sec == 53 min 34 sec. 15k Thus the tank is empty at 1:53:34 pm. (b) The radius of the bottom-hole is r = ,Jk / 4.8 '°" 0.04442 ft "" 0.53 rn, thus about a half inch. 58. The given rate of fall of the water level is dy/dt = -4 in/hr = -(1/10800) ft/sec. With A = m 2 and a = m-2, Equation (24) is Hence the curve is of the form y = kx4, and in order that it pass through (1, 4) we must have k = 4. Comparing ✓Y = 2x2 with the equation above, we see that (8r2)(10800) = 1/2, so the radius of the bottom hole is r = 11 (240✓3) ft ""' 1/ 35 in. 59. Let t = 0 at the time of death. Then the solution of the initial value problem 22 Chapter 1 T' ::: k(70 - T), T(O) = 98.6 is If t = a at 12 noon, then we know that T(t) = 70+28.6e-w = 80, Hence T(a+l) = 70+28.6e-k(a+ll = 75. = It follows that e-k = 1/2, so k In 2. Finally the first of the previous two equations yields a = (ln 2.86)/(ln 2) "" 1.516 hr "" 1 hr 31 min, so the death occurred at 10:29 a.m. 60. Let t = 0 when it began to snow, and t = to at 7:00 a.m. Let x denote distance along the road, with x = 0 where the snowplow begins at 7:00 a.rn. If y :;: ct is the snow depth at time t, w is the width of the road, and v = dxldt is the plow's velocity, then "plowing at a constant rate" means that the product wyv is constant. Hence our differential equation is of the form k dx = !_ dt t The solution with x = 0 when t = to is t = toekx. We are given that x = 2 when t = to+ 1 and x = 4 when t = to+ 3, so it follows that = = to+ 1 toe2k and to+ 3 t oe4 k 4 Elimination of to yields the equation e4k - 3e2k + 2 = (e2k - I)(e2k - 2) = 0, so it follows (since k> 0) that e2k = 2. Hence t0 + 1 = 2t0, so to = 1. Thus it began to snow at 6 a.m. Section 1.4 23 61. We still have t = to e1o=, but now the given infonnation yields the conditions to+ 1 = toe4k and to+ 2 = toe7k at 8 a.m. and 9 a.m., respectively. Elimination of to gives the equation 2e4k -e7k -1 = Q, which we solve numerically for k = 0.08276. Using this value, we finally solve one of the preceding pair of equations for t0 = 2.5483 hr = 2 hr 33 min. Thus it began to snow at 4:27 a.m. SECTION 1.5 LINEAR FIRST-ORDER EQUATIONS 1. = p=exp(Jtdx)=e"; D .. (y·ex)=2e-'; y•e., =2e'+C; y(x) 2+Ce-x = y(O)=O implies C=-2 so y(x) 2-2e__, = y·e-2.t = 3x+ C; y(x) (3x+ C)e2.r = y(O) = 0 implies C = 0 so y(x) 3 x e 2 - ' 5. = = p = exp(f (2/ x)dx) = e 21 "- ' x2; D.. (y· x 2 ) = 3x2; 2 y•x 3 x + C y(x) = x+Clx2 ; y(1)=5 implies C==4 so y(x) = 2 x+4/x = = = v(x) x2 +CI x 5 ; y(2) 5 implies C 32 so y(x) = x 2 + 321 x5 24 Chapter 1 y(x) = 5✓x+Cl ✓x 8. p =exp(J(ll3x)dx )=e(lnx)/l =¼; DX (y ·¼)= 4½; y .if; =3x413 +c = y(x) 3x+cx-113 9. p=exp(J(-l/x)dx)=e-10.,.=l/x; D,(y·l!x)=llx; y·llx=lnx+C y(x) = xlnx+Cx; y(l)=7 implies C=7 so y(x) = xlnx+7x = y(x) 3 .X3 + CX 312 11. p=exp{J(11x-3}dx)=e1u-3.x=xe-3'; Dx(y·xe-h)=O; y·xe-:ix=C = = y(x) C x -1e 3 ' ; y(l) = 0 implies C 0 so y(x) = 0 (constant) (J (y · = = = = = 14. p exp (-3/ x)dx) e-3lnx x-3; D,, x-3 ) x-1; y·x-3 In x+C = = y(x) x 3 1nx+Cx'; y(l)=lO implies C==lO so y(x) x3 Inx+10x3 16. = p = exp(fcos xdx) = e'ini; DX (y · esinx) e•inx cos x; y. e•inx = esinx + C y(x) = I+Ce-sinx; y(n)=2 implies C=l so y(x) = I+e-,;•., (J 11. p = exp 1/(1 + x) dx) = e 1"< 1 +xJ = l + x; Dx ( y- (1 +x)) = cos x; y-(I +x) = sin x + C Section 1.5 25 = C+sinx y(x) l+x y(O) = 1 implies C = l so y(x) = l +sin x l+x 18. = = = p exp (f (-2 Ix) dx) e-21"' :::; x-2 ; Dx( y •x-1 ) ~ cos x; y •x-2 sin x +C y(x) = x 2 (sin x+C) 19. (J = p = exp cot xdx) = eln(•inx) = sin x; D, (y ·sin x) sin xcos x y-sinx=½sin2 x+C; y(x) = ½sinx+Ccscx y(O) = 0 implies C = I so y(x) = -1 +e-x-•112 y(x) = x 3 sinx+Cx3 ; y(2.n-)=0 implies C=O so y(x) = .x3 sinx 22. p =exp(j(-2x)dx)=e-x'; D... (y·e-x")=3x2; y-e-..-' =x3 +C y(x) = (x3 +C)e-x\ y(0)=5 implies C=5 so y(x) = (x3 1 +5)e-x y·(x2 +4)312 =½(x2 +4)312 +C; y(x) = ½+C(x2 +4r312 y(O) = 1 implies C:::::: 1: so y(x) = ½+ \6 (x2 +4r3' 2 25. First we calculate 23 [x 2 -ln(x2 +l)]. 26 Chapter 1 = It follows that p (x2 + 1r312 exp(3x2 /2) and thence that D.,(Y•(x2 +Jr312 exp(3x2 /2)) = 6x(x2 +4r5' 2 , = y·(x2 +It3' 2 exp(3x2 /2) -2(x2 +4r312 +C, = y(x) -2exp(3x2 / 2) +C (x2 + 1)312 exp(-3x2 / 2). = Finaily, y(O) 1 implies that C = 3 so the desired particular solution is = y(x) -2exp(3x2 /2)+3(x2 +1)312 exp(-3x2 /2). = = 26. With x' dx I dy, the differential equation is /x' + 4 y 2x 1. Then with y as the independent variable we calculate = = = p(y) exp(J (4/ y)dy) = e41 ny y4; DY (x• y 4) y = = x-y4 -1y2 +C; x(y) -l+ C- 2 Zy2 y4 = 27. With x' dx I dy, the differential equation is x' -x = y eY. Then with y as the independent variable we calculate 28. With x'=dxldy, thedifferentialequationis (]+y2)x'-2yx=l. Then with y as the independent variable we calculate = = p(y) = exp(f (-2yl(l+y2)dy) e-ln(y2+1) (1+y2rl l r l r = D_,, (x-(I + 1 ) (1 + 2 An integral table (or trigonometric substitution) now yields I f 2 I+Xy2 = (I+dyy2 = }( J 1+ Yi + -1 tan y + C ] x(y) = ½[Y+(t+ /)(tan-1 y+c)] Section 1.5 27 29. 30. After divjsion of the given equation by 2x, multip1ication by the integrating factor P = [ 112 yields x - 112y'-½x-312y = x-112 cosx, Dx(x- 112y) = x-112 cosx, f x -112y = C+ 1- 112 cost dt. The initial condition y(l) = 0 implies that C = 0, so the desired particular solution is f ,- = y(x) x 112 112 cost dt. 31. (a) 32. (a) If y =A cos x + B sin x then = y'+ y (A + B)cos x+ (B-A)sinx = 2sinx provided that A ;; - 1 and B = 1. These coefficient values give the particular solution Yp(X) = sin X - cos X. (b) The general solution of the equation y' + y = 0 is y(x) = ce-x so addition to the particular solution found in part (a) gives y(x) = Ce-x + sin x- cos x. = (c) The initial condition y(O) 1 implies that C = 2, so the desired particular solution is y(x) = 2e-x + sin x - cos x. 33. The amount x(t) of salt (in kg) after t seconds satisfies the differential equation = x' = - x/200, so x(t) IOOe-11200• Henceweneedonlysolvetheequation 10 = IO◊e-''200 fort :::461 sec= 7 min41 sec (approximately). 34. Let x(t) denote the amount of pollutants in the Jake after t days, measured in millions of cubic feet. Then x(t) satisfies the linear differential equation dx I dt = 114- x I 16 with solution = x(t) 4 + 16 e-,n6 satisfying x(O) =20. The value of t such that x;; 8 is 28 Chapter 1 t = I6 Jn 4 ""22.2 days. For a complete solution see Example 4 in Section 7.6 of Edwards and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998). 35. The only difference from the Example 4 solution in the textbook is that V == 1640 km3 and r == 410 km3/yr for Lake Ontario, so the time required is t = V - In 4 = 4 In 4 "" 5.5452 years. r 36. (a) The volume of brine in the tank after t min is V(t) = 60 - t gal, so the initial value problem is The solution is dx = 2-~, dt 60-t x(O) = 0. x(t) = (60-t)- (60-t•/ 3600 (b) The maximum amount ever in the tank is 40 / ./3"" 23.09 lb. This occurs afler r = 60-20./3'"" 25/ 36 min. 37. The volume of brine in the tank after t min is V(t) = 100 + 2t gal, so the initial value problem is dx = 5_ 3x , dt 100+2t x(O) = 50. = The integrating factor p(t) (100 + 2t)312 leads to the solution x(t) = (100 +2t)- 50000 (I00+2t)·312 such that x(O) = 50. The tank is full after t = 150 min, at which time x(150) = 393.75 lb. = soe- 38. (a) dxI dt == - X 120 and x(0).:::: 50 so x(t) 1120 • (b) The solution of the linear differential equation with y(O) = 50 is -dy - -5x- -S-y - -5e-,120 - -1y dt IO0 200 2 40 • = y(t) 1SOe-1140 - IOoe-1120. (c) The maximum value of y occurs when Section 1.5 29 PROBLEM 2.1 KNOWN: Steady-state, one-dimcDllional heat conduction through an axi•ynunetri< shape. FIND, Sketch temperature dis\ribution and c,rplalo shape or curv,. SCHEMATIC: T, E,. ·--Lx - -f"-/l- I -1; ------ - -- - -· l'•' T, >T, t.., Tr•) L ' T, T/x) r.: 0 ~TL --- )( L -Sl.,p.oi curve ASSUMPTIONS, I1) Sleady-stai.,,, one-dimensional conductloo, (2) Constant prop<•rties, (3) No internal heal genProtion. ~ALYSIS: Performing an onorg, h•Jance on the obj<·cl accordlog to l::q 1 It•· E,. - E ,, - 0, it follnws that = f:lh - Eg,,H Cb = •nd that q. 'h(x). That is, Ibo beat rate within the object i• ,,v,rywhcre ron,tnnl From Fourier'• law. Cb. :a --k.A. -dT . dx and •inr• I\, and k nre both con•I.Aat.s, it follow• T1 7 (3) Show on th• Ahove plot how tho boat Du,, q:, varic, wilh disULat<. PROBLEM 2.2 KNOW!\": Hot waler pipe covered with thick la.yer or insulation FIND: Sketch temperature distributioo. and give brief explanation lo justify shape. SOREMATIC, Hor woter p, r, 7; Tz Tir) Insulat,on -'-.' . -- , ., , I r; T, >1i. ~ r, r, r ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional (radial) conduction, (3) No ln1,eroal beat generation, (4) losulntlon bas uniform prnpcrties indrpcndent of l.cmperature IUld position A."'sALYSIS, Fourier's law, Eq. 2.1, for this one-dimensional (cylindrkal) radial sy•lem has the form q, - -kA, ~; - k (2s-rt) ~~ where A, - 2r.rf and ( is the a.xial length of the pipe-iMulation oy,,tem. Reco1,nlzr that ror !ILt-ady-staLe t"ODdiLioos with no internal hea.c. generation, an energy balance on the !)'!item requires E,n = £011\ since £, = f:-' = 0 and hence q, = Con,tnnL Thal I•, q, is Independent of radlUl! (r). Since the thermal conductivity is iuso constant, It f<>llows tbaL I!~ I r = Const1rnl. Tbb rr.lation requir<.. that th• produtributioa mu5t appear as shown in the :1bove, righL •ketch. COMMENTS: T, r, r ASSUMPTIONS: ( I) Steady-state condillom, (2) One-dimension<>! conductioo la radial (spherical coordiaateJ) direction, (3) No iDtera,1 geaor•tioo, (4) Coostaat properti~. ANALYSIS: Fourier'• law, Eq. 2.1, for this ooe-dlmemional, rodi:11 (spherical indcp1•ndeot of x. Slnc<- .A(x) 1rrrrta.$t'.C with int"rta!ting x. il folluw!!I Lhat q; - q./A(x) drr.rr4H'3 whh mcrr,u1ng x. ,:::;inrt- T dtcrca..'-tl with ,ntrtc.-,,ug x, k urrrta.u1 with 1ncr-ca.uug J.. fl('Of'f', rrom F'ourit•r'!l la~, Eq. :!.:.!. = • ·n11 -k -dd-Tx • h foflo.,., lhllt I dT/dx I dtcrtaus with increasing x. PROBLEM 2.6 KNOWN: Temperature dependence of the thermal conducti,·ity, k(T), for bta.l transfer lbrougb a plnn• wall. FIND: EITcct of k(T) on tcmporature distribution, T(x). ASSUMPTIONS: I I) One-dimen•ional conduction, (2) Stcady-,t•t• rondition,, (3) f\'o mlerual heat genera.Lion. A."IALYSIS: From Fourier'• lnw and the form of k(T), • q, - -k dT dx = - (ko + aT) dT dx • ( l) The sbnp< of the t1•mpcralure distribution n1ay Le Inferred frnrn kuo"h•dK<' of d:T/dx: e d(dT /a)/ux. Sin« q: i• lndcpendcnl of x for lh• pn•vrilwd condition•, ~ - d, [(k0 + aT) dT ]- dq: dx dx • o I ' - (k0 + nT) d'T - dx' - dT n - dx -o. lien co. from "h,eh 11 follow• that for a '> Cl: .J'T/dx' < 0 a• O: d'T/dx' =O a < ll: d 2T /d• ' > O. .__ _ _ _ x \\Lt-re lht- run:tture for th~ tem~u·raturt• 1fo,trHt11liou T{x) is ftl"l,:lili\'t•• U:ro, and p1,,ri1tin•, r,•spt.-(tl\·cly. CO\NE!':TS: The ,h•p•• of the distribution could nl"" ht• inf1·rr1•d from C~ (1). ~ioct' T dL-c rp:1,..-,~ with inf'rt•:s...t11iog x, I I n. • tt k drcr,•::t.-•H-s wu.L int"rc~qing x => dT/dx iuut::isr~ with irJtrt;L\illg x a .- CJ: k a=. k0 --> dT/d~ I:. ronstan\ -=> I < n O• k lnn,•nJIL':I v.·itL ir1l"rn1..;iog x dT/dx J dt·crtast~ v. ith lnc-rta.siug ~. PROBLEM 2.7 KNOWN: Thermal conductivit.y nod thickness of a one---dimt.ns-ion:tl syst.-m wlth no int.e:rna.l bi,at i;tincratioc aad steady•state condit.ion.s. FtND: Unknown lllr(Act' t.e.mpe.rat.ures, i.emp~raturc gradic.ni. or beu Rux, SCHEMATIC: f i r. ---~ L,as. • 9~ 9!, Tompor4turo 9r•d•ont k . zs w.'., f, K-. . -X -.-.i.r, ASSUMJ'TJONS, (1) On...cl!men.,lonal h•at Oow, (2) No internal beat geoontloo, (3) Stea.dy-sLale c.onditinn1, (·l) Constant propcrUea. ANALYSIS: The raLc equation and umperaLure 1r1dlent for thlt !l}'Slem an • dT C'lc ----k -dx and dT T,-T, -dx= L ( 1.2) U1iog Eq>. (l) ond (2), the unknown qullntllles can be delormlned. C•) dT _ dx (~00-300)K 0.5m = 200 K/m q; = -25 ..Y!.._ x 200~ = -5000 W/m1 m·K m fb) q: = -25 -m\•\K' " I-260mK-l =8250 \V/m' ~ I dT T,-T,-L[ dx = 1000 • C - O,Sm 1-250 T: = 226 • C. (•) q; - -16 --W-:- > 200K- - -5000 \\'/m2 m·K ID ' 'tOOK cz; JOO"[ aot ~ 300K q·• •<-l -s·c T1 - -as· c. ! l {e) dT -dx - • 'h - k- • _"..-,_32_S0=0\-0=I'.\,.mI.'..·.mK.=7-~) - K 120m- T, =JO· C - O.f>m [ 120 = -30 • C:, T, ><-i y1t"m arn • dT r\1 - -K -dx :a.ad dT -dx = T,•-I.T-, • I 1,2) fn) JT • th. 1-20 - bOl K 0.:?5u1 = _2~0 K/iu IL · ". I I • q, - .,u - - I( m·K '-1Im0(- = 50'C ·2.0'C' r-• h, T00 I> ---!> ASSUMPTIONS : ( I) Ooi,-dlmen.sional, radial eonductian, (2) SLcad)'·•Lale conditions, (3) CoasLant propcrlics, ANALYSJS, The beat rlllo from f'ourier'• I•" for lhe rndi•I (eyllodrical) 5)'11Lem bas Lbe form dT q,--kA•-;j;-· U•ing lhe expression for Lhe lemperaLure dislributioo, T( r) - a + hr' 1 evo.lunte lbo L•mp1•rnlure gradirot, dT/dr, lo 6nd 1hr heal rntr, q, - -k(2:rrl..) 2hr = -I rrkbLr' At the outc_r surface, (r = r 0 )1 tbr couduction be:lt rt1.lr is '1,. r_ = -I :rkbl.r; • -c:::::::·_1T:JOO-JSOx,-10x2. G-ro~.,;d 'l(L) ASSUMPTIONS: (1) 5tendy-stnle condlUons, (2) One-dimensional condutlion in x, (3) Con•L"r·t propcrtiL·s. ANALYSIS: Temperature, at the lop Rad hot tun or Lhr. sh:ll't .,n•, r<-.J>ecti,·cly, T(O) 100 • C T(L) .- --JO. C. plyin& Fourirr's law, Eq. 2.1, q, = -kA ddT - -:!5 \\'/urK(0.005 1112 )(-150 + 20x)"C/m :( = q, U. I :!fi( 150 ~lh )\\. lln,n·, •t.[O)- ll!.75 \\' •1.(l.) = 16.25 \\'. q,(L). is dur lo lu,at losses q, fror'l tlw air!,· ur the •,haJI CQt,,Cl,fENTS: llrat lnss from Llw side n,quir,-. ti,~ 1,xi,tt'l1c,, or lcmpcrn\urc gTAdicots ov«:r tL, sh.aft rrn~~-:,t•«-Lion, H•·nc~, 5perification or T n.s oi. funcLlon of only " i~ an nppro\: imnt 1011 PROBLI.M l.l J h.1\0\\ , : A n-,J CJf ..-:on,IJflt th«:nn.11 i:onJu,uvtt} l .anJ \Jn,1hle uoo.-..•sci;lion11I il/~J ,.\,1,):: •\ r .. wht'rr A. Jnd I ilN! c:on~anu f l \ l): .;1 f,ph!\.'lhln lut tht Clm.Ju.d1,1n hc.•;ir rall: q 1t ,,~ u,e Lhi.. t1.pr~1.,uin ht JL·lcmu~ fh1,· trmr~rutur.._ J1 ..m'1ut1Pn, Ti>: I, .tnJ ,Lc1h:h uf 1he lt:m)1t'r-,1lurt" Jhlnhuuon. 1b, Con1.1J.tnnl! thit r,~,t'n..~ ,,1 \ ,1Jumc1n, h<.11 t.!cnetJllun rah~, q q.,t,pl- .1,1 ol!laJn W1 cxph."\\Hlh for q,,, 1 \lht:n lht• ld1 l.1..:L".,:; 1.J. 1. "'.-11 rn,ul1J1c:J Sl' lit:\l ,\TI!': T(tJ 0 \S.''il , IJJ I I(>,s: 1I 1 ( 1t1l•.Jur1c:n1r,1on.1I ~1u1,lu1,,:11c-r, 1n thC' roJ. 1: , C,1n,t11nt pu:,~n1~~ 111Ju111n l ' 11 Ste,1J~ -.1.11:: l.,.., .. F,'-""'11 q y,., • Tc LI. the tcmp!!rarure d1,1nbut1on 1s t"'tponenual. ;ind i.l, ...hov.n III the .,~i=h.:h Jh,w,: St>raraung , ,mahlt!, ;anJ 1ntcgra11111;! F.:q I~ 1. 1hi.: geneml fonn lor 1he ttmpcr3ture d1,Lnbu1 '"'n ~..an he Jdtatc condJuoru, {2) Onc-dimc,a,ionaJ coadU<:tion, 01 Su he•I genenwon, (.1J Conslllllt thermal propcmcs. PROPERTIES: The thermal conducnvt1)' 1s evaluated a, the average 1empcm1urc of 1hc system. T= IT1+T1 l/2= (32S+275)Kf.!= 300K Property value, and table idcn11tica1111n .ire sho"' n bclo"'. ANALYS IS: For llus sysicm, Fonner'< l•v. c::u, be wnucn 1li dT Tz-1'1 q, =-k dll =-k L Sub,•11u1tng numcnc3l value,. the heal flu, in 1enn, of the ,y,1em !hernial conducu,i1y " q, =· k (275-325JK =+l500~ k 20,10 1m m v.here q; v.111 have uniis W/m2 tf k hu, un11, W/m K The heat flu,es tor tuch >}Stem follo"' Ma1cnal Thermal conduc11vny Hca1 flu, Tahlc k!W/m·K) q, (kW/m2) {it) Pure aluminum i\· l (h) PJ;i,n carbon SICCI A•I (cl AISI ""• S.S A-1 (di Pyroh ,ysicm,, the R•value< Rock, Limestone, IR ft. 18 fl• 12-'" R = _________r_i_ _ _ _ _ : 15.51B1u/h fl:·°Ft· 1 W Btu/h·ft 'F tn 2.1.SmK x(l5778 W/mK l'.!fl Wood, Sortwood. 15 m: R = - - - - - - . . :1.5::..:tn:.:__ _ _ _ _ = 18 (Bm/h fl1 ·0 Fl-1 0. 12~ • 0.5778 Btu/h ft·'F ·' 12 in mK W/m·K fl lnsuln11on, Blunke1, I\ in: K = . (l ,n . ,, = IK (Btu/h·fr·' F)-1 O(l48~•0.,778 Btu/hit F. 12.!!!. m K \V/m·K fa C0\11'>I E 'IT: The R-valuc of JQ j?I\Cn m 1he ntlvcniscmcni is reasonable. PROBLEM 2.17 KNOWN: Electncll hca1cr ,nndw,chcd between rwn 1denncal cyhndncnl 130 mm d1,. , 1,(1 mm length) samples whose opposite ends com.ua plates mtUntaincd 11t T0 . FIND: Ca) Thennal conductiVJly 01 SS3lb ,nmples lor the preo;cnbed cond,uons CAI nnd us avenge tcmpcnnurc. (bl Thermal condix:11v11y o( Annco imn s11mple rnr 1he p«"'4·nhcd condillons IB), (c) Commen1 on advantllgc, or c:qx:nmcntal um.npcmcn1, l.icral hell! '"""'· condition when t.T1 '¢~Ti , SCHEMATI C: To= 7 1 • c _1,..,._ t>.x=lSmm Heater,} ..,_ ,r-.ic.7j=2.S.0°C lOOY, 1--b---SS 316 0.'353A ATz. =zs.o·c c.x=lSmm To= 77•c t>.1i,•15.0"C Armco ,"ron t,.Tz:150-C T.=11·c Case B ,\SSUMP'flONS: (I J One•dJlllt'.n"onaJ heal tnn.,fcr 1n wnplcs, (2) S1eady-'1u1,: comltth>rt,, n \ Ne~hg1ble co~tact rc4-an,nce t>etl.\t"CO materi1th, PROPERTfES: Tobi, A.2, Slllinkss Sled 31h IT~ 400 Ki k,. E 15.2 W/m K: Annco 1ton (T = 380 Kl k.,,.,,. = 71.6 W/m K •\ 'I/AL YSIS: ca) Rccogn11e 1hn1 hall Lhc hc:11cr power w,U pas; Lhrough c.irh of the >'llllple, wh"h MC pmsumcd Jdc.mh:a.l \CC C'.a.,c A 01~.we Apply F~unc..r·, la" ta a sample. ,1T q=k/\,·· "' l = qt.x = 0.51 IOOV>il.353,\J 0.CH5 ".?, ~ IS.U W/m K tnl 1cmpcr:11urc drop •O mmil5 mm)= HIO Hence. the hc.11ertcmpc,ru111rc 1, Tb= 177'C. Thu,, the a,·cn1i;c tcrnpcratun: ul the 11i3mplc ,~ crc improperly applied along 1hc la1eral rurfoccs, 11 1s possible thnt heac lc.tknl,!c will occur. Thi- mav cause uT1 ~ uT2. PROBLEM 2.18 KNOWN: Comparanve method for measunng lhennal conductiv11y involving 1wo 1denncal samples ~!Acked wilh a reference mn1erial. FIND : Ca) Thermal conductivny of 1es1 matenal and average temperature,. (bl Condlnon~ when AT1 .,_AT2, SCH EMAT IC: T,, =4001<-~- c.x=lOmm A'tJ: 3.32•c Reference mi,/eri;,f,-...., Armco iron Test Si!mp/e (2) --+-;' Tc=~OOK-~ _ _ , ASSU MPTIONS: (I) Steady-state conditions. (2) One-d1mcnsionnl heat transfer through ~mples and reference material. (3) Seglig,ble thermal contact rcsisuincc between material, PROPERTIES: Tablt! A 2 Armco iron CT= 350 K): k, = 69.2 W/m K ANAL VSIS: (a) Rccogmnng that the heat ra1e through the samples and reference material , nil of the snmc dtnmcter, is the snmc, 11 follows from Fourier's ln-. Llrnt k t. , T-,-1 = ,\l"(J. P =Cl\\. fort> .,t1., Tpl-1 = 33.50t"-C \SSl \rlPTIO"-'S: Cll Om:-d1mcns1nn.tl hcul rrum,rer m \llmpln. (J1 \Jmfnm, prnpcn1c.... (.'\J Per1t:L·I m,ulam.,n n,, '"'''"' nf hc-J1c:r J'(1'-"<2653 W/m1 = 36.0 W/m·K pcn10, and no 1n1emal hcJI !!•ncranon, 1hc h•a• cquauon. Eq 2. 15, ha< the ronn ,iT i12T ci2T I ill -,-'l"-----,+7"'"'T=--::-- . (I) r),• cl)· dr u di When T1,.y.ll , clT/ih, .n-rii), ct~.• d - u, (.!~-))- cl -dv• (~,·-)(+~11 + d -d1z:?1+2.v)= ldT -u -ilt Performing the d,ffcrcntiaul'.ln. tind , - _ 4 ,,=-1 -n iJT ii, That i,, i,~,, = fl ,-.h1ch unphe~ 1hal. rur the: g1,·c:n tnMani (lf ume, 1he ,cmpcnuurt: \\-1II e1-:erywherr not chanie. C0\1Mf'\TS: Smee v.e do not ,now th< 1n1llal ond boundary conchllon,, we cannot detcrmmc the 1cmpcrnturi tlJ!ltt1hu1mn. Tr,.y.1). :n an} future umc. We only can dctemunc that. lor tJ11, 1-pccrnJ msrn.nt uf llmt, tin: 1i:mpcr,.uurc wJll not change. PROBLEM 2.21 KNOWN: Steady-state temptrntwc dullibuuon in • cyltndricdl rod having uniform heal gcnera11on o( (}I:; Sxt07 W/m3 FIND: Cal Stendy-siate centerline nnd surf.Ice heat 1mnsfer rJtc, per un11 length, q; (bt lnmal umc nuc of change or 1he cemcrhne and surfoct 1em1'1CrJtu~~ 1n rcspon,-c: 10 01 change 1n the generation rn1c [T(Jm U1buuon. T(r) ,\t r=O. the gr•dlent I> (;rf/iJrl = II. I l.208> 10' Kim) q,(r0 ) = 0.980 x IOS W/m n 1oq. SCHEMATIC: IL,SOmm ASSU~1PTIO!IIS: (I) S1ead)·\Ul1c t(>ndl1ion,, (?J Qnc,dimcns,onlll hcot flo..,. (3J Con. ANALYSIS: laJ 1ltc npprop.riatc form nf tht hcor cquorjan for .;1e11dy~m1e. nne-dlmcn,mnal condnions wi1h con51unt pro:pcrucs is Eq. 2.15 tt•wmtcn as 4=-k d~ [ : : ] Using llu: fnrm for the. cempcmturr dnmbuuon. cvalwuc lhc grucbcm giving. l' 4 - -k ..d.!x!... _d!i!t,_(a-;-bx21] = -l _d! 1hot E, E,,,,+E1 =0 q,COJ-q,(LJ+qL=U o.~;o::· - q·,(LJ - q,•tO) JO ()()("'/ q = I, = ' ' ti =~.a. J01W/m1 PROBLEJ\.1 2.23 KNOWN: Wall Ilttclmcu. Iltcmlll conducuvny. 1cmpcnrurr dmnhuoon. ond nu,d 1cmpenuun: FIND: (it} Surface hca1 nuc1 And nuc of change or wall energy s1oragt pc:r unit area, a.nd (b) Con-.•cction cocfhctfflL SCHE\fATIC: k=IW/m·k T(>t) •200 · ZOOx + .30"' I I 142..7°( - , - --+ , q•in • ,---➔ , q•out I I 11 - - -..., f--x IL•0..3111 ii{&;) ,;,, •1oo·c,h ,\SSL MP'TIO'\S: I 11 One-d11nen<1onal condur:uon to •• fl) Con•tanl k. A.'-IALYSIS: (a) From Founcr', I•-.. q, =-k -~ ih = f2(Xl - 60xl·• l AppJylnJ! .t \url.tce c-ncri:~ h;,.lnm.-1:! .11 \-=I .. q:,, ~ h[T(LJ - T.. I h = tfuu1 i:; 182 W/m' T(LI •T.. flJ2.7- IU01°C 1onl1I conJu,uon. ni ('"'""'"' propcn,c,. A ,,__Al\'SIS: ht) The de\tttd Ou."Cc, 1.:orrcspood to conduction fluxes 111 the central layer a:u 1he lnwcr and upper 1;ur1uceS- A icncral fonn far the conduction ttu, 1.5 • q,_, : -l oiJT. 5 - k [ •A• -u C + BJ' For tb~ ccnrnl lt1yt:r. the cnrrav ~enernuon t, f.1 l l4d,=AJl e·uru'" 1 1 E ;-" e•U IL:-~(c"--11:~(l-c aL) 1ble" If ,\,. 1~ cni:r~~ h;alJn•e at 1h-c- •u1r1': ... r-i .,~ th,1wn illl-0,'C' an 1hc Sdl('m.,11~ 010,1 be 1;msf1eJ f • '= ''II •(Ill• lJT' •-~ fll.J TIO)• .J~\1/m l.:x(l~fl -Oi"C/Ol km a-10001\'/m' J, /,,, I ,j"' h[Tfl.l l,.);-lf1\\/m" ~,,.11.:!0 1ofr.aiOflflW/m! '\ut,,11111ru1g the he.JI nu.-. ,·.ilue, mri, l:~ f :,,, lmJ ,..,uoo, .. i ll'.Jf11.J1 • Ulllld thcrdorc. ,h~ 1cm~r.t1ur..- ll1\lt1t,ur1~•11 1, n,,f rlb,1hli: \\.11h 110 _ ,, c· ,,nJ r_ :i :u·<...1hc IC"1('\.'J,t1Utc JI the \Url.11.t" '.: L TtL1, C.Ul l'C tli:1t·t11UMli lmn1 Jh o,('1.11! L'1Wf~) l,.1.lJ.110.i: c,n lh1..• Yollll ,I\ •hl)"4n JJ"(}\e 1n lh~ ~1i:ht"mJf1;; q;1111 q"' .o -~T-IL)L-T(-O-i - h[TtLJ-1._] ;;:0 -.J<\\lm i-.[r1L1 11 r)lob-m-111\\/111· "-[TU J-~o-C]:u 111 .-w: 10•1 C I 1mr 1111, ,;amt" .1nJlu11, ltU ,u .1 lu~IIL•n tJI 1hc .;cmc1i 1,...,n tt1cfrl,.1cm c.sn ti~ Jc1crnuonJ .an.I pl11t1t\J \\ c J~,n•I C':\rc-c-1 T•l. 110 PC l111C"wrl~ J~rcn.L·t11 Uj"'\•11 h ~ote thJl ,.,.. h Hl,.R:"J-.Ci. 11, t. '.,r,cr \ dw:,., Trl , .1prro.1.:h~s l'n "hJl \ .a!ui: \~ 111 l1 l I Jprrna.:h ,I'> h Jc1.1c.~,~~ I < • ~- ', • i • -, - I ••• • ~ • ' • • ·--•····•·-·· • 1 PROllLt.M ?.lH h.NO\\ '\: Coa1 p1lt' ol rreK.nbcd tJ\!pth r,peneni."1n1 umlotm \ 1.'tlumctn, icnerauo11 "1th i;on\'c-.;111,n. Jb~1rhc!d 1rr.uhu1tun 1.111J enu~i,on on 11, upper ,urfac.c nl'\O: ;,) The ,,ppwpmuc. fom1 ,,r th~ lit~I di..lfU.'-ll'\A equiJIIOO i HOEi 1tnd \\ hc1hcr the prt'~nb follo"' rmm Eq : 11,, J '!f)• •I •U q I< Ju J\ ~ tl [ a.-q·-l' ( o d'< ~k I z_,\J < h,1111 E1.1 •~L 11,He lh.11 th,: h:mrc,-rnturi: 1,h,1nhu111m nu,t-.1 hcijUJJJJU.;. "•th nw.'lmum \.Llm: .i.1 \ ; I.I \I \ -0 1hc ht-..11 i1u, Iii ,.. II ,io 1hJ1 th,: ~r,1,hrn1 .11 , : fl I" /t"hl Hcm:c. thl· h,1t1r1rn 1-. in~ut.ucJ 1 / f>arabohc shape Zero gradlenl al boUom 0 '--:----'-- r, T!OJ q',llt qL < Cun11nucJ PRORI.F.:\I 2.18 IConLt From ii ,url.K'C cners> hal.ancc ptr unn orl!J ~hown 111 lh~ S1.'.hcm.n11.: .abc.nc. E,. - 1.:c::. • l', = II yl-li(T, -T. J • OY~G, «:rT,' = O 1ow·m·,<1n1-~\\'/m K(T, ~•l~I\J •0••~,4001\"/m' -u~5.-:\1>7•11l '\\"jm "'l ~o T ~ ~'15 7 K:!! 1 C < from Eq 1:.1 \\Uh,:. o. find .,..her" 1ht lh~rru1d cnndu1:.t1\'II\ Jett C\JJI 'o'·J, 11!,tJmc:d Hom I ,1hk ,\ :i. (CJ Tv,o plul"' .uc i;c:nl.'r.tteAtllh h _.;_" \\ 1m I\, IWI\.' th.11th(' ~l'l;.ir nr.aUt.11111 11 h,h J \Cl} !ttfntli.;.rnl 1.•fll.'1.:111n thr: temp1!r.1turc~ Th!! , ~cl th.11 l ,,. 11.•,,. lhJr.. tlu: ,l:llhlrlll ;11r •~mpt'rJtUJC. T ••mJ i11 lhc" (J.\C" \'11 \Cl} !11" \",tlllt'" 01 Ch, hdo,,_, fr'-·c11n!,;-- 1," " 1r1.,c4uc"n1.t· -ii the: IJ.C~1.• m..i.g111tudr Qt the: c::111,,,,c p11\\1.·r 1~ C-0\1\JF, n~: 111 IUI 1U1,,J~,,.. 1g11u,i.:J nnJ1:11111u lf1•111 lht ..1,,l ,In l.'n\trnnrn~ni.il r.:1J1,1T11111i.:hi:,1 \I.C' , 1u·11 :1•n• 1Jt • m ChJph·r I~ ltcJh:J :.1\ l,ug"" 1,111hcm1J.J ,urruu11Jmy•, r:loL, ~ ur;:~ ,\ht:ri: T,, =- to· C IM \Cf~ ... le.JI ~-•11J1111111, .m,I n..:.trl~ Jtr k111r,a.·1.111m.• lt1r ..:.k1ud~ c11mJ111on, four l.,m G:i 1.'.011J111tin, Vil." ,tii,ulJ t:<•n..,JL•r G"'" lht: d lc~t ol \\hii.h ¼Ill t,." Ill rredJ\1 l11ghl'I ,.itue~ to, r ••mJ 1,01. PROBLEl\1 2.29 KNOWN: Cylindncol ,y~m wilh negligible temperature vananOfl m lhe r,1 dlrccnons. Fll',D: (a) Heat cquauon beginning w11h • properly defined contr0l ,·olume, lb) Tempcra1un: dt<1nbu1ion T{ti>l ror s1eady-sia1e condmons wilh no u11cmal heo1 ~•nerauon >nd con"on' propcrues. Ccl Hcoi ra1c far Pan (bl condltton, SCHEMATIC: \SSIJMM'IONS: (11 T " tndepcnden1 or r.z. !lJ ru = cr0 -r, l < r,. \ 'I .\J YSl5: la) Deline lhe control volum,: n1 V = r1d,;, ru L where L 11 lcn~th nDlllllll lo p•f•· Apply 1h• ·nn·~ Imm Fount..--r·, h1w, r:41. n,. u~ln~ the l [ l 1empcrornr, !(r.ldJcn1 of Eq C7 ), Thai "· t]o"-ki,\rl.lJ- [~-1(l,-111 =-~ -r.-r, L1T,-T,> r, it ITT, t:O\tMEJ\TS: No1e !he e,pre'""" for lhe 1cmpcr>1urc grad1cm tn Founcr's lov., Eq. (3), 1< al'tr,,1,:, not ilT/ilo For the condJ11on, <>f Pan (b) and le), no,. 1h,11 q(¢l 1> 1ndepcnden1 of¢, th" 1, lirr thi: -..Jtnt: rc.:tM,n "\,',Jtt: lh..11 v. uh h \\'Im I\,. T f l'I tnn ...m.1l111, • hll\\ un fill' rlu1 PROBLT\I J,.! CC11111,1 • ► t l • i --- '• ... lte.,_"'I• - ,.,,. ..... 1~ ......, . - - To t,1.u.-.-i• "···-~--•,;• - •••ln ...,A•• . . coM,tE,TS: 'I The large.s.1 rc-11.i.unce 1t that :btoc1.ued wuh ,on,.·cL'.UOn ill thr: mnl.'r ~un.1...::c Th• \';aluc ll T .md T ~nuld h: ini;rcas.cd b,· mc.tt.n•un~ th~ value nl h. , ~ The JIil Tri, rtr1ul R~ uHa,ru .\irnwrl. \JoJi1I "'" u,e,l t" 1.n:att .1 modd N 1hc "'inJm, .md r~•n&J • D l"'CH.S•~ ·• Au,Qt!ed va11.at11•1 ~ d•Ml•,:I 111• q R.4i a!"IO ' 1~~ A'lt '-"U\0¥,n1 Ml 01 ._ O •or • ' " o ~ l'IO(la' poinra 41 wfb:;!' ,...,. • no • • 1.mai IOUrteOI r-,eal • r, • ...-~.'..J 1I011t1.oe,11rtem~nll.Jr• C 111 • 111-141ar ratl!I, .,,, r,. tao ·a ._ 0 110111etsun1c.o~,l)f1a11.11• C II Heal ••If \\' fl001 •. f'IO •M•MI.•!'IHI 101,m:• Tl• 1'11 II tnn.t 1urta.:. ltmpelll1U,.. C Jl • 0 T~ • T1111· ft H•■t rale W. nao. 2. ni: ad•tr\lr n1twi 101.1rc. 'r; I ~ &ii l~ptt'Jh.Jtll C 04 • 11 Heat ta! t \1'1 ,,Tharmat AnlltJIICHt R21 no·••I Rl2• 1. ,._.,,_ , P~1s, ,,.. ~• Co,wet:t,ol\ tr>"'m.l '•'"•t.lfll:e. KJW, o...iei turl•e• 'ConoUClll;l't lnt,tffllll lHIS.larll:·• tf./w ljli.u 'C"',G'WIIIICtll;YI ~•rr,al ,u,,1.1,ic~ f'o W - ~ tw"..ar• ti 011'\et AH'9"1td V•ri•bl•• !1n~- 10 '0oJtluht I 11!!~.l'Uf6:,(; hi.a 65 Canvt11r.hon eti,.lic1f!!1t W·m•:? to. oui.- iurt6c:• 1,. • 'J OOol ., • 1 • ,..,..,1, • ••) ' Thlc1t~na ~ vi.u Tho-t'Tl•I condu.:tnt•tv w.m I( Q;..LH I tnsiae 1111 ll!lfCMll.l'lllt C I\> • 30 CottW"aeliol'I cottt,c1on1 w.m '-2 I( 1nr,1t1 lufTae■ "" a I • Ctot,,...:,~, •ru ,,. 7 .n1 ~•.l PRORLC\J _l.l 1' ,o,,, !>r,nl!d mnc-r ~un.1..:1t ,e1111'5:t uuu .,, ri:Jr \,1,11\\1" • Odlf: 1Ht..ui:1 f'l.'"'l~r rcr unn .ire.& rcqu11.:1J ,,, m.e1n1a1n the dr,11ed 1rmf1t.•1 11u1~· .J.nJ 1t,, t t11,r1-i!r .inJ r. ~.in.:.,J pn"'cr rtqu1n-mcn1 .1 ., 1um:utin 01 11.'lf 1hc r.mfL. lf\$1,. s n C "'-Hh h. 11 ~ :, ' 1·.10 t •1W:m ~ C.-m1rncm1111he.Jll!'1,•rc-r.a111,nnt't'l.htNl11"-h lfh-\• \.\hl.'Tl"\ 1,1h1.:,du.-.1t" pt,:J m Ip ,111\t C'\l191trlll hll'A Jot, lht' ,du.le:,~ .a.llc..::t UIC' nn.•J h,r hl."Ml.tt 11p,.-r..l1l•'fl ..,, Ht\t\Tlt': r.,-= 1s 0c Film-type heater q; Inside au " T»I; 25 OC h, & 65 WJm2 • I< L=0004m ..Window _glass -I Ambient t'Ut r..0 ,.,ooe , 0 ,6sw1m2 ·K r., 1/h•A 'q; U,A 1/h~ -q \ -.,s1 \IPnn,s: I I Stl."iJJ~ ~,1.uc 1."0ndltl{•lt.... • 1. I ,n..:..J1!N!n1111n.1I ht'ill lr..an ,(t;r. I·'~ l n1kn-11 l'h:',lh.'I 1111, q ,.: f ,,11,1.1111 rrrr'('rtin. 1'1 \nil1f1hlc r-.aJt.1t1c-n tl1c~1~. '"' Nt:!!ll1ublc- 111111 ~nuri...c I 1111 urt.1..11. .w~.i r ·1. lh • 11i: T -T. L ••I h T T. • l " C L ~•Ih I h. 1:-,·c.1- 111 c, 1--."·c -1~·c - - """'i:[1,11-1 m •~ w m ~ I " r,H\ m I If)\\ tn f.;. n"" h, ·,e.11.:1 l·k~1ril.al p11utr JC\f\Jllt''""nt tli> J lum.:ta1111•f the c,,cnor .m ICITif'\!I.tlllrt 1,,r d1lf .•1.-111 i:.,1i:t1m , lfn"t'~·11..n ~(.'l,r.111c11:111, 1, t h ,..,,n 1n rh,: rlol W111~t1 h,_. a. :!. \\ Im f\ the: ht>111t.•r t\ u11r.:~.,..11 \ •l!K'C lhf 1l:w, 1, m,un1.11n1•d .u '" ·ch, 1hc 1n1.·nor .llf It h .,. \ • \4{" r;:olk:IUdl' 1h.11 'A uh h•~hi:1 ,,.-n,~ I~• rttJ"- lh" r1.tcr11n 1.rm, c.:111,n v. ill 1n-.r-eJ k1 n "'L ,. I mm .aml ,J, II 1hl! him a:-.. n,:ii cr.m..pan:nl ,kt~tmm:: 1-1.. rt~um:d 1,, a.. htt''tl" ho"Jmt r,h.,, u·,ull'- ;J, .11tm\11 111 ,,1 l 'iCllt.M .\ I It': L1: 0 25 mm r,: ao 0 c \~Sl \ lP I tOI\~; I 1 \1c.1J, ,,1~11..~ ~ond1111,n,. .:: r lnc-..hnocnu1•1ul tital rlci" nu, 11 I .1b• 01 I· :J it lhi: hunJ, IJ) !\l!ph~ble \.l1RL:.:1 n.•,t,wn,.: 1 , All 1hr- 1.uJi.im h\'.J! 1,,r 1:11, 11uau11n H ..hov.,n .u the n~h! '"h.' th,,1 ,t'rm• .l!i: "nui:11 on~ pi:1 unit ,IICJ h,l\U ~ .. RC-, R; R; ►AJV\__.'...,V\M"""'""""" roo r, 10 T, tlil l ,Jfll! 1h1, \.·ar.;un Jnr.! r'(rll,rmm, .m cni:rr~ h.1L1m.:.c:- un thi.: f1lm.,uJhtt:ih: 1111crlu..:e • T - T. T T q = H", ... R' R" • er, R. I. II " R"' I I I.' ()(M){)J5m/0,0~"'i\\ Ill 111iltlm K/\\ R' I. " -nlllllm 1111<\\ Ill l101tlm ~ \\' q . tbO :OI C [ou~o, uo11JJ111 K \\ tt>O ifllC 1,0~1J111 K \\ 11 \J- lllh1nttc.umu l1lm1h1\:L.ne!I\ Ph\/ltc.t.11,- ha\\ dO}OUeJ1:pl3Jnth1o;" ~·h~ 111h~ rl'l.111 •Lbh1r not llnc-1.r} ,:1 \\ ht>n 1hc Hlin J\ op...quc, lhc rwhan1 nu, h .tbMlrbtd on the ,urtw.:c. .in.J !he nu-. rc:qum.-d mcrc.hc-:1 v.1lJ1 m..1\!.1.-.mg 1h1d.nc,\ t'I lhc l1fm Ph~·,1~;111), h.:,v. d11 ~·uu C\pl.un 1h1• Wh) h the tcl.a1mn..,t11r lmt"u• , l I TJ,i: IHT llu:.mul lte\1,1.1nc;e Network Modd ~111, u~ed ro ere.ate ii modeJ at 1he (llm ➔ll~Mr.il,: ')'ill"m .... .. ""~ t?•·~r.1.1.e the abtwe ploc The Wnrl,.,p:k;c is )ho'l4n ht-11\'14 II fl'l.,,,.l ~i•tan-c• *•wot~ ..,..t.er-oto. '1. . ln!et •l"IP no\J• l.:Jlj. 'tl'ltOl.ql iht,·t11III ,_Hla'lt"& fl4 G21 •f~;' t11 R21 QU•"l•T2l1FD2 141s. r.i TlHR-41 '-ioali· •T'Ml"lT• tsunceii -J'•t:121•0 ,a ~· •Q.\l• CJ Q32o,~3•0 ~ qJ~..-l) • 4-c;ti,ea ~•r.at,1.i h~ Cl~~ in. qi $1 , ,11,g ~1 111nicn ar•''"'"!'.'"'1\C. tj)t Q • o,o, •~tield•o l'IOC•i OC>IID •I illrt'I~ rtt•1e • l'I:> *·ll•INII IOIJKt ;Ill h~l ' T 1 • -r-.-11 1, Al'!b..,I.., l~t'111,q C 111 • HNI lll!t". W 1,I~ loJe ':""2 • Ta OZ•4' 'I F°"llnl 1..rlaot l1WnPfra!1.1t11 C i l ~-lnl'lll.1 Wvr,-~ I ■'OIOl'paMIA) ~). Tp Bonc,~oe,•1.1r•.C ~3 • QQ T• ac ~,1,1t Alld,-1111 ai11,.11 w,"""l. l>ltl 1• 1 Su0!11!'11l•""""Ollfatur• C 'QA • ....., r•~• VJ IW"llfil!• l•d• W"ttlenn111ftnl11•ncu A1•,.., cr1•.,;• Rl:2 • LI •' • At! A,tJ • U 1.,, • .1111 w ,, Col•~«1JOa•, 1•,,NI f1m /J C,anai,C!,on ras.ta~• K.'W ll.llllllra1• .t 011'1..- Afl•gn•o Vtf11blH T ·+! • :- It ,.l"IIOllltll ._I le"'l)ltalurt. C " • .so U • 0 ClfX::'\ ~. o~ , eon~■cflel'I co--•t..:,.l'lr w,rn•1 ~ Tti,Cll",_H,_ l"I' ,_.,. Tn•.,,....11" CQIICl~'oftt "•"'.., ,.,,., T,o • &o LS • Q.001 Cu• lt-lf"IPl'!OUi.,<• C TM~nttu en, lll.lt'l1fllti .....0 05 .,.IVCI • JO f~l"l-1 C'Ot'llhlCllv+.· '•''"" ... 111bo11~1• Sub<alt 1,ii,1P1,ahJUl C o\l • , Cton MQotln; l·U n•"'2 11nl' ,,• ., PROBLE~1 3.5 K..~O\\"N: ~1aximum alluwa.h,1• tc-mpNahHt• ttntl ope-rating cooditioo1 of A rode.et ooulc "all. FIND: PrcfurPd m:llt1ri1.I: Cu or 30-1 Stainless. SCIIEMATJC, Ts., ,I.,•__,...,....,.._•.I. L , .....-,-(opper • T. ., " 8 1.3K i i i Tw•.3023K h•2.xJO•W/m• K. q ;.,-.,.-,- ,1 ' s,,.,,,/ess: : : 1 j 1 t 9" :i:.;-sw._d,--,rfs•1 =4Z3K. 7;_ 1 ~125:JK.. ~9-" -• T~T.~ , 7,. 1/h L/k ASSUMPTIONS: (1) One-dimcnsion•I condutLlon Lhrouah • plane wall, (2) Stradyst.atc mdilion.s, 13.l Con5L.L-Dl propt-rth.'-5. = = = PROPERTIES: Tahl, ,1.1, Cu (T (423+~13),r2 618K): r ,033 kg/m'. k ~ = = 37'< \\ m·K; St.St. (30·11 IT 123+1:?!>J /2 83RK): p - 700() •c/m', k - 13.2 W,m·K. ANALYSJS: Tiu• dtcision <"onceruiug which rnnluial to us.: rn:1y hr madt by fiHt t"Dmpulin1t lhe thi~knCS5 I.. rcquirrd to in1urc LhAt T,. 1 nmah1!! ~ ltbln thr acctptablr limit. Tht> !igbtn waU (rorrt!lponding lo tho smallf'r ~:1Jue of L0 1l) would Lheo bt· lht qbv1ou1 choice.. Appl)•in,t an f'Ut>r~r balaoct· Lo Lbe ioaer wurfaee. • q,;i,o• • Qc• a.ad" JIN1cr, b(T., - T, I) - k T,.1 L-T•.• L -lb-e = TT,.,-I --~TT,~ .,1: For tht! topper: L _ 376 \\'/m· K :hd04 \\'fu~'·K 1~13--12311, (:l02J-,l3)K -_ ...,.31· mm 1I, - t•VJa kg/m' , 0.00134 m) = 20, kg/m' For tb~ 1-io1t1ltu 1tttl· L • :?3. :! \\ /ud, 1253-l23)K Do 2< 10' \1'/m, I{ {:m23- I:!Z.3JK • • ·I mm 1L • 17000 kg/m' >< 0.000511 m) • -1.3 kg/m: . CO.\n..tE~TS: 'fbt' abO\.'l' C'ansidu:itions i~nort' 1ttcngLh f!•quir,·trwhls. y, hieh determint• l ht n inimurn v.a:J thicknen tll'l•dt•d to su~L:i.:n th" nuulr lo:.ds. ~uch re:quirr·menu wo·Jld ;la,·l' to lu- conside:f'd to cornpl!!U'! Llil" design c:ilcuhitions. l'ROl!U\I .,_., rl'wl): T ., ( ,,n t,uun coe111i.:1cnt lt1r v. Jlcr 0,1\4 -= 17"C, .inJ c-rr•-'t J.(.11.0\: .11cJ v. 11!1 M!T' -·1~ j-L1T T I L T T ;0011\\ m -Ol~•'t.J7 •1H,.\\ 111 :1101-IJt, -ff!Ul\\·m IIMJ ~ K 1 j)4~1 l(ij11( .:•1lf"lJ.; 1 OIJ-4\\ r,1 l-.11(111)\11lHHn1 < l'ROlll.l \I J.I, rl 11111.1 II conducuon, ud111uon. ur t.:.1.1nJu,uon .,nd rad1iluon o.1u nt!plc.:tcJ the conc)ponJ,n~ \·i.1.Jut'.'> 111 h .1.nJ the pc:rc,ntJ!,!C crrt1r<\ JR' IS !i \Vtm· K 111 tVY> J(i Wlm; K r!O.;\'i 1, .1.nd ~O \\'/m K tJ":' Q~ i l~' rur J fl)(.Cd \J.lue oi T, = ~7°C'. the condut:UOO I""' rcmJIR'- Ill t:1:~ -: s \\'1m· "hu.;h ,...d-.,1 1hc- l°l\t•J J,f(ereni:c between P:::r.: ,md q71'M -\hhough 1h1, d1htr~n1.I! ,... fhll di:Jrl\· ,lrn\l.n m th1..· r1ol 11,, lfl ~ h .... 1000 \\'/m· K. 111, rcve,1lc:J 1n 1hc: ,ubrlo, for In$ IOl'l \\"1m: K J,:·JQ,,") ") '""" f '•• '"" ' _.,Jol ; • •oo I ,! I - - .T.. _ , . . _ ~•CDllffiOtlf"'I IP!,'N .....J~i .. N,:,~ "" f ,., ! •I '"' / ., ••••&• "' i . v, ;' < • ,. ., _,,, / :7 - ,7 ,. / ' •• "' "' '"' Errou ,b\0( 1111ed w 11h ncglccung l'.ttnducuon dt:t:rea~c. wnh 1n1:.re.t-,1n1; h from vuluc:) wh11.•h au , 1grufo:un1 fnr ,m..ill h th< 100 \V/m· KJ u, \"UJu~, wh1,h 1Ji:t ncglip1hlc for l.tr~c h CO~l~lENTS: In llqutd.s I lurge h>. 11 1s an ext:cl1c;n1 ,1ppru,1.1rm,111on 10 nep-k~l condu.cuon und J'.!111,un·1~ lh,u 311 of lht d1~)1p:ued ro\lr,·Cr 1:11: tmnsierrcd 10 lh( nu1d PRO l l L E \1 3.7 K.."t0\\1'; \ Ja~'tr of f111ty U.sJiUc wuh taxed 1n~1d~ Lempt'rarurc LJ.n c,pc:ni:ncc dltl~~n1 n111'.\14k convccoon cond.Juon'li FIND: faJ Rauo of hc:u lo~, (or dlffcn:n1 ..:nn\'1.:cuon condll.ion,. rhl Outc.i ,urt1u:c temJ)<'r-.ttwt' for d1ffc.ren1 l:.Onvecdttn cnndmnn-.. .md ft..• i Tcmper.uure ril ,1111 tur y, h1ch ,11;h1c\'c~ "1111ll" coohn~ .a, mnqn~ O.Jt c,wnd chW d'fec1 t SCHEMATIC: ~ L•Q00.3m--l r..tty t I T. I t $t I I t 1 s 5 u e - -~ I ~· I,~9~-➔► 1,.,_,,;i,:c_M::::d::,al con, Ta.=-ls•c fif 1,.zsWlm•· ·c,or fo : 65 W/m• •c '\SSL \ll'TIO'iS: 1 I I Onc-d,mcnsionJI comJu,uon lhmuph • plane ""ll. , ~ S1catl~ 1.11, condu1on~. 0) I (omogenenus. medJUrn wuh cunsmn1 prop~mcs. ,-, 1 l\'o lnLcmaJ heat l!(n~rJthin cmct•boh, effects ,re nc~Lwblcl, c5l .'-cghg1blc nidtntlon cifcc" PROPERTlES: TahltA •J , T,.,uc. !'at lu)·ct ~:IJ.2 W/rn K ANALY~lS: The che:rmal c1n·u11 for 1h1~ (IIU3lion J\ Hcncc.1hc heal r,1tc al =T,, -T. T,1 -T_ : h rr,.= - T_ > I. T_ + iii:" T,.t Ts..l = 1 +I.- 1\L = To dctc:nnme the wind chill effect, we must dc1cnmnc the heru los, for the wmd,· da,· and u,-e 11 10 cvnlu3tc the hypothcucal ambient temperature. T'.... which would pm,·1d~ thi same heat loss on a calm dny Hence. f'mm these rclanons. we can now llnd the result, cqut,alcnt 10 a uccrca,c ofT,.1 by I I.Y'C and 1n,Tca-, m the heat los, t,, a foctorofl0.5S3>"t = I.SI. PROBLE~I 3,8 5'.."o"·,: Suri1.1cc-mount cnnu~1nr "'-llh rrc-'-tnhed ptt"'t'r 01-.,1pJt1L111 anJ con,,t\.1100 1.:uol!uc condmon!l, FNU: l"\1n~ thcnna.J rcusum:t' cm:u1t. an c,rm:,i1on tor the: .:a~ tcmr,er.uurc T'". c.-\ .1lu~11l· IN ~ll~n:uu illf and condutU\·c p.urc- tilJcd gar PROP~RTIFS: 1Gi,en1 -\,r, , 1., = 0021,~ W/m·K; 1'3,tt ~,.r a 0.1~ W/m K. \lct.,l kads. k. - 25 \V/m·K !>'P ~h~rc the ahc:nnal rc~1st.ru1cci .lR:. with .A1 =. L,AL: and ..\, : ,.1,1,. R1 •..,. I !h,\, "" l/ffl W,m! ~I~ •JW; 1411 •m' • h!S.OIv\\' R - .. I f.111..A...-\. ) = fl1(0 l"l'IJ m/'...S WIm Kn •-0 '15 • 10-- m,' • "'I J ~ ftv'V, R,•1'-• • IA.1_, A. • Ol • ICC 111/IJ/J~J \\Om M~•J ..1rr•1m1 a ~J7.6 Kl\\ R,.,., • lll..,A. c Of' (1: m/o I! "-·tm Kdu.;,-. U,...,rn:: - 'i~ I K,M,' from the chcmu.1 cm:uu .and 1hr thcnna.J n:1it\utnce cxpn:won.\, rind £.,..aq •r.t1-=lT, T...)l~•IT Ti.,,fMt,_, PR,.._., T • ' E,.R.,0 + T.. • T" --'R'-.'.-, ,~-- -l/1 I • :-;-:,---R--:_-:::--;c T I 11,1<-,..• ..- IIR.,,. r (l,R..,.ia • ll'R,""S Subr.111u1.rng ,.&Jun tor 1hc ~Ul~nant Glf•RcJfl ,ondm('ln, nnd I ~fl\, ,n-' w,.tt:?5 '1 KJ\\ • :n C. !~C.C- '115•0 - T, • - - - - - - I ,.. . llf.!ll.l- 1/217t,H L ,. .:1 n r· tt~Hl IJncc JfC R,1,• con- JLk----1).0..' m ~ ,r•v,uHc> f R';.,..,d = =0.033 m~ Kl\\'. PROBU:\I J.111 f\1\0\\ "\ ·1micn11on\ "'t .a rhcnn,,J1J111." "ui.tn,, l~Llom .mJ .,mt-111."nl JJJ (t>11d1l1un., n,u: .11 He.ii 1i-,.,, 1hrr•ur!h "'111Jl'"' 1l,1 E11~1 N ,.m.1111,n m l•Ut,.,Jc ._1,11\·c,:.11i•n t.lltU1,1.·n1 11,1 .J,,ohl,. .1.r:1J 1rl1 p.mr 11'>1rn.;u,m "'\l'll.E\I \ TIC UoubJr Pant:t: W1noow 08mx05n, :c~-~i,:· EHJ . . L,0007m ' hT-;:·•0 :.10°C 80 Wlm2•1< Tw l ..L -q h,A ltHCW~RflES: fohl,--t._t.Ul..uti1iflOt-.1 l =IJ\\',mh. 7111•,',,l.J AtrH=:..S:1\.1 ~-: 111~..;l \\,111 f,., • r.. ,- l~ .. ·•-- • I f L I. L \ h , \ I • l, h I .:.,fr 1-111 C'1 'I l "' n -1111 w,, 110,r:m " IJ\\' Ill I( 10' C' UUOi'm •) 1.11rm ----- " "' " 1JO~ IH\' 1'11 I a I\ lJI" f 1,.1 I\\ '11 " ➔ W1~ 1111(~C-tJ '"'I;;; .. tluJ~~ .. 11 u,1 !_< 11' I\ : I U!l 1-. \\ - ,:,, J \\ < h f th(' tnrl'-" p.i.n~ \\ 1t1Juy, the ..JJ11l:111.al r,.i.hc- .mJ .au,r:a..c '"'n:J,i: the luWI re 1,1.m,.·c Ho'lu I 11. I N\\ 11> l .,J•t ..._;"' lllc:n-h, rcJu.::1n~ the hi:,1' I,!\, tr0111 ~•J -l t, 1- l W Tltt> tlle"~i -.11 J1 ~,n 1r,c lu~.i.J l~•n t, r1~111:J .1:o lcillo"', < • ,", .. I / !•I ,, " .ri,-•~ • u • .. .. • V u 0..... - - - ~«c ......,... PRORI.I \I J. lfl 1( 11nt.1 1"h.1ll\.!O 1h h 1nrlu1;n..:l' th~ ta,Jt IL1,, JI ,nmll \.1lu~, 1•1 h it,r \,h11:h 1h1,,• 1.•Uhok '-·,,01,a.1n111 rl•..,.,i.mci.• 1, 1h11 lll."L'lh11hl,· rcl.1lf\l! h.1 lhl" t111i.1J r.:w,L.1nu.; Jhmt\·t't th~· rl':,1..1.in..eo ~~c,~~ f1l'!1lt5?1hlt:' \\llh ;11.. rc.a,111t• h. rJrll,ulart, l•·r th~ mrlt! r~m..- "'"J1•\\ .1nl1.;h.mgc~ 111 la liJ\~ ltttk ~1h.-i..:I c1n the h~.11 k ..-. t ·o.\l\ll'\ IS: Th1.: lur~-=~• (ontnhutt1.111 ,,~ th~ 1hcm1al rl"~I ,1,m.:e ,.. Jue r, t.:l•hl.lUi.:ll<•n J-.,11._111!1 lhi.' ~n.. l, td ur .'\I.ill" thJ.1 1h1:- Jlr ,.:;,ulJ h< 1n Oh)lh1111ful!' 11 lfi!'~ 1:,111\'l!dll,n -:uucuh, If tht.· ...t,mo•,rL11'hJm:= ..,,ir•.·c,l!iln" ·~·11;.. 1~01 c,..:~l".il!J 1 -( \\'mr ~ thr thi:tn1JI (\"\l'-l,m,.:: \\OUIJ t'il: Ii!!<>"' th.in th.II r1~•.h.:ll"J t"I\ ,1uum101 -...'nJui..11cn .i.:tl.•~' 11tJ_i!n.1n1 .11t PROllLE\1 J.11 KNO\\'N: Willi ('()nurucnon tor p.1.S!,IH~ sol.tr collec1or. Set i.idiauon Huit 10 nnc ,,.1.rh11.:e Amb1cn1 tcmpcrnturcs and com,ccuon t('IC:ffidcnt.s for opposuc surilK'.cs. ~1eh1ng roin1, 1i~1u1eJ convccunn coeffic1cn1. illld solid lhcnn.U conducm·tt)· of pha.sc chance m:ucnll FlNP: \.1ch ~pon thidnc,s and sun11ec temperatures.. SCIIE\IA TIC: \SSlJ!\(P'TJO!liJS: ( I> Onc-d1mcn~1on.tl. 1tcady-,1111e heat tr.Uhler rhrouin the \4.i1U. 1:.1 Vcnic.J '-Clhd- liquid 1mc.n.1ec: 1n thc PC\1. l 3) Nc~hgiblc conducHon re~a,t.1ni:c- m the ,uppomnt;, ,1urfiu,:c,., f,tJ ConM.1111 k, r • .;':., _._ h, T.1 • h..,T. • ( lr.QJ • :?o,CO • ,lOOO)W'lffl: • "' \'C ' 1h • !\.ii •20 • IU!Whn..,--K The g;c1ual Johd-lit.1urd rnicn::u:c \'-lll nn1 bi( vcruc.11. bu1 \\OUlcJ illtll c.iu•.n1wJ.rtl to 1hc !ell PROBLEl\-1 3.12 KNO\\'I'•,; Mrucnlll th1ck.nesses an a compos11e wllll con,i,lini or bnck. gloss fit>cr, •emuculltc nnd pane pt111cl IMcr 3nd ouaer convccoon coefficicntS FIND: Total lhcrmal rCSJStancc and uveraU heat ll1lnsfcr cocffic1cn1. S CIIE l\,l A T IC: Glass fiber (Z.Bk9/m3) Br,,c-;k...,..~1'11"G1ypsum, kgy Pine penel, kp 1 h; ASSUJl,IPTIONS: (I l One-dimensional conducuon, (~) Con>1nJ11 propcnits, l ~l l\eghiiblc con1nc-1 TCSUCQllCC PROPERTIES: Table A-3, T = 300K Brick. kb= I ~ W/m K: GlJt.~• tibt,r 12& J.gim11. = k11 = tl.031\ W/m K: Gypsum, k1> ll.17 V.'/m K. Pane panel. J.p = 0.12 W/m·K .\.NAL YSIS: Constdcnni a unJ1 surface :ire.i. !he 10ml 1hennn.J rcs1&tMce h R.., =I - +Lh- +L1-t " " L~v- -L-i, + -I h., kh k11 k,y kp h, • = [-'- + .!!:!_.., 0.1 .., 0.01 .._ 0.006 + ...!.,_] 1 mK Run 70 1.3 0.038 0. 17 0.12 10 W -R101 = I0.01-11 + fUl71\9.., z.6316 + 0.0588 + 0 05fl0 + 0.1) m,· ·K/\V - . R,,,. =2.93 m··KJW . <] fmm Eq. ~-18 the o•trdU htm tramicr coeffickna is l! =O.J-11 W/m1·>,. , <] t:O \IM ENTS: A, amic1pa1cd. ahc domanum contnbuuon to ahc 101ul rcsistnnet ,., mur.k hy aht 1osuJa11on PRORLF.!\1 J.13 "'1'/0\YN: Tiuc,nc~es 01 thn:c m.,u:nah v.hoch lllnn • cnmp<'\l~HI. I. -= o 1., \\ 'm 1' ilf t'ID.&nc ~. - 11 UZt, \\ Iii I'\ "" ~ J ~ , ... \\ ·rn K a:iau. L.1 • I ~ \\ 1m ~ f.lf,J,· \.: .,,, ~.: ll u:ti.\ \\ 1m "'- \ , \ L, !,~ : 1J Th~ he.ii Im~ ttu\ I'<' l•h1.11n\'J hir J1\ Idint 1hc- ••,~r.tll tcmrculurr \J1lli:rcn..~ 1,\ thi •t; c- h m-.il ri , , ..,.m.. f-Ortnc comr,,~11.: wull cil umt ,,u1J.:c m.•., . .\-;: I m· T. T. [,1h1 (L,l,,f•1 li..Jn1."-IJll!'d ,1.·nh lh~ h,.an m,ul,1,l11 1 f '"1"0 ••Iii 1J1 Iii' 1 ,n • n~tru~ur111. heal hh!t 1hrc,111:;h tl1i• • ln,tP" 1~ f\Jl!mltt:.i.nlh ~~i•t lh,Ut 1h.,111nr ·hr ..cmpoi.1h, " .i. ll PROBLE\I 3. 1.5 K.,"'0\VN: Cornpo,1cc wall of a hOUloC w1th pre~bcd co"vecno,, {'rtX:t'.,iCl ilt mncr 1111d nu1cr ,urt'ilcc, FL\ u~ 1ill Expre-s.s1on for thcrm.;al rc~1s1.mcc of houc\e. wall~. R.._,1: lb\ Tom.J hcou lo,,. 1.11 \\",. 1c1 Effi~ct M he.at Joss due 10 HK'l'l:A\C In out~1dc hc-.1t transfer con'-·c..:unn ntt:ftkJ!!nt, hJJ . .and 1d, Cont.n,llinp rc:.s1sta.ncc tor htat l(h\ Irum house SCHEMATIC: A 350m• A,,30W/m• K r; ,io·c t t t F.ber9l8S$ blan kc t (2.BJ..gim~), k1, r-,.--,e,-"f~ .......-- --Plywood 51d,n9, ks t t tlio• 60W/m--K, T., -15°C Lp•lOmm I• ,l,Li,,JOO..,~• 1 t Onc-d.lmcn.-.1on2J tc:1nducunn. Su:ady~'.'-liifC ,.-,mdH101v•• 1',:c~httblc \SSL:MPTt o , s: 1 \ 12l r '\ PROPERTIES: Tublc A J, 11' • 1T, • T0 l/l = 1lO-IS1"C-:! : :.S'C = •110K1· !'1bcrit•» blankc1. l8 kg1m· k, ~ 0.0,8 W/m· K: Plywood l\t.J.nc:c. Li,/l.1-.:\. 1,; 752/830 !!': 9ni;;. of the l.0141 ru,i.-.r.inc~ Ht:ni:t, thi\ tt1J1cnal layer comml\ the ru1~11;1nn· of thr wall. From pan 11.:i note rh.11 .1 ~-fold Ucc:.rt'.L\C 1n tC\1\l.ut("c due tu wmd vclL-1'.'UY 1nt.1c-J..,c h.i, .1 ncgl11,?1hh: c:.ffc,.,, on the hcJt Im,. PRORLE~1 3.16 KNO \\'N: Composu~ wall of A house with prcscnbcd con\.ec.:Uon ptl).;c~.., at rnni:r .uu.l 11Ull'f 1wfacc1. FIND: Daily heat tou for prescnbed dtum:tJ vanaoon in amb1cn1 .ur lcmpcr:1turt: ASSUMPTIONS: (I) Onc-d1rncnsional. stcady-,...tc conduc11on (ncth£1hlc change 1n s.all 1.hcnnn.l energy uorngc over 2-ih pc.nodl, 12) l\egli,ibJc conU'lct rc!'.utance PROPERTIES: Tobt, A·J T = JOOK F1bcrgl•"· blanket tlS k!!lm1 . •• ~ o .n,, Wim .:. Ply"-ood. i., = 0 12 W/m K; Pla.1crbo>rd. •e • 0 17 W/m·O: M A L \ ' SIS : "Inc heat loss may be •ppro,muucd Ill Q = :areti 6 T - ,R-~T, ... _I) 1 ~ ~ R"' = _I [-I + ..'::!?_ "' + ' A h ; kp kh k , h , I[ I O.Olm O.lm 0.02m R,.. • 200m: 30W/m' K OJ7WlmK 0038W/m·K O i2W/m·K R.., = O.OIJS-1 K/W . Hence: the heat r11tc lS Wh Q= 16.18 kW•h = I )Ol,Hi"J id1np. , , ~Otl'l-1 \\"/rn f,; : IIJUd1Anod. ke = 0.16 W/m K. Gvpsum. kc= 0 17 \V/m·K. lnwl•tinn Lglu, llbcr paper faced . ~R k(1/111' }, ko c 00~8 W/m K ANALVS IS: U1,mg the i.!othcrmill surface a.ssumpoon, Ult lhcnnaJ cu·cun :U.)QClatcd wnh a ,,n~Je um1 Ccnclo L. fAaA• The cqu1v,llcn1 rri,i.11.mtc of the cort' 1, = R., rllR11 - I/Rol"1 = rl/R 1:; + 1/2.14)1 I = l.75~ K,,v and the ,oul um1 rt._'iismnce 1~ R.,, 1 - R, R,q ~ R,- = 1.115J 1(/\1' Wi1h IO ..uch unit~ m p,.1.nt.llrl. ihc LutuJ w.1ll re"i!-t;mcc h l ,,mi ,1 un.1 Jt,.:11111~ t.:U•~t.aror II h,llc•\\I 1rcim bl I 11.t tlut .al Jn\ m,1.ant r, f. - (I ~ft'n.;t " 'I" 'I~ "'h~tl!'~ .. IT. T. 1/R. Jt toll\l\\-. 1lul :nv. R T T l l)fJ ~ii C : l:._"i'(,\\ q.., l or L.i.1.C' •~! hC'at 1r.1n.,11:1 Jr••m lhe .1mh1cnt ,IH 101111." ~ ,mr,1mm•n1 uh,.~ h,:~1 lu.1J• "h.Jl.10.:~J t-i\ hc.11 u.m~Ji:r 11 11~ r.!rn~..-r.1n1 •q c •1•-.i' IJcn1.t" thC' thC'ntul en~,~~ u.1,n,hm~·J huin 1hc rclriJl'i::r.tWt n;r lhc 11 h•mr rt!n11J 1"' T -T q ..J.1;;;:;q,11.1,= ~•R • ~\' ' iJ.,.,, :t,bJ>OII I IJJ I!~ IN.ill < t'UI\C\ll \l'\: The 1dcJI 1C.irn •II (.t;f' 1.. nP ;7K~ ~ JlO r,. - r 121}ij :~~11' 1', u " '\. 11.1.i.l il(k'!f ,i,p,,.,.c :.1nit \(t11l·.1.I ,h..,tJn..c f:\etv.e>t>n llo1:1n r,:,r .t hlUJ.te~ 11.at h~I ~11Wmt •• , n r,rr~''"'" l..if v.:1J1h \'I bullJinr: "'hlth m1n1m1te) htJl lt1'~. tfil .anJ W1J1h 11urn~r (II lh.1tlr,, ~hr ·h nut!-•1111:e hc.JJ los, tor a rt,e'°'nh.:J f 1'Yl•1 ..r,1..'t' .and J1•1.1ncc hctwttn 1looJ1 C(lni:~1"-111J111c 11('.1' roar" r ,._ 11t h.:..tt I~ rt·Ju.. t,on ll'QfTI : ,c llf \1 \ 1H': At• 32. 768 m2 .q • • •• • •A - w2 1a1 b) \..;Sl \JP110,,; '"lhi;1hlc hm h,r ,.. , JA ,J \\ ' ,, \\ 1!:\ H 11 < n~ ,· mri.·1111S' 1.•ltcc:1\ ,,1 \\ \;'n thl' .ir~il.." f thl: roc,1 ..mJ ..1Jt\l.JII\, ,mJ hrru.;~• the t--..01, h•r ,m '-'Jlllm 1111 1• 11h,1~n k.ht1n.,11~·.1th III Fit hJ lq I •1 \ 1 - ~., °'(J~ Ill JIil.i fl : J ffl .' \\ 1! • ,, -,,~m J m) f\.J In < Hnic.._ ' \. II . 1~ "Tr,l'I 111 ~ fn-l m 1 < 1 I \ 1T IWf1T1 I( ({!.1 m I - :~·r _ J • 1! -~,:-.m • •l In • lu7 ~00\\ t'l.ltn < PROBLE:\13.19 IC'unt.! ' c~ reJuc11011 In y : 12.IJ1 3.20 KNOW": Mntcnah ~i.nd d1mcns1on" 01 1. compo,su~ Wi.lll ~epi!T3tmg a cornbu-.uon ~.u- Imm J liquid Ca-'/_m1_ ?l.,.Ci:\V/m~ -_ l"ft-'•C' fP)'. S1mJIMI~·. w1t.h q = ITr., l -Tc.~ 1/R,~<• T,.: = T, 1 - Ru q = l892'C - 0.05 "'_~ K •3J,60:J 11'. = 1111'(' n m- Conunucd .. PROBLEM J.20 (Con1.J = nnd wnh q• l ke/Le )(7',.z - T,.z ,. • T 2 =T . - L9q "162•c- 11.02mx34.600 W/m· "I 34.6'C . '· •• J..8 25.4 W/m K The temperatun: distribution i~ therefore of the followin~ form: Tm_, ,2600:C_/ I / Ts.i •1908 C r;, · =1892. c- r - ~-• slbZ °C / ~.• : /31-.6 ••C T..,, =100 C nol hca11rnn,icr (lJ S11 Wilh R., = I 5xlll-' m' ',;JV,' fmrn Tobk 3.1 and iL:-= O.Olm 16.6\V/m·K = 6 Q? • ~, JO-' :,KJW ,n ' II tollow, 1ha1 he.nee <] (b) Frr>m 1he 1hcnnal rucu,1 C0~1T\-fE1'TS: The conmct rcs.islilncr Js sign1ric:i.n1 rcllm\'c 10 the condur:u()n n:si,1:am.a.·~ The vt\luc or RL -.ould d1mm1.sh. hOWC\'er. wnh mcre-:t\ing pn:~sure. PROBLEM 3.22 KNOiVN: Tcmpc:ra1urcs nnd convecuon coctfictents assoc101cd wuh t1wd, ,. mner 3nd ,,u1er surfates of ::i composite wa.lJ Contac1 rcsi~1nnce dimensions. and thcmmJ condueu\'1ll~t. 11Ssocia1ed with wall mrucnals. FO-.D: en) Ra.1e of heat 1ransfer u,rou1th the wall. (bl Ttmper.uure d1<1I1huuo11 SCHE\1ATIC: ASSUMPTIONS: (1) S1eod)•-s1me condmon,. r::?) One-dimcns1onal hea1 ITTJnstcr. ,,, Ne~ligible rndsauon. (4) Cons1nm properucs. ANALYSIS: (nJ Calcula1c tJ,c 101:ll rcsis1nnc:,: 10 hnd 1J1e heat rn1e. I L,. Rtot = - - + - ➔• Rt.c: • Le - + -I - h1A k,.A k9A h2A R101= I 0.0 I 0.3 [ -+.. 10><5 . ; .. O. .;. lxS . _ +5 - + 0.02 0.04,5 ... I !Ox5 ] K - W R101 = (0.02 + U.02 + O.Oo + 0.10 + 0.0 llwK = 0.21 wK = q T•.,-T• .z Rio, = 1200-10)°C 0.21 K/W = 76,- \\' rb) It lollow, tha1 T'· 1 =T-.I - _h19A_ = 200"C - 5706W2 W/K -- I.",.•.,8°C TA= T, 1- -qL,. = 18-1.s•c- -7=62-W=-,U=.0=1:rn:.= 169.6°c • kAA H 1~ , ~m: m·K Ta =TA - 4Ri_, = l69.6"C- 762W,ll 06¾ = 1!3.8°C ·•c T ' • · = T 8 - qL9 = I'3 s•c - 762W,O.O!m = J7 ks A - ' 0 . 0 4W- , S m ·, ·" • m·K T., =T,, - _9_ = 47 .6°C - 762W = 41l"C •• ·• h1A IOOW/K : ,\·hrthi.-r hlo1Jc LipaJrt", hh• Iii" \\'Im ,lit" lhc-11 -1 T r. r T,.J/R: . ; PROIILl\I J.13 1(11111.1 '"'° ! ,.;:~ ~ • ti!:~.'0 -i. t I !ll() ... .... .... 11"0 • 110() ..,,, , 0""' ,ac - W,inf8C --A-" Y.,1nou1 C0'.\1\IE,TS: Since 1hc durJbiht~ l'I 1hc TBC dccri:,~, v.11h m.. rca..,m!_! tcmpr:r.ttur~.. wh1i:h 111..rl.'.b'-"' •,, 1th 111 t~il'.'tllllZ 1h1.d, n.:,-.. hmu1dcs and bouom, 14) Chip 1> 1sothcnnnJ PROPERTlES: Table A I , ,\lummum R1e > R,_, I l'ROIIII \I .l..!S ~,o\\ ,: • ,~rJunr conJnmrn tc.•r .J f'u.irJ mnuntc-J .:lur Fl'.'-0: ., t:qu1\'11knt thcmtJI i.;m::utL It'll Chip 1i:mpt<"rJ\\Jr1.: h, I ~1.i,1mum JIIO\\llt,lc h-:.u d1'i.)11'JIO'n I •r r:: •hd~~ln>- lu.1u1J I h .;;; 1000 \\ 1m 1 J11d air th .:- Ilk.I \\1m· K rffc-..1ur chJn~~ u1 t1ri..uu ho,1rJ 1 ·mrcrJ!Urt'. .anJ com~1.;t rt''\U,tJn;.:~ ',Ll{f \1-\1 ll 1 \.~~I'\ IPTICl',S: tht'rrr K" ,t..mi:c r Str.tJ)' 0 ,u1e ,onJuaons,. 41, 1r1n('-dun.:n..wnJI \.unJu,;hL•n, t 1I ',t:II111I 11..: , 111 ~c~1Js1t-ik r,1Jl,Hum. \ 'i\ Cun,t.tnl rr.:,r,entej PROrl.RT11-.S; rdhtr ~• l ,.\lummun, 0\ldt' lf!IJl~,n·,1.,Um~ '\~8 h.1 ~.: 1~ ~\\Im~ \',\I\ SI~; ,, - r... q•, 1lh1 l R·,. .11h. q< I IJ I .\rrl\ lrl!' ~on-..en·Jt11JR ut cnerJ!} to d u1nuol ~ur1JCt' .lh1,ut lht' '-.htr ( J- l - T.. T - T... ' 1 ~ I h, • IL,•l, • R'. • I h, \\ ,,,, 4 :s •• w•\\'1m h !:. 10()1) \\"tm K, ~ - I \V,n1 I.: unJ R~ JIJ"tm· 1'/\V r :11·c . - T -::.,re I I .:,, • r),f111~ I• Ill~ /m i,; \\' 1IIOl"I"' K \\ ,.,,~1 ,. 10'\l/m' -er,J-1'.l(J()T ::.0,11,JO/\V/,11· K < ~.. ,,7 ihOW/m < \\.·1thq :5fl).CX'l!i\\1m anJq: i;~ll-0\\'/m Rc:plJi:in~lh~d1eltcim.·'A11huir1h,cl0!1\\ 111 i,.., ti (11110" •"F rt,uh ~ .arc l"'hlamr:J for «J1 I11.•,..·m ~l1mt,m,n1on, ,,f ~,. .mJ R" Cununu.:J PROULl::M 3.25 I ·ont.1 " I ~. I\\ Im· K I R• till \\ 1.f" f \\'/111 I q 1\~Jm q" (Win, l I 10- 115'! r,~()11 S{),5lJ I .3:=.~ I 10' ur-' ~57~ ~It,<, 1,5()11 65UU '107 J SM,f, < 3~ ..i IIJ 1 I 25!i1 1>5(kl 110~ l t u,1,11-:,T,: I re>r lht ,11nJ11111n" l'tl pan 1t,,. t.h~ IOIJI 1nti:n1JI r~~htani.:1! IS U.IJ.\01 111 1-\.,1\\' \\lllk h • ,ut ·r ri..: .1~1.1n-e-c-1~ 1111(11 rr Iv\\ H~ni.:1.· -~ - -fT-- -T.-)-R-~ • l-l-IJ-.1,0-1 - '.*' •I If r.,)R" <1CXJI .iru.J onl~ .1ppr,1\lm,1tcl~· Vt 01 thi: hi:Jt 1, d1,,1pJll!d thmu~ lhe" t,l,arJ :. \\'llh h ":' l' ij} \\ m1 h. Lhl! L,uti:r ri..•~1\l111t1.:i;: 1m,.-rcJ,t:., hl I) OI m • K '\\ m "h1ch ...1,1,; ~ 1• "1.. W' It .. 11 ti~l11.11t 11) c ' I .anJ no~ .ilm,,~1 ~~r;. 111 thl• hL'-il :~ d1,,1p.ui:J through 1ht" i,,,.ud H1..·ncl!' ,lhhvu_!!h rnl.'a,urt>"' u, rcdUL'C R'" wouh.l h,n·l~ ., nt!p-h~1bt~ clfrLt 11n 1t lor th.: h'-!unJ l..'OHl,tnl. h.'mt unprmL'mc:nl ma, h,: c.itncd h1r mr~1:o,.1lcd i:unJH1on, /h ~hu\\fl in lht: l.Jhl.: 11f p.trt rt,). U>e nf ~n .Jummum ,•\!Jc boJrJ1ni.:tc,1..eq, t,) f4~ 1fn11n~l59hJ!57.: \V,m lh~ rct.lucm~ R" trnmUO~OI coU,O~Slm· K.:'\1, 8~.11.Jsc 1hc m11u.1r ~on1.u.:1 rc,1,1.1n,c, R:' 10·~ "1 K f\\' 1'"' alrc.id\ mu1,:h le,, 1han R, . Jfl\ r"-'Llu.:uur: m t1; \ .1Jui.: w,,ulJ h.1\~ "' ncghg1l:,I~ L"itec1 tin q'.• Th'-" 1arti?('S1 l!Jtn "-11Uld bc.> rcJhzcd h~ in..:r~a,an~ h,, ,m,:(' lhc in,1Jc, 111,t'\'ll•'n rtt..,1st.i,11:c mah:, th.: dlm11n.rn1 .:1+ntnb1.1t1on to 1)11! l\il,11 mlcr11;.1J 11.-~1~tu11cc PROBLEM 3.26 KN O \\-'N: Conducoon m i,1 camcnl \CCoon with pn:scnbed drn.metcr. D. il\ a 1uncuun t1I \ m the form D = ox 1ll FIND: l•J Tempcr:uurc dJsu-ibution. T(,1. 1bl Hent uan,kr rate. 4., S CH EMATIC: T,:bOOK. \SSUl\fPTIONS: Cl l S1cady,5101e condmons, C:?l Onc-cumcnsion:il c<1nducuon in ,.w.n,cuon, (31 No ,mcrnal hcot gcncrauon. !-1) Consto.nt propcruc,. PROPERTIES; Tobit,\ ·l, Pure Alummum (500Kl k =!36 \\'/m·I-.. ANAi.\'SIS: fol Bnscd upon the :usumpoon,. and followmg th< ,amc mclhodolu~ nl or,. Exnmplc 3.~. q, Is• con,1nn1 mdcpcndcm Accordingl), q, = -kJ\ ddxT = -kl~Cnx 11:: ll /4] ~ dT 1l l usirli, A= 1t01/4 where D = .,.,r. Sep:ir.aung van•blcs and 1dc1111fy1ng hm1«, lme/!l,lt1n¥ ond solving forT(x1 wid then for T::. Sohing E.q. 1,1 l for tt, ond then <11b,urnung into Eq. I3l ~ives the result,. '!. =-47t ,·'k rT1-T1 1/ln 1,1/,1 1 Tl•l=T1 + 1T,-T,) -In-r-x't,-1,• In (x 1/•::J From £4, Ill note lhar !dT/dx1·x = Con\lan1 J.bovc. 1 u-.w,fer ocro<.< the tone SCHEMATIC: "!.,,.-..-t.,.-.x.-1=• 0-. 0=7.S-m, - x Alum,n u m - --s'}'-y ,D,.,xi -- -i'I'--=-" ~. zo·c-c~::...: "'- - .L \SSLIMPTIOI\S: I 11 Steady-,tall: condmons. (21 One-duncnswnal conducnon 1n x. r3i Cc:m~1am pn:,pcmcs. r ROPERT IF.S: T<1b/e .•I -/ , ,\lummum t3'.13 K> k = 23~ W/m K \ro.A L YS IS· la I From Founer·s luw, EQ (~ .I). with A = itD2/4 = (:ta=/JI< l. It folio.- sthar -lq.dx , , =-kdT 1trx· Hcni:<', ~mcc 4, i, rndcpcndcn1 or :i,._ ~ f.' d.: =-kfTdT >r Jt:l... '-1 ~ - or 1AT I C: -k• k0 ,-aT T i1>0 Ta '< To> Ti 7;, ; :a=O (erbtfrary i1<0 s election) 9': '---T1. Ti l+x I L 0 )( L ASSUl\1PTIONS: 111 One•dimen.iono.J conducuon through • plane wull, 121 S1cnd)•si.1tc condmons. (3) Np m1emal hent gcnernaon. A NALYSIS: For 1hc ussurrn:.d cond1t1on, q, nnd ACX) arc constant ond Eq. J.21 ,;ive, q.1Ldx = -~:• t1,0 +aTldT q•, = LI fk,,fr,-T,l- IafT"~-·fT"JI From Founer', 1011>, q•, = -1k0 +an dT/dx Hence. since the product of lk,,raTJ nnd 1dT/dx1 ,. consiam. dccrca~mg T ,-uh mcrc;isin~ , tmphes. • > 0 . dccrensmg ck,,+aTl and mcrca,m!? JdT/cb I with 1ncrca,1ng, a = 0: k=kn => con~t.101 CdT/d,, • < 0. mcrcn.