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Preface

The notion of a vertex algebra was introduced ten years ago by Richard Bor-
cherds [B1]. This is a rigorous mathematical definition of the chiral part of a
2-dimensional quantum field theory studied intensively by physicists since the land-
mark paper of Belavin, Pplyakov and Zamolodchikov [BPZ]. However, implicii:ly
this notion was known to physicists much earlier. Some of the most important
precursors are Wightman axioms [W] and Wilson’s notion of the operator product
expansion [Wi]. In fact, as I show in Sections 1.1 and 1.2, the axioms of a vertex
algebra can be deduced from Wightman axioms. The exposition of these two sec-
tions is somewhat terse. The rest of the book, written at a more relaxed pace, is
motivated by these sections but can be read independently of them.

Axioms of a vertex algebra used in this book are essentially those of [FKRW]
and were inspired by Goddard’s lectures [G]. These axioms are much simpler than
the original Borcherds’ axioms and are very easy to check. One of the objectives of
this book is to show that these systems of axioms are equivalent (see Section 4.8).

Another objective of the book is to lay rigorous grounds for the notion of
the operator product expansion (OPE) and demonstrate how to use it to perform
calculations that are otherwise very painful. The classical Wick theorem allows
one to compute OPE in free field theories. A “non-commutative” generalization of
Wick’s formula allows one to compute OPE of arbitrary fields (see Section 3.3).

The main objective of the book is to show how to construct a variety of examples
of vertex algebras, and how to perform calculations using the formalism of vertex
algebras to get applications in many different directions (Chapter 5).

In Sections 2.7 and 5.10, I present some new material on a topic closely related
to vertex algebras — the theory of conformal superalgebras.

These notes represent a part of the course given at MIT in 1994 and 1995.
Unfortunately, I didn’t have time to write down the chapters on representation
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2 PREFACE

theory of vertex algebras and some other applic‘ations. iMost quoted literature is
related to these unwritten chapters, and I hope that the present book will facilitate
the reading of these papers.) In fact, another important application of vertex
algebra theory is that it picks out the most interesting representations of infinite-
dimensional Lie (super)algebras and provides means for their detailed study.

There is nothing in this book on the application to the Monster simple group
(there is a book [FLM] on this, after all), nothing on Borcherds’ solution of the
Conway-Norton problem [B2], and nothing on Borcherds™ marvelous applications
to generalized Kac-Moody algebras and automorphic forms [B3].

A technical remark is in order. What I call a ~vertex algebra™ should probably
be called a “N = 0 vertex superalgebra” (see Section 5.9 for the definition of a
N = n vertex superalgebra), but I decided on this simpler name. (Also, I call a
“conformal vertex algebra” what is called in [FLM]. with some additional restric-
tions, a “vertex operator algebra.”) The reader who detests “supermathematics”
may assume that the Zs-gradation is trivial, that ~Lie superalgebra” means “Lie
algebra”, etc. But then he skips fermions and beautiful applications to identities
and to soliton equations, the rich variety of superconformal theories, etc.

The bibliography is by no means complete. It is already quite a task to compile
a complete list that would include all the relevant work done by physicists. However,
it includes all items that influenced my thinking on the subject. One may also find
there further references.

In addition to the sources mentioned above. the most important for the present
book were the work of Todorov on the Wightman axioms point of view on CFT, the
paper by Li from which I learned the unified formula for n-th products and Dong’s
lemma, the paper by Getzler from which I learned the “non-commutative” Wick
formula, and the work of Lian and Zuckerman on “quantum operator algebras.”

A preliminary version of these notes has been published in the proceedings
of the summer school in Bulgaria in 1995 where I lectured on this subject. I am
grateful to Ivan Todorov and Kiyokazu Nagatomo for reading the manuscript and
correcting errors, and to Maria Golenishcheva-Kutuzova, Mike Hopkins, Andrey

Radul, and Ivan Todorov for numerous illuminating discussions.

Vienna, June 1996



Preface to the second edition

This improved and enlarged edition is based on a course given at M.I.T. in the
spring of 1997 and in Rome University in May and June of 1997. Below is a list of
the most important imp;‘ovements and additions.

Chapter 2. The notion of formal Fourier transform is introduced in Section 2.2.
This reduces significantly the calculations and leads to the important notion of A-
bracket in the theory of conformal algebras. Four new Sections 2.8-2.11 on the
theory of conformal algebras are added and Section 2.7 is reworked. Thus, Sec-
tions 2.7-2.11 present the foundations of this rapidly developing area of algebraic
conformal field theory.

Conformal algebra is an axiomatic description of the singular part of the op-
erator product expansion of chiral fields in conformal field theory. It is, to some
extent, related to a vertex algebra in the same way Lie algebra is related to its
universal enveloping algebra. A structure theory of vertex algebras, similar, for
example, to the structure theory of finite-dimensional Lie algebras, seems to be far
away. Conformal algebras turned out to be a much more tractable object; as shown
in Sections 2.7-2.11, for finite conformal algebras such a theory can be developed.

In Section 2.7 an explicit correspondence between an important class of infinite-
dimensional Lie algebras, called formal distribution Lie algebras, and certain new
structures, called conformal algebras, is established and a classification of finite
conformal algebras is outlined. In Sections 2.8 and 2.9 representation theory of
conformal algebras is developed, and in Section 2.11 the corresponding cohorﬁol—
ogy theory is explained. In Section 2.10 elements of conformal linear algebra are
presented.

Chapter 3. The “non-commutative” Wick formula is expressed via A-bracket
(formula (3.3.12)), which greatly facilitates the use of this formula.

3



4 PREFACE

Chapter 4. The exposition of Sections 4.4-4.6 is simplified by making a more
systematic use of the Uniqueness Theorem (a similar simplification was indepen-
dently found in [MN]). Section 4.11 on field algebras is corrected.

Chapter 5. A new Section 5.8 on super boson-fermion correspondence is added.
Comparing characters leads to a beautiful identity, whose specializations give clas-
sical results on sums of squares which go back to Gauss and Jacobi. In Section 5.10
a complete list of finite simple conformal superalgebras is given.

I wish to thank the participants of the course at M.I.T. for many discussions
and suggestions, especially Bojko Bakalov, Alessandro D’Andrea, Eddie Karat,
and Alexandre Soloviev. In particular, Bakalov gave a proof of Proposition 3.2
and suggested Example 4.11, and Karat and Soloviev gave proofs of Lemma 2.7.
I am grateful to D. Fattori, A. Rudakov and J. van de Leur for sending correc-
tions, and to Jan Wetzel for technical help in preparation of the manuscript. I am
enormously indebted to Bojko Bakalov, Shun-Jen Cheng, Alessandro D’Andrea,
Alexander Voronov, and Minoru Wakimoto for collaboration. It is due to their
efforts that the theory of conformal algebras reached this level of maturity in such

a short period of time.

Brookline, Massachusetts, December 1997



CHAPTER 1

Wightman axioms and vertex aigebras

1.1. Wightman axioms of a QFT

Let M be the d-dimensional Minkowski space (space-time), i.e., the d-dimen-

sional real vector space with metric

|z —y|> = (zo —90)> — (=1 —v1)® =+ — (Td—1 — Ya—1)>.

(As usual, ©o = ct where c is the speed of light and ¢ is time, and z1,... ,z4—1 are
space coordinates.)

Two subsets A and B of M are called space-like separated if for any a € A and
b € B one has |a —b> < 0. The forward cone is the set {z € M ||z|*> >0, zo > 0}.
Define causal order on M by x > y iff z — y lies in the forward cone.

The Poincaré group is the unity component of the group of all transformations
of M preserving the metric. It is the semidirect product of the group of translations
(= M) and the Lorentz group L, the group of all unimodular linear transformations
of M preserving the forward cone. Hence the Poincaré group preserves the causal
order and therefore the space-like separateness.

A quantum field theory (QFT) is the following data:

the space of states—a complex Hilbert space H;

the vacuum vector—a vector |0) € H;

a unitary representation (g,A) — U(g,A) of the Poincaré
group in H;

a collection of fields ®, (a an index)—operator-valued distri-
butions on M (that is continuous linear functionals f — ®,(f) on
the space of rapidly decreasing C*° tensor valued test functions
on M with values in the space of linear operators densely defined

on H).



6 1. WIGHTMAN AXIOMS AND VERTEX ALGEBRAS

One requires that these data satisfy the following Wightman axioms:
W1 (Poincaré covariance): U(q,A)®,(f)U(q,A)"! = ®,((q,A\)f)),q € M,
AelL.
Note that U(g,1) = expi ZZ;(I) gr Px, where Py, are self-adjoint commuting opera-

tors on H.

W2 (stable vacuum): The vacuum vector |0) is fixed by all the operators
U(g,A). The joint spectrum of all the operators Fy,...,P;—1 lies in the
forward cone.

W3 (completeness): The vacuum vector |0) is in the domain of any polyno-
mial in the ®,(f)’s and the linear subspace D of H spanned by all of them
applied to |0) is dense in H.

W4 (locality): ®,(f)®s(h) = ®4(h)®.(f) on D if the supports of f and h
are spacelike separated.

The physical meaning of axoim W2 is that vacuum has zero energy and it is
the minimal energy state. The last axiom means that the measurements in space-
like separated points are independent. (According to the main postulate of special
relativity the speed of a signal does not exceed the speed of light.)

Actually, these are axioms of a purely “bosonic” QFT. In order to include
“fermions” one considers even and odd fields by introducing parity p(a) = 0 or
1 € Z/2Z. Then only the axiom W4 is modified:

Wiguper (locality): &,(f)®,(h) = (=1)P@PO) @y (h)®,(f) on D if the sup-

ports of f and h are spacelike separated.

Axiom W1 gives, in particular, translation covariance (¢ € M):
(1.1.1) U(g, 1)®4(2)U(g,1) ™" = ®a(z +q).

Here and further, by abuse of notation, we often write ®,(z) in place of ®,(f(z)).
Note that, by definition, D lies in the domain of definition and is invariant
with respect to all the operators ®,(f). It follows from W1 and W2 that D is

U(g,1)-invariant. Since the translation covariance means
(1.1.2) i [Px, ®a) = 0z, B4,

and P;|0) = 0 by W2, we see that D is invariant with respect to all the operators P.
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Note that applying both sides of (1.1.1) to the vacuum vector and using its
U(q, 1)-invariance, we obtain (¢ € M):

(1.1.3) D, (z+¢)|0) = (expiquPk> D, (x)|0).
k
Now, the Poincaré group preserves distances on M. One considers also a larger
group — the group of conformal transformations of M (preserving only angles).

The simplest conformal transformation is the inversion
2
z = —zf|z]*.

Conjugating a translation z — x — b by the inversion, we get a special conformal
transformation (b € M):

T+ |z|?b

1.4 b= :
(11.4) T = T 22 bt o

The group generated by the translations and the special conformal transformations
is called the conformal group. It includes the Poincaré group and also the group of

dilations:
zH Az, A#O.

Conformal transformations of the Minkowski space are important for QFT since
they preserve causality (hence space-like separateness).

A quantum field theory is called conformal if the unitary representation of the
Poincaré group in ‘H extends to a unitary representation of the conformal group:
(g, A,b) = Ul(q,A,b) such that the vacuum vector |0) is still fixed and also the
special conformal covariance holds for the given collection of fields; in the case of a

scalar field it means

(1.1.5) U(0,1,b)84(z) U(0,1,b)™" = (b, ) 2=, (z°),

where A, is a real number called the conformal weight of the field ®, and
(1.1.6) o(b,z) =1+ 23 - b+ |z]?]b)?.

Note that (b, z)~¢ is the Jacobian of the transformation (1.1.4). It follows that

axiom W1 and (1.1.5) together give conformal covariance:

Ulg, A, b)®q(z) U(g, A, b)™1 = (b, z) "2 ®,((q, A, b) - ).
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In particular, we have dilation covariance:
(1.1.7) UN)®.(z) UN L = A2d, (),

where A — U()\) denotes the representation of the dilation subgroup.
Formula (1.1.5) implies that the infinitesimal special conformal generators are

represented by selfadjoint operators @ (k=0,...,d — 1) on H such that
(1.1.8) i [Qr, ®a(2)] = (|2°0z, — 2mzKE — 2807171) B4 (),
where E = an;lo TmOy,, is the Euler operator and 7y are the coefficients of the
metric (no =1, gy = —1for k > 1).
1.2. d = 2 QFT and chiral algebras

Consider now the case d = 2. Introduce the light cone coordinates t = zoy — 1,

t = zo + 1, so that |z|> = tf. (In this section the overbar does not mean the

complex conjugate.) Let

1 _ 1
P=-2-(P0—P1), P=§(P()+P1)
Then formula (1.1.3) becomes:
(1.2.1) B, (t + q,f+ )|0) = 9P+HP)B (¢, 1)0) .

By the vacuum axiom the joint spectrum of the operators P and P lies in the
domain ¢t > 0, £ > 0, hence the operator expi(tP +1P) is defined on D for all values
Imt¢ > 0, Im¢ > 0. Moreover, by formula (1.2.1) the D-valued distribution ®,|0)

extends analytically to a function in the domain
{t|Imt >0} x {f|Im% > 0} C C2.

Indeed, by the spectral decomposition, e#(4? +2P) is the Fourier transform of a (op-
erator valued) function whose support is in the domain p > 0, p > 0, by the
second part of axiom W2. Hence we may take the value &, (i, t) |0) when Im¢ > 0,
Im? > 0. It follows from (1.2.1) that this value is non-zero unless &, = 0.

The locality axiom means

(1.2.2) &, (t,5) @ (¢, 7)) = (~1)P PO @, (', 7) B, (t,8) if (t—t)([F-T)<0
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In the light cone coordinates the special conformal transformations decouple:

t ., i

1.2. b~ -
(1.2.3) t 1+b+t’t 1+b_t

where b4 = by £ b;. Hence the conformal group consists of transformations of the

form:

_ at+b at+b
t7t = b -7 I bl
(&) (ct+d ct+d>

where (2¢) and (2 ,Ez) are from SLy(R). Then the Poincaré covariance (axiom
W1) and special conformal covariance (formula (1.1.5)) give together the following

conformal covariance (with A, = A,):
(1.2.4) U®)®e (4,8) UMW) = (ct +d)™22 (et +d)”

Because of the decoupling (1.2.3) one usually does not assume that A, = A, and
considers more general conformal covariance of the form (1.2.4).

Introduce further the operators

Q=-5@+Q), Q=5(Q Q).
Then formulas (1.1.2) and (1.1.8) become:
(1.2.5a) i[P,®, (t,1)] = 8%, (1),
(1.2.5b) i[P®a (,8)] = 0% (1),
(1.2.5¢) i[Q,®a (t,1)] = (20, +2A,t) B, (8,7),
(1.2.5d) i[Q, %, (t,)] = (F20;+20,1) 8 (2,1).

In order to make conformal transformations defined everywhere, consider the
compactification of the Minkowski space given by:

Lo Lra 1+t
1 T 1-a

This maps the domain Im¢ > 0, Im? > 0 to the domain |z| < 1, |Z| < 1. Consider
the new fields defined in |z| < 1, |Z| < 1:

. 1-2 _ 1-2
—&, (1,1 h b= .
(14 2)28a(1 + 2)28a o (t,t), where i F—i

Y J2) = .
(a,2,2) + 2z 142
Note that Y (a, 2, Z) |0)|,=0,2=0 is a well defined vector in D which we denote by a,

and (due to the above remark) Y (a, 2, 2) — a is a linear injective map.
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We let
T = (P+[PQI-Q),
1
T o= LP-[PQ-Q)

and similarly we define T, H, T*. It is straightforward to check that formulas

(1.2.5a—d) imply:

(1.2.6a) [T,Y(a,2,2)] = 8Y(az3),
(1.2.6b) [H,Y(a,z,2)] = (20,+ Aq)Y(a,z,2),
(1.2.6¢) [T*,Y(a,2,2)] = (2°0.+27.2)Y(a,2,2),

and similarly for T, H, T*. Also, of course, all the operators T, T,... annihilate
the vacuum vector |0).

Note that (1.2.6b) means:
M Y(a,2,2) A5 = A2V (a, )2, 7).

Note also that the operators T', H, and T* satisfy the following commutation rela-

tions:
(1.2.7) H,T\=T, [H,T*=-T", [I*,T)=2H.

Applying both sides of (1.2.6b and c) to the vacuum vector and letting z =

zZ =0, we get:
Ha= Aga, T*a=0.

Recall that P and P are positive semidefinite self-adjoint operators on H (due to
axiom W2). The same is true for Q and Q since they are operators similar to P
and P respectively. Hence H is a positive semidefinite self-adjoint operator as well.
Thus, conformal weights are non-negative numbers.

If in our QFT, Ta = 0 = Ta is possible only for the multiples of the vacuum
vector, then A, = A, = 0 imply that a = |0).
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Now consider the right chiral fields, namely those fields for which 8 ®, = 0.
Then (1.2.2) becomes

B, (1) B (1) = (—1)POPOD () D0 (1) if t# L.

This implies that the (super) commutator (i.e., the difference between the left- and
the right-hand sides) has the following form:

[@a(1), ®(t')] = 3 69 (t )W (¥)

j>0

for some fields ¥/ (t'). For these fields the Wightman axioms still hold (but the
conformal covariance does not necessarily hold), hence we may add them to our
QFT to obtain:
Y ( bw]—ZJ(’)z— Y (¢j,w).
3>0

Commuting H with both sides of this equality and using (1.2.6b) we see that the
field Y (¢;,w) has conformal weight A, + Ay —j — 1 (in the sense of (1.2.6b)). Due
to the positivity of conformal weights we conclude that the sum on the right is

finite. It follows that
(z—w)V[Y(a,2),Y(byw)] =0 for N >O0.

(A detailed explanation of this will be given in Section 2.3.)
We expand a chiral field Y (a, z) in a Fourier series:
Y(a,z) = Z a(n)z_"_l,
n
where a(,) € EndD and denote by V' the subspace of D spanned by all polynomials
in the a(,) applied to the vacuum vector |0). It is clear that V' is invariant with
respect to all a(,) and, by (1.2.6a), with respect to T. By the argument proving
Corollary 4.6(f), V' is spanned by all polynomials in the a(,) with n < 0 applied
to |0).
We thus arrived at the following data called the right chiral algebra:
the space of states—a vector space V;
the vacuum vector—a non-zero vector |0) € V;

the infinitesimal translation operator T € EndV;
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fields Y (a, 2) for each a € A, some subset of V' endowed with
the parity p(a), where

Y(a,z) = Z a(n)z*"_l

neZ

is a series with a(,) € EndV.
These data satisfy the following properties for a € A (we ignore the remaining
properties for a while):

(translation covariance) [T,Y (a,2)] = 0Y (2,a);

(vacuum) T|0) =0, Y(a, 2)|0)|.=0 = a;

(completeness) polynomials in the a,)’s with n < 0 applied to |0)
span V;

(locality) (z—w)NY (a,2)Y (b, w)

= (=1)P@P®)(z — w)NY (b,w)Y (a,z) for some
N € Z (depending on a,b € A).
By the vacuum property we have (a € A):

(1.2.8) a=aryl0), a(y|0)=0forn>0.

Applying both sides of the translation covariance property to |0) and letting z = 0,
we obtain (using 7'|0) = 0 and (1.2.8)):

(1.2.9) Ta= a(_2)|0), a€ A

Thus, the infinitesimal translation operator on A is built in the collection of fields.

The positivity of conformal weights imply, due to (1.2.6b):
(1.2.10) a(nv = 0 for n > O(dependingon a € 4 and v € V).

Later (in Section 4.5) we shall prove the existence theorem that asserts that, using
(1.2.10). one can construct fields Y (a, z) for all a € V' (using the so-called normally
ordered product) such that (1.2.10), translation covariance, vacuum and locality
properties still hold (completeness then automatically holds). We thus arrive at
the definition of a chiral algebra. This name is used by physicists. Mathematicians,
following Borcherds, use the name vertex algebras, or vertex operator algebras,
since (for historical reasons) the fields Y (a,z) are called vertex operators.
Similarly, one may consider the left chiral fields, that is those fields for which

9;®; = 0. In the same way as above, we construct the left chiral algebra V' with the
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same vacuum vector |0), the infinitesimal translation operator T and fields Y (a, 2),
a € V. Due to locality (1.2.2) we see that &, (t)®4(f) = (—1)P(@P(@ &, (1), (t) for

all t and 7, hence
[Y(a,2),Y(a,2)]=0forallacV, acV.

The left and right chiral algebras are the most important invariants of a confor-
mally covariant 2-dimensional QFT. Under certain assumptions and with certain
additional data one may reconstruct the whole QFT from these chiral algebras, but

we shall not discuss this problem here.

REMARK 1.2. One may also consider the case of d = 1 conformal QFT. Then
the only coordinate is time ¢ = z¢ and the forward cone is the set of non-negative
numbers. Then conformal covariance reads:

at+b at +b\ " 1 at +b
U{—— |9, (0) U = Lo .
<ct+d> o) (ct+d> (at + d)A« ¢ (ct+d>

It follows that there exist self-adjoint operators P and @ in A such that

i[P, By (t)] = 0:®a(t), i[Q, Ba(t)] = (£20; + 2A,1) B4 (1).

1+zt
—it?

Compactifying by z = letting

1
(1+2)*2a

and defining T, H, and T* as in d = 2 case, we find that Y (a, 2) satisfies formulas

Y(aaz) = q)a(z)

(1.2.6a-c). As in d = 2 case, we see that Y (a,2)|0) |,—0 is a well-defined vector.
The only property that is completely missing is locality since there are no spacelike

separated points.

1.3. Definition of a vertex algebra

Let V be a superspace, i.e., a vector space decomposed in a direct sum of two

subspaces:
V=V+WA.

Here and further 0 and 1 stand for the cosets in Z /27 of 0 and 1. We shall say that
an element a of V' has parity p(a) € Z/2Zif a € Vj(g). If dim V (= dim V5 +dim V1)

< 0o, we let

sdim V' = dim V5 — dim V7
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to be the superdimension of V. In what follows, whenever p(a) is written, it is to
be understood that a € V().
A field is a series of the form a(z) = 37, ., am)z~" "' where a(,) € EndV and

for each v € V one has

(1.3.1) amy(v) =0 for n>0.

We say that a field a(z) has parity p(a) € Z/27Z if

(1.3.2) am)Va C Vaypa) forall a€Z/2Z, ne.

A wvertex algebra is the following data:

the space of states—a superspace V,

the vacuum vector—a vector |0) € Vg,

the state-field correspondence—a parity preserving linear map
of V to the space of fields, a = Y (a,2) =3, czam)z ™7,
satisfying the following axioms:

(translation covariance): [T,Y(a,2)] = 0Y (a, 2),

where T € EndV is defined by
(1.3.3) T'(a) = a(—9)|0),

(vacuum): Y (|0),2) = Iy, Y(a, 2)|0)| ;=0 = a,
(locality): (z —w)VY (a,2)Y (b,w)
= (—=1)P@P®) (z —w)NY (b,w)Y (a,z) for N > 0.
Note that the infinitesimal translation operator T is an even operator, i.e.,

TV, C V,, and the bracket in the translation covariance axiom is the usual bracket:

[T,Y]=TY — YT, so that this axiom says
(1.3.4) [T, a(n)] = —Na(p_1)-
The first of the vacuum axioms says that
(1.3.5a) |0)(ny = 6n,—1; in particular T'|0) = 0.
The second of the vacuum axioms says that

(1.3.5b) a(n)|0) =0forn >0, ayl0)=a.
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The locality axiom is to be understood as a coefficient-wise equality of two

series in z and w of the form }° _am n2™w™.

REMARK 1.3. Applying T to both sides of (1.3.3) n—1 times, and using (1.3.4)
and T'|0) = 0, we obtain %(a) = a(—p-1)|0), for n € Z, which is equivalent, by
(1.3.5b), to

(1.3.6) Y(a, 2)|0) = &7 (a).

1.4. Holomorphic vertex algebras

A vertex algebra V' is called holomorphic if a(,y = 0 forn >0, ie., Y(a,2) =
ZnEZ+ a(—n—1)2" are formal power series in z.

Let V be a holomorphic vertex algebra. Since the algebra of formal power series
in z and w has no zero divisors, it follows that locality for V turns into a usual

supercommutativity:

(1.4.1) Y (a, 2)Y (b,w) = (—=1)P VPOV (b w)Y (a, 2).
Define a bilinear product ab on the space V by the formula

(1.4.2) ab=a_b

and let [0) = 1. Then applying both sides of (1.4.1) to ¢ and letting z = w = 0

gives:

(1.4.3) a(be) = (=1)P@P®)p(gc),
The vacuum axioms give

(1.4.4) lra=a- 1=a.

It is easy to see that properties (1.4.3) and (1.4.4) are equivalent to the ax-
ioms of a (super)commutative associative unital super algebra. Indeed, letting
¢ =11in (1.4.3), we see by (1.4.4) that V is (super)commutative. But using (su-
per)commutativity, we can rearrange (1.4.3) to get a(cb) = (ac)b, which is associa-
tivity. The converse is clear.

Furthermore, apply Y (b, w) to both sides of (1.3.6):

Y (b,w)Y (a,2)1 = Y (b,w)e*T (a).
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Applying commutativity to the left-hand side and then (1.3.6), we obtain
(=1)P@POY (g, 2)evT(b) = Y (b,w)e*T (a).

Letting w = 0 and using the comrirutativity of our product on V we get

(1.4.5) Y (a,z)(b) = e (a)b.

Thus, the fields Y (a, z) are defined entirely in terms of the product on V and the
operator 7.

Finally, by (1.4.5), translation covariance axiom becomes:
(1.4.6) T (e*T(a)b) — e*T(a)T(b) = T (e*” (a)) b.

Letting z = 0 we see that T is an even derivation of the associative commutative
unital superalgebra V' and that (1.4.6) is equivalent to this.

Thus, we canonically associated to a holomorphic vertex algebra V' a pair con-
sisting of an associative commutative unital superalgebra structure on V' and an
even derivation T. Conversely, to such a pair we canonically associate a holomor-
phic vertex algebra with fields defined by (1.4.5).

If T = 0, then Y (a,z)(b) = ab. Therefore we may view vertex algebras as a
generalization of unital commutative associative superalgebras where the multipli-

cation depends on the parameter z via
a.b="Y(a,z)(b).

However, as we shall see, a general vertex algebra is very far from being a “com-

mutative” object.



CHAPTER 2

Calculus of formal distributions

2.1. Formal delta-function

In the previous chapter we considered formal expressions

(2.1.1) Z Amon,. 2 WL

m,n,...cZ

where ap, n,... are elements of a vector space U over C. Series of the form (2.1.1) are
called formal distributions in the indeterminates z,w, ... with values in U. They
form a vector space over C denoted by U [[z, 27, w,w™!,.. ]].

We can always multiply a formal distribution and a Laurent polynomial (pro-
vided that product of coeflicients is defined), but cannot in general multiply two
formal distributions. Each time when a product of two formal distribution occurs,
we need to check that it converges in the algebraic sense, i.e. the coefficient of each
monomial z™w™ ... is a finite (or convergent) sum.

Given a formal distribution a(z) = }_, .7 an2™, we define the residue by the

usual formula
Res. a(z) = a_1.

Since Res, da(z) = 0, we have the usual integration by parts formula (provided

that ab is defined):
(2.1.2) Res; Oa(z)b(z) = — Res, a(2)0b(z).

Here and further da(z) = }_, na,z" ! is the derivative of a(z).

Let C[z,27'] denote the algebra of Laurent polynomials in z. We have a non-
degenerate pairing U [[z,271]] x C[z,271] = U defined by (f, ) = Res; f(2)¢(z),
hence the Laurent polynomials should be viewed as “test functions” for the formal
distributions. Note that formal distributions a(z) and b(z) are equal iff (a,p) =
(b, ) for any test function ¢ € C[z,271].

17
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We introduce the form;il delta-function 6(z — w) as the following formal distri-
bution in z and w with values in C!:
(2.1.3) J(z—w)—z_lz:(E)n
h neZ z
In order to establish its properties, introduce one more notation. Given a
rational function R(z,w) with poles only at z = 0, w = 0 and |2| = |w|, we denote
by i, R (resp. iy .R) the power series expansion of R in the domain |z| > |w]

(resp. |w| > |z|). For example, we have for j € Z:

. 1 = (M _p_ _j
(214&) lz’w(z—_m“ = Z <]>Z m 1’LUm ‘7,
m=0
. 1 el m—j
(214b) Zw’zm = - Z ( ) m l’LUm 7.
m=-—1

From (2.1.3) and (2.1.4a and b) we obtain the following important formula:

, 1 1
(2.1.5a) 0y70(z —w) = i (z — w)itt b )i

5 ()

meZ

(2.1.5b)

Here and further for an operator A we let
(2.1.6) AU) = AT/,

Note that (2.1.5a) is a formal distribution with integer coefficients.

The formal delta-function has the usual properties listed below.

PROPOSITION 2.1. (a) For any formal distribution f(z) € U [[z,z‘l]] one has:
(2.1.7) Res, f(2)6(z — w) = f(w).
(The product f(2)0(z —w) always converges.)

(b) 6(z — w) = §(w — 2).

(c) 8,0(z — w) = =0yd(z —w).

(d) (z = w)dITV6(z — w) = 8 6(z — w), j € L.

(&) (z =P+ 8(z —w) = 0, § € Zy.

I This notation is very suggestive but somewhat misleading as §(z — w) is not a function of

z — w. Purists may use notation 6(z,w).
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Proor. It suffices to check (2.1.7) for f(z) = az™, which is straightforward.
Furthermore, we have:

§(z—w) =271 Z (%)n_l = ! Z (%)n =6(w — 2),

nez nez
proving (b). Since 6(z —w) = Y, 27" tw™ = Y 27 2w™H | we see that
0,6(z — w) = —0y,6(z — w), proving (c). Finally, (d) and (e) follow from (2.1.5a
and b). O

Note that Proposition 2.1 (c-€) can be also proved by comparing the values of
both sides on test functions. Let us use this method in order to prove the following

useful formula (which is a generalization of Proposition 2.1 (e) for j = 0):
(2.1.8) 6(z —w)a(z) = 8(z —w)a(w), where a(z) € U[[z,27']].

Indeed, by (2.1.7), the pairing of both sides of (2.1.8) with ¢(z) € C[z,27!] is
equal to a(w)p(w).
Letting a(z) = d(z — t), we obtain an important special case of (2.1.8), after

exchanging ¢t and z:

(2.1.9) 8(z — 1)8(w — t) = 8(w — £)8(z — w).

'

Applying to both sides 079 and using Proposition 2.1 (c¢) we obtain

(2.1.10) ' A6 (2 — t)(—B)™(w — t) = i (7;”) Om=I§(w — )A"H§(z — w).

Jj=0

This formula is very useful for checking locality of formal distributions.

2.2. An expansion of a formal distribution a(z,w) and formal Fourier

transform

Here we consider the question: when a formal distribution

(2.2.1) a(z,w) = icj(w)ﬁfj)é(z —w).
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Multiplying both sides of (2.2.1) by (z — w)™ and taking Res, we obtain using
Proposition 2.1 (a, d, and e)

(2.2.2) c"(w) = Res, a(z,w)(z — w)™.

Denote by U ||z, zil,w,w_l]]o the subspace consisting of formal U-valued distri-

butions a(z,w) for which the following series converges:

o0
(2.2.3) ra(z,w) ==Y  (Res,a(z,w)(z — w)) 8P 8(z — w).
i=0
Let
(2.2.4) a(z,w)t® = Z Am 2 "W™.
mEZ+
nez

A formal distribution a(z,w) is called holomorphic in z if a(z,w) = a(z,w) ).

PROPOSITION 2.2. (a) The map w is a projector (i.e., ™ = =) on

U [[z,z‘l,w,w_l]]o.
(b) Kerm = {a(z,w) eU [[z,z_l,w,w_l]]o which are holomorphic in z} :

1

(c) Any formal distribution a(z,w) from U [[z, 2~ ,w,w‘l]]o is uniquely repre-

sented in the form:
> . .
(2.2.5) a(z,w) = (w)0F (2 — w) + b(z,w)
§=0
where b(z,w) is a formal distribution holomorphic in z. The coefficients ¢/ (w) are

given by (2.2.2).

PROOF. (a) follows by the argument preceding formula (2.2.2). Tt is clear that
a(z,w) € Ker if a(z,w) is holomorphic in z. Conversely, if a(z,w) € Ker 7, writing
a(z,w) = 3, ez an(w)z", we see from (2.2.2) that ¢®(w) = 0 implies a_1(w) = 0,
A(w) = cH(w) = 0 implies a_;(w) = a_2(w) = 0, etc., proving (b). (c) follows

from (a) and (b). O

COROLLARY 2.2. The null space of the operator of multiplication by (z —w)™,
N>1,inU [z, w,wt]] is

N-1

(2.2.6) Z 0D8(2 —w)U [[w,w™']].

Jj=0
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Any element a(z,w) from (2.2.6) is uniquely represented in the form

N-1
(2.2.7) a(z,w) =Y d(w)dP(z —w),

7=0

the ¢ (w) being given by (2.2.2).

Proor. That (2.2.6) lies in the null space of (z — w)" follows from Proposi-
tion 2.1e.

1

Conversely, if (z —w)Na(z,w) = 0, then a(z,w) € U [[z, 2~ ,w,w_l]]o and we

have by (2.2.5) and Proposition 2.1 (d and e):
0= i N W)OD (2 — w) + (z — w)Vb(z,w) .
j=0
By the uniqueness in Proposition 2.2¢ we conclude that ¢/(w) = 0 for j > N and
that (z — w)Vb(z,w) = 0. The last equality implies b(z,w) = 0 since b(z,w) =
Zn€Z+ an(w)2". O

We shall often write a formal distribution in the form
a(z) = Za(n)z*"fl, a(z,w) = Z a(m’n)z_m_lw*”_l,etc.
neZ m,ne”z

This is a natural thing to do since a(,) = Res; a(z)z". Then the expansion (2.2.7)

is equivalent to
NoLooN

(2.2.8) A(m,n) = Z <j)czm+n-j)'
j=0

This follows by using (2.1.5b) and comparing coefficients.

DEFINITION 2.2. A formal distribution a(z,w) is called local if

(z—w)Na(z,w) =0 for N > 0.

Corollary 2.2 says that any local formal distribution a(z,w) has the expansion
(2.2.7). This expansion is called the OPE ezpansion of a(z,w) and the ¢™(w) (given
by (2.2.2)) are called the OPFE coefficients of a(z,w).

In order to study the properties of the expansion (2.2.5), it is convenient to
introduce the formal Fourier transform of a formal distribution a(z,w) by the

formula:

F,(a(z,w)) = Res, e*C%a(z,w).
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This is a C-linear map from U [[z, 271, w,w™]] to U [[w,w™]] [A]]. It is imme-
diate, by Proposition 2.1(d and €) and (2.1.7), that

F;‘,w (89,6(2 —w)) = M.

Hence the formal Fourier transform of the expansion (2.2.5) is

(2.2.9) R (a(z,w) = D A (w),

n€Z+

(As before, \(™ stands for A" /n!.) In other words, the formal Fourier transform of
a formal distribution a(z,w) is the generating series of its OPE coefficients.

The following simple lemma is very useful.
LEMMA 2.2.
VBT §(2 —w) = (A +8,)76(2 — w).
Proor. It is straightforward using Proposition 2.1 (d) and (e). O

Along with the operators 9, and 9, on the space of formal distribution
U [[z,27,w,w™!]], consider the permutation operator a(z,w) = a(w,z). It is
clear that all three operators preserve the property of locality. The following for-

mulas describe the behavior of the formal Fourier transform with respect to these

operators:
(2.2.10) F} 0. = =AF}, = [0uw,F),]
(2.2.11) Fz’\’wa(w,z) = F;,s_awa(z,w) if a(z,w) is local.

(The right-hand side of (2.2.11) means that the indeterminate A in (2.2.9) is replaced
by the operator —\ — 9,,.) Formulas (2.2.10) follow from the definition of Fz)‘w
using integration by parts (they hold without the assumption of locality). Due to
locality of a(z,w), we can use expansion (2.2.7), hence it suffices to check (2.2.11)

for a(z,w) = c(w)dEd(z — w). We use Proposition 2.1(c) and Lemma 2.2:
FX,a(w,z) = (—1)* Res, (eﬂz—w)c(z)a{;a(z - w))
= (=1*(X 4+ 8,)* Res, c(2)8(z — w)
= (=X = 3y)ke(w).
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REMARK 2.2a. Formulas (2.2.10) and (2.2.11) are equivalent to the following
relations for the OPE coeflicients ¢ (w), ¢l (w) and é"(w) of the formal distributions

d,a(z,w), Oya(z,w) and a(z,w) respectively:

n—l(

7
CZ

(w) = —nc"" (w),
(W) = By (w) +nc"H(w),
&E(w) =Y (=1)T"0P " (w),

JEZy

A composition of two Fourier transforms, F}, F¥, is a Clinear map from

Ullz,z7Y, w,w™,z,z7]] to U [[w,w™]] [[A, #]]- The following relation will sim-

plify significantly our calculations:

(2.2.12) F) Fl, =F)FF,.

zwt z,w

The proof of it is very easy. Indeed, the left-hand side applied to a(z,w, z) is equal to
Res, Res, e* =) +u(@-w)g(z w, 1) = Res, Res, e**~%) e +u)(@=w)q(5 4 z), which

is the right-hand side applied to a(z,w, z).

REMARK 2.2b. A language alternative to that of U-valued local formal distri-
butions in z and w is the language of differential operators from U [w,w™'] to

U [[w,w™"]]. Indeed, for a formal distribution a(z,w) the associated operator is
(Da(zw)f) (w) = Res, a(z,w) f(2).
It is easy to see that Dk 5(,—u) = Of (k € Z ), hence for
a(z,w) = 3 H )W 5(z — w),
k
we have:

Da(z,w) = ch(w)az(uk)
k
Note that we also have:

Da(w,z) = Z(_aw)(k)ck (’LU)

k



24 2. CALCULUS OF FORMAL DISTRIBUTIONS
2.3. Locality of two formal distributions

Suppose now that the vector space U carries a structure of an associative super-
algebra. This simply means that U = Uy @ U; is a Z /27Z-graded associative algebra
(i.e., UyUg C Upyp, o, 8 € Z/27Z).

The most important example of an associative superalgebra, is the endomor-
phism algebra EndV of a superspace V (see Section 1.3) with the Z/2Z-grading

given by:
(EndV), = {a € EndV |aV3 C Voqp}.
One defines the bracket [, ] on an associative superalgebra U by letting
(2.3.1) [a,b] = ab — p(a,b)ba, where a € Uy, b€ Ug, p(a,b) = (—1)%7,

Here and further we adopt the convention of [K1] that the bracket of an even
element with any other element is the usual commutator and the bracket of two
odd elements is the anti-commutator (physicists usually write [a,b], in the latter
case). Recall that the Z/2Z-graded space U with the bracket (2.3.1) is a basic
example of a Lie superalgebra (see e.g. [K1] for a definition).

We can define now the notion of locality of formal distributions, with values in

a Lie superalgebra g, hence in its universal enveloping algebra Ul(g).

DEFINITION 2.3. Two formal distributions a(z) and b(z) with values in a Lie
superalgebra g are called mutually local (or simply local, or form a local pair) if the

formal distribution [a(2),b(w)] € g [[2,27,w,w™1]] is local, i.e. if
(2.3.2) (z—=w)N [a(2),b(w)] =0 for N> 0.

We shall always assume that all coefficients of a formal distribution a(z) have
the same parity, which will be denoted by p(a). We shall also use the following

notation:
pla,b) = (~1)P@P®),

REMARK 2.3a. Differentiating both sides of (2.3.2) by z and multiplying by
z —w, we see that the locality of a(z) and b(z) implies the locality of da(z) and b(z).
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In order to state equivalent definitions of locality we need some notation. Given

a formal distribution a(2) = Y, o, agmyz™"71, let

(2.3.3) a(z)- = Z a(n)z_"_l, a(z)y = Z amyz "L

n>0 n<0

This is the only way to break a(z) into a sum of “positive” and “negative” parts

such that

(2.3.4) (0a(2))+ = 8(a(2)=)-

Given formal distributions a(z) and b(z), define the following formal distribution

in z and w with values in the universal enveloping algebra U(g):
(2.3.5) s a(2)b(w) == a(2)Lb(w) + p(a, b)b(w)a(z)-.
Note the following formulas:

(2.3.6a) a(z)b(w) = [a(z)-,b(w)]+ : a(2)b(w) :

(2.3.6b) p(a,b)b(w)a(z) = —la(z)+,b(w)]+ : a(2)b(w) :

THEOREM 2.3. FEach of the following properties (1)—(vil) is equivalent to
(2.3.2):

N-—-1
(@) [a(2),bw)] = Y 898(z — w)c? (w), where cI(w) € g [[w,w™1]].
= N-1 1 '
(i) [a(2)-,b(w)] = 2 <1w(—z_—w)7:1  (w),
N_1 ) .
—[a(z)-l-’b(w)] = Z iw,z—— CJ(’U)),

=0
where ¢ (w) € g [[w,w™]].

N-1
R M e ) B LR
N-1 1
pla,b)b(w)ale) = Y <zw e LA ORL QLOR

where ¢/ (w) €

g
N-1 )
(lV) [a(m), b(n)] = . )C'Zm+n_ i) m,n € 7.

1 m . ‘
®) foom ] = X (7)wur, mez.
=0
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(i) [agmy,bmy] = 2 p;(m)d, .., mn€L,

for some polynomwls pj(x) and elements df; of g.

(vil) a(2)b(w) = iz,w(?_l—w)N' c(z,w),
pla,bbw)alz) = w(—_—lm (2, w)

for a formal distribution c(z,w).

PROOF. (i) is equivalent to (2.3.2) due to Corollary 2.2. (ii) is equivalent to (i)
by taking all terms in (i) with negative (resp. non-negative) powers of z. (iii) is
equivalent to (i) due to ((2.3.6a) and b). (iv) and (v) are equivalent to (i) due to
(2.2.8). (vi) is equivalent to (iv) since any polynomial is a linear combination of

binomial coefficients. Finally, (iii) implies (vii) and (vii) implies (2.3.2). O

By abuse of notation physicists write the first of the relations of Theorem 2.3(iii)

as follows:

(2.3.7a) a(2)b(w) = Z —

(2.3.7b) a(z)b(w) ~

Formulas (2.3.7a) and (2.3.7b) are called the operator product exzpansion (OPE).
By Theorem 2.3 the singular part of the OPE encodes all the brackets between all
the coefficients of mutually local formal distributions a(z) and b(z). That is why
it is important to develop techniques for the calculation of the OPE’s. Most of
the time we shall use the form (2.3.7b) of the OPE as typographically the most
convenient.

For each n € Z introduce the n-th product a(w)(»)b(w) on the space of formal

distributions by the formula
(2.3.8) a(w)n)b(w) = Res; [a(2), b(w)] (z — w)".

Then, due to Corollary 2.2, the OPE (2.3.7a) becomes (for any two local formal
distributions a(z) and b(z)):

= a(w) ])b(w
(2.3.92) 2)b(w) = Z T my T sa(2)b(w) :
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Equivalently:
(2.3.9b) [a(2), b(w)] = > (a(w);b(w)) 8P 6(z — w).
JEZ 4
As we have seen in the previous section, an efficient way to study the OPE is
to consider its formal Fourier transform.
For an arbitrary (not necessarily associative or Lie) algebra U define the -
product a(w)b(w) of two U-valued formal distributions a(w) and b(w) as the formal

Fourier transform of the formal distribution a(z)b(w):

(2.3.10a) a(w)rb(w) = F},, (a(2)b(w)) = > A™ (a(w)ab(w)).

n=0

As before, we have the following formula for n-th product:
(2.3.1Gb) a(w)pb(w) = Res;(z — w)™a(2)b(w).

In the case when U is a Lie (super)algebra we will use the bracket notation for
the A-product, will call it the A-bracket and will denote by a(w)(n)b(w) the n-th
product (given by (2.3.8)), i.e.:

o
(2.3.11) [a(w)ab(w)] = Y A™ (a(w)(m)b(w)) .
m=0
The following formulas are very useful in studying associativity properties of the
A-product:
(2.3.12) FuFL wa(2) (b(@)e(w)) = a(w)x (b(w)ue(w))
(2.3.13) F;:wF;‘,w(a(z)b(x))c(w) = (a(w)rb(w)) ., c(w).

The first of these two formulas is obvious, while the second is immediate by (2.2.12).

Now we can prove the basic properties of A-products and A-brackets.

PROPOSITION 2.3. (a) For any two U-valued formal distributions a(w) and
b(w), where U is an arbitrary algebra, one has:

(Owa(w))y b(w) = =Aa(w)rb(w),

a(w)rBuwb(w) = (A + 8u) (a(w)rb(w)) -

In particular, Oy, is a derivation of the A-product.
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(b) Let a(w) and b(w) be U-valued formal distributions, where U is an arbitrary
algebra, such that the formal distribution a(z)b(w) is local. Let a(w) ib(w) denote
the A-product of the algebra U°P (which is U with the opposite multiplication aob =
ba). Then

b(w) ° a(w) = a(w)-x—s, b(w).

(c) Let a(w) and b(w) be g-valued mutually local formal distributions, where g is a

Lie superalgebra (i.e. (2.3.2) holds). Then
[a(w)xb(w)] = —p(a, b) [b(w)-r-s, a(w)] .

(d) Let a(w), b(w) and c(w) be g-valued formal distributions, where g is a Lie

superalgebra. Then
[a(w)x [b(w) we(w)]] = [[a(w)rb(w)],, , c(w)] + p(a, b) [b(w), [a(w)rc(w)]] .

PROOF. (a) follows from (2.2.10) applied to the formal distribution a(z,w) =
a(z)b(w). (b) follows similarly from (2.2.11). (c) is immediate by (b). Finally (d)
follows from (2.3.12) and (2.3.13) applied to the Jacobi identity:

[a(2), [b(2), c(w)]] = [[a(2), b(x)], c(w)] + p(a, b) [b(2), [a(2), c(w)]]

d

REMARK 2.3b. (i) Proposition 2.3 (a) in terms of n-th products means the

following formulas (cf. Remark 2.2a):

(2.3.14a) da(w)pb(w) = —na(w),—1b(w),

(2.3.14b) a(w)ndb(w) = 8 (a(w)nb(w)) + na(w)n_1b(w).

Hence 0, is a derivation of all n-th products.

(i) Proposition 2.3 (c) in terms of n-th products means (cf. Remark 2.2b):
o . .
(2.3.15) a(w)myb(w) = —pla,8) 3 (=170 (b(w)ursyaw))
Jj=0
provided that a(w) and b(w) are mutually local.

(iii) Proposition 2.3 (d) in terms of n-th products means
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(2.3.16) a(w)(m) (b(w)(nyc(w)) = Z (7) (a(w)(j)b(w))(m+n_j) c(w)
=0
+p(a, b)b(w)(n) (a(w)(m)c(w)) .

The following well-known statement has many important applications.

COROLLARY 2.3. Let g be a Lie superalgebra.

(a) If a(z) and b(2) are g-valued formal distributions, then [a(o),b(z)] =0
iff a(2)(0)b(2) = 0.

(b) If a(z) is an odd g-valued formal distribution, then afo) = 0 4ff
Res; a(z)(0)a(z) = 0.

(c) Let A be a space consisting of mutually local formal g-valued distributions in
w which is 0-invdriant and closed with respect to all n-th products, n € Z .
Then with respect to the 0-th product 8A is a 2-sided ideal of A and A/OA

is a Lie superalgebra. Moreover, the 0-th product defines on A a structure

of a left A/0A-module.

PROOF. Statements (a) and (b) are obvious by definitions. From (2.3.14a) and
(2.3.14b) for n = 0 we get

(2.3.17) (6./4)(0)./4 =0, A(o)aA CA,
Hence 0A is a 2-sided ideal. Furthermore, (2.3.15) for n = 0 gives
(2.3.18) a(w)(oyb(w) = —p(a, b)b(w)(oya(w) mod OA.

Hence the 0-th product induces a super skew-symmetric bracket on A/8.A. The
super Jacobi identity in A/J.A follows from (2.3.16) for m = n = 0. This proves
(c). d

2.4. Taylor’s formula

One of the devices in calculating the OPE is Taylor’s formula. Here and further
we shall adopt the following notational conventions. Given a formal distribution

a(z) =), a,2" we may construct a formal distribution in z and w:
izwa(z —w) = Z aniyw(z —w)".
n
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In order to further simplify notation we shall often say instead that we consider the

formal distribution a(z — w) in z and w in the domain |z| > |w].

PROPOSITION 2.4 (Taylor’s formula). Let a(z) be a formal distribution. Then

one has the following equality of formal distributions in z and in w in the domain

2| > fw]:
m . .
(2.4.1) a(z+w) =Y 0Va(z)w’.
j=0

PROOF. Let a(z) = Y, a,2", so that 8Wa(z) = 3 (’;)anz”_j. Comparing

coefficients of a,, in (2.4.1), we need to show that

(2.4.2) (z+w)" = i 2"l (n)

=0 J

But (2.4.2) is the binomial expansion in the domain |z| > |uwl. O

Replacing z by w and w by z — w in (2.4.1) we get another form of Tay-

lor’s formula as an equality of formal distributions in w and z — w in the domain

|z —w| < |wl:
(2.4.3) a(z) = i 8D a(w)(z —w).
j=0

The following, yet another version of Taylor’s formula, shows that when cal-
culating the singular part of the OPE one can use Taylor’s expansion up to the

required order.

THEOREM 2.4. Let a(z) be a formal distribution and N be a non-negative in-

teger. Then one has the following equality of formal distributions in z and w:
N

(2.4.4) O 8(z — w)a(z) = 8N d(z —w) > 0D a(w)(z — w)?.
j=0

PRrROOF. It suffices to check that for an arbitrary Laurent polynomial f(z)
one has:

Res, 0N 6(z — w)a(2) f(2)

N
= Y 0Wa(w)Res, 0 6(z — w)(z — w)! f(2).
§=0
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Integrating by parts N times transforms this to the equality
N .
Res, 8(z — w)0" (a(2)f(2)) = Zﬁ(J)a(w) Res, 0(z — w)0N ((z — w)? f(2))
Jj=0
which, due to (2.1.7) and Leibnitz rule, is

N N
O™ (a(w) f(w)) = 3 Ha(w) ( j ) N3 f(w).
j=0
This holds by Leibnitz rule. O

2.5. Current algebras

Here we discuss one of the most important examples of algebras spanned by
mutually local formal distributions—the current algebras.
First we consider the simplest case—the oscillator algebra s. This is a Lie

algebra with basis a,, (n € Z), K and the following commutation relations:
(2.5.1) [am,an] =mépm K, [K,an]=0.

Consider the following s-valued formal distribution:
a(z) = Z anz” "L
neZ

Then it is straightforward to check that
(2.5.2) [a(z), a(w)] = 0wd(z — w)K

(this follows also from the equivalence of (i) and (iv) of Theorem 2.3). In other
words, the formal distribution a(z) is local (with respect to itself) with the OPE,

considered in the universal enveloping algebra of s:

K

(2.5.3) a(z)a(w) ~ oo
The (even) formal distribution a(z) is usually called a free boson.

The current algebra is a non-abelian generalization of the oscillator algebra.

Let g be a Lie superalgebra with an invariant supersymmetric bilinear form (.|.).

“Invariant” means

([a,0]c) = (a| [b,¢]), a,bc €y,
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and “supersymmetric” means
(al) = (~1)?®)(bla) (in particular, (gola1) = 0) .
The loop algebra associated to g is the Lie superalgebra
g=g[t,t7'] (=g®cC[t,t7"])

over C with Z/27 grading extending that of g by p(t) = 0, and commutation
relations (m,n € Z;a,b € g):

[@m,bn] = [a,b],, ., -

Here and further a,, stands for a ® t™. Note that g is the Lie superalgebra of
regular maps of C* to g (hence the name “loop algebra”).
The affinization of the pair (g, (.|.)) is a central extension of the loop algebra g

by a 1-dimensional even center CK:
g=0+CK
defined by the commutation relations (m,n € Z; a,b € g):
(2.5.4) [am,bn] = [a,b],, ., +m(alb)dm —nK, [K,g] = 0.

The Lie superalgebra g is usually called by physicists a current algebra. Note that
loop algebra is a special case of a current algebra when the bilinear form (.|.) is
zero. If g is a simple finite-dimensional Lie algebra with the (normalized) Killing
form (.|.), then g is known as the affine Kac-Moody algebra [K2]. If g is the 1-
dimensional Lie algebra with a non-degenerate bilinear form, then we recover the
example of the oscillator algebra.

Introduce the following formal distributions with values in g which are usually

called currents:

a(z) = Zanz_”_l, a€g.

ncZ

Then by the equivalence of (i) and (iv) of Theorem 2.3, we see that

(2.5.5) [a(2),b(w)] = 6(z — w) [a,b] (w) + 0uwd(z — w)(alb)K,
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hence all the currents a(z) are mutually local with the OPE, considered in the
universal enveloping algebra U(g) of g:

[a,0] (w) , (a]p)K
~Zow T (z —w)?’

(2.5.6) a(2)b(w)

There exists a natural super extension of the affinization, called the superaf-
finization, which is a central extension of the super loop algebra (called a supercur-

rent algebra):
asuper =g®cC [t, t_l,e] + CK,

where 62 = 0, p(f) = 1 and the remaining OPE are as follows. For a € g define the
supercurrent
a(z) = Z an+%z_"_1,
neEZ
where a1 =a® t"0. Then the supercurrents a(z) are mutually local and also

local with respect to the currents, and the remaining OPE are given by

(2.5.7a) a(2)b(w) ~ [‘;’li](:)’),
(2.5.7b) a(2)b(w) ~ (i"f)f.

The supercurrents form a closed (under OPE) subalgebra. In view of its impor-
tance, we repeat its construction in a slightly different form. Let A be a superspace

with a skew-supersymmetric bilinear form, i.e.,
(pl) = =(=1)"¥)(¢l) (in particular, (45| A1) = 0).
The Clifford affinization of (A, (.].)) is the Lie superalgebra
Ca=Alt,t7'] +CK
with commutation relations (m,n € 3 +Z; ¢,9 € A)

(2.5.8) [‘Pm:"bn] = (‘le)‘sm,—nKa [CA:K] =0,

where ¢, = ¢ ® t™%. The formal distributions ¢(2) = ¥,z @nt 127"t are

mutually local with the OPE (in the universal enveloping algebra of C4):

(2.5.9) o)) ~ DK

zZ—w
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Two particularly important special cases of the Clifford affinization are the
following.

Let A be the odd 1-dimensional superspace Cyp with the bilinear form (p|p) =1,
and let K = 1. Then C4 turns into the algebra
(2.5.10) Ompn+ upm = by MM E I

—n—1/2

The (odd) formal distribution ¢(z) = Zne% +7Pn2 is called a neutral free

fermion; its OPE is

(2.5.11) p(2)p(w) ~ P

In the second example let A be the odd 2-dimensional superspace Cp*™ @ Cp~
with the symmetric bilinear form (p+|p~) = 1, (p*|p*) = 0, and again let K = 1.
Then we obtain the algebra (m,n € & + Z):

(2.5.12) OEOT + 0T oL =6 n, Phet +pEet =0.

—n—1/2

The odd formal distributions p*(z) = Yoneirz oLz are called charged free

fermions; their OPE are:

1

(25.13) PP W) ~ ——,  FEE)PE W) ~ 0.

These examples show that superalgebra is far from being a senseless general-

ization of the usual algebra.

2.6. Conformal weight and the Virasoro algebra

Let H be a diagonalizable derivation of the associative algebra U, called a
Hamiltonian. Then H acts on the space of all formal distributions with values
in U in the obvious way (coefficient-wise). The following definition is motivated

by (1.2.6b).

DEFINITION 2.6a. A formal U-valued distribution a = a(z,w,...) is called an

eigendistribution for H of conformal weight A € C if
(H=A—-20, —wdy —--)a=0.

Here are some obvious properties of conformal weights.
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PROPOSITION 2.6. Suppose a and b are eigendistributions of conformal weights

A and A’ respectively. Then

(a) d,a is an eigendistribution of conformal weight A +1.

(b) :a(2)b(w) : is an eigendistribution of conformal weight A + A'.

(c) The n-th OPE coefficient of [a(z),b(w)] is an eigendistribution of conformal
weight A+ A" —n—-1(ne€Z,).

(d) If f is a homogeneous function of degree j then fa is an eigendistribution

of conformal weight A — j.

COROLLARY 2.6. If a(z) and b(2) are mutually local eigendistributions of con-
formal weights A and A', then in the OPE

N-1

A (w
a(z)b( Z ( w)i L

j=0

all the summands have the same conformal weight A + A’.

If a(2) is an eigendistribution of conformal weight A, one usually writes it in

the form (without parenthesis around indices):

nE—A+Z
The condition of a(z) being an eigendistribution of conformal weight A is then

equivalent to
(2.6.1) Ha, = —na,.

As a result, the commutation relations given by Theorem 2.3(iv) take a graded

form:
N-1
(2.6.2a) [am, b,] = (m +]A - 1) cym—l-n’
=0
or equivalently
N-1
(2.6.2b) [am, b(2)] = > <m + J,A - 1)& (z)2mTA—I1,

Jj=0
EXAMPLE 2.6. Choosing for the algebra of currents g (resp. supercurrents
Osuper) the Hamiltonian H = —t0; (resp. = —td; — %969), we see that the cur-

rents a(z) (resp. supercurrents @(z)) have conformal weight 1 (resp. 1/2).
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Corollary 2.6 is a very useful bookkeeping device in calculating the OPE. In
many examples (e.g., from the considerations of unitarity) the conformal weight is
in %Z+ and it is 0 iff the eigendistribution is a constant element commuting with
all formal distributions of the theory.

If the above positivity condition holds, then due to Corollary 2.6, all mutually
local eigendistributions of conformal weight 3 have the OPE of the form (2.5.7b),
all eigendistributions of conformal weight 1 have the OPE of the form (2.5.6) and
the OPE between the latter and the former is given by (2.5.7a).

We consider now the next case—a local (i.e., local to itself) even eigendistribu-

tion L(z) of conformal weight 2:
L(z) = Z Lz "2
neEZ

As has been mentioned above, it is natural to assume that the OPE has the form

ic a(w) 2b(w) c(w)
(ziw)4 * (z —w)? N (z —w)? Ry

(2.6.3) L(2)L(w) ~
where C' is a constant formal distribution.

THEOREM 2.6. Suppose that L(z) is an even local formal distribution with the
OPE of the form (2.6.3). Then

(a) a(w) =0 and c(w) = 8b(w).
(b) If in addition [C,L(z)] =0 and

(2.6.4) [L_1,L(2)] = 8L(2), [Lo,L(2)] = (28 + 2)L(2)

then (2.6.3) becomes

1o 2L(w)  AL(w)
oo T owE  i—w

(2.6.5) L(2)L(w) ~

or, equivalently, we have the Virasoro algebra (m,n € Z):

m2 —m

(2.6.6) [Liny L] = (m = 1) L + ——5—

Sm,—nC, [C, L] = 0.

PRrooF. Exchanging 2z and w in (2.6.3), we obtain

10 a) %) )
z-w? (z-w)? (z-w)? z-w

L(w)L(z) ~
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By making use of Taylor’s formula, this turns into:

:C a(w) + da(w)(z — w) + 0P a(w)(z — w)?

(2.6.7) HEE (z=w)? (z —w)’
o 2b(w) + 20b(w)(z —w)  e(w)
T (z —w)? Cz—w

Due to locality the right-hand sides of (2.6.3) and (2.6.7) must be equal. Matching

the coefficients of (z — w)~% and (z — w) ! we get (a). Thus, we have:

%C N 2b(w) +8b(w)'

(2.6.8) L(2)L(w) ~ CG-—w! (-w)? z-w

Due to (2.6.2b) this implies, in particular:
[L_1,L(2)] =0b(2), [Lo,L(2)] = (204 2)b(z).

Hence assumptions (2.6.4) imply that b(z) = L(z). This proves (2.6.5). The equa-
tion (2.6.6) is equivalent to this OPE due to (2.6.2a). O

A local formal distribution L(z) with the OPE (2.6.5) is called a Virasoro

formal distribution with central charge C.

In Table OPE we give a table of the most commonly used OPE of mutually
local formal distributions and the equivalent commutation relations (all these are

special cases of formula (2.6.2a)).

The definition given below singles out the most important for conformal field
theory Lie superalgebras, which includes the (super)current algebra and the Vira-

soro algebra.

DEFINITION 2.6b. A Lie superalgebra g is called a formal distribution Lie su-
peralgebra if it is spanned over C by coefficients of a family F' of g-valued mutually

local formal distributions.

For example, the Virasoro algebra with F' = {L(z),C} and the current algebra
g with F' = {a(z) where a € g, K} are formal distribution Lie (super)algebras. We
shall often write (g, F') in order to emphasize the dependence on F.

Note that formal distribution Lie superalgebras form a category with mor-
phisms (g, F) — (g1, F1) being homomorphisms ¢ : g — g; such p(F) C Fy, where

F'; is the closure of F, defined in the next section.



Table OPE.

1st distribution

2nd distribution

commutation relations

a(z) = Z Az ™1

b(w) =Y buw !

[ama bn] = Cm4n

zZ—w
(1(2) - Zamz " b(w) - Z b"w_n_l [am’ bn] = mdm,—n (Z —1'LU)2
L(z) =) Lnz""7% | aw) = )_anw ™" | [Lm,an] = (A = )m — n)amn 20_(1‘3 (zA f(ZL’L
o OL(w) 2L(w)
L(z) — szz——m—Q L(w) _ Zan_n_2 [Lm) Ln] - (m 'n)Lm+n - —w (z — w)2
m® —m c/2
+ T(sm’_"c G w)

8¢
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2.7. Formal distribution Lie superalgebras and conformal superalgebras

This and the next two sections is an introduction to the theory of conformal
(super)algebras. Though they are ideologically closely related to the theory of
vertex algebras, the rest of the book may be read independently of them, except
for the last Section 5.10.

Let g be an arbitrary Lie superalgebra. We denote by fd(g) the space of all
g-valued formal distributions in z endowed with n-th products (2.3.8), n € Z,.
This is also a C[d]-module (0 = 8,).

Consider the subspace R over C of fd(g) which is closed under all n-th products,
n € Z, and denote by g(R) the C-space of all coefficients of all formal distributions
from R. Provided that all formal distributions from R are mutually local, g(R) is
a subalgebra of g with the bracket

(2.7.1) [agmyrbm] = D (T) (D) m4n—3)-

JEZ 4
This follows from Theorem 2.3(iv). Clearly, g(R) is a formal distribution Lie su-
peralgebra and all of them are thus obtained.

Let F' be a collection of mutually local formal distributions from fd(g).” We
denote by F' the closure of F', defined as the minimal C[8]-submodule of fd(g) closed
under all n-th products, n € Z . Due to Lemma 2.8 proved in Section 2.8 (applied
to the adjoint representation) and Remark 2.3a, F' consists of mutually local formal
distributions and therefore we have a formal distribution Lie superalgebra g(F'). In

view of Proposition 2.3 (or rather Remark 2.3b), this leads us to the following

definition.

DEFINITION 2.7. A conformal superalgebra R is a left Z /2Z-graded C[9]-mod-
ule R = R ® R; with a Gbilinear product a(,)b for each n € Z such that the

following axioms hold (a,b,c € R, m,n € Z):

(CO) agnyb =0 for ng0 ,

(Cl) (6a)(n)b = _na(n—l)b )

(C2) a(mb = —p(a,b) D_(~1)7*"0D (b1 jya)
j=0
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m

m
(C3) am) (bmyc) = Y ( i ) (a()b) (m-4n-j)¢ + P(@; b)b(n) (agmye) -

=0

Note that axioms (C1) and (C2) imply
(C1") a(n)ab = 8(a(n)b) + na(n_l)b,
hence 0 is a derivation of all n-th products (cf. Proposition 2.3(a)).

REMARK 2.7a. The operator a(g) is a derivation of all n-th products (due to
(C3)) and it commutes with & (due to (C1')). As in the proof of Corollary 2.3,
it follows (using also (C1) and (C2)) that, with respect to 0-th product, R is a
2-sided ideal of R such that R/OR is a Lie superalgebra, and that 0-th product
defines on R a structure of a left R/0R-module for which R/OR commutes with
C[a].

The notions of a homomorphism, ideal and subalgebra of a conformal superal-
gebra R are defined in the usual way. Conformal superalgebras form a category with
morphisms being homomorphisms. An element a € R is called central if a(,)R =0
for all n € Z, (and hence R(,ya =0, n € Z,). A conformal superalgebra is called
finite if it is finitely generated as a C[d]-module.

An efficient way to handle the n-th products of a conformal superalgebra R is

to introduce the A-bracket (cf. Section 2.3):

[e ]

(2.7.2) [axb] = Y A™ (anb) -

n=0
Here X is an indeterminate and, as before, A(™ stands for A" /n!. Due to axiom

(C0), the A-bracket defines a C-linear map
R®c R — C[A] ®c R.

Due to Proposition 2.3 and Remark 2.3a axioms (C1)-(C3) are equivalent respec-

tively to
(Cl))\ [8(1)\1)] ==X [a)\b] ,
(C2)a [axb] = —p(a,b) [b-x-sa] ,

(C3)x [ax [bucl] = p(a, b) [by [arc]] = [laxbly , -
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Axioms (C1), and (C2) imply
(C1")x [ax0b] = (0 + ) [arb],

hence 0 is a derivation of the A-bracket.

The first application of the A-product is the following corollary.

COROLLARY 2.7. [DK] Any torsion element a of a finite conformal superalge-
bra R is central. In particular, if R is finite, then, as a C[8]-module, R is a direct
sum of a finite-dimensional (over C) central subalgebra and a free C[0]-module of

finite rank.

ProOF. By definition, we have P(9)a = 0 for some polynomial P, hence
[P(B)axb] = 0 for any b € R, and P(—\)[axb] = 0 by (C1)x. It follows that

[axb] = 0 for any b € R, hence a is a central element. O

Conformal superalgebras are an effective tool to study formal distribution Lie
superalgebras. Indeed, if g is spanned by coeflicients of a collection F' of mutually
local formal distributions, then F is a conformal superalgebra, due to Proposi-
tion 2.3. Conversely, we may construct a formal distribution Lie superalgebra Lie
R associated with a conformal superalgebra R as follows. Let Lie R be the quotient
of the vector space with basis a,, (a € R, n € Z) by the subspace spanned over C

by elements:
(Aa), — Aayn, (a+b)y —an —b,, (0a), +nan—1, where a,b € R.A€ Cn € Z.

One can check that a formula similar to (2.7.1) gives a well-defined bracket on

Lie R:

(2.7.3) [am,ba] = S (T) (aD)ryns

JEZ 4

Instead of doing this calculation, we shall use a more conceptual approach.

The affinization of a conformal superalgebra R is the conformal superalgebra

R=RI[t,t7'],pt) =0,
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with § = 0 ® 1+ 1® 8, and the n-th product defined by (a,b € R, f,g €
Clt,t7], ne Zy):

(2.7.4) @® Hmb@9) = (amind) ® (8 f)g).

i€Zy
(We shall see that the affinization of a conformal superalgebra is a straightforward
generalization of a more naturally looking notion of affinization of a vertex algebra
introduced by Borcherds; see Section 4.3.) Letting a,, = a ® t", formula (2.7.4)

becomes (m,n € Z):

m
(2.7.5) (am) k) (bn) = Z ( j> (@k+5)b) g
JEL+
Letting
LieR = R/OR

with the bracket induced by the 0-th product on R, (and keeping the notation a,, for
its image in Lie R) we obtain, due to Remark 2.7a, a well-defined Lie superalgebra,
which is obviously the same as the one introduced above.

It remains to check the axioms of conformal superalgebra for R. A simple

calculation shows that the corresponding A-bracket is given by

(2.7.6) [a® frb® g] = [arts,b] @ f(E)g(t')|e=t-

The verification of axioms is now straightforward. Let us check, for example, axiom

(C2)a:

la® fib® g] = [arta,b] ® F()g(t ) et
—p(a,b) [b-x-p,—0a] ® f(t)g(t')]e=¢
mb)D A—0-8, -8, +8,0) ® gt f(t)],_,
D p®g_\_50®f].

aa

REMARK 2.7b. It is clear from (2.7.5) that —1 ® 9; is a derivation of the 0-th
product of the conformal superalgebra R. Since this operator commutes with 9, it

induces a derivation T of the Lie superalgebra Lie R, given by the formula:

T(ap) = —nanp—1.
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REMARK 2.7c. Let R be a conformal superalgebra and suppose that, as a C[9]-

module,
R~ (Clo|@ V)& C,

where V is a vector space (over C) and C consists of torsion elements. Then the
vector space V [t, t_l] @ C is complementary in R to OR. Hence, as a vector space
(over C), LieR ~ V [t,t7}] ® C, where C is a central subalgebra of Lie R (by
Corollary 2.7). It suffices to check this in two cases: 1) dim¢V = 1 and C = 0,

2) V = 0 and dim¢ C = 1, when it is straightforward. It follows, in particular, that
T|c =0,
where T is the derivation of Lie R defined by Remark 2.7b.

REMARK 2.7d. The construction of the Lie superalgebra Lie R can be gener-
alized by taking an arbitrary commutative associative algebra A with a derivation

¢ and letting
LieaR=(R®A)/(0®1+100)(R® A)
with the bracket

[a@f,b@g]=asb]® fg,

where 61(fg) = 6(f)g. The operator —1®6 on R® A induces a derivation of Lies R,

giving it a structure of a differential Lie superalgebra, cf. [R1].

Each element a € R gives rise to a formal distribution a(z) = Y, 5 a,z27"7!
with coefficients in Lie R. We denote this family of formal distributions by F(R).
They obviously span Lie R and are mutually local since formula (2.7.5) for k£ = 0 is
equivalent to
(2.7.7) [a(2),b(w)] = Y (agb) (w)dF6(z — w)

JEZ+
and a(;b = 0 for j > 0. Hence (Lie R, F'(R)) is a formal distribution Lie superalge-
bra. We thus constructed a functor, from the category of conformal superalgebras
to the category of formal distribution Lie superalgebras.

Note that F(R)(C fd(Lie R)) is a conformal superalgebra and that the map

¢ : R — F(R) defined by p(a) = a(z) is a surjective homomorphism of conformal



44 2. CALCULUS OF FORMAL DISTRIBUTIONS

superalgebras. Indeed, ¢ preserves j-th products due to (2.7.7), and ¢ preserves the

C[8]-module structure since (da), = —na,—1, which means that 9,a(z) = (0a)(z).

LEMMA 2.7. If a € R and the element a_; € LieR is 0, then a = 0. In

particular, ¢ is an isomorphism of conformal superalgebras.
PROOF. Define a linear map ¢ : R — R of vector spaces over C by
¢ (at™771) =8Wa, 4 (at?) =0, wherej € Z.
Then (53) = 0, hence 1 induces a map 9 : Lie R — R such that Y(a-1) =a. O

Recall that to a formal distribution Lie superalgebra (g, F') one canonically
associates a conformal superalgebra Conf(g, F) = F. This gives us a functor from
the category of formal distribution Lie superalgebras to the category of conformal
superalgebras, which we denote by Conf. We also have constructed a functor in
the opposite direction that canonically associates to a conformal superalgebra R a
formal distribution Lie superalgebra (Lie R, F'(R)); we denote this functor by Lie.

Due to Lemma, 2.7, we have:
Conf(Lie R) ~ R.
Furthermore, we have:
Lie(Conf(g, F)) = (Lie F', F) .

By the very definition, the Lie superalgebra g is a quotient of Lie F' by an ideal
that does not contain all the coefficients of a non-zero formal distribution from F'.
Such an ideal is called an irregular ideal of Lie F. Conversely, if g is obtained from
Lie F' as a quotient by an irregular ideal, then Conf g ~ F. The formal distribution
Lie superalgebras (Lie F', F') and ((Lie F)/I,F) are called equivalent. Hence, it
is natural to call (Lie R, F((R)) the mazimal formal distribution Lie superalgebra
associated to the conformal superalgebra R.

So, the functor Conf induces a functor Conf’ from the category of equivalence
classes of formal distribution Lie superalgebras to the category of conformal super-
algebras and the functor Lie induces a functor Lie’ going in the opposite direction.

Thus we have proved the following result.
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THEOREM 2.7. The functor Conf' and Lie' are inverse of each other and es-
tablish equivalence between the category of equivalence classes of formal distribution

Lie superalgebras and the category of conformal superalgebras

A formal distribution Lie superalgebra (g, F) is called finite if F is a finitely
generated C[d]-module. Theorem 2.7 reduces the classification of (finite) formal
distribution Lie superalgebras to the classification of (finite) conformal superalge-
bras.

Due to Corollary 2.7, the description of finite conformal superalgebras splits

into two problems:

1. describe conformal superalgebras that are free C[d]-modules of finite rank;
2. find central extensions of conformal superalgebras from 1. with center being

in torsion.

The first problem is reduced to solution of a finite system of functional equations
on a finite set of polynomials in two indeterminates as follows.

Let R = é@[@] a’ be a Z/2Z graded C[8]-module with p(a?), denoted by
=1
p(i), and let [ala’] = Y, Q)7 (X, 0)a*. These A-brackets give rise to a structure of

a conformal superalgebra on R if QZ” (i,j,k =1,...,n) are polynomials in )\ and
O subject to the following relations that are equivalent to axioms (C2), and (C3)x

respectively:

(2.7.8) J(0,0) = ~(-1)PP0QI (-0 - ), 0),

n

(27.9) 3 (QiF (s, 0+ NQE(,0) ~ (-1 IPDQEN, &+ w)Qf* (1,0) )

s=1

=) QI =X = wQF(A+p,0).
s=1

Due to equivalence of (C3)y to the Jacobi identity in Lie R, it suffices to check
(2.7.9) for all triples 1 <i<j<k<nand 1 <t <n.

It is clearly impossible to solve these equations directly for n > 2. Below
a solution is presented for n = 1 and R = Ry (obtained jointly with Minoru

Wakimoto).
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We have: R = C[0]a and [axa] = Q(X, 8)a, where Q(A, D) is a polynomial in A

and 9 satisfying two equations:

(2.7.10) Q(A,0) =-Q(=0 - X,9),

(2.711)  Q(r, 0+ NQ(X,0) = QA0 + w)Q(p,0) = QA=A = )Q(A + 1, 0).

Let Q(A,8) = Y7_¢;j(A)@ with ¢.(\) # 0. Comparing coefficients of °"~!
in (2.7.11) we obtain: r(A — p)er(N)er(n) = 0 if > 1, a contradiction. Hence
Q(\,0) = a(N)d + b(\). Letting A = p in (2.7.11), we get Q(X, —2X\)Q(2A,0) = 0,
hence Q(X, —2)) = 0, which means that b(\) = 2Xa()), hence Q(A,d) = a(A)(d +
2)). Plugging this in (2.7.10), we see that a(\) is a constant. Since a can be
chosen up to a non-zero constant factor, we arrive at two solutions: Q(X,8) = 0
and Q(\,0) = 8+ 2\. In the first case we get a commutative conformal algebra (i.e.
all products are trivial), and in the second case we arrive at the Virasoro conformal
algebra discussed below.

Now we discuss briefly the second problem, the construction of central exten-
sions: R = R@® C where R and C are C[8]-submodules of R and C\R = 0. The
A-bracket [axb]" on R C R is given by

(2.7.12) [axb]” = [axb] + ax(a,b),

where [a)b] is the A-product on R and ax(a,b) = 3,5, AP ay, (a,b) is a Clinear
map R® R — C[\ ®c C. The axioms (C1)y, (C1')y, (C2)» and (C3) for R are

equivalent to the following properties of the 2-cocycle ay(a, b):

(2.7.13) ax(8a,b) = —Aax(a,b), ax(a,db) = (8 + Nax(a,b),
(2.7.14) ax(a,b) = —pla,b)a_r—a(b,a),
(2.7.15) ax(a,byc) — pla,b)ay(b,arc) = axy,(arbd, c).

As above, these equations are equivalent to a system of functional equations on a
set of polynomials in two indeterminates. If we take another complement of C' in R
by replacing a € R by a— f(a), where f : R — C is a C[0]-module homomorphism,
then ay(a,b) gets replaced by o)\ (a,b) = ax(a,b) + f(arb). The trivial 2-cocycle
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f(axb) defines a trivial extension, and equivalent 2-cocycles o\ (a,b) and ax(a,b)
define isomorphic extensions.

One can develop a cohomology theory of conformal superalgebras similar to
the Lie algebra cohomology (see Section 2.11). The central extensions of R by C
are then parameterized by H2(R,C).

We consider now three main examples of finite conformal (super)algebras R.
Due to (C1) and (C1') it suffices to define n-th products on the generators of the
C[0]-module R.

EXAMPLE 2.7a. Let g be a finite-dimensional Lie superalgebra. Recall (see
Section 2.5) that the associated loop algebra g = g [t,t~!] is a formal distribution
Lie superalgebra with the family F' consisting of currents a(z) = > (at™)z7""1

where a € g. Recall that (cf. (2.5.5)):
[a(2),b(w)] = [a, b] (w)d(z — w).

Hence the conformal superalgebra associated to (g, F) is C[9] ®c g with a structure

of a conformal superalgebra defined on a,b € g by
(2.7.16) a@)b=[a,b], agmb=0form >1.

This is called the current conformal superalgebra associated to g. It is denoted by
Cur g.
The following formula defines a 2-cocycle on Curg with values in the trivial

C[8])-module C (a,b € 1® g C Curg):
(2.7.17) a1(a,b) = (a|b), am(a,b)=0if m #1,

where (.|.) is a supersymmetric invariant bilinear form on g. It is easy to see
that (2.7.17) gives all 2-cocycles, up to taking for ag a 2-cocycle on g, provided
that [g,g] = g. In particular, if g is a simple finite-dimensional Lie algebra, then
(2.7.17) gives all 2-cocycles, up to equivalence. The corresponding central extension
is the conformal superalgebra Conf g associated to the current algebra g defined in
Section 2.5. It follows from Remark 2.7c that Lie(Confg) = g and Lie(Cur g) = §,
i.e. both § and g are maximal formal distribution Lie superalgebras. Note that

I=g [t, t_l] P(t), where P(t) is a non-invertible Laurent polynomial, is an irregular
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ideal of §, hence the formal distribution Lie algebras g and g/I are equivalent (i.e.

give rise to the same conformal algebra).

ExaMPLE 2.7b. Let Vect C* denote the Lie algebra of regular vector fields on

C*. It has a basis L, = —t"*10; (n € Z) with commutation relations
[Lm,Lyn] = (m —n)Lpin.

This is a formal distribution Lie algebra with the family F' consisting of a single

formal distribution
L(z) =) Lnz "7 = =8(z — 1)}
Either directly (cf. Theorem 2.6) or using (2.1.10) we obtain:
[L(z), L(w)] = 0w L(w)d(z — w) + 2L(w)0wd(z — w).

Hence the conformal algebra associated to (Vect C*,{L(z)}) is Conf (Vect C*) =
C[8] L, with products:

(2.7.18) LyL=08L, LyyL=2L, L(mL=0ifm>2.

This is called the Virasoro conformal algebra and is denoted by Vir. It has been
already encountered above in terms of the A-bracket: [LyL] = (8 + 2))L.
One can show that this conformal algebra has a unique, up to equivalence,

2-cocycle, which is given by
(2.7.19) as(L,L) = g am(L, L) = 0 if m # 3.

The corresponding central extension is the conformal algebra Conf(Vir) associated
to the Virasoro algebra (see Section 2.6). Note that both Vect C* and Vir are

maximal formal distribution Lie algebras. Both have no irregular ideals.

EXAMPLE 2.7c. The obvious semidirect sum (VectCX) + g defined by
[/ ()0, a @ g(t)] = a® f(t)0:g(t) is a maximal formal distribution Lie algebra with

no irregular ideals. One has:

[L(2),a(w)] = (Owa(w)) 6(z — w) + a(w)0y,d(z — w).
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Hence the associated to (Vect C*) + g conformal algebra is the semidirect sum

Conf(Vect C*) + Curg, defined by (a € g):
(2.7.20) L(O)a = Oa, L(l)a =a, L(m)a =0 form>1.

In conclusion of this section we state without proofs the results of [DK] on
classification of finite conformal algebras.

A conformal (super)algebra is called simple if it is not commutative and it
contains no nontrivial ideals. The paper [DK] contains a proof of Conjecture 2.7
stated in the first edition of this book:

Any simple finite conformal algebra is isomorphic either to a current conformal
algebra Cur g, where g is a simple finite-dimensional Lie algebra, or to the Virasoro
conformal algebra.

Of course, translating this into the language of formal distribution Lie alge-
bras, we obtain the following result: Any finite formal distribution Lie algebra
which is simple (i.e. any its non-trivial ideal is irregular) is isomorphic either to
(Vect C*,{L(z)}) or to a quotient of (g,{a(z)la € g}) where g is a simple finite-
dimensional Lie algebra.

The C-span of all elements of the form a,,)b of a conformal (super)algebra R,
m € Z., is called the derived algebra of R and is denoted by R'. It is easy to
see that R' is an ideal of R such that R/R’' is commutative. We have the derived
series R D R' D R" D .... A conformal (super)algebra is called solvable if the
n-th member of this series is zero for ng0. A conformal (super)algebra is called
semisimple if it contains no non-zero solvable ideals. The second main result of the
paper [DK] states that any finite semisimple conformal algebra is a direct sum of

conformal algebras of the following types:

(i) current conformal algebra Curg, where g is a semisimple finite-dimensional
Lie algebra,
(ii) Virasoro conformal algebra,

(iii) the semidirect sum of (i) and ().

The proof of these results uses heavily Cartan’s theory of filtered Lie algebras.
As we shall see in Sections 5.9 and 5.10, the list of simple finite conformal

superalgebras is much richer than that of conformal algebras.
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2.8. Conformal modules and modules over conformal superalgebras

Let g be a Lie superalgebra and let V be a g-module. We say that formal
distributions a(z) € g [[z,27!]] and v(z) € V [[2,27!]] form a local pair if the

formal distribution a(2)v(w) € V [[2, 27, w,w™1]] is local, i.e.
(2.8.1) (z—w)Na(2)v(w) =0 for Ngo.

It follows from Corollary 2.2 that (2.8.1) is equivalent to

N-1
(2.8.2) a(z)v(w) = Y (a(w)gow)) 0Y6(z — w),
7=0

where a(w);v(w) € V [[w,w™!]] is defined by

(2.8.3) a(w);)v(w) = Res,(z — w) a(z)v(w).

DEFINITION 2.8a. Let (g, F)) be a formal distribution Lie superalgebra and let
V be a g-module spanned over C by coefficients of a family E of formal distributions
such that all pairs (a(z),v(z)), where a(z) € F and v(z) € E, arelocal. Then (V, E)

is called a conformal module over (g, F').

The following is a representation-theoretic analogue of Dong’s lemma proved

in Section 3.2.

LEMMA 2.8. Let V be a module over a Lie superalgebra g, let a(z), b(z) €
a[[z,271]] and v(2) € V [[2,27Y]].
(a) If (a(z), v(2)) is a local pair, then both pairs (da(z),v(z)) and (a(z),0v(2)) are
local.
(b) If all three pairs (a(2),b(2)), (a(z),v(2)) and (b(z),v(z)) are local, then the
pairs (a(z)(j)b(z),v(z)) and (a(2),b(z)(jyv(z)) are local for each j € Zy.

PROOF. (a) is clear. In order to prove the first part of (b) we may assume that

all three pairs satisfy (2.3.2) and (2.8.1) respectively for some N € Z,. Then we
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have:

(z = w)*N (a(2)(5b(2)) v(w)
2N

= (z — w)" Res, Z (2;’\]) (z = w)i(u — w) N " (u - 2)[a(u), b(z)]v(w).

=0
The summation over ¢ in the right-hand side may be replaced by that from 0 to NV

since a(u) and b(z) are mutually local. Hence it can be written as follows:
(z —w)N Resy (u — w)N P(z,u, w)(u — 2)7(a(u)b(z)v(w) — b(z)a(u)v(w))

for some polynomial P. But this is zero since both pairs (b,v) and (a,v) are local,
which proves that the pair (a(;)b,v) is local.

Next, using the first part of lemma, we may find NV for which all pairs (b(j)a, v)
and (a,v) satisfy (2.8.1). Then we have:

a(2) (b(w)jyv(w)) = Resy a(2)b(u)v(w)(u — w)?

= — Resu ([b(u), a(2)]v(w) — b(w)a(z)v(w))(u — w)’

= —Res, <Z (b(z)(i)a(z)) v(w)ﬁg")é(u —2)— b(u)a(z)v(w))(u —w)?,

>0

hence (z — w)Va(2) (b(w);)v(w)) = 0. O

Lemma 2.8 shows that the family E of a conformal module (V, E) over (g, F)
can always be included in its closure, i.e. the minimal family E which is still local
with respect to F' and such that C[0]E C E and a(;yE C E for all a € F and
j € Z. The same lemma shows that E is local with respect to F'. Thus, we obtain

the following corollary.

COROLLARY 2.8. (a) If a Lie superalgebra g is generated (as an algebra) by
coefficients of a\family of mutually local formal distributions F, then (g, F) is a
formal distribution Lie superalgebra.

(b) If V is a module over a formal distribution Lie superalgebra (g,F'), generated
(as a module) by coefficients of a family E of formal distributions such that all pairs
(a(2),v(2)), where a(z) € F, v(z) € E, are local, then (V, E) is a conformal module

over (g, F).
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Note that conformal modules over a formal distribution Lie superalgebra (g, F')
form a category with morphisms ¢ : (V, E) — (V1, E1) being g-module homomor-
phisms ¢ : V — V; such that p(E) C E;.

The same calculation as in the proof of Proposition 2.3 gives for all a(w), b(w) €

g [[w,w™*]] and v(w) € V [[w,w™!]] the following relations:

(2.8.4) Ba(w)(nyv(w) = [Bw, a(w)(n)] v(w) = —na(w)_1yv(w),

m

") @) 40)) g 000

(2.8.5) [a(w)(m), b(w) (n)] v(w) = Z <]

3=0

(here [,] is the bracket of operators on E.) It follows from (2.8.5) by induction on
m (or from (2.8.9) below) that a(;)E € E forall a € F and j € Z,.

Thus, any conformal module (V, E) over a formal distribution Lie superalgebra,

(g, F) gives rise to a conformal module M (V) = E over the conformal superalgebra,

F, defined as follows.

DEFINITION 2.8b. A module M over a conformal superalgebra R is a left Z /2Z-
graded C[0]-module with C-linear maps a — af‘fl) of R to EndcM for each n € Z
such that the following properties hold for a,b € R, v € M, m,n € Z:

(M1) (aa)f\,{)v = [8M,a%)] v = —naf‘g_l)v,
(M2) [ath bl] v =3 ( j) (@3)8) (s V-
=0

An R-module M is called conformal if it satisfies the property
(MO) aé\g)v =0 for n>0.

REMARK 2.8a. We have in an arbitrary module M over a conformal superalge-
bra R: (OR)(0)M = 0, hence the map RyM — M endows M with the structure of
a module over the Lie superalgebra R/0R with respect to the 0-th product (cf. Re-
mark 2.7a) which commutes with 8. Thus, we get the R/OR-module M /0™ M.

Using this remark, conversely, as in Section 2.7, we canonically associate to a
conformal module M over a conformal superalgebra R a conformal module V(M)
over the formal distribution Lie superalgebra Lie R as follows. First, we construct

the affinization module M = M [t,t7*] over the conformal superalgebra R by
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letting 0 = OM ® 1+ 1 ® 8, and defining for a € R, v € M, f,g € Cle,t71],

TLEZ+Z

(2.8.6) (e Hihweg =3 (atv) e ((87F)9).

JEZ 4
Then we let V(M) = M/ &M M with the action of Lie R induced by the 0-th action:
(@@ fHllveg) =(a® f)ineg).

Letting, as before, a,, = a ® t" and v,, = v ® t", we obtain from (2.8.6) an explicit

formula for the action of Lie R on V(M) (a € R, v € M, m,n € Z):

(2.8.7) mtn = Y (?) (af)0) s

JEZ 4+

The (Lie R, R)-module (V (M), E(M)), where

E(M) = {v(z) = ;vnz-n_l

’UGM},

is conformal, E(M) being canonically isomorphic to the R-module M.
Proofs of these facts are similar to those in Section 2.7. The calculations, as

before, are greatly simplified by introduction of the A-action (a € R, v € M):

aMv = Z )\(")a%)v € M[[\].

n=0

Then axioms (M1) and (M2) become respectively:

(M1), (6a)§/[v = [8M,a¥] = —)\af‘\/[v,

(M2), [aﬁ/l,bfﬂ v= [aAb]ﬁ#v
Axiom (MO) means that a}/v € C[A] ®¢c M.

REMARK 2.8b. Replacing p by g — X in (M2),, we invert (M2),:
(2.8.8) [a,\b]fyv = [}, 0 \]v.

Equivalently:

m Im .
(2.8.9) (a(m)b) é\i) v = Z(—l)m‘” (J) [a%,bé\fn+n_j)] V.
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Let R be a conformal superalgebra. We have constructed a functor from the
category of conformal (Lie R)-modules to the category of conformal R-modules by
sending (V,E) to M(V) = E, and a functor in the opposite direction by send-
ing M to (V(M),E(M)). As in Section 2.7, it is easy to see that these functors
induce equivalence between the category of equivalence classes of conformal (Lie R)-
modules and the category of conformal R-modules.

The following proposition is proved in the same way as Corollary 2.7.

PROPOSITION 2.8. Let M be a module over a conformal superalgebra R. Then
(a) Any torsion element of R acts trivially on M.

(b) Any torsion element v € M is an invariant of R, i.e. Ré‘;{)v =0 forallne Z,.

An R-module M is called finite if it is finitely generated as a C[0]-module.

An example of a conformal R-module, is, of course, the adjoint module R given
by a — agl) = a(n). It is finite iff R is finite.

We consider now the basic examples of finite conformal modules over finite

conformal algebras.

ExXAMPLE 2.8a. Let g be a finite-dimensional Lie algebra and let U be a finite-
dimensional g-module. Then U := U [t,¢t7!] is naturally a g-module. Letting
E={u(z):=Y,c7 (wt™) 27" = ud(z - t)| u € U}, we obtain a conformal mod-
ule (U',E) over the current formal distribution Lie algebra (g, F'). Indeed, using

(2.1.9), we obtain (a € g, u € U):
a(z)u(w) = (au)(w)d(z — w).

Hence the associated to U module over the current conformal algebra Curg is

M(U) = C[d] ®c U defined by (a € g, u € U):
(2.8.10) a@yu = au, agyu =0 for j > 0.

The module M (U’) is finite and conformal, and it is irreducible iff U is a nontrivial

irreducible g-module.

ExAMPLE 2.8b. Let A and a be complex numbers. Consider the representation

of the Lie algebra Vect C* on the following space of densities:

F(A,a) = C[t,t7] em*(dt) 2.
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The action is defined as follows (f(t) € C[¢t,t7'], g(t) € C[¢t,t7] e~**):

F)0: (9(t)(d)' =) = (f()Deg(t) + (1 — A)g()def (1)) (dt)' 2.
Introduce the F'(A, a)-valued formal distribution

m(z) =Y (the ¥ (dt)' %) 27" = 6(t — z)e*(dt) 2.

nez

Recalling that L(z) = —§(t — z)0; (see Example 2.7b), and using (2.1.9), we obtain:
L(z)m(w) = ((Ow + a)m(w)) §(z — w) + Am(w)0yd(z — w).

Hence (F'(A,a),{m(z)}) is a conformal module over (Vect C*, {L(z)}), and the as-
sociated finite conformal module over the Virasoro conformal algebra is M (A, a) =

C[8]m defined by
(2.8.11) Loym = (0 +a)m, Laym=Am, L;m =0 for j > 1.
It is clear from the formula:

Ly\(P(0)m) = P(0+ \)(0 +a+ AX)m, P(9) € C[d],

that the module M (A, ) is irreducible if A # 0, and that (0 + )M (0,a) is a

nontrivial submodule of M (0, a).

ExXAMPLE 2.8c. The formal distribution Lie algebra Vect C* + g considered
in Example 2.7c acts naturally on the space F(A,a) ®c U (cf. Examples 2.8a,
2.8b). This is a conformal module. The associated finite conformal module over
the correspoding conformal algebra Conf (Vect C*)+Curgis M (A, a,U) = C[0]|QU
defined by (a € g, u € U):

Liyu= (0 +a)u, Layu=Au, Lyu=0 forj>1,
(2.8.12)
apyu = au, agu=_0 forj>O0.
This module is irreducible iff the g-module U is irreducible and U is non-trivial if

A =0.



56 2. CALCULUS OF FORMAL DISTRIBUTIONS
2.9. Representation theory of finite conformal algebras

Let R be a conformal superalgebra and let (Lie R, R) be the associated max-
imal formal distribution Lie superalgebra (see Section 2.7). Recall that the Lie

superalgebra Lie R admits a (even) derivation T defined by (see Remark 2.7b):
(2.9.1) T(an) = —nap—1, a€ R, n€Z.
It is clear from (2.7.3) that

(Lie R)_ = C-span of {a,la € R, n € Z}

is a subalgebra of the Lie superalgebra Lie R. It is called the annihilation algebra.
(This subalgebra will annihilate the vacuum vector in the future vertex algebra, cf.
Section 4.7, hence the name.) It is clear from (2.9.1) that (Lie R)_ is T-invariant,
hence we may form the semi-direct sum (LieR)~™ = CI' + (LieR)_, called the
extended annihilation algebra.

Comparing formulas (2.7.4), (2.9.1) and definition of Lie R with the definition

of an R-module, we arrive at the following simple (but important) observation.

REMARK 2.9a. A module M over a conformal superalgebra R is the same as a
module over the extended annihilation algebra (Lie R)~. This R-module is confor-

mal iff the following property holds:
(2.9.2) a,v=0 for a€ R, veM, ng.

A module over (Lie R) ™ satisfying (2.9.2) is called a conformal (Lie R) ~-module.
A (Lie R) -module is called finite if it is finitely generated as a C[T]-module.

REMARK 2.9b. Let M be a module over a conformal superalgebra R and let
V(M) be the C-span of {v,, € V(M)|n € Z}. Thisis a (Lie R) ~-submodule of the
Lie R-module V (M), called the annihilation submodule. It follows from definitions

that the R-module M is isomorphic to the (Lie R)"-module V(M)/V(M)_.

Now, choose a system of generators {a®} of £ := (Lie R)™ viewed as a C[T]-

module. Then we may define a descending system of subspaces

(2.9.3) £D8 2L 2L D...
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by letting £,, = C-span of {a,|a € R, j > n}. It clearly has the property
(2.9.4) [T,£,)=£L,-1 for n>1.
This leads us to the following lemma.

LEMMA 2.9. [CK2] Let £ be a Lie superalgebra with a descending system of
subspaces (2.9.3) and an element T satisfying (2.9.4). Let M be an £-module and
let

M, ={ve M|L,v=0}.

(a) Provided that U is a subspace of M,, such that UNM,_, =0 andn > 1, one
has: C[TIU = C[T] ®c U. In particular, dimU < oo if M is a finitely generated
C[T]-module.

(b)Suppose that M, # 0 for some n € Z, and let N denote the minimal such n.
Suppose that N > 1. Then provided that £ = CT + £¢, that £y is a subalgebra of
£ and [£o,Ln] C LN (0 that LoMn C My ), the irreducibility of the £-module M

implies
(2.9.5) M =C[T] & My,

hence the irreducibility of the Lo-module My. Conversely, if the Lo-module My
is trreducible and has no non-zero vectors annihilated by £x_1, then the £-module

(2.9.5) is irreducible.

ProOF. Let L, and R, denote the operator of left and right multiplication by
an element a of an associative algebra A. Using R, = L, — ada and the binomial

formula, we get the following well-known formula in A:

k

(2.9.6) ga* = Z (f) a*"7(-ada)lg, a,g€ A.

J=0
Let {v;}ier be a C-linearly independent set of vectors in U generating the
C[T]-module C[T]U. Suppose that . p;(T)v; = 0, where p;(T) € C[T], and not
all p;(T) = 0. Let m be the maximal degree of the p;(T)’s. We write p;(T) =
YociiT?, cij € C, so that we have cim # 0 for some i. Using (2.9.6) and (2.9.4),

-
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we have, since n > 1:

LormaTH =3 (’“) T+ @d ) (€01 mo1)

I
Nk
7N
. =

) Tk_j£n+m—1—j .
We have therefore

0=CLnim-1 ZPi(T)vi =Y CimCn1i = L1 <Zcim")i)-
i i

i
Since Y, eimv; # 0, we arrive at a contradiction, proving (a).

Under the assumptions of (b), if M is an irreducible £-module, then M =
C[T)My, hence by (a), (2.9.5) holds and My must be an irreducible £y-module.
Conversely, if the £o-module My is irreducible, but the £-module (2.9.5) is re-
ducible, then a non-trivial quotient of the latter would contradict (a) for U =

Mpy. O

Now it is easy to classify all finite conformal irreducible modules over the most
important finite conformal algebras. An R-module M is called trivial if a% ym =0

forallae R, me M, n € Z,.

THEOREM 2.9. Let R be a conformal algebra of one of the three types described
by Ezamples 2.7a-2.7c. Then a complete list of non-trivial conformal finite irre-
ducible R-modules M is as follows.

(a) If R is the current conformal algebra Curg, where g is a finite-dimensional
semisimple Lie algebra, then M ~ M(U), where U is a non-trivial finite-dimensional
irreducible g-module (see Ezample 2.8a).

(b) If R is the Virasoro conformal algebra, then M ~ M(A,a) with A # 0 (see
FEzample 2.8b).

(c) If R is the semi-direct sum of the Virasoro conformal algebra and the cur-
rent conformal algebra Curg, where g is a finite-dimensional Lie algebra, then

M~ M(A,a,U), where U is a finite-dimensional irreducible g-module which must

be non-trivial if A =0 (see Ezample 2.8¢c).

ProOOF. Let R = Curg. Then we have:

£:= (LieR)” =CT +g[t], T = -0,
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with the filtration £,, = g[t]t", n € Z,. Let M be an irreducible R-module. Then,
by Remark 2.9a, it is a conformal £-module and we may apply Lemma 2.9. If
N > 1, we have (2.9.5), where My is an irreducible £y/£n-module. If, in addition,
M is finite module, then dimc My < oo, and we may apply a well-known result
from Lie algebra theory (see e.g. [Se]) to show that My is an irreducible g[t]-module
with trivial action of gt]t.

If N =0, then My is a trivial g[t]-module, hence an £-submodule of M, hence
M = My and M is a trivial R-module. This proves (a).

Let Vir be the Virasoro conformal algebra. Then we have:
(Lie Vir)™ = CT + Vect C,

where Vect C = @,¢7,Ct"0; and T acts on it as —ad ;. It follows that (Lie Vir)~
is a direct sum (as ideals) of the commutative Lie algebra C(T + 9;) and the Lie
algebra £ := Vect C. Let M be an irreducible Vir-module. By Remark 2.9a, it is
an irreducible (Lie Vir)~-module. Hence T + 0; acts as a scalar, which we denote
by a and £ acts irreducibly on M. Define the following filtration on £ : £, =
@jZn(Ctj"'lat and apply Lemma 2.9. If N > 1, we argue in the same way as in the
case (a) to show (2.9.5) with My irreducible and to show that M ~ M (A, &) with
A #0if M is finite. If N = 0, then it is easy to see that M is the 1-dimensional
trivial £-module, proving (b).

The proof of (c) is similar. O

A conformal (g, F')-module (V, E) is called finiteif E is a finitely-generated C[8]-
module and is called irreducible if it contains only irregular non-zero submodules.
(As before a submodule I C V is called irregular if it does not contain all coefficients
of a non-zero formal distribution from E.) A conformal (g, F)-module (V,E) is
called trivial if gV = 0. In view of the discussion in Section 2.8, Theorem 2.9 is

equivalent to the following corollary.

COROLLARY 2.9. All non-trivial finite irreducible conformal modules over the
loop algebra g, where g is a finite-dimensional semisimple Lie algebra, over the Lie
algebra Vect C* | and over their semi-direct sum are respectively: quotients of loop

modules U, where U is a non-trivial finite-dimensional irreducible g-module; the



60 2. CALCULUS OF FORMAL DISTRIBUTIONS

density modules F(A, ), where A # 0; and the modules Ue™(dt)' =2, where U

is a finite-dimensional irreducible g-module which must be non-trivial if A = 0.

In conclusion of this section, we show how one uses Lemma 2.9 in order to prove

an analogue of classical Lie theorem on representations of solvable Lie algebras.

CONFORMAL ANALOGUE OF LIE THEOREM [DK]. Let M be a finite conformal
module over a finite solvable conformal algebra R. Then there erists a common

eigenvector (with eigenvalues in C) of all the operators aé‘g ) wherea € R, n € Z.

PRrROOF. We prove the theorem by induction on the lexicographically ordered
pair (rank R, dim tor R) of non-negative integers.

Let S C R be the last non-zero member of the derived series of R. Then S is
commutative and R(;S C S for all j € Z,. Hence we have a representation of R/S
in S. By the inductive assumption applied to the conformal algebra R/S, we may

deduce that there exists a non-zero element b € S such that:
(2.9.7) R(j)b eCh for jeZ,.
Consider the Lie algebras of operators on M

— (Tie P\M _ M
g=(LieR)Y = Z Ca;y

a€R,JEZ 4

and

— M M
b=Co" + 3 Oifj)
JEZ 4

with the filtration

jzn

Recalling that [af‘fn), bf‘g)] =250 (7) (a(j)b)?;[mrn_j), we see, using (2.9.7), that

(2.9.8) lg,b,] C by,
Let M, = {v € M|b,v =0}, and let N be the minimal n € Z such that M,, # 0.

Case 1. N = 0. Then, due to (2.9.8), My is a non-zero R-submodule, hence a

R/C[0])b submodule, and we may apply the inductive assumption.
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Case 2. N > 1. Then, by Lemma 2.9 applied to the b-module M, dim¢ My <
oo. By (2.9.8), gMy C My, and since g is a solvable Lie algebra, we may apply

the classical Lie theorem (see e.g. [Se]) to find an eigenvector for g in My. O

2.10. Associative conformal algebras and the general conformal algebra

Some of the main examples of Lie algebras are associative algebras with the
Lie bracket. Here we discuss a similar construction in the “conformal” framework.
Let A be an associative algebra over C. Two A-valued formal distributions a(z)
and b(w) are called local (or form a local pair) if the formal distribution a(z)b(w)
is local. Due to Corollary 2.2, we have the expansion into a finite sum for any local

pair of A-valued formal distributions:

(2.10.1) a(2)b(w) = Y (a(w);b(w)) 8Y8(z — w),
JEZ+

where

(2.10.2) a(w);b(w) = Res,(z — w)?a(2)b(w).

Suppose that the algebra A is spanned by coeflicients of a family F' of pairwise
local formal distributions. Then (A4, F) is called a formal distribution associative
algebra.

As before, we consider the closure F' of F, which is the minimal C[8]-module
containing F and closed under all products (2.10.2). All pairs from F are local due
to an “associative” analogue of Lemma 2.8 (which is easy to prove).

As before, the properties of the products a(w);b(w) on F are neatly described
in terms of the A-product

a(w)rb(w) = Y ADa(w);b(w).
JEZ+
As in the Lie algebra case, this leads us to the notion of an associative conformal
algebra. This is a C[0]-module R endowed with the A-product R®c R — C[A\]®c R,

denoted by ayb, satisfying the following axioms:

(A1), (Ba)ab = —Aaxb, ax0b= (0 + A)(apbd),

(A2)x ax(buc) = (arb)rtuc.
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Of course, writing axb = 37, A9 a;b, one may write equivalent axioms for the
products a;b.

As in the Lie algebra case, we have an associative conformal algebra F' associ-
ated to any formal distribution associative algebra (A, F'). Conversely, introducing
the affinization R of an associative conformal algebra R, we may construct the for-
mal distribution associative algebra Ass R = R/R, in the same way as we did in
Section 2.7 for Lie algebras. As in the Lie algebra case, this establishes a bijective
correspondence between associative conformal algebras R and families of formal dis-
tribution associative algebras obtained from Ass R as quotients by irregular ideals.
Similarly, one defines conformal modules over formal distribution associative alge-
bras and establishes their correspondence to conformal modules over associative
conformal algebras as in Section 2.8. A conformal module over an associative con-
formal algebra R is a C[0]-module M endowed with a C-linear map R — C[]A\|®c M,

denoted by a ~— al/, satisfying the properties:
(0a)M = [8M,a§\”1 =-xa}, a€R,

aﬁ/fbﬁ’[ = (a,\b)ﬁ#, a,b € R.

REMARK 2.10a. Let (A, F) be a formal distribution associative algebra. Then
(A°P, F), where A°P is the associative algebra with the opposite multiplication, is
a formal distribution associative algebra as well. Translating into the language
of associative conformal algebras, we see, using Proposition 2.3(b), that, given
an associative conformal algebra R with A-product ayb, its opposite associative

conformal algebra R°P has A-product b_)_sa. In particular, the A-bracket
(2.10.3) [Cl)\b] =axb—b_x_sa
makes R a conformal algebra (satisfying axioms (C1)-(C3),).

REMARK 2.10b. An associative conformal superalgebra R is simply a Z/27Z-

graded associative conformal algebra. The A-bracket (cf. Section 2.3)
[axb] = axb — p(a,b)b_r_sa

turns R into a conformal superalgebra.
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An associative conformal algebra A is called commutative if
axb="b_x_sa.

Obviously, commutative associative conformal algebras correspond to formal dis-
tribution commutative associative algebras. It would be very interesting to develop
an algebraic geometry based on commutative associative conformal algebras.

Now we turn to examples.

EXAMPLE 2.10a. If A is an arbitrary associative algebra, then the correspond-
ing current algebra A [¢,¢t7!] is a formal distribution associative algebra with the
family F = {a(z) = Zn(at“)z_"_ll a € A} of local formal distributions. Indeed,

we have:
a(z)b(w) = (ab)(w)d(z — w).
The corresponding associative conformal algebra is R = C[0] ®¢ A with A-product
a)b=ab, a,be A.
A much more interesting example is the following.

ExAMPLE 2.10b. Let Diff C* be the associative algebra of regular differential
operators on C*. It has a basis #/0]", j € Z, m € Z,. Introduce the formal
distributions (m € Z.):

J™(z) =Y (=) = 6(t — 2)(~0p)™
JEZ

Using (2.1.10) (for n = 0), we obtain:

m

W =33 (’]”) (Z) 891 T3 (1) 8(z — ),

7=0 ¢=0
It follows that the family F = {J™(z)|m € Z} consists of pairwise local formal
distributions with products:
m .
N AYIAYYEY s

m TN — ! Jj—1% Tm+n—j R
(2.10.4) J™(w)i ] (w) ;z (]) <i>aw J (w)
Hence (Diff C*, F) is a formal distribution associative algebra. The corresponding

associative conformal algebra is

Conf(Diff C*, F) = @ ez, CO]J™
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with the A-product, derived from (2.10.4) being as follows (m,n € Z4):
(2.10.5) ASVEEDY (m) (A + 8)F Jmtn=i,
i=0 7
Consider the obvious representation of the algebra Diff C* on the space C [t,¢71].
Letting v(z) = Y., ., t"2"""! = §(z — t), we obtain, using (2.1.10):

(2.10.6)  J™(2)v(w) = i m(m—1)...(m—j+ 1) v(w)d d(z — w).
j=0

Hence (C[t,t7], {v(w)}) is a conformal module over (Diff C*, F'). The associated
conformal module over Conf(Diff C*, F) is C[0]v with the A-action obtained from
(2.10.6) to be given by

(2.10.7) Jlv=(A+90)"v, mE€L,.

(A simpler way to derive formulas (2.10.5) and (2.10.7) is to use Lemma 2.2.)

A matrix generalization of this example is also important.

ExXAMPLE 2.10c. The associative algebra
Diffy C* = (Diff C*) ®@¢ Maty C

of all N x N matrix valued regular differential operators on C* is a formal distri-

bution associative algebra with the family of pairwise local formal distributions
F={J(z)=J™(z) @ Al)m € Z+, A € Maty C} .

The associated associative conformal algebra is
Conf (Diff y C*, F) = ®mez,C[0] (J™ @c Maty C)

with A-products

m

(2.108) TiNTE =3 (’;‘) (A +8) T3,

=0
The obvious representation of Diff y C* on the space C [t, t‘l] ® CN is an irre-
ducible conformal module with the family E = {v,(w) = v(w) ® ala € CN }. The
associated (conformal) module over Conf(Diff y C*, F) is C[0] ®c CV with the A-

action

(2.10.9) Jiw=M\+0)"Av, meZy, veCV.
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A more conceptual understanding of Example 2.10c is given by Proposition 2.10

below.

DEFINITION 2.10. Let U and V' be two C[0]-modules. A conformal linear map
from U to V is a Clinear map a : U — C[A] ®c V, denoted by ay : U — V, such
that

[6, a,\] = -)\a,\.

(This equation means: 8"ay — a8V = —Xay.) Denote the vector space (over C)

of all such maps by Chom(U, V). It has a canonical structure of a C[0]-module:
(80,))\ = —)\a,\.

REMARK 2.10c. Let U and V' be modules over a conformal algebra R. Then
the C[0]-module H := Chom(U, V) carries an R-module structure defined by (a €
R,pe HueU):

(aX'0),, v = ay (Pu-ru) = pu—r (aSu).
Hence one may define the contragredient conformal R-module U* = Chom(U, C),
where C is the trivial R-module and C[§]-module, and the tensor product of R-
modules: U ® V = Chom(U*, V). It is easy to see that the R-module Chom(U, V)

is conformal iff both U and V are finite conformal R-modules.

In the special case U = V we let CendV = Chom(V,V). Provided that V'
is a finite C[0]-module, the C[0]-module Cend V has a canonical structure of an

associative conformal algebra defined for a,b € Cend V' by
(2.10.10) (a)\b)l‘fv =ay (b_\v), veEV

Indeed, axiom (A1), is immediate, while axiom (A2), is obtained from (2.10.10)
by replacing p by u + A. Finally, it is easy to show that a b depends polynomially
on \ using that V is a finite C[0]-module.

REMARK 2.10d. By the very definition, a structure of a conformal module over
an associative conformal algebra R in a finite C[0]-module V', is the same as a

homomorphism of R to the associative conformal algebra Cend V.
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The A-bracket (2.10.3) on Cend V, where V is a finite C[9]-module, makes it a
conformal algebra, which we denote by gc V' and call the general conformal algebra.
The second term of the bracket (2.10.3) can be simplified:

—(bor=a)y v==>_ ((=x=8)™(b a)) v=—(by_ra), v=—bj_, (av).

n>0

Thus the A-bracket of gcV looks as follows:
(2.10.11) [axb]) v = [aY,b)_,] v

REMARK 2.10e. Formula (2.10.11) shows that a structure of a conformal mod-
ule over a conformal algebra R in a finite C[0]-module V is the same as a homo-

morphism of R to the conformal algebra gc V.

For a positive integer N we let Cendy = Cend C[O]", gcn = gc C[8]Y (where
C[O]V is the free C[0]-module of rank N). Recall that we have a representation
of the associative conformal algebra Conf(Diff C*) in C[8]" defined by (2.10.9).
By Remark 2.10d this gives us a homomorphism ¢ : Conf (Diff y C*) — Cendy
of associative conformal algebras. Likewise, by Remark 2.10e we get a confomal
algebra homomorphism ¢_ : Conf (Diﬂ?;\’, C* ,F) — gcy, where Diff y C* stands
for Diff y C* with the usual Lie bracket.

PROPOSITION 2.10. [DK]The homomorphisms ¢ and @_ are isomorphisms.
PRrROOF. We have by (2.10.9):
(0% J7) v =(=N*A+0)™Av, k,meLy, veCl.

This formula shows that ¢ and ¢_ are injective. The same formula shows that
o and ¢_ are surjective since a conformal linear map is determined by its values
on a set of the generators of a C[0]-module, but the polynomials A\*(\ + 8)™v
(k,m € Z,, v € CN) span over C the space C[\,9] ® CN. O

REMARK 2.10f. The associative conformal algebra Cendy and the general con-
formal algebra gc, are interesting examples of simple algebras which are not finite
(but have finite Gelfand-Kirillov dimension). It is an interesting open problem to
classify such algebras. A related open problem is to classify infinite subalgebras of
Cendy and gey which act irreducibly on C[]V . (For a classification of such finite

algebras see [DK].)
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2.11. Cohomology of conformal algebras

This section is an exposition of some of the results of the paper [BKV]. (A
generalization to the super case is straightforward by making use of the usual sign

rule.)

DEFINITION 2.11a. An n-cochain (n € Zy) of a conformal algebra R with co-

efficients in an R-module over it is a C-linear map
¥ :R®" = M[A,..., 0], 01 @ Qay = Yag,oan (@15 - - Gn),

where M[\1,...,A,] denotes the space of polynomials with coefficients in M, sat-

isfying the following conditions:

(2.11.1) Yy oxn (@1, -5 004, - oy G0) = —=XiYar, o nn (G, - oy iy e ooy Q)
(211.2) v is skew-symmetric with respect to simultaneous
permutations of a;’s and \;’s.
We let R® = C, so that a 0-cochain + is an element of M and (dy)a(a) = ary.
Sometimes, when the module M is not conformal, one may consider formal power
series instead of polynomials in this definition.

We define a differential d of an n-cochain ~ as follows:

(d’)’))\l,..‘,)\,.ﬂ (ala HERE} an+1)
n+1
= Z(—1)i+j7)\1,,..,3\\i,---,>\n+1 (al, - ,6,-, ey an+1)
i=1
n+1
+ Z (_1)i+j7>\i+)\j,Al,.,.,Xi,---,xj,'-~,>\n+1 ([ai)\i aj], ag, ..., Ei, ceey a]', ceey an+1),
to

where ~ is extended linearly over the polynomials in ;.

REMARK 2.11a. Property (2.11.1) implies the following relation for an

n-cochain ~v:
7>\+p,,)\1 ,,,,, An—1 ([U/)\b]a Alyeey an—l) = ’Y/\+H,/\1,-..,)\n._1 ([a—a—ub]a Alye-ny an—l)'

LEMMA 2.11. (a) The operator d preserves the space of cochains.
(b) d* = 0.
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Proor. (a) Property (2.11.1) obviously holds for dv if it holds for . The only

non-trivial point in checking (2.11.2) of dy amounts to the equation

VA1, An -1 ([a)\b], aty ... ’an—l) = TV An—t ([bua]a Ay, ... ’an—l)a

which follows from Remark 2.11a and the skew-symmetry (C2)x of [axb].

(b) We have for an n-cochain v

(d 7)>\1, Ant2 (ala ceey an+2)

n+2
— i+1 ~
= Z(—-l) + Qi (d’}/)h’m,xi,m’)\n+2 (al, RN I ,an+2)
i=1
n+2
z+J X . ..
+ Z G VI VN W (7 V1. 7) NS PR TN PR )
bI=1
1<J
n+2
_ i+j+sign{s i} ‘ ~ ~
- Z (=1)7Tee v }a”‘i (a”\j7>\1,~-,>\i,1,---,>\n+2 (@155 - ’an+2))
i,j=.1
i#]
n+2
_1\i+j+k+1+sign{j,k,i}
+ Z ( 1) @i 7>\]+>\ky)\1, ,J,k, SAnt2
i,7,k=1
J<k,i#j,k

([aj)\jak]a aty ... 7ai,j,k, .. aan+2)
n+2
+ Z (_1)i+j-|-k+sign{k ¥

i,5.k=1
i<j,k#i,5

.7}
ak}‘kﬁy/\ FAG AL A ke An 42

([aixn;aj), 0153 @ijiks ooy Qng2)
n+2

i,J= 1
<7

n+2

+ Z z+J+k+l+81gn{z,J;£k l}’}/
Ae+ALA A A, ,],k LyeresAn g2
1,5,k l=1

i iAk<l

([aka, a1, @i, @j,a1, -, Qijkls- - - > Any2)
n+2

+ Z z+;+k+1+51gn{z

i,7,k=1
i<, k#1,5

23>k} -
7)\i+)\j FARAL A ke A2

([laix; a]n+2;ak), 01, -, Qijiks - - -5 Gng2)s

where sign{i1,...,i,} is the sign of the permutation putting the indices in the

increasing order and @; ; ... means that a;,a;, ... are omitted. Notice that each term
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in the summation over i, j, k,[ is skew-symmetric with respect to the permutation
1 ] k
E Ll i j

first and the forth summations cancel each other, because M is a conformal algebra

. Therefore, the terms of that summation will cancel pairwise. The

module:
—aix, (aj5,m) + a;, (aix,m) +[aix aj]x4xm = 0.

The second summation becomes equal to the third one after the substitution (ikj),
except they differ by a sign. Thus, they cancel each other, as well. Finally, the
sixth summation can be rewritten as summation over i < j < k of the sum of three

permutations of the initial summand. Precisely, in the first entry of v, we will have
[laix;ai]nx;08] = [lain, ar]nieacas] + [[as 5, aklr 4 a0l

Using Remark 2.11a, we can transform this sum inside 7 into
([aix, ajlxi+x, ar] = [laix, ar]-o-x; 03] + [[a;,, ar]-o-x; ail,

which vanishes by the Jacobi identity (C'3), and skew-symmetry (C2), in R. Thus,

we see that all of the terms in d?~ cancel. O

Thus the cochains of a conformal algebra R with coefficients in an R-module
M form a complex:
C(R,M)= P C(R,M),
=
where C" (R, M) denotes the space of all n-cochains. This complex is called the
basic complezx for the R-module M. This is not yet the complex defining the right

cohomology of a conformal algebra: we need to consider a certain quotient complex.

Define the structure of a C[8]-module on C(R, M) by letting
(2.11.3) (O renn (@15 a0) = (8™ + 37 A ) s ona a1, ),
=1
where &M denotes the action of & on M.

REMARK 2.11b. d0 = 0d, and therefore the graded subspace dC(R, M) of

C(R, M) is a subcomplex. Indeed, the first summation in the differential transforms

the factor &M + Y7 \; into &M + -1 A, because of the properties (C1)y and
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(C1")5 of the A-bracket. The second summation does the same for more obvious

reasons.

Define the quotient complex

C(R,M) = C(R,M)/0C(R,M) = € C"(R,M),
neZ 4
called the reduced complex.

DEFINITION 2.11b. The basic cohomology H(R, M) = @,,,, H"(R, M) is the
cohomology of the basic complex C(R,M). The reduced cohomology H(R,M) =
@nez+ H™(R, M) of a conformal algebra R with coeflicients in a module M is the
cohomology of the reduced complex C(R,M).

REMARK 2.11c. The exact sequence 0 — C(R, M) = C(R, M) — C(R, M) —
0 gives the long exact sequence of cohomology:
(2.11.4) 0 — H°(BC(R, M)) - H°(R,M) —» H°(R, M) —
- H'(0C(R,M)) —» H' (R, M) - H' (R, M) -
— H*>(OC(R,M)) —» H*(R,M) — H*(R,M) = - --
This cohomology theory describes extensions and deformations, just as any

cohomology theory.

PROPOSITION 2.11. (a) H(R,M) ={m € M |axm =0 for all a € R}.
(b) The isomorphism classes of extensions
0O-M-—-E—=-C—=0
of the trivial R-module C (0 and R act by zero) by a conformal R-module M
correspond bijectively to H°(R, M).
(c) The isomorphism classes of C[0]-split extensions
0->M->E—-N=0

of conformal modules over a conformal algebra R correspond bijectively to
H!'(R,Chom(N, M)),
where M and N are assumed to be finite. If, in particular, N = C is the trivial

module, then there exist no non-trivial C[0]-split extensions.
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(d) Let C be a conformal R-module, considered as a conformal algebra with
respect to the zero A-bracket. Then the equivalence classes of C[0]-split “abelian”

extensions
05C—oR—-R—=0

of the conformal algebra R correspond bijectively to H?(R,C).
(e) The equivalence classes of first-order deformations of a conformal algebra

R correspond bijectively to H?(R, R).

PROOF. (a) The computation of HO(R, M) follows directly from the definition:
form € M = C°(R, M) and a € R, (dm)x(a) = aym.

(b) Given an extension 0 - M — E — C — 0 of modules over a conformal
algebra R, pick a splitting of the short exact sequence over C, i.e., assume that as
a complex vector space, E ~ M & C = {(m,n) | m € M,n € C}. Define f € M by

writing down the action of 0 on the pair (m,1) € E:
(2.11.5) d(m,1) = (Bm + £,0).

We claim that f € M = C°(R, M) defines a 0-cocycle in the reduced complex
C(R, M) and thereby a class in H(R, M).
To see that, define a 1-cochain y € C*(R, M) using the action of R on E:

(2.11.6) ax(m,1) = (axm + a(a),0)

for a € R. The property (2.11.1) of v: vx(8a) = —Avx(a), follows from the fact
that (0a)x(m, 1) = —A(ax(m,1)). The property a(8(m,1)) = (A+8)(axr(m,1)) of

the action of R on E expands as

(2.11.7) (df)x = (07)x,

which means that df = 0 in the reduced complex.
If we choose another splitting (m,n)" of the extension E, it will differ by an

element g € M:
(m,1) = (m +g,1),

so that the new 0-cocycle becomes f' = f + 8¢, therefore defining the same cochain

in the reduced complex.
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If we have two isomorphic extensions and choose a compatible splitting over C,
we will get the same 0O-cocycles corresponding to them. This proves that isomor-
phism classes of extensions give rise to elements of H°(R, M).

Conversely, given a cocycle in C°(R, M), we can choose a representative f € M
of it to alter the natural C[0]-module structure on M & C by adding f to the action
of 0 on M & C as in (2.11.5). This will obviously extend to an action of C[3]. We
can also alter the natural R-module structure by adding « to the action of a € R
as in (2.11.6), where v is a solution of equation (2.11.7), which means that f is
a cocycle in the reduced complex. This action satisfies (A/1), because of (2.11.7)
and the property (2.11.1) of v, and it satisfies (M 2), because dy = 0, which follows
from (2.11.7) and the fact that C[9] acts freely on basic 2-cochains.

By construction the natural map M — M & C and M & C — C will be
morphisms of C[0]- and R-modules.

This construction of a new conformal module structure on M @ C involved a
number of choices. The choice of a different representative f' = f + Og defines
an isomorphism of the two C[0]-module structures on M & C, which automatically
becomes an isomorphism of the corresponding R-module structures, because the
corresponding «y’s are unique. The 1-cochain + is uniquely determined by f ( because
CJd] acts freely on the space C*(R, M) of basic 1-cochains.

(c) We will adjust the proof of (b) to the new situation. Given a C[d]-split
extension 0 - M — E — N — 0 of modules over a conformal algebra R, pick a
splitting of the short exact sequence over C[9], i.e., assume that as a C[0]-module,
E~M&N = {(mmn) | m e M;n € N}. We are going to construct a re-
duced 1-cochain with coefficients in Chom (N, M) out of this data. Note that such
cochains are linear maps v = vx(a), from R ® N to M depending on two vari-
ables X\ and p, considered modulo A — p. Note that yx(a), mod (A — p) is fully
determined by the restriction «,(a)y to the diagonal A = u. Define a 1-cochain
v € C*(R,Chom(N, M)) using the action of R on E:

(2.11.8) ay(m,n) = (axm + ya(a)an, axn)

for a € R. The property (2.11.1) of v: v5(8a)x = —Aya(a)a, follows from the fact
that (0a)x(m,n) = —Aax(m,n). The property ax(0(m,n)) = (A + 8)(ax(m,n)) of
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the action of R on E expands as
(2.11.9) (Oy)A =0,

which means that 7, (a), is a conformal linear map N — M. Finally, the module
property (M2), for elements in E implies that dy = 0.

If we choose another C[0]-splitting (m,n)’ of the extension E, it will differ by
an element # € Homgys) (N, M):

(m,n)’ = (m + B(n),n).

Homgyg) (N, M) may be identified with the degree zero part of Chom(NV, M), so that
the new 1-cocycle becomes ' = v + df3, therefore defining the same cohomology
class.

If we have two isomorphic extensions and choose a compatible splitting over
C[9], we will have exactly the same 1-cocycles v corresponding to them. This proves
that isomorphism classes of extensions give rise to elements of H' (R, Chom(N, M)).

Conversely, given a cohomology class in H*(R, Chom(N, M)), we can choose a
representative v € C*(R, Chom(N, M)) of it to alter the natural R-module struc-
ture on M @ N by adding 7 to the action of R on M @ N as in (2.11.8). This action
will satisfy (M1), because of (2.11.9) and (2.11.1). This action will define an R-
module structure on M @ N, because dy = 0 after the restriction to u = A; + A in
C?(R, Chom(N, M)).

By construction the natural mappings M —- M & N and M @ N — N will be
morphisms of C[0]- and R-modules.

This construction of a new conformal module structure on M & N is indepen-
dent of the choice of a different representative v = v + df3, because it defines an
isomorphic structure of an R-module on M & N.

Finally, if N = C, then Chom(C, M) = 0, and therefore, there are no split
extensions.

(d) Given a C[0]-split extension of a conformal algebra R by a module C, choose

a splitting R = C @ R. Then the bracket in R .

[(0,a)x(0,0)] = (cr(a,b),axd) for a,b € R
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defines a map ¢: R® R — C[)], satisfying (C1), and (C1'), which we may combine

with the natural mapping
C[A] = C[A1, 22]/(8 + A1+ X2), P(A) = p(A1),

to get the composite mapping, denoted cj,,z,. It defines a 2-cochain, because it is
obviously skew-symmetric and (cx(da,b), axb) = [(0,9a)x(0,b)] = [8(0,a)x(0,b)] =
—[A(0,a)x(0,b)] = —A(ea(a,b), arb), which implies cx,,x,(0a,b) = —Aicx, 2, (a,b),
and similarly, cx, x,(a,0b) = —Azca;,x,(a,0) mod (8 + Ap + A2). In fact, this 2-

cochain c is a cocycle:

dec = ay, Chz2,23 (b, C) = bx;0x1,0 (a,e) + CA3CA1 )2 (a, b)

— Ch1+422,23 (a>\1 b, C) + Cai42s,2 (a>\1 ¢, b) — Caz+23,A1 (b)\zca a) =0.

This is just because the Jacobi identity (C3)y, is satisfied in R.

The construction of ¢ assumed the choice of a splitting R=C®R. A different
splitting would differ by a mapping f: R — C, which can be thought of as f: R —
C[A]/(8 + ), which would contribute by df to c.

Thus, any extension determines a cohomology class in H2(R,C). The above
arguments can be reversed to show that a class in the cohomolQQr group defines an
extension.

(e) Let D = C[t]/(t?) be the algebra of dual numbers. Then a first-order
deformation of a conformal algebra R is the structure of a conformal algebra over
D on R® D, so that the mapping R® D — R, a @ p(t) — p(0)a, is a morphism
of conformal algebras. This means that classes of first-order deformations are in
bijection with classes of C[0]-split abelian extensions of R with the R-module R in

the sense of part (d) of this theorem. Therefore, they are classified by H?(R, R). O

Now I shall explain how the basic and reduced cohomology of a conformal
algebra R with coefficients in a conformal R-module M is related to Lie algebra
cohomology. Recall that M is canonically a module over the annihilation Lie algebra
g- = (LieR)_ (see Remark 2.9a). Let C(g9-,M) = @,z C"(9-, M) be the
Chevalley-Eilenberg complex defining the cohomology of g_ with coefficients in M.
Recall that, by definition (see e.g. [F]), C™(g—, M) is the space of skew-symmetric
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linear maps v: (g—)®" — M such that
Y(@1m, ® -+ Qanm,) =0

for all but a finite number of m,,...,m, € Z,, where a,...,a, € R, and a;,,, €
g- = (LieR)_- = R[t]/(0 + &) R]t] is the image of the element a;t™:. Note that
C(g—, M) has the following structure of a C[8]-module:

(2.11.10) (O7)(a1 ® -+ ® an)

=0y (@1 ® - ®an) =Y Y@ ® - ®8a® @ an).

i=1

THEOREM 2.11. Let R be a conformal algebra, let g denote its annihilation

algebra and let M be a conformal R-module. Then

(a) There is a canonical isomorphism of complexes 5’(R, M) and C(g—-, M),
compatible with the action of C[8]. Consequently, H(R, M) ~ H(g_, M)
and the complex C(R, M) is isomorphic to C(g—, M)/0C(g-,M).

(b) Provided that M is a free C[0]-module, the complex C(R, M) is isomorphic to
the subcomplez C(g—,V(M)-)? of 8-invariant cochains in C(g—,V(M)_).

PROOF. (a) For a cochain v € 5’"(R, M), we write

YA1yeiesAn (al’ sy a'n) = Z Agml) te )‘szm")')'(ml,,..,m,.)(al, ey an)-

ml,...,m,.€Z+

In terms of the linear maps -
Y(mi,e.omn)* R®" - M, Q@ QY 'Y(ml,---,mn)(al’ <oy Gn),

the definition of C(R, M) translates as follows.

(i) for any ai,...,an € R, Y(m,,....ma)(a1,...,ay) is non-zero for only a finite
number of my,..., My,

(ii) 7(m1,...,m,-,...,m,.)(a1a ..,004,. .., an)
- —mi'y(ml,...,m,‘—l,...,m,.)(a'l, ey gy e ey an),

(iii) + is skew-symmetric with respect to simultaneous permutations of a;’s and m;’s.
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The differential is given by:

(d'Y)(ml,...,m,.+1)(a1’ ey an+1)
n+1
= Z(_l)t-klai(mi)’y(ml »---,ﬁli,...,mn+1)(a’1a oo aaia B an+1)
i=1

n+l m;

My
+ Z Z(_l)z"'J( k )'Y(mi-}—mj—k,m1,..-,ﬁl.’,...,ﬁj,,..,m".{,.l)(a'i(k)aj,al)
t,j=1 k=0
i<j

ey @iy ey Gy ey Ol

Define linear maps ¢™: 5’"(R, M) - C™(g—, M) by the formula

(¢n7)(a1m1 Q- ® anmn) = 7(m1,~~~,mn)(a1, cee ’an)~

They are well-defined due to above condition (ii). Clearly, ¢™ are bijective and,
using (2.7.3), it is easy to see that ¢"*1 od = d o ¢". Moreover, " 0 = d o ¢™,
where 8 acts on C(R, M) via (2.11.3) and on C(g_, M) via (2.11.10).

(b) Now we assume that M is a free C[8]-module: M = C[d] ®c U for some
vector space U. Then the g_-module V_ = V(M)_ is just U[t] with

m
am(ut) = Z (m) (agyu)t™ ™7, B(ut™) = —nut™ !,
=0 \J
for u € U, a € R, see Section 2.9. In terms of the usual generating series a) =

Y50 A™a, this can be rewritten as

ax(ut™) = (ayu) t"et.

Recall also that V_ is an R-module where C[d] acts by 8 = —;.
Let 8 € C™(g—,V_). As in the proof of (a), consider the generating series

(2.11.11)  Bay,oanst(@1,y -2y an)

= T A AP @ @)

mi,....Mn€Z 4

By (2.11.10), 0 acts on By,,... x.;t a —0; + »_ A;. Hence 3 is d-invariant iff

(2.11.12) Brnrdmst(@1s -y @n) = Pag,nn (@1, -0y an) €22
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where Yx; ... a. = Bu,...,\n;tlt=0 takes values in U. Identifying U with 1Q U C M,
we can consider v as an element of én(R, M). Tt is easy to check that B +— 7 := 1~
mod (8 + ¥ \;) is a chain map from C(g—,V_) to C(R, M).

Conversely, for ¥ € C™(R, M) choose a representative v € 6’"(R, M) such
that ¥ = v mod (8 + 3_ \i). Define 8 € C™(g—,V_)? by (2.11.11) and (2.11.12)
with 8 substituted by —d; in ya,,...a, (a1,...,8,) € M = U[8]. Then clearly, 8 is
independent of the choice of +.

The correspondence 3 ++ 7 establishes an isomorphism between C(g_,V_)?

and C(R, M). O

ExAMPLE 2.11. Here we will compute the cohomology of the conformal algebra
Vir = C[9]L, [LxL] = (8 + 2\)L with trivial coefficients M = C, where both & and

L act by zero. The answer is as follows:

1 ifg=0or3, 1 ifg=0,2,o0r3,
0 otherwise.

dim H?(Vir,C) = dim H4(Vir,C) =
0 otherwise,

An n-cochain v in this case is determined by its value on L®":
P()\l, e ,/\n) = 7>\1,-~,>\n (L, e ,L)

Obviously, P(A1,...,An) is a skew-symmetric polynomial with values in C. The

differential is then determined by the following formula:

n+1

(@P) ALy, Ang1) = 3 (D=2 PiAA5, M, Ao, Ay e Angr)-
2

This describes the complex 5’(Vir, C). The complex C(Vir,C) producing coho-

mology of Vir in degree n is nothing but the quotient of 5’"(Vir, C) by the ideal

generated by > i, A;. In other words, C™(Vir, C) is the space of regular (polyno-

mial) functions on the hyperplane 211';1 A; = 0 in C* which are skew-symmetric

in the variables A1,...,An. (This complex appeared as an intermediate step in

[GF1] of the calculation of cohomology of the Virasoro algebra, and its cohomology

was computed there.) Consider the following homotopy operator k: ce (Vir,C) —

C1-1(Vir,C):
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A straightforward computation shows that (dk + kd)P = (degP — q)P for P €
C?(Vir, C), where deg P is the total degree of P in Ay, .. ., Ag. Thus, only those
homogeneous cochains whose degree as a polynomial is equal to its degree as a
cochain contribute to the cohomology of C (Vir,C). These polynomials must be
skew-symmetric and therefore divisible by A, = [],;(Ai — A;), whose polynomial
degree is g(q — 1)/2. The quadratic inequality ¢(¢ — 1)/2 < g has ¢ = 0, 1, 2,
and 3 as the only integral solutions. For ¢ = 0, the whole C° = C contributes
to HC. For g = 1, the only polynomial of degree 1 up to a constant factor is A;.
Next, d\; = A3 — A2, which is the only skew-symmetric polynomial of degree 2 in
two variables. This shows that H! = H2 = 0. Finally, for ¢ = 3, the only skew-
symmetric polynomial of degree 3 in 3 variables is Az. It is easy to see that this
polynomial represents a non-trivial class in the cohomology. Indeed, it is closed,
because a skew-symmetric function in four variables has a degree at least 6, which
is greater than deg(dA3) = 4, and Az is not a coboundary, because it can be the
coboundary of a two-cochain of degree 2, which must be a constant multiple of
A2 — A? = d)\,, whose coboundary is zero.

The computation of the cohomology of the quotient complex C'(Vir, C) is based
on the long exact sequence (2.11.4). By definition, 8C° = 0. To find the cohomology
of 8C(Vir,C), define a homotopy ki : 8C1 - 8C1 as k1 (0P) = Ok(P), where
8=, and P € C?. Then (dk; + k;1d)dP = (deg P — q)@P. As in the previous
paragraph, this implies that degP = ¢ = 0, 1, 2, or 3. Up to constant factors,
the only polynomials in OC with this property are P, = A? for ¢ = 1, P, =
(A1 +A2)(A2 = A2) for ¢ = 2, and P3 = (A; + A2 + A3)A3 for ¢ = 3. One computes:
dP, = —P; and dP; = 0. Therefore H4(8C) = 0 for all g but ¢ = 3, where it is
1-dimensional with the generator P3. From the long exact sequence (2.11.4) we see
that H°(Vir,C) = C and H?(Vir,C) = 0 for ¢ = 1,4,5,6,...; H3(Vir,C) = CA3
and H?(Vir,C) = C(A\3 — A3), because d(\3 — \3) = P;.

In a similar fashion one can show that if 8 acts on C non-trivially, then

H9(Vir, C), remains the same, but H?(Vir, C) becomes 0 for all q.

COROLLARY 2.11a. The conformal algebra Vir has a non-trivial central exten-

sion by C iff C = 0; it is unique and is given by the 2-cocycle (2.7.19).
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For the calculation of basic and reduced cohomology of Cur g with coefficients in

C as well as of Vir and Cur g with coefficients in M(A, ) and M (U) respectively

the reader is refered to [BKV]. One of the open problems is the calculation of

cohomology of the conformal algebra gey. In order to demonstrate how beautiful

the results are, let me state, in conclusion of this section, the answer for the Vir-
modules M (A, a):

(@) H(Vir, M(p,0)) =0ifa #Oorif a =0and A # 1 — (3r? + 7)/2 for any

r € Z.
2forg=r+1,

(b) dim H?(Vir, M(1_(3r24r)/2,0)) = lforg=rorr+2,
0 otherwise.
Proof uses results of [FeF], [F] on cohomology of the Lie algebra of vector fields
on C vanishing at 0 (see [BKV], Theorem 7.2 for details).

This theorem, along with Proposition 2.11d, implies the following corollary:

COROLLARY 2.11b. There erists a non-trivial abelian extension 0— M (A, o) —
R—-Vir—>0iffa=0and A=1,0, -1, —4 or —6.

This corollary (obtained earlier by M. Wakimoto and myself by a direct, but
very lengthy, calculation) shows that a Levi splitting theorem does not hold in

general. It is closely related to the calculations of [R2].






CHAPTER 3

Local fields

3.1. Normally ordered product

Fix a vector superspace V = V5 + V; (the space of states). Recall that a formal

distribution

a(z) = Z a(n)z'"‘l

nezZ
with values in the ring EndV (i.e., a5y € EndV) is called a field if for any v € V

one has:
An)V = 0 for n > 0.

This means that a(z)v is a formal Laurent series in z (i.e., a(z)v € V[[2]][z71]).

(3.1.1) [a(z), b(w)] = f: & (w)dD (2 —w) + bz, w) T

=0
all the coefficients ¢/ (w) are fields provided that b(w) is a field, due to formula
(2.2.2):

(3.1.2) d (w) = Res,[a(z), b(w)](z — w)’.

The normally ordered product of two fields a(z) and b(z) is defined by

(3.1.3) s a(2)b(2) 1= a(2)4b(z) + (=1)P@POp(2)a(z)_.

Since

(3.1.4) : a(z)b(z) Z(n)= Z a(j)b(n_j_l) + (_l)p(a)p(b) Z b(n_j_l)a(j)
j=-1 j=0

we see that when applied to v € V each of the two sums gives only a finite number
of non-zero summands, hence : a(z)b(z) : is a well defined formal distribution. Here
we use that both a(z) and b(z) are fields; for general formal distribution one is able
to define only the normally ordered product (2.3.5) in two indeterminates.

81
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Moreover, it is clear from (3.1.3) that : a(2)b(z) : is a field, since given v € V,
b(z)v (resp. a(z)-v) is a formal Laurent series (resp. a Laurent polynomial) in z,
hence a(z)4b(2)v (resp. b(z)a(z)-v) is a formal Laurent series in z.

Thus, the space of fields forms an algebra with respect to the normally ordered
product (which is in general neither commutative nor associative).

Incidentally, it is straightforward to check that : a(2)b(z) : —p(a,b) : b(2)a(z) :
is a Lie superalgebra bracket (in spite of the non-associativity of the normally
ordered product).!

The derivative da(z) of a field a(z) is again a field and, thanks to (2.3.4), 9 is

a derivation of the normally ordered product:
(3.1.5) 0:a(2)b(z) :=: 0a(2)b(z) : + : a(2)0b(z) : .

Due to the existence of the normally ordered product, one can define the n-th

product between fields not only for n positive (see (2.3.8)), but also for n negative:
(3.1.6) a(2)(=n-1)b(z) =1 8™a(2)b(2) ;,  n€Z,.

It is tempting now, using these products and Taylor’s formula (2.4.3), to rewrite
the OPE (2.3.9a) of mutually local fields a(z) and b(z) in a “complete” form:
(3.1.7) a(2)b(w) = Z %
JEZ

However, (3.1.7) makes no sense as an equality of formal distributions since different
parts of it are expanded in different domains. (In the “graded” case one can give a
meaning to (3.1.7) using analytic continuation.) Still, formula (3.1.7) can be used,
up to an arbitrary order of z — w.

In order to state the result we need the notion of a field in z and w. This is a
formal EndV-valued distribution a(z,w) such that a(z,w)v € V[[z,w]][z"},w™].

For example, : a(z)b(w) : is a field if a(z) and b(w) are fields. Note that a
partial derivative of a field is a field and that a(w,w) is a well defined field in the

indeterminate w. The following is yet another version of Taylor’s formula.

1This was pointed out to me by A. Radul."
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PROPOSITION 3.1. For any field a(z,w) and any positive integer N there exist
fields ¢/ (w) (0< j < N —1) and a field d™ (z,w) such that

N-1
(3.1.8) a(z,w) = Y I (w)(z —w) + (z —w)Vd" (z,w).
j=0

The coefficients ¢/ (w) are uniquely determined by this expansion and are given by

the usual formula:
(3.1.9) d(w) = 8P a(z,w) |1=w -

PROOF. The uniqueness of the ¢/ (w) is proved in the usual way: differentiate j

times (3.1.8) by z and let z = w. It suffices to prove existence of (3.1.8) for N = 1:
(3.1.10) a(z,w) — a(w,w) = (z — w)d(z,w) for some field d(z,w),

since applying it again to d(z,w) gives (3.1.8) for N = 2, etc. The proof of (3.1.10)
is straightforward. O

THEOREM 3.1. Let a(z) and b(z) be mutually local fields and let N be a positive

integer. Then there exists a field d™ (z,w) such that in the domain |z| > |w| one has:

a(w) ;) b(w)

(o = w)i + (z = w)NdN (z,w).

(3.1.11) a(z)bw) = Y

j>-N
The coefficients of (z—w) ™7~ (j > —N ) in this expansion are uniquely determined.

PRrROOF. In view of (2.3.9a) and (3.1.5), the theorem is a consequence of
Proposition 3.1 applied to the field : a(z)b(w) :. a

Proposition 3.1 and Theorem 3.1 show that when calculating the OPE of local
fields one can use Taylor’s expansions up to the required order.

The following lemma will be used in the sequel.

LEMMA 3.1. Let a(z) = Y, 0z~ """ and b(z) = 3, bnyz~""! be EndV-
valued fields and let |0) € V' be a vector such that

a(n)|0) =0 and b(n)l()) =0forneZy.

Then (a(z)n)b(2))|0) is a holomorphic V -valued formal distribution for alln € Z

with constant term a(p)b(1[0).
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PROOF. Let k € Z, and consider separately two cases. The first case:
(@(2)(k-b(2)I0) = :8Wa(2)b(z) : 0) = 8™ (a(2))+b(2)[0)
= (0Wa(2))4b(2)+/0) -
We have used here (2.3.4). The second case:

k
(a(2)(#)b(2))|0) = Z()(— 7 [agy, b(2)] 10)

j=0

k
k )
= (1) (=2)"aj)b(2)+10) -

Thus we see that in both cases lemma holds.

O

It turns out that there is a nice unified formula for all the n-th products of

fields (n € Z):

(3.1.12)
a(w) () b(w) = Res, (a(z)b(w)iz,w (2 — w)™ — (= 1)P@PO) b(w)a(2)iy, . (z — w)”) .

Indeed, for n > 0 formula (3.1.12) obviously coincides with (2.3.8). For n < 0,
(3.1.12) follows from the following formal Cauchy formulas for any formal distribu-
tion a(z) and k € Z:

1

(3.1.13a) Resza(z)iz,wm = Wa(w),,
(3.1.13b) Resza(z)iw,z(j_—;)kjl— — _oWagw)_

It is immediate to check these formulas for ¥ = 0; the general case follows by

differentiating both sides by w k times.

3.2. Dong’s lemma

Now we are in a position to prove the following important lemma (see [Li]).

LEMMA 3.2 (Dong). If a(z), b(z) and c(z) are pairwise mutually local fields
(resp. formal distributions), then a(2)(n)b(2) and c(2) are mutually local fields (resp.
formal distributions) for all n € Z (resp. n € Z4). In particular : a(2)b(z) : and
c(z) are mutually local fields provided that a(z), b(z) and c(z) are.
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Proor. It suffices to show that for M > 0:

(3.2.1) (20 — 23)MA = (25 — 23)MB,
where
(322a) A = iy ,5(21 — 22)"a(21)b(22)c(z23)

— (=1)P@PO), 4 (21— 29)"b(22)a(z1)e(23),
(3.22b) B = (=1)POE@Q+2®) (. (21 — z9)"¢(z3)a(z1)b(22)
= (=D)P POy 4, (21 — 22)"e(23)b(22)alz1)) -
Indeed, taking Res,, of both sides of (3.2.1) and letting 25 = 2z, 23 = w gives the

result due to (3.1.12).

The pairwise locality means that for r > 0:

(3.2.3a) (21 — 22)"a(21)b(z2) = (21— ZQ)T(—l)p(a)p(b)b(ZQ)a(Zl),
(3.2.3b) (22 — 23)"b(22)c(23) = (22— zg)’(—l)p(")"(c)c(23)b(zz),
(3.2.3¢) (21— 23)"a(z1)e(z3) = (21 — 23)"(=1)PDPE¢(z3)a(z).

Taking r sufficiently large, we may assume that n > —r. Take M = 4r and use

3r
(20 — 23)31‘ — Z (?Z') (20 — 21)31'—3(21 — z3)%.

s=0
Then the left-hand side of (3.2.1) becomes

— 3r

(3.2.4) Z (3;) (20 — 21)%7 7% (21 — 23)° (22 — 23)" A.

$=0
If3r—s+mn > r, then (21 — 22)3’_32;1,22(21 —29)" = (21— 22)’"' where 7' > r, hence
due to (3.2.3a) the s-th summand in (3.2.4) is 0 for 0 < s < r. Hence the left-hand
side of (3.2.1) equals

3r

(3.2.5a) Z (3:) (22 — 21)%"7%(21 — 23)°(22 — 23)" A.

s=r+1
Similarly the right-hand side of (3.2.1) equals

3r

(3.2.5b) > (3;) (29 — 21)*" 7% (21 — 23)%(22 — 23)" B.

s=r+41

Due to (3.2.3b and c), (3.2.5a) is equal to (3.2.5b). |
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Let g£f (V) denote the space (over C) of all fields with values in EndV. As we
have seen, g£f(V) is closed under all the products a(z)n)b(2), n € Z. This is called

the general linear field algebra.

DEFINITION 3.2. A subspace F of g¢f (V) containing the identity operator Iy
and closed under all the products a(z)(,)b(2) (then automatically 8,F C F) is
called a linear field algebra.? A linear field algebra is called local if it consists of

mutually local fields.

REMARK 3.2. A subspace F of gff(V) is a linear field algebra iff Iy € F,
OF C F, F is closed under normally ordered product and F' is closed under OPE
(i.e., all the OPE coefficients given by (3.1.2) are in F').

One says that a collection of fields generates a field algebra F' if F' is the minimal

field algebra containing these fields. Dong’s lemma implies

COROLLARY 3.2. A linear field algebra generated by a collection of mutually

local fields is local.

Let F C glf(V) be a linear field algebra. Then we may associate to any a € F

a formal distribution with values in EndcF":

Y(a,z) = Z " agy) .

nez

Explicitly, using (3.1.12), this formal distribution can be written as follows:

(3.2.6) Y (a(w), z)b(w)
= Res,(a(2)b(w)i,,wd((z — w) — z) — p(a, b)b(w)a(2)iy,.0((z — w) — z)).

This formal distribution is a field if F is a local field algebra.

The following proposition will be used in the sequel.

PROPOSITION 3.2. If a(z),b(z) are elements of a linear field algebra F and
N > 0 is such that (z — w)N [a(z2),b(w)] = 0, then

(3.2.7) (@ =N [Y(a(w),2),Y (b(w),y)] = 0.

2Lian and Zuckerman [LZ)] use the term “quantum operator algebra.”
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PRroOF. It is straightforward to see from (3.2.6) that

[Y(a(w),z),Y (b(w), y)]e(w)
= Res;, Reszz([a(zl)a b(22)]C(w)izl,wiZ2,w
- p(a, c)p(b, c)c(w)[a(zl), b(zo )]iw,zl tw,2s)
x6((21 —w) = 7)6((22 —w) — ).
Since z —y = ((22 —w) —y) — ((21 —w) — z) + (21 — 22), (3.2.7) follows using
Proposition 2.1e (for j = 0). O
3.3. Wick’s theorem and a “non-commutative” generalization

The normally ordered product of more than two fields a'(z), a®(z), ... , a¥(2)

is defined inductively “from right to left”:

(3.3.1) tat(2)a?(z) a0V (2) i=rat(2) - aN T (2)aN (2) e
This is a sum of 2"V terms of the form

(3.3.2) +a% (2)1a®(2)4 -0/ (2)_a®(2)_ -+,

where i1 <14 < -+, j1 > j2 > --- is a permutation of the index set {1,...,N} and

+ is the sign of this permutation from which the indices of even fields are removed.

REMARK 3.3. It is clear from (3.3.2) that if [a’(z)+,a%(2)+] = O for all ¢
and j, then :a'(2)---a™(2): = £ : a®(2)---a*¥(2) : where £ is the sign of
the permutation of 4;,--+ ,4ny from which the indices of even fields are removed.
It follows that in this case the normally ordered product is (super)commutative.

However, it is not associative, as Example 4.8 in Section 4.8 shows.

The following well-known simple theorem is extremely useful for calculating

the OPE of two normally ordered products of “free” fields.

THEOREM 3.3 (Wick theorem). Let a'(2),...,aM(2) and b'(z),... ,b"(2) be
two collections of fields such that the following properties hold:
(i) [la*(2)-, ¥ ()], c*(2)x] = O for all i, j, k, and ¢ = a or b,
(ii) [a*(2)x, b (w)+] =0 for all i and j.
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Let [a'b7] = [a*(2)_, b (w)] denote the “contraction” of a'(z) and b’ (w). Then one

has:
min(M,N)

(3.3.3) :a'(z)---aM(z) : bt (w) bV (w) = )
s=0 1< <is
iy

(% [a67] - [a% ] s @l (2) - - aM (2)8! (w) - BN (W) iy . iysgn e i)

where the subscript (i1 ---is;j1-+-js) means that the fields a®(2), ..., a®(z),
b (w), ..., b (w) are removed, and the sign % is obtained by the usual super

rule: each permutation of the adjacent odd fields changes the sign.

ProoF. The typical term on the left-hand side of (3.3.3) is
(£a% (2)4a%(2)4 - -a (z)-a®(2)- --+) (ibj’l (w) %2 (w) 4 - - - b7 (w)_b%2 (w)_ - )
and we have to move the a’(z)_ across the b/ (w)4 in order to bring this product
to the normally ordered form (3.3.2). But due to the condition (ii) of the theorem,
(3.3.4) ai(2)_b (w)y = (~1)PEPV () ai(2)_ + [a'(2) -, b (w)] .
Due to condition (i) the contractions commute with all fields, hence can be moved

to the left. This proves (3.3.3). d

DEFINITION 3.3. A collection of fields {a®(z)} is called a free field theory if all
of these fields are mutually local and all the coefficients of the singular parts of the

OPE are multiples of the identity.

By Remark 3.3, normally ordered products of free fields are, up to the sign,
independent of the order. The OPE between these normally ordered products can
be calculated using Wick’s formula (3.3.3) and Taylor’s formula (3.1.8).

Now we turn to a generalization of Wick’s formula for arbitrary fields. First,

we prove an analogue of Proposition 2.3 for all n-th products of fields.
PROPOSITION 3.3. (a) For any two fields a(w) and b(w) and anyn € Z one has:

(3.3.5a) Oa(w)(nyb(w) = —na(w)p-1)b(w),
(3.3.5b) a(w) () 0b(w) = Oy (a(w) (n)b(w)) + na(w)p-1)b(w) .

Hence, 0 is a derivation of all n-th products.
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(b) For any mutually local fields a(w) and b(w), and for any n € Z one has:

(3.3.6) a(w) (nyb(w E 174109 (b(w) gy a(w)) .

=0

(c) For any three fields a(w), b(w), and c(w) and for any m € Zy, n € Z

one has:
= (m
(3.3.7) alw)em (w)me®) = ;(j>(a(w)<j>b(w))(m+n_j) c(w)

+ p(a, b)b(w) (n) (a(w)myc(w)) .

PRrOOF. The proof of (a) is straightforward.
We have by (3.1.11) in the domain |z| > |w|:

b(w) k) a(w)
(3.3.8) b(z)a(w) = Y. W + (2 — w)NdN (2, ).
k>-N
Using locality (see Theorem 2.3(iii)) and exchanging z and w we obtain from (3.3.8)
in the domain |z| > |w|:
b(z)(nya(z)
pla,Da(b(w) = 30 B+ (= 2)Vd(w,2).

n>—-N

Applying Proposition 3.1 to a(z,w) = b(z)n)a(z) we rewrite this as:

(3.3.9)
3(1) a
e S S L )]
n>—N j>0
Comparing the coefficients of (z —w)~*~! in (3.3.8) (where a and b are exchanged)

and in (3.3.9) we get (b).

An equivalent form of (3.3.7) is the following formula:
(3.3.10) [a(w)(b(w) ) c(w))] = )b(w) (n) [a(w) xc(w)]
+ Z AB)a(w) xb(w)] (ntk)c(w)

(where [a(w)xb(w)] is defined by (2.3.11)). The proof of (3.3.10) is straightforward
using the identity

[a, bc] = [a, ble + p(a, b)bla, c] .
Indeed, the left-hand side of (3.3.10) is

Res, e**~)[a(z), b(w) myc(w)] = A—p(b,c)B



90 3. LOCAL FIELDS

where

Res; Res, e**~%)[a(2), b(u)c(w)]iy,w(u — w)™,

B = Res, Res, ™ a(2), c(w)b(w)]iy, o (u — w)".
We have:

A = Res,Resy (X [a(z), b(u))c(w)iy ., (u — w)"
+  pla,b)b(u)[a(2), c(w)]iy,w(u — w)")
= Res; Res, (e**WA ) [a(2), b(u)]e(w)iy,  (u — w)"
+ p(a,b) Resy b(u)[a(w)xe(w)]iu,w(u — w)")
= Resu([a(w)rb(u)]eX“ ) c(w)
+  p(a,b)b(u)[a(w)rc(w)])iu,w (v —w)" .

Similarly we obtain:
B = Resy([a(w)rc(w)]b(u) + pla, ) c(w)e* ™ [a(w) b(w)])iw,u(v — w)" .
These two equations give (3.3.10). O

The special case of (3.3.7) for n = —1 is called the “non-commutative” Wick

formula (m € Z4):

(3.3.11)  a(z)(m) : b(2)e(z) :=: (a(2) (m)b(2)) c(2) :
+p(a,b) : b(2) (a(z)mycl2)) : + ( ) D)) ey €(2)-

Jj=0

Note that for free fields the “correcting” sum in (3.3.11) vanishes and we recover
the usual Wick formula.

Formulas (3.3.6) and (3.3.11) allow one to calculate OPE of arbitrary normally
ordered products of pairwise local fields knowing the OPE of these fields if they
form a closed system under n-th products for n € Z4. In fact there is a Mathe-
matica package [T] which provides a computer program for these calculations. The
earliest known to me reference where formula (3.3.11) is explicitly written down

and systematically used is the paper [BBSS].
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In the case of n = —1 formula (3.3.10) can be written in the following beautiful

form (equivalent to (3.3.11)):

(3.3.12)  [a(w)y : b(w)c(w) ]
=: [a(w)rb(w)]e(w) : +p(a,b) : b(w)[a(w)rc(w)] :

A
+ / [[a(1) xb(w)]uc(w)] dy.

3.4. Bounded and field representations of formal distribution Lie

superalgebras

DEFINITION 3.4a. Let g be a formal distribution Lie superalgebra, i.e. a Lie
superalgebra spanned by coefficients of a family of mutually local formal distribu-
tions {a®(z)}aca (A an index set). A representation of g in a vector space V is
called a field representation if all the a®(z) are represented by fields, i.e. for each

v €V and o € A one has
alyv =0forn>0.

An important problem of quantum field theory is the construction of local
linear field algebras. The usual way of doing this is to take a field representation
of a formal distribution Lie superalgebra; then the fields representing the a®(z)
generate a local linear field algebra.

Field representations are usually constructed by means of induced modules.
Recall that for a Lie superalgebra g and a representation 7 of its subalgebra p in a

vector space W the induced g-module is the vector space

Ind}r = U(g) ®upy W
= (UeeW)/U(g) (pew—-1@n(p)w|p€p,w e W)
on which g € g acts by left multiplication on the 1st factor.
Let g be a Lie superalgebra spanned by coefficients of mutually local formal

distributions {a®(2)}, 4 and assume that the C[0]-span of the a®(z) is closed under

all n-thproducts, n € Z (cf. Corollary 4.7). Let

(3.4.1) g— = C-span of {a?‘n)|a €A ne Z;} .
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Due to Theorem 2.3(iv), g— is a subalgebra of g. It is called the annihilation
subalgebra (cf. Section (2.9)). Let 7 be a representation of g_ in a vector space W

such that for any w € W:
T (a‘("n)) w=0 for n>0.

Then the induced g-module Ind§_ is a field representation. Indeed, one proves by

induction on k (using Theorem 2.3(iv)) that
aln) (az;l) ~-~a§",’:k)w) =0 for n>0.

Unfortunately, even the oscillator algebra has a lot of pathological irreducible
field representations. The additional requirement of “boundedness” removes these
pathologies.

We shall now assume that the formal distribution Lie superalgebra g is graded.
This means that we have a diagonalizable derivation H of the Lie superalgebra g

such that for some A, € R:
(3.4.2) Ha®(z) = (20, + Ay) a®(2)

i.e., a®(z) is an eigendistribution for H of conformal weight A,. Writing a®(z) =

Y ne—n,4+z 0827 "% we have, due to (2.6.1):
Hay = —nas,.
Hence g is a R-graded Lie superalgebra by eigenspaces of H:
(3.4.3) 9=®nbn, [Im; On] C Imin
Let
gz = On>08n, 87% = Bn>08n , 8°° = Bncon -
We have the triangular decomposition:

=g<+go+9.

DEFINITION 3.4b. A representation in a vector space V of graded formal dis-

tribution Lie superalgebra g is called bounded?® if the subalgebra g>° acts locally

3This terminology differs from that of [K2], where field modules are called “restricted” and

bounded modules are more or less the “category O” modules.



3.5. FREE (SUPER)BOSONS 93

nilpotently on V| i.e., for any v € V there exists n > 0 such that g; -- - g,v = 0 for

any n elements g, ... ,gn of g>°.

Recall that a g-module V is called graded if V = ®;crV; and gmVy C Vipyn.
Consider a representation 7 of the subalgebra go, extend it to g2 by letting

7 (9>°) =0, and let

V(r) = Ind3, .
The g-module V (7) is called the (generalized) Verma module associated to w. Note
that this is a graded module, the gradation being induced by R-gradation (3.4.3):

(3.4.4) V(r) =PV (),

n>0

so that the representation of go in V() is 7. It follows from (3.4.4) that the
representation of g in V(r) is a bounded field representation.

Denote by J(m) the sum of all g-submodules contained in @,V (7)n, and let

n>0
V() =V(r)/J(r).

It is clear that J(7) is a graded submodule, hence V() is a graded module.
A vector v of a g-module V is called singular if g>%v = 0.

The proof of the following proposition is straightforward.

PROPOSITION 3.4. (a) A graded bounded g-module V = P, V; is irreducible
iff all its singular vectors have minimal grade d and the representation of go in Vy
is irreducible.

(b) The map ™ — V(m) gives us a bijection between the set of all (up to iso-
morphism) irreducible go-modules and the set of all (up to isomorphism and shift

of grade) irreducible bounded g-modules. O

3.5. Free (super)bosons

Let b be a finite-dimensional superspace with a non-degenerate supersymmetric
bilinear form (.|.). Viewing § as a commutative Lie superalgebra, we may consider

its affinization (see Section 2.5):

J b =blt,t 7] + CK
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with commutation relations (m,n € Z; a,b € b):
(3.5.1) [am, bn] = m(a]b)dm oK, [K,h] =0,
where a,, stands for at™. Then the currents

a(z) = Zanz_"‘l, a € b,

nez
are mutually local with the OPE (cf. (2.5.6)):
(ab) K
(3.5.2) a(z)b(w) C—w?

It is natural to call 6 the Weyl affinization of h (vs. the Clifford affinization Cl4
discussed in Section 2.5 and in the next section). The different nature of notation
stems from the difference of the generalizations of these two affinizations to the
non-commutative case discussed in Section 2.5.

Consider a field representation of the Lie superalgebra 6 in a vector space V.
Then we get a set of mutually local fields with the OPE (3.5.2), called a system
of free bosons (sometimes called free superbosons if h; # 0). Note that these fields
satisfy the conditions of Wick’s theorem.

Choose bases {a‘} and {b'} of h consistent with the Z,-gradation such that
(3.5.3) (b']a?) = 6.

Such bases are called dual. Then for any h € h we have:

?

(3.5.4) h="> (b'|h)a’ = (hla")b".
Consider now the field
1 b (o \ni
(3.5.5) S(z) = 3 ; 1a'(z)b'(z) :.
Using Wick’s theorem, calculate the following OPE:

S(z)a(w) ~ % Z (—Z(L_lli)—yai(z)K + % Z(—l)f’“”ﬂa) (—Z%bi(z)fc.

Using (3.5.4), we obtain (a € b):

(3.5.6) S(x)a(w) ~ —*_ ~ ( ( alw) 8a(w)) K.

(z —w)? z—w)?  z-w

In the last part of (3.5.6) we used Taylor’s formula.
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Suppose now that K = kly where the affine central charge k is a non-zero

number. Let
(3.5.7) L(z) = %S(z).

Then (3.5.6) gives us (a € b):
a(z) a(w) Oa(w)

C-w? GG-w? z-w

(3.5.8) L(z)a(w) ~
Writing L(z) = Y_,,cz Lnz" "%, we obtain, due to Table OPE (Sec. 2.6):
(3.5.9) [Lm,an] = —namin, m,n €Z.
Noting that

Lo = %;aébé +H,
where

H= '2’112 Z 1;0 (at bl + (-1)?@b 1)

and that the elements ag lie in the center of b, we see from (3.5.9), in particular,

that
(3.5.10) [H,an] = —nan.

In other words, adH is a Hamiltonian and all fields a(z) have conformal weight 1.
(Of course, it is even easier to check (3.5.9) and (3.5.10) directly.)
Note that (3.5.9) for m = —1 and m = 0 means

[L_1,a(2)] = Ba(z), [Lo,a(z)] = (20 + 1)a(z).

It follows easily that L(z) satisfies (2.6.4). Since also L(z) is a local field whose
OPE with itself, by Wick’s theorem, has the form (2.6.3) we obtain by Theorem 2.6b
that L(z) is a Virasoro field. (Of course, it is easy to see this directly using Wick’s
theorem.) In order to compute the central charge, we need to compute the s = 2
term of L(z)L(w) in Wick’s formula (3.3.3), which is §sdimb/(z — w)*. Thus we

obtain

(3.5.11) central charge of L(z) = sdim§.
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Since da(z) has conformal weight 2 we can construct the following family of

local fields on conformal weight 2:
LP(2) = L(z) + 0b(2), b€ bg.

As usual, we let Lb(z) = Y, Lb27"~2. It follows from (3.5.2) and (3.5.8) that

a(w) + Oa(w)  2(alb)k

(3.5.12) LP(2)a(w) ~ owf  rmw  Gowp

Hence (using (2.6.3)) we obtain:
(3.5.13) [LP,,an] = —nam+n — (a]b)k(M® + M)dm,—n.

In particular, [L%,,a,] = —nan—1, hence [L%,,a(z)] = da(z) and, as above, we
deduce that Lb(z) is a Virasoro field. Using (3.5.2), (3.5.8) and (3.5.11), we see
that the central charge of Lb(z) is equal to dimbg — dimb; — 12(b|b)k. Thus we

have proved the following

PROPOSITION 3.5. For each b € by the field L(2) is a Virasoro field with

central charge
(3.5.14) sdim b — 12(b|d)k.

We apply now formula (3.5.10) to representation theory of the algebra b. Since
6 is a direct sum of the abelian Lie superalgebra h and the Heisenberg superalgebra
b =Pbhet"+CK,
n#0
it suffices to study representations of the latter. It is a Z-graded Lie superalgebra
with the triangular decomposition:

B = §< + CK + b, where 6§=@(h®t¢n).

n>0

The following lemma is immediate from the definitions.

LEMMA 3.5. If v is a singular vector of a field representation of (i.e.,
b>v =0), then Hv = 0. O

Let 62 = 6> +CK. Given k € C, denote by 7% the 1-dimensional representation
of h2 defined by:

™) =0, K)=k.
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Then the Verma module V¥ := 17(7r’“) is explicitly described as follows:
VE=S(h<),

(i.e., V* is identified with the symmetric superalgebra over the superspace 6<),
K =kI, ay =a®t™ acts on vk by multiplication if m < 0 and by a derivation of

the symmetric superalgebra defined by
am(b®t™") = kmdm n(alb), n >0,
if m > 0.

THEOREM 3.5. (a) The b'-module V* is irreducible iff k #0. (17 0 has a unique
magimal submodule J° such that V°/JO is the trivial 1-dimensional module.)
(b) Any bounded field representation of b' such that K = kI with k # 0 1s

equivalent to a direct sum of copies of the representation V.

PROOF. If & # 0 then we can construct the operator H. Due to (3.5.10), H
is diagonalizable on Vk with non-negative eigenvalues and the only vectors with a
zero eigenvalue are multiples of 1 € v, Hence, by Lemma 3.5, V* is irreducible if
k # 0. The case k = 0 is obvious.

In order to prove (b), consider a bounded field representation of 6’ in a vector
space V and denote by V° the subspace of V' consisting of singular vectors. Since V'
is a bounded representation, it is clear that V0 # 0. Since V is a field representation
with k # 0, we can construct the operator H on V. It follows from (a) that U (§')v

is an irreducible module isomorphic to V* if v is a non-zero vector from V°. Hence
V' =U(§)V°

is a direct sum of copies of the representation V*. Note that, due to (3.5.10), all
eigenvalues of H on V' are non-negative.

Suppose now that V # V'. Then V/V' is again a bounded field §’-module,
hence there exists a non-zero singular vector ¥ € V/V', hence by Lemma 3.5,
H?v = 0. Taking a preimage v € V of U, which is an eigenvector of H, we obtain
Hv = 0 and we see by the construction that a,v is a non-zero vector of V' for some

a € b and some n > 0. Hence, by (3.5.10),

Hapv = —na,v + anHv = —na,v.
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Thus, a,v is an eigenvector of H in V' with a negative eigenvalue, a contradiction

proving (b). O

The h'-module B := V! is called the oscillator representation of the Heisenberg
superalgebra H’ . It is characterized by the property of having a cyclic vector |0) =

1¢ B (ie., U (B') |0) = B) such that
(3.5.15) anl0) =0foralln >0, a€h.

ExAMPLE 3.5. The oscillator algebra s (see (2.5.1)) is a special case when
h = b5 = C, (alb) = ab and a, = 1,. In this case the s'-module V* can be

identified with the algebra of polynomials Clz1,z2,...] so that (m > 0):
0

Ay = ——, Q_m=kmz,, K=Ek.
O0ZTm

The (even) field a(z) = Y,z @nz™ """ is local with the OPE

k

a(z)a(w) ~ m

The s'-module V* extends to an s-module VFi# by letting a9 = p € C. Due to
Theorem 3.5 any bounded field representation of s such that K = kI with k # 0
and ay is diagonalizable decomposes in a direct sum of representations VFi#, ueC

In particular, for each p there exists a unique such irreducible representation.

It is easy to construct some “pathological” representations of 5. If we take a
1-dimensional s=-module 71 such that a, — 0 for n > 0, then Indl,m is a field
representation which is not bounded. If we take a 2-dimensional representation s
of s> given by a,, — (37) for all n > 0, K ~ kI, then Ind%s s is a bounded but
not a field representation. It contains a submodule isomorphic to V0 the quotient

by which is again isomorphic to 17’“0, but the whole module is not V¥ @ V0.

3.6. Free (super)fermions

Now we consider the Clifford affinization of a finite-dimensional superspace A
with non-degenerate anti-supersymietric bilinear form (.|.). Recall (see Section 2.5)

that this is a Lie superalgebra

Ca=Alt,t7 ' +CK
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with commutation relations (m,n € % +Z; p, € A):

(3.6.1) [om; ¥n] = (P1Y)0m,—nK, [Ca,K]=0,

where @, stands for ¢ ® tm—%. Recall that the supercurrents
p()= Y pazTVE g EA4,
nE3+Z
are mutually local with the OPE (2.5.8).
Consider a field representation of the Lie superalgebra Cy4 in a vector space V
such that K = kly. We shall assume that k # 0. Then we obtain a set of mutually
local field with the OPE

(3.62) e ~ DR

called a system of free fermions (sometimes called superfermions if Az # 0). Note
that these fields satisfy the conditions of Wick’s theorem.
Choose dual bases {¢'} and {1} of A (see Section 3.5), and consider the
following even field of conformal weight 2:
1 i () = —n—2
(3.6.3) L(z) = 57 Z : 0 (2)0(z) = %an .
Using Wick’s theorem, we obtain

Leyot) ~ 5 (2 + 220), pen

2\z-w)? z-w

Hence, by Taylor’s formula, we have:

1
(3.6.4) L(z)p(w) ~ (22 f%; n Z‘p_(i’v).

Due to Table OPE (Section 2.6), this is equivalent to

(3.6.5) [Lm, on] = — (%m +n) Omtn, meZ, ne % +Z.
The case m = 0 of (3.6.5) gives

(3.6.6) [Lo, pn] = —nepn, ne % +Z, p€A,

i.e., ¢(z) has conformal weight % with respect to the Hamiltonian adLg. The case

m = —1 of (3.6.5) gives:

[L_1,9(2)] = 0¢(2), € A
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In the same way as for free bosons, it follows that L(z) is a Virasoro field. Com-

puting the s = 2 term of L(z)L(w) in Wick’s formula, we obtain
(3.6.7) central charge of L(z) = —% sdim A.

In the same way as in the bosonic case, we apply (3.6.6) to representation
theory of the Lie superalgebra C4. It is a Z-graded (by adLg) Lie superalgebra

with the triangular decomposition:
Ca=C35+CK +C3,

where C% = A®Clt], C5< = Aot~1C[t~!]. Let C3 = C3+CK. Given k € C denote
by 7* the 1-dimensional representation of C5 defined by 7* (C3) =0, ™(K) = k.
Then the Verma module V* := V(x*) is identified with S (C5), K = kI, ¢, acts
by multiplication if m < 0 and by a derivation of the superalgebra S (C5) defined
by

Oom (W) = kb _ny1(alh), n>0,

if m > 0.
The following result is proved in exactly the same way as Theorem 3.5, by

making use of (3.6.6).

THEOREM 3.6. (a) The Ca-module V¥ is irreducible iff k # 0.
(b) Any bounded field representation of C4 such that K = kI with k # 0 is

equivalent to a direct sum of copies of the representation vk,

The C4-module F := V! is called the spin representation of the Clifford Lie
superalgebra, C4. It is characterized by the property of having a cyclic vector

|0) € F such that
(3.6.8) 0pl0y =0 foralln >0, ¢e€A.

In conclusion of this section we describe a very useful construction, called
bosonization. Suppose that the superspace A is a direct sum of two isotropic sub-
spaces At and A~ and let k = 1. Choose bases {¢'} of AT and {¢*} of A~ such
that (1%|¢?) = 6;;. Note that for any ¢ € A we have

(3.6.9) o=t + ¢, where p* = Z (WW) SOia p = Z (80|90i) W'

2 2
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Construct a new field of conformal weight 1:

Using Wick’s and Taylor formulas, formulas (3.6.2) for ¥ = 1 and (3.6.9) we obtain
the following OPE:

(3.6.10) a(z)p(w) ~

Furthermore, Wick’s formula gives:

e 2GR @)

alz)a(w) = Gowp? +

zZ—w

+ 2 2P (2) (w)g? (w) - -

(3.6.11)

By Taylor’s formula, the second term on the right-hand side of (3.6.11) equals

> (0t (w)yt (w) : — : ¢ (w)BP (w) 2) + (z — w)(-+-),

i

and the third term equals

D @ (W W) (W) (w) : +(z = w)(--).

i?j
We conclude that

—sdim At

(3612) a(z)a(w) ~ W,

i.e., that a(z) is a free boson with affine central charge — sdim A+, and that
ta(w)aw) ;= Z (: 0 (W) (w) : = : @ ()oY (w))

(3.6.13) + Z @ (w) (w) :

Finally, note that we may construct a family of Virasoro fields

(3.6.14) LM2)=(1-NLT(2) + A\L™(2), X€C,

where

IO OB AOEDSRIHO
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so that using Wick and Taylor formulas we obtain:

(3.6.15) L M2)p(z) ~ Op(w) + (1 =N~ (w) + ApT(w)

z—w (z —w)? el

It follows as above that L*(z) are Virasoro fields for each A. The central charge,

calculated as before, is equal to

(3.6.16) cx = (1202 — 12X 4 2) sdim A ™.



CHAPTER 4

Structure theory of vertex algebras

4.1. Consequences of translation covariance and vacuum axioms

First, recall the axioms of a vertex algebra given in Section 1.3. It is often
convenient to state them in a slightly different form (closer in spirit to the Wightman
axioms).

A vertex algebra is a superspace V endowed with a vector |0) (vacuum vector),
an endomorphism T (infinitesimal translation operator) and a parity preserving
linear map of V to the space of fields (the state-field correspondence)

a—Y(a,z)= Z a(n)z_"_l, Q) € EndV,
nez

such that the following axioms hold (a,b € V):

(translation covariance): [T,Y(a,z2)] = 8Y (a, 2),

(vacuum): T[0) =0, Y (|0), 2) = Iv, Y(a,2)|0)|,=0 = a,

(locality): (z —w)N[Y(a,z),Y (b,w)] = 0 for N > 0.

Applying both sides of the translation invariance axiom to |0) we obtain (1.3.3)
from the 1st and 3rd parts of the vacuum axiom after letting z = 0. Hence these
axioms imply those in Section 1.3. Conversely, T'|0) = 0 follows from (1.3.3) and
the 2nd part of the vacuum axiom.

The fields Y (a,z) are often called vertexr operators, hence the name vertex
algebra.

The following theorem provides a general, albeit abstract, construction of vertex

algebras (cf. [Li]).

THEOREM 4.1. Any local linear field algebra F C glf(U) is a vertex algebra
with the vacuum vector |0) = Iy, the infintesimal translation operator T = 0, and
the vertex operators

Y(a(z),2)b(2) = D _(a(z)(mb(2))e ™"

nez

103
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Proor. First, the vertex operators Y (a(z),z) are EndF-valued fields since F
consists of (EndU-valued) mutually local fields. Moreover, these vertex operators
are pairwise local due to Proposition 3.2. This checks the locality axiom. The

vacuum axioms mean the following:
0,Iy =0, Iv(n)a(z) = 0p,~10(z) for n € Z , a(2)(n) Iy = 0n,~10(z) for n > —1.
These formulas are obvious. The trasnlation covariance axiom means:

[0, a(2)(n)]b(2) = —na(2)(n-1)b(2) for n € Z.

But this is formula (3.3.5b).
O

The following easy uniqueness (and existence) theorem for a formal differential

equation is very useful in establishing identities.

LEMMA 4.1. Let U be a vector space and let R(z) € (EndU)[[2]]. Then the
differential equation

(@1.) 21e) = RE) ()

has a unique solution of the form

f(z) = Z fn2", fn €U,

nEZ+

with the given initial data fo.

Proor. Equation (4.1.1) means:

j—1
ifi= ZRifj_.i_l for j>1, where R(z) = Z Rjzj.
=0 jE€Z 4

These equations allow one to compute the f;, j > 0, recursivity for each given fo.
O

PROPOSITION 4.1. (a) For any element a of a vertex algebra V one has
(4.1.2) Y(a,2)|0) = €*T(a),
(4.1.3) eTY (a,w)e™*T = Y(a,z+w) in the domain |z| < |w),

(4.1.4)  &TY(a,w)re T

Y (a,z + w)+ in the domain |z| < |w|.
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(b) For any two elements a,b € V and any n € Z one has:
(4.1.5) Y(am)b, 2)|0) = (Y(a,2)x Y (b,2))|0).

ProoF. We actually proved already (4.1.2) in Section 1.3. It is placed here
again because the proof of all four formulas is the same.

Note that (4.1.2) and (4.1.5) are equalities in V[[z]] and (4.1.3 and 4) are
equalities in EndV [[w, w™*]] [[z]] (recall that “in the domain |2| < |w|” means that
(z+w)J is replaced by its power series expansion iy, (2 + w)? € C[[w,w™!]] [[z]]).

In order to prove (4.1.2) and (4.1.5), we apply Lemma 4.1to U =V, R=T.
Since both sides of (4.1.2) obviously satisfy the differential equation (4.1.1) with the
initial condition fo = a, (4.1.2) follows. Both sides of (4.1.5) satisfy the differential
equation (4.1.1) due to the vacuum and translation covariance axioms and the fact
that both 8, and adT are derivations of all n-th products (see Proposition 3.3(a)
and (3.1.12)). The coincidence of the intial conditions follows from the vacuum
axiom and Lemma 3.1.

In order to prove the remaining two formulas, we apply Lemma 4.1 to U =
(EndV) [[w,w™!]], R = adT. Since both sides of (4.1.3) (resp. (4.1.4)) satisfy
(4.1.1) with the initial condition fo = Y (a,w) (resp. fo = Y(a,w)+), (4.1.3 and 4)
follow. In the proof of (4.1.4) we have used that the translation covariance equation

splits into two equations:

(4.1.6) [T,Y(a,2)+] = 0Y (a,2)+.

4.2. Skewsymmetry

PROPOSITION 4.2. For any elements a and b of a vertex algebra V one has the

following skewsymmetry relation:
(4.2.1) Y(a, 2)b = (-1)P@PO =Ty (b, —2)a.
PRoOF. We have by the locality axiom for N > 0:
(z —=w)NY (a,2)Y (b,w)|0) = (=1)PDP0O) (z — )NV (b, w)Y (a, 2)|0).
This can be rewritten using (4.1.2):

(z —w)NY (a,2)e®Tb = (=1)P@PO) (z — )Ny (b, w)e* T a.
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Applying (4.1.3) to the right-hand side we get
(422)  (z—-w)NY(a,2)e?Tb = (=1)P@PO) (; —w)Ne* TV (b, 4y, . (w — 2))a.

Since bp)(a) = 0 (resp. agmy(b) = 0) for n > 0, the equality (4.2.2) involves
only positive powers of z — w if N is sufficiently large (resp. only finitely many
negative powers of z). Hence (4.2.2) is an equality in (EndV)((2))[[z — w]] if N is
sufficiently large. Then we can let w = 0 in both sides of (4.2.2) and divide by 2%,
obtaining (4.2.1). O

Comparing coefficients of (4.2.1) we obtain the original Borcherds formula [B1]

for skewsymmetry (n € Z):

o]

(4.2.3) amb = —p(a,b) Y (~1)7"TW) (bnyj)a) .
s

<

Here and further we write a(n)b in place of a(,)(b) (the endomorphism a
applied to a vector b). We do this not only for typographical reasons, but, more
importantly, in order to emphasize that for each n € Z we have on V a C-bilinear
product a(,)b. As we shall see, the products a(,)b are essentially the same as prod-
ucts a(z)(n)b(2) discussed in Sections 2.3 and 3.1. Formula (4.2.3) is the counterpart

of Proposition 3.3(b).

REMARK 4.2. Theorem 4.1 and formula (4.2.3) give another proof of Proposi-
tion 3.3(b). Indeed, just consider the linear field algebra F' generated by the fields
a(z) and b(z).

4.3. Subalgebras, ideals, and tensor products

A subalgebra of a vertex algebra V is a subspace U of V containing |0) such that
am)U C U foralla € U.

It is clear that U is a vertex algebra too, its fields being Y'(a,z) = 3, a(n)luz™" "%
This follows immediately from the axioms of a vertex algebra in Section 1.3.
A homomorphism of a vertex algebra V to a vertex algebra V' is a linear parity

preserving map ¢ : V — V' such that

plamyb) = p(a)myp(b) forall a,beV, neZ.
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A derivation D of parity v € Z/2Z of a vertex algebra V is an endomorphism
of the space V such that DV, C V,4, and

D(a(n)b) = (Da)(n)b + (—l)O"Ya(n) (Db) forall a€eV,, bel.

D is an

Note that if D is an even derivation and e” is a convergent series, then e
automorphism of the vertex algebra V.
An ideal of a vertex algebra V is a T-invariant subspace J not containing |0)

such that

a(n)J C J for all a) eV.
Note that we have
(4.3.1) amV C JforallaeJ.

Indeed, it follows from the skewsymmetry (4.2.1) that Y (a, z)v = £e*TY (v, —2)a €
J[[z,271]] for a € J, v € V. Hence the quotient space V/J has a canonical
structure of a vertex algebra, and we have a canonical homomorphism V — V/J of
vertex algebras.

The tensor product of two vertex algebras U and V is defined as follows. The
space of states is U ® V, the vacuum vector is |0) ® |0), the infinitesimal translation
operatoris T ® 1 + 1 ® T'. Finally, the fields are

Yu®v,z) =Y W,2) @Y (v,z) = Z U(m) ® v(n)z‘m_"‘2.
m,nez
In other words
(4.3.2) (u®v)x) = Z U(m) @ V(—mtk—1)-
mez

We use the usual definition of a tensor product of two operators A and B:
(A® B)(a®b) = (—1)PB)P(@) A(a) ® B(b).

It is clear that the sum (4.3.2) applied to any vector a ® b is finite (since both
Y (u, z) and Y (v, 2) are fields). We have that (u®uv))(a®b) = 0 for £ > 0 because
Umya = 0 for m > M and v(,)b =0 for n > N imply u(m) ® v(—m4r-1)(@®b) =0
for k> M+ N.

It is straightforward to check that U ® V is a vertex algebra.
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Given a vertex algebra V it is natural to define its affinization V as follows [B1].
Let C[t,t7!] be the algebra of Laurent polynomials (with trivial Z /2Z-gradation)
and let T denote its derivation 0;. Then C[t,t7!] is endowed with the structure of

a holomorphic vertex algebra (see Section 1.4), and we let

~

V=C[t,t7T'|aV.

Of course, this affinization is closely related to that considered in Section 2.7.

4.4. Uniqueness theorem

The following uniqueness theorem is extremely useful in identifying a field with

one of the fields of a vertex algebra.

THEOREM 4.4. [G] Let V be a vertex algebra and let B(z) be a field (with
values in EndV ) which is mutually local with all the fields Y (a, z), a € V. Suppose
that for some b € V:

(4.4.1) B(2)[0) = e*Tb.
Then B(z) =Y (b,2).
PROOF. By the assumption of locality we have:

(z = w)VN B(2)Y (a,w)|0) = (=1)?B?) (z — )NV (a,w)B(2)|0).
Applying to the left- (resp. right) hand side formula (4.1.2) (resp. (4.4.1)) we obtain:
(4.4.2) (z —w)VB(2)e*Ta = (-1)PBP@ (; — )Y (a, w)e*Tb.

Applying (4.1.2) to the right-hand side of (4.4.2) we get
(=1)PBP (2 — w)VY (a,w)Y (b, 2)|0)

which by locality (for sufficiently large N) is equal to (z — w)NY (b, 2)Y (a,w)|0).
(It follows from (4.4.1) that p(B) = p(b) since p(T') = 0.) Applying to this (4.1.2)
again and equating it with the left-hand side of (4.4.2), we obtain

/

(z —w)VNB(2)e¥Ta = (z —w)NY (b, 2)e* T a.

Letting w = 0 and dividing by 2%, we get B(z)a =Y (b, 2)a for any a € V. O
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REMARK 4.4a. Condition (4.4.1) follows from
(4.4.3) B(2)|0)|,=0 = b, 0B(z)|0) = T B(z)|0).

Indeed, equation (4.4.3) means that B(z)|0) is a solution of the differential equation
£ a(z) = Ta(z), a(z) € V[[z]], with the initial condition ag = b. Due to Lemma 4.1
we conclude that (4.4.1) holds.

Note that just the first of the condition (4.4.3) is not enough as the example
B(z) = (14 2)Y(b, z) shows.
The first corollary of the Uniqueness theorem is the following important propo-

sition.

PROPOSITION 4.4. For any two elements a and b of a vertex algebra V and

any n € Z one has:
(4.4.4) Y(am)b,2) = Y(a,2)n)Y (b, 2).
PROOF. Let B(z) =Y (a,2)(n)Y (b, 2). By (4.1.5) and (4.1.2) we have:
B(2)|0) = Y (a(n)d, 2)|0) = eZT(a(n)b).

Since, by Dong’s lemma, B(z) is local with respect to all vertex operators Y (c, z),

(4.4.4) follows from Theorem 4.4. O

COROLLARY 4.4. (a) In a vertez algebra V for any collection of vectors a',. ..,

a™ € V and any collection of positive integers ji, ... ,j, one has

4.45) 0B VY (e, 2)- 80Dy (a", 2) == ¥ (a;_jl) ~ea?_ [0), z) .
(b) For any a,b €V and any n € Z4 one has:

(4.4.6) :0MY (a,2)Y (b, 2):=Y (a(—n-1)b,2) .
(c) For any a € V one has

(4.4.7) Y(Ta,z) =08Y (a, z).

Proor. (a) and (b) follow from Proposition 4.4 due to (3.1.6). Since Ta =

a(—2)|0), (c) is a special case of (a) when n =1 and j; = 2. O
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REMARK 4.4b. Let VacV = {a € V|Ta = 0}. This subspace contains C|0) but
may be larger (see Remark 5.7c). (One often imposes an additional axiom of QFT
requiring uniqueness of the vacuum, but we do not require this). It follows from

(4.4.7) that
VacV ={a €V |Y(a,2z) = a1}

and from (4.4.6) that VacV is a subalgebra of V. This is called the vacuum subal-
gebra of the vertex algebra V. It follows from locality that

(4.4.8) [a(-1),Y (b,2)] =0 fora € VacV, beV.
Hence
(4.4.9) binyVacV =0forbeV,neZ,.

4.5. Existence theorem

The following theorem allows one to construct vertex algebras (cf. [FKRW]).

THEOREM 4.5. Let V be a vector superspace, let |0) be an even vector of V and
T an even endomorphism of V. Let {a*(2)},c4 (A an index set) be a collection of
fields such that
(i) [T,a%(2)] = 30‘”(2) (a € A4),
(ii) T10) =0, a®(2)|0)]|,=0 = a* (a € A),
(iii) the linear map: Y, Ca®(2) = >, Ca®, defined by a®(z) — a*, is injective,
(iv) a®(z) and a®(z) are mutually local (o, 3 € A),
(v) the vectors aff -~ (7 ||0) with js € Z, 05 € A span V.

Then the formula

@51) v (afyatm, - af 10),2) = 0% (2) ) @ () ) (- (007 (2) gy 1)

defines a unique structure of a vertex algebra on V such that |0) is the vacuum

vector, T is the infinitesimal translation operator and
(4.5.2) Y(a®% z2) =a%(z), a€ A
PRrOOF. Choose a basis among the vectors of the form (v) and define Y (a, 2)

by formula (4.5.1). By (iv), Remark 2.3a and Dong’s lemma, the locality axiom

holds. It follows from Lemma 3.1 and (ii), (iii) that the vacuum axioms hold (the



4.6. BORCHERDS OPE FORMULA 111

first two of them hold for trivial reasons). Finally, the operators adT" and & are
both derivations of the n-th products (see Proposition 3.3.(a) and (3.1.2)), which,
due to (i), coincide on the a®(z). The translation covariance axiom follows.

If we choose another basis among the monomials (v) we get (possibly different)
structure of a vertex algebra on V. But all the fields of this new structure are
mutually local with those of the old structure and satisfy (4.4.3). By Remark 4.4a
and the Uniqueness theorem it follows that these vertex algebra structures coincide.

Thus (4.5.1) is well-defined and (4.5.2) holds. Uniqueness is clear as well. O

DEFINITION 4.5. A collection of fields of a vertex algebra V satisfying condi-
tion (v) of Theorem 4.5 is called a generating set of fields of V. If condition (v)
holds with the additional assumption that all j, < 0, this collection is called a
strongly generating set of fields.

4.6. Borcherds OPE formula
Let V be a vertex algebra. We have:
Y (a,2)Y (b,w)|0) = Y(a,2)e*Tb = e*TY (a, 2 — w)b

(the last equality holds in the domain |z| > |w| due to (4.1.4)). Letting

¢=Y(a,z — w)b we have
Y(a,2)Y (b,w)|0) = e“7e.

If the uniqueness theorem were applicable we would derive the “associativity” of V:

(4.6.1a) Y(a,2)Y(bw) = Y(Y(a,z— w)b,w)
_ Y(a(n) b, w)
(4.6.1b) = T;Z Gow

the latter equality being the “symbolic” OPE. However, the uniqueness theorem
is not quite applicable (and no wonder, since the “symbolic” OPE makes no sense
as an equality of formal distributions). In the “graded” case this “proof” can be
made rigorous by making use of the analytic continuation (cf. Remark 4.9a). Still,

in view of the discussion in Section 3.1, we may expect that the following holds.

THEOREM 4.6. In the domain |z| > |w| one has for any a,b € V:

(4.6.2a) Y(a,2)Y (b, w) = i }(/T(f(nT))b;l%)

n=0

+:Y(a,2)Y(bw) :.
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Equivalently:

(4.6.2Db) [Y(a,z),Y(bw)] = i V(@b w)0{M6(z — w).
n=0
ProoF. We have by the OPE (2.3.9a):
[V (a,2),Y (bw)] = Y (V(a,w)(n)Y (b, )05V 5(2 — w).
n€eZ

Hence the theorem follows from Proposition 4.4. O

Formula (4.6.2b) is equivalent to each of the following very useful Borcherds

commutator formulas (m,n € Z):

(4.6.3) [agmy, b)) = Z(m) (@1HD) (minj)

izo N
m .
(4.6.4) [agm), Y (b,2)] = Z (j)Y (agjyb, z) 2™ 7.
j=0

REMARK 4.6a. With respect to 0 = T and all products a,)b forn € Z4, a
vertex algebra V is a conformal superalgebra. Furthermore, the linear map Lie V —
EndV ldeﬁned by a, = a(,), a € V, n € Z,is a Lie superalgebra homomorphism. Its
kernel is an irregular ideal of Lie V. (Here Lie V' is the maximal formal distribution
Lie superalgebra associated to V' viewed as a conformal superalgebra.) This is

immediate by formulas (1.3.4), (4.2.3) and (4.6.3).

An important special case of (4.6.4) is
(4.6.5) [a(o), Y(b,z)] = Y(a(o)b, z).

COROLLARY 4.6. (a) a(o)b = 0 iff [a(0), Y (b, 2)] = 0.

(b) agjyb =0 for all j € Z iff [Y (a,2),Y (b, w)] = 0.

(c) The operator a(y is a derivation of the vertex algebra V for any a € V.
These derivations form a subalgebra of the Lie superalgebra of all derivations of V.

(d) The centralizer of Y (a,z) in V (i.e., the subspace {b € V | [Y(a,z2),Y (b, w)]
=0}) is a vertex subalgebra of V.

(e) A subspace U of V is a verter subalgebra iff the collection of fields
{Y(a,2) | a € U} is a linear field algebra.

(f) The fized point set of an automorphism of V is a vertex subalgebra of V.
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(g) If a verter algebra V is generated by a collection of fields Y (at,z) and
b,b' € V are such that bga® = bigya® for all a*, then by = bloy-

(h) If a vertex algebra V is generated by a collection of fields which is closed
under OPE (i.e., all OPE coefficients are linear combinations of these fields or their

derivatives), then V is strongly generated by this collection of fields.

ProoF. (a) follows from (4.6.5) and (b) is immediate from (4.6.4). The first
part of (c) follows from (4.6.3) for m = 0 applied to ¢ € V. The second part of (c)
follows from (4.6.3) for m = n = 0. (d) follows from (b). (e) is clear by (4.4.4). (f) is
obvious. (g) follows from (c). Finally, (h) follows from formula (4.6.3) which shows
that the bracket [a(m), bn)] with m >0 and n < 0 is a linear combination of some
c(x) With k < m, hence applying a(,,) to an element of the form a?‘j‘l) . 'az’;.:) [0) with

the j; < 0, we get by induction a linear combination of elements of this form. O

REMARK 4.6b. Corollary 4.6 provides several ways of constructing subalgebras
of a vertex algebra V, which are quite popular in both mathematics and physics
literature:

(I) Given a subspace U of V, its centralizer
Cy(U)={beV|[Y(a,2),Y(hw)]=0 foral aecU}

is a subalgebra of V (by Corollary 4.6d) called by physicists a coset model.

(IT) Given a collection of elements {a’} of V, the intersection of the null spaces
of the operators afo) is a subalgebra of V' (due to Corollary 4.6¢) called by
physicists a W-algebra.

(ITT) Given a collection of elements {a‘} of V, the linear span of all the vectors
Uy () |0)
is a subalgebra of V generated by the fields Y (a?, z).
(IV) Given a group of automorphisms G of a vertex algebra V, the fixed point set

VG is a subalgebra of V (by Corollary 4.6f), called by physicists an orbifold

model when G is finite.
4.7. Vertex algebras associated to formal distribution Lie superalgebras

Let g be a Lie superalgebra spanned by mutually local formal distributions

a®(z) (o € A), and suppose that there exists an endomorphism T of the space g
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over C such that
(4.7.1) Ta“(z) = 0a“(z).

Then g is called a regular formal distribution Lie superalgebra. It is clear that T

is an even derivation of the Lie superalgebra g given by the formula
(472) Ta‘(’n) = —na?n_l) .

Note that Lie R, where R is a conformal superalgebra (see Section 2.7), is regular,

in particular current algebras and the Virasoro algebra are regular. Let
g—={a€g|T*a=0for k> 0}.

This is a T-invariant subalgebra of g which, due to (4.7.2), contains the annihilation

subalgebra g_ of g (see (3.4.1)):

(4.7.3) g——-Dg-.

Let A: g__ — C be a 1-dimensional g__-module such that

(4.7.4) A(Tg__)=0.

Consider the induced g-module (cf. Section 3.4)

(4.7.5) VA g) :=Tnd}__A=U(g)/U(g) (a— Aa) |a€g_),

and let |0) € V*(g) be the image of 1 € U(g).

Note that the formal distributions a®(z) are represented in 17’\(9) by fields
(which we shall denote by the same symbol). This follows from (4.7.3) and the
discussion in Section 3.4.

The derivation T of g extends to a derivation of U(g), which can be pushed
down to an endomorphism of the space V*(g) due to condition (4.7.4). This endo-
morphism is again denoted by T'.

The following theorem is now an immediate corollary of the Existence Theo-

rem 4.5.

THEOREM 4.7. Let g be a regular formal distribution Lie superalgebra. Then
the g-module V*(g) has a unique verte algebra structure with |0) the vacuum vector

and generated by the fields a*(z) (o € A).
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REMARK 4.7. A formal distribution a®(z) is represented in V*(g) by a zero
field iff af_;) € g——. Tt follows from (4.7.2) and locality that in such a case a®(z)

lies in the center of g.

COROLLARY 4.7. Let g be a regular formal distribution Lie superalgebra spanned
by mutually local formal distributions a®(z) (a € I). Then the OPE coefficients of
the commutators [aP(z),a”(w)] (8, € I) are finite C-linear combinations of the
formal distributions a®(w) and their derivatives and some central formal distribu-

tions.

PROOF. Consider the vertex algebra V°(g). Due to Remark 4.7, the represen-
tation of g/ center(g) in V(g) is faithful. We have a®(z) = Y(af_)[0), 2), hence,
by Theorem 4.6 we obtain:

N-1

[a%(2), aP (w)] = Z Y (a‘é)a?_l)m),w) 8D 8(z — w).
=0

<,

But, by (4.6.3), each vector a‘(”j)af_l)m) = [a‘(’;),af’_l)] |0} is a finite linear combi—n
nation of vectors az_i_1)|0) with ¢ € Z. The corollary now follows from (4.4.6)
for b = |0). a

The vertex algebras 17')‘(9) are called universal vertex algebras associated to g.

Consider now the example of a current (resp. supercurrent) algebra § (resp.
Gsuper) associated to a Lie superalgebra g. This is a Lie superalgebra spanned
by formal distributions a(z) (resp. a(z), @(z)), a € g, and K, with commutation
relations given by (2.5.6) (resp. (2.5.6), (2.5.7a) and (2.5.7b)). Taking T' = —§;, it
is immediate that (4.7.2) holds. Hence we may apply Theorem 4.7. We obviously

have:

w1 ? = glt] +CK, Tg_ = gft]

(Bsupe = g[t,01+CK,  T(dsuper)—— = glt,0].

Thus, condition (4.7.3) gives us the following possibilities for A:
Aalt) (resp. Aglt,6)) =0,  A(K) =k e C.

We shall denote the corresponding §- (resp. super-) module by I7k(ﬁ) (resp.
V*(8super)). By Theorem 4.7, V*(§) and V*(§super) are vertex algebras, which

are called universal affine vertex algebras.
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In the special case when g is a commutative Lie superalgebra, the universal
affine vertex algebras are simple (i.e., have no non-zero ideals), provided that k # 0,
due to Theorems 3.5 and 3.6. In this case the universal affine vertex algebra I7k(ﬁ)
is called the free bosomnic vertex algebra and is usually denoted by B*(g).

One argues similarly in the case of the Clifford affinization C4, defined by
commutation relations (2.5.8). The corresponding vacuum vertex algebra (which is
simple if k£ # 0 due to Theorem 3.6) is called the free fermionic vertexr algebra and

is usually denoted by F*(A). Note that for a commutative g one has:
(47.7) VE(@)super = B*(0) ® F*(3),

where the bar signifies the change of parity on g.
Let us demonstrate now on the example of currents a(z), a € g, how to use
the “non-commutative” Wick formula. We shall work in the universal affine vertex

algebra V*(g). By (2.5.6) we have
a(2)ab(2) = [a,b](2) + A(a|b)k .

Hence by formula (3.3.12), we have

(4.7.8)
a(z)x : b(2)e(z2) : =: [a,b](2)e(z) : +p(a,b) : b(z)[a, ](z) :

+ X ((a]b)ke(z) + p(a, b)(ale)kb(2) + [[a,b],c] (2)) + 2\2—2-k ([a, b]le) -

Thus, we obtain the following OPE:

L [a,b](w)c(w) : +p(a,b) : b(w)[a, c](w) :

a(z) : b(w)e(w) :

zZ—Ww
4 [la,8, ] (w) + (alp)ke(w) + p(a, b) (ale)kb(w)
(z —w)?
k ([a, b]|c)
(4.7.9) M

4.8. Borcherds identity

THEOREM 4.8. Let F(z,w) be a rational function in z and w with poles only

at z =0, w =0 or z =w. Then for any elements a and b of a vertex algebra V
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one has the following Borcherds identity:
(4.8.1)
Res,—w Y (Y(a, z — w)b, Wiy, ;—wF (2, w)

= Res,;(Y(a,2)Y (b,w)i,wF(2,w) — p(a,b)Y (b,w)Y (a, 2)iyw . F(z,w)).

PRrROOF. It suffices to prove (4.8.1) for

F(Z,’LU) = Zm(z - w)nwla manal €ZL.

Taking the residues for this F, (4.8.1) becomes the following identity multiplied

by wt:
> /m B (n
(4.8.2) ( ,)Y (a(nts)b,w) w™ 7 = Z(—l)] ( ,)a(m+n_j)Y(b, w)w?
j=o \J =0 J
ad . /n
~5(0.0) Y1 ()Y b wan s,
=0

which is Borcherds identity for F' = 2™(z—w)™. In particular, we see that Borcherds
identity holds for F(z,w) iff it holds for w'F(z,w), I € Z. It follows that it suffices
to prove (4.8.2) in the following two cases:

case I: F =2 me€Z; case2: F=(z—w)™" !, neZ,.

But case 1 of (4.8.2) is precisely (4.6.4) and case 2 of (4.8.2) is precisely (4.4.6). O

PROPOSITION 4.8. (a) Borcherds identity is equivalent to the following three

identities:
(commutator) [am), Y (b,2)] = Z (T)Y (agyb, z) 2™,
Jj=0
(normally ordered product) :Y(a,2)Y(b,z): = Y (ai_1)b,2)

(derivative) Y (a,z) = Y(Taq,z).
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(b) The following set of Borcherds azioms is an equivalent set of axioms of a vertex

algebra:

(partial vacuum)Y (|0),2) = I, a_1|0) = a;

(4.8.3)

o]

o0
(Borcherds identity) E (]) (a(n+j)b) (mak—i) € = E (—1) (j)a(m+n_j)b(k+j)c

o0 n n
- p(a,b) Z(“I)J+ <j)b(n+k—j)a(m+j)c(kaman €Z).
j=0

PROOF. (a) follows immediately from the proof of Theorem 4.8. Since (4.8.3)
is an equivalent form of (4.8.2), our axioms listed in Section 1.3 imply Borcherds
axioms (due to Theorem 4.8). Conversely, suppose that Borcherds axioms hold.
Taking b = |0) and F' = 1 in (4.8.1) we get a(;)|0) = 0 for j > 0, giving the vacuum
axiom of Section 1.3. Letting Ta = a(_5)|0), applying both sides of (4.8.3) to |0)
and letting m = 0, k = —2 gives the translation covariance axiom. Finally, taking

F =2"(z — w)™ for n > 0, we obtain the locality axiom from (4.8.1). O

COROLLARY 4.8. Borcherds identity holds for any three mutually local fields
a(z), b(z) and ¢(z) and any m,k,n € Z:

(4.8.4) 3 (’;‘) (0(2) (n) () iy €(2)
j=0

=3 -y (j) (@) sy () sy (2))

J
—(=1)"p(a,b)b(2) (nsk—) (@(2) (m45)c(2))) -

PROOF. Consider the (local) linear field algebra generated by the fields a(z),
b(z) and ¢(z). By Theorem 4.1, this is a vertex algebra, hence we may apply (4.8.3).
O

REMARK 4.8. (a) Letting n = 0 in (4.8.4), we get formula (3.3.7) for all m,n €
Z, (not only for m € Z,). Note, however, that (3.3.7) is a stronger statement in
that respect that we do not make any assumptions on locality there.

(b) Recall that (4.8.4) for m € Zy, n = 0 and k = —1 is the non-commutaive
Wick formula (3.3.10). Another important special case of (4.8.4)ism =0,n =k =
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—1, which is the “quasiassociativity” of the normally ordered product:
(4.8.5) 1ra(2)b(z) s e(z) s = a(z) s b(2)c(z) ::

=Y a(2)(—j—2) (b(2) (jye(2)) + P(a, B)b(2) (- j—2) (a(2) yel2)) -
j=0

EXAMPLE 4.8. Let a(z) be the free bosonic field (cf. Example 3.5) with the
OPE

sa2)az): a(z): — ra(z) alz)a(z) = 02a(2),
i.e. associativity of the normally ordered product fails even for free fields.

4.9. Graded and Mo6bius conformal vertex algebras

A vertex algebra V is called graded if there is an even diagonalizable operator

H on V such that
(4.9.1) [H,Y (a,2)] = 20Y (a,z) + Y (Ha, 2).

Note that (4.9.1) means that the field Y (a, z) has conformal weight A € C with

respect to the Hamiltonian adH (see Definition 2.6a) iff Ha = Aa. By abuse of

terminology, we shall call H a Hamiltonian of a vertex algebra V' if (4.9.1) holds.
As in Section 2.6, writing the field of conformal weight A in the form

Y(a,2)= Y anz "5,

nE—A+Z
so that
(4.9.2) O(n) = Gn—A+1,
we see that (4.9.1) is equivalent to
(4.9.3) [H,an] = —nap.

Note that (1.3.4) becomes:

(4.9.4) [T,an] = (—n— A+ 1)ap_1,
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and (4.9.1) for a = |0) gives

(4.9.5) H|0) = 0.

It follows that

(4.9.6) [HT|=T

since both sides commute in the same way with all a, and both annihilate |0).

Consider the eigenspace decomposition of V' with respect to H:
J
Note that, by (4.9.3) and (4.9.4) one has:
(4.9.7) a, VO c v Ty c y Uty
It is clear that a graded vertex algebra has a unique maximal graded ideal and

that the corresponding quotient vertex algebra is simple.

REMARK 4.9a. If V is a graded vertex algebra, one usually considers the “re-

stricted” dual space:
V* = @ )*
J

and the matrix coefficients of fields or their products, like
M, (z,w) = (v*,Y (a,2)Y (bw)v), veVD, o evi

Then provided that the real part of the spectrum of H is bounded below this matrix
coefficient converges to a rational function in the domain |z| > |w|, and we may
extend it analytically to the domain z # 0, w # 0, z # w. Then the equality of
all matrix coefficients is equivalent to the equality of the product of fields. For

example, the locality is equivalent to the equality of all rational functions:
Myl (2,0) = p(a, ) My (w, 2).

In this approach the proofs are somewhat simpler (for example, Theorem 4.6 is then
immediate by Goddard’s Uniqueness theorem) and (4.6.1a and b) makes sense (as
an equality of the matrix coefficients). However, this approach is restricted to the

graded case only.
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Using (4.9.2) we rewrite (4.6.3) and (4.6.4) in a graded form (m,n € Z):

(4.9.8) [m,bn] = Z (m * A B 1) (aj—a+10)min,

JEZ 4 J
-1 .
(4.9.9) [am,Y(b,2)] = Y (m +jA )Y(aj_A+1b’Z)zm—J+A—l'
JEZ 4

Hence LieV becomes a Z-graded Lie algebra, the gradation being given by the
eigenvalues of adH. Note that adT is a derivation of Lie V' that shifts this gradation
by —1.

The following remark allows one to construct Hamiltonians.

REMARK 4.9b. Let V be a vertex algebra and let H be a diagonalizable oper-
ator on the space V such that H|0) = 0. Suppose that V is strongly generated by
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