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In this contribution we report about Feynman’s approach to gravitation, starting from
the records of his interventions at the Chapel Hill Conference of 1957. As well known,
Feynman was concerned about the relation of gravitation with the rest of physics. Proba-
bly for this reason, he promoted an unusual, field theoretical approach to general relativ-
ity, in which, after the recognition that the interaction must be mediated by the quanta of
a massless spin-2 field, Einstein’s field equations should follow from the general properties
of Lorentz-invariant quantum field theory, plus self-consistency requirements. Quantum
corrections would then be included by considering loop diagrams. These ideas were fur-
ther developed by Feynman in his famous lectures on gravitation, delivered at Caltech
in 1962-63, and in a handful of published papers, where he also introduced some field
theoretical tools which were soon recognized to be of general interest, such as ghosts and
the tree theorem. Some original pieces of Feynman’s work on gravity are also present
in a set of unpublished lectures delivered at Hughes Aircraft Company in 1966-67 and
devoted primarily to astrophysics and cosmology. Some comments on the relation be-
tween Feynman’s approach to gravity and his ideas on the quantum foundations of the
fundamental interactions are included.

Keywords: Gravitation; Quantum field theory; Loop diagrams.

1. Introduction: a timeline

Among the many scientific interests that Feynman had in the 1950s and in the 1960s,

a prominent place was taken by the understanding of the relation of gravitation to

the rest of physics,a and in particular the assessment of its consistency with the

uncertainty principle.b Feynman likely began to seriously think about gravity in

a“Next we shall discuss the possible relation of gravitation to other forces. There is no explanation
of gravitation in terms of other forces at the present time. It is not an aspect of electricity or
anything like that, so we have no explanation. However, gravitation and other forces are very
similar, and it is interesting to note analogies.” (Ref. 1, Vol. 1, Sec. 7-7); “My subject is the
quantum theory of gravitation. My interest in it is primarily in the relation of one part of nature
to another.” (Ref. 2, p. 697)
b“...it would be important to see whether Newton’s law modified to Einstein’s law can be further
modified to be consistent with the uncertainty principle. This last modification has not yet been
completed.”(Ref. 1, Vol. 1, Sec. 7-8)

http://arxiv.org/abs/2111.00333v1
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the early 1950s, just after completing his work on quantum electrodynamics. This

was attested by Murray Gell-Mann3 in a paper written for a Physics Today special

issue devoted to Feynman’s legacy,c as well as by Bryce S. DeWitt4, in a letter to

Agnew Bahnson written in November 19555. Feynman’s efforts began in a period

in which general relativity, after a stagnation which lasted about thirty years, was

gradually emerging as a mainstream research area, giving rise to a process known

as the renaissance of general relativity6.

A crucial event to consider, in order to reconstruct Feynman’s approach to grav-

itation, is the 1957 Chapel Hill conference4 on The Role of Gravitation in Physics,

which was also pivotal to the renaissance of general relativity. At that conference,

the gravitational physics community delineated the tracks along which subsequent

work would develop in the subsequent decades. The main threads were the fol-

lowing7: classical gravity, quantum gravity, and the classical and quantum theory

of measurement (as a bridge between the previous two topics). In that conference

Feynman’s work on gravity, of which nothing had been published yet, was pre-

sented for the first time, and put on paper in the records4. In fact these written

records testify that by the time of the conference he had already deeply thought,

and performed computations, about each of the above listed three topics, focusing

in particular on classical gravitational waves, on the arguments in favor of quan-

tum gravity from fundamental quantum mechanics, and finally on quantum gravity

itself. Thus, in this contribution, we take as starting point for our reconstruction

Feynman’s interventions at Chapel Hill and follow the development of his work in

the subsequent years, until the late sixties, where he apparently lost interest in the

subject.

The ultimate goal of Feynman’s work was the development of a quantum field

theory of gravitation, which led him to face deep conceptual as well as mathematical

issues, such as divergent integrals and the lack of unitarity beyond the tree level

approximation. This task accompanied Feynman for some years, as stated in a

letter8 he wrote to Viktor F. Weisskopf in 1961 (“As you know, I am studying the

problem of quantization of Einstein’s General Relativity. I am still working out the

details of handling divergent integrals which arise in problems in which some virtual

momentum must be integrated over”), as well as reported by William R. Frazer9

in a short summary of the talks given at the La Jolla conference, later in the same

year.d A first comprehensive account of Feynman’s results on quantum gravity can

cIndeed here Gell-Mann remembered his visit to Caltech during the Christmas vacation of 1954-
55, the discussions with Feynman about quantum gravity, and the fact that Feynman “had made
considerable progress”.
dThe International Conference on the Theory of Weak and Strong Interactions was held in June
14-16, 1961, at the University of California, San Diego, in La Jolla. Here, Geoffrey F. Chew gave
his celebrated talk on the S-matrix10, while an afternoon session was devoted to the theory of
gravitation, where Feynman reported on his work on the renormalization of the gravitational field,
and recognized non-unitarity as the main difficulty, which was shared also by Yang-Mills theory.
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be found in the talk he gave in 1962 at the Warsaw conference,e whose written

version was later published as a regular paper in Acta Physica Polonica2. Further

details were given by Feynman much later, in a couple of papers11,12 published in

1972 in the Festschrift for John A. Wheeler’s 60th birthday13, which were written

in a period in which he was already deeply absorbed in the study of partons and

strong interactions.

Among the main sources which contribute to offer a clear account of Feynman’s

work on gravity issues, it is mandatory to include the famous Caltech Lectures on

Gravitation14, delivered in 1962-63 and aimed to advanced graduate students and

postdocs. Finally, there is some unpublished material, included in two sets of lec-

tures, given in the 1960s at the Hughes Aircraft Company, which only recently have

been made available on the web.f In particular, the 1966-67 set of lectures16, which

were devoted to astronomy, astrophysics and cosmology, contains an introductory

treatment of general relativity, with an emphasis on applications to the main sub-

jects. While sharing many similarities with the above quoted Caltech lectures14,

the Hughes treatment offers to the attentive reader several original points. In those

same years Feynman had succeeded in finding a new derivation of Maxwell’s equa-

tions17,18, and a generalization of this approach to gravity is suggested (but not

pursued) in several places in the Hughes lectures on astrophysics, as well as in the

set of lectures given in the following year and devoted to electromagnetism19.

After outlining the main steps and sources which helped us to reconstruct the

full development of Feynman’s work on gravitation,g in this contribution we focus

on two key issues: the formulation of quantum gravity as a quantum field theory of a

massless spin-2 field, the graviton, in whole analogy with quantum electrodynamics,

which is the content of Section 2, and the unitarity and renormalization issues

arising beyond the tree level approximation, presented in Section 3. Our concluding

remarks close the paper.

2. Gravity as a quantum field theory

Feynman’s strategy in approaching gravity was firstly outlined at Chapel Hill confer-

ence in a series of critical comments (Ref. 4, pp. 272-276), in which a non-geometric

and field theoretical line of attack is put forward. His starting point was an hypo-

thetical, counterfactual situation, in which scientists would discover the principles

of Lorentzian quantum field theories before general relativity.h The main concern

eThe International Conference on General Relativity and Gravitation was held in Jab lonna and
Warsaw in July 25-31, 1962, with Leopold Infeld as the chairman of the local organizing committee.
The discussion focused on three main topics: the general properties of gravitational radiation, the
quantization of gravity and the exact solutions of the Einstein field equations.
fSee Ref. 15 for a brief account of Feynman’s involvement in teaching at the Hughes Aircraft
Company.
gSee Ref. 20 for a comprehensive account of this work.
hIn fact, in Ref. 4, p. 273, Feynman said: “Instead of trying to explain the rest of physics in terms
of gravity I propose to reverse the problem by changing history. Suppose Einstein never existed
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in such a situation would then be to include a new force, the gravitational one, in

the framework of quantum field theory. This approach would be later completed

in the first part of the Caltech lectures14. Feynman’s reasoning was the following:

on the basis of the general principles of quantum field theory and of experimental

results it is possible to conclude that gravity, as any other force, has to be mediated

by exchanges of a virtual particle, which in this case is a massless neutral spin-2

quantum, the graviton. Thus, by constructing a Lorentz invariant quantum field

theory of the gravitoni and by imposing certain consistency requirements, full gen-

eral relativity should be recovered. Clearly, by following the same procedure for the

spin-1 case Maxwell’s equations are obtained (in this case it is much simpler, being

the theory linear). Such an approach testifies his ideas about fundamental interac-

tions as manifestations of underlying quantum theories18, which were expressed by

him several times, for example in the Hughes Lectures19:

I shall call conservative forces, those forces which can be deduced from

quantum mechanics in the classical limit. As you know, Q.M. is the under-

pinning of Nature (Ref. 19, p.35).

Let us describe the steps in more detail. First of all, one has to establish the spin

of the mediating quantum. Both in the Caltech14 and in the 1966-67 Hughes lec-

tures16, the choice of a spin-2 mediator was justified by the observation that energy,

which is the source of the gravitational force, grows with the velocity. The same

observation ruled out the possibility of a spin-0 field, because the associated charge

would decrease with the velocity. This result can be traced back to an old argu-

ment by Einstein (never published but recalled in Ref. 26, pp. 285-290), according

to which the vertical acceleration of a body would depend on its horizontal velocity,

and in particular would be zero for light, making light deflection impossible. Once

the spin of the graviton is established, one can easily construct the linearized theory

of the associated field, which is a massless spin-2 field. Nonlinearity then comes into

play because the graviton has to couple with anything carrying energy-momentum,

then also with itself, and this coupling must be universal. The resulting nonlinear

theory is general relativity. General covariance and the geometric interpretation

of general relativity are finally recovered as a byproduct of the gauge invariance

of the theory j. For Feynman, this was only half of the whole story. In fact, by

pushing calculations beyond tree level, quantum gravity effects would be taken into

account. This was Feynman’s ultimate goal, i.e. obtaining a quantum theory of

gravity, which in this approach amounts to the quantization of another field.

[...]”.
iThe linear theory for a massless spin-2 field and its massive counterpart was completely worked
out by Markus Fierz and Wolfgang E. Pauli in Ref. 21, on the basis of a previous work by Paul A.
M. Dirac22, while iterative arguments similar to Feynman’s ones were later put forward by Suraj
N. Gupta23 and Robert H. Kraichnan24 in an attempt to generate infinite nonlinear terms both
in the Lagrangian and in the stress-energy tensor. See for details Ref. 25.
jSee Ref. 14, p. 113.



November 2, 2021 0:59 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in Paper1˙mod page 5

5

Let us describe how Feynman sketched the above procedure at the Chapel Hill

conference (Ref. 4, pp. 272-276). In whole analogy with electrodynamics, he wrote

down the following action:
∫

(

∂Aµ

∂xν

−
∂Aν

∂xµ

)2

d4x+

∫

Aµj
µd4x+

m

2

∫

ż2µds+
1

2

∫

Tµνh
µνd4x

+

∫

(second power of first derivatives of h), (1)

where hµν is the new field associated with the graviton, i.e. a symmetric second-

order tensor field, which satisfies second order linear equations of the kind:

hµν,σ
,σ − 2h

µ

σ

,νσ
= T

µν
, (2)

where the bar operation is defined on a generic second rank tensor Xµν as:

Xµν =
1

2
(Xµν +Xνµ)−

1

2
ηµνX

σ
σ. (3)

The equations of motion for particles also follow from the above action:

gµν z̈
ν = − [ρσ, µ] żρżσ, (4)

where gµν = ηµν + hµν , ηµν is the Minkowski metric, and [ρσ, µ] are the Christoffel

symbols of the first kind.

However, when the field hµν is coupled to the matter according to Eq.(4), the

corresponding stress energy tensor Tµν does not obey to a conservation law, leading

to a consistency problem. This happens at variance with electromagnetism, where

Maxwell equations guarantee conservation of the current jµ. Instead here Tµν does

not take into account the effect of gravity on itself, which requires nonlinearity.k

Thus a suitable Tµν has to be found in order to satisfy the condition ∂νT
µν = 0.

The solution to this consistency issuel can be obtained by adding to the action a

nonlinear third order term in hµν , which leads to the following equation for Tµν :

gµλT
µν

,ν = − [ρν, λ]T ρν . (5)

One can then go on to higher order approximations, until the procedure converges.

But finding the general solution of Eq. (5) is a really difficult task in the absence

of a standard procedure. Feynman’s idea was to look for an expression for the

Tµν , and hence for the action, that is invariant under the following infinitesimal

transformation of the whole tensor field gµν :

g′µν = gµν + gµλ
∂Aλ

∂xν
+ gνλ

∂Aλ

∂xµ
+Aλ ∂gµν

∂xλ
. (6)

where the 4−vector Aλ is the generator. This is a geometric transformation in

a Riemannian manifold with metric, hence one can say that geometry gives the

kFeynman noticed that nonlinearity was necessary in order to explain the precession of the peri-
helion of Mercury (as discussed in Ref. 14, p. 75).
lSee for details Refs. 4, p. 274 and 14, pp. 78-79.
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metric gµν . As such, in Feynman’s approach geometry comes into play at the end

and not at the beginning. By working out calculations, the full nonlinear Einstein

gravitational field equations are obtained.

Lectures 3-6 of Feynman’s graduate course on gravitation (Ref. 14) contain all

the details of the above procedure. Interestingly, a proof is also given of the ability

of this field theory based formalism to reproduce key physical effects of curved

spacetime geometry. For instance, in Lecture 5 (Ref. 14, pp. 66-69) it is shown

that, in the action of a scalar field, the time dilation t → t′ = t
√
1 + ǫ exactly

reproduces the effect of a constant weak gravitational field described by the tensor

g44 = 1 + ǫ, gii = −1, i = 1, 2, 3. Incidentally such an effect plays a pivotal role

in producing the right result for the precession of Mercury’s perihelion. Before

moving to applications, Feynman devoted some lectures to the discussion of the

usual geometric approach to gravity and of its link with the field theory based

approach (Ref. 14, Lectures 7-10):

Let us try to discuss what it is that we are learning in finding out that

these various approaches give the same results (Ref. 14, p. 112).

Despite advocating one approach over another, Feynman was in fact intrigued by

the double nature of gravity, which has both a geometrical interpretation and a field

interpretation, and in Section 8.4 of Ref. 14 he recognized how an explanation may

be provided by gauge invariance. Indeed a viable procedure may be established in

order to obtain the invariance of the equations of physics under space dependent

variable displacements. This amounts to looking for a more general Lagrangian, to

be obtained by adding to the old one new terms, involving a gravity field. The net

result is a new picture of gravity, as the field corresponding to a gauge invariance

with respect to displacement transformations.

Summing up, Feynman succeeded in obtaining the full nonlinear Einstein equa-

tions by means of a consistency argument applied to a Lorentz invariant quantum

field theory of the graviton. According to John Preskill and Kip S. Thorne25, it is

likely that he was completely unaware of the earlier work by Gupta23 and Kraich-

nan24, which as mentioned had been developed along a similar line of attack, but

was still incomplete. So he would have developed his approach independently, be-

sides getting more complete results. A Lorentz-invariant field theoretical approach

to gravity would have been later pursued also by Steven Weinberg27,28, albeit quite

different from Feynman’s one,m as well as by Stanley Deser29–32. Indeed Deser’s

approach, while being similar to Feynman’s one, was more elegant and general and

led to completion the whole program started with Kraichnan and Gupta. Finally,

a rigorous and general analysis of the relation between spin-2 theories and general

mWeinberg’s approach relied on the analyticity properties of graviton-graviton scattering ampli-
tudes, and it was quite more general, since Weinberg actually proved that a quantum theory of a
massless spin-2 field can only be consistent if this field universally couples to the energy-momentum
of matter, hence the equivalence principle has to be obeyed.
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covariance was carried out by Robert M. Wald33.

3. Fighting with loops: the renormalization of gravity

After obtaining the Einstein-Hilbert action and the full nonlinear Einstein gravi-

tational field equations, Feynman’s efforts were mainly directed towards discussing

quantum field theory issues beyond the tree level approximation, i.e. loop diagrams,

unitarity and renormalization.

To the best of our knowledge, these issues were publicly addressed for the first

time by Feynman in 1961 at the already mentioned La Jolla conference9, where

nonlinearity was recognized as the very source of difficulty within both gravitation

and Yang-Mills theories. Indeed the sources of the gravitational field are energy

and momentum, and the gravitational field carries energy and momentum itself. In

the same way, the source of a Yang-Mills field is the isotopic spin current, and the

Yang-Mills field carries isotopic spin itself. This means that both the gravitational

field and the Yang-Mills field are self-coupled, resulting in nonlinear field theories.

A difficulty that nonlinearity brings about is the fact that loop diagrams seem to

clash with unitarity.

As recalled in the introduction, Feynman’s results on quantum gravity can be

found in a report of the talk given at the 1962 Warsaw conference, later published

in Acta Physica Polonica2,n with many details discussed much later in the two 1972

Wheeler Festschrift papers11,12.

Also in this case Feynman followed his original strategy, leaving aside quantiza-

tion of space-time geometry, constructing a quantum field theory for the graviton,

and working out results at different perturbative orders. Since the goal was the

quantum theory, the Einstein equations and the corresponding Lagrangian were

assumed as a starting point, rather than derived from scratch. The theory was cou-

pled to a scalar field, and perturbative calculations up to the next to leading order

were pursued. This implied the inclusion of loop diagrams, which make quantum

corrections to enter the game. In Feynman’s own words:

I started with the Lagrangian of Einstein for the interacting field of gravity

and I had to make some definition for the matter since I’m dealing with

real bodies and make up my mind what the matter was made of; and then

later I would check whether the results that I have depend on the specific

choice or they are more powerful (Ref. 2, p. 698).

The metric was split in the following way:

gµν = δµν + κhµν ; (7)

nAs pointed out by Trautman in some recently published memories (34, p. 406), the text of
Feynman’s plenary lecture became available too late to be included in the proceedings, therefore
it was published only in 1963 as a regular paper.
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where the Minkowski metric is here denoted by δµν and κ is a dimensionful coupling

constant. Substituting (7) and expanding, the Lagrangian for gravity coupled with

a scalar field can be cast in the form:

L =

∫

(

hµν,σhµν,σ − 2hµσ,σhµσ,σ

)

dτ +
1

2

∫

(

φ2
,µ −m2φ2

)

dτ (8)

+κ

∫
(

hµνφ,µφ,ν −m2 1

2
hσσφ

2

)

dτ + κ

∫

(hhh) dτ + κ2

∫

(hhφφ) dτ + ...

where the bar operation has been defined in (3) and a schematic notation has been

adopted for the highly complex higher order terms. The first two terms are simply

the free Lagrangians of the gravitational field and of matter, respectively. Before

considering radiative corrections the classical solution of the problem was worked

out, which involved the variation of Eq. (8) with respect to h and, then, to φ, giving

rise to the following equations of motion with a source term:

hµν,σσ − hσν,σµ − hσµ,σν = Sµν (h, φ) , (9)

φ,σσ −m2φ = χ (φ, h) . (10)

A close inspection revealed that Eq. (9) was singular, so that Feynman was forced

to resort to the invariance of the Lagrangian under the transformation:

h
′

µν = hµν + 2ξµ,ν + 2hµσξσ,ν + ξσhµν,σ , (11)

ξµ being arbitrary. This meant that the source Sµν had to be divergenceless in order

to make Eq. (9) consistent. Finally, by making the gauge choice hµσ,σ = 0, the law

of the gravitational interaction of two systems by means of the exchange of a virtual

graviton was obtained. Feynman then went on computing other processes, such as

an interaction vertex coupling two particles and a graviton and the gravitational

analog of gravitational Compton effect (i.e. with a graviton replacing the photon).

After these preliminary calculations, Feynman went to the next to leading order

approximation, thus encountering diagrams with closed loops:

However the next step is to take situations in which we have what we call

closed loops, or rings, or circuits, in which not all momenta of the problem

are defined (Ref. 2, pp. 703-704).

He realized that working out closed loop diagrams required the solution of a number

of conceptual issues, and he succeeded in showing that any diagramwith closed loops

can be expressed in terms of sums of on shell tree diagrams, which is the content

of his celebrated tree theorem (which was treated in detail in Ref. 11). Further

details on the statement of the tree theorem and, in particular, on the nature of the

proof for the one-loop case were given by Feynman in the discussion section (Ref.

2, pp. 714-717), while answering some related questions by DeWitt. But the main

problem to face in carrying out one-loop calculations was the lack of unitarity, due to

the presence of contributions arising from the unphysical longitudinal polarization

states of the graviton, which did not cancel as they should. Following a suggestion
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by Gell-Mann,o Feynman considered the simpler Yang-Mills case (his results in this

case were summarized in Ref. 12) and found the same pathological behavior:

But this disease which I discovered here is a disease which exist in other

theories. So at least there is one good thing: gravity isn’t alone in this

difficulty. This observation that Yang-Mills was also in trouble was of very

great advantage to me. [...] the Yang-Mills theory is enormously easier to

compute with than the gravity theory, and therefore I continued most of

my investigations on the Yang-Mills theory, with the idea, if I ever cure

that one, I’ll turn around and cure the other (Ref. 2, p. 707).

The solution to this issue was obtained by expressing each loop diagram as a sum

of trees and then computing the trees. This worked even if the process of opening a

loop by cutting a graviton line implies the replacement of a virtual graviton with a

real transverse one. Finally, in order to guarantee gauge invariance the sum of the

whole set of tree diagrams corresponding to a given process has to be taken.

The same results, according to Feynman, could be obtained by direct integra-

tion of the closed loop. In the last case a mass-like term has to be added to the

Lagrangian to avoid singularity but at the price of breaking gauge invariance. At

the same time a contribution has to be subtracted, which is obtained by making a

ghost particle (with spin-1 and Fermi statistics) to go around the loop and artifi-

cially coupled to the external field. In this way both unitarity and gauge invariance

would be restored. This procedure was worked out also for Yang-Mills theory, but

in that case the ghost particle has spin-012.

Once successfully solved the one-loop case, Feynman’s efforts pointed toward a

further generalization of the above procedure to two or more loops:

Now, the next question is, what happens when there are two or more loops?

Since I only got this completely straightened out a week before I came

here, I haven’t had time to investigate the case of 2 or more loops to my

own satisfaction. The preliminary investigations that I have made do not

indicate that it’s going to be possible so easily gather the things into the

right barrels. It’s surprising, I can’t understand it; when you gather the

trees into processes, there seems to be some loose trees, extra trees (Ref. 2,

p. 710).

But, in Feynman’s words, preliminary attempts seem to suggest that novel difficul-

ties enter the game when dealing with two or more loops, as also mentioned in the

last of his published Lectures on Gravitation (Ref. 14, Lecture 16, pp. 211-212).

Here, once again, he recognized in the lack of unitarity of some sums of diagrams

the main source of the observed pathological behavior and pointed out that a sim-

ilar feature was shared also by Yang-Mills theory. Finally, while hinting at the

o“I suggested that he try the analogous problem in Yang-Mills theory, a much simpler nonlinear
gauge theory than Einsteinian gravitation.” (Ref. 3, p. 53).
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problem of finding ghost rules for high order diagrams, he argued in favor of the

non-renormalizability of gravity as a consequence of these difficulties:

I do not know whether it will be possible to develop a cure for treating

the multi-ring diagrams. I suspect not – in other words, I suspect that the

theory is not renormalizable. Whether it is a truly significant objection to a

theory, to say that it is not renormalizable, I don’t know (Ref. 14, Lecture

16, pp. 211-212).

It is not clear whether Feynman was suggesting a link between non-unitarity and

non-renormalizability issues. But in any case Feynman’s results played a prominent

role in the development of gauge theory and quantum gravity. Feynman’s rules

for ghosts were later generalized to all orders by DeWitt35–37, while Ludvig D.

Faddeev and Viktor N. Popov38 derived them in a much simpler way, by means

of functional integral quantization, setting the standard for all subsequent work

in the field. In particular, DeWitt proved that Yang-Mills theory and quantum

gravity are in fact unitary at two35 and arbitrarily many loops36,37. However, while

Yang-Mills theory was later shown to be renormalizable (cf. Refs. 39- 42), gravity

presented divergences which could not be renormalized (cf. Refs. 43- 46), confirming

Feynman’s suspect. It should be mentioned that, in subsequent years, modified

theories of gravity, characterized by an action quadratic in the curvature, have been

put forward. Unlike ordinary general relativity, these theories are renormalizable

but not unitary47.

It is worth mentioning that, unlike most of his contemporaries, Feynman did

not think about non-renormalizability as a signature of inconsistency of a theory,

as also recalled by Gell-Mann,p and claimed by Feynman himself in one of his last

interviews, given in January 1988:

The fact that the theory has infinities never bothered me quite so much as

it bother others, because I always thought that it just meant that we’ve

gone too far: that when we go to very short distances the world is very

different; geometry, or whatever it is, is different, and it’s all very subtle

(48, p. 507).

In fact, within the modern view on quantum field theory, which was developed

in 1970s, non-renormalizability is considered only a signature of the fact that the

theory loses its validity at energies higher that a certain scale. Nevertheless, one has

an effective field theory, which works and can be useful to make predictions under

that scale (interesting historical discussions can be found in Refs. 49 and 50). This

is true also for gravity51. But, as remembered by John P. Preskill in a recent talk

(Ref. 52, slide 37), although he anticipated this view, apparently Feynman was not

really at ease with it:

p“He was always very suspicious of unrenormalizability as a criterion for rejecting theories” (Ref.
3, p. 53).
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I spoke to Feynman a number of times about renormalization theory during

the mid-80s (I arrived at Caltech in 1981 and he died in 1988). I was

surprised on a few occasions how the effective field theory viewpoint did

not come naturally to him”. [...] Feynman briefly discusses in his lectures on

gravitation (1962) why there are no higher derivative terms in the Einstein

action, saying this is the “simplest” theory, not mentioning that higher

derivative terms would be suppressed by more powers of the Planck length.

As a further remark, let us notice that in the last years Feynman’s tree theorem

has spurred a renewed interest in researchers working in the context of advanced

perturbative calculations and generalized unitarity (cf. Refs. 53 - 57).

4. Concluding remarks

In this paper we focused on Feynman’s contributions to the research in quantum

gravity, starting from his interventions at Chapel Hill conference in 1957 and ending

with the Wheeler festschrift papers. His approach was field theoretical rather than

geometric, reflecting his strong belief in the unity of Nature, which is quantum

at the deepest level. Quantization of gravity, according to him, simply had to be

considered as the quantization of another field, the spin-2 graviton field. In this

way full general relativity would be recovered at leading order, while the inclusion

of loop diagrams brought into the picture a bunch of new difficulties. In this respect,

Feynman’s struggle against loops, while succeeding at one-loop order, failed with

two- and higher-loop diagrams. Nevertheless, his results triggered further efforts

and some tools he developed, such as the tree theorem, have recently become of

widespread use among people working on scattering amplitudes.
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