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Preface

Elementary Number Theory in Nine Chapters is primarily intended for a

one-semester course for upper-level students of mathematics, in particular,

for prospective secondary school teachers. The basic concepts illustrated in

the text can be readily grasped if the reader has a good background in high

school mathematics and an inquiring mind. Earlier versions of the text

have been used in undergraduate classes at Providence College and at the

United States Military Academy at West Point.

The exercises contain a number of elementary as well as challenging

problems. It is intended that the book should be read with pencil in hand

and an honest attempt made to solve the exercises. The exercises are not

just there to assure readers that they have mastered the material, but to

make them think and grow in mathematical maturity.

While this is not intended to be a history of number theory text, a

genuine attempt is made to give the reader some insight into the origin and

evolution of many of the results mentioned in the text. A number of

historical vignettes are included to humanize the mathematics involved.

An algorithm devised by Nicholas Saunderson the blind Cambridge

mathematician is highlighted. The exercises are intended to complement

the historical component of the course.

Using the integers as the primary universe of discourse, the goals of the

text are to introduce the student to:

the basics of pattern recognition,

the rigor of proving theorems,

the applications of number theory,

the basic results of elementary number theory.

Students are encouraged to use the material, in particular the exercises,

to generate conjectures, research the literature, and derive results either
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individually or in small groups. In many instances, knowledge of a pro-

gramming language can be an effective tool enabling readers to see

patterns and generate conjectures.

The basic concepts of elementary number theory are included in the first

six chapters: finite differences, mathematical induction, the Euclidean

Algorithm, factoring, and congruence. It is in these chapters that the

number theory rendered by the masters such as Euclid, Fermat, Euler,

Lagrange, Legendre, and Gauss is presented. In the last three chapters we

discuss various applications of number theory. Some of the results in

Chapter 7 and Chapter 8 rely on mathematical machinery developed in the

first six chapters. Chapter 7 contains an overview of cryptography from the

Greeks to exponential ciphers. Chapter 8 deals with the problem of

representing positive integers as sums of powers, as continued fractions,

and p-adically. Chapter 9 discusses the theory of partitions, that is, various

ways to represent a positive integer as a sum of positive integers.

A note of acknowledgment is in order to my students for their persis-

tence, inquisitiveness, enthusiasm, and for their genuine interest in the

subject. The idea for this book originated when they suggested that I

organize my class notes into a more structured form. To the many excellent

teachers I was fortunate to have had in and out of the classroom, in

particular, Mary Emma Stine, Irby Cauthen, Esayas Kundert, and David C.

Kay, I owe a special debt of gratitude. I am indebted to Bela Bollobas, Jim

McGovern, Mark Rerick, Carol Hartley, Chris Arney and Shawnee

McMurran for their encouragement and advice. I wish to thank Barbara

Meyer, Liam Donohoe, Gary Krahn, Jeff Hoag, Mike Jones, and Peter

Jackson who read and made valuable suggestions to earlier versions of the

text. Thanks to Richard Connelly, Frank Ford, Mary Russell, Richard

Lavoie, and Dick Jardine for their help solving numerous computer soft-

ware and hardware problems that I encountered. Thanks to Mike Spiegler,

Matthew Carreiro, and Lynn Briganti at Providence College for their

assistance. Thanks to Roger Astley and the staff at Cambridge University

Press for their first class support. I owe an enormous debt of gratitude to

my wife, Terry, and daughters Virginia and Alexandra, for their infinite

patience, support, and understanding without which this project would

never have been completed.
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Preface to the Second Edition

The organization and content of this edition is basically the same as the

previous edition. Information on several conjectures and open questions

noted in the earlier edition have been updated. To meet the demand for

more problems, over 375 supplementary exercises have been added to the

text. The author is indebted to his students at Providence College and

colleagues at other schools who have used the text. They have pointed out

small errors and helped clarify parts that were obscure or diffuse. The

advice of the following colleages was particularly useful: Joe Albree,

Auburn University at Montgomery; Ed Burger, Williams College; Under-

wood Dudley, DePauw University; Stan Izen, the Latin School of Chicago;

John Jaroma, Austin College; Shawnee McMurran, California State Uni-

versity at San Bernardino; Keith Matthews, University of Queensland;

Thomas Moore, Bridgewater State College; Victor Pambuccian, Arizona

State University; Tim Priden, Boulder, Colarado; Aldo Scimone, Italy; Jeff

Stopple, University of California at Santa Barbara; Robert Vidal, Nar-

bonne, France; and Thomas Weisbach, San Jose, California. I am also

particularly indebted to the helpful suggestions from Mary Buckwalter,

Portsmouth, Rhode Island, John Butler of North Kingston, Rhode Island,

and Lynne DeMasi of Providence College. The text reads much better as a

result of their help. I remain solely responsible for any errors or short-

comings that remain.

xi





1

The intriguing natural numbers

‘The time has come,’ the Walrus said, ‘To talk of many things.’

Lewis Carroll

1.1 Polygonal numbers

We begin the study of elementary number theory by considering a few

basic properties of the set of natural or counting numbers, f1, 2, 3, . . .g.
The natural numbers are closed under the binary operations of addition and

multiplication. That is, the sum and product of two natural numbers are

also natural numbers. In addition, the natural numbers are commutative,

associative, and distributive under addition and multiplication. That is, for

any natural numbers, a, b, c:

aþ (bþ c) ¼ (aþ b)þ c, a(bc) ¼ (ab)c (associativity);

aþ b ¼ bþ a, ab ¼ ba (commutativity);

a(bþ c) ¼ abþ ac, (aþ b)c ¼ acþ bc (distributivity):

We use juxtaposition, xy, a convention introduced by the English mathema-

tician Thomas Harriot in the early seventeenth century, to denote the

product of the two numbers x and y. Harriot was also the first to employ

the symbols ‘.’ and ‘,’ to represent, respectively, ‘is greater than’ and ‘is

less than’. He is one of the more interesting characters in the history of

mathematics. Harriot traveled with Sir Walter Raleigh to North Carolina in

1585 and was imprisoned in 1605 with Raleigh in the Tower of London

after the Gunpowder Plot. In 1609, he made telescopic observations and

drawings of the Moon a month before Galileo sketched the lunar image in

its various phases.

One of the earliest subsets of natural numbers recognized by ancient

mathematicians was the set of polygonal numbers. Such numbers represent

an ancient link between geometry and number theory. Their origin can be

traced back to the Greeks, where properties of oblong, triangular, and

square numbers were investigated and discussed by the sixth century BC,

pre-Socratic philosopher Pythagoras of Samos and his followers. The
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Greeks established the deductive method of reasoning whereby conclusions

are derived using previously established results.

At age 18, Pythagoras won a prize for wrestling at the Olympic games.

He studied with Thales, father of Greek mathematics, traveled extensively

in Egypt and was well acquainted with Babylonian mathematics. At age

40, after teaching in Elis and Sparta, he migrated to Magna Graecia, where

the Pythagorean School flourished at Croton in what is now Southern Italy.

The Pythagoreans are best known for their theory of the transmigration of

souls and their belief that numbers constitute the nature of all things. The

Pythagoreans occupied much of their time with mysticism and numerology

and were among the first to depict polygonal numbers as arrangements of

points in regular geometric patterns. In practice, they probably used

pebbles to illustrate the patterns and in doing so derived several funda-

mental properties of polygonal numbers. Unfortunately, it was their obses-

sion with the deification of numbers and collusion with astrologers that

later prompted Saint Augustine to equate mathematicans with those full of

empty prophecies who would willfully sell their souls to the Devil to gain

the advantage.

The most elementary class of polygonal numbers described by the early

Pythagoreans was that of the oblong numbers. The nth oblong number,

denoted by on, is given by n(nþ 1) and represents the number of points in

a rectangular array having n columns and nþ 1 rows. Diagrams for the

first four oblong numbers, 2, 6, 12, and 20, are illustrated in Figure 1.1.

The triangular numbers, 1, 3, 6, 10, 15, . . . , tn, . . . , where tn denotes

the nth triangular number, represent the numbers of points used to portray

equilateral triangular patterns as shown in Figure 1.2. In general, from the

sequence of dots in the rows of the triangles in Figure 1.2, it follows that

tn, for n > 1, represents successive partial sums of the first n natural

numbers. For example, t4 ¼ 1þ 2þ 3þ 4 ¼ 10. Since the natural num-

bers are commutative and associative,

tn ¼ 1þ 2 þ � � � þ (n� 1)þ n

and

…

Figure 1.1
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tn ¼ nþ (n� 1) þ � � � þ 2þ 1;

adding columnwise, it follows that 2tn ¼ (nþ 1)þ (nþ 1) þ � � �
þ (nþ 1) ¼ n(nþ 1). Hence, tn ¼ n(nþ 1)=2. Multiplying both sides of

the latter equation by 2, we find that twice a triangular number is an oblong

number. That is, 2tn ¼ on, for any positive integer n. This result is

illustrated in Figure 1.3 for the case when n ¼ 6. Since 2þ 4 þ � � �
þ 2n ¼ 2(1þ 2 þ � � � þn) ¼ 2 . n(nþ 1)=2 ¼ n(nþ 1) ¼ on, the sum of

the first n even numbers equals the nth oblong number.

The square numbers, 1, 4, 9, 16, . . . , were represented geometrically by

the Pythagoreans as square arrays of points, as shown in Figure 1.4. In

1225, Leonardo of Pisa, more commonly known as Fibonacci, remarked,

in Liber quadratorum (The Book of Squares) that the nth square number,

denoted by sn, exceeded its predecessor, sn�1, by the sum of the two roots.

That is sn ¼ sn�1 þ ffiffiffiffi
sn

p þ ffiffiffiffiffiffiffiffiffi
sn�1

p
or, equivalently, n2 ¼ (n� 1)2 þ n þ

(n� 1). Fibonacci, later associated with the court of Frederick II, Emperor

of the Holy Roman Empire, learned to calculate with Hindu–Arabic

…

Figure 1.2

Figure 1.3

…

Figure 1.4
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numerals while in Bougie, Algeria, where his father was a customs officer.

He was a direct successor to the Arabic mathematical school and his work

helped popularize the Hindu–Arabic numeral system in Europe. The origin

of Leonardo of Pisa’s sobriquet is a mystery, but according to some

sources, Leonardo was figlio de (son of) Bonacci and thus known to us

patronymically as Fibonacci.

The Pythagoreans realized that the nth square number is the sum of the

first n odd numbers. That is, n2 ¼ 1þ 3þ 5 þ � � � þ (2n� 1), for any

positive integer n. This property of the natural numbers first appears in

Europe in Fibonacci’s Liber quadratorum and is illustrated in Figure 1.5,

for the case when n ¼ 6.

Another interesting property, known to the early Pythagoreans, appears

in Plutarch’s Platonic Questions. Plutarch, a second century Greek biogra-

pher of noble Greeks and Romans, states that eight times a triangular

number plus one is square. Using modern notation, we have 8tn þ 1 ¼
8[n(nþ 1)=2]þ 1 ¼ (2nþ 1)2 ¼ s2nþ1. In Figure 1.6, the result is illu-

strated for the case n ¼ 3. It is in Plutarch’s biography of Marcellus that we

find one of the few accounts of the death of Archimedes during the siege of

Syracuse, in 212 BC.

Around the second century BC, Hypsicles [HIP sih cleez], author of

Figure 1.5

Figure 1.6
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Book XIV, a supplement to Book XIII of Euclid’s Elements on regular

polyhedra, introduced the term polygonal number to denote those natural

numbers that were oblong, triangular, square, and so forth. Earlier, the

fourth century BC philosopher Plato, continuing the Pythagorean tradition,

founded a school of philosophy near Athens in an area that had been

dedicated to the mythical hero Academus. Plato’s Academy was not

primarily a place for instruction or research, but a center for inquiry,

dialogue, and the pursuit of intellectual pleasure. Plato’s writings contain

numerous mathematical references and classification schemes for numbers.

He firmly believed that a country’s leaders should be well-grounded in

Greek arithmetic, that is, in the abstract properties of numbers rather than

in numerical calculations. Prominently displayed at the Academy was a

maxim to the effect that none should enter (and presumably leave) the

school ignorant of mathematics. The epigram appears on the logo of the

American Mathematical Society. Plato’s Academy lasted for nine centuries

until, along with other pagan schools, it was closed by the Byzantine

Emperor Justinian in 529.

Two significant number theoretic works survive from the early second

century, On Mathematical Matters Useful for Reading Plato by Theon of

Smyrna and Introduction to Arithmetic by Nicomachus [nih COM uh kus]

of Gerasa. Smyrna in Asia Minor, now Izmir in Turkey, is located about 75

kilometers northeast of Samos. Gerasa, now Jerash in Jordan, is situated

about 25 kilometers north of Amman. Both works are philosophical in

nature and were written chiefly to clarify the mathematical principles found

in Plato’s works. In the process, both authors attempt to summarize the

accumulated knowledge of Greek arithmetic and, as a consequence, neither

work is very original. Both treatises contain numerous observations

concerning polygonal numbers; however, each is devoid of any form of

rigorous proofs as found in Euclid. Theon’s goal was to describe the beauty

of the interrelationships between mathematics, music, and astronomy.

Theon’s work contains more topics and was a far superior work mathema-

tically than the Introduction, but it was not as popular. Both authors note

that any square number is the sum of two consecutive triangular numbers,

that is, in modern notation, sn ¼ tn þ t n�1, for any natural number n. 1.

Theon demonstrates the result geometrically by drawing a line just above

and parallel to the main diagonal of a square array. For example, the case

where n ¼ 5 is illustrated in Figure 1.7. Nicomachus notes that if the

square and oblong numbers are written alternately, as shown in Figure 1.8,

and combined in pairs, the triangular numbers are produced. That is, using

modern notation, t2n ¼ sn þ on and t2nþ1 ¼ snþ1 þ on, for any natural

1.1 Polygonal numbers 5



number n. From a standard multiplication table of the first ten natural

numbers, shown in Table 1.1, Nicomachus notices that the major diagonal

is composed of the square numbers and the successive squares sn and snþ1

are flanked by the oblong numbers on. From this, he deduces two properties

that we express in modern notation as sn þ snþ1 þ 2on ¼ s2nþ1 and

on�1 þ on þ 2sn ¼ s2n.

Nicomachus extends his discussion of square numbers to the higher

dimensional cubic numbers, 1, 8, 27, 64, . . . , and notes, but does not

establish, a remarkable property of the odd natural numbers and the cubic

numbers illustrated in the triangular array shown in Figure 1.9, namely, that

the sum of the nth row of the array is n3. It may well have been

Nicomachus’s only original contribution to mathematics.

Figure 1.7

s1

1

o1

2

s2

4

o2

6

s3

9

o3

12

s4

16

o4

20

s5

25

o5

30

3

t2

6

t3

10

t4

15

t5

21

t6

28

t7

36

t8

45

t9

55

t10

Figure 1.8

Table 1.1.

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100
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In the Introduction, Nicomachus discusses properties of arithmetic,

geometric, and harmonic progressions. With respect to the arithmetic

progression of three natural numbers, he observes that the product of the

extremes differs from the square of the mean by the square of the common

difference. According to this property, known as the Regula Nicomachi, if

the three terms in the progression are given by a� k, a, aþ k, then

(a� k)(aþ k)þ k2 ¼ a2. In the Middle Ages, rules for multiplying two

numbers were rather complex. The Rule of Nicomachus was useful in

squaring numbers. For example, applying the rule for the case when

a ¼ 98, we obtain 982 ¼ (98� 2)(98þ 2)þ 22 ¼ 96 . 100þ 4 ¼ 9604.

After listing several properties of oblong, triangular, and square num-

bers, Nicomachus and Theon discuss properties of pentagonal and hexago-

nal numbers. Pentagonal numbers, 1, 5, 12, 22, . . . , p5 n, . . . , where p5 n
denotes the nth pentagonal number, represent the number of points used to

construct the regular geometric patterns shown in Figure 1.10. Nicomachus

generalizes to heptagonal and octagonal numbers, and remarks on the

patterns that arise from taking differences of successive triangular, square,

pentagonal, heptagonal, and octagonal numbers. From this knowledge, a

general formula for polygonal numbers can be derived. A practical tech-

nique for accomplishing this involving successive differences appeared in

a late thirteenth century Chinese text Works and Days Calendar by Wang

Xun (SHUN) and Guo Shoujing (GOW SHOE GIN). The method was

mentioned in greater detail in 1302 in Precious Mirror of the Four

1
3 5

7 9 11
13 15 17 19

21 23 25 27 29
.............................................

1
8
27
64
125

Figure 1.9

…

Figure 1.10
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Elements by Zhu Shijie (ZOO SHE GEE), a wandering scholar who earned

his living teaching mathematics. The method of finite differences was

rediscovered independently in the seventeenth century by the British

mathematicians Thomas Harriot, James Gregory, and Isaac Newton.

Given a sequence, ak , akþ1, akþ2, . . . , of natural numbers whose r th

differences are constant, the method yields a polynomial of degree r � 1

representing the general term of the given sequence. Consider the binomial

coefficients

(nk) ¼
n!

k!(n� k)!
, for 0 < k < n, (n0 ) ¼ 1, and otherwise (nk) ¼ 0,

where for any natural number n, n factorial, written n!, represents the

product n(n� 1)(n� 2) � � � 3 . 2 . 1 and, for consistency, 0! ¼ 1. The ex-

clamation point used to represent factorials was introduced by Christian

Kramp in 1802. The numbers, (nk), are called the binomial coefficients

because of the role they play in the expansion of (aþ b)n ¼Pn
k¼0(

n
k)a

n�k bk . For example,

(aþ b)3 ¼ (30)a
3b0 þ (31)a

2b1 þ (32)a
1b2 þ (33)a

0b3

¼ a3 þ 3a2bþ 3ab2 þ b3:

Denote the ith differences, ˜i, of the sequence ak , akþ1, akþ2, . . . by

di1, di2, di3, . . . , and generate the following finite difference array:

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

an ak akþ1 akþ2 akþ3 akþ4 akþ5 akþ6

˜1 d11 d12 d13 d14 d15 d16
˜2 d21 d22 d23 d24 d25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˜r d r1 d r2 d r3 d r4

If the r th differences d r1, d r2, d r3, . . . are equal, then working backwards

and using terms in the leading diagonal each term of the sequence ak ,

akþ1, akþ2, . . . can be determined. More precisely, the finite difference

array for the sequence bn ¼ (n�km ), for m ¼ 0, 1, 2, 3, . . . , r,

n ¼ k, k þ 1, k þ 2, . . . , and a fixed value of k, has the property that the

mth differences, ˜m, consist of all ones and, except for dm1 ¼ 1 for

1 < m < r, the leading diagonal is all zeros. For example, if m ¼ 0, the

finite difference array for an ¼ (n�k0 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 1 1 1 1 1 1 1

˜1 0 0 0 0 0 0

8 The intriguing natural numbers



If m ¼ 1, the finite difference array for an ¼ (n�k1 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 0 1 2 3 4 5 6

˜1 1 1 1 1 1 1

˜2 0 0 0 0 0 0

If m ¼ 2, the finite difference array for an ¼ (n�k2 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 0 0 1 3 6 10 15

˜1 0 1 2 3 4 5

˜2 1 1 1 1 1 1

˜3 0 0 0 0 0

The leading diagonals of the finite difference array for the sequence ak ,

akþ1, akþ2, . . . , and the array defined by

ak(
n�k
0 )þ d11(

n�k
1 )þ d21(

n�k
2 ) þ � � � þ d r1(

n�k
r )

are identical. Therefore,

an ¼ ak(
n�k
0 )þ d11(

n�k
1 )þ d21(

n�k
2 ) þ � � � þ d r1(

n�k
r ),

for n ¼ k, k þ 1, k þ 2, . . . :

Example 1.1 The finite difference array for the pentagonal numbers, 1, 5,

12, 22, 35, . . . , p5 n, . . . is given by

n 1 2 3 4 5 6 . . .

p5 n 1 5 12 22 35 51 . . .

˜1 4 7 10 13 16 . . .

˜2 3 3 3 3 . . .

Our indexing begins with k ¼ 1. Therefore

p5 n ¼ 1 . (n�1
0 )þ 4 . (n�1

1 )þ 3 . (n�1
2 ) ¼ 1þ 4(n� 1)þ 3

(n� 1)(n� 2)

2

¼ 3n2 � n

2
:

A more convenient way to determine the general term of sequences with

finite differences is the following. Since the second differences of the

pentagonal numbers sequence is constant, consider the sequence whose

general term is f (n) ¼ an2 þ bnþ c, whose first few terms are given by

f (1) ¼ aþ bþ c, f (2) ¼ 4aþ 2bþ c, f (3) ¼ 9aþ 3bþ c, f (4) ¼
16aþ 4bþ c, and whose finite differences are given by

1.1 Polygonal numbers 9



aþ bþ c 4aþ 2bþ c 9aþ 3bþ c 16aþ 4bþ c . . .
3aþ b 5aþ b 7aþ b . . .
2a 2a . . .

Matching terms on the first diagonal of the pentagonal differences with

those of f (n) yields

2a ¼ 3

3aþ b ¼ 4

aþ bþ c ¼ 1:

Hence, a ¼ 3
2
, b ¼ �1

2
, c ¼ 0, and f (n) ¼ 3

2
n2 � 1

2
n.

From Table 1.2, Nicomachus infers that the sum of the nth square and

the (n� 1)st triangular number equals the nth pentagonal number, that is,

for any positive integer n, p5 n ¼ sn þ t n�1. For example, if n ¼ 6,

s6 þ t5 ¼ 36þ 15 ¼ 51 ¼ p56. He also deduces from Table 1.2 that three

times the (n� 1)st triangular number plus n equals the nth pentagonal

number. For example, for n ¼ 9, 3 . t8 þ 9 ¼ 3 . 36þ 9 ¼ 117 ¼ p59.

In general, the m-gonal numbers, for m ¼ 3, 4, 5, . . . , where m refers

to the number of sides or angles of the polygon in question, are given by

the sequence of numbers whose first two terms are 1 and m and whose

second common differences equal m� 2. Using the finite difference

method outlined previously we find that pmn ¼ (m� 2)n2=2� (m �
4)n=2, where pmn denotes the nth m-gonal number. Triangular numbers

correspond to 3-gonal numbers, squares to 4-gonal numbers, and so forth.

Using Table 1.2, Nicomachus generalizes one of his previous observations

and claims that pmn þ p3 n�1 ¼ pmþ1
n, where p3 n represents the nth

triangular number.

The first translation of the Introduction into Latin was done by Apuleius

of Madaura shortly after Nicomachus’s death, but it did not survive.

However, there were a number of commentaries written on the Introduc-

tion. The most influential, On Nicomachus’s Introduction to Arithmetic,

was written by the fourth century mystic philosopher Iamblichus of Chalcis

in Syria. The Islamic world learned of Nicomachus through Thabit ibn

Qurra’s Extracts from the Two Books of Nicomachus. Thabit, a ninth

century mathematician, physician, and philosopher, worked at the House

of Wisdom in Baghdad and devised an ingenious method to find amicable

numbers that we discuss in Chapter 4. A version of the Introduction was

written by Boethius [beau EE thee us], a Roman philosopher and statesman

who was imprisoned by Theodoric King of the Ostrogoths on a charge of

conspiracy and put to death in 524. It would be hard to overestimate the

influence of Boethius on the cultured and scientific medieval mind. His De
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institutione arithmetica libri duo was the chief source of elementary

mathematics taught in schools and universities for over a thousand years.

He coined the term quadrivium referring to the disciplines of arithmetic,

geometry, music, and astronomy. These subjects together with the trivium

of rhetoric, grammar, and logic formed the seven liberal arts popularized in

the fifth century in Martianus Capella’s book The Marriage of Mercury

and Philology. Boethius’s edition of Nicomachus’s Introduction was the

main medium through which the Romans and people of the Middle Ages

learned of formal Greek arithmetic, as opposed to the computational

arithmetic popularized in the thirteenth and fourteenth centuries with the

introduction of Hindu–Arabic numerals. Boethius wrote The Consolation

of Philosophy while in prison where he reflected on the past and on his

outlook on life in general. The Consolation was translated from Latin into

Anglo-Saxon by Alfred the Great and into English by Chaucer and

Elizabeth I.

In the fourth century BC Philip of Opus and Speusippus wrote treatises

on polygonal numbers that did not survive. They were, however, among the

first to extend polygonal numbers to pyramidal numbers. Speusippus [spew

SIP us], a nephew of Plato, succeeded his uncle as head of the Academy.

Philip, a mathematician–astronomer, investigated the connection between

the rainbow and refraction. His native home Opus, the modern town of

Atalandi, on the Euboean Gulf, was a capital of one of the regions of

Locris in Ancient Greece.

Each class of pyramidal number is formed from successive partial sums

of a specific type of polygonal number. For example, the nth tetrahedral

number, P3
n, can be obtained from successive partial sums of triangular

numbers, that is, P3
n ¼ p31 þ p32 þ � � � þ p3 n. For example, P3

4 ¼ 1 þ
3þ 6þ 10 ¼ 20. Accordingly, the first four tetrahedral numbers are 1, 4,

Table 1.2.

n 1 2 3 4 5 6 7 8 9 10

Triangular 1 3 6 10 15 21 28 36 45 55
Square 1 4 9 16 25 36 49 64 81 100
Pentagonal 1 5 12 22 35 51 70 92 117 145
Hexagonal 1 6 15 28 45 66 91 120 153 190
Heptagonal 1 7 18 34 55 81 112 148 189 235
Octagonal 1 8 21 40 65 96 133 176 225 280
Enneagonal 1 9 24 46 75 111 154 204 261 325
Decagonal 1 10 27 52 85 126 175 232 297 370
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10, and 20. An Egyptian papyrus written about 300 BC gives 1
2
(n2 þ n) as

the sum of the first n natural numbers and 1
3
(nþ 2)1

2
(n2 þ n) as the sum of

the first n triangular numbers. That is, tn ¼ p3 n ¼ n(nþ 1)=2 and

P3
n ¼ n(nþ 1)(nþ 2)=6. The formula for P3

n was derived by the sixth

century Indian mathematician–astronomer Aryabhata who calculated one

of the earliest tables of trigonometric sines using 3.146 as an estimate for

�.

Example 1.2 Each triangle on the left hand side of the equality in Figure

1.11 gives a different representation of the first four triangular numbers, 1,

3 (1þ 2), 6 (1þ 2þ 3), and 10 (1þ 2þ 3þ 4). Hence, 3 . (1þ 3 þ
6þ 10) ¼ 1 . 6þ 2 . 6þ 3 . 6þ 4 . 6 ¼ (1þ 2þ 3þ 4) . 6 ¼ t4(4þ 2). In

general, 3(t1 þ t2 þ t3 þ � � � þ tn) ¼ tn(nþ 2) ¼ n(nþ 1)(nþ 2)=2.

Therefore, P3
n ¼ n(nþ 1)(nþ 2)=6.

In Figure 1.11, the sum of the numbers in the third triangle is the fourth

tetrahedral number. That is, 1 . 4þ 2 . 3þ 3 . 2þ 4 . 1 ¼ 20. Thus, in gen-

eral, 1 . nþ 2 . (n� 1) þ � � � þ (n� 1) . 2þ n . 1 ¼ P3
n. Hence, we can

generate the tetrahedral numbers by summing the terms in the SW–NE

diagonals of a standard multiplication table as shown in Table 1.3. For

example, P3
6 ¼ 6þ 10þ 12þ 12þ 10þ 6 ¼ 56.

Pyramidal numbers with a square base are generated by successive

Table 1.3.
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partial sums of square numbers. Hence, the nth pyramidal number, denoted

by P4
n, is given by 12 þ 22 þ 32 þ � � � þ n2 ¼ n(nþ 1)(2nþ 1)=6. For

example, P4
4 ¼ 1þ 4þ 9þ 16 ¼ 30. The total number of cannonballs in

a natural stacking with a square base is a pyramidal number.

Slicing a pyramid through a vertex and the diagonal of the opposite base

results in two tetrahedrons. Hence, it should be no surprise to find that the

sum of two consecutive tetrahedral numbers is a pyramidal number, that is,

P4
n ¼ P3

n�1 þ P3
n.

In the tenth century, Gerbert of Aurillac in Auvergne included a number

of identities concerning polygonal and pyramidal numbers in his corre-

spondence with his pupil Adalbold, Bishop of Utrecht. Much of Gerbert’s

Geometry was gleaned from the work of Boethius. One of the more

difficult problems in the book asks the reader to find the legs of a right

triangle given the length of its hypotenuse and its area. Gerbert was one of

the first to teach the use of Hindu–Arabic numerals. He was elected Pope

Sylvester II in 999, but his reign was short.

Triangular and tetrahedral numbers form a subclass of the figurate

numbers. In the 1544 edition of Arithmetica Integra, Michael Stifel defined

the nth mth-order figurate number, denoted by f mn, as follows:

f mn ¼ f m n�1 þ f m�1
n, f m1 ¼ f 0 n ¼ f 01 ¼ 1, for n ¼ 2, 3, . . . , and

m ¼ 1, 2, 3, . . . : An array of figurate numbers is illustrated in Table 1.4,

where the nth triangular number corresponds to f 2 n and the nth tetrahe-

dral number to f 3 n. In 1656, John Wallis, the English mathematician who

served as a cryptanalyst for several Kings and Queens of England, and

introduced the symbol 1 to represent infinity, showed that, for positive

integers n and r, f r nþ1 ¼ f 0 n þ f 1 n þ f 2 n þ � � � þ f r n.

Stifel was the first to realize a connection existed between figurate

numbers and binomial coefficients, namely that f mn ¼ (nþm�1
m ). In particu-

lar, f 2 n ¼ tn ¼ (nþ1
2 ) and f 3 n ¼ P3

n ¼ (nþ2
3 ). Stifel earned a Master’s

Table 1.4.

n 1 2 3 4 5 6 7 8 9 10

f 0 n 1 1 1 1 1 1 1 1 1 1
f 1 n 1 2 3 4 5 6 7 8 9 10
f 2 n 1 3 6 10 15 21 28 36 45 55
f 3 n 1 4 10 20 35 56 84 120 165 220
f 4 n 1 5 15 35 70 126 210 330 495 715
f 5 n 1 6 21 56 126 252 462 792 1287 2002
f 6 n 1 7 28 84 210 462 924 1716 3003 5005
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degree at Wittenberg University. He was an avid follower of Martin Luther,

an ardent biblical scholar, and a millenarian. Stifel must have thought he

was standing in the foothills of immortality when, through his reading, he

inferred that the world was going to end at 8 o’clock on the morning of

October 18, 1533. He led a band of followers to the top of a nearby hill to

witness the event, a nonoccurrence that did little to enhance his credibility.

Nicomachus’s Introduction to Arithmetic was one of the most significant

ancient works on number theory. However, besides Books VII–IX of

Euclid’s Elements, whose contents we will discuss in the next chapter, the

most influential number theoretic work of ancient times was the Arith-

metica of Diophantus, one of the oldest algebra treatises in existence.

Diophantus, a mathematician who made good use of Babylonian and Greek

sources, discussed properties of polygonal numbers and included a rule to

determine the nth m-gonal number which he attributed to Hypsicles.

Unfortunately, a complete copy of the Arithmetica was lost when the

Library of Alexandria was vandalized in 391 by Christians acting under the

aegis of Theophilus, Bishop of Alexandria, and a decree by Emperor

Theodosius concerning pagan monuments. Portions of the treatise were

rediscovered in the fifteenth century. As a consequence, the Arithmetica

was one of the last Greek mathematical works to be translated into Latin.

There were a number of women who were Pythagoreans, but Hypatia,

the daughter of the mathematician Theon of Alexandria, was the only

notable female scholar in the ancient scientific world. She was one of the

last representatives of the Neo-platonic School at Alexandria, where she

taught science, art, philosophy, and mathematics in the early fifth century.

She wrote a commentary, now lost, on the first six books of the Arithmetica

and may very well have been responsible for editing the version of

Ptolemy’s Almagest that has survived. Some knowledge of her can be

gleaned from the correspondence between her and her student Synesius,

Bishop of Cyrene. As a result of her friendship with Alexandria’s pagan

Prefect, Orestes, she incurred the wrath of Cyril, Theophilus’s nephew who

succeeded him in 412 as Bishop of Alexandria. In 415, Hypatia was

murdered by a mob of Cyril’s followers. During the millennium following

her death no woman distinguished herself in science or mathematics.

In the introduction to the Arithmetica, Diophantus refers to his work as

consisting of thirteen books, where a book consisted of a single scroll

representing material covered in approximately twenty to fifty pages of

ordinary type. The first six books of the Arithmetica survived in Greek and

four books, which may have a Hypatian rather than a Diophantine origin,

survived in Arabic. In addition, a fragment on polygonal numbers by
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Diophantus survives in Greek. The Arithmetica was not a textbook, but an

innovative handbook involving computations necessary to solve practical

problems. The Arithmetica was the first book to introduce consistent

algebraic notation and systematically use algebraic procedures to solve

equations. Diophantus employed symbols for squares and cubes but limited

himself to expressing each unknown quantity in terms of a single variable.

Diophantus is one the most intriguing and least known characters in the

history of mathematics.

Much of the Arithmetica consists of cleverly constructed positive

rational solutions to more than 185 problems in indeterminate analysis.

Negative solutions were not acceptable in Diophantus’s time or for the next

1500 years. By a rational solution, we mean a number of the form p=q,

where p and q are integers and q 6¼ 0. In one example, Diophantus

constructed three rational numbers with the property that the product of

any two of the numbers added to their sum or added to the remaining

number is square. That is, in modern notation, he determined numbers x, y,

z such that xyþ xþ y, xzþ xþ z, yzþ yþ z, xyþ z, xzþ y, and yzþ x

are all square. In another problem, Diophantus found right triangles with

sides of rational length such that the length of the hypotenuse minus the

length of either side is a cube. In the eleventh century, in Baghdad, the

Islamic mathematician al-Karaji and his followers expanded on the meth-

ods of Diophantus and in doing so undertook a systematic study of the

algebra of exponents.

Problems similar to those found in the Arithmetica first appear in Europe

in 1202 in Fibonacci’s Liber abaci (Book of Calculations). The book

introduced Hindu–Arabic numerals to European readers. It was revised by

the author in 1228 and first printed in 1857. However, the first reference to

Diophantus’s works in Europe is found in a work by Johannes Müller who,

in his day, was called Joannes de Regio monte (John of Königsberg).

However, Müller is perhaps best known today by his Latinized name

Regiomontanus, which was popularized long after his death. Regiomonta-

nus, the first publisher of mathematical and astronomical literature, studied

under the astronomer Georges Peurbach at the University of Vienna. He

wrote a book on triangles and finished Peurbach’s translation of Ptolemy’s

Almagest. Both Christopher Columbus and Amerigo Vespucci used his

Ephemerides on their voyages. Columbus, facing starvation in Jamaica,

used a total eclipse of the Moon on February 29, 1504, predicted in the

Ephemerides, to encourage the natives to supply him and his men with

food. A similar idea, albeit using a total solar eclipse, was incorporated by

Samuel Clemens (Mark Twain) in A Connecticut Yankee in King Arthur’s
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Court. Regiomontanus built a mechanical fly and a ‘flying’ eagle, regarded

as the marvel of the age, which could flap its wings and saluted when

Emperor Maximilian I visited Nuremberg. Domenico Novarra, Coperni-

cus’s teacher at Bologna, regarded himself as a pupil of Regiomontanus

who, for a short period, lectured at Padua.

Regiomontanus wrote to the Italian mathematician Giovanni Bianchini

in February 1464 that while in Venice he had discovered Greek manu-

scripts containing the first six books of Arithmetica. In 1471, Regiomonta-

nus was summoned to Rome by Pope Sixtus IV to reform the ecclesiastical

calendar. However, in 1476, before he could complete his mission, he died

either a victim of the plague or poisoned for his harsh criticism of a

mediocre translation of the Almagest.

In 1572, an Italian engineer and architect, Rafael Bombelli, published

Algebra, a book containing the first description and use of complex

numbers. The book included 271 problems in indeterminate analysis, 147

of which were borrowed from the first four books of Diophantus’s

Arithmetica. Gottfried Leibniz used Bombelli’s text as a guide in his study

of cubic equations. In 1573, based on manuscripts found in the Vatican

Library, Wilhelm Holtzman, who wrote under the name Xylander, pub-

lished the first complete Latin translation of the first six books of the

Arithmetica. The Dutch mathematician, Simon Stevin, who introduced a

decimal notation to European readers, published a French translation of the

first four books of the Arithmetica, based on Xylander’s work.

In 1593, François Viète [VYET], a lawyer and cryptanalyst at the Court

of Henry IV, published Introduction to the Analytic Art, one of the first

texts to champion the use of Latin letters to represent numbers to solve

problems algebraically. In an effort to show the power of algebra, Viète

included algebraic solutions to a number of interesting problems that were

mentioned but not solved by Diophantus in the Arithmetica.

A first-rate translation, Diophanti Alexandrini arithmeticorum libri sex,

by Claude-Gaspard Bachet de Méziriac, appeared in 1621. Bachet, a

French mathematician, theologian, and mythologist of independent means,

included a detailed commentary with his work. Among the number

theoretic results Bachet established were

(a) pmnþr ¼ pmn þ pmr þ nr(m� 2),

(b) pmn ¼ p3 n þ (m� 3)p3 n�1, and

(c) 13 þ 23 þ 33 þ � � � þ n3 ¼ ( p3 n)
2,

where pmn denotes the nth m-gonal number. The third result is usually
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expressed as 13 þ 23 þ 33 þ � � � þ n3 ¼ (1þ 2þ 3 þ � � � þ n)2 and re-

ferred to as Lagrange’s identity.

In the fourth book of the Arithmetica Diophantus found three rational

numbers, 153
81
, 6400

81
, and 8

81
, which if multiplied in turn by their sum yield a

triangular number, a square number, and a cube, respectively. Bachet

extended the problem to one of finding five numbers which if multiplied in

turn by their sum yield a triangular number, a square, a cube, a pentagonal

number, and a fourth power, respectively.

Bachet was an early contributor to the field of recreational mathematics.

His Problèmes plaisants et délectables qui se font par les nombres, first

published in 1612, is replete with intriguing problems including a precursor

to the cannibals and missionaries problem, the Christians and Turks

problem, and a discussion on how to create magic squares. At age 40,

Bachet married, retired to his country estate, sired seven children, and gave

up his mathematical activity forever. Except for recurring bouts with gout

and rheumatism, he lived happily ever after.

The rediscovery of Diophantus’s work, in particular through Bachet’s

edition which relied heavily on Bombelli’s and Xylander’s work, greatly

aided the renaissance of mathematics in Western Europe. One of the

greatest contributors to that renaissance was Pierre de Fermat [fair MAH],

a lawyer by profession who served as a royal councillor at the Chamber of

Petitions at the Parlement of Toulouse. Fermat was an outstanding amateur

mathematician. He had a first-class mathematical mind and, before Newton

was born, discovered a method for finding maxima and minima and general

power rules for integration and differentiation of polynomial functions of

one variable. He rarely, however, published any of his results. In 1636, he

wrote, in a burst of enthusiasm, that he had just discovered the very

beautiful theorem that every positive integer is the sum of at most three

triangular numbers, every positive integer is the sum of at most four

squares, every positive integer is the sum of at most five pentagonal

numbers, and so on ad infinitum, but added, however, that he could not give

the proof, since it depended on ‘numerous and abstruse mysteries of

numbers’. Fermat planned to devote an entire book to these mysteries and

to ‘effect in this part of arithmetic astonishing advances over the previously

known limits’. Unfortunately, he never published such a book.

In 1798, in Théorie des nombres, the Italian mathematician and astron-

omer, Joseph-Louis Lagrange, used an identity discovered by the Swiss

mathematician Leonhard Euler [OILER] to prove Fermat’s claim for the

case of square numbers. Karl Friedrich Gauss proved the result for

triangular numbers when he was nineteen and wrote in his mathematical
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diary for 10 July 1796: ‘�ır�kÆ! num ¼ mþmþm:’ Two years later,

Gauss’s result was proved independently by the French mathematician,

Adrien Marie Legendre. In the introduction to Disquisitiones arithmeticae

(Arithmetical Investigations) Gauss explains his indebtedness to Diophan-

tus’s Arithmetica. In Chapters 5, 6, and 8, we discuss the contents of

Gauss’s Disquisitiones. In 1808, Legendre included a number of quite

remarkable number theoretic results in his Théorie des nombres; in

particular, the property that every odd number not of the form 8k þ 7,

where k is a positive integer, can be expressed as the sum of three or fewer

square numbers. In 1815, Augustin-Louis Cauchy proved that every posi-

tive integer is the sum of m m-gonal numbers of which all but four are

equal to 0 or 1. Cauchy’s Cours d’analyse, published in 1821, advocated a

rigorous approach to mathematical analysis, in particular to the calculus.

Unfortunately, Cauchy was very careless with his correspondence. Evariste

Galois and Niels Henrik Abel sent brilliant manuscripts to Cauchy for his

examination and evaluation, but they were lost.

One of the first results Fermat established was that nine times any

triangular number plus one always yielded another triangular number.

Fermat later showed that no triangular number greater than 1 could be a

cube or a fourth power. Fermat, always the avid number theorist, once

challenged Lord Brouncker, first President of the Royal Society, and John

Wallis, the best mathematician in England at the time, to prove there is no

triangular number other than unity that is a cube or a fourth power. Neither

was able to answer his query.

Fermat often used the margins of texts to record his latest discoveries. In

1670, Fermat’s son, Clément-Samuel, published a reprint of Bachet’s

Diophantus together with his father’s marginal notes and an essay by the

Jesuit, Jacques de Billy, on Fermat’s methods for solving certain types of

Diophantine-type equations. His most famous marginal note, the statement

of his ‘last’ theorem, appears in his copy of Bachet’s edition of the

Arithmetica. Fermat wrote to the effect that it was impossible to separate a

cube into two cubes, or a biquadratic into two biquadratics, or generally

any power except a square into two powers with the same exponent. Fermat

added that he had discovered a truly marvelous proof of this result;

however, the margin was not large enough to contain it. Fermat’s Last

Theorem was ‘last’ in the sense that it was the last major conjecture by

Fermat that remained unproven. Fermat’s Last Theorem has proven to be a

veritable fountainhead of mathematical research and until recently its proof

eluded the greatest mathematicians. In ‘The Devil and Simon Flagg’
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Arthur Porges relates a delightful tale in which the Devil attempts to prove

Fermat’s Last Theorem.

The Swiss mathematician, Leonhard Euler, perused a copy of Bachet’s

Diophantus with Fermat’s notes and was intrigued by Fermat’s emphasis on

integer, rather than rational, solutions. At the University of Basel, Euler

was a student of Johann Bernoulli. Bernoulli won the mathematical prize

offered by the Paris Academy twice. His son Daniel Bernoulli won it ten

times. Euler, who won the prize twelve times, began a lifelong study of

number theory at age 18. Euler’s papers are remarkably readable. He has a

good historical sense and often informs the reader of things that have

impressed him and of ideas that led him to his discoveries. Even though

over half of Euler’s 866 publications were written when he was blind, he

laid the foundation of the theory of numbers as a valid branch of

mathematics. His works were still appearing in the Memoirs of the St

Petersburg Academy fifty years after his death. It is estimated that he was

responsible for one-third of all the mathematical work published in Europe

from 1726 to 1800. He had a phenomenal memory and knew Vergil’s

Aeneid by heart. At age 70, given any page number from the edition he

owned as a youth, he could recall the top and bottom lines. In addition, he

kept a table of the first six powers of the first hundred positive integers in

his head.

Before proceeding further, it is important in what follows for the reader

to be able to distinguish between a conjecture and an open question. By a

conjecture we mean a statement which is thought to be true by many, but

has not been proven yet. By an open question we mean a statement for

which the evidence is not very convincing one way or the other. For

example, it was conjectured for many years that Fermat’s Last Theorem

was true. It is an open question, however, whether 4!þ 1 ¼ 52,

5!þ 1 ¼ 112, and 7!þ 1 ¼ 712 are the only solutions to the equation

n!þ 1 ¼ m2.

Exercises 1.1

1. An even number can be expressed as 2n and an odd number as 2nþ 1,

where n is a natural number. Two natural numbers are said to be of the

same parity if they are either both even or both odd, otherwise they are

said to be of opposite parity. Given any two natural numbers of the

same parity, show that their sum and difference are even. Given two

numbers of opposite parity, show that their sum and difference are

odd.
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2. Nicomachus generalized oblong numbers to rectangular numbers,

which are numbers of the form n(nþ k), denoted by rn,k, where k > 1

and n. 1. Determine the first ten rectangular numbers that are not

oblong.

3. Prove algebraically that the sum of two consecutive triangular numbers

is always a square number.

4. Show that 9tn þ 1 [Fermat], 25tn þ 3 [Euler], and 49tn þ 6 [Euler] are

triangular.

5. Show that the difference between the squares of any two consecutive

triangular numbers is always a cube.

6. In 1991, S.P. Mohanty showed that there are exactly six triangular

numbers that are the product of three consecutive integers. For

example, t20 ¼ 210 ¼ 5 . 6 . 7. Show that t608 is the product of three

consecutive positive integers.

7. Show that the product of any four consecutive natural numbers plus

one is square. That is, show that for any natural number n,

n(nþ 1)(nþ 2)(nþ 3)þ 1 ¼ k2, for some natural number k.

8. The nth star number, denoted by 
n, represents the sum of the nth

square number and four times the (n� 1)st triangular number, where


1 ¼ 1. One geometric interpretation of star numbers is as points

arranged in a square with equilateral triangles on each side. For

example 
2 is illustrated in Figure 1.12. Derive a general formula for

the nth star number.

9. Show that Gauss’s discovery that every number is the sum of three or

fewer triangular numbers implies that every number of the form

8k þ 3 can be expressed as the sum of three odd squares.

10. Verify Nicomachus’s claim that the sum of the odd numbers on any

row in Figure 1.9 is a cube.

11. For any natural number n prove that

(a) s2nþ1 ¼ sn þ snþ1 þ 2on. [Nicomachus]

(b) s2n ¼ on�1 þ on þ 2sn. [Nicomachus]

Figure 1.12
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12. Show that sn þ t n�1 ¼ p5 n, for any natural number n. [Nicomachus]

13. Prove that p5 n ¼ 3tn�1 þ n, for any natural number n. [Nicomachus]

14. Show that every pentagonal number is one-third of a triangular num-

ber.

15. Find a positive integer n. 1 such that 12 þ 22 þ 32 þ � � � þ n2 is a

square number. [Ladies’ Diary, 1792] This problem was posed by

Edouard Lucas in 1875 in Annales de Mathématique Nouvelles. In

1918, G. N. Watson proved that the problem has a unique solution.

16. Prove the square of an odd multiple of 3 is the difference of two

triangular numbers, in particular show that for any natural number n,

[3(2nþ 1)]2 ¼ t9nþ4 � t3nþ1.

17. Show that there are an infinite number of triangular numbers that are

the sum of two triangular numbers by establishing the identity

t[n(nþ3)þ1]=2 ¼ t nþ1 þ t n(nþ3)=2.

18. Prove that t2mnþm ¼ 4m2 tn þ tm þ mn, for any positive integers m

and n.

19. Paul Haggard and Bonnie Sadler define the nth m-triangular number,

Tm
n, by Tm

n ¼ n(nþ 1) � � � (nþ mþ 1)=(mþ 2). When m ¼ 0, we

obtain the triangular numbers. Generate the first ten T 1
n numbers.

20. Derive a formula for the nth hexagonal number. The first four hexago-

nal numbers 1, 6, 15, 28 are illustrated geometrically in Figure 1.13.

21. Show that 40 755 is triangular, pentagonal, and hexagonal. [Ladies’

Diary, 1828]

22. Use the method of finite differences to derive a formula for the nth m-

gonal number pmn. [Diophantus]

23. Prove that for any natural numbers m and n, pmþ1
n ¼ pmn þ p3 n�1.

[Nicomachus]

24. Prove that pmnþr ¼ pmn þ pmr þ nr(m� 2), where n, m, and r, are

natural numbers and m. 2. [Bachet]

Figure 1.13
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25. Prove that pmn ¼ p3 n þ (m� 3) p3 n�1. [Bachet]

26. In 1897, G. Wertheim devised a method to determine in how many

ways a number r appears as a polygonal number. He used the fact that

pmn ¼ 1
2
n(2þ (m� 2)(n� 1)), let 2r ¼ n(2þ (m� 2)(n� 1)) ¼

n . s, and concentrated on such factorizations of 2r where 2, n, s

and n� 1 divides s� 2. For example, 72 ¼ 3 . 24 ¼ 6 . 12 ¼ 8 . 9 ¼
n . s. Hence, 36 ¼ p133 ¼ p46 ¼ p38. Using Wertheim’s method deter-

mine how many ways 120 appears as a polygonal number.

27. In the 1803 edition of Recreations in Mathematics and Natural Philo-

sophy, a revision of a text first published by Ozanam in 1692 and

revised by Jean Etienne Montucla in 1778, it is stated that a number n

is m-gonal if 8n(m� 2)þ (m� 4)2 is a square number. Use Ozanam’s

rule to show that 225 is octagonal.

28. Derive Ozanam’s rule.

29. Use the method of finite differences to show that the nth tetrahedral

number, P3
n, is given by n(nþ 1)(nþ 2)=6. [Aryabhata]

30. There are only five numbers less than 109 which are both triangular

and tetrahedral, namely, 1, 10, 120, 1540, and 7140. Show that 1540

and 7140 are both triangular and tetrahedral.

31. Show that P4
n ¼ P3

n�1 þ P3
n, for any natural number n.

32. Show that P5
n ¼ 1

3
n(2n2 þ 1), for any natural number n.

33. Show

Pmn ¼ nþ 1

6
(2 pmn þ n),

for any natural numbers m and n, where m > 3. The relation between

pyramidal and polygonal numbers appears in a fifth century Roman

codex.

34. The nth octahedral number, denoted by On, is defined as the sum of the

nth and (n� 1)st pyramidal numbers. Determine the first 10 octahedral

numbers.

35. Use the binomial representation of figurate numbers to show that f 2 n
represents the nth triangular number and f 3 n represents the nth

tetrahedral number.

36. Justify the formula, f 3 n�1 þ f 3 n ¼ n(nþ 1)(2nþ 1)=6, found in an

ancient Hindu manuscript.

37. In the fall of 1636, Fermat wrote to Marin Mersenne and Gilles

Persone de Roberval that he had discovered that n . f r nþ1 ¼
(nþ r) . f rþ1

n, where n and r are natural numbers. Justify Fermat’s

formula.

22 The intriguing natural numbers



38. Show that a general solution to Problem 17 in Book III of Diophanus’s

Arithmetica, find x, y, z such that xyþ xþ y, yzþ yþ z, zxþ zþ x,

xyþ z, xzþ y, and yzþ x are square, is given by x ¼ n2,

y ¼ (nþ 1)2, and z ¼ 4(n2 þ nþ 1).

39. Use algebra to solve Gerbert’s problem: given the area and length of

the hypotenuse of a right triangle, find the lengths of the sides of the

triangle.

40. The nth central trinomial coefficient, denoted by an, is defined as the

coefficient of xn in (1þ xþ x2)n. Determine an for 0 < n < 10.

1.2 Sequences of natural numbers

A sequence is a finite or infinite ordered linear array of numbers. For

example, 2, 4, 6, 8, . . . represents the infinite sequence of even positive

integers. Analytically, an infinite sequence can be thought of as the range

of a function whose domain is the set of natural numbers. For example,

polygonal, oblong, pyramidal, and figurate numbers are examples of

infinite sequences of natural numbers. In this section, we investigate a

number of patterns that arise from imposing various conditions on the

terms of a sequence. The construction of some sequences can seem to be

almost diabolical. For example, each successive term in the sequence 1, 5,

9, 31, 53, 75, 97, . . . is obtained by adding 4 to the previous term and

reversing the digits. Properties of look and say sequences were developed

by John H. Conway at Cambridge University. For example, each successive

term in the look and say sequence 1, 11, 21, 1 211, 111 221, 312 211, . . . is

generated from the previous term as follows: the first term is 1, the second

term indicates that the first term consists of one one, the third term

indicates that the second term consists of two ones, the fourth term

indicates that the third term consists of one two and one one, the fifth term

indicates that the fourth term consists of one one, one two, and two ones,

and so forth. A look and say sequence will never contain a digit greater

than 3 unless that digit appears in the first or second term.

In 1615, Galileo remarked that

1

3
¼ 1þ 3

5þ 7
¼ 1þ 3þ 5

7þ 9þ 11
¼ � � � :

Hence, we call a sequence a1, a2, a3, . . . a Galileo sequence with ratio k,

for k a positive integer, if it has the property that S2n=Sn ¼ k þ 1 or,

equivalently, S2n � Sn ¼ kSn, where Sn denotes the nth partial sum,

a1 þ a2 þ a3 þ � � � þ an. Thus, the increasing sequence of odd positive

1.2 Sequences of natural numbers 23



T
ab
le
1
.5
.

n
1

2
3

4
5

6
7

8
9

1
0

. .
.

a
n

0
3

6
1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

. .
.

a
n
þ
4

4
7

1
0

1
6

2
8

5
2

1
0
0

1
9
6

3
8
8

7
7
2

. .
.

(a
n
þ
4
)=
1
0

0
.4

0
.7

1
.0

1
.6

2
.8

5
.2

1
0
.0

1
9
.6

3
8
.8

7
7
.2

. .
.

A
ct
u
al
d
is
ta
n
ce

(A
U
)

0
.3
8
7

0
.7
2
3

1
1
.5
2

5
.2

9
.5
9

1
9
.2

3
0
.1

3
9
.5

M
er
cu
ry

V
en
u
s

E
ar
th

M
ar
s

Ju
p
it
er

S
at
u
rn

U
ra
n
u
s

N
ep
tu
n
e

P
lu
to



natural numbers is a Galileo sequence with ratio 3. If a1, a2, a3, . . . is a

Galileo sequence with ratio k, then, for r a positive integer, ra1, ra2, ra3,

. . . is also a Galileo sequence with ratio k. A strictly increasing Galileo

sequence a1, a2, a3, . . . , with ratio k > 3, can be generated by the

recursive formulas

a2n�1 ¼
��
(k þ 1)an � 1

2

��
and

a2n ¼
��
(k þ 1)an

2

��
þ 1,

for n > 2, where a1 ¼ 1, a2 ¼ k, for k > 2, and ½½x�� denotes the greatest

integer not greater than x. For example, when k ¼ 3, the formula generates

the sequence of odd natural numbers. For k ¼ 4, the Galileo sequence

generated is 1, 4, 9, 11, 22, 23, 27, 28, 54, 56, . . . :

One of the most intriguing sequences historically is generated by Bode’s

law. The relation was discovered in 1766 by Johann Daniel Titius, a

mathematician at Wittenberg University, and was popularized by Johann

Bode [BO duh], director of the Berlin Observatory. According to Bode’s

law, the distances from the Sun to the planets in the solar system in

astronomical units, where one astronomical unit equals the Earth–Sun

distance or approximately 93 million miles, can be obtained by taking the

sequence which begins with 0, then 3, then each succeeding term is twice

the previous term. Then 4 is added to each term and the result is divided by

10, as shown in Table 1.5.

Initially, Bode’s law is a fairly accurate predictor of the distances to the

planets from the Sun in astronomical units. The penultimate row in Table

1.5 gives the actual average distance from the planets to the Sun in

astronomical units. Bode became an astronomical evangelist for the law

and formed a group called the celestial police to search for a missing

planet 2.8 AU from the Sun. On January 1, 1801, the first day of the

nineteenth century, Father Giuseppe Piazzi at the Palermo Observatory

found what he thought was a new star in the constellation Taurus and

informed Bode of his discovery. Bode asked the 23-year-old Gauss to

calculate the object’s orbit. It took Gauss two months to devise a technique,

the method of least squares, that would take an observer a few hours to

calculate the orbit of a body in 3-space. The previous method, due to Euler,

took numerous observations and several weeks of calculation. Using

Gauss’s method the object was rediscovered December 7, 1801 and named

Ceres, after the Roman goddess of vegetation and protector of Sicily. Three
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years later another minor planet was discovered. A few years later another

sun object was discovered, then another. Today the orbits of about 80 000

minor planets are known. Almost all minor planets ply orbits between

those of Mars and Jupiter, called the asteroid belt. Their average distance

from the Sun is amazingly close to 2.8 AU.

Superincreasing sequences of positive integers have the property that

each term is greater than the sum of all the preceding terms. For example,

2, 4, 8, 16, 32, . . . , 2n, . . . is an infinite superincreasing sequence and 3, 9,

14, 30, 58, 120, 250, 701 is a finite superincreasing sequence with eight

terms. We will use superincreasing sequences in Chapter 7 to create

knapsack ciphers.

Consider the sequence of positive integers where each succeeding term

is the sum of the decimal digits of the previous term. More formally, if

Sr(n) denotes the sum of the rth powers of the decimal digits of the

positive integer n the general term to the sequences will be

ak ¼ S kr (n) ¼ Sr(S
k�1
r (n)) where r ¼ 2. In particular, since 12 þ 22 ¼ 5,

52 ¼ 25, 22 þ 52 ¼ 29, and 22 þ 92 ¼ 85, the sequence generated by 12 is

given by 12, 5, 25, 26, 85, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, . . .

Numbers whose sequences eventually reach the cycle 4, 16, 37, 58, 89,

145, 42, 20 of period 8 as 12 does are called sad numbers. A positive

integer n is called happy if Sm2 (n) ¼ 1, for some positive integer m. The

height of a happy number is the number of iterations necessary to reach

unity. For example, 31 is a happy number of height two and 7 is a happy

number of height five. For any positive integer 10n is happy and 2(10)n is

sad, hence there are an infinite numbers of both happy and sad numbers.

About 1/7 of all positive integers are happy. In 2002, E. El-Sedy and S.

Siksek showed the existence of sequences of consecutive happy integers of

arbitrary length. In 1945, Arthur Porges of the Western Military Academy

in Alton, Illinois proved that every positive integer is either happy or sad.

A natural generalization of happy and sad numbers is to sequences

formed where each succeeding term is the sum of the rth powers of the

digits of the previous term. That is, when the general term of the sequence

is ak ¼ S kr (n) with r. 2 a positive integer. For example when r ¼ 3, eight

distinct cycles arise. In particular, 33 þ 73 þ 13 ¼ 371. Hence, 371 self-

replicates. In 1965, Y. Matsuoka proved that if n is a multiple of 3 then

there exists a positive integer m such that Sm3 (n) ¼ 153, another self-

replecate. A positive integer n is called a cubic happy number is

Sm3 (n) ¼ 1, for some positive integer m.

Sidney sequences, a1, a2, . . . , an, named for their 15-year-old disco-

verer Sidney Larison of Ceres, California, are defined as follows: given any
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m-digit natural number a1a2 � � � am, let the first m terms of the Sidney

sequence be a1, a2, . . . , am; then, for k. m, ak is defined to be the units

digit of ak�m þ � � � þ ak�2 þ ak�1, the sum of the previous m terms of the

sequence. A Sidney sequence terminates when the last m terms of the

sequence match the first m terms of the sequence. For example, with m ¼ 2

the Sidney sequence for 76 is given by 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6.

For the case when m ¼ 2, Larison showed there are six different

repeating patterns generated by Sidney sequences. One of the cycles has

period 60, a property noted by Lagrange in 1744 when he discovered that

the units digits of the Fibonacci numbers form a sequence with period 60.

When m ¼ 3, there are 20 patterns, and 11 exist if m ¼ 4. Similar results

occur if we are given an m-digit natural number and proceed to construct a

product instead of a sum.

Undoubtedly, the most famous sequence of natural numbers is the

Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . , un . . . , where

u1 ¼ 1, u2 ¼ 1, and unþ1 ¼ un þ un�1. The sequence first appeared in

Europe in 1202 in Liber abaci by Leonardo of Pisa, more commonly

known as Fibonacci. Albert Girand, a mathematician from the Netherlands

and a disciple of Viète, first defined the sequence recursively in 1634 in a

posthumous publication. Fibonacci numbers were used prior to the eighth

century to describe meters in Sanskrit poetry.

Fibonacci first mentions the sequence in connection with the number of

pairs of rabbits produced in n months, beginning with a single pair,

assuming that each pair, from the second month on, begets a new pair, and

no rabbits die. The number of pairs of rabbits after n months is the sum of

the number of pairs which existed in the previous month and the number of

pairs which existed two months earlier, because the latter pairs are now

mature and each of them now produces another pair. In Figure 1.14, An
represents the nth pair of rabbits in their first month and Bn the nth pair of

rabbits in succeeding months.

The sequence never gained much notoriety until the late nineteenth

century when Edouard Lucas popularized the sequence in Théorie des

nombres and attached the name Fibonacci to it. Lucas was a French

artillery officer during the Franco-Prussian War and later taught at the

Lycée Saint-Louis and at the Lycée Charlemagne in Paris. In Mathematical

Recreations, he introduced the Tower of Hanoi puzzle where, according to

Lucas, three monks of Benares in northeastern India (not Vietnam) main-

tained a device consisting of three pegs onto which 64 different sized disks

were placed. Initially, all the disks were on one peg and formed a pyramid.

The monks’ task was to move the pyramid from one peg to another peg.
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The rules were simple. Only one disk could be moved at a time from one

peg to another peg, and no larger disk could be placed on a smaller disk.

According to legend, when the monks finished their task the world would

end. Lucas explained how it would take at least 264 � 1 moves to complete

the task. At the rate of one move a second, the monks would take almost

63 109 centuries to complete their task. Unfortunately, Lucas died of

erysipelas after a freak accident in a restaurant where a waiter dropped a

tray of dishes and a shard gashed his cheek.

Lucas numbers, denoted by vn, are defined recursively as follows:

vnþ1 ¼ vn þ vn�1, v1 ¼ 1, and v2 ¼ 3. Lucas originally defined vn to be

u2n=un. He derived many relationships between Fibonacci and Lucas

numbers. For example, un�1 þ unþ1 ¼ vn, un þ vn ¼ 2unþ1, and vn�1 þ
vn�1 ¼ 5un. The sequence of Lucas numbers is an example of a Fibonacci-

type sequence, that is, a sequence a1, a2, . . . , with a1 ¼ a, a2 ¼ b, and

anþ2 ¼ anþ1 þ an, for n > 2.

Fibonacci numbers seem to be ubiquitous in nature. There are abundant

references to Fibonacci numbers in phyllotaxis, the botanical study of the

arrangement or distribution of leaves, branches, and seeds. The numbers of

petals on many flowers are Fibonacci numbers. For example, lilies have 3,

buttercups 5, delphiniums 8, marigolds 13, asters 21, daisies 21 and 34. In

addition, poison ivy is trifoliate and Virginia creeper is quinquefoliate.

The fraction 10000=9899 has an interesting connection with Fibonacci

numbers for its decimal representation equals 1:010 203 050 813 213 455

. . . : There are only four positive integers which are both Fibonacci

numbers and triangular numbers, namely, 1, 3, 21, and 55. There are only
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Figure 1.14
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three number which are Lucas and triangular numbers, namely, 1, 3, and

5778. In 1963, J. H. E. Cohn showed that except for unity, the only square

Fibonacci number is 144.

Geometrically, we say that a point C divides a line segment AB, whose

length we denote by jABj, in the golden ratio when jABj=jACj ¼
jACj=jCBj, as shown in Figure 1.15. Algebraically, let jACj ¼ a and

jABj ¼ b; then b=a ¼ a=(b� a), hence, b2 � ab ¼ a2. Dividing both sides

of the equation by a2 and setting x ¼ b=a, we obtain x2 ¼ xþ 1, whose

roots are � ¼ (1þ ffiffiffi
5

p
)=2, the golden ratio, and � ¼ (1� ffiffiffi

5
p

)=2, its

reciprocal. It is thought by many who search for human perfection that the

height of a human body of divine proportion divided by the height of its

navel is the golden ratio. One of the most remarkable connections between

the Fibonacci sequence and the golden ratio, first discovered by Johannes

Kepler the quintessential number cruncher, is that as n approaches infinity

the limit of the sequence of ratios of consecutive Fibonacci numbers,

unþ1=un, approaches �, the golden ratio.

Using only Euclidean tools, a compass and a straightedge, a line

segment AB may be divided in the golden ratio. We construct DB

perpendicular to AB, where jDBj ¼ 1
2
jABj, as shown in Figure 1.16. Using

a compass, mark off E on AD such that jDEj ¼ jDBj and C on AB so that

jACj ¼ jAEj. From the construction, it follows that jABj=jACj ¼ �.
Golden right triangles have their sides in the proportion 1:

ffiffiffi
�

p
: �. In

1992, Duane DeTemple showed that there is a golden right triangle

A C B

E

D

Figure 1.16

A C B
a

b

Figure 1.15
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associated with the isosceles triangle of smallest perimeter circumscribing

a given semicircle. Rectangles whose sides are of length a and b, with

b=a ¼ �, are called golden rectangles. In the late nineteenth century, a

series of psychological experiments performed by Gustav Fechner and

Wilhelm Wundt indicated that golden rectangles were the quadrilaterals

which were, aesthetically, most pleasing to the eye. Such rectangles can be

found in 33 5 file cards, 53 8 photographs, and in Greek architecture, in

particular, in the design of the Parthenon. A golden rectangle can be

constructed from a square. In particular, given a square ABCD, let E be the

midpoint of side DC, as shown in Figure 1.17. Use a compass to mark off

F on DC extended such that jEFj ¼ jEBj. Mark off G on AB such that

jAGj ¼ jDFj, and join GF, CF, and BG. From the construction, it follows

that jAGj=jADj ¼ �. Hence, the quadrilateral AGFD is a golden rectangle.

In 1718, Abraham de Moivre, a French mathematician who migrated to

England when Louis XIV revoked the Edict of Nantes in 1685, claimed

that un ¼ (�n � � n)=(�� � ), where � ¼ (1þ ffiffiffi
5

p
)=2 and � ¼ (1� ffiffiffi

5
p

)=2.

The first proof was given in 1728 by Johann Bernoulli’s nephew Nicolas.

Independently, the formula was established by Jacques-Philippe-Marie

Binet in 1843 and by Gabriel Lamé a year later. It is better known today as

Binet’s or Lamé’s formula.

Since �þ � ¼ 1, �� � ¼ ffiffiffi
5

p
, multiplying both sides of the identity

�2 ¼ �þ 1 by �n, where n is any positive integer, we obtain �nþ2 ¼
�nþ1 þ �n. Similarly, � nþ2 ¼ � nþ1 þ � n. Thus, �nþ2 � � nþ2 ¼
(�nþ1 þ �n)� (� nþ1 þ � n) ¼ (�nþ1 � � nþ1)þ (�n � � n). Dividing both

sides by �� � and letting an ¼ (�n � � n)=(�� � ), we find that

anþ2 ¼ �nþ2 � � nþ2

�� �
¼ �nþ1 � � nþ1

�� �
þ �n � � n

�� �
¼ anþ1 þ an,

with a1 ¼ a2 ¼ 1. Hence,

A

C

B

ED F

G

Figure 1.17
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an ¼ �n � � n

�� �
¼ un,

the nth term in the Fibonacci sequence.

Another intriguing array of natural numbers appears in Blaise Pascal’s

Treatise on the Arithmetic Triangle. The tract, written in 1653, was

published posthumously in 1665. Pascal was a geometer and one of the

founders of probability theory. He has been credited with the invention of

the syringe, the hydraulic press, the wheelbarrow, and a calculating

machine. Pascal left mathematics to become a religious fanatic, but

returned when a severe toothache convinced him that God wanted him to

resume the study of mathematics.

Pascal exhibited the triangular pattern of natural numbers, known as

Pascal’s triangle, in order to solve a problem posed by a noted gamester,

Chevalier de Méré. The problem was how to divide the stakes of a dice

game if the players were interrupted in the midst of their game. For further

details, see [Katz]. Each row of the triangle begins and ends with the

number 1, and every other term is the sum of the two terms immediately

above it, as shown in Figure 1.18. Pascal remarked that the nth row of the

triangle yields the binomial coefficients found in the expansion of

(xþ y)n.

The triangular array, however, did not originate with Pascal. It was

known in India around 200 BC and appears in several medieval Islamic

mathematical texts. The frontispiece of Zhu Shijie’s Precious Mirror of the

Four Elements contains a diagram of the triangle (Figure 1.19). In 1261,

the triangular array appeared in Yang Hui’s (CHANG WAY) A Detailed

Analysis of the Mathematical Methods in the ‘Nine Chapters’. Yang Hui

noted that his source for the diagram was The Key to Mathematics by Jia

Xian (GEE AH SHE ANN), an eleventh century work which has been lost.

Yang Hui’s method of extracting square roots uses the formula

(aþ b)2 ¼ a2 þ (2aþ b)b, with a as an initial value. Cubic roots were

extracted using the formula (aþ b)3 ¼ a3 þ (3a2 þ 3abþ b2)b. Higher

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
................................

Figure 1.18
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roots can be extracted by generalizing the formula using higher-order

binomial coefficients. Prior to the introduction of the hand calculator such

methods were sometimes taught in schools. Similar arrangements of num-

bers can be found in the works of Persian mathematicians Al-Karaji and

Omar Khayyam. Pascal’s triangle first appeared in Europe in 1225 in

Figure 1.19
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Jordanus de Nemore’s On Arithmetic and was conspicuously displayed on

the title page of the 1527 edition of Peter Apian’s Arithmetic. In 1524

Apian published a popular but very laborious method to calculate longitude

using the Moon. In the eighteenth century, John Harrison constructed a

reliable chronometer that enabled navigators to determine their longitude

more accurately and with fewer calculations. In 1544, the triangle used as a

tool in root extraction played a prominent role in Stifel’s Complete

Arithmetic. In 1556, the array appeared in Niccoló of Brescia’s General

Treatise. Niccoló was commonly known as Tartaglia, the stammerer, owing

to an injury received as a boy. In Italy, the triangular array is known as

Tartaglia’s triangle.

The figurate-binomial relationship first observed by Stifel was rediscov-

ered in 1631 by Henry Briggs, inventor of common logarithms, and

William Oughtred [AWE tread], inventor of the slide rule. Oughtred

worked at mathematics at a country vicarage in Albury, Surrey, where he

served as rector and gave mathematical instruction to any who came to him

provided they could write clearly. Oughtred believed that mathematics

improved reasoning power and was a pathway to the understanding of God.

Oughtred complained that many a good notion was lost and many a

problem went unsolved because his wife took away his candles right after

dinner. He was ecstatic when one of his pupils, perhaps John Wallis,

brought him a box of candles.

Pascal’s name was first attached to the array in 1708 by Pierre Rémond

de Montmort. Pascal’s original arrangement, shown in Table 1.6, is

Table 1.6. f mn

n

m 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 . . .
2 1 3 6 10 15 21 28 36 45 . . .
3 1 4 10 20 35 56 84 120 . . .
4 1 5 15 35 70 126 210 . . .
5 1 6 21 56 126 252 . . .
6 1 7 28 84 210 . . .
7 1 8 36 120 . . .
8 1 9 45 . . .

10 1 . . .
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fundamentally a table of figurate numbers. Even though the array did not

originate with Pascal, the conclusions that he drew from it with respect to

solving problems in probability went far beyond any of his predecessors.

In the seventeenth century, René François de Sluse remarked that the

sums of the slant ENE–WSW diagonals of Pascal’s triangle in Figure 1.20

yield the Fibonacci numbers, a result rediscovered by Edouard Lucas in

1896.

In this text, you will encounter a number of mechanical computational

procedures or algorithms. An algorithm is a specific set of rules used to

obtain a given result from a specific input. The word is a Latin corruption

of al-Khwarizmi, a ninth century mathematician–astronomer, member of

the House of Wisdom in Baghdad, and author of a very influential work,

al-Kitab al-muhtasar fi hisab al-jabar wa-l-muqabala (The Condensed

Book on Comparing and Restoring), the text from which our word

‘algebra’derives. One must wonder if students would be even more reticent

about high school mathematics if they were required to take two years of

‘muqabala’. In many cases, as we shall see, algorithms can generate very

interesting sequences of natural numbers. For example, the Collatz algo-

rithm, named for Lothar O. Collatz of the University of Hamburg who

devised it in the 1930s, is as follows: given any positive integer a1, let

anþ1 ¼
an

2
if an is even, and

3an þ 1 if an is odd:

(

Collatz conjectured that for any natural number the sequence generated

eventually reached unity. John Selfridge, of Northern Illinois University,

has shown this to be the case for all natural numbers less than 73 1011.

The conjecture is one of the more well-known unsolved problems in

number theory, as is the question of whether there is an upper limit to the

number of iterations in the Collatz algorithm necessary to reach unity. Any

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
................................

1
1
2
3
5
8

13

Figure 1.20
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slight adjustment of the algorithm may change the outcome. For example,

if 3an þ 1 is replaced by 3an � 1, when an is odd, three distinct cycles are

generated.

An interesting procedure, albeit not as intriguing as the Collatz algo-

rithm, is the Kaprekar algorithm devised in 1949 by the Indian mathemati-

cian D.R. Kaprekar (kuh PREE kur). Kaprekar’s sort–reverse–subtract

routine goes as follows: given a four-digit natural number larger than 1000

for which not all digits are equal, arrange the digits in descending order,

subtract the result from its reverse (the number with the digits in ascending

order). Successive applications of this algorithm result in the four-digit

Kaprekar constant, the self-replicating number 6174. For example, for

1979, we have

�1799
9971

8172
�1278
8721

7443
�3447
7443

3996
�3699
9963

6264
�2466
6642

4176
�1467
7641

6174

Given any m-digit number n, with not all digits the same and m. 2, let

Mn and mn denote the largest and smallest positive integers obtainable

from permuting the digits of n and let K(n) ¼ Mn � mn. The m-digit

Kaprekar constant, denoted by km, is the integer such that successive

iterations of K on any m-digit positive integer generate km and

K(km) ¼ km. For four-digit numbers the Kaprekar constant is 6174.

The digital root of a positive integer n, denoted by r(n), is the single

digit obtained by adding the digits of a number. If the sum obtained has

more than one digit, then the process is repeated until a single digit is

obtained. For example, since 7þ 4þ 3þ 2þ 8 ¼ 24 and 2þ 4 ¼ 6, the

digital root of 74 328 is 6, that is, r(74 328) ¼ 6. For natural numbers m

and n, r(r(n)) ¼ r(n), r(nþ 9) ¼ r(n), and the pairs r(mn) and

r(m)r(n), and r(n� m) and r(n)� r(m), have the same remainder when

divided by 9. For any positive integer k we may construct the auxiliary

sequence a1, a2, . . . , an, . . . , where a1 ¼ k and anþ1 ¼ an þ r(an). From
this sequence, the digital root sequence r(a1), r(a2), . . . can be generated.

For example, the auxiliary sequence for 12 is given by 12, 15, 21, 24, 30,

33, 39. Hence, the digital root sequence for 12 is given by 3, 6, 3, 6, 3, 6, 3,

. . . : In 1979, V. Sasi Kumar showed that there are only three basic digital

root sequences.

We end this section with two sequences generated by the digits of a

number, one constructed additively, the other multiplicatively. The digital

sum sequence is defined as follows: let a1 be any natural number. For

k > 2, define ak ¼ ak�1 þ sd(ak�1), where sd(n) denotes the sum of the

digits of n. In 1906, A. Géradin showed that the 19th term of the digital
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sum sequence whose 1st term is 220 and the 10th term of the digital sum

sequence whose 1st term is 284 both equal 418.

In 1973, Neil Sloane of AT&T Bell Labs, author of A Handbook of

Integer Sequences, devised a sequence of natural numbers by defining each

successive term in the sequence as the product of the digits of the

preceding term. Sloane defined the persistence of a natural number as the

number of steps required to obtain a single digit number. For example, the

persistence of 74 is 3 since its persistence sequence is 74, 28, 16, 6. The

smallest number with persistence 2 is 25. The smallest number with

persistence 1 is 10. Sloane showed that no number less than 1050 has a

persistence greater than 11. He conjectured that there is a natural number

N such that every natural number has persistence less than N. Sloane’s

online encyclopedia of integer sequences contains an interactive database

of information on known sequences. Currently, the website averages

30,000 hits a day and adds approximately 40 new sequences a day to the

database.

Given any two positive integers m and n, S. Ulam defined the sequence

of u(m, n)-numbers, a1, a2, a3, . . . , such that a1 ¼ m, a2 ¼ n and for

k. 2, ak is the least integer greater than ak�1 uniquely expressible as

ai þ aj for 1 < i, j < k � 1, that is, as the sum of two distinct previous

terms of the sequence. For example, if m ¼ 1 and n ¼ 2, then the first

u(1, 2)-numbers are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48,

53, 57, 62, 69, 72, 77, 82, 87, 97, 99, and so forth. Note that 3 ¼ 1þ 2,

4 ¼ 1þ 3, however, 5 ¼ 2þ 3 ¼ 4þ 1. Thus, 5 does not have a unique

representation as a sum of previous terms and, hence, does not belong in

the sequence. There are a number of open questions concerning u(1, 2)-

numbers. For example, are there infinitely many numbers which are not the

sum of u(1, 2)-numbers? Are there infinitely many pairs of consecutive

u(1, 2)-numbers. Are there arbitrarily large gaps in the sequence of

u(1, 2)-numbers? Ulam worked as a mathematician on the Manhattan

Project in Los Alamos which led to the development of the first atomic

bomb.

Similarly, given any two positive integers m and n, we define the

sequence of v(m, n)-numbers b1, b2, b3, . . . , such that b1 ¼ m, b2 ¼ n,

and for k. 2, bk is the least integer greater than bk�1 that is not of the

form bi þ bj, for 1 < i, j < k � 1. That is, each succeeding term in the

sequence is the next positive integer that cannot be written as a sum of two

previous terms of the sequence. For example, the first ten v(2, 5)-numbers

are 2, 5, 6, 9, 10, 13, 17, 20, 21, 24.

These concepts can be generalised. For example, the sequence of

36 The intriguing natural numbers



u(a1, a2, a3, . . . , an)-numbers, a1, a2, a3, . . . , has the property that for

k. n ak is the least integer greater than ak�1 uniquely expressible as

ai þ aj, for 1 < i, j < k � 1. The sequence of v(b1, b2, b3, . . . , bn)-
numbers, b1, b2, b3, . . . , has the property that for k. n, bk is the least

integer greater than bk�1 that can not be represented as bi þ bj, for

1 < i, j < k.

Exercises 1.2

1. Determine the next three terms in the look and say sequence 1, 11, 21,

1 211, 111 221, 312 211, . . . :

2. Explain why a look and say sequence cannot contain a digit greater

than 3 unless that digit appears in the first or second term.

3. Generate the first ten terms of a Galileo sequence with ratio 5 and first

term 1.

4. Which of the following are superincreasing sequences?

(a) 2, 3, 6, 12, 25, 50, 99, 199, 397,

(b) 3, 5, 9, 18, 35, 72, 190, 1009,

(c) 4, 7, 12, 24, 48, 96, 192, 384, 766.

5. Determine the next three terms of the sequence 1, 5, 9, 31, 53, 75, 97,

. . . , and the rule that generates the sequence.

6. Determine the next three terms of the sequence 5, 8, 21, 62, 86, 39, 74,

38, . . . , and the rule that generates the sequence.

7. Are the following natural numbers happy or sad?

(a) 392, (b) 193, (c) 269, (d) 285, (e) 521.

8. Determine the nine cycles that occur in sequences of natural numbers

where each succeeding term is the sum of the cubes of the digits of the

previous number.

9. Determine the six cycles that occur if succeeding terms of a sequence

are the sum of the fourth powers of the digits of the previous term.

10. Determine the six different cycles that result from applying Sidney’s

algorithm to two-digit numbers. What is the sum of the periods of the

six cycles?

11. Given any m-digit natural number a1a2 � � � am, let the first m terms of

the sequence be a1, a2, . . . , am; then, for k. m, akþ1 is defined to be

the units digit of the product of the previous nonzero m terms of the

sequence. The sequence terminates when a repeating pattern of digits

occurs. What repeating patterns result from this Sidney product

sequence algorithm for m ¼ 2? (for m ¼ 3?)

12. For what values of n is un, the nth Fibonacci number, even.
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13. Show that the sum of any 10 consecutive Fibonacci-type numbers is

always equal to 11 times the seventh term in the sequence.

14. Show that � ¼ (1þ (1þ (1þ � � �)1=2)1=2)1=2 (hint: square both sides of

the equation).

15. In Figure 1.16, show that jABj=jACj ¼ �.
16. In Figure 1.17, show that jAGj=jADj ¼ �.
17. A golden box is a parallelepiped whose height, width, and length are

in the geometric proportion �:1:�. Show that a golden box may also be

defined as a parallelepiped whose height, width, and length are in the

geometric proportion 1:�:�2.
18. Determine the first ten Lucas numbers.

19. Show that 5778 is a triangular–Lucas number.

20. If � ¼ (1þ ffiffiffi
5

p
)=2 and � ¼ (1� ffiffiffi

5
p

)=2, show that vn ¼ �n þ � n.

21. The tribonacci numbers an are defined recursively as follows: a1 ¼
a2 ¼ 1, a3 ¼ 2, and an ¼ an�1 þ an�2 þ an�3, for n > 4. Generate the

first 20 tribonacci numbers.

22. The tetranacci numbers bn are defined as follows: b1 ¼ b2 ¼ 1,

b3 ¼ 2, b4 ¼ 4, and bn ¼ bn�1 þ bn�2 þ bn�3 þ bn�4, for n > 5. Gen-

erate the first 20 tetranacci numbers.

23. Verify the Collatz conjecture for the following numbers:

(a) 9, (b) 50, (c) 121.

24. Determine the three cycles that occur when 3an � 1 is substituted for

3an þ 1 in the Collatz algorithm.

25. Perform the Kaprekar routine on the following natural numbers until

you obtain the Kaprekar constant:

(a) 3996, (b) 1492, (c) your birth year, (d) the current calendar year.

26. Use the Kaprekar algorithm to determine the three-digit Kaprekar

constant for three-digit numbers.

27. The reverse–subtract–reverse–add algorithm is stated as follows:

given a three-digit natural number with the outer two digits differing

by at least 2, reverse the digits of the number and subtract the smaller

from the larger of the two numbers to obtain the number A, take A,

reverse its digits to obtain the number B, add A and B. The sum,

Aþ B, will always be 1089. Verify this algorithm for the following

numbers: (a) 639, (b) 199, (c) 468.

28. Given a four-digit number n for which not all the digits are equal, let

abcd represent the largest integer possible from permuting the digits a,

b, c, d of n, that is, so a > b > c > d. The Trigg operator, T(n), is

defined such that T (n) ¼ badc� cdab. The Trigg constant is the
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integer m such that iterations of T always lead to m and T (m) ¼ m.

Determine the Trigg constant.

29. Determine the three basic digital root sequences.

30. For any natural number n prove that r(nþ 9) ¼ r(n), where r(n)
denotes the digital root of n.

31. Show that the 19th term of the digital sum sequence whose 1st term is

220 and the 10th term of the digital sum sequence whose 1st term is

284 both equal 418.

32. Determine the sum of the digits of the first million positive integers.

33. The sequence a1, a2, . . . is called a Kaprekar sequence, denoted by

Ka1 , if a1 is a positive integer and akþ1 ¼ ak þ sd(ak), for k. 1,

where sd(n) denotes the sum of the digits of n. For example, if a1 ¼ 1,

we obtain the Kaprekar sequence K1 ¼ 1, 2, 4, 8, 16, 23, 28, . . . : In

1959, Kaprekar showed that there are three types of Kaprekar

sequence: (I) each term is not divisible by 3, (II) each term is divisible

by 3 but not by 9, and (III) each term is divisible by 9. For example,

K1 is type I. Determine the Kaprekar type for Ka1, when a1 ¼ k, for

2 < k < 10.

34. Kaprekar called a positive integer a self number if it does not appear

in a Kaprekar sequence except as the first term. That is, a natural

number n is called a self, or Columbian, number if it cannot be written

as mþ sd(m), where m is a natural number less than n. For example, 1

and 3 are self numbers. Determine all the self numbers less that 100.

35. In The Educational Times for 1884, Margaret Meyer of Girton

College, Cambridge, discovered a set of conditions under which a

number n is such that sd(n) ¼ 10 and sd(2n) ¼ 11. Find such a set of

conditions.

36. Determine the persistence of the following natural numbers:

(a) 543, (b) 6989, (c) 86 898, (d) 68 889 789, (e) 3 778 888 999.

37. Determine the smallest natural numbers with persistence 3, with

persistence 4, with persistence 5.

38. Determine the first 15 u(1, 3)-numbers.

39. Determine the first 15 u(2, 3)-numbers.

40. Determine the first 30 u(2, 5)-numbers.

41. Determine the first 15 u(2, 3, 5)-numbers.

42. Determine the first 15 v(1, 2)-numbers.

43. Determine the first 15 v(1, 3)-numbers.

44. Determine the first 15 v(3, 4, 6, 9, 10, 17)-numbers.

45. Define the sequence a1, a2, . . . of w(m, n)-numbers as follows. Let

a1 ¼ m, a2 ¼ n, and ak, for k. 2, be the unique smallest number
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greater than ak�1 equal to a product aia j, where i, j, k. Determine

the first eight w(2, 3)-numbers.

1.3 The principle of mathematical induction

Most students of mathematics realize that a theorem is a statement for

which a proof exists, a lemma is a subordinate theorem useful in proving

other theorems, and a corollary is a result whose validity follows directly

from a theorem. Proofs of theorems and lemmas may be constructive or

nonconstructive, that is, in general, practical or elegant. It should also be

evident that in mathematical problems, ‘establish’, ‘show’ and ‘prove’ are

the same commands.

One of the most important techniques in establishing number theoretic

results is the principle of mathematical induction. The method was first

employed by Pascal in 1665 and named as such by Augustus De Morgan in

1838. It is a technique that is not very satisfying to students since it is

usually nonconstructive and does not give any clue as to the origin of the

formula that it verifies. Induction is not an instrument for discovery.

Nevertheless, it is a very important and powerful tool. The principle of

mathematical induction follows from the well-ordering principle which

states that every nonempty set of natural numbers has a least element.

Theorem 1.1 (Principle of mathematical induction) Any set of natural

numbers that contains the natural number m, and contains the natural

number nþ 1 whenever it contains the natural number n, where n > m,

contains all the natural numbers greater than m.

Proof Let S be a set containing the natural number m and the natural

number nþ 1 whenever it contains the natural number n, where n > m.

Denote by T the set of all natural numbers greater than m that are not in S.

Suppose that T is not empty. By the well-ordering principle T has a least

element, say r. Now, r � 1 is a natural number greater than or equal to m

and must lie in S. By the induction assumption, (r � 1)þ 1 ¼ r must also

lie in S, a contradiction. Hence, the assumption that T is not empty must be

false. We conclude that T is empty. Therefore, S contains all the natural

numbers greater than m. j

In most applications of the principle of mathematical induction, we are

interested in establishing results that hold for all natural numbers, that is,

when m ¼ 1. There is an alternate principle of mathematical induction,
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equivalent to the principle of mathematical induction stated in Theorem

1.1, in which, for a given natural number m, we require the set in question

to contain the natural number nþ 1 whenever it contains all the natural

numbers between m and n, where n > m. The alternate principle of

mathematical induction is very useful and is stated in Theorem 1.2 without

proof.

Theorem 1.2 (Alternate principle of mathematical induction) Any set of

natural numbers that contains the natural number m, and contains nþ 1

whenever it contains all the natural numbers between m and n, where

n > m, contains all the natural numbers greater than m.

The alternate principle of mathematical induction implies the well-ordering

principle. In order to see this, let S be a nonempty set of natural numbers

with no least element. For n. 1, suppose 1, 2, . . . , n are elements S, the

complement of S. A contradiction arises if nþ 1 is in S for it would then

be the least positive natural number in S. Hence, nþ 1 must be in S. From

the alternate principle of mathematical induction, with m ¼ 1, S must

contain all natural numbers. Hence, S is empty, a contradiction.

Establishing results using induction is not as difficult as it seems and it

should be in every mathematician’s repertoire of proof techniques. In

Example 1.3, we use induction to establish a result known to the early

Pythagoreans.

Example 1.3 The sum of consecutive odd natural numbers beginning with

1 is always a square. This result first appeared in Europe in 1225 in

Fibonacci’s Liber quadratorum. The statement of the problem can be

expressed in the form of a variable proposition P(n), a statement whose

truth or falsity varies with the natural number n, namely P(n): 1þ 3 þ
5 þ � � � þ (2n� 1) ¼ n2. In order to establish the truth of P(n), for all

natural numbers n, using induction, we first show that P(1) is true. This

follows since 1 ¼ 12. We now assume that proposition P(n) holds for an

arbitrary value of n, say k, and show that P(k þ 1) follows from P(k).

Since we are assuming that P(n) holds true for n ¼ k, our assumption is

P(k): 1þ 3þ 5þ 7 þ � � � þ (2k � 1) ¼ k2:

Adding 2k þ 1 to both sides yields

1þ 3þ 5þ 7 þ � � � þ (2k � 1)þ (2k þ 1) ¼ k2 þ (2k þ 1),

or
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1þ 3þ 5þ 7 þ � � � þ (2k � 1)þ (2k þ 1) ¼ (k þ 1)2,

establishing the truth of P(k þ 1). Hence, by the principle of mathematical

induction, P(n) is true for all natural numbers n.

Example 1.4 We show that u1 þ u2 þ � � � þ un ¼ unþ2 � 1, where n is

any natural number and un represents the nth Fibonacci number. We have

u1 ¼ 1 ¼ 2� 1 ¼ u3 � 1, hence P(1) is true. Assume that P(n) is true for

an arbitrary natural number k, hence, we assume that u1 þ u2 þ u3 þ
� � � þ uk ¼ ukþ2 � 1. Adding ukþ1 to both sides of the equation we obtain

u1 þ u2 þ u3 þ · · · þ uk þ ukþ1 ¼ (ukþ2 � 1) þ ukþ1 ¼ (ukþ1 þ ukþ2) �
1 ¼ ukþ3 � 1. Thus, P(k þ 1) follows from P(k), and the result is estab-

lished for all natural numbers by the principle of mathematical induction.

It is important to note that verifying both conditions of the principle of

mathematical induction is crucial. For example, the proposition

P(n): 1þ 3þ 5 þ � � � þ (2n� 1) ¼ n3 � 5n2 þ 11n� 6 is only true

when n ¼ 1, 2, or 3. Further, P(n): 1þ 3þ 5 þ � � � þ (2n� 1) ¼
n2 þ n(n� 1)(n� 2) � � � (n� 1000) is true for n ¼ 1, 2, 3, . . . , 1000

and only those natural numbers. Algebraically, the proposition

P(n): 1þ 3þ 5 þ � � � þ (2n� 1) ¼ n2 þ 5 implies the proposition

P(nþ 1): 1þ 3þ 5 þ � � � þ (2n� 1)þ (2nþ 1) ¼ (nþ 1)2 þ 5. How-

ever, P(n) is not true for any value of n.

In the exercises the reader is asked to establish formulas for the natural

numbers, many of which were known to the ancient mathematicians.

Exercises 1.3

Establish the following identities for all natural numbers n, unless other-

wise noted, where un and vn represent the general terms of the Fibonacci

and Lucas sequences, respectively.

1. 12 þ 22 þ 32 þ � � � þ n2 ¼ n(nþ 1)(2nþ 1)

6
:

2. 12 þ 32 þ 52 þ � � � þ (2n� 1)2 ¼ n(4n2 � 1)

3
: [Fibonacci]

3.
1

1 . 2
þ 1

2 . 3
þ 1

3 . 4
þ � � � þ 1

n(nþ 1)
¼ n

nþ 1
:

4. t1 þ t2 þ � � � þ tn ¼ n(nþ 1)(nþ 2)

6
: [Aryabhata]

5. 13 þ 23 þ 33 þ � � � þ n3 ¼ (1þ 2þ � � � n)2. [Aryabhata Bachet]
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6. (1þ a)n > 1þ na, where a is any real number greater than �1.

[Jakob Bernoulli]

7. n!. n2 for all natural numbers n. 3.

8. u1 þ u3 þ u5 þ � � � þ u2n�1 ¼ u2n.

9. u21 þ u22 þ u23 þ � � � þ u2n ¼ ununþ1:

10. u2 þ u4 þ u6 þ � � � þ u2n ¼ u2nþ1 � 1. [Lucas]

11. un > �n�2:

12. u2nþ1 � u2n ¼ un�1unþ2, if n > 1. [Lucas]

13. un þ vn ¼ 2unþ1. [Lucas]

14. vn�1 þ vnþ1 ¼ 5un, for n > 2. [Lucas]

15. vn ¼ un�1 þ unþ1 if n > 2. [Lucas]

16. u2n ¼ unvn. [Lucas]

17. u2nþ2 � u2n ¼ u2nþ2. [Lucas]

18. In 1753 Robert Simson proved that unþ1un�1 þ (�1)nþ1 ¼ u2n, for

n. 1. Use induction to establish the formula.

19. If S ¼ fa1, a2, a3, . . .g is a set of natural numbers with a1 .

a2 . a3 . . . . , then show S is finite.

20. Show that there are no natural numbers between 0 and 1.

21. Prove Wallis’s result concerning figurate numbers, namely for natural

numbers n and r, f r nþ1 ¼ f 1 n þ f 2 n þ � � � þ f rn.

1.4 Miscellaneous exercises

1. Show that 1 533 776 805 is a triangular, pentagonal, and hexagonal

number.

2. A natural number is called palindromic if it reads the same backwards

as forwards. For example, 3 245 423 is palindromic. Determine all

two- and three-digit palindromic triangular numbers.

3. Show that the squares of 1 270 869 and 798 644 are palindromic.

4. Show that the squares of the numbers 54 918 and 84 648 are pandigital,

that is they contain all the digits.

5. In 1727, John Hill, of Staffordshire, England, claimed that the smallest

pandigital square was (11 826)2. Was he correct?

6. The number 16 583 742 contains all the digits except 9 and 0. Show

that 90 . 16 583 742 is pandigital.

7. A positive integer n is called k-transposable if, when its leftmost digit

is moved to the unit’s place, the result is k . n. For example, 285 714 is

3-transposable since 857 142 ¼ 3 . 285 714. Show that 142 857 is 3-

transposable.

8. A number n is called automorphic if its square ends in n. For example,
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25 is automorphic since 252 ¼ 625. Show that 76 and 625 are

automorphic.

9. A number is called trimorphic if it is the nth triangular number and its

last digits match n. For example, 15 is trimorphic since it is the fifth

triangular number and it ends in 5. Show that 325, 195 625, and

43 959 376 are trimorphic.

10. A number is called a Kaprekar number if its square can be partitioned

in ‘half’ such that the sum of the first half and the second half equals

the given number. For example, 45 is a Kaprekar number since

452 ¼ 2025 and 20þ 25 ¼ 45. Show that 297, 142 857 and

1 111 111 111 are Kaprekar numbers.

11. A number is called an Armstrong number if it can be expressed as a

sum of a power of its digits. For example 407 is Armstrong since

407 ¼ 43 þ 03 þ 73. Show that 153 and 371 are Armstrong numbers.

12. A number is called narcissistic if its digits can be partitioned in

sequence so that it can be expressed as a power of the partitions. For

example, 101 is narcissistic since 101 ¼ 102 þ 12. All Armstrong

numbers are narcissistic. Show that 165 033 is narcissistic.

13. A number a1a2 . . . an is called handsome if there exist natural num-

bers x1, x2, . . . , xn such that a1a2 . . . an ¼ a
x1
1 þ a

x2
2 þ � � � þ axnn . For

example 24 is handsome since 24 ¼ 23 þ 42. Show that 43, 63, 89 and

132 are handsome.

14. A number abcd is called extraordinary if abcd ¼ abcd . Show that

2592 is extraordinary.

15. A number is called curious if it can be expressed as the sum of the

factorials of its digits. For example 1, 2, and 145 are curious since

1 ¼ 1!, 2 ¼ 2!, 145 ¼ 1!þ 4!þ 5! Show that 40 585 is curious.

16. Multiplying 142 857 by 2, 3, 4, 5 or 6 permutes the digits of 142 857

cyclically. In addition, 4 times 2178 reverses the digits of 2178. Show

that multiplying by 4 reverses the digits of 21 978 and 219 978 and

multiplying by 9 reverses the digits of 10 989.

17. Determine how long it will take to return all the gifts mentioned in the

song ‘The twelve days of Christmas’ if the gifts are returned at the rate

of one gift per day.

18. Take the month that you were born, January ¼ 1, December ¼ 12, etc.,

multiply by 5, and add 6. Then multiply the result by 4 and add 9.

Then take that result, multiply by 5, and add the day of the month that

you were born. Now from the last result subtract 165. What does the

answer represent?

19. Given any integer between 1 and 999, multiply it by 143. Take the
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number represented by the last three digits of the result and multiply it

by 7. The number represented by the last three digits of this result is

the original number. Explain why.

20. Note that 2666
6665

¼ 266
665

¼ 26
65
¼ 2

5
, and 16

64
¼ 1

4
. Find all pairs of two-digit

numbers ab and bc with the property that ab=bc ¼ a=c.

21. The following puzzle was devised by William Whewell [YOU ell],

Master of Trinity College, Cambridge. Represent each of the first 25

natural numbers using exactly four nines, any of the four basic

operations (addition, subtraction, multiplication, and division), par-

entheses and, if absolutely necessary, allowing
ffiffiffi
9

p ¼ 3 and :9 ¼ 1.

Whewell was a philosopher of science and historian who, in his

correspondence with Michael Faraday, coined the terms anode, cath-

ode, and ion. He also introduced the terms ‘‘physicist’’ and ‘‘scientist’’.

Obtain a solution to Whewell’s puzzle.

22. Exhibit 25 representations for zero using Whewell’s conditions.

23. Solve Whewell’s puzzle using four fours, the four basic operations and,

if necessary,
ffiffiffi
4

p
and/or 4!

24. Prove that

� ¼ lim
n!1

unþ1

un
:

25. Consider integer solutions to the equation x1 þ x2 þ � � � þ xn ¼
x1 . x2 � � � xn, where x1 < x2 < � � � < xn. For example, when n ¼ 2,

we have 2þ 2 ¼ 2 . 2, hence, x1 ¼ x2 ¼ 2 is a solution. Find a general

solution to the equation.

26. Gottfried Leibniz and Pietro Mengoli determined the sum of the

reciprocals of the triangular numbers,X1
n¼1

1

tn
¼ 1þ 1

3
þ 1

6
þ 1

10
þ � � � :

What does the sum equal?

27. A lone reference to Diophantus in the form of an epitaph appears in

the Greek Anthology of Metrodorus, a sixth century grammarian.

According to the translation by W.R. Paton, ‘This tomb holds Dio-

phantus. Ah, how great a marvel! the tomb tells scientifically the

measure of his life. God granted him to be a boy for the sixth part of

his life, and adding a twelfth part to this, he clothed his cheeks with

down; he lit him the light of wedlock after a seventh part, and five

years after his marriage he granted him a son. Alas! late-born wretched

child; after attaining the measure of half his father’s life, chill Fate

took him. After consoling his grief by this science of numbers for four
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years he ended his life.’ How old was Diophantus when he died? (Hint:

if n denotes his age at his death then, according to the epitaph,

n=6þ n=12þ n=7þ n=2þ 9 ¼ n.)

28. De Morgan and Whewell once challenged each other to see who could

come the closest to constructing sentences using each letter in the

alphabet exactly once, precursors to ‘the quick brown fox jumps over

the lazy dog’ and ‘pack my box with five dozen liquor jugs’. It was

decided that De Morgan’s ‘I, quartz pyx, who flung muck beds’ just

edged out Whewell’s ‘phiz, styx, wrong, buck, flame, quid’. Try your

hand at the equally hard puzzle of trying to come up with a 26-word

abecedarian phrase such that each word begins with a different letter

of the alphabet in lexicographical order.

29. Table 1.7 is based on the Gregorian calendar that began replacing the

Julian calendar in 1582. The table may be used to find the day of the

week, given the date, by adding the figures at the top of each column

and noting what column contains the sum. Asterisks denote leap years.

For example, consider December 7, 1941.

Century 19 0

Year 41 2

Month December 5

Day 7 0

SUM 7

Therefore, from Table 1.7, we find that December 7, 1941 was a

Sunday. What day of the week was July 4, 1776?

30. On what day of the week were you born?

31. What was the date of the fourth Tuesday in June 1963?

32. What was the date of the first Tuesday of October 1917?

33. What day of the week was August 31, 1943?

34. Even though weekday names were not common until the fourth

century, use the fact that in most Catholic countries Thursday October

4, 1582 in the Julian calendar was followed by Friday October 15,

1582 in the Gregorian and that all century years, prior to 1700, were

leap years to determine the day of the week that each of these events

occurred:

(a) the Battle of Hastings (October 14, 1066),

(b) the signing of Magna Carta (June 15, 1215), and

(c) the marriage of Henry VIII and Ann Boleyn (January 25, 1533).

35. At a square dance each of the 18 dancers on the floor is identified with

a distinct natural number from 1 to 18 prominently displayed on their
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back. Suppose the sum of the numbers on the back of each of the 9

couples is a square number. Who is dancing with number 6?

36. An even natural number n is called a square dance number if the

numbers from 1 to n can be paired in such a way that the sum of each

pair is square. Show that 48 is a square dance number.

37. Determine all the square dance numbers.

38. John H. Conway and Richard K. Guy have defined an nth order zigzag

number to be an arrangement of the numbers 1, 2, 3, . . . , n in such a

manner that the numbers alternately rise and fall. For example, the

only first and second order zigzag numbers are 1 and 12, respectively.

There are two third order zigzag numbers, namely, 231 and 132. There

are five fourth order zigzag numbers, namely, 3412, 1423, 2413, 1324,

and 2314. Determine all fifth order zigzag numbers.

39. In 1631, Johann Faulhaber of Ulm discovered that

1k�1 þ 2k�1 þ � � � þ nk�1 ¼
1

k
nk þ (k1 )n

k�1 .
�1

2
þ (k2 )n

k�2 .
1

6

�

þ (k3 )n
k�3 . 0þ (k4 )n

k�4 .
�1

30
þ � � �

�
:

The coefficients, 1, �1
2
, 1
6
, 0, � 1

30
, 0, . . . , are called Bernoulli numbers

and appear in the 1713 edition of Jakob Bernoulli’s Ars conjectandi. In

general,

(nþ1
1 )Bn þ (nþ1

2 )Bn�1 þ � � � þ (nþ1
n )B1 þ B0 ¼ 0:

Hence, B0 ¼ 1, B1 ¼ �1
2
, B2 ¼ 1

6
, B3 ¼ 0, B4 ¼ � 1

30
, B5 ¼ 0, and so

forth. For example, 5B4 þ 10B3 þ 10B2 þ 5B1 þ B0 ¼ 0. Hence,

B4 ¼ � 1
30
. In addition, if n. 1, then B2nþ1 ¼ 0. Find the Bernoulli

numbers B6, B8, and B10.

40. Lucas defined the general term of a sequence to be wn ¼ u3n=un.

Determine the first six terms of the sequence. Is the sequence gener-

ated a Fibonacci-type sequence?

41. Given the 23 2 matrix

A ¼ 1 1

1 0

� �
,

use induction to show that, for n > 1,

An ¼ unþ1 un
un un�1

� �
,
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where un represents the nth Fibonacci number with the convention

that u0 ¼ 0.

42. If

A ¼ 1 1

1 0

� �
,

find a numerical value for the determinant of An.

43. Evaluate

32 þ 42 þ 52 þ 62 þ 72 þ 82 þ 92

12 þ 22 þ 32 þ 42 þ 52 þ 62 þ 72
:

44. Establish the following algebraic identity attributed to the Indian

mathematician Srinivasa Ramanujan:

(aþ 1)(bþ 1)(cþ 1)þ (a� 1)(b� 1)(c� 1) ¼ 2(aþ bþ cþ abc):

45. Ramanujan stated a number of formulas for fourth power sums. Estab-

lish his assertion that a4 þ b4 þ c4 ¼ 2(abþ bcþ ca)2 provided

aþ bþ c ¼ 0.

46. Prove or disprove that 3an � anþ1 ¼ un�1(un�1 þ 1), for n > 1, where

an denotes the coefficient of xn in (1þ xþ x2)n, for n ¼ 0, 1, 2, . . . ,

and un represents the nth Fibonacci number.

47. The curriculum of universities in theMiddle Ages consisted of the seven

liberal arts, seven flags flew over Texas, Rome and Providence, Rhode

Island, were built on seven hills. Determine the following septets:

(a) the seven wonders of the ancient world;

(b) the seven sages of antiquity;

(c) the seven wise women of antiquity.

48. In 1939, Dov Juzuk established the following extension to Nicoma-

chus’s method of generating the cubes from an arithmetic triangle.

Show that if the even rows of the arithmetic triangle shown below are

deleted, the sum of the natural numbers on the first n remaining rows

is given by n4. For example, 1þ (4þ 5þ 6)þ (11þ 12þ 13 þ
14þ 15) ¼ 81 ¼ 34.

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27 28

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49. In 1998, Ed Barbeau of the University of Toronto generalized Nicoma-
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chus’s cubic result to hexagonal numbers. Show that if the even rows

of the arithmetic triangle shown below are deleted, the sum of the

natural numbers on the first n remaining rows is given by (p6 n)
2. For

example, 1þ (5þ 6þ 7þ 8þ 9)þ (17þ 18 þ � � � þ 25) ¼ 225 ¼
(p63)

2.

1

2 3 4

5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50. If every other row in the following triangle is deleted, beginning with

the second row, identify the partial sums of the first n remaining rows.

Hint: there are 3n� 2 numbers in the nth row.

1

2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22

1.5 Supplementary exercises

1. Use the method of finite differences to determine a formula for the

general term of the sequence 2, 12, 28, 50, 78, 112, . . .

2. Use the method of finite differences to determine a formula for the

general term of the sequence whose first seven terms are:

14, 25, 40, 59, 82, 109, 149, . . . Hint: Match the first diagonal of

finite differences with that of f (n) ¼ an3 þ bn2 þ cnþ d.

3. Use the method of finite differences to determine a formula for the

general term of the sequence whose first seven terms are:

5, 19, 49, 101, 181, 295, 449, . . .

4. Given the following array

2

2 1

2 3 1

2 5 4 1

2 7 9 5 1

2 9 16 14 6 1

2 11 25 30 20 7 1

2 13 26 55 50 27 8 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where a(i, j), the element in the ith row and jth column, is obtained by

successive additions using the recursive formula a(i, j) ¼
a(i� 1, j� 1)þ a(i� 1, j), the second column consists of the odd

positive integers and the third column squares of the positive integers,

determine a formula for the positive integers 1, 5, 14, 30, 50, . . . in

the fourth column.

5. Determine a formula for the general term of the sequence

1, 6, 20, 50, . . . in the fifth column of the previous exercise.

6. Determine a general formula for a(i, j), in Exercise 5, where i > j.

7. Generalize the result in Exercise 4 in Section 1.1, by finding functions

f (m), g(m) h(m, n) such that f (m)t n þ g(m) ¼ t h(m,n).

8. Show that n3 þ 6t n þ 1 ¼ (nþ 1)3. [Bachet]

9. Show that tmþn ¼ tm þ t n þ mn. [Bachet]

10. Which triangular number is 2n�1(2n � 1)?

11. Can every positive integer be expressed as a difference of two

nonconsecutive triangular numbers? If so, in how may ways?

12. Show that 3 divides t3k and t3kþ2 but not t3kþ1.

13. Let rn ¼ tn=3. Show that r12kþ5 and r12kþ6 are both odd, r12k and

r12kþ11 are both even.

14. Show that both r12kþ2 and r12kþ3 have opposite parity, as do r12kþ8

and r12kþ9.

15. Show that each of the first fifty positive integers can be expressed as a

sum of pentagonal numbers.

16. Find two hexagonal numbers such that their sum plus one is square

and their difference minus one is square.

17. A positive integer is called pheptagonal if it is palindromic and

heptagonal. Determine the first six pheptagonal numbers.

18. According to Nicomachus, oddly-even numbers are positive integers

of the form 2n(2nþ 1) and oddly-odd numbers are numbers of the

form (2mþ 1)(2nþ 1). Determine the first fifteen oddly-even num-

bers and the first fifteen oddly-odd numbers.

19. Bantu numbers are positive integers that do not contain a ‘‘2’’ when

expressed decimally. List the first twenty-five bantu numbers.

20. Eban numbers are positive integers that can be written in English

without using the letter ‘e’. Determine the first twenty eban numbers.

21. Curvaceous numbers are those positive integers that can be written

with curves only, for example 3, 6, 8, and 9. Determine the first fifteen

curvaceous numbers.

22. Cheap numbers are positive integers formed using 1, 2 and 3, but not

two of them. The first ten cheap numbers are 1, 2, 3, 11, 22, 33, 111,
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222, 333, 1111. Cheaper numbers are positive integers formed using

any two of 1, 2, or 3. Cheapest numbers are positive integers formed

using only 1, 2, and 3. Determine the first twenty-five cheaper numbers

and the first fifteen cheapest numbers.

23. A Stern number an, first described by M.A. Stern in 1838, is a positive

integer such that a1 ¼ 1 and an is the sum of the previous n� 1

numbers. Determine the first fifteen Stern numbers.

24. A positive integer is called a neve number if it is nonpalindromic,

even, and remains even when the digits are reversed. Determine the

first fifteen neve numbers.

25. A positive integer is called strobogrammatic if it is vertically palin-

dromic, for example, 8 and 96. Determine the first fifteen strobo-

grammatic numbers.

26. Generate the first six terms of a Galileo sequence with first term 1 and

ratio 6.

27. Generate the first six terms of a Galileo sequence with first term 2 and

ratio 6.

28. A positive integer is called phappy if it is palindromic and happy.

Determine the first five phappy numbers.

29. Happy couple numbers are consecutive positive integers that are both

happy. Determine the first twenty-five happy couples.

30. What is the value of the smallest happy number of height 3, of height

4, of height 5, and of height 6.

31. Investigate the outcome of successive iterations of S3 on positive

integers of the form 3k þ 1 and of the form 3k þ 2, for k a positive

integer.

32. Let Sr,b(n) denote the sum of the rth powers of the digit in base b and

S kr,b(n) ¼ Sr,b(S
k�1
r,b (n)). For example, in base 3 with r ¼ 3, 2 ! 22 !

121 ! 101 ! 2. Investigate the action of S3,3 on the first 25 positive

integers.

33. Find the height of the cubic happy number 112.

34. Find the cubic heights of 189 and 778.

35. Determine the least positive integer with persistence 6.

36. Investigate properties of the Pell sequence, determined by P0 ¼ 0,

P1 ¼ 1, and Pnþ1 ¼ 2Pnþ1 þ Pn.

37. A MacMahon sequence is generated by excluding all the sums of two

or more earlier members of the sequences. For example, if a1 ¼ 1 and

a2 ¼ 2, the sequence formed is 1, 2, 4, 5, 8, 10, 14, 15, 16, 21.

Determine the next ten terms of the sequence.

38. The general term of a Hofstader sum sequence has the property that it
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is the least integer greater than the preceding term that can be

expressed as a sum of two or more consecutive terms of the sequence.

For example, if a1 ¼ 1 and a2 ¼ 2, the first twelve terms of the

resulting Hofstadter sum sequence are 1, 2, 3, 5, 6, 8, 10, 11, 14, 16,

17, 18. Determine the next twelve terms of the sequence.

39. The general term of a Hofstater product sequence is defined as follows,

given a1, a2, . . . , an form all possible products ai . a j � 1 with

1 < i, j < n and append them to the sequence. For example, the first

ten terms of the Hofstader sequence with a1 ¼ 2 and a2 ¼ 3 are 2, 3,

5, 9, 14, 17, 26, 27, 33, 41. Determine the next ten terms of the

sequence.

40. Define f r(n) to be the least number of rs that can be used to represent

n using rs and any number of plus and times signs and parentheses.

For example, f1(2) ¼ 2 since 2 ¼ 1þ 1. Determine f 1(3
k) for k a

positive integer.

41. In 1972, D.C. Kay investigated properties of the following generalized

Collatz algorithm given by anþ1 ¼ an=p if pjn and anþ1 ¼ an . qþ r

if pB n. Investigate the actions of the generalized algorithm on the

positive integers when (p, q, r) ¼ (2, 5, 1).

42. Determine the next two rows of the Lambda Triangle

1

2 3

4 6 9

8 12 18 27

43. Determine the next three terms of the sequence 71, 42, 12, 83, 54, . . .

44. A postive integer is called pfibonacci if it is palindromic and Fibo-

nacci. Determine the first six pfibonacci numbers.

45. If an denotes the nth tribonacci number determine limn!1(anþ1=an).

46. If bn denotes the nth tetrancci number determine limn!1(bnþ1=bn).

47. If dn denotes the nth deacci number (add the previous ten terms)

where the first ten terms are 1, 1, 2, 4, 8, 16, 32, 64, 128, 256,

determine limn!1(dnþ1=d n).

48. Determine the first fifteen u(3, 4) numbers.

49. Determine the first fifteen v(3, 4) numbers.

50. Show for any positive integer n: 13 þ 33 þ 53 þ � � � þ (2n� 1)3 ¼
n2(2n2 � 1).

51. For any positive integer n show that

1 . 2þ 2 . 3 þ � � � þ n(nþ 1) ¼ n(nþ 1)(nþ 2)

3
:

52. For any positive integer n show that
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1

3
þ 1

15
þ 1

35
þ � � � þ 1

4n2 � 1
¼ n

2nþ 1
:

53. For any positive integer n show that

2þ 5þ 8 þ � � � þ (3n� 1) ¼ n(3nþ 1)

2
:

54. If un and vn represent the nth Fibonacci and Lucas numbers, respec-

tively, show that un þ vn ¼ 2unþ1.

55. Show that for any positive integer n, (vnþ1)
2 � (vn)

2 ¼ vn�1vnþ2.

56. Show that for any positive integer n, (vnþ2)
2 � (vn)

2 ¼ 5u2nþ2.

57. Show that for any positive integer n, u2nþ1 þ u2n ¼ u2nþ1.

58. Show that for any positive integer n, u3nþ1 þ u3n � u3n�1 ¼ u3n.

59. Show that for any positive integer n, u3nþ2 � 3u3n þ u3n�2 ¼ 3u3n.

60. For any positive integer n, establish the Gelin-Cesàro identity

un�2
. un�1

. unþ1
. unþ2 � u4n ¼ �1.

61. Given a positive integer n an expression of the form n ¼ Pm
k¼0�k uk ,

where the �k equal 0 or 1, �k�kþ1 ¼ 0 for 1 < k < m, and un denotes

the nth Fibonacci number is called a Zeckendorf representation of n.

We may denote the Zeckendorf representation of n using the function

Z(n), which represents binarily the Fibonacci numbers in the Zeck-

endorf representation of n. For example, 30 ¼ 21þ 8þ 1, hence

Z(30) ¼ 101001. Determine Zeckendorf representations for the first

fifty positive integers and the associated function Z(n).

62. Show that every positive integer has a Zeckendorf representation.

63. Compute the Zeckendorf representation for u2n, where 1 < n < 25.

64. Compute the Zeckendorf representation for v2n, where 1 < n < 25.

65. Compute the Zeckendorf representation for ununþ1, where

1 < n < 25.

66. Let un! ¼ un . un�1 � � � u1. Find the values of un! for 1 < n10.

67. Let (nk)u ¼ un!=uk !un�k ! if n > k and 0 otherwise. Determine the

values of (nk)u for 1 < n < 10 and 0 < k < n.

68. Consider the sum
P1

n¼11=(un)
r, where r is a positive integer. Estimate

the sum when r ¼ 1.

69. Show that (5=32)u26n is an integer, whenever n is a positive integer.

70. Show that X1
n¼1

1

un . unþ2

¼ 1:
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2

Divisibility

If you are going to play the game, you’d better know all the

rules.

Barbara Jordan

2.1 The division algorithm

We extend our universe of discourse from the set of natural numbers to the

set of integers, . . . , �3, �2, �1, 0, 1, 2, 3, . . . , by adjoining zero and the

negatives of the natural numbers. The integers are closed under addition,

subtraction, and multiplication. We use the additive inverse to define

subtraction. That is, by the expression a� b, we mean aþ (�b). In order

to work with integers efficiently we rely heavily on the following basic

properties of addition and multiplication of integers.

Properties of the integers

Associativity aþ (bþ c) ¼ (aþ b)þ c a(bc) ¼ (ab)c

Commutativity aþ b ¼ bþ a ab ¼ ba

Distributivity a(bþ c) ¼ abþ ac (aþ b)c ¼ acþ bc

Identity aþ 0 ¼ 0þ a ¼ a a . 1 ¼ 1 . a ¼ a

Inverse aþ (�a) ¼ (�a)þ a ¼ 0

Transitivity a. b and b. c implies a. c

Trichotomy Either a. b, a, b, or a ¼ b

Cancellation law If a . c ¼ b . c and c 6¼ 0, then a ¼ b:

The set of rational numbers, a superset of the integers, consists of

numbers of the form m=n, where m and n are integers and n 6¼ 0. We

employ multiplicative inverses to define division on the rationals, that is by

r � s we mean r � (1=s). Since
a

b
� c

d
¼ ad � bc

bd
,

a

b
.
c

d
¼ ac

bd
,

and
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a

b
� c

d
¼ ad

bc
,

the rationals are closed under the binary operations of addition, subtraction,

multiplication, and division (except by zero). Furthermore, every rational

number can be expressed as a repeating decimal and vice versa. For

example, if n ¼ 0:63, then 100n ¼ 63:63. Thus, 99n ¼ 100n� n ¼ 63.

Therefore, n ¼ 63
99
¼ 7

11
. Conversely, since there are only n possible remain-

ders when dividing by the integer n, every rational number can be ex-

pressed as a repeating decimal.

The rationals are not closed under the unary operation of taking the

square root of a positive number. However, if we adjoin nonrepeating

decimal expansions, called irrational numbers, to the rationals we obtain

the real numbers. The reals are closed under the four basic binary

operations (except division by zero) and the unary operation of taking the

square root of a positive number. By extending the reals to the complex

numbers, numbers of the form aþ bi, where a and b are real and i2 ¼ �1,

we obtain a set closed under the four basic binary operations (except

division by zero) and the unary operation of taking the square root.

A function is a rule or correspondence between two sets that assigns to

each element of the first set a unique element of the second set. For

example, the absolute value function, denoted by j . j, is defined such that

jxj equals x when x is nonnegative and �x when x is negative. It follows

immediately from the definition that if jxj, k, then �k, x, k, and if

jxj. k, then x. k or x,�k. Two vertical bars, the notation used for the

absolute value, were introduced by Karl Weierstrass in 1841. Weierstrass, a

German mathematician, who taught at the University of Berlin, was

advocate for mathematical rigor. An important property of the absolute

value function is expressed in the following result.

Theorem 2.1 (Triangle inequality) For any two real numbers a and b,

jaj þ jbj > jaþ bj.
Proof Since �jaj < a < jaj and �jbj < b < jbj it follows that �jaj �
jbj < aþ b < jaj þ jbj. Therefore, jaþ bj < jaj þ jbj. j

We define the binary relation ‘divides’ on the integers as follows: if a

and b are integers, with a 6¼ 0, and c is an integer such that ac ¼ b, then

we say that a divides b and write ajb. It should be noted that there can be

but one integer c such that ac ¼ b. If a divides b, then a is called a divisor

of b, and b is called a multiple of a. We write a 6 jb if a does not divide b. If
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a divides b with 1 < a, b, then we say that a is a proper divisor of b. The

basic properties of division are listed below, where a, b and c represent

integers.

Properties of division

(1) If a 6¼ 0, then aja and aj0.
(2) For any a, 1ja.
(3) If ajb and ajc then for any integers x and y, aj(bxþ cy).

(4) If ajb and bjc, then ajc.
(5) If a. 0, b. 0, ajb and bja, then a ¼ b.

(6) If a. 0, b. 0, and ajb, then a < b.

The first two properties follow from the fact that a . 1 ¼ a and a . 0 ¼ 0. In

order to establish the third property, suppose that a divides b and c. There

exist integers r and s such that ar ¼ b and as ¼ c. Hence, bxþ cy ¼
arxþ asy ¼ a(rxþ sy). Since bxþ cy is a mulitple of a, a divides

bxþ cy. Proofs of the other properties are as straightforward and are left as

exercises for the reader. From the third property, it follows that if ajb and

ajc, then aj(bþ c), aj(b� c), and aj(c� b). From the definition of

division and the fact that divisions pair up, it follows that, for any positive

integer n, there is a one-to-one correspondence between the divisors of n

that are less than
ffiffiffi
n

p
and those which are greater than

ffiffiffi
n

p
.

Example 2.1 Using induction, we show that 6 divides 7n � 1, for any

positive integer n. Let P(n) represent the variable proposition 6 divides

7n � 1. P(1) is true since 6 divides 7� 1. Suppose for some positive

integer k, P(k) is true, that is, 6 divides 7k � 1 or, equivalently, there is an

integer x such that 7k � 1 ¼ 6x. We have 7kþ1 � 1 ¼ 7 . 7k � 1 ¼
7(6xþ 1)� 1 ¼ 6(7xþ 1) ¼ 6y. Thus, 7kþ1 � 1 is a multiple of 6. There-

fore, P(k) implies P(k þ 1) and the result follows from the principle of

mathematical induction.

Example 2.2 We determine three distinct positive integers a, b, c such

that the sum of any two is divisible by the third. Without loss of generality,

suppose that a, b, c. Since cj(aþ b) and aþ b, 2c, aþ b must equal

c. In addition, since 2aþ b ¼ aþ c and bj(aþ c), bj2a. Since 2a, 2b, b

must equal 2a. Hence, c ¼ aþ b ¼ 3a. Therefore, n, 2n and 3n, for any

positive integer n, are three distinct integers with the property that the sum

of any two is divisible by the third.
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Many positive integers have interesting divisibility properties. For exam-

ple, 24 is the largest integer divisible by all the positive integers less than

its square root. It is also the only integer greater than unity such that the

sum of the squares from 1 to itself is a square. One of the most basic tools

for establishing divisibility properties is the division algorithm found in

Book VII of Euclid’s Elements. According to Euclid, given two line

segments the shorter one can always be marked off a finite number of times

on the longer length either evenly or until a length shorter than its own

length remains and the process cannot continue. A more algebraic version

of the division algorithm, one more appropriate for our use, is stated in the

next theorem.

Theorem 2.2 (The division algorithm) For any integer a and positive

integer b there exist unique integers q and r with the property that

a ¼ bqþ r with 0 < r, b.

Proof Consider the set S ¼ fa� sb: s is an integer and a� sb > 0g. S
consists of the nonnegative elements of the set f. . . , a� 2b, a� b, a,

aþ b, aþ 2b, . . .g. If a, 0, then a� ab ¼ a(1� b) > 0, hence, a� ab

is in S. If a > 0, then a� (0 . b) ¼ a > 0, hence a is in S. In either case, S

is a nonempty set of positive integers. By the well-ordering principle S

contains a least element that we denote by r ¼ a� bq > 0. In addition,

r � b ¼ (a� bq)� b ¼ a� (qþ 1)b, 0, hence, 0 < r, b. In order to

show that q and r are unique, suppose that there are two other integers u, v
such that a ¼ buþ v, with 0 < v, b. If u, q, then since u and q are

integers, we have uþ 1 < q. Thus, r ¼ a� bq < a� b(uþ 1) ¼
(a� ub)� b ¼ v� b, 0, contradicting the fact that r is nonnegative. A

similar contradiction arises if we assume u. q. Hence, from the law of

trichotomy, u ¼ q. Thus, a ¼ bqþ r ¼ bqþ v implying that v ¼ r, and

the uniqueness of q and r is established. j

Corollary For an integer a and positive integer b, there exist unique

integers q and r such that a ¼ bqþ r, with �jbj=2, r < jbj=2.

One of the most important consequences of the division algorithm is the

fact that for any positive integer n. 1 every integer can be expressed in

the form nk, nk þ 1, nk þ 2, . . . , or nk þ (n� 1), for some integer k.

Equivalently, every integer either is divisible by n or leaves a remainder 1,

2, . . . , or n� 1 when divided by n. This fact is extremely useful in

establishing results that hold for all integers.
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If we restrict our attention to division by the integer 2, the division

algorithm implies that every integer is even or odd, that is, can be written

in the form 2k or 2k þ 1. Since (2k)2 ¼ 4k2 and (2k þ 1)2 ¼
4k2 þ 4k þ 1 ¼ 4(k2 þ k)þ 1, we have established the following result.

Theorem 2.3 Every square integer is of the form 4k or 4k þ 1, where k is

an integer.

Since x2 and y2 must be of the form 4k or 4k þ 1, x2 þ y2, the sum of two

squares, can only be of the form 4k, 4k þ 1, or 4k þ 2 and we have

established the next result.

Theorem 2.4 No integer of the form 4k þ 3 can be expressed as the sum

of two squares.

If we restrict ourselves to division by the integer 3, the division algorithm

implies that every integer is of the form 3k, 3k þ 1, or 3k þ 2. That is,

division by 3 either goes evenly or leaves a remainder of 1 or 2. Using this

fact, Theon of Smyrna claimed that every square is divisible by 3 or

becomes so when 1 is subtracted from it.

Similarly, every integer is of the form 7k, 7k þ 1, 7k þ 2, 7k þ 3,

7k þ 4, 7k þ 5, or 7k þ 6. That is, according to the division algorithm, the

only remainders possible when dividing by 7 are 0, 1, 2, 3, 4, 5, and 6.

From Table 2.1, it follows that any integer that is both a square and a cube

must be of the form 7k or 7k þ 1. For example, (7k þ 2)2 ¼
49k2 þ 28k þ 4 ¼ 7k(7k þ 4)þ 4 ¼ 7r þ 4, and (7k þ 2)3 ¼ 343k3 þ
294k2 þ 8k þ 8 ¼ 7(49k3 þ 42k2 þ 12k þ 1)þ 1 ¼ 7sþ 1. Therefore,

any integer that is both a square and a cube cannot be of the form 7k þ 2.

In Theaetetus, Plato remarks that his teacher, Theodorus of Cyrene,

Table 2.1.

n n2 n3

7k 7r 7s
7k þ 1 7r þ 1 7sþ 1
7k þ 2 7r þ 4 7sþ 1
7k þ 3 7r þ 2 7sþ 6
7k þ 4 7r þ 2 7sþ 1
7k þ 5 7r þ 4 7sþ 6
7k þ 6 7r þ 1 7sþ 6
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proved the irrationality of
ffiffiffi
3

p
,

ffiffiffi
5

p
,

ffiffiffi
7

p
,

ffiffiffiffiffi
11

p
,

ffiffiffiffiffi
13

p
, and

ffiffiffiffiffi
17

p
, but he gives

no indication of Theodorus’s method of proof. A number of proofs of the

irrationality of
ffiffiffi
2

p
were known to ancient mathematicians. (Euclid in-

cluded a generalization of the result in Book X of the Elements.) A proof

that appears in Aristotle’s Prior Analytics using the fact that integers are

either even or odd, is demonstrated in the next example.

Example 2.3 We use the indirect method to show that
ffiffiffi
2

p
is irrational.

Suppose that it is rational. Thus, there exist positive integers p and q, with

no common factors, such that
ffiffiffi
2

p ¼ p=q. Since p2 ¼ 2q2, p2 is even and,

hence, p is even. Let p ¼ 2m; then p2 ¼ 4m2, hence, q2 ¼ 2m2. Since q2

is even, q must be even, contradicting the assumption that p and q have no

common factors. Therefore,
ffiffiffi
2

p
is irrational.

In 1737, the irrationality of e, the base of the natural logarithm, was

established by Euler. The irrationality of � was established by Johann

Lambert in 1767. Lambert was self-educated and made significant con-

tributions to physics, mathematics, and cartography. He developed the

transverse Mercator projection by projecting onto a cylinder tangent to a

meridian. In physics, the lambert is a unit of brightness. In non-Euclidean

geometry, a Lambert quadrilateral is a four-sided figure having three right

angles. A short proof of the irrationality of e is demonstrated in the next

example.

Example 2.4 By definition,

e ¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ � � � :

Suppose that e is rational, that is, e ¼ p=q, where p and q are integers with

no common factors. Let e ¼ aþ b, where

a ¼ 1þ 1

1!
þ 1

2!
þ � � � þ 1

q!

and

b ¼ 1

(qþ 1)!
þ 1

(qþ 2)!
þ � � � :

Multiplying both sides of the expression for e by q!, we obtain

q! . e ¼ q! . aþ q! . b. Since q! . a is an integer and q! . e is an integer, it

follows that q! . b, the difference of two integers, is an integer. However,
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q! . b ¼ 1

(qþ 1)
þ 1

(qþ 1)(qþ 2)
þ 1

(qþ 1)(qþ 2)(qþ 3)

þ � � � , 1
2
þ 1

4
þ 1

8
þ � � � ¼ 1,

implying that 0, q! . b, 1, a contradiction. Therefore, e is irrational.

Most of our work in this book will be done in base 10. However, there are

occasions when it is useful to consider other bases, in particular base 2.

When b 6¼ 10, we use the notation nb to denote the integer n written in

base b. For example, 101 1012 ¼ 45, since 1 . 25 þ 0 . 24 þ 1 . 23 þ 1 .

22 þ 0 . 2þ 1 ¼ 45. Representing integers in bases other than base 10 is

useful if such representations are unique, which we establish with the next

result.

Theorem 2.5 If a and b are positive integers with b. 1, then a can be

uniquely represented in the form a ¼ ckb
k þ ck�1b

k�1 þ � � � þ c1bþ c0,

with integers ci such that 0 < ci, b, for i ¼ 0, 1, 2, . . . , k and ck 6¼ 0.

Proof From the division algorithm, we have that a ¼ bq1 þ c0, with

0 < c0 , b and q1 , a. If q1 > b, we employ the division algorithm again

to obtain q1 ¼ bq2 þ c1, with 0 < c1 , b and q2 , q1. If q2 > b, we

continue the process, obtaining a decreasing sequence of positive integers

q1 . q2 . . . .. Eventually, we obtain a positive number, say qk, such that

qk , b. Set qk ¼ ck . Eliminating qk , qk�1, . . . , q1 from the system

a ¼ bq1 þ c0,

q1 ¼ bq2 þ c1,

. . .

qk�2 ¼ bqk�1 þ ck�2,

qk�1 ¼ bqk þ ck�1,

qk ¼ ck ,

we obtain a ¼ ckb
k þ � � � þ c1bþ c0, with 0 < ci, b, for i ¼ 0, 1, 2,

. . . , k � 1 and ck 6¼ 0. The uniqueness of this expansion follows from the

fact that if a ¼ dkb
k þ d k�1b

k�1 þ � � � þ d1bþ d0, then d0 is the remain-

der when a is divided by b, hence, d0 ¼ c0. Similarly, d1 is the remainder

when q1 ¼ (a� d0)=b is divided by b, hence, d1 ¼ c1, and so forth.

Therefore, it follows that di ¼ ci, for i ¼ 0, 1, 2, . . . , k, and the proof is

complete. j

Theorem 2.5 implies that every nonzero integer can be expressed uniquely

in base 3, in the form ck3
k þ ck�13

k�1 þ � � � þ c13þ c0, when ci ¼ 0, 1,
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or 2, for i ¼ 0, 1, 2, . . . , k, and ck 6¼ 0, or equivalently, with ci ¼ �1, 0, or

1.

An elementary version of the game of nim consists of two players and

a single pile of matches. Players move alternately, each player is allowed

to take up to half the number of matches in the pile, and the player who

takes the last match loses. A player can force a win by leaving 2n � 1

matches in the pile, where n is a positive integer. For example, if there

were 73 matches in the pile a player attempting to force a win would

remove 10 matches leaving 73� 10 ¼ 63 ¼ (26 � 1) matches in the pile.

In 1901, using properties of binary representations, Charles Bouton of

Harvard developed several winning strategies for a more advanced version

of nim where several piles of matches were involved and where players

who moved alternately were allowed to remove matches from but a single

pile on each move. His techniques were generalized by E. H. Moore in

1910.

Exercises 2.1

1. If a ¼ bþ c, and d divides both a and b, show that d divides c.

2. If ajb and bjc, then show that ajc.
3. If a. 0, b. 0, ajb, and bja, then show that a ¼ b.

4. If a. 0, b. 0, and ajb, then show that a < b.

5. Use the definition of division to prove that if aþ b ¼ c and ajb, then
ajc.

6. Prove that if ajb and cjd, then acjbd.
7. True or false (if false give a counterexample):

(a) if ajbc, then either ajb or ajc,
(b) if aj(bþ c), then either ajb or ajc,
(c) if a2jb3, then ajb,
(d) if a2jc and b2jc and a2 < b2, then ajb,
(e) if b is the largest square divisor of c and a2jc, then ajb?

8. Prove that every rational number can be represented by a repeating

decimal.

9. Determine the fractional representation for 0.123.

10. Use the fact that every integer is of the form 3k, 3k þ 1, or 3k þ 2 to

show that
ffiffiffi
3

p
is irrational. (Hint: Assume it is rational and get a

contradiction.)

62 Divisibility



11. For any integer n, show that

(a) 2 divides n(n þ 1),

(b) 3 divides n(n þ 1)(n þ 2).

12. Prove that 6 divides n(nþ 1)(2nþ 1) for any positive integer n.

13. Show that the sum of the squares of two odd integers cannot be a

perfect square.

14. Prove that the difference of two consecutive cubes is never divisible

by 2.

15. Show that if n is any odd integer then 8 divides n2 � 1.

16. Show that if 3 does not divide the odd integer n then 24 divides

n2 � 1.

17. Use induction to prove that 3 divides n(2n2 þ 7), for any positive

integer n.

18. Show that 8 divides 52n þ 7, for any positive integer n.

19. Show that 7 divides 32nþ1 þ 2nþ2, for any positive integer n.

20. Show that 5 divides 33nþ1 þ 2nþ1, for any positive integer n.

21. Show that 4 does not divide n2 þ 2, for any integer n.

22. Show that the number of positive divisors of a positive integer is odd if

and only if the integer is a square.

23. Show that any integer of the form 6k þ 5 is also of the form 3mþ 2,

but not conversely.

24. Show that the square of any integer must be of the form 3k or 3k þ 1.

[Theon of Smyrna]

25. Show that the cube of any integer is of the form 9k, 9k þ 1, or

9k � 1.

26. Show that the fourth power of any integer is of the form either 5k or

5k þ 1.

27. Prove that no integer of the form 8k þ 7 can be represented as the sum

of three squares.

28. In an 1883 edition of The Educational Times, Emma Essennell of

Coventry, England, showed for any integer n, n5 � n is divisible by 30,

and by 240 if n is odd. Prove it.

29. Prove that 3n2 � 1 is never a square, for any integer n.

30. Show that no number in the sequence 11, 111, 1111, 11 111, . . . is a

square.

31. Prove that if a is a positive proper divisor of the positive integer b,

then a < b=2.

32. If a and b are positive integers and ab ¼ n, then show that either

a <
ffiffiffi
n

p
or b <

ffiffiffi
n

p
.

33. For any positive integer n, show that there is a one-to-one correspon-
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dence between the divisors of n which are greater than or equal to
ffiffiffi
n

p
and the ways n may be expressed as the difference of two squares.

34. Determine the binary and ternary representations for 40, 173, and

5437.

35. Represent 101 0112 and 201 1023 in base 10.

36. Show that any integer of the form 111 1. . .19 is triangular.

37. Given a scale with a single pan, determine the least number of weights

and precisely the values of the weights necessary in order to weigh all

integral weights in kilograms from 1 kilogram to 40 kilograms.

[Bachet]

38. A number n is called a Niven number, named for Ivan Niven, a

number theorist at the University of Oregon, if it is divisible by the

sum of its digits. For example 24 is a Niven number since 2þ 4 ¼ 6

and 6 divides 24. In 1993, C. Cooper and R. E. Kennedy showed that it

is not possible to have more than twenty consecutive Niven numbers.

Niven numbers are also referred to as multidigital numbers or Har-

shard numbers. The latter name was given by D.R. Kaprekar and

comes from the sanskrit word for ‘great joy’. Determine the first

twenty-five Niven numbers.

39. Let sd(n, b) denote the digital sum of the integer n expressed in base

b > 2. That is, if n ¼ ckb
k þ ck�1b

k�1 þ � � � þ c1bþ c0, with inte-

gers ci such that 0 < ci, b, for i ¼ 0, 1, 2, . . . , k, and ck 6¼ 0, then

sd(n, b) ¼
Pk

i¼1ci. For example, since 9 ¼ 10012, sd(9, 2) ¼ 2. For

convenience, we denote sd(n, 10) by sd(n). Let Sd(n, b), the extended

digital sum of the integer n expressed in base b > 2, represent sd(n, b)

summed over the digits of n. For example, since 3 ¼ 112, 6 ¼ 1102
and 7 ¼ 1112, Sd(367, 2) ¼ sd(3, 2) þ sd(6, 2) þ sd(7, 2) ¼ 2þ 2 þ
3 ¼ 7. Determine Sd(n, 2) for n ¼ 7, 13, and 15.

40. For which values of n does Sd(n, 2) divide n?

41. Find a positive integer n such that n=2 is square, n=3 is cube, and n=5

is a fifth power.

2.2 The greatest common divisor

If a and b are integers and d is a positive integer such that dja and djb,
then d is called a common divisor of a and b. If both a and b are zero

then they have infinitely many common divisors. However, if one of them

is nonzero, the number of common divisors of a and b is finite. Hence,

there must be a largest common divisor. We denote the largest common

divisor of a and b by gcd(a, b) and, following standard convention, call it
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the greatest common divisor of a and b. It follows straightforwardly from

the definition that d is the greatest common divisor of a and b if and only

if

(1) d . 0,

(2) dja and djb,
(3) if eja and ejb then ejd.
As pointed out in [Schroeder], physiological studies have shown that,

with few exceptions, the brain, upon being presented with two harmoni-

cally related frequencies, will often perceive the greatest common divisor

of the two frequencies as the pitch. For example, if presented with

frequencies of 320 hertz and 560 hertz the brain will perceive a pitch of

80 Hz. One of the most important properties of the greatest common

divisor of two numbers is that it is the smallest positive integer that can be

expressed as a linear combination of the two numbers. We establish this

result in the next theorem.

Theorem 2.6 If a and b are not both zero and d ¼ gcd(a, b), then d is the

least element in the set of all positive linear combinations of a and b.

Proof Let T represent the set of all linear combinations of a and b that are

positive, that is, T ¼ faxþ by: x and y are integers and axþ by. 0g.
Without loss of generality, suppose that a 6¼ 0. If a. 0, then a . 1 þ
b . 0 ¼ a is in T. If a, 0, then a(�1)þ b . 0 ¼ �a is in T. Thus, in either

case, T is a nonempty set of positive integers. By the well-ordering

principle T contains a least element which we denote by e ¼ auþ bv. By

the division algorithm, there exist integers q and r such that a ¼ eqþ r

with 0 < r, e. Hence, r ¼ a� eq ¼ a� (auþ bv)q ¼ a(1� uq) þ
b(�vq). If r 6¼ 0 we have a contradiction since r is in T and r, e, the least

element in T. Thus, r ¼ 0 implying that e divides a. A similar argument

shows that e divides b. Since e divides both a and b and d is the greatest

common divisor of a and b, it follows that e < d. However, since

e ¼ auþ bv and d divides both a and b, it follows that d divides e, hence,

d < e. Therefore, e ¼ d and the proof is complete. j

Corollary If d is the greatest common divisor of a and b, then there exist

integers x and y such that d ¼ axþ by.

Example 2.5 Table 2.2 exhibits values for the linear combination

56xþ 35y, where �4 < x < 4 and �4 < y < 4. Note that all entries are
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multiples of 7 and the least positive linear combination is 7. From Theorem

2.6, the greatest common divisor of 56 and 35 is 7.

Suppose d is the greatest common divisor and a and b, x and y are integers

such that d ¼ axþ by and A and B are integers such that a ¼ Ad and

b ¼ Bd. It follows that d ¼ aX þ bY , where X ¼ x� Bt and Y ¼ yþ At,

for any integer t. There are, therefore, an infinite number of ways to

represent the greatest common divisor of two integers as a linear combina-

tion of the two given integers.

In Chapter 5, we show that the linear equation axþ by ¼ c, where a, b

and c are integers, has integer solutions if and only if the greatest common

divisor of a and b divides c. Other properties of the greatest common

divisor include the following, where a, b, c are positive integers.

(a) gcd(ca, cb) ¼ c . gcd(a, b).

(b) If dja and djb then gcd
a

d
,
b

d

� �
¼ gcd(a, b)

d
.

(c) gcd
a

gcd(a, b)
,

b

gcd(a, b)

� �
¼ 1:

(d) If gcd(a, b) ¼ 1 then gcd(c, ab) ¼ gcd(c, a) . gcd(c, b).

(e) If axþ by ¼ m, then gcd(a, b) divides m.

(f) If gcd(a, b) ¼ 1 and a . b ¼ nk, then there exist integers r and s such

that a ¼ rk and b ¼ sk .

One of the most useful results in number theory is that if a linear

Table 2.2.

x

y �4 �3 �2 �1 0 1 2 3 4

�4 �364 �308 �252 �196 �140 �84 �28 28 84
�3 �329 �273 �217 �161 �105 �49 7 63 119
�2 �294 �238 �182 �126 �70 �14 42 98 154
�1 �259 �203 �147 �91 �35 21 77 133 189
0 �224 �168 �112 �56 0 56 112 168 224
1 �189 �133 �77 �21 35 91 147 203 259
2 �154 �98 �42 14 70 126 182 238 294
3 �119 �63 �7 49 105 161 217 273 329
4 �84 �28 28 84 140 196 252 308 364
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combination of two integers is unity then the greatest common divisor of

the two integers is unity. This result appears in Book VII of Euclid’s

Elements. We call two integers coprime (or relatively prime) if their

greatest common divisor is unity.

Theorem 2.7 Two integers a and b are coprime if and only if there exist

integers x and y such that axþ by ¼ 1.

Proof This follows from Theorem 2.6. Sufficiency follows from the fact

that no positive integer is less than 1. j

For example, for any positive integer k, 6 . (7k þ 6)þ (�7) . (6k þ 5) ¼ 1.

Hence, from Theorem 2.7, gcd(7k þ 6, 6k þ 5) ¼ 1, for any positive

integer k. In addition, suppose that gcd(n!þ 1, (nþ 1)!þ 1) ¼ d, for some

positive integer n. Since d divides n!þ 1, d divides (nþ 1)!þ 1, and

n ¼ (nþ 1)[n!þ 1]� [(nþ 1)!þ 1], d must divide n. However, if djn
and dj[n!þ 1] then d ¼ 1, since 1 ¼ 1 . (n!þ 1)þ (�n) . (n� 1)!. There-

fore, gcd(n!þ 1, (nþ 1)!þ 1) ¼ 1, for any positive integer n.

Theorem 2.8 For integers a, b, and c, if ajc and bjc and a and b are

coprime, then abjc.
Proof Since a and b divide c, there exist integers x and y such that

ax ¼ by ¼ c. It follows from Theorem 2.7 that there exist integers u and

v such that auþ bv ¼ 1. Multiplying both sides of the equation by c

we obtain c ¼ auc þ bvc ¼ au(by) þ bv(ax) ¼ ab(uy) þ ab(vx) ¼
(ab)(uyþ vx). Hence, abjc. j

Corollary If mijc, for 1 < i, n, gcd(mi, mj) ¼ 1, for i 6¼ j, and m ¼Qn
i¼1 mi, then mjc.

Example 2.6 Suppose gcd(a, b) ¼ 1 and d ¼ gcd(2aþ b, aþ 2b). Since

d must divide any linear combination of 2aþ b and aþ 2b, d divides

[2(2aþ b)þ (�1)(aþ 2b)] and d divides [(�1)(2aþ b)þ 2(aþ 2b)].

Hence, dj3a and dj3b. Since gcd(a, b) ¼ 1, d divides 3. Therefore, if

gcd(a, b) ¼ 1, then gcd(2aþ b, aþ 2b) ¼ 1 or 3.

If a and b are integers such that both a and b divide m then m is called a

common multiple of a and b. If a and b are nonzero then ab and �ab are

both common multiples of a and b and one of them must be positive.

Hence, by the well-ordering principle, there exists a least positive common
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multiple of a and b. If m is the smallest positive common multiple of a and

b, we call it the least common multiple of a and b, and denote it by

lcm(a, b). Thus, m ¼ lcm(a, b) if and only if

(1) m . 0,

(2) both a and b divide m,

(3) if both a and b divide n, then m divides n.

Theorem 2.9 If either a or b is nonzero, then lcm(a, b) ¼ jabj= gcd(a, b)j,
where jxj denotes the absolute value of x.
Proof Let d ¼ gcd(a, b), a ¼ Ad, b ¼ Bd, and m ¼ jabj=d. It follows

that m. 0, m ¼ jAbj ¼ Ab and m ¼ jaBj ¼ aB. Hence, both a and b

divide m. Suppose n is any other multiple of a and b. That is, there exist

integers C and D such that n ¼ aC ¼ bD. We have n ¼ AdC ¼ BdD so

AC ¼ BD. Hence, A divides BD. However, since gcd(A, B) ¼ 1, A must

divide D. That is, there exists an integer E such that AE ¼ D. Thus,

n ¼ bD ¼ bAE ¼ mE implying that n is a multiple of m. Therefore, any

multiple of both a and b is also a multiple of m. From the three-step

criterion for least common multiple, we have that m ¼ lcm(a, b). j

Note that gcd(56, 35) ¼ 7, lcm(56, 35) ¼ 280, and gcd(56, 35) .

lcm(56, 35) ¼ 7 . 280 ¼ 1960. The greatest common divisor of more than

two integers is defined as follows: gcd(a1, a2, . . . , an) ¼ d if and only if,

for all i ¼ 1, 2, . . . , n, djai and if ejai, for all i ¼ 1, 2, . . . , n then ejd.
Similarly for the least common multiple, lcm(a1, a2, . . . , an) ¼ m if and

only if for i ¼ 1, 2, . . . , n, aijm and if aije for all i ¼ 1, 2, . . . , n then

mje. If a1, a2, . . . , an are coprime in pairs then gcd(a1, a2, . . . , an) ¼ 1.

For if gcd(a1, a2, . . . , an) ¼ d. 1, then dja1 and dja2 contradicting the

fact that gcd(a1, a2) ¼ 1. The converse is not true since gcd(6, 10, 15) ¼ 1

but neither 6 and 10, 6 and 15, nor 10 and 15 are coprime.

Given positive integers d and m then a necessary and sufficient condition

for the existence of positive integers a and b such that

(a) gcd(a, b) ¼ d and lcm(a, b) ¼ m is that djm,
(b) gcd(a, b) ¼ d and aþ b ¼ m is that djm, and
(c) gcd(a, b) ¼ d and a . b ¼ m is that d2jm.
In order to establish (b), note that if gcd(a, b) ¼ d and aþ b ¼ m, then

there exist integers r and s such that a ¼ dr and b ¼ ds. Hence,

m ¼ aþ b ¼ dr þ ds ¼ d(r þ s) and so djm. Conversely, if djm then

choose a ¼ d and b ¼ m� d. Then, aþ b ¼ m. Since 1 and m=d � 1 are
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relatively prime, the greatest common divisor of a ¼ d . 1 and b ¼
d . (m=d � 1) is d.

Exercises 2.2

1. Prove that if a divides bc and gcd(a, b) ¼ 1, then ajc.
2. Prove that for any positive integer n, gcd(n, nþ 1) ¼ 1.

3. Show that for any integer n, gcd(22nþ 7, 33nþ 10) ¼ 1.

4. Show that there cannot exist integers a and b such that gcd(a, b) ¼ 3

and aþ b ¼ 65.

5. Show that there are infinitely many pairs of integers a and b with

gcd(a, b) ¼ 5 and aþ b ¼ 65.

6. If un represents the nth Fibonacci number then show that

gcd(unþ1, un) ¼ 1, for any positive integer n.

7. If gcd(a, b) ¼ d, and x and y are integers such that a ¼ xd and

b ¼ yd, show that gcd(x, y) ¼ 1.

8. Prove that if gcd(a, b) ¼ 1 and gcd(a, c) ¼ 1, then gcd(a, bc) ¼ 1.

[Euclid]

9. Prove that if gcd(a, b) ¼ 1 then gcd(am, bn) ¼ 1 for any positive

integers m and n.

10. Prove that for integers a and b gcd(a, b) divides gcd(aþ b, a� b).

11. Prove that if gcd(a, b) ¼ 1, then gcd(aþ ab, b) ¼ 1.

12. Prove that if gcd(a, b) ¼ 1, then gcd(aþ b, a� b) ¼ 1 or 2.

13. Suppose that gcd(a, b) ¼ 1. For what values of a and b is it true that

gcd(aþ b, a� b) ¼ 1?

14. If c. 0, then show that gcd(ca, cb) ¼ c . gcd(a, b).

15. Show that for integers a and b, gcd(a, aþ b) divides b.

16. Suppose that for integers a and b gcd(a, 4) ¼ 2 and gcd(b, 4) ¼ 2.

Show that gcd(aþ b, 4) ¼ 2.

17. If c. 0, then show that lcm(ac, bc) ¼ c . lcm(a, b).

18. If a divides b determine gcd(a, b) and lcm(a, b).

19. Prove that ajb if and only if lcm(a, b) ¼ jbj.
20. For any positive integer n, find lcm(n, nþ 1).

21. For any positive integer n, show that lcm(9nþ 8, 6nþ 5) ¼
54n2 þ 93nþ 40.

22. Give an example to show that it is not necessarily the case that

gcd(a, b, c) . lcm(a, b, c) ¼ abc.

23. Find all positive integers a and b such that gcd(a, b) ¼ 10, and

lcm(a, b) ¼ 100, with a > b.
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24. If a and b are positive integers such that aþ b ¼ 5432 and

lcm(a, b) ¼ 223 020 then find a and b.

25. f30, 42, 70, 105g is a set of four positive integers with the property

that they are coprime when taken together, but are not coprime when

taken in pairs. Find a set of five positive integers that are coprime

when taken together, but are not coprime in pairs.

2.3 The Euclidean algorithm

A method to determine the greatest common divisor of two integers, known

as the Euclidean algorithm, appears in Book VII of Euclid’s Elements. It is

one of the few numerical procedures contained in the Elements. It is the

oldest algorithm that has survived to the present day. The method appears

in India in the late fifth century Hindu astronomical work Aryabhatiya by

Aryabhata. Aryabhata’s work contains no equations. It includes 50 verses

devoted to the study of eclipses, 33 to arithmetic, and 25 to time reckoning

and planetary motion. Aryabhata called his technique the ‘pulverizer’ and

used it to determine integer solutions x, y to the equation ax� by ¼ c,

where a, b and c are integers. We discuss Aryabhata’s method in Chapter

5. In 1624, Bachet included the algorithm in the second edition of his

Problèmes plaisants et délectables. It was the first numerical exposition of

the method to appear in Europe.

The Euclidean algorithm, is based on repeated use of the division

algorithm. Given two integers a and b where, say a > b. 0, determine the

sequences q1, q2, . . . , qnþ1 and r1, r2 . . . , rnþ1 of quotients and

remainders in the following manner.

a ¼ bq1 þ r1, where 0 < r1 , b:

b ¼ r1q2 þ r2, where 0 < r2 , r1:

r1 ¼ r2q3 þ r3, where 0 < r3 , r2:

. . .

rn�2 ¼ rn�1qn þ rn, where 0 < rn , rn�1:

rn�1 ¼ rnqnþ1:

Suppose rn 6¼ 0. Since b. r1 . r2 � � � > 0, r1, r2, . . . , rnþ1 is a de-

creasing sequence of nonnegative integers and must eventually terminate

with a zero remainder, say rnþ1 ¼ 0. From the last equation in the

Euclidean algorithm, we have that rn divides rn�1 and from the penultimate

equation it follows that rn divides rn�2. Continuing this process we find

that rn divides both a and b. Thus, rn is a common divisor of a and b.

Suppose that e is any positive integer which divides both a and b. From the
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first equation, it follows that e divides r1. From the second equation, it

follows that, since e divides b and e divides r1, e divides r2. Continuing

this process, eventually, we find that e divides rn. Thus, any common

divisor of a and b is also a divisor of rn. Therefore, rn, the last nonzero

remainder, is the greatest common divisor of a and b. We have established

the following result.

Theorem 2.10 Given two positive integers, the last nonzero remainder in

the Euclidean algorithm applied to the two integers is the greatest common

divisor of the two integers.

According to the Euclidean algorithm the greatest common divisor of 819

and 165 is 3 since

819 ¼ 165 . 4þ 159,

165 ¼ 159 . 1þ 6,

159 ¼ 6 . 26þ 3,

6 ¼ 3 . 2:

One of the most important and useful applications of the Euclidean

algorithm is being able to express the greatest common divisor as a linear

combination of the two given integers. In particular, to express the greatest

common divisor of 819 and 165 as a linear combination of 819 and 165,

we work backwards step by step from the Euclidean algorithm. Using brute

force, we accomplish the feat in the following manner.

3 ¼ 159þ (�26)6,

3 ¼ (819þ 165(�4))þ (�26)(165þ 159(�1)),

3 ¼ 819þ 165(�30)þ 159(26),

3 ¼ 819þ 165(�30)þ (819þ 165(�4))(26),

3 ¼ 819(27)þ 165(�134):

One of the earliest results in the field of computational complexity was

established by Gabriel Lamé in 1845. Lamé, a graduate of the École

Polytechnique in Paris, was a civil engineer who made several notable

contributions to both pure and applied mathematics. He was considered by

Gauss to be the foremost French mathematician of his generation. Lamé

proved that the number of divisions in the Euclidean algorithm for two

positive integers is less than five times the number of digits in the smaller

of the two positive integers.

If we apply the Euclidean algorithm to integers a and b where
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a > b. 0, then qi > 1, for 1 < i < n. Since rn , rn�1, qnþ1 . 1. Let

a1, a2, . . . denote the Fibonacci-type sequence with a1 ¼ 1 and a2 ¼ 2.

We have

rn > 1 ¼ 1 ¼ a1,

rn�1 ¼ rnqnþ1 > 1 . 2 ¼ 2 ¼ a2,

rn�2 ¼ rn�1qn þ rn > 2 . 1 þ 1 ¼ 3 ¼ a3,

rn�3 ¼ rn�2qn�1 þ rn�1 > 3 . 1 þ 2 ¼ 5 ¼ a4,

rn�4 ¼ rn�3qn�2 þ rn�2 > 5 . 1 þ 3 ¼ 8 ¼ a5,

. . .

b ¼ r1q2 þ r2 > an�1
. 1 þ an�2 ¼ an.

It follows that b > an ¼ unþ1 ¼ (�nþ1 � � nþ1)=(�� � ). �n. Since

log �. 1
5
, n, log b=log �, 5 . log b. If m denotes the number of digits in

b, then b, 10m. Hence, log b, m. Therefore, n, 5m and we have estab-

lished Lamé’s result.

Theorem 2.11 (Lamé) The number of divisions in the Euclidean algo-

rithm for two positive integers is less than five times the number of digits in

the smaller of the two positive integers.

In 1970, John Dixon of Carleton University improved the bound by

showing that the number of steps in the Euclidean algorithm is less than or

equal to (2:078)[log aþ 1], where a is the larger of the two positive

integers. If there are a large number of steps in the Euclidean algorithm,

expressing the greatest common divisor as a linear combination of the two

integers by brute force can be quite tedious. In 1740, Nicholas Saunderson,

the blind Lucasian Professor of Mathematics at Cambridge University,

included an algorithm in his Elements of Algebra which greatly simplified

the process. Saunderson attributed the origin of the method to Roger Cotes,

the first Plumian Professor of Mathematics at Cambridge, who used the

algorithm in the expansion of continued fractions. A similar technique can

be traced back at least to the thirteenth century where it is found in Qin

Jiushao’s (CHIN JEW CHOW) Mathematical Treatise in Nine Sections.

Let a and b be integers, with a > b. 0. Utilizing the notation of the

Euclidean algorithm let d ¼ gcd(a, b) ¼ rn so rnþ1 ¼ 0 and ri ¼
riþ1qiþ2 þ riþ2, for i ¼ 1, 2, . . . , n. In addition, let r�1 ¼ a, r0 ¼ b.

Define xi ¼ xi�2 þ xi�1qi, yi ¼ yi�2 þ yi�1qi, for i ¼ 2, . . . , nþ 1. For

completeness, let x0 ¼ 0, x1 ¼ 1, y0 ¼ 1, and y1 ¼ q1. Using this notation,

we establish the following result.
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Theorem 2.12 (Saunderson’s algorithm) If d is the greatest common

divisor of two integers a and b, with a. b > 0, then d ¼ a(�1)n�1xn þ
b(�1)nyn.

Proof Consider the variable proposition P(n): axn � byn ¼ (�1)n�1 rn.

P(0): ax0 � by0 ¼ 0� b ¼ (�1)�1 ro. P(1): ax1 � by1 ¼ a . 1 � bq1 ¼ r1.

Hence, P(1) is true. P(2): ax2 � by2 ¼ a(x0 þ x1q2)� b(y0 þ y1q2) ¼
ax1q2 � b(1þ q1q2) ¼ (ax1 � bq1)q2 � b ¼ (�1)r2. Hence, P(2) is true.

Assume that P(r) holds for all integers r between 1 and k for k. 1 and

consider P(k þ 1). We have P(k þ 1):

axkþ1 � bykþ1 ¼ a(xk�1 þ xkqkþ1)� b(yk�1 þ ykqkþ1)

¼ (axk�1 � byk�1)þ qkþ1(axk � byk)

¼ (�1)k rk�1 þ qkþ1(�1)k�1 rk

¼ (�1)k(rk�1 � qkþ1 rk)

¼ (�1)k rkþ1:

Hence, P(k � 1) and P(k) imply P(k þ 1) and, from the alternate principle

of mathematical induction, P(n) is true for all nonnegative integers. There-

fore, d ¼ rn ¼ (�1)n�1(axn � byn) ¼ a(�1)n�1xn þ b(�1)nyn. j

Example 2.7 We use Saunderson’s method to express the greatest com-

mon divisor of 555 and 155 as a linear combination of 555 and 155. From

the Euclidean algorithm it follows that

555 ¼ 155 . 3þ 90, a ¼ bq1 þ r1,

155 ¼ 90 . 1þ 65, b ¼ r1q2 þ r2,

90 ¼ 65 . 1þ 25, r1 ¼ r2q3 þ r3,

65 ¼ 25 . 2þ 15, r2 ¼ r3q4 þ r4,

25 ¼ 15 . 1þ 10, r3 ¼ r4q5 þ r5,

15 ¼ 10 . 1þ 5, r4 ¼ r5q6 þ r6,

10 ¼ 5 . 2þ 0, r5 ¼ r6q7:

Hence, 5, the last nonzero remainder, is the greatest common divisor of

555 and 155. Table 2.3 contains the basic elements in applying Saunder-

son’s algorithm, where xi ¼ xi�2 þ xi�1qi, yi ¼ yi�2 þ yi�1qi, for i ¼ 1, 2,

. . . , nþ 1, x0 ¼ 0, x1 ¼ 1, y0 ¼ 1, and y1 ¼ q1. A useful check

when using Saunderson’s algorithm arises from the fact that rnþ1 ¼ 0,

hence, axnþ1 ¼ bynþ1. For the case when a ¼ 55 and b ¼ 155, we fill in

Table 2.3 with the appropriate terms to obtain Table 2.4. Therefore,

2.3 The Euclidean algorithm 73



5 ¼ gcd(155, 555) ¼ (�12)555þ (43)155. As a check, we have a . x7 ¼
555 . 31 ¼ 17 205 ¼ 155 . 111 ¼ b . y7.

In order to minimize the computations involved for his students, Saunder-

son devised an equivalent but more efficient algorithm illustrated in the

next example. The simplified version determines the greatest common

divisor to two natural numbers and expresses it as a linear combination of

the two given integers in one fell swoop.

Example 2.8 Given a ¼ 555 and b ¼ 155 form the following sequence of

equations.

1 1 . a� 0 . b ¼ 555

2 0 . a� 1 . b ¼ �155 3

3 a� 3b ¼ 90 1

4 a� 4b ¼ �65 1

5 2a� 7b ¼ 25 2

6 5a� 18b ¼ �15 1

7 7a� 25b ¼ 10 1

8 12a� 43b ¼ �5 1

9 � 12aþ 43b ¼ 5

The first two equations are straightforward. Since 3 is the quotient when

dividing 155 into 555, we multiply the second equation by 3 and add it to

Table 2.3.

i 0 1 2 3 . . . n nþ1

qi q1 q2 q3 . . . qn qnþ1

xi 0 1 x2 x3 . . . xn xnþ1

yi 1 q1 y2 y3 . . . yn ynþ1

Table 2.4.

i 0 1 2 3 4 5 6 7

qi 3 1 1 2 1 1 2
xi 0 1 1 2 5 7 12 31
yi 1 3 4 7 18 25 43 111
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the first equation to obtain the third equation. We obtain the fourth equation

by multiplying the third equation by unity, since 90 goes into 155 once,

and adding it to the second equation, as so forth. After obtaining the eighth

equation, 12a� 43b ¼ �5, we note that 5 divides into 10 evenly. Hence,

gcd(555, 155) ¼ 5. Multiplying both sides of the eighth equation by �1 we

obtain the desired result, �12aþ 43b ¼ 5.

Similarly if a ¼ 6237 and b ¼ 2520, we obtain

1 . a� 0 . b ¼ 6237

0 . a� 1 . b ¼ �2520 2

a� 2b ¼ 1197 2

2a� 5b ¼ �126 9

19a� 47b ¼ 63 2

40a� 99b ¼ 0

Hence, gcd(6237, 2520) ¼ 63 ¼ 19(6237)þ (�47)(2520). Furthermore,

lcm(6237, 2520) ¼ 40a ¼ 99b ¼ 249 480.

At Cambridge Saunderson tutored algebra and lectured on calculus in the

Newtonian style. Each year he gave a very acclaimed series of natural

science lectures. Several copies of notes from students who attended his

course are extant. However, it appears that their popularity may have rested

on the fact that they were virtually devoid of mathematical content. Albeit

he was an excellent teacher, he often wondered if his everlasting fate would

include a stint in Hades teaching mathematics to uninterested students.

Saunderson was very diligent and forthright. He once told Horace

Walpole, the author and third son of England’s first Prime Minister Robert

Walpole, that he would be cheating him to take his money, for he could

never learn what he was trying to teach. Lord Chesterfield said of Saunder-

son that, ‘He did not have the use of his eyes, but taught others to use theirs’.

Exercises 2.3

1. Find the greatest common divisors and the least common multiples for

the following pairs of integers. Determine the Lamé and Dixon limits.

(a) a ¼ 93 and b ¼ 51;

(b) a ¼ 481 and b ¼ 299;

(c) a ¼ 1826 and b ¼ 1742;

(d) a ¼ 1963 and b ¼ 1941;

(e) a ¼ 4928 and b ¼ 1771.

2.3 The Euclidean algorithm 75



2. Express the greatest common divisor of each pair of integers as a

linear combination of the two integers.

(a) a ¼ 93 and b ¼ 51;

(b) a ¼ 481 and b ¼ 299;

(c) a ¼ 1826 and b ¼ 1742;

(d) a ¼ 1963 and b ¼ 1941;

(e) a ¼ 4928 and b ¼ 1771.

2.4 Pythagorean triples

One of the earliest known geometric applications of number theory was the

construction of right triangles with integral sides by the Babylonians in the

second millennium BC. In particular, if x, y and z are positive integers with

the property that x2 þ y2 ¼ z2 then the 3-tuple (x, y, z) is called a

Pythagorean triple. In 1945 Otto Neugebauer and A. Sachs analyzed a

nineteenth century BC Babylonian cuneiform tablet in the Plimpton

Library archives at Columbia University. The tablet, designated Plimpton

322, lists 15 pairs (x, z) for which there is a y such that x2 þ y2 ¼ z2

referring to Pythagorean triples ranging from (3, 4, 5) to (12 709, 13 500,

18 541). The Babylonians undoubtedly had an algorithm to generate such

triples long before Pythagoras was born, but such are the whims of

eponymy. The earliest appearance of Pythagorean triples in Europe was in

the 1572 edition of Rafael Bombelli’s Algebra. Twenty years later, they

appear in François Viète’s Introduction to the Analytic Art.

It will be convenient to restrict our attention to primitive Pythagorean

triples, which are Pythagorean triples (x, y, z) with the additional property

that x, y and z have no positive common divisor other than unity. For

example, (3, 4, 5) is a primitive Pythagorean triple. In Theorem 3.3, we

show the Pythagorean triple (x, y, z) is primitive if and only if

gcd(x, y) ¼ 1, gcd(x, z) ¼ 1, and gcd(x, y) ¼ 1. We use this fact now to

establish an algorithm, a version of which appears in Book X of Euclid’s

Elements that may have been used by the Babylonians to determine

Pythagorean triples.

Theorem 2.13 If (x, y, z) is a primitive Pythagorean triple, then there

exist positive integers s and t, s. t, gcd(s, t) ¼ 1, one even and the other

odd such that x ¼ 2st, y ¼ s2 � t2, and z ¼ s2 þ t2.

Proof If (x, y, z) is a primitive Pythagorean triple, then x, y and z are

coprime in pairs. If x and y are even then z is even. If x and y are odd, then
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z2 is not of the form 4k or 4k þ 1, a contradiction. Hence, x and y must be

of different parity. Without loss of generality, let x be even and y be odd.

Hence, z is odd. In addition, x2 ¼ z2 � y2 ¼ (z� y)(zþ y). Since z� y

and zþ y must be even let z� y ¼ 2u and zþ y ¼ 2v. Now u and v must

be coprime for if gcd(u, v) ¼ d. 1, then d divides both u and v implying

that d divides both y and z, which contradicts the assumption that y and z

are coprime. In addition, if u and v were both odd, then y and z would be

even, a contradiction. So one of u and v is even and the other is odd. Since

x is even, x=2 is an integer, and

x

2

� �2

¼ (z� y)

2

� �
(zþ y)

2

� �
¼ uv:

Since uv ¼ (x=2)2 and gcd(u, v) ¼ 1, u and v must be perfect squares, say

u ¼ s2 and v ¼ t2, where one of s and t is even and the other is odd. It

follows that x ¼ 2st, y ¼ s2 � t2, and z ¼ s2 þ t2. j

Example 2.9 Using Theorem 2.12, and several values of s and t, we obtain

the primitive Pythagorean triplets shown in Table 2.5.

The next result implies that neither the equation x4 þ y4 ¼ z4 nor the

equation x2n þ y2n ¼ z2n, with n a positive integer greater than 1, have

integral solutions. We employ Fermat’s method of descent to establish the

result. In essence, Fermat’s technique is a proof by contradiction. There are

two paths we may take. Either we assume that a particular number is the

least positive integer satisfying a certain property and proceed to find a

smaller positive integer having the same property or we proceed to

construct an infinitely decreasing sequence of positive integers. In either

case, we arrive at a contradiction. The next result was arrived at indepen-

dently by Fermat and his long-time correspondent Bernard Frenicle de

Bessy. Frenicle, an official at the French Mint, discovered in 1634, that the

frequency of a pendulum is inversely proportional to the square root of its

Table 2.5.

s t x y z

2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
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length. Frenicle was a good friend of Galileo and offered to publish a

French translation of his Dialogue.

Theorem 2.14 The equation x4 þ y4 ¼ z2 has no integral solutions.

Proof Without loss of generality, we consider only primitive solutions to

the equation. Let a4 þ b4 ¼ c4 be the solution with gcd(a, b, c) ¼ 1 and

least positive value for c. From Theorem 2.13, since (a2)2 þ (b2)2 ¼ c2,

there exist coprime integers s and t of opposite parity such that s. t,

a2 ¼ 2st, b2 ¼ s2 � t2, and c ¼ s2 þ t2. Hence, s, c, b2 þ t2 ¼ s2, with

gcd(b, t) ¼ gcd(s, t) ¼ 1, with say s odd and t even. Applying Theorem

2.13 to b2 þ t2 ¼ s2, we find that t ¼ 2uv, b ¼ u2 � v2, and s ¼ u2 þ v2,
with u and v coprime, of opposite parity, and u. v. In addition, (a=2)2

¼ st=2 and gcd(s, t=2) ¼ gcd(t, s) ¼ 1. Hence, s ¼ r2 and t=2 ¼ w2, with

(r, w) ¼ 1. Further, w2 ¼ t=2 ¼ uv, so u ¼ m2 and v ¼ n2, with

gcd(m, n) ¼ 1. Thus, m4 þ n4 ¼ u2 þ v2 ¼ s ¼ r2, with r < s, c contra-

dicting the minimality of c. Therefore x4 þ y4 ¼ z2 has no integral

solutions. j

Problems concerning integral areas of rational right triangles go back to

Diophantus. A right triangle whose sides form a primitive Pythagorean

triple is called a Pythagorean triangle. The area of a Pythagorean triangle,

sans the units of measurement, is called a Pythagorean number. It follows,

from Theorem 2.13, that a Pythagorean number P can be represented as a

product of the form P ¼ st(sþ t)(s� t), where s and t are of different

parity and gcd(s, t) ¼ 1. Among the properties of Pythagorean numbers

are: every Pythagorean number is divisible by 6; for every integer n. 12

there is a Pythagorean number between n and 2n; the units digit of a

Pythagorian number is either 0, 4, or 6; there are infinitely many Pythagor-

ean numbers of the form 10k, 10k þ 4, and 10k þ 6; no Pythagorean

number is square; no Pythagorean number is a Lucas number.

The Pythagorean triple (9999, 137 532, 137 895) is unusual since its

associated Pythagorean triangle has area 687 591 234 which is almost

pandigital. Note that the Pythagorean triangles (20, 21, 29) and (12, 35, 51)

have different hypotenuses but the same area. In addition, for any positive

integer k, triangles with sides x ¼ 20k4 þ 4k2 þ 1, y ¼ 8k6 � 4k4 �
2k2 þ 1, and z ¼ 8k6 þ 8k4 þ 10k2, have area 4k2(2k2 þ 1)2(2k2 � 1)2;

however, none is a right triangle. The incenter of a triangle is the center of

the inscribed circle. The incenter is also the intersection of the angle

bisectors.
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Theorem 2.15 The radius of the incircle of a Pythagorean triangle is an

integer.

Proof Denote the area, inradius, and incenter of the Pythagorean triangle

ABC shown in Figure 2.1 by K, r, and I, respectively. Let a ¼ yþ z,

b ¼ xþ z, and c ¼ xþ y. From Theorem 2.13, K ¼ 1
2
abþ 1

2
ra þ 1

2
rb þ

1
2
rc ¼ 1

2
r(aþ bþ c) ¼ 1

2
r(2st þ s2 � t2 þ s2 þ t2) ¼ rs(t þ s). Similarly,

K ¼ 1
2
xy ¼ st(s2 � t2). Hence, r ¼ t(s� t), which is an integer. j

It has been shown that no infinite set of noncollinear planar points exist

whose pairwise distances are all integral. However, we can generate such

finite sets with that property using primitive Pythagorean triples as shown

in the next example.

Example 2.10 We use n� 2 primitive Pythagorean triples to determine n

noncollinear points in the plane with the property that each is an integral

distance from any other. Let (x, y) denote a point in the Cartesian plane

with abscissa x and ordinate y. Suppose n ¼ 7 and choose five different

primitive Pythagorean triples, for example, those in Table 2.6. Let

p1 ¼ (0, 0), p2 ¼ (0, 3 . 5 . 7 . 15 . 21) ¼ (0, 33 075), and pi ¼ (xi, 0), for

3 < i < 7, where

x3 ¼ 4 . 5 . 7 . 15 . 21 ¼ 44 100,

x4 ¼ 3 . 12 . 7 . 15 . 21 ¼ 79 380,

x5 ¼ 3 . 5 . 24 . 15 . 21 ¼ 113 400,

x6 ¼ 3 . 5 . 7 . 8 . 21 ¼ 17 640,

x7 ¼ 3 . 5 . 7 . 15 . 20 ¼ 31 500:

The basic structure of xi, the nonzero coordinate in pi, for i ¼ 3, 4, 5, 6, 7,

derives from the product of the terms in the first column of Table 2.6.

However, the (n� 2)nd term in the product is replaced by the correspond-

A

CB x y

x

z
z

yr
r

r
I

Figure 2.1.
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ing term in the second column of Table 2.6. By construction f p1,
p2, . . . , p7g forms a set of seven noncollinear points in the plane with the

property that any pair of points in the set are an integral distance apart.

This follows by construction since the distance separating each pair is the

length of a side of a Pythagorean triangle.

In 1900, D. H. Lehmer showed that the number of primitive Pythagorean

triples with hypotenuse less than or equal to n is approximately n=2�.
Pythagorean triangles can be generalized to Pythagorean boxes, rectangular

parallelepipeds with length, width, height, and all side and main diagonals

having integral values. It is an open question whether or not a Pythagorean

box exists.

Exercises 2.4

1. For any positive integer n, show that (2n2 þ 2n, 2nþ 1,

2n2 þ 2nþ 1) is a Pythagorean triple in which one side and the

hypotenuse differ by one unit. Such triples were studied by Pythagoras,

and rediscovered by Stifel when he was investigating properties of the

mixed fractions 11
3
, 22

5
, 33

7
, 44

9
. . . , nþ n=(2nþ 1) ¼ (2n2 þ 2n)=

(2nþ 1).

2. For any positive integer n. 1, show that (2n, n2 � 1, n2 þ 1) is a

Pythagorean triple in which one side differs from the hypotenuse by

two units. Such triples were studied by Plato.

3. If (a, b, c) and (x, y, z) are Pythagorean triples, show that (ax� by,

ayþ bx, cz) is a Pythagorean triple.

4. Prove that (3, 4, 5) is the only primitive Pythagorean triple whose

terms are in arithmetic proportion, that is, they are of the form

(a, aþ d, aþ 2d).

5. Why is it not the case that the values s ¼ 3 and t ¼ 5 generate a

primitive Pythagorean triple?

6. Show that if (x, y, z) is a primitive Pythagorean triple then the sum of

the legs of the Pythagorean triangle generated is of the form 8m� 1.

Table 2.6.

3 4 5
5 12 13
7 24 25

15 8 17
21 20 29
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7. For any positive integer n > 3, show that there exists a Pythagorean

triple (x, y, z) with n as one if its elements.

8. Define the Pell sequence, 0, 1, 2, 5, 12, 27, . . . , an, . . . , recursively

such that anþ2 ¼ 2anþ1 þ an, with a0 ¼ 0 and a1 ¼ 1. Show that if

xn ¼ a2nþ1 � a2n, yn ¼ 2anþ1an, and zn ¼ a2nþ1 þ a2n, with n > 1, then

(xn, yn, zn) is a Pythagorean triple with xn ¼ yn þ (�1)n.

9. Show that if the pair (s, t), from Theorem 2.13, with s. t, generates a

Pythagorean triple with jx� yj ¼ k > 0, then (2sþ t, s) generates a

Pythagorean triple with jx� yj ¼ k.

10. Ignoring the dimensions of the units, find two Pythagorean triangles

with the same area as perimeter.

11. Show that the Pythagorean triples (40, 30, 50), (45, 24, 51), and (48,

20, 52) have equal perimeters and their areas are in arithmetic

proportion.

12. Prove that the product of three consecutive positive integers, with the

first number odd, is a Pythagorean number.

13. Show that every Pythagorean number is divisible by 6.

14. Show that a Pythagorean number can never be a square.

15. What positive integers n are solutions to x2 � y2 ¼ n?

16. Show that if (x, y, z) is a primitive Pythagorean triple then 12jxyz.
17. Show that if (x, y, z) is a primitive Pythagorean triple then 60jxyz. [P.

Lenthéric 1830]

18. Find the coordinates of a set of eight noncollinear planar points each

an integral distance from the others.

19. How many primitive Pythagorean triangles have hypotenuses less than

100? How accurate is Lehmer’s prediction in this case?

2.5 Miscellaneous exercises

1. A raja wished to distribute his wealth among his three daughters Rana,

Daya, and Cyndi such that Rana, the eldest, received half of his wealth,

Daya received one-third, and Cyndi, the youngest, received one-ninth.

Everything went well until the raja came to his seventeen elephants.

He was in a quandary as to how to divide them amongst his daughters.

To solve the problem he called in his lawyer who came riding her own

elephant, which she, after surveying the situation, had coloured pink

and placed among the seventeen elephants. The lawyer told Rana to

take half or nine of the elephants, but not the pink one, which she did.

The lawyer then told Daya to take a third or six of the elephants, but

not the pink one, which Daya did. Then the lawyer told Cyndi to take
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the two elephants remaining that were not pink. The raja and his

daughters were happy and after collecting her fee the lawyer took her

pink elephant and rode home. How was she able to accomplish this

remarkable feat?

2. Elephantine triples are triples or 3-tuples of numbers of the form (1=a,

1=b, 1=c) such that for the distinct positive integers a, b, c and some

positive integer n, we have that 1=aþ 1=bþ 1=c ¼ n=(nþ 1). For

example, (1
2
, 1
3
, 1
9
) is an elephantine triple. Find two more examples of

elephantine triples.

3. A reciprocal Pythagorean triple (a, b, c) has the property that

(1=a)2 þ (1=b)2 ¼ (1=c)2. Show that (780, 65, 60) is a reciprocal

Pythagorean triple.

4. Take three consecutive integers, with the largest a multiple of 3.

Form their sum. Compute the sum of its digits, do the same for the

result until a one-digit number is obtained. Iamblichus of Chalis

claimed that the one-digit number obtained will always equal 6. For

example, the sum of 9997, 9998 and 9999 is 29 994. The sum of the

digits of 29 994 is 33 and the sum of the digits of 33 is 6. Prove

Iamblichus’s claim.

5. Given a scale with two pans, determine the least number of weights

and the values of the weights in order to weigh all integral weights in

kilograms from 1 kilogram to 40 kilograms. [Bachet]

6. Explain how the following multiplication rule works. To multiply two

given numbers, form two columns, each headed by one of the numbers.

Successive terms in the left column are halved, always rounding down,

and successive terms in the right column are doubled. Now strike out

all rows with even numbers in the left column and add up the numbers

remaining in the right column to obtain the product of a and b. For

example, to determine 833 154 ¼ 12 782, we have:

83 154

41 308

20 616

10 1 232

5 2 464

2 4 928

1 9 856

12 782

7. In The Educational Times for 1882, Kate Gale of Girton College,

Cambridge, proved that if 3n zeros are placed between the digits 3 and

7, then the number formed is divisible by 37. In addition, if 3nþ 1
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zeros are placed between the digits 7 and 3, the number formed is

divisible by 37. Prove these statements.

8. Let f (n) be the smallest positive integer value of xn such thatPn
k¼1x

�1
k ¼ 1, for some positive integers x1, x2, . . . , xn�1 such that

1, x1 , x2 , � � � , xn. Since
1
2
þ 1

3
þ 1

6
¼ 1 and 6 is the smallest posi-

tive integer with this property for n ¼ 3 it follows that f (3) ¼ 6.

Determine f (4).

9. If a. 0, b. 0, and 1=aþ 1=b is an integer then show that a ¼ b and

a ¼ 1 or a ¼ 2.

10. Show that in any set of nþ 1 integers selected from the set

f1, 2, . . . , 2ng there must exist a pair of coprime integers.

11. Show that the product of k consecutive natural numbers is always

divisible by k! [J.J. Sylvester]

12. Show that in any set of five consecutive positive integers there always

exists at least one integer which is coprime to every other integer in

the set.

13. A positive integer is called polite if it can be represented as a sum of

two or more consecutive integers. For example, 7 is polite since

7 ¼ 3þ 4. Similarly, 2 is impolite since it cannot be written as a sum

of two or more consecutive integers. Show that the only impolite

positive integers are powers of 2.

14. Use Heron’s formula for the area K of a triangle with sides a, b, c,

namely, K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s� a)(s� b)(s� c)

p
, where s ¼ (aþ bþ c)=2, to

show that triangles with sides x ¼ 20k4 þ 4k2 þ 1, y ¼ 8k6 �
4k4 � 2k2 þ 1, and z ¼ 8k6 þ 8k4 þ 10k2, for k a positive integer, all

have area 4k2(2k2 þ 1)2(2k2 � 1)2.

15. Prove that every natural number belongs to one of three basic digital

root sequences.

16. Use the principle of induction to show that if c1, c2, . . . , ck are

pairwise coprime integers and cijn, for i ¼ 1, 2, . . . , k, and m ¼Qk
i¼1 ci, then mjn.

17. Prove, for all positive integers n, that n5=5þ n3=3þ 7n=15 is always

an integer.

18. For n a positive integer, the Smarandache function S(n) is the smallest

positive integer m such that n divides m!. For example, S(1) ¼ 1,

S(2) ¼ 2, and S(3) ¼ 3. Determine S(n) for n ¼ 4, 5, . . . , 10.

19. Let h(p) denote the smallest positive integer such that !h(p) is

divisible by p, where p. 3 is prime and !n ¼ Pn�1
k¼0k! for any positive

integer n. For example, !4 ¼ 0!þ 1!þ 2!þ 3! ¼ 10, hence, h(5) ¼ 4.

Determine h( p) when p ¼ 7 and p ¼ 11.

2.5 Miscellaneous exercises 83



20. Establish the following connection between Fibonacci-type sequences

and Pythagorean triples discovered by A.F. Horadam in 1961. If

a1, a2, . . . is a Fibonacci-type sequence then for n > 3, (ananþ3,

2anþ1anþ2, 2anþ1anþ2 þ an
2) is a Pythagorean triple.

21. If we were to extend the Fibonacci numbers, un, to include negative

subscripts, that is unþ2 ¼ unþ1 þ un, where n is any integer, then

determine a general rule for determining such an extended Fibonacci

array.

2.6 Supplementary exercises

1. Show that if a divides c and aþ b ¼ c then a divides b.

2. If d 6¼ 0, c ¼ axþ by, and d divides b and c, must d divide a?

3. For every positive integer n show that 2 divides n2 � n and 6 divides

n3 � n.

4. For any positive integer n, show that 6 divides 7n3 þ 5n.

5. For any positive integer n show that 15 divides 24n � 1.

6. If n is an integer not divisible by 2 or 3, show that 24 divides n2 þ 23.

7. For any positive integer n show that 4 does not divide n2 þ 2.

8. Prove or disprove that for any positive integer n, 3 divides 2n3 þ 7.

9. Show that if a and b are odd integers then 8 divides a2 � b2.

10. If n is an odd integer show that 12 divides n2 þ (nþ 2)2 þ
(nþ 4)2 þ 1.

11. If n is an odd integer show that 32 divides (n2 þ 3)(n3 þ 7).

13. Show that for any positive integer n, 1þ 2 þ � � � þ n divides

3(12 þ 22 þ � � � þ n2).

14. Find a six-digit number n such that when the digit on the left is

removed and placed at the end the new number equals 3n.

15. Show that the square of any odd integer must be of the form 8k þ 1.

16. A positive integer is called evil if it has an even number of ones in its

base 2 representation. Determine the first fifteen evil numbers.

17. Show that if y2 ¼ x3 þ 2, then both x and y are odd.

18. Find gcd(23 . 52 . 7, 2 . 34 . 56).

19. Find the greatest common divisor of 1213 and 8658 and express it as a

linear combination of 1213 and 8658.

20. Find the greatest common divisor of 198 and 243 and express it as a

linear combination of 198 and 243.

21. Find the greatest common divisor of 527 and 765 and express it as a

linear combination of 527 and 765.
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22. Find the greatest common divisor of 6409 and 42823 and express it as

a linear combination of 6409 and 42823.

23. Find the greatest common divisor of 2437 and 51329 and express it as

a linear combination of 2437 and 51329.

24. Find the greatest common divisor of 1769 and 2378 and express it as a

linear combination of 1769 and 2378.

25. Show that for any integer n, gcd(14nþ 3, 21nþ 4) ¼ 1.

26. Determine the greatest common divisor of 5nþ 2 and 7nþ 3, where n

is any integer.

27. Determine the least positive integer in the set f341xþ 527yg, where x
and y are integers.

28. If gcd(a, c) ¼ 1 and b divides c, show that gcd(a, b) ¼ 1.

29. Show that if gcd(a, b) ¼ 1 and ajbc, than ajc.
30. If a divides b, show that gcd(a, c) ¼ gcd(a, bþ c).

31. Show that gcd(un, unþ2) ¼ 1 or 2, where un denotes the nth Fibonacci

number.

32. If gcd(a, b) ¼ 1, show that gcd(2aþ b, aþ 2b) ¼ 1 or 3.

33. Fin a, b, c such that gcd(a, b, c) ¼ 1, but gcd(a, b). 1, gcd(a, b). 1,

and gcd(b, c). 1.

34. Find two primitive Pythagorean triples that contain 17.

35. Find two primitive Pythagorean triples that contain 27.

36. If (x, y, z) and (z, xy, xyþ 1) are primitive Pythagorean triples show

that x and y must be consecutive positive integers.

37. If (x, xþ 1, z) is a primitive Pythagorean triple show that

(3xþ 2zþ 1, 3xþ 2zþ 2, 4xþ 3zþ 2) is a primitive Pythagorean

triple. Hence, there are an infinite number of primitive Pythagorean

triples whose legs are consecutive positive integers.

38. Show that (z, x(xþ 1), x(xþ 1)þ 1) is a primitive Pythagorean triple

if and only if (x, xþ 1, z) is a primitive Pythagorean triple.

39. If the sum of two consecutive integers is a square, show that the two

integers form the side and a diagonal of a Pythagorean triple.

40. If x2 þ y2 ¼ z2 show that 3 divides xy.

41. A positive integer n has the cycling digits property if every fraction

m=n, with 1 < m, n, has a block of repeated digits (the repetend of

m=n). That is a cyclic permutation of the repetend of 1=n. Show that

7, 17, and 19 have the cycling digits property.

42. Show that if an integer has the cycling digits property then it must be

prime.

43. A positive integer n is called a Curzon number if 2nþ 1 divides

2n þ 1. Determine the first ten Curzon numbers.
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44. A positive integer n is called a Zuckerman number if it is divisible by

the product of its digits. Show that 3111, 1311, 1131, and 1113 are

Zuckerman numbers.

45. Given that 1, 2, . . . , 9 are Zuckerman numbers. Determine the next

fifteen Zuckerman numbers.

46. A positive integer n is called a riven (or reduced Niven) number if it is

divisible by its digital root. Determine the first ten riven numbers.

47. A positive integer is called b-Niven (b-riven) if it is divisible by the

sum of its digits (digital root) in base b. Show that every positive

integer is 2-riven and 3-riven.

48. In the fourth, fifth and sixth row of Pascal’s Triangle the hexagon

4 6

5 10

15 20

appears. Note that 5 . 6 . 20 ¼ 4 . 10 . 15 and gcd(5, 6, 20) ¼
1 ¼ gcd(4, 10, 15). Is this true in general? Namely, for positive

integers n and k, with n. k, does

n

k þ 1

� �
nþ 1

k þ 2

� �
nþ 2

k þ 3

� �
¼ n

k

� �
nþ 1

k þ 3

� �
nþ 2

k þ 2

� �
and

gcd
n

k þ 1

� �
,

nþ 1

k þ 2

� �
,

nþ 2

k þ 3

� �� �

¼ gcd
n

k

� �
,

nþ 1

k þ 3

� �
,

nþ 2

k þ 2

� �� �
?

49. If S(n) denotes the Smarandache function show that the infinite seriesP1
k¼11=S(n

k) diverges for any positive integer n.

50. For n a positive integer the pseudo-Smarandache function S(n) is the
smallest positive integer m such that n divides the mth triangular

number. Determine S(n) for n ¼ 2 to 15.
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3

Prime numbers

I was taught that the way of progress is neither swift nor easy.

Marie Curie

3.1 Euclid on primes

In this section, we investigate the fundamental structure of the integers.

Playing the role of indivisible quantities are those integers designated as

being prime. A positive integer, other than unity, is said to be prime if its

only positive divisors are unity and itself. That is, a prime number is an

integer greater than 1 with the minimal number of positive integral

divisors. A positive integer which is neither unity nor prime is called

composite. By considering unity as being neither prime or composite, we

follow the custom of the Pythagoreans, the first group to distinguish

between primes and composites. Unfortunately, there is no efficient method

to determine whether or not a given number is prime. Eratosthenes of

Cyrene (now in Libya) devised a technique, referred to as the sieve of

Eratosthenes, to find prime numbers. Eratosthenes was a Greek mathema-

tician–astronomer who served as director of the Library at Alexandria

under Ptolemy III and was the first to calculate accurately the size of the

earth and the obliquity of the earth’s axis. He was also an athlete, a poet, a

philosopher and an historian. He was called Pentathlus by his friends for

his success in five Olympic sports. His enemies called him Beta for they

considered him to be second in most fields of learning and first in none.

Eratosthenes called himself Philologus, one who loves learning. According

to legend, Eratosthenes, after all his accomplishments, ended his life at age

80 by starvation.

In order to determine all the primes less than or equal to the positive

integer n using Eratosthenes’s sieve, list all the integers from 2 to n. The

smallest number, 2, must be prime making it the only even prime and

perhaps the oddest prime of all. Every alternate number after 2 must be

composite so cross them out. The smallest integer greater than 2 not

87



crossed out, 3, must be prime. Every third number after 3 must be compo-

site and if they have not been crossed out already, cross them out. The next

smallest number greater than 3 not crossed out, 5, must be prime. Every

fifth number after 5 is composite, if they have not already been crossed out,

cross them out. Eratosthenes knew that one of the prime factors of a

composite number must be less than or equal to the square root of the

number. Thus, we continue the process until the largest prime less than
ffiffiffi
n

p
is reached. At this point, all composites up to n have been crossed out, only

the primes from 2 to n remain. Nicomachus mentions Eratosthenes’s

method in his Introduction, but considers only odd numbers beginning the

sieve process with 3.

Example 3.1 Figure 3.1 displays the results from applying the sieve of

Eratosthenes to the set of positive integers between 2 and 99. All numbers

not crossed out are prime.

In Proposition 32 of Book VII of the Elements, Euclid states that every

integer greater than unity is divisible by at least one prime. Therefore,

every number is prime or has a prime factor. The next result does not

explicitly appear in the Elements, but it was undoubtedly known to Euclid.

The result clearly indicates the importance of prime numbers and is

instrumental in illustrating how they form the basic structure of the

integers.

Theorem 3.1 Every integer n > 2 is either prime or a product of primes.

Proof Using induction, we begin with the case n ¼ 2. Since 2 is a prime,

the theorem is satisfied. Suppose that the hypothesis is true for all integers

between 2 and k. Consider the integer k þ 1. If k þ 1 is prime then we are
done, if it is not prime then it must factor into a product of two integers r

9
19
29
39
49
59
69
79
89
99

8
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28
38
48
58
68
78
88
98

7
17
27
37
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87
97

6
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76
86
96

5
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25
35
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85
95
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24
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54
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74
84
94

3
13
23
33
43
53
63
73
83
93

2
12
22
32
42
52
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72
82
92

9
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21
31
41
51
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81
91

9
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30
40
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90

Figure 3.1.
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and s where both r and s are less than k. By the induction hypothesis both

r and s must be primes or products of primes. Thus, k þ 1 ¼ r . s is a

product of primes. Since k þ 1 is either a prime or a product of primes, the
result follows from induction. j

In a caveat to his readers, Euclid notes that given three positive integers, a,

b, c it is not always the case that if a divides the product of b and c, then

either a divides b or a divides c. For example, 6 divides the product of 3

and 4, but 6 divides neither 3 nor 4. However, in Proposition 30 of Book

VII of the Elements, Euclid proves that if a prime divides the product of

two integers then it must divide at least one of them.

Theorem 3.2 (Euclid’s Lemma) If p is a prime and p divides ab, then

either p divides a or p divides b.

Proof Suppose that p is prime, p divides ab and p does not divide a.

Since p divides ab there exists an integer c such that pc ¼ ab. Since p

does not divide a, p and a are coprime, so it follows from Theorem 2.7

that there exist integers x and y such that 1 ¼ px þ ay. Hence, b ¼
b(px)þ b(ay) ¼ p(bx)þ p(cy) ¼ p(bx þ cy). Thus, p divides b. j

With a straightforward inductive argument it can be shown that if a prime

p divides the product m1m2 � � � mn, where each mi is an integer, then p

divides mi for some i, 1 < i < n. The importance of considering prime

divisors becomes more evident with the proof of the next result, concerning

a property of primitive Pythagorean triples. Lacking Euclid’s Lemma at the

time, we assumed it in the proof of Theorem 2.13.

Theorem 3.3 The Pythagorean triple (x, y, z) is primitive if and only if x,

y and z are coprime in pairs.

Proof If gcd(x, y) ¼ 1, gcd(x, z) ¼ 1, and gcd(y, z) ¼ 1, then x, y and z

have no common factor other than 1. Conversely, suppose that (x, y, z) is a

primitive Pythagorean triple, gcd(x, y) ¼ d . 1, p is any prime which

divides d. Since p divides x, p divides y, and x2 þ y2 ¼ z2, p divides z2.

Hence, according to Euclid’s Lemma, p divides z, contradicting the fact

that x, y and z have no common factor other than 1. Similarly, it follows

that gcd(x, z) ¼ 1, gcd(y, z) ¼ 1, and the result is established. j

It is an open question whether or not there are infinitely many primitive

Pythagorean triples with the property that the hypotenuse and one of the
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sides are prime. It is quite possible that the following result was known to

Euclid. However, since he had no notation for exponents and could not

express a number with an arbitrary number of factors, it was not included

in the Elements. Nevertheless, it is very similar to Proposition 14 in Book

IX. The result was first stated explicitly by Gauss, who included a proof of

the result in his doctoral thesis.

Theorem 3.4 (The Fundamental Theorem of Arithmetic) Except for the

arrangement of the factors every positive integer n. 1 can be expressed

uniquely as a product of primes.

Proof Let n be the smallest positive integer for which the theorem is false,

say n ¼ p1 p2 � � � pr ¼ q1q2 � � � qs, where both r and s are greater than 1.

If pi ¼ qj, for some 1 < i < r and 1 < j < s, then we could divide both

sides of the equality by pi to get two distinct factorizations of n= pi,

contradicting the minimality of n. Hence, the pi and qj are distinct.

Without loss of generality, let p1, q1. Then m ¼ (q1 � p1)q2 � � � qs

¼ (q1q2 � � � qs) � ( p1q2q3 � � � qs) ¼ (p1 p2 � � � pr) � (p1q1q2 � � � qs) ¼
p1[(p2 � � � pr)� (q2q3 � � � qs)]. Since p1 does not divide (q1 � p1), we

have two distinct factorizations for m, one with p1 as a factor and one

without. Since m, n, this contradicts the minimality of n. Therefore, there

is no smallest positive integer having two distinct prime factorizations and

the theorem is proved. j

Theorem 3.4 is fundamental in the sense that apart from a rearrangement

of factors, it shows that a positive integer can be expressed as a product of

primes in just one way. It would not be true if unity were considered to be

prime. In addition, the Fundamental Theorem of Arithmetic does not hold

if we restrict ourselves, say, to E, the set of even integers, albeit E, like the

integers, is closed under the operations of addition and multiplication. The

irreducible elements of E consist of all positive integers of the form

2 . (2n þ 1), where n > 1, hence, 6, 10, and 30 are irreducible in E. Thus,

2 . 30 and 6 . 10 are two distinct prime factorizations of 60 in E.

If n is a positive integer which is greater than 1, the canonical

representation or prime power decomposition of n is given by n ¼Qr
i¼1 p

Æi

i ¼ pÆ1
1 pÆ2

2 � � � pÆ r
r , where p1, p2, � � � , pr are prime and

Æi . 0, for i ¼ 1, . . . , r. We refer to p
Æi

i as the pi component of n and

employ the notation pÆin to signify that pÆjn, and pÆþ1 6 jn. For example,
23 i233574, 35 i233574, and 74 i233574. If pÆ im, and p� in, where p is prime

and Æ, �, k, m, and n are positive integers, then pÆþ� imn.
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The canonical notation for a positive integer is very useful in establish-

ing number theoretic results and easing computation. For example, if we

relax the conditions on the canonical representation and allow zero

exponents with m ¼ Qr
i¼1 p

Æi

i and n ¼ Qr
i¼1 p

�i

i then, since maxfx, yg þ
minfx, yg ¼ x þ y, the greatest common divisor and least common multi-

ple of m and n are given respectively by gcd(m, n) ¼ Qr
i¼1 p

ªi

i and

lcm(m, n) ¼ Qr
i¼1 p

�i

i , where ªi ¼ minfÆi, �ig and �i ¼ maxfÆi, �ig, for
i ¼ 1, 2, . . . , r. For example, the canonical representation for 749 112 is

given by 23 . 3 . 74 . 13 and that of 135 828 by 22 . 32 . 73 . 11. We alter the

canonical notation slightly to represent 749 112 by 23 . 3 . 74 . 110 . 131 and

135 828 by 22 . 32 . 73 . 111 . 130. Accordingly, gcd(749 112, 135 828) ¼
22 . 3 . 73 and lcm(749 112, 135 828) ¼ 23 . 32 . 74 . 11 . 13.

In 1676, Wallis showed that the length of the period of the decimal

expansion of 1=mn is the least common multiple of the length of the

periods of 1=m and 1=n. Primes play an important role in the decimal

expansion of fractions. In particular, for prime denominators p, other than

2 or 5, all decimal expansions of fractions of the form m= p, for

1 < m, p, repeat with cycles of the same length. In addition, the product

of the number of distinct cycles with this length is p � 1. For example,
there are five distinct cycles when p ¼ 11, namely, 0:09, 0:18, 0:27, 0:36

and 0:45, each of length 2, and 2 . 5 ¼ 10 ¼ 11� 1. Another problem that
we will return to in Chapter 8 is determining which primes p have the

property that 1= p has a decimal expansion of period p � 1. For example, 7
is such a prime since 1

7
¼ 0:142857.

Exercises 3.1

1. Use the sieve of Eratosthenes to determine all the primes from 100 to

250.

2. Charles de Bovilles, Latinized Carolus Bouvellus, a French philoso-

pher and sometime mathematician, published On Wisdom in 1511, one

of the first geometry texts written in French. Bouvellus claimed that

for n > 1 one or both of 6n � 1 and 6n þ 1 were prime. Show that his
conjecture is false.

3. Bouvellus must have realized something was amiss for he soon revised

his claim to read that every prime, except 2 and 3, can be expressed in

the form 6n 
 1, for some natural number n. Show that this conjecture

is true.

4. Show that every prime of the form 3k þ 1 can be represented in the
form 6m þ 1.
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5. In 1556, Tartaglia claimed that the sums 1þ 2þ 4, 1þ 2þ 4þ 8,
1þ 2þ 4þ 8þ 16, etc. are alternately prime and composite. Show
that his conjecture is false.

6. Determine the next three numbers and the general pattern in the

sequence 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, . . . :

7. Find the greatest common divisor and least common multiple of m

and n if

(a) m ¼ 540 and n ¼ 3750,

(b) m ¼ 23 . 32 . 5 . 7 . 112 and n ¼ 2 . 52 . 113.

8. A positive integer is called squarefree if it is not divisible by the square

of any prime. What can you deduce about the canonical representation

of squarefree numbers?

9. Show that every positive integer greater than 1 is squarefree, square or

a product of a squarefree integer and a square.

10. Determine the length of the longest sequence of consecutive square-

free integers.

11. A positive integer n is said to be powerful if p2jn for every prime
divisor p of n. For example, 25 . 36 . 52 is powerful, but 25 . 3 . 52 is

not. If Q(x) denotes the number of powerful numbers less than x,

determine Q(100).

12. If p is irreducible in E, the set of even integers, and pjab, does it

follow that either pja or pjb? Justify your claim.
13. Consider the set H ¼ f4n þ 1: n ¼ 0, 1, 2, 3, . . .g ¼ f1, 5, 9, . . .g.

A number in H, other than 1, is called a Hilbert prime if it has no

divisors in H other than 1 and itself, otherwise it is called a Hilbert

composite. H is closed under multiplication. However, factorization in

H is not unique since 9, 21, 33, 77 are Hilbert primes and 21 . 33 and

9 . 77 are two distinct irreducible factorizations of 693. Find the first

25 Hilbert primes. David Hilbert lectured at Göttingen University from

1892 to 1930. At the 1900 International Congress of Mathematicians

in Paris, he challenged mathematicians with 23 problems, several of

which remain unsolved.

14. Smith numbers, first defined by Albert Wilanski of Lehigh University,

are composite numbers the sum of whose digits are equal to the sum of

the digits in an extended prime factorization. For example, 27 is a

Smith number since 27 ¼ 3 . 3 . 3 and 2þ 7 ¼ 3þ 3þ 3. In addition,
319 ¼ 11 . 29 is a Smith number since 3þ 1þ 9 ¼ 1þ 1þ 2þ 9.
The pair 728 and 729 are consecutive Smith numbers. It is an open

question whether there are an infinite number of Smith numbers.

Wilanski noted, in 1982, that the largest Smith number he knew of
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belonged to his brother-in-law, Dr. Harold Smith, whose phone number

was 4 937 775. Show that 4 937 775 is a Smith number.

15. Let sp(n, b) denote the prime digital sum of the composite integer n

expressed in base b > 2. That is, if n ¼ p1 p2 � � � pr, then sp(n, b) ¼Pr
k¼1sp(pk , b), where sp(n, 10) ¼ sp(n). For example, 36 ¼ 3 . 3 .

2 . 2, 3 ¼ 112, and 2 ¼ 102. Hence, sp(36, 2) ¼ 2þ 2þ 1þ 1 ¼ 6.

Determine sp(n, 2), for 1 < n < 16.

16. A positive integer n is called a k-Smith number if sp(n) ¼ k . sd(n),

where k is also a positive integer. In 1987, Wayne McDaniel used the

concept of k-Smith numbers to prove that there exist an infinite

number of Smith numbers. Show that 104 is a 2-Smith number.

17. For n a positive integer, the nth Monica set Mn consists of all

composite positive integers r for which n divides sd(r)� sp(r). Show

that if r is a Smith number that r belongs to Mn for all positive

integers n.

18. Prove that if m and n are positive integers such that mjn, then Mn is a

subset of Mm.

19. If k . 1 is a positive integer show that the set of k-Smith numbers is a

subset of the (k � 1)st Monica set.
20. For a positive integer n, the nth Suzanne set Sn consists of all

composite positive integers r for which n divides sd(r) and sp(r). In

1996, Michael Smith, who named Monica and Suzanne sets after his

two cousins Monica and Suzanne Hammer, showed that there are an

infinite number of elements in each Monica and Suzanne set. Clearly

Sn is a subset of Mn. Show that it is not necessarily the case, however,

that Mn is a subset of Sn.

21. Find all primes p such that 17p þ 1 is square.
22. Prove that every number of the form 4m þ 3 must have one prime

factor of the form 4k þ 3.
23. Can a number of the form 4m þ 1 have a factor not of the form

4k þ 1? Justify your answer.
24. Prove that n4 � 1 is composite for any positive integer n. 1.

25. Prove that if n. 4 is composite, then n divides (n � 1)!
26. Determine the number of distinct cycles and the length of each cycle,

for decimal expansions of numbers of the form m=13, with

1 < m, 13.

27. In 1968, T.S. Motzkin and E.G. Straus investigated the existence of

pairs fm, ng such that m and n þ 1 have the same distinct prime
factors and n and m þ 1 have the same distinct prime factors. Show
that m ¼ 5 . 7 and n ¼ 2 . 37 are such numbers.
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28. Prove that if p is prime and Æ, �, m, and n are integers with Æ and �
positive, pÆ im, and p� in then pÆþ� imn.

29. Give a counterexample to show that, in general, if pÆ im and pÆ in

then pÆ 6 i (m þ n), where p is prime, and m, n and Æ are integers with
Æ positive.

30. Prove that
ffiffiffi
nm

p
is irrational unless n is the mth power of an integer.

3.2 Number theoretic functions

A function whose domain is the set of positive integers is called number

theoretic or arithmetic. In many cases, the canonical representation of

positive integers can be used to evaluate number theoretic functions. Two

very important number theoretic functions are �(n), the number of divisors
of n, and � (n), the sum of the divisors of n. For convenience, we use the

convention that
P

djn and
Q

djn denote, respectively, the sum and product

taken over all the divisors of n. For example, for n ¼ 12,P
dj12d ¼ 1þ 2þ 3þ 4þ 6þ 12 ¼ 28 and

Q
dj12 d ¼ 1 . 2 . 3 . 4 . 6 .

12 ¼ 1728. It follows from the definitions of � and � that
P

djn1 ¼ �(n)
and

P
djnd ¼ � (n). For completeness, we define �(1) and � (1) to be 1.

Unless a positive integer is square, its divisors pair up, hence, �(n) is odd if
and only if n is square. With the next result, we see how canonical

representations can be used to compute number theoretic values.

Theorem 3.5 If n ¼ Qr
i¼1 p

Æ1
i , then �(n) ¼

Qr
i¼1(Æi þ 1).

Proof If m ¼ Qr
i¼1 p

� i

i and n ¼ Qr
i¼1 p

Æi

i then mjn if and only if

0 < �i < Æi, for i ¼ 1, 2, . . . , r. That is, if every pi component of m is

less than or equal to every pi component of n. Thus, if m ¼ Qr
i¼1 p

�i

i

represents any divisor of n ¼ Qr
i¼1 p

Æi

i then there are Æ1 þ 1 choices for
�1, Æ2 þ 1 choices for �2, . . . , and Ær þ 1 choices for �r. From the

multiplication principle it follows that there are (Æ1 þ 1)(Æ2 þ 1) � � �
(Ær þ 1) different choices for the �1, �2, . . . , �r, thus, that many divisors

of n. Therefore, �(n) ¼ Qr
i¼1(Æi þ 1). j

For example, �(13 608) ¼ �(23357) ¼ (3þ 1)(5þ 1)(1þ 1) ¼ 4 . 6 . 2

¼ 48. The history of the tau-function can be traced back to Girolamo

Cardano, an Italian mathematician–physician, who noted in 1537 that the

product of any k distinct primes has 2k divisors. Cardano played a major

role in popularizing the solution to cubic equations and wrote the first text
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devoted to the study of probability. Cardano’s result was reestablished in

1544 by Michael Stifel and again in 1657 by the Dutch mathematician

Frans van Schooten. In 1659 Van Schooten published an influential Latin

translation of Descartes’ La Géométrie that was highly regarded by Isaac

Newton. The canonical formula for �(n), in Theorem 3.5, is found in the

1719 edition of John Kersey’s Elements of that Mathematical Art Com-

monly Called Algebra. Kersey was a London surveyor and highly respected

teacher of mathematics. His book was very popular, went through several

editions, and was recommended to students at Cambridge.

An equivalent representation for �(n), based on the canonical representa-
tion for n, appeared in the 1732 edition of Newton’s Universal Arithmetic.

The canonical formula for �(n), in Theorem 3.5, also appeared in the 1770
edition of Edward Waring’s Meditationes algebraicae without justification,

as was Waring’s nature. Waring, Lucasian Professor of Mathematics at

Cambridge University, succeeded Isaac Barrow, Isaac Newton, William

Whiston, Nicholas Saunderson, and John Colson in that position. In 1919,

Leonard Eugene Dickson, a number theorist at the University of Chicago,

introduced the notation �(n) to represent the number of divisors of the
positive integer n and the notation � (n) to represent the sum of divisors

of n.

Given a positive integer n. 1, there are infinitely many positive integers

m such that �(m) ¼ n. For example, if p is any prime then �(pn�1) ¼ n. It

is possible for consecutive numbers to have the same number of divisors.

For example, �(14) ¼ �(15) ¼ 4, �(44) ¼ �(45) ¼ 6, and �(805) ¼
�(806) ¼ 8. Richard K. Guy, of the University of Calgary, conjectured that

�(n) ¼ �(n þ 1) for infinitely many positive integers. Three consecutive
positive integers may also have the same number of divisors. For example,

�(33) ¼ �(34) ¼ �(35) ¼ 4 and �(85) ¼ �(86) ¼ �(87) ¼ 4. An upper

bound for �(n) is given by 2
ffiffiffi
n

p
.

In 1838, P.G. Dirichlet proved that the average value of �(k),
(1=n)

Pn
k¼1�(k), is approximately equal to ln(n)þ 2 . ª� 1, where ln(n)

denotes the natural logarithm of n and ª denotes the Euler–Mascheroni
constant, limn!1(1þ 1

2
þ � � � þ 1=n � ln(n))  0:577 215 6 . . .. It is an

open question as to whether ª is rational or irrational.
The nth harmonic number, denoted by Hn, is defined to be

1þ 1
2
þ 1
3
þ � � � 1=n. The Euler–Maclaurin Theorem states that for large

values of n, Hn is approximately equal to ln(n)þ ªþ 1=2n. An inductive

argument can be used to show that H1 þ H2 þ � � � þ Hn ¼ (n þ
1)(H nþ1 � 1). With this result and the Euler–Maclaurin Theorem, it

follows that
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ln(n!) ¼ ln(1)þ ln(2) þ � � � þ ln(n)

 H1 þ H2 þ � � � þ Hn � n . ª� 1
2

Hn

¼ n þ 1
2

� �
Hn � n � n . ª

 n þ 1
2

� �
(ln(n)þ ª)� n � n . ª

 n þ 1
2

� �
ln(n)� n:

Hence, n!  ffiffiffi
n

p
. nne�n. In 1730, the Scottish mathematican, James Stir-

ling showed that
ffiffiffiffiffiffiffiffiffi
2�n

p
(n=e)n gives a much better estimate of n! even for

small values of n. For example, 12! is 479 001 600. Stirling’s formula

yields 475 687 486.476.

A number n with the property that �(n). �(k), for all k , n, is called

highly composite. For example, 2, 4, 6, 12, 24, 36, 48, 60, and 120 are

highly composite. Highly composite numbers were studied extensively by

Srinivasa Ramanujan and formed the basis of his dissertation at Cam-

bridge. Ramanujan, a phenomenal self-taught Indian number theorist, was

working as a clerk in an accounts department in Madras when his genius

came to the attention of Gilbert Walker, head of the Indian Meteorological

Department, and Mr E.H. Neville, Fellow of Trinity College, Cambridge.

Walker was Senior Wrangler at Cambridge in 1889 and Neville was

Second Wrangler in 1909. The examination for an honors degree at

Cambridge is called the Mathematical Tripos. Up until 1910, the person

who ranked first on the Tripos was called the Senior Wrangler. He was

followed by the Second Wrangler, and so forth. The person who ranked last

was referred to as the Wooden Spoon.

In his teens, Ramanujan independently discovered that if S(x) denotes

the number of squarefree positive integers less than or equal to x, then for

large values of x, S(x) is approximately equal to 6x=�2. A correspondence
ensued between Ramanujan and the Cambridge mathematician G.H.

Hardy. As a consequence, Ramanujan left India and went to England. He

spent the period from 1914 to 1919 at Cambridge. Under the guidance of

Hardy, Ramanujan published a number of remarkable mathematical results.

Between December 1917 and October 1918, he was elected a Fellow of

Trinity College, Cambridge, of the Cambridge Philosophical Society, of

the Royal Society of London, and a member of the London Mathematical

Society. His health deteriorated during his stay in England. He returned to

India in 1920 and died later that year at the age of 32.
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Let D(k) denote the least positive integer having exactly k divisors. For

example, D(1) ¼ 1, D(2) ¼ 2, D(3) ¼ 4, D(4) ¼ 6, and D(5) ¼ 16. We

say that n is minimal if D(�(n)) ¼ n. All the highly composite numbers

studied by Ramanujan are minimal. Normally, if n ¼ q1q2 � � � qk , where qi

is prime and q1 < q2 < � � � < qk, then D(n) ¼ 2q1�13q2�1 � � � p
q k�1
k ,

where pk denotes the kth prime. However, exceptions include the cases

when n ¼ 8, 16, 24, and 32.

In 1829, the German mathematician Carl Gustav Jacob Jacobi [yah KOH

bee] investigated properties of the number theoretic function E(n), the

excess of the number of divisors of n of the form 4k þ 1 over the number
of divisors of n of the form 4k þ 3. For example, the divisors of 105 of the
form 4k þ 1 are, 5, 21, and 105, and the divisors of the form 4k þ 3 are 3,
7, 15, and 35. Hence, E(105) ¼ �1. Since 2Æ has no divisors of the form
4k þ 3 and only one of the form 4k þ 1, E(2Æ) ¼ 1. If p is prime of the

form 4k þ 1, E(pÆ) ¼ Æþ 1, and if p is a prime of the form 4k þ 3,
E(pÆ) ¼ ((�1)Æ þ 1)=2. Jacobi claimed that if n ¼ 2Æuv, where each
prime factor of u has the form 4k þ 1 and each prime factor of v the form
4k þ 3, then E(n) ¼ 0 unless v is square and in that case E(n) ¼ �(u).
Jacobi made important contributions to the theory of elliptic integrals

before dying at age 47, a victim of smallpox.

In 1883, J.W.L. Glaisher [GLAY sure] established Jacobi’s conjecture

and showed that E(n)� E(n � 1)� E(n � 3)þ E(n � 6)þ E(n � 10)
� � � � ¼ 0 or (�1)n[((�1)k(2k þ 1)� 1)=4] depending, respectively, on
whether n is not a triangular number or the triangular number k(k þ 1)=2.
Glaisher, a Cambridge mathematican, was Senior Wrangler in 1871. He

served as president of the London Mathematical Society and the Royal

Astronomical Society. In 1901, Leopold Kronecker, the German mathema-

tician who established an analogue to the Fundamental Theorm of Arith-

metic for finite Abelian groups in 1858, showed that the mean value for

E(n) is approximately �=4.
In 1638, René Descartes remarked that the sum of the divisors of a prime

to a power, say � (pr), can be expressed as (prþ1 � 1)=( p � 1). In 1658,
Descartes, John Wallis, and Frenicle investigated properties of the sum of

the divisors of a number assuming that if m and n are coprime then

� (m . n) ¼ � (m) . � (n). We establish this property in the next section.

Theorem 3.6 If n ¼ Qr
i¼1 p

Æi

i , then the canonical formula for the sum of

the divisors of a positive integer is given by
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� (n) ¼
Yr

i¼1

p
Æiþ1
i � 1
pi � 1

� !
:

Proof The sum of the divisors of the positive integer n ¼ p
Æ1
1 p

Æ2
2 � � � pÆ r

r

can be expressed by the product

(1þ p1 þ p21 þ � � � þ p
Æ1
1 )(1þ p2 þ p22 þ � � � þ p

Æ2
2 ) � � �

(1þ pr þ p2r þ � � � þ pÆ r

r ):

Using the formula for the sum of a finite geometric series,

1þ x þ x2 þ � � � þ xn ¼ x nþ1 � 1
x � 1 ,

we simplify each of the r sums in the above product to find that the sum of

the divisors of n can be expressed canonically as

� (n) ¼ pÆ1þ1
1 � 1
p1 � 1

� !
pÆ2þ1
2 � 1
p2 � 1

� !
� � � pÆ rþ1

r � 1
pr � 1

� !
¼

Yr

i¼1

p
Æiþ1
i � 1
pi � 1 ,

and the result is established. j

For example,

� (136 608) ¼ � (23357) ¼ 24 � 1
2� 1

� �
36 � 1
3� 1

� �
72 � 1
7� 1

� �
¼ 43 608:

The canonical formula for � (n) was first derived by Euler in 1750, who
used

Ð
n to denote the sum of the divisors of n. Three years earlier,

developing the theory of partitions, Euler derived an intriguing formula to

evaluate � (n) involving pentagonal-type numbers, namely,

� (n) ¼ � (n � 1)þ � (n � 2)� � (n � 5)� � (n � 7)þ � (n � 12)
þ � (n � 15) þ � � �

þ (�1)kþ1 � n � 3k2 � k

2

� �
þ � n � 3k2 þ k

2

� �
 �
þ � � �,

where � (r) ¼ 0 if r , 0 and � (0) ¼ n. The result is elegant, but not very

practical. For example, according to the formula, � (10) ¼ � (9) þ
� (8)� � (5)� � (3) ¼ 13þ 15� 6� 4 ¼ 18, and � (15) ¼ � (14)þ � (13)
� � (10)� � (8)þ � (3)þ � (0) ¼ 24þ 14� 18� 15þ 4þ 15 ¼ 24.

The function � k(n) representing the sum of the kth powers of the

divisors of n generalizes the number theoretic functions � and � since
�0(n) ¼ �(n) and �1(n) ¼ � (n). By definition, � k(n) ¼

P
djndk , with

� k(1) ¼ 1. Hence, �2(15) ¼ �2(3 . 5) ¼ 12 þ 32 þ 52 þ 152 ¼ 260.

Clearly, a positive integer n is prime if and only if � (n) ¼ n þ 1. In
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addition, for any positive integer n, � (n)� 2n is never an odd square and

since � (n). n, there are only finitely many integers m such that

� (m) ¼ n. There are 113 solutions to � (n) ¼ � (n þ 1) when n, 107, for

example, � (14) ¼ � (15) ¼ 24 and � (206) ¼ � (207) ¼ 312. The Polish

mathematician, Wastawa Sierpiński, conjectured that the equation

� (n) ¼ � (n þ 1) is valid for infinitely many positive integers n.

Using our knowledge of harmonic numbers, we can determine an upper

bound for � (n). For any positive integer n,

� (n) ¼ n .
X
djn

1

d
< n .

X
1<k<n

1

k
, n(1þ ln(n)) ¼ n þ n . ln(n), 2n . ln(n):

In 1972, U. Annapurna showed if n. 12 then � (n), 6n3=2=�2. Five years
earlier R.L. Duncan had shown that � (n), 1

6
(7n . ø(n)þ 10n), where

ø(n) denotes the number of distinct prime factors of n. That is, if

n ¼ Qr
i¼1 p

Æi

i , ø(n) ¼ P
pjn1 ¼ r, with ø(1) ¼ 0. For example,

ø(164 640) ¼ ø(25 . 3 . 5 . 73) ¼ 1þ 1þ 1þ 1 ¼ 4.

The number theoretic function ø(n) has a number of interesting proper-
ties. For example, for any positive integer n, 2ø(n) < �(n) < n. In addition,

if n is a positive integer then there are 2ø(n) ordered pairs (r, s) such that

gcd(r, s) ¼ 1 and r . s ¼ n. In general the number of ordered pairs of

positive integers (r, s) such that lcm(r, s) ¼ n is given by �(n2). For
example, if n ¼ 12, then �(144) ¼ 15 and the ordered pairs are (1, 12),

(2, 12), (3, 12), (3, 4), (4, 3), (4, 6), (4, 12), (6, 4), (6, 12), (12, 1), (12, 2),

(12, 3), (12, 4), (12, 6), (12, 12). If r and s are positive integers such that r

divides s, then the number of distinct pairs of positive integers x and y such

that gcd(x, y) ¼ r and lcm(x, y) ¼ s is equal to 2k�1 where k ¼ ø(s=r).

For example, if r ¼ 2 and s ¼ 60 ¼ 22 . 3 . 5, then k ¼ ø(60=2) ¼
ø(2 . 3 . 5) ¼ 3. The four ordered pairs of solutions are (2, 60), (4, 30),

(6, 20), and (10, 12). In 1838, P.G. Dirichlet showed that the average value

of � (n), (1=n)
Pn

k¼1� (k), is approximately �
2n=6 for large values of n.

Another number theoretic function of interest is the sum of aliquot parts

of n, all the divisors of n except n itself, denoted by s(n). Thus,

s(n) ¼ � (n)� n. If p is prime then s(p) ¼ 1. If n. 1; then the aliquot

sequence generated by n, a1, a2, . . . , is defined recursively such that

a1 ¼ n, and akþ1 ¼ s(ak) for k > 1.

A sociable chain or aliquot cycle of length k, for k a positive integer, is

an aliquot sequence with s(akþ1) ¼ a1. A number is called sociable if it

belongs to a sociable chain of length greater than 2. In 1918, Paul Poulet

discovered that 12 496 generates a sociable chain of length 5 and 14 316

generates a sociable chain of length 28. In 1969, Henri Cohen discovered 7
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new sociable chains of length 4. Currently, 45 sociable chains, having

lengths 4, 5, 6, 8, 9, and 28, are known. In 1975, R.K. Guy and John

Selfridge conjectured that infinitely many aliquot sequences never cycle

but go off to infinity.

Sarvadaman Chowla studied properties of what is now called Chowla’s

function. The function, denoted by s�(n), represents the sum of all the

divisors of n except 1 and the number itself. That is, s�(n) ¼
� (n)� n � 1 ¼ s(n)� 1. For example, since

� (32 928) ¼ � (25 . 3 . 73) ¼ 26 � 1
2� 1

� �
32 � 1
3� 1

� �
74 � 1
7� 1

� �
¼ 63 . 4 . 400 ¼ 100 800,

it follows that s(32 928) ¼ � (32 928)� 32 928 ¼ 67 872 and s�(32 928)
¼ � (32 928)� 32 928� 1 ¼ 67 871. If p is prime then s�( p) ¼ 0. Several

pairs of integers m and n, including 48 and 75, 140 and 195, 1050 and

1925, 1575 and 1648, have the property that s�(m) ¼ n and s�(n) ¼ m.

The functional value �(n), called the degree of n, represents the number

of prime divisors of n counted with multiplicity. That is, if n ¼ Qr
i¼1 p

Æi

i ,

�(n) ¼ Pr
i¼1Æi, with the convention that �(1) ¼ 0. For example,

�(164 640) ¼ �(25 . 3 . 5 . 73) ¼ 5þ 1þ 1þ 3 ¼ 10. The average value

of �(n), (1=n)
Pn

k¼1�(k), is approximately ln(ln(n))þ 1:0346 for large
values of n.

Denote by En or On the number of positive integers k, 1 < k < n, for

which �(k) is even or odd, respectively. In 1919, George Polya conjectured
that On > En, for n > 2. However, in 1958, C.B. Haselgrove showed that

there were infinitely many positive integers n for which On , En. In 1966,

R.S. Lehman showed that n ¼ 906 180 359 is the smallest positive integer

for which On ¼ En � 1.
In 1657, Fermat challenged Frenicle and Sir Kenelm Digby to find, other

than unity, a cube whose sum of divisors is square and a square whose sum

of divisors is a cube. Before the existence of high-speed electronic

computers, these were formidable problems. Digby was an author, naval

commander, diplomat, and bon vivant, who dabbled in mathematics,

natural science, and alchemy. His father was executed for his role in the

Gunpowder Plot. Digby’s elixir, ‘powder of sympathy’, was purported to

heal minor wounds and cure toothaches. Digby passed the problem on to

John Wallis who found five solutions to Fermat’s first problem, namely the

cubes 39 . 53 . 113 . 133 . 413 . 473, 23 . 33 . 53 . 133 . 413 . 473, 173 . 313 .

473 . 1913, 23 . 33 . 53 . 133 . 173 . 313 . 413 . 1913, and 39 . 53 . 113 . 133 .

173 . 313 . 413 . 1913. Wallis countered with the problem of finding two
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squares other than 16 and 25 whose sums of divisors are equal. Wallis

knew of four solutions to the problem, namely 788 544 and 1 214 404,

3 775 249 and 1 232 100, 8 611 097 616 and 11 839 180 864, and

11 839 180 864 and 13 454 840 025. Frenicle found two of the solutions

given by Wallis to Fermat’s first problem and two solutions to Fermat’s

second problem, namely the squares 24 . 52 . 72 . 112 . 372 . 672 . 1632 .

1912 . 2632 . 4392 . 4992 and 34 . 76 . 132 . 192 . 314 . 672 . 1092. Frenicle

submitted no less than 48 solutions to the problem posed by Wallis

including the pairs 106 276 and 165 649, 393 129 and 561 001 and

2 280 100 and 3 272 481. Wallis constructed tables of values for � (n) for n

a square of a positive integer less than 500 or a cube of a positive integer

less than 100. During the period from 1915 to 1917, A. Géradin found 11

new solutions to Fermat’s first problem.

Exercises 3.2

1. Show that for any positive integer nX
djn

d ¼
X
djn

n

d
:

2. Determine the number of divisors and sum of the divisors of (a) 122,

(b) 1424, (c) 736, (d) 31, (e) 23 . 35 . 72 . 11.

3. Show that �(242) ¼ �(243) ¼ �(244) ¼ �(245).
4. Show that �(n) ¼ �(n þ 1) ¼ �(n þ 2) ¼ �(n þ 3) ¼ �(n þ 4) if n ¼
40 311.

5. In 1537, Girolamo Cardano claimed that if n ¼ Qr
i¼1 pi ¼

p1 p2 � � � pr, where p1, p2, . . . , pr are distinct primes, then

�(n)� 1 ¼ 1þ 2þ 22 þ 23 þ � � � þ 2r�1. Prove his conjecture true.
6. Prove that 2ø(n) < �(n), 2

ffiffiffi
n

p
, where n. 1 is any positive integer.

7. Show that
Q

djn d ¼ n�(n)=2, for any positive integer n.

8. Determine the canonical structure of all positive integers having the

property
Q

djn d ¼ n2.

9. Determine the canonical structure of all positive integers having the

property Y
djn

d 6¼n

d ¼ n2:

10. Use the Israilov–Allikov and Annapurna formulas to determine upper

bounds for �(n) and � (n) when n ¼ 1 000 000.

11. Use Duncan’s formula to obtain an upper bound for �(106).
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12. Determine the average value of �(n) for 1 < n < m ¼ 25, 50 and 100.

Compare your results with Dirichlet estimates.

13. Determine the first five harmonic numbers.

14. For any positive integer n, prove that

H1 þ H2 þ � � � þ Hn ¼ (n þ 1)(H nþ1 � 1)
where Hn denotes the nth harmonic number.

15. Use Stirling’s formula to estimate 16!

16. Show that 12 and 24 are highly composite.

17. In 1644, Mersenne asked his fellow correspondents to find a number

with 60 divisors. Find D(60), the smallest positive integer with 60

divisors.

18. Determine D(n) when n ¼ 8, 16, 24, and 32.

19. Determine E(512), E(24 137 569), E(750), E(2401). Use Glaisher’s

formula to determine E(19).

20. Determine the average value of E(n) for 1 < n < 25. Compare it with

�=4.
21. According to Liouville’s formula, (

P
djn�(d))

2 ¼ P
djn�

3(d). Check

the validity of the formula for n ¼ 7, 12, and 24.

22. Plato noted that 24 was the smallest positive integer equal to the sum

of the divisors of three distinct natural numbers. That is, n ¼ 24 is the

smallest positive number such that the equation � (x) ¼ n has exactly

three solutions for x. What are the three solutions?

23. Use Euler’s recursive formula for � (n) to show that � (36) ¼ 91.

24. Show that � (n) is odd if and only if n is a square or twice a square.

25. Determine the average value of � (n) for 1 < n < m, for m ¼ 25, 50

and 100. Compare your results with Dirichlet’s estimate.

26. Determine the first 25 terms of the aliquot sequence generated by 276.

27. Determine all ordered pairs (r, s) such that lcm(r, s) ¼ 36.

28. Determine the sociable chain of length 5 beginning with n ¼ 12 496.
29. Determine the terms in the social chain that begins with

n ¼ 2 115 324.

30. Show ��(48) ¼ 75 and ��(75) ¼ 48.

31. The Chowla sequence generated by n, denoted by b1, b2, . . . , is

defined recursively as follows: b1 ¼ n, and bkþ1 ¼ s�(bk) for k > 1.

Determine the Chowla sequence generated by 36.

32. Calculate the average value of �(n) for 1 < n < 50. Compare it with

ln(ln(50))þ 1:0346.
33. Show that the sum of divisors of the cube 39 . 53 . 113 . 133 . 413 . 473

is a square. [Wallis]
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34. Show that the sum of divisors of the square 24 . 52 . 72 . 112 .

372 . 672 . 1632 . 1912 . 2632 . 4392 . 4992 is a cube. [Frenicle]

35. Show that the sums of the divisors of 3262 and 4072 are equal.

[Frenicle]

36. Show that 17, 18, 26, and 27 have the property that they equal the sum

of the digits of their cubes.

37. Show that 22, 25, 28, and 36 have the property that they equal the sum

of the digits of their fourth powers.

38. Show that 2 divides [� (n)� �(m)] for all positive integers n where m

is the largest odd divisor of n.

39. If n ¼ Qr
i¼1 p

Æi

i then prove that

� k(n) ¼
Yr

i¼1

p
k(Æiþ1)
i

pi � 1

� !
:

40. Show that
P

djn(1=d2) ¼ �2(n)=n2.

41. A number theoretic functions f is called additive if f (m . n) ¼
f (m)þ f (n) whenever gcd(m, n) ¼ 1, Show that ø, the number of
distinct prime factors of n, is additive.

42. A number theoretic function f is called completely additive if

f (m . n) ¼ f (m)þ f (n) for all positive integers m and n. Show that

�, the degree function of n, is completely additive.

43. A number theoretic function f is called strongly additive if for all

primes p, f (pÆ) ¼ f (p), where Æ > 1. prove that ø is strongly

additive.

44. Determine all positive integers that are divisible by 12 and have 14

divisors.

45. If n ¼ Qr
i¼1 p

Æi

i is the canonical representation for n, let ł(n) ¼
Æ1 p1 þ Æ2 p2 þ � � � þ Ærpr þ 1, with ł(1) ¼ 1. Define the psi-

sequence, a1, a2, . . . , for n as follows: a1 ¼ n and ak ¼ ł(ak�1) for
k . 1. It is an open question whether for any positive integer greater

than 6, the psi-sequence for that integer eventually contains the

repeating pattern 7, 8, 7, 8, 7, 8, . . . : Prove that if n. 6 then ł(n). 6,
and if n. 8 is composite then ł(n) < n � 2.

3.3 Multiplicative functions

A number theoretic function f is said to be multiplicative if f (m . n)

¼ f (m) f (n), where m and n are coprime. A number theoretic function f is

said to be completely multiplicative if f (m . n) ¼ f (m) f (n) for all positive
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integers m and n in the domain of f. By definition, every completely

multiplicative number theoretic function is multiplicative.

Theorem 3.7 If f is completely multiplicative and not the zero function,

then f (1) ¼ 1.

Proof If f is not the zero function, then there exists a positive integer k

such that f (k) 6¼ 0. Hence, f (k) ¼ f (k . 1) ¼ f (k) f (1). Dividing both

sides by f (k), we obtain f (1) ¼ 1. j

The next result illustrates the importance of multiplicative functions and

shows that they are completely determined by their values on primes raised

to powers.

Theorem 3.8 Let n ¼ Qr
i¼1 p

Æi

i be the canonical representation for n and

let f be a multiplicative function; then f (n) ¼ Qr
i¼1 f ( pÆi

i ).

Proof Suppose that f is a multiplicative function and
Qr

i¼1 p
Æi

i is the

canonical representation of n. If r ¼ 1, we have the identity, f (pÆ1
i )

¼ f ( pÆ1i ). Assume that the representation is valid whenever n has k or

fewer distinct prime factors, and consider n ¼ Qkþ1
i¼1 p

Æi

i . Since
Qk

i¼1 p
Æi

i

and p
Æ kþ1
kþ1 are relatively prime and f is multiplicative, we have

f (n) ¼ f
Ykþ1
i¼1

p
Æi

i

� !
¼ f

Yk

i¼1
p
Æi

i
. p

Æ kþ1
kþ1

� !
¼ f

Yk

i¼1
p
Æi

i

� !
. f p

Æ kþ1
i

 �

¼
Yk

i¼1
( f ( pÆi

i )) . f ( p
Æ kþ1
kþ1 ) ¼

Ykþ1
i¼1

f ( pÆi

i ): j

It follows immediately from Theorem 3.8 that if f is a completely multi-

plicative function and
Qr

i¼1 p
Æi

i is the canonical representation for n, then

f (n) ¼ Qr
i¼1[ f (pi)]

Æi . Thus, completely multiplicative functions are

strictly determined when their values are known for primes. For example,

if f is a completely multiplicative function, f (2) ¼ a, f (3) ¼ b, and

f (5) ¼ c, then f (360) ¼ f (23 . 32 . 5) ¼ a3b2c. There are several basic

operations on functions in which the multiplicativity of the functions is

preserved as shown in the next two results.

Theorem 3.9 If f and g are multiplicative then so are F ¼ f . g and

G ¼ f =g, the latter being true whenever g is not zero.

Proof If m and n are coprime, then F(mn) ¼ f (mn) . g(mn) ¼ [ f (m) .
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f (n)][g(m) . g(n)] ¼ [ f (m) . g(m)][ f (n) . g(n)] ¼ F(m) . F(n). A similar

argument establishes the multiplicativity of G ¼ f =g. j

The Dirichlet product of two number theoretic functions f and g, denoted

by f � g, is defined as
P

djn f (d)g(n=d). That is, ( f � g)(n) ¼P
rs¼n f (r)g(s). Hence, ( f � g)(n) ¼ (g� f )(n), for positive integers n. The

next result shows that if two functions are multiplicative then so is their

Dirichlet product.

Theorem 3.10 If f and g are multiplicative then so is F(n) ¼P
djn f (d)g(n=d).

Proof If m and n are coprime, then djmn if and only if d ¼ d1d2, where

d1jm and d2jm, gcd(d1, d2) ¼ 1, and gcd(m=d1, n=d2) ¼ 1. Therefore,

F(mn) ¼
X
djmn

f (d)g
mn

d

� �
¼

X
d1jm

X
d2jn

f (d1d2)g
mn

d1d2

� �

¼
X
d1jm

X
d2jn

f (d1) f (d2)g
m

d1

� �
g

n

d2

� �

¼
X
d1jm

f (d1)g
m

d1

� �" # X
d2jn

f (d2)g
n

d2

� �" #
¼ F(m)F(n): j

For any number theoretic function f,
P

djn f (d) ¼ P
djn f (n=d). If we let g

be the multiplicative function g(n) ¼ 1 for any positive integer n, in

Theorem 3.10, it follows that if f is multiplicative so is F(n) ¼ P
djn f (d).

In particular, the constant function f (n) ¼ 1 and the identity function

f (n) ¼ n are multiplicative. Hence, since �(n) ¼ P
djn1 and � (n) ¼P

djn n, we have established the following result.

Theorem 3.11 The number theoretic functions � and � are multiplicative.

Example 3.2 Consider the multiplicative function f (n) ¼ nk , where k is a

fixed positive integer. It follows from Theorem 3.10, with f (n) ¼ nk and

g(n) ¼ 1, that the sum of the kth powers of the divisors of n, � k(n) ¼P
djndk , is multiplicative. In addition, � k( p

Æ) ¼ 1k þ pk þ p2k þ � � �
þ pÆk ¼ (pk(Æþ1) � 1)=(pk � 1). Therefore, if n ¼ Qr

i¼1 p
Æi

i ,

� k(n) ¼
Yr

i¼1

p
k(Æiþ1)
i � 1
pk

i � 1

� !
:
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For any positive integer n, define the Möbius function, 
(n), as follows:


(n) ¼
1 if n ¼ 1,

(�1)r if n ¼ p1 p2 � � � pr, is the

product of r distinct primes,

0 otherwise:

8>><
>>:

For example, 
(42) ¼ 
(2 . 3 . 7) ¼ (�1)3 ¼ �1, 
(2805) ¼ 
(3 . 5 . 11 .

17) ¼ (�1)4 ¼ 1, and 
(126) ¼ 
(2 . 32 . 7) ¼ 0. It is straightforward and

left as an exercise to show that the Möbius function is multiplicative. Its

properties were first investigated implicitly by Euler in 1748 and in 1832

by August Ferdinand Möbius, a professor of astronomy at the University of

Leipzig, albeit neither used 
 to denote the Möbius function. The symbol

 to denote the function was introduced by Frantz Mertens in 1874. In
1897, Mertens conjectured that, for all positive integers, jPn

k¼1
(k)j
,

ffiffiffi
n

p
. The conjecture has been verified for all n, 109. In 1984, Andrew

Odlyzko and Herman te Riele proved that Merten’s conjecture must be

false for some value of n < 3:213 1064. The Möbius function has a

number of useful properties. For instance, the average value of 
,P1
n¼1(
(n)=n), is zero. In addition,

X1
n¼1


(n)

n2
¼ 6

�2
:

Theorem 3.12 For any positive integer n, if �(n) ¼ P
djn
(d), then

�(1) ¼ 1, �(n) ¼ 0 for other n.

Proof If n ¼ 1, then �(1) ¼ P
djn
(n) ¼ 
(1) ¼ 1. If n. 1, since �(n) is

multiplicative, we need only evaluate � on primes to powers. In addition, if
p is prime, �( pÆ) ¼ P

dj pÆ 
(d) ¼ 
(1)þ 
( p)þ 
( p2) þ � � � þ 
(pÆ) ¼
1þ (�1)þ 0 þ � � � þ 0 ¼ 0. Thus, �(n) ¼ 0 for any positive integer n

greater than 1. j

Theorem 3.13 (Möbius inversion formula) If f is a number theoretic

function and F(n) ¼ P
djn f (d), then f (n) ¼ P

djn
(d)F(n=d).

Proof Suppose that f is a number theoretic function and F(n) ¼P
djn f (d). We have

106 Prime numbers



X
djn


(d)F
n

d

� �
¼

X
djn


(d)
X
ajn=d

f (a) ¼
X
djn

X
ajn=d


(d) f (a)

¼
X
ajn

X
djn=a

f (a)
(d) ¼
X
ajn

f (a)
X
djn=a


(d)

¼ f (n) . 1 ¼ f (n):

The switch of summands in the third equality is valid since d divides n and

a divides n=d if and only if a divides n and d divides n=a. j

From Theorems 3.10 and 3.13 and the fact that the Möbius function is

multiplicative, we obtain the following result.

Corollary If F is multiplicative and F(n) ¼ P
djn f (d), then f is multi-

plicative.

Exercises 3.3

1. If f is completely multiplicative and njm, then show that
f

m

n

� �
¼ f (m)

f (n)
:

2. If k is a fixed positive integer, then show that f (n) ¼ nk is completely

multiplicative.

3. For any positive integer n, let f (n) ¼ c g(n) with c. 0. Show that f is

(completely) multiplicative if and only if g is (completely) additive.

4. Let f (n) ¼ kø(n), where k is a fixed positive integer and ø(n) denotes
the number of distinct prime divisors of n. Show that f is multi-

plicative but not completely multiplicative.

5. The Liouville lambda-function, º, is defined as follows: º(1) ¼ 1 and

º(n) ¼ (�1)�(n) if n. 1, where � represents the degree function.

Show that º is multiplicative. Joseph Liouville [LYOU vill] published
over 400 mathematical papers, edited the Journal de mathématiques

pures at appliquées for 40 years. He also edited and published the

works of short lived mathematical prodigy Evariste Galois.

6. For any positive integer n, let F(n) ¼ P
djn º(d), where º represents

the Liouville lambda-function. Determine the value of F(n) when n is

square and when n is not square.

7. If n ¼ Qr
i¼1 p

Æi

i show that F(n) ¼ P
djn
(d)º(d) ¼ 2r, for n. 1.

8. Let �e(n) denote the number of positive even divisors of the positive
integer n, and let � e ¼

P
d ejnde, where de runs through the even
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divisors of n. Let �o(n) denote the number of positive odd divisors of
the positive integer n, and let �o(n) ¼

P
dojn do where do runs through

the positive odd divisors of n. Evaluate �o(n), �o(n), �e(n), and � e(n),
for 1 < n < 10.

9. Show by counterexample that neither �e nor �e is multiplicative or
completely multiplicative.

10. Show that �o and �o are multiplicative functions which are not

completely multiplicative.

11. Prove that the Möbius function, 
(n), is multiplicative.
12. Prove that 
(n)
(n þ 1)
(n þ 2)
(n þ 3) ¼ 0, for any positive integer

n.

13. Evaluate
P1

k¼1
(k!).
14. Find a positive integer n such that 
(n)þ 
(n þ 1)þ 
(n þ 2) ¼ 3.

15. Show that
P

djnj
(d)j ¼ 2ø(n), for all positive integers n.

16. Show that
P

djn
(d)�(n=d) ¼ 1, for any positive integer n.

17. If n is an even integer, show that
P

djn
(d)� (d) ¼ n.

18. If n ¼ Qr
i¼1 p

Æi

i , with Æi > 1, for i ¼ 1, . . . , r, show thatP
djn
(d)�(d) ¼ (�1)r ¼ (�1)ø(n).

19. Determine f (n) if
P

djn f (d) ¼ 1=n.

20. For any positive integer n, show that n ¼ Q
djnd�(d)
(n=d)=2.

21. Let n ¼ Qr
i¼1 p

Æi

i and Æ(n) ¼
P

djn(ø(d)=�(n)), show that

Æ(n) ¼
Xr

i¼1

Æi

Æi þ 1 :

22. Von Mangolt’s function, ¸, is defined on the positive integers as
follows: ¸(n) ¼ ln(n), if n ¼ pÆ, and 0 otherwise, where p is prime

and Æ a positive integer. Prove that
P

djn¸(d) ¼ ln(n).

23. For any positive integer n, prove that ¸(n) ¼ �P
djn
(d) ln(d).

3.4 Factoring

Devising an efficient technique to determine whether a large positive

integer is prime or composite and if composite to find its prime factoriza-

tion has been an ambitious goal of number crunchers for centuries.

Primality tests are criteria used to determine whether or not a positive

integer is prime. If a number passes a primality test then it may be prime.

If it passes several primality tests it is more likely to be prime. However, if

it fails any primality test then it is not prime. Brute force is reliable but not

very efficient in determining whether or not a number is prime. The

process of determining whether a number is divisible by any positive
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integers less than or equal to its square root is a very consuming process

indeed. For example, if we wanted to determine if 2127 � 1 is prime and
estimated that only 10 percent, 1:33 1018, of the numbers less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2127 � 1

p
were prime, then at the rate of checking 109 prime factors a

second it would take a high-speed computer 41 years to check all the prime

factors of 2127 � 1 that are less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2127 � 1

p
. We would find out that

none of them divided 2127 � 1.
Factoring a very large positive integer is a difficult problem. No practical

factor algorithm currently exists. In Chapter 5, we discuss more elegant

and sophisticated primality tests, including Fermat’s Little Theorem and

Wilson’s Theorem. However, Monte Carlo methods, which employ statis-

tical techniques to test for the primality of very large numbers, are beyond

the scope of this book.

In 1202, Fibonacci’s Book of Calculations contained a list of all the

primes and composite natural numbers less than or equal to 100. Pietro

Cataldi’s Treatise on Perfect Numbers published in Bologna in 1603

contains factors of all positive integers less than 750. In 1657, Frans van

Schooten listed all the primes up to 9929. In 1659, the first extensive factor

tables were constructed and published by Johann Heinrich Rahn, Latinized

Rohnius, in his Algebra. Rahn included all factors of the numbers from 1

to 24 000, omitting from the tables all multiples of 2 and 5. Rahn, who was

a student of John Pell’s at Zurich, introduced the symbol ‘�’ to denote
division. In 1668, Thomas Brancker determined the least factor, greater

than 1, of each integer less than 105. Johann Lambert, the first to show that

� was irrational, published an extensive table of least factors of the integers
up to 102 000 in 1770.

Others have not been so fortunate. In 1776, Antonio Felkel, a Viennese

schoolteacher, constructed factor tables for the first 408 000 positive

integers. The tables were published at the expense of the Austrian Imperial

Treasury but, because of the disappointing number of subscribers, the

Treasury confiscated all but a few copies and used the paper for cartridges

in a war against the Turks, a dubious mathematical application to warfare

at best. In 1856, A.L. Crelle, determined the first six million primes and, in

1861, Zacharias Dase extended Crelle’s table to include the first nine

million primes. Crelle founded and, for many years, edited and published

the prestigious Journal für die reine und angewandte Mathematik.

In 1863, after 22 years of effort to complete the task, J.P. Kulik, a

professor at the University of Prague, published factor tables that filled

several volumes. His tables included the factors, except for 2, 3, and 5, of

the first 100 million positive integers. He donated his work to the library at
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the University of Prague, but unfortunately, through someone’s negligence,

the second volume, the factorizations of the integers from 12 642 600 to

22 852 800, was lost. In 1910, D.H. Lehmer published factor tables for the

integers up to 10 million. Lehmer worked on a long table equipped with

rollers at each end. For small primes, he made paper stencils with holes

through which he recorded multiples.

Fermat devised a number of ingenious methods to factor integers. We

know of his work chiefly through his correspondence with Marin Mers-

enne, a Franciscan friar, number theory enthusiast and philosopher who

corresponded with a number of mathematicians and scientists including

Galileo and Torricelli. Mersenne was the leader of a group that met

regularly in Paris in the 1630s to discuss scientific topics. He once asked

Fermat whether he thought that 100 895 598 269 was prime. After a short

period, Fermat replied that it was not and, in fact, it was the product of

898 423 and 112 303.

The basis for one of Fermat’s factoring methods depends on the abil-

ity to write the integer to be factored as the difference of two integral

squares. In this case, 100 895 598 269 ¼ 505 3632 � 393 0602 ¼ (505 363 þ
393 060)(505 363� 393 060). Fermat assumed that the integer n to be

factored was odd, hence its two factors u and v must also be odd. If
n ¼ uv ¼ x2 � y2 ¼ (x þ y)(x � y), u ¼ x þ y, and v ¼ x � y, then x ¼
(u þ v)=2 and y ¼ (u � v)=2. Fermat let k be the least integer for which

k2. n and formed the sequence

k2 � n,

(k þ 1)2 � n,

(k þ 2)2 � n,

. . . ,

until one of the terms, say (k þ m)2 � n, was a perfect square, which for

many numbers may never be the case. He then let (k þ m)2 � n ¼ y2, so

x ¼ k þ m and y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ m)2 � n

p
. Thus, a factorization of n is given by

n ¼ (x � y)(x þ y). For example, if n ¼ 931, then k ¼ 31 is the least

integer such that k2. 931. We have

312 � 931 ¼ 30,

322 � 931 ¼ 93,

332 � 931 ¼ 158,

342 � 931 ¼ 225 ¼ 152 ¼ y2:

Hence, y ¼ 15, m ¼ 3, x ¼ k þ m ¼ 31þ 3 ¼ 34, and 931 ¼ (34 �

110 Prime numbers



15)(34þ 15) ¼ 19 . 49. Nevertheless, it is unlikely that Fermat used this

method to factor 100 895 598 269 for he would have had to perform 75 000

iterations to arrive at his factorization.

In 1641, Frenicle asked Fermat if he could factor a number which can be

written as the sum of two squares in two different ways. We do not have

Fermat’s answer but, in 1745, Euler showed that if n ¼ a2 þ b2 ¼ c2 þ d2,

that is if n can be written as the sum of two squares in two distinct ways,

then

n ¼ [(a � c)2 þ (b � d)2][(a þ c)2 þ (b � d)2]

4(b � d)2
:

For example, since 2501 ¼ 502 þ 12 ¼ 492 þ 102, we have a ¼ 50, b ¼ 1,

c ¼ 49, and d ¼ 10, hence

2501 ¼ (12 þ 92)(992 þ 92)
4 . 92

¼ 82 . 9882

4 . 81
¼ 82

2

� �
9882

2 . 81

� �
¼ 41 . 61:

In order to determine whether or not a very large number was prime,

Euler used 65 numbers ranging from 1 to 1848 which he called numeri

idonei (appropriate numbers) and are now sometimes referred to as

convenient numbers. They had the property that if ab was one of the

numeri idonei, n ¼ ax2 þ by2 uniquely, and gcd(ax, by) ¼ 1, then n ¼ p,

2 p, or 2k, where p is prime and k a positive integer. For example, using

57, one of the numeri idonei, Euler discovered the unique representation

1 000 003 ¼ 19 . 82 þ 3 . 5772, with 57 ¼ 19 . 3 and (19 . 8, 3 . 577) ¼ 1,

hence, 1 000 003 is prime. In 1939, H.A. Heilbronn and S. Chowla showed

that there were finitely many numeri idonei.

Exercises 3.4

1. Use Fermat’s method to show that 12 971 is composite.

2. Use Euler’s method to show that the following numbers are composite:

(a) 493, and (b) 37 673 ¼ 1872 þ 522 ¼ 1732 þ 882.
3. Euler showed that if N ¼ a2 þ kb2 ¼ c2 þ kd2 then a factorization of

N is given by N ¼ (km2 þ n2)(kr2 þ s2)=4, where a þ c ¼ kmr,

a � c ¼ ns, d þ b ¼ ms, and d � b ¼ nr. Show algebraically that the

method is valid.

4. Use the factorization technique outlined in the previous exercise

to factor 34 889 given that 34 889 ¼ 1572 þ (10 . 322) ¼ 1432 þ
(10 . 382).

5. Show that if the smallest prime factor p of n is greater than n1=3, then

the other factor of n must be prime.
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6. Show that 2 027 651 281 is composite.

3.5 The greatest integer function

If x is any real number, then the greatest integer not greater than x, or

integral part of x, denoted by ½½x��, is the unique integer ½½x�� such that
½½x�� < x < ½½x�� þ 1. Equivalently, ½½x�� is the integer such that x � 1,
½½x�� < x. For example, ½½2:5�� ¼ 2; ½½10:1�� ¼ 10; ½½0:4�� ¼ 0; ½½�3:7�� ¼ �4.

Theorem 3.14 If n is an integer and x any real number then

½½x þ n�� ¼ ½½x�� þ n.

Proof Since x � 1,½½x�� < x it follows that �x < �½½x��,�x þ 1. Com-
bining this inequality with x þ n � 1,½½x þ n�� < x þ n, we obtain

n � 1,½½x þ n�� � ½½x��, n þ 1. Hence, ½½x þ n�� � ½½x�� ¼ n. j

The greatest integer function has a number of useful properties. For

instance, if a and b are integers with 0, b < a, then ½½a=b�� is the number
of positive integer multiples of b not exceeding a. That is, if a ¼ bq

þ r, where 0 < r , q, then q ¼ ½½a=b��. For example, there are

½½3000=11�� ¼ 272 positive integers less than or equal to 3000 which are

divisible by 11. In addition, if Æ and � are real numbers, with Æ. �, then
½½Æ�� � ½½��� represents the number of integers n such that �, n < Æ.
Furthermore, if 10k�1 < n, 10k , then the number of digits of n to the

base b is given by ½½logb(n)�� þ 1. For example, the number 354 has 26 digits
since ½½log(354)�� þ 1 ¼ ½½54 . log(3)�� þ 1 ¼ ½½54 . (0:477 121 3)�� þ 1 ¼
½½25 .764 55�� þ 1 ¼ 25þ 1 ¼ 26.

A point (x, y) in the Cartesian plane is called a lattice point if both

coordinates x and y are integers. The greatest integer function can be used

to determine the number of lattice points in a bounded region. In particular,

if y ¼ f (x) is a nonnegative function whose domain is the closed interval

a < x < b, where both a and b are integers and S denotes the region in the

Cartesian plane consisting of all lattice points (x, y) for which a < x < b

and 0, y < f (x), then the number of lattice points in the region S is given

by
Pb

n¼a½½ f (n)��.
Adrien Marie Legendre’s Théorie des nombres, published in 1808,

contains a wealth of number theoretic results. The book includes discus-

sions of a number of topics that we will soon encounter including the

Prime Number Theorem, the quadratic reciprocity law, and quadratic

forms. It includes a nearly complete proof of Fermat’s Last Theorem for
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the case when n ¼ 5. In addition, Legendre used the greatest integer

function to devise a method for determining the power of prime exponents

in the canonical representation of factorials.

Theorem 3.15 (Legendre’s Theorem) If n is a positive integer and p is a

prime such that p divides n then p appears in the canonical representation

of n! with exponent ep, where ep ¼ P1
k¼1½½n=pk ��.

Proof For a given integer k, the multiples of pk that do not exceed n are

pk , 2 pk , . . . , qpk , where q is the largest integer such that qpk < n. That is,

q, the largest integer not exceeding n=pk , equals ½½n=pk ��. Thus, ½½n= pk �� is
the number of positive multiples of pk that do not exceed n. If 1 < m < n

and m ¼ qpk, with gcd( p, q) ¼ 1 and 0 < k < r, then m contributes

exactly k to the total exponent ep with which p appears in the canonical

representation of n! Moreover, m is counted precisely k times in the sum

½½n=p�� þ ½½n=p2�� þ ½½n=p3�� þ � � � , once as a multiple of p, once as a

multiple of p2, . . . , once as a multiple of pk , and no more. If k ¼ 0, then

m is not counted in the sum. Therefore,
P1

k¼1½½n= pk �� equals the exponent
of p in the canonical representation of n! j

Corollary If n ¼ Qr
i¼1 p

Æi

i , then n! ¼ Qr
i¼1 p

e pi

i .

For example,

16! ¼ 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16

¼ 1 . 2 . 3 . 2 . 5 . 2 . 7 . 2 . 3 . 2 . 11 . 2 . 13 . 2 . 3 . 2

¼ 2 3 2 3 5 2 7 5 2

¼ 2 3 2

¼ 2

There are ½½16=2�� twos in the first row, ½½16=4�� twos in the second row,
½½16=8�� twos in the third row, and ½½16=16�� twos in the fourth row. Hence,
the exponent of 2 in the canonical representation of 16! is given by

½½16=2�� þ ½½16=4�� þ ½½16=8�� þ ½½16=16�� ¼ 8þ 4þ 2þ 1 ¼ 15. In addition,

from Legendre’s Theorem, we have that ½½452=3�� þ ½½452=9�� þ ½½452=27�� þ
½½452=81�� þ ½½452=243�� ¼ 150þ 50þ 16þ 5þ 1 ¼ 222. Hence, 222 is

the exponent of 3 in the canonical representation of 452!

Theorem 3.16 If r is the exponent of 2 in the canonical representation of

n! and s is the number of ones in the binary representation of n, then
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r þ s ¼ n.

Proof Suppose n ¼ a0 þ a1 . 2þ a2 . 2 þ � � � þ ak
. 2k , where 0 < ai

< 1, for i ¼ 1, 2, . . . , k, and ak 6¼ 0.


n

2

��
¼




a0

2
þ a1 þ 2a2 þ � � � þ 2k�1ak

��
¼ a1 þ 2a2 þ � � � þ 2k�1ak ,



n

4

��
¼




a0

4
þ a1

2
þ a2 þ � � � þ 2k�2ak

��
¼ a2 þ 2a3 þ � � � þ 2k�2ak ,

� � �


n

2i

��
¼ ai þ 2aiþ1 þ � � � þ 2k�iak :

Hence,

r ¼
Xk

i¼1




n

2i

��

¼ a1 þ a2(1þ 2)þ a3(1þ 2þ 22) þ � � � þ ak(1þ 2 þ � � � þ 2k)

¼ (a0 þ 2a1 þ 22a2 þ � � � þ 2k ak)� (a0 þ a1 þ � � � þ ak)

¼ n � (a0 þ a1 þ � � � þ ak) ¼ n � s:

Therefore, n ¼ r þ s. j

In general, if the representation of n to the base p, where p is prime, is

given by brp
k þ br�1 pk�1 þ � � � þ b1 p þ b0, where 1 < bi < p, for

i ¼ 1, 2, . . . , k, bp 6¼ 0, and Æ is the exponent of p in the canonical

representation of n!, then Æ( p � 1)þ n ¼ b0 þ b1 þ � � � þ bk .

Exercises 3.5

1. Prove that for any real number x, x � 1,½½x�� < x.

2. Prove that ½½x�� þ ½½�x�� ¼ 0 if x is an integer and ½½x�� þ ½½�x�� ¼ �1
otherwise.

3. Prove that for any two real numbers x and y ½½x þ y�� > ½½x�� þ ½½y��.
4. Find the most general sets of numbers for which the following equa-

tions in x hold:

(a) ½½x�� þ ½½x�� ¼ ½½2x��,
(b) ½½x þ 3�� ¼ ½½x�� þ 3,
(c) ½½x þ 3�� ¼ x þ 3,
(d) ½½9x�� ¼ 9.

5. Determine the exponents of 2, 3, and 5 in the canonical representation

of 533!
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6. Determine the smallest positive integer n such that 57 divides n!

7. Determine the number of terminal zeros in 1000!

8. Find the least positive integer n such that n! terminates in 37 zeros.

9. How many integers strictly between 1000 and 10 000 are divisible by

7?

10. How many integers less than 1000 are divisible by 3 but not by 4?

11. Determine the number of integers less than or equal to 10 000 which

are not divisible by 3, 5, or 7.

12. The largest number in decimal notation represented with just three

digits and no additional symbols is 99
9

. How many digits does 99
9

have?

13. For any positive integer n, prove that
Pn

k¼1�(k) ¼
Pn

k¼1½½n=k�� andPn
k¼1� (k) ¼

Pn
k¼1k½½n=k��. [Dirichet 1849]

14. If p is prime and pjn, determine the power that p appears to in the

canonical representation of (2n)!=(n!)2.

15. Show that Xn

k¼1

(k)




n

k

��
¼ 1:

3.6 Primes revisited

In Proposition 20 in Book IX of the Elements, Euclid proved that there is

no largest prime. Specifically, he established the following result.

Theorem 3.17 (Euclid’s Theorem) The number of primes is infinite.

Proof Suppose that the number of primes is finite and p is the largest

prime. Consider N ¼ p!þ 1. N cannot be composite because division of N

by any prime 2, 3, . . . , p leaves a remainder 1, hence, it has no prime

factors. However, N cannot be prime since, N . p. Since N cannot be

either prime or composite, we have a contradiction. Hence, our assumption

is incorrect and the number of primes must be infinite. j

The largest prime known having only 0 and 1 for digits is
1
9
(10640 � 1) . 10640 þ 1. Even with an infinitude of primes the six-millionth
prime has only nine digits. Nevertheless, large prime gaps exist. In

particular, if n is any positive integer then (n þ 1)!þ 2, (n þ 1)!þ 3, . . . ,
(n þ 1)!þ (n þ 1) is a sequence of n consecutive composite integers.

3.6 Primes revisited 115



In 1748, Euler devised a proof of the infinitude of primes using the fact

that if m. 1 and n. 1 are natural numbers with gcd(m, n) ¼ 1, then

1

1� 1

m

0
@

1
A .

1

1� 1

n

0
@

1
A ¼

X1
k¼0

1

m

� �k
� !

.
X1
k¼0

1

n

� �k
� !

¼ 1þ 1

m
þ 1

n
þ 1

m2
þ 1

mn
þ 1

n2
þ � � � :

Because of the unique factorization of positive integers into products of

primes, this series is precisely the sum of the reciprocals of all the positive

integers of the form 1=mÆn� with Æ and � nonnegative, each counted only
once. He reasoned that if p1, p2, � � � , pr constituted all the primes

then for each i, 1 < i < r,X1
k¼0

1

pi

� �k

¼ 1

1� 1

pi

0
@

1
A:

Therefore, X1
n¼1

1

n
¼

Yr

i¼1

X1
k¼0

1

pi

� �k
� !

¼
Yr

i¼1

1

1� 1

pi

0
@

1
A,1,

which is impossible since
P1

n¼1n�1 is the divergent harmonic series.
Hence, the number of primes must be infinite.

In 1775, Euler claimed that for a fixed positive integer a, the sequence

a þ 1, 2a þ 1, 3a þ 1, . . . contains infinitely many primes. In 1785, Le-
gendre conjectured that for coprime positive integers a and b there are

infinitely many primes which leave a remainder of a when divided by b.

Hence, if a and b are coprime the arithmetic progression a, a þ b, a þ 2b,

a þ 3b, . . . contains infinitely many primes. The validity of Legendre’s

conjecture was established in 1837 by Peter Gustav Lejeune Dirichlet,

Gauss’s successor at Göttingen and father of analytic number theory. Not

only does Legendre’s result give yet another proof of the infinitude of

primes, but it indicates that there are an infinite number of primes of the

form 4k þ 1, of the form 4k þ 3, of the form 6k þ 5, and so forth. In
1770, Edward Waring conjectured that if a, a þ b, a þ 2b are three primes

in arithmetic progression and a 6¼ 3 then 6 must divide b. The result was

established in 1771 by J.L. Lagrange.

In 1845, Joseph Louis François Bertrand, a French mathematician and

educator, conjectured that for any positive integer n > 2, there is a prime p

for which n < p < 2n. Bertrand’s postulate was first proven by P.L.
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Chebyshev in 1852. Bertrand had verified his conjecture for all positive

integers less than 33 106. Bertrand’s postulate acquired its name because

Bertrand had assumed it to prove that the number of primes is infinite. If p

were the largest prime, then by Bertrand’s postulate there would be a larger

prime between p þ 1 and 2( p þ 1), contradicting the hypothesis that p was

largest.

Two functions f (x) and g(x) are said to be asymptotically equivalent if

limx!1( f (x)=g(x)) ¼ 1. For example, if A(x) denotes the average distance

between the first x primes, for example, A(20) ¼ 3, A(150) ¼ 5, and

A(1050) ¼ 155, it can be shown that A(x) and ln(x) are asymptotically

equivalent.

One of the more intriguing functions in number theory is the prime

counting function, denotes by �(x). It represents the number of primes less
than or equal to x, where x is any real number. It is related to the Möbius

function and the distinct prime factor function by the equation

�(x) <
P

mn<x
(m)ø(n). In 1798, Legendre conjectured that �(x) is
asymptotically equivalent to x=(ln(x)� 1:083 66). When he was 15 years
old, Gauss attempted to prove what we now call the Prime Number

Theorem, namely, that �(x) is asymptotically equivalent to x=ln(x). Using

L’Hôpital’s rule, Gauss showed that the logarithmic integeralÐ x

2
dt=(ln(t))�1, denoted by Li(x), is asymptotically equivalent to x=ln(x),

and, if the Prime Number Theorem is true, to �(x). Gauss felt that Li(x)
gave better approximations to �(x) than x=ln(x) for large values of x.

Bernhard Riemann, a nineteenth century German mathematician who

studied under Dirichlet and Jacobi, believed that R(x) ¼ P1
k¼1

(
(k)=k)Li(k1=k) gave better approximations to �(x) than either x=ln(x) or

Li(x). The data in Table 3.1 seem to indicate that he was correct. Riemann

Table 3.1.

x x=ln(x) Li(x) R(x) �(x)

10 4.3 5.12 4.42 4
100 21.7 29.1 25.6 25
500 80.4 100.8 94.4 95
1 000 144.7 176.6 165.6 168
5 000 587.0 683.2 669.1 669
10 000 1 087.0 1 245.11 1 226.4 1 230
15 000 1 559.9 1 775.6 1 755.57 1 754

106 72 381.9 78 632 78 555.9 78 498
109 48 254 630 50 849 240 50 847 465 50 847 478
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made significant contributions to non-Euclidean geometry and analysis

before dying at age 39 of tuberculosis.

The first proofs of the Prime Number Theorem were given independently

in 1896 by the French mathematician Jacques Hadamard and the Belgian

mathematician C.J. de la Vallée Poussin. Hadamard was a firm believer that

the sole purpose of mathematical rigor was to legitimitize ‘conquests of

intuition’. Both proofs entail the use of complex number theory applied to

the Riemann zeta-function, (s) ¼ P1
n¼1n�s, where s is a complex num-

ber. A great deal of theory regarding functions of a complex variable was

developed in attempts to prove the Prime Number Theorem. The first proof

using only elementary properties of numbers was given by Paul Erdös and

Atle Selberg in 1948.

The real valued Riemann zeta-function, where s is real, has a number of

interesting properties. For example, using the integral test from calculus,

we find that the infinite series
P1

n¼1n�s converges when s. 1. Hence, the

real Riemann zeta-function is well-defined. In 1736, Euler showed that

(2k) ¼
X1
k¼1

1

nsk
¼ 22k�2�2k jB2k j

2k!
,

where Bm denotes the mth Bernoulli number. In particular, (2) ¼ �2=6,
(4) ¼ �4=90, and (6) ¼ �6=945. In 1885, Ernesto Cesàro proved that the
probability that n has no mth power divisors larger than 1 is 1=(r). There
are a number of identities between the real Riemann zeta-function and

number theoretic functions we encountered earlier. The first three identities

shown below were established by Cesàro in 1883.

(a) ((s))2 ¼
X1
n¼1

�(n)

ns
, s. 1,

(b) (s) . (s � 1) ¼
X1
n¼1

� (n)

ns
, s. 2,

(c) (s) . (s � k) ¼
X1
n¼1

� k(n)

ns
, s. k þ 1,

(d)
1

(s)
¼

X1
n¼1


(n)

ns
, s. 1,

(e) �
d((s))

ds
(s)

¼
X1
n¼1

¸(n)

ns
, s. 1, where d=ds denotes the derivative with

respect to s,
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(f) (s) ¼
Y

p

1� 1

ps

� ��1
, where s. 1 and p runs through all primes.

For example, to establish (f)

(s) ¼ 1þ 1

2s
þ 1

3s
þ 1

4s
þ 1

5s
þ � � �

¼ 1þ 1

3s
þ 1

5s
þ � � � þ 1

2s
1þ 1

2s
þ 1

3s
þ � � �

� �

¼ 1þ 1

3s
þ 1

5s
þ � � � þ 1

2s
(s):

Thus,

(s) 1� 1

2s

� �
¼ 1þ 1

3s
þ 1

5s
þ � � � ¼ 1þ 1

5s
þ 1

7s
þ � � � þ 1

3s
(s) 1� 1

2s

� �
and transposing we have

(s) 1� 1

2s

� �
1� 1

3s

� �
¼ 1þ 1

5s
þ 1

7s
þ � � � :

Continuing this process, we obtain

(s)
Y

p

1� 1

ps

� �
¼ 1,

where p runs through the primes. Therefore,

(s) ¼
Y

p

1� 1

ps

� ��1
:

The expression in the right side of (f) is called the Euler product. As we

noted earlier in this section, Euler used it to prove the infinitude of primes.

When s ¼ x þ yi is complex, the identity implies that the Riemann zeta-

function has no zeros for x. 1. If x, 0, (s) has only trivial zeros at
s ¼ �2, �4, �6, . . . : All other zeros of the zeta-function must therefore
occur when 0 < x < 1. In 1860, Riemann conjectured that all zeros occur

on the line x ¼ 1
2
. This conjecture, known as the Riemann hypothesis, is

one of 23 outstanding unsolved problems posed by Hilbert in 1900. Nearly

three million zeros of the zeta-function have been found on the line x ¼ 1
2

and none off it. In 1951, G.H. Hardy showed that an infinite number of

zeros of the zeta-function lie on the critical line x ¼ 1
2
.

The pairs, 3 and 5, 5 and 7, 11 and 13, 17 and 19, and 1 000 000 000 061

and 1 000 000 000 063, are examples of consecutive odd primes, called

twin primes. By the spring of 2005, the largest known pair of twin primes

was given by 33 218 925 3 2169 690 
 1. In 1737, Euler proved that the
infinite series of reciprocals of primes,
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X 1

p
¼ 1

2
þ 1
3
þ 1
5
þ 1
7
þ 1

11
þ � � � ,

diverges. In 1919, Viggo Brun showed that the infinite series of reciprocals

of twin primes,X 1

q
¼ 1

3
þ 1
5

� �
þ 1

5
þ 1
7

� �
þ 1

11
þ 1

13

� �
� � � ,

converges to 1.902 160 577 832 78. . . , called Brun’s constant. Brun also

proved that for every positive integer n these exist n consecutive primes

none of which are twin primes. In 1949, P. Clement showed that (n, n þ 2)
forms a pair of twim primes if and only if n(n þ 2) divides

[4((n � 1)!þ 1)þ n]. In 1849, A. Prince de Polignac conjectured that for a

fixed positive even integer n, there are infinitely many prime pairs p and

p þ n. Polignac’s conjecture when n ¼ 2 is the twin prime conjecture.

If we let p denote an odd prime then there is only one triple of

consecutive odd primes (p, p þ 2, p þ 4), namely (3, 5, 7). Hence, we
define prime triplets to be 3-tuples of the form (p, p þ 2, p þ 6) or
(p, p þ 4, p þ 6), where p and p þ 6 are odd primes and one of p þ 2
and p þ 4 is an odd prime. That is, a sequence of four consecutive odd
integers forms a prime triplet if the first and last are prime and one of the

two other numbers is prime. For example, (5, 7, 11) and (7, 11, 13) are

prime triplets. It is an open question whether or not there are an infinite

number of prime triplets. Of course, if there were then there would be an

infinite number of twin primes.

The smallest prime quartet, that is a 4-tuple of the form (p, p þ 2,
p þ 6, p þ 8), where p, p þ 2, p þ 6, and p þ 8 are odd primes, is (5, 7,
11, 13). The next smallest is (11, 13, 17, 19). It is not known whether the

number of prime quartets is infinite but the 8-tuple (11, 13, 17, 19, 23, 29,

31, 37) is the only example known of a prime octet, a set of eight primes

beginning with p and ending with p þ 26 both of which are odd primes.
Many primes have interesting and surprising properties. For example, 43

and 1987 are primes in cyclic descending order, that is, in the cyclic order

�9�8�7�6�5�4�3�2�1�9�8�7�. The largest prime in cyclic des-
cending order is 76 543. There are 19 primes with their digits in cyclic

ascending order. The smallest being 23. The largest known prime in cyclic

ascending order, 1 234 567 891 234 567 891 234 567 891, was discovered in

1972 by Ralph Steiner and Judy Leybourn of Bowling Green State

University. Some primes, called right-truncatable primes, remain prime

when they are right truncated. The largest known left-truncatable prime is

357 686 312 646 216 567 629 137. See Table 3.2.
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The numbers 313, 383 and 757 are examples of three-digit palindromic

primes while 12 421 is an example of a five-digit palindromic prime. The

number of primes versus the number of palindromic primes is illustrated in

Table 3.3.

When the digits of a prime are reversed, sometimes a square results as in

the case of 163, since 361 ¼ 192. In several cases when the digits of a

prime are reversed the result is another prime as is the case with 13, 17, 37

and 1193. Primes whose reverse is also prime are called reversible primes.

Some primes, such as 113 and 79, have the property that any permutation

of their digits is prime. The prime 113 also has the property that the sum

and product of its digits are primes. A prime is called a permutation prime

if at least one nontrivial permutation of its digits yields another prime.

Since 3391 is prime, 1933 is a permutation prime. In 1951, H.-E. Richert

showed that, except for numbers whose digits are all ones no prime number

Table 3.2.

Right-truncatable
primes

Left-truncatable
primes

73939133 46232647
7393913 6232647
739391 232647
73939 32647
7393 2647
739 647
73 47
7 7

Table 3.3.

Number of digits Number of primes Number of
palindromic
primes

1 4 4
2 21 1
3 143 15
4 1 061 0
5 8 363 93
6 68 906 0
7 586 081 668
8 5 096 876 0
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exists with more than 3 and less than 6 . 10175 digits such that every

permutation of its digits is prime.

The primes 13 331, 15 551, 16 661, 19 991, 72 227 are examples of

primes of the form ab bba. The primes 1 333 331, 1 777 771, 3 222 223 and

3 444 443 are all of the form a bbb bba. For a number to be prime and of

the form aaa � � � a, it must be the case that a ¼ 1. An integer written in

decimal notation using only ones is called a repunit, short for repeated unit.

The nth repunit, Rn, is given by (10
n � 1)=9. There is a scarcity of primes

among the repunits. The only known repunit primes for n less than 104 are

R2, R19, R23, R317, and R1031. A necessary condition for Rn to be prime is

that n be prime. Properties of repunits were first discussed by William

Shanks in 1874.

A prime p is called a Sophie Germain prime if 2 p þ 1 is also prime. It
is an open question whether there are an infinite number of Sophie

Germain primes. In 1995, the largest known Sophie Germain prime,

2 687 145 . 3003 . 105072 � 1, was discovered by Harvey Dubner. Sophie
Germain managed to obtain the mathematical lecture notes from the Ecole

Polytechnique and taught herself calculus. She corresponded with Gauss,

Legendre and Cauchy, under the pseudonym Monsieur Le Blanc. She won

numerous prizes for her work in mathematical physics and number theory.

In 1823, she established Fermat’s Last Theorem for a class of prime

exponents. In particular, she showed that if p is a Sophie Germain prime

then xp þ yp ¼ zp has no nontrivial integer solutions.

Let p#
n , the nth primorial number, denote the product of the first n

primes. For example, p
#
1 ¼ 2, p

#
2 ¼ 2 . 3 ¼ 6, p

#
3 ¼ 2 . 3 . 5 ¼ 30, and so

forth. Reverend Reo F. Fortune, an anthropologist at Cambridge University

once married to Margaret Mead, the sociologist, devised an algorithm to

generate what we now call fortunate numbers. In order to generate the

fortunate numbers, determine the smallest prime p greater than p#
n þ 1,

then f n, the nth fortunate number, is given by p � p#
n . The first three

fortunate primes, 3, 5, and 7, are derived in Table 3.4, where p denotes the

smallest prime greater than p#
n þ 1. It is an open question whether every

fortunate number is prime. By the end of the twentieth century p
#
24 029 þ 1

was the largest known prime of the form p#
n þ 1, and p

#
15 877 � 1 was the

largest known prime of the form p#
n � 1.

Finding any type of pattern that will enable one to determine prime

numbers is a much more difficult task. Euler and the Russian mathemati-

cian Christian Goldbach proved that no polynomial f (x) ¼ a0 þ a1x þ
a2x

2 þ � � � þ anxn can ever yield primes for all positive integer values of

x. For if b is a positive integer such that f (b) ¼ p, a prime, then p divides
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f (b þ mp), for m ¼ 1, 2, . . . , so there are infinitely many values of n for

which f (n) is composite. Nevertheless, there have been some notable

attempts to devise such polynomials. For example, in 1772 Euler noted that

f (x) ¼ x2 þ x þ 17 yields primes for x ¼ 1, . . . , 15, but not for x ¼ 16.

That same year, he and Legendre showed that f (x) ¼ x2 þ x þ 41 yields
primes for �41 < x, 40, but not for x ¼ 40. Euler claimed that

f (x) ¼ 2x2 þ p, for p ¼ 3, 5, 11, or 29, assumes prime values for x ¼ 0, 1,

. . . , p � 1. In 1899, E.B. Escott showed that f (x) ¼ x2 ¼ 79x þ 1601
yields primes for x ¼ 0, . . . , 79, but not for x ¼ 80.

Going up a dimension, for any natural numbers x and y let

f (x, y) ¼ 1
2
(y � 1)[jA2 � 1j � (A2 � 1)]þ 2, where A ¼ x(y þ 1)� (y!

þ 1). Hence, when n ¼ 2k þ 1, f (n, n) ¼ k þ 2. The image of f (x, y)

includes all prime numbers as x and y run through the positive integers.

The function generates the prime 2 an infinite number of times but each

odd prime only once. Dirichlet conjectured that if gcd(a, b, c) ¼ 1, then as

x, y, and z range over the positive integers, ax2 þ bxy þ cy2 generates

infinitely many primes.

In 1958 Norman Galbreath conjectured that in the table of absolute

values of the r th difference of the primes, shown in Figure 3.2, the leading

Table 3.4.

n p#
n p#n þ 1 p fn ¼ p � p#

n

1 2 3 5 3
2 6 7 11 5
3 30 31 37 7
4 210 211 223 13
5 2310 2311 2333 23

02 03 05 07 11 13 17 19 23 …
01 02 02 04 02 04 02 04 …

01 00 02 02 02 02 02 …
01 02 00 00 00 00 …

01 02 00 00 00 …
01 02 00 00 …

01 02 00 …
01 02 …

01 …

Figure 3.2.
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diagonal consists of only ones. Galbreath showed that the conjecture was

valid for the first 60 thousand primes.

In 1956, a sieve process, similar to that of Eratosthenes, was devised by

Verna Gardiner and Stanislaw Ulam. The process is as follows: from a list

of positive integers strike out all even numbers, leaving the odd numbers.

Apart from 1, the smallest remaining number is 3. Beginning the count

with the number 1, pass through the list of remaining numbers striking out

every third number. The next smallest number not crossed out is 7.

Beginning the process again with the number 1, pass through the list of

remaining numbers striking out every seventh number. The smallest num-

ber not crossed out greater than 7 is 9. Strike out every ninth number from

what is left, and so on. The numbers that are not struck out are called lucky

numbers. The lucky numbers between 1 and 99 are shown in Figure 3.3.

Lucky numbers have many properties similar to those of primes. For

example, for large values of n, the number of lucky numbers between 1

and n compares favorably with the number of primes between 1 and n.

There are 715 numbers between 1 and 48 000 that are both prime and

lucky. Every even integer less than or equal to 105 can be expressed as the

sum of two lucky numbers. Ulam noted that there appear to be just as many

lucky numbers of the form 4n þ 1 as of the form 4n þ 3.
In 1775, Lagrange conjectured that every odd positive integer can be

expressed as p þ 2q where p and q are prime. In 1848, Polignac

conjectured that every positive odd integer is expressible as p þ 2k , where

p is prime and k a positive integer. However, neither 509 nor 877 can be

expressed in such a manner.

Every even positive integer is of the form 10k, 10k þ 2, 10k þ 4,
10k þ 6, or 10k þ 8. Hence, since 10k ¼ 15þ (10k � 15), 10k þ 2 ¼
10þ (10k � 8), every even integer greater than 38 can be written as the
sum of two composite numbers. In 1724, Christian Goldbach showed that

9
19
29
39
49
59
69
79
89
99

8
18
28
38
48
58
68
78
88
98

7
17
27
37
47
57
67
77
87
97

6
16
26
36
46
56
66
76
86
96

5
15
25
35
45
55
65
75
85
95

4
14
24
34
44
54
64
74
84
94

3
13
23
33
43
53
63
73
83
93

2
12
22
32
42
52
62
72
82
92

1
11
21
31
41
51
61
71
81
91

9
10
20
30
40
50
60
70
80
90

Figure 3.3.
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the product of three consecutive integers can never be a square. In 1742,

Goldbach wrote to Euler in St Petersburg, asking whether or not every

positive integer greater than 1 was the sum of three or fewer primes. The

query, known as Goldbach’s conjecture, is another of Hilbert’s problems

that remains unsolved. Goldbach taught in St Petersburg and tutored Peter

II in Moscow before accepting a post in the Russian Ministry of Foreign

Affairs. Euler responded to Goldbach saying that the problem was difficult

and equivalent to that of representing every even positive integer, greater

than 2, as the sum of two primes. Goldbach’s letter to Euler was not

published until 1843. Oddly enough, the conjecture first appeared in print

in 1770 in Edward Waring’s Meditationes algebraicae, an abstruse alge-

braic work. G.H. Hardy said that Goldbach’s conjecture was one of the

most difficult problems in mathematics. H.S. Vandiver jested that if he

came back to life after death and was told that the problem had been solved

he would immediately drop dead again. In 1930, the Russian mathemati-

cian L. Schnirelmann proved that there is a positive integer S such that

every positive integer is the sum of at most S primes. Seven years later,

I.M. Vinogradov proved that from some point on every odd number is the

sum of three odd primes. Hardy and J.E. Littlewood devised a formula to

determine the number of such representations given that one such repre-

sentation exists. In 1966, Chen Jing-Run proved that every sufficiently

large even integer can be expressed as the sum of a prime and an integer

having at most 2 prime factors. In 2005, Tomás Oliveira e Silva showed the

Goldbach conjecture to be true for all positive integers less than 23 1017.

The only solution to pm � qn ¼ 1, where m and n are positive integers

and p and q are prime, is given by 32 � 23 ¼ 1. It is an open question

whether n!þ 1 is prime for infinitely many integral values of n, likewise

whether there always exists a prime between two consecutive squares, and

whether there is a prime of the form a2 þ b for each positive integer b. In

1993, the largest prime of the form n!þ 1 known, 1477!þ 1, was found by
Dubner, and the largest known prime of the form n!� 1, 3601!� 1 was
found by Caldwell. In 1922, Hardy and Littlewood conjectured that there

are infinitely many prime numbers of the form n2 þ 1. In 1978, Hendrik
Iwaniec showed that there are infinitely many numbers of the form n2 þ 1
which are either prime or the product of two primes. It remains an open

question whether the sequence, 2, 5, 17, 37, 101, 197, 257, . . . , with

general term n2 þ 1, contains an infinite number of primes.
Suppose that we have a large urn containing all the positive integers,

from which we select two integers a and b and ask the question, ‘What is

the probability that a and b are coprime?’ The answer relies on a result
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established by Euler concerning the Riemann zeta-function, namely that

(2) ¼ P1
n¼1n�2 ¼ �2=6. The question was answered first by Cesàro in

1881 and independently by J.J. Sylvester two years later. Given two positive

integers a, b, and a prime p, since p divides every pth integer, the

probability that p divides a is given by 1=p. Similarly, the probability that

p divides b is 1= p. Since the two events are independent, the probability

that p divides both a and b is the product of the probabilities. That is,

(1=p)(1=p) ¼ 1= p2. Therefore, the probability of the complementary

event, that either p 6 ja or p 6 jb, is given by 1� 1= p2. Now a and b are

coprime if and only if p 6 ja or p 6 jb for every prime p. So the probability

that gcd(a, b) ¼ 1 is given by the infinite product (1� (1
2
)2)(1 �

(1
3
)2)(1� (1

5
)2)(1� (1

7
)2) � � �, where the product is taken over all the primes.

However, from a property of the Riemann zeta-function, we have

1þ 1

2

� �2
þ 1

3

� �2
þ � � �

" #
1� 1

2

� �2� !
1� 1

3

� �2� !
1� 1

5

� �2� !
� � �

2
4

3
5

¼ 1:

Dividing both sides by 1þ (1
2
)2 þ (1

3
)2 þ � � � and using Euler’s result we

obtain

1� 1

2

� �2� !
1� 1

3

� �2� !
1� 1

5

� �2� !
1� 1

7

� �2� !
� � � ¼ 6

�2
:

Thus, the probability of randomly selecting two coprime numbers is just

over 61%.

We end this section with a remarkable result established by Euler in

1738, namely that

3

4
.
5

4
.
7

8
.
11

12
.
13

12
.
17

16
.
19

20

� � �
� � � ¼

�

4
:

Since the infinite geometric series
P1

k¼1x
k converges to 1=(1� x), when

jxj, 1, we have
3

4
¼ 1

1þ 1
3

0
@

1
A ¼ 1� 1

3
þ 1

3

� �2
� 1

3

� �3
þ � � � ,

5

4
¼ 1

1� 1
5

0
@

1
A ¼ 1þ 1

5
þ 1

5

� �2
þ 1

5

� �3
þ � � � ,
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7

8
¼ 1

1þ 1
7

0
@

1
A ¼ 1� 1

7
þ 1

7

� �2
� 1

7

� �3
þ � � � ,

� � � �
Hence,

3

4
.
5

4
.
7

8
.
11

12
.
13

12
.
17

16
.
19

20

� � �
� � � ¼

X1
n¼0

(�1)n

2n þ 1 ¼ arctan (1) ¼ �

4
:

Exercises 3.6

1. Prove that {3, 5, 7} is the only set of three consecutive odd numbers

that are all prime.

2. Are there an infinite number of primes of the form n2 � 1, where
n. 2?

3. Prove that the number of primes of the form 4k þ 3 is infinite.
4. Prove that the number of primes of the form 4k þ 1 is infinite. (Hint:
Suppose that there are only finitely many primes of the form 4k þ 1,
say q1, . . . , qr, and consider N ¼ 4(q1 � � � qr)

2 þ 1.
5. Does the sequence 31, 331, 3331, 33 331, . . . always yield a prime?

6. If P n denotes the nth prime and A(n) ¼ (P n � 2)=(n � 1) denotes the
average distance between the first n primes, determine A(50) and

compare it with ln(50).

7. Use L’Hôpital’s rule to prove that Li(x) and x=ln(x) are asymptotically

equivalent.

8. Show that (6) ¼ �2=945.
9. If p and p þ 2 are twin primes, show that � ( p þ 2) ¼ � (p)þ 2.
10. Show that n(n þ 2) divides [4((n � 1)!þ 1)þ n], when n ¼ 17.

Hence, the twin primes 17 and 19 satisfy Clement’s formula.

11. If p and p þ 2 are twin primes, with p. 3, prove that 12 divides

2( p þ 1).
12. Does the product of twin primes always differ from a square by 1?

13. Odd primes which are not in a set of twin primes are called isolated

primes. Find the first ten isolated primes.

14. Determine a prime triple with all terms greater than 13.

15. Determine a prime quartet with all terms greater than 100.

16. Show that 76 883 is a left-truncatable prime.

17. Show that 59 393 339 is a right-truncatable prime.

18. Find three primes such that the reverse of their digits yields a square or

a cube.
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19. Find all two-digit reversible primes.

20. Find all 15 three-digit palindromic primes.

21. Show that the palindromic numbers 1441 and 3443 factor into

palindromic primes.

22. Show that 113 is a panpermutation prime, that is, all the permutations

of its digits yield primes.

23. Show that 1423 and 1847 belong to permutation sets.

24. Find ten four-digit reversible primes.

25. Let Rn ¼ (10n � 1)=9 for n a positive integer denote the nth repunit.

Show that 3304 . R4 is a Smith number.

26. Find all Sophie Germain primes between 11 and 200.

27. A Cunningham chain of length k is a finite sequence of

primes p1, p2, . . . , pk such that either piþ1 ¼ 2 pi þ 1 or

piþ1 ¼ 2pi � 1, for i ¼ 1, 2, . . . k. Determine a Cunningham chain

that begins with 5.

28. Determine the next fortunate number f 6.

29. Show that f (x) ¼ x2 þ x þ 17 yields primes for x ¼ 1, . . . , 15, but

not for x ¼ 16.

30. Show that f (x) ¼ 2x2 þ p generates primes for p ¼ 11 and x ¼ 1, 2,

. . . , 10, but not for x ¼ 11.

31. Show that f (x) ¼ x2 � 79x þ 1601 generates primes for x ¼ 25, 30,

40, 60, but not for x ¼ 80.

32. Show that f (x, y) ¼ 1
2
(y � 1)[jA2 � 1j � (A2 � 1)]þ 2, where A ¼

x(y þ 1)� (y!þ 1), yields a prime when x ¼ [( p � 1)!þ 1]=p and

y ¼ p � 1, where p is prime.

33. With f (x, y) as defined in the previous exercise, evaluate f (n, n) for

any positive integer n.

34. Determine the first 50 lucky numbers.

35. Show that every even integer greater than 4 and less than or equal to

50 is the sum of two lucky numbers.

36. Show that Goldbach’s conjecture and Euler’s restatement of it are

equivalent.

37. Verify Goldbach’s conjecture for all even integers between 4 and 50.

38. A copperbach number is a positive integer which can be expressed as

the sum of two primes in exactly two different ways. For example,

14 ¼ 7þ 7 ¼ 11þ 3. Find three other copperbach numbers.
39. A silverbach number is a positive integer which can be expressed as

the sum of two primes in at least three different ways. For example,

26 ¼ 3þ 23 ¼ 7þ 19 ¼ 13þ 13. Find three other silverbach num-
bers.
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40. Paul Levy conjectured that every odd number greater than 5 can be

expressed in the form 2p þ q, where p and q are prime. Show that the

conjecture is true for all odd numbers between 7 and 49.

41. If the first 109 positive integers were put into a very large urn, estimate

the probability that a number drawn from the urn is prime.

42. Prove that

((s))2 ¼
X1
n¼1

�(n)

ns
,

where s. 1 and n is a positive integer.

43. Prove that

(s) . (s � 1) ¼
X1
n¼1

� (n)

ns
,

where s. 2 and n is a positive integer.

44. Prove that

(s) . (s � k) ¼
X1
n¼1

� k(n)

ns
,

where s. k þ 1 and n is a positive integer.

45. Prove that

1

(s)
¼

X1
n¼1


(n)

ns
,

where s. 1 and n is a positive integer.

3.7 Miscellaneous exercises

1. Given that gcd(a, b) ¼ p, where p is prime, determine gcd(am, bn),

where m and n are positive integers.

2. If p is a prime and a and b are positive integers such that

gcd(a, p2) ¼ p and gcd(b, p3) ¼ p2, determine gcd(a þ b, p4) and

gcd(ab, p4).

3. In 1951, Alfred Moessner devised a sieve process that generates

integral powers. According to Moessner’s algorithm, in order to obtain

the nth powers of the natural numbers, begin with the sequence of

natural numbers and strike out every nth natural number. Form the

sequence of partial sums of the remaining terms and from it strike out

each (n � 1)st term. Form the sequence of partial sums of the remain-
ing terms and from it strike out each (n � 2)nd term. Repeat the
process n � 1 times to obtain the sequence of nth powers of natural
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numbers. The validity of Moessner’s process was established by Oskar

Perrone in 1951. For example, in order to generate third powers, we

have

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 7 12 19 27 37 48 61 75

1 8 27 64 125

Use Moessner’s algorithm to generate the first five fourth powers of the

natural numbers.

4. If we take the sequence of nth powers of the positive integers, the nth

differences, ˜n, will all be equal to n! For example if n ¼ 3, we have

1 8 27 64 125 216

7 19 37 61 91

12 18 24 30

6 6 6

Show that the fourth difference of the fourth powers of the positive

integers are 4!.

5. V. Ramaswami Aiyer founded the Indian Mathematical Society in

1907 and the Journal of the Indian Mathematical Society in 1909. In

1934, he discovered that, if a positive integer n appears in the array

shown in Table 3.5, then 2n þ 1 is composite, and if n does not appear

in the array then 2n þ 1 is prime, and all odd primes can be obtained
in this manner. Show that this is the case for the Aiyer array.

6. Determine a necessary and sufficient condition for the product of the

first n positive integers to be divisible by the sum of the first n positive

integers.

7. Let dk(n) represent the number of distinct solutions to the equation

x1 . x2 � � � xk ¼ n, where x1, x2, . . . , xk run independently through the

set of positive integers. Show that d2(n) ¼ �(n). Determine d1(n).

8. Let t(n � k, k) represent the number of divisors of n � k greater than

k where n. k > 0. In 1887, M. Lerch showed that �(n) ¼ n �Pn�1
k¼1 t(n � k, k). According to Lerch’s formula with n ¼ 10, we have

that �(10) ¼ 10� [t(9, 1)þ t(8, 2)þ t(7, 3)þ t(6, 4)þ t(5, 5) þ
t(4, 6) þ t(3, 7) þ t(2, 8) þ t(1, 9)] ¼ 10� [2þ 2þ 1þ 1þ 0 þ
0þ 0þ 0þ 0] ¼ 4. Use Lerch’s formula to show that �(24) ¼ 8.

9. In 1878, Cesàro showed that the mean difference between the number

of odd and even divisors of any integer is ln(2). In 1883, J.W.L

Glaisher showed that if Ł(n) represents the excess of the sum of the

odd divisors of n over the even divisors of n, then Ł(n)þ Ł(n � 1) þ
Ł(n � 3) þ Ł(n � 6) þ Ł(n � 10) þ � � � ¼ 0, where 1, 3, 6, . . . are
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the triangular numbers, and Ł(n � n) ¼ 0. For example, Ł(6) þ
Ł(5)þ Ł(3)þ Ł(0) ¼ Ł(6)þ 6 þ 4þ (�6) ¼ 0. Thus, Ł(6) ¼ �4.
Use Glaisher’s formula to determine Ł(10) and Ł(24).

10. Recall that a positive integer is called polite if it can be written as a

sum of two or more consecutive positive integers. Prove that the

number of ways of writing the polite positive integer n as a sum of two

or more consecutive positive integers is �(m)� 1, where m is the

largest odd divisor of n. For example, if n ¼ 30 then its largest odd

divisor is 15, �(15) ¼ 4. We obtain 9þ 10þ 11, 6þ 7þ 8þ 9,
4þ 5þ 6þ 7þ 8 as the three ways to represent 30 as a sum of two or
more consecutive positive integers.

11. Show that for any positive integer n. 1 the sum 1þ 1
2
þ 1
3
þ 1
4
þ

� � � þ 1=n is never an integer.

12. Let P be a polygon whose vertices are lattice points. Let I denote the

number of lattice points inside the polygon and B denote the number

of lattice points on the boundary of P. Determine a formula for the

area of the region enclosed by P as a function of I and B. [G. Pick

1899]

13. Generalize Pick’s formula to the case where the region contains a

polygonal hole whose vertices are lattice points.

14. Ulam’s spiral if formed as shown in Table 3.6. Continue the pattern for

several more revolutions of the spiral and color the primes red. Can

you detect any patterns? Ulam’s spiral appeared on the cover of the

March 1964 issue of Scientific American.

15. Given ½½p2�� ¼ 1, ½½2p2�� ¼ 2, and ½½3p2�� ¼ 4, if n is a positive integer,

find the first 16 terms of the sequence generated by ½½np2��.
16. If a ¼ 2þp

2 then ½½a�� ¼ 3, ½½2a�� ¼ 6, and ½½3a�� ¼ 10. If n is a

positive integer, find the first 20 terms of the sequence generated by

½½na��.
17. Show that if f (n) ¼ (1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n � 7p
)=2 then the nth term of the

Table 3.5.

4 7 10 13 16 19 . . .
7 12 17 22 27 32 . . .
10 17 24 31 38 45 . . .
13 22 31 40 49 58 . . .
16 27 38 49 60 71 . . .
19 32 45 58 71 84 . . .
. . . . . . . . . . . . . . . . . . . . .
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sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . . is given by ½½ f (n)��.
18. The sequence 1, 2, 4, 5, 7, 9, 10, 12, 14, 16, . . . is formed by taking the

first odd number, the next two even numbers, the next three odd

numbers, the next four even numbers, and so forth. Show that

the general term of the sequence is given by an ¼ 2n � ½½(1 þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n � 7p

)=2��.
19. In The Educational Times for 1881, Belle Easton of Buffalo, New

York, showed the highest power of p dividing the product pn! is given

by (pn � 1)=( p � 1). Prove it.
20. In The Educational Times for 1883, Belle Easton determined the

greatest value of x for which 2n!=2x is an integer. What value did she

find for x?

21. In The Educational Times for 1892, Emily Perrin of Girton College,

Cambridge, showed that if n is a positive integer, A is the sum of the

divisors of n whose quotient is odd (the divisors d such that d times an

odd number is n), B is the sum of the divisors of n having even

quotient, and C is the sum of the odd divisors of n, then A ¼ B þ C.

Prove it.

22. In 1898, C.J. de la Vallée Poussin showed that if a large number, say n,

is divided by all the primes up to n, then the average fraction by which

the quotient falls short of the next whole number is given approxi-

mately by ª, the Euler–Mascheroni constant. For example, if n ¼ 43,

then 211
2
, 141

3
, 83

5
, 61

7
, 310

11
, 3 4

13
, 2 9

17
, 2 5

19
, 120

23
, 114

29
, 112

31
, 1 6

37
, 1 2

41
, will fall

short of 22, 15, 9, 7, 4, 4, 3, 3, 2, 2, 2, 2, 2, respectively by 1
2
, 2
3
, 2
5
, 6
7
, 1
11
,

9
13
, 8
17
, 14
19
, 3
23
, 15
29
, 19
31
, 31
37
, 39
41
. The average value of these 13 numbers is

approximately ª. Use de la Vallée Poussin’s technique with n ¼ 67 to

obtain an estimate for the Euler–Mascheroni number.

23. For n. 0 and k > 2, let �k(n) ¼
P

djn�k�1(d), where �1(n) ¼ �(n).
Show that if n ¼ Qr

i¼1 p
Æi

i ,

Table 3.6.

. . . . . . . . . . . . . . . . . . . . . . . .

. . . 36 35 34 33 32 31 . . .

. . . 17 16 15 14 13 30 . . .

. . . 18 5 4 3 12 29 . . .

. . . 19 6 1 2 11 28 . . .

. . . 20 7 8 9 10 27 . . .

. . . 21 22 23 24 25 26 . . .

. . . . . . . . . . . . . . . . . . . . . . . .
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�2(n) ¼
Yr

i¼1

Æi þ 2
2

� �
:

In general,

�k(n) ¼
Yr

i¼1

Æi þ k

k

� �
:

24. Let S ¼ f(x, y): 0 < x < 1, 0 < y < 1g and T ¼ f(u, v): u þ v <

�=2g. Use the transformation x ¼ sin u=cos v, y ¼ sin v=cos u to show

that
Ð Ð

Tdudv ¼ Ð Ð
S(1� x2 y2)�1dxdy. Use the latter equality to show

that (2) ¼ �2=6.

3.8 Supplementary exercises

1. If p and p þ 2 are twin primes, with p. 3, show that 6 divides p þ 1.
2. A positive integer is called a biprime, semiprime, or 2-almost prime if

it is the product of two primes. Determine the first fifteen biprimes.

3. A positive integer is called an n-almost prime if it is the product of n

primes. Determine the first ten 3-almost primes, the first ten 4-almost

primes, and the first ten 5-almost primes.

4. A positive integer is called a superbiprime if it is the product of two

distinct primes. Determine the first fifteen superbiprimes.

5. A positive integer is called bicomposite if it is composite and has at

least four prime factors which need not be distinct. Determine the first

fifteen bicomposite numbers.

6. For what positive integral values of n is n34 � 9 prime.
7. Prove that no positive integer of the form n2 þ 1 is divisible by a prime
of the form 4k þ 3.

8. A positive integer is called squarefull, or nonsquarefree, if it contains

at least one square in its prime factorization. Determine the first ten

squarefull numbers.

9. Show that every squarefull number can be written as the product of a

square and a cube, each greater than unity.

10. Prove that every powerful number is of the form m2n3, where m and n

are greater than unity.

11. Which of the binomial coefficients (n
k), for 1 < n < 20 and

3 < k < n=2, are powerful?

12. Show that (503 ) is powerful.

13. Find necessary conditions that
Pn

k¼1k divides
Qn

k¼1 k.

14. Given a positive integer n expressed as a product of individual primes,
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remove the multiplication sign and consider the resulting integer. The

primeness of n, denoted by �(n) is the number of iterations it takes to
reach a prime number. For example, �(2) ¼ �(3) ¼ 1, and �(4) ¼ 2,

since 4 ¼ 2 . 2! 22 ¼ 2 . 11! 211, which is prime. Determine �(n),
for n ¼ 5, 6, . . . , 12.

15. Show that 4 divides the sum of two twin primes.

16. A positive integer is called an emirp number if it is a nonpalindromic

prime whose reversal is also prime. Determine the first fifteen emirp

numbers.

17. Show that a positive integer is square if and only if it has an odd

number of divisors.

18. How many divisors does 4825 have and what is their sum?

19. Show that �(n) ¼ �(n þ 1) ¼ �(n þ 2) ¼ �(n þ 3) if n ¼ 3655.

20. Show that � (n þ 2) ¼ � (n)þ 2 if n ¼ 8575.

21. Show that � (523116) ¼ 3 . 523116.

22. Evaluate �(p2q3) and � ( p2q3) when p and q are prime.

23. Show that � (n) is odd if and only if n ¼ m2 or n ¼ 2m2.

24. Show that n is composite if and only if � (n). n þ ffiffiffi
n

p
.

25. Determine the smallest positive integer with thirty divisors, with forty-

two divisors.

26. Determine the first fifteen minimal numbers. Hint: The seventh num-

ber in the sequence will be the smallest positive integer with seven

divisors.

27. A positive integer n with the property that it and n þ 1 have the same
sum of prime divisors (taken with multiplicity) is called a Ruth-Aaron

number. For example, 714 is a Ruth-Aaron number since 714 ¼
2 . 3 . 7 . 17, 715 ¼ 5 . 11 . 13, and 2þ 3þ 7þ 17 ¼ 5þ 11þ 13
¼ 29. Determine the first fifteen Ruth-Aaron numbers.

28. A positive integer n is called refactorable, or a tau number, if �(n)
divides n. Determine the first twenty refactorable numbers.

29. Prove that there are an infinite number of refactorable numbers.

30. Prove that any odd refactorable number is square.

31. Prove that n is odd and refactorable if and only if 2n is refactorable.

32. Determine 
(136)þ 
(212).
33. Evaluate

P
dj36
(d).

34. Evaluate
P

dj28(1=d).

35. Let n ¼ 2r pÆ1
1 pÆ2

2 � � � p
Æ k

k , where pi for 1 < i < k is an odd prime

and f (n) ¼ 2r. Is f completely multiplicative?

36. Let n ¼ 2r pÆ1
1 pÆ2

2 � � � p
Æ k

k , where pi for 1 < i < k is an odd prime

and f (n) ¼ 2r. Is f multiplicative?

134 Prime numbers



37. Use Fermat’s method to factor 2184.

38. Use Fermat’s method to factor 171366.

39. Use Euler’s method to factor 306. (Hint: 306 ¼ 162 þ
2 . 52 ¼ 122 þ 2 . 92.)

40. Determine the smallest positive integer n such that n! has 500 terminal

zeros.

41. Determine the largest power of 15 that divides 60!

42. Determine the number of terminal zeros of 500!=200!.

43. Determine the exponent of 7 in the canonical representation of 1079!.

44. Determine the exponent of 3 in the canonical representation of 91!.

45. The ceiling function dxe is defined to be the least integer greater than
x. Let f (x) ¼ xdxe. Show that a finite number of iterations of f applied

to 8/7 yields an integer. It is an open question as to whether iterations

of f on any rational number greater than unity will eventually result in

an integer.

46. A positive integer n is called a vampire number if it has a factorization

using its own digits, e.g., 1395 is a vampire number since

1395 ¼ 31 . 9 . 5. Determine five vampire numbers less than 5000.

47. A number is called a Ramanujan number if it contains an odd number

of distinct prime divisors. Ramanujan showed that the sum of the

reciprocals of the squares of all such numbers is 9=2�2 and the sum of
the reciprocals of their fourth powers is 15=2�4. Find the first fifteen
Ramanujan numbers.

48. Find the first five primes p for which p divides 1þ (p � 1)!. Are all
your answers squarefree?

49. Given a positive integer n greater than unity and a prime p greater than

3, show that 6n divides pn þ (6n � 1).
50. A integer n is called a Cullen number if n ¼ 2m þ 1 where m is a

positive integer. Except for when m ¼ 141, all Cullen numbers are

composite for 0 < m < 1000. An integer n is called a Woodall number

if n ¼ 2m � 1. Find the first three Woodall numbers that are prime.
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4

Perfect and amicable numbers

It is always better to ask some of the questions than to try to

know all the answers.

James Thurber

4.1 Perfect numbers

History is replete with numbers thought to have mystical or anodynical

powers. One set of such is that of the perfect numbers. A positive integer n

is said to be perfect if the sum of its divisors is twice the number itself, that

is, if � (n) ¼ 2n. The concept of perfect numbers goes back to Archytas of

Tarentum, a colleague of Plato, who claimed that if 2n � 1 is prime then

the sum of the first 2n � 1 positive integers is a perfect number. An

equivalent statement, Theorem 4.1, appears as the final proposition in Book

IX of Euclid’s Elements, the culmination of the three books in the

Elements Euclid devotes to number theory.

Theorem 4.1 If 2n � 1 is a prime number then 2n�1(2n � 1) is perfect.

Proof The only divisors of 2n�1 are 1, 2, 22, . . . , 2n�1. If 2n � 1 is prime

its only divisors are itself and 1. Since 2n�1 and 2n � 1 are coprime, the

sum of the divisors of 2n�1(2n � 1) can be represented as the product of

the sums of the divisors of 2n�1 and 2n � 1. Hence,

(1 þ 2 þ 22 þ � � � þ 2n�1)[(2n � 1) þ 1] ¼ 2n � 1

2 � 1

� �
. 2n

¼ (2n � 1)(2n)

¼ 2(2n�1)(2n � 1):

Therefore, 2n�1(2n � 1) is perfect as claimed. j

We call numbers of the form 2n�1(2n � 1), where 2n � 1 is prime,

Euclidean perfect numbers. It is important to note, however, that Euclid did
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not claim that all perfect numbers are of the form 2 p�1(2 p � 1), where p is

prime, or that all even perfect numbers are of that form.

The first four even perfect numbers were known to the ancients and can

be found in the second century works of Nicomachus and Theon of

Smyrna. They appear in the last column of Table 4.1.

Perfect numbers have generated a wealth of conjectures in number

theory. In Introduction to Arithmetic, Nicomachus partitioned the positive

integers into perfect, abundant, and deficient numbers. He defined a

positive integer n to be abundant if � (n). 2n and to be deficient if

� (n), 2n. He claimed that abundant and deficient numbers were numer-

ous, but knew of no way to generate them.

Abundant numbers, like lucky numbers, have some Goldbach-type

properties. For example, every number greater than 46 can be expressed as

the sum of two abundant numbers. In the early seventeenth century, Bachet

showed that 945 was the only odd abundant number less than 1000 and

claimed that biprimes, except 2 . 3, are deficient numbers.

With respect to perfect numbers, Nicomachus conjectured that there is

only one perfect number between 1 and 10, only one between 10 and 100,

and only one between 1000 and 10 000. That is, the nth perfect number has

exactly n digits. He also conjectured that Euclidean perfect numbers end

alternately in 6 and 8.

Iamblichus, two centuries later, reiterated Nicomachus’s claim that there

is exactly one perfect number in the interval 10k < n < 10kþ1 for any

nonnegative integer k. Boethius noted that perfect numbers were rare, but

thought that they could be easily generated in a regular manner. In the late

seventh century, Alcuin [AL kwin] of York, a theologian and advisor to

Charlemagne, explained the occurrence of the number 6 in the creation of

the universe on the grounds that 6 was a perfect number. He added that the

second origin of the human race arose from the deficient number 8 since

there were eight souls on Noah’s ark from which the entire human race

Table 4.1.

n 2(n�1) 2n � 1 2(n�1)(2n � 1)

2 2 3 6
3 4 7 28
5 16 31 496
7 64 127 8128
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sprang. Alcuin concluded that the second origin of humanity was more

imperfect than the first.

In 950, Hrotsvita [ros VEE tah], a Benedictine nun in Saxony, mentioned

the first four perfect numbers in a treatise on arithmetic. She was the author

of the earliest known Faustian-type legend where the protagonist sells his

soul to the devil for worldly gain. In 1202, Fibonacci listed the first three

perfect numbers in Liber abaci. In the early thirteenth century Jordanus de

Nemore claimed, in Elements of Arithmetic, that every multiple of a perfect

or abundant number is abundant and every divisor of a perfect number is

deficient. Nemore, Latinized Nemorarius, was the head of a Teutonic

monastic order. He perished in a shipwreck in 1236. About 1460, the fifth

perfect number, 212(213 � 1), appeared in a Latin codex. In the late

fifteenth century, Regiomontanus listed the first six perfect numbers as 6,

28, 496, 8128, 33 550 336, and 8 589 869 056.

In 1510, Bouvellus, in On Perfect Numbers, discovered the odd

abundant number, 45 045. He showed that every even perfect number is

triangular and conjectured, as did Tartaglia 50 years later, that the sum of

the digits of every Euclidean perfect number larger than 6 leaves a

remainder 1 when divided by 9. The conjecture was proven by Cataldi in

1588 and independently, in 1844, by Pierre Laurent Wantzel when he

showed the digital root of a Euclidean perfect number is unity. Seven years

earlier Wantzel had given the first rigorous proof of the impossibility of

trisecting a given angle with only a straight edge and a collapsing compass.

The trisection of a general angle, the duplication of a cube and the squaring

of a circle, three great problems bequeathed to us by the Greeks of

antiquity, have all been shown to be impossible.

In 1536, in Arithmetic, Hudalrichus Regius showed that 211 � 1 ¼
23 . 89 and, in doing so, established that it is not always the case that

2 p � 1 is prime when p is prime. In 1544, in Complete Arithmetic, Michael

Stifel stated that all Euclidean perfect numbers greater than 6 are triangular

and multiples of 4, which did little to enhance his mathematical reputation.

In 1575, Francesco Maurolico, Latinized Franciscus Maurolycus, a Bene-

dictine and professor of mathematics at Messina, showed that Euclidean

perfect numbers are hexagonal. In 1599, Pierre de la Ramée, Latinized

Petrus Ramus, author of a system of logic opposed in many respects to the

Aristotelian system, claimed that there is at most one k-digit perfect

number, resurrecting Nicomachus’s conjecture. In 1638, in On Perfect

Numbers, Jan Brozek, Latinized Broscius, a professor of theology, astron-

omy, and rhetoric at Krakow, showed that 223 � 1 is composite and claimed

that there are no perfect numbers between 104 and 105.
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In 1588, in Treatise on Perfect Numbers, Cataldi showed that Eucli-

dean perfect numbers end in either 6 or 8, but not alternately as

Nicomachus had claimed. In 1891, Lucas proved that every even perfect

number, except for 6 and 496, ends in 16, 28, 36, 56, or 76 and all but

28 can be expressed as 7k � 1. Cataldi showed that 217 � 1 was prime

and discovered the sixth perfect number, 216(217 � 1). Fifteen years later,

he discovered the seventh perfect number, 218(219 � 1), and conjectured

that 2n � 1 was prime for n ¼ 23, 29, 31 and 37. However, in 1640,

Fermat factored 223 � 1 and 237 � 1. A century later Euler showed that

229 � 1 was composite. Cataldi, professor of mathematics and astronomy

at Florence, Perugia, and Bologna, founded the first modern mathematics

academy, in Bologna. He wrote his mathematical works in Italian and, in

an effort to create interest in the subject, distributed them free of charge.

In 1638, René Descartes wrote to Marin Mersenne, the French cleric

who kept up a prodigious mathematical correspondence in the seventeenth

century, to the effect that he thought all even perfect numbers were of the

form 2n�1(2n � 1), with 2n � 1 prime. He added, however, that he could

see no reason why an odd perfect number could not exist. In correspondnce

between Frenicle and Fermat in 1640 several major results concerning

perfect numbers were established. Using Mersenne as a conduit, Frenicle

asked Fermat to produce a perfect number of 20 or 21 digits or more. Two

months later, Fermat replied that there were none.

Fermat began his research on perfect numbers by determining all the

primes of the form an � 1, where a and n are positive integers. His

conclusion is stated as Theorem 4.2.

Theorem 4.2 If an � 1 is prime for integers n. 1 and a. 1, then a ¼ 2

and n is prime.

Proof Since an � 1 ¼ (a� 1)(an�1 þ an�2 þ � � � þ aþ 1) is prime,

a� 1 ¼ 1, hence a ¼ 2. Moreover, if n is a composite number, say n ¼ rs,

with r. 1 and s. 1, then 2n � 1 ¼ 2rs � 1 ¼ (2r � 1)(2r(s�1) þ
2r(s�2) þ � � � þ 1). However, each factor on the right exceeds 1 contra-

dicting the fact that 2n � 1 is prime. Hence, n is prime and the result is

established. j

Frenicle wrote that 237 � 1 was composite but he could not find its factors.

Fermat replied that its factors were 223 and 616 318 177. Fermat discov-

ered that if p is prime and 2 p � 1 is composite then all the prime factors of

2 p � 1 must be of the form npþ 1, where n is a positive integer and
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p. 2. Hence, any prime divisor of 237 � 1 is of the form 37nþ 1. In order

to verify 237 � 1 is prime, Fermat had only to check to see if

149 ¼ 37 . 4 þ 1 and 223 ¼ 37 . 6 þ 1 were factors. In 1732, Euler ex-

tended Fermat’s work and claimed that if n ¼ 4k � 1 and 8k � 1 are prime

then 2n � 1 has the factor 8k � 1. Euler used the result to show 2n � 1 is

composite for n ¼ 11, 23, 83, 131, 179, 191, 239 and found factors of

2n � 1 when n ¼ 29, 37, 43, 47, and 73. Lagrange gave a formal proof of

Euler’s claim in 1775 as did Lucas in 1878. In 1772, Euler showed that

231 � 1 was prime and generated the eighth perfect number, 230(231 � 1).

Euler, in a posthumous work entitled On Amicable Numbers, established

the converse of Euclid’s theorem on perfect numbers by showing that all

even perfect numbers are Euclidean.

Theorem 4.3 Every even perfect number is of the form 2n�1(2n � 1),

where 2n � 1 is prime.

Proof Suppose that r is an even perfect number, say r ¼ 2n�1s, where

n > 2 and s is odd. Since r is perfect � (r) ¼ 2r. We have � (r) ¼
� (2n�1s) ¼ 2(2n�1s) ¼ 2ns. Since 2n�1 and s have no common factors, the

sum of the divisors of 2n�1s is given by (2n � 1)=(2 � 1) times the sum of

the divisors of s, that is, � (r) ¼ (2n � 1)� (s). Hence, 2ns ¼ (2n � 1)� (s).

Let � (s) ¼ sþ t where t denotes the sum of the divisors of s which are

strictly less than s. Thus, 2ns ¼ (2n � 1)(sþ t) and we have that

s ¼ (2n � 1)t. Thus, t divides s and thus must be one of the divisors of s,

which could only be the case if t ¼ 1. Therefore, s ¼ 2n � 1, and the result

is established. j

According to Theorem 4.3, in order to find even perfect numbers, we need

only find primes of the form 2 p � 1, where p is also a prime. Such primes,

denoted by Mp, are called Mersenne primes. In 1644, in the preface of his

Cogitata physico-mathematica, Mersenne claimed Mp is prime for p ¼ 2,

3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. The number of combinations of

Mp things taken two at a time is given by 2 p�1(2 p � 1). Hence, all even

perfect numbers are triangular and, as such, lie on the third diagonal of

Pascal’s triangle.

In 1869, F. Landry showed that 2n � 1 was composite if n ¼ 53 or 59. In

1876 Lucas discovered a technique that was improved by D. H. Lehmer in

1930, called the Lucas–Lehmer test. Let p be prime, a1 ¼ 4, and anþ1 be

the remainder when (an)
2 � 2 is divided by Mp. According to the test, if

Mp divides a p�1, that is if a p�1 ¼ 0, then Mp is prime. For example, the
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Lucas–Lehmer sequence for 31 ¼ 25 � 1 is given by 4, 14, 8, 0. Hence,

M5 is prime. In 1877, Lucas discovered the 9th perfect number

2126(2127 � 1) when he verified that M127 was prime. In 1883, I. Pervushin

discovered the 10th perfect number when he established that M61 was

prime.

At a special session on number theory at a meeting of the Ameri-

can Mathematical Society in October 1903, Frank Nelson Cole of Co-

lumbia University presented a paper entitled ‘On the factorization of

large numbers’. When his turn came to speak, he went to the black-

board, multiplied 761 838 257 287 by 193 707 721 and obtained

147 573 952 589 676 412 927, which is 267 � 1. Cole put down the chalk

and, amid vigorous applause, returned to his seat without ever uttering a

word. There were no questions. He later said that it took him several years,

working Sunday afternoons, to find the factors of 267 � 1. Cole served as

Secretary to the AMS from 1896 to 1920 and as editor of the AMS Bulletin

for 21 years.

In 1911, R.E. Powers verified that M89 was prime and, in 1914, showed

M107 was prime. Hence, up to the First World War, only 12 perfect

numbers were known corresponding to the Mersenne primes Mp, for

p ¼ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127. When the age of

electronic computers dawned in the early 1950s, mathematicians applied

the new technology to the search for Mersenne primes. In 1952, Raphael

M. Robinson, using the SWAC computer at the National Bureau of

Standards, now the National Institute of Standards and Technology, showed

that M521, M607, M1279, M2203, and M2281 were prime. It took 66 minutes

of computer time to confirm that M2281 is prime. In 1957, Hans Riesel,

with the help of a BESK computer, discovered that M3217 was prime. In

1961, Alexander Hurwitz of UCLA showed that M4253 and M4423 were

prime using an IBM 7090. In 1963, Don Gillies, using the ILLIAC

computer at the University of Illinois, generated the Mersenne primes

M9689, M9941, and M11 213. The last generates the 23rd perfect number and

for a time 211 213 � 1 appeared in the University of Illinois’s metered stamp

cancellation. In 1971, Bryant Tuckerman took 39.44 minutes of computer

time using an IBM 360/91 at the Watson Research Center to discover the

24th Mersenne prime, M19 937.

In 1978, after three years of hard work using a Control Data CYBER

174, Laura Nickel and Curt Noll, 18-year-old undergraduates at California

State University at Hayward, discovered that M21 701 is prime. In 1979,

Noll showed that M23 209 was prime. Later that year, Harry Nelson and

David Slowinski of Cray Research discovered the 27th Mersenne prime
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M44 497. In the early 1980s, using a Cray X-MP, Slowinski determined that

M86 243 and M132 049 were Mersenne primes. It took three hours of

computer time to establish that M132 049 was indeed prime. In 1985,

Slowinski, using a Cray X-MP 24 at Cheveron Geoscience in Houston,

discovered that M216 091 was prime. In 1988, Walter N. Colquitt and Luther

Welsh, Jr, with the help of a NEC SX 2 supercomputer at the Houston Area

Research Center, discovered that M110 503 was prime. In 1992, Slowinski

and Paul Gage of Cray Research established that M756 839 was prime. In

1994, using the Lucas–Lehmer test and 7.2 hours on a Cray Y-MP M90

series computer Slowinski and Gage showed that M859 433 and M1 257 787

were prime. Given the present data, it appears that roughly every three-

thousandth prime is a Mersenne prime. In 1996, George Woltman estab-

lished the Great Internet Mersenne Prime Search (GIMPS). Volunteers

using their own personal computers aid in the search for large prime

numbers. In November 1996, Joel Armengaud, a 29-year-old programmer

from Paris, France, using a Lucas–Lehmer program written by Woltman

and the help of 750 programmers scattered across the internet, established

that M1 398 269 is prime. In 1997, Gordon Spencer using Woltman’s GIMPS

program showed that M2 976 221 is prime. In 1998, Roland Clarkson, a

student at California State University, Dominguez Hill, using Woltman’s

GIMPS program and a networking software written by Scott Kuratowsi, a

software development manager and entrepreneur from San Jose, Cali-

fornia, showed that the 909 526 digit number M3 021 377 is prime.

In June 1999, Nayan Hajratwala, a director of an Internet consulting firm

from Saline, Michigan, discovered the first million-digit prime, M6972593.

In doing so he was awarded $50,000 from the Electronic Frontier Founda-

tion. In December of 2001 Michael Cameron, a 20-year-old college student

at Georgian College in Ontario, Canada discovered the thirty-ninth Mers-

enne prime, m13466917. In November 2003, Michael Shafer, a 26-year-old

chemical engineering graduate student at Michigan State University,

discovered the fortieth Mersenne prime, M20996011. In May 2004, Josh

Findley, a consultant to the National Oceanic and Atmospheric Administra-

tion from Orlando, Florida, discovered the forty-first Mersenne prime,

M24036583. In February 2005, Martin Nowak, a German eye surgeon and

member of the GIMPS Project, discovered the forty-second Mersenne

prime M25964951. The last six Mersenne primes were discovered through

the very successful GIMPS program, however, it remains an open question

as to whether there are an infinite number of Mersenne primes.

Let V (x) represent the number of perfect numbers n such that n < x. In

1954, H.-J. Kanold showed that the natural density of perfect numbers,
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Table 4.2. Known Mersenne primes Mp

Number Value of p Discoverer Year

1 2 anonymous 4th cent. BC
2 3 anonymous 4th cent. BC
3 5 anonymous 4th cent. BC
4 7 anonymous 4th cent. BC
5 13 anonymous 1456
6 17 Cataldi 1588
7 19 Cataldi 1603
8 31 Euler 1772
9 61 Pervushin 1883

10 89 Powers 1911
11 107 Powers 1914
12 127 Lucas 1876
13 521 Robinson 1952
14 607 Robinson 1952
15 1 279 Robinson 1952
16 2 203 Robinson 1952
17 2 281 Robinson 1952
18 3 217 Riesel 1957
19 4 253 Hurwitz 1961
20 4 423 Hurwitz 1961
21 9 689 Gillies 1963
22 9 941 Gillies 1963
23 11 213 Gillies 1963
24 19 937 Tuckerman 1971
25 21 701 Noll, Nickel 1978
26 23 209 Noll 1979
27 44 497 Nelson, Slowinski 1979
28 86 243 Slowinski 1982
29 110 503 Colquitt, Welsh 1988
30 132 049 Slowinski 1983
31 216 091 Slowinski 1985
32 756 839 Slowinski, Gage 1992
33 859 433 Slowinski, Gage 1994
34 1 257 787 Slowinski, Gage 1996
35 1 398 269 Armengaud, Woltman, Kuratowski 1996
36 2 976 221 Spencer, Woltman, Kuratowski 1997
37 3 021 377 Clarkson, Woltman, Kuratowski 1998
38 6 972 693 Hajratwala, Woltman, Kuratowski 1999
39 13 466 917 Cameron, Woltman, Kuratowski 2001
40 20 996 011 Schafer, Woltman, Kuratowski 2003
41 24 036 583 Findley, Woltman, Kuratowski 2004
42 25 964 951 Nowak, Woltman, Kuratowski 2005
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limx!1(V (x)=x), equals zero, implying that V (x) goes to infinity slower

than x does. In a posthumous work, Tractatus de numerorum ductrina, Euler

proved that there are no odd perfect numbers of the form 4k þ 3, and if an

odd perfect number exists it must be of the form p4aþ1N2, where p is a

prime of the form 4k þ 1, a > 0, N is odd and p does not divide N . In 1888,

J.J. Sylvester showed that no odd perfect number exists with less than six

distinct prime factors and no odd perfect number exists, not divisible by 3,

with less than eight distinct prime factors. In 1991, R.P. Brent, G.L. Cohen,

and H.J.J. te Riele showed that if n is odd and perfect then n > 10300.

Exercises 4.1

1. In 1700, Charles de Neuvéglise claimed the product of two consecutive

integers n(nþ 1) with n > 3 is abundant. Prove or disprove his claim.

2. In 1621, Bachet claimed that every multiple of a perfect number or an

abundant number is abundant. Prove that his claim is true thereby

establishing Neuvéglise’s conjecture that there are an infinite number

of abundant numbers.

3. Prove that there are an infinite number of odd deficient numbers and

an infinite number of even deficient numbers.

4. Show that every proper divisor of a perfect number is deficient.

5. Determine the binary representations for the first four perfect numbers.

Generalize your answers.

6. Show that the digital root of the seventh perfect number is 1.

7. Show that every Euclidean perfect number is triangular.

8. Show that every Euclidean perfect number is hexagonal.

9. Prove that �djnd�1 ¼ 2 if and only if n is perfect. [Carlo Bourlet

1896]

10. Show that the product of the divisors of the even perfect number

n ¼ 2 p�1(2 p � 1) is given by n p.

11. Show that M1 398 269 has 420 921 digits.

12. Show that no perfect number greater than 6 can be either a product of

two primes or a power of a prime.

13. Show that 6 is the only squarefree perfect number.

14. Show that every Euclidean perfect number greater than 6 can be

expressed as the sum of consecutive odd cubes beginning with unity

cubed. For example, 28 ¼ 13 þ 33, 496 ¼ 13 þ 33 þ 53 þ 73, and

8128 ¼ 13 þ 33 þ � � � þ 153.

15. Prove that the units digit of any Euclidean perfect number is either 6

or 8. [Cataldi 1588]
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16. Prove that the sum of the digits of every Euclidean perfect number

larger than 6 always leaves a remainder of 1 when divided by 9. (Hint:

it suffices to show that every Euclidean perfect number is of the form

9k þ 1.) [Cataldi 1588]

17. Show that 6 is the only positive integer n with the property that n and

� (� (n)) are perfect.

18. Use the Lucas–Lehmer test to show that M7 is prime.

19. Show that a number of the form 2 . 3Æ cannot be perfect, unless Æ ¼ 1.

20. A positive integer n is called multiplicatively perfect or product

perfect if the product of its divisors is equal to n2. For example, 6 and

15 are product perfect. Find the first 15 product perfect numbers.

21. Use the number theoretic function � to succinctly classify all product

perfect numbers.

22. What is the length of the aliquot cycle generated by a perfect number?

4.2 Fermat numbers

Fermat, after discovering the conditions on the integers a and n for an � 1

to be prime, determined under what conditions an þ 1 is prime.

Theorem 4.4 If an þ 1, with a. 1 and n. 0, is prime then a is even and

n ¼ 2r for some positive integer r.

Proof Suppose that an þ 1 is prime. If a were odd, then an þ 1 would be

even, greater than 3, and hence not prime. Therefore, a is even. Suppose

that n has an odd factor which is greater than 1, say n ¼ rs, with s odd and

greater than 1. Hence, an þ 1 ¼ ars þ 1 ¼ (ar þ 1)(ar(s�1) � ar(s�2) þ
� � � � ar þ 1). Since s > 3, both factors of an þ 1 are greater than 1,

contradicting the fact that an þ 1 is prime. Hence, n has no odd factors and

must be a power of 2. j

If n is a nonnegative integer, 22 n þ 1, denoted by Fn, is called a Fermat

number. The first five Fermat numbers, corresponding to n ¼ 0, 1, 2, 3, 4,

are, respectively, 3, 5, 17, 257, and 65 537 and are prime. Fermat

conjectured that Fn was prime for every nonnegative integer n. However,

one of Euler’s first number theoretic discoveries, was that F5 is composite.

Specifically, he showed the 4 294 967 297 ¼ 641 . 6 700 417. Later, he

proved that every prime divisor of Fn for n > 2 must be of the form

k . 2nþ2 þ 1. He used this discovery to show that 19 . 29450 þ 1 divides

F9448 and 5 . 223 473 þ 1 divides F23 471. Currently, the only Fermat numbers
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known to be prime are F0, F1, F2, F3, and F4. In addition, 274 177 divides

F6, 596 495 891 274 977 217 divides F7, 1575 . 219 þ 1 divides F16, and

F5 ¼ (29 þ 27 þ 1)(227 � 221 þ 219 � 217 þ 214 � 29 � 27 þ 1). The only

Fn whose prime status remains undecided are those with n > 24. Even

F3310, which has 10990 digits, has been shown to be composite. In 1877,

J.T.F. Pepin proved that Fn is prime if and only if it does not divide

322 n�1 þ 1. In 1905 J.C. Morehead and A.E. Western, using Pepin’s test

(Theorem 6.14), showed that F7 was composite. Four years later, they

proved that F8 was composite. In 1977, Syed Asadulla established that the

digital root of Fn is 5 or 8 according as n. 1 is odd or even. It is an open

question whether every Fermat number is squarefree.

In 1796, Gauss renewed interest in Fermat numbers when, as the

capstone of his Disquisitiones arithmeticae, he proved that a regular

polygon of n ¼ 2k p1 p2 � � � pr sides can be constructed using a straight-

edge and compasses if and only if the primes pi, for 1 < i < r, are distinct

and each is a Fermat prime. The only such polygons known with an odd

number of sides are those for which n equals 3, 5, 17, 257, 65 537 or a

product of these numbers. William Watkins of California State University,

Northridge, discovered that the binary number represented by the rows of

the Pascal triangle, where even numbers are represented by 0 and odd

numbers by 1, generates these odd numbers for which constructable regular

polygons exist. (See Figure 4.1.)

Gauss requested that a 17-sided regular polygon should be inscribed on

his tombstone, but his request was thought by local stonemasons to be too

difficult to construct even without being restricted to using only straight-

edge and collapsing compasses.

Exercises 4.2

1. Find the digital roots of the first six Fermat numbers.

2. Using Gauss’s result concerning regular polygons, for which numbers

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

......................................

� 1
� 3
� 5
� 15
� 17
� 51

Figure 4.1.
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n less than 26 can regular polygons of n sides be constructed using

only Euclidean tools?

3. Show that
Qn�1

i¼0 Fi ¼ Fn � 2.

4. Prove that the last digit of any Fermat number, Fn, for n > 3 is always

7.

5. Prove that if m 6¼ n then gcd(Fm, Fn) ¼ 1.

6. Prove that if m, n then Fm divides Fn � 2.

7. Show that Fn for n. 0 is of the form 12k þ 5.

8. Prove that no Fermat number is square.

9. Prove that no Fermat number is a cube.

10. Prove that no Fermat number greater than 3 is a triangular number.

4.3 Amicable numbers

Distinct positive integers m and n are called amicable if each is the sum of

the proper divisors of the other, that is, if � (m) ¼ mþ n ¼ � (n). Perfect

numbers are those numbers which are amicable with themselves. Iambli-

chus ascribed the discovery of the first pair of amicable numbers, 220 and

284, to Pythagoras, who when asked what a friend was, answered, ‘another

I’, which in a numerical sense, is just what these numbers are to each other.

Reference to the number 220 can be found in the Book of Genesis.

Amicable numbers appear repeatedly in Islamic works where they play a

role in magic, astrology, the casting of horoscopes, sorcery, talismans, and

the concoction of love potions. Ibn Khaldun, a fourteenth century Islamic

historian, stated in the Muqaddimah (Introduction to History) that ‘persons

who have concerned themselves with talismans affirm that the amicable

numbers 220 and 284 have an influence to establish a union or close

friendship between two individuals.’ Khaldun, who developed the earliest

nonreligious philosophy of history, was rescued by and served for a time in

the court of the Turkish conqueror Tamerlane.

Thabit ibn Qurra, a ninth century mathematician, devised the first

method to construct amicable pairs. He formed the sequence a0 ¼ 2,

a1 ¼ 5, a2 ¼ 11, a3 ¼ 23, . . . , in which each term is obtained by doubling

Table 4.3.

5 11 23 47 95 191 . . . 3 . 2n � 1
2 4 8 16 32 64 . . . 2n

6 12 24 48 96 192 . . . 3 . 2n

71 287 1151 4607 18 431
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the preceding term and adding 1 to it. If any two successive odd terms a

and p of the sequence are primes, and if r ¼ pqþ pþ q is also prime,

then Thabit concluded that 2n pq and 2n r are amicable. According to

Thabit’s method 2n pq and 2n r are amicable if p ¼ (3 . 2n) � 1, q ¼
(3 . 2n�1) � 1, and r ¼ (9 . 22n�1) � 1, with n. 1, are all odd primes.

Thabit’s method generates the three amicable pairs 220 and 284, 17 296

and 18 416, and 9 363 584 and 9 437 056 and no others of that type less

than 2 3 1010 have been discovered.

Thabit’s rule was rediscovered on a number of occasions. In 1646,

Fermat constructed a table in which the second row consisted of the powers

of 2, the third row three times the number on the second row, the first row

the number on the third row less 1, and the fourth row the product of two

successive numbers on the third row less 1, as shown in Table 4.3. Fermat

claimed that if the number d on the fourth row is prime, the number b

directly above it on the first row and the number a directly preceding b on

the first row are both prime, and if c is the number on the second row above

d, then c . d and a . b . c are amicable, as shown in Table 4.4. For example,

in Table 4.3, ‘71’ on the fourth row is prime. The number on the first row

directly above ‘71’ is ‘11’; it and the number immediately preceding it on

the first row ‘5’ are both prime. The number ‘4’ on the second row is above

‘71’. Hence, 4 . 71 and 4 . 5 . 11 form an amicable pair.

In 1742, Euler devised a method for generating amicable pairs. At that

time, only three pairs of amicable numbers were known. He listed 30 new

pairs of amicable numbers in On Amicable Numbers and eight years later

found 59 more pairs. In 1866, 16-year-old Nicoló Paganini discovered an

amicable pair, 1184 and 1210, which Euler had overlooked. Unfortunately,

Paganini gave no indication whatsoever of how he found the pair. In 1884, P.

Seelhoff used Euler’s method to discover two new pairs of amicable num-

bers, (32 . 72 . 13 . 19 . 23 . 83 . 1931, 32 . 72 . 13 . 19 . 23 . 162 287) and

(26 . 139. 863, 26 . 167 . 719). In 1911, L.E. Dickson discovered two new

pairs of amicable numbers, (24 . 12 959 . 50 231, 24 . 17 . 137 . 262 079) and

(24 . 10 103 . 735 263, 24 . 17 . 137 . 2 990 783). In 1946, E.B. Escott added

233 pairs to the list. In 1997, at age 79, Mariano Garcia discovered an

Table 4.4.

a b
c

d
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amicable pair each of whose members has 4829 digits. Currently, about

1200 amicable pairs are known. (See Table 4.5 for some.)

There are a number of unanswered questions concerning amicable

pairs; for example, whether there are an infinite number of amicable

pairs, or whether there exists a pair of amicable numbers of opposite

parity. It appears plausible that the sum of the digits of amicable pairs

taken together is divisible by 9 and that every pair of amicable numbers

has unequal remainders when each component is divided by 4. Charles

Wall has conjectured that if there exists and odd pair of amicable numbers

with equal remainders when divided by four then no odd perfect numbers

exist. In 1988, the amicable pair (A . 140 453 . 85 857 199, A . 56 099.

214 955 207), with A ¼ 54 . 73 . 113 . 132 . 172 . 19 . 612 . 97 . 307, was

discovered proving that it is not the case that all odd amicable pairs are

divisible by 3.

Exercises 4.3

1. Show that (220, 284), (1184, 1210), (17 296, 18 416) and (24 . 23 . 479,

24 . 89 . 127) are amicable pairs.

Table 4.5. Some amicable pairs

22 . 5 . 11 22 . 71 Pythagoreans
24 . 23 . 47 24 . 1151 Fermat (1636)
27 . 191 . 383 27 . 73 727 Descartes (1636)
22 . 5 . 23 . 137 22 . 23 . 827 Euler (1747)
32 . 5 . 7 . 13 . 17 32 . 7 . 13 . 107 Euler (1747)
32 . 5 . 7 . 1317 32 . 7 . 13 . 107 Euler (1747)
32 . 5 . 11 . 13 . 19 32 . 5 . 13 . 239 Euler (1747)
32 . 5 . 72 . 13 . 41 32 . 72 . 13 . 251 Euler (1747)
32 . 5 . 7 . 53 . 1889 32 . 5 . 7 . 102 059 Euler (1747)
22 . 13 . 17 . 389 509 22 . 13 . 17 . 198 899 Euler (1747)
32 . 5 . 7 . 19 . 37 . 887 32 . 5 . 19 . 37 . 7103 Euler (1747)
34 . 5 . 11 . 29 . 89 34 . 5 . 11 . 2699 Euler (1747)
32 . 72 . 11 . 13 . 41 . 461 32 . 72 . 11 . 13 . 19 403 Euler (1747)
32 . 5 . 13 . 19 . 29 . 569 32 . 5 . 13 . 19 . 17 099 Euler (1747)
32 . 5 . 72 . 13 . 97 . 193 32 . 72 . 13 . 97 . 1163 Euler (1747)
32 . 5 . 7 . 13 . 41 . 163 . 977 32 . 7 . 13 . 41 . 163 . 5867 Euler (1747)
23 . 17 . 79 23 . 23 . 59 Euler (1747)
24 . 23 . 1367 24 . 53 . 607 Euler (1747)
24 . 47 . 89 24 . 53 . 79 Euler (1747)
25 . 37 2 . 5 . 112 Paganini (1866)
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2. Prove that if (m, n) is an amicable pair then

1X
djm

1

d

þ 1X
djn

1

d

¼ 1:

3. Show that for the amicable pairs (22 . 5 . 23 . 137, 22 . 23 . 827) and

(23 . 17 . 4799, 23 . 29 . 47 . 59) the sum of the digits taken together is

divisible by 9.

4. A pair of numbers (m, n), with m, n, is called betrothed if

� (m) ¼ mþ nþ 1 ¼ � (n). In 1979, 11 betrothed pairs were known.

Show that (48, 75), (140, 195), and (1575, 1648) are betrothed pairs.

5. A triple (a, b, c) is called an amicable triple if � (a) ¼ � (b) ¼
� (c) ¼ aþ bþ c. Show that (25 . 33 . 47 . 109, 25 . 32 . 7 . 659,

25 . 32 . 5279) is an amicable triple.

6. Show that (22 . 32 . 5 . 11, 25 . 32 . 7, 22 . 32 . 71) is an amicable triple.

7. Show that (123 228 768, 103 340 640, 124 015 008) is an amicable tri-

ple.

8. Determine the length of the aliquot cycle generated by an amicable

number.

4.4 Perfect-type numbers

A positive integer n is called multiperfect or, more precisely, k-perfect if

� (n) ¼ kn, where k > 2 is a positive integer. Thus, a perfect number is a

2-perfect number. The term multiperfect was coined by D.H. Lehmer in

1941. The first multiperfect number, with k. 2, was discovered by the

Cambridge mathematician Robert Recorde in 1557, when he noted in his

Whetstone of Witte that 120 is 3-perfect. In Whetstone, Recorde introduced

the modern symbol of two horizontal line seqments for equals, ‘¼’ adding

that ‘no 2 things can be more equal’. In 1556, Recorde’s The Castle of

Knowledge introduced English readers to the Copernican theory.

Multiperfect numbers were studied extensively by French mathemati-

cians in the seventeenth century. In 1631, Mersenne challenged Descartes

to find a 3-perfect number other than 120. Six years later, Fermat

discovered that 672 is 3-perfect. Fermat constructed an array similar to that

found in Table 4.6, where the second row consists of the powers of 2, the

top row numbers one less than the numbers on the second row, and the

third row one more. Fermat claimed that if the quotient of a number in the

top row of the (nþ 3)rd column and the bottom row of the nth column is

prime, for n. 1, then three times the product of the quotient and the
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number in the (nþ 2)nd column is a 3-perfect number. In essence, Fermat

claimed that if q ¼ (2nþ3 � 1)=(2n þ 1) is prime then 3 . q . 2nþ2 is 3-

perfect. For example, from Table 4.6, with n ¼ 3, q ¼ 63
9
¼ 7, hence,

3 . 7 . 23þ2 ¼ 672 is 3-perfect.

In 1638, André Jumeau, prior of Sainte Croix, Oloron-Ste-Marie,

showed that 523 776 was a 3-perfect number, and issued a second challenge

to Descartes to find another 3-perfect number. Descartes responded that

1 476 304 896 is 3-perfect and listed six 4-perfect numbers, and two 5-

perfect numbers. Descartes claimed that if n was 3-perfect and not

divisible by 3 then 3n is 4-perfect; if 3 divides n and both 5 and 9 do not

divide n then 45n is 4-perfect; if 3 divides n and 57, 9, and 13 do not

divide n then 3 . 7 . 13 . n is 4-perfect. He added that Fermat’s method only

yields the 3-perfect numbers 120 and 672.

In 1639, Mersenne discovered the fifth 3-perfect number 459 818 240.

Eight years later, Fermat found the 3-perfect number 51 001 180 160, 2 4-

perfect numbers, 2 5-perfect numbers, and the first 2 6-perfect numbers. In

1647, Mersenne claimed that if n were 5-perfect and 5 did not divide n

then 5n would be 6-perfect. In 1929, Poulet listed 36 4-perfect numbers, 55

5-perfect numbers, 166 6-perfect numbers, 69 7-perfect numbers and 2 8-

perfect numbers, one of them being 262 . 322 . 510 . 74 . 113 . 137 . 172 .

19 . 23 . 292 . 31 . 372 . 43 . 47 . 53 . 612 . 672 . 73 . 89 . 972 . 1272 .

139 . 167 . 181 . 193 . 271 . 307 . 317 . 337 . 487 . 521 . 1523 . 3169 . 3613 .

5419 . 9137 . 14 281 . 92 737 . 649 657 . 2 384 579 . 12 207 031 .

1 001 523 179. In the 1950s, Benito Franqui and Mariano Garcı́a at the

University of Puerto Rico and Alan Brown independently generated about

100 multiperfect numbers, albeit there were a few numbers common to

both lists and some overlap with the multiperfect numbers generated by

Poulet 25 years earlier. No multiperfect numbers have been discovered

with k. 10. (See Tables 4.7 and 4.8.) Two open questions concerning

multiperfect numbers are whether there are infinitely many multiperfect

numbers and whether an odd multiperfect number exists.

Table 4.6.

1 2 3 4 5 6 7 8

2n � 1 1 3 7 15 31 63 127 255 . . .
2n 2 4 8 16 32 64 128 256 . . .
2n þ 1 3 5 9 17 33 65 129 257 . . .
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Table 4.8. Some multiperfect numbers (in order of discovery)

(a) 3-perfect numbers

1 23 . 3 . 5 Recorde (1557)
2 25 . 3 . 7 Fermat (1637)
3 29 . 3 . 11 . 31 Jumeau (1638)
4 213 . 3 . 11 . 43 . 127 Descartes (1638)
5 28 . 5 . 7 . 19 . 37 . 73 Mersenne (1639)
6 214 . 5 . 7 . 19 . 31 . 151 Fermat (1643)

Table 4.7.

Multiperfect
type

Number known

2-perfect 37
3-perfect 6
4-perfect 36
5-perfect 65
6-perfect 245
7-perfect 516
8-perfect 1097
9-perfect 1086

10-perfect 25

Table 4.8. (b) 4-perfect numbers

1 25 . 33 . 5 . 7 Descartes (1638)
2 23 . 32 . 5 . 7 . 13 Descartes (1638)
3 29 . 33 . 5 . 11 . 31 Descartes (1638)
4 29 . 32 . 7 . 11 . 13 . 31 Descartes (1638)
5 213 . 33 . 5 . 11 . 43 . 127 Descartes (1638)
6 213 . 32 . 7 . 11 . 13 . 43 . 127 Descartes (1638)
7 28 . 3 . 5 . 7 . 19 . 37 . 73 Mersenne (1639)
8 27 . 33 . 52 . 17 . 31 Mersenne (1639)
9 210 . 33 . 52 . 23 . 31 . 89 Mersenne (1639)

10 214 . 3 . 5 . 7 . 19 . 31 . 151 Fermat (1643)
11 27 . 36 . 5 . 17 . 23 . 137 . 547 . 1093 Fermat (1643)
12 22 . 32 . 5 . 72 . 13 . 19 Lehmer (1900)
13 28 . 32 . 72 . 13 . 192 . 37 . 73 . 127 Lehmer (1900)
14 214 . 32 . 72 . 13 . 192 . 31 . 127 . 151 Carmichael (1910)
15 225 . 33 . 52 . 19 . 31 . 683 . 2731 . 8191 Carmichael (1910)
16 225 . 36 . 5 . 19 . 23 . 137 . 547 . 683 . 1093 . 2731 . 8191 Carmichael (1910)
17 25 . 34 . 72 . 112 . 192 . 127 Poulet (1929)
18 25 . 34 . 72 . 112 . 194 . 151 . 911 Poulet (1929)
19 27 . 310 . 5 . 7 . 23 . 107 . 3851 Poulet (1929)
20 28 . 32 . 72 . 13 . 194 . 37 . 73 . 151 . 911 Poulet (1929)
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Table 4.8. (d) 6-perfect numbers

1 223 . 37 . 53 . 74 . 113 . 133 . 172 . 31 . 41 . 61 . 241 . 307 .

467 . 2801
Fermat (1643)

2 227 . 35 . 53 . 7 . 11 . 132 . 19 . 29 . 31 . 43 . 61 . 113 . 127 Fermat (1643)
3 223 . 37 . 55 . 11 . 132 . 19 . 312 . 43 . 61 . 83 . 223 .

331 . 379 . 601 . 757 . 1201 . 7019 . 823 543 . 616 318 177 .

100 895 598 169

Fermat (1643)

4 219 . 36 . 53 . 72 . 11 . 13 . 19 . 23 . 31 . 41 . 137 .

547 . 1093
Lehmer (1900)

5 224 . 38 . 5 . 72 . 11 . 13 . 17 . 192 . 31 . 43 . 53 . 127 .

379 . 601 . 757 . 1801
Lehmer (1900)

6 262 . 38 . 54 . 72 . 11 . 13 . 192 . 23 . 59 . 71 . 79 . 127 .

157 . 379 . 757 . 43 331 . 3 033 169 . 715 827 883 .

2 147 483 647

Cunningham
(1902)

7 215 . 35 . 52 . 72 . 11 . 13 . 17 . 19 . 31 . 43 . 257 Carmichael (1906)
8 236 . 38 . 55 . 77 . 11 . 132 . 19 . 312 . 43 . 61 . 83 .

223 . 331 . 379 . 601 . 757 . 1201 . 7019 . 112 303 .

898 423 . 616 318 177

Gérardin (1908)

9 215 . 35 . 54 . 73 . 112 . 13 . 17 . 19 . 43 . 71 . 257 Poulet (1929)
10 215 . 37 . 53 . 72 . 11 . 13 . 17 . 19 . 41 . 43 . 257 Poulet (1929)

Table 4.8. (c) 5-perfect numbers

1 27 . 34 . 5 . 7 . 112 . 17 . 19 Descartes (1638)
2 210 . 35 . 5 . 72 . 13 . 19 . 23 . 89 Frenicle (1638)
3 27 . 35 . 5 . 72 . 13 . 17 . 19 Descartes (1638)
4 211 . 33 . 52 . 72 . 13 . 19 . 31 Mersenne (1639)
5 220 . 33 . 5 . 72 . 132 . 19 . 31 . 61 . 127 . 337 Fermat (1643)
6 217 . 35 . 5 . 73 . 13 . 192 . 37 . 73 . 127 Fermat (1643)
7 210 . 34 . 5 . 7 . 112 . 19 . 23 . 89 Fermat (1643)
8 221 . 36 . 52 . 7 . 19 . 232 . 31 . 79 . 89 . 137 . 547 . 683 . 1093 Lehmer (1900)
9 211 . 35 . 5 . 72 . 132 . 19 . 31 . 61 Poulet (1929)

10 211 . 35 . 52 . 73 . 132 . 312 . 61 . 83 . 331 Poulet (1929)
11 211 . 35 . 53 . 73 . 133 . 17 Poulet (1929)
12 211 . 36 . 5 . 72 . 13 . 19 . 23 . 137 . 547 . 1093 Poulet (1929)
13 211 . 310 . 5 . 72 . 13 . 19 . 23 . 107 . 3851 Poulet (1929)
14 214 . 32 . 52 . 73 . 13 . 19 . 312 . 83 . 151 . 331 Poulet (1929)
15 215 . 37 . 5 . 7 . 11 . 17 . 41 . 43 . 257 Poulet (1929)
16 217 . 35 . 5 . 73 . 13 . 192 . 37 . 73 . 127 Poulet (1929)
17 217 . 35 . 5 . 73 . 13 . 194 . 37 . 73 . 151 . 911 Poulet (1929)
18 219 . 36 . 5 . 7 . 11 . 23 . 31 . 41 . 137 . 547 . 1093 Poulet (1929)
19 219 . 37 . 52 . 7 . 11 . 312 . 412 . 83 . 331 . 431 . 1723 Poulet (1929)
20 219 . 310 . 5 . 7 . 11 . 23 . 31 . 41 . 107 . 3851 Poulet (1929)
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A positive integer n is called k-hyperperfect if k . � (n) ¼ (k þ 1)n

þ k � 1. For example, 21, 2133, and 19 521 are 2-hyperperfect and 325 is

3-hyperperfect. In 1974, Daniel Minoli and Robert Bear described a num-

ber of properties of hyperperfect numbers. For example, if 3n � 1 is prime

then 3n�1(3n � 2) is 2-hyperperfect. They conjectured that for each posi-

tive integer k there exists a k-hyperperfect number.

A positive integer n is called semiperfect or pseudoperfect if there exists

a collection of distinct proper divisors of n such that their sum is n. For

example, 20 is semiperfect since its divisors include 1, 4, 5, 10, and

20 ¼ 10 þ 5 þ 4 þ 1. Every multiple of a semiperfect number is semiper-

fect, hence, there are infinitely many semiperfect numbers. It is an open

question whether every odd abundant number is semiperfect. A positive

integer is called primitive semiperfect if it is semiperfect and is not

divisible by any other semiperfect number. All numbers of the form 2m p,

where m > 1, p is prime, and 2m , p, 2mþ1, are primitive semiperfect as

Table 4.8. (e) 7-perfect numbers

1 246 . 315 . 53 . 75 . 11 . 13 . 17 . 192 . 23 . 31 . 37 . 41 .

43 . 61 . 89 . 97 . 127 . 193 . 2351 . 4513 . 442 151 .

13 264 529

Cunningham
(1902)

2 246 . 315 . 53 . 75 . 11 . 13 . 17 . 194 . 23 . 31 . 37 . 41 .

43 . 61 . 89 . 97 . 151 . 193 . 911 . 2351 . 4513 . 442 151 .

13 264 529

Cunningham
(1902)

3 232 . 311 . 54 . 75 . 112 . 132 . 17 . 193 . 23 . 31 . 37 .

43 . 61 . 71 . 73 . 89 . 181 . 2141 . 599 479
Poulet (1929)

4 232 . 311 . 54 . 78 . 112 . 132 . 172 . 193 . 23 . 31 . 372 .

61 . 67 . 71 . 73 . 89 . 181 . 307 . 1063 . 2141 . 599 479
Poulet (1929)

5 235 . 313 . 52 . 75 . 113 . 13 . 17 . 192 . 312 . 372 . 41 .

43 . 61 . 67 . 73 . 83 . 109 . 127 . 163 . 307 . 331 . 5472 .

613 . 1093

Poulet (1929)

6 235 . 313 . 52 . 75 . 113 . 13 . 17 . 194 . 312 . 372 . 41 .

43 . 61 . 67 . 73 . 83 . 109 . 151 . 163 . 307 . 331 . 5472 .

613 . 911 . 1093

Poulet (1929)

7 235 . 313 . 52 . 75 . 113 . 17 . 192 . 31 . 372 . 41 . 47 .

612 . 67 . 73 . 97 . 109 . 127 . 163 . 307 . 5472 . 613 . 1093
Poulet (1929)

8 235 . 313 . 52 . 75 . 113 . 17 . 194 . 31 . 372 . 41 . 47 .

612 . 67 . 73 . 97 . 109 . 151 . 163 . 307 . 5472 . 613 .

911 . 1093

Poulet (1929)

9 235 . 313 . 53 . 74 . 112 . 133 . 172 . 192 . 23 . 372 . 41 .

43 . 67 . 73 . 109 . 127 . 163 . 3072 . 367 . 467 . 5472 .

613 . 733 . 1093 . 2801

Poulet (1929)

10 235 . 313 . 53 . 74 . 112 . 133 . 172 . 194 . 23 . 372 . 41 .

43 . 67 . 73 . 109 . 151 . 163 . 3072 . 367 . 467 . 5472 .

613 . 733 . 911 . 1093 . 2801

Poulet (1929)
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are 770 and 945. The smallest odd primitive semiperfect number is 945.

An abundant number which is not semiperfect is called a weird number.

There are 24 weird numbers known, all even and less than 106.

In 1680, Leibniz conjectured that if n was not prime then n did not

divide 2n � 2. In 1736, Euler proved that if p was prime then it divided

2 p � 2. It was thought for a while that if a positive integer n divided

2n � 2, then it was prime. However, in 1819, F. Sarrus showed 341 divides

2341 � 2, yet 341 ¼ 11 . 31. Hence, there exist composite numbers n, called

pseudoprimes, which divide 2n � 2. Even though all composite Fermat

numbers are pseudoprime, pseudoprimes are much rarer than primes. In

1877, Lucas showed that 2701 is a pseudoprime. The smallest even

pseudoprime, 161 038, was discovered in 1950 by D.H. Lehmer. In 1903,

E. Malo showed that if n. 1 was an odd pseudoprime then so was 2n � 1.

In 1972, A. Rotkiewicz showed that if p and q were distinct primes then

p . q is pseudoprime if and only if (2 p � 1)(2q � 1) is pseudoprime.

Hence, there are an infinite number of pseudoprimes. For example,

2341 � 2 is a pseudoprime since 2341 � 2 ¼ 2(2340 � 1) ¼ 2[(210)34 � 134]

¼ 2[(210 � 1)(. . .)] ¼ 2[(1023)(. . .)] ¼ 2[(3)(341)(. . .)]. Thus, the compo-

site 341, divides 2341 � 2.

A composite integer m is called a k-pseudoprime if m divides km � k.

For example, 341 is a 2-pseudoprime. a 2-pseudoprime is often referred to

simply as a pseudoprime. A composite integer m is called a Carmichael

number if m divides km � k whenever 1, k, m and gcd(k, m) ¼ 1.

Hence, a Carmichael number m is a number that is a k-pseudoprime for all

values of k, where gcd(k, m) ¼ 1. In Example 5.9, we show that

561 ¼ 3 . 11 . 17 is a Carmichael number.

All Carmichael numbers are odd and the product of at least three prime

factors. In 1939, J. Chernick showed that if m > 1 and n ¼ (6mþ 1)(12m

þ 1)(18mþ 1), and 6mþ 1, 12mþ 1, and 18mþ 1 are prime, then n is a

Carmichael number. For example, 1729 ¼ 7 . 13 . 19 is a Carmichael num-

ber. A. Korselt devised a criterion in 1899 for such numbers showing that a

positive integer n is Carmichael if and only if n is squarefree and p� 1

divides n� 1 for all primes p which divide n. In 1993, W.R. Alford, A.

Granville, and C. Pomerance showed that there are no more than n2=7

Carmichael numbers less than or equal to n. Richard Pinch of Cambridge

University calculated all 105 212 Carmichael numbers less than 1015. In

1994, Alford, Granville, and Pomerance proved that there are an infinite

number of Carmichael numbers. See Table 4.9.

In 1948, A.K. Srinivasan defined a positive integer n to be practical if

every positive integer less than n can be expressed as a sum of distinct
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divisors of n. If n is a positive integer, then 2n�1(2n � 1) is practical. There

are 49 practical numbers less than 200. The integer 10 is not practical since

4 cannot be expressed as a sum of distinct divisors of 10. However, 8 is

practical since 1 ¼ 1, 2 ¼ 2, 3 ¼ 2 þ 1, 4 ¼ 4, 5 ¼ 4 þ 1, 6 ¼ 4 þ 2, and

7 ¼ 4 þ 2 þ 1.

A positive integer n is called unitary nonrepetitive, if, excluding the

divisors 1 and n, it is possible to express n� 1 as a sum of some or all of

the remaining divisors of n using each divisor once and only once. For

example, 6 and 20 are unitary nonrepetitive since 5 ¼ 2 þ 3 and 19 ¼ 10

þ 5 þ 4. In fact, every perfect number is unitary nonrepetitive.

A positive integer is called an Ore number if the harmonic mean of its

divisors is an integer. That is, n is Ore if H(n) ¼ n . �(n)=� (n) is an

integer. Every Euclidean perfect number is Ore. The smallest Ore number

which is not perfect is 140.

Thabit ibn Qurra introduced two terms that describe the deviation of a

number from being perfect. He defined the abundancy of an abundant

number, denoted by Æ(n), as � (n) � 2n and the deficiency of a deficient

number, denoted by �(n), as 2n� � (n). A positive integer n is called

Table 4.9. The 20 smallest

Carmichael numbers

561 ¼ 3 . 11 . 17
1 105 ¼ 5 . 13 . 17
1 729 ¼ 7 . 13 . 19
2 465 ¼ 5 . 17 . 29
2 821 ¼ 7 . 13 . 31
6 601 ¼ 7 . 23 . 41
8 911 ¼ 7 . 19 . 67

10 585 ¼ 5 . 29 . 73
15 841 ¼ 7 . 31 . 73
29 341 ¼ 13 . 37 . 61
41 041 ¼ 7 . 11 . 13 . 41
46 657 ¼ 13 . 37 . 97
52 633 ¼ 7 . 73 . 103
62 745 ¼ 3 . 5 . 47 . 89
63 973 ¼ 7 . 13 . 19 . 37
75 361 ¼ 11 . 13 . 17 . 31

101 101 ¼ 7 . 11 . 13 . 101
115 921 ¼ 13 . 37 . 241
126 217 ¼ 7 . 13 . 19 . 73
162 401 ¼ 17 . 41 . 233
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quasiperfect if it has an abundancy of 1 and almost perfect if it has a

deficiency of 1.

A more modern definition of abundancy, denoted by a(n), is given by

a(n) ¼ � (n)=n. Two positive integers are called friendly if they have the

same abundancy, for example 12 and 234 are friendly since a(12) ¼
a(234) ¼ 7=3. More precisely, two positive integers are called k-friendly if

they have the same abundancy k, for example 120 and 672 are 3-friendly.

A clique is a set of three or more friendly numbers. The perfect numbers

form a clique as do the k-multiperfect numbers for k. 2. A positive integer

with no friends is called solitary. A primitive friendly pair of positive

integers consists of a pair of friendly numbers with no common factor of

the same multiplicity, for example 6 and 28 are primitive friendly while 30

and 140 are friendly but not primitive friendly.

Every quasiperfect number n is the square of an odd integer, is greater

than 1020, and ø(n) > 5, but so far none has been found. The only

examples of almost perfect numbers are powers of 2. A positive integer n

is called superperfect if � (� (n)) ¼ 2n. In 1969, D. Suryanarayana showed

that all even superperfect numbers are of the form 2 p�1, where 2 p � 1 is a

Mersenne prime. That same year, H.-J. Kanold showed that odd super-

perfect numbers must be square numbers. In 1975, Carl Pomerance showed

that there are no odd superperfect numbers less than 7 . 1024. In 1944, Paul

Erdös and Leon Alaoglu defined a positive integer n to be superabundant if

� (n)=n. � (k)=k, for all positive integers k, n. For example, 2 and 4 are

superabundant, but 3 and 5 are not. There exist an infinite number of

superabundant numbers.

A positive integer n is called m-superperfect if � m(n) ¼ 2n. For m > 3,

no even m-superperfect number exists. Paul Erdös defined a positive

integer n to be untouchable if there does not exist a positive integer x such

that � (x) ¼ n. For example, 2, 52, 88, 96, and 120 are untouchable. A

divisor d of a natural number n is said to be unitary if gcd(d, n=d) ¼ 1.

The sum of the unitary divisors of n is denoted by �
(n). A natural number

is said to be unitary perfect if �
(n) ¼ 2n. Since �
(60) ¼ 1 þ
3 þ 4 þ 5 þ 12 þ 15 þ 20 þ 60 ¼ 120, 60 is unitary perfect. In 1975,

Charles Wall showed that there are no odd unitary perfect numbers. The

only unitary perfect numbers known are 6, 60, 90, 87 360, and

146 361 946 186 458 562 560 000 (218 . 3 . 54 . 7 . 11 . 13 . 19 . 37 . 79 . 109
. 157 . 313).

In 1971, Peter Haggis defined a pair of positive integers (m, n) to be

unitary amicable if �
(m) ¼ �
(n) ¼ mþ n. Nineteen unitary amicable

pairs have been discovered including (114, 126), (1140, 1260), and
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(18 018, 22 302). No coprime pair of unitary amicable numbers has been

discovered. It is an open question whether there are infinitely many pairs of

unitary amicable numbers.

Exercises 4.4

1. Show that 120, 672, and 523 776 ¼ 29 . 3 . 11 . 31 are 3-perfect.

2. Prove that there are no squarefree 3-perfect numbers.

3. Show that 30 240 ¼ 25 . 33 . 5 . 7 is 4-perfect. [Descartes]

4. Show that 14 182 439 040 ¼ 27 . 34 . 5 . 7 . 112 . 17 . 19 is 5-perfect.

[Descartes]

5. Let (� (n) � n)=n ¼ h. If h is an integer we call n an h-fold perfect

number. Show that n is an h-fold perfect number if and only if n is

(h� 1)-perfect.

6. Show that 21, 2133, and 19 521 are 2-hyperperfect.

7. Show that 325 is 3-hyperperfect.

8. Show that 36, 40, 770, and 945 are pseudoperfect.

9. Show that 770 and 945 are primitive semiperfect.

10. Show that 70 is weird.

11. Show that 161 038 ¼ 2 . 73 . 1103 is a pseudoprime.

12. Show that 24 is a practical number.

13. Show that Euclidean perfect numbers are practical.

14. Show that 24 is unitary nonrepetitive.

15. Show that all perfect numbers are unitary nonrepetitive.

16. Show that 140 is an Ore number.

17. Prove that every perfect number is Ore.

18. Determine the abundancy Æ(n) of 60 and the deficiency �(n) of 26.

19. The arithmetic mean of the divisors of a positive integer is denoted by

A(n) and given by A(n) ¼ � (n)=�(n). Determine the arithmetic mean

of the divisors of pÆ, where p is prime and Æ is a positive integer.

20. A positive integer n is called arithmetic if the arithmetic mean of its

divisors is an integer. Determine the first 10 arithmetic numbers.

21. Determine the harmonic mean, H(n) ¼ n . �(n)=� (n), of the divisors

of pÆ, where p is prime and Æ is a positive integer.

22. Oystein Ore of Yale conjectured that H(n) is never an integer when n

is odd, if n. 1, then H(n). 1 and except for n ¼ 1, 4, 6, or a prime,

H(n). 2. Determine H(1), H(4), H(6), and H(p), where p is prime.

23. Determine H(2n�1(2n � 1)) where 2n�1(2n � 1) is a Euclidean perfect

number.

24. Determine the geometric mean, G(n) ¼ (
Q

djnd)1=�(n), of the divisors
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of pÆ, where p is prime and Æ is a positive integer.

25. Show that A(n) and H(n) are multiplicative. Is G(n) multiplicative?

26. Show that 2n, for n a positive integer, is almost perfect.

27. Show that 16 is a superperfect number.

28. Show that 90 and 87 360 are unitary perfect.

29. Show that if n ¼ Qr
i¼1 p

Æi

i , then �
(n) ¼ Qr
i¼1(p

Æi

i þ 1).

30. A positive number is called primitive abundant if it is abundant, but all

of its proper divisors are deficient. Find a primitive abundant positive

integer.

31. Show that 114 and 126 are a unitary amicable pair.

32. Find five solitary numbers that are not prime or a power of a prime.

33. Find a number that is primitive friendly to 24.

34. Excluding multiperfect numbers, find a clique consisting of three

numbers.

35. Show that if a and b are friendly and c is coprime to a and b then ac

and bc are friendly.

4.5 Supplementary exercises

1. Determine the number of digits in the first ten Euclidean perfect

numbers.

2. Determine the abundancy of 132, 160, and 186.

3. Determine the deficiency of 38, 46, and 68.

4. Show that all biprimes, except 2 . 3, are deficient.

5. Determine all biprimes that are perfect.

6. Classify the first 30 positive integers as being abundant, deficient, or

perfect.

7. Show that 945 is abundant.

8. How many digits does M20996011 have?

9. Show that every Euclidean perfect number is hexagonal.

10. Use the Lucas–Lehmer test to show that M13 is prime.

11. Use the Lucas–Lehmer test to show that M17 is prime.

12. Use the Lucas–Lehmer test to show that M19 is prime.

13. If n is an odd perfect number show that n ¼ p . m2, where p is prime.

14. Determine Gn ¼ 33n , where n ¼ 0, 1, 2, 3, 4.

15. Does the units digit of Gn end in 3 and 7, alternately?

16. Is the digital root of Gn always equal to 3 or 9?

17, Show that 22 . 5 . 251 and 22 . 13 . 107 are amicable.

18. Show that 1184 and 1210 are amicable.

19. Show that 17296 and 18416 are amicable.
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20. Show that 1050 and 1295 are betrothed.

21. Show that 2024 and 2295 are betrothed.

22. Are 503056 and 514736 amicable, betrothed, or neither?

23. Show that the sum of the reciprocals of the divisors of a k-perfect

number is k.

24. For what value of k is 32760 k-perfect?

25. For what value of k is 459818240 k-perfect?

26. For what value of k is 14290848 k-perfect?

27. For what value of k is 523776 k-perfect?

28. For what value of k is 1379454720 k-perfect?

29. Show that 84 is a pseudoperfect number.

30. Show that 18 is practical, pseudoperfect, and unitary nonrepetitive.

31. Which of 20, 26, and 38 are Ore numbers?

32. Determine the first fifteen practical numbers.

33. Show that 30, 56, 556, and 96 are practical numbers.

34. An even abundant number is called impractical if it is not practical.

Show that 70, 102, and 114 are impractical.

35. For what value of k are 301, 325, and 756 k-hyperperfect?

36. Show that 108, 126, and 160 are pseudoperfect.

37. Show that 1105, 2465, and 6601 are Carmichael numbers.

38. Show that 270, 496, and 672 are Ore numbers.

39. For any positive integer n, let P
(n) denote the product of the unitary

divisors of n. We say that n is multiplicatively unitary perfect if

P
(n) ¼ n2 and multiplicatively unitary superperfect if P
(P
(n)) ¼
n2. show that the product of two distinct primes is multiplicative

unitary perfect.

40. Find a multiplicatively unitary perfect number greater than unity that

is not a product of two primes.
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5

Modular arithmetic

Even if you are on the right track, you’ll get run over if you just

sit there.

Will Rogers

5.1 Congruence

In this section, we introduce a concept of fundamental importance that will

revolutionize the way we regard problems concerning divisibility. Albeit the

underlying ideas have Indian and Chinese origins and Euler investigated

some basic properties of remainders, it was Gauss who, in 1801, introduced

the modern concepts of congruence and the arithmetic of residue classes to

European audiences in Disquisitiones arithmeticae (Arithmetical Investiga-

tions) when he was 24. Gauss considered number theory to be the queen of

mathematics. To him, its magical charm and inexhaustible wealth of

intriguing problems placed it on a level way above other branches of

mathematics. We owe a debt of gratitude to mathematicians such as Euler,

Lagrange, Legendre, and Gauss for treating number theory as a branch of

mathematics and not just a collection of interesting problems.

Given three integers a, b, and m, with m > 2, we say that a is congruent

to b modulo m, denoted by a � b (mod m), if a and b yield the same

remainder or residue when divided by m. Equivalently, a � b (mod m), if

there is an integer k such that a� b ¼ km, that is, their difference is

divisible by m. If a is not congruent to b modulo m we write a 6� b (mod

m). For example, 52 � 38 (mod 7) since 52� 38 ¼ 14 ¼ 2 . 7. If

a ¼ mqþ r, with 0 < r, m, then r is called the least residue of a modulo

m. The least residue of 58 modulo 4 is 2 since 58 ¼ 4 . 14þ 2 and

0 < 2, 4. If the columns for the residue classes modulo 4 in Table 5.1

below were extended, 58 would appear in the penultimate column. The

ability to effectively replace congruences with equalities and vice versa

will be of crucial importance in solving problems. For example, 5x � 6

(mod 11) if and only if there is an integer k such that 5x ¼ 6þ 11k.

Similarly, if 3xþ 5y ¼ 7, then 3x � 7 (mod 5) and 5y � 7 (mod 3).

By a partition of a set S, we mean a collection of disjoint subsets of S
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whose union is S. Given a set S, a relation R on S is a subset of

S 3 S ¼ f(a, b): a 2 S and b 2 Sg. We say that a is related to b, denoted

by aRb, if (a, b) is in R. For example, ‘divides’ is a relation on Z3 Z. A

relation R is reflexive on S if, for all a in S, aRa; symmetric, if aRb implies

bRa; and transitive, if aRb and bRc imply aRc. An equivalence relation R

on S is a subset of S 3 S which is reflexive, symmetric, and transitive.

Given an equivalence relation R on a set S, the subsets Ra ¼ fx: xRag
form a partition of S. Conversely, given a partition of S, the relation R such

that aRb if a and b are in the same subset of the partition is an equivalence

relation on S. In Theorem 5.1, we show that congruence is an equivalence

relation on the set of integers and, hence, splits the integers into disjoint

residue classes. The disjoint residue classes modulo 3 and 4 are represented

by the columns in Table 5.1.

Theorem 5.1 Congruence is an equivalence relation on the set of inte-

gers.

Proof Let R correspond to the relation ‘is congruent to modulo m’, where

m > 2 is a positive integer. That is, aRb signifies that a � b (mod m). For

any integer a, a ¼ aþ 0 . m, hence, a � a (mod m) implying that aRa.

Therefore, congruence is a reflexive relation. If a and b are integers such

that aRb, then a � b (mod m). Hence, for some integer k, a ¼ bþ km.

Thus, b ¼ aþ (�k)m implying that b � a (mod m). Hence, bRa. There-

fore, congruence is symmetric. If a, b, and c are integers such that aRb and

bRc, then a � b (mod m) and b � c (mod m). Hence, there exist integers s

Table 5.1.
(a) Residue classes modulo 3 (b) Residue classes modulo 4

(0)3 (1)3 (2)3 (0)4 (1)4 (2)4 (3)4

. . . . . . . . . . . . . . . . . . . . .
�12 �11 �10 �16 �15 �14 �13
�9 �8 �7 �12 �11 �10 �9
�6 �5 �4 �8 �7 �6 �5
�3 �2 �1 �4 �3 �2 �1
0 1 2 0 1 2 3
3 4 5 4 5 6 7
6 7 8 8 9 10 11
9 10 11 12 13 14 15
12 13 14 16 17 18 19
. . . . . . . . . . . . . . . . . . . . .

162 Modular arithmetic



and t such that a ¼ bþ sm and b ¼ cþ tm. Thus, a ¼ cþ (sþ t)m imply-

ing that a � c (mod m), hence, aRc and congruence is transitive. Therefore,

we have established that congruence is an equivalence relation. j

Each residue class modulo m is infinite and consists of all the integers

having the same remainder when divided by m. Let (a)m ¼
faþ km: k 2 Zg, for example (3)5 ¼ f. . . , �2, �7, �2, 3, 8, 13, . . .g.
In Table 5.1(a), the three disjoint residue classes modulo 3, (0)3, (1)3, (2)3,

constitute the three columns. In Table 5.1(b), the four disjoint residue

classes modulo 4, (0)4, (1)4, (2)4, (3)4, constitute the four columns. Every

integer appears in one of the three columns in Table 5.1(a) and in one of

the four columns in Table 5.1(b).

A complete residue system modulo m consists of any set of m integers,

no two of which are congruent modulo m. For example, f�12, �2, 8g and
f7, 15, 23g form complete residue systems modulo 3. The set f1,
2, 3, . . . , mg forms a complete residue system modulo m as does the set

f0, 	1, 	2, . . . , 	(m� 1)=2g when m is odd. Usually, the most conveni-

ent complete residue system modulo m to work with is the least residue

system f0, 1, 2, 3, . . . , m� 1g.
The next result illustrates the property that two integers are congruent

modulo m, that is, belong to the same residue class modulo m, if and only

if they have the same remainder when each is divided by m.

Theorem 5.2 The integers a and b have the same least residue modulo m

if and only if a � b (mod m).

Proof Let r and s be the least residues of a and b modulo m, respectively.

From the division algorithm there exist integers t and u such that

a ¼ mt þ r and b ¼ muþ s, with 0 < r, m and 0 < s, m. Thus

a� b ¼ m(t � u)þ (r � s). Hence m divides a� b if and only if m

divides r � s. Since both r and s are less than m, m divides r � s if and

only if r � s ¼ 0. Therefore, a � b (mod m) if and only if r ¼ s. j

If a � b (mod m) and c � d (mod m), there exist integers r and s such that

a ¼ bþ rm and c ¼ d þ sm, hence aþ c ¼ bþ d þ (r þ s)m and ac ¼
(bþ rm)(d þ sm) ¼ bd þ (rd þ bsþ rsm)m. Hence, aþ c � bþ d (mod

m) and ac � bd (mod m). We generalize these two results in the next two

theorems. The proofs are straightforward and are left as exercises.

Theorem 5.3 If ai � bi (mod m), for i ¼ 1, 2, . . . , n, then
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(a)
Xn

i¼1
ai �

Xn

i¼1
bi (mod m), and (b)

Yn
i¼1

ai �
Yn
i¼1

bi (mod m):

Theorem 5.4 If a � b (mod m), forany integer c and nonnegative integer n,

(a) a	 c � b	 c (mod m),

(b) ac � bc (mod m),

(c) an � bn (mod m).

For example, since (27)(98)þ (13)(15)77 � 6 . 0þ (�1)(1)77 � 6 (mod 7),

it follows from Theorem 5.4 that the least positive residue of

(27)(98) þ (13)(15)77 modulo 7 is 6. Equivalently, the remainder when

(27)(98) þ (13)(15)77 is divided by 7 is 6.

Halley’s comet appears in our skies approximately every 76 years. It

visited us in 1835, 1910, and most recently in 1986. It will return in 2061.

From Theorem 5.4, 18351910 þ 19862061 � 11910 þ 52061 � 1þ (56)343 .

53 � 1þ (1)343 . 6 � 1þ 6 � 0 (mod 7). Hence, 7 divides 18351910 þ
19862061.

In the seventeenth century, English spelling was not as uniform as it is

now. Halley spelt his name differently on a number of occasions. In 1985,

Ian Ridpath, a British astronomer, used the London telephone directory to

conduct an informal survey to determine how people with the surname

Halley pronounced their name. The majority of those surveyed preferred

[HAL ee]. However, some used [HALL ee], some [HAIL ee], and some

preferred not to be disturbed. How Edmond Halley pronounced his name

remains an open question.

Example 5.1 If p is a prime greater than 3, then p � 	1 (mod 3). Hence,
p2 � 1 (mod 3) and p2 þ 2 � 0 (mod 3). Since 2 � �1 (mod 3), for any
positive integer n, 22

n � 1 (mod 3). Hence, 22
n þ 5 � 6 � 0 (mod 3). Thus

3 divides 22
n þ 5. Therefore, if p is a prime greater than 3, p2 þ 2 is

composite and, for any positive integer n, 22
n þ 5 is composite.

The following result follows from Theorem 2.8 using a straightforward

inductive argument that we omit.

Theorem 5.5 If a � b (mod mi), for i ¼ 1, 2, . . . , k, where m1, m2, . . . ,

mk are pairwise coprime, then a � b (mod m), where m ¼ Qk
i¼1 mi.

If gcd(m, n) ¼ 1, the system of congruences x � a (mod m) and x � b

(mod n) can be written as a single congruence of the form x � c (mod mn).
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For example, if x � 1 (mod 5) and x � 3 (mod 4) then there is an integer k

such that x ¼ 1þ 5k. Since 1þ 5k � 3 (mod 4), k � 2 (mod 4) or

k ¼ 2þ 4t. Substituting, we obtain x ¼ 1þ 5(2þ 4t) ¼ 11þ 20t. There-

fore, x � 11 (mod 20).

In modular arithmetic the cancellation law, if ac � bc (mod m) then

a � b (mod m), does not necessarily hold. For example, 4 . 5 � 4 . 8

(mod 6) but 5 6� 8 (mod 6). However, we can establish the following result.

Theorem 5.6 If ac � bc (mod m) then a � b (mod m=d), where d is the

greatest common divisor of c and m.

Proof If ac � bc (mod m), there exists an integer k such that

ac� bc ¼ km. Let d ¼ gcd(c, m); then (a� b)(c=d) ¼ k(m=d), with

gcd(c=d, m=d) ¼ 1. Hence, m=d divides a� b or, equivalently, a � b

(mod m=d). j

Corollary If ac � bc (mod m) and gcd(c, m) ¼ 1, then a � b (mod m).

Example 5.2 Raising both sides of the congruence 5 . 27 ¼ �1 (mod 641)
to the fourth power yields 54 . 228 � 1 (mod 641). Since 641 ¼ 625þ 16,

54 � �24 (mod 641) and, hence, 232 � �1 (mod 641). The latter con-
gruence implies that there is an integer k such that 232 þ 1 ¼ 641 . k.

Hence, 641 divides 232 þ 1. Therefore, the Fermat number F5 is compo-

site.

Example 5.3 (The binary-square technique) Consider the composite

number 161 038 ¼ 2 . 73 . 1103. Since 161 037 can be represented in

binary notation as 100 111 010 100 001 1012, 161 037 ¼ 217 þ 214 þ 213 þ
212 þ 210 þ 28 þ 23 þ 22 þ 20 and, hence, 2161 037 ¼ 2131 072 . 216 384 .

28192 . 24096 . 21024 . 2256 . 28 . 24 . 21. Beginning with 21 � 2 (mod 73) and

21 � 2 (mod 1103) and squaring both sides of the congruence in each

succeeding step, we obtain the following array.

21 � 2 (mod 73) 21 � 2 (mod 1103)

22 � 4 (mod 73) 22 � 4 (mod 1103)

24 � 16 (mod 73) 24 � 16 (mod 1103)

28 � 37 (mod 73) 28 � 256 (mod 1103)

216 � 55 (mod 73) 216 � 459 (mod 1103)

232 � 32 (mod 73) 232 � 8 (mod 1103)

264 � 2 (mod 73) 264 � 64 (mod 1103)

2128 � 4 (mod 73) 2128 � 787 (mod 1103)
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2256 � 16 (mod 73) 2256 � 586 (mod 1103)

2512 � 37 (mod 73) 2512 � 363 (mod 1103)

21024 � 55 (mod 73) 21024 � 512 (mod 1103)

22048 � 32 (mod 73) 22048 � 733 (mod 1103)

24096 � 2 (mod 73) 24096 � 128 (mod 1103)

28192 � 4 (mod 73) 28192 � 942 (mod 1103)

216 384 � 16 (mod 73) 216 384 � 552 (mod 1103)

232 768 � 37 (mod 73) 232 768 � 276 (mod 1103)

265 536 � 55 (mod 73) 265 536 � 69 (mod 1103)

2131 072 � 32 (mod 73) 2131 072 � 349 (mod 1103)

Therefore,

2161 037 � 2131 072 . 216 384 . 28192 . 24096 . 21024 . 2256 . 28 . 24 . 2

� 32 . 16 . 4 . 2 . 55 . 16 . 37 . 16 . 2 � 4 267 704 320 � 1 (mod 73),

and

2161 037 � 2131 072 . 216 384 . 28192 . 24096 . 21024 . 2256 . 28 . 24 . 2

� (349 . 552 . 942 . 128) . (512 . 586 . 256 . 16 . 2)

� 23 228 725 248 . 2 457 862 144 � 787 . 918 � 1 (mod 1103):

Thus, 2161 038 � 2 (mod 2), 2161 038 � 2 (mod 73), and 2161 038 � 2

(mod 1103). Thus, 2, 73, and 1103 each divide 2161 038 � 2. Therefore,

161 038 divides 2161 038 � 2 and, hence, 161 038 is a pseudoprime.

Harold Davenport of Cambridge University investigated properties of

systems of congruences, called Davenport coverings, such that each integer

satisfies at least one of the congruences. Davenport coverings having the

property that each integer satisfies exactly one congruence are called exact

Davenport coverings. For example, x � 0 (mod 2) and x � 1 (mod 2) is an

exact Davenport covering of the integers. A necessary condition that a

system of congruences be an exact Davenport covering is that the sum of

the reciprocals of the moduli is unity and the greatest common divisor of

the moduli is greater than one. Paul Erdös, the peripatetic Hungarian

mathematician, proposed the following open question: for any positive

integer n, does there exist a Davenport covering with distinct moduli all

greater than n? Three such examples of Davenport coverings with n ¼ 2

are given in the columns of Table 5.2.

Easter, named for Ostura, a pagan goddess of spring, was celebrated by

the early Christian Church. However, there was no uniform method for

determining Easter. The Council of Nicaea convened by Constantine the

Great on June 1, 325, to solve the problem caused by Arianism, formulated

the doctrine of the Trinity, ordered bishops to establish hospitals in every
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cathedral city, and fixed the date of Easter. They decreed that Easter would

henceforth occur on the first Sunday after the full moon that occurs on or

after March 21, the date of the vernal equinox. As a consequence, each

year Easter falls between March 22 (in 2285) and April 25 (in 2038), the

least common occurrence being March 22 and the most common being

April 19. Gauss’s method for determining the date of Easter is illustrated

below.

In Table 5.3, m and n are given by m � 15þ C � ½½C=4�� �
½½(8C þ 13)=25�� (mod 30) and n � 4þ C � ½½C=4�� (mod 7), where C de-

notes the century year. For example, for 1941, C ¼ 19. Gauss let

a ¼ YEAR (mod 4),

b ¼ YEAR (mod 7),

c ¼ YEAR (mod 19),

d ¼ 19cþ m (mod 30),

e ¼ 2aþ 4bþ 6d þ n (mod 7),

According to Gauss’s algorithm, Easter is either March (22þ d þ e) or

April (d þ e� 9). Gauss noted two exceptions to his rule: if d ¼ 29 and

e ¼ 6, Easter falls one week earlier, on April 19; if d ¼ 28, e ¼ 6, and

m ¼ 2, 5, 10, 13, 16, 21, 24, or 39, Easter falls one week earlier, on April

Table 5.2.

x � 0 (mod 2) x � 0 (mod 2) x � 0 (mod 2)
x � 0 (mod 3) x � 0 (mod 3) x � 0 (mod 3)
x � 1 (mod 4) x � 1 (mod 4) x � 1 (mod 4)
x � 1 (mod 6) x � 5 (mod 6) x � 3 (mod 8)
x � 11 (mod 12) x � 7 (mod 12) x � 7 (mod 12)

x � 23 (mod 24)

Table 5.3.

Period m n

1583–1699 22 2
1700–1799 23 3
1800–1899 23 4
1900–1999 24 5
2000–2099 24 5
2100–2199 24 6
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18. For example, for the year 2020, a ¼ 0, b ¼ 4, c ¼ 6, d ¼ 18, and

e ¼ 3. Hence, in 2020, Easter will fall on April 12.

Exercises 5.1

1. If a � b (mod m), prove for any integer c and nonnegative integer n

that

(a) a	 c � b	 c (mod m),

(b) ac � bc (mod m), and

(c) an � bn (mod m).

2. If ai � bi (mod m), for i ¼ 1, 2, . . . , n, prove that

(a)
Xn

i¼1
ai ¼

Xn

i¼1
bi (mod m) and (b)

Yn
i¼1

ai ¼
Yn
i¼1

bi (mod m):

3. If a � b (mod m1) and a � b (mod m2) where gcd(m1, m2) ¼ 1, prove

that a � b (mod m1m2).

4. Show that if a � b (mod m) and d divides m, where d. 0, then a � b

(mod d).

5. If a � b (mod m) and a � b (mod n) then show that a � b

(mod lcm(m, n)).

6. Show that if a � b (mod m) and c � d (mod m) then for any integers

x and y, (axþ cy) � (bxþ dy) (mod m).

7. Prove that if a � b (mod m), then gcd(a, m) ¼ gcd(b, m).

8. Show that if a2 � b2 (mod p), where p is prime, then either p divides

aþ b or p divides a� b.

9. Show that f47, 86, 22, �14, 32, 20, 143g is a complete residue sys-
tem modulo 7.

10. Find all integers x such that �100 < x < 100, and x � 7 (mod 19).

11. Find a complete residue system modulo 11 composed of multiples

of 7.

12. Show that f2, 4, 6, . . . , 2mg is a complete residue system modulo m

if and only if m is odd.

13. Show that f12, 22, 32, . . . , m2g is never a complete residue system
modulo m if m. 2.

14. Show that 7 divides 19411963 þ 19631991:

15. Determine the last two digits of 99
9

.

16. Show that 39 divides 53103 þ 10353.

17. Show that 7 divides 111333 þ 333111.

18. What is the least positive remainder when 19385 is divided by 31?

19. Find the units digit of 397.

20. What are the last two digits of 31000?
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21. Find the remainder when 1!þ 2! þ � � � þ 100! is divided by 15.

22. Find the remainder when 15 þ 25 þ � � � þ 1005 is divided by 4.

23. Show that 61!þ 1 � 63!þ 1 (mod 71).

24. Show that 7 divides 52n þ 3 . 25n�2 for any positive integer n.
25. Show that 13 divides 3nþ2 þ 42nþ1 for any positive integer n.
26. If n is odd then show that n2 � 1 (mod 8).

27. What was the date of Easter in 1916?

28. What day does Easter fall in the current year?

29. Show that x � 0 (mod 2), x � 0 (mod 3), x � 1 (mod 4), x � 1

(mod 6), and x � 11 (mod 12) form a Davenport covering for the

integers.

30. Show that the cube of any positive integer leaves a remainder 0, 1, or 8

when divided by 9.

31. Show that the sum of three consecutive cubes is a multiple of 9.

32. If n ¼ ckb
k þ � � � þ c1bþ c0, where 0, ck , b, 0 < ci, b, for

i ¼ 1, 2, . . . , k � 1, and b. 1 is a positive integer, show that b� 1

divides n if and only if b� 1 divides c0 þ � � � þ ck .

33. If the positive integer n has the remainders r and s when divided by

the positive integers m and mþ 1, respectively, show that n has the

remainder (mþ 1)r þ m2s when divided by m(mþ 1). [Stifel 1544]

5.2 Divisibility criteria

Before the age of calculators and computers a number of very practical

criteria were used to test for divisibility. For example, in the Talmud it is

written, if a and b are positive integers and 7 divides 2aþ b, then 7 divides

100aþ b. Other rules can be found in the works of al-Khwarizmi and

Fibonacci, who included divisibility criteria for 7, 9, and 11 in Liber abaci.

Some are very straightforward, for example, for any integer n, 2 divides n

if and only if the last digit of n is even, and 5 divides n if and only if the

last digit of n is either 0 or 5. The next result is helpful in establishing

divisibility criteria for other positive integers.

Theorem 5.7 Let f (x) � Pn
i¼0cix

i (mod m), where the ci are integers, for

i ¼ 1, 2, . . . , n. If a � b (mod m), then f (a) � f (b) (mod m).

Proof It follows from Theorem 5.4 that, since a � b (mod m), ai � bi

(mod m), and cia
i � cib

i (mod m), for i ¼ 1, 2, . . . , n. Hence,Pn
i¼0cia

i ¼ Pn
i¼0cib

i, and the result is established. j
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Before assuming the chair of mathematics at Montpellier, Joseph Diez

Gergonne was an artillery officer and taught at the Lyceum in Nı̂mes. The

Gergonne point of a triangle, the intersection of the Cevians joining the

vertices of the triangle with the points of contact of the incircle, is named

for him. He founded the mathematics journal Annales de Mathématiques

and in 1814, devised the following divisibility criteria.

Theorem 5.8 Let
Pn

i¼0ai(10)
i be the decimal representation of an integer

a, s ¼ Pn
i¼1ai, the sum of the digits of a, and t ¼ Pn

i¼0(�1)iai, the

alternating sum of the digits of a; then

(a) 9ja if and only if 9js,
(b) 3ja if and only if 3js, and
(c) 11ja if and only if 11jt.

Proof If f (x) ¼ Pn
i¼0aix

i, then a ¼ f (10), s ¼ f (1), and t ¼ f (�1).
Since 10 � 1 (mod 9), a � s (mod 9) or a� s ¼ 9k. Hence, 9|a if and only

if 9|s. Similarly, 3|a if and only if 3|s. Since 10 � (�1) (mod 11), a � t

(mod 11), so 11|a if and only if 11| t. j

Example 5.4 Suppose we wish to determine x, y, z, given that 5, 9, and 11

divide 2x1642y032z. Since 5 divides the number z ¼ 0 or 5. From

Theorem 5.8, xþ yþ z � 7 (mod 9) and �xþ yþ z � 0 (mod 11). If

z ¼ 0, xþ y � 7 (mod 9) and �xþ y � 0 (mod 11), with x ¼ y ¼ 8 as a

solution. If z ¼ 5, xþ y � 2 (mod 9) and �xþ y � 6 (mod 11), then

x ¼ 8 and y ¼ 3 is a solution. Therefore, solutions are given by

28 164 280 320 (212 . 32 . 5 . 11 . 29 . 479) and 28 164 230 325 (5 . 9 . 11 .

56 897 435).

Example 5.5 Using divisibility criteria, we show that each term of the

sequence 49, 4489, 444 889, 44 448 889, 4 444 488 889, . . . is a square. The

general term of the sequence is given by

9þ 8 . 10þ 8 . 102 þ � � � þ 8 . 10n þ 4 . 10nþ1 þ � � � þ 4 . 102nþ1

¼ 1þ 4(1þ 10þ 102 þ � � � þ 10n)þ 4(1þ 10 þ � � � þ 102nþ1)

¼ 1þ 4 .
10nþ1 � 1

9
þ 4 .

102nþ2 � 1

9
¼ 4 . 102nþ2 þ 4 . 10nþ1 þ 1

9

¼ 2 . 10nþ1 þ 1

3

� �2

:
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From Theorem 5.8, 3 divides 2 . 10nþ1 þ 1. Therefore, (2 . 10nþ1 þ 1)=3 is

an integer and the result is established.

Example 5.6 (A divisibility rule for 7) Given a positive integer n, trun-

cate n by deleting the tens and units digits, then double the number that

remains and add to it the two-digit number that was truncated. The result is

divisible by 7 if and only if n is divisible by 7. Repeat the process until

divisibility or nondivisibility by 7 is obvious. Consider n ¼ 13 295 476. We

have

2(132 954)þ 76 ¼ 265 984,

2(2659)þ 84 ¼ 5402,

2(54)þ 02 ¼ 110:

Since 110 is not divisible by 7, 13 295 476 is not divisible by 7.

Example 5.7 (A divisibility rule for 13) Given a positive integer n,

truncate n by deleting the units digit. Four times the units digit added to

the remaining number is divisible by 13 if and only if n is divisible by 13.

Repeat the process until divisibility or nondivisibility by 13 is obvious.

Consider n ¼ 53 699 139; we have

5 369 913þ 4(9) ¼ 5 369 949,

536 994þ 4(9) ¼ 537 030,

53 703þ 4(0) ¼ 53 703,

5370þ 4(3) ¼ 5382,

538þ 4(2) ¼ 546,

54þ 4(6) ¼ 78,

7þ 4(8) ¼ 39:

Since 39 is divisible by 13, 53 699 139 is divisible by 13.

The process of casting out nines can be traced to the tenth century Islamic

physician and philosopher, Avicenna [AVE eh SEN ah]. It was popular in

medieval schools as a check of arithmetical calculations and is based on

properties of digital roots. For instance, the digital root of 9785 is 2 and the

digital root of 4593 is 3. Hence, the digital root of their sum must be 5.

That is, r(9785)þ r(4593) ¼ 2þ 3 ¼ 5 ¼ r(14 378). Analogously, using
congruence notation, we have 9785 � 2 (mod 9) and 4593 � 3 (mod 9),
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and 9785þ 4593 ¼ 14 378 � 5 (mod 9). The technique of casting out

nines is most beneficial in finding errors in addition and multiplication.

In a number of medieval schools a method called the cross bones check,

based on digital roots, was employed. For example, suppose we wish to

multiply 3253, whose digital root is 4, by 4912, whose digital root is 7. We

begin by making a cross and placing a 4 in the west position and a 7 in the

east position. Since 4 . 7 ¼ 28 has digital root 1, we put a 1 in the north

position. If after calculating, we found the product to be 15 978 836, we put

its digital root 2 in the south location, as shown in Figure 5.1. However, the

2 in the south position does not equal the 1 in the north position indicating

we have made a mistake in our calculation. The process of casting out

nines and the cross bones check are equivalent and both will pick up errors,

but neither will guarantee calculations are error free.

Exercises 5.2

1. Prove that if 7 divides 100aþ b, then 7 divides 2aþ b. Is the converse

true?

2. Show that if the sum of the digits of a number is subtracted from the

number, then the difference is always divisible by 9.

3. Without performing the indicated operations determine the digit x in

each of the following calculations.

(a) (65 248) . (124 589) ¼ 8 1x9 183 07x.

(b) (x12) . (1 9x3 12x) ¼ 1 000 000 000.

(c) 6 x56 681 ¼ (3(843 þ x))2.

4. Show that 9jRn if and only if 9jn, where Rn ¼ (10n � 1)=9.

5. Show that 11 divides Rn if and only if n is even.

6. Use the divisibility rule outlined in Example 5.6 to check if

691 504 249 989 is divisible by 7.

7. Use the divisibility rule outlined in Example 5.7 to check if

67 911 603 138 353 is divisible by 13.

8. Use the cross bones check to show that 125 696 times 458 does not

equal 57 569 585.

9. We can check the divisibility by 7 of a positive integer having more

4 7

1

2

Figure 5.1
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than two digits by deleting the units digit of the number and subtract-

ing twice the units digit from what remains. The result is divisible by 7

if and only if the original number is divisible by 7. We can check the

divisibility by 13 of a positive integer having more than three digits by

deleting the units digit of the number and subtracting 9 times the units

digit from what remains. The result is divisible by 13 if and only if the

original number is divisible by 13. Devise a similar rule for divisibility

by 17.

10. Show that when 7 . 541 is written out decimally at least one digit

appears more than three times.

5.3 Euler’s phi-function

We now introduce a very important and useful number theoretic function.

For any positive integer n, the Euler phi-function represents the number of

positive integers not exceeding n that are coprime to n, where by conven-

tion �(1) ¼ 1. For example, �(12) ¼ 4, since 1, 5, 7, and 11 are the only

integers that are positive, less than 12, and coprime to 12. Properties of the

function were first investigated by Euler in 1760, who at one time used

�(n) to denote the function. In Disquisitiones Gauss introduced the

notation �(n).
Euler’s phi-function has many interesting properties. For example,

except for n ¼ 1 and 2, �(n) is even. Except when gcd(n, 10) 6¼ 1 the

periods of the base 10 decimal expansions of the unit fractions 1=n are

divisors of �(n). In addition, � (n)þ �(n) ¼ n . �(n) is a necessary and
sufficient condition for n to be prime. In 1857, Liouville showed that

�(s� 1)

�(s)
¼

X1
n¼1

�(n)

ns
,

where s. 1 and � denotes the real Riemann zeta-function. Bounds for the
phi-function are given by ffiffiffi

n
p
2

,�(n) <
n

eª . lnln(n)
,

where ª denotes the Euler–Mascheroni constant. The average value of the
first n values for �(n) can be approximated, for large values of n, by

6n=�2. De la Vallée-Poussin showed that if a and b are coprime positive

integers and —a,b(x) denotes the number of primes of the form a . k þ b

less than or equal to x, for k a positive integer, then
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lim
x!1

—a,b(x)

x . ln(x)
¼ 1

�(a)
:

In 1950, H. Gupta showed that for all k > 1 there is a positive integer n

such that �(n) ¼ k! There are several open questions concerning the phi-

function. For example, in 1922 R.D. Carmichael asked, if given a natural

number n does there exist another natural number m such that

�(m) ¼ �(n)? In 1994, A. Shalafly and Stan Wagon showed that given a
positive integer n, if �(m) 6¼ �(n) for all m 6¼ n, then n. 1010 000 000. In

1932, D.H. Lehmer asked, if �(n) divides n� 1 does that always imply

that n is prime? Lehmer showed that if such a composite positive integer n

existed it would be odd, squarefree, and ø(n) > 7.

Let �(n) denote the number of positive integers k, 1 < k < n, such that

k is not a divisor of n and gcd(k, n) 6¼ 1. For example, �(n) ¼ 0, for n ¼ 1,

and �(n) ¼ 1, for n ¼ 6 and 9, and �(p) ¼ 0 whenever p is prime. By

construction, n ¼ �(n)þ �(n)þ �(n)� 1. From the Möbius inversion for-

mula, if 	(n) ¼ P
djn�(n), then �(n) ¼ P

djn
(d)	(n=d). Several number
theoretic functions are related by the identity

	(n) ¼ � (n)þ �(n)� 1

2

� �ø(n) Yø(n)
r¼1

(Æi þ 2)!

Æi!
� n,

where n ¼ Qr
i¼1 p

Æi

i .

The subset of the least residue system modulo n consisting of only those

integers which are less than n and are coprime to n is called a reduced

residue system modulo n. For example, the set f1, 5, 7, 11g forms the

reduced residue system modulo 12. For any positive integer n, the set

fx: 1 < x < n, gcd(x, n) ¼ 1g forms a multiplicative group with �(n)
elements.

Theorem 5.9 If fa1, a2, . . . , a�(m)g is a reduced residue system modulo

m, and gcd(c, m) ¼ 1, then fca1, ca2, . . . , ca�(m)g is also a reduced

residue system modulo m.

Proof Let fa1, a2, . . . , a�(m)g be a reduced residue system modulo m,

and gcd(c, m) ¼ 1. Since gcd(c, m) ¼ 1 and gcd(ai, m) ¼ 1, it follows

from Theorem 2.7 that gcd(cai, m) ¼ 1, for i ¼ 1, 2, . . . , �(m). If

cai � caj (mod m), for some 1 < i, j < �(m), it follows from the

corollary to Theorem 5.6 that ai ¼ aj, contradicting the fact that

fa1, a2, . . . , a�(m)g is a set of �(m) distinct elements. Therefore,

fca1, ca2, . . . , ca�(m)g is a set of �(m) incongruent integers coprime to
m. j
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One of the most elegant results concerning the Euler phi-function, due

to Gauss, is that j(d) summed over all the divisors d of a positive integer n
equals n.

Theorem 5.10 (Gauss) For any positive integer n,
P

djnj(d) ¼ n.

Proof Let nd denote the number of elements in f1, 2, . . . , ng having a
greatest common divisor of d with n, then

n ¼
X
djn

nd ¼
X
djn

n

d

� �
¼

X
djn

j(d): j

One of the most important properties concerning the phi-function is its

multiplicativity.

Theorem 5.11 The Euler phi-function is multiplicative, that is, if

gcd(m, n) ¼ 1, then �(mn) ¼ �(m)�(n).

Proof Since g(n) ¼ n is multiplicative and n ¼ P
djn�(n), it follows from

the corollary to Theorem 3.13 that the phi-function is multiplicative. j

Gauss based his proof of the multiplicativity of � on the fact that if a is

any one of the �(m) positive integers less than m and coprime to m, and b

is any one of the �(n) positive integers less than n and coprime to n, then

there is exactly one positive integer x less than mn, such that x � a

(mod m) and x � b (mod n). Since x is coprime to m and to n, it is

coprime to mn. Thus, there are �(m) choices for a and �(n) choices for b
and each pair of choices uniquely determines a value for x that is coprime

to mn. Therefore, Gauss reasoned, there are �(m) . �(n) choices for x.
We now use the multiplicative property of the Euler phi-function to

develop a method to calculate �(n) for any given positive integer n.

Theorem 5.12 If p is a prime and Æ is a positive integer then �(pÆ) ¼
pÆ(p� 1)= p ¼ pÆ�1(p� 1).

Proof Among the pÆ positive integers less than or equal to pÆ, those pÆ�1

which are not coprime to pÆ are exactly p, 2 p, . . . , (pÆ�1 � 1) p, pÆ�1 p.
That is, they are precisely the pÆ�1 multiples of p which are less than or

equal to pÆ. Hence, the number of positive integers less than pÆ and

coprime to pÆ is given by

pÆ � pÆ�1 ¼ pÆ�1( p� 1): j
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Corollary If n ¼ Qr
i¼1 p

Æi

i , then

�(n) ¼ n .
Yr
i¼1

pi � 1

pi

� �
:

For example,

�(304 920)

¼ �(23 . 32 . 5 . 7 . 112)

¼ 23 . 32 . 5 . 7 . 112 .
2� 1

2

� �
3� 1

3

� �
5� 1

5

� �
7� 1

7

� �
11� 1

11

� �
¼ 22 . 3 . 11 . 2 . 4 . 6 . 10 ¼ 63 360:

In June of 1640, Fermat wrote to Mersenne that if p is prime and divides

2q � 1, then q divides p� 1. In a letter to Frenicle, in October 1640,

Fermat claimed that he could prove that if p is prime with 0 < a, p, then

p divides ap � a; however, he added, the proof was too long to be included

in the letter.

About 30 years later, in an unpublished manuscript discovered in 1863,

Leibniz used the fact that if p is prime then p divides the binomial

coefficient (
p
k ) to show that if p is prime then p divides (a1 þ a2 þ

� � � þ an)
p � (a

p
1 þ a

p
2 þ � � � þ a p

n ). Letting ai ¼ 1, for i ¼ 1, 2, . . . , n,

Leibniz showed that p divides np � n, for any positive integer n. The first

published proof of the corollary to Theorem 5.13, Fermat’s Little Theorem,

was given by Euler in 1736. Euler proved the generalized result, the

Euler–Fermat Theorem, in 1760.

Theorem 5.13 (Euler–Fermat Theorem) If gcd(a, m) ¼ 1, then a�(m) �
1 (mod m).

Proof Let a1, a2, . . . , a�(m) form a reduced residue system modulo m.

Since gcd(a, m) ¼ 1, it follows from Theorem 5.9 that the products

a . a1, a . a2 . . . , a . a�(m) also form a reduced residue system modulo m.

Thus, for each i, 1 < i < �(m), there is an integer j, 1 < j < �(m), such
that a . ai � aj (mod m). Thus,

Q�(m)
i¼1 a . ai �

Q�(m)
j¼1 aj (mod m), or

a�(m)
Q�(m)

i¼1 ai �
Q�(m)

j¼1 aj (mod m). Since gcd(ai, m) ¼ 1, for 1 <

i < �(m), we cancel
Q�(m)

k¼1 ak from both sides of the equation to obtain

a�(m) � 1 (mod m). j

Corollary (Fermat’s Little Theorem) If p is a prime, and gcd(a, p) ¼ 1,

then a p�1 � 1 (mod p).
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Since 1, 5, 7, and 11 are coprime to 12 and �(12) ¼ 4, the Euler–Fermat

Theorem implies that 14, 54, 74, and 114 are all congruent to 1 modulo 12.

In addition, since, a p�1 � 1 ¼ (a( p�1)=2 � 1)(a( p�1)=2 þ 1), an immediate

consequence of Fermat’s Little Theorem is that if p is an odd prime and

gcd(a, p) ¼ 1, then a( p�1)=2 � 	1 (mod p). The converse of Fermat’s

Little Theorem is false since a560 � 1 (mod 561) for all a such that

gcd(a, 561) ¼ 1, yet 561 ¼ 3 . 11 . 17 is not prime. The contrapositive of

Fermat’s Little Theorem may be used as a primality test. That is, if for

some positive integer a less than n, we find that an�1 6� 1 (mod n) then n

is not prime. For example, 22146 � 662 (mod 2147), hence, 2147 is not

prime. A primality test devised by Lucas, based on Fermat’s Little

Theorem, states that if m is a positive integer such that am�1 � 1 (mod m)

and a(m�1)= p � 1 (mod m) for every prime divisor p of m� 1, then m is

prime.

Example 5.8 Let us apply the Euler–Fermat Theorem to solve the linear

equation x341 � 127 (mod 893). We have �(893) ¼ �(19 . 47) ¼ 18 . 46

¼ 828. From either the Euclidean or the Saunderson algorithm, we find

that gcd(828, 341) ¼ 1 and (�7) . 828þ 17 . 341 ¼ 1. Hence, (x341)17 ¼
x1þ828.7 ¼ x(x828)7 ¼ x . (1)7 ¼ x. Using the binary-square method and the

fact that 17 ¼ 16þ 1 we obtain

1272 � 55 (mod 893),

1274 � 346 (mod 893),

1278 � 54 (mod 893),

12716 � 237 (mod 893):

Therefore, x � (x341)17 � (127)17 � 12716 . 1271 � 237 . 127 � 630 (mod

893).

Example 5.9 Recall that a composite positive integer n is called a

Carmichael number if an � a (mod n), whenever a is less than and

coprime to n. Suppose 1, a, 561 ¼ 3 . 11 . 17 and gcd(a, 561) ¼ 1. We

have a561 � a ¼ a(a560 � 1) ¼ a[(a10)56 � 156] ¼ a[(a10 � 1) . f (a)],

where f (a) is a polynomial in a. Since 11 divides a10 � 1, 11 divides

a561 � a. In addition, a561 � a ¼ a[(a16)35 � 135] ¼ a(a16 � 1) . g(a) and

a561 � a ¼ a[(a2)280 � 1280] ¼ a(a2 � 1) . h(a), where g(a) and h(a) are

polynomials in a. Since 17 divides a16 � 1 and 3 divides a2 � 1, it follows

that 561 divides a561 � a whenever gcd(a, 561) ¼ 1. Therefore, 561 is a

Carmichael number.
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The set of Farey fractions F n of order n consist of the ascending sequence

of irreducible fractions between 0 and 1 whose denominators do not

exceed n. That is, k=m is in F n if and only if 0 < k < m < n, and k and

m are coprime. For example F 1 ¼ f0
1
, 1
1
g, F 2 ¼ f0

1
, 1
2
, 1
1
g. The middle term

of F n is always 1
2
, since the number of irreducible fractions with

denominator m is given by �(m), the number of Farey fractions of order n,
the number of irreducible fractions 0 < k=m < 1, with 0 < m, n, is

1þPn
k¼1�(k). Two fractions a=b and c=d in F n are called complemen-

tary if their sum is unity. The two fractions adjacent to 1
2
are complemen-

tary. If a=b and c=d are complementary and a=b, c=d, the fractions

preceding a=b and following c=d are complementary. In 1883, J.J. Syl-

vester proved that the sum of the Farey fractions of order n is
1
2
[1þPn

k¼1�(k)]. For example, F 6 ¼ f0
1
, 1
6
, 1
5
, 1
4
, 1
3
, 2
5
, 1
2
, 3
5
, 2
3
, 4
5
, 5
6
, 1
1
g and

1
2
(1þP6

k¼1�(k)) ¼ 6:5. For larger values of n, the sum can be approxi-

mated by 3(n=�)2.
In 1802, C.H. Haros discovered several basic properties of Farey

fractions. In 1816, those and other properties appeared in an article by John

Farey. Farey, a geologist, wrote a letter to the Philosophical Magazine

noting several properties of such fractions he observed in Henry Good-

wyn’s Complete Decimal Quotients, a privately circulated manuscript. That

same year Cauchy offered proofs to most of the results mentioned by Haros

and Farey. A pair of Farey fractions (a=b, c=d) is said to be a Farey pair if

bc� ad ¼ 1. Adjacent Farey fractions are examples of Farey pairs. The

1
5

5
5

6
6

1
6

1
4

2
6

1
3

2
5

1
2

2
4

3
6

1
1

2
3

3
5

2
2

3
4

4
6

3
3

4
5

4
4

5
6

φ (6) � 2

φ (5) � 4

φ (4) � 2

φ (3) � 2

φ (2) � 2

φ (1) � 1

Figure 5.2
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mediant of a Farey pair (a=b, c=d) is given by (aþ c)=(bþ d). The

mediant of two Farey fractions of order n is a Farey fraction of order nþ 1.

Exercises 5.3

1. Find �(n) for the following values of n.
(a) 406; (b) 756; (c) 1228; (d) 7642.

2. Find the reduced residue system modulo 18.

3. Show that �(25 930) ¼ �(25 935) ¼ �(25 940) ¼ �(25 942).
4. If p and pþ 2 are twin primes, show that �(pþ 2) ¼ �( p)þ 2.

5. Show that (�(n)� (n)þ 1)=n is an integer if n is prime.

6. If p is prime then show that 1þ �(p)þ �(p2) þ � � � þ �( pn) ¼ pn.

7. Show that f (n) ¼ �(n)=n is strongly multiplicative. That is, show that
f ( pk) ¼ f (p), where p is prime and k is a positive integer.

8. Give a characterization of n if

(a) �(n) is odd,
(b) �(n) ¼ n� 1,

(c) �(n) divides n,
(d) 4 divides �(n),
(e) �(n) ¼ 2k , for some positive integer k,

(f) �(n) ¼ n=2,

(g) �(n) ¼ n=4,

(h) 2k divides �(n) for some positive integer k.
9. Show that �(n2) ¼ n�(n), for n > 1.

10. Show that if n ¼ 11k . p, where k > 1 and p is prime, then 10j�(n).
Hence, there are infinitely many positive integers for which 10 divides

�(n).
11. Show that if n ¼ 22kþ1, where k > 1, then �(n) is square. Hence,

there are infinitely many integers n for which �(n) is square.
12. Determine the possible remainders when the hundredth power of an

integer is divided by 125.

13. Estimate upper and lower bounds for �(n) when n ¼ 100 and

n ¼ 1000.

14. Find the average value of �(n), for 1 < n < 100. How does the

average value compare with 6 . 100=�2?
15. If n > 2 then show that

X
gcd(x,n)¼1

x, n

x ¼ n . �(n)

2
:
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16. Show that �(n) < n�p
n if n is composite.

17. Show for any positive integer n that
Pn

k¼1�(k) . ½½n=k�� ¼ n(nþ 1)=2.

[Dirichlet 1849]

18. Evaluate
P

dj36�(d).
19. Show that �(pÆ)þ � (pÆ) > 2pÆ where p is prime and Æ a positive

integer.

20. Find all positive integers n such that �(n)þ � (n) ¼ 2n.

21. Show that f (n) ¼ � (n) . �(n)=n2 is multiplicative.
22. If p is prime then show that p divides (

p
k ), where 1 < k < p� 1.

23. If p is an odd prime, then show that

(a) 1 p�1 þ 2 p�1 þ � � � þ ( p� 1) p�1 � (�1) (mod p), and

(b) 1 p þ 2 p þ � � � þ (p� 1) p � 0 (mod p).

24. If gcd(m, n) ¼ 1 show that m�(n) þ n�(m) � 1 (mod mn).

25. Use the Euler–Fermat Theorem to solve for x if 41x � 53 (mod 62).

26. Show that 6601 is a Carmichael number.

27. Verify the Ramanujan sum

X
djgcd(m,n)

d . 

n

d

� �
¼



n

gcd(m, n)

� �
. �(n)

�
n

gcd(m, n)

� � ,

for the case when m ¼ 90 and n ¼ 105.

28. Show that
P

djn�(d) . �(n=d) ¼ � (n).
29. Show that

P
djn�(d) . � (n=d) ¼ n . �(n).

30. Prove that n is prime if and only if � (n)þ �(n) ¼ n . �(n).
31. For n ¼ 12, show that n ¼ �(n)þ �(n)þ �(n)� 1.

32. For n ¼ 12, show that

	(n) ¼ � (n)þ �(n)� 1

2

� �ø(n) Yø(n)
i¼1

(Æi þ 2)!

Æi!
� n,

where n ¼ Qr
i¼1 p

Æi

i .

33. For n ¼ 12, show that �(n) ¼ P
djn
(d)	(n=d).

34. Prove that X
dj pÆ


2(d)

�(d)
¼ pÆ

�( pÆ)
,

where p is prime and Æ a positive integer.
35. Compare the values of 1

2

P10
k¼1�(k) and 3(10=�)

2.

36. Determine F 7.

37. If a=b and c=d are two successive terms of F n, show that bc �
ad ¼ 1. [Haros]
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38. If a=b and c=d are any two fractions such that a=b, c=d, show that
a

b
,

aþ c

bþ d
,

c

d
:

39. If (a=b, c=d) is a Farey pair, the closed interval [a=b, c=d] is called a

Farey interval. Show that the length of a Farey interval is 1=bd.

40. If x=y ¼ (aþ c)=(bþ d), then a=b, x=y, c=d, with bx� ay ¼
cy� dx ¼ 1. Find x=y such that a=b, x=y, c=d, bx� ay ¼ m and

cy� dx ¼ n.

41. If nþ 1 is a cube show that 504 divides n(nþ 1)(nþ 2.

5.4 Conditional linear congruences

The object of this section and the next chapter will be to develop

techniques to enable us to solve integral polynomial congruences in one

variable. More precisely, if f (x) is a polynomial whose coefficients are

integers, we say that a is a root of the conditional congruence f (x) � 0

(mod m) if f (a) � 0 (mod m). Since f (a) � f (b) (mod m) if a � b (mod

m), all solutions of the conditional congruence f (x) � 0 (mod m) will be

known provided we find all the solutions in any complete residue system

modulo m. Therefore, we restrict ourselves to finding solutions to f (x) � 0

(mod m) in the least residue system modulo m, f0, 1, . . . , m� 1g. We say
that f (x) � 0 (mod m) has r incongruent solutions modulo m, when

exactly r elements in the set f0, 1, . . . , m� 1g are solutions to f (x) � 0

(mod m).

Diophantus’s name is immortalized in the designation of indeterminate

integral equations, even though he considered only positive rational solu-

tions to equations and, long before his time, the Pythagoreans and

Babylonians found positive integral solutions to x2 þ y2 ¼ z2. Neverthe-

less, we call an integral equation from which we require only integer

solutions a Diophantine equation.

In 1900, at the International Congress of Mathematicians in Paris, one of

the 23 problems posed by David Hilbert of Göttingen to challenge

mathematicians in the twentieth century asked if there were any uniform

method for solving all Diophantine equations. In 1970, Yuri Matiasevich,

of the Steklov Institute of Mathematics, using earlier results of Martin

Davis, Hillary Putnam, and Julia Robinson, answered Hilbert’s query in the

negative. Robinson of the University of California at Berkeley was the first

woman to serve as president of the American Mathematical Society.

Let us consider solutions to the simplest polynomial congruences,
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namely, linear congruences of the form ax � b (mod m). The following

result was established by Bachet in 1612.

Theorem 5.14 (Bachet’s Theorem) If a and b are integers, m is a positive

integer, and gcd(a, m) ¼ 1, then a unique solution to ax � b (mod m)

exists. If gcd(a, m) ¼ d and djb, then d incongruent solutions exist. If

d 6 jb, then no solution exists.

Proof Suppose ax � b (mod m) and djb, then there exists an integer t

such that td ¼ b. Since gcd(a, m) ¼ d, there exist integers r and s such

that d ¼ ar þ ms. Thus, b ¼ td ¼ tar þ tms, so a(tr) � b (mod m) and tr

is a solution to the congruence ax � b (mod m). Suppose that x0 is such

that ax0 � b (mod m), hence, ax0 � b ¼ km for some integer k. Since dja
and djm it follows that djb. By contraposition, if d 6 jb, then no solution
exists to ax � b (mod m). Thus if x0 is a solution to ax � b (mod m), so is

x0 þ k(m=d), since dja and a(x0 þ k(m=d)) � ax0 þ km(a=d) � ax0 � b

(mod m), for k ¼ 1, 2, . . . , d � 1. j

The proof of Theorem 5.14 is constructive and implies that if x0 is a

solution to ax � b (mod m), then so is x0 þ k(m=d), for k ¼ 1, 2, . . . ,

d � 1. In order to obtain solutions to linear equations a combination of

brute force and cleverness must often be applied. The three possible cases

for a first order linear congruence are illustrated in the following example.

Example 5.10 Solve for x if

(a) 22x � 4 (mod 29),

(b) 51x � 21 (mod 36), and

(c) 35x � 15 (mod 182).

Solutions:

(a) 22x � 4 (mod 29), divide both sides by 2 to obtain 11x � 2 (mod 29),

multiply both sides by 8 to obtain 88x � 16 (mod 29), reduce modulo

29 to obtain x � 16 (mod 29).

(b) 51x � 21 (mod 36), reduce modulo 36 to obtain 15x � 21 (mod 36),

divide by 3 to obtain 5x � 7 (mod 12), multiply both sides by 5 to

obtain 25x � 35 (mod 12), reduce modulo 12 to obtain x � 11 (mod

12), hence x ¼ 11þ 12t, which implies that the answers to the original

congruence are x � 11 (mod 36), x � 23 (mod 36) and x � 35 (mod

36).
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(c) 35x � 15 (mod 182), since gcd(35, 182) ¼ 7 and 76 j15 the congruence
has no solutions.

Around 1900, the Russian mathematician Georgi Voroni devised a formula

to solve a special case of first order linear congruences, namely if

gcd(a, m) ¼ 1, the solution to ax � 1 (mod m) is given by

x � (3� 2aþ 6
Pa�1

k¼1½½mk=a��2) (mod m). Voroni’s formula works best

when a is small and m is large. For example, the solution to 4x � 1 (mod

37) is given by x � 3� 8 þ 6(½½37
4
��2 þ ½½74

4
��2 þ ½½111

4
��2) (mod 37) ¼ 6799

(mod 37) � 28 (mod 37). According to the next result, our knowledge of

first order linear congruences may be applied to solve linear Diophantine

equations of the form axþ by ¼ n.

Theorem 5.15 The Diophantine equation axþ by ¼ n is solvable if and

only if d divides n, where d ¼ gcd(a, b), and if (x0, y0) is any solution,

then every solution is given by

x0 þ k
b

d

� �
, y0 � k

a

d

� �� !
, where k ¼ 0, 	1, 	2, . . . :

Proof Solving axþ by ¼ n is equivalent to solving either ax � n (mod b)

or by � n (mod a). A solution to either of these congruences is possible if

and only if djn, where d ¼ gcd(a, b). If x0 is any solution to ax � n (mod

b), every solution to ax � n (mod b) is given by x0 þ k(b=d). Hence, if

y0 ¼ (n� ax0)=b, y ¼ y0 � k(a=d) and x ¼ x0 þ k(b=d). Therefore,

n� ax ¼ n� a x0 þ k
b

d

� �� �
¼ b

n� ax0

b
� k

a

d

� �
 �

¼ b y0 � k
a

d

� �
 �
¼ by: j

For example, in order to find integral solutions to the linear equation

15xþ 7y ¼ 110, we solve either 7y � 110 (mod 15) or 15x � 110 (mod

7). Without loss of generality, consider 15x � 110 (mod 7). Reducing

modulo 7, we obtain x � 5 (mod 7). Hence, x ¼ 5þ 7k, for k ¼ 0, 	1,
	2, . . . : Thus, 15(5þ 7k)þ 7y ¼ 110 or 75þ 15(7k)þ 7y ¼ 110. Thus,

7y ¼ 35� 15(7k). It follows that y ¼ 5� 15k, for k ¼ 0, 	1, 	2, . . . :
We could just as well have used the Euclidean algorithm to obtain integers

a and b such that 15aþ 7b ¼ 1 and then multiplied both sides of the

equation by 110. In fact, an alternate technique to solve axþ by ¼ n, with

d ¼ gcd(a, b), noted by P. Barlow in 1811, follows from the fact that, since

5.4 Conditional linear congruences 183



djn and gcd(a=d, b=d) ¼ 1, there exist integers x and y such that

(a=d)xþ (b=d)y ¼ 1. Therefore, a(nx=d)þ b(ny=d) ¼ n and all solutions

are given by x ¼ nx=d þ k(b=d), and y ¼ ny=d þ k(a=d), for k an integer.

In 1826, generalizing Theorem 5.15 to higher order linear equations of

the form axþ byþ cz ¼ d, Cauchy showed that if the greatest common

divisor of a, b, c is unity, every integral solution to axþ byþ cz ¼ 0 is of

the form x ¼ bt � cs, y ¼ cr � at, and z ¼ as� br. In 1859, V.A. Le-

besgue showed that if the greatest common divisor of a, b, c is unity then

every integral solution to axþ byþ cz ¼ d is given by x ¼ deg

þ cesþ bt=D, y ¼ dfg þ cfu� at=D, and z ¼ dh� Ds, where s and t are

arbitrary, D ¼ gcd(a, b), aeþ bf ¼ D, and Dg þ ch ¼ 1. Thus, in order

to find integral solutions to the equation axþ byþ cz ¼ n, let

axþ by ¼ n� cz, solve for z where cz � n (mod d) and d ¼ gcd(a, b),

and plug the solution back into the original equation. In 1774, T. Moss

listed 412 solutions to 17xþ 21yþ 27zþ 36w ¼ 1000 in the Ladies’

Diary. In 1801, Gauss noted that if the greatest common divisor of the

coefficients of axþ byþ czþ dw ¼ e divides e then an integral solution

exists.

Example 5.11 Let us determine a solution to the linear equation

6xþ 8yþ 5z ¼ 101. Since gcd(6, 8) ¼ 2, 5z � 101 (mod 2), implying that

z � 1 (mod 2) z ¼ 1þ 2t. Substituting, we obtain 6xþ 8yþ 5þ 10t

¼ 101 or 6xþ 8yþ 10t ¼ 96. Hence, 3xþ 4yþ 5t ¼ 48. Considering the

equation modulo 3, we obtain 4yþ 5t � 48 (mod 3), implying that

y � �2t (mod 3) or y ¼ �2t þ 3s. Thus, 6x� 16t þ 24sþ 5þ 10t ¼
101 or x ¼ 16þ t � 4s. Therefore, the complete solution is given by

x ¼ 16þ t � 4s, y ¼ �2t þ 3s, and z ¼ 1þ 2t.

Astronomical problems dealing with periodic motions of celestial bodies

have been prevalent throughout history. One method for solving such

problems originated in China. Master Sun’s Mathematical Manual written

in the late third century repeats many of the results found in the earlier

Nine Chapters on the Mathematical Art, but presents in verse a new rule

called ‘the great generalization’ for determining, in particular, a number

having the remainders 2, 3, 2 when divided by 3, 5, 7 respectively. The

method was clearly outlined and disseminated in the Sichuan mathemati-

cian–astronomer Qin Jiushao’s Mathematical Treatise in Nine Sections in

1247. Quite remarkably, as an indication of the transmission of knowledge

in the ancient world, Nicomachus included the same example in his

Introduction to Arithmetic. The rule, known as the Chinese Remainder
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Theorem, offers a practical method for determining the solution of a set of

first order linear congruences. We credit the first modern statement of the

theorem to Euler. Gauss discovered the result independently around 1801.

In 1852, the method was popularized in a treatise, Jottings on the Science

of Chinese Arithmetic, by Alexander Wylie.

Theorem 5.16 (Chinese Remainder Theorem) If m1, m2, . . . , mk are gi-

ven moduli, coprime in pairs, then the system of linear congruences x � ai
(mod mi), for 1 < i < k, has a unique solution modulo m ¼ Qk

i¼1 mi.

Proof In order to solve the system x � ai (mod mi), for i ¼ 1, 2, . . . , k,

let Mi ¼ m=mi, where m ¼ Qk
i¼1 mi, and bi be such that Mibi � 1 (mod

mi). We have mjjMi and gcd(mi, mj) ¼ 1 for i 6¼ j. Since gcd(mi, Mi) ¼ 1,

the congruence Miy � 1 (mod mi) has a unique solution bi, for 1 < i < k.

Hence, for each i there exists an integer bi such that Mibi � 1 (mod mi).

Let x0 �
Pk

i¼1Mibiai (mod m). Since aiMibi � ai (mod mi) and Mi � 0

(mod mj), for i 6¼ j, it follows that x0 � ai (mod mi), for i ¼ 1, 2, . . . , k.

Hence, x0 is a solution of the system of linear congruences. Suppose that

x1 is any other solution of the system. We have x0 � x1 � ai (mod mi), for

i ¼ 1, 2, . . . , k. Hence, mij(x1 � x0), for i ¼ 1, 2, . . . , k. Since gcd(mi,

mj) ¼ 1, for i 6¼ j, it follows that mj(x1 � x0), and thus x1 � x0 (mod m).

Therefore, if a solution exists, it is unique modulo m. j

Example 5.12 Let us use the Chinese Remainder Theorem to solve the

system

x � 2 (mod 3),

x � 3 (mod 5),

x � 2 (mod 7):

Let m ¼ 3 . 5 . 7 ¼ 105, then

m1 ¼ 3, m2 ¼ 5, m3 ¼ 7,

a1 ¼ 2, a2 ¼ 3, a3 ¼ 2,

M1 ¼ 35, M2 ¼ 21, M3 ¼ 15:

Solve the following congruences for bi, for i ¼ 1, 2, and 3.

35b1 � 1 (mod 3), 21b2 � 1 (mod 5), 15b3 � 1 (mod 7),

2b1 � 1 (mod 3), b2 � 1 (mod 5), b3 � 1 (mod 7),

b1 � 2 (mod 3), b2 � 1 (mod 5):
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Therefore, x � P3
i¼1Mibiai ¼ 35 . 2 . 2þ 21 . 1 . 3þ 15 . 1 . 2 � 233 �

23 (mod 105).

Simultaneous first order linear equations encountered in Chinese remain-

der-type problems may be solved directly (and often more efficiently) using

brute force. For example, suppose we are given the following system of

linear equations:

x � 3 (mod 2),

x � 1 (mod 5),

x � 2 (mod 7):

From the first equation x ¼ 3þ 2k, for some integer k. Substituting into

the second equation for x yields 3þ 2k � 1 (mod 5) or 2k � 3 (mod 5) so

k � 4 (mod 5) or k ¼ 4þ 5r, for some integer r. Substituting, we obtain

x ¼ 3þ 2k ¼ 3þ 2(4þ 5r) ¼ 11þ 10r. Substituting into the third equa-

tion for x yields 11þ 10r � 2 (mod 7), implying that 3r � 5 (mod 7) or

r � 4 (mod 7). Hence, r ¼ 4þ 7s, for some integer s. Substituting, we

obtain x ¼ 11þ 10r ¼ 11þ 10(4þ 7s) ¼ 51þ 70s. Therefore, x � 51

(mod 70).

The Chinese Remainder Theorem is a special case of a more general

result, illustrated by the Buddhist monk Yi Xing (YEE SHING) around

700, which states that the system x � ai (mod mi), for i ¼ 1, 2, . . . , k, is

solvable if and only if gcd(mi, mj)j(aj � ai), for 1 < i < j < k, and, if a

solution exists, it is unique modulo m ¼ lcm (m1, m2, . . . , mk). Qin

Jiushao outlined a method for solving such problems by finding integers

c1, c2, . . . , ck which are coprime in pairs such that ci divides mi, for

i ¼ 1, 2, . . . , k, and lcm(c1, c2, . . . , ck) ¼ lcm(m1, m2, . . . , mk). He let

Mi ¼ m=ci and bi be such that Mibi � 1 (mod ci); then a solution is given

by x � Pk
i¼1Mibici (mod m).

Example 5.13 Using Qin Jiushao’s method, let us solve the system

x � 1 (mod 4),

x � 5 (mod 6),

x � 4 (mod 7):

We have m ¼ lcm(4, 6, 7) ¼ 84. Hence

a1 ¼ 1, a2 ¼ 5, a3 ¼ 4,

m1 ¼ 4, m2 ¼ 6, m3 ¼ 9,

c1 ¼ 4, c2 ¼ 3, c3 ¼ 7,

N1 ¼ 21, N2 ¼ 28, N3 ¼ 12:

21b1 � 1 (mod 4), 28b2 � 1 (mod 3), and 12b3 � 1 (mod 7) imply that
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b1 � 1 (mod 4), b2 � 1 (mod 3), and b3 � 1 (mod 7). Hence, x �Pk
i¼1Nibiai ¼ 21 . 1 . 1þ 28 . 1 . 5þ 12 . 4 . 3 � 305 � 53 (mod 84).

The following problem has a long history. It appears in the work of the

sixth century Indian mathematician Bhaskara and the eleventh century

Egyptian mathematician al-Hasan. In 1202, Fibonacci included it in his

Liber abaci.

Example 5.14 Awoman went to market and a horse stepped on her basket

and crushed her eggs. The rider offered to pay her for the damage. He

asked her how many she had brought. She did not know, but when she took

them out two at a time there was one left. The same thing happened when

she took them out 3, 4, 5, and 6 at a time, but when she took them out 7 at

a time there were none left. What is the smallest number that she could

have had? In essence we are being asked to solve the system of

congruences

x � 1 (mod 2),

x � 1 (mod 3),

x � 1 (mod 4),

x � 1 (mod 5),

x � 1 (mod 6),

x � 0 (mod 7):

The system is redundant and reduces to the equivalent system

x � 1 (mod 12),

x � 1 (mod 5),

x � 0 (mod 7),

with solution x � 301 (mod 420).
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Methods for solving systems of linear Diophantine equations for integral

solutions date to at least the fifth century when the ‘hundred fowl’ problem

appeared in Zhang Quijian’s (JANG CHEE SHE ANN) Mathematical

Manual which appeared around 475. Specifically, the problem asks how

one can use exactly 100 coins to purchase 100 fowl, where roosters cost 5

coins, hens cost 3 coins, and one coin will fetch 3 chickens. The problem is

equivalent to solving the equations 5xþ 3yþ 1
3
z ¼ 100 and

xþ yþ z ¼ 100. Multiplying the first equation by 3 and subtracting the

second equation leads to the equation 7xþ 4y ¼ 100. Among the solutions

to the system are x ¼ 4, y ¼ 18, z ¼ 78; x ¼ 8, y ¼ 11, z ¼ 81; and

x ¼ 12, y ¼ 4, z ¼ 84.

In 800, Alcuin (Flaccus Albinus) authored a book of exercises and

included the problem: if one distributes 100 bushels evenly among 100

people such that men get 3, women get 2, and children get half a bushel,

how many people are there of each kind? Around 1211, Abu Kamil ibn

Aslam found positive integral solutions to a set of equations that date back

to the second century, namely, xþ yþ z ¼ 100 and 5xþ y=20þ z ¼ 100.

He determined almost a hundred solutions to the system xþ y þ
zþ w ¼ 100 and 4xþ y=10þ z=2þ w ¼ 100.

In 1867, extending an 1843 result of De Morgan, A. Vachette showed

that one of n2, n2 � 1, n2 � 4, n2 þ 3 is divisible by 12 and the quotient is

the number of positive solutions of xþ yþ z ¼ n. In 1869 V. Schlegel

proved that the number of positive integral solutions to xþ yþ z ¼ n,

where x < yþ z, y < xþ z, z < xþ y, is (n2 � 1)=8 or (nþ 2)(nþ 4)=8

according as n is odd or even.

A method, known to Islamic and Hindu mathematicians, called the rule

of the virgins, can be employed to determine the number of nonnegative

integral solutions to a system of linear equations. According to the rule, the

number of such solutions to the equations
Pk

i¼1aixi ¼ m andP
k
i¼1bixi ¼ n is given by the coefficient of xmyn in the expansion ofQ
k
i¼1(1� xai ybi)�1.

Exercises 5.4

1. Solve the following linear congruences:

(a) 16x � 27 (mod 29),

(b) 20x � 16 (mod 64),

(c) 131x � 21 (mod 77),

(d) 22x � 5 (mod 12),
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(e) 17x � 6 (mod 29):

2. Find all solutions to 4xþ 51y ¼ 9.

3. Find all solutions to 2xþ 3y ¼ 4.

4. Someone wishes to purchase horses and cows spending exactly $1770.

A horse costs $31 and a cow $21. How many of each can the person

buy? [Euler 1770]

5. A person pays $1.43 for apples and pears. If pears cost 17¢ and apples

15¢, how many of each did the person buy?

6. Divide 100 into two parts, one divisible by 7 and the other divisible by

11.

7. Use Voroni’s formula to solve for x if 5x � 1 (mod 61).

8. If one distributes 100 bushels evenly among 100 people such that men

get 3, women get 2, and children get half a bushel, how many people

are there of each kind? [Alcuin c. 800]

9. A duck costs 5 drachmas, a chicken costs 1 drachma, and 20 starlings

cost 1 drachma. With 100 drachmas, how can one purchase 100 birds?

[c. 120]

10. A group of 41 men, women, and children eat at an inn. The bill is for

40 sous. Each man pays 4 sous, women 3 sous, and three children eat

for a sou. How many men, women, and children were there? [Bachet]

11. Show that the system 3xþ 6yþ z ¼ 2 and 4xþ 10yþ 2z ¼ 3 has no

integral solutions.

12. Solve the following system:

xþ yþ z ¼ 30,
x

3
þ y

2
þ 2z ¼ 30:

[Fibonacci 1228]

13. Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3,

6, 12 respectively. [Yi Xing c. 700]

14. Find an integer having the remainders 5, 4, 3, 2 when divided by 6, 5,

4, and 3 respectively. [Brahmagupta, Bhaskara, and Fibonacci]

15. Find a number with remainders of 3, 11, and 15, when divided by 10,

13, and 17, respectively. [Regiomontanus]

16. US Senator Riley was first elected in 1982. Her reelection is assured

unless her campaign coincides with an attack of the seven-year itch

such as hit her in 1978. When must she worry first? [For non-American

readers: US Senators are elected for a fixed term of six years.]

17. A band of 17 pirates upon dividing their gold coins found that three

coins remain after the coins have been apportioned evenly. In an

ensuing brawl, one of the pirates was killed. The wealth was again

redistributed equally, and this time ten coins remained. Again an
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argument broke out and another pirate was killed. This time the

fortune was distributed evenly among the survivors. What was the least

number of gold coins the pirates had to distribute?

18. According to the biorhythm theory, a person has a physical cycle of 23

days, with a maximum after 5.75 (6) days; an emotional cycle of 28

days, with a maximum after 7 days; and an intellectual cycle of 33

days, with a maximum after 8.25 (8) days. When does a person first

have all the maxima on the same day, and after how many days will

that occur again?

19. Find a nonzero solution to 49xþ 59yþ 75z ¼ 0. [Euler 1785]

20. Find a solution to 5xþ 8yþ 7z ¼ 50. [Paoli 1794]

21. Find a solution to the system xþ yþ z ¼ 240 and 97xþ 56y þ
3z ¼ 16 047. [Regiomontanus]

22. Find a five-digit number n with the property that the last five digits of

n2 are exactly the same and in the same order as the last five digits

of n.

23. According to the rule of the virgins, how many nonnegative integral

solutions should the system 2xþ y ¼ 2 and xþ 3y ¼ 7 have?

5.5 Miscellaneous exercises

1. According to the Dirichlet principle if n boxes contain nþ 1 items,

then one box must contain at least two items. Given any set S of n

integers, use the Dirichlet principle to prove that for pairs of integers

selected from S, n divides either the sum or the difference of two

numbers. (Hint: Let the integers be a1, . . . , an and consider a1 þ a2,

a1 þ a3, . . . , a1 þ an modulo n.)

2. Given n integers a1, a2, . . . , an, use the Dirichlet principle to prove

that there exists a nonempty subset whose sum is a multiple of n.

[Hint: Let the integers be a1, a2, . . . , an and consider a1 þ a2,

a1 þ a2 þ a3, . . . , a1 þ a2 þ � � � þ an.]

3. Show that if a1, a2, . . . , a�(m) and b1, b2, . . . , b�(n) are reduced

residue systems modulo m and n respectively with gcd(m, n) ¼ 1,

then T ¼ fnai þ mbj: 1 < i < �(m) and 1 < j < �(n)g is a set of

�(m)�(n) integers forming a reduced residue system modulo mn.

4. With T defined as in the previous exercise, show that no two elements

in T can be congruent. Hence, every integer coprime to mn is counted

exactly once, hence, �(m)�(n) ¼ �(mn).
5. Show that

190 Modular arithmetic



�(2n) ¼ �(n) if n is odd,

2 . �(n) if n is even:

�
6. Show that

�(3n) ¼ 3 . �(n) if 3jn,
2 . �(n) if 36 jn:

�
7. Carmichael’s lambda function ¸c(n) is defined as follows:

¸c(1) ¼ ¸c(2) ¼ 1,

¸c(4) ¼ 2,

¸c(2
r) ¼ 2r�2, for r > 3,

¸c(p
k) ¼ �(pk) if p is an odd prime, and

¸c(2
r pÆ11 . . . pÆ r

r ) ¼ lcm(�(2k), �(pÆ11 ), . . . , �( p
Æ r

r )):

A composite number n is called a Carmichael number if and only

¸c(n) divides n� 1. Find

(a) ¸c(24),

(b) ¸c(81),

(c) ¸c(341),

(d) ¸c(561),

(e) ¸c(2
6 . 34 . 52 . 7 . 19).

8. Find a solution to 7xþ 5yþ 15zþ 12w ¼ 149.

9. Solve 27xþ 33yþ 45zþ 77w ¼ 707.

10. Solve 10xþ 11yþ 12z ¼ 200. [The Gentleman’s Diary, 1743]

11. A farmer buys 100 birds for $100. If chickens cost $0.50 each, ducks

$3 each, and turkeys $10 each, and the farmer buys at least one bird of

each type, how many of each type did he buy?

12. Show that 42 divides n7 � n for any integer n.

13. For any positive integer n, prove thatX
djn

d . �(d) . �
n

d

� �
¼

X
djn

d2: [Liouville 1857]

14. For any positive integer n, prove thatX
djn


(d) . �(d) ¼
Y
pjn
(2� p),

where p is prime.

15. Prove that if 264 þ 1 is divisible by 1071 . 28 þ 1, then

10712 þ 16 777 2162, 10714 þ 2564, and 10718 þ 18 are composite.

[Hint: show that if (�1071)n þ 264�8n � 0 (mod 1071 . 28 þ 1), then

(�1071)nþ1 þ 264�8(nþ1) � 0 (mod 1071 . 28 þ 1).] This problem ap-

peared in The Educational Times, in 1882, and was solved by Sarah
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Marks (Hertha Ayrton), of Girton College, Cambridge. Ayrton, an

English experimenter, was the first woman nominated to be a Fellow of

the Royal Society. She was ruled ineligible since she was a married

woman and, hence, had no rights of her own under English law. She

was awarded the Hughes Medal from the Society for her work with

electric arcs and determining the cause of sand ripples on the seashore.

She remains the only woman to be awarded a medal from the Royal

Society in her own right.

16. A nonempty set G on which there is defined a binary operation,

denoted by juxtaposition, is called a group if G is closed, associative,

there is an element e (the identity) such that for all a in G,

ea ¼ ae ¼ e, and for each element a in G there is an element a�1 in G

such that aa�1 ¼ a�1a ¼ e. In addition, if G is commutative then it is

called an Abelian group. The order of a group is the number of

elements in the group. The least residue system modulo m,

f0, 1, 2, . . . , m� 1g, under the operation of addition modulo m,

denoted by Zm, is an Abelian group of order m. Find the inverse for

each element in Z10.

17. If p is a prime, the least residue system modulo p, less zero, denoted

by Z�p, is an Abelian group of order p� 1 under multiplication

modulo p. Find the inverse of each element in Z�11.
18. The reduced residue system modulo m, fa1, a2, . . . , a�(m)g, forms an

Abelian group of order �(m) under multiplication modulo m. Find the

inverse of each element in Z�12.
19. A subgroup H of a group G is a nonempty subset of G that is a group

under the same operation. Show that H is a subgroup of G if, for all a

and b in H, ab�1 is in H.

20. Describe all the subgroups of Zm.

21. A ring is a nonempty set with two binary operations, called addition

and multiplication, that is an Abelian group under addition and is

closed and associative under multiplication. If a ring is commutative

under multiplication it is called a commutative ring. If there is a

multiplicative identity it is called a ring with unity. The least residue

system modulo m, f0, 1, 2, . . . , m� 1g, denoted also by Zm, under

addition and multiplication modulo m is a commutative ring with

unity. Which elements in Z6 fail to have multiplicative inverses?

22. A field is a nonempty set with two binary operations, say addition and

multiplication, that is distributive, an Abelian group under addition,

and whose nonzero elements form an Abelian group under multi-

plication. For p a prime, Zp under the operations of addition and
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multiplication modulo p is an example of a finite field. Find the

multiplicative inverses for all nonzero elements in Z1.

23. If 0, a, b, m, gcd(a, m) ¼ 1 and x runs through a complete residue

system modulo m, then show that axþ b runs through a complete

residue system modulo m.

5.6 Supplementary exercises

1. Which of the following are true:

(a) 57 � 21 (mod 6)

(b) 11 � �14 (mod 17)
(c) k2 � k (mod k), for k a positive integer.

2. What is the remainder when 329 is divided by 23?

3. What is the remainder when 5128 . 3173 is divided by 13?

4. What is the remainder when 378 . 5167 is divided by 17?

5. Use mathematical induction to prove that for all positive integers

n, 4n � 1þ 3n (mod 9).

6. Determine the date of Easter in 2010 and 2025.

7. Does 7 divide 888999 þ 999888?

8. Find the units digit of 3714.

9. Determine the units digit of 6661984.

10. Determine the last two digits of 9889.

11. Use the ‘7’divisibility rule to show that 7 divides 38278621551023 but

does not divide 168780379625.

12. Use the ‘13’ divisibility rule to show that 13 divides 71088868594757

but does not divide 253560062125.

13. Use the ‘7’ and ‘13’ divisibility rules to show that 7 and 13 divide

2307396569853375.

14. A positive integer with repeated digit is called a repdigit, for example

222, 55555, and all repunits are repdigits. When does 7 divide a

repdigit.

15. A positive integer n is called balanced if the number of integers less

than or equal to n and coprime to n divides the sum of the digits of n.

Determine the first twenty balanced numbers.

16. If p is prime show that � (p)þ j(p) ¼ p . �(p).
17. Determine the value of � (n)þ j(n), when n ¼ p . q and both p and q

are prime.

18. Determine j(n) for n ¼ 3780, 4200, 29601, and 115830.

19. Evaluate
P

dj72�(d).
20. Evaluate

P
dj126�(d).
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21. Exhibit the Farey fractions of order 11.

22. Solve for x if 36x � 27 (mod 51).

23. Solve for x if 19x � 21 (mod 77).

24. Solve for x if 8x � 5 (mod 12).

25. Solve for x if 14x � 21 (mod 77).

26. Solve for x if 36x � 27 (mod 51).

27. Find all solutions to 2xþ 3y � 1 (mod 7).

28. Find all solutions to 60xþ 18y ¼ 97.

29. Solve for x if x � 5 (mod 2), x � 1 (mod 3), and x � 2 (mod 5).

30. Solve for x if x � 3 (mod 5), x � 2 (mod 7), and x � 1 (mod 4).

31. Solve for x if x � 5 (mod 2), x � 1 (mod 3), x � 2 (mod 5), and x � 5

(mod 7).

32. Find the least positive integer that leaves a remainder 3 when divided

by 7, a remainder 2 when divided by 11, and is divisible by 5.

33. At a clambake, the total cost of a lobster dinner is $31 and a chicken

dinner is $13. What can we conclude if the total bill was $666?

34. A shopper spends a total of $8.39. If apples cost 25¢ each and oranges

cost 18¢ each, how many of each type of fruit were purchased?

35. Is it possible to have 50 coins, all pennies, dimes, and quarters worth

$3?

36. If eggs are removed from a basket two, three, and five at a time, there

remain, respectively, one. But if the eggs are removed seven at a time

no eggs remain. What is the least number of eggs that could have been

in the basket? What is the next smallest number of eggs that could

have been in the basket?

37. A class in number theory is divided up to study the Chinese Remainder

Theorem. When divided up into groups of three, two students were left

out; into groups of four, one student was left out; into groups of five,

the students found out that if the professor was added to one of the

groups no one was left out. What is the least number of students

possible in the class?

38. Is f(0)2, (0)3, (1)4, (5)6, (7)12g a Davenport covering of the integers?
39. Find a Davenport covering that includes (0)2 and (0)3.

40. Show that the sum of the reciprocals of the moduli in a Davenport

covering is at least unity.

41. Prove that if two residue classes in a Davenport covering have a

common element, then they have a common arithmetic progression,

and hence the sum of the reciprocals of the moduli is greater than

unity.

42. For what values of m and k (k. 1) is the set f0k , 1k , 2k , . . . ,

194 Modular arithmetic



(m� 1)kg a reduced residue system modulo m?

43. If n is composite, determine c such that (n� 1)!þ 1 � c (mod n).

44. Show that the sequence of Fibonacci numbers modulo 7 is periodic.

45. Determine a formula for the length of the period of the Fibonacci

sequence modulo m.
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6

Congruences of higher degree

Never send to know for whom the bell tolls; it tolls for

thee.

John Donne

6.1 Polynomial congruences

We now develop techniques, introduced by Gauss in Disquisitiones, for

solving polynomial congruences of the form f (x) � 0 (mod m), where

f (x) is a polynomial with integer coefficients of degree greater than one

whose solutions come from the least residue system {0, 1, . . . , m � 1g. In

the late eighteenth century, Lagrange developed techniques to solve poly-

nomial equations where m was prime. Polynomial equations with nonprime

moduli can be solved using the Chinese Remainder Theorem.

Theorem 6.1 If m ¼ Qk
i¼1 mi and gcd(mi, mj) ¼ 1, for 1 < i, j < k,

then any solution of f (x) � 0 (mod m) is simultaneously a solution of the

system f (x) � 0 (mod mi), for i ¼ 1, 2, . . . , k, and conversely.

Proof Suppose f (x0) � 0 (mod m). Since mijm, f (x) � 0 (mod mi), for

i ¼ 1, 2, . . . , k. Hence, any solution of f (x) � 0 (mod m) is a solution to

the system of equations f (x) � 0 (mod mi), for i ¼ 1, 2, . . . , k. Con-

versely, suppose that f (x0) � 0 (mod mi), for i ¼ 1, 2, . . . , k. Then,

mij f (x0) for i ¼ 1, 2, . . . , k. Since gcd(mi, mj) ¼ 1, for i 6¼ j, from the

corollary to Theorem 2.8, mj f (x0). Therefore, f (x0) � 0 (mod m). j

If f (x) � 0 (mod p
Æi

i ) has ni solutions, for i ¼ 1, . . . , k, from the multi-

plication principle, f (x) � 0 (mod n), where n ¼ Qk
i¼1 p

Æi

i has at mostQk
i¼1 ni solutions. According to Theorem 6.1, in order to solve the poly-

nomial equation f (x) � 0 (mod n), where n ¼ Qk
i¼1 p

Æi

i , where Æi > 1,

for i ¼ 1, 2, . . . , k, we first solve the equations f (x) � 0 (mod p
Æi

i ), for

i ¼ 1, . . . , k. Then use the Chinese Remainder Theorem or brute force to

obtain the solution modulo n. In either case, we need a technique to solve
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polynomial congruences of the form f (x) � 0 (mod pÆ), where p is prime

and Æ > 2 is a natural number. The next result shows that solutions to

f (x) � 0 (mod pÆ) are generated from solutions to f (x) � 0 (mod pÆ�1).

Theorem 6.2 Let f (x) be a polynomial with integral coefficients, p a

prime, and Æ > 1 an integer. If xÆþ1 ¼ xÆ þ kpÆ, where xÆ is a solution to

f (x) � 0 (mod pÆ), and k is a solution to ( f (xÆ)=pÆ) þ k . f 9(xÆ) � 0

(mod p) where 0 < xÆ , pÆ, 0 < k , p, and f 9(x) denotes the derivative

of the function f (x), then xÆþ1 is a solution to f (x) � 0 (mod pÆþ1).

Proof For p a prime, if pÆþ1ja then pÆja. Hence, each solution of

f (x) � 0 (mod pÆþ1) is also a solution of f (x) � 0 (mod pÆ). More

precisely, if f (xÆþ1) � 0 (mod pÆþ1), then there exists an xÆ such that

f (xÆ) � 0 (mod pÆ) with xÆþ1 � xÆ (mod pÆ) or, equivalently, xÆþ1 ¼
xÆ þ kpÆ. Using a Taylor expansion, f (xÆþ1) ¼ f (xÆ þ kpÆ) ¼ f (xÆ) þ
kpÆ f 9(xÆ) þ k2N , where N is an integer divisible by pÆþ1. Thus,

f (xÆ) þ kpÆ f 9(xÆ) � 0 (mod pÆþ1). Since f (xÆ) � 0 (mod pÆ),

f (xÆ)=pÆ ¼ M is an integer. Thus, f (xÆ) ¼ MpÆ, implying that

MpÆ þ kpÆ f 9(xÆ) � 0 (mod pÆþ1). Upon division by pÆ, it follows that

M þ kf 9(xÆ) � 0 (mod p). j

Example 6.1 In order to solve 53x � 282 modulo 113, set

f (x) ¼ 53x � 282. Thus, f 9(x) ¼ 53. Any solution to 53x � 282

(mod 112) will be of the form x1 ¼ x0 þ k . 11, where 53x0 � 282

(mod 11) and f (x0)=11 þ 53k � 0 (mod 11). The only solution to

53x0 � 282 (mod 11) is given by x0 � 2 (mod 11). Since f (2) ¼
53(2) � 282 ¼ �176, we obtain �176=11 þ 53k � �16 þ 53k � 0

(mod 11), implying that k � 3 (mod 11). Therefore, a solution to

53x � 282 (mod 112) is given by x1 ¼ x0 þ k . 11 ¼ 2 þ 3 . 11 ¼ 35. A

solution to 53x � 282 (mod 113) is given by x2 ¼ x1 þ r . 112, where

f (35)=112 þ 53r � 1573=112 þ 53r � 13 þ 53r � 0 (mod 11), implying

that r � 1 (mod 11). Therefore, x2 ¼ x1 þ r . 112 ¼ 35 þ 1 . 112 ¼ 156 is

a solution to 53x � 282 (mod 113).

With Theorems 6.1 and 6.2 established, we now restrict ourselves to

methods of solving polynomial congruences of the form f (x) � 0

(mod p), where p is prime. When Euler accepted Catherine the Great’s

offer and moved to St Petersburg, Joseph Louis Lagrange succeeded him in

Berlin. Even though they probably never met, there was an extensive

correspondence between the two mathematicians. Lagrange’s most produc-
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tive period with respect to number theory was the period from 1766 to

1777, the time he spent in Berlin. Lagrange’s works are very readable and

are noted for their well-organized presentation and the clarity of their style.

Lagrange in the late eighteenth century determined an upper limit on the

number of solutions to polynomial equations as a function of the degree of

the polynomial. In particular, he established that a polynomial equation can

have at most p incongruent solutions modulo p. According to Fermat’s

Little Theorem, xp � x � 0 (mod p) has exactly p solutions. Hence,

Lagrange’s Theorem is a best possible result.

Theorem 6.3 (Lagrange’s Theorem) The number of incongruent solutions

of the polynomial equation f (x) � 0 (mod p) is never more than the

degree of f (x).

Proof Given f (x) � 0 (mod p), where p is prime and n denotes the

degree of f (x), we reason inductively. If n ¼ 1, consider congruences of

the form ax þ b � 0 (mod p), where a 6� 0 (mod p) so ax � �b (mod p).

Since gcd(a, p) ¼ 1, Theorem 5.14 implies that the equation has exactly

one solution. Suppose the theorem is true for all polynomials of degree less

than or equal to n. Consider f (x) � 0 (mod p), with p prime and

deg( f (x)) ¼ n þ 1. Suppose further that f (x) has n þ 2 incongruent roots

modulo p, and r is one of those roots. It follows that f (x) ¼ g(x)(x � r),

where deg(g(x)) ¼ n. If s is any other root of f (x) � 0 (mod p), then

f (s) � g(s)(s � r) � 0 (mod p). Now s � r 6� 0 (mod p), since

gcd(s � r, p) ¼ 1, and p is prime. Hence, g(s) � 0 (mod p), and s is a

root of g(x) � 0 (mod p). Thus g(x) � 0 (mod p), a polynomial equation

of degree n, has n þ 1 roots, contradicting the induction assumption. j

If n. 4 is composite then n divides (n � 1)! or, equivalently, (n � 1)! � 0

(mod n). In 1770, in Meditationes algebraicae, Edward Waring stated that

one of his students, John Wilson, had conjectured that if p is a prime then

it divides ( p � 1)!þ 1, but the proof seemed difficult due to a lack of

notation to express prime numbers. In 1761, Wilson, like Waring, before

him, was Senior Wrangler at Cambridge. Wilson, however, left mathe-

matics quite early to study law, became a judge, and was later knighted.

Leibniz conjectured the result as early as 1683, but was also unable to

prove it. Having been sent a copy of Meditationes algebraicae by Waring,

Lagrange gave the first proof of the theorem and its converse in 1771.

Gauss reportedly came up with the gist of a proof in five minutes while

198 Congruences of higher degree



walking home one day. His classic riposte to Waring’s comment was that

proofs should be ‘drawn from notions rather than from notations’.

Since

sin
(n � 1)!þ 1

n

� �
� ¼ 0

if and only if n is prime, Wilson’s Theorem provides an interesting but not

very practical criterion for determining whether or not a number is prime.

The proof shown below is due to the Russian mathematician Pafnuti Cheby-

shev, propounder of the law of large numbers. We noted earlier that it is an

open question whether n!þ 1 is prime for infinitely many values of n. The

next result shows that n!þ 1 is composite for infinitely many values of n.

Theorem 6.4 (Wilson’s Theorem) The natural number n is prime if and

only if (n � 1)! � �1 (mod n).

Proof Suppose that p is prime. By Fermat’s Little Theorem solutions to

g(x) ¼ x p�1 � 1 � 0 (mod p) are precisely 1, 2, . . . , p � 1. Consider

h(x) ¼ (x � 1)(x � 2) � � � (x � ( p � 1)) � 0 (mod p), whose solutions by

construction are the integers 1, 2, . . . , p � 1. Since g(x) and h(x) both

have degree p � 1 and the same leading term, f (x) ¼ g(x) � h(x) � 0

(mod p) is a congruence of degree at most p � 2 having p � 1 incon-

gruent solutions, contradicting Lagrange’s Theorem. Hence, every coeffi-

cient of f (x) must be a multiple of p, and thus deg( f (x)) ¼ 0. However,

since f (x) has no constant term, f (x) � 0 (mod p) is also satisfied by

x � 0 (mod p). Therefore, 0 � f (0) ¼ g(0) � h(0) ¼ �1 � (�1) p�1

( p � 1)! (mod p). If p is an odd prime, then (�1) p�1 � 1 (mod p), and if

p ¼ 2, then (�1) p�1 � �1 � 1 (mod 2). Hence, for any prime p, we have

( p � 1)! � �1 (mod p). Conversely, if n is composite, then there exists an

integer d, 1, d , n, such that djn. Hence, dj(n � 1)!, and (n � 1)! � 0

(mod d), implying that (n � 1)! 6� �1 (mod n). j

Let f (x, y) ¼ 1
2
(y � 1)[jA2 � 1j � (A2 � 1)] þ 2, where A ¼ x(y þ 1) �

(y!þ 1), x and y are positive integers. If p is an odd prime, x0 ¼
[( p � 1)!þ 1]=p and y0 ¼ p � 1, then,

A ¼ 1

p
[( p � 1)!þ 1][ p � 1 þ 1] � [( p � 1)!þ 1] ¼ 0:

Hence,

f (x0, y0) ¼ ( p � 1) � 1

2
[j1j � j � 1j] þ 2 ¼ p:

Hence, f (x, y) is an example of a prime generating function.
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Exercises 6.1

1. Solve for x

(a) 2x9 þ 2x6 � x5 � 2x2 � x � 0 (mod 5),

(b) x4 þ x þ 2 � 0 (mod 7).

2. Solve for x

(a) x3 þ 3x2 þ 31x þ 23 � 0 (mod 35),

(b) x3 þ 2x � 3 � 0 (mod 45),

(c) x3 � 9x2 þ 23x � 15 � 0 (mod 77).

3. Use Theorem 6.2 to solve for x

(a) x2 þ 8 � 0 (mod 121),

(b) 5x3 � 2x þ 1 � 0 (mod 343),

(c) x2 þ x þ 7 � 0 (mod 81).

4. Solve the modular system

5x2 þ 4x � 3 � 0 (mod 6),

3x2 þ 10 � 0 (mod 17):

�
5. Use Wilson’s Theorem to show that 17 is prime.

6. Find the remainder when 15! is divided by 17.

7. Show that 18! � �1 (mod 437).

8. For any odd prime p, show that 12 . 32 � � � ( p � 2)2 � 22 . 42 � � �
( p � 1)2 � (�1)( pþ1)=2 (mod p).

9. If p is an odd prime, show that x2 � 1 (mod p) has exactly two

incongruent solutions modulo p.

10. Modulo 101, how many solutions are there, to the polynomial equation

x99 þ x98 þ x97 þ � � � þ x þ 1 ¼ 0? [Hint: multiply the polynomial by

x(x � 1).]

11. Use the fact that Z	p, the nonzero residue classes modulo a prime p, is

a group under multiplication to establish Wilson’s Theorem. [Gauss]

12. Prove that if p. 3 is a prime then

1 þ 1
2
þ 1

3
þ � � � þ 1

p � 1
� 0 (mod p).

[J. Wolstenholme 1862]

13. If p is prime Wilson’s Theorem implies that ( p � 1)!þ 1 ¼ kp for

some k. When does k ¼ 1 and when does k ¼ p?

6.2 Quadratic congruences

In the previous section, we showed that solutions to ax2 þ bx þ c � 0

(mod m) depend on the solution to ax2 þ bx þ c � 0 (mod p), where p is

a prime and pjm. If p is an odd prime with gcd(a, p) ¼ 1, then
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gcd(4a, p) ¼ 1. Multiplying both sides of ax2 þ bx þ c � 0 (mod p) by

4a we obtain 4a2x2 þ 4abx þ 4ac � 0 (mod p) or (2ax þ b)2 �
(b2 � 4ac) (mod p). Therefore, to solve the quadratic equation

ax2 þ bx þ c � 0 modulo a prime p, we need only find solutions to

(2ax þ b) � y (mod p),

where y is a solution to

y2 � (b2 � 4ac) (mod p):

Since gcd(2a, p) ¼ 1, the first of these equations always has a unique

solution. Hence, as Gauss realized, a solution to the original problem

depends solely on solving congruences of the form x2 � k (mod p).

Example 6.2 In order to solve 3x2 þ 15x þ 9 � 0 (mod 17) we first solve

y2 � b2 � 4ac ¼ 225 � 108 ¼ 117 � 15 (mod 17). Since 72 � 102 � 15

(mod 17), we obtain the solutions y � 7 (mod 17) and y � 10 (mod 17). If

y � 7 (mod 17) then 2ax þ b ¼ 6x þ 15 � 7 (mod 17), implying that

x � 10 (mod 17). If y � 10 (mod 17) then 2ax þ b ¼ 6x þ 15 � 10

(mod 17), implying that x � 2 (mod 17). Therefore, the solutions to

3x2 þ 15x þ 9 � 0 (mod 17) are given by x � 2 (mod 17) and x � 10

(mod 17).

Our goal at this point is twofold. We aim to determine which equations of

the form x2 � a (mod p) have solutions, for p an odd prime, and to find a

technique to obtain such solutions. If the equation x2 � a (mod p) has a

solution then a is called a quadratic residue (QR) of p, otherwise a is

called a quadratic nonresidue (QNR) of p. The integer 0 is usually

excluded from consideration since it is a trivial quadratic residue of p, for

every prime p. Since ( p � b)2 � b2 (mod p), if b is a QR of p, then p � b

is a QR of p.

For example, modulo 17, we find that

12 � 1, 22 � 4, 32 � 9, 42 � 16,

52 � 8, 62 � 2, 72 � 15, 82 � 13,

92 � 13, 102 � 15, 112 � 2, 122 � 8,

132 � 16, 142 � 9, 152 � 4, 162 � 1:

Therefore, the quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15, and 16. The

quadratic nonresidues of 17 are 3, 5, 6, 7, 10, 11, 12 and 14. Euler,

Lagrange, Legendre, and Gauss developed the theory of quadratic residues

in attempting to prove Fermat’s Last Theorem.
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For convenience, we introduce the Legendre symbol (a
p
), which is

defined as follows: for p an odd prime, and a an integer with

gcd(a, p) ¼ 1,

a

p

� �
¼ 1 if a is a quadratic residue of p,

�1 if a is a quadratic nonresidue of p:

�

Adrien Marie Legendre studied mathematics at Collège Mazarin in Paris.

He taught for five years with Pierre-Simon Laplace at the Ecole Militaire

in Paris. His treatise on ballistics was awarded a prize from the Berlin

Academy. Legendre was financially independent but lost a fortune during

the French Revolution. In 1798, Legendre introduced the symbol (a
p
) in

Essai sur la théorie des nombres. In Essai, the first modern work devoted

to number theory, Legendre mentioned many of the number theoretic

contributions of Euler and Lagrange. In the next theorem, we show that

modulo an odd prime p half the integers between 1 and p � 1 are quadratic

residues and half are quadratic nonresidues.

Theorem 6.5 If p is an odd prime, then there are precisely ( p � 1)=2

incongruent quadratic residues of p given by

12, 22, . . . ,
p � 1

2

� �2

Proof Let p be an odd prime. We wish to determine the values for a,

1 < a < p � 1, for which the equation x2 � a (mod p) is solvable. Since

x2 � ( p � x)2 (mod p), squares of numbers in the sets {1, 2,

. . . , ( p � 1)=2g and f( p � 1)=2 þ 1, . . . , p � 1g are congruent in pairs.

Thus, we need only consider values of x for which 1 < x < ( p � 1)=2. But

the squares 12, 22, . . . , (( p � 1)=2)2 are all incongruent modulo p, other-

wise x2 � a (mod p) would have four incongruent solutions, contradicting

Lagrange’s Theorem. Thus, the ( p � 1)=2 quadratic residues of p are

precisely the integers

12, 22, . . . ,
p � 1

2

� �2

: j

According to Theorem 6.5, the quadratic residues of 19 are given by 12, 22,

32, 42, 52, 62, 72, 82, and 92. Modulo 19, they are respectively, 1, 4, 9, 16,

6, 17, 11, 7 and 5. Knowing that half the numbers are quadratic residues of

a prime, we still need to find an efficient method to distinguish between

QRs and QNRs for large primes. One of the first such methods was devised

by Euler in 1755. Before establishing Euler’s method to determine whether
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an integer is a quadratic residue of a prime, we establish the following

result.

Lemma If p is an odd prime and gcd(a, p) ¼ 1, then either a( p�1)=2 � 1

or a( p�1)=2 � �1 modulo p.

Proof From Fermat’s Little Theorem, if p is an odd prime and

gcd(a, p) ¼ 1, then a p�1 � 1 ¼ (a( p�1)=2 � 1)(a( p�1)=2 þ 1) � 0 (mod p).

Hence, either a( p�1)=2 � 1 or a( p�1)=2 � �1 (mod p). j

Theorem 6.6 (Euler’s criterion) If p is an odd prime and gcd(a, p) ¼ 1,

then

a

p

� �
� a( p�1)=2 (mod p):

Proof Suppose p is an odd prime, gcd(a, p) ¼ 1, and 1 < r < p � 1.

Since rx � a has a unique solution modulo p there is exactly one element

s, 1 < s < p � 1, such that rs � a (mod p). If a is a QNR modulo p,

(a
p
) ¼ �1, then r 6� s (mod p) and the elements 1, 2, . . . , p � 1 can be

grouped into pairs risi, such that risi � a (mod p), for i ¼ 1, 2,

. . . , ( p � 1)=2. Thus, from Wilson’s Theorem,

�1 � ( p � 1)! �
Yp�1
2

i¼1

risi � a( p�1)=2 (mod p):

If a is a QR modulo p, (a
p
) ¼ 1, there exists an integer b such that b2 � a

(mod p). By Fermat’s Little Theorem, a( p�1)=2 � b p�1 � 1 (mod p).

Therefore, in either case, it follows that

a

p

� �
� a( p�1)=2 (mod p): j

Corollary If p is an odd prime with gcd(a, p) ¼ 1, gcd(b, p) ¼ 1, and

a � b (mod p), then

a

p

� �
¼ b

p

� �
:

For example, according to Euler’s criterion,

3

31

� �
� 3(31�1)=2 � 315 � �1 (mod 31):
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Hence, the equation x2 � 3 (mod 31) has no solution. Since

6

29

� �
� 6(29�1)=2 � 614 � 1 (mod 29),

the equation x2 � 6 (mod 29) has a solution. The next result was con-

jectured by Fermat around 1630 and proven by Euler in 1750.

Theorem 6.7 If p is an odd prime,

�1

p

� �
¼ 1 if p � 1 (mod 4),

�1 if p � 3 (mod 4):

�

Proof If p ¼ 4k þ 1, then

�1

p

� �
¼ (�1)( p�1)=2 ¼ (�1)2k ¼ 1:

If p ¼ 4k þ 3, then

�1

p

� �
¼ (�1)( p�1)=2 ¼ (�1)2kþ1 ¼ �1: j

The next result can be used to simplify computations with Legendre

symbols.

Theorem 6.8 If p is an odd prime and p does not divide ab, then

ab

p

� �
¼ a

p

� �
b

p

� �
:

Proof We have

ab

p

� �
� (ab)( p�1)=2 � a( p�1)=2b( p�1)=2 � a

p

� �
b

p

� �
(mod p):

Since the only possible values for (a
p
), (b

p
), and (ab

p
) modulo p are �1, an

examination of the various cases establishes that

ab

p

� �
¼ a

p

� �
b

p

� �
: j

Corollary If p is an odd prime with gcd(n, p) ¼ 1 and n ¼ Qr
i¼1 p

Æi

i ,

then

n

p

� �
¼

Yr

i¼1

p
Æi

i

p

� �
¼

Yr

i¼1

pi

p

� �Æi

:
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For example, since

24

31

� �
¼ 2

31

� �3
3

31

� �
¼ 13(�1) ¼ �1,

24 is a quadratic nonresidue of 31. Hence, the equation x2 � 24 (mod 31)

has no solution. The next result was obtained by Gauss in 1808. It leads to

the third proof of his celebrated quadratic reciprocity law, an extremely

efficient method for determining whether an integer is a quadratic residue

or not of an odd prime p.

Theorem 6.9 (Gauss’s Lemma) If p is an odd prime with gcd(a, p) ¼ 1,

then (a
p
) ¼ (�1)s, where s denotes the number of elements fa, 2a, 3a,

. . . , 1
2
( p � 1)ag that exceed p=2.

Proof Let S denote the set of least positive residues modulo p of the set

fa, 2a, 3a, . . . , 1
2
( p � 1)ag. Let s denote the number of elements of S that

exceed p=2 and r ¼ ( p � 1)=2 � s. Relabel the elements of S as a1, a2,

. . . , ar, b1, b2, . . . , bs, where ai , p=2, for i ¼ 1, 2, . . . , r, and bj . p=2,

for j ¼ 1, 2, . . . , s. Since the elements are the least positive residues of a,

2a, . . . , 1
2
( p � 1)a,Yr

i¼1

ai

� ! Ys

j¼1

bj

� !
� n( p�1)=2 p � 1

2

� �
! (mod p):

Consider the set T consisting of the ( p � 1)=2 integers a1, a2, . . . , ar,

p � b1, p � b2, . . . , p � bs. Since p=2, bj , p, for j ¼ 1, 2, . . . , s,

0, p � bj , p=2, all the elements of T lie between 1 and ( p � 1)=2. In

addition, if ai � p � bj (mod p), for any 1 < i < r and 1 < j < r, then

0 � p � ai þ bj ¼ ha þ ka ¼ (h þ k)a (mod p), for 1 < h, k <

( p � 1)=2. Hence, p divides (h þ k)a. Since gcd( p, a) ¼ 1, p must divide

h þ k, but that is impossible since 0, h þ k , p. Thus the elements of T

are distinct and, hence, must consist precisely of the integers 1, 2,

. . . , ( p � 1)=2. Thus,

p � 1

2

� �
! �

Yr

i¼1

ai

� ! Ys

j¼1

( p � bj)

� !
� (�1)s

Yr

i¼1

ai

� ! Ys

j¼1

bj

� !

� (�1)s n( p�1)=2 p � 1

2

� �
! (mod p):

Cancelling (( p � 1)=2)! from both sides of the congruence yields 1 �
(�1)sn( p�1)=2 (mod p). Therefore, from Euler’s criterion,
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n

p

� �
� (�1)s (mod p): j

For example, if p ¼ 31 and a ¼ 3, then, with respect to the multiples of 3,

we have 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45 which are

congruent to 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 2, 5, 8, 11, 14 modulo 31,

respectively. Hence, s ¼ 5 and

3

31

� �
¼ (�1)5 ¼ �1:

Therefore, the congruence x2 � 3 (mod 31) has no solution. The next

result, established by Legendre in 1775, gives an efficient way to evaluate

the Legendre symbol when the numerator equals 2.

Theorem 6.10 If p is an odd prime, then

2

p

� �
¼ 1 if p � �1 (mod 8),

�1 if p � �3 (mod 8):

�

Proof Let s denote the number of elements 2, 4, 6, . . . , 2(( p � 1)=2) that

exceed p=2. A number of the form 2k is less than p=2 whenever k < p=4.

Hence, s ¼ ( p � 1)=2 � ½½p=4. If p ¼ 8k þ 1, then s ¼ 4k � ½½2k þ 1
4


¼ 4k � 2k � 0 (mod 0). If p ¼ 8k þ 3, then s ¼ 4k þ 1 � ½½2k þ 3
4
 ¼

4k þ 1 � 2k � 1 (mod 2). If p ¼ 8k þ 5, then s ¼ 4k þ 2 � ½½2k þ 1 þ 1
4


¼ 2k þ 1 � 1 (mod 2). If p ¼ 8k þ 7, then s ¼ 4k þ 3 � ½½2k þ 1 þ 3
4
 ¼

2k þ 2 � 0 (mod 2). j

Since ( p2 � 1)=8 satisfies the same congruences as does s in the proof of

Theorem 6.10, we obtain the following formula which can be used to

determine for which primes 2 is a QR and for which it is a QNR.

Corollary If p is an odd prime, then

2

p

� �
¼ (�1)( p2�1)=8:

It is often difficult and sometimes nearly impossible to credit a mathema-

tical result to just one person, often because there is a person who first

stated the conjecture, one who offered a partial proof of the conjecture, one

who proved it conclusively, and one who generalized it. The quadratic

reciprocity law,
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if p and q are odd primes then
p

q

� �
¼ � q

p

� �
,

is no exception. It was mentioned in 1744 by Euler who estabished several

special cases of the law in 1783. In 1785, Legendre stated and attempted to

prove the Loi de réciprocité in Recherches d’analyse indéterminée and

again in a 1798 paper. In both attempts, he failed to show that for each

prime p � 3 (mod 4) there exists a prime q � 3 (mod 4) such that

( p

q
) � �1:

Gauss gave the first complete proof in 1795 just prior to his 18th

birthday and remarked that the problem had tormented him for a whole

year. In 1801, he published his first proof of the quadratic reciprocity law

in Disquisitiones. He wrote, ‘engaged in other work I chanced upon an

extraordinary arithmetic truth . . . since I considered it to be so beautiful in

itself and since I suspected its connections with even more profound

results, I concentrated on it all my efforts in order to understand the

principles on which it depends and to obtain a rigorous proof’. Gauss

eventually devised eight proofs for the quadratic reciprocity law.

Theorem 6.11 will allow us to efficiently determine whether or not an

integer is a quadratic residue modulo a prime. In essence, the quadratic

reciprocity law states that if p and q are prime then, unless both are

congruent to 3 modulo 4, x2 � p (mod q) and x2 � q (mod p) are

solvable. In the case that p � 3 (mod 4) and q � 3 (mod 4), one of the

equations is solvable and the other is not. The geometric proof offered

below is due to Ferdinand Eisenstein, Gauss’s pupil, who published it in

1840. Eisenstein discovered a cubic reciprocity law as well.

Theorem 6.11 (Gauss’s quadratic reciprocity law) If p and q are distinct

odd primes, then

p

q

� �
q

p

� �
¼ (�1)

1
2
( p�1)1

2
(q�1):

Proof Let p and q be distinct odd primes. Consider the integers qk and rk,

where kp ¼ pqk þ rk , and 1 < rk < p � 1, for k ¼ 1, 2, . . . , ( p � 1)=2.

Hence, qk ¼ ½½kq=p, and rk is the least residue of kq modulo p. As in the

proof of Gauss’s Lemma, we let a1, a2, . . . , ar denote those values of rk

which are less than p=2, and b1, b2, . . . , bs denote those values of rk

which are greater than p=2. Hence, a1, a2, . . . , ar, p � b1, p � b2,

. . . , p � bs are just the integers 1, 2, . . . , ( p � 1)=2 in some order and
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q

p

� �
¼ (�1)s:

Let

a ¼
Xr

i¼1

ai and b ¼
Xs

j¼1

bj,

so

a þ b ¼
Xp�1

2

k¼1

rk :

Therefore,

(	) a þ sp � b ¼
Xr

i¼1

ai þ
Xs

j¼1

( p � bj) ¼
Xp�1

2

k¼1

k ¼ p2 � 1

8
:

Moreover, if we let

u ¼
Xp�1

2

k¼1

qk ¼
Xp�1

2

k¼1

		
kq

p





and sum the equations kq ¼ pqk þ rk , for 1 < k < ( p � 1)=2, we have

(		) pu þ a þ b ¼ p
Xp�1

2

k¼1

qk

0
@

1
Aþ a þ b

¼
Xp�1

2

k¼1

( pqk þ rk) ¼
Xp�1

2

k¼1

kq ¼ p2 � 1

8

� �
q:

Subtracting (	) from (		), we obtain

pu þ 2b � sp ¼ p2 � 1

8

� �
(q � 1):

Since p � q � 1 (mod 2), u � s (mod 2). Therefore,

q

p

� �
¼ (�1)s ¼ (�1)u:

Repeating the above process with the roles of p and q interchanged and

with

v ¼
Xq�1

2

j¼1

		
jp

q




,

we obtain
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p

q

� �
¼ (�1)v:

Therefore,

(			)
p

q

� �
q

p

� �
¼ (�1)uþv:

We need only show that

u þ v ¼ p � 1

2

� �
q � 1

2

� �
:

Consider all the lattice points (i, j), in the Cartesian plane, such that

1 < i < ( p � 1)=2 and 1 < j < (q � 1)=2. If the lattice point (i, j) lies on

the line l: py ¼ qx, then pj ¼ qi (see Figure 6.1). However, p and q are

coprime implying that p divides i, which is impossible since

1 < i < ( p � 1)=2. Thus, each such lattice point lies either above l or

below l. If (i, j) is a lattice point below l, then pj, qi, so j, qi=p. Thus,

for each fixed value for i, 1 < j < ½½qi=p whenever (i, j) is below l.

Therefore, the total number of lattice points below l is given by

Xp�1
2

i¼1

		
qi

p




¼ u:

py � qx

q � 1
2

(0, 0) p � 1
2

Figure 6.1
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Similarily, the total number of lattice points above l is given by

Xq�1
2

j¼1

		
jp

q




¼ v:

Since each one of the ( p�1
2

)(q�1
2

) points must lie above or below l,

u þ v ¼ p � 1

2

� �
q � 1

2

� �
:

Therefore, from (			), it follows that

p

q

� �
q

p

� �
¼ (�1)

1
2
( p�1)1

2
(q�1): j

For example, 283 � 17 (mod 19), and 19 � 2 (mod 17); using Theorem

6.8 and the quadratic reciprocity law in the form

p

q

� �
¼ q

p

� �
(�1)

1
2
( p�1)1

2
(q�1),

we obtain

19

283

� �
¼ 283

19

� �
(�1)

18
2

282
2

or

� 17

19

� �
¼ � 19

17

� �
(�1)

16
2

18
2

or

� 2

17

� �
¼ �1:

Therefore, x2 � 19 (mod 283) has no solutions.

Quartic and higher order reciprocity laws have been developed. The

construction of such criteria now belongs to the branch of number theory

called class field theory which was introduced by David Hilbert in 1898. A

general law of reciprocity was established by Emil Artin in 1927.

It is possible to generalize Legendre’s symbol for cases in which the

denominator is composite. If we let a 6¼ 0 and m be positive integers with

canonical representation m ¼ Qr
i¼1 p

Æi

i , then the Jacobi symbol ( a
m
), which

first appeared in Crelle’s Journal in 1846, is defined by

a

m

� �
¼

Yr

i¼1

a

pi

� �Æi

,

where ( a
pi
), with pi prime, represents the Legendre symbol.
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Unlike the Legendre symbol the Jacobi symbol may equal unity without

the numerator being a quadratic residue modulo m. For example,

2

9

� �
¼ 2

3

� �2

¼ 1,

but x2 � 2 (mod 9) is not solvable! However, if

a

m

� �
¼ �1,

for a composite positive integer m, then the equation x2 � a (mod m) has

no solution. For example,

21

997

� �
¼ 3

997

� �
7

997

� �
¼ (1)(�1) ¼ �1:

Hence, x2 � 21 (mod 997) has no solution.

Important properties of the Jacobi symbol, whose proofs follow from the

definition and properties of the Legendre symbol, include the following:

(a) a � b (mod p) implies that
a

m

� �
¼ b

m

� �
,

(b)
a

mn

� �
¼ a

m

� �
a

n

� �
,

(c)
ab

m

� �
¼ a

m

� �
b

m

� �
,

(d)
�1

m

� �
¼ (�1)(m�1)=2, if m is odd,

(e)
2

m

� �
¼ (�1)(m2�1)=8,

(f)
n

m

� �
m

n

� �
¼ (�1)

1
2
(n�1)1

2
(m�1), for m and n odd and gcd(m, n) ¼ 1.

Exercises 6.2

1. Find all the quadratic residues modulo 29.

2. Evaluate the following Legendre symbols:

(a)
2

29

� �
, (b)

�1

29

� �
, (c)

5

29

� �
, (d)

11

29

� �
,

(e)
2

127

� �
, (f)

�1

127

� �
, (g)

5

127

� �
, (h)

11

127

� �
.

3. Which of the following quadratic congruences have solutions?

(a) x2 � 2 (mod 29), (e) x2 � 2 (mod 127),
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(b) x2 � 28 (mod 29), (f) x2 � 126 (mod 127),

(c) x2 � 5 (mod 29), (g) x2 � 5 (mod 127),

(d) x2 � 11 (mod 29), (h) x2 � 11 (mod 127).

4. Determine whether or not the following quadratic congruences are

solvable. If solvable find their solutions.

(a) 5x2 þ 4x þ 7 � 0 (mod 19).

(b) 7x2 þ x þ 11 � 0 (mod 17).

(c) 2x2 þ 7x � 13 � 0 (mod 61).

5. Evaluate the following Jacobi symbols:

(a)
21

221

� �
, (b)

215

253

� �
, (c)

631

1099

� �
,

(d)
1050

1573

� �
, (e)

89

197

� �
.

6. If p is an odd prime show thatXp�1

a¼1

a

p

� �
¼ 0:

7. If p is an odd prime and gcd(a, p) ¼ gcd(b, p) ¼ 1, show that at least

one of a, b and ab is a quadratic residue of p.

8. If p is an odd prime use Euler’s criterion to show that �1 is a quadratic

residue of p if and only if p � 1 (mod 4).

9. If p and q are odd primes with p ¼ 2q þ 1, use the quadratic

reciprocity law to show that

p

q

� �
¼ �1

p

� �
:

10. If p and q are distinct primes with p � 3 (mod 4) and q � 3 (mod 4),

then use the quadratic reciprocity law to show that p is a quadratic

residue modulo q if and only if q is a quadratic nonresidue modulo p.

11. Prove that 19 does not divide 4n2 þ 4 for any integer n.

12. If p is a prime and h þ k ¼ p � 1, show that h! . k! � (�1)kþ1

(mod p).

13. If p is an odd prime with p ¼ 1 þ 4r use the previous exercise, with

h ¼ k ¼ 2r, to show that 2r! is a solution to x2 � �1 (mod p).

14. Prove that if p. 3 is a prime then

1 þ 1

22
þ 1

32
þ � � � þ 1

( p � 1)2
� 0 (mod p):

[J. Wolstenholme 1862].
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6.3 Primitive roots

We now describe a general method to solve polynomial congruences of

higher degree modulo a prime. We begin by considering fundamental

congruences of the type xm � a (mod p), where p is an odd prime, a. 2,

and gcd(a, p) ¼ 1. If xm � a (mod p) is solvable, we say that a is an mth

power residue of p. If n is a positive integer and gcd(a, n) ¼ 1, the least

positive integer k such that ak � 1 (mod n) is called the order of a modulo

n and is denoted by ordn(a). For any positive integer n, a�(n) � 1. Thus, the

Euler–Fermat Theorem, implies that ordn(a) is well-defined and always

less than �(n).

Theorem 6.12 If ordn(a) ¼ k then ah � 1 (mod n) if and only if k divides h.

Proof Suppose gcd(a, n) ¼ 1, ordn(a) ¼ k, and ah � 1 (mod n). The

division algorithm implies there exist integers q and s such that h ¼
kq þ s, with 0 < s, k. Thus ah ¼ akqþs ¼ (ak)qas. Since ak � 1 (mod n),

it follows that as � 1 (mod n), so s 6¼ 0 would contradict the fact that k is

the least positive integer with the property that ak � 1 (mod n). Hence,

s ¼ 0 and k divides h. Conversely, if kjh, then there is an integer t such

that kt ¼ h. Since ordn(a) ¼ k, ah � akt � (ak) t � 1 (mod n). j

If we know the order of a modulo n, with a little more effort, we can

determine the order of any power of a modulo n as illustrated in the next

result.

Theorem 6.13 If ordn(a) ¼ k then ordn(a
m) ¼ k=gcd(m, k).

Proof Let ordn(a) ¼ k, ordn(a
m) ¼ r, d ¼ gcd(m, k), m ¼ bd, k ¼ cd,

and gcd(b, c) ¼ 1. Hence, (am)c ¼ (abd)c ¼ (acd)b ¼ (ak)b � 1 (mod n).

Theorem 6.12 implies that rjc. Since ordn(a) ¼ k, (amr) ¼ (am)r � 1

(mod n). Hence, Theorem 6.12 implies that kjmr. Thus, cdj(bd)r, inplying

that cjbr. Since b and c are coprime, c divides r. Hence, c equals r.

Therefore, ordn(a
m) ¼ r ¼ c ¼ k=d ¼ k=gcd(m, k). j

From Theorem 6.12, it follows that the order of every element modulo a

prime p is a divisor of p � 1. In addition, Theorem 6.13 implies that if d is

a divisor of p � 1 then there are exactly �(d) incongruent integers modulo

p having order d. For example, if p ¼ 17, 8 is a divisor of p � 1. Choose

an element, say 3, that has order 16 modulo 17. In Theorem 6.17, we show

that this can always be done. For example, the �(8) ¼ 4 elements k with
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1 < k < 16 such that gcd(k, 16) ¼ 2 are 2, 6, 10, 14. The four elements of

order 8 modulo 17 are 32, 36, 310, and 314.

The following corollaries follow directly from the previous two theorems

and the definition of the order of an element. We state them without proof.

Corollary 6.1 If ordn(a) ¼ k, then k divides �(n).

Corollary 6.2 If ordn(a) ¼ k, then ar � as (mod n) if and only if r � s

(mod k).

Corollary 6.3 If k . 0 and ordn(a) ¼ hk, then ordn(a
h) ¼ k.

Corollary 6.4 If ordn(a) ¼ k, ordn(b) ¼ h, and gcd(h, k) ¼ 1, then

ordn(ab) ¼ hk.

We use the order of an element to establish the following primality test

devised by the nineteenth century French mathematician J.F.T. Pepin.

Theorem 6.14 (Pepin’s primality test) For n > 1, the nth Fermat number

Fn is prime if and only if 3(Fn�1)=2 � �1 (mod Fn).

Proof If Fn is prime, for n > 1, Fn � 2 (mod 3). Hence, from the

quadratic reciprocity law,

3

Fn

� �
Fn

3

� �
¼ 3

Fn

� �
2

3

� �
¼ 3

Fn

� �
(�1) ¼ 1:

Thus,

3

Fn

� �
¼ �1:

From Euler’s criterion, 3(Fn)=2 � �1 (mod Fn). Conversely, suppose that

3(Fn�1)=2 � �1 (mod Fn). If p is any prime divisor of Fn then 3(Fn�1)=2 �
�1 (mod p). Squaring both sides of the congruence, we obtain 3Fn�1 � 1

(mod p). If m is the order of 3 modulo p, according to Theorem 6.12, m

divides Fn � 1. That is, m divides 22n

. Hence, m ¼ 2r, with 0 < r < 2n. If

r ¼ 2n � s, where s. 0, then 3(Fn�1)=2 ¼ 322 n�1 ¼ 32 rþs�1 ¼ (32 r

)2
s�1 ¼ 1.

A contradiction, since we assumed 3(Fn�1)=2 � �1 (mod p). Thus, s ¼ 0

and 3 has order 22 n

modulo p. From Theorem 6.12, 22 n

divides p � 1.

Hence, 22 n

< p � 1 implying that Fn < p. Therefore, if p is a prime

divisor of Fn, then Fn ¼ p. That is, Fn is prime. j
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For some positive integers n, there is a number q, 1, q < n � 1, such that

powers of q generate the reduced residue system modulo n. That is, for

each integer r, 1 < r < n � 1, with gcd(r, n) ¼ 1 there is a positive

integer k for which qk ¼ r. In this case, q can be used to determine the

order of an element in Z	n and to determine the QRs and NQRs of n as

well. The existence of such a number is crucial to the solutions of

polynomial congruences of higher degree. We call a positive integer q a

primitive root of n if ordn(q) ¼ �(n). We now show that primitive roots of

n generate the reduced residue system modulo n.

Theorem 6.15 If q is a primitive root of n, then q, q2, . . . , q�(n) form a

reduced residue system modulo n.

Proof Since q is a primitive root of n, ordn(q) ¼ �(n), implying that

gcd(q, n) ¼ 1. Hence, gcd(qi, n) ¼ 1, for i ¼ 1, 2, . . . , �(n). The ele-

ments q, q2, . . . , q�(n) consist of �(n) mutually incongruent positive

integers. If qi � qj (mod n), for 1 < i, j < �(n), then, from Corollary

6.2, i � j (mod �(n)). Hence, �(n) divides j � i, which is impossible since

0, j � i,�(n). Hence, qi 6� qj (mod �(n)), for 1 < i, j < �(n), and q,

q2, . . . , q�(n) form a reduced residue system modulo n. j

Theorem 6.16 (Lambert) If p is an odd prime, h a positive integer, and q

a prime such that qh divides p � 1, then there exists a positive integer b

such that ord p(b) ¼ qh.

Proof By Lagrange’s Theorem and the fact that p > 3, the equation

x( p�1)=q � 1 (mod p) has at most ( p � 1)=q solutions where

p � 1

q
<

p � 1

2
< p � 2:

Therefore, at least one element, say a, with 1 < a < p � 1, and

gcd(a, p) ¼ 1, is not a solution. Hence, a( p�1)=q 6� 1 (mod p). Let

b ¼ a( p�1)=qh

and suppose that ord p(b) ¼ m. Since bqh � a p�1 (mod p),

Theorem 6.12 implies that m divides qh. Suppose m, qh. Since q is

prime, m divides q h�1 and there is an integer k such that mk ¼ q h�1. Thus,

a( p�1)=q ¼ bq h�1 ¼ (bm)k � 1k � 1 (mod p), contradicting our assump-

tion. Hence, qh ¼ m ¼ ord p(b). j

In 1769, in connection with his work on decimal expansions of 1= p, where

p is an odd prime, J.H. Lambert established Theorem 6.16 and claimed that

primitive roots of p exist for every prime p. Euler introduced the term
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‘primitive root’ in 1773 when he attempted to establish Lambert’s con-

jecture. Euler proved that there are exactly �( p � 1) primitive roots of p.

At age 11, Gauss began working with primitive roots attempting to

determine their relation to decimal expansions of fractions. He was able to

show that if 10 is a primitive root of a prime p, then the decimal expansion

of 1= p has period p � 1. Gauss showed that if m ¼ 2Æ5�, then the period

of the decimal expansion for m=pn is of the order of 10 modulo pn. He

also showed that primitive roots exist modulo n for n ¼ 2, 4, p, pk , and

2 pk , where p is an odd prime and k is a positive integer. In addition, he

proved that if q is a primitive root of an odd prime p, then qp � p,

qp � qp, and at least one of q and q þ p is a primitive root of p2; if r is a

primitive root of p2, then r is a primitive root of pk , for k > 2; and if s is a

primitive root of pk and s is odd then s is a primitive root of 2 pk , if s is

even then s þ pk is a primitive root of 2 pk . In addition, he proved that if m

and n are coprime positive integers both greater than 3 there are no

primitive roots of mn. For a positive integer n. 2, there are no primitive

roots of 2n, as shown in the next result.

Theorem 6.17 There are no primitive roots of 2n, for n. 2.

Proof We use induction to show that if gcd(a, 2n) ¼ 1, for n. 2, then

ord2n(a) ¼ 2n�2. Hence, a cannot be a primitive root of 2n. If n ¼ 3 and

gcd(a, 23) ¼ 1, then a � 1, 3, 5, 7, (mod 8). In addition, 12 � 32 �
52 � 72 � 1 (mod 8). Hence, if gcd(a, 23) ¼ 1, then ord8(a) ¼ 2 ¼ 23�2.

Let k . 3 and suppose that if gcd(m, 2k) ¼ 1, for some positive integer m,

then ord2 k (m) ¼ 2k�2. That is, m2 k�2 � 1 (mod 2k) with ms 6� 1 (mod 2k)

for 1 < s, 2k�2. Let b be such that gcd(b, 2kþ1) ¼ 1. Hence,

gcd(b, 2k) ¼ 1 and, from the induction assumption, it follows that

ord2 k (b) ¼ 2k�2. Thus there is an integer r such that b2 k�2 ¼ 1 þ r . 2k . In

addition b2 k�1 ¼ (b2 k�2

)2 ¼ (1 þ 2r . 2k þ r2 . 22k) � 1 (mod 2kþ1). Sup-

pose there is an integer s such that bs � 1 (mod 2kþ1) for 1 < s, 2k�1.

We have bs ¼ 1 þ t . 2kþ1 ¼ 1 þ 2t . 2k , implying that bs � 1 (mod 2k), a

contradiction . Therefore, gcd(b, 2kþ1) ¼ 1 implies that ord2 kþ1 (b) ¼ 2k�1

and the result is established. j

Finding primitive roots even of a prime is not an easy task. In 1844, A.L.

Crelle devised an efficient scheme to determine whether an integer is a

primitive root of a prime. The method works well for small primes. It uses

the property that, if 1 < a < p � 1, si is the least residue of a . i modulo

p, and tj is the least residue of aj, for 1 < i, j < p � 1, then tk � st k�1
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(mod p), for 1 < k < p � 1. Crelle’s algorithm follows since a j�1 . a � aj

(mod p), for 1 < a < p � 1.

Example 6.3 If p ¼ 17, and a ¼ 3, then we generate the powers of 3 using

the multiples of 3, as shown in Table 6.1. In particular, suppose the rows

for k and 3k have been completed and we have filled in 30 ¼ 1, 31 ¼ 3 and

32 ¼ 9 on the bottom row. In order to determine 33 modulo 17, go to

column 9 (since 32 � 9 (mod 17)), to find that 33 � 3 . 9 � 10 (mod 17).

Hence, 33 � 10 (mod 17). To determine 34 modulo 17, go to column 10

(since 33 � 10 (mod 17)) to find that 34 � 3 . 10 � 13 (mod 17). Hence,

34 � 13 (mod 17). To determine 35 (mod 17), go to column 13 (since

34 � 3 . 10 � 13 (mod 17)) to find that 35 ¼ 3 . 13 � 5 (mod 17). Hence,

35 � 5 (mod 17), and so forth. The smallest value for k, 1 < k < 16, for

which 3k � 1 (mod 17) is 16. Hence, 3 is primitive root modulo 17.

Theorem 6.18 If p is an odd prime, then there exist �( p � 1) primitive

roots modulo p.

Proof If p � 1 ¼ Qr
i¼1 p

Æi

i , where Æi > 1, for i ¼ 1, 2, . . . , r, is the

canonical representation for p � 1, by Theorem 6.16, there exist integers

ni such that ord p(ni) ¼ pi, for 1 < i < r. By a generalization of Corollary

6.4, if m ¼ Qr
i¼1 ni, then ord p(m) ¼ Qr

i¼1 p
Æi

i ¼ p � 1, and m is the

desired primitive root. From Theorem 6.13, if q is a primitive root of p and

gcd(r, p � 1) ¼ 1 then qr is a primitive root of p. Therefore, there are

�( p � 1) primitive roots of p. j

Hence if q is a primitive root of p, then the �( p � 1) incongruent primitive

roots of p are given by qÆ1 , qÆ2 , . . . , qÆ�( p�1), where Æ1, Æ2, . . . , Æ�( p�1)

are the �( p � 1) integers less than p � 1 and coprime to p � 1. For

example, in order to determine all the primitive roots of 17, we use the fact

that 3 is a primitive root of 17 and �(16) ¼ 8. The eight integers less than

16 and coprime to 16 are 1, 3, 5, 7, 9, 11, 13, and 15. In addition, 31 � 3,

33 � 10, 35 � 5, 37 � 11, 39 � 14, 311 � 7, 313 � 12, and 315 � 6

(mod 17). Therefore, the primitive roots of 17 are 3, 5, 6, 7, 10, 11, 12, and

Table 6.1.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3k 0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
3k 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
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14. If gcd(q, m) ¼ 1, then q is a primitive root of m if and only if

q�(m)= p 6� 1 (mod m) for all prime divisors p of �(m). In general, if a

primitive root exists for m, then there are �(�(m)) incongruent primitive

roots of m.

Theorem 6.19 If q is a primitive root of a prime p, the quadratic residues

of p are given by q2k and the quadratic nonresidues by q2k�1, where

0 < k < ( p � 1)=2.

Proof Using Euler’s criterion, if gcd(a, p) ¼ 1, then

(q2k)( p�1)=2 ¼ (q p�1)k � 1 (mod p)

and

(q2k�1)( p�1)=2 ¼ (q p�1)k . (q( p�1)=2)�1 � (q( p�1)=2)�1 � �1 (mod p):

Conversely, if a is a QR of p then a ¼ (qk)2 ¼ q2k and if a is a QNR of p

then a ¼ (q2)k . q ¼ q2kþ1 where 0 < k < ( p � 1)=2. j

For example, since 3 is a primitive root of 17, the quadratic residues of 17

are 30, 32, 34, 36, 38, 310, 312, 314, and 316.

Gauss thought that 10 was a primitive root for infinitely many primes. In

1920, Artin conjectured that there are infinitely many primes p with the

property that 2 is a primitive root. Artin’s conjecture has been generalized

to state that if n is not a kth power then there exist infinitely many primes

p such that n is a primitive root. In 1927, Artin conjectured further that

every positive nonsquare integer is a primitive root of infinitely many

primes. There are infinitely many positive integers for which Artin’s

conjecture is true and a few for which it fails.

According to Euler’s criterion x2 � a (mod p) is solvable if and only if

a( p�1)=2 � 1 (mod p). A necessary condition that xm � a (mod p) be

solvable is that a( p�1)=d � 1 (mod p), with d ¼ gcd(m, p � 1). In order to

see this, suppose gcd(a, b) ¼ 1 and b is a solution of xm � a (mod p).

Fermat’s Little Theorem implies that a( p�1)=d � b( p�1)m=d � (b p�1)r � 1

(mod p), with r ¼ m=d. The next result generalizes Euler’s criterion for

mth power residues of a prime. The proof is constructive and will enable

us to determine where polynomial congruences of the form xm � a

(mod p) have solutions.

Theorem 6.20 Let p be an odd prime with gcd(a, p) ¼ 1, then xm � a

(mod p) is solvable if and only if a( p�1)=d � 1 (mod p), where d ¼
gcd(m, p � 1).
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Proof We need only establish the necessity. Suppose that a( p�1)=d � 1

(mod p) where gcd(a, p) ¼ 1, d ¼ gcd(m, p � 1), and q is a primitive

root modulo p. There exists an integer s such that a ¼ qs. Hence,

qs( p�1)=d � a( p�1)=d � 1 (mod p). Since q is a primitive root of p,

ord p(q) ¼ p � 1. Thus, s=d ¼ k is an integer and a � qkd (mod p). Since

d ¼ gcd(m, p � 1), there are integers u and v such that d ¼ um þ
v( p � 1). Thus, a ¼ qkd ¼ q kumþkv( p�1) ¼ q kumq( p�1)kv ¼ q(ku)m . 1 ¼
q(ku)m. Therefore, qku is a solution to xm � a (mod p). j

For example, the equation x7 � 15 (mod 29) is not solvable since

1528=7 � 154 � �9 6� 1 (mod 29). The equation x16 � 8 (mod 73) has a

solution since gcd(16, 72) ¼ 8 and 872=8 ¼ 89 � 1 (mod 73).

Given a fixed value for m, it is possible to find that all the mth power

residues modulo a prime as illustrated in the next result.

Theorem 6.21 If p is an odd prime, q is a primitive root of p, and

d ¼ gcd(m, p � 1), then the mth power residues of p are given by qd, q2d ,

. . . , qd( p�1)=d .

Proof Let p be an odd prime, q a primitive root of p, and d ¼
gcd(m, p � 1). From the proof of Theorem 6.20, each element in the set

fqd , q2d , . . . , qd( p�1)=dg is an mth power residue of p. In addition,

they are incongruent modulo p, for if qid � qjd (mod p), for some

1 < i, j < ( p � 1)=d, from Corollary 6.2 p � 1 divides d( j � i), which

is impossible since 0, d( j � i), p � 1. Suppose a is an mth power

residue of p. Hence, there is an element b, 1 < b < p � 1, such that

bm � a (mod p). There is an integer k, 1 < k < p � 1, such that b � qk

(mod p), hence, a � bm � qkd (mod p). Let, r, s, t, u, be such that

ud ¼ m, td ¼ p � 1, uk ¼ st þ r with 0 < r, t. So a � qmk � qukd

� q(stþr)d � q( p�1)sqrd � qrd (mod p). Therefore, a is included in the set

fqd , q2d , . . . , qd( p�1)=dg. j

For example, in order to find the 12th power residues of 17, we use

p � 1 ¼ 16, m ¼ 12, d ¼ gcd(12, 16) ¼ 4 and the fact that 3 is a primitive

root of 17. Hence, the 12th power residues of 17 are 34 � 13, 38 � 16,

312 � 4, and 316 � 1. Therefore, x12 � a (mod 17) is solvable if and only

if a ¼ 1, 4, 13, or 16.

There is a relationship between primitive roots and quadratic nonresi-

dues of odd primes. In particular, if p is an odd prime and a is a quadratic

residue of p, then there exists an element b, 1 < b < p � 1, such that
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b2 � a (mod p), Hence, a( p�1)=2 � b(( p�1)=2)2 � b p�1 � 1 (mod p).

Therefore, for an odd prime p, every primitive root of p is a quadratic

nonresidue of p. In addition, we have the following result.

Theorem 6.22 If p is an odd prime, every quadratic nonresidue of p is a

primitive root of p if and only is p ¼ 2k þ 1, for k a positive integer.

Proof There are ( p � 1)=2 quadratic nonresidues of p and �( p � 1)

primitive roots of p. Every quadratic nonresidue of p is a primitive root of

p if and only if �( p � 1) ¼ ( p � 1)=2, but �(n) ¼ n=2 if and only if

n ¼ 2k . Therefore, p ¼ 2k þ 1. j

Gauss introduced a method to solve a number of polynomial congruences

of higher degree modulo a prime. In particular, if p is an odd prime and q

is a primitive root of p, we say that r is an index of n to the base q modulo

p and write r ¼ Iq(n) (mod p) if and only if n � qr (mod p) and

0 < r, p � 1. Note that q I q(n) � n (mod p). If p and q are known and

the context is clear we simply write I(n) to denote the index of n to the

base q modulo p. In 1839, Jacobi published a table of indices for all

primes less than a thousand in his Canon arithmeticus. In 1968, A.E.

Western and J.C.P. Miller published a table of indices for all primes less

than 50 021. A table of indices for the primitive root 3 modulo 17 can be

generated from Table 6.1 by dropping the second row, rewriting the third

row in ascending order, and interchanging the third row with the first row

as shown in Table 6.2.

Indices are not additive but act like and play a role similar to that of

logarithms. The next result provides us with enough machinery to solve a

number of polynomial congruences of higher degree as well as other

problems in modular arithmetic.

Theorem 6.23 If p is an odd prime, q a primitive root of p, m and n

integers such that gcd(m, p) ¼ gcd(n, p) ¼ 1, and r and k are positive

integers, then

(a) m � n (mod p) if and only if I(m) � I(n) (mod p � 1),

Table 6.2.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I(k) 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8
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(b) I(qr) � r (mod p � 1),

(c) I(1) ¼ 0 and I(q) ¼ 1,

(d) I(mn) � I(m) þ I(n) (mod p � 1),

(e) I(nk) � k . I(n) (mod p � 1).

Proof Since q is a primitive root modulo p, ord p(q) ¼ p � 1. Let

r ¼ I(m) and s ¼ I(n); hence, qr � m (mod p) and qs � n (mod p).

(a) m � n (mod p) if and only if qr � qs (mod p) if and only if r � s

(mod p � 1) if and only if I(m) � I(n) (mod p � 1). j

(b) Since qr � m (mod p) it follows from (a) that I(qr) � I(m) � r

(mod p � 1). j

(c) 1 � q0 (mod p) and q � q1 (mod p). Hence, I(1) ¼ 0 and I(q) ¼ 1. j

(d) q rþs ¼ qrqs � mn (mod p). Hence, from (a), we have I(mn) � r þ
s � I(m) þ I(n) (mod p � 1). j

(e) qst � nt (mod p). Hence, from (a), we have I(nt) � ts � t . I(n)

(mod p � 1). j

Example 6.4 We use indices, the fact that 3 is a primitive root of 17, and

Table 6.2, to solve 11x � 9 (mod 17).

I(11x) � I(9) (mod 16),

I(11) þ I(x) � I(9) (mod 16),

7 þ I(x) � 2 (mod 16),

I(x) � 11 (mod 16),

x � 7 (mod 17):

Example 6.5 Solve x3 þ 6 � 0 (mod 17). We have

x3 � �6 � 11 (mod 17),

I(x3) � I(11) (mod 16),

3(I(x)) � 7 (mod 16),

I(x) � 77 � 13 (mod 16),

x � 12 (mod 17),

and
x � 8, 11, or 7 (mod 13):

Example 6.6 Evaluate 1134729 . 43297 modulo 17. We have x � 1134729 .
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43297 � 12729 . 797 (mod 17). In addition, I(x) � 729 . I(12) þ 97 . I(7) �
9 . 13 þ 1 . 11 � 0 (mod 16). Therefore, x � 1 (mod 17).

Exercises 6.3

1. Determine all positive integers that have exactly one primitive root.

2. Show that 3(F3�1)=2 � �1 (mod F3), where F3 ¼ 223 þ 1.

3. Use Crelle’s method to show that 2 is a primitive root modulo 29.

4. Use Crelle’s method to show that 5 is not a primitive root modulo 29.

5. Find all �(28) primitive roots modulo 29.

6. Construct a table of indices modulo 29.

7. Find the fourth and seventh power residues modulo 29.

8. Find all noncongruent solutions to x7 � 12 (mod 29).

9. Find all solutions to x9 � 12 (mod 29).

10. Use Table 6.2 to solve the following congruences.

(a) 7x � 5 (mod 17).

(b) x7 � 5 (mod 17).

(c) x8 � 8 (mod 17).

11. Construct a table of indices modulo 11 and use it to solve the

following congruences.

(a) 7x3 � 3 (mod 11).

(b) 3x4 � 5 (mod 11).

(c) x8 � 10 (mod 11).

12. Use indices to find the remainder when 324 . 513 is divided by 17.

13. Use indices to find the remainder when x ¼ 434 421919 . 3415783 is

divided by 29.

14. Prove that the product of all the primitive roots of a prime p. 3 is

congruent to 1 modulo p.

15. Prove that if p � 3 (mod 28), then (7
p
) ¼ 1.

16. Show that (3
p
) equals 1 if p � �1 (mod 12) and �1 if p � �5

(mod 12).

17. Show that (5
p
) equals 1 if p � �1 (mod 10) and �1 if p � �3

(mod 10).

6.4 Miscellaneous exercises

1. In 1879, in The Educational Times, Christine Ladd showed that no

power of 3 is of the form 13n � 1 and found the lowest power of 3 of the

form 29n � 1. Duplicate her feat. Ladd received a PhD from Johns

Hopkins in 1926, 44 years after she completed the requirements for the
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degree. Her advisors were J.J. Sylvester and C.S. Peirce. She is the only

person ever to have received an honorary degree from Vassar College.

2. If p is an odd prime and d divides p � 1, show that xd � 1 � 0

(mod p) has exactly d incongruent solutions modulo p.

3. If p is an odd prime and d divides p � 1, determine the d incongruent

solutions to xd � 1 � 0 (mod p).

4. If p is a Sophie Germain prime of the form 2q þ 1, where q is a prime

of the form 4k þ 1, show that 2 is a primitive root of p.

5. If p is a Sophie Germain prime of the form 2q þ 1, where q is a prime

of the form 4k þ 3, show that �2 is a primitive root of p.

6. If p ¼ 4q þ 1 and q ¼ 3r þ 1 are prime then show that 3 is a primitive

root of p.

7. If p is a prime show that the sum of the primitive roots is 0.

8. Fill in the values of ( p

q
) in Table 6.3, where p and q are distinct odd

primes with 3 < p < q < 29.

9. A group G is called cyclic if it contains an element a, called a

generator, such that for every element g in G there is an integer k such

that g ¼ ak . That is, every element of G can be represented as a power

of a. Show that, for p a prime, Z	p is a cyclic of order p � 1.

10. Find all the generators of Z	13.

11. Every subgroup of a cyclic group is cyclic. Determine all the sub-

groups of Z	13.

6.5 Supplementary exercises

1. Solve for x if 3x7 þ 2x6 þ x5 þ 5x4 � 2x3 þ x2 þ x þ 2 � 0 (mod 7).

2. Solve for x if x2 þ 6x � 15 � 0 (mod 23).

Table 6.3.

p

q 3 5 7 11 13 17 19 23 29
3
5
7

11
13
17
19
23
29
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3. Solve for x if x2 þ 7x þ 6 � 0 (mod 37).

4. Solve for x if x4 þ x þ 1 � 0 (mod 15).

5. Solve for x if 3x3 þ 2x þ 1 � 0 (mod 21).

6. Solve for x if 5x2 þ 7x � 3 � 0 (mod 35).

7. Solve for x if 2x3 þ x2 þ 2x þ 1 � 0 (mod 25).

8. Solve for x if 5x2 þ 2x þ 5 � 0 (mod 49).

9. Solve for x if 3x4 þ 2x3 þ 2x2 þ 1 � 0 (mod 27).

10. Find all solutions to x2 þ x þ 7 � 0 (mod 27).

11. Solve for x if x2 þ 6x � 31 � 0 (mod 72).

12. Determine the remainder when 18!þ 25! is divided by 23.

13. Determine the remainder when 35!þ 42! is divided by 37.

14. Determine the remainder when 28!þ 37! is divided by 31.

15. For what value of c does 3x2 � 3x þ c � 0 (mod 11) have solutions?

16. Evaluate ( 7
23

), (11
31

), (19
37

), and (113
307

).

17. Evaluate (15
77

), (21
65

), (100
143

), and ( 91
165

).

18. Which of the following equations have solutions?

(a) x2 � 211 (mod 233)

(b) x2 � 73 (mod 79)

(c) x2 � 37 (mod 53)

(d) x2 � 71 (mod 79)

(e) x2 � 31 (mod 641)

19. Which of the following equations have solutions?

(a) x2 � 713 (mod 1009)

(b) x2 � 2663 (mod 3299)

(c) x2 � 109 (mod 385)

(d) x2 � 20964 (mod 1987)

(e) x2 � 60 (mod 379)

20. For any prime p with p � 3 (mod 28) show that (7
p
) ¼ 1.

21. Find a primitive root modulo 23.

22. Find all primitive roots modulo 23.

23. Fine all quadratic residues modulo 23.

24. Solve for x if 17x � 21 (mod 23).

25. Determine the remainder when 12345678 . 56781234 is divided by 23.

26. Solve for x if 17x3 � 19 (mod 23).

27. Solve for x if x6 � 4 (mod 23).

28. Use Crelle’s method to show that 2 is not a primitive root modulo 31.

29. Use Crelle’s method to show that 3 is a primitive root modulo 31.

30. Find all the primitive roots modulo 31.

31. Does x2 � 7 (mod 31) have solutions? If so, find them.

32. Find all the quadratic residues modulo 31.
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33. Use Crelle’s method to show that 2 is a primitive root modulo 37.

34. Find all primitive roots modulo 37.

35. Does x2 � 19 (mod 37) have solutions? If so, find them.

36. Find all quadratic residues modulo 37.

37. Determine all sixth power residues modulo 37.

38. Solve for x if 51x � 29 (mod 37).

39. Determine all the solutions to 5x8 � 11 (mod 37).

40. Determine the remainder when 12345678 . 56781234 is divided by 37.
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7

Cryptology

I have resumed the study of mathematics with great avidity. It

was ever my favourite one . . . where no uncertainties remain on
the mind; all is demonstration and satisfaction.

Thomas Jefferson

7.1 Monoalphabetic ciphers

Crypto is from the Greek kryptos, meaning hidden or secret. Cryptology is

the study of secrecy systems, cryptography, the design and implementation

of secrecy systems, and cryptanalysis, the study of systems or methods of

breaking ciphers. The message to be altered into secret form, the message

we want to send, is called the plaintext. The message we actually send is

called the ciphertext. The device used to transform the plaintext into the

ciphertext is called a cipher. Plaintext and ciphertext may be composed of

letters, numbers, punctuation marks, or other symbols. Encryption or

enciphering is the process of changing plaintext into ciphertext. Decryption

or deciphering is the process of changing ciphertext back into plaintext. In

order to make decryption more difficult, plaintext and ciphertext are often

broken up into message units of a fixed number of characters. The

enciphering transformation can be thought of as a one-to-one function that

takes plaintext message units into corresponding ciphertext message units.

The process or method used in going from the plaintext to ciphertext and

back to the plaintext is called a cryptosystem. A cipher is called mono-

alphabetic if it uses only one cipher alphabet.

Encryption or decryption is often mistaken for encoding or decoding,

respectively. A code, however, is a system used for brevity or secrecy of

communication, in which arbitrarily chosen words, letters, or phrases are

assigned definite symbols. In most cases a code book is necessary to

decode coded messages.

The demand for and use of cryptography are directly proportional to the

literacy and paranoia of the peoples involved. The history of cryptology

has Babylonian, Egyptian, and Hindu roots. A Babylonian cuneiform

tablet, dating from about 1500 BC, contains an encrypted recipe for

making pottery glaze. Al-Khalil, an eighth century philologist, wrote the
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Book of Secret Language, in which he mentions decoding Greek crypto-

grams. Homer’s works were originally passed on from generation to

generation orally. One of the earliest references to Greek writing is found

in Book 6 of the Iliad when King Proetus sends Bellerophon to Lycia with

a document containing secret writing. In Book 5 of The History, Herodotus

remarked that Histiaeus, the despot of Miletus who was being held by

Darius, shaved and tattooed a message to revolt against the Persians on the

head of a trusted slave. After waiting for the hair to grow in again,

Histiaeus sent the slave to his son-in-law Aristagoras in Miletus who

shaved the head and found the message. The History also includes an

account of a very subtle secret message. Thrasybulus, despot of Miletus,

gives no written or verbal message to a messenger from Periander, tyrant

of Corinth and one of the seven sages of the ancient world, but while

walking through a field of corn with him, cuts down any corn that was

growing above the rest. This act of removing the fairest and strongest is

related to Periander by the messenger and he interprets it as having to

murder the most eminent citizens of Corinth.

The Spartans are credited with the first system of military cryptography.

They enciphered some messages by wrapping a strip of papyrus or

parchment helically around a long cylindrical rod called a skytale. The

message was written lengthwise down the cylinder. The paper was un-

wound and sent. Given a rod of the same radius and length, the strip could

be wound around it helically and the message deciphered. One of the

earliest known works on cryptanalysis was Aeneas the Tactician’s On the

Defense of Fortified Places which includes a clever method of hidden

writing whereby holes are pricked in a document or page of a book directly

above the letters in the secret message to be sent. Avariation of this method

was used by the Germans in World War II.

Polybius, the second century BC Greek politician, diplomat, and histor-

ian, devised a cryptographic system that replaced plaintext letters with a

pair of symbols as shown in Table 7.1, where we have used the English

alphabet and the numerals 1, 2, 3, 4, 5. According to Polybius’s method,

the message

let none enter ignorant of geometry

would be sent as

31 15 44 33 34 33 15 15 33 44 15 42 24 22 33

34 42 11 33 44 34 21 22 15 34 32 15 44 42 54,

where the first numeral indicates the location of the row and the second the

column of the plaintext letter.
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Character ciphers are systems based on transforming each letter of the

plaintext into a different letter to produce the ciphertext, that is, each letter

is changed by substitution. Character ciphers can be traced back to the

Romans. Valerius Probus, a grammarian, wrote a treatise on the ciphers

used by Julius Caesar. Suetonius, the Roman historian, wrote that Caesar

used a cipher which simply replaced each letter in the alphabet by the letter

three letters to the right, with the stipulation that X, Y, and Z were replaced

by A, B, and C respectively, as shown in Table 7.2, where we use the

English rather than the Latin alphabet and have preserved the natural

lengths of words. The plaintext message

boudicca has burned londinium

would be enciphered using Caesar’s cipher into the ciphertext

erxglffd kdv exuqhg orqglqlxp:

Augustus Caesar (Octavian) used a much simplified version of his

uncle’s cipher in which he transformed plaintext to ciphertext by merely

substituting, with the exception of writing AA for X, the next letter of the

alphabet. One can hardly fail to get a feeling for the dearth of literacy

during this period of Roman history.

We can generalize character ciphers mathematically by translating the

letters of the alphabet of any plaintext into numerical equivalents, for

example, using Table 7.3. Let the letter P denote the numerical equivalent

of a letter in the plaintext and the letter C denote the numerical equivalent

Table 7.1.

1 2 3 4 5

1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z

Table 7.2.

a b c d e f g h i j k l m n o p q r s t u v w x y z

d e f g h i j k l m n o p q r s t u v w x y z a b c
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of the corresponding letter in the ciphertext. Caesar’s cipher would then be

represented by the transformation C � Pþ 3 (mod 26) and its inverse by

P � C � 3 (mod 26). Any cipher of the form C � Pþ k (mod 26), with

0 < k < 25, is called a shift transformation, where k, the key, represents

the size of the shift. Accordingly, the corresponding deciphering transfor-

mation is given by P � C � k (mod 26). If we include the case where

k ¼ 0, where the letters of the plaintext are not altered at all, there are 26

possible shift transformations. For example, consider the shift transform-

tion with key k ¼ 17 and the plaintext message

thomas jefferson lives:

We use the cipher C � Pþ 17 (mod 26) to transform the numerical

plaintext

19 7 14 12 0 18 9 4 5 5 4 17 18 14 13 11 8 21 4 18

into the ciphertext

10 24 5 3 17 9 0 21 22 22 21 8 9 5 4 2 25 12 21 9

and send the message as

kyfdrj avwwvijfe czmvj:

The major difficulty with shift transformations is their vulnerability to

being deciphered easily using the relative frequency of the letters. In a

relatively long sample of English text, the most frequently occurring letter

will normally be e, followed by t, n, i, r, o and a, respectively. Table 7.4
exhibits the percent frequency of the occurrence of letters in a standard

English text, where an asterisk is used to denote that the normal occurrence

of the letter is less than one percent.

Similar tables exist for most major languages. However, we cannot

always assume that the natural frequency prevails in the plaintext, for it is

not impossible to circumvent the natural frequencies of a language as well.

Table 7.3.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 7.4.

a b c d e f g h i j k l m n o p q r s t u v w x y z

7 1 3 4 13 2 2 6 8 � 1 4 2 8 7 2 � 8 6 9 3 1 2 � 2 �
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La Disparition, a novel written in 1969 by George Perec, included over

85 000 words and not one of them contained the letter ‘e’. Nevertheless,

using the information in Table 7.4, we may be able to decipher a long

ciphertext which has been encoded using a shift transformation by

frequency analysis as illustrated in the next example.

Example 7.1 Suppose that we wish to decipher the ciphertext

urutm hqeqq zmxuf fxqrm dftqd ftmza ftqde ufuen qomge
qutmh qefaa pazft qetag xpqde arsum zfejj

given that a shift transformation was used to encipher the plaintext

message. The encipherer has divided the ciphertext into a uniform set of

letters, quintuplets in this case, to disguise any natural lengths that may be

apparent in the plaintext. The frequency of letters for our ciphertext is

given in Table 7.5. Since the letter that occurs most frequently is q, we
assume that e was sent as q. Hence, k ¼ 12. The plaintext message

expressed in quintuplets would read

ifiha vesee nalit tlefa rther thano thers itisb ecaus eihav
estoo donth eshou lders ofgia ntsxx,

or with natural word length

if i have seen a little farther than others it is because i
have stood on the shoulders of giants,

a quote attributed to Isaac Newton.

Ciphers of the form C � aPþ b (mod 26), where 0 < a,b < 25, and

gcd(a, 26) ¼ 1, are called affine ciphers. Shift ciphers are affine ciphers

with a ¼ 1. There are �(26) ¼ 12 choices for a and 26 choices for b,

hence, 312 possible affine ciphers. The deciphering transformation for an

affine cipher is given by P � a�1(C � b) (mod 26), where 0 < P < 25

and aa�1 � 1 (mod 26). For convenience, Table 7.6 gives the inverses of

positive integers less than and coprime to 26 modulo 26.

Table 7.5.

a b c d e f g h i j k l m n o p q r s t u v w x y z

6 0 0 4 8 9 2 2 0 2 0 0 7 1 1 2 11 3 1 7 7 0 0 3 0 4
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Example 7.2 We encode the plaintext

shakespeare was a pen name for edward de vere the
earl of oxford,

using the affine transformation C � aPþ b, with a ¼ 5 and b ¼ 8. From

Table 7.3, the numerical equivalent of the plaintext is given by

18 7 0 10 4 18 15 4 0 17 4 22 0 18 0 15 4 13

13 0 12 4 6 14 17 4 3 22 0 17 3 3 4 21 4 17

5 19 7 4 4 0 17 11 14 5 14 23 5 14 17 3:

Applying the cipher C � 5Pþ 8 (mod 26), we obtain

20 17 8 6 2 20 5 2 8 15 2 14 8 20 8 5 2 21 21

8 16 2 12 0 15 2 23 0 8 15 23 23 2 9 2 15 2 25

17 2 2 8 15 11 0 7 0 19 7 0 15 23:

Transforming from numerical to alphabetic quintuplet ciphertext we obtain

urigc ufcip coiui fcvvi qcmap cxaip xxcjc pczrc cipla
hatha pxttt,

where we have added xxx to the end of the plaintext message to preserve
the quintuplicate nature of the ciphertext and to make the message more

difficult to decipher.

Nevertheless, a deciphering technique using the relative frequency of

letters can be used to decipher most affine transformations as illustrated in

the next example.

Example 7.3 Albeit the message

fjjif jliio jflih yjjyj ginjq yjpql zgzgz

is relatively short, we can use frequency analysis to decipher it. From Table

7.7, we see that the letter j appears nine times and the letter i five times.
Suppose e corresponds to j and t corresponds to i. Let C ¼ aPþ b (mod

26). With C ¼ 9 when P ¼ 4 and C ¼ 8 when P ¼ 19, we obtain

9 � 4aþ b (mod 26)

Table 7.6.

a 1 3 5 7 9 11 15 17 19 21 23 25

a�1 1 9 21 15 3 19 7 23 11 5 17 25
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and

8 � 19aþ b (mod 26):

Subtracting the first equation from the second, we obtain 15a � �1 � 25

(mod 26). Multiplying both sides of the congruence by 7, the inverse of 15

modulo 26, we get a � 19 (mod 26). Substituting the value a ¼ 19 into the

first equation, we find that b � 11 (mod 26). Thus, the message was

enciphered using the affine transformation C � 19Pþ 11 (mod 26).

Applying the inverse transformation, P � 11C þ 9 (mod 26), to the

numerical ciphertext, we recover the plaintext message:

meet me at the matinee next wednesday:

In Europe, the period from about 400 to about 800, following the collapse

of the Roman Empire, is referred to by many historians as the Dark Ages.

The barbarians were at the gates, culture and literacy went seriously into

decline, and with them went cryptography. In 529, after existing for over

nine centuries, Plato’s Academy was closed. Almost singlehandedly, Bene-

dictine monasteries continued to serve as effective educational institutions

throughout the Dark Ages. According to conservative estimates over 90

percent of the literate men between 600 and 1100 received their instruction

in a monastic order. Very few scientific commentaries appeared and many

of those that did were woefully primitive. People had a rough time just

making ends meet. Most began looking for a better life in the hereafter.

As with mathematics and science, cryptology developed in India and

Islamic countries during the European Dark Ages. The Kamasutra, written

sometime between the third and fifth centuries and attributed to Vatsyaya-

na, lists secret writing as one of the arts a woman should understand and

practice. One ancient Hindu cipher consisted of substituting a set of letters

of the Hindu alphabet in the plaintext for each other and leaving the

remaining letters unaltered. In 855, Abu Bakr Ahmad included several

ciphers in Book of the Frenzied Devotee’s Desire to Learn about the

Riddles of Ancient Scripts. Ibn Khaldun’s Muqaddimah describes several

codes used by Islamic tax and military bureaucrats. A compilation of

Islamic knowledge of cryptography was included in a compendium of all

branches of knowledge useful to civil servants written by al-Qulqashandi

Table 7.7.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 0 0 0 0 3 3 1 5 9 0 3 0 1 1 1 2 0 0 0 0 0 0 0 3 3
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in 1412. As with Euclid’s Elements, much of the content of al-Qulqa-

shandi’s book was based on works of his predecessors, the chapter on

cryptology being no exception for much of it came from a fourteenth

century treatise by al-Duraihim. Many of the cryptographic methods

mentioned in al-Duraihim’s work were quite sophisticated, for example,

letter substitution using numeric as well as symbolic substitution and a

method whereby vowels were deleted and the letters of each word were

reversed.

For example, let us look at some of the more fundamental ways a

message can be altered using transpositions. We could send the plaintext

burn all your codes

using a simple transposition cipher as follows:

b r a l o r o e
u n l y u c d s

and send it as

bral oroe unly ucds:

We could have written the plaintext in columns–

b
u
r
n

a
l
l
y

o
u
r
c

o
d
e
s

–and sent the message as

bouu rrnc aold leys:

We could have written the message in a matrix as

b a o o

u l u d

r l r e

n y c s

and sent it as

baoo ulud rlre nycs:

The few European ciphertext manuscripts that exist from the period from

400 to 1400 employ very primitive encryption systems, for example,
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transposition ciphers with k ¼ 1, simple letter substitution using foreign

alphabets or symbols, dots substituted for vowels, and phrases written

backwards or vertically. There were a few notable exceptions. Gerbert,

Pope Sylvester II, used a shorthand encryption system to record important

notes and messages. Hildegard von Bingen, a twelfth century Benedictine

abbess and composer of liturgical music, used a cipher alphabet consisting

of a mixture of German and Latin, which came to her in a vision. Roger

Bacon, an English Franciscan scholar, wrote a treatise, Secret Works of Art

and the Nullity of Magic, in the mid thirteenth century, in which he listed a

number of primitive encryption systems. Geoffrey Chaucer, using a simple

alphabet substitution, enciphered a few lines of the The Equatorie of the

Planets. The earliest known manuscript devoted entirely to cryptanalysis,

including rules for deciphering simple substitution ciphers where word

order has been preserved, was written in 1747 by Cicco Simonetta, a

Milanese civil servant.

Exercises 7.1

1. Use Polybius’s method to encipher the message

no man is an island:

2. Decipher the message

24 44 43 22 42 15 15 25 44 34 32 15

given that it was enciphered using Table 7.1 and Polybius’s method.

3. Using the Caesar cipher, encipher the following messages:

(a) i have a secret;
(b) sic sempertyrannis;
(c) send help.

4. Decipher the following messages assuming that each has been en-

ciphered using the Caesar cipher.

(a) dooph qduhp ruwdo;
(b) shulf xoxpl qprud;
(c) lqylwr sdwuh vlghudyhuvr.

5. Use frequency analysis and the knowledge that the message was

enciphered using a shift transformation to decipher

pxahe wmaxl xmknm almhu xlxey xobwx gmmat mteef xgtkx
vkxtm xwxjn temat mmaxr tkxxg whpxw urmax bkvkx tmhkp
bmavx kmtbg ngteb xgtue xkbza mlmat mtfhg zmaxl xtkxe

byxeb uxkmr tgwma xinkl nbmhy atiib gxllq

6. Encipher the message

234 Cryptology



there is a mole in the office

using the affine transformation C � 7Pþ 4 (mod 26).

7. Decipher the message

whsnk fglnj elhfy jqtgx yzgi,

which was enciphered using the affine transformation C � 11Pþ 6

(mod 26).

8. If the most common letter in a long ciphertext, enciphered by a shift

transformation C � Pþ k (mod 26), is s, what is the most likely value
for k?

9. Decipher the ciphertext

yfxmp cespz cjtdf dpqfw qzcpy ntasp ctyrx pddlr pd,

given that it was enciphered using a shift transformation.

10. If the two most common letters in a long ciphertext enciphered by an

affine transformation C � aPþ b (mod 26) are v and a respectively,

then what are the two most likely values for a and b?

11. Decipher the following ciphertext given that the message was enci-

phered using an affine transformation in which e and t were enci-

phered as l and u, respectively.
bslgu slrgl hyltu jpryl yprvl jurvt yztht
dgjux rfygt vlusl vtyzd jgruw rybsl uslyx
rrfbrg rykrj uefus rbxrf cktxl auslh tvlmm

12. Decipher the following cipher given that the message was enciphered

using a simple transposition cipher.

d e s d o h n n s r s e t t e i e

13. Decipher the following cipher given that the message was enciphered

using a simple transposition column cipher.

t e w e e s n k t i y d t d h o r o

14. Decipher the following cipher given that the message was enciphered

using a simple transposition matrix cipher.

nacbnf eshyye vsostw eowoow rmemss wudaoc

7.2 Polyalphabetic ciphers

In an attempt to hinder decryption by frequency analysis, a method was

introduced in the early fifteenth century whereby simple substitution is

used to alter consonants and multiple substitution to alter vowels. Around

1467, Leon Battista Alberti, the Italian artist and author of the first printed

book on architecture, wrote a treatise on cryptanalysis, which was pub-
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lished posthumously in 1568. The treatise included instruction on how to

construct a cipher disk. This was the earliest appearance of a polyalpha-

betic cipher, one involving two or more cipher alphabets, and forms the

basis for modern cryptograms, and secret decoder rings as well. Alberti’s

cipher disk was made from two copper disks of unequal size with a pin

through their centers to hold them together. A cipher disk using modern

English letters, where the letters y and z have been omitted, is shown in

Figure 7.1. Alberti divided each disk into 24 equal parts listing the

plaintext consisting of 20 letters of the Italian alphabet and the first 4

natural numbers on the larger outer disk. The numbers on the outer disk

were used in pairs, triples, or taken 4 at a time to represent encoded words

or phrases which he inserted into the ciphertext. After enciphering (and/or

encoding) part of the plaintext, the inner disk was rotated and another part

of the message enciphered using a different cipher. The process was

repeated until the complete message was enciphered. Besides the ability to

encode as well as to encipher messages, the main advantage of Alberti’s

cipher disk was that the word the in the plaintext may be encoded as pwr
in one part of the message and as uva in another.

Example 7.4 Suppose we wished to encipher the message

eat more broccoli:

One option would be to encipher the first two words using the cipher disk

as shown in Figure 7.1, where a is encoded as q, then rotating the inner
disk counterclockwise seven positions so a is encoded as w, as shown in
Figure 7.2. The ciphertext message would appear as

X A B
C

D
E

F
G

H
I

J
K

LMN
O

P
Q

R
S

T

V
W

Q E
X

K
R

A
L

W
H

S
BOUG

M

C
T

I
F

P
U

D

V
N J

Figure 7.1.
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rqpum irhqv ssvfc:

In 1499, Johannes Trithemius wrote a trilogy on communicating with

spirits called Steganographia, Greek for ‘hidden writing’. The text was

criticized by Protestants. It was included, along with the works of Coperni-

cus, Kepler, and Galileo, on the Index librorum prohibitorum, a list of

books Roman Catholics were forbidden to read ‘‘until corrected’’. The

third volume, on occult astrology, consisted mainly of tables of numbers

that many believed contained secret incantations for conjuring up spirits.

In 1676, Wolfgang Ernst Heidel, a lawyer from Mainz, claimed to have

deciphered Trithemius’s passages, but he wrote his solution with a secret

cipher that no one could decipher. In 1996, Thomas Ernst of La Roche

College in Pittsburgh and, independently two years later, Jim Reeds of

AT&T Labs in Florham Park, New Jersey, deciphered Johannes Trithe-

mius’s third volume. Disappointingly, the messages turned out to be mainly

trite sayings. Ernst turned his attention to Heidel and deciphered his

manuscript. He found that Heidel had in fact deciphered the secret

passages in Trithemius’s third volume.

The first printed book on cryptography, Polygraphia, appeared in 1518.

It had been written by Trithemius about 10 years earlier. The bulk of the

text is taken up with hundreds of columns of Latin words each preceded by

a letter. The book’s most important innovation in cryptology was the

transformation of the wheel cipher into an alphabetic square to encode

plaintext shown in Table 7.8. Rows corresponded to key letters and

columns to plaintext letters. Ciphertext letters are found at the intersections

X A B
C

D
E

F
G

H
I

J
K

LMN
O

P
Q

R
S

T

V
W

W H
S

B
O

U
G

M
C

T
IFPD

V

N
J

Q
E

X
U

K

R
A L

Figure 7.2.
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of rows and columns. For example, to encode the word deus with

Trithemius’s cipher, we leave the 1st letter unaltered. We replace the 2nd

letter by f, the letter under e in the 3rd row. We replace the 3rd letter by w,
the letter under u in the 4th row. Finally, we replace the 4th letter by v, the
letter under s in the 5th row. The ciphertext obtained is dfwv. For long
messages, the 26th row is followed by the 1st row and the process cycles.

In 1553, Giovan Batista Belaso introduced a polyalphabetic cipher

similar to Trithemius’s cipher where a key phrase is used to indicate the

column by which successive letters are enciphered. For example, using the

key phrase

sic semper tyrannis et mures xx,

using Table 7.8, we encipher

the tree of liberty

Table 7.8.

a b c d e f g h i j k l m n o p q r s t u v w x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z
b c d e f g h i j k l m n o p q r s t u v w x y z a
c d e f g h i j k l m n o p q r s t u v w x y z a b
d e f g h i j k l m n o p q r s t u v w x y z a b c
e f g h i j k l m n o p q r s t u v w x y z a b c d
f g h i j k l m n o p q r s t u v w x y z a b c d e
g h i j k l m n o p q r s t u v w x y z a b c d e f
h i j k l m n o p q r s t u v w x y z a b c d e f g
i j k l m n o p q r s t u v w x y z a b c d e f g h
j k l m n o p q r s t u v w x y z a b c d e f g h i
k l m n o p q r s t u v w x y z a b c d e f g h i j
l m n o p q r s t u v w x y z a b c d e f g h i j k
m n o p q r s t u v w x y z a b c d e f g h i j k l
n o p q r s t u v w x y z a b c d e f g h i j k l m
o p q r s t u v w x y z a b c d e f g h i j k l m n
p q r s t u v w x y z a b c d e f g h i j k l m n o
q r s t u v w x y z a b c d e f g h i j k l m n o p
r s t u v w x y z a b c d e f g h i j k l m n o p q
s t u v w x y z a b c d e f g h i j k l m n o p q r
t u v w x y z a b c d e f g h i j k l m n o p q r s
u v w x y z a b c d e f g h i j k l m n o p q r s t
v w x y z a b c d e f g h i j k l m n o p q r s t u
w x y z a b c d e f g h i j k l m n o p q r s t u v
x y z a b c d e f g h i j k l m n o p q r s t u v w
y z a b c d e f g h i j k l m n o p q r s t u v w x
z a b c d e f g h i j k l m n o p q r s t u v w x y
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as

lpg lvqt sf mgseegg:

The ‘s’ column is used to encipher t as l, the ‘i’ column is used to encipher
h as p, the ‘c’ column is used to encipher e as g, and so forth.
In 1550, Girolamo Cardano, the physician–mathematician and author of

the first text on probability, devised a technique whereby a mask with

windows was placed over a piece of paper and the message written in the

windows. The mask was then removed and the rest of the paper filled with

words and phrases. When the mask was placed over the document the

message was revealed. Several sixteenth and seventeenth century diplomats

made use of Cardano’s system.

Cardano described an innovative but incomplete autokey cipher system,

where the message itself is used as the key phrase. The earliest valid

autokey system was formulated in 1563 by Giovanni Battista Porta who

invented the camera obscura. In De furtivis literarum notis, Porta included

the cryptographic contributions of Alberti, Trithemius, Belaso, and Carda-

no. He described numerous cipher systems and suggested making deliber-

ate misspellings, transposing letters, and using nonsense words as keys in

enciphering plaintext. De furtivis included a pair of cipher disks and a

cipher whereby a 26 by 26 matrix consisting of 676 distinct symbols was

used to encipher and decipher messages. Each symbol in the matrix

represented a pair of letters. For example, if the symbol h in the 3rd

column and 9th row represented the letter pair ci and the symbol _ in the

1st row and 14th column represented the pair ao, then h_ stands for ciao.
Giordano Bruno, a peripatetic Dominican friar, resided at the home of

the French ambassador in London from 1583 to 1585. He used the alias

Henry Fagot when he sent messages back to France. He devised a cipher

where each vowel is exchanged with the next letter of the alphabet. Hence,

alliswell

would be sent as

blljswfll:

Bruno was the first modern European to profess belief that the universe is

infinite and that the stars are suns. Bruno was brought before the Inquisi-

tion for his beliefs, not his espionage, and burned at the stake in 1600.

Ironically, the English and French term for the bundles of wood used to

kindle the flames when Bruno and other heretics were burned at the stake

is fagots.

In the early seventeenth century, Matteo Argenti, a cryptologist for

several popes, wrote a primer on Renaissance ciphers, many of which he
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and his uncle, also a papal cryptologist, had devised. They were the first to

use a mnemonic key to encipher an alphabet. One, for example, is shown

in Table 7.9 using the modern Italian alphabet with key enrico. To
discourage decryption by frequency analysis the Argentis suggested using

several numbers, for example 5, 7, and 9, interspersed frequently through-

out the text, representing nulls. They also stressed multiple vowel substitu-

tion and deleting the second member of a double letter consonant

combinations. For example, mezo for mezzo and mile for mille. As a

further hindrance to would-be cryptanalysis, they used other numbers to

represent often used words such as ‘and’, ‘this’, ‘that’, ‘which’ and ‘what’.

Cryptanalysts had their hands full when attempting to decipher an Argenti

ciphertext.

Philip II of Spain used both multiple vowel and multiple consonant

substitutions in his ciphers. François Viète, a lawyer by profession whose

mathematical work revolutionized algebra, worked as a cryptanalyst at the

court of Henry IV, King of France. The Cambridge educated mathemati-

cian, John Wallis, deciphered messages for Charles I, Charles II, and

William and Mary. In 1641, John Wilkins, first secretary of the Royal

Society, introduced the words cryptographia (secret writing) and cryptolo-

gia (secret speech) into the English language.

In 1586, using an array similar to that shown in Table 7.8, Blaise de

Vigenère [VEE zhen AIR], a French author, diplomat, and cryptanalyst for

Charles IX of France, devised a number of polyalphabetic ciphers that

appear in his Traicté des chiffres. Two of the autokey ciphers he devised

deserve note. In one, the plaintext is the key and in another the ciphertext

is the key, where the first key letter is known to both the encipher and the

decipher. For example, suppose we received the ciphertext message

cwrqpafvqabrc,

and were told the first key letter was k, and that the first letter of the

plaintext message was s. According to this cipher, s would be the second
letter in the key, as shown in Table 7.10. Using Table 7.8, now known as

the Vigenère tableau, the second letter in the plaintext is e, and it becomes
the third letter in the key, and so forth. Thus, the plaintext message is

Table 7.9.

e n r i c o a b d f g h l m p q s t u v z

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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send more money:

Suppose we are given the ciphertext

cqeocwp

and know that r is the first letter of the key and the ciphertext has been

used as the key. We fill in the rest of the code as shown in Table 7.11 and

use Table 7.8 to recover the plaintext message,

look out:

Vigenère ciphers employ an alphabetic matrix, as shown in Table 7.8,

and use a simple key word that is repeated. For example, let us encipher

the message

oh to be in england now that aprils there

using the key word voila. Use column ‘v’ to encipher o as j. Use column
‘o’ to encipher h as v. Use column ‘i’ to encipher t as b, and so forth.

voila voila voila voila voila volia voila
ohtob einen gland nowth atapr ilsth erexx

The ciphertext, in quintuplets, would appear as

jvbzb zwvpn bziyd iceeh vhiar dzaeh zfmix
This Vigenère cipher can be broken much more easily than his autokey

ciphers using a method developed successfully by F. W. Kasiski in 1863. In

our example, once the cryptanalyst knows that the key has five letters,

frequency analysis may be often employed on successive sets containing

every fifth letter. In 1925, the American cryptanalyst, William Friedman,

developed a method that would determine the length of the key word in

any Vigenère cipher.

Unfortunately, Vigenère’s work had relatively little influence on his

contemporaries. Vigenère tableaux were rediscovered by a number of

Table 7.10.

Key k s e n d m o r e m o n e
Plaintext s e n d m o r e m o n e y
Ciphertext c w r q p a f v q a b r c

Table 7.11.

Key r c q e o c w
Plaintext l o o k o u t
Ciphertext c q e o c w p
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cryptanalysts including the English mathematician and author Charles

Dodgson (Lewis Carroll). A similar array, known as a Beaufort tableau,

was published in 1857 by Sir Francis Beaufort, Rear-Admiral of the Royal

Navy, inventor of the Beaufort wind scale ranging from 0 (calm) to 12

(hurricane). Beaufort’s alphabetic array contains 22 rows and 22 columns,

key letters and plaintext were denoted on the rows, the ciphertext letters on

the columns. Nevertheless, Beaufort’s tableaux had been used to encipher

plaintext by Giovanni Sestri as early as 1710.

Charles Babbage, whose analytic engine was the precursor of our

modern computers, constructed a 26-volume code breaking dictionary. He

deciphered a message sent by Henrietta Maria, consort of Charles I,

personal advertisements found in The Times, and a number of Vigenère

ciphers. He served as a cryptographical advisor to Beaufort during the

Crimean War. Babbage wrote that deciphering is a fascinating art and one

which he had wasted more time on than it deserved. He thought, as did

many cryptanalysts, that he was capable of constructing a cipher that no

one else could break. Unfortunately, the cleverer the person the more deep-

seated was the conviction. He was particularly adept at deciphering

digraphic ciphers, where letters are paired and encoded together. These

ciphers were devised in 1854 by Charles Wheatstone, inventor of the

Wheatstone bridge, a circuit used in physics. There are many variations of

Wheatstone’s cipher, one, in particular, with keyword cambridge is

shown in Table 7.12.

To encipher messages using Wheatstone’s cipher, letters were paired up.

Paired letters on the same row or column were encoded cyclically. Hence,

aq and wz would be enciphered as dw and xv, respectively. Similarly, no
and en would be enciphered as oh and nt, respectively. If the two letters
are not on the same row or column then they form opposite vertices of a

rectangle and are replaced by the two letters forming the other two vertices

of the rectangle with the proviso that letters on the same row replace each

other. For example, dn and os were replaced by ek and lu, respectively.

Table 7.12.

c a m b r
ij d g e f
h k l n o
p q s t u
v w x y z
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The letters i and j were considered identical and double letters were

separated by an x. Hence,

william tell

would be enciphered as if it were

wilxliam telxl:

Using the Wheatstone cipher shown in Table 7.12, the message

always deny it

would be sent as

mkadxt gftb ep:

When serving as Secretary of State for George Washington in the 1790s,

Thomas Jefferson devised a wheel cipher. His cipher was about six inches

long and consisted of 36 wooden disks each about 1
6
of an inch thick held

together with a bolt and nuts on each end, similar to that shown in Figure

7.3. The outer rim of each disk was divided into 26 equal parts where the

letters of the alphabet appeared in random order. To encipher a message,

the wheels were rotated until the message to be sent appeared and then one

of the remaining 25 jumbled lines sent as the ciphertext. Jefferson did not

recommend his method to his successors and it was forgotten. Several

years later, when he was President, he chose a Vigenère cipher as the

Figure 7.3.
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official method for Meriweather Lewis and William Clark to encipher their

messages to him during their expedition to explore the Louisiana Territory

in 1802–4. Wheel ciphers were rediscovered by the US Army in 1922 and

were used by the US Navy up to 1960.

Exercises 7.2

1. Use the disk cipher shown in Figure 7.1 to encipher

rumplestiltskin:

2. Decipher

fdiirgkri wx vdso

assuming the first word was enciphered using Figure 7.1 and the last

words using Figure 7.2.

3. Encipher

make my day

using Trithemius’s cipher.

4. Decipher

hftha jgymw yemsf pyulh zjhim vtigw vzzoe qocqi sgyke tsgax
bmosv rpjxh bnocd bfpic hgavo oczsp plwkx lmcyn azppjzl

given that it was enciphered using Trithemius’s cipher.

5. Encipher

meet me tonight at midnight

using Belaso’s cipher with key phrase

arivederci roma arivederci:

6. Decipher

ffypgwzfwt

given it was enciphered using Belaso’s cipher with key

fourscore and seven years ago.

7. Decipher

jljmp ortfd fchfr chfrt pvjpv rslbv frjtf

given it was enciphered using Bruno’s cipher.

8. Decipher the ciphertext

yvkzr wtzjz xalip pxfqg qihgm alawyq

given it was enciphered with a Vigenère autocipher using the plaintext

as key and r as the first letter of the key.
9. Decipher the ciphertext
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fulte mexei kbvzk ogzlz mfm

given that it was enciphered with Vigenère autocipher using the

ciphertext as key and f as the first letter of the key.
10. Encipher

the whole nine yards

using the standard Vigenère cipher (Table 7.8) with key word maths.
11. Decipher the ciphertext

vlmnr fmpsm itasb hsutv ntmjp

given that it was enciphered with a standard Vigenère cipher with key

shazam.
12. Encipher

are we having fun

using the standard Vigenère cipher with key word key.
13. Decipher the message

ssahxyoo

given that it was enciphered using standard Vigenère cipher with key

word me.
14. Devise a Wheatstone cipher with keyword kelvin and encipher

grantchester:

15. Use Wheatstone’s cipher shown in Table 7.12 to decipher

digpk hsogg dfpne hlhon byphu lgrny kcyyn ibfgp ulbgr
hbofb uordu ffdel idgne qkcpe ugufi yfbni lsblgw:

7.3 Knapsack and block ciphers

Knapsack ciphers, like character ciphers, are based on modular arithmetic.

However, numbers not letters are transmitted with knapsack ciphers.

Knapsack ciphers originated from an ancient problem in which a knap-

sack’s weight was given together with the weights of the individual objects

before they were placed in the knapsack. The problem was to determine

how many of each type of object were in the knapsack. Modern knapsack

ciphers use superincreasing sequences and binary representations for letters

of the alphabet. Recall that a superincreasing sequence is a sequence

a1, a2, . . . , an, with akþ1.
Pk

i¼1ai, for k ¼ 1, 2, . . . : For example, 1, 2,

4, 8, 16, 32, 64 and 2, 12, 16, 32, 65, 129, 275 are superincreasing

sequences.

Knapsack ciphers can be constructed as follows. Given a superincreasing

sequence a1, a2, . . . , a10 of length 10, choose an integer n such that
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n. 2a10 and an integer w such that gcd(w, n) ¼ 1. Form the superincreas-

ing sequence wa1, wa2, . . . , wa10, where the terms are taken modulo n. To

encipher the message, group adjacent letters in pairs and use Table 7.13 to

partition the message into blocks of 10 binary digits. Use vector multi-

plication on the decadal binary blocks and the modified superincreasing

sequence. Knapsack ciphers can be made even more difficult to decipher

by multiplying the decadal binary block by a nonzero scalar before the

vector multiplication.

Example 7.5 Given the superincreasing sequence 2, 7, 11, 31, 58, 117,

251, 482, 980, 1943, let us encipher the message

send help:

Choose n ¼ 3891. 3886 ¼ 2 . 1943 and w ¼ 1001, where gcd(1001,

3891) ¼ 1. Multiplying each term by w and reducing modulo 3891, we

transform the given superincreasing sequence into the sequence 2002,

3116, 3229, 3794, 3584, 387, 2227, 3889, 448, 3334. Partition the message

into blocks of 10 binary digits using Table 7.13.

s
10010

e
00100

n
01101

d
00011

h
00111

e
00100

l
01011

p
01111

We now transform the block corresponding to the combination se under
vector multiplication into 1 . 2002þ 0 . 3116þ 0 . 3229þ 1 . 3794 þ � � �
þ 0 . 3334 ¼ 9685. The block corresponding to nd under vector multipli-

cation is transformed into 0 . 2002þ 1 . 3116þ 1 . 3229þ 0 . 3794 þ � � �
þ 1 . 3334 ¼ 13 711. Thus, the resulting ciphertext is given by

9685 13 711 12 926 18 822:

To decipher the message, we use Sanderson’s algorithm to determine,

3650, the inverse of 1001 modulo 3891. Since 3650 . 9685 � 515 (mod

3891) and 515 ¼ 2þ 31 þ 482, from Table 7.13, we find that 515, in our

Table 7.13.

a 00000 j 01001 s 10010
b 00001 k 01010 t 10011
c 00010 l 01011 u 10100
d 00011 m 01100 v 10101
e 00100 n 01101 w 10110
f 00101 o 01110 x 10111
g 00110 p 01111 y 11000
h 00111 q 10000 z 11001
i 01000 r 10001
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original superincreasing sequence, corresponds to 10010 00100. That is, to

the pair se.

A block cipher is a polygraphic cipher that substitutes for each block of

plaintext of a specified length a block of ciphertext of the same length.

Such ciphers act on blocks of letters, and not on individual letters, and,

hence, are not as vulnerable to cryptanalysis based on letter frequency.

Block ciphers were devised in 1929 by Lester Hill at Hunter College.

Hill cipher systems are obtained by splitting the plaintext into blocks of

n letters, translating the letters into their numerical equivalents, and then

forming the ciphertext using the relationship C � AP (mod 26), where A

is an n by n matrix with determinant coprime to 26, C is the 1 by n column

matrix with entries C1, C2, . . . , Cn, and P is the 1 by n column matrix

with entries P1, P2, . . . , Pn, where the Ci are the ciphertext blocks

corresponding to the plaintext blocks Pi, for i ¼ 1, 2, . . . , n. The cipher-

text numbers are then translated back into letters. To decipher a Hill cipher

encoded message use A�1, the inverse of the matrix A, taken modulo 26,

since A�1C � A�1(AP) � (A�1A)P � P (mod 26). A Hill cipher is called

digraphic if n ¼ 2, trigraphic if n ¼ 3, and polygraphic if n. 3.

Example 7.6 In order to encipher the plaintext

gauss was very bright

using a Hill cipher with

A ¼ 1 2

4 3

� �
,

we partition the plaintext into blocks of length 2 and use Table 7.3 to

translate the blocks into their numerical equivalents:

g
6

a
0

u
20

s
18

s
18

w
22

a
0

s
18

v
21

e
4

r
17

y
24

b
1

r
17

i
8

g
6

h
7

t
19

We have added xx to the end of the message so that the cipher text is

composed of quintuplets. Perform the matrix calculations:

1 2

4 3

� �
6

0

� �
� 6

24

� �
(mod 26),

1 2

4 3

� �
20

18

� �
� 4

4

� �
(mod 26),

1 2

4 3

� �
18

22

� �
� 10

8

� �
(mod 26),

1 2

4 3

� �
0

18

� �
� 10

2

� �
(mod 26),

1 2

4 3

� �
21

4

� �
� 3

18

� �
(mod 26),

1 2

4 3

� �
17

24

� �
� 13

10

� �
(mod 26),
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1 2

4 3

� �
1

17

� �
� 9

3

� �
(mod 26),

1 2

4 3

� �
8

6

� �
� 20

24

� �
(mod 26),

1 2

4 3

� �
7

19

� �
� 19

7

� �
(mod 26),

1 2

4 3

� �
23

23

� �
� 17

16

� �
(mod 26):

6
g
24
y

4
e
4
e

10
k

8
i

10
k

2
c

3
d
18
s

13
n

10
k

9
j
3
d

20
u

24
y

19
t

7
h

17
r

16
q

Hence, the resulting ciphertext is

gyeek ikcds nkjdu ythrq:

To decipher the message, the cryptanalyst must determine the inverse of

the enciphering matrix A modulo 26. In general, the inverse of a 2 by 2

matrix

M ¼ a b

c d

� �
is given by

M�1 ¼ 1

ad � bc

d �b
�c a

� �
:

Hence, in our example, we find that

A�1 ¼ 1 2

4 3

� ��1
� 1

�5
3 �2
�4 1

� �
� 1

21

3 24

22 1

� �

� 5
3 24

22 1

� �
� 15 16

6 5

� �
(mod 26):

In digraphic ciphers, there are 262 ¼ 676 possible blocks of length 2.

However, studies on the relative frequencies of typical English text have

led to methods for deciphering digraphic Hill ciphers. The most common

pair of juxtaposed letters in the English language is th followed closely by

he. In addition, 10 words–the, of, and, to, a, in, that, it, is and I-make up a
quarter of a typical English text.

Example 7.7 Suppose a Hill digraphic cipher system has been employed

and the most common pair of letters in the ciphertext is jx followed by

tm; it is likely that jx corresponds to th and tm corresponds to he.

Therefore, the block
19

7

� �
corresponds to the block

9

23

� �
and the block

7

4

� �
corresponds to the block

19

12

� �
. Let A denote the enciphering

matrix; then
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A . 19 7

7 4

� �
� 9 19

23 12

� �
(mod 26):

Since

19 7

7 4

� ��1
� 4 19

19 19

� �
(mod 26),

we have

A � 9 19

23 12

� �
4 19

19 19

� �
� 7 12

8 15

� �
(mod 26):

Hence,

A�1 � 19 16

2 21

� �
,

and we use P ¼ A�1 . C to decipher the message.

Exercises 7.3

1. Use the superincreasing sequence and n and w from Example 7.5 to

encode the message

nuts:

2. Decode the message

3564 9400 16 703,

given that it was encoded using the superincreasing sequence and n and

w from Example 7.5.

3. Show that

7 12

8 15

� ��1
� 19 16

2 21

� �
(mod 26):

4. Use the digraphic cipher that sends the plaintext blocks P1 and P2 to the

cipherblocks C1 and C2, such that

C1 � 3P1 þ 5P2 (mod 26),

C2 � 4P1 þ 7P2 (mod 26),

that is,

C1
C2

� �
� 3 5

4 7

� �
P1
P2

� �
(mod 26),

to encipher the message

but who will guard the guards:

5. Decipher the ciphertext message
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rr qb iq it uv qo hw zi,

which was enciphered using the digraphic cipher

C1 � 7P1 þ 2P2 (mod 26),

C2 � 8P1 þ 3P2 (mod 26):

6. The two most common digraphs in a ciphertext are zi and ug and these

pairs correspond to the two most common pairs in the English text, th
and he. The plaintext was enciphered using a Hill digraphic cipher.

Determine a, b, c, and d if

C1 � aP1 þ bP2 (mod 26),

C2 � cP1 þ dP2 (mod 26):

7. The three most common triples of letters in a ciphertext are awg, fmd,
and rxj. Suppose these triples correspond to the common triples: the,
and, and there. If the plaintext was enciphered using a Hill trigraphic
cipher described by C � AP (mod 26), then determine the 3 by 3

enciphering matrix A.

7.4 Exponential ciphers

Exponential ciphers are a type of polygraphic cipher developed in 1978 by

Martin Hellman at Stanford. So far, they are relatively resistant to

cryptanalysis. To encipher a plaintext using a digraphic exponential cipher

we first transform pairs of the letters of the plaintext into their numerical

equivalents in sets of four digits using Table 7.14. For example,

send help

would be represented digraphically as

1804 1303 0704 1115:

Choose a prime p such that 2525, p, 252 525 and a positive integer e,

called the enciphering key, such that gcd(e, p� 1) ¼ 1. Encipher each

block P of plaintext into a cipher block C using the exponential congru-

ence C � Pe (mod p), where 0 < C < p. If the enciphering key e and the

Table 7.14.

a b c d e f g h i j k l m n o p q r s t u v w x y z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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prime p are known, then the plaintext P is easily recovered. Since

gcd(e, p� 1) ¼ 1 there exists an integer f such that ef � 1 (mod p� 1),

so that for some integer k ef ¼ 1þ k(p� 1) and, from Fermat’s Little

Theorem, Cf � (Pe) f � P1þk( p�1) � P(P( p�1)k) � P (mod p).

In general, with n-ary exponential ciphers, we group the resulting

numerical equivalent of the plaintext into blocks of length 2n, with n

chosen so that the largest integer formed by adjoining n decimal equiva-

lents of plaintext letters is less than p.

Example 7.8 We send the message

wait until the sun shines nellie

using p ¼ 2819 and e ¼ 23. The letters of the plaintext are converted into

their numerical equivalents and then grouped into blocks of length 4 to

obtain

2200 0819 2013 1908 1119

0704 1820 1318 0708 1318

1813 0411 1108 0423

where the letter x has been added at the end of the plaintext to fill out the
final block of four digits. Encoding the numerical plaintext using the

formula C � P23 (mod 2819), we obtain

602 2242 1007 439 2612

280 1303 1981 1511 1981

233 1013 274 540

Since gcd(2818, 23) ¼ 1, to decipher the ciphertext, we use the Euclidean

algorithm to obtain 23 . 2573� 21 . 2818 ¼ 1. Hence, 2573 is the inverse

of 23 modulo 2818. The deciphering congruence C2573 � P (mod 2819)

will return the message to the plaintext. For example, 6022573 � 2200

(mod 2819).

Exponential ciphers discourage cryptanalysis since the cryptanalyst needs

to determine the prime and exponent involved in enciphering the message,

a formidable task even with a high-speed computer. In a public-key

encryption system, we are given a number of individuals who wish to

communicate with each other. Each person chooses an enciphering key E,

which is published in a book of keys and made available to all users of the

system, and a deciphering key D, whose inverse is E and which is kept

secret. In order to be a secure system, each deciphering key should be

essentially impossible to discover or compute even though the enciphering
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key is public knowledge. Suppose individuals A and B wish to commu-

nicate using the system. Since EA and EB are known to all users of the

system, A can send a message M to B by transmitting EB(M), that is, by

applying EB to M. Since DB(EB(M)) ¼ (DBEB)M ¼ M and only B knows

DB, the deciphering key, only B can compute M and read the message. To

respond to A with message N, B would transmit EA(N ) to A, who would

decipher it using DA. That is, A would compute DA(EA(N )) ¼
(DAEA)N ¼ N .

If the composition of enciphering and deciphering is commutative, that

is (ED)M ¼ (DE)M ¼ M , for all messages M, then it is possible to send

signed messages, important in such matters as the electronic transfer of

large sums of money. For example, if A wished to send a signed message

M to B, then A, using B’s published enciphering key and A’s deciphering

key, would compute and send EB(DA(M)). To decipher the message, B

would compute EA(DB(EB(DA(M)))) ¼ (EADA)(EBDB)M and obtain M.

Moreover, if the deciphered message were legible B would know that the

message could only come from someone who knew A’s deciphering key,

EA. This does not affect the security of the message since only A knows

DA and only B knows DB. The practicality of such a system eventually

depends on the ability of all parties to be able to calculate efficiently with

the enciphering and deciphering keys.

In 1976, a very useful and practical public-key encryption system based

on exponential ciphers was devised independently by W. Diffie and M.E.

Hellman at Stanford and R.C. Merkle at Berkeley, and implemented at

MIT in 1978 by Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.

The RSA system, as it is known, works as follows. Each individual in the

system chooses two very large primes p and q, say of approximately 100

digits each and calculates r ¼ pq. Each person determines a positive

integer s, such that gcd(s, �(r)) ¼ 1, and integers t and k such that

st ¼ 1þ k�(r). Hence, st � 1 (mod �(r)). The pair (r, s) forms the

enciphering key and is published in the public register of such keys, but t,

the deciphering key, is kept secret by the individual.

In the RSA system, a message, M, is altered into its numerical equivalent

using Table 7.14 and grouped into blocks of length 2n, as with exponential

ciphers. The successive numerical blocks obtained from the plaintext are

enciphered using s, the receiver’s encryption key, and the equation

C ¼ E(P) � P s (mod r), where 0 < C, r, and the numerical ciphertext

is sent. From the Euler–Fermat Theorem, P�(r) � 1 (mod r). Hence,

D(C) ¼ C t � (P s) t � P st � P1þk.�(r) � P . Pk
.�(r) � P (mod r) with
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0 < P, r. Therefore, the receiver applies the inverse operator and

deciphers the message.

We may choose s to be any prime greater than pq, such that

2s. r ¼ pq, and it would be virtually impossible to recover the plaintext

block P by simply calculating the sth root of C. Knowledge of the

enciphering key (r, s) does not lead to the deciphering key (t, r). To

determine t, the inverse of s modulo �(r), one must first determine

�(r) ¼ �(pq) ¼ (p� 1) . (q� 1), which requires the decipherer to know

the factorization of r, which is virtually impossible without knowing p and

q. For example, when p and q contain 100 decimal digits, r ¼ pq has

around 200 decimal digits. Using the fastest factorization techniques

known would require approximately 3:83 109 years of computer time to

factor �(r). Nevertheless, if r and �(r) are known then p and q can be

determined using the identity (p� q)2 � (pþ q)2 ¼ �4 pq, since p þ
q ¼ pq� �(r)þ 1 ¼ r � �(r)þ 1 and p� q ¼ [( pþ q)2 � 4pq]1=2 ¼
[(pþ q)2 � 4r]1=2:

p ¼ (pþ q)þ (p� q)

2

and

q ¼ (pþ q)� ( p� q)

2
:

Example 7.9 Suppose we wish to send the message

vee is for victory

using the RSA system, where p ¼ 61, q ¼ 47, r ¼ pq ¼ 2867, and

�(r) ¼ 60 . 46 ¼ 2760. If we let s ¼ 17, from the Euclidean algorithm, we

find that t, the inverse of 17 modulo 2760, equals 2273. We publish the key

(2867, 17) and keep 2273 hidden. We change the plaintext into its numerical

equivalent, and group the numbers into blocks of size 4 to obtain

2104 0408 1805 1417 2108 0219 1417 2423,

where we have added a 23, an x, at the end of the message to fill out the
final block of digraphic plaintext. We use the congruence C � P17 (mod

2867) to encipher the numerical plaintext. For example, 210417 � 2458

(mod 2867). We obtain

2458 0300 0778 2732 1827 2608 2732 0129:

To decipher the ciphertext the receiver would use the deciphering congru-

ence C2273 � P (mod 2867). In particular, 24582273 � 2104 (mod 2867).
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Diffie and Hellman devised a technique whereby two participants in a

public-key cipher system are able to share the same key. In particular,

suppose a prime p and a positive integer s, p with gcd(s, p� 1) ¼ 1 are

known to both participants. Let the participants, say A and B, choose

positive integers a, p and b, p, respectively. A and B compute u ¼ sa

(mod p) and v ¼ sb (mod p), respectively. A sends u to B and B sends v

to A. A and B, respectively, compute va (mod p) and ub (mod p). Since,

modulo p, k ¼ ub � (sa)b � sab � (sb)a � va, both A and B use k as their

common key. For example, if p ¼ 9199, s ¼ 13, a ¼ 10 and b ¼ 23, then

their common key would be k ¼ 13230 � 7999 (mod 9199).

Exercises 7.4

1. Using an exponential cipher with p ¼ 2591, e ¼ 5, and n ¼ 2, encipher

have a good day:

2. Using an exponential cipher with p ¼ 3307, e ¼ 17, and n ¼ 2, encipher

happy days are here again:

3. Using an exponential cipher with p ¼ 7193, e ¼ 97, and n ¼ 2, encipher

send help:

4. Decipher the ciphertext message

2771 1794 3187 1013 3228 1259,

given it was enciphered digraphically using an exponential cipher with

p ¼ 3373 and e ¼ 95.

5. Decipher the ciphertext message

1843 0288 2142 2444,

given it was enciphered digraphically using an exponential cipher with

p ¼ 2591 and e ¼ 157.

6. Decipher the ciphertext message

1391 1958 1391 2558 0709 1425 2468

1311 1123 0079 2468 1774 0993 1915

1123 0846

given it was enciphered digraphically using an exponential cipher with

p ¼ 2671 and e ¼ 49.

7. Determine primes p and q used in an RSA cipher given that

r ¼ 4 386 607 and �(r) ¼ 4 382 136. If s ¼ 5 determine t.
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8. Determine primes p and q used in an RSA cipher given that

r ¼ 4 019 651 and �(r) ¼ 4 015 632. If s ¼ 17 determine t.

9. If p ¼ 8461, s ¼ 61, A chooses a ¼ 17, and B chooses b ¼ 31,

determine a public key k that would be common to A and B.

7.5 Supplementary exercises

1. Use Polybius’s method to decipher the following message: 44 23 15 42

11 13 15 24 43 33 34 44 11 52 11 54 43 52 34 33 12 54 44 23 15 43

52 24 21 44 34 42 44 23 15 12 42 11 51 15

2. Decipher the following Caesar cipher: WKLVP HVVDJ HLVWR

SVHFU HWZZZ.

3. Decipher the following Caesar cipher: LFDPH LVDZL FRQTX

HUHG.

4. Decipher the following Caesar Augustus cipher: BWF DBFTBS.

5. Decipher LWWRO OVIRU WKHH given that it was enciphered with

a shift transformation with key k ¼ 3.

6. Decipher the message WDVKN ACQNX AHVJT NBXWN CQRWT

given that it was enciphered with a shift transformation.

7. Decipher the message JCFYG DWVQY TNFGP QWIJC PFVKO

GVJKU EQAPG UUNCF AYGTG PQETK OGYGY QWNFU

KVFQY PCPFV JKPMY JKESY CAVQY CNMCP FRCUU QWTNQ

PINQX GUFCA given that it was enciphered with a shift transforma-

tion.

8. Decipher the message NYVEZ EKYVT FLIJV FWYLO REVMV

EKJ given the it was enciphered with a shift transformation.

9. Decipher the message IEXXK FZKXC UUKZC STKJW that was

enciphered using the affine transformation C � 11Pþ 18 (mod 26).

10. Decipher the message MBNJH MEPNK KPHMS CJDPG, that was

enciphered using the affine transformation C ¼ 5Pþ 21 (mod 26).

11. Decipher ANLLL OISEF OARIW RAIR.

12. Decipher ATITE RIETO RTHSH IFNSH UX.

13. Decipher WISIE ALUNL ITNELTHSSY IEHNX.

14. Decipher YRAEAL EGTINA SIHSTU VNEAAS IIRSCX.

15. If a frequency count of a message enciphered with a shift transforma-

tion gives R as the most frequent cipher letter and J as the second most

frequent letter, determine the most likely values for a and b such that

C � aPþ b (mod 26).

16. If a frequency count of a message enciphered with a shift transforma-

tion gives X as the most frequent cipher letter and M as the second
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most frequent letter, determine the most likely values for a and b such

that C � aPþ b (mod 26).

17. Use the Vigenère method to decipher the message OCCU AVOH

NQXPALTD PMWB given that it was enciphered using the key word

WILD.

18. Use the Vigenère method to decipher the message OSNXF UNLZE

HPYDH HYZVA AGQBZ FDACV DUKWH FMDVG PSQNY

KGMCU SLSLH XFK given that it was enciphered using the key

phrase BOSTONMASSACHUSETTS.

19. Use the Vigenère method to decipher the message DELCY MZFBR

WTSBW IKUJE CUEGZ VRGQS CLWGJ YEBEOYELWH YNVDC

LWGJB VRLTR KYWB given that it was enciphered using the key

word CALIFORNIA.

20. Decipher the ciphertext CBATF XMVKH VHVZP ZJZHD NQOZG

LMAHN GHVHV ZRRZZ VYHVZ PZGLT TTLW given that it was

enciphered with a Vigenère autocipher using the plaintext as key and J

as the first letter of the key.

21. Decipher the ciphertext GIIXQ QYLXV XXMFF NAOIZ DHHYD

XIBTB JBESFJ given that it was enciphered with a Vigenère auto-

cipher using the ciphertext as key and S as the first letter of the key.

22. Use the Wheatstone cipher with key word KELVIN to decipher

QVANGLKR.

23. Use the Wheatstone cipher with key word CAMBRIDGE to decipher

SHBW EPMD CDLTMB.

24. Decode VUJIR WHMYV given that it was enciphered using a Hill

cipher system and encoding matrix

A ¼ 4 11

1 22

� �
:

25. Decode RJHMQO given that it was enciphered using a Hill cipher

system and encoding matrix

A ¼ 5 2

1 7

� �
:

26. Decode the message 13587 4724 2614 given that it was encoded using

the superincreasing sequence and n and w from Example 7.5.

27. Given the superincreasing sequence 3, 5, 10, 20, 40, 90, 171, 361, 701,

1500, n ¼ 3001 and w ¼ 1111, use the knapsack cipher to encode

LET’S GO.
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28. Encipher 07 10 24 13 02 06 given that it was enciphered with an

exponential cipher with p ¼ 29 and e ¼ 19:

29. Decipher 2767 2320 3151 2690 1399 2174 given that it was enci-

phered biographically using an exponential cipher with p ¼ 3373 and

e ¼ 95.

30. Decipher 795 647 480 2710, given that it was enciphered bigraphically

using an exponential cipher with p ¼ 2819 and e ¼ 1691.
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8

Representations

When you have eliminated the impossible, whatever remains,

however improbable, must be the truth.

Sherlock Holmes, in The Sign of Four, by Sir Arthur Conan Doyle

8.1 Sums of squares

In this chapter, we make use of several number theoretic tools established

earlier to determine which integers may be represented as sums of squares,

cubes, triangular numbers, and so forth. The branch of number theory

dealing with such integral representation has led to the advances in the

theory of sphere packing, the theory of unique factorization domains, and

ideal theory.

Being able to express a positive integer as the sum of two squares of

nonnegative integers is a problem that had intrigued ancient as well as

modern mathematicians. In an earlier section dealing with Pythagorean

triples, we were able to express certain square numbers as the sum of two

integral squares. Diophantus, in Book II of Arithmetica gave

x ¼ 2am

m2 þ 1
and y ¼ a(m2 � 1)

m2 þ 1
,

where a is a nonnegative integer and m a positive integer constant, as

rational solutions to the equation x2 þ y2 ¼ a2. In 1225, Fibonacci devoted

a good part of Liber quadratorum to such problems. The specific problem

of determining exactly which positive integers can be represented as the

sum of two integral squares was posed first by the Dutch mathematician,

Albert Girand, in 1627 and independently by Fermat a few years later.

Methods for solving Girand’s problem can be straightforward but tedious.

For example, given an integer n, we can determine whether or not it can be

represented as the sum of two integral squares be calculating n� 12,

n� 22, n� 32, . . . , n� ½½ ffiffiffi
n

p
=2��2 until we either obtain a square or

exhaust all possibilities. The process may be started from the other

direction by subtracting the square of the greatest integer not greater than
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the square root of n. For example, if the number is 7522, the greatest

integer not greater than
ffiffiffiffiffiffiffiffiffiffi
7522

p
is 86. Hence,

7522� 862 ¼ 126,

7522� 852 ¼ 297,

7522� 842 ¼ 466,

7522� 832 ¼ 633,

7522� 822 ¼ 798,

7522� 812 ¼ 961 ¼ 312:

Therefore, 7522 ¼ 812 þ 312.

Example 8.1 According to Theorem 2.13, in order to determine if a

number z is the z-component of a primitive Pythagorean triple (x, y, z), the

hypotenuse of a Pythagorean triangle, we need only express z as the sum of

two coprime squares of opposite parity. That is, z ¼ s2 þ t2, y ¼ s2 � t2,

and x ¼ 2st, s. t, gcd(s, t) ¼ 1, where one of s and t is even and the other

is odd. For example, if z ¼ 10 394 ¼ 952 þ 372, then y ¼ 952 � 372 and

x ¼ 2 . 37 . 95. Thus (7030, 7656, 10 394) is a primitive Pythagorean triple

and, accordingly, 10 394 is the hypotenuse of a Pythagorean triangle.

For each positive integer n, let the function h(n) equal 1 if n can be

represented as the sum of two integral squares and 0 otherwise. The values

of h(n), for 1 < n < 100, are given in Table 8.1. It appears, from Table

8.1, that there are an infinite number of values for which h(n) ¼ 0. This

indeed is the case and is implied by either of the next two results.

Theorem 8.1 If n � 3 (mod 4), then h(n) ¼ 0.

Proof If h(n) ¼ 1, then there exist integers x and y such that n ¼ x2 þ y2.

The integers x and y are congruent to either 0 or 1 modulo 2. Hence,

x2 þ y2 can only be congruent to 0, 1, or 2 modulo 4 and the result follows

by contraposition. j

Theorem 8.2 If h(n) ¼ 0, then h(4n) ¼ 0.

Proof The result is established by contraposition. If h(4n) ¼ 1, then

4n ¼ x2 þ y2, for some values of x and y. In this case, x and y must both

be even, say x ¼ 2r and y ¼ 2s. We obtain 4n ¼ 4r2 þ 4s2 or n ¼
x2 þ y2, hence, h(n) ¼ 1. j
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Theorem 8.3 If an odd prime p can be expressed as the sum of two

integral squares then p � 1 (mod 4).

Proof Suppose p is an odd prime and p ¼ x2 þ y2. Since p is odd, we

have a contradiction if either x and y are even or x and y are odd. Suppose

that one is even, the other odd, say x ¼ 2r and y ¼ 2sþ 1. Hence,

p ¼ 4r2 þ 4s2 þ 4sþ 1. Therefore, p � 1 (mod 4). j

In 1202, Fibonacci included the identity (a2 þ b2)(c2 þ d2) ¼ (ad þ
bc)2 þ (ac� bd)2 ¼ (acþ bd)2 þ (ad � bc)2 in Liber abaci. The identity

had been used implicity by Diophantus in Arithmetica. In 1749, Euler used

the identity to establish the next result.

Theorem 8.4 If h(m) ¼ 1 and h(n) ¼ 1, then h(mn) ¼ 1.

Proof Suppose h(m) ¼ 1 and h(n) ¼ 1, then there exist integers a, b, c, d

Table 8.1.

n h(n) n h(n) n h(n) n h(n)

1 1 26 1 51 0 76 0
2 1 27 0 52 1 77 0
3 0 28 0 53 1 78 0
4 1 29 1 54 0 79 0
5 1 30 0 55 0 80 1
6 0 31 0 56 0 81 1
7 0 32 1 57 0 82 1
8 1 33 0 58 1 83 0
9 1 34 1 59 0 84 0
10 1 35 0 60 0 85 1
11 0 36 1 61 1 86 0
12 0 37 1 62 0 87 0
13 1 38 0 63 0 88 0
14 0 39 0 64 1 89 1
15 0 40 1 65 1 90 1
16 1 41 1 66 0 91 0
17 1 42 0 67 0 92 0
18 1 43 0 68 1 93 0
19 0 44 0 69 0 94 0
20 1 45 1 70 0 95 0
21 0 46 0 71 0 96 0
22 0 47 0 72 1 97 1
23 0 48 0 73 1 98 1
24 0 49 1 74 1 99 0
25 1 50 1 75 0 100 1
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such that m ¼ a2 þ b2 and n ¼ c2 þ d2. Hence, from Fibonacci’s identity,

mn ¼ (a2 þ b2)(c2 þ d2) ¼ (ad þ bc)2 þ (ac� bd)2. Thus, h(mn) ¼ 1

and the result is established. j

In Theorem 8.1, we showed that a number of the form 4nþ 3 cannot be

written as the sum of two integral squares. Using Fermat’s method of

descent, we now establish a much stronger result.

Theorem 8.5 An integer n can be expressed as a sum of two squares if

and only if every prime divisor of n of the form 4k þ 3 has even exponent

in the canonical representation of n.

Proof Suppose that n ¼ x2 þ y2 and p is a prime divisor of n. Hence,

x2 � �y2 (mod p). That is, �y2 is a quadratic residue modulo p. It

follows from the theory of quadratic residues that

1 ¼ �y2

p

� !
¼ �1

p

� �
y

p

� �2

¼ �1

p

� �
¼ (�1)( p�1)=2:

If p � 3 (mod 4), (�y2=2) ¼ �1, a contradiction, unless x � y � 0

(mod p). In that case, x ¼ pr, y ¼ ps, and n ¼ p2m with m ¼ r2 þ s2.

Continuing the process, we find that n ¼ p2 tw, for some positive integer t.

Therefore, if p � 3 (mod 4) is prime, it appears in the canonical represen-

tation of n to an even power. Conversely, let p be a prime of the form

4k þ 1. Hence,

�1

p

� �
¼ (�1)( p�1)=2 ¼ (�1)2k ¼ 1:

Thus, the equation x2 � �1 (mod p) has a solution, say a, with

1 < a, p=2. Hence, there exists an integer m such that mp ¼ a2 þ 1.

Since 0, mp ¼ a2 þ 1, p2=4þ 1, p2=4þ 3p2=4 ¼ p2, m is a positive

integer such that mp ¼ a2 þ 1, with p. m. Let t be the least positive

integer such that tp is the sum of two integral squares. That is, there exist

integers x and y such that tp ¼ x2 þ y2, with 0, t < m, p, and t is the

least positive integer for which this is the case. If t. 1, from the Corollary

to Theorem 2.2, it follows that x ¼ qt þ r and y ¼ ut þ v, with

�jtj=2, r < jtj=2 and �jtj=2, v < jtj=2. Thus, tp ¼ x2 þ y2 ¼ (q2 t2 þ
2qrt þ r2)þ (u2 t2 þ 2tuvþ v2). If we let w ¼ p� q2 t � 2qr � u2 t

� 2uv, wt ¼ r2 þ v2 < (t=2)2 þ (t=2)2 , t2. Hence, wt is a multiple of t

and 0 < w, t. If w ¼ 0, then r ¼ v ¼ 0, implying that x ¼ qt and y ¼ vt.

Hence, tpþ x2 þ y2 ¼ t2(q2 þ v2). Thus, t divides p, a contradiction

since 1, t, p and p is prime. Hence, w 6¼ 0 and wp is a multiple of p
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with 0, w, t. Since p ¼ t(q2 þ u2)þ 2(qr þ uv)þ w, it follows that

wp ¼ wt(q2 þ u2) þ 2w(qr þ uv) þ w2 ¼ (w þ qr þ uv)2 þ (qv � ru)2.

However, this contradicts the assumption that tp was the least positive

multiple of p expressible as the sum of two integral squares. Therefore,

t ¼ 1 and p ¼ a2 þ 1. That is, p can be expressed as the sum of two

integral squares. Since (4nþ 3)2k ¼ ((4nþ 3)k)2 þ 02, the result follows

from Theorem 8.4. j

Theorem 8.4 and Theorem 8.5 enable us to completely determine which

positive integers can be expressed as a sum of two integral squares. For

example, the only primes of the form 4k þ 3 in the canonical representa-

tion of 8820 are 3 and 7 and each appears to an even power. Hence,

according to Theorem 8.5, 8820 can be represented as the sum of two

squares. One useful technique to accomplish this is to factor 8820 into two

components, represent each component as the sum of two squares, and use

Fibonacci’s identity. We have 8820 ¼ 22 . 32 . 5 . 72 ¼ (22 . 72)(32 . 5) ¼
196 . 45 ¼ (142 þ 02)(62 þ 32) ¼ 842 þ 422.

In 1747, in a letter to Goldbach, Euler claimed that every prime divisor

of the sum of two coprime squares is itself the sum of two squares. The

result is implied by the next theorem.

Theorem 8.6 If p is an odd prime that divides a2 þ b2, with gcd(a,

b) ¼ 1, then p � 1 (mod 4).

Proof Suppose that p divides (a2 þ b2) where gcd(a, b) ¼ 1. If pja, then
pja2 implying that pjb2 and, hence, pjb, a contradiction. Thus, p divides

neither a nor b. Since p divides a2 þ b2, �a2 � b2 (mod p). Thus,

(�a2)( p�1)=2 � (b2)( p�1)=2 (mod p) or (�1)( p�1)=2a p�1 � b p�1 (mod p).

Since gcd(a, p) ¼ gcd(b, p) ¼ 1, it follows from Fermat’s Little Theorem

that a p�1 � b p�1 � 1 (mod p). Hence, (�1)( p�1)=2 � 1 (mod p). There-

fore, p � 1 (mod 4). j

There are an infinite number of integers that may be expressed as a sum of

two integral squares in more than one way. For example, 50 ¼ 72 þ
12 ¼ 52 þ 52. In 1621, Bachet noted that 5525 ¼ 552 þ 502 ¼ 622 þ
412 ¼ 702 þ 252 ¼ 712 þ 222 ¼ 732 þ 142 ¼ 742 þ 72. According to The-

orem 8.3, since 1073 ¼ 322 þ 72 ¼ 282 þ 172 ¼ 72 þ 322 ¼ 172 þ 282,

5 928 325 ¼ 5525 . 1073 can be expressed as the sum of two squares in at

least 24 ways, albeit they all might not be distinct.

Disregarding order and signs, that is, not counting (�2)2 þ 32,
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(�3)2 þ (�2)2, or 32 þ 22 as being distinct from 22 þ 32, 13 can be

represented uniquely as the sum of two squares. Let p be a prime of the

form 4k þ 1 having two distinct representations as a sum of integral

squares, p ¼ a2 þ b2 ¼ c2 þ d2. From the proof of Theorem 8.5, �1 is a

quadratic residue of p. Hence, there is a solution, say w, to the equation

x2 ¼ �1 (mod p). From our assumption, a2 � �b2 � w2b2 (mod p) and

c2 � �d2 � w2d2 (mod p), hence, a � 
wb and c � 
wd (mod p).

Thus, acþ bd � w2bd þ bd � 0 and ad � bc � 
w(bd � bd) � 0

(mod p). Hence, there exist integers m and n such that acþ bd ¼ mp and

ad � bc ¼ np. From Theorem 8.4, p2 ¼ (a2 þ b2)(c2 þ d2) ¼ (ac þ
bd)2 þ (ad � bc)2 ¼ (mp)2 þ (np)2. Hence, 1 ¼ m2 þ n2, but this is the

case only if m or n equals 0, that is, only if acþ bd ¼ 0 or ad � bc ¼ 0.

Since gcd(a, b) ¼ gcd(c, d) ¼ 1, acþ bd ¼ 0 or ad � bc ¼ 0 if and only

if a ¼ 
c and b ¼ 
d or a ¼ 
d and b ¼ �c. In either case, the

representation is unique and we have established Theorem 8.7, a solution

to Girand’s problem. The first published proof of the result, due to Euler,

appeared in 1754.

Theorem 8.7 (Girand–Euler Theorem) Disregarding order and signs,

any prime of the form 4k þ 1 can be represented uniquely as the sum of

two integral squares.

Let us generalize the square representation function h(n) to the function

f(n) which denotes the number of different representations of n as the

sum of two integral squares, taking signs and order into account. For

example, f (2) ¼ 4, since 2 ¼ 12 þ 12 ¼ 12 þ (�1)2 ¼ (�1)2 þ 12 ¼
(�1)2 þ (�1)2. Table 8.2 illustrates values of f (n) for 1 < n < 100. From

a casual glance at Table 8.2 it appears that f (n) is always a multiple of 4.

This indeed is the case and follows from the fact that solutions of the form

(a, 0) and (a, a) each contribute 4 to the multiplicity of f (n), and solutions

of the form (b, c), where b and c are distinct, contribute 8 to the value of

f (n). In 1829, at age 25, Jacobi established the following result which is

offered without proof; for a proof see [Niven, Zuckerman, and Montgom-

ery].

Theorem 8.8 (Jacobi) If �(m, n) denotes the number of positive divisors

of n which are congruent to m modulo 4, then f (n) ¼ 4[�(1, n)� �(3, n)].

For example, 234 ¼ 2 . 32 . 13, �(1, 234) ¼ 4, and �(3, 234) ¼ 2. Hence,

f (n) ¼ 4[4� 2] ¼ 8. Taking order and signs into consideration, the eight
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representations of 234 are 152 þ 32, (�15)2 þ 32, 152 þ (�3)2,

(�15)2 þ (�3)2, 32 þ 152, (�3)2 þ 152, 32 þ (�15)2, and (�3)2 þ (�15)2.

There are a number of geometric interpretations involving the represen-

tation function. For example, the sum
Pn

i¼1 f (i) represents the number of

lattice points in the Cartesian plane satisfying the inequality x2 þ y2 < n.

It also represents the area, in square units, of the region K formed by all

unit squares whose centers (x, y) lie inside or on the circle x2 þ y2 ¼ n. If

we denote the average value of f (n) by F(n), then

F(n) ¼ 1

nþ 1

Xn

i¼1

f (i) ¼ 1

nþ 1
. (area of region K):

Since the diagonal of a unit square equals
ffiffiffi
2

p
, the region K is completely

contained in the circular disk centered at the origin having radiusffiffiffi
n

p þ ffiffiffi
2

p
=2 and completely contains the circular disk centered at the

origin having radius
ffiffiffi
n

p � ffiffiffi
2

p
=2, as shown in Figure 8.1. Hence,

Table 8.2.

n f (n) n f (n) n f (n) n f (n)

1 4 26 8 51 0 76 0
2 4 27 0 52 8 77 0
3 0 28 0 53 8 78 0
4 4 29 8 54 0 79 0
5 8 30 0 55 0 80 8
6 0 31 0 56 0 81 4
7 0 32 4 57 0 82 8
8 4 33 0 58 8 83 0
9 4 34 8 59 0 84 0
10 8 35 0 60 0 85 16
11 0 36 4 61 8 86 0
12 0 37 8 62 0 87 0
13 8 38 0 63 0 88 0
14 0 39 0 64 4 89 8
15 0 40 8 65 16 90 8
16 4 41 8 66 0 91 0
17 8 42 0 67 0 92 0
18 4 43 0 68 8 93 0
19 0 44 0 69 0 94 0
20 8 45 8 70 0 95 0
21 0 46 0 71 0 96 0
22 0 47 0 72 4 97 8
23 0 48 0 73 8 98 8
24 0 49 4 74 8 99 0
25 12 50 12 75 0 100 12
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�

nþ 2

ffiffiffi
n

p �
ffiffiffi
2

p

2

� �2

, F(n),
�

nþ 1

ffiffiffi
n

p þ
ffiffiffi
2

p

2

� �2

:

Letting n approach infinity, we obtain one of the most elegant results

(Theorem 8.9) concerning the sums of two squares. It was originally

established by Gauss and was discovered among his unpublished manu-

scripts after his death in 1855.

Theorem 8.9 If

F(n) ¼ 1

nþ 1

Xn

i¼1

f (i)

then limn!1F ðnÞ ¼ �.

Diophantus considered the problem of representing integers as sums of

more than two squares. In the process, he realized that it is not possible to

express all integers as the sum of three integral squares. In 1636, in a letter

to Mersenne, Fermat conjectured that no number of the form 8k þ 7 can be

expressed as a sum of three integral squares. Two years later, Descartes

verified Fermat’s conjecture. The result follows from the fact that the

square of any integer is congruent to 0, 1, or 4 modulo 8.

The conjecture was generalized in the eighteenth century to state that

any positive integer can be expressed as a sum of three nonzero integral

squares if and only if it is not of the form 4n(8k þ 7), where n and k are

nonnegative integers. A proof of the conjecture was offered by Legendre in

1798 assuming that if gcd(a, b) ¼ 1, then infinitely many terms of the

sequence a, aþ b, aþ 2b, . . . were prime. In 1837, Dirichlet completed

y

x

Figure 8.1

8.1 Sums of squares 265



Legendre’s proof. Gauss offered a different proof in 1801. The sufficiency

is difficult to establish and is beyond the scope of this text, but the

necessity follows from the fact that if 4m(8k þ 7), where n ¼ m� 1 and k

are nonnegative integers, is expressible as the sum of three integral squares

then so is 4m�1(8k þ 7) and, hence, so is 8k þ 7, a contradition . Hence, no

integer of the form 4n(8k þ 7), where n and k are positive integers, can be

represented as the sum of three nonzero integral squares. In 1785,

Legendre was able to show that if a, b, c are squarefree, not all positive or

all negative, abc 6¼ 0, and gcd(a, b) ¼ gcd(a, c) ¼ gcd(b, c) ¼ 1, then

ax2 þ by2 þ cz2 ¼ 0, has a nontrivial solution, that is, with

(a, b, c) 6¼ (0, 0, 0), if and only if, using the Jacobi symbol,

�ab

jaj
� �

¼ �bc

jbj
� �

¼ �ca

jcj
� �

¼ 1,

where, a, b, c are not equal to 1.

Using the previous results, we can show that the equation

x2 þ y2 þ z2 þ xþ yþ z ¼ 1 has no integral solution (x, y, z). If (r, s, t)

were a solution, then we could multiply both sides of the equation by 4 and

complete the square, to obtain (2r þ 1)2 þ (2sþ 1)2 þ (2t þ 1)2 ¼
8 . 0þ 7, a contradiction.

Since each number of the form 8nþ 3 can be written as the sum of three

integral squares and each summand must be the square of an odd number,

we have 8nþ 3 ¼ (2r þ 1)2 þ (2sþ 1)2 þ (2t þ 1)2. Expanding and

collecting terms, we obtain n ¼ r(r þ 1)=2 þ s(sþ 1)=2þ t(t þ 1)=2,

establishing Gauss’s result that every positive integer is the sum of three or

fewer triangular numbers. For example, 59 ¼ 8 . 7þ 3 ¼ 72 þ 32 þ 12

¼ (2 . 3þ 1)2 þ (2 . 1þ 1)2 þ (2 . 0þ 1)2. Hence, 7 ¼ 3(3þ 1)=2 þ
1(1þ 1)=2þ 0(0þ 1)=2 ¼ 6þ 1þ 0.

A number of interesting identities occur when numbers are represented

as sums of squares. For example, if n. 1 and m ¼ n(2nþ 1), then m2 þ
(m þ 1)2 þ � � � þ (m þ n)2 ¼ (m þ n þ 1)2 þ (m þ n þ 2)2 þ � � �
þ (mþ 2n)2. If n ¼ 1, we obtain 32 þ 42 ¼ 52. If n ¼ 3, we have

212 þ 222 þ 232 þ 242 ¼ 252 þ 262 þ 272.

There are many unanswered questions regarding sums of squares, in

particular, whether there are infinitely many primes that can be represented

as the sum of squares of consecutive positive integers. For example,

5 ¼ 12 þ 22, 13 ¼ 22 þ 32, 61 ¼ 52 þ 62, and so forth. It is an open

question whether there are an infinite number of primes p such that

p ¼ n2 þ (nþ 1)2 þ (nþ 2)2, where n is a positive integer. For example,

29 ¼ 22 þ 32 þ 42 and 149 ¼ 62 þ 72 þ 82.
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Bachet wrote, in 1621, that since there is no explicit reference in

Arithmetica, Diophantus must have assumed that every positive integer can

be represented as the sum of at most four nonzero integral squares. Bachet

added that he would welcome a proof of the result. Fermat using the

method of descent sketched a proof of Bachet’s conjecture. Euler worked

on the problem for almost 25 years and in the process established a number

of crucial results. In particular, he discovered the identity

(a2 þ b2 þ c2 þ d2)(e2 þ f 2 þ g2 þ h2) ¼ (aeþ bf þ cg þ dg)2

þ (af � beþ ch� dg)2 þ (ag � bh� ceþ df )2 þ (ahþ bg � cf � de)2

and the fact that there are integral solutions to x2 þ y2 þ 1 � 0 (mod p),

where p is prime. For example, 3 ¼ 12 þ 12 þ 12 þ 02 and 17 ¼ 42 þ
12 þ 02 þ 02. Hence, 459 ¼ 32 . 3 . 17 ¼ 32(12 þ 12 þ 12 þ 02)(42 þ 12 þ
02 þ 02) ¼ 32[(4 þ 1 þ 0 þ 0)2 þ (1 � 4 þ 0 þ 0)2 þ (1 � 0 � 4� 0)2 þ
(0 þ 0 � 1 � 0)2] ¼ 32[52 þ 32 þ 42 þ 12] ¼ 152 þ 92 þ122 þ 32.

Building on Euler’s work, in 1770 Lagrange gave the first proof of the four-

square theorem. We state Lagrange’s result without proof; for a proof see

[Strayer].

Theorem 8.10 (Lagrange) Every positive integer can be represented as

the sum of four or fewer integral squares.

In 1829, Jacobi proved that the number of representations of an integer of

the form 2Æm, taking order and signs into consideration, where m is odd, is

8 . � (m) if Æ ¼ 0, and 24 . � (m) if Æ. 1. For example, 13 has 8 . 14 ¼ 112

representations. 64 derive from the representation 13 ¼ 32 þ 22 þ 02 þ 02

and 48 from the representation 13 ¼ 22 þ 22 þ 22 þ 12. The number

36 ¼ 22 . 32 has 24 . 13 ¼ 312 representations: 192 derive from

52 þ 32 þ 12 þ 12, 96 from 42 þ 42 þ 22 þ 02, 16 from 32 þ 32 þ 32 þ 32,

and 8 from 62 þ 02 þ 02 þ 02.

In 1884, at age 18, Hermann Minkowski proved that all numbers of the

form 8nþ 5 are sums of five odd squares. Einstein’s theory of general

relativity, where gravity is treated as a warping of space and not as a force,

is based on results in tensor calculus developed by Minkowski.

The above results all lead naturally to Waring’s problem. Edward

Waring, sixth Lucasian professor of mathematics at Cambridge, had lots of

problems, but the ones we are interested in are mathematical in nature. For

example, is there a least positive integer g(k) such that every positive

integer can be expressed as the sum of at most g(k) kth powers of

nonnegative integers? That is, can any positive integer n be represented in
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at least one way as ak
1 þ ak

2 þ � � � þ ak
g(k), where ai > 0 are not necessa-

rily distinct? From Theorem 8.10 we know that g(2) ¼ 4. Several cubic

and quartic representations are quite intriguing. For example,

153 ¼ 13 þ 53 þ 33,

370 ¼ 33 þ 73 þ 03,

371 ¼ 33 þ 73 þ 13,

407 ¼ 43 þ 03 þ 73,

1634 ¼ 14 þ 64 þ 34 þ 44,

8208 ¼ 84 þ 24 þ 04 þ 84,

9474 ¼ 94 þ 44 þ 74 þ 44:

In addition, 635 381 657 is the smallest number that can be written as the

sum of two fourth powers in two distinct ways, namely as 1334 þ 1344 and

594 þ 1584.

In 1770, in Meditationes algebraicae, Waring stated, without proof, as

was his nature, that g(k) ¼ ½½(3
2
)k �� þ 2k � 2, where k > 2 is a positive

integer and ½½ . �� denotes the greatest integer function. That is, every

positive integer can be expressed as the sum of 4 or fewer squares, 9 or

fewer cubes, 19 or fewer fourth powers, 37 or fewer fifth powers, and so

forth. Since 7 requires exactly 4 squares, 23 requires exactly 9 cubes, 79

requires exactly 19 fourth powers, and 223 requires exactly 37 fifth powers,

Waring’s problem has been shown to be the best estimate for squares,

cubes, fourth powers, and fifth powers.

It is important, when dealing with odd exponents, that the solutions are

required to be nonnegative integers. For example, if n is a positive integer,

then since n3 � n (mod 6) there is an integer k such that n3 ¼ nþ 6k and

we have n ¼ n3 � 6k ¼ n3 þ k3 þ k3 þ (�k � 1)3 þ (1� k)3. Therefore,

if no restrictions are placed on the integral solutions then any positive

integer may be represented as the sum of five cubes.

In 1772, Euler’s son, Johannes Albert, showed that for any positive

integer n, g(k) > ½½(3
2
)k �� þ 2k � 2, for k > 1. His result follows from the

fact that for a given positive integer k, the number n ¼ 2k . ½½(3
2
)k �� � 1

cannot be written by a sum of fewer than ½½(3
2
)k �� þ 2k � 2 kth powers. Since

n < 2k(3
2
)k � 1, 3k , only summands of the forms 1k and 2k can be used

to represent n as a sum of kth powers. In addition, the maximum number

of summands of form 2k that we can use to represent n without exceeding

n is ½½(3
2
)k �� � 1. Thus, the number of summands of the form 1k is given by

n� 2 . (½½(3
2
)k �� � 1) ¼ (2k . ½½(3

2
)k �� � 1)� 2 . (½½(3

2
)k �� � 1) ¼ 2k � 1. There-
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fore, the minimal number of summands needed to represent n is

½½(3
2
)k �� þ 2k � 2. For example, if k ¼ 3, then n ¼ 23, g(3) ¼ 9,

½½(3
2
)3�� � 1 ¼ 2, and 23� 23 . [½½(3

2
)3�� � 1] ¼ 23� 8 . 2 ¼ 7. Thus, 23 ex-

pressed as a sum of cubes requires exactly nine summands, namely,

23 þ 23 þ 13 þ 13 þ 13 þ 13 þ 13 þ 13 þ 13. In 1909, David Hilbert solved

Waring’s problem when he proved that for every positive integer k > 2

there is a number g(k) such that every positive integer can be represented

as the sum of at most g(k) kth powers. Currently, it is known that

g(4) ¼ 19, g(5) ¼ 37, g(6) ¼ 73, g(7) ¼ 143, g(8) ¼ 279, g(9) ¼ 548,

and g(10) ¼ 1079.

We can generalize Waring’s problem in another direction, by defining

G(k) to be the least positive integer such that all integers from some point

on can be represented as the sum of at most G(k) kth powers. That is, all

but a finite number of integers can be represented as the sum of G(k) kth

powers and infinitely many positive integers cannot be written as the sum

of fewer that G(k) kth powers. From the definitions of the functions g and

G, it follows that G(k) < g(k). Since an infinite number of positive

integers cannot be written as the sum of three squares, it follows from

Theorem 8.10 that G(2) ¼ 4. All positive integers except 23 and 239 can

be represented as the sum of eight or fewer cubes. In addition, all positive

integers greater than 454 can be expressed as the sum of seven or fewer

cubes. In fact, 8042 is the largest positive integer requiring seven cubes.

Hence, G(3), 7. In 1908, E. Maillet and A. Hurwitz showed that

G(k) > k þ 1, and in 1920, G.H. Hardy and J.E. Littlewood showed that

G(k) < 2k�1(k � 2)þ 5. Up to now, the following results concerning the

function G(k) are known: G(4) ¼ 16, 6 < G(5) < 21, 9 < G(6) < 31,

8 < G(7) < 45, 32 < G(8) < 62, 13 < G(9) < 82, and 12 < G(10) <

102.

The number 325 is the smallest positive integer that can be represented

three essentially different ways as the sum of two squares, namely,

325 ¼ 12 þ 182 ¼ 62 þ 172 ¼ 102 þ 152. The story of Hardy’s visit to

Ramanujan in a London hospital illustrates a stellar property of the number

1729. Ramanujan was suffering from tuberculosis, a disease that would

end his short but enormously mathematically productive life a few years

later. Hardy told Ramanujan that he had arrived in a taxi having the quite

undistinguished number 1729. Whereupon Ramanujan replied that it was

not so dull a number as Hardy thought for it is the smallest number which

can be represented as the sum of two cubes in two essentially different

ways.

Fermat showed that a cube cannot be expressed as the sum of two cubes.
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However, generalizing Pythagorean triples, it is possible to find cubic

quadruples, that is, 4-tuples (x, y, z, w) such that x3 þ y3 þ z3 ¼ w3. For

example, (1, 6, 8, 9) and (3, 4, 5, 6) are examples of cubic quadruples. In

1769, Euler conjectured that no nth power could be represented as the sum

of fewer than n nth powers, that is, xn1 þ xn2 þ � � � þ xnk ¼ zn has nontrivial

integral solutions if and only if k > n. However, in 1968, L.J. Lander and

T.R. Parkin discovered that 1445 ¼ 275 þ 845 þ 1105 þ 1335. In 1988, N.J.

Elkies found an infinite number of counterexamples to Euler’s conjecture

for the case when n ¼ 4 including 20 615 6734 ¼ 2 682 4404 þ
15 365 6394 þ 18 796 7604 and the smallest counterexample known,

namely 422 4814 ¼ 95 8004 þ 217 5194 þ 414 5604. In 1936, K. Mahler

discovered the identity (1þ 9n3)3 þ (3n� 9n4)3 þ (9n4)3 ¼ 1. Hence, 1

can be written infinitely many ways as the sum of three cubes.

There have been conjectures as to whether each natural number n can be

expressed as the sum of finite number of kth powers of primes. In 1937,

I.M. Vinogradov showed that for every k > 1 there exists a natural number

V (k) such that every sufficiently large natural number is the sum of at most

V (k) kth powers of prime numbers. In 1987, K. Thanigasalam showed that

V (5) < 23, V (6) < 33, V (7) < 47, V (8) < 63, V (9) < 83, and V (10)

< 107.

Fermat’s Last Theorem states that the equation xn þ yn ¼ zn has no

integral solution (a, b, c) with abc 6¼ 0, if n > 3. In 1637, Fermat claimed

to have a proof but the margins of his copy of Bachet’s version of

Diophantus’s Arithmetica were too narrow to sketch the proof. In his

correspondence, Fermat showed that there are no integral solutions for the

case when n ¼ 4 (Theorem 2.14) and he probably had a proof for the case

when n ¼ 3. Euler considered the factorization a3 � b3 ¼ (a� b)

(a� bø)(aþ bø), where ø ¼ (�1þ ffiffiffi
3

p
)=2 is a cube root of unity. How-

ever, Euler assumed that all numbers of the form aþ bø, where a and b

are integers, factor uniquely and used the method of descent to establish

the case when n ¼ 3. It was Gauss who showed that factorization of

numbers of the form aþ bø is indeed unique. In 1820, Sophie Germain

showed that if p and 2pþ 1 are prime then xp þ yp ¼ zp has no solution

when xyz is not divisible by p. The case where the exponents are prime is

crucial for if p is any prime that divides n, say n ¼ pm, then

(xm) p þ (ym) p ¼ (zm) p. Hence, if Fermat’s Last Theorem is true for primes

then it is true for all positive integers.

In 1825, Dirichlet and Legendre established the theorem for the case

when n ¼ 5. In 1832, Dirichlet showed the result is true for the case when

n ¼ 14. In 1839, Lamé proved it for the case when n ¼ 7, but ran into
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difficulty for the general case when he assumed unique factorization for

more general algebraic number fields. In particular, Lamé was interested

in working with cyclotomic integers, numbers of the form a0 þ
a1�þ a2�2 þ � � � þ ap� p, where ai is an integer, for 0 < i < p, p is an

odd prime, and � 6¼ 1 is a complex pth root of unity, that is � ¼ Æþ �i,
where Æ and � are real numbers and � p ¼ 1. Liouville and Dirichlet

remarked that unique factorization may fail to hold in such general number

systems. In addition, while 1 and �1 are the only two integers that have

multiplicative inverses, many nontrivial cyclotomic integers have multi-

plicative inverses. From 1844 to 1847, Ernst Eduard Kummer, after

encountering the same problems as Lamé, attacked the problem and in the

process founded the theory of ideals, a theory that was developed by

Richard Dedekind in the nineteenth century. In 1849, Kummer showed that

except possibly for n ¼ 37, 59, and 67, the theorem was true for all positive

integer exponents less than 100. After receiving his degree from the

University of Halle and before assuming a position at the University of

Breslau, Kummer spent 10 years as a high school mathematics teacher.

When Dirichlet replaced Gauss at Göttingen in 1855, Kummer was chosen

to replace Dirichlet at the University of Berlin. After teaching at the

University of Zürich for 5 years, he spent 50 years teaching high school

mathematics in Brunswick, Germany.

There have been more than a thousand alleged proofs of Fermat’s Last

Theorem. In 1984, Gerd Faltings, a German mathematician from the

University of Wuppertal, was awarded the Fields Medal, considered by

many to be the Nobel Prize in mathematics, for solving the Mordell

conjecture. Faltings proved an auxiliary result, first posed by the Cam-

bridge mathematician, Louis J. Mordell, in 1922, namely, for each integer

n. 2 the equation xn þ yn ¼ zn has finitely many solutions. Most attempts

at proving the theorem relied on devising original factoring techniques.

Much progress has been made in this direction by Ken Ribet, Jean-Pierre

Serre, Goro Shimura, Yutaka Taniyama, Barry Mazur, and Richard Taylor.

In 1985, L.M. Adleman, D.R. Heath-Brown, and E. Fouvry showed that

there are infinitely many non-Sophie Germain primes p such that

xp þ yp ¼ zp has no solutions where p does not divide xyz. In 1986,

Gerhard Frey suggested that there was a correspondence between the

theorem and elliptic curves. By 1990, Fermat’s Last Theorem had been

established for all positive integers less than 108. In 1994, more than 350

years after Fermat proposed the question, Cambridge-educated Andrew

Wiles of Princeton, working virtually by himself for six years and building

on the work of his predecessors and colleagues, proved Fermat’s Last
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Theorem. Wiles presented a flawed version of his proof at a conference at

the Isaac Newton Institute for Mathematical Research at Cambridge

University in June 1993. After a year of intensive work back at Princeton

using a different approach, he published a valid proof of Fermat’s Last

Theorem in the fall of 1994.

Exercises 8.1

1. In Arithmetica, Diophantus gave

x ¼ 2am

m2 þ 1

and

y ¼ a(m2 � 1)

m2 þ 1
,

where m is a nonzero constant, as a rational solution to the equation

x2 þ y2 ¼ a2 for a given value of a. Verify that it is a valid rational

solution to the equation.

2. Use Fermat’s method to express 8650 as the sum of two squares.

3. Determine the values of h(n) and f (n), for 101 < n < 200.

4. If n is a multiple of 4 and can be represented as the sum of two

squares, such as n ¼ x2 þ y2, then show that both x and y must be

even.

5. If n � 12 (mod 16), then show that n cannot be written as a sum of

two squares.

6. If n � 6 (mod 8), then show that n cannot be written as the sum of two

squares.

7. Prove that if n � 7 (mod 8), then n cannot be written as the sum of

two squares.

8. Show that if 3 does not divide n, then 6n cannot be written as a sum of

two squares.

9. Prove that if n can be written as the sum of two squares then 2n can

also be written as the sum of two squares. [Charles Dodgson]

10. Determine the smallest positive number which can be written in two

different ways as the sum of two positive squares and exhibit the two

distinct representations.

11. Use Fibonacci’s identity to find a positive integer with three distinct

representations as the sum of two integral squares. Exhibit the three

distinct representations.
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12. Determine a representation of 22kþ1 as the sum of two integral squares,

where k is a positive integer.

13. Prove that 22k cannot be represented as the sum of two integral

nonzero squares, where k is a positive integer.

14. Use Theorem 8.8 to determine f (3185), f (7735), f (72 581),

f (226 067).

15. Show that 6525 is the hypotenuse of a Pythagorean triangle and

determine the legs of the triangle.

16. Show that 6370 is the hypotenuse of a triangle with integral sides.

17. If n is a positive integer, show that either n or 2n can be expressed as

the sum of three integral squares.

18. Find two different representations for 1729 as the sum of two cubes.

19. Find two different representations for 40 033 as the sum of two cubes.

20. In how many ways can n appear as the hypotenuse of a Pythagorean

triangle where

(a) n ¼ 16 120,

(b) n ¼ 56 144?

21. Given that 30 ¼ 12 þ 22 þ 32 þ 42 and 29 ¼ 22 þ 52 þ 02 þ 02 ex-

press 870 ¼ 29 . 30 as the sum of four squares.

22. Show that (3, 4, 5, 6) is a cubic quadruple.

23. Find the missing integer in the following cubic quadruples:

(2, 12, 16, a), (9, 12, 15, b), (3, 10, c, 19), and (d, 14, 17, 20).

24. What identity results when n ¼ 2 (n ¼ 4) in the equation m2 þ (m þ
1)2 þ � � � þ (m þ n)2 ¼ (m þ n þ 1)2 þ (m þ n þ 2)2 þ � � �
þ (mþ 2n)2, where m ¼ n(2nþ 1)?

25. Prove that a positive integer n can be written as the difference of two

squares if and only if n 6� 2 (mod 4).

26. Prove that every Fermat number, Fn ¼ 22
n þ 1, where n > 1, can be

expressed as the difference of two squares.

27. Prove that every odd prime can be expressed as the difference of two

squares.

28. Find three primes p, other than 5, 13, and 41, such that p ¼
n2 þ (nþ 1)2, where n is a positive integer.

29. Find two primes p, other than 29 and 149, such that p ¼
n2 þ (nþ 1)2 þ (nþ 2)2, where n is a positive integer.

30. Express 459 as the sum of three integral squares.

31. Show that there are no integer solutions to the equation y3 ¼
x2 þ (xþ 1)2.

32. If 3n is a sum of four squares, show that n is the sum of four squares,

where n is a positive integer. [Sylvester 1847]
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33. Represent 192 as the sum of three triangular numbers.

34. Show that if x, y, z are integers such that x p�1 þ y p�1 ¼ z p�1, where

p is prime, then p divides xyz.

35. Show that if x, y, z are integers such that x p þ y p ¼ z p, then p divides

xþ y� z.

36. Can 19991999 be expressed as the sum of two squares? Justify your

answer.

37. Can 5 941 232 be expressed as the sum of three integral squares?

38. Show that 8(k þ 1) ¼ (2aþ 1)2 þ (2a� 1)2 þ (2bþ 1)2 þ (2b� 1)2

þ (2cþ 1)2 þ (2c� 1)2 þ (2d þ 1)2 þ (2d � 1)2, where k ¼ a2 þ
b2 þ c2 þ d2. The identity implies that any multiple of 8 can be

expressed as the sum of the square of eight odd integers.

39. In 1844, E.C. Catalan conjectured that 8, 9 are the only consecutive

integers that are powers. That is, 32 � 23 ¼ 1. Positive integers not

congruent to 2 modulo 4 can be represented as the difference of two

powers each greater than the first. Note that 2 ¼ 33 � 52 and

3 ¼ 27 � 53. Express 4, 5, 7, 8, 9, 10, 11, 12, 13 as differences of two

powers each greater than the first.

8.2 Pell’s equation

Euler, after a cursory reading of Wallis’s Opera Mathematica, mistakenly

attributed the first serious study of nontrivial solutions to equations of the

form x2 � dy2 ¼ 1, where x 6¼ 1 and y 6¼ 0, to John Pell, mathematician to

Oliver Cromwell. However, there is no evidence that Pell, who had taught

at the University of Amsterdam, had ever considered solving such equa-

tions. They would be more aptly called Fermat’s equations, since Fermat

first investigated properties of nontrivial solutions of each equations.

Nevertheless, Pellian equations have a long history and can be traced back

to the Greeks. Theon of Smyrna used x=y to approximate
ffiffiffi
2

p
, where x and

y were integral solutions to x2 � 2y2 ¼ 1. In general , if x2 ¼ dy2 þ 1,

then x2=y2 ¼ d þ 1=y2. Hence, for y large, x=y is a good approximation

of
ffiffiffi
d

p
, a fact well known to Archimedes.

Archimedes’s problema bovinum took two thousand years to solve.

According to a manuscript discovered in the Wolfenbüttel library in 1773

by Gotthold Ephraim Lessing, the German critic and dramatist, Archi-

medes became upset with Apollonius of Perga for criticizing one of his

works. He divised a cattle problem that would involve immense calculation

to solve and sent it off to Apollonius. In the accompanying correspon-

dence, Archimedes asked Apollonius to compute, if he thought he was
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smart enough, the number of the oxen of the sun that grazed once upon the

plains of the Sicilian isle Trinacria and that were divided according to color

into four herds, one milk white, one black, one yellow and one dappled,

with the following constraints:

white bulls ¼ yellow bullsþ 1

2
þ 1

3

� �
black bulls,

black bulls ¼ yellow bullsþ 1

4
þ 1

5

� �
dappled bulls,

dappled bulls ¼ yellow bullsþ 1

6
þ 1

7

� �
white bulls,

white cows ¼ 1

3
þ 1

4

� �
black herd,

black cows ¼ 1

4
þ 1

5

� �
dappled herd,

dappled cows ¼ 1

5
þ 1

6

� �
yellow herd, and

yellow cows ¼ 1

6
þ 1

7

� �
white herd:

Archimedes added, if you find this number, you are pretty good at numbers,

but do not pat yourself on the back too quickly for there are two more

conditions, namely:

white bulls plus black bulls is square and

dappled bulls plus yellow bulls is triangular:

Archimedes concluded, if you solve the whole problem then you may ‘go

forth as conqueror and rest assured that thou art proved most skillful in the

science of numbers’.

The smallest herd satisfying the first seven conditions in eight unknowns,

after some simplifications, lead to the Pellian equation x2 �
4 729 494y2 ¼ 1. The least positive solution, for which y has 41 digits, was

discovered by Carl Amthov in 1880. His solution implies that the number

of white bulls has over 23 105 digits. The problem becomes much more

difficult when the eighth and ninth conditions are added and the first

complete solution was given in 1965 by H.C. Williams, R.A. German, and

C.R. Zarnke of the University of Waterloo.

In Arithmetica, Diophantus asks for rational solutions to equations of

the type x2 � dy2 ¼ 1. In the case where d ¼ m2 þ 1, Diophantus offered

the integral solution x ¼ 2m2 þ 1 and y ¼ 2m. Pellian equations are found

in Hindu mathematics. In the fourth century, the Indian mathematican
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Baudhayana noted that x ¼ 577 and y ¼ 408 is a solution of x2 � 2y2 ¼ 1

and used the fraction 577
408

to approximate
ffiffiffi
2

p
. In the seventh century

Brahmagupta considered solutions to the Pellian equation x2 � 92y2 ¼ 1,

the smallest solution being x ¼ 1151 and y ¼ 120. In the twelfth century

the Hindu mathematician Bhaskara found the least positive solution to the

Pellian equation x2 � 61y2 ¼ 1 to be x ¼ 226 153 980 and y ¼
1 766 319 049.

In 1657, Fermat stated without proof that if d was positive and

nonsquare, then Pell’s equation had an infinite number of solutions. For

if (x, y) is a solution to x2 � dy2 ¼ 1, then 12 ¼ (x2 � dy2)2 ¼
(x2 þ dy2)� (2xy2)d. Thus, (x2 þ dy2, 2xy) is also a solution to

x2 � dy2 ¼ 1. Therefore, if Pell’s equation has a solution, it has infinitely

many.

In 1657 Fermat challenged William Brouncker, of Castle Lynn in

Ireland, and John Wallis to find integral solutions to the equations

x2 � 151y2 ¼ 1 and x2 � 313y2 ¼ 1. He cautioned them not to submit

rational solutions for even ‘the lowest type of arithmetician’ could devise

such answers. Wallis replied with (1 728 148 040, 140 634 693) as a solu-

tion to the first equation. Brouncker replied with (126 862 368, 7 170 685)

as a solution to the second. Lord Brouncker claimed that it only took him

about an hour or two to find his answer. Samuel Pepys, secretary of the

Royal Society, had a low opinion of Brouncker’s moral character but

thought that his mathematical ability was quite adequate. In the section on

continued fractions, in this chapter, we will demonstrate the method Wallis

and Brouncker used to generate their answers.

In 1770, Euler showed that no triangular number other than unity was a

cube and none but unity was a fourth power. He devised a method,

involving solutions to Pellian equations, to determine natural numbers that

were both triangular and square. In particular, he was looking for positive

integers m and n such that n(nþ 1)=2 ¼ m2. To accomplish this, he

multiplied both sides of the latter equation by 8 and added 1 to obtain

(2nþ 1)2 ¼ 8m2 þ 1. He let x ¼ 2nþ 1 and y ¼ 2m so that x2 �
2y2 ¼ 1. Solutions to this Pellian equation produce square–triangular

numbers since

x� 1

2

� �
x� 1

2
þ 1

� ��
2 ¼ y

2

� �2

:

That is, the ((x� 1)=2)th triangular number equals the (y=2)th square

number. Using notation introduced in Chapter 1, tx�1=2 ¼ s y=2. For

example, from the solution x ¼ 3 and y ¼ 2, it follows that m ¼ n ¼ 1,
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yielding the square–triangular number 1. Table 8.3 lists several solutions

(x, y) to x2 � 2y2 ¼ 1 and their associated square–triangular numbers. A

natural question arises. Does the method generate all square–triangular

numbers? If one is more methodical about how one obtains the solutions,

one can see that it does.

Since 1 ¼ x2 � 2y2 ¼ (x� y
ffiffiffi
2

p
)(xþ y

ffiffiffi
2

p
), it follows that 1 ¼ 12 ¼ (x

� y
ffiffiffi
2

p
)2(x þ y

ffiffiffi
2

p
)2 ¼ ((2y2 þ x2) � 2xy

ffiffiffi
2

p
)((2y2 þ x2) þ 2xy

ffiffiffi
2

p
) ¼

(2y2 þ x2)2 � 2(2xy)2. Thus, if (x, y) is a solution to 1 ¼ x2 � 2y2, so is

(2y2 þ x2, 2xy). For example, the solution (3, 2) generates the solution

(2 . 23 þ 32, 2 . 2 . 3) ¼ (17, 12). The solution (17, 12) generates the solu-

tion (2 . 122 þ 172, 2 . 12 . 17) ¼ (577, 408). The square–triangular num-

ber generated by the solution (2y2 þ x2, 2xy) to 1 ¼ x2 � 2y2 is distinct

from the square–triangular number generated by the solution (x, y). There-

fore, there exist an infinite number of square–triangular numbers. La-

grange in a series of papers presented to the Berlin Academy between 1768

and 1770 showed that a similar procedure will determine all solutions to

x2 � dy2 ¼ 1, where d is positive and nonsquare. By the fundamental or

least positive solution of x2 � dy2 ¼ 1, we mean the solution (r, s) such

that for any other solution (t, u) r, t and s, u. In 1766, Lagrange proved

that the equation x2 � dy2 ¼ 1 has an infinite number of solutions when-

ever d is positive and not square.

Theorem 8.11 (Lagrange) If (r, s) is the fundamental solution of

x2 � dy2 ¼ 1, where d is positive and nonsquare, then every solution to

x2 � dy2 ¼ 1 is given by (xn, yn) where xn þ yn
ffiffiffi
d

p ¼ (r þ s
ffiffiffi
d

p
)n for

n ¼ 1, 2, 3, . . . :

Proof Let (r, s) be a fundamental solution of x2 � dy2 ¼ 1, where d is

positive and nonsquare, and xn þ yn
ffiffiffi
d

p ¼ (r þ s
ffiffiffi
d

p
)n, for n ¼ 1, 2, 3, . . . :

It follows that x2n � dy2n ¼ (xn þ yn
ffiffiffi
d

p
)(xn � yn

ffiffiffi
d

p
) ¼ (r þ s

ffiffiffi
d

p
)n(r �

s
ffiffiffi
d

p
)n ¼ (r2 � s2d)n ¼ 1n ¼ 1. Hence, (xn, yn) is a solution to

x2 � dy2 ¼ 1, where xn þ yn
ffiffiffi
d

p ¼ (r þ s
ffiffiffi
d

p
)n for n ¼ 1, 2, 3, . . . : We

Table 8.3.

x y m n sqr–tri #

3 2 1 1 1
17 12 6 8 36
99 70 35 49 1 225
577 408 204 288 41 616
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show that if (a, b) is a solution to x2 � dy2 ¼ 1, where a and b are

positive, there is a positive integer n such that (a, b) ¼ (xn, yn). Suppose

that is not the case. Hence there is a positive integer k such that

(r þ s
ffiffiffi
d

p
)k , aþ b

ffiffiffi
d

p
,(r þ s

ffiffiffi
d

p
)kþ1. Since (r þ s

ffiffiffi
d

p
)�k ¼ (r �

s
ffiffiffi
d

p
)k , dividing by (r þ s

ffiffiffi
d

p
)k, we obtain 1, (aþ b

ffiffiffi
d

p
)

(r � s
ffiffiffi
d

p
)k , (r þ s

ffiffiffi
d

p
). Let uþ v

ffiffiffi
d

p ¼ (aþ b
ffiffiffi
d

p
)(r � s

ffiffiffi
d

p
)k ; hence,

u2�v2d¼ (uþ v
ffiffiffi
d

p
)(u� v

ffiffiffi
d

p
) ¼ (aþ b

ffiffiffi
d

p
)(r � s

ffiffiffi
d

p
)k(a� b

ffiffiffi
d

p
)(r þ

s
ffiffiffi
d

p
)k ¼ (a2 � b2d)(r2 � s2d)k ¼ 1. Thus, (u, v) is a solution to

x2 � dy2 ¼ 1. However, since uþ v
ffiffiffi
d

p
. 1, 0, u � v

ffiffiffi
d

p
, 1. Hence,

2u ¼ (uþ v
ffiffiffi
d

p
)þ (u� v

ffiffiffi
d

p
). 1þ u. 0 and 2v

ffiffiffi
d

p ¼ (uþ v
ffiffiffi
d

p
)�

(u� v
ffiffiffi
d

p
). 1� 1 ¼ 0. Therefore, u. 0, v. 0, and uþ v

ffiffiffi
d

p
, r þ s

ffiffiffi
d

p
,

contradicting the assumption that (r, s) is the fundamental solution, and

the result is established. j

In particular, if (xk , yk) is the solution to x2 � 2y2 ¼ 1 generating the

square–triangular number Ek, then (xkþ1, ykþ1), the solution generating

the next square–triangular number Ekþ1, is obtained as follows:

1 ¼ 9� 8 ¼ (3þ 2
ffiffiffi
2

p
)(3� 2

ffiffiffi
2

p
) and 1 ¼ x2k � 2y2k ¼ (xk þ

ffiffiffi
2

p
yk)(yk �ffiffiffi

2
p

xk). Hence, 1 ¼ 1 . 1 ¼ (xk þ
ffiffiffi
2

p
yk)(xk �

ffiffiffi
2

p
yk)(3þ 2

ffiffiffi
2

p
)(3� 2

ffiffiffi
2

p
)

¼ [(3xk þ 4yk) þ (2xk þ 3yk)
ffiffiffi
2

p
][(3xk þ 4yk) � (2xk þ 3yk)

ffiffiffi
2

p
] ¼

(3xk þ 4yk)
2 � 2(2xk þ 3yk)

2. Therefore, xkþ1 ¼ 3xk þ 4yk and ykþ1

¼ 2xk þ 3yk , in a sense, is the ‘next’ solution to x2 � 2y2 þ 1. If we

represent the kth square–triangular number by Ek ¼ y2k=4 ¼ (x2k � 1)=2, it

follows that xk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Ek þ 1

p
and yk ¼ 2

ffiffiffiffiffiffi
Ek

p
. Hence, the next square–

triangular number is given by

Ekþ1 ¼ (ykþ1)
2

4
¼ (2xk þ 3yk)

2

4
¼ 4x2k þ 12xkyk þ 9y2k

4

¼ 17Ek þ 1þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8E2

k þ Ek

q
:

For example, the square–triangular number after 41 616 is 17 .

41 616þ 1þ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 . 41 6162 þ 41 616

p ¼ 1 413 721.

Frenicle compiled a table of least positive solutions to x2 � dy2 ¼ 1,

where d is nonsquare and 1 < d < 150. A brief version of Frenicle’s table

is shown in Table 8.4. The Canon Pellianus computed by C.F. Degenin,

1817, gave least positive solutions to Pell’s equation for all positive

nonsquare values of d < 1000.

Pell’s equation is of considerable importance in number theory and can

be used to find optimal rational approximations to square roots of positive

integers. In particular, if x2 � dy2 ¼ 1, then x=y gives a good approxima-

tion to
ffiffiffi
d

p
. This follows since if x. y

ffiffiffi
d

p
then
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 xy�
ffiffiffi
d

p 



 ¼




 1y










 x2 � dy2

xþ y
ffiffiffi
d

p




 ¼





 1y









 1

xþ y
ffiffiffi
d

p




, 1

y(2y
ffiffiffi
d

p
)
,

ffiffiffi
d

p

2y2
ffiffiffi
d

p

¼ 1

2y2
:

Elliptic curves, Diophantine equations of form y2 ¼ x3 þ ax2 þ bxþ c,

are more general than Pellian equations. In 1621, Bachet studied elliptic

equations of the form y2 ¼ x3 þ c. He claimed correctly that the only

solution (x, y) to the equation y2 ¼ x3 � 2 is (3, 5). In 1657, Fermat

claimed that the only solutions to y2 ¼ x3 � 4 were (2, 2) and (5, 11).

Euler showed that the only solution to y2 ¼ x3 þ 1 is (2, 3). In 1922, Louis

J. Mordell, Sadlerian Professor of Mathematics at Cambridge, proved that,

for a fixed value of c, Bachet’s equation has only a finite number of

Table 8.4.

d x y d x y

1 — — 26 51 10
2 3 2 27 26 5
3 2 1 28 127 24
4 — — 29 9 801 1 820
5 9 4 30 11 2
6 5 2 31 1 520 273
7 8 3 32 17 3
8 3 1 33 23 4
9 — — 34 35 6
10 19 6 35 6 1
11 10 3 36 — —
12 7 2 37 73 12
13 649 180 38 37 6
14 15 4 39 25 4
15 3 1 40 19 3
16 — — 41 2 049 320
17 33 8 42 13 2
18 17 4 43 3 482 531
19 170 39 44 199 30
20 9 2 45 161 24
21 55 12 46 24 335 3 588
22 197 42 47 48 7
23 24 5 48 1 7
24 5 1 49 — —
25 — — 50 99 14
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solutions. In 1965 Alan Baker of Cambridge was awarded the Fields Medal

for devising a finite procedure for determining solutions to Bachet’s equa-

tion.

Exercises 8.2

1. Find the square–triangular number generated by the solution

x ¼ 19 601 and y ¼ 13 860 to the equation x2 � 2y2 ¼ 1.

2. Find positive solutions (x, y) to the following Pellian equations.

(a) x2 � 3y2 ¼ 1,

(b) x2 � 5y2 ¼ 1,

(c) x2 � 6y2 ¼ 1.

3. Find a Pellian formula to generate square–pentagonal numbers.

4. Find two square–pentagonal numbers.

5. Find two triangular–pentagonal numbers.

6. Find the next two square–triangular numbers following 1 413 721.

7. Why is it necessary, in determining a solution to Pell’s equation

x2 � dy2 ¼ 1, that d not be a square?

8. Prove that if the Bachet equation y2 ¼ x3 þ 2 has a solution then x

and y must both be odd.

9. Show that 3x2 þ 2 ¼ y2 has no integral solutions.

8.3 Binary quadratic forms

Fermat considered the representation of integers by Diophantine polyno-

mials of the form x2 
 cy2 and in 1761 Euler those of the form

x2 þ xyþ y2 or x2 þ cy2. In 1763, Euler showed that every prime of the

form 6nþ 1 can be represented by x2 þ 3y2 and every prime of the form

8nþ 1 can be represented by x2 þ 2y2. Representing integers as sums of

squares and Pellian problems are special cases of a more general problem,

namely, representing integers by integral expressions of the form

ax2 þ bxyþ cy2 þ dxþ eyþ f . Gauss devoted almost 60 percent of Dis-

quisitiones to deriving properties of such expressions.

In general, an integral expression f(x, y) consisting of a finite number of

terms of the form axrys, with a an integer and x and y indeterminates, is

called a Diophantine polynomial in two variables. We say that f (x, y)

represents the integer n if there exist integers x and y such that

f (x, y) ¼ n. In addition, the integer n is said to be properly represented by

f (x, y) if f (x, y) ¼ n with gcd(x, y) ¼ 1. We say that f (x, y) is universal

if it represents every integer, and positive definite if it represents only
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nonnegative integers. One of the first problems that arised is that of

equivalence. Two Diophantine polynomials f (x, y) and g(u, v) are said to

be equivalent, denoted by f � g, if there is a linear transformation

x ¼ auþ bv and y ¼ cuþ dv, with ad � bc ¼ 
1, such that

f (x, y) ¼ g(u, v). For example, the Diophantine polynomials f (x, y) ¼
x3 þ xyþ y2 þ x� 2 and g(u, v) ¼ u3 þ v3 þ 2u2 þ 3u2vþ 3uv2 þ
7uvþ 6v2 þ uþ v� 2 are equivalent under the transformation x ¼ uþ v,
y ¼ uþ 2v. If two Diophantine polynomials are equivalent they represent

the same numbers. For example, under the transformation x ¼ �uþ 3v,
y ¼ �uþ 2v, f (x, y) ¼ 3x2 � 10xyþ 8y2 is equivalent to g(u, v) �
u2 � v2. Both polynomials represent all integers not of the form 4k þ 2.

In 1773, Lagrange made the first investigations of binary quadratic

forms, which are Diophantine equations of the type f (x, y) ¼ ax2

þ bxyþ cy2. The term b2 � 4ac is called the discriminant of the binary

quadratic form. Equivalent binary quadratic forms have the same discrimi-

nant. However, binary quadratic forms with the same discriminant need not

be equivalent. It can be shown that there exists a binary quadratic form

with discriminant d if and only if d � 0 or 1 (mod 4). In particular if d � 0

(mod 4), then x2 � (d=4)y2 has discriminant d. If d � 0 (mod 4), then

x2 þ xy� ((d � 1)=4)y2 has discriminant d. Gauss showed that the number

of binary quadratic forms with a given discriminant is finite. It can be

shown that the integer n can be properly represented by ax2 þ bxyþ cy2 if

and only if x2 � d (mod 4n) has a solution, for a proof see [Baker].

Theorem 8.12 A binary quadratic form ax2 þ bxyþ cy2 is positive defi-

nite if and only if a > 0, c > 0, a2 þ c2 . 0, and b2 � 4ac < 0.

Proof Suppose that f (x, y) ¼ ax2 þ bxyþ cy2 is a positive definite binary

quadratic form. Since f (1, 0) ¼ a and f (0, 1) ¼ c, neither a, 0 nor c, 0.

Hence a > 0 and c > 0. If a ¼ b ¼ c ¼ 0, then the binary quadratic form

represents only 0 and hence cannot be positive definite. If a ¼ c ¼ 0 and

b 6¼ 0, then f (x, y) ¼ bxy. So f (1, 1) ¼ b and f (1, �1) ¼ �b, hence, the

form cannot be positive definite. Thus, at least one of a and c must be

nonzero. Therefore, a2 þ c2 . 0. If a. 0, then f (b, �2a) ¼ �
a(b2 � 4ac). 0. If a ¼ 0 and c. 0, then f (�2c, d) ¼ �c(b2 � 4ac). 0.

In either case, b2 � 4ac < 0. Conversely, suppose a > 0, c > 0,

a2 þ c2 . 0, and b2 � 4ac < 0. If a. 0, then f (x, y) represents at least

one positive integer since f (1, 0) ¼ a, and 4af (x, y) ¼ 4a(ax2þ
bxyþ cy2) ¼ (2ax þ by)2 � (b2 � 4ac)y2 > 0. If a ¼ 0, then b ¼ 0 and

c. 0, so f (x, y) ¼ cy2 . 0. In any case, f (x, y) is positive definite. j
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In 1996, John Conway and William Schneeberger showed that if a positive

definite quadratic form represents all integers from 1 to 15, then it

represents all positive integers. Given two integers n and d, with n 6¼ 0,

there is a binary quadratic form with discriminant d that represents n

properly if and only if the quadratic equation x2 � d (mod 4jnj) has a

solution. Therefore, if d � 0 or 1 (mod 4) and if p is an odd prime then

there is a binary quadratic form of discriminant d that represents n if and

only if (d
p
) ¼ 1; for a proof see [Niven, Zuckerman, and Montgomery].

Exercises 8.3

1. Show that equivalence between binary quadratic forms is an equiva-

lence relation.

2. Show that f (x, y) ¼ �x2 þ 2y2 and g(u, v) ¼ 14u2 þ 20uvþ 7v2 are

equivalent under the transformation x ¼ 2uþ v, y ¼ 3uþ 2v.
3. Given the binary quadratic forms in the preceding exercise,

f (3, 2) ¼ �1, what values of u and v yield g(u, v) ¼ �1?

4. Show that 2x2 � y2 and 2u2 � 12uv� v2 are equivalent.

5. Show that x3 þ y3 and 35u3 � 66u2vþ 42uv2 � 9v3 are equivalent.
6. Use the transformation x ¼ 5uþ 2v, y ¼ 7uþ 3v to find a binary

quadratic form equivalent to 2x2 þ 5xy� y2.

7. Show that equivalent binary quadratic forms have the samediscriminant.

8. Show that if d is the discriminant of the binary quadratic form

ax2 þ bxyþ cy2, then d � 0 (mod 4) or d � 1 (mod 4).

9. Find a binary quadratic form with discriminant 12.

10. Which of the following binary quadratic forms are positive definite?

(a) f 1(x, y) ¼ 6xy;

(b) f 2(x, y) ¼ x2 þ 3xyþ 2y2;

(c) f 3(x, y) ¼ �x2 þ 3xy� 12y2;

(d) f 4(x, y) ¼ x2 þ 3xyþ 3y2;

(e) f 5(x, y) ¼ x2 þ xy� y2.

11. Are f (x, y) ¼ 2x2 þ 3xyþ 3y2 and g(x, y) ¼ x2 þ y2 equivalent?

12. Can x2 þ 6y2 ever represent 31 or 415?

13. Use the second derivative test for functions of several variables to

show if a > 0, c > 0, a2 þ c2 . 0, and b2 � 4ac < 0, then the surface

f (x, y) ¼ ax2 þ bxyþ cy2 lies on or above the xy-plane in Euclidean

3-space.

14. Show that the equations x2 þ 3y2 ¼ 1 and 7u2 þ 10uvþ 4y2 ¼ 1

have corresponding solutions under the transformation x ¼ 2uþ v and

y ¼ uþ v.
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8.4 Finite continued fractions

An iterated sequence of quotients of the form

a1 þ 1

a2 þ 1

a3 þ 1

. . .

. .
. þ 1

an�1 þ 1

an

,

denoted by [a1, a2, . . . , an], where ai are real numbers and ai . 0, for

2 < i < n, is called a finite continued fraction. The notation

[a1, a2, . . . , an] was introduced by Dirichlet in 1854. If the ai are required

to be integers, the resulting expression is called a simple finite continued

fraction. For example,

34

79
¼ 0þ 1

2þ 1

3þ 1

11

is a simple finite continued fraction and is denoted by [0, 2, 3, 11].

References to continued fractions can be found in Indian mathematical

works, in particular, in those of Aryabhata in the sixth century and

Bhaskara in the twelfth century. Both employed continued fractions to

solve linear equations. Fibonacci uses and attempts a general definion of

continued fractions in Liber abaci. In 1572, Bombelli employed simple

continued fractions to approximate the values of square roots as did Cataldi

before him. It was, however, Cataldi who first developed a symbolism and

properties of continued fractions. The term ‘continued fraction’ first

appeared in the 1653 edition of John Wallis’s Arithmetica infinitorum. In a

posthumous paper, Descriptio automati planetarii, Christiaan Huygens

used continued fraction expansions to determine the number of teeth on the

gears of a planetarium he was constructing. A continued fraction expansion

appears on the first page of Gauss’s diary for the year 1796. The modern

theory of continued fractions began, in 1737, with Euler’s De fractionibus

continuis. In 1882, Carl Lindemann used continued fractions to prove that

� was a transcendental number, that is, not the solution to a polynomial

equation with rational coefficients.

A straightforward inductive argument shows that every finite simple

continued fraction represents a rational number. A finite simple continued

fraction of length one is an integer and, hence, rational. Suppose that every

finite simple continued fraction with k terms is rational and consider

[a1, a2, . . . , ak , akþ1]. We have [a1, a2, . . . , ak , akþ1] ¼ a1 þ 1=[a2,
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. . . , ak , akþ1], the sum of two rational numbers. Hence, [a1,

a2, . . . , ak , akþ1] is rational. The converse is also true, namely, every

rational number can be expressed as a finite simple continued fraction. Let

a=b be any rational number with b. 0. From the Euclidean algorithm, we

obtain

a ¼ bq1 þ r1, where 0 < r1 , b,

b ¼ r1q2 þ r2, where 0 < r2 , r1,

r1 ¼ r2q3 þ r3, where 0 < r3 , r2,

. . .

rn�2 ¼ rn�1qn þ rn, where 0 < rn , rn�1,

rn�1 ¼ rnqnþ1:

Hence, dividing, we have

a

b
¼ q1 þ r1

b
¼ q1 þ 1

b

r1

,

b

r1
¼ q2 þ r2

r1
¼ q2 þ 1

r1

r2

,

r1

r2
¼ q3 þ r3

r2
¼ q3 þ 1

r2

r3

,

. . .
rn�1

rn
¼ qnþ1:

The multiplicative inverse of the fraction at the end of the kth row is the

first term in the (k þ 1)th row. By substitution, we obtain

a

b
¼ q1 þ 1

q2 þ 1

q3 þ � � �

. .
. þ 1

qn þ 1

qnþ1

:

That is, a=b ¼ [q1, q2, . . . , qnþ1] and we have established the following

result.

Theorem 8.13 Every rational number can be expressed as a finite simple

continued fraction and every finite simple continued fraction represents a

rational number.

For example,
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[7, 4, 2, 5] ¼ 7þ 1

4þ 1

2þ 1

5

¼ 7þ 1

4þ 5

11

¼ 7þ 11

49
¼ 354

49
:

In order to represent the fraction 73
46
as a finite simple continued fraction, we

first employ the Euclidean algorithm to obtain

73 ¼ 46 . 1þ 27,
73

46
¼ 1þ 27

46
,

46 ¼ 27 . 1þ 19,
46

27
¼ 1þ 19

27
,

27 ¼ 19 . 1þ 8,
27

19
¼ 1þ 8

19
,

19 ¼ 8 . 2þ 3,
19

8
¼ 2þ 3

8
,

8 ¼ 3 . 2þ 2,
8

3
¼ 2þ 2

3
,

3 ¼ 2 . 1þ 1,
3

2
¼ 1þ 1

2
,

2 ¼ 1 . 2:

Substituting, we obtain

73

46
¼ 1þ 1

1þ 1

1þ 1

2þ 1

2þ 1

1þ 1
2

, or [1, 1, 1, 2, 2, 1, 2]:

Since [a1, a2, . . . , an�1, an] ¼ [a1, a2, . . . , an�2, an�1 þ 1=an] and [a1,

a2, . . . , an] ¼ [a1, a2, . . . , an � 1, 1], the representation for a finite con-

tinued fraction is not unique. However, [a1, a2, . . . , an] and

[a1, a2, . . . , an � 1, 1] are the only two finite simple continued fractional

representations for a rational number.

Let [a1, a2, . . . , an] be a finite continued fraction. The terms

c1 ¼ a1, c2 ¼ a1 þ 1

a2
,

c3 ¼ a1 þ 1

a2 þ 1

a3

, . . . ,
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ck ¼ a1 þ 1

a2 þ 1

a3 þ 1

. . .

. .
.

þ 1

ak�1 þ 1

ak

,

and so forth are called the convergents of [a1, a2, . . . , an]. In general, the

kth convergent of [a1, a2, . . . , an], denoted by ck, is given by [a1,

a2, . . . , ak]. Convergents were first described by Daniel Schwenter, Profes-

sor of Hebrew, Oriental Languages, and Mathematics at the University of

Altdorf, who included the convergents of 177
233

in his Geometrica practica in

1618. The recursive formulas for convergents first appeared in Wallis’s

Arithmetica infinitorum in 1665.

Given a rational number a=b, with a > b. 0, we can apply Saunder-

son’s algorithm, albeit with different initial conditions, to develop a

practical method to determine the kth convergents of a=b. Suppose a=b ¼
[q1, q2, . . . , qn, qnþ1], xi ¼ xi�2 þ xi�1qi, yi ¼ yi�2 þ yi�1qi, for i ¼ 1, 2,

. . . , nþ 1, x�1 ¼ 0, x0 ¼ 1, y�1 ¼ 1, and y0 ¼ 0. Hence,

x1

y1
¼ x�1 þ x0q1

y�1 þ y0q1
¼ 0þ 1 . q1

1þ 0 . q1
¼ q1 ¼ c1,

x2

y2
¼ x0 þ x1q2

y0 þ y1q2
¼ 1þ q1 . q2

0þ 1 . q2
¼ 1þ q1q2

q2
¼ q1 þ 1

q2
¼ c2,

and

x3

y3
¼ x1 þ x2q3

y1 þ y2q3
¼ q1 þ (1þ q1 . q2)q3

1þ q2 . q3
¼ q1 þ q3

1þ q2q3

¼ q1 þ 1

q2 þ 1

q3

¼ c3:

Suppose that for integer m, with 2, m < n,

cm ¼ [q1, q2, . . . , qm�1, qm] ¼ xm

ym
¼ xm�2 þ xm�1qm

ym�2 þ ym�1qm
:

Consider
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cmþ1 ¼ [q1, q2, . . . , qm�1, qm, qmþ1] ¼ q1, q2, . . . , qm�1, qm þ 1

qmþ1

� �

¼ cmþ1 ¼
xm�2 þ xm�1 qm þ 1

qmþ1

� �

ym�2 þ ym�1 qm þ 1

qmþ1

� �

¼ xm�1 þ (xm�2 þ xm�1qm)qmþ1

ym�1 þ (ym�2 þ ym�1qm)qmþ1

¼ xm�1 þ xmqmþ1

ym�1 þ ymqmþ1

¼ xmþ1

ymþ1

and we have established the following result.

Theorem 8.14 If a=b ¼ [q1, q2, . . . , qn], xi ¼ xi�2 þ xi�1qi, yi ¼ yi�2 þ
yi�1qi, for i ¼ 1, 2, . . . , n, x�1 ¼ 0, x0 ¼ 1, y�1 ¼ 1, and y0 ¼ 0, then the

kth convergent, ck, is given by ck ¼ xk=yk, for 0 < k < n.

For example, let us determine the convergents of 230
163

¼ [1, 2, 2, 3, 4, 2].

Using the algorithm described in the proof of Theorem 8.14, we fill in

Table 8.5 with our data to obtain Table 8.6 and find that the convergents

are c1 ¼ 1, c2 ¼ 3
2
, c3 ¼ 7

5
, c4 ¼ 24

17
, c5 ¼ 103

73
, and c6 ¼ 230

163
.

Table 8.5.

i �1 0 1 2 3 . . . n

qi q1 q2 q3 . . . qn
xi 0 1 x1 x2 x3 . . . xn
yi 1 0 y1 y2 y3 . . . yn

ci
x1

y1

x2

y2

x3

y3
. . .

xn

yn

Table 8.6.

i �1 0 1 2 3 4 5 6

qi 1 2 2 3 4 2
xi 0 1 1 3 7 24 103 230
yi 1 0 1 2 5 17 73 163

ci
1

1

3

2

7

5

24

17

103

73

230

163
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Example 8.2 The sidereal period of Saturn, the time it takes Saturn to

orbit the Sun, is 29.46 years; in Huygens’s day it was thought to be 29.43

years. In order to simulate the motion of Saturn correctly, he needed to

efficiently construct two gears, one with p teeth, the other with q teeth,

such that p=q is approximately 26.43. To be efficient, p and q were

required to be relatively small. The convergents of 29.43 are given in Table

8.7. A reasonably close approximation of 29.43 is given by 206
7
¼ 29:4285.

Thus, to simulate the motion of Saturn with respect to the Earth’s motion,

Huygens made one gear with 7 teeth and the other with 206 teeth.

Theorem 8.15 If ck ¼ xk=yk is the kth convergent of a=b ¼ [q1, q2,

. . . , qn], then yk > k, for 1 < k < n.

Proof Recall that yi ¼ yi�2 þ yi�1qi, for i ¼ 1, 2, . . . , y�1 ¼ 1 and

y0 ¼ 0. It follows that y1 ¼ 1 > 1 and y2 ¼ 0þ 1 . q2 > 1 since q2 . 0.

Suppose that yi > i, for 2 < i < k, and consider ykþ1. We have

ykþ1 ¼ yk�1 þ ykykþ1 > k � 1þ k . 1 ¼ 2k � 1 > k þ 1. The result fol-

lows by induction. j

Theorem 8.16 If ck ¼ xk=yk is the kth convergent of a=b ¼ [q1, q2,

. . . , qn], then xk and yk are coprime.

Proof We claim that xkyk�1 � ykxk�1 ¼ (�1)k , for 1 < k < n. If k ¼ 1,

using the notation of Theorem 8.14, x1 y0 � y1x0 ¼ q1 . 0� 1 . 1 ¼ (�1)1.

If k ¼ 2, x2 y1 � y2x1 ¼ (1þ q1q2) . 1� q2q1 ¼ (�1)2. Suppose that for

some m, with 1, m < n, xmym�1 � ymxm�1 ¼ (�1)m. Hence, xmþ1 ym �
ymþ1xm ¼ (xm�1 þ xmqm)ym � (ym�1 þ ymqm)xm ¼ xm�1 ym � ym�1xm
¼ �(xmym�1 � ymxm�1) ¼ �(�1)m ¼ (�1)mþ1. The result follows from

induction and Theorem 2.7. j

Table 8.7.

i �1 0 1 2 3

qi 29 2 3
xi 0 1 29 59 206
yi 1 0 1 2 7

ci
29

1

59

2

206

7
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The method outlined in the next result was used by Bhaskara in the twelfth

century. It offers a practical way to solve linear Diophantine equations of

the form ax� by ¼ 1 using convergents of finite simple continued frac-

tions. With a little ingenuity, the method can be adapted to solve Diophan-

tine equations of the form axþ by ¼ c and ax� by ¼ c, where there are

no restrictions placed on the integers a, b and c.

Theorem 8.17 If gcd(a, b) ¼ 1, a. b. 0, and cn�1 ¼ xn�1=yn�1 is the

penultimate convergent of a=b, then x ¼ (�1)n yn�1, y ¼ (�1)nxn�1 is a

solution to the equation ax� by ¼ 1.

Proof From the proof of Theorem 8.16, xnyn�1 � ynxn�1 ¼ (�1)n. Thus,

a((�1)n yn�1) � b((�1)nxn�1) ¼ (�1)2n ¼ 1 and the result is estab-

lished. j

Corollary If gcd(a, b) ¼ 1, a. b. 0, and cn�1 ¼ xn�1=yn�1 is the pen-

ultimate convergent of a=b, then the equation ax� by ¼ c has solution

x ¼ (�1)n . c . yn�1, y ¼ (�1)n . c . xn�1.

For example, consider the equation 230x� 163y ¼ 1. We have

gcd(230, 163) ¼ 1, 230. 163. 0, and from Table 8.6, the penultimate

convergent of 230
163

¼ [1, 2, 2, 3, 4, 2] is c5 ¼ x5=y5 ¼ 103=73. From the

corollary to Theorem 8.17, x ¼ (�1)673 ¼ 73 and y ¼ (�1)6103 ¼ 103.

Hence, 230x � 163y ¼ 1.

Consider the equation 41x� 17y ¼ 13. We have gcd(41, 17) ¼ 1,

41. 17. 0, and 41
17
¼ [2, 2, 2, 3]. From Table 8.8 the penultimate conver-

gent of 41
17

is c3 ¼ x3=y3 ¼ 12=5. Thus, a solution to the equation

41x� 17y ¼ 13 is given by x ¼ (�1)4 . 5 . 13 ¼ 65 and y ¼ (�1)4 .

13 . 12 ¼ 156.

With the few examples we have considered, you may have noticed that

the odd convergents, c2kþ1, of a=b seem to be monotonically increasing

Table 8.8.

i �1 0 1 2 3 4

qi 2 2 2 3
xi 0 1 2 5 12 41
yi 1 0 1 2 5 17

ci
2

1

5

2

12

5

41

17

8.4 Finite continued fractions 289



and always less than a=b, while the even convergents, c2k , of a=b seem to

be monotonically decreasing and always greater than a=b. This indeed is

the case as illustrated by the next result.

Theorem 8.18 If a=b ¼ [q1, q2, . . . , qn], a. b. 0, and ck ¼ xk=yk de-

notes the kth convergent of a=b, then c1 , c3 , c5 , � � � < a=b <

� � � c4 , c2 , c0.

Proof Using the notation of Theorem 8.14 and Theorem 8.15, we have

ck � ck�2 ¼ xk

yk
� xk�2

yk�2

¼ xkyk�2 � ykxk�2

ykyk�2

¼ (xk�2 þ xk�1qk)yk�2 � (yk�2 þ yk�1qk)xk�2

ykyk�2

¼ qk(xk�1 yk�2 � yk�1xk�2)

yk yk�2

¼ qk(�1)k�1

ykyk�2

:

Since qi and yi are positive for 1 < i < n, if k is even, say k ¼ 2r, then

c2r � c2r�2 ¼ q2r(�1)2r�1=y2r y2r�2 , 0. Hence, c2r , c2r�2 and the se-

quence of even convergents is decreasing. Similarly, if k is odd, say

k ¼ 2r þ 1, then c2rþ1 � c2r�1 ¼ q2rþ1(�1)2r=y2rþ1 y2r�1 . 0. Hence,

c2rþ1 . c2r�1 and the sequence of odd convergents is increasing. Consider

the difference of two consecutive convergents. We have

ck � ck�1 ¼ xk

yk
� xk�1

yk�1

¼ xkyk�1 � ykxk�1

ykyk�1

¼ (�1)k

ykyk�1

:

If k is even and m is odd and less than k, then m (odd), k � 1 (odd), k

(even). Hence, cm < ck�1 and ck � ck�1 . 0. Thus, cm < ck�1 , ck . If k is

odd and m is even and greater than k, then k (odd), k � 1

(even) < m (even). Hence, ck�1 < cm and ck � ck�1 , 0. Thus,

ck , ck�1 < cm. In any case, the odd convergents are bounded above by all

the even convergents and the even convergents are bounded below by all

the odd convergents. Since the ultimate convergent cn ¼ a=b is either the

smallest even convergent or the largest odd convergent the result is estab-

lished. j

Exercises 8.4

1. Determine the rational number represented by [1, 2, 3, 2, 1].

2. Determine the rational number represented by [1, 2, 3, 4, 5, 6].

3. Show that if x ¼ [a1, a2, . . . , an], then 1=x ¼ [0, a1, a2, . . . , an].

4. Determine the convergents of 177
233

.
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5. Devise a formula to solve equations of the form axþ by ¼ c.

6. Determine a necessary and sufficient condition that [a1, a2, . . . , an]

be palindromic.

7. Given the continued fraction expansion [a1, a2, . . . , an], show that the

convergents ck ¼ xk=yk may be obtained by matrix multiplication.

That is,

a0 1

1 0

� �
a1 1

1 0

� �
. . .

ak 1

1 0

� �
¼ xk xk�1

yk yk�1

� �
, for 1 < k < n:

8.5 Infinite continued fractions

An expression of the form

a1 þ 1

a2 þ 1

a3 þ 1

a4 þ � � �

,

where the ai, for i ¼ 1, 2, . . . , except possibly a1 which may be negative,

are positive real numbers, is called an infinite continued fraction and is

denoted by [a1, a2, a3, . . .]. If the ai, for i > 1, are required to be integers

then the expression is called a simple infinite continued fraction. Whereas

simple finite continued fractions represent rational numbers. simple infinite

continued fractions represent irrational numbers. In particular, if cn denotes

the nth convergent of [a1, a2, a3, . . .], we define the value of the simple

infinite continued fraction [a1, a2, a3, . . .] to be the real number

limn!1cn, whenever the limit exists. It can be shown that if the values of

two simple infinite continued fractions [a1, a2, a3, . . .] and [b1, b2, b3, . . .]

are equal then ai ¼ bi, for i > 1.

Lambert used a continued fraction expansion for tan (x) to show that � is

irrational. Since tan (x) is irrational if x is a nonzero rational number and

tan (�=4)� 1, it follows that � is an irrational number.

Recall, from mathematical analysis, that every bounded monotonic

(either increasing or decreasing) sequence converges. The odd convergents

(c1, c3, c5, . . .) form an increasing sequence bounded above by c2 and the

even convergents (c2, c3, c6, . . .) form a decreasing sequence bounded

below by c1, hence, both sequences converge. Let limn!1c2nþ1 ¼ L and

limn!1c2n ¼ M . From Theorem 8.14 and Theorem 8.15, it follows that
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0, jc2nþ1 � cnj ¼




 x2nþ1

y2nþ1

� x2n

y2n





 ¼




 x2nþ1 y2n � y2nþ1x2n

y2nþ1 y2n






¼





 (�1)2nþ1

y2nþ1 y2n





 ¼ 1

y2nþ1 y2n
<

1

(2nþ 1)(2n)
:

Since limn!1jc2nþ1 � c2nj ¼ 0, L ¼ M . If L ¼ M ¼ ª is rational, say

ª ¼ a=b, then since limn!1cn ¼ ª ¼ a=b, jcn � ªj can be made as small

as we please. In addition,

0, jcn � ªj ¼




 xnyn �

a

b





 ¼




 bxn � ayn

byn





:
Therefore, let n be such that

0,





 bxn � ayn

byn





, 1

byn
:

Hence, 0, jbxn � aynj, 1. However, since a, b, xn, yn are integers, this

implies that there is an integer between 0 and 1, a contradiction. Therefore,

we have established the following result.

Theorem 8.19 A simple infinite continued fraction represents an irrational

number.

We carry our reasoning one step further to show that if ª ¼
[a1, a2, a3, . . .] and cn ¼ xn=yn denotes the nth convergent of ª, then

0, jª� cnj, jcnþ1 � cnj,




 xnþ1

ynþ1

� xn

yn





 ¼




 xnþ1 yn � xnynþ1

ynþ1 yn






¼





 (�1)nþ1

ynþ1 yn





 ¼ 1

ynþ1 yn
,

1

y2n
:

The latter inequality follows from the nature of the yi for i.�1, as noted

in the proof of Theorem 8.11. Therefore,



ª� xn

yn





, 1

y2n

and we have established the following result.

Theorem 8.20 Given any irrational number ª and positive integer n there

is a rational number a=b such that jª� a=bj, 1=n.

In 1753, Robert Simpson derived the Fibonacci numbers as components of

terms in successive convergents of the irrational number (1þ ffiffiffi
5

p
)=2. In

1891, A. Hurwitz showed that if ª is irrational then there exist infinitely
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many rational numbers a=b such that jª� a=bj, 1=
ffiffiffi
5

p
b2. In addition,

ffiffiffi
5

p
is best possible in the sense that given any real number Æ.

ffiffiffi
5

p
there is an

irrational number ª such that there exist only a finite number of rational

numbers a=b with the property that jª� a=bj, 1=Æb2.
Given an irrational number ª, we may represent ª as a simple infinite

continued fraction [a1, a2, a3, . . .] in the following manner. Let ª1 ¼ ª
and ai ¼ ½½ªi��, where ªiþ1 ¼ 1=(ªi � ai), for i > 1. Rewriting the last

equation, we have ªi ¼ ai þ 1=ªiþ1, for i > 1. Hence,

ª ¼ a1 þ 1

ª2

¼ a1 þ 1

a2 þ 1

ª3

¼ a1 þ 1

a2 þ 1

a3 þ 1

ª4
� � �
¼ a1 þ 1

a2 þ 1

a3 þ 1
. .
.

þ 1

an þ 1

ªnþ1

¼ [a1, a2, a3, . . . , an, ªnþ1]:

In addition, ª equals the (nþ 1)st convergent cnþ1. That is,

ª ¼ ªnþ1xn þ xn�1

ªnþ1 yn þ yn�1

,

where, since ª is irrational, ªi is irrational and greater than 1, for i > 1.

Thus,

0 < jª� cnj ¼




ª� xn

yn





 ¼




 ªnþ1xn þ xn�1

ªnþ1 yn þ yn�1

� xn

yn





 ¼




 xn�1 yn � yn�1xn

yn(ªnþ1 yn þ yn�1)






¼





 (�1)n�1

yn(ªnþ1 yn þ yn�1)





, 1

yn
,

1

n
:

Hence, limn!1cn ¼ ª. See [Niven, Zuckerman, and Montgomery] for the

proof of uniquenes of the representation.

For example, consider the irrational number � ¼ 3:141 59 . . . : Let
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�1 ¼ �, so a1 ¼ ½½�1�� ¼ ½½��� ¼ 3, �2 ¼ 1=(�� 3) ¼ 1=0:141 59 . . .

¼ 7:062 513 . . . : Hence, a2 ¼ ½½�2�� ¼ ½½7:062 513 . . .�� ¼ 7. Further,

�3 ¼ 1=(�2 � a2) ¼ 1=0:062 513 . . . ¼ 15:996 . . . , hence, a3 ¼ ½½�3��
¼ ½½15:996 . . .�� ¼ 15. From Table 8.9, we find that � can be represented as

[3, 7, 15, 1, 292, 1, . . .]. Thus 3, 22
7
, 333

106
, 355

113
, 103 993

33 102
, . . . are successive

approximations to �. The continued fraction expansion for e appears in

Logometria, a treatise written by Roger Cotes, Plumian Professor of

Astronomy and Experimental Philosophy at Cambridge University, in

1714. It was from discussions with Cotes on continued fractions that

Saunderson devised his practical algorithm (Theorem 2.12). Cotes’s work

so impressed Newton that upon his death, at age 34, Newton said, ‘If he

had lived we might have known something.’

We have
ffiffiffiffiffi
17

p ¼ 4:123 10 . . . ¼ [4, 8, 8, 8, . . .],
ffiffiffiffiffi
23

p ¼ 4:795 83 . . . ¼
[4, 1, 3, 1, 8, 1, 3, 1, 8, . . .], and

ffiffiffiffiffi
35

p ¼ 5:91607 . . . ¼ [5, 1, 10, 1, 10,

. . .]. The length of the period of
ffiffiffiffiffi
17

p
is 1, of

ffiffiffiffiffi
23

p
is 4, and of

ffiffiffiffiffi
35

p
is 2. In

1770, Lagrange showed that every expression of the form (aþ b
ffiffiffi
c

p
)=d,

where a, b, c, d are positive integers and c is nonsquare, has a periodic

simple infinite continued fractional representation.

In particular, if Æ has a periodic continued fraction expansion

[a1, a2, . . . , ak , akþ1, . . . , akþr], where the bar indicates that the sequence

ak , akþ1, . . . , akþr repeats indefinitely, then it can be shown, see [Olds],

that there exist positive integers a, b, c, d, with c nonsquare, such that

Æ ¼ (aþ b
ffiffiffi
c

p
)=d. For the sufficiency, let � ¼ [ak , . . . , akþr], then � is an

infinite continued fraction and, thus, from Theorem 8.19, it is irrational.

From the proof of Theorem 8.19, � ¼ (�ur þ urþ1)=�vr þ vr�1), where

ur�1=vr�1 and ur=vr are the last two convergents of �. Hence,

�2vr þ �(vr�1 � ur)� ur�1 ¼ 0. Thus � ¼ (r þ s
ffiffi
t

p
)=w, where r, s, t, w

are positive integers and t is nonsquare. In addition, Æ ¼ [a1, . . . , ak , �],
hence, by rationalizing the denominator we obtain

Table 8.9.

i �1 0 1 2 3 4 5

qi 3 7 15 1 292
xi 0 1 3 22 333 355 103 933
yi 1 0 1 7 106 113 33 102

ci
3

1

22

7

333

106

355

113

103 993

33 102
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Æ ¼ �xk þ xk�1

�yk þ yk�1

¼
r þ s

ffiffi
t

p
w

� �
xk þ xk�1

r þ s
ffiffi
t

p
w

� �
yk þ yk�1

¼ aþ b
ffiffiffi
c

p
d

:

In the above example � was a special type of infinite continued fraction

called purely periodic. More precisely, an infinite continued fraction is

called purely periodic if it is of the form [ak , . . . , an]. It can be shown that

if �1,(a� b
ffiffiffi
c

p
)=d, 0, the infinite continued fraction for (aþ b

ffiffiffi
c

p
=d is

purely periodic, for a proof see [Niven, Zuckerman, and Montgomery]. Letffiffiffi
n

p ¼ [b0, b1, . . . , bn, . . .], then b0 ¼ ½½ ffiffiffi
n

p ��. If Æ ¼ ½½ ffiffiffi
n

p �� þ ffiffiffi
n

p
, then the

conjugate of Æ, namely ½½ ffiffiffi
n

p �� � ffiffiffi
n

p
, is such that �1,½½ ffiffiffi

n
p �� � ffiffiffi

n
p

, 0.

Hence, Æ is purely periodic and Æ ¼ ½½ ffiffiffi
n

p �� þ ffiffiffi
n

p ¼ [2b0, b1, . . . , bn].

Table 8.10.ffiffiffiffiffi
26

p ¼ [5, 10]ffiffiffi
2

p ¼ [1, 2]
ffiffiffiffiffi
27

p ¼ [5, 5, 10]ffiffiffi
3

p ¼ [1, 1, 2]
ffiffiffiffiffi
28

p ¼ [5, 3, 2, 3, 10]ffiffiffiffiffi
29

p ¼ [5, 2, 1, 1, 2, 10]ffiffiffi
5

p ¼ [2, 4]
ffiffiffiffiffi
30

p ¼ [5, 2, 10]ffiffiffi
6

p ¼ [2, 2, 4]
ffiffiffiffiffi
31

p ¼ [5, 1, 1, 3, 5, 3, 1, 1, 10]ffiffiffi
7

p ¼ [2, 1, 1, 1, 4]
ffiffiffiffiffi
32

p ¼ [5, 1, 1, 1, 10]ffiffiffi
8

p ¼ [2, 1, 4]
ffiffiffiffiffi
33

p ¼ [5, 1, 2, 1, 10]ffiffiffiffiffi
34

p ¼ [5, 1, 4, 1, 10]ffiffiffiffiffi
10

p ¼ [3, 6]
ffiffiffiffiffi
35

p ¼ [5, 1, 10]ffiffiffiffiffi
11

p ¼ [3, 3, 6]ffiffiffiffiffi
12

p ¼ [3, 2, 6]
ffiffiffiffiffi
37

p ¼ [6, 12]ffiffiffiffiffi
13

p ¼ [3, 1, 1, 1, 6]
ffiffiffiffiffi
38

p ¼ [6, 6, 12]ffiffiffiffiffi
14

p ¼ [3, 1, 2, 1, 6]
ffiffiffiffiffi
39

p ¼ [6, 4, 12]ffiffiffiffiffi
15

p ¼ [3, 1, 6]
ffiffiffiffiffi
40

p ¼ [6, 3, 12]ffiffiffiffiffi
41

p ¼ [6, 2, 2, 12]ffiffiffiffiffi
17

p ¼ [4, 8]
ffiffiffiffiffi
42

p ¼ [6, 2, 12]ffiffiffiffiffi
18

p ¼ [4, 4, 8]
ffiffiffiffiffi
43

p ¼ [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]ffiffiffiffiffi
19

p ¼ [4, 2, 1, 3, 1, 2, 8]
ffiffiffiffiffi
44

p ¼ [6, 1, 1, 1, 2, 1, 1, 1, 12]ffiffiffiffiffi
20

p ¼ [4, 2, 8]
ffiffiffiffiffi
45

p ¼ [6, 1, 2, 2, 2, 1, 12]ffiffiffiffiffi
21

p ¼ [4, 1, 3, 1, 8]
ffiffiffiffiffi
46

p ¼ [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]ffiffiffiffiffi
22

p ¼ [4, 1, 2, 4, 2, 1, 8]
ffiffiffiffiffi
47

p ¼ [6, 1, 5, 1, 12]ffiffiffiffiffi
23

p ¼ [4, 1, 3, 1, 8]
ffiffiffiffiffi
48

p ¼ [6, 1, 12]ffiffiffiffiffi
24

p ¼ [4, 1, 8] ffiffiffiffiffi
50

p ¼ [7, 14]
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Subtracting ½½ ffiffiffi
n

p �� from both sides of the equation we find thatffiffiffi
n

p ¼ [b0, b1, . . . , bn, 2b0].

If Æ ¼ [a1, a2, . . . , an�1, an] is purely periodic, then the continued

fraction expansion of the negative reciprocal of the conjugate of Æ, �1=Æ,
is given by [an, an�1, . . . , a2, a1]. In addition, if Æ. 1, then

1=Æ ¼ [0, a1, a2, . . . , an�1, an]. Hence, if n is positive and nonsquare,

then the infinite continued fraction expansion of
ffiffiffi
n

p
is given by

[½½ ffiffiffi
n

p ��, a1, a2, a3, . . . , a3, a2, a1, 2½½
ffiffiffi
n

p ��]. Periodic infinite continued

fractional expansions for square roots of nonsquare integers n, for

1, n, 50, are illustrated in Table 8.10.

Let us determine a representation for the infinite periodic continued

fraction

[1, 3, 5] ¼ 1þ 1

3þ 1

5þ 1

[1, 3, 5]

:

If x ¼ [1, 3, 5], then

x ¼ 1þ 1

3þ 1

5þ x

:

Hence, 8x2 � 9x� 2 ¼ 0. Using the quadratic formula, we find that

x ¼ (9þ ffiffiffiffiffiffiffiffi
145

p
)=16.

If x ¼ [a, b, a, b, a, b, . . .], a ¼ bc, where c is an integer, then x ¼
a
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4c
p

=2. Hence, [1, 1, 1, 1 . . .] ¼ (
ffiffiffi
5

p þ 1)=2 ¼ �, and [2, 1, 2, 1,

2, 1, . . .] ¼ ffiffiffi
3

p þ 1. In addition,ffiffiffi
2

p
¼ 1þ (

ffiffiffi
2

p
� 1) ¼ 1þ 1ffiffiffi

2
p þ 1

¼ 1þ 1

2þ (
ffiffiffi
2

p � 1)
,

hence,
ffiffiffi
2

p ¼ [1, 2, 2, 2, . . .]. Bombelli showed that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p ¼ [a,

2a=b, 2a=b, . . .], which leads to a number of straightforward continued

fraction representations for square roots of integers. The first publication

of Evariste Galois, in 1828, dealt with periodic continued fractions. Galois,

who died in a duel at the age of 20, had an exceptionally brilliant

mathematical mind. His work, as a teenager, founded the theory of

solvability of algebraic equations by radicals.

We state the following important result without proof. The interested

reader can find the proof in [Robbins].

Theorem 8.21 If gcd(a, b) ¼ 1, b. 0 and ª is irrational with

jª� a=bj, 1=2b2, then a=b is a convergent of ª.
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Let (a, b) be a solution to x2 � dy2 ¼ 1. Since

a� b
ffiffiffi
d

p
¼ 1

aþ b
ffiffiffi
d

p implies that
a

b
�

ffiffiffi
d

p
¼ 1

b(aþ b
ffiffiffi
d

p
)
,

it follows that if a. b
ffiffiffi
d

p
, then aþ b

ffiffiffi
d

p
. 2b

ffiffiffi
d

p
. Hence, 0, a=b

� ffiffiffi
d

p
, 1=2b2

ffiffiffi
d

p
, 1=2d2. Therefore, from Theorem 8.21, it follows that

if (a, b) is a solution to x2 � dy2 ¼ 1 then it is one of the convergents offfiffiffi
d

p
. On the other hand, however, not every convergent of

ffiffiffi
d

p
is a solution

to x2 � dy2 ¼ 1. In particular, any positive solution x ¼ xk , y ¼ yk to

x2 � dy2 ¼ 1 has the property that ck ¼ xk=yk is a convergent of
ffiffiffi
d

p
. The

next result outlines the method devised independently by Bhaskara and

Brouncker to solve Pell’s equations. It is offered without proof: for a proof

see [Robbins]. In 1907, this result was generalized by Major Percy

MacMahon who showed that integral solutions to xn � dyn ¼ 1, where n is

a positive integer, can be obtained from the convergents of n
ffiffiffi
a

p
.

Theorem 8.22 (Bhaskara–Brouncker) Let ck ¼ xk=yk denote the kth con-

vergent of
ffiffiffi
d

p
and n the length of the period of

ffiffiffi
d

p
. If n is even, every

positive solution to x2 � dy2 ¼ 1 is given by x ¼ xkn�1, y ¼ ykn�1, for

k > 1. If n is odd, every positive solution to x2 � dy2 ¼ 1 is given by

x ¼ x2kn�1, y ¼ y2kn�1 for k > 1.

For example, in order to find solutions to the Pellian equation

x2 � 2y2 ¼ 1, where
ffiffiffi
2

p ¼ [1, 2, 2, . . .], we construct Table 8.11. Hence,

(3, 2), (17, 12), (99, 70), . . . , are solutions (x, y) to x2 � 2y2 ¼ 1, and

(7, 5), (41, 29), (239, 169), . . . , are solutions to x2 � 2y2 ¼ �1.

Exercises 8.5

1. Use the process outlined in the section to determine the continued

fraction expansions for

(a)
ffiffiffi
3

p
(use 1.732 050 81),

(b)
ffiffiffi
5

p
(use 2.236 067 98),

Table 8.11.

i �1 0 1 2 3 4 5 6 7

ai 1 2 2 2 2 2
xi 0 1 1 3 7 17 41 99 239
yi 1 0 1 2 5 12 29 70 169
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(c)
ffiffiffi
7

p
(use 2.645 751 31),

(d)
ffiffiffiffiffi
10

p
(use 3.162 277 66).

2. Determine the first 12 terms of the continued fraction for e. [Cotes]

3. Determine the first 12 terms of the continued fraction for (eþ 1)=

(e� 1).

4. Determine five solutions of the equation x2 � 3y2 ¼ 
1.

5. If n is a positive integer, then determine the number represented by the

periodic infinite continued fraction [n].

6. A more generalized form of continued fraction was used by the

ancients to approximate square roots. In particular,ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
¼ aþ b

2aþ b

2aþ b

2a þ � � �

:

Use the formula to approximate
ffiffiffiffiffi
13

p
and

ffiffiffiffiffi
18

p
.

7. Suppose that a=b, ª, c=d, where ª is irrational, a, b, c, d are

positive, and bc� ad ¼ 1. Prove that either a=b or c=d is a convergent

of ª.

8.6 p-Adic analysis

A field is a nonempty set F with two operations, called addition and

multiplication, that is distributive, an Abelian group under addition with

identity 0, and the nonzero elements of F form an Abelian group under

multiplication. A function v from a field F to the nonnegative real numbers

is called a valuation or norm on F if for all x and y in F the following

properties hold:

(1) v(x) > 0, and v(x) ¼ 0 if and only if x ¼ 0,

(2) v(x, y) ¼ v(x)v(y), and

(3) v(xþ y) < v(x)þ v(y).

From the first properties it follows that if e denotes the multiplicative

identity of the field F then v(e) ¼ 1 and v(�e) ¼ 1. Hence, for any

element a in F, v(�a) ¼ v(a). The third condition is just the triangle

inequality. Two examples of valuations over the reals are the trivial

valuation given by

jxj0 ¼ 1, if x 6¼ 0

0, otherwise,

�
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and the familiar absolute value function

jxj ¼ x, if x > 0

�x, if x, 0:

�
A valuation is called non-Archimedean if it satisfies the ultrametric

inequality,

(4) v(xþ y) < maxfv(x), v(y)g, for all x and y in F,

otherwise it is called Archimedean. The ultrametric inequality implies the

triangle inequality. The trivial metric is an example of a non-Archimedean

valuation and the absolute value is an example of an Archimedean

valuation.

Given any prime p, every rational number q can be written uniquely as

(a=b) pÆ, where gcd(a, b) ¼ 1, and b. 0. That is, pÆ iq. The p-adic

valuation, denoted by j . j p, is defined over the rational numbers in the

following manner:

jqj p ¼ p�Æ if pÆ iq,
0 if q ¼ 0:

�
For example, since 450 ¼ 2 . 32 . 52, j450j2 ¼ 1=2, j450j3 ¼ 1=32,

j450j5 ¼ 1=52, and j450j p ¼ 1, for any other prime p. We leave the proof

that j . j p is a valuation over the rationals as an exercise. Properties of p-

adic valuations were first investigated by Kurt Hensel in 1908.

There are a number of interesting p-adic properties. For example,

jqj p < 1 for any integer q and any prime p. For any p-adic valuation,Q
pjqj p ¼ 1=jqj, where p runs through all primes and q is nonzero. If r

and s are integers, then r divides s if and only if jsj p < jrj p for every

prime p. In 1918, A. Ostrowski showed that every nontrivial valuation in

the rational numbers is equivalent to either the absolute value or a p-adic

valuation.

A distance function or metric d is a nonnegative real valued function

defined on ordered pairs of elements of a set such that

(1) d(x, y) > 0, and d(x, y) ¼ 0 if and only if x ¼ y,

(2) d(x, y) ¼ d(y, x),

(3) d(x, y) < d(x, z)þ d(z, y).

The third condition is the familiar triangle inequality. Each valuation on a

field generates a metric or distance function, namely, d(x, y) ¼ v(x� y).

The ordinary metric in Euclidean space is generated by the absolute value.

The trivial valuation gives rise to the trivial metric d0(x, y) which equals 1

if x 6¼ y and equals 0 otherwise. Non-Archimedean metrics can generate
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strange properties. If d is the metric generated by the non-Archimedean

valuation v, then, since x� y ¼ (x� z)þ (z� y), d(x, y) ¼ v(x� y) ¼
v((x� z)þ (z� y)) < maxfv((x� z), v(z� y)g ¼ maxfd(x, z), d(z, y)g.

Example 8.3 Let d be the metric determined by the non-Archimedean

valuation v. Consider three points x, y, and 0 where, without loss of

generality, we have let one of the points be the origin. The three distances

determined by the points are d(x, 0) ¼ v(x), d(y, 0) ¼ v(y), and

d(x, y) ¼ v(x� y). We have d(x, y) ¼ v(x� y) ¼ v(xþ (�y)) <

maxfv(x), v(y)g. If v(x) 6¼ v(y), say v(x). v(y), then d(x, y) < v(x).

However, v(x) ¼ v((x� y)þ y) < maxfv(x� y), v(y)g and since

v(x). v(y), v(x) < v(x� y) ¼ d(x, y), implying that v(x) ¼ d(x, y). Thus

in a non-Archimedean geometry, v(x, y) ¼ maxfv(x), v(y)g whenever

v(x) 6¼ v(y). Therefore, every triangle in a non-Archimedean geometry has

the property that its two longest sides are of equal length.

We say that the sequence a1, a2, a3, . . . converges p-adically to the real

number L, if the sequence ja1 � Lj p, ja2 � Lj p, . . . converges in the usual

sense. That is, given any real positive number E there is a natural number N

such that jan � Lj p , E whenever n. N. Similarly, we say that S is the

sum of the series
P1

n¼1an if and only if the sequence of partial sums s1, s2,

. . ., where sk ¼
Pk

i¼1ai, for k > 1, converges to S. It follows that if p is

prime the sequence p, p2, p3, . . . converges to 0 p-adically. Another

interesting consequence of the definition of p-adic convergence is that, 7-

adically speaking, �1 ¼ 6þ 6 . 7þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � � . To see

why this is the case, add 1 to both sides of the equation and continue to

combine terms to obtain

0 ¼ 7þ 6 . 7þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � �
¼ 0þ 7 . 7þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � �
¼ 0þ 0 þ 7 . 72 þ 6 . 73 þ 6 . 74 þ � � �
¼ 0þ 0 þ 0 þ 7 . 73 þ 6 . 74 þ � � �
¼ 0þ 0 þ 0 þ 0 þ 7 . 74 þ � � �
¼ 0þ 0 þ 0 þ 0 þ 0 þ � � �
¼ � � � :

In addition, 5-adically speaking, to evaluate x ¼ 2þ 5þ 52 þ 53 þ 54 þ
55þ � � � we multiply both sides of the equation by 4 and combine terms to

obtain
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4x ¼ 8þ 4 . 5þ 4 . 52 þ 4 . 53 þ 4 . 54 þ � � �
¼ 3þ 5 . 5þ 4 . 52 þ 4 . 53 þ 4 . 54 þ � � �
¼ 3þ 0 þ 5 . 52 þ 4 . 53 þ 4 . 54 þ � � �
¼ 3þ 0 þ 0 þ 5 . 53 þ 4 . 54 þ � � �
¼ 3þ 0 þ 0 þ 0 þ 0 þ � � �
¼ � � � :
¼ 3:

Hence, x ¼ 3
4
. More formally, a sequence (an) of rational numbers is called

a p-adic Cauchy sequence if for every positive number E there is an integer

N such that whenever m and n are greater than N, jan � amj p , E. Two p-

adic Cauchy sequences (an) and (bn) are called equivalent if

limn!1jan � bnj p ¼ 0. This is an equivalence relation and, hence, parti-

tions the p-adic Cauchy sequences into equivalence classes, denoted by

Qp. If we define the operations of addition and multiplication on Qp to be

componentwise addition and multiplication, that is (an)þ (bn) ¼ (an þ bn)

and (an) . (bn) ¼ (an . bn), then Qp becomes a field. Any nonzero element r

of Qp can be represented uniquely as r ¼ pn(a0, a0 þ a1 p, a0 þ
a1 pþ a2 p

2, . . .), where n and ai are integers such that 0 < a0 , p and

a0 6¼ 1, for i ¼ 1, 2, 3 . . . : Equivalently, we could take the sequence of

partial sums above and represent r in the form of a series where, in that

case, r ¼ a0 p
n þ a1 p

nþ1 þ a2 p
nþ2 þ � � � . For example,

1, 6, 31, 156, . . . ¼ 1 þ 1 . 5 þ 1 . 52 þ 1 . 53 þ � � �,
3, 3, 3, . . . ¼ 3 þ 0 . 5 þ 0 . 52 þ 0 . 53 þ � � �,

and

75, 275, 1525, 7775, . . . ¼ 52(3, 1 þ 2 . 5, 1 þ 2 . 5 þ 2 . 52, 1

þ 2 . 5 þ 2 . 52 þ 2 . 53 þ . . .):

p-Adic analysis is a useful tool. However, most of its important applica-

tions are outside our present scope. For its use in establishing polynomial

congruences see [Edgar]. To see how it may be applied to the analysis of

binary quadratic forms see [Cassels].

Exercises 8.6

1. Show that the absolute value is an Archimedean valuation.

2. If v is a valuation on the field F show that
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(a) v(e) ¼ 1,

(b) v(�e) ¼ 1, and

(c) v(�a) ¼ v(a) for any a in F.

3. Prove that the trivial valuation satisfies the three properties of a

valuation.

4. Show that the ultrametric inequality implies the triangle inequality.

5. Determine j600j p, for any prime p.

6. Determine jqk j p, where p and q are prime and k is an integer.

7. Prove that the p-adic valuation satisfies the ultrametric inequality.

8. If p is prime, show that the p-adic valuation satisfies the three

conditions for a valuation.

9. Prove that if r and s are rational numbers, then r divides s if and only

if jsj p < jrj p for every prime p.

10. Determine a 2-adic value for 1þ 2þ 22 þ 23 þ � � � .
11. Determine a 3-adic value for 5þ 2 . 3þ 2 . 32 þ 2 . 33 þ � � � .
12. Determine a 7-adic series expansion for 5

6
.

13. Show that �1 ¼ 6þ 6 . 7þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � � .
14. Find the p-adic distance between 48 and 36 for any prime p.

15. In Q7 determine the first four terms of the series represented by (3, 31,

227, 1599, . . .).

16. In Q7 determine the first four terms of the sequence represented by

2 . 72 þ 2 . 73 þ 2 . 74 þ � � � .
17. Define the unit disk U in the 2-dimensional Cartesian plane to be the

set of all points where distance from the origin is at most one. Describe

the unit disk geometrically if the distance from P ¼ (x1, y1) to

Q ¼ (x2, y2) is given by

(a) the trivial metric,

(b) d(P, Q) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)2 þ (y2 � y1)2

p
,

(c) d(P, Q) ¼ jx1 � x2j þ jy1 � y2j,
(d) d(P, Q) ¼ maxfjx1 � x2j, jy1 � y2jg,
(e) a p-adic valuation on points whose coordinates are both rational.

18. Show that if v is a non-Archimedean valuation on the field F, then

every point of D(a, r) ¼ fx in F: v(x� a), r), the disk centered at a

with radius r, can be considered as being at the center.

8.7 Supplementary exercises

1. Show that if n can be represented as the sum of two squares then n2

can be represented as the sum of two squares.

2. Express 362 þ 372 þ 382 þ 392 þ 402 as the sum of four squares.
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3. Express 552 þ 562 þ 572 þ 582 þ 592 þ 602 as the sum of five

squares.

4. From Theorem 8.9, determine F(100), F(200), and F(250).

5. Can 31747100 be represented as a sum of two squares.

6. Taking signs and order into consideration, how many ways can 164 be

represented as the sum of two squares.

7. Taking signs and order into consideration, how many ways can 2011

be represented as the sum of two squares.

8. Can 1001 be expressed as the sum of three squares?

9. Use Jacobi’s theorem to determine f (42), f (2861), and f (3003).

10. In how many ways can 4, 16, 195, and 1386 be written as a sum of

four squares taking order and signs into consideration.

11. Express 21, 37, and 85 as the sum of five odd squares.

12. Express 3 as the sum of five cubes.

13. Express 4 as the sum of five cubes.

14. Determine a lower bound for g(11).

15. Determine lower and upper bounds for G(11).

16. Find x and y so as to represent 31, 61, and 79 in the form x2 þ 3y2.

17. Find x and y so as to represent 41, 72, and 113 in the form x2 þ 2y2.

18. Determine the rational number represented by [1, 1, 1, 1, 1, 1].

19. Determine the rational number represented by the finite continued

fraction consisting of n ones.

20. Determine the rational number represented by [1, 5, 7, 2, 4, 1].

21. Express 356
301

as a finite simple continued fraction.

22. Show that [1, 2, 3, 4, 2, 3] ¼ [1, 2, 3, 4, 2, 2, 1].

23. Determine the convergents of 177
233

.

24. Use the penultimate convergent in the answer to Exercise 23 to find a

solution to 177x� 233y ¼ 1.

25. Find a solution to 177x� 233y ¼ 3.

26. Find a representation for the infinite continued fraction [3, 2, 1].

27. Use the decimal expansion of
ffiffiffiffiffi
53

p
to generate a solution to the Pell

equation x2 � 53y2 ¼ �1.

28. Use the decimal expansion of
ffiffiffiffiffi
51

p
to generate two solutions to the Pell

equation x2 � 51y2 ¼ 1.

29. Given that x ¼ 8 and y ¼ 3 is a solution to the Pell equation

x2 � 7y2 ¼ 1, generate a sequence of rational numbers of length 5

converging to
ffiffiffi
7

p
.

30. Use the continued fraction expansion for
ffiffiffiffiffi
11

p
to obtain a fraction that

differs from
ffiffiffiffiffi
11

p
by less than 0.0001.
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9

Partitions

Say, is there Beauty yet to find?

And Certainty? and Quiet kind?

Deep meadows yet, for to forget

The lies, and truths, and pain? . . . oh! yet
Stands the Church clock at ten to three?

And is there honey still for tea?

Rupert Brooke

9.1 Generating functions

Given a sequence a0, a1, a2, . . . of integers, the expression G(x) ¼
a0 þ a1xþ a2x

2 þ � � � is called the generating function for the sequence.

More generally, if f (n) is an integral valued function defined on the

nonnegative integers, then the generating function for f (n) is given by

G(x) ¼ P1
n¼0 f (n)x

n. In this chapter, our main concern is with the

algebraic manipulation of the coefficients of generating functions. We are

not interested in the convergence or divergence of generating functions

considered as infinite series.

Generating functions were introduced in 1748 by Euler in his Introductio

in analysin infinitorum. He used generating functions as a tool to discover

a number of interesting properties concerning partitions. Several straight-

forward generating functions for familiar sequences can be derived by

simple polynomial division. The generating function for the sequence 1, 1,

1, 1, . . . or equivalently for the constant function f (n) ¼ 1, for n a positive

integer, is given by 1=(1� x). Since 1þ xþ 2x2 þ 3x3 þ 4x4 þ � � � ¼
1=(1� x)2, the sequence of natural numbers is generated by 1=(1 � x)2.

The sequence of triangular numbers is generated by 1=(1� x)3 ¼
1þ 3xþ 6x2 þ 10x3 þ 15x4 þ 21x5 þ � � � . The sequence of even positive

integers is generated by 1=(1� 2x).

Suppose G(x) ¼ a0 þ a1xþ a2x
2 þ � � � represents the generating func-

tion for the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , un, . . . , where

u0 ¼ u1 ¼ 1 and un ¼ un�1 þ un�2, for n > 3. Hence, xG(x) ¼ u0xþ
u1x

2 þ u2x
3 þ � � � , and x2G(x) ¼ u0x

2 þ u1x
3 þ u2x

4 þ � � � . Thus,

G(x)� xG(x)� x2G(x) ¼ u0 þ (u1 � u0)x þ (u2 � u1 � u0)x
2 þ (u3 �

u2 � u1)x
3 þ � � � þ (un � un�1 � un�2)x

n þ � � � ¼ 1 þ 0 . x þ 0 . x2 þ

304



0 . x3 þ � � � þ 0 . xn þ � � � ¼ 1. Therefore, G(x) ¼ 1=(1� x� x2) is the

generating function for the Fibonacci sequence.

If G(x) ¼ a0 þ a1xþ a2x
2 þ � � � represents the generating function for

the sequence 0, 1, 5, 18, 55, . . . , an, . . . , where an ¼ 5an�1 � 7an�2, then

G(x) � 5xG(x) þ 7x2G(x) ¼ a0 þ (a1 � 5a0)x þ (a2 � 5a1 þ 7a0)x
2 þ

� � � þ (an � 5an�1 þ 7an�2)x
n þ � � � ¼ x. Hence, G(x) ¼ x=(1� 5x þ

7x2).

Many other number theoretic functions we have encountered have

nontrivial generating functions. In a paper dated 1747, but published

posthumously, Euler noted that the generating function for � (n) is given by

X1
n¼1

nxn

1� xn
:

In 1771, Johann Lambert discovered that the generating function for

�(n) is

X1
n¼1

xn

1� xn
:

Exercises 9.1

1. Identify the sequence for which 1=(1� x)4 is the generating function.

2. Identify the sequence for which 1=(1� x)5 is the generating function.

3. Identify the sequence for which 1=(1� x)n is the generating function.

4. Describe the sequence for which x=(1� x)4 is the generating function.

5. Describe the sequence for which x=(1� x)5 is the generating function.

6. Describe the sequence for which x=(1� x)n is the generating function.

7. Describe the sequence for which x2=(1� x)2 is the generating func-

tion.

8. Identify the sequence for which (1þ x)=(1� x)2 is the generating

function.

9. Identify the sequence for which (xþ x2)=(1� x)3 is the generating

function.

10. Identify the sequence for which x(x2 þ 4xþ 1)=(1� x)4 is the gener-

ating function.

11. Determine the generating function for the sequence of fourth powers

of nonnegative integers 0, 1, 16, 81, 256, 625, 1296, 2401, . . . :

12. Determine the generating function for � k, the sum of the kth powers

of the divisors of n.
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13. Determine a generating function for the Lucas sequence 1, 3, 4, 7,

11, . . . :

14. Determine a generating function for the difference equation an ¼
3an�1 � 7an�2, where a0 ¼ 0 and a1 ¼ 1.

9.2 Partitions

By a partition of a positive integer n we mean an expression of n as a sum

of positive integers. For any positive integer n, there are 2n�1 ordered

partitions of n. Consider a linear array of n ones. In each of the n� 1

spaces between two of the ones, we may or may not put a slash. From the

multiplication principle, there are 2n�1 choices for all the slashes and each

choice generates an ordered partition of n. For example, if n ¼ 7,

1 1 = 1 1 = 1 = 1 1

represents the partition 2þ 2þ 1þ 2, and

1 = 1 = 1 = 1 1 1 1

represents the partition 1þ 1þ 1þ 4. Consider the representation of a

partition of n using n ones and k þ 1 slashes, where two slashes are

external and the remaining k � 1 are internal. For example, = 1 1 1 = 1 =

1 1 = represents the partition 3þ 1þ 2 of 6. Since there are

n� 1

k � 1

� �
ways of placing the k � 1 slashes in the n� 1 slots between the ones, the

number of ordered partitions of the positive integer n into exactly k parts

equals

n� 1

k � 1

� �
:

Summing over all possible cases, we obtainXn
k¼1

n� 1

k � 1

� �
¼ 2n�1:

For the remainder of the chapter, we restrict ourselves to partitions of the

positive integer n where the order of the summands is ignored and

repetitions are allowed. That is, we consider only the partitions of n which

are expressions of n as a sum of positive integers in descending order. We

denote the number of such partitions by p(n). For convenience, we set

p(0) ¼ 1 and use the convention that if n ¼ x1 þ x2 þ � � � þ xk represents

a partition of n, the terms are written in descending order, x1 >
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x2 > � � � > xk > 1. Values of p(n), for 1 < n < 7, are given in Table 9.1.

For example, the partitions of 1, 2, 3, 4, 5, 6 and 7 are given by
1 2 3 4 5 6 7

1þ1 2þ1 3þ1 4þ1 5þ1 6þ1

1þ1þ1 2þ2 3þ2 4þ2 5þ2

2þ1þ1 3þ1þ1 4þ1þ1 5þ1þ1

1þ1þ1þ1 2þ2þ1 3þ3 4þ3

2þ1þ1þ1 3þ2þ1 4þ2þ1

1þ1þ1þ1þ1 3þ1þ1þ1 4þ1þ1þ1

2þ2þ2 3þ3þ1

2þ2þ1þ1 3þ2þ2

2þ1þ1þ1þ1 3þ2þ1þ1

1þ1þ1þ1þ1þ1 3þ1þ1þ1þ1

2þ2þ2þ1

2þ2þ1þ1þ1

2þ1þ1þ1þ1þ1

1þ1þ1þ1þ1þ1þ1

The origin of partition theory can be traced back to 1669 when Gottfried

Leibniz wrote Johann Bernoulli asking him if he had ever considered

determining the number of ways a given positive integer may be separated

into parts. Leibniz commented that the problem seemed difficult but

important. In 1740, Philipp Naudé, a Berlin mathematician originally from

Metz, France, proposed the following two questions to Euler.

(1) Find the number of ways a number is a sum of a given number of

distinct parts.

(2) Find the number of ways a number is a sum of a given number of equal

or distinct parts.

Euler realized that the coefficient of xnzm in the expression (1 þ
xz)(1þ x2z)(1þ x3z)(1þ x4z) � � � represented the number of ways n can

be written as a sum of m distinct positive integers. For example, the

coefficient of x9z3 is 3 and it results from summing the terms x6z . x2z .

Table 9.1.

n p(n)

1 1
2 2
3 3
4 5
5 7
6 11
7 15
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x1z, x5z . x3z . x1z, and x4z . x3z . x2z, that is, the terms corresponding

respectively to the partitions 6þ 2þ 1, 5þ 3þ 1, and 4þ 3þ 2 of 9. If

we let z ¼ 1 in the expression, we find that the coefficient of xn in

(1þ x)(1þ x2)(1þ x3)(1þ x4)(1þ x5) � � � represents the number of ways

n can be written as a sum of distinct positive integers, which we denote by

pd(n). That is, the generating function for pd(n), the number of ways n can

be written as a sum of distinct positive integers, is given by
Q1

n¼1(1þ xn),

solving Naudé’s first problem. Generalizing Euler’s argument, we find thatQ1
n¼1(1þ x2nþ1),

Q1
n¼1(1þ x2n), and

Q1
n¼1(1þ xn

2

) represent respec-

tively the generating functions for the number of ways the positive integer

n can be written as a sum of distinct odd positive integers, even positive

integers, and squares.

With respect to Naudé’s second problem, Euler realized that

1

(1� xz)(1� x2z)(1� x3z)(1� x4z) � � �
¼ 1

1� xz

� �
1

1� x2z

� �
1

1� x3z

� �
1

1� x4z

� �
� � �

¼ (1þ xzþ x2z2 þ x3z3 þ � � �)(1þ x2zþ x4z2 þ x6z3 þ � � �)
3 (1þ x3zþ x6z2 þ x9z3 þ � � �)(1þ x4zþ x8z2 þ x12z3 þ � � �) � � � :

Hence the coefficient of xnzm in the expression represents the number of

ways that n can be written as a sum of m not necessarily distinct positive

integers. For example, the coefficient of x8z3 is 5 and it results from

summing the terms (x6z)(x2z), (x5z)(x2z)(xz), (x4z)(x3z)(xz), (x4z)(x4z2),

and (x6z2)(x2z). They are the terms corresponding respectively to the

partitions 6þ 1þ 1, 5þ 2þ 1, 4þ 3þ 1, 4þ 2þ 2, and 3þ 3þ 2 of 8.

If we let z ¼ 1 in the above expression, we obtain

1

(1� x)(1� x2)(1� x3)(1� x4) � � �
¼ 1

1� x

� �
1

1� x2

� �
1

1� x3

� �
1

1� x4

� �
� � �

¼ (1þ xþ x2 þ � � �)(1þ x2 þ x4 þ � � �)(1þ x3 þ x6 þ � � �)
3 (1þ x4 þ x8 þ � � �) � � �

¼ 1þ xþ 2x2 þ 3x3 þ 5x4 þ 7x5 þ 11x6 þ 15x7 þ 22x8 þ � � � ,
where the coefficient of xn represents the number of ways n can be written

as the sum of not necessarily distinct positive integers. For example, the

partition 3þ 2þ 2þ 2þ 1 of 10 corresponds, in the previous expression,

to x . x6 . x3 . 1 . 1 . 1 � � � . That is, in the product of sums, it corresponds to
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choosing x from the first sum, x6 ¼ x2þ2þ2 from the second sum, x3 from

the third sum, and 1 from the remaining sums. The partition 2þ 2

þ 2þ 2þ 1þ 1 of 10 corresponds to x2 . x8 . 1 . 1 . 1 � � � . That is, in the

product of sums, it corresponds to choosing x2 from the first sum, x8 ¼
x2þ2þ2þ2 from the second sum, and 1 from the remaining sums. In addition,

the terms x3x6x1 and x8x2 each contribute exactly 1 to the coefficient of

x10. In general, each partition of 10 contributes exactly once to the coeffi-

cient of x10. Therefore, the generating function for p(n), the number of

ways n can be written as a sum of not necessarily distinct positive integers,

is given by

G(x) ¼
Y1
n¼1

1

1� xn
,

solving Naudé’s second problem.

In general, the coefficient of xn in

1

(1� xa)(1� xb)(1� xc)(1� xd) � � �
¼ 1

1� xa

� �
1

1� xb

� �
1

1� xc

� �
1

1� xd

� �
� � �

¼ (1þ xa þ x2a þ � � �)(1þ xb þ x2b þ � � �)(1þ xc þ x2c þ � � �)
3 (1þ xd þ x2d þ � � �) � � �

is of the form xk1ax k2bx k3cx k4d � � � , where n ¼ k1aþ k2bþ k3c þ
k4dþ � � � . Hence, the term x k1ax k2bx k3cx k4d � � � represents writing n as the

sum of k1 as, k2 bs, k3 cs, k4 ds, and so forth. Therefore,

G(x) ¼ 1

(1� xa)(1� xb)(1� xc)(1� xd) � � �
is the generating function for expressing the positive integer n as a sum of

as, bs, cs, ds, and so forth. Thus,Y1
n¼1

1

1� x2n
,
Y1
n¼1

1

1� x2nþ1
,
Y1
n¼1

1

1� xn
2

represent, respectively, the generating functions for the number of ways of

representing the positive integer n as a sum of not necessarily distinct

positive even integers, positive odd integers, and squares. In addition,

1=(1� x6)(1� x8)(1� x10) � � � represents the generating function for the

number of partitions of the positive integer n into even integers greater

than 6. Analogously, the generating function for pk(n), the number of ways

of partitioning the positive integer n using only positive integers less than

or equal to k, is 1=(1� x)(1� x2)(1� x3) � � � (1� xk).
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Let po(n) and pe(n) denote the number of partitions of the positive

integer n using only odd or only even positive integers, respectively. For

example, the only ways to partition 7 into odd positive integers are 7,

5þ 1þ 1, 3þ 3þ 1, 3þ 1þ 1þ 1þ 1, and 1þ 1þ 1þ 1þ 1þ 1þ 1.

Therefore, po(7) ¼ 5. The only ways to partition 6 into even positive

integers are 6, 4þ 2, and 2þ 2þ 2. Therefore, pe(6) ¼ 3. The elegant

proof of the next result is due to Euler.

Theorem 9.1 (Euler’s parity law) For any positive integer n, the number

of partitions of n using only odd positive integers equals the number of

partitions of n into distinct parts.

Proof The generating function for po(n) is

1

(1� x)(1� x3)(1� x5) � � � ¼
(1� x2)(1� x4)(1� x6) � � �
(1� x)(1� x2)(1� x3) � � �

¼ (1þ x)(1þ x2)(1þ x3) � � � ,
which is the generating function for pd(n), the number of partitions of n

into distinct parts. Therefore, po(n) ¼ pd(n). j

Exercises 9.2

1. Determine all the ordered partitions of 4 and 5.

2. Write out the partitions for n ¼ 8 and 9.

3. What does the coefficient of xnzm in the expression (1þ xaz)(1

þ xbz)(1þ xcz)(1þ xd z)(1þ xez) � � � represent?
4. What does the coefficient of xnzm in the expression

1

(1� xaz)(1� xbz)(1� xcz)(1� xdz)(1� xez) � � �
represent?

5. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of cubes.

6. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of triangular numbers.

7. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of prime numbers.

8. Determine the generating function for the number of ways the postive

integer n can be written as a sum of cubes.

9. Determine the generating function for the number of ways the positive

integer n can be written as a sum of triangular numbers.
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10. Determine the generating function for the number of ways the positive

integer n can be written as a sum of prime numbers.

11. Determine the generating function for the numbers of ways of

representing the positive integer n as a sum of primes each greater

than 7.

12. Determine the generating function for the number of ways of repre-

senting the positive integer n as a sum of odd numbers greater than 11.

13. Determine the generating function for the number of ways of repre-

senting the positive integer n as a sum of even numbers between 6 and

20 inclusive.

14. Determine the first 10 coefficients of (1þ x)(1þ x2)(1þ x4)(1 þ
x8)(1þ x16) � � � , the generating function for the number of ways of

representing the positive integer n as a sum of powers of 2.

15. Determine all the odd partitions of 9 and all the partitions of 9 into

distinct parts.

16. Find all the even partitions of 10.

17. Find all the partitions of 10 using only the integers 3, 4, 5, 6, 7.

18. Show that the number of partitions of n into at most two parts is given

by ½½n=2��.
19. For 1 < n < 9, construct a table with columns p(n), the number of

partitions of n; pe(n), the number of partitions of n using only even

positive integers; po(n), the number of partitions of n using only odd

positive integers; pd(n), the number of partitions of n using distinct

positive integers; ped(n), the number of partitions of n into an even

number of distinct parts; pod(n), the number of partitions of n into an

odd number of distinct parts; and p1(n), the total number of 1s that

appear in the partitions of n.

9.3 Pentagonal Number Theorem

In 1853, Norman Macleod Ferrers communicated to J.J. Sylvester an

ingenious method for representing partitions. Ferrers, an Etonian, was

Senior Wrangler and First Smith’s Prizeman at Cambridge in 1851. He

edited The Mathematical Papers of George Green and served as Master of

Gonville and Caius College and Vice-Chancellor of Cambridge University.

His geometric representation is useful in establishing a number of results

concerning partitions. Given a partition n1 þ n2 þ n3 þ n4 þ � � � of the

positive integer n, the Ferrers diagram associated with the partition is an

array with nk dots in the kth row. If we interchange the rows and columns

of a Ferrers diagram, we obtain the conjugate Ferrers diagram.
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For example, in Figure 9.1, the partition 8þ 4þ 3þ 3þ 2þ 1þ 1 of

22 is represented by a Ferrers diagram. The Ferrers diagram of its

congugate partition, 7þ 5þ 4þ 2þ 1þ 1þ 1þ 1, is shown in Figure

9.2.

Using our convention of expressing each partition of a positive integer

with terms in descending order, the longest row of each Ferrers diagram

will be at the top and the longest column will be the first. Any Ferrers

diagram identical with its conjugate is called a selfconjugate Ferrers

diagram. For example, the partition 5þ 3þ 2þ 1þ 1 of 12 is self-

conjugate. Its Ferrers diagram is shown in Figure 9.3.

In 1882, J.J. Sylvester and William Pitt Durfee, a graduate student at

Johns Hopkins, noted that in any selfconjugate partition the shells outlined

in the selfconjugate Ferrers diagrams, shown in Figure 9.4, contain an odd

number of dots. Thus, the Ferrers diagrams represent the partition of a

positive integer into a sum of odd parts as for selfcongugate partitions of

12 and 24. Conversely, any partition of a positive integer into a sum of odd

Figure 9.1

Figure 9.2

Figure 9.3
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parts yields a selfconjugate partition of that positive integer. The result is

stated as the next theorem. After receiving his degree from Johns Hopkins,

Durfee taught mathematics at Hobart College, now Hobart–William Smith

College, in Geneva, New York.

Theorem 9.2 (Durfee–Sylvester) The number of partitions of a positive

integer n into odd distinct parts equals the number of partitions of n whose

Ferrers diagrams are selfconjugate.

Let pk(n) represent the number of partitions of n into parts none of which

exceeds k and p(n, k) the number of partitions of n into exactly k parts.

Hence, pk(n)� pk�1(n) represents the number of partitions of n into parts

the largest of which is k. For each partition for which the largest part is k,

the conjugate partition has k parts and vice versa. Hence, the number of

partitions of n into k parts equals the number of partitions of n into parts

the largest of which is k. Similarly, the number of partitions of n into at

most k parts equals the number of partitions of n into parts which do not

exceed k. Hence, we have established the next result.

Theorem 9.3 (Ferrers) For any positive integer n, p(n, k) ¼ pk(n) �
pk�1(n).

9 � 3

13 � 7 � 3 � 1

Figure 9.4
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Let pm(n, k) denote the number of partitions of n into k parts none of

which is larger than m. Consider a Ferrers diagram of the positive integer

a� c with b� 1 parts none of which is larger than c and adjoin a new top

row of length c to obtain a Ferrers diagram representing a partition of a

into b parts the largest of which is c. The conjugate of the revised Ferrers

diagram represents a partition of a into c parts the largest of which is b.

Deleting the top row of the conjugate Ferrers diagram we obtain a Ferrers

diagram representing a partition of a� b into c� 1 parts the largest of

which is b. The operations are reversible, hence, we have established the

next result, first established by Sylvester in 1853.

Theorem 9.4 (Sylvester) If a, b, c are positive integers such that a. b

and b. c, then pc(a� c, b� 1) ¼ pb(a� b, c� 1).

For a given positive integer n, there is no elementary formula for determin-

ing p(n). However, the next result, due to Euler, can be used to evaluate

p(n). Since p(n, k) denotes the number of partitions of n into exactly k

parts, it follows that p(n) ¼ Pn
k¼1 p(n, k). Some values of p(n, k) are

shown in Table 9.2. For convenience, we denote the order of a set A, that is

the number of elements in A, by |A|.

Table 9.2.

k

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 1 1
3 1 1 1
4 1 2 1 1
5 1 2 2 1 1
6 1 3 3 2 1 1
7 1 3 4 3 2 1 1
8 1 4 5 5 3 2 1 1
9 1 4 7 6 5 3 2 1 1

10 1 5 8 9 7 5 3 2 1 1
11 1 5 10 11 10 7 5 3 2 1 1
12 1 6 12 15 13 11 7 5 3 2 1 1
13 1 6 14 18 18 14 11 7 5 3 2 1 1
14 1 7 16 23 23 20 15 11 7 5 3 2 1 1
15 1 7 19 27 30 26 21 15 11 7 5 3 2 1 1
16 1 8 21 34 37 35 28 22 15 11 7 5 3 2 1 1
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Theorem 9.5 (Euler) For positive integers n and k with k < n,

p(n, k) ¼ p(n� 1, k � 1)þ p(n� k, k).

Proof From Theorem 9.3, the number of partitions of n into exactly k

parts, p(n, k), is also the number of partitions of n into parts the largest of

which is k. Let S represent the set of partitions of n into parts the largest of

which is k. Hence, jSj ¼ p(n, k). Let T represent the union of the set A of

partitions of n� 1 whose largest term is k � 1 and the set B of partitions

of n� k whose largest term is k. Since A and B are disjoint,

jT j ¼ jAj þ jBj ¼ p(n� 1, k � 1)þ p(n� k, k). Any partition in S has

the form x1 þ � � � þ xr�1 þ xr ¼ n, where k ¼ x1 > � � � > xr. If k ¼
x1 . x2, we associate it with (x1 � 1)þ x2 þ � � � þ xr ¼ n� 1, an element

of A. If x1 ¼ x2 ¼ k, associate it with x2 þ x3 þ � � � þ xr ¼
n� x1 ¼ n� k, an element of B. The association is a one-to-one mapping

from S into T, hence jSj < jT j. Any partition in T is of the form

Æ ¼ u1 þ u2 þ � � � þ ur ¼ n� 1, where k � 1 ¼ u1 > � � � > ur, or � ¼
v1 þ v2 þ � � � þ vs ¼ n� k, where k ¼ v1 > � � � > vs. Any partition of

the form Æ, we associate with the partition (u1 þ 1) þ � � � þ ur ¼ n. Since

u1 þ 1 ¼ k, this partition is in S. Any partition of the form �, we associate

with the partition k þ v1 þ � � � þ vs ¼ n, which is an element of S. This

association is a one-to-one mapping from T into S, hence, jSj > jT j.
Therefore, jSj ¼ jT j and the result is established. j

The next result, first proven in 1881 by Fabian Franklin, a professor of

mathematics at Johns Hopkins University, is instrumental in deriving

Euler’s Pentagonal Number Theorem. Franklin was the husband of the

mathematician–psychologist, Christine Ladd Franklin. When he left Johns

Hopkins to begin a career in journalism in New York, Ladd taught at

Columbia.

Consider a Ferrers diagram for n, with b dots on the bottom row and s

dots on the rightmost NE–SW diagonal. If b, s remove the b dots on the

bottom row and adjoin one each to the end of each of the first b rows of the

diagram. For example, in Figure 9.5, where b ¼ 2 and s ¼ 3, the partition

6þ 5þ 4þ 2þ 2 of 19 is transformed into the partition 7þ 6þ 4þ 2 of

19. This process transforms a partition of n with an even number of distinct

parts into a partition of n with an odd number of distinct parts and vice

versa.

If b. sþ 1 remove the rightmost diagonal and adjoin it to the bottom of

the diagram making it the new bottom row. For example, in Figure 9.6,

where b ¼ 4 and s ¼ 2, the partition 7þ 6þ 4 of 17 is transformed into
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the partition 6þ 5þ 4þ 2 of 17. This process transforms a partition of n

with an even number of distinct parts into a partition of n with an odd

number of distinct parts and vice versa.

In the two remaining cases, where b ¼ s or b ¼ sþ 1, no similar process

can be carried out, for example, in Figure 9.7, where b ¼ s ¼ 3 in the

partition 5þ 4þ 3 of 12, or in Figure 9.8, where b ¼ 3 and s ¼ 2 and the

bottom row and rightmost diagonal have a point in common.

If b ¼ s then n ¼ bþ (bþ 1) þ � � � þ (2b� 1) ¼ b(3b� 1)=2 and if

b ¼ sþ 1 then n ¼ (sþ 1)þ (sþ 2) þ � � � þ 2s ¼ s(3sþ 1)=2. If b does

not equal s or sþ 1, then exactly one of the above operations can be

carried out. Hence, there is a one-to-one correspondence between partitions

of n into an even number of distinct parts and partitions of n into an odd

number of distinct parts, and for these values of n, ped(n) � pod(n) ¼ 0. In

the two exceptional cases, when n ¼ k(3k 	 1)=2, the difference is (�1)k

and we have established Theorem 9.6.

Theorem 9.6 (Franklin) If n is a positive integer, and ped(n) and pod(n)

represent, respectively, the number of partitions of the positive integer n

into even and odd distinct parts, then

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8
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ped(n)� pod(n) ¼
0 if n 6¼ 3k 	 1

2
,

(�1)k if n ¼ 3k 	 1

2
:

8><
>:

Recall that the generating function for pd(n), the number of ways n can be

written as a sum of distinct positive integers, is
Q1

n¼1(1þ xn). Substituting

�x for x, we account for the contribution of a plus or minus 1 to each

coefficient depending on whether the number of distinct parts in the

partition is even or odd respectively. Hence, it follows from Theorem 9.6

that

Y1
n¼1

(1� xn) ¼ 1þ
Y1
n¼1

(ped(n)� pod(n))x
n

¼ 1þ
X1
n¼1

(�1)nxn(3nþ1)=2 þ
X1
n¼1

(�1)nxn(3n�1)=2

and we have established the Pentagonal Number Theorem.

Theorem 9.7 (Euler’s Pentagonal Number Theorem) For any positive

integer n,

Y1
n¼1

(1� xn) ¼ 1þ
X1
n¼1

(�1)nxn(3nþ1)=2 þ
X1
n¼1

(�1)nx n(3n�1)=2:

Euler used the Pentagonal Number Theorem in 1750 to develop a formula

to determine values of p(n) recursively as illustrated in the next result.

Theorem 9.8 (Euler) For any positive integer n, p(n), the number of

partitions of n, is given by

p(n� 1)þ p(n� 2)� p(n� 5)� p(n� 7)þ p(n� 12)þ p(n� 15)

þ � � � þ (�1)kþ1 p n� 3k2 � k

2

� �
þ p n� 3k2 þ k

2

� �� �
:

Proof Recall that the generating function of p(n) is given by

Y1
n¼1

1

1� xn
:

From Theorem 9.7,
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1 ¼ 1Y1
n¼1

(1� xn)

.
Y1
n¼1

(1� xn)

¼
X1
n¼0

p(n)xn

" #
. [1� x� x2 þ x5 þ x7 � x12 � � � �

þ (�1)k(x(3k
2�k)=2 þ x(3k

2þk)=2)]:

Expanding and collecting terms, we obtain

1 ¼ p(0)� [p(0)� p(1)]xþ [p(2)� p(0)� p(1)]x2þ � � �

þ
�
p(n)� p(n� 1)� p(n� 2)þ p(n� 5)þ p(n� 7)

� p(n� 12)� p(n� 15) þ � � �

þ (�1)k p n� 3k2 � k

2

� �
þ p n� 3k2 þ k

2

� �� �
þ � � �

�
xnþ � � � :

Cancelling p(0) ¼ 1 from both sides of the equations and equating the

coefficients of xn, for n > 1, to 0, we obtain Euler’s partition formula

p(n) ¼ p(n� 1)þ p(n� 2)� p(n� 5)� p(n� 7)þ p(n� 12)

þ p(n� 15) � � � �

þ (�1)kþ1 p n� 3k2 � k

2

� �
þ p n� 3k2 þ k

2

� �� �
: j

Major Percy Alexander MacMahon used Euler’s result to calculate the

value of p(200), which he found to be 3 972 999 029 388. After a distin-

guished career with the Royal Artillery in Madras and as an instructor at

the Royal Military Academy, Woolwich, MacMahon at age 58 went up to

Cambridge University to pursue research in combinatorial number theory.

He was elected a member of St John’s College and served as president of

the London Mathematical Society and of the Royal Astronomical Society.

About the same time that he derived the partition formula, Euler devised

an analogous formula for �(n), the sum of the divisors of n.

Theorem 9.9 (Euler) If n is a positive integer, then

� (n) ¼ � (n� 1)þ � (n� 2)� � (n� 5)� � (n� 7)þ � (n� 12)

þ � (n� 15) þ � � � þ (�1)kþ1 � n� 3k2 � k

2

� �
þ � n� 3k2 þ k

2

� �� �
,

where � (k) ¼ 0 if k, 0 and � (0) ¼ k.
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Proof Let

G(x) ¼
X1
n¼1

� (n)xn ¼
X1
n¼1

nxn

1� xn
:

Assume that jxj, 1. Divide both sides by x and integrate with respect to x,

and use Theorem 9.7 to obtainð
G(x) dx

x
¼

ð X1
n¼1

nxn�1 dx

1� xn
¼ �

X1
n¼1

ln(1� xn) ¼ �ln
Y1
n¼1

(1� xn)

� !

¼ �ln(1� x� x2 þ x5 þ x7 � x12 � x15þ � � �):
Differentiate both sides with respect to x, we obtain

G(x)

x
¼ �1� 2xþ 5x4 þ 7x6 � � � �

1� x� x2 þ x5 þ x7 � � � � :
Hence,

G(x) ¼ �x� 2x2 þ 5x5 þ 7x7 � � � �
1� x� x2 þ x5 þ x7 � � � � ¼

X1
n¼1

� (n)xn:

By crossmultiplying and equating coefficients of xn the result follows. j

In 1829 Jacobi established the triple product identityQ1
n¼1(1� x2n)(1þ x2n�1z)(1þ x2n�1z�1) ¼ P1

n¼�1x
n2 z n, where z 6¼ 0

and jxj, 1. He used it to established the following results.

(a)
Y1
n¼0

(1� x2nþ2)(1þ xn) ¼
X1
n¼�1

xn(nþ1)=2,

(b)
Y1
n¼0

1� x2n

1� x2n�1
¼

X1
n¼0

xn(nþ1)=2, and

(c)
Y1
n¼0

(1� x2n)3 ¼
X1
n¼0

(�1)n(2nþ 1)xn(nþ1)=2.

For example if we let x ¼ z ¼ u1=2 in the triple product identity on the left

we obtain
Q1

n¼1(1� un)(1þ un)(1þ un�1) ¼ P1
n¼�1u

n(nþ1)=2. However,Y1
n¼1

(1� un)(1þ un)(1þ un�1) ¼
Y1
n¼1

(1� u2n)(1þ un�1)

¼
Y1
n¼0

(1� u2nþ2)(1þ un)

and (a) is established.

In 1878, Franklin considered the partitions of n which contain at most

one 1. If a partition contained exactly one 1, he counted it as 1. If it

contained no 1s he counted the number of distinct elements in it. He found
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the total sum to be p(n� 1), as illustrated in Figure 9.9 for the case when

n ¼ 8.

MacMahon discovered an interesting relationship concerning partitions

which he included in Combinatorial Analysis. MacMahon defined a

partition of n to be perfect if every integer from 1 to n� 1 can be

represented in a unique way as a sum of parts from the partition.

For example, the partition 7 ¼ 4þ 2þ 1 is a perfect partition of 7 since

1 ¼ 1,

2 ¼ 2,

3 ¼ 2þ 1,

4 ¼ 4,

5 ¼ 4þ 1,

6 ¼ 4þ 2:

The other perfect partitions of 7 are 4þ 1þ 1þ 1, 2þ 2þ 2þ 1, and

1þ 1þ 1þ 1þ 1þ 1þ 1.

Theorem 9.10 (MacMahon) The number of perfect partitions of n equals

the number of ways of factoring nþ 1, where the order of the factors

counts and factors of 1 are not counted.

Proof There must be at least one 1 in any perfect partition of nþ 1 and if

there are x 1s then the next smallest element in the partition must be xþ 1

since all smaller integers can be written as the sum of 1s alone. If there are

y parts of xþ 1 the next smallest number in the partition must be

xþ y(xþ 1)þ 1 ¼ (xþ 1)(yþ 1). Hence, if the different parts of the

partition occur x, y, z, . . . times then (xþ 1)(yþ 1)(zþ 1) � � � ¼ nþ 1,

and the number of perfect partitions of n is the same as the number of ways

8
7 � 1
6 � 2
5 � 3
5 � 2 � 1
4 � 4
4 � 3 � 1
4 � 2 � 2
3 � 3 � 2
3 � 2 � 2 � 1
2 � 2 � 2 � 2

11
11
12
12
11
11
11
12
12
11
11
15 � p(7)

Figure 9.9
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of factoring nþ 1 where the order of the factors counts and factors of 1 are

not counted. j

Ramanujan proved that the number of partitions of n with unique smallest

part (it occurs only once) and largest part at most twice the smallest part is

equal to the number of partitions of n in which the largest part is odd and

the smallest part is larger than half the largest part. George Andrews of

Pennsylvania State University proved that the number of partitions of n in

which only odd parts may be repeated equals the number of partitions of n

in which no part appears more than three times. In 1958, R.K. Guy showed

that the numbers of partitions of a positive integer into (a) odd parts greater

than unity, (b) unequal parts such that the greatest two parts differ by unity,

and (c) unequal parts which are not powers of 2, are all equal.

Let p1(n) denote the 1s number of a positive integer n, that is, the total

number of 1s that appear in all the partitions of n. Richard Stanley, a

combinatorialist at MIT, defined the parts number of n, denoted by pp(n),

to be the sum of distinct parts in each partition of n. For example, if n ¼ 6,

pp(6) ¼ p1(6) ¼ 19, as illustrated in Table 9.3.

Theorem 9.11 (Stanley) For any positive integer n, p1(n) ¼ pp(n).

Proof If we add a 1 to any partition of n� 1, we obtain a partition of n

with at least one 1. Hence, the number of partitions of n which have at

least one 1 is p(n� 1). The number of partions of n which have two or

more 1s is p(n� 2), and so forth. Hence, the 1s number of n equals

Table 9.3.

Partitions Number of distinct parts
in each partition

6 1
5 þ 1 2
4 þ 2 2
4 þ 1 þ 1 2
3 þ 3 1
3 þ 2 þ 1 3
3 þ 1 þ 1 þ 1 2
2 þ 2 þ 2 1
2 þ 2 þ 1 þ 1 2
2 þ 1 þ 1 þ 1 þ 1 2
1 þ 1 þ 1 þ 1 þ 1 þ 1 1
Total 19
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p(n)þ p(n� 1) þ � � � þ p(1)þ 1. Since k occurs in exactly p(n� k)

partitions of n, the parts number of n also equals p(n)þ p(n

� 1) þ � � � þ p(1)þ 1. j

It can be shown that

lim
n!1

p(nþ 1)

p(n)
. 1

(see [Grosswald]). Finding reasonable bounds for p(n) is a difficult task.

However, we are able to derive the following upper bound for p(n).

Theorem 9.12 For any positive integer n, p(n), e3
p
n.

Proof Let G(x) ¼ P1
i¼0 p(n)x

n ¼ Q1
k¼1(1� xk)�1 be the generating

function for p(n). Hence,

lnG(x) ¼ �ln(1� x)� (ln(1� x2)� ln(1� x3)� � � �

¼ xþ x2

2
þ x3

3
þ � � �

� �
þ x2 þ x4

2
þ x6

3
þ � � �

� �

þ x3 þ x6

2
þ x9

3
þ � � �

� �
þ � � �

¼ (xþ x2 þ x3þ � � �)þ x2

2
þ x4

2
þ x6

2
þ � � �

� �

þ x3

3
þ x6

3
þ x9

3
þ � � �

� �
þ � � �

¼ x

1� x

� �
þ 1

2

x2

1� x2

� �
þ 1

3

x3

1� x3

� �
þ � � � :

If 0, x, 1, then xn�1 , xn�2 , � � � , x2 , x, 1. Since the average of a

set of numbers is bigger than the smallest number in the set,

xn�1 ,
1þ xþ x2 þ � � � þ xn�1

n

or

xn�1

1þ xþ x2 þ � � � þ xn�1
,

1

n
:

Thus,

xn

1� xn
¼ xn�1

1þ xþ x2 þ � � � þ xn�1
.

x

1� x
,

1

n
.

x

1� x
:

Hence,
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lnG(x),
x

1� x

� �
þ 1

2

� �2
x

1� x

� �
þ 1

3

� �2
x

1� x

� �
þ � � �

¼ x

1� x

� �
1þ 1

22
þ 1

32
þ � � �

� �

,
x

1� x

� �
1þ

ð1
1

1

x2
dx

� �

¼ 2x

1� x
:

Thus, G(x), a sum of positive terms, is bigger than any one of its terms, in

particular, G(x). p(n)xn. Therefore, ln p(n), lnG(x)� n . ln(x). That is,

ln p(n),
2x

1� x
� n ln x, 2

x

1� x

� �
þ n

1� x

x

� �
:

If we now let x ¼ ffiffiffi
n

p
=

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
, we obtain ln p(n), 3

p
n and the result is

established. j

Hardy and Ramanujan were able to show that

p(n)  1

4
ffiffiffi
3

p
n
e�

ffiffiffiffiffiffiffiffiffiffi
2
p
n=3

p
,

a result made exact by Hans Rademacher, a number theorist at the

University of Pennsylvania. Rademacher found an expression that, when

rounded to the nearest integer, equaled p(n). In 1919 Ramanujan discov-

ered a number of modular identities concerning partition numbers. In

particular, for any positive integer n, he showed the following.

(a) p(5nþ 4) � 0 (mod 5),

(b) p(7nþ 5) � 0 (mod 7), and

(c) p(11nþ 6) � 0 (mod 11).

One may generalize partitions to Young tableaux, whose properties were

developed by Alfred Young, a Fellow of Clare College, Cambridge, who

served for many years as the rector at Birdbrook in Essex, England. Given a

positive integer n, a Young tableau for n of shape (n1, n2, . . . , nm) is a

Ferrers diagram for the partition n1 þ n2 þ � � � þ nm of n, where adjacent

boxes are employed rather than dots, the ith row contains ni elements, the

integers from 1 to n are distributed in the boxes in such a way that all rows

and columns are strictly increasing and each of the numbers 1, 2, 3, . . . , n

occurs exactly once. For example, a Young tableau for the partition

5þ 4þ 2þ 1 of 12, that is a Young tableau of shape (5, 4, 2, 1), is illustrated

in Table 9.4. Young tableaux can be used to generate symmetric groups in

group representation theory a topic that is beyond the scope of this book.
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Exercises 9.3

1. Determine the 17th row of Table 9.2.

2. Show that pp(7) ¼ p1(7).

3. Construct Ferrers diagrams for all 15 partitions of 7. Which of them

are selfconjugate?

4. Show that the partition 2þ 2þ 2þ 1 of 7 is perfect.

5. Use Jacobi’s triple product identity with x ¼ u3=2 and z ¼ �u1=2 to

establish Euler’s Pentagonal Number Theorem.

6. In 1944, F.J. Dyson defined the rank of a partition to be the largest part

minus the number of parts. Prove that the ranks of a partition and its

conjugate differ only in sign.

7. Determine the sum of the ranks of the five partitions of 4 modulo 5.

8. Determine the sum of the ranks of the 30 partitions of 9 modulo 5.

9. Show that, in general, if n � 4 (mod 5) there are an equal number of

ranks in each least positive residue class modulo 5. Hence,

p(5k þ 4) � 0 (mod 5).

10. Determine at least two Young tableaux of shape (5, 4, 2, 1).

11. Determine all 16 Young tableaux of shape (3, 2, 1).

9.4 Supplementary exercises

1. Identify the sequence for which G(x) ¼ 1=(1� x2) is the generating

function.

2. Determine a generating function for the difference equation

an ¼ 6an�1 � 5an�2, where a0 ¼ 0 and a1 ¼ 1.

3. Determine a generating function for the difference equation

an ¼ 6an�1 � 5an�2, where a0 ¼ 1 and a1 ¼ 3.

4. Determine the generating function for the sequence of fifth powers of

nonnegative integers 0, 1, 32, 243, 1024, 3125, . . .

5. Identify the sequence for which

Table 9.4.

1 3 4 7 11

2 5 10 12

6 9

8
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G(x) ¼ x(x5 þ 57x4 þ 302x3 þ 302x2 þ 57xþ 1)

(1� x)7

is the generating function.

6. Determine the generating function for the number of ways the positive

integer n can be written as a sum of fourth powers.

7. Determine the generating function for the number of ways the positive

integer n can be written as a sum of primes each less than or equal to

23.

8. Determine the generating function for the number of ways the positive

integer n can be written as a sum of even numbers less than 30.

9. Determine the generating function for the number of ways the positive

integer n can be written as a sum of numbers from seven to eleven.

10. Find all the partitions of 11 with exactly three parts.

11. Find all the partitions of 11 with exactly four parts.

12. Let pm(n, k) denote the number of partitions of n having exactly k parts

with each part greater than or equal to m. Show that

p(n� k, k) ¼ p2(n, k), with the convention that p(n, k) ¼ 0 if n, k.

13. Show that p(n, k) ¼ p(n� 1, k � 1)þ p2(n, k).

14. Determine r such that pm(n, k) ¼ p(r, k).

15. Find r such that
Pk

i¼1 p(n, i) ¼ p(r, k).

16. Find r such that pd(n, 3) ¼ p(r, 3).

17. Find r such that pd(n, k) ¼ p(r, k).

18. Determine the number of partitions of 19 using distinct parts and the

number of partitions of 19 using only odd parts.

19. List all the perfect partitions of 11 and indicate the one-to-one

correspondence with the factorizations of 12.

20. Use Euler’s pentagonal number theorem to calculate the number of

partitions of 20.

21. Characterize the partition(s) n1 þ n2 þ � � � þ nk of n such that

n1n2 � � � nk is maximal.

22. Determine the generating function for the number of ways the positive

integer n can be written as the sum of distinct Fibonacci numbers.

23. For any positive integer n. 1, let Pþ(n) denote the greatest prime

divisor of n and let Pþ(1) ¼ 1.We call a partition n1 þ n2 þ � � � þ nk ¼
n m-smooth if Pþ(ni) < m for 1 < i < k. Let pþ(n, m) denote the

number of m-smooth partitions of n. Determine pþ(7, 2), pþ(8, 4), and
pþ(9, 3).
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Tables

Table T.1. List of symbols used

(a)m fa þ km: k 2 Zg
A(n) arithmetic mean of the divisors of n
Bn nth Bernoulli number
dk(n) number of distinct solutions to the equation x1 . x2 � � � xk ¼ n
D(n) smallest positive integer with n divisors
E(n) excess of the number of divisors of n of the form 4k þ 1 over

the number of divisors of n of the form 4k þ 3
En nth square–triangular number
f n nth fortunate number
Fr(n) least number of rs to represent n
f m

n nth mth order figurate number
Fn nth Fermat number
F n Farey fractions of order n
G(n) geometric mean of the divisors of n
H set of Hilbert numbers
Hn nth harmonic number
H(n) harmonic mean of the divisors of n
I(n) index of n
Kn n-digit Kaprekar constant
Ka1 Kaprekar sequence with first term a1

Mn nth Monica set
Mp Mersenne prime
nb n written to the base b
on nth oblong number
On nth octahedral number
pm

n nth m-gonal number
p(n) number of partitions of n
pe(n) number of partitions of n using only even integers
ped(n) number of partitions of n into even distinct parts
pk(n) number of ways of partitioning n using only integers less than or

equal to k
po(n) number of partitions of n using only odd positive integers
pod(n) number of partitions of n into odd distinct parts
p1(n) ones number of a positive integer n
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Table T.1. (cont.)

pp(n) parts numbers of n
p(n, k) number of partitions of n into exactly k parts
pm(n, k) number of partitions of n into k parts none of which is larger

than m
p#(n) nth primorial number
Pþ(n) the greatest prime divisor of n
P3

n nth tetrahedral number
P4

n nth pyramidal number
P�(n) product of the unitary divisors of n
pþ(n, m) the number of m-smooth partitions of n
P n nth prime
Q(n) number of squarefull numbers less than n
rn,k rectangular number of the form n(n þ k)
Rn nth repunit
sd(n) sum of the digits of n
sd(n, b) sum of the digits of n base b
sp(n, b) prime digital sum of n expressed in base b
sn nth square number
s(n) sum of divisors of n that are less than n
s�(n) Chowla’s function, � (n)� n � 1
S complement of set S
S�(n) psuedo-Smarandache function
Sn nth Suzanne set
Sr(n) sum of the rth powers of the digits of n
Sr,b(n) sum of the rth powers of digits of n in base b
S(n) sum of the squarefree positive integers less than n
Sd(n, b) extended digital sum of n
tn nth triangular number
t(n � k, k) number of divisors of n � k greater than k
T (n) Trigg operator
T m

n nth m-triangular number
un nth Fibonacci number
u(m, n) Ulam (m, n)-numbers
vn nth Lucas number
v(m, n) non-Ulam (m, n)-numbers
V (n) number of perfect numbers less than n
Z(n) Zeckendorf representation function
Zm f0, 1, 2, . . . , m � 1g
Z�m f1, 2, . . . , m � 1g
ª Euler–Mascheroni number
˜n nth differences of a sequence
�(n) Riemann zeta-function
�(n) primeness of a positive integer
Ł(n) excess of the sum of odd divisors of n over the even divisors

of n
º(n) Liouville lambda-function
¸(n) Von Mangolt’s function
¸c(n) Carmichael’s lambda function
�(n) Möbius function
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Table T.1. (cont.)

�(n) sum of the Möbius function over the divisors of n
	(n) number of positive integers k, 1 < k < n, such that k is not a

divisor of n and gcd(k, n) 6¼ 1

(x) number of primes less than or equal to x
r(n) digital root of the positive integer n
�(n) sum of the positive divisors of n
��(n) sum of the unitary divisors of n
�e(n) sum of the even divisors of n
�k(n) sum of the kth powers of the divisors of n
�o(n) sum of the odd divisors of n
� golden ratio
�(n) number of positive divisors of n
�e(n) number of even divisors of n
�k(n) generalized number of divisors of n
�o(n) number of odd divisors of n
�(m, n) number of positive divisors of n which are congruent to m

modulo 4
�(n) number of positive integers less than n and coprime to n
(n) 	(d) summed over the divisors of n
�(n) inner product of primes and powers in the canonical

representation of n
ø(n) number of distinct prime factors of n
�(n) the degree of the positive integer n
ajb a ‘divides’ b
a6 jb a ‘does not divide’ b
pÆ im pÆ ‘exactly divides’ m
jxj absolute value of x
jnj p p-adic valuation of n
½½x�� greatest integer not greater than x
(a0a1 � � � an)b base b expansion of a0a1 � � � an

[a1, a2, . . . , an] simple continued fraction
gcd(a, b) greatest common divisor of a and b
lcm(a, b) least common multiple of a and b
ordn(a) order of a modulo n
a  b (mod n) a is ‘congruent to’ b modulo n
(n

r ) binomial coefficient
( n

p
) Legendre symbolY

djn
product of the divisors of n

X
djn

summation over the divisors of n

�n nth star number
n! n factorial
!n 0! þ � � � þ (n � 1)!
� approximately equal
, equivalence of binary quadratic forms
f � g Dirichlet product of f and g
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Table T.2. Primes less than 10 000

2 151 353 577 811 1049 1297 1559
3 157 359 587 821 1051 1301 1567
5 163 367 593 823 1061 1303 1571
7 167 373 599 827 1063 1307 1579

11 173 379 601 829 1069 1319 1583
13 179 383 607 839 1087 1321 1597
17 181 389 613 853 1091 1327 1601
19 191 397 617 857 1093 1361 1607
23 193 401 619 859 1097 1367 1609
29 197 409 631 863 1103 1373 1613

31 199 419 641 877 1109 1381 1619
37 211 421 643 881 1117 1399 1621
41 223 431 647 883 1123 1409 1627
43 227 433 653 887 1129 1423 1637
47 229 439 659 907 1151 1427 1657

53 233 443 661 911 1153 1429 1663
59 239 449 673 919 1163 1433 1667
61 241 457 677 929 1171 1439 1669
67 251 461 683 937 1181 1447 1693
71 257 463 691 941 1187 1451 1697

73 263 467 701 947 1193 1453 1699
79 269 479 709 953 1201 1459 1709
83 271 487 719 967 1213 1471 1721
89 277 491 727 971 1217 1481 1723
97 281 499 733 977 1223 1483 1733

101 283 503 739 983 1229 1487 1741
103 293 509 743 991 1231 1489 1747
107 307 521 751 997 1237 1493 1753
109 311 523 757 1009 1249 1499 1759
113 313 541 761 1013 1259 1511 1777

127 317 547 769 1019 1277 1523 1783
131 331 557 773 1021 1279 1531 1787
137 337 563 787 1031 1283 1543 1789
139 347 569 797 1033 1289 1549 1801
149 349 571 809 1039 1291 1553 1811
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Table T.2. (cont.)

1823 2131 2437 2749 3083 3433 3733 4073
1831 2137 2441 2753 3089 3449 3739 4079
1847 2141 2447 2767 3109 3457 3761 4091
1861 2143 2459 2777 3119 3461 3767 4093
1867 2153 2467 2789 3121 3463 3769 4099

1871 2161 2473 2791 3137 3467 3779 4111
1873 2179 2477 2797 3163 3469 3793 4127
1877 2203 2503 2801 3167 3491 3797 4129
1879 2207 2521 2803 3169 3499 3803 4133
1889 2213 2531 2819 3181 3511 3821 4139

1901 2221 2539 2833 3187 3517 3823 4153
1907 2237 2543 2837 3191 3527 3833 4157
1913 2239 2549 2843 3203 3529 3847 4159
1931 2243 2551 2851 3209 3533 3851 4177
1933 2251 2557 2857 3217 3539 3853 4201

1949 2267 2579 2861 3221 3541 3863 4211
1951 2269 2591 2879 3229 3547 3877 4217
1973 2273 2593 2887 3251 3557 3881 4219
1979 2281 2609 2897 3253 3559 3889 4229
1987 2287 2617 2903 3257 3571 3907 4231

1993 2293 2621 2909 3259 3581 3911 4241
1997 2297 2633 2917 3271 3583 3917 4243
1999 2309 2647 2927 3299 3593 3919 4253
2003 2311 2657 2939 3301 3607 3923 4259
2011 2333 2659 2953 3307 3613 3929 4261

2017 2339 2663 2957 3313 3617 3931 4271
2027 2341 2671 2963 3319 3623 3943 4273
2029 2347 2677 2969 3323 3631 3947 4283
2039 2351 2683 2971 3329 3637 3967 4289
2053 2357 2687 2999 3331 3643 3989 4297

2063 2371 2689 3001 3343 3659 4001 4327
2069 2377 2693 3011 3347 3671 4003 4337
2081 2381 2699 3019 3359 3673 4007 4339
2083 2383 2707 3023 3361 3677 4013 4349
2087 2389 2711 3037 3371 3691 4019 4357

2089 2393 2713 3041 3373 3697 4021 4363
2099 2399 2719 3049 3389 3701 4027 4373
2111 2411 2729 3061 3391 3709 4049 4391
2113 2417 2731 3067 3407 3719 4051 4397
2129 2423 2741 3079 3413 3727 4057 4409
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Table T.2. (cont.)

4421 4759 5099 5449 5801 6143 6481 6841
4423 4783 5101 5471 5807 6151 6491 6857
4441 4787 5107 5477 5813 6163 6521 6863
4447 4789 5113 5479 5821 6173 6529 6869
4451 4793 5119 5483 5827 6197 6547 6871

4457 4799 5147 5501 5839 6199 6551 6883
4463 4801 5153 5503 5843 6203 6553 6899
4481 4813 5167 5507 5849 6211 6563 6907
4483 4817 5171 5519 5851 6217 6569 6911
4493 4831 5179 5521 5857 6221 6571 6917

4507 4861 5189 5527 5861 6229 6577 6947
4513 4871 5197 5531 5867 6247 6581 6949
4517 4877 5209 5557 5869 6257 6599 6959
4519 4889 5227 5563 5879 6263 6607 6961
4523 4903 5231 5569 5881 6269 6619 6967

4547 4909 5233 5573 5897 6271 6637 6971
4549 4919 5237 5581 5903 6277 6653 6977
4561 4931 5261 5591 5923 6287 6659 6983
4567 4933 5273 5623 5927 6299 6661 6991
4583 4937 5279 5639 5939 6301 6673 6997

4591 4943 5281 5641 5953 6311 6679 7001
4597 4951 5297 5647 5981 6317 6689 7013
4603 4957 5303 5651 5987 6323 6691 7019
4621 4967 5309 5653 6007 6329 6701 7027
4637 4969 5323 5657 6011 6337 6703 7039

4639 4973 5333 5659 6029 6343 6709 7043
4643 4987 5347 5669 6037 6353 6719 7057
4649 4993 5351 5683 6043 6359 6733 7069
4651 4999 5381 5689 6047 6361 6737 7079
4657 5003 5387 5693 6053 6367 6761 7103

4663 5009 5393 5701 6067 6373 6763 7109
4673 5011 5399 5711 6073 6379 6779 7121
4679 5021 5407 5717 6079 6389 6781 7127
4691 5023 5413 5737 6089 6397 6791 7129
4703 5039 5417 5741 6091 6421 6793 7151

4721 5051 5419 5743 6101 6427 6803 7159
4723 5059 5431 5749 6113 6449 6823 7177
4729 5077 5437 5779 6121 6451 6827 7187
4733 5081 5441 5783 6131 6469 6829 7193
4751 5087 5443 5791 6133 6473 6833 7207
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Table T.2. (cont.)

7211 7561 7907 8273 8647 8971 9337 9677
7213 7573 7919 8287 8663 8999 9341 9679
7219 7577 7927 8291 8669 9001 9343 9689
7229 7583 7933 8293 8677 9007 9349 9697
7237 7589 7937 8297 8681 9011 9371 9719

7243 7591 7949 8311 8689 9013 9377 9721
7247 7603 7951 8317 8693 9029 9391 9733
7253 7607 7963 8329 8699 9041 9397 9739
7283 7621 7993 8353 8707 9043 9403 9743
7297 7639 8009 8363 8713 9049 9413 9749

7307 7643 8011 8369 8719 9059 9419 9767
7309 7649 8017 8377 8731 9067 9421 9769
7321 7669 8039 8387 8737 9091 9431 9781
7331 7673 8053 8389 8741 9103 9433 9787
7333 7681 8059 8419 8747 9109 9437 9791

7349 7687 8069 8423 8753 9127 9439 9803
7351 7691 8081 8429 8761 9133 9461 9811
7369 7699 8087 8431 8779 9137 9463 9817
7393 7703 8089 8443 8783 9151 9467 9829
7411 7717 8093 8447 8803 9157 9473 9833

7417 7723 8101 8461 8807 9161 9479 9839
7433 7727 8111 8467 8819 9173 9491 9851
7451 7741 8117 8501 8821 9181 9497 9857
7457 7753 8123 8513 8831 9187 9511 9859
7459 7757 8147 8521 8837 9199 9521 9871

7477 7759 8161 8527 8839 9203 9533 9883
7481 7789 8167 8537 8849 9209 9539 9887
7487 7793 8171 8539 8861 9221 9547 9901
7489 7817 8179 8543 8863 9227 9551 9907
7499 7823 8191 8563 8867 9239 9587 9923

7507 7829 8209 8573 8887 9241 9601 9929
7517 7841 8219 8581 8893 9257 9613 9931
7523 7853 8221 8597 8923 9277 9619 9941
7529 7867 8231 8599 8929 9281 9623 9949
7537 7873 8233 8609 8933 9283 9629 9967

7541 7877 8237 8623 8941 9293 9631 9973
7547 7879 8243 8627 8951 9311 9643
7549 7883 8263 8629 8963 9319 9649
7559 7901 8269 8641 8969 9323 9661
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Table T.3. The values of �(n), �(n), j(n), �(n), ø(n), and �(n) for natural

numbers less than or equal to 100.

n �(n) �(n) j(n) �(n) ø(n) �(n)

1 1 1 1 1 1 1
2 2 3 1 �1 1 1
3 2 4 2 �1 1 1
4 3 7 2 0 1 2
5 2 6 4 �1 1 1
6 4 12 2 1 2 2
7 2 8 6 �1 1 1
8 4 15 4 0 1 3
9 3 13 6 0 1 2

10 4 18 4 1 2 2
11 2 12 10 �1 1 1
12 6 28 4 0 2 3
13 2 14 12 �1 1 1
14 4 24 6 1 2 2
15 4 24 8 1 2 2
16 5 31 8 0 1 4
17 2 18 16 �1 1 1
18 6 39 6 0 2 3
19 2 20 18 �1 1 1
20 6 42 8 0 2 3
21 4 32 12 1 2 2
22 4 36 10 1 2 2
23 2 24 22 �1 1 1
24 8 60 8 0 2 4
25 3 31 20 0 1 2
26 4 42 12 1 2 2
27 4 40 18 0 1 3
28 6 56 12 0 2 3
29 2 30 28 �1 1 1
30 8 72 8 �1 3 3
31 2 32 30 �1 1 1
32 6 63 16 0 1 5
33 4 48 20 1 2 2
34 4 54 16 1 2 2
35 4 48 24 1 2 2
36 9 91 12 0 2 4
37 2 38 36 �1 1 1
38 4 60 18 1 2 2
39 4 56 24 1 2 2
40 8 90 16 0 2 4
41 2 42 40 �1 1 1
42 8 96 12 �1 3 3
43 2 44 42 �1 1 1
44 6 84 20 0 2 3
45 6 78 24 0 2 3
46 4 72 22 1 2 2
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Table T.3. (cont.)

n �(n) �(n) j(n) �(n) ø(n) �(n)

47 2 48 46 �1 1 1
48 10 124 16 0 2 5
49 3 57 42 0 1 2
50 6 93 20 0 2 3
51 4 72 32 1 2 2
52 6 98 24 0 2 3
53 2 54 52 �1 1 1
54 8 120 18 0 2 4
55 4 72 40 1 2 2
56 8 120 24 0 2 4
57 4 80 36 1 2 2
58 4 90 28 1 2 2
59 2 60 58 �1 1 1
60 12 168 16 0 3 4
61 2 62 60 �1 1 1
62 4 96 30 1 2 2
63 6 104 36 0 2 3
64 7 127 32 0 1 6
65 4 84 48 1 2 2
66 8 144 20 �1 3 3
67 2 68 66 �1 1 1
68 6 126 32 0 2 3
69 4 96 44 1 2 2
70 8 144 24 �1 3 3
71 2 72 70 �1 1 1
72 12 195 24 0 2 5
73 2 74 72 �1 1 1
74 4 114 36 1 2 2
75 6 124 40 0 2 3
76 6 140 36 0 2 3
77 4 96 60 1 2 2
78 8 168 24 �1 3 3
79 2 80 78 �1 1 1
80 10 186 32 0 2 5
81 5 121 54 0 1 4
82 4 126 40 1 2 2
83 2 84 82 �1 1 1
84 12 224 24 0 3 4
85 4 108 64 1 2 2
86 4 132 42 1 2 2
87 4 120 56 1 2 2
88 8 180 40 0 2 4
89 2 90 88 �1 1 1
90 12 234 24 0 3 4
91 4 112 72 1 2 2
92 6 168 44 0 2 3
93 4 128 60 1 2 2
94 4 144 46 1 2 2
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Table T.3. (cont.)

n �(n) �(n) j(n) �(n) ø(n) �(n)

95 4 120 72 1 2 2
96 12 252 32 0 2 6
97 2 98 96 �1 1 1
98 6 171 42 0 2 3
99 6 156 60 0 2 3

100 9 217 40 0 2 4
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Answers to selected exercises

Exercises 1.1

1. Even� even ¼ 2n� 2m ¼ 2 (m� n) which is even. Odd� even ¼
(2nþ 1)� 2m ¼ 2(n� m)þ 1 which is odd. Oddþ odd ¼ (2n þ
1)þ (2mþ 1) ¼ 2 (mþ nþ 1) which is even. Odd� odd ¼ (2n þ
1)� (2mþ 1) ¼ 2 (m� n) which is even.

2. 8, 10, 14, 15, 16, 18, 21, 22, 24, 26.

3. tn þ t nþ1 ¼ n(nþ 1)

2
þ (nþ 1)(nþ 2)

2
¼ (nþ 1)2 ¼ snþ1:

4. 9tn þ 1 ¼ t3nþ1; 25tn þ 3 ¼ t5nþ2; 49tn þ 6 ¼ t7nþ3; (2mþ 1)2tn þ
tm ¼ tf(2mþ1)ng þ m.

5. (tn)
2 � (t n�1)

2 ¼ n(nþ 1)

2

� �2
� (n� 1)n

2

� �2

¼ n2

4
[(nþ 1)2 � (n � 1)2] ¼ n3.

6. t608 ¼ 185 136 ¼ 56 . 57 . 58.

7. n(n þ 1)(n þ 2)(n þ 3) þ 1 ¼ n4 þ 6n3 þ 11n2 þ 6n þ 1 ¼ (n2 þ
3nþ 1)2:

8. �n ¼ sn þ 4tn�1 ¼ n2 þ 4
(n� 1)n

2

� �
¼ 3n2 � 2n.

9. 8k þ 3 ¼ 8(tn þ tm þ tr) þ 3 ¼ 4n(n þ 1) þ 4m(m þ 1) þ 4r(r þ
1) þ 3 ¼ (2nþ 1)2 þ (2mþ 1)2 þ (2r þ 1)2:

10. In odd rows the middle term, (2nþ 1)2, is flanked on the left by

[(2nþ 1)2 � 2n], [(2nþ 1)2 � 2nþ 2], . . . , [(2nþ 1)2 � 2] and on

the right by [(2nþ 1)2 þ 2n], [(2nþ 1)2 þ 2n� 2], . . . , [(2nþ 1)2

þ 2]. Therefore, the sum of the 2nþ 1 terms on that row is given by

(2nþ 1) . (2nþ 1)2 ¼ (2nþ 1)3. In even rows, the terms on the left

side are [(2n)2 � (2n� 1)], [(2n)2 � (2n� 3)], . . . , [(2n)2 � 1] and

on the right side are [(2n)2 þ (2n� 1)], [(2n)2 þ (2n� 3)],

. . . , [(2n)2 þ 1]. Therefore, 2n terms sum to 2n . (2n)2 ¼ (2n)3.
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11. (a) s2nþ1 ¼ (2n þ 1)2 ¼ 4n2 þ 4n þ 1 ¼ n2 þ (n þ 1)2 þ 2n(n þ 1)

¼ sn þ snþ1 þ 2on.

(b) s2n ¼ (2n)2 ¼ 4n2 ¼ (n � 1)n þ n(n þ 1) þ 2n2 ¼ on�1 þ on þ
2sn.

12. sn þ t n�1 ¼ n2 þ (n� 1)n

2
¼ n(3n� 1)

2
¼ p5 n.

13. p5 n ¼ n(3n� 1)

2
¼ 3

(n� 1)n

2

� �
þ n ¼ 3t n�1 þ n.

14. 3 . p5 n ¼ 3 .
n(3n� 1)

2
¼ (3n� 1)(3n)

2
¼ t3n�1.

15. n ¼ 24.

16. t9nþ4 � t3nþ1 ¼ (9nþ 4)(9nþ 5)

2
� (3nþ 1)(3nþ 2)

2

¼ 72n2 þ 72nþ 18

2
¼ (6nþ 3)2 ¼ [3(2nþ 1)]2.

17. Both sides equal (nþ 1)(nþ 2)(n2 þ 3nþ 4)=8.

18. t2mnþm ¼ (2mnþ m)(2mnþ mþ 1)

2
¼ 4m2n(nþ 1)

2

þ m(mþ 1)

2
þ mn ¼ 4m2 tn þ tm þ mn.

19. 2, 8, 20, 40, 70, 112, 168, 240, 330, 440.

20. p6 n ¼ 2n2 � n.

21. 40 755 ¼ t285 ¼ p5165 ¼ p6143.

22. We have

pmn ¼
n� 1

0

� �
þ (m� 1)

n� 1

1

� �
þ (m� 2)

n� 1

2

� �

¼ 1þ (m� 1)(n� 1)þ (m� 2)(n� 1)(n� 2)

2

¼ (m� 2)n2

2
� (m� 4)n

2
:

23. pmn þ p3 n�1 ¼ (m� 2)n2

2
� (m� 4)n

2

� �
þ (n� 1)n

2

¼ (m� 1)n2

2
� (m� 3)n

2

¼ pmþ1
n.

24. pmn þ pmr þ nr(m� 2) ¼ (m� 2)n2

2
� (m� 4)n

2

� �

þ (m� 2)r2

2
� (m� 4)r

2

� �
þ nr(m� 2)
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¼ (m� 2)(n2 þ 2nr þ r2)

2
� (m� 4)(nþ r)

2
¼ pmnþr.

25. pmn ¼ (m� 2)n2

2
� (m� 4)n

2
¼ 1

2
(mn2 � 2n2 � nmþ 4n)

¼ 1

2
(n2 þ nþ mn2 � mn� 3n2 þ 3n)

¼ 1

2
[n(nþ 1)þ (m� 3)(n2 � n)]

¼ n(nþ 1)

2
þ (m� 3)(n� 1)n

2
¼ p3 n þ (m� 3) p3 n�1.

26. 240 ¼ 3 . 80 ¼ 8 . 30 ¼ 15 . 16. Hence, 120 ¼ p413 ¼ p68 ¼ p315.

27. 8 . 225 . 6þ 42 ¼ 1042.

28. If x is an m-gonal number, then for some positive integers m and

n, x ¼ (m� 2)n2=2� (m� 4)n=2. Hence, 2x� (m� 2)n2 ¼ �(m

� 4)n, so 4x2 � 4x(m� 2)n2 þ (m� 2)2n4 ¼ (m� 4)2n2. Therefore

8x(m� 2)þ (m� 4)2 ¼ (2x=nþ (m� 2)n)2.

29. P3 n ¼ n� 1

0

� �
þ 3

n� 1

1

� �
þ 3

n� 1

2

� �
þ n� 1

3

� �

¼ 1þ 3(n� 1)þ 3
(n� 1)(n� 2)

2
þ (n� 1)(n� 2)(n� 3)

6

¼ n3

6
þ n2

2
þ n

3
¼ n(nþ 1)(nþ 2)

6
.

30. 1540 ¼ t55 ¼ P320; 7140 ¼ t119 ¼ P3
34.

31. P3 n�1 þ P3
n ¼ 1

6
(n� 1)n(nþ 1)þ 1

6
n(nþ 1)(nþ 2)

¼ 1

6
n(nþ 1)(2nþ 1) ¼ P4

n.

32. P5 n ¼ P4 n�1 þ P4
n ¼ 1

6
(n� 1)n(2n� 1)þ 1

6
n(nþ 1)(2nþ 1)

¼ 1

3
n(2n2 þ 1).

33. Since Pmn ¼ pm1 þ pm2 þ � � � þ pmn and

pmn ¼ (m� 2)n2

2
� (m� 4)n

2
, it follows that
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Pmn ¼ m� 2

2

� �
(12 þ 22 þ � � � þ n2)� m� 4

2

� �
(1þ 2 þ � � � þ n)

¼ m� 2

2

� �
n(nþ 1)(2nþ 1)

6

� �
� m� 4

2

� �
n(nþ 1)

2

� �

¼ nþ 1

6

� �
2(m� 2)

2
n2 � 2(m� 4)

2
nþ n

� �
¼ nþ 1

6

� �
(2 pmn þ n):

34. Since On ¼ P4
n þ P4

n�1 ¼ n(2n2 þ 1)=3, the first 10 octahedral num-

bers are given by 1, 6, 19, 44, 85, 146, 231, 344, 489, 670.

35. f 2 n ¼ nþ 2� 1

2

� �
¼ nþ 1

2

� �
¼ n(nþ 1)

2
¼ tn:

f 3 n ¼ nþ 3� 1

3

� �
¼ nþ 2

3

� �
¼ (nþ 2)(nþ 1)n

3

¼ (n� 1)3 � (n� 1)

6
¼ F 4

n.

36. f 3 n�1 þ f 3 n ¼ nþ 1

3

� �
þ nþ 2

3

� �

¼ (nþ 1)n(n� 1)

6
þ (nþ 2)(nþ 1)n

6
¼ n(nþ 1)(2nþ 1)

6
.

37. n . f r nþ1 ¼ n
nþ r

r

� �
¼ n(nþ r)!

r!n!
¼ (r þ 1)(nþ r)!

(r þ 1)!(n� 1)!

¼ (nþ r) f rþ1
n.

38. xyþ xþ y ¼ (n2 þ nþ 1)2; yzþ yþ z ¼ (2n2 þ 3nþ 3)2; xzþ x þ
z ¼ (2n2 þ nþ 2)2; xyþ z ¼ (n2 þ nþ 2)2; yxþ x ¼ (2n2 þ 3n þ
2)2; zxþ y ¼ (2n2 þ nþ 1)2.

39. If x, y, A, h denote respectively the legs, area, and hypotenuse of the

right triangle, then x2, y2 ¼ h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4 � 16A2

p

2
.

40. 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953.

Exercises 1.2

1. 13 112 221, 1 113 213 211, 31 131 211 131 221.

2. If a four occurs in a look and say sequence then either a four appeared in

the previous term or there were four consecutive repeated digits in the

previous term. However, because of the linguistic nature of the sequence

four or more consecutive repeated digits cannot occur except as the first

term. Working backwards, we find that there must be a four in the first

or second term. A similar argument applies for the digits 5 through 9.
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3. 1, 5, 14, 16, 41, 43, 47, 49, 122, 124.

4. Only (a).

5. 101, 501, 505. Rule: add 4 and reverse the digits.

6. 84, 59, 17. Rule to generate an: add nþ 2 and reverse the digits.

7. (a) Happy: 392, 94, 97, 130, 10, 1.

(b) Happy: 193, 91, 82, 68, 100, 1.

(c) Sad: 269, 121, 6, 36, 45, 41, 17, 50, 25, 29, 85, 89, 145, 42, 20, 4.

(d) Sad: 285, 93, 90, 81, 65, 61, 37, 58, 89.

(e) Sad: 521, 30, 9, 81.

8. There are:

five of order 1: 1, 153, 370, 371, and 407

two of order 2: 1459, 919, and 136, 244

two of order 3: 133, 55, 250, and 217, 352, 160.

9. They are: 1; 1634; 8208; 9747; 6514, 2178; and 13 139, 6725, 4338,

4514, 1138, 4179, 9219.

10. (a) 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1, 0, 1, 1, 2, 3, 5, 8, 3, 1,

4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7, 5, 2,

7, 9, 6, 5, 1 (60); (b) 2, 0, 2, 2, 4, 6, 0, 6, 6, 2, 8, 0, 8, 8, 6, 4, 0, 4, 4, 8

(20); (c) 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7 (12); (d) 2, 6, 8, 4 (4); (e) 5, 5, 0

(3); (f ) 0 (1). The sum of the periods is 100.

11. (a) 8, 8, 4, 2, 8, 6,

(b) 4, 8, 2, 6, 2, 2,

(c) 3, 9, 7, 3, 1, 3,

(d) 1, 7, 7, 9, 3, 7,

(e) 6, 4, 4,

(f ) 9, 9, 1,

(g) 6,

(h) 5.

12. From the recursive definition of Fibonacci numbers, it follows that u3n
is divisible by 2, for any natural number n.

13. Let the sequence be given by a, b, aþ b, aþ 2b, 2aþ 3b, 3aþ 5b,

5aþ 8b, 8aþ 13b, 13aþ 21b, 21aþ 34b. The sum of the terms

equals 55aþ 88b ¼ 11(5aþ 8b).

14. Set the expression equal to x. Square both sides to obtain x2 ¼ xþ 1,

whose root is �.
15. Let jABj ¼ a, then jADj2 ¼ jABj2 þ jBDj2 ¼ a2 þ (a=2)2 ¼ (5

4
)a2.

jACj ¼ jAEj ¼ jADj � jEDj ¼ jADj � jBDj

¼ a

ffiffiffi
5

p

2
� a

2

� �
¼ a

ffiffiffi
5

p � 1

2

� �
:
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jABj
jACj ¼

a

a

ffiffiffi
5

p � 1

2

� � ¼ 2ffiffiffi
5

p � 1
¼ �:

16. jEFj2 ¼ jEBj2 ¼ jBCj2 þ jECj2 ¼ a2 þ (a=2)2 ¼ (5
4
)a2.

jAGj ¼ jDFj ¼ jDEj þ jEFj ¼ a

2
þ

ffiffiffi
5

p

2
a ¼ 1þ ffiffiffi

5
p

2

� �
a:

Hence, jAGj=jADj ¼ �:
17. Since ��1 ¼ � , multiplying each term by � gives the desired result.

18. 1, 3, 4, 7, 11, 18, 29, 47, 76, 123.

19. 5778 ¼ t107 ¼ v18.

20. Let bn ¼ �n þ � n, then bnþ2 ¼ �nþ2 þ � nþ2 ¼ (�nþ1 þ �n)þ (� nþ1

þ � n) ¼ (�nþ1 þ � nþ1)þ (�n þ � n) ¼ bnþ1 þ bn, with b1 ¼ � þ
� ¼ 1and b2 ¼ �2 þ � 2 ¼ 3.Therefore,bn ¼ �n þ � n ¼ vn.

21. 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768,

10 609, 19 513, 35 890, 66 012. (Tribonacci)

22. 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10 671,

20 569, 39 648, 76 424, 147 312. (Tetranacci)

23. (a) 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

(b) 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20,

10, 5, 16, 8, 4, 2, 1.

(c) 121, 364, 182, 91, 274, 37, 412, 206, 103, 310, 155, 466, 233, 700,

350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,

668, 334, 167, 502, 251, 754, 377, 7132, 566, 283, 850, 425, 1276,

638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858,

2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,

9232, 4616, 2308, 1154, 577, 1723, 866, 433, 1300, 640, 325, 976,

488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,

10, 5, 16, 8, 4, 2, 1.

24. 1, 2; 7, 20, 10, 5, 14; and 17, 50, 25, 74, 37, 110, 55, 164, 82, 41,

122, 61, 182, 91, 272, 136, 68, 34.

25. (a) 9963 (b) 9421 9963

3699 1249 3699

6264 8172 6264

6642 8721 6642

2466 1278 2466

4176 7443 4176

7641 7443 7641

1467 3447 1467

6174 3996 6174
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26. 495.

27. (a) 936 (b) 991 (c) 864

639 199 468

297 792 396

792 297 (c) 693

1089 1089 1089

28. 2538.

29. 1 2 4 8 7 5, 3 6, and 9.

30. When 9 is added to a natural number the 10s digit is increased by 1

and the units digit decreased by 1 leaving a net change of zero.

31. 220, 224, 232, 239, 253, 263, 274, 287, 304, 311, 316, 326, 337, 350,

358, 374, 388, 407, 418;

284, 298, 317, 328, 341, 349, 365, 379, 398, 418.

32. Pair up the numbers as follows:

0 � 999 999 sum of digits ¼ 54

1 � 999 998 sum of digits ¼ 54

2 � 999 997 sum of digits ¼ 54
. . . . . . . . . . . . . . . . . .

499 999 � 500 000 sum of digits ¼ 54

1 000 000 sum of digits ¼ 1

total sum of digits ¼ 500 000 . 54þ 1 ¼ 27 000 001.

33. I: K2, K4, K5, K7, K8, K10; II: K3, K6; III: K9.

34. 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97.

35. If all the digits are less than 5, then double the number will have the

sum of its digits equal to 20. If two of the digits are 5, and all the rest

zero, double the number will have the sum 2. In all other cases, the

sum of the digits of twice the number will be 20� 9 ¼ 11.

36. (a) Two: 543, 60, 0.

(b) Four: 6989, 3888, 1536, 90, 0.

(c) Seven: 86 898, 27 648, 2688, 768, 336, 54, 20, 0.

(d) Three: 68 889 789, 13 934 592, 29 160, 0.

(e) Ten: 3 778 888 999, 438 939 648, 4 478 976, 338 688, 27 648, 2688,

768, 336, 54, 20, 0.

37. 39; 77; 679.

38. 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, 23, 28, 32, 34, 39

39. 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, 24, 25, 29, 30, 35

40. 2, 5, 7, 9, 11, 12, 13, 15, 19, 23, 27, 29, 35, 37, 41, 43, 45, 49, 51, 55,

59, 63, 65, 69, 75, 77, 79, 87, 91, 93

41. 2, 3, 5, 7, 8, 9, 11, 13, 19, 22, 25, 27, 28, 37, 39

42. 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40
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43. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29

44. 3, 4, 6, 9, 10, 17, 18, 25, 30, 32, 37, 44, 45, 46, 58

45. 2, 3, 6, 12, 18, 24, 36, 48

Exercises 1.3

1. P(1): 1 ¼ 1:

P(k þ 1): [12 þ 22 þ � � � þ k2]þ (k þ 1)2

¼ k(k þ 1)(2k þ 1)

6
þ (k þ 1)2

¼ k þ 1

6

� �
[k(2k þ 1)þ 6(k þ 1)]

¼ (k þ 1)(k þ 2)(2k þ 3)

6
:

2. P(1): 1 ¼ 1:

P(k þ 1): [12 þ 32 þ � � � þ (2k � 1)2]þ (2k þ 1)2

¼ (4k3 � k)

3

� �
þ (2k þ 1)2

¼ 4k3 � k þ 3(2k þ 1)2

3

¼ 4k3 þ 12k2 þ 11k þ 3

3

¼ 4(k þ 1)3 � (k þ 1)

3
:

3. P(1): 1
2
¼ 1

2
.

P(k þ 1):
1

2
þ 1

6
þ 1

12
þ � � � þ 1

k(k þ 1)

� �
þ 1

(k þ 1)(k þ 2)

¼ k

k þ 1
þ 1

(k þ 1)(k þ 2)
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¼ 1

k þ 1

� �
k þ 1

k þ 2

� �

¼ 1

k þ 1

� �
k2 þ 2k þ 1

k þ 2

� �

¼ k þ 1

k þ 2
:

4. P(1): 1 ¼ 1:

P(k þ 1): [t1 þ t2 þ � � � þ tk]þ t kþ1

¼ k(k þ 1)(k þ 2)

6
þ (k þ 1)(k þ 2)

2

¼ (k þ 1)(k þ 2)

6

� �
(k þ 3):

5. P(1): 1 ¼ 1:

P(k þ 1): [13 þ 23 þ 33 þ � � � þ k3]þ (k þ 1)3

¼ tk
2 þ (k þ 1)3

¼ k2(k þ 1)2

4
þ (k þ 1)3

¼ (k þ 1)2

4

� �
[k2 þ 4(k þ 1)]

¼ (k þ 1)2(k þ 2)2

4

¼ (t kþ1)
2:

6. P(1): 1þ a > 1þ a:

P(k þ 1): (1 þ a)kþ1 . (1 þ ka)(1 þ a) ¼ 1 þ (k þ 1)a þ ka2 .

1þ (k þ 1)a:

7. P(4): 4! ¼ 24. 16 ¼ 42. Suppose that k!. k2. Now (k þ 1)! .

k(k!). k(k2). 3(k2) ¼ 2k2 þ k2 . k2 þ 2k þ 1 ¼ (k þ 1)2:
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8. P(1): u1 ¼ 1 ¼ u2.

P(k þ 1): [u1 þ u3 þ � � � þ u2k�1]þ u2kþ1 ¼ u2k þ u2kþ1 ¼ u2kþ2:

9. P(1): u21 ¼ 1 ¼ u1 . u2.

[u21 þ u22 þ � � � þ u2k]þ u2kþ1 ¼ ukukþ1 þ u2kþ1

¼ ukþ1(uk þ ukþ1)

¼ ukþ1ukþ2:

10. P(1): u2 ¼ u3 � 1:

P(k þ 1): [u2 þ u4 þ u6 þ � � � þ u2k]þ u2kþ2 ¼ u2kþ1 � 1þ u2kþ2

¼ u2kþ3 � 1:

11. Since u1 ¼ 1. 1=� and u2 ¼ 1 > �0, let uk > �k�2, for 1 < k, n;

hence, un�2 > �n�4 and un�1 > �n�3. In addition, un ¼ un�2 þ un�1 >

�n�3 þ �n�4 ¼ (1þ �)�n�4 ¼ �2�n�4 ¼ �n�2 and the result follows

from the principle of mathematical induction.

12. For any positive integer n, u2nþ1 � u2n ¼ (unþ1 þ un)(unþ1 � un)

¼ unþ2un�1.

13. P(1): u1 þ v1 ¼ 1þ 1 ¼ 2 ¼ 2u2: Suppose the formula is true when

1 < n < k. We have ukþ1 þ vkþ1 ¼ (uk þ uk�1)þ (vk þ vk�1) ¼
(uk þ vk)þ (uk�1 þ vk�1) ¼ 2ukþ1 þ 2uk ¼ 2ukþ2:

14. P(2): v1 þ v3 ¼ 1þ 4 ¼ 5 ¼ 5u1. Suppose the formula is true for

1 < n < k. We have

5ukþ1 ¼ 5uk þ 5uk�1 ¼ (vk�1 þ vkþ1) þ (vk�2 þ vk) ¼ (vk�1 þ
vk�2)þ (vk þ vkþ1) ¼ vk þ vkþ2.

15. P(2): v2 ¼ 3 ¼ 2þ 1 ¼ u3 þ u1. P(3): v3 ¼ 4 ¼ 3þ 1 ¼ u4 þ u2.

Suppose the formula is true for k and k � 1. We have vkþ1 ¼ vk þ
vk�1 ¼ (uk�1 þ ukþ1) þ (uk�2 þ uk) ¼ (uk�1 þ uk�2)þ (uk þ
ukþ1) ¼ uk þ ukþ2.

16. Since un ¼ (�n � � n)=(�� � ) and vn ¼ �n þ � n, for any positive

integer n,

un . vn ¼ �n � � n

�� �
. (�n þ � n) ¼ �2n � � 2n

�� �
¼ u2n:

17. From the two previous exercises, for any positive integer k,

u2kþ2 ¼ ukþ1vkþ1 ¼ (ukþ2 þ uk)(ukþ2 � uk) ¼ u2kþ2 � u2k .

18. P(2): u3 . u1 þ (�1)3 ¼ 2� 1 ¼ 1 ¼ u22. Suppose that (�1)kþ1 ¼
u2k � ukþ1uk�1; then

(�1)kþ2 ¼ �u2k þ ukþ1uk�1

¼ �ukuk þ ukþ1(ukþ1 � uk)

¼ u2kþ1 � uk(ukþ1 þ uk)

¼ u2kþ1 � ukukþ2:

Chapter 1 345



19. S being infinite leads to a contradiction of the well-ordering principle.

20. Suppose that a is an integer such that 0, a, 1. Then 1. a.

a2 . a3 . � � � making fa, a2, a3, . . .g an infinite set of positive inte-

gers having no least element, contradicting the well-ordering principle.

21. The result follows by induction or from the fact that

r

r

� �
þ r þ 1

r

� �
þ r þ 2

r

� �
þ � � � þ nþ r � 1

r

� �
¼ nþ r

r þ 1

� �
:

Exercises 1.4

1. 1 533 776 805 ¼ p355 385 ¼ p531 977 ¼ p627 693:

2. 55, 66, 171, 595, 666.

3. (798 644)2 ¼ 637 832 238 736; (1 270 869)2 ¼ 1 615 108 015 161:

4. (54 918)2 ¼ 3 015 986 724; (84 648)2 ¼ 7 165 283 904.

5. No, 11 8262 ¼ 139 854 276, ‘0’ is not represented. In Hill’s defense, it

should be noted that at the time many did not consider 0 to be a digit.

6. 90 . 16 583 742 ¼ 1 492 536 780.

7. 428 571 ¼ 3 . 142 857.

8. (76)2 ¼ 5776; (625)2 ¼ 390 625.

9. 325 ¼ t25, 195 625 ¼ t625, 43 959 376 ¼ t9376.

10. 2972 ¼ 88 209 and 88þ 209 ¼ 297.

142 8572 ¼ 20 408 122 449 and 20 408þ 122 449 ¼ 142 857.

1 111 111 1112 ¼ 1 234 567 900 987 654 321 and

123 456 790þ 0 987 654 321 ¼ 1 111 111 111.

11. 153 ¼ 13 þ 53 þ 33; 371 ¼ 33 þ 73 þ 13.

12. 165 033 ¼ (16)3 þ (50)3 þ (33)3.

13. (a) 43 ¼ 42 þ 33,

(b) 63 ¼ 62 þ 33,

(c) 89 ¼ 81 þ 92,

(d) 132 ¼ 11 þ 31 þ 27.

14. 2592 ¼ 2592.

15. 4!þ 0!þ 5!þ 8!þ 5! ¼ 40 585.

16. 21 9783 4 ¼ 87 912, 219 9783 4 ¼ 879 912, 10 9893 9 ¼ 98 901.

17. The sum equals t1 þ t2 þ � � � þ t12 or 364 days.

18. The answer represents the month and day that you were born.

19. The result follows from the fact that 7 . 143 ¼ 1001.

20. Solve (10xþ y)=(10yþ z) ¼ x

z
or 9xz ¼ y(10x� z) to obtain
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16

64
,
19

95
,
26

65
,
49

98
,
11

11
,
22

22
, . . . ,

99

99
:

21. 1 ¼ (9þ 9� 9)=9,

2 ¼ (9=9)þ (9=9),

3 ¼ (9þ 9þ 9)=9,

4 ¼ (9=
p
9)þ (9=9),

5 ¼ 9� (9=9)�p
9,

6 ¼ 9þ 9� 9�p
9,

7 ¼ 9þ (9=9)�p
9,

8 ¼ (
p
9)(

p
9)� (9=9),

9 ¼ (9þ 9þ 9)=
p
9,

10 ¼ (99� 9)=9,

11 ¼ 9þp
9� 9=9,

12 ¼ (99þ 9)=9,

13 ¼ 9þp
9þ 9=9,

14 ¼ 99=9þp
9,

15 ¼ 9þ 9� 9=
p
9,

16 ¼ 9þ 9�p
9þ :9,

17 ¼ 9þ 9� 9=9,

18 ¼ 9þ 9þ 9� 9,

19 ¼ 9þ 9þ 9=9,

20 ¼ 99=9þ 9,

21 ¼ 9þ 9þ 9=
p
9,

22 ¼ 9þ 9þp
9þ :9,

23 ¼ 9
p
9�p

9� :9,

24 ¼ 9þ 9þ 9�p
9,

25 ¼ 9
p
9� :9� :9:

22. Possible answers include the following.

0 ¼ (9� 9)þ (9� 9) ¼ (
p
9�p

9)þ (
p
9�p

9)

¼ (9� 9)� (9� 9) ¼ (
p
9�p

9)� (
p
9�p

9)

¼ (9þ 9)� (9þ 9) ¼ (
p
9 þp

9)� (
p
9þp

9)

¼ (9� 9)þ (
p
9�p

9) ¼ (9=9)� (9=9) ¼ (
p
9=

p
9)� (9=9)

¼ (
p
9=

p
9)� (

p
9=

p
9) ¼ 9 . 9� 9 . 9

¼ p
9 .

p
9�p

9 .
p
9 ¼ (9

p
9=9)�p

9 ¼ 9� 9(9=9)

¼ 9� 9(
p
9=

p
9) ¼ 9 .

p
9� 9 .

p
9

¼ 9�p
9�p

9�p
9 ¼ (9

p
9=

p
9)� 9

¼ (:9þ :9)� (:9þ :9) ¼ (:9� :9)� (:9� :9)

¼ (:9� :9)þ (:9� :9) ¼ (:9=:9)� (:9=:9) ¼ (9� 9)þ (:9� :9)

¼ (:9� :9)þ (
p
9�p

9) ¼ (9� 9)� (:9� :9):

23. 1 ¼ (4þ 4� 4)=4,

2 ¼ (4=4)þ (4=4),

3 ¼ (4þ 4þ 4)=4,

4 ¼ (4=
p
4)þ (4=

p
4),

5 ¼ 4þ (
p
4þp

4)=4,

6 ¼ 4þ (4þ 4)=4,

7 ¼ 4þ 4� 4=4,

8 ¼ 4þ 4þ (4� 4),

9 ¼ 4þ 4þ (4=4),

10 ¼ 4þ 4þ (4=
p
4),

11 ¼ (4!� (4=
p
4)=

p
4,

12 ¼ 4 . (4� (4=4)),

13 ¼ (44)=4þp
4,

14 ¼ 4 . 4� (4=
p
4),

15 ¼ 4 . 4� (4=4),

16 ¼ 4þ 4þ 4þ 4,

17 ¼ 4 . 4þ (4=4),

18 ¼ 4 . 4þ (4=
p
4),

19 ¼ 4!� 4� (4=4),

20 ¼ 4 . (4þ (4=4)),

21 ¼ 4!� 4þ 4=4,

22 ¼ ((44)=4) .
p
4,

23 ¼ 4!� (
p
4þp

4)=4,

24 ¼ 4 . 4þ 4þ 4,

25 ¼ 4!þ (
p
4þp

4)=4:
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24: lim
n!1

unþ1

un
¼ lim

n!1
�nþ1 � � nþ1

�n � � n
¼ �,

since

limn!1� nþ1 ¼ limn!1� n ¼ 0,

while

limn!1�nþ1 ¼ limn!1�n ¼ 1:

25. If x1 ¼ x2 ¼ � � � ¼ xn�2 ¼ 1, xn�1 ¼ 2, and xn ¼ n, x1 þ x2 þ � � �
þ xn ¼ x1 . x2 � � � xn ¼ 2n.

26:
X1
n¼1

1

tn
¼

X1
n¼1

2

n(nþ 1)
¼ 2

X1
n¼1

1

n
� 1

nþ 1

� �
¼ 2:

27. n ¼ 84.

29. Thursday

31. June 25, 1963

32. October 2, 1917

33. Tuesday

34. (a) Tuesday; (b) Wednesday; (c) Saturday.

35. 10

36. 1–8

2–7

3–6

4–5

9–16

10–15

11–14

12–13

17–32

18–31

19–30

20–29

21–28

22–27

23–26

24–25

33–48

34–47

35–46

36–45

37–44

38–43

39–42

40–41

37. 8, 14, 16, 18, and every even integer greater than 22.

38. There are 16 fifth order zigzag numbers, namely 24 351, 25 341,

34 251, 35 241, 45 231, 14 352, 15 342, 34 152, 35 142, 45 132, 14 253,

15 243, 24 153, 25 143, 13 254, and 23 154.

39. B6 ¼ 1
42
, B8 ¼ � 1

30
, and B10 ¼ 5

66
.

40. 2, 4, 17, 48, 122, 323. No.

41. A1 ¼ 1 1

1 0

� �
¼ u2 u1

u1 u0

� �
,

Anþ1 ¼ An . A ¼ unþ1 un
un un�1

� �
. 1 1

1 0

� �
¼ (unþ1 þ un) unþ1

(un þ un�1) un

� �

¼ unþ2 unþ1

unþ1 un

� �
:

42. det(An) ¼ (�1)n.

43. 2

44. (a þ 1)(b þ 1)(c þ 1) þ (a � 1)(b � 1)(c � 1) ¼ abc þ ac þ bc þ c

þ ab þ a þ b þ 1 þ abc � ac � bc þ c � ab þ a þ b � 1 ¼ 2(a þ
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b þ c þ abc).

45. [a4 � (ab þ bc þ ac)2] þ [b4 � (ab þ bc þ ac)2] ¼ (a2 � ab � bc �
ac)(a2 þ ab þ bc þ ac) þ (b2 � ab � bc � ac)(b2 þ ab þ bc þ ac)

¼ (a2 � ab � bc � ac)[a(a þ b þ c) þ bc] þ (b2 � ab � bc �
ac)[b(a þ b þ c) þ ac] ¼ (a2 � ab � bc � ac)(bc) þ (b2 � ab � bc

� ac)(ac) ¼ (�c2)(a2 þ 2ab þ b2) ¼ c4.

46. The formula works for n ¼ 1, 2, . . . , 8, but not for n. 8.

47. (a) (1) Great Pyramid of Khufu

(2) Hanging Gardens of Babylon

(3) Mausoleum at Halicarnassus

(4) Artemision at Ephesus

(5) Colossus of Rhodes

(6) Olympian Zeus

(7) Pharos at Alexandria

(b) (1) Thales of Miletus (natural philosopher)

(2) Solon of Athens (politician and poet)

(3) Bias of Priene (philosopher)

(4) Chilon of Sparta (philosopher)

(5) Cleobulus of Rhodes (tyrant)

(6) Periander of Corinth (tyrant)

(7) Pittacus of Mitylene (statesman and lawyer)

(c) There are two versions:

(A) (1) Arsinoe II (Egyptian queen)

(2) Sappho of Lesbos (poet)

(3) Corinna (poet)

(4) Antiochis of Lycia (physician)

(5) Flavia Publica Nicomachis of Phoecia (politician)

(6) Apollonia (philosopher)

(7) Iaia Marcus Varro (artist)

(B) (1) Arete of Cyrene (philosopher)

(2) Apasia of Miletus (philosopher)

(3) Diotima of Mantinea (philosopher)

(4) Hypatia of Alexandria (mathematician and philosopher)

(5) Leontium of Athens (philosopher)

(6) Theano (philosopher and physician)

(7) Themistoclea (philosopher)
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Exercise 2.1

1. Since dja and djb there exist integers x and y such that dx ¼ a and

dy ¼ b. Hence, c ¼ a� b ¼ dx� dy ¼ d(x� y). Since c is a multiple

of d, d divides c.

2. Since ajb and bjc, there exist integers r and s such that ar ¼ b and

bs ¼ c. Hence, c ¼ bs ¼ (ar)s ¼ a(rs). Therefore, ajc.
3. If ajb and bja there exist integers r and s such that ar ¼ b and bs ¼ a.

Hence, a ¼ bs ¼ (ar)s ¼ a(rs) implying that rs ¼ 1. Since a and b

are positive r ¼ s ¼ 1 and a ¼ b.

4. Since ajb, there exists an integer r such that ar ¼ b. Hence,

aþ a þ � � � þ a ¼ aþ (r � 1)a ¼ b. The sum contains r terms.

Since r � 1 > 1, a < b.

5. Let ajb and c ¼ aþ b. Then ax ¼ b and c ¼ aþ ax ¼ a(1þ x).

Therefore, ajc.
6. Let ax ¼ b and cy ¼ d. Thus, bd ¼ ax . cy ¼ ac . xy. Therefore,

acjbd.
7. (a) False, 6j2 . 3 yet 66 j2 and 66 j3.

(b) False, 6j(3þ 3) yet 6 6 j3.
(c) False, 82j43, but 8 6 j4,
(d) False, 22j36, 32j36, and 22 < 32 yet 26 j3.
(e) True.

8. When p, q and q is divided by p, there are only q possible

remainders. Hence, the resulting decimal expansion must repeat after

at most q divisions.

9. If n ¼ 0:123 123 123 . . . , then 1000n ¼ 123:123 123 . . . and 999n

¼ 1000n� n ¼ 123. Therefore, n ¼ 123
999

.

10. Every integer is of the form 3k, 3k þ 1 or 3k þ 2. The square of any

integer of the form 3k is of the form 3m and the square of any integer

of the form 3k þ 1 or 3k þ 2 is of the form 3mþ 1, where k and m

are integers. Suppose that
ffiffiffi
3

p ¼ p=q, where p and q are integers in

lowest form. Hence, p ¼ ffiffiffi
3

p
q. It follows that p2 ¼ 3q2, thus 3 divides

p2. Hence, p is divisible by 3 and p ¼ 3r. In addition,

3q2 ¼ p2 ¼ 9r2, thus, q2 ¼ 3r2 implying that 3 divides q. Thus, p

and q have a common factor, contradicting the assumption that p=q

was in lowest form.

11. (a) The result follows since either n or nþ 1 must be even. (b) The

result follows since one of n, nþ 1, or nþ 2 must be divisible by 3.

12. Since 2jn(nþ 1), if 3 6 jn and 36 j(nþ 1), then n ¼ 3k þ 1, implying

that 3j(2nþ 1). Therefore, 6jn(nþ 1)(2nþ 1).
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13. (2nþ 1)2 þ (2mþ 1)2 ¼ 4(n2 þ m2 þ nþ m)þ 2 ¼ 4k þ 2 which

can never be square by Theorem 2.3.

14. (nþ 1)3 � n3 ¼ 3n(nþ 1)þ 1 ¼ 6k þ 1, which is always odd.

15. If n ¼ 2k þ 1, then n2 � 1 ¼ 4k(k þ 1) ¼ 8m.

16. If 36 jn, then 3j(n� 1) or 3j(nþ 1). From the previous exercise,

8j(n2 � 1). Hence, 24j(n2 � 1).

17. Since 3 divides (2 . 12 þ 7) ¼ 9, suppose that k(2k2 þ 7) ¼ 3x. We

have (k þ 1)(2(k þ 1)2 þ 7) ¼ 3xþ 3(2k2 þ 2k þ 3) ¼ 3y and the re-

sult is established by induction.

18. Since 8 divides 52 þ 7 ¼ 32, suppose that 52k þ 7 ¼ 8x. We have

52(kþ1) þ 7 ¼ 25(52k) þ 7 ¼ 24(52k) þ 52k þ 7 ¼ 8(3 . 52k þ x) ¼ 8y

and the result is established by induction.

19. Since 7 divides 33 þ 23, suppose that 32kþ1 þ 2kþ2 ¼ 7x. We have

32kþ3 þ 2kþ3 ¼ 9(32kþ1)þ 2(2kþ2) ¼ 7(32kþ1)þ 2 . 7x ¼ 7y and the

result follows by induction.

20. Since 5 divides 34 þ 22, suppose that 33kþ1 þ 2kþ1 ¼ 5x. We have

33kþ4 þ 2kþ2 ¼ 27(33kþ1) þ 2(2kþ1) ¼ 25(33kþ1) þ 2(33kþ1) þ
2(2kþ1) ¼ 5[5 . 33kþ1 þ 2x] ¼ 5y and the result follows by induction.

21. If n ¼ 2x then n2 þ 2 ¼ 4x2 þ 2 and if n ¼ 2k þ 1 then

n2 þ 2 ¼ 4(k2 þ k)þ 3. In either case 46 j(n2 þ 2).

22. If an integer is not a perfect square then its divisors can be grouped

into distinct pairs.

23. 6k þ 5 ¼ 3(2k þ 1)þ 2 ¼ 3mþ 2. However, 8 ¼ 3 . 2þ 2 and there

does not exist a k such that 8 ¼ 6k þ 5.

24. Every integer is of the form 3k, 3k þ 1, or 3k þ 2, and

(3k)2 ¼ 3(3k2) ¼ 3M , (3k þ 1)2 ¼ 3(3k2 þ 2k)þ 1 ¼ 3N þ 1,

(3k þ 2)2 ¼ 3(3k2 þ 4k þ 1)þ 1 ¼ 3Rþ 1.

25. If n ¼ 3k then (3k)3 ¼ 9(3k3) ¼ 9M . If n ¼ 3k þ 1 then

(3k þ 1)3 ¼ 9(3k3 þ 3k2 þ k)þ 1 ¼ 9N þ 1. If n ¼ 3k þ 2 then

(3k þ 2)3 ¼ 9(3k3 þ 16k2 þ 4k þ 1)� 1 ¼ 9R� 1.

26. If n ¼ 5k then (5k)2 ¼ 5(5k2) ¼ 5M . If n ¼ 5k þ 1 then (5k þ
1)2 ¼ 5(5k2 þ 2k)þ 1 ¼ 5N þ 1. If n ¼ 5k þ 2 then (5k þ 2)2 ¼
5(5k2 þ 4k)þ 4 ¼ 5Rþ 4. If n ¼ 5k þ 3 then (5k þ 3)2 ¼
5(5k2 þ 6k þ 1)þ 4 ¼ 5S þ 4. If n ¼ 5k þ 4 then (5k þ 4)2 ¼
5(5k2 þ 8k þ 3)þ 1 ¼ 5mþ 1. When squared again the results will

each be of the form 5m or 5mþ 1.

27. Since x2, y2, and z2 must be of the form 8m, 8mþ 1, or 8mþ 4,

x2 þ y2 þ z2 can only be of the form 8k, 8k þ 1, 8k þ 2, 8k þ 3,

8k þ 4, 8k þ 5, or 8k þ 6.

28. From Exercise 2.1.26 5 divides n5 � n. In addition, n5 � n ¼ (n �
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1)n(nþ 1)(n2 þ 1). Since (n� 1)n(nþ 1) is the product of three

consecutive integers it is divisible by 6. Thus, n5 � n is divisible by

5 . 6 ¼ 30. If n ¼ 2mþ 1, then n5 � n ¼ 8(2mþ 1)m(mþ 1)(2m2

þ 2mþ 1) and is divisible by 16. Therefore, 240 ¼ 15 . 16 divides

n5 � n.

29. Any square must be of the form 3k or 3k þ 1. If n ¼ 2k then

3n2 � 1 ¼ 3(4k2 � 1)þ 2 ¼ 3mþ 2. If n ¼ 2k þ 1 then 3n2 � 1 ¼
3(4k2 þ 4k)þ 2 ¼ 3mþ 2.

30. 11 ¼ 4 . 2þ 3, 111 ¼ 4 . 27þ 3. In general, 111 . . . 1 ¼ 4 . 277 . . . 7

þ 3 where the integer on the left contains n ones and the second

integer in the product on the right contains n� 2 sevens. Hence, an

integer whose digits are all ones is of the form 4mþ 3 and thus cannot

be square.

31. Suppose ax ¼ b with a. b=2. Therefore, 2a. b ¼ ax. Hence, 2. x,

which implies that x ¼ 1 and a ¼ b, contradicting the fact that a 6¼ b.

32. If a.
ffiffiffi
n

p
and b.

ffiffiffi
n

p
, then ab.

ffiffiffi
n

p
.

ffiffiffi
n

p ¼ n, a contradiction.

33. If n ¼ ab, with a > b, let s ¼ (aþ b)=2 and t ¼ (a� b)=2; then

n ¼ s2 � t2. Conversely, if n ¼ s2 � t2 let a ¼ sþ t and b ¼ s� t.

34. 40 ¼ 101 0002; 40 ¼ 11113; 173 ¼ 10 101 1012; 173 ¼ 20 1023; 5437

¼ 1 010 100 111 1012; 5437 ¼ 21 110 1013.

35. 101 0112 ¼ 43 and 201 1023 ¼ 524.

36. 1 is triangular. Suppose that (11 . . . 1)9 with k ones is triangular, say

11 . . . 19 ¼ n(nþ 1)=2. Consider 11 . . . 1�9 with k þ 1 ones. We have

11 . . . 1�9 ¼ 9 . 11 . . . 19 þ 1. Since 9 . 11 . . . 19 þ 1 ¼ 9 . n(nþ 1)=2

þ 1 ¼ (3nþ 1)(3nþ 2)=2, 11 . . . 1�9 is triangular and the result is

established by induction.

37. The weights 1, 2, 22, . . . , 2n�1 will weigh any integral weight up to

2n � 1 and no other set of so few weights is equivalently effective.

Any positive integral weight up to 2n�1 can be expressed uniquely asPn�1
k¼0ak2

k , where ak ¼ 0 or 1. One answer is given by 1, 2, 4, 8, 16,

32.

38. Niven numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30,

36, 40, 42, 45, 48, 50, 54, 60.

39. sd(7, 2) ¼ sd(13, 2) ¼ sd(15, 2) ¼ 3:

40. When n is even.

41. n ¼ 215 . 310 . 56 ¼ 30 233 088 000 000:

n

2

� �1
2

¼ 3 888 000,
n

3

� �1
3

¼ 21 600,
n

5

� �1
5

¼ 360:
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Exercises 2.2

1. Since ax ¼ bc and auþ bv ¼ 1, we have that aucþ bvc ¼ c. By

substitution c ¼ aucþ axv ¼ a(ucþ xv). Hence, ajc.
2. Since (�1)nþ (1)(nþ 1) ¼ 1, the result follows from Theorem 2.7.

3. Since 3(22nþ 7)þ (�2)(33nþ 10) ¼ 1, the result follows from The-

orem 2.7.

4. If 3x ¼ a and 3y ¼ b then 3(xþ y) ¼ 65, which is impossible since

3 6 j65.
5. If 5x ¼ a and 5y ¼ b, then 5(xþ y) ¼ 65 or xþ y ¼ 13, which has

infinitely many pairs of integers as solutions.

6. If djunþ1 and djun then dj(unþ1 � un), hence, djun�1. Continuing this

process, it follows that dju1; hence, d ¼ 1.

7. We have d ¼ auþ bv ¼ xduþ ydv, so 1 ¼ xuþ yv. From Theorem

2.7, gcd(x, y) ¼ 1.

8. Suppose axþ by ¼ 1 and auþ cv ¼ 1, then (axþ by)(auþ cv) ¼
1 . 1 ¼ 1. Hence, a(xauþ xcvþ byu)þ bc(yv) ¼ 1. By Theorem 2.7,

gcd(a, bc) ¼ 1.

9. Let gcd(a, b) ¼ 1. From Exercise 8, gcd(a, b2) ¼ 1. Suppose

gcd(a, bk) ¼ 1 for some positive integer k. From Exercise 8,

gcd(a, bkþ1) ¼ 1 and the general result follows from an inductive

argument.

10. If d ¼ gcd(a, b) then dja and djb, hence, dj(aþ b) and dj(a� b).

From the definition of gcd, it follows that djgcd(aþ b, a� b):

11. If dj(aþ ab) and djb then it follows that dja, but since gcd(a, b) ¼ 1

we must have d ¼ 1.

12. Let d ¼ gcd(aþ b, a� b). Since dj(aþ b) and dj(a� b), dj[(a
þ b)� (a� b)]. Thus, dj2a and dj2b. Since gcd(a, b) ¼ 1, dj2.
Therefore, d ¼ 1 or 2.

13. When a and b are of different parity.

14. Let D ¼ gcd(ac, bc) and d ¼ gcd(a, b). Since dja and djb, cdjca and
cdjcb, so cdjD. Conversely, there exist integers x and y such that

d ¼ axþ by, hence, cd ¼ acxþ bcy. Hence, Djcd. Thus, cd ¼ D.

15. Let d ¼ gcd(a, aþ b) so dja and dj(aþ b). Hence, d divides

(�1)aþ (aþ b), that is, djb.
16. Since gcd(a, 4) ¼ 2 and gcd(b, 4) ¼ 2, a ¼ 2(2nþ 1) and b ¼

2(2mþ 1). Thus, aþ b ¼ 4(mþ nþ 1). Therefore, gcd(aþ b, 4)

¼ 4.

17. From Theorem 2.9, lcm(ac, bc) ¼ jac . bc=gcd(ac, bc)j ¼
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cjab=gcd(a, b)j ¼ c lcm(a, b).

18. gcd(a, b) ¼ jaj and lcm(a, b) ¼ jbj.
19. If ajb, gcd(a, b) ¼ jaj. From Theorem 2.9 lcm(a, b) ¼ jbj. If

lcm(a, b) ¼ jbj, from Theorem 2.9, ja . bj ¼ gcd(a, b) . jbj implying

that jaj ¼ gcd(a, b), that is, b is a multiple of a or equivalently ajb. If
a ¼ b ¼ 0, the result follows immediately.

20. From Theorem 2.9 and the fact that gcd(n, nþ 1) ¼ 1, we find that

lcm(n, nþ 1) ¼ n(nþ 1).

21. From Theorem 2.9 and the fact that 2(9nþ 8)þ (�3)(6nþ 5) ¼ 1,

we find that lcm(9nþ 8, 6nþ 5) ¼ (9nþ 8)(6nþ 5) ¼ 54n2 þ 93n

þ 40.

22. gcd(2, 3, 6)� lcm(2, 3, 6) ¼ 1 . 6 ¼ 36 ¼ 2 . 3 . 6.

23. a ¼ 50, b ¼ 20; a ¼ 100, b ¼ 10.

24. The largest value for the product of two numbers that sum to 5432 is

7 376 656. In addition, from Theorem 2.9, a . b ¼ 223 020 . gcd(a, b).

Since 5432 ¼ 7 . 8 . 97, the only possible values for gcd(a, b) are 1, 2,

4, 8, 7, 14, and 28. If gcd(a, b) ¼ 28, then we find that a ¼ 1652 and

b ¼ 3780 is a solution.

25. f210, 330, 462, 770, 1155g.

Exercises 2.3

1. gcd lcm Lamé Dixon Actual

(a) 3 1581 10 6 5

(b) 13 11 063 15 7 6

(c) 2 1 590 446 20 8 7

(d) 1 3 810 183 20 8 5

(e) 77 113 344 20 9 6

2. (a) 3 ¼ 11 . 51� 6 . 93.

(b) 13 ¼ 5 . 481� 8 . 299.

(c) 2 ¼ 413 . 1742� 394 . 1826.

(d) 1 ¼ 803 . 1941� 794 . 1963.

(e) 77 ¼ 9 . 4928� 25 . 1771.

Exercises 2.4

1. (2n2 þ 2n)2 þ (2n þ 1)2 ¼ 4n4 þ 8n3 þ 8n2 þ 4n þ 1 ¼ (2n2 þ 2n

þ 1)2.

2. (2n)2 þ (n2 � 1)2 ¼ 4n2 þ n4 � 2n2 þ 1 ¼ n4 þ 2n2 þ 1 ¼ (n2 þ
1)2.

3. (ax � by)2 þ (ay þ bx)2 ¼ (ax)2 þ (by)2 þ (ay)2 þ (bx)2 ¼ (a2 þ
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b2)(x2 þ y2) ¼ (cz)2.

4. a2 þ (aþ d)2 ¼ (aþ 2d)2, hence, (aþ d)(a� 3d) ¼ 0. Thus, a ¼ 3d

and the triple is (3d, 4d, 5d).

5. One of s and t must be even.

6. If s ¼ 2n and t ¼ 2mþ 1, then s2 þ 2st � t2 ¼ 4n(nþ 1) �
4m(mþ 1)� 1 ¼ 8R� 1. If s ¼ 2nþ 1 and t ¼ 2m, then s2 þ
2st � t2 ¼ 4n(nþ 1)� 4m(mþ 1)þ 1 ¼ 8S þ 1.

7. The even numbers occur as the side x ¼ 2st. Odd numbers occur when

s ¼ nþ 1 and t ¼ n so y ¼ s2 � t2 ¼ 2nþ 1.

8. x2n þ y2n ¼ (a4nþ1 � 2a2na
2
nþ1 þ a4n) þ (4a2na

2
nþ1) ¼ a4nþ1 þ 2a2na

2
nþ1 þ

a4n ¼ z2n. x1 ¼ a22 � a21 ¼ 4� 1 ¼ 2a2a1 � 1 ¼ y1 � 1. Suppose, for

some integer k, xk ¼ yk � 1. That is, a2kþ1 � a2k ¼ 2akakþ1 � 1. Since

akþ2 ¼ 2akþ1 þ ak ,

xkþ1 ¼ a2kþ2 � a2kþ1 ¼ (akþ2 � akþ1)
2 � 2a2kþ1 þ 2akþ2akþ1

¼ (akþ1 þ ak)
2 � 2a2kþ1 þ 2akþ2akþ1

¼ �a2kþ1 þ 2akakþ1 þ a2k þ 2akþ2akþ1

¼ �2akakþ1 þ 1þ 2akakþ1 þ 2akþ2akþ1

¼ 2akþ2akþ1 þ 1 ¼ ykþ1,

and the result follows by induction.

9. Let x ¼ 2st, y ¼ s2 � t2, z ¼ s2 þ t2, X ¼ 2(2sþ t)s ¼ 4s2 þ 2st,

Y ¼ (2sþ t)2 � s2 ¼ 3s2 þ 4st þ t2, and Z ¼ 5s2 þ 4st þ t2. We

have jx� yj ¼ jX � Y j and X 2 þ Y 2 ¼ 25s4 þ 40s3 t þ 26s2 t2 þ
8st3 þ t4 ¼ Z2.

10. (6, 8, 10) and (12, 5, 13).

11. Their perimeters are 120 and their areas 600, 540, and 480.

12. Given the product of three consecutive numbers, say (2n �
1)(2n)(2nþ 1), let s ¼ 2n and t ¼ 1 to obtain (s� t)st(sþ t).

13. Let s ¼ 2n, then we have st(sþ t)(s� t) ¼ 2nt(2nþ t)(2n� t),

which is divisible by 2. Since 2nþ t and 2n� t are odd and at equal

distances from 2n one of the three must be divisible by 3. Thus,

st(sþ t)(s� t) is divisible by 6.

14. If st(s2 � t2) ¼ w2 then, since s and t are coprime, s, t, and s2 � t2

must be squares, implying that the equation a4 � b4 ¼ c2 has a

solution, a contradiction.

15. Numbers of the form 2mnþ m2, for m ¼ 1, 2, 3, . . . :

16. Since one of s and t is even 4 divides 2st(s2 � t2)(s2 þ t2). If one of s or t

is divisible by 3 then so is xyz. If neither is divisible by 3, say s ¼ 3uþ 1

and t ¼ 3vþ 1. We have s2 ¼ 3S þ 1 and t2 ¼ 3T þ 1 and 3 divides
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y ¼ s2 � t2. Other cases follow similarly. Hence, 12 divides xyz.

17. If s or t is divisible by 5 then so is xyz. If not, go through cases to show

that 5 divides xyz, hence 60 divides xyz.

18. Use the following Pythagorean triples:

3 4 5

5 12 13

7 24 25

8 15 17

9 40 41

11 60 61

Hence,

P1 ¼ (0, 0) , Pi ¼ (xi, 0), for 2 < i < 8, where x2 ¼ 3 . 5 . 7 . 8 . 9 . 11

¼ 83160, x3 ¼ 4 . 5 . 7 . 8 . 9 . 11 ¼ 110 880, x4 ¼ 3 . 12 . 7 . 8 . 9 . 11

¼ 199 584, x5 ¼ 3 . 5 . 24 . 8 . 9 . 11 ¼ 285 120, x6 ¼ 3 . 5 . 7 . 15 . 9 . 11

¼ 155 925, x7 ¼ 3 . 5 . 7 . 8 . 40 . 11 ¼ 369 600, x8 ¼ 3 . 5 . 7 . 8 . 9 . 60

¼ 453 600:

19. There are 16 corresponding to (s, t) ¼ (2, 1), (3, 2), (4, 1), (4, 3),

(5, 2), (5, 4), (6, 1), (6, 5), (7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5),

(9, 2), and (9, 4). Lehmer’s rule predicts 15.9.

Exercises 2.5

1. It was possible because 1
2
þ 1

3
þ 1

9
6¼ 1.

2. 1
2
þ 1

4
þ 1

6
¼ 11

12
; 1
2
þ 1

4
þ 1

8
¼ 7

8
; 1
2
þ 1

3
þ 1

12
¼ 11

12
; 1
2
þ 1

3
þ 1

9
¼ 17

18
;

1
2
þ 1

4
þ 1

5
¼ 19

20
; 1
2
þ 1

3
þ 1

10
¼ 14

15
; 1
2
þ 1

3
þ 1

8
¼ 23

24
; 1
2
þ 1

3
þ 1

7
¼ 41

42
.

4. The sum of 3k � 2, 3k � 1 and 3k is 9k � 3. The repeated sum of the

digits of any multiple of 9 is eventually 9, hence, the repeated sum of

the digits of 9k � 3 is eventually 6.

5. The weights 1, 3, 32, . . . , 3n�1 will weigh any weight up to (3n � 1)=2

when the weights are placed in either pan and no other set is equally

effective. Any positive integer up to 3n � 1 inclusive can be expressed

as
Pn�1

k¼0ak3
k , ak ¼ 0, 1, or 2. Subtracting 1þ 3þ 32 þ � � � þ

3n�1 ¼ (3n � 1)=2. Thus every positive or negative integer between

�(3n � 1)=2 and (3n � 1)=2 inclusive can be expressed uniquely in

the form
Pn�1

k¼0bk3
k , where bk ¼ �1, 0, or 1. One answer is given by

1, 3, 9, 27.

6. The method relies on the binary representation of a number, for

example, 83 . 154 ¼ (1þ 2þ 24 þ 26) . 154. Terms that have already

been accounted for in the sum are eliminated.
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7. We show that 3 . 103nþ1 þ 7 and 7 . 103nþ2 þ 3 are both divisible by

37 for any positive integer n. Since 37 divides 30 007 and 37 divides

700 003 both propositions are true when n ¼ 1. Suppose that

3 . 103kþ1 þ 7 ¼ 37r for some positive integer k. We have 3 . 103kþ4

þ 7 ¼ 3 . 103kþ1103 þ 7 ¼ (37r � 7)103 þ 7 ¼ 37r103 � 6993 ¼
37(103 r � 189). If 7 . 103kþ2 þ 3 ¼ 37s for some positive integer

k, then 7 . 103kþ5 þ 3 ¼ 7 . 103kþ2103 þ 3 ¼ 37s103 � 2997 ¼
37(103s� 81). The conclusions follows from the principle of mathe-

matical induction.

8. f (4) ¼ 12; 1
2
þ 1

4
þ 1

6
þ 1

12
.

9. If (aþ b)=ab is an integer then abj(aþ b), aj(aþ b) and bj(aþ b).

Hence, ajb and bja so a ¼ b. Hence, aj2: Therefore, a ¼ 1 or 2:

10. In any subset of nþ 1 integers selected from f1, 2, . . . , 2ng there

must exist two consecutive integers, which are coprime.

11. Such products have the form

n(n� 1)(n� 2) � � � (n� k þ 1)

k!
¼ n

k

� �
,

which is an integer.

12. Suppose we have the sequence n, nþ 1, nþ 2, nþ 3, nþ 4. If n is

even and nþ 1 is not a multiple of 3 then nþ 1 is coprime to the other

four integers. If n is even and nþ 3 is not divisible by 3 then nþ 3 is

coprime to the rest. If n is odd then nþ 2 is coprime to the other

integers.

13. If n is odd, say n ¼ 2mþ 1, then n ¼ mþ (mþ 1). If n is even, say

n ¼ 2 tm, where m is odd, say m ¼ 2sþ 1, then n ¼ (2sþ 1)2 t ¼ (2 t

� s) þ (2 t � s � 1) þ � � � þ 2 t þ � � � þ (2 t þ s � 1) þ (2 t þ s).

Otherwise, suppose that n ¼ 2 t and 2 t ¼ mþ (mþ 1) þ � � � þ
(mþ k) ¼ (k þ 1)mþ k(k þ 1)=2 ¼ (2mþ k)(k þ 1)=2. Hence,

2 tþ1 ¼ (2mþ k)(k þ 1). If k is even, say k ¼ 2r, then

2 tþ1 ¼ (2r þ 1)(2mþ 2r) or 2 t ¼ (2r þ 1)(mþ r), which is impossi-

ble since 2r þ 1 is odd. Suppose that k is odd, say k ¼ 2r þ 1, then

2 tþ1 ¼ (2r þ 2)(2mþ 2r þ 1) or 2 t ¼ (r þ 1)[2(mþ r)þ 1], which

is impossible since 2(mþ r)þ 1 is odd.

14. s ¼ (2k þ 1)3, s� a ¼ 2k2(2k2 � 1)2, s� b ¼ 8k2(2k2 þ 1), s� c

¼ (2k2 � 1)2, hence, s(s� a)(s� b)(s� c) ¼ 16k4(2k2 � 1)4(2k2

þ 1)4.

15. If n is divisible by 9 then its digital root is 9. The assertion is valid for

n, 27. If n is greater than 27, and not divisible by 9, then, by the

division algorithm, n ¼ 27k þ r, where 0 < r, 27. In addition, r(n)
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¼ r(r(27)r(k) þ r(r)) ¼ r(9r(k) þ r(r)) ¼ r(r(9r(k)) þ r(r)) ¼
r(r(9k)þ r(r)) ¼ r(9þ r(r)) ¼ r(r).

16. The first case in the induction arguments is established by Theorem

2.8. Suppose that if c1, c2, . . . , ck are pairwise coprime integers and

cijn, for i ¼ 1, 2, . . . , k, and m ¼ Qk
i¼1 ci, then mjn. Let c1, c2, . . . ,

ckþ1 be pairwise coprime integers where cijn, for i ¼ 1, 2, . . . , k þ 1,

and m ¼ Qk
i¼1 ci. From Theorem 2.8, m and ckþ1 are coprime, hence,

m . ckþ1 ¼
Qkþ1
i¼1 ci divides n and the proof is established by induc-

tion.

17. For n ¼ 1, 1
5
þ 1

3
þ 7

15
¼ 1. If n5=5þ n3=3þ 7n=15 ¼ m, then

(nþ 1)5

5
þ (nþ 1)3

3
þ 7(nþ 1)

15
¼ mþ n4 þ 2n3 þ 3n2 þ 2nþ 1,

an integer, and the result is established by induction.

18. S(4) ¼ 4, S(5) ¼ 5, S(6) ¼ 3, S(7) ¼ 7, S(8) ¼ 4, S(9) ¼ 6,

S(10) ¼ 5.

19. h(7) ¼ h(11) ¼ 6.

20. (ananþ3)
2 þ (2anþ1anþ2)

2 ¼ [an(2anþ1 þ an)]
2 þ [2anþ1(anþ1 þ an)]

2

¼ (2ananþ1 þ a2n)
2 þ (2a2nþ1 þ 2anþ1an)

2

¼ 4a2nþ1a
2
n þ 4anþ1a

3
n þ a4n þ 4a4nþ1 þ 8a3nþ1an þ 4a2nþ1a

2
n

¼ (2a2nþ1 þ 2anþ1an þ a2n)
2 ¼ (2anþ1[anþ1 þ an]þ a2n)

2

¼ (2anþ1anþ2 þ a2n)
2.

21. u0 ¼ 0, and for n a natural number u�2n ¼ �u2n, u�(2nþ1) ¼ u2nþ1.

Exercises 3.1

1. 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241.

2. 6(20)� 1 ¼ 119 ¼ 7 . 17 and 6(20)þ 1 ¼ 121 ¼ 112.

3. Every positive integer can be expressed in the form 6k, 6k þ 1,

6k þ 2, 6k þ 3, 6k þ 4, or 6k þ 5. For k > 1, 6k, 6k þ 2, 6k þ 3, and

6k þ 4 are composite. Thus, all primes except 2 and 3 must be of the

form 6k þ 1 or 6k þ 5. Therefore, they are of the form 6n� 1.

4. If k ¼ 2r þ 1 then 3k þ 1 ¼ 3(2r þ 1)þ 1 ¼ 6r þ 4 is not prime

since it is divisible by 2. Hence, k ¼ 2r and 3k þ 1 ¼ 3(2r)

þ 1 ¼ 6r þ 1.

5. 1 þ � � � þ 128 ¼ 255 ¼ 5 . 51 and 1 þ � � � þ 128þ 256 ¼ 511 ¼
7 . 73 are composite.

6. The next numbers are 39, 46, and 49. It is the increasing sequence of
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positive integers having exactly two prime factors.

7. (a) gcd(m, n) ¼ 2 . 3 . 5 ¼ 30, lcm(m, n) ¼ 22 . 33 . 54 ¼ 67 500;

(b) gcd(m, n) ¼ 2 . 5 . 112 ¼ 1210,

lcm(m, n) ¼ 23 . 32 . 52 . 7 . 113 ¼ 16 770 600.

8. If n is squarefree, all primes in the canonical representation of n have

exponent 1.

9. If n ¼ p
Æ1

1 p
Æ2

2 � � � pÆ rr q�11 q�22 � � � q�ss , where pi, qj are prime, Æi ¼ 2ªi
and � j ¼ 2�i þ 1, for 1 < i < r, 1 < j < s then n ¼ ( p

ª1
1 p

ª2
2 � � �

pª rr q
�1
1 q

�2
2 � � � q�ss )2(q1q2 � � � qs), the product of a square and a square-

free number.

10. Since 4 divides every fourth number, the length is 3.

11. Q(100) ¼ 13. They are 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81.

12. No, since 2 . 15 is irreducible in E and (2 . 15) divides (2 . 3) (2 . 5),

but 2 . 15 divides neither 2 . 3 nor 2 . 5.

13. The first 25 Hilbert primes are 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53,

57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133.

14. 4 937 775 ¼ 3 . 5 . 5 . 65 837 and the sum of the digits on each side of

the equality sign is 42.

15. s2(4, 2) ¼ 2, s2(6, 2) ¼ 4, s2(8, 2) ¼ 3, s2(9, 2) ¼ 6, s2(12, 2) ¼ 4,

s2(14, 2) ¼ 4, s2(15, 2) ¼ 4, s2(16, 2) ¼ 8.

16. 104 ¼ 23 . 13 and sp(104) ¼ 2þ 2þ 2þ 1þ 3 ¼ 10 ¼ 2(1þ 0þ 4)

¼ 2 . sd(104).

17. For any Smith number r, sd(r)� sp(r) ¼ 0.

18. Suppose mjn. If x belongs to Mn then nj[sd(x)� sp(x)]. Hence,

mj[sd(x)� sp(x)] and x belongs to Mm.

19. Suppose that x is a k-Smith number. Hence, sp(x) ¼ k . sd(x) and

[sd(x)� sp(x)] ¼ �(k � 1)sd(x). Thus, (k � 1)j[sd(x)� sp(x)]. Hence,

x is in Mk�1.

20. sd(1) ¼ 1, sp(10) ¼ 7, 10 is in M6, since 6j(1� 7), but 10 is not in S6
since 6 6 j1.

21. If 17pþ 1 ¼ x2, then 17p ¼ x2 � 1 ¼ (xþ 1)(x� 1). Since x þ
1 ¼ 17 implies that 15 is prime, x� 1 ¼ 17. Therefore, p ¼ 19.

22. If all prime factors of the number were of the form 4mþ 1 then the

number would be of the form 4k þ 1.

23. Yes, 33 ¼ 4 . 8þ 1 ¼ (4 . 0þ 3)(4 . 2þ 3) ¼ 3 . 11.

24. For n. 1, n4 � 1 ¼ (n2 � 1)(n2 þ 1).

25. If n. 4 is composite then its factors are included in (n� 1)!

26. There are two cycles, 692 307 and 153 846, each of length 6.

27. The result follows since nþ 1 ¼ 54 . 7 and mþ 1 ¼ 22 . 32.
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28. Let m ¼ pÆx, n ¼ p� y, with gcd( p, x) ¼ gcd( p, y) ¼ 1, then mn ¼
(pÆx)( p� y) ¼ (pÆ p�)(xy) ¼ ( pÆþ�)(xy). However, gcd(xy, p) ¼ 1,

hence, pÆþ� imn.
29. 2i10 and 2i6, but 2 6 i16.
30. Suppose

ffiffiffi
nm

p ¼ a=b, in lowest form. Then am ¼ nbm. Unless b ¼ 1,

any prime factor of b is also a prime factor of a, contrary to our

assumption that a and b had no comon factor.

Exercises 3.2

1. For any integer n there is a one-to-one correspondence between the set

of all divisors d of n and the set of all quotients n=d.

2. (a) �(122) ¼ �(2 . 61) ¼ 4 and � (122) ¼ 186.

(b) �(1424) ¼ �(24 . 89) ¼ 10 and � (1424) ¼ 2790.

(c) �(736) ¼ �(25 . 23) ¼ 12 and � (736) ¼ 1512.

(d) �(31) ¼ 2 and � (31) ¼ 32.

(e) �(23 . 35 . 72 . 11) ¼ 144 and � (23 . 35 . 72 . 11) ¼ 3 734 640.

3. �(242) ¼ �(243) ¼ �(244) ¼ �(245) ¼ 6.

4. �(40 311) ¼ � � � ¼ �(40 315) ¼ 8.

5. �( p1 � � � pr)� 1 ¼ 2r � 1 ¼ (2r � 1)=(2� 1) ¼ 1 þ � � � þ 2r�1.

6. If n is squarefree then 2ø(n) ¼ �(n), otherwise 2ø(n) < �(n). If n is

nonsquare its divisors come in pairs and one of the numbers must be

less than
ffiffiffi
n

p
, hence, �(n) < 2

ffiffiffi
n

p
. The inequality is strict since

(n� 1) 6 jn for n. 2. Similarly if n is a square number.

7. If n is not square then the divisors of n pair up, their product is n, and

there are �(n)=2 such pairs.

8. n must be of the form p3 or pq, where p and q are distinct primes.

9. n must be of the form p2q or p5, where p and q are distinct primes.

10. �(106), (106)2=3 ¼ 104, whereas �(106) ¼ �(2656) ¼ 7 . 7 ¼ 49.

� (106), 6 . (106)3=2=�2 , 607 927 101, whereas � (106) ¼ 2 480 437.

11. � (106), 1
6
[7 . 106 . ø(106)þ 10 . 106] ¼ 24 . 106=6 ¼ 4 . 106.

12.
1

25

� �X25
k¼1

�(k) ¼ 3:48 compared with Dirichlet’s 3.37.

1

50

� �X50
k¼1

�(k) ¼ 4:14 compared with Dirichlet’s 4.06.

1

100

� �X100
k¼1

�(k) ¼ 4:84 compared with Dirichlet’s 4.76.

360 Answers to selected exercises



13. H1 ¼ 1, H2 ¼ 3
2
, H3 ¼ 11

6
, H4 ¼ 50

24
, H5 ¼ 137

60
.

14. H1 ¼ 1 ¼ 2(3
2
� 1) ¼ 2(H2 � 1). Suppose that for some positive in-

teger k, H1 þ H2 þ � � � þ Hk ¼ (k þ 1)(Hkþ1 � 1). Then,

H1 þ H2 þ � � � þ Hk þ Hkþ1 ¼ (k þ 1)(Hkþ1 � 1)þ Hkþ1

¼ (k þ 2)Hkþ1 � k � 1

¼ (k þ 2) Hkþ1 þ 1

k þ 2

� �
� k � 2

¼ (k þ 2)Hkþ2 � k � 2

¼ (k þ 2)(Hkþ2 � 1),

and the result follows from the principle of mathematical induction.

15. 16! ¼ 20 922 789 888 000, Stirling’s formula gives 20 813 807 482 100.

17. 5040 since �(5040) ¼ �(24 . 32 . 5 . 7) ¼ 60.

18. D(8) ¼ 24; D(16) ¼ 120; D(24) ¼ 360; D(32) ¼ 840.

19. E(512) ¼ E(29) ¼ 1; E(24 137 569) ¼ E(176) ¼ 7; E(750) ¼ E(2 .

3 . 53) ¼ 0; E(2401) ¼ E(74) ¼ 1. E(19) � E(18) � E(16) þ E(13)

þ E(9) � E(4) ¼ E(19) � 1 � 1 þ 2 þ 1 � 1 ¼ 0. Thus, E(19) ¼ 0.

20. 1
25

P25
n¼1E(n) ¼ 20

25
¼ 0:8; �=4 ¼ 0:785.

21. For n ¼ 7, we have (1þ 2)2 ¼ (13 þ 23) ¼ 9. For n ¼ 12, we have

(1þ 2þ 2þ 3þ 4þ 6)2 ¼ (13 þ 23 þ 23 þ 33 þ 43 þ 63) ¼ 324. For

n ¼ 24, we have (1þ 2þ 2þ 3þ 4þ 4þ 6þ 8)2 ¼ (13 þ 23þ
23 þ 33 þ 43 þ 43 þ 63 þ 83) ¼ 900.

22. � (14) ¼ � (15) ¼ � (23) ¼ 24.

23. � (36) ¼ � (35)þ � (34)� � (31)� � (29)þ � (24)þ � (21)
� � (14)� � (10)þ � (1)þ � (�4)

¼ 48þ 54� 32� 30þ 60þ 32� 24� 18þ 1þ 0 ¼ 91.

24. When p is odd, ( pÆþ1 � 1)=(p� 1) ¼ 1þ p þ � � � þ pÆ must be the

sum of an odd number of terms, hence, Æ must be even. The power of

2 is not a factor in the problem since if n ¼ 2k m, with m odd, then n

and m have the same odd divisors which pair up with an even sum if m

is not a square.

25. (1=25)
P25

k¼1� (k) ¼ 20:88 as compared to Dirichlet’s 20.56.

(1=50)
P50

k¼1� (k) ¼ 39:78 as compared to Dirichlet’s 41.12.

(1=100)
P100

k¼1� (k) ¼ 83:16 as compared to Dirichlet’s 82.25.

26. 276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964,

28 596.

27. (1, 36), (2, 36), (3, 36), (4, 9), (4, 18), (4, 36), (6, 9), (6, 36), (9, 4),

(9, 6), (9, 12), (9, 36), (12, 9), (12, 18), (12, 36), (18, 4), (18, 12),
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(18, 36), (36, 1), (36, 2), (36, 3), (36, 4), (36, 6), (36, 9), (36, 12),

(36, 18), (36, 36).

28. 12 496 (24 . 11 . 71), 14 288 (24 . 19 . 47), 15 472 (24 . 967), 14 536

(23 . 23 . 79), 14 264 (23 . 1783).

29. 2 115 324, 3 317 740, 3 649 556, 2 792 612.

30. ��(48) ¼ � (48)� 48� 1 ¼ 124� 48� 1 ¼ 75,

��(75) ¼ � (75)� 75� 1 ¼ 124� 75� 1 ¼ 48.

31. 36, 54, 65, 18, 20, 21, 10, 7, 1.

32. (1=50)
P50

n¼1�(n) ¼ 2:2; ln(ln(50))þ 1:0346 ¼ 2:3986.

33. � (39 . 53 . 113 . 133 . 413 . 473)
¼ (28 . 32 . 5 . 7 . 11 . 13 . 17 . 29 . 61)2.

34. � (24 . 52 . 72 . 112 . 372 . 672 . 1632 . 1912 . 2632 . 4392 . 4992)
¼ (32 . 73 . 13 . 19 . 312 . 67 . 109)3.

35. Both equal 187 131.

36. sd(17
3) ¼ sd(4913) ¼ 17,

sd(18
3) ¼ sd(5832) ¼ 18,

sd(26
3) ¼ sd(17 576) ¼ 26,

sd(27
3) ¼ sd(19 683) ¼ 27.

37. sd(22
4) ¼ sd(234 256) ¼ 22,

sd(25
4) ¼ sd(390 625) ¼ 25,

sd(28
4) ¼ sd(614 656) ¼ 28,

sd(36
4) ¼ sd(1 679 616) ¼ 36.

38. If n ¼ 2Æ pÆ1

1 p
Æ2

2 � � � pÆ rr , where the pi, for 1 < i < r, are odd, is the

canonical representation for n, then m ¼ pÆ1

1 p
Æ2

2 � � � pÆ rr and � (n) �
�(m) ¼ (2Æ � 1)(1 þ p1 þ p21 þ � � � þ p

Æ1

1 ) � � � (1þ pr þ p2r þ
� � � þ pÆ rr )� (Æ1 þ 1) � � � (Ær þ 1). The result follows since 2Æ � 1 is

odd and 1þ pi þ p2i þ � � � þ p
Æi
i is odd whenever Æi is even and even

whenever Æi is odd.
39. The result follows from the fact that if r and s are coprime then

� k(rs) ¼ � k(r) . � k(s) and if n ¼ pÆ,

� k( p
Æ) ¼ 1þ pk þ p2k þ � � � þ pÆk ¼ pk(Æþ1) � 1

p� 1
:

40. The result follows sinceX
djn

1

d2

� �
¼ 1

d21
þ 1

d22
þ � � � þ 1

d2r
¼ d21 þ d22 þ � � � þ d2r

n2
¼ �2(n)

n2
:

41. If gcd(m, n) ¼ 1, ø(m) ¼ r, and ø(n) ¼ s, then ø(mn) ¼ r þ
s ¼ ø(m)þ ø(n), since m and n have no common prime divisor.

42. Let �(m) ¼ r and �(n) ¼ s, �(mn) ¼ r þ s ¼ �(m)þ�(n), since,
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in such a product, exponents with common bases are added.

43 ø(pÆ) ¼ 1 ¼ ø(p) for p a prime and Æ. 0.

44. �(n) ¼ 14 implies that n ¼ p6q or n ¼ p13 where p and q are prime.

Hence n ¼ 26 . 3.

45. If n ¼ pÆ . 6, then p > 2 and Æ > 3. Hence, ł(n). 6. If

n ¼ pÆq� . 8, p > 2, q > 2, Æ > 1, and � > 1. Hence, ł(n). 6. If

n ¼ Qr
i¼1 p

Æi
i > 8, then

Pr
i¼1Æi pi þ 3 <

Pr
i¼1 p

Æi
i .

Exercises 3.3

1. Let m=n ¼ r, so m ¼ n . r. Since f is completely multiplicative

f (m) ¼ f (n . r) ¼ f (n) f (r). Therefore,

f
m

n

� �
¼ f (r) ¼ f (m)

f (n)
:

2. f (r . s) ¼ (r . s)k ¼ rk . sk ¼ f (r) f (s).

3. f (mn) ¼ cg(mn) ¼ cg(m)þ g(n) ¼ f (m) f (n).

4. Suppose that ø(m) ¼ r and ø(n) ¼ s. Hence ø(m . n) ¼ r þ s. Since

gcd(m, n) ¼ 1, f (m . n) ¼ kø(m
.n) ¼ k rþs ¼ kr . ks ¼ f (m) f (n).

Conversely, f (60) ¼ k3, but f (6) . f (10) ¼ k2 . k2 ¼ k4.

5. If gcd(m, n) ¼ 1, and m, n. 1, then º(mn) ¼ (�1)�(mn) ¼
(�1)�(m)þ�(n) ¼ (�1)�(m)(�1)�(n) ¼ º(m)º(n).

6. º(pÆ) ¼ (�1)Æ. Hence, F( pÆ) ¼ º(1)þ º( p)þ º(p2) þ � � � þ º(pÆ)
¼ 1þ (�1)þ 1þ (�1) þ � � � þ (�1)Æ ¼ (1þ (�1)Æ)=2. Hence,

F(n) ¼ 1 if n is square and 0 otherwise.

7. F(pÆ) ¼ �(1)º(1)þ �(p)º( p) ¼ 2. Therefore, if n ¼ Qr
i¼1 p

Æi
i F(n)

¼ 2r.

8. See Table A.1.

9. It would suffice to show that they are not multiplicative. We have

�e(6) ¼ �e(2 . 3) ¼ 2, but �e(2) . �e(3) ¼ 1 . 0 ¼ 0. In addition,

� e(6) ¼ � e(2 . 3) ¼ 8, but � e(2) . � e(3) ¼ 2 . 0 ¼ 0.

10. Suppose that gcd(m, n) ¼ 1; then

�o(m)�o(n) ¼
X
d1jm
d1 odd

1 .
X
d2jn
d2 odd

1 ¼
X
d1jm
d1 odd

X
d2jn
d2 odd

1 ¼
X
djmn
d odd

1

¼ �o(m . n):

Also,
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�o(m)�o(n) ¼
X
d1jm
d1 odd

d1 .
X
d2jn
d2 odd

d2 ¼
X
d1jm
d1 odd

X
d2jn
d2 odd

d1d2

¼
X
djmn
d odd

d ¼ �o(mn):

Neither �o nor �o is completely multiplicative since �o(60) ¼ 3, but

�o(6) . �o(10) ¼ 2 . 2 ¼ 4, and �o(60) ¼ 8, but �o(6) . �o(10) ¼
4 . 6 ¼ 24.

11. Suppose that gcd(m, n) ¼ 1. If either m or n is not squarefree then

�(mn) ¼ 0 ¼ �(m)�(n). If m ¼ p1 . p2 � � � pr and n ¼ q1 . q2 � � � qs,
where pi, qj are prime for 1 < i < r, 1 < j < s, then �(m) ¼ (�1)r

and �(n) ¼ (�1)s, hence �(mn) ¼ (�1)rþs ¼ (�1)r(�1)s ¼
�(m)�(n).

12. One of any four consecutive numbers is divisible by 4, hence

�(n)�(nþ 1)�(nþ 2)�(nþ 3) ¼ 0.

13.
P1

k¼1�(k!) ¼ 1þ�1þ 1þ 0þ 0 þ � � � ¼ 1.

14. n ¼ 33.

15. Since � is multiplicative and
P

dj pÆ j�(d)j ¼ j�(1)j þ j�(p)j ¼ 2, for p

a prime. Hence,
P

djnj�(d)j ¼ 2ø(n).

16. Let F(n) ¼ P
djn�(d)�(n=d). Since � and � are multiplicative so is

F and F(pÆ) ¼ �(1)�( pÆ) þ �(p)�(pÆ�1) þ �( p2)�( pÆ�2) þ � � � þ
�( pÆ)�(1) ¼ Æþ 1þ (�1)Æþ 0 þ � � � þ 0 ¼ 1 for p a prime. Hence,

if n ¼ Qr
i¼1 p

Æi
i , F(n) ¼ 1.

17. Let F(n) ¼ P
djn�(d)� (d). Since � and � are multiplicative so is F

and F(2r pÆ) ¼ F(2r)F(pÆ) ¼ 2r . pÆ for p a prime. Hence, if

n ¼ Qr
i¼1 p

Æi
i , F(n) ¼ n.

Table A.1

n �e(n) �o(n) �e(n) �o(n)

1 0 1 0 1
2 1 1 2 1
3 0 2 0 4
4 2 1 6 1
5 0 2 0 6
6 2 2 8 4
7 0 2 0 8
8 3 1 14 1
9 0 3 0 13
10 2 2 12 6
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18. Let F(n) ¼ P
djn�(d)�(d). Since � and � are multiplicative so is F.

For any prime p, F( pÆ) ¼ �(1)�(1)þ �( p)�(p) þ � � � þ �( pÆ)�(pÆ)
¼ 1 . 1þ (�1) . 2þ 0 . 0 þ � � � þ 0 . 0 ¼ (�1). Therefore, if n ¼Qr
i¼1 p

Æi
i ,

F(n) ¼ F
Yr
i¼1

p
Æi
i


 !
¼

Yr
i¼1

F(pÆii ) ¼
Yr
i¼1

(�1) ¼ (�1)r ¼ (�1)ø(n):

19. According to the Möbius inversion formula with F(n) ¼ 1=n,

f (n) ¼
X
djn

�(d)F
n

d

� �
¼

X
djn

�(d)
d

n

� �
:

Hence,

f (pÆ) ¼
X
dj pÆ

�(d)
d

pÆ

� �
¼ 1

pÆ
� p

pÆ
¼ 1

pÆ
(1� p):

Therefore,

f (n) ¼ 1

n

Y
pjn

(1� p):

20. If n ¼ pÆ,
Q

dj pÆd�(d)�(n=d)=2 ¼ (pÆ�1)�Æ=2( pÆ)(Æþ1)=2 ¼ pÆ.

21. If n ¼ pÆ, X
dj pÆ

ø(d)

�(pÆ)
¼ 1þ 1 þ � � � þ 1

Æþ 1
¼ Æ

Æþ 1
:

22. If n ¼ Qr
i¼1 p

Æi
i ,

P
djn¸(d) ¼ Pr

i¼1¸( pÆii ) ¼
Pr

i¼1 ln( p
Æi
i ) ¼

ln(
Qr
i¼1 p

Æi
i ) ¼ ln(n).

23. Since
P

djn¸(d) ¼ ln(n) the Möbius inversion formula implies that

¸(n) ¼ P
djn�(d)ln(n=d) ¼

P
djn�(d)ln(n) �

P
djn�(d)ln(d) ¼ 0 �P

djn�(d)ln(d).

Exercises 3.4

1. 1142 � 12 971 ¼ 52, thus 12 971 ¼ (114þ 5)(114� 5) ¼ 119 . 109.

2. (a) 493 ¼ 182 þ 132 ¼ 222 þ 32 ¼ 17 . 29.

(b) 37 673 ¼ (142 þ 362)(3602 þ 362)

4 . 362
¼ 373 . 101.

3. a ¼ kmr þ ns

2
, b ¼ ms� nr

2
, c ¼ kmr � ns

2
, d ¼ msþ nr

2
,

N ¼ a2 þ kb2 ¼ k2m2 r2 þ kn2 r2 þ n2s2 þ km2s2

4
,
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N ¼ c2 þ kd2 ¼ k2m2 r2 þ kn2 r2 þ km2s2 þ n2s2

4
. Hence,

2N ¼ 2(k2m2 r2 þ kn2 r2 þ km2s2 þ n2s2)

4
and

N ¼ k2m2 r2 þ kn2 r2 þ km2s2 þ n2s2

4
¼ (km2 þ n2)(kr2 þ s2)

4
.

4. aþ c ¼ 10 . 30; a� c ¼ 14; ms ¼ d þ b ¼ 70; nr ¼ d � b ¼ 6.

Hence, m ¼ 10; n ¼ 2; r ¼ 3; s ¼ 7 and 34 889 ¼ 251 . 139.

5. If n ¼ pm and m ¼ ab, with a. n1=3 and b. n1=3, then

n ¼ pab. n1=3n1=3n1=3 . n, a contradiction.

6. 2 027 651 281 ¼ (45 041þ 1020)(45 041� 1020) ¼ 46 061 . 44 021.

Exercises 3.5

1. Since ½½x�� < x, ½½x�� þ 1, ½½x�� < x and x, ½½x�� þ 1. Hence, x� 1

, ½½x��. Therefore, x� 1, ½½x�� < x.

2. Since x� 1, ½½x�� < x and �x� 1, ½½�x�� < �x, �2, ½½x�� þ
½½�x�� < 0. If x is an integer ½½x�� þ ½½�x�� ¼ 0; otherwise ½½x�� þ ½½�x��
¼ ½½jxj�� þ ½½�jxj�� ¼ ½½jxj�� þ (�½½jxj�� � 1) ¼ �1.

3. Let x ¼ ½½x�� þ Æ and y ¼ ½½y�� þ �, where 0 < Æ,� < 1. Hence,

xþ y ¼ ½½x�� þ ½½y�� þ Æþ �, where 0 < Æþ �, 2. If 0 < Æþ �, 1,

½½xþ y�� ¼ ½½x�� þ ½½y��. If 1 < Æþ �, 2, ½½xþ y�� ¼ ½½x�� þ ½½y�� þ 1.

Therefore, ½½xþ y�� > ½½x�� þ ½½y��.
4. (a) x ¼ nþ Æ, with n and integer and Æ real, 0 < Æ, 1=2;

(b) x any real number;

(c) x an integer;

(d) x real, 1 < x, 10
9
.

5. 529, 263, and 131.

6. n ¼ 30.

7. 249

8. 150

9. ½½10 000/7�� � ½½1000/7�� ¼ 1428 � 142 ¼ 1286.

10. ½½1000/3�� � ½½1000/12�� ¼ 333 � 83 ¼ 250.

11. From the inclusion–exclusion principle, 10 000� ½½10 000=3�� �
½½10 000=5�� � ½½10 000=7�� þ ½½10 000=15�� þ ½½10 000=21�� þ
½½10 000=35�� � ½½10 000=105�� ¼ 4571.

12. 369 693 097 digits.

13. If the divisors of k, for k ¼ 1, . . . , n, are listed, k is counted exactly

½½n=k�� times.
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14.
X1
k>1

��
2n

pk

��
� 2

��
n

pk

��
 !

15. The result follows from a generalization of Theorem 3.13 and the fact

that ½½n�� ¼ Pn
k¼11.

Exercises 3.6

1. One number in any set of three consecutive integers must be divisible

by 3.

2. No, since for n. 2 n2 � 1 ¼ (nþ 1)(n� 1).

3. Suppose that there are only finitely many primes of the form 4k þ 3,

say q1, . . . , qr, and consider N ¼ 4(q1 � � � qr)� 1 ¼ 4((q1 � � � qr)
� 1)þ 3. The product of primes of the form 4k þ 1 is always a

number of the form 4mþ 1. Thus if N is composite one of its factors

must be of the form 4r þ 3. However, no prime of the form 4r þ 3

divides N, a contradiction.

4. Suppose that there are only finitely many primes of the form 4k þ 1,

say q1, . . . , qr, and consider N ¼ (q1 � � � qr)2 þ 1. N . qi, for

1 < i < r, hence N cannot be prime. Any number of the form a2 þ 1

has, except possibly for the factor 2, only prime factors of the form

4mþ 1. Since division into N by each prime factor of the form 4k þ 1

leaves a remainder 1, N cannot be composite, a contradiction. Hence,

the number of primes of the form 4k þ 1 must be infinite.

5. No, 333 333 331 ¼ 17 . 19 607 843.

6. A(50) ¼ 4:63; ln(50) ¼ 3:91.

7. limx!1

ðx
2

dt

ln(t)

x

ln(x)

¼ lim
x!1

ln(x)

ln(x)� 1
¼ 1:

8. According to Euler’s formula,

�(6) ¼ 24 . �6 . jB2nj
6!

¼
16 . �6 .

1

42

� �
720

¼ �6

945
:

9. � (pþ 2) ¼ pþ 2þ 1 ¼ pþ 1þ 2 ¼ � (p)þ 2.

10. 17 . 19 ¼ 323 and 83 691 159 552 021 ¼ 323 . 259 105 757 127.

11. If p ¼ 3k þ 1, then pþ 2 ¼ 3(k þ 1) which is not prime. Hence,

p ¼ 3k þ 2, then 2pþ 2 ¼ 6(k þ 1), but p is odd, hence

pþ 1 ¼ 3(k þ 1) is even implying that k þ 1 is even, hence,

12j(2pþ 2).
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12. Yes, (2nþ 1)(2n� 1) ¼ 4n2 � 1.

13. 23, 37, 47, 53, 67, 79, 83, 89, 97, 113.

14. (41, 43, 47).

15. (101, 103, 107, 109) or (191, 193, 197, 199).

16. 76 883, 6883, 883, 83, and 3 are prime.

17. 59 393 339, 5 939 333, 593 933, 59 393, 5939, 593, 59 and 5 are prime.

18. 521, since 125 ¼ 53;

487 since 784 ¼ 282;

691 since 196 ¼ 142;

1297, since 7921 ¼ 892;

1861, since 1681 ¼ 412;

4441, since 1444 ¼ 382;

4483, since 3844 ¼ 622;

5209, since 9025 ¼ 952;

5227, since 7225 ¼ 852;

9049, since 9409 ¼ 972;

806 041, since 140 608 ¼ 523.

19. 11, 13, 17, 31, 37, 71, 73, 79, 97.

20. The 3-digit palindromic primes are 101, 131, 151, 181, 191, 313, 353,

373, 383, 727, 757, 787, 797, 919, and 929.

21. 1441 ¼ 11 . 131 and 3443 ¼ 11 . 313.

22. 113, 131, and 311 are prime.

23. 1423, 2341, 2143, and 4231 are prime; 1847, 8147, 8741, 1487, 7481,

4817, 4871, and 7841 are prime.

25. 1111 is prime and 1111 . 3304 ¼ 3 670 744 ¼ 2 . 2 . 2 . 7 . 11 . 59 .

101, sd(3 670 744) ¼ 31 ¼ sd(2 . 2 . 2 . 7 . 11 . 59 . 101).

26. 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191.

27. 5, 11, 23, 47

28. 2 . 3 . 5 . 7 . 11 . 13þ 1 ¼ 30 031 and 30 047� 30 030 ¼ 17 ¼ f 6.

2 . 3 . 5 . 7 . 11 . 13 . 17þ 1 ¼ 510 511 and 510 529� 510 510 ¼ 19

¼ f 7. 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19þ 1 ¼ 9 699 691 and 9 699 713 �
9 699 690 ¼ 23 ¼ f 8. Yes.

29. 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257 are

prime, but f (16) ¼ 289 ¼ 172.

30. 13, 19, 29, 43, 61, 83, 109, 139, 173, and 211 are prime but

f (11) ¼ 253 ¼ 11 . 23.

31. f (25) ¼ 251, f (30) ¼ 131, f (40) ¼ 41, f (60) ¼ 461 are prime but

f (80) ¼ 1681 ¼ 412.

32. f ([( p� 1)!þ 1]=k, p� 1) ¼ p.

33. f (n, n) ¼ 2.

34. 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

85, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297.
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35. 6 ¼ 3þ 3,

8 ¼ 7þ 1,

10 ¼ 7þ 3,

12 ¼ 9þ 3,

14 ¼ 13þ 1,

16 ¼ 15þ 1,

18 ¼ 15þ 3,

20 ¼ 13þ 7,

22 ¼ 21þ 1,

24 ¼ 21þ 3,

26 ¼ 25þ 1,

28 ¼ 25þ 3,

30 ¼ 21þ 9,

32 ¼ 31þ 1,

34 ¼ 31þ 3,

36 ¼ 33þ 3,

38 ¼ 37þ 1,

40 ¼ 37þ 3,

42 ¼ 37þ 5,

44 ¼ 43þ 1,

46 ¼ 43þ 3,

48 ¼ 33þ 15,

50 ¼ 49þ 1.

36. Suppose that 2n > 6; if 2n� 2 ¼ pþ q, where p and q are prime,

then 2n ¼ 2þ pþ q, and 2nþ 1 ¼ 3þ pþ q. Hence, every positive

integer greater than unity is the sum of three or fewer primes.

Conversely if 2n > 4 then 2nþ 2 ¼ pþ qþ r, where p, q, r are

prime. Since one of p, q, r is even, say r ¼ 2, we have 2n ¼ pþ q.

37. 4 ¼ 2þ 2,

6 ¼ 3þ 3,

8 ¼ 5þ 3,

10 ¼ 7þ 3,

12 ¼ 7þ 5,

14 ¼ 7þ 7,

16 ¼ 11þ 5,

18 ¼ 13þ 5,

20 ¼ 17þ 3,

22 ¼ 11þ 11,

24 ¼ 13þ 11,

26 ¼ 13þ 13,

28 ¼ 23þ 5,

30 ¼ 23þ 7,

32 ¼ 29þ 3,

34 ¼ 31þ 3,

36 ¼ 31þ 5,

38 ¼ 31þ 7,

40 ¼ 37þ 3,

42 ¼ 37þ 5,

44 ¼ 37þ 7,

46 ¼ 41þ 5,

48 ¼ 41þ 7,

50 ¼ 47þ 3.

38. 10 ¼ 3þ 7 ¼ 5þ 5,

16 ¼ 13þ 3 ¼ 11þ 5,

18 ¼ 13þ 5 ¼ 7þ 11.

39. 22 ¼ 11þ 11 ¼ 19þ 3 ¼ 17þ 5,

24 ¼ 7þ 17 ¼ 19þ 5 ¼ 13þ 11,

26 ¼ 23þ 3 ¼ 19þ 7 ¼ 13þ 13.

40. 7 ¼ 2 . 2þ 3,

9 ¼ 2 . 2þ 5,

11 ¼ 2 . 2þ 7,

13 ¼ 2 . 3þ 7,

15 ¼ 2 . 5þ 5,

17 ¼ 2 . 5þ 7,

19 ¼ 2 . 7þ 5,

21 ¼ 2 . 5þ 11,

23 ¼ 2 . 5þ 13,

25 ¼ 2 . 11þ 3,

27 ¼ 2 . 11þ 5,

29 ¼ 2 . 11þ 7,

31 ¼ 2 . 13þ 5,

33 ¼ 2 . 13þ 7,

35 ¼ 2 . 11þ 13,

37 ¼ 2 . 17þ 3,

39 ¼ 2 . 17þ 5,

41 ¼ 2 . 17þ 7,

43 ¼ 2 . 19þ 5,

45 ¼ 2 . 19þ 7,

47 ¼ 2 . 17þ 13,

49 ¼ 2 . 13þ 23.

41. �(109)=109 ¼ 50 847 478=109 ¼ 0:050 847 7 or about 5%.

42. (�(s))2 ¼
X1
u¼1

1

us


 ! X1
v¼1

1

vs


 !
¼

X1
n¼1

�(n)

ns
, where u . v ¼ n.
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43. �(s) . �(s� 1) ¼
X1
u¼1

1

us


 ! X1
v¼1

1

vs�1


 !
¼

X1
u¼1

1

us


 ! X1
v¼1

v

vs


 !

¼
X1
n¼1

� (n)

ns
, where u . v ¼ n.

44. �(s) . �(s� k) ¼
X1
u¼1

1

us


 ! X1
v¼1

1

vs�k


 !
¼

X1
u¼1

1

us


 ! X1
v¼1

vk

vs


 !

¼
X1
n¼1

� k(n)

ns
, where u . v ¼ n.

45.
X1
n¼1

�(n)

ns


 ! X1
n¼1

1

ns


 !
¼

X1
n¼1

X1
kjn

�(k)


 !

ns
¼

X1
n¼1

(n)

ns
¼ 1:

Exercises 3.7

1. gcd(am, bn) ¼ pminfm, ng.
2. gcd(aþ b, p4) ¼ p and gcd(ab, p4) ¼ p3.

3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 6 11 17 24 33 43 54 67 81 96 113 131 150

1 4 15 32 65 108 175 256 369 500

1 16 81 256 625

4.

1 16 81 256 625 1296 2401 4096

15 65 175 369 671 1105 1695

50 110 194 302 434 590

60 84 108 132 156

24 24 24 24

5. If n is in the array, let r and c denote, respectively, the row and column

indicating n’s position in the array. Since the numbers in each row and

column form an arithmetic progression, n ¼ 4þ 3(c� 1) þ
(2cþ 1)(r � 1). Hence, 2nþ 1 ¼ 2[4þ 3(c� 1)þ (2cþ 1)(r � 1)]

þ 1 ¼ (2r þ 1)(2cþ 1), which is composite and odd. In addition, all

odd composite numbers can be obtained in this manner. If p is an odd

prime, then m ¼ ( p� 1)=2 is a positive integer that cannot appear in

the array.

6. n is a positive integer such that nþ 1 is not an odd prime.

7. The order of the factors counts. Hence, the number of solutions to

xy ¼ n, d2(n), equals �(n). Similarly, d1(n) ¼ 1.

8. �(24) ¼ 24� t(23, 1)� t(22, 2)� t(21, 3)� t(20, 4)

� t(19, 5)� t(18, 6)� t(17, 7)� t(16, 8)
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� t(15, 9)� t(14, 10)� t(13, 11)� t(12, 12)

¼ 24� 1� 2� 2� 3� 1� 2� 1 �1� 1� 1� 1� 0 ¼ 8.

9. Ł(10)þ Ł(9)þ Ł(7)þ Ł(4)þ Ł(0) ¼ Ł(10)þ 13þ 8þ (�5)þ (�10)

¼ 0. Hence, Ł(10) ¼ �6. Ł(24) þ Ł(23) þ Ł(21) þ Ł(18) þ Ł(14) þ
Ł(9) þ Ł(3) ¼ Ł(24) þ 24 þ 32 þ (�13) þ (�8) þ 13 þ 4 ¼ 0.

Hence, Ł(24) ¼ �52.

10. Let m ¼ 2t þ 1 denote the largest odd divisor of n. For any proper odd

divisor 2r þ 1 of m, with n=(2r þ 1) ¼ s, we have that (s �
r) þ � � � þ (s� 1)þ sþ (sþ 1) þ � � � þ (sþ r) ¼ (2r þ 1)s ¼ n. In

addition, if n ¼ 2Æ pÆ1

1 p
Æ2

2 � � � pÆ rr , where the pi, for 1 < i < r, are

odd, is the canonical representation for n, we have that m ¼ t þ (t þ
1) ¼ pÆ1

1 p
Æ2

2 � � � pÆ rr . Hence, (t � (2Æ � 1)) þ � � � þ (t � 1) þ t þ (t

þ 1) þ (t þ 2) þ � � � þ (t þ (2Æ � 1)) þ (t þ 2Æ) ¼ 2Æþ1 . t þ 2Æ ¼
2Æ(2t þ 1) ¼ 2Æm ¼ n.

11. Suppose S ¼ 1þ 1
2
þ 1

3
þ 1

4
þ � � � þ 1=n is an integer. Let m be the

largest integer such that 2m < n and P ¼ 1 . 3 . 5 � � � (2r þ 1), with

2r þ 1 < n. Then, each term of the sum 2m�1 . P . S is an integer

except 2m�1 . P=2m. Hence, S is not an integer.

12. The area of the polygonal region equals I þ B=2� 1.

13. The area of the polygonal region remains equal to I þ B=2� 1.

15. 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, . . . : [Beatty

sequence]

16. 3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 49, 51, 54, 58, 61, 64,

68.

17. If an denotes the nth term of the sequence, the positive integer k first

appears in the sequence when

n ¼ 1þ 2 þ � � � þ (k � 1)þ 1 ¼
��
(k � 1)k

2

��
þ 1:

Thus

an ¼ k for n ¼
��
(k � 1)k

2

��
þ 1þ r,

where r ¼ 0, 1, . . . , k � 1. Hence,

0 < n� (k � 1)k

2
� 1 < k � 1,

or

k2 � k þ 2

2
< n <

k2 þ k

2
:

Thus,
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(2k � 1)2 þ 7 < 8n < (2k þ 1)2 � 1,

or

(2k � 1)2 < 8n� 7 < (2k þ 1)2 � 8,(2k þ 1)2:

So

2k � 1 < (8n� 7)1=2 < 2k þ 1,

or

k <

��
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n� 7
p

2

��
< k þ 1:

Therefore,

an ¼
��
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n� 7
p

2

��
:

18. The result follows directly from the previous exercise.

19. The only factors of pn! divisible by p are p, 2 p, 3 p, . . . , pn�2 p,

( pn�2 þ 1) p, . . . , 2 pn�2 p, (2 pn�2 þ 1) p, . . . , 3 pn�2 p, . . . , pn. The

number of these factors is pn. Since p is prime, after dividing each of

these factors by p, there remain only the quotients from the factors

pn�1, 2 pn�1, 3pn�1, . . . , pn still divisible by p, and the number of

these is pn�1. Dividing these by p, there remain only the quotients

from the factors pn�2, 2 pn�2, 3pn�2, . . . , pn still divisible by p, and

the number of these is pn�2. Continuing this process, eventually there

remains only one quotient, namely that from pn, divisible still by p.

Therefore pn! is divisible by p to the power pn�1þ pn�2 þ � � �
þ pþ 1 ¼ (pn � 1)=(p� 1).

20. From the previous exercise, x ¼ 2n � 1.

21. If n ¼ 2Æ . m, where m is odd, any factor of n which gives an odd

quotient must have 2Æ as an element, and therefore is of the form

2Æ . d, where d is any odd divisor. Therefore, A ¼ P
2Æ . d ¼

2Æ
P
d ¼ 2Æ . C. If r is any factor of n giving an even quotient, then r

must contain a power of 2 not greater than Æ� 1. Therefore, r is of the

form 2� . d, where �,Æ. Thus, corresponding to any odd factor d, the

sum of divisors giving an even quotient is (1þ 2þ 22 þ � � � þ
2Æ�1)d ¼ (2Æ � 1)d. Hence, B ¼ (2Æ � 1)

P
d ¼ (2Æ � 1)C and A ¼

Bþ C.

23. If p is prime,

�2(p
Æ) ¼ �(1)þ �(p) þ � � � þ �( pÆ) ¼ 1þ 2 þ � � � þ (Æþ 1)

¼ (Æþ 1)(Æþ 2)

2
¼ Æþ 2

2

� �
:
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Since �2 is multiplicative the result is established.

24:
�2

8
¼

ðð
T

dudv ¼
ðð

S

(1� x2 y2)�1dxdy

¼ 1

12
þ 1

32
þ 1

52
þ � � � ¼ 1� 1

22

� �
�(2):

The Jacobian of the transformation is 1� x2 y2.

Exercises 4.1

1. No, 10 . 11 ¼ 110 and � (110) ¼ � (2 . 5 . 11) ¼ 216, 220 ¼ 2 . 110.

2. If � (n) > 2n, then � (kn). k . � (n) > k . (2n) ¼ 2kn, hence, all mul-

tiples of perfect and abundant numbers are abundant.

3. (a) The primes greater than 2 are odd and deficient,

(b) number of the form 2 p, where p. 5 is prime, are even and

deficient.

4. Suppose � (n) ¼ 2n, djn, d 6¼ n and � (d) > 2d; then 2n ¼ � (n) ¼
� (d . (n=d)). 2d(n=d) ¼ 2n, a contradiction.

5. 6¼ 1102,28¼ 11 1002,496¼ 111 110 0002,8128¼ 1 111 111 000 0002.

(2 p�1(2 p � 1)) to base 2 is p ones followed by p� 1 zeros.

6. r(137 438 691 328) ¼ 1.

7. 2 p�1(2 p � 1) ¼ t2 p�1.

8. 2 p�1(2 p � 1) ¼ p62 p�1 .

9.
X
djn

1

d
¼

X
djn
d

n
¼ � (n)

n
¼ 2n

n
¼ 2.

10. If n ¼ 2 p�1(2 p � 1),
Y
djn
d ¼ 20þ1þ���þ( p�1)(2 p � 1) p . 20þ1þ���þ( p�1)

¼ (2 p � 1) p[2 p( p�1)=2]2 ¼ (2 p � 1) p(2 p�1) p ¼ n p.

11. (1 398 269)log(2)þ 1 ¼ 420 921.

12. If n ¼ pÆ and 2pÆ ¼ � (pÆ) ¼ (pÆþ1 � 1)=(p� 1) then pÆþ1 ¼
2pÆþ1 � 2pÆ þ 1 or pÆþ1 ¼ 2 pÆ � 1. Hence, p ¼ 1, a contradiction.

If n ¼ pq and 2 pq ¼ � ( pq) ¼ (pþ 1)(qþ 1) then one of pþ 1 and

qþ 1 must be even. Thus, without loss of generality, qþ 1 ¼ 2 p and

pþ 1 ¼ q, by the Fundamental Theorem of Arithmetic. Hence, p ¼ 2

and q ¼ 3.

13. If n ¼ p1 � � � pr and � (n) ¼ 2 p1 � � � pr ¼ (p1 þ 1) � � � (pr þ 1), with
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p1 , p2 , � � � , pr, then we must have 2p1 ¼ pr þ 1, p2 ¼ p1 þ 1,

p3 ¼ p2 þ 1, � � � , pr ¼ pr�1 þ 1, as in the previous answer, with

n ¼ 6 as the only solution.

14. From Exercise 1.4.5, 2n�1(2n � 1) ¼ 13 þ 33 þ 53 þ � � � þ
(2(nþ1)=2 � 1)3 ¼ 13 þ � � � þ (2 . 2(n�1)=2 � 1)3, the sum of the first

2(n�1)=2 odd cubes.

15. For any positive integer k, the units digit of 24k is 6, of 24kþ1 � 1 is 1,

of 24kþ2 is 4, and of 24kþ3 � 1 is 7. Hence, the units digit of

24k(24kþ1 � 1) is 6 and that of 24kþ2(24kþ3 � 1) is 8.

16. If p is an odd prime, 2 p�1 � 1 is divisible by 3. Hence, 2 p�1 ¼ 3k þ 1

for some k. Thus, 2 p ¼ 6k þ 2 and 2 p � 1 ¼ 6k þ 1. Hence,

2 p�1(2 p � 1) ¼ (3k þ 1)(6k þ 1) ¼ 18k2 þ 9k þ 1 ¼ 9M þ 1.

17. � (� (6)) ¼ � (12) ¼ 28. Suppose that n is even, then n ¼ 2 p�1(2 p � 1)

and � (� (n)) ¼ 2 p(2 pþ1 � 1) is even and perfect. Hence, 2 pþ1 � 1 and

pþ 1 are prime. Thus, p ¼ 2 and n ¼ 6. If n is odd then � (n) ¼ 2n

implies that � (� (n)) ¼ 6n ¼ 2 p�1(2 p � 1) so n ¼ 1.

18. 4, 14, 67, 42, 111, 0.

19. If � (2 . 3Æ) ¼ 2 . 2 . 3Æ, 3(3Æþ1 � 1)=2 ¼ 4 . 3Æ. Hence, 3Æþ1 � 1 ¼
8 . 3Æ�1, which is true only if Æ ¼ 1.

20. 6, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51.

21. n is product perfect if �(n) ¼ 4.

22. One.

Exercises 4.2

1. The digital roots are, respectively 3, 5, 8, 5, 8, 5.

2. n ¼ 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 18, 20, 24, 26.

3. F0 ¼ F1 � 2. Suppose that
Y

0<n<k

Fn ¼ Fkþ1 � 2. Hence,

Y
0<n<kþ1

Fn ¼ (Fkþ1 � 2)Fkþ1 ¼ (22
kþ1 � 1)(22

kþ1 þ 1) ¼ 22
kþ2 � 1 ¼

Fkþ2 � 2.

4. The last digit of F2 ¼ 22
2 þ 1 ¼ 17 is 7. If the last digit of

Fn ¼ 22
n þ 1 is 7, the last digit of 22

n

is 6. Therefore the last digit of

Fnþ1 ¼ 22
nþ1 þ 1 ¼ (22

n

)2 þ 1 is 7.

5. If a prime p divides gcd(Fm, Fn), where n ¼ mþ k, then rp ¼
22

n þ 1 and we have 22
n ¼ 22

mþ k ¼ (22
m

)2
k ¼ (pr � 1)2

k

, which is not

divisible by p.

6. Let n ¼ mþ k; then Fmþk � 2 ¼ 22
mþ k � 1 ¼ (22

m

)2
k � 1. Since
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(xþ 1)j(x2n � 1), (22
m þ 1)j[(22m)2 k � 1]. Therefore, Fm divides

Fmþk � 2.

7. F1 ¼ 5. If Fn ¼ 22
n þ 1 ¼ 12k þ 5, 22

n ¼ 12k þ 4. Therefore,

Fnþ1 ¼ 22
nþ1 þ 1 ¼ (22

n

)2 þ 1 ¼ (12k þ 4)2 þ 1 ¼ 12mþ 5.

8. If Fn ¼ 22
n þ 1 ¼ (2k � 1)2, 22

n ¼ 4k(k � 1), a contradiction since k

or k þ 1 is odd.

9. If Fn ¼ 22
n þ 1 ¼ (2k þ 1)3, 22

n ¼ 2k(4k2 þ 6k þ 3), a contradiction

since 4k2 þ 6k þ 3 is odd.

10. Suppose 22
n þ 1 ¼ k(k þ 1)=2. Multiplying both sides of the equation

by 2, we obtain 22
nþ1 þ 2 ¼ k(k þ 1). Hence, 22

nþ1 ¼ (k þ 2)(k � 1),

a contradiction, since one of the factors on the right is odd.

Exercises 4.3

1. (a) 220 ¼ 22 . 5 . 11, 284 ¼ 22 . 71, and � (220) ¼ 504 ¼ � (284).
(b) 1184 ¼ 25 . 37, 1210 ¼ 2 . 5 . 112, and � (1184) ¼ 2394 ¼

� (1210).
(c) 17 296 ¼ 24 . 23 . 47, 18 416 ¼ 24 . 1151, and � (17 296) ¼ 35 712

¼ � (18 416).
(d) 176 272 ¼ 24 . 23 . 479, 180 848 ¼ 24 . 89 . 127, and � (176 272)

¼ 357 120 ¼ � (180 848).

2. If
X
djm

d ¼
X
djn
d ¼ mþ n then

X
djm

1

d
¼

X
d=m

d

m
¼ mþ n

m

and

X
djn

1

d
¼

X
djn
d

n
¼ mþ n

n
:

Hence,

1X
djm

d

þ 1X
djn
d

¼ m

mþ n
þ n

mþ n
¼ mþ n

mþ n
¼ 1:

3. (a) The sum of the digits of the pair (63 020, 76 084) is 36;

(b) the sum of the digits of the pair (652 664, 643 336) is 54.

4. 48 ¼ 24 . 3 and 75 ¼ 3 . 52; � (48) ¼ 124 ¼ � (75). 140 ¼ 22 . 5 . 7 and

195 ¼ 3 . 5 . 13; � (140) ¼ 336 ¼ � (195). 1575 ¼ 32 . 52 . 7 and
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1648 ¼ 24 . 103; � (1575) ¼ 3224 ¼ � (1648).
5. � (25 . 32 . 47 . 109) ¼ � (25 . 32 . 7 . 659) ¼ � (25 . 32 . 5279)

¼ 4 324 320 ¼ 1 475 424þ 1 328 544þ 1 520 352.

6. � (22 . 32 . 5 . 11) ¼ � (25 . 32 . 7) ¼ � (22 . 32 . 71) ¼ 6552.

7. s(123 228 768) ¼ 103 340 640þ 124 015 008 ¼ 227 355 648

s(103 340 640) ¼ 123 228 768þ 124 015 008 ¼ 247 244 377

s(124 015 008) ¼ 123 228 768þ 103 340 640 ¼ 276 569 408

Exercises 4.4

1. � (120) ¼ � (23 . 3 . 5) ¼ 3 . 120 ¼ 360.

� (672) ¼ � (25 . 3 . 7) ¼ 3 . 672 ¼ 2016:

� (29 . 3 . 11 . 31) ¼ 1023 . 4 . 12 . 32 ¼ 3(29 . 3 . 11 . 31) ¼ 3 .

523 776.

2. Suppose n is squarefree and 3-perfect. Since n ¼ p1 � � � pr and

� (n) ¼ 3n, 3 p1 � � � pr ¼ ( p1 þ 1) � � � (pr þ 1), a contradiction, since

2r�1j(p1 þ 1) � � � ( pr þ 1), but 2r�1 6 j(3 p1 � � � pr), unless r < 2,

which is easily eliminated.

3. � (30 240)¼ � (25 . 33 . 5 . 7)¼ 63 . 6 . 8 . 40¼ 120 960¼ 4 . 30 240:

4. � (14 182 439 040) ¼ 255 . 121 . 6 . 8 . 133 . 18 . 20 ¼ 70 912 195 200

¼ 5 . 14 182 439 040.

5. If n is k-perfect then � (n) ¼ kn. Hence,
� (n)� n

n
¼ kn� n

n
¼ k � 1.

6. 2 . � (21) ¼ 2 . 32 ¼ 3 . 21þ 1 ¼ 64.

2133 ¼ 33 . 79 and 2 . � (2133) ¼ 2 . 3200 ¼ 6400 ¼ 3 . 2133þ 1.

19 521 ¼ 34 . 241 and 2 . � (19 521) ¼ 2 . 29 282 ¼ 58 564 ¼ 3 .

19 521þ 1.

7. 3 . � (325) ¼ 3 . 434 ¼ 1302 ¼ 4 . 325þ 2.

8. 36 ¼ 6þ 12þ 18; 40 ¼ 10þ 20þ 2þ 8;

770 ¼ 35þ 5þ 385þ 154þ 110þ 70þ 11;

945 ¼ 3þ 7þ 135þ 105þ 189þ 315þ 21þ 27þ 63þ 45þ 35.

9. 770 and 945 are semiperfect and none of their divisors are semiper-

fect.

10. � (70) ¼ 144. 140 ¼ 2 . 70:

11. 2161 038 � 2 ¼ 2(2161 037 � 1) ¼ (29)29
.617 � 129

.167 ¼ (29 � 1)(. . .) ¼
511(. . .) ¼ 7 . 73(. . .) and 2161 037 � 1 ¼ (229)9�617 � 19

:617 ¼ (229�
1)(. . .) ¼ 1103 . 486 737(. . .). Hence, the primes 73 and 1103 both

divide 2161 037 � 1.
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12. 1 ¼ 1,

2 ¼ 2,

3 ¼ 3,

4 ¼ 4,

5 ¼ 4 þ 1,

6 ¼ 4 þ 2,

7 ¼ 4 þ 3,

8 ¼ 6 þ 2,

9 ¼ 6 þ 3,

10 ¼ 6 þ 4,

11 ¼ 8 þ 3,

12 ¼ 8 þ 4,

13 ¼ 12 þ 1,

14 ¼ 12 þ 2,

15 ¼ 12 þ 3,

16 ¼ 12 þ 4,

17 ¼ 12 þ 3 þ 2,

18 ¼ 12 þ 6,

19 ¼ 12 þ 6 þ 1,

20 ¼ 12 þ 8,

21 ¼ 12 þ 8 þ 1,

22 ¼ 12 þ 8 þ 2,

23 ¼ 12 þ 8 þ 3.

13. The result follows since it is possible using the binary system to

represent any integer from 1 to 2 p � 1 as a sum of 1, 2, . . . , 2 p�1.

14. 23 ¼ 8þ 6þ 4þ 3þ 2 ¼ 12þ 8þ 3.

15. If n is perfect then � (n) ¼ 2n and � (n)� n� 1 ¼ n� 1.

16. 140 . �(140)=� (140) ¼ 5.

17. If n is perfect � (n) ¼ 2n and �(n) is even. Hence,
n . �(n)

� (n)
¼ n . 2r

2n
¼ r:

18. Æ(60) ¼ 168� 120 ¼ 48; �(26) ¼ 52� 42 ¼ 10.

19. A(pÆ) ¼ � (pÆ)

�(pÆ)
¼ pÆþ1

(p� 1)(Æþ 1)
.

20. 1, 3, 5, 6, 7, 11, 13, 14, 15, 17.

21. H(pÆ) ¼ (p� 1)(Æþ 1)

pÆþ1 � 1
pÆ.

22. H(1) ¼ 1, H(4) ¼ 12
7
, H(6) ¼ 2, and H(p) ¼ 2 p=( pþ 1), 2, for p a

prime.

23. H(2n�1(2n � 1)) ¼ n.

24. G( pÆ) ¼ (1 . p . p2 � � � pÆ)Æþ1 ¼ pÆ(Æþ1)2=2.

25. A(n) and H(n) are multiplicative because � and � are multiplicative.

However, G(6) ¼ 68 6¼ 64 ¼ G(2) . G(3):

26. � (2n)þ 1 ¼ (2nþ1 � 1)=(2� 1)þ 1 ¼ 2nþ1 ¼ 2(2n).

27. � (� (16)) ¼ � (31) ¼ 32 ¼ 2 . 16.

28. 90 ¼ 2 . 32 . 5 and ��(90) ¼ 180;

87 360 ¼ 26 . 3 . 5 . 7 . 13 and ��(87 360) ¼ 174 720.

29. The result follows since �� is multiplicative and ��( pÆ) ¼ pÆ þ 1.

30. n ¼ 32.

31. ��(114) ¼ ��(126) ¼ 114þ 126 ¼ 240:
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Exercises 5.1

1. If a � b (mod m), then a ¼ bþ km for some integer k. Hence,

a� c ¼ b� cþ km or a� c � b� c (mod m). Similarly, a . c ¼
b . cþ ckm or a . c � b . c (mod m). The third property follows since

an ¼ (bþ km)n � bn (mod m).

2. For i ¼ 1, . . . , n, suppose that ai � bi (mod m). There exist ki such

that ai ¼ bi þ kim. The additive case may be handled without using

induction sinceXn
i¼1

ai ¼
Xn
i¼1

(bi þ kim) ¼
Xn
i¼1

bi þ
Xn
i¼1

ki


 !
m:

Hence,
Xn
i¼1

ai �
Xn
i¼1

bi (mod m). We have already shown that if a � b

(mod m) and c � d (mod m), then ac � bd (mod m). Suppose thatQn
i¼1 ai ¼

Qn
i¼1 bi and anþ1 � bnþ1 (mod m). The result follows sinceYnþ1

i¼1

ai �
Yn
i¼1

ai


 !
anþ1 �

Yn
i¼1

bi


 !
bnþ1 �

Ynþ1

i¼1

bi (mod m):

3. If a � b (mod m1), a � b (mod m2), and gcd(m1, m2) ¼ 1, then

a� b ¼ rm1, a� b ¼ sm2, and m1uþ m2v ¼ 1. Multiplying the lat-

ter equation by a� b, we obtain (a� b)m1uþ (a� b)m2v ¼ a

�b: Therefore, a� b ¼ sm2m1uþ rm1m2v ¼ (suþ rv)m2m1. Thus,

m1m2 divides a� b or a � b (mod m1m2).

4. Suppose a � b (mod m) and d divides m, where d. 0. There are

integers s and t such that a ¼ bþ cm and dt ¼ m. Hence

a ¼ bþ c(dt) ¼ bþ (ct)d. Therefore, a � b (mod d).

5. The result follows directly from the previous exercise.

6. If a � b (mod m) and c � d (mod m) there exist integers s and t such

that a ¼ bþ sm and c ¼ d þ tm. Hence ax ¼ bxþ sxm and

cy ¼ dyþ tym. Thus, axþ cy ¼ (bxþ sxm)þ (dyþ tym) ¼ bx þ
dyþ (sxþ ty)m, implying that axþ cy � bxþ dy (mod m).

7. If a � b (mod m) then there is an integer k such that a ¼ bþ km or

b ¼ a� km. Hence gcd(a, m) divides gcd(b, m) and gcd(b, m) di-

vides gcd(a, m). Thus, gcd(a, m) ¼ gcd(b, m).

8. If a2 � b2 (mod p), where p is prime, then there exists an integer k

such that a2 � b2 ¼ (aþ b)(a� b) ¼ kp. Hence, since p is prime,

from Euclid’s Lemma, either pj(aþ b) or pj(a� b).

9. 47 � 5, 86 � 2, 22 � 1, �14 � 0, 32 � 4, 20 � 6, and 143 � 3

(mod 7).
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10. �88, �69, �50, �31, �12, 7, 26, 45, 64, and 83.

11. 0 � 7 . 0, 1 � 7 . 8, 2 � 7 . 5, 3 � 7 . 2, 4 � 7 . 10, 5 � 7 . 7,

6 � 7 . 4, 7 � 7 . 1, 8 � 7 . 9, 9 � 7 . 6, and 10 � 7 . 3 (mod 11).

12. If m is even then m � 2m � 0 (mod m) and the integers 2, 4, 6,

. . . , 2m are not all distinct. If m is odd, gcd(2, m) ¼ 1. Since 2r � 2s

(mod m) for 1 < r, s < m implies r � s (mod m), it follows

2, 4, . . . , 2m are distinct.

13. If m. 2, then (m� 1)2 � 1 (mod m). Hence f12, 22, 32, . . . , m2g
does not contain m distinct elements modulo m.

14. 1941 � 2 (mod 7), 19413 � 1 (mod 7). Hence, 19411963 �
19413

.654þ1 � 1941 � 2 (mod 7). Similarly, 1963 � 3 (mod 7),

19636 � 1 (mod 7). Hence, 19631991 ¼ 19636
.331þ5 � 19635 � 35

� 243 � 5 (mod 7). Therefore, 19411963 þ 19631991 � 2þ 5 � 0

(mod 7).

15. 910 � 1 (mod 100). Hence, 99
9 ¼ 9387 420 489 ¼ 910

.38 742 048þ9 �
138 742 048 . 99 � 1 . 387 420 489 � 89 (mod 100). Therefore, the last

two digits of 99
9

are 89.

16. 53103 þ 10353 � 53 . (532)51 þ 103 . (1032)26 � 53(1)51 þ
103(1)26 � 53þ 103 � 156 � 0 (mod 39).

17. 111333 þ 333111 � (�1)333 þ 333 . (3332)55 � �1 þ 4 . 255 � �1 þ
4 . (23)18 2 � �1þ 8 � 7 � 0 (mod 7).

18. 192 � 1932 � 20 (mod 31),

194 � 1964 � 28 (mod 31),

198 � 19128 � 9 (mod 31),

1916 � 19256 � 19 (mod 31).

Therfore, 19385 ¼ 19256þ128þ1 � 19 . 9 . 19 � 25 (mod 31).

19. 397 ¼ (34)24 . 3 � 124 . 3 � 3 (mod 10). Hence, the last digit is 3.

20. 31000 � (340)25 � 125 � 1 (mod 100). Hence, the last two digits are 01.

21. 1!þ 2! þ � � � þ 100! � 1þ 2þ 6þ 9þ 0 þ � � � þ 0 � 3 (mod 15).

22. 15 þ 25 þ � � � þ 1005 � 1 þ 0 þ 3 þ 0 þ 1 þ � � � þ 3 þ 0 � (1 þ 0

þ 3þ 0) . 25 � 0 (mod 4).

23. 63!� 61! ¼ (63 . 62� 1)61! ¼ 71 . 55 . 61! � 0 (mod 71).

24. 52nþ 3 . 25n�2 � (52)nþ 3 . (25)n . 2�2 � 4n þ 3 . 4n . 2 � 7 . 4n � 0

(mod 7).

25. 3nþ2 þ 42nþ1 � 9 . 3n þ (16)n . 4 � 9 . 3n þ 4 . 3n � 13 . 3n � 0

(mod 13).

26. If n ¼ 2k þ 1, then n2 � 1 ¼ (2k þ 1)2 � 1 ¼ 4k2 þ 4k ¼
4k(k þ 1) ¼ 8m since either k or k þ 1 is even. Therefore, n2 � 1 � 0

(mod 8).

27. a ¼ 0, b ¼ 5, c ¼ 16, d ¼ 28, and e ¼ 4. Therefore, Easter fell on
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April 23, 1916.

29. If x � 0 (mod 12), then x � 0 (mod 2).

If x � 1 (mod 12), then x � 1 (mod 4).

If x � 2 (mod 12), then x � 0 (mod 2).

If x � 3 (mod 12), then x � 0 (mod 3).

If x � 4 (mod 12), then x � 0 (mod 2).

If x � 5 (mod 12), then x � 1 (mod 4).

If x � 6 (mod 12), then x � 0 (mod 2).

If x � 7 (mod 12), then x � 1 (mod 6).

If x � 8 (mod 12), then x � 0 (mod 2).

If x � 9 (mod 12), then x � 0 (mod 3).

If x � 10 (mod 12), then x � 0 (mod 2).

If x � 11 (mod 12), then x � 11 (mod 12).

30. (3n)3 � 0 (mod 9), (3nþ 1)3 � 1 (mod 9), and (3nþ 2)3 � 8

(mod 9).

31. The result follows immediately from the previous exercise.

32. If 0, ck , b, 0 < ci, b, for i ¼ 1, 2, . . . , k � 1, and b. 1 is a posi-

tive integer, then ckb
k þ � � � þ c1bþ c0 � c0 þ � � � þ ck (mod b� 1)

33. Suppose that there exist integers u and v such that n ¼ r þ mu and

n ¼ sþ (mþ 1)v. Hence, n(mþ 1) ¼ r(mþ 1)þ m(mþ 1)u and

nm2 ¼ sm2 þ m2(mþ 1)v. Combining and simplifying, we obtain

n ¼ r(mþ 1)þ m2sþ m(mþ 1)(uþ vm2 � n). Therefore, n � (m

þ 1)r þ m2s (mod m(mþ 1)).

Exercises 5.2

1. If 7 divides (2aþ b) then 2aþ b ¼ 7k. Hence, 100a þ b ¼
98aþ 7k ¼ 7(14aþ k). Conversely, if 7 divides (100aþ b) then

7s ¼ 100aþ b ¼ 14a(7)þ 2aþ b. Hence, 2aþ b ¼ 7(s� 14a).

2. From the proof of Theorem 5.8, 10 � 1 (mod 9), hence f (10) � f (1)

(mod 9) so a � s (mod 9). Therefore, a� s � 0 (mod 9).

3. (a) x ¼ 2, (b) x ¼ 5, (c) x ¼ 4.

4. From Theorem 5.8, 9jRn if and only if the number of ones in Rn is a

multiple of 9. That is, if and only if 9jn.
5. From Theorem 5.8, 11 divides Rn if and only if the number of ones in

Rn is even. That is, if and only if n is even.

6. 691 504 249 989, 13 830 085 087, 276 601 787, 5 532 121, 110 663,

2275, 119, 21, which is divisible by 7. Therefore, 691 504 249 989 is
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divisible by 7.

7. 67 911 603 138 353, 6 791 160 313 847, 679 116 031 412,

67 911 603 149, 6 791 160 314, 679 116 035, 67 911 623, 6 791 174,

679 133, 67 925, 6 812, 639, 104, 26, which is divisible by 13. There-

fore, 67 911 603 138 353 is divisible by 13.

8.

5

2 8

7

, 5 6¼ 7: Therefore, a mistake has been made:

9. Drop the units digit from the number and subtract 5 times it from what

remains. The result is divisible by 17 if and only if the original number

is divisible by 17.

10. Let n ¼ 7 . 541. Since log(n) ¼ log(7)þ 41 . log(5) ¼ 29:5, n has 30

digits. The only 30-digit numbers not having four repeated digits are

those in which each digit occurs exactly three times. However, each of

these is divisible by 3. Since n � 1 . 241 � 2 (mod 3), 3 6 jn. Therefore,
in the decimal representation of n at least one digit appears at least

four times.

Exercises 5.3

1. (a) �(406) ¼ �(2 . 7 . 29) ¼ 168.

(b) �(756) ¼ �(22 . 33 . 7) ¼ 216.

(c) �(1228) ¼ �(22 . 307) ¼ 612.

(d) �(7642) ¼ �(2 . 3821) ¼ 3820:

2. f1, 5, 7, 11, 13, 17g
3. �(25 930) ¼ �(2 . 5 . 2593) ¼ 10 368:

�(25 935) ¼ �(3 . 5 . 7 . 13 . 19) ¼ 10 368:

�(25 940) ¼ �(2 . 2 . 5 . 1297) ¼ 10 368:

�(25 942) ¼ �(2 . 7 . 17 . 109) ¼ 10 368:

4. �(pþ 2) ¼ pþ 1 ¼ p� 1þ 2 ¼ �( p)þ 2.

5. If n is prime, (�(n)� (n)þ 1)=n ¼ n.

6. 1 þ �( p) þ � � � þ �(pn) ¼ 1 þ ( p � 1) þ (p2 � p) þ � � � þ (pn �
pn�1) ¼ pn.

7. f ( pk) ¼ �( pk)=pk ¼ (p� 1)= p ¼ �(p)=p ¼ f (p):

8. (a) If n. 2 then there will always be a factor of the form p or p� 1

that is even, hence, �(n) is even, thus, n ¼ 1 or 2;

(b) n is prime;

(c) n ¼ 1, 2r, or 2r3s, where r and s are positive integers;

(d) n has at least two district odd prime factors, or one prime factor of

the form 4k þ 1, or is divisible by 4, except 4 itself;
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(e) n ¼ 2kþ1, 3 . 2k , or 5 . 2k�1;

(f ) n ¼ 2k ;

(g) there are none;

(h) power of 2 dividing n plus number of distinct prime factors of the

form 4r þ 3 plus twice number of distinct prime factors of the

form 4r þ 1 is at least k if n is odd or k þ 1 if n is even.

9. �(n2) ¼ n2
Y
pjn2

1� 1

p

� �
¼ n . n

Y
pjn

1� 1

p

� �
¼ n�(n).

10. �(11k . p) ¼ 10 . 11k�1 . (p� 1).

11. �(22kþ1) ¼ (2k)2.

12. �(125) ¼ 100. Hence, a100 � 1 (mod 125) if 56 ja, and a100 � 0 (mod

125) if 5ja.
13. 5,�(100) < 36:7; 15:8,�(1000) < 81:3.

14. The average is 30.34; 6n=�2 ¼ 60:79.

15. The numbers k which are less than n and coprime to n occur in pairs

(k, p� k) whose sum is p and there are �(n)=2 such pairs.

16. If n is nonsquare its divisors pair up and one of them is less than
ffiffiffi
n

p
.

Thus the divisors d of n and their pairs would be less than but not be

coprime to n. If n is square only
ffiffiffi
n

p
, 2

ffiffiffi
n

p
, . . . , (

ffiffiffi
n

p � 1)
ffiffiffi
n

p
are less

than n and not coprime to n.

17. The result follows from Theorem 5.12 and the fact that if k < n, then

�(k) occurs as often as there are multiples of k that are less than n.

18. 36.

19. If n ¼ pÆ, �(pÆ)þ � (pÆ) ¼ pÆ�1(p� 1)þ (1þ p þ � � � þ pÆ�1 þ
pÆ) ¼ 2 pÆ þ 1þ p þ � � � þ pÆ�2 > 2 pÆ.

20. Whenever n is 1 or a prime.

21. Since gcd(m, n) ¼ 1,

f (mn) ¼ � (mn)�(mn)

(mn)2
¼ � (m)� (n)�(m)�(n)

(mn)2
¼ � (m)�(m)

m2

� (n)�(n)

n2

¼ f (m) f (n):

22:
p

k

� �
¼ p!

k!( p� k)!

is an integer and none of the factors in the denominator divides the p

in the numerator.

23. (a) 1 p�1 þ � � � þ (p� 1) p�1 � 1 þ � � � þ 1 � p� 1 � �1 (mod p).

(b) 1 p þ � � � þ (p � 1) p � 1 þ 2 þ � � � þ (p � 1) � p(p � 1)=2

� 0 (mod p).

24. If gcd(m, n) ¼ 1, m�(n) � 1 (mod n) and n�(m) � 1 (mod m). Hence,
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there exist integers r and s such that m�(n) � 1 ¼ ns and

n�(m) � 1 ¼ ms. Multiplying, we obtain m�(n)n�(m) � m�(n)�
n�(m) þ 1 ¼ rsmn. Thus, m�(n) þ n�(m) � 1 ¼ nm(�rsþ m�(n)�1

n�(m)�1). Therefore, m�(n) þ n�(m) � 1 (mod mn).

25. Since �(62) ¼ 30, multiplying both sides of the congruence by 4129

yields 4130x � 4129 . 53 (mod 62). Therefore, x � 4129 . 53 �
(41)2

.14þ1 . 53 � (7)14 . 41 . 53 � 9 . 41 . 53 � 27 (mod 62).

26. 6601 ¼ 7 . 23 . 41, and 6, 22, and 40 each divide 6600. Hence, if

gcd(a, 6601) ¼ 1, a6600 is congruent to 1 modulo 7, 23, and 41.

Therefore, a6600 � 1 (mod 6601)

27: 1 . �(105)þ 3 . �(35)þ 5 . �(21)þ 15 . �(7) ¼ �1þ 3þ 5� 15

¼ �8 ¼ (�1) . 48

6
¼ �(7) . �(105)

�(7)
¼

�
105

15

� �
. �(105)

�
105

15

� � :

28. Since � and � are multiplicative let n ¼ pÆ,

X
dj pÆ

�(d) . �
pÆ

d

� �
¼ 1 . (Æþ 1)þ (p� 1)Æþ p(p� 1)Æ þ � � �

þ pÆ�1(p� 1) . 1 ¼ 1þ p þ � � � þ pÆ ¼ �(pÆ):

29. Since � and � are multiplicative let n ¼ pÆ,

X
dj pÆ

�(d) . �
pÆ

d

� �
¼ 1 . (1þ p þ � � � þ pÆ�1)

þ (p� 1)(1þ p þ � � � þ pÆ�2) þ � � � þ pÆ�1(p� 1) . 1

¼ (1þ p þ � � � þ pÆ�1)þ ( pþ p2 þ � � � þ pÆ�1)

� (1þ p þ � � � þ pÆ�2)þ pÆ � pÆ�1 ¼ npÆ:

30. If n is prime, � (n) ¼ nþ 1, �(n) ¼ n� 1, and �(n) ¼ 2. Hence,

� (n)þ �(n) ¼ n . �(n). Suppose � (n)þ �(n) ¼ n . �(n) and n. 1 is

not prime. Thus, � (n), n, �(n) ¼ k > 3, and there exists a divisor d�
of n such that kd�, n and n� d� > 1. Therefore, n . �(n) � � (n) ¼
kn � P

djnd ¼ P
djn(n � d) > (n � 1) þ (n � d�) þ 0 > n �

1þ 1 > n.�(n), a contradiction.
31. 12 ¼ 6þ 4þ 3� 1 ¼ �(12)þ �(12)þ �(12)� 1.

32. Both equal 4.

33. Both equal 3.

34. Let n ¼ pÆ.
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X
dj pÆ

�2(d)

�(d)
¼ �2(1)

�(1)
þ �2(p)

�( p)
þ � � � þ �2(pÆ)

�( pÆ)
¼ 1þ 1

p� 1

¼ pÆ

pÆ � pÆ�1
¼ pÆ

�( pÆ)
:

35. 1
2

P10
k¼1�(k) ¼ 15; 3(10=�)2 ¼ 30:4.

36. F 7 ¼ {0
1
, 1
7
, 1
6
, 1
5
, 1
4
, 2
7
, 1
3
, 2
5
, 3
7
, 1
2
, 4
7
, 3
5
, 2
3
, 5
7
, 3
4
, 4
5
, 5
6
, 6
7
, 1
1
}.

37. It is true for the first row. Suppose it is true for the (n� 1)st row. Any

consecutive fractions on the nth row will be of the form
a

b
,
c

d
,

a

b
,
aþ c

bþ d
,

or

aþ c

bþ d
,
c

d
,

where a=b and c=d are consecutive fractions on the (n� 1)st row,

hence, ad � bc ¼ 1. In the second case, abþ ad � ba� bc ¼ 1. In

the third case, ad þ cd � bc� dc ¼ 1.

38. If a=b, c=d, then ad, bc. Hence, abþ ad, baþ bc and ad þ
cd, bcþ cd. Therefore,

a

b
,
aþ c

bþ d
,
c

d
:

39.
c

d
� a

b
¼ ad � bc

bd
¼ 1

bd
:

40.
x

y
¼ maþ nc

mbþ nd
:

Exercises 5.4

1. (a) x � 18 (mod 29).

(b) x ¼ 4þ 16t, for t ¼ 0, 1, 2, 3.

Hence, x � 4, 20, 36, 52 (mod 64).

(c) x � 56 (mod 77).

(d) No solution.

(e) x � 14 (mod 29).

2. x ¼ �36� 51t; y ¼ 3þ 4t.

3. x ¼ 2� 3t; y ¼ 2t.

4. h ¼ 9þ 21t; c ¼ 71� 31t. Hence, (h, c) ¼ (51, 9), (30, 40) or

(9, 71).

5. 17pþ 15a ¼ 143 or 17 p � 143 (mod 15), implying that p � 4
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(mod 15). Therefore, a ¼ 5 and p ¼ 4.

6. xþ y ¼ 100, x � 0 (mod 7), x � 0 (mod 11). Hence, 7S þ 11t ¼ 100.

Thus, S � 8 (mod 11) and t � 4 (mod 7). Therefore, x ¼ 44 and

q ¼ 56 is a solution.

7. x � 49 (mod 61).

8. xþ yþ z ¼ 100,

3xþ 2yþ z

2
¼ 100

or

xþ yþ z ¼ 100,

6xþ 4yþ z ¼ 200:

Therefore,

x ¼ 2þ 3t,

y ¼ 30� 5t,

z ¼ 68þ 2t:

Solutions (m, w, c) are given by (2, 30, 68), (5, 25, 70), (8, 20, 72),

(11, 15, 74), (14, 10, 76), (17, 5, 78), and (20, 0, 80).

9. xþ yþ z ¼ 100,

5xþ y ¼ z

20
¼ 100,

or

xþ yþ z ¼ 100,

100xþ 20yþ z ¼ 2000:

Therefore, buying 100 chickens is a solution.

10. We seek solutions to

xþ yþ z ¼ 41 and 4xþ 3yþ 1

3
z ¼ 40

or equivalently to

xþ yþ z ¼ 41 and 12xþ 9yþ z ¼ 120:

Subtracting, we obtain 11xþ 8y ¼ 79. Hence, 8y � 79 � 2 (mod 11),

implying that y � 3 (mod 11). Thus, y ¼ 3þ 11t, x ¼ 5� 8t,

z ¼ 33� 3t. Therefore, there were 5 men, 3 women, and 33 children.

11. No integral solutions.

12. x ¼ 18, y ¼ 0, z ¼ 12:

13. 5.

14. 59.

15. 1103.

16. x � 1982 � 2 (mod 6);

x � 1978 � 4 (mod 7);
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x � 32 (mod 42). Therefore x ¼ 2006.

17. x � 3 (mod 17),

x � 10 (mod 16),

x � 0 (mod 15).

Therefore, x � 3930 (mod 4080).

18. x � 6 (mod 23),

x � 7 (mod 28),

x � 8 (mod 33).

Therefore, x � 17 003 (mod 21 252) or 46þ years.

19. x ¼ �7, y ¼ 2, z ¼ 3.

20. x ¼ 7, y ¼ 1, z ¼ 1.

21. x ¼ 114, y ¼ 87, z ¼ 39.

22. We have n2 � n (mod 25 . 55). We solve n(n� 1) � 0 (mod 32) and

n(n� 1) � 0 (mod 3125) and use the Chinese Remainder Theorem to

obtain n � 8 212 890625 � 90 625 (mod 100 000).

23. None.

Exercises 5.5

1. Let the integers be a1, . . . , an and consider a1 þ a2, a1 þ a3, . . . ,

a1 þ an. If one of these is divisible by n then we are done. If two of

them, say a1 þ ai and a1 þ aj, have the same remainder modulo n then

(a1 þ ai)� (a1 þ aj) ¼ ai � aj is divisible by n. Otherwise the re-

mainders 1, 2, . . . , n� 1 must be counted once each when dividing

the numbers by n, so one of them must have the same remainder as

a1 � a2, say it is a1 þ ak . Hence, (a1 þ ak) � (a1 � a2) ¼ ak þ a2 is

divisible by n.

2. Let the numbers be a1, a2, . . . , an and consider the numbers

a1 þ a2, a1 þ a2 þ a3, . . . , a1 þ a2 þ � � � þ an. When divided by n

each of the numbers must leave a remainder from 0 to n� 1. So either

one gives a remainder 0, and hence is divisible by n, or two have the

same remainder and subtracting the smaller from the larger gives the

desired sum.

3. Suppose gcd(nai þ mbj, mn) ¼ d and p is a prime such that pjd.
Since pjmn, pjm or pjn. If pjm then p 6 jn since gcd(m, n) ¼ 1: We

have pj(nai þ mbj), hence, pjnai implying thay pjai. A contradiction

since gcd(ai, m) ¼ 1. Therefore, gcd(naj þ mbj, mn) ¼ 1.

4. No two elements in T can be congruent since gcd(ai, m) ¼ 1 and

gcd(bj, n) ¼ 1. Thus, every integer coprime to mn is counted exactly

once and �(m)�(n) ¼ �(mn).
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5. Let n ¼ 2k pÆ1

1 p
Æ2

2 � � � pÆ rr and m ¼ pÆ1

1 p
Æ2

2 � � � pÆ rr , where pi, for

i ¼ 1, 2, . . . , r, are odd primes.

�(2n) ¼ �(2kþ1 p
Æ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(2kþ1)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2k�( pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2 . 2k�1�( pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2 . �(2k)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2 . �(2k pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2�(n):

�(2m) ¼ �(2 pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(2)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(m):

6. Let n ¼ 3k pÆ1

1 p
Æ2

2 � � � pÆ rr and m ¼ p
Æ1

1 p
Æ2

2 � � � pÆ rr , where pi, for

i ¼ 1, 2, . . . , r, are primes with none equal to 3.

�(3n) ¼ �(3kþ1 pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(3kþ1)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2 . 3k . �(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 3 . �(3k)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 3 . �(3k pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 3�(n):

�(3m) ¼ �(3 pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ �(3)�(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2 . �(pÆ1

1 p
Æ2

2 � � � pÆ rr )
¼ 2�(m):

7. (a) ¸c(24) ¼ 4, (b) ¸c(81) ¼ 54, (c) ¸c(341) ¼ 36, (d) ¸c(561) ¼ 16,

(e) ¸c(2
6 . 34 . 52 . 7 . 19) ¼ lcm(32, 54, 20, 6, 18) ¼ 2480.

8. x ¼ 2, y ¼ 3, z ¼ 4, w ¼ 5.

9. 77w � 707 (mod 3). Therefore, a solution is given by w ¼ 1þ 3s,

z ¼ t, y ¼ 6þ 2sþ 6t þ 9u, x ¼ 16� 11s� 9t � 11u.

10. x ¼ 5þ 8t, y ¼ 3� 11t, z ¼ 33� 3t, or x ¼ 20� t � 6s, y ¼ 2t,

z ¼ �t þ 5s.

11. xþ yþ z ¼ 100 and x=2þ 3yþ 10z ¼ 100, or xþ yþ z ¼ 100 and
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xþ 6yþ 20z ¼ 200. Thus, x ¼ 80þ 14t, y ¼ 20� 19t, z ¼ 5t.

12. For any integer n, Fermat’s Little Theorem implies that 7 divides

n7 � n. If n ¼ 3k, 3k þ 3, or 3k þ 2 or n ¼ 2k or 2k þ 1, 6 divides

n7 � n ¼ n(n3 � 1)(n3 þ 1). Hence, 42 divides n7 � n.

13. If n ¼ pÆ,X
dj pÆ

d . �(d) . �
pÆ

d

� �
¼ 1 . 1 . (1þ p þ � � � þ pÆ)

þ p(p� 1)(1þ p þ � � � þ pÆ�1)

þ p2( p2 � p)(1þ p þ � � � þ pÆ�2) þ � � �
þ pÆ(pÆ � pÆ�1) . 1

¼ 1þ p2 þ p4 þ � � � þ p2Æ ¼
X
dj pÆ

d2:

14. If n ¼ pÆ,
P

dj pÆ �(d) . �(d) ¼ �(1)�(1)þ �(p)�(p) ¼ 1þ (�1)

p(p� 1) ¼ 2� p.

15. 264 þ 1 � 0 (mod 1071 . 28 þ 1). Suppose that (�1071)n þ 264�8n

� 0 (mod 1071 . 28 þ 1). It follows that (�1071)nþ1 þ 264�8(nþ1)

� (�1071)nþ1 þ 264�8(nþ1) � 264�8(nþ1)(1071 . 28 þ 1) � (�1071) 3

[(�1071)n þ 264�8n] � 0 (mod 1071 . 28 þ 1).

16. For 0 < r < 9, �r � 10� r.

17. 1�1 ¼ 1, 2�1 ¼ 6, 3�1 ¼ 4, 4�1 ¼ 3, 5�1 ¼ 9, 6�1 ¼ 2, 7�1 ¼ 8,

8�1 ¼ 7, 9�1 ¼ 5.

18. 1�1 ¼ 1, 5�1 ¼ 5, 7�1 ¼ 7, 11�1 ¼ 11.

19. aa�1 ¼ e, ea�1 ¼ a�1, and a(b�1)�1 ¼ ab are in H. Elements in H

are associative because they are elements of G.

20. The multiples of r, where 0 < r < m� 1.

21. 0, 2, 3, 4, have no multiplicative inverses in Z6.

22. 1�1 ¼ 1, 2�1 ¼ 4, 3�1 ¼ 5, 4�1 ¼ 2, 5�1 ¼ 3, 6�1 ¼ 6.

23. Let 1 < r < m, and c be such that ac � 1 (mod m). If x ¼ (r � b)c,

then ax ¼ r � b, or axþ b ¼ r.

Exercises 6.1

1. (a) x � 0, 1, 2, 3, 4 (mod 5),

(b) no solution.

2. (a) x � 2, 3 (mod 5) and x � 2, 4, 5 (mod 7). Hence, x � 2, 32, 12,

23, 18, 33 (mod 35).

(b) x � 1, 3 (mod 5) and x � 1, 2, 6 (mod 9). Hence, x � 1, 6, 11, 28,
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33, 38 (mod 45).

(c) x � 1, 3, 5 (mod 7) and x � 1, 3, 5 (mod 11). Hence, x � 1, 3, 5,

12, 36, 38, 45, 47, 71 (mod 77).

3. (a) x1 � 5, 6 (mod 11), hence, x � 38 and 83 (mod 121).

(b) x1 � 5 (mod 7) and x2 � 40 (mod 49). Hence, x � 89 (mod 343).

(c) No solution.

4. x � 1, 3 (mod 6) and x � 5, 12 (mod 17). Hence, x � 73, 97, 39, 63

(mod 102).

5. 16! ¼
(16)(15 . 8)(14 . 11)(13 . 4)(12 . 10)(9 . 2)(7 . 5)(6 . 3)(1) � (�1)
. (1) � � � (1) � �1 (mod 17).

6. 17 is prime, hence, 16! ¼ 16 . 15! � (�1) . 15! � �1 (mod 17).

Therefore, 15! � 1 (mod 17).

7. 437 ¼ 19 . 23. Since 23 is prime, �1 � 22! � 22 . 21 . 20 . 19 .

18! � (�1)(�2)(�3)(�4) . (18!) � 18! (mod 23). From Wilson’s

Theorem, 18! � �1 (mod 19). Hence, 18! � �1 (mod 437).

8. Since (p� k)þ k � 0 (mod p), ( p� k) � �k (mod p). From Wil-

son’s Theorem (p� 1)! � �1 (mod p). Substituting, we obtain

12 . 32 � � � ( p� 2)2 � (�1)( pþ1)=2 (mod p) and 22 . 42 � � � ( p� 1)2 �
(�1)( pþ1)=2 (mod p).

9. The two incongruent solutions are 1 and p� 1.

10. (x99 þ x98 þ x97 þ � � � þ xþ 1) . x(x� 1) ¼ x101 � x � 0 (mod 101).

Hence, x99 þ x98 þ x97 þ � � � þ xþ 1 has 99 solutions modulo 101.

11. In Z�p, p� 1 is its own inverse. Every other element has a distinct

inverse. Therefore, (p� 1)! � (p� 1) . 1 . 1 � � � 1 � p� 1 � �1

(mod p).

12. From Wilson’s Theorem (p� 1)! � �1 (mod p), 1 . 2 . 3 � � � (p� 2)

� 1 (mod p), and 1 þ 2 þ � � � þ (k � 1) þ (k þ 1) þ � � � þ (p �
1) � �k (mod p) for k ¼ 2, . . . , p� 2. If each fraction in the sum is

replaced by an equivalent fraction with denominator (p� 1)! and the

fractions added together the numerator will be congruent modulo p to

1þ 2 þ � � � þ ( p� 1) which is congruent to 0 modulo p. Therefore,

1þ 1

2
þ 1

3
þ � � � þ 1

p� 1
� 0 (mod p):

13. k ¼ 1, when p ¼ 2 or 3; never.

Exercises 6.2

1. 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28.
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2. (a) �1, (b) 1, (c) 1, (d) �1, (e) 1, (f) �1, (g) �1, (h) 1.

3. (b), (c), (e) and (h).

4. (a) Yes, since
9

19

� �
¼ 1; x � 5 and 17 (mod 19).

(b) Yes, since
16

17

� �
¼ 1; x � 13 and 16 (mod 17).

(c) No, since
6

61

� �
¼ �1.

5. (a)
21

221

� �
¼ 3

221

� �
7

221

� �
¼ 3

17

� �
3

13

� �
7

17

� �
7

13

� �

¼ �1ð Þ 1ð Þ �1ð Þ �1ð Þ ¼ �1.

(b)
215

253

� �
¼ 43

23

� �
43

11

� �
5

23

� �
5

11

� �
¼ �1ð Þ �1ð Þ(�1)(1) ¼ �1.

(c)
631

1099

� �
¼ 631

157

� �
631

7

� �
¼ 3

157

� �
1

7

� �
¼ 1

3

� �
¼ 1.

(d)
1050

1573

� �
¼ 2

11

� �2
2

13

� �
525

11

� �
525

13

� �

¼ (1)(�1)(1)
5

13

� �
¼ 1:

(e)
89

197

� �
¼ 197

89

� �
¼ 19

89

� �
¼ 89

19

� �
¼ 13

19

� �
¼ 19

13

� �

¼ 6

13

� �
¼ 2

13

� �
3

13

� �
¼ (1)(�1) ¼ �1.

6. Half the values of (a
p
) equal 1 and the other half equal �1. Hence, their

sum is zero.

7. gcd(a, p) ¼ gcd(b, p) ¼ 1 implies gcd(ab, p) ¼ 1. Thus,

ab

p

� �
¼ a

p

� �
b

p

� �
:

The only possibilities are

QR ¼ QR . QR, QR ¼ QNR . QNR, QNR ¼ QNR . QR, and

QNR ¼ QR . QNR:
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8. If p ¼ 1þ 4k, then

�1

p

� �
¼ (�1)( p�1)=2 ¼ (�1)2k ¼ 1:

9:
p

q

� �
q

p

� �
¼ p

q

� �
2q� 1

p

� �
¼ p

q

� � �1

p

� �
¼ (�1)

1
2
( p�1)1

2
(2 p�2)

¼ (�1)( p�1)2=2 ¼ 1:

Hence,

p

q

� �
¼ �1

p

� �
:

10:
p

q

� �
¼ q

p

� �
(�1)

1
2
(3þ4 t�1)1

2
(3þ4s�1) ¼ � q

p

� �
:

11. If 4n2 þ 4 � 0 (mod 19) then 4n2 � �4 (mod 19). Hence, n2 � �1

(mod 19) which is impossible.

12. If 0 < k < p, then (p� k) � �k (mod p). Hence, ( p� 1)(p� 2)

� � � (p� k) � (�1)k(k)! (mod p). If h ¼ p� k � 1, then

h! ¼ (p� k � 1)! and (p� 1)! � (�1)k(k!)(h!) (mod p). Therefore,

h!k! � (�1)k(p� 1)! � (�1)kþ1 (mod p).

13. If p � 1 (mod 4), then p ¼ 1þ 4r for some integer r. If h ¼ k ¼ 2r,

then hþ k ¼ 4r and [(2r)!]2 � (�1)2kþ1 � �1 (mod p).

Exercises 6.3

1. Since �(�(m)) ¼ 1, m ¼ 2, 3, 4, or 6.

2. F3 ¼ 257 and 3(257�1)=2 � 3128 � (320)6 . 38 � 1236 . 136 � 17 . 136

� �1 (mod 257).

3. See Table A.2.

4. 514 � 1 (mod 29).

5. They are 21, 23, 25, 29, 211, 213, 215, 217, 219, 223, 225, and 227, or 2, 3,

8, 10, 11, 14, 15, 18, 19, 21, 26, 27.

6. See Table A.3.

7. (a) gcd(4, 28) ¼ 4. Hence, the fourth power residues are 24, 28, 212,

216, 220, 224, and 228, or 1, 7, 16, 20, 23, 24 and 25.

(b) gcd(7, 28) ¼ 7. Hence, the seventh power residues are 27, 214, 221,

and 228, or 1, 12, 17, and 28.

8. x7 � 12 (mod 29) or 7I(x) � 7 (mod 28), or I(x) � 1 (mod 4). Hence,

I(x) � 1, 5, 9, 13, 17, 21, 25, and x � 21, 25, 29, 213, 217, 221, and 225,

or 2, 3, 11, 14, 17, 19 and 21.
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9. 9 . I(x) � 7 (mod 28). Hence,

�I(x) � 21 (mod 28), implying that I(x) � �21 � 7 (mod 28).

Therefore, x � 12 (mod 29).

10. (a) x � 8 (mod 17), (b) x � 10 (mod 17), (c) no solution.

11. See Table A.4. (a) x � 7 (mod 11), (b) x � 5, 6 (mod 11), (c) no

solution.

12. I(x) � I(324 . 513) � 24 . I(3)þ 13 . I(5) � 24þ 65 � 89 � 9 (mod

16). Hence, x � 14 (mod 17).

13. x � 4 (mod 29).

14. If q is a primitive root modulo p, then qb is also a primitive root if and

only if gcd(b, �(n)) ¼ 1. Hence,

Table A.2.

k 2k 2k

1 2 2
2 4 4
3 6 8
4 8 16
5 10 3
6 12 6
7 14 12
8 16 24
9 18 19
10 20 9
11 22 18
12 24 7
13 26 14
14 28 28
15 1 27
16 3 25
17 5 21
18 7 13
19 9 26
20 11 23
21 13 17
22 15 5
23 17 10
24 19 20
25 21 11
26 23 22
27 25 15
28 27 1

Table A.3.

k I(k)

1 28
2 1
3 5
4 2
5 22
6 6
7 12
8 3
9 10

10 23
11 25
12 7
13 18
14 13
15 27
16 4
17 21
18 11
19 9
20 24
21 17
22 26
23 20
24 8
25 16
26 19
27 15
28 14
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X
gcd(b,�(n))¼1

qb � q
P

gcd(b,�(n))¼1b � qk( p�1) � (q( p�1))k � 1k � 1 (mod p):

15.
7

p

� �
¼ p

7

� �
(�1)6( p�1)=2 ¼ 28k þ 3

7

� �
(�1)6(7kþ1) ¼ 3

7

� �
¼ 1.

16:
3

p

� �
¼ p

3

� �
(�1)( p�1)=2:

If p ¼ 1þ 12k or p ¼ 11þ 12k,
p

3

� �
¼ 1. If p ¼ 5þ 12k or

p ¼ 7þ 12k,
p

3

� �
¼ �1.

17:
5

p

� �
¼ p

5

� �
(�1)( p�1)=2 ¼ p

5

� �
:

If p ¼ 1þ 10k or p ¼ 9þ 10k,
5

p

� �
¼ 1. If p ¼ 3þ 10k or

p ¼ 7þ 10k,
5

p

� �
¼ �1.

Exercises 6.4

1. Using indices modulo 13, the equation 3n � 12 (mod 13) leads to the

equation 3n � 7 (mod 12) which has no solutions. Using indices

modulo 29, the least solution to the equation 3n � 28 (mod 29) is

n ¼ 14.

2. If d divides p� 1, x p�1 � 1 � (xd � 1)(xd (k�1) þ � � � þ xd þ 1) and

the expression in the second set of partentheses on the right has at

most d(k � 1) solutions. Thus xd � 1 has at least (p� 1)�
d(k � 1) ¼ d solutions. By Lagrange’s Theorem it has at most d

solutions. Hence, it has exactly d solutions.

3. If q is a primitive root of the odd prime p, it follows from Theorem

6.3 and Theorem 6.20 that q(( p�1)=d)k , for k ¼ 1, 2, . . . , d, are d

incongruent solutions to xd � 1 � 0 (mod p).

4. From Theorem 6.10, if p is of the form 8k þ 3, 2 is a QNR of p.

Table A.4.

k 1 2 3 4 5 6 7 8 9 10
I(k) 2 4 8 5 10 9 7 3 6 1
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Every primitive root of p is a QNR of p. In addition, there are

(p� 1)=2 ¼ q QNRs of p and �(p� 1) ¼ q� 1 primitive roots of p.

From Theorem 6.7, p� 1 is a QNR of p and is not a primitive root of

p since it has order 2. Hence, all other QNRs, including 2, are

primitive roots of p.

5. As in the previous exercise, we need only show that �2 is a QNR of p.

However, from Theorem 6.10, 2 is a QR of p and �1 is a QNR of p.

Hence, their product 2 . (�1) is a QNR of p.

6. The order of 3 must be a divisor of �(p� 1) ¼ 4q. However, 3 is a

QNR of p. Since 32q � �1 (mod p), the order of 3 cannot be 1, 2, 4,

or 2q. In addition, p does not divide 34 � 1. Thus the order of 3 cannot

be 4. Therefore, the order of 3 is 4q and 3 is a primitive root of p.

7. gcd(k, p� 1) ¼ 1 if and only if gcd(( p� 1)� k, p� 1) ¼ 1. Since

q( p�1)�k qk � q p�1 � 1 (mod p), q( p�1)�k � �qk (mod p). There-

fore, the sum of all primitive roots is 0.

8. See Table A.5.

9. Z�p is generated by any primitive root of p.

10. 2 is a primitive root of 13. Hence, the primitive roots of 13 are 21(2),

25(6), 27(11), and 211(7). Therefore, the generators of Z�13 are 2, 6, 7,

and 11.

11. The subgroups of Z�13 are f1g, f1, 26g, f1, 24, 28g, f1, 22, 24, 26, 28,
210g, and Z�13. That is, they are f1g, f1, 12g, f1, 3, 9g, f1, 3, 4, 9, 10,
12g, and Z�13.

Table A.5.

p

q 3 5 7 11 13 17 19 23 29

3 �1 1 �1 1 �1 1 �1 �1
5 �1 �1 1 �1 �1 1 �1 1
7 �1 �1 1 �1 �1 �1 1 1

11 1 1 �1 �1 �1 �1 1 �1
13 1 �1 �1 �1 1 �1 1 1
17 �1 �1 �1 �1 1 1 �1 �1
19 �1 1 1 1 �1 1 1 �1
23 1 �1 �1 �1 1 �1 �1 1
29 �1 1 1 �1 1 �1 �1 1
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Exercises 7.1

1. 33 34 32 11 33 24 43 11 33 24 43 31 11 33 14

2. its greek to me
3. (a) l kdyh dvhfuhw,

(b) vlf vhpshu wbudqqlv,
(c) vhqg khos.

4. (a) allmen are mortal,
(b) Periculum in mora (He who hesitates is lost),

(c) invito patre sideraverso (Against my father’s will, I study the

stars).

5. There are 27xs and 23ms. If we assume e in the plaintext became x in

the ciphertext then k ¼ 19 and we obtain:

we hold these truths to be self evident thatall men are cre-
ated equalthat theyare endowed by their creatorwith cer-
tain unalienable rights that among these are life liberty
andthe pursiut of happiness

6. hbgtg iaeky dgirh bgynn isgxx
7. study hard forthe final exam
8. k ¼ 14.

9. Assuming e was enciphered as p, the most common letter in the

ciphertext, k ¼ 11. Hence, P � C þ 15. The plaintext message reads

numbertheory is useful for enciphering messages.
10. We have 21 � 4aþ b (mod 26) and 0 � 19aþ b (mod 26). There-

fore, a ¼ 9, and b ¼ 11.

11. If e and t are enciphered as l and u, respectively, 4aþ b � 11

(mod 26) and 19aþ b � 20 (mod 26). Hence, a ¼ 11 and b ¼ 19.

Therefore, P � 19(C � 19) � 19C þ 3 (mod 26).

when the one great scorer comes to mark against your name
the mark is not for whether you won or lost but how you
played the game

12. dressed to the nines
13. twenty three skiddoo
14. neverwas so much owed by so many to so few^wsc

Exercises 7.2

1. iducorfphopfbhg
2. surrender at once
3. mbmh qd jhg
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4. here we are not afraid to follow the truth wherever it
may lead nortolerate error as long as reason is free to com-
bat it—Jefferson

5. mvmoq hxfpq xvfat dqyrl kyv
6. are you lost
7. il importe de cherchertoujours laverite.
8. how do i love thee, let me count theways.
9. april is the cruelest month.
10. fhx dzalx uaze rhjps.
11. de mortuis nihil nisi bonumxx; (say) nothing but good about the

dead.

12. kvc gif kzg xkd erv
13. good luck
14. See Table A.6.

hqbasdgltplq.
15. if i should die thinkonly this of me that there is some corner

ofa foreign field that is forever england. —Rupert Brooke.

Exercises 7.3

1. 12 635 8645

2. icu too

3.
7 12

8 15

� ��1

� 1

9

� �
15 �12

�8 7

� �
� 3 . 15 14

18 7

� �
� 19 16

2 21

� �

(mod 26).

4. zolwnwcokroihpa ppeoi hpvix.
5. the houston eulers.

6. A . 19 7

7 4

� �
� 25 20

8 6

� �
(mod 26),

A � 25 20

8 6

� �
4 19

19 19

� �
� 12 23

16 6

� �
(mod 26).

Table A.6.

K E L V IJ
N A B C D
F G H M O
P Q R S T
U W X Y Z
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7. A �
0 5 7

22 12 23

6 3 9

0
@

1
A 19 6 4

7 13 17

4 3 4

0
@

1
A

�1

�

0 5 7

22 12 23

6 3 9

0
@

1
A �1 �12 0

12 �8 9

5 5 13

0
@

1
A �

15 19 6

3 15 17

�3 1 14

0
@

1
A(mod 26).

Exercises 7.4

1. 0793 0082 0003 2251 0815 0481

2. 0569 1608 0044 0927 1946 2766 0244 2766 2437

2131 1539

3. 6505 4891 3049 0532

4. e�1 � 71 (mod 3372);

the end is near.
5. e�1 � 33 (mod 2590);

wahoowah.
6. e�1 � 109 (mod 2670);

meet me tonightat the hatand feathers.
7. p ¼ 3019, q ¼ 1453, t ¼ 3 505 709.

8. p ¼ 2153, q ¼ 1867, t ¼ 708 641.

9. k ¼ 1817 � 6117
.31 (mod 8461).

Exercises 8.1

1. x2 þ y2 ¼ 4a2m2

(m2 þ 1)2
þ a2(m2 � 1)2

(m2 þ 1)2
¼ a2(m2 þ 1)2

(m2 þ 1)2
¼ a2.

2. 8650 ¼ 892 þ 272 ¼ 932 þ 12.

3. See Table A.7.

4. Suppose that x ¼ 2nþ 1. If y ¼ 2m then n ¼ x2 þ y2 is of the form

4k þ 1. If y ¼ 2mþ 1, then n ¼ x2 þ y2 is of the form 4k þ 2. In

neither case is n a multiple of 4.

5. If n ¼ 12þ 16k ¼ x2 þ y2, then both x and y are even, say x ¼ 2r

and y ¼ 2s. It follows that 3þ 4k ¼ r2 þ s2, contradicting Theorem

8.1.

6. Suppose that n ¼ 8k þ 6 ¼ x2 þ y2. If x ¼ 2r and y ¼ 2s, then

6 ¼ 4(r2 þ s2)� 8k, implying that 4 divides 6. If x ¼ 2r þ 1 and

y ¼ 2s, then 8k þ 6 ¼ 4r2 þ 4r þ 1þ 4s2 so 8k þ 5 ¼ 4(r2 þ s2

þ r), implying that 4 divides 5. If x ¼ 2r þ 1 and y ¼ 2sþ 1, then

8k þ 6 ¼ 4r2 þ 4r þ 1þ 4s2 þ 4sþ 1, or 8k þ 4 ¼ 4r2 þ 4s2 þ
4r þ 4s, or 2k þ 1 ¼ r(r þ 1)þ s(sþ 1), an even number, a contra-
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diction. Therefore, n cannot be written as a sum of squares.

7. Suppose that n ¼ 8k þ 7 ¼ x2 þ y2. If x ¼ 2r and y ¼ 2s, then

7 ¼ 4(r2 ¼ s2)� 8k, implying that 4 divides 7. If x ¼ 2r þ 1 and

y ¼ 2s, then 8k þ 7 ¼ 4r2 þ 4r þ 1þ 4s2 so 8k þ 6 ¼ 4(r2 þ s2

þ r), implying that 4 divides 6. If x ¼ 2r þ 1 and y ¼ 2sþ 1, then

8k þ 7 ¼ 4r2 þ 4r þ 1þ 4s2 þ 4sþ 1, or 8k þ 5 ¼ 4r2 þ 4s2 þ
4r þ 4s, implying that 4 divides 5. Therefore, n cannot be written as a

sum of two squares.

8. Suppose that 6n ¼ x2 þ y2. Clearly, x and y must be of the form 3k,

3k þ 1, or 3k þ 2. The only case not leading to a divisibility contra-

diction is the case where x and y are both multiples of 3.

9. If n ¼ x2 þ y2, then 2n ¼ (xþ y)2 þ (x� y)2.

10. 50 is the smallest such number; 50 ¼ 12 þ 72 ¼ 52 þ 52.

11. 425 ¼ (92 þ 22)(22 þ 12) ¼ 202 þ 52 ¼ 192 þ 82 ¼ 162 þ 132.

12. 22kþ1 ¼ (2k)2 þ (2k)2.

Table A.7.

n h(n) f (n) n h(n) f (n) n h(n) f (n) n h(n) f (n)

101 1 8 126 0 0 151 0 0 176 0 0
102 0 0 127 0 0 152 0 0 177 0 0
103 0 0 128 1 4 153 1 8 178 1 8
104 1 8 129 0 0 154 0 0 179 0 0
105 0 0 130 1 16 155 0 0 180 1 8
106 1 8 131 0 0 156 0 0 181 1 8
107 0 0 132 0 0 157 1 8 182 0 0
108 0 0 133 0 0 158 0 0 183 0 0
109 1 8 134 0 0 159 0 0 184 0 0
110 0 0 135 0 0 160 1 8 185 1 16
111 0 0 136 1 8 161 0 0 186 0 0
112 0 0 137 1 8 162 1 4 187 0 0
113 1 8 138 0 0 163 0 0 188 0 0
114 0 0 139 0 0 164 1 8 189 0 0
115 0 0 140 0 0 165 0 0 190 0 0
116 1 8 141 0 0 166 0 0 191 0 0
117 1 8 142 0 0 167 0 0 192 0 0
118 0 0 143 0 0 168 0 0 193 1 8
119 0 0 144 1 4 169 1 12 194 1 8
120 0 0 145 1 16 170 1 16 195 0 0
121 1 4 146 1 8 171 0 0 196 1 4
122 1 8 147 0 0 172 0 0 197 1 8
123 0 0 148 1 8 173 1 8 198 0 0
124 0 0 149 1 8 174 0 0 199 0 0
125 1 16 150 0 0 175 0 0 200 1 12
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13. If 22k ¼ x2 þ y2, and x and y are both even, both odd or one is even

and the other odd, a contradiction arises. Hence, one of x and y must

be 0 and the other 2k.

14. (a) 3185 ¼ 5 . 72 . 13, �(1, 3185) ¼ 7, �(3, 3185) ¼ 5. Therefore,

f (3185) ¼ 8.

(b) 7735 ¼ 5 . 7 . 13 . 17, �(1, 7735) ¼ �(3, 7735) ¼ 8. Therefore,

f (7735) ¼ 0.

(c) 72 581 ¼ 181 . 401, �(1, 72 581) ¼ 4, �(3, 72 581) ¼ 0. Therefore,

f (72 581) ¼ 16.

(d) 226 067 ¼ 23 . 9829, �(1, 226 067) ¼ 2, �(3, 226 067) ¼ 2. There-

fore, f (226 067) ¼ 0.

15. 6525 ¼ 782 þ 212. Thus, from Theorem 2.13, s ¼ 78, t ¼ 21,

y ¼ 782 � 212 ¼ 5643, and x ¼ 2 . 21 . 78 ¼ 3276. Therefore, (3276,

5643, 6525) is a primitive Pythagorean triple.

16. 6370 ¼ 772 þ 212. Thus, from Theorem 2.13, s ¼ 77, t ¼ 21,

y ¼ 772 � 212 ¼ 5488, and x ¼ 2 . 21 . 77 ¼ 3234. Therefore, (3234,

5488, 6370) is a Pythagorean triple.

17. If n cannot be expressed as the sum of three squares then

n ¼ 4m(8k þ 7). We have 2n ¼ 2 . 4m(8k þ 7) ¼ 4m(8r þ 6). Hence,

2n can be expressed as the sum of three integral squares.

18. 1729 ¼ 13 þ 123 ¼ 93 þ 103.

19. 40 033 ¼ 163 þ 333 ¼ 93 þ 343.

20. (a) none, 16 120 ¼ 23 . 5 . 13 . 31.

(b) none; 56 144 ¼ 24 . 11 . 319.

21. 870 ¼ 122 þ 12 þ 142 þ 232.

22. 33 þ 43 þ 53 ¼ 63.

23. a ¼ b ¼ c ¼ 18, d ¼ 7.

24. n ¼ 2 produces 102 þ 112 þ 122 ¼ 365 ¼ 132 þ 142; n ¼ 4 produces

362 þ 372 þ 382 þ 392 þ 402 ¼ 7230 ¼ 412 þ 422 þ 432 þ 442.

25. Since x2 and y2 are congruent to 0 or 1 modulo 4, it follows that

x2 � y2 is congruent to 0, 1, or 3 modulo 4. If n is congruent to 1 or 3

modulo 4, then

n ¼ nþ 1

2

� �2

� n� 1

2

� �2

:

If n is congruent to 0 modulo 4, then

n ¼ n

4
þ 1

� �2

¼ n

4
� 1

� �2

:

26. 22
n þ 1 ¼ (22

n�1 þ 1)2 � (22
n�1

)2.
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27. If p is an odd prime, then

p ¼ pþ 1

2

� �2

� p� 1

2

� �2

:

28. 113 ¼ 72 þ 82; 181 ¼ 92 þ 102; 313 ¼ 122 þ 132.

29. 509 ¼ 122 þ 132 þ 142; 677 ¼ 142 þ 152 þ 162; 1877 ¼ 242 þ 252

þ 262.

30. 459 ¼ 152 þ 152 þ 32.

32. Suppose that 3n ¼ a2 þ b2 þ c2 þ d2. Since x2 � 0 or 1 (mod 3), at

least one of a, b, c, d is congruent to 0 modulo 3. Let a be divisible by

3. Hence, s ¼ 3r for some integer r. Since b2 þ c2 þ d2 � 0 (mod 3),

where b, c, d may be negative, b � c � d (mod 3). Therefore,

n ¼ bþ cþ d

3

� �2

þ aþ c� d

3

� �2

þ a� cþ d

3

� �2

þ aþ b� d

3

� �2

:

33. If n ¼ 192, 8nþ 3 ¼ 1539 ¼ 372 þ 112 þ 72. Hence, 192 ¼ t18
þ t5 þ t3.

34. If p 6 jxyz, then gcd(x, p) ¼ gcd(y, p) ¼ gcd(z, p) ¼ 1 and

x p�1 � y p�1 � z p�1 � 1 (mod p). Hence, x p�1 þ y p�1 � 1 þ
1 � 2 6� 1 � z p�1 (mod p) and x p�1 þ y p�1 6¼ z p�1.

35. If gcd(x, p) ¼ gcd(y, p) ¼ gcd(z, p) ¼ 1 then xp � x, yp � y, zp � z

(mod p). Hence, xp þ yp � zp � xþ y� z � 0 (mod p).

36. No, 1999 is a prime of the form 4k þ 3.

37. No, 5 941 232 ¼ 42(8 . 46 415þ 7).

39. 4 ¼ 53 � 112; 5 ¼ 32 � 22; 7 ¼ 24 � 32; 8 ¼ 24 � 23; 9 ¼ 52 � 42;

10 ¼ 133 � 37; 11 ¼ 62 � 52; 12 ¼ 24 � 22; 13 ¼ 28 � 35.

Exercises 8.2

1. s6930 ¼ t9800 ¼ 48 024 900.

2. (a) (7, 4); (b) (161, 72); (c) (49, 20).

3. x2 ¼ (3y2 � y)=2 implies that 3y2 � y ¼ 2x2. Hence, 36y2 � 12y ¼
24x2, or 36y2 � 12yþ 1 ¼ 24x2 þ 1. Hence, (6y� 1)2 ¼ 24x2 þ 1,

or z2 ¼ 24x2 þ 1.

4. Two solutions (x, z) are given by (1, 5) and (99, 485). Hence 1 and

9801 are square–pentagonal numbers.

5. 1 and 210.

6. 48 024 900 and 1 631 432 881.

7. If d ¼ n2, the equation y2 � (nx)2 ¼ 1 would have no solutions.

8. Clearly, x and y cannot be of opposite parity. Suppose that they are
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both even, say x ¼ 2r and y ¼ 2s. We obtain 4s2 ¼ 8r3 þ 2 or

4(s2 þ 2r3) ¼ 2, a contradiction since 46 j2. Hence, both x and y must

be odd.

9. If (a, b) is a solution, then 3a2 þ 2 ¼ b2. Hence, b2 � 2 (mod 3), a

contradiction since 2 is not a quadratic residue of 3.

Exercises 8.3

1. It is reflexive since under the identity transformation f � f . It is

symmetric. If f � g under the transformation x ¼ auþ bv, y ¼
cuþ dv, then g � f under the transformation

u ¼ d

˜

� �
xþ b

�˜

� �
y, v ¼ c

�˜

� �
xþ a

˜

� �
y,

where ˜ ¼ ad � bc ¼ �1 and

d

˜
.
a

˜
� b

�˜
.
c

�˜
¼ ˜

˜2
¼ �1:

It is transitive. If f � g under the transformation x ¼ auþ bv,

y ¼ cuþ dv, and g � h under the transformation u ¼ qwþ rz,

v ¼ swþ tz, where ad � bc ¼ qt � rs ¼ �1, then f � h under the

transformation x ¼ (aqþ bs)wþ (ar þ bt)z, y ¼ (cqþ ds)wþ (cr þ
dt)z, with (aqþ bs)(cr þ dt)� (ar þ bt)(cqþ ds) ¼ (ad � bc)(qt �
rs) ¼ �1.

2. f (x, y) ¼ �x2 þ 2y2 ¼ �(2u þ v)2 þ 2(3u þ 2v)2 ¼ 14u2 þ 20uv þ
7v2 ¼ g(u, v) since 2 . 2� 1 . 3 ¼ 1.

3. u ¼ 4, v ¼ �5.

4. Use the transformation x ¼ 3uþ 2v, y ¼ 4uþ 3v.

5. Use the transformation x ¼ 3u� 2v, y ¼ 2u� v.
6. 2x2 þ 5xy � y2 ¼ 2(5u þ 2v)2 þ 5(5u þ 2v)(7u þ 3v) � (7u þ 3v)2

¼ 176u2 þ 143uvþ 29v2.
7. Suppose that f (x, y) ¼ ax2 þ bxyþ cy2, x ¼ Auþ Bv, and y ¼
Cuþ Dv, with AD� BC ¼ �1. Then f (x, y) ¼ a(Auþ Bv)2 þ
b(Au þ Bv)(Cu þ Dv) þ c(Cu þ Dv)2 ¼ (aA2 þ bAC þ cC2)u2 þ
(2aABþ b(ADþ BC)þ 2cCD)uvþ (aB2 þ bBDþ cD2)v2. The dis-

criminant equals (2aABþ b(ADþ BC)þ 2cCD)2 � 4(aA2 þ bAC

þ cC2)(aB2 þ bBDþ cD2) ¼ (b2 þ 4ac)(AD� BC)2 ¼ b2 � 4ac.

8. If b is even, d � 0 (mod 4). If b is odd, d � 1 (mod 4).

9. f (x, y) ¼ x2 þ 4xyþ y2.

10. Only f 4.

11. No; the discriminant of f is �15 and that of g is �4.
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12. Yes, 31 ¼ 52 þ 6 . 12; yes, 415 ¼ 112 þ 6 . 72.

13. If b2 � 4ac, 0, the only critical point, where @ f =@x ¼ @ f =@ y ¼ 0, is

at (0, 0) which is, from the second derivative test, a relative minimum.

If b2 � 4ac ¼ 0 then the critical points lie on the lines 2axþ by ¼ 0

and bxþ 2cy ¼ 0; however, the second derivative test fails. Plugging

the critical points into f (x, y) we obtain cy2 and (4ac� b2)y2,

respectively. In either case, f (x, y) > 0.

14. 1 ¼ x2 þ 3y2 ¼ (2uþ v)2 þ 3(uþ v)2 ¼ 7u2 þ 10uvþ 4y2.

Exercises 8.4

1.
33

23

2.
1393

972

3. If x ¼ [a1, a2, . . . , an],

1

x
¼ 0þ 1

[a1, . . . , an]
¼ [0, a1, a2, . . . , an]:

4. 0,
1

1
,
3

4
,
19

25
,
79

104
,
177

233
.

5. The equation axþ by ¼ c has solution x ¼ (�1)ncyn�1, y ¼
(�1)nþ1cxn�1.

6. If ci ¼ xi=yi, then xi=xi�1 ¼ [ai, ai�1, . . . , a2, a1] ¼ yi=yi�1. Hence,

xn=xn�1 ¼ [an, an�1, . . . , a2, a1] ¼ xn=yn and the condition is

xn�1 ¼ yn.

7. The formulas for obtaining convergents in Theorem 8.14 are the rules

for multiplication of matrices given in the exercise.

Exercises 8.5

1. (a)
ffiffiffi
3

p ¼ [1, 1, 2], (b)
ffiffiffi
5

p ¼ [2, 4], (c)
ffiffiffi
7

p ¼ [2, 1, 1, 1, 4],

(d)
ffiffiffiffiffi
10

p ¼ [3, 6].

2. [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8].

3. [2, 6, 10, 14, 18, 22, 30, 1, 1, 5, 1, 1]

4. See Table A.8

Hence, (x, y) ¼ (2, 1) ¼ (7, 4) ¼ (26, 15) ¼ (97, 56) ¼ (362, 209).

5. If x ¼ [n], then x ¼ nþ 1=[n] ¼ nþ 1=x. Hence,
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x ¼ nþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4

p

2
:

6.
ffiffiffiffiffi
13

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 4

p ¼ 3þ 4

6þ 4

6þ 4

6þ . . .ffiffiffiffiffi
18

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 2

p ¼ 4þ 2

8þ 2

8þ 2

8þ . . .

.

7. Since, ª is irrational neither jª� a=bj ¼ 1=2b2 nor jª� c=dj ¼
1=2d2. If jª� a=bj. 1=2b2 and jª� c=dj. 1=2d2 then

1

bd
¼ bc� ad

bd
¼ c

d
� a

b
¼

����ª� a

b

����þ
����ª� c

d

����. 1

2b2
þ 1

2d2
:

Hence, 2bd. b2 þ d2, implying that (b� d)2 , 0, a contradiction.

Therefore, either jª� a=bj, 1=2b2 or jª� c=dj, 1=2d2. Hence, by

Theorem 8.21 a=b or c=d is a convergent of ª.

Exercises 8.6

1. The absolute value function is not non-Archimedean since

j1þ 2j ¼ 3. 2 ¼ maxfj1j, j2jg. Therefore, it is Archimedean.

2. (a) If v(e) 6¼ 0, then v(e) ¼ v(e . e) ¼ v(e)v(e) implies that v(e) ¼ 1.

(b) 1 ¼ v(e) ¼ v((�e)(�e)) ¼ v(�e)v(�e).
(c) v(a) ¼ 1 . v(a) ¼ v(�e)v(a) ¼ v(�e . a) ¼ v(�a).

3. If x ¼ 0, jxj0 ¼ 0. If x 6¼ 0, jxj0 ¼ 1. In either case, jxj0 > 0. A case

Table A.8.

1 1 2 1 2 1 2 1 2 1
0 1 1 2 5 7 19 26 71 97 265 362
1 0 1 1 3 4 11 15 41 56 153 209

Table A.9.

x y v(xy) v(x) . v(y) v(xþ y) v(x)þ v(y)
jxyj0 jxj0 . jyj0 jxþ yj0 jxj0 þ jyj0

6¼0 6¼0 1 1 0 or 1 2
6¼0 ¼0 0 0 1 1
¼0 ¼0 0 0 0 0
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by case approach (see Table A.9) shows that jxyj0 ¼ jxj0 . jyj0, as well
as jxþ yj0 < jxj0 þ jyj0.

4. The maximum of v(x) and v(y) is less than or equal to v(x)þ v(y).
5. j600j2 ¼ 1=23, j600j3 ¼ 1=3, j600j5 ¼ 1=52, j600j p ¼ 1 for any other

prime p.

6. If p ¼ q, jqk j p ¼ 1=qk . If p 6¼ q, jqk j p ¼ 1.

7. Let pÆ ix and p� i y so x ¼ (a=b)pÆ and y ¼ (c=d)p�, where

gcd(a, b) ¼ gcd(c, d) ¼ 1. Suppose further that Æ > �; hence,

jxj p ¼ 1=pÆ < 1= p� ¼ jyj p, thus maxfjxj p, jyj pg ¼ jyj p ¼ 1=p�.

jxþ yj p ¼
���� a

b

� �
pÆ þ c

d

� �
p�
����
p

¼
���� p�

bd

� �
(adpÆ�� þ bc)

����
p

¼
���� p�bd

����
p

. jadpÆ�� þ bcj p < p��;

the latter inequality follows since adp��Æ þ bc is an integer. Hence,

jabp��Æ þ bcj p < 1.

8. (1) If q 6¼ 0, then 0, jqj p < 1 and j0j p ¼ 0.

(2) Let pÆ ix and p� i y so x ¼ (a=b)pÆ and y ¼ (c=d) p�, where

gcd(a, b) ¼ gcd(c, d) ¼ 1.

jxj p . jyj p ¼ 1

pÆ
.
1

p�
¼ 1

pÆþ�

and

jxyj p ¼
���� ac

bd

� �
pÆ p�

���� ¼ 1

pÆþ�

since pÆþ� ixy.
(3) Follows from the previous exercise.

9. Suppose r ¼ Qk
i¼1 p

Æi
i and s ¼ Qk

i¼1 p
�i
i , where Æi and �i nonnegative

for 1 < i < k. If p ¼ pi, for 1 < i < k, then r divides s if and only if

Æi < � j if and only if 1= p� < 1= pÆ if and only if jsj p < jrj p. If
p 6¼ pi, for 1 < i < k, then jsj p ¼ jrj p ¼ 0.

10. If x ¼ 1þ 2þ 22 þ 23 þ � � � , then xþ 1 ¼ 0. Hence, x ¼ �1.

11. If x ¼ 5þ 2 . 3þ 2 . 32 þ 2 . 33 þ � � � , then 3x ¼ 6. Hence, x ¼ 2.

12.
5

6
¼ 9þ 7þ 72 þ 73 þ � � � .

13. Suppose x ¼ 6þ 6 . 7þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � � . Adding 1 to

both sides of the equation, we obtain 7þ 6 . 7þ 6 . 72 þ 6 . 73 þ
6 . 74 þ � � � ¼ 7 . 7 þ 6 . 72 þ 6 . 73 þ 6 . 74 þ � � � ¼ 7 . 72 þ
6 . 73 þ 6 . 74 þ � � � ¼ 0. Hence, x ¼ �1.
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14. j48� 36j p ¼ j12j p ¼

1

4
if p ¼ 2

1

3
if p ¼ 3, and

1 if p 6¼ 2, 3:

8>>>><
>>>>:

15. 3þ 4 . 7þ 4 . 72 þ 4 . 73 þ � � � .
16. 98, 784, 5586, 39 200, . . . :

17. (a) the Cartesian plane,

(b) the closed circular disk of radius 1 centered at the origin,

(c) a square centered at the origin with vertices at (�1, 0) and (0, �1),

(d) a rhombus centered at the origin with vertices at (�1, 0) and

(0, �1),

(e) Q3Q.

18. Let x be a point in the interior of D(a; r) and z be a point such that

d(a, z) ¼ r. Since d(x, a), r and the two longest sides of every

triangle in a non-Archimedean geometry are equal in length,

d(x, z) ¼ r. Hence, x can be considered as being at the center.

Exercises 9.1

1. 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, . . . , the tetrahedral

numbers.

2. 1, 5, 15, 35, 70, 126, 210, 330, 495, . . . , the fourth order figurate

numbers.

3. The nth order figurate numbers.

4. 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, . . . :

5. 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, . . . :

6. 0 followed by the nth order figurate numbers.

7. 0, 0, 1, 2, 3, 4, . . . :

8. 1, 3, 5, 7, 9, . . . , the odd positive integers.

9. 0, 1, 4, 9, 16, 25, 36, . . . , squares of the nonnegative integers.

10. 0, 1, 8, 27, 64, 125, 216, 343, . . . , cubes of the nonnegative integers.

11. G(x) ¼ x(x3 þ 11x2 þ 11xþ 1)

(1� x)5
.

12. G(x) ¼
X1
n¼1

nkxn

1� xn
is the generating function for � k.

13. G(x) ¼ 1þ 2x

1� x� x2
.
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14. G(x) ¼ x

1� 3xþ 7x2
.

Exercises 9.2

1. 4, 3þ 1, 1þ 3, 2þ 2 2þ 1þ 1, 1þ 2þ 1, 1þ 1þ 2, and

1þ 1þ 1þ 1. 5, 4þ 1, 1þ 4, 3þ 2, 2þ 3, 3þ 1þ 1, 1þ 3þ 1,

1þ 1þ 3, 2þ 2þ 1, 2þ 1þ 2, 1þ 2þ 2, 2þ 1þ 1þ 1,

1þ 2þ 1þ 1, 1þ 1þ 2þ 1, 1þ 1þ 1þ 2, 1þ 1þ 1þ 1þ 1.

2. p(8) ¼ 22 p(9) ¼ 30

8

7þ 1

6þ 2

6þ 1þ 1

5þ 3

5þ 2þ 1

5þ 1þ 1þ 1

4þ 4

4þ 3þ 1

4þ 2þ 2

4þ 2þ 1þ 1

4þ 1þ 1þ 1þ 1

3þ 3þ 2

3þ 3þ 1þ 1

3þ 2þ 2þ 1

3þ 2þ 1þ 1þ 1

3þ 1þ 1þ 1þ 1þ 1

2þ 2þ 2þ 2

2þ 2þ 2þ 1þ 1

2þ 2þ 1þ 1þ 1þ 1

2þ 1þ 1þ 1þ 1þ 1þ 1

1þ 1þ 1þ 1þ 1þ 1þ 1þ 1

9

8þ 1

7þ 2

7þ 1þ 1

6þ 3

6þ 2þ 1

6þ 1þ 1þ 1

5þ 4

5þ 3þ 1

5þ 2þ 2

5þ 2þ 1þ 1

5þ 1þ 1þ 1þ 1

4þ 4þ 1

4þ 3þ 2

4þ 3þ 1þ 1

4þ 2þ 2þ 1

4þ 2þ 1þ 1þ 1

4þ 1þ 1þ 1þ 1þ 1

3þ 3þ 3

3þ 3þ 2þ 1

3þ 3þ 1þ 1þ 1

3þ 2þ 2þ 2

3þ 2þ 2þ 1þ 1

3þ 2þ 1þ 1þ 1þ 1

3þ 1þ 1þ 1þ 1þ 1þ 1

2þ 2þ 2þ 2þ 1

2þ 2þ 2þ 1þ 1þ 1

2þ 2þ 1þ 1þ 1þ 1þ 1

2þ 1þ 1þ 1þ 1þ 1þ 1þ 1

1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1
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3. The coefficient of xnzm represents the number of different ways n can be

written as a sum of m distinct terms of the sequence, a, b, c, d, e . . . :

4. Expanding we obtain (1þ xazþ x2az2 þ x3az3 þ � � �)(1þ xbz þ
x2bz2 þ x3bz3 þ � � �) � � � . Hence, the coefficient of xnzm represents the

number of ways that n can be written as a sum of m, not necessarily

distinct, terms from the sequence a, b, c, d, e, . . . :

5.
Y1
n¼1

(1þ xn
3

).

6.
Y1
n¼1

(1þ xn(nþ1)=2).

7.
Y
p

(1þ xp), where p runs through all primes.

8.
Y1
n¼1

1

1� xn
3 .

9.
Y1
n¼1

1

(1� xn(nþ1)=2)
.

10.
Y
p

1

1� x p
, where p runs through all primes.

11.
Y
p

1

1� x p
, where p runs through all primes greater than 7.

12.
Y1
n¼6

1

1� x2nþ1
.

13.
Y10
n¼3

1

1� x2n
.

14. (1 þ x)(1 þ x2)(1 þ x4)(1 þ x8)(1 þ x16) � � � ¼ 1 þ x þ x2 þ x3 þ x4

þ x5 þ x6 þ x7 þ x8 þ x9þ � � � :
15. 9, 7þ 1þ 1, 5þ 3þ 1, 5þ 1þ 1þ 1þ 1, 3þ 3þ 3, 3þ 3þ 1þ

1þ 1, 3þ 1þ 1þ 1þ 1þ 1þ 1, and 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1

þ 1. 9, 8þ 1, 7þ 2, 6þ 3, 6þ 2þ 1, 5þ 4, 5þ 3þ 1, 4þ 3þ 2.

16. 10, 8þ 2, 6þ 4, 6þ 2þ 2, 4þ 4þ 2, 4þ 2þ 2þ 2, 2þ 2þ 2 þ
2þ 2.

17. 6þ 4, 7þ 3, 5þ 5, 4þ 3þ 3.

18. The partitions of n into at most two parts are n and (n� k)þ k, for

k ¼ 1, . . . , ½½n=2�� � 1.

19. See Table A.10.
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Exercises 9.3

1. 1, 8, 24, 39, 47, 44, 38, 29, 22, 15, 11, 7, 5, 3, 2, 1, 1.

2. See Table A.11.

The only selfconjugate partition of 7 is 4þ 1þ 1þ 1.

4. 1 ¼ 1

2 ¼ 2

3 ¼ 2þ 1

4 ¼ 2þ 2

5 ¼ 2þ 2þ 1

6 ¼ 2þ 2þ 2

5:
Y1
n¼1

(1� x2n)(1þ x2n�1z)(1þ x2n�1z�1)

¼
Y1
n¼1

(1� un
3

)(1� u3n�3=2þ1=2)(1� u3n�3=2�1=2)

¼
Y1
n¼1

(1� u3n�2)(1� u3n�1)(1� u3n) ¼
Y1
k¼1

(1� uk),

and X1
n¼�1

xn
2

zn ¼
X1
n¼�1

u3n
2=2(�u1=2)n ¼

X1
�1

(�1)nun(3nþ1)=2:

6. The largest part of the conjugate is the number of parts of the partition

and vice versa.

7. The sum is 0. See Table A.12.

8. The sum is 0. See Table A.13.

9. If n ¼ 4 (mod 5) arrange the partitions of n into five classes such that

the ranks of the partitions in each class have the same residue modulo

Table A.10.

n p(n) pe(n) p0(n) pd(n) ped(n) pod(n) p1(n)

1 1 0 1 1 0 1 1
2 2 1 1 1 0 1 2
3 3 0 2 2 1 1 1
4 5 2 2 2 1 1 7
5 7 0 3 3 2 1 12
6 11 3 4 4 3 3 45
7 15 0 5 5 4 4 87
8 22 5 6 6 3 3 45
9 30 0 8 8 4 4 87
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5. There will be the same number of partitions in each class. The result

follows since 0þ 1 þ � � � þ (n� 1) � 0 (mod 5).

10. 1 2 4 6 9 1 3 5 9 11

3 5 7 10 2 4 6 10

8 11 7 12

12 8

11. 1 2 3 1 2 3 1 2 4 1 2 4 1 2 5 1 2 5 1 2 6

4 5 4 6 3 5 3 6 3 4 3 6 3 4

6 5 6 5 6 4 5

1 2 6 1 3 4 1 3 4 1 3 5 1 3 5 1 3 6 1 3 6

3 5 2 5 2 6 2 4 2 6 2 4 2 5

4 6 5 6 4 5 4

1 4 6 1 4 5

2 5 2 6

3 3

Table A.11.

Partitions Number of distinct
parts in each partition

7 1
6þ 1 2
5þ 2 2
5þ 1þ 1 2
4þ 3 2
4þ 2þ 1 3
4þ 1þ 1þ 1 2
3þ 3þ 1 2
3þ 2þ 2 2
3þ 2þ 1þ 1 3
3þ 1þ 1þ 1þ 1 2
2þ 2þ 2þ 1 2
2þ 2þ 1þ 1þ 1 2
2þ 1þ 1þ 1þ 1þ 1 2
1þ 1þ 1þ 1þ 1þ 1þ 1 1

Total 30 ¼ p1 (7)
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Table A.12.

Partition Rank Modulo 5

4 3 3
3þ 1 1 1
2þ 2 0 0
2þ 1þ 1 �1 4
1þ 1þ 1þ 1 �3 2

Table A.13.

Partition Rank Modulo 5

9 8 3
8þ 1 6 1
7þ 2 5 0
7þ 1þ 1 4 4
6þ 3 4 4
6þ 2þ 1 3 3
6þ 1þ 1þ 1 2 2
5þ 4 3 3
5þ 3þ 1 2 2
5þ 2þ 2 2 2
5þ 2þ 1þ 1 1 1
5þ 1þ 1þ 1þ 1 0 0
4þ 4þ 1 1 1
4þ 3þ 2 1 1
4þ 3þ 1þ 1 0 0
4þ 2þ 2þ 1 0 0
4þ 2þ 1þ 1þ 1 �1 4
4þ 1þ 1þ 1þ 1þ 1 �2 3
3þ 3þ 3 0 0
3þ 3þ 2þ 1 �1 4
3þ 3þ 1þ 1þ 1 �2 3
3þ 2þ 2þ 2 �1 4
3þ 2þ 2þ 1þ 1 �2 3
3þ 2þ 1þ 1þ 1þ 1 �3 0
3þ 1þ 1þ 1þ 1þ 1þ 1 �4 1
2þ 2þ 2þ 2þ 1 �3 2
2þ 2þ 2þ 1þ 1þ 1 �4 1
2þ 2þ 1þ 1þ 1þ 1þ 1 �5 0
2þ 1þ 1þ 1þ 1þ 1þ 1þ 1 �6 4
1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1 �8 2
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Erdős, P. and Dudley U., Some remarks and problems in number theory related to

the work of Euler, Mathematics Magazine 56 (1983), 292–8.

Euclid, The Thirteen Books of the Elements, 3 vols., 2nd ed., trans. Thomas Heath,

Dover, New York, 1956.

Fermat, P. Varia opera mathematica, J. Pech, Toulouse, 1679.

Grosswald, E., Topics from the Theory of Numbers, Macmillan, New York, 1966.

Guy, R.K., Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, New

York, 1982.

411



Guy, R.K., Unsolved Problems in Number Theory, 3rd ed., Springer, New York,

2004

Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, 4th ed.,

Oxford University Press, Oxford, 1960.

Hurwitz, A. and Kritikos, N., Lectures on Number Theory, Springer-Verlag, New

York, 1986.
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Sierpiński, W., Elementary Theory of Numbers, North-Holland, Amsterdam, 1988.

Silverman, J.H., A Friendly Introduction to Number Theory, Prentice-Hall, Upper

Saddle River, NJ, 1997.

Stark, Harold M., An Introduction to Number Theory, MIT Press, Cambridge, MA.,

1987.

Stewart, B.M., Theory of Numbers, 2nd ed., Macmillan, New York, 1964.

Stopple, J., A Primer of Analytic Number Theory: From Pythagoras to Riemann,

Cambridge University Press, Cambridge, 2003.

Uspensky, J.V. and Heaslett, M.A., Elementary Number Theory, McGraw-Hill, New

York, 1939.

History (general)

Berndt, B. and Rankin, R., Ramanujan: Letters and Commentary, Hist. of Math. vol.

9, American Mathematical Society and London Mathematical Society, Provi-

dence, RI, 1995.

Bühler, W.K., Gauss: a Biographical Study, Springer, New York, 1981.

Bunt, N.H., Jones, P. S. and Bedient, J.D., The Historical Roots of Elementary

Mathematics, Prentice-Hall, Englewood Cliffs, NJ, 1976.

Canfora, Luciano, The Vanished Library, University of California Press, Berkeley,

1987.

412 Bibliography



Dickson, L.E., History of the Theory of Numbers, 3 vols., Carnegie Institute,

Washington, DC, 1919, reprinted Chelsea, New York, 1952.

Dunham, W., Euler, The Master of Us All, Mathematical Association of America,

Washington, D.C., 1999.

Dzielska, M., Hypatia of Alexandria, Harvard University Press, Cambridge, MA.,

1995.

Hardy, G.H., A Mathematician’s Apology, Cambridge University Press, Cambridge,

1967.

Heath, T.L., Diophantos of Alexandria, Cambridge University Press, Cambridge,

1885.

Hoffman, P., The Man Who Loved Only Numbers: the Story of Paul Erdős and the
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Descartes, René, 95, 97, 139, 150, 151, 158,

265
DeTemple, Duane, 29
Dickson, Leonard Eugene, 95, 148
Diffie, W., 252, 253
Digby, Sir Kenelem, 100
digital root, 35
digital sum, 68
Diophantine equation, 181
Diophantus, 14–17, 45, 78, 181, 258, 260,

265, 266, 270, 272, 275
polynomial, 280

Dirichlet, Johann Peter Gustav Lejeune, 95,
99, 115, 116, 117, 123, 180, 265, 270,
271, 283

principle, 190
product, 105

distance function, 299
division algorithm, 58
Dixon, John, 72
Dodgson, Charles, 1, 241, 272
Donne, John, 196
Doyle, Sir Arthur Conan, 258
Dubner, Harvey, 122, 125
Duncan, R.L., 99
Durfee, William Pitt, 312, 313
Durfee–Sylvester theorem, 313

Dyson, F.J., 324

Easter, 166–167
Easton, Belle, 132
Edict of Nantes, 30
Eisenstein, Ferdinand, 207
Electric Frontier Foundation, 142
elephantine triple, 82
Elizabeth I, 11
Elkies, Noam J., 270
El-Sedy, Esam, 26
equivalence relation, 162
Eratosthenes, 87–88, 123
sieve, 87–88

Erdös, Paul, 118, 157, 166
Ernst, Thomas, 237
Escott, E.B., 123, 148
Essennell, Emma, 63
Euclid, 5, 14, 58, 60, 67, 70, 76, 88–90, 115,

136, 233
lemma, 89
theorem, 115

Euclidean Algorithm, 70–71
Euler, Johannes Albert, 268
Euler, Leonard, 17, 19, 20, 60, 98, 105, 111,

116, 118, 120, 123, 125, 126, 139, 140,
144, 145, 148, 154, 161, 176, 185, 189,
190, 197, 201, 202, 204, 207, 215, 216,
260, 262, 263, 267, 270, 274, 276, 279,
280, 283, 304, 305, 307, 308, 314, 318

criterion, 203
parity law, 310
pentagonal number theorem, 317
phi-function, 173
product, 119
theorem, 315, 318

Euler–Fermat theorem, 176
Euler–Maclaurin theorem, 95
Euler–Mascheroni constant, 95, 132–133
extended digital sum, 68

Fagot, Henry, see Bruno
Faltings, Gert, 271
Faraday, Michael, 45
Farey, John, 178
complementary fractions, 178
fractions, 178
interval, 181
pairs, 178

Faulhaber, Johann, 48
Fechner, Gustav, 30
Felkel, Antonio, 109
Fermat, Clément-Samuel, 18
Fermat, Pierre de, 17, 18, 20, 22, 77,

100–101, 110, 111, 139, 140, 145, 148,
150, 151, 176, 204, 260, 265, 267, 269,
270, 271, 274, 276, 279, 280

Index 423



formula, 22
Last Theorem, 18, 270
Little Theorem, 176
method of descent, 7

Ferrers, Norman M., 311, 313
conjugate diagram, 311
diagram, 311
theorem, 313

Fibonacci, 3, 15, 27, 41, 42, 109, 138, 169,
187, 189, 258, 260, 283

identity, 260
field, 192–193
Findley, Josh, 142
finite difference method, 8–10
Flaccus Albinus, see Alciun
Fortune, Reo, 122
Fouvrey, E., 271
Franklin, Fabian, 315, 316, 319
theorem, 316

Franqui, Benito, 151
Frederick II, 3
Frenecle, see de Bessy
Frey, Gerhard, 271
Friedman, William, 241
Fundamental Theorem of Arithmetic, 90

Gage, Paul, 142
Galbreath, Norman, 124
Gale, Kate, 82
Galileo Galilei, 1, 23, 78, 110, 237
Galois, Evariste, 18, 107, 296
Garcia, Mariano, 148, 151
Gardiner, Vera, 124
Gauss, Karl Friedrich, 17, 25, 71, 90, 117,

122, 146, 161, 167, 173, 175, 184, 185,
196, 198, 201, 205, 207, 216, 218, 220,
265, 266, 270, 271, 280, 281, 283

lemma, 205
method for calculating the date of Easter,
167

quadratic reciprocity law, 207
Theorem, 175

Gelin, A.,
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Lamé, Gabriel, 30, 71–72, 270, 271
formula, 30

Lander, L.J., 270
Landry, Fortune, 140
Laplace, Pierre-Simon, 202
Larison, Sidney, 26–27
lattice point, 113
least common multiple, 68
least residue system, 163
Le Blanc, Monsieur, see Sophie Germain
Legendre, Adrien Marie, 18, 112–113, 116,

117, 122, 123, 161, 201, 202, 206, 207,
265, 266, 270

conjecture, 117
symbol, 202
theorem, 113

Lehman, R.S., 100
Lehmer, Derrick Henry, 80, 110, 140, 150,

155, 174
Lebesque, V.A., 184
Leibniz, Gottfried, 16, 45, 154, 176,

198, 307
Lenthéric, P., 81
Leonardo of Pisa, see Fibonnaci
Lerch, Mathias, 130
formula, 130

Lessing, Gotthold, 274
Levy, Paul, 129
Lewis, Meriweather, 243
Leybourn, Judy, 121
Library of Alexandria, 14, 87
Lindemann, Carl, 283
Liouville, Joseph, 107, 173, 191, 271
formula, 102
lambda function, 107

Littlewood, John Edensor, 125, 269
Lord Chesterfield, (Philip Dormer Stanhope),

75
Lucas, Edouard, 21, 27–28, 34, 43, 48, 139,

140, 141, 155, 177
Lucas–Lehmer test, 140–141
Luther, Martin, 14

MacMahon, Percy, 52, 297, 318, 320
theorem, 320

Magna Carta, 47
Mahler, Kurt, 270
Maillet, E., 269
Malo, E., 155
Manhattan Project, 36
Marcellus, 4
Marks, Sarah, see Hertha Ayrton
Mathematical Tripos, 96
Matiasevich, Yuri, 181
Matsuoka, Y., 26
Maurolico, Francesco, 138

Index 425



Maurolycus, Franciscius, see Francesco
Maurolico

Maximilian I, Emperor, 16
Mazur, Barry, 271
McDaniel, Wayne, 93
Mead, Margaret, 122
Mengoli, Pietro, 45
Merkle, R.C., 252
Mersenne, Marin, 22, 102, 110, 139, 140,

150, 151, 176, 265
prime, 140

Mertens, Frantz, 106
conjecture, 106

Metric, 299
Metrodorus, 45
Meyer, Margaret, 39
Miller, J.C.P., 220
Minkowski, Hermann, 267
Minoli, Daniel, 154
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