An Explanation of Dayton Miller's
Anomalous “Ether Drift” Result

Thomas J. Roberts

[llinois Ingtitute of Technology, Chicago, IL.
and
Muons, Inc., Batavia IL.

Abstract
In 1933 Dayton Miller published in this journal the results of his voluminous observations using
his ether drift interferometer, and proclaimed that he had determined the “absolute motion of the
earth”. This result is in direct conflict with the prediction of Special Relativity, and also with
numerous related experiments that found no such signal or “absolute motion”. This paper presents
a complete explanation for his anomalous result by: a) showing that his results are not statistically
significant, b) describing in detail how flaws in his analysis procedure produced a false signal with
precisely the properties he expected, and c) presenting a quantitative model of his systematic drift
that shows there is no real signal in his data. In short, this is every experimenter’s nightmare: he
was unknowingly looking at statistically insignificant patterns in his systematic drift that
mimicked the appearance of a real signal. An upper limit on “absolute motion” of 6 km/sec is
derived from his raw data, fully consistent with similar experimental results and the prediction of
Special Relativity. The key point of this paper is the need for a comprehensive and quantitative
error analysis. The concepts and technigques used in this analysis were not available in Miller's day,
but are now standard. These problems also apply to the famous measurements of Michelson and
Morley, and to most if not all similar experiments; appendices are provided discussing several
such experiments.
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l. Introduction

Dayton C. Miller's 1933 article in this journal reviewed the results of his voluminous measurements obtained from
his “ether drift” interferometer, and proclaimed to the world that he had determined “the absolute motion of the
earth”. This claim has been embraced by some, rejected by many, and remains controversilrfadtynately,

! See, for example, the papers by Allais (1998, 1999a, 1999b, 2000), Cahill (2002, 2003a, 2003b, 2004, 2005),

Cabhill and Kitto (2002), Consoli (2003, 2005), Consoli and Costanzo (2003a, 2003b, 2004), Deen (2003), DeMeo
(2001), Munera (1997, 1998), Sato (2006), Selleri (2000), and Vigier (1997). These are all dissident authors, and
they all build upon the assumption that Miller’s results are valid; none of these authors include a comprehensive

error analysis, including the few who claim to do so (every one ignores the huge systematic drift, and none performs
the simple error analysis given here in section Il). The mainstream of physics assumes his results are invalid. Neither
group has had solid, objective criteria to support their position, until now.
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aaeptance or rejection of Miller’s result has been based primarily on whether or not it conforms to a person’s
prejudices, and not on any solid, objective criteria. Shanldaald (1955) attempted to address this situation by re-
examining Miller's data. Unfortunately they did not fully resolve the issue, because they merely showed a
correlation between signal and temperature drift, but did not give any argument or discussion of how that could
generate such a remarkable result. Posthumously, Miller is now experiencing every experimenter’s nightmare: the
standard analysis algorithm used by himself and all his contemporaries had serious flaws not explicable for many
decades, and they caused the noise in the apparatus to perfectly mimic the signature of a real signal. This paper
provides a detailed and complete explanation of his anomalous result, giving solid and credible reasons to reject
Miller’s claim: a) a basic error analysis of his results shows that they are not statistically significant, b) his analysis
algorithm has serious flaws that force the noise in his data to precisely mimic the properties he expected in a real
signal, and c) a quantitative model of his systematic drift accounts for 100% of his usable data, leaving no real signal.
This re-analysis of his data puts an upper limit of 6 km/s on the “absolute motion of the earth”, which is fully
consistent with related experimengmd the prediction of Special Relativity.

In addition, appendices are provided which apply this type of analysis to the measurements of Michelson and
Morley (1887), and also to the measurements of lllingworth (1927). These quite similar experiments are also
plagued by the same problems, but because their systematic errors were much smaller than Miller’s, these authors
contented themselves with merely claiming an upper bound on any signal — such upper bounds remain valid, and
this analysis explains why those upper bounds are larger than their observational resolution would suggest.

Miller’s interferometer is a direct descendant of Michelson’s original version, and Michelson and Morley’s

improved model — indeed he reused their mercury trough in which the interferometer floats while rotating. But

instead of using a sandstone block for optical and thermal rigidity, iron girders were used to increase the optical path.
Miller (1933) has several diagrams and pictures of the apparatus. Miller streamlined the data acquisition process by
having the observer visually interpolate the fringe position, rather than using a vernier dial and readout. And he took
data in runs of 20 turns (rather than 6 turns), a seemingly minor change that turns out to be important because it
yields sufficient data to permit the quantitative modeling of the systematic drift.

This paper first discusses Miller's data reduction algorithm, including an error analysis of that algorithm, showing

that the errorbars are enormousand his stated results are not statistically significant. Then a discussion of his data
analysis in the frequency domain is presented using digital signal processing (DSP) techniques, showing that his
algorithm forces the noise that is present to mimic the exact type of signal he expected. Next a re-analysis of his data
is given, in which a direct quantitative model of his systematic drift is shown to account for 100% of the usable data,
leaving no real signal. And finally some conclusions are presented. Appendix | discusses the famous measurements
by Michelson and Morley, and Appendix Il discusses the measurements of lllingworth (with optical magnification

of the fringes); these problems are related to the structure of the analysis algorithm, and similar conclusions could
reasonably be expected for all experiments of this type analyzed using an algorithm similar to Miller’s.

Miller himself could have had no knowledge of these DSP techniques developed after his death, and without a

digital computer the computations presented here would have greatly exceeded the already heroic efforts he made to
acquire the data. The key point of this paper is the need for a comprehensive and quantitative error analysis and the
importance of errorbars; this is well known today, but was not common in Miller’s day

lI. Miller’s data reduction algorithm

Miller took his data and analyzed them as follows: The interferometer was set rotating slowly and was adjusted so
the fringes were visible with the center fringe near the center of the field of view. There is a small pointer affixed to
one of the mirrors, and the central fringe position is visually measured relative to it, in tenths of a fringe width. The
observer walked slowly around a circle watching the image in the telescope. There are 16 markers spaced equally
around the circumference, and the observer called out the position of the central fringe at each marker. An assistant
recorded the values, with each turn starting and ending at Marker 1, so a single Marker 1 reading was recorded twice

2 A summary of similar experiments is in Table | of (Shankland, 1955); a more recent and wider discussion of tests
of Special relativity is in (Will, 2005), and a larger compilation of experimental tests is in (Roberts, 2006).
% Indeed, in the entire volume in which his paper appeared not a single plot displays errorbars.
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for successive turns (complete rotations). Whenevecehtal fringe drifted more than about 2 fringes from the
pointer, small weights were applied to one of its aorfiex the interferometer and bring the center fringekbaear
the pointer. These adjustments were made during an unredardezhd always appear in the logbook between the
Marker 1 value at the end of one turn and the Markeldevat the beginning of the next turn. Typically the 20
recorded turns of a run took about 15 minutes, and the inderéter had enough inertia to rotate on its own with
little change in rotation rate during this time. Markamber 1 was always oriented to the North, and is thieestd
end of each turn, so the markers designate fixed oriensaditthe interferometer relative to the lab.

The fringe positions at each marker are recorded in etk as shown in Fig. (1, taken directly fiom (Miller,
1933). After the header giving basic information thegeteventy rows of 17 columns of fringe positions (recorded
in tenths of a fringe); column 17 is the marker 1 valub@end of the turn and is equal to the column 1 valueeof t
next turn except when adjustments were made between re¢ardsdBelow the 20 rows of raw data from 20 turns
are ten rows of manual computations that a) sum tsie@ rows, b) subtract the linear drift between caolsrh and
17, c) divide by 20 to yield an average, d) subtract the ke 16 values, and e) average the first and second %2
turns. Below the computations are plots of the reducédufui and “2-turn results. Figure 1 uses units of 0.1 fringe
throughout, and the amplitude of the final %2-turn plot mul®.06 fringes. This algorithm is essentially identtoal
that used by Michelson (1887) and by all contemporaryferteneter measurements (the differences are in the
number of turns taken during each data run, and someradtice the endpoints to zero rather than forcing the
mean to zero).

Miller expected the real signal to be a sinusoid with agesf %% turn, with its amplitude related to the speed of
absolute motion and its phase related to the direclioa.ease of seeing a “signal” in these data is illiestrm Fig.
1, which shows a plot of his “signélat the bottom. That plot quite clearly shows a reablyrsinusoidal variation
with a period of ¥z turn, and it certainly looks like Millexpected a real signal to look. But that is a plot evith
errorbars, and one cannot determine if that variatigtaistically significant or not, so we must consitie errors
in this measurement.

The first thing to do is look at the data of Fig. 1 t{gld in Fig. 2, which shows the raw data with adjustments
restored. There is huge variation about 100 times largerttteaamplitude of the plot at the bottom of Fig.rid a
extracting any signal from such a large background is keolge. Clearly the interferometer systematicallyted
about 6 fringes during this run, as the large-scale chaage®tpossibly be any real signal with a period of % turn.
From the way data were recorded and from Miller's owtimegtes, the statistical errors in these data athen

order of 0.1 fringe. So both the size and the shapeeofahiations in Fig. 2 imply that this is a large sysatic

error: for instance, all measurements in the last éwe systematically almost 6 fringes smaller thanetiroshe first
turn. The adjustments after turns 5, 9, and 19 make a stiieaction of this large drift, but even so the aviegg

of the turns cannot remove the effects of this deftause it systematically introduces correlations énviilues.

Miller accounted for this drift by subtracting theear drift between Marker 1 and Marker 17 from his ayeda
data. Today this would be called subtracting a modeleo$yistematic drift, and this model simply assumes it is
linear. While Miller subtracted the average lineartdxffer averaging the turns, this is equivalent torsuating the
linear drift of each turn individually, and it is ingttive to consider it that way. The lines in Fig. Spday this linear
model for the systematic drift. The corners of thed are at successive Marker 1 values, and the indiviiratis
are the values at Marker 9, 180 degrees away from Marlgzchuse of the 180 degree symmetry of the
interferometer, any real signal can depend only centetion modulo 180 degrees, and whatever real signal is
present in these data must have the same value forreasling at Markers 1 and 9. So the effect of agigalal is
to move the entire plot vertically by some constanoant; all of the variations in Fig. 3 are purelgtiumentation
effects, i.e. a systematic drift.

But the full value of Fig. 3 is in comparing the pointstte lines to test the assumption of linearity. Siace real
signal corresponds to a constant vertical offset irettige plot, if the systematic drift were truly laveall of the
points would lie on the lines. Clearly that is notawd some points miss the lines by as much as 0.5 fisugine
assumption that the systematic drift is linear is radioMo better than about 0.5 fringe — that is almosicéof of 10

* As discussed in (Miller 1933) a harmonic analyzer was usegttact the amplitude of the ¥%-turn Fourier
component from plots like this; in this paper a discFeterier transform (DFT) is used.
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larger than the variations in the plot at the bottirfig. 1. Of course this is merely a quantitativeestant of what
the eye can clearly see — the systematic drift inZFig.clearly not at all linear during many if not shof the turns.

While Fig. 3 shows the inadequacy of assuming a linedr iri$ still useful to obtain quantitative errorbdos

these data analyzed in this manner, because this idilleatused to obtain his results. A general rule fooerr
analysis is that when averaging raw data to obtairiee\ane can histogram the data to obtain the corresponding
errorbar. Each point in the plot at the bottom of Rigonsists of the average of 40 readings (two markaesd80
degrees apart for each of 20 turns of the interferoméikg other data reduction steps do not affect thebers
significantly (except by scaling it). The eight histogsatorresponding to these averages are unremarkable, look
reasonably Gaussian (within their statistics), and Isagrmas of 0.7 to 0.8 fringes. If these 40 measuremesTes w
statistically independent one would divide the sigma ohth®gram byw/40 to obtain the errorbar for the mean.
But these variations are dominated by the systematicdaplayed in Fig. 3, and for such systematic effdués t
sigma of the histogram corresponds to the errorbgurgi4 shows the Y2-turn plot at the bottom of Figith these
errorbars. Clearly the variations are not significan

Since Miller’'s day our attitude toward experiments like tidas changed, and we now use them to test theories,
rather than to “determine the absolute motion of thith&aAnd we do this quantitatively using fits (or similar).

So the modern approach to interpreting these data ierMitheoretical context would be to start with Milker’

model of absolute motion as applied to his instrumemttest the class of theories “The earth is movinty wi
absolute speed X in direction Y” where X and Y are deireehby fitting to the data. The speed X is related ¢o th
amplitude of the signal, and the direction Y is relateds phase. Miller's conversion from signal amplitide
absolute speed is given in Fig. 20 of (Miller, 1933), inchtd.7 fringe corresponds to 24 km/sec. Looking at Fig. 4,
it is clear that this run will have a goggifor any sine wave with amplitude corresponding to spetebXthan

about 30 km/sec and phase corresponding to any directidma¥soever. So the errorbars on X and Y are huge. Thi
is just one run out of hundreds, and some have smaltebars, some have larger errorbars. But all runeéndiata
sample have the property that the errorbars exceedatfegion in the final %2 turn plot, as in Figt 4. Tinaans that
this analysis cannot really determine the directioabsfolute motion at all, and cannot say very much abeut t
speed other than that it is less than about 30 km/sedel(MiD33) displays several plots of absolute speed and
direction, but they are all without errorbars. Had h@jgoted and plotted errorbars as above, they would be so large
that in no case would they fit on the plot, and oftenldimot even fit on the page. His “determination of the
absolute motion of the earth” is not statisticallymsficant. Because of the flaws in this data reduction algorit
(discussed next), there’s no point in actually performidgtailed statistical analysis of results from this gsial
method.

lll. Miller’s analysis in the frequency domain

Considerable insight into the effects of the data arsapy®cedures is obtained by considering a Fourier tremsfo

of the data and procedures. The data were manually sampaledtatof 16 samples per turn with a resolution of 0.1
fringe (in modern terms, the human observer was perfagithie function of a sampling analog to digital convérter
Figures 1 and 2 contain 20 complete turns of 16 sareplels, with a total of 321 samples (one extra reading at
Marker 1 fills out the 20 row of Fig. 1).

Figure 5 displays the frequency spectfwhthe data of Fig. 2, obtained via a 320-point discFeturier transform
(DFT). Low frequency components clearly dominate the spctand it is reasonably close to the spectrum of 1/f
noise. There is a small bump in frequency bin 40, whizhesponds to a period of ¥z turn, and any real signal
would be in that bin. We’ll come back to it.

The first analysis step is to sum the 20 turns, maenarker. For descriptive purposes it is conveniertoimbine
this with the later division by 20 so it is an averag#ef20 turns. In the frequency domain this averagiagcsmb
filter®, with a frequency response shown in Fig. 6. Except fadthcomponent in bin 0, the low-frequency
components (periods longer than 1 turn) are eliminatediyilter, as are higher components that are not

® As usual, only the norm of the complex value of eaehfency bin is shown, and only the lower half of thns li
shown because the upper half of the bins are merelgcagpithese (aliased by the sampling).
® See any textbook on digital signal processing, suchatsir{gr, 1975).
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harmonics of 1 turn. After applying this filter the adtave only 8 nonzero frequency bins, and can be redud€d to
samples without loss of information (of course thduation is the natural result of averaging); in the frequency
domain this corresponds to the eight non-zero frequensydbiRig. 6 becoming the 8 frequency bins of the 16-
point DFT spectrum. This 16-point DFT spectrum of the coittdréd data is shown in Fig. 7. In reducing the
number of samples, the ¥2-turn signal bin has movéht@, and of course remains 0.11 fringes.

The next analysis step is to subtract the linear sytemrmodel from the 16 comb-filtered data points. FerFig. 1
data this is a ramp from 0 to 0.305 fringes, which haspleetrum shown in Fig. 8. This reduces the bin 2 iualel

to 0.06 fringes, because their complex amplitudes make ¢aeoel. Next the mean of the data is subtracted,
removing the dc component in frequency bin 0. And findl/tiwo halves of the 16 point 1-turn signal are averaged
to an 8-point ¥%-turn signal. That is another combrfitat retains only the even-numbered frequency bing)@i

the final spectrum shown in Fig. 9; the %-turn signali®imow number 1. Note that only 4 frequency bins remain,
and one of them (bin 0) has been explicitly zeroed.

A conspicuous feature of these spectra is that théyag# decreasing amplitude with increasing frequency. And in
the final plot the frequency bin in which the real signauld appear is bin 1, the lowest nonzero frequency bin.
From the nature of Fourier analysis, it should be dlearafter this analysis any initial data with a fedlispectrum
(e.g. 1/f noise) will have a spectrum similar to Figa®d a time domain appearance similar to the plbteabottom
of Fig. 1. This is a simple consequence of the fac¢ttealz-turn Fourier component is the lowest frequency
retained by the algorithm, and it will dominate becausb@falling spectrum. When a single frequency bin
dominates the Fourier spectrum, the signal itself laglgroximately like a sinusoid with that period. Using this
data reduction algorithm, any noise with a falling spectwilinend up looking like an approximately sinusoidal
“‘signal” with a period of % turn — precisely what Milleeg/looking for. Figure 5 shows that this data run does
indeed have a lot of noise with a falling spectrum, sostiape of the plot at the bottom of Fig. 1 does not
necessarily imply that there is a real signal presamte needs a more sophisticated analysis to detetinahésee
below).

There are three basic flaws in this data reduction algorighraveraging the data, b) assuming the systematiésdr
linear, and c) absence of a quantitative error arsalysiese were not considered flaws in Miller's dayd all
experiments of this type were analyzed with minor variatiafithis algorithm. Together with his rather large
systematic drift, however, they permitted Millertte fooled into thinking there is a real signal presenthé next
section a new analysis is presented which avoids #tleske flaws.

In Miller's day, the ideas used in the above discussiae wet well known or fully developed, and it's hot
surprising that he was fooled. Today we know that tlezeming of data during analysis should be avoided
whenever possible, and one would of course use the fuip82@ DFT of Fig. 5. That spectrum clearly shows that
the low-frequency bins (corresponding to a slow systiendaft) completely dominate any real signal.
Unfortunately, this approach is not able to determihetiner the content of frequency bin 40 (period %z turn) is a
real signal or is due to the systematic drift. Ddim@t requires an accurate model of the systematic disftussed
next.

IV. Are-analysis of Miller’s data

The basic challenge of analyzing these data is dealinghethery large systematic drift. Fortunately Milleoko
enough data so that it can be well modeled for mostsafiditia runs. The basic technique is to analyze each run
separately, modeling the run’s data as a sum of agiersignal plus a systematic drift. Any real signalcatirse,
has a dependence on orientation (marker #) that is indepesfdené (turn #) during the run. So the data are
modeled as the sum of a signal and a systematic drift:

data = signal (orientation) + systematic(tine)
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The key point is that signal(orientation) is independetihaé, and for each orientation (marker) it has the same
value for every turn of the interferometer within a givéata ruA Therefore if the data from the first turn is
subtracted marker-by-marker from the data of every therésult is completely independent of any orientation
dependence, and contains only systematic(time). tngenient to take advantage of the 180 degree symmetry of
the apparatus, and combine the data for markers 180 dexag. This gives 8 orientations, and 8 independent
measurements of differences in systematic(time), shiowig. 10 - each measurement is a sequence of valaes at
given orientation. Because the values from the firtiifve were subtracted from the values of each orientadioy,
real signal has been removed from the plot. Each déitiile measurements of the systematic drift staittsa O for
the first ¥ turn, and we don’t knaavpriori how to combine them into a single function correspogdb
systematic(time).

Because those eight sequences are interleaved in tithe bytation of the instrument, if we assume that the
variations in systematic(time) are as small as ptessve can fit the eight sequences to a single funcfitime.

Eight parameters are introduced, the initial values cf @sientation’s measurement of systematic(timegl, @ach
parameter is added to the values of the 40 points foriéstation. This corresponds to permitting each sequeince o
Fig. 10 to move vertically, independent of the othens, the fit will determine the best positions for tight
measurements such that they combine as smoothly ablpas$ a single continuous function systematic(time).
They? is formed from the differences between adjacent pairtisne, summed over all 320 differences (all turns,
all orientations). To avoid the usual normalization ity in such a fft, the first parameter is fixed by requiring
the model to match the first data point, leaving sdxem parameters. As the data are quantized at 0.1 friogees
the parameters, and instead of the usual minimizatiagrgmmes an enumeration of all reasonable sets of pagesnet
was used with an algorithm that finds the minimgfniThe result of the fit is a complete quantitative miade
systematic(time) for the run. This fit has 313 degrédseedom, and the histogram gffor all runs has a mean of
300, indicating that the estimate of the individual measare resolution (0.1 fringe) is reasonable. Fitting eanh ru
took about 3 minutes of computer time to enumerate sevdliantombinations of the 7 parameters to find both
the best fit and the errorbar.

This analysis has been applied to a sample consistingadf\ifler's original data runs, including runs from his
1925, 1927, and 1929 Cleveland data and his 1925-26 Mount WilsorTdaty were selected to span most epochs
of his data (months of data taking) and all sidereal timvéhout regard to content.

These data display frequent instabilities, includingasimnal drifts of more than 2 fringes per turn and occesi
jumps as large as 1.5 fringes between successive majkédag run drifted by 18 fringes in 17 turns; but then,
three runs drifted by less than 1 fringe during 20 turns. Eation of the data suggests classifying regions of
instability as any drift with a rate of more than %de during ¥z turn. That is five times the largest diduhifler
claimed, and almost ten times the amplitude of theailtte bottom of Fig. 1. These regions of instabdiynot
display any consistent orientation dependence in anyfhenmodel of the systematic drift cannot be expected to f
runs with major instabilities, because its assumgtian the systematic drift is as small as possibléolsited for

such rapid drifts. The presence of instabilities hamdest effect on thg of the fits to the systematic drift, but the
presence of a large number of instabilities in a run F&gnaficant effect on whether or not the systematodel
matches the data. The best characterization fouthe i®tal number of turns in a run without instatahti the plot

of the raw data for each of the 67 runs in the sampemanually examined, separating it into regions ohbilty
(during which the interferometer drifted at least #ade during %2 turn), and regions of stability (1 turmmmre with
no such rapid drift). The durations of the stable negiwere then summed, without requiring them to be corisecut

Figure 11 shows the results of this analysis, displalyirg’-turn Fourier amplitude of data minus systematiealfor
67 runs in the sample; this is the true signal for thaysis: Runs plotted with closed circles have at I@asable
turns, while those plotted with open circles have 5 wefestable turns (i.e. ¥ or more of the turns argtable by
the above criterion). All of the closed circles hageazamplitude, because the systematic model reproducdattne
exactly for all runs with moderate or good stabilityeThck of variance in these runs’ amplitudes is explained by
the quantization of both data and parameters at Ogefrivarying any one parameter by its quantum incregses

" The variation due to the rotation of the earth is métglee, because during a run it is less than 6% of the angle
between markers, and corresponds to a timing erroistsataller than the reaction time of the human observe
This rotation is also mostly in the plane of the ifgemeter.

® They” is made up of differences, so any constant can be aolddi8 parameters without changigfg

daytonmilleranalysis-20060823-1sp Page 6


toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight


significantly. The runs which have nonzero amplitull@ae major instabilities of the instrument throughtine
run.

It is reasonable to omit all runs with instabilitigisring ¥ of the run, as the systematic model cannatyireceed to
model instabilities very well — its assumption that fystematic is as small as possible is violated Hy sapid

drifts. Indeed it is surprising that such a large fractibanstable turns is accommodated. There are 14 rahath

this cut (21%), and of those only 9 runs (13%) have rorfzeurier amplitude with period %z turn. These runs have
no obvious dependence on sidereal time, and come fromakeaéa epochs; they do appear sequentially more often
than chance would suggest, which simply means the instriuinad periods of instability that lasted longer than a
single run. The conclusion is that during these runs tleefénbmeter was just too unstable for the systenaaific

to be modeled well. Without an accurate model of theesyatic drift any analysis is useless, especiallydos

during which the systematic drift was exceptionally langél behaved, so these 14 runs have been omitted from
further analysis.

The 53 remaining runs are plotted in Fig. 11 with clasedes, and all have the property that the systenmatidel
fit to the systematic measurements is exactly equiletoriginal data. That is, the unknown function
signal(orientation) is identically zero for each loése runs.

The requirement of at least 6 stable turns per rurtherarbitrary, based on examination of the data,taed bit
surprising that just 6 turns out of 20 is enough. The cwnmhs of this analysis are not affected if the vadue i
increased to 10 stable turns per run — that merely redlueesumber of remaining runs to 42. Requiring all 20 turns
to be stable still leaves 13 runs.

The errorbars in Fig. 11 are due to the uncertainfitting the systematic model to the measurementaef
systematic drift, and correspond to the effect orisheirn Fourier amplitude for a unit increaseinas usual. As
the systematic model reproduces the data exactly fee thas, the uncertainty in the systematic fit gjitree
complete errorbar for this analysis; it inherentlyluties both systematic and statistical errors. Thesebars are
very much smaller than the errorbars of Miller's anglysethod discussed in Section Il because here thearris
due to the uncertainty in a highly constrained fit, @Hidr his method the entire variation of the systeendtift
contributes to the errorbar. The results of the tnalgses are also quite different, and the errorbar ikéreas large
as the false signal Miller found at the bottom of Higit is now known to be false because that run passes th
instability cut and signal(orientation) is identicatigro).

As this analysis concludes there is no signal in Mdldata, it can set an upper limit on any signal with perbod

turn and on the “absolute motion of the earth”. Fragh E1 (omitting runs with open circles as discussed ehav
reasonable estimate of the overall errorbar is Offiige for all sidereal times and all epochs of data. dinerbar

is dominated by the systematic drift, and the avditglnf many runs does not decrease it. That implieaper

limit of 0.025 fringe at the 90% confidence level (1d5This must then be increased by 1/cos(latitude) to atcoun
for the worst-case projection onto the plane of therferometer. Figure 20 of (Miller, 1933) relates fringdtdbi

his model of absolute speed, yielding an upper limit oretiréh’s absolute motion of 6 km/sec (90% confidence
level). This value is consistent with similar experita¢measurements, and with the null result predicted by &peci
Relativity.

V. Conclusion

Dayton Miller was a prisoner of his time. In the 1920d @0s digital signal processing was unknown, and thesflaw
of his data reduction algorithm went unnoticed. Also,ube of errorbars and quantitative error analyses were in
their infancy. These aspects of the state of sdietktiowledge combined to permit him to'be fooled irtimking

his interferometer measurements did indeed determinetisofute motion of the earth”. Even in 1955, Shankland
et al did not have knowledge of these aspects of Miller's aisaly

Today, of course, digital signal processing is welMmgodigital computers are ubiquitous, and quantitativererr
analyses are presented in essentially all scientifidgatlins. The above discussions of Miller's analysidata

are simply applications of now-standard techniques todltiier ancient data. This paper does not break any new
ground, it merely explains a longstanding puzzle: hawidcsomeone as competent as Dayton Miller obtain results

daytonmilleranalysis-20060823-1sp Page 7
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S0 inconsistent with other experiments? — As discusseeeahe was a victim of every experimenter’s nightmare,
and was unknowingly looking at statistically insignifi€@atterns in his systematic drift that mimicked the
appearance of a real signal. So it's not surprisiagttis results were anomalous.

This paper has not only explained how Miller was fooledas also presented a re-analysis of his data. This new
analysis shows there is no significant signal in hig,datd puts an upper bound on the “absolute motion of the
earth” of 6 km/s (90% confidence). This is fully consmtwith similar measurements, and with the null tesul
predicted by Special Relativity.

We are all prisoners of our time. While this paper ga@&l and credible reasons to reject Miller’s restiis

unfair to attempt to judge him by the standards of today. thdeeognizing that he could not possibly have known
about these flaws in his results permits us to admimediithe more for his dedication and perseverance risumg
these measurements.
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Appendix 1. The Michelson and Morley experiment

Michelson and Morley (1887) analyzed their data using a ddtaction algorithm quite similar to Miller’s, and
therefore their result suffers from the same seritawssf discussed above. They did, however, have a smaller
systematic error, and they contented themselves witmguth upper bound on the earth’s speed relative to the
ether of 7.5 km/s.

Unfortunately, their original data have beenpand the only available data are the averages for sixdas in

their 1887 paper. So while the modeling of their systenatift is not possible, it is possible to estimdteir

errorbars using the same technique as above. Figuredaydisheir reported data, with errorbars computed from a
histogram of the data after: a) subtracting the assumedFrlsystematic for each run, and b) subtractingrtban

for the orientation of each data point. Subtracting thamfer each orientation removes any real signal fiioen
histogram so that all orientations could be combinedargmgle histogram to improve the poor statistiasteNhis
errorbar is anunder estimate, because it comes from the variance gbeheun averages for the markers rather than
from the variance of the raw data themselves. THateare dominated by the systematic drift, and treasiof the
histogram was used for the errorbars. While it is nosipées to draw Fig. 3 for their raw data, one can compae
full-turn assumed-linear systematic for each dataouhe marker in the middle: for 3 out of the 6 rung tha
difference is larger than the errorbars displayed in Eigso it is clear that their systematic drift is lroear by an
amount considerably larger than the variations in tteia. Just as for Miller's data, it is inadequate suaee that

the systematic drift is linear.

While it is not fruitful to attempt a more detailed ays, it is clear from Fig. 12 that there is noistatally
significant signal in their data (remember the eragstare under estimates). Handschy (1982) comes to arsimil
conclusion via a different route.

Appendix 2. The measurements by lllingworth

lllingworth’s paper (1927) illustrates how a full understimg of analysis techniques is very important when
designing an experiment. He took data at only four points artuncircle, so for a signal with a period of 2-turn
his data are under-sampled, and one cannot extrabthrer amplitude from his measurements. Had he knoisn th

® Miller, in the same building in which their experiment vg@sformed, wrote in a logbook in the 1920s, “The
original notes seem not to have been preserved.”

daytonmilleranalysis-20060823-1sp Page 8
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he would surely have taken data at more points, but ofe@lrannon’s sampling theorem was then 20 years in the
future.

The innovation in this interferometer is a 1/20 wangte step in one mirror that permits the observerke ta
readings accurate to 0.002 fringe, very much better regpltlian any other experiment of this type. The
interferometer is stopped at each orientation and thenadrsadjusts the instrument with small weights tderetne
image; the number of weights was calibrated to giveehding for fringe shift. His use of a constant-temfoeea
room also reduced his systematic drift considerablypamed to the other experiments.

Because of the under sampling it is not possible t@partiseful Fourier transforms, nor is it possible wdel the
systematic drift. But it is worthwhile to examine tii@a, compute errorbars, and determine whether dhaat is
any significant variation in the data. Figure 13 displagsdne run for which data are available from Tabie |
lllingworth (1927). lllingworth did not plot the data, butigierform averages and subtract an assumed-linear
systematic in his analysis, so in Fig. 13 the data panetthe per-orientation averages of the ten turns ntireus
straight line between the average North measurememéseiforbar for each orientation came from the sigfithe
histogram of its ten readings divided ¥0, because it is not clear if the errors are sysiieroastatistical; as there
is likely some systematic component of the errorséherrorbars are probably under estimates. The énterieter
was adjusted to zero before the start of each turtiesmitial reading at North has a zero errorbar (thie enakes
determining the overall systematic drift impossibledn@aring the individual turns’ linear systematic to vhkie
at the midpoint (as in Fig. 3) shows that four of thettens had a nonlinearity in the systematic that exddeds
errorbars displayed in Fig. 13, so the assumption tleadytstematic is linear is inadequate here, too. lrcasg,
clearly there is no significant variation in theseadat
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FIG 2. The raw data from Fig. 1 (adjustments restored).
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FIG 3. The assumed-linear systematic drift from the dataf Fig. 1.
The lines are between successive Marker 1 values and thaints are Marker 9.
These markers are 180 degrees apart, so any real signal ths same value
for every corner and every point.
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FIG 4. The plot at the bottom of Fig. 1, with errorbars(see text).
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FIG 5. 320-point DFT spectrum of the data from Fig. 1.
Frequency bin 40 has a period of % turn, where any reaignal would be.
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FIG 6. Frequency Response of the comb filter corregimding to averaging 20 turns.
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FIG 7. 16-point DFT spectrum of the data from Fig. 1 afteraveraging the 20 turns.
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Frequency bin 2 has a period of %2 turn, where any realgmal would be.
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FIG 8. 16-point DFT spectrum of the assumed-linear systeatic.

daytonmilleranalysis-20060823-1sp

Page 18



|[Fourier Amplitudel (Fringes)

0.06

0.05

0.04

0.03

0.02 -

0.01

Frequency Bin

FIG 9. 8-point DFT spectrum of the data minus the assuad-linear systematic;
this corresponds to the final plot of Fig. 1. Any reasignal is in frequency bin 1.
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FIG 10. The measurements of the systematic drift differeces for the eight orientations.
Because differences are plotted, any real signal has baemoved (see text).
Origins are offset vertically for clarity.
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FIG 11. The Y-turn DFT amplitude, data minus systematicfor 67 Runs.

Runs with open circles have five or fewer stable tus (out of 20 turns).
The lack of variance around zero is due to the quantizaih of the data.
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FIG 12. The Michelson-Morley data, Noon (upper) and P.M(lower),
with errorbars (see text). These errorbars are undeestimates.
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FIG 13. The lllingworth data minus the assumed-linear systaatic model.
See text for an explanation of the errorbars — they arprobably under estimates.
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