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Abstract-Recent experimental studies with microwave and laser pulses have revealed superluminal 
(faster-than-light) group, signal and energy velocities for the tunneling of electromagnetic wave packets in undersized 
waveguides and other photonic barriers. First we report on the historic background of tunneling and the problems 
of the interpretation of electronic tunneling data. The mathematical analogy of the classical tunneling, i.e. the 
propagation of evanescent modes, described by the Helmholtz equation, and the quantum mechanical tunneling, 
described by the Schrijdinger equation, is introduced. In the next sections the experimental data on the tunneling 
time of electromagnetic wave packets and signals is presented. The interpretation of the experimental observations, 
particularly the production of superluminal tunneling velocity and its implication for the quantum mechanical 
electronic tunneling are discussed in the following sections. An introduction to the various theoretical approaches 
is included. Remarks on superluminal tunneling and on causality conclude the paper. Copyright 0 1997 Elsevier 
Science Ltd 
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I. INTRODUCTION 

Electronic tunneling in solid state physics has been evidenced in the 1950s and has 
been extensively investigated since that time. Especially tunneling junctions have been 
studied, where an electrical insulator forming a potential barrier is sandwiched 
between a superconductor and a normal conductor. (‘) Other important examples for 
tunneling in solid state physics represent the semiconductor tunneling diode”’ and 
the tunneling microscope. (3) However, one important question has not been settled 
all the time: the duration of the tunneling process. The time spent by a wave packet 
traversing the barrier has been a subject of discussions for more than half a century.‘“) 
In the case of electronic tunneling, it has not been possible to measure this 
time unambiguously. (7,8) The problems are the extremely short times and even if a time 
has been measured, it may have been determined by processes other than the 
tunneling process, as e.g. by the Coulomb interaction of the electrons with its charged 
environment. 

Recently, the discussion of the tunneling time problem has experienced a new stimulus 
by the results of analogous experiments with evanescent electromagnetic wave 
packets. Spectacularly they have revealed even superluminal tunneling velocities, i.e. the 
measured barrier traversal time for electromagnetic wave packets and for AM-signals 
correspond to velocities faster than light. The first superluminal results were obtained 
with microwave signals by Enders and Nimtz. (9, lo) The superluminal microwave 
tunneling data (the velocities in question are defined in Section 3.1) were confirmed in 
an averaged single photon experiment by Steinberg et al.,“” in a further microwave 
experiment by Ranfagni et al. with leaky waves,(“) and with laser pulses by Spielmann 
et QZ.“~’ All the experimental results have shown, that earlier quantum mechanical 
phasetime calculations (Hartman”4’) do describe the barrier traversal time, and thus for 
example enable one to determine the dynamical specification of a micro-electronic tunneling 
device. 

In this article we shall introduce the electromagnetic tunneling analogy and present some 
experimental results, and we shall discuss the essentials of the theoretical investigations on 
the tunneling time problem. Finally we shall briefly mention the causality problem, which has 
received much attention in the physicists’ community and in the media quite recently, see 
e.g.‘15) 

A conclusion of all the photonic investigations is that the quantum mechanical approaches 
do describe the dynamical behaviour of the tunneling process. 

1.1. Historical remarks 

One century ago Bose carried out classical tunneling experiments, i.e. the decay 
of evanescent waves.(16.“) He measured the intensity of cm-wave signals transmitted 
through two prisms which depended on the distance between them. The rather 
large prisms were made from tar. (I’) The chosen incident angle of the cm-waves beam 
was larger than that of total reflection. At distances shorter than the wavelength he 
found a finite transmission into the second prism across the air gap. This 
quasi-optical experiment corresponds to the non-classical tunneling process as 
shown in Fig. l(b). Bose found a strong dependence of the transmission of the cm-waves 
on the gap length between the two prisms. Much later also optical evanescent 
modes were theoretically and experimentally investigated, see e,g.u8) However, the 
propagation time and velocity of the evanescent modes have not been measured until 
recently. 
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1.2. The analogy: Helmholtz’s and Schriidinger’s equations 

The Helmholtz equation follows from Maxwell’s equations in a charge-free space 
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V.B = 0; V x B - f +f = 0. 

For every Cartesian component of the electromagnetic fields we obtain the wave equation. 

AE_ Lt cE =-J 
c2 at2 

where p and E are the free-space magnetic and electric permeabilities and c the velocity of 
light in vacuum. 

The solution in one dimension is represented by a plane wave, for example for the electric 
field component 

E&J) = Ea exp(ikx - iot) 
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Fig. 1. The classical optical tunnel analogy: (a) total reflection at a double-prism and its 
corresponding quantum mechanical wave barrier. Total reflection takes place at the transition from 
high to low refractive index matter. (b) The gap between the prisms corresponds to the quantum 

mechanical barrier length. 
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Fig. 2. (a) Rectangular waveguide with a part of reduced cross section in the center. (b) 
Rectangular wave guide filled with dielectric media with refractive indexes n, and nZ with n, > n2. 

(c) Sketch of the corresponding photonic potential. 

where x and t are the Cartesian space component and the time, respectively, and k and o 
are the wave number and the angular frequency, respectively. This solution put into the wave 
equation yields the Helmholtz equation for the electric field component in waveguides 

$E+ f co’-co,’ E=O ( > 
This equation for the propagation of a scalar field is formally identical to the Schrodinger 
equation for the wave function $. 

&+ $(W-CT)*=0 

where m is the particle’s mass, Ii the Planck constant, W the energy, and U a uniform potential 
energy. 

We can write an analogous relation for the refractive index 

which means that, a quantum mechanical particle with the energy W in the potential energy 
U corresponds to an electromagnetic wave of frequency o in a medium characterized by the 
refractive index n. 

The direct mathematical analogy between one-dimensional quantum tunneling of particles 
and evanescent electromagnetic waves in a waveguide has been studied by Martin and 
Landauer.(19) They have demonstrated that the boundary conditions at the interface between 
a propagating and an evanescent region of a waveguide (see Section 2.1) with the same cross 
section but different refractive index lead to the same transmission and reflection coefficients 
as for a square-barrier tunneling problem. An example of such a waveguide with constant 
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cross section but with an abrupt change in refractive index is sketched in Fig. 2(b). It has 
been shown by Brodowsky et al., (*O) that the waveguide structure with a reduced cross section 
yields the same tunneling results as the waveguide filled with a dielectric material of reduced 
refractive index. 

2. PHOTONIC BARRIERS 

Based on this formal analogy, tunneling time experiments were started using undersized 
microwave waveguides by Ranfagni et al. in 1991. (*‘. I*) Similar microwave experiments were 
carried out by Enders and Nimtz in both time- and frequency-domain in 1992.(9) The 
provoking result of the latter study has been a very short barrier traversal time, which 
corresponds to superluminal (faster-than-light) tunneling velocity. Experiments carried out 
with optical techniques confirmed the superluminal barrier crossing somewhat later than the 
microwave experiments. In the optical experiments barriers of periodic dielectric 
heterostructures, i.e. of dielectric mirrors, were used. They have forbidden bandgaps like 
electronic band gaps in a semiconductor. The gaps are often called stopbands. The imaginary 
wave number solutions of the forbidden bands have dispersion relations different from those 
of undersized waveguides or of the quantum mechanical square potential. Again, the 
experiments with such mirrors have revealed superluminal barrier crossing for single 
photons,“‘) for laser pulses,(‘3) and for microwave packets. (**) In the following sections the two 
types of electromagnetic wave barriers are introduced. 

2.1. Undersized waveguides 

In general, for wave propagation to be possible, a guide’s cross section has to exceed half 
the wavelength. In the case of a rectangular waveguide this condition has to be fulfilled for 
the basic mode (TE,,) only in one of the transverse directions, see e.g.(*)) We shall demonstrate 
this condition for a wave guide formed by a rectangular metal tube. These guides have been 
used in the tunneling time microwave experiments. Two different undersized rectangular 
guides are shown in Fig. 2. Part (a) of the figure shows a hollow guide with a narrow portion 
in the center, corresponding to a higher cut-off frequency, whereas in part (b) the guide has 
a uniform cross section but is filled with two dielectric materials of different refractive index 
n. If the condition n, > n2 holds, the photonic potential has a structure as displayed in part 
(c) of this illustration. For the basic propagating TE,,-mode in a rectangular waveguide the 
dispersion is given by 

where v is the wave’s frequency, v,, = c/2bni is the cut-off frequency of the guide with the width 
b (b being the broad side of the rectangular waveguide). I, = c/vCi is the cut-off wavelength 
of the guide. 

In case the frequency becomes lower than the cut-off frequency the wave number is purely 
imaginary. The propagation is stopped, and the field intensity decays exponentially with 
distance in the undersized part of the wave guide. Thus we have the analogous behaviour 
as in the case of a square potential barrier. Waves having frequencies v < v, are tunneling 
modes or evanescent modes. The boundary condition for E in the case of the waveguide 
configuration (b) of Fig. 2 has been shown to be identical with those of the wave function 
+ in the case of a one-dimensional barrier. (i9) The geometrical discontinuities of the structure 
of case (a) has no significant influence on the transmission coefficient.(*” 
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2.2. Periodic dielectric heterostructures 

Periodic heterostructures, independently of being of an electronic, photonic or acoustic 
nature, have frequency regimes of wave propagation and regimes of forbidden propagation. 
The general wave propagation in periodic structures has been presented by Brillouin.‘“’ In 
the case of forbidden propagation the wave number becomes imaginary similar to the 
evanescent modes in an undersized wave guide. The basic principle for this behaviour, either 
of being transparent or being total reflecting, is the interference of the multiple reflected wave. 
Such periodic heterostructures are used in many optical and electrotechnical devices, as filters 
or to improve the transmission. With respect to the tunneling discussed here, only 
one-dimensional structures have been used. However, recently many studies have been 
devoted to three-dimensional photonic lattice structures.‘*‘) They have interesting 
optoelectronic device aspects, for example in improving light emitting diodes by inhibiting 
the spontaneous emission. This can be achieved, if the device’s environment has a photonic 
crystal structure with a forbidden band gap at the frequencies to be inhibited. 

Figure 3 shows a one-dimensional periodic dielectric hetero-structure. Such structures have 
forbidden band gaps (stopbands), which represent frequency regions where the solutions for 
the fields are corresponding to those of the evanescent modes (tunneling modes) in undersized 
wave guides. Of course band gaps have a quite different dispersion relation compared with 
that of an undersized waveguide as sketched in Fig. 3(c). The barrier transmission time for 
such structures has been studied with single photons,“‘) with microwaves,‘**) and with laser 
pulses. (13) There have been observed superluminal traversal velocities in the forbidden 
frequency region also. 

We shall give in the following some details of a one-dimensional photonic lattice similar 
to that used in the microwave and in the optical experiments.‘26) Review articles on 
three-dimensional photonic lattice structures have been written for example by 
Yablonovitch(25) and Villeneuve and Picht.‘*‘) 

(4 b) 

Fig. 3. Examples (a) of a waveguide with an undersized central part and (b) a one-dimensional 
periodic dielectric hetero-structure. In (c) the graphs show the dispersion relations for both 
structures. The transmission dispersion of the periodic heterostructure displays a forbidden gap 

which corresponds to a tunneling regime. 
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In the case presented here, the periodic dielectric heterostructure is constructed from 3 or 
7 layers of Plexiglas (6 mm thick, refractive index n = 1.6) separated by air layers (9.6 mm 
thick). The transmission t, the reflection r, and the phase shift 4 were calculated for electric 
field amplitudes. E,_ , and E, are the electric fields in the media at the left and right hand side 
of thejth boundary. Continuity of the fields at the boundaries are assumed in the calculations. 
With xj the position of the boundaries in the x-direction the complex transmission properties 
of the structure are calculated with the relations 

E,- 1(x,) = &(x,) 

E;- 1(X,) = E,‘(x)) 

E,(x) = a, elkflY + 6, eikfY 

121 + lrZl = 1 

The data are presented in Fig. 4. The graphs show the dependence of the stopband on 
frequency for three and seven Plexiglas layers. In part (b) with a larger frequency range a 
second forbidden band is seen. The phase shift of the transmitted wave is shown in part (c), 
in the forbidden frequency regime the phase shift becomes very small, The group velocity 
calculated from the phase time (definition in Section 4.1) is shown in part (d). In the forbidden 
frequency regime the group velocity may be also superluminal as observed in optical and 
microwave experiments.(“.‘3,22) 

3. PHOTONIC TUNNELING TIME EXPERIMENTS 

3.1. Electromagnetic wave packets and AM signals 

The first superluminal tunneling experiments were carried out with microwave packets and 
with AM-signals.“) Results are shown in Figs 5 and 6. The experiments were carried out with 
pulses (frequency band limited and Gaussian-like) in the frequency domain technique as well 
as with AM-signals in the time domain technique. (9) (The frequency domain technique is a 
modern and very useful measuring method to determine the complex transmission function 
with a precision not achieved before. Within a well defined frequency window and an 
extremely high resolution, the amplitude and the phase shift are measured as functions of 
frequency. The experimental transmission data are then transformed into the time domain 
by Fourier transforms.) Both experiments with the pulses as well as with the AM-signals 
revealed group velocities > c in traversing an undersized waveguide or a periodic dielectric 
heterostructure in the forbidden frequency regime.“. lot **) 

Recently Aichmann and Nimtz have demonstrated in a simple time domain experiment, 
that frequency band limited signals can exceed the velocity of light.‘**) The experimental set-up 
is sketched in Fig. 7. Mirror M, has a splitting ratio of 1:40 in order to compensate the strong 
reflection loss due to the tunnel barrier (it will be shown later that the magnitude of a signal 
does not influence its velocity). Barrier length and air distance are calibrated having 11.42 cm 
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Fig. 4. (a) Transmission vs frequency of two periodic Plexiglas/air hetero-structures with three and 
with seven Plexiglas layers, (the air distance is 9.6 mm, the Plexiglas layers are 6 mm thick with 
n = 1.6), (b) transmission vs frequency of the structure with seven Plexiglas layers showing a second 
band gap, (c) phase shift vs frequency of the two structures, and (d) group velocity vs frequency 

of the two structures, the velocity is normalized to the vacuum velocity of light. 

length. The arrival of the two signals were observed with an oscilloscope (HP 54124) with 
a time resolution I 10 ps. It was found, that the tunneled signal has arrived 293 ps earlier 
than that which has travelled through the air. This result corresponds to a barrier traversal 
velocity of the signal of 4.34.~. 

Spielmann et CZ~.(‘~) have measured the traversal time of periodic hetero-structures in the 
forbidden frequency regime with 12 fs long optical pulses of 375 THz. They found that the 
group velocities increase with barrier thickness in agreement with former microwave results.@‘) 
In the 1960s Hartman predicted this effect for electrons.“‘) 

Another microwave experiment related to superluminal propagation of evanescent 
electromagnetic waves was carried out by Ranfagni et ~1.~‘~) They have studied the 
propagation of another type of evanescent microwave modes, the ‘leaky waves’ with two horn 
antennas as shown in Fig. 8, and have observed superluminal signal velocities. 

3.2. Single photon tunneling 

Tunneling through frequency band gaps of a dielectric heterostructure was studied at a 
single photon level by Steinberg et al. (‘I) The experimental set-up is presented in Fig. 9. In 
this experiment photon twins were generated by a down-conversion process in a KDP crystal. 
One of the two photons travelled through vacuum whereas the second one was sent through 
the barrier structure. The phase shift of the latter was shorter thus resulting in a travelling 
time through the barrier less than the time for the same distance in vacuum. Due to a 
correlation time of the twins of + 20 fs, measurements of the interference distance had to 
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Fig. 5. Barrier traversal time of a microwave packet through a muitilayer structure inside a 
waveguide. The center frequency of the pulse has been 8.7 GHz, the pulse width + 0.5 GHz. The 
pulses are normalized. The maxima correspond to the center of mass and yield the group velocity. 
The barrier length was 114.2 mm. The group velocity of the tunneled signal was 4.7 c. The 
transmission of the barrier is shown in Fig. 3(b). The slow pulse (I) traversed the empty waveguide, 

whereas the fast one (2) has tunneled the forbidden band gap of the same length. 

be averaged over some 20 million twins (the barrier crossing time being only 2.2 fs). This 
means that in this experiment an ensemble of many photons is necessary in order to determine 
the photon’s barrier traversal time. Thus the claimed single photon experiment equals the 
microwave experiments from the physical point of view, where the same number of photons 
have been investigated in one pulse within some nanoseconds. In addition the detection 
process has been a quantum mechanical one in both experiments based on single 
photon-electron interaction. The difference is, that in the microwave experiments the 
tunneling events were elegantly counted within some ns, whereas in the single photon 
experiment the time of photon counting needs several hours. 

Spiekefi30) has shown that the experimental data of both investigations, the microwave and 
the single photon experiments, can be described quantitatively by assuming Gaussian wave 
packets and calculating the classical transmission function of the quarter wave layer periodic 

Power 

(10 sW/div) 

Time (I ns@c/div) 

Power 

(wo) 

Fig. 6. Barrier traversal time of an amplitude modulated ramp. The carrier frequency of this signal 
has been 8.644 GHz and the cut-off frequency of the undersized wave guide (barrier height) 
9.49 GHz. One signal has tunneled through a 60 mm barrier (dashed line) arriving at the same 
time, as the reference signal with the barrier completely taken out of the waveguide. (Left hand 

ordinate linear scale, right hand ordinate logarithmic scale using r W.) 
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Experiment: Signalvelocity 

G = Generator (Carrier) 

M= Modulator (Slgnrl) 

T= Tunnel (Srrrler) 

D= Detector (Oscilloscope) 

Fig. 7. Experimental set-up of a frequency band limited signal tunneling. The arrival of the 
tunneled signal is compared with the same signal traversed the same distance through air. 

heterostructure. The computed absolute values and phase of the transmission function results 
in a transmission time in agreement with the experimental ‘single photon’ data. 

3.3. Resonant tunneling 

The analogy of the Helmholtz and the Schriidinger equations allows also to study resonant 
tunneling. Figure 10 shows a sketch of a microwave guide set-up with three resonant states 
in between two undersized waveguides forming the barriers. (22.3’) The transition lines II and 
III have been analyzed. Both real and imaginary part of the transmission have been used to 
determine the linewidths. The decay time z of the stored energy Q is related to the frequency 
v according to r = Q/27rv. In electronics the resonant-state lifetime is often assumed to 
represent a time scale for the electron tunneling process. (4,8) The experiment has shown that 
the lifetime from the linewidth (real part of the transmission) agrees with the lifetime obtained 

LEAKY WAVES 

LAUNCHER 

Fig. 8. Microwave propagation experiment with horn antennas. A special kind of evanescent 
waves, the leaky waves, is operating at moderate distances from the launcher and can be detected 
by the receiver in a selecmd range of values of the angle 01. The leaky wave fronts are perpendicular 
to a plane nearly coincident with the vertical plane of the launcher horn, forming the angle @ with 

the axis of the horn.(r2’ 
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Trombone 

Fig. 9. Experimental set-up of the photon tunneling experiment”” 

from the derivative of the phase (imaginary part of the transmission). Compared with optical 
measurements, the microwave experiments have the important advantage of yielding both 
real and imaginary part of the transmission function. This allows the determination of the 
lifetime from two different experimental quantities. The lifetime of resonant line II is 40 ns, 
that of line III is 80 ns. We would like to point out that the resonant lifetime values are more 
than 2 orders of magnitude longer than the typical tunneling times for a single barrier. That 
means the resonant lifetime is not governed by the tunneling process. 

3.4. Tunneling with dissipation 

Experimental data on the tunneling time of charged particles such as electrons are rather 
difficult to interpret. Coulomb interactions with the environment are usually unavoidable and 
may even dominate the measured tunneling delay time. In order to take into consideration 
inelastic interactions the barrier may be represented by a complex potential as has been 
investigated theoretically.(32,33) A complex tunneling barrier may be classically simulated with 
some restriction by a photonic barrier characterized by a complex refractive index.(34) 
Experiments with microwaves in undersized waveguides filled with a lossy dielectricurn, i.e. 
the refractive index n being a complex number, have shown that dissipation is connected with 
an additional phase shift in the barrier region and accordingly with an increase of barrier 
traversal time. The superluminal barrier crossing disappears with increasing dissipation.(34) 
The experimental result has been predicted by the phase time calculations of Raciti and 
Salesi,‘32) however, it has been opposite to the theoretical results from a path-integral solution 
of the telegrapher’s equation by Mugnai et a1.(33). 

4. DATA ANALYSIS 

4.1. Dejinitions of wave velocities 

After the introduction of the theory of special relativity (TSR) by Einstein there has been 
much confusion about the very velocity which is not allowed to exceed the vacuum velocity 
of light. At that time Sommerfeld and Brillouin have defined the various velocities of waves 
and have explained the physics behind them. (35) The interaction of the electromagnetic waves 
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has been assumed to take place via a Lorentz-Lorenz oscillator, i.e. the waves interact with 
a bound electric charge with a dispersion relation 

Ne2/(mEo) 
~0’ - o2 - i2op > ’ 

where w is the measuring frequency, p the damping constant, N the number of dipoles, e the 
elementary charge, m the dipole mass, and co the vacuum permeability. 

It is the velocity of a detectable effect (at least one photon) or of an information, which 
counts for the TSR and this velocity is represented for a wave packet by the group velocity 
or in the classical case in a medium with dispersion, the front velocity. Both wave velocities 
never do exceed c except at frequencies very near to a resonance interaction as shown in 
Fig. 11. On the other hand the front velocity has no meaning in the case of a photon or any 
other quantum mechanical particle. The definition for wave velocities are 
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Fig. 10. Transmission of a double-barrier structure with three resonant transition lines below the 
barrier’s cut-off frequency (insert). The figures (center) present the intensity vs frequency of the 
resonant lines and (bottom) the phase time dq/do of lines II and 111 as a function of frequency. 
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Fig. 11. Velocities vs frequency for electromagnetic waves in a dielectric medium described by a 
Lorentz-Lorenz dispersion. Key:-- -: c/L~~,,. -: c/v,,,....:c/v,,.-.-.-,: c/v~.(‘~’ 

Phase velocity up,, = o/k 
Group velocity up’ = doldk 
Front velocity vF = lim,,,w/k 
Signal (Information) velocity vs+v,r r us 2 vgr 
Energy velocity v, = s/u 
Phase-time velocity ~4 = zl(d$ldw) 

The velocities in a dielectric medium with a Lorentz-Lorenz dispersion are illustrated in 
Fig. 11 .O’) Far from the resonance region the absorption is negligible and the imaginary part 
of the refractive index can be neglected. Here the group velocity represents the velocity of 
the signal as well as the velocity of the energy flow. However, near the resonance frequency 
the group velocity becomes greater than the velocity of light, can be infinite and even negative. 

In this region the group velocity does no longer represent the velocity of a signal or of 
energy. (36. 37) In this region it is very difficult to define a signal velocity precisely, since the signal 
arrives very gradually without a distinct front. The absorbing situation near resonance has 
been experimentally and theoretically investigated, and it has been shown, that there was no 
conflict with the TSR.(37) In the case of reflection causing a finite standing wave ratio as in 
the case of the propagation of an evanescent mode the energy velocity lacks a physical 
meaning. 

As long as we are dealing with waves, the interpretation of experimental results are 
understood on the basis of the Lorentz-Lorenz or more sophisticated interaction 
mechanisms. Such dispersion models for the propagation of waves, however, are a priori not 
relevant for the propagation of evanescent, i.e. tunneling, modes which have no real 
wavenumbers. We shall discuss this case in Section 6. 

4.2. Real signals are frequency band limited; has this fact implications? 

Theoreticians usually assume that signals have an unlimited frequency spectrum, which 
alone guarantees a well-defined signal front. (3*) However, in practice signals have always a 
limited frequency band, an unlimited frequency band signal cannot be generated. Such limited 
frequency band AM signals are shown in Fig. 12. Signal (a) was sent through an optical fiber 
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distance of 9000 km to test the novel erbium-doped fiber amplifiersC3’) The carrier frequency 
was 2 x lOI Hz, and the modulation bandwidth was limited to about 10” Hz, i.e. the signal’s 
frequency band is four orders of magnitude smaller than the carrier frequency. This type of 
signal has been tunneled at a superluminal speed without significant loss of information. The 
information is given by the number of digits. In this sample, for instance two, one, one etc., 
the information (signal) is given by the half-width of the individual signal. The information 
does not depend on the magnitude as seen from inspecting Fig. 13. Signal attenuation and 
signal magnitude have no influence on its velocity. Such an ill defined argument, that 
attenuation will guarantee causality in superluminal tunneling, has been presented by 
Spielmann et ~2l.“~) 

As shown in Fig. 12 (b) frequency limitation results in a non-causal Fourier representation 
of the signal. In this theoretical Fourier representation of a frequency band limited signal 
there exist signal components before the signal is switched on. This non-causal behaviour may 
hinder the theoretical description and an analysis of the experimental data.@‘) 

An often used argument in order not to violate causality is pulse or signal reshaping in 
consequence of the evanescent dispersion relation. High frequency components, if there are, 

0.6 
- 
zi d 0.4 

U 
r 0.2 
+ 
0, 
E 0.0 

+ Cn -0.2 

-0 
ii5 -0.4 
.- 
IL 

-0.6 
-2 -1 0 1 2 3 4 

Time [ns] 

Fig. 12. (a) Signal used in optical fiber technology. The signal halfwidth corresponds to the number 
of bits, i.e. to the transmitted information. The abscissa is scaled in units of 1.5 ns. The carrier 
frequency is 2 x 10” Hz and the amplitude modulation is limited to a band width of about 10” Hz. 
(b) Sine wave signals non-frequency and frequency band limited (solid line 5 GHz f 0.5 GHz). In 
consequence of the Fourier transform the frequency band limited signal has already signal 

components at negative times, i.e. before it is switched on. 
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Fig. 13. Sketch showing that the half-width of a signal does not depend on its magnitude. 
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may be strongly favoured in the case of a single barrier dispersion (see dispersion relation 
of Fig. 3(c)). This would result in a pulse reshaping, in which the center of mass is shifted 
to the front of the signal. The situation is quite different in the case of a forbidden band gap 
in ordered heterostructures as displayed in Fig. 3(c), where the dispersion is rather 
symmetrical to the center frequency. However, pulse reshaping plays not a role in the case 
of the transmission of frequency band limited signals as has been discussed by Heitmann and 
Nimtz.‘38’ 

We think, the fact that technical signals and all physical events are limited in their 
frequency spectrum represents an important point, which has not been given much attention 
to recently. In the following we shall discuss and present some results on the signal 
propagation of evanescent modes. (3s.M) A group of waves or a wave packet is a signal of 
finite length, comprising only of a limited number of frequencies. Whereas the phase 
velocity and the group velocity are well established quantities, the signal velocity v,~ and 
the energy velocity vE represent obviously fuzzy quantities. The problem of signal 
velocities has been treated in papers by Sommerfeld and by Brillouin, see Ref. 35. In 
order to investigate the wave propagation in a medium they assumed a signal given by the 
formulaf(t) = 0 (t < 0 and r > 7’) andf(t) = sin(w,t) (0 c t < T) which is terminated at both 
ends, see Fig. 12(b). Such a wave form is composed of two unterminated waves, one beginning 
at t = 0 and the second at t = T with opposite phase, so that the two cancel for all time 
t > T). 

The Fourier analysis of this signal yields after several transformations 

If this signal traverses a distance z, each wave w propagates with its phase velocity Lo,),, 
and the integral becomes 
JI’QE 21 2 B 
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In any dispersive medium the highest frequency components will arrive at z with c. They do 
not interact with the medium and their weak oscillations are called forerunners or front. At 
a lower speed the main signal will arrive, which will be deformed. If it is possible to determine 
the exact moment when this main signal arrives, this defines the signal velocity. One has to 
distinguish between the wave front velocity, which might be determined by a forerunner, and 
the colloquial signal velocity, with which the main part of the wave propagates in a dispersive 
medium. In general, the signal velocity measured depends on the sensitivity of the detecting 
apparatus used. With a very sensitive detector, even the forerunners might be detected.‘4” Only 
if the detector is restricted to a quarter or to all of the final signal intensity, then an 
unambiguous definition of the signal velocity can, in general, be given.‘35’ 

If we are not dealing with a signal with a sudden start and a sudden ending (the realistic 
and the only procedure signals and reactions are mediated) we can suppress frequencies very 
different from o, and the formula becomes by expansion of the exponents 

f(t,z) = & Re{‘i~~~‘-;~~~,,~w~~JCT_‘:[el’Y”Y.x””’;”~~~~ _ e,~*,~~,~~~,-~,~~,,~~~~]~}_ 

This equation represents a signal beginning progressively at t = 0 and arriving at z at a time 
t = z/v,,, ending at t = T and t = T + z/t+,, respectively. The velocity of the wave front is now 
equal to the group velocity v,,(w,). 

Assuming an evanescent medium having a purely imaginary wave number K, which is 
independent of frequency in the range o. f do it follows 

This limited frequency band signal decays exponentially at traversing the distance z, however, 
without spending any time in the evanescent region. Even the rising edge of the signal 
propagates with the group velocity, however fast it may become in traversing the evanescent 
region. A surprising result, which, however, is in agreement with the experimental data. The 
evanescent frequency components of a signal do not spent time in the evanescent region. The 
observed time delay is due to the phase shift at the barrier boundary. 

4.3. Superluminal tunneling and the Hartman efect 

With the first electronic tunneling experiments in solid state physics the important question 
arose, how much time will the electron spent in the barrier region? Hartman carried out the 
first quantitative phase time calculations. (14) Using the time dependent Schriidinger equation, 
he has calculated the traversal time of Gaussian wave packets tunneling through rectangular 
potential barriers. The normalized data are shown in the graphs of Fig. 14. For thin barriers 
the calculated transmission time of the peak of the wave packet is longer than the equal time, 
i.e. the corresponding vacuum time. With increasing barrier length, however, the transmission 
time becomes constant and less than the equal time. Above the crossover of the two functions 
the group velocity of the tunneled particle exceeds the vacuum velocity, i.e. the particle 
velocity in the case of the photons becomes superluminal. This effect is often called Hartman 
effect and has been experimentally confirmed for the first time with microwaves by Enders 
and Nimtz.(2g) The dots in the same figure are values measured with evanescent microwaves 
in undersized waveguides of various lengths. Also in an optical experiment with a periodic 
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dielectric heterostructure the dependence on the evanescent region length of the transmission 
time has been observed by Spielmann et ~1.~‘~) 

4.4. Tunneling us resonant tunneling 

Previously several attempts were made to obtain information on the electronic barrier 
transition time from the line width of a resonant tunneling state e.g. Ref. 8. The photonic 
data from both amplitude and phase measurements have shown (see Section 3.3) that the line 
width corresponds to the time the electromagnetic wave packet spends between the two 
barriers. This time is much larger than the measured single barrier transition time (see Section 
3.1) and does not contain any information on the latter. The measured resonant photonic 
tunneling time is also in fair agreement with the historical quantum mechanical approach to 
describe a nucleus decay by Gamov. This agreement also points on the analogy of the 
Helmholtz equation and quantum mechanics. 

5. APPROACHES TO THE TUNNEL TIME 

How much time does a (quantum mechanical) particle need to travel through a classically 
forbidden region of space, i.e. when its kinetic energy is less than the potential? 

time 

(m/h E2) 

100 

Fig. 14. Graphs of the calculated particle transmission time as a function of barrier thickness.“” 
Where m is the particle mass, Jt the Planck constant, and k/c is the incident wave number 
normalized to t, the wave number equivalent to the potential barrier height. The dots represent 
the appropriately scaled experimental data of transmission time of evanescent electromagnetic 
waves. Experimental parameters are as follows: center frequency of the Guassian-like wave packet 

v = 8.7 GHz, barrier length IO, 40, 60, 80, 100 mm, for more details see Ref. 29. 
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There have been a lot of attempts to answer this question, none of which is regarded as 
the definite solution. In the past decade this question became an active and fashionable 
subject, last not least stimulated by recent experiments. There are already a number of reviews 
on the tunnel time problem, three of which are the most often cited: one by Landauer and 
Martin,‘@ a somewhat older by Hauge and Stovneng(4) and an interim one by Olkhovsky and 
Recami.“’ A list of literature including also very recent articles is given with full title and a 
very short summary of the main result in.‘42’ 

Many, though not all of the approaches fit into three categories. One might follow wave 
packets incident on the barrier, passing through it, and compare a feature of the transmitted 
and incident wave packet. Another method is to determine a set of dynamic paths z(t), 
calculate the time a path spends in the barrier and, may be, average over all these times. Last 
not least, one tries to attach a physical clock to the particle and determine the time elapsed 
during tunneling. The following sections present introductions to these approaches. 

5.1. Wave packets 

Wave packets have been a very successful tool in describing the propagation of particles 
and in accounting for the uncertainty in the experimental observables. The most probable 
measured values are given at the maximum of the wave packet, i.e. its probability amplitude. 
This can be determined when the initial, reflected and transmitted wave packets are far away 
from the barrier so that there is no disturbance due to interference effects. If there was no 
barrier one would know the non-influenced propagation behaviour. Propagation of the wave 
packets with this behaviour to the beginning (z = 0) and to the end (z = d) of the barrier 
allows to determine times for the maxima t,(O), tR(0), [r(d). That is a non-invasive asymptotic 
method, which takes effort to realize in experiments. So done, the transmission and the 
reflection time are t,(O,d) = t,(d) - t,(O) and ~~(0,d) = fR(0) - t,(O). In the plane-wave limit, 
i.e. narrow wave packets in k-space, these times become in the case of electrons: 

the phases given by 

T = ITle”‘r~~(k,,,O,d) = h % [l;o R = IRle’@ 

Hartman(‘4’ has plotted the transmission time versus the particle energy and the barrier length 
(see Fig. 14). 

In the case of microwaves in the Cologne experiment,‘9.20’ of laser pulses in the Vienna 
experiment(‘3) and of photons in the Berkeley experiment (43) the same method can be applied 
to the electromagnetic field. One can prove that d/z, = vGr = do/dklo, holds, the right part 
making sense when k(w,,)EIW. The experimentally and theoretically obtained times agree within 
the experimental errors. 

There are some interpretational difficulties with the wave packet approach. Landauer and 
Martit criticized that there is no justification for assuming that the centroid of the incident 
packet evolves into the centroid of the transmitted and reflected packets. They argue that due 
to the dispersive propagation of the packet the high-energy components would reach the 
barrier first. Since they are more effectively transmitted, the transmitted packet comes from 
the ‘front’ of the incident packet, may be, leaving the barrier long before the centroid of the 
incident packet has arrived. This process is called pulse reshaping. In the photonic case there 
is no such dispersion in free space. Doesn’t the Fourier theorem tell us that all energy 
components are spread evenly over the whole wave packet (and ‘beyond’)? Neither phase 
velocity nor group velocity may be used in the former interpretation. This argument applies 
also to the dispersion inside the tunnel region. 
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It is observed that the group velocity becomes superluminal when the main frequency 
component and most of the supporting frequency band is in the ‘tunnel’ regime, i.e. where 
there is little transmission, lT(w)l<< 1. Though there is strong damping, it is astonishing to 
see in numerical simulations’45’ that the transmitted wave packet has almost the same shape 
(less than one per thousand deviation) as the incident one as long the frequency support is 
not too broad and the barrier is not too long. 

Superluminal group velocities raised the problem of causality. It is stated by Heitmann and 
NimtzC3*) that only the front velocity’ has to obey Einstein causality which is, however, an 
ambiguously measurable quantity. This agrees with a demand for the Green’s function being 
zero before d/c.(48) An analytic expression of Green’s function for the microwave experiment 
without the use of advanced solutions was given recently by Emig.‘45’ 

5.2. Paths 

There are several possibilities for defining particle trajectories. This is a delicate picture in 
quantum mechanics as the particle position and momentum obey the Heisenberg uncertainty 
relation. Thus a classical trajectory does not exist. 

5.2.1. Bohm view. A very good introduction and treatment is given by Leavens and Aers’49’ 
of which a short summary is presented here. 

In Bohm’s interpretation of non-relativistic quantum mechanics an electron is a particle, 
the motion of which is causally determined by an objectively real complex-valued field $(z,t) 
so that it has a well defined position and velocity at each instant of time. The guiding field 

tj(z,t) = R(z,t)e;S(‘,‘) R,SElR 

satisfies the time dependent Schriidinger equation. R’(z,t) = l$(z,t)[* E P(z,t) is 
probability density for an electron for being at position z at time t. S(z,t) satisfies 
Hamilton-Jacobi equation 

$f Ia + & * + V(z,t) + Q(z,t) = 0 

with the quantum potential 

The velocity is defined by 

and satisfies 

_@A 
v(z,t) = p(z,t) - 

1 
=m&z [ 

a* a+* 
e*M yjg IL., - +w x I..., 1 

the 
the 

‘If one introduces a front into the incident wave packet, one finds, that this always travels with the speed of light 
in vacuum c [http://www.uni-koeln.de/ - abbl l/cs.ps.gx]. Numerical simulations were carried out with such a 
step and an analytic continuation on zero-level. Simulations show too, that the velocity of the maximum also 
depends on the width of the wave packet.‘“.“) 
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which is the net probability flux divided by the probability density. Given the initial position 
z, = z(t = 0) of an electron with the initial wave function $(z,t = 0), its subsequent trajectory 
z(zO,t) is uniquely determined by simultaneous integration of the time dependent Schrodinger 
equation and the guidance equation dz/dt = u(z,t). It is a feature of these trajectories that 
they do not intersect. 

The time spent in the region z, I z I zz is unambiguously given by 

I 
cf 

~(zo;z,z,) = dt O[z(z,,t) - z,]O[z, - z(zo,t)] 
0 

accounting for multiple passes through this region. The mean dwell time is the statistical 
average over these times with the probability distribution of the initial position P(zo,t) 

a. 

~D(Z,ZZ) - s ;2 

dzo f’(zo,O) ~(zo;.wJ = 
-5 s dz IW4l’ 

:I 

Since Bohm trajectories do not intersect each other there exists in the case of a barrier a 
special starting point zoc given by 

s “dz IWo,012 = ITI2 
Qr 

such that only those trajectories z(z,,t) with z, > z oc are ultimately transmitted through the 
barrier contributing to lrl2 and only those with z. < z Dc are ultimately reflected from the 
barrier contributing to lR12. Hence the mean transmission and reflection times are uniquely 
given by 

z,(z,,z,) = & -,.dzo P(zo,O) f(zow2) aa + 

s 

;oc 

s 

dzo f’(zo,O) @o;wJ CR ’ _-ocI 

and the sum rule 

zD = IT12z, + lRl'~,t 

holds. It is remarked that there are trajectories contributing to IRI’ which do not enter the 
barrier region. 

A surprising fact at first glance is that the transmitted part of a coherent sum of incident 
wave packets following each other in the initial wave function may emerge from the first wave 
packet only. 

A similar approach for photons might be based on the instant energy velocity of the 
electromagnetic fieldc4’) though the problem of interpreting the energy density as a probability 
density occurs.(so) Instead, trajectories for the field configuration can be determined. 

The Bohm approach intrinsically yields traversal time distributions.‘“’ The mean times 
determined by averaging are substantially longer than those of the clock approaches. Since 
in the Bohm approach the velocity is always less than c there is no causality problem. 
Corresponding time measurements were attempted. The Berkeley experiment gives a time 
distribution which does not agree with this approach. (47) A severe criticism is, that the 
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trajectories are not covariant even for the underlying wave equations that are relativistically 
invariant. 

5.2.2. Path integrals. The Feynman path integral techniques were used by Sokolovski and 
coworkersCS2~“) for the determination of propagation times. For a classical path z(t) the time 
spent in the region z, I z I z2 is 

t[z,,zz;z(t)] = 
s 

adt @[z(t) - z,] O[z, - z(t)]. 
0 

A dwell time is defined by substituting z(t) with a Feynman path ~~(1) and averaging with 
the weight factor e iih~~~rfl for action S over all the paths joining spacetime points (z,,O) and 
(z,,t,) with z. I zI and z, 2 z2 

using functional integration. In terms of quantum mechanical states this is 

which again evaluates to 

T,(z,,z~) = =dl 
s s 

“dz Ii,b(z,t)l’. 
0 ;I 

In the plane-wave limit with wavenumber k. and probability current hk,,/m this is 

1 -_ 
Mo;wJ = hkolrn _, 

s 

-‘dz IthOWl 

which was also given by Biittiker. (55) The transmission and reflection times are introduced by 
decomposition of the wavefunction at sufficiently large times t, into these parts, i.e. 
$(zm,t,) = &(z,,t,) + &(z,,Q. In the above limit Sokolovski and Baskin find 

3 z;B(ko;z,,z2) = iii 
s 

dz 
El 

T = ITlei’+” 

with 

+ $(k,;z,,z,) = ifi 
s 

dz 
:I 

R = IRleiQ 

and obeying the sum rule 

The problem that occurs here are z +” and rf” being complex and it was questioned what the 
real time is. This problem will be picked up later. 
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5.2.3. Wigner function. The last path concept presented here uses the Wigner function, 
introduced by Wigner.t56’ Such trajectories were first calculated by Lee and Sc~lly’~” and 
recently discussed for the tunnel problem by Marinov and Segev.(s8’ The Wigner function is 
defined in phase space by 

Wq,zAt) = $ s z 

dze-‘2P’A$*(q - z,t)lC/(q + z,t) 
-a 

If the third and higher-orders of the potential vanish, the Wigner trajectories coincide with 
the classical paths. Otherwise the Wigner trajectories are defined with a modified ‘quantum’ 
potential and are not classical. For a system in an energy eigenstate (i.e. in the stationary 
barrier problem), the time-shift invariance implies that the trajectories are ‘equi-Wigner 
curves’ which are lines of constant value of the Wigner function. The ‘effective’ potential may 
be singular, the Liouville theorem is violated, and quantum jumps can hardly be included. 
Once trajectories are found, the transmission time is calculated the same way as in Bohm’s 
approach. The weighting with the initial distribution W(qO,pO,O) may involve negative 
probabilities. 

5.3. Clocks 

There are various attempts to find transmission times with techniques of standard 
quantum mechanics. The Larmor clock is of intrinsic type whereas the Quantum clock is an 
extrinsic one, i.e. the latter influences the wavefunction. How can the wavefunction be 
decomposed in to-be-transmitted and to-be-reflected parts? One possibility is to analyze the 
probability flux and another one is to use projection operators. Though some results 
are recovered, up to now, no method can be fully justified and be regarded as the definite 
solution. 

5.3.1. Larmor clock. The real and the imaginary parts of $(k,;O,d) are identical to the 
spin-precession traversal time of Rybachenko(59) and the spin-rotation traversal time of 
Btittiker,(55) respectively. These are derived, following Baz’,@“) from an analysis of the effect 
of an infinitesimal uniform magnetic field, confined to the barrier, on the components of the 
average spin per transmitted electron in the plane perpendicular to the field (Larmor effect) 
and in the field direction (Zeeman effect), respectively. The same method was applied to the 
Faraday rotation of the electromagnetic field polarization in the optical case by GaspariarP 
and its realization in an experiment was proposed by Deutsch and Golub,‘62) of which 
the result is yet missing. The spin-precession traversal time is independent of the width d 
of an opaque barrier leading again to a mean transmission speed that can exceed c even 
in the corresponding relativistic calculation. (63) The spin-rotation can be negative for the 
above barrier transmission. To avoid these problems Biittiker introduced I$(k,;O,d)J ER + 
which is identical to the Btittiker-Landauer traversal time derived by considering a 
time-modulated barrieP) (see below). A recent analysis shows that the Larmor clock reading 
during the tunnel process depends on time and on the width of the wave packetC5) and may 
run backwards. 

5.3.2. Quantum clock. A quantum mechanical clock with discrete time readings, i.e. states, 
was introduced by Salecker and WigneP’) and applied to tunneling through a barrier by 
Leavens and McKinnon.@” Let u,(e) (m = - l,O,l) be the eigenfunctions of a clock 
Hamiltonian !ZC and let 

u,(e) = -$ m $_ ;z"~~/3~,(@ (n = 0,1,2) 
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be the eigenfunctions of a clock-time operator PC with a time resolution r. The total system 
Hamiltonian is 

B = - g $ + V(z) + O(z - z,) O(z, - z) ilc 

such that the clock only runs inside the region z, I z I z2. The dwell time becomes 

ty(O,d;E) = + _--!T- 
0 J 6-E 

for an opaque rectangular barrier (red>> 1). One must take care that the perturbation of the 
particle by the clock is negligible. The calibrated Salecker-Wigner clock results give the widely 
accepted dwell time rr,(ko;z,,z2), a possibly superluminal tunnel transmission time rT(ko;z,,zz) 
and a negative tunnel reflection time rR(kO;z,,zZ). 

5.3.3. Probability current. A conventional probability current density approach was 
discussed by Olkhovsky and RecamP and by Muga et al.@’ Splitting up the probability 
current J(z,t) = J+(z,t) + L(z,t) allows one to define times 

a 

dt t J+(d,t) 

a z:(O,d) = 
s s ox 

dt t J, (0,t) 
0 

s z s 5 

dt J+ (0) dt .J+ (04 
0 0 

x 

dt t J_(O,t) 

a t:(O,d) = 
s 
s 

* 
dt J- (0,t) 

0 

s a 

dt t .I+ (0,t) 
0 

s a 

dt J+ (04 
0 

One could choose 

J, (z,t> = J(z,O @[4z,t)1 J+(zJ) = s =dp p j(,*z t) 
m 9, 

0 

J_(z,t) = J(z,t) O[ - J(z,t)] J- (z,t) = dp ~&-w) 

with either sorting for the sign of the total current or for the sign of the contributing momenta 
to the current. The problems are that J = J, + J_ is not unique and that a decomposition 
J, = J*.T + Jf,R is not possible. Also r+ can be negative. 

5.3.4. Projectors. It was suggested by Bfouard et al. (69) to use operators for identifying 
components of the wavefunction. Defining D(z,,zJ $(z,t) = O(z - z,) O(zZ - z) Jl(z,t) leads 
again to 

OL m 

~dz,,zz) = dt s s dz Jl*(z,O &,,zJ W,O. 
0 -* 
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If it were possible to define ?(z,,zJ$(z,t) z +r(z,f) and &z,,z,)$(z,t) = $,&,f) with 
?‘+ k = 1 one could write 

But ?and h do not commute with B. In general we have b = F(?,fi) + F(R,@ + G(p,‘,lic,b) 
giving 

with 

Jc 02 

z~,4z,,z2) = dr s s dz t,k*(z,t) G(f’,;ji,@ $(z,t). 
0 -a 

One observes that e.g. in the first order 

is identical to the Feynman path integral result. (53) Other expansions of a lead to transmission 
times which reproduce a lot of previous results using different approaches. 

The systematic projector approach always does a wave-like decomposition of the 
wavefunction $ = $r + eR and is fundamentally incompatible with the Bohm trajectory 
approach which does a particle-like decomposition 111/l’ = l$l$ + l$li. 

5.3.5. Modulated barrier and uncertainty. A sort of external probing for finding the tunnel 
time was suggested by Biittiker and Landauer. ~4) The original static barrier is augmented with 
small temporal oscillations in the barrier height, the amplitude of which are kept as small 
as desired. The incident particle sees an effective static barrier at low frequencies or is affected 
by a substantial part of the cycle(s) at high frequencies. The frequency at which the deviation 
from the adiabatic approximation occurs is an indication of the length of the time that a 
particle interacts with the barrier. It is not the eigenvalue of a Hamiltonian, indicative of a 
precisely measurable value. The characteristic traversal time for the (modulated) opaque 
rectangular barrier of length d is 

where fix is the magnitude of the imaginary momentum under the barrier. A desirable feature 
is the proportionality of this time to the barrier length. 

This result coincides with that of the approach by Hagman(7o’ who considers a particle 
tunneling through a rectangular barrier as borrowing an energy AE, to be able to cross the 
barrier with a real velocity, in time At. The minimum value of AEAr is given by the Heisenberg 
uncertainty relation. 
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6. CONSEQUENCES FOR QUANTUM ELECTRONICS 

Several microelectronic devices are based on the electronic tunneling process. The classical 
tunneling diode explained first by EsakP consists of a p-n junction in which both p and n 
sides are degenerate (i.e. heavily doped with impurities). Because of the high dopings the 
Fermi level is located within the allowed bands themselves and causes a depletion-layer width 
only of the order of 10 nm. This distance corresponds to the potential barrier width the 
electrons have to tunnel from the conduction band on the n side to the valence band on the 
p side of the junction.“‘) 

Currently available semiconductor fabrication technology allowed the introduction of a 
double-barrier structure for resonant tunneling. (“I The photonic tunneling results are in 
agreement with the predictions of quantum mechanics. Thus we conclude, that the intrinsic 
tunneling time for electrons will also be determined by the available quantum mechanical 
calculations. That means, the utmost dynamical specification of a device can be calculated 
and only extrinsic influences due to interactions of the electrons with lattice defects and 
impurities in the device have to be determined. 

7. VIOLATION OF CAUSALITY? 

The question whether a superluminal photonic barrier transition violates causality has 
never been raised in the experimental papers by Enders and Nimtz. (9, IO. 29.22.31.34) However, the 

superluminal results have provoked many theoretical studies (see Section 5) and discussions 
in several journals, even in newspapers and TV, e.g. (‘-“) Reading all these contributions we . 
came to the conclusion that most of the investigations and the arguments presented in the 
discussions are not related to the problem and have still not given an answer to the question 
whether the measured superluminal velocities do violate or not the causality or the theory 
of special relativity (TSR), see e.g. (38) In the following we shall present some of the new and 
strange experimental results, which we think have not been properly considered in the 
theoretical investigations so far. 

1.1. Back-in time communication? 

All signals generated and transmitted to a receiver are frequency band limited. For instance 
the frequency necessary to transmit music or language is of the order of 10 kHz. With the 
fiber optic systems signals are modulated up to the GHz-regime on a carrier with a frequency 
of 2 x lOi GHz. A frequency band limitation results in a non-causal behaviour as 
demonstrated in Fig. 12(b). In addition frequency band limited signals do not have a front 
as discussed, see e.g.(4o). 

According to the Fourier presentation such a signal has already wave components at 
negative times, a well-known phenomenon. (40) As has been shown in various amplitude 
modulated signal experiments the signal can move faster than c. Even if it has been attenuated 
by several orders of magnitude, of course not beyond the noise level, the signal (i.e. the 
information) has been almost the same. We may conclude from the microwave experiments 
that back-in time communication can be realized. A second signal sent some time after the 
first one, can arrive at an observer earlier, when sent through a tunnel. 

Recently Landauer(72’ gave the following comment: Are we quite sure that if we signal with 
photon polarization, and if we are willing to lose most of the photons in the evanescent region, 
that we have no chance of rare superluminal signal propagation? 

Aichmann et a1.(73) have transmitted Mozart’s 40th symphony through a barrier at a speed 
of 4.7~ in order to listen, whether this frequency band limited signal has experienced 
significant distortions, no distortion has been heard. 
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7.2. Pulse reshaping and photon detectors 

Pulse reshaping is negligible as long as the signal band width is much smaller than the 
carrier frequency (see Section 5). This has been the case in the microwave experiments. Pulse 
reshaping has been suggested in several theoretical studies in order to preserve the TSR. This 
mechanism has been named also to explain causality for the single photon experiment by 
Steinberg et al. (‘I) The center of mass of the photon was assumed to have moved 
superluminally and shifted to the front, the latter, however, moved only with the velocity of 
light. In the case of single photon detection this argument is naive and not correct, because 
a detector measures the photon quantum and is not sensitive to a photon front. The front 
of a wave packet is without physical meaning in quantum mechanics. 

7.3. Superluminal energy transport 

Superluminal energy transport has been measured in several experiments. This fact has 
become most obvious in the single photon experiment, where the detector measured the 
presence of the photons energy. 

The relation for the energy velocity G = P/p with p the energy flux and p the energy density 
has a special meaning in the case that reflection occurs. In fact reflection takes place in the 
case of the propagation of evanescent modes, and it is the cause for the exponential decay 
of the evanescent mode. For example we investigate the one-dimensional case with P,,,. and 
Prv,, the incident and the reflected energy flux, respectively, and with G the energy velocity 
in the medium without reflection and dissipation. At some point of the transmission line 
reflection of flux Prp,, occurs. The value is described by the reflection coefficient r, i.e. --- 
P ,nr”.V = P,,, + P,,,, = (1 - r*)x while p = pin< + prp,, = (1 + r*)pinr holds. The relation yields an 
effective energy velocity: 

- - l-r* 
uwf = 0r.M 

.- 
1 + r* 

Here cfl does not describe the forward propagation of the energy or of the photons in an 
ensemble. In this case the energy transport equals v,,+,, which in turn is the group velocity. 
This velocity was measured in the tunneling experiments, where the transmitted signal P,,O,, 
and its velocity z was detected. In the above presented experiment the velocity of 4.34.~ 
was measured, this in fact is different from the energy transport in a vacuum or any medium 
M, where v‘,~ I c holds. 

It should be reminded that the electric field E similar to I+$ cannot be measured, only E*, 
i.e. the energy, since every detector measures the energy of the photons. 

As mentioned above the claimed classical energy velocity as defined in Section 4.1 makes 
only sense if reflections do not occur. The exponential decay of an evanescent mode or a 
tunneling probability is due to elastic reflection only. 

7.4. Advanced potentials and evanescent modes 

All the photonic tunneling calculations are based on the causal retarded potentials. The 
advanced solutions of the Maxwell equations are not considered because they are 
‘unphysical’. However, they are mathematically equivalent solutions. It should be 
investigated, whether these solutions describe the propagation of evanescent modes. There 
are many studies known in which superluminal solutions of the Maxwell equations have been 
analyzed, see e.g. Recami(74) and quite recently Rodrigues and Lu.(‘” 
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8. SUMMING UP 

Analogous tunneling experiments with classical evanescent electromagnetic modes have 
shown, that in the case of opaque barriers, the signal and the energy velocity can become 
superluminal. The result are essentially in agreement with the quantum mechanical phase time 
approach. The mathematical analogy between the one-dimensional tunneling and the 
propagation of evanescent modes allows the conclusion, that the quantum mechanical phase 
time is relevant for electronic devices. That means, its intrinsic tunneling time can be 
calculated. 

The question, whether causality may be violated by superluminal signal and energy 
velocities has not been answered until now. So far the theoretical investigations did not 
consider the frequency band limitation of the signals and that the front velocity represents 
a meaningless quantity for solving this problem. As we have discussed in Section 4.2, signals 
are always frequency band limited and this property allows a superluminal signal velocity in 
the case of the propagation of evanescent modes. 
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