
1.  Introduction
The BRAMS (Belgian RAdio Meteor Stations) network is a Belgian project using forward scatter of radio waves 
to detect and characterize meteoroids. It comprises a dedicated transmitter located in the South-West of Belgium 
and 44 receiving stations spread all over the Belgian territory and neighboring countries (see Figure 1 for status 
in February 2023).

The transmitter emits a circularly polarized continuous radio wave with no modulation at a frequency of 
49.97 MHz with a power of 130 W. All the receiving stations are using a 3-element Yagi antenna set up vertically 
and oriented in azimuth toward the transmitter. At the time of writing, approximately a third of the receiving 
stations is using analog ICOM-R75 receivers, an external sound card to sample the signal coming from the 
antenna, and is controlled by the freeware program Spectrum Lab running on a PC (Lamy et al., 2015). The other 
two thirds use digital SDR-RSP2 receivers controlled by a Linux system running on a Raspberry Pi (Anciaux 
et al., 2020). All stations are equipped with a Garmin GPS that provides timestamps to the BRAMS data and 

Abstract  In this paper, we aim to reconstruct meteoroid trajectories using a forward scatter radio system 
transmitting a continuous wave (CW) with no modulation. To do so, we use the meteor echoes recorded at 
the receivers of the BRAMS (Belgian RAdio Meteor Stations) network. This system consists, at the time of 
writing, of a dedicated transmitter and 44 receiving stations located in and nearby Belgium, all synchronized 
using GPS clocks. Our approach processes the meteor echoes at the BRAMS receivers and uses the time delays 
as inputs to a nonlinear optimization solver. We compare the quality of our reconstructions with and without 
interferometric data to the trajectories given by the optical CAMS (Cameras for Allsky Meteor Surveillance) 
network in Benelux. We show that the general CW forward scatter trajectory reconstruction problem can be 
solved, but we highlight its strong ill-conditioning. With interferometry, this high sensitivity to the inputs is 
alleviated and the reconstructed trajectories are in good agreement with optical ones, displaying an uncertainty 
smaller than 10% on the velocity and 2° on the inclination for most cases. To increase accuracy, the trajectory 
reconstruction with time delays only should be complemented by information about the signal phase. The use 
of at least one interferometer makes the problem much easier to solve and greatly improves the accuracy of the 
retrieved velocities and inclinations. Increasing the number of receiving stations also enhances the quality of the 
reconstructions.

Plain Language Summary  This paper presents a method for tracking the path and speed of 
meteoroids using radio observations. A simple continuous wave signal is reflected by the electrons created 
when the meteoroid enters the upper atmosphere and creates ionization. The reflected signal, called a meteor 
echo, is recorded at various locations not co-located with the transmitter. The time delays between several 
echoes is used to retrieve the meteoroid trajectory and speed. In this work, we apply this method using data 
from Belgian RAdio Meteor Stations (BRAMS), a Belgian network of 44 receiving stations. The results 
are compared to accurate observations from Cameras for Allsky Meteor Surveillance, an optical network of 
cameras surveying the sky for meteors. Our method perfectly works with no measurement errors but small 
uncertainties on the time delays may significantly impact the accuracy of the reconstruction. Using a large 
amount of receivers and/or a radio interferometer greatly improves the results. This project is the first to tackle 
the meteoroid trajectory reconstruction using this type of radio system (with no range information and many 
receivers at different locations). This novel method is essential to fully exploit the capabilities of BRAMS 
for future applications such as determination of fluxes or sounding of the upper atmosphere (e.g., wind speed 
measurements).

BALIS ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

Reconstructing Meteoroid Trajectories Using Forward Scatter 
Radio Observations From the BRAMS Network
Joachim Balis1,2  , Hervé Lamy1  , Michel Anciaux1  , and Emmanuel Jehin2 

1Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, 2STAR Institute, University of Liège, Liège, Belgium

Key Points:
•	 �Meteoroid trajectory and speed 

determined with a continuous wave 
forward scatter radio set-up

•	 �Trajectory reconstruction solver is 
validated against simulated data but 
the problem is ill-conditioned

•	 �Interferometry required for an 
accuracy of <10% on the velocity 
and <2° on the inclination for most 
trajectories

Correspondence to:
J. Balis,
joachim.balis@aeronomie.be

Citation:
Balis, J., Lamy, H., Anciaux, M., & Jehin, 
E. (2023). Reconstructing meteoroid 
trajectories using forward scatter radio 
observations from the BRAMS network. 
Radio Science, 58, e2023RS007697. 
https://doi.org/10.1029/2023RS007697

Received 28 FEB 2023
Accepted 25 MAY 2023

10.1029/2023RS007697
RESEARCH ARTICLE

1 of 18

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-8951-0351
https://orcid.org/0000-0002-5258-3645
https://orcid.org/0009-0004-1220-2539
https://orcid.org/0000-0001-8923-488X
https://doi.org/10.1029/2023RS007697
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023RS007697&domain=pdf&date_stamp=2023-06-09


Radio Science

BALIS ET AL.

10.1029/2023RS007697

2 of 18

allows time synchronization between the receiving stations. Additional 
features of the receiving stations are not described here. Instead, we refer 
the reader to previous publications (Anciaux et al., 2020; Lamy et al., 2015).

There exist other meteor forward scatter systems but they are either asso-
ciated with meteor radars (sending pulses), or continuous wave (CW) 
emitting systems with additional coding (e.g., phase coding). An applica-
tion of such forward scatter systems is wind speed measurements in the 
mesosphere/lower-thermosphere (MLT) region, which have seen important 
developments in the last few years. Stober and Chau (2015) used data from 
the MMARIA (Multistatic/Multifrequency Agile Radar for Investigations of 
the Atmosphere) concept, made of two meteor radars and another receiver 
providing an additional forward scatter capability. They showed that the 
forward scatter observations increased both the number of meteor detections 
and the altitudinal coverage. Vierinen et al.  (2016) introduced the concept 
of coded CW meteor radars and presented their advantages with respect 
to pulsed specular meteor radars (SMR). Notably based on this work, the 
MMARIA concept was further developed into SIMONe (Spread-spectrum 
Interferometric multistatic Meteor radar Observing Network) to extend the 
capabilities of traditional meteor radar systems by adding either several 
spatially separated receivers to existing transmitting stations, or several 
spatially separated transmitters to existing interferometric receiving stations 
(Chau et al., 2019). One unique feature of this work is the use of interferomet-

ric transmitting arrays as opposed to interferometric receiving arrays typical in meteor radars. Another example 
application is the measurement of ozone concentration in the MLT region, which has been indirectly performed 
by the Bologna-Lecce-Modra forward scatter meteor radar, thanks to the detection of meteoroids entering the 
Earth's upper atmosphere (Cevolani & Pupillo, 2009).

To the authors' knowledge, no existing CW forward scatter system without modulation has tackled the problem 
of reconstructing individual meteoroid trajectories and speeds. One of the main difficulties stems from the geom-
etry, which is more complex than in the case of backscatter systems. For instance, as BRAMS does not modulate 
its CW transmitted signal, the total range traveled by the radio wave between the transmitter (Tx), the reflection 
point and the receiver (Rx) cannot be estimated. Therefore, the trajectory reconstruction problem is complicated 
to solve.

In this paper, we present an approach to retrieve meteoroid trajectories with a forward scatter CW set-up such as 
BRAMS. Two methods are considered: one based only on measurements of time delays between meteor echoes 
recorded at different receiving stations, and one using the same data but complemented with information from the 
radio interferometer located in the Humain station which provides the direction of one specular reflection point. 
In order to assess the quality of the reconstruction, a comparison with data from the optical CAMS-BeNeLux 
network is provided (Roggemans et al., 2016).

2.  Mathematical Model
The first method (hereafter called Method 1) is based solely on geometrical considerations and relies on the 
specular condition of the reflection of the radio wave. The specular reflection point is the location along the 
meteoroid path for which the total distance traveled by the radio wave Si = RTi + RRi is minimum. In this expres-
sion, RTi is the distance from the transmitter to the meteor and RRi is the distance from the meteor to the receiver. 
The condition of specular reflection allows the position of the reflection point to be identified as the point on 
the ellipsoid, whose foci are the transmitter and the receiver, which is tangent to the meteor path. Because the 
geometry Tx − Rxi is different for each receiving station Rxi, the corresponding reflection points will be located at 
various positions along the meteoroid path. This is illustrated in Figure 2 for a reference station Rx0 and another 
station Rxi. In this example, the specular reflection point P0 for the reference station is created before the corre-
sponding reflection point Pi. The distance between the two points depends on the speed V of the meteoroid. As a 
consequence, the reference station will detect a meteor echo shortly before receiving station i, the time delay Δti 
between meteor echoes depending on the meteoroid path and speed.

Figure 1.  Map of the BRAMS network in February 2023. The blue triangle 
is the transmitter located in Dourbes while the green dots are the 44 active 
receiving stations at the time.
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Throughout this work, we assume that the trajectory of the meteoroid body 
can be described by an uniform rectilinear motion. The rectilinear assumption 
can be justified by the fact that the influence of the gravitational acceleration 
and the Coriolis forces is small compared to the magnitude of the meteor 
velocity: the maximum radius of curvature induced by these accelerations is 
respectively 2 and 12 times the radius of the Earth (Jeanne, 2020). Atmos-
pheric drag and mass-loss can introduce significant deceleration (Kastinen & 
Kero, 2022; Schult et al., 2017), even for the small meteoroids detected by 
BRAMS. However, it is reasonable to assume that the majority of the decel-
eration occurs at the end of the ablation process. As most of the exploitable 
echoes come from the beginning and middle of the meteor event, the time 
delays are thus measured in a region where the constant speed assumption 
is acceptable.

2.1.  Forward Problem

Before developing a method for retrieving the trajectory from the time delays 
observed at the receivers, let us study the forward problem, that is, determine 
the location of the specular points for a given meteor trajectory. This problem 
comes down to finding the intersection between an ellipsoid and a straight 

line (Nedeljković, 2006). If the start point is P1 = (x1; y1; z1) and the end point is P2 = (x2; y2; z2), the equations 
of the meteor trajectory are given by:

𝑥𝑥 − 𝑥𝑥1

𝑥𝑥1 − 𝑥𝑥2

=
𝑦𝑦 − 𝑦𝑦1

𝑦𝑦1 − 𝑦𝑦2

=
𝑧𝑧 − 𝑧𝑧1

𝑧𝑧1 − 𝑧𝑧2

.� (1)

The description of the sought-for ellipsoid is much more complex but, given a coordinate system in which the 
Cartesian axes are also those of the ellipsoid, it can be described by:

𝑥𝑥
2

𝑎𝑎2
+

𝑦𝑦
2

𝑏𝑏2
+

𝑧𝑧
2

𝑐𝑐2
= 1,� (2)

where a, b, and c are real positive numbers. To facilitate use of this property, a new system of coordinates is 
introduced whose origin is located at the geometric center point PTR = (xTR; yTR; zTR) between the transmitter and 
the receiver. We define the y-axis in the same direction as the vector joining these points. The considered ellipsoid 
is a spheroid (i.e., an ellipsoid of revolution) because the two ranges RTi + RRi are fixed but the location of the 
reflection point is arbitrary. As a result, we deduce a = c, such that Equation 2 can be expressed as:

𝑥𝑥
2

𝑎𝑎2
+

𝑦𝑦
2

𝑏𝑏2
+

𝑧𝑧
2

𝑎𝑎2
= 1.� (3)

This system can be obtained with the following transformations: a translation to set the location of the ellipsoid 
center PTR as the origin of the reference frame (conversion between system 0 and ′):

𝑥𝑥
′
= 𝑥𝑥0 − 𝑥𝑥𝑇𝑇𝑇𝑇,

𝑦𝑦
′
= 𝑦𝑦0 − 𝑦𝑦𝑇𝑇𝑇𝑇,

𝑧𝑧
′
= 𝑧𝑧0 − 𝑧𝑧𝑇𝑇𝑇𝑇,

� (4)

a rotation around the z-axis by an angle 𝐴𝐴 𝐴𝐴 = arctan

(

𝑥𝑥𝑇𝑇𝑇𝑇

𝑦𝑦𝑇𝑇𝑇𝑇

)

 (angle between system ′ and ″):

𝑥𝑥
′′
= cos(𝛼𝛼)𝑥𝑥

′
− sin(𝛼𝛼)𝑦𝑦

′
,

𝑦𝑦
′′
= sin(𝛼𝛼)𝑥𝑥

′
+ cos(𝛼𝛼)𝑦𝑦

′
,

𝑧𝑧
′′
= 𝑧𝑧

′
,

� (5)

Figure 2.  Specularity and geometry of a forward scatter set-up. The time 
delay between the creation of the specular point P0 of the reference station Rx0 
and the specular point Pi of the other station Rxi is noted ti. The straight blue 
arrow indicates the meteor path, traveling at a speed V. The two radio wave 
paths Tx − P0 − Rx0 and Tx − Pi − Rxi are not coplanar.
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and a rotation around the x-axis by an angle 𝐴𝐴 𝐴𝐴 = −arctan

(

𝑧𝑧𝑇𝑇𝑇𝑇

𝑦𝑦𝑇𝑇𝑇𝑇

)

 (angle between system ″ and ‴):

𝑥𝑥
′′′
= 𝑥𝑥

′′
,

𝑦𝑦
′′′
= cos(𝛽𝛽)𝑦𝑦

′′
− sin(𝛽𝛽)𝑧𝑧

′′
,

𝑧𝑧
′′′
= sin(𝛽𝛽)𝑦𝑦

′′
+ cos(𝛽𝛽)𝑧𝑧

′′
.

� (6)

This last reference frame is the one in which the determination of the specular point location is performed. In the 
following, we will drop the superscript  ‴ for clarity. Thus, x, y, z should be understood as x′′′, y′′′ and z′′′ for the 
rest of this subsection.

Using Equation 1, we can deduce x and z values from y and obtain the following system of equations:

𝑥𝑥 =
𝑥𝑥1 − 𝑥𝑥2

𝑦𝑦1 − 𝑦𝑦2

(𝑦𝑦 − 𝑦𝑦1) + 𝑥𝑥1,

𝑧𝑧 =
𝑧𝑧1 − 𝑧𝑧2

𝑦𝑦1 − 𝑦𝑦2

(𝑦𝑦 − 𝑦𝑦1) + 𝑧𝑧1.

� (7)

Using these values in Equation 3, we obtain a quadratic equation of the form Ay 2 + By + C = 0, whose solutions 
are given by:

𝑦𝑦1,2 =
−𝐵𝐵 ±

√

𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
.� (8)

Because we are looking for a tangent point, we already know that there the solution is unique, which means that:

𝐵𝐵
2
− 4𝐴𝐴𝐴𝐴 = 0,� (9)

where A, B, and C are functions of a, b, P1, and P2. Replacing a 2 by b 2 − f 2 (where f is half the interfocal distance 
of the ellipsoid), this gives us a fourth order equation in b. This equation can be solved for b 2 and then for 
a 2 = b 2 − f 2 with a and b being chosen so that they are positive values. Knowing a and b, we are able to compute 
A, B, and then y. From Equation 7, we find the full position vector PTan = (x; y; z) in the system  ‴.

The final step is to perform an inverse transformation to come back to an easy-to-use and more general coordinate 
system (i.e., not linked to a specific ellipsoid). It is natural to choose Dourbes, where the BRAMS transmitter Tx 
is located, as the origin of this global reference system. Like in previous work on the BRAMS network (Lamy 
& Tétard, 2016), the West-East direction is used as the X-axis and the South-North direction as the Y-axis. The 
Z-axis is taken out of the plane by the right-hand rule. This reference frame is used for our following computations.

2.2.  Inverse Problem

We have defined a way to compute the location of the specular points, knowing the meteoroid trajectory. In practice 
however, the trajectory is unknown. To find it, the only inputs at our disposal with Method 1 are the time delays 
between meteor echoes observed at the receiving stations. The trajectory reconstruction problem is thus inverse.

More formally, a meteoroid trajectory can be defined by the 3D Cartesian coordinates of one specular point (the 
one corresponding to a reference station) and the three components of the velocity which provide the direction 
(assuming again a constant speed). This gives a total of six unknowns (respectively called X0, Y0, Z0, Vx, Vy, and 
Vz) and therefore the need to have at least six equations to avoid solving an underdetermined system. In Method 1, 
these equations are provided by the specularity condition. Let us write the distance Si, traveled by the radio wave 
from the transmitter toward a reflection point Pi = (Xi, Yi, Zi) and back to the receiver Rxi = (xi, yi, zi):

𝑆𝑆𝑖𝑖 =

√

𝑋𝑋
2

𝑖𝑖
+ 𝑌𝑌

2

𝑖𝑖
+𝑍𝑍

2

𝑖𝑖
+

√

(𝑋𝑋𝑖𝑖 − 𝑥𝑥𝑖𝑖)
2
+ (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖)

2
+ (𝑍𝑍𝑖𝑖 − 𝑧𝑧𝑖𝑖)

2
,� (10)

where, for each receiver Rxi:

⎛

⎜

⎜

⎜

⎜

⎝

𝑋𝑋𝑖𝑖

𝑌𝑌𝑖𝑖

𝑍𝑍𝑖𝑖

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑋𝑋0

𝑌𝑌0

𝑍𝑍0

⎞

⎟

⎟

⎟

⎟

⎠

+ Δ𝑡𝑡𝑖𝑖

⎛

⎜

⎜

⎜

⎜

⎝

𝑉𝑉𝑥𝑥

𝑉𝑉𝑦𝑦

𝑉𝑉𝑧𝑧

⎞

⎟

⎟

⎟

⎟

⎠

,� (11)
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which formalizes the fact that there is a time delay Δti between the creation of the specular point Pi of the receiver 
Rxi and the specular point P0 of the receiver Rx0 (see Figure 2). The specularity condition implies that the total 
distance traveled by the radio wave is minimum at the specular reflection point, hence 𝐴𝐴

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 0 . This time deriv-

ative can be expressed as:

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
+

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
+

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
.� (12)

The partial derivatives with respect to the specular point coordinates can be obtained through (example given for 
Xi, the same principle can be applied for Yi and Zi):

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

=
𝑋𝑋𝑖𝑖

√

𝑋𝑋
2

𝑖𝑖
+ 𝑌𝑌

2

𝑖𝑖
+𝑍𝑍

2

𝑖𝑖

+
𝑋𝑋𝑖𝑖 − 𝑥𝑥𝑖𝑖

√

(𝑋𝑋𝑖𝑖 − 𝑥𝑥𝑖𝑖)
2
+ (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖)

2
+ (𝑍𝑍𝑖𝑖 − 𝑧𝑧𝑖𝑖)

2

.� (13)

Using the assumption of constant speed motion, we have 𝐴𝐴
𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑉𝑉𝑥𝑥 , 𝐴𝐴

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑉𝑉𝑦𝑦 and 𝐴𝐴

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑉𝑉𝑧𝑧 . Combining Equa-

tions 12 and 13 and using the fact that Si should be minimum at each receiving station, we obtain:

���

��
=

�� ⋅ �� + �� ⋅ �� +�� ⋅ ��
√

�2
� + � 2

� +�2
�

+
(�� − ��) ⋅ �� + (�� − ��) ⋅ �� + (�� − ��) ⋅ ��

√

(�� − ��)2 + (�� − ��)2 + (�� − ��)2

= 0.

� (14)

As Xi, Yi, and Zi depend on the input time delay Δti through Equation 11, we have an implicit link between the 
input of our system and the output trajectory, described by our six parameters. This set of equations is highly 
nonlinear and is therefore particularly difficult to solve.

A nonlinear solver that takes into account additional constraints on the unknowns is then used. On the one hand, 
the height of all reflection points must lie between for example, 80 and 120 km altitude. Above this interval, the 
atmospheric density is too low for the radio signals to be reflected by the ionized trail. Below it, the low-mass 
meteoroids that we are interested in are completely disintegrated into dust. On the other hand, the speed of most 
meteoroids is larger than ∼11 km/s but smaller than ∼72 km/s. The lower limit corresponds to the Earth's escape 
velocity, while the upper limit is the maximum geocentric speed at which a Solar System object can enter the 
Earth's atmosphere. Meteoroids of interstellar origin may pass through our atmosphere with a speed of more than 
72 km/s, but these cases are very rare (Froncisz et al., 2020; Hajduková Jr. et al., 2014).

The second method (hereafter called Method 2) is using the same assumptions as Method 1 but includes data from 
our interferometric radio station located in Humain. Unlike the other receiving stations, it uses 5 antennas in the 
so-called Jones configuration (Jones et al., 1998; Lamy et al., 2018) and allows to determine the direction of arrival 
of the meteor echo to within approximately 1°, although errors on azimuth and elevation have different dependencies 
(Jacobs & Ralston, 1981). The interferometer provides two more equations for the azimuth and elevation of the spec-
ular reflection point but does not provide its exact position. With these additional equations, we theoretically need 
time delays measured between only 3 additional stations and a reference station in order to get at least 6 equations.

3.  Solver Development
The nonlinear optimization solver that we will use is based on an interior-point (IP) method (Karmarkar & 
Ramakrishnan, 1991). The IP algorithms are used in solving both linear and nonlinear convex optimization prob-
lems that contain inequalities as constraints. In our case, these inequality constraints are related to the altitude of 
the reflection points and the meteoroid speed. There are two important IP algorithms: the barrier approach and 
the primal-dual method. The primal-dual approach is preferred here due to its efficiency and accuracy. Further 
information about the IP approach can be found in Boyd and Vandenberghe (2004).

3.1.  Target Definition

The most important quantity to define is the target objective (or cost function) to minimize. This function asso-
ciates a scalar to every trajectory (defined by our 6 unknowns): the lower its value, the better the reconstruction 
(given the input time delays that we have at our disposal).
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For Method 1, the first dimensionless target objective that we defined comes from the specularity condition:

�0 =
1
�

�
∑

�=1

(���

��
⋅
1
�

)2
,� (15)

where 𝐴𝐴 𝐴𝐴 =

√

𝑉𝑉
2
𝑥𝑥 + 𝑉𝑉

2
𝑦𝑦 + 𝑉𝑉

2
𝑧𝑧  is used to make the target objective dimensionless, and the sum is done on n receiv-

ers. This approach is the most intuitive as it uses the minimization of the distance traveled by the radio wave. 
Nonetheless, it shows two major drawbacks. First, it is very sensitive to the quality of the initial guess. Indeed, 
as the IP approach is gradient-based, we need to prescribe a first solution to the solver. We observed that this 
guess needs to be quite close to the correct solution to ensure solver convergence, which is problematic given we 
generally have no a priori knowledge of the trajectory.

The second drawback is that this target does not explicitly use the measured time delays at our receivers. However, 
the idea of comparing the measured physical quantities to forward modeled ones through use of their uncertainty 
distributions is powerful, as it allows the construction of a Bayesian inference approach to model parameter esti-
mation. This approach tends to be robust as it includes the errors at their source, utilizes maximal information (no 
information is lost through further processing), quickly reveals model limitation to fitting the data, and allows for 
explicit evaluation of how well the model parameters can be determined for each case (Kastinen & Kero, 2022; 
Markkanen et al., 2005).

To alleviate these drawbacks, we introduce another target objective for Method 1, defined as:

𝐽𝐽1 =

𝑛𝑛
∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖

(

Δ𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − Δ𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

max
𝑖𝑖

(|Δ𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|)

)2

,� (16)

where Δti,obs is the experimental time delay measured at a receiver, while Δti,model is a theoretical time delay 
coming from the forward problem described in Section 2.1. Indeed, given a trajectory, we can run the forward 
problem, compute the time delays that we should observe theoretically at the receivers and compare them with 
our measurements. By minimizing the difference between Δti,obs and Δti,model at each receiver, we are actually 
finding the trajectory which gives the smallest difference between observed time delays and modeled ones, that 
is, the “best” trajectory given our set of inputs.

Depending on the geometry as well as on the characteristics of the receiving stations, some echoes will be stronger 
while others will be fainter. To account for these differences, we introduce a weight wi, which captures the uncer-
tainty that we have on the measured time delays. In our case, we weigh each time delay by the signal-to-noise 
ratio (SNR) obtained at the receiver, that is, as the echo is stronger, we assume that the time delay measurement 
will be more reliable.

For Method 2, we use the following target objective:

𝐽𝐽2 = 𝐽𝐽1 +

⎛

⎜

⎜

⎜
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√
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)
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⎟

⎟

⎟

⎠

2

,� (17)

where J1 is computed from Equation 16, ɛ and θ are respectively the elevation and azimuth angle coming from 
the interferometer, which are computed as described in Jones et al. (1998). PH = (XH; YH; ZH) are the coordinates 
of Humain specular point and RH = (xH; yH; zH) are the coordinates of the receiver in Humain. δɛ and δθ are the 
uncertainties associated to the interferometric data.

3.2.  Solver Validation

To validate the trajectory reconstruction solver, 10 synthetic trajectories are simulated. They are drawn from 
optical data given by the CAMS-BeNeLux network (Jenniskens et  al.,  2011; Roggemans et  al.,  2016). Data 
were provided for 2 clear consecutive nights from 29 to 31 July 2020, in a period without any strong activity 
from meteor showers. At this date, the BRAMS network had only 28 active receivers. Among the 948 available 

 1944799x, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

S007697, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Radio Science

BALIS ET AL.

10.1029/2023RS007697

7 of 18

trajectories, most of them are not located above Belgium and therefore not 
geometrically suitable to be detected by our BRAMS receiving stations. A 
selection was made based on the following criteria: (a) each  trajectory must 
be detected by at least 6 stations, (b) because we want to compare Methods 1 
& 2, one of these stations must be the interferometer in Humain, and (c) we 
restrict ourselves as much as possible to underdense meteor echoes in order to 
ensure that the specularity condition is valid. The application of these criteria 
resulted in a selection of 10 suitable CAMS trajectories. The parameters of 
these trajectories are summarized in Table 1.

The idea behind those simulated trajectories is to verify the proper function-
ing of the solver when there are no measurement errors, that is, checking that 
we recover the targeted trajectory assuming we have a perfect knowledge of 
the time delays at the receivers. To do so, the known CAMS trajectory is used 
to get the theoretical time delays, through the forward problem described in 
Section 2.1. The latter are then fed inside the inverse solver, and the output 
trajectory is compared with the CAMS one.

As shown in Figure 3, the errors are of the same order of magnitude on the 10 
reconstructed trajectories: about 0.001° on the inclination angle, a few meters 
on the reflection point location and about 1 m/s on the velocity. This analy-
sis demonstrates the proper functioning of our solver as it yields the correct 
solution if the inputs are free of measurement errors.

3.3.  Uncertainty Quantification

As discussed for the Canadian Meteor Orbit Radar (CMOR) network by 
Mazur et al. (2020), the inverse trajectory reconstruction problem is severely 

ill-conditioned when no interferometric information is used, all the receiving stations lie close to each other (less 
than 20 km between two receivers) and are almost on the same plane. The latter is true since the differences in 
altitude between the receivers are only of a few tens of meters while the trajectories are located at about 100 km 
in altitude. In this configuration, the output trajectories are highly sensitive to the quality of the input time delays, 
small errors on the latter leading to large uncertainties on the trajectory parameters.

To verify if this statement holds true with our forward scatter CW problem, we perform a Monte-Carlo uncer-
tainty quantification campaign. For each simulated trajectory, it consists in building a Gaussian distribution of 

No. XH (km) YH (km) ZH (km) Vx (km/s) Vy (km/s) Vz (km/s)

79 44.33 59.11 94.90 −24.59 31.22 −12.70

105 121.59 95.16 99.39 −18.98 34.62 −12.95

188 −52.88 23.12 88.13 0.55 29.19 −5.70

282 −96.09 35.92 88.28 −2.86 36.80 −16.88

477 −77.35 11.34 104.90 −35.37 −39.62 −30.68

532 38.67 51.64 91.67 −26.51 31.40 −11.89

536 21.62 199.76 105.64 −58.06 13.41 −26.14

598 6.18 158.68 103.13 −70.09 −4.60 −5.27

709 −32.21 108.29 97.79 −37.75 23.15 −45.79

773 −92.91 61.60 98.18 −37.61 14.15 −52.09

Note. No. indicates the trajectory identification number from the CAMS data. 
XH, YH, and ZH are the coordinates of the specular reflection point for the 
Humain station in a Cartesian referential centered on the Dourbes transmitter. 
X is directed East-West and counted positive toward East, Y is directed North-
South and counted positive toward North. Vx, Vy, and Vz are the velocity 
components of the meteoroid determined by CAMS and projected in this 
reference frame.

Table 1 
CAMS Trajectories for the Solver Validation

Figure 3.  Reconstruction errors in logarithmic scale for 10 synthetic trajectories with Method 1 (in blue) and Method 2 (in 
red). Top panel: error on the inclination angle. Middle panel: error on the reference specular point position. Bottom panel: 
error on the velocity.
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time delays at a chosen number of BRAMS receivers (6, 9, or 12 stations), centered on the theoretical time delay 
(which is calculated for the 10 CAMS trajectories with the forward problem). Three values of standard deviation 
σ of these Gaussian distributions are studied: 1, 5, and 10 ms.

For each of these values, and for each of the 10 simulated trajectories, we draw 1,000 sets of time delays. Then, 
each of these sets is fed inside our solver, and a corresponding output trajectory is computed, with the target 
objective given in Equation 16. We can then gather the output solutions into distributions and check their standard 
deviation. The uncertainty quantification results obtained with Method 1 are shown in Figure 4.

Two main observations can be made: first, it appears that only the angle in the horizontal plane XY is retrieved 
with an uncertainty of less than 1°. In the vertical directions, uncertainties of about 5  ms on the input time 
delays already lead to inclination errors of about 5–10°. The same observation holds for the reconstruction of the 
specular point position and of the velocity. This illustrates the ill-conditioning of the trajectory reconstruction 
problem without interferometry. Another important observation is that, as the number of stations that are used 
for the reconstruction increases from 6 to 12, the sensitivity of the output trajectory with respect to the input time 
delays is decreased. This shows the benefit of having more than 6 receivers detecting the signals, as errors in the 
determination of the time delays at different receivers can then compensate each other.

The results of the uncertainty quantification campaign run with Method 2 are shown in Figure 5. The target objec-
tive used for these trajectory reconstructions is given by Equation 17. In this case, the uncertainties on the eleva-
tion δϵ and on the azimuth δθ of the Humain specular point are ∼1°, in agreement with Jones et al. (1998, 2005). 
The SNRs of the considered meteor events are high since they were also detected by cameras. However, it should 
be noted that the 1° accuracy deteriorates at low SNR.

As already observed for CMOR by Mazur et al. (2020), the use of the interferometer alleviates the ill-conditioning 
of the trajectory reconstruction problem. Indeed, it appears that the uncertainties on the inclination, on the refer-
ence specular point position and on the velocity are decreased by about an order of magnitude. As an illustration, 
the inclination angle with about 10 ms of uncertainty on the time delays is known within an uncertainty of less 
that 1° with the interferometer, while it was of about 10° with Method 1. This statement holds true whatever  the 
number of receivers taken into account for the reconstructions, further highlighting the benefits brought by inter-
ferometric data.

4.  Radio Data Processing
Several methods can be used for the determination of time lags between two receivers. The first possibility is 
to use the cross-correlation peak between the signals coming at two receivers. This approach has however two 
significant drawbacks: on the one hand, since the location of the specular point will be different for both receivers, 

Figure 4.  Uncertainty quantification results for Method 1 with 6 stations (in blue), 9 stations (in red), 12 stations (in yellow). 
Top panel: uncertainties on the trajectory angles (in the XY plane on the left, XZ plane in the middle, YZ plane on the right). 
Bottom panel: uncertainties on the inclination angle (on the left), reference specular point position (in the middle) and 
velocity (on the right).
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the echoes coming from two receivers can look very different. One can for instance be located at an altitude where 
the reflection is rather underdense, while the other would be more overdense. On the other hand, the BRAMS 
receiving stations have different characteristics in terms of noise levels. For echoes with a low SNR, this can lead 
to a difference in detection points, and thus to a large error on the identification of the cross-correlation peak 
timing. This problem was already observed for the Advanced Meteor Orbit Radar (AMOR) network by Baggaley 
et al. (1994). Instead, we prefer to use a physics-based reference point on each signal, which can then be used to 
compute time delays.

4.1.  Cornu Spiral

To do so, it is important to remember that radio systems work well to detect reflected signals from small meteor-
oids. As a result of this, most of the echoes which will be of interest for us will be underdense. Thus, the received 
power during the formation of the trail, considering an infinite trail length and homogeneous ionization, is given 
by McKinley (1961) and Wislez (2006):

𝑃𝑃 (𝑡𝑡) = 𝑃𝑃0

1

2

(

[

∫
𝑥𝑥(𝑡𝑡)

−∞
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𝜋𝜋𝜋𝜋
2

2
𝑑𝑑𝑑𝑑

]2
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[

∫
𝑥𝑥(𝑡𝑡)

−∞
sin

𝜋𝜋𝜋𝜋
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𝑑𝑑𝑑𝑑

]2
)

=

𝑃𝑃0

1

2

(

 2

cos +  2

sin

)

,

� (18)

where 𝐴𝐴 cos and 𝐴𝐴 sin are the Fresnel integrals, and x is the Fresnel parameter along the spiral formed by the para-
metric plot of the Fresnel integrals. The exact expression of P0 can be found in McKinley (1961).

As described by Mazur et al. (2020), a plot of 𝐴𝐴 sin against 𝐴𝐴 cos produces the Cornu spiral which allows for a graph-
ical representation of the time-varying component of the echo amplitude A from:

𝐴𝐴 =

√

(Δcos)
2
+ (Δsin)

2
,� (19)

where 𝐴𝐴 Δcos and 𝐴𝐴 Δsin are distances in the parametric plot from the starting point (−0.5; −0.5). The Cornu spiral 
as well as the variations of echo amplitude A are shown in Figure 6. The specular point is identified as the point 
(0; 0) on the Cornu spiral (see top panel) and corresponds to x = 0. Looking at the bottom panel, the dimension-
less amplitude at the specular point is 0.427.

In practice, we will never observe a smooth amplitude curve as the one shown in Figure 6. Indeed, the raw signal 
at the time of the meteor echo is always noisy and very often has other superimposed signals on it, such as the 
direct signal coming from the beacon or interfering aircraft. These affect the meteor signal by adding a spectral 
component and modifying its amplitude and phase. They can also cause an interference beat if they have slightly 
different frequencies. Therefore, a pre-processing of the data is necessary to properly exploit the echoes of the 

Figure 5.  Uncertainty quantification results for Method 2 with 6 stations (in blue), 9 stations (in red), 12 stations (in yellow). 
The panels are the same as in Figure 4.
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detected meteors. The two following sections describe the methods used to subtract the beacon signal and to filter 
out the noise.

4.2.  Beacon Signal Subtraction

The basic principle behind the method used to remove the beacon signal is to reconstruct and then subtract it from 
the full signal. As mentioned above, the transmitter emits a pure cosinusoidal wave, whose amplitude and phase 
vary at each receiver. The received beacon signal is:

𝑏𝑏(𝑡𝑡) = 𝐴𝐴cos(2𝜋𝜋𝜋𝜋0𝑡𝑡 + 𝜙𝜙),� (20)

where b(t) is the temporal signal, A its amplitude, f0 its frequency and ϕ its phase. However, the lack of stability 
of the local oscillator of the first BRAMS stations (due to temperature variations in the analog receiver) as well 
as distortions (due to tropospheric propagation) can affect the initial signal and change the amplitude, frequency 
and phase parameters.

The subtraction method that we developed is based on the analysis of the Fourier transform of the signal around 
the beacon frequency. Since the beacon signal is a pure cosinusoidal wave, its Fourier transform is given by:

𝐵𝐵(𝑓𝑓 ) =
1

2

[

𝛿𝛿(𝑓𝑓 − 𝑓𝑓0)𝑒𝑒
𝑖𝑖𝑖𝑖
+ 𝛿𝛿(𝑓𝑓 + 𝑓𝑓0)𝑒𝑒

−𝑖𝑖𝑖𝑖
]

,� (21)

which has Hermitian-symmetry with respect to frequency. The real-valued received signal is measured over a 
finite number of samples and its discrete Fourier transform (DFT) is computed using the Fast Fourier Transform 
algorithm (FFT). Because of the inherent symmetry of the spectrum, only positive frequencies need be consid-
ered; the negative-frequency terms are redundant. Moreover, the DFT is computed over a finite-time interval, 
which corresponds to a multiplication of the raw signal by a rectangular time window whose DFT is a sinc func-
tion (J. O. Smith, 2011):

𝑊𝑊𝑟𝑟(𝑓𝑓 ) = 𝐴𝐴𝐴𝐴sinc(𝜏𝜏𝜏𝜏 ) = 𝐴𝐴
sin(𝜋𝜋𝜋𝜋𝜋𝜋 )

𝜋𝜋𝜋𝜋
,� (22)

where τ is the duration of the finite-time interval.

Thus, the DFT of the meteor signal over a finite-time interval is the DFT of the product between the raw signal 
and a time window, which means the convolution product between a Dirac delta function δ and a sinc function in 
the spectral domain. This convolution gives a sinc function centered on the δ position. The sinc is thus centered 
on the received beacon frequency and has an amplitude equal to that of the received beacon signal. But because 
the DFT only samples the underlying Fourier transform at multiples of the sampling frequency, its maximum 

Figure 6.  Cornu spiral and corresponding amplitude curve. Top panel: the spiral and its characteristic points. The green 
circle indicates the start of the spiral (in x = −∞), the purple diamond is the passage at the specular point (x = 0), and the red 
cross is the end of the spiral (in x = +∞). Bottom panel: Amplitude variation with the Fresnel parameter x. The specular point 
is highlighted with a purple diamond.
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does not necessarily coincide with the maximum of the sinc function. It is thus necessary to fit a sinc to the DFT 
points in order to retrieve the amplitude A and frequency f of the peak. This procedure is illustrated in Figure 7.

In order to compute the phase ϕ, the following formula is used:

𝜙𝜙 = 𝜙𝜙0 + 𝛿𝛿𝛿𝛿
𝑁𝑁 − 1

𝑁𝑁
− 2𝜋𝜋𝜋𝜋𝑏𝑏𝑡𝑡𝑠𝑠,� (23)

where ϕ0 is the phase at the maximum of the discrete FFT, N is the number of points on which the FFT is 
computed, and fb is the beacon frequency obtained with the fit of the sinc function. The second term is a correc-
tion to get the phase at the maximum of the continuous fitted sinc, where δ is the difference of frequency index 
between the discrete peak of the FFT and its continuous peak. The last term is a linear time correction where ts 
represents the timing at which the considered time interval starts.

In order to maximize the frequency resolution, the whole time interval of 300 s contained in each radio file should 
ideally be used to compute the FFT. However, the longer this time interval, the more likely the signal is subject to 
small variations of the local oscillator and/or variation of tropospheric conditions. A balance has thus to be found 
between instabilities and frequency resolution. Experience has shown that, in practice, short time intervals give 
better results even if the frequency resolution is decreased. Therefore, we decide to split each radio file in small 
intervals of 1 s in which the reconstruction is done independently.

Two further remarks need to be made. First, to reduce the spectral leakage characteristic of the rectangular window, 
we decide to use a Hann window (Harris, 1978; Nuttall, 1981) so that the function fitted in the frequency domain is:

𝑊𝑊ℎ(𝑓𝑓 ) =
𝐴𝐴

2

sinc(𝜏𝜏𝜏𝜏 )

(1 − 𝜏𝜏2𝑓𝑓 2)
.� (24)

Second, this whole approach works fine as long as there is no other signal superimposed on the beacon frequency, 
such as a meteor. To account for this possibility, we use a statistical criterion looking at the Hann window fit quality on 
each consecutive 1 s interval. If the fit on a given interval is more than 3 median absolute deviation (MAD) worse than 
the median fit quality over 300 s, the reconstruction in this interval is rejected. In this case, the amplitude, frequency 
and phase are interpolated from the neighboring intervals. The results obtained with this approach are displayed in 
Figure 8. While it appears that the subtraction without interpolation (middle panel) introduces some spectral artifact 
for the meteor highlighted in the red rectangles, the approach with interpolation (bottom panel) preserves its shape.

4.3.  Filtering and Smoothing

After the beacon signal has been subtracted, the noise has to be filtered to isolate the actual echo coming from 
the meteor. To do this, we use a windowed-sinc band-pass filter defined by the product of a sinc function and a 
Blackman window. This approach significantly reduces the noise level while keeping a steep transition band and 
an excellent stopband attenuation, as described in S. Smith (2013).

Figure 7.  Example of a DFT on a 1 s interval and corresponding sinc fitting. Top panel: DFT on the whole frequency 
spectrum. Bottom panel: zoom around the beacon frequency and sinc function fitting. The blue circles are the DFT samples, 
the red curve is the sinc function fitted on these points and the purple star is the maximum of the fit.
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The band-pass filter expression is obtained from the convolution of a low-pass filter and a high-pass filter. The 
design of such filters requires the selection of two parameters: the cut-off frequency fc and the length of the filter 
kernel M (number of points of the truncated sinc). M can be computed using:

𝑀𝑀 ≈
4

𝐵𝐵𝐵𝐵
,� (25)

where BW is the width of the transition band in the filter frequency response (magnitude of its transfer function), 
measured from where the curve just barely leaves one to where it almost reaches zero. To have a good trade-
off between a sharp transition band and a reasonable length of the filter kernel, BW is always chosen equal to 
4 × 10 −3 so that M = 1,000 points. After the selection of fc and M, the filter kernel is calculated with:

ℎ[𝑖𝑖] = 𝐾𝐾

sin

(

2𝜋𝜋𝜋𝜋𝑐𝑐

(

𝑖𝑖 −
𝑀𝑀

2

))

𝑖𝑖 −
𝑀𝑀

2

[

0.42 − 0.5cos

(

2𝜋𝜋𝜋𝜋

𝑀𝑀

)

+ 0.08cos

(

4𝜋𝜋𝜋𝜋

𝑀𝑀

)]

.� (26)

Three components can be identified: a constant K chosen to provide unity 
gain at the maximum of the window, the sinc function with a 𝐴𝐴

𝑀𝑀

2
 shift to get 

only positive index values and the Blackman window equation.

Most of the meteor echoes detected are located in a range of 100 Hz around 
the beacon frequency fb. However, if a too narrow filter is used, the dynam-
ics of the filtered meteor echo will be modified too strongly by the impulse 
response of the filter. This is illustrated in Figure 9, where the rise of the echo 
is made unphysically longer by a bandpass of 60 Hz. Heuristically, we find 
that a bandpass of 600 Hz, that is, fhigh = fb − 300 Hz and flow = fb + 300 Hz 
is a good trade-off between noise reduction and preservation of the signal 
dynamics.

The very good frequency performance of the windowed-sinc filter contrast 
with its poor characteristics in the time domain, notably in terms of ripple 
and overshoot in the step response. Moreover, as we filter the signal with a 
bandpass of 600 Hz, it sometimes happen that another parasitic signal in this 
frequency band remains unfiltered. As a result, oscillations with the meteor 

Figure 9.  Example of amplitude curves of a meteor echo for two windowed-
sinc filters. The blue and red curves are respectively obtained with a filter 
passband of 600 and 60 Hz.

Figure 8.  Example of spectrograms before and after beacon signal subtraction. Top panel: Raw spectrogram before 
processing. Middle panel: Spectrogram after beacon subtraction without interpolation. Bottom panel: Spectrogram after 
beacon subtraction with interpolation. In the three panels, the power is color-coded in dB FS (Decibels relative to Full Scale). 
The red rectangles highlight the same meteor in the three spectrograms.
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echo are created and deteriorate the identification of the timing correspond-
ing to the specular point.

Therefore, a Savitzky-Golay (SG) filter is applied to the data points (Savitzky 
& Golay,  1964). The idea is the following: for each point in the signal, a 
polynomial is fitted to that point and the neighboring ones. The value of the 
polynomial is evaluated at that point and taken as the value of the filtered 
signal. The filtering operation can be reduced to the calculation of a convolu-
tion product of the signal by a kernel adapted to the user's choice: polynomial 
degree on the one hand, and number of neighboring points used for the filter 
(i.e., window length) on the other hand.

Heuristically, we choose a polynomial order of 3 and a window length of 
301 points. The reason for this choice is that a too small window does not 
dampen the oscillations enough, while a too large one tends to oversmooth 
the rise of the meteor echo. The output amplitude curve obtained with two 
different SG filters for a chosen echo is shown in Figure 10. The specular 
point (corresponding to a dimensionless amplitude of 0.427) is highlighted 
on the amplitude curve with a window length of 301 samples. The median 
and median + 3 MAD noise levels are computed on an interval of 2 s before 
the start of the meteor echo.

The exact timing (in UTC reference) of the specular point can be identified 
thanks to the GPS timestamps. A further correction is applied to account for 

the delays of the different types of receivers. Each has its own band-pass filter with its own response time that 
needs to be compensated for, in order to compare the timings at several stations. The procedure to obtain these 
delays will be explained in a future paper describing in detail the BRAMS network.

Finally, the solver described in Section 3 is called with the time delays as inputs, and outputs a reconstructed 
trajectory. A summary of the complete workflow is given in Figure 11.

5.  Comparison With Optical Trajectories
In this section, we compare reconstructions obtained with the BRAMS data and the optical trajectories given by 
the CAMS-BeNeLux network, for the 10 cases presented in Table 1. At the time of writing, the CAMS network in 
the Benelux consists of about 100 cameras that cover the sky above Belgium, The Netherlands, Luxembourg and 
part of Germany. In the case where several cameras record the same meteor, its trajectory and speed are calculated 
with a very good accuracy, so that we can use them as a reference. Indeed, CAMS can compute radiants with 
an uncertainty of less than 2° and speeds with an uncertainty of less than 10% (Jenniskens et al., 2016). Further 
information about the network can be found in Roggemans et al. (2016).

For each trajectory, the CAMS data file contains the following parameters:

•	 �The time interval during which the meteor was visible by certain cameras.
•	 �The geographical position (longitude, latitude and altitude) of the start and end points of the visible trajectory.
•	 �The total velocity V∞ corresponding to the appearance of the meteor (associated entry into the atmosphere).
•	 �The acceleration parameters a1 and a2 modeled by CAMS (Jacchia et al., 1967).
•	 �The uncertainties (standard deviation) on the positions, velocity and acceleration parameters.

CAMS use a deceleration model introduced by Whipple and Jacchia (1957) 
and Jacchia et al. (1967):

𝑉𝑉 (𝑡𝑡) = 𝑉𝑉∞ − |𝑎𝑎1𝑎𝑎2|exp(𝑎𝑎2𝑡𝑡),� (27)

where t = 0 corresponds to the timing of the first recorded trail. Since we 
use a constant speed assumption in our reconstruction method, the compar-
ison between our velocity output and the velocity given by CAMS is not 

Figure 10.  Example of amplitude curves of a meteor echo for two 
Savitzky-Golay windows. The blue curve is obtained without smoothing, 
while the green and magenta curves are obtained with a smoothing window of 
respectively 301 and 1,501 points. The purple diamond is the specular point. 
The dashed black line is the median noise level. The dashed-dotted red line is 
the median + 3 MAD level.

Figure 11.  Workflow for the trajectory reconstruction.
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straightforward. Nonetheless, the beginning points detected by CAMS are around the same altitude as the specu-
lar points detected by BRAMS (80−120 km), so that we decide to compare the BRAMS constant speed with the 
velocity output by CAMS in t = 0.

An example of trajectory reconstruction with Method 1 is shown in Figure 12. This plot presents the projected 
CAMS trajectory 79 as well as the reconstructed one in the horizontal XY plane and in a 3D frame, where coor-
dinates X, Y, and Z are given in a local Cartesian frame centered on the Dourbes transmitter. Seventeen BRAMS 
receivers are used to perform the trajectory reconstruction. Despite that the location of Humain specular point is 
off by about 22 km, the velocity is accurate within 6% of the CAMS data (39.65 km/s instead of 41.72 km/s), and 
the inclination is off by less than 0.6°.

Figure 13 presents the reconstruction results obtained for trajectory 79, but using Method 2. Since the direction 
of the reflection point is constrained via equations including the interferometer data, it is now better retrieved and 

Figure 12.  Example of result obtained for CAMS trajectory 79 using Method 1: (a) Projected view in the horizontal plane. (b) 3D view. The green line is the CAMS 
trajectory. The blue cross is the reference station (Humain). The red plus is the transmitter (Dourbes). The light green diamonds are the stations used for the BRAMS 
reconstruction. The orange and light blue line represent respectively the radio wave path from the transmitter to Humain specular point, and the radio wave path from 
this specular point to the receiver in Humain. The purple line is the reconstructed trajectory with the BRAMS signals. The blue line represents the Belgium border.
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this helps greatly the reconstruction of the trajectory. The altitude of the reflection point becomes much more 
accurate with an error of less than 2 km. The velocity direction is accurate to 0.2° and the speed (41.07 km/s) is 
very close to the 41.72 km/s measured by CAMS.

Table 2 compares the number of BRAMS receivers detecting exploitable echoes for each of the 10 CAMS trajec-
tories, and gives the reconstructed angles in the horizontal plane and the inclination angles obtained with Method 
1 and 2. As it could be expected from the uncertainty quantification campaign of Section 3.3, Method 1 is not able 
to retrieve accurate vertical inclinations and positions systematically, due to its inherent ill-conditioned nature. It 
offers nonetheless good information on the orientation in the horizontal plane.

Also in agreement with our uncertainty quantification results, the horizontal angles reconstructions are within 
the 2° uncertainty of CAMS with both methods 1 and 2, except for meteoroids which are fast and whose trajec-
tories are inclined with respect to the horizontal plane (in particular trajectory 773 which combines a high-speed 
meteoroid with a large inclination angle). This phenomenon can be explained because, as the meteoroid enters 
the atmosphere faster, it spends less time in the observable region of BRAMS (i.e., altitudes roughly between 80 
and 120 km). Thus, the time delays between the exploitable specular points tend to be smaller. As a result, errors 

Figure 13.  Example of result obtained for CAMS trajectory 79 using Method 2. The panels, lines and markers are the same as in Figure 12.
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on the identification of the specular point location at each receiver lead to 
larger errors on the measured time delays. As the trajectory is further inclined, 
this phenomenon is amplified. In this case, the distance between the specular 
points (and thus the time delays for a given speed) is indeed smaller than if the 
trajectory is more horizontal. Similarly, high speeds and large inclinations also 
lead to high deceleration rates, making the constant speed model less accurate.

This observation is further reinforced by looking at the values of Δα1. Indeed, 
the only cases for which the inclination angle reconstruction is accurate 
enough with Method 1 are trajectories 79 and 105. These two meteors have 
either a higher number of exploitable echoes or a lower speed compared to 
the trajectories with larger reconstruction errors. The trajectory inclination, 
the meteor velocity and the number of echoes with a sufficient SNR are thus 
important variables which condition the reachable accuracy of the trajectory 
reconstruction.

Table 3 summarizes the reconstruction results obtained with Method 2 on 
the 10 CAMS trajectories. We can see that the velocity retrieved by our algo-
rithm is always within the 10% error margin of the one given by CAMS. 
Regarding the inclination, we are always within the 2° accuracy range of 
CAMS, except for trajectory 598, which is the meteor with the largest veloc-
ity. For the altitude of the specular point, the results are in a lesser agreement 
as they are contained within ∼10 km of the value given by CAMS (except for 

trajectory 536, which is at 21.91 km). It is interesting to note a similar trend as before: trajectories with a high 
speed and inclination (e.g., trajectories 536, 709, and 773) are particularly difficult to reconstruct.

The results given in Table 3 have been obtained with Equation 17. If one has better knowledge about the quality 
of the data at their disposal (for instance, very good interferometric data compared to less accurate time delays 
measurements), one could think of giving more weight to the elevation and azimuth terms of this target objective. 
This might improve the altitude determination of the specular points (since the interferometer gives the direction 
of one specular point), but this could also deteriorate the velocity reconstruction (as it is mainly driven by the 
contribution of the time delays).

Let us finally note that this comparison with optical data raises a question 
regarding the nature of the echo reflections. Indeed, optical systems tend to 
observe meteors of larger size than radio systems, since they need to be bright 
enough (the limiting magnitude of CAMS is +5 according to Jenniskens 
et al. (2021)) in order to be detected. As a result, the selected BRAMS echoes 
corresponding to the 10 CAMS trajectories are sometimes overdense or tran-
sitional. In that case, the specularity often holds as the amplitude rise of the 
meteor echo is not affected, but creation of secondary reflection points some-
times appear due to the distortion of the meteor trail through wind shear 
(Wislez, 2006).

6.  Conclusion and Perspectives
In this work, we solved for the first time the general CW forward scatter 
trajectory reconstruction problem through a nonlinear optimization approach. 
We studied how the uncertainties on the time delays between meteor echoes 
at several radio stations impact the reconstruction accuracy of the meteor-
oid trajectory and speed. Method 1 (using the time delays only) appeared to 
be strongly ill-conditioned while interferometric data brought by Method 2 
alleviated this very high sensitivity to the inputs. We implemented the data 
processing workflow from the acquisition of the raw signals at the receivers 
to the reconstructed trajectory. We finally compared our results with data 
coming from the optical CAMS-BeNeLux network.

No. Echoes ΔαXY,1 (°) ΔαXY,2 (°) Δα1 (°) Δα2 (°)

79 17 0.56 0.09 1.45 0.16

105 13 1.70 1.44 8.69 2.02

188 6 0.13 0.09 7.49 0.32

282 6 0.43 1.47 37.19 1.93

477 17 0.53 0.75 24.95 1.43

532 8 0.18 0.11 16.77 0.52

536 8 2.25 0.81 22.99 1.46

598 19 2.44 1.29 8.79 3.32

709 11 2.67 2.13 3.38 1.48

773 12 4.21 2.89 20.67 1.76

Note. ΔαXY,i is the difference between the angles in the horizontal plane 
reconstructed by CAMS and the method i using BRAMS data. Δαi is the 
difference between the inclination angles reconstructed by CAMS and the 
method i using BRAMS data.

Table 2 
Comparison of BRAMS Reconstructions With Methods 1 and 2 and CAMS 
Trajectories

No. ϵ (°)
VCAMS 
(km/s)

VBRAMS 
(km/s)

������ −�����
������

[%] 
ΔZH 
(km)

Δα 
(°)

79 17.72 41.72 41.07 −1.58 1.98 0.16

105 18.16 41.55 40.60 −2.34 7.79 2.02

188 11.04 29.74 28.39 −4.75 4.66 0.32

282 24.58 40.59 41.32 1.77 6.75 1.93

477 30.01 61.33 62.56 1.97 10.24 1.43

532 16.14 42.79 41.41 −3.33 7.04 0.52

536 23.69 65.07 70.13 7.21 21.91 1.46

598 4.29 70.44 71.79 1.88 8.42 3.32

709 45.96 63.70 65.96 3.43 8.58 1.48

773 52.35 65.78 71.49 7.99 0.39 1.76

Note. The second and third columns give the complement of the zenith angle 
ϵ and the speed of the meteoroid retrieved by CAMS at their first detection 
point VCAMS. The fourth column gives the speed of the meteoroid retrieved by 
BRAMS VBRAMS. The relative errors in terms of velocity, Humain specular 
point altitude as well as inclination angle (also given in Table 2) are shown 
in the last three columns.

Table 3 
Comparison of BRAMS Reconstructions With Method 2 and CAMS 
Trajectories

 1944799x, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

S007697, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Radio Science

BALIS ET AL.

10.1029/2023RS007697

17 of 18

Since Method 1 is the only approach that can be applied to all archived BRAMS data, its development and 
improvement are crucial. However, because of its ill-conditioning, it cannot be used systematically as it gives 
large errors in terms of specular point position and inclination angle on most trajectories. Therefore, we are 
currently extending the pre-t0 phase approach described for backscatter radars in Mazur et al. (2020). This tech-
nique uses the phase of the signal before the specular point in order to retrieve the velocity of the meteoroid. 
It provides two important benefits. On the one hand, it further constrains the trajectory solver by adding extra 
inputs, thus reducing the sensitivity of the output trajectory on the input time delays. On the other hand, it allows 
to get some insight on the deceleration of the meteoroid during its upper atmosphere travel.

More generally, deceleration models will be introduced in the solver described in this paper, even without the 
extra information coming from the pre-t0 phase. Depending on the distribution of time delays, a constant velocity 
can provide good fits for a meteoroid with slight deceleration by using a velocity in the middle of the region 
observed by the BRAMS receivers, rather than the start velocity. Other possibilities such as linear and exponen-
tial velocity models will also be tested.

We have shown that Method 2 gives more accurate results. Unfortunately, it is not applicable to the majority 
of past data since it requires to have at least 3 stations detecting the same meteor as the interferometer, which 
does not systematically happen because of the specularity condition. We have also demonstrated that increasing 
the number of receiving stations detecting the same meteoroid decreases the impact of measurement errors on 
the quality of the reconstruction. Therefore, two priorities are to build a second interferometer in the north of 
Belgium (where there is already a dense cluster of BRAMS receiving stations, see Figure 1) and to create clusters 
of radio stations around the existing interferometric station in Humain.

In parallel, the BRAMS network continues to develop. A technical description will be published shortly, also trac-
ing its evolution over time. This future paper will also describe the trade-offs between BRAMS and other existing 
systems, notably in terms of area coverage, cost and data quality. In addition to the creation of receiving stations 
clusters and the building of a new interferometer, the use of phase coding on the transmitted CW signal (Vierinen 
et al., 2016) would in principle allow us to obtain the range or total distance traveled by the wave between the 
transmitter and the receivers. It has been shown (Lamy et al., 2021) that this extension of Method 1 would greatly 
facilitate the trajectory reconstruction problem.

Data Availability Statement
Version 1.1 of the BRAMS trajectories package, used for the reconstruction of meteoroid trajectories with the 
time delays at the BRAMS receiving stations, is preserved at https://doi.org/10.5281/zenodo.7686085, availa-
ble via Creative Commons Attribution 4.0 International and developed openly at https://gitlab.aeronomie.be/ae/
brams/bramstrajectories (Balis, 2023).
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