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A METHOD FOR REDUCING THE SENSITIVITY 

OF OPTIMAL NONLINEAR SYSTEMS 

TO PARAMETER UNCERTAINTY 

By Jarrell R. Elliott 
Langley  Research  Center 

and 
William F. Teague 

University of Kansas 

SUMMARY 

The  parameters of a nonlinear  dynamical  system  which is to  be  controlled  optimally 
a r e  not  always  accurately known. It may  therefore  be  desirable  to  accept a reduction  in 
the  predicted  nominal  performance of the  system  in  exchange  for  the  ability  to  better  pre- 
dict  the  outcome of the  system, or plant,  operation. 

In this  paper  relationships  to  predict  mathematically  the  sensitivity of the  system  to 
parameter  errors  are  derived  and  used  to  establish a procedure  for  reshaping  the  optimal 
solution  to  reduce  the  statistical  uncertainty  in  the  terminal  conditions  of  the  system  due 
to known statistical  characteristics of the  system  parameters.  The  procedure  requires 
the  introduction of an  augmented  performance  index  which is a linear  combination of the 
original  performance  index  and a positive  scalar  measure of the  system  sensitivity  com- 
posed of the  weighted sum of the  variances of the  performance  index  and  terminal con- 
straints.  The  augmented  performance  index,  the  sensitivity  partial  derivatives,  and  the 
original  state  variables  are  used  in the formulation of a new,  higher  dimensioned  optimi- 
zation  problem of the  same  form as the  original  problem.  The new problem  introduces 
certain  weighting  factors which permit  different  relative  importance  to  be  attached  to 
different  types of sensitivity,  such as position  relative  to  velocity,  and which  allow for 
adjustment of performance  degradation  and of sensitivity  reduction. 

The  procedure  developed was illustrated by solving a nonlinear  multiparameter 
rocket-trajectory  problem. An algorithm  based on the  method of steepest  descent  was 
used  to  solve  the  problem  because of the  widespread use and  proven  versatility of this 
numerical  technique.  The  example  solutions  serve  to show  the  tradeoffs  made  possible 
by  changing  the  weighting  factors  and  to illustrate the  radically  different  solutions  one 
can  obtain when sensitivity  considerations are included  in  the  problem  formulation. 



INTRODUCTION 

In calculating  the  open-loop  control  time  history of a physical  process  or  plant, it is 
common  to  assume  that  the  plant  behavior or  outcome  can  be  predicted  with  the aid of a 
mathematical  model of the  plant  with known or deterministic  values of the  plant  param- 
eters.  More  often  than  not,  however,  the  plant  parameters are stochastic,  not  determin- 
istic,  and  serious  discrepancies  between  predicted  outcome  and  actual  outcome  may  occur 
as a result  of plant-parameter  variations of one of two types: (1) parameter  variations 
during  plant  operation, o r  (2) errors  in  the  estimates of fixed  plant  parameters.  These 
effects  (that is, the  sensitivity of a dynamical  process  to  parameter  variations)  should  be 
a consideration  in  the  design of any  control  system. 

While many  studies  related  to  plant  sensitivity  have  been  reported  in  the  literature 
(see  refs.  1 to 14 for a nonexhaustive list), most of them  deal  with  linear  problems. It 
also  appears  that little effort   has been  devoted to  computational  aspects (a notable  excep- 
tion is ref. 14). The  present  paper  deals  with  the  stochastic  nature of the  parameters in 
nonlinear  problems  and  shows how a well-known  computational  algorithm  in  optimization 
theory  may be applied  to  obtain  numerical  results. 

The  problem  considered is a multivariable,  multiparameter  optimal  control  problem 
(with terminal  constraints)  whose  mathematical  model  consists of a se t  of ordinary  first- 
order  nonlinear  differential  state  equations.  The  analysis is limited  to  parameter varia- 
tions of type (2). The  sensitivity of the  performance  index  and  the  sensitivity of terminal 
constraints  to  parameter  variations,  that is, the  partial  derivatives of these  quantities 
with  respect  to  the  parameters,  are used to  construct a scalar   measure of plant  sensi- 
tivity.  This  sensitivity  measure, which is the  expected  value of the  weighted sum of the 
squares  of the  sensitivity  partials, is multiplied  by a weighting  factor  and  added  to  the 
original  performance  index  to  form  an  augmented  performance  index.  Minimization of 
this  augmented  performance  index,  with  appropriate  weighting  factors,  results  in  solu- 
tions which are less  sensitive  to  parameter  variations. 

A simple  nonlinear  example  problem,  representative of rocket  flight  in a uniform 
gravitational field, is worked  out  in  detail  to  show  the  steps  required  in  setting up and 
solving  plant  sensitivity  problems  and  to  illustrate how reducing  the  sensitivity of a plant 
to  parameter  variations  can modify  the  open-loop control  time  history and state-variable 
time  history of the  plant.  The  example  also  serves  the  purpose of demonstrating  the  use 
of the  cumputational  algorithm  in  solving a typical  problem. 

This  research was conducted a t  NASA Langley Research  Center, with  William F. 
Teague  in  residence  under a grant  arrangement  with  the  University of Kansas. 
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SYMBOLS 

n X q  sensitivity  coefficient  matrix, af/aa " 

partition of matrix  A (i=1,2, ..., n) 

system  parameter  vector  with  components al,.. .,aq 

mean  (nominal)  value of a - 

aerodynamic  drag  coefficient 

aerodynamic  drag 

"length" of control  step 

control  step-size  measure 

expectation of random  variable () 

n X n  state  coefficient  matrix 

partition of matrix F (i=1,2, ..., n) 

components of - f 

governing  equations of state 

governing  equations of augmented  state 

gravitational  acceleration 

vector  elements of augmented-state  differential  equations (i=1,2, ..., n) 

I$+,IQ$,IQQ constant  matrices  used  in  steepest-descent  algorithm  and  defined by 
equations (A16) 

JA augmented  performance index 
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KD 

L - 

1 

m 

m0 

m 

S 

Si 

T 

t 

tf 
t0 

U 

U - 
V 

V 

W 

modified drag  coefficient 

vector  set of terminal  constraint  values  (in  the  example  problem, L1 and 
L2 are the  values  for  altitude and vertical  velocity  component,  respectively) 

number of terminal  constraints 

dimension of control  vector u; - vehicle  mass 

initial  vehicle  mass 

time  rate of change of mass  

dimension of state  vector - x 

number of augmented-state  variables 

covariance  matrix 

dimension of system  parameter  vector 

sensitivity  matrix, ax " aa; frontal  surface  area 

partition of matrix S (i=1,2, ..., n) 

vehicle  thrust 

/ 

time  (independent  variable) 

final  time 

initial  time 

horizontal  velocity  component, 43 

m-dimensional  control  vector 

total  velocity  magnitude 

vertical  velocity  component, X4 

m X m  (symmetric)  control  weighting  matrix 

relative  weighting  factors (i=1,2, ..., Z+l) 
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sensitivity  weighting  factor 

n-dimensional state vector 

fi-dimensional  augmented-state  vector 

components of - ii. 

range (with numerical  subscript  denoting a specific  state  variable) 

altitude 

flight-path  angle 

thrust-attitude  control  angle 

n-dimensional  adjoint  vector  associated  with payoff 

(2 + 1) X n  variable  matrix  integrating  factor 

2 X n  matrix of adjoint  variables  associated with terminal  constraints 

constant  Lagrange  multiplier 

I-dimensional  constant  Lagrange  multiplier  vector 

atmospheric  density 

sensitivity  performance index 

performance  index  (not  including  sensitivity) 

sensitivity  measure 

2-dimensional  terminal  constraint  vector 

components of - \I/ (i=1,2, ..., 2 )  

transpose of matrix ( ) 

A dot  over a symbol  indicates a derivative  with  respect  to  time.  The  symbol 6 
denotes a variation  in a quantity,  and A denotes a first-order  perturbation. 
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PROBLEM  STATEMENT 

Consider the following fixed- time open-loop  optimal  control  problem: 
Minimize 

for the system 

with terminal  constraints 

+ - L = O  
” 

where 

@p is a scalar  performance  index, 

- x is an  n-dimensional  state  vector, 

- f is an  n-dimensional  state  derivative  vector, 

- u is an  m-dimensional  control  vector, 

- a is a q-dimensional  parameter  vector,  whose  mean  and  covariance  matrix 
a r e  known (q.> = 2 ;  E(6a 6aT} = P), and 

+ is an 2-dimensional  terminal  constraint  vector. - 

(All vectors   are  column  vectors  unless  superscripted by T which  indicates  vector or  
matrix  transpose,  except .- which is a row  vector.) a vector)’ 

It is desired  to  combine  some  measure of sensitivity G S  to GP such  that when the 
combination is minimized,  the  performance  index qP and *.he terminal  constraints + 
will  be  less  sensitive  to  perturbations  in  the  parameters a. It should  be  realized  that 
this reduction  in  sensitivity  will  degrade  the  performance index qP. However,  since 
a system  may  have  more  performance  capability  than is needed, a system  user  may  be 
willing  to  sacrifice  some  performance  in  order  to  reduce  terminal  perturbations or 

- 

- 
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e r ro r s   i n  @ and $b. In order  to  provide  different  degrees of performance  loss  and 
sensitivity  reduction, a weighting  constant is put on the  sensitivity  measure @s, and  the 
sensitivity  performance  index  to  be  minimized is then  defined as 

P - 

The  sensitivity  measure  should  reflect  the  fact  that  the  system is stochastic.  The 
sensitivity  measure  will  therefore  be  taken  to  be  an  expected  value of the  weighted sum 
of the  squares of the  perturbations  in @D and  each Gi due  to  parameter  variations. 
(It is necessary to square  the  perturbation  in GP and  in  each +i 
that  the  measure is positive)., Now since  the  parameter  variations 
described  in  the  introduction,  the  perturbations  to first order  are 

(i=1,2, ..., Z) to  insure 
are of type (2) 

and 

The  squares of these  perturbations  may  be  expressed as 

and 

(i=1,2, ..., Z) 

(i=l,2,  ..., Z) 

The  sensitivity  measure  contains  certain  weighting  factors,  to  be  called  relative  weighting 
factors, which are  required  because one A2 quantity  may  be  considered  more, o r  less,  
important  than  another  (for  example,  one  may  be  more  concerned  with  velocity  errors 
than  position e r r o r s  in  some  application  although  both are used as terminal  constraints). 
Finally,  the  sensitivity  measure is 



On a trajectory  defined  by  some  open-loop  control  time  history,  the  partial  derivatives 
inside  the  expected  value are constant. By well-known  identities  involving  the  expected 
value (see ref. 15), equation (1) may be rewritten as 

Since E (6. haT) P, this  equation  becomes 

where P is the  covariance  matrix of the  random  parameters  which is assumed  to  be 
known along  with  the  mean  value,  that is 

This  expression  for & (eq.  (2))  may  be  recognized as the  weighted  sum of the  vari- 
ances of the  perturbations  in  performance and constraints.  Finally  the  sensitivity  per- 
formance  index  for  minimization is 

Now return  to  the  problem of computing A+ and Aqi. Since  these  perturbations are 
explicitly  functions of the  terminal  state,  they  may  be  written as 

P 

] (4) 

(i=1,2, ..., 2) 

The  remaining  problem is that of determining - (tf). In reference 16 it is shown  that 

for  parameter  variations of type (2) and for  the  system  differential  equations 

ax 
aa - 

ax 
- x = f(x,s(t),a,t) = f(x_,a,t), $t) is the  solution of 
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By defining 

and 

aa 

equation (5) may  be  written as 

- S = FS + A ; S(t0) = 0 d 
dt 

Then @s becomes 

A simple,  easy-to-work-with  form  for @s may  be  determined by reordering  and  pos- 
sibly  introducing  some new variables  such  that 

and 

This  procedure  may, i f  new variables  are  required,  introduce a new system of differential 
equations.  The  notation  used  will  remain  unchanged,  however,  and  the  system of differ-  
ential  equations  will  continue  to be called ir = f .  

" 

Now partition S, where  SiT (i=1,2, ..., n)  denotes  the rows of S, as follows: 
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Then 
$I= ( x1 + WISITPSl + w2s2 T PS2 + . . . + wl+lsz+lTPSkl) I 

tc 

Note  that SiT = Fi S + AiT; F T 

that is, 

F =  

FIT 

FaT 

"" 

"" 

"" 

FnT 

; A =  

1 

and  A  have  been  partitioned  in  the  same  manner as S, 

AIT 

A2T 

"" 

"" 

"" 

AnT 

Observe  that  this  optimization  problem involving the  sensitivity index has  the  same  form 

as the  original  problem  involving  only  the  performance  index  (but  with  more  dimensions) 
and  may  be  solved by any of several  algorithms.  Restated,  the  problem is to  minimize 

subject  to  the  differential  constraints 

- 2 = f = fG&2,t) ; x(to) = go 

SI = S T F1 + A1 = gl(Z,Si7g,B,t) ; Sl(to) = 0 
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and  the  terminal  conditions 

k(Z(tf)) = 4 

The  augmented-state  terms are defined as follows: 
4 

dx 
Then  the  differential  constraints are = = f(ii,u,Z,t).  Thus it  may  be  seen  that  the  only 
difference  between  this  problem  and  the  original  problem is that  it  is now possible  to 

dt ---- 

control,  at  the  expense of performance  index Cp the  sensitivity of the  trajectory,  and 
the  problem is now an   n( l  + q)-dimensional  state-variable  problem  rather  than  an 
n-dimensional  one.  Also  several  weighting  factors (ws and ~ 1 . ~ 2 ,  ..., W Z + ~ )  have  been 
introduced  into  the  problem.  These  weighting  factors are to  be  used  in  applications  to 
control  the  loss  in  the  performance  index C#J and  to  properly  emphasize  the  importance P 
of one  type of terminal  error  relative  to  another type.  The  contribution  and  effect of 
these weighting  factors  will  be  illustrated  in an example  problem. 

P' 

It  should be pointed  out  that  solving  the  differential  equations  for  the  sensitivity 
partials  gives all the  information  needed  to  perform a f i rs t -order   error   analysis  on any 
of the  state  variables of the  original  system. In the  example  problem, a comparison  will 
be  made  between  first-order  error  analysis  results  obtained  by  using  the  sensitivity 
partials  and  f irst-order  error  analysis  results  for  which  one-sigma  errors were intro- 
duced  one a t  a time  into  the  equations of motion. 

The  discussion  herein  deals  with  the  fixed-time  problem.  However,  fixed  time w a s  
used  for  convenience  and  clarity  only  and is not a limitation of the  formulation. 

While almost  any of the  algorithms  for  solving  optimization  problems would be 
applicable  here,  it was decided  to  use  the  steepest-descent  algorithm as outlined  in ref- 
erence 16 because of its widespread  use  and  proven  versatility.  The  procedure  used  in 
this  algorithm is to  linearize  about a solution ?*(t) provided  by  some  reasonably  chosen 
control  time  history u*(t)  (which in  general  neither  minimizes Cp nor  satisfies 
@ - 4 = 0) and  to  solve  for  6u(t)  (which  improves Cp(tf) and Ic/(tf)). A new solution 
provided by u"(t) + 6u(t) is obtained  and  the  procedure is repeated  successively  until 
@ - 4 is sufficiently  close  to  zero  and  @(tf)  can  no  longer  be  decreased.  This  final 
solution is said  to be optimal  although  no  necessary  conditions  for  optimality  have  been 

- 
- 

- - 
- - 

- 
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satisfied.  A  brief  derivation of the  necessary  relationships  with  notation  common  to 
many  steepest-descent  programs is provided  in  appendix A. The  algorithm was applied 
to  the  following  example  problem. 

A NUMERICAL EXAMPLE 

Problem  Statement 

The  example  problem is a fixed-time  problem  in  which  it is required  to  determine 
the  thrust-attitude  program of a single-stage  rocket  vehicle  starting  from rest and  going 
to specified  terminal  conditions of altitude  and  vertical  velocity which will  maximize  the 
final  horizontal  velocity.  The  idealizing  assumptions  made a r e  the  following: 

(1) A point-mass  vehicle 
(2) A flat, nonrotating  earth 
(3)  A  constant-gravity  field,  g = 9.8 m/sec2 (32.2 ft/sec2) 
(4) Constant  thrust  and  mass-  loss  rate 
(5) A nonlifting body in a nonvarying  atmosphere  with a constant  drag  parameter 

KD = -PC$, where S is the  frontal  surface  area. 1 
2 

The  coordinate  system  and  pertinent  geometric  relations and terms are shown  in 
figure 1. The  differential  equations of motion  needed  in  the  algorithm  setup a r e  

” = - 
dt  m 
du (T cos 8 - K p V )  = 21 = f l  7 
dY 
” - 
dt 

- v = x 2 = f 2  

* = -(T sin e - KDUV) - g = k3 = f 3  
dt  m J 1 

where  m is the  vehicle  mass  and  where 

and 

m(t) = mo + mt 

An equation  for  dx/dt is not  included  in  the  equations of motion  becuase  x  does 
not enter  into  the  problem.  However  the  equation k = u was integrated  separately  to 
obtain  range.  The  equation  for  dm/dt is analytically  integrable,  since  dm/dt is a 
constant,  and is therefore not  included  in  the  set of differential  equations. 
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The  parameters of the  problem, which  will  be  considered  fixed  constants  whose 
precise  values are unknown, are thrust  level,  mass-loss  rate,  initial  vehicle  mass,  and 
modified  drag  coefficient.  The  parameter  vector is defined as 

These  parameters are assumed  to  be  statistically  independent  and  to  have a normal  dis- 
tribution  function  with  mean  and  one-sigma  values as shown  in  table I. 

TABLE I.- SYSTEM PARAMETER VALUES 

Parameter  Mean value 

Thrust,  T, kN (Ibf) . . . . . . . . . . . . . . . . . . . .  

0.048  (0.001), 0.479 (0.01) Modified drag  coefficient, KD, kg/m  (slugs/ft) . . . . . .  
1433.6  (98.259) Initial  mass, m,, kg (slugs) . . . . . . . . . . . . . . . .  

-9.1  (-0.62) Mass-loss  rate, m, kg/sec  (slugs/sec) . . . . . . . . . .  
17.8  (4000) 

__ 

fraction of mean  valu 
One-sigma  value, 

0.0067 

0.0167 

0.010 

0.0167 

These values are considered  representative of the  current  state of knowledge i n  
solid  rocketry.  The  mean  values  used  were  chosen  to  conform  to a flight of 100 seconds 
for a rocket  with  specific  impulse of 200 seconds, an average  acceleration 

( 

l J l o o  x dt of 2g, and a ratio of initial  to  final  mass  m(to)/m(tf)  equal  to  e,  the 
100 t = O  m(t> \ 

base of the  natural  logarithm. 

The  boundary  conditions a t  t = 0 and  t = 100 seconds are shown in  table II. 

TABLE 11. - BOUNDARY  CONDITIONS 

Variable 

u,  m/sec  (ft/sec) . . . . . . . . . .  
y, m (ft) . . . . . . . . . . . . . . .  
v, m/sec  (ft/sec) . . . . . . . . . .  

Initial  conditions 
(t = 0) 

Terminal  conditions 
(t = 100 seconds) 

i Maximum 

15 240 (50 000) 

In the  notation  previously  introduced 

13 
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@ - y(tf) - L1 = 0 ; L1 = 15240  m  (50000  ft) 1 -  

and  the  vector  control  variable - u in  the  general  formulation is the  thrust-attitude 
angle 8 .  This  completes  the  problem  statement (without trajectory-sensitivity 
considerations). 

Sensitivity  Relations 

The  sensitivity-matrix  differential  equation is 

@ = F S + A  
dt 

where 

S =  i - av aT 

" 
au 
am 

and 

14 

f l  

0 

if3 + 9) 



dSiT  T 
-= Fi S + A i  T 

dt 

or in  column  vector  form 

dSi T 
dt - = S  F i + +  

The  sensitivity  measure is 

qs = E {wl AU2(Q) + w2 AY2(tf) + w3  Av2 (Qj) 

which may  be  written as 

where 

0 

1 0 0 

0 0 

R2 
0 

(i=1,2,3) 

- 
0 

0 

(i=1,2,3) (16) 

0 

Problem  Statement Including  Sensitivity 

The  augmented-state  vector is 

15 



with  the  initial  conditions 

- ';T(to) = Eta, .  . .,q 
The  problem  restatement  with  sensitivity  considerations is to  minimize 

subject  to 

and 

Ql = fr2 (4) - L1 = 0 ; L1 = 15 240 m  (50000  ft) 

q2 = ii.3(tf) - L~ = o ; L~ = o m/sec (0 ft/sec) 

Numerical  Results 

As previously  mentioned,  the  steepest-descent  algorithm of reference 17 was  imple- 
mented  to  obtain  numerical  results.  These  results  were  computed  with  the  use of a 
fourth-order  integration  subroutine  with a fixed  step  size of 0.5 second. For this  example 
problem  each  iteration  in  the  solution  required  integration of 15  augmented  state  differen- 
tial  equations  plus  the  forward  integration of the  range  equation  and  backwards  integration 
of 45 adjoint  variable  differential  equations.  Each  iteration  required  about 22 seconds on 
the  Control  Data 6600 computer  system  used  with no special  effort  having  been  made  to 
keep  computer  run  time down. Several  check  solutions  were  computed  with  the  use of a 
0.125-second  fixed  step  size.  These  check  solutions  always  agreed  to  at  least  five,  and 
usually  to  at  least  seven,  significant  figures  with  those  computed with the  use of the 
0.5-second  step size. 

Numerical  results  for a variety of cases  were  obtained by changing  the  values of 
KD (the  modified drag  coefficient), ws (the  sensitivity  weighting  factor),  and w1,w2,w3 
(the se t  of relative  weighting  factors).  The  different  combinations  for  which  results  were 
obtained a r e  shown in  table III. 
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TABLE  ID.- CATALOG OF CASES 

I Relative-weighting-factor sets I KD I 
I 

W S  

Set (1): w1 = w3 = I; w2 = 10-2 I 0 1 0, 0.1, 0.396, 1.0, 10.0 

Set (2): w 1 =  w3 = 1; w2 = 10-4 I{ :.ool I 0, 0.1, 0.3, 1.0,  10.0 
0, 0.1,  1.0,  10.0 

The relative-weighting-factor sets  were  chosen on the  basis of the  relative  impor- 
tance  attached  to  velocity (wl applies  to  horizontal  velocity  and w2 applies  to  vertical 
velocity)  and  position (w3 applies  to  altitude  errors) . Set (1) gives  equal  weight  to a 
0.305-m/sec (1-ft/sec) velocity  error and a 3.05-meter (10-foot) altitude  error,  while 
set (2) gives  equal  weight  to a 0.305-m/sec  (l-ft/sec)  velocity  error  and a 30.5-meter 
(100-foot)  altitude e r ro r .  

The  modified drag  coefficient KD was  set  at  zero,  simulating  vacuum  flight,  and 
a t  0.001, a representative  value  for  small  rockets  in  the  earth's  atmosphere.  Setting 
KD at  zero  reduced  the  number of parameters  to  three.  It  also  made  possible,  for 
ws = 0, an  analytical  calculus-of  -variations  solution  for  the  optimal  thrust-attitude  time 
history;  namely,  the  well known linear  tangency  law (ref. 18). 

tan O ( t )  = (Y + pt 

where CY and p are constants  determined by the  boundary  conditions of the  problem. 
This  calculus-of  -variations  solution  was  used  to  validate  the  steepest  -descent-algorithm 
programing and  solution.  The  comparison of results showed  negligible  differences. 

Also,  for KD = 0, it  can  be  shown  that 

and 

- = - V(tf)  +tfg av 1 
aT  T 

Therefore,  these  partials  will  not  change  with ws fo r  KD = 0. 

As an independent  check on the  sensitivity  partials,  perturbations  in  u,  v,  and  y 
a t  tf due  to  plus  and  minus  one-sigma  errors  in  each  parameter,  taken  one at a time, 
were  computed. For example,  the  one-sigma (lo) perturbation  in  u  due  to  parameter 
errors was  computed by using  the  relation 
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where  u(9)  means  u  at tf on a trajectory  with T increased  by  its  one-sigma 
+loT 

value,  where  u  t means  u  at tf  on a trajectory  with & decreased by its  one- ( f >  -I*& 
111 

sigma  value,  and s o  forth.  Similar  computations  were  made  for Av!? and  Aylo.  One- (2) 

sigma  perturbation  values  computed by this  method  were  compared  with  one-sigma  values 
computed by using  the  sensitivity  partial  derivatives.  For  example,  the  one-sigma  (lo) 
perturbation  in  u  was  computed as follows by using  the  sensitivity  partials: 

where  6Tlo,  6mlo  and so  forth are one-sigma  perturbations  in  the  parameters.  Simi- 
lar computations  were  made  for Avf? and  Aylo.  Superscript (1) refers to 10. pertur- 
bations  obtained  by  using  sensitivity  partials,  and  superscript (2) indicates  that  the  method 
of computation  was  to  obtain  an  average  perturbation  value by assuming  first  plus  and  then 
minus la variations  in  each  parameter. 

(1 1 

Discussion of Numerical  Results 

Numerical  results  for  the  converged  trajectories  are  summarized  in  figures 2 to 11, 
which  give  control  time  histories  and  trajectory  plots,  and  in  tables  that  give  sensitivity 
partials,  one-sigma  perturbation  values, and @s and @p. 

Figure 2 shows  the  control  time  history  used  initially  and  the  converged  control 
time  history  after 10 iterations  for  the  conditions  indicated (KD = 0; ws = 0) to  illustrate 
how a reasonably  chosen  control  time  history is modified  by  the  algorithm  to  obtain an 
"optimal"  solution.  Optimal  here  means  that a gradient  function has been  reduced  several 
orders  of magnitude o r  to  some  reasonable  value. A plot of tan O(t) as a function of time 
was  made  for  this  converged  trajectory,  and  the  intercept  and  slope of a straight  line 
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fairing  to  that  plot are compared  in  table IV with  the  values of the  constants CY and p 
required  in  the  calculus -of -variations (C.O.V.) solution. 

TABLE 1V.- LINEAR-TANGENCY-LAW CONSTANTS 

Constants 
.. 

C Y . . . . .  

p . . . . .  
" 

Faired  values 

3.49 

-0.0401 
. _  

I C.O.V. values 
I - -  I 

The  agreement is considered  to be good, in view of the  crude  fairing  method  and 
other factors relating  to how the  C.0.V.  values of a, and p were  obtained.  Also  the 
trajectories showed  good agreement. 

Table  V(a)  and  figures 3, 4,  and 5 summarize  converged  numerical  results  for 
KD = 0 and se t  (1) relative  weighting  factors  for  several  values of the  sensitivity 
weighting  factors.  The  sensitivity  partials of table  V(a)  show  consistent  trends,  with 
altitude  and  horizontal-velocity  sensitivity  partials  decrea.sing  in  magnitude while 
vertical-velocity  sensitivity  partials are increasing  in  magnitude  with  increases  in ws. 
These  trends are also  reflected  in  the  root-sum-square  perturbations;  one-sigma  (la) 
perturbation  values of altitude  and  horizontal  velocity  decrease  while  those of vertical 
velocity  increase.  The  percentage of the  original  value  (value  with ws = 0) of Aula, 
Aylo,  Avla, C$s, and C$p is plotted  in  figure 3 against  sensitivity  weighting  factor. 
For values of ws larger  than  about 0.3 ,  little  change  takes  place  in  Avla, AylU, and 
qS, but the  performance C$ continues  to  degrade  along  with a decrease  in Aula.  The 
control  time  histories  for  these  cases, shown in  figure 4, exhibit  an  interesting  charac- 
teristic.  As ws becomes  larger,  the  control  tends  toward a bang-bang  type of control 
where  the  thrust is either  directed  straight  up  (vertical) o r  straight down. While i t  
appears  that  the  steepest-descent  program  indicates  the  existence of a bang-bang  optimal 
control  law,  attempts  to  predict  this  behavior  analytically  have  been  unsuccessful.  Alti- 
tude is plotted  against  range  in  figure 5 where it may be observed  that  the  trajectory 
becomes  steeper as ws increases.  

( p) 

Table V(b) and  figures 6 to 9 summarize  the  results  for KD = 0 and se t  (2) rela- 
tive  weighting  factors.  Set (2) puts less emphasis on the  altitude  sensitivity  partials  than 
se t  (1). Thus  altitude  sensitivity  partials  increase  for  set (2) rather  than  decrease as 
they  did for   set   ( l ) ,  and  both  horizontal  and  vertical-velocity  partials  decrease.  Figure 6 
clearly  illustrates  these  results  in the plots of Ayla,  Avla, and Aula. By comparing 
this  figure  with  figure 3, it may be seen  that Ayla and Avlo have  switched  positions 
on  the  plots.  Also it appears  that $s begins  to  level off and  remain  essentially  con- 
stant at ws = 10.0 in figure 6 whereas it leveled off and  became  essentially  constant at 
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TABLE V.- SENSITIVITY  PARTIALS AND RELATED INFORMATION 

(a) KD = 0; w1 = w3 = 1, w2 = 10-2  (Set (1)) 

- - 

Values  for  sensitivity  weighting  factor ws, of - 
_ .  

0 
. .  

1.106 

-6 322 

-84.98 

110.1 

110.2 

52.75 

-96 140 

-2 755 

3  209 

3 210 

0.805 

-1 419 

-41.74 

48.57 

48.57 

4 423 

117 500 
" ~ 

0.1 

0.973 

-5 970 

-77.34 

101.3 

101.4 

52.75 

-82  950 

-2 672 

3 100 

3  100 

0.805 

-1 646 

-43.17 

50.50 

50.51 

3 892 

108 900 

~" . ~" 

Sensitivity  partials 
and  related  terms 

(*I t 
au/aT 

au/alin 

au/amo 

Au la 
(1) 

(2) 

ay /aT 

ay/alin 

ay/amo 

AY g 
AY 

av/aT 

%/a& 

av/amo 

Av la 
(1) 

Av 10. 
(2) 

@P 
@S 

" 

* Superscripts (1) and (2) refer  to  one-sigma  (lo)  perturbations  obtained by using  the 
sensitivity-partial-derivative method  and  the parameter method,  respectively. 

0.396 

0.372 

-2  044 

-28.07 

36.1 

36.2 

52.75 

-7 3 640 

-2 613 

3 025 

3 025 

0.805 

-1 805 

-44.18 

51.91 

51.93 

1489 

95 500 

1.0 
- 

0.163 

-838 

-11.93 

15.2 

15.3 

52.75 

-72 790 

-2 608 

3  019 

3  019 

0.805 

-1 820 

-44.27 

52.04 

52.12 

651 

94 100 
- 

" . - 

10.0 
- 

0.02c 

-101 

-1.44 

1.8 

1.8 

52.75 

-72 610 

-2 606 

3  017 

3  017 

0.805 

-1 823 

-44.29 

52.07 

52.18 

79 

93 700 
- 
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TABLE V.- SENSITIVITY PARTIALS AND RELATED INFORMATION - Continued 

Values for sensitivity  weighting  factor, ws, of - 
.- ~ 

0 

1.106 

-6  322 

-84.98 

110.1 

110.2 

52.7 5 

-96  100 

-2 755 

3 209 

3 210 

0.80 5 

-1 419 

-41.74 

48.57 

48.57 

4 423 

15 510 

0.1 

1.084 

- 5 869 

-81.22 

104.4 

104.4 

52.75 

-102  100 

-2 793 

3 260 

3 260 

0.805 

-1 316 

-41.09 

47.71 

47.72 

4 336 

14  240 

~ 

0.3 

0.723 

-2 267 

-43.76 

52.6 

52.6 

52.75 

-108  500 

-2 833 

3 315 

3 316 

0.805 

- 1 206 

-40.40 

46.82 

46.82 

2 891 

6 060 

1 .o 
0.448 

-103 

-18.88 

22.1 

22.1 

52.7 5 

-112 100 

-2 856 

3 347 

3 347 

0.805 

-1 146 

-40.02 

46.35 

46.33 

1791 

3 760 

10 .o 
0.104 

174 

-3.40 

4.5 

4.5 

52.75 

- 126  400 

-2 946 

3 474 

3 475 

0.805 

-899 

-38.46 

44.45 

44.40 

4 17 

3 200 
* Superscripts (1) and (2) refer to  one-sigma (la) perturbations  obtained by using 

:he sensitivity-partial-derivative method  and  the  parameter  method,  respectively. 
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ws = 1.0 in  figure 3. Part of the  reason is the  change  in  the  magnitude of @s due to  
changing  only  the  relative  values of the  relative  weighting  factors  without  regard  to  their 
magnitude.  This is clearly  illustrated by the  near-order-of-magnitude  difference  in GS 
fo r  set (1) and set (2) at ws = 0. (Compare tables V(a) and V(b).)  The trajectories  for 
the two sets are the  same; @s changes  with  the  change  from set (1) to  set (2). Reducing 
the  values of @s in table V(a)  by dividing  by  the  constant '17 '0° = 7.57 so that both 
cases  have  the  same G S  at ws = 0, and  incorporating  this  constant  into  the  weighting 
factor by  multiplying  each ws  of table V(a) by 7.57, allows a more  reasonable  compari- 
son.  This  comparison is shown in  figure 7 where  the  ordinate is called ws (adjusted). 
This  figure  shows  the  differences  which  come  about  due  to  different  relative-weighting- 
factor sets. 

15 510 

The  control  time  histories  for relative-weighting-factor se t  (2) are shown  in  fig- 
ure  8. Again there is a tendency  toward a bang-bang  type of control, as ws increases, 
which  may  be  noted  by  observing  that  the  angle  difference  between  the  nearly  constant 
attitude  portion of the  control  time  history  at  the  beginning  and  near  the end of flight is 
about 180° for  both ws = 1.0  and ws = 10.0.  Figure 9 shows  that  in  comparison  with 
the  set (2) trajectory  for ws = 0, the  other  set  (2) trajectories are generally less steep. 
The  opposite  result is shown for  set  (1) in  figure 5; in  comparison  with  the  set (1) trajec- 
tory  for ws = 0, the  other  set (1) trajectories  are  more  steep.  These  results  indicate 
the  importance of the  relative  weighting  factors  in  shaping  the  trajectories. 

Data  for a nonzero  value of KD,  KD = 0.001,  and relative-weighting-factor se t  (2) 
a r e  shown in  table  V(c)  and  figures  10  and 11. Data for  ws = 0.1 a r e  shown in table  V(c) 
but  not  in figures 10  and 11 because  the  control  time  histories  and  trajectories  essen- 
tially  coincide  with  those  for ws = 0. In table  V(c)  it  may  be  observed  that  while  consis- 
tent  data  trends  are shown  in  the  first  three ws columns,  the  data  in  the  column  for 
ws = 10.0 are not consistent.  The  consistent  data  trends  in  the  first  three  columns  are 
very  similar  to  those  in  table V(b).  The  inconsistency of the  last  column  may  be  explained 
by examination of figures  10 and 11 where  the  radically  different  character of the  control 
time  history and trajectory  for ws = 10.0  may  be  seen.  This  result  for ws = 10.0  was 
so unusual  that  it  was  believed  necessary  to  verify  the  answer.  Accordingly,  verification 
was  obtained by iterating  to  the  same  result  (essentially)  from  an  additional two different 
nominal  trajectories.  These  results  therefore  appear  correct.  It is believed  that  the 
data  inconsistency  results  from  the  different  character of the  trajectory - that is, the 
bending  back of the  trajectory as seen  in  figure 11. With  the  exception of this ws = 10.0 
case,  the  trajectories are less   s teep with  increasing  ws  just as they  were  in  figure 9 
for a similar  case with zero  drag. 

For all of the cases discussed  herein, good agreement  was  observed  (see 
tables  V(a),  V(b),  and  V(c))  between  the  one-sigma  perturbations  computed by using 
sensitivity  partials  and  those  computed by using  the  parameter-perturbation  method. 
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TABLE V.- SENSITIVITY  PARTIALS AND RELATED INFORMATION - Concluded 

(c) KD = 0.001; w1 = w3 = 1, w2 = (Set (2)) 

Sensitivity  partials 
and  re la ted  terms 

(*I 
&/aT 

au/a& 

au/amo 

au/aK,, 

(1) 

Au la 
(2 1 

ay /a T 

ay/al;l 

ay/am, 

ay/aKD 

@P 
@S 

Values  for  sensitivity  weighting  factor, ws, of - 
0 

25.35 

-756.9 

-8.11 

-687 000 

17.37 

17.37 

31.94 

-44  640 

-1 438 

14  190 000 

1730 

1729 

16.18 

-7.8 

-3.80 

-278 700 

7.358 

7.357 

1 824 

655 

0.1 

25.24 

-747.1 

-7.99 

-6  88  900 

17.28 

17.28 

31.96 

-44  840 

- 1 440 
-14  200 000 

1732 

1732 

16.13 

4.6 

-3.68 

-280  400 

7.309 

7.311 

1824 

652 

~ 

1.0 
~ 

24.35 

-668.1 

-7.04 

-697  500 

16.52 

16.52 

32.11 

-46  37 0 

-1 456 

-14  220 000 

1751 

1751 

15.81 

101.8 

-2.81 

-293  500 

7.102 

7.100 

1811 

630 

10.0 

12.07 

-002.8 

-1.27 

-359  900 

6.61 

6.61 

31.81 

-44  800 

-1 428 

-14  350 000 

1712 

1712 

17.01 

34.5 

-3.52 

-3 13 700 

7.766 

7.766 

91 1 

40 3 

1 

* Superscripts (1) and (2) refer  to  one-sigma (lo) perturbations  obtained by using 
the sensitivity-partial-derivative method  and  the  parameter  method,  respectively. 
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CONCLUDING REMARKS 

It has  been shown how a sensitivity  measure,  composed of the weighted sum of the 
variances of the  performance index  and  terminal  constraints,  may  be  added  to  the  perfor- 
mance  index of a stochastic  optimal  control  problem  to  achieve a reduction  in  performance 
and constraint  sensitivity  due  to  parameter  perturbations. 

It was necessary  to  assume  that  the  parameters of the  system  remained  fixed  during 
system  operation and that  the  stochastic  nature of the  problem  came  about  because of 
inexact  knowledge of these  fixed  values. 

It was shown how this  technique  increased  the  dimensionability of the  optimization 
problem  and  introduced  weighting  factors or  constants  for  use as design  parameters. 
These  weighting  factors  permit  different  relative  importance  to  be  attached  to  different 
types of sensitivity,  such as position  relative  to  velocity,  and  allow  for  adjustment of 
performance  degradation  and of sensitivity  reduction. 

The  feasibility of solving  nonlinear  multiparameter  problems by using  this  technique 
was  illustrated by solving  an  example  rocket-trajectory  problem  through  application of a 
steepest-descent  algorithm.  The  example  solutions  also  served  to  illustrate  the  tradeoffs 
made  possible by changes  in  the  weighting  factors. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., April 14, 1971. 
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APPENDIX  A 

STEEPEST-DESCENT DERIVATION 

The  problem is to  find  the  control  time  history  u(t), to 5 t 6 tf, which minimizes 

subject  to  the  differential  constraints 

- 2 = f(z,z,t) ; x(to) = zo (given) 

and  the  terminal  constraints 

The  solution is obtained  iteratively.  Choose a reasonable  time  history  u*(t) and - 
obtain x* (t), a solution  to  equation (A2). This  solution,  in  general, is such  that  neither 
@ is minimum  nor Q = L. 

" 

Linearizing  about  this  solution  gives 

o r  

Now, for  convenience,  let A(t)  be  the  solution of 
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APPENDIX  A - Continued 

with 

where 

N 

- Q = [;] 
Then  equation (A5) becomes 

82 
ax - or, letting b+ - = - 6x(tf> , 

Partition A (t) as- follows : 

Then,  since - x (to) is given  and 6x - (to) = 0, 

and 

- 

Now for  some  measure of allowable  control  perturbation 

(dP)2 = ltf 6gTW 6u dt ; W = W > 0 
T - (A13 

t0 

minimize 64 and  choose 6+ - such  that " +( x(tf)) = L will be satisfied (or more  nearly 

so). Form  an  augmented  function  to  be  minimized 
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APPENDIX  A - Concluded 

where p and v a r e  constant  Lagrange  multipliers. For JA to  be  an  extremum,  its 
variation  with  respect  to 6u must  be  zero - that is, 

- 
- 

This  requirement  implies  that 

for all t.  

In order   to  
tions (A10) 

Solving for 6u, - 

solve  for p and v this  expression  for 6u is substituted  into  equa- 
and (All)  to obtain 

- - 

where  the  sign on the  radical is minus  because @ is being  minimized and where 
\ 

Now let 

u(t) - = u*(t) - + 6u(t) - 

be  the new control  time  history  used  to  obtain a solution  to  equation (A2) and repeat  the 
same  procedure  until I) - L  and  the  gradient of the  payoff-constraint  surface - -  

a r e  sufficiently  close  to  zero. 
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Figure 1.- Coordinate  system  and  geometric  relations. 
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Figure 2.- A comparison of the  initial  guessed  thrust-attitude 
control  time  history  with  the  steepest-descent  generated 
optimal  thrust-attitude  control  time  history. KD = 0; ws = 0. 
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Figure 3.- One-sigma (lo) e r r o r  components  and  sensitivity  and  performance  indices 
plotted  against  sensitivity  weighting  factor. KD = 0; w1 = w3 = 1, w2 = 10-2. 
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Figure 4.- Comparison of optimal  control  time  histories  for  different  sensitivity 
weighting factors KD = 0; w1 = w3 = 1, w2 = 
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Figure 5.- Comparison of optimal  trajectories  for  different  sensitivity 
weighting  factors. KD = 0; w1 = w3 = 1, w2 = 10- 2 . 
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Figure 6. - One-sigma (lo) error  components  and  sensitivity  and  performance  indices 
plotted  against  sensitivity weighting factor. KD = 0; w1 = w3 = 1, w2 = 
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Figure 7.- Set (1) and  set (2) sensitivity  and  performance  indices  plotted  against 
a sensitivity  weighting  factor  adjusted for equal  sensitivity at w2 = O .  KD=O. 
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Figure 8.- Comparison of optimal  control  time  histories for different 
sensitivity  weighting  factors. KD = 0; w1 = w3 = 1, w2 = 
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Figure 10.- Comparison of optimal control time  histories for different 
sensitivity weighting factors. KD = 0.001; w1 = w3 = 1, w2 = 10- 4 . 
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