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Abstract 

Improvements  in clock technology make  it possible 
to develop extremely  accurate  timing,  ranging, naviga- 
tion,  and  communications  systems.  Three  relativistic 
effects-time dilation,  the  Sagnac effect, and  gravita- 
tional frequency  shifts-must  be  accounted for in  order 
for modern  systems to  work properly. These effects  will 
be related in a non-mathematical way to fundamental 
relativity principles: constancy of the speed of light, 
and  the principle of equivalence. Examples of current 
and  future engineering  applications will be  discussed, 
such as in the Global  Positioning  System,  in  time  syn- 
chronization  systems, geodesy, and  communications. 

Atomic  Clocks 

Relativistic effects become important in applica- 
tions  requiring very accurate  timing,  time  transfer,  or 
synchronization. Many engineering  systems are be- 
ginning to rely on  modern  atomic clocks  which have 
fractional frequency stabilities of the order of lo-’’ or 

An excellent example is the Global  Positioning 
System (GPS), in  which about a dozen relativistic ef- 
fects must be accounted for in  order for the  system to 
work properly.  Atomic clock technology not only pro- 
vides the basis  for the definition of the second as the 
unit of time,  this technology is expected to improve 
rapidly in the  future. Vessot e t  al.’ have summarized 
potential  future performance  improvements in several 
promising devices including cryogenic H-masers,  CS 
fountains,  and  trapped Hg ions;  these  predictions are 
summarized in Fig. 1. These  analyses show there is 
some  hope  that  fractional frequency stabilities in the 
range to lo-’’ can be achieved. For this  paper I 
shall however adopt a conservative fractional frequency 
stability figure of as a guideline for determining 
what  relativistic effects might  be  important in the fu- 
ture. 

D 1 2 3 4 S 6 7 
log(Averaglng llma [secondrl) 

Fig. 1. Predicted Allan variance for future fre- 
quency standards.  (This  assumes  no  system- 
atic effects in CS and Hg devices.) 

Constancy of the SDeed of Light 

Relativity  enters  metrology in a most  fundamen- 
tal way through  the so-called ‘Second Postulate’ of the 
special  theory of relativity,  the principle of the con- 
stancy of the speed of light, c .  This now  widely  ac- 
cepted  principle states  that  the speed of light in free 
space has the  same value  in all inertial  systems, inde- 
pendent of the  motion of the source. The speed of light 
is also  independent of the motion of the observer. The 
numerical value of c has been  defined  by convention: 

c = 299 792 498 meters/second. 

In  conjunction  with the  adopted unit, of time,  this value 
for c defines the SI unit of length,  the  meter. In  think- 
ing  about  the speed of light, a convenient alternative 
rule of thumb is that c is approximat,ely  equal to  one 
foot  per  nanosecond (1 nanosecond = 1 ns = lo-’ 
second). 

In an  inertial  frame of reference, the principle of 
the constancy of c provides  a  means of synchronizing 
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remotely placed clocks. Consider  two standard clocks, 
A and B ,  placed at rest a distance L (meters)  apart. 
(The  distance L could be  found by measuring the  time 
on clock A required for a light signal  to  propagate  from 
A to B and  back,  and  multiplying by c / 2 .  This would 
not  depend  on  the presence of a clock at  B.) Now sup- 
pose a signal  originates at clock A at time t A .  The 
time required  for the  signal  to  propagate in one direc- 
tion  from A to B is L / c .  The clock at B will then  be 
synchronized  with that  at  A if the signal  arrives at  the 
time t B  given by 

t B  = t A  + L / c .  ( 2 )  

This procedure is called the ‘Einstein  Synchronization 
Procedure’  and clocks distributed at  rest in any  inertial 
frame will be presumed to  be synchronized by this  or 
an equivalent  procedure. 

Clearly in discussing electromagnetic  signals as I 
have  done  above, I am ignoring quite a few practical 
difficulties. Signals must have sufficient spectral  band- 
width that  it  is possible to reconstruct well-defined 
pulses in time. Noise in real clocks, frequency drifts 
due to  environmental  factors, etc.,  are  not a concern 
here. Also I’m usually  going to ignore effects on  prop- 
agation  speed which might  arise  because the signals 
pr0pagat.e through  a  medium  rather  than  through a 
vacuum. 

Transmission from rj at tj 

Reception 

Fig. 2.  Idealized conception of a navigation 
and  time  transfer  system. 

Navigation 

Keeping these  caveats in mind,  the constancy of c 
leads to  the following idealized conception of a naviga- 
tional  system. Referring to  Fig. 2,  suppose  four  trans- 
mitters, each with its own standard clock, are placed 
at  known locations rj. Assume  the clocks are synchro- 
nized  by the Einstein  procedure.  There is a receiver a t  
unknown position r carrying a standard clock  which 
llas not been synchronized.  Let  these transmitters 
ra.pidly transmit synchronized pulses which are tagged 

with the  transmitter’s position and  time, so that a re- 
ceiver can  determine the  time t j  and  the location r, of 
the pulse from transmitter j .  The receiver’s position 
r and clock time t can  then  be  determined by solving 
four simultaneous  propagation  delay  equations: 

(r - rj)’ = cz( t  - t.1’. 3 , j =  1,213141 (3) 

for the  unknowns r and t .  These  equations just express 
the principle of the  constancy of the speed of light  in an 
inertial  frame.  Clearly a  timing  error of one nanosec- 
ond would lead to  a an error of about a foot in position 
determination. 

Event  Detection 

There is a kind of reciprocity in this  situation 
which can  be used for event detection:  suppose  that 
instead of transmitters  at  the locations r, there  are re- 
ceivers, tied to synchronized standard clocks. Suppose 
that  an event  occurs at  the position r at  time t caus- 
ing a signal to be transmitted, which is received at  the 
four receivers at  the respective known positions rj at  
the  measured  times t j .  Then by solving four propa- 
gation  equations of the form of Eqs. ( 3 ) ,  the position 
of the event and  the  time  at which it  occurs can be 
determined. If some  information  about  the position 
of the event is available, it may  be possible to locate 
the event  by  solving fewer than four  propagation  delay 
equations. 

Fault  Location 

As an  example of event detection using only  two 
synchronized clocks, consider the problem of determin- 
ing the  location  and  time of a fault  that occurs in a 
power line  stretching between two  detectors a distance 
L apart. In Fig. 3 ,  clocks at  the  ends of the  line  are 
synchronized  from some  independent  primary reference 
clock. A fault  occurring at distances L1, L2 from the 
respective detectors at  the  ends of the lines  sends out a 
signal at  time t which is received at  times t l ,  t 2  at  the 
respective ends of the line. A previous  survey would 
give 

L = L1 + Lz ,  (4) 

whereas  from the constancy of c ,  the  times t l ,  22 are 
related to the  time t by propagation delay equations: 

t l  = t + Ll/C, 12 = 1 + &/c.  (5) 

Solution of only  two  propagation delay equations, in 
conjunction  with Eq. (4)’ gives the  time  and position 
of the  fault.  To  locate  the  fault to within  one foot 
requires synchronization to  better  than a nanosecond. 
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Primary Reference 
Source 

Fig. 3. Fault location using consta.ncy of c 

Breakdown of Simultaneitv 

The discussion above  assumes that  the clocks are 
at, rest in some  inertial reference frame. Usually how- 
cvcr clocks are in motion; for example i n  Fig. 2 t,he 
tra.nsmitt,ers could be  orbiting  the  earth. Relative mo- 
tion introduces  subtle new  effects; perhaps  the  most 
profound of these is the breakdown of the concept of 
simultaneity.  Events which appear to occur  simult,a- 
~~c:ously in  one  inertial  frame  may  not  appear  simulta- 
ll(:ous to observers in some  other  inertial  frame, which 
i3 moving with respect to  the  first.  This is a direct 
cmrlscqrrence of the  principle of the constancy of c. 

I n  discussing measurements  made by observers in 
t,wo different, relatively moving  inertial  frames,  one 
always imagines that each observer is equipped  with 
Ilis/her own measuring  rods and  standard clocks, that 
tile clocks  used  by observers in  one  frame are at rest, 
n ~ ~ t l  that  they are synchronized by the Einstein pro- 
cctlure.  In each of the  inertial  frames, any particular 
c>lcctromagnetic signal  propagates  with  speed c. 

Consider then as i n  Fig. 4 .  two  events  consisting 
of two lighting  strokes wlliclr hit  the two  ends of a train 
o f  length L = 22 simult.aneously as seen by observers 
071 !/re ground. The  train is assumed to be  moving to 
the right at speed v relative to  the  ground. For ease of 
discussion, I’ll  refer to  the ground as  the ‘rest’ frame, 
and the  train as the ‘moving’ frame. Observers on  the 
ground  (in  the  rest  frame) can determine  the  midpoint 
het.ween the  two lightning strokes, a distance x from 
cit,ller end of the  initial position of the  train.  They will 
t I l c n  find that light  signals  from  the two events will 
propgate  along  the  tracks  and collide at  the midpoint.. 
‘I‘llis has nothing to do with  the  motion of t.lre train. 

Now look at the sequence of event.s involving a 
Ilroving observer, sitting  at  the  midpoint of t.lle moving 

train. As the  train moves forward,  this observer ap- 
proaches the oncoming  light  emitted from the event at 
the front of the  train,  and recedes from  the light  signal 
emitted  from  the event at  the back of the  train.  There- 
fore the moving observer will encounter  light from  the 
front  event  first, and will have to conclude that  the 
event at  the  front of the  train occurred  first. By the 
principle of the constancy of c ,  light must  travel  with 
speed c no  matter  what  the value of the  relative speed 
v is. So if light from event A arrives before that  from 
event B, which is the  same  distance away, then event 
A must occur  first. 

Fig. 4.  Thought  experiment  illustrating rela- 
tivity of simultaneity. 

To analyze  this  approximately is not  dificult. 
Suppose the zero of time for observers i n  both  the rest. 
alld the  moving  frames is set  to occur at  the  instant 
t.lie midpoint of the  train encounters the signal from 
the  lightning  stroke at the  front of the  train. I’ll use 
primes to denote  quantities measured by the  moving 
observer. Then to the moving  observer,  the  time 1’ of 
the  stroke at the  front of the  train is 

2’ = X 

C 

To observers i n  the  rest  frame, however. the midpoint, 
of the  train is approaching  the signal at  the relative 
speed c + v ,  so to first  order i n  v ,  

Therefore 

‘I’he term - v x / c 2  is a relativistic correction for break- 
down of simultaneity.  The effect  is proport,ional t80 the 
relative velocity and  proportional t,o the dist,ance x. 

Putting i n  some  numbers,  suppose I J  = 1000 km 
per hour  (typical for a jet  aircraft) and x = 3500 km. 
Then  the correction is l08 11s. The negative sign  in Eq. 
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( 8 )  means  that of two events  simultaneous  in  the  rest 
frame,  to  the moving  observer the event farther  out  in 
front, at the  more  positive  x,  occurs  earlier. 

Samac Effect 

The above discussion of the breakdown of simul- 
taneity  can  be used to understand  the peculiar physics 
on  the edge of a slowly rotating disc. The prime engi- 
neering application is to time transfer  and synchroniza- 
tion  on  the surface of the  rotating  earth. For purposes 
of illustration,  therefore, I’ll use the angular velocity 
of rotation of the  earth, W = 7.29 x rad/sec,  and 
for the  equatorial  radius of the  earth, R = 6.378 X lo6 
meters. 

In  this case the rest  frame is a local non-rotating 
frame,  with  axes  pointing  toward  the fixed stars,  but 
with  origin at the center of the  earth.  The moving 
frame is a reference frame  extending over a small por- 
tion of the  rotating  earth’s  surface,  having velocity 
v = W T  relative to the  rest  frame, where r is the dis- 
tance of the clocks from the  rotation axis. 

Now imagine  two clocks fixed a small east-west 
distance I apart  on  the  equator of the  earth. Viewed 
from  the  nonrotating  frame  they will be  moving  with 
approximately  equal  speeds v = w r .  If a clock syn- 
chronization  process  involving electromagnetic  signals 
were carried out by  two earth-fixed observers using Ein- 
stein  synchronization  in  the  moving  frame,  then  the 
two clocks  would not  be  synchronous when  viewed from 
the  nonrotating  frame. The magnitude of the discrep- 
ancy is v x / c 2  = w r x / c 2  = ( 2 w / c 2 ) ( r z / 2 ) .  If this syn- 
chronization process is  performed successively all the 
way around the circle, then effectively the distance I 

is z = ~ K T ,  and  the  time discrepancy  is thus 

At = 2w/c2 x r r 2 ,   ( 9 )  

where TT’ is  the  area enclosed by the  path followed 
during the  synchronization process. For example, syn- 
chronization around  the  earth’s  equator involves a dis- 
crepancy 

At = -xR2 x 208 ns. 
2w 
C 2  

(10 

upon arriving back at the  starting  point. 
This effect is known as the Sagnac e & A .  If the 

synchronization  path were westward around  the  earth 
rather  than  eastward,  then  the discrepancy would be of 
opposite  sign.  This  means  that Einstein  synchroniza- 
tion  in a rotating reference frame is not self-consistent: 
I f  A is synchronized  with B and B is  synchronized  with 
C, then A is  not necessary synchronized  with C. In or- 
der to avoid difficulties  with  such non-transitivity it is 

best to adopt  time  in  the non-rotating frame as the 
measure of time  in  the  rotating  frame.  Thus  one dis- 
cards  Einstein synchronization  in the  rotating  frame. 

To put  it  another way,  if Einstein  synchronization 
is used in  the earth-fixed rotating  frame,  then  it  is nec- 
essary to apply a ‘Sagnac  correction’ to  the readings 
of clocks on  the  rotating  earth,  in order the  obtain  an 
internally  consistent  ‘coordinate  time’  on  earth’s  sur- 
face. 

This  is  illustrated  in  Fig. 5, where there is a sketch 
of a flattened  rotating  earth. For a sequence of synchro- 
nization processes forming a closed circuit  on  the  rotat- 
ing earth,  upon  projecting  the  path  onto  the  equatorial 
plane of the  earth  one can  determine the projected area 
A E .  The  Consultative  Committee for the Definition of 
the Second and  the  International  Radio  Consultative 
Committee have  agreed that, in  order to obtain consis- 
tently synchronized clocks on  the  earth’s surface at  the 
subnanosecond level, the correction term  to  be applied 
is of the  form 

At = 2w/c2 X A E ,  (11) 

where AE is the projected area  on  the  earth’s  equato- 
rial  plane  swept out by the vector whose tail is at the 
center of the  earth  and whose head is at  the position 
of the  electromagnetic  signal pulse. The  area A E  is 
taken as positive if the head of the vector moves  in the 
eastward  direction. If two clocks located  on the  earth’s 
surface are  compared by using  electromagnetic  signals 
in the  rotating  frame of the  earth,  then At must  be  sub- 
tracted  from  the measured time difference (east clock 
minus west clock) in  order to synchronize the clocks 
so they will measure  coordinate  time on the  rotating 
earth.  They will  effectively measure  time in the local 
non-rotating  frame  attached to the  earth’s center 

2~ A,y 
Sagnac Correction: At = ,2 

L 

Fig. 5. Projected  area for a sequence of Ein- 
stein  synchronization processed forming a 
closed circuit  on the  rotating  earth’s  surface. 
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Lack of transitivity in  synchronization has  impli- 
cations for devices which rely on  accurate synchroniza- 
tion.  Suppose a communications network distributes 
synchronization  through a series of nodes,  along  two 
different paths, to the  ends of a communication link 
as in Fig. 6. If the  area enclosed by the  path, pro- 
jected onto  the  earth's  equatorial  plane,  is  not zero, 
then  problems  with  inconsistent  synchronization can 
a.rise.  For example, suppose one synchronization link 
goes from  San Francisco directly to New York, while a 
second link goes from  San Francisco to Miami  and  then 
to New York. The discrepancy in synchronization be- 
tween these  two paths  due to the Sagnac effect is about 
11 ns.  While  this  is  not significant if the  signal is 60 Hz 
as in a power grid,  in  an  optical  communications  net- 
work operating  at 1015 Hz the discrepancy amounts to 
IO7 cycles of oscillation.  Depending 011 the design of 
I he system  this  may  become significant, i n  the  future. 

Synchronization Link 
Synchronization Link 

Synchronization Link 

Synchronization Link 
r 

Synchronization Link 

P 
Data Link 

Fig. 6. Distribution of synchronization for a 
communications  network. 

Furthermore, if the  trouble is taken to  incorporate 
hardware  delays to compensate  for  the  Sagnac effect 
while sending in one  direction,  then when the  commu- 
nications are  sent back the  other way  over the  same 
l ink  the effect  will become twice as big. The effect 
is asymmetric. The  same effect  will occur in optical 
fiber communications  networks  where  the  speed of sig- 

nal propagation  may  be significantly less than c .  In the 
rotating reference frame  the  Sagnac effect is a property 
of space  and  time,  not  dependent  on  signal  propagation 
speed. 

Irg + vt - rA12 = (ctp 

Fig. 7. The Sagnac effect  will be automats- 
ically  included if receiver motion  due to 
earth  rotation  during  signal  propagation is ac- 
counted  for. 

An equivalent way of looking at this phenomenon 
is diagrammed  in  Fig. 7, which shows a signal  t,rans- 
mitted from a satellite  to a ground-ba.sed recciver. 
From the point of view of the  nonrotating  frame,  the 
signal  goes  in a straight line with  speed c, from the 
initial  transmitter position 1'A to  the final  receiver po- 
sit.ion. If in this  frame  one accounts for the mo(.ion of 
the receiver during  the  propagation of the  signal,  then 
the  Sagnac effect  will be  automatically accounted for. 
This if the  initial position of the  the receiver  is 1-8, the 
velocity of the receiver is v ,  and  the  signal propagat.ion 
time is t ,  constancy of c requires 

I'D + vi! - ' A  I ( C i ! ) 2 .  (12) 

Iterative solution of Eq. (12) for t is equivalent to 
calculating  the  Sagnac  correction. 

Time Dilation 

In  the previous  section I discussed two effcct,s 
which are of first order in the velocity-the breakdown 
of simultaneity,  and  the  Sagnac effect. In this seci.ion 
I shall discuss another  famous effect-time dila(.ion- 
which is of second order  in the velocity. Imagine  two 
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inertial  frames, a ‘rest’  frame or laboratory  frame,  and 
a moving frame. A clock in  the moving frame  beats 
more slowly than clocks in  the  rest  frame with which 
it is successively compared.  The following thought ex- 
periment will readily convince anyone that  the princi- 
ple of the constancy of the speed of light requires the 
‘moving’ clock to  beat more slowly. A prime denotes 
quantities measured in the moving frame. 

Suppose that observers in  the two inertial  frames 
each possess a set of rectangular  Cartesian  coordinate 
axes which they orient so that  the x, x‘ and y, y‘ axes 
are  parallel. The direction of relative  motion is parallel 
to  the x, x’ axes. The moving observer orients a rod of 
length L’ along the y‘ axis,  and  sends a light  signal up 
along this rod from  one  end to  the  other.  The  situation 
is diagrammed in Fig. 8. To simplify the discussion 
one  assumes that  the light  starts  out  at  the  instant  the 
origins of the two reference frames pass by each other. 

Y 

I 

Thought experrmenc viewed 
in ‘rest’  frame. 

l y ‘  

I 

Thought experiment vieved 

Fig. 8. Thought  experiment showing that 
‘moving’ clocks beat more slowly than clocks 
that remain ‘at  rest’. 

The lower part of Fig. 8 shows the  situation from 
the point of  view  of observers in the moving frame. 

The  time t’ required for light to travel  along  the rod is 
simply 

t‘ = L/c .  (13) 

The clock faces on  the lower part of Fig. 8 indicate 
time  at  the beginning and  end of the  experiment. 

The  upper  part of Fig. 8 shows the experiment 
from the  point of  view  of observers in the rest frame. 
Breakdown of simultaneity would create difficulties  for 
measurements of lengths oriented  parallel to  the rel- 
ative velocity. But since this rod is oriented  perpen- 
dicular to  the  relative velocity, by symmetry  it is not 
possible for the rod to  appear changed in length. So 
this rod has  length L = L’ as it moves through  the 
rest frame.  The  rod is moving to  the right  with speed 
v and  the  light  travels along the  rod, so there has to be 
a horizontal  component of velocity of the light equal to 
v. The vertical component of the velocity of the  light 
certainly h a s  to be less than c; therefore the  time re- 
quired for the  light to reach to upper  end of the rod 
certainly h a s  to  be greater than L/c .  This  argument 
shows qualitatively  that  the clocks  in the moving frame 
will beat  more slowly than  the sequence of clocks with 
which they are  compared in the rest frame. 

The  top  part of Fig. 8 actually gives the  right an- 
swer, for  by the principle of the constancy of the speed 
of light,  the vertical component of the light velocity in 
the rest frame is just d n .  Thus for observers in 
the rest frame,  the  time t required for the  light  to reach 
the  upper end of the rod  is just . 

so the relationship between t’ and t obtained by elimi- 
nating L from Eqs. (13) and (14) and L = L’ is: 

1’ = J-t. 

Usually the  ratio v / c  is small, so the  square  root can 
be expanded, giving approximately 

t’ x (1 - g) 1 .  

The  fractional slowing is  given by the correction v2/2c2 
in the above equation.  This correction is also com- 
monly called the second-order Doppler shift, or trans- 
verse Doppler shift. 

Some  examples of t,he size of this effect are as fol- 
lows.  For a clock at  rest on the  earth’s  equator, and 
viewed from the  nonrotating  frame, 

--- 1 v2 

2  c2 
x -1.2 x 10-12; 
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this would accumulate  to  about 104 ns in one  day. For 
a clock  in a  satellite  orbiting  the  earth  at 100 km alti- 
tude. 

For a clock in a GPS  satellite, 

1 v2 
2 c2 

--- x -8.34 x lo-” 

Keeping in mind that in the  future  the fractional fre- 
quency stability of orbiting clocks may  approach a part 
in 1015, these are very large effects.  Even  for  clocks of 
frequency stability 1 x as in the  GPS Block I1 
satellites,  the second-order  Doppler  shift for an  earth- 
fixed  clock is significant. 

Gravitational Frequency Shifts 

The  Sagnac effect and  the second-order Doppler 
shift  are effects  which can be understood on the basis 
of the Special  Theory of Relativity. A third effect- 
the  gravitational frequency shift-occurs when signals 
are sent  from  one  location to  another having a dif- 
ferent gravitational  potential.  The effect  can be un- 
derstood in an  elementary way using the  fundamen- 
tal  assumption of the General  Theory of Relativity- 
Einstein’s  Principle of Equivalence.2 

The PrinciDle of Equivalence 

Einstein’s Equivalence Principle states  that over a 
small region  of space  and time,  a  fictitious  gravitational 
field induced by acceleration cannot be distinguished 
from a gravitational field produced by mass. Thus  the 
fictitious centrifugal force one feels in turning  a cor- 
ner in a vehicle h a s  the  same physical effects as a real 
gravitational field. An immediate consequence of the 
Equivalence Principle is that  gravitational fields can be 
reduced to zero  by transforming to a freely falling refer- 
ence frame.  The  fictitious  gravitational field due to  the 
acceleration then  exactly cancels the real gravitational 
field. 

All experiments performed in a real gravitational 
field, such as in a laboratory on the surface of the  earth 
where there is a gravitational field g, will have the 
same  results at experiments performed in a laboratory 
i n  free space which  is accelerated in the  opposite direc- 
tion with acceleration a = -g. In Fig.  Sa  are sketched 
some  experiments performed in a laboratory fixed on 
the  earth’s  surface. For example two objects of differ- 
ent compositions are observed to fall downward with 
equal  accelerations g. (This  is related to  the deep ex- 
perimental  fact of the  strict  proportionality of inertial 

and  gravitational  mass, a subject we shall not go into 
here.3)  In  Fig. 9b, a similar  experiment is performed 
in a laboratory  in free space which is being pulled up- 
ward with  acceleration g. A non-accelerated observer 
sees that  the  apple  and  the lead  ball have no forces 
exerted on them so remain  at rest with respect to each 
other  and  the  laboratory is accelerated past  the ob- 
jects, whereas the observer in the accelerated frame 
sees the  objects ‘fall’ downward with identical acceler- 
ations g. 

Fig.  9a. All objects  fall with equal accelera- 
tions in a laboratory near the  earth’s  surface. 

The equivalence of the two laboratories implies 
that  a  beam of light is deflected toward the source of 
the  gravitational field. Let a beam of light-which trav- 
els in a straight  line in free space-enter the side of the 
accelerated laboratory (near the  top, in Fig. 9b).  The 
observer in this  laboratory is accelerated past  the  light, 
so it  must  appear  to fall down just as do  the massive 
objects.  The  experiment  must have the  same  outcome 
in the non-accelerated laboratory  on  earth, so to an ob- 
server in a real gravitational field light  must fall down. 
A  beam of light  passing  near  any massive body will be 
deflected towards  the body. 

Time Delav 

If one  imagines the wavefronts in a beam of light 
as the  beam is deflected toward the massive source of 
a gravitational field, then one  can picture  the  portions 
of the wavefront nearest the mass being slowed  down 
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slightly with respect to  the portions of the wavefront 
farther away from  the source. The wavefront then  tilts 
over and  the  beam  is  thereby deflected. This  means 
that of two  beams of light  passing  near a massive 
source, the  one which passes closer  will take longer to 
get by. Thus  not only  is  light deflected, it is slowed 
down by a gravitational field. 
I 

A 

I 1 Free Space 

Fig. 9b. By the Equivalence Principle, exper- 
iments performed  in  an  acclerated lab in free 
space  have the  same outcomes. 

Time delays of signals  in the neighborhood of the 
earth can  be a few tenths of a nanosecond. Such time 
delays are  determined by a complicated  logarithmic 
function of signal  path  parameters,  times  the  quan- 
tity ~ G M E / c ~ ,  where G is the Newtonian gravita- 
tional  constant  and M E  the  earth's  mass. For earth 
G M E / c ~  = 0.443 cm, so the scale of such effects near 
earth is 

4 GME 1.77 cm 
c c2 
-- %- 

C 
= .06 ns. (20 

This is not  enough  to worry about  at  the present time 
but could be  significant in the  future-a  timing  error of 
.l ns  in a navigational  system would  give  rise to  a 3 
cm error in position. 

L 

1 
9 

Fig. 10. A signal  travelling  upwards in a gravi- 
tational field is  shifted  towards lower frequen- 
cies. 

Gravitational Freauencv Shifts 

It follows from the Equivalence  Principle that  an 
electromagnetic  signal  passing  upwards in a gravita- 
tional field  will be  redshifted.  In Fig. 10 is a sketch 
of an  experiment performed in an equivalent  labora- 
tory, a rocket having  acceleration g upwards in free 
space.  Imagine  the  situation  from  the point of  view 
of a  non-accelerated frame.  Suppose a signal leaves 
the accelerated transmitter  at  the  initial  instant, when 
the  transmitter velocity is still zero. The signal up- 
wards a distance L ,  and is received  by the accelerated 
receiver. The  time required  for the signal to  propagate 
from  transmitter  to receiver is: 

During  this  time,  the receiver has picked up a velocity 
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,, l o  the receiver, the  signal  appears  to come from a re- 
ceding  source and is Doppler  shifted. To a first  approx- 
imation the  fractional frequency  shift  is A f/ f = - v / c ;  
t.herefore the  fractional frequency  shift  in the ‘effective’ 
gravitational field g is 

The  quantity gL can be interpreted as the change in 
gravitational  potential, Ad, of the  signal. 

At the surface of the  earth. 

g / c 2  = 1.09 x 1 0 - l ~  per km, (24) 

wII ic I1  is very important for today’s  time  st,andards. 
For example a signal of definite frequency originating 

lnean sea level  would  be  redshift.ed  by  1.79 parts 
i n  10l3 upon  arriving at the  altitude of the NIST fre- 
quency standards  laboratory i n  Boulder, CO. Conse- 
quently  the  contribution of the NET time  standard  to 
Universal Coordinated Time  (UTC) requires that a pa- 
per correct.ion of -15.5 ns/day  he  applied to  the NIST 
clock  Iwfore it can be compared to time  standards at. 
tlleiln sea level. 

For a clock in a satellite  orbiting the  earth at 100 
km altitude  compared to one on  the  geoid. 

* = 1.08 x lo-” .  
C 2  

Not only will these effects be  large in the  future 
when  clock stabilities  approach a part i n  l o t 5  or bet- 
t.cr, it will be necessary to compute  them  quite accu- 
rat.cly. This will mean: for example,  that  there will 
I)c r? nccd for improved precision of the ephemerides of 
clock-carrying  satellites. 

The Global  Positioning  System 

The best existing  example of an engineering sys- 
t.eln i n  which relativity  plays an essential role is the 
GI’s. This consists of a constellation of perhaps 24 
earth-orbiting  satellites carrying atomic clocks  which 
synchronously transmit navigation  signals,  much as de- 
scribed in the discussion of Fig. 2. The satellite  orbits 
are at approximately 20,200 km  altitude. Therefore 
clocks in the  satellites will be significantly blueshifted 
i n  late, compared to clocks on  the  ground.  The second- 
order  Doppler  shift of such clocks  was  given  in Eq. (20). 
Also, if the  orbits  are  not perfectly circular  (and  they 
almost never are),  the clocks’  yo-yo motions  towards 
and  away  from the  earth will generate periodic addi- 
lional  gravitational frequency shifts,  and second-order 
Doppler  shifts. Further, observers on  the  ground who 

wish to make use of the  navigational  signals will expe- 
rience the Sagnac effect due to earth’s  rotation. 

A complete discussion of all the significant rela- 
tivistic effects, with analytical expressions for the nec- 
essary  corrections,  can  be  found e l~ewhere .~  Here I 
shall  just  indicate roughly the  magnitudes of some of 
the  corrections. 

First, consider ground-based clocks in  receivers 
which are at rest  on  the  earth’s  surface.  Standard 
clocks on the geoid are used to define the  unit of time; 
however, from the point of  view of a local,  nonrotating 
frame,  there is a frequency shift  due to earth’s  mass; 
the  fractional frequency  shift is about -7 x 10-l’. The 
earth’s oblateness is associated  with a quadrupole con- 
tribution to the  gravitational potent.ial which cannot 
be neglected;  the  fractional frequency shift is about 
-4 x l O - I 3 .  If earth-based clocks are not, on the geoid 
they suffer a gravitational frequency shift (see Eqs. 
(23-24)). Finally  there is a second-order  Doppler  shift 
due to the  earth’s  rotation;  the  fractional frequency 
shift  from  this effect can be as large as -1.2 x lo-’’ 
(see Eq. 17). 

For GPS receivers in  motion  relative to  the ea.rth’s 
surfa.ce, there is an  additional second-order  Doppler 
shift  due to their  speed  with  respect to  the  ground; 
this  can  be of the order of lo-’? depending on t,he 
ground  speed. Also, the  Sagnac effect-or motion of the 
receiver during  propa.gation of the navigation  signal 
may give rise to effects of several hundred  nanoseconds 
magnitude. 

The  transmitters themselves suffer a frequency 
shift  due  to  the  earth’s  gravitational  potential,  and a 
second-order  Doppler  shift due t.o orbit,al  motion;  these 
effects are several parts i n  The  additional fre- 
quency shifts  due  to  orbital eccentricities can be  tens of 
na.noseconds; for a GPS satellite of eccentricity e = .01, 
the  maximum size of the effect is about 23 tis. 

Propagation of signals  from  transmitter to re- 
ceivers are  subject to the  Sagnac effect, involving rel- 
ativistic  corrections of up t,o severa.1 hundred nanosec- 
onds.  Relativistic  time delay of signals or relativistic 
deflection of signals is a few tenths of nanoseconds  and 
is currently neglected in the  GPS. 

The ConceDt  of Coordinate  Time 

With so many significant relativistic effects occur- 
ring on  earth-fixed  and  earth-orbiting clocks, the prob- 
lem  of synchronization of the clocks becomes an  acute 
one.  Rates  are affected by motional  and  gravitational 
effects; synchronization on the  spinning  earth is incon- 
sistent, if the Einstein  procedure is used. How is it pas- 
sible to synchronize a network of distributed, rapidly 
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moving clocks so that a navigational  system will  work 
as conceived in  Fig. 2? What  has been  found to work 
extremely well in the GPS is to use the  time  in a hy- 
pothetical  underlying local inertial  frame,  with  origin 
attached to the  earth  but  not  spinning, as the measure 
of time.  This  time  is  not  time  on  any  standard clock 
orbiting  the  earth;  instead  one  makes use of general 
relativity to correct the readings of such clocks so they 
would agree  with  hypothetical clocks at rest  in the lo- 
cal inertial  frame. The time  obtained by so correcting 
all the clocks i n  the  system,  is  an  example of Coordinate 
t ime. 

Thus,  imagine  an underlying  nonrotating  frame, 
or local inertial  frame,  unattached to the  spinning 
earth, with  with  its  origin  at  the center of the  earth. 
This  frame is sometimes called the “Earth-Centered In- 
ertial”  frame, or ECI frame. In this  frame,  introduce a 
fictitious  set of standard clocks available  anywhere, all 
synchronized via  the Einstein  procedure, and  running 
a t  agreed upon rates such that synchronization is main- 
tained.  Gravitional effects are  incorporated by  choos- 
ing one clock as a Master Clock and requiring that all 
other clocks be syntonized to the Master clock  by sim- 
ple transmission of signals  without  any frequency shift 
corrections. The resulting  time scale is called coordi- 
nate  time. 

Now introduce a set of standard clocks distributed 
around  the surface of the  rotating  earth, or orbiting 
Lhe earth. To each one of these  standard clocks a set 
of systematic  corrections is applied, so that at each 
instant  the  standard clock as corrected  agrees  with the 
time  on a fictitious  standard clock, at rest  in the ECI 
frame,  with which it  instantaneously coincides. The  set 
of corrected standard clocks  will therefore be keeping 
coordinate  time.  In  other words,  coordina.t,e time is 
equivalent to t.ime  measurcd by standard clocks  in the 
ECI frame. 

Time measured on  coordinate clocks has two 
highly desirable  properties.  First, synchronization is 
reflexive:  if A is  synchronized  with B ,  then B is syn- 
chronized with A .  Second,  synchronization is transi- 
tive: if A is  synchronized  with E ,  and B is synchro- 
nized with C, then A is synchronized  with C. Internal 
inconsistencies are therely  eliminated. 

GPS time is an  example of coordinate  time. To 
an observer on  the  earth’s  geoid, a standard clock  in a 
GPS  satellite in a nominally circular orbit would ap- 
pear to be blueshifted by ,4465 parts per billion, or 
about 39,000 ns per day;  this is a net effect of gravita- 
tional  frequency shifts  and  motional Doppler shifts of 
satellite clocks relative to reference clocks fixed on  the 
ground. To compensate for this,  the 10.23 MHz  ref- 
erence frequency of satellite clocks is adjusted down- 

ward to 10.229 999  995 43 MHz. The  adjustment is 
accomplished on  the  ground before the satellites  are 
launched. 

Also, if the  orbit of the  satellite clock is not per- 
fectly  circular,  there will be  additional  gravitational 
and  motional  rate  shifts which have to be  accounted 
for. The  additional correction required to achieve syn- 
chronization when the  orbit  eccentricity is not zero is 
given by the expression4 

At = +4.428 X 10-”e& sinE sec, (26) 

where a is the semi-major  axis in meters  and E is  the 
eccentric anomaly. Usually the software in the user’s 
receiver makes  this  correction. 

Application of Satellite Navigation in Geodesy 

The motivation to obtain  accurate measurement>s 
of movements of the  earth’s  crustal  plates is intense. 
Knowledge of these very slow motions  is crucial to 
the development of improved earthquake prediction ca- 
pability;  the  potential  impact  on construction codes, 
building  restrictions,  etc., is considerable. In  recent 
years the GPS has been successfully  used to measure 
very long baselines between fiducial points  on differ- 
ent  crustal  plates by a method described as “carrier 
phase  double difference.” Two receivers are placed at 
the ends of a baseline of interest,  and  signals from two 
satellites  are  then “double differenced”  in a manner  to 
be  described below. Differenceing removes the need  for 
some  systematic corrections but as will be seen,  there 
are  residual  relativistic effects  which must  be accounted 
for. 

Referring to Fig. G and  the  propagation  time t 
given in  Eq. (12), let the  satellite  position  at  the in- 
stant of transmission t s  be denoted by rs and  the re- 
ceiver or observer  position at the  same  instant be de- 
noted by ro. Let the  coordinate  time of arrival of the 
signal at  the observer be  denoted by t o .  Then solving 
Eq.  (12)  for the propagation  time gives 

‘The last  term is the  Sagnac correction and I< repre- 
sents a possible time offset or error of the receiver’s 
clock. The  rate  adjustment  applied to satellite clocks 
means  that  the  quantity t s  will have the correct scale 
when received on  the geoid. There  is a further cor- 
rection,  from the non-circular  motion of the  satellite, 
given by Eq.  (26). Thus when all relativistic effects 
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are  incorporated, 

+ 4.428 x 10-"e& sinE. 

Let subscripts 1 and 2 denote the two different satel- 
lites and  the two different observers. Suppose there  are 
receivers at two different positions which receive a t,ime 
signal  originating  from a single satellite. Upon taking 
the first differece of the arrival  times, it is immediat.ely 
seen that  the eccentricity  term cancels out, leaving the 
expression: 

(29 1 
The Sagnac correction is still needed. The  time of 
transmission of the  signal, t s ,  cancels out which  lessens 
the  impact of selective availability. 

Now the  same set of measurements is taken, at. es- 
sentially the same  time, using a second  satellite.  Writ- 
ing another  equation  similar to Eq. (29) for the second 
satellite  and  taking  the difference, it  can  immediately 
be seen that even the clock  offsets  in the receivers can- 
cel out, leaving  only the usual propagation delay terms 
with  relativistic  corrections  due to  the  rotation of the 
earth: 

The  Sagnac correction is d l 1  necessary. In  this  appli- 
cation  the correction is largest when the baseline is at 
right angles to the  line between the satellites;  it  can  be 
several hundred  nanoseconds. 

In  Fig. l i  are  plotted  some baseline measurement 
data  taken  repeatedly on baselines in the  Southwest 
Pacific, of lengths up to 2500 km.5  Only  the length of 
the baseline  is  shown here. The vertical  scatter in the 
plotted  points gives a measure of the errors involved. 
For the 2500 km baseline the spread is only a few cm. 
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Fig. 11. Scatter in baseline lengths for sev- 
eral different baselines measured  during  the 
Southwest Pacific 1992 GPS Campaign.  The 
data were provided by UNAVCO. 

ImDact on Fundamental Metrologv 

The previous  sections have been devoted almost 
exclusively to the  impact of relativity on the measure- 
ments of time,  with  dist'ance derived by multiplying by 
c .  A t  the level  of a centimeter or less, there  are  ad- 
ditional effects on  the nleasurement of position which 
arise  because space i n  t,he neighborhood of a massive 
body is distorted. Consider as in Fig. 12 an  attempt t,o 
establish a system of spatial  coordinates in tlle neigh 
borhood of earth, aga.inst which to measure  the posi- 
tions of the  earth's  crustal  plates.  Suppose  that we 
wish to measure  angles  in the usua.1 Euclidean way, 
so that a circle of coordinate  radius v centered on  t,he 
earth would have a circumference 2rr, measured with 
standard  rods or with the help of the constancy of c .  
Two such circles, of coordinate  radii q and 1'2 are indi- 
cated in Fig. 12. The  standard  distance  from  the inner 
circle straight  out  along a radius  to  the  outer circle is 
not r2 - T I ;  instead  one finds the  standard  distance d 
IS 

The correction due to space  curvature is of the order 
of 1 cm. 

More generally,  the  fact  that c has a defined  nu- 
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merical  value means  that  the physical unit of length 
depends  on  the clock used to define the  unit of time. 
For example,  in Barycentric  Dynamical Time  (TDB), 
the  unit of time is the  same as that of  clocks on  earth, 
in orbit  around  the  sun,  and  the  point of view taken 
is that of an observer in a reference frame at rest  with 
respect to  the solar  system  barycenter. The clocks on 
earth  beat  more slowly than clocks a t  rest at infinity 
in this  system by the  factor6 

I - L  = 1 - 1.55 X lov8 .  (32) 

‘Therefore, the  meter is physically longer, so the length 
of a physical object is numerically  smaller by this fac- 
tor.  The  mass of the  earth can  be used to construct 
:L quantity  having  the physical dimensions of a lengt.11, 
na.me1y GMEIc’.  However c has a definecl value; this 
rneans that in TDB coordinates, GME is numerically 
smaller than in SI units: 

Standard  distance  from A to B: 

r2 - r1 - (.888 cm)  In(r2/rl) 

and will therefore be  subject  to a gravitational red- 
shift;  on  the  other  hand  in  the ECI frame such clocks 
are moving more slowly than clocks near the  equator 
and  are  subject to less second-order Doppler shift.  This 
is diagrammed  in  Fig. 13. Over the ages the  earth’s 
surface has  assumed  the  approximate  shape of a hydro- 
static  equipotential  in  the  rotating  framethe average 
shape of the ocean’s  surface defines the geoid.  it is a 
remarkable  fact that on the  geoid,  there is a very pre- 
cise cancellation of gravitational frequency shifts  and 
motional  Doppler  shifts, so that all clocks at rest on 
the geoid beat at the  same  rate! Therefore it is pos- 
sible to construct a network of standard clocks on  the 
earth’s  geoid, all beating at the  same  rate. However, 
to synchronize  these clocks consistently it is necessary 
to correct for the  Sagnac effect, due to the  earth’s ro- 
tation. 

more  gravitational  redshift 

more time  dilation 

Fig. 13. On  the  oblate  rotating  earth’s  geoid, 
changes in gravitation frequency shift  are pre- 
cisely compensated by second-order  Doppler 
shifts. 

So far I have also ignored the possibility that,  the 
sun,  moon, or other  planets  might  contribute  to  gravi- 

Fig. 12. Effect  of spatial  curvature on stan-  tational frequency  shift,s. Also, the  earth’s  orbit is not 
dard  distance  measurcnlents. perfect,ly circular so one  might expect a yo-yo  effect on  

the  rates of earth-orbiting clocks s0mewha.t  analagons 
Some  Remarkable  Cancellations to the correction given in Eq. (25) for GPS clocks. For 

example, when a satellite is in earth’s  shadow its clock 
So far in this discussion I have ignored the  fact should  be gravitationally blneshifted as  compared to a 

t,llat the  earth is actually a n  oblate ellipsoid; clocks satellite-borne clock between the  sun  and  earth. For 
near one  pole will be closer to the center of the earth such a configuration, the fract(iona1 frequency shift be- 
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tween  clocks in  the two  satellites, due to the  sun, is 
about  three  parts  in a trillion, which in an hour would 
cause a 12  ns  timing  error to build up. Fortunately we 
do  not have to worry about  this!  This effect is cancelled 
to high precision by other  relativistic effects arising be- 
cause the  entire  system of earth  plus  satellites  is in free 
fall around  the  sun. By the  principle of equivalence, 
we should  not  be surprised that for a system  in free 
fall, the  gravitational effects of the  sun  are transformed 
away. Detailed analysis of this  situation  is  rather del- 
icate; when comparing clocks in the ECI frame-which 
is falling  around the sun-with clocks in the solar sys- 
tem center-of-mass frame,  there is disagreement about 
the  meaning of simultaneity in the  two  frames. Using 
coordinate  time in the  ECI  frame, with clocks synchro- 
nized by the Einstein  procedure (modified by gravita- 
tional  effects), the  gravitational effects due t,o other 
solar system bodies will cancel to high accuracy. The 
residual gravitational effects are  due to tidal  potentials 
only, and  are less than a part in 

Conclusion 

In this  paper,  numerous  examples of relativistic ef- 
fects which are  important for current  and  future navi- 
gation,  timing,  and  communications  systems have been 
discussed. Relativistic effects are always systematic, 
but  depend on knowledge of the positions and veloci- 
ties of the various clocks in the given reference frame. 
T l m e  effects are  not noise; they  are well-understood, 
and can be corrected for to a high level of accuracy. 
As clock stability  and accuracy  continues to improve 
it will become increasingly important for system de- 
signers  and  practitioners  to become  familiar  with  these 
effects so they will be  accounted  for  properly.  I  hope 
this  paper  helps  in a small way to  educate  those for 
whom the  mathematical  apparatus of general  relativ- 
ity is excessively cumbersome. 
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