C3M0065090D Silicon Carbide Power MOSFET TM C3M MOSFET Technology N-Channel Enhancement Mode Features • C3M SiC MOSFET technology • High blocking voltage with low On-resistance • High speed switching with low capacitances • Fast intrinsic diode with low reverse recovery (Qrr) • Halogen free, RoHS compliant Benefits • Higher system efficiency • Reduced cooling requirements • Increased power density • Increased system switching frequency Applications • Renewable energy • EV battery chargers • High voltage DC/DC converters • Switch Mode Power Supplies Package VDS ID @ 25˚C RDS(on) 900 V 36 A 65 mΩ Part Number C3M0065090D Package TO-247-3 Marking C3M0065090 Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Parameter Value VDSmax VGSmax VGSop Drain - Source Voltage Gate - Source Voltage (dynamic) Gate - Source Voltage (static) ID Continuous Drain Current 900 -8/+19 -4/+15 36 23 ID(pulse) Pulsed Drain Current 90 EAS Avalanche energy, Single pulse PD Power Dissipation TJ , Tstg Operating Junction and Storage Temperature TL Solder Temperature Md Mounting Torque Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V Note (2): MOSFET can also safely operate at 0/+15 V 110 125 -55 to +150 260 1 8.8 Unit Test Conditions V VGS = 0 V, ID = 100 μA V AC (f >1 Hz) V Static VGS = 15 V, TC = 25˚C A VGS = 15 V, TC = 100˚C A Pulse width tP limited by Tjmax mJ ID = 22A, VDD = 50V W TC=25˚C, TJ = 150 ˚C ˚C ˚C 1.6mm (0.063”) from case for 10s Nm lbf-in M3 or 6-32 screw Note Note: 1 Note: 2 Fig. 19 Fig. 22 Fig. 20 1 C3M0065090D Rev. D, 06-2019 Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate-Source Leakage Current RDS(on) Drain-Source On-State Resistance gfs Transconductance Min. 900 1.8 Typ. 2.1 1.6 1 10 65 90 16 13 Ciss Input Capacitance 760 Coss Output Capacitance 66 Crss Reverse Transfer Capacitance 5.0 Eoss Coss Stored Energy 16 EON Turn-On Switching Energy (Body Diode FWD) 343 EOFF Turn Off Switching Energy (Body Diode FWD) 46 td(on) Turn-On Delay Time 45 tr Rise Time 13 td(off) Turn-Off Delay Time 20 tf Fall Time 8 RG(int) Internal Gate Resistance 3.5 Qgs Gate to Source Charge 9 Qgd Gate to Drain Charge 13 Qg Total Gate Charge 35 Max. 3.5 100 250 78 Unit V V V μA nA mΩ S Test Conditions VGS = 0 V, ID = 100 μA VDS = VGS, ID = 5 mA VDS = VGS, ID = 5 mA, TJ = 150ºC VDS = 900 V, VGS = 0 V VGS = 15 V, VDS = 0 V VGS = 15 V, ID = 20 A VGS = 15 V, ID = 20A, TJ = 150ºC VDS= 20 V, IDS= 20 A VDS= 20 V, IDS= 20 A, TJ = 150ºC pF VGS = 0 V, VDS = 600 V f = 1 MHz VAC = 25 mV μJ μJ VDS = 400 V, VGS = -4 V/15 V, ID = 20 A, RG(ext) = 2.5 Ω, L= 65.7 μH, TJ = 150ºC VDD = 400 V, VGS = -4 V/15 V ns ID = 20 A, RG(ext) = 2.5 Ω, Timing relative to VDS Inductive load Ω f = 1 MHz, VAC = 25 mV VDS = 400 V, VGS = -4 V/15 V nC ID = 20 A Per IEC60747-8-4 pg 21 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter VSD Diode Forward Voltage IS IS, pulse trr Qrr Irrm Continuous Diode Forward Current Diode pulse Current Reverse Recovery time Reverse Recovery Charge Peak Reverse Recovery Current Typ. 4.4 4.0 26 145 8 Max. 23.5 90 Unit V V A A ns nC A Test Conditions VGS = -4 V, ISD = 10 A VGS = -4 V, ISD = 10 A, TJ = 150 °C VGS = -4 V VGS = -4 V, pulse width tP limited by Tjmax VGS = -4 V, ISD = 20 A, VR = 400 V dif/dt = 900 A/µs, TJ = 150 °C Note Fig. 11 Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 Fig. 16 Fig. 26, Note 3 Fig. 27 Fig. 12 Note Fig. 8, 9, 10 Note 1 Note 1 Note 1 Thermal Characteristics Symbol Parameter Max. Unit Test Conditions RθJC Thermal Resistance from Junction to Case RθJA Thermal Resistance From Junction to Ambient 1.0 °C/W 40 Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode Note Fig. 21 2 C3M0065090D Rev. D, 06-2019 Typical Performance Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 80 Conditions: 70 TJ = -55 °C tp = < 200 µs 60 50 40 30 20 10 0 0.0 2.0 VGS = 15V VGS = 13V 4.0 6.0 8.0 Drain-Source Voltage, VDS (V) VGS = 11V VGS = 9V VGS = 7V 10.0 12.0 Figure 1. Output Characteristics TJ = -55 ºC 80 Conditions: 70 TJ = 150 °C tp = < 200 µs 60 50 VGS = 11V VGS = 13V VGS = 15V VGS = 9V 40 30 VGS = 7V 20 10 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Drain-Source Voltage, VDS (V) Figure 3. Output Characteristics TJ = 150 ºC 120 Conditions: VGS = 15 V 100 tp < 200 µs 80 60 TJ = 150 °C TJ = -55 °C TJ = 25 °C 40 20 0 0 10 20 30 40 50 60 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures On Resistance, RDS On (mOhms) 3 C3M0065090D Rev. D, 06-2019 On Resistance, RDS On (mOhms) On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 80 Conditions: 70 TJ = 25 °C tp = < 200 µs 60 50 40 30 20 10 0 0.0 2.0 VGS = 15V VGS = 13V VGS = 11V VGS = 9V VGS = 7V 4.0 6.0 8.0 Drain-Source Voltage, VDS (V) 10.0 12.0 Figure 2. Output Characteristics TJ = 25 ºC 2.0 Conditions: 1.8 IDS = 20 A VGS = 15 V 1.6 tp < 200 µs 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -50 -25 0 25 50 75 100 125 150 Junction Temperature, TJ (°C) Figure 4. Normalized On-Resistance vs. Temperature 140 Conditions: IDS = 20 A 120 tp < 200 µs 100 VGS = 11 V 80 VGS = 13 V 60 VGS = 15 V 40 20 0 -50 -25 0 25 50 75 100 125 150 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage Drain-Source Current, IDS (A) Typical Performance 50 Conditions: VDS = 20 V tp < 200 µs 40 30 20 TJ = 150 °C TJ = 25 °C TJ = -55 °C 10 Drain-Source Current, IDS (A) 0 0 -9 -8 2 4 6 8 Gate-Source Voltage, VGS (V) Figure 7. Transfer Characteristic for Various Junction Temperatures -7 -6 -5 -4 -3 -2 -1 VGS = -4 V VGS = 0 V 10 0 0 -10 -20 VGS = -2 V -30 -40 -50 Drain-Source Voltage VDS (V) -60 Conditions: -70 TJ = 25°C tp < 200 µs -80 Figure 9. Body Diode Characteristic at 25 ºC 3.0 Conditons VGS = VDS 2.5 IDS = 5 mA 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 150 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature Threshold Voltage, Vth (V) Gate-Source Voltage, VGS (V) Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) -9 -8 -7 -6 -5 -4 -3 -2 -1 0 0 -10 VGS = -4 V VGS = 0 V -20 -30 VGS = -2 V -40 -50 Drain-Source Voltage VDS (V) -60 Conditions: TJ = -55°C -70 tp < 200 µs -80 Figure 8. Body Diode Characteristic at -55 ºC -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 0 -10 VGS = -4 V VGS = 0 V -20 -30 VGS = -2 V -40 -50 Drain-Source Voltage VDS (V) -60 Conditions: -70 TJ = 150°C tp < 200 µs -80 Figure 10. Body Diode Characteristic at 150 ºC 16 Conditions: IDS = 20 A IGS = 50 mA 12 VDS = 400 V TJ = 25 °C 8 4 0 -4 0 5 10 15 20 25 30 35 40 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 4 C3M0065090D Rev. D, 06-2019 Typical Performance -8 -7 -6 -5 -4 -3 -2 VGS = 0 V VGS = 5 V Drain-Source Current, IDS (A) Drain-Source Voltage VDS (V) -1 0 0 -10 -20 -30 VGS = 10 V -40 VGS = 15 V -50 -60 Conditions: TJ = -55 °C -70 tp < 200 µs -80 Figure 13. 3rd Quadrant Characteristic at -55 ºC Drain-Source Current, IDS (A) -8 -7 -6 -5 -4 -3 -2 -1 0 0 VGS = 0 V -10 -20 VGS = 5 V -30 VGS = 10 V -40 VGS = 15 V -50 -60 Drain-Source Voltage VDS (V) Conditions: -70 TJ = 150 °C tp < 200 µs -80 Figure 15. 3rd Quadrant Characteristic at 150 ºC 10000 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss Coss 100 Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) -8 -7 -6 -5 -4 -3 -2 -1 0 0 VGS = 0 V VGS = 5 V -10 -20 -30 VGS = 10 V -40 VGS = 15 V -50 Drain-Source Voltage VDS (V) -60 Conditions: TJ = 25 °C -70 tp < 200 µs -80 Figure 14. 3rd Quadrant Characteristic at 25 ºC 35 30 25 20 15 10 5 0 0 100 200 300 400 500 600 700 800 900 1000 Drain to Source Voltage, VDS (V) Figure 16. Output Capacitor Stored Energy 10000 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 100 Coss Capacitance (pF) Capacitance (pF) 10 Crss 1 0 50 100 150 200 Drain-Source Voltage, VDS (V) Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 10 Crss 1 0 100 200 300 400 500 600 700 800 900 Drain-Source Voltage, VDS (V) Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V) 5 C3M0065090D Rev. D, 06-2019 Typical Performance Drain-Source Continous Current, IDS (DC) (A) 40 Conditions: 35 TJ ≤ 150 °C 30 25 20 15 10 5 0 -55 -30 -5 20 45 70 95 Case Temperature, TC (°C) 120 145 Figure 19. Continuous Drain Current Derating vs. Case Temperature Junction To Case Impedance, ZthJC (oC/W) 1 0.5 0.3 0.1 100E-3 0.05 0.02 0.01 SinglePulse 10E-3 1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1 10 Time, tp (s) Figure 21. Transient Thermal Impedance (Junction - Case) 1800 1600 1400 1200 1000 Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -4V/+15V FWD = C3M0065090D L = 65.7 μH ETotal EOn 800 600 400 EOff 200 0 0 10 20 30 40 50 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) Switching Loss (µJ) Switching Loss (µJ) Drain-Source Current, IDS (A) Maximum Dissipated Power, Ptot (W) 140 Conditions: TJ ≤ 150 °C 120 100 80 60 40 20 0 -55 -30 -5 20 45 70 95 Case Temperature, TC (°C) 120 145 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 100.00 10.00 Limited by RDS On 1.00 10 µs 100 µs 1 ms 100 ms 0.10 Conditions: TC = 25 °C D = 0, Parameter: tp 0.01 0.1 1 10 100 Drain-Source Voltage, VDS (V) 1000 Figure 22. Safe Operating Area 1200 1000 800 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15V FWD = C3M0065090D L = 65.7 μH 600 ETotal EOn 400 EOff 200 0 0 5 10 15 20 25 30 35 40 45 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 6 C3M0065090D Rev. D, 06-2019 Typical Performance 600 Conditions: TJ = 25 °C 500 VDD = 400 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0065090D 400 L = 65.7 μH 300 ETotal EOn Switching Loss (µJ) 200 EOff 100 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) Switching Times (ns) Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 100 Conditions: TJ = 25 °C VDD = 400 V 80 IDS = 20 A VGS = -4V/+15 V FWD = C3M0065090D L = 65.7 μH 60 td(on) 40 20 0 0 td(off) tr tf 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) 35 30 25 20 15 10 5 0 0 Figure 27. Switching Times vs. RG(ext) Conditons: VDD = 50 V 20 40 60 80 100 Time in Avalanche TAV (us) Figure 29. Single Avalanche SOA curve Avalanche Current (A) Switching Loss (µJ) 600 Conditions: IDS = 20 A 500 VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0065090D 400 L = 65.7 μH ETotal EOn 300 200 100 0 0 EOff 25 50 75 100 125 150 175 Junction Temperature, TJ (°C) Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 28. Switching Times Definition 7 C3M0065090D Rev. D, 06-2019 Test Circuit Schematic VDC RG VGS= - 4V Q1 C3M0065090D Q2 RG C3M0065090D D.U.T Figure 30. Clamped Inductive Switching Waveform Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 C3M0065090D Rev. D, 06-2019 Package Dimensions Package TO-247-3 T U Pinout Information: • Pin 1 = Gate • Pin 2, 4 = Drain V W • Pin 3 = Source Recommended Solder Pad Layout POS A A1 A2 b b1 b2 b3 b4 c D D1 D2 E E1 E2 E3 E4 e N L L1 ØP Q S T U V W Inches Min Max .190 .205 .090 .100 .075 .085 .042 .052 .075 .095 .075 .085 .113 .133 .113 .123 .022 .027 .819 .831 .640 .695 .037 .049 .620 .635 .516 .557 .145 .201 .039 .075 .487 .529 .214 BSC 3 .780 .800 .161 .173 .138 .144 .216 .236 .238 .248 9˚ 11˚ 9˚ 11˚ 2˚ 8˚ 2˚ 8˚ Millimeters Min Max 4.83 5.21 2.29 2.54 1.91 2.16 1.07 1.33 1.91 2.41 1.91 2.16 2.87 3.38 2.87 3.13 0.55 0.68 20.80 21.10 16.25 17.65 0.95 1.25 15.75 16.13 13.10 14.15 3.68 5.10 1.00 1.90 12.38 13.43 5.44 BSC 3 19.81 20.32 4.10 4.40 3.51 3.65 5.49 6.00 6.04 6.30 9˚ 11˚ 9˚ 11˚ 2˚ 8˚ 2˚ 8˚ TO-247-3 9 C3M0065090D Rev. D, 06-2019 Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • SPICE Models: http://wolfspeed.com/power/tools-and-support • SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support • SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0065090D Rev. D, 06-2019 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.wolfspeed.com/power Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Cree, Inc.: C3M0065090D