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Abstract

This article derives and presents the Feynman rules for (effective) quantum gen-
eral relativity coupled to the standard model for any vertex valence and with
general gauge parameter (. The results are worked out for the metric decompo-
sition g,,,, = 1),,,, + »¢hy,,, a linearized de Donder gauge fixing and four dimen-
sions of spacetime. To this end, we calculate the Feynman rules for gravitons,
graviton-ghosts and for the couplings of gravitons to scalars, spinors, gauge
bosons and gauge ghosts.

Keywords: quantum gravity, quantum general relativity, standard model,
Feynman rules, perturbative quantization

1. Introduction

The attempt to perturbatively quantize general relativity (GR) is rather old: in fact, the approach
to define the graviton field £, with gravitational coupling constant ¢ as the fluctuation around
a fixed background metric b, i.e.

1
= e (guw = buw) <= 8uv = by + by, ey
—oftentimes, and in particular in this article, chosen as the Minkowski metric
by :=m,,—goes back to Fierz, Pauli and Rosenfeld in the 1930s [1]. Then, Feynman
et al [2] and DeWitt [3—6] started to calculate the corresponding Feynman rules in the 1960s.

However, Boulware et al [7], ’t Hooft [8] and Veltman [9] discovered serious problems in the
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perturbative expansion due to the non-renormalizability of quantum general relativity (QGR)
in the 1970s. We refer to [1] for a historical treatment.

Despite its age, it is still very hard to find references properly deriving and displaying
Feynman rules for QGR, given via the Lagrange density

Locr = Lar + Lcr + Lahost (2a)
with
1
£GR = — ﬁR dVg, (2b)
Lor= — DO DD ay (2¢)
GF = — 4%2C77 n P n ¢
and

- 1
Lahost = — inﬂac*‘ (9,8,C,) AV, — 51T (9, (7 C) =20, (T7,,C,)) AV, (2d)

where R .= g"? R, is the Ricci scalar and DL” :=n"’T 5, is the linearized de Donder gauge
fixing functional. Additionally, C € T (M, II (TM)) and C € I" (ML, II (T*M)) are the graviton-
ghost and graviton-antighost, respectively. Finally, dV, :=/—Det(g)ds A dx A dy A dz and
dV, :=dt A dx A dy A dz are the Riemannian and Minkowskian volume forms, respectively.
We refer to section 2 and [10] for a detailed introduction. The existing literature known to the
author, [9, 11-18], limits the vertex Feynman rules to valence five, directly sets the de Donder
gauge fixing parameter to ¢ := 1 and omits the ghost vertex Feynman rules completely. This
article aims to fix this gap in the literature by deriving the Feynman rules for gravitons, their
ghosts and for their interactions with matter from the standard model: the analysis is carried
out for the metric decomposition g, = 1, + »h,,,, arbitrary vertex valence, a linearized de
Donder gauge fixing with general gauge parameter ¢ and in four dimensions of spacetime.
Moreover, the gravitational interactions with matter from the standard model are then classi-
fied into 10 different types and their vertex Feynman rules are also derived and presented for
any valence.

The results are theorem 4.10 stating the graviton vertex Feynman rules, theorem 4.12 stating
the corresponding graviton propagator Feynman rule, theorem 4.13 stating the graviton-ghost
vertex Feynman rules and theorem 4.14 stating the corresponding graviton-ghost propagator
Feynman rule. Additionally, the graviton-matter vertex Feynman rules are stated in theorem
4.16 on the level of 10 generic graviton-matter interactions, as classified by lemma 4.9. The
complete graviton-matter Feynman rules can then be obtained by adding the corresponding
matter contributions, as listed e.g. in [19]. Finally, we display the three- and four-valent graviton
and graviton-ghost vertex Feynman rules explicitly in example 4.15.

GR and quantum theory are both fundamental theories in modern physics. While some of
their predictions agree with outstanding precision with the corresponding experimental data,
there are still regimes where both theories break down conceptually. Notably, this is the case
with models of the big bang or in the inside of black holes. In these situations, both theo-
ries are needed simultaneously to capture the entire physical reality: GR is needed in order
to describe the huge masses and energies that are involved and quantum theory is needed in
order to describe the interactions of the respective particles in these very small spatial dimen-
sions. Unfortunately, a combined theory of quantum gravitation has not been found yet: while,
given the success of the standard model, a perturbative quantization seems to be the canoni-
cal choice, it comes with several problems, most notably its non-renormalizability. This fact
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has lead to various, more radical approaches to quantum gravity, such as supergravity, string
theory or loop quantum gravity. While any of these theories fixes conceptual problems of the
perturbative approach, they create additional problems elsewhere due to further assumptions.
Therefore, in this article, we go back to the foundation of quantum GR via its (effective) per-
turbative approach using Feynman rules. Feynman rules are calculated from the Lagrangian by
extracting the potentials for all classically allowed interactions. Then, scattering amplitudes are
calculated by applying the fundamental principle of quantum theory, namely that the sum over
all unobserved intermediate states needs to be considered. This leads to the Feynman diagram
expansion, where each non-tree Feynman diagram corresponds to a Feynman integral over the
unobserved momenta of the virtual particles. We refer to [20—22] for a more detailed treatment
and to [23] for the corresponding treatment of supersymmetric theories.

This research is intended as the starting point for several related approaches to the per-
turbative renormalization of (effective) QGR: it is generally possible to render any Feynman
integral finite by applying an appropriate subtraction for each divergent (sub-)integral. This
treatment of (sub-)divergences has been studied extensively in the Hopf algebra approach of
Connes and Kreimer [24], which, in turn, allows the definition of renormalized Feynman rules
via an algebraic Birkhoff-decomposition [25]. Then, this reasoning was soon applied to gauge
theories [26], which lead to the identification of Ward—Takahashi and Slavnov—Taylor iden-
tities with Hopf ideals in the corresponding Connes—Kreimer renormalization Hopf algebra
[27-30]. Following this route, it was then suggested by Kreimer to apply this duality to GR
[31], which was motivated via a scalar toy model [32] and then studied in detail by the author
[10, 30]. In this approach, the non-renormalizability of GR manifests itself by the necessity
to introduce infinitely many counterterms. The aim is now to relate these counterterms by
generalized Slavnov—Taylor identities, which correspond to the diffeomorphism invariance of
the theory. A first step in this direction is the construction of tree-level cancellation identities,
which requires the longitudinal and transversal decomposition of the graviton propagator via
the general gauge parameter ( as variable. This approach was supported by recent calculations
for the metric density decomposition of Goldberg and Capper et al ([33-36]) up to valence
six [37]. With the present work, we provide a foundation for a purely combinatorial argu-
ment, which will be valid for all vertex valences. This will be studied in future work via the
diffeomorphism-gauge BRST double complex [38] and the longitudinal and transversal struc-
ture of the gravitational Feynman rules [39]. Additionally, we remark that this reasoning is
implicit in the construction of Kreimer’s corolla polynomial [40—42]. This graph polynomial,
which is based on half-edges, relates the amplitudes of quantum Yang—Mills theories to the
amplitudes of scalar ¢3-theory, by means of the parametric representation of Feynman integrals
[43]. More precisely, in this approach the cancellation identities are encoded into amplitudes
by means of Feynman graph cohomology [44]. In particular, this approach has been success-
fully generalized to spontaneously broken gauge theories and thus to the complete bosonic part
of the standard model [45]. The possibility to apply this construction also to (effective) QGR
will be checked in future work. Finally, we believe that the results of this article are also of
intellectual interest, as Feynman rules are an essential ingredient to perturbative quantum field
theories.

We remark the development of more concise formulations, aimed in particular for practical
calculations: there are the KLT relations [46—49], which relate on-shell gravitational ampli-
tudes with the amplitudes of the ‘double-copy’ of a gauge theory, and are applied e.g. in [50].
Furthermore, it is also possible to simplify the gravitational Feynman rules by a reformulation
with different (possibly auxiliary) fields [51, 52], even on a de Sitter background [53]. More-
over, we remark the use of computer algebra programs, such as ‘XACT’ [54] and ‘QGRAF’
[55]. For the projects mentioned in the previous paragraph, however, the original Feynman rules
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are needed to arbitrary vertex valence and with general gauge parameter (: this is because the
KLT relations are only valid on-shell and thus rely on Cutkosky’s theorem [56], cf [57, 58].
Also, we want to study the direct relationship between combinatorial Green’s functions and
their counterterms, which becomes more complicated in the aforementioned reformulations
with auxiliary fields. And finally, we are interested in a combinatorial proof that is valid to all
vertex valences and thus excludes the use of computer algebra programs.

2. Conventions and definitions

We start this article with our conventions, in particular the used sign choices. Additionally,
we recall important definitions for (effective) QGR and the standard model. This includes the
Lagrange densities with the metric decomposition, the de Donder gauge fixing and the cor-
responding ghosts. Furthermore, we provide a proper definition of the graviton field and in
particular of the background Minkowski spacetime. This is obtained with the rather restrictive
assumption of definition 2.7, which we call ‘simple spacetime’. This setup is motivated with
classical results from Ellis—Hawking in proposition 2.4 and Geroch in proposition 2.6 and
the boundedness assumption from assumption 2.12. Finally, we comment on the diffeomor-
phism invariance and display the action of the corresponding diffeomorphism BRST operators.
We refer to [10] for a more fundamental introduction to (effective) QGR coupled to quan-
tum electrodynamics. Additionally, we refer to [38] for a study of the diffeomorphism-gauge
BRST double complex, to [39] for a study of transversality with respect to infinitesimal dif-
feomorphisms and to [59] for a generalization of Wigner’s elementary particle classification
to linearized gravity.

Convention 2.1 (Sign choices). We use the sign-convention (— + +), as classified by
[60],1.e.:

1 0 0 O
(a) Minkowski metric: 17,,, = 8 _01 _01 8

0O 0 0 -1

(b) Riemann tensor: R’5,, = 0,1 — 0,1,

no

%

+10,I5, =T/,

vo po

(c) Einstein field equations: G, = T,

Additionally we use the plus-signed Clifford relation, i.e. {7y, s} = 20umldsm, cf [10,
remark 2.15].

Definition 2.2 (Spacetime). Let (M,~) be a Lorentzian manifold. We call (M,~) a
spacetime, if it is smooth, connected, four-dimensional and time-orientable’.

Definition 2.3 (Asymptotically simple (and empty) spacetime). Let (M, ) be an
oriented and causal spacetime. We call (M, ) an asymptotically simple spacetime, if it admits
a conformal extension (1\7[, 7) in the sense of Penrose [61-64]: that is, if there exists an
embedding ¢ : M — M and a smooth function ¢ € C® (1\7[ ), such that:

(a) M is a manifold with interior ¢ (M) and boundary .7, i.e. M= (MU .
(®) |4 > 06|, = 0and ds| , # 0; additionally t.y = ¢*5
(c) Each null geodesic of (1\7[ ,7) has two distinct endpoints on &

I'We fix the spacetime-dimension, as the gravitational Feynman rules depend directly on it.
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We call (M, ) an asymptotically simple and empty spacetime, if additionally?:
@ (Rw) | -16) = 0, where O C M is an open neighborhood of .# C M

Proposition 2.4. Let (M, ) be an asymptotically simple and empty spacetime. Then (M, ~y)
is globally hyperbolic and thus parallelizable.

Proof. The first part of the statement, i.e. that (M, ~y) is globally hyperbolic, is a classical
result due to Ellis and Hawking [65, proposition 6.9.2]. We conclude the second part, i.e. that
(M, ) is parallelizable, by noting that we have additionally assumed spacetimes to be four-
dimensional: thus, being globally hyperbolic, there is a well-defined three-dimensional space-
submanifold, which therefore is parallelizable as it is orientable by assumption. (]

Corollary 2.5. Any asymptotically simple and empty spacetime (M, ~) is spin.

Proof. This follows immediately from proposition 2.4, as parallelizable manifolds are
trivially spin. |

Proposition 2.6. A spacetime (M,~) is spin if and only if it is globally hyperbolic.
Equivalently, (M, ~) is spin if and only if it is parallelizable.

Proof. These are two classical results by Geroch [66, 67]. O

Definition 2.7 (Simple spacetime). Let (M,~) be a spacetime. We call the triple
(M,~,7) a simple spacetime, if M is diffeomorphic to the Minkowski spacetime M and
7:M — M is a fixed such diffeomorphism (not necessarily an isometry), called trivializing
map. Furthermore, we use 7 to push-foreward the metric vy to the Minkowski spacetime M via
g:=7.y € I' (M, Sym’T*M) to obtain an equivalence between the physical spacetime (M, )
and its background Minkowski spacetime (M, g).

Assumption 2.8. From now on, we assume spacetimes to be simple.

Remark 2.9. The rather restrictive setup of assumption 2.8 is motivated by propositions 2.4
and 2.6: it is physically reasonable to consider asymptotically simple and empty spacetimes, as
well as to demand a spin structure for fermionic particles. Thus, the spacetime (M, ) has the
same asymptotic structure as the Minkowski spacetime (M, ) and is furthermore paralleliz-
able. This implies that it is diffeomorphic to the Minkowski spacetime of the same dimension,
modulo possible singularities. However, as we need the eigenvalues of the metric g to be
bounded by assumption 2.12 for the following constructions, we exclude singularities in our
setup. This assumption allows us to view particle fields, in particular the graviton field, as
sections over Minkowski spacetime I' (M, E), where 7g : E — M is a suitable vector bundle
for the particle fields under consideration, cf definition 2.13. In turn, this enables us to use
Wigner’s classification of elementary particles via irreducible representations of the Poincaré
group [68], which will be studied in [59]. Thus we can proceed as usual by constructing the
Fock space to describe the quantum states of our corresponding quantum field theory. Finally,
this setup provides a well-defined Fourier transformation for particle sections, cf definition
2.23.

2 This condition can be modified to allow electromagnetic radiation near .%. We remark that asymptotically simple
and empty spacetimes are also called asymptotically flat.
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Definition 2.10 (Metric decomposition and graviton field). Let (M,~,7) be a sim-
ple spacetime. Then we use the following metric decomposition on the background Minkowski
spacetime (M, n)

1

= P (8w — M) == &uv = M + 22hyu,s 3)

where s :=+/k is the graviton coupling constant (with :=87G the Einstein gravitational
constant). Thus, the graviton field 4, is given as a rescaled, symmetric (0, 2)-tensor field on
the background Minkowski spacetime, i.e. as the section sch € T’ (M, Sym? T*M).

Remark 2.11. Given the situation of definition 2.10, the graviton field /# depends directly
on the choice of the trivializing map 7. It can be shown, however, that this dependence can be
absorbed, if the theory is diffeomorphism-invariant [59]. Thus, this construction is in particular
well-defined for linearized general elativity.

Assumption 2.12. Given the metric decomposition from definition 2.10, we assume the
following boundedness condition for the gravitational constant s and the graviton field £,,,:

[ |||

max

= || max |\ <1, 4)
AEEW (h)

where EW () denotes the set of eigenvalues of 4. This will be relevant for preceding assertions
to assure the convergence of series involving the graviton coupling constant ¢ and the graviton
field A, .

Definition 2.13 (Correspondence to Minkowski spacetime). Let (M, v, 7) be a sim-
ple spacetime and 7g : E — M a vector bundle for particle fields. Then we extend the vec-
tor bundle for particle fields via (7 o 7g) : E — M to a vector bundle over the background
Minkowski spacetime M.

Convention 2.14 (Lagrange density). We choose the following signs and prefactors
for the Lagrange density, which we consider as a functional for sections over the background
Minkowski spacetime M and where dV, :=+/—Det(g)ds A dx A dy A dzand dV,,:=dr A dx A
dy A dz denote the Riemannian and Minkowskian volume forms, respectively:

(a) Einstein—Hilbert Lagrange density:

1
['GR = - ﬁR dVg, (5)

with R:=g"" RV,
(b) Gauge fixing Lagrange density:

1
Lepi= — mn’”’DS)Df))dV", (6)

with DE}) =0T oy = 2 (@h/m — %Bl,hp(,)
(c) Ghost Lagrange density:

R -
LGhost = — 277“’0'/ (0,0,C,) AV, — 577/"’Cf" (0u (T Cy) — 20, (T7,15C,)) AV,

(N
with C € I' (M, II(TM)) and C € I (M, II (T*M))
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The Lagrange density of (effective) QGR is then the sum of the three, i.e.

Lqocr = Lar + Lcr + Lahost

1 1
=-7 (x/—Det (&R + 277””1);1)1);“) av,

1 /1 _

- (an’”c“ (8,0:C) + 17T (9, (T” 1 C.) — 20, (ra,,(,cy))> v, ®
cf [10, section 2.2]. We remark that the ghost Lagrange density is calculated via Fad-
deev—Popov’s method [69], cf [10, subsection 2.2.3], which can be embedded into the
more elaborate settings of BRST cohomology and BV formalism.

Remark 2.15. The reason for the sign choices from convention 2.14 are as follows: The
minus sign for the Einstein—Hilbert Lagrange density is due to the sign choice for the
Minkowski metric, cf convention 2.1. Then, the minus sign for the gauge fixing Lagrange
density is such that { = 1 corresponds to the de Donder gauge fixing. Finally, the sign for the
ghost Lagrange density is, as usual, an arbitrary choice, and is chosen such that all Lagrange
densities have the same sign.

Remark 2.16. Given the situation of assumption 2.8, the gravitational path integral then
corresponds to an integral over the space of symmetric (0, 2)-tensor fields over the background
Minkowski spacetime M. As the construction of such integral measures over function spaces is
rather troublesome, we simply consider the 7 < 0 limit, where the Feynman graph expansion
can be interpreted as a ‘perturbative definition’ of the path integral. We refer to [15] for a more
physical treatment.

Assumption 2.17. We assume from now on that diffeomorphisms are homotopic to the
identity, i.e. ¢ € Diffy (M).

Remark 2.18. Assumption 2.17 is motivated by the fact that diffeomorphisms homotopic
to the identity are generated via the flows of compactly supported vector fields, X € X. (M),
and differ from the identity only on compactly supported domains. Thus, diffeomorphisms
homotopic to the identity preserve the asymptotic structure of spacetimes. We remark that,
different from finite-dimensional Lie groups, the Lie exponential map

exp: X.(M)— Diffy (M) 9)
is no longer locally surjective, which leads to the notion of an evolution map
Evol: C* ([0, 1], X, (M)) — C* ([0, 1], Diffy (M)) (10)

that maps smooth curves in the Lie algebra to smooth curves in the corresponding Lie group.
We refer to [70] for further details.

Definition 2.19 (Transformation under (infinitesimal) diffeomorphisms). Given
the situation of definition 2.10 and assumption 2.17, we define the action of diffeomorphisms
¢ € Diffy (M) on the graviton field via

(T o), () =(T0¢).8, Y

such that the background Minkowski metric can be conveniently defined to be invariant, i.e.

(70 @).n=0, (12)
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and on the other particle fields s € I' (M, E) as usual, i.e. via

(T 0 P).s. 13)

In particular, the action of infinitesimal diffeomorphisms is given via the Lie derivative with
respect the generating vector field X € X, (M), i.e.

Oxhy, = % (V¥X, + V¥X,). (14)

OxMyuw =0 (15)
and

oxs = Lys, (16)

where V© denotes the covariant derivative with respect to the connection I' induced via g on
M, i.e. via

1 g
F/u/ﬂ = Egp (aygm/ + aug/m - aag/w) . (17)

Remark 2.20. Using the setup from assumptions 2.8, 2.12 and 2.17 and definitions 2.10,
2.13 and 2.19, we can view linearized general relativity coupled to matter from the standard
model as a ‘generalized gauge theory’ on the background Minkowski spacetime: the ‘gauge
group’ is then given via the push-foreward of diffeomorphisms homotopic to the identity by
the trivializing map, i.e. G := 7. Diffy (M) = Diffy (M)). Furthermore, their infinitesimal actions
are given via Lie derivatives with respect to compactly supported vector fields X, (M). In
particular, the right setting to study the gauge theoretic properties of such a theory is given
via the Lie groupoid (G x B) =% BB over the background Minkowski spacetime-matter bundle
B:=M x E. Additionally, the action of infinitesimal diffeomorphisms is embedded into this
picture via the corresponding Lie algebroid ((X. (M) x B) — B, [+, -], p): more precisely, [, ]
is the Lie bracket on X, (M) x B and p: (X, (M) x B) — TB the anchor map. Then, as in
the case of ‘ordinary gauge theories’— that is gauge theories coming from a principle bun-
dle structure—the invariance of the theory under diffeomorphisms provides an obstacle for
the calculation of the propagator. We solve this issue by introducing a linearized de Donder
gauge fixing together with the corresponding ghost and antighost fields, C € I' (M, I1(TM))
and C € T' (M, I1 (T*M)), respectively. This viewpoint will be elaborated in [59].

Lemma 2.21. Given the situation of definition 2.19, the diffeomorphism BRST operator
P € X171 (B), i.e. a vector field on the spacetime-matter bundle with ghost degree 1, can be
consistently defined as follows:

1
Ph,, = — (V¥C, + V¥C,) (18a)
P /
PC7 = C’(9,C7) (18b)
PC, =B, (18¢)
PB, =0 (18d)
P, =0 (18e)
Ps = £, (18f)
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where C € I' (M, I1(TM)) is the graviton-ghost, C € T (M, II(T*M)) the graviton-antighost,
B € I' (M, T*M) the Lautrup—Nakanishi auxiliary field and again s € " (M, E) represents any
other particle field.

Proof. This follows directly from the transformation properties of definition 2.19, as BRST
operators are defined to induce infinitesimal transformations with respect to the corresponding
ghost field, together with the nilpotency condition, i.e. the two properties

Ps:=dcs (19a)

and
P?=0. (19b)
O

Remark 2.22. Contrary to Yang—Mills Lagrange densities, which are strictly invariant
under gauge transformations, the Einstein—Hilbert Lagrange density is not invariant under
general diffeomorphisms as it is a tensor density of weight 1. More precisely, the action of an
infinitesimal diffeomorphism adds a total derivative to the Einstein—Hilbert Lagrange density,
if the corresponding vector field is not Killing.

Definition 2.23 (Fourier transformation). Let (M,~,7) be a simple spacetime with
background Minkowski spacetime (M, n). Using the correspondence from definition 2.13, we
define the Fourier transformation for particle fields, i.e. sections s € I" (M, E), as usual:

Z: T(M,E)—T(ME), s(xY = s = L/ s (y‘g) L dv,,.
Q) Ju

(20)

3. Expansion of the Lagrange density

Given the QGR Lagrange density

1 1 ns
Lqcr = B (\/ —Det (g)R + 2*C77/’ DEII)D(VU> dv,

1/1 _ _
) (CWWC*‘ (0,05Cy) + 7 C" (9, (T s C) — 20, (FVWC,,))> dv, 2D

from convention 2.14. In order to calculate the corresponding Feynman rules, we decompose
Lqcr With respect to its powers in the gravitational coupling constant s and the ghost field C
as follows?

o0

1
Locr =Y > Lok (22)

m=0 n=0

where we have set ﬁggR = (EQGR) . Given m € N, the restricted Lagrange densi-

| 0(%:11 cn
ties ,ngR correspond to the potential terms for the interaction of (m + 2) gravitons and the

3 We omit the term £5(13’g as it is given by a total derivative.

9



Class. Quantum Grav. 38 (2021) 215003 D Prinz

restricted Lagrange densities QGR correspond to the potential terms for the interaction of m
gravitons with a graviton-ghost and graviton-antighost, while the terms m = 0 and n € {0, 1}
provide the kinetic terms for the graviton and graviton-ghost, respectively. The situation for
the matter-model Lagrange densities from lemma 4.9 is then analogous®.

Lemma 3.1 (Inverse metric as Neumann series in the graviton field). Given the
metric decomposition from definition 2.10 and the boundedness condition from assumption
2.12, the inverse metric is given via the Neumann series

g = Z( s ()™ (23)

where
R = 00" by, (24a)
()" = n (24b)

and
(W™ =t nf e ke N (24¢)

Proof. We calculate

[M]¢

(_ %)k (hk) ”/’)

88"’ = (77;”/ + %hul’) (
k

Il
)

[M]#

= 77;w77”p + N (
1

(=) (h")””) oy, [ D (=5 (W)
Jj=0

=0y, — »hy, (Z (—%)i(hi) Vp) + shy, Z (_%)j(hj) vp

i=0 j=0

= 4", (25)

as requested. Finally, we remark that the Neumann series
V=) (=t () (26)

converges precisely for

h = A 1, 27
56 ] = 56| max (] < @
where EW (h) denotes the set of eigenvalues of 4, as stated. U

#The shift in m comes from the prefactor 1/ in Lqcr and is convenient, because then propagators are of order »°
and three-valent vertices of order !, etc.

10
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Lemma 3.2 (Vielbein and inverse vielbein as series in the graviton field). Given
the metric decomposition from definition 2.10 and the boundedness condition from assumption
2.12, the vielbein and inverse vielbein are given via the series

o0 1
en =Y st (i) (h")::', (28a)

k=0

with hzl =n"hy, and

0 1
e = <_k2> ()", (28b)

k=0
with hly == n"" 00 h,.
Proof. We recall the defining equations for vielbeins and inverse vielbeins,

8uv = Nmn€),€,) (29)
and

T = 8wl €y (30)
cf [10, definition 2.8]. Thus, we calculate

o m n
guv = Nmne}, €,

|
P
3
=
PR
gL
X
N
~. N—
~——
—
=
N—
= 3
~_
K
X\
N
. OI—
N~
—
}l
~
SN—"
AN~

= N + %h;u/, 3D

where we have used Vandermonde’s identity, and

g/u/ _ ,r}mne/’:le’:
00 1 A o0 1 A
(3 () o) (S () @
i=0 ! Jj=0 J
S er
i=0 j=0 ! J
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— Z (_%)k (hk)/»“’
k=0
=g", (32)

where we have again used Vandermonde’s identity, the identity (') = (—1)* and lemma 3.1.
Finally, the series for the vielbein and inverse vielbein field converge precisely for

|2] 17]| o == [2¢] max [A] <1, (33)
AEEW(h)
where EW (h) denotes the set of eigenvalues of 4, as stated. U

Proposition 3.3 (Ricci scalar for the Levi-Civita connection, cf [10]).  Using the
Levi-Civita connection, the Ricci scalar is given via partial derivatives of the metric and its
inverse as follows:

R= gupgl/a (aual/gpa - auapgua)

Vo K 1
+ gupg 8 A ((ayghi)\) (augpa - 43/)811(7)

3 1
+ (al/gﬂli) (Zaagu/\ - Eauga)\> - (aug/m) (al/ga)\)> . (34)

Furthermore, we also consider the decomposition

R =g (9,1, — 9, I, + T4 Ty, — T4 T%,)

vo no UK Vo VKT 1o
= R" 4 R 30
with
Il . vo 1 "
R =¢" (8,1}, — 9,I,) (35b)
and
2 < K
R =g (T4 T5, —ThT0 ). (35¢)
Then we obtain:
RHF = g”pglm (aual/gpa - auapgzxa)
i 1 1
+ gupgl/agm\ ((aﬂgﬂﬂ) (28/\81/0 - aug)\cT) + 5 (al/g;m) (aagp/\)> (36)
and
2 WP VO KA 1 1 1 1
R = g ! 8 g (axg/l,p) _allga)\ - —3)\811(7 - (aug/m) _apga)\ - _aagp)\ . (37)
2 4 2 4
Proof. The claim is verified by the calculations
R=R" LR (38)

12
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with
R =g (9,04, — a,T",)
1 1
= (9,8") <3ugm - 23/)&0) — 5 (08" (Dr8uy)
1 1
+ gup (auaugpa - Zauapgmr) - Egﬂp (ayaagup)
= gupgl/a (auaugpa - auapgya)
1 1
+ gupgyagm\ ((aﬂgpﬁ) (28)\81/0 - aug)\cT) + E (al/g;m) (aagp)\)> (39
and

RFZZ gya (1-\/1, e —1r " )

7o VKT o

. 1 1 1 1
= g,upgyag/@)\ (a/{g#p) _al/gcr/\ - _a/\gl/a - (ayg;m) _apga)\ - _aagp/\ B (40)
2 4 2 1
where we have used (9,8"7) 840 = —8"7 (9,840 ) in equation (39) twice, which results from

0=V¥osr
=0,6) +L5"67 — T, 6%
= 8,,5; + Fpuy - Fﬂuy
= 0,0,
=9, (8u08"")
= (0,8u0) 8" + 8uo (9,8”) - (41)

O

Corollary 3.4. Given the situation of proposition 3.3, the grade-m part in the gravitational
coupling constant s of the Ricci scalar R is given via

ar‘ o o . (42a)
0(>%) 0(5%) o(=") ’

Rar‘o( D) = "7 (auauhm - a/'af’h””) )
and form > 1

13
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or . (_m PNKP (1 7\ VO _

k ‘O(Km) == i+j:zm_l ()" (1) (0u0uhps — DuBph)

+ (_%)m Z (hi)up (h]) vo (hk)n,)\

i+ j+k=m—2
1 1

x ( (9,h) (23%(, - Byhm> + 1 (Oh) (&,h,,Q) (420)
and
RE| = 3T () ) ()

o i+ jtk=m—2
X (8h) l@h —lah —(6h.) lahA—lﬁh (424d)
wltp 2u(7)\ 4)\m7 vtk 2/)(7 4(7/))\ .

Proof. This follows directly from proposition 3.3 together with lemma 3.1. O

Proposition 3.5 (Metric expression for the de Donder gauge fixing).  Given the
square of the de Donder gauge fixing,

D*:=g"'D,D, (43)

with D, .= g’ T ., this can be rewritten as

1
D* = gh"g"7 g™ ((avgcw) (0x8x0) = (0v8au) (Op8ia) + 4 (0ugver) (apgﬂ)> : “44)
Furthermore, its quadratic part is given by
D(22) = DZ‘O(%Z)
= "D\ D)’ (45)

with DS) =0Ty, and can be rewritten as
1
DYy = n"'n" "™ ((@g«u) (Oxgr0) = (9v80u) (Dpir) + 7 (Do) (Bpgm)> : (46)

Proof. The claim is verified by the calculation
D? =¢"'D,D,

1
4g gyagm\ (al/gcw + aagul/ - augl/a) (aﬁg)\p + a)\g/m - apgm)\)

ig””g””g“ ((0v8on) (On&rp) + (0ugon) (Ongpr) — (Dugon) (Dpgnn)
+ (0o8uv) (0x8rp) + (058u) (0r8px) — (0o8ur) (0p81n)
— (0,8v0) (0x82p) — (918v0) (028pr) + (0u8uo) (0p8in))

14
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" 1
= g/l/)gllﬂg"/)‘ ((8,,gap,) (aﬁ,g)\p) - (ayga/;,) (apgh:)\) + Z (augua) (@gm\)) > (47)

together with the obvious restriction to O (5¢). O

Corollary 3.6. Given the situation of proposition 3.5, the grade-m part in the gravitational
coupling constant s of the square of the de Donder gauge fixing D? is given for m < 2 via

D g = 0 (48)

and for m > 1 via

Dz‘o(%m) — (_%)m Z (hi)'“ﬂ (hj) vo (hk) KA

i+ j+k=m—2

1
X ((al/hﬂ/l,) (ah”,h)\/)) - (al/hﬂ/l,) (a/)hh”,)\) + Z (auhua) (a/)hfv”,)\)) . (48b)

In particular, the quadratic term D(zz) is given by
D}, = Dﬂo(%z)
T ((8,,%1(,/,,) (0chy) ~ (k) (ki) + + (D) (8/)hm)> .
(49)
Proof. This follows directly from proposition 3.5 together with lemma 3.1. (]
Proposition 3.7 (Determinant of the metric as a series in the graviton field).

Given the metric decomposition from definition 2.10, the negative of the determinant of the
metric, —Det(g), is given via

—Det(g)=1+a+b+c+d (50)
with
a:= s Tr(nh)
= o hy, (51a)

1 1
b= 2 (5 Tr (nh)* — 5 Tr ((nh)2)>
_ .2 1 n o po 1 o Py
=x E’r} no—= E’r} n h/u/hpm (51b)

15
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1 1 1
ci=x <€(Tr (nh))* — 3 Tr (nh) Tr ((nh)*) + 3 Tr ((nh)3)>

3

= 5 1 UV, PO AT

LV, PT AO Py Ao

1 1
g T — 5t +§n’”n n )hwhpam (51c)

and 2

24

1 1 1
d:=s" (—(Tr (nh))* — 7(Tr (mh))* Tr ((nh)*) + 3 Tr (nh) Tr ((nh))
1
T3

(1 (c))* = T (n))

1 g 1 g 1
— A v opo AT, 0 b v, po, A, 0T S pp Ao 0T
=x ( 24 NN 4 nenTTn T + 3 nentnen

1 v o UT 1 LY oV o, UT
+ gnwnp 77)\9‘779 - 177“,‘77/ 77)\ 779 > huvhpah)\‘rhﬁw (Sld)

Proof. Givena4 x 4-matrix M € Matc (4 x 4), from Newton’s identities we get the relation

Tr (M) 1 0 0
Tr(M?)  Tr(M) 2 0
Tr (M?) Tr(M?) Tr(M) 3
Tr(M*) Tr(M’) Tr(M?) Tr(M)

1
Det(M) = EDet

= % (Tr (M)* — 6 Tr(M)* Tr (M?) + 8 Tr (M) Tr (M°)

+3Tr (M?)” — 6 Tr (M) ) : (52)

Next, using the metric decomposition g = 1 + sch, we obtain’

—Det(g) = —Det(n + sch)
= —Det (1) Det (6 + 31 'h)
= Det (6 + »nh), (53)

where we have used Det () = —1 and ! = 5. Setting M := § + senh, using the linearity and

cyclicity of the trace and the fact that Tr (0) = 4, we get

Tr (6 + senh) = 4 4 3 Tr(nh) (54)

Tr ((§ + smh)*) = 4 + 23¢ Tr (nh) + 3 Tr ((nh)?) (55)

Tr (6 + smh)’) = 4 + 33 Tr(nh) + 352 Tr ((nh)*) + 32 Tr ((nh)*) (56)
Tr (6 + snh)*) = 4 + 43¢ Tr (nh) + 652 Tr ((nh)*) + 452 Tr ((nh)’) + »* Tr ((nh)*) .

(57)

51n accordance with index-notation, we set § to be the unit matrix.

16
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Combining these results, we obtain
(1 , 1 2
—Det(g) = 1+ s Tr(nh) 4 s 3 Tr (nh)” — 3 Tr ((nh) )

1 (é Tr (nh)® — % Tr (nh) Tr ((nh)*) + % Tr ((Wh)3)>

+ 5 (2—14 Tr (nh)* — % Tr (nh)* Tr (nh*) + % Tr (nh) Tr ((nh)’)

1 1
+5Tr ((77h)2)2 -, T ((nh)4)> , (58)

which, when restricting to the powers in the coupling constant, yields the claimed result. [J

Corollary 3.8. Given the situation of proposition 3.7 and assume furthermore the bounded-
ness condition from assumption 2.12, the grade-m part in the gravitational coupling constant
» of the square-root of the negative of the determinant of the metric, —Det(g), is given via

j—k k=1 q 1 s t u
VDetl) = > > > D> > D)
0(3cM) i+ j+k+I1=mp=0 g=0 r=0 s=0 t=0 u=0 v=0
i2jzk2120

~. =

<) OGO OO

% (_ 1 )p+q7r+xft+v27j+l+r+s+21‘73u+v37k+q7r+sft+u

% ai+j+k+l—2p—2q—r—2s—t—ubp+q—r+s—t+2u—27;cr+t—u0'1; (59)
with
a:= s Tr(nh)

= %Ulwhum (6021)

b= Tr ((nh)*)
=300 hyhyo, (60b)

= Tr ((nh)3)
and = %377“’777/’”77A”hw,hp0h A (60¢)

0:=" Tr ((nh)")
= %4"7/“p77pl/77)\0nﬂTh/whpﬂh)\'rhﬁap (60d)

Proof. We use equation (50),

—Det(g)=1+a+b+c+d, 61)

17
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and plug it into the Taylor series of the square-root around x = 0°,

00 1 A
Vi3 (). &
i=0

to obtain
00 1 .
\/—Det(g)zz (?)(a+b+c+d)’. (63)
i=0

Applying the binomial theorem iteratively three times, we get

00 1 .
\/—Det(g):z (?)(a+b+c+d)’

)() (everar

1 J k

EEEE) () (v w
i=0 j=0 k=0 1=0 \' j) \k l

Observe, that from equations (50) and (51) we have the relations

M~

—Det(g) ‘ =a (65a)
O(32)
—De«gﬂooﬁ)zl) (65b)
—Det(g) ‘0(%3) =c (65¢)
and
—Deugﬂooﬂ)z(L (65d)

and thus the restriction to the grade-m part in the gravitational coupling constant s is given via
the integer solutions to

!
Q- j4+2j—2k+3k—31+4l
m=i—j J 66)

=i+ j+k+1

6 Here we need the assumption || ||A||,.:= |5 maxycgwa |A| < 1, where EW (%) denotes the set of eigenvalues of

h, to assure convergence.

max*

18
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withi > j >k > ie.

v —Det(g)

2 OO @
i+ jk+I=m

0(%711) i+J
i>j2k>1>0

Finally, using Newton’s identities, i.e. the relations from equations (51) and (60),

a=a, (68a)
1 1
b= Eaz — Eb, (68b)
1 1 1
cz83 00+ ¢ (68c¢)
and
1 1 1 1 1
d= —a*— —a’b + - ~b> — -0, 68d
4% T vt gy (68d)
we obtain, using again the binomial theorem iteratively seven times,
j—k k-1 q 1 s t
T 353 9 3 9 3
p=0 ¢=0 r=0 s=0 =0 u=0 v=0
(EDOEME
r K t/ \u/ \v
X (_ 1)p+q7r+sft+ﬂ27j+l+r+s+21‘73u+1x37k+q7r+xft+u
% ai+j+k+172p72q7r72x71‘7ubp+q7r+xft+2u72vCr+t7u01x’ (69)

and thus finally

v/ —Det(g)

O(3cM) i+ j+k+1=mp=0 g=0 r=0 s=0 =0 u=0 v=0
iZ2k>120

<HEOOCHEOOOM

X (_ 1 )p+q—r+s—t+112—j+l+r+s+2[—3u+'1;3 —k+g—r+s—t+u

% at+]+k+172p72q7r72s7t7ubp+q7r+s7t+2u72vcr+tfu01x , (70)

as claimed. |
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4. Feynman rules

Given the QGR Lagrange density

1 1 4
Laor = —5— (x/—Det (e)R + Z—Cnff DL”D&”) av,

5 (e @0.6) ¢ (0,(,00) - 20, () ) ¥, 7D

from convention 2.14 and the decomposition into its powers in the gravitational coupling
constant sz and the ghost field C

(o @]

1
Lo =) > Lok (72)

m=0 n=0

from the introduction of section 3. Then, we extend the Lagrange densities £3§R for given
m € N, which were interpreted in the introduction of section 3 as potential terms for either
(m + 2) gravitons or m gravitons and a graviton-ghost and graviton-antighost, to either (m + 2)
distinguishable gravitons or m distinguishable gravitons and a graviton-ghost and graviton-
antighost via symmetrization, depending onn € {0, 1}. This then reflects the bosonic character
of gravitons and allows the calculation of the corresponding Feynman rules as the remaining
matrix elements of these potential terms. We start by introducing the notation and then present
the Feynman rules.

Definition 4.1. 'We denote the graviton m-point vertex Feynman rule with ingoing momenta
(P7s s p ) via @ b (pr o pr)7 Ttis defined as follows:

@Zwl\..,\umum (p(lr’ . --,PZ,) —i <H M(S ) T (ZgnGiZ),O) , (73)

i=1 v

where the prefactor i is a convention from the path integral, §/6/,,,, denotes the symmetrized
functional derivative with respect to the Fourier transformed graviton field ilum- together with
the additional agreement (represented by the bar §/6-) that the possible preceding momentum
is also labelled by the particle number i, e.g.

5o, - Ut o wne

s (P ) = 5k (B0 +3087) (74)
HiVi

and Zg&z),o is the symmetrized extension of Lg’&z)’o to m distinguishable gravitons. Further-

more, we denote the graviton propagator Feynman rule with momentum p?, gauge parameter

¢ and regulator for Landau singularities € via ‘B, ., .1, (P7; C; €). It is defined as the inverse of

the matrix element for the graviton kinetic term®:

V|3V 1o L/ 13 Sv INZONT
sl (75 OB 720 = L (apd 4 i), 5

7 The vertical bars in p;v| . . . |4, are added solely for better readability.

8 : P oo o3 : Havalpavy o 0.
We use momentum conservation to set p{ := p” and pj := —p”in the expression &, (1’1 .05 ()
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where each tuple p,v; is treated as one index, which excludes the a priori possible term
Ny H1372 on the right-hand side. Moreover, we denote the graviton-ghost m-point vertex
Feynman rule with ingoing momenta {p{, ..., p}} via pilp2lisysl.-lpmvn (pf.....p}). where
particle 1 is the graviton-ghost, particle 2 is the graviton-antighost and the rest are gravitons.
It is defined as follows:

5 6~ 0 _
@Q\ﬂz\\%l/ﬂ---\%% PP =i (A — _ ) (Ll , (76)
( 1 ) 5Cp1 SE/)Z 11:1 5hui1/l- ( QGR)

where, additionally to the above mentioned setting, 8 /0C,,, and 6/6 C,,, denotes the functional
derivative with respect to the Fourier transformed graviton-ghost field C,, and Fourier trans-

formed graviton-antighost field E,,z, respectively, and ZgéR is the symmetrized extension of

E’S’(;R to m distinguishable gravitons. Additionally, we denote the graviton-ghost propagator
Feynman rule with momentum p” and regulator for Landau singularities € via p,,|,, (p7; €). It
is defined as the inverse of the matrix element for the graviton-ghost kinetic term®:

Porlon (P7:0) €527 (p7) = 323, a7

Finally, we denote the graviton-matter m-point vertex Feynman rule of type k from lemma 4.9
with ingoing momenta {pf, ..., p} via gy 1o lemin (000 pe) where we count
only graviton particles, as the matter-contributions are condensed into the tensors ;7', whose

Feynman rule contributions can be found e.g. in [19]. They are defined as follows:

K...7|o..t|||p1vy |- | pmys o o
kmm mm(pl""’pm)

. ) T 0 #QGR-SM
'_1<5kT I1- )9(k£m,0 ) (78)

K.Tllo..t j—1 6h/1,~1/,-

where we use again the above mentioned setting.

Convention4.2. We consider all momenta {pf{, ..., pj,} incoming and we assume momen-
tum conservation on quadratic Feynman rules, i.e. set p{ := p” and p§ == — p°.

4.1. Preparations for gravitons and their ghosts

In this subsection we prepare all necessary objects for the graviton and graviton-ghost Feynman
rules.

Lemma 4.3. Introducing the notation

n -
0
V1o | nVn e n
T = ([I 55— | Z T, (79)
i=1 7" Hivi
we obtain
1
Vil tnn 2 : Z Ly Vs(h -+ thsmy Vs
gﬁl 1] ptnvm — ﬁ tn\ s s(nm)Vs(n (8021)
iV SESy
9 Again, we use momentum conservation to set p] = p” and pj := —p” in the expression ngyzmw (Pl”a pg)

21



Class. Quantum Grav. 38 (2021) 215003 D Prinz

with
tf:l”l‘w‘/’/nyn _ <6Z;+1H7A7WV“+I> ) (80b)
1

Furthermore, introducing the notation

ﬁﬁ.llmullll‘...‘unl/n — (H 7A5 ) Pl ((hn)#l/) , (81)

i=1 HiVi
we obtain
9% =" (82a)
and forn > 0
fjf;’yml’lyl““‘/"iyn _ % Z Zhfjl"#s(l)Vx(l)‘-.-‘#s(n)l/s(n) (82b)
[V SESy
with
hﬁl’mﬂll‘l‘---‘#nl‘n — <5ﬁ055n+lnnurz"a+1> ) (82¢)

Moreover, introducing the notation

UV |||V || 4nVn ol o - S ny\ v
(5;); ]I (Pfse ) = (H 5 )9(8,, ((h"™)) (83)
i Hivi

we obtain

(96)," =0 (84a)
and forn > 0

||| [ s o
(), (- )
zn Z Z #V\Hux(l)l/s(l)\ N besnyVs(n) (pq(l)’ o ’p?(n)) (84b)
1V SES,

with

(h;)g”m/’lyl‘w‘/’n”n (pa’ o ’Pn (Z p") (5/1055 +11_[ ﬁ/‘a”a-&-l) ) (84c)
=0

m=1

Proof. This follows from directly from the definition. (]
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Corollary 4.4. Given the situation of lemma 4.3, we have
ﬁ 0 ervrl-..|
_ F gulz _ (—1)”.62”/ Hivy ...,u,,l/,,, (85)
o Ohy,,,
i= Vi O(5c")
T_6 3 [[lg1vl.. ]
r _ 2 r vl pnvn
Hm F|e, = (n) T (86)
i=1 HiVi 0(5")
. F | er = ( 2) (ﬁn)pmmm\»»»\unvn, (87)
L 0N, : n :
=1 HiVi 0(%}1)
. 5 1 X wv|||pqvy |- pny;
_ F | (05¢)) — <2> fupor, ($),) 1 (T ) (88)
Ohy, n 7
i=1 HiVi O(3¢")
and
)
( 7 ) F (3065’)
i=1 HiVi 0(3<)
—1 N v vil...| nvn
_ ( nz) 5//1771”(5;);)5 [[l1vr ]| (p(lf’”.,pg) ) (89)
Proof. This follows directly from lemmata 3.1, 3.2 and 4.3. O
Lemma 4.5. Introducing the notation
LV (o g
Lo (b)) = =—F (D) (90)
5h/‘1”1
with
]-—‘,ul/p = gpa]-—‘;wa
1 on
=3 (augl/p + 08 — apgw)
we obtain
v e 7 | BTN Sp1 v 1 ( Spp sv Spp Sv
T () = n (pu (‘%léul + 5515171) Tp (5ﬁ1591 + 5Z15#1)
(92)
1 [ Spysv N2
- pl (%15”1 + 5515111)) )
Proof. This follows from directly from the expression
~ » ~ ~ ~
F/u/p = E (P/:,hup + Puhp/:, - Pph/u/) . (93)
O
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Lemma 4.6. Introducing the notation

)
mzll/l‘-.-‘ﬂnl‘n (pclr, ce ,pZ) = (H 57 > F (RIO(%”)> s (94)

i=1 HiVi
we obtain
Ro = 0, (95a)
m/lum (p(lr) _ _%(p/lllpTl _p%ﬁylul) (95b)
and forn > 1
1 L el o 1 sy Vs(D) |-+ BsnyVs(n o el
mﬁlm [ (P1’~-~’Pn) =5 Z Zt" WP+ Hs(m)Vs(n) (ps(l)’._.,px(n))
WiV SESy
(95¢)
with
tﬁ]l/]‘...‘unl/n (pclr’ . ,PZ) _ (t;‘l)r)/lqul\w\unun (p(lf’ N ,PZ)
2\ K121 |- v
+ (o) () (95d)
¢ L | ntn o o
()™ (Pfs--op))
i i+j
—cor 5 () (s ]Eee)
i+ j=n—1 a=0 b=i
< (PhPl8 — o3t
. i o i+j
— (= Z (55#11_[77%””1) <5Zi5;i+j+1H7A7”byb+l>
i+ j+k=n—-2 a=0 b=i
i+jtk
SkoOSA ~ eV
X <5Zi+/’5l‘i+}'+k+l H i V+l>
c=i+j
A~ N 1 ~ - A
(ot (Graded - i)
1 I o
+ 5 (p(;fl(sﬁgfl(szz—l) (pg(szn(gin) ) (956)
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and

2 v |- pnvn o o\
(tn ) (pl""’pn)_

i i+j
n 5 ~ [laV, v So A L
— (=) E 61/1,-+1 H fptavat 5m5yi+j+l H eVt
a=0 b=i

i+ jtk=n—2

i+ j+k
SkoOSA S HeVed1
x 6/‘i+j6”i+j+k+1 H g

c=i+j
g g ) (Lopgmen — Lngumgu
X (]ffl» o Yp ) Ep(ll/ o %\ T Zﬂl)\ v Y

Iy Iy [ N7 1 7 S SV
= (p ) (5 A — 2 pU(S;}”(S)\") ) . (95f)

Proof. This follows directly from corollaries 3.4 and 4.4. Furthermore, we remark the
global minus sign due to the Fourier transform and the omission of Kronecker symbols, if
possible. O

Lemma 4.7. Introducing the notation

]
@Zlﬂl"."ﬂnﬂn (p(lT’ . ,pz) = (H __ ) 9 (D2|0(%n)) , (96)

i=1 6h/lﬂ/i
we obtain
Do =0, (97a)
D1 (p7) =0 (97b)
and forn > 1
v 12 o o 1 Us(1)Vs(1) |-+ [ Hs(n)Vs(n o o
@il lumn (Pfoeit]) = 5. Z be’ D5 |- smy Vst (s> o) 97¢)
MV SESy
with

v | s o I
ol (p7 - pf)

e 3 (i)
a=0

i+ jtk=n—2

i+j i+j+k
NN A IBVh41 SkoSA H S HeVed1
X 5/‘i51’i+.i+1 H n 6ui+.i6"i+j+k+1 n

b=i c=itj
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y ((pt;—lggnlam)l) (p’;(ASK”SZ") _ (1):;—135"713%71) (1)7)35;"3?,)

+ % (v 3111 (pf;,(swn)) (97d)

In particular, the quadratic part is given by (using momentum conservation, i.e. setting p{ .= p°
and pj = —p’)

QIZIIVI 212 (pa, _pa) — %2 (pulpyl 153%) + puz 1) 5 11/1)
1%2 1 pl2 ZV1V2 1 2 3V VI 2 212
= 2 (PR A R A P

1
4 pV1 pVZ,f}/’IHZ) _ 2 (P 77/11”1 77/¢2V2) . (98)

Proof. This follows directly from corollaries 3.6 and 4.4. Furthermore, we remark the
global minus sign due to the Fourier transform and the omission of Kronecker symbols, if
possible. O

Lemma 4.8. Introducing the notation

S
mﬁlyl‘...‘#nl‘n — H 9 —Det (g) 5 (99)
5hu v
iVi 0(”")
we obtain
1 syl smy V.
‘BZ‘”“"'“”””” _ 1 Z anm) s(1) |-+ sty Vst (100a)
2 [V SESy
with

U/uvl\ Apnvn — o0 Z ii

i+ j+k+1=mp=0 g=0 r=0 s=0 =0 u=0 v=0
izjzk=21>0

DGO OEOM

X (_ 1 )p+q—r+s—t+112—j+l+r+s+2t—3u+1z3 —k+q—r+s—t+u

a+b
H fyptava H Rftebetb Vs Veth

b=a+1

a+2b+c
/’CVL+C n/‘('+cVL'+20 7’)]/”54—20 Ve

c= a+2b+1

a+2b+30+d
.“d”d+d/r].“’d+d”d+2d zf]/”d+2dyd+3dzf]/’d+3dyd (loob)

d= a+2b+3c+1
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and
a=i+j+k+1-2p—2g—r—2s—t—u
b=p+qg—r+s—t+2u—2w
(100c)
c=r+t—u
d:=v.
Proof. This follows directly from corollaries 3.8 and 4.4. O

4.2. Preparations for gravitons and matter

In this subsection we prepare all necessary objects for the graviton-matter Feynman rules. As
will be discussed in detail in the following three subsubsections, the gravitational interactions
with matter from the standard model can be classified into the following 10 Lagrange densities,
henceforth refered to as matter-model Lagrange densities of type k. We calculate only the grav-
itational interactions for the matter-model Lagrange densities and refer for the corresponding
matter contributions to [19] in order to keep this article at a reasonable length.

Lemma 4.9. Consider (effective) QGR coupled to the standard model (QGR-SM). Then
the interaction Lagrange densities between gravitons and matter particles are of the following
10 types'*:

lﬁQGR-SM =T dV,, (101)
Z'CQGR-SM = (8# 2 /w) dvs, (102)
3Locrsm = (88" 3T ps) AV (103)
+Loorsm = (8" Tyw"4T;) AV, (104)
sLocrsm = (88" T sT,,,) dVy, (105)
6’CQGR-S = (gwgpgrwhrpa 6 :)\) dvs, (106)
7Locrsu = (¢6:T,) 4V, (107)
sLQoR-sM = (efe”y opr) dvs, (108)
oLocrsw = (ege”e” (9pe) oT,) AV, (109)
and
10lqor-sm = (€§e” e e L™ 10T,) AV (110)

Proof. A direct computation shows that the scalar particles form the standard model are of
type 1 and 2. Furthermore, the spinor particles from the standard model are of type 7, 8, 9 and
10. Moreover, the bosonic gauge boson particles from the standard model are of type 3, 5 and
6 and additionally 1, 2 and 4 for spontaneous symmetry breaking. Finally, the gauge ghosts

10We remark that the tensors T are not related to Hilbert stress—energy tensors. More precisely, they are defined as
the graviton-free matter contributions of the corresponding Lagrange densitites.
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are of type 2 and 6 and additionally 1 for spontaneous symmetry breaking. This is discussed
in detail in the following four subsubsections. (]

4.2.1. Gravitons and scalar particles. Scalar particles from the standard model are the Higgs
and Goldstone bosons'!. In the following we describe the interaction of gravitons with a real
scalar field and with a vector of complex scalar fields, subjected to the action of a gauge group
G (which leads to spontaneous symmetry breaking). Geometrically they are described via
sections ¢ € I' (M, R) and ® € I" (M, C'), respectively, where i = Dim Rep (p) is the dimen-
sion of the representation of the gauge group G on C', acting fiberwise via p: G x C' — C".
Then, the corresponding Lagrange densities are given by

1 ;L
Lorssan = | 78" (9,0) @,0)+ o' | v, (111)
l’EI(’s) ’
and
Lorciseatar = | 8" (Vgx”@@)T (fo”@@) + Z% (®'®)" | av,, (112)
i€I<I> :

where 14 and I denote the interaction sets with particle mass —a» and coupling constants «;
fori # 2, 1 denotes Hermitian conjugation and

Gx

V# /)(Ci = 8/,, —+ lgAZba (1 13)

is the covariant derivative on the Ci-bundle, with connection form igA €
I' (M, T*M ® End(C")). The Higgs bundle from the standard model is of the form
equation (112) with further interactions coming from the gauge fixing of the corresponding
electroweak gauge bosons, cf subsubsection 4.2.3. These interactions correspond to type 1
and 2 from lemma 4.9. More precisely, we have

Ti=30 %1 3 Y (@l (114)
l’EI(’s) k iclg k

and

2Ty = % (040) (0u9) + (fo”(cl?b)T (v Ce). (115)

4.2.2. Gravitons and spinor particles. Spinor particles from the standard model are leptons
and quarks. In the following we describe the interaction of gravitons with spinor fields and
with a vector of spinor fields, subjected to the action of a gauge group G. Geometrically
they are described via sections ¢ € I' (M, XM) and ¥ € I' (M, SM®/), respectively, where
j = DimRep (p) is the dimension of the representation of the gauge group G on X M®/, acting
fiberwise via 0 : G x YM®/ — YM®/. The corresponding dual spinor fields are defined via

= ef(yo1) (116)

! The gauge ghosts are discussed in subsubsection 4.2.4.
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and
T =ef(v,0), (117)

where ef is a vielbein with its curved index fixed to ;1 = 0 and flat index o, i.e. a vielbein
contracted with the normalized timelike vector field e (df), and y,, and =y, are the Dirac matrices
for the Minkowski background metric 7 on M and M®/, respectively. Thus, dual spinor fields
depend on the metric via the vielbein e3 with fixed timelike curved index!'?. We remark that if
the spacetime (M, ) is globally hyperbolic, it is possible to choose charts in which ef = 4,
as is done implicitly in e.g. [13, 16—18]. However it should be noted that in this setting the
theory is no longer invariant under general diffeomorphisms, but only under the subgroup of
diffeomorphisms preserving global hyperbolicity. As we do not want to restrict our analysis to
such charts and diffeomorphisms, we set

Vo= (1) (118)
for later use. Then, the corresponding Lagrange densities are given by

Ler-spinor = (¥ (1Y ™Y = my) ¢) AV, (119)
and

LR spinort = (T (iV G =M _ mq/) \If) dv,, (120)

where my is a diagonal j X j-matrix with entries given via the corresponding spinor particle
masses, and with the Dirac operators given via

V M — eum,ym (aﬂ + wﬂ) (121)
and
v G, SM®I =iy (au + w#) + MMy (igAf,ba) , (122)

where w, € I'(M,T"M ® End (¥M)) is the spin connection form and igA €
I' (M, T*M @ End (YM®/)) the corresponding gauge group connection form. These
interactions correspond to type 7, 8, 9 and 10 from lemma 4.9. More precisely, we have

iT, = —my,h — Umg W, (123)

8T, =Vor (000) + oy, (0,7), (124)
i— i—

9Torst == Z/(/)O (%ffsz)?/f - Z\IID (‘Yra-st) \Ij’ (125)

with oy = %[%, ] and o ;= %['yj,, ~,], and

i— i—
10 ors = — Z'L/}o (Vros) Y — Z\IJO ('Yra'st) v

=47,

orst*

(126)

12 We remark the placement of v, and =, in the following equations, as only the timelike Dirac matrices v, and ~,
are Hermitian, whereas the other Dirac matrices are antihermitian.
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We remark that the interaction of leptons and quarks with the Higgs and Goldstone bosons are
given by

Lvukawa = — Z Ol{d)’,l“T,o’,l“;,}(ZSEo'(/J dVg (127)

{(ﬁ,@,,,z[}}ély

which represent the Yukawa interaction terms for the interaction set Iy, with corresponding
coupling constants « (600} These interactions are of type 7 from lemma 4.9. More precisely,
we have o

To= = D gt (128)

{¢ﬂo@}€1y

4.2.3. Gravitons and gauge bosons. Gauge bosons from the standard model are the photon,
the Z- and W*-bosons, and the gluons. In the following we describe the interaction of gravitons
with gauge bosons from a quantum Yang—Mills theory. We denote the Yang—Mills gauge group
by G and its Lie algebra by g. Geometrically, gauge bosons are described via connection forms
igA € I'(M, T"M ® g) on the underlying principle bundle. More precisely, they are given as
the components with respect to a basis choice {b,} on g. Then, the corresponding Lagrange
densities are given by'3

1
Lor-ym = (L‘gzéabgﬂ”gf’”Fz/,Fi’a) dv, (129)
and the Lorenz gauge fixing by'4
1
LGRYM-GF = <%5abg“”g”“ (ViPA9) (v;g)Af;)) dv,. (130)

These interactions correspond to type 3, 5 and 6 from lemma 4.9. More precisely, we have!>

1 a b 1 a b
3T/wp(7 = 4g2 5abF/;,pFw7 + Eéab (auAy) (apAo) s (131)
1
5Ty, = — géah (9,A%) A (132)
and
T = ! SapA°AL (133)
6 HA'_2£ abf N

13 We emphasize the minus sign coming from the square of F' = g (OHA,‘j — 0,A) —ef “b"AZA,b,) in our conventions.
Furthermore, we remark that this obviously also includes abelian gauge theories, such as electrodynamics, by setting
g to be abelian, i.e. f% = 0.

41t is convenient to use the covariant Lorenz gauge fixing g“"VEf’A:‘, =0, as this choice avoids couplings from
graviton-ghosts to gauge ghosts [38].

15 We remark the minus sign due to the covariant derivative on forms and the additional factor of 2 due to the binomial
theorem in equation (132).
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We remark that the Lorenz gauge fixing Lagrange densities for the Z- and W*-bosons need
slight modifications due to the spontaneous symmetry breaking and are given by

1
Lonoence = (500" (V02,) (V2

+ mzez8" (V¥Z,) + gzzméqs%) v, (134)

and

1
L Boson-GF = <£Wgwgm (V/(f)W;) (VE;g)W;r) + §Wm%v¢wf Pw+

+imwg" (dy+ (VEW, ) — dw- (VEW,")) ) dv,,  (135)

where & is the corresponding gauge fixing parameter and m; the corresponding mass for s €
{Z, W, W~ }and ¢,, ¢+ and ¢y are the Goldstone bosons. These interactions additionally
require type 1, 2 and 4 from lemma 4.9. More precisely, we have

_ &

1T o= Zm 7y + Swimy dw- b+ (136)
2T/IV = EZmZ¢Z (au,ZV) + imeW (¢W+ (auWy_) - ¢W* (a“W:—)) s (137)
1 1 -
T = 5, (0u20) (020) + ¢ (W) (0, W7) (138)
and
T = (Emy) §°A°. (139)

We refer to subsubsection 4.2.1 for further interactions between Z- and W=-bosons and Higgs
and Goldstone bosons coming from the covariant derivative on the Higgs bundle.

4.2.4. Gravitons and gauge ghosts. Gauge ghosts and gauge antighosts from the standard
model, accompanying their corresponding gauge bosonsigA € I' (M, 7"M & g), are fermionic
g-valued scalar particles ¢ € I' (M, 1I(g)) and ¢ € I' (M, II (g*)). Then, the corresponding
Lagrange density is given by

Lor-yM-Ghost = (8"Ca (fo)ayc“) +igg" f*,.Ca (Vif)Afjc")) dv,. (140)
These interactions correspond to type 2 and 4 from lemma 4.9. More precisely, we have'®

2T =T (0,0,¢%) +igf*pCa (0,A5¢°) (141)

iz

and

JT =0 (0:¢%) +igf*,.CaAlcC. (142)

16 The ghost Lagrange densities are calculated with Faddeev—Popov’s method [69], cf [10, subsubsection 2.2.3]. We
mention that this construction can be embedded into a more general context, using BRST and anti-BRST operators
[71].
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We remark that the interaction of electroweak gauge ghosts with the Higgs and Goldstone
bosons are given by

Lew-Ghost = Y (Eamy) ¢1T2e | AV, (143)

{51.52.53 }EIEW-Ghost

where &, is the corresponding gauge fixing parameter, m,, the corresponding mass for s; €
{A,Z, Wt W, H } and Igw_ghost 1S the corresponding interaction set. These interactions are
of type 1 from lemma 4.9. More precisely, we have

T = > (&,ms,) ¢1T25. (144)

{51.52,53 }ETEW-Ghost

We comment that with our chosen covariant Lorenz gauge fixing in equation (130) there are
no interactions between graviton-ghosts and gauge ghosts present. This is due to the fact, that
the gauge-fixing Lagrange density is a tensor density of weight 1, cf [38].

4.3. Feynman rules for gravitons and their ghosts

Having done all preparations in subsection 4.1, we now list the corresponding Feynman rules
for gravitons and their ghosts.

Theorem 4.10. Given the metric decomposition g,,,, = 1,,, + »hy,, and assume | (||| ... :=
|22l maxyeewn |A| < 1, where EW (h) denotes the set of eigenvalues of h. Then the graviton
2-point vertex Feynman rule for (effective) QGR reads (where ( denotes the gauge parameter
and we use momentum conservation on the quadratic term, i.e. set p] .= p° and pj .= —p°):

v % o 1 1 L 2PN % 1 1y ALV
&l 1\#22(1) ;O:Z (1_E> (P it 4 pie pre iy

1
(1 _ C) (P P 4 ph pre e

i

8

4 plll p/Q 7¢]/1,1V2 4 plll p1/2 ﬁ/l,l/l,z)
i 1
—Z 1= 2 AHIV] RV
(-2
4 % (pZﬁ/tlftzﬁlfln + pzrfl/’/lVZ,f}Vl/‘Z) ) (145)
Furthermore, the graviton n-point vertex Feynman rules with n > 2 for (effective) QGR read

(Where g, denotes the corresponding unsymmetrized Feynman rules and 6,,, 4, is set to 0 if
my = n and to 1 else, eliminating contributions coming from total derivatives):

0551”1""‘#”1'" (PT’ o ,pZ) _ % Z ZgZ.Y(l)V.\'(l)‘».»‘H,\'(n)l’x(n) (pr(l), o ’P?(n))

iV SES,

(146a)
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with

HAVL || UnVy (o) (o)
n | ‘nn(pl""’pn)

ne myp—1 i my—1
-y {i (6¢f065,+1Hﬁ““”“+1) (67,,6;;1 11 n)
i=0 0 b=i

my+my=n

X 6m17£n |:pg;‘1p’;’15'5m1 3;’_"’1 _ pg:llpfl:] 357111 5';7111:|

J+k
_ wosp HaV, v 5o 2 HBVp41
> (5/«)5 ,+1H77 ‘ "*’) 500 11
Jtk+I=m; -2 b=j
m1—2
Kos A Vet 1
X 5N1+L5Vm1 1 H n
c=j+k

| I o a
X (5;4117&” |:<p/, 15'“" 1(5”" 1) (21)')1\5/;"5?1 _ﬂ'yé/}tné?:)

i) ()|
( g 5 1) (%p’;&;n jin — % g
( n 151/,, 1) (%ﬂ;sgngin _ %ﬂ;ggngin }

i+ j+k+1=my p=0 g=0 r=0 s=0 =0 u=0 v=0
izj=2k=120

(OOOGHEHEDOOE O

% (_ 1)erqfr+xft+v27j+[+r+s+2t73u+v3 —k+q—r+s—t+u

my+a my+a+b
H fyptava H R
a=mj+1 b=mj+a+1
my +a+2b+c

/’CVL +c n/’r+c”r+2£ rf}/l('-‘rZL‘VC
c=m +a+2b+ 1

m1+a+2b+3c+d
AHdVd+d pHd+dVd+-2d yyHd+2dVd+3d pyHd+3dVd
7 dVd+ 7 +dYd+ 1 + + 1 +

d= m1+a+2b+3c+l
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and
a=i+j+k+1-2p—2g—r—2s—t—u
b=p+qg—r+s—t+2u—2v
(146¢)
c=r+t—u

d=v

Proof. This follows from the combination of lemmata 4.3 and 4.6—4.8, since we have

n i Hs()Vs () |-+ sy Vs
6Z1V1‘ ‘/ann (P(lT’aPZ) — ﬁzzgnx s s(n)Vs(n (p;7(1)”p?(n)) (1473)

iV SESy

with
gkl (p7 oY)

n
_ _% (9%’,;’,1”1““""””'” (17(17, o ’pz,,,) % mf:n_;rly,l/nfm‘...‘#nl/n)
4
m=1
1 L 1) -
+ 6n:22—4©’2‘”‘ 2 (p7 7)), (147b)

where 8,—, is set to 1 for n = 2 and to 0 else, and modulo total derivatives which come from
the R contributions of degree n. ([

Remark 4.11. The one-valent Feynman rule actually reads

& (pf) = i( V= P (148)

However this term comes from a total derivative in the Lagrange density and can thus be set to
zero. Equivalently, on the level of Feynman rules, it vanishes due to momentum conservation.

Theorem 4.12. Given the situation of theorem 4.10, the graviton propagator Feynman rule
for (effective) QGR reads:

2i . N . R N .
{’B#l"l 212 P Ge = _Im { (77#1#2771/11/2 + Ngwa Moy — 77#111177#2"2)
1=CY . R
- 7 (nmuzpﬂl Pv, + Ny Pry Py
+ 7”\]”1 /l2p/L1pV2 + 771/11/2[7/1,1[7/1,2) . (149)

Proof. To calculate the graviton propagator, we recall
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i 1
6#1!’1\#21/2 (7 0) = (1 - C) (P PRI 4 prapafii

8 (1 — C) (])IJ ID/JZAVIVZ +l}#1 VZAVINZ
_|_pV1p/‘27¢],“’1V2 _|_pV1pV27¢],“’1/”2)

_i _i 2 AU V] SRV
4(1 2<>(P77117722)

4 % (p2;7u1uz;71/1112 +p2ﬁ“1”2ﬁ”1“2) (150)

from theorem 4.10 and then invert it to obtain the propagator, i.e. such that!”
6/;11/1 72123 (773 0) PBriosn (P75C0) = (5%51/1 + 5531 5/!:13) (151)
holds, and we obtain equation (149). U

Theorem 4.13. Given the situation of theorem 4.10, the graviton-ghost 2-point vertex
Feynman rule for (effective) QGR reads:

& (p7) = CP Pipn. (152)

Furthermore, the graviton-ghost n-point vertex Feynman rules with n > 2 for (effective) QGR
read (where ¢, denotes the corresponding unsymmetrized Feynman rules):

prlp2llaval-\pnvn (1,0 o
Q:n nn(pl""’pn)

i
=53 Z Z cm\pzl\usmws)\ A3 Vs (p.....p}) (153a)

WiV sESy o
5(i) == s(i—-2)+2

with

v3|..| it o o
corlp2lavs]-|punva (P].-... 1)
n—2
:( %) SPLSH HT}/’GV(H—I P2 ipe
4 #z Vn+1
a=3

[ (2) (p5)3)5z3 533 + p((73)5/;3 5Z3 _ pg)(;/;a 553)

—2p® ( POFIGT 4 pDssys — pI g 353)] } i (153b)

17 Where we treat the tuples of indices j;1; as one index, i.e. exclude the a priori possible term 71”1 fuyvy ON the
right-hand side.
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where particle 1 is the graviton-ghost, particle 2 is the graviton-antighost and the other
particles are gravitons.

Proof. The case n = 2 is immediate and the cases n > 2 follow directly from lemmata 4.3
and 4.5, since we have forn > 2

p1lp2llavs|...| v, o ”
Q:n n¥n Pl

i p1lo2llzEy i)l 5wy oy (o &
=2 E E Cn (pl,...,pn) (154)
Liv; SES, 2

5(i) = s(i—2)+2

with

o1 | pa || p3vs)...| pn o 7
el bkl (7 o)

(_l)n V4| |UnVn ~ poV o~ po
— 5 th_lgmlM 4l ,'7/2 ,'7/
< Do [ T () =2 [ Do [ T ()] (155)
iz iz

and then used momentum conservation twice, i.e. the relation

> | =-p (156)
k=1
k#2

O

Theorem 4.14. Given the situation of theorem 4.10, the graviton-ghost propagator Feyn-
man rule for (effective) QGR reads:

2i¢ .
Porlpn (PPr€) = — e (157)
Proof. To calculate the graviton propagator, we recall

i

piloz oy 250102 158
WD = 5 (158)
from theorem 4.13 and then invert it to obtain the propagator, i.e. such that
2 () Py (P:0) = 5 (159)
holds, and we obtain equation (157). O
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Example 4.15. Given the situation of theorem 4.10, the three- and four-valent graviton

vertex Feynman rules read as follows!'8

mvilmmlusvs (o o ooy 1 Hs(Vs(h) s Vs@) | 153)Vs3)
&; (P1’P2’P3) ) E E (pv(l) Ps(z))

WiV SES3
with
vy lpovslusy
gl 33(pclr’pg)
{ p/’3 V3 2 NINZ V1V2 p/‘3PN1AV1N2AV2V3
1 PRIV B2 13 ZV21V3 HH1V2 HH2V3 JH3V]
+(prepa) ( = HTHRREE A ARER
1 SHLI2 AVIVY S I3V3 ! P 2 s
el noen +3 neen
4 8
and
w11 ]| pav. Hs(Os(D) |-+ sy Vs
&, (PU’~~~,P4 = ZZG o - (ps(l)’ps(Z))
/1 Vi SESy
with
gﬁ:ll’l‘---‘#ﬂ’zt (pclf pg)

X

_ = p/ 3 ”3 ,“1/12 AV1/l4 AV2V4 + Zp/ 3PN1 A1 /lzﬁV2/l4f7V3V4
4

_ lp%p/‘l Wlﬂzﬁl/zl/% Hava 1 PM #1#2;71‘11/277#4”4
U3 4 S D AVIV2 2 V3 V4 U3 P4 2 2 2 V1V3 V2 V4
= *111 PhPIRR 4 p phA iR s

_ ,p/’2p/’3 M1V AV2u47A7V3V4 + p/‘2p/‘1 AV1V277N3N47A7V3V4

(160a)

(160b)

(161a)

1 S SV1VD S U3V3 2 4V 1 M1 HD SVIVD 2 3[4 2 V3 V4
+(p1-p2) 677 [/ +877 noenen

1
D AHIH2 SVIH3 AVIV3 SIAVA ST SVIIZ AV 4 SV3VA
+ 277 noen e n n noen e
+ lwlm AVIV3 S i 2 VoVe 1 SIS SV 14 3H2V3 52 VA
277 noon n n L/

18 We have used momentum conservation, i.e. performed a partial integration on the Lagrange density for general

relativity, to obtain a more compact form.
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(161b)

We remark that the three- and four-valent graviton vertex Feynman rules agree with the cited
literature modulo prefactors and minus signs. Additionally, given the situation of theorem 4.13,
the three- and four-valent graviton-ghost vertex Feynman rules read as follows:

le\ﬂz\\ﬂm (pg,pg) _ 7{ pﬂz( 13 A —|—p SPLH3 pm u3V3)
_ p/31 (175‘377/)21/3 + p;3ﬁpzu3) + p/3’2 (175‘377/)11/3 _|_p53f7mu3)
+ (p2 . p3) (f]Plle]PZlG _|_ f]Plle]PZ#}) } (162)

and
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4.4. Feynman rules for gravitons and matter

Having done all preparations in subsection 4.2, we now list the corresponding Feynman rules
for the interactions of gravitons with matter from the standard model. To this end we state the
Feynman rules for the interactions according to the classification of lemma 4.9 and refer for the
corresponding matter contributions to [19] in order to keep this article at a reasonable length.
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Theorem 4.16. Given the situation of theorem 4.10 and the matter-model Lagrange den-
sities from lemma 4.9, the graviton-matter n-point vertex Feynman rule for (effective) QGR

coupled to the matter-model Lagrange density of type k reads:

1
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)

and
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Proof. This follows directly from corollary 4.4 with lemmata 4.5 and 4.8. O

5. Conclusion

We have derived and presented the Feynman rules for (effective) quantum general relativity and
the gravitational couplings to the standard model. The main results are theorem 4.10 stating
the graviton vertex Feynman rules, theorem 4.12 stating the corresponding graviton propaga-
tor, theorem 4.13 stating the graviton-ghost vertex Feynman rules and theorem 4.14 stating the
corresponding graviton-ghost propagator. Additionally, the graviton-matter vertex Feynman
rules are worked out in theorem 4.16 on the level of 10 generic matter-model Lagrange densi-
ties, as classified in lemma 4.9. The complete Feynman rules can then be obtained by adding
the corresponding matter contributions, as listed e.g. in [19]. Finally, we display the three- and
four-valent graviton and graviton-ghost Feynman rules explicitly in example 4.15. In future
work, we want to study the BRST double complex for (effective) quantum general relativ-
ity coupled to the standard model in [38] and the corresponding longitudinal and transversal
structure in [39]. Furthermore, we study the appropriate setup for a generalization of Wigner’s
elementary particle classification to linearized gravity in [59]. Moreover, we have studied the
renormalization properties of gauge theories and gravity from a Hopf algebraic perspective in
[10, 30]. The gravitational Ward identities will be checked in future work as well, with the
aim to construct the corresponding cancellation identities. This than leads to the possibility
of deriving the corresponding corolla polynomial [40—45], which would relate gravitational
amplitudes to the amplitudes of scalar ¢3-theory.
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