& Vol. 3 (2002), No. 5 (15), pp. 207{224 Spacetime Substance, c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC THE MEASURING OF ETHER-DRIFT VELOCITY AND KINEMATIC ETHER VISCOSITY WITHIN OPTICAL WAVES BAND Yu.M. Galaev1 The Institute of Radiophysics and Electronics of NSA in Ukraine, 12 Ac. Proskury St., Kharkov, 61085 Ukraine Received November 15, 2002 fvdoTeorlhoneecoliettecyxctopraonenmtrdrimaatgdehninecetttaeittlchhheweyroaprvkoieigtnsihnepemasrliaoshtpyivacpegovraitit shiccoeoansstiisihtoysantsahotbafeesmetbhneeeneptneestrhapfonerrordmpecoexasdines.dtbeTenahncceedonoirnspeiadtnileciarzateeluddmr.eae,sTaeihs.xeuep.rrienetrsghimuelmetmsnettaoahtfloesirdymiasoatlfegmmitnheaaedttiiiecuotmnhme,ceroarnmes usoprrvmeoemnamsetiienbontlnest of the ether existence in nature, as the material medium. The experimental hypothesis veri cation of the espriatebhdrlefieoorrfewmoxraiesvdeteelseencabctraerlnoiienmdr,naibnagytntuethrtheeiec,wipw.oehar.akvsmseesa[m1tpe-er3rtoi]ha,polawmdgi.atehtTdiioinhunemmrh,iealrslseuimslbpteseotenoen-rf tpAdphuaotertscthueeidekcxsolpiebvsesys,rskitmtytahhte[aee4ntm-tm6 e[]a1ln.lt-tsI3esnr],iindabthloateshmneemdoetdwooicdnouoermnltldht[r4ceas-op6demt]aichcptteheor,etshemhedetaohsooderfetrighlsiieeosnpfaipanVlrrtoha.rApytoe---. emreerttphaitreeeersrsieioasnflttfvhotiershceamoluleastmtheaaernrtiaedrvliacamorlieeforoducrisiumbmmlaet,oigvroaeenssms,p.eoiTsnnthstihefboelprehmcoyfsons,risctiae.rellue. cctettirlohdonesmbe[7ta-has9gei]srnaed[n4tri-dic6ft]wAswae.Avaaers.cs,hMp pirrcosuhtpbealoligssfoahnateil,dol,Fnbt..yGhTeD.h.pPCeoe.esaMixstepiivelaelrenirmrdeiensFnu1t.lt9asP2l 2emoa-f1ros9tdoh2ene6l itpnrroe1mpT9aa2hrg9eant[eei1oxt0nip]c,.ervwiemarvie enestd[o7mp-t9ei]tchaisol dpbsearonffodrt,mhedeidi nevwreiestdthiignbayttihocenareceloefnuc--l dsttvuoieuollctnothtsaci.einrtyTgeyt,hmhaseetneirmddpiiuemusalmatsaatug.etriideOnsdtabritcbeyiatiothltnlaheyslreacdsEvoirgaaminifrltptia hpobcanlmaerenanoatmtvtemetomhtfeeaetratnhsstteumiarmeeirtsmoehmu,eenaarnstdtdcshtrtrhieaefdet-SMhhueaiisnlglehtwrtheioothfbvta2atl6hiu5neeemdva,ebalotobhucoativttye3tt3hkh0eme k/esmtesheac/e,srleeavcdne,rldiwf(tCaastvleevntlhoeolecteinthdydee,itageUthctStteAhdoe).f 1830 m (Mount Wilson observatory, USA) | about 10 1e-mail: galaev@ire.kharkov.ua; Ph.: +38 (0572) 27-30-52 km/sec. The apex coordinates the Solar system move- mdpeeecnnlditnicawuteliaorerntdo eat nere+mc6liin5pe td.ic: Spudlacirihnecm(tcooavosercdmeinnesnaiotteniss 17:5h, almost perof the North Pole ecliptic: the observed e e ct1s8cha,n b e e+xp66la i)n.edM,iilfletrosahcocwepedt,, that that the ether stream has a galactic (space) origin and the velocity more than 200 km/sec. Almost perpendicu- larly directional orbital component of the velocity is lost on this background. Miller referred the velocity decrease of the ether drift from 200 km/sec up to 10 km/sec to unknown reasons. andSo[1m0]e, paerecuelixaprliatiiensedofbtyhetheexpetehriemr evnitscroessituyltsin[7t-h9e] works [4-6]. In this case the boundary layer, in which the ether movement velocity (the ether drift) increas- es with the height growth above the Earth's surface, is faonrdmtehde aetthtehrenreealrattihvee Emaorvthem'sesnutrfoafcet.he solar System In the works [1-3] it is shown, that the results of sys- tematic experimental investigations within radio waves band can be explained by the wave propagation phe- nomenon in the moving medium of a space origin with a vertical velocity gradient in this medium stream near the Earth's surface. The gradient layer availability can be explained by this medium viscosity, i.e. the feature proper to material media, the media composed of sep- arate particles. The mean value of the measured maxi- mal gradients was equal to 8.6 m/sec m. The velocity comparison of the suspected ether drift, measured in the experiments [1-3], [7-9] and [10], is performed in the works [1-3]. The place distinctions of geographic lati- tudes and their heights above the sea level are taken 208 Yu.M. Galaev ipeatmtnhutcath/cearoeosilwserrtaocdorcd.nuircnr.kTtoighsfIuhttf[nteu7viotl-scen9otlioe]onhmbsacestnitpathcvdayioeanr[snlii1eeuss d0oerw],en,mxotiwrthpraehdhaestiertuiincoirlmihntnc6eaco1otnari2fhnent4etscwhbi:ecdei:exote:phecn8xowied4nprn9uiitesm06chirt0dieimm0etnnhr0g/teee:nsd[ae:1tdct:sa-a1,3s[ct0]1tmoa0ht-m3h0auo]0et--f, [7-9] and [10]. The positive results of three experiments [1-3], [79], [10] give the basis to consider the e ects detected in these experiments, as medium movement developmttiiomenne.tssS,ourfecMshpamoxnewsdiebilulle,mMfowircahesleeclcsaotlrlneodmanaadsgnteehaterilcieetwrh.aevrTes[h1ep1r]cooapntactglhuae-sion was made in the works [1-3], that the measurement results within millimeter radio waves band can be constihdeermedataesritahlemexedpieurmimeenxtisatlehnycepoitnhensaistucroen surmchataisonthoef ether. Further discussions of the experiment results [1-3] have shown the expediency of additional experimental analysis of the ether drift problem in an optical wave band. Experiments [7-9] and [10] are performed with optical interferometers manufactured according to the cruciform Michelson's schema [12,13]. The work of such idnitreercfteioronmaentderrebtausrendinognitthteo ltihghetopbasesrsviningginpoainftorawloanrdg tthiveitsyamwaesplaotwh.toTthhee Moricighienlasol ne'tsheinrtedrrfiefrtoem eetcetrs. seTnshiemserevaesdurbedanvdasluo esDet oifnasnuicnhtearfedreevniccee,pia.ett.ervniseuxaplrlyessoebdin terms of a visible bandwidth, is proportional to velvimosecalioingtcvnyieetrrytasicetclieyo,mtpqhiurseosaipdoooprnrattti(iceloiagnolhafltlet)nthog etthe[h1teho2ef]w.rtahdvereiflltiegnhWgtthbteooafmtheelelclitagrnhodt- D = (l= ) (W=c)2 : (1) itimtnnhhteeeetaWrlhs"ifugeemehrrseoietnhdtmbvaheeelvolastadctemlsiarugl.emaal Ttntieihsdhoaenespeiusrnrxroetpoispenfeerogravrtiramthpcileaho,ernwntemat,thslheiactes(ohhrWfotahddt=behrsciee)faoa2tnp,msdtewiicncpeaoaxasnlwspdslceheearnisoilcmlgrihendtdehettnrhhaot"eessf. Accordingly the methods and experiments, in which the measured value is proportional to the rst ratio extent W rs=tc oarrdeecra. lleTdhaes rtahteiomiesthWod/sc and 1expateritmheenetxspoefcttehde value in the experiments of Michelson, Miller W 30 km/sec. The methods of the second order are ine ective at this requirement. So at W 30 km/sec the method osefntshiteivsietycotnod tohredemreitnho1d00o0f0th(e!) rtsitmoesrdseurc.cuHmobwsevoenr at that time the methods of the rst order, suitable for the ether drift velocity measuring, were not known. The expression (1) allows to estimate the di culties, with which the explorers of the ether drift confronted in the rst attempts while observing the e ects of the second order. So in the widely known rst experiment of Michelson 1881 [12], at the suspected velocity value of the ether drift W 30 km/sec, with the interfer- ometer having parameters: 6 10 7 m; l 2:4 mth,e ibtawnads. Aexnpdecitteids itnotohbesreerqvueirtehme evnatlsueofDcon sid0e:0ra4bolef band shivering of an interference pattern. In the work [12] Michelson marked: "The band were very indistinct and they were di cult for measuring in customary con- ditions, the device was so sensitive, that even the steps ot1on8r8yt7h,ceaMusiiscdehedewltsaholekn,icnoamlsaophlieuntnehdirbseadwndomsrledvtea-krnsnisofhwrionnmgw!"toh.rekLo[a1bts4ee]r,r,vtaoin-- gether with E.V.Morly, once again marked the essential de ciencies of his rst experiment as for the ether drift [12]: "In the rst experiment one of the basic considered di culties consisted in the apparatus rotating without the distorting depositing, the second | in its exclusive sensitivity to vibrations. The last was so great, that it was impossible to see interference bands, except short intervals at the business-time in the city, even at 2 a.m. At last, as it was marked earlier, the value, which should be of measured, something oi.ne.thteheinitnetrevrafle,rsemncaellebar,ndthsaon 1se=t20beocfauthsee interval between them, is too small, to determine it, mttmrohoepdouet6ruliIotec4ncioappevltmdMleielcreeiaurtnleallpege trprtesta'lhcsaot[tyh7ioiio4n-fnl9nteg]tme.n.hrigTfeenetItahrhtepocerawcmisnta.uahecrestatIaeurcngcreai,haaeltiscfnholhoeoefeerndfdsgehsttxdheo2hnpueu6seeoleidrmftxiteimpsovrehesitertoaenyriurpmetslpa.iden[cle1ynhcIr0itrensn"]edg.awttsuhhaoepees,f experiments [7-9] and [10] the interferometers laid on rafts, placed in tanks with quicksilver, that allowed to remove the in uence of exterior mechanical clutters. The positive results of Miller's experiment by virtue oc[r1iifns5ttg]hs1'et5iogr0r1g,e9eadn2te1evar-oat1ttl9eep3dn0htt,yiooasnirtcehaaelmtsetietghnhnateiitr otncdiaermndifectt.e'hsaIapnttrtortaahblmceletemomdstoatnehnovedgeprrryhaeofpyenshries-wTehree pcoosnscibenletriant eudeonncinthgeodf itshcuesdsiio ncoufltMcoilnlesri'dserreesduletxs-. terior reasons (temperature, pressure, solar radiation, air streams etc.) on the optical cruciform interferom- eter, sensitive to them, which had considerable overall dimensions [16] in Miller's experiments was discussed most widely in these works. Besides by virtue of me- thodical limitations being in the works [7-9] and [10], their authors did not manage to show experimentally correctly, that the movement, detected in their exper- immeennttsa,ncdanthbeemexedpiluaimneodf bmy attheeriaElaortrhigirne,larteisvpeomnsoibvele- for electromagnetic waves propagation [1-3]. However the most essential reason, which made Miller's con- temporaries consider his experiments erratic, was that in numerous consequent works, for example, such as The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 209 [17-20], Miller's results were not con rmed. In the experiments [17-20] so-called the \zero results" were obtained, i.e. the ether drift was not detected. Thus, taking into consideration the works de ciencies [7-9], [10] and a major number of experiments with a zero result available, it is possible to understand the physicists' mistrust to the works [7-9], [10] at that time, the results of which pointed the necessity of the fundamental physical concept variations. The analytical review of the most signi cant experiments, performed winitthhethweoprkusrp[1o-s3e,o2f1t].he ether drift search, is explained In 1933 D.K. Miller, in his summary work [22], performed the comparative analysis of multiple unsuccessful attempts of his followers to detect the ether drift etexmpeprtism, eenxtcaelplyt.thHeeepxapiedrimatetenntt[i1o0n],tohpatticianl ainlltesrufcehroamt-eters were placed in hermetic metallic chambers. The authors of these experiments tried to guard the devices from exposures with such chambers. In the experiment [10] it was placed into a fundamental building of the optical workshop at the Mount Wilson observatory for stabilizing the interferometer temperature schedule. The hermetic metallic chamber was not applied, and the ether drift was detected. Its velocity had the value W 6000 m/sec. Miller made the conclusion: "Massive non-transparent shields available are undesirable while exploring the problem of ether capturing. The experiment should be made in such a way that there were no shields between free ether and light way in the interferometer". mafteenLrtastthoeern, itnhnseetwreutmhoeeprnptdosrrtiofuctncduitirisrecesonvcfeoerrybachosaenvddeuoacnptipnceogamreepdxlpeateelrslioydetinhticvset.e)rrm.usmeaSsueisdncivheteaalesmxe(prerreteorasrilomlnioceafntcttohhsraesmws,eebmreeexraphsueeesrrlasidm,ge[eM2n3wte-sas2.ss6b]Ita.nhuAeetrhnc'edsomwae mgoaerokcinnts [23,24,26] there were the metallic resonators, in the work [25] | a lead chamber, because it was necessary to use gamma radiation. The authors of these works, perhaps, didn't pay attention to Miller's conclusions of 1933 about the bulk shields inapplicability in the ether drift experiments. The phenomena physical interpretation of the essential ether drift velocity reduction at metallic shields available was given by V.A. Atsukovsky for the rst time, having explained major eatvhaeilra-dbylenianmtihceaml m[6e]t.al resistance of a Fermi's surface The purpose of the work is the experimental hypothesis test of the ether existence in nature within an oupmt,icraelspeolencstirbolme faogrneelteicctrwoamvaesgnbeatnicdw|avems aptreorpiaalgamtieodni-. It is necessary to solve the following problems for reaching this purpose. To take into account the de ciencies that occurred in the experiments earlier conducted. To elaborate and apply an optical measuring method and the metering device, which does not iterate the Michel- son's schema, but being its analog in the sense of result interpretation. (Michelson's interferometer of the sec- ond order is a bit sensitive to the ether streams and too sensitive to exposures.) To execute systematic measure- mepeoncths oinf tthhee eexppoecrhimoefntthseimyepalremcoenrrteastpioonnd[i1n-g3],to[7t-9h]e, [10]. (The term "epoch" is borrowed from astronomy, in which the observation of di erent years performed in the months of the same name, refer to the observations of one epoch.) The results of systematic measurements should be compared to the results of the previous ex- periments. The positive result of the experiment can be considered as experimental hypothesis con rmation of the ether existence in nature as material medium. in tMheewaosurkrsin[4g-6m], ewtahsoadc.ceTptheedeatthemr amkoindgelt,hpereoxppoesreid- ment. The following e ects should be observed experi- mentally within the original hypothesis: netiTc hweavaensisportorpopaygaet ioenctd|epetnhdesvoenlorcaidtyiaotifoenledcitrreocmtioang-, that is stipulated by the relative movement of the so- lar System and the ether - the medium, responsible for electromagnetic waves propagation. depTenhdeshoenightthee heecitg|ht tahbeovveelothcietyEoafrwtha'vsespurrofapcaeg,atthioant ivesliessccttoirpuousmleaatthgedenrebtsyitcrtewhaeamvEe-asmrptharot'seprsaiugaralftmaicoeend.iinutmer,arcetsipoonnwsiibthletfhoer ttenccihhtaeohalatneitnTccrocghihowedsearradinsisvtftigptseniapesa|svcutpealeiratl)tuosethopee vedfaeawtcgmlhubtaiteyeet|hdiSowianoutihttl.msahheprTe,aapsrhcyvepeuesesresptlir(oeooitgmcdonhaidtselympiabphceoloeterevirficgeofo)whmonntraoeeevr(enissealtgettsieecaptnlltrprllroaaoeoonrrpxmfoadwdmtgaahaaigyilye---,l as well as for any star owing to the Earth's daily rotat- ing. Therefore the velocity horizontal component of the ether drift and, hence, the velocity of electromagnetic wave propagation along the Earth's surface will change the values with the same period. tromTahgenheytdicrowaaevroedsypnraompaicgaet ioecnt | the velocity of elecdepends on movement parameters of viscous gas-like ether in directing systems (for example, in tubes), that is stipulated by solids in- teraction with the ether stream | material medium,re- sponsible for electromagnetic waves propagation. (As it is known, the law of uids and gases motions and their iTdIntyhtnceiasaramnec itbcieosecntes, ewaeeinpctth,patwsrhoeialtnithdtls"yret,ishfseelhreeoahnurecnliedgthbtbtoyeeth chyaeedlcltree"odtahieaesrrsorddtehfyyeennraareemmtdhiiecctrsso-.. the etherdynamic e ect class. However in the work, by virtue of methodical reception distinction used for their discovery, the e ects are indicated as separate). According to the investigation purpose, the measur- ing method should be sensitive to these e ects. 210 Yu.M. Galaev stuerriiTanlghemmefoedtlilhuoomwdi,ndrgeevsmpelooondpsemilbeslentattfoe[4mr-6ee]nl:etcstthraoermeeatuhgsneeredtiiasctawmamveaeas-ptiemh roeeacpgmtaingeeaaxtattisiilootsennnh;ocatefvhetieshmeeatachhcjyoeerprdtreheotdaahseearrposddrytoyhnpneaeamrimntiiiceitcsiar(eloesfptishovtesaiirsntdcicoyoeunn.s.amTTgaihhcsee); mopwfoaesvvteihedssocodbauanosndfdgtraihesnaemlti hzoreevsdtwemwoorreiktdnhetfironirnbtmathuseeebadeossuport[ni2inc7kag-nl2oo8efw]ltehnhcatersroeebgtmheuaeelanrgrndipetrritioeifctsveloTcihteymanedtheotdheersskeinnceemiastiinc vthisecofosiltlyo.wing. Let's place advrteieiolrtlanoeutcscbit.ioetnTytpuhtvaboeerectagtnaaionsxret.pixosrtIeeanwsrsiigtoulhalrrisebgs asdectsraropsespteearrmedbpaooemientnshdanisocruouepctlehiaonnrceaicddtuwoertnauottybhin,ceeatthhlesncaetortdtensutadbhmiineepwtInoaerrtstohh,fiasaalnclgadtaustesrhntsehtaregetaagusmabisenwssipinidellseeubdacyehtdsuatibrrweeecaatwmye,idltwlhabialloeltncitrmgheeatmhtveeoeblatoiulpcebir.teeyTsasvhxueeircsne-. daatergrgomaapssinossnettrdreetahabmmey ttiiunhnbeaaevtteauunlbubdeeess,asounofndodngte.ahrsiTsakhscietntrieosemtanamabotifilvciwezlvahoiticsiccoihtonystitathiyrmee,reetdhoeies-f ggoineaftosecmrosvtneartselrtaiaocmnfatlt[it2gmu7aeb-s.2e8sTt]sr.hiezeaeLsmeettah'sniendrmaitashrtaeku,bgvtaeehslo-allactisikttteyshmeaofadtteaeevnrremilaeoilxnpmtametreeiidnonigrtuatsehetcmrhcevoe,eerrrrldeeasiicnnsptdgrtoohnttmehsoiesabuteglhemtnheefeotoarirfccvwceweelalepaovctvceteeirdtvoyvemlehwolayocigptictnhoiytetyrthveieegcrsceaiwtgrsoad.arrvstdIeotrisnetmlpgharetetoioaopvnbeatsshgt,eaeorttvhtoieohabrnet-. Iwotnuuhrtitnschihdtisheaecobaifensaaetme,triuffdebrraeoinvm(eiosenptienttrihscieiadnleettianhhteemerereftetehxaretlolremircdieotrturiefbtrsets,ritseraaencmardme)aa,tnaeinotdtd,chatiennor bboisnh ielaosilezuexatpldptooiesobfcintettiehtoodeinbm,isonteehftroevatfrhetftdeeihs.nreeeTnsebuchtaechunhespdriatsnhsttotteerenerrvfantaemhlrureoeemiginnoaetfartedebrtrifaun,enbgrddoeutsm,ortoienht thgeeserebatsaocswnratidiaglles--l bathneedpotrrhoiepgiosnrtatailbopinloiazsliatttiiooonnt,htweimileltebh|eerdteehx etneebrdiaonrbdyssttrrheeetaumertnhveterilmokceiintteyo-, mmasruenqaerdtiutnhiitcgrohedvemdieseetcnttoohahsebroiertldevykseisirvtntaoaelamummelaeei.gtttihheHcrotevdtbnihsecoecaefo,metsthtihhtetyeoe .rrtpdTshrtreohiopfeitrnodpvsitereeiordlao,plcamopisstoeeyiaidtnvsituamsrl(nuieanoaesgts-, for Lexeat'ms pclael,cuinlaMteicthheelsionnt'esrfienrtoemrfeertoermpetaerra)m. eters. For ttahhdeevasmntrcaeetadhmeimnaatnthaieclaywlsiohsrykodsfro[t2hd7ey-n2ga8am]s-ailctiskteahpeetppharerorabtwulesem, swhsoahllivlchiunsgies, citdrou.nenT,ehicfetetuhdsewefiootflhlostuwhciehnsgtsroreleuaqmtuioironefsmvfieosnrctoguiassspinsetcrrofeomarmmpreeadsnsaiblylesi suis- 0:5Ma2 << 1; (2) wag(2vah)ese,rsraioetguieMsngdpaaovsse=ssltiobrcwelieatpmyat.ocsvAne1telgotilcsheiectaytreMtoqhnaueciagrheat'msus bpenenruetmsseismbcuteripreo;lneem;w cepescanttsiaisstatinahodnne consider the gas stream as the stream of incompressible uid. On data of the experimental works [1-3], [7-9] and [fw1ao0cre]k, dt[oh6ee]stehnteohtesoreuxdncrdeieftvdevtleohlceoictvyiatyliuneWthWene etahr1e0rt4hisemeEs/tasiemrct.ha'tIsendstubhrye- tlr(ihe2gc)ehetivisvaveple,uleoetrhcfociatsrtym .MeEd1va0,e2 tn1hei3mf:s3t/tosreec1cao0,mntsh5ioda.fteHrae,esgntshaecnaes-,ttliitakchlseley=erteehcxqe,curewiercedeamssnhteabhnleetl considered as a stream of viscous incompressible uid and the use of the hydrodynamics corresponding math- ematical apparatus is true for ether stream analysis. Laminar and turbulent uid streams are distin- guished in hydrodynamics. The laminar uid stream es2tx8ri]esatsm, ,ifdotehse nRoteyenxocledesd nsuommbeeerxtRreem, edrvaawlune up for a Rec [27- Re < Rec: (3) is dTe hneedRebyyntohldesfonlulomwbinergfeoxrparersosiuonnd cylindrical tube Re = 2apwpa 1; (4) wmthhaeet riceui adupdidiesnvtsihistecyo.isnDitteyerp;ioe nr dtiiusnbgtehoernaddtyhiunesa;emxvtice=rvio isr csots1rietiaysm;k innaeis-- ture and the requirements of uid in ux into a tube, the Re e Resetcim, tahteiornefso,rpeeirnfotrhmeewdofrokr the ether turbulent stream. Let's consider the method operating principle. In the Fig. 1 the part of a cylindrical round metallic tube wdriitfhTt)ht,heiesesltehhnoegwrtnhstrlpea, mwhiischshisowinn the in ether stream the gure as (ether slant- ing thin lines with arrows, that indicate the direction of its movement. The tube longitudinal axis is locat- ed horizontally and along with the ether drift velocity vector is in a vertical plain, which represents the gure plain. The tube walls have major ether-dynamic resis- tance and the ether stream acting from the tube sur- face side area, the ether inside a tube does not move. The ether velocity stream stipulated by the horizontal vetehloecritsytrceoammpionnaenttuobfe,thweheicthhegrodersifwtitWhht,hecrmeaetaesn tvhee- ltohceitryouwtpinag. It can be spoken, that the metallic system for the ether stream. Let's tube turn is a tube in a horizontal plain in such a way, that its lon- gitudinal axis will take up a position perpendicular to tdhiceuplalraitnootfhethveelFocigit.y 1veocrt,orthoaftthise seitmheilradrr|ift.pIenrptehnis- position both opened ends of a tube will be in identical conditions regarding to the ether stream, the pressure detih eerresnttrieaalm vpeldooceitsyniontaoctcuubreainsdeqaucaclortdoinagzetroo(5p)oitnhte. Apotstithieonm. oTmheenthot0rizwoentsahlacllomtuprnonaenttuboef into the initial the ether drift veneldosc,ituyndWerh owpielrlactrieoanteofawphreicshsutrheedertohper sptroeanmthweitlul bbee developed in a tube. In the work [28] the problem about sinetatinroguinndtocmylointidornicoaflvtiusbcoeuusnidnecromopperreasstiibnlgeo futidhebseuindg- dLeent'lsyraepdpuceendtehde cfoornmstualnatopf rtehsesuvreelodcritoypdisptriibsustoiolvnedof. uid stream in a tube wp (r; t) = wpmax 1 r2 a2p 8 X 1 k=1 J0 k3 k J1 r(apk 1 ) exp a2pk2t # ; (10) w0o;rhdeJerr0es;.tJTi1shteahr eertsBitmetsews;eol'sskumfiusmntchatenioednqssuianotfsioqtnuhaerroezoetbrsoraJca0kn(edtsk )erxs=t- pcorerrsesspstoenaddyth(eatmten!tio1ne)d laminar stream of uid and above \Puazeyl's parabola" (8). So at a turbulent uid stream, according to (9), the velocity distribution on a tube section is almost uni- form, we shall consider, that the uid stream velocity iosf ethquearlouwnpda tuonbethate awthuorlbeutluenbte sueicdtisotnre(atmheshvaoluuled b pe uwsaeldl laatyetrh.eIvnaltuheisccaalcsueltahteioenxpwrpeas)sieoxnc(e1p0t)tahte thin nearr = 0 will be like " wp (t) wpa 1 8 X 1 k 3J1 1 ( k) k=1 exp k2ap 2t : (11) The expression (11) describes the process of a uid stream de ning in a round tube. It follows from (11), tohf attheatextp!res1sionth(e11v)alsuheouisldwbpe(td)iv!idewdpain. toBoththe parts value oInf ctohnisstcaanste tuhied tsitmreeamvarviealtoiocintyofin auidroustnrdeatmubdeimwepna-. sinioanlFesisg.ve2l.ocity wp (t)/wpa will be like, that is shown In the gure the values of dimensionless velocity wofpt(itm)/ewaprae agrievegnivoenn tohne aanbsocirsdsianaatxeiss.axAiss,itthies svhaoluwens above, the requirement (2) is performed and the ether stream can be described by the laws of thick liquid mo- tions, then we shall speak about the ether stream fur- ther, instead of uid. In the Fig. 2 we'll allocate the 212 Yu.M. Galaev Ftuibgeure 2: Variation in time of uid movement velocity in a ivsnhetlaeolrlcvictayallolinftthaiemtueetbthe0e:rc:hs:attnrdeg,aedmsufrrrionemggimw0heuicophnttothhe0i.se9t5thiemwrepsatir.netWaemreval as the dynamic one. We shall call the ether stream regiLmeet'astsktip>atdliagshtthbeeasmteaadlyonsgtrtehaemturebgeimaxe.is. It can be written down, that the phase of a light wave on a cut with the length lp will vary on value j, which is equal. ' = 2 f lp V 1; (12) wthheerlieghft viseltohceityeleinctraomtuabgen. eAticccworadviengfretoqutehnecyo;rigVinaisl hypothesis the ether is a medium, responsible for electromagnetic waves propagation. This implies, that if in avetluobcietywoitfhwthhicehlecnhgatnhgelps itnhteirme eis, stohetheethpehrassteroeafma l,igthhet wave measured on the tube output, should change in time according to variation in time of the ether stream velocity wp (t). Then the expression (12) will be like ' (t) = 2 f lp [c wp (t)] 1 ; (13) where c is the light velocity in a xed ether, in vacuum. In the expression (13) the sign "+" is used, when the direction of the light propagation coincides with the eutsheedr, wsthreenamthdesieredctiiroenctiionnsaatrueboep,paonsditet.he sign "-" is In the work the optical interferometer is applied for measuring value ' (t). Rozhdestvensky's interferome- ter schema is taken [29] as the basis, which is supple- mented in such a way, that the light beam drove along the empty metallic tube axis in one of the shoulders. The interferometer schema and its basic clusters are shown in the Fig. 3. 1 | illuminator; 2 | a metallic tube part; 3 | ettrhyaeenfrssacphgaemrmeenant.tlTawmhiteihnbaaesa;smcMalc1eo;,uPMrs1e2, P|2 m|irr oartspaareraslhleolwsnemoinis shown with thick lines and arrows. The light beam in a tube pass along the axis and is indicated with a broken line in the gure. The tube length is lp P1M1. The clusters P1, M1 Figure 3: The schema of an optical interferometer aMTttPishhn1nhee2dM'emtma2Pa.rcine2 orTgrn,mohllseMprieosd.pui2enliInra1ntetaie,denarrd,esvic2aoltmMalhpsasoep1srauioe,cRrnsaeMittotlehzeP2cdeha1edastMaaweenncsd1hiogtfvl=ttoebehhstynheeMsbetekbewr2tyetPhoo'wase2nmerp=eiaadsnnrrtdslaie1nmfrlrto,lofeaeiprMlnrlmlploy i1,amaunPnlegMse2gntolcte1=enoer,. operating is reduced to the following. The light beam wwarihetihcphathraaeftllewerlarvwee itelhecntaigotpnhhfa rsoemisdidM iev1riedanencdde PM[2192]inatnodtpwaossbineagmPs2, = 4 l1 1 (cos i1 cos i2) : (14) eterTahdejuasntgmleesnti1s,oit2haatretheestianbtleirsfheerdenacte tphaettinertnersfehrooumld- be observed. (The adjustment clusters are not shown on the schema symbolically). In a tuned interferometer the value is = const. In the right part of the Fig. 3 tehtheeframdriilfyt ohforairzroonwtsalmcoeamnpsotnheensttvreealomcitdyi.reTcthiiosnstorfetahme veteelor cciltuystiseresqounalatohoWrizho.ntIaf ltrootaartreadngbeatchkegrionutnerdf,ersoumch- instrument can be turned in the ether stream. The ro- tation axis is perpendicular to the gure plains and is indiIcnattehde aisntAerif.erometer (Fig. 3) the band position of an interference pattern regarding to the eyefragment scale 3 is de ned by the phase di erence of the light bPtoe1waMma1rsdP,s2wt.hheiIcnlhigathhrteepdFriositpgr.aibg3auttiteohdneodneitrthehceetriposanttrahelasomnPg1iMtshd2ePibr2eecaatmnedds Pw1rMite2,doMw1nPe2x.pIrnestshioisncfaosre,thaeccpohrdaisnegdtio e(r1e3n)c,ewe s'h(atl)l between the beams P1M2P2 and P1M1P2. ' (t) = 2 f c P1M2 wp (t) + M2P2 c P1 M1 c + M1P2 c Wh + ; (15) wthheereexp resissioconn(s1t4a)n.t,Lteht'es vsaimlupeliofyf wthheicehxpisredssei onne(d15b)y. The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 213 For this purpose we shall introduce the identi cations accepted earlier. Allowing, that the beam phase dif- fteerrefenrcoemMet2ePr 2oraienndtaPti1oMn 1regdaoredsinngottodetpheenedthoenr the instream direction and is equal to zero point, the expression for the value ' (t) will be like ' (t) = 2 f lp c 1 wp (t) c 1 Wh + : (16) The rst member of the expression (16) describes tsiepshttrrheeteeshabsremieoeabxnmvteeeianplrmoihocsarqiptsusyehtaarviresnaeearmaibavrtataviurcoeibknaloeettcPiosiw1tnyMtpo(MW2ta)d1h.Pce.opT2Lmehnedmetde'piussneenrcgneaoddolnuinddncetgenmhoteoehmnemetihtbnehexaeerr-- tor fc a1n=d, all1owwiengsh, tahllartecce2iv e Wh wp (t) cwp (t) cWh , ' (t) 2 lp wp (t) c Wh + : (17) It follows from the expression (17), that the di erePssttn1rrcMeeeLaa1mmeinPt'2svtWheiclehsoo.cnppishtriyaodspeienor rattih'oteun(bati)nlettbeworepfteaw(rteod)emin aenebtrdeeerantmhtoieapsleePrtoah1ftMeirtnh2geePx2tienetarhinioetdrrs steady regime, at t ! 1. According to the expression (e1d1,)thaantdoFwiign.g 2towthpe(ts)mt!a1ll v!aluwepoaf itthecaenthbere dsuynspaemcticvstiescaodsyitsytr(ecaemlesvtieallocbiotydiiensamtouvbeeinregtharedeinthgetro) tthhee semthaelrl length will not di er essentially from the ether exterior stream velocity and it is possible to write down, that wpops(itt)iot!n1in=thwe pwao rkWishd.et(eTrhmeinceodrreecxtpneersismoefnttahlilsysaunpdshown below.) In this case in the expression (17) the fraction numerator in square brackets is equal to zero point, and this expression will be ' (t)t!1 : (18) Hence, in the steady regime the interferometer op- erating with a metallic tube does not di er from the Rozhdestvensky's interferometer operating. In both in- terferometers the bands position of an interference pat- tTehrne iwnitlelrbfeerodme enteerd, wbyiththae moreigtainllaicl ptuhbaes,eidni thereesntceead y. operating regime is not sensitive to the ether drift ve- locity and can not detect the availability or absence of the ether drift. inteLrfeetr'osmcoetnesri.deLreta'sduynnraomll itcheopinetreartfienrgomreegteimr (eseoefFtihge. 3) in the horizontal plain at 180 . As the direction of the light propagation has varied in relation to the ether drift stream to the opposite one, the expression (17) will be like ' (t) 2 lp Wh wp c (t) + : (19) iten0tee:rq:Au:wctadclioit.thrydHiawnegpnmc(teeto),tatuelaictp"d, td 0:53a2h 1: (36) From the expression (36) it follows, that, having the measured kinematic vvailsuceossittdy, viat liusepossible to determine the ether 0:53a2htd 1: (37) The kinematic viscosity value, determined in such a way, we shall call as the ether kinematic viscosity masehce,a=swu0er:e0sd3h6av7lallmureecaevnicvd.eLtheet'ms seuabssutrietdutveailnuteot(d37=) t(h10e :v:a:l1u3es) e (5:5 : : :7:1) 10 5 m2sec 1: (38) The kinematic viscosity asescthiseefquunacltitoon mean value vm=eafn(vtda)luwe ivtheain, calculated (10 : : :13) ea = 6:24 10 5 m2sec 1: (39) Comparing (30), (38) and (39) we shall mark, that on the value order the ether kinematic viscosity values, calcTulhaeteodppaonrdtumneitaysuorfedth,ecopirnocbidleemvcso luvtieo n avbeaou. t the ether viscosity measuring is of particular interest, as the experimental data about the ether viscosity and the ether viscosity measuring methods miss in literature till nowadays. 218 Yu.M. Galaev Figure 7: bands o set V(caarlicautiloantioinn) time of the interference pattern Let's write down the expression for the value D (t). For this purpose we shall substitute the expressions (11) ainngdly(3a4n)di,na(l3lo2w) finorgtthheevparloupesorwtipo(nts) (a3n1d),W(3c5()t,)waeccsohradl-l receive D (t) 8lpWh X 1 c k=1 k 3J1 1 ( k) exp k2ap 2t exp k2ah 2t : (40) In the Fig. 7 in a normalized view the dependence c(4a0lc)uilsatgioivnerne.suAltt Dca(ltc)u,lapteirofnosrmthede wteirtmh sthneuemxbpererssoifona svva6ea:ip5rslicu=eFoes1rsso0ik0tomy:f0=7t1iths0m4he5,e.vitncmhFteei=;grc.faae7hlrc7ou=ml1iat0et0tefe:od50rlm3lvdo6a2ew7lssuisegem,cnot;f1phtalaphartaen=omdenteh0ttth:ee4irrem8skefaiomnrleeel;xomupw saieirtnda=igc-: ttitTc0ihoheonoepifantetmntrheatreit cfieinbpr0geea:gn8trice2enedgnsidpiemncuag,etr,twatettihrhimnoiecneh(bvooaiaffsnlttuddhheisegeDioitin nit)zsteeeesrdtrhffeofemrruroooalmmdmxiebemttteheeareroldbmvdysayonelnrmuavaemeemndoictf.oexpperreastsiniognr(e4g0im) feormsaptetceirfsyintdg the10o:b3sesrevce.dLveatl'useuesxeptehreitmuteentinal(ly40t)mth e1mseeacs.uFreodr tvhailsuepuorfptohsee ewtheesrhaklilnseumbasttiicvtcmoisnct orsaid0ty:i9c,t3vteshaeec=.exH6p:e2enr4iceen,1c0tehr5eesmcua2lltcsseu,clawt1iho,incwhereassruhelatslslhordewocnenivoinet the Fig. 6. The interferometer test results analysis, the ether kinematic viscosity values, calculated and measured, give the basis to consider, that the ether stream properties are close to the stream properties of known gases at their interaction with solids | to pass aside obstacles asonldidgso(dinieldeicrtercitcisn,gmseytsatlesmest.c.I)t actaninbteerasuctsipoenctwedit,hththaet ether stream render major ether-dynamic resistance. It clari es the interferometer test results, that the tube made of dielectric can execute the same directing system role for the ether, as the tube made of metal. The ether stream property, i.e. to pass aside obstacles, could cause unsuccessful attempts to detect the ether drift with the devices placed in metallic chambers [17-20, 23-26]. For value de nition of the ether drift horizontal coo mseptomneenatsuvreeldocvitayluWe ohf iatnisinptoersfseibrelencteo puastetetrhne abtanthdes mexopmreesnsitonof(t4i0m)ewtemsh, awllhreenceDive(tm) = max. From the Wh D (tm) c (8lpX 1 k 3J1 1 ( k) k=1 exp k2ap 2tm exp k2ah 2tm 1: (41) Let's substitute in (41) the measured values of the etohtfhetehrveakluiinneteemtrmfaetrio=cmve1itsecrsoescait,nydthvceeaaldc=eusliag6tn:i2o4npapr1aa0mra5emtmeerts2esrevca(tlhu1ee, tmcear;smelpsthn=eumm0b:e4ea8rsuomfre;ads evra=ileuse)6::5oafpt1h=0e07e:0tmh1e0;r5kdmr=i;fta4hh.=orIi0zn:o0nt3ht6ai7sl component velocity, will be de ned as follows Wh 525D (tm) : (42) Let's calculate the minimal value of the ether drift vuefalocctiutryedWihnmteinrf,erwohmicehtecra,ni.be.e measured we shall with the mandetermine the instrument sensitiveness. In the part \the interferom- ewtherichtescta"n ibs emdairgkietidz,edthwatiththethme isneilmecutemd veayleuferaDgmmeinnt, awnedsLhsecatal'lslerdeDectemeivrimne i=Wne0hm:t0hi5ne. Then with the expression (42) =eth2e6r:2s5trmea/msecr.egime in the in- twvrcRctseahtoaairerdesnltefmuihieatueeibrymtntsoeohhmvfaeet werupteahertr=dxi8ebe=trrp8utiR03reflt6t:een4eu0:sny2.bv1stdn4ie0eoorolsA5onewl1dgccamni0(cisttm4,o,in)eWr5teiudsnhwmihimasnWewtbg=2phssheohReirtWcscao eshRlimhlbt1te2mhiclhmn6eaieme:nil2onc>e.or5nuetvlflhqFyeoRamueosrtir.eir/enrtcswehLtt.etmheheichtiteHeetsh'tunshmiepbttnneruhtieecn(ereece3wprite,mv)fhoiieivtaesrasiheertt--l ometer tubes. The optical interferometer tests and tests results analysis give the basis to consider, that the hydrody- namic description of the interferometer operating prin- ciple, reviewed above, is adequate to the imaginations about viscous ether stream in tubes, and the manu- factured interferometer is suitable for the ether drift velocity and the ether kinematic viscosity measuring. The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 219 wasTdhisepmoseedasiunrethme ecnotumnterythsoetdtsle.mTehnet inattertfheerohmeiegthert ( 190 m above sea level), in 13 km from Kharkov northern suburb. The proximate height ( 200 m above sea level) is located westward apart 1.7 km. Two points were arranged for measurements. The distance between them was about 15 m. On the point No 1 the interferometer was at the height 1.6 m above the ground surface. On the point No 2 it was at the height 4.75 m. Two points available, which are located at dif- ferent heights and are practically at the same point of tfeecrtr.a"inT, hiteims reeaqsuuirreemdefnotrsoobnsetrhveatpioonintosf Nthoe1\haenidghNtoef2- were performed in the open air. On the point No 1 the interferometer was in surrounding trees shadow and was not exposed to direct solar radiation a ecting within a light day. On the point No 2 the interferometer was mounted in an umbrella shadow. In winter time the interferometer was transferred to Kharkov. The point No 3 ( 30 m above the ground surface or 130 m above sea level) was arranged in the upper level facility of a bricky house. On the point No 1 the measurements were carried out in August 2001, on the point No 2 in August, September, October and November 2001, on the point No 3 in December 2001 and in January 2002. The measurements were carried out cyclically. One measuring cycle lasted 25-26 hours. 2-4 cycles were performed within one month. Each cycle contained the following parameters. The interferometer was mounted on a selected point, so that its rotating plain was hor- izontal. After installation the interferometer was kept in new heating environment within one hour (the in- strument was stored in the facility). The measurements were carried out at each whole hour of stellar time. One readout of the measured value was performed under the following schema. The interferometer longitudinal axis wtoarswmasoutnutrendedaltoongthae mnoerrtihd.ianT,hseofuthrtahteritspriollcuemduinreas- did not di er from the interferometer operating pro- cedures, which were applied at the nal stage of the interferometer test. After the interferometer dynamic regime termination the observer registered the maximal bbaannddss ore lseeatsevatliumeeDto(ttmhe)i,raosritghienaml epaossuirteiodnvwalause.reTghise- tered and metered. The interferometer returned to the steady operating regime. The instrument turned to the initial position. As a rule, 5-7 readouts were done dur- imngeaonnvealmueeawsuasriancgcetpimteed(f or 1th0emmienaustuerse).d where S is the measuring stellar time. The readout value D (S), redestuThlhetsef.opllTroowhceinemgsspeianrosgucremedmuerteehnsto: drvesasluoulfetssthcpaerlocmcuelesasatiisnougnrseinomcfleutnhdet- ectohuerrsedorfiftthheoertizhoenrtdarlifctovmeploocniteyntwvitehloincitsyepWarhat;eastdeallialyr day and the ether drift velocity daily course averaged during the year epoch Wh (S); a daily course of the emtitohenaeTrsWuhdrehreimmfftreeonvametslusoiercterisimteymsenaeWvatenhrreav(sSgauel)uldt,esmfo werWaetnrh.e-esqiwnutharrooeldevutacilemudee doef tehceas the medeawsiutrhedthvealeuxeptraebsslieosnD(4(S2)) .wTerhee bvraoluugeshtWtho,tchaelcsualmate- table for each hour of stellar day. Such numbers con- sequence obtained for separate stellar day, describes a dailTyhceoumrseeanWvhal(uSe)s.of the ether drift velocity and the vdaalyuewsit hWthwe efroellocwalicnuglaktneodwfnoreexapcrheshsioounrs of the [30] stellar Wh (S) = 1 X Whj (S); j=1 8 W (S) = >< >: 1 X j=1 Whj (S) (43) Wh (S) 2 9=1=2 ;(44) ; wwhheorlee m eiasstuhreemvaelnutessearmieos.unTthWe hco,no bdtaeninceedindtuerrivnaglsthoef the measured values were calculated with the known methods explained, for example, in the work [30]. The calculations were performed with the estimation reliability equal to 0.95. The measurement results. The measurement series results, held since August 2001 till January 2002 are presented in the work. 2322 readouts of the measured values have been performed during this series. The distsrhiobwuntioinn othferetaadboleut1s amount per months of the year is According to the research problems, we shall consider this work results along with the experiment results [1-3], [7-9], [10]. These four experiments have bdie eenrepnetrfmoremaesudraintgvamrieotuhsodpso:inatsnoofpatigclaolbienwteirtfhertohmreeeter of the rst order (Europe, Ukraine, 2001{2002 [this work]); a radio interferometer of the rst order, (Europe, Ukraine, 1998{1999 [1-3]); optical interferometers of the second order (Northern America, USA, 1925{ 1w9h2i6ch[7a-r9e],a1p9p2li9ed[1i0n])t.heTahbeomvee-amsuernitniognmedetehxopdesriamcetinotns,, based on wave propagation regularities in moving medium, responsible for these waves propagation, that allows to treat the experiment results in the terms of the ether drift velocity within the original hypothesis. The development regularities of viscous medium streams ( uids or gases) in directing systems are used in the work measuring method. The measured value is proportional to a velocity di erential of the ether viscous streams in two tubes of di erent section within the original hypothesis. This di erential value is proportional to the ether drift velocity (the rst order method). In the experiment measuring method [1-3] the regularities of viscous medium streams near the surface 220 Yu.M. Galaev Month of theTyaebaler 1: DAis2ut0gr0iub1suttionSeop2ft0er0mea1bdeorutsOamc2t0oo0ub1nert peNr om2v0eom0n1tbhesrof tDhee2ce0ym0ea1brer Ja2n0u0a2ry Amount of readouts 792 462 288 312 240 228 FAiugguurset 8ep: oVchariation of ether drift velocity within a day in ptoarativtieornticaarle vuesleodc.ityThgeramdieeansturinedthvealeutehiesr pdrroipftosrttrioeanmal near the Earth's surface within the original hypothesis. This gradient value is proportional to the ether drift velocity (the rst order method). In the experiments [7-9] and [10] Michelson's cruciform interferometers were applied. The measured value is proportional to a velocity di erential of wave propagation in orthogonal related directions in the ether drift stream within the original hypothesis. This di erential value is proportional to the ether drift velocity (the second order method). In the Fig. 8 the experiment results referring to August are presented. On fragments of this gure are shown accordingly: in the Fig. 8a | this work results; in the Fig. 8b | the experiment results [1-3] (the gure is published for the rst time); in the Fig. 8c | the experiment results [7-9]. ing Tohneoertdhienratderiaftxevse.locTithieesstWelhlarintikmme/sSec.inarheopuersndis- pending on abscissa axes. Each of the Fig. 8 fragments illustrate the variation of the ether drift velocity wariethpinresaenstteedllaorndlyaybyWthh(eSa)u.thTohrse oefxpweorrimk e[1n0t]raessualtsscertaining of the velocity maximal value, measured by thFthhaieegsm.mn,8oeitnaasasruletlrloheawemtiedoednnattitloyodsatdhtheoaepwemanvtodehvreiaesnmgceiexnenpgWterrhWeims(uSe l)tns.t6wrIkneemsrute/hltsepsercFie,nsitgehtn.hat8e-t ed with the thick lines, which are obtained in each of the experiments during August epoch (mean results). The separate observations (measurement results during a separate day) are shown with thin lines. The dates of separate observations are speci ed on fragments. The separate observations on fragments of the Fig. 8a, Fig. 8b are selected from the performings, which had the date, proximate to the date of separate observation of the Fig. 8c fragment and which during the day had no skips during the measuring. The date discrepancy is stipulated also by the fact that the systematic measurements in the work began on August 14, 2001, and in the experiment [1-3] | on August 11, 1998. The positive measurement results, given in the Fig. 8eibmmt,yheienletnlrthutdess[t1rr[oi-7af3pt-t]9teri]tec,thqahe[ule1i0oirdne]petdptvehoerefel soeiernpacogmntm.isereoIantntdterirtooohfprewyaowntaeaivo steroieksotcrntapo,nrpwodiynapiseant gdhteahiectseticoeoe|xnvxpepwetrerhearides-applied. The similar nature of the ether drift velocity variation within a day in August epoch unite all three fragments of the Fig. 8. The rst minimums in dependreesnuclitess. IWnhth(Se)waorrek e(Fxpigr.es8saed) acnledairnlythine aexllptehrrimeeemnte[a1n3] (Fig. 8b) temporary position of minimums is S 3 hours. In the experiment [7-9] (Fig. 8c) the temporary pdiosscirteiopnanocfytihnet hrestpomsiitnioimnuomf tihsesSe m in0i:m8 uhmousri.s a(Sbuocuht 2.2 hour, an explanation has not found yet.) The ether drift velocity magni cation is observed during consequent 2-3 hours. Further the plateau sites with rather small variations of the ether drift velocity in time are noticed on all fragments. The greatest duration of the plateau site was observed in the experiment [1-3] (Fig. 8b), that can be explained by arranging peculiarities of a radio-frequency spectral line on terrain. In this expfreormimaenmt etrhiediraandoion-fr4e5q uetnocynosrpthecetarsatl. lTinheeisvadreiacltiinoends The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 221 oimf tuhteh)eothcecrurdsryifmt ampeetxriacazilmlyuttoha(amsewriedlilaanslainneywstitahrinaza- stellar day. If to take account (according to the apex Miller: coo6r5d i,naat e v1a7l:u5ehs into [9]), the ether drift azimuth in this part of a stellar day ac- cepts the values, which lay in the northeast direction, i.e. in the direction close to the direction of a radio- frequency spectral line. In this case the angle between the ether drift azimuth and radio frequency spectral line direction has minimum values. Accordingly at the interval of 12-16 hours the ether drift radial compo- nliennet) vkeeleopcsitryat(hdeirrehctigedh vaaloluneg,adersapdiitoe-forfeqthueenacpyexspheecitgrhatl magni cation (astronomical coordinate). Such arrang- ing peculiarities of the radio interferometer on terrain cthane ienxtperlavianl tohfe12re-1la6tihvoeudrsepinencdoemnpceariinscorneawsiethWthhe(Ssa)maet dependencies shown on two other fragments. In the work (Fig.8a), according to the accepted measurement methods, the optical interferometer was located along a meridian. As the variations of the ether drift azimuth within a stellar day occur symmetrically to the merid- ian line, in this case the plateau site duration should be less, than in the experiment [1-3] and less than in the experiment [7-9] in which the ether drift azimuth variation was considered by the corresponding rotation of the interferometer. It can be seen in the Fig. 8a (the mean result of the work), that the sites with rather small values of the ether drift velocity, extended in time, take place within a day. Noticeable bands o set of an interference pattern was not observed per a separate day on such sites. In these cases the ether drift velocity was lower tmh/asnect)h,ethianttewrfaesroumseedtefrorsetnhseitiinvteenrefsesro(mi.eet.erWtehsts<, th26e purpose of which is given in the above mentioned part "the interferometer test". Systematic character of experimental investigations of this work and the works [1-3], [7-9] has shown, that dependencies measured in one and the same epoch of tehtheeryedarriftWvehlo(Sci)ty, vhaarviaetitohnewsiitmhiinlaar dchaya.raActtetrheofsatmhee time dependencies epochs of the year vdiie werWfrhom(S)ea, cmheoatshuerre,dtihnatdic aenrebnet noticed, for example, by the experiment published re- snuolttsb[e7e-n9]d. eT hneedreyaesto.nIstocfasnucbhe sseuasspoencatledva, rtihaatitomnsahganvee- tosphere, at its considerable sizes and peculiar shape, ionosphere, the known variations of their state can be responsible for such dependence variations It can be seen in the Fig. 8, the ether Wdrhift(Sv)e.loc- ities, measured in each of the experiments, di er, that can be stipulated by the arranging height di erences of measuring systems above the Earth's surface: 1.6 m; 42 m; 1830 m (Fig. 8a, Fig. 8b, Fig. 8c accordingly). The collection of such data illustrates the height e ect development. In the work the ether drift velocity mea- Figure 9: Dependence of the ether drift velocity on the hi[m1e0ieg]nhtt[a1b-3o]v;e2thies Ethaertehx'psesruimrfaecnet, [7-9i]s; thisiswtohrekeaxnpdereixmpeenrt- s4du.e7rn5icnegmdhi(aspcvooesviebtrieoye.nnINnpoetr.hfoe1rmtaanebddleaN2tott.hhee2)mhfeeoiargnhhtvesaigl1uh.6etsdmoefpatenhndeether drift maximal velocity are given, which are measured in the work and in the experiments [1-3], [7-8], [10]. In these four experiments the measurements are performed at ve di erent heights: 1.6m and 4.75 m in the work; 42 m in the experiment [1-3]; 265 m and 1830 m in the experiment [7-9] (Clevelend and the observat[1o0ry] tohfeMmoeuansutrWemilesnotns awcecroerdcianrgrileyd).oIunt tahlseoeoxnpetrhime oenbtservatory of Mount Wilson. However, in contrast with twhoeodexepnehriomuesne,t t[7h-e9]e,xwpheriicmh ewnats[1c0a]rriisedpeorufotrimnead liinghat fsuernvdaatmoreyn.taIltbcuainldibnegsoufpapnoosepdt,ictahlawtotrhkesheotpheorf tshtreeoabmbraking by the house walls was the reason of the ether drift velocity smaller value, measured in the experiment [10] in comparison with the experiment result [7-9]. The table 2 gives the imagination about the ether drift velocity variation in height band above the Earth's surface from 1.6 m up to 1830 m. In the gure 9 this deptheendaebnscceisvsaiewanids porredsiennatteeds ianxtehsethloegalorgitahrmithicmscicalvea.luOens owtahfnhedreavr1teai:lomusWeasWcWci/osWrtdhaiennagdenltyZdh. eZr a/drZreifctownveserildoeecpriteeydndaeitqnutgahlaecthcooe1irgdmhint/gsZleyc;, 222 Yu.M. Galaev Table 2: Dependence of the ether driftTvheeloectithyerondrtihftevheeloigchittya(bmov/esetch)e Earth's surface theHEe(aimgrhtehtt'easrbsso)uvreface T20hO0i1sp-tw2ic0os0rk2 TRhaede1ixo9p9we8ra-iv1me9se9n9bta[n1d3] The e1x9Op2ep5r-ti1imc9se2n6t [79] The exOp1ep9rti2mi9csent [10] 1830 { { 10000 6000 24625 {{ 14{14 30{00 {{ 4.75 435 { { { 1.6 205 { { { ibmaneIndttcfrraoensmublet1s.s6eaermne fnurepoamrtotohn1e8e3Fs0itgrma. i9gt,hhttehlaeintthedeiar neddrreinifntt vehexelpiogechrit-tsnayunersdifsna,acctrtehem.aaostTescsphahewneirbtbehoeuinttnhhtdeeeraahrccyeotingiloshaenytq.eugrerTonhhwcaeestsheocfoadnbtahsotievadeeedrttahohbeernleEosttatrhrcetioachnmk's-tvFsreiraseocndmo,icuttsthhtaeehttehtteahirmbelaeaengtd2ihn,eiartFtsiidogsrn.tirfste8oavafmetlaohnnceediatmyrthotiesdheerFlaiEt[g4ha.-er6rt9]hs'amsibtsaoculualrtnfnatecbhaeeer. trveshoedanelursveEieetsaliu3ovrl0cettihnskt"'eymss.sos/fuIswnremafcassawcunoecay,bhsvtehtiexoaaxpuktpeesecrlnyriaminampseoeentxonthprtae.sllaeWtwitnhhoeiterthkrhmesd,terrhtieienefatrseiwoanxnnhgptirocidechfesisp\vtizaiohcetnee-(2am10re)e0t-iih4tno0acd0apsnpmslbie/cnesaesbcictal,eilvtchfeuonelraemstmseedetta,hostouhtdrhaseetmoeafetttnhhttehesr,esdaeersctiohfitnnedrvtehdolirorsidcftcietaryvsaeeillsomsculooictswhyt imne6thoorddse.rs (!) than the sensitiveness of the rst order The ether kinematic viscosity has been measured in the work. The measurement results are explained above in the part \Result analysis of the interferometer tests," that is stipulated by the peculiarities of the experiment implementation. The measured values of the ether kinematic viscosity are in the limits vevqeaaulua el ov(re5da:e5=r:c:6o::i72n:41ci)d1e01s0w5i5tmhm2tsh2esceece1th,1et.rhakTtihnaeecmcmoaretdaicinnvgvisatcloousetihtiyes value calculated above vc 7:06 10 5 m2sec 1 . Hence, the di erences between the dependencies Wavhai(lSab)leacnadn tbheeexetphlaeirneddribfty vtheleocmiteyasmureeamsuernetdmveatlhuoeds di erences of the work and the experiments [1-3], [7-9], [10] and di erences between arranging heights of measuring systems. The results of four experiments do not contradict each other, that illustrate the reproduced measurement nature of the ether drift e ects in various experiments performed in di erent geographic conditions with di erent measurement methods applying. Figure 10: The mean daily course of the ether drift velocity The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 223 vvaellouAceictwcyoitrhhdoitnrhigzeotnpotetarhiloecdoormpiegprinoonanleenhtystpeWollthahressdhiaso,yut(lhdtehceehtshapenargcedereiitfftsfect). For revealing the ether drift velocity component with such period, the results of systematic measurements were subjected to statistical processing in stellar time scale. The results of such processing are shown in the Fig. 10. On the fragments of the Fig. 10 the stellar time S in hours is suspended on the abscissa asuxseps,entdheedeothnerthderioftrdvinelaotceitayxevsa.lueThWe hveirntickaml /hsaetcchisethseinmdeicaantedatihlye ccoounr sdeenofcethienteetrhvearlsd. riIfnt vtehleocFitiyg.wi1t0haicnalcauslatetleldaracdcaoyrdWinhg(tSo)thise gmiveeansu. reTmheisntdreepseunltdsenocfethies work, which were performed during ve months of the year, since September 2001 till January 2002. During ve months the numerical value of stellar time shifts regarding to the solar time in 10 hours. Since September till November the measurements were performed on the point No2. In December and January | on the point No3. The mean values are calculated with the expression (43). For comparison, in the Fig. 10b the mean result is given, which was obtained in the experiment [1-3] during year's ve months of the same name, since September 1998 till January 1999 (Here, as contrasted to the similar gure, given in the works [1-3], the measured value is expressed in the ether drift velocity values.) In the works [7-9], [10] such data miss, owing to smaller on coverage of year's epochs of the measurement statistics in these experiments. Both fragments of the Fig. 10 as a whole have sim- ilar nature of the ether drift velocity variation within a day. The di erences in the curve shapes can be ex- ptelrarianiendrbelyiefvieslceomuesnetst,hewrhsicthreainmthinesteerdaci tieornenwt ietxhpetrhie- ments had the distinguished performances and features of radio-frequency spectral line arranging on terrain in the experiment [1-3]. On the fragment of the Fig. 10a (this work), as contrasted to the result of the exper- ismmeanllter[1v-3a]lu(eFsi,g.th1a0tbc)a,nthbeeetehxeprladinriefdt vbeylocthiteieshehiagvhet distinction of measuring points in these experiments. The dependencies ly changed values Wwihth(St)hheapveertihoedsfoerqmusaol ftpoeariosdteicllaalr- day, that can be explained by a space (galactic) origin of the ether drift. In the work, the observed bands o - set direction of an interference pattern corresponded to the ether drift northern direction at measurement im- plementation. Hence, the results of the work do not contradict the experiment results [1-3], [7-9], [10] and imaginations of the works [4-6] about the northern posi- tion of the ether drift apex, that demonstrate the repro- duced result nature of the ether drift e ects measure- ment in di erent experiments, performed with di erent measuring methods application. p[1a-r3iI]sn,o[nt7h-9oe]f,wt[o1hr0ek].wwFoeorrskhcaroelnlsdubuletcsctiownngi tonhfedqthuteaoneqtxiuptaaeltriiitvmaeteicnvoetmcdpoaamtra-aatthotpieevsxpe ercascontiofayrtldiymaisnniesatwaietnevarieaslylduntieeectscaeeolrsnmsvatiirehnyweedtcooeiflnestsphttehieaceilefetsyxhppehtrheererdiemre,itwfehtnhetvrice[hd7lor-fc9iofi]rt-, tptsyitroroendpaeommpseeesndtfhdooeirnndmctioehnfegotnhnweetoahtrreekrtshrhae[e1iing-Eh3ra]te,rlattihbeof'osevinlseau btruhfoeaerncaecEt,eeatroottnhhde'tsehctseeaurlemcrtfuhailnceaeerpiatohnrnoedobrsgaepaobhseleeosrneion,tu htthuistaehnteexcisipfntregharimemosfeuentbohtfjeertcehEtseuoalfrwttssohe,rptkmahrpeaargetonexbepiltneeovmrsiepmssh.teiegnDrateut[ie1ao-nnt3dos] atdinio dneT,rthehtnhuetose,uexixgnphpeterhiriteimsmweuenosntretkfs[u,7lit-nsh9e]qesuashriytaeeptgootitvbhheveenisoriewsusseiu.txlhtpoecurotimmapnenyatracisolorvnreeroci--f aaTlgchaamettieieoodsnnitu,iammibnao, tturihetosentphoooepnftesititcbhhaleelerwefeotaxhrvieseertleebcnkaticnrneodemimnhaaangtsaintcbeuetvrieeicns,cwiop.aesev.irtefymos rpavmtareoleurpdie--. hfcmooofaressvtitthihbysoecedmoeenuateshcapteslieruioqrrndfuionriiridgsfmtbhoevaardess.legodbacTesiotehnynsettarphne readormspdtteohsvsoeeeirndledotephatrhmneerdoepkndrtiteiniracreealemcilgztueiamndltagi.ecrtiTshvtyioihessdes-todveabrmiltfuatsei.nroeeTfqduhthiserteeasdtiegitsneht iei creacckaltlsinyn.themmaTsaehatbeisecuedrvneeivmsscehoeloonspwittmynr.eeosnnuTtltthoshefehmtavhvaeeelauseebutehroeeerndrdodEtifeioarrnroethcphctathi'isoscacnansolugiarnewnfscaadiicvdteeies.ndvpcTawrrelohiuapteeshaevwgisetailstwtohiccoiatinatlhcypudhoeleearfpiitgoeoenhpddtdtvpiscgaearlroulonoewwn.ttaehThvesehateerpbalvroldaoevilrpeaoadtctgiaiohtayyne-. The|deotepcttiecdalew eacvtes pcraonpbageaetxiopnlaimneeddibuymthaevafiollalbowleinreg-: giptaoyrs,de|idi.ne.ogopftttsohieceptahalfeerwaaEatteuvaerrpetpahprr'ostripocmpalegeosrav;tetimoonemnmta;etderiuiaml mhaesdituhme vsicscooms-has|Tghoetthaweosmprkaecdreeius(umglatlssatrccetoaimcm)poaorrfiigsoiopnnt.itcoalthweaveexpperroipmaegnattiroens aptuhscalearttitshsei,ooethnneexetrarehecbedsuorurtuileifttndts tneehh aaaeetrvulceeitrexerism,shithnoeeawanosscnurebdrteeeohemrfenoesunrfpetcetpshrhrfeioomnrdhmauvytcaepeerdrodi.iotahuTlnesamhstieesuexdrcpveoieeumrromii--fmwietnhTtshdeip ewerrofeornrktmrmeedseuailsntusrdecima neernbetnemtcgeotenhosogiddreasrpeahdpipcalirsceaeqtxuipoirener.mimeenntstitnarolnmhayatpgunoreet,htieics.eiws.acvmoensa tperrrmoiapalatimgoanetdiaoiubnmo. u,trethspeoentshiberleefxoirsteelnecce- 224 Yu.M. Galaev References [1] Yoicnus,.ra2Md0i.0o0Gw,aValavoeelv.p.5r,\oEpNatohg.a1ert,-ipodnpri..f"t1R1e9a {de1cio3tsp2.hiny(sintichsUeakenrxadpineerleei)mc.teronnts- [2] Yosifaur).a.Mdio. Gwaavlaee.v".Z\hEutkhoevrs-kdyr:iftP.eEtixt,p2e0ri0m0,en4t4 ipnp.th(ienbRaunsd- [3] YmShtuuitlb.plsi:mt/Ma/enwt.crewicG,wa2.rls0aap0eda1vico,.ewtiVa\mvEoeelt.s.hnea2rpr,aorlodNp.rwaoug.i/na0td50i(o11n0i0n.-)"p,defSpx.zpppia.pecr.ei2et1in1mc{ee225o&,f [4] W. Azjukowski. akten Wissens., S\tDuyttngaamrtik, 1d9e7s4,A Nthue.r2s.,"s.Id4e8e{n58d.es ex- [5] Vics.A. M. Aodtseulkimovasgkiyn.a\tTiohnes ionftmroadtuecrtiaiolnanindt oeeldthsetrrduycntuarmesod(inenpt.Rh, ue1s9bs8iaa0s),i.sDoefpg.ains lVikIeNeItThIer1.2".0M6o.8s0koNwo,.M27O6I0P-80phDyEsiPcs. [6] V.A. Atsukovsky. \General ether-dynamics. Simulation otMhf oetshicdoeewam,s 1aa9tbt9oe0ru, t2s8ttrh0uepctgpua.rs(e-ilsnikaeRnuedstshi eaer).l."dsEonnergtohaetobmaiszisdaot,f [7] Dso.lCar. 408. Mobislleerrv.a\tEortyh.e"rPdhriyfts.eRxpever.,im19e2n2ts, VatolM. 1o9u,ntppW. i4ls0o7n{ [8] D.C. Miller. \Ether drift experiment at Mount Wils3o1n4.." Proc. Nat. Acad. Amer., 1925, Vol. 11, pp. 306{ [9] Dm68.e,CnN.tsoM.of1il6l1e39r52.,5\paSpti.gM4n3io 3uc{an4nt4c3We. ilosfont.h"eSectihenerc-ed.,ri1ft92e6x,pVeoril-. [10] A.A. Michelson, F.G. Pease, F. Pearson. \Repetition of the Michelson-Morley experiment." Journal of the OstprutimcaelnStso.c,i1et9y29o,f VAoml.er1i8c,aNaon.d3R, epvpi.ew18o1f{S18c2ie.nti c In- [11] E.T. Whittaker. \A History of the Theories of Aether ad\nAydnHaEmislitecocsrt,yri2co0ift0y1t.h,"e5I1Tz2hheepvopsr.kie:(sinRofRICAusesRtihaee)gr.ualEan.rTd a.EnWldechtrirtaitncadiktoyem.r". Thomas Nelson and Sons Ltd, Edinburgh, 1953. [12] A.A. Michelson. \The relative motion of the Earth and tehneceL.,u1m8i8n1if,eIrIoIusseertiehse,r.V"oTl.h2e2A, Nmoe.ri1c2a8n, Jpopu.1rn20a{l 1o2f9S.ci- [13] GtT2e0h.r2G.e{".2SIP0no3evtti(hreiaetnsbheR,onuoScsky.sGci\al.oP)Rp.heaydusiitaci,aanlM.en\ocMsykcioclwhope,las1eo9dn6i'c2s,vInoVtcoealrb.fue2rl,aormpyp.e"-. [14] A.A. Michelson, E.W. Morley. \The relative motion of tJ34h36oe33u{.rE3na4ar5lt;hoPfahnSidlcoisteohnpechelui.cmTalihnjioirfuderrnoSauelsr.i,ea1se8.t,8h7e1,r8.V8"7oT,l.hV2e4oA,l.pm3pe4.r,4i4cpa9pn{. [15] WNa.uI.kFar,aMnkofsukrotw, A, 1.M97.2F,r2a1n2k.p\pO. p(itnicRs oufssmiao)v.ing media." [16] S.I. Vavilov. \New searchs of \the ether c(ienssResusosfiap).hysical sciences, 1926, Vol. 6, dprpif.t"2.4"2{S2u5c4- [17] R.J. Kennedy. \A re nement of the Michelson-Morley e1x2p, eprpim. 6e2n1t.{"62P9r.oc. Nat. Acad. Sci. of USA., 1926, Vol. [18] K.K. Illingworth. \A repetition of the Michelson- Morley experiment ical Review., 1927, Vusoiln.g30K,epnpn.ed6y92's{r6e9 6n.ement." Phys- [19] EFBr.8e,iSbNtaaulhl.oen1l.0.",\S\D.Da9ise35MN{ai9ct3hu6er.lwsoinss-eEnxspcheraifmteenn,t", Haeufstg4e1fu, r1t92im6, [20] Joos G. Die Jenaer. \Widerholung des Mihelsonversuchs." Ann. Phys., 1930, B7, S. 385{407. [21] \Ether-drift," Digest by Dr. in Sc. V.A. Atsukovsky. Energoatomizdat, Moskow, 1993, 289 pp. (in Russia). [22] D.C. Miller. \The ether-drift experiment and the de- termination of the absolute motion Modern. Phys., 1933, Vol. 5, No. 3, opfpt.h2e0E3{a2rt4h2.." Rev. [23] L19.5E5,ssVeonl.. 1\7A5,npepw. 7e9t3h{e7r94d.rift experiment." Nature., [24] J.P. Cedarholm, G.F. Bland, B.L. Havens, C.H. Townes. \New experimental test of special relativity." Phys. Rev. Letters., 1958, Vol. 1, No. 9. pp. 342{349. [25] D.C. Cyampney, G.P. Isaac, M. Khan. \An ether drift experiment ters., 1963, based on the Mssbauer Vol. 7, pp. 241{243. e ect." Phys., Let- [26] T.S. Jaseja, A. Javan, J. Murbeam, C.H. Townes. \Test omfasspeercsi.a"lPrehlyast.ivRiteyv.o,r1s9p6a4c.eViosol.tr1o3p3ya,bpypu.s1e2o2f1{in1f2r2a5re.d [27] LM.Gos.kLowoy,t1sy9a7n3,sk8y4.8\Mppe.ch(iannRicsusosfia )u.id and gas." Nauka, [28] Nid..A" .GSolesztekcinh.iz\dDaty,nMamosicksowof, v1i9s5c5o,us52in0cpopm.p(rinessRibulsesi au).- [29] S.G. Rautian. \Rozhdestvensky's Interferometer." In tvshiiaee)t.beonockyc\loPpheydsiiac,alMeonsckyocwlo,p1a9e6d2ic, Vvoolc.a2b.upla.r2y0.3" (TinheRSuos-- [30] LpRe.uZrsi.msiRae)un.mt srhesisukltys.."\MNaatuhkeam, aMtiocsaklopwr,oc1e9s7s1in,g19o2f tphpe. e(xin-