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Preface to the Second Edition 

This volume is a completely new version of the book under the same title, which 
appeared in 1981 as Volume 9 in the series "Progress in Mathematics," and which has 
been out of print for some time. That book had its origin in notes (taken by Hassan 
Azad) from a course on the theory of linear algebraic groups, given at the University 
of Notre Dame in the fall of 1978. The aim of the book was to present the theory of 
linear algebraic groups over an algebraically closed field, including the basic results 
on reductive groups. A distinguishing feature was a self-contained treatment of the 
prerequisites from algebraic geometry and commutative algebra. 

The present book has a wider scope. Its aim is to treat the theory oflinear algebraic 
groups over arbitrary fields, which are not necessarily algebraically closed. Again, I 
have tried to keep the treatment of prerequisites self-contained. 

While the material of the first ten chapters covers the contents of the old book, the 
arrangement is somewhat different and there are additions, such as the basic facts about 
algebraic varieties and algebraic groups over a ground field, as well as an elementary 
treatment of Tannaka 's theorem in Chapter 2. Errors - mathematical and typograph
ical - have been corrected, without (hopefully) the introduction of new errors. These 
chapters can serve as a text for an introductory course on linear algebraic groups. 

The last seven chapters are new. They deal with algebraic groups over arbitrary 
fields. Some of the material has not been dealt with before in other texts, such as 
Rosenlicht's results about solvable groups in Chapter 14, the theorem of Borel of Tits 
on the conjugacy over the ground field of maximal split torus in an arbitrary linear al
gebraic group in Chapter 15 and the Tits classification of simple groups over a ground 
field in Chapter 17. 
The prerequisites from algebraic geometry are dealt with in Chapter 11. 

I am grateful to many people for comments and assistance: P. Hewitt and Zhe-Xian 
Wang sent me several years ago lists of corrections of the second printing of the old 
book, which were useful in preparing the new version. A. Broer, Konstanze Rietsch 
and W. Soergel communicated lists of comments on the first part of the present book 
and K. Bongartz, J. C. Jantzen. F. Knop and W. van der Kallen commented on points of 
detail. The latter also provided me with pictures, and W. Casselman provided Dynkin 
and Tits diagrams. A de Meijer gave frequent help in coping with the mysteries of 
computers. 

Lastly. I thank Birkhauser - personified by Ann Kostant- for the help (and pa
tience) with the preparation of this second edition. 

T. A. Springer 





Chapter 1 

Some Algebraic Geometry 

This preparatory chapter discusses basic results from algebraic geometry, needed to 
deal with the elementary theory of algebraic groups. More algebraic geometry will 
appear as we go along. More delicate results involving ground fields are deferred to 
Chapter 11. 

1.1. The Zariski topology 

1.1.1. Let k be an algebraically closed field and put V = kn. The elements of the 
polynomial algebra S = k[T1, ... , Tn] (abbreviated to k[T]) can be viewed as k
valued functions on V. We say that v E V is a zero of f E k[T] if f ( v) = 0 and that 
v is a zero of an ideal I of S if f ( v) = 0 for all f E I. We denote by V ( /) the set of 
zeros of the ideal I. If X is any subset of V, let I(X) c S be the ideal of the f E S 
with f (v) = 0 for all v E X. 

Recall that the radical or nilradical ✓I of the ideal I (see [Jac5, p. 392]) is the 
ideal of the f E S with fn E I for some integer n > 1. A radical ideal is one that 
coincides with its radical. It is obvious that all I(X) are radical ideals. 

We shall need Hilbert's Nullstellensatz in two equivalent formulations. 

1.1.2. Proposition. (i) If I is a proper ideal in S then V(I) f= 0; 
(ii) For any ideal I of S we have I(V(/)) = ✓I. 

For a proof see for example [La2, Ch. X, §2] . The proposition can also be de
duced from the results of 1.9 (see Exercise 1.9.6 (2)). 

1.1.3. Zariski topology on V. The function I ~ V(I) on ideals has the follow
ing properties: 
(a) V({O}) = V, V(S) = 0; 
(b) If I C J then V(J) c V(I); 
(c) V([ n J) = V(l) u V(J); 
(d) If Ua)aeA is a family of ideals and I = LaeA Ia is their sum, then V(I) = 
naeA VUa). 

The proof of these properties is left to the reader (Hint: for (c) use that I.J c 
I n J). It follows from (a), (c) and (d) that there is a topology on V whose closed 
subsets are the V(I), I running through the ideals of S. This is the 7.ariski topology. 
The induced topology on a subset X of V is the Zariski topology of V. A closed set 
in V is called an algebraic set. 

1.1.4. Exercises. (1) Let V = k. The proper algebraic sets are the finite ones. 
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(2) The Zariski closure of X c Vis V(I(X)). 
(3) The map I defines an order reversing bijection of the family of Zariski closed 
subsets of V onto the family of radical ideals of S. Its inverse is V. 
( 4) The Euclidean topology on en is finer than the Zariski topology. 

1.1.5. Proposition. Let X C V be an algebraic set. 
(i) The Zariski topology of Xis T1, i.e., points are closed; 
(ii) Any family of closed subsets of X contains a minimal one; 
(iii) If X 1 :, X2 :, ... is a descending sequence of closed subsets of X, there is an h 
such that X; = Xhfor i > h; 
(iv) Any open covering of X has a finite subcovering. 

If x = (x1, ... , Xn) E X then x is the unique zero of the ideal of S generated by 
T1 - x1, ... , Tn - Xn. This implies (i). (ii) and (iii) follow from the fact that Sis a 
Noetherian ring [La2, Ch. VI, §1], using 1.1.4 (3). 

To establish assertion (iv) we formulate it in terms of closed sets. We then have to 
show: if Ua)aeA is a family of ideals such that naeA VU a) = 0, there is a finite subset 
B of A such that naeB VUa) = 0. Using properties (a), (d) of 1.1.3 and 1.1.4 (3) we 
see that LaeA Ia = S. There are finitely many of the Ia, say I1, ... , Ih, such that 1 
lies in their sum. It follows that I 1 + ... +I h = S, which implies that n~ = 1 V (I;) = 0. D 

A topological space X with the property (ii) is called noetherian. Notice that (ii) 
and (iii) are equivalent properties ( compare the corresponding properties in noetherian 
rings, cf. [La2, p. 142]. X is quasi-compact if it has the property of (iv). 

1.1.6. Exercise. A closed subset of a noetherian space is noetherian for the induced 
topology. 

1.2. Irreducibility of topological spaces 

1.2.1. A topological space X (assumed to be non-empty) is reducible if it is the 
union of two proper closed subsets. Otherwise Xis irreducible. A subset A c Xis 
irreducible if it is irreducible for the induced topology. Notice that X is irreducible if 
and only if any two non-empty open subsets of X have a non-empty intersection. 

1.2.2. Exercise. An irreducible Hausdorff space is reduced to a point. 

1.2.3. Lemma. Let X be a topological space. 
(i) A C X is irreducible if and only if its closure A is irreducible; 
(ii) Let f: X ➔ Y be a continuous map to a topological space Y. If Xis irreducible 
then so is the image f X. 

Let A be irreducible. If A is the union of two closed subsets A1 and A2 then A is 
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the union of the closed subsets An A1 and An A
2

. Because of the irreducibility of 
A, we have (say) An A1 = A, and Ac A1, A c A1. So A is irreducible. 

Conversely, assume this to be the case. If A is the union of two closed subsets 
An B1, A n B

2
, where B1, B

2 
are closed in X, then A c B1 U B

2
. It follows that 

An B1 = A, whence An B1 =A.The irreducibility of A follows. 
The proof of (ii) is easy and can be omitted. □ 

1.2.4. Proposition. Let X be a noetherian topological space. Then X has finitely 
many maximal irreducible subsets. These are closed and cover X. 

It is clear from 1.2.3 (i) that maximal irreducible subsets of X are closed. 
Next we claim that Xis a union of finitely many irreducible closed subsets. As

sume this to be false. Then the noetherian property 1.1.5 (ii) and 1.1.6 imply that 
there is a minimal non-empty closed subset A of X which is not a finite union of irre
ducible closed subsets. But A must be reducible, so it is a union of two proper closed 
subsets. Because of the minimality of A these have the property in question, and a 
contradiction emerges. This establishes the claim. 

Let X = X I U ... U X s, where the Xi are irreducible and closed. We may as
sume that there are no inclusions among them. If Y is an irreducible subset of X then 
Y = (Y n X 1) U ... U (Y n Xs) and by the definition of irreducibility we must have 
Y c X; for some i, i.e., any irreducible subset of X is contained in one of the X;. 
This implies that the X; are the maximal irreducible subsets of X. The proposition 
follows. D 

X. 
The maximal irreducible subsets of X are called the (irreducible) components of 

We now return to the Zariski topology on V = kn. 

1.2.S. Proposition. A closed subset X of V is irreducible if and only if I(X) is a 
prime ideal. 

Let X be irreducible and let f, g e S be such that f g e I(X). Then 

X = (X n V(f S)) u (X n V(gS)) 

and the irreducibility of X implies that (say) X c V(f S), which means that f e 
I(X). It follows that I(X) is a prime ideal. 

Conversely, assume this to be the case and let X = V(Ii) U V(/
2

) = V(/1 n Ji). 
If X =/:- V(/1), then there is f e /1 with f (/. I(X). Since f g e I(X) for all g e h 
it follows from the primeness of I(X} that /2 c I(X), whence X = V(/2). So X is 
irreducible. □ 

1.2.6. Exercises. ( 1) Let X be a noetherian space. The components of X are its 
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maximal irreducible closed subsets. 
(2) Any radical ideal / of Sis an intersection I = P1 n ... n Ps of prime ideals. If 
there are no inclusions among them, they are uniquely determined, up to order. 

1.2.7. Recall that a topological space is connected if it is not the union of two disjoint 
proper closed subsets. An irreducible space is connected. The following exercises 
give some results on connectedness and the relation with the notion of irreducibility. 

1.2.8. Exercises. (1) (a) A noetherian space X is a disjoint union of finitely many 
connected closed subsets, its connected components. They are uniquely determined. 

(b) A connected component of X is a union of irreducible components. 
(2) A closed subset X of V = kn is not connected if and only if there are two ideals 
11, Ii in S with /1 + /2 = S, Ii n h = I(X). 
(3) Let X = {(x, y) e k2 I xy = O}. Then Xis a closed subset of k2 which is con
nected but not irreducible. 

1.3. Affine algebras 

1.3.1. We now tum to more intrinsic descriptions of algebraic sets. Let X c V be one. 
The restriction to X of the polynomial functions of S form a k-algebra isomorphic to 
S /I(X), which we denote by k[X]. This algebra has the following properties: 
(a) k[X] is a k-algebra of finite type, i.e., there is a finite subset {f1, ... , fr} of k[X] 
such that k[X] = k[f1, ... , fr]; 
(b) k[X] is reduced, i.e., 0 is the only nilpotent element of k[X]. 

A k-algebra with these two properties is called an affine k-algebra. If A is an 
affine k-algebra, then there is an algebraic subset X of some kr such that A ::::::: k[X]. 
For A ::::::: k[T1, ... , Tr]/ I, where I is the kernel of the homomorphism sending the T; 
to the generator f; of A (as in (a)), then A is reduced if and only if I is a radical ideal. 
We call k[X] the affine algebra of X. 

1.3.2. We next show that the algebraic set X and its Zariski topology are determined 
by the algebra k[X]. 

If I is an ideal in k[X] let Vx(/) be the set of the x e X with f (x) = 0 for all 
f e /. If Y is a subset of X letix(Y) be the ideal in k[X] of the f such that f (y) = 0 
for all y e Y. If A is any affine algebra, let Max(A) be the set of its maximal ideals. If 
X is as before and x e X, then Mx = Ix ({x}) is a maximal ideal (because k[X]/ Mx 
is isomorphic to the field k). 

1.3.3. Proposition. (i) The map x H- Mx is a bijection of X onto Max(k[X]), more
over x E Vx(/) if and only if I C Mx; 
(ii) The closed sets of X are the Vx([), I running through the ideals of k[X]. 
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Since k[X] ~ S /I(X) the maximal ideals k[X] correspond to the maximal ideals 
of S containing I(X). Let M be a maximal ideal of S. Then 1.1.4 (3) and 1.1.5 (ii) 
imply that M is the set of all f e S vanishing at some point of kn. From this the first 
point of (i) follows, and the second point is obvious. (ii) is a direct consequence of 
the definition of the Zariski topology of X. □ 

From 1.3.3 we see that the algebra k[X] completely determines X and its Zariski 
topology. 

1.3.4. Exercises. (1) For any ideal / of k[X] we have Ix(Vx(/)) = ✓/; for any 
subset Y of X we have Vx(Ix(Y)) = Y. 
(2) The map Ix defines a bijection of the family of Zariski-closed subsets of X onto 
the family of radical ideals of k[X], with inverse Vx. 
(3) Let A be an affine k-algebra. Define a bijection of Max(A) onto the set of homo
morphisms of k-algebras A ➔ k. 
( 4) Let X be an algebraic set. 

(a) Xis irreducible if and only if k[X] is an integral domain (i.e., does not contain 
zero divisors =I- 0). 

(b) X is connected if and only if the following holds: if f e k[X] and f 2 = 
f, f =I- 0 then f = 1. 

( c) Let X 1, . . . , X s be the irreducible components of X. If X; n Xi = 0 for 
1 < i, j < s, i =I- j, then there is an isomorphism k[X] ➔ EBt~i:9 k[X;], defined 
by the restriction maps k[X] ➔ k[X;]. 

1.3.S. We shall have to consider locally defined functions on X. For this we need 
special open subsets of X, which we now introduce. 

If f E k[X] put 

Dx(f) = D(f) = {x e X I f (x) =/- 0}. 

This is an open set, namely the complement of V(f k[X]). We have 

D(f g) = D(f) n D(g), D(fn) = D(f) (n > 1). 

The D(f) are called principal open subsets of X. 

1.3.6. Lemma. (i) If f, g E k[X] and D(f) C D(g) then fn e gk[X] for some 
n > 1; 
(ii) The principal open sets form a basis of the topology of X. 

Using 1.1.4 (3) we see that D(f) C D(g) if and only if ✓(f k[X]) C ✓(gk[X]), 
which implies (i). (ii) is equivalent to the statement that every closed set in X is an 
intersection of sets of the form Vx(fk[X]). This is obvious from the definitions. D 
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1.3.7. F-structures. Let F be a subfield of k. We say that Fis a.field of definition 
of the closed subset X of V = kn if the ideal I(X) is generated by polynomials with 
coefficients in F. In this situation we put F[X] = F[T]/I(X) n F[T]. Then the 
inclusion F[T] ➔ S induces an isomorphism of F[X] onto an F -subalgebra of S 
and an isomorphism of k-algebras k ®F F[X] ➔ k[X]. But this notion of field of 
definition is not intrinsic, as it depends on a particular choice of generators of k[X]. 

The intrinsic way to proceed is as follows. Let A = k[X] be an affine algebra. 
An F -structure on X is an F -subalgebra Ao of A which is of finite type over F and 
which is such that the homomorphism induced by multiplication 

k ®F Ao ➔ k[X] 

is an isomorphism. We then write Ao = F[X]. The set X (F) of F-rational points for 
our given F-structure is the set of F-homomorphisms F[X] ➔ F. More generally, if 
W is any vector space over k (not necessarily finite dimensional), an F -structure on 
W is an F-vector subspace W0 of W such that the canonical homomorphism 

is an isomorphism. A subspace W' of W is de.fined over F if it is spanned by W' n W0. 

Then W' n W0 is an F -structure on W'. 

1.3.8. A closed subset Y of X is F -closed (relative to our F -structure on X) if the 
ideal Ix(Y) is defined over F. A subset is F-open if its complement is F-closed. The 
F-open sets define a topology, the F -topology. An example of an F -open set is a 
principal open set D(f) with f e F[X]. These form a basis of the F-topology. 

1.3.9. Exercise. Let k = C, F = R, let k[X] = C[T, U]/(T 2 + U2 - 1) and let 
a, b be the images in k[X] of T and U. Show that R[a, b] and R[ia, ib] define two 
different R-structures on X. (Hint: consider the sets of rational points.) 

1.4. Regular functions, ringed spaces 

1.4.1. Notations are as in 1.3. Let x e X. A k-valued function f defined in a 
neighborhood U of x is called regular in x if there are g, h e k[X] and an open 
neighborhood V C Un D(h) of x such that f (y) = g(y)h(y)- 1 for y e V. 

A function f defined in a non-empty open subset U of X is regular if it is regular 
in all points of U. So for each x e U there exist gx, h x with the properties stated 
above. Denote by Ox(U) or O(U) the k-algebra of regular functions in U. The fol
lowing properties are obvious: 
(A) If U and V are non-empty open subsets and U C V, restriction de.fines a k
algebra homomorphism O(U) ➔ O(V); 
(B) Let U = UaeA Ua be an open covering of the open set U. Suppose that for each 



1.4. Regular functions, ringed spaces 7 

a EA we are given fa e O(Ua) such that if Ua n U/J is non-empty, fa and ftJ restrict 
to the same element of O(Ua n UfJ)· Then there is f e O(U) whose restriction to Ua 
is fa, for all a E A. 

1.4.2. Sheaves of functions. Now let X be an arbitrary topological space. Suppose 
that for each non-empty open subset U of X, a k-algebra of k-valued functions O(U) 
is given such that (A) and (B) hold. The function O is called a sheaf of k-valued func
tions on X. (We shall not need the general notion of a sheaf on a topological space.) 
A pair (X, 0) consisting of a topological space and a sheaf of functions is called a 
ringed space. 

Let (X, 0) be a ringed space. If Y is a subset of X, we define an induced ringed 
space (f, Olr) as follows. Y is provided with the induced topology. If U is an open 
subset of Y then Olr(U) consist of the functions f on U with the following property: 
there exists an open covering U C LJ U a of U by open sets in X, and for each a, 
an element fa e O(Ua) such that the restriction of fa to Un Ua coincides with the 
restriction of f. 

We leave it to the reader to show that Olr is a sheaf of functions. Notice that if Y 
is open we have Olr(U) = O(U) for all open sets U of Y. 

1.4.3. Affine algebraic varieties. The ringed spaces (X, Ox) of 1.4.1 are the affine 
algebraic varieties over k, which we also call affine k-varieties. In the sequel we shall 
usually drop the Ox and speak of an algebraic variety X. 

We denote by Ox.x or Ox the k-algebra of functions regular in x e X. By def
inition these are functions defined and regular in some open neighborhood of x, two 
such functions being identified if they coincide on some neighborhood of x. A formal 
definition is 

Ox = limind O(U), 

where U runs through the open neighborhoods of x, ordered by inclusion and limind 
denotes inductive limit. We write An for the affine variety defined by kn. This is affine 
n-space. 

1.4.4. Exercises. (1) Ox.xis a local ring, i.e., has only one maximal ideal (namely the 
ideal of functions vanishing in x ). 

(2) Let Mx C k[X] be the ideal of functions vanishing in x E X. Show that Ox,x 
is isomorphic to the localization k[X]Mx. (If A is a commutative ring and S a sub
set that is closed under multiplication, the ring of fractions s-1 A is the quotient of 
S x A by the following equivalence relation: (s, a) ,.__, (s', a') if there is s1 e S with 
s1 (s'a - sa') = 0. The equivalence class of (s, a) is written as a fraction s-1a and 
these are added and multiplied in the usual way. If P is a prime ideal in A and Sis 
the complement A - P, then s-1 A is written A p and is called the localization of A at 
P. See [La2, Ch. II, §3].) 
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Let (X, Ox) be an algebraic variety. It follows from the definitions that there is a 
homomorphism</> : k[X] ➔ O(X). 

1.4.5. Theorem. </> is an isomorphism. 

It is obvious that</> is injective. We have to prove surjectivity. Let f E O(X). For 
each x E X there exists an open neighborhood Ux of x and gx, hx E k[X] such that 
hx does not vanish at any point of Ux and that for y E Ux 

By 1.3.6 (ii) we may assume that there is ax E k[X] with Ux = D(ax). Then D(ax) C 

D(hx) and by 1.3.6 (i) there exist h: E k[X] and an integer nx > 1 with 

nx -h h' 
QX - X x• 

The restriction off to Ux equals gxh:(a;x)-1. Observing that D(ax) = D(a;x) we 
see that we may assume that hx = ax. 

Since Xis quasi-compact (1.1.5 (iv)) there are finitely many of the hx, h1, ... , hs, 
such that the open sets D(h;) (1 < i =:; s) cover X. Let g; e k[X] be such that the 
restriction off to D(h;) equals g;h;1(1 < i < s). Since g;h; 1 and gih°;-1 coincide on 
D(h;)nD(h j) whereas h;h i vanishes outside this set, we have h;h j(g;h i-gih;) = 0. 
Since the D(h;) cover X, the ideal generated by hf, ... , h; is k[X]. So there exist 
b; e k[X] with 

s 

Lb;hf = 1. 
i=l 

Let x e D(hj). Then 

s s 

hJ(x) Lb;(x)g;(x)h;(x) = Lb;(x)hf(x)hj(x)gj(x) = hJ(x)f(x). 

It follows that f = </>(Lf=t b;g;h;), which proves surjectivity. □ 

1.4.6. Exercise. Let D(f) be a principal open subset of X. Show that there is an 
isomorphism onto Ox(D(f)) of the algebra k[X]j = k[X][T]/(1 - f T). (k[X]j is 
isomorphic to the ring of fractions s-1k[X], where S = (fn)n?.O; see 1.4.4 (2).) 

1.4.7. Morphisms. Let (X, Ox) and (Y, Or) be two ringed spaces. Let</>: X ➔ Y 
be a continuous map. If f is a function on an open set V c Y, denote by <l>v f the 
function on the open subset <J,- 1 V of X which is the composite off and the restric
tion of </> to that set. We say that </> is a morphism of ringed spaces if, for each open 
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V E Y, we have that </Ji, maps Or(V) into Ox(<J,-1 V). If, moreover, (X, Ox) and 
(Y, Or) are affine algebraic varieties, a morphism of ringed spaces X ➔ Y is called 
a morphism of affine algebraic varieties. It is clear how to define an isomorphism of 
affine varieties. 

If Xis a subset of Y, q, the injection X ➔ Y and Ox = Orix (see 1.4.2) then 
q, defines a morphism of ringed spaces in the previous sense. In this case we say that 
(X, Ox) is a ringed subspace of (Y, Or). 

A morphism q, : X ➔ Y of affine varieties defines an algebra homomorphism 

Or(Y) ➔ Ox(X), 

whence by 1.4.5 a homomorphism q,* : k[Y] ➔ k[X]. Conversely, an algebra homo
morphism VI : k[Y] ➔ k[X] defines a continuous map VI : X ➔ Y with (VI )* = VI 
(view the points of X and Y as homomorphisms, cf. 1.3.4 (3)). Then VI is a morphism 
of affine varieties. If <I> is as before, we have (q,*) = q,. The upshot of this section is 
that affine k-varieties and their morphisms can be described in algebraic terms. 

1.4.8. Exercises. (1) Complete the proofs of the statements of the last paragraph. 
(2) Make affine k-algebras and affine algebraic varieties over k into categories. Show 
that these categories are anti-equivalent. (For categories see [La2, Ch. I, §7] or [Jac5, 
Ch. 1].) 
(3) A morphism of affine varieties q, : X ➔ Y is an isomorphism if and only if the 
algebra homomorphism q,* is an isomorphism. 

1.4.9. Affine F-varieties. Let F be a subfield of k and let (X, Ox) be an affine 
k-variety. An F-structure on this affine variety is given by the following data: 
(a) an F-structure on X, in the sense of 1.3.7; 
(b) for each F-open subset U of X we are given an F-subalgebra Ox(U)(F) of 
Ox(U) such that the homomorphism induced by multiplication 

k ®F Ox(U)(F) ➔ Ox(U) 

is an isomorphism and that properties like (A) and (B) of 1.4.1 hold. An affine variety 
over k with an F-structure will be called an affine F-variety. It is clear how to define 
morphisms of these (called F-morphisms). 

The proof of 1.4.5 carries over to the case of F -varieties and gives that F[X] :::: 
Ox(X)(F). We conclude that affine F-varieties and their morphisms can be described 
in algebraic terms. An instance of an affine F-variety is affine n-space An (n > 0), 
whose algebra is k[TI , ... , Tn], If Xis an affine F-variety, its set X (F) of F-rational 
points (l.3.7) can be viewed as the set of F-morphisms A0 ➔ X. 

1.4.10. Exercise. Complete details in 1.4.9. 
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1.5. Products 

1.S.1. Let X and Y be two affine algebraic varieties over k. In accordance with the 
general notion of product in a category [La2, Ch. I, §7] we say that a product of X and 
Y is an affine variety Z over k, together with morphisms p : Z ➔ X, q : Z ➔ Y such 
that the following holds: for any triple (Z', p', q') of an affine variety Z' together with 
morphisms p' : Z' ➔ X, q' : Z' ➔ Y, there exists a unique morphism r : Z' ➔ Z 
such that p' = p o r, q' = q o r. Put A = k[X], B = k[Y], C = k[Z]. Using 
1.4.7 we see that Chas the following property: there exist k-algebra homomorphisms 
a : A ➔ C, b : B ➔ C such that for any triple ( C', a', b') of an affine k-algebra and 
k-algebra homomorphisms a' : A ➔ C', b' : B ➔ C', there is a unique k-algebra 
homomorphism c : C ➔ C' with a' = co a, b' = cob. 

Working in the category of all k-algebras, i.e., forgetting the condition that k[Z] 
is an affine algebra, it follows from familiar properties (see e.g. [La2, Ch. XVI, §4]) 
that C = A ®kB and a(x) = x ® 1, b(y) = 1 ® y satisfy our requirements. 

1.S.2. Lemma. Let A and B be k-algebras of finite type. If A and B are reduced 
(respectively, integral domains) then the same holds for A ®kB. 

Assume that A and B are reduced. Let I:7=1 a; ® b; be a nilpotent element of 
A® B. We may assume the b; to be linearly independent over k. For any homo
morphism h : A ➔ k we have that h ® id is a homomorphism A ® B ➔ B. Then 
I:7=1 h(a;)b; is a nilpotent element of B, which must be zero since Bis reduced. As 
the b; are linearly independent, all h(a;) are zero, for any h. This means that the a; 
lie in all maximal ideals of A. It follows that a; = 0 for all i (apply 1.3.4 (1) with 
k[X] = A, I= (a;)), which shows that A® Bis reduced. 

Next let A and B be integral domains. Let f, g e A ® B, f g = 0. Write 
f = L; a;® b;, g = Lj ci ® dj, the sets {b;} and {dj} being linearly independent. 
An argument similar to the one just given then shows that a;ci = 0, from which it 
follows that f or g equals 0. D 

1.S.3. Exercises. (1) Show that C ®RC is not an integral domain. 
(2) Show that in 1.5.2 the assumption that A and B are of finite type can be omitted. 

1.S.4. Theorem. Let X and Y be two affine k-varieties. 
(i) A product variety X x Y exists. It is unique up to isomorphism; 
(ii) If X and Y are irreducible then so is X x Y. 

From the discussion of 1.5.1 it is clear that it suffices to show that if A and B are 
affine k-algebras (respectively, affine k-algebras that are integral domains), the same 
is true for A ®k B. This follows from 1.5.2. The uniqueness statement of (i) follows 
formally from the definition of products. □ 
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1.5.S. Exercises. X and Y are affine varieties. 
( 1) Show that the set underlying X x Y can be identified with the product of the sets 
underlying X and Y. 
(2) With the identification of (1), the Zariski topology on the X x Y is finer than the 
product topology. Give an example where these topologies do not coincide. 
(3) Let F be a subfield of k. A product of two affine F-varieties exists and is unique 
up to F -isomorphism. 

1.6. Prevarieties and varieties 

1.6.1. Prevarieties. A prevariety over k is a quasi-compact ringed space (X, Ox) 
( or simply X) such that any point of X has an open neighborhood U with the prop
erty that the ringed subspace (U, Olu) (see 1.4.7) is isomorphic to an affine k-variety. 
Such a U is called an affine open subset of X. A morphism of prevarieties is a mor
phism of the ringed spaces. A subprevariety of a prevariety is a ringed subspace which 
is isomorphic to a prevariety. 

1.6.2. Exercises. (1) A prevariety is a noetherian topological space. 
(2) If X is an irreducible prevariety and U an affine open subset, then U is irreducible. 

The notion of a product of prevarieties is defined in the categorical manner; see 
1.5.1. 

1.6.3. Proposition. A product of two prevarieties exists and is unique up to iso
morphism. 

Let X and Y be prevarieties and let X = LJ~1 U;, Y = Uj=1 Vi be finite cov
erings by affine open sets. The underlying set of the product X x Y will be the set 
theoretic product X x Y, which is covered by the sets U; x Vi. On these sets we have 
a structure of affine variety (by 1.5.4 and 1.5.5 (1)). We declare a set U c X x Y to 
be open if U n ( U; x Vi) is an open subset of the algebraic set U; x Vi, for all i, j. 
This defines a topology on X x Y. A function f, defined in an open neighborhood 
U of x E U; x Vj, is defined to be regular in x if its restriction to Un (U; x Vj) is 
regular in x, for the structure of affine variety on U; x Vj. This defines a structure of 
ringed space on X x Y. One verifies that it has the required properties. The uniqueness 
statement is proved in the standard manner. D 

1.6.4. Exercise. Fill in the details of the proof of 1.6.3. 

1.6.S. Separation axiom. Let X be a prevariety, denote by ~x the diagonal sub
set of X x X, i.e., 

~x = {(x, x) Ix EX}, 

and denote by i X ➔ ~x the obvious map. We provide ~x with the induced 
topology. 
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1.6.6. Example. Let X be an affine k-variety. Then ll.x is a closed subset of X x X, 
namely the set VxxxU) (see 1.3.2), where I is the kernel of the homomorphism 

k[X x X] = k[X] ®k k[X] ➔ k[X] 

defined by the product of the algebra k[X]. The ideal / is generated by the elements 
f ® 1 - 1 ® f (f e k[X]). Since k[X x X]/ I '.:::'. k[X], we conclude that i now 
defines a homeomorphism of topological spaces X ::::'. ll.x. 

1.6.7. Exercise. Prove the assertions made in 1.6.6. 

1.6.8. Lemma. i : X ➔ ll.x defines a homeomorphism of topological spaces for 
any prevariety X. 

Cover ll.x by open sets of the form U x U, with U affine open in X, and use that 
the result holds for affine varieties (1.6.6). D 

1.6.9. The prevariety X is defined to be a variety (or an algebraic variety over k 
or a k-variety) if the following holds: 

Separation axiom. ll.x is closed in X x X. 

By 1.6.6 this holds if Xis an affine variety. See 1.6.13 (1) for an example of a 
prevariety which is not a variety. 

It is clear how to define morphisms of varieties. 

1.6.10. Exercises. (1) Show that a topological space X is Hausdorff if and only if 
the diagonal ll.x is closed in X x X for the product topology. 
(2) The product of two varieties is a variety. 
(3) A subprevariety of a variety is a variety. 
( 4) Let X be a variety. Define an induced variety structure on open and closed subsets 
of X. 

One needs the separation axiom to establish the following results. 

1.6.11. Proposition. Let X be a variety and Y a prevariety. 
(i) If <I> : f ➔ Xis a morphism, then its graph r t/J = {(y, </>(y)) I y E f} is closed in 
y XX; 

(ii) If</>, 1/f : f ➔ X are two morphisms which coincide on a dense set, then <I> = 1/f. 

In the situation of (i), consider the continuous map Y x X ➔ X x X sending (y, x) 
to (</>(y), x). Then r ,pis the inverse image of the closed set ll.x, hence is closed. This 
proves (i). In the situation of (ii) it follows similarly that {y e f I </J(y) = 1/f(y)} is 
closed, whence (ii). D 
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The following result gives a useful criterion for a prevariety to be a variety. 

1.6.12. Proposition. (i) Let X be a variety and let U, V be affine open sets in X. 
Then U n V is an affine open set and the images under restriction of Ox(U) and 
Ox(V) in Ox(U n V) generate the last algebra; 
(ii) Let X be a prevariety and let X = LJ~=l U; be a covering by affine open sets. Then 
X is a variety if and only if the following holds: for each pair (i, j) the intersection 
U; n Ui is an affine open set and the images under restriction of Ox(U;) and Ox(Uj) 
in Ox(U; n Uj) generate the ~ast algebra. 

In the situation of (i), we have that L!lx n (U x V) is closed in U x V. Now i 
induces an isomorphism of ringed spaces Un V :::: t!lx n (U x V). It follows that 
Un Vis affine and that regular functions on t!lx n (U x V) are restrictions of regular 
functions on U x V, i.e., of elements of k[U] ® k[V]. Then (i) follows from the fact 
that this algebra is generated by k[U] ® 1 and 1 ® k[V]. 

The necessity of the condition of (ii) follows from (i). If it is satisfied, then for 
each pair (i, j) the intersection t!lx n (U; x Vj) is an affine algebraic variety whose 
algebra is a quotient of Oxxx(U; x Uj). This implies that L!lx n (U; n Uj) is closed 
in U; x Ui. Hence t!lx is closed in Xx X. □ 

1.6.13. Exercises. (1) Define the 'line with doubled point 0' X as follows. As a 
set X is the union of A 1 and a point 0', moreover A 1 is an affine open set, with its 
usual variety structure. Define <P : A 1 ➔ X by <P (x) = x E A 1 if x -f:. 0, <P (0) = 0'. 
Then Im <I> can be given a structure of affine variety isomorphic to A 1. Define Im <I> to 
be an affine open subset. Show that X is a prevariety which is not a variety. 
(2) Define the projective line P1 in a similar way: P1 = A1 U {oo}, with <t,(x) = x-1 

for x -=I- 0, <P (0) = oo. Show that P1 is a variety. Show that CJp1 (P1) = k and deduce 
that any morphism of P1 to an affine variety is constant. 
(3) (a) Let U C An be open and non-empty. If f E OAn(U), there exist g, h E 

k[T1, ... , Tn] such that h does not vanish on U and that f (x) = g(x)h(x)-1 for 
x E U. (Hint: cover U by principal open sets and use 1.4.6). 

(b) Let X = An - {0}, with the induced structure of variety. Show that Xis not 
an affine variety if n > 2. 

1.6.14. F-structures. Let F be a subfield of k. We say that the k-variety X has 
an F -structure or that X is an F -variety if we are given a family of open subsets of 
X, called F -open subsets, with the following properties: 
(a) the F-open subsets form a topology; 
(b) the F -open subsets, which are also affine open, cover X (these sets will be called 
affine F-open sets); 
(c) an affine F-open set has a structure of affine F-variety; 
(d) if U and V are two affine F-open sets with V c U, then the inclusion morphism 
of affine varieties V ➔ U is defined over F. 
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If X and Y are two F -varieties, a morphism </> : X ➔ Y is defined over F if for 
any F -open set V c Y, the set U = <1>- 1 U is F -open in X and if, moreover, the 
induced morphism U ➔ V is defined over F. We also say that </> is an F -morphism. 
The notion of an F -isomorphism is the obvious one. Likewise the notion of an F -
subvariety. 

If a k-variety X has an F -structure, we shall say that F is a ground field for X. 

1.6.15. To define an F -structure on a k-variety X, the following data suffice: a cov
ering (U;) of X by affine open subsets, together with F-structures on the U; and their 
intersections, such that all inclusion morphisms U; n Uj ➔ U; are defined over F. 
An F -open set is defined to be an open set whose intersection with U; is F -open in 
U;, for all i. Then the properties of 1.6.14 hold. 

1.6.16. If X is an F-variety, the set X (F) of its F -rational points is the set of F -
morphisms A0 ➔ X (cf. 1.4.9). 

If X and Y are two F-varieties, there is a unique structure of F-variety on the 
product X x Y of 1.5 such that the projection morphisms to X and Y are defined over 
F. 

1.6.17. Exercises. (1) Check the statements made in 1.6.15 and 1.6.16. 
(2) A morphism of F -varieties </> : X ➔ Y is defined over F if and only if its graph 
(1.6.11 (i)) is a closed F-subvariety of the F-variety Xx Y of 1.6.16. 
(3) Let X beak-variety. There exists a subfield F of k which is an extension of finite 
type of the prime field in k such that X has an F -structure. 

1. 7. Projective varieties 

The most important example of non-affine varieties, and practically the only ones 
that we shall encounter, are the projective spaces and their closed subvarieties, to be 
discussed in the present section. 

1.7.1. pn. The underlying set of projective n-space pn is the set of all one dimen
sional subspaces of the vector space kn+I or, equivalently, kn+I - {O} modulo the 
equivalence relation: x ,.._, y if there is a e k* = k - {O} such that y = ax. Write x* 
for the equivalence class of x. If x = (x0 , x 1, ... , Xn), we call the x; homogeneous 
coordinates of x*. 

For O < i < n, put 

U; = { (xo, ... , Xn)* E pn I x; =I= O}. 

Define a bijection </>; : U; ➔ An by 
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and transport the structure of the affine variety on An to Ui via <Pi. Then <Pi ( Ui n U i) 
is a principal open set D(/) in An. In fact, identifying k[An] with k[T1, ... , Tn], we 
may take f = Ti+ 1 if j < i, f = 1 if j = i and f = Ti if j > i. 

We make P" into a prevariety in the following manner (cf. 1.6.15). A subset U 
is defined to be open if U n Ui is open in the affine variety Ui, for O :::: i :::: n. Let 
x e pn and assume x e Ui. A function f, defined in a neighborhood of x, is declared 
to be regular in x if the restriction of f to Ui is regular in x for the structure of affine 
variety of Ui which was introduced above. As in 1.4.1 we obtain a sheaf Opn and a 
ringed space (P", Opn), which is a prevariety (check the details). 

This is, in fact, a variety. From the definitions we see that O(Ui n Uj) (0 < i, j < 
n) is the k-algebra of functions whose value in (x0, ... , Xn)* is a polynomial function 
of xi- I xo, . . . , x;- 1 Xn, x 11 xo, . . . , x 11 Xn. It is then clear that the condition of 1.6.12 
(ii) is satisfied. 

The variety thus obtained is a projective n-space. For n = 1 we recover the vari
ety of 1.6.13 (2) ( check this). A projective variety is a closed subvariety of some pn, 

i.e., a closed subset with the induced structure of a variety. A quasi-projective variety 
is an open subvariety of a projective variety. 

1.7.2. Exercises. (1) An invertible linear map of kn+l induces an isomorphism of 
pn. 
(2) Let V be a finite dimensional vector space over k. Define a variety P(V) whose 
underlying point set is the set of one-dimensional subspaces of V and which is iso
morphic to pn- I, where n = dim V. 
(3) Let F be a subfield of k. Define an F-structure on P", inducing on each Ui the 
F -structure obtained by transporting the F -structure of An. 

1.7.3. Closed sets in pn. We shall now give a concrete description of closed sets 
in P". Let S = k[To, ... , Tn] be the polynomial algebra in n + 1 indeterminates. 
An ideal / in S is homogeneous if it is generated by homogeneous polynomials or, 
equivalently, if / 0 + • • • + fh e /, where f; is homogeneous of degree i, then all /; 
lie in/. 

If/ is a proper homogeneous ideal in S, then if x e kn+l is a zero of/, the same 
is true for all ax, a e k*. Hence we can define a set V* (I) e P" by 

V*(l) = {x* E pn IX E Vkn+I (/)}. 

1.7.4. Proposition. The closed sets in pn coincide with the sets V*(l), I running 
through the homogeneous ideals of S. 

Let / be a homogeneous ideal. It is easy to see that V* (/) n U; is closed for all i, 
from which it follows that V*(l) is closed. 

Let U be open in P". To prove 1.7.4 it suffices to show that U is the com
plement of some V*(l), and by an analogue of 1.1.3 (d), it suffices to do this if 
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U = </>;1 (D(f)) C U; (for some i), where f e k[T1, ... , Tn]. There is a homo
geneous polynomial f * e k[To, ... , Tn] which is divisible by T;, such that 

Then U is the complement of V* (f * S). □ 

1.7.5. Exercises. (1) Let f e S be homogeneous and# 0. Let Sj be the algebra of ra
tional functions gf-h, where g e Sis homogeneous of degree deg g = hdeg f. Show 
that D* (f) = pn - V* (f S) is an affine open subset of pn and that Opn (D* (f)) ~ Sj. 
(2) Let/ be a homogeneous ideal in S. 

(a) Show that V*([) = 0 if and only if there exists N > 0 such that 1t e / for 
0 < i < n. 

(b) Show that V* ([) is irreducible if and only ✓ / is a prime ideal. 
(3) Let F be a subfield of k. The F -closed subsets of pn, for the F -structure of 1. 7 .2 
(3), are the V*([), where the homogeneous ideal / is generated by polynomials with 
coefficients in F. 
(4) (a) Define a map of sets <J,: pm x pn ➔ pmn+m+n by 

Show that the image of <J, is a closed subset ym.n of pmn+m+n and that <J, defines an 
isomorphism of varieties of pm x pn onto the projective variety defined by ym.n. 

(b) The product of two projective F -varieties is isomorphic to a projective F -
variety. 

1.8. Dimension 

1.8.1. Let X be an irreducible variety. First assume that X is affine. Then k[X] is 
an integral domain (1.2.5). Let k(X) be its quotient field [La2, p. 69]. If U = D(f) 
is a principal open subset of X, then k[U] = k[X] 1 (1.4.6) from which it follows that 
the quotient field k(U) is isomorphic to k(X). Using 1.3.6 (ii) we conclude that the 
same holds for any affine open subset U. 

Now let X be arbitrary. Using 1.6.12 (ii) the preceding remarks imply that for 
any two affine open sets U, V of X, the quotient fields k(U), k(V) can be canon
ically identified. It follows that we can speak of the quotient field k(X) of X. If 
X is an irreducible F-variety, we define similarly the F-quotient field F(X). The 
dimension dim X of X is the transcendence degree of k(X) over k (see [La2, Ch. 
X, §1]). If Xis reducible and if (X;)I!'::i!'::m is the set of its components, we define 
dimX = max;(dimX;). 

If X is affine and k[X] = k[x1, ... , Xr] then dim X is the maximal number of 
elements among the x; that are algebraically independent over k. 
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1.8.2. Proposition. If X is irreducible and if Y is a proper irreducible closed sub
variety of X, then dim Y < dim X. 

We may assume X to be affine. Let k[X] = A = k[x1, ... , Xr ], k[Y] = A/ P, 
where P is a non-zero prime ideal. Let y; be the image in k[Y] of x; and put d = 
dim X, e = dim Y. We may assume that y1, ... , Ye are algebraically independent. 
Clearly, x 1, ... , Xe are also algebraically independent, whence e < d. Assume that 
d = e. Let f be a non-zero element of P. There is a relation H(f, x 1, ... , Xe) = 0, 
with H e k[To, ... , Tel We may assume that His not divisible by T0. But then we 
would have a non-trivial relation H(0, YI, ... , Ye) = 0. It follows that we must have 
d < e. □ 

1.8.3. Proposition. Let X and Y be irreducible varieties. Then dim X x Y 
dimX +dimf. 

We may assume X and Y to be affine. Let x1, ... , Xd and Y1, ... , Ye be maximal 
sets of algebraically independent elements in k[X], respectively k[Y]. Then 

is such a set in k[X] ® k[Y] = k[X x Y]. 

1.8.4. Exercises. (1) dim An = dimP" = n. 
(2) A zero dimensional variety is finite. 

□ 

(3) Let f e k[T1, ... , Tn] be an irreducible polynomial. The set of its zeros is an 
(n - 1)-dimensional irreducible subvariety of An. 
(4) Let X be an irreducible F-variety. Then dimX equals the transcendence degree 
of F(X) over F. 

1.9. Some results on morphisms 

1.9.1. Lemma. Let <I> : X ➔ Y be a morphism of affine varieties and let </>* 

k[Y] ➔ k[X] be the associated algebra homomorphism. 
( i) If</>* is surjective, then <I> maps X onto a closed subset of Y; 

(ii)</>* is injective if and only if </>Xis dense in Y; 
(iii) If Xis irreducible, then so is the closure </>X and dim</>X < dim X; 
(iv) Let F be a sub.field of k. If X and Y are F -varieties and <I> is de.fined over F, then 
<I> X is an F -subvariety of Y. 

Put I =Ker</>*. If</>* is surjective, then </>X = Vy(/), whence (i). Also,</>* is in
jective if and only if Iy(<J>X) = {0}, which implies (ii). The first point of (iii) follows 
from 1.2.3 and the last point from (ii), applied to the restriction morphism X ➔ <J>X, 
using 1.8.2. Notice that <l>X = Vy(/). In the situation of (iv), the ideal I is spanned 
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by the kernel of the homomorphism F[Y] ➔ F[X] induced by <J>. This implies (iv). □ 

Theimage<J,Xneednotbeclosed. Asanexample,letX = {(x, y) E A2 1 xy = 1} 
and define</> : X ➔ A I by </>(x, y) = x. Then </>Xis the open set A 1 - {0}. 

1.9.2. For the proof of the main result 1.9.5 of this section, we need some algebraic 
results. 

Let B be a reduced ring and A a subring such that B is of finite type over A. 
Suppose that we are given a homomorphism of A to an algebraically closed field. We 
want to extend it to a homomorphism of B. We first assume that we have the special 
case that B = A[b] is generated over A by one element. Then B ::::'. A[T]/ I, where 
/ is the ideal of the f E A[T] with f (b) = 0. It does not contain non-zero constant 
polynomials. Denote by :J(l) the union of the set of leading coefficients of the non
zero polynomials in/ and {0}. This is an ideal in A. 

1.9.3. Lemma. Let K be an algebraically closed field and let </> : A ➔ K be a 
homomorphism such that <J>:1(1) # {O}. Then</> can be extended to a homomorphism 
B ➔ K. 

Let f = Jo + /1 T + ... + f m Tm E / be such that </>f m # 0. We may assume 
that m is minimal. We shall proceed by induction on m. First extend </> to the obvious 
homomorphism A[T] ➔ K[T], also denoted by</>. Assume that </>I does not contain 
a non-zero constant. Then it generates a proper ideal of K[T]. Let z E K be a zero of 
that ideal. It is immediate that </>b = z then defines an extension of </> to B. 

We claim that the assumption always holds. If not then / contains a polynomial 
g = go+ ... + gnTn with </>(g0) # 0, </>(g;) = 0 (i > 0). The division algorithm 
shows that there exist q, r E A[T] and an integer d > 0 such that J:/ig = qf + r 
and that deg r < m. Then </> (f:/i)<I> (go) = </>q .</> f + </>r. Since </> f has degree m > 0, 
we have that <J>r is also a non-zero constant. This means that we may assume n < m. 
Then g cannot exist if m = 1, proving the claim in that case. Assume that m. > 1 and 
that the assertion of the lemma is true for smaller values of m. 

If h =ho+ ... + hsTs E A[T] and hs # 0, put h = Tsh(T- 1) = hs + ... + hoTs. 
Let i be the ideal in A[T] generated by the ii with h E /. If a E in A, there is 
an integer s > 0 such that a Ts E /, whence (a TY E /. Since B is reduced, we 
have aT E /. We conclude that in A is the ideal J = {a E A I aT E /}. If 
<J>J # {0} we have m = 1, contradicting the assumption m > 1. So <J>J = {0}. Put 
A = A/ J, B = A[T]/ i = A[b]. Then B is reduced. In fact, if f E A[T] and 
ft E i, then T" ft E / for some u ::: 0. Since B is reduced we can conclude that - - -
T f E /, whence / E /, proving that B is reduced. 

Now </> defines a homomorphism 4, : A ➔ K. Notice that i contains g = 
gn + ... + goTn, with </>(g0) # 0. Since n < m the induction assumption shows that 
4, extends to a homomorphism B ➔ K. As <J>(g;) = 0 for i > 0, we have 4,(b) = 0. 
But i also contains j and 4,(j) # 0. This contradiction establishes our claim. D 
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1.9.4. Proposition. Let B be an integral domain and let A a subring such that B 
is of finite type over A. Given b =I- 0 in B there exists a =I- 0 in A such that any 
homomorphism <I> of A to the algebraically closed field K with </>(a) =I- 0 can be 
extended to a homomorphism <I> : B ➔ K with </>(b) =I- 0. 

We have B = A[b1, ... , bn], By an easy induction we may assume that n = 1, 
i.e., that B = A[bi] ~ A[T]/ I, as before. First assume that I =I- {0}. Let f E / be 
non-zero and of minimal degree. Denote by a1 its leading coefficient. The division 
algorithm shows that g E / if and only if for some d > 0 we have that af g is divisible 
by f. Leth e A[T] represent the given element b, then h ¢ /. Since f is irreducible 
over the quotient field of A, it follows that f and h are coprime over that field. Hence 
there exist u, v E A[T] and a2 e A - {O} such that uf + vh = a2. Then a = a,a2 
is as required. For if <I> is as in the proposition, it follows from the preceding lemma 
that <I> can be extended to B. Then </>(v(b1))</>(b) = </>a2 =I- O, whence </>(b) =I- 0. This 
settles the case / =I- {O}. The easy case I = {O} is left to the reader. □ 

1.9.5. Theorem. Let <I> : X ➔ Y be a morphism of varieties. Then cpX contains 
a non-empty open subset of its closure cp X. 

Using a covering of Y by affine open sets, we reduce the proof to the case that Y 
is affine. Using 1.3.6 (ii) and 1.4.6 we see that X may also be taken to be affine. If 
X 1 , . . . , X s are the irreducible components of X, we have c/J X = LJi cp Xi, from which 
we see that we may also assume X to be irreducible. Replace Y by cpX. Then the 
assertion of the theorem is a consequence of 1.9.4, with A= k[Y], B = k[X], b = 1. 

□ 

1.9.6. Exercises. (1) Let X be a variety. A subset of X is locally closed if it is the 
intersection of an open and a closed subset. A union of finitely many locally closed 
sets is a constructible set. 

(a) The complement of a constructible subset of Xis constructible. 
(b) Let <I> : X ➔ Y be a morphism. Deduce from 1.9.5 that the image </>X is a 

constructible subset of Y. (Hint: proceed by induction on dim X, using 1.8.2.) 
(c) If C is a constructible subset of X then </>C is constructible. 

(2) (a) Let E be a field and let F be a field extension of F which is an F-algebra of 
finite type. Then Eis a finite algebraic extension of F. (Hint: use 1.9.4.) 

(b) Let F be a field. If M is a maximal ideal in the polynomial ring S = 
F[T1, ... , Tn], then S / I is a finite algebraic extension of F. 

( c) Let / be an ideal in S. Then the radical ✓ / is the intersection af the maxima! 
ideals containing /. (Hint: Let f be a non-zero element in that intersection and let f 
be its image in S/ I. Show that (S/ /) J = {O}.) 

(d) Prove the Nullstellensatz 1.1.2 (note that the proof of 1.9.4 does not use results 
from the previous sections). 
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Notes 

This first chapter contains standard material from algebraic geometry and needs few 
comments. We have also included the definition of algebraic varieties over a ground 
field that is not algebraically closed, as well as some simple results on such varieties. 
More delicate results will be taken up in Chapter 11. In another terminology our alge
braic varieties are the schemes of finite type over a field which are absolutely reduced. 
For more about algebraic geometry we refer to Hartshome's book [Har] or Mumford's 
notes [Mu2]. 

In 1.4 we have introduced only sheaves of functions. We did not discuss more 
general sheaves, as they will not be needed in the sequel. Generalities about sheaf 
theory can be found in [God]. 

In the literature 1.9.4 is often proved by using valuations. We used an elementary 
approach that goes back to Chevalley and Weil [We3, p. 30-31]. The auxiliary result 
1.9.3 will also be used in 5.2. 



Chapter 2 

Linear Algebraic Groups, First Properties 

In this chapter algebraic groups are introduced. We establish a number of basic re
sults, which can be handled with the limited amount of algebraic geometry dealt with 
in the first chapter. k is an algebraically closed field and F a subfield. All algebraic 
varieties are over k. 

2.1. Algebraic groups 

2.1.1. An algebraic group is an algebraic variety G which is also a group such that 
the maps defining the group structure µ : G x G ➔ G with µ(x, y) = xy and 
i : x i--+ x-1 are morphisms of varieties. {We may view the set of points of the variety 
G x G as a product set, see 1.5.5 (i) and 1.6.3). If the underlying variety is affine, G 
is a linear algebraic group. These are the ones we shall be concerned with. It is usual 
to use the adjective 'linear' instead of 'affine' (this is explained by 2.3.7 (i)). 

Let G and G' be algebraic groups. A homomorphism of algebraic groups </J : 
G ➔ G' is a group homomorphism is also a morphism of varieties. The notions of 
isomorphism and automorphism are clear. 

The product variety G x G', provided with the direct product group structure is 
an algebraic group, the direct product of the algebraic groups G and G' (check this). 

A closed subgroup H of the algebraic group G is a subgroup that is closed in 
the Zariski topology. Then there is a structure of algebraic group on H such that the 
inclusion map H ➔ G is a homomorphism of algebraic groups. 

We say that the algebraic group G is an F -group if G is an F -variety, if the 
morphisms µ and i are defined over F, and if the identity element e is an F -rational 
point (see 1.6.14). The notions of an F -homomorphism of F -groups and of an F -
subgroup are clear. 

If G is an F -group, the set G (F) of F -rational points (1.6.16) has a canonical 
group structure. 

2.1.2. Let G be a linear algebraic group and put A = k[ G]. By 1.4. 7 the mor
phisms µ and i are defined by an algebra homomorphism a : A ➔ A ®k A ( called 
comultiplication) and an algebra isomorphism t : A ➔ A ( called antipode). More
over, the identity element is a homomorphism e: A ➔ k. Denote by m : A® A ➔ A 
the multiplication map (so m(f ® g) = f g) and let E be the composite of e and the 
inclusion map k ➔ A. 

The group axioms are expressed by the following properties: 
(associativity) the homomorphisms a® id and id® a of A to A ®A® A coincide; 
(existence of inverse) mo (t ® id) o a =mo (id® i) o a = E; 

(existence of identity element) (e ® id) o a = (id® e) o a = id (we identify k ® A 
and A® k with A). 
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The properties can also be expressed by commutativity properties of the following 
diagrams: 

-----A®A 

! id®L\ 

A®A ----- A®A®A, 

A®A ~ A®A, 
id®1 

e®id 
A--A®A 

;d®, I "';"" l A 

A®A --- A. 

Let G be an F-group and put Ao = F[G]. Then 6, t and e come from F
algebra homomorphisms Ao ➔ Ao ®F Ao, Ao ➔ Ao, Ao ➔ F, respectively, which 
we denote by the same symbols. They have properties similar to the ones listed above. 

2.1.3. Exercises. (1) Check the translation of the group axioms stated in 2.1.2. 
(2) Define the notion of a prealgebraic group, based on the notion of a prevariety (see 
1.6.1 ). Show that a prealgebraic group is an algebraic group. 

2.1.4. Examples. The notations are as in 2.1.1. 
(1) G = A 1 = k with addition as group operation. This defines a linear algebraic 
group, with A = k[T]. The homomorphism 6 : k[T] ➔ k[T] ® k[T] ~ k[T, U] is 
given by l::t.T = T + U and t : k[T] ➔ k[T] by tT = -T. Moreover, the algebra 
homomorphism e : k[T] ➔ k sends T to 0. We denote this algebraic group by Ga; 
it is the additive group. It is obvious that F[T] defines an F-structure on Ga, for any 
subfield F of k. 
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(2) G = A1 - {O} = k*, with multiplication as group operation. Now A= k[T, r-11 
and 6 : k[T, r-11 ➔ k[T, r-11 ® k[T, r-11 '.:::'. k[T, r-1, U, u-11 is given by 
6T = TU. Moreover, tT = r-1 and e send T to 1. This algebraic group is denoted 
by Gm or by GL1; it is the multiplicative group. It has the F-structure defined by 
F[T, r-1 ]. 

If n is any non-zero integer then </)x = xn defines a homomorphism of algebraic 
groups Gm ➔ Gm. If k has characteristic p > 0 and n is a power of p then </) is an 
isomorphism of abstract groups but not of algebraic groups (since</)* : A ➔ A is not 
surjective, see 1.4.8 (3)). 
(3) View the set Mn of all n x n-matrices as kn2 in the obvious manner. For X E 
Mn let D(X) be its determinant. Then Dis a regular function on Mn. The general 
linear group GLn is the principal open set {X E Mn I D(X) # O}, with matrix 
multiplication as group operation. 

We have A= k[T;j, v-1h=:;i,j=:;n, with D = det(T;j). Now 6 is given by 

n 

6Tij = L T;h ® Thj· 
h=l 

and tT;i is the (i, j)-entry of the matrix (Tab)- 1. The identity e sends T;i to aii (Kro
necker symbol). For n = 1 we recover the previous example. Since Mn is an ir
reducible variety so is GLn (by 1.2.3 (i)). Its dimension is n2 . Finally notice that 
F[T;j, v-11 defines an F-structure. 
(4) Any subgroup of GLn which is closed in the Zariski topology of GLn defines a 
linear algebraic group. Here are a number of examples: 

(a) a finite subgroup; 
(b) the group Dn of non-singular diagonal matrices; 
( c) the group T n of upper triangular matrices X = (xij) E GLn with Xij = 0 for 

i > j; 
(d) the group Un of unipotent upper triangular matrices, i.e., the subgroup of the 

previous group whose elements have diagonal entries 1; 
(e) the special linear group SLn ={XE GLn I det(X) = l}; 
(f) the orthogonal group On = {X E GLn I 'X.X = I}, where' X denotes the 

transpose of X; 
(g) the special orthogonal group SOn = On n SLn; 
(h) the symplectic group Sp2n ={XE GL2n I 'X J X = J}, where J is the matrix 

( -~. ~· ) 
(5) As examples of non-linear algebraic groups (not needed in the sequel) we mention 
the elliptic curves. These are closed subsets of the projective plane P2. Assuming for 
convenience that the characteristic is not 2 or 3, such a group G can be defined to be 
the set of (x0 , x1, x2)* E P2 (notations of 1.7.1) such that 

xox? = Xf + ax1x5 + bxJ, 
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where a, b Ek are such that the polynomial T 3 + aT + b has no multiple roots. 

The neutral element e is (0, 0, 1)*. The group operation of G is commutative and 
is written as addition. It is such that if three points of Gare collinear in P2 (i.e., if their 
homogeneous coordinates satisfy a non-trivial linear relation c0x0 + c1 x1 + c2x2 = 0), 
then their sum is e. This defines addition. It is easy to check that, if x = (x0 , x1, x2)* E 
G, we must have -x = (xo, x1, -x2)*. 

The addition can be described by explicit formulas which, however, are not very 
enlightening. A proof of the associativity of the group operation based on these for
mulas would be clumsy. There are better, more geometric, ways to deal with the group 
structure on such a curve. We refer to [Har, p. 321]. 

2.1.5. Exercises. (1) Let V be a finite dimensional vector space over k. 
(a) Define a linear algebraic group GL(V) whose underlying abstract group is the 
group of all invertible linear maps of V and which is isomorphic to GLdim v. 
(b) An F-structure Vo on V (l.3.7) defines a structure of F-group on GL(V). The 
corresponding group of rational points G L ( V) ( F) is the group G L ( V0 ) of invertible 
F -linear maps of V0. 

(2) Check that the subgroups of GLn listed in 2.1.4 ( 4) are indeed closed. 
(3) We have A= k[SL2] = k[T1, T2, T3, T4]/(T1T4 - T2T3 - 1) = k[t1, t2, t3, t4] (t; 
denoting the image of T;). Let B be the subalgebra of A generated by the products 
t;tj(l < i, j ~ 4). 

(a) Let fl. and t define the group structure of SL2. Show that !l.B C B ® B, tB = 
B and deduce that there is an algebraic group PSL2 whose algebra is B. Show that the 
inclusion map B ➔ A defines a homomorphism of algebraic groups SL2 ➔ PSL2 
with kernel of order at most two. 

(b) If char(k) =j:. 2, then B is the algebra of functions f E A such that f ( - X) = 
f (X) for all X E SL2, 

(c) If char(k) = 2, the homomorphism of (a) defines an isomorphism of underly
ing abstract groups but is not an isomorphism of algebraic groups. 
( 4) Show that the group T n of 2.1.4 ( c) is solvable. 
(5) Show that the automorphisms of G0 (= k) are the multiplications by non-zero ele
ments of k. 

2.1.6. Generalizations of algebraic groups. (a) The description of the notion of an 
algebraic group in terms of algebra homomorphisms, given in 2.1.2, leads to the fol
lowing generalization. Let R be a commutative ring and A a commutative R-algebra. 
Assume given homomorphisms of R-algebras fl. : A ➔ A ® R A, t : A ➔ A, e : 
A ➔ R, such that we have the properties of 2.1.2, with k replaced by R. We say that 
the set of data G = (A, fl., t, e) defines a group scheme over R (more precisely, an 
affine group scheme.) We shall occasionally encounter this notion. But we shall not 
go into the theory of group schemes. It is dealt with, for example, in [DG, SGA3]. 
(b) Let G be a group scheme over R. It follows from the axioms of 2.1.2, that for 



2. 2. Some basic results 25 

each R-algebra S, the set G(S) of R-algebra homomorphisms A ➔ S has a canonical 
group structure. In fact, S ~ G(S) defines a functor from the category of R-algebras 
to the category of groups. Such a functor is an R-group functor. Group functors gen
eralize group schemes. For more about group functors we refer to [loc.cit.]. 
( c) A more recent generalization that has become quite important is obtained by ad
mitting in (a) non-commutative R-algebras A. In this case I!:.. and e are as before, butt 
is required to be an anti-automorphism. We impose the same axioms as before. More
over, we require that the opposite algebra A opp (i.e., A with reversed multiplication) 
has the same properties, relative to I!:.., ,-1, e. Now the set of data G = (A, I!:.., t, e) 
defines a quantum group over R. We refer the reader to [Jan2, Kas] for more about 
the theory of quantum groups and for examples. 

2.2. Some basic results 

Let G be an algebraic group. If g e G, the maps x ~ gx and x ~ xg define 
isomorphisms of the variety G. We shall frequently use this observation. 

2.2.1. Proposition. (i) There is a unique irreducible component G0 of G that contains 
the identity element e. It is a closed normal subgroup of finite index; 
(ii) G0 is the unique connected component of G containing e; 
(iii) Any closed subgroup of G of finite index contains G0. 

Let X and Y be irreducible components of G containing e. If µ, and i are as in 
2.1.1, it follows from 1.2.3 that XY =µ,(Xx Y) and its closure XY are irreducible. 
Since X and Y are contained in X Y, it follows from 1.2.6 (I) that X = Y = X Y. 
It also follows that X is closed under multiplication. Since i is a homeomorphism, 
we see that x-1 is an irreducible component of G containing e, so must coincide 
with X. We conclude that X is a closed subgroup. Using that inner automorphisms 
define homeomorphisms, one sees that for x e G, we have xxx-1 = X, so that X 
is a normal subgroup. The cosets xX must be the components of G, and by 1.2.4 the 
number of cosets is finite. We have proved that G0 = X has the properties of (i). 

We also see that the irreducible components of G are mutually disjoint. It then 
follows that the irreducible components must coincide with the connected components 
(use 1.2.8 (i)). This implies (ii). 

If H is a closed subgroup of G of finite index, then H0 is a closed subgroup of 
finite index of G0. Then H 0 is both open and closed in G0. Since G0 is connected, 
we have H0 = G0, which proves (iii). □ 

The proposition shows that, for algebraic groups, the notions of irreducibility and 
connectedness coincide. In the sequel we shall, as is usual, speak of connected alge
braic groups, and not of irreducible ones. We always denote by G0 the component of 
the algebraic group G containing the identity (briefly: the identity component). 

Dimensions being defined as in 1.8.1, we see from 2.2.1 that all components of G 
have dimension dim G. 
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2.2.2. Exercises. (I) The groups Ga, Gm, GLn, Dn, Tn, Un, SLn of 2.1.4 are con
nected. 
(2) Assume that k has characteristic =I= 2. 

(a) The group On is not connected. 
(b) Let V be the set of skew symmetric n x n-matrices. Then x i-+ ( 1 + x )-1 ( 1 - x) 

defines an isomorphism of a non-empty open subset of SOn onto an open subset of V. 
Show that SOn is the identity component of On. 
(3) The variety of 1.2.8 (3) cannot be the underlying variety of an algebraic group. 
(4) Let G be a connected algebraic group and let N be a finite normal subgroup. Then 
N lies in the center of G. (Hint: for n e N consider the map x i-+ xnx-1 of G to N .) 

2.2.3. Lemma. Let U and V be dense open subsets of G. Then UV = G. 

Notice that a subset of G is open and dense if and only if it intersects any com
ponent of G in a non-empty open subset. The intersection of two such subsets is one 
with the same properties. 

Let x e G. Then xv-1 and U are both dense open subsets. They have a non
empty intersection ( 1.2.1 ), which means that x e UV. □ 

Notice that if G is connected we need only require U and V to be open and non-empty. 

2.2.4. Lemma. Let H be a subgroup of G. 
'fi) The Closure H is a subgroup of G; 
(ii) If H contains a non-empty open subset of H then His closed. 

Let x e H. Then H = xH c xH. Since xH is closed we have H C xH and 
x-1 H C H, whence H H C H. Now let x e H. Then Hx C H, and a similar 
argument shows that H is closed under multiplication. Since ( H)-1 = H-1 = H, we 
conclude that H is a group. If U c H is open in H and non-empty, then H, being 
a union of translates of U, is open in H. By 2.2.3 we conclude that H = H. H = H. □ 

2.2.5. Proposition. Let </J : G --+ G' be a homomorphism of algebraic groups. 
(i) Ker </J is a closed normal subgroup of G; 
(ii) </J(G) is a closed subgroup of G'; 
(iii) If G and G' are F-groups and </J is defined over F then </J(G) is an F-subgroup 
ofG'; 
(iv) </J(G0) = (</JG)0. 

Ker </J = </J-1e is closed in G, whence (i). By 1.9.5, </J(G) contains a non-empty 
open subset of its closure. Then (ii) follows from 2.2.4 (ii) and (iii) is a consequence 
of 1.9.1 (iv). </J ( G0) is a closed subgroup of G' by (ii), which is connected (by 1.2.3 
(ii)) and which is of finite index in </JG. Using 2.2.1 (iii) we obtain (iv). □ 

2.2.6. Proposition. Let (X;, </J;);eJ be a family of irreducible varieties together with 
morphisms </J; : X; --+ G. Denote by H the smallest closed subgroup of G containing 
the images Y; = </J; X; (i e /). Assume that all Y; contain the identity element e. 
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( i) H is connected; 
(ii) There exist an integer n 2: 0, a = (a(l), ... , a(n)) E in and E(h) = ±1 (I < 
h ) h ha H YE(l) yt(n) 

:::: n sue t t = a(I) ••• a(n); 

(iii) Assume, moreover, that G is an F-group, that all X; are F-varieties and that the 
morphisms </>; are defined over F. Then H is an F-subgroup. 

We may assume that the sets Y;- 1 occur among the Yi. For each element a = 
(a(l), ... , a(n)) of some in, we write Ya = Ya(l)··•Ya(n)• This is an irreducible sub
set of G, and so is the closure Ya (see 1.2.3 (i)). With obvious notations we have 
Yb. Ye = Y(b,e). An argument as in the proof of 2.2.4 then shows that Yb. Ye C Y(b,e). 

Now take a such that dim Ya is maximal. For any b, we then have Ya C Ya. Yb C Y(a,b). 

From 1.8.2 we conclude that Y(a,b) = Ya and Yb C Ya, for all b. It also follows that 
Ya is closed under multiplication, which implies that Ya is a group. By 1.9.5 and 2.2.3 
we have Ya = Ya. Ya. It follows that H = Ya has the properties stated in (i) and (ii). 
Now (iii) is a consequence of 1.9.1 (iv). D 

2.2. 7. Corollary. ( i) Assume that ( G;); el is a family of closed, connected, subgroups 
of G. Then the subgroup H generated by them is closed and connected. There is an 
integer n 2: 0 and a = (a(l), ... , a(n)) E 1n such that H = Gao>--•Ga(n); 

(ii) If, moreover, G is an F-group and all G; are F-subgroups then His an F
subgroup. 

If Hand Kare subgroups of G, we denote by (H, K) the subgroup generated by 
thecommutatorsxyx-1y-1 withx E H,y EK. 

2.2.8. Corollary. (i) If H and K are closed subgroups of G one of which is con
nected, then (H, K) is connected,· 
(ii) If, moreover, G is an F-group and H, Kare F-subgroups then (H, K) is a con
nected F-subgroup. 

Assume that H is connected. Then (i) follows by applying 2.2.6 with / = K, all 
X; being H, with </>;(x) = xix-1i-1(i EK). The statement of (ii) follows from 1.9.1 
(iv), using that by 2.2.6 (H, K) is the image under an F-morphism (H x K)n ~ G. 
In particular, the commutator subgroup ( G, G) of a connected F -group is a connected 
F-subgroup. □ 

2.2.9. Exercises. (1) (a) Give another proof of the connectedness of SOn in character
istic =j:. 2 (see 2.2.2 (2)) using 2.2.7 and the fact that On is generated by 'symmetries' 
(see [Jac4, p. 353]. 

(b) Prove by a similar argument that Sp2n is connected for arbitrary k, using that 
Sp2n is generated by 'symplectic transvections', see [loc. cit., p. 3731). 
(2) (char(k) =j:. 2) The complement of SOn in On is irreducible and generates On, 

Deduce that in 2.2.6 the condition e E Y; cannot be omitted. 
(3) Let G be a connected F -group and let n be an integer 2: 2. The subgroup o<n> of 
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G generated by the n-th powers of its elements is a connected normal F -subgroup. 
(4) Show by a counterexample that 2.2.8 (i) is not true if neither H nor K is con
nected. (Hint: take Hand K finite.) 

2.3. G-spaces 

2.3.1. A G-variety, or a G - space, is a variety X on which G acts as a permu
tation group, the action being given by a morphism of varieties. More precisely, 
there is a morphism of varieties a : G x X ➔ X, written a (g, x) = g .x, such that 
g.(h.x) = (g.h).x, e.x = x. If, moreover, G is an F-group and Xis an F-variety, 
then X is a G-space over F if a is defined over F. A homogeneous space for G is a 
G-space on which G acts transitively. 

Let X and Y be G-spaces. A morphism <I> : X ➔ Y is a G-morphism, or is said 
to be equivariant, if <J>(g.x) = g.<J>(x)(g E G, x EX). 

Let X be a G-space and let x EX. The orbit of xis the set G.x = {g.x I g E G}. 
The isotropy group of xis the closed subgroup Gx = {g E G I g.x = x} (check that 
G x is closed). 

2.3.2. Examples. (1) X = G and G acts by inner automorphisms: a(g, x) = gxg-1. 

The orbits are the conjugacy classes of G and the isotropy groups are the centralizers 
of elements of G. 
(2) X = G and G acts by left (right) translations: a(g, x) = gx (resp. xg-1). This is 
an example of a homogeneous space, even of a principal homogeneous space or tor
sor, where the isotropy groups are trivial (which means that the action of G is simply 
transitive). 
(3) Let V be a finite dimensional vector space over k. A rational representation of G 
in V is a homomorphism of algebraic groups r : G ➔ G L(V) (see 2.1.5 (1)). We 
also say that V is a G-module (it being understood that r is also given). In this case 
we can view V as an affine algebraic variety isomorphic to A dim v, with a G-action 
defined by g.v = r(g)v (g E G, v E V). We also have a structure of G-variety on the 
projective space P(V) of 1.7.2 (2). 

If G is an F-group, a rational representation over Fis a homomorphism of al
gebraic groups G ➔ G L(V) which is defined over F, where now V is a finite di
mensional vector space with an F-structure, the F-group G L(V) being as in 2.1.5 
(1). 

Another version of the definition of a rational representation of G is: a homomor
phism of algebraic groups r : G ➔ GLn, for some n > 1. 

Assume the situation of 2.3.1. 

2.3.3. Lemma. (i) An orbit G.x is open in its closure; 
(ii) There exist closed orbits. 
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Application of 1.9.5 to the morphism g ~ g.x of G to X shows that G.x con
tains a non-empty open subset U of its closure. Since G .x is the union of the open 
sets g.U(g e G), the assertion (i) follows. It implies that for x e X, the set 
Sx = G .x - G .x is closed. It is a union of orbits. By 1.1.5 (ii) there is a mini
mal set Sx. Because of (i) it must be empty. Hence the orbit G .x is closed, proving 
(ii). □ 

The lemma implies that an orbit G.x is a locally closed subset of X (see 1.9.6 (1)), 
i.e., an open subset of a closed subset of X. It then has a structure of algebraic variety 
(use 1.6.10 (4)). It is immediate that this is a homogeneous space for G. 

2.3.4. Exercises. (1) Let G be a closed subgroup of GLn. Then An has a struc
ture of G-space. Determine the orbits for G = GLn, Dn, SLn (see 2.1.4 (4)). 
(2) There is an action of G = GL2 on the projective line P1 (see 2.3.2 (3)), which 
makes P1 into a homogeneous G-space. Describe the isotropy group of a point. The 
diagonal action of G on P1 x P1 is not homogeneous. In fact, there are two orbits. 
(3) Generalize the results of the previous exercise to GLn, acting on pn-1. 

2.3.S. From now on we assume that G is a linear algebraic group. Let X be an 
affine G-space, with action a : G x X ➔ X. We have k[G x X] = k[G] ®k k[X] and 
a is given by an algebra homomorphism a* : k[X] ➔ k[G] ® k[X] (see 1.4.7). For 
g E G, x E X, f E k[X] define 

(s(g))f (x) = f (g-1 x). 

Then s (g) is an invertible linear map of the (in general infinite dimensional) vector 
space k[X] ands is a representation of abstract groups G ➔ GL(k[X]). The next 
result will imply thats can be built up from rational representations (see 2.3.9 (1)). 

2.3.6. Proposition. Let V be a.finite dimensional subspace of k[X]. 
(i) There is a.finite dimensional subspace W of k[X] which contains Vandis stable 
under all s(g) (g e G); 
(ii) V is stable under all s (g) if and only if a* V C k [ G] ® V. If this is so, s de.fines a 
ma,p sv : G x V ➔ V which is a rational representation of G ; 
(iii)Jf, moreover, G isan F-group, X isan F-variety, Vis de.fined over F (see 1.3.7) 
and a is an F-morphism then in (i) W can be taken to be de.fined over F. 

It suffices to prove (i) in the case that V = kf is one dimensional. Let 

n 

a* f =Lui ® f; (u; e k[G], /; e k[X]). 
i=l 
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Then 

n 

(s(g)f)(x) = f(g- 1 x) = L u;(g- 1)/;(x), 
i=l 

and we see that all s(g)f lie in the subspace W' of k[X] spanned by the f;. The 
subspace W of W' spanned by the s(g)f then has the properties of (i). 

By a similar argument we see that if a* V c k[ G] ® V the space V is s ( G)-stable. 
Now assume that V is s(G)-stable. Let(/;) be a basis of V and extend it to a basis 
(/;) U (gj) of k[X]. Let f E V and write 

a* f =Lu;® f; + Lvi ®gj, 

where u;, vi E k[G]. Then 

s(g)f = L u;(g-l)f; + L vi(g-l)gj, 

Our assumption implies that vi(g-1) = 0 for all g, hence all vi vanish. This proves 
the first point of (ii). The second point is now immediate. The proof of (iii) is a copy 
of that of (i) and can be skipped. □ 

We now consider the case that G acts by left or right translations on itself (see 2.3.2 
(2)). For g, x E G, f E k[G] define 

()..(g)f)(x) = f (g-1 x), (p(g)f)(x) = f (xg). 

Then).. and pare representations (of abstract groups) of G in G L(k[G]), even in the 
group of algebra automorphisms of k[G]. If tis the automorphism of k[G] defined by 
inversion (see 2.1.2), then p = io)..oi-1. The representations).. and pare faithful, i.e., 
have trivial kernel. If, for instance, )..(g) = id, then f (g-1) = f (e) for all f E k[G], 

whence g = e. 

2.3.7. Theorem. (i) There is an isomorphism of G onto a closed subgroup of some 

GLn; 
( ii) If G is an F-group the isomorphism of ( i) may be taken to be defined over F. 

By 2.3.6 (i) we may assume that k[G] = k[f1, ... , fn], where (f;) is a basis of a 
p(G)-stable subspace V of k[G]. 

By 2.3.6 (ii) there exist elements (mij)i';i,j';n in k[G] with 

n 

p(g)f; = Lmi;(g)fj (g E G). 
j=l 
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Then <J,(g) = (mij(g)) 1~;,j~n defines a group homomorphism <J, : G ➔ GLn. If 
<J, (g) = e then p (g) /; = /; for all i. Since p (g) is an algebra homomorphism and 
since the /; generate k[G] it follows that p(g)f = f for all / E k[X] and g = e. 
Hence <J, is injective. Also, <J, is a morphism of affine varieties. The corresponding 
algebra homomorphism 

(notations of 2.1.4 (3)) is given by <J,*T;i = mii, <J,*(D-1) = det(mij )-1. 

From 

f;(g) = L mj;(g)/j(e) 
j 

it follows that <J,* is surjective. By 2.2.5 (ii), <J,(G) is a closed subgroup. Its algebra is 
isomorphic to k[GLnl/Ker <J,*, hence is isomorphic to k[G]. It follows that <J, defines 
an isomorphism of algebraic groups G ~ <J,(G). This proves (i). The easy proof of 
(ii) is omitted. D 

2.3.8. Lemma. Let H be a closed subgroup ofG. Then 

H = {g E G I )..(g)Ia(H) = Ia(H)} = {g E G I p(g)Ia(H) = Ia(H)}. 

The notations are as in 1.3.2. It suffices to prove this for )... If g, h E H, f E 
I 0 (H) then ()..(g)f)(h) = f(g- 1h) = 0, whence )..(g)f E I 0 (H). Conversely, if 
this is so then f (g-1) = ()..(g)f)(e) = 0 for all/ E I 0 (H) and g E H. □ 

2.3.9. Exercises. (1) In the situation of 2.3.5 there exists an increasing sequence 
of finite dimensional subspaces (Vi) of k[X] such that (a) each V; is stable under s(G) 
and s defines a rational representation of G in V;, and (b) k[X] = LJ; V;. 
(2) Let X be an affine G-variety. There is an isomorphism <J, of X onto a closed sub
variety of some An and a rational representation r : G ➔ GLn such that <J,(g.x) = 
r(g)<J,(x) (g E G,x EX) (Hint: adapttheproofof2.3.7 (i)). 

2.4. Jordan decomposition 

2.4.1. We begin by recalling some results from linear algebra. Let V be a finite 
dimensional vector space over k. An endomorphism a of V is semi-simple if there is 
a basis of V consisting of eigenvectors of a. So with respect to this basis, a is repre
sented by a diagonal matrix. We say that an endomorphism a is nilpotent if as = 0 
for some integers > 1 and that a is unipotent if a - 1 is nilpotent. Notice that if the 
characteristic p of k is non-zero, a is unipotent if and only if aPs = 1 for some integer 
s::: 1. 
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We denote by End(V) the algebra of endomorphisms of V. The group of its in
vertible elements is G L(V). Choosing a basis of V we may identify End(V) with an 
algebra Mn of n x n-matrices with entries ink and G L(V) with GLn. 

2.4.2. Lemma. Let S C Mn be a set of pairwise commuting matrices. 
(i) There exists x e GLn such that xsx-1 consists of upper triangular matrices; 
(ii) If all matrices of Sare semi-simple there is x E GLn such that xsx-1 consists of 
diagonal matrices. 

The assertions are obvious if all elements of S are multiples of the identity. If 
not, there is s e S with an eigenspace that is a non-trivial subspace W of V = kn. 
Because of our assumptions, Wis S-stable. By induction on n, we may assume that 
an assertion like (i) holds for the endomorphisms induced by Sin Wand V / W. Then 
(i) follows. (ii) is proved similarly, writing V as a direct sum of eigenspaces of s. □ 

2.4.3. Lemma. (i) The product of two commuting semi-simple (nilpotent, unipo
tent) endomorphisms of V is semi-simple (respectively: nilpotent, unipotent); 
(ii) If a E End(V), b E End(W) are semi-simple (nilpotent, unipotent) then the same 
is true for a EB be End(V EB W), a® be End(V ® W); 
(iii) If a e End(V), b e End(W) are semi-simple (nilpotent) then the same is true 
fora® I+ 1 ®be End(V ® W). 

The assertion about semi-simple endomorphisms of (i) follows from 2.4.2 (ii). 
The easy proofs of the other assertions are left to the reader. □ 

2.4.4. Proposition. Let a e End(V). 
(i) There are unique elements as, an E End(V) such that as is semi-simple, an is 
nilpotent, asan = anas and a= as+ an (additive Jordan decomposition of a); 
(ii) There are polynomials P, Q E k[T] without constant term such that as = P(a), 
an= Q(a); 
(iii) If W C V is an a-stable subspace of V, then Wis also stable under as and au 
and a I w = as I w + au I w is the additive Jordan decomposition of the restriction a I w. 
A similar result holds for the endomorphism of V / W induced by a; 
(iv) Let <p : V ➔ W, b e End(W) be linear maps. If <p o a = b o <p then 
<p o as = bs o <p, <p o an = bn o <p. 

Let det(T .1 - a) = n (T - a; tj be the characteristic polynomial of a, the a; being 
the distinct eigenvalues of a. Put 

The V; are non-zero a-stable subspaces. By the Chinese remainder theorem there 
exists P e k[T] with 

P(T) = 0 (mod T), P(T) = a; (mod (T - a;ti) for all i. 
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Put as = P(a). Since P(a;) = a; the eigenvalues of as are the same as those of 
a. Also, as stabilizes all Vi and the restriction of as to Vi is scalar multiplication by 
a;. It follows that the V; are the eigenspaces of as and that V is their direct sum. We 
conclude that as is semi-simple and that a-as is nilpotent. The assertions of (i) and (ii) 
now readily follow, except for the uniqueness statement. To prove this, let a = bs + bn 
be a second decomposition with the properties of (i). From (ii) we infer that bs and bn 
commute with as and an. From 2.4.3 (i) we conclude that as - bs = bn - an is both 
semi-simple and nilpotent, hence must be zero, establishing the uniqueness. 

If W is as in (iii) it is clear from (ii) that as and an stabilize W. Now observe 
that the characteristic polynomial of alw divides the characteristic polynomial of a. It 
follows that the polynomial P introduced above can also serve for a I w. The assertions 
of (iii) about V follow. For V / W the arguments are similar. 

To prove (iv) we use that¢ has a factorization 

V --+ V EB W --+ W. 

The first map is v 1--+ (v, q,(v)); it is injective. The second map is projection, it is 
surjective. An easy argument shows that it suffices to prove (iv) if¢ is either injective 
or surjective. These cases are taken care of by (iii). D 

2.4.5. Corollary. Let a E GL(V). There are unique elements as,au E GL(V) 
such that as is semi-simple, au is unipotent and a = asau = auas ( multiplicative Jor
dan decomposition of a). We have properties similar to those of 2.4.4 (iii) with au 
instead of an. 

Let a = as + an be the additive Jordan decomposition of a. Since a is invertible 
it has no eigenvalue 0. From the proof of 2.4.4 we see that as is invertible. It follows 
from 2.4.4 that as and au = I + a_;- 1an have the required properties. Conversely, if as 
and au are as in 2.4.5 then a = as + as(au - I) is the additive Jordan decomposition 
of a. The corollary follows from these observations. D 

We call as, an(au) the semi-simple, nilpotent, (unipotent) parts of a E End(V) 
(resp. G L(V)). 

2.4.6. Corollary. Let a = asau, b = bsbu be the Jordan decompositions of a E 

G L(V) and b E G L(W). Then a EB b = (as EB bs) + (au EB bu) is the Jordan decompo
sition of aEBb E GL(VEBW)anda®b = (as®bs)(au®bu)thatofa®b E GL(V®W). 

This follows from 2.4.3 (ii). □ 

2.4.7. Let V be a not necessarily finite dimensional vector space over k. We de
note again by End ( V) and G L ( V) the algebra of endomorphisms of V and the group 
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of its invertible endomorphisms. We say that a E End(V) is locally finite if V is a 
union of finite dimensional a-stable subspaces. We say that a is semi-simple (resp. 
locally nilpotent) if its restriction to any finite dimensional a-stable subspace is semi
simple (resp. nilpotent). If a is semi-simple, it is also semi-simple according to the 
definition of 2.4.1 (check this). For a locally finite a E End(V) we again have an 
additive Jordan decomposition a = as +an as in 2.4.4 (i), with locally finite as and an 
such that as is semi-simple and an locally nilpotent. To define asx and aux for x E V, 
take a finite dimensional a-stable subspace W containing x and put 

asx = (alw)sx, aux= (alw)ux, 

It follows from 2.4.4 (iii) that this definition is independent of the choice of Wand that 
as and an are as required. Similarly, we have a multiplicative Jordan decomposition 
a = asau if a E G L(V) is locally finite. Here au is locally unipotent, i.e., au - 1 is 
locally nilpotent. We have obvious analogues of 2.4.4 (iii), (iv) and 2.4.6 (for locally 
finite b). 

Now let G be a linear algebraic group and put A= k[G]. Let g E G. By 2.3.9 (1) 
the right translation p(g) is a locally finite element of GL(A). So we have a Jordan 
decomposition p(g) = p(g)sp(g)u, 

2.4.8. Theorem. (i) (Jordan decomposition in G) There are unique elements gs, gu E 

G such that p(g)s = p(gs), p(g)u = p(gu) and g = gsgu = Cues; 
(ii) If <p : G ➔ G' is a homomorphism of algebraic groups, then <p(g)s = ¢(gs), 

</J(g)u = </J(gu); 
(iii) If G = GLn, then Ks and Cu are the semi-simple and unipotent parts of 2.4.5 
(with V = kn). 

The elements gs and gu of (i) are called the semi-simple part and the unipotent 
part of g E G. 

As in 2.1.2 let m : A ® A ➔ A be the homomorphism defined by multiplication. 
Since p (g) is an algebra automorphism we have 

mo (p(g) ® p(g)) = p(g) om. 

From 2.4.4 (iv) (applied tom) and 2.4.6 it follows that 

mo (p(g)s ® p(g)s) = p(g)s om. 

This means that p(g)s is also an automorphism of A, hence/ H- (p(g)sf)(e) defines 
a homomorphism A ➔ k, i.e., a point gs of G. Since p(g) commutes with all left 
translations A(x), x E G (which are locally finite) we have by 2.4.4 (iv) for f E A 

(p(g)sf)(x) = (A(X-1)p(g)sf)(e) = (p(g)sA(x-1)/)(e) = (A(x-1)/)(gs) = f (Xgs), 

and we see that p(g)s = p(gs), 
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One obtains in the same way an element Ku E G with p(g)u = p(gu). The 
remaining assertions of (i) now follow from the fact that pis a faithful representation 
ofG. 

A homomorphism of algebraic groups </> : G ➔ G' can be factored: 

G ➔ Im</> ➔ G'. 

Using 2.2.5 (ii) it follows that it suffices to prove (ii) in two special cases: 
(a) G is a closed subgroup of G' and</> is the inclusion map. Let k[G] = k[G']/ I. By 
2.3.8 

G = {g e G' I p(g)l = /}. 

The assertion (ii) now follows from 2.4.4 (iii). 
(b) </> is surjective. In this case k[G'] can be viewed as a subspace of k[G] (see 1.9.1 
(ii)), which is stable under all p(g) (g e G). Again, the assertion of (ii) follows from 
2.4.4 (iii). 
Let G = G L(V) with V = kn. Let f be a nonzero element of the dual space yv. For 
v E V define f (v) E k[G] by 

f (v)(g) = f(gv). 

Then f is an injective linear map V ➔ k[ G] and it is immediate that for g e G, v e 
V 

f (gv) = p(g)f(v). 

From 2.4.4 (iv) we conclude that 

- -
f (gsv) = p(g)sf (v), 

and similarly for Ku• This implies (iii). □ 

2.4.9. Corollary. x e G is semi-simple (resp. unipotent) if and only if for any 
isomorphism </> of G onto a closed subgroup of some GLn we have that </> (x) is semi
simple (resp. unipotent). 

2.4.10. Exercises. Notations of 2.4.8. 
(1) Show that A(X)s = A(Xs), )..(x)u = A(Xu). 
(2) The set Gu of unipotent elements of G is closed. 
(3) Show by an example that the set Gs of semi-simple elements of G is not necessar
ily open or closed. 

2.4.11. Let F be a subfield of k and G an F-group. If x e G(F) then Xs and Xu 
need not lie in G(F). Here is an example. 
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Assume that char(k) = 2 and that F =,:- F 2, so Fis non-perfect. Let G = GL2. If 
a e F- F 2 then 

has the semi-simple part 

( Ja O ) 
0 Ja ' 

which does not lie in G(F). If, however, Fis a perfect field, then the semi-simple and 
unipotent parts of an element of G(F) also lie in G(F). We postpone the proof (see 
12.1.7 (c)). 

The linear algebraic group G is unipotent if all its elements are unipotent. An 
example is the group Un of 2.1.4 ( 4 ). The next result implies that any unipotent group 
is isomorphic to a closed subgroup of some Un. 

2.4.12. Proposition. Let G be a subgroup of GLn consisting of unipotent matri
ces. There is x E GLn such that xGx-1 C Un, 

Put V = kn. Then G is a group of unipotent linear maps of V. Use induction 
on n. If there is a non-trivial subspace W of V with G. W = W, then the statement 
follows by induction. We are left with the case that such a W does not exist, i.e., that 
G acts irreducibly in V. In this case we know by Burnside's theorem [La2, Ch. XVII, 
§3] that the elements of G span the vector space End(V) of endomorphisms. 

If g e G we have Tr(g) = n. It follows that Tr((l - g)h) = 0 for g, h e G. 
But then this equality holds for all h e End(V), which can only be if g = 1. Hence 
G = { 1 } and the assertion is trivial. D 

Recall that a group H is nilpotent if there is an integer n such that all iterated 
commutators (xi, ( ... (Xn-t, Xn) ... )) equal e (as before, (x, y) = xyx- 1 y- 1

). Such a 
group is solvable (see [Jac4, p. 243, ex. 6]. 

2.4.13. Corollary. A unipotent linear algebraic group is nilpotent, hence solvable. 

Using 2.3.7 (i) the proposition reduces the proof to verifying that a group Un of 
unipotent upper triangular matrices is nilpotent. Verification is left to the reader. D 

A consequence of 2.4.12 is the fact that if G is a unipotent linear algebraic group 
and G ➔ G L(V) a rational representation, there is a non-zero vector in V fixed 
by all of G. This fact is used to prove the following geometric result (theorem of 
Kostant-Rosenlicht). 
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2.4.14. Proposition. Let G be a unipotent linear algebraic group and X an affine 
G-space. Then all orbits of Gin X are closed. 

Let O be an orbit. Replacing X by the closure O we may assume that O is dense 
in X. By 2.3.3 (i), 0 is also open. Let Y be its complement. The group G acts locally 
finitely on the ideal Ix(Y) (by 2.3.6 (i)), and there is a non-zero function f in this 
ideal fixed by the elements of G. But then f is constant on O. Since O is dense, f is 
constant on all of X. Henceix(Y) = k[X] and O = X, as asserted. D 

2.4.15. Exercise. Let G be a subgroup of GLn which acts irreducibly in V = kn. 
Show that the only normal unipotent subgroup of G is the trivial one. 

2.5. Recovering a group from its representations 

2.5.1. The results of this section, which will not be used in the sequel, illustrate 
the elementary theory of linear algebraic groups. 

We keep the notations of the preceding sections. Let G be a linear algebraic group. 
Recall (see 2.3.2 (3)) that a rational representation of G is a finite dimensional vector 
space V (called a G-module) together with a homomorphism of algebraic groups 
rv : G ➔ GL(V). We denote by I the trivial G-module: I= k and r1(g) = 1 for all 
g E G. 

A homomorphism of G-modules V ➔ W is a linear map ¢ which is equivariant, 
i.e., satisfies¢ o rv(g) = rw(g) o cp for all g e G. 

If V is a G-module the dual vector space vv is a G-module: if ( , } ( or ( , } v) is 
the duality pairing, then for g e G, x e V, u e vv 

(rv(g)(x), rvv(g)(u)) = (x, u). 

If V and W are G-modules the tensor product V ® W has a natural structure of G
module, with rv®w = rv ® rw. 

As in 2.4. 7 we define locally finite G-modules and their G-homomorphisms. An 
example is A = k[G], the representation of G being p, the action by right translations. 

2.5.2. Lemma. Let V be a G-module. For v e V, u e vv, g e G define <l>u ( v )(g) = 
(rv(g)v, u). Then c/Ju(v) e A and </Ju is a homomorphism of G-modules V ➔ A. 

</Ju ( v) can be viewed as a matrix element of a representation G ➔ GLdim v, so 
lies in A. The equivariance of </Ju is obvious from the definitions. D 

2.5.3. Theorem. [Tannaka's theorem] Assume given for any finite dimensional G
module V an element av e G L(V) such that the following holds: 
(a) If V and Ware G-modules then av®w =av® aw, 
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(b) if <I>: V ➔ Wis a homomorphism of G-modules then <I> o av= aw o </>, 
(c)a1=l. 
Then there is x E G with av = rv(x)for all G-modules V. 

We begin the proof by defining av for a locally finite G-module V. Let v E V and 
let W be a finite dimensional G-stable subspace of V containing v. Define av(v) = 
aw(v). Then av is well-defined. It is an invertible linear map of V. These maps have 
the properties (a) and (b) (check these facts). 

Consider the locally finite G-modules A (for the representation p) and A® A (for 
p ® p ). The multiplication map m : A ® A ➔ A of 2.1.2 is G-equivariant. Put 
a = aA. By (a) and (b) we have mo (a® a) = a om. This means that a is an 
automorphism of the algebra A. It follows that there is an automorphism <I> of the 
affine variety G such that (af)(g) = f (</>g) for f EA, g E G. 

Next consider the homomorphism D. : A ➔ A ® A of 2.1.2. Then (D.f)(g, h) = 
f (gh) (f E A, g, h E G). It follows that 6. o p(g) = (id® p(g)) o 6. (g E G). 
Let B be the locally finite G-module A ® A, with rs = id® p. Then 6. : A ➔ B is 
equivariant. By the properties (a), (b), (c) we have as =id® a. We conclude from 
(b) that 6. oa = (id®a)o 6., which means that for g, h E G we have </>(gh) = g</>(h). 
Put x = </>(e). Then </>(g) = gx and a = p(x). 

Now let V be a finite dimensional G-module. For any u in the dual vv we have 
the G-homomorphism <l>u : V ➔ A of 2.5.2. By property (b) we know that 

<l>u O av = a O <l>u = p(x) 0 <l>u• 

This means that for g E G, v E V we have 

(rv(g)av(v), u) = (rv(gx)v, u). 

Since u E vv is arbitrary we can conclude that av = rv(x). □ 

2.5.4. The theorem implies that one can recover the algebra A from the rational rep
resentations of G. We now discuss the explicit description of A in terms of represen
tations. 
Let V be a finite dimensional G-module. For v E V, u E vv define a linear map 
1/lv : V ® vv ➔ A by 1/lv(v ® u) = <l>u(v), where <l>u is as in 2.5.2. We have the 
following properties. 
(a) If <I> : V ➔ W is a homomorphism of G-modules then the maps 1/lv o (id ® <I> v) 

and 1/f w o ( <I> ® id) of V ® wv to A coincide. 
Here <I> v : wv ➔ vv is the transpose of </>. This property is a reformulation of 

the equality (v, </>v (u)) = (</>(v), u), where v E V, u E wv. 

Next let V and W be two G-modules. There are canonical isomorphisms 
(V ® W)V '.::::'. vv ® wv and C : (V ® W) ® (V ® W)v '.::::'. (V ® vv) ® (W ® wv). 

As before, m : A ® A ➔ A is the multiplication map. 
(b) V'V®W =mo (1/lv ® 1/lw) o c. 
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Property (b) means that for v E V, w E W, u E yv, t E wv we have 

(v ® w, u ® t}v@w = (v, u}v(w, t}w. 

This relation describes the canonical isomorphism between (V ® W) v and yv ® wv. 

2.5.5. Let F be the direct sum of the vector spaces V ® vv, where V runs through 
all finite dimensional G-modules V. Denote by iv : V ® vv ➔ F the canonical 
injections and by 'R the subspace of F spanned by the elements iv(id ® q,v)(z) -
iw(<I> ® id)(z). Here <I> : V ➔ Wis any homomorphism of G-modules and z runs 
through V ® wv. Put A= F/R. For v EV, u E yv denote by av(v ® u) the image 
in A of iv(v ® u). If¢ is as before, then for v E V, u E wv 

(1) 

We define a multiplication of these elements. Let v E V, w E W, u E yv, t E wv. 
Then 

av(v ® u)aw(w ® t) = av@w((v ® w) ® (u ® t)). (2) 

This product is well-defined, and defines a structure of commutative, associative al
gebra on A. The identity element is provided by the trivial representation /. We leave 
it to the reader to check these statements. Notice that the properties of av reflect the 
properties (a) and (b) of2.5.4 of the maps 1/tv. 

2.5.6. The homomorphisms of algebraic groups G ➔ Gm form an abelian group 
X, the character group of G. If V is a one dimensional G-module, there is a unique 
x E X such that g.v = x(g)v for g E G, v E V. Then V ® vv has a canonical 
basis element ev@vv, namely v ® u, where v E V, u E yv and (v, u} = I. We write 
a(x) = av(ev@vv ). Then a is a homomorphism of X onto a subgroup of the set of 
invertible elements of A. 

If V is a finite dimensional G-module of dimension d we have the canonical 
homomorphism <I> : ®d V ➔ I\ d V with ¢ ( Vt ® ... ® vd) = Vt I\ ... I\ vd. Identify 
(/\d V)v with /\d(Vv) via the pairing 

(Vt/\ ... A vd, Ut I\ ... I\ ud} = det((ui, Vj}). 

Then 

</> v (u t /\ ... /\ ud) = L (sgn s )Us(l) ® ... ® Us(d), 

seSd 

where sgn s is the sign of the permutation s. Let detv be the character defined by the 
one dimensional G-module /\ d V. It follows from ( 1) and (2) that for vi E V, u i E 
yv (1 <, ij, ~ d) we have 

det(av(vi ® ui)) = det((vi, ui})a(detv). (3) 
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2.5.7. Theorem. (i) A is a k-algebra of finite type; 
(ii) There is a surjective algebra homomorphism <I> : A ➔ A such <I> o av = 1/rv for 
all G-modules V; 

(iii) The kernel of <I> is the ideal of nilpotent elements of A. 

Let V be a G-module. Fix a basis (ui)l~i~d of vv. It follows from 2.5.2 and 
the local finiteness of A that there is a finite dimensional G-submodule W of A such 
that, for all i, the images of the maps <Pu; of 2.5.2 lie in W. These maps then define 
an injective G-homomorphism </> : V ➔ Wd. Since </> v is surjective, an element 
av(v ® u) is a sum I:?=1 aw(wi ® ti). It follows that A is generated by the images 
of the av, where V is a finite dimensional G-submodule of A. Fix such a V which 
generates A as an algebra and contains I. The product in A defines for any integer 
n > 1 a G-equivariant surjective linear map <l>n of V®n onto a finite dimensional 
G-submodule Vn of A. We have Vn C Vn+l and A= Un~l Vn. 

Now let W be any finite dimensional G-submodule of A. It is contained in a Vn, 
whence 

Im aw C Im avn C Im av@n 

(the second inclusion follows from the surjectivity of <l>n). The multiplication rules in 
A show that Im av®n lies in the subalgebra generated by Im av. It follows that this 
subalgebra must be the full algebra A. This proves (i). 

Using property (b) of 2.5.4 we see that there exists an algebra homomorphism 
A ➔ A which maps av(v, u) to 1/rv(v, u), for all V. This implies (ii). 

Fix an algebra homomorphism~ : A ➔ k. Let V be a G-module. Fix bases (vi) 
and (uj) of V resp. vv. There is an endomorphism av of V such that (avvi, uj} = 
~(av(vi ® Uj)). From (3) we see that det(av(v; ® Uj)) is an invertible element of 
A. Hence av is an invertible linear map. It now follows that the av satisfy the as
sumptions of Tannaka's theorem. The conclusion of that theorem shows that there 
is a homomorphism x : A ➔ k (i.e., a point x of G) such that ~ = x o <I>. Let 
N = ✓{O} be the ideal of nilpotent elements of A. There is an affine variety X with 
k[X] = A/N. Then <I> induces a morphism of G onto a closed subvariety of X. But 
we have seen that these varieties have the same points. This can only be if A/ N is 
isomorphic to A, which establishes (iii). □ 

2.5.8. Remarks. (I) We can also recover the comultiplication 8 : A ➔ A ® A 
and the antipode t : A ➔ A of 2.1.2 from similar homomorphisms for A. 

Let V be a G-module. Let (v;) be a basis of V and denote by (u;) the dual basis of 
vv (so (v;, Uj} = ~ij)- Denote by X the linear map A ➔ A® A sending an element 
av(v ® u) to Li av(v ® u;) ® av(v; ® u). It can be checked that X is an algebra 
homomorphism and that ( <I> ® <I>) o X = 8 o <I>. 

Define a homomorphism i : A ➔ A by i(av(v ® u)) = avv(u ® v). Then i 
induces the antipode t of A. 
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(2) In fact, Li and i have the properties of 2.1.2. This means that A and these homo
morphisms define a group scheme over k (2.1.6 (a)). If char k = 0 the algebra A is 
reduced by a theorem of Cartier [DG, p. 255]. In that case the homomorphism <I> of 
2.5.7 is an isomorphism. 

2.5.9. Exercises. (1) Let F be a subfield of k. If G is an F-group then the alge
bra A of 2.5.6 can be given an F-structure. 
(2) Check the statements of 2.5.8. 

Notes 

The name 'algebraic group' (or rather 'groupe algebrique') seems first to occur in 
the work of E. Picard on the Galois theory of linear differential equations (around 
1880). The Galois groups occurring in that work are, indeed, linear algebraic groups 
over C. Kolchin's work on algebraic groups of 1948 (in [Koll, Kol2]) was also mo
tivated by the Galois theory of linear differential equations. His results were taken 
up by Borel in his fundamental paper [Bot]. Here the emphasis is on the analogy 
between Lie groups and linear algebraic groups. 

The results of Sections 2 and 3 are contained in [Bo 1, Ch. 1]. Several of the 
results (for example 2.2.1) go back to Kolchin (see [Kol 1, Kol2]). The useful result 
2.2.6 is due to Chevalley (see [Chl, Ch. II, §7]). 

The existence of closed orbits in a G-space (see (2.2.3 (ii)) was proved in [Bot, 
15.4]. This simple result is a cornerstone of the theory of linear algebraic groups. For 
example, it is needed in the proof of the crucial fixed point theorem 6.2.6. It should 
be noted that the algebraicity of the action is essential: a complex Lie group acting on 
a complex variety need not have closed orbits. 

Theorem 2.4.8 about the Jordan decomposition in a linear algebraic group was 
proved in [Bot, Ch. 2]. It is also a consequence of 3.1.1, which was first proved 
in [Kol2, §3]. The proof given here shows that the theorem is, essentially, a formal 
consequence of the functorial property 2.4.4 (iii) of the Jordan decomposition of a 
linear map. 

Tannaka's theorem 2.5.3 goes back to [Tan], where a similar result is proved for 
compact Lie groups. The aim of [Tan] was to establish an analogue for such groups of 
Pontryagin duality in abelian topological groups. The results of 2.5 should nowadays 
be viewed in the context of the theory of tensor categories, which we did not go into. 
See [DelM, Del]. 
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Commutative Algebraic Groups 

This chapter deals with results about commutative linear algebraic groups which are 
basic for the theory of the later chapters. The important tori are introduced in 3.2, and 
we prove the classification theorem 3.4.9 of connected one dimensional groups. The 
notations are as in the previous chapter. 

3.1. Structure of commutative algebraic groups 

3.1.1. Theorem. Let G be a commutative linear algebraic group. 
(i) The sets Gs and Gu of semi-simple and unipotent elements are closed subgroups; 
(ii) The product map 1C : Gs x Gu ➔ G is an isomorphism of algebraic groups. 

We may assume that G is a closed subgroup of GLn, for some n. From 2.4.3 (i) we 
see that Gs and Gu are subgroups and by 2.4.10 (2) Gu is closed. It follows from 2.4.2 
(ii) that there exists a direct sum decomposition of V = kn, say V = EB V;, together 
with homomorphisms</); : Gs ➔ k* such that g.v = </J;(g)v if g e G, v e V;. The 
V; are G-stable. Applying 2.4.2 (i) to the groups induced by G in the V; we arrange 
things such that G C Tn, Gs = G n Dn (notations of 2.1.4). This shows that Gs is 
closed, whence (i). 

The uniqueness of the Jordan decomposition in G implies that 1C is an isomor
phism of abstract groups. It is also a morphism of algebraic varieties. The map 
sending x e G to its semi-simple part Xs is also a morphism, since it maps x to a set 
of its matrix elements. Hence 1C-1 : x ~ (xs, x; 1x) is a morphism, which proves 
(ii). □ 

3.1.2. Corollary. If moreover G is connected then the same holds for Gs and Gu. 

Gs and Gu are images of the connected space G under continuous maps. D 

3.1.3. Proposition. Let G be a connected linear algebraic group of dimension one. 
(i) G is commutative; 
(ii) Either G = Gs or G = Gu; 
(iii) If G is unipotent and p = char k > 0 then the elements of G have order dividing 
p. 

Fix g e G and consider the morphism <P : x ~ xgx- 1 of G to itself. By 1.2.3 
(ii) the closure </JG is an irreducible closed subset of G. Using 1.8.2 we conclude that 
this set is either {g} or G. Assume we have the latter case. By 1.9.5 the complement 
G - </JG is finite. View G as a closed subgroup of some GLn. Then there are only 
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finitely many possibilities for the characteristic polynomial det(T.1 - x) of x E G. 
The connectedness of G implies that this characteristic polynomial is constant, and 
equal to (T - lt. This means that G is unipotent, hence solvable (see 2.4.13). But 
the commutator subgroup G' is a connected, closed, subgroup (see 2.2.8 (i)), and can 
only be {e}. Since g- 1</>G c G' we get a contradiction. It follows that G is commu
tative. 
(ii) follows from 3.1.1 and 1.8.2. Assume that G is unipotent and p > 0. Consider 
the subgroups c<P''> generated by the ph-th powers of elements of G. They are closed 
and connected (2.2.9 (3)), so must be either G or {e}. Viewing G as a subgroup of 
GLn we see that G(P''> = {e} if ph ::: n. This can only be if G(P> = {e}. □ 

In the rest of this chapter we shall first discuss the abelian algebraic groups whose 
elements are semi-simple and then the abelian unipotent groups with the property of 
3.1.3 (iii). 

3.2. Diagonalizable groups and tori 

3.2.1. Let G be a linear algebraic group. A homomorphism of algebraic groups 
x : G ➔ Gm is called a rational character ( or simply a character). The set of ra
tional characters is denoted by X*(G). It has a natural structure of abelian group, 
which we write additively. The characters are regular functions on G, so lie in k[G]. 
By Dedekind's theorem [La2, Ch. VIII, §4] the characters are linearly independent 
elements of k[G]. 

A homomorphism of algebraic groups :>., : Gm ➔ G is called a cocharacter ( or 
multiplicative one-parameter subgroup) of G. We denote by X.(G) the set of cochar
acters. If G is commutative X .(G) also has a structure of abelian group (written 
additively). If G is arbitrary we still have in X .(G) multiplication by integers, defined 
by (n.:>.,)(a) = :>.,(a)n (for:>., E X.(G), n E Z, a Ek*). We write-}.,= (-1).:>.,. 

A linear algebraic group G is diagonalizable if it is isomorphic to a closed sub
group of some group Dn of diagonal matrices. G is an algebraic torus (or simply a 
torus) if it is isomorphic to some Dn. 

3.2.2. Example. G = Dn. Write an elementx E Dn as diag(x, (x), ... , Xn(x)). Then 
X; is a character of Dn and we have k[Dn] = k[x,, ... , Xn, x11, ••• , x;' ]. From 
Dedekind's theorem we see that the monomials x~' ···X!" with (a,, ... , an) E zn 
form a basis of k[Dn] and that any character of Dn is such a monomial. It follows that 
X*(Dn) '.::::: zn. A homomorphism Gm ➔ Dn is of the form X I-► diag(xa 1 , ••• , Xa") 

(x E k*), where the a; are integers. It follows that X .(Dn) ::::::: zn. 

3.2.3. Theorem. The following properties of a linear algebraic group G are equiva
lent: 
( a) G is diagonalizable; 
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(b) X*(G) is an abelian group of finite type. Its elements form a k-basis of k[G]; 
(c) Any rational representation of G is a direct sum of one dimensional such repre
sentations. 

If G is a closed subgroup of Dn then k[G] is a quotient of k[Dn]• Since the 
restriction of a character of Dn to G is a character of G, we see that the restrictions to 
G of the characters of Dn span k[G]. By Dedekind's theorem they form a basis and 
any character of G must be a linear combination of these restrictions. So the restriction 
homomorphism of abelian groups X*(Dn) ➔ X*(G) is surjective. As X*(Dn) ~ zn, 
the group X*(G) is of finite type. We have proved that (a) implies (b). 

Assume (b). Put X = X*(G). Denote by <I>: G ➔ Gl(V) a rational representa
tion in a finite dimensional vector space V. We define linear maps Ax of V (x E X) 
by 

</>(x) = L x(x)Ax· 
xeX 

Then Ax = 0 for all but finitely many X · From <J>(xy) = <J>(x)<J>(y) (x, y E G) we 
infer (using Dedekind's theorem for G x G) that, for X, 1/f E X, we have AxAv, = 
8x.v,Ax. We also have Lx Ax = 1. Put Vx = Im Ax. The properties of the Ax ex
press that V is the direct sum of the non-zero Vx and that x E G acts in Vx as scalar 
multiplication by x (x). This implies ( c ). 
That ( c) implies (a) is immediate if one views G as a closed subgroup of some G L (V) 
(see 2.3.7 (i)). D 

3.2.4. Corollary. If G is diagonalizable then X*(G) is an abelian group of finite 
type, without p-torsion if p = char k > 0. The algebra k[G] is isomorphic to the 
group algebra of X*(G). 

The first point follows from (b ), using that k does not contain p-th roots of unity 
=/:- 1 if p > 0. The second point is implicit in the first part of the proof of 3.2.3. We 
shall make it more explicit. D 

3.2.S. Let M be an abelian group of finite type. The group algebra k[ M] is the algebra 
with basis (e(m))meM, the multiplication being defined by e(m)e(n) = e(m + n). If 
M1 and M2 are two such groups we have 

(4) 

Define homomorphisms Li: k[M] ➔ k[M]®k[M], t: k[M] ➔ k[M], e: k[M] ➔ k 
by Lie(m) = e(m) ® e(m), te(m) = e(-m), e(e(m)) = 1. Assume that M has no 
p-torsion if p = char k > 0. 

3.2.6. Proposition. (i) k[M] is an affine algebra, and there is a diagonalizable linear 
algebraic group Q(M) with k[Q(M)] = k[M], such that Li, t and e are comultiplica
tion, antipode and identity element of Q(M) (see 2.1.2); 
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(ii) There is a canonical isomorphism M ~ X*(Q(M)); 
(iii) If G is a diagonalizable group there is a canonical isomorphism Q(X*(G)) ~ G. 

It is well-known that M is a direct sum of cyclic groups. By (4) and 1.5.2 it 
suffices to prove the first point of (i) in the cyclic case. If M is infinite cyclic then 
k[M] ~ k[T, T-1], an integral domain. If M is finite of order d then p does not 
divided (if p > 0) and k(M] ~ k[T]/(Td - 1). Since the polynomial Td - 1 does 
not have multiple roots, this is a reduced algebra. To complete the proof of (i) we have 
to verify the properties of 2.1.2. We leave the verification to the reader. 

The map x ~ e(m)(x) (m E M, x E Q(M)) defines a character of Q(M), i.e., 
e(m) is a character of Q(M). By Dedekind's theorem these characters are distinct 
and, since they form a basis, any character of Q(M) is an e(m). It follows that the 
map m ~ e(m) is an isomorphism, whence (ii). A similar map induces an algebra 
isomorphism k[G] ➔ k[X*(G)], whence (iii). □ 

3.2.7. Corollary. let G be a diagonalizable group. 
(i) G is a direct product of a torus and a finite abelian group of order prime top, 
where p is the characteristic exponent of k; 
(ii) G is a torus if and only if it is connected; 
(iii) G is a torus if and only if X*(G) is a free abelian group. 

First observe that Q(Zn) ~ Dn, as follows from 3.2.2 and 3.2.6 (iii). Now X*(G) 
is isomorphic to a direct sum zn EB M, where M is finite. By ( 4), G is isomorphic to 
the product of Dn and Q(M). The latter group is finite, as follows for example from 
the argument of the proof of 3.2.6 (i). We have proved (i). (ii) is a consequence of (i) 
and (iii) also follows. □ 

3.2.8. Proposition. [ rigidity of diagonalizable groups] let G and H be diagonal
izable groups and let V be a connected affine variety. Assume given a morphism of 
varieties </J : V x G ➔ H such that for any v E V the map x ~ </J ( v, x) defines a 
homomorphism of algebraic groups G ➔ H. Then </J ( v, x) is independent of v. 

If 1/r E X*(H) then 1/r(</J(v, x)) can be written in the form 

1/r(</J(v, x)) = L fx.v,(v)x (x), 
xeX*(G) 

with fx.1/t E k[V]. For fixed v the right-hand side is a character of G. By Dedekind's 
theorem fx.v,(v) = 1 for one x and O for the others, whence f;,v, = fx.1/t· The con
nectedness of V implies that fx.1/t = 1 for one x and O for the others (use 1.2.8 (2)). D 

We give an application of the proposition. If G is an arbitrary linear algebraic 
group and Ha closed subgroup, we denote by Za(H) and Nc(H) the centralizer and 
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normalizer of H in G, i.e. 

Zc(H) = {x e G I xyx- 1 = y for ally e H}, 

Na(H) = {x e GI xHx- 1 = H}. 

These are closed subgroups of G (check this) and Zc(H) is a normal subgroup of 
Nc(H). 

3.2.9. Corollary. If H is a diagonalizable subgroup of G then Nc(H)0 = Zc(H)0 

and Na(H)/Zc(H) is finite. 

The first point follows from the proposition, with V = Nc(H)0, <I> being the mor
phism (x, y) 1--+ xyx-1 of V x H to H. The last point follows from 2.2.1 (i). D 

3.2.10. Exercises. pis the characteristic exponent of k. G is a diagonalizable group 
with character group X. 
(1) Make diagonalizable groups and abelian groups without p-torsion into categories 
and describe an anti-equivalence between these categories. 
(2) Let <I> : G --+ H be a homomorphism of diagonalizable groups. Denote by </>* the 
induced homomorphism X*(H) --+ X*(G). If <I> is injective (surjective) then </>* is 
surjective ( respectively injective). 
(3) Describe a canonical isomorphism of abelian groups G ~ Hom(X, k*). 
( 4) For a closed subgroup H of G and a subgroup Y of X define 

H1. = {x ex I x(H) = {l}}, 

y1. = {x E G I x (x) = 1 for all x E Y}. 

Then (HJ.).L = H, and (YJ.).L = Y if X /Y has no p-torsion. 
(5) For a positive integer n prime top, denote by Gn the subgroup of elements of G 
of order dividing n. 

(a) (Gn).L = nX. 
(b) The subgroup of elements of finite order is dense in G. 

(6) The group of automorphisms of an n-dimensional torus is isomorphic to the group 
GLn (Z) of integral n x n-matrices with an integral inverse. 

We conclude this section with some material on tori. Let T be a torus. Put 
X = X*(T), Y = X.(T) (3.2.1). For X EX,).. E Y, a Ek* the map a 1--+ X()..(a)) 
defines a character of the multiplicative group. By 3.2.2 (with n = 1) there is an 
integer (X, )..) such that x()..(a)) = a(x,1.). 

3.2.11. Lemma. (i) ( , ) defines a perfect pairing between X and Y, i.e. any ho
momorphism X --+ Z is of the form x 1--+ (x, )..) for some ).. e Y, and similarly for Y. 
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In particular, Y is a free abelian group; 
(ii) The map a ®).. 1-► )..(a) defines a canonical isomorphism of abelian groups 
k* ® Y ~ T. 

It suffices to prove this in the case T = Dn. Then (i) follows from the results of 
3.2.2 (check this). The proof of (ii) uses the freeness of Y. □ 

Let F be a subfield of k. An F-torus is an F-group which is a torus. An F-torus 
T which is F -isomorphic to some Dn is F -split. The study of non-split F -tori, which 
requires Galois theory, is deferred to Chapter 13. 

3.2.12. Proposition. (i) An F -torus T is F -split if and only if all its characters 
are defined over F. If this is so the characters form a basis of the algebra F[T]; 
(ii) Any rational representation over F of an F-split torus is a direct sum of one 
dimensional representations over F. 

The proof of (i) is straightforward. (ii) is proved as 3.2.3 (c). □ 

3.2.13. Let T, X and Y be as before. Let V be an affine T -space. We have a lo
cally finite representations of T in k[V], as in 2.3.5. For x E X put 

k[V]x = {f E k[V] I s(t).f = x(t)f for all t ET}. 

It follows from 3.2.3 ( c) that the subspaces k[ V]x define an X -grading of the algebra 
k[V], i.e., 

k[V] = ffik[V]x, k[V]xk[V]v, C k[Vlx+v, (x, VJ' EX). 
xeX 

If T = Gm then X = Zand we have a structure of graded algebra on k[V] in the 
usual sense. 
If cp is a morphism of varieties Gm --+ Z we shall write lima-+O cp(a) = z if </J ex
tends to a morphism ii, : A 1 --+ Z with ii,(O) = z. If cp'(a) = </J(a- 1) we define 
lima-+oo cp(a) = lima-+O </J'(a). 
If V is a T-space and ).. E Y, we denote by V()..) the set of v E V such that 
lima-+O )..(a).v exists. Then V(-)..) is the set of v such that lima-+oo )..(a).v exists. 

3.2.14. Lemma. Assume that Vis affine. 
(i) V ()..) is a closed subset of V; 
(ii) V ()..) n V (-}..) is the set of fixed points of Im ).. i.e. { V E V ' )..(k*). V = { V} }. 

Let f = Lx fx with fx E k[V]x be an element of k[V]. Then 

s()..(a)).f = La(x.>-) fx, 
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from which we see that lima➔o ).(a).v exists if and only if v annihilates all functions 
of the Vx with (X, ).) < 0. This proves (i). Then V ().) n V (-).) is the set v annihi
lating all Vx with (x, ).) # 0, which is also the set of v with f ().(a).v) = f (v) for all 
/ E k[G], a Ek*, i.e. the set of fixed points. D 

3.2.15. Example. Let G be an arbitrary linear algebraic group and ). : Gm ➔ G 
a cocharacter. We let Gm act on G by a.x = ).(a)x).(a)-' (a Ek*, x E G). We de
note by P().) the set of x E G such that lima➔o a.x exists. It is immediate that this is a 
subgroup, which by 3.2.14 (i) is closed. By 3.2.14 (ii) the intersection P().) n P(-).) 
is the centralizer of Im A. 

3.2.16. Exercises. (1) The category of Gm-modules is equivalent to the category 
of finite dimensional graded vector spaces. 
(2) Let A = EBnezAn be a graded affine k-algebra without zero divisors. Assume 
A # Ao. Let dZ be the subgroup of Z generated by then with An # {O}. Choose 
non-zero elements f, g and integers i, j with f E A;, g E Aj, i - j = d and let 
B = A Jg (notation of 1.4.6). The grading of A induces one of B. Define an isomor
phism B0 ® k[f g-•, gf- 1] '.::::'.Band show that B0 is an affine algebra. 
(3) Deduce from the previous exercise the following properties of a Gm-action on an 
affine variety V: There is a decomposition V = LJ~=o V; into disjoint irreducible lo
cally closed pieces with the following properties: 

(a) Vo is the set of fixed points, 
(b) For i > 0 there is an affine variety V/, an isomorphism </J; : V/ x k* ➔ V; and 

an integer d; such that for x E V/, t, u E k* we have </J; (x, td; u) = t .</J; (x, u), 
(c) The closure of a V; is a union of some Vi. 

( 4) In the situation of 3.2.15 let G = G L (V). In that case there is the following de
scription of a group P().): there is a flag in V, i.e. a sequence of distinct subspaces 
V = Vo :::) Vi :J Vz :J ... of V such that P().) is the group of all invertible maps of V 
stabilizing all V;. (Hint: consider the case that G = GLn, ).(a) = diag(ah 1, ••• , ah") 
with h, > h2 > ... ~ hn)· 
(5) An affine embedding of T is an irreducible affine T -space V containing T as an 
open subvariety such that the action T x V ➔ V extends the product map T x T ➔ T. 
Then V is an affine toric variety. 

(a) In that case there is a finitely generated sub-semigroup S of the group X which 
generates X, such that k[V] is isomorphic to the semigroup algebra k[S]. (Hint: view 
k[V] as a T-stable subspace of k[T].) 

(b) Conversely, for every S with the properties of (a) there exists an equivariant 
affine embedding V with k[V] '.::::'. k[S]. It is unique up to isomorphism of T-spaces. 
(For more about toric varieties see [Od].) 



3.3. Additive functions 49 

3.3. Additive functions 

3.3.1. Additive functions. An additive function on the linear algebraic group G 
is a homomorphism of algebraic groups f : G ~ G0 • The additive functions form 
a subspace A = A( G) of the algebra k[ G]. If F is a subfield of k and G is an F -
group, we write A(F) = A(G)(F) for the F-vector space of additive functions that 
are defined over F. Notice that, if p = char k is non-zero, then the p-th power of 
an additive function is again one. This fact is the reason for the introduction of a ring 
over which A will be a module. 

First assume that p > 0. Then </>x = xP defines an isomorphism of F onto a 
subfield FP. Recall that F is perfect if FP = F. We define a ring R = R(F) as 
follows. The underlying additive group is the space of polynomials F[T] and the 
multiplication is defined by 

Then R is an associative, non-commutative ring (this is the case for any isomorphism 
</> of F onto a subfield). Notice that the subfield F of R does not lie in the center. The 
degree function deg on R is as in the case of the polynomial ring F[T] and has the 
usual properties. They imply that R has no zero divisors. If p = 0 then F is perfect 
(by convention). We now define R = R(F) = F. 

3.3.2. Lemma. Assume that p > 0. let a, b E R and assume that deg a > 0. 
(i) There exist unique elements c, d ER such that deg d < deg a and b =ca+ d; 
(ii) If F is perfect there also exist unique elements c, d with deg d < deg a and 
b = ac+d. 

The proof is like that of the well-known division algorithm in the polyniomial 
ring F[T]. The proof of (ii) requires that one can extract p-th roots in F, whence the 
perfectness assumption. D 

3.3.3. Lemma. (i) left ideals in R are principal. If F is perfect the same holds 
for right ideals; 
(ii) R is left noetherian. If Fis perfect R is also right noetherian; 
(iii) If F is perfect any finitely generated left R-module M is a direct sum of cyclic 
modules. If, moreover, M has no torsion then it is free. 

The assertions are trivial if p = 0, so assume p > 0. Then (i) follows from 3.3.2, 
as in the case of F [T] and (ii) is a consequence of (i). In the case of (iii) let (mi) 1 ~i ~s 

be a set of generators of M. We have a surjective homomorphism Rs ~ M sending 
the canonical basis element ei to mi. Let K be the kernel. It follows from (ii) that K is 
finitely generated, say by elements Li~i9 aiiej, By multiplying the matrix A = (aij) 
on the left and right by suitable invertible square matrices, one reduces to the case that 
aij = 0 for i =f:. j, in which case (iii) is obvious. The argument is the same as that in 
the case of F[T], which can be found in [Jac4, p.177-178]. Because in the case of R 
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both the left and right division algorithms are needed, we must require in (iii) F to be 
perfect. □ 

3.3.4. As in 3.3.1 let A(F) be the set of additive functions of the F -group G which 
are defined over F. If p > 0 we can define a structure of left R-module on A(F) by 

If p = 0 then R = F and it is trivial that A(F) is an R-module. 
As an example, take G = G:. Then F[G] = F[T1, ••• , Tn]- An additive function 

in F[G] is now an additive polynomial, i.e. an element f E F[T1, ... Tn] satisfying 

where the T; and Ui are indeterminates. The set of additive polynomials is a left R
module A(G:)(F). 

3.3.5. Lemma. A(G:)(F) is a free R-module with basis (T;),~;~n· 

The assertion means that an additive polynomial only involves monomials of the 

form T/i, where p is the characteristic exponent. Let D; be partial derivation in 
F[T1, ••• , Tn] with respect to T;. If f is an additive polynomial, it follows from (5) 
that D; f is a constant c; for all i. Then / - L c; T; is another additive polynomial 
g and all derivatives D;g are zero. If p > 0 this means that g involves only the p-th 
powers of the variables, i.e there is a polynomial h with g = h(Tt, ... , T/). But 
then h is an additive polynomial of lower degree and we may assume by an induction 

that it is expressible in the r/. Hence f is as asserted. The case p = 0 is left to the 
reader. □ 

Now let G be an arbitrary F -group. 

3.3.6. Lemma. (i) If G is connected the R-module A(G)(F) is torsion free; 
(ii) If f,, ... , fv are elements of A(G)(F) that are algebraically dependent over k, 
then they are linearly dependent over R. 

If A(G)(F) had torsion there would be a non-constant f E k[G] satisfying a 
relation 

I P'' fP/1-I f + a, + ... +ah = 0, 

with coefficients in k. Such an f would take only finitely many values, which is 
impossible if G is connected. This proves (i). 

In the situation of (ii) there is a non-zero polynomial H E k[T1, ••• , Ts] with 
H (/1, ••• , Is) = 0. Assume that H is such a polynomial with minimal degree. If 
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x E G then the polynomial H(T1 + /1(x), ... , Ts+ fs(x)) H(T,, ... , Ts) also 
gives an algebraic dependence between the /;, but has degree strictly smaller than that 
of H. Hence it is zero. Let ii (T1 , ••• Tn) be the coefficient of some monomial in the 
indeterminates U; in 

Then ii has degree smaller than H and ii (/1, ••• Is) = 0. It follows that ii = 0, 
which means that H is an additive polynomial. Write H = L c; H;, where the H; are 
additive polynomials with coefficients in F and the c; lie in k and are linearly inde
pendent over F. Then H; ( / 1 , •.• ff) = 0 for all i, and (ii) follows. □ 

3.4. Elementary unipotent groups 

3.4.1. We say that the unipotent linear algebraic group G is elementary if it is abelian 
and, moreover, if p > 0 its elements have order dividing p. G is a vector group if 
it is isomorphic to some G:. We first establish some auxiliary results, which will be 
needed in the discussion of the structural properties of elementary unipotent groups. 

Assume that p > 0. If n E N is a natural number we denote by 

its p-adic expansion, where the integers n; are uniquely determined by the require
ment O :::: n; < p. They are O for almost all i E N. If m, n E N we write n ::::":p m 
if n; :::: m; for all i E N. If m, n E N we write (m, n) for the binomial coefficient 
m!(n!(m - n)!)-1, with the convention that it is zero if n > m. 

3.4.2. Lemma. (i) (m, n) = n; (m;, n;) (mod p); 
(ii) (m,n) "I= 0 (mod p) ifandonlyifn ::::':pm. 

Over a field of characteristic p > 0 we have (T + tr = n(TP; +tr;. Then (i) 
follows by expanding the powers of T + 1 and equating coefficients of the powers of 
T. Now (ii) follows from (i). □ 

3.4.3. We next establish a result about polynomial 2-cocycles. If p > 0 we define 

p-1 

c(T, U) = LP-'(p,i) Tp-iui. 
i=I 

Notice that p- 1 (p, i) is an integer for i =f:. 0, p. 
Let F be a perfect field and assume that / E F[T, U] satisfies 

f (T + U, V) + f (T, U) = f (U + V, T) + f (U, V). (6) 



52 Chapter 3. Commutative Algebraic Groups 

In (6) T, U, V are indeterminates. 

3.4.4. Lemma. (i) If p = 0 there is g e F[T] with 

f (T, U) = g(T + U) - g(T) - g(U); 

(ii) If p > 0 there is g e F[T] such that f (T, U) - g(T + U) + g(T) + g(U) is a 
linear combination l of polynomials ci; 
(iii) If for p > 0 we have, moreover, Li:::i:::p-l f (T, iT) = 0, then the polynomial l 
of (ii) is 0. 

If f satisfies (6) the same is true for its homogeneous components. It follows that 
we may assume f to be homogeneous of degree d. We use induction on d. If d = 0 
the assertion is trivial. So assumed > 0. Putting T = U = 0 in (6) we find that 
f (V, 0) = 0. Putting U = V = 0 we obtain f (O, T) = 0. Write 

d 

f(T, U) = L chrhud-h_ 

h=O 

We have c0 = cd = 0. Equating coefficients of Th U; Vi in both sides of the equality 
( 6) we obtain 

(7) 

where h, i, j e N, h + i + j = d. For h = 0 or j = 0 we find from (7) that 

(8) 

Now assume O < h, j < d. Then (7) and (8) imply 

(9) 

If p = 0 we can rewrite this as 

and (i) readily follows. 
From now on suppose that p > 0. From (9) with j = 1 and (8) we obtain 

(10) 

First assume that d is prime to p. Put 

It follows from (10) that¥/: = 0. Similarly~ = 0. Hence f1 is a polynomial in T P 

and UP. Since d is prime to p we have f1 = 0, proving (ii) if p does not divide d. 
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Now assume that p divides d and that ch =I= 0, with p not dividing h. If p divides 
j we have by 3.4.2 (ii) that p divides (d - j, h) and (9) shows that p must divide 
(d - h, j). If d - h > p we have by 3.4.2 that (d - h, p) ¢ 0 (mod p) and (9) with 
j = p would lead to a contradiction. It follows that d - h < p and by (8) also h < p. 
We conclude that d = p. Now (10) implies that f is a multiple of c. 

There remains the case that all h with ch =I= 0 are divisible by p. In that case / is 
the p-th power of a polynomial that also satisfies (6) (here we use the perfectness of 
F). Then (ii) follows by induction. We have proved (ii). 

(iii) follows from (ii), observing that Li~;~p-l c(T, iT) is a non-zero multiple of 
TP. □ 

3.4.5. We need a multi-variable generalization of 3.4.4. We now consider polynomials 
in 2n variables T = (T1, ... , Tn), U = (U1, ... , Un), Write F[T, U] for the polyno
mial algebra F[T1, ... , Tn, U1, ... , Un], Define ch e F[T, U] to be c(Th, Uh), where 
c is as before. Assume now that f e F[T, U] satisfies 

f(T + U, V) + /(T, U) = /(U + V, T) + /(U, V). (11) 

3.4.6. Lemma. (i) If p = 0 there is g e F[T] such that 

/(T, U) = g(T + U) - g(T) - g(U); 

(ii) If p > 0 there is g e F[T] such that f (T, U) - g(T + U) + g(T) + g(U) equals 
i 

a linear combination l of powers cC ; 
(iii) I/for p > 0 we have, moreover, Li~;~p-l f (T, iT) = 0 then the polynomial l of 
(ii) equals 0. 

(i) is proved as 3.4.4 (i), using a multi-variable binomial formula 

We leave it to the reader to work out the details. 
We deduce (ii) and (iii) from the corresponding assertions of 3.4.4 by a trick. If 

G e F[T] let d(G) be the maximum of the degrees of Gas a polynomial in one of the 
individual variables Th. Let q be an integer> d(G). It follows from the properties of 
q-adic expansions that Ti°' T;2 ... Tna,, ~ T 01 +aiq+ ... a,,qll-l defines a linear bijection of 
the space of G e F[T] with d(G) < q onto the subspace of F[T] of polynomials of 
degree < qn. We denote this map by / ~ /. We have a similar map, sending poly
nomials in two sets of variables T, U of degree< q in all the variables individually to 
polynomials in two variables T, U, of degree < qn in both T and U. 
Now let / be as in (11) and assume p > 0. Choose a p-power q that is strictly larger 
thandS/). IfG e ~[T] withd(~) < q an~ H(T, U) = G(T+ U)-G(T)-G(U), 
then H(T, U) = G(T + U) - G(T) - G(U), as follows by using 3.4.2 (i). Also, 
ch = cq'•-•. The polynomial f e F[T, U] satisfies (6). Apply 3.4.4 (ii) to f. The 
polynomials whose existence is asserted in 3.4.4 (ii) have degree < qn and hence can 
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be written in the form g and l, with polynomials g e F[T], l e F[T, U]. These have 
the properties of 3.4.6 (ii). In a similar manner, (iii) follows from 3.4.4 (iii). □ 

After these preparations we come to one of the main results of this section. The 
ring Rand the R-module A(G) are as before. 

3.4.7. Theorem. The following properties of a linear algebraic group G are equiva
lent: 
(a) G is elementary unipotent; 
(b) A(G) is an R-module of finite type. Its elements generate the algebra k[G]; 
( c) G is a vector group if p = 0 and a product of a vector group and a finite elemen
tary abelian p-group if p > 0. 

Recall that an elementary abelian p-group is a product of cyclic groups of order 
p. 

Assume that G is elementary unipotent and connected. By 2.4.12 we may assume 
that G is a closed subgroup of some group Um of upper triangular unipotent matrices. 
Denote by f;i E k[G] the (i, j)-th matrix element function (1 ~ i < j < m). These 
functions generate the algebra k[G]. We prove (b) for this case by induction on m. 
The case m = 1 being trivial, we may assume that m > 1 and that (b) is known for 
connected elementary subgroups of Um-I· 

There are two homomorphisms of algebraic groups <I> 1 , <l>z : Um -+ Um- I , the first 
one being obtained by erasing the first row and column of a matrix and the second 
one by erasing the last row and column. Then k[<J,1 G] is generated by the f;i with 
i > 1 and k[<J,2G] by the /;j with j < m. Observing that an additive function for 
<J,1 G or <l>zG is also one for G, we conclude from our induction assumption that there 
are additive functions a 1, •.. , an e k[ G] such that the f;i with (i, j) =I= (1, m) all lie 
in the subalgebra k[a 1, ... , an]. Using 3.3.6 (ii) and 3.3.3 (iii) we see that we may 
assume the ah to be algebraically independent. By the multiplication rule of matrices 
(using the notations of 3.4.5) there is f e k[T, U] such that for x, y E G we have 

It follows that f satisfies (11 ). If p > 0 the fact that the elements of G have or
der dividing p implies the property of 3.4.6 (iii). We conclude that there exists 
h E k[a1, ... , an] such that fim - h is an additive function. This shows that k[G] 
is generated by a finite number of additive functions, which can be taken to be alge
braically independent. Then G is a vector group (check this). We have established the 
implications (a) ::::} (b) and (b) ::::} (c), if G is connected. 

Now let G be an arbitrary elementary unipotent group. If p > 0 choose an element 
in each coset of the identity component G0. These representatives form an elementary 
abelian p-group A and it is immediate that G is the direct product of A and the vector 
group G0. This proves ( c ). The verification of (b) is left to the reader. 

If p = 0, G does not contain any elements of finite order > 1. On the other hand, 
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it follows from the fact that G0 is a vector group that each coset of G0 is represented 
by an element of finite order. This can only be if G is connected. We have proved (b) 
and ( c) in this case. 

Since the implication (c) => (a) is obvious the proof of 3.4.6 is complete. □ 

3.4.8. Corollary. let G be an F -group. Then G is elementary unipotent if and 
only if one of the foil owing equivalent conditions holds : 
(a) A(G)(F) generates F[G]; 
(b) G is F -isomorphic to a closed F -subgroup of some G:. 

Here A(G)(F) is as in 3.3.1. (a) follows from 3.4.7 (b), using that an additive 
function in k[G] is a linear combination of additive functions in F[G]. To see this, 
observe that f E k[G] is additive if and only if ~f = f ® 1 + 1 ® f, where ~ 
denotes comultiplication (2.1.2). This shows that A( G) is the kernel of a linear map 
k[G] -+ k[G] ® k[G] which is defined over F. It then has a basis in F[G]. 

We skip the proof of the equivalence of (a) and (b). D 

When F is perfect a connected elementary unipotent F -group is F -isomorphic to 
some G:, but this is not generally true (see 3.4.10 (3), (4)). We shall return to these 
matters in 14.3. 

We can now deal with the classification of connected one dimensional groups. 

3.4.9. Theorem. let G be a connected linear algebraic group of dimension one. 
Then G is isomorphic to either Ga or Gm. 

We have already seen in 3.1.3 that G is commutative and either consists of semi
simple elements or is elementary unipotent. In the first case G is diagonalizable by 
2.4.2 (ii), and then 3.2.7 (ii) gives that G :::: Gm. In the second case 3.4.7'(c) implies 
that G ::::::'. Ga. □ 

3.4.10. Exercises. F is a subfield of k. 
(1) Let R = R(k) be as in 3.3.1. Elementary unipotent groups over k form a category, 
which is anti-equivalent to the category of left R-modules of finite type. (For further 
results along these lines see 14.3.6). 
(2) (p > 0) Let c be as in 3.4.3. Define a structure of algebraic group on k2 with 
product 

(x, x').(y, y') = (x + x', y + y' + c(x, x')) (x, x', y, y' Ek). 

This group is connected, unipotent, commutative, of dimension two. Show that it is 
not isomorphic to G~. 
(3) Assume F to be perfect and let G be a connected elementary unipotent F -group 
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that is F-isomorphic to a closed subgroup of a triangular unipotent group Um. Then 
G is F -isomorphic to some G:. (Remark: the triangulizability condition is redundant, 
see 14.1.2). 
(4) Fis a non-perfect field of characteristic panda e F - FP. Then G = {(x, y) e 
G; I xP - x = ayP} is an F-group isomorphic to Ga which is not F-isomorphic to 
Ga (Hint: use 2.1.5 (5)). 

Notes 

3.1.1 is due to Kolchin [Ko 12, §3]. The name 'torus' for a connected diagonaliz
able group was coined by Borel in [Bo 1]. He realized the important role played by 
these groups, similar to the role played by compact tori in the theory of compact Lie 
groups. 

3.2 contains standard results on tori. The proof of the rigidity theorem 3.2.8 gives 
a stronger result: the affine variety V of the statement of that result may be replaced 
by any connected scheme over k. This implies that a diagonalizable group has no 
'infinitesimal automorphisms.' 

The theory of elementary unipotent groups bears some resemblance to the theory 
of tori, the character group being replaced by the R(k)-module A of 3.3.1. The use 
of the ring R(k) seems to go back to [DG, Ch. IV, 3.6]. In [loc. cit., Ch. V, 3.4] 
one finds more general results, for arbitrary commutative unipotent groups. These are 
described by 'Dieudonne modules.' 

One of the main results of this chapter is the classification theorem 3.4.9. The first 
published proof seems to be the one given by Grothendieck in [Ch4, Exp. 7]. In [Bo3, 
Ch. III, §10] a proof is given that uses the fact that an irreducible smooth projective 
curve with an infinite group of automorphisms fixing a point is isomorphic to P 1. 

The proof given here is more elementary. We use the classification of elementary 
unipotent groups. We also need the result on polynomial cocycles of 3.4.4 ( due to 
M. Lazard [Laz, lemme 31). Another proof of the classification theorem (also using 
additive polynomials) can be found in [Hut, no.20]. 



Chapter 4 

Derivations, Differentials, Lie Algebras 

We first discuss tangent spaces of algebraic varieties and related algebraic matters. In 
the second part of the chapter, Lie algebras of linear algebraic groups are introduced 
and their basic properties are established. 

4.1. Derivations and tangent spaces 

4.1.1. We recall the definition of a derivation. Let R be a commutative ring, A an 
R-algebra and Ma left A-module. An R-derivation of A in Mis an R-linear map 
D : A ➔ M such that for a, b E A 

D(ab) =a.Db+ b.Da. 

It is immediate from the definitions that Dl = O, whence D(r.1) = 0 for all r E R. 
The set DerR(A, M) of these derivations is a left A-module, the module struc

ture being defined by (D + D')a = Da + D'a and (b.D)(a) = b.Da, if D, D' E 

DerR(A, M), a, b EA. 

The elements ofDerR(A, A) are the derivations of the R-algebra A. If <I>: A ➔ B 
is a homomorphism of R-algebras and N is a B-module, then N is an A-module in an 
obvious way. If D E DerR(B, N) then Do <I> is a derivation of A in N and the map 
DH- Do <I> defines a homomorphism of A-modules 

whose kernel is DerA(B, N). Thus we obtain an exact sequence of A-modules 

(12) 

4.1.2. Tangent spaces, heuristic introduction. We use the notations of the first chap
ter. Let X be a closed subvariety of An. We identify its algebra of regular functions 
k[X] with k[T1, ... , Tn]/ I, where/ is the ideal of polynomial functions vanishing on 
X. Assume that / is generated by the polynomials / 1, . . . , fs. Let x E X and let L be 
a line in An through x. Its points can be written as x + tv, where v = (v1, ... , Vn) is 
a direction vector, t running through k. The t-values of the points of the intersection 
L n X are found by solving the set of equations 

f;(x + tv) = 0, 1 ~ i < s. (13) 

Clearly, t = 0 is a solution. 
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Let D; be partial derivation in k[T] with respect to T;. Then 

n 

f;(x + tv) = t L vi(Djf;)(x) + t2( ... ), 
j=l 

and we see that t = 0 is a 'multiple root' of the set of equations (13) if and only if 

n 

LVj(Djf;)(x) = 0, 1 < i::: s. 
j=l 

If this is so we call L a tangent line and v a tangent vector of X in x. 
Write D' = Ej=1 viDj, this is a k-derivation of k[T]. The last set of equations 

then says that D' f;(x) = 0 for 1 < i ::: s. Denoting by Mx the maximal ideal in k[T] 
of functions vanishing at x, it follows that D' I c Mx. The linear map f i-+ ( D' f) (x) 
factors through/ and gives a linear map D : k[X] ➔ k = k[X]/ Mx, Viewing k as a 
k[X]-module kx via the homomorphism f i-+ f (x), we see that Dis a k-derivation 
of k[X] in kx, 

Conversely, any element of Derk(k[X], kx) can be obtained in this manner from a 
derivation D' of k[T] with D' I c Mx, We conclude that there is a bijection of the set 
of tangent vectors v, such that (13) has a 'multiple root' t = 0, onto Derk(k[X], kx), 

4.1.3. Tangent spaces. The heuristic description of tangent vectors of 4.1.2 sug
gests a formal definition of the tangent spaces of an algebraic variety. First let X be an 
affine variety. If x e X we define the tangent space TxX of X at x to be the k-vector 
space Derk (k [X], kx ), where kx is as in 4.1.2. Let <I> : X ➔ Y be a morphism of affine 
varieties with corresponding algebra homomorphism</>* : k[Y] ➔ k[X] (1.4.7). The 
induced linear map ¢0 (see 4.1.1) is a linear map of tangent spaces 

d</>x : Tx X ➔ Tq,x Y, 

the differential of <I> at x, or the tangent map at x. 
If l/1 : Y ➔ Z is another morphism of affine varieties then we have the chain rule 

If</> is an isomorphism then so is d</>x and the differential of an identity morphism 
is an identity map. 

We give two alternative descriptions of the tangent space TxX. Let Mx C k[X] be 
the maximal ideal of functions vanishing in x. If D e Tx X then D maps the elements 
of M} to 0. Hence D defines a linear function )..(D): Mx/ M} ➔ k. 

4.1.4. Lemma.).. is an isomorphism of TxX onto the dual of Mx/ M}. 

Let l be a linear function on Mx/ M}. Define a linear map µ,(l) : k[X] ➔ k by 
µ,(l)f = l(f - f (x) + M}). Then µ(l) E TxX, andµ is the inverse of)... We skip the 
easy proof. □ 



4.1. Derivations and tangent spaces 59 

Another description of the tangent space uses the ring Ox of functions regular in x 
(see 1.4.3). It is a k-algebra which has a unique maximal ideal Mx, consisting of the 
functions vanishing in x (1.4.4 (1)) and Ox/ Mx '.::::'. k. We view k as an Ox-module. 
There is an obvious algebra homomorphism a : k[X] ➔ Ox, inducing a linear map 
ao : Derk(Ox, k) ➔ Derk(k[X], kx), 

4.1.5. Lemma. a0 is bijective. 

We have a linear map /3 : Derk(k[X], kx) ➔ Derk(Ox, k), which comes from 
the formula for differentiating a quotient. Let f E Ox and let g, h E k[X] be such 
that h(x) =I- 0 and that hf - g vanishes in a neighborhood of x (see 1.4.1). If D E 

Derk(k[X], kx) then 

({3D)f = h(x)-2(h(x)Dg - g(x)Dh) 

defines an element of Der(Ox, k) and it is immediate that a0 and f3 are inverses. D 

4.1.6. Lemma. Let <J, be an isomorphism of X onto an affine open subvariety of 
Y. Then d<J>x is an isomorphism ofTxX onto T,t,xY, 

<J, induces an isomorphism Or,,t,x '.::::'. Ox,x• The assertion follows from the previ-
ous lemma (check the details). D 

4.1.7. We can now define the tangent space in a point x of an arbitrary algebraic 
variety X (see 1.6). It follows from 4.1.6 that if U and V are open affine neighbor
hoods of x in X with V C U there is a canonical identification Tx U '.::::'. Tx V. This 
allows us to define the tangent space Tx X to be Tx U, for U as above. The formal 
definition is 

Tx X = limproj Tx U, 

a projective limit relative to the set of open affine neigborhoods of x, ordered by 
inclusion. 
It is clear how to define for a morphism of varieties <J, : X ➔ Y the tangent map 

d</>x : Tx X ➔ T,t,x Y. 

We say that x is a simple point of X, or that X is smooth in x or that X is non-singular 
in x if dim Tx X = dim X (the dimension of X, defined in 1.8.1 ). X is smooth or 
non-singular if all its points are simple. 

4.1.8. Let X be an F-variety, where Fis a subfield of k and let x E X(F) (1.6.14). 
First assume that X is an affine F-variety. The point x defines an algebra homomor
phism F[X] ➔ F, which makes F into an F[X]-module Fx. Define 

TxX(F) = Derp(F[X], Fx); 
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this is a vector space over F. We have a canonical isomorphism 

We call TxX(F) the space of F-rational points of TxX and we view it as an F
subspace of Tx. If cp is a morphism of affine F -varieties then for x E X ( F) the 
tangent map d</Jx maps TxX(F) to Tq,xY(F). If Xis an arbitrary F-variety, the defi
nition of Tx X ( F) is similar to that of Tx X, given in 4.1. 7. 

4.1.9. Exercises. ( 1) Using 4.1.4, describe Tx X in the following cases: 
(a) X is a point, 
(b) X = An, 
(c) X = {(a, b) E A 2 I ab= 0}, x = (0, 0), 
(d) (char k =/:. 2, 3) X = {(a, b) E A 2 I a 2 = b3}, x = (0, 0). 

(2) Let X and Y be algebraic varieties, let x E X, y E Y. Then T<x.y)(X x Y) ~ 
TxX EB TyY, 
(3) Let X be an affine algebraic variety. Let k[r] = k[T]/(T2) be the k-algebra of 
dual numbers ( r being the image of T). Show that there is a bijection of Tx X onto the 
set of k-homomorphisms cp : k[X] ➔ k[r] such that cp(f) - f (x) E kr:. (These are 
the 'k[ r]-valued points of X lying over x' .) 
(4) If X is a closed subvariety of Y and cp : X ➔ Y is the injection morphism then 
d</>x is injective for all x E X. 
(5) Complete the details in 4.1.8. 

4.2. Differentials, separability 

We shall need a number of results about derivations, in particular about derivations 
of fields. To deal with them we introduce differentials. 

4.2.1. Let R be a commutative ring and A a commutative R-algebra. Denote by 

m: A®RA ➔ A 

the product homomorphism (so m(a ® b) = ab) and let/ = Ker m. This ideal of 
A® A is generated by the elements a® 1-1 ®a (a E A). The quotient algebra A® A/ I 
is isomorphic to A. We define the module of differentials nA/R of the R-algebra A by 

g_A/R = ///2 • 

This is an A® A-module, but since it is annihilated by/ we may and shall view it as 
an A-module. 

Denote by da or dA/Ra the image of a® 1 - 1 ® a in nA/R· One checks that d 
is an R-derivation of A in nA/R and that the da generate the A-module nA/R· The 
following result shows that nA/R is a 'universal module for R-derivations of A.' 
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4.2.2. Theorem. (i) For every A-module M the map <l> : HomA (QA/R• M) ➔ 
DerR(A, M) sending</> to</> o dis an isomorphism of A-modules; 
(ii) A pair (QA/R, d) of an A-module together with an R-derivation of A in nA/R with 
the property of (i) is unique up to isomorphism. 

<l> is a homomorphism of A-modules, which is injective since the da generate 
nA/R· Now let D E Der(A, M). Define an R-linear map 1/1 : A ® A ➔ M by 
1/l(a ® b) = bDa. Then 

1/l(xy) = m(x)1/l(y) + m(y)1/l(x). 

It follows that 1/1 vanishes on / 2, hence defines an R-linear map</> : nA/R ➔ M, 
which in fact is A-linear. Since 1/l(a ® 1 - 1 ® a) =Dawe have <l>(</>) = D. Hence 
<l> is surjective, proving (i). The proof of (ii) is standard. D 

4.2.3. If </> : A ➔ B is a homomorphism of R-algebras, there is a unique homo
morphism of A-modules 

<pO : QA/R ➔ QB/R, 

with ¢0 o dA/R = dB/Ro <J>. If N is a B-module and if </>o is as in 4.1.1, there is a 
commutative diagram of A-modules: 

HomB(nB/R, N) ~ DerR(B, N) 

l l ¢o 

• • 
HomA(QA/R, N) ---:- DerR(A, N). 

The horizontal arrows are isomorphisms, they are as in 4.2.2. The left-hand vertical 
arrow is induced by ¢0. 

Now let A be an R-algebra of the form A = R[T1, ... , Tm]/(f1, ... , fn)- Lett; 
be the image of 1'; in A and putt = (t1, ... , tm). Denote by D; partial derivation in 
R[T1, ... , Tm] with respect to T; (1 ::: i :::: m). 

4.2.4. Lemma. The dt; (1 < i < m) generate the A-module nA/R· The kernel 
of the A-homomorphism</> : Am ➔ nA/R with <J>e; = dt; is the submodule generated 
by the elements "£7':1 (D; Jj(t))e; (1 ::: j ::: n). 

Here ( e;) is the standard basis of An. 

Let D be an R-derivation of A in an A-module M. If f E R[T1, ... , Tm] then 

m 

D(f(t)) = L(D;f)(t).Dt;, (14) 
i=l 
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whence 

m 

L(D;/j)(t).Dt; = 0 (1 < j < n). 
i=l 

Let K be the submodule of An described in the lemma. A straightforward check 
shows that the A-module An/ K (together with a derivation of A given by (14)) has 
the universal property of 4.2.2, hence is isomorphic to QA/ R by 4.2.2 (ii). D 

4.2.5. Exercises. (1) If A = R[T1, ... , Tm] then nA/R is a free A-module with 
basis (dT;)1~i~m• 
(2) In the case of 4.2.4 with m = n = 1, give a necessary and sufficient condition on 
/ 1 under which nA/R = 0. Consider the case when Risa field. 
(3) Let A be an R-algebra which is an integral domain and let F be the quotient field 
of A. Then nF/R ~ F ®A nA/R· 

(4) Let F be a field and let E = F(x1, ... , Xm) be an extension field of finite type. 
Then nE/ F is a finite dimensional vector space over E spanned by the dx;. 
(5) Let A= k[T, U]/(T2 - U3). Show that nA/k is not a free A-module. 
(6) Let A and B be R-algebras. There is an isomorphism of A ®RB-modules 

4.2.6. We next discuss the case of fields. Let F be a field and let E, E' be two 
extensions of F of finite type, with E' c E. By (12) we have an exact sequence of 
groups 

which is also an exact sequence of vector spaces over E (the vector space structures 
coming from the second arguments). Using 4.2.2 (i) we obtain an exact sequence of 
E-vector spaces 

Since the map u 1--+ I ® u of n E' 1 F to E ® E' n E' 1 F induces an isomorphism of 
E-vector spaces 

we get an exact sequence of £-vector spaces 
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These vector spaces are finite dimensional by 4.2.5 (4). Dualizing we obtain an exact 
sequence of finite dimensional £-vector spaces 

(15) 

which is basic in what follows. Notice that a(l ® dE'/Fx) = dE/FX (x E E'). 
Recall (see for example [La2, Ch. VII, §4]) that Eis a separable algebraic exten

sion of F or is separably algebraic over F if for each x E E there is a polynomial 
/ E F[T] without multiple roots such that f (x) = 0. We may assume f to be ir
reducible, in which case the derivative f' is a non-zero polynomial. If char F = 0 
every algebraic extension of F is separable. 

4.2. 7. Lemma. If E is separably algebraic over E' then a is injective. 

From the discussion in 4.2.6 we see that the injectivity of a is equivalent to the 
surjectivity of the homomorphism of 4.1.1 

An equivalent property is: any F-derivation of E' in E can be extended to an F -
derivation of E in E. To prove this it suffices to deal with the case of a simple 
extension E = E'(x) '.'.:::: E'[T]/(/), where f is an irreducible polynomial with 
f'(x) =I= 0. Let D E DerF(E', E). If g = L;>0 a;Ti E E'[T] define Dg E E[T] 
by Dg = I:,(Da;)Ti. Then Dis extendible to-an F-derivation D' of E in E with 
D'x = a if and only if f'(x)a + (Df)(x) = 0. Since f'(x) =I= 0 this equation has a 
unique solution and the lemma follows. □ 

4.2.8. Lemma. Let E = F(x). Then dimEQE/F ::::: I. We have QE/F = 0 if and 
only if Eis separably algebraic over F. 

If x is transcendental over F this follows from 4.2.5 ( 1 ), (3). If x is algebraic we 
are in the situation of 4.2.5 (2). □ 

We denote by trdegFE the transcendence degree of E over F. If E = F(x1, ... , Xm) 
this is the maximal number of x; that are algebraically independent over F. Recall that 
E is purely transcendental over F if the x; can be taken such that the transcendence 
degree equals m. We say that E is separably generated over F if there is a purely 
transcendental extension E' of F, contained in E, such that E is separably algebraic 
over E'. Let p = char F. If p = 0 then E is always separably generated. 

We can now state the main result about fields. 

4.2.9. Theorem. (i) dimEQE/F ~ trdegFE; 
(ii) Equality holds in (i) if and only if Eis separably generated over F. 
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We prove (i) and (ii) together, by induction on d = dimEQE/ F· 

Let E = F(x1, ... , Xm). 

First let d = 0. If m = 1 we have (i) and (ii) by 4.2.8. If m > 1 then (15) 
with E' = F(x1) shows that QE/F(xi> = 0. By induction on m we may assume 
that E is separably algebraic over F(x1). Using 4.2.7 we conclude from (15) that 
QF<xi)/F = 0, and x1 is separable over F by 4.2.8. It follows that E is separably 
algebraic over F, proving (i) and (ii) in the case d = 0. By induction on m one also 
shows that QE/F = 0 if Eis separably algebraic over F. 

Now let d > 0 and assume that (i) and (ii) are known for smaller values. By 
what we have already proved there is x e E with dE/ FX =/:- 0. We use (15) with 
E' = F(x). Since a(l ® dF(x)/Fx) = dE/FX =/:- 0 we have QF(x)/F =/:- 0. Using 
4.2.8 we conclude that dimF(x)QF(x)/F = I and that a is injective. Consequently, 
dimEQE/F = dimEQE/F(x) + 1. By induction we have dimEQE/F 2: trdegF(x)E + 1. 
Since trdegFE = trdegF(x)E +trdegFF(x) (see [La2, Ch. X, 8.51) and trdegFF(x) < 
1, (i) follows. If we have equality in (i) then x is transcendental over F, and by 
induction Eis separably generated over F(x), hence also over F. 

To finish the proof we have to show that if E is separably generated over F we 
have equality in (i). Now apply (15) for E' a purely transcendental extension over 
which Eis separably algebraic. We have already seen that QE/E' = 0. Using 4.2.7 
we find, using 4.2.5 (1),(3), that dimEQE/F = dimE,QE'/F = trdegFE' = trdegFE, 
finishing the proof. D 

We say that E is separable over F if either p = 0 or if p > 0 and the following 
holds: Let x 1, ... , Xs be elements of E which are linearly independent over F. Then 
so are xf, ... , xf. It is immediate that if F is perfect any extension E is separable. 
Recall that F is perfect if either p = 0 or if p > 0 and every element of F is a lh 
power. In particular, an algebraically closed field is perfect. 

4.2.10. Proposition. Assume that Eis separable over F. Then Eis separably gener

ated over F. 

Let E = F(x1, ... , Xm) and assume that x1, ... , x1 are algebraically independent 
over F, with t = trdegFE. Let Ebe separable over F and let p > 0 (for p = 0 the 
result is trivial). We may also assume that 0 :::: t < m. If t < m - 1 then, by induction 
on m, there are algebraically independent elements Y1, ... , y1 in F(x1, ... , Xm-1) 

such that F(x1, ... , Xm-1) is separably algebraic over F(y1, ... , y1). Likewise, there 
are algebraically independent elements z1, ... , Zr in F(y1, ... , y1, Xm) such that this 
field is separably algebraic over F(z 1, ... , z1 ). Using a transitivity property of sepa
rably algebraic extensions (see [La2, Ch. VII, §4)) we conclude that E is separably 
algebraic over F(z1, ... , z1). 

This reduces the proof to the case that t = m - 1. Since E is separable over F 



4.2. Differentials, separability 65 

there is a non-zero polynomial f E F[T1, ... , Tm] such that f(x1, ... , Xm) = 0 and 
that not all exponents of the powers of the indeterminates occurring in f are divisible 
by p. Using 4.2.4 (with R = F, A = F[x1, ... , Xm]) and 4.2.5 (3) it follows that 
dimEOE; F < m - I (notice that the kernel of the homomorphism (/J of 4.2.4 is non
zero). Now the assertion follows from 4.2.9. □ 

The converse of 4.2.10 is also true (as a consequence of 4.2.12 (5)). 

Let E, E', F be as in 4.2.6. 

4.2.11. Corollary. Assume F to be perfect. Either of the following conditions is 
necessary and sufficient for E to be separably generated over E': 
(a) a : E ®E' QE'/F ➔ QE/F is injective; 
(b) DerF(E, E) ➔ DerF(E', E) is surjective. 

The equivalence of (a) and (b) follows from 4.2.6. To obtain the criterion (a) ob
serve that by 4.2.9 (ii) and 4.2.10 we have dimE,QE'/F = trdegFE', dimEQE/F = 
trdegFE. It follows that dimEQE/E' = trdegE,E if and only if the map a of (15) is 
injective. Then 4.2.11 follows from 4.2.9 (ii). □ 

4.2.12. Exercises. (I) If in the case of 4.2.11 E is separably algebraic over E', then a 
is an isomorphism. 
(2) Let p = 0. If x EE, dE;Fx = 0 then xis algebraic over F. 
(3) Let p > 0. Show that QE/F = 0 if and only if E = F(EP). (Hint: use (15) and 
4.2.8.) 
(4) Assume that E has the following property: for any algebraic extension K of F the 
algebra K ®Eis reduced. Then Eis separably generated over F. 
(5) (a) If Eis separable over E' and E' is separable over F then E is separable over 
F. 

(b) If E is separably algebraic over F then E is separable over F. 

4.2.13. In applying the preceding results to geometric questions we need some auxil
iary results, pertaining to linear algebra. 

Let R be an integral domain with quotient field F. If f E R, f =I= 0 denote by R 1 
the ring R[T]/(1 - fT) (see 1.4.6). We may and shall view it as the subring R[f-1] 
of F, i.e., the ring of elements of F of the form f-na (a E R, n > 0). If Mis an 
R-module we denote by MI the R rmodule R 1 ® R M. 

Let A = (aij) be an m x n-matrix with entries in R. Denote by r the rank of A, 
viewed as a matrix with entries in F. Define the R-module M(A) or MR(A) to be the 
quotient of Rn by the submodule generated by the elements I:j=1 a;iei (I < i :'.Sm), 
where ( e i) is the canonical basis. We denote by G Lm ( R) the group of those m x m
matrices with entries in R that have an inverse with entries in R. 

4.2.14. Lemma. (i) If B E GLm(R) then M(BA) = M(A),; if C E GLn(R) 
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then M(AC) ~ M(A),· 
(ii) There exist f ER, f =/:- Oand BE GLm(R), CE GLn(R) such that 

A= B ( ~ ~) C. 

Here Ir is an identity matrix. (i) is easy. The assertion of (ii) is true if R is a field, 
by linear algebra. Take B E GLm(F), CE GLn(F) with the required property and 
choose f ER such that B, C, B-1, c-1 have entries in R1. Then we have (ii). □ 

4.2.15. Lemma. There is f E R, f =I- 0 such that M(A)1 is a free Rrmodule 
of rank n - r. We may choose f such that n -r of the images e; of the elements 1 ® e; 

of R1 ® Rn form a basis of M(A)1-

The first point follows from 4.2.14 (ii). Let (f1, ... , fn-r) be a basis of M(A) 1 
and assume that the elements e~+l • ... , e~ are linearly independent over F. Write 

n-r 

e;+i = L C;j/j (1 < i ~ n - r), 
j=l 

with cij E R 1 , det(cij) =I- 0. By modifying f we may assume that the inverse matrix 
( c ii )-1 has entries in R 1. Then e~+ 1 , . . . , e~ are as required. D 

4.3. Simple points 

4.3.1. Let X be an irreducible affine variety over k. If x E X let again Mx be 
the maximal ideal in k[X] of functions vanishing in x. If M is an R-module, put 
M(x) = M / MxM; this is a vector space over k. 

Let A be as in 4.2.13, with R = k[X]. Since the entries of A are functions on X 
the matrix A (x) with entries in k is defined. It is clear that 

(notations of 4.2.13). As before r is the rank of A, as a matrix with entries in the field 
k(X). 

4.3.2. Lemma. (i) dimk(X> Mk(X)(A) = n - r; 
(ii) The set of x E X such that dimk M(A)(x) = n - r is open and non-empty; 
(iii) If x E X and dimk M(A)(x) = n - r there is f E k[X] with f (x) =I- 0 such that 
M(A)1 is a free k[X]rmodule of rank n - r. 

One knows from linear algebra that dimk M(A)(x) = n - r if and only if r is the 
maximal size of a square submatrix of A(x) with non-zero determinant. By the same 
result, r equals this maximal size for the matrix A. (i) and (ii) follow from these facts. 
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Let x be as in (iii). We may assume that det(aij(X)i:::i.j:::r) =I= 0. Put f = 
det(aij)l::,i,j:::r• If e; E M(A) I is as in 4.2.15 then 

n 

LaiieJ = 0 (1 ~ i < m). 
j=I 

Our assumption implies that we can express the e; with 1 ~ i < r as linear combina
tions with coefficients in k[X] 1 of e~+I' ... , e~. Using (i) we conclude that the latter 
elements form a basis of M(A) 1, whence (iii). □ 

We put nx = Qk[XJ/k· If x E X the tangent space TxX is isomorphic to 
Hom(S'lx, kx), by 4.2.2 (i). Since for any k[X]-module M we have 

Homkcx1(M, kx) ~ Homk(M(x), k) 

it follows that 

The dual vector space of the tangent space TxX is the cotangent space (TxX)*. It can 
be identified with S'lx(x). 

We come now to the basic results on simple points ( defined in 4.1. 7). 

4.3.3. Theorem. Let X be an irreducible variety of dimension e. 
(i) If x is a simple point of X there is an affine open neighborhood U of x such that 
nu is a free k[U]-module with a basis (dg 1, ... , dge), for suitable g; E k[U]; 
(ii) The simple points of X form a non-empty open subset of X; 
(iii) For any x E X we have dimk TxX > e. 

We may assume that Xis affine and that k[X] = k[T1, ... , Tmll(fi, ... fn)- With 
the notations of 4.2.4 we have nx ~ M(A), where A is them x n-matrix (Djf;(t)). 
From 4.2.9 (ii) and 4.2.10 we see that dimk(X) Qk(X)/k = e. If r is as before it follows 
from 4.3.2 (i) that e = n - r. Now (i) follows from 4.3.2 (iii) and 4.2. 15, and (ii) is a 
consequence of 4.3.2 (ii). For any x E X the dimension of TxX is n - s, wheres is 
the rank of (Difi(x)). It is clear that r > s, whence (iii). D 

4.3.4. Exercises. (1) The functions g1, ... , 8e of 4.3.3 (i) are algebraically inde
pendent. 
(2) Let X be an affine variety. If nx is a free k[X]-module then Xis smooth. 

4.3.5. A morphism </> : X ~ Y of irreducible varieties is called dominant if </> X 
is dense in Y. It follows from 1.9.1 (ii) that, if</> is dominant, there is an injection of 
quotient fields k(Y) ~ k(X). So we can view k(X) as an extension of k(Y). We say 
that </> is separable if this extension is separably generated. 
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Assume, moreover, that X and Y are affine. The homomorphism 

</>* : k[f] ➔ k[X] 

defining</> induces by 4.2.3 a homomorphism of k[f]-modules 

Let x e X and let kx be as in 4.1.2. Viewed as a k[f]-module (via</>*) it is kq,x• 

Consider the linear map of 4.1.3 

d</>x : Tx X ➔ Tq,x Y. 

From the preceding remarks, using the diagram of 4.2.3, we see that we can view d</>x 

as the homomorphism 

deduced from (</>*)0. It can also be viewed as a linear map 

Hom(Ox(x), k) ➔ Hom(Or(</>x), k). 

4.3.6. Theorem. Let </> : X ➔ Y be a morphism of irreducible varieties. 

(i) Assume that x is a simple point of X such that </>xis a simple point of Y and that 

d</>x is surjective. Then</> is dominant and separable; 

(ii) Assume that</> is dominant and separable. Then the points x e X with the prop

erty of ( i) form a non-empty open subset of X. 

It follows from 4.3.3 that it suffices to consider the case that X and Y are affine 
and smooth, and that nx and Or are free modules over k[X] resp. k[Y] of rank 
d = dim X and e = dim Y. 

The homomorphism (q,*)0 of 4.3.5 leads to a homomorphism of free k[X]-modules 

V, : k[X] ®k[Y] Qy ➔ nx. 

Fixing bases of these modules, v, is described by a d x e-matrix A with entries in 
k[X]. Let x e X be such that d</>x is surjective. Then by the remarks of 4.3.5, the 
matrix A(x) has rank e. An argument involving determinants, as in the proof of 4.3.3, 
shows that the rank of A (as a matrix with entries in k(X)) is at least e. Since this 
rank is at most e it must equal e. It follows that v, is injective. Then the same holds 
for (q,*)0. As nx and Qy are free modules, the homomorphism¢* : k[Y] ➔ k[X] 

is also injective, which means that¢ is dominant. By 4.2.5 (3) it also follows that the 
homomorphism a of (15) in 4.2.6, with E = k(X), E' = k(Y), F = k, is injective 
(on suitable bases it is given by the matrix A). The separability of q, now follows from 
4.2.11. We have proved (i). 
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If</> is dominant and separable, the rank of A (as a matrix with entries in k(X)) 
equals e. The set of x E X such that A (x) has rank e is then non-empty and open, 
whence (ii). □ 

To conclude this section we give some consequences of the preceding results for 
homogeneous spaces (defined in 2.3.1). 

4.3.7. Theorem. Let G be a connected algebraic group. 
(i) Let X be a homogeneous space for G. Then Xis irreducible and smooth. In par
ticular, G is smooth; 
(ii) Let</> : X ➔ Y be a G-morphism of homogeneous spaces. Then </> is separable if 
and only if the tangent map d<f>x is surjective for some x E X. If this is so then d</>x is 
surjectiveforall x EX; 
(iii) Let</> : G ➔ G' be a surjective homomorphism of algebraic groups. Then</> is 
separable if and only if d</>e is surjective. 

If X is as in (i) and x E X, the morphism G ➔ X sending g to g .x is surjective. 
Hence X is irreducible by 1.2.3 (ii). Also, for fixed g, the map x H- g .x is an iso
morphism of X. Hence x is simple if and only if g .x is simple. Now (i) follows from 
4.3.3 (ii) and (ii) from 4.3.6. Finally, (iii) is a consequence of (ii) (view G and G' as 
homogeneous spaces for G). □ 

4.4. The Lie algebra of a linear algebraic group 

4.4.1. Let G be a linear algebraic group. Denote by ).. and p the representation of 
G by left and right translations in A = k[G] (2.3). We view A ®k A as the algebra 
of regular functions k[G x G]. If m : A® A ➔ A is the multiplication map, then 
for F E k[G x G] we have (mF)(x) = F(x, x). So I = Ker m is the ideal of 
functions in k[G x G] vanishing on the diagonal (see 1.6.5). It is clear that for x E G 
the automorphisms )..(x) ® )..(x) and p(x) ® p(x) of k[G x G] stabilize / and / 2, 

hence induce automorphisms of !la = I/ 12, also denoted by ).. (x) and p (x). We thus 
have representations).. and p of G in !la, which are locally finite (by 2.3.6(i)). The 
derivation d: A ➔ !la of 4.2.1 commutes with all )..(x) and p(x). 

For x E G the map Int(x) : y H- xyx-• is an automorphism of the algebraic 
group G, fixing e. It induces linear automorphisms Ad x of the tangent space Te G 
and (Ad x)* of the cotangent space (TeG)*. Thus, for u E (TeG)* we have 

((Ad x)*u)X = u(Ad(x-1)X) (x E G, XE TeG) 

Let Me C A be the maximal ideal of functions vanishing in e. By 4.1.4, (TeG)* can 
be identified with Me/ M;. If/ E A we denote by l,f the element f - f (e) + M; of 
(TeG)*. For X E TeG = Derk(A, ke) we have (l,/)(X) = X/, as follows from the 
proof of 4.1.4. 
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4.4.2. Proposition. There is an isomorphism of k[G]-modules 

(the module structure of the right-hand side coming from the first factor), such that 
(a) <I> o ).(x) o <1>- 1 = ).(x) ® id, <I> o p(x) o <1>-1 = p(x) ® (Ad x)* (x e G); 
(b) if f E k[G] and !if = L; /; ® g;, then 

<l>(df) = - L /; ® ~g;. 
i 

In (b) fl : A ➔ A® A is the comultiplication of 2.1.2 (so (llf)(x, y) = f (xy)). 

The map sending (x, y) to (x, xy) is an automorphism of the algebraic variety 
G x G. The corresponding algebra automorphism VF of A ® A is given by 

(VF F)(x, y) = F(x, xy) (x, y e G). 

It follows that VF/ is the ideal of functions vanishing on G x {e}, which is k[G] ® Me. 
Then VF / 2 = k[G] ® M; and it follows that VF induces a bijection of Oa onto k[G] ® 
Me/ M;. Let <I> be the composite of this bijection and the isomorphism coming from 
4.1.4. From the definition of VF it follows that for x e G 

().(x) ® id) o VF = VF o ().(x) ® ).(x)), 

(p(x) ® Int(x)) o VF = VF o (p(x) ® p(x)). 

These formulas imply that <I> satisfies (a). 
With the notations of (b) we have 

VF(f ® 1 - 1 ® f)(x, y) = L /;(x)(g;(e) - g;(y)), 
i 

from which we see that <I> satisfies (b). D 

4.4.3. We assume that the reader is familiar with the basic facts about Lie algebras 
(which can be found in [Bou2, Ch. 1] or [Jacl]). 

If A is an arbitrary commutative k-algebra, the space V = Derk(A, A) has a Lie 
algebra structure, the Lie product being given by [D, D'] = Do D' - D' o D (D, D' e 
V). 

If p = char k > 0 then by Leibniz's formula 

p 

DP(ab) = L(P, i)(Dia)(DP-ib) = a(DPb) + (DPa)b (a, be A, DEV) 
i=O 

(where (p, i) is a binomial coefficient). So DP is again a derivation. In this case 
V is an example of a restricted Lie algebra (or p-Lie algebra) . This means that 
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the Lie algebra has a p-operation D 1--+ D[PJ (which in the case of derivations is 
the ordinary pth power) such that the following holds for a E k, D, D' E V (with 
(ad D) D' = [D, D']) 
(a) (aD)[PJ = aP D[P1, 
(b) ad(D[P1) = (ad D)P, 
(c) (Jacobson's formula) (D + D')lP1 = D[PJ + D'[PJ + °Ef:/ i-1 s;(D, D'), 
where s;(D, D') is the coefficient of a; in ad(aD + D')P-1 (D'). 

For a further discussion see [Bou2, Ch. I, p. 105-106]. 
Now let G and A be as in 4.4.1. If necessary we write V = Va. Then ). and p 

define representations of Gin V, denoted by the same symbols. So 

).(x)D = ).(x) o Do ).(x)-1 (x E G, D EV), 

and similarly for p. The Lie algebra L(G) of G is the set of D EV commuting with 
all ).(x) (x E G). It is immediate that L(G) is a subalgebra of V, stable under the 
p-operation if p > 0. Since left and right translations commute, all p(x) stabilize 
L(G). We denote the induced linear maps also by p(x). 

4.4.4. Corollary. There is an isomorphism of k[G]-modules 

( the module structure of the right-hand side coming from the first factor), such that 
(a) \If O ).(x) 0 w-1 = ).(x)@ id, \If O p(x) 0 w-1 = p(x)@ Ad X (x E G); 
(b) (notations of 4.4.2 (b)) 

This is a consequence of 4.4.2 and 4.2.2 (i). These results give an isomorphism of Ve 
onto Homk[GJ(k[G] ®k (TeG)*, k[G]), which is a module isomorphic tok[G] ®k TeG, 
There is an isomorphism of the latter module onto the former which sends f ® X to the 
homomorphism</> with </>(g ® u) = u(X)f g (f, g E k[G], X E TeG, u E (TeG)*). 
The assertions of the corollary are readily checked. For the last one observe that 
Xg; = (Sg; )(X). D 

Let ac =a: Va-+ TeG be the linear map with (acD)f = (Df)(e). 

4.4.5. Proposition. (i) a induces an isomorphism of vector spaces L(G) :::::'. TeG, 
We have for x E G 

a o p(x) o a-1 = Ad x; 

(ii) Ad is a rational representation of Gin TeG (the adjoint representation). 
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Let \II be as in 4.4.4. It follows from 4.4.4 that \ll(L(G)) = 1 ® TeG. Moreover, 
4.4.4 (b) implies that (with the previous notations) 

(a O w- 1)(1 ® X)(f) = - L f;(e)(Xg;) = -Xf, 
i 

since f = L; f;(e)g;. Now (i) and (ii) readily follow. 

4.4.6. Corollary. dimk L(G) = dim G. 

□ 

This is a consequence of (i) and 4.3.7 (i) (applied to the identity component G0). 

□ 

Next let H be a closed subgroup of G. Denote by J c k[ G] the ideal of functions 
vanishing on H, so k[H] = k[G]/J. Put 

Va.H = {D e Va I DJ c J}. 

Then Va,H is a subalgebra of the Lie algebra Va and there is an obvious homomor
phism of Lie algebras <I>: Va,H ➔ Vff. Notice that 

4.4.7. Lemma. <I> de.fines an isomorphism ofVa,H n L(G) onto L(H). 

It follows from the definitions that aH o <I> is the restriction of aa to Va,H- The 
injectivity of <I> on L( G) then follows from 4.4.5 (i). To finish the proof of the lemma 
we show that, if X e TeH, we have D = w-10 ® X) e Va,H, where \II is as in 
4.4.4. If f e J and !if = L f; ® g; then we may assume that for each i one of the 
elements f; or g; lies in J. Then 4.4.4 (b) shows that DJ e J, whence the lemma. D 

4.4.8. Henceforth we identify the Lie algebra L(G) and the tangent space TeG via 
aa. We thus obtain a Lie algebra structure on the latter space. We shall denote the 
Lie algebra of linear algebraic groups G, H, ... either by L(G), L(H), ... or by the 
corresponding gothic letters g, ~ .... 

If <I> : G ➔ G' is a homomorphism of linear algebraic groups, we write dq> for 
the tangent map d</>e : g ➔ g'. We call d</> the differential of q>. 
If Fis a subfield of k and G is an F-group, we denote the F-vector space TeG(F) of 
4.1.8 by L(G)(F) or g(F). This is the set of F-rational points of g. It is a Lie algebra 
over F. If <I> : G ➔ G' is a homomorphism of F-groups then d<J> induces an F-linear 
map g(F) ➔ g'(F). 

4.4.9. Proposition. Let <I> : G ➔ H be a homomorphism of linear algebraic 
groups. Then dq> is a homomorphism of Lie algebras, which is compatible with the 
p-operation if p > 0. 
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Using the factorization of cp 

p a 
G ➔ G xH ➔ H, 

where px = (x, cpx) (x E G) and a is a projection, we see that it suffices to prove the 
proposition in the cases that ct, is an injection of a closed subgroup or a projection like 
a. We leave the second case to the reader. 

Let cxa be as in 4.4.5. If cp is an injection we have for X E g, f E k[H] 

(a·c/(X))(f o cp) = (cx1/(dcp(X)))(f). 

This formula implies the assertions. D 

4.4.10. Examples. (1) G = Ga. Then k[G] = k[T]. The derivations of k[G] 
commuting with all translations T 1---+ T + a (a E k) are the multiples of X = /T. If 
p > 0 we have XP = 0. So g is the one dimensional Lie algebra kX with [X, X] = 0 
and XP = 0 (if p > 0). 
(2) G = Gm. We have k[G] = k[T, T-11. The derivations of k[G] commuting with 
the translations T 1---+ aT (a E k*) are the multiples of T /T. If p > 0 we have 
X P = X. g is as in the previous example, but the p-operation is different (if p > 0). 
(3) G = GLn. Now k[G] = k[T;j, v-111~;.j~n• where D = det(T;j) (see 2.1.4 (3)). 
Denote by g[n the Lie algebra of all n x n-matrices over k, with product [X, f] = 
X Y - Y X, and the usual pth power as p-operation if p > 0. If X = (xij) E g[n then 

n 

DxT;j = - L T;hxhi 
h=l 

defines a derivation of k[G] commuting with all left translations, hence lies in L(G). 
Since the map X 1---+ Dx is injective, it follows from 4.4.6 (since dim G = n2) that 
L(G) consists of the Dx. We conclude that we can identify g and g[n (with the p
power p-operation). For x E GLn, X E g[n we have Ad(x)X = xxx- 1. Also, if H 
is a closed subgroup of GLn we can view ~ as a subalgebra of g[n. 

4.4.11. Exercises. (1) The Lie algebra of SLn is the subalgebra s[n of g[n of ma
trices with trace zero. (Hint: use 4.4.7.) 
(2) Determine the Lie algebras of the groups Dn, Tn, Un of 2.1.4. 
(3) Let cp : SL2 ➔ PSL2 be the homomorphism of 2.1.5 (3). Show that dcp is bijective 
if and only if p -:fa 2. Describe dcp if p = 2. 
(4) Let T be a torus. There is a canonical isomorphism L(T) ➔ k ®z X.(T) (where 
X.(T) is as in 3.2.1). 
(5) L(G) = L(G0). 

(6) Show that Ad xis an automorphism of the Lie algebra g (x E G). 
(7) Let cp : G ➔ H be a homomorphism of linear algebraic groups. Show that 
(dcp)((Adx)(X)) = Ad(cp(x))(dcp(X)) (x E G, X E g). 
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Next we give some differentiation formulas, to be used in the sequel. As before, 
G is a linear algebraic group. We denote byµ : G x G ➔ G and i : G ➔ G mul
tiplication and inversion (2.1.1). We identify the vector spaces L(G x G) and 9 EB 9 
(see 4.1.9 (2)). In fact, the Lie algebras L(G x G) and 9 EB 9 are isomorphic (we leave 
it to the reader to check this). 

4.4.12. Lemma. (dµ)(e,e) : 9 EB 9 ➔ 9 is the map (X, Y) 1-+ X + Y and (di)e = -id. 

µ defines a k-linear map 

µ = (µ*)° : Oa ➔ Oaxa = (Oa ® k[G]) EB (k[G] ® Oa) 

(see 4.2.3 and 4.2.5 (6)). If f e k[G], t:,.f = L f; ® g; then 

µ(df) = L(df; ® g; + f; ® dg;). 

Since f = L f;(e)g; = }:g;(e)f; we have 

µ(df) - df ® 1 - 1 ® df e Mce,e)nGxG• 

Hence the linear map of Oa(e) to Oaxa(e, e) = Oa(e) EB Oa(e) induced byµ sends 
u to (u, u). As (dµ)(e,e> is the dual of this map, the first assertion follows. The second 
one follows from the fact thatµ o (id, i) is the trivial map G ➔ {e}. D 

4.4.13. Lemma. (i) Let a : G ➔ G be a morphism of varieties and put </>(x) = 
(ax)x-1. Then d</>e = dae - 1; 
(ii) Let a E G. [f v,(x) = axa-1 x-1 then d1/le =Ada - 1. 

The morphism <I> of (i) is the composite of the morphism x 1-+ (a(x), x) of G to 
G x G and µ o (id, i). To prove the formula of (i) use the chain rule of 4.1.3 and 
4.4.12 (and observe that the tangent map of the first morphism at xis (dax, id)). The 
proof of (ii) is similar. D 

If V is a finite dimensional vector space over k, we write 9C(V) for the Lie algebra 
of endomorphisms of V. Then 9C(V) ~ 9[dimv· If <I> : G ➔ GL(V) is a rational 
representation (2.3.2 (3)) its differential d</> is a Lie algebra homomorphism 9 ➔ 
9C(V), i.e., a representation of 9 in V. 

Now let G1 and G2 be two linear algebraic groups and let <I> : G; ➔ GL(V;) be 
a rational representation (i = 1, 2). Let </>1 EB </>2 and </>1 ® </>2 be the direct sum and 
tensor product representations of G1 x G2 in Vi EB V2 and Vi ® V2, respectively. We 
identify the vector spaces L(G1 x G2) and 91 EB 92-



4.4. The Lie algebra of a linear algebraic group 75 

4.4.14. Lemma. (i) d(<J,1 EB <J,2) = d<J,1 EB d<J,2: 

(ii) (d(¢1 ® <P2HX1, X2))(v1, v2) = ((d<J,1)(X1))v1 ® v2 +vi® ((d<J,2)(X2))v2. 

We only prove (ii); the proof of (i) is similar. It suffices to deal with the case that 
X2 = 0. Then observe that the left hand side of (ii) is the tangent map ate of the 
morphism x i-+ q,1 (x )v1 ® v2 of G to Vi ® Vi, evaluated at X 1. □ 

4.4.15. Exercises. (1) Let q, : G ➔ GLn be a rational representation and write 
</J(x) = (fij(x)), where fii E k[G]. For XE g we have d¢(X) = (X/ij)-
(2) Let V c k[G] be a finite dimensional subspace of k[G] which is stable under all 
leftmultiplications}..(x), x e G. Let¢: G ➔ GL(V)betherationalrepresentation 
defined by A. For X e g, f e V we have d(/J(X)(f) = Xf, where Xis viewed as 
an element of L(G) c V 0 . Give a similar result for right translations. (Hint: use that 
p(x) =to }..(x-1) o t, where tis the isomorphism of k[G] induced by inversion). 
(3) The differential of the adjoint representation Ad (4.4.5) is given by 

dAd(X)(Y) = [X, Y] (X, Y e g). 

(Hint: first deal with the case of GLn)-
( 4) (a) The Lie algebra of the commutator group (G, G) (see 2.2.8) is a subalgebra g 
containing all elements (Ad(x) - l)X and all [X, Y] (x E G, X, Y E g). 

(b) If G is commutative (solvable) the same holds for g. 
(5) Let q, : G ➔ G L(V) be a rational representation. Define the representation/\ h ¢ 
of G in the exterior power /\ h V by (/\ h ¢ )(x )( v1 A ... A vh) = ¢ (x )vi I\ ... I\¢ (x )vh. 

Then/\ h q, is a rational representation and 

h h 

d(j\ ¢)(X)(v1 A ... A vh) = :I: vi I\ ... I\ (d(/J)(X)v; I\ ... I\ vh. 
i=l 

(6) Lets E Mn and let G = {g E GLn I gs(' g) = s }. Then G is a closed subgroup of 
GLn. Its Lie algebra is contained in {X E g[n I Xs + s(' X) = O}. 

4.4.16. As an application of the results of this chapter we shall prove a fundamen
tal result about algebraic groups over finite fields. Let F = F q be a finite field with q 
elements and assume k to be an algebraic closure of F. Notice that 

F = { a E k I aq = a}. 

If Xis an affine F-variety then f i-+ fq defines an algebra endomorphism of F[X], 
whence an F-morphism a : X ➔ X, depending functorially on X. This is the Frobe

nius morphism of X. If Xis a closed F-subvariety of An and x = (x1, ... , Xn) E X 

then ax = (xf, ... , x%). It is immediate from the definitions that the homomorphism 
(a*)0 (see 4.3.5) is the zero homomorphism, from which it follows that dax = 0 for 
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all x E X. It is also clear that the fixed point set xu = {x E X I ax = x} is finite. 
Similar results hold for arbitrary F -varieties. 

Now let G be an F -group, not necessarily affine. Its Frobenius morphism is an 
endomorphism of the algebraic group G. 

4.4.17. Theorem. [Lang's theorem] Assume G to be connected. Then Ax= (ax)x- 1 

defines a surjective morphism of G. 

It follows from 4.4.13 (i) that dAe is bijective. Let a E G. Denote by p(x) : 
y H- yx right translation by x in G. It is an isomorphism of the variety G. Put 
a' = p(A(a)) o a and put A'(x) = a'(x)x-1. Then A' = A o p(a) and (dA')e = 
dAa o dp(a)e- As before, (dA')e is bijective. It follows that dAa is bijective for all a. 

Let X be the closure of AG; this is an irreducible closed subvariety of G. It 
follows from 1.9.5 and 4.3.3 (ii) that there is a E G such that Aa is a simple point of 
X. We conclude that dim X = dim TAa X = dim Ta G = dim G, whence X = G. By 
1.9.5, AG contains a non-empty open subset U of G. 

A similar argument shows that for a E G there is a non-empty open subset V of G 
consisting of elements of the form a (x )ax-1. Since G is irreducible, the intersection 
Un Vis non-empty. This means that a E AG, proving Lang's theorem. D 

If G is as in the theorem, the fixed point set Gu is a finite group. Many interest
ing finite groups are of this kind. Lang's theorem is a basic tool in the study of such 
groups, see e.g. [Ca]. We give an instance of an application in the next exercise. 

4.4.18. Exercises. (1) Let G and Gu be as before. Let a E Gu and let 

Z(a) = {x E G I xa = ax} 

be its centralizer. This is a closed subgroup, which is a-stable. Assume that Z(a) is 
connected. If b E au is conjugate to a in G then b is conjugate to a in the finite group 
au (more details about such matters can be found in [Bo2, Part E]). 
(2) Let G be a connected linear algebraic group and r : G ➔ G an endomorphism of 
algebraic groups such that dr : g ➔ g is a nilpotent linear map. Then x H- (rx)x-1 

is surjective. 

4.4.19. Jordan decomposition in the Lie algebra. Let k be algebraically closed 
and let G be a linear algebraic group over k. We view the elements of the Lie algebra 
gas derivations of k[G], in particular they are linear maps of the vector space k[G]. 
We have a Jordan decomposition for g, which is similar to that of 2.4.8 

Let X E g. It follows from 2.3.6 and 4.4.15 (2) that X is a locally finite linear map 
of k[G]. Let X = Xs + Xn be its additive Jordan decomposition (2.4.7). 

4.4.20. Theorem. (i) Xs and Xn lie in g and [Xs, Xn] = 0; 
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(ii)/f</>: G-+ G' isahomomorphismofalgebraicgroups, then ((d</>)X)s = d</>(Xs), 

((d</>)X)n = d</>(Xn): 
(iii) If G = GLn then Xs and Xn are the semi-simple and nilpotent parts of the matrix 
X E Mn (see 4.4.10 (3)). 

The proof is similar to the proof of 2.4.8 and is left to the reader. Xs and Xn are 
the semi-simple and nilpotent parts of X. 

4.4.21. Exercises. ( 1) If G is a torus then all elements of g are semi-simple. If G 
is unipotent then all elements of g are nilpotent. 
(2) (p = char k > 0). If X is as above then x!P1 and X~Pl are the semi-simple and 
nilpotent parts of X£Pl. 

Notes 

4.1 and 4.3 contain standard material on tangent spaces and simple points of alge
braic varieties. The basic geometric results are 4.3.3 and 4.3.6. 

The treatment given here makes use of modules of differentials. The discussion 
in 4.2 of their formal properties has been kept brief. A more extensive discussion can 
be found in [EGA, Ch. 0, §20] or in [Ma, Ch. 10]. We have also included the relevant 
algebraic results about separably generated field extensions. 

In the discussion of the Lie algebra of a linear algebraic group G and its properties, 
use is also made of differentials. The basic properties of the Lie algebra of G (such as 
4.4.5) are deduced from the properties of the differential module 0 0 given in 4.4.2. 

Another approach to the Lie algebras uses the description of tangent spaces via 
dual numbers (see 4.1.9 (3)). This is the approach followed in [Bo3]. 

Lang's theorem, basic in the study of 'finite groups of Lie type', was first proved 
in [Lal], with a view to applications to abelian varieties over finite fields. 



Chapter 5 

Topological Properties of Morphisms, Applications 

The first part of the chapter deals with general results about morphisms of algebraic 
varieties. Then these results are applied in the theory of algebraic groups. One of the 
main items of the chapter is the construction in 5 .5 of the quotient of a linear algebraic 
group by a closed subgroup. 

5.1. Topological properties of morphisms 

5.1.1. X and Y are two irreducible algebraic varieties over the algebraically closed 
field k and <I> : X ➔ Y is a dominant morphism (4.3.5). We shall establish a number 
of general facts about the topological behavior of</>. 

View the quotient field k(X) as an extension of the field k(Y) (see 1.8.1 and 1.9.1 
(ii)). The transcendence degree trdegk(Y)k(X) equals dim X - dim Y. In 5.1.6 (ii) we 
shall give a geometric interpretation of this integer. 

Let F be a field and E a finite algebraic extension. We denote by [E : F] its 
degree. The elements of E that are separable over F form a subfield Es, which is a 
separable algebraic extension of F. Its degree [E : F]s is the separable degree of the 
extension E/ F. Let p be the characteristic. If p = 0 we have E =Es.If p > 0 then 
E is a purely inseparable extension of Es, i.e., for any x e E a power xPe lies in Es 
(see [La2, Ch. VII, §4] for these facts). If <I>: X ➔ Y is as before and dim X = dim Y 
then k(X) is an algebraic extension of k(Y). In 5.1.6 (iii) we shall give a geometric 
interpretation of [k(X) : k(Y)]s. 

If k(X) = k(Y) then <I> is said to be birational. 

5.1.2. Lemma. <I> is birational if and only if there is a non-empty open s.ubset U 
of X such that </JU is open and <I> induces an isomorphism of varieties U ::::: </JU. 

It follows from the definition of quotient fields (l.8.1) that <I> is birational if the 
condition of the lemma is satisfied. Assume that <I> is birational. We may assume X 
and Y to be affine. Then k[X] = k[Y][f1, ... , fr], where all /i lie in k(Y). Take 
f e k[Y] such that f =I- 0 and the f Ji lie in k[Y]. Then <I> induces an isomorphism 
k[Ylt :::::: k[X]f, and U = Dx(f) (see 1.3.5) is as required. □ 

The main result of this section is 5.1.6. We first deal with some special cases. 
Assume now, moreover, that X and Y are affine and that there is f e k[X] with 
k[X] = k[Y][f] (</> being defined by the inclusion map k[Y] ➔ k[X]). 

5.1.3. Lemma. Assume that f is transcendental over k(Y). 
(i) <I> is an open morphism; 



5.1. Topological properties of morphisms 79 

(ii) If Y' is an irreducible closed subvariety of Y then q,-1 Y' is an irreducible closed 
subvariety of X, of dimension dim Y' + 1. 

Recall that an open ( closed) map of topological spaces is a continuous map such 
that the image of an open set is open (respectively the image of a closed set is closed). 
We say that the morphism <J, is open ( closed) if it defines an open map (respectively a 
closed map). 

We may assume that X = Y x A 1 and that <J, is projection on the first factor. Let 
g = "'E,~=o g; Ti E k[X] = k[Y][T]. Then 

r 

<J,(Dx(g)) = LJ Dr(g;), 
i=O 

whence (i). 

If Q is the prime ideal in k[Y] defined by the irreducible closed subvariety Y', 
then q,-1 Y' is the set of points of X in which the functions of the ideal P = Qk[X] = 
{L;>o f; Ti I /; E Q} vanish. Then k[X]/ P ~ (k[Y]/ Q)[T]. Since the last ring is an 
integral domain, P is a prime ideal and q,-1 Y' is irreducible. The last point of (ii) is 
clear. D 

5.1.4. Lemma. Assume that f is separably algebraic over k(Y). There is a non
empty open subset U of X with the following properties: 
(i) The restriction of <J, to Ude.fines an open morphism U ~ Y; 
(ii) If Y' is an irreducible closed subvariety of Y and X' is an irreducible component 
of q,-1 Y' that intersects U, then dim X' = dim Y'; 
(iii) For x EU the.fiber<J,-1(</)(x)) is a.finite set with [k(X): k(Y)] elements. 

We have k[X] = k[Y][T]/ I where / is the ideal of polynomials vanishing in 
f. Let F be the minimum polynomial off over k(Y) (the irreducible polynomial in 
k(Y)[T] with leading coefficient one, with root f). Choose a E k[Y] such that all 
coefficients of F lie in k[Y]a. 

Let f 1, ... , fn be the roots of F, in some extension field of k(Y). Since f is 
separable over k(Y) the roots are distinct and the discriminant d = ni<j(/; - Jj)2 is 
a non-zero element of k(Y), which can be expressed polynomially in the coefficients 
of F (see [Jac4, p. 250-251]). It follows that there is b E k[Y] and m > 0 such that 
amd = b. 

We may replace X and Y by Dx(ab), respectively Dr(ab). We are then reduced 
to proving the lemma when, moreover, the following holds: 
(a) / contains the minimum polynomial F. From this it follows, using the division 
algorithm, that/ is the ideal generated by F. It also follows that k[X] is a free k[Y]
module. 
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(b) If F(T) = 'E7=o hi Ti then for ally e Y the polynomial 

n 

F(y)(T) = L hi(y)Ti 
i=O 

has distinct roots. We shall show that in this situation the statements of the lemma 
hold, with U = X. We may assume that 

X = {(y, t) E y X A1 I F(y)(t) = O}, 

<I> being the first projection. Let G e k[Y][T] and denote by g its image in k[X]. Then 

Dx(g) = {(y, t) e X I G(y)(t) -I- O}. 

Write G = Q F + R, where R = 'E7:-~ ri Ti is a polynomial in T of degree < n = 
degF. Then <J>Dx(g) is the set of y e Y such that not all roots of F(y)(T) are roots 
of R(y)(T). Since the first polynomial has n distinct roots, this implies that 

n-l 

</>Dx(g) = LJ Dr(ri), 
i=O 

whence (i). 
Next let Y' be as in (ii) and let Q be the corresponding prime ideal in k[Y]. Then 

<1>- 1 Y' is the closed set defined by the ideal Qk[X]. Let A = k[Y]/ Q and denote by - -
F the image of F in A[T]. We claim that Qk[X] is a radical ideal, i.e., A[T]/(F) 
is reduced (1.3.1). Let H e A[T] and assume that Hm is divisible by F. We may 
assume that degH < n. It follows from property (b) that F has distinct roots and that 
H is divisible by F, as polynomials with coefficients in the quotient field of A. But 
since H has lower degree than F, this can only be if H = O, which implies the claim. 

By 1.2.6 (2) we know that Qk[X] is an intersection of prime ideals of k[X], say 
Qk[X] = n~=l Pi. We may assume that there are no inclusions among the Pi, The 
irreducible components of the <1>- 1 Y' are the sets Vx(Pi) (notation of 1.3.2). We show 
that P; n k[Y] = Q (1 ~ i ~ r). If this is not so we have, say, P1 n k[Y] -1- Q. Take 
x1 e P1 n k[Y] - Q and xi e Pi - P1 (2 < i ~ r). Then x 1x2, ... , x, e Qk[X]. Since 
k[X] is free over k[Y], it follows that x2, ... , x, e Qk[X] c P1, which is impossible 
if r > 1. If r = 1 we have a contradiction, since Qk[X] n k[Y] = Q. 

It follows that the quotient field of k[X]/ Pi is an algebraic extension of the quo
tient field of A, which proves (ii). 

If Y' is a point then Q is a maximal ideal of k[Y] and A= k. The preceding anal
ysis shows that now <1>- 1 Y' is the zero dimensional variety defined by the k-algebra - -
k[T]/(F). Since Fis a polynomial of degree n with distinct roots, (iii) follows. D 

5.1.S. Lemma. Let p = char k > 0 and assume that f P E k(Y). There is a 
non-empty open subset U of X with the following properties: 
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(i) The restriction of <I> to U is an open morphism U ➔ Y which induces a homeo
morphism U ~ <J>U; 
(ii) If Y' is an irreducible closed subvariety of Y, there is at most one irreducible com
ponent X' of <1>-1 Y' that intersects U. If X' exists, we have dim X' = dim Y'. 

Let f P = g. Replacing X and Y by Dx(a) and Dy(a) with suitable a E k[Y], 
we may assume that g E k[Y] and that k[X] is free over k[Y]. We shall prove that we 
may then take U = X. 

We view X as the set of points (y, g(y) 1f P) in Y x A 1, <J> being the first projection. 
Then k[X] = k[Y][T]/(TP - g). The proof that <I> is open is like that of 5.1.4 (i). 
Since <I> is bijective (i) follows. 

Let Y' be as in (ii) and let Q and A be as in the proof of 5.1.4. Let g be the image 
of gin A. Now k[X]/Qk[X] ~ A[T]/(TP - g). If TP - g is irreducible over the 
quotient field of A, then Qk[X] is a prime ideal and (ii) follows. If T P - g is reducible 
then in A[T]/(TP - g) the elements b with bP = 0 form a prime ideal. It follows 
that P = {h E k[X] I hP E Qk[X]} is a prime ideal, and is the radical of Qk[X]. If 
h E P n k[Y] then hP E Qk[X] n k[Y] = Q. Hence P n k[Y] = Q and (ii) follows, 
as before. □ 

The following theorem is the main result of this section. Its content is that a mor
phism <I> as in 5.1.1 behaves well on an open set. The exercises (3) and (4) of 5.1.8 
show that one cannot expect good behavior everywhere. 

5.1.6. Theorem. Let X and Y be irreducible varieties and let <I> : X ➔ Y be a 
dominant morphism. Put r = dim X - dim Y. There is a non-empty open subset U of 
X with the following properties: 
(i) The restriction of <I> to U is an open morphism U ➔ Y; 
(ii) If Y' is an irreducible closed subvariety of Y and X' an irreducible component 
of <1>- 1 Y' that intersects U, then dim X' = dim Y' + r. In particular, if y E Y, any 
irreducible component of <1>- 1 y that intersects U has dimension r; 
(iii) If k(X) is algebraic over k(Y), then for all x E U the number of points of the 
fiber <1>- 1 (<J>x) equals [k(X) : k(Y)] 5 . 

Assume we have a factorization <I> = <I>' o 1/1, where v, : X ➔ Z, <I>' : Z ➔ Y are 
dominant morphisms, Z being irreducible. If (i) and (ii) hold for <I>' and v, they also 
hold for <J>. To prove the theorem we may assume that X and Y are affine. Since k[X] 
is a k[Y]-algebra of finite type, we can find a factorization of <I> 

,Pr ,Pr-I "'2 X ,PJ f X = Xr ➔ Xr-1 ➔ ... ➔ 1 ➔ Xo = , 

where the </>; are cases covered by one of the three preceding lemmas. (i) and (ii) then 
follow by application of these lemmas. 
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In the case of (iii) let k[X] = k[Y] [/1, ... , Is] and let Z be the variety with 

e being such that all J( are separable over k(Y). We obtain a factorization as in the 
beginning. Refining it we obtain a factorization of <I> to which we can apply the last 
two lemmas. D 

The proof gives the following useful corollary. 

5.1.7. Corollary. In the case of 5.1.6, we may replace (i) by the following stronger 
property, 
(i)' For any variety Z the restriction of <I> to U defines an open morphism U x Z ➔ 
f X Z. 

It suffices to prove this for Z affine. Observe that if (i)' holds for Z, and if Z' is a 
closed subvariety of Z, then (i)' also holds for Z'. Hence it suffices to establish (i)' for 
Z = Am. This will follow if we prove the corresponding result in the cases of 5 .1.3, 
5.1.4, 5.1.5. The first case is trivial. In the others (i)' follows by observing that the 
minimum polynomial of an element of k(X) over k(Y)(T1, ... , Tm) coincides with 
the minimum polynomial over k(Y). □ 

5.1.8. Exercises. (1) Using 5.1.6 (iii) show that an isomorphism <I> : A 1 ➔ A 1 is 
of the form q,t =at+ b (a E k*, b Ek). Deduce that an isomorphism of the projec
tive line P1 (see 1.6.13 (2) or 1.7.1) is induced by an element of GL2. 

(2) Let X = {(x, y) E A2 I x2 = y3}. Define <I> : X ➔ A1 by q,(x, y) = x-1y if 
(x, y) -:/= (0, 0) and q,(0, 0) = 0. Show that q, is a morphism of irreducible varieties 
that is birational and bijective, but is not an isomorphism of varieties. 
(3) Consider the morphism q, : A2 ➔ A2 with q,(x, y) = (x, xy). Show that it is 
birational, but not open. Determine the components of the fibers q,-1z, z E A2. 

(4) Define <I> : A3 ➔ A3 by q,(x, y, z) = (x, xy, z). Let X = {(x, y, z) E A3 I y2 = 
1 + x}. Show that X and Y = q,X are irreducible closed subvarieties of A3 of dimen
sion two. Put 

Y' = {(x,y,z) E YI y =xz, z2 = 1 +x}. 

Show that Y' is irreducible, closed of dimension one and that if char k -:/= 2, q,-1 Y' n X 
has a component of dimension zero. 

5.2. Finite morphisms, normality 

5.2.1. Let A be a ring and B an A-algebra. We say that B is finite over A if B is 
an A-module of finite type. We say that b E B is integral over A if it satisfies an 
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equation 

with coefficients in A. 

S.2.2. Lemma. Let B be an A-algebra of finite type. Then B is finite over A if 
and only if every element of B is integral over A. 

Assume that Bis finite over A. There are bi E B such that B = Ab1 + ... + Abm, 
Let b E B. There exist aii in A such that 

m 

bbi = L aij b j, l < i < m. 
j=l 

It follows that det(~ijb - aii) = 0, showing that bis integral over A. The proof of the 
converse statement is straightforward. D 

It follows from 5.2.2 that if, moreover, C is a B-algebra that is finite over B, then 
C is finite over A. It also follows from 5.2.2 that if Bis any A-algebra, the elements 
of B that are integral over A form a subalgebra. 

Now let <I> : X ➔ Y be a morphism of affine varieties. The algebra homomor
phism <I>* : k[Y] ➔ k[X] makes k[X] into a k[Y]-algebra. We say that <I> is finite if 
k[X] is finite over k[Y]. Then <t,-1(y) is finite for ally E Y. 

S.2.3. Lemma. A finite morphism is closed. 

Asume that</> is finite. Let B = k[X], A = k[Y]. We have B = (</>* A)[b1, ... , bh] 
and an easy argument (see the proof of 5.1.6) shows that we may assume h = l. 
Applying 1.9.3 to B and its subring <I>* A, we see that Im <I> is closed. Applying this 
to a closed subvariety X' of X and the induced morphism X' ➔ Y, we conclude that 
<t,(X') is closed. Hence <I> is closed. D 

We say that <I> is locally finite in a point x E X if there exists a finite morphism 
µ, : Y' ➔ Y and an isomorphism v of an open neighborhood U of x onto an open set 
in Y' such thatµ, o v is the restriction of <I> to U. 

Let VI : Y ➔ Z be another morphism of affine varieties. 

S.2.4. Lemma. If <I> is locally finite in x and VI in <I> (x) then VI o <I> is locally fi
nite in x. 

We may assume that Y = Dz,(f), where Z' is finite over Z, with f E k[Z']. If Y' 
is finite over Y then k[Y'] = BJ, where B is integral over k[Z']. Hence Bis integral 
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over k[Z]. It follows that Y' '.:::'. Dv(g), where Vis finite over Z, with g E k[V]. □ 

From now on we assume that X and Y are irreducible and that q, is dominant. We 
view A = k[Y] as a subring of B = k[X]. 

5.2.5. Lemma. Assume that there is b E B with B - A[b]. Let x E X. We 
have the following alternatives: 
(a) q,-1(q,x) is.finite and q, is locally.finite in x, 
(b) q,-1(q,x) '.:::'. A 1. 

We have B = A[T]/ 1, where I is the ideal of the polynomials f E A[T] with 
f (b) = 0. Let E : A ➔ k be the homomorphism defining q,x. Extend E to a homo
morphism A[T] ➔ k[T] in the obvious manner. If El = {0} then k[q,-1 (q,x)] '.:::'. k[T], 
whence q,-1(q,x) '.:::'. A 1. 

If El # {0} the polynomials in El vanish in b(x); hence El contains non-constant 
polynomials and no non-zero constants. This implies that 4>-1 (q,x) is finite. It also 
follows that there is f E I of the form 

fnTn + ... + fmTm + ... + fo, 

where E(fn) = ... = E(fm+d = 0, Efm # 0, m > 0. Puts= fnbn-m + ... + fm, Then 
s # 0 and 

sbm + f m-1bm-l + ... +lo= 0. 

We see that sb is integral over A[s] and that bis integral over the subring A[s-1] of 
the quotient field of A. But since s E A[b], it follows thats is integral over A[s-1], 

i.e., that s is integral over A. Now the assertion of (a) follows by observing that 
Bs = A[sb, S]3 • □ 

5.2.6. Proposition. Let x E X. If the fiber 4>-1 (q,x) is finite then q, is locally .fi
nite in x. 

We have B = A[b1, ... , bh], If h = 1 the assertion is true by 5.2.5. We have a 

factorization of q,: X .! X' ~ Y, where k[X'] = A[bi]. Clearly v,-1(v,x) is finite. 
By induction on h we may assume that v, is locally finite in x. We may then assume 
that there is a finite morphism of affine varieties v,' : X" ➔ X' such that X is an 
affine open subset of X" and that v, is induced by v,'. 

Put F = (t/>')-1(q,x). Assume that Fis infinite. By 5.2.5 it is isomorphic to A1. 

Let C be a component of ( v,')-1 ( F) of dimension > 1 passing through x. Now X n C 
is an open subset of C containing x, hence must be infinite. But X n C lies in the 
finite set 4>-1 (q,x) and we get a contradiction. Hence the components of (v,')-1 (F) 
of dimension > 1 do not contain x. Replacing X by a suitable open neigborhood of x 
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we may assume that no such component exists. Then F is finite. The theorem follows 
by using 5.2.5 and 5.2.4. □ 

5.2.7. Corollary. In the situation of 5.2.6 we have dim X = dim Y. 

An integral domain A is normal if every element of its quotient field that is integral 
over A lies already in A. A point x of an irreducible variety X is normal if there exists 
an affine open neighborhood U of x such that k[U] is normal. X is normal if all its 
points are normal. 

The next result is (a version of) Zariski's main theorem. 

5.2.8. Theorem. Let </> : X ➔ Y be a morphism of irreducible varieties that is 
bijective and birational. Assume Y to be normal. Then </> is an isomorphism. 

Let x E X. Replace X and Y by affine open neighborhoods U of x, respectively V 
of </>x. We deduce from 5.2.6 that we may assume U is isomorphic to an affine open 
subset of an affine variety V' which is finite over V. But our birationality assumption 
implies that k(V') :::: k(V). Now the normality of Y implies that that finite morphism 
V' ➔ V is in fact an isomorphism. This shows that</> is an isomorphism of ringed 
spaces, hence an isomorphism of varieties (see 1.4.7). D 

5.2.9. Exercises. ( 1) Let </> : X ➔ Y be a finite morphism of affine varieties. Show 
that for any variety Z the morphism(</>, id) : X x Z ➔ Y x Z is finite and closed. 
(2) For any field F the polynomial algebra F[T1, ... , Tn] is normal. 
(3) An irreducible affine variety Xis normal if and only if k[X] is normal. 
(4) Let</> : X ➔ Y be a surjective morphism of irreducible affine varieties. If</> is lo
cally finite in all points of X, then </> is finite. (Hint: For f E k[X] there are non-zero 
F E k[Y][T] with F(f) = 0. Consider the leading coefficients of such F). 
(5) In 5.2.8 the normality assumption cannot be omitted. 

5.2.10. Lemma. Let A be a normal integral domain with quotient field F. Let B 
be an integral domain containing A, which is an A-algebra of.finite type. Assume that 
the quotient field E of B is a separable algebraic extension of F. There is a non-zero 
element a E A such that Ba is normal. 

Let B = A[b1, ... , bh], Using that any non-zero element of B divides a non
zero element of A one sees that it suffices to deal with the case h = 1. So assume 
B = A[b]. We may assume that bis integral over A. Then (1, b, ... , bn-1) is a basis 
of E over F, where n = [E: F]. 

Assume that x = E7::~ a;b; (a; E F) is integral over A. Then for O < j < n 

n-l 

Tr(xbj) = Z:,a;Tr(bi+j) 
i=O 
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(where Tr : E ➔ Fis the trace function) is an element of F that is integral over A, 
since it is a sum of conjugates of xbj (see [Jac4, p. 4091), which is integral by the 
remarks after 5.2.2. One also knows that 

where the b; are the conjugates of b, in a suitable extension of E (see [loc.cit., 
p. 2501). Clearly, a e A. We have a set of linear equations for the a;. By Cramer's 
rule we obtain that aa; E A. This shows that x e Ba and it follows that Ba is normal. 

□ 

5.2.11. Proposition. Let X be an irreducible variety. The set of its normal points 
is non-empty and open. 

That this set is open is clear from the definitions. Let E = k(X). Using 4.2.10 
we see that there is an affine open subset U of X such that (a) k[U] is integral over a 
subalgebra A that is isomorphic to a polynomial algebra, (b) the quotient field E of 
B is a separable algebraic extension of the quotient field of A. Application of 5.2.10 
(using 5.2.9 (2)) shows that X has normal points. □ 

Remark. A result slightly weaker than 5.2.11, which would suffice for our purposes, 
follows from 4.3.3 (ii) by using that simple points are normal. We did not prove this 
fact (for a local algebra proof, see [Ma, p. 1211). 

5.3. Homogeneous spaces 

In the rest of this chapter we shall apply the algebro-geometric results of the pre
ceding sections in cases involving algebraic groups. Let G be an algebraic group 
(which need not be linear) and let X be a homogeneous space for G (2.3.1). As usual, 
G0 is the identity component of G. 

5.3.1. Lemma. (i) Each irreducible component of X is a homogeneous space for 
GO; 

(ii) The components of X are open and closed and Xis their disjoint union. 

Let X' be an orbit of G0 in X. Since G acts transitively on X, it follows from 
2.2.1 (i) that X is the disjoint union of finitely many translates g .X'. Each of them is 
a G0-orbit and is irreducible. It follows from 2.3.3 (ii) that all G0-orbits are closed. 
Now (i) and (ii) readily follow. D 

5.3.2. Theorem. Let G be an algebraic group and let </J : X ~ Y be an equiv
ariant homomorphism of homogeneous spaces for G. Put r = dim X - dim Y. 
(i) For any variety Z the morphism (</J, id) : Xx Z ➔ Y x Z is open; 
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(ii) If Y' is an irreducible closed subvariety of Y and X' an irreducible component of 
<1>- 1 Y', then dim X' = dim Y' + r. In particular, if y E Y then all irreducible compo
nents of <1>- 1 y have dimension r; 
(iii) <I> is an isomorphism if and only if it is bijective and if for some x E X the tangent 
map d<l>x : TxX ➔ Tt/JxY is bijective. 

Using 5.3.1 we reduce the proof to the case that G is connected and X, Y are 
irreducible. Then <I> is surjective, hence dominant. Let U c X be an open subset with 
the properties of 5.1.6 and 5.1.7. Then all translates g.U enjoy the same properties. 
Since these cover X we have (i) and (ii). 

If <I> is bijective we conclude from 5.1.6 (iii) that k(X) is a purely inseparable 
extension of k(Y). If d<f>x is surjective for some x, we see from 4.3.7 (ii) that this 
extension is also separable. Hence k(X) = k(Y) and <I> is birational. Using 5.1.2 and 
a covering argument, we conclude that <I> is an isomorphism, proving (iii). □ 

5.3.3. Corollary. Let <I> : G ➔ G' be a surjective homomorphism of algebraic 
groups. 
(i) dim G = dim G' + dim Ker </>; 
(ii) <I> is an isomorphism if and only if q, and the tangent map d<l>e are bijective. 

View the groups G and G' as homogeneous spaces for G, the first one via left 
translations and the second via the action g .g' = <I> (g )g'. Now apply the theorem. D 

If G and G' are linear algebraic groups, the condition on the tangent map of (ii) 
can be rephrased as: the Lie algebra homomorphism d</> : g ➔ g' is bijective. In 2.1.4 
(2) we already encountered an example where <I> is bijective but is not an isomorphism. 

5.3.4. Lemma. The components of a homogeneous space are normal. 

This follows from 5.2.11 and 5.3.1. □ 

5.3.5. Exercises. (1) If char k = O, a homomorphism of algebraic groups is an 
isomorphism if and only if it is an isomorphism of abstract groups. Similarly for ho
mogeneous spaces. 
(2) (a) Let <I> : G ➔ G' be a homomorphism of algebraic groups. Then dim Ker <I> + 
dim Im <I> = dim G; 

(b) Assume, moreover, that <I> is surjective, G is connected and dim G' = dim G. 
Then Ker <I> is a finite subgroup of the center of G. (Hint: for g E Ker <I> consider the 
morphism x ~ xgx-1 g-1). 

(3) Let¢ : G ➔ G' be a homomorphism of connected linear algebraic groups such 
that the Lie algebra homomorphism d<I> : g ➔ g' is bijective. Show that we have the 
case of 2 (b ). 
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5.4. Semi-simple automorphisms 

5.4.1. Let G be a connected linear algebraic group and let a be an automorphism 
of the algebraic group G. We put 

Gu = {x E G I ax= x}; 

this is a closed subgroup of G. We denote by x the morphism G ➔ G with xx = 
(ax)x- 1. The differential dais an automorphism of the Lie algebra g. We put 

9u = {X E g I da(X) = X}. 

Since x(Gu) = {e} we have dx(L(Gu)) = {O}. Using 4.4.13 (i) we see that 
L(Gu) C gu = Ker dx. Equality need not hold (for an example see 5.4.9 (1)). 
Let G act on itself by g.x = (ag)xg- 1 (g, x e G). Then x defines a dominant mor
phism v, : G ➔ x G which is G-equivariant, G acting on G by left translations and 
on x G in the manner just defined. Also, x G is an orbit in x G for this action, so is 
open in x G by 2.3.3 (i). Using 4.3.3 (ii) we find that e is a simple point of x G. By 
5.3.2 (ii) we have dim x G = dim G - dim Gu. 

5.4.2. Lemma. We have L( Gu) = gu if and only if l/1 is separable. 

Using 4.4.13 (i) we obtain 

dimlm(dl/le) = dimg- dimgu < dimg- dimL(Gu) = 

= dimG -dim Gu= dimxG. 

From 4.3.6 we see that v, is separable if and only if the outer members are equal, and 
the lemma follows. 

□ 

We say that a is semi-simple if the induced automorphism a* of k[G] is semi
simple in the sense of 2.4.7. Such automorphisms can be characterized in another 
manner. 

5.4.3. Lemma. a is semi-simple if and only if there is an isomorphism <P of G onto 
a closed subgroup of some GLn and a semi-simple elements E GLn normalizing <PG 
such that <j,(a x) = s<j,(x)s-1 (x e G). 

Let a be semi-simple. Let <P be as in the proof of 2.3.7 (i). We may assume 
that a* stabilizes the space V of that proof. Take for s the automorphism defined by 
the restriction of a* to V; then <P ands are as required. Conversely, if <P ands are as 
stated, then a is semi-simple. (Use that k[G] is a quotient of k[GLn] and that the inner 
automorphism of GLn defined bys induces a semi-simple automorphism of k[GLnD-
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5.4.4. Theorem. Assume a to be semi-simple. 
(i) xG is closed and the morphism 1/r : G ~ xG is separable; 
(ii) L(Gu) = 9u• 
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By 5.4.3 we may assume that G is a closed subgroup of GLn and that ax 
sxs-1 (x E G), wheres is a semi-simple element of GLn. We may assume thats is a 
diagonal matrix. We first prove the separability of 1/r or, equivalently, property (ii) (see 
5.4.2). If G = GLn then it is easy to check that (ii) holds. If G is arbitrary, extend a to 
an automorphism of GLn, viz. the inner automorphism Int(s) defined bys and extend 
x similarly. Let X E TexG. Since TexG C Tex(GLn) and since we already know 
(ii) for GLn, there is Y E g[n with X = da(Y) - Y. The semi-simplicity of s implies 
that da is a semi-simple automorphism of g[n, stabilizing the subspace g. Because of 
the semi-simplicity of da, this subspace has a da-stable complement. This implies 
that we may take Y in g and that dl/re is surjective, whence the separability of 1/r by 
4.3.6 (i). It remains to be proved that x G is closed. 

Put m(T) = TT~=l (T - a;), the a; being the distinct eigenvalues of s. Let S C 
GLn be the set of elements x with the following properties: (a) x normalizes G, (b) 
m (x) = 0, ( c) the characteristic polynomial of the restriction of Ad x to g equals that 
of da. Then S is a closed subset, containing s. Since m has distinct roots, all elements 
of S are semi-simple. 

For x E S, put Gx = {g E G I gxg-1 = x} and 9x ={XE g I Ad(x)X = X}. By 
(ii) we have dim Gx = dim 9x• But dim 9x equals the multiplicity of the eigenvalue 
1 of the restriction of Ad x to g, which equals dim 9u by condition ( c ). It follows 
that dim G x = dim Gu for all x E X. Now G operates on S by inner automorphisms 
and by 5.3.2 (ii) (applied to a morphism g ~ gxg- 1 of G to an orbit) all orbits have 
dimension dim G - dim Ga. It follows from 2.3.3 (i) and 1.8.2 that all orbits must be 
closed. Since x G is an orbit we have proved (i). D 

5.4.5. Corollary. Let s E G be semi-simple. 
(i) The conjugacy class C = {xsx- 1 Ix E G} is closed. The morphism x ~ xsx-1 is 
separable; 
(ii) Let Z = {x E G I xsx-1 = s} be the centralizer of s. Then g = (Ad(s) - l)g EB 
L(Z). 

Let ax = s-1 xs. Then a is a semi-simple automorphism of G. If x is as before, 
then C = s.Imx and Z = Gu. The assertions follow from 5.4.4. For the last point 
notice that Ad s is a semi-simple endomorphism of g. D 

Conjugacy classes in G need not be closed. For an example see 5.4.9 (6). 

5.4.6. Assume that D is a diagonalizable linear algebraic group (3.2.1) which acts 
as a group of automorphisms on our connected linear algebraic group G. This means 
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that G is a D-space (2.3.1) and that for all d E D the morphism g ~ d.g is an au
tomorphism of G. It follows from 3.2.3 that these are semi-simple automorphisms. 
Let 

Za(D) = {g E G I d.g = g for all d E D}. 

D also acts as a group of automorphisms on the Lie algebra g. Let 

3g(D) ={XE g I d.X = X for all d E D}. 

5.4.7. Corollary. L(Z0 (D)) = 3g(D). 

We proceed by induction on dim G, starting with the trivial group. If D acts triv
ially on g, the assertion follows from 5.4.4 (ii). Otherwise choose d E D such that the 
fixed point set of d in g is a proper subspace of g. By 5.4.4 (ii) this subspace is the Lie 
algebra of the fixed point group Gd of d acting in G. This is a subgroup of smaller 
dimension. Since Dis commutative we have dim Za(D) = dim Z0 o(D). We can 

d 
now apply induction. □ 

The corollary applies, in particular, if D is a diagonalizable subgroup of G, acting 
by inner automorphisms. 

Finally we give another application of 5.4.4 (ii). 

5.4.8. Corollary. Assume G to be a connected, nilpotent, linear algebraic group. 
The set Gs of semi-simple elements is a subgroup of the center of G. 

For x, y E G write (x, y) for their commutator xyx-1 y-1. Since G is nilpotent, 
there is n > 0 such that all iterated commutators (x1 ( ... (xn, Xn+1) ... )) equal e. Let 
s E G be semi-simple and let u be the inner automorphism Int(s). Then, x being as 
in 5.4.1, we have xx= (s, x). It follows that xnG = {e}. Using 4.4.13 (ii) we obtain 
that Ad(s) - 1 is a linear map of g which is both semi-simple and nilpotent, hence it is 
the zero map. From 5.4.4 (ii) we conclude that u is trivial, i.e., thats lies in the center 
of G. The assertion now follows from 2.4.3 (i). □ 

A more precise result will be given in 6.3.2. It should be noticed that the connect
edness assumption in 5.4.8 is essential (see 5.4.9 (5)). 

5.4.9. Exercises. (1) Assume char k = 2 and let G = SL2. Denote by u the in
ner automorphism of G defined by 

Show that L(Gu) =/= 9u• 
(2) Let G = GLn and let u be any inner automorphism of G. Show that L (Gu) = 9u. 
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(3) Let G be a connected closed subgroup of GLn. Assume that the subspace g of g[n 
has a complement that is stable under Ad G. 

(a) If a is an inner automorphism of G then L(Gu) = 9u• (Hint: proceed as in 
the first paragraph of the proof of 5.4.4.) 

(b) Let x E G and let C be the conjugacy class of x in GLn, Show that C n G 
consists of finitely many conjugacy classes of G. (Hint: let X be a component of 
C n G containing x and let D be the conjugacy class of x in G; using (a) show that 
TxX = TxD and X = D). 
(4) (a) Show that the number of unipotent conjugacy classes in GLn is finite. (Use 
Jordan normal forms, see [La2, Ch. XV, §3].) 

(b) Let a be an automorphism of GLn of finite order prime to p = char k (if 
p > 0). Using (3) show that the number of unipotent conjugacy classes of G~ is 
finite. (The same argument, due to Richardson [Ri], can be used to prove finiteness of 
the number of unipotent conjugacy classes in other situations, see [St5, p. 106]). 
(5) Give an example of an irreducible, nilpotent, finite group of complex 2 x 2-matrices 
(showing that 5.4.8 is false for non-connected groups). 
(6) (a) Show that (for arbitrary k) the conjugacy class in GL2 of the matrix of (1) is 
not closed. 

(b) More generally, let x = 1 + X be a unipotent element of GLn, where Xis a 
nilpotent matrix. Using Jordan normal forms, define a cocharacter ).. : Gm ~ GLn 
(3.2.1) such that )..(x)X)..(x)-1 = x2 X (x Ek*). Show that 1 lies in the closure of the 
conjugacy class of x. 

5.5. Quotients 

In this section G denotes a linear algebraic group and H a closed subgroup, with 
respective Lie algebras g and Q. Let F be a subfield of k such that G is an F-group 
and H is an F-subgroup. We shall establish the existence of a quotient variety G / H. 
We begin with some auxiliary results. 

5.5.1. Lemma. There exists a.finite dimensional subspace V of k[G] together with a 
subspace W of V such that 
(a) Vis stable under all right translations p(x) (x E G); 
(b) we have 

H = {x E GI p(x)W = W}, 

Q = {X E g I X. w C W}; 

( c) V is defined over F and W is an F -subspace of V. 

Let / c k[G] be the ideal of functions vanishing on H and let V be a finite 
dimensional p(G)-stable subspace of k[G] that is defined over F and contains a set 
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of generators (ft, ... , fr) of I which lie in F[G] (see 2.3.6). Take W = V n /. We 
shall show that the requirements of the lemma are met. 

If x E H then p(x)W = W by 2.3.8. Conversely, if this is so, then p(x)f; E 

/ (1 < i < r), whence p(x)l c I. By 2.3.8 we have x EH. The proof of the cor
responding Lie algebra property (b) is similar, using 4.4.7 instead of 2.3.8. Observe 
that, if <I> is the rational representation of Gin V defined by p, we have for f E V and 
X E g that d<f>(X).f = X.f (see 4.4.15 (2)). (c) is clear from the definitions. D 

Now let V be an arbitrary finite dimensional vector space and W a subspace of 
dimension d. The d th exterior power /\ d V contains the one dimensional subspace 
L = /\d W. Let <I> be the canonical representation of GL(V) in /\d V. The differen
tial of <I> is described in 4.4.15 (5). 

5.5.2. Lemma. (i)Letx E GL(V). Wehavex.W = W ifandonlyif(<f>x)(L) = L; 
(ii) Let XE g[(V). We have X. WC W if and only if (d<f>X)(L) CL. 

The 'only if' parts are clear. Choose a basis (v1, ... , Vn) of V such that (v1, ... , vd) 
is one of W. The exterior products Vi1 I\ ... I\ vid with i 1 < ... < id form a basis of/\ d V 
and v1 /\ ... /\ vd is a basis vector of the one dimensional space L. Let x E G L(V). We 
may choose our basis such that, moreover, V1+ 1 , . . . , vl+d is a basis of x. W, for some 
l. Put e = v1 I\ ... I\ vd, f = v1+1 I\ ... I\ Vt+d· Then (<f>x)e is a multiple off. If l > 0 
then e and f are linearly independent and x does not stabilize L. This implies (i). 

If X E g[(V) we have by 4.4.15 (5) 

d 

(d<f>X)e = L vi I\ ... I\ Xvi I\ ... I\ Vd, 
i=l 

Writing Xvi = L aii vi it follows that 

d 

(d<f>X)e = L Laiivl I\ ... I\ Vj I\ ... I\ Vd, 
i=l j 

from which we see that, if aii =I- 0 for i < d and j > d, the subspace L is not mapped 
into itself by (d<f>X), proving (ii). □ 

The lemmas imply the following result. G and H are as before. 

5.5.3. Theorem. There exists a rational representation <I> : G ➔ G L(V) over F 
and a non-zero v E V (F) such that 

H - {x E G I (<f>x)v E kv}, 

~ {X E g I (d<f>X)v E kv}. 
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The following corollary is important for the construction of G / H. 

5.5.4. Corollary. There is a quasi-projective homogeneous space X for G, together 
with a point x E X such that: 
(a) the isotropy group of x in G is H, 
(b) the morphism 1/1 : g 1--+ g.x of G to X defines a separable morphism G0 ➔ v,G0; 

(c) thefibers ofv, are the cosets gH (g E G). 

Recall that a quasi-projective variety is an open subvariety of a projective variety 
(1.7.1). 

Let V and v be as in the theorem and letx be the point in the projective space P(V) 
defined by the line kv (see 1.7.2 (2)). Denote by rr : V -{0} ➔ P(V) the map sending 
a vector to the line passing through it. Now G acts on P(V) by g.rr(v) = rr(q,(g)v). 
Denote by X the G-orbit of x. By 2.3.3 (i) it is a quasi-projective variety. Now (a) and 
(c) follow from 5.5.3. The property (b) is a consequence of the Lie algebra assertion 
of 5.5.3 and 4.3.7 (ii). D 

A quotient of G by H over F is a pair ( G / H, a) of a homogeneous space G / H 
for Gover F together with a point a E (G/ H)(F) such that the following universal 
property holds: 

for any pair (Y, b) of a G-space Y for Gover F and a point b E Y(F) whose 
isotropy group contains H, there exists a unique equivariant F-morphism <I> : G / H ➔ 
Y such that q,a = b .. 

In the next theorem we prove the existence of a quotient over k, i.e., we ignore the 
ground field F. The existence of quotients over F will be established in 12.2, as an 
application of the criteria for ground fields of 11.2. 

5.5.5. Theorem. A quotient (G / H, a) over k exists and is unique up to a G-iso
morphism. In fact, if X and x are as in 5.5.4 then (X, x) is such a quotient. 

The uniqueness part of the theorem is trivial. To prove the existence we first 
define ( G / H, a) in the category of ringed spaces and then show it to be isomorphic 
as a ringed space to the pair (X, x) of 5.5.4. The points of our ringed space G /Hare 
the cosets g H (g E G) and a is the coset H. Let rr : G ➔ G / H be the canonical 
map. We define U c G / H to be open if rr- 1 U is open in G. This defines a topology 
on G / H such that rr is an open map. We define a sheaf O of k-valued functions on 
G / H (see 1.4.2) as follows: if U c G / H is open then O(U) is the ring of functions 
f on U such that f o 1t is regular on rr-1 U ( check that this defines indeed a sheaf of 
functions). 
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G acts transitively on G / H by left translations (set-theoretically). If x e G the 
map g H ~ xg H defines an isomorphism of the ringed space ( G / H, 0). It is a 
straightforward matter to verify that, if (Y, b) is as in the definition of a quotient, there 
is a unique G-morphism of ringed spaces <J, : G/ H ➔ Y with <J,a = b. (We have 
<J,(gH) = g.b.). 

Let X, x and l/1 be as in 5.5.4. We have, in particular, a G-morphism of ringed 
spaces <J, : G / H ➔ X with <J, (g H) = g .x. We shall prove that this is an isomorphism 
of ringed spaces, which will imply that the ringed space G / H is an algebraic variety 
with the required properties. 

First observe that by property (c) of 5.5.4 <J, is a continuous bijection. If U C G / H 
is open then <J,U = l/l(rr-1 U) is open by 5.3.2 (i). It follows that <J, is a homeomor
phism of topological spaces. 

To prove that <J, is an isomorphism of ringed spaces, the following has to be estab
lished: if U is open in X, the homomorphism of k-algebras Ox(U) ➔ O(<J,-1(U)) 
defined by <J, is an isomorphism. By the definition of O this means that, for any regular 
function f on V = l/l-1u such that f(gh) = f(g) (g e V, he H), there is a unique 
regular function Fon U such that F(v,g) = f(g), if g e V. As a consequence of 
5.3.1 (ii) we may assume G to be connected. 

Let r = {(g, f (g)) I g e V} c V x A1 be the graph off and put r' = (l/1, id)r, 
so r' c U x A1. Since r is closed in V x A1 (1.6.11 (i)), application of 5.3.2 (i) 
shows that 

(1/1,id)(V x A1 - r) = u x A1 - r' 

is open in U x A 1. Hence r' is closed in U x A 1. Let ).. : r' ➔ U be the morphism 
induced by the first projection. It follows from the definitions that ).. is bijective. From 
property (b) of 5.5.4 we see that).. is separable. By 5.1.6 (iii) ).. is birational. U is 
normal by 5.3.4. Now Zariski's main theorem (5.2.8) shows that).. is an isomorphism. 
This implies that there is a regular function F on U such that r' = { ( u, F ( u) I u e U}, 
which is what we wanted to prove. This finishes the proof of 5.5.5. D 

5.5.6. Corollary. ( i) G / H is a quasi-projective variety of dimension dim G - dim H; 
(ii) If G is connected, the morphism g ~ g .a of G to G / H is separable. 

The quasi-projectivity of G / H and the assertion about separability follow from 
5.5.4. The dimension formula is a consequence of 5.3.2 (ii). D 

5.5.7. Comments. Assume that H is a linear algebraic group and X an H-variety. 
We let H act on the right. For simplicity assume X to be irreducible. As in the proof 
of 5.5.5, we can construct in this situation a ringed space (X/ H, 0), together with a 
continuous map of ringed spaces <J, : X ➔ X / H. We say that the quotient X / H exists 
if (a) <J, is open and separable, (b) the ringed space X/ His an algebraic variety. Easy 
examples (e.g. Gm acting linearly in A 1) show that in general these properties do not 
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hold. See also [Bo3, p. 95]. A situation in which a quotient exists is given in the next 
lemma. Let G and H be as before and let rr : G ➔ G / H be the canonical morphism. 
Let U be an open subset of G / H. A section ( of rr) on U is a morphism a : U ➔ G 
such that rr o a = idu. In that case (x, h) H- a (x )h defines an isomorphism of vari
eties U x H :::: rr-1 U. We say that rr has local sections if G / H is covered by open 
sets on each of which a has a section. Assume that X is a variety with a left H-action. 
Let H act on G x X by (g, x).h = (gh, h-1x). 

5.5.8. Lemma. Assume that 1C has local sections. Then the quotient ( G x X) / H 
exists. 

One obtains the quotient by glueing together varieties U x X, where U runs 
through a finite open covering of G / H by open sets on which rr has a section. We 
leave the details to the reader. D 

The quotient is denoted by G x H X. One has a morphism G x H X ➔ G / H with 
local sections, whose fibers are isomorphic to X. The quotient is the fibre bundle over 
G / H associated to X. 

5.5.9. Exercises. G is a linear algebraic group and H a closed subgroup. 
(1) The following properties are equivalent: (a) G / H is irreducible, (b) H meets all 
components of G, (c) G = G0H. 
(2) An open subvariety of an affine algebraic variety is called a quasi-affine variety. 
If all homomorphisms of algebraic groups H ➔ Gm are trivial, then G / H is quasi
affine. 
(3) Let G = SL2, 

(a) If His the subgroup of upper triangular matrices then G / H is isomorphic to 
the projective line P1. 

(b) If H is the subgroup of upper triangular unipotent matrices then G / H is iso
morphic to A2 - {O} (a quasi-affine variety that is not affine, see 1.6.13 (3)). 
( 4) Let H; be a closed subgroup of the linear algebraic group G;, i = 1, 2. Show that 
there is an isomorphism of G 1 x G2-spaces G1 x G2/ H1 x H2:::: Gt/ H1 x G2/ H2. 
(5) Let H and K be connected closed subgroups of the linear algebraic group G. 

(a) Show that HK is an irreducible quasi-affine subvariety of G of dimension 

dim H + dim K - dim(H n K). 

(Hint: let H x K act on G by (x, y).g = xgy-1.) 
(b) Let rr : G ➔ G / K be the canonical morphism. Show that the restriction of rr 

to His a separable morphism if and only if dim(L(H) n L(K)) = dim(H n K). 
(c) If char k = 0 then L(H n K) = L(H) n L(K). 
(d) Let char k = 2, G = SL2, with H the subgroup of diagonal matrices and 

K -=I- H a conjugate of H. Show that L(H n K) 'I- L(H) n L(K). 
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(6) Assume that char k = 0. Let a be a Lie subalgebra of L(G). Show there is a 
unique smallest closed subgroup of G whose Lie algebra contains a. (More about 
these matters can be found in [Bo3, Ch. II, §7]). 
(7) (a) Let char k =I- 2. Define a bijective morphism of GLn/On onto the space of 
symmetric n x n-matrices. Show that dim On = ½n(n - 1). 

(b) Prove by a similar argument that dimSp2n = n(2n + 1). 
(One needs some results about alternate and symmetric matrices, see [Jac4, p. 334, p. 
338]). 
(8) Let A = {f E k[G] I f(gh) = f(g) for all g E G, h E H}. 

(a) If G /His affine then k[G / H] = A. 
(b) For G / H to be affine it is necessary and sufficient that A be a k-algebra of 

finite type that separates the cosets of H. This means that if x H and y H are distinct 
cosets there is f E A such that the restrictions of f to these cosets, are different 
constants. (Hint: if A has these properties, let X be an affine algebraic variety with 
k[X] =A.Show that left translations induce a structure of homogeneous space on X 
that has the properties of 5.5.5.) 

We next discuss the quotient by a normal subgroup. 

5.5.10. Proposition. Let G be a linear algebraic group and H a closed, normal 
subgroup. 
(i) G /His an affine variety; 
( ii) Provided with the usual group structure, G / H is a linear algebraic group. 

Make G/ H into a homogeneous space for G x G by (x, y).gH = xgy- 1 H. 
The isotropy group of the coset H contains H x H. Using the universal property 
of quotients and 5.5.9 (4), we see that (xH, yH) 1---+ xy-1 H defines a morphism 
of varieties G / H x G / H ➔ G / H, which makes G / H into an algebraic group. It 
remains to be proved that G / H is affine. For this we use 5.5.3. Let V, </> and v be as 
in 5.5.3. For any character x of H put 

Vx = {x E V I </>(h)x = x(h)x for all h E H}. 

From the linear independence of characters, it follows that the subspace V' of V 
spanned by the Vx is the direct sum of the non-zero Vx. Since H is a normal sub
group, G permutes the Vx, hence stabilizes V'. We may assume that V = V'. Let 
W be the vector space of linear maps of V stabilizing each Vx. Define a morphism 
v,: G ➔ GL(W) by 

v,(x)f = </>(x)f </>(x)-1 (x E G, f E W). 

If v, (x) = id, then <I> (x) commutes with all f E W, which implies that <I> (x) acts 
as a scalar multiplication in each Vx. This implies that x E H. Hence v, induces 
an injective map ).. : G / H ➔ G L(W) that is, in fact, a homomorphism of algebraic 
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groups. By 2.2.5 (ii) the image of A is a closed subgroup of G L(W). We shall show 
that A is an isomorphism of G / H onto that image, which will finish the proof. 

Using 5.3.3 (ii) one sees that it suffices to prove: if X E L(G) and dv,e(X) = 0, 
then X E L(H). Now it follows from 4.4.15 (1) that dl/re(X)(f) = d<l>e(X).f -
f.d</>e(X). Consequently, if dl/re(X) = 0, we have that d<l>e(X) commutes with all 
f E W, and it follows that X E L(H). □ 

5.5.11. Exercises. G is a linear algebraic group. 
(1) Let H and N be closed subgroups of G, with N c H. If N is normal then 
G/H '.::='. (G/N)/(H/N). 
(2) Show that the character group X*(G) of G (3.2.1) is a finitely generated abelian 
group. (Hint: reduce to the case that G is connected and consider G/(G, G). 

Notes 

In 5.1 and 5.2 we establish by elementary means a number of algebro-geometric re
sults, mainly dealing with 'generic' properties, which hold on dense open sets. We 
did not need to go into the theory of local rings. 

The material of these sections is needed in the theory of algebraic groups, for 
example in the construction of quotients in 5.5. But we have kept to the strictly nec
essary. For example, in the situation of 5.1.6 we did not give a proof of the inequality 
dim <1>- 1 y > r for all y E Y. We only prove the weaker result 5.2. 7. A thorough 
treatment of these matters can be found in [EGA], see e.g. [loc.cit., Ch.IV, 13. l]. This 
requires a considerable amount of commutative algebra. 

There is a connection between the 'equidimensionality' property of 5.1.6 (ii) and 
the 'universal openness' property of 5.1. 7. If Y is normal they are equivalent (theorem 
of Chevalley, see [loc.cit., 14.4.11). 

The examples of 5.1.8 (3),(4) are taken from [Bout, ex.13, p.80]. The argument 
of the second part of the proof of 5.2.5 is due to Chevalley [Ch3, p.177]. 

The discussion of normality in 5.2 is kept as brief as possible. We need Zariski's 
main theorem in the construction of quotients in 5.5. The argument of the proof of 
5.4.4 goes back to [BoTl, §10]. 

The construction of the quotient of an algebraic group G by a closed subgroup is 
a-rather delicate-essential part of the theory. The idea to use 5.5.3 in the case that G 
is linear is due to Borel (see[Bo3, Ch. II, §21). 5.5.3 is, essentially, due to Chevalley. 
See [Ch2, Ch. II, §2] and [Ch4, exp. 4, p. 03]. The quotient of any (not necessarily 
linear) algebraic group by a clo:;ed subgroup always exists, also over a ground field 
F. See for example [We2]. 



Chapter 6 

Parabolic Subgroups, Borel Subgroups, Solvable Groups 

In this chapter basic ingredients of the theory of linear algebraic groups are intro
duced: maximal tori, Borel groups, parabolic subgroups. Fundamental results are the 
conjugacy theorems for Borel groups and maximal tori (6.2.7 and 6.4.1). The struc
ture theory of connected solvable groups is also treated. The chapter begins with a 
brief discussion of complete varieties. 

6.1. Complete varieties 

In this section X, Y, ... are algebraic varieties over the algebraically closed field k. 

6.1.1. The algebraic variety X is said to be complete if for any variety Y the pro
jection morphism X x Y ➔ Y is closed, i.e. maps closed sets onto closed sets. One 
might view the notion of completeness as an analogue, in the category of algebraic 
varieties, of the notion of compactness in the category of locally compact topological 
spaces (see exercise 6.1.7 (1)). The example in 1.9.1 shows that the affine line A1 is 
not complete. We shall see presently that projective varieties (introduced in 1. 7 .1) are 
complete. 

6.1.2. Proposition. Let X be complete. 
(i) A closed subvariety of Xis complete; 
(ii) If Y is complete then so is X x Y; 
(iii) If</> : X ➔ Y is a morphism then </>Xis closed and complete; 
(iv) If X is a subvariety of Y then X is closed; 
(v) If X is irreducible then any regular function on X is constant; 
(vi) If X is affine then X is finite. 

(i) and (ii) follow from the definition of completeness. To prove (iii) let r = 
{(x, </>x) e X x Y I x e X} be the graph of</>. It is a closed subset of X x Y (l.6.11 
(i)) that is isomorphic to X, hence is complete. </>X is closed because it is the image 
of r under the second projection. Its completeness follows from the completeness of 
r. 

(iv) is a consequence of (iii), applied to the injection X ➔ Y. A regular function 
on X is a morphism X ➔ A 1 that defines a morphism</> : X ➔ P1. If X is irreducible 
and</> non-constant then </>X is a non-empty dense subset which by (iv) must be P1. 

This is impossible, whence (v). Finally, (vi) is a consequence of (v). □ 

6.1.3. Theorem. A projective variety is complete. 
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By 6.1.2 (i) it suffices to prove that projective n-space pn is complete, i.e. that 
for any variety Y the projection morphism T( : pn x Y ➔ Y is closed. It suffices to 
deal with the case that Y is affine and irreducible. Assume this. Put A = k[Y], S = 
A[To, ... , Tn1- We can view Sas an algebra of functions on kn+I x Y. If I is a proper 
homogeneous ideal in S (defined as in 1.7.3) put 

V*(l) = {(x*, y) I f (x, y) = 0 for all f E /}. 

Here x* denotes, as in 1.7.1, the point of pn defined by x E kn+l - {0}. We have 
results like those of 1.7.4 and 1.7.5 (2): the V*(l) are the closed subsets of pn x Y, 
V*(l) = 0 if and only if there is h > 0 such that 7th E / (0 < i < n) and V* is 
irreducible if and only if ✓ I is a prime ideal. 

We have to show that all sets T(V*(l) are closed. We may assume I to be a proper 
prime ideal (use 1.2.4). We may also assume that the restriction of T( to V*(l) is 
dominant, which means that An/ = 0. Under these assumptions we have to prove 
the following: if y E Y there is x* E pn with (x*, y) EV*(/). Let M be the maximal 
ideal in A of functions vanishing in y. Then J = MS + I is a proper homogeneous 
ideal in S. What we have to prove is that V*(J) =f:. 0. Assume that V*(J) = 0. Then 
there is h > 0 such that T;h E J for all i, or equivalently, there is l > 0 such that the 
set S1 c S of homogeneous polynomials of degree I lies in J. Put N = S1 / S1 n /. This 
is an A-module of finite type; let (n 1, ... , n7 ) be a set of generators. Our assumptions 
imply that N = MN. Hence there are mii E M such that 

r 

n; = Lmijnj (1 < i < r). 
i=I 

Put a = det(<Sij - m;j), Then an; = 0 for all i, so aN = 0 and aS1 C I. We have 
a - 1 E M. It follows that a ¢ I (otherwise we had J = S). Since I is a prime ideal 
we conclude that S1 c I, i.e. that N = 0. But this means that V*(/) = 0, which 
is absurd. (The statement that MN = N implies N = 0 is a version of Nakayama's 
lemma, see [La2, Ch.lX,§1].) It follows that V*(J) =f:. 0, which we had to prove. D 

A curve is an algebraic variety of dimension one. Let C be an irreducible smooth 
curve. Another property of complete varieties is that a morphism of a non-empty open 
set of C to a complete variety can be extended to all of C. In the next lemma we prove 
this in a particular case. (For a proof of the general statement, which requires facts 
from curve theory, see [Sha, p.265]). As usual, Fis a subfield of k. 

6.1.4. Lemma. Let U be a non-empty F-open subset of P1, X a projective F-variety 
and</>: U ➔ X an F-morphism. Then</> extends to an F-morphism P1 ➔ X. 

For F-structures on projective varieties see 1.7.2 (3) and 1.7.5 (3). It suffices to 
prove the lemma for X = pn. It then follows that </> can be described as follows. For 
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x E U n A 1 we have 

</J(x) = (</Jo(X), ... , <Pn(x))*, 

where the </J; (0 < i < n) are rational ftJnctions in F(T), not all zero, having poles 
outside U. Now if x E k we can write, by multiplying the </J with a suitable rational 
function 

where the v,; are polynomials not all vanishing in x. This shows that </J is regular in all 
points of A1. Similarly, </J is regular in the remaining point oo of P1 (see 1.6.13 (2)). □ 

The last results of this section will not be needed in the sequel. 

6.1.5. Lemma. Let X, Y, Z be irreducible varieties, with X complete. Assume 
that </J: Xx Y ➔ Z is a morphism and put </Jy(x) = </J(x, y) (x EX, y E Y). If there 
is a E Y such that <Pa is constant, then </Jy is constant for all y E Y. 

Let r be the graph of </J, it is a closed subset of X x Y x Z. Since Xis complete 
the projection of r on Y x Z, i.e. the set 

A= {(y, </J(x, y)) Ix E X, y E Y} 

is closed. It is also irreducible. Let n : A ➔ Y be the projection. Then n-1 a 
consists of one point, whence by 5.2.7 dim A = dim Y. If x E X the subset Ax = 
{(y, </J(x, y) I y E Y} is closed, being the graph of a morphism Y ➔ Z. It is isomor
phic to Y, hence is irreducible. Its dimension equals dim A. This implies that Ax = A 
for x E X, which means that </Jy is constant for all y e Y. □ 

6.1.6. Theorem. Let G be a connected algebraic group that is complete as a va
riety. Then G is commutative. 

Apply 6.1.5 with X = Y = Z = G, </J(x, y) = xyx-1 and a= e. □ 

The groups of the theorem are the abelian varieties. An example was given in 
2.1.4 (5). For more about abelian varieties we refer to [Mul]. 

6.1.7. Exercises. (1) Let X be a locally compact Hausdorff space. Show that X 
is compact if and only if for any locally compact space Y the projection morphism 
X x Y ➔ Y is closed. (Hint: use a one point compactification of X, i.e. a compact 
space X containing X as a subspace such that X - X consists of one point). 
(2) Let G be a connected algebraic group. 

(a) A closed, connected, complete subgroup of G lies in the center. 
(b) There exists a unique maximal subgroup with the properties of (a). 
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6.2. Parabolic subgroups and Borel subgroups 

In this section G is a linear algebraic group over k. 

6.2.1. Lemma. Let X and Y be homogeneous spaces for G and </> X ➔ Y a 
bijective G-morphism. Then X is complete if and only Y is complete. 

It follows from 5.3.2 (i) that for any variety Z the map(</>, id) : X x Z ➔ Y x Z 
is a homeomorphism of topological spaces. The lemma is a consequence of this fact. 

□ 

A closed subgroup P of G is a parabolic subgroup, or is parabolic, if the quotient 
variety G / P is complete. 

6.2.2. Lemma. If P is a parabolic subgroup of G then G / P is a projective vari
ety. 

This follows from 6.1.2 (iv), recalling that by 5.5.6 (i) G / P is a quasi-projective 
variety, i.e. an open subvariety of a projective variety. □ 

6.2.3. Lemma. Let P be parabolic in G and Q parabolic in P. Then Q is parabolic 
in G. 

We have to show that, for any variety X, the projection map G / Q x X ➔ X 
is closed. Using 5.3.2 (i) one sees that this is tantamount to proving that, for any 
closed set A c G x X such that (g, x) E A implies (gQ, x) c A, the projection 
A' of A in X is closed. Consider the morphism a : P x G x X ➔ G x X with 
a(p, g, x) = (gp, x). If A is as above then a-1 A = {(p, g, x) I (gp, x) E A}, which 
is closed in P x G x X. The completeness of P / Q implies that the projection of this 
set in G x X, i.e. the set Ucg ,x)eA (g P, x), is closed. By the completeness of G / P the 
projection of this set in X is closed. Since this projection is A' the lemma is proved. D 

6.2.4. Lemma. (i) Let P be a parabolic subgroup of G. If Q is a closed subgroup of 
G containing P then Q is parabolic; 
(ii) Pis parabolic in G, if and only if po is parabolic in G0. 

(i) follows from 6.1.2 (iii), as G / Q is the image of G / P under a morphism. To 
prove (ii) first observe that G0 is parabolic in G. If P is parabolic in G, then P0 is 
parabolic in G by the previous lemma and also in G0, since G0 / P0 is closed in G / P0. 

If, conversely, po is parabolic in G0 then it is parabolic in G by the previous lemma 
and P is parabolic in G by (i). □ 
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6.2.5. Proposition. A connected group G contains proper parabolic subgroups if and 
only if G is non-solvable. 

Assume that G is a closed subgroup of some G L( V). Then G acts on the projec
tive space P(V). Let X be a closed orbit for this action (2.3.3 (ii)). Then Xis a projec
tive variety, which is complete by 6.1.3. Take x E X and let P be its isotropy group. 
Then g P H- g .x defines a bijective morphism of homogeneous spaces G / P ~ X 
and 6.2.1 shows that P is a parabolic subgroup. If P = G put Vi = V / x. Then G acts 
on P( Vi). There is a closed orbit for this action, whence a parabolic subgroup Pi . If 
Pi = G continue in this manner. We either obtain a proper parabolic subgroup or we 
have that G is isomorphic to a group of upper triangular matrices, hence is solvable 
(2.1.5 (4)). 

To finish the proof we have to show that, if G is connected and solvable, it has no 
proper parabolic subgroups. Assume that P is one of maximal dimension. By 6.2.4 
(ii) we may assume that Pis connected. The commutator subgroup (G, G) is a closed 
connected subgroup (2.2.8 (i)) and Q = P.(G, G) is a connected parabolic subgroup 
containing P. By our assumptions we have either Q = G or Q = P. In the first case 
we have a bijection of homogeneous spaces for (G, G) 

(G, G)/(G, G) n P ~ G/ P. 

By 6.2.1 it follows that ( G, G) n P is parabolic in ( G, G). By induction on dim G we 
may assume that (G, G) n P = (G, G), i.e. that (G, G) c P, which contradicts the 
assumption that Q = G. In the case that Q = P we have again ( G, G) c P. But 
then Pis a normal subgroup of G, and G/ Pis affine by 5.5.10 (i). Using 6.1.2 (vi) 
we obtain a contradiction. □ 

6.2.6. Theorem. ( Borel' s fixed point theorem) Let G be a connected solvable lin
ear algebraic group and X a complete G-variety. There exists a point in X that is 
fixed by all elements of G. 

By 2.3.3 (ii) G has a closed orbit in X. The isotropy group of a point of that orbit 
is parabolic. By 6.2.5 this group must be all of G, whence the theorem. □ 

A Borel subgroup of G is a closed, connected, solvable, subgroup of G, which is 
maximal for these properties. Such subgroups exist (take one of maximal dimension). 

6.2.7. Theorem. (i) A closed subgroup of G is parabolic if and only if it contains 
a Borel subgroup; 
(ii) A Borel subgroup is parabolic; 
(iii) Two Borel subgroups of Gare conjugate. 
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By 6.2.4 (ii) we may assume G to be connected. Let B be a Borel subgroup and 
P any parabolic subgroup. Applying 6.2.6 to B and the complete variety G / P we 
see that P contains a conjugate of B, which is also a Borel group. To finish the proof 
of (i) it suffices by 6.2.4 (i) to prove (ii). We may assume G to be non-solvable. By 
6.2.5 there exists a proper parabolic subgroup P. By what we already proved we may 
assume that B c P. Clearly, B is a Borel subgroup of P. By induction on dim G we 
may assume that B is parabolic in P. Now (ii) follows from 6.2.3. 

If B and B' are two Borel subgroups then B' is conjugate to a subgroup of B and 
B to a subgroup of B'. Hence dim B = dim B', which implies (iii). D 

6.2.8. Corollary. Let <I> : G ➔ G' be a surjective homomorphism of linear alge
braic groups. Let P be a parabolic subgroup (respectively: a Borel subgroup) of G. 
Then <J,P is a subgroup of G' of the same type. 

By 6.2. 7 (i) it suffices to deal with the case of a Borel group. Then <I> P is closed, 
connected, solvable. Moreover, the morphism G / P ➔ G' / <I> P induced by <I> is sur
jective. By 6.1.2 (iii) G' /</>Pis complete, so <J,P contains a Borel group of G' by 6.2.7 
(i). It follows that <I> P is a Borel group. D 

Let B be a Borel group of G. Denote by C ( G) the center of G. It is a closed 
subgroup. 

6.2.9. Corollary. /JG is connected then C(G)0 c C(B) c C(G). 

C(G)0 is closed, connected and commutative, so lies in a Borel group. By 6.2.7 
(iii) it lies in all Borel groups, whence the first inclusion. □ 

If g e C(B) the morphism x H> gxg-1x-1 induces a morphism G/B ➔ G, 
which must be constant by 6.1.2 (vi), whence the second inclusion. 

6.2.10. Corollary. If Bis nilpotent then G0 = B. 

A connected nilpotent group G contains a non-trivial closed, connected group H in its 
center, viz. the subgroup generated by the non-trivial iterated commutators of maxi
mal length (His closed and connected by 2.2.8 (i)). It follows from 6.2.9 that His a 
normal subgroup of G. Passing to G / H the corollary follows by induction on dim G. 

6.2.11. Exercises. G is a connected linear algebraic group. 
(1) Let G = GLn. 
(a) The subgroup Tn of upper triangular matrices is a Borel subgroup of G. 

□ 

(b) Let G act on V =kn. Aflag in V of lengths is a sequence of distinct subspaces 
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V; (1 < i < s) of V with {0} # Vi C V2 C ... C Vs, The flag is complete ifs= n -1 
(in which case dim V; = i for all i). The Borel subgroups of G are the subgroups that 
fix a given complete flag. (Hint: for (a): Let G act on pn-1. Using that the isotropy 
group of a point of pn-t is a parabolic subgroup, prove by induction on n that G /Tn 
is complete). 
(2) Assume that char k # 2. Let V = kn and define a non-degenerate symmetric 
bilinear form ( , ) on V by 

n 

((x1, ... , Xn), (Y1, .. ,yn)) = LXiYi· 

i=l 

Then the orthogonal group G = On (2.1.4 (4)) is the set of g e GLn such that 
(g x, gy) = (x, y) for x, y e V. A subspace W of V is isotropic if the restriction 
of the form to W is zero. A complete isotropic flag is a flag whose subspaces are 
all isotropic, of maximal length (which is [n/21). The Borel subgroups of G are the 
subgroups fixing a given complete isotropic flag. (Hint: proceed as in the preceding 
exercise. One has to use some results from the theory of quadratic forms, see [Jac4, 
6.51). 
(3) Let V = k2n and define a non-degenerate alternating bilinear form ( , } on V by 

n 
((x1, • • • , X2n), (y1, • • • , Y2n)} = L(X;Yn+i - Xn+iYi), 

i=l 

Then the symplectic group G = Sp2n (2.1.4 (4)) is the set of g E GL2n such that 
(gx, gy} = (x, y} for x, y e V. Give a description of the Borel groups similar to 
the one of the preceding exercise (for the required results about alternating forms see 
[Jac4, 6.91). 
( 4) Let B be a Borel subgroup of G. If a is an automorphism of the algebraic group 
G that fixes all elements of B then a = id. 
(5) Let P and Q be parabolic subgroups of G with P c Q. Let X be a closed subset 
of G such that X P = X. Then X Q is closed. 

6.3. Connected solvable groups 

In this section we deal with the structure theory of connected solvable linear alge
braic groups. G is such a group. 

6.3.1. Theorem. [Theorem of Lie-Kolchin] Assume that G is a closed subgroup 
of GLn, There is x E GLn such that xGx-1 C Tn, 

As before Tn is the group of upper triangular matrices. Using induction on n it 
suffices to prove that the elements of G have a non-zero common eigenvector. This 
follows from Borel's fixed point theorem 6.2.6, applied to G acting on pn-1. 
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But there is a more elementary proof. By induction on dim G we may assume 
that there is a common eigenvector for the elements of the commutator group (G, G) 
(which is closed and connected by 2.2.8 (i)). If xis a character of (G, G) let 

Vx = {v E V I g.v = x(g)v for g E (G, G)}. 

Then G permutes the distinct non-zero spaces Vx. Since G is connected it must sta
bilize all Vx. We may replace G by its restriction to one of the non-zero Vx, i.e. we 
may assume that there is x with V = Vx. Then the elements of (G, G) act as scalar 
multiplications. Since a commutator xyx-1y-1 (x, y E GL(V)) has determinant 1, 
these scalar multiplications also have determinant 1. This implies that (G, G) is fi
nite. Being connected, (G, G) is trivial. So G is commutative and there is a common 
eigenvector by 2.4.2 (i). D 

6.3.2. Corollary. Assume, moreover, that G is nilpotent. 
(i) The sets Gs, Gu of semi-simple resp. unipotent elements are closed, connected 
subgroups. Gs is a central torus of G; 
(ii) The product map Gs x Gu ➔ G is an isomorphism of algebraic groups. 

Gs lies in the center of G by 5.4.8. Using 2.4.2 (ii) we obtain a decomposition of 
kn into a direct sum of G-invariant subspaces, in each of which the elements of Gs 
act as scalar multiplications. By the theorem we can bring the restriction of G to each 
summand in triangular form. Now proceed as in the proof of 3.1.1. D 

6.3.3. Corollary. ( i) The commutator subgroup ( G, G) is a closed, connected, unipo
tent, normal, subgroup; 
(ii) The set Gu of unipotent elements is a closed, connected, nilpotent, normal, sub
group of G. The quotient group G/Gu is a torus. 

(G, G) is closed and connected. By 6.3.1 we may assume that G is a closed 
subgroup of T n. It is then obvious that ( G, G) is unipotent. 

Since Gu = G nun (where Un is the group of upper triangular unipotent matrices) 
we see that Gu is a closed normal subgroup, which is nilpotent because Un is nilpotent 
(2.4.13). We have an injective homomorphism of the algebraic group G/Gu into the 
torus Tn/Un, It follows that G/Gu is commutative and that all its elements are semi
simple (by 2.4.8 (ii)). Being connected it must be a torus (use 3.1.1 and 3.2.7 (ii)). 

It remains to be proved that Gu is connected. Its identity component G~ is a nor
mal subgroup of G. Passing to G / G~ we are reduced to showing: if Gu is finite it is 
trivial. In that case Gu lies in the center of G (2.2.2 (4)), and G is nilpotent. But it 
follows from 6.3.2 that Gu is connected, hence must be trivial. D 

6.3.4. Lemma. Assume that G is not a torus. There exists a closed normal sub
group N of G that is isomorphic to Ga and lies in the center of Gu• 
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Let H be a non-trivial closed, connected, normal subgroup of G that lies in the 
center of Gu. Such a group exists, see the proof of 6.2.10. If char k = p > 0 
we may also assume that HP = { e} (replace H by its image under a suitable map 
x ~ xPe). By 3.4.7, H is isomorphic to a vector group G:. If m = 1 we are done. 
Otherwise let A c k[H] be the space of additive functions on H (3.3.1). The torus 
T = G / Gu acts on H via conjugation. We obtain a representation of T in k[H] 
with invariant subspace A. Using 2.3.6 (i) and 3.2.3 (c) we find f e A which is a 
simultaneous eigenvector for the elements of T. Then (Ker f )0 is a subgroup with 
the same properties as H, but of lower dimension. The lemma follows by induction. □ 

We come now to the main result of this section. A maximal torus of G is a subtorus 
that has the same dimension as S = G/Gu. It will follow from 6.3.6 (i) that a maxi
mal torus is also a torus that is maximal in the set-theoretical sense. 

6.3.5. Theorem. (i) Lets e G be semi-simple. Then s lies in a maximal torus. 
In particular: maximal tori exist; 
(ii) The centralizer Z0 (s) of a semi-simple elements e G is connected; 
(iii) Two maximal tori of Gare conjugate; 
(iv) If T is a maximal torus, the product map 1f : T x Gu ➔ G is an isomorphism of 
varieties. 

We first prove (iv). It is clear that G = T.Gu. Now G is a homogeneous space 
of the group T x Gu, for the action (t, u).x = txu-1. The isotropy group of e is 
trivial, since T n Gu = {e}. It follows from 4.4.12 that the tangent map dn(e,e> is the 
map (X, Y) ~ X - Y of L(T) x L(Gu) to L(G). Since L(T) n L(Gu) = {O} (as 
a consequence of 4.4.21 (1)) the tangent map is injective, hence bijective (because of 
dimensions). Now 5.3.2 (iii) shows that rr is an isomorphism of varieties. 

Next we prove the other assertions in the case that dim Gu = 1. Since Gu is 
connected we know by 3.4.9 that it is isomorphic to Ga. Fix an isomorphism </) : 
Ga ➔ Gu and let v, : G ➔ S = G/Gu be the canonical map. We have dim S = 
dim G - 1. There is a character a of S such that 

g</)(a)g- 1 = </)(a(v,g)a) (g e G, a e k). (16) 

If a is trivial then G is commutative, and everything follows from 3.1.1. So assume a 
to be non-trivial. 

Lets e G be semi-simple and put Z = Z0 (s). By 5.4.5 (ii) we have a direct sum 
decompositiong = (Ad(s)-l)gEB3. Sincev,(sxs-1) = v,(x)wehavedv,o(Ad(s)-
1) = 0, whence (Ad(s) - l)g C Ker dv, = L(Gu) (the last equality coming from 
5.5.6 (ii)). It follows that dim(Ad(s) - l)g < 1 and dim z0 = dim3 :::: dim G - 1. 
Now assume that a ( v, s) -::/= 1. Such s exist, for example the semisimple part of a 
g e G with a(v,g) -::j= 1. Then (16) shows that Zn Gu = {e}. It follows that z0 

is a closed, connected subgroup of G, of dimension dim G - 1, with Z~ = {e}. By 
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6.3.3 (ii) it is a torus. It is a maximal torus and by (iv) we know that G = z0Gu. 
If g = xy (x E z0, y E Gu) commutes withs then y commutes withs, whence 
by (16) y = e. So Z = z0. We have shown that the centralizer of a semi-simple 
element with a(v,s) -I 1 is connected. If a(v,s) = 1 then L(Gu) C 3 and we can now 
conclude that Ad(s) = id. By 5.4.5 (ii) this means that s lies in the center of G. It 
then lies in a maximal torus, for example the centralizer of a semi-simple elements' 
with a(v,s') -I 1. 

It remains to prove (iii) (in the case dim Gu = 1). If T is a maximal torus there 
is t E T with a(v,t) -I 1 and then T = Za(t). Let T' be another maximal torus and 
let t' E T' be an element with a(v,t') -I 1. Then T = Za(t), T' = Za(t'). Write 
t' = t</>(a), where t E T, a Ek. From (16) we find for b E k 

We can take b such that the right-hand side equals t. Then </>(b)T'</>(b)-1 = T, 
proving (iii). 

Now consider the general case. Assume dim Gu > 1. Let N be as in 6.3.4. Put - - -
G = G/ N. Then dim G/Gu = dim G/Gu. Lets be semi-simple in G and lets be its - -
image in G. By induction on dim Gu we may assume thats lies in a maximal torus T - -
of G. The inverse image of T in G is a closed, connected subgroup H of G containing 
s, and dim Hu < 1. We know that s lies in a maximal torus of H, which is also one of 
G. This proves (i). The proof of (iii) is similar, and can be left to the reader. 

Let G1 = {g E G I sgs- 1 g-1 E N}. This is a closed subgroup containing 
Z = Za(s) and N, and 

We may assume that Z0(s) is connected. From 5.5.9 (1) we then conclude that G1 is 
connected. If G 1 -I G we have by induction on dim G that Z is connected. Assume 
now that G 1 = G. We may also assume that s is non-central. Then an argument 
similar to the one used to prove (ii) in the case dim Gu = 1 shows that G = z0.N, 
z0 n N = {e}, whence Z = z0. This completes the proof of the theorem. □ 

6.3.6. Corollary. Let H C G be a subgroup of G whose elements are semi-simple. 
(i) H is contained in a maximal torus of G. In particular: a subtorus of G is con
tained in a maximal torus; 
(ii) The centralizer Za(H) is connected and coincides with the normalizer Na(H). 

H is commutative, since the restriction to H of the canonical homomorphism 
G ➔ G /Gu is bijective. If H lies in the center of G the assertions are obvious. 
Otherwise, take a non-central elements of H. By 6.3.5 (ii) the centralizer Za(s) 
is connected. It contains H. Now (i) and the connectedness of Za(H) follow by 
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induction on dimG. Finally, if x E N0 (H) then for h EH 

xhx-1h-1 E H n (G, G) C H n Gu = {e}, 

whence N0 (H) = Z0 (H). □ 

We shall not discuss in this section questions about solvable groups involving a 
ground field F. They will be taken up in chapter 14. 

6.3.7. Exercises. (1) Give an example of a finite solvable subgroup of SL2(C) that 
is not conjugate to a group of triangular matrices (showing that 6.3.1 is false for non
connected groups). 
(2) Let G be a connected linear algebraic group whose elements are semi-simple. 
Show that G is a torus. (Hint: consider a Borel subgroup of G). 
In the next exercises G is a connected solvable linear algebraic group. 
(3) There is a sequence {e} = Go C G1 C ... C Gn-1 C Gn = G of closed, con
nected, normal, subgroups of G such that the quotients G;/Gi-l are isomorphic to 
either Ga or Gm. 
(4) Let G be unipotent and let H be a proper closed, connected, subgroup. Show that 
dim N0 H > dim H. (Hint: consider Z(G).H). 
(5) Let H be a closed, connected, nilpotent, subgroup of G that coincides with its 
normalizer. Show that H is the centralizer of a maximal torus. (Hint: By 6.3.2 (ii) we 
have H = Hs x Hu. Use 6.3.6 (i) to show that Hs is a maximal torus). 

6.4. Maximal tori, further properties of Borel groups 

In this section G is a connected linear algebraic group. 

A maximal torus of G is a subtorus of G that is not strictly contained in another 
subtorus. A Cartan subgroup of G is the identity component of the centralizer of a 
maximal torus. (In fact, such a centralizer is connected, as we shall see in 6.4. 7). 

6.4.1. Theorem. Two maximal tori of G are conjugate. 

Fix a Borel subgroup B of G. A maximal torus T, being connected and solvable, 
lies in some Borel group. By 6.2. 7 (iii) T is conjugate to a subtorus of B, which must 
be a maximal torus of B. The theorem now follows from 6.3.5 (iii). D 

6.4.2. Proposition. Let T be a maximal torus of G and C = Z0 (T)0 the corre
sponding Cartan subgroup. 
(i) C is nilpotent and Tis its maximal torus; 
(ii) There exist elements t E T lying in only finitely many conjugates of C. 
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Clearly, C contains T as a central subgroup. A Borel group B of C containing 
T then also has T as a central subgroup and must be nilpotent (since B / T ~ Bu is 
nilpotent). By 6.2.10 we have C =Band by 6.3.2 (i) Tis the only maximal torus of 
C. This proves (i). For the proof of (ii) we use the following lemma. 

6.4.3. Lemma. Let S be a subtorus of G. There exists s ES with Z0 (s) = Z 0 (S). 

On account of 2.3.7 (i) it suffices to prove this for G = GLn. We may then also 
assume by 3.2.3 (c) that S consists of diagonal matrices. The diagonal entries define 
characters of S; let x1, ... , Xm be the distinct characters of S so obtained. The elements 
s e S with X; (s) =I= Xi (s) if i =I= j have the required property. They form a dense 
open subset of S. □ 

Now choose t e T such that Z0 (t) = Z0 (T). If t lies in a conjugate gcg-1, then 
g- 1tg e T and Tc Z0 (g- 1tg) = g-1Tg. Since Tis a maximal torus it follows that 
g e N0 (T). We know from 3.2.9 that Chas finite index in the last group and (iii) 
follows. □ 

6.4.4. Lemma. Let H be a closed subgroup of G and denote by X the union of 
the conjugates xHx-1 (x e G). 
(i) X contains a non-empty open subset of its closure X. If His parabolic then Xis 
closed; 
(ii) Assume that H has finite index in its normalizer N and that there exist elements 
of H that lie in only finitely many conjugates of H. Then X = G. 

We may assume that His connected. Then Y = {(x, y) e G x G I x-1yx e H} 
is a closed subset of G x G, which is isomorphic to G x H, hence is irreducible. 
Also, if (x, y) e Y then (xH, y) c Y. It follows from 5.3.2 (i) and 1.2.3 (ii) that 
Y1 = {(xH, y) I x-1yx e H} is an irreducible closed subset of G/H x G. Since 
X = rrf1, where rr is the second projection, (i) follows by 1.9.5 and the definition of 
parabolic subgroups. Since the fibers of the projection morphism Y1 ➔ G / H all have 
dimension dim H it follows from 5.1.6 (ii) that dim Y1 = dim G. Now let x e H lie 
in finitely many conjugates of H. Since H has finite index in N it follows that rr-1 x 
is finite. Then 5.2.7 shows that dim X = dim Y1 = dim G, and (ii) follows. □ 

6.4.5. Theorem. (i) Every element of G lies in a Borel subgroup; 
(ii) Every semi-simple element of G lies in a maximal torus; 
(iii) The union of the Cartan subgroups of G contains a dense open subset. 

Let T be a maximal torus, C = Za (T)0 the corresponding Cartan subgroup and B 
a Borel subgroup containing C (which exists because C is connected and nilpotent). 
Apply 6.4.4 with H = C. It follows from 6.4.2 (i) that N0 (C) = Na(T). By 3.2.9 
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we know that C has finite index in its normalizer. By 6.4.2 (ii) the conditions of 6.4.4 
(ii) are satisfied, and (iii) follows. Next apply 6.4.4 (i) with H = B. Then (i) follows 
from (iii). Finally, (ii) follows from (i) and 6.3.5 (i). □ 

6.4.6. Corollary. Let B be a Borel subgroup of G. Then C(B) = C(G). 
An element in C ( G) lies in a Borel subgroup by 6.4.5 (i), hence lies in all of them 

by the conjugacy of Borel groups. So C(G) c C(B). The reverse inclusion was 
already proved in 6.2.9. □ 

6.4.7. Theorem. Let S be a subtorus of G. 
(i) The centralizer Za(S) is connected; 
(ii) If B is a Borel subgroup containing S then Za(S) n B is a Borel subgroup of 
Za(S). All Borel subgroups of Za(S) are obtained in this way. 

Put Z = Za(S). Take g E Zand let B be a Borel subgroup containing g. Put 

X = {xB E G/B I x-1gx EB}. 

Then X is a closed subvariety of G / B (it is a fiber of the projection Y1 ➔ G of the 
proof of 6.4.4, with H = B). By 6.1.2 (i) X is complete. Now S acts on X via 
left multiplication, and by the fixed point theorem 6.2.6 there exists x B E X with 
x-1 Sx c B. This means that there exists a Borel subgroup containing both g and 
S. It follows from 6.3.5 (ii) and 6.3.6 (ii) that g lies in the identity component z0, 

whence (i). 
Let B be as in (ii). Then Z n B is connected (6.3.6 (ii)) and solvable. To prove 

the first part of (ii) it suffices to show that Z / Z n B is complete. There is a bijective 
morphism of homogeneous spaces (for Z) of Z /Zn B onto the image of Z. B in G / B. 
Using 6.2.1 and the openness of G ➔ G / B, we conclude that it suffices to prove that 
Y = Z. B is closed in G. Being the image of the irreducible variety Z x B under a 
morphism, Y is irreducible. The closure Y is also irreducible, hence connected ( 1.2.3 
(i), 1.2.7). 

If y E Y we have y-1 Sy c B. This also holds when y E f. Consider the 
morphism <P: f x S ➔ B/Bu sending (y, s) to y- 1syBu. Applying 3.2.8 to¢ (with 
V = Y, G = S, H = B/ Bu) we conclude that for y E f we have y-1sy E sBu. Then 
y-1sy is a maximal torus of SBu, By the conjugacy of maximal tori of that group 
there is z E Bu with y-1sy = z-1sz. It follows that y E Z.B = Y. Hence Y is 
closed, as asserted. 

The last point of (ii) follows by the conjugacy of Borel subgroups. D 

6.4.8. Corollary. Let T be a maximal torus of G. 
(i) C = Za(T) is a Cartan subgroup of G; 
(ii) If Bis a Borel subgroup containing T then B contains C. 
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Apply the theorem with S = T, recalling that Cartan subgroups are nilpotent 
(6.4.2 (i)). o 

6.4.9. Theorem. Let B be a Borel subgroup ofG. Then N0 (B) = B. 

We prove the theorem by induction on dim G. The assertion is trivial if G is solv
able. Put H = N0 (B) and let x E H. Fix a maximal torus T of B. Then xTx-1 is 
also a maximal torus of B. Using the conjugacy of maximal tori of B we see that we 
may assume that xTx- 1 = T. Consider the homomorphism 1f, : t H- xtx- 1 t- 1 of T 
into itself. The image is a closed, connected subgroup of T. There are two cases: 
(a) Im 1f, is a proper subgroup of T. Then S = (Ker 1f, )0 is a non-trivial torus. More
over, x lies in Z = Za (S) and normalizes the Borel group Z n B of Z. If Z =f. G we 
have x E B by induction. If Z = G then S lies in the center of G. Passing to G / S we 
can again use induction to obtain that x E B. 
(b) 1f, is surjective. Let¢, V and v be as in 5.5.3 (with F = k). Then q,(Bu) and q,(T) 
fix v, because Bu is unipotent and T lies in the commutator group (H, H). But this 
implies that ¢ induces a morphism of the complete variety G / B to the affine variety 
V. By 6.1.2 (vi) it follows that G fixes v, i.e. that H = G. This means that B is a 
normal subgroup of G. But then G / B is a unipotent group and G is solvable, whence 
H=G=B. □ 

6.4.10. Corollary. Let P be a parabolic subgroup of G. Then P is connected and 
Na(P) = P. 

By 6.2.7 (i) P contains a Borel subgroup B, which lies in P0. If x E Na(P) then 
xBx-1 is also a Borel group of P0 . By the conjugacy of Borel subgroups there is 
y E po with xBx- 1 = yBy- 1

. By 6.4.9, y- 1 x lies in B, whence x E P 0

. □ 

6.4.11. Corollary. Let P and Q be two conjugate parabolic subgroups of G whose 
intersection contains a Borel subgroup B. Then P = Q. 

Let P = xQx-1• Then Band xBx-1 are two Borel subgroups of P, which are 
conjugate in P. As in the proof of 6.4.10 we find that x E P, whence P = Q. □ 

6.4.12. Corollary. Let T be a maximal torus of G and B a Borel subgroup con
taining T. The map x H- xBx-1 induces a bijection of N0 (T)/Z0 (T) onto the set of 
Borel subgroups containing T. 

Surjectivity of the map follows from the conjugacy of maximal tori of B. Injec
tivity follows from 6.4.9 and 6.3.6 (ii). □ 

6.4.13. Let B be the set of Borel subgroups of G. Fix B E B. By 6.2.7 (iii) and 
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6.4.9 the map x B i-+ x B x- 1 defines a bijection of G / B onto B. Via this bijection 
we can define a structure of projective variety on B. It is independent of the choice 
of B. We have thus defined the variety of Borel subgroups of G. More generally, 
fixing a parabolic subgroup P ::, B we can define a structure of projective variety P 
on the set of conjugates of P. We have a surjective morphism of homogeneous spaces 
B ➔ P. By 6.4.11 it is the map sending a Borel group to the unique conjugate of P 
that contains it. 

6.4.14. If N and N' are normal subgroups of G then N.N' is also one. Using this 
fact and 2.2.7 (i), it follows that there is a maximal closed, connected, normal, solv
able, subgroup of G, viz. a group with these properties of maximal dimension. This 
is the radical R(G) of G. Similarly, there is a maximal closed, connected, unipotent, 
subgroup of G, the unipotent radical Ru(G). We have Ru(G) = R(G)u. G is semi
simple if R(G) = {e} and reductive if Ru(G) = {e}. It follows from 6.2.7 (iii) that 
R(G) is the identity component of the intersection of all Borel subgroups. 

6.4.15. Exercises. G is a connected linear algebraic group. 
(I) Let H be a closed subgroup of G containing a maximal torus T. Then Na(H) c 
H 0.N0 (T). 
(2) Call x E G regular if the multiplicity of the root I of the characteristic polynomial 
of the linear map Ad x of g is minimal. 

(a) The regular elements form a non-empty open subset of G. 
(b) x E G is regular if and only if its semi-simple part Xs is regular. 
(c) A semi-simple element is regular if and only if its centralizer has minimal di

mension. (Hint: use 5.4.4 (ii)). 
( d) A semi-simple element x is regular if and only if Za (x )0 is a Cartan subgroup. 

(Hint: use 6.4.3 and 6.4.5 (ii)). 
(3) (a) A maximal nilpotent, closed subgroup C of G such that C = N0 (C)0 is a 
Cartan subgroup. 

(b) Let C be a maximal nilpotent subgroup of G with the property that each sub
group of finite index of C has finite index in its normalizer. Then C is a Cartan 
subgroup. (This is a group-theoretical characterization of Cartan subgroups. Hint for 
the proof: show that the closure of a nilpotent subgroup is nilpotent and deduce that 
C is closed and satisfies the conditions of (a)). 
(4) Let x = XsXu be the Jordan decomposition of x E G. Show that x E Z 0 (xs)0. 

(5) Let char K -::J 2, G = SOn (n > 3). There exist semi-simple elements in G whose 
centralizer is not connected. (Hint: consider elements of order two.) 
(6) Let T be a maximal torus of G, with corresponding Cartan subgroup C = Za (T), 
and let B be a Borel subgroup containing C. Assume that a : G ➔ G is a surjective 
homomorphism of algebraic groups with a B = B. 

(a) Define a morphism </>b : G x B ➔ G by </>b(x, c) = (ax)b- 1cx- 1b (b, c E 

B, x E G). Then </>b(e, e) = e. Show that the subspace Im (d</>b)(e.e) of g contains b 
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and (Ad(b)da - l)g. (Hint: use 4.4.13.) 
(b) Show that there is b E B such that aT = b-1Tb and that the linear map of 

g/b induced by Ad(b)da has no eigenvalue 1. (Hint: first take b such that the first 
condition is satisfied and modify it by an element of T). 

( c) If b E B is as in (b) then 'Pb is dominant. 
( d) Show that 'Pe is surjective, i.e. that any element of G can be written in the form 

(ax)bx-1 with b E B, x E G. (Hint: adapt the argument used to prove 6.4.5 (i)). 
( e) Deduce from ( c) that an arbitrary surjective homomorphism of algebraic groups 

a : G ➔ G fixes a Borel subgroup. 

Notes 

The elementary proof of the completeness of projective varieties in 6.1.3 is taken 
from [EGA, Ch.II, 5.5.3]. 

The elegant result 6.1.6. is due to Chevalley. We have followed the proof given in 
[Sha, p. 152-153]. 

Most of the results about solvable groups and Borel subgroups are to be found in 
Borel's fundamental paper [Bol]. In the proof of 6.2.7 we have avoided the use of 
flag varieties, which are used in Borel' s proof. Instead we use 6.2.3 and 6.2.5. 

Theorem 6.3.1 is due to Kolchin [Koll, Ch. 1]. It is an analogue of Lie's theorem 
for Lie algebras over C. 

The name 'parabolic subgroups' seems to appear for the first time in [BoTl]. 
The proof of the main result 6.3.5 of 6.3 is somewhat different from Borel's orig

inal proof. We have exploited the auxiliary result 6.3.4. 
The fundamental result 6.4.9 is due to Chevalley. The proof given here, which is 

simpler than Chevalley's proof (in [Ch4, Exp. 9]) is due to Borel. 
The results of 6.4.15 (6) are due to Steinberg [St3, no. 7]. 



Chapter 7 

Weyl Group, Roots, Root Datum 

In this chapter we introduce combinatorial data associated to a linear algebraic 
group: Weyl group, root system and root datum. Important results are the classifica
tion of semi-simple groups of rank one (7.2.4) and the characterization in 7.6 of the 
unipotent radical. In this chapter G denotes a connected linear algebraic group and T 
a maximal torus of G. The character group of T is denoted by X. We shall not discuss 
questions involving ground fields. These will be taken up in the later chapters. 

7.1. The Wey) group 

7.1.1. If S is a torus and r : S ➔ G L(V), a rational representation of S (2.3.2 
(3)), then is by 3.2.3 (c) V is a direct sum of one dimensional subspaces, in each of 
which an element s E S acts as multiplication by x (s), where x is a character of S. 
The characters so obtained are the weights (of Sin V). The non-zero subspaces 

Vx = {v E V I r(s)v = x(s)v for alls ES} 

are the weight spaces. A non-zero vector in a weight space is a weight vector. We 
denote by P the set of non-zero weights of T, acting via the adjoint representation Ad 
in the Lie algebra g of G (4.4.5 (ii)). It is a finite subset of X. 

7.1.2. Lemma. Let S be a subtorus of T. Then Za(S) = Za(T) if and only if S 
is not contained in any of the subgroups Ker a ofT, where a E P. 

Za(S) is a connected subgroup of G (6.4.7 (i)) that contains Za(T). It follows 
from 5.4.7 that Za(S) #- Za(T) if and only if Ad(S) fixes a non-zero element of a 
weight space 9a where a E P. The lemma follows from this observation. □ 

For a E P we denote by Ga the centralizer of the subtorus (Ker a )0 of T. It is a 
closed connected subgroup. It follows from 7.1.2, that if S is a subtorus of T with 
Za(S) #- Za(T), then there is a E P such that Za(S) contains Ga. 

7.1.3. Lemma. (i) The Ga (a E P) generate G; 
(ii) If all Ga are solvable then G is solvable. 

By 2.2.7 (i) the Ga (a E P) generate a closed, connected subgroup H. By 5.4.7 
the Lie algebra of Ga contains the Lie algebra c of the centralizer of T and the weight 
space 9a. Since c and these weight spaces span g, and since the Lie algebra of Ga is 
contained in f), we must have f) = g, whence H = G. This proves (i). 

Let B be a Borel subgroup of G containing T. If Ga is solvable then it is contained 
in B, by 6.4.7 (ii). It follows from (i) that if all Ga are solvable we must have G = B, 
hence G is solvable. □ 
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7.1.4. We denote by P' the set of a e P such that Ga is non-solvable. By 7.1.3 
(ii) P' is empty if and only if G is solvable. By 3.2.9 the group W = W(G, T) = 
Na(T)/Za(T) is finite. This is the Weyl group of (G, T). It follows from the defini
tions that W acts faithfully as a group of automorphisms of X (a free abelian group of 
finite rank, see 3.2.7 (iii)). We identify W with this group. W permutes the elements 
of P and P'. It is clear that, if Sis a subtorus of G, the Weyl group W(Za(S), T) is 
a subgroup of W(G, T). Moreover, if S lies in the center of G the canonical homo
morphism G ➔ G/Sinducesanisomorphism W(G, T) '.:::'. W(G/S, T/S). By6.4.12 
there is a bijection of W onto the set of Borel subgroups containing T. If B is such 
a group, there is also a bijection of this set on the set of fixed points of T in G / B (T 
acting via left translations). 

Fix a e P'. The group Ga contains the torus S = (Ker a)0 in its center and 
the Weyl group Wa of (Ga, T) is isomorphic to that of (Ga/S, T/S). Since T/S is 
isomorphic to Gm it follows that Wa has order< 2 (by 3.2.10 (6) with n = 1). 

7.1.5. Proposition. Assume that G is non-solvable and that dim T = 1. 
(i) W has order two; 
(ii) If B is a Borel subgroup of G then dim G / B = 1. 

Fix an isomorphism). : Gm ➔ T. Let B be a Borel group containing T. Let 
</> : G ➔ G L(V) be a representation with the properties of 5.5.3 for the subgroup 
B (with F = k). We may assume that V is spanned by the images (</>x)v (where 
v is as in 5.5.3). Then </> defines an isomorphism of G / B onto a closed subvariety 
of P(V) (see 5.5.4). We identify G/ B with this variety. Choose a basis (e1, ... , en) 
of V consisting of weight vectors for the representation p = </> o ). of Gm. We may 
assume that p(a)e; = am;e; (a E k*, 1 < i < n) with m1 > m2 > ... > mn. If 
x e V - {0} write x* = kx; this is a point in P(V). An easy argument shows that, 
if the last coordinate of X E P(V) is non-zero, then Xo = lima➔O p(a)x* exists, i.e. 
the morphism a 1-+ p(a)x* of Gm to P(V) extends to a morphism A1 ➔ P(V) (see 
3.2.13). Similarly, if the first coordinate of y is non-zero, then y~ = lima➔oo p(a)y* 
exists. It is clear that the points x0 and y~ are fixed points for the action of</> (T) on 
P(V). Moreover, two such points are distinct, otherwise all points of P(V) would be 
fixed points for </>(T). Then T would be contained in all Borel groups of G. This is 
impossible as T lies in at most two Borel groups (see 7.1.4). 

From our assumption that </> ( G) v spans V, it follows that there exist points x and 
y as above such that x*, y* e G / B. The corresponding fixed points of T, say po and 
p00 , then lie in G / B. It follows that T has at least two fixed points in G / B, i.e that T 
lies in at least two Borel groups. Now (i) follows. 

Let l be the first coordinate function on V, it is a linear function. The points z* of 
G / B with l (z) = 0 form a closed T-stable subset :E, which is non-empty (it contains 
p00). Its components are T -stable. If a component had dimension > 0, an argument 
like the one of the first part of the proof would show that it contained two distinct 
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fixed points of T, at least one of which would be different from p0 and p00 , contra
dicting (i). Hence E is finite. Now l defines a regular function f on a suitable open 
neighborhood U of p0 in G / B with f (p0 ) = 0. Since E is finite, the fiber 1-1 (0) is 
finite. Then (ii) follows from 5.2.7. □ 

7.1.6. Let a E P'. We know by 7.1.5 (i) that Wa has order two. Choose na E 

Naa(T)- Zaa(T). Letsa the image ofna in W. We denote by xv= Hom(X, Z) the 
dual of X and by ( , ) the pairing between X and xv. We view xv as the group of 
cocharacters of T (see 3.2.11 (i)). We identify X, xv with subgroups of V = R ® X, 
respectively vv = R ® xv. The induced pairing between V and vv will also be 
denoted by ( , ) . 

7.1.7. It will be convenient to introduce a positive definite symmetric bilinear form 
( , ) on V that is invariant for the induced action of W. Such forms exist: take any 
positive definite symmetric bilinear form f on V and define for x, y E V 

(x, y) = L f(w.x, w.y). 
weW 

Then the Sa (a E P') are Euclidean reflections (or symmetries), for the metric defined 
by ( , ). It is well-known (see e.g. [Jac4, p. 345]) that 

(17) 

7.1.8. Lemma. (i) There exists a unique av E vv with (a, av) = 2 such that for 
xeX 

(ii) If fJ E P' and Gp = Ga then Sp = Sa, 

From (17) we see that the element av of (i) must satisfy 

This determines av uniquely, and (i) follows. If Ga = Gp then we may take na = np, 
whence Sa= sp. □ 

7.1.9. Theorem. Wis generated by the Sa (a E P'). 

We proceed by induction on dim G. The argument is similar to the one of the 
proof of 6.4.9. 

Let w E W be represented by x E Na(T) and consider the homomorphism 
v, : t ~ xtx-1t-1 of Tinto itself. There are two cases: 
(a) Im v, is a proper subgroup of T. We can then proceed as in the proof of 6.4.9. 
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(b) v, is surjective. This implies that the linear map w - 1 of V is injective (see 3.2.10 
(2)), hence is bijective. Let a be a root. There is x E V with (w - l)x =a.Then 

(x, x) = (w.x, w.x) = (x + a, x + a) = (x, x) + 2(x, a)+ (a, a), 

anditfollowsthat2(a,a)-1(x,a) = -1. Consequentlysa,x =x+a = w.x. Hence 
saw has an eigenvalue 1 and falls in case (a). □ 

7.1.10. Exercises. The notations are as in 7.1.9. 
(1) Let a E P', w E w. Then Sw.a = WSaw- 1. 

(2) If w E W fixes x E V it is a product of reflections Sa (a E P') that fix x. 
(3) An element of Wis a product of at most dim T reflections sa (a E P'). 

7 .2. Semi-simple groups of rank one 

7.2.1. The integer dim T is called the rank of G. By the conjugacy of maximal 
tori it is an invariant of G. The semi-simple rank of G is the rank of G/ R(G), where 
R(G) is the radical of G (6.4.14). In this section we assume that G is of rank one 
and non-solvable. Let B be a Borel subgroup containing T and put U = Bu, Fix 
n E Na(T) - Za(T) representing the non-trivial element of W (see 7.1.5 (i)). Then 
ntn- 1 = t-1 (t E T) and n2 E Za(T). 

7.2.2. Lemma. ( i) G is the disjoint union of B and Un B; 
(ii) R(G) =(Un nun-1) 0; 

(iii) dim U /Un nun-1 = 1. 

Let x E G / B be the coset B. Then n .x =j:. x and x, n .x are the two fixed points 
of T in G / B (see 7.1.4 and 7.1.5 (i)). Since n-1 Bn =j:. B we have U n.x =j:. {n.x }. 
We know by 7.1.5 (ii) that dimG/B = 1. Using 1.9.5 we see that the comple
ment of Un.x is a finite set S. Since the torus T normalizes U, it must permute 
the points of S, hence must fix these points. This means that S c {x, n.x}. As 
x ¢ Un.x, n.x E Un.x we conclude that Un.x = G/ B - {x}, which is equivalent 
to (i). Since Un nun-1 is the isotropy group of n.x in U, (iii) follows from (i) and 
5.3.2 (ii), using that dim G / B = 1. From 6.3.7 (4) we conclude that (Un nun-1 ) 0 is 
normal in U. Since this group is also normalized by T and n, it follows from (i) that 
it is a normal subgroup of G. Now (ii) follows by observing that the radical R ( G) 
cannot contain a torus. □ 

7.2.3. Lemma. Assume that G is semi-simple, of rank one. 
(i) dim U = 1, Za(T) = T and Un nun-1 = {e}; 
(ii) There is a unique weight a of T in g such that g is the direct sum oft and two one 
dimensional weight spaces ga, g_a, with L(U) = ga, L(nUn-1) = g_a; 
(iii) The product map (u, b) i--+ unb is an isomorphism of varieties U x B ~ UnB = 
G-B. 
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From the preceding lemma we see that dim U = 1, whence dim B = 2. We 
also see that U n nun-1 is finite and unipotent. Since this group is normalized by 
T, it lies in the centralizer of T, which is connected and contained in B by 6.4.8 
(ii). As dim B = 2, we have Z0 (T) = T or Z0 (T) = B. The second case is 
impossible (otherwise B was nilpotent and G would be solvable by 6.2.10). It follows 
that Zo(T) = T and Un nun-1 = {e}. This proves (i). 

By 3.4.9 we know that U is isomorphic to Ga. Let u : Ga ➔ Ube an isomor
phism. There is a character a of T such that 

tu(a)t-1 = u(a(t)a) (a Ek, t E T), 

and a is non-trivial since Z0 (T) = T. If X E L(U) is a non-zero element in the 
image of the differential du, then fort E T 

Ad(t)X = a(t)X. 

Also, Ad(n)X E L(nUn-1) and 

Ad(t)Ad(n)X = a(t)-1 Ad(n)X. 

From 7.2.2 (i) it follows that dim G .:5 3. On the other hand t EB kX EB kAd(n)X is a 
three dimensional subspace of g, so must be all of g. Now (ii) follows. 

We finally prove that (v, b) H- vb is an isomorphism of the group nun-1 x B 
onto G - nB, which is a statement equivalent to (iii). We can view this as an equiv
ariant map of homogeneous spaces for nun-1 x B. Using (ii) and 4.4.12 it follows 
that the tangent map at (e, e) is bijective. Then apply 5.3.2 (iii). D 

7.2.4. Theorem. Assume that G is connected, semi-simple, of rank one. Then G 
is isomorphic to SL2 or PSL2. 

The notations are as before. We have seen that dim U = 1. Let u and a be as in 
the proof of 7.2.3. Fix an isomorphism t : Gm ➔ T. There is an integer m such that 
t(x)u(y)t(x)-1 = u(xmy) (x Ek*, y Ek). Then a(t(x)) = xm. It follows from 7.2.3 
(i) that m #- 0. We may assume that m > 0. Also, nt(x)n-1 = t(x- 1 ). Put n2 = t(E). 
Then t(E) = nt(E)n-1 = t(E-1), whence E2 = 1. 

It follows from 6.3.5 (iv) and 7.2.3 (iii) that (x, y, z) H- u(x)nt(y)u(z) defines an 
isomorphism of varieties Ga x Gm x Ga ➔ G - B. If y #- 0 then nu(y)n-1 ¢ B, 
from which it follows that there are rational functions f, g #- 0, h E k(Ga) with poles 
at most in O and oo, such that for y #- 0 

nu(y)n-1 = u(f (y))nt(g(y))u(h(y)). 

Conjugating both sides of (18) by t(z) (z #- 0) we obtain 

nu(z-my)n-1 = u(zm f (y))nt(z-2g(y))u(zmh(y)), 

(18) 
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from which we conclude that 

f (z-my) = zm f (y), g(z-my) = z-2g(y), h(z-my) = zmh(y). 

It follows that g(ym) = y2g(l) and f (y) = ay- 1, h(y) = by-1, with a, b e k. We 
conclude that m = 1 or 2. Taking inverses of both sides of (18) we find that a = b 
and g(-y) = Eg(y). 

If a = b = 0 we would have n e B, contradicting 7 .2.2 (i). So a and b are 
non-zero. By modifying n we may assume that a = b = -1. It also follows that if 
m = 1 we have g(y) = cy2 and E = 1, whereas if m = 2 we have g(y) = cy and 
E = -1, where c e k*. Now (18) becomes 

Let y # 0, -1 and apply this formula for y, y + 1 and 1, respectively. The right-hand 
side of 

nu(y + l)n-1 = nu(y)n-1.nu(l)n-1 

then gives another expression for u(f (y + 1)). By straightforward computation we 
find 

-(y + 1)-1 = -y-1 + g(y)-m(y-l + 1)-1, 

whence g(yr = y2. If m = 2 we have g(y) = r,y, with r, = ±1. Replacing n by 
nt(r,) (which does not affect the normalization a = b = -1) we may assume that 
g (y) = y. We conclude that we may assume that 

where mm' = 2. We also have the relations 

u(x + y) = u(x)u(y), t(zw) = t(z)t(w), t(z)u(x)t(z)-1 = u(zmx), (20) 

where x, y e k, z, w e k*. 
It follows from 7.2.2 (i) that the group structure of G is determined by (19) and 

(20). Let G 1 = SL2, denote by B1 and T1 the subgroups of upper triangular resp. 
diagonal matrices and put 

Then G1 is the disjoint union of B1 and U1n1 B1. In fact, U1n1 B1 is the set V of 
matrices 
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in SL2 with z # 0, which is an open subset of SL2. Also put 

u,(x) = ( ~ n, t,(y) = ( ~ y~I ) (x Ek, y Ek'). 

The map (x, y, z) 1--+ u1 (x)n 1t1 (y)u 1 (z) defines an isomorphism of Ga x Gm x Ga 
onto V. In fact, if X is as before we have 

(21) 

For t1, u 1 and n 1 we have the multiplication rules of ( 19) and (20) with m = 2 
and these rules describe the group structure of G 1 = SL2. It then follows that there 
exists a surjective homomorphism of abstract groups <I> : G1 ~ G with </>(u1 (x)) = 
u(x), </>(n1) = n, </>(t1 (y)) = t(ym') (x E k, y E k*). From (21) we conclude that 
the restriction of <I> to V is a morphism of V onto U nB. Also, the restriction of <I> to a 
translate g1. V is a morphism. It follows that <I> is a homomorphism of algebraic groups 
G 1 ~ G. If m = 2 the restrictions of <I> to V and its translates are isomorphisms and 
it follows that then G is isomorphic to SL2. 

We have k[SL2] = k[T1, T2, T3, T4]/(T1T4 - T2T3 - 1) = k[t1, t2, t3, t4] and 
k[PSL2] is the subalgebra generated by the elements t;tj (1 < i, j < 4), whence 
a morphism -n: : S~ ~ PSL2, which is a homomorphism of algebraic groups (see 
2.1.5 (3)). Then k[V] = k[SL2]13 = k[t1, t4, t3, t31] (notation of 1.4.6). Now as
sume that m = 1. It follows from (21) that the subalgebra </>*k[UnB] of k[V] is 
k[t31t1, t31t4, tf, t32], which coincides with k[PSL2],f. This shows that there is an 
isomorphism of varieties -n:(V) onto UnB. Using translations we conclude that there 
is an isomorphism of varieties v, : PSL2 ~ G such that <I> = l/1 o -n:. Then v, is an 
isomorphism of algebraic groups. This completes the proof of the theorem. □ 

7.2.5. Exercises. (1) Let G be as in 7.2.4. Show that G has no proper normal, 
closed subgroups of dimension> 0. Deduce that G = (G, G). 
(2) Let r be a non-trivial rational representation of SL2. Then Im r is isomorphic to 
SL2 orPSL2. 
(3) A connected linear algebraic group of dimension two is solvable. 

7.3. Reductive groups of semi-simple rank one 

We begin with a general result that will be needed presently. 

7.3.1. Proposition. Let G be a connected, reductive, linear algebraic group. 
(i) The radical R(G) is a central torus. It is the identity component of the center of 
G; 
(ii) R(G) n (G, G) is.finite. 

From the definitions of 6.4.14 and 6.3.5 (iv) it follows that the radical is a torus. 
That it lies in the center follows from 3.2.9. The last point of (i) follows from 3.1.1. 
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Assume that G is a closed subgroup of G L(V). Decompose V into a direct sum of 
weight spaces for the radical (7 .1.1 ), say 

G permutes the weight spaces. Being connected, it stabilizes each weight space. Then 
an argument as in the (second) proof of 6.3.1 proves (ii). □ 

7.3.2. We assume in the rest of this section that G is connected, reductive and of 
semi-simple rank one. Let C be the radical of G. Then G / C is semi-simple of rank 
one, hence isomorphic to SL2 or PSk by 7.2.4. Using 7.3.1 (ii) we see that (G, G) 
is connected, semi-simple, of rank one. Let T1 be a maximal torus in (G, G) and Ta 
maximal torus of G containing T1. It follows from 7.2.3 (ii) and 7 .1.3 (ii) that the set 
P has two elements ±a. We have 

g = tEB 9a EB 9-a, 

as in 7.2.3 (ii). The subspaces 9±a are one dimensional. 

7.3.3. Lemma. (i) There exists a homomorphism of algebraic groups Ua : Ga ➔ G 
such that tua(x)t-1 = ua(a(t)x) (x e k, t e T) and Im dua = ga, Ifu~ is a homo
morphism with the same properties, there is a unique a e k* with u~(x) = ua(ax); 
(ii) T and Im Ua generate a Borel subgroup of G, whose Lie algebra is t EB 9a· 

If Ua is as in (i) we have 

which shows that Im Ua c (G, G). It follows that we may assume that G is semi
simple. In this case we can take for Ua the composite of an isomorphism u of Ga onto 
the unipotent part U of a Borel group containing T1 (as in the proof of 7.2.4) and the 
inclusion U ➔ (G, G). The uniqueness statement of (i) follows from the fact that 
the automorphisms of Ga are scalar multiplications (2.1.5 (5)). (ii) follows from 7.2.3 
(ii). □ 

7.3.4. Let).. : Gm ➔ T1 be an isomorphism. With the notations of 7.1.6, view ).. 
as an element of the group of cocharacters xv. The first formula of 7.3.3 (i) shows 
that ±(a,)..) is an integer m as in the first paragraph of the proof of 7.2.4, which 
was proved to equal I or 2 (according as (G, G) ~ PSL2 or SL2). The Weyl group 
W((G, G), T1) has order two (7.1.5 (i)). Let n e Nca.G)(T1) represent its non-trivial 
element and let sa be the reflection in V = R ® X, which it defines. Let av e V v be 
as in 7.1.8. Then 
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7.3.5. Lemma. (i) av e xv. We have Im av = 71; 

(ii) n2 = CX,V (-1). 

Denote by si the contragredient of sa (an automorphism of xv). Then 

Since sa(t) = t-1 forte 71 we have si()..) =-}...It follows that 

2).. = (ex., )..)av. 

We conclude that av = ±).. if (G, G) ~ SL2 and av = ±2).. if (G, G) ~ PSL2. 

This implies (i). It follows from the second formula (19) of 7.2 that (ii) holds, for a 
particular choice of n. Now observe that for all t e 71 we have (nt)2 = n2. □ 

Let ex. be as before and let B be the Borel subgroup of G containing T whose Lie 
algebraist(£) 9a (see 7.3.3 (ii)). Let x e X. The composite of x and the homomor
phism B ➔ B / Bu ➔ T defines a character of B, also denoted by x. 

7.3.6. Proposition. Let f e k[G] be a regular function on G whose restriction to 
(G, G) is non-constant. Assume that/or g e G, be B we have f(gb) = x(b)f(g). 
Then (x, av) > 0. 

The restriction of f to ( G, G) has the same property as f, relative to a Borel 
subgroup of (G, G). Since Im av c (G, G) by 7.3.5 (i) we may work in (G, G), i.e. 
we may assume that G is semi-simple. By 7.2.4, G is isomorphic to SL2 or PSL2. 

Since k[PSL2] C k[SL2] it suffices to deal with the case that G = SL2. Take B to be 
the upper triangular subgroup and T to be the diagonal subgroup. Then it is readily 
checked that for x e k* we have 

Put (x, av) = a. From (21) we see that there is a polynomial in one indeterminate g 
such that for z =/:- 0 

But this function of z e k* must be regular for z = 0, which can only be if a > 0. If 
a = 0 then g must be constant and it follows from (21) that f is constant. D 

7.3.7. Exercises. G = SL2. The notations are as in the proof of 7.3.6. 
(l)(a)Letx(diag(x,x-1)) = xa, with a> 0. Let Va c k[G] thesetoffunctionswith 
the property of 7.3.6. Show that Va is a subspace of dimension a + 1 that is invariant 
under left translations. 
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(b) Let Pa be the rational representation of G in Va by left translations. There 
exists a basis ( eo, ... , ea) of Va such that 

( X O ) a-2i ( k*) Pa O x-1 e; = x e; x E , 

( ) 
a 

1 X i-j . , i-j 
Pa O l e; = ~(-1) (l, J)X ej (x Ek), 

J=O 

where (i, j) is a binomial coefficient. 
(c) Let p = char k. If p = 0 or p > a the representation Pa is irreducible. 

(2) Let r : G ➔ G L(V) be a finite dimensional rational representation of G and 
let rv : G ➔ G L(Vv) be the dual representation. So vv is the dual of V and for 
v e V, u e vv we have (rv (g)u)(v) = u(r(g)-1v)). 

(a) There exist x e X and a non-zero v e V such that for b e B we have 
r(b)v = x (b)v. We have a = (x, av) > 0. Define a linear map</> : yv ➔ k[G] by 
(</>u)(g) = u(r(g)v). 

(b) If r is irreducible then </> is injective. 
( c) Any irreducible representation is isomorphic to a quotient representation and 

also to a subrepresentation of some Pa. 
( d) If p = 0 an irreducible rational representation of G is isomorphic to a unique 

Pa• 
(3) Notations of the preceding exercises. 

(a) V/ has a basis (/0 , ... , fa) with the following properties 

Pv ( x O ) .f. = x-a+2i .f. (x E k*) 
a O x-1 J1 J1 ' 

If (/;') is another basis with these properties there exists a e k* with f/ = af;. 
(b) Let r : G ➔ G L(V) be a rational representation with the following properties: 

dim V =a+ 1, there exists v e V - {O} with 

p ( ~ x~' ) v = x•v (x Ek*, y Ek) 

and the vectors (p (g) - 1) v (g e G) span V. Then p is isomorphic to p:. 
(Hint: use the map of</> of the preceding exercise.) 
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7 .4. Root data 

7.4.1. A root datum is a quadruple \ll = (X, R, xv, Rv), where 
(a) X and xv are free abelian groups of finite rank, in duality by a pairing X x xv ➔ 
Z, denoted by ( , ) ; 
(b) Rand Rv are finite subsets of X and xv, and we are given a bijection a i--:,. av of 
R onto Rv. 

For a E R we define endomorphisms Sa and s: of X and xv by 

The following axioms are imposed. 
(RD 1) If a E R then (a, av) = 2; 
(RD 2) If a ER then saR = R, s:(Rv) = Rv. 

From (RD 1) it follows thats~ = 1 and saa = -a. The Weyl group W = W(\ll) 
of \ll is the group of automorphisms of X generated by the Sa (a E R). Notice the 
symmetry in the definition between X and xv. We see that wv = (Xv, Rv, X, R) 
also defines a root datum, which is the dual root datum. R is the set of roots of \ll 
and Rv the set of coroots. Denote by Q the subgroup of X generated by Rand put 
V' = R ® Q. If R =/:- 0 then Risa root system in V' in the sense of [Bou2, Ch.VI, 
§ l]. This means that the following axioms are satisfied: 
(RS 1) R is finite and generates V', and O ¢ R; 
(RS 2) If a E R there is av in the dual of V' such that (with the previous notations) 
(a, av) = 2 and the endomorphism Sa stabilizes R; 
(RS 3) If a ER then av(R) c Z. 

Likewise, Rv is a root system. W is isomorphic to the Weyl group W(R) of 
[loc.cit.]. 

7.4.2. Exercise. Let w = (X, R, xv, Rv) be a root datum. Define a homomor
phism f: X ➔ xv by f (x) = LaeR(x, av)av. 
(a) For a E R we have f (a) = ½(a, f (a))av. Show that 

Xo = Ker f = {x EX I (x, av)= 0 for all a ER}. 

(b) Show that Q n Xo = {O} and that Q + Xo has finite index in X. 
(c) Show that the Weyl group Wis finite. 

7.4.3. Now let G be an arbitrary connected linear algebraic group. We use the no
tations introduced in 7.1. Let fJ E P' and consider the group Gp. Apply the obser
vations of 7.3.2 to the reductive group H = Gp/ Ru(Gp). We find two non-trivial 
characters ±a' of the image of T in H. Since this image is isomorphic to T we find 
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two corresponding characters ±a of T. We have (Ker a)0 = (Ker {J)0, which implies 
that a is a rational multiple of fJ. It follows that a e P'. The characters a so obtained, 
if fJ runs through P', are the roots of G relative to T ( or of ( G, T) ). The set of roots 
is denoted by R or R(G, T). It is empty ifand only if G is solvable (by 7.1.3 (ii)). 

Using 7.3.5 we obtain a map a ~ av of R onto a subset Rv of xv. We claim 
that it is bijective. It suffices to prove injectivity. Now if a, fJ e Rand av = /Jv, then 

Since (a - fJ, av} = 0, all eigenvalues of the linear map sasp of V are 1. But this 
linear map has finite order (because the Weyl group is finite). Hence sasp = 1 and 
a= fJ. The elements of Rv are the coroots (of G relative to T). We have defined the 
ingredients of a root datum. The axioms (RD 1) and (RD 2) hold (see 7.1.8 (i) and 
7.1.4). So we can associate to a connected linear algebraic group G and a maximal 
torus T of G a root datum W = \ll(G, T). Since maximal tori are conjugate, w is 
uniquely determined by G, up to isomorphism. The same holds for its root system 
R = R(G, T). This root system is reduced, i.e. it has the property of the following 
lemma. 

7.4.4. Lemma. If a e R, c e Q and ca e R then c = ±1. 

We have Ga = G ca. The lemma follows from the observation that the pair of 
roots {±a} is uniquely determined by Ga. □ 

7.4.5. Let (X, R, xv Rv) be a root datum with Weyl group W. Fix a W-invariant 
positive definite symmetric bilinear form on V (see 7.1.7). A subset R+ of R is a 
system of positive roots if there exists x e V with (a, x) =/:- 0 for all a e R such that 

R+ = {a e R I (a, x) > 0}. 

An equivalent definition is: there is).. e xv with (a,)..} =f:. 0 for all a e R such that 

R+ = {a e R I (a,)..} > O} 

(check this). It follows that R+ has the following properties: 
(a) the convex hull of R+ in V does not contain 0, 
(b) R is the disjoint union of R+ and - R+. 
(a) and (b) imply: 
(c) If a, fJ e R+ and a+ fJ e R then a+ fJ e R+. It also follows that (R+)v is a 
system of positive roots in Rv (the definition of this notion is clear). 

Let B be a Borel subgroup of G containing T and let a e R(G, T). By 6.4.7 (ii), 
Ga n B is a Borel group of Ga. Then B' = Ga n B / Ru (Ga) n B is a Borel subgroup 
of the reductive group G' = Ga/ Ru (Ga), containing the image T' of T. Let ±a' be 
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the characters of T' corresponding to ±a. We see from 7.3.3 (ii) that L(B') is the 
direct sum of L(T') and a one dimensional weight space, whose weight is either a' or 
-a'. It follows that B picks out one root from each pair of roots ±a. Let R+(B) be 
the set of roots so obtained, when a runs through R(G, T). 

7.4.6. Proposition. R+(B) is a system of positive roots. 

Choose a rational representation cp : G ➔ G L(A) with a non-zero vector a E A 
such that B is the stabilizer of the line ka (5.5.3). With the notation of 7.3.6 there 
is a character x of T such that ( cpb) .a = x ( b )a. Let l be a linear function on 
A and put F(g) = l((cpg)a), (g E G). Then F E k[G] and if b E B we have 
F(gb) = x(b)F(g). Let a be a root and consider the restriction of F to Ga. Since 
the unipotent radical Ru(Ga) fixes a, the function F is the pull-back of a function 
F' E k[G'] (see the definition of the sheaf of functions on a quotient in the proof 
of 5.5.5). It follows that F' has the property of 7.3.6 relative to the Borel group B'. 
Application of 7.3.6 shows that (x, av) > 0. If we had equality, then the restriction 
of F to Ga would be constant for all 1, from which it would follow that Ga stabilized 
a, which is impossible. It follows that (R+(B))v is a system of positive roots in Rv. 
Hence R+(B) is a system of positive roots in R. □ 

7.4.7. Exercises. (1) G = GLn and Tis the subgroup of diagonal matrices. 
(a) Define characters aii of T by a;j(diag(x1, ... , Xn)) = x;x;1 (1 < i, j < 

n, i =I j). Then aii is a root of (G, T). 
(b) g is the direct sum oft and the weight spaces 9a;i. Show that G is reductive. 
(c) The root datum \Jl(G, T) is isomorphic to (X, R, xv, Rv) with X = xv = zn 

(the pairing being the standard one), R = Rv = {E; - Ej I i =I j}, where (E;) is the 
canonical basis. 

(d) Let B c G be the Borel subgroup of upper triangular matrices (6.2.11 (1)). 
Show that R+(B) is the set of aii with i < j. 
(2) (a) G1 = SLn and T1 is the subgroup of diagonal matrices, which is a 
maximal torus. With the notations of (1), the root datum \Jl(G1, T1) is isomorphic 
to (X1, R1, xr, Rn, where X1 = X/Z(E1 + ... + En), xr = {(x1, ... , Xn) E 

xv I L; x; = O}, with the obvious pairing. If JI' : X ➔ X1 is the canonical map then 
R1 = nR, Rr = Rv. 

(b) Let Z c GLn be the subgroup of scalar matrices, which is the center of GLn. 
Put G2 = G / Z, T2 = T / Z. Then T2 is a maximaltorus in G2. Show that \JI ( G2, T2) is 
isomorphic with the dual (Xr, Rr, X 1, R1) of the root datum of (a) (defined in 7.4.1). 
(3) (char k =/ 2) Let V = k2n+I (n :::: 1) and let Q be the quadratic form on V defined 
by 

n 

Q((;o, .. • , ;2n+1)) = ;J + L;i;n+i· 

i=l 

Write (v, w) = Q(v+w)- Q(v)- Q(w), this is a symmetric bilinear form on V. Let 
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G betheidentitycomponentofthegroupoft e GL(V) with Q(tv) = Q(v) (v e V). 
(a) G is isomorphic to S02n+1 (recall that SO2n+l is connected by 2.2.2 (2) or 2.2.9 

(1)). 
(b) The Lie algebra g is the set of all t e End(V) such that (tv, w) + (v, tw) = 

0 (v, w e V) (Hint: First show that g is contained in the set of these t and then use 
5.5.9 (7))). 
( c) The subgroup T of maps 

(~o, • • • , ~2n+1) I-► (~o, X1~1, ... , Xn~n, x11~n+l, ... , x;1~2n+1), 

with X; E k*, is a maximal torus of G. The maps (x1, ... , Xn) 1-► xf and (x1, ... , Xn) 1-► 

xf xJ, where i =I- j and E, 11 = ±1 define roots of (G, T). 
( d) g is the direct sum of t and the weight spaces 9a, where a runs through the 

roots of (b). Show that G is semi-simple. 
(e) The root datum \ll(G, T) is isomorphic to (X, R, xv, Rv), where X =xv= 

zn (standard pairing), R = {±E;, ±E; ±Ej Ii =f. j} and Rv = {±2E;, ±E; ±Ej Ii=/:
j}. 
(4) (char k =I- 2) Let V = k2n (n > 2) and let Q be the quadratic form on V with 

n 

Q<<~1 .... , ~2n)) = I:~i~n+i• 
i=l 

Define ( , ) and G as in (3) and let T be the subgroup of maps 

Then G is semi-simple, isomorphic to S02n, and T is a maximal torus. The root 
datum \ll(G, T) is isomorphic to (X, R, xv, Rv), with X = xv = zn and R 
RV = {±E; ± Ej Ii =I- j}. 
(5) Let V = k2n (n > 1) and let ( , ) be the alternating bilinear form with 

n 

((~1, ···• ~2n), (171, ... , 112n)) = L(~i11n+i - ~n+i11i ). 

i=l 

DefineTasin(4)andletGbethegroupoft e GL(V)with(tv,tw) = (v,w) (v,w e 
V). Then G is connected, semi-simple, isomorphic to Sp2n, and Tis a maximal torus 
of G. The root datum of ( G, T) is isomorphic to the dual of the root datum of (3). 
(6) (char k = 2). Define Gas in (3). 

(a) All elements of G fix e0 = (1, 0, ... , 0), hence there is a homomorphism 
</J: G ➔ GL(V/keo). 

(b) Ker </J is trivial and Im </J :::::: Sp2n. 

(c) Show the assertions (c),(d),(e) of (3) remain true. 
(d) The Lie algebra of G is the set of all t e End(V) such that te0 = 0 and 

(v, tv) = 0 (v e V). 
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(7) (char k = 2). The notations are as in (4). 
(a) G is a closed subgroup of the group of (6), and dim G = n(2n - 1). 
(b) The Lie algebra of G is the set of all t E End(V) such that (v, tv) = 0 (v E 

V). 

(c) Show that the statements of (4) remain true. 

The root systems introduced in (1),(3),(4),(5) are the root systems of respective 
types An-1, Bn, Dn, Cn, 

7.5. Two roots 

Let \II = (X, R, xv, Rv) be a root datum. Let W be the Weyl group of \II. It is a 
finite group (7.4.2 (c)). Let a, fJ E R be linearly independent roots. By 7.4.4 we have 
a 'I ±fJ. 

7.5.1. Lemma. (i) (a, /Jv) has one of the values 0, 1, 2, 3 . .if l(a, /Jv)I > 1 then 

1(/J, av)I = 1; 
(ii) In the four cases of (i) the order of sas13 is, respectively, 2, 3, 4, 6; 
(iii) .lf (a, /Jv) = 0 then (fJ, av) = 0. 

Sa and s13 stabilize the two dimensional subspace of V = R® X spanned by a and 
fJ. On the basis (a, /J) of that space sas/3 is represented by the matrix 

M = ( (a, /Jv) (fJ, av) - 1 (/J, av) ) 
af3 -(a, /Jv) -1 • 

Since Wis finite sas/3 has finite order. Hence the eigenvalues of Ma/3 are two conjugate 
roots of unity and the absolute value of the trace of Ma/3 is at most 2. As Ma/3 cannot 
be the identity matrix, the eigenvalues cannot both be 1. Now (i) and (ii) readily 
follow. 

If (a, /Jv) = 0 then Ma,/3 is a triangular matrix which can only have finite order if 
it is diagonal. This implies (iii). □ 

Fix a system of positive roots R+ in R. If a E R we write a > 0 if a E R+ and 
a < 0 if -a E R+. 

7.5.2. Lemma. There exists w E W such that wa > 0, wfJ > 0. 

We may reduce the proof to the case that X is spanned by a and fJ. Put a = 
(a, /Jv)(/J, av), then a = O, 1, 2, 3 by 7.5.1 (i). If a = 0 then (a, /Jv) = (/J, av) = 0 
by 7.5.1 (iii). If a = 0 then -saa = s13a = a and similarly for /J. The assertion 
readily follows. 

Now assume a > 0. We may assume that a < 0. If also fJ < 0 we may take 
w = sas13sa if a = 1, for then wa = -fJ, wfJ = -a. If a > 1 then SaSfJ has even 
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order (7.5.1 (ii)) and a power of that element maps a and /J onto their negatives. It 
follows that we may assume a < 0 and /J > 0. If (/J, av} > 0 we may take w = Sa. 

So assume (/J, av} < 0. Let a = 1. If a + fJ > 0 we can again take w = Sa. If 
a + fJ < 0 the formula for the matrix Map of the proof of 7.5.1 shows that we may 
take w = sasp. If a > 1 we may assume, replacing if necessary a and /J by -/J and 
-a, that (a, /Jv} = -1. 
Let a = 2. Then 

Saa = -a, spa =a+ {J, saspa =a+ {J, 

Sa/J = 2a + /J, Sp/J = -{J, SaSp/J = -2a - /J. 

If2a+/J > 0wetookw =sa. Ifa+fJ < 0takew = -sp. If2a+{J < 0, a+fJ > 0 
take W = SaSp. 

and 

Finally let a = 3. Then 

Saa = -a, spa =a+ /J, Saspa = 2a + /J, spsaa = -a - /J, 
Sa/J = 3a + /J, Sp/J = -{J, SaSp/J = -3a - /J, SpSa/J = 3a + 2/J. 

SaSpSaa = -2a - /J, SaSpSa/J = 3a + 2/J. 

If 3a + fJ > 0 we took w = Sa. If a + fJ < 0 take w = -sp, if 3a + fJ < 
0, 2a + fJ > 0 take w = sasp, if a + fJ > 0, 3a + 2/J < 0 take w = -spsa and if 
2a + fJ < 0, 3a + 2/J > 0 take w = SaSpSa. □ 

Let ( , ) be a positive definite symmetric bilinear form with the property of 7 .1. 7. 
If a, fJ E Rand (a, /Jv} = -1, (/J, av} = -a then a and /J can be viewed as two 
vectors in R2 such that the ratio of their lengths is ✓a. If <I> is the angle between them, 
we have cos</>= -½✓a. One could also prove the lemma in a geometric way, using 
these facts. 

7.5.3. Exercises. (1) Work out a geometric proof of 7.5.2. 
(2) Let a and /J be as in 7.5.2. If a> 0 assume that (a, /Jv} = -1, 
(/J, av} = -a. The set S described below is a subset of R that is stable under Sa and 
Sp. 

a= 0, S = {±a, ±/J}, 
a= 1, S = {±a, ±/J, ±(a+ /J)}, 
a= 2, S = {±a, ±/J, ±(a+ /J), ±(2a + /J)}, 
a= 3, S = {±a, ±/J, ±(a+ /J), ±(2a + /J), ±(3a + /J), ±(3a + 2/J)}. 
(This exercise gives the classification of root systems of rank two, to be used in 9 .1.) 
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7 .6. The unipotent radical 

7.6.1. G is again a connected linear algebraic group, and T a maximal torus. The 
main result of this section is the characterization of the unipotent radical Ru G given 
in 7.6.3. 

We denote by C the identity component of the intersection of the unipotent parts 
Bu of the Borel subgroups B of G that contain T. If a is a root of ( G, T) we denote 
by Ca the identity component of the intersection of the Bu, where B runs over the 
Borel subgroups containing T with a e R+(B). Then C is a closed subgroup of Ca. 

7.6.2. Lemma. dim Ca/ C < 1. 

Since T normalizes Ca it follows that the subalgebra L(Ca) of the Lie algebra g 
is spanned by weight vectors of T. With the notations of 7 .1, such a weight vector X 

lies in the Lie algebra of some Gy with y e P. It follows from 6.4.7 (ii) that Ru(Gy) 
lies in all Borel subgroups containing T. So if X e L(Ru(Gy)) we have X E L(C). 
We conclude that L(Ca) is spanned by L(C) and root vectors (i.e. weight vectors 
for roots). If X is a root vector for a root fJ then fJ e R+(B) for all Borel groups 
B ::> T with a e R+(B). Fix a Borel subgroup B with the latter property and put 
R+ = R+(B). Using 6.4.12 we conclude that (with the notation of 7.5.2) we have 
wfJ > 0 for all elements w of the Weyl group W with wa > 0. If a and fJ are linearly 
independent, application of 7.5.2 to a and -/J leads to a contradiction, and we must 
have fJ = a. The assertion follows from the fact that the space 9a of 7.3.2 is one 
dimensional. D 

7.6.3. Theorem. RuG = C. 

It is clear that RuG c C. To prove the reverse inclusion it suffices to show that C 
is a normal subgroup of G. Using 7.1.3 (i) we see that it also suffices to prove that for 
each y e P the group Gy normalizes C. Now Gy is generated by its Borel subgroups 
that contain T (this is trivial if Gy is solvable and follows from a similar fact for SL2 

if Gy is non-solvable). Such a Borel group lies either in T.C, or in a subgroup T.Ca, 
for some root a (by 6.4.7 (ii)).lt follows from 7.6.2 and 6.3.7 (4) that C is a normal 
subgroup of Ca, which proves the theorem. D 

7.6.4. Corollary. Assume G to be reductive. 
(i) If Sis a subtorus of G then Za(S) is connected and reductive; 
(ii) Za(T) = T, i.e. Cartan subgroups are maximal tori; 
(iii) The center C(G) of G lies in T. 

To prove (i) we may assume that S c T. (i) follows from the theorem, using 
6.4.7. Assertion (ii) follows from (i) with S = T, and 6.4.2 (i). For (iii) observe that 
C(G) C Za(T). □ 
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We have now assembled the ingredients needed for the theory of reductive groups, 
to be taken up in the next chapter. 

Notes 

The introduction of the combinatorial data of a linear algebraic group (roots ... ) is 
due to Chevalley. The main results of this chapter are all due to him; they are exposed 
in [Ch4]. 

Roots were introduced in [loc. cit., Exp. 12]. We have taken here as the fundamen
tal combinatorial notion the notion of a root datum (following [SGA3, exp. XXI]). 
We have introduced this as soon as possible, for not necessarily reductive groups. 

The proof of the classification theorem 7 .2.4 exploits the 'Bruhat decomposition' 
7.2.2 (i). The argument goes back to Zassenhaus (see [Gor, p. 3931). It is convenient 
to have 7.2.4 available at an early stage. A consequence is the integrality result 7.3.5 
(i). 

The important characterization 7.6.3 of the unipotent radical is due to Chevalley 
[Ch4, exp.12]. We have tried to stress the role played in his proof by roots and Weyl 
group. 



Chapter 8 

Reductive Groups 

This chapter presents the fundamental results about reductive groups. G denotes a 
connected, reductive, linear algebraic group and T is a maximal torus of G. 

8.1. Structural properties of a reductive group 

Let (X, R, xv, Rv) be the root datum of (G, T) (see 7.4.3). 

8.1.1. Proposition. (i) For a E R there exists an isomorphism Ua of Ga onto a 
unique closed subgroup Ua of G such that tua(x)t-1 = Ua(a(t)x) (t E T, x e k). 
We have Im dua = 9a, the weight space for the weight a of T; 
(ii) T and the Ua (a e R) generate G. 

Weight spaces were defined in 7 .1.1. 
If a e R the group Ga of 7.1 is reductive by 7.6.4 (i) and has semisimple rank one. 
The existence of Ua and the last point of (i) then follow from 7.3.3. If Ua is as in (i) 
then Ua c Ga and the uniqueness of Ua follows from 7.3.3 (ii) (recall that there are 
two Borel subgroups of Ga containing T). (ii) follows from 7.1.3 (i), observing that a 
group Ga is generated by T, Ua and U_a (which follows from the formula of 7.3.2). 

□ 

8.1.2. Corollary. The roots of R are the non-zero weights of T in g. For each a e R 
the weight space dim 9a has dimension one. 

If /J e P ( defined in 7 .1.1) then Gp is reductive by 7 .6.4 (i) and has semi-simple 
rank one. It must be a Ga with a e R. By the formula of 7.3.2 we have /J =±a.The 
last point follows from 8.1.1 (i). □ 

8.1.3. Corollary. Let B be a Borel subgroup of G containing T and let a e R. 
(i) The following properties are equivalent: (a) a E R+(B), (b) Ua C B, (c) 9a C b; 
(ii)dimB = r + ½IRI, dimG = r + IRI, wherer = dimT. 

Here R+(B) is as in 7.4.6. (i) follows from the definition of R+(B), using 7.3.3 
(ii). Using 8.1.2 one determines dim b and dim g, giving (ii). D 

Let W = NG(T)/T be the Weyl group of (G, T) (see 7.1.4). We identify it with 
the Weyl group of the root datum of (G, T). For a e R we have the reflection sa e W 
of 7.1.8. Then s_a = Sa. 
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8.1.4. Lemma. (i) The Ua may be chosen such that for all a E R 

lies in No(T) and has image Sa in W. For x Ek* we have 

Ua(X)U-a(-x- 1)ua(X) = av (x)na; (22) 

(ii) n2 = av(-1) and n = n-l. a -a a , 
(iii) /Ju E Ua - {1} there is a unique u' E U_a - {l} such that uu'u E Na(T); 
(iv) If (u~)aeR is a second family with the properties of 8.1.1 (i) and 8.1.4 (i), there 
exist Ca E k* such that 

We have Ua c (Ga, Ga) (by the formula in the proof of 7.3.3). The latter group 
is isomorphic to SL2 or PSL2 by 7.2.4. Using the homomorphism SL2 ➔ PSL2 of 
the proof of 7.2.4 and the description of av given in the proof of 7.3.5, we reduce 
the proof of (i) to the case that G = SL2, T being the diagonal torus. Define the 
character a of T by a(diag(x, x-1)) = x2. A straightforward check shows that, with 
the notations of the proof of 7.2.4, we may take 

"• = u,, u_0 (x) = n,u.(-x)nt' = ( ! ~) (x Ek). 

Then na = n1 and 7.3.5 (ii) gives the first formula of (ii). The second formula follows 
by a check in SL2. The existence of u' with the property of (iii) follows from (i). The 
uniqueness is proved by a computation in SL2 which is left to the reader. Finally, (iv) 
is a consequence of 7.3.3 (i) and (iii). □ 

We shall call a family (ua )aeR with the properties of 8.1.1 (i) and 8.1.4 (i) a re
alization of the root system R = R(G, T) in G. Notice that by (22) a realization 
determines the coroots av. 

8.1.5. Theorem. Assume that G is semi-simple. 
(i) The Ua (a E R) generate G; 
(ii) G = (G, G); 
(iii) Let G1 # G be a non-trivial connected, closed, normal subgroup of G. Then G1 
is semi-simple. There is a similar subgroup G2 such that (G1, G2) = {e}, G1 n G2 is 
finite and G = G 1 G2; 
(iv) The number of minimal non-trivial connected, closed, normal, subgroups of G is 
finite. lfG1, ... , G, are these groups then (G;, Gi) = {e} ifi # j and G; n nit=iGi 
is finite. Moreover G = G 1 ... G, and the G; have no closed, normal subgroups of 
dimension > 0. 



134 8. Reductive Groups 

Semi-simple groups were defined in 6.4.14. The intersection of the kernels of all 
roots is a subgroup H of T that is centralized by all U a, hence is normal in G because 
of 8.1.1 (ii). Since G is semi-simple H must be finite. This implies that the roots span 
a subgroup of finite index of X, and also that the groups Im av (a ER) generate T. 
Now (i) follows from 8.1.1 (ii) and (22). Since Ua C (Ga, Ga) C (G, G), (ii) also 
follows. 

Next let G1 be as in (iii). Since R(G 1) is normal in G, it must be trivial. Hence 
G 1 is semi-simple. Let T1 be a maximal torus of G1. We may assume that T1 c T. If 
a E Rand Ua rt. G1 it follows from the formula of the proof of 7.3.3 that T1 c Ker a, 
so that T1 centralizes Ua. Conversely, if this is so then Ua (/. G 1 by 7.6.4 (ii). Put 
R1 = {a E R I Ua C Gi}, R2 = R - R1. Then R1, R2 =/=- 0. Let a E R1, fJ E R2. 
Put 

uy(x) = up(y)ua(x)up(-y) (x, y Ek). 

Then uy(x) E G1 and tuyt-1 = uy(a(t)x) fort E T1. It follows from 8.1.1 (i) that 
there is a morphism f : A 1 ➔ A1 such that uy(x) = ua(f (y)x) and f (y) =I- 0 
for all y. This can only be if f is the constant f (0) = 1. It follows that Ua 
and Up commute. If G2 is the subgroup generated by the Up with fJ E R2, then 
(G 1, G2) = {e}, G = G 1 G2. That G 1 n G2 is finite follows from the fact that it is a 
closed normal subgroup not containing any Ua. This proves (iii) and (iv) is a conse
quence of (iii). D 

We drop the assumption that G be semi-simple. 

8.1.6. Corollary. (i) G = R(G).(G, G); 
(ii) (G, G) is semi-simple. 

(i) follows from 8.1.5 (ii), applied to the group G/ R(G), which is semi-simple. 
(ii) is a consequence of (i). □ 

Recall that by 7.3.1, R(G) is a central torus and that R(G) n (G, G) is finite. 
If A is a subgroup of X we denote by 

A.L = {y E xv I (A, y) = {O}} 

its annihilator, a subgroup of xv. The group 

A = {x E X I Z.x n A =I- {O}} 

is the rational closure of A in X. Then A/ A is the torsion subgroup of X/ A. We have 
similar notions for subgroups of xv. 

8.1.7. Lemma. For any subgroup A of X we have A= (A.L).L. 
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In the case that A is a direct summand of X we have A = A, and an easy argument 
proves the lemma. We have this case if X / A has no torsion, in fact then X / A is free 
(see [Jac4, p. 1841), which implies that A is a direct summand. We conclude that the 
lemma holds for A. The general case follows by observing that (A).L = A.L. □ 

Let Q (Qv) be the subgroup of X (Xv) spanned by R (respectively: Rv). 

8.1.8. Proposition. (i) The center C(G) of G is the intersection of the kernels 
Ker a (a ER); 
(ii) The radical R(G) is the subgroup of T generated by the groups Im y, y E Q.L. 
We have X*(R(G)) '.:::'. X/Q, X*(R(G)) '.:::'. Q.L; 
(iii) The subtorus Ti of T generated by the groups Im av, (a E R) is a maximal torus 
of (G, G). We have X*(Ti) '.:::'. X/(Qv).L, X*(Ti) '.:::'. Qv. 

C(G) lies in T by 7.6.4 (iii). Then (i) follows from 8.1.1. Let y E X*(T). By {i), 
y lies in the subgroup X * ( R ( G)) if and only if y E Q.L. This proves the first and the 
last statements of (ii). We have X*(R(G)) = (Q.L)v. By 3.2.10 (4), this is a quotient 
of X. It then follows that (Q.L)v '.:::'. X/(Q.L).L = X/Q, proving (ii). 

We have X*(Ti) = Qv. Introduce a positive definite form ( , ) on V = R ® X 
as in 7.1.7. We may assume xv c V, such that av = 2(a, a)-ia (a E R). Then 
R ® Q.L is the orthogonal complement of R ® Qv. It follows that T = Ti .R(G) and 
that Ti n R(G) is finite. Hence dim Ti = dim T / R(G), the dimension of a maximal 
torus of the semi-simple group G/ R(G), which by 8.1.6 is a quotient of (G, G) by 
a finite group. Then dim Ti must equal the dimension of a maximal torus of (G, G), 
which proves the first point of (iii). Using 3.2.10 (4) we conclude that the charac
ter group X*(Ti) is isomorphic to X/(Qv).L. Then its dual X*(Ti) is isomorphic to 
((Qv).L).L=Qv. D 

We also have that R ® Q is the orthogonal complement of R ® (Qv).L. This im
plies that R maps injectively into X/(Qv).L. We identify R with its image. 

8.1.9. Corollary. The root datum of((G, G), Ti) is (X/(Qv).L, R, Qv, Rv). 
This follows from 8.1.8. □ 

We have the surjective product map (G, G) x R(G) ➔ G. By 8.1.8 (ii) and 8.1.9 
the root datum of the first group (relative to the maximal torus Ti x R ( G)) is 

The product map induces an injective homomorphism of character groups 
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The proof is straightforward. D 

8.1.11. Assume that G is s_emi-simple. It follows from 8.1.8 (ii) that Q.1 = {O}, 
which implies that X = Q and that Q has finite index in X. The finite group 
C* = C*(G) = X/Q is the cocenterof G. Put 

P = {x E V I (x, Rv} c Z}, 

where V is as before. Then P is a lattice in V with Q c P. If the root system R 
in V is given, there are only finitely many possibilities for X. Q is the root lattice of 
Rand P the weight lattice. The semi-simple group G is adjoint if X = Q and sim
ply connected if X = P. The finite abelian group P / Q is the fundamental group of R. 

8.1.12. Exercises. The notations are as before. 
(1) Let H be a connected subgroup of G containing T, with Lie algebra Q. 

(a) For a E R we have Ua C H if and only if 9a C Q. (Hint: If 9a C Q consider 
Z H ((Kera) 0)). 

(b) Let R' be the set of roots a E R with Ua C H. Then Q = L(T) + LaeR' 9a 
and dim H = dim T + IR'I. 
(2) Let w be an element of the Weyl group of (R, T), represented by n E N0 (T). If 
a E R there is Cn,a Ek* with nua(x)n-1 = Uw.a(Cn,aX) (x Ek). 
(3) (a) Lett E T. The connected centralizer Za(t)0 is generated by T and the Ua with 
a(t) = 1. (Hint: use 5.4.7.) 

(b) The centralizer of a semi-simple element of G is reductive. 
( 4) ( a) Define the notion of a direct sum of root systems. 

(b) A root system is reducible if it is a non-trivial direct sum and irreducible oth
erwise. Show that if G is semi-simple, the root system R is irreducible if and only if 
G has no proper connected, closed, normal, subgroup, in which case G is said to be 
quasi-simple. The root systems of the groups G; of 8.1.5 (iv) are irreducible. 
(5) (a) The cokernel of the homomorphism i of 8.1.10 is isomorphic to X/((Qv).1 EB 
Q). 

(b) The cocenter C*((G, G)) is isomorphic to X/((Qv).1 EB Q). 
(6) (a) (G, G) is adjoint if and only if X = Q EB (Qv).1; 

(b) (G, G) is simply connected if and only if (iv= Qv. 
(7) Determine root lattice, weight lattice and fundamental group for each of the root 
systems An-1, Bn, Cn, Dn introduced in 7.4.7. 
(8) Assume that G is semi-simple. There is an injective homomorphism 

Hom(C(G), k*) ~ C*(G) 

that is bijective if the characteristic does not divide the order of the center C ( G). 
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8.2. Borel subgroups and systems of positive roots 

Let B be a Borel subgroup of G containing T. We denote its unipotent radical by 
Bu or U and write R+ for the system of positive roots R+(B) defined by B (see 7.4.6). 

8.2.1. Proposition. Let (cxi, cx2, ... , <Xm) be a numbering of the roots in R+. The 
morphism </> : G: ➔ Bu with </>(xi, ... , Xm) = Ua 1 (xi )ua2 (x2) ... Uam (Xm) is an iso
morphism of varieties. In particular, Bu is generated by the groups Ua with a E R+. 

Taking into account 8.1.1 and 8.1.2, the proposition follows from the following 
result. 

8.2.2. Lemma. Let H be a connected, solvable linear algebraic group. Let S be 
a maximal torus of H. Assume that there is a set of isomorphisms V; (1 < i < n) of 
Ga onto closed subgroups of H such that 
(a) there exist non-trivial characters /J; of S, no two of which are linearly dependent, 
with sv;(x)s-i = v;(/J;(s)x) (s e S, x e k, 1 < i < n), 
(b) the weight spaces (Jp; (1 < i ~ n) are one dimensional and span L(Hu)-
Then the morphism 1/r : G~ ➔ Hu with 1/r(xi, ... , Xn) = vi (xi) ... Vn(Xn) is an iso
morphism of varieties. 

The proof of 8.2.2 is by induction on n. If n = 1 we have Hu = Im vi (look at 
dimensions). If n > 1 let N be a normal subgroup in the center of Hu isomorphic 
to Ga (see 6.3.4). Then L(N) is an S-stable one dimensional subspace of L(Hu), 
which by our assumptions must be one of the weight spaces (Jpi. Application of 5.4. 7 
shows that Z H (Ker(/J i )0) is a group with the properties of H and a one dimensional 
unipotent radical (here one uses the linear independence of the /J; ). By what was 
established in the case n = I we have N = Im vi. 

For i #- j let w; : Ga ➔ H / N be the homomorphism induced by v;. We claim 
that H / N and the w; satisfy the assumptions of the lemma, relative to the image of 
S in H / N. This is clear except for the fact that the w; are isomorphisms. Since 
Im(v;) n Im(vj) = {e} (i f:. j) (check this), w; is injective. From (b) it follows 
that the differential dw; is also injective. By 5.3.3 (ii), w; is an isomorphism onto a 
subgroup of H / N, and the claim follows. 

By induction we may assume the result to be true for H / N. Since N is central it 
readily follows that 1/r is bijective. Using 4.4.12 we see that the tangent map d1/rco, ... ,o> 
is bijective. By 4.3.6 (i) and 5.1.61/r is birational. It now follows from 5.3.4 and 5.2.8 
that 1/r is an isomorphism. □ 

As before, (g, h) = ghg-ih-i (g, h e G). We fix a total order of R (i.e., a 
numbering of the roots). 
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8.2.3. Proposition. Let a, f3 E R, with a =f:. ±{3. There exist constants Ca,p;i,j E k 
such that 

(ua(x), up(y)) = n 
ia+ jpeR; i,j>O 

the order of the factors in the right-hand side being prescribed by the ordering of R. 

Using 7.5.2 and 8.1.12 (2) we see that it is sufficient to prove this when a, f3 E 

R+. Then Ua, Up c Bu and 

(ua(x), up(y)) = n Uy(Py(X, y)), 
yeR+ 

where Py E k[T, U], the order of the factors being the prescribed one. Conjugating 
by t E T we obtain 

Py (a(t)x, f3(t)y) = y(t)Py(x, y). 

Using the linear independence of characters we see that Py =f:. 0 only if y = ia + jf3, 
with i, j > 0. Since a and f3 are linearly independent (7.4.4), such i and j are unique. 
To finish the proof we have to show that i and j are non-zero. Suppose, for example, 
that in the fonnula of the proposition we had a non-trivial factor with j = 0. By 
7.4.4 the corresponding i equals 1. Then the commutator (ua(x), up(y)) would equal 
ua(cx) times a product like the one in the proposition, with c =f:. 0. Putting y = 0 we 
arrive at a contradiction. □ 

8.2.4. Proposition. Let R+ be an arbitrary system of positive roots in R (7.4.5 ). 
(i) T and the Ua with a E R+ generate a Borel subgroup of G; 
(ii) There is a unique w E W with R+ = w.R+. 

As before, Wis the Weyl group of (G, T). For n > 1 denote by R: the set of 
roots in R+ that are integral linear combinations with strictly positive coefficients of 
at least n roots of R+, and let Un be the subgroup of G generated by the Ua with 
a E R:. Using property (c) of 7.4.5 and the preceding proposition, one proves by 
descending induction on n that Un is a closed, connected, unipotent, subgroup of G, 
nonnalized by T. Using 8.2.2 one sees that dim Un = IR:I. It follows that iJ = T.U1 

is a closed, connected, solvable, subgroup of G, of dimension dim T + ½IRI. By 6.2.7 

(iii) and 8.1.3 (ii) iJ must be a Borel group containing T with R+(.B) = i?.+. Now (ii) 
follows from 6.4.12. □ 

Denote by W the set of Borel subgroups of G that contain T. By 6.4.12 the Weyl 
group W acts simply transitively on W. We say that B, B' E W are adjacent if 

dim(B n B') = dimB - 1 = dimB' - 1. 
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We say that two systems of positive roots R+ and R+ are adjacent if R+ n R+ has one 
element less than R+. As in 7.1.7, let ( , ) be a positive definite symmetric bilinear 
form on V = R ® X that is W -invariant. 

8.2.5. Proposition. (i) If B, B' E W there is a family B = B0 , B1, ... , Bh = B' 
in W such that B; and B;+1 are adjacent (0 < i < h - 1); 
(ii) If R+ and R+ are two systems of positive roots, there is a family of systems of 
positive roots, R+ = Rt, Rf, ... , Rt = R+ such that Rt and R7"+ 1 are adjacent 
(0 < i < h - 1). 

By 8.2.4 it suffices to prove (ii). By the definition of systems of positive roots 
(7.4.5) there exist x, y e V such that R+ (R+) is the set of a e R with (x, a) > 0 
(respectively, (y, a) > 0). The set of x with this property is an open subset of V (with 
its euclidean topology). Changing x a little if necessary we may assume that 

for all pairs (a, /3) of linearly independent roots. For t e [O, 1] put x(t) = (1 -
t)x + ty. If a E Rand (x(t), a) = 0 then (x, a) =f. (y, a) and t = ta = ((x, a) -
(y, a))-1 (x, a). We have ta =f. tp if a =f. ±f3. It follows that there is a subdivision 
0 = to < t1 < ... < th = 1 of [O, 1] such that for O < i < h each t; is a ta and that for 
a E R+ the numbers (x(t), a) have the same sign if t lies in the interval/; = (t;, t;+i). 
Moreover, the signs attached to I; and 1;+1 by the roots of R+ differ for only one such 
root. Put Rt = {a E R I (x(t), a) > 0 fort E /;} (0 < i < h - 1). These are 
systems of positive roots with the required properties. □ 

8.2.6. Lemma. Let R+ and R+ be adjacent systems of positive roots. There is a 
unique a E R+ with R+ = sa,R+. 

Let x and y be as in the proof of the preceding proposition and let R+ n R+ = 
R+ - {a}. If f3 E R+ - {a} and {/3, av) ~ 0 then 

(sa,f3, y) = (/3, y) - {/3, av)(a, y) > 0, 

whence sa.f3 E R+. If {/3, av) < 0 then sa,f3 lies in R+ and is different from a, so lies 
in R+. We have shown thatsa,(R+ - {a}) CR+. Since Sa.a= -a and (-a, y) > 0 
the lemma follows. □ 

Let R+ be a system of positive roots and let D D(R+) be the set of roots 
a E R+ such that sa,R+ and R+ are adjacent. If B is the Borel subgroup of G 
containing T with R+ = R+(B) (see 7.4.6 and 8.2.4 (i)) we also write D = D(B). 
We call D the basis of R defined by R+ (or by B). Its elements are the simple roots of 
R+. Let S = S(R+) (or S(B)) be the set of reflections sa with a e D. These are the 
simple reflections defined by R+ (or B). For we W we have D(w.R+) = w.D(R+), 
S(w.R+) = wS(R+)w-1. 
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8.2.7. Lemma. (i)Leta ED. Thensapermutestheelementsof R+ -{a}; 
(ii) If a, /3 ED, a#- /3 then (a, /3v} < 0. 

(i) was established in the proof of the preceding lemma. 
If a and f3 are as in (ii) we have, with x as before, 

If we had (a, 13v} > 0, the left-hand side would be> 0, since sa/3 and spa lie in R+ by 
(i). But the right-hand side would be< 0 by 7.5.1 (i). This contradiction proves (ii). □ 

8.2.8. Theorem. (i) S generates W; 
(ii) R = W.D; 
(iii) The roots of Dare linearly independent. A root in R+ is a linear combination 
LaeD naa with na E Z, na 2:: 0. These two properties characterize the subset D of 
R+. 

Let W' be the subgroup of W generated by the simple reflections. In the situation 
of 8.2.5 (ii), there exists by 8.2.6 a simple root a such that Rf = sa,R+. Then 
saRi, ... , saRt is a family as in 8.2.5 (ii), with h - 1 elements. By induction on h we 
obtain that W' acts transitively on the set of systems of positive roots. We next prove 
linear independence of the simple roots. 

Let E maa = 0 be a dependence relation, with real coefficients. Let D1 = {a E 

D I ma > 0}. We may assume that D1 #- 0. Rewrite the relation as 

Then, x and (, ) being as before (x, t) = LDi ma(x, a) > 0. But 

(t, t) = 

by 8.2.7 (ii). It follows that t = 0, which leads to a contradiction. Hence the roots of 
D are linearly independent. 

Let a E R+ - D and /3 E D. Then spa E R+ - D (8.2.7 (i)) and (x, spa) = 
(x, a) - (a, 13v}(x, /3). If (a, 13v} > 0 we have 0 < (x, spa) < (x, a), and a is the 
sum of spa and a positive integral multiple of /3. It follows that (ii) and the second 
assertion of (iii) hold if we establish the following: if a E R+ - D there is f3 E D 
with (a, /3v} > 0. We prove the equivalent statement: if a E R and (a, 13v} < 0 for 
all /3 ED then a E -R+. 

Let a have this property and write 

a = L cp/3 + t, 
D 



8.2. Borel subgroups and systems of positive roots 141 

with real coefficients cp and t E V = R ® X in the subspace Vo orthogonal to all 
simple roots. The elements of W' stabilize the subspace of V spanned by D and fix 
all vectors in V0 . Applying sa to both members of the equality we conclude that t = 0. 
Now put u = a - Lcp<O cp/3. Then 

(u, u) = (a - L cp/3, L cyy) < 0, 
cp<O cy:::;O 

whence u = 0. It follows that (x, a) < 0, whence a E - R+, as was to be established. 
The two properties of (iii) imply that D is the set of the roots in R+ that cannot be 

written as a linear combination, with strictly positive integral coefficients, of at least 
two other roots in R+, which shows that D is unique. 

In the proof of (ii) we have actually shown that R = W'.D. Let /3 E Rand take 
w E W', a E D with f3 = w.a. Then sp = wsaw-1 E W'. Since the sp generate W 
it follows that W' = W, whence (i). □ 

8.2.9 Remark. The fact that W acts transitively on the set of systems of positive 
roots also follows from 8.2.4 (ii). However, the proof of 8.2.8 is elementary, in the 
sense that it does not use the theory of algebraic groups. We shall use this later. 

8.2.10. Corollary. G is generated by T and the groups U±a with a E D. 

Let G 1 be the subgroup generated by these groups. It is a closed, connected, sub
group (2.2.7), containing all subgroups Ga of 7.1 with a E D. It follows that the 
Weyl group W1 of ( G 1, T), which is a subgroup of W, contains S. By part (i) of the 
theorem we have W1 = W. Using part (ii) and 8.1.12 (2) it follows that G 1 contains 
all Ua, hence coincides with G (8.1.1 (ii)). □ 

8.2.11. Exercises. (1) The notations are as in 7.4.7. R is one of the root systems 
An-1, Bn, Cn, Dn, 

(a) The set D described below is a basis of R. 
An-1 : {E1 - E2, ... , En-1 - En}, 

Bn {E1 - E2, ... , En-1 - En, En}, 

Cn : {E1 - E2, ... , En-1 - En, 2En}, 

Dn : {€1 - E2, ... , En-1 - En, En-1 + En}, 

(b) R is irreducible (8.1.12 (4)). 
(c) The Weyl group Wis as follows. 
An-1 : W = Sn, acting as group of permutations of the basis (E;)1~;~n), 

Bn, Cn : Wis the group of linear maps of V = Rn with E; ....+ T7;Eui, where a E Sn 

and 77; = ±1, 
Dn : W is the subgroup of the preceding group whose elements satisfy TT; Tli = 1. 
(2) A root system R is reducible if and only if there is a non-trivial decomposition 
D = D1 LI D2 such that (a, /3) = 0 for a E D1, /3 E D2. 
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(3) Let G be semi-simple. Let P be the weight lattice (8.1.11 ). 
(a) P has a basis of fundamental weights (w-a)aeD, where< W'a, 13v >= Oap- For 

a, fJ E D we have SaW'p = w-13 - a. 
(b) Put p = LaeD W'a, Show that p = ½ LpeR+ /J, where R+ is the system of 

positive roots with basis D. (Hint: consider the action of simple reflections on both 
sides of the equality.) 
( 4) Let R be a root system with system of positive roots R+. If a e R+ there exists a 
chain a1, a2, ... , ah = a such that a1 and all differences ai+1 - ai (1 < i < h - 1) 
are simple roots. 

8.3. The Bruhat decomposition 

8.3.1. The notations are as before. For w e W put 

By 8.2.7 (i) we have R(sa) = {a} if a e D. This implies that for a e D 

Sa.R(w) U {a} if w.a ER+, 
- sa(R(w) - {a}) if w.a E -R+. 

(23) 

Recall that by 8.2.8 (i) Wis generated by S. If w e W the length l(w) of w (relative 
to S) is the smallest integer h > 0 such that w is a product of h elements of S. A 
reduced decomposition of w is a sequences = (s1, ... , sh) in S with w = s1 ... sh and 
h = l(w). Notice that l(w) = l(w-1). 

8.3.2. Lemma. Let s = (s1, ... , sh) be a reduced decomposition of w e W, with 

Si = Sa; (ai E D). 
(i) R(w) = {ah, sh.ah-I, ... , sh··•s2.ad; 
(ii) The number of elements of R(w) is l(w); 
(iii) If a E D then l(wsa) = l(w) + 1 if w.a E R+ and l(wsa) = l(w) - 1 if 
w.a E -R+, and similarly for saw; 
(iv) If a e D and w .a e - R+ there is a reduced decomposition of w with last element 

Sa; 

(v) Ifs'= (si, ... , s~) is any reduced decomposition of w, there is i with 1 < i < h 

such that s1 ... si-tSi+t ••·sh = si ... s~-t. 

(i) holds for h = 1. Leth > 1 and put w' = s1 ... sh-I. By induction we may as
sume that R(w') = {ah-1, sh-1 .ah-2, ... , sh-1 ... s2.ad. Then (i) will follow from (23) 
if w'ah e R+. If this were not the case we would have ah= sh-t••·si+1.ai for some 
i, whence sh= sh-t••·si+tsisi+I···sh-t and w = s1 ... si-tSi+t••·sh-t, contradicting the 
minimality of h. We have proved (i). 

(ii) is a consequence of (i) and (iii) follows from (ii) and (23). For the last point 
use l(w) = l(w-1 ). If a is as in (iv), then using (i) we see that there is i with 
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wsa = s1 ... s;_1s;+1 ... sh, whence (iv). This also implies (v). □ 

Ifs, t e Sands =/:- t we denote by m(s, t) the order of st in W. (From 7.5.1 (ii) 
we know that m(s, t) e {2, 3, 4, 6}.) Notice that m(s, t) = m(t, s). 

8.3.3. Proposition. Let µ, be a map of S into a multiplicative monoid with the follow
ing property: ifs, t e S, s =/:- t then 

µ,(s)µ,(t)µ,(s) ... = µ,(t)µ,(s)µ,(t) ... , 

where in both sides the number of factors is m(s, t). Then there exists a unique exten
sion ofµ, to W such that ifs= (s1, ... , sh) is a reduced decomposition of w e W we 
have 

(24) 

We have to show that the right-hand side µ,(s) of (24) is independent of the choice of 
the reduced decomposition of w. Let s as above and s' = (s~, ... , s~) be two reduced 
decompositions of w. We proceed by induction on h = l(w). We may assume that 
h > 1. Let i be as in 8.3.2 (v). If i > 1 then s; ... sh = s;+1 ... shs~ has length 
h - i + 1 < h. By induction we have 

and 

from which we conclude that µ,(s) = µ,(s'). It follows that we may assume that the 
two reduced decompositions have the forms = ( ... , s, t), s' = ( ... , t, s), with dis
tinct elements s, t e S. Proceeding in the same manner with the two new reduced 
decompositions we further reduce to the case thats= ( ... , t, s, t), s' = ( ... , s, t, s). 
Continuing we end up with reduced decompositions covered by the assumptions. D 

8.3.4. Theorem. The set of generators Sand relations s2 = 1, (strcs.t> = 1 (s, t e 

S, s =/:- t) give a presentation ofW. 

Let W be the group defined by generators s (s e S) and relations s2 = 1, 
(sircs.t> = 1 (s =/:- t). We have a homomorphism rr : W ➔ W sending s to s. 
By 8.3.3 there is a mapµ : W ➔ W with µ(w) = s1 ... sh ifs = (s1, ... , sh) is a 
reduced decomposition of w. It is immediate that rr o µ and µ o rr are identity maps. 
Hence rr is bijective. □ 

By 8.2.4 (ii) there is a unique element w0 e W with w0 .R+ = -R+. By 8.3.2 (ii) 
it is the element of W with maximal length. We put Bu = U. 
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8.3.5. Lemma. Let w E W. 
(i) The groups Ua with ct E R(w) generate a closed, connected subgroup Uw of U 
that is normalized by T. We have Uw = flaeR(w) Ua (the product being taken in any 
order); 
(ii) The product morphism Uw x Uwow ➔ U is an isomorphism of varieties. 

Uw is closed and connected by 2.2.7 (i). It is normalized by T. Using 8.2.3 we 
see that the product of (i) is a group, hence must coincide with Uw, Now (ii) follows 
from 8.2.1. □ 

Let (tb)wew be a set of representatives in Na(T) of the elements of W. We denote 
by C ( w) the double coset Bw B. It is an orbit of B x B acting in G, hence is a locally 
closed subvariety of G, i.e. an open subvariety of a closed subvariety of G (by 2.3.3 
(i)). 

8.3.6. Lemma. Lets = (s1, ... , sh) be a reduced expression of w E W, with 
Si = Sai (Cii E D). 
(i) The morphism <I>: Ah x B ➔ G with 

defines an isomorphism Ah x B ~ C(w). 
(ii) The map (u, b) H- uwb is an isomorphism of varieties Uw-1 x B ~ C(w). 

We have C(w) = BwB = UwB = Uw-1Uw0w-1tbB (8.3.5 (ii)). Since by 8.1.12 
(2) we have w-1 Uwow-1 w C Bit follows that C(w) = Uw-1 wB. By 8.3.2 (i) 

R(w-1) = {c:t1, s1c:t2, ... , s1 .. ,sh-tcth}. 

Using 8.1.12 (2) we obtain 

whence 

and 

By induction on h we may assume that the assertion of the lemma is true for s1 w = 
s2 ... sh, We can then conclude from the last formula that <I> is surjective. <I> is the com
posite of an isomorphism Ah x B ➔ Uw-1 x B (see 8.3.5 (i)) and the morphism of 
(ii). We have to prove that the latter morphism is an isomorphism or, equivalently, that 
(u, b) H- w-1uwb defines an isomorphism of Uw-1 x B onto w-1.C(w). This can 
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be done by viewing both spaces as homogeneous spaces for Uw-1 x Band applying 
5.3.2 (iii). We skip the details. □ 

8.3.7. Lemma. Let w e W, s e S. We have 

C(s).C(w) = C(sw) if l(sw) = l(w) + 1, 
C(s).C(w) = C(w) U C(sw) if l(sw) = l(w) - 1. 

Lets = Sa (a e D). By 8.3.6 (ii) we have C(s) = UasB, whence C(s).C(w) = 
UasC(w). For l(sw) = l(w) + 1 the assertion follows from 8.3.6 (i). If l(sw) = 
l(w) - 1 we have C(s).C(w) = C(s).C(s).C(sw). The lemma will follow if we 
show that 

C(s).C(s) = C(e) U C(s). (25) 

Using 7.2.2 (i) we see that C(s) U C(e) is the group Ga of 7.1.3. By 7.2.4 the quotient 
by its radical is isomorphic to SL2 or PSL2. It then suffices to prove (25) in the case 
that G = SL2. We leave the proof to the reader. D 

8.3.8. Theorem. [Bruhat's lemma] G is the disjoint union of the double cosets 
C(w) (w E W). 

Put G1 = Uwew C(w). From the preceding lemma we conclude that C(s).G 1 = 
G 1. It follows that G 1 is stable under multiplication by the subgroups T, U a, U -a ( a E 

D). As these groups generate G (8.2.10), we must have G 1 = G. 
Let w, w' e Wand assume that C(w) n C(w') i= 0. Then C(w) = C(w'). Since 

by 8.3.6 (i) we have dim C(w) = l(w) +dim B, it follows that l(w) = l(w'). We may 
assume that l(w) > 0. By 8.3.2 there is s e S with l(sw) = l(w) - 1 and by 8.3.7 

C(sw) C C(s).C(w') C C(w') U C(sw'), 

whence C(sw) = C(w') or C(sw) = C(sw'). By induction on l(w) we find that 
either sw = w' or sw = sw'. The first case is impossible because l(sw) i= l(w'), 
hence w = w'. □ 

8.3.9. Corollary. [Bruhat decomposition] An element of G can be written uniquely 
in theform uwb with WE w, U E Uw-1, b EB. 

This follows from the theorem and 8.3.5 (ii). □ 

8.3.10. Corollary. The intersection of two Borel subgroups of G contains a maxi
mal torus. 

We may assume that the two Borel groups are B and B' = g Bg-1. Write g = 
bwb', with we W, b, b' e B. Then bTb-1 c B n B'. □ 
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8.3.11. Corollary. There is a unique open double coset, viz. C(w0), where w0 is the 
longest element of W. 

C(w0) is the only double coset with dimension equal to dim G (as follows from 
8.3.5 (i) and 8.1.3 (ii)). It is open by 2.3.3 (i). D 

8.3.12. Exercises. (1). Put B = G/ B. The group G acts on Bx B by g.(xB, yB) = 
(gxB, gyB). For w e W let O(w) be the orbit of (B, wB). Show that the following 
statement is equivalent to 8.3.8: Bx Bis the disjoint union of the orbits O(w). 
(2) Let G = GLn. Now the points of B can be viewed as complete flags in V = kn 
(see 6.2.11 (1)). Let (V1, ... , Vn_ 1) and (V{, ... , V~_ 1) be two complete flags. There 
is a unique permutation a E Sn together with a basis (e1, ... , en) of V such that 
(e1, ... , e;) is a basis of V; and (eu.l, ... , eu.;) a basis of V( (1 ::: i < n - 1). Us
ing the preceding exercise, deduce another proof of Bruhat's lemma in this particular 
case. 
(3) Assume that G is defined over the finite field F and let a be the Frobenius mor
phism (4.4.16). Assume that a B = B. Then a acts on B = G/ B. 

(a) For w e W put 

Z(w) = {x EB I (x, ax) E O(w)}, 

where O(w) is as in (1). Show that Z(w) is a locally closed subset on which the finite 
group au acts. 

(b) Z(w) is a union of some Z(x) (see also 8.5.4). 
(c) Let G = GLn, B = Tn, the group of upper triangular matrices. We have 

W = Sn (8.2.11 (1)). Let w be the cyclic permutation (12 ... n). Using the preced
ing exercise show that in this case Z(w) is the set of complete flags (Vi, ... , Vn_1) in 
V = kn such that there exists v e V with the property that (v, av, ... , ai-lv) is a ba
sis of V. Define a bijection of Z ( w) onto the complement of the union of all rational 
hyperplanes in pn-l (i.e., hyperplanes given by a linear equation with coefficients in 
F). 
(4) Lett e T. With the notations of 8.3.9 let g = uwb be an element of the centralizer 
Za(t). Then u, wand b centralize t. Show that Za(t) is generated by Za(t)0 and the 
set of tiJ where w e W, w.t = t. (Hint: use 6.3.5 (ii).) 

8.4. Parabolic subgroups 

In this section we shall use Bruhat's lemma to describe the parabolic subgroups of G 
containing B (and hence, by the conjugacy of Borel groups, all parabolic subgroups). 

8.4.1. If/ is a subset of our basis D, denote by W1 the subgroup of W generated by the 
reflections Sa with a e / and by R1 c R the set of roots that are linear combinations 
of the roots in/. Put S1 =<nae/Ker a)0, Li= Za(S1), Then Li is a connected re
ductive subgroup of G with maximal torus T and Borel subgroup B 1 = B n L 1 (6.4. 7). 
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8.4.2. Lemma. (i) The root system R(L1, T) and the Weyl group W(L1, T) are R1, 
respectively W1; 
(ii) The system of positive roots Rt(B1) is Rt = R+ n R1 and the corresponding 
basis of R1 is /. 

Let QI be the subgroup of X spanned by /. The cocharacter group X * (S 1) is 
the annihilator (QI).1. From 8.1.2 and 5.4.7 we see that R(L1 , T) is the set of 
a E R = R(G, T) which lie in ((Q1).1).1 = Q1. From 8.2.8 (iii) we conclude 
that a lies in R1. Now (i) follows. That Rt(B1) = Rt follows by using 8.1.3 (i). The 
proof that / is the corresponding basis is left to the reader. D 

8.4.3. Theorem. (i) Pi = UweWi C(w) is a parabolic subgroup of G containing 
Band Li; 
(ii) The unipotent radical Ru(P1) is generated by the Ua with a ER+ - R1; 
(iii) The product map Li x Ru(P1) ➔ Pi is an isomorphism of varieties; 
(iv) If P is a parabolic subgroup containing B there is a unique subset I of D such 
that P = Pi. 

It follows from 8.3.7 that P1 is the subgroup of G generated by C(e) = B and 
the C(sa) with a E /. Since U±a and T lie in C(e) U C(sa) we conclude from 8.2.10 
that Li C Pi. Let w0 be the longest element of W1. Then dimC(w0) > dimC(w) 
for w E W1, w =f. w0. Using 2.3.3 (i) we see that C(w0) contains a non-empty open 
subset of the closure P1. By 2.2.4 (ii), P1 is closed. This proves (i). 

If a E R+ - R1 then a = LpeD np/J with np > 0 for some fJ E D - I. This 
implies that also sya E R+ - R1 for y E /. Hence W1 stabilizes R+ - R1. It follows 
that R(w0) = Rt (notation of 8.3.1). Applying 8.3.5 (ii) with w = w0 we obtain 
a decomposition U = U1 .U2, where U1 (U2) is generated by the a with a E Rt 
(respectively: a E R+ - Rt). Also, U2 is normalized by the elements w for w E W1 

(use 8.1.12 (2)). According to 7.6.3, Ru(P1) is the identity component of 

n wuw-1 = ( n wU1w-1).U2. 
wEWJ wEWJ 

Since L1 is reductive the last intersection is {e} and Ru(P1) = U2, which establishes 
(ii). 
For w E W1 write C' ( w) = BI w B 1 ( assuming that w has been chosen in L 1 ). It 
follows from 8.3.5 (ii) that C(w) = C'(w).Ru(P1 ). Using Bruhat's lemma for L 1, we 
conclude that Pi = LI• Ru ( P1). The argument yields, more precisely, that the product 
map L1 x Ru(P1) ➔ P1 is bijective. Now (iii) follows by an application of 5.3.3 (ii). 

Let P be a closed subgroup containing B. The set R1 of roots of (P, T) (see 
7.4.3) is a subset of Rand the set of positive roots Rt(B) (7.4.6) intersects Din a 
subset /. If a E / the subgroup Ga of 7 .1 relative to P coincides with the similar 
group relative to G (since their Lie algebras coincide), and it follows that U _a C P. 
By 8.2.10 we conclude that L1 c P, moreover Ru(P1) CB C P, whence (by (iii)) 
P1 C P. The root systems of L 1 and Pare isomorphic. It follows from 8.1.3 (ii) that 
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dim L 1 = dim P / Ru(P), which implies that 

Hence P = Pi. □ 

Let P be a parabolic subgroup of G. A Levi subgroup L of P is a closed subgroup 
of P such that the product map L x Ru(P) ➔ Pis bijective. 

8.4.4. Corollary. A maximal torus of P lies in a unique Levi subgroup. 

We may assume that P = P1 , as in 8.4.3, the maximal torus being T. The state
ment of the corollary then asserts that L I is independent of the choice of the Borel 
subgroup B (with T c B c P). This follows from the fact that two such Borel 
groups are conjugate by an element w with w E W1 (see 6.4.12). D 

Let ). be a cocharacter of G, i.e. a homomorphism of algebraic groups Gm ➔ G. 
In 3.2.15 we have associated to). a closed subgroup P().) of G, viz. 

P().) = {x E G I lim ).(a)x).(a)-1 exists}. 
a➔O 

8.4.5. Proposition. P().) is a parabolic subgroup of G. Any parabolic subgroup of 
G is of this form. 

We may assume that ). is non-trivial and that Im ). c T. So ). E xv. Let R+ 
be a set of positive roots such that the roots a E R with (a,).} > 0 lie in R+. (To 
obtain one, first choose µ, E V close to ). not orthogonal to any root and, with the 
usual notations, define R+ = {a I (a,µ) > 0}). If a E R+ then Ua C P().). Hence 
P().) contains the Borel group B :::) T with R+(B) = R+ and P().) is parabolic. 
In fact, we have (relative to this Borel group) P()...) = P1 , where/ is the set of sim
ple roots orthogonal to).. This also implies that every parabolic subgroup is a P().). □ 

8.4.6. Exercises. ( 1) Let H be a closed connected subgroup of G containing T. 
Let R' be the set of roots a E R with U a c H. Show that H is parabolic if and only 
if R' U ( - R') = R. (Hint: if the condition holds, take a Borel subgroup B of G such 
that B' = H n B is a Borel group of H and show that B' = B .) 
(2) Let P and Q be parabolic subgroups of G. Then (P n Q)Ru P is parabolic. 
(3) Let / and J be subsets of D. Let A be a set of representatives in W of the double 
cosets W1wW1 . Show that G is the disjoint union of the double cosets P1wP1 (w E 

A). 
(4) G = GLn, acting in V =kn. Let F = (V1, ... Vs) be a flag in V (6.2.11 (1)). Take 
a basis (e1, ... , en) such that each Vh has a basis (e1, e2, ... , enh), let the Borel group B 
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be the stabilizer of the complete flag (ke1, ke1 + ke2, .... ) and let T be the maximal 
torus whose elements fix all subspaces keh. 

(a) The stabilizer P:,: of Fis a parabolic subgroup of G. 
(b) Let D be the basis of the root system R(G, T) defined by B, described in 

8.2.11 (1). By 8.4.3 (iv) there is a unique subset I of D with P:,: = P1 . Determine I. 
( c) Any parabolic subgroup P of G is the stabilizer of some flag F. 
(d) Discuss similar results for the case of special orthogonal groups (char k # 2) 

and symplectic groups (see 6.2.11). 
(5) The unipotent radical of the parabolic subgroup P()..) of 8.4.5 is the group U ()..) = 
{x E G I lima➔O )..(a)x)..(a)-1 = e}. 
(6) Let G be semi-simple and simply connected (8.1.11). Let P be a parabolic sub
group of G, with Levi group L. Then the commutator group (L, L) is semi-simple 
and simply connected. (Hint: use 8.1.8 (iii).) 

8.5. Geometric questions related to the Bruhat decomposition 

The notations are as in 8.3. The decomposition of 8.3.8 implies a similar result for 
the homogeneous space B = G / B, which is called a jla,g variety (it is uniquely de
termined by G, up to isomorphism). Let 1r : G ~ B be the canonical map. Put 
X(w) = nC(w). 

8.5.1. Proposition. (i) B is the disjoint union of the locally closed subvarieties 
X(w) (w e W). They are the B-orbits in B; 
(ii) X(w) (we W) is an affine variety isomorphic to A1(w>; 

( iii) X ( w) contains a unique point Xw fixed by T; 
(iv) There isa cocharacter).. e xv such thatforallx E X(w) we havelima➔O )..(a).x = 

(i) is a consequence of8.3.8. By 8.3.6 (ii) and 8.3.5 (i) we have 1rC(w)::::: Uw-1 ::::: 

A1(w), whence (ii). The fixed point xw of of (iii) is n(w). For the cocharacter of (iv) 
take any ).. e xv such that (a,)..} > 0 for all a e R+. Then )..(a)ua(b))..(a)-1 = 
Ua(a(a,>.)b) (a e k*, be k), from which it follows (using 8.3.5 (i)) that for u E Uw-1 

we have lima➔O ).(a)u).(a)-1 = e. This implies (iv). □ 

8.5.1 gives a stratification of B, i.e. a decomposition of B into locally closed 
pieces called strata. The strata X(w) are affine spaces, called Bruhat cells. A closure --
S(w) = X(w) is a Schubert variety. There is a unique open stratum X(w0), called 
the big cell. Its translates g.X(wo) cover B. This observation has the following con
sequence. 

8.5.2. Lemma. 1r has local sections. 



150 8. Reductive Groups 

Local sections were defined in 5.5.7. That 1r has a section on X (w0) follows from 
8.3.6 (ii). Using translations we obtain the lemma. D 

8.5.3. It follows from 5.5.8 that for any B-variety Z we have an associated fiber 
bundle G x 8 Z over B. Interesting cases are : (a) Z is a vector space with a linear 
action of B. In the particular case of a one dimensional vector space, G x 8 Z is a line 
bundle over B with G-action (see 8.5.7); (b) Z = B, the action being conjugation. 
In this case the associated fibre bundle is of interest for the finer study of conjugacy 
classes of G (see [Slo, no. 4]). 

8.5.4. Let w E W. It follows from 2.3.3 (i) that the closure C(w) is a union of 
some C(x). We define an order relation on W by x :5 w if C(x) c C(w) (it is imme
diate that this relation defines an ordering). We could also have defined the relation in 
a similar manner, using the Bruhat cells. We shall give a combinatorial description of 
the order. Lets= (s1, .. ,sh) be a reduced decomposition of w E W (8.3.1) and denote 
by W (s) the set of x E W that can be written in the form x = si1 ... Sim with m > 0 and 
i 1 < . . . < im, i.e. W (s) is the set of elements obtained by erasing some factors of the 
product s1 ... sh, 

8.5.5. Proposition. Let w, x E W. Then x < w if and only if x E W (s ). 

Write Pi = C(e) U C(si) (1 < i < h). By 8.4.3 (i) this is a parabolic subgroup. 
It follows from 6.2.11 (5) that P1 ... Ph is an irreducible closed subset of G. By 8.3. 7 it 
is the union of the double cosets C(y) with y E W(s). Among these there is a unique 
one of maximal dimension, namely C(w), so C(w) is contained in P1 ... Ph, Since 
both sets are irreducible, closed, and have the same dimension, they must coincide. D 

8.5.6. Corollary. W (s) is independent of the choice of the reduced decomposition 
sofw. 

The corollary can also be proved combinatorially (see [Hu2, 5.10]). 

8.5.7. Equivariant line bundles on B. 

With the usual notations, let x E X be a character of T and also denote by x the 
character of B that it defines (see 7.3.6). Let V be the one dimensional B-module 
with underlying vector space k and action b.a = x(b)-1a (a Ek, b E B). We write 
L(x) = G x 8 V (see 8.5.3 and 5.5.8). This is a G-variety, the action coming from 
left translations in G. We have a G-morphism p : L(x) ➔ B with local sections, 
whose fibers are k. L(x) is the equivariant line bundle on B defined by x. 

If g E G, a E k denote by g * a the image of (g, a) in L(x). Let a be a section 
of p on B. There is a unique f E k[G] with a(gB) = g * f (g) and we have for 
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g E G, b EB 

f(gb) = x(b)f(g). (26) 

These functions form a vector space r(x), the space of sections of the line bundle 
L(x). 

We denote by x+ the set of x e X such that (x, av} > 0 for all a e D. 

8.5.8. Theorem. r (x) is a finite dimensional vector space that is non-zero if and 
only if X E x+. 

Assume that r(x) # {O}. Using 7.3.6 one shows that x e x+. 
Now assume that x e x+. Put Q = C(w0) and let r(n, x) be the vector space of 

regular functions / on Q satisfying (26) for g e Q, b e B. We have a locally finite 
representation).. of Bin r(n, x) by left translations. By 6.3.1 there is h e r(n, x) 
which is a simultaneous eigenvector for the elements of >..(B). Hence h(uw0b) = 
x (b )h ( w0) (u e U, b e B). We shall show that h extends to a regular function on G, 
corresponding to a section of L(x). We first show that h extends to a regular function 
on the union of Q and a translates .n, wheres e S. 
By 8.2.1 we can write an element u e U in the form 

U = n Ua(Xa), 

aeR+ 

the product being determined by an ordering of the roots. It follows from 8.2.3 that 
if a is a simple root the coordinate Xa is uniquely determined, i.e. is independent 
of the choice of the ordering. For a e D we write ;a(u) = Xa. By 8.3.6 (ii) we 
have Q = TY, where Y = Uw0U, a closed subset of Q. If x = tuw0u' e Q write 
;a(X) = ;a(u) and put Ya= {y E Y I ;a(Y) # O} (a E D). Let na be as in 8.1.4 (i). 

8.5.9. Lemma. (i) For a E D there is a morphism <l>a : Ya ➔ Ya such that for 
t ET, y E Ya 

na(ty) = (sat).(av)(-;a(y))-1.</>a(y). 

We have ;a(<PaY) = -;a(Y) and</>~ = id; 
(ii) Q nna.Q = T.Ya. 

We have U = UaU1, with U1 = CTpeR+-{al Up. This is a normal subgroup of U 
that is also normalized by U-a· From formula (22) in 8.1.4 we obtain for a# 0 

naUa(a)U1 WoU C av (-a)-1 Ua(-a)U_aU1 woU = av (-a)-1 Ua(-a)U1 WoU. 

This formula implies the assertions of (i). It also follows that T.Ya C Q n na.Q. 
Since na.Q = T.Ya C C(sawo), (ii) follows from 8.3.8. □ 
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As a consequence of the lemma, we can evaluate hon na.Q n Q as follows: 

h(nauwou't) = (-~a(u))-(x.woav) X (t)h(wo). 

(Notice that ~a(u) =f. 0.) Since x E x+, this formula defines a regular function on all 
of na.n. It follows that h can be extended to a regular function on Q U na.n. 

The set I; of g E G such that h can not be extended to a regular function in 
a neighborhood of g is closed and stable under left and right multiplication by B. 
Hence I; is a union of double cosets C(w), where w =f. w0 and also w =f. sawo for 
all simple roots a, because for a simple root a we have C(sawo) n na.C(w0) =f. 0. 
Using 8.3.6 (ii) we conclude that dim I; =s: dim G - 2. Consider a translate U of Q. 

It is isomorphic to A2N x T (where N = IR+I). h defines a regular function on an 
open subset of U, whose complement has dimension < dim U - 2. Using the fact that 
k[U] is a unique factorization domain and 1.8.4 (3), we conclude that this function 
is regular on all of U. Since the translates of Q cover G we see that h extends to a 
regular function on G. We have shown that r (x) is non-zero if x E x+. 

It remains to be shown that r (x) has finite dimension. In the proof we use the 
order relation on X defined as follows: µ =s: v if v - µ is a sum of positive roots. No
tice thatµ =s: v implies w0v < w0µ. Tacts semi-simply on r(x) by left translations: 
()..(t))f(g) = f (t-1 g), so we can decompose f(x) into weight spaces. The restric
tion off E f(x) to Q is given by f(uwou't) = f'(u)x(t)f(wo) (u, u' E U, t E T), 
where f' is a regular function on U. Introduce coordinates Xa (a E R+) on U as be
fore. A straightforward calculation then shows that the weights of T in r (x) are all 
< -w0x. Since the Weyl group permutes the weights, they are also all > - x. The 
finite dimensionality now is a consequence of the following fact, the proof of which 
is left to the reader. For fixed µ E X the number of vectors with non-negative integral 
coordinates (ma)aeR+ satisfying LaeR+ maa :S µ is finite. □ 

The rational representation of G in r (x) are basic objects in the representation 
theory of G. If x E x+ there is a unique quotient of r (x) that affords an irreducible 
representation of G, and any irreducible representation is isomorphic to one obtained 
in this manner. For these facts, which are not hard to prove, see for example [Hu 1, 
no.31]. If char k = 0 the G-modules r(x) are irreducible. 

8.5.10. Exercises. (1) Notations of 8.5.1. Show that B = Uwew w.X(wo). (Hint: 
put B' = U w. X ( w0). Show that the closed set B - B' is empty by considering the 
T-action on it.) It follows that G = Uwew w.C(wo). 
(2) Notations of 8.5.5. Let X (s) = P1 x 8 P2 x 8 ... x 8 Ph, an iterated associated fiber 
space (5.5.8). 

(a) X (s) is a smooth variety. 
(b) The product map of G induces a morphism p : X(s) ➔ G. Show that the 

image of p is C ( w) and that the restriction of p to the inverse image of C ( w) is an 
isomorphism. 

( c) Establish similar results for the Schubert varieties S ( w). 
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One can show that pis a resolution of C(w) (cf. [Dem, no.31). 
(3) Let w, w' E W. The order relation on Wis as in 8.5.4. 
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(a) If X(w) n w0.X(w0w) -=fa 0 we have w' < w (Hint: consider the T-action on 
this intersection.) 

(b) Conversely, if w' < w then X(w) n w0.X(w0w) -=fa 0. 
(c) X(w) n w0.X(w0w) = wB. 

Notes 

Most of the results of this chapter are due to Chevalley, and can be found in [Ch4]. 
Along the way, we have proved the results on Weyl groups and root systems that we 
need. 

The first occurrence of a result like Bruhat's lemma seems to be in 1950 in a 
book in Russian by Gelfand and Neumark, for the case of GLn (C) (see the German 
translation, [GN, §181).For classical (orthogonal and symplectic) groups over C, F. 
Bruhat established the result in 1954 (see [Bru]). For algebraic groups see [Ch4, exp. 
13]. The theory of Bruhat decompositions in groups was axiomatized by Tits in his 
theory of 'BN-pairs', called 'Tits systems' in [Bou2]. The theory is exposed in [loc. 
cit., Ch. IV, §2]. The results of 8.3 provide the ingredients of a Tits system on G. We 
did not go into these matters. Nor did we mention in 8.3 or 8.4 the building associated 
to G. For the theory of buildings we refer to [Ron]. 

The varieties Z(w) of 8.3.12 (3) are the 'Deligne-Lusztig varieties', introduced 
in [DelL]. They are fundamental for the representation theory of the finite group Gu, 
see e.g. [Ca]. 

Parabolic subgroups are treated in [BoTl], they do not yet occur explicitly in 
[Ch4]. Several results of 8.4 follow from the theory of Tits systems. We have given 
independent proofs. 

Subgroups of semi-simple Lie groups similar to the U (>..) of 8.4.6 (5) occur in the 
older literature under the name 'horyspherical subgroups' (see e.g. [Gel, p. 78]). 

The order on W of 8.5.4 is sometimes called the Bruhat order, but it was first 
introduced by Chevalley. The proof of 8.5.5 follows [BoTl, Compl., p. 267]. 

We have included in 8.5 a proof of the basic result 8.5.8 on equivariant line bundles 
on the flag manifold. In a somewhat different formulation this is already contained in 
[Ch4, exp. 15]. 

We have not gone into the representation theory of reductive groups. This is 
treated at length in [Jani]. 



Chapter 9 

The Isomorphism Theorem 

G denotes a connected, reductive, linear algebraic group over k and T a maximal torus 
of G. The main result of this chapter is that the root datum \ll(G, T) introduced in 
7.4.3 determines G up to isomorphism. In the proof of this uniqueness result we shall 
study in detail the way in which G is built up from T and the groups Ua (a E R) of 
8.1.1 (i). We shall get involved with a number of technicalities about root systems. 

9.1. Two dimensional root systems 

In this section R is a root system in a real vector space V. We do not assume that 
it comes from an algebraic group. 

9.1.1. Classification. Assume that V is two dimensional. Let (a, {J) be a basis of 
R. It follows from 7.5.1 and 8.2.7 (ii) that we may assume that (/J, av} = -a, where 
a= 0, 1, 2, 3, and that (a, /Jv} = 0 or -1, if a= 0, respectively a =I- 0. Using 8.2.8 
and 8.2.9 it follows that the root system R coincides with the set S of 7.5.3 (2), in the 
four possible cases. Hence there are (up to isomorphism) four possibilities for R. For 
a = 1, 2 we have the root systems A2, respectively B2 of 7.4.7. With the notations 
used there one can take a = E1 - E2, /J = E2 - E3, respectively a = E1, /J = E2 - E1. 

For a = 0 we have the root system A 1 x A 1. For a = 3 we obtain the root 
system G2. Its twelve roots can be realized in the euclidean plane by taking a = 
E1, /J = -!E1 + ½✓3 E2. The coroots are given in terms of the euclidean metric by 
the formula of the proof of 7.1.8. The root systems A2, B2, G2 are irreducible. They 
are pictured below. 

In 7.4.7 there also appeared the two dimensional root system C2. This is isomorphic 
to the root system B2. 



9.1. Two dimensional root systems 155 

We next review some facts about general root systems, involving two dimensional 
systems. Let R be a reduced root system and denote by W the Weyl group. Fix a sys
tem of positive roots R+, whose basis is D. The rank of R is the number of elements 
of D. The bilinear form (, ) is as in 7.1.7. 

9.1.2. Lemma. Let ex, fJ e R be linearly independent roots. There is a system of 
positive roots R+ such that ex is a simple root of R+ and fJ is a positive linear combi
nation of ex and another simple root. 

Let (e1, ... , en) be a basis of V with e1 = ex, e2 = fJ. Define a total order on V 
as follows. If x = x1e1 + ... + x;e; with x; =/:- 0 then x > 0 if x; > 0. For x, y e V 
define x > y if x - y > 0. Then R+ = {ex e R I ex > 0} is a system of positive 
roots in the sense of 7.4.5 (check this) and ex is the smallest element of R+ for our 
order. It follows from the characterization of simple roots mentioned at the end of the 
proof of 8.2.8 that ex is a simple root of R+. It also follows that fJ is a positive linear 
combination of simple roots < fJ. Such simple roots being linear combinations of ex 
and {J, there can only be two of them. The lemma follows. D 

9.1.3. Lemma. Let ex, fJ e R be linearly independent roots. The set of integers i 
such that fJ + i ex e R is a segment [ -c, b] containing 0. We have b - c = - (/3, ex v}, 
and b +c < 3. 

By the previous lemma we may assume that R is two dimensional and that there 
is a system of positive roots R+ such that ex is a simple root of R+ and fJ e R+. The 
first statement of the lemma is readily checked in the four possible two dimensional 
root systems of 7.5.3 (2). 

The sequence of roots (fJ - ccx, ... , fJ + bcx) is the ex-string through fJ, its length 
is b + c + 1. The reflection Sa permutes the roots of the string and interchanges its 
first and last root. This remark implies the formula for b - c. The inequality for b + c 
follows from 7 .5 .1. D 

The set S of reflections Sa (ex e D) generates the Weyl group W (8.2.8 (i)). The 
length function l on Wis as in 8.3.1. If ex, fJ e D, denote by Ra.() the set of roots that 
are linear combinations of ex and fJ. If ex =/:- fJ this is a two dimensional root system 
with basis (ex, fJ), in which R!p = R+ n Ra./J is a system of positive roots. We write 
Ra = Ra.a = {±ex}. We denote the Weyl groups of these root systems by Wa./J· 

9.1.4. Lemma. Let ex, fJ e D and w e W be such that w.cx = {J. There exist 
cx1, cx2, ... , <Xs+l ED and w1, ... , Ws E W with thefollowing properties: 
(a) w = Ws ... W2W1 and l(w) = l(wi) + ... + l(ws), 
(b) CX1 = ex, <Xs+l = fJ and w;.cx; = CX;+1 (1 ::: i < s), 
(c) If CX; =/:- CX;+1 then w; E Wai,a;+i and if ex; = CX;+1 there is y =/:- ex; such that 
W; E Wai,Y (1 < i < s). 
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The lemma tells that the move from a to fJ defined by w can be built up from 
similar moves, each taking place inside a root system Ry.~-

Assume that w =j:. 1. By 8.3.2 (i) there is y e D with w.y e -R+. Then y =j:. a. 
It follows from 8.2.4 (ii) that there is w1 e Wa,y with w11.R;_Y = (w- 1.R+) n Ra,y• 
By 8.3.2 (ii), l(w) is the number of o e R+ with w.o e -R+ and l(w1) is the number 
of o e R;_Y with this property. Using that w 1 stabilizes R+ - Ra,y we also see that 

l(ww11) equals the number of o e R+ - Ra,y with the same property. It follows that 
l(w) = l(w 1) + l(ww11). We have that a= w- 1.{J is a simple root for the system of 
positive roots (w- 1.R+) n Ra,y = w11.R;_Y in Ra,y· It follows that a e w11 .{a, y }. 

Put a 2 = w1 .a. Then ww11.a2 = /J. Since l(ww11) < l(w) we may assume by 
induction that the assertion holds for a 2, /J and ww11. The lemma follows. □ 

9.2. The structure constants 

Now R is again the root system of our reductive group G. 

9.2.1. We fix a realization (ua)aeR of R in G. Recall that Ua (a E R) is an iso
morphism of Ga onto a subgroup U a of G that is normalized by T, and that we have 
the properties of 8.1.1 (i) and 8.1.4 (i). We fix a total order on R. If a, fJ e Rare lin
early independent, it follows from 8.2.3 that there exist unique constants ca,p;i,j e k, 

defined if i, j > 0, ia + j{J e R, such that 

(27) 

the product being over the pairs (i, j) as above. The order of the factors is prescribed 
by our total order. The Ca,p;i,j are the structure constants, relative to the realization 
and the order. If (c:_p;i,) is the set of structure constants for another realization (and 
the same order), we see from 8.1.4 (iv) that there exist Ca e k* (a e R) such that 
CaC-a = 1 and that 

We call such sets of structure constants (ca,p;i,i) and (c:_p;i,) equivalent. 

Put Ca,p;o,1 = Ca,p;1,o = 1 and Ca,p;i,j = 0 in the cases where we had not yet 
defined this constant. Now let a, fJ e R be arbitrary. As in 8.1.4 (i), put na = 
ua(l)u-a(-l)ua(l). This element normalizes T and represents the reflection Sa. For 
fJ e R, x e k define u11 (x) = nausa.p(x)n-;;1. Then (up) is a realization of R. It 
follows that there exist da,p e k* such that 

naup(x)n-;;1 = Usa,p(da,pX). 

9.2.2. Lemma. Let a and fJ be linearly independent roots and denote by 

(/J - ca, ... , fJ + ba) the a-string through fJ (9.1.3). 
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(i) da,p = Lf=max(O,c-b) (-lic-a,p;i,l Ca,p-ia;i+b-c,l; 

(ii) We have d-a,p = (-l)(P,av}da,p, da,pd-a,-p = da,pda,sa-P = (-l)(P,av}, 

da,pda,-P = 1, da,a = -1; 
(i i i)nanpn;;1 = (Sa .fJ) v (da,p )nsa-P· 
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We first assume that c = 0 i.e., that fJ - a ¢ R. Using formulas like (27) one sees 

that V = nia+jPER,j>O Uia+jp is a subgroup of G and that Vi = nia+jPER,j>l Uia+jp 
is a normal subgroup of V. Both V and Vi are normalized by U±a• The map 
</> : (xo, ... 'Xb) 1---+ nt=o Up+ia(X;) induces an isomorphism of groups M = kb+l ::::: 

V /Vi. The closed subgroup Ga = Za ((Ker a )0) of 7.1.3 is connected, reductive 
(7.6.4 (i)) and its commutator subgroup H is connected, semi-simple (7.3.1). It fol
lows from the proof of 7 .2.4 that there is a surjective homomorphism of algebraic 
groups lfr : SL2 ➔ H such that for x e k 

Then 

V, ( ~I ~ ) = n •• 

The group His generated by Ua and U_a (8.1.5 (i)). Since these groups normalize V 
and Vi, the same holds for H. Hence we can define an action p of SL2 on M by 

forge SL2, me M. Using (27) we see that 

(28) 

where (e;) is the canonical basis. (28) implies that p is a rational representation of 
SL2. For x e k* we have 

Put 

Then 
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Also, 

p ( ~ ~ ) p ( _;_, ~ ) e, = p ( -~-I ~ ) p ( ~ ~x ) e, (x Ek*). 

(29) 

Using (28) we can write the left-hand side of (29) in terms of the basis (eh). Com
paring coefficients of eb-i in both sides we obtain a formula for da,/J+ia, which is 
equivalent to the formula stated in (i). 

The formula for d-a,/3 of (ii) follows from n_a = av (-l)na (see 8.1.4 (ii)). More
over 

nanpn-;;1 = naup(l)u_p(-l)up(I)n-;;1 = Usa,p(da,p)U-sa.f3(-da,-f3)Usa.f3(da,f3), 

Using 8.1.4 (iii) we see that da,-/3 = d,;} Then (iii) follows from 8.1.4 (i). The 
remaining assertions also readily follow. D 

9.2.3. Lemma. Let a, {3, y e R and assume that f3 and y are linearly indepen

dent. 

(i) Csa-/3,sa.y;i,j - d-;;_~d;;_?da,i/J+jyCp,y;i,j is uniquely determined by the Cti,f;i',j' and the 

da,s, where 8 and E are positive linear combinations of f3 and y and i' + j' < i + j. 
In particular, Csa./J,sa.y;l.1 = d-;;_1d;,~da,/J+yCp,y;l,t,' 

(ii) cy,/J;i,j - (-Iicp,y;i,j is uniquely determined by the Cti.d'.j' of(i). In particular, 

Cy,/J;l,1 = -Cp,y;l,1· 

(i) is proved by conjugating both sides of (27) (for f3 and y) by na and rearranging 
the product in the right-hand side in the correct order, using (27) repeatedly. (ii) also 
follows by a repeated application of (27). We skip the details. □ 

9.2.4. We now assume that R has rank two and is irreducible, so is of one of the 
types A2, B2, G2. Let (a, /3) be a basis of R with the properties of 9.1.1 and let 
R+ be the corresponding set of positive roots. The bilinear form ( , ) on the am
bient vector space V is as before. We identify the coroot y v with 2( y, y )-1 y. In 
the case A2 we normalize such that (y, y) = 2 for all roots y. In the cases B2 and 
G2 we have two different root lengths, i.e. we have long and short roots. We nor
malize such that (y, y) = 2 if y is short. Then (y, y) = 4, 6 for a long root y of 
B2, respectively G2. The short roots of B2 are ±a, ±(a + /3) and its long roots are 
±(3, ±(2a + (3). The short roots of G2 are ±a, ±(a+ (3), ±(2a + /3) and the long 
roots ±{3, ±(3a + {3), ±(3a + 2(3). These facts follow from 7.5.3 (2), or can be read 
off from the figures of 9. 1. 1. 

9.2.5. Proposition. (i) We can normalize the Uy such that all structure constants 

lie in Z. I and that the following holds: 

(a) Ca,/J,i,j = 1 whenever i, j > 0 and ia + j/3 E R, 
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(c) all da.y, dp.y (y E R+) are ±1; 
(d) if R is of type G2 we have cp.3a+/J:l,l = l; 

(ii) The properties (a) and (d) (in type G 2) uniquely determine all structure constants. 

We use the following steps. 
(a) If y, d E R are linearly independent, there exists by 9.1.2 and 8.2.4 (ii) an element 
w of the Weyl group W such that w.y = a or p and w.d E R+. Apply 9.2.2 (iii) 
and 9.2.3 (i). Using that Wis generated by the simple reflections sy (y E D) (8.2.8 
(i)) and also using induction on i + j, we see that cy,B,i,j is determined by the values 
ca,E;i',j', cp,E;i'.j', da,E, dp,E where E E R+. If y and d have different lengths, it follows 
from 9.2.3 (ii) that we may assume y to be the short one. In that case we only have to 
consider the Ca,E;i' .j' with E long. 
(b) 9.2.2 (i) can be used to express some of the d's in terms of structure constants and 
9.2.2 (ii) gives relations between the d's. In particular, we obtain from 9.2.2 (i) 

dy,8 = 1 if y + d ¢ R, -y + d ¢ R, 

dy,8 = cy,8:1.1 ify +d ER, y -d ¢ R, 2y +d ¢ R. (30) 

In the latter case we have, moreover, 

(31) 

(c) In the cases B2 and G2 we exploit the representation p of SL2 in the space M 
introduced in the proof of 9 .2.2. 

We discuss the three possible cases. 

A 2. Now i = j = 1 in all non-zero structure constants cy,B;i,j· By step (a) and 
(30),(31) all structure constants can be expressed in the da,y and dp,y with y E R+. 

We have da,/J = Ca,/J:1,1 = -dp,a• We also have to consider da,a+/J• dp,a+/J· From 
9.2.2 (ii) we obtain 

Also, dp,a = -da./J, dp,a+/J = d;;_~. We can normalize such that da,/J = 1. The 
assertions of the proposition follow. 

B2. Using steps (a) and (b) we see that the structure constants are determined by 
Ca,/J;l,l, Ca,/J:2.1, Ca,a+/J:l,l, da,/J, da,a+/J• dp,a• By 9.2.3 (ii) and 9.2.2 

Ca,/J;l,l = -Cp,a,1,1 = d-p,a = -dp,a =/ 0, 

and 
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We now use step (c). Use the notations of the proof of9.2.2. In the present case b = 2. 
We have p(n)eo = xe2, p(n)e2 = x-1eo, with x = da.fJ• Since the determinant of 
p(n) must be 1, we conclude that p(n)e1 = -e1, which means that da.a+f:J = -1. 
Using 9.2.3 (ii) we obtain 

-1 = d-a.a+fJ = 1 - Ca,a+{J:t.tC-a,2a+fJ:1,1· 

Now C-a,2a+fJ;l,1 = Csa,a,Sa,fJ;l,1 · Using 9.2.3 (i) we obtain 

d-t d-t d C-a,2a+fJ:1,1 = a,pCa,{J,1,1 = - a,{J {J,a• 

Normalizing such that (a) holds, the assertions follow. 
G2. This is the most complicated case. By step (a) the structure constants are de

termined by following ones: Ca,fJ:i.j with (i, j) = (1, 1), (2, 1), (3, 1), (3, 2), Ca,a+fJ;i,j 

with (i, j) = (1, 1), (2, 1), (1, 2), Ca,2a+fJ:1,t, cp,3a+{J:t.t, together with the da,f, dp,s 

(E, ~ E R+). Using 9.2.2 (i) we obtain Ca,fJ:1,t = -dp,a =/- 0 and Ca,fJ:3,t = da,fJ =/- 0. 
Then, using 9 .2.3 (i) 

C-a,3a+fJ;l,1 = Csa,a,sa,fJ:1,1 =/- 0. 

We now use step (c). The notations are as in the proof of 9.2.2. Let M' be the subspace 
of the four dimensional vector space M generated by the vectors (p (g) - 1 )e3 (g E 

SLi). It is stable under p(SL2). Since e3 is an eigenvector for all diagonal matrices, 
M' contains e3, and also e0 Ek* p(n)e3. By (28) 

Since c-a,3a+fJ:t.t =/- 0 it follows that e2 E M' and also e1 E k* p(n)e2. So M' = 
M. Applying part (b) of 7.3.7 (3) we find that p is isomorphic to the dual of the 
representation p3 of SL2. Put 

Using part (a) of 7.3.7 (3) we see that there is a unique basis (f;)o~;~3 of M with 
f o = eo and such that 

u(x)fo 
u(x)f1 
u(x)h 

u(x)f3 

Jo + xf1 + x2 h + x3 /3 
/1 + 2xfi + 3x2 h 
h + 3xh 
/3 

The matrix coefficients of u(x) on this basis are the ca.ia+fJ:j,t, where the U;a+fJ (0 < 
i ~ 3) are normalized such that ca,fJ:i,t = 1 (0 ~ i < 3). Assume this has been done. 
Then all structure constants ca,y,i,j and cp,y;i,j with y E R+ are known, except for 
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a = Ca,f3;3,2, b = Ca,a+f3;1,2, c = Cf3,3a+f3;1.1· Now (3a + fJ, fJ) is a basis of a root 
system of type A2. Using what we already know, we conclude that c f. 0. To deal 
with the remaining structure constants a, b, c we make (27) more explicit. It follows 
from (27) that, </J being as in the proof of 9.2.2, we have form, m' E M, x E k 

</J(m)</J(m') = </J(m + m')u3a+213(J (m, m')), 

Here J is the bilinear form on M given (with obvious notations) by 

J(L x;J;, L x;J;) = -dx2x~ - cx3xb, 

with d = Ca+f3,2a+f3; 1.1 • Moreover, 

g(x, L x;J;) = bxxr - dx2xox1 + ax3xi. 

We have the 1-cocycle relation 

g(x + y, m) = g(x, u(y)m) + g(y, m) (x, y Ek, m EM). 

(32) 

(33) 

Inserting the formula for g we find after a straightforward calculation that b = -d = 
-3a. It follows from (32) and (33) that 

J (u(x)m, u(x)m') - J (m, m') = g(x, m + m') - g(x, m) - g(x, m'), (34) 

from which we see that the alternating bilinear form [ , ] on M with 

[m, m'] = J (m, m') - J (m, m') 

is invariant under all u(x) (x E k). In particular, 

0 = [Jo, Jd =[Jo+ xJ1 + x2 h + x3 h, J1 + 2xh + 3x2 /3] = 3c + d, 

whence d = -3c. If p = char k f. 3 we can conclude that c = a, and b = -d = 
-3a. If p = 3 we have b = d = 0. Using (34) a brief calculation shows that again 
a = c. Since cf. 0 by (31), we can normalize u3a+2/3 such that a = 1. 
The assertions of (i) will follow if we prove part (c). We have already seen that 

da,/3 = Ca,/3;3, 1, -d13,a = Ca,/3; 1, 1 • 

By our normalization these equal 1. Also, all da.ia+/3 are ±1, since these are matrix el
ements of p(n) (see the proof of9.2.2). Moreover da,3a+2/3 = 1, since (3a+2/J)±a f/. 
R. Similarly, df3,2a+f3 = 1. Using (31) we obtain that d13,3a+f3 = 1. We are left with 
d/3,a+/3· Since a + fJ = safJ, this equals di,~ by 9.2.2 (ii). This finishes the proof of 
9.2.5. D 
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9.2.6. Exercise. Assume R to be of rank two. Give an explicit description of the 
structure of the unipotent group U generated by the U a with a E R+, by a formula 
like (32). 

9.3. The elements na 

9.3.1. R is again arbitrary. The notations are as before. We fix a realization (ua)aeR 

of R in G. For a E R the element na of 8.1.4 (i) represents the reflection Sa E W. Put 
ta = av ( -1). By 8.1.4 (ii) we have n~ = ta, This an element of order < 2 of T. Let 
a, P E R be linearly independent. We denote by m(a, P) the order of sas13 . By 7.5.1 
(ii) m(a, P) equals one of the integers 2, 3, 4, 6. 

9.3.2. Proposition. Assume that a and p are simple roots, relative to some system of 

positive roots. Then 

the number of factors on either side being m(a, p). 

(a, P) is a basis of a two dimensional root system. We discuss the four cases of 
9.1.1. The case A1 x A1 is left to the reader. 

A2. It follows from 9.2.2 (iii) that 

Likewise, 

n13nan13 = (a+ P) v (d13,a)tana+/3• 

We have seen in the proof of9.2.5 that dp,a = -da,/3• Also, (a+ p)v =av+ pv (use 
the facts of 9.1.1). It follows that nan13na = n13nan13. Since m(a, P) = 3 we have 
proved the assertion. 

B2. Now m(a, P) = 4. The assertion to be proved is equivalent to 

(nan13)2 = (npna)2• 

From 9.2.2 (iii) we find 

whence 
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(use that np and n2a+p commute and that sp.(a + {3) = a, sp.(2a + {3) = 2a + {3). We 
have (a+ f3)v =av+ 213v, which shows that ta+/3 = ta, and the assertion follows. 

G2. Now m(a, /3) = 6. Using 9.2.2 (iii) it follows that we have to prove that 

and 

commute. Since n3a+f3 and na+/3 commute, we have to show that 

Using that S3a+f3·(a + /3) =a+ {3, S3a+f3·(3a + 2{3) = {3, Sa+p-(3a + /3) = 3a + 
{3, sa+p-(2a + /3) = a, the result to be proved simplifies to 

This follows from 

□ 

9.3.3. Fix a system of positive roots R+ in R and let D be the corresponding ba
sis of R. Lets = (sa" ... , sah) (with a 1, ... , ah e D) be a reduced decomposition 
of w e W (8.3.1). It follows from 8.3.3 and 9.3.2 that the element na1 ••• nah of the 
normalizer Na(T) is independent of the choice of the reduced decomposition of w. 

We denote this element by q,(w). So q,(W) is a set of representatives in Na(T) of the 
elements of W, uniquely determined by R+ and the realization of R. 

9.3.4. Exercises. (1) If w, w' e W then q,(ww') = q,(w)q,(w')c(w, w'), where 
c(w, w') is an element of order < 2 of T. If l(ww') = l(w) + l(w') we have 
c(w, w') = 1 (/ is the length function on W defined by R+, see 8.3.1). 
(2) Let W be the subgroup of G generated by the na, a e D. Then W is an extension 
of W by an elementary abelian 2-group. (More about W can be found in [Til].) 

9.3.5. Proposition. If y, l, e D and w e W are such that w. y = l, then 

There is a e k* with q,(w)uy(x)q,(w)-1 = u8(ax). We have to show that a = 1. 
Using 9.1.4 and 9.3.4 (1) we reduce the proof to the case that R is two dimensional. 
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Let a and fJ be as in 9 .1.1. We again discuss the four possible cases. The case A 1 x A 1 

is skipped. The reader is advised to use a picture of the root system in the other cases. 
A2. We may assume that y = a, S = fJ. We then must have w = sas13 . With the 

notations of 9.2.1 we have a = da,a+f3df3,a• It follows from what we established in the 
proof of 9.2.5 that a = 1. 

B2. Since a and fJ have different lengths we must have y = S. If y = fJ we 
have w = s2a+f3 and the result follows from the fact that n2a+f3 commutes with the 
elements of U13. If y = a then w = Sa+/3 = s13sas13. Using that da,a+/3 = -1 (which 
was established in the proof of 9.2.5) we obtain a = -df3,a+/3df3,a• By 9.2.2 (ii) this 
equals -(-l)(a./Jv) = 1. 

G2. As in the previous case we have y = S. If y = a then w = s3a+2/3 and 
the assertion follows from the fact that n3a+2f3 commutes with the elements of Ua, If 
y = fJ we have w = s2a+f3 and 

By 8.1.4 (iv) we have <p(w)u_13 (x)<p(w)-1 = u_13 (a-1 x). Formula (22) of 8.1.4 gives 
<p(w)n13<p(w)-1 = fJv(a)n13, whence (nan13)3 = <p(w)n13 = fJv(a)(n13na)3. From 
9.3.2 we conclude that /Jv(a) = 1, whence a= a(fJv(a))-1 = 1. D 

9 .4. A presentation of G 

9.4.1. In this section we describe Gas an abstract group. The root datum of (G, T) 
is 'II = (X, R, xv, Rv). We fix a system of positive roots R+ in R, a total order on 
Rand a realization of R in G. Denote by (ca,f3;i,j) the corresponding set of structure 
constants (9.2.1). 

Let D be the basis of R defined by R+. If a, fJ e D and a =j::. fJ, denote as in 9.1 by 
Ra./3 the two dimensional root system with basis (a, fJ). Put R1 = Ua,f3eD.a;=f3 Ra./3· 

9.4.2. We shall now describe a presentation of a group G. This will involve the 
field k, the root datum 'II and the structure constants cy.a;i,j, for roots y and S which 
are contained in some Ra,/3• The ingredients of the presentation are the following. 
(a) T = Hom(X, k*), the group of homomorphisms of abelian groups (written mul
tiplicatively). There is an isomorphism of groups 1'( : T ➔ T such that for x e 
X, t e T we have x(J'(t) = t(x) (cf. 3.2.10 (3)). The inverse of 1'( is given 
by (1'(- 1t)x = x(t) (t e T, x e X). For x e X define a homomorphism 
x : T ➔ k* by x(t) = t(x). For)... e xv define the homomorphism I : k* ➔ T 
by I(x)(x) = x(x.>-) (x e k, x e X). The Weyl group W acts on T by w.t(x) = 
t(w-1.x) (w E w, t ET, XE X). 
(b) For y e R1, x e k we have a generator uy(x). For x, y e k we impose the 
relations 

Uy(X + y) = Uy(x)uy(y), (35) 
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n (36) 
iy+ jSeR;i,j>O 

if y, a E R1 are linearly independent and both lie in some root system Ra,f3, where 
a, fJ E D and a -j; fJ. We also impose the relations 

if t E T, y E R 1 , x E k. 
(c) For y E R1 put 

tuy(x)i- 1 = uy(V(t)x), 

We require the following relations 

(37) 

(38) 

(39) 

(40) 

for a, fJ E D, a -j; fJ, where the number of factors in either side is the order m(a, fJ) 
of sasp. We also require 

Uy(X)U-y(-x-1)uy(X) = yV(x)ny (y E R1, XE k*). (41) 

Using (37) and (39) we see that nytn;1 e T with 

(42) 

Let G be the group generated by T and the uy(x) (y e R1), subject to the relations 
(35), ... ,(41). 

9.4.3. Theorem. The isomorphism rr : T ➔ T extends to an isomorphism of ab
stract groups rr : G ➔ G with rr(uy(x)) = uy(x) (y E R1, x Ek). 

The relations that we imposed are counterparts of relations holding in G. For (35), 
(37), (39), ( 41) see 8.1; (36) is the counterpart of formula (27) in 9 .2.1 and ( 40) of the 
formula of 9 .3.2. The counterpart of (38) for G occurs in the proof of 8.1.4. It follows 
that rr extends to a homomorphism rr : G ➔ G with the last property of the theorem. 
We must show that rr is an isomorphism. 

For y E R1 put Uy = Im uy, Then rr(Uy) = Uy. If y and 8 are two linearly 
independent roots contained in a root system Ra./3 (a, fJ E D), denote by Uy,s (re
spectively, Uy.s) the subgroup of G (G) generated by the U;y+js (the V;y+js) with 
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i, j > 0, i + j > I. Clearly, n(Uy,8) = Uy,B• By 8.2.2 we have a bijective 
map TT Uiy+js ➔ Uy,s (the product is over the pairs (i, j) as above, and the or
der of the product is prescribed by our given total order on R) and a bijective map 
VI : kn ➔ Uy,8, where n = dim Uy.B· Using (36) we obtain an analogous surjective 
map 'if, : kn ➔ Uy,8 with VI = n o {fr. Since VI is bijective and the restriction of n to 
Uy,8 is surjective it follows that n defines an isomorphism Uy,8 ➔ Uy,B• 

Next let y E D. If iy + j8 E R and j > 0, then either iy + j8, 8 E R+ or 
iy + j8, 8 E -R+. Let u;,s (respectively U~.8) be the subgroup of G (G) generated 
by the corresponding groups U;y+jsCU;y+js), An argument similar to that of the pre
ceding paragraph shows that n defines an isomorphism U~.s ➔ u;,8. By (36) both Uy 

and U_y normalize U~.s• hence so does ny, Since n(nyU8n; 1) = nyU8n;1 = Usy.B 
we must have nyU8n; 1 = Usy.B (for y simple, and y, 8 in a root system Ra,f3 with 
a, f3 ED). 

It follows from (40) (see 9.3.3) that there is a map <p : W ➔ G with <f>(w) = 
Da1 ... nah, where (sai, ... , sah) is a reduced decomposition of w E W. Consequently, 
if w lies in the Weyl group Wa,f3 of Ra,/3 and y E Ra,/3 we have <p(w)Uy</)(w)-1 = 
Uw.y• If y E R there exist by 8.2.8 (ii) w E Wand a E D such that y = w.a. Put 
Uy = <f>(w)Ua<f>(w)-1. Using 9.1.4 it follows from what we just established that Uy 
is well-defined, i.e. is independent of the choice of w and a. Then (37) holds for all 
y E R. Also, Uw.y = <p(w)Uy</)(w)-1 for all w E W, y E R. 

Next let y, 8 E R be linearly independent. By 9.1.2 there exist w E W and 
a, f3 E D with w.y, w.8 E Ra,f3• Then, (, ) denoting a commutator set, 

(Uy, Us) = </)(w)-1 (Uw.y, Uw.s)<f>(w), 

and (36) implies that 

n 
i,j~l,iy+j8eR 

Let U (respectively U) be the subgroup of G (G) generated by the Uy (Uy) with 
y E R+. The argument used twice before shows that n induces a bijection of U onto 
U and a bijection of the group B generated by T and U onto the Borel subgroup B 
of G defined by R+. Also, if for w E W we denote by Uw (respectively, Uw) the 
subgroup of G (G) generated by the Uy (Uy) with y E R+, w.y E -R+, then n 
maps Uw bijectively onto Uw. 

Put C(w) = B</)(w)B. Then n(C(w)) = C(w) = BwB (as in 8.3). Ifs = 
(s1, ... , sh) is a reduced decomposition of w withs; = Sa; (a; E D), we have as in 
8.3.6 (i) a bijection kh x B ➔ C(w) sending (x1, ... , xh; b) to 

Ua1 (x1 )</> (s1 )Ua2 (x2)</> (s2) .. -Uah (xh)<f> (sh)b 

and a bijection Uw-1 x B ➔ C(w). It follows that n maps C(w) bijectively onto 
C(w). 
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Also, 8.3.7 carries over to G. The fact that C(s) U C(e) is a group (used in the proof 
of 8.3.7) follows from (41). As in the proof of 8.3.8 one shows that G is the union of 
the C(w) (w E W). Using 8.3.8 we conclude that 1r must be bijective. D 

9.4.4. Exercises. (1) (Notations of 9.4.1.) T is as in 9.4.2. Let G be the group 
generated by T and symbols uy(x), Ila where x Ek, a E D, y E R+, subject to the 
relations (35), (36) (for y, 8 E R+), (37) (for y E R+), (39) (for y E D), ( 40), ( 42) 
(for y E D). Instead of (41) we impose 

lly(X)Dylly(x-1)n;1uy(X) = yV(x)ny, 

for y E D, x E k*. There is an obvious homomorphism 1r : G ➔ G. Show that it is 
an isomorphism. 
(2) Let F be any field. Let r be the group generated by symbols u(x), v(y) (x, y E 

F), subject to the following relations (A) and (B): 
(A) u(x + y) = u(x)u(y), v(x + y) = v(x)v(y) (x, y E F). 
For x E F* put w(x) = u(x)v(-x-1)u(x), a(x) = w(x)w(l)-1. 

(B) w(x)u(y)w(x)- 1 = v(-x2y) (x E F*, y E F). 
Prove the following facts. 
(a) a(x)u(y)a(x)-1 = u(x2y), a(x)v(y)a(x)-1 = v(x-2y) (x E F*, y E F). 
(b) Let U be the subgroup of r generated by the u (x) (x E F) and A the sub

group generated by the a(x) (x E F*). Show that r is the disjoint union of U A and 
Ux(l)UA. 

(c) There is a homomorphism 1r : r ➔ SL2(F) mapping u(x) and w(l) onto the 
elements u 1 (x) and n 1 of the proof of 7 .2.4. Show that Ker 1r is a central subgroup of 
r which is contained in A. 

(d) Let r' be the group generated by symbols u'(x), v'(y) (x, y E F) subject to 
relations (A') and (B') as before, and moreover also (with obvious notations) 
(C') a'(xy) = a'(x)a'(y) (x, y E F*). Show that r' is isomorphic to SL2(F). 
(3) Assume that G is semi-simple. The notations are as in 9.4.1. Let r be the group 
generated by symbols uy(x) (y E R, x E k), subject to the relations (35) and (36), 
where y and 8 are linearly independent roots. Denote by 1r : r ➔ G the obvious 
homomorphism. 

(a) Let Ube the subgroup of r generated by all uy(x) with y E R+. The restric
tion of 1r to U is bijective. 

(b) Put ny(x) = uy(x)u-y(-x-1)uy(x) (y E R, x Ek*). If y and 8 are linearly 
independent roots then 

ny(x)u&(y)ny(x)-1 = Usy.&(dy,&X(&,rv>y), 

where dy,& is as in 9.2.1. (Hint: adapt the proof of9.2.2.) 
( c) Let y E R and assume that there is 8 E R, linearly independent of y with 

(y, 8v} =I= 0. Then 

ny(x)uy(y)ny(x)-1 = u_y(-x2y) (x Ek*, y Ek). 
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(Hint: One may assume that R has rank two and that there is a basis (a, {3) with 
y #, a, f3 and such that y is positive, for the corresponding system of positive roots. 
For y #, 0 there is a relation 

n 
i,j>O;ia+ jfJ-/:a 

Conjugate both sides by na(x) and use (a), (b)). 
(d) If R is irreducible of rank> I then relation (38) of 9.4.2 is a consequence of 

the other relations. 

The group r of this exercise can be defined over an arbitrary field F. For more 
details see [Stl, St4]. 

9.5. Uniqueness of structure constants 

9.5.1. We now recall some facts about root systems, with which we assume the reader 
to be familiar (see for example [Bou2, Ch. VI]). Let R be a root system in the eu
clidean vector space V, with a metric as in 7 .1. 7, and let D be a basis of R. The 
Dynkin diagram V defined by D is a graph with vertex set D. Two distinct vertices 
a, f3 are joined by (a, 13v}(/3, av} bonds, with an arrow pointing towards the shorter 
root if a and f3 have different lengths. 

Assume R to be irreducible (8.1.12 (4)). We have the following properties: 
(a) Vis connected and is a tree, i.e. contains no circuits. 
(b) A multiple bond is either double or triple. If a triple bond occurs then R is of type 
G2. At most one double bond can occur and if it does V is a chain. If multiple bonds 
occur we have two possible root lengths. We then can speak of short and long roots. 

The connected Dynkin diagrams can be classified. The list of these is as follows. 

An (n 2: 1) 

Bn (n 2: 2) 

Cn (n 2: 3) 

Dn (n > 4) 

o-o-0- .. ,-0-0-o 

0-0-0- ... -0-0:::::::i= 0 

o-0-0--.. -0-o~o 

o-o-0-···-0-0 

I 
0 

o-0-0-0-o 

I 
0 
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o-o-o-o-o-o 

I 
0 

Es o-o-o-o-o-o-o 

I 
0 

o-o~o-o 

Let R be arbitrary. 

9.5.2. Lemma. There is a disjoint decomposition D = D1 U D2 such that distinct 
roots in D1, respectively D2, are orthogonal. 

We may assume that R is irreducible. Since 1) is a tree it has an endpoint a, which 
is joined to only one other vertex {3. The complement of a in D is a basis of a root sys
tem of smaller dimension. By induction we may assume that we have a decomposition 
D' = Di U D2 as in the lemma. If {3 E Di we may take D1 =Di, D2 = D2 U {a}. □ 

Let again R be the root system of the reductive group G relative to the maximal 
torus T, as before. Assume given a decomposition D = D1 U D2 as in 9.5.2. If 
different root lengths occur in an irreducible component of R, there exists by property 
(b) of9.5.1 a unique pair (a, {3) of adjacent vertices of the corresponding component 
of V, such that a is short and {3 is long. We then assume that a E D

1
, /3 E D

2
. The 

assumptions are as in 9.2.1. 

9.5.3. Proposition. Assume that 1) contains no triple bonds. 
(i) There exists a realization (ua)aeR of R in G such that the corresponding structure 
constants Ca:f3;i,j have the following properties: 

( a) If a E D1, /3 E D2 have the same length and a + {3 E R then Ca,f3; 1. 1 = 1, 
(b) Let a E D1, /3 E D2 and a+ {3 E R, with a short and {3 long. Then all 

structure constants Ca,f3;i,i (i, j > 0, ia + j/3 E R) equal 1. 
The values of the other structure constants are uniquely determined by the require
ments (a) and (b) (and the underlying total order of R); 
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(ii) We may assume that the realization of (i) is such that(</> being as in 9.3.3) 

</>(w)ua(x)<f>(w)-1 = Uw.a(±x), (43) 

for a e R, w e W, x e k. Then all structure constants lie in Z.1. If a, p, a + 
p, a - cp E R, a - (c + l)P ¢ R (c > 0) then Ca,,8;1,I = ±(c + 1); 
(iii) If (u:) is another realization with the properties of (ii) there exists signs Ea -

±1 (a E R) with E-a = Ea, such that u:(x) = Ua(EaX) (a E R, x Ek). 

The assumption about V is made for convenience, in order to avoid the case of a 
root system of type G2 (which in the context of the proposition is not an interesting 
one). We can normalize uy such that the structure constants have the properties (a) 
and (b) of (i). Then 9.2.5 (ii) shows that the structure constants cy,8;i,j, where y and 8 
lie in a root system Ra,,8 (as in 9.4.1) are determined. As a consequence of9.4.3, the 
root datum \JI of (G, T) together with these cy,8;i,j determines the group structure of 
G. From the proof of 9.4.3 we then obtain a realization with the properties of (i). 

Assume given the Uy with y in a root system Ra,,8 (a, p e D), such that (i) 
holds. For y e Ra,,8 and w e Wa,,8 (the Weyl group of Ra,p) we have (43). This 
follows by induction on l(w), using 9.3.4 (1) and the fact that the constants da,8 and 
dp,8 (8 e Ra,f3) are ±1 (see 9.2.5 (i)). Now let y e R be arbitrary. There are w e W 

and a e D with y = w.a. For x e k define uy(x) = <f>(w)ua(x)<f>(w)-1. From 9.3.4 
(1) and 9.3.5 we see that Uy is unique, up to a change of sign as in (iii). 

The last assertions of (ii) follow from 9.2.5 (i) if y and 8 lie in a root system Ra,,8• 
The general case then follows by using 9.1.2. We have also established (iii). D 

9.5.4. Theorem ( R arbitrary) The structure constants (ca.fJ;i,), for a fixed order 
on R, are unique up to equivalence. 

This follows from 9.2.5 and 9.5.3. 
In the next chapter we shall give an explicit formula for a set of structure con

stants, in the case that no multiple bonds occur in the Dynkin diagram. See 10.2. 

9.6. The isomorphism theorem 

9.6.1. Assume that G and G1 are two connected, reductive, linear algebraic groups 
over k, with maximal tori T, T1 and corresponding root data \JI = (X, xv, R, Rv), 
\111 = (X1, xr, R1, Rn. An isogeny </>: G ➔ G1 is a surjective homomorphism of 
algebraic groups with finite kernel. Then Ker</> is a central subgroup of G (2.2.2 (4)), 
which lies in T (7.6.4 (iii)). We have dim G = dim G1 (5.3.3 (i)). 

Assume that </> (T) = T1. The isogeny </> defines homomorphisms of character 
groups and cocharacter groups f = f (<I>) : XI ➔ X' respectively JV : xv ➔ xr. 
We have 
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Let a E R and let Ua be as in 8.1.1. Then ¢Ua is a connected, one dimensional, 
unipotent, subgroup of G 1 which is normalized by T1. By 8.1.12 (1) there is a 1 E R 1 

with ¢Ua = Ua1- Conversely, if a1 E R1 then (cp-1(Ua1))0 is a connected, one 
dimensional, uni potent, subgroup of G normalized by T, hence is a U a. It follows 
that there is a bijection b : R ➔ R1 with ¢Ua = Uba (a E R). 

If¢ is an isomorphism of algebraic groups then f (ba) = a for all a E Rand f 
defines an isomorphism of root data \111 ➔ \II, i.e. an isomorphism X1 ~ X mapping 
R1 onto Rand such that its dual maps Rv onto Rr. 

9.6.2. Theorem. [Isomorphism theorem] Let f be an isomorphism of \111 onto \II. 
There exists an isomorphism of algebraic groups cp : G ➔ G 1 with cp T = T1 and 
f = f ( cp ). If cp' is another isomorphism with these properties there is t E T such that 
cp'(g) = cp(tgt-1) (g E G). 

Let (ua)aeR and (ua)a1eR1 be realizations of R in G (respectively of R1 in G1). 

Choose total orders on R and R1 that correspond via f. It follows from 9.5.4 that 
we may assume that the structure constants Ca,f3;i,j and c r1a.r1 f3;i,j are equal. Let G 
and G 1 be the abstract groups defined in 9.4.2, for G respectively G1 (with systems of 
positive roots which correspond under f ). It is clear that f defines an isomorphism 
¢ : G ➔ G1. If rr and rr1 are the isomorphisms for G respectively G1 of 9.4.3, then 
cp = rr1 o ¢ o rr-1 is an isomorphism of abstract groups G ➔ G 1. It follows from 
the uniqueness part 8.3.9 of Bruhat's lemma that the restriction of¢ to the open set 
C(w0) of 8.3.11 is a morphism of C(w0) to G1. Also, the restriction of¢ to a translate 
g.C(w0) is a morphism. Since these translates cover G, cp is a homomorphism of 
algebraic groups. Reversing the roles of G and G 1 we see that ¢-1 is also a morphism 
and that ¢ is as required. 

To prove the last part of the theorem it suffices to show that an isomorphism ¢ 
of G fixing all elements of T and such that ¢Ua = Ua for all a E R, is an inner 
automorphism defined by an element of T. Let D be a basis of R. By 8.1.4 (iv) 
there exist Ca E k* with CaC-a = 1, such that ((ua) being a realization) cp(ua(x)) = 
ua(cax) (a E R, x E k). There exists t E T with a(t) = Ca for a E D. It follows 
that the restriction of v, to T and the U±a is conjugation by t. Since these groups 
generate G (8.2.10), ¢ is conjugation by t. □ 

9.6.3. We now consider the case that¢ is an arbitrary isogeny. Then f is an isomor
phism of X1 onto a subgroup of finite index of X. We have cp(ua(x)) = Uba(h(x)), 
where his a polynomial in one variable, with h(a(t)x) = (ba(cp(t))h(x) (t E T, x E 

k). It follows that his homogeneous. Since also h(x + y) = h(x) + h(y) (x, y Ek), 
there is a power q(a) of the characteristic exponent p of k such that, up to a constant, 
h(T) = Tq(a). We then have 

(44) 

If all q(a) equal 1 we say that¢ is a central isogeny. This is the case if char k = 0. 
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We say that a tripleµ= (f, b, q) where f is an isomorphism of X1 onto a sub
group of finite index of X, b a bijection R ➔ R1 and q a function R ➔ {pn}n>O 

defines a p-morphism of \111 to w if the properties established above hold. Ifµ comes 
from an isogeny </> we writeµ=µ(</>). An example of a p-morphism is a Frobenius 
morphism, with \111 = \II, f = q.id, b = id, q(a) = q, where q is a power of the 
prime number p. The notion of a p-morphism makes sense for abstract root data and 
for an arbitrary natural number p. 

Let \II and \111 be root data and letµ = (f, b, q) be a p-morphism of \111 to \II. 
Notations are as above. The root system R is assumed to be reduced (7.4.3). 

9.6.4. Lemma. Let a, fJ E R. 
(i) q(fJ)(ba, (bfJ)v} = q(a)(a, fJv}; 

(ii) b(sa,fJ) = Sba(bfJ); 
(iii) q(w.a) = q(a)forall w E W; 
(iv) If (a, /Jv} > 0 and q(a) < q(fJ) then p equals 2 or 3 and (a, /Jv} p, 
(ba, (bfJ)v} = 1, q(fJ) = pq(a). 

By (44) we have 

proving (i). Also, by (44) and (i) 

f(sba(bfJ)) = f(bfJ) - (bfJ, (ba)v}f(ba) = 

= q(fJ)(sa,fJ) = q(fJ)q(sa.fJ)-1 f (b(sa,fJ). 

Since f is injective, the roots sba (bfJ) and b(sa .fJ) differ by the positive factor 
q(fJ)q(sa,fJ)-1. Since R is reduced, these roots must be equal, whence (ii). It also 
follows that q(sa.fJ) = q(fJ), which implies (iii). Finally, (iv) follows from (i) and 
7.5.1. D 

In the next result G, G1 and \II, \111 are as in 9.6.1 and p is the characteristic 
exponent of k. 

9.6.5. Theorem. [Isogeny theorem] Let µ = (f, b, q) be a p-morphism of '111 to 
\II. There is an isogeny </>: G ➔ G1 with </>T = T1 andµ=µ(</>). If <I>' is another 
isogeny with these properties, there is t E T such that </>'(g) = <f>(tgt-1) (g E G). 

We sketch the proof, without going into all the details. The proof of the uniqueness 
statement is similar to the proof of the corresponding part of 9.6.2. 

There is a unique subgroup X' of the character group X of T containing Im f and 
such that the finite group X/ X' has order prime top. Let A c T be the subgroup 
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of T on which all characters of X' are trivial. Then A is a finite subgroup of T that 
is contained in the center of G. Put G' = G / A and let 'II' be the root datum of 
(G', T / A). The canonical map 1fr : G ➔ G' is an isogeny. We have a factorization 
µ, = µ(l/f) o µ',whereµ' is a p-morphism of \111 to 'II', with which we have to deal. 
To do this, we may assume that G = G', i.e. that Im f hasp-power index in X. If 
char(k) = 0 we have the case of the isomorphism theorem. 

Assume now that char k = p > 0 (and G = G'). Let G and G 1 be as in the proof 
of 9.6.2. Then G is generated by a group T and symbols uy(x) (y e R, x e k), 
subject to the relations of9.4.2, and similarly for G 1. If we can prove that there exists 
a homomorphism <J, : G ➔ G1 such that (<J,t)(x1) = t(f x1) (t e T, x1 e X1) 
and <J,(uy(x)) = Uby(E"yxq<r>) (y e R, x e k), with suitable signs E"y, then we can 
proceed as in the proof of 9.6.2 to prove the existence of¢. First assume thatµ is a 
Frobenius morphism, so that all q(y) are equal. We may assume by 9.5.3 (ii) that all 
structure constants for G and G 1 lie in the prime field. Then <J, exists, with E"y = 1 for 
ally e R. 

The crucial part of the proof of the existence of <J, is to show that the relations (36) 
can be preserved. But these involve only roots lying in a root system Ra.fJ (a, fJ e D). 
It suffices to deal with the case that R has rank two, which we assume from now on. 
We may also assume that G is semi-simple and that µ, is not a Frobenius morphism. 
Then we must have one of the cases of 9.6.4 (iv). Since R and R1 have the same 
number of roots, they must be isomorphic (by the classification of 9.1.1). We then 
may assume that G 1 = G, R1 = R, and we have by 9.1.1 that R is either of type 
B2 and p = 2 or of type G2 and p = 3. From 9.6.4 (iv) we can conclude that b 
interchanges long and short roots. 

Nowµ o µ, (defined in the obvious way) must be a Frobenius morphism (other
wise we get a contradiction with 9.6.4 (iv)). So µ is a 'square root of a Frobenius 
morphism'. Let a and fJ be as in 9.1.1. After composing with an element of the Weyl 
group we may assume that in type B2 

ba = fJ, bfJ = a, b(a + fJ) = 2a + fJ, b(2a + fJ) = a + fJ, 

and in type G2 

ba = fJ, bfJ = a, b(a + fJ) = 3a + fJ, b(2a + fJ) = 3a + 2/J, 

b(3a + fJ) =a+ fJ, b(3a + 2/J) = 2a + fJ. 

Moreover, q(a) = pn+l, q(fJ) = pn, where n > 0. To prove the existence of <J, we 
may assume that n = 0 ( compose with a Frobenius morphism to deal with the general 
case). It is now convenient to use the presentation of 9.4.4 (1). With the notations 
introduced there we have to show that there exists a homomorphism <J, : G ➔ G 
such that <J,(uy (x)) = llby(E"yxq<Y>), ¢(Ila) = /Jv (E"a)np, <J,(np) = av (E"p)na, where 
y e R+, x e k, the E"y being signs which are to determined. The subgroup of G 
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generated by the uy(x) (y e R+, x e k) can be explicitly described (see 9.2.6). Us
ing such a description one finishes the proof. For more details about the 'exceptional' 
isogenies of 9.6.4 (iv) we refer to [St4, § 11] ]. D 

9.6.6. Exercise. Complete the details of the proof of 9.6.5. 

Notes 

9.1 contains standard material. The treatment in 9.2 of structure constants in the case 
of a two dimensional root system is inspired by the computations made by Demazure 
in [SGA3, exp. XXIII, no.3], reproduced in [Hui, p. 209-215]. We have tried to 
exploit in these computations the representation theory of SL2 (see the proof of 9.2.2 
(i)). 

The useful result 9.3.2 is implicit in the results of [SGA3, exp. XXIII, no.3]. 
To deal with the structure constants in the general case we use the version 9.4.3 

of results of Steinberg (see [Stl] or [St4]) on generators and relations for semi-simple 
groups, generalized to the reductive case. 9.4.3 shows that a reductive group G can 
be obtained by 'amalgamation' from subgroups with two dimensional root systems, a 
result due to Curtis [Cu]. The results of Steinberg alluded to are of a wider scope, as 
they involve an arbitrary ground field. 

The main result of this chapter, the isomorphism theorem 9.4.1 is due to Chevalley 
[Ch4, exp. 24]. See also [Hui, no. 33]. In these references the group is assumed to 
be semi-simple (which is the crucial case). In [SGA3, exp. XXIII] the isomorphism 
theorem is proved for group schemes. 

The proof given here involves a study of structure constants, which is a bit tech
nical. Another proof, due to Takeuchi [Tak] and exposed in [Jani, 11.1.14], is more 
conceptual. It uses the hyperalgebra associated to a reductive group, which englobes 
higher order infinitesimal invariants of the group at the identity element. We have 
stuck, however, to the proof given in the previous edition. It involves some points of 
independent interest, such as the presentation of a reductive group given in 9.4.2. 

That structure constants are determined by the underlying root system up to equiv
alence (9.5.4) was proved by H. Azad [Az] in a different manner. 

The isogeny theorem 9.6.5 is also due to Chevalley (see [Ch4, exp. 23-24]). 



Chapter 10 

The Existence Theorem 

10.1. Statement of the theorem, reduction 

k is an algebraically closed field. This chapter is devoted to the proof of the fol
lowing existence theorem. 

10.1.1. Theorem. Let \II = (X, R, xv, Rv) be a root datum. There exists a con
nected reductive linear algebraic group Gover k with a maximal torus T, such that 
the root datum \ll(G, T) is isomorphic to \II. 

By 9 .6.2 such a group G is unique up to isomorphism. 

10.1.2. The proof is in several steps. (a) A reduction to the case that R spans X and 
is irreducible. Then the group to be constructed is quasi-simple and adjoint (8.1.11, 
8.1.12 (4))). 
(b) In that case G will be constructed as a group of automorphisms of its Lie algebra 
g in the case that R is simply laced, i.e. that no multiple bonds occur in the Dynkin 
diagram of R. We first have to construct the Lie algebra. This requires an explicit 
description of its structure constants. 
(c) For arbitrary R the construction of G is reduced to the simply laced case by using 
automorphisms 'folding'. 

We shall now carry out the details. Let \II be as before. Assume that X 1 is a 
subgroup of finite index of X containing R. We can then view xv as a subgroup 
of finite index of the dual xr' so RV is a subset of xr. We thus have a root datum 
\111 = (X1, R, xr, Rv). 

10.1.3. Proposition. Assume that there exists a connected reductive group G 1 over k, 
with a maximal torus T1 such that \ll(G1, T1) ~ \111. Then there exists a similar pair 
(G, T) with \ll(G, T) ~ \II. 

An easy argument shows that we may assume there is a prime number l such that 
IX c X1. Then X/ X1 is a vector space over F1. Choose x1, ... , Xm in X - X1 such 
that their images in X / X 1 form a basis of that vector space and let T be a torus with 
character group X (see 3.2.6). The Weyl group W of R acts on T. 

Fix a system of positive roots R+ in R and let D be the corresponding basis. Let 
(ua)aeR be a realization of R in G 1 (relative to T1). With the notations of 9.6.3 we 
have a I-morphism of \111 to \II. It follows that, if G exists, we may assume that T 
is a maximal torus of G and that there is a central isogeny (9.6.3) G -+ G1 mapping 
T onto T1. It also follows that the isogeny defines an isomorphism onto a group 
U a ( a e R) of the realization of a similar subgroup of G. 
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There is an obvious homomorphism </> : T -+ T1. Denote by B1 the Borel sub
group of G1 defined by R+ (8.2.4 (i)) and let Ube its unipotent radical. Let w0 be the 
longest element of the Weyl group W of R (relative to R+). Put C(w0) = B1 w0B1, as 
in 8.3.11. This is an open subvariety of G 1. Putting Y = U w0U, the variety C ( w0) is 
isomorphic to T1 x Y. It follows that we can view the quotient field k(G 1) (1.8.1) to 
be K1 = k(T1 x Y). Similarly, the quotient field of the group G to be constructed will 
be K = k(T x Y). Then K = K1 (x1, ... , Xm), a finite extension of K1 of degree 1m. 
The left translation action of G 1 on k[Gi] defines an action of G1 as an automorphism 
group of Ki. 

We now define automorphisms of K. The group T acts on T x Y, by translations 
in the first factor, whence an action of T on K. For y E R+, x E k we define an 
automorphism Uy (x) of T x Y by 

(notice that Y is invariant under left translations by elements of U). Next let a E D. 
We use the notations of 8.5.9. For (t, y) E T x Ya define 

Then Ra is an automorphism of T x Ya, It acts on K. Also, the uy(x) act as automor
phisms on K. Let G be the group of automorphisms of K generated by the automor
phisms defined by T, the uy(x) (y E R+, x E k) and the Da (a E D). These au
tomorphisms all stabilize K 1 and they induce the automorphisms of K 1 coming from 
left translations in G1 by, respectively, the elements of T1, uy(x) and na, It follows 
(for example by using 8.2.10) that any g E G stabilizes K 1 and that the restriction of 
g to K 1 is induced by left translation by an element of G 1, whence a homomorphism 
</> : G -+ G 1, extending the homomorphism T -+ T1. The automorphisms Uy (x) sat
isfy the relations (35) and (36) of 9.4 (with y, ~ E R+, the structure constants being 
those of G 1). Moreover we have tuy(x)t-1 = uy(y(t)x) (t E T, y E R+, x Ek) 

and Datn;;1 = sa(t) (a E D, t E T). By a straightforward check one proves the 
relation (see also 9.4.4 (1)) 

(45) 

where a E D, x E k*, t E T, for y in a dense open subset of Y ( depending on a 
and x ). It follows from 9 .4.4 ( 1) ( or from 8.2.10) that </> is surjective. If g E Ker </> 
then g is a K 1-automorphism of K = K 1 (x 1, . . . , Xm). Since Xk E K 1, we then must 
have g,Xh = (hXh, where (his an Ith root of unity. Such g exist, namely g E T with 
Xh(g) = (hand v,(g) = 1 for all v, E X1 (1 ::: h < m). Let p be the characteristic 
exponent of k. It follows that </> is surjective with kernel of order 1m, contained in T, 
if l f. p. Otherwise </> is bijective. 

It remains to identify G with an algebraic group. Choose a E k[Gd such that 
(axh)1 E k[Gd for a < h < m. By 2.3.6 (i) the elements (g.(axh))1 = </>(g).(axh)1 
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(g E G) lie in a finite dimensional subspace of k[Gi]. Then all translates g.(axh) lie in 
a finite dimensional subspace of K. In fact, ax lies in k[T x Y], which is isomorphic to 
an algebra R = k[T1, ••. , Tm, U1, ... , Un, U11, ... , U,;- 1]. One checks, by looking 
at degrees, that the set of r E R such that r1 lies in a fixed finite dimensional subspace 
of R, spans a finite dimensional subspace. 

Let Vi be a finite dimensional subspace of k[Gd that generates k[Gi], is stable 
under left translations and is such that the rational representation of G 1 in Vi defines 
an isomorphism of G 1 onto its image (see the proof of 2.3.7). Let V2 be the finite 
dimensional subspace of K spanned by all g.(axh) (g E G) and put V = V1 + V2. 

Then V generates K. Hence G is isomorphic to its restriction to V. 

Let y E R+. Then x 1--+ uy(x) defines a rational representation of Ga in 
k[T x Y], whose restriction to Vis a finite dimensional rational representation. Also, 
the restriction to V of the automorphisms defined by the elements of T defines a ratio
nal representation of T. For a E D, x E k define D-a (x) = Ila 0a ( - x )n;; 1. It follows 
from ( 45) that G is also generated by T and the Uy (x) (x E k), where y E R+ U ( - D). 
We conclude that G (identified with its restriction to V) is generated by a family of 
connected algebraic groups, hence is itself a closed, connected, subgroup of G L(V) 
by 2.2. 7. The homomorphism <I> is a restriction to Vi. Since G 1 is reductive, G must 
also be reductive. Moreover, T must be a maximal torus. We also see that <I> is a 
central isogeny. 

We claim that the weights of T in V span X. For the weights of T in V1 span X 1, 

and the T -translates of ax contain a weight in x + X 1, whence our claim. It follows 
that \II ( G, T) is isomorphic to \II, which finishes the proof. D 

10.1.4. Exercises. (1) Let G be connected, semi-simple. Show that there is a 
connecte~, semi-simple, simply connected group (8.1.11) G together with a central 
isogeny G ~ G. 
(2) Take G = SOn (n ~ 5, characteristic =j:. 2). Show that G is not simply connected. 
The group G of the preceding exercise is the spin group Spinn. 

10.2. Simply laced root systems 

10.2.1. Let R be a reduced root system in the real vector space V. We say that R 
is simply laced if for any two linearly independent roots a, f3 E R we have {a, /Jv) = 
0, ± 1. The positive definite symmetric bilinear form ( . ) on V is as in 7 .1. 7. Then 
{a, fJv) = 2(/J, /J)- 1 (a, fJ) (a, f3 E R). 

10.2.2. Lemma. Assume that R is simply laced. Let a, f3 E R be linearly inde
pendent in R. 
(i) If E = ±1 then a+ E/J ER if and only if {a, /Jv) = -E; 
(ii) If R is irreducible there is w E W with w.a = f3; 
(iii) If a+ f3 ER then (a+ fJ)v =av+ 13v. 
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(i) follows from 9.1.3, observing that all root strings must have length ~ 1. Let D 

be a basis of R. By 8.2.8 (ii) (see also 8.2.9) we may assume that a, {J e D. If R is 
irreducible the connectedness of the Dynkin diagram of R (see 9.5.1) and 8.2.7 imply 
that there is a chain a = a 0 , a 1, ... , ah = {J, with a; e D, (a;, af+1} = -1 (0 < i ~ 
h - 1). It follows that we may assume (a, {Jv} = -1, in which case (sas13 ).a = {J. 

This proves (ii) and (iii) is a consequence of the last formula of 10.2.1. □ 

10.2.3. Assume R to be irreducible and simply laced. It follows from 10.2.2 (ii) 
that we may assume (a, a) = 2 for all a e R. Hence (a, {J) = 0, ±1 for any two 
linearly independent roots a, {J. Denote by Q c V the subgroup of V generated by 
R. A basis D of R is also a basis of the free abelian group Q. It follows that (x, x) 

is an even integer for all x e Q. Denote by fa Z-valued bi-additive function on Q 
satisfying 

{ ~x, y) f(x, y) + f(y, x) (mod 2), 

2(x, x) = f (x, x) (mod 2), 

for x, y e Q. Such f exist: take a basis (e;)1::;i::;n of Q and define f by f(e;, ej) = 
(e;, ej) if 1 < i < j < n, f(e;, ej) = 0 if i > j, f(e;, e;) = ½(e;, e;). Fix a system 
of positive roots R+. For a e R put €(a) = ±1 if a e ±R+. Let a and {J be linearly 
independent roots. Define 

{ 
Ca,{3 = 0 if a + fJ ¢ R, 
Ca,{3 = f(a)f(/J)f(a + /J)(-l)f(a,/3) if a+ fJ ER. 

If a E Q, X E Q - R put Ca,x = Cx,a = 0. 

10.2.4. Lemma. (i) Ca,{3 = -c13,a and C-a,f3Ca,-a+f3 + c13,aC-a,a+f3 = ({J, av}; 
(ii) If a, {J, y e Rare linearly independent we have Ca,f3Ca+f3,y + c13,yc13+y,a 

+ Cy,aCy+a,{3 = 0. 

If a, {J, a + {J e R we see from 10.2.2 (i) that f (a, {J) + f ({J, a) = (a, {J) = 
1 (mod 2). This implies the first relation of (i). 
If({J,av} =0wehavec-a,/3 =c13,a =0. If({J,av} = -1 thena+{J e R, -a+{J ff. 
R (10.2.2 (i)) and C-a,/3 = 0. Thus 

Cf3,aC-a,a+f3 = -(-l)f(f3,a)+ f(-a,a+/3) = -1, 

and the second formula of (i) follows. If (/J, av} = 1 the proof is similar. 
To prove (ii) we may assume that ca,f3Ca+f3,y # 0. Then by 10.2.2 (i) (a, {J) = 

(a+ {J, y) = -1, whence either (a, y) = 0, ({J, y) = -1 or (a, y) = -1, (/J, y) = 
0. By symmetry we may assume the first alternative. Then the relation to be proved 
follows from 

f(a, {J) + f (a+ {J, y) + f ({J, y) + f({J + y, a)= 
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(a, /3) + (a, y) + 2/ (/3, y) = 1 (mod 2). 

This concludes the proof. 

10.2.5. We now define a Lie algebra g over k as follows. Putt= k ® Qv and 

g = tEB L kea, 
aeR 

the ea being linearly independent. The Lie algebra product is defined by 

[u, u'] = 0, [u, ea] = (a, u}ea, 

[ea, e,B] = Ca,,Bea+.B• [ea, e_a] = 1 ®av, 
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□ 

where u, u' e t, a, f3 e R (with obvious notations). The verification that these 
formulas define a Lie algebra structure is left to the reader. It uses 10.2.2 (iii) and the 
preceding lemma (which takes care of the Jacobi identity). 

If a e g we define the linear map ad a of g by (ad a)(b) = [a, b]. A derivation of 
the Lie algebra g is a linear map I:!:,. of g such that for a, b e g 

!!:,.[a, b] = [!!:,.a, b] + [a, 1:!:,.b]. (46) 

The maps ad a are derivations. 

10.2.6. Lemma. Let I:!:,. be a derivation of g. There exists a unique a e g with 
I:!:,. =ada. 

Write for u e t 

1:!:,.u = d(u) + L la(u)ea, 
aER 

where dis an endomorphism oft and the la are linear functions on t. From [1:!:,.u, u'] + 
[u, 1:!:,.u'] = 0 we deduce that for all a e R, u, u' e t 

(a, u}la(u') = (a, u'}la(u), 

from which we conclude that there is Ca e k with la(u) = ca(a, u} (u e t, a e R). 
Then I:!:,. + ad(E caea) is a derivation mapping t into itself. Assume that I:!:,. has this 
property. Then ( 46) with a E t, b = ea implies that there exist da E k with !!:,.ea = 
daea and (46) with a = ea, b = e.8 gives that da+,8 = da + d,8, if a, /3, a+ f3 E R. 
Also, d_a = -da, These relations imply that there is uo e t with da = (a, uo}. To 
prove this, choose a system of positive roots R+ with basis D and take u0 e t such 
that the required relations hold for a e D. Then use 8.2.11 (4). We conclude that 
I:!:,. = ad u0 , whence the existence part of the lemma. 

The uniqueness part follows from the fact that the center of g is trivial. The easy 
proof of this fact is left to the reader. □ 
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10.2.7. Let T be a torus with character group Q. We let Tact in g by 

t.u = u, t,ea = a(t)ea, 

where t E T, u E t, a E R. This defines an isomorphism of T onto a closed 
subgroup of G L(g). For a E R put Xa = ad ea, Denote by xf> the linear map of g 
mapping all u Et and all e13 with f3 i= -a to 0 and e_a to -ea, Then X~ = 2X~2> and 

X x<2> = x<2> X = (x<2>)2 = 0 a a a a a • (47) 

Moreover 

We leave it to the reader to check these facts. Define linear maps ua (x) (x E k) of g 
by 

It follows from (47) that Ua(x + y) = Ua(x)ua(Y) (x, y E k), whence an isomor
phism Ua of Ga onto a closed subgroup Ua of G L(g). We denote by G the subgroup 
of G L(g) generated by T and the Ua (a E R). By 2.2.7 (i), G is closed and connected. 

10.2.8. Proposition. G is reductive and T is a maximal torus of G. The root sys
tem of (G, T) is R. 

It follows from (48) that the elements of Ua are automorphisms of the Lie algebra 
g. It is easy to see that the same holds for T. Hence G is a group of automorphisms 
of g. Let q : g ® g ➔ g be the map defining the Lie product. Then q o (g ® g) = g o q 
for all g E G. Using 4.4.14 (ii) one deduces that the elements of the Lie algebra 
L(G) (a subalgebra of gl(g)) are derivations of g. Using 10.2.6 we conclude that 
dim G =s dim g. Now the Lie algebra of Ua is kXa (by 4.4.15 (1)) so L(G) contains 
L(T) EB LaeR kXa, whence dimG 2: dim T + IRI = dimg. Hence dimG = dimg 
and L(G) is isomorphic tog. 

It follows from 5.4.7 that T is a maximal torus of G. If a E R the group 
Ga of 7.1.3 contains Ua and U-a· These groups stabilize the subspace spanned by 
1 ®av, ea, e_a and the group generated by the restrictions of U ±a to that space is not 
solvable (in fact this group is isomorphic to PSL2). Hence a is a root of (G, T) (see 
7.4.3). We can now conclude that dim Ru(G) = dim G - dim T - IRI = 0, so G is 
~~- □ 

Via our form ( , ) we identify V with its dual. The dual Qv is then identified with 
a lattice in V containing Q. Then av= a (see 10.2.1), and Rv = R. This shows that 
a root datum (Q, R, Qv, Rv) is unique up to isomorphism. 
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10.2.9. Corollary. The root datum 'll(G, T) is isomorphic to (Q, R, Qv, Rv). 

For a e R the cocharacter av is given by av(x).u = u (u e t), av(x).ep = 
x<a,fJ>ep (/3 e R), where x e k*. D 

10.2.10. Exercises. (I) (ua)aeR is a realization of R in G. 
(2) The structure constants of the realization of (I), for any order on R (see 9.2.1) are 
as follows: ca.fJ;i,j = Ca,fJ (as in 10.2.3) if i = j = 1 and is zero otherwise. 

10.3. Automorphisms, end of the proof of 10.1.1 

10.3.1. Automorphisms. Assumptions and notations are as in 10.2.3. Let 'D be 
the Dynkin diagram defined by D (9.5.1). It is a graph with vertex set D, two simple 
roots being the endpoints of an edge if and only if they are not orthogonal (relative to 
our bilinear form). 

Assume thats is a non-trivial automorphism of'D with the following property: two 
distinct roots in an s-orbit in D are orthogonal. From the classification of irreducible 
root systems (recalled in 9.5.1) one sees that if R is irreducible s has order 2 or 3. In 
the first case R is of one of the types A2n+l (n > 1), Dn (n ~ 4), E6 and in the 
second case it is of type D4 . 

The permutation s of D defines a linear map of V, also denoted by s. It stabilizes Q. 
As a consequence of 8.2.8 (iii) (see also 8.2.9) s stabilizes R and R+. Since s defines 
an automorphism of 'D (and since R is simply laced) we have (s.a, s.{3) = (a, {3) for 
a, f3 e D. Hences leaves invariant the bilinear form ( . ). 

We claim that there exist s-invariant bi-additive forms f with the properties of 
10.2.3. Such a form is obtained by the procedure of 10.2.3, applied to the basis D of 
Q, ordered such that elements in ans-orbit are consecutive. (It suffices to see this in 
the case that R is irreducible, so thats has order 2 or 3. In the first case the verification 
is straightforward and in the second case one uses that s has only one orbit of length 
3.) It follows thats defines an automorphism a of the Lie algebra g of 10.2.5, with 
a.(ea) = esa and a(l ® av) = 1 ® s.av (a e R). The automorphism a of g nor
malizes the group G of 10.2. 7. It induces an automorphism of G, also denoted by a, 
which stabilizes T. Its restriction to T is the automorphism defined by the automor
phisms of the character group Q of T. We have a(ua(x)) = Us.a(x) (a e R, x e k). 

10.3.2. Lemma. (i) (1 - s)Q n R = 0; 
(ii) If a, f3 e Rand a - f3 e (I - s)Q then a and f3 lie in ans-orbit; 
(iii) A root is orthogonal to the other roots in its orbit. 

If x = LaeD Xaa is a non-zero element of (I - s) Q, the non-zero coefficients 
cannot all have the same sign. Hence (i) follows from 8.2.8 (iii). 

To prove (ii) we may assume by 8.2.8 (ii) that a e D. Assume that the s-orbit of 
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a has a elements. In the situation of (ii) we cannot have a - fi E R (by (i)), whence 
(a, fi) = 0, -1 if a # fi (10.2.2 (i)). Similarly for (a, s.fi), ... , (a, sa-1.fj). We 
have 

0 = (a - fi, (1 + s + ... sa-1).a) = 2 - (a, fi) - ... - (a, sa-1.fi) 

(recall that the roots in the orbit of a are mutually orthogonal). If a does not lie in the 
orbit of /j, the right-hand side is strictly positive, which gives a contradiction, proving 
(ii). 
To prove (iii) we may assume that R is irreducible and a E R+. Assume that s has 
order 2. If a E D, (iii) holds by assumption. If a E R+ - D, there exist fi E R+ and 
y E D with a = fi + y (by 8.2.11 (4)). By an induction we may assume that (iii) 
holds for fi. Using that 

(a, s.a) = (fi, s.fi) + (y, s.y) + 2(/j, s.y), 

we conclude that (a, s.a) is even, which can only be ifs.a = a or (a, s.a) = 0. 
Assume thats has order 3, that a # s.a and that the inner product (a, s.a) is non
zero. It then equals -1. By 10.2.2 (i), a + s .a E R, and 

(a+ s.a, s2.a) = 2(a, s.a) = -2, 

which is impossible. We have proved (iii). □ 

10.3.3. Put Qs = Q/(1 - s)Q. From the fact thats permutes the elements of the 
basis D of Q, it follows that Qs has no torsion, hence is a free abelian group. If O is 
ans-orbit in R, put ao =a+ (1- s)Q, where a E 0. It follows from 10.3.2 (ii) that 
this is a correct definition, and a0 # 0 by 10.3.2 (i). The dual (Qs)v is the submodule 
of Qv annihilating (1 - s)Q. Define ao = LaeO av. This is an element of (Qs)v. 
Let Rs and (RS)V be the set of ao, respectively ao, 0 running through the orbits of s 
in R. 

If O and 0' are orbits, we have (ao, ao,} = L,BeO' (a, fiv}, where a E 0. 
Axiom (RD 1) of 7.4.1 follows from 10.3.2 (iii). We have 

Sa0,(ao) = ( n S,B),a + (1 - s)Q, 
,BeO' 

proving the first part of axiom (RD 2). We skip the proof of the second part. D 

We say that the root datum (Qs, Rs, (Qs)v, (Rs)v) (or the root system Rs) is 
obtained from (Q, R, Qv, Rv) (respectively R) by folding according to s. 

We return to the group G and its automorphism a, introduced in 10.3.1. We de
note fixed point sets for a by a superscript. 
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10.3.5. Proposition. (Gu)o is a connected, reductive group with maximal torus Tu. 
The root datum 'li((Gu)0 , Tu) is isomorphic tows. 

The character group of the diagonalizable group Tu is Qs. This is a free abelian 
group. Hence Tu is a torus. By 10.3.2 (i) no root of (G, T) is trivial on Tu. Using 
5.4. 7 we see that the centralizer of Tu in G is T, which implies that Tu is a maximal 
torus in H = (Gu)0 . 

If ao E Rs put 

Ua0 (x) = n up(x) (x Ek), 
/JEO 

the up being as in 10.2.7. It follows from 10.3.2 (iii) (using formula (27) of9.2.l) that 
Ua0 defines an isomorphism of Ga onto a closed subgroup U ao of H. An argument 
similar to one used in the proof of 10.2.8 shows that the ao are roots of (H, Tu), 
whence 

dim H ~ IRsl + dim Tu. (49) 

On the other hand, the Lie algebra L(H) is a subalgebra of the fixed point algebra 
tf, whose dimension equals dim tu + I Rs 1- Since dim Tu and dim tu both equal the 
number of s-orbits in D, we must have equality in (49). As in the proof of 10.2.8 
it follows that H is reductive. Its root system relative to Tu is Rs. The proposition 
follows. D 

10.3.6. Lemma. Let R be an irreducible root system that is not simply laced. There 
is a simply laced root system R, with an automorphisms obtained as in 10.3.1, such 
that R is isomorphic to Rs. 

The root system Rs of 10.3.4 has basis vs = {ao I O E D} (check this). The 
corresponding Dynkin diagram can then be read off from D and the action of s on it. 
We now use the classification (see 9.5.1). The Dynkin diagrams of irreducible root 
systems that are not simply laced are of the types Bn (n ~ 2) Cn (n ~ 3) F4 , G2. 

They can be obtained by folding from the Dynkin diagrams of simply laced root sys
tems, of respective types Dn+t, A2n+t, E6, D4. Except for the last case, s is unique. 
In type D4 there are two possibilities. 

10.3.7. We can now prove IO.I.I. Let Q c X be the subgroup spanned by Rand 
let X0 be the subgroup of X orthogonal to Qv. Then Q EB X0 is a sublattice of X 
of finite index. By 10.1.3 it suffices to consider the case that X = Q EB X0, which is 
reduced by an easy argument to the cases that either X = Q or X = X0. In the second 
case we can take G to be a torus. The first case is reduced at once to the situation that 
R is irreducible. If R is simply laced apply 10.2.8. Otherwise use 10.3.5 and 10.3.6. D 
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10.3.8. Exercises. G is a connected reductive group over k, with maximal torus 
T and corresponding root datum w = (X, R, xv, Rv). 
(1) (a) There exists a connected reductive group Gv over k, with a maximal torus Tv, 
such that the root datum W(Gv, Tv) is isomorphic to wv = (Xv, Rv, X, R). 

(b) G is unique up to isomorphism. It is the dual of G. We have (Gv)v ~ G. 
(c) If G is semi-simple and simply connected, respectively adjoint (see 8.1.11) 

then Gv is semi-simple and adjoint, respectively simply connected. 
(2) Determine the duals of GLn, Sp2n, SOn, 

Notes 

The most general existence theorem for a reductive group scheme with given root 
datum is given in [SGA3, exp. XXV]. Chevalley [Ch5] already constructed the ad
joint semi-simple group schemes over Z. See also [Bo2, Part A, §4]. 

A proof of 10.1.1 for the semi-simple case can be found in [St4, §5]. 
The proof of [SGA3] uses a generalization of a result of Weil, about enlarging an 

algebraic group germ to an algebraic group. The proofs of [Ch5] and [St4] use repre
sentation theory of semi-simple Lie algebras. We need only the adjoint representation, 
in the case that the root system is simply laced. 

The construction in 10.2.5 of the Lie algebra associated to a simply laced root 
system uses a simple description of Lie algebra structure constants, due to Frenkel 
and Kac [FK]. 

For the proof of 10.1.1 we need a result about existence of covering groups ( 10.1.4 ). 
The proof of 10.1.1 given in this chapter can be extended to an existence proof over 
an arbitrary ground field (see 16.3.3). It could also be adapted to construct a group 
scheme over Z. 



Chapter 11 

More Algebraic Geometry 

The next chapters will be devoted to rationality questions in the theory of linear alge
braic groups, i.e. questions involving ground fields. The present chapter is prepara
tory. It discusses basic rationality results on algebraic varieties. 

11.1. F -structures on vector spaces 

11.1.1. In this section, k is a field (not necessarily algebraically closed) and F is a 
subfield. 'Vector space' will mean vector space over k. An F-structure on a vector 
space V is a subspace Vo of V of the F-vector space V such that the canonical ho
momorphism k ®F Vo ➔ V is an isomorphism (see 1.3.7). This means that V has 
a basis whose elements lie in V0 . We shall write Vo = V (F). A vector space with 
F-structure will be called an F-vector space. A linear map f : V ➔ W of F-vector 
spaces is de.fined over F if f(V(F)) c W(F). There are some fairly obvious notions 
and constructions, which we mention briefly. Details can be left to the reader. 

Let V be an F-vector space. (a) We have the notion of a subspace de.fined over F 
or F-subspace of V. Such a subspace W has a basis whose elements lie in V (F). The 
quotient V / W has a canonical F -structure. The canonical map V ➔ V / W is defined 
over F. 
(b) Let (Vi)ie/ be a family of F-vector spaces. Then EBie/ Vi(F) is an F-structure 

on EBie/ Vi. 
(c) Let W be another F-vector space. The vector space over F spanned by the el-
ements v ® w with v e V(F), w e W(F) is an F-structure on V ®k W. Then 
(V ® W)(F) is isomorphic to V(F) ®F W(F). 
( d) The construction of ( c) leads to F -structures on exterior powers /\ i V, with 
(/\i V)(F) = /\i(V(F)). 
( e) If E c k is an extension of F then the vector space over E generated by V ( F) is 
an £-structure on V. We have V(E) = E ®F V(F). 

In the sequel, if we provide quotients, direct sums,... of F -vector spaces with an 
F -structure, it will always be in the manner described above. 

11.1.2. Exercise. V and W are F-vector spaces and f : V ➔ W is a k-linear 
map. 
(a) If f is defined over F then Ker f and Im fare defined over F. 
(b) The converse of (a) is false. 
( c) f is defined over F if and only if its graph r 1 = { ( v, f ( v)) e V EB W I v e V} is 
an F -subspace of V EB W. 

11.1.3. Let V be an F-vector space. Assume that we are given a group of auto-
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morphisms r of k whose fixed point field is F, i.e. 

F = {a Ek I y.a = a for ally E f}. 

Then r operates on V = k®F V(F) by y(a®v) = (y.a)®v (a Ek, v E V(F), y E 
f). Clearly 

y.(av) = (y.a)v, y.(v + v') = y.v + y.v', 

and V ( F) is the fixed point set of r in V. 

(50) 

11.1.4. Proposition. A subspace W of Vis de.fined over F if and only if f. W = W. 

Assume that r. W = Wand put W(F) = {x E W I y.x = x for all y E f}. 
This is a subspace of V(F). Let W' be a complementary subspace. We claim that 
W (F) generates W. If this were not the case there would exist x E W - {O} and 
Xt, ... , Xn E W', a1, ... , an E k with 

X = L ajXj. 
1 :::i ::::n 

We may assume that a1 = 1 and that n is as small as possible. We have for all y E r 

y.x - x = L (y.ai - ai)Xi. 
2:::i:::n 

The minimality of n implies that y.x = x for ally E r, i.e. that x E W(F), which 
contradicts our assumption. This contradiction establishes our claim and proves one 
part of the assertion. The other part is obvious. D 

11.1.5. Corollary. Let V and W be two F -vector spaces and let f : V ➔ W be 
a k-linear map. Then f is de.fined over F if and only if f o y = y o f for all y E r. 

r operates on V and W in the manner described above. The corollary follows by 
using 11.1.2 (c). D 

Next assume, moreover, that k is a Galois extension of F, of finite or infinite 
degree, r being the Galois group Gal(k/ F). For the results from Galois theory to 
be used, we refer to [La2, Ch. VIII] or [Jac5, Ch. 8]. Recall that r is a profinite 
group, i.e., a compact, totally disconnected, topological group. Its topology, the Krull 
topology, has a basis of open neighborhoods of the identity consisting of subgroups of 
finite index, viz. the groups Gal(k/ E), where Eis a finite extension of F contained 
ink. 

Assume that V is a vector space with continuous r -action, V being provided with 
the discrete topology. 
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11.1.6. Proposition. Assume that (50) holds. Then V(F) 
x for all y E r} is an F -structure on V. 
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{x E V I y.x = 

The continuity assumption implies that V is a union of finite dimensional r -stable 
subspaces. It follows that it suffices to prove the proposition in the case that V is finite 
dimensional and that k is a finite Galois extension of F. (We leave it to the reader to 
check these claims.) Let d = [k : F] be the degree. Then r has order d. Dedekind's 
theorem [La2, Ch. VIII, §4] implies that the linear maps of the F-vector space k of 
the form 

(51) 

with cy E k form a space with dimension d2 over F, hence must be the space of all 
F-linear maps. The maps of the right-hand side of (51) act in an obvious manner as 
F-linear maps in V. It follows that we obtain a representation in V of the algebra 
EndF(k) of all F-linear maps of k, which is isomorphic to the matrix algebra Md(F). 
It is known that any finite dimensional representation of EndF(k) is isomorphic to a 
direct sum k EB ... EB k, where EndF(k) acts in each summand in the natural way (see 
[Jac5, p. 171 and 4.41). This fact is equivalent to the statement of the proposition. D 

11.1.7. There are rather obvious variants of 11.1.4 and 11.1.6, involving supplemen
tary structures. For example, assume that A is a k-algebra with an F-structure. This 
means (see 1.3.7) that A has a vector space structure A(F), which is an F-subalgebra 
of A. The r-action of 11.1.3 is by automorphisms of the ring A, satisfying (50). Then 
11.1.4 implies a criterion for ideals in A to be defined over F. In the case of 11.1.6, 
if moreover A is a k-algebra and the r -action is by ring automorphisms, then A ( F) is 
an F-structure on the k-algebra A. 

11.1.8. Exercise. Let k/ F be a finite Galois extension with group r. Assume given a 
map c: r ➔ GLn(k) such that for y, 8 E r we have c(y8) = c(y).y(c(8)), r acting 
on GLn(k) in the obvious manner. There exists g E GLn(k) with c(y) = g-1.y(g). 
(Hint: using the c(y) define an action of r on V = kn such that 11.1.6 can be applied). 

11.1.9. There are counterparts of the previous results involving derivations. Assume 
now that we are given a Lie algebra L over k of F-derivations (see 4.1.1) of k whose 
annihilator is F, i.e. 

F = { a E k I D .a = 0 for all D E L}. 

A connection of the Lie algebra L on a vector space V is a k-linear map c : L ➔ 
Endk(V) such that 

c(D).(ax) = (D.a)x + a(c(D).x) (a Ek, x E V, D E L). (52) 
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The connection c is flat if c is a homomorphism of Lie algebras, i.e. if 

c([D, D']) = c(D) o c(D') - c(D') o c(D) (D, D' E L) 

(see 4.4.3). 
Now assume that V is an F-vector space. There is a unique flat connection c = cv on 
V such that 

c(D).(La;x;) = L(D.a;)x; (DEL, a; Ek, x; E V(F)). 

Then V (F) is the subset of V annihilated by all c(D), D E L. (We leave it to the 
reader to check these facts.) 

11.1.10. Proposition. A subspace W of V is de.fined over F if and only if c(L). W C 

w. 

11.1.11. Corollary. Let V and W be two F-vector spaces and let f : V ➔ W 
be a linear map. Then f is de.fined over F if and only if f o cv(D) = cw(D) of for 
all DEL. 
The proofs of these results are similar to those of 11.1.4 and 11.1.5 and are left to the 
reader. D 

11.1.12. Next assume that char k = p > 0 and that L is a p-Lie algebra (see 
4.4.3). A p-connection of the p-Lie algebra L is a connection that moreover sat
isfies c(D)lPJ = c(D)P, where D r+ DlPl is the p-operation in L. Now assume 
that k =j:. F is a finite purely inseparable extension of F such that kP c F. We 
denote by :J = Jk/ F the p-Lie algebra of F-derivations of k, the Lie product be
ing the commutator and the p-operation ordinary p th power. It is a Lie algebra over 
F and a vector space over k (but not a Lie algebra over k). Choose x 1, ... , xd in 
k such that k = F(x1, ... , xd) and assume that d is as small as possible. Then 
xf = a; E F (1 ~ i ~ d). 

11.1.13. Lemma. (i) (x~ 1 ... x;d) (1 ~ n; < p, 1 < i ~ d) is a basis of k over 
F; 
(ii) There exist o; E :J with O;Xj = ~ijX;. We have O;[p] = o;, [o;, 0j] = 0 (1 < i, j < 
d); 
(iii) (o;h<i<d is a k-basis of :J. We have [k: F] = pdimk .:l; 
(iv) The annihilator of :J is F. 

To prove (i) it suffices to show that the elements in question are linearly inde
pendent. If not, we may assume that x 1 is algebraic over F(x2, ... , xd), of degree 
< p. But since the minimum polynomial of x 1 over F is TP - a 1 this can only 
be if x1 E F(x2, ... , xd), contradicting the assumption that d is minimal. We have 
established (i). 
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It follows from (i) that the F -homomorphism of the polynomial algebra 
F[T1, ... , Td] sending T; to x; defines an F-isomorphism 

(53) 

Let D; be partial derivation with respect to T; in F[T1, ... , Td]. Then T;D; induces 
a derivation of the left hand side of (53), which defines a derivation 8; of k with 
the properties of (ii). It follows from (ii) that the 8; are linearly independent over k. 
By (53) we can view k as a module over A = F[T1, ... , Td], Using that every F
derivation of A annihilates the ideal in the left-hand side of (53), we see that with the 
notations of 4.1 and 4.2, 

the last isomorphism coming from 4.2.2 (i). Using 4.2.5 (1) we deduce that dimk .J = 
d. Hence (8;) is a k-basis of .J. Assume that x Ek is annihilated by .J. Write x as a 
linear combination of the basis elements of (i). One deduces from 8;x = 0 (1 < i < 
d) that all coefficients of monomials x? ... x? with at least one non-zero exponent 
are zero, whence (iv). D 

k being as before, we have the following counterpart of 11.1.6. 

11.1.14. Proposition. Let V be a vector space over k with a flat p-connection c 
of the p-Lie algebra Jk/F· Then 

V(F) = {x EV I c(D).x = 0 for all DE :h.;F} 

is an F -structure on V. 

We use the notations of the preceding lemma. The c(8;) (1 < i < d) are linear 
maps of V, viewed as a vector space over the prime field F p· By the flatness of c and 
11.1.13 (ii) these maps commute pairwise. Moreover we have c(8;)P = c(8;), which 
implies that the eigenvalues of the c( 8;) lie in F P. For O < n; < p, 1 < i ~ d put 

Vn 1, ... ,nd = {x E V I c(8;).x = n;x for 1 < i < d}. 

Then V is the direct sum of these F p-vector spaces and V (F) = Vo, ... ,0. It follows 
from (52) that 

from which we see that V(F) is an F-structure on V, as asserted. D 

We next prove the 'main theorem of Galois theory' for the extension k/ F of this 
section (due to Jacobson, see [Jac5, p. 533-535]). 
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11.1.15. Proposition. (i) Let JI be a p-subalgebra of .J = Jk/F, which is a vector 
space over k and put 

F(.JI) = {x Ek I D.x = 0 for all D E .Ji}. 

Then FI = F(.JI) is a sub.field of k containing F and [k : FI] = pdim..71; 

(ii) F de.fines a bijection of the set of p-subalgebras of .J that are vector spaces over 
k onto the set of sub.fields of k containing F. The inverse of Fis the map FI 1-+ Jk/ Fi. 

For x E k we have the k-linear function D 1-+ D .x on .J. It follows from 11.1.13 
that these functions form the dual of the k-vector space .J. Let JI be as in (i). The 
preceding remark implies that there is a k-basis (8[)I=::i=::e of JI and a set (y;)I==,i:::e of 
elements of k such that a[.yi = aiiYi• It follows that, if D E JI annihilates ally;, we 
have D = 0. Applying this to D = (cJ[)P-8[ we conclude that (8[)P = a; (1 < i < e). 
Likewise, we see that the a; commute pairwise. As in the proof of 11.1.14 we deduce 
that k is the direct sum of simultaneous eigenspaces for the F p-linear maps a;. Since 
a; .x = 0 (1 < i ~ e) is equivalent to x E FI = F(.JI), we can also conclude that the 
elements y~• ... y:e (0 ~ n; < p, 1 ~ i ~ e) form an FI basis of k. This implies (i). 

To prove (ii) we have to show that 

(54) 

where FI is an intermediate field, and where .Ji is as in (i). We have FI c F{ = 
F(Jk/ Fi) and by (i) and 11. 1. 13 (iii) 

[k : F{] = pdim..1ktF1 = [k : Fi]. 

It follows that F{ = FI, proving the first formula (54). The proof of the second is 
similar and is left to the reader. □ 

11.1.16. We again have variants of 11.1.10 and 11.1.14. Let A be a k-algebra with an 
F-structure. Then the maps CA (D) of 11.1.9 are derivations of A. If A is a k-algebra 
with a connection c as in 11.1.14, such that all c(D) are derivations, then A(F) is an 
F-structure of the k-algebra A. 

11.1.17. Exercise. Notations are as in 11.1.14. Write .J = Jk/F· Let Endk(V) 
be the space of endomorphisms of V. 
(a) For a E Endk(V), D E .J put y(D)(a) = c(D) o a - a o c(D). Then y is a flat 
connection of the p-Lie algebra.Jon Endk(V). 
(b) Fix a basis of V whose elements lie in V(F). The matrix of y(D)(a) relative to 
this basis is obtained from the matrix of a by applying D to its elements. 

We write D.a for y(D)(a). 
(c) Assume given a k-linear map a : .J ~ Endk(V) such that 

a([D, D']) = D.a(D') - D'.a(D), 
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(c(D) + a(D))P = c(D)P + a(DP) (D, D' E .J). 

There is an invertible endomorphism g of V such that a(D) = g-1(D.g) for all 
DE .J. 
(Hint: apply 11.1.14 to the connection DH- c(D) + a(D)). 
(d) Using Jacobson's formula (4.4.3) show that the second formula of (c) can be 
rewritten as a formula expressing a(DP) as a linear combination of a(D)P and terms 
involving the Di .a(D) (0 ::: i < p - 1). Consider the particular case that dim V = 1. 

11.2. F -varieties: density, criteria for ground fields 

In this section k denotes again an algebraically closed field and F a subfield. We 
denote by F (Fs) the set of elements in k that are algebraic (respectively, separably 
algebraic) over F. Then F is an algebraic closure of F and Fs a separable closure. 
Moreover, Fs is a Galois extension of F. Its Galois group is denoted by r. The action 
of r extends uniquely to an action of r as a group of automorphisms of F. The fixed 
point field of r on F' is the field Fi (sometimes denoted by FP-00

) of elements x E F' 
that are purely inseparable over F, i.e such that xPm E F for some m ~ 0, where 
p is the characteristic exponent of F. In characteristic O, we have Fi = F. Also, 
F = (FJs = (Fs);. 

11.2.1. We shall establish some basic results about F -varieties. These were intro
duced in 1.6.14. Let X be an affine variety over k. Recall (1.3.7) that an F-strucure 
on Xis an F-structure on the algebra k[X] in the sense of 11.1.1, which is an F
subalgebra of k[X]. As in 1.3.7, we write F[X] for this subalgebra. The next result 
characterizes the algebras F[X] (see also 1.3.1). 

11.2.2. Lemma. Let A be an F -algebra. 
(i) There is an affine F-variety X (l.4.9) with A'.:::'. F[X] if and only if the following 
conditions hold: (a) A is of.finite type over F, (b)for any algebraic extension E of F 
the algebra E ® F A is reduced; 
(ii) /f (b) holds, the algebra E ®FA is reducedforany extension E of F. 

Assume there is an affine F-variety with A '.:::'. F[X]. Since k is algebraically 
closed, any algebraic extension E of F is F-isomorphic to a subfield of k (see [La2, 
p. 171]). Since k[X] '.:::'. k ®F F[X] is reduced, the same is true for E ®FA, so (b) 
holds. An easy argument proves (a). 

Now let Ebe any extension of F and assume that x = I:7=1 Xi® a; E E ®FA 
is nilpotent. We may assume the ai to be linearly independent over F. Assume that 
(b) holds. If his an F-homomorphism of F[x1, ... , Xn] to an algebraic extension E' 
of F, an argument like that used in the proof of 1.5.2 shows that h(xi) = 0 for all i. 
It follows from 1.9.6 (2) that all xi are 0. Hence E ® A is reduced and in particular 
k ®FA is reduced. If (a) holds, this is an affine k-algebra (l.3.1). The lemma follows. 
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An F-algebra A with the properties (a) and (b) will be called an affine F-algebra. □ 

11.2.3. Exercises. (1) (a) Let A be a reduced F-algebra. Show that for any sepa
rable algebraic extension E of F the algebra E ® F A is reduced. (Hint: it suffices to 
deal with the case that E = F(x)). 

(b) (a) is false without the separability assumption. 
(2) There is an obvious category C(F, k) of k-varieties with an F-structure (see 1.6.14). 
Let k' be an algebraically closed subfield of k containing F. Show that C(F, k) and 
C(F, k') are equivalent. Notice that k' = Fis the minimal choice. (Hint: formulate 
the notion of F-variety in terms of F-algebras). 

We now come to density results. X is an F-variety. 

11.2.4. Lemma. ( i) X ( F) is dense in X; 

(ii) If Y is a closed subvariety of X such that X (F) n Y is dense in Y, then Y is de.fined 
over F. 

We may assume that X is affine. To prove (i) it suffices by 1.3.6 (ii) to show: if 
/ E k[X] is l!_On-zero there exists x E X(F) with f(x) =/:- 0. Wri~ng f = Li ai ® Ji, 
where f; E F[X] and the ai E k are linearly independent over F, we see that it suf
fices to deal with the case that f E F'[X], in which case we can apply 1.9.4 (with - -
A = K = F, B = F[X]). This proves (i). 
To prove (ii) observe that if the density condition of (ii) holds, the ideal I(Y) c k[X] 
of functions vanishing on Y must be generated by elements in I(Y) n F[X]. D 

11.2.5. Lemma. Assume X to be irreducible. Then X(Fs) is dense in X. 

Since X is a union of open affine F-varieties, we may assume that X is an affine 
F-variety. We may also assume that F = Fs, 

By 1.3.6 (ii) it suffices to show that if f is a non-zero element of k[X], there is 
x E X(F) with f(x) =/:- 0. As in the proof of 11.2.4 we see that we may assume 
/ E F[X]. Let E be the quotient field of F[X]. It follows from 11.2.2 (ii) that 
for any algebraic extension K of F, the algebra K ®Eis reduced. Then 4.2.12 (4) 
shows that Eis separably generated over F. Assume that E = F(x1, ... , Xm), where 
x 1, ... , x, are algebraically independent over F and Xi is separably algebraic over 
F (x1, ... , x,) (t < i :'.:: m ). By 11.2.2 (i) there exist affine F-varieties Y and Z 
with F[Y] = F[x1, ... , Xm], F[Z] = F[X][x1, ... , Xm], We have F-morphisms 
Z ➔ X, Z ➔ Y, which are birational (5.1.2). It follows as in the proof of 5.1.2 that 
there exists a non-zero element f E F[X] with F[Z]j '.:::'. F[X]1. An easy argument 
then shows that X(F) is dense in X if and only if Z(F) is dense in Z, and similarly 
for Y. It follows that it suffices to prove the theorem for Y. 

We then have to show that if g is a non-zero element of F[Y], there is a homo
morphism </> : F[Y] ➔ F with </>(g) =/:- 0. We use induction on m - t (notations 
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as above). If m = t the assertion is easy. Let m > t and let Y' be the F-variety 
with F[Y'] = F[x1, ... , Xm-d- Then Xm is separable over the quotient field F(Y') 
of F[Y']. Let P e F[Y'][T] be a polynomial with root Xm, of minimal degree, say 
n. Denote by a and b the leading coefficient and the constant term of P and put 
c = a!n<n-1) TT;</Y; - Yi)2, where they; are the roots of P in some extension of 
E. Then c e F[Y'] (see [Jac4, p. 125]). Finally let d be the product of leading co
efficient and constant term of a polynomial in F[Y'][T] of minimal degree with root 
g. By induction there is a homomorphism </J : F[Y'] ➔ F with </)(abed) =/:- 0. By 
1.9.3 we can extend </J to a homomorphism F[Y] ➔ F. But then </J(xm) is a root of a 
polynomial in F[T] without multiple roots, hence must lie in Fs = F. □ 

11.2.6. Proposition. The irreducible components of X are defined over Fs, 

Assume that F = Fs, By 11.2.4 (i), X(F) is dense in X. Let X1, ... , Xs be the 
irreducible components of X and pu~ U; = X; - LJ i#i Xi; this is an open subvariety 

of X whose closure is X;, and U;(F) is dense in X; (1 < i < s). It follows from 
11.2.4 (ii) that the components of X are defined over F, proving the proposition if 
p=0. 

Assume that p > 0. There is a finite extension E of F = Fs over which all 
components X; are defined. Then E is purely inseparable over F. Let a > 0 be 
such that EP° C F. Then E[X]P0 c F[X]. We may assume that X is affine. Let 
P; be the prime ideal in E[X] of functions vanishing on the component X;. Then 

pa 
ni Pi = {O}, ni#i Pi =/:- {O}. Take f; e nii:i Pi - P; and put g; = /; . Then 
g; e F[X] and the principal open set D(f;) = D(g;) (l.3.5) is defined over F. It is 
contained in U; and it is dense in X;. By 11.2.5 and 11.2.4 (ii) we can conclude that 
X; is defined over F. □ 

11.2.7. Theorem. X(Fs) is dense in X. 

This is a consequence of 11.2.5 and 11.2.6. D 

X(Fs) and X(F) are r-sets, i.e., sets with a r-action. If Xis affine, then these 
are sets of F-homomorphisms of F[X] to Fs, respectively F, which have obvious 
r -actions. The same is true in general, as one sees by using a covering by open affine 
F-varieties. 

11.2.8. Proposition. (i) Let Y be a closed subvariety of X. Then Y is de.fined over F 
if and only if ( a) Y is de.fined over Fs, (b) there is a subset of Y (Fs) that is dense in Y 
and is stable under the r-action on X (Fs ); 
( ii) Let Y be an open subvariety of X. Then Y is de.fined over F if and only if ( a) Y is 
de.fined over F, (b) Y(F) is a r-stable subset of X(F). 

That the conditions of (i) are necessary follows from 11.2.7. Suppose that they 
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are satisfied. We may assume that X is affine. Let I c Fs [ X] be the ideal of functions 
vanishing on Y. It follows from (b) that I is r -stable. Application of 11.1.6 shows 
that the set of fixed points of r in / is an F -structure on I. This set is also an ideal in 
F[X]. It follows that Y is defined over F, proving (i). 

The necessity of the conditions of (ii) is obvious. Assume they are satisfied. We 
may again assume X to be affine. Let Z be the closure of X (F) - Y (F). First assume 
that Z = 0, i.e. that Y(F) = X(F). Since Y is defined over F, it is a union of 
principal open subsets LJ D(f; ), the f; lying in F[X]. From 1.1.2 (i) we conclude 
that the ideal in F[X] generated by the f; is all of F[X], which implies that Y = X, 
proving (ii). 

If Z f. 0 it is a closed subvariety which is defined over F by 11.2.4 (ii). Moreover, 
our assumptions imply that Z(F) is a r-stable subset of X(F). By 11.2.8 (i) we can 
conclude that Z is defined over F; (recall that F = (F;)s). Let Yi be the complement 
of Z in X. It is the union of principal open subsets D(gj), the gi lying in F;[X]. 
There is a p-power q such that all gJ lie in F[X]. Since D(gj) = D(gj), Yi is a 
union of principal open subvarieties defined over F, hence is itself defined over F. Y 
is an open subvariety of the F-variety Yi, and Yi (F) = Y (F), by the definition of Yi. 

- -
Let Y2 be an affine open subset of Yi defined over F. Then Y2(F) = (Y2 n Y)(F). We 
have seen that this implies Y2 = Y2 n Y. It follows that Yi = Y, proving (ii). D 

11.2.9. Corollary. Let <p : X ➔ Y be a morphism of F-varieties. Then <p is de
fined over F if and only if(a) <pis defined over Fs, (b)for x E X(Fs) and y E r we 
have </)(y.x) = y.<p(x). 

The corollary follows from 11.2.8 (i), applied to the graph Z of <p (l.6.11), ob
serving that <p is defined over F if and only if Z is an F -subvariety of X x Y. □ 

11.2.10. Exercises. (1) Let X be an F-variety. The Galois group r acts on the 
set of components of X. A component of X is defined over F if and only if it is fixed 
under this action. 
(2) Define a functor from the category of F-varieties over k to the category of sets 
with a continuous r -action. 
(3) Let X be an affine F-variety. 

(a) Fs[X] = {/ E k[X] I f(X(Fs)) C Fs}, 
(b) Show that the r-set X(Fs) determines F[X] 

11.2.11. Let X be an F-variety. Assume that E is an extension of F contained in 
k and that we are given a Lie algebra L over E of derivations of E whose annihi
lator is F. We use the connection c = c E[XJ of L of 11.1. 9. For D E L the map 
c(D) is an F-derivation of E[X]. Let x E X(E), denote by Mx c k[X] the maxi
mal ideal of functions vanishing in x and put Mx(E) = Mx n E[X]. It follows from 
4.1.4 that the E-vector space TxX(E) of E-rational points of the tangent space TxX 
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(see 4.1.8) is isomorphic to the dual of the E-vector space Mx(E)/Mx(E)2. The iso
morphism is described in the proof of 4.1.4. From the fact that the c(D) (D E L) 
are derivations it follows that the map f H- (c(D).f)(x) induces an E-linear map 
Mx(E)/ Mx(E) 2 ➔ E, whence an E-linear map JLx : L ➔ TxX(E). 

We have the following counterpart of 11.2.8 (i). 

11.2.12. Proposition. Let Y be a closed subvariety of X de.fined over E. 
(i) Let S be a subset of Y(E) with the following properties: (a) Sis dense in Y, (b)for 
ally E S we have JJ,y(L) C TyY. Then Y is defined over F; 
(ii) If Y is defined over F then JJ,y(L) c TyY(E)forall y E Y(E). 

We may assume that X is affine. Let I c E[X] be the ideal of functions van
ishing on Y. We have to show that I is defined over F. By 11.1.10, this will follow 
if we show that c(L).l c I. This condition is implied by the following one: for 
f E /, D E L, y E S we have (c(D)./)(y) = 0. Viewing TyX(E) as the dual 
of My(E)/ My(E) 2, the subspace TyY(E) is the annihilator of I+ My(E)/ My(E) 2, 

which shows that the last condition is equivalent to: JJ,y(L) c TyY(E) (y E S). As 
this is a consequence of (b) we obtain (i). The proof of (ii) is left to the reader. □ 

We can now establish tangent space criteria for fields of definition. 

11.2.13. Theorem. Let X be an F -variety and let Y and Z be closed F -subvarieties 
with a non-empty intersection. Then Y n Z is a closed subvariety, which is defined 
over F if one of the following condition holds: ( 1) F is perfect, (2) there is a dense 
open subset U of Y n Z such that for x EU we have Tx(Y n Z) = TxY n TxZ. 

The tangent spaces are viewed as subspaces of Tx X. We proceed in several steps. 
- -

(a) Y n Z is defined over F. By 11.2.4 (ii) it suffices to show that X (F) n (Y n Z) is 
dense in Y n Z. We may assume X to be affine. Let I and J be the ideals in F[X] of 
functions vanishing on Y respectively Z. Since Y n Z is non-empty, / + J is a proper 
ideal (see 1.1.3). It suffices to show the following: if f E k[X] does not vanish on 
Y n Z, there is x E X(F) n (Y n Z) with f(x) =/:- 0. This follows from 1.9.6 (2). 
(b) Y n Z is defined over Fs. If char k = p = 0 or if F is perfect, this follows from 
(a). Assume that p > 0 and that condition (2) holds. By (a), Y n Z is defined over a 
finite extension E of Fs. We have a tower Fs = Eh C Eh-l C • • • C Eo = E such 
that Ef c E;+i• We show by induction on i that Y n Z is defined over E;, which will 
prove (b). 

Assume that Y n Z is defined over E;. We apply 11.2.12 (i) with F = E;+1, E = 
E;, L = JE;/E;+I' as in 11.1.12 (taking into account 11.1.13 (iv)). Since E; = (E;)s 
we know by 11.2.7 that (Y n Z)(E;) is dense in Y n Z. We take S =Un (Y n Z)(E;) 
in 11.2.12(i). Ify E Swehaveby 11.2.12(ii)and(2)thatµ,yL C TyYnTyZ = 
Ty(Y n Z). This shows that condition (b) of 11.2.12 (i) holds and we can conclude 
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that Y n Z is defined over E;+t· It follows that Y n Z is defined over Fs. 
(c) Y n Z is defined over F. We have (Y n Z)(Fs) = Y(Fs) n Z(Fs) (as subsets of 
X(Fs)). It is immediate that (Y n Z)(Fs) is stable under the action on X(Fs)of the 
Galois group r. Now (c) follows from 11.2.8 (i). □ 

11.2.14. Corollary. Let </J : X ➔ Y be an F-morphism of irreducible F -varieties. 
Let y E Y(F) n Im </J. 

(i) If Fis perfect then the.fiber q,-1 (y) is defined over F; 
(ii) Assume that all irreducible components of q,-1 (y) have dimension dim X - dim Y 

and that in each component C of q,-1 (y) there exists a simple point x such that the 

tangent map d</Jx: TxC ➔ TyY is surjective. Then q,-1(y) is defined over F. 

Let G = { (x, </Jx) E X x Y I x E X} be the graph of </J; it is an F-subvariety of 
X x Y. Then q,-1 (y) is isomorphic to the intersection G n (X x {y }). Now (i) follows 
by case ( 1) of the theorem. 

For the proof of (ii) observe first that, by 4.3.6, the set of points x with the prop
erty of (ii) is open and dense in C. The assumptions imply that the intersection of the 
tangent spaces T(x,y)G and T(x,y)(X x {y}) has dimension dim X - dim Y = dim C, 
which implies that the intersection is T(x,y>C. We are now in case (2) of the theorem. □ 

11.2.15. Example. Let char F = p > 0. Take X = Y = A 1, with the F-structure of 
I 

1.4.9. and </Jx = xP. If y E F - FP then q,-1y = {y,} is not defined over F. In this 
case d</Jx = 0 for all x. 

11.2.16. Exercise. Let X be an F-variety and let a be an automorphism of X defined 
over F. Assume that the fixed point set xa = {x E X I a(x) = x} is non-empty. If 
x E xa then dctx is a linear map of TxX; let (TxX)a be its set of fixed points. Assume 
that each component C of xa contains a dense open subset U such that (Tx X)a = Tx C 
for x E U. Then xa is defined over F. 

11.3. Forms 

11.3.1. Let X be an F-variety and E a subfield of k containing F. An E-form of 
X is an F-variety Y that is E-isomorphic to X. We denote by ct,(E/ F, X) the set 
of F-isomorphism classes of E-forms of X. We shall be interested in the case that 
E is a Galois extension of X. Assume this to be the case and let r be the Galois 
group. Moreover, assume that Xis affine. Then r acts in E[X] as a group of ring 
automorphisms (see 11.1.7). The action is continuous, relative to the Krull topology 
on r and the discrete topology on E[X]. Denote by A = AutE(X) the group of 
E-automorphisms of the algebra E[X], which can be identified with the group of E
automorphisms of X, viewed as an E-variety. Then r acts continuously on A as a 
group of automorphisms. 
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11.3.2. Now let r be an arbitrary profinite group (i.e. a compact, totally disconnected 
topological group) and let A be a group with a continuous action of r, relative to the 
discrete topology of A. So r acts as a group of automorphisms of A, and the stabilizer 
of an element of A is a closed subgroup of r of finite index. 

A 1-cocycle of r in A is a continuous function c : r ➔ A with c(y<S) = 
c(y)(y.c(<S)) (y, t5 E r). The set of these cocycles is denoted by Z1(r, A). 1\vo 
cocycles c and dare equivalent if there is a E A such that d(y) = a-1c(y)(y.a) for 
all y E r. The set of equivalence classes is the 1-cohomology set H 1 (f, A). It is a 
pointed set, i.e. a set with a special element 1, the class of the constant cocycle c = 1. 
There is a formalism of exact sequences, to which we return in 12.3 (in a special case). 
We refer to [Se2, Ch. 1, §5] for a more detailed discussion of these matters. 

We now assume that rand A= AutE(X) are as in 11.3.1, where Xis an affine 
F-variety. 

11.3.3. Proposition. There is a bijection <P(E/ F, X) ➔ H 1(r, AutE(X)) such that 
the class of X corresponds to 1. 

We identify A = AutE(X) with the group of isomorphisms of the £-algebra 
E[X]. The group r acts on E[X] = E ®F F[X] via the first factor. Then r acts on 
A by y.a = y o a o y-1 (y E r, a E A). Let Y be an £-form of X and let¢ be 
an £-isomorphism of E[Y] onto E[X]. For y E r put c(y) = ¢ o y o q,-1 o y-1. 

Then a straightforward check shows that a E Z1 (f, A) and that its equivalence class 
is independent of the choice of the isomorphism¢. So we have a map 

It is also straightforward to check that if Y and Z are two £-forms of X whose respec
tive cocycles a, b E Z1 (f, A) are equivalent, there is a r-equivariant £-isomorphism 
of E[Y] onto E[Z] which comes from an isomorphism F[Y] ~ F[Z]. It follows that 
µ is injective. That it maps the class of X to 1 is obvious. 

We show thatµ is surjective. Let c E Z 1(r, A). For y E r, f E E[X] define 
y * f = c(y)(y.f). The cocycle property implies that (y, f) 1-+ y * f defines an 
action of r on E[X] to which we can apply 11.1.6. It follows that 

F[X]e = {/ E E[X] I y * f = f for all y E r} 

defines an F-structure on E[X]. Moreover, since the elements of A are algebra auto
morphisms, F[X]e is an F-algebra. It defines an £-form Xe of X and it is clear that c 
is the cocycle defined by Xe, It follows thatµ is surjective, proving 11.3.3. D 

The variety Xe introduced in the proof is said to be obtained from X by twisting 
with the cocycle c. 

There are variants of 11.1.3 involving supplementary structures. The case that X 
is an algebraic group will be discussed in 12.3. The following exercises give some 
examples. 
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11.3.4. Exercises. Let E / F be a Galois extension with group r. 
(1) H 1 (r, GLn(E)) = 1 (see 11.1.8). 
(2) H 1 (r, Sp2n (E)) = 1. (Hint: use that two non-degenerate alternating bilinear 
forms on F2n are isomorphic, see [Jac4, §6.2]). 
(3) (char k =/:- 2) Define a bijection of H 1(r, On(E)) onto the set of isomorphism 
classes of non-degenerate symmetric bilinear forms on Fn that are £-isomorphic to 
the standard form E?=t x;y;. (In (2) and (3) Sp2n(E) and On(E) have the obvious 
meanings.) 
(4) Show that 11.3.3 also holds for a projective variety X. 
( 5) Show that H 1 (r, E) is trivial. (Hint: one can assume E / F to be finite, then use 
Dedekind's theorem.) 

11.4. Restriction of the ground field 

As before, F is a subfield of the algebraically closed field k. We denote by E a finite 
extension of F contained ink. In this section we discuss a procedure to associate with 
an £-variety an F-variety. 

11.4.1. We begin with some algebraic constructions. The dual of the F -vector space 
Eis denoted by E' and (, ) is the pairing between E and E'. Fix a basis (x;)t<i<n of 
E and let (x;) denote the dual basis of E'. Let A be an £-algebra and denote by S the 
symmetric algebra of the F-vector space E' ®FA (see [Jac5, p. 141-142]). Let I be 
the ideal in S generated by the elements 

n 

x' ® ab - L (x;Xj, x')(x; ® a)(x1 ® b) and x' ® x - (x, x').1, 
i,j=l 

where x E E, x' E E', a, b E A. (Notice that the sum does not depend on the choice 
of the basis (x;) ). 

If I =/:- S we denote by RA or RE IF A the quotient algebra S /I. We then say 
that RA is the algebra obtained by restriction of the ground field to F, that A admits 
restriction of the ground field (to F) or briefly that RA exists. If I = S one could 
define RA to be the zero ring, but we prefer not to do this. We only admit rings with 
non-zero identity element. 

11.4.2. Proposition. (i) Assume that RA exists. There is an £-homomorphism 
p : A ➔ E ®F RA such that the pair (RA, p) has the following universal property: 
for any pair (B, a) of an F-algebra Band an £-homomorphism a: A ➔ E ®F B 
there exists a unique F -homomorphism -r : RA ➔ B with a = (id ® -r) o p. 
(ii) Assume that there exists an F-algebra B together with an £-homomorphism 
A ➔ E ®F B. Then A admits restriction of the ground.field 
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Assume that RA exists. For x' E E', a E A denote by u(x', a) the image of 
x' ® a in RA. Then u is an F-bilinear function on E' x A and for a, b EA, x' E E 
we have 

n 

u(x', ab)= L {xixj, x'}u(x;, a)u(x1, b), u(x', x) = {x, x'} (x E E). (55) 
i,j=l 

The right-hand side of the first formula is independent of the choice of the basis of E. 
It follows from (55) that 

n 

pa= LXi ® u(x;, a) 
i=l 

defines an E-homomorphism A ➔ E ®F RA. Let (B, a) be as in 11.4.2 (i). There 
are unique F-linear maps a; : A ➔ B such that 

aa = LXi ® a;a. 
i 

The a;a satisfy the relations obtained by replacing in (55) u(x;, a) by a;a. Hence 
there is a homomorphism r with the required properties, such that r(u(x;, a)) = a;a. 
We have proved (i). If there is B as in (ii), a similar argument shows that there is an 
F-homomorphism S ➔ B whose kernel contains/. Hence I'# S, whence (ii). □ 

11.4.3. Corollary. RA exists if one of the following conditions holds: 
(a) there exists an E-homomorphism A ➔ E, 
(b) A is an affine E-algebra. 

In case (a) apply (ii), with B = F. In case (b) take B = Fs, By 11.2.7 there is an 
E-homomorphism A ➔ Es. We then use the following lemma. 

11.4.4. Lemma. There exists an E-homomorphism Es ➔ E ®F Fs, 

Put K = E ® F Fs. If E 1 is a field intermediate between E and F we have 

from which we infer by an easy argument that it suffices to prove the lemma in the case 
that E = F(x). We also may assume that either xis separable over For that char F = 
p > 0 and x is purely inseparable over F. Let f be the minimum polynomial of x 
over F. Then K ~ Fs[T]/(f). 

In the first case f is a polynomial with distinct roots in Fs. It follows that K is 
isomorphic to a direct sum ( Fs t, and the assertion of the lemma is obvious. In the 
second case K is isomorphic to Fs(x), which is a purely inseparable extension of Fs 
containing E. If y is separable over E, then a power yP0 is separable over Fs, hence 
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lies in Fs. It follows that y is both separable and purely inseparable over Fs(x), hence 
lies in that field. Consequently, Es = Fs(X)s. The lemma follows, and by 11.4.2 (ii) 
also 11.4.3. □ 

11.4.5. Example. We give an example of an algebra A that does not admit restriction 
of the ground field. Assume that char F = p > 0 and that E = F(x) is a purely 
inseparable extension of degree p, so xP e F. Let A be an £-algebra containing an 

I 
element a with aP = x (we might take, for example, A = E(x,)). Assume that B 
and a are as in 11.4.2 (i). Put aa = L x; ® b;. Then 

a(aP) = x ® 1 = 1 ® (Lxf bf), 

which is impossible. It follows that RA does not exist. 

11.4.6. In the sequel, if we speak of an algebra RE;FA, we assume tacitly that A 
admits restriction of the ground field. A pair (RA, p) with the universal property of 
11.4.2 (i) is, as usual, unique up to isomorphism. Also, R is part of a partially defined 
functor of the category of £-algebras to the category of F-algebras. If</> : A ➔ A' 
is a homomorphism of £-algebras then, with the notations of the proof of 11.4.2 the 
homomorphism R</> : RA ➔ RA' is defined by R</>(u(x', a)) = u(x', <f>a) (x' e 
E', a e A). The universal property of 11.4.2 (i) gives a bijection (of sets of algebra 
homomorphisms) 

which is functorial in A and B. This shows that RE/Fis the right adjoint functor (only 
partially defined) of the tensor product functor E®F· 

The next exercises give a number of properties of these functors. The notations 
are as in 11.4.2 and its proof. 

11.4.7. Exercises. (1) If A is of finite type over E then RA is of finite type over 
F. 
(2) Let I be an ideal in A and denote by RI the ideal in RA generated by the elements 
u(x', a) with x' e E', a e /. Then pl c E ® I and R(A/ I):::: RA/ RI. 
(3) Let A' be a second £-algebra. Then R(A ®EA'):::: RA ®F RA'. 
(4) Let E 1 be an extension intermediate between E and F. Then RE;FA "' 
REif F(RE/Ei A). More precisely, there is a corresponding isomorphism of (partially 
defined) functors. 
(5) Let A = E[T]. Then RA = SymF(E') and p with pT = L; x; ® x; have the 
universal property of 11.4.2 (i). 
( 6) If B is an F -algebra we have a multiplicative norm map N : E ® F B ➔ B, defined 
as follows. If x e E ®Band x(x; ® 1) = :Exj ® bji then Nx = det(bij), Then 
x is invertible if and only N x f. 0. Define the multiplicative map n : A ➔ RA by 
n(a) = N(pa). 
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(a) Show that for f e A we have R(A I) ::= (RA)n(f)· Here A I = A[T]/(1- fT), 
as in 1.4.6. (Hint: use the universal property of A I which says that any homomor
phism of A mapping f onto an invertible element comes from a homomorphism of 
A1,) 

(b) If A is an affine £-algebra then p is injective. (Hint: if f e Ker p then 
n(f) = 0). 

11.4.8. If A is an affine £-algebra E[X], we see from 11.4.3 (b) and 11.4.7 (1) that 
RA exists, and is an F -algebra of finite type. But RA need not be an affine F -algebra 
(for an example see 11.4.15 (2)). We shall consider in more detail two special cases: 
(a) Eis separable over F, (b) p = char F > 0 and E = F(x) with xP e F. 

Assume E / F to be separable. Denote by :E the set of F-isomorphisms of E into 
the algebraic c10sure F of F in k and let E c k a field containing all a E ( a e :E). 
(If E/ Fis a normal extension we can take E = E.) For a e :E define the £-algebra 
Bu to be the tensor product over E of E and A, where the £-algebra structure of E 
is given by (x, y) H- (ax)y (x e E, y e E). Then B1 is the usual tensor product 
E®EA, 

11.4.9. Proposition. There is an isomorphism ct : E ®F RA onto the tensor product 
over E of the algebras Bu ( a e :E) such that ct o (id ® p) is the canonical injection 
of B1 into the tensor product. 

With the notations of the proof of 11.4.2, we define for a e :E, a e A elements 
u ( a, a) E F ® F A by 

n 

u(a, a)= Lax;® u(x;, a). 
i=l 

It follows from (55) that 

u(a, ab) = u(a, a)u(a, b), u(a, x) =ax® 1 (a, be A, x E E). (56) 

Now the matrix ( a X;) where a e :E, 1 :5: i < n is an invertible square matrix. This 
follows from Dedekind's theorem, using that I :EI = [E : F]. By the proof of 11.4.2 
the relations (56) give a presentation of the algebra E ®F RA, for the generators 
u(a, a). The statement of the proposition is an equivalent way of saying this. □ 

11.4.10. Corollary. If E / F is separable then any £-algebra admits restriction of 
the ground.field. 

11.4.11. Now assume we are in case (b), i.e that E = F(x) is purely inseparable 
of degree p = char k. By 4.2.8 the £-vector space DerF(E, E) of F-derivations of 
E has dimension one. We fix a non-trivial F -derivation a of E. We shall need the 
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A-modules of differentials nA/E and nA/F (see 4.2.1). Denote by SE (SF) the sym
metric algebra SymA (S'2A;E) (respectively, SymA (QA/F )). Let J be the ideal in SF 
generated by the element ax - dA;Fx. 

11.4.12. Proposition. (i) There is a canonical E-isomorphism a of E ®F RA onto 
®p-2 

(SF/ I) ®A SEA such that (a o p)(a) = a.I (a EA); 
(ii) If a can be extended to an F-derivation of A then E ® F RA is (non-canonically) 

p-1 

isomorphic to s: A 

With the notations of the proof of 11.4.2 define for O < h < p maps uh : A ~ 
E ®F RA by 

p 

uh(a) = (h!)-1(L ahx; ® u(x;, a)). 
i=l 

Notice that uh is independent of the choice of the basis. Using that for y E E 

y = L(Y, x;)x; 
i 

we obtain from (55) that for a, b E A, y E E 

h 

uh(ab) = L u;(a)uh_;(b), uh(y) = (h!)-1(ohy). 
i=O 

(57) 

We have u0 = p and u1 is an F-derivation of A in E ® RA, viewed as an A-module 
via p. To deal with the set of equations (57) we use a result about derivations. 

11.4.13. Lemma. Let R be an F p-algebra and let D1, ... Ds be derivations of R 
in an R-algebra S. For O < h < p, define the map lih = lih(D1, ... , Ds) of R to S 
by 

L ( • I • 1)-tDi'( ) Dis( ) l 1 .... ls. 1 a . . . s a . 
i1 +2i2+ .. +sis=h 

Then 

h 

lih(ab) = L li;(a)fih-;(b) (a, b E R). 
i=O 

We make the convention that ti0(a) = a. I. Fors = 1 the lemma is equivalent to 
Leibniz's rule for higher derivatives of a product. Fors > 1 we have 

fih(D1, ... , Ds) = L(i!)-1 fih-si(Dt, ... , Ds-t)D;. 
si~h 
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The asserted formula follows by induction on s, using Leibniz's formula for the D!. □ 

Continuing with the proof of 11.4.12, we define inductively for 1 < h < p maps 
dh of A in the A-algebra E ® RA by 

(58) 

We claim that dh is an F -derivation. This it true for h = 1, since d1 = u 1. Assume 
that h > 1 and that d 1, . . . , dh- I are F -derivations. For i < h we have 

Inserting (58) into the first formula (57) and using 11.4.13 we deduce that dh is also 
an F -derivation, establishing the claim. 

Now we show that for y E E 

(59) 

The first formula follows from (57). For h > 1 insert (58) into the second formula 
(57). Using the definition of tlh and induction on hone sees that 

and the second formula (59) follows. 
Next we claim that the matrix (ohxi)I~h.i~p is non-singular. This is easy to see for 

the F-derivation 80 of E with o0(x) = x, and xi =xi-I_ It then also follows for any 
basis x;, and 80 . An arbitrary derivation a is a multiple y80 with y E E. One checks 
that the matrix (ohxi) is the product of a non-singular triangular matrix and (o~x;), 
whence the claim. 

We can now conclude that the A-algebra E ®F RA has the following properties: 
there exists an F-derivation d1 of A in E ® RA with d1y = ay for y E E and£
derivations d2 , ... , dp-l of A in E®RA, such that E®RA is generated by the images 
of the dh (a) ( 1 < h < p). The fact ( obvious from the definitions) that RA is generated 
by the u (x', a) of 11.4.2, subject to the relations (55), implies that E ®RA is universal 
for the properties just stated, i.e. for any A-algebra B with similar properties there is 
an A-homomorphism E ® RA ➔ B, compatible with the derivations. It follows from 
the universal properties of modules of differentials (see 4.2.2 (i)), symmetric algebras 
and tensor products of algebras (see [Jac5, p. 141-142, p. 144]), that E ® RA must 
be isomorphic to the algebra described in 11.4.12 (i). The formula of (i) also follows. 
The proof shows that a is functorial in A. 

Assume that a can be extended to an F-derivation of A, denoted by the same 
symbol. By 4.2.2 (i) there is).. E HomA(QA/F, A) with )..(dA;Fx) = ox. Since ox is 
non-zero, hence invertible in E and A, it follows that QA/F = A.dA;FxEBKer A. Then 
Ker ).. has the universal property characterizing QA/E of 4.2.2, and Ker ).. '.::::'. QA/E· 
Since SE/ J '.::::'. SymA (Ker)..) we obtain (ii). □ 
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11.4.14. Lemma. (i) The condition of 11.4.12 (ii) is equivalent to: the E-algebra A 
has an F-structure; 
(ii) If A = E[T1, ... , Tm]/(/1, ... , fn), such that m > n and that the image of 
(D;/j) 1=s_i,j=s_n in the matrix algebra Mn(A) is invertible, then the condition of 11.4.12 
(ii) holds. 

In (ii) D; is partial derivation with respect to T;. If A has an F-structure then a 
can be extended (see 11.1.9). The converse follows from 11.1.14. This proves (i). 

Assume the situation of (ii). Let ¢ be the canonical homomorphism 
E[T1, ... , Tm] ➔ A. Extend a to a derivation of E[T1, ... , Tm] denoted by the 
same symbol, with oT; = 0 (1 < i ~ m). The extendibility of a to a derivation of A 
means that there exist a1, ... , an in A such that 

m 

L a;</,(D;/j) + q,(o/j) = 0 (1 :s j < n). 
i=l 

The assumption of (ii) implies that this is the case (one can take an+I = · · · = am = 
0). D 

11.4.15. Exercises. The notations are as in 11.4.12. 
(1) A admits restriction of the ground field if and only if dA/FX is not a nilpotent ele
ment of SF, 

(2) Assume that F has characteristic 2 and let A = E[T, U]/(T2 - U3). Then A 
admits restriction of the ground field by 11.4.3 (b). Show that RA is not an affine 
algebra. 

We come to the main results of this section. They are geometric consequences of 
the preceding algebraic results. As before, E / F is a finite field extension. 

11.4.16. Theorem. (i) Let X be an irreducible, smooth, affine E-variety. There 
exists an irreducible, smooth, affine F-variety TIX or TIE;FX, together with a sur
jective E-morphism 1r : TIX ➔ X such that the following holds: for any affine 
F-variety Y together with an E-morphism q, : Y ➔ X there is a unique F-morphism 
v, : Y ➔ TIX with q, = 1r o v,. The pair (TIX, 1r) is unique up to isomorphism; 
(ii) If E/ Fis separable, smoothness and irreducibility may be omitted in the assump
tions and conclusions of (i). 

Put A = E[X]. By 11.4.3 (b) A admits restriction of the ground field to F. The 
existence of TIX and 1r will follow if we show that the F-algebra RA is affine. Using 
11.4.7 (4) we see that it suffices to do this in the cases (a) and (b) of 11.4.8. In case 
(a), when E / F is separable, it follows from 11.4.9, without assuming frreducibility 
or smoothness, that there is an affine E -variety Z such that k ® F RA :::: k [ X x Z], 1r 

corresponding to the projection morphism Xx Z ➔ Z. These facts imply (i) for this 
case, and (ii) also follows. 
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Now assume case (b). So E/ Fis purely inseparable of degree p = char F. First 
assume that A is as in 11.4.14 (ii). Then nA/E is a free A-module, of rank dim X (as 
follows from 4.2.4).By 11.4.12 (ii) we have that E ® RA ~ A ®E E[T1, ... , Td], 
where d = (p - 1) dim X, the homomorphism p corresponding to the canonical map 
of A in the tensor product. This description of E ® RA implies all assertions of (i), in 
the case under consideration. 

In the general case one sees (using 4.3.2 and 4.3.3) that there is a covering of 
X by principal open subsets D(a) with a in a subset S of A, such that the algebras 
Aa = E [D (a)] (a E S) have the property of 11.4.14 (ii). We have by 11.4.12 that 

®p-1 
E ® R(Aa) ~ SymAJOAafE) . Since nAa/E ~ Aa ®A nA/E we can conclude that 
E ® R(Aa) ~ (E ® RA)pa, from which we see that the last £-algebra is affine. Since 
the D(a) with a E S cover X, the ideal generated by Sis A. Then the ideal generated 
by the pa (a E S) must be E ®RA.It follows E ® RA is affine. So there is an affine 
F-variety X with F[TTX] =RA.Let rr be the £-morphism TTX ➔ X defined by p. 
The preceding discussion implies that for a E S we have rr-1 (D(a)) ~ D(a) ® Ad 

and irreducibility and smoothness of TTX follow. The uniqueness statement of (i) is 
standard. □ 

In the following corollaries the notations are as in 11.4.16 (i). 

11.4.17. Corollary. dim TTE;FX = [E : F] dim X. 

Here [E : F] is the degree of the field extension. □ 

11.4.18. Corollary. Assume that E / F is purely inseparable. There exists a cov
ering ( U;) by affine open E-subvarieties, the rr- 1 U; being affine open F -subvarieties, 
together with £-isomorphisms <p; : U; x A[E:FJ(dimX-t) ➔ rr- 1u; such that rr o <p; is 

the first projection. 

This follows from the proof of the theorem. The fact that the rr - 1 U; are defined 
over F comes from the observation that (E ® RA)pa - (E ® RA)cpa)P and that 
(pa)P ERA for all a EA. □ 

11.4.19. Let X be an £-variety. We say that X admits restriction of the ground 
field to F if there exist an F-variety TTX = TTE;FX and an £-morphism rr, with the 
properties of 11.4.16 (i). Then TTX is the variety obtained by restricting the ground 
field. We also say that TTX exists. The properties of 11.4.16 (i) then hold for any 
F-variety Y. If¢ : X ➔ Y is a morphism of £-varieties and if TTX and TTY exist, 
there is an induced morphism TT(<f,) : TTX ➔ TTY, so we have a (possibly partially 
defined) functor TT from the category of £-varieties to the category of F-varieties. 

11.4.20. Exercises. X is an F-variety, assumed to be affine in the first three exer-
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cises and E / F is as before. 
(1) In 11.4.16 (i) the assumption and conclusion of irreducibility can be omitted. 
(2) n EI F X exists if and only if the ideal of nilpotent elements of F ® F RE I F ( E [ X]) 
is defined over F. 
(3) Let E / F be an inseparable quadratic extension. 

(a) If X = {(x, y) E A2 I xy = O} then nE;FX exists. 
(b) If X = {(x, y) E A2 I x2 - y3 = O} then nE;FX does not exist. 

(4) (a) If E/ Fis purely inseparable, then nx exists for any irreducible, smooth£
variety X. 

(b) If E/ Fis separable, then nx exists for any projective £-variety. (Hint: use a 
version of 11.4.9 for graded algebras.) 

11.4.21. The separable case. Assume that E is a separable extension, contained 
in Fs, Let r = Gal(Fs/ F) and fl. = Gal(Fs/ E) be the respective Galois groups. 
Then fl. is an open and closed subgroup of r, with finite index. We identify the coset 
space r / fl. with the set :E of F-homomorphisms of E into Fs, introduced in 11.4.8. 
The group r operates on it by left translations. If A is a group we call A-set a set on 
which A acts as a group of permutations. If B is a subgroup of A of finite index and 
Q is a B-set we define an A-set P = Ind; Q as follows: P is the set of functions 
/ : A ➔ Q with f(ab) = b-1 .f(a) (a E A, b E B). The action of A on Pis 
given by (a.f)(a') = f (a- 1a') (a, a' E A). If Q has a supplementary structure that 
is B-stable, then P has a similar A-stable structure. For example, if Q is a B-module 
then P is the induced A-module. 

Now let X be an affine £-variety. By 11.4.16 (ii) we have an F-variety Y = 
nE;Fx. 

11.4.22. Proposition. (i) There is an isomorphism p : Xl; ➔ Y such that Jr o p 
is the projection onto the factor de.fined by id E :E; 
(ii) There is an isomorphism of the r-set Y(Fs) onto JndiX(Fs), 

(i) follows from 11.4.9, with E = k. 

For a E :E define Bu as in 11.4.8, with E = Fs, A = E[X]. Notice that E[X] 
is a subring of Bu, but not necessarily a subalgebra. By 11.4.9, Fs[Y] is the tensor 
product ®ueE Bu. It is generated over Fs by tensor products f = ®u fu, where f u is 
an element of E[X] c Bu, It follows from the proof of 11.4.9 that, for y E r, we 
have y.f = ®J;, where J; = /y-1.u. This describes the r-action on Fs[Y]. 

Let y E Y(Fs), It is a function on :E, whose value Yu is an Fs-homomorphism 
Bu ➔ Fs, This homomorphism can also be viewed as a ring homomorphism E[X] ➔ 
Fs with Yu(af) = (a.a)yu(f) (a E E, f E E[X]). Define a function <p(y) : 
r ➔ X(Fs) by <p(y)(y)(f) = y-1.(YyA(f)) for y E r, f E E[X]. A straight
forward check shows that <p(y) E IndiX(Fs), We have defined a map of r-sets 
</> : Y(Fs) ➔ JndiX(Fs). For a E :E = f/1:l. let ii E r be a representative. 
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To prove that <p is bijective, observe that <p (y) is uniquely determined by the values 
<f>(y)(a) E X(Fs) and that these values may be prescribed arbitrarily. □ 

Notes 

11.1 deals with Galois descent of the ground field. The main results for separable 
extensions, such as 11.1.6, are standard (see for example [Bo3, AG, § 14]). We also 
establish similar results for purely inseparable extensions of height one, where the 
role of the Galois group is taken over by the Lie algebra of derivations. We have the 
analogue 11.1.14 of 11.1.6. The method goes back to Cartier [Car, Ch.2]. 

The results of 11.1 are applied in 11.2 to obtain criteria for fields of definition 
for algebraic varieties. The main results are 11.2.8, for Galois extensions (which is a 
standard result, see [Bo3, AG, 14.4]) and 11.2.12, for purely inseparable extensions 
(which does not seem to be in the literature in this form). A consequence of these 
results is the useful criterion 11.2.14 for fields of definition. In 11.2 we also establish 
the basic density theorem 11.2. 7. 

The brief section 11.3 is devoted to a proof of the well-known main result 11.3.3 
about forms of affine F-varieties. 

Restriction of ground fields, the theme of 11.4, is due to Weil. In the context of 
scheme theory the matter is discussed in [DG, Ch. 1, 1.6]. See also [Oe, App. 2] for 
a brief review. We give an elementary treatment. It is based on 11.4.2, which gives 
an explicit presentation of algebras obtained by restriction of the base field, for an 
arbitrary finite field extension. The main result of 11.4 is 11.4.16. 



Chapter 12 

F -groups: General Results 

In this chapter the results of the preceding one will be applied to algebraic groups. 
The notations are as in 2.1. 'Linear algebraic group over F' will be abbreviated to 
'F -group.' As before, Fs is a separable closure of F. 

12.1. Field of definition of subgroups 

Let G be an F -group. In 2.2 we already proved that certain subgroups of G are 
F-subgroups, i.e., are defined over F. For example, if G is connected its commutator 
subgroup is an F-subgroup (see 2.2.8 (ii)). In the present section we shall discuss 
other kinds of subgroups. 

12.1.1. Proposition. The identity component G0 is an F-subgroup. 

By 11.2.6 all irreducible components of G are defined over Fs, and the Galois 
group r of Fs over F permutes them (see 11.2.10 (1)). Since the components are 
mutually disjoint, the component G0 containing the point e E G(F) must be stable 
under r. Applying 11.2.7 and 11.2.8 (i) we see that G0 is defined over F. □ 

Assume that Xis a G-space over F (see 2.3.1). Let x E X(F) and denote byµ 
the F -morphism g r+ _ g .x of G to X. Its image is the orbit O = G .x and µe = x. ~y 
1.9.1 (iv) the closure O is defined over F and by 2.3.3 (i) 0 is an open subvariety of O. 

12.1.2. Proposition. (i) The isotropy group Gx is defined over F if F is perfect 
or if the tangent map dµe : TeG ➔ TxO is surjective; 
(ii) 0 is defined over F. 

(i) follows from 11.2.14. Notice that in the second case the tangent map dµ 8 is 
surjective in all points of g E G, so that the condition of 11.2.14 (ii) is satisfied. Also 
notice that surjectivity of d µe is equivalent to the equality dim Ker d µe = dim G x. - -

We know that O is defined over F. The open subvariety O is defined over F. 
This one sees by taking k = F (see 11.2.3 (2)). Now (ii) follows from 11.2.8 (ii), with 
X = 0, Y = 0, the condition (b) of loc. cit. being clearly satisfied. D 

By 4.3.6 surjectivity of the tangent map dµe is equivalent to separability ofµ. 

12.1.3. Corollary. Let </J : G ➔ G' be a homomorphism of F -groups. Then Ker </J is 
defined over F if F is perfect or if the tangent map d</Je is surjective. 
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This follows by applying 12.1.2 (i) to the G-space G', with action (g, x) 1-+ 

~(g)x. □ 

The Lie algebra g or L(G) has the F-structure g(F) of 4.4.8. 
If x, y e G we write 

No(x, y) = N(x, y) = {g e G I gxg-1 = y} 

this is the transporter of x into y. It is a closed subvariety of G. For x = y we obtain 
the centralizer Z0 (x) = Z(x). If X, Y e g we define, similarly, the transporter of X 
into Y: 

No(X, Y) = N(X, Y) = {g e G I Ad(g)X = Y}. 

For X = Y we obtain the centralizer Z0 (X) = Z(X). 

12.1.4. Corollary. Assume G to be connected. 
(i) Let x and y be semi-simple elements of G(F). If N(x, y) is non-empty it is defined 
over F. In particular, Z(x) is defined over F; 
(ii) Let X and Y be semi-simple elements of g(F). If N(X, Y) is non-empty it is de
fined over F. In particular, Z(X) is defined over F. 

For the notion of semi-simple element of g see 4.4.20. 

Apply 12.1.2 to the conjugation action of G on itself. By 5.4.5 (i) the morphismµ, 
is separable. It follows from 12.1.2 (ii) that Z(x) is defined over F. If Z(x, y) # 0 it 
is a fiber ofµ,. Since dµ,g is surjective for all g e G, 11.2.14 (ii) shows that Z(x, y) is 
also defined over F. This proves (i). The proof of (ii) is similar. It uses a separability 
statement similar to that of 5.4.5 (i), which is proved by an argument like the one of 
the first paragraph of the proof of 5.4.4. □ 

12.1.S. Proposition. Let H and K be two F-subgroups of G. Then H n K is de
fined over F if Fis pe,fect or if L(H n K) = L(H) n L(K). 

This is a consequence of 11.2.13. □ 

12.1.6. Counterexamples. Over a non-perfect ground field F one has to be care
ful with fields of definition of group-theoretically defined subsets of G, as is shown 
by the following examples. To keep them simple we assume that F is a non-perfect 
field of characteristic two. Similar examples exist in any positive characteristic. Fix 
a e F - F 2 . 

(1) Let 

G = {(x, y) E k2 I x 2 - ay2 # O}, 
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with multiplication 

(x, y), (x', y') =(xx'+ ayy', xy' + x'y). 

Then G is an F-group, with F[G] ~ F[T, U, V]/((T 2 - aU2)V - 1) (notice that 
(T2 - a U2) V - 1 is an irreducible polynomial). Define <I> : G ~ Gm by <I> (x, y) = 
x2 - ay2 . This is an F -homomorphism. The kernel of <I> of G is the subvariety 
{(x, y) I x 2 - ay2 = l} of A2, which is not defined over F. For if it were, 11.2.7 
would imply that there existed non-zero x, y E Fs with x2 - ay2 = 1, whence a E Fs, 
which is not the case. This shows that 12.1.3 is not generally true. 
(2) In the preceding example, Ker <I> is isomorphic to Ga, hence is a connected, nor-

mal, unipotent subgroup. Since Im</> = Gm, we see that Ker</> is also the unipotent 
radical of G. So G also provides an example of an F -group whose unipotent radical 
is not defined over F. This counterexample can be put in a more general context (see 
12.4.6 and 12.4.7 (4)). 
(3) G and <I> being as before, let H be the algebraic group with underlying variety 

G x Ga, the multiplication being defined by (g, x) (g', x') = (g g', x +</> (g )x') (g, g' E 

G, x, x' E k). Then the center of H is the subgroup Ker <I> x {O} of H. We have here 
an example of an F -group whose center is not defined over F. 

(4) Let G = SL4 and take 

x= 

0 0 0 a 
0 0 a-1 0 
0 1 0 0 
1 0 0 0 

then x E G ( F). The centralizer of x is the subgroup of G of matrices of the form 

X O O ay 
0 z t 0 
0 at z 0 
y O O X 

with x, y, z, t Ek and (xz + ayt)2 - a(xt + yz)2 = 1. This group is not defined over 
F, as is shown by the argument of (1). So centralizers of elements of G(F) need not 
be defined over F. 

(5) Let G = G~. Then H = Ga x {O} and K = {(x, x2 + ax4 ) I x E k} are two 
F -subgroups of G, whose intersection is not defined over F, giving a counterexample 
to 12.2.5. In this case L(H) = L(K) is one dimensional and L(H n K) = {O}. 
(6) We have already seen in 2.4.11 that semi-simple (and unipotent) parts of elements 

of G(F) need not lie in G(F). 
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12.1.7. Perfect ground fields. Now assume that Fis perfect. In that case the coun
terexamples of 12.1.6 disappear. 
(a) We have already seen in 12.1.3 and 12.1.5 that kernels of F-homomorphisms and 
intersections of F -subgroups are defined over F. Also, it follows from 12.1.2 that 
centralizers of elements of G(F) are defined over F. 
(b) The center C(G) = C of G is defined over F. For it follows from 11.2.7 that C 
is the intersection of the centralizers Z(x), where x runs through G(Fs), By 1.1.5 (ii) 
C is the intersection of finitely many centralizers. From 12.1.5 we conclude that C is 
defined over Fs, Since C(Fs) clearly is a subgroup of G(Fs) which is stable under the 
Galois group r, we see from 11.2.8 (i) that C is defined over F. 
(c) The semi-simple and unipotent parts of an element of G(F) now also lie in G(F). 
Viewing G as an F-subgroup of some GLn (2.3.7) we see that it suffices to deal 
with the case of GLn, It is clear from the theory of Jordan normal forms that, if 
x e GLn(F), its semi-simple part Xs lies in G(Fs), The uniqueness of the Jordan 
decomposition implies that Xs is fixed by all elements of the Galois group r, hence 
lies in GLn (F). A similar result holds for the Jordan decomposition of elements of 
g(F). 
(d) Finally, the unipotent radical Ru(G) is defined over F. It suffices to show that 
it is defined over Fs, for then 11.2.8 (i) can be applied. First assume that our alge
braically closed field k coincides with F = Fs. Then it is immediate that Ru ( G) is 
defined over Fs. In the general case one sees, by first working over F, that there exist 
a Borel subgroup B, respectively a maximal torus T, which are defined over F, with 
T c B. Then B is also a Borel subgroup of G, viewed as an algebraic group over k, 
as solvability and connectedness are preserved by passing from F to k. The unipotent 
radical of G is the unipotent radical of the intersection / of all Borel subgroups of 
G (see 6.4.14). / can also be described as the closed subgroup of G whose elements 
fix all points of the homogeneous space G / B. By 11.2.4 (i) this is also the subgroup 
whose elements fix all points of (G/ B)(F), i.e. I is the intersection of the Borel - -subgroups defined over F. It follows from 12.1.5 that/ is defined over F. Hence its 
uni potent radical Ru ( G) is defined over Fs = F, which is what we claimed. We can 
also conclude that the radical R(G) of G is defined over F. For the image of R(G) in 
the reductive group H = G/ Ru(G) is the connected center of H (7.3.1 (i)), which is 
defined over F by (b) and 12.1.1. R(G) is defined over Fas a consequence of 11.2.13. 

12.1.8. Exercises. (1) Let A be a finite-dimensional associative algebra over k with an 
F -structure (see 11.1. 7). Assume given an anti-automorphism t of A which is defined 
over F. Put 

A - = {x e A I tx = -x}. 

Let 

G = { a e A I a (ta) = 1} 
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this is a linear algebraic group. 
(a) Show that the multiplicative group A* of A is an F-group. 
(b) If dimk A - = dim G then G is defined over F. (Hint: consider the action 

(x, y) H- xy(tx) of A* on itself.) 
(2) In (1) take A = Mn. Lets e GLn(F) be a symmetric invertible matrix and put 
tx = s(1 x)s-1. Then the group G of (1) is the orthogonal group defined bys. 

(a) If char F # 2 then G is defined over F. (Hint: use 8.1.3 and 7.4.7 to find 
dimG.) 

(b) Show by a counterexample that (a) is not true if char F = 2. 
(3) Show that the symplectic group Sp2n is defined over F. 
(4) (a) Let V = k2n+i and let Q be the quadratic form on V with 

n 

Q((~o, · · · , ;2n+1)) = ;J + L t;n+i· 
i=l 

Let G be the identity component of isotropy group of Q in G L(V). Show that G is 
defined over F. (Hint: If the characteristic is # 2 this follows from (2). In character
istic 2 use 7.4.7 (6) and 12.1.2.) 

(b) Let V = k2n and let Q be the quadratic form on V with 

n 

Q((;1, .... ;2n)) = I: ;;;n+i· 
i=l 

Let G be as in (a). Show that G is defined over F. 
(5) Let G be a connected F -group and a a semi-simple automorphism of G defined 
over F. Then its group of fixed points Gu is defined over F (see 5.4 for semi-simple 
automorphisms). 

12.2. Complements on quotients 

Let G be an F -group and H a closed F -subgroup. 

12.2.1. Theorem. A quotient ( G / H, a) over F exists and is unique up to a G
isomorphism over F. 

The notion of quotient was defined in 5.5. The theorem is a refinement of 5.5.5. 
The proof of 5.5.5 can serve for proving 12.2.1, once one knows that there is an F
variety X and a point x e X (F) with the properties of 5.5.4, such that the G-action 
on X is defined over F. In the proof of 5.5.4, such a variety X is constructed as a 
G-orbit. Application of 12.1.2 (ii) shows that it is defined over F. □ 

12.2.2. Corollary. If, moreover, H is a normal subgroup of G, then G / H has a 
structure of F-group. 
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This follows from 5.5.10. □ 

12.2.3. We shall now discuss another quotient construction, in the case that F has 
characteristic p > 0. The Lie algebra g of G is a p-Lie algebra ( 4.4.3), which has an 
F-structure (4.4.8). 

Let fJ be a p-subalgebra of g defined over F. A quotient of G by fJ is a pair of an 
affine homogeneous space G/fJ for Gover F, together with a point a E (G/fJ)(F) 
such that 
( a) the morphism <I> : g 1-+ g .a of G to G /fJ is bijective and fJ is the kernel of the 
tangent map (d</>)e : g ➔ T0 (G/fJ), 
(b)forany pair (Y, b) of an affine G-space Y of Gover F and a point b E Y(F) such 
that the kernel of the differential ate of the morphism 1/1 : g 1-+ g .b of G to Y contains 
fJ, there exists a unique F-morphism ofG-spaces x : G/fJ ➔ Y with xa = b. 

12.2.4. Theorem. A quotient G /fJ over F exists and is unique up to a G-isomorphism 
of homogeneous spaces over F. 

The uniqueness part of the theorem is trivial. The construction of the quotient 
proceeds as follows. Put A = F[G] and denote by!).. : A ➔ A® FA comultiplication 
(see 2.1.2). By 4.4.8, g(F) is the space of F-rational tangent vectors (TeG)(F) = 
DerF(A, Fe), where Fe = A/Me, Me being the maximal ideal in A defined bye 
(see 4.1.3 and 4.1.8). There is a bijection fJ of g(F) onto the space of left invariant 
F-derivations of A. If X E g(F), f E A and !)..f = L f; ® g; then 

({JX)f = - L f;(Xg;), (60) 

see 4.4.4 (b ). Denote by B the subalgebra of A whose elements are annihilated by all 
{JX, X E fJ(F). It follows from (60) that f E B if and only if !)..f = L f; ® g; with 
Xg; = 0 for all i. This implies that 

!)..BC A®B. (61) 

It is clear that B contains the subalgebra F[AP] generated by the pth powers 
of elements of A and that any f E A is integral over F[AP]. By 5.2.2 A is finite 
over F[AP]. Since the latter ring is noetherian, we can conclude that B is a finite 
F[A P]-module, which implies that it is an F -algebra of finite type. Also, B is an 
affine F -algebra, being a subalgebra of the affine algebra A. By 11.2.2 (i) there is an 
affine F-variety G/fJ with F[G/fJ] = B. The inclusion B c A defines a morphism 
</> : G ➔ G/fJ. We put a = <f>e. By (61) we have a morphism G x G/fJ ➔ G/fJ. 
We leave it to the reader to check that it defines a G-action on G /fJ over F and that 
</>(xy) = x.</>(y) (x, y E G). Since A is integral over B, we have that <I> is surjective 
(for example as a consequence of 1.9.3). It follows that G /fJ is a homogeneous space 
ofG. 
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Let K and L be the quotient fields of A, respectively B. Then KP c L c K. We 
conclude from 5.1.5 (i) that </> is bijective. 

Put ij = K ® F f3 Q. This is an algebra of derivations of K and from the definition 
of B we see that 

L = {x e K I Q.x = O}. 

Now let X e (Ker(d</>)e)(F). Then the derivation X of A in Fe annihilates B. The 
derivation f3X of A also annihilates Band e~tends to a derivation of K annihilating L. 
But by 11.1.15 these are the derivations in Q. It follows that X e Q. We have proved 
property (a) of 12.2.1. 
If Y and b are as in (b ), then v, is defined by an injective algebra homomorphism 

v,* : F[Y] ➔ A. 

The assumption that Q c Ker(d v, )e implies that Im v,* c B. The corresponding in
clusion map defines x. This proves property (b ). We leave it to the reader to complete 
the details. □ 

12.2.5. Corollary. In the case of 12.2.3 assume, moreover, that Q is Ad(G)-stable. 
Then G /Q has a structure of linear algebraic group over F such that</> is a homomor
phism. If 1/1 : G ➔ G' is a homomorphism of linear algebraic F-groups such that the 
kernel of the Lie algebra homomorphism dv, : g ➔ g' contains Q, there is a unique 
F-homomorphism x : G /Q ➔ G' with 1/1 = x o </>. 

Let t : A ➔ A be the antipode (2.1.2). We claim that, under the hypothesis of 
the corollary, we have !)..B c B ® F B, tB c B. It then follows that G /Q can be 
given a structure of algebraic group over F such that</> is a homomorphism. The last 
statement of the corollary is then a consequence of property (b) of 12.2.3. 

To prove the claim we may and shall assume that F = k. If Q is stable under 
Ad(G), we see from 4.4.4 (a) that Bis stable under all right translations p(x) (x e G). 
Butthen !)..B c B®A. Wehavealreadyseenintheproofof 12.2.4that!)..B c A®B, 
so !)..B c (B ® A) n (A® B) = B ® B. 
Let f e Band put !)..f = L f; ® g;, with f;, g; e B. We may assume the g; to be 
linearly independent over F. Now 

f<e) = I)if;)g;. 

Let X e Q, and view it as a derivation of A in Fe. Then 

0 = L X(tf;)g; + L(tf;)X(g;) = L X(tf;)g;, 

and it follows that all X(tf;) are zero, which means that all tf; lie in B. Since (with 
the previous notations) tf = }:g;(e)tf;, we conclude that tf e B. This proves the 
claim, whence the corollary. □ 
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12.2.6. As in 9 .6.1 ( where the groups were reductive) we say that a homomorphism of 
connected algebraic groups <I> : G ➔ G' is an isogeny if it is surjective and has finite 
kernel. If G and G' are F-groups and¢ is defined over F, we call¢ an F-isogeny. 
By 5.3.5 (2) the kernel of¢ is finite and lies in the center of G. 

If the differential d</> : g ➔ g' is bijective, ¢ is separable (4.3.6 (i)). Then ¢ 
induces an isomorphism of the field k(G') onto a subfield of k(G) over which k(G) is 
separably algebraic. If¢ is bijective, then by 5.1.6 (iii) this field extension is purely 
inseparable. In these two cases, we call the isogenies separable, respectively purely 
inseparable. The homomorphisms G ➔ G/~ of 12.2.5 are examples of purely insep
arable isogenies. We call these elementary. 

12.2. 7. Corollary. Let <I> : G ➔ G' be an F -isogeny of connected linear F -groups. 
There exists a factorization of <I> 

such that 
(a) the Gi are connected linear F-groups and the <Pi are F-isogenies, 
(b) <l>o, ... , <Ps-1 are elementary purely inseparable and <Ps is separable. 

We view k(G) as a finite extension of k(G'). If d</> is bijective takes = 0, <l>o = ¢. 
Otherwise, put G 1 = G /Ker d</> and denote by ¢0 the homomorphism of 12.2.5. 
There is an F-isogeny G 1 ➔ G' and k(G') c k(G 1) c k(G). The degree [k(G 1) : 

k(G')] is less than [k(G) : k(G')]. We can now use an induction. □ 

12.2.8. Frobenius morphisms. In 12.2.6 we may take~ = g. The algebraic group 
G / g has another description, which we now briefly discuss. 

If A is an F -algebra, we denote by FA or FF A the F -subalgebra generated by the 
pth powers of the elements of A. Then Fk(k ®A)= k ®F FFA (notice that k = kP). 
If Fis perfect FA can also be viewed as the algebra whose underlying ring coincides 

I 
with A, but with scalar multiplication a.f = aP f (a e F, f e A). If Xis an affine 
F-variety, there is an affine variety Fr X, with F[Fr X] = FF(F[X]), and a mor
phism Fr : X ➔ Fr X, the Frobenius morphism. There is a corresponding functor 
on the category of affine F-varieties. We conclude that if G is a linear F -group, so 
is Fr G, and Fr : G ➔ Fr G is a homomorphism of F -groups, which is in fact an 
inseparable isogeny. 

12.2.9. Corollary. Let G be a connected linear F-group. There is an F-isomorphism 
x : G / g ➔ Fr G such that Fr = x o </>, where <I> is the homomorphism of 12.2.5. 

Put A = F[G], B = F[G/g]. Then F[Fr G] = F[AP]. We have seen in the 
proof of 12.2.4 that F[AP] c B, the inclusion defining the morphism X· We have 
to show that these algebras coincide. We may assume that F = k. As before, let 
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K and L be the quotient fields of A, respectively B. Then KP c L c K. Since 
F is assumed to be algebraically closed it is easy to see that K is a finite extension 
of KP. Also, all derivations of K annihilate KP, so are KP -derivations. It follows 
from 11.1.15, applied to the extension K /KP, that KP is, in fact, the subfield of K 
annihilated by all derivations of K. Using 4.4.4 we conclude ihat this field coincides 
with the subfield annihilated by all left invariant derivations. In the proof of 12.2.1 
we have seen that this field coincides with L. So L = KP, hence the isogeny x is 
birational. It follows from 5.3.4 and 5.2.8 that x is an isomorphism, proving 12.2.9. □ 

12.2.10. Exercises. F is a field of characteristic p > 0. 
(1) Let p = 2 and G = SL2. Denote by T the diagonal torus of G; it is an F
subgroup. 

(a) Show that Ad(G) acts trivially on the Lie algebra t. 
(b) By 12.2.4 there exists an F-group G /t. Show that it is F-isomorphic to PSL2. 

(Hint: use 2.1.5 (3).) 
(2) (a) Let A = F[T1, ... , Tn]I I be the quotient of a polynomial algebra by an ideal 
I. Show that the algebra FA of 12.2.8 is isomorphic to F[T1, ... , Tn]/ J, where J 
is the ideal generated by the polynomials obtained from those in / by raising their 
coefficients to the pth power. 

(b) Let X be an affine F-variety. Define the iterated Frobenius morphism 

Frn: X ➔ Frnx. 

If F = F p", the finite field with pn elements, then Frn is F-isomorphic to X. 
(c) Let G be as in 12.1.6 (1). Show that Fr G is an F-group that is not F

isomorphic to G. 
(3) Let p : G ➔ G L(V) be a non-trivial rational representation over F such that 
dp = 0. There is a rational representation p1 : Fr G ➔ G L(V) over F such that 
p = P1 o Fr. 

(b) In the case of (a) there is n and a rational representation Pn : FrnG ➔ G L(V) 
over F such that p = Pn o Frn and dpn =f:. 0. 
(4) Let T be a torus defined over F. There is an isomorphism a : Fr T ➔ T such 
that a o Fr is the pth power map of T. 

12.3. Galois cohomology 

As before, G is an F-group. We denote by r the Galois group Gal(Fs/ F). 

12.3.1. Let H 1 (F, G), respectively Z 1(F, G), be the 1-cohomology set H 1 (f, G(Fs)), 
and the set of cocycles Z 1(r, G(Fs)) (defined in 11.3.2). These are pointed sets, with 
a special element 1. The pointed set H 1(F, G) is the I-dimensional Galois cohomol
ogy set of G. The 0-dimensional Galois cohomology set is defined by H 0(F, G) = 
G(F), the group of F-rational points of G. Recall (see 2.3.2 (2)) that a principal 
homogeneous space or torsor of G over F is a homogeneous space X of G over 
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F on which G acts simply transitively. An example is X = G, with G-action by 
left translations. A G-variety X over F is a torsor if and only if the F-morphism 
(g, x) H- (g.x, x) of G x X to Xx Xis an isomorphism. It is F-isomorphic to G if 
and only if X (F) =f:. 0. 

Let :E be the set of F-isomorphism classes of torsors of G over F. 

12.3.2. Proposition. There is a bijection of :E onto HI(F, G) such that the class 
of G corresponds to 1. 

This is an application of the results discussed in 11.3. A torsor of G over F has 
an Fs-rational point (by 11.2. 7), hence is Fs-isomorphic to G. The group of the Fs
automorphisms of the torsor G being isomorphic to G ( Fs), the proposition follows 
from 11.3.3 (or rather a version involving supplementary structures). D 

12.3.3. If ct, : H ➔ G is a homomorphism of F -groups, it is immediate from the 
definitions that there are induced maps ct,i : H;(F, H) ➔ Hi(F, G) (i = 0, 1). 
Moreover, ct,0 is a group homomorphism and ct,I a map of pointed sets. Of course, ct,0 
is also a map of pointed sets, the special elements being the neutral ones. 

Now assume that H is an F -subgroup of G and let i be the inclusion map H ➔ G. 
We put H0(F, G / H) = (G / H)(F); this is a set on which the group G(F) acts. It is 
also a pointed set (with special element H). Let T{ : G ➔ G / H be the canonical F
morphism. We have an induced map of pointed sets T{o: H0(F, G) ➔ H0(F, G/ H). 
If x E (G / H)(F) then by 11.2.14 (ii) (using the separability of T{) we conclude that 
T{-I (x) is defined over F. It follows that there is g E G ( Fs) with T{ (g) = x. If y E r 
then a(y) = g-I (y.g) defines a cocycle of r in H(Fs), whence a map of pointed sets 
~o : H 0(F, G / H) ➔ HI (F, H). 

12.3.4. Proposition. (i) The sequence of maps of pointed sets 

1 ➔ H0 (F, H) ~ H0(F, G) ~ H0(F, G / H) ! HI (F, H) ~ HI (F, G) 

is exact; 
(ii) If His normal, the sequence of pointed sets obtained from the sequence in (i) by 
adding on the right 

is exact; 
(iii) If His a subgroup of the center of G, the sequence of pointed sets obtained from 
the sequence in (i) by adding on the right 

is exact. 
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We define a sequence of pointed sets to be exact if the fiber of a special point 
of one of the maps is the image of its predecessor. In (iii) H 2(F, H) is defined to 
be the second cohomology group H 2(r, H(Fs)) of r in the abelian group H(Fs), 
i.e. the quotient of the group of continous functions a : r x r -+ H(Fs) satis
fying (y.a(8, €))a(y, 8€) = a(y8, €))a(y, 8), modulo those of the form a(y, 8) = 
b(y)(y.b(8))b(y8)-I, see [Jac5, p. 356). The definition of 8I is similar to that of 8°. 
The proof of the proposition is straightforward, and is left to the reader. □ 

12.3.5. Examples. (1) HI (F, GLn) = 1, see 11.3.4 (1). In particular, HI (F, 
Gm)= 1. 

Let PGLn be the quotient of GLn by the group of scalar multiples of the identity, 
which is isomorphic to Gm. Using 12.3.4 (iii) we obtain a map 

Now PGLn(Fs) is the automorphism group of the matrix algebra Mn(Fs) (by the 
Skolem-Noether theorem,see [Jac5, p. 222)). Using (a version of) 11.3.3 we conclude 
that HI (F, PGLn) classifies the the isomorphism classes of associative algebras over 
F that are Fs-isomorphic to the algebra of n x n-matrices. It is well-known that these 
algebras are the central simple algebras over F, i.e. the (finite dimensional) simple 
associative algebras with center F (for the theory of central simple algebras see [loc. 
cit., Ch. 4)). The group H 2(F, Gm) is the Brauer group of F. The map 8I is also 
well-known in algebra theory (see [loc. cit., p. 477)). 
(2) HI (F, Ga) = 1, as follows from 11.3.4 (5). 
(3) A connected solvable F-group G is called F-split if there exists a sequence 
{e} = Go C GI C • • • C Gn-I C Gn = G of closed, connected, normal F
subgroups such that the quotients G;/G;-I are F-isomorphic to either Ga or Gm (the 
quotients exist by 12.2.34). Using (1), (2) and 12.3.4 (ii) we conclude by induction on 
the dimension that for such a group G we have HI (F, G) = 1. A particular case is 
that G is an F-split torus, i.e. a torus over F that is F-isomorphic to a product (Gmt. 
(4) HI (F, Sp2n) = 1, see 11.3.4 (2). 
(5) (char F =f. 2) HI(F, On) classifies the F-isomorphism classes of n-dimensional 
non-degenerate symmetric bilinear forms over F, see 11.3.4 (3). 
(6) If Fis finite then Lang's theorem (4.4.17) implies that HI(F, G) = l if G is 
connected. 

12.3.6. Exercises. (1) ( char F -::j; 2) (a) If A = {±I}, a closed F-subgroup of 
Gm then HI (F, A) ::::'. F* /(F*)2. (Hint: use Galois theory). 

(b) As an application of 12.3.4 (i) show that the homomorphism SL2(F) -+ 

PSL2(F), deduced from the homomorphism of 2.1.5 (3), need not be surjective. 
(2) HI (F, SLn) = 1. (Hint: use the determinant map GLn -+ Gm), 
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12.3. 7. Forms. If E is an extension of F contained ink, an E-form of G is an F -group 
G' that is £-isomorphic to G, see 11.3.1. By a version of 11.3.3 we have a bijection of 
the set <l>(F, G) of F-isomorphism classes of Fs-forms of G onto H 1(r, AutFs(G)), 
where now AutFs ( G) is the group of Fs-automorphisms of the algebraic group G ( on 
which r acts). We have a homomorphism G(Fs) ➔ AutFs(G), sending an element 
to the inner automorphism that it defines, whence a map Int of H 1 (F, G) to <l>(F, G). 
An F -form of G whose isomorphism class is in the image of Int is said to be an inner 
form. A form that is not inner is outer. 

The twisting procedure of the proof of 11.3.3 gives the following explicit descrip
tion of inner forms. Let z e Z 1(F, G) be a cocycle inc e H 1(F, G). There is an 
F-form Gz of G such that Gz(Fs) = G(Fs), the r-action on Gz(Fs) being given by 

y * g = z(y)(y.g)z(y)-1 (y E r, g E G(Fs)), 

and the F-isomorphism class of Gz lies in Int(c). 

12.3.8. Examples. (1) G = Ga. Now AutFs(G) is isomorphic to Ft (for exam
ple, as a consequence of 5.1.8 (1)). It follows from 12.3.5 (1) that all Fs-forms of Ga 
are isomorphic. It also follows that, if F is perfect, an F -group which is isomorphic 
to Ga is F -isomorphic to Ga. If F is non-perfect this is no longer true. In that case 
take a e F - FP (p = char F) and let G = {(x, y) e k2 I xP = x + ayP}. Then G 

I 
is an F-subgroup of G~, isomorphic to Ga over F(aP). The isomorphisms Ga ➔ G 

I 
are given by t ~ (cPt P, a-,; (cPtP - ct)) with c e k*. For c = 1 this morphism is 

I 
defined over F(a-;;), but for no c is it defined over F. 
(2) We have AutFs(Gm) = GL1(Z) = {±1}, with trivial r-action. It follows that the 
Fs-forms of Gm are classified by H 1(r, {±1}). For simplicity, assume that char =f:. 2. 
Using 12.3.6 (1) we see that there is a bijection of this set onto the set of quadratic 
extensions of F. If F (a½) is one, a corresponding F-form of Gm is 

(3) We continue with the example of 12.3.5 (1). The group PGLn is the group of inner 
automorphisms of the algebraic group GLn. If z e Z1(F, PGLn) we have an inner 
F-form (GLn)z of GLn. Let A be a central simple algebra over F whose isomorphism 
class corresponds to the cohomology class of z by 12.3.5 (1). There is a division alge
bra D with center F such that A is isomorphic to a matrix algebra Mm(D) over D (see 
[Jac5, p. 203]). Then (GLn)z(F) is isomorphic to the group G Lm (D) of invertible 
m x m-matrices over D. We shall denote an F-group like (GLn)z by GLA or GLm,D· 
We can also define an F-group (SLn)z = SLA = SLm,D• 
( 4) Still let G = GLn. The automorphism u : x ~ (t x )-1 of GLn generates a sub
group of order two of AutFs(GLn), whence a map of H 1(r, {±1}) ➔ <l>(F, G). In 
more concrete terms we associate in this way to a separable quadratic extension E / F 
an outer F-form of GLn, which we denote by Un,E· The notation is explained by the 
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fact that Un,E(F) = Un(E) = {x E GLn(F) I x(' i) = l} is a unitary group (the bar 
denotes the non-trivial automorphism of E / F). Similarly, one defines a group SUn,E• 

12.3.9. Exercises. (1) Notations of 12.3.7. For z E Z1 (F, G) define a bijection 
H1(F, Gz) ➔ H 1(F, G). 
(2) In the case of 12.3.4 (i) let z E Z 1 (F, H) have image c in H 1 (F, H). There is a 
bijection of the fiber (i 1)-1i 1c onto the set of orbits of Gz(F) in (Gz/ Hz)(F) (where 
Gz has the obvious meaning). 
(3) (a) Prove the facts stated in 12.3.8 (3). 

(b) With the notations of 12.3.8 (3) define an F-homomorphism v : GLm,D ➔ 
Gm, with kernel SLm,D• 

(c) Show that H1 (SLm,D) ~ F* /v(GLm(D)). 
(4) (a) Prove the facts stated in 12.3.8 (4). 

(b) Let E / F be a separable quadratic extension and let h be a non-singular hermi
tian n x n-matrix over F relative to the non-trivial automorphism of E / F (see [Jac4, 
p. 381-384]). Define an outer F-form G of GLn such that G(F) is isomorphic to the 
unitary group defined by E. 

12.4. Restriction of the ground field 

12.4.1. Let E be a finite extension of F contained in k and let G be a linear alge
braic group over E. Since G is smooth, there exists by 11.4.16 (i) and 11.4.20 (1) an 
affine F-variety TIG = TIE;FG with the properties of 11.4.16 (i). If A = E[G] then 
F[TIG] is the algebra RA studied in 11.4. Notice that by the formula of 11.4.6 (with 
B = F) there is a bijection G(E) ➔ (TIG)(F). 

12.4.2. Proposition. TIG is a linear algebraic group over F. There exists a surjective 
homomorphism of E-groups TC : TIG ➔ G with the following universal property: if 
His an F-group and <I> : H ➔ Ga homomorphism of E-groups, there is a unique 
homomorphism of F-groups VI: H ➔ TIG such that</>= 1C o VI· 

Let I:::.. : A ➔ A ® F A and t : A ➔ A be comultiplication and antipode (2.1.2). 
Since Risa functor (11.4.6) we have morphisms R(!:::..) : RA ➔ RA ®F RA and 
R(t) : RA ➔ RA. Also, the identity element of G defines an element e' E TIG(F). 
The properties of 2.1.2 expressing the group axioms, and the fact that the morphism 
rr of 11.4.16 (i) is a group homomorphism now are consequences of functoriality. If 
His as stated, there is by 11.4.16 (i) a morphism VI with the asserted properties. That 
it is a group homomorphism follows by a formal argument. Details can be left to the 
~~ D 

12.4.3. Corollary. Ker rr contains no non-trivial closed, normal F-subgroups ofTIG. 
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Let N be a closed, normal F -subgroup of TI G contained in Ker rr and let v, : 
TIG -+ (TIG)/ N be the canonical morphism. Denote by rr' the E-homomorphism 
induced by rr. The pair ((TIG)/ N, rr') has the universal property of (TIG, rr). Hence 
there is an F-homomorphism v,': TIG/ N-+ TIG such that v,' ov, =id.This implies 
that v, is injective, i.e. that N is trivial. D 

12.4.4. Remarks. (1) There is a somewhat more concrete description of the group 
TIG. From 11.4.6 we conclude that there is a bijection of TIG = (TIG)(k) onto the set 
of E-homomorphisms A -+ E ® F k. The latter set is a group, the group multiplication 
being induced by I). and the inversion by t. It is the group G(E®Fk) of E®Fk-valued 
points of G. We have a group isomorphism a : TIG -+ G(E ®F k). The product 
homomorphism E ®F k-+ k induces a homomorphism /3 : G(E ®F k)-+ G and we 
have rr = /3 o a. These homomorphisms are functorial. It follows that if G is a closed 
E-subgroup of GLn the group TIG is isomorphic to a subgroup of GLn(E ®F k). 
(2) If G itself is an F-group, the universal property of 12.4.2 (i) shows that there is an 
F-homomorphism a : G -+ TIG such that rr o a = id. 

12.4.5. If E/ F is separable we can describe TIG as follows, using 11.4.22. Put 
r = Gal ( Fs / F), /J,. = Gal ( Fs / E). Then r / /J,. is-the set :E of F -isomorphisms of E 
into Fs. It follows from 11.4.22 that (TIG) is isomorphic to the product Gr,. More
over, TI(G)(Fs) is isomorphic to Ind~ G(Es), as a group with r-action. 

Now assume that E / F is purely inseparable, of characteristic p. 

12.4.6. Proposition. (i) Ker rr is a connected unipotent subgroup of TIG; 
(ii) If G is reductive then Ker rr is the unipotent radical of TIG. It is not defined 
over F. 

It follows from 11.4.18 that Ker rr is connected. From 12.4.4 ( 1) we see that we 
can view TIG as a subgroup of GLn (E ®F k). Since E/ F is purely inseparable, we 
have E ® k ~ k EB I, where I is a nilpotent ideal. The homomorphism rr is induced 
by E ® k -+ k = (E ® k)/ I. It follows that Ker JC is isomorphic to a subgroup of 
GLn(E ® k) whose matrices are= 1 (mod I). Such a group is a p-group. Hence 
Ker rr is a p-group and is unipotent. We have proved (i). The first part of (ii) is now 
clear and the second part follows from 12.4.3. D 

12.4.7. Exercises. Notations are as in 12.4.2. 
(1) If E/ Fis separable there is a bijection H 1(E, G)-+ H 1(F, TIG). 
(2) (char F = p > 0). The Lie algebra of TIG does not contain any non-trivial p
subalgebra defined over F and stable under Ad(TIG). (Hint: use 12.2.6.) 
(3) If G is connected (respectively, commutative) then so is TIG. 
(4) Let E / F be a quadratic extension. By 12.4.4 (2) we have an injective homomor
phism of F-groups a : Gm -+ TI (Gm), By the previous exercise the latter group is 
commutative. 



222 Chapter 12. F-groups: General Results 

(a) Let E/ F be separable, with char F =I- 2. Show that (TTGm)/Im a is as in 
12.3.8 (2). 

(b) If E/ Fis inseparable, the quotient morphism TTGm ~ (TTGm)/Im a has no 
sections over Fon (TTGm)/Im a (see 5.5.7). 

(c) If E/ Fis inseparable and char F = 2, then TTGm is F-isomorphic to a group 
as in 12.1.6 (1). 

Notes 

12.1 and 12.2 contain standard results. Most of them are also discussed in [Bo3]. 
The example 12.1.8 (1) gives a general construction of classical semi-simple groups. 
The construction goes back to Weil [We2]. 

The construction in positive characteristics of the quotient of an algebraic group 
G by a subalgebra of its Lie algebra g (12.2.4) is due to Serre [Sel], for arbitrary 
algebraic groups (not necessarily linear). It can be viewed as the construction of the 
quotient of G by a certain subgroup scheme. 

Thus 12.2.9 can be viewed as saying that g is the kernel of Fr, in the sense of 
group-schemes (see 2.1.6 (a)). More generally, the iterated Frobenius homomor
phisms Frn of 12.2.10 (2) have kernels that are subgroup schemes of G. More about 
these higher Frobenius kernels can be found in [Janl]. 12.2.4 provides a surrogate for 
the use of group scheme kernels. 

The discussion of Galois cohomology in 12.3 has been kept brief. It contains 
results to be needed later, and some illustrative examples. The reader is referred to 
[Se2] for more details. 

12.4 also deals with 'well-known' results. Restriction of the ground field in the 
separable case is treated in [We4, Ch. 1]. The inseparable case is discussed briefly in 
[Oe, App. 3]. The general example 12.2.6 (ii) of a unipotent radical not defined over 
the ground field of the group that I learned from T. Tamagawa many years ago. 



Chapter 13 

F-tori 

In this chapter we first discuss matters concerning diagonalizable groups and tori in
volving a ground field. Then we discuss tori in arbitrary F -groups, one of the main 
results (13.3.6) being the existence of maximal tori in an F-group defined over F. The 
last section deals with the groups P().) of 3.2.15. F, Fs, Fare as in the preceding 
chapters. The characteristic of Fis p. The Galois group Gal(Fs/ F) is denoted by r. 

13.1. Diagonalizable groups over F 

Let T be an F-torus, i.e. an F-group that is a torus. Recall (3.2.12) that T is F
split if it is F-isomorphic to a product (Gmt. 

13.1.1. Proposition. (i) If E is a purely inseparable finite extension of F such that T 
is E -split, then T is F -split; 
(ii) T is Fs-split. 

T is split over F (as a consequence of 2.4.2 (ii), for example), which proves the 
assertions if p = 0. So we may assume that p > 0. To prove (i) it suffices to deal 
with the case that EP c F. Let X be a character group of T. By 3.2.12 (i) all x are 
defined over E. We have to show that they are defined over F. 

Let .J be the p-Lie algebra of F-derivations of E. For DE .J let c(D) = cA(D) 
be the connection on A = E[T] that it defines (11.1.9). This is a derivation of A, 
extending the derivation D of E. Denote by !),. : A ➔ A ® E A comultiplication, 
then!),. o cA(D) = cA®A(D) o !),., Let x E X, then !),.X = x ® x (3.2.5). Putting 
f = x-1(c(D)x) we have !),.(f) = f ® 1 + 1 ® f. 
Write f = Lv,ex Cv, v,. Then 

!),.f = L Cy,(V, ® 1 + 1 ® v,) = L Cy, v, ® v,. 

This can only be if cv, = 0 for v, # 1. It then readily follows that f = 0. Hence 
c(D)x = 0 for all D E .J, whence x E F[T] (see 11.1.9). This proves (i), and (ii) is 
a direct consequence of (i). □ 

Let G be a diagonalizable F-group (3.2.1) and denote by X = X*(G) its charac
ter group. 

13.1.2. Corollary. All elements of X are de.fined over Fs, 

The identity component G0 is an F-torus (12.1.1). Let C be a coset of G0 in G. 
By 11.2.6, C is defined over Fs and by 11.2.5 there is g E G(Fs) such that C = gG0 . 
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Let n be the order of G/G0, then n is prime top if p > 0 (3.2.7 (i)). Let x e X. By 
part (ii) of the proposition we have x(gn) e Fs, hence x(g) e Fs. It follows that the 
restriction of x to C is defined over Fs. □ 

13.1.3. A r -module is an abelian group of finite type M, on which r acts contin
uously, relative to the discrete topology on M. So there is a closed subgroup of finite 
index of r that acts trivially on M. 

It follows from 13.1.2 that, if G is a diagonalizable F-group, its character group 
X = X* ( G) is a r -module, the r -action being defined by the obvious r -action on 
Fs[G]. We have 

for y e r, x e X, g e G(Fs). Conversely, let M bear-module. If p > 0 assume 
that M has no p-torsion. Define a continuous r-action on the group algebra Fs [M] 
by 

y.(La(m)e(m)) = LY(a(m))e(y.m), 

notations being as in 3.2.5. By 11.1.6 the fixed point set for this r-action is an F -
structure F[M] on the algebra Fs[M]. 

The algebra homomorphisms fl., t and e of 3.2.5 are defined over Fs and com
mute with the r -action on Fs [ M]. Hence they define similar homomorphisms of 
F[M], denoted by the same symbols. We then have the following result, which gen
eralizes 3.2.6. 

13.1.4. Proposition. (i) F[M] is an affine F-algebra and there is a diagonalizable 
F-group Q(M) with F[Q(M)] = F[M], such that fl., t and e are comultiplication, 
antipode and identity element ofQ(M); 
(ii) There is a canonical isomorphism of r-modules M ~ X*(Q(M)); 
(iii) If G is a diagonalizable F -group, there is a canonical isomorphism of F -groups 
Q(X*(G)) ~ G. 

The proof of 13.1.4 is similar to that of 3.2.6 and is left to the reader. □ 

13.1.5. Exercises. (1) Make diagonalizable F-groups and r-modules without p
torsion into categories and describe an anti-equivalence between these categories 
(where now pis the characteristic exponent). 

In the next two exercises G is a diagonalizable F -group with character group X. 
We view X as a left module over the group ring Z[r], via the r-action of 13.1.3. 
Similarly, Ft is a left Z[r]-module. 
(2) (a) Define an isomorphism G(Fs) ~ Hom(X, Fs*). 

(b) G(F) ~ Homz[n(X, Ft). 
(c) Assume that G is a torus. Make the group X*(G) of cocharacters (3.2.1) into 
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a right Z[f]-module. Show that there is an isomorphism G(F) ~ X.(G) ®zrr1 Ft. 
(3) Let F be a finite field with q elements. Then r is generated topologically by the 
Frobenius automorphism q, defined by q,a = aq (a E Fs). 

(a) G(F) ~ Hom(X/(</> - q)X, Fs*). 
(b) X/(q, - q)X is isomorphic (non-canonically) to the character group 

Hom(G(F), C*) of the finite abelian group G(F). 
(4) Let E c Fs be a finite separable extension of F. Put 6. = Gal(Fs/ E); this 
is a closed subgroup of r of finite index. Let M = ME/F be the free Z-module 
with a basis indexed by the cosets y 6., r permuting the basis elements according 
to left translations. Show that Q(M) is an F-torus, which is isomorphic to the group 
nE/F(Gm)- (Hint: use 12.4.5.) 

13.2. F -tori 

13.2.1. In this section T is an F-torus. We denote by X its character group and 
by Y its group of cocharacters. We have a pairing ( , ) between these free modules 
(3.2.11 (i)). Both X and Y are r-modules and the pairing is r-stable. The action of 
r on both X and Y factors through a finite quotient A of r. Put V = Q ® X. This 
is a vector space over Q, and we have representations of rand A in V. Then Xis a 
lattice in V, i.e. a subgroup of V generated by a basis of V. 

We say that T is anisotropic if it does not contain non-trivial split subtori. Other
wise Tis isotropic. 

13.2.2. Proposition. ( i) T is F -split if and only if r acts trivially on X and Y; 
(ii) T is anisotropic if only r fixes no non-zero element of X and Y; 
(iii) T is anisotropic if and only any morphism of F-varieties Gm ➔ T is constant. 

(i) is a direct consequence of 3.2.12 (i). T is isotropic if and only if there is a non
trivial F-homomorphism Gm ➔ T, i.e. if r fixes some non-zero element of Y. This 
is the case if and only if the endomorphism LaeA a of Y is non-zero. An equivalent 
condition is that the analogous endomorphism of X is non-zero, i.e. that r fixes a 
non-zero element of X. (ii) follows from these facts. 

An F -morphism Gm ➔ T is given by an F -homomorphism 

q, : k[T] ➔ k[U, u-11 

defined over F, (U being an indeterminate). If y e X let e(y) be the corresponding 
element of k[T]. Then q,(e(y)) is an invertible element of k[U, u-1 ]. These invertible 
elements are of the form cum with c e k*, m e Z. We conclude that there is cy e k* 
and ).. e f with q>(e(y)) = cyu(x).). Since q> is defined over F it follows from 
13.1.1 (ii) that the cy lie in Fs. Because q, commutes with the r-actions on Fs [T] and 
Fs [ U, u-1] (11.1.5), we conclude that ).. must be fixed by r. If T is anisotropic, this 
can only be if).. = 0. This proves the 'only if' -part of (iii). The other part of (iii) is 
obvious. □ 



226 Chapter 13. F -tori 

13.2.3. Proposition. Let T1 be an F -subtorus of T. There exists an F -subtorus T2 of 
T such that T = T1 . T2 and that T1 n T2 is finite. 

Put X1 = X*(T1). We have a surjective homomorphism of r-modules X ➔ X1 

(see 3.2.10 (2)); let X0 be its kernel. The subspace of V generated by X0 is A-stable 
and has an A-stable complement V' (since representations of a finite group over Q 
are fully reducible by Maschke's theorem, see [Jac5, p. 253]). Let T2 be the subtorus 
generated by the images >..(Gm), where).. runs through the elements of Y orthogonal 
to V'. Then T2 is a subtorus of T defined over Fs (because of 13.1.1 (ii)). Since V' is 
r-stable, 11.2.8 (i) shows T2 is defined over F. If).. E Y has image in the intersection 
T1 n T2 then it is orthogonal to both X0 and V', hence must be zero. It follows that 
T1 n T2 is finite. We have dim T2 = rank X -rank X1 = dim T -dim T1. From 5.3.3 
(i) we conclude that the product map T1 x T2 ➔ T is surjective. □ 

13.2.4. Proposition. (i) T contains a unique maximal F-split subtorus Ts = Ts.F 
and a unique maximal anisotropic F-subtorus Ta = Ta,F: 
(ii) T = Ts. Ta and Ts n Ta is finite. 

If T1 is an F -split subtorus, then X * (T1) must be contained in the fixed point set 
yr of r in Y. Hence there is a maximal F-split torus Ts, with X.(Ts) = yr_ It 
follows from 13.2.2 (ii) that an F-subtorus T2 is anisotropic if and only if the sub
lattice X.(T2) of Y is orthogonal to the fixed point set xr. Consequently, there is a 
unique maximal anisotropic sub torus Ta, such that X * (Ta) is the annihilator of X r. 
This proves (i). The assertions of (ii) are proved as the analogous assertions of the 
previous proposition. D 

13.2.5. Exercises. 
( 1) A subtorus of an F -split torus is defined over F and F -split. 
(2) An F-torus is irreducible if it does not contain proper non-trivial F-subtori. Show 
that there exists irreducible F -subtori T1 , ... , Th of T such that T = T1 ... n and that 
all intersections It n (T1 ... T; ... Th) are finite. 
(3) (a) For each n > 0 there exists, up to R-isomorphism, a unique n-dimensional 
anisotropic R-torus Tn. 

(b) Tn(R) '.::::'. Tn, where T = {z EC I lzl = l}. 
(4) Notations of 13.2.4. If E is a purely inseparable extension of F then Ts,E 

Ts,F, Ta,E = Ta,F· 

An irreducible F-variety X is rational (unirational) over F if its F-quotient field 
F (X) (see 1.8.1) is a purely transcendental extension of F (respectively, a subfield 
of a purely transcendental extension of F). A rational variety is unirational, but the 
converse is not true (this is a subtle matter which we will not go into). For us the im
portance of unirationality is that it implies the density result of the following lemma. 
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13.2.6. Lemma. Let X be an irreducible F -variety. 
(i) Xis rational (unirational) if and only if there is an F-isomorphism (respectively, a 
surjective F -morphism) U ➔ U', where U is an open F-subvariety of some An and 
U' an open F-subvariety of X; 
(ii) If Xis unirational and Fis infinite then X (F) is dense in X. 

The proof of (i) is like that of 5.1.2 and can be omitted. (ii) follows from (i), ob-
serving that if Fis infinite An(F) is dense in An. D 

13.2.7. Proposition. Let T be an F-torus. 
(i) Tis unirational over F; 
(ii) If Fis infinite then T(F) is dense in T. 

(ii) follows from (i) and 13.2.6 (ii). To prove (i) it suffices by 13.2.6 (i) to construct 
an F-torus T' that is rational over F, together with a surjective homomorphism of F
groups T' ➔ T. 

We view the group of cocharacters Y as a right module over the group ring Z[A] of 
the finite quotient A of r. Then Y is a quotient of a free Z[A]-module Y'. The dual X' 
of Y' is a free left Z[A]-module and so is a r-module, of which X is a r-submodule. 

We have A = r / 6., where 6. is a closed normal subgroup of r. Let E be the 
fixed point set of 6. in Fs; it is a finite Galois extension of F with group A. With the 
notations of 13.1.5 ( 4 ), the r -module X' is isomorphic to a product ME/ F· By 13.1.5 
(4) we have T' = Q(X') :::'. nE/F(Gm)n. Since Xis a r-submodule of X' we have 
an F -homomorphism T' ➔ T that is dominant, hence surjective. We show that T' is 
rational. It suffices to show that nE/F(Gm) is rational. This amounts to showing that, 
with the notations of 11.4, the quotient field of RE/F(E[T, r-1 ]) is a purely transcen
dental extension of F. This is a consequence of 11.4.7 (5), (6). □ 

13.2.8. Exercises. ( 1) Let G be an F -group. The subgroup H generated by all 
F -subtori of G is a connected, unirational F -group. If F is infinite then H (F) is 
dense in H. 
(2) A one dimensional F-torus is rational (see 12.3.8 (2)). 
(3) If Tis F-split then H 1 (F, T) = 1 (notations of 12.3.1). 

13.3. Tori in F -groups 

In this section G is a connected F -group. If S and T are subtori of G defined over F, 
we write Na(S, T) = N(S, T) = {g E G I gsg-1 c T}; this is the transporter of S 
into T. If S = T we obtain the normalizer N(S). 

13.3.1. Proposition. (i) If N(S, T) is non-empty it is defined over F; 
(ii) N(S) and the centralizer Z(S) are defined over F. 
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To prove (i) it suffices to show that N(S, T) (assumed to be non-empty) is defined 
over Fs. For then an application of 11.2.8 (i) (and 11.2.7) will show that it is defined 
over F. First notice that N(S, T) is defined over F (work over the algebraically closed 
field F). This settles the case p = 0, so assume that p > 0. 

Let C be a component of N(S, T). The rigidity theorem 3.2.8 implies that for 
fixed s e S the map x 1--+ xsx-1 of C to T is constant, hence C consists of a coset 
of the centralizer Z(S). Let U = {s e S I Z(s) = Z(S)}. It follows from the proof 
of 6.4.3 that this is a non-empty open subset of S. The set U is closed under taking 
pth powers, as Z(s) = Z(sP) (it suffices to check this for diagonalizable elements 
s e GLn, which is easy). 

By ll.2.7thereexistss e UnS(Fs). Letc e CnG(F'). Thent = csc-1 e T(F), 
and C is a component of the set N(s, t) of 12.1.4 (i). There is a p-power q such that 
tq e T(Fs). Replacing s by sq we see that C is a component of N(sq, tq). An applica
tion of 12.1.4 (i) now proves what we want. (ii) follows from (i) and 11.2.6, observing 
that by 6.4.7 (i) Z(S) is the identity component of N(S). □ 

The main result of the present section is the existence of maximal tori of G defined 
over F. In the proof we need auxiliary results about the Jordan decomposition in the 
Lie algebra g ( 4.4.20), to be discussed now. If X e g we denote its centralizer in G 
by Z ( X). The centralizer in g is 

3(X) = {Y e g I [X, Y] = 0}. 

13.3.2. Lemma. Let X e g. 
(i) If Xis semi-simple then 3(X) is the Lie algebra of Z(X); 
(ii) Xis semi-simple if and only if it lies in the Lie algebra of a maximal torus; 
(iii) (p > 0) Xis nilpotent if and only if there is h:::: 0 such that X[Phl = 0; 
(iv) (p > 0) There is h > 0 such that g[Phl is the set of semi-simple elements of g. 

In (iii) and (iv) the map X 1-+ XlPhl is the hth iterate of the p-power map of g 
(4.4.3). 
The proof of (i) is along the lines of the proof of 5.4.4 (ii) and is left to the reader. 
If X is semi-simple then by (i) X lies in the Lie algebra of Z(X)0. By 4.4.21 (1) 
the latter group cannot be unipotent, so it contains a non-trivial maximal torus T. 
The centralizer C of Tin Z(X)0 is a Cartan subgroup and by 5.4.7 the Lie algebra 
c contains X. It follows from 6.4.2 (i), 6.3.2 (ii) and 4.4.21 (1) that the semi-simple 
elements of c are those of t, so X e t. The torus T lies in a maximal torus of G, 
which must centralize X, hence lies in Z(X)0. Then Tis a maximal torus of G, and 
(ii) follows. 

Using 2.3.7 (i) and 4.4.9, the proof of (iii) is reduced to the case that G = GLn, in 
which case the result follows from 4.4.10 (3). Similarly, one sees that there is h such 
that gCPhl is contained in the set of semi-simple elements of g. That it coincides with 
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that set follows from (ii), observing that, if G is a torus, we have gCPJ = g (use 4.4.10 

~- □ 

Let X e g be semi-simple and let T be a maximal torus with X e t. Denote by P 
the set of non-zero weights of T in g, acting via the adjoint action. We say that X is 
central if Z(X) = G. 

13.3.3. Lemma. (i) X is central if and if only if it lies in the center of g or equiva
lently, if and only if it is annihilated by all differentials da, a e P ,· 
(ii) (p = 0) X is central if and only if it lies in the Lie algebra of the center of G. 

The first assertion of (i) follows from 13.3.2 (i). Let a e P. The differential dais 
a linear function on t. If Ye g is a weight vector fora, thenAd(t)Y = a(t)Y (t e T), 
which implies that we have [X, Y] = da(X)Y (use 4.4.15 (1), (3)). Since g is the 
direct sum of the weight spaces of T, for the weights in P and the zero weight, the 
remaining assertion of (i) follows. 

The intersection C of the kernels of all a in P is a subgroup of T lying in the 
center of G (by 5.4.7). Consider the homomorphism of tori T ➔ (Gm)P sending t 
to (a(t))aeP• If p = 0 this is a separable morphism, and we can conclude that the 
Lie algebra of its kernel C is the intersection of the kernels of the da, a e P. This 
implies (ii). □ 

13.3.4. Lemma. (i) Assume that all semi-simple elements of g are central. If G is not 
nilpotent then p > 0, all maximal tori have the same Lie algebra and all weights of a 
maximal torus T of Ging are divisible by pin the character group X*(T); 
(ii) If g contains non-central semi-simple elements, there is a non-empty open subset 
U of g such that the semi-simple part of an element of U is non-central; 
(iii) If g contains non-central semi-simple elements, and if F is infinite then g(F) con
tains such elements. The centralizers in g of these elements of g(F) span g. 

Let T be a maximal torus and let P be as before. Then P =f:. 0 if and only if G 
is not nilpotent (by 5.4.7 and 6.3.2). If in that case all semi-simple elements of g are 
central, we have by the preceding lemma that da = 0 for all a e P. This means that 
p > 0 and that P c pX*(T). From the conjugacy of maximal tori it follows that all 
maximal tori have Lie algebra t. We have proved (i). 

For X e g let P(T, X) e k[g] be the characteristic polynomial of the linear map 

adX: Y H- [X.Y] 

of g. Then 

P(T, X) = Td + L f;(X)Td-i' 
i~l 
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where d = dim G and fi E k[9] (i > 1). From the proof of 2.4.4 and 4.4.20 we see 
that P(T, Xs) = P(T, X). It follows from (i) that X E 9 has central semi-simple part 
if and only if it is annihilated by all /;. Hence, if g contains non-central semi-simple 
elements, not all fi are zero. We can then take for the open set U of (ii) the union of 
the principal open sets D(f;). If F is infinite, g(F) is dense in g, which implies the 
first statement of (iii). The last one follows from the observation that the union of the 
centralizers in question contains the dense subset Un 9(F) of g. □ 

We shall say in this section that G is bad if G is not nilpotent and if all semi-simple 
elements of g are central. Otherwise G is good. 

13.3.5. Lemma. Assume that G is a bad F-group. There exists a good F-group 
G' and a purely inseparable F-isogeny 1r : G ➔ G' such that for any F -torus T' of 
G' the group 1r-1r 1 is an F-torus of G. 

Assume that G is bad. By 13.3.4 (i) we know that p > 0 and that the sett of 
semi-simple elements of g is a p-subalgebra that is Ad( G)-stable. It is defined over 
F, being the image of g under an F-morphism (by 13.3.2 (iv)). By 12.2.5 there exists 
a purely inseparable isogeny <P of G onto an F -group G 1, such that t is the kernel of 
the Lie algebra homomorphism d<P : g ➔ 91. 

Let T be a maximal torus of G (over k). By 13.3.4 (i) its Lie algebra is t. The 
restriction <PT of <P to Tis a purely inseparable isogeny of Tonto a maximal torus T1 
of G 1. From 12.2.5 and 12.2.9, applied to T, we see that <PT factors through the torus 
Fr T. 

Let a be a non-zero weight of T in 9. Since Ker d<P = t, the corresponding weight 
space 9a is mapped by d<P onto a weight space (g1)a1 for T1 in 91- By 13.3.4 (i) the 
non-zero weights of T are divisible by p in X*(T). It follows from 12.2.10 (4) that 
if pa is the highest power of p dividing a, then a1 is divisible in X*(T1) at most by 
pa-1. If G1 is bad we continue in the same manner. It is clear after a finite number of 
steps that we obtain a purely inseparable isogeny 1r of G onto a good F -group G'. 

To prove the last property it suffices to show that if G 1 is as before and if T1 is an 
F -torus in G 1 then cp-1 T1 is defined over F. Let r 4> = { (g, <Pg) c G x G 1 I g E G} 
be the graph of <P. Then cp-1 T1 is isomorphic to r 4> n ( G x T1). We show that this 
intersection of subgroups of G x G1 is defined over F. By 12.1.5 it suffices to show 
that the intersection of the corresponding Lie algebras is isomorphic to the Lie algebra 
of cp-1 T1. By 13.3.4 (i) this amounts to showing that 

r dt/> n (g X t1) = t X {O}, (62) 

where r dt/> is the graph of d<jJ. Now the semi-simple part of any element of 9 lies in 
t. It then follows from 4.4.20 (ii) that Im d<P consists of nilpotent elements, which 
implies (62). o 
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13.3.6. Theorem. Assume that F is infinite. 
(i) G contains maximal tori defined over F; 
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(ii) G is generated by the Cartan subgroups (i.e centralizers) of the maximal tori of (i). 

First assume that G is nilpotent. There is a unique maximal torus T, viz. the set of 
semi-simple elements of G (6.3.2 (i)). That T is defined over F follows from 11.2.8 
(i) if p = 0 and from the fact that there is h ~ 0 with T = GPh if p > 0. We skip the 
details. 

Assume that G is not nilpotent and good. Then G is generated by the groups 
Z(X)0 , where X runs through the non-central semi-simple elements in g(F). For by 
13.3.2 (i) and 13.3.4 (iii) the Lie algebra of the subgroup generated by these centraliz
ers is g. Let H be such a centralizer, it is a proper F-subgroup containing a maximal 
torus of G (13.3.2 (ii)). By induction on dim G we may assume the theorem to be true 
for H. But then 13.3.6 also follows. 

If G is bad we use an isogeny G ➔ G' onto a good group G' as in 13.3.5. The 
theorem holds for G' and 13.3.5 implies that it also holds for G. Observe that by 6.4.7 
(i) and 13.3.1 the Cartan subgroups of (ii) are connected F-subgroups. D 

13.3.7. Remark. 13.3.6 also holds in the case that F is finite. Then (i) is an easy 
consequence of Lang's theorem 4.4.17, as the reader may check. For a proof of (ii) in 
that case see [Bos, 2.9]. 

By the theorem the maximal F-subtori of Gare the maximal tori defined over F. 

13.3.8. Corollary. (i) A semi-simple element of G(F) lies in a maximal F-torus; 
(ii) A semi-simple element of g(F) lies in the Lie algebra of a maximal F-torus. 

This follows from part (i) of the theorem (and 13.3.7), applied to the centralizer 
of the element in question, using 12.1.4. □ 

13.3.9. Corollary. Let F be infinite. 
(i) If the Cartan subgroups of maximal F-tori are unirational varieties over F then G 
is unirational over F and G(F) is dense in G; 
(ii) If G is a reductive F -group, then G is unirational over F and G ( F) is dense in 
G. 

From 13.3.6 (ii) and 2.2.7 we see that there is a surjective F-morphism C1 x • • • x 
Cn ➔ G, where the C; are Cartan subgroups of maximal F-tori. This implies the 
unirationality of G. For the density statement see 13 .2.6 (ii). If G is reductive, then 
Cartan subgroups are maximal tori (7.6.4 (ii)) and we can apply 13.2.7 (i). If F is 
finite then G is still unirational over F, see [loc. cit., 7.12] ]. □ 
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In the next corollary we anticipate results from the next chapter (whose proof does 
not depend on the results of this chapter). 

13.3.10. Corollary. G(F) is dense in G when Fis peifect and infinite. 
It follows from 14.3.10 and 14.3.8 that in this case the Cartan subgroups of 13.3.6 (ii) 
are unirational. So 13.3.9 (i) can be applied. □ 

For a non-perfect field the density result is not generally true, see 13.3. 13 (2). It 
is obviously false if F is a finite field and G =f:. 1. 

Let G, be the subgroup of G generated by its maximal tori. 

13.3.11. Proposition. (i) G, is the smallest closed, connected, normal, subgroup 
of G whose factor group is unipotent; 
(ii) Assume that F is infinite. G, is defined over F and is generated by the maximal 
F-tori of G. 

Let H be the subgroup of G, generated by the maximal tori of G defined over 
- -

F. Then H is closed and connected, and is defined over F (2.2.7). Since G(F) is 
dense in G, it follows from 6.4.1 that His a normal subgroup and by 13.3.8 (i) any 
semi-simple element of G(F) lies in H. We conclude from 2.4.8 (ii) (with k = F) 
that (G/ H)(F) does not contain semi-simple elements =f:. 1. It follows that G/ H 
is unipotent. This implies that any maximal torus of G is contained in H, whence 
H = G,. Now (i) follows. 

Assume that F is infinite. Let L be the subgroup of G generated by the maximal 
F-tori of G. It is a closed, connected, F-subgroup of G,. We shall prove that L = 
G,, from which (ii) will follow. First we dispose of the case p = 0. Then G, is 
defined over Fs. Clearly, G,(Fs) is a r-stable subgroup of G(Fs)- By 11.2.8 (i), G, 
is defined over F. Using induction on dim G we see that we may assume G, = G. 
It follows from 13.3.10 that L is a normal subgroup of G. We have a surjective 
homomorphism g -. L(G/ L) = g/l, which induces a surjective F-homomorphism 
g(F) -. (g/l)(F). A semi-simple element of (g/[)(F) is the image of a semi-simple 
element of g(F) (by 4.4.20 (ii) and 12.1.7 (c)). Since by 13.3.8 (ii) all semi-simple 
elements of g(F) lie in [ we conclude that the elements of (g/[)(F) are nilpotent. 
From 13.3.6 (i) and 13.3.8 (ii) we conclude that G /Lis unipotent. Since G = G, this 
implies L = G. 

Now assume that p > 0. We do not yet know that G, is defined over F. But we 
do know, as before, that all semi-simple elements of g(F) lie in C(F). This implies 
that there is a p-power q such that (g(F))lqJ c [(F). Since g(F) is dense in g, we 
can conclude that all semi-simple elements of g lie in [. Let T be a maximal torus of 
G. Its Lie algebra t lies in L Then there is a maximal torus T1 of L, with Lie algebra 
t (as a consequence of 13.3.8 (ii)). After conjugation of T by an element of L we 
may assume that T1 is defined over F. Then tis defined over F. If t(F) contains a 
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non-central element X, we can pass to its centralizer, which contains both T and T1. 

By induction on dim G we can then conclude that T C L. 
Now assume that all elements of t( F) are central. We may also assume that G is 

not nilpotent. Let rr : G ➔ G' be as in 13.3.5. We know that (with obvious notation) 
L' = (G'),. From 13.3.5 we see that L = 1l'-1 L', and it is clear that G, = 1l'-1(G'),. 
The asserted equality L = G, follows. D 

13.3.12. Corollary. ( F infinite) (i) G, is unirational over F and G,(F) is dense 
in G,; 
(ii) G is generated by G, and one Cartan F-subgroup; 
(iii) If some Cartan F-subgroup of G is unirational over F then so is G. In that case 
G(F) is dense in G. 

(i) is proved as 13.3.9 (i), taking into account 13.2.7 (i). From the conjugacy of 
maximal tori in G, it follows that two Cartan F-subgroups of Gare conjugate by an 
element of G,. Now (ii) follows from 13.3.6 (ii) and (iii) is proved as (i). D 

13.3.13. Exercises. (1) (a) If T and T' are maximal F-tori of G then the F-varieties 
G/ Na(T) and G/ Na(T') are canonically isomorphic. 

(b) Define an F-variety of maximal tori Ta such that for any extension E of F 
there is a bijection of Ta (E) onto the set of maximal tori of G defined over E, with 
good functorial properties. 
(2) Let p > 0 and assume that F is a field of rational functions F0(T). Define 

G = {(x, y) E G~ I xP = x + TyP}; 

this is a connected one dimensional F-subgroup of G~. Show that G(F) is finite 
(hence is not dense in G). 
(3) Let G = GL2, F = Q. Show that the number of G(F)-conjugacy classes of 
maximal F -tori of G is infinite. 

13.4. The groups P (1.) 

13.4.1. G is a connected F-group. X*(G) is the set of cocharacters of G (homo
morphisms Gm ➔ G). Let XiG)(F) be the subset of those defined over F. Recall 
that -}.. is defined by (-)..)(a) = )..(a)-1 (a E k*) (3.2.1). If).. is a cocharacter, 
we denote by P()..) or Pa().) the closed subgroup formed by the x E G such that 
lima-+O )..(a)x)..(a)-1 exists. It was introduced in 3.2.15. If G is reductive these sub
groups are the parabolic subgroups, as was shown in 8.4.5. 

We denote by U()..) or Ua()..) the normal subgroup of P()..) formed by the x E 

P()..) for which the limit of the preceding paragraph equals e. The centralizer of Im).. 
is denoted by Z()..); it is a closed subgroup of P()..). The group Gm acts in g via 
Ad o ).._ The weights are integers. We denote by g0()..) the zero weight space, which 
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is the Lie algebra of Z(>..) (5.4.7), and by g+(>..) (g_(>..)) the sum of the weight spaces 
with strictly positive (respectively: negative) weight. Then g is the direct sum of the 
subspaces g0, g+(>..), _g_(>..). If>.. is defined over F these spaces are F-subspaces of g. 

13.4.2. Theorem. Let>.. E X*(G)(F). 
(i) P(>..), Z(>..), U(>..) are connected F-subgroups and U(>..) is a unipotent normal 

subgroup of P(>..). Moreover, the product morphism Z(>..) x U(>..) ➔ P(A) is an 

F-isomorphism of varieties; 
(ii) L(P(>..)) = g0(>..) EB g+(>..) and L(U(±).)) = g±(>..); 
(iii) The product morphism U(->..) x P(>..) ➔ G is a bijection onto an open subset of 
G. 
First let G = GLn. We may assume that >..(a) = diag(am1, ... , am11 ), with m1 > 
• • • ~ mn. It is then straightforward to prove the first statements of (i). The last 
point of (i) follows from 8.4.3, using 8.4.5. The proof of (ii) is also straightfor
ward. (iii) follows from (ii). By considering the tangent map at (e, e), using that 
g = L ( P ( >..)) EB L ( U ( - >..)), one sees that the image of the product map is dominant 
(4.3.6 (i)). As it is an orbit for an action of U(-A) x P(>..), it must be open in G by 
2.3.3 (i). The bijectivity follows from U(->..) n P(>..) = {e}. 

Now let G be arbitrary. Assume that it is a closed F -subgroup of H = GLn. Then 
). is also a cocharacter of H. We first prove (ii). We have 

since we already know (ii) for H. Likewise, 

(64) 

Next observe that (by (iii) for H) U = UH(->..)PH(>..) n G is an open subset of 
G, containing e. By 5.5.3 there exists a rational representation p : H ➔ GL(V) 
such that G is the stabilizer of a line kv. Let g E U. By (i) and (iii) for H we can 
write g = xyz, with x E UH(->..), y E UH(>..), z E ZH(>..). There is c E k* 
with p(g)v = cv and v is a weight vector of Gm for the representation po).., since 
Im >.. E G. It follows that for a E k* 

(65) 

By an easy computation in H = GLn, with>.. as in the beginning of the proof, we see 
that the right-hand side of (65) is a polynomial function of a and that the left-hand 
side is a polynomial function of a-1. These polynomial functions must be constant. It 
follows that the left-hand side equals cv and the right-hand side p(z)v, whence z E G. 
Also, p(x)v = p(y)v = v, and x, y E G. We have shown than Ua(->..)Pa(A) 

contains an open subset of G, whence 

dim U0 (->..) + dim Pa(>..) = dim G = dim g_(>..) + (dim _g0 (>..) + dim g+(A)). 
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From (63) and (64) we conclude that (ii) holds. 
(ii) implies (iii), as in the case ofGLn, It follows from (iii) that Pa(A) and Ua(A) 

are irreducible. Since UH().) is a unipotent normal subgroup of PH().), Ua(A) has 
similar properties. The proof of the last point of (i) is similar to that of (iii). 

It remains to be proved that Pa(A) and Ua(A) are defined over F. Since Pa().)= 
G n PH().) it suffices by 12.1.5 to show that 

But this is a consequence of (ii). It also follows that Ua(-).) is defined over F. □ 

Let <J, : G ➔ G' be a separable, surjective homomorphism of F -groups. Then 
).' = <J, o ). is a cocharacter of G' defined over F. 

13.4.3. Corollary. <J,(P0 ()..)) = Pa1()..'), <J,(Ua()..)) = Ua1()..'). 

Consider the first equality. Clearly, the left-hand side is contained in the right
hand side. Since <J, is separable the differential d<J, is surjective. Using 13.4.2 (ii) for 
G and G' we conclude that <J,(Pa(A)) and Pai().') have the same Lie algebra. It fol
lows that these connected groups must coincide. The same argument proves the other 
~~~ □ 

13.4.4. Corollary. If G is solvable then the product morphism 

U(-).) X P()..) ➔ G 

is an F-isomorphism of varieties. 

It suffices to prove that G = U ( -). ) P ()..) ( check this). We may assume that 
F = k. Fix a maximal torus T of G that contains Im ).. (6.3.6 (i)). We can assume 
that G i= T. Let N be a closed, normal, subgroup of G contained in the center of 
Gu and isomorphic to Ga (6.3.4). By induction on dim G we may assume that the 
assertion holds for G' = G / N and the cocharacter ).' of G' induced by A. Then 
13.4.3 implies that G = Ua(-).)Pa(A)N. Applying 13.4.2 (ii) for the group T.N, 
and its cocharacter defined by )., we see that N is a subgroup of one of the groups 
Z().), U+(A), U_().). The corollary follows. D 

13.4.5. If H is a connected closed subgroup of G that is normalized by Im ).., we 
define the groups ZH(A), UH(±)..) to be the intersections with Hof the analogous 
subgroups of G. Then 13.4.2 and 13.4.4 hold for such a group H. This follows, for 
example, by applying 13.4.2 to the group H1 whose underlying variety is H x Gm, 
with multiplication (x, a)(y, b) = (x).(a)y).(a)-1, ab) (x, y e H, a, b e k*), a 
semi-direct product of Hand Gm. We skip the details. 
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As a particular case, let H be the i.mipotent radical R of G. We then have the 
closed subgroups UR(±>.). 

13.4.6. Corollary. The product map UR(->.) x PR(>.) ➔ R is bijective. 

This follows from 13.4.4. □ 

13.4.7. Exercises. ). is a cocharacter of G such that Im>. is non-central. 
(1) Conjugation in G induces an action of G on X*(G). We have P(g .>.) = g P(>.)g-1, 

U (g .>.) = gU (>.)g-1. 

(2)Notationsof3.2.l. Forn > Owe have P(n>.) = P(>.), U(n>.) = U(>.). 
(3) (a) We have G = U(>.)U(->.)P(>.). 

(b) Show that the normalizer Na(P(>.)) coincides with P(>.). 
(Hint: Consider {g E U(->.) I g(Im >.)g-1 c P(>.)}). 
(4) If G = U(-A).P(>.) then G is solvable. (Hint: reformulate in terms of reductive 
groups.) 
(5) U (>.) is contained in the group G, of 13.3.11. 

Notes 

The material of 13.1 and 13.2 is familiar. It can also be found in [Bo3, Ch. III]. 
We have given a proof of 13.1.1 (ii) using the inseparable Galois descent of 11.1. For 
another, more direct, proof see [loc.cit.,8.10]. 

The main result 13.3.6 is due to Chevalley in characteristic O (see [Ch2]) and 
to Grothendieck in general [SGA3, exp.XIV]. The proof given here is a version of 
the one given in [BoS] (also exposed in [Bo3, §18]). It avoids the use of regular 
elements of a Lie algebra. A more extensive discussion of the variety of maximal tori 
of 13.3.9 (1) can be found in [loc.cit.]. There one also finds a proof that of the fact that 
this variety is rational over the ground field (another result of Grothendieck [SGA3, 
exp.XIV]). 

The results of 13.4.2 are due to Borel and Tits. See the note [BoT3] (which does 
not contain proofs). 



Chapter 14 

Solvable F -groups 

This chapter is about solvable groups over a ground field F. The emphasis is on F
split solvable groups and their properties. In 14.4.3 we prove the conjugacy over F of 
two maximal F -tori of a solvable F -group. k, F, ... are as before. G is a connected, 
solvable, linear algebraic group over F. Its unipotent radical -which by 6.3.3 (ii) co
incides with the set of its unipotent elements- is denoted by Gu. 

14.1. Generalities 

14.1.1. Lemma. There exists a sequence {e} = Go C G1 C ... C Gn-1 C Gn = 
G of closed, connected, normal F-subgroups of G such that each quotient group 
G;/G;_1 (1 < i < n) is either a torus oran elementary unipotent group. 

By 12.2.3 such quotients are F-groups. Recall that in 3.4.1 a connected unipotent 
group was defined to be elementary if it is abelian and if its elements have order di
viding the characteristic p, when p > 0. Using 2.2.8 the proof of 14.1.1 is reduced to 
the case that G is abelian, which we now assume. If p > 0 the groups G<Pm> of 2.2.9 
(3) give a descending sequence of connected F-subgroups. For large m they coincide 
with the unique maximal torus of G (cf. the beginning of the proof of 13.3.6). The 
assertion now readily follows. If p = 0 the unipotent radical Gu is defined over F 
(12.1.7 (d)). Then taken= 2, G1 = Gu, □ 

We say that G is trigonalizable over F or F -trigonalizable if there is an F -
isomorphism of G onto a closed F -subgroup of a group T n of upper triangular n x n
matrices, with its obvious F -structure. The group G is trigonalizable over k, by the 
Lie-Kolchin theorem 6.3.1. 

14.1.2. Proposition. G is F-trigonalizable if and only if Gu is defined over F and 
G / Gu is an F-split torus. 

Let G be F -trigonalizable. We may assume it to be an F -subgroup of the group 
Tn, Let Dn C Tn be the group of diagonal matrices; it is an F-split torus. Denote by 
¢ : G ➔ Dn the F -homomorphism that maps an element of G onto its diagonal part. 
Its image is a torus and its kernel is Gu. Also, Ker d<f> is the set of nilpotent elements of 
g, which contains the Lie algebra L(Gu) (see 4.4.21 (1)). Moreover g/ L(Gu) consists 
of semi-simple elements. It follows that Ker d</> = L( Gu), Application of 11.2.14 (ii) 
shows that Gu = Ker <I> is defined over F. The F -torus T = G /Gu is F -isomorphic 
to a subtorus of the F-split torus Tn, hence is F-split (see 13.2.5 (1)). 



238 Chapter 14. Solvable F-groups 

Now assume that Gu is defined over F and that G /Gu is F -split. We assume that 
G is an F-subgroup of GLn, so that it acts linearly on the F-vector space V = kn. We 
claim that there is v e V (F) - {O} that is a simultaneous eigenvector for the elements 
of G. Then trigonalizability will follow (check this). Let W be the fixed point set of 
Gu in V. It is a non-zero subspace, as a consequence of 2.4.12. By 11.2. 7, W is the 
fixed point set of Gu(Fs), which set is defined over Fs, Since it is obviously r-stable, 
it is defined over F by 11.1.4. The F -split torus G /Gu acts linearly in W. The claim 
now follows from 3.2.12 (ii). □ 

14.1.3. Corollary. Assume G to be trigonalizable. If</> G ~ GLn is an F -
homomorphism then Im </> is trigonalizable. 

By 13.3.6 (i) (and 13.3.7) G contains a maximal torus S defined over F. We see 
from the proposition that Sis F-split, being F-isomorphic to G/Gu, Then </>Sis a 
maximal torus of Im </> defined over F and F -split. Moreover </> (Gu) is the uni potent 
radical oflm </> and is defined over F. By the proposition, Im</> is F-trigonalizable. D 

G is F -split if there is a sequence ( G;) as 14.1.1 such that all successive quotients 
are F-isomorphic to either Ga or Gm (see 12.3.5 (3)). 

14.1.4. Proposition. Assume G to be F-split. Then G is F -trigonalizable. 

Assume that the F-split group G is an F-subgroup of GLn, It suffices to show 
that there is v e Fn - {0} which is a common eigenvector for the elements of G. 
By an induction we may assume ((G;) being as above) that the proposition is true for 
Gn-l• Then (Gn-t)u is defined over F by 14.1.2, Let V C kn be the fixed point set 
of (Gn-t)u, As in the proof of 14.1.2 one sees that it is a non-zero subspace which is 
defined over F. We shall show that V(F) contains a common eigenvector v. We are 
reduced to proving the theorem in the case, that (Gn-t)u is trivial, i.e. that Gn-1 is a 
torus. Then either G is a torus, in which case the assertion follows from 3.2.12 (ii), or 
G/Gn-t is F-isomorphic to Ga, In the latter case the weight spaces for the split F
torus Gn-t are G-stable and are defined over F. Replacing V by such a weight space, 
we are reduced to proving the proposition in the case of Ga. This case is covered by 
14.1.2. The proposition is proved. 

14.1.5. Remark. We shall see below (14.3.10) that if Fis perfect a unipotent con
nected F -group is F -split. It follows from 14.1.2 that in that case the notions of 
F-trigonalizable and F-split solvable groups coincide. Over a non-perfect field this is 
not true, as the example of 12.3.8 (1) shows. 

14.1.6. Exercise. If G is F-split then so is Gu, Moreover, G/Gu is an F-split 
torus. 
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For F-split groups we have the following version over F of Borel's fixed point 
theorem 6.2.6. 

14.1. 7. Theorem. Let G be a connected, solvable F -group that is F -split and let 
X be a projective F-variety with a G-action over F. If X (F) f. 0 there is a point of 
X (F) that is fixed by all elements of G. 

To prove this we shall construct inductively for each i a point x; e X (F) fixed 
by the elements of G; (the groups G; are as before). Take for x0 a point of X (F). 
Assume x; _ 1 has been found. If it is fixed by G; take x; = X;-1. Otherwise, the map 
g i-+ g.x;_1 defines an F-morphism G;/G;_1 ➔ X. This quotient is F-isomorphic 
to an F-open subset of P1. By 6.1.4 this morphism extends to an F-morphism of P1 

to X. We can then take for x; the image of the point oo of P1. D 

14.2. Action of Ga on an affine variety, applications 

14.2.1. Let G = Ga and let X be an irreducible affine G-variety over F. We put 
A = F[X]. The action m : G x X ➔ Xis defined by an algebra homomorphism 
m* : A ➔ A[T] (we have identified F[Ga] ®FA with the polynomial algebra A[T]). 
For f e A write 

m* f = .L)Dhf)Th 
h~O 

The Dh are F-linear maps A ➔ A. For given f almost all Dhf are zero. The fact 
that m is a Ga-action is equivalent to the following properties of the Dh: 

{ 
Do = id, 
Dh(fg) = Li+j-=:=h_<D;f)(Djg) (f, g EA), 

DhDi = (h + l, i)Dh+i, 

where (h + i, i) = (h + i)!(h!i!)-1 is a binomial coefficient. 

(66) 

We see from (66) that D1 is an F-derivation of A. If the characteristic p is zero, 
the last formula (66) shows that Dh = (h !)-1 Df. So D1 is a locally nilpotent linear 
map. 

Now let p > 0. Write h = L;~o h; p; with O < n; < p. Using 3.4.2 we deduce 
from the last formula (66) that 

Dh = n (h; !)-1 v;~, 
i~O 

and that Df = 0. For a e k, f e k[X] = k ®FA we write a.f = s(a)f wheres is 
as in 2.3.5. Then 

(67) 
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whence 

Dh(a.f) = L(i, h)(-ai-h D;f. (68) 
i~h 

14.2.2. Proposition. Assume that G acts non-trivially on X. There exists an affine 
F -variety Y with the following properties: 
(a) there is an F-isom01phism <J, of G x Y onto an open F-subvariety of X, 
(b) there is an F-morphism 1/r: G x Y ➔ G such thatfora, b Ek, y E Y 

'lfr(a + b, y) = 'lfr(a, y) + 'lfr(b, y), a.<J,(b, y) = <J,('lfr(a, y) + b, y). 

Put 

k[X]o = {f E k[X] I a.f = f for all a Ek}. 

This is the subalgebra of elements of k[X] annihilated by all Dh, h > 0. It is defined 
over F, with F -structure Ao = A n k [ X]o. The non-triviality of the action of G 
implies that Ao #- A. Let u E A be such that m*u E A[T] has minimal strictly 
positive degree n. From (67) we see that for a E k the degree of the polynomial 
m*(a.u) - m*u E k[X][T] is strictly smaller than n, hence this polynomial must be 
constant. This means that Dh(a.u) = Dhu for h > 1. From (68) we conclude that 

(i, h)D;u = 0 (0 < h < i). (69) 

First assume that p > 0 (the more complicated case). Using 3.4.2 (ii) we see from 
(69) that Dhu = 0 unless his a power of p. In particular, n is a p-power p'. By (66) 
we have for h > 0, s > 0 

because either h + ps is not a p-power or (h + ps, h) = 0. It follows that the coeffi
cients of m*u - u lie in A0 . Let c = Dp,u be the leading coefficient. The principal 
open subset D(c) = {x E X I c(x) #- 0} is an affine open F-subvariety of X that is 
G-stable. Replacing X by U we may assume that c = I. 

We claim that A = A0 [u ]. Let f E A and assume that m* f has degree N > 0. 
Then Dhf = 0 for h > N. Let ps be the highest power of p dividing N. Using (66) 
we see that 

m*(DN-pS f) = L (N - PS + h, h)(DN-ps+hf)Th. 
O~h~pS 

It follows from 3.4.2 (ii) that (N, ps) ¢ 0 (mod p). Hence the right-hand side is a 
polynomial of degree ps, consequently ps > p'. The last formula (66) shows that the 



14.2. Action of Ga on an affine variety 241 

leading coefficient d of m* flies in A0. It follows that the degree of m*(f - duP-r N) 

is strictly smaller than the degree of m* f. The claim follows by induction. 
The A0-homomorphism F[T] ® F Ao ➔ A sending T to u is surjective. It is 

also injective: a relation E a;ui = 0 with coefficients in Ao can only be the trivial one 
(apply m*). It follows that Ao, being a quotient of A and a subalgebra of A, is an affine 
algebra over F. Let Y be the affine F- variety with F[Y] = Ao (11.2.2 (i)). Then 
F[G x Y] ~ A, whence an isomorphism <p: G x Y ➔ X. Define 1fr: G x Y ➔ G by 
lfr(a, y) = Lh~0(Dphu)(y)aPh. Then <p and 1fr are as required, as a straightforward 
check shows. 

In the case that p = 0 the proof is similar, but easier. Now the degree of m*u 
equals one. We skip the details. □ 

14.2.3. Proposition. Let H be a connected, solvable, F-group and let G be a closed, 
normal, F-subgroup that is F-isomorphic to Ga. Assume that X is an affine F-variety 
that is a homogeneous space for Hover F. If G acts non-trivially on X, there exists a 
homogeneous space Y of H over F, together with an F -isomorphism <p : G x Y ➔ X 
and an F-homomorphism x : G ➔ G, such that/or g, g' E G, y E Y 

g.<t,(g', y) = </>(x(g)g', y) 

and the composite morphism 

q,-t prz 
-r:X ➔ GxY ➔ Y 

is H -equivariant. 

We write the group operation in G multiplicatively. We proceed as in the proof of 
14.2.2. The notations are as in that proof. Let again n be the degree of m*u. Consider 
the set of all u' E A such that m*u' has degree n and let / be the ideal generated 
in Ao by their leading coefficients. We claim that / = A0. It suffices to prove this 
if F = k. The group H operates on I via translations, and it follows from the Lie
Kolchin theorem (6.3.1) that there is c E / that is an eigenvector for all elements of 
H. As H acts transitively on X, this can only be if c has no zeros on X, hence is 
invertible in Ao, proving the claim. We may then choose u such that m*u has leading 
coefficient 1. The transitivity of the H -action implies that the coefficients of m * u - u 
are constants. If 1fr is as in 14.2.2, we have now lfr(g, y) = x(g), where x is an 
F -homomorphism G ➔ G. 

It remains to be shown that Y is a homogeneous space and that the morphism -r is 
H-equivariant. The last point follows from the fact that k ® Ao = k[Y] is stable under 
translations by elements of H. Since H acts transitively on X and -r is surjective, H 
must also act transitively on Y. □ 

14.2.4. Exercises. (1) Let X be a homogeneous space for Ga over F that is not 
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reduced to a point. There exists an F -isomorphism </> : Ga ➔ X and a surjective 
F-homomorphism x : Ga ➔ Ga such that a.<f>(b) = </>(x (a)+ b) (a, b Ek). 
(2) (a) Prove an analogue of 14.2.2 for G = Gm, (Hint: see 3.2.16 (3)). 

(b) Prove an analogue of the result of the preceding exercise for Gm. 
(3) (a) Let G be a connected nilpotent F-group and let T be its unique maximal torus, 
defined over F (see the proof of 13.3.6). Assume that there exists a homogeneous 
space X for G over F together with an F -isomorphism </> : T x X ➔ G such that for 
t, t' E T, x E X we have t.<f>(t', x) = </>(tt', x). Show that the unipotent radical Gu 
is defined over F. 

(b) Using the example of 12.1.6 (2) show that 14.2.3 is not true for G = Gm, 

For the next theorem we need an auxiliary result, in which G may be an arbitrary 
linear algebraic group over F and H a closed F -subgroup. Let rr : G ➔ G / H be the 
canonical F -morphism. 

14.2.S. Lemma. If G / H is affine, then F[G / H] 
f (g) for all g E G, h E H}. 

{/ E F[G] I f (gh) 

This is true if F = k (see the proof of 5.5.5). To prove the lemma it suffices 
to show: if G/H is affine and if f E F[G/H], then the function f E k[G] with 
- - -
f (g) = f (rrg) lies in F[G]. It is enough to show that f E Fs[G] (as f is invariant 
under the Galois group f). It follows from 11.2.14 (ii) that rr(G(Fs)) = (G/ H)(Fs), 
whence 

This implies that f is defined over Fs (11.2.10 (3)). D 

A section of rr on G/ H over F (briefly, an F-section) is an F-morphism a : 
G / H ➔ G such that rr o a = id (see 5.5.7). From now on G is again a connected, 
solvable F-group. 

14.2.6. Theorem. Let H be a connected, unipotent F -subgroup of G that is F
split. 
(i) There exists an F-sectionfor 1r : G ➔ G/ H; 
(ii) G is F-isomorphic (as a variety) to G / H x H. 

If a : G / H ➔ G is an F -section, then</> (x, h) = a (x )h defines an F -isomorphism 
G / H x H ➔ G, which shows that (ii) is a consequence of (i) (see also 5.5.7). In fact, 
(i) and (ii) are equivalent, as is easily seen. 

We prove (i) by induction on dim H, starting with H = {e}. Assume that dim H > 
0 and let H1 be a closed, normal, F-subgroup of H such that H / H1 is F-isomorphic 
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to Ga, We may assume that there exists an F-section 

a1: G/H1 ➔ G. 

It defines an F-isomorphism </>1 : G / H1 x H1 ➔ G, as above. 
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Now G / H1 is an F-variety, on which G acts on the left and H / H1 on the right, 
whence an action of the group G x (H/ H1). An application of 14.2.3 shows that 
there exists a homogeneous space Y of G x (H / H1) over F and an F -isomorphism 
</> : (H/H1) x Y ➔ G/H1. Consider the F-morphism () : G ➔ Y that is the 
composition of the canonical map G ➔ G / H1 and the morphism 't' : G / H1 ➔ Y 
of 14.2.3. Then () a separable F-morphism that is constant on the cosets of H and 
G-equivariant. It factorizes through G / H, whence an F-morphism p : G / H ➔ Y 
that is separable, bijective and G-equivariant, hence is an isomorphism (5.3.2 (iii)). 
It follows that there exists an F -isomorphism H / H1 x G / H ➔ G / H1. The F
isomorphism </>1 : G / H1 x H1 ➔ G induces an isomorphism H / H1 x H1 ➔ H. 
Putting these facts together we obtain an F-isomorphism v, : G / H x H ➔ G such 
that (pr1 o v,-1)(g) = gH (g e G), whence an F-section. D 

We write Am,n = G: x G: and view this as an open F-subvariety of Am+n. 

14.2.7. Corollary. Assume G to be F-split. As an F-variety, G is isomorphic to 
A m,n, with m = dim G /Gu, n = dim Gu, In particular, if G is unipotent it is F -
isomorphic to An. 

Gu is F-split by 14.1.6. Applying the theorem to G (or applying 6.3.5 (iv)) we 
see that G is F-isomorphic to G/Gu x Gu, Now G/Gu is an F-split torus (14.1.6), 
isomorphic to (Gmr. Repeated application of the theorem shows that Gu is F
isomorphic to G:. D 

14.2.8. Exercise. (F = k) Let H be a connected, closed subgroup of G. The va
riety G/ His isomorphic to some Am,n. 

14.3. F -split solvable groups 

14.3.1. Elementary unipotent F -groups. Let G be a connected elementary unipo
tent F-group (see 3.4.1). As in 3.3.1 we denote by A(G) the set of additive functions 
on G (homomorphisms of algebraic groups G ➔ Ga) and by A(G)(F) the subset of 
those defined over F. Assume that p > 0. Then A(G)(F) is a left module over the 
non-commutative ring R = R(F) of 3.3.1. In 3.4 we discussed the case F = k. We 
now deal with an arbitrary ground field F. 

14.3.2. Lemma. G is F-isomorphic to G: if and only if A(G)(F) is a free R-module 
ofrankn. 
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By 3.3.5, A(G:) is a free R-module. It remains to prove the 'if'-part. As
sume that A(F) is a free R-module, with basis (/1, ... , fn). By 3.4.8 (a) we have 
F[G] = F[/1, ... , fn] and by 3.3.6 (ii) the /i are algebraically independent over F. 
It follows that g ~ (/1 (g), ... , fn(g)) defines an isomorphism of G onto G:. □ 

14.3.3. Lemma. A submodule of a free R-module with countable basis is free. 

Let M be a free R-module with basis (eik:~l· Form e M denote by e:(m) its i th 

component relative to this basis. Denote by Mi the submodule with basis (ei)r~.i• Let 
N be a non-zero submodule of F. Then e: ( N n Mi) is a left ideal /i in R, which by 
3.3.3 (i) is principal, say I; = Rri. Denote by/; an element of N with e:(f;) = ri. 

We leave it to the reader to check that the /; such that r; =/:- 0 form a basis of N. □ 

14.3.4. Examples of free R-modules. (a) If F is perfect then any finitely gener
ated torsion free R-module is free. See 3.3.3 (iii). 
(b) Let M = F[T1, ... , Tn, T1- 1, ... , Tn-1], with the R-action given by T.f = f P. 
Then M is a free R-module, a basis being the set of monomials Tt1 ••• Tnh", where 
either all h; are O or the greatest common divisor of the integers hi (1 < i ~ n) is not 
divisible by p. 
(c) Let E/ F be a separable finite extension of F. Then R(E) is a free module over 
R = R(F). For let (xi) be a basis of E over F. Then (x() is also a basis of E over 
F, for any n ~ 0 (see the definition of separability given before 4.2.10). It follows 
that (xi) (viewed as a subset of R(E)) is a basis of R(E) over R. 

14.3.5. If p = 0 we have R = F. Then 14.3.2 also holds; the proof is the same. 
14.3.3 and the examples of 14.3.4 are trivial. 

14.3.6. There is an analogue of 13.1.4 for elementary abelian F-groups, which we 
briefly indicate. Assume that p > 0. Let M be a left R-module of finite type. Denote 
by S the symmetric algebra of M over F and by / the ideal in S generated by the 
elements T.m - mP (m e M). Put F[M] = S//. Then F[M] is an affine algebra. 
The homomorphisms S ➔ S ® F S and S ➔ S with m ~ m ® 1 + 1 ® m, respectively 
m ~ -m and the augmentation homomorphism S ➔ F, induce homomorphisms 
I),, : F[M] ➔ F[M] ® F[M], t : F[M] ➔ F[M] and e : F[M] ➔ F, which are the 
ingredients of an F-group Q(M) (see 2.1.2). This group is elementary abelian, and 
A(Q(M))(F) ~ M. In fact, we have an anti-equivalence between the categories of 
left R-modules and of elementary abelian F-groups. One has a similar (trivial) result 
for p = 0. 

14.3.7. Exercises. (1) Work out the details of 14.3.6. 
(2) Assume that F is a non-perfect field. Recall that the additive group of the ring 
R = R(F) of 3.3.1 is F[T]. View Ras a left vector space over F. 

(a) RTm is a two-sided ideal in R. The quotient R/ RTm has dimension mover F. 
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It is a local ring, i.e. it has a unique maximal ideal. Put Fn = {x E k I xPn E F}, this 
is a subfield of k. Let M be a left R-module such that the R(Fn)-module Fn ®FM is 
free of rank one. 

(b) rn Mis a free R-module of rank one. 
(c) M / rn M is a free R/ RTn-module of rank one. (Hint: Show that the image in 

M / rn M of an element of M - TM is a basis element). 
( d) Let e be a basis element of rn M and let f + rn M be a basis element of 

M/TnM. There exist elements a0 , a 1, ... , ar E F with a0 =j::. 0 such that rn f = 
(ao + a1T + · · · + arTr)e. 

(e) M is isomorphic to a quotient (R © R)/ S, where Sis the free submodule gen
erated by (Tn, a0 + • • • + arTr) (notations of (d)). 

(t) Let G be an F -group isomorphic to Ga. Then G is F-isomorphic to an F
subgroup of G~ of the form 

{(x, y) E G~ I yPn = aox + a1xP + · · · + arxPr}, 

notations being as before. (Russell's theorem, see [Rus] or[Kam]). 
(3) Let F be an infinite field and let S be an F-torus that is F-split. 

(a) Let</> be a homomorphism S(F) ➔ GLn (R) such that 

</>(s) = L x(s)Ax, 

where the sum is over a finite set of characters of S, the Ax being matrices with entries 
in R. Show that Im</> lies in the subgroup GLn(F) . 

(b) Let V be an F-vector space with a locally finite action of S over F. As
sume that V(F) has a structure of left R-module, such that a.(s.v) = s.(a.v) for 
a ER, s E S(F), v E V(F). Show that if V(F) is a free R-module of finite rank it 
has a basis consisting of weight vectors for S. 

(c) Let F be any field and let G be a connected solvable F-group with the follow
ing properties: (1) it contains a maximal torus S defined over F and F-split, (2) the 
unipotent radical Gu is defined over F and is F-isomorphic to a product G:. For each 
character x of S there exists a unique F -subgroup G x of Gu, isomorphic to a product 
G;x, which is normalized by Sand is such that the Lie algebra L(Gx) is the x-weight 
space for Sin L(G). Moreover, Gu is the direct product of the non-trivial Gx. 

We come now to the main results on F -split solvable groups. 

14.3.8. Theorem. (i) G is F-split if and only if there exists a dominant F-morphism 
Am,n ➔ G,forsome m andn; 
(ii) G is unipotent and F-split if and only if there exists a dominant F-morphism 
An ➔ G, for some n; 
(iii) A unipotent group G is F -split if and only if it is Fs -split. 

That the conditions of (i) and (ii) are necessary follows from 14.2.7. For the con
dition of (iii) this is obvious. We prove the sufficiency. First consider (i). From 2.2.6 
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it follows that if G satisfies the condition of (i), the same holds for the commutator 
subgroup (G, G), which is a connected F-subgroup by 2.2.8. If p > 0 the same is 
true for the subgroup G<P> generated by the pth powers of elements of G. An easy 
argument shows that there is a sequence {e} = G0 C G1 C • • • c Gn-t C Gn =Gas 
in 14.1.1 such that all G; satisfy the condition of (i). Moreover, it follows from 14.2.5 
that the successive quotients G;/G;_1 (1 :5 i < n) also satisfy this condition. Such a 
quotient H is either an F -torus or an elementary abelian group over F. We claim that 
His split. 

If His a torus, His Fs-split (13.1.1 (ii)). The condition of (i) implies that F[H] 
is a subalgebra of an algebra A = F[T1, ... , Ta, T1- 1, ... , Ta- 1 ]. A character of His an 
invertible element of Fs[H], hence of Fs ®FA. But the invertible elements of the last 
algebra are of the fonn cT1h1 ... Taha, with c e Ft. A character x of H lies in Fs [ H]. 
It follows that for y e r = Gal(Fs/ F) we have that the character y.x is a scalar 
multiple of x. Since characters have the value 1 at e, x is fixed by the elements of r 
and is defined over F (11.1.4). By 3.2.12 (i) His F-split. 

If His elementary abelian, then the R-module A(H)(F) of additive functions on 
His a submodule of the R-module A, which is free by 14.3.4 (b). Then His F-split 
by 14.3.3 and 14.3.2. We have proved the claim made above. It shows that G is a 
successive extension of F -split groups. We still have to prove that this implies that G 
is split. 

As in the proof of 14.1.4 one shows that such a successive extension is F-tri
gonalizable. Hence the unipotent radical Gu is defined over F (14.1.2). The algebra 
F[G/Gu] being a subalgebra of F[G] by 14.2.5, the torus G/Gu must be F-split by 
what we already know. Let T be a maximal F-torus of G (13.3.6 (i) or 13.3.7). Then 
G is F-isomorphic as a variety to T x Gu (by 6.3.5 (iv)), from which we see that 
Gu also satisfies the condition of (i). As in the first paragraph of the proof, one sees 
that there exists a connected, elementary F -subgroup N of the center of Gu which is 
nonnal in G and satisfies the condition of (i). N is F -split by what we already proved 
and is nonnalized by T. Also, G / N satisfies the condition of (i). Induction on dim G 
reduces the proof to the case that Gu is an elementary F -group. In that case we obtain, 
as in the proof of 6.3.4, an additive function f e A(Gu)(F) that is a simultaneous 
eigenvector for the elements of T. We may also assume that df =j::. 0 (check this). 
Then Ker f is defined over F by 11.2.14 (ii), and so is (Ker /)0 (12.1.1). We can 
now proceed by induction. We have proved (i). 

If the condition of (ii) holds then G is F-split by (i). Now F[ G] does not contain 
non-constant invertible elements. Then the maximal torus T of the proof of (i) must 
be trivial and G is unipotent. 

By the arguments of the first paragraph, we are reduced to proving (iii) in the case 
that G is elementary abelian, which we now assume. The R-module A(G)(F) is a 
submodule of a free R(Fs)-module. By 14.3.4 (c) the latter is a free R-module. Ap
plication of 14.3.2 shows that G is split, proving (iii). D 
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14.3.9. Corollary. Assume that G is F-split and is not a torus. There exists a closed, 
normal F-subgroup of G that is F-isomorphic to Ga and lies in the center of G. 

This refinement of 6.3.4 is a corollary of the proof of 14.3.8 (i). 

14.3.10. Corollary. Assume that Fis perfect. Then Gu is F-split. 

D 

The proof is reduced to the case of an elementary abelian group, in which case 
one uses 14.3.4 (a). □ 

The next proposition is a variant of 14.2. 7. 

14.3.11. Proposition. Let G be F-split and let T be a maximal F -torus of G. 
(i) There exists an F-isomorphism of varieties <I> : Gu ➔ An with <f>(e) = 0 and a 
rational representation p of Tin kn over F such that </>(lnt(t).g) = p(t).</>(g) (g e 
G, t e T); 
(ii) For x, y E G~ we have </>(</>- 1(x)</>-1(y)) = x + y + L;~2 F;(x, y), where 
F; : An x An ➔ Anis a polynomial map of degree i; 
(iii) The weights of T for pare the weights of Tin L(G). 

Int(t) is the inner automorphism defined by t e T. Let N be as in 14.3.9. We fix 
an isomorphism of F -groups v, : N ➔ Ga. There is a character x of T such that 
'l/l(tnt- 1) = x(t)'l/l(n) (n EN, t ET). 

The action Int of T on G induces an action I of T on G / N. Let a be a an F -
section for G ➔ G / N (14.2.6). From the definition of sections it follows that there 
is an F-morphism z: T x G/ N ➔ A1 such that for x e G/ N, t e T 

Int(t)-1.(a(/(t).x)) = a(x)v,- 1(z(t, x)). 

It follows that 

z(tt', x) = z(t, x) + x(t)- 1z(t', l(t).x). (70) 

Let X be the character group of T. Since T is F -split ( 14.1.6), all characters are 
defined over F (3.2.12 (i)). Write 

z(t, x) = L 0(t)ze(x), 
BEX 

with z8 e F[G / N]. Insert this into (70). By Dedekind's theorem on linear inde
pendence of characters the terms on both sides not involving t' are equal. We obtain 
that 
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Put r(x) = a(x)v,-1(z1(x)). Then r is again a section. It defines an F-isomorphism 
G ➔ G / N x A 1. This isomorphism is T -equivariant, T operating on G by Int, on 
G / N by / and on A 1 by the character x. We may assume that the assertion of the 
proposition holds for G / N. Using the T -equivariant isomorphism G ➔ G / N x A 1 

it is now straightforward to establish the proposition for G. □ 

14.3.12. Exercises. G is a connected solvable F-group. 
( 1) G is F-split if and only if Gu is defined over F and F-split and G /Gu is an F-split 
torus. 
(2) Assume G to be F-split. Let <jJ : G ➔ G' be a surjective homomorphism of 
F-groups. Then G' is connected, solvable and F-split. 
(3) Let Hand K be two connected F-subgroups of G that are F-split. 

(a) The connected F-subgroup (H, K) of 2.2.8 is F-split. 
(b) The same is true for the connected F-subgroups acn) of 2.2.9 (3). 

14.3.13. Theorem. Assume that G is F -split. If X is an affine F-variety that is a 
homogeneous space for G, then X(F) -=I= 0. 

First let G be a torus and let X be its character group. G acts on A = F[X] 
by translations and as in 3.2.13 we have a decomposition into weight spaces A = 
EBxEX Ax. If x E X the map g r+ g.x defines a surjective morphism G ➔ X, com
patible with translations. It follows that k[X] is isomorphic to a translation invariant 
subspace of k[G], from which we conclude that the spaces Ax have dimension < I. 
Let X' = {x E X I dim Ax = l}. Then X' is closed under addition (see 3.2.13). 
Also, if x E X' then the ideal Axk[X] cannot be proper, as X does not contain proper 
G-stable subvarieties. It follows that X' is a subgroup of X. Let (x;) 1~;~d be a basis 
of X' and let a; be a non-zero element of Ax. There is an isomorphism of A onto the 
algebra of Laurent polynomials F[T1, ... , Td, T1- 1, ... , Td- 1] sending a; to T;. It is 
now clear that X (F) -=I= 0. The argument gives, in fact, that the homogeneous space 
Xis F-isomorphic to the F-split torus Q(X') (see 13.1.4), which is a homomorphic 
image of G. The action on Q (X') comes from the translations in G. 

If G is not a torus, let N be as in 14.3.9. Applying 14.2.3 we obtain a homo
geneous space Y of the F -split group G / N over F such that X is F-isomorphic to 
N x Y. The assertion now follows by induction on dim G, using 14.2.4 ( 1 ). □ 

14.3.13 generalizes the result of 12.3.5 (3), which is equivalent to it in the case of 
torsors (principal homogeneous spaces). 

14.4. Structural properties of solvable groups 

Recall that G is a connected solvable F-group. 
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14.4.1. Theorem. (i) There is a unique maximal closed, connected, F-split, F
subgroup Gus,F of Gu, It is a normal subgroup of G. Moreover, Gus,F = Gus,Fs; 
(ii) (G/Gus,F)us,F = {e} and G/Gus,F is nilpotent; 
(iii) If</>: A1 ➔ G is an F-morphism then Im</> C </>(0)Gus,F; 
(iv) If G is generated by its F -tori then Gu is de.fined over F and F -split. 

According to 2.2.7 (ii) the closed, connected Fs-split unipotent Fs-subgroups of G 
generate a closed, connected, unipotent Fs-subgroup G1, which is Fs-split by 14.3.8 
(ii). Identify G, Gu, G1 with their groups of fr-rational points. The Galois group 
r = Gal(Fs/ F) operates on G. If y E r we have that y,Gu is a connected, normal, 
uni potent, closed subgroup of G, hence must coincide with Gu. So r stabilizes Gu. A 
similar argument shows that r stabilizes G1 and also G1 (Fs), Now 11.2.7 and 11.2.8 
(i) imply that G 1 is defined over F. It is F-split by 14.3.8 (iii). We can also conclude 
that G1 is normalized by G(Fs), and 11.2.7 implies that G1 is normal. It follows that 
Gus,F = G1 has the properties of (i). 

Let</> be as in (iii). To prove (iii) we may assume that </>(0) = e. Using 2.2.6 
and 14.3.8 (ii) we conclude that Im </> generates a connected, unipotent F-split F
subgroup of G, which must be contained in Gus,F, whence (iii). 

Let 1/1 be an F-morphism A1 ➔ G/Gus,F• Application of 14.2.6 (i) shows 
that we can lift 1/f to an F-morphism A 1 ➔ G. Then (iii) shows that 1/f is con
stant. In particular, G /Gus. F cannot contain any F-split uni potent F -subgroup, hence 
(G / Gus,F )us,F = {e }, proving the first part of (ii). 

If G is generated by its F-tori it follows from 2.2.7 and 13.1.1 (ii) that there exists 
a dominant Fs-morphism G! ➔ G. From 14.3.8 (i) we conclude that G is Fs-split, 
so Gu is defined over Fs and Fs-split (14.1.6). Gu is defined over F by 11.2.8 (i) and 
is F-split by 14.3.8 (iii), proving (iv). 

It remains to prove the last point of (ii). It follows from what we already proved 
that the subgroup of G/Gus,F generated by its F-tori is a torus, which is the only 
maximal F-torus. If it is a proper subtorus then F must be infinite (use 14.3.10) and 
13.3.6 (ii) then shows that it is a central torus, which implies that G / Gus.F is nilpo
tent, completing the proof of (ii). D 

14.4.2. Corollary. Let G be a connected unipotent F-group and let T be an F -
torus that acts on G as a group of automorphisms over F. Assume that e is the only 
element of G fixed by all elements of T. Then G is F -split. 

We denote by H the semi-direct product of T and G. So H = T x G, with multi
plication (t, g )(t', g') = (tt',(t')- 1gt'g') (g,g' E G, t,t' ET). ThenTisamaximal 
torus of H, which coincides with its centralizer. We may assume that F is infinite (if 
Fis finite 14.3.10 applies). From 13.3.6 (ii) we see that H is generated by its max
imal F-tori. By 14.4.1 (iv) we conclude that the unipotent radical G of His F-split. D 
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14.4.3. Theorem. Two maximal F-tori Sand T of Gare conjugate by an element of 
G(F). 

We may assume that G is generated by its F-tori. Then Gu is defined over F and 
F-split by 14.4.1 (iv). We may also assume that Gu is non-trivial. Let N be a sub
group of Gu with the properties of 14.3.9. It follows from 14.2.6 (i) that the canonical 
map G(F) ➔ (G/N)(F) is surjective. By induction we may assume that the asser
tion is true for G / N. As in the proof of 6.3.5, we are reduced to proving che assertion 
in the case that Gu = N. Then either N centralizes S, in which case S = T, or there 
is a unique g E G with gSg-1 = T. From 13.3.1 (i) we infer that g E G(Fs), Its 
uniqueness implies that it is invariant under r, hence lies in G(F). □ 

14.4.4. Proposition. Let C be a Cartan subgroup of G de.fined over F. Then G 
is F -split if and only if C is F -split. 

We may assume that Fis infinite. If C is F-split then it follows from 14.4.3 that 
all Cartan subgroups defined over F are F-split. From 2.2.7, 13.3.6 (ii) and 14.2.7, 
we deduce that G satisfies the condition of 14.3.8 (i), hence is F-split. 

Conversely, assume that G is F -split. Let T be a maximal F -torus of G; it is 
F-split. There is a cocharacter).. E X*(T)(F) such that, with the notations of 13.4.1, 
we have C = Z(A) (see 7.1.2). By 13.4.4 we have an isomorphism of F-varieties 
U (-}..) x Z (A) x U (A) ➔ G, from which we see that there is a surjective F-morphism 
G ➔ C. Applying 14.3.8 (i) we conclude that C is F-split. D 

Let H be an arbitrary connected F -group. 

14.4.5. Proposition. (i) H contains a maximal, connected, solvable (respectively: 
unipotent), normal F-subgroup RFH (respectively: Ru,FH); 
(ii) The maximal F-split unipotent subgroup Rus,FH of RFH is a normal F-subgroup 
of H; 
(iii) If Rus,FH = {e} then Ru,FH centralizes all F-subtori of H; 

(iv) Ru,FsH = Ru,FH, Rus,FsH = Rus,FH; 

(v) If Fis perfect then Ru,FH = Rus.FH = RuH, the unipotent radical of H. 

It follows from 2.2. 7 that the connected, normal F -subgroups of H contained in 
the radical RH (respectively, in Ru H) generate a similar subgroup, whence (i). As in 
the proof of 14.4.1 (i) one shows that the Fs-subgroup Ru,FsH is defined over F and 
is normal in H. It contains Ru.FH. Since the second group is contained in the first 
one, we have the first assertion of (iv). A similar argument, using 14.4.1 (i), proves 
the second assertion. We have proved (ii) and (iv). 

Let Rus,FH = {e} and let S be an F-torus in H. Let K = S,Ru,FH; this is a 
connected solvable F-group with maximal torus S. By 14.4.1 (ii) it must be nilpotent, 
whence (iii). 
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Finally, (v) follows from 14.3.10. □ 

The groups RF, Ru,FH, Rus,FH are, respectively, the F-radical, unipotent F
radical, split unipotent F-radical of H. The F-group H is called F-reductive if 
Ru,FH = {e}. 

14.4.6. Lemma. H is F -reductive if and only if Ru H does not contain any non
trivial connected F-subgroup. 

Assume that Ru H contains a non-trivial connected F-group K. Then the conju
gates of K by elements of H (Fs) generate a connected normal F-subgroup contained 
in RuH, which shows that Ru,FH is non-trivial. □ 

Notes 

Most of the results of this Chapter are due to Rosenlicht [Rosl, Ros2]. See also 
[Bo3, §15]. 

14.2.2 is a particular case of [Rosl, Theorem 1]. We have given an elementary 
proof. 

The main results on connected, solvable F-groups, discussed in 14.3 and 14.4, 
come from [Ros2]. The proofs of the results on F-split groups in 14.3 given here 
make use of the algebra R. 

14.4.1 (iii) is due to Tits [Ti4]. The 'only if' part of the characterization 14.4.4 of 
F-split groups is proved in [BoT2, 1.6]. 

The group Rus.FH of 14.4.5 was introduced in [BoT3]. 



Chapter 15 

F -reductive Groups 

In this chapter we discuss general F-groups. An important general result is the conju
gacy over F of maximal F-split tori (15.2.6). In 15.3 we introduce the root datum of 
an F -reductive group. In the case of reductive F-groups the proofs of several results 
(such as 15.1.3 and 15.3.4) are easier. The notations are as in the previous chapters. 
G is a connected F -group. 

15.1. Pseudo-parabolic F -subgroups 

15.1.1. A pseudo-parabolic F-subgroup P of G is a subgroup of the form P = P(A), 
where). is a cocharacter of G defined over F, P(A) is as in 13.4 and Ru,FG is the 
unipotent F-radical (14.4.5). It follows from 13.4.2 (ii) that P is a connected F
subgroup of G. Observe that, as a consequence of 13.4.3 and 14.4.5 (iii), we have 
Ru,FG C Z(A).Rus,FG, from which we see that P = P(A).Rus,FG, The pseudo
parabolic subgroups will play a role in the theory of F-groups similar to that of the 
parabolic subgroups in the theory of k-groups. 

15.1.2. Lemma. (i) G contains proper pseudo-parabolic F-subgroups if and only 
if G / Ru,FG contains non-central F-subtori that are F-split; 
(ii) /f G is reductive or if Fis peifect the pseudo-parabolic subgroups are the parabolic 
F -subgroups. 

To prove (i) we may and shall assume that Ru,FG is trivial. Assume that A is 
a cocharacter of G defined over F such that P(A) = G. By 13.4.2 (i), U(A) is a 
unipotent normal F-subgroup of G which is trivial by 14.4.6. From 13.4.2 (i) we 
see that Z(A) = G, so that Im). lies in the center of G. It follows that, if proper 
pseudo-parabolic F-subgroups do not exist, then all F -split F -subtori, of G lie in the 
center of G. Conversely, if there exist non-central F -split F-subtori, there exist ). 
with Z(A) f:. G (check this). Using 13.4.2 (ii) we conclude that P(A) f:. G. We have 
proved (i). 

Let G be reductive. It follows from 8.4.5 that a pseudo-parabolic F -subgroup is 
parabolic. If F = k we already proved the converse in 8.4.5. Now let P be a parabolic 
F -subgroup of G and let T be a maximal torus in P defined over F. Denote by X the 
character group of T and by Y the group of its cocharacters. The elements of X and 
Y are defined over Fs and the Galois group r = Gal ( Fs / F) acts on these groups via a 
finite quotient A (see 13.2.1). Let R c X be the root system of (G, T). The non-zero 
weights of Tin the Lie algebra L(P) form a subset R' of R, which is stable under A. 
Let A be the set of ). E Y such that 

R' = {a E R I (a, A) > O}. 



15.1. Pseudo-parabolic F-subgroups 253 

It follows from the proof of 8.4.5 that A# 0 and that for).. E A we have P = P()..). 
The group A stabilizes A. 

If).. E A the r-stable elementµ = LaEa ~.).. also lies in A. The cocharacter µ is 
defined over F and P = P (µ), showing that P is a pseudo-parabolic F -subgroup. If 
Fis perfect then Ru.FG = RuG and G/ Ru.FG is reductive by 14.4.5 (v). It follows 
from what we already proved that the assertion of (ii) holds (using 6.2.7 (i)) □ 

Let P = P()..) be as before and denote by 1r : G ➔ G/ P the canonical morphism. 

15.1.3. Theorem. Let F be infinite. Then 1r has local sections over F. 

This means that G/ Pis covered by open F-subvarieties on each of which there is 
a section defined over F, see 5.5.7 and 14.2.6. 

We claim that we may assume that G ( F) is dense in G. If G is reductive, this is 
the case by 13.3.9 (ii). In the general case, let G1 be the subgroup of G generated by 
the F-subtori of G. Then G,(F) is dense in G, (13.3.12 (i)). 

Put S = Im )... We can assume that this is a one dimensional F -subtorus of 
G. It is a maximal torus of the solvable F-subgroups S.U(±)..) (notations of 13.4) 
and coincides with its centralizer in these groups. We conclude from 13.3.6 (ii) that 
U(±)..) c G,. Also note that as a consequence of 14.4.2 the groups U(±)..) are F
split. 13.3.12 (ii) implies that G = G,.Z()..). Denote by Gd the identity component 
of the closure of G(F). By 2.2.4 (i), 11.2.4 (ii) and 12.1.1 this is a connected F
subgroup of G that contains G,, whence G = Gd .Z()..). Using 14.2.7 we see that Gd 
also contains Rus,FG, It follows that Gd n P is a pseudo-parabolic F-subgroup of 
Gt and that the inclusion Gd ➔ G defines a bijective, Gd-equivariant F-morphism 
</> : Gd /Gt n P ➔ G/ P. Using 13.4.2 (ii) we see that the tangent map (d<f>)x at the 
image x of e is bijective. By 5.3.2 (iii) <f> is an isomorphism. Since Gd(F) is dense in 
Gd the claim follows. 
Assuming G(F) to be dense, it suffices to produce one non-empty open F-subvariety 
U of G / P and a section a : U ➔ G of 1r over F. For then the translates g. U (g E 

G(F)) cover G/ P, and on each translate there is an obvious section. 

Using 5.5.11 (i) and 13.4.3 we see that we may assume G to be F-reductive. By 
13.4.2 (iii) the product map defines an F-isomorphism of U(-}..) x Ponto an open 
F -subvariety of G. Then U = 1r ( U ( -}.. ) ) is an open F -subvariety of G / P and 1r 

induces an isomorphism U ( -}.. ) ~ U. The inverse of this isomorphism is a section 
~~F. o 

The theorem is also true if F is finite (see [BoTl, 3.251). We shall not use this 
result. 

15.1.4. Corollary. (F arbitrary) The canonical map G(F) ➔ (G/ P)(F) is sur
jective. 
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If F is infinite this is an immediate consequence of the theorem. If F is finite it is 
a consequence of Lang's theorem 4.4.17, applied to P, as the reader may check. □ 

We also record the following result, which we encountered in the course of the 
proof of 15.1.2. 

15.1.5. Corollary. The connected unipotent F-groups U (±.i.) are F-split. 

15.2. A fixed point theorem 

15.2.1. Let P be a pseudo-parabolic F-subgroup of G. We shall prove in this section 
a theorem for G / P similar to the fixed point theorem 14.1. 7. Recall that it asserts 
that a connected, solvable, F-split, F-group H that acts on a projective F-variety X 
over F has a fixed point in X(F) if X(F) =f:. 0. The proof uses the property 6.1.4 
of projective F-varieties. However, the proof works already if X has the following 
weaker property: 

(PF) Any F-morphism A1 - {O} ➔ X extends to an F-morphism A 1 ➔ X. 
We shall prove in this section that the F-variety G / P has this property. If G is not re
ductive, this provides an example of a non-complete F-variety with property (PF). A 
trivial example of such a variety is the non-split form G of Ga of 12.3 .8 ( 1 ). It follows 
from 14.3.8 (i) that any F-morphism A1 - {0} ➔ G is constant, hence is extendible 
to A 1 . The reader who is only interested in reductive groups should continue with 
15.2.5. 

We require some results about property (PF). 

15.2.2. Proposition. Let X be an F-variety. 
(i) If X has property ( PE) for some extension E of F, then it has property (PF); 

( ii) If X is a closed F-subvariety of an F-variety that has property (PF), then so has 
X; 
(iii) A projective F-variety has property ( PF); 

(iv) Let <I> : X ➔ Y be a surjective morphism of irreducible F -varieties with finite 
fibres. If Y has property (PF) then so has X; 
(v) Let Ebe a.finite purely inseparable extension of F and assume that X = TIE;FY, 
where Y is an irreducible, smooth £-variety that has property ( PE), Then X has prop
erty ( PF), 

In (v) nE/F is as in 11.4.19 (see also 11.4.20 (i)). (i) and (ii) are immediate and 
(iii) follows from 6.1.4. In the situation of (iv), let 

v,: A 1 - {0} ➔ X 

be an F-morphism. If Y has property (PF) then <I> o v, can be extended to a morphism 
A 1 ➔ Y. We have to prove that <I> can be extended to A 1. To do this we may assume 
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that F = k. Replacing X and Y by open subsets, we may also assume by 5.2.6 that 
X and Y are affine and that X is finite over Y. Let a and fJ be the homomorphisms 
k[X] ➔ k[T, T-1] and k[Y] ➔ k[T] defined by VI and the extension of <I> o VI. Since 
Xis finite over Y, there exists for any f e k[X] an equation 

fn + 81/n-l + · · · + 8n = 0, 

with g; e k[Y]. Hence 

The normality of k[T] (5.2.9 (2)) implies that af e k[T], for all f e k[X]. Hence VI 
is extendible, and (iv) follows. 

If Z is an irreducible, smooth affine £-variety and W an affine F-variety, we 
have by 11.4.16 a bijection of the set of £-morphisms W ➔ Z onto the set of F
morphisms W ➔ TIE;FZ, which is functorial in W. This remains true for an ar
bitrary irreducible, smooth F-variety Z, which can be obtained by glueing together 
affine ones (see 11.4.20 (4)). It follows that in the case of (v) there is a bijection of 
the set of F-morphisms A1 - {0} ➔ X onto the set of £-morphisms A1 - {0} ➔ Y 
carrying extendible morphisms to extendible morphisms. This implies (v). □ 

15.2.3. Theorem. The F-variety G / P has property (PF). 

If G is reductive or if F is perfect, then by 15.1.2 (ii) P is a parabolic subgroup 
and G/ P is a projective F-variety. The theorem holds by 15.2.2 (iii). So we may 
assume that Fis non-perfect, hence infinite. By 15.2.2 (i) it suffices to deal with the 
case that F = Fs, so that G(F) is dense in G. Finally, we may also assume that G is 
F -reductive. 

Put X = G / P. Ru G. There is a finite purely inseparable extension E of F such 
that Ru G is defined over E and £-split. Then X = G / P. Ru G is a projective £
variety and we have the canonical £-morphism <I> : G / P ➔ X. By 11.4.20 ( 4 ), 
Y = TIE;FX exists. So we have a surjective £-morphism rr : Y ➔ X and an£
morphism VI: G/ P ➔ Y such that <I>= rr o VI, as in 11.4.19. 

15.2.4. Lemma. (i) Im VI is a closed F-subvariety Z of Y; 
(ii) For any ye Y(F) the set Vl-1y n (G/ P)(F) is/mite; 
(iii) VI : G / P ➔ Z is separable. 

It suffices to prove this with G / P replaced by an affine open F -subvariety U, 
occurring in a covering of G / P by such subvarieties, X being replaced by </>U and 
Y by TIE;F(</>U). We use the covering of the proof of 15.1.3, whose sets are G(F)
translates of the set rr U (-A) of that proof. Notice that we need only a finite number 
of these translates. We conclude that it suffices to prove assertions similar to (i) and 
(ii) with G / P replaced by an F-split, connected, unipotent, F-subgroup V of G, X 
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by the image V of V in G/ RuG, which is an E-variety, rr being the canonical E
homomorphism. Y is to be replaced by TIE;FV. By 12.4.2 the morphism v, is now a 
group homomorphism, hence has closed image (2.2.5 (ii)). This proves (i). 

If a set as in (ii) were infinite, we could conclude that the kernel K of</> contained 
infinitely many elements of V(F). But this kernel lies in RuG, It would follow 
from 11.2.4 (ii) and 12.1.1 that Ru G contained a non-trivial connected F -subgroup, 
contradicting 14.4.6. We have proved (ii). 

To prove (iii) observe that by 14.2.6 (ii) we have an E-isomorphism V '.:::: V x K. 
Now v, has a factorization 

a pr1 
V ➔ nv '.:::: y X TIK ➔ Y, 

the first morphism being as in 12.4.4 (2). We have Ker da = 0 and dim Im v, = 
dim G / P. The separability of v, follows. □ 

We can now prove 15.2.3. It follows from 15.2.4, 11.2.7 and 11.2.14 (ii) that for 
y e Y(F) the fibers v,-1 y are finite. Using that Y(F) is dense in Y, we conclude from 
5.2.6 that all fibres of v, are finite. By 15.2.2, Y has property (PF). Now apply 15.2.2 
(iv). D 

15.2.5. Theorem. Let H be a connected, solvable, F-split F-subgroup of G. There 
exists g e G(F) such that gHg-1 c P. 

As was pointed out in 15.2.1 it follows from 15.2.3 that H has a fixed point in 
(G/ P)(F). Then use 15.1.3. If G is reductive use 14.1.7 instead of 15.1.3. D 

15.2.6. Theorem. Two maximal F -split F -subtori are conjugate by an element of 
G(F). 

Let S and S' be two maximal F -split F -subtori. If G contains a proper pseudo
parabolic F-subgroup, then S and S' are both G(F)-conjugate to a subtorus of P, by 
the preceding theorem. The assertion follows by induction. If no such P exists it fol
lows from 15.1.2 (i) that Sand S' are maximal F-split F tori of the solvable F-group 
RFG. Now the assertion follows from 14.4.3 and 13.2.4 (i). □ 

15.2.7. Exercise. In 15.2.2 and 15.2.3 one can replace property (PF) by the fol
lowing stronger property of an F -variety X: 

(PF)' Any F-morphism of an F-open subset of P1 can be extended to an F
morphism P1 ➔ X. 

15.3. The root datum of an F -reductive group 

15.3.1. In this section G is a connected F-reductive group. We fix a maximal F -
split F-subtorus S of G. Its dimension is the F-rank of G. We denote by F X and 
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Fxv the group of characters, respectively cocharacters, of Sand by ( , ) the pairing 
between them. By 13.2.2 (i) the characters and cocharacters of Sare defined over F. 
We assume that Sis non-trivial, so FX f. {O}. 

If His a subgroup of G normalized by S, we denote by R(H, S) the set of non
zero weights of Sin L(H). The characters in R(G, S) are the roots of G relative to 
S, or the F-roots of G. They form a subset FR or FR(G), FR(G, S) of FX, The 
Weyl group of G relative to Fis the finite group FW = NG(S)/ZG(S) (see 3.2.9). 
We view it as a group of automorphisms of FX, It will follow from 15.3.8 that FR 
(if non-empty) is a root system (the relative root system) with Weyl group F W (the 
relative Weyl group). By 5.4.7, FR is empty if and only if Sis non-central. 

Let T be a maximal F -torus in G containing S. Such a torus exists, as a conse
quence of 13.3.6 (i) (or 13.3.7), applied to ZG(S). We denote by X the character group 
of T, by R C X the root system of G relative to T (7 .4.3) and by W = NG (T) / ZG (T) 
its Weyl group. If H is an arbitrary connected F -group we define the root system 
FR(H) to be that of the F-reductive group H/ Ru,FH. 

15.3.2. Lemma. (i) Let T' be any F-subtorus of G. The centralizer ZG(T') is a 
connected, closed, F-reductive F -subgroup of G; 
(ii) /f Tis a maximal torus of G containing S, the root system of (ZG(S), T) consists 
of the roots of ( G, T) whose restriction to S is trivial. 

It follows from 6.4.7 (i) and 13.3.1 (ii) that ZG(T') is a connected, closed F
subgroup. As a consequence of 7.6.4 (ii), Ru,F (ZG (T')) lies in Ru G. It then follows 
from 14.4.6 that ZG(T') is F-reductive. This proves (i). By (i), ZG(S) is connected 
and F-reductive. Then (ii) is a consequence of 5.4.7. □ 

15.3.3. Lemma. Let a e FR. 
(i) The torus Sa = (Ker a)0 is defined over F; 
(ii) Ga = ZG(Sa) is a connected, closed, F-reductive, F-subgroup with maximal split 
F -subtorus S and FR (Ga, S) C F X consists of rational multiples of a. 

There is a maximal integer n > 0 such that there exists x e F X with a = n x. 
Then Sa = (Ker x )0 . The subgroup Zx is a direct summand of F X, which implies 
that x : S ➔ Gm is separable. By 12.1.3 and 12.1.1, Sa is defined over F, whence 
(i). (ii) follows from the preceding lemma and 5.4.7. D 

By 13.1.1 (ii), T is a maximal Fs-split torus of G, so Fs X = X. As usual, pis the 
characteristic of F. 

15.3.4. Theorem. (i) R C FsR C ½R: 
( ii) Fs R = R if p I- 2 or if G is reductive. 
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If G is reductive, which is the case if p = 0, then (ii) (and (i)) hold. So we 
may assume that p > 0. Using 14.4.5 (iv) we see that we may also assume that 
F = Fs, We take S = T. If a E R is a weight of T, acting in L(G/ RuG), then 
a is also a weight of T in L(G), whence R c FR, Assume that a E FR is not 
a rational multiple of a root in R and let ).. be a cocharacter of T with (a, A} > 0. 
The group U = Uo0 (A) is a connected, unipotent F-subgroup normalized by T, and 
R(U, T) n R = 0. Then U must lie in RuG and by 14.4.6 we have U c Ru,FG, a 
contradiction. So an element of FG is a rational multiple of a root of R. 

We may now assume that there is a E R such that G = Ga (notation of 7.1.3). 
There is x E X such that the positive rational multiples of a lying in X are positive 
integral multiples of x. From property (RD 1) of the root datum of G / Ru G (1 .4.1 ), 
we see that either a= x or a= 2x. 

Let V = Uoa(A), where).. is as before. Then Vis F-split (15.1.5). The characters 
in R ( V, T) are strictly positive integral multiples of x. By 14.3.11, applied to the 
F-group T. V, there is an F-isomorphism <p : V ➔ An and a rational representation 
of T in kn over F with the properties (ii) and (iii) of 14.3.11. By property (ii) we have 
for X, y E An 

where <I> : An x An ➔ An is a polynomial map without constant or linear term. It 
follows from 14.3.11 (iii) that the weights of T on the Lie algebra of the commutator 
subgroup (V, V) (which is defined over F by 2.2.8 (ii)) are sums of at least two 
weights of Tin L(V). Hence the weights in L((V, V)) are multiples mx with m > 2. 

Assume that a = x. We can then conclude that (V, V) is an F-subgroup con
tained in RuG, which by 14.4.6 must be trivial. A similar argument shows that the 
subgroup V (p) generated by the p-th powers of elements of V is trivial. Hence V is 
an elementary unipotent F-group. By 14.3.7 (3) it is a product of Fs-subgroups Vv, 
such that T acts on L ( V v,) via the character v,. If v, # a we must have V v, C Ru G. It 
follows from 14.4.6 that V = Va, which implies that FR= R = {±a}. 

Now let a = 2x and p -=f: 2. Take t E T such that x(t) = -1. Then tacts on 
V by conjugation and the set 'E = {tvt-1 v-1 I v E V} lies in RuG (check this). By 
14.4.6 this can only be if V centralizes t. But this means that R(V, T) consists of 
multiples of a. One can now argue as before to establish that FR = R = {±a}. 

There remains the case that a = 2x and p = 2. In that case the same argu
ment gives that (V, V) is an elementary unipotent F-group, such that Tacts on its 
Lie algebra via a, if (V, V) is non-trivial. Also, (V, (V, V)) must be trivial. So 
(V, V) lies in the center of V. The group vc2> has the same property. Let V1 be 
the subgroup of V generated by (V, V) and vc2>. Then Vi is a closed, connected, 
central F -subgroup of V and, if it is non-trivial, then T acts on L (Vi) via a. If Vi 
is trivial one can argue as before. So assume this is not the case. Then V / Vi is an 
elementary unipotent F-group. It is a product of groups (V / Vi )v,, as in 14.3.7 (3). If 
v, -=f: x, 2x then by 14.3.11 (ii) the elements q,-1(x), with x in the v,-weight space of 
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T, would generate an F-subgroup of RuG, which is impossible by 14.4.6. It follows 
that R(V, T) c {½a, a}. The theorem follows. □ 

It has been shown by Tits that the exceptional case R #, Fs R can occur, see [Ti6, 
1991-1992, p. 128]. 

Leta e FR. The F-groups Ga and Sa are as in 15.3.3. 

15.3.S. Lemma. (i) There exists n e (N60 S)(F) that induces in Sf Sa a non-trivial 
automorphism; 
(ii) /f n is as in (i) then (NaTHFs) n Za/S)n # 0. 

Let G' = Ga/ Sa, an F -group with one dimensional maximal F -split torus S' = 
S /Sa. Let ).. be a cocharacter of G' over F with Im ).. = S'. We then have the 
F-subgroups P(±)..) and U(±)..) of G'. It follows from 13.4.2 (ii) that they are 
non-trivial. By 15.1.5 the solvable F-group H = S.U (-A) is F-split. By 15.2.5 
there is g e G'(F) such that gHg-1 c P()..) and it follows from 15.2.6 (applied 
to G') that we may assume g normalizes S'. If g centralized S' we would have 
U(-}..) = gU(-}..)g-1 c P()..), which is not the case. It follows from 12.3.4 (i) 
and 13.2.8 (3) that the canonical homomorphism Ga(F) ~ (Ga/Sa)(F) is surjec
tive. So there is n e Ga (F) with image g. This element has the property of (i). T and 
nTn-1 are maximal F-tori of the F-group Z60 (S). They are Fs-split. By 15.2.6 there 
exists h e Za0 (S)(Fs) with hnT(hn)-1 = T. Then hn e (NaT)(Fs) n Za0 (S)n, 
whence (ii). □ 

15.3.6. The Weyl group W of (G, T) acts in X and in the real vector space V 
R®zX. Notice that by 13.3.1 (ii), 12.1.1 and 11.2.7theelementsofWcanberepre
sented by elements of G(Fs). 

As in 7.1..7, introduce a positive definite symmetric bilinear form (, ) on V that 
is W -invariant. We identify V with its dual space via this form. Then the dual xv 

of X (the group of cocharacters of T) can be identified with the lattice of ).. e V 
with().., X) c Z. The group Fxv of cocharacters of Sis a subgroup of xv. If Fx1. 

is the annihilator of F xv in X (viewed as the dual of xv), restriction of characters 
induces an isomorphism X/ Fx1. '.:::'. FX (see 3.2.10 (4)). Then F V = R ®F Xis 
the orthogonal complement in V of R ® F xv. The map rr : V ~ F V, induced by 
restriction of characters of T to S, is, orthogonal projection onto the subspace F V and 
FR= rr R - {O}. Also, FX is a subgroup of F V and Fxv = {).. e F V I ().., FX) c 
Z}. 

By the formula of the proof of 7 .1.8 we have for a e R 
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The element n of 15.3.5 defines an element sa e F W of order two. 

15.3.7. Lemma. (i) Sa is the orthogonal reflection of F V defined by a; 
(ii) F Wis generated by the Sa, a E FR, 

(i) follows from 15.3.5. The proof of (ii) is similar to that of 7.1.9. Details can be 
left to the reader. 

We denote the quadruple of the proposition by Fw or FW(G, S). It follows from 
15.2.6 that it is unique up to isomorphism. To prove the theorem we have to verify 
the axioms (RD 1) and (RD 2) of 7.4.1. (RD 1) is obvious. By 15.3.7 (i) we have for 
V EF V 

whence for XE Fx, y E Fxv 

as required in 7.4 .1. 
It remains to prove (RD 2). Let a e FR, Using 15.3.5 (ii) we see that there is 

w e W such that for x e F V we have sax = wx. Let b e FR and take fJ E R with 
rr{J = b. Then 

y = w- 1 .{J lies in R put c = rr y. Since saw fixes all elements of F V and stabilizes the 
orthogonal complement of F Vin V, we have rr(saw(y)) = c, whence sa,b = c e FR, 
It follows that sa(FR) = FR, Similarly, one shows that Sav(FRv) = FRv. We have 
proved the theorem. 

15.3.9. Non-reduced root systems. The root system FR can be non-reduced, i.e. 
it may happen that a, 2a e FR (for an example see 15.3.10 (2)). We review some 
facts about non-reduced root systems (see also [Bou2, Ch. VI, 1.4]. Let R be a root 
system in a real vector space V, as in 7 .4.1 (we write in V instead of V'). The form 
(, ) is as usual. Then for a e R we have av= 2(a, a)-1a. 

(a) Let a e R. If an integral multiple ma lies in R then m e {±1, ±2}. 
This follows from 2 = (ma, (ma)v) e mZ. 

(b) /fa, 2a e R then (fJ, av) is evenforall fJ e R. 
We have (2a)v = ½a, Now use that (/J, (2av)) e Z. 

( c) Let R; be the set of a e R such that ½a ¢ R. This the the set of indivisible roots 
of R . It is a reduced root system. A basis D of R is one of R;. It follows from 8.2.8 
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that any root of R is an integral linear combination LaeD naa with all na ::::: 0 or < 0. 
It is clear how to define systems of simple roots in R. 
(d) Assume that R is irreducible and non-reduced, let D be a basis of R and let V 
be the corresponding Dynkin diagram (9.5.1). It follows from 8.2.8 (ii) that there is 
a E D with 2a E R. (b) shows that a is a long root and that the corresponding vertex 
of V is joined to other vertices only by double bonds. The classification of irreducible 
root systems shows that if Ri is irreducible it must be of type Bn (see 7.4. 7). The cor
responding non-reduced root system is denoted by BCn (n > 1). With the notations 
of 7.4.7, the root system of type BCn is {±<:i, ±2<:i, ±<:i ± <: i I 1 :::: i, j :::: n, i =f:. j}. 

15.3.10. Examples. (1) Assume that char F =f:. 2. Lets E GLn (F) be symmet
ric and define the F-automorphism 0 ofGL0 by 0x = s('x)-1s-1. By 12.1.8 (2) the 
fixed point group { x E GLn I 0 x = x} is defined over F. This is the orthogonal group 
of s, a form of On. Its identity component G is a form of SOn. 

Let V = kn. The symmetric matrix s defines a quadratic form Q on the F-vector 
space V(F) = Fn, by Q(v) = vs(1v) (where v E V(F) is viewed as a 1 x n-matrix). 
We may assume, by passing to another basis of V, that with v = (a1, ... , an), v0 = 
(ar+t, ... , an-r) we have 

where Q0 is an anisotropic quadratic form defined by a symmetric (n - 2r) x (n - 2r )
matrix s0. This means that Q0 ( v0) = 0 only if v0 = 0. The integer r is the Witt index 
of Q ors (see [Jac4, p. 351]). The group G is the special orthogonal group defined 
by Q. We denote by Go the corresponding group defined by s0. 

Let A be a split F-subtorus of G and let v E V (F) be a weight vector of A in 
V(F), with weight X • For a E A we have Q(v) = Q(a.v) = x(a)2 Q(v), which 
implies that Q ( v) = 0 if x =f:. 0. It follows that if Q is anisotropic the group G does 
not contain non-trivial split subtori. 

r being as before, let S c GLn be the subgroup of diagonal matrices of the form 

diag(x1, ... ,Xr, 1, ... , 1,x;1, ... ,x11), 

with Xi E k*. It is an F-split subtorus of G. The centralizer Za (S) is F-isomorphic to 
S x G0 . It follows that Sis a maximal F-split subtorus of G. The Lie algebra L(G) 
is the space of n x n-matrices x such that xs is skew-symmetric. One checks that 
the root system FR is of type Br unless n = 2r, in which case it is of type Dr. This 
example generalizes 7.4.7 (3), (4). 
(2) In the case of the preceding example let E = F(✓a) be a quadratic extension of 
F. Put 

n ( s O ) 
s = 0 -as • 
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Let Gtt c GL2n be the orthogonal group of stt and let H be the centralizer in Gtt of 

( 0 In ) 
aln O • 

Then H is defined over F. The elements of H lie in Gtt and have the form 

(71) 

H(F) is the unitary group of the Hermitian form Hon V(E) defined by H(v) = vs1v, 
the bar denoting the non-trivial automorphism of E / F. If the Hermitian form Ho de
fined by s0 is anisotropic then r is the Witt index of H (see [Dieu, Ch. I, § 11]. The ele
ments of the form (71 ), with x in the torus S and y = 0, form a maximal F -split torus 
S' in H. His an F-form of GLn (compare with 12.3.8 (4)). If g E GLn denote by </>g 
the matrix of the form (71) with 2x = s(1g)- 1s-1 + g, 2✓ay = -s('g)-1s-1 + g. 
Then</> is an £-isomorphism GLn ➔ H. Using this fact one can describe the action 
of S' on L(H). If 2r < n the root system of (H, S') is non-reduced of type BC,, 
otherwise it is of type C,. 

15.3.11. Exercises. (I) Complete the details in 15.3.10. 
(2) Assume that F = Fs and that E / F is a finite extension. Let G be a connected 
reductive F -group and let T be a maximal F -torus of G. Denote by G' the F -group 
nE;FG of 12.4.2. By 12.4.4 (2) there is an injective F-homomorphism a : G ➔ G'. 

(a) G' is F-reductive and T' = aT is a maximal F-torus of G'. 
(b) Deduce from 15.3.4 that if char F =p 2 the root data of (G, T) and (G', T') 

are isomorphic. 

15.4. The groups U(a) 

15.4.1. The assumptions and notations are as in the preceding section. So S is a 
maximal F -split F-subtorus of the connected F-reductive group G and FR is the rel
ative root system. Let a E FR. As before, write Sa = (Ker a)0 , Ga = Za(Sa); these 
are F-subgroups of G. Define U[a> = UG 0 (av) (notation of 13.4.1). 

15.4.2. Lemma. ( i) U[a> is a connected, unipotent, F-subgroup of G that is F -split. 
It is normalized by S; 
(ii) The Lie algebra L(U[a>) is the sum of the weight spaces of Sin L(G) correspond
ing to the roots which are positive rational multiples of a; 
(iii) If A is a cocharacterof S with (a, A)> 0 then U[a> C UG(A). 

(i) follows from 13.4.2 (i) and 15.1.5, and (ii) from 5.4.7 and 13.4.2 (ii). Let A be 
as in (iii). Defineµ, E X.(S) by 

2A = (a, A)av + µ,. 
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Then {a,µ,} = 0, which means that Imµ, lies in the center of Ga. Using 13.4.7 (1) we 
see that 

Ua0 () .. ) = Ua0 (2)..) = Ua0 ({a, ).}av)= Ua0 (av) = U[a>· 

It follows that U<a> C U0 ()..), as asserted. □ 

Since FR is a -possibly non-reduced- root system, the set of roots that are positive 
rational multiples of a is either {a} or {a, 2a} or {½a, a}, as follows from the facts 
reviewed in 15.3.9. In the first two cases we put Uca) = U<a>· 

15.4.3. Lemma. Assume that ½a, a E FR. There exists a unique connected, F
split, F-subgroup Uca> of the center of U<½a> whose Lie algebra is the weight space in 
L(G) of the root a. 

Put V = U<½a> and let V1 be the commutator subgroup (V, V) if p = 0 or the 

group generated by (V, V) and v<P> if p > 0. Then Vi is a connected F-subgroup 
normalized by S. An argument like the one in the proof of 15.3.4, using 14.3.11, 
shows that a is the only weight of Sin the Lie algebra L(V1). Moreover, Vi lies in the 
center of V, and y = V [ Vi is an elemen_!ary uni potent F -group. By 14.3. 7 (3 ), V is 
a direct product Via x Va, such that L(Vx) is the x-weight space of S. Let Uca) be 

! 

the inverse image of Va for the map V ➔ V. This is an F -subgroup of V (by 11.2.14 
(ii)), whose Lie algebra is the a-weight space in L(V). As before, one shows that it 
is a central subgroup of V. It is F -split as a consequence of 14.4.2. The uniqueness 
of Uca> follows from the uniqueness of the groups Gx of 14.3.7 (3), observing that the 
image of Uca) in V must be Va. □ 

We have now defined for any root a E FR an F -split unipotent group Uca>, whose 
Lie algebra is the sum of the weight spaces in L(G) for the positive integral multiples 
of a. 

Next let).. E X*(S) be an arbitrary cocharacter. We have the F-groups P()..), Z()..) 
U()..) of 13.4.1. Then P()..) = Z()..).U()..). 

15.4.4. Lemma. (i) U()..) is generated by the Uca> with {a,)..} > 0; 
(ii) Z()..) is F-reductive. It is generated by Z(S) and the Uca> with a E FR, {a,)..}= 
0. 

By 15.4.2 (i) the groups Vea> of (i) are contained in U()..). The group U' generated 
by them is a closed, connected F-subgroup of U ()..) (2.2.7 (ii)). It follows from 13.4.2 
(ii) that the Lie algebras of U' and U ()..) coincide. Hence the groups coincide, proving 
(i). 

From 7.6.4 (i) we see that RuZ()..) c RuG, from which the first point of (ii) fol
lows. It is obvious that Z(S) c Z()..). If a is as in (ii), then Im).. lies in the center of 
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the group Ga, whence U(a) C Z(A). Now (ii) follows by comparing Lie algebras, as 
in the proof of (i) (using 5.4.7). □ 

Fix a system of positive roots FR+ in FR and let D be the corresponding basis of 
FR, Let/ be a subset of D. It is a basis of a subsystem FR,. Denote by L 1 the sub
group of G generated by Z(S) and the Ga with a E FR,. Denote by U1 the subgroup 
generated by the Uca> with a E FR+ - F R1 and let PI be the subgroup generated by 
L 1 and U1 . 

15.4.5. Lemma. ( i) P1 is a pseudo-parabolic F -subgroup of G; 
( ii) U I is a closed, connected, normal, unipotent, F -subgroup, which is F-split; 
(iii) L I is a closed, connected F-reductive F-subgroup of PI and the product mor
phism L, x U1 ➔ P, is an F-isomorphism of varieties. 

Choose a cocharacter A of S such that {a, A} = 0 for a E / and {a, A} > 0 for 
a ED - I. It follows from the preceding lemma that UI = U(A), L1 = Z(A). Now 
most of the statements follow from 13.4.2. L I is F-reductive by 15.4.4 (ii) and UI is 
F-split as a consequence of 15.1.5 and 14.3.8 (ii). □ 

The groups P1 are the standard pseudo-parabolic subgroups (relative to Sand D). 

15.4.6. Theorem. (i) Any pseudo-parabolic F-subgroup of G is G(F)-conjugate 
to a standard one PI , and I is unique; 
(ii) Two minimal pseudo-parabolic F-subgroups are G(F)-conjugate. 

(i) generalizes 8.4.3 (iv). Let A be a cocharacter of Gover F and put P = P(A). 
By 15.2.6 we may assume that Im A c S. The set of a E FR with {a, A} > 0 
is contained in a system of positive roots FR.+ of FR. In fact, with the notations of 
15.3.6 we may take 

where x E F V is close to A and not orthogonal to any root of FR. Since F W acts 
transitively on the systems of positive roots (see 8.2.8) there is w E F W with 
w,FR.+ = FR+. By 15.3.5 (i) and 15.3.7 (ii), w can be represented by an element of 
G(F). It follows that we may assume FR+= FR+. Take/ = {a E D I {a, A} > O}. 
Then P = P1. Except for the uniqueness statement, we have proved (i). 

It is clear from the definitions that if /, J c D and / c J, we have P1 c P 1 . It 
follows that P0 is the minimal standard pseudo-parabolic F-subgroup. Then (ii) is a 
consequence of what we already proved. 

Now let P1 and P1 be two standard pseudo-parabolic subgroups and suppose that 
there is g E G(F) with P1 = g P1 g-•. Then P0 and g P0g-• are two minimal pseudo
parabolic F-subgroups of G, contained in P1. By (ii), applied to the F -reductive 
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group L1, they are conjugate by an element of P1. Hence we may assume that g nor
malizes P0. By 13.4.7 (3) we have g e P0, whence P1 = P1 . Then/ = J, as one 
sees by considering the root systems of these groups relative to S. □ 

15.4.7. We obtain from the preceding results the following explicit description of 
minimal pseudo-parabolic F -subgroups. Let S be a maximal F -split subtorus of G, 
with corresponding root system FR. Fix a system of positive roots FR+. Then the 
subgroup generated P by Z(S) and the Uca> with a e FR+ is a minimal pseudo
parabolic F -subgroup and any such subgroup is obtained in this manner. 

Now assume, moreover, that Sis a maximal torus of G, i.e. that, with previous 
notations, T = S. (This is the case if F = Fs.) Then the image of Pin G/ RuG is 
a Borel group. It follows that P is solvable. By 15.4.5 (ii) it is F-split. By the next 
exercise it is a maximal connected, solvable, F-subgroup, which is F-split (a pseudo
Borel subgroup). 

15.4.8. Exercise. Let G be an arbitrary F -group, containing a maximal torus de
fined over F and F -split. Two maximal connected, solvable, F -split, F -subgroups of 
Gare conjugate by an element of G(F). 

15.5. The index 

We keep the assumptions of the preceding sections. 1r : V ➔ F V is as in 15.3.6. 
Recall that by 15.3.4 the root system FsR coincides with the root system R of (G, T) 
if p =j:. 2 or if G is reductive. These two root systems have the same Weyl group W. 
Let FR+ be a system of positive roots in FR, defining the basis FD, 

15.5.1. Lemma. (i) Leta e FsR and assume a= rra =f:. 0. Then a e FR; 
(ii) There exists a system of positive roots R+ in Fs R with the following property: 
a e R+ if and only if a= rra e FR+. 

(i) is clear from the definition of 1r. There is x e F V such that 

(see 7 .4.5). We choose y e V orthogonal to F V such that x + y is not orthogonal to 
any root of Rand that if a e FsR, rra = a e FR then (a, x + y) and (a, x) have 
the same sign (the last condition is fulfilled if y is sufficiently close to 0). Then 

R+ = {a E Fs R I (a, X + y) > O} 

is a system of positive roots R+ in R with the property of (ii). □ 

15.5.2. Let R+ be as in 15.5.1 (ii). Denote by D the basis defined by R+ and by V 
or Va the corresponding Dynkin diagram (9.5.1). The Galois group r = Gal(Fs/ F) 
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acts linearly in V via a finite quotient A and it follows from 13.2.2 (i) that F V is the 
subspace of V whose elements are fixed by all s E A. Also, r acts as an automor
phism group on Fs R and on the Weyl group W. We may assume that our bilinear form 
( , ) is A-invariant (by an argument like that used in 7.1.7 to obtain a W-invariant 
form), hence it is r -invariant. If y E r then y. R+ is also a system of positive roots 
of F8 R, and there is a unique Wy E W with wy(y.R+) = R+ (see 8.2.8). Then 
Wy(y.D) = D. For y Er, ct ED put 

-r(y)(ct) = wy(y.ct). 

It is immediate that -r defines a continuous homomorphism of r to the permutation 
group of D and the automorphism group Aut(V) of the Dynkin diagram V. 

We have the map rr : FsR ➔ FR U {0}. Put Ro = {ct E R I rrct = 0}. It is a 
subsystem of R with basis Do = D n R0 . Let W0 be its Weyl group and denote by V 0 

be the full subgraph of V with vertex set D0. 

15.5.3. Proposition. (i) -r(r) stabilizes Do and D - D0; 

(ii) V 0 is the Dynkin diagram Vz<s> (relative to the system of positive roots 
R(Z(S), T) n R+); 
(iii) We have rr(D - Do) = FD, If ct, /3 E D - Do then rrct = rr/3 if and only if ct 
and /3 lie in the same -r (r )-orbit. 

Let ct = L«SeD nc5S E F8 R. Then rrct = L nc5(rrS). It follows that rrct = 0 if 
and only if ct E R0. If ct f/ Ro we have rrct E FR and as a consequence of 15.5.1 (ii) 
a positive root of FR is a positive integral linear combination of roots in rr(D - D0), 

which implies the first point of (iii). 
Now let y E r. Then rr(y.ct) = rrct. We conclude from the preceding observa

tions and 15.5.1 (i) that y.R0 = Ro and y(R+ - Ro) = R+ - R0 . There is wy E Wo 
with wy(y.D0) = D0. Since W0 stabilizes R+ - Ro we have that wy(y.R+) = R+. 

It follows that wy is the element of 15.5.2. We also see that -r(f) stabilizes Do and 
D - D0. proving (i). 

The root system FsR(Z(S), T) consists of the roots of FsR whose restriction to S 
is trivial, i.e. of the ct E R with rrct = 0. We have seen that these are the roots of R0, 

whence (ii). 
With the previous notations, the orthogonal projection rr : V ➔ F V is given by 

rr = IAl-1 L s. 
seA 

Since the elements wy lie in W0, we see that if ct and /3 are as in (iii) we have 

1:-r(y)(ct) = I:-r(y)(/3). 

the summation being over a set of representatives in r of the elements of A. This 
observation implies the last part of (iii). D 
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15.5.4. Corollary. Jfy Er, a ED - Do then y.a = -r(y).a + LseDo ns8, where 
the n8 are positive integers. 

This follows from the proof of (i). □ 

15.5.5. FR+ being fixed, we had chosen R+ with the property of 15.5.1 (ii). Let 
R+ be another system of positive roots on R with that property. There is w e W 
with R_+ = w. R+. Then w. R+ - Ro = R+ - Ro, which implies that if a E R+ and 
w-1.a E -R+ we have a e R0. From 8.3.2 (i) we conclude that w E W0 . Let D and 
Do be the basis defined by R_+ and the corresponding basis of R0 . It follows from the 
preceding remarks and 15.5.4 that there is a unique bijection of D onto D, mapping 
Do onto Do and commuting with the respective r -actions. 

Another system of positive roots FR+ in FR is of the form w. FR+, with w E F W. 
From 15.3.5 (ii) and 15.3.7 (ii) we conclude that there is w1 E W that stabilizes F V 
and whose restriction to F V is w. It follows that w1 .R+ is a system of positive roots 
having the property of 15.5.1 (ii) relative to w,FR+. We again have a bijection of D 
onto the basis defined by w1.R+, with similar properties. The triple (D, Do, -r) is the 
index of G, relative to F, S, T. In fact, the index does not depend on S and T. 

Let T' be another maximal F-torus containing S, with root system R'. By 13.3.1 
(i) and 11.2.7, T' is conjugate to T by an element of Z(S)(Fs), We obtain an iso
morphism <I>: R ➔ R'. Then (R')+ = </>R+ is a system of positive roots in R', with 
basis D' = </>D. Put Db = </>Do, -r' = <fJ o -r o <1>-1. Then the index of G relative to 
F, S, T' is isomorphic to (D', Db, -r') (we skip the straightforward check). One sees 
similarly, as a consequence of 15.2.6, that the index is independent of the choice of 
the maximal F-split torus S. So the index depends only on F, up to isomorphism. 

In chapter 17 we shall describe the possible indices of reductive F -groups. The 
following lemmas will be useful. 

15.5.6. Lemma. If Fs R is irreducible then so is FR. 

For the notion of irreducibility see 8.1.12 (4). Let R+ be a system of positive roots 
in FsR, as in 15.5.1 (ii), with basis D. So :rr R+ = FR+ is a system of positive roots 
in FR, with basis :rr D = FD, 

Assume that Fs R is irreducible. Then R+ contains a unique highest root a, charac
terized by the property that (<i, 8v) ~ 0 for all 8 E D (see [Bou2, p. 1651). If a e R+ 
is another positive root, there is 8 e D with (a, 8) < 0. It follows that s8 .a = a+ m8, 
where m > 0. We conclude that for any a E R+ there is a chain of positive roots 
a = a 1, ... , as, as+i = a, such that a;+1 - a; is a positive multiple of a simple root 
(1 < i < s). Define a e FR by a = :rra. It follows from 15.5.1 that if a E FR+ 
there is a similar chain a = a 1, ... , as, as+ 1 = a. This can only be if FR is irreducible. 

D 
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15.5.6 has the following complement. 

15.5.7. Lemma. In the case of 15.5.6, the highest root of FR is a = 1ra, where 
a is the highest root of Fs R. 

Put a = LaeD n6S. Then if a = LaeD m6S is any other positive root, we have 
n6 ~ m6 for all S E D (see loc. cit.). This implies that the highest root a is charac
terized by the chain property of the proof of 15.5.6. Applying this to FR we obtain 
15.5.7. D 

If R+ is as in 15.5.1 (i) there is a unique element w0 E W with w0.R+ = -R+ 
(by 8.2.4 (ii)). Then w0D = -D, and t.a = -w0.a defines a permutation of D, the 
opposition involution. We have t2 = id. 

15.5.8. Lemma. t stabilizes the index (D, Do, 'l'). 

This means that t stabilizes Do and commutes with all -r(y) (y E f). The argu
ment of the second paragraph of 15.5.5 shows that there is w1 E W that stabilizes F V 
such that w1,FR+ = -FR+. By the first paragraph of 15.5.5, with R+ = -w11.R+ 
we conclude that there is w2 E W0 with w2.R+ = -w11 .R+, whence w0 = w1 w2. 

Since w1 commutes with 1r it stabilizes Ro and the same is obviously true for w2. 

Hence w0 stabilizes Ro and t stabilizes Ron D = D0 . Wy being as in 15.5.2 (y E f) 
it follows from its definition that the permutations w0 and wy y of R commute. Hence 
t commutes with all -r(y). The lemma is proved. □ 

15.5.9. Exercise. Describe the index of the groups in the examples of 15.3.10 ( 1 ), 
(2). 

Notes 

In the case of a reductive F-group G the results of this chapter are contained in the 
fundamental paper [BoTl] of Borel and Tits. For general groups most of the results 
also are due to them. See [BoT3], see also [Ti6, 1991-1992, 1992-1993]. 

An F-variety with the property (PF) of 15.2.1 could be viewed as being 'complete 
relative to F', in a weak sense. In [BoT3] a better notion of completeness is used, in 
which in the definition of PF the variety A1 - {O} is replaced by Spec F((T)) and 
A 1 by Spec F[[T]]. A proof of the corresponding version and a discussion of its 
consequences is contained in [Ti6, 1992-1993, p. 117-119]. One also finds in this 
reference, and in [Ti6, 1991-1992] a discussion of the problem of classification of 
non-reductive F-reductive groups, which we have not gone into. The classification of 
reductive F-groups will be discussed in Chapter 17. 



Chapter 16 

Reductive F -groups 

This chapter is a continuation of the preceding one. We now consider the case of 
reductive groups. Some basic results about parabolic subgroups are established. The 
chapter is mainly devoted to a discussion of versions over F of the isomorphism and 
existence theorems. G is a connected, reductive F -group. 

16.1. Parabolic subgroups 

Since G is reductive, the pseudo-parabolic subgroups of G are its parabolic F -subgroups 
(15.1.2 (ii)). Let P be such a group. Recall (see 8.4.4) that a Levi subgroup of Pis a 
closed subgroup L such that the product map L x Ru P ➔ P is bijective. 

16.1.1. Proposition. (i) The unipotent radical Ru P is defined over F and F-split; 
(ii) There exist Levi subgroups of P defined over F. Two such subgroups are conju
gate by a unique element of Ru P(F); 
( iii) P contains a maximal F -split F -subtorus of G. 

In the proof of 15.1.2 (ii) it was shown that there is a cocharacter µ of G defined 
over F, such that P = P(µ,). By 13.4.2 (i) the group Z(µ,) is a connected F-group 
which is reductive by 7.6.4 (i). Also, U(µ) is a connected, unipotent F-group, which 
is F-split by 15.1.5. Since it is normal in Pit must coincide with RuP, which thus 
has the properties asserted in (i). 

It follows from 13.4.2 (i) that Z(µ,) is a Levi subgroup of P which is defined over 
F, proving the first part of (ii). 

Let L be any Levi subgroup of P defined over F. Then L contains maximal tori of 
G and by 13.3.6 (i) (respectively, 13.3.7) it contains a maximal F-torus T. By 8.4.4, 
L is uniquely determined by T. The argument used in the proof of 15.1.2 then gives 
that there is a cocharacter v of G defined over F such that L = Z(v). By 13.1.1 (ii) 
the torus T is split over Fs. The identity component CL of the center of L is a subtorus 
of T, which is also defined over Fs (since all cocharacters of T are defined over Fs, 
see 13.2.2 (i)). Also, CL(Fs) is stable under the Galois group r. It follows from 
11.2.8 (i) that CL is defined over F. Since L = Z(v) we have a fortiori L = ZG(CL). 
Using 8.4.4 and the conjugacy of maximal tori of P we see that there is x E Ru P 
with L = xZ(µ)x- 1 (whereµ, is as before). If u E RuP = U(µ) normalizes Z(µ,) 
it centralizes Z(µ,), as a consequence of 13.4.2 (i). It follows that the element x is 
unique. So it is the only element of the transporter N(Czcµ,), CL). By 13.3.1 (i) it 
must lie in G(F). This proves the second part of (ii). 

P contains a minimal parabolic F -subgroup. The description of these groups 
given in 15.4.7 shows that (iii) holds. D 
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16.1.2. Lemma. Let Q be another parabolic F-subgroup of G. The intersection 
P n Q is an F -subgroup containing a maximal F -split F-subtorus of G. 

To prove that PnQ is defined over Fit suffices by 12.1.5 to show that L(PnQ) = 
L(P) nL(Q). Since obviously L(P) nL(Q) c L(P)n L(Q), it also suffices to show 
that 

dim L(P n Q) = dim(L(P) n L(Q)). (72) 

It follows from 8.3.10 that P n Q contains a maximal torus T of G. Now (72) follows 
from 8.1.12 (1). So P n Q is defined over F. 

By 8.4.6 (2), R = (P n Q)RuP is a parabolic subgroup, with normal subgroup 
RuP. Because P n Q and RuP are defined over F, the same holds for R. By 16.1.1 
(iii), R contains a maximal F-split F-subtorus of G. Then the same must be true for 
P n Q, as one sees by passing to the quotient R / Ru P. □ 

Let P be a minimal parabolic F -subgroup of G. Fix a maximal F-split F -subtorus 
S of G contained in P, and let FW = N6 (S)/Za(S) be the relative Weyl group 
(15.3.1). By 15.3.5 (i) and 15.3.7 (ii) the elements of FW can be represented by el
ements of N6 (S)(F). For w E F W let w E Na(S)(F) be a representative. Put 
C(w) = P(F)wP(F). 

16.1.3. Theorem. [Bruhat's lemma for G(F)) G(F)] is the disjoint union of the 
sets C(w), w E Fw. 

Let g E G(F). By 16.1.2 the intersection P n g Pg-1 contains a maximal F-split 
F-subtorus, which by 15.2.6 can be written as x-1sx with x E P(F). This means 
that (xg)- 1S(xg) c P. Another application of 15.2.6 gives y E P(F) such that xgy 
normalizes S. It follows that there is w E F W with g E C(w). 

It remains to prove the uniqueness of w. Let T be a maximal F-torus of P con
taining S, let L = Za(S) (a Levi group of P) and denote by W and WL the Weyl 
groups of (G, T), respectively (L, T). By 15.3.7 (ii) we can represent the elements 
of F W by elements of Na(T). It follows that F W can be viewed as a subgroup of W 
which normalizes WL. Nowifw,z E FWandC(w) = C(z) we have PwP = PzP. 
Itfollowsfrom8.4.6(3)thatz E WLwWL = wWL. Hencez-1w E WL n FW. Since 
Sis central in L we must have z = w, finishing the proof of 16.1.3. D 

Remark. There is a more precise result: (P(F), Na(S)(F)) is a Tits system in G(F), 
see [BoTl, p. 101] (for Tits systems see [Bou2, Ch.IV, §2]). 

16.1.4. Exercise. The notations are as in 16.1.1. Let T be a maximal F -torus of 
P. Show that the unique Levi subgroup of P containing T (see 8.4.4) is defined 
over F. 
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16.2. Indexed root data 

16.2.1. Let \II= (X, R, xv, Rv) be a root datum (7.4.1). Let D be a basis of R, with 
a corresponding system of positive roots R+. Then (R+)v is a system of positive roots 
in Rv let Dv be the corresponding basis. We call the quadruple \110 = (X, D, xv, Dv) 
a based root datum. 

An indexed root datum over F is a sextuple 

where (X, D, xv, Dv) is a based root datum, Do is a subset of D, and -r is a continu
ous action of the Galois group r = Gal(Fs/ F) on the group X, stabilizing the sets D 
and Do. 

Let again S and T be a maximal F -split F -torus in G and a maximal F -torus con
taining S. We have the root datum \ll(G, T) = (X, R, xv, Rv) of 7.4.3. (By 15.3.4 
(ii) it coincides with the root datum Fs \II of 15.3.8). Fix a basis D of R. Let (D, Do, -r) 
be the index of G, defined in 15.5.5. Then;'¥= ;'V(G) = (X, D, xv, Dv, Do, -r) is 
the indexed root datum of Gover F. The observations of 15.5.5 show that is indepen
dent of the choice of S and T, up to isomorphism. 

We say that our reductive F -group G is split or F -split if S = T, i.e. if G contains 
a maximal F -torus which is F -split. In that case Do = 0 and -r is trivial. G is quasi
split over F if Do = 0 and anisotropic if Do = D. Clearly, if G is split it is quasi-split. 

16.2.2. Proposition. (i) G is quasi-split over F if and only if there exists a Borel 
subgroup of G that is defined over F; 
(ii) G is anisotropic if and only if none of its proper parabolic subgroups is defined 
over F. 

G is quasi-split if and only if the restriction map X*(T) ➔ X*(S) is injective. 
Using 5.4.7 we conclude that G is quasi-split if and only if Z(S) = T. If this is so, 
choose a cocharacter ). of S with Z().) = Z(T) = S (notation of 13.4.1). It fol
lows from 13.4.2 (i) that P().) is a solvable F-group, which is parabolic by 15.1.2 (ii). 
From 6.2.7 (i) we conclude that P().) is a Borel subgroup defined over F. Conversely, 
by 15.1.2 (ii) a subgroup of G with these properties is of the form P().), for some F
cocharacter). of G. The torus Im ). is F -split. An application of 15.2.6 shows that we 
may assume Im ). c S, i.e. that). is a cocharacter of S. Since P().) is solvable, the 
connected, reductive group Z().) must be a torus T. It follows that Z(S) = T. Hence 
G is quasi-split. This proves (i). (ii) is a consequence of 15.1.2. D 

16.2.3. Central isogenies. The notations are as in 16.2.1. Let G 1 be another con
nected, reductive F-group and let</> : G ➔ G1 be a central F-isogeny (9.6.3). We 
put S 1 = </> S, this is a maximal F -split F -sub torus of G 1. Then T1 = </> T is a maximal 
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F-torus of G1 containing S1, Let (X1, R1, xr, Rn be the root datum of (G1, T1), The 
isogeny ¢ defines an isomorphism f of X 1 onto a subgroup of finite index of X. Its 
transpose JV is an isomorphism of xv onto a subgroup of finite index of xr. More
over (see 9.6.3) there is a bijection b : R ➔ R1 such that f (ba) = a (a E R). To 
simplify notations we view XI as a subgroup of X and f as the inclusion map. Then 
R1 =Rand b =id.The indexed root datum of G1 is (X1, D, xr, Dv, Do, r). 
The Galois group r = Gal(Fs/ F) acts on X, and X1 is a r-stable subgroup of X 
containing R. 

16.2.4. Lemma. Let X 1 be a subgroup of finite index of X that is r -stable and 
contains R. There exists a central isogeny cp : G ➔ G1, giving rise to the subgroup 
X 1 in the manner described in 16.2.3. 

There exists an F -torus T1 with character group X 1, together with an F-isogeny 
v, : T ➔ T1, such that¢ induces the inclusion map X1 ➔ X (see 13.1.5 (1)). By 
an easy induction one is reduced to proving the lemma in the case that X /X I is an 
elementary abelian I-group, for some prime l. When l is not the characteristic p of 
F, then Ker v, is a finite subgroup A of T(Fs) isomorphic to X/ X1. Moreover A 
is r-stable, hence defined over F (11.2.8 (i)), and central in G. Then G1 = G/A, 
together with the canonical homomorphism G ➔ G1, is as required. 

Now let l = p. Then a = Ker dv, is a p-subalgebra of the Lie algebra L(T). 
Moreover, a is defined over F and is centralized by all elements of Ad(G). We have 
a quotient G1 = G/a (see 12.2.4). Then G1 and the homomorphism¢ : G ➔ G1 of 
12.2.4 are as required. □ 

16.2.5. As an application of the lemma, we show how to describe the based root 
datum of G in terms of the based root data of a semi-simple group and a torus. 

The commutator subgroup G 1 = ( G, G) is a connected, semi-simple F-subgroup. 
Its root datum is described in 8.1.9. We use the notations introduced there. The 
maximal torus T1 of G1 introduced in 8.1.8 (iii) is defined over F. Its maximal F
split subtorus S1 (see 13.2.4 (i)) lies in S, and must be a maximal F-split subtorus of 
G1 (as one sees by passing to the semi-simple F-group G/ R(G)). The indexed root 
datum of G1, relative to T1, S1 and the Borel subgroup B1 defined by D is 

;'¥1 = (X/(Qv)1., D, (iv, Dv, Do, r). 

The centralizer K = Za 1 (S) is generated by T1 and the subgroups Ua (see 8.1.1), 
where a runs through the root system Rv0 with basis D0 . We call K the kernel of 
G. It is an anisotropic F-group. Let C = R(G) be the ~onnected center of G, an 
F-subtorus of G. By 8.1.8 (ii) its character group is X/Q, so is determined by the 
indexed root datum. (But its structure as a r-module is not determined by ; w.) The 
triple (;\II, K, C) will be used to classify reductive F -groups. 

The product map G 1 x C ➔ G is a central isogeny. In 8.1 we have described 
the root datum of the first group, let X' be the corresponding character group. 8.1.10 
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describes the character group X as a subgroup of X'. It follows from 16.2.4 that the 
F -group G is determined by the F-groups G 1 and C. 

This discussion shows that the problem of describing all based root data of con
nected reductive F-groups G reduces to two particular cases: G is semi-simple and 
G is a torus. The second case was taken care of in 13.1. In the sequel we shall con
centrate on the first case. 

16.2.6. Restriction of the ground field. Let E be a finite extension of F contained 
in Fs. Let G 1 be a connected, reductive E-group. We then have for G 1 the objects 
of 16.2.1 (maximal E-split torus, indexed root datum ... ). They will be denoted as 
in 16.2.1, with a suffix 1. Let G = nE;FG1 be the F-group obtained from G1 by 
restriction of the ground field (12.4.2). Put I).. = Gal(Fs/ E) and let :E be the set of 
F-isomorphisms of E into Fs. We identify it with r / !)... As we saw in 12.4.5, G is 
isomorphic to Gf from which it follows that G is a connected, reductive F-group. 

nE;FS1 is an F-subtorus of G. Denote by Sits maximal F-split subtorus (13.2.4 
(i)). Write T = TIE;FT1. Then Tis a maximal torus of G containing S. 

16.2.7. Lemma. Sis a maximal F-split F-subtorus of G. We have dim S = dim S1. 

Clearly, S is an F -split F-subtorus. The equality dim S = dim S1 is equivalent to 
the assertion that the maximal split F-subtorus of nEf F(Gmt has dimension n. It fol
lows by using 11.4.7 (3) that it suffices to prove this in the case n = 1, in which case 
the asserted equality is a consequence of 13.1.5 (4) and 13.2.2 (i). Similarly, one sees 
that, 1r being as in 12.4.2, we have 1r S = S1. Now let S' be an F-split F-subtorus of 
G containing S. Then 1rS' is an E-split E-subtorus of G1 containing S1, hence equal 
to it. If S' =I= S then Ker 1r would contain a non-trivial subtorus of S', which would 
be defined over F (by 13.2.2 (i)), contradicting 12.4.3. Hence Sis maximal F-split. D 

The indexed root datum ; 'II of G is described as follows. We use the notations of 
11.4.22. 

16.2.8. Lemma. ( i) We have X = X f and similarly for xv, D, xv, D v, Do; 
(ii) r is the permutation representation of r on Dr, induced by the permutation rep
resentation r1 of I).. on D. 

This follows from 11.4.22. □ 

16.2.9. Exercises. ( 1) The notations are as in 16.2.1 and G is semi-simple. As
sume that the root system of G is a direct sum of isomorphic irreducible ones, which 
are permuted transitively by Im r. Then there is a finite separable extension E / F 
and a connected, semi-simple E-group G1 with irreducible root system such that 

G = nE;FG1. 



274 Chapter 16. Reductive F -groups 

(2) Assume that F is finite. Then G is quasi-split. (Hint: use Lang's theorem 4.4.17). 
(3) G is split over Fs. 
(4) Notations as in 16.2.5. Assume that T1 is F-split, i.e. that S1 = T1. We have an 
injective homomorphism of r-modules X ➔ X'. Show that the induced r-action on 
the finite group X' / X is trivial. 

16.3. F -split groups 

16.3.1. The notations are as in 16.2.1. Assume that G is F-split. In that case the 
groups Uca) of 15.4 are the groups Ua (a E R) of 8.1.1. By 15.4.2 (i) these groups 
are defined over F. It follows that we may choose a realization (ua)aeR of R in G 
(see 8.1) such that all Ua are defined over F. Fix a system of positive roots R+ in 
R, with basis D, and let B be the Borel subgroup of G generated by T and the U a 

with a e R+ (8.2.4 (i)). Then B is defined over F. Any Borel subgroup contain
ing T can be obtained in this manner (by 8.1.3 (i)). The indexed root datum ;\II of 
G is of the form (X, D, xv, vv, 0, id), so is determined by the based root datum 
\II = (X, D, xv, Dv). It is determined by Band T. We shall also denote this based 
root datum by \ll(G, B, T, F). 

Let G 1 be another F -split group, with data T1, B 1... as before, determining a 
based root datum \111. Assume that</> : G ➔ G1 is an F-isomorphism that maps B 
onto B1 and Tonto T1. As in the situation of 9.6.1 one sees that</> defines an isomor
phism f = f (</>) of \111 onto \II (the notion of isomorphism of based root data is clear). 

The following theorem is a version over F of the isomorphism theorem 9.6.2. 

16.3.2. Theorem. Let f be an isomorphism of \111 onto \II. There exists an F
isomorphism </>: G ➔ G1 with <f,T = T1, <f,B = B1 and f = f(<f,). If</>' is another 
F-isomorphism with these properties, there is t e T with a(t) e F for a E D, such 
that</>' (g) = </> (tgt-1) (g e G). 

Choose realizations (ua)aeR of R in G and (ua)a 1eR1 of the root system R1 of 
( G 1, T1) such that all ua and Ua1 are defined over F. Proceeding as in the proof of 
9.6.2 we see that there exists an isomorphism </> : G ➔ G1 such that </> o Ua = 
u 1-,a (a E R). It will be shown that</> is defined over F. 

The elements na (a e D) of 8.1.4 (i) lie in G(F), since Ua and u_a are defined 
over F. It follows that the elements of the Weyl group W of ( G, T) can be represented 
by elements of N(T) n G(F). Let w e W have reduced decomposition (sa,, ... , sah). 
Put w = na1 ... nah. This element of G(F) is uniquely determined by w (9.3.3). More
over, <f,(w) e G1(F). The open set C(w0 ) of 8.3.11 is defined over F and so are its 
translates w.C(w0) (w e W). By 8.5.10 (1) they cover G. The restriction of</> to 
C(w0) is defined over F, and also its restriction to the sets w.C(w0). It follows that</> 
is defined over F, proving the first part of the theorem. 
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To prove the last part, observe that by 9.6.2 there exists t E T with </J'(g) = 
</>(tgt-1) (g E C). The automorphism Int(t) of C is defined over F. By consid
ering its action on the F-groups Ua one sees that a(t) E F for a E R or (which 
amounts to the same) for a E D. Conversely, if this the case then the restriction of 
Int(t) to the open F -subvarieties w. C ( w0) is defined over F. As we saw above these 
cover C, and it follows that Int(t) is defined over F, finishing the proof of 16.3.2. D 

The next theorem is a version over F of the existence theorem 10.1.1. 
16.3.3. Theorem. Let \JI = (X, D, xv, Dv) be a based root datum. There exists 
a connected, reductive F-group G, which is F-split, containing a Borel subgroup 
B is defined over F and a maximal F-torus T C B, which is F-split, such that 
\JI = \Jl(C, B, T, F). 

The proof of 10.1.1 carries over. First, there is the following refinement of 10.1.3. 
Let X 1 be a subgroup of X of finite index containing D. There is an F -torus T1 with 
character group X 1, We then have a based root datum \111 = (X 1, D1, xr, vn, where 
D1 =D. 

16.3.4. Proposition. Assume that there exist ( G 1, B 1, Ti) with \JI 1 = \II ( C 1, B 1, T1, F). 
Then there exists a similar triple ( C, B, T) with \JI = \JI ( C, B, T, F). 

In the proof of 10.1.3 we constructed a k-group C. The construction can be car
ried out over F. In particular, the vector spaces Vi and V2 introduced at the end of the 
proof of 10.1.3, can be taken such that they are defined over F and that the restriction 
of C to V = Vi + V2 is an F -subgroup of CL ( V). We leave the details to the reader. D 

Using 16.3.4 one reduces the proof of 16.3.3 to the case that D spans X (as in 
10.3.7). In the case that the root system R with basis Dis simply laced, the existence 
is proved as in 10.2. In fact, the Lie algebra g introduced in 10.2.5 is obviously de
fined over the prime field contained in F, and the same is true for the subgroups U a 

of 10.2. 7. It follows that the group C of 10.2.8 is defined over F, settling the case 
that R is simply laced. If R is not simply laced, we proceed as in 10.3. The groups 
Ta and Ua0 introduced in the proof of 10.3.5 can be taken to be defined over F. It 
follows that the group generated by them, which is the group whose existence we have 
to prove, is also defined over F. □ 

16.3.S. Let C, B, T be as in 16.3.1. So C is F-split. Let Q c X be the subgroup of 
X spanned by D. The dual Qv is xv /Q1., where Q1. is the annihilator of Q. It fol
lows from 8.1.8 (iii) that we may identify vv with its image in Qv. By 16.3.3 there is 
a connected, semi-simple F-split group cad with based root datum (Q, D, Qv, Dv). 
The group cad is the adjoint group of C. Let C be the identity component of the 
center of C. The F -group C / C is semi-simple. Its character group is the rational 
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closure of Q in X. We have an F-isogeny G / C ➔ Gad and an F-homomorphism 
rr : G ➔ G/C ➔ Gad_ 

Put T = rrT, this is a maximal F-torus in Gad_ Fix a realization (ua)aeR of R 
in G, such that all Ua are defined over F. Put Ua = rr o Ua. Then (ua) is a similar 
realization of R in Gad and the restriction of rr to U a = Im Ua defines an isomorphism 
of Ua onto its image Va, 

Put T(F)tt = {t E T(F') I a(t) E F for a E D}. 

16.3.6. Lemma. (i) T(F)tt normalizes G(F); 
(ii) T(F) = rrT(F)tt; 
(iii) Gad(F) is generated by rrG(F) and T(F). 

It follows from 16.1.3 that G(F) is generated by the groups T(F) and Ua(F) (a E 

R). Since these groups are normalized by T(F)tt, we have (i). To prove (ii) observe 
that rr defines a surjective homomorphism T ➔ T and that Q is the character group 
of T. Then (iii) follows from 16.1.3, applied to Gad_ o 

Let (Int G)(F) be the group of inner automorphisms of G defined over F. 

16.3.7. Lemma. There is an isomorphism VI = V1(F) : (Int G)(F) ➔ Gad(F) 
that is functorial in F. 

Fix a Borel group B of G defined over F and contains T. Let a E (Int G)(F). 
By 15.2.5 there exists g E G(F) such that aB = gBg-1 and by 14.4.3 we may 
assume that, moreover, aT = gTg-1• By 6.4.9 and 6.3.6 (ii) there is t E T such 
that a is the inner automorphism Int(g.t). Since a is defined over F and g E G(F), 
the inner automorphism Int(t) is defined over F. By considering its action on the 
groups Ua one sees that t E T(F)tt. Moreover, the pair (g, t) is determined by a 
up to a change (g, t) H> (gt11, t1t), where t1 E T(F). Using 16.3.6 (ii) we see 
that V1a = rr(gt) is well-defined and lies in Gad(F). If a' = Int(g' .t') is a similar 
decomposition of another inner F-automorphism, we have for the product aa' the 
decomposition aa' = Int(g(tg't-1).tt'). Notice that tg't-1 E G(F) by 16.3.6 (i). It 
follows that VI is a homomorphism (Int G)(F) ➔ Gad(F). 

If V1a = e we must have g E T, by the arguments of the beginning of the proof, 
applied to Gad_ We may then take g = e, and we have a(t) = 1 (a E R). This im
plies that t lies in the center of G (by 8.1.12 (3)), so that a = id. Hence VI is injective. 
That it is surjective follows from 16.3.6 (iii). The functoriality in F follows from the 
definitions. D 

Let V be the Dynkin diagram defined by D (see 9.5.1) and denote by A the finite 
group of its automorphisms. An automorphism of G stabilizing B and T and fixing 
the elements of the connected center C induces an automorphism of V. Let Ao be the 
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subgroup of A of automorphisms of V obtained in this manner (we may have Ao =I- A, 
see 16.3.9 (2)). If G is adjoint then A = Ao, as in that case D is a basis of X = Q. 

16.3.8. Lemma. Assume that G is semi-simple. 
(i) Let a E Ao. There exists a unique F-automorphism a of G such that for a e D 
we have a(ua(x)) = Uu.a(X) (x E k); 
(ii) For a, -r E Ao we have (arr= ai; 
(iii) If a is an automorphism of G defined over F and.fixing the elements of C, there 
exist unique a' e (Int G)(F) and a e Ao such that a= a' o a. 

It follows from 16.3.2 that if a e Ao there are Ca e F* such that there is an 
F-automorphism of G sending Ua(x) to Uu.a(CaX) (a E D, x Ek). Conjugating by 
a suitable element of T(F)tt we obtain a, for which all Ca equal 1. Then a o u_a is 
uniquely determined (by 8.1.4 (iii)). The uniqueness of a follows from 8.1.5 (i). This 
proves (i) and (ii) is a direct consequence of (i). 

Let B be as in the proof of 16.3.7 and let D be the basis of R determined by B 
according to 7.4.6. Proceeding as in the proof of 16.3.7, we see that there is g e G(G) 
such that a' = Int(g) o a fixes both Band T. Then there exist t e T(F)U and a e A 
with a' = Int(t) o a. Moreover, a is unique. These facts imply (iii). □ 

The preceding lemma, applied to Gad, shows that A acts on Gad as a group of F -
automorphisms. Assume G to be semi-simple and let Aut G be the semi-direct prod
uct of Gad and Ao, i.e. Gad x A0 , with multiplication (x, a)(y, -r) = (x(a .y), a-r). 
It is clear that Aut G is an F -group, with identity component aad. We also write 
Inn G = Gad_ It follows from 16.3.8 (iii) that (Aut G)(F) is the group of F
automorphisms of G. We call Aut G (Inn G) the algebraic group of automorphisms 
(respectively, inner automorphisms) of G. For general reductive groups an algebraic 
group of automorphisms does not exist, see 16.3.9 (4). 

16.3.9. Exercises. 
(1) The notations are as in 16.3.5. Assume G to be semi-simple. Then X/ Q is finite, 
and is isomorphic to a product of cyclic groups TTf=1 Z/n;Z. 

(a) rrG(F) is a normal subgroup of aad(F). 
(b) The quotient Gad(F)/rrG(F) is isomorphic to n:=I F* /(F*t;. 
(c) Consider the case G = PSL2. 
( d) rr G ( Fs) = Gad ( Fs) if and only if the characteristic p does not divide the order 

of X/Q. 
(2) The notations are as in 16.3.8. 

(a) Let G be semi-simple and simply connected. Show that Ao= A. 
(b) Assume that G is semi-simple of type D2n (n 2: 2). Show that X can be cho

sen such that Ao =I- A. 
(3) Let T be a torus over k of dimension > 1. Show that the group of automorphisms 
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of the algebraic group T cannot have a structure of algebraic group. 
(4) The notations are as in 16.2.1. Assum~ that G is semi-simple and F-split. Let / 
be a subset of D, let P1 ::) B be the parabolic subgroup defined by / (8.4.3) and let L 1 

be its Levi subgroup containing T. These are F -subgroups of G. Denote by Aut, G 
(Inn1G) the subgroup of Aut G formed by the automorphisms (respectively: inner 
automorphisms) of G that stabilize P1 and L 1. 

(a) Inn1G is the image in Inn G of L1 and Aut1G is the semi-direct product of 
Inn G and the stabilizer of/ in the group Ao of 16.3.8. 

(b) Aut, G and Inn, G are closed F -subgroups of Aut G. 

16.4. The isomorphism theorem 

16.4.1. Notations are as in 16.2.5. We have the indexed root datum ; \JI of G, relative 
to S and T, and two F-groups, viz. the kernel K = Za1 (S) and the connected center 
C. We have T = T1.C. Let X (X1, Y) be the character group of T (respectively, 
T1 , C). These are r -modules, and X is a r -stable subgroup of finite index of the r -
module X 1 EBY. The indexed root datum of K is; \JI' = (X 1, Do, xr, Do, Dt, -r). By 
8.1.8 (iii) we have X 1 = X/(Qv)j_. A triple(; \JI, K, C) consisting of an indexed root 
datum ;\JI= (X, D, xv, Dv, Do, -r), a connected reductive F-group K with indexed 
datum ;\JI' = (X1, Do, xr, D~, Do, -r) and an F-torus C with character group Y is 
admissible if: 
(a) Xis a subgroup of finite index of X1 EBY, such that the projections on the two 
summands induce isomorphisms X + Y / Y ~ X 1 , X + X 1 / X 1 ~ Y. 
(b) X is a r -stable subgroup of X 1 EB Y. 
A triple (;\JI, K, C) coming from an F-group G is admissible. That condition (b) is 
fulfilled is clear and condition (a) is a consequence of 8.1.10. 

Let G and G1 be two connected reductive F-groups, determining admissible 
triples (;\JI, K, C), (;\Jl1, K1, C1) (relative to data S, T, B and S1, T1, B1). An F
isomorphism </> : G ---+ G1 with </>S = S1, </>T = Ti, </>B = B1 defines an isomor
phism/(</>): (;\111, K1, C1)---+ (;\II, K, C). The notion of isomorphism of admissible 
triples is the obvious one. 

The following theorem generalizes 9 .6.2. 

16.4.2. Theorem. (Isomorphism theorem) Let f : (;\111, K 1, Ci) ---+ (;\II, K, C) 
be an isomorphism. There is an isomorphism </> : G ---+ G 1 with </> S = S 1, </> T = 
T1, <f,B = B1 such that f = f (<f,). 

Consider the central isogeny ( G, G) x C ---+ G. By 8.1.8 and 8.1.10 we can 
describe the based root datum of G in terms of the based root data of ( G, G) and C, 
and similarly for G 1. An application of 16.2.4 shows that it suffices to consider the 
case that G is either a semi-simple group or a torus. The second case being easy, 
we may assume that G and G1 are semi-simple. An application of 16.3.2 shows that 
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there is an Fs-isomorphism </> : G ➔ G1 with <f>S = S1, </>T = T1, </>B = B1. 

We can assume that the restriction of </> to K defines an F -isomorphism K ➔ K', 
similarly for the restriction of</> to T. We shall show that there exists t E T such that 
g 1-+ <f>(tgt-1) is defined over F. 

Let (ua )aeR and ( Va 1 )a1 eR1 be realizations of R in G, respectively, of R 1 in G 1. 

Denote the corresponding subgroups of G and G1 by Ua, respectively Va1 • Since G 
and G 1 are split over Fs (16.2.9 (3)) these groups are defined over F.v (see 16.3.1). We 
have </>(U f(ai)) = Va, (a1 E R1). With the notations of 15.5.2, let wy E W0 be the 
element with wy(y.D0) = D0. That wy E W0 was established in the proof of 15.5.3. 
It was also established that for a E D - Do we have 

y.a = w;1.('r(y)(a)). 

The same holds for a E Do and hence, since D is a basis of R, for all a E R. A similar 
result holds in R1. Under the isomorphism of the Weyl groups W0 of (K, T) and 
(W0) 1 of (K1, T1) defined by f, the element wy E W0 corresponds to its counterpart 
in (Wo)1, for ally E r. 

For y E r put c(y) = <1>- 1 o y o </> o y- 1 (compare with the proof of 11.3.3). 
This is an Fs -isomorphism G ➔ G 1 . It fixes the elements of T and stabilizes all 
Ua (a E R). It follows from 16.3.2 and 16.3.7 that there is ty E T(Fs) (the maximal 
torus of Gad = Int G of 16.3.5) such that c(y) is the inner automorphism Int(ty) 
defined by ty, 

T is defined over F. Its character group is the root lattice Q and the r -action 
on Q is the one defined by the F -structure of T. Since </> induces an F-isomorphism 
K ➔ K1, its action on the Ua with a E Ro commutes with the r-action (11.2.9). This 
implies (by 8.1.1) that a(ty) = 1 for a E Do, i.e that the ty lie in the intersection of the 
kernels of the a E D0. This is a torus T' whose character group is isomorphic to the 
sublattice Q' of Q with basis (a)aeD-Do and the c(y) define a cocycle c E Z 1 (F, T') 
(see the proof of 11.3.3). Using 15.5.4 we conclude that the action of y E r on Q' 
is via r(y). This shows that T' is direct a product of F-tori indexed by the orbits of 
r(f) on D - D0 : for each such orbit the character group of the corresponding torus 
has as a basis the roots of that orbit. It follows from 13.1.5 ( 4) that T' is a product 
of tori of the form nE;FGm, where E/ Fis a finite separable extension. We conclude 
from 12.4.7 (1) and 12.3.5 (I) that H 1(F, T') = 1. Hence there is t E T'(Fs) with 
ty = t-1(y.t). Then</> o Int(t-1) is an isomorphism G ➔ G1 defined over F. □ 

16.4.3. We now shall relate the indexed root datum of a semi-simple group and the 
twisting procedure of 11.3.3. 

Let H be a connected, semi-simple F -group with maximal F -torus T. Let "1 = 
(X, R, xv, Rv) be the root datum of (H, T). By 16.3.3 there exists an F-split, con
nected, semi-simple F -group G with root datum "1. From 13.1.1 (ii) we see that H is 
Fs-split, hence is Fs-isomorphic to G by 16.3.2. With the terminology of 12.3.7, His 
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an Fs-form of G. By loc.cit. there is a bijection of the set of F-isomorphism classes 
of connected, reductive F -groups with root datum "1 onto the Galois cohomology set 
H 1(r, AutF.(G)) = H 1(F, Aut G). 

We recall the twisting procedure used to set up the bijection. The elements of 
H 1(F, Aut G) are represented bycocyclesz E Z 1(F, Aut G) = Z 1(r, (Aut G)(Fs)), 
There is an F-form Gz of G, such that G1.(Fs) = G(Fs), the r-action on G1.(Fs) being 
given by 

y * g = z(y)(y.g) (y E f, g E G(Fs)), (73) 

Any F-form H of G is F-isomorphic to such a Gz, Moreover, the class of z in 
H 1(F, Aut G) is uniquely determined by H. 

Let <f>(F, "1) be the set of isomorphism classes of connected, semi-simple F
groups with root datum "1. 

16.4.4. Lemma. There is a bijection <f>(F, "1) ➔ H 1 (F, Aut G). 

This follows from 11.3.3 and 16.3.8. □ 

16.4.5. We denote by (Aut G)z the form of Aut G obtained by twisting Aut G with 
the cocycle z E Z 1 (F, Aut G), the group acting on itself by inner automorphisms. So 
(Aut G)zCFs) = (Aut G)(Fs), with r-action given by 

y *a= z(y)(y.a)z(y)-1 (y E r, a E (Aut G)(Fs)), 

One defines similarly the F-group (Inn G)z of inner F-automorphisms of Gz, 

16.4.6. Lemma. The group of F-automorphisms (respectively, inner F-automor
phisms) of Gz is isomorphic to (Aut G)z(F) ((Inn G)z(F)). 

This follows from the definitions by a straightforward check. □ 

16.4.7. We assume, as we may, that H = Gz, as in 16.4.3. Let S be a maximal 
F -split torus in H and T ::) S a maximal F -torus containing S. Choose a set of pos
itive roots R+ in the root system R of (G, T) with the property of 15.5.1 (ii), let D 
be the basis determined by R+ and let B ::) T be the corresponding Borel group. We 
have an indexed root datum ;"1 = (X, D, xv, vv, Do, t') as in 16.2.1. From 15.4.7 
we see that we may assume that the standard parabolic subgroup P = Pv0 ::) B is a 
minimal parabolic F -subgroup of H. 

Let To be a maximal F-torus of G that is F -split and let Bo :) To, a Borel group 
of G defined over F. There is g E G(Fs) with Bo = gBg-1, T0 = gTg-1. Then 
Po = g Pv0g-1 is defined over F. After replacing z by the equivalent cocycle y i--+ 

g-1z(y)(y.g) we have the case that T = T0, Po= P. So these groups are subgroups 
both of H and G, but with different F -structures. 
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Let L be the Levi subgroup of P containing T. Then Lis defined over F (16.1.4), 
for both F -structures. The connected center CL of L is the identity component of the 
intersection of the kernels Ker a, a e D0 . We view it as an F -subgroup of G. 

We have the ingredient -r of; \II, a homomorphism r ➔ A. It follows from the def
inition of -r (15.5.5) that its image lies in the group Ao of 16.3.8. Since Im -r stabilizes 
Do (15.5.3 (i)), and since all elements of Ao are defined over F, we see from 16.3.8 
(i) that we can view -r as a homomorphism of r to the group of F -automorphisms 
of G, which we view as cocycles of r with values in the group AutFs G (AutFs L) of 
Fs-automorphisms of G. So we have a twisted F-group Gr, as in 11.3.3. Similarly, 
we have a twisted group Lr. We also have a group (lnnv0 G)r and a map z ~ z of 
Z 1(F, (lnnv0 G)r) to Z 1(F, (Inn L)r) (the notation is as in 16.3.9 (4)). 

16.4.8. Lemma. (i) Gr and Lr are quasi-split F-groups; 
(ii) There is a cocycle z e Z1 (F, (lnnv0 G)r) such that H = (Gr )z; 
(iii) The kernel of His F-isomorphic to (Lr h-

it is clear that B is a Borel subgroup of Gr defined over F. This implies that Gr 
is quasi-split by 16.2.2 (i), and similarly for Lr. This proves (i). 

The r-actions on D for Hand Gr are the same, which implies that His an in
ner F-form of Gr, i.e. that H = Gr with z e Z 1(F, Inn G)r) (use 16.3.8). So 
z(y) = Int(gy) (ye r). Since Sis an F-split subtorus of H, it follows from (61) 
that the gy centralize S(Fs). Because L = Z(S) we have gy e L. The proof of (iii) is 
straightforward. □ 

Now let G be an arbitrary connected, reductive F-group. The elements of 
H 1(F, Inn G) define by 11.3.3 isomorphism classes of F-forms of G. These forms 
are the inner forms of G (12.3.7). 

16.4.9. Proposition. G is an inner F-form of a quasi-split F-group. 

An easy argument, which is left to the reader, reduces the proof to the case that G 
is semi-simple, in which case the assertion follows from 16.4.8. D 

16.5. Existence 

16.5.1. By 16.4.2 a connected, reductive F-group G is determined by an admissi
ble triple (;\II, K, C). We turn to the question of which admissible triples exist. We 
say that an admissible triple is representable if it comes from an F -group. The argu
ment of the first paragraph of the proof of 16.4.2 reduces the existence problem to the 
case that G is semi-simple. This we assume from now on. Then C can be omitted, 
and we have a pair (;\II, K) of a based root datum ;\II and an anisotropic F-group. 
Such a pair is representable if it comes from an F -group. We shall give conditions for 
representability. 
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16.5.2. Let G be a connected, semi-simple F -group that is F -split. The notations are 
as in 16.2.1. Denote by \110 = (X, D, xv, Dv) the based root datum of G. Let; \II be 
an indexed root datum with underlying based root datum \110 , and other ingredients Do 
and r. Let Pv0 be the standard parabolic subgroup of G defined by Do and let L be its 
Levi subgroup containing T, it is a connected, reductive F -subgroup that is F -split. 
Assume that K is an anisotropic F-form of L. The analysis made in 16.4 leads to a 
criterion for representability of the pair(; \II, K). The quasi-split forms Gr and Lr of 
G and Lare as in 16.4.8. 

We have the twisted group of inner automorphisms (Inn L)r of 16.4.5. There is 
an obvious homomorphism (lnnv0 G)r -+ (Inn L)r inducing a map 

We may assume that there is z e Z1(F, (Inn L)r) such that K = (Lr)z. The class of 
z in H 1 (F, (Inn L)r) is denoted by c. 

16.5.3. Lemma. (;\II, K) is representable if and only if c e Im</>. 

The condition is necessary by 16.4.8 (iii). Conversely, suppose it is satisfied. 
Take z e Z1 (r, (lnnv0 G)r(Fs)) whose cohomology class has image c under</>. The 
twisted group G1 = (Gr)z is an F-group that represents (;\II, K). In fact, G1 contains 
an F -split F -torus S whose centralizer L I is an F -group isomorphic to K. Moreover, 
S is the maximal F -split torus in the connected center of L 1. Then S must be a maxi
mal F -split F -subtorus of G 1, and L I is the kernel of G 1. The indexed root datum is 
as required. D 

16.5.4. Let L be as before and let M be the commutator group (L, L); it is a semi
simple F -group. We have the canonical F-homomorphism 1r : G -+ Inn G, and 
Innv0 G = Jr L. The inclusion M -+ L induces a map 

(the r-twists being as before). For any semi-simple F-group M we say that an element 
of H 1(F, M) is anisotropic if its image in H 1(F, Inn M) represents an anisotropic 
F-form of M. 

We have the following criterion for representability, to be used in the next chapter. 

16.5.5. Proposition. (; \II, K) is representable if and only if c e Im Vf. If this is 
so then H 1 (F, (rr M)r) must contain anisotropic elements. 
There is an exact sequence of F -groups 

1-+ (rrM)r-+ (1rL1)r-+ T'-+ 1, 

where T' is an F-torus (the r-twists being as before). In fact, the torus T' is isomor
phic to the torus denoted by T' in the last part of the proof of 16.4.2 (check this). 
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By what we proved there we have H 1 (F, T') = 1. We then obtain from the exact 
sequence of 12.3.4 (ii) a surjective map 

H 1(F, (rrM).) ➔ H 1(F, (lnnv0 G).). 

The first point of the proposition now follows from 16.5.3. The second point is clear. 
D 

In the case of 16.5.5 assume that G is simply connected (8.1.11). In applying 16.5.5 
one has to identify rr M. The following lemma is useful. With the notations 8.1.11, 
the cocenter C* ( G) is the fundamental group P / Q. By 8.4.6 (6), M is also simply 
connected. 

16.S.6. Lemma. (i) If there is a factorization M = M1 x M2 over F such that 
the orders of the cocenters C*(G) and C*(M1) are relatively prime, then rr induces 
an F-isomorphism M1 ➔ rrM1; 
(ii) If C*(G) is trivial then M ~ rr M. 

The group M1 of (i) is semi-simple and simply connected. The restriction rr IM1 

is bijective, as a consequence of 8.1.12 (8). If the characteristic p does not divide the 
order of CM1 then rr IM1 is separable and is an isomorphism by 5.3.3. If p divides that 
order then it does not divide the order of Ca, so that rr is separable. Then drr is an 
isomorphism of Lie algebras, and so is drr IM1 . Again, rr IM1 is separable, and must be 
an isomorphism. This proves (i). The proof of (ii) is similar. D 

In 16.5.5 we assumed the index (D, Do, -r) to be given. We say that this index 
is representable if it comes from an F-group. 15.5.7 and 15.5.8 give necessary con
ditions for representability of an index. Another such condition is given in the next 
lemma. 

Let D1 be an (Im -r )-stable subset of D containing D0. 

16.5.7. Lemma. If the index (D, Do, -r) is representable then the same is true for 
the index (D1, Do, -rlv1). 

Let T1 be the identity component of the intersection 

n (Kera) 
aeV-V1 

and denote by G 1 the centralizer Za(T1); it is a connected reductive F-group whose 
index is (D1, Do, -rlv1). We skip the details. 

16.S.8. By 16.5.1 the question of representability of admissible triples can be re
duced to the question of representability of pairs (;\JI, K) in the semi-simple case, i.e. 
in the case that X = Q (notations of 8.1). 
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We may assume that the based root datum is one of a simply connected group, 
i.e. that X = P. In fact, let G be a semi-simple F -group representing (; w, K) and 
assume that it is a twist H.1., where His split and z e Z 1(F, Aut H). It follows from 
16.3.4 that there is a simply connected F-group H 1 which is F-split, together with 
an F-isogeny H 1 ➔ H. Also, the definition of Aut Hin 16.3 shows that there is an 
injection Aut H ➔ Aut H 1 , whence an injection Z 1 (F, Aut H) ➔ Z 1 (F, Aut H 1 ). 

Viewing z as an element of the second set, we have a twisted group G 1 = (H 1 )z, 

which is simply connected, and an isogeny G1 ➔ G. The based root datum (;'11) 1 

of G I can be described in terms of; W, and using the more refined twisting procedure 
of 16.4, the kernel K I of G I can be described in terms of K. It follows that repre
sentability of (;'II, K) implies representability of ((;'11) 1, K1). The converse is also 
true by 16.2.4. 

16.5.9. Assume that we are in the simply connected case. If (; w, K) is represented by 
an F-group G, then applying 16.2.9 (1) we see that G is a direct product of F-groups 
each of which is of the form nEh/FGh, where Eh is a finite separable extension of F, 
and Gh is a quasi-simple Eh-group (i.e. has an irreducible root system). Moreover, 
G h is simply connected. The core of the existence problem is thus the description of 
the admissible pairs (; \II, K) in the quasi-simple case. In the next chapter we shall 
describe, for each connected Dynkin diagram, the corresponding indices that are rep
resentable over some field F. 

Notes 

The results of 16.1 are due due to Borel and Tits [BoTl]. 
The idea of classifying F-groups by indexed root data is due to Tits ([Ti2], see also 

[Ti7] and [Sat]). In particular, the isomorphism theorem 16.4.2 (in the semi-simple 
case) and the representability condition 16.5.5 are contained in [Ti2]. In [Ti2, p. 50] 
another criterion for representability is given, involving representation theory. 

[Ti2] contains tables of the possible indices, without proofs. For more details see 
[Seib], [Ti7] and the next chapter. 
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Classification 

The notations are as in the previous chapter. We assume that G is quasi-simple. We 
do not assume that G is simply connected. Sometimes it is more convenient to work 
with another isogeny type. 
As before, the indexed root datum of G is (X, D, xv, Dv, Do, -r) (relative to Sand 
T). As G is quasi-simple, X is the rational closure Q of the subgroup Q spanned 
by D and the root system R is irreducible. We assume known the classification of 
irreducible root systems. We shall use the detailed information given in [Bou2, p.250-
276]. The numbering of the vertices of the irreducible Dynkin diagrams is as in [loc. 
cit.]. 

In the present chapter we address the question of giving, for each type of irre
ducible root system R or Dynkin diagram V, a concrete description of the corre
sponding F -groups G. There is a satisfactory answer to the question in the case of a 
'classical' root system (of one of the types An, Bn, Cn, Dn), in terms of classical 
(orthogonal, unitary, ... ) groups. But for some of the five exceptional types the an
swer is not (yet) known. In particular, a concrete description of all anisotropic groups 
over a given field F is not known. But we shall describe in all cases which indices 
(D, Do, -r) are possible, for some F. 

We denote by H a split F -group with the same root datum as G. With notations 
as in 16.5, we assume that G is a twisted group Hz, where z E Z 1(F, Aut H). If -r 
is trivial or, equivalently, if z E Z 1 (F, Inn H) then G is an inner form of H, or is of 
inner type. Otherwise G is of outer type. 

We shall deal separately with each type of irreducible root system R. We denote 
by A(R) or A the automorphism group of the Dynkin diagram 'D and by C* or C*(R) 
the fundamental group P / Q. This is the cocenter of G if G is simply connected 
(8.1.11). 

The table at the end of this chapter gives, for each of the irreducible root systems, 
the subsets Do of the vertex set of the Dynkin diagram which can occur, for some field 
F. 

17.1. Type An-I 

17.1.1. Inner types. For the root system of type An-I see [Bou2, p.250-251]. The 
Dynkin diagram is 

1 2 n-2 n-1 
o--o-•••-o--o 

The automorphism group A is trivial if n = 2 and has order 2 if n > 2. The group C* 
is cyclic of order n. 
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Assume that G is adjoint and of inner type. We may assume that H = Inn H 
is the quotient PGLn of GLn by its center (see 7.4.7 (2)). From 12.3.5 (1) it follows 
that H 1 (F, PGLn) classifies the associative k-algebras with an F-structure which are 
isomorphic to Mn over F5 • If A is such an algebra then A(F) is a central simple 
algebra over F, i.e. a simple associative algebra with center F. It is known that there 
is a division algebra K with center F such that A(F) is isomorphic to a matrix algebra 
Mm(K) (see [Jac5, p. 203]). Using 12.3.8 (3) we see that we may assume that G is 
the quotient of GLm,K by the subgroup Z of scalar matrices. Let d be the degree of 
K. Then dimF K = d2 and n = dm. 

It is convenient to describe the indexed root datum of G1 = GLm,K • Recall 
that G1 = (GLn)z, where z e Z1 (F, PGLn) defines our simple associative alge
bra. Assume it to be such that G1(F) is the group GLm(K) of invertible m x m
matrices with entries in K. Let T be the maximal F5 -torus of G1 such that T(Fs) 
is the diagonal torus ofGLn(F5) = G1(F5). We use the notations of 7.4.7 (1). Put 
a;= E; - E;+1 (1 ~ i :5 n - 1). Then D = (a1, ... , an_1) is a basis of the root sys
tem R (see 8.2.11 (1)). The corresponding Borel group of G1 is the subgroup of upper 
triangular matrices. Let S c T be the intersection of the kernels of the a; with d not 
dividing i, i.e. S is the subgroup of G1 of the elements of the form diag(x1, ... , Xn) 

with x1 = • • • = xd, xd+l = • • • = xu, ... . The centralizer Z(S) is isomorphic to 
<GLdr. 

17.1.2. Lemma. (i) The cocycle z can be taken to lie in the image of Z(S) in H; 
(ii) Sis a maximal F-split F-subtorus of G; 
(iii) Za,(S) is F-isomorphic to (GL1,Kr· 

The proof is straightforward. 

We obtain the following classification result. 

D 

17.1.3. Proposition. (i) For inner type An-l the possible subsets D - Do of Dare of 
the form (ad, au, ... ), where d divides n; 
(ii) For Do as in (i) the index (D, Do, triv) can be realized over the.field F if and only 
if there exists a division algebra of degree d dividing n, with center F; 
(iii) If the condition of(ii) is satisfied the root system FR is irreducible of type Ad-'n-l· 

17.1.4. Outer types. Assume that G is adjoint and of outer type. We take H as in 
17.1.1. Assume now that the homomorphism t' of 15.5.2 is non-trivial. Then n 2: 3. 
Recall that t' is a homomorphism of the Galois group r = Gal(Fs/ F) to the group A 
of automorphisms of the Dynkin diagram, which now has order ::: 2. It is generated 
by the permutation sending a; to an-i ( 1 ~ i ~ n - 1) (the notations are as in 17 .1.1 ). 
It comes from the outer automorphism xi--+ ('x)-1 of GLn. 
1:1 = Ker t' is a closed subgroup of r of index 2. Let E = Er c Fs be the set 
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of elements fixed by all of I)..; it is a separable quadratic extension of F. We have a 
cocycle z E 2 1 (F, Ant H) such that G = Hz. By the definition of E, the image u of 
z under the canonical map 

lies in the subset Z 1(E, Inn H) = Z 1(E, PGLn). By what we established in 17.1.1, 
there is a central simple algebra M = Mm(K) over E (where n = dm), such that G 
is £-isomorphic to the quotient of GLm,K by the subgroup of diagonal matrices. 

There is an associative algebra A defined over E such that M = A(E). We have 
A(Fs) = Mn(Fs) and the action of the Galois group I).. is the twisted action given by 

where Us E PGLn(Fs) ands E I).. act on matrices in the obvious manner. Now 
Ant H(Fs) is generated by (Inn H)(Fs) and the automorphism induced by the auto
morphism x ~ (' x)-1 of GLn. It follows that, for any a E Ant H(Fs), there exists a 
unique involution (or anti-automorphism) La of Mn(Fs) such that La(x) = (ax)- 1 if x 
is invertible. 

Let a be the non-trivial automorphism of Er/ F, and let s E r represent it. Then 
m ~ zs(sm) defines an automorphism a of the group of invertible elements of M, 
which is independent of the choice of s, as follows from the cocycle property of z. 
Moreover, there is an involution t of M inducing on F the automorphism a such that 
am = (tm)-1 if m E M is invertible. An involution of a central simple algebra 
Mm (K), which induces on the center a non-trivial automorphism, is an involution of 
the second kind. In that case there is an involution of the second kind K of K and an 
invertible element h E M such that 

tm = h.1(Km).h-1 (m EM), (74) 

see [Seba, Ch. 8, §7]. Then h.'(Kh)-1 lies in the center of K. Using 12.3.5 (1) we see 
that we may assume h to be K-hermitian, i.e. 1h = Kh. Let U(h) be the unitary group 
of h, i.e. 

U(h) = {g EM I g.h.1(Kg) = h}. 

The group of F-rational points G(F) is isomorphic to U(h). 

17 .1.5. We now have associated with our group G a division algebra K with cen
ter F with an involution K of K of the second kind and a non-singular K-hermitian 
matrix h EM= Mm(K). 

Conversely, if we have such a triple (K, K, h), then (74) defines an involution of 
the second kind of M. We obtain a finite dimensional algebra A with an F -structure 
and an involution t of A defined over F. Forgetting the F -structure, we may take 
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A = Mn EB Mn, with t(a, b) = ('b,1 a) (check this). An application of 12.1.8 (1) 
shows that 

G = { a E A I a (ta) = I} 

is an F -group. It is isomorphic to GLn. 
Put V = Km. Then h defines a non-degenerate K-hermitian form <I> on V by 

<l>(v, w) = vh(K'w)), where v, w e V are viewed as 1 x m-matrices, the action 
of K on V being componentwise. The values <l>(v, v) (v e V) lie in F. The Witt 
index r of <I> is defined (see [Dieu, I, § 11]). We may assume that the following 
holds: if v = (a1, ... , am), Vo = (a,+1, ... , am-,) and w = (b1, ... , bm), Wo = 
(b,+1, ... , bm-,) then 

where <1>0 is an anisotropic hermitian form defined by a hermitian (m - 2r) x (m - 2r )
matrix (anisotropy means that <l>0 (v0 , v0 ) = 0 implies v0 = 0). 
There exists an F-form G1 of GLn obtained by twisting with the cocycle z. Then 
G is a quotient of G 1 by a central torus. Let E be the center of K; it is a separable 
quadratic extension of F. By 17.1.1 we know that over E our group G1 is isomorphic 
to GLm,K· Let S1 be the £-torus denoted by Sin 17.1.1 and denote by S the subtorus 
of S1 formed by the elements diag(x1, ... , Xn) e S1 such that 

Xt = ··· = Xd, Xd+l = ··· = X2<J, ···• X(r-1)d+1 = ... = Xrd, 

x; = 1 for rd+ 1 < i ::::: (m - r)d, 

X; = x;;~I-i for i > (m - r)d. 

Then Sis a maximal F-split F-subtorus of G1. We find the following result. D and 
Er are as before. 

17.1.6. Proposition. (i) For outer type An-I the possible subsets D - Do are of 
theform (ad, ... , a,d, an-rd, ... , an-d), where din and2rd < n (an-rd should be omit
ted if2rd = n); 
(ii) For given 'l' and Do as in (i) the index (D, D0 , t') can be realized over F if and 
only if there exists a division algebra K with center Er, an involution K of K of the 
second kind over F, together with a non-degenerate K-hermitianform over K of di
mension d-1n and of index r; 
(iii) If the conditions of (ii) are satisfied, the root system FR is irreducible of type BC, 
if2rd < n and of type C, otherwise. 
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17.2. Types Bn and Cn 

17.2.1. Type Bn• 

289 

The root system of type Bn (n 2: 2) is described in [Bou2, p. 252-253]. The Dynkin 
diagram is 

1 2 n-2 n-1 n 
o--0-·••-o--o~o 

The automorphism group A is trivial and C* has order 2. 
First assume that char F =j.:. 2. Let H = SO2n+t • Then H = Inn H = Aut H. 

By 7.4.7 (3) it is a connected, semi-simple group of type Bn. It follows from 12.1.8 
(2) that H is defined over F and F-split. With the notations of 7.4.7 (3), define 
a; = f; - €;+1 (1 < i ::S n - 1) and put ctn = En. Then D = (a1, ... , ctn) is a 
basis of the root system R (see 8.2.11 (1)). By 12.3.5 (5) we have that H 1 (F, O2n+d 

classifies the isomorphism classes of (2n + 1 )-dimensional non-degenerate symmetric 
bilinear forms over F. Similarly, H 1 (F, SO2n+i) classifies the isomorphism classes 
of quadratic forms Q defined as in 15.3.10 (1) by a symmetric matrix s E GL2n+t (F) 
whose determinant is a square in F (check this). It follows that we may take G = Hz 
to be the special orthogonal group defined by a non-degenerate quadratic form Q over 
F. Such a form comes from a symmetric matrix s, as before. Multiplying s by a suit
able scalar we can satisfy the determinant condition. The associated orthogonal group 
remains the same. If r is the Witt index of Q (see [Jac4, p. 351]) then the F-rank of 
G equals r, see 15.3.10 (1). 

17.2.2. Assume that char F = 2 and define H to be the group of 7.4.7 (6). Again, 
H = Inn H = Aut H. It is a connected, semi-simple group of type Bn, which is 
defined over F by 12.1.8 (4); moreover His F-split. From 7.4.7 (6) we see that there 
is an inseparable isogeny H ➔ Sp2n defined over F. Since Sp2n is connected (see 
2.2.9 (1)) the same holds for H. 

Recall that the defect of an odd dimensional quadratic form q on an F-vector 
space A in characteristic 2 is the codimension of the radical R of the alternating form 
(x, y) = q(x + y) + q(x) + q(y) (x, y E A) (see [Dieu, Ch. I, §16]). q is non
degenerate if the restriction of q to R takes the value 0 only in 0. An application of 
11.3.3 shows, as in 15.3.10 (1), that H 1(F, H) classifies the isomorphism classes of 
non-degenerate quadratic forms over F of defect one, which take the value 1 on the 
radical R. 

We can proceed as in 15.3.10 (1). We have a quadratic form Q on V(F). Its Witt 
index r is the dimension of a maximal subspace of V(F) on which Q is identically 
zero. Using [loc.cit.] we see that the results are as in the case of characteristic =j.:. 2. 

We obtain the following. 

17.2.3. Proposition. (i) For type Bn the possible subsets D - Do of Dare of the 
form (a1, ... , a,), with r < n; 
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(ii) For Do as in (i) the index (D, Do, triv) can be realized over F if and only there 
exists a (2n + 1)-dimensional non-degenerate quadratic form over F that has Witt 
index r; 
(iii) If the conditions of (ii) are satisfied the root system FR is irreducible, of type Br. 

For the last point see 15.3.10 (I). Also notice that in the present case t' is always 
trivial. 

17.2.4. Type Cn. The root system of type Cn n > 2) is described in [Bou2, p. 
254-255]. The Dynkin diagram is 

1 2 n-2 n-1 n 
0--0- .. ,-0--0~0 

The group A is trivial, and C* has order 2. 
Take H = Sp2n. This is a connected, semi-simple group of type Cn (see 7.4.7 

(5)), defined over F (see 12.1.8 (3)) and F-split. Moreover, it is simply connected. 
The imbedding H ➔ GL2n induces an F-isomorphism of Inn H onto a closed 
F-subgroup of PGL2n (check this), whence an injection </> : Z1 (F, Inn H) ~ 
Z1 (F, PGL2n). We twist the algebra M2n with the cocycle <f,z, obtaining an asso
ciative algebra A over k with an F-structure. Recall that A(Fs) = M2n(Fs) and that 
the action of the Galois group r = Gal(Fs/ F) on A(Fs) is obtained by twisting with 
the cocycle <f>z. Then A(F) is a central simple algebra over F. 
Define j E M2n by 

j = ( -~. ~) 
( where 1 n is the n x n identity matrix) and put tx = j (' x) j-1 (x E M2n). Then t is 
an involution of M2n defined over F, and 

H = {x E GL2n I tx = x-1 }. 

It follows that t commutes with the r-action on A(Fs) and determines an involution 
of A defined over F. 

As in 17.1.1 we have that A(F) is a matrix algebra M = Mm(K) over a division 
algebra K with center F. The involution t induces an F-linear involution or involution 
of the first kind of Mm (K). There exists an involution of the first kind K of K and an 
invertible element h E M such that (74) holds (as in 17.1.4). Then E = h.1(,ch)- 1 

lies in the center of M, i.e. in F, and it is easily seen that E = ± 1. So h E M is an 
E-hermitian (i.e. hermitian or anti-hermitian) matrix with respect to the involution" 
of K. 

We write G = U(K, K, h). The group of its F-rational points is the unitary group 
defined by h, i.e. 

G(F) = {g EM I gh(tg) = h}. 
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17.2.5. We now make a digression about involutions. Let M = Mm(K) be a central 
simple algebra, as above, and let t be an involution of the first kind of M. As before, 
we have an involution K of K. We may assume that A = k ® F M = MN. There is 
he GLN with th= Eh, where E = ±1, such that 

ta= h('a)h-t (a e A). 

First assume that char F #, 2. There exists an invertible element x e GLN such that 
either h = x(' x) or h = xj (' x) (where j is as before, with N = 2n), see [Jac4, p. 
340, p. 334]. This implies that, up to isomorphism, we may assume that h = IN or 
h = j. We say that t is orthogonal in the first case and symplectic in the second case. 

If E = ±1 we write M,,E for the E-eigenspace oft. The proofs of the next two 
lemmas are straightforward. Assume that K is non-trivial. 

17.2.6. Lemma. (i) The involution tis orthogonal (symplectic) if and only if dim M,,t = 
½N(N + 1) (respectively, ½N(N - 1)); 
(ii) /ft is symplectic (orthogonal) then either the involution K of K is symplectic and h 
is hermitian (respectively, anti-hermitian) or K is orthogonal and h is anti-hermitian 
(respectively, hermitian). 

Let K and K be as in 17.2.4. Since K is non-trivial, KK,-t #, {O}. Let a e 
KK,-t - {O} and put Kt = Int(a) o K. This is an involution of K. 

17.2.7. Lemma. (i) KK,E = KKi,-E; 

(ii) If has in (74) is €-hermitian relative to K then ha-tis -€-hermitian relative to Kt 

and U(K, K, h) = U(K, Kt, ha-t). 

It follows that in characteristic #, 2 we can view the group G(F) of 17.2.4 as a 
unitary group over a division algebra K with an involution of the first kind, either of 
a hermitian matrix relative to a symplectic involution, or of an anti-hermitian matrix 
relative to an orthogonal involution. In the classification of groups of type Cn, we 
prefer to work with symplectic involutions. 

Now assume that char F = 2. In that case the argument of the proof of [Jac4, Th. 
6.5, p. 338] gives that, if h e GLN(Fs) is symmetric, there is x e GLN(Fs) and an 
integer s such that N - s is even and 

h = x(d EB jN-s)(t x), 

where dis ans x s diagonal matrix UN-shaving the obvious meaning). Ifs = 0 the 
involution t of 17.2.5 is said to be symplectic. The next lemma characterizes symplec
tic involutions. M and t are as before. 

17.2.8. Lemma. (char F = 2) (i) t is symplectic if and only if there is x e M 
with x + tx = I; 
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(ii) Let M = Mm(K) and let t be given by (74). Then tis symplectic if and only if 
there is y E M with h = y + 1 (Ky). If K '# id this is equivalent to: K is a symplectic 
involution of K. 

We assume that tis as in (74). First let F = Fs, We may then take M = MN, and 
ta = h('a)h-1, where h = d EB jN-s• Ifs '# 0 a matrix x + tx E MN has a diagonal 
element 0. It follows that tis symplectic if the condition of (i) is satisfied. Conversely, 
if t is symplectic, a computation in MN (which we leave to the reader) shows that 
there is x0 E Fs ® M with x0 + tx0 = 1. For y E r the element Xy = y .x0 + x0 lies 
in the space Ker(l + t), which is defined over F. Application of 11.3.4 (5) shows that 
there is z e Ker(l + t) with xy = y.z + z. Then x = x0 + z is as required. 

If x is as in (i) then h = xh + 1 (K(xh)). The first point of (ii) readily fol
lows. Now assume that K '# id, i.e. that K is non-commutative, and let y be as 
in (ii). Put V = Km. Then h defines a non-degenerate hermitian form <l> on V by 
<l>(v, w) = vh(K('w)), where v, w E V are viewed as 1 x m-matrices, the action 
of K on V being componentwise. For v e V we have <l>(v, v) = a + Ka, where 
a = vy(K(' v)). If <l>(v, v) '# 0 for some v e V, K is symplectic by what we already 
proved. We are left with the case that <l>(v, v) = 0 for all v. Then <l>(v, w) = <l>(w, v) 
for all v, w E V. Take them such that <l> ( v, w) = 1, let a E K and replace in the 
equality v by av. We conclude that Ka = a, i.e. that K = id. □ 

17.2.9. In all characteristics we can take G = U(K, K, h), where K is a division 
algebra K with center F with a symplectic involution K, where h is a non-singular 
hermitian matrix relative to K. The degree d of K is a power 2s (see [Jac5, Ex. 1, p. 
493 ]). Conversely, if we have such a triple ( K, K, h), then (7 4) defines a symplectic 
involution of M. We obtain a finite dimensional algebra A with an F -structure and an 
involution t of A defined over F. Using 12.1.8 (1) we see that 

G = { a E A I a (ta) = 1} 

is an F -group isomorphic to Sp2n. 

Define a non-degenerate Hermitian form <l> on V = Km as in the proof of 17 .2.8. 
The values <l>(v, v) (v E V) lie in lm(l + K). This was established in the proof of 
17.2.8 if char F = 2, and it is obvious if char F '# 2. This means that <l> is a trace
valued hermitian form (forme tracique) in the sense of [Dieu, Ch. I, §10]. Then its 
Witt index is defined (see [loc.cit., Ch. I, §11]). We may assume that the following 
holds. If v = (a1, ... , am), Vo = (ar+l, ... , am-r) and w = (b1, ... , bm), Wo = 
(br+l, ... , bm-r) then 

where <l>o is an anisotropic hermitian form defined by a hermitian (m - 2r) x (m - 2r )
matrix (anisotropy means, as before, that <l>0(v0, v0) = 0 implies vo = 0). 
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We have an isomorphism <t,: k ®F K ~~-We can then identify M = Mm(K) 
with a subspace of Mm(Md) = M2n (recall that 2n = dm). Let S C GL2n be the 
subgroup of diagonal matrices diag(x1, ... , x2n) with 

X1 = • • • = Xd, Xd+l = • • • = Xu, · ·. , X(r-l)d+l = • • • = Xrd, 

x; = 1 for rd+ I ~ i ~ (m - r)d, 

Xi = x;~l-i for i > (m - r)d. 

Then Sis an F-split subtorus of G. By arguments similar to those used in 15.3.10 (1) 
one shows that S is a maximal F -split subtorus of G. 

The isomorphism <t, can be taken to be such that the group of diagonal matrices 
diag(x1, ... , X2n) with Xi= x;~l-i is a maximal torus· T of H. The basis D of the 
root system is (a1, ... , an), where a1, ... , an-l are as before and an = 2En. 

The preceding analysis leads to the following result. We make the convention that 
the identity map of Fis also a symplectic involution Kand that the K-hermitian forms 
over Fare the alternating ones (the Witt index of a non-degenerate form of dimension 
2r being r). 

17.2.10. Proposition. (i) For type Cn the possible subsets D - Do of Dare of the 
form (ad, ... , a,d), where dis a power of2 dividing 2n; 
(ii) For Do as in (i) the index (D, Do, triv) can be realized over the field F if and 
only if there exists a division algebra K of degree d with center F with a symplectic 
involution K of the first kind, together with a non-degenerate K-hermitian form over 
K of dimension 2d-1n and of index r; 
(iii) If the conditions of (ii) are satisfied the root system FR is irreducible, of type BC, 
if r < d-1n and of type C, if r = d- 1n. 

17.3. Type Dn 

17.3.1. The root system of type Dn (n > 4) is described in [Bou2, p. 256-257]. 
The Dynkin diagram is 

1 2 n-3 n-2 n-1 
o--0-, .. -0--0--o 

I 
On 

The group A has order 2 if n > 4 and is isomorphic to the symmetric group S3 if 
n = 4. The cocenter C* is the product of two cyclic groups of order 2 if n is even and 
is cyclic of order 4 if n is odd. 
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First assume that char F -::j:. 2. Take H = SO2n, see 7.4.7 (4). By 12.1.8 (2), His 
defined over F. The maximal torus T being as in 7 .4. 7 ( 4 ), the basis D of the root sys
tem of (G, T) is (a1, ... , an), where a1, ... , an-1 are as before and an = E"n-1 + En. 

If n > 4 the non-trivial element a of A permutes an-I and an and fixes the other 
simple roots. If n = 4 the elements of A fix a 2 and permute the other three roots 
arbitrarily. In this section we will consider only F -groups of type D4 whose index 
(D, Do, r) is such that Im r has order< 2, as in the case n > 4. We may then assume 
that for n = 4 we have Im r c {I, a}. The outer forms of groups of type D4 where 
Im r has order ~ 3 are called trialitarian. They pertain to the exceptional groups, 
discussed below. 

17.3.2. Still assume that char F -::j:. 2. The group H = SO2n is a subgroup of in
dex two of H1 = 0 2n. The automorphism a of the Dynkin diagram is induced by 
conjugation by an element of H1. It follows that for n > 4 

Aut H = P02n = On/{±1}. 

We may also assume this to be the case if n = 4 in the non-trialitarian case. We can 
assume that G = Hz where z E Z1 (F, P02n), The inclusion 02n C GL2n induces an 
injective map 

As in 17 .2.4 we obtain an algebra A over k with an F -structure, and an involution t 

of A defined over F. We have to replace j by 

= ( 0 In ) 
s In 0 

Now ix = s (' x )s; it is an orthogonal involution. Assume that A( F) is a matrix algebra 
M = Mm(K) over a division algebra K with center F. Then t induces an involution 
of the first kind of M. As before, K has an involution of the first kind K and there is 
h such that t satisfies (74). Since tis orthogonal, h must be hermitian (by 17.2.6 (ii)) 
Again, the degreed of K is a power of 2 and 2n = dm. 

Proceeding as in 17 .2.9 we obtain a hermitian form <l> on Km. We have a maximal 
F -split torus S and a maximal torus T of H containing S, defined as in toe.cit. D 
being as in 17.3.1 we have Do= {ad, ... , ardl• 

17.3.3. To describe completely the index of G we have to identify the homomor
phism r : r ➔ {I, a}. If r is non-trivial it defines a quadratic extension E., as 
in 17.1.4. If r is trivial we put E. = F. Let E. = F(✓~). Then the element 
8(,) = ~(F*)2 E F* /(F*)2 is uniquely determined (and determines,). 

Denote by Nr : M ➔ F the reduced norm function on M (the restriction to M of 
the determinant function on M2n). 
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17.3.4. Proposition. (i) M,.-i contains invertible elements of M; 
(ii) If x e M,,-1 is invertible then (-l?Nr(x) e t5(r). 
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Let Alt2n C M2n be the space of alternating matrices. Then A,,-1 = sAlt2n• 
There is a non-zero polynomial function Pf on Alt2n (the Pfaffian) such that det(y) = 
Pf(y)2 (ye Alt2n), For a e A we have 

Pf(ay('a)) = det(a)Pf(y). (75) 

(see [Jac4, p. 334-335]). Then (i) is immediate if F is infinite. If F is finite then 
K = F, M = M2n(F), and his a symmetric matrix. We leave the check of (i) in that 
case to the reader. 

The r-action on A(Fs) is of the form 

(76) 

where gy e 02n(Fs) has image z(y) in Aut(H)(Fs), It follows from (75) that for 
a E M,,-1 

Pf(y •a)= f(y)Pf(a), 

where f(y) = 1 if r(y) = 1 and f(y) = -1 otherwise. This implies that Pf(a) E 

✓; F, where; is as in 17.3.3. This implies (ii). □ 

t5(r) is the discriminant t5(M) of the simple algebra with involution of the first 
kind M, as defined in [Kn, §6]. 

17.3.5. Exercise. Assume that M = M2n(F) with tm = h('m)h-1, where h is 
symmetric. Show that t5(r) = (-ltdet(h)(F*)2. 

17.3.6. Now assume that char F = 2. Let V = k2n and let Q0 be the quadratic 
form on V with 

n 

Qo((;1, ... , ;2n)) = L ;;;n+i• 
i=l 

Let H be the identity component of the isotropy group of Q0 in GL(V). Then 
H is a semi-simple group of type Dn by 7.4.7 (7) and by 12.1.8 (4) it is defined 
over F. The inclusion H c H' = Sp2n induces an injective F-homomorphism 
Inn H -+ Inn(H'). Let z' e Z1 (F, H') be the image of z under the obvious map. As 
in 17 .2.4 we obtain an algebra A, with a symplectic involution of the first kind t over 
F, such that A(F) is a matrix algebra M = Mm(K). 
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17.3. 7. To deal with the F-forms of H we have to establish some facts about quadratic 
forms. For the moment, the characteristic is arbitrary. 

If x e M2n then Qx(v) = vxs('v) defines a quadratic form on V (identified 
with the space of 1 x (2n)-matrices), which is O if and only if x e Im(l - t), where 
ix = s(' x)s). We obtain an injective linear map of the quotient Q = M2n/Im(l -t) to 
the space of quadratic forms on V, which is easily seen to be surjective. We identify 
the two vector spaces. They have obvious F -structures. 

We have a linear map a : Q ➔ Im(l + t) induced by y 1--+ y + ty. If Q0 is as in 
17.3.6 we have a Q0 = 1. 

Now let M = Mm(K) be a central simple algebra over F of dimension d2, with 
an involution of the first kind t as in 17.3.2. Put Qm(K) = M/(1 - t)M. We call 
this F-vector space the space of m-dimensional quadratic forms over the division 
algebra K with involution K ( of symplectic type if char F = 2 and of orthogonal 
type with dm even otherwise), see [TiS]. We have, as before, an F-linear map a : 
Qm(K) ➔ Im(l + t). We say that Q e Qm(K) is non-degenerate if a Q is invertible. 
Then h = a Q is the associated element of Qin lm(l + t). In that situation let l e M 
represent Q. Since l + tl = h = a Q is invertible, we have an involution t' = Int(h) o L. 

Putting l' = lh-1 we have 

l' + t'(l') = 1. 

Then l' defines a non-degenerate quadratic form Q' relative to t', whose associated 
element is 1. 

Let l be as before. For v e Km (viewed as an 1 x m-matrix) define a function 
with values in K /Im(l - K) by 

Q(v) = vl(K(' v)) + (1 - K)K. 

This is a quadratic form Q on Km. The orthogonal group O(Q) is defined in the 
obvious way. 

If char F =j:. 2 then a is bijective and we can identify Qm(K) with the space M1, 1 

of hermitian elements of M and K /Im( 1 - K) with the fixed point set of K in K. 
There is a hermitian form <I> on Km as in 17.3.2 such that Q(v) = <l>(v, v) and the 
orthogonal group of Q coincides with the unitary group of <I>. 

Now assume that char F = 2. Lett be the reduced trace function on A. It is 
the coefficient of rn-t in Nr(T.1 + a). Denote by q(a) the coefficient of rn-2. If 
; 1, ... , ;2n are the eigenvalues of a (viewed as elements of M2n) then 

t(a) = L;i, q(a) = L;i;j. 

j i<j 

t (q) is a linear (respectively, quadratic) form on A defined over F. 

17.3.8. Lemma. Let x, ye A. 
(i) q(x + y) = q(x) + q(y) + t(x)t(y) - t(xy); 
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(ii) q(x + tx) = t(x)2; 

(iii) If I+ ti = 1 then q(I + x + tx) = q(I) + t(x) + t(x)2. 
We may assume that A= M2n. Over a field of characteristic Owe have q(x) = 

½(t(x)2 - t(x2)), from which the formula of (i) follows immediately. In that case the 
formula can be viewed as a polynomial identity in two sets of matrix variables, with 
integral coefficients. Reducing modulo 2 we see that the formula holds in character
istic 2, whence (i). 

We may assume that tx = j (1 x) j, as in 17.2.4. To prove (ii) write x e M2n in the 
form 

where a, b, c, de Mn, Then 

( 'd 'b ) 
tx = 'c 'a ' 

and 

where v and ware alternating and t(u) = t(x). A reduction argument, as in the proof 
of (i), shows that q(x + tx) = t(u2) + t(vw) = t(u)2 + t(vw). Since v and w are 
alternating we have t(vw) = 0. (ii) follows. 

If I is as in (iii) it follows from (i) and (ii) that 

q(I + x + tx) = q(l) + t(x)2 + t(l(x + tx)) + t(l)t(x + tx). 

Then (iii) follows by observing that t(x + tx) = 0 and t(l(x + tx)) = t((I + tl)x) = 
t(x). □ 

For a e k put g;,a = a + a 2. Let Q be a non-degenerate quadratic form with as
sociated element h. Choose I with I+ ti = h. The discriminant 8(Q) e F /g;,F is the 
coset n +q(lh-1) + g;,F. It follows from 17.3.8 (iii) thatthis definition is independent 
of the choice of the representative I. 

17.3.9. Exercise. Let K = F, V - p2n. Let Q be the quadratic form on V 
with 

n 

Q((;1, ... , ;2n)) = L(a;;;2 + b;;?+n + ;;;;+n), 
i=l 

Show that 8(Q) = I:7=1 a;b; + r,,F (this is the A,f invariant of Q, see [Seba, Ch. 9, 
§4]). 
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17.3.10. Let Q e Qm(K) be the quadratic form defined by l, as before. The orthogo
nal group O(Q) is the group of all invertible elements x e M such that tx = x-1 and 
xlx-1 + l = y + ty, with ye M. By 17.3.8 (iii) we have 

q(l) = q(xlx-1) = q(l) + t(y) + t(y)2. 

It follows that t(y) e [0, l]. The Dickson invariant ~(x) (see [loc.cit.]) is t(y). 

17.3.11. Lemma. ~ is a surjective F-homomorphism O(Q) ➔ {0, 1}, whose kernel 
is the identity component O(Q)0. 

Recall that O(Q) is defined over F. That~ is a homomorphism follows from 
its definition. To prove the other statements we may work over k, in which case we 
identify O ( Q) with the group H of 17.3.6. We write the elements of M2n as 2 x 2-
matrices, as in the proof of 17.3.8. We may take 

Then O(Q) is the set of 

such that a.1d + b.'c = 1 and that a.'b and c.'d are alternating. Moreover, 6(x) = 
tr(b. 1c). It is not hard to exhibit x with ~(x) = 1: it suffices to do this for n = 1, in 
which case one takes a= d = 0, b = c = 1. 

It remains to prove that Ker ~ = H. It is clear that H c Ker ~- We have seen 
that His semi-simple of type Dn, Let x e O(Q) normalize H. There is ye H such 
that xy normalizes a maximal torus T of H. Now O(Q) is a subgroup of Sp2n and T 
is also a maximal torus ofSp2n, by 7.4.7 (4), (7). The Weyl group of (H, T) has index 
2 in the Weyl group of (Sp2n, T) (see [Bou2, p. 255]). It follows that H has index< 2 
in O(Q), which implies that Ker~= H. □ 

Let Q be as in 17.3.10. A subspace S of Km is singular, if the restriction of Q 
to Sis zero. Then Wis isotropic for the hermitian form <I> of 17.3.7. The dimension 
of a maximal singular subspace of Km is the Witt index of Q. If it is zero then Q is 
anisotropic. Proceeding as in 17.2.9 we obtain that D - Do= (ad, ... , ard), 
As before, we have to identify the homomorphism t' : r ➔ { ± 1}, or the extension Er. 
Now there is; e F with Er = F({r,>-1;}). The element c5(t') =; + r,>F e F /r,>F is 
well-defined. 

17.3.-12. Proposition. c5(t') = c5(Q). 
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Let M = M2n, with involution to defined by t0(a) = j('a)j. The quadratic from 
Q0 of 17.3.6 is the one defined by 

An arbitrary quadratic form Q over a division algebra is obtained from Q0 by twisting 
with a cocycle z e Z 1(F, O(Q0)). With the notations of 17.3.2 we have A(Fs) = 
M2n(Fs), with f-action given by (76). For y er 

where a,, e lm(l + t0 ). By 17.3.11 we have D(a,,) e {0, l}. Also, for y, 8 er 

It follows from 11.1.6 and 11.3.4 (5) that there exists a e Im(l + to) such that a,, = 
y *a+ a. Then l = 10 + a lies in M = A(F) and defines the quadratic form Q. By 
17.3.8 (iii) 

q(l) = q(lo) + t(a) + t(a)2 . 

Now q(l0 ) = n and t(a,,) = y(t(a)) + t(a). It follows that y(t(a)) = a if -r(y) = 1 
and y(t(a)) =a+ 1 otherwise. We conclude that 8(-r) = t(a) + t(a)2 + r,,F. □ 

What we have established implies the following classification result for type Dn 
(non-trialitarian if n = 4 ). 

17.3.13. Proposition. (i) The possible subsets D - Do are of the form (ad, ... , ard), 
where d is a power of 2 dividing 2n; 
(ii) For Do as in (i) the index (D, Do, -r) can be realized over F if and only if there 
exists a quadratic form Q over a division algebra with center F with an involution 
of the first kind, of degree d such that Q has dimension 2d-1 n and index r and that 
8(Q) = 8(-r); 
(iii) If the conditions of(ii) are satisfied, the root system FR is of type Br ifr < 2d-1n 
and of type Dr if r = 2d-1n. 

The involution t of (ii) is of the first kind and orthogonal if char F # 2 and sym
plectic otherwise. 

17.3.14. Exercise. If in 17.3.13 (i) we have rd = n - 1, then K is a quaternion 
algebra and -r is non-trivial. 
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17 .4. Exceptional groups, type G2 

We now assume that our root system R is of one of the exceptional types E6, E1 , E8, 

F4 , G2. In several cases there is an explicit description of G as an automorphism 
group of an algebraic structure. An exhaustive discussion of what is known, with 
complete proofs, is beyond the scope of this book. But I shall try to review the exist
ing results, with references to the literature. We start with type G2, where the picture 
is clear. 

17.4.1. For the root system of type G2 see [Bou2, p. 274-275]. The Dynkin dia
gram is 

The groups A and C* are trivial. Recall that H is a split F-group of type G2. Then 
Aut H = H, hence H 1(F, H) classifies the F-forms G of H. 

17.4.2. Proposition. G is either split or anisotropic. 

The numbering of the vertices of 'D identifies D with { 1, 2}. Describe the roots 
by their coordinates relative to the simple roots. Then the highest root is (3, 2). Since 
A is trivial an index has the form (D, Do, triv). If G is not split or anisotropic then 
D0 = { 1} or {2} and FR is of rank 1, i.e. is of type A 1 or BC 1. In that case the highest 
root coefficient is 2. From 15.5.7 we see that the only possible case is Do = {2}. Then 
we apply the criterion of 16.5.5. The group His simply connected. It follows from 
8.4.6 (6) that the same holds for the group M of 16.5.5. Hence M is F-isomorphic 
to SL2. By 16.5.6 we haven M ~ M. Since H 1 (F, SL2) is trivial (see 12.3.6 (2)) 
it does not contain anisotropic elements. We conclude from 16.5.5 that this case is 
impossible. The proposition follows. □ 

We next discuss the explicit description. 

17.4.3. Octonion algebras. A composition algebra Cover Fis a (not necessarily 
associative) finite dimensional k-algebra with identity element, having an F -structure, 
that is provided with a non-degenerate quadratic form N (the norm form) such that 

N(xy) = N(x)N(y) (x, y e C), 

and that N is defined over F. If char F = 2, assume that the bilinear form associated 
to N is non-degenerate (which means that N is Fs-isomorphic to the form Q0 of 
17.3.6). For the basic facts on composition algebras see [Jac4, 7.6]. More details can 
be found in [Kn, Ch. VIII] and [SpV]. One shows that dim C = 1, 2, 4, 8. We assume 
from now on that dim C = 8. In this case C is an octonion algebra or Cayley algebra. 
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We introduce a special octonion algebra 0. As a vector space 

If 

put 

_ -( d -b) X- . 
-c a 

Then xi = det(x). The multiplication in C is defined by 

(x, y)(u, v) = (xu + vy, vx + yu) 

and 

N((x, y)) = det(x) - det(y). 
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A straightforward check shows this defines indeed an octonion algebra. There is an 
obvious F -structure on C such that the algebra product and the quadratic form N are 
defined over F. Let G be the automorphism group of O; clearly this is a linear alge
braic group over k, which is a closed subgroup of the F-group GL(O) ~ GL8. 

17.4.4. Theorem. (i) G is a connected simple group of type G2; 
(ii) G is defined over F and F-split. 

We sketch a proof. The orthogonal group of N is an F-group (see 17.3.2 and 
17.3.6) and so is its identity component SO(N), which is quasi-simple of type D4 . 

Consider the set S of triples (t, t1, t2) of elements of SO(N) such that for all x, y E C 

It defines a closed subgroup of SO(N)3. One shows that Sis an F-group, which is 
F -isomorphic to the split simply connected F-group Spin8 of type D4. See [Sp V] or 
[Kn, §35] (where it is assumed that char F # 2). Moreover (t, t1, t2) r+ (t2, t1, t) 
defines an outer automorphism 0 of S of order 3, which is defined over F. The auto
morphism group G is a closed subgroup of S, viz. the fixed point group S8 of 0. By 
[SpV] G is an F-group. Using the results of 10.3 one shows G is a split F-group of 
type G2, hence is isomorphic to H. □ 

17.4.5. Any octonion algebra over F is Fs-isomorphic to O (by [SpV, 1.8]). The 
principle of 11.3.3 shows H 1 (F, G) classifies the isomorphism classes of octonion 
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algebras over F. Hence there is a bijection between isomorphism classes of F-forms 
of H and isomorphism classes of octonion algebras over F. By [loc.cit., 1.6.2] two 
octonion algebras over F are F -isomorphic if and only if their norm forms are F -
isomorphic. 

Assume that char F -f:. 2 and let <Pa (a e F*) be the norm form of the two
dimensional algebra F[T]/(T2 - a). The quadratic forms that can occur as norm 
forms of octonion algebras are isomorphic to tensor products 

fa,p,y = <Pa ® <Pp ®<Py, 

with a, {J, y e F*. Such a form (threefold Pfister form) is either anisotropic or of 
maximal Witt index. In the first case the octonion algebra is a division algebra, in the 
second case it is F-isomorphic to 0. The corresponding automorphism groups are 
anisotropic, respectively split. We conclude that, if char F -f:. 2, the F-forms of Hare 
classified by threefold Pfister forms. The next result uses that fact. 

We have H 1 (F, Z/2Z) = F* /(F*)2. For a e F* let [a] be its image in 
H 1(F,Z/2Z). Associate to the form fa.p,y the cup product [a] U [/J] U [y] e 
H 3(F, Z/2Z). We obtain a map <f,: H 1(F, H)-+ H 3(F, Z/2Z). 

17 .4.6. Proposition. q, is injective. 

See [Kn, 34.40] or [Se3, p. 16]. This implies that the F-forms of a group of type 
G2 are classified by a cohomological invariant, lying in H 3(F, Z/2Z). 

17.5. Indices for the types F4 and Es 

17.5.1. We next discuss the types F4 and Es, As in the case of type G2, the groups A 
and C* are trivial (because of this there are fewer technicalities than in types E6 and 
E7 ). Assume that H is a split F-group of type F4 or Es, In [Bou2, p. 268-273] the 
root systems and their properties are described. The Dynkin diagrams are 

and 

1 2 3 4 
o-o==:ic=o-o 

1 3 4 5 6 7 8 
o--o--0-0--0--o--o 

I 
02 

H 1(F, H) classifies the F-forms of H, since the groups A and C* are trivial. We 
describe the possible indices (D, Do, triv). This amounts to identifying the possible 
subsets Do of D. We proceed as in the proof of of 17 .4.2. Identify D with {I, 2, 3, 4} 
and {I, 2, 3, 4, 5, 6, 7, 8}. We describe the roots by their coordinates relative to the 
simple roots. 
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17.5.2. Proposition. (i) In type F4 the possibilities for D - Do are: 0, {4}, D; 
(ii) In the second case the root system FR is of type BC1. 
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The first and the last possibility correspond to an anisotropic group, respectively 
to the split group. The highest root a of the root system of type F4 is (2, 3, 4, 2). 
By 15.5.6 and 15.5.7 the set Do must be such that the coordinates of a with respect 
to the simple roots in D - Do are the highest root coefficients of an irreducible root 
system of rank ID - Do I (the root system FR). The tables of [Bou2] show that, in an 
irreducible root system of rank ::: 3, the highest root coefficients are < 3 and that a 
coefficient 3 only occurs in type G2. It follows that, for a group G that is not split or 
anisotropic, D - Do can only be one of the following sets 

{l}, {4}, {l, 2}, {l, 4}, {2, 4}. 

We have to show that, except for the second one, these sets are impossible. 
Assume we had an index with D - Do = {l}. We apply the criterion of 16.5.5. 

The group H being simply connected, 8.4.6 (6) implies that the same holds for M. By 
16.5.6 we have 1'{ M ~ M. The group Mis now quasi-simple and simply connected 
of type C3, hence isomorphic to Sp6. By 12.3.5 (4) we have H 1(F, M) = I, which 
shows that H 1 (F, M) cannot contain anisotropic elements. By 16.5.5 this case cannot 
exist. A similar argument rules out the other cases where D - Do =j:. { 4} (Sp6 being 
replaced by SL3, Sp4, SL2 x SL2, respectively). This proves (i). 

If D - Do = {4} the relative root system FR is of rank 1, hence of type A1 or 
BC1. Since the highest root coefficient is 2 (by 15.5.7) we are in the second case. This 
proves (ii). D 

17.5.3. A straightforward application of 16.5.5 shows that an index with Do 
{1, 2, 3} exists over F if and only if H 1(F, Spin7) contains an anisotropic element, 
where Spin7 is the simply connected, quasi-simple F-group of type B3. This is equiv
alent to the existence of ?-dimensional anisotropic quadratic forms over F with trivial 
Hasse invariant. We shall meet similar conditions below, in the discussion of indices 
for type Es. A further analysis of such conditions would require results from the the
ory of quadratic forms. We shall not go into these matters. More details can be found 
in [Seib]. 

In 17 .6 we shall discuss the realization of F4 as an automorphism group of an 
algebraic structure. This will lead to an explicit description of the anisotropic forms 
of groups of type F4 . 

17.5.4. Proposition. (i) In type Es the possibilities for D - Do are: 

0, {1}, {8}, {1, 8}, {7, 8}, {1, 6, 7, 8}, D; 

(ii) The respective root systems FR in the cases that D - Do =/. 0, Dare irreducible 
of types BC,, BC1, BC2, G2, F4. 
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We proceed as in the case of F4. Now the highest root is (2, 3, 4, 6, 5, 4, 3, 2). A 
consideration of highest root coefficients of FR, as before, gives the following non
trivial possibilities for D - D0: 

{l}, {8}, {1, 2}, {1, 3} {l, 7}, {1, 8}, {2, 8}, {7, 8}, 

{1,2,3,8}, {1,2,6,8}, {l,3,7,8}, {l,6,7,8}. 

The argument used to discard the cases not listed in the proposiition is similar to the 
one used for type F4 as before: application of 16.5.5 and (in this case) use of the 
triviality of H 1(F, SLn), for various n. We skip the details. 

To prove (ii) observe that by 15.5.7 we know the highest root of the (by 15.5.6) 
irreducible root system FR. In the present cases the highest root determines the root 
system uniquely. □ 

17.5.5. Denote by GD-Do an F-form of H with index (D, Do, id). Then 16.5.5 gives 
conditions on F for the existence of GD-Do, which we now review. Of course, the 
split group GD exists over any field F. 
(a) G01 (Gil.8}) exists if and only if H 1 (F, Spin14) (respectively, at (F, Spin12)) con
tains anisotropic elements. This is equivalent to the existence over F of anisotropic 
quadratic forms in the appropriate dimension with trivial invariant~ (see 17.3) and 
trivial Hasse invariant. The existence question is discussed in [Seib, V,5.2]. 
(b) G 111 exists if and only if H 1 ( F, K) contains anisotropic elements, where K is the 
simply connected, split group of type E1 . The existence question is discussed in [Ti7]. 
(c) G 17 ,s} exists if and only if at (F, K) contains anisotropic elements, where now K 
is simply connected, split, of type E6. A criterion for existence is contained in 17.6.5. 
(d) Gu.6.7.s1 exists if and only if Ht(F, Spin8) contains anisotropic elements. 
(e) A general description of anisotropic F-forms is not known. Nor does one know 
necessary and sufficient conditions on F for each F-form of G to be isotropic. 
(f) The classification of F -forms of groups of type Es is tantamount to the classifica
tion of F-forms of the corresponding Lie algebra, by the next proposition. There are 
explicit constructions of Lie algebras of type Es, which realize some of the possible 
indices (see [Fre, II], [Ti3]). Let H be F-split of type Es, with Lie algebra {J. This is 
a Lie algebra with an F -structure. 

17.5.6. Proposition. Ht (F, H) classifies the F-forms of{). 

By the principle of 11.3.3 this will follow if we show that His the automorphism 
group of {J, and is defined over F. 

Let S be the space of k-homomorphisms Hom({) ®k {J, {J). The group M = G L(~) 
acts on it. S and M have obvious F -structures, and the action is defined over F. The 
Lie algebra structure on {J is an elements E S(F), and the automorphism group of {J 
is the isotropy group Ms. Application of 12.1.2 shows that Ms is defined over F if the 
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fixed point set L(M)s of sin the Lie algebra L(M) = End(Q) coincides with L(Ms), 
Now L(M)s is the space of derivations of Q, i.e. of linear maps D of Q such that 

D[u, v] = [Du, v] + [u, Dv] (u, v, e Q) 

(to see this observe that S '.::::'. Q* ® Q* ® Q, where Q* is the vector space dual of Q and 
use 4.4.14 (ii)). 

The construction of semi-simple groups with a given simply laced root system in 
10.2 shows that His a subgroup of Ms (proof of 10.2.8) and that dim L(Ms) = dim Q 
(10.2.6). Hence 

dim H < dim Ms = dim L(Ms) = dim Q = dim H, 

and dim H = dim Ms, It follows that His the identity component of Ms, so that Ms 
normalizes H. But since H has no outer automorphisms, the cosets of Ms/ H can be 
represented by linear maps centralizing Ad(H) and also ad(Q). Using the description 
of Q given in 10.2 one sees that such a map must be a scalar multiplication. Being an 
automorphism of Q it must be the identity. 

We have proved that H '.:::::'. Ms, Also, dim L(M)s = dim H. The proposition fol-
lows from 12.1.2. □ 

17.6. Descriptions for type F4 

17.6.1. As in the case of type G2, the classification of groups of type F4 is tantamount 
to the classification of certain algebraic structures, which we call Albert algebras. In 
characteristic # 2 these are closely related to the exceptional Jordan algebras. We 
review the relevant results. 

Let V = (M3) 3. This is a 27-dimensional vector space, with an obvious F
structure. Let d and t be the determinant and trace functions on M3. Denote by N the 
cubic form on V defined by 

N(x) = d(xo) + d(x1) + d(x2) - t(xox1x2). 

There is a unique quadratic map v : M3 ➔ M3 such that for a e GL3 we have 

We denote by n the quadratic map V ➔ V with 

Then n is defined over F. For x, y e V put x x y = n(x + y) - n(x) - n(y). This 
defines a symmetric bilinear map V x V ➔ V, which is defined over F. Finally, 
define the non-degenerate symmetric bilinear form u on V by 

a(x, y) = t(XoYo + X1Y2 + X2Y1), 



306 Chapter 17. Classification 

The ingredients N, n, a are defined over F. 
We define 

N(x, y) = (dN)x(y). 

This is a polynomial function on V x V, homogeneous quadratic in x and linear in y, 
and 

N(x + y) = N(x) + N(x, y) + N(y, x) + N(y). 

Then 

N(x, y, z) = N(x + y, z) - N(x, z) - N(y, z) 

defines a symmetric trilinear form on V with N(x, x, x) = 6N(x). Let e E V(F) be 
the point ( 1, 0, 0). We have the following properties for x, y E V: 
(i) N(e) = 1, n(e) = e; 
(ii) a(x, y) = N(e, x)N(e, y) - N(e, x, y); 
(iii) N(x, y) = a(nx, y); 
(iv) n(nx) = N(x)x. 

(i) is clear. For proofs of the other formulas see [Sprl, p. 61-63]. 
We call, more generally, Albert algebra A over F a vector space V with F -

structure, provided with a cubic form N (the norm form), a non-degenerate symmetric 
bilinear form (the trace form), both defined over F and an element e E V(F), such 
that the analogues of (i), (ii), (iii), (iv) hold and that this structure is isomorphic over 
Fs to the one defined above, which we call the standard Albert algebra A. This 
definition of an Albert algebra is equivalent to the one given in [Pe] (where further 
references are given). 

From the point of view adopted in [Sprl], an Albert algebra is a vector space with 
an inverse-like birational map. In the case of A this map is given by 

jx = (N(x))-1n(x), 

on a dense open subset of V. It follows from (iv) that N (nx) = N (x )2, which implies 
that j is involutorial. The inverse-like character is shown by the identity (valid on a 
dense open subset) 

j(e +x) + j(e + jx) = e, 

see [loc.cit., p. 58]. In [loc.cit.] a general theory of such structures (called ]-structures) 
is developed. 

17.6.2. Consider the standard Albert algebra A. Let H1 c GL(V) be the subgroup of 
G L ( V) whose elements fix the cubic form N. It is a linear algebraic group. It follows 
from the definitions that for u E H1 we have 

N(ux, uy) = N(x, y). 
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Let u be the contragredient of u with respect to a, i.e. 

a(x, y) = a(ux, uy) (x, y, E V). 

By property (iii) we then have 

n(ux) = u(nx). 

Using (iv) one shows that u 1-+ u defines an automorphism of H1. Let H be the auto
morphism group of A. Using property (ii) we see that His the isotropy group of e in 
H1, hence is a linear algebraic group. 

17.6.3. Theorem. (i) H1 is a connected, quasi-simple, simply connected group of 
type E6 defined over F and is F -split; 
(ii) H is a connected, simple group of type F4 defined over F and F -split. 

These results are contained in [loc.cit.], as special cases of more general results. 
The first part of (i) is contained in the results of [loc.cit., 14.20]. That H1 is defined 
over F follows from [loc.cit., 14.27 (i), 4.10]. For the first part of (ii) see [loc.cit., 
14.24]. That H is defined over F follows from [loc.cit., 14.27 (iii)]. In [loc.cit., 
14.21] a maximal torus T of H1 is described. It is obvious that it is defined over F 
and F-split. By [loc.cit., 14.24], T contains a maximal torus of H. The latter is de
fined over F and F-split by 13.2.2 (i), and (ii) follows. D 

17.6.4. We have seen in 17.5.1 that H 1(F, H) classifies the forms of F-groups of 
type F4. From 17.6.3 (ii) it follows by 11.3.3 that H 1 (F, H) also classifies the (iso
morphism classes) of Albert algebras over F. There are constructions (first and second 
Tits constructions) of Albert algebras over F by means of which all Albert algebras 
over F can be obtained, up to isomorphism (see [Sprl, §5], [Pe] or [Kn, §40)). The 
ingredients of the first construction are a a central simple algebra K of dimension 9 
over F and an element a E F*. Denote by d and t the reduced norm and reduced trace 
of K. Define an Albert algebra A ( K, a) over F as follows: V = K 3 and e = (I, 0, 0). 
The cubic form N on V is given by 

Then n and a are determined by the formulas (ii) and (iii) of 17.6.1 and are, in fact, 
given by the same formulas as in 17.6.1. Clearly, A= A(M3, 1). Also, A(K, a) is 
Fs-isomorphic to A. 

The ingredients of the second Tits construction are a central simple algebra L with 
an involution of the second kind t, with center E. Let L + c L be the fixed point set 
oft. Assume that F = En L +, then Eis a quadratic extension of F. Let u E L + 
and fJ E F be such that, d and t now denoting reduced norm and trace of L, we have 
d(u) = {J(t{J). 
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We define an Albert algebra A(L, u, {3) as follows. We have V = L + EB L, 
e = (1, 0). The cubic form N is given by 

N((a, b)) = d(a) + {3d(b) + t({3d(b)) - t(abut(b)). 

Again, n and a are determined. Then A(L, u, {3) is isomorphic over E to A(L, {3). 
Let A be an Albert algebra over F, with underlying vector space V and cubic 

form N. Let H1 (A) and H (A) be, respectively, the groups fixing N and the auto
morphism group of A. These are F-forms of the groups H1 and Hof 17.6.3. They 
are semi-simple of types E6, respectively F4. We say that A is reduced if there exists 
x E V(F) - {0} with N(x) = 0. Otherwise, A is an Albert division algebra over F. 

17.6.5. Theorem. ( i) A is isomorphic to a first Tits construction A ( K, a) or a second 
Tits construction A(L, u, {3); 
(ii) A is reduced if and only if H (A) or H1 (A) is isotropic over F. 

For (i) see [loc.cit., 15.9] or [Pe, p. 201]. Assume that H(A) or H1(A) contains 
a non-trivial F-split torus S. Let x e V(F) - {0} be a weight vector for a non-zero 
weight of S in V. From the fact that the groups leave invariant N, one deduces that 
N(x) = 0. Hence A is reduced. 

Conversely, if this is so one deduces from property (iv) of 17.6.1 that there is 
x e V (F) - {0} such that n(x) = 0. Using part (i) one sees, by working in a first 
or second Tits construction, that there is also such an element which, moreover, sat
isfies a(e, x) # 0. We may assume that a(e, x) = 1. One then checks that x is an 
idempotent element of A, in the sense of [Sprl, p. 45]. By [loc.cit., 10.1] the idem
potent element x determines a two dimensional F -split torus in the group generated 
by H1 (A) and the non-zero scalar multiplications of V, which is a reductive F -group 
with commutator group H1 (A). Then H1 (A) must contain an F-split subtorus. That 
the same holds for H(A) can be deduced from the fact that a reduced Albert algebra 
can be coordinatized by an octonion algebra (see [Pe, p. 199]). We next describe this 
coordinatization. 

17.6.6. Reduced Albert algebras. Let C be an octonion algebra over F, with norm 
form Ne and let 

d = diag(d1, d2, d3) 

be a diagonal matrix in GL3(F). Let A(C, d) be the set of 3 x 3-matrices x = (xij) 
with entries in the algebra C and diagonal entries in k, which are Hermitian with 
respect to d, i.e. such that 

dx = '(dx), 

where xx = Nc(x), as in the proof of 17.4.3. Write x12 = c3, x23 = c1, x31 = c2. 
Define 
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where (hij) runs through the three cyclic permutations of (123) and Ne( , ) is the 
bilinear form associated to N c. For x, y E A we have 

a(x, y) = trace(xy). 

Define n by property (iii) of 17 .6.1. Then the ingredients N, n, a define a structure 
of Albert algebra A(C, d), which is easily seen to be reduced. See [Pe, p. 198]. 

17.6.7. Theorem. A reduced Albert algebra over Fis F-isomorphic to an A(C, d); 
(ii) If char(F) #- 2, 3, two reduced Albert algebras over Fare isomorphic if and only 
if their trace forms are equivalent over F. 

For (i) see [loc. cit.]. (ii) is a recent result, due to Serre (see [Se3, p.18] or [Pe, p. 
202]). D 

17.6.8. Relation with Jordan algebras. Assume that char(F) #- 2. Let A be an 
Albert algebra over F. The notations are as before. There is a unique structure of 
commutative algebra on V with identity e whose squaring operation is given by 

x 2 = n(x) + a(e, x)x - a(e, nx)e (x E V). 

It is defined over F. It is a Jordan algebra structure, i.e. we have 

see [Jac2, p. 21] or [Sprl, §6]. Denote this Jordan algebra over F by J(A). 
The last identity holds in any associative algebra B over F with symmetrized 

product 

1 
X Y = 2 (X o y + y o X), 

o denoting the product in B. Let :J(B) be the Jordan algebra with underlying space 
B and this product. The Jordan algebras J (A) are exceptional in the sense that they 
cannot be imbedded as subalgebra in an algebra :J(B), see [Jac2, p. 49-51]. In char
acteristic 2 one has similar results, involving quadratic Jordan algebras (see [Jac3, p. 
1 .45, p.1.49]). 

17.6.9. Using 17.6.3 (ii) and 17.6.7 (ii) we see that the classification of isotropic 
groups of type F4 over F (at least in characteristics #- 2, 3) is reduced to a prob
lem about quadratic forms over F. From 17 .6.5 we find that the classification of 
anisotropic groups of type F4 is reduced to the classification of Albert division alge
bras over F. By 17.6.5 (i) these can be obtained by a Tits construction. 

17.6.10. Lemma. A(K, a) (A(L, u, /3)) is an Albert division algebra if and only 
if a ¢ d(K (F)) (respectively, f3 ¢ d(F(E))). 
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The notations are as in 17 .6.4. The proof follows by a straightforward check, us
ing that reducedness is equivalent to the existence of a non-zero rational solution of 
nx = 0. □ 

17.6.11. It follows that an Albert division algebra exists over F if there is a nine di
mensional central simple division algebra K with center F such that not every element 
of F* is a reduced norm. By 12.3.9 (3) this is equivalent with H 1(F, SL1,K) # {l}. 
The classification problem of Albert division algebras over F has not yet been solved. 

17.6.12. By 17.4.4 groups of type G2 are classified by a cohomological invariant 
H 3(F, µ,2). In type F4 there are three cohomogical invariants of an Albert algebra V 
over F: /J(V) E H 3(F, Z/2Z), f 5(V) E H 5(F, Z/2Z), g3(V) E H 3(F, Z/3Z). 
It is not known whether these determine the isomorphism class of V. But there are 
partial results: for example, Vis reduced if and only if g3(V) = 0, and in that case the 
invariants /J(V), f 5(V) characterize the isomorphism class of V. For more details 
and references see [Pe], [Se3, §9] or [Kn, §41]. 

17.7. Type E6 

17.7.1. Assume that His simply connected of type E6. The root system is described 
in [Bou2, p. 260-262]. The Dynkin diagram 'Dis 

1 3 4 5 6 
0-0-0-0-0 

I 
02 

The cocenter C* has order 3. The automorphism group of 'D has order 2. Its non
trivial element acts on D as the opposition involution t of 15.5.8. The orbits oft 
are 

{1, 6}, {3, 5}, {2}, {4}. 

In this case the ingredient t' of the index need not be trivial. 
If char F -;/: 3 the center of H has order 3 (as follows from 8.1.12 (8)). It is 

generated by 

(77) 

where t is a primitive third root of unity. In fact, it is straightforward to check that 
a(z) = 1 for all a E D. The central isogeny rr of 16.5.4 is separable, its kernel is the 
center of H. 
If char F = 3 this isogeny is of the form H ~ H /a, as in 12.2, where a is the one 
dimensional central subalgebra of the Lie algebra g spanned by 

(78) 
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with X 1 = daf (1). We leave it to the reader to check this fact. 

17.7.2. Proposition. (i) In type E6 we have, apart from D - Do - 0, D, the 
following possibilities for D - D0: 

r trivial: {l, 6}, {2, 4} (and perhaps {2} if char F = 3), 

r non - trivial: {2}, {l, 6}, {2, 4}, {l, 2, 6}; 

(ii) In the respective cases of (i) the root system FR is of type 

The highest root is (1, 2, 2, 3, 2, 1). By 15.5.8 we know that Do has to be stable under 
the opposition involution t. We then use 15.5.6 and 15.5.7, as in 17.5.2 and 17.5.4, 
and the description of highest root coefficients for types B, C, D given in [Bou2, 
Planches]. It follows that we can only have the following non-trivial possibilities for 
D-D0 : 

r trivial: {2}, {l, 6}, {2, 4}, {3, 5}, {l, 2, 6}, {2, 3, 5, }, 

r non - trivial : {2}.{l, 6}, {2, 4}, {l, 2, 6}. 

To prove (i) we may assume that r is trivial. To prove that the case {3, 5} is impossible 
we apply 16.5.6. With the notations used there we have that 1r M contains a factor over 
F of type SL2. This implies that H 1 (F, 1r M) cannot contain anisotropic elements. 
The cases {2, 3, 5} and {1, 2, 6} are eliminated in a similar way. 

If D - Do= {2} we have M ~ SL6. If char F #- 3, the element z of (77) lies in 
M and 1r M ~ SL6/ U, where U is the group of third roots of unity. An anisotropic 
form of SL6 must be of the form SL1,K, where K is a central division algebra over 
F of dimension 36, see 12.3.5 (1) and 12.3.8 (3). Then K defines an element in the 
Brauer group of F, which has order 6. On the other hand the image in H 1(F, PGL6) 
of an anisotropic element of H 1 (F, SL6/ U) would define an element of order 3 in the 
Brauer group, which leads to a contradiction. For more details see [Seib, p. 71]. In 
characteristic 3 this case should also be impossible, but there is no reference. We have 
proved (i). (ii) follows by an argument as in the proof of 17.5.4 (ii). □ 

17.7.3. We write again GD-Do for an inner form with prescribed D0. If r is non-trivial 
let E =Erbe the quadratic extension defined by Kerr. We then write EGD-Do· We 
discuss the question of existence. 
(a) EG(21 . With the notations of 16.5.4 we see from 16.5.5 that EG(2J exists if and 
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only if HI(F, (SL6/U)r) contains anisotropic elements (char F =f. 3, U being as in 
the proof of 17.7.2). By the discussion of 17.1 this amounts to the existence of certain 
anisotropic hermitian forms over a division algebra with center E with an involution 
of the second kind fixing F. See [Seib, p. 99, p. 112-113]. 
(b) An application of 16.5.5 and 16.5.6 shows that for Go.6} to exist over F it is 
necessary and sufficient that HI(F, Spin8) contains anisotropic elements. Likewise, 
EG 0 ,61 exists over F if and only if HI(F, (Spin8)r) contains anisotropic elements. 
They come from anisotropic quadratic forms Q over F with S(Q) = 8(-r) (notations 
as in 17.3). See [loc.cit., p. 98, p.111]. 
(c) G12,41. Assume first char F =I- 3. Then Ker rr c M (use (77)). In fact, we can 
identify M with SL3 x SL3 such that Ker rr is the subgroup Z of elements (c, c-I ), 
where c lies in the center of SL3. The image in M of SL3 x { 1} is a normal subgroup 
isomorphic to SL3, and the quotient is isomorphic to PGL3. Using the exact sequence 
of 12.3.4 (ii) we conclude that HI (F, rr M) contains anisotropic elements if and only 
if HI (F, PGL3) contains such elements. By a Lie algebra argument, using the ele
ment of (78), we see that the same holds in characteristic 3. We conclude from 16.5.5 
and 12.3.5 (1) that G12,4} exists over F if and only if there exists a 9-dimensional di
vision algebra with center F. Similarly, EG 12,41 exists if and only if there exists such 
a division algebra with center E with an involution of the second kind fixing F (see 
17.1.4). 
(d) EG 11 ,2,61 exists if and only if HI (F, (SL4)r) contains anisotropic elements. This 
amounts to the existence of certain anisotropic hermitian forms over a division alge
bra with center E and an involution of the second kind fixing F, as in the case E G 121. 
See [loc.cit., p. 98, p.112-113.] 

17.7.4. Explicit description. Let A be the standard Albert algebra introduced in 
17 .6.1. It determines a cubic form N on a 27-dimensional space V, these ingredients 
being defined over F. By 17.6.3 (i) we may view Has the stabilizer of Nin GL(V). 
It follows from the principle of 11.3.3 that we can identify HI (F, H) with the set 
of isomorphism classes of F-forms of N (i.e. cubic forms on V over F which are 
Fs-isomorphic to N). 

As in 17.6.5 one sees that if HI(F, H) contains an anisotropic element, a corre
sponding cubic form N' must be anisotropic, in the sense that N' (x) = 0 has only the 
zero solution in V (F). Such an anisotropic form is provided by an Albert division 
algebra over F. A description of all anisotropic groups of type E6 does not seem to 
be known. 

17 .8. Type E1 

17.8.1. Assume that H is simply connected of type E1. The root system is 
described in [Bou2, p. 264-266]. The Dynkin diagram is 
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1 3 4 5 6 7 
0-0-0-0-0-0 

I 
02 
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The group A is trivial and the cocenter C* has order 2. If char F =f:. 2 the center of H 
has order 2. Its non-trivial element is 

It is easily seen that a(z) = 1 for all a e D. In characteristic 2 the isogeny rr is of the 
form H ➔ H/a, as in 17.7.1. Now ais spanned by 

17.8.2. Proposition. (i) In type E1 we have, apartfrom D-D0 = 0, D the following 
possibilities for D - Do 

{l}, {6}, {7}, {l, 6}, {l, 6, 7}, {1, 3, 4, 6}; 

(ii) In the respective cases of ( i) the root system FR is of type 

The highest root is (2, 2, 3, 4, 3, 2, 1). Application of 15.5.6 and 15.5.7 leads to a 
longish list of possibilities for D - Do, viz. 

{1}, {2}, {6}, {7}, 

{l, 2}, {l, 3}, {l, 5}, {1, 6}, {1, 7}, {2, 3}, {2, 5}, {2, 6}, {2, 7}, {3, 6}, {5, 6}, 6, 7}, 

{1, 2, 6}, {1, 2, 7}, {1, 6, 7}, {2, 6, 7}, 

{l, 2, 3, 4}, {1, 2, 4, 5}, {1, 2, 6, 7}, {l, 3, 4, 6}, {1, 4, 5, 6}, {2, 3, 4, 6}, {2. 4, 5, 6}. 

We have to eliminate the cases not listed in (i). Assume first that D - Do has at least 
two elements and contains a 2 (and is not listed in (i)). Application of 16.5.7 with 
D1 = D - {a2} leads to an index for type A6 that violates 15.5.8, except for the 
case of {1, 2, 7}. In that case application of 16.5.7 with D1 = D - {ai} leads to a 
non-existent index for type D6. 

There remain the cases that 

D - Do= {2}, {l, 3}, {1, 5}, {l, 7}, {3, 6}, {5, 6}, {6, 7}, {1, 4, 5, 6}. 
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In the first one the group M of 16.5.4 is isomorphic to SL,, whose cocenter is of order 
7, prime to the order 2 of the cocenter of G. By 16.5.6 we have rr M ~ M, and we 
can proceed as in previous cases. 

In the second case M ~ SL
6

. When char F # 2 the element z of 17.8.1 does not 
lie in M, and rr M ~ M. We can proceed as before. If char F = 2 the same is true, 
via a Lie algebra argument. 

In the remaining six cases apply 16.5.7 with D 1 = D-{a;}, where i = 5, 7, 3, 5, 7, t., 

respectively. This leads to indices for groups of respective types A4 , E6 , A5, A2, E6, A2 

which violate 16.5.7. We have established (i). 

Except for the case of {I, 6, 7}, (ii) follows, as before, from the fact that the high
est root determines FR. In the exceptional case we can only conclude that FR is either 
of type B3 or of type C3. To rule out the first case, one can use the description of the 
positive roots of a root system of type E1 given in the last lines of [Bou2, II ,p. 264]. 
A straightforward check, using the description of root systems of types B3 and C 3 

given in [loc.cit.], shows that we have the second alternative, establishing (ii). □ 

17.8.3. We discuss the problem of existence. Notations are as in 17.5.5. In the 
discussion below we assume that char F i= 2. In characteristic 2 the results are the 
same but the arguments are slightly different (the Lie algebra comes into play). We 
skip the details. 
(a) Gu}• The group M is now isomorphic to Spin

12 

and z E M. It follows that 
rr M ~ M/{1, z}, so is isomorphic to a quotient of Spin

12

. But rr Mis not isomorphic 
to SO

12
, as z does not lie in the kernel of the isogeny Spin

12 

➔ SO
12

. The existence 
of G {1} is tantamount to the existence of certain quadratic forms over division alge
bras. See [Seib, p. 95]. 
(b) G{6}· Now M ~ Spin10 x SL2, and z E M. One checks that rr M ~ SO10 x 
PGL2, from which it follows that G{6} exists if and only if there exists over Fa IO
dimensional quadratic form with trivial <5-invariant and a quaternion division algebra. 
(c) In the case of Gm the group Mis of type E6 . Application of 16.5.6 shows that 
rr M ~ M. It follows that G{?} exists if and only if H 1 (F, K) contains anisotropic el
ements, where K is split, simply connected of type E6 . This condition was discussed 
in 17.7.4. 
(d) The case of Gu.6} is similar to case (b). Now M ~ Spin

8 

x SL2 and rr M ~ 
SO

8 
x PGL

2
. The conclusion is that G 11 ,6} exists if and only if there exists over F an 

8-dimensional quadratic form with trivial <5-invariant and a quaternion division alge
bra. 
(e) In the case of Gu.6.7} we have M ~ Spins, and z ¢ M, from which one concludes 
that G 11 ,6,7} exists if and only if H 1 (F, Spins) contains anisotropic elements (like case 
(d) in 17.5.5). 
(f) Go.3.4,6}· Now M ~ SL2 x SL2 x SLz and z corresponds to (c, c, c), where c is 
the central element of SL2. One shows (compare with 17.7.3, case (c)) that Gu.3.4,6} 

exists if and only there exists a quaternion division algebra with center F. 
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(g) An exhaustive description of anisotropic forms of G, for arbitrary F, is not known. 
In [Ti7] one finds a construction of an inner anisotropic form, assuming the existence 
of certain central division algebras over F with dimension 16, defining an element of 
order 4 in the Brauer group. 

17.8.4. Explicit description. Assume char F #, 2. Let A be the standard Albert 
algebra over F. With the notations of 17 .6.1 put 

M = V EB V EB k EB k. 

This is a 56-dimensional vector space over k, with an obvious F-structure. For m = 
(x, y, ~' TJ) e M define 

1 
J(m) = a(nx, ny) - ~N(x) - TJN(y) - 4(a(x, y) - ~T/)2. 

J is a homogeneous polynomial function on M of degree 4 defined over F. 

17.8.5. Proposition. (char F = 0) The identity component of the stabilizer of J 
in GL(M) is F-isomorphic to H. 

This can be deduced from [Fre, I, p. 228-229]. There is no doubt that the proposi-
tion is also true if char F #, 2, 3. D 

It follows by the principle of 11.3.3 that (at least in characteristic 0) HI (F, G) 
classifies isomorphism classes of certain F-forms of the quartic form J. It is likely 
that anisotropic elements of HI (F, H) come from anisotropic forms of J (defined as 
in 17.7.4). 

17.9. Trialitarian type D4 

17.9.1. We now assume that His a split simply connected F-group of type D4. We 
may assume that it is the spin group Spin8. For the root system see 7.4.7 (4), (7). The 
Dynkin diagram is 

1 2 3 
0-0-0 

I 
04 

Its automorphism group A is isomorphic to the symmetric group S3. The cocenter C 
is isomorphic to (Z/2Z)2, see [Bou2, p. 257]. 

17.9.2. Proposition. (i) In the trialitarian D4-case the possibilities for D - Do are 
0, {2}, D; 
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(ii) In the second case the root system FR is of type BC1. 

The proof is left to the reader. □ 

17.9.3. Let E/ F be the Galois extension (of degree 3 or 6) defined by Ker r. The 
notation EG D-Do is as in 17.7.3. 
(a) In the case of EG{2l the group Mis isomorphic to SL~. If char F # 2 the center 
of H is contained in M. One sees that rr M is isomorphic to the quotient of SL~ by 
the subgroup of order 4 of elements (c1, c2, c3), the c; being central with c1 c2c3 = 1. 
There is a similar description in characteristic 2. 
By 16.5.5, H 1 (F, (rr M)T) must contain anisotropic elements. An explicit condition 
for this to be the case does not seem to be in the literature. The same holds for the 
explicit description of the anisotropic F -forms of H. 
(b) The classification of the trialitarian forms of G is dealt with in [Kn, §44]. 

17.9.4. Explicit description. The trialitarian forms of G are related to certain al
gebraic structures, resembling the octonion algebra structures of 17.4.1. For details 
we refer to [Kn, §36] or [SpV, Ch. 4]. 

Let A be an F-form of the commutative algebra k EB k EB k. Then A(F) is a 
3-dimensional separable commutative F-algebra (an example is a separable cubic ex
tension of F). For x = (x1, x2, x3) E A define 

Then n is the norm map on A; it is defined over F. If xis invertible we have n(x) # 0 
and x-1 = (n(x))-1q(x). This implies that the quadratic map q : A ➔ A is also 
defined over F. 
A twisted composition structure over A is a triple (V, N, Q) consisting of a free A
module V, a cubic map N : V ➔ k and a quadratic map Q : V ➔ V, all ingredients 
being defined over F, and such that for x E A, v E V: 
(1) Q(xv) = q(x)Q(v), 
(2) No Q = q o N, 
(3) N(v, Qv) E k. 
One shows that the rank of V is 1, 2, 4, 8. From now on we assume that it equals 8, in 
which case we say that A is of octonion type. 

17.9.5. Consider the case that E = A(F) is a cyclic extension of F of degree 3, 
and let a be a generator of the Galois group of E / F. For x E E we have n (x) = 
x(ax)(a 2x), q(x) = (ax)(a 2x). In this case, C = V(F) is an 8-dimensional vector 
space over E, with a non-degenerate quadratic form N. One shows that there is a 
unique F -bilinear multiplication ( v, w) ~ v * w such that for x, y E E, c, d E C we 
have Q(c) = c * c and 
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(4) xc *yd= (ax)(a 2y)c * d, 
(5) N(c * d) = (a N(c))(a 2 N(d)), 
(6) N(c, c * c) E F. 
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The structure (C, *, N) satisfying (4),(5),(6) is a twisted composition algebra (of oc
tonion type). 

The following result gives the connection with trialitarian forms of G. 

17.9.4. Proposition. The automorphism group of an octonion twisted composition 
structure over Fis defined over F and is a trialitarianform of H. 

See [Kn, 36.5, 36.13] and [SpV]. If E/ Fis acyclic extension we have A(F) = E. 

□ 

There is a close relation between twisted composition structures of octonion type 
and Albert algebras. We refer to [Kn] or [SpV] for more details. 

17.10. Special fields 

In this final section we give a very brief review of the situation over some special 
fields. 

17.10.1. Fields of dimension < 1. F has dimension < 1 if F is the only central 
division algebra over F. Examples are finite fields and the field of rational functions 
C(t). See [Se2, Ch. Ill, §3]. 

17.10.2. Theorem. Assume F to be perfect of dimension < 1. Then H 1 (F, H) = 1 
for any connected F-group H. 

The theorem is due to Steinberg [St2] (reproduced as an appendix in the English 
translation of [Se2]). □ 

If H is reductive the perfectness assumption can be omitted (see [BoS, 8.6]). It 
follows from the theorem (see [Se2, Ch. ID, 2.2]) that over a field of dimension < 1 
any semi-simple F-group is quasi-split (which we already knew in the case of finite 
fields, see 16.2.9 (2)). 

Next let F = R. The following theorem goes back to E. Cartan. 

17.10.3. Theorem. A connected semi-simple F-group H has an anisotropic F-form. 
It is unique up to F -isomorphism. 

For a proof see [Hal, 3.3.2]. □ 
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Using the theorem one can determine the possible indices of quasi-simple F -
groups, via the case by case discussion of this chapter. The list that one obtains is 
given in [Sat] and [Ti2]. 

The following result, due to Borel and Serre (see [Se2, Ch. III, 4.5]), describes 
the Galois cohomology sets. 

17.10.4. Theorem. Let H be an anisotropic semi-simple R-group. There is a bi
jection of HI (R, H) onto the set of conjugacy classes of elements of order < 2 of 
H(R). 

The group H need not be connected. Applying it to a group Aut( G) one obtains 
from 16.4.4 that the R-forms of an anisotropic, connected, quasi-simple R-group G 
are classified by conjugacy classes of automorphisms of G of order < 2, a result 
which also goes back to E. Cartan. 

17.10.S. Local fields. Now let F be a field with a non-trivial discrete valuation, 
for which it is complete. Assume that the residue field F is perfect. 

A deep study of reductive F -groups was made by Bruhat and Tits [BruT]. The 
following is proved in [loc. cit., Ch. ID, 4.3]. 

17.10.6. Theorem. Assume that F has dimension ::: 1. Let G be a connected, semi
simple, simply connected F-group. Then: 
(i) HI (F, G) = 1, 
(ii) If, moreover, G is quasi-simple and anisotropic then its root system is of type An. 

Using part (ii) one can determine the possible indices of quasi-simple F-groups. 
The list is contained in [Ti2]. The results apply, in particular, in the case that Fis a lo
cal field (in which case Fis finite). For further details and references see [Se2, III, §3]. 

17.10.7. Global fields. Assume that Fis a global field. Let V be the set of places 
( equivalence classes of absolute values) of F and denote by V 00 the set of archimedean 
places (it is non-empty if and only if F is an algebraic number field). For v e V denote 
by Fv the corresponding completion of F. For any F-group G we have a map 

r: HI(F, G) ➔ n HI(Fv, G). 
veV 

If G is connected, semi-simple and simply connected then by 17 .10.6 all factors in the 
right-hand side with v ¢ V00 , are 1, so we can take the product over the finite set V00 • 

17.10.8. Theorem. If G is connected, semi-simple and simply connected then r is 
a bijection. 
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This is the 'Hasse principle.' It suffices to prove this when G is quasi-simple. In 
that case it was was proved by Harder, except for the case that F is a number field and 
G is of type E8. This case was settled by Cemousov. Harder's proof for the number 
field case involves a case by case analysis (but not in the function field case). See 
[Ha2], [Ha3] and [Ce]. More details about the number field case can be found in [Pl, 
Ch. 6]. 

Notes 

The determination of the possible indices of quasi-simple groups is due to Tits, see 
[Ti2]. This paper does not contain proofs. In many cases these were given in [Seib]. 
See also [Ti7] and [Sat]. 

In the account given in the present chapter we have limited ourselves. Our account 
is fairly complete in the case of classical types. But in the exceptional types we have 
been more sketchy. 

A full treatment of what is known about the classification of quasi-simple groups 
is beyond the scope of this book, as is a thorough review of what is known about the 
situation over special fields. We have given a few indications in 17. 7 .10. 
In 17.5.4 and 17.6.11 we briefly mentioned cohomological invariants. These are ex
amples of a general cohomological invariant found by M. Rost, for any simply con
nected, semi-simple group. They lie in H 3(F, A), where A is a (suitable) finite abelian 
group. See [Se3, 7.3]. 
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Table of Indices 
d n-d 

0 - ... - 0 -- e -- 0 - ... - 0 -- e -- 0 - ... - 0 

d rd n-ra n-d 
o- •·· -o--e--o- •·· -o--•--o-••· -o--•--o-••· -o--e--o- •·· -o 

r 
•--•-···-•--o-•••-o~o 

d rd 
o- •.. -o--•-- o- ... -o--•--o- ... - 0 =C= 0 

d rd 
o- •·· -o--•--o- •·· -o--•--o- •·· -o--o 

I 
0 

•--0--0--0--• 

I 
0 

o--o--e--o--o 

I 
• 

o--0--0--0--o 

I 
• 

•--0--0--0--• 

I 
• 

•--0--0--0--o--o 

I 
0 

o--0--0--0--•--o 

I 
0 

o--0--0--0--o--• 

I 
0 

•--0--0--0--e--o 

I 
0 
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14. •-0-0-0-0-• 

I 
0 

15. •-•-•-o-e-o 

I 
0 

16. •-0-0-0-0-0-0 

I 
0 

17. 0-0-0-0-0-0-• 

I 
0 

18. •-0-0-0-0-0-• 

I 
0 

19. 0-0-0-0-0-•-• 

I 
0 

20. •-0-0-0-•-•-• 

I 
0 

21. o-o=>=:o-• 

22. o-•-o 

I 
0 

The black vertices of the Dynkin diagrams are those of the possible subsets D-Do 
for groups that are not anisoptropic or quasi-split, over some ground field F. They 
determine the index, except in the case of outer forms, in which case there is still the 
ingredient i-. 

Comments 

1. Inner type An-I (n 2: 2) (17.1.3). d > 2 is a divisor of n. 
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2. Outer type An-l (n > 2) (17.1.6). dis a divisor of n and 2rd < n; if d = 1 
then 2r < n. 

3. Type Bn (n:::: 2) (17.2.3). We have 1 < r < n. 

4. Type Cn (n > 3) (17.2.10). dis a power of 2 dividing 2n and rd< n; if d = 1 
then r < n. 

5. Inner and outer type type Dn (n > 4), non-trialitarian if n = 4 (17.3.13, see 
also 17.3.14). dis a power of 2 dividing 2n and rd < n; if d = 1 then r < n. If 
rd < n - 3 both inner and outer forms occur. If rd > n - 2 and the type is outer then 
rd= n - 1, n - 2 and an-1, an ED - Do, 

6-9. E6 (17.7.2). All occur as outer types; 6, 7 (and perhaps 8 in characteristic 3) 
as inner types. 

10-15. Type E1 (17.8.2). 

16-20. Type E8 (17.5.4). 

21. Type F4 (17.5.2). 

22. Trialitarian type D4 (17.9.2). 
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